RSX-11M

Guide to Writing
an i/O Driver

Order No. DEC-11-OMWDA-B-D

dliloliltiall

RSX-11M

Guide to Writing
an 1/0 Driver

Order No. DEC-11-OMWDA-B-D

RSX-11M Version 2

digital equipment corporation - maynard. massachusetts

First Printing, April 1975
Revised, September 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance to the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
Digital.

Copyright (:) 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM

LIMITED RIGHTS LEGEND

Contract No.

Contractor or Subcontractor: Digital Equipment Corporation

All the material contained herein is considered limited rights data
under such contract.

1/76-15

CONTENTS

Page
PREFACE vii
0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS vii
0.2 STRUCTURE OF THE DOCUMENT viii
G.3 ASSOCIATED DOCUMENT viii
CHAPTER 1 THE RSX-11M I/O SYSTEM - PHILOSOPHY AND
STRUCTURE 1-1
.1 I/0 PHILOSOPHY -
.2 STRUCTURE -
2.1 I/0 Hierarchy -
.2.1.1 FCS -
.2.1.2 QIO -
2.1.2 -

...... Executive I/0 Processing
in RSX-11M

.2.2 Role of I1I/0 Driver -
.2.2.1 Device Interrupt -
.2.2.2 I/0 Initiator -
.2.2.3 Device Timeout -
.2.2.4 Cancel 1/0 -
.2.2.5 Power Failure -
.2.2.6 Summary

DATA STRUCTURES

The Device Control Block (DCB)

The Unit Control Block (UCB)

The Status Control Block (SCB)
Interrelation of the I/0 Control Blocks
The I/0 Packet

The I/0 Queue

The Fork List

The Device Interrupt Vector

EXECUTIVE SERVICES

.

oo LERELBERELDWWRWWWWWWNNNDNNDND

i

N OUT_WWN
=

|
HHEHWOWWORONIOOOUTUIE &S BB WWNEF

B b b b b b b o b b e b e b b e

el sl e e sl e s e e e e e s e el el e e e el
.

4.1 Pre-Driver Initiation Processing -10
4.2 Post-Driver Initiation Services -10
.4.2.1 Interrupt Save (SINTSV) -11
.4.2.2 Get Packet ($SGTPKT) -11
.4.2.3 Create Fork Process ($FORK) -11
.4.2.4 1/0 Done ($IODON) -11
. PROGRAMMING STANDARDS -12
.5.1 Process-Like Characteristics of a Driver 1-12
.5.2 Programming Conventions 1-12
.5.3 Programming Protocol 1-12
.5.3.1 Processing at Priority 7 with Interrupts
Locked Out 1-13
1.5.3.2 Processing at the Priority of the Interrupting
Source 1-13
1.5.3.3 Processing at Fork Level 1-14
1.5.3.4 Programming Protocol Summary 1-14
1.6 FLOW OF AN I/0 REQUEST 1-14
1.7 DATA STRUCTURES AND THEIR INTERRELATIONSHIPS 1-17
1.7.1 Data Structures Summary 1-19

iii

CONTENTS (Cont.)

Page
CHAPTER 2 INCORPORATING USER-WRITTEN DRIVERS INTO
RSX-11M 2-1
2.1 INTRODUCTION 2-1
2.2 OVERVIEW 2-1
2.3 INCORPORATING A DRIVER - DETAILS 2-2
2.3.1 Creating the Data Structure 2-2
2.3.1.1 Required Device Control Block (DCB) Fields 2-2
2.3.1.2 Required Unit Control Block (UCB) Fields 2-3
2.3.1.3 Reguired Status Control Block (SCB) Fields 2-4
2.3.1.4 Source Format of the Data Structure 2-4
2.3.2 Creating the Driver Source Code 2-4
2.3.3 Incorporating the User-Written Driver 2-5
2.4 DRIVER DEBUGGING 2=7
2.4.1 Rebuilding and Re-incorporating the User
Driver 2-7
2.4.1.1 Re-Assembly 2-7
2.4.1.2 Updating the Executive Object Module Library 2-7
2.4.1.3 Rebuilding the Executive 2-8
2.4.1.4 Incorporating Tasks into the System 2-8
2.4.1.5 Bootstrapping thé New System 2-8
2.4.2 RSX-11M Executive Debugging Tool 2-9
2.4.3 Fault Isolation - Some General Hints 2-10
2.4.3.1 Introduction 2-10
2.4.3.2 Fault Classifications 2-10
2.4.3.3 Immediate Servicing 2-11
2.4.3.4 Other Pertinent Fault Isolation Data 2-12
2.4.3.5 Fault Tracing 2-13
2.5 SAMPLE OUTPUT FROM CRASH AND PANIC DUMP
ROUTINES 2-19
2.5.1 Crash Output 2-19
2.5.2 Panic Dump Output 2-19
CHAPTER 3 WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS 3-1
3.1 DATA STRUCTURES 3-1
3.1.1 The I/0 Packet 3-2
3.1.1.1 I1/0 Packet Details 3-4
3.1.2 The Device Control Block (DCB) 3-9
3.1.2.1 DCB Details 3-10
3.1.2.2 I1/0 Function Codes 3-15
3.1.3 The Status Control Block (SCB) 3-16
3.1.3.1 SCB Details 3-17
3.1.4 The Unit Control Block (UCB) 3-19
3.1.4.1 UCB Details 3-21
CHAPTER 4 EXECUTIVE SERVICES AVAILABLE TO I/0 DRIVERS 4-1
4.1 SYSTEM-STATE REGISTER CONVENTIONS 4-1
4.2 SERVICE CALLS 4-1
CHAPTER 5 INCLUDING A USER-WRITTEN DRIVER - AN EXAMPLE 5-1
5.1 DEVICE DESCRIPTION 5-1
5.2 DATA STRUCTURE AND DRIVER SOURCE 5-2
5.2.1 The Data Structure 5-2
5.2.2 Driver Code 5-5

iv

APPENDIX

APPENDIX

INDEX

Figure

Table

3’? hd
[\ON g

| N I A R A A N N AN N B |
VB WNDHUTLER WD RS WN

WWWWWNNNNDN R

3-1

CONTENTS (Cont.)

DEVELOPMENT OF THE ADDRESS DOUBLEWORD

INTRODUCTION
CREATING THE ADDRESS DOUBLEWORD

SYSTEM DATA STRUCTURES AND SYMBOLIC
DEFINITIONS

I1/0 Control Flow

DL11l Disk I/O Data Structure
RK1l Disk I/0 Data Structure
I/0 Data Structure

Unmapped System Header

Mapnped System Header

By O Sy s Ltin otauco

Stack Structure - Internal SST Fault
Stack Structure - Non-Normal SST Fault
Stack Structure - Data Items on Stack
1/0 Packet Format

QIO Directive Parameter Block (DPB)
Device Control Block

Status Control Block

Unit Control Block

TABLES

Standard I/0 Function Codes

1-8

{ N T U O N Y A N B |
00 ~J O WU 0

WWWWWNNN N
WO N W
oo

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The goal of this manual is to provide all the information necessary to
successfully prepare a conventional I/O driver for RSX-11M and
subsequently incorporate it into an operational user-tailored system.
A "conventional" driver is best explained by example. Disks and unit
record devices are considered conventional; the LPS-11, UDC-11, and
TM11 are considered non-conventional. Complexity of device servicing
requirements sets the dividing line, a line not easily established in
go, no-go terms.

The manual assumes the reader fully understands the device for which
he 1is writing a driver, and has complete familiarity with the PDP-11
computer, its peripheral devices, and the software supplied with an
RSX~11M system. Complete familiarity implies an in-depth exposure to
the following RSX-11M manuals (see section 0.3 below):

1. System Generation Manual

2. I/0 Drivers Reference Manual

3. Executive Reference Manual

4. Utilities Procedures Manual

5. 1I/0 Operations Reference Manual
Although this manual 1is organized tutorially, our reader class
assumptions require a system programmer level of expertise; thus, the
manual will not contain definitions of data processing terms and
concepts familiar to senior level professionals.
As adjuncts to this manual, the reader is advised to study existing
I/0 drivers. The RF-11 disk driver is a good example of an NPR device
and the TA-11 (cassette) is illustrative of a programmed I1/0 device.
In addition, a perusal of the source code contained in the files

IOSUB, SYSXT, DRQIO, BFCTL, and DRDSP (stored under UIC [11,10] on the
source disk) should prove beneficial.

vii

0.2 STRUCTURE OF THE DOCUMENT

This document cascades from chapter to chapter toward increasing
levels of implementation detail.

Chapter 1 is a functional description of the RSX-11M device level I/0
system, covering both data structure and code reguirements.

Chapter 2 details how a user-written driver is incorporated into the
system.

Together, Chapters 1 and 2 provide a complete understanding of the
reguirements that must be met in creating a system which contains a
user-written driver.

Chapter 3 provides programming level details on I/O data structures.
Chapter 4 covers all the I/0-related Executive services.

Chapter 5 is an example of a user-written driver.

Appendix A describes the Address Doubleword.

Appendix B lists system macros which supply symbolic offsets for
system data structures.

0.3 ASSOCIATED DOCUMENTS

Other manuals closely allied to the purposes of this document are
described briefly in the RSX-11M/RSX-11S Documentation Directory,
Order No. DEC-11-OMUGA-B-D. The Documentation Directory defines the
intended readership of each manual in the RSX-11M/RSX-11S set and
provides a brief synopsis of each manual's contents.

viii

CHAPTER 1

THE RSX-11M I/0 SYSTEM - PHILOSOPHY AND STRUCTURE

1.1 I/0 PHILOSOPHY

Memory constraints and RSX-11D compatibility requirements dominated
the design philosophy and strategy used in creating RSX-11M. To meet
its performance and space goals, the RSX-11M I/O system attempts to
centralize common functions, thus eliminating the 1inclusion of
repetitive code in each and every driver in the system. To achieve
this, a substantial effort has been expended in the design of
RSX-11M's data structures. These structures are used to drive the
centralized routines; the effect is to substantially reduce the size
of individual I/0 drivers. The table structures, of course, reguire
space and must be considered with the total size of the I/O system.
Nevertheless, the size reduction effected by the <centralization of
functions, combined with table~-driven design, has enabled RSX-11M to
meet its original memory and performance goals.

In a DEC-released system, DEC-supported drivers are included into the
user-tailored system via system generation queries. User-written
drivers require the user to create object files for I/0 data

structures and driver code. These object files are built and
incorporated during the generation of the user-tailored system.

1.2 STRUCTURE
This section:

1. Places an I/0 driver in the context of the overall RSX-11M
I/0 system;

2. Establishes the responsibilities of an I/0 driver, and

3. Functionally describes the driver's interface to the
Executive subroutines and the I/0 data structures.

1.2.1 1I/0 Hierarchy

The RSX-11M I/O system is structured as a loose hierarchy. The term
"loose" simply 1indicates that the hierarchy can be entered at any of
its levels; this characteristic is contrasted to "tight" hierarchies
which permit entry only from the top. Tight hierarchies exist
principally for security and protection, but are costly in their
consumption of egquipment resources. Figure 1-1 shows the loose I/0
system hierarchy.

THE RSX-11M I/O SYSTEM - PHILOSOPHY AND STRUCTURE

PRIVILEGED NON-PRIVILEGED
USER 1/0
FCP FCs REQUEST
DEVICE
INDEPENDENT
DEVICE
DEPENDENT
QIO DIREC QIO DIREC
USER STATE
SYSTEM STATE
QIO DIREC
SERVICE
EXEC COMM
™ 1/0 PROC'S
DEVICE INTERRUPT * 1/0
DRIVER
Figure 1-1

I/0 Control Flow

1.2.1.1 FCS - At the top of the hierarchy is File Control Services
(FCS) which provides device-independent access to devices included in
a given system configuration. The user task has two levels with which
to interface with FCS; Get/Put and Read/Write. Get/Put facilitates
the movement of data records, whereas Read/Write provides a more basic
level of access affording more direct control over data movement
between a task and peripheral devices.

The discussion of FCS has been purposely terse because its existence
is completely transparent to the driver and rarely concerns the writer
of a conventional driver. FCS will accept a user request, interpret
it, and perform all operations necessary to carry out the user
request.

1-2

THE RSX-11M I/0 SYSTEM - PHILOSOPHY AND STRUCTURE

1.2.1.2 QIO - The QIO directive is the lowest level of task I/C. Any
task may issue a QIO directive. The QIO directive allows more direct
control over devices which are connected to a system and for which an
I1/0 driver exists. The QIO directive forces all I/0 reqguests from
user task's to go through the Executive. The Executive prevents tasks
from destructively interfering with each other and with the Executive.

1.2.1.3 Executive I/0 Processing - The processing of I/O requests by
the Executive I/0 system is accomplished via:

1. File Control Primitives (FCP), and

2. A collection of Executive components consisting of:

a QIO directive processing;

b. I/0-related subroutines, and
c. The I/O0 drivers.

FCP is a privileged task; it 1is responsible for maintaining the
structure and integrity of data stored on file-structured volumes. It
maps virtual block numbers to logical block numbers, extends files,
and makes volume protection checks. No direct connection exists
between FCP and a driver.

Logical blocks are 256 words in length; it is the responsibility of
the driver to convert a logical block number into a physical address
on a file-structured device.

Within the system, FCP exists as a privileged task, possessing all the
attributes of privileged tasks. FCP requires a partition in which to
execute. Drivers, on the other hand, are specialized,
permanently-resident system processes, not tasks.

The I/0 services provided by the Executive consist of QIO directive
processing, and a collection of subroutines used by drivers to obtain
I/0 requests, facilitate interrupt handling, and return status upon
cempletion o¢f an I/0 reguest (actual control of the device is
performed by the driver). These subroutines will be examined in
considerable detail later. Executive subroutine services and CIO
directive processing are shown as distinct components but are, in
fact, both parts of the Executive. These are the routines which
centralize common driver functions, thus eliminating duplicate code
sequences among drivers.

The description of the I/C hierarchy and 1interrelationships 1is now

sufficiently complete to allow a more direct consideration of the role
fulfilled by an I/C driver in an RSX-11M system.

1-3

THE RSX-11M I/0 SYSTEM - PHILOSOPHY AND STRUCTURE

1.2.2 Role of I/O Driver in RSX-11M

Every driver has five entry points:

1. Device interrupt*;

2. I/0 initiator;

3. Device timeout;

4. Cancel 1/0, and

5. Power failure.
The first entry point is entered via a hardware interrupt; the last
four are entered by calls from the Executive. These entry points are

descriptive enough in and of themselves to provide direct insight into
the responsibilities of a driver; the functional details follow.

1.2.2.1 Device Interrupt - Control is passed to this entry point when
a device previously 1initiated by the driver has completed an 1/0
operation and has caused an interrupt in the central processor. The
connection to the driver in this instance is direct; the Executive is
not involved.

1.2.2.2 I/0 Initiator - This entry point is called by the Executive
to inform the driver that work for it is waiting to be done. 1In
effect, this is a wakeup signal for the driver.

1.2.2.3 Device Timeout - When a driver initiates an I/0 operation, it
establishes a timeout count. If the function does not complete within
the specified time interval, the Executive will note the time lapse
and call the driver at this entry point.

1.2.2.4 Cancel I/0 - A number of circumstances arise within the
system which require that a driver terminate an in-progress I/0
operation. When this becomes necessary, a task so informs the
Executive which then relays the request to the driver by calling it at
the cancel 1/0 entry point.

1.2.2.5 Power Failure - Two conditions can initiate a <call to the
driver when power is restored following a power failure. First, the
power failure entry point is automatically called by the Executive any
time the controller is busy. Secondly, a driver has the option to be
called regardless of the existence of an outstanding I/0 operation at
the time the power is restored. If power fails, and the conditions

* A device may trigger more than one distinct interrupt entry. For
examrle, a full duplex device would have two.

THE RSX-11M I/C SYSTEM - PHILOSOPHY AND STRUCTURE

exist for power failure code initiation, the Executive will so inform
the driver by calling it at the power failure entry point when power
is restored. Frequently, a driver's response to a power failure or an
I/0 failure is identical to that when its device times out; in such a

case, the power failure entry point may simply be a return, since
recovery will eventually be effected via the timeout entry point.

Also, when the system is bootstrapped, a power failure interrupt 1is
simulated. This simulation gives drivers the opportunity to carry out
any pre-operational initialization deemed appropriate.

1.2.2.6 Summary - Role of an I/0 Driver - Functionally, the driver in
RSX~11M has responsibility for:

™ ISienu

5 3 ol o -
n eviCe 1Nnierrupts;

1. Servicing
2. 1Initiating I/0 operations;
3. Cancelling in-progress I/0 operations, and

4. Performing device-related functions upon the occurrence of
timeout or power failure.

A driver exists as an integral part of the Executive; it can call and
be called by the Executive. The driver initiates device 1I/0
operations directly and receives device interrupts directly. All
other entry points are entered via Executive calls. A driver never
receives a QIO request directly, and has no direct interaction with
FCP.

At this point, a functional description of the role of an I/0O driver
in RSX~11M has been presented. In the next three sections, the

Data structures,

Executive services, and

Programming conventions and protocol
related to I/0 drivers will be discussed. The chapter closes with a
section discussing the flow of an I/0O reguest, from the issuance of a

QIO directive to the delivery of the requested data to the task. Data
structure interrelationships are also covered.

1.3 DATA STRUCTURES

There are seven data structures with which an I/0 driver interacts:
1. Device Control Blocks (DCB's);
2. Unit Control Blocks (UCB's);
3. Status Control Blocks (SCB's);
4. The I/C FPacket;

5. The I/C Cueue;

THE RSX-11M I/0 SYSTEM - PHILOSOPHY AND STRUCTURE
6. The Fork List, and
7. Device Interrupt Vectors.

The first four are most important to the driver, since it is via these
data structures that all I/0 operations are effected. They also serve
as communication and coordination vehicles between the Executive and
individual drivers.

The I/0 Queue and the Fork List are actually Executive data
structures, but to properly understand the complete interaction of an
I/0 driver with the Executive, their role in the system will also be
described. The I/0 Queue is a list of I/0C Packets which are built by
the QIO directive, principally from information in the caller's
Directive Parameter Block (DPB).

Entry to a driver following a device interrupt 1is direct via the
appropriate hardware device interrupt vector. Since the driver writer
is responsible for properly establishing this vector, it 1is 1included
in the data structures associated with a driver.

1.3.1 The Device Control Block (DCB)

At least one DCB exists for each type of device appearing in a system
(Gevice type should not be eguated with a device-unit). The function
of the DCB is to describe the static characteristics (rather than
execution-time information) of both the device controller and the
units attached to the controller. All the DCB's in a system form a
forward-linked list, with the last DCB having a link of zero. Most of
the data in the DCB is established in the assembly source for the
driver data structure. The DPCB 1is wused by the QIO directive
processing code in the Executive and not by the driver.

1.3.2 The Unit Control Block (UCB)

One UCB exists for each device-unit attached to a system. Much of the
information 1in the UCB 1is static, though a few dynamic parameters
exist. For example, the redirect pointer, which reflects the results
of an MCR Redirect command, is updated dynamically. As with the DCB,
most of the UCB is established in the assembly source; however, 1its
contents are used and modified by both the Executive and the driver,
though modification of a given datum is done exclusively by either the
Executive or driver, not both.

1.3.3 The Status Control Block (SCB)

One SCB exists for each device controller in the system. This is true
even if the <controller handles more than one device-unit (like the
RK11l Controller). Line multiplexers such as the DH1ll1 and DJ11 are
considered to have a controller per line since all lines may transfer
in parallel. Most of the information in the SCB is dynamic. The SCB
is used by both the Executive and the driver.

1-6

THE RSX-11M I/O SYSTEM - PHILOSOPHY AND STRUCTURE

1.3.3.1 1Interrelation of the I/0 Control Blocks - Without explicit
details on the contents of the DCB, UCB, and SCB, their relationships
are difficult to correlate. This section 1is intended to represent
their interrelationship without entering intc the detailed contents of

the control blocks, leaving such a discussion to be pursued in Chapter
3.

Figure 1-2 shows the data structure that would result for three LA30
DECwriters 1interfaced via DL1l controllers. The structure regquires
one DCB, three UCB's, and three SCB's, since the activity on all three
units can proceed in parallel.

In Figure 1-~3, the internal data structure for an RK11l disk controller
with three units attached is depicted. Note that only one SCB exists
because only one of the three units may be active at any given time.

DCB
’ <
UCB UcCB UCB
i Y
') (
SCB SCB SCB
Figure 1-2

DL11 Disk I/C Data Structure

THE RSX-11M I/0 SYSTEM - PHILOSOPHY AND STRUCTURE

DCB

ucCB UucCB UCB

SCB =

Figure 1-3
RK11 Disk I/0 Data Structure

Taken together, Figures 1-2 and 1-3 illustrate the strategy underlyving
the existence of three basic I/0 control blocks. There need be only
one DCB per device type. The SCB, derending on the degree of
parallelism that is desired or possible, can exist for each
device-unit, or only once for controllers servicing multiple
device-units.

As will be seen later, this data structure has the effect of providing
considerable flexibility 1in configuring I/C devices, and, due to the
information density in the structures themselves, substantially
reduces the code reqguirements of the associated drivers.

1.3.4 The I/0C Packet

An I/0 FPacket contains information extracted from the QIO DPB and
other information needed to successfully initiate and terminate I/0
reguests.

1.3.5 The I/0 Queue

Each time an I/0 reguest is made, the Executive is entered, and, if a
series of wvalidity checks proves successful, the Executive will
generate a data structure called an I/0 Packet. The Executive will
then insert the packet into a device specific, priority-ordered list
of rackets called the I/0 Queue. Each I/0 Queue's listhead is located
in the SCB to which the I/0 reguests apply.

When a device driver needs work, it requests the Executive to de-gueue
the next 1I/0 Packet and deliver it to the reguesting driver. The
driver never directly manipulates the I/O Queue.

THE RSX-11M I/O SYSTEM - PHILOSOPHY AND STRUCTURE

1.3.6 The Fork List

All drivers in RSX-11M can easily be written as multi-controller
drivers; all drivers may run in parallel with other drivers and with
themselves. When independent processes may execute 1in parallel, a
method for synchronizing their access to common data bases 1is
essential. At the Executive level in RSX-11M, a process may
synchronize 1its access to a data base by reguesting the Executive to
transform it into a fork process. Such an operation creates a
specialized context for the process and places it into a list called
the Fork List. Processes in the Fork List are granted FIFO access to
common data bases. Once granted access to the data base, the process
is guaranteed control of the data base until it relinguishes it by
exiting. Not wuntil the process exits will the next process in the
Fork List be granted data base access. Thus, it 1is wvia the fork
mechanism and the associated Fork List that access to shared system
data bases is synchronized. Essentially, of the two basic technigues
available for data base access synchronization:

1. Interrupt lockout, and
2. Access cueuing,

ESX-11M has chosen the latter.

1.3.7 The Device Interrupt Vector

The device interrupt vector is initialized when defining data
structures, and not dynamically. This makes the driver code
independent of device register address assignments and the actual
location of the interrupt vector.

The driver data structure must include a storage assignment and
initialization for the interrupt vector with the priority set to 7.
See lines 81 thru 85 in section 5.2.1 (section 5.2.1 contains the
source code for the data structure of a sample driver).

1.4 EXECUTIVE SERVICES

The I/0O-driver-related services provided by the Executive can be
categorized as pre- and post-driver initiation. The pre-initiation
services are those performed by the Executive during its processing of
a CIO directive; these services are not available as Executive calls.
The goal of this processing is to extract from the driver all 1I/0
support functions not directly related to the actual issuance of a
function request to a device. If the outcome does not result in the
cueueing of an I/0 Packet to a driver, the driver is unaware that a
QIO directive was ever issued. As will be shown shortly, many QIO
directives do not result in the initiation of an I/C operation.

1-9

1.4.1

THE RSX-11M I/O SYSTEM - PHILOSOPHY AND STRUCTURE

Pre-Driver Initiation Processing

QIO directive processing performs the following pre-driver initiation

services:

1.

2.

1.4.2

Checks if the supplied logical unit number (LUN) is legal.
If not, the directive is rejected.

If the LUN is valid, check if a valid UCB pointer exists in
the ©Logical Unit Table (LUT) for the specified LUN. This
test determines if the LUN is assigned. If the test fails,
the directive is rejected.

If steps 1 and 2 are successful, the Executive traces down
the redirect chain to locate the correct UCB to which the I/0
operation will actually be directed.

Checks the event flag number (LFN) and the address of the 1/C
Status Block (IOSB). 1If either is illegal, the directive is
rejected. Immediately following validation, the subject
event flag is reset, and the IOSB is cleared.

OCbtains 18-words of dynamic storage and builds the
device~indegendent portion of an I/0 Packet.

If steps 1 thru 5 succeed, the directive status is set to +1.

Note that directive rejections in any of the above steps are
completely transparent to the driver.

Checks the validity of the function being regquested end, if
appropriate, checks the buffer address, byte count, and
alignment reauirements for the specified device.

If any of these checks fails, the I/C Finish routine (S$SIOFIN)
is called. SIOCFIN sets status and clears the QIO reguest
from the system.

If the requested function does not recuire a call to the
driver, appropriate actions are handled by the Executive and
SIOFIN is called.

If all I/0 Packet checks are positive, the 1I/0 Packet is
placed 1in the driver gueue according to the priority of the
reguesting task.

Post-Driver Initiation Services

Unce & driver is given control following an I/O interrupt or by the

Executive
drivers.

There

itself, a number of Executive services are available to I/0
These services are discussed in detail in Chapter 4. '

are, however, four Executive <cervices that merit special

emrhasis, since they are used by virtually every driver in the cystem:

1.

Interrupt Save (SINTSV);

Get Packet (SGTPKT);

THE RSX-11M I/0 SYSTEM - PHILOSOPHY AND STRUCTURE
3. Create Fork Process {$FORK), and

4. 1I/0 Done (SIODON).

1.4.2.1 Interrupt Save (SINTSV) - Interrupts from a device are
fielded directly by the driver. Immediately following the interrupt,
the driver 1is operating at hardware priority 1level 7 and |is,
therefore, non-interruptible. If the driver needs a 1lengthy
processing cycle (greater than 100us) to process the interrupt or
requires registers, it should <call SINTSV; this has the effect of
stacking external interrupts, altering the hardware priority, and
providing the <calling routine with two free registers to use in
processing the interrupt. More will be said about $INTSV in section
1.5.

1.4.2.2 Get Packet (SGTPKT) - The Executive, after it has queued an
I/0 Packet, <calls the appropriate driver at its I/O-initiator entry
point. The driver then immediately calls the Executive routine $GTPKT
to obtain work. When work is available, SGTPKT delivers to the driver
the highest priority, executable I/0 Packet in the driver's I/0 gueue,
and sets the SCB status to busy. If the driver's I/0 Queue is empty,
SGTPKT returns a no-work indication.

If the SCB related to the device is already busy, S$GTPKT so informs
the driver, in which case the driver immediately returns control to
its caller.

To the driver writer, note that no distinction exists between no-work
and SCB busy, since, 1in either <case, an I/0 operation cannot be
initiated.

1.4.2.3 C(Create Fork Process (SFORK) - Synchronization of access to
shared data bases is accomplished via a fork process. When a driver
needs to access a shared data base, it must do so as a fork process;

an Favrlk mrAa~ncoca v AaTlana

) M P R -
the driver creates a fork process b] Caiilng $FORK.

1.4.2.4 1I/0 Done (SIODON) - At the completion of an I/0 request, a
number of centralized checks and additional functions are performed:

- Store status if an IOSB address was specified.
- Set an event flag, if one was requested.
- Determine if a checkpoint request can now be honored.
- Determine if an AST should be gueued.
SIODON also declares a significant event, resets the SCB and device

unit status to idle, and releases the dynamic storage used by the
completed I/0 operation.

THE RSX-11M I/O SYSTEM - PHILOSOPHY AND STRUCTURE

1.5 PROGRAMMING STANDARDS

RSX-11M I/0 drivers are integral components of the RSX-11M Executive.
As such, they must follow the same conventions and protocol as the
Executive itself, if they are to avoid complete disruption of system
service. This manual has been written to enable programmers to
incorporate I/O drivers into their systems. Failure to observe the
internal conventions and protocol will result in poor service and
reductions in system efficiency.

1.5.1 Process-Like Characteristics of a Driver

A driver is an asynchronous Executive process. As a process, it
possesses its own context, allows or disallows interrupts, and
synchronizes functions within itself (all drivers can be parallel,
multi-unit, multi-controller) and with other Executive processes
executing in parallel.

RSX~11M drivers are small; their small size is made possible by a

comprehensive complement of centralized services available by calls to
the Executive . and by the ::‘7;111::}‘\111{-\7 of an information-dense,; highly

SATLwLAVE,, il aell=e

formalized I/0 data structure.

1.5.2 Programming Conventions

The programming conventions used by RSX-11M system components are
identical to those described in Appendix E of the RSX-11 MACRO-11
Reference Manual. Users preparing I/0 drivers for incorporation into
an RSX-11M system are strongly urged to adhere to these conventions.

1.5.3 Programming Protocol

Since an I/0 driver accepts interrupts directly from the devices it
controls, the central Executive relies on the driver to follow strict
programming protocol so that system performance 1s not degraded.
Furthermore, the protocol ensures that the driver properly dlstrlbutes
shared resources according to user-specified priorities.

When a device interrupts, an I/0 driver is entered directly, usually
calling S$INTSV for common save and state switching services. (Two
states, user and system, exist in RSX-11M; the conventions discussed
in this manual generally refer to processes running from the system
state, since drivers operate entirely 1in system state.) At the
completion of the services provided by $INTSV, the interrupt routine
is again given control to complete the interrupt service. The exit
routine S$INTXT restores the state prior to switching to the system
state, controls the un-nesting of interrupts, and makes checks on the
state of the system (for example, it checks if it is necessary to
switch tasks). The Fork Processor linearizes access to shared system

data bases. The details of all these routines will be covered in
Chapter 4.
The interrupt vectors in lower memory contain a Program Counter (PC)

unique to each interrupting source and a Processor Status Word (PS)
set with a priority of 7. It is a system software convention to use

THE RSX-11M I/0O SYSTEM - PHILOSOPHY AND STRUCTURE

the low-order four bits of the PS word to encode the controller number
for multicontroller drivers. When a device interrupt occurs, the
hardware pushes the current PS and PC onto the curreént stack and loads
the new PC and PS (set at PR7 with the controller number in the
condition code bits) from the appropriate interrupt vector (the driver
data base source must set up the interrupt vector). The driver then
starts executing with interrupts locked out. A driver itself may be
executing at one of three levels of interrupt sensitivity:

1. At priority 7 with interrupts locked out;

2. At the priority of the interrupting source; thus, interrupt
levels greater than the priority of the interrupting source
are permitted, or

3. At fork level which is at priority O.

1.5.3.1 Processing at Priority 7 with Interrupts Locked Out - By
internal convention, processing at this level (interrupt processing
routine level 1) is limited to 100us. If processing can be completed
in this time, then the driver simply dismisses the interrupt by
executing an RTI instruction. The interrupt has been processed and
dismissed with minimal overhead.

1.5.3.2 Processing at the Priority of the 1Interrupting Source - If
the driver requires additional processing time or the use of general
purpose registers, it calls the routine $INTSV (Interrupt Save). The
priority at which the caller is to run immediately follows the call to
SINTSV. The driver should set this priority 1level to that of the
interrupting source.

SINTSV save uses the specified priority to set up the interrupt
routine such that it is interruptible by priorities higher than that
of the interrupting source and conditionally switches to system state
if the processor is not already in system state.

The saving of general registers R4 and R5 is done to free these
registers for the driver. It is an internal programming convention
that assumes the driver will not require more than two registers
during interrupt processing. If it does, it must save and restore any
additional registers it uses. Processing time following the return
from $INTSV should not exceed 500us*.

In actual practice, every driver in the system calls $INTSV on - every
interrupt after executing perhaps 0 or 1 instructions (such as saving
the PS if more than one controller is being driven). This is due to
two factors:

1. It is difficult to service an interrupt without one or two
registers.

* The 500us period is a guideline. The shorter the period of time a
realtime executive spends at an elevated priority level, the less
responsive the system will be to devices of lower priority. This is
especially 1important if the device being serviced is at the same or
higher priority than a character-interrupt device such as the DU1ll,
which is vulnerable to data loss due to interrupt lockout.

THE RSX-11M I/O SYSTEM - PHILOSOPHY AND STRUCTURE

2. Most interrupt code may safely be executed at the priority of
the interrupting source, which is, of course, desirable.

1.5.3.3 Processing at Fork Level - A driver calls $FORK to meet the
requirement to become fully interruptible (so as to conform to the
500us time limit) or to access a shared system data base. S$INTSV must
be called prior to calling $FORK.

By virtue of calling $FORK, the routine is now at processing level 3
(interruptible) and 1its access to system data bases is strictly
linear. The Fork List is a 1list of system routines waiting to
complete their ©processing, in particular, waiting to access a shared
system data base. At fork level, all registers are available to the
process, and R4 and R5 retain the contents they had on entrance to
SFORK.

1.5.3.4 Programming Protocol Summary - Drivers are required to adhere
to the following internal conventions when processing device
interrupts:

1. Registers are not available for use unless SINTSV 1is called

or the driver explicitly performs save and restore
operations. If SINTSV is called, the use of any registers,
except R4 and R5, requires that these registers be saved and
restored.

2. Non-interruptible processing must not exceed twenty
instructions, and processing at the priority of the
interrupting source must not exceed 500us.

3. All modifications to system data bases must be done via a
fork process.

1.6 FLOW OF AN I/O REQUEST

Following an I/0 request through the system at the functional level
(the 1level at which this chapter is directed) requires that limiting
assumptions be made about the state of the system when the QIO
directive is actually issued. The following assumptions apply:

1. The system is up and ready to accept an 1I/0 request. All
reqguired data structures for supporting devices attached to
the system are intact.

2. The only I/0 request in the system will be the sample request
under discussion.

3. The example will progress without encountering any errors

that would prematurely terminate its data transfer; thus, no
error paths will be discussed.

1-14

THE RSX~11M I/O SYSTEM - PHILOSOPHY AKND STRUCTURE

The I/0 flow proceeds as described below:

1:

1b.

1c.

[Task issues QIO directivel]

All Executive directives are called via EMT 377. The effect
of the EMT is to cause the processor to stack the PS and PC
and pass control to the Executive's directive processor,

[First level validity checks]

The QIO directive processor validates the LUN and UCB
pointer. 1Invalid data results in directive rejection.

[Redirect algorithm]

Since the UCB may have been dynamically redirected via an MCR

A2 e a P | AT Al T Y - 1 2%
Redirect commana , QIC directive processing traces the

redirect linkage until the target UCB is found.
[Additional validity checks]

The EFN is validated as well as the address of the I/0O Status
Block (IOSB). If valid, the event flag is reset and the I/0
status block is cleared.

[Obtain storage for and create an I/0 Packet]

QIC directive processing now acquires an 18-word block of
dynamic storage for use as an I/O Packet. If the 18-words of
storage are obtained, the directive is accepted. It inserts
data items 1into the packet which are subsequently used by
both the Executive and driver in fulfilling the I/O request.
Most items originate 1in the reguesting task's Directive
Parameter Block (DPB).

[Validate the function requested]

The function is one of four possible types:
a) Control;

b) No-op;

c) File, or

d) Transfer.

Control functions, with the exception of Attach/Detach, are
gueued to the driver. ©No-op functions do not result in data
transfers and are performed by the Executive without calling
the driver.

A file function may reguire processing by the file system.
More typically, the request 1is a read or write virtual
function which is transformed into a read or write 1logical
function without requiring file system intervention. When
transformed into a read or write 1logical, it becomes a
transfer function (read and write logical are, by definition,
transfer functions).

4a.

4b.

THE RSX-11M I/O SYSTEM - PHILOSOPHY AND STRUCTURE

Transfer functions are address checked and queued to the
proper driver, Then the driver is called at its initiator
entry point.

[Driver processing]
[Request work]

To obtain work, the driver calls Get Packet (SGTPKT). SGTPKT
will either provide work, if it exists, or inform the driver
that no work is available, or the SCB is busy; if no work
exists, the driver returns to 1its caller. If work is
available, SGTPKT will set the device controller and unit
busy, degqueue an I/O request packet, and return to the
driver.

[Issue I/0]

From the available data structures, the driver initiates the
required I/0 operation and returns to 1its caller. A
subsequent interrupt may inform the driver that the initiated
function 1is complete, assuming the device 1is interrupt
driven.

[Interrupt processing]

When a previously-issued 1I/0 operation interrupts, the
interrupt causes a direct entry 1into the driver, which
processes it according to the programming protocol described
earlier. According to the protocol, the driver may process
the interrupt at priority 7, at the priority of the
interrupting device, or at fork level. 1If the processing of
the I/0 request associated with the interrupt 1is still
incomplete, the driver initiates further I/0 on the device
(4b) . When the processing of an I/0 request 1is complete,
$IODON is called.

[I/0 Done processing]

SIODON removes the device unit and controller busy status,
queues an AST, 1if required, and determines if a checkpoint
request pending for the issuing task can now be effected.
The TI0SB and event flag, if specified, are updated, and
SIODON returns to the driver. The driver branches to its
initiator entry point looking for more work (step 4a). This
procedure is followed until the driver finds the queue empty,
whereupon, the driver returns to its caller.

Eventually, the processor is granted to another ready-to-run

process which will issue a QIO directive, starting the 1/0
flow anew.

1-16

THE RSX-11M I/0 SYSTEM - PHILOSOPHY AND STRUCTURE

1.7 DATA STRUCTURES AND THEIR INTERRELATIONSHIPS

This section presents all the individual «control blocks, thei
linkages and use within the system. The following data structur

=y

comprise the complete set for I/O processing:
1. Task Header;
2. Window Block (WB);
3. File Control Block (FCB);

4. SDEVTB word, the Device Control Block (DCB), and the Driver
Dispatch Table (DDT);

5. Unit Control Block (UCB);

6. Status Control Block (SCB), and

7. Volume Control Block (VCB).
Figure 1-4, which will provide the structure for the following
discussion, shows all the individual data structures and the important
link fields within them. The numbers on the figure are keyed to the

text to simplify the discussion and guide the reader through the data
structures.

SYSCM
$DEVHD

TASK
HEADER

THE RSX-11M I/0 SYSTEM ~ PHILOSOPHY AND STRUCTURE

®

: [:::::::}___ ' bep e
DDT
INT

- CAN

1/0 QUEUE

LUT §

Fork

UCB's ; Block

ey Dé/...

LUT Entry @
®

Il

:Eij s

ACP .
\ vCB FCB (index)
Task — —
@ [MOUNTED| /
VOLUME]| _

@ \EB (volume)

rd
____\
rws(task)

FCB (task)

—_—

oP-11-0031

Figure 1-4
I/0 Data Structure

The Task Header, one of two independent entries in the 1I/0
data structure, is constructed during the task-build process.
The entry of interest, the Logical Unit Table (LUT), is
allocated by the Task Builder and filled in at task
installation. The number of LUT entries 1is established by
the UNITS= keyword option and places an upper limit on the
number of device units a task may have active simultaneously.
Each LUT entry contains a pointer to an associated UCB, and a
pointer to a Window Block if a file is accessed.

A Window Block (WB) exists for each active access to files on
a mounted volume. Its function is to speed up the process of
retrieving data items in the file; entries in a WB consist
mainly of pointers to contiguous areas on the device where
the file resides.

Each unigquely-opened file on a mounted volume has an
associated File Control Block (FCB). The file system uses
the FCB to control access to the file.

SDEVTB is a word located in system common (SYSCM) and is the
other 1independent entry 1in the I/0 data structure. S$SDEVTB
points to a singly-linked, uni-directional 1list of Device
Control Blocks (DCB's). Each device type in a system has an
associated DCB. At least one DCB exists per device type.
The DCB list is terminated by a zero in the link word.

Linked to each DCB is a Driver Dispatch Table (DDT). The DDT

contains the addresses of the driver's four callable entry
points.

1-18

THE RSX-11M I/0 SYSTEM -~ PHILOSOPHY AND STRUCTURE

5. A key data structure is the Unit Control Block (UCB}. All
the UCB's associated with a DCB appear in consecutive memory
locations. During internal processing of an I/O request, R5
contains the address of the related UCB, and it is via
pointers in the UCB that other control blocks in the data
structure are accessed. In particular, the UCB contains
pointers to the DCB, SCB, VCB, and to the UCB to which it may
have been redirected. If a Redirect command has not been
issued for the device-unit, the UCB redirect pointer points
to the UCB itself. A driver services a fixed set of UCB's.
When servicing a request for one of its UCB's, it is unaware
of whether 1I/0 was issued directly to the UCB or whether it
was issued to a UCB redirected to its UCB.

Q mn

6. One Status Control Block (SCB) exists for each controller 1in
a system. A unique SCB must exist for each controller/device
unit capable of performing parallel I/0. The SCB contains
the fork block storage required when a driver calls $FORK to
transfer itself to the fork processing level. The 1I/0
request queue listhead is also contained in the SCB.

7. One Volume Control Block (VCB) exists for each MOUnted volume
in a system. The VCB is used to maintain volume-dependent
control information. It contains pointers to the File
Control Block (FCB) and Window Block (WB) used to control
access to the volume's index file. (The index file is a file
of file headers.) The WB for the index file serves the same
function as the WB for a user file. All unique FCB's for a
volume form a linked list emanating from the index file FCB.
This 1linkage aids 1in keeping file access time short.
Further, since the window which contains the mapping pointers
is variable in length, the user can increase file access
speed by adding more access pointers (greater speed requires
more main memory) to whatever extent his application
reguires.

1.7.1 Data Structures Summary
./7.1 Data structure Y

The writer of a conventional driver never manipulates the entire 1I/0
data structure. In fact, he is almost exclusively involved only with
the I/0 Packet, the UCB, and the SCB. The entire structgre has been
presented to add depth to the driver writer's under§tapd}ng of the I/0
system, to emphasize the relationships among individual cgntrol
blocks, and to further clarify the role a given driver fulfills in the
processing of an I/O request.

1-19

CHAPTER 2

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

2.1 INTRODUCTION

Though explicit details for writing a driver have not been presented,
enough conceptual information now exists to consider incorporating a
user driver into a system. This follows from the fact that many
considerations for writing a driver are most easily presented within
the context of the process followed for installing it.

The reader is already assumed to be familiar with the RSX-11M System
Generation Manual.

comprehensive overview of

Taken together, Ct esent a
o] undertaking the implementation of a

the relevant ¢
driver.

2.2 OVERVIEW

The user who has decided to add a driver to RSX-11M has concomitantly
shared the responsibilities for the integrity of the Executive.
Errors in this code can easily cause a system failure and bring to a

halt all user sgervice.

The basic steps involved in creating and installing a user-written

driver are as follows:
1. Bootstrap the source disk and run Sysgen Phase 1.
2. Bootstrap the object disk.

3. Create the assembly source for the driver and its associated
data structures.

4. Run Sysgen Phase 2.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M
At the completion of Sysgen Phase 2, the user has a system with the
user-written driver integrated into it. Since it is anticipated that
a debugging sequence will be required to shake down the driver, the
following seqguence will result in an updated driver being incorporated
into the existing system:
1. Correct and re-assemble the driver and/or data structures.

2. Run the Librarian to replace the o0ld object modules in
RSX11M.OLB with the repaired ones.

3. Rebuild the Executive using RSXBLD.CMD.
4. Using Virtual MCR, rebuild the system.
5. Bootstrap the system.
When adding a user-written driver to the system, the driver may be

assembled to include padding space for possible expansion during the
debugging process.

2.3 INCORPORATING A DRIVER - DETAILS

2.3.1 Creating the Data Structure

The data structures associated with I/0 drivers will be detailed in
Chapter 3. Of the structures discussed, only three require assembly
source:

1. The DCB;

2. UCB's, and

3. SCB's.
Within these control blocks, only those 1items which are static or
require initialization are supplied in the source description. Listed
below is an overview of the data fields the driver writer will be

reguired to supply 1in the assembly source of his driver's data
structure.

2.3.1.1 Required Device Control Block (DCB) Fields - The required DCB
fields are described below:

D.LNK Link to next DCB.

This field will be zero if this is the 1last DCB. If
the wuser 1is 1incorporating more than one user-written
driver at one time, then this field should point to
another DCB in the DCB chain.

D.UCB Address of the first UCB associated with this DCB.

D.NAM Two-character ASCII generic device name. This name
must be unique.

D.UNIT

C.UCBL

D.DSP

D.MSK

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

Highest and lowest unit numbers controlled by this DCB.
Length of a UCB.

If a given DCB has multiple UCB's, all UCB's must be of
the same length.

Address of the driver dispatch table.

The dispatch table is located within the driver code.
This field will contain a global reference to the label
associated with this table.

I/C function macsks

The user must supvly bit-by-bit mapping for these four
I/0 function masks. Note that the format of the mask
words 1s split 1into two groups of four words.
Functions 0-15 are covered by the first group, and
functions 16-31 by the second.

2.3.1.2 Reguired Unit Control Block (UCB) Fields - The required UCB

fields are described below:

U.DCB

U.RED

U.CTL

Backpointer to the associated DCB.

Initially contains the address of this UCB (i.e.,
redirect pointer).

Control bits that must be -established by the driver
writer with the UCB source.

Unit status byte.
Physical unit number serviced by this UCB.

Unit status byte extension.

o)

stics word 1. Standard

[o})
D
n
0
[
=
o]
t+
=
O
3
(@)
n
2]
3
t
(1]
i~

{

w O

haract
)

appl

e
i

o~
0n =

Driver dependent.

Driver dependent.

Default buffer size.

Address of the SCB for this UCB.

TCB address of attached task.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

2.3.1.3 Reqguired Status Control Block (SCB) Fields - The reguired SCB
fields are described below:

S.LHD I/0 Queue listhead.

S.PRI Priority of interrupting source.

S.VCT Interrupt vector address divided by 4.

S.ITM Initial timeout count.

S.CON Controller index (i.e., controller number multiplied by
2).

S.8TS Controller status.

S.CSR Address of control and status register.

2.3.1.4 Source Format of the Data Structure - A single DCB can
service multiple UCB's and SCB's. The existence of multiple UCB's and
SCB's is determined by the actual device subsystem being supported by
a given driver on the wuser's operational hardware configuration.
Figures 1-2 and 1-3 illustrate possible DCB, UCB, and SCB structural
relationships. Typically, in writing a data structure source
(DEC-supplied RSX-11M drivers use this scheme), the DCB 1is placed
first, followed by the UCB(s), followed by the SCB(s).

2.3.2 Creating the Driver Source Code

Creating the source code to drive a device involves the following:
1. Thorough reading and understanding of this manual;

2. Detailed familiarization with the physical device and 1its
operational characteristics;

3. Determining the level of support required for the device;
4, Creating the data structure source code for the device;

5. Determining actions to be taken at the five driver entry
points:

a. Initiator;
b. <Cancel I1/0;
c. Timeout;
d. Powerfail, and
e. Interrupt.
6. Creating the driver source code.

Source code for the driver and data structure should be created on the
object disk under UIC [200,200].

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

.3.3 1Incorporating the User-Written Driver

[}

Incorporating a driver 1is accomplished via the standard system
generation process. Phase 1 of system generation includes queries

which condition Phase 2 for user-written driver inclusion.
Specifically, the guery

ARE YOU PLANNING TO INCLUDE A USER WRITTEN DRIVER? [Y/N]:
if answered affirmatively, results in a second query
WHAT IS THE ADDRESS OF THE HIGHEST DEVICE INTERRUPT VECTOR? [O]:

The answer to which is reguired so Phase 1 <can allocate sufficient
vector space to avoid run-time destruction of the system stack.

At the completion o Phas
execution of Phase 2, the query

ntered. During the

*DO YOU WISH TO ADD USER WRITTEN DRIVER(S) TO THE EXEC? [Y/N]:

is posed. If the answer is affirmative, then subsequent dialog guides
the driver writer through the process of adding his driver to the
generated system. Operations performed include assembly of the driver
and its data structure, inclusion of the resultant object modules into
the executive object module library, and editing of the RSX-11M task
build command file.

The following sample dialog illustrates the addition of a driver for
device XX. All user responses are underlined. The notation [1,2x]
indicates that the appropriate UIC is to be substituted, viz., [1,20]
for an unmapped system and [1,24] for a mapped system.

>* DO YOU WISH TO ADD USER WRITTEN DRIVER(S) TO THE EXEC? [Y/N]:Y
>SET /UIC=[200,200]

>3

>; WE WILL PAUSE WHILE YOU ASSEMBLE YOUR DRIVER(S) AND USRTB
MQDULE_ THE EXPF ASQPMBTV DRPPTY DILE RSXMP MAF TQ ATRPADV

A4
. ~e

>; LOCATED UNDER UIC [200,200]. ASSUMING YOUR DRIVER(S) NAME 1S
>; XXDRV, WHERE XX IS THE DEVICE NAME (E.G., DK) THE FOLLOWING
>; COMMANDS WILL ASSEMBLE THE DRIVER(3) AND THE USRTB MODULE.
>3

>; >RUN S$MAC

>; MAC>XXDRV=[1,1]EXEMC/ML, [200,200]RSXMC, XXDRV

> MAC>USRTB=[1,1]EXEMC/ML, [200,200]RSXMC, USRTB

> MAC>"Z

>

>

AT. —-- PAUSING. TC CONTINUE TYPE "RES ...AT."

>RUN S$MAC

MAC>XXDRV=[1,1]EXEMC/ML, [200,200] RSXMC, XXDRV
MAC>USRTB=[1,1]EXEMC/ML, [200,200]RSXMC, USRTB
MAC>"2Z

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

>RES ...AT.

AT. -- CONTINUING

>3

>; NOW YOU MUST ADD YOUR DRIVER(S) AND USRTB MODULE
>; TO THE EXEC OBJECT MODULE LIBRARY. THE FOLLOWING IS AN EXAMPLE:
>3

>3 LBR>RSX11M/RP=[200,200]XXDRV,USRTB

> LBR>"Z

>3

>SET /UIC=[1, 2x]

>LBR

LBR>RSX11M/RP=[{200,200] XXDRV,USRTB

LBR>"Z

; YOU MUST NOW ADD COMMANDS TO INCLUDE YOUR DRIVER(S) AND USRTB

; MODULE INTO THE EXEC BY EDITING THE EXEC TASK BUILD COMMAND FILE.
; TO ADD DRIVER(S), INSERT COMMANDS OF THE FORM:
H

[1,2x]RSX11M/LB:XXDRV

’
; INTO THE COMMAND FILE IN THE PLACE WHERE THE
; OTHER DRIVERS ARE REFERENCED. XXDRV REPRESENTS THE NAME OF

>
>
>
>
>
>
>
>
>
>; YOUR DRIVER(S). 1IN ADDITION, LOCATE THE LINE IN WHICH THE
>; MODULE SYSTB IS REFERENCED AND ADD A REFERENCE TO YOUR

>; USRTB MODULE IMMEDIATELY AFTER IT. E.G.:

>.

> [1,2x]RSX11M/LB:LOADR:NULTK:SYSTB:USRTB:SYTAB:INITL

>

>; THEN LOCATE THE LINE:

>

> GBLDEF=$USRTB:0

>

>

>

AND DELETE IT.

[PAGE 1]

*PL TTDRV
[1,2x]RSX11M/LB:TTDRV
*1
[1,2x]RSX11M/LB:XXDRV

g/

[1,2x]RSX11M/LB:LOADR: NULTK:SYSTB:SYTAB:INITL
*C/SYSTB/SYSTB:USRTB/
[1,2x]RSX11M/LB:LOADR:NULTK:SYSTB:USRTB:SYTAB:INITL
*PI, SUSRTB

GBLDEF=SUSRTB:0

*D

*EX

[EXIT]

This completes the user-written driver section of Phase 2, which then
continues.

INCORPORATING USER-WRITTEN DRIVERS INTC RSX-11M

2.4 DRIVER DEBUGGING

Since the protection checks afforded user programs are not available
to system modules, driver errors will be more difficult to isclate
than user program errors. But conventional drivers, being modular and
short, should be easily debugged. The following three sections
describe a set of debugging tools and guidelines that should simplify
the driver debugging process.

Section 2.4.1 describes how to re~incorporate a driver into a system
after a fault has been discovered. Section 2.4.2 describes the
Executive Debugging Tool, and Section 2.4.3 provide some general hints
for 1isolating faults in Executive software (of which drivers are a
subset) .

2.4.1 Rebuilding and Re-incorporating the User Driver

Rebuilding and re-incorporation involves five steps:

1. Correction and re-assembly of the driver and/or device data
structures;

2. Updating the Executive object module library;
3. Rebuilding the Executive;
4, Running Virtual MCR to rebuild the system, and

5. Bootstrapping the new system.

2.4.1.1 Re-Assembly ~ Assuming that the object system has been
bootstrapped, appropriate volumes have been MOUnted, and the source
code for the user driver and/or device data base has been updated,
then:

>RUN $MAC/UIC=[200,200]
MAC>XXDRV=[1,1]EXEMC/ML, [2
MAC>USRTB=[1,1]EXEMC/ML, [2
MAC> 2

0] RSXMC , XXDRV
0] RSXMC,USRTB

OO
(e ow)
S~
Ny I
(o]]

will effect the re-assembly of both the driver and data base.

2.4.1.2 Updating the Executive Object Module Library - After
re-assembly of the user driver and/or data base, the Executive object
module library must be updated. The following commands will
accomplish this:

>RUN S$LBR/UIC=[1,2x]*
LBR>RSX11M/RP=[200,200]XXDRV,USRTB
LBR>"Z

* 'x' is a '0' for an unmapped syster and '4' for & marred cystem.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

2.4.1.3

Rebuilding the Executive - Since an updated driver is

to

inserted, the Executive, of

relinked.

>RUN $TKB/UIC=[1,2x]*
TKB>E@RSXBLD
TKB> 2

>RUN $PIP/UIC=[1,5x]*

PIP>RSX11M.SYS/NV=RSX11M.

which the driver

To do this, enter the following commands:

TSK

PIP>"%Z

2.4.1.4

Incorporating Tasks into the System - Run Virtual

MCR

using the
ready for bootstrapping.

dialog shown as a guide.
The general

procedure to follow is:

1. Establish system partitions;

2. Release all unused space to the dynamic storage region;

3. Install tasks (at least FCP,

4. Exit from Virtual MCR
VMR Example:
>RUN S$VMR/UIC=[1,5%x]* !

ENTER FILENAME:RSX11M.SYS
VMR>SET

/MAIN=SYSPAR:1300:

INS, MOU, and MCR); and

and boot in the new system.

RUN VIRTUAL MCR
! VMR PROMPTS FOR FILE NAME
100:TASK ! SET UP SYSTEM PARTITION

VMR>SET

/MAIN=PAR14K:400:700:TASK

VMR>SET

/SUB=PAR14K:GEN:400:400

! SET UP 14K PARTITION
! SET UP 8K SUB PARTITION

VMP>SET /POOL=400 ! ADD FREE SPACE TO POOL
VMR>INS BOO ! INSTALL BOOT
VMR>INS DMO ! INSTALL DISMOUNT
VMR>INS FCP ! INSTALL FILE SYSTEM
VMR>INS IND ! INSTALL INDIRECT FILE PROCESSOR
VMR>INS INI ! INSTALL INITVOLUME
VMR>INS INS ! INSTALL INSTALL
VMR>INS MCR ! INSTALL MCR
VMR>INS MOU ! INSTALL MOUNT
VMER>INS SAV ! INSTALL SAVE
VME>INS TKN ! INSTALL TASK TERMINATION TASK
VMR>INS UFD ! INSTALL USER FILE DIRECTORY BUILDER
VMR>"Z ! EXIT FROM VIRTUAL MCR
2.4.1.5 Bootstrapping the New System - The new system may now

bootstrapped with the MCR Boot

>BOO [1,5x]RSEX11M

* 'x' is a '0' for an unmarped

command, as shown below:

csystem and '4' for a mapped system.

2-8

be

is a part, must be

(VMR)
On completion, the new system is

be

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

2.4.2 RSX-11M Executive Debugging Tool

An interactive debugging tool has been developed for RSX-11lM to aid in
the debugging of executive modules, I/0 drivers, and interrupt service
routines. This debugging aid is called XDT and is a version of RSX-11
ODT, which does not contain the following features and commands:

No $M - (MASK) register

No $X - (Entry Flag) registers

No $V - (SST vector) registers

No $D ~ (I/0O LUN) registers

No $E - (SST data) registers

No E =~ (Effective Address Search) command
No F - (Fill Memory) command

No N - (Not word search) command

No V - (Restore SST vectors) command

No W =~ (Memory word search) command

The X (Exit) and P (Proceed) commands have also been changed. The X
command causes a jump to the <crash reporting routine, and the P
command will permit the user to proceed if an unknown breakpoint is
encountered.

Other than the omitted features and the change in the definition of
the X and P commands, XDT is command-compatible with RSX-11 ODT, and
the RSX-1l1 ODT Manual may be used as a guide to its operation.

XDT may be included in a system during Phase 1 of system generation.
The query:

DO YOU WANT TO INCLUDE THE EXECUTIVE DEBUGGING TOOL? [Y/N]:
is posed. 1If the answer is affirmative, then XDT 1is automatically
included in the generated system. When the resultant system is
bootstrapped, XDT gains control and types:

XDT: <system version>

followed by the prompting symbol

XDT>
on the console terminal. Breakpoints may be set at this time, and
then a G command may be given, returning control to the RSX-11M

Executive initialization code. Whenever a breakpoint 1is reached, a
printout similar to that of RSX-11 ODT will occur.

2-9

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

A forced entry to XDT can be executed at any time from a privileged
terminal via the MCR Breakpoint (BRK) command. Thus, the normal
procedure is to type G when the system is bootstrapped without setting
any breakpoints. When it becomes necessary to use XDT, the MCR
Breakpoint command is executed, causing a forced breakpoint. XDT then
prints:

BE:XXXXXX
followed by the prompting symbol
XDT>

on the console terminal. Breakpoints and/or other XDT commands may
then be executed. System operation may be continued by typing the P
(Proceed) command to XDT.

Note that XDT runs entirely at priority level 7 and does not interfere
with user level RSX-11] ODT. In other words, user level RSX-~11 ODT can
be in use with several tasks, while XDT 1is being used to debug
Executive modules.

All XDT command I/0 is done via the console terminal,; and the L (

ar .ist
Memory) command can list on either the console or the line printer.

2.4.3 Fault Isolation - Some General Hints

2.4.3.1 1Introduction - Adding a user-written driver carries with it
the risk of introducing obscure bugs into an RSX-11M system. Since
the driver runs as part of the Executive, these bugs are often
difficult to diagnose. It 1is extremely important that the driver
writer develop the skills and discipline needed to rapidly isolate the
source of a system failure.

2.4.3.2 Fault Classifications - Four culprits can be identified when
the system faults:

1. A user-state task has faulted such that it causes the system
to fault;

2. The user-written driver has faulted such that it causes the
system to fault;

3. The RSX-11M system software itself has faulted, or

4. The host hardware has faulted.

The immediate action on the part of the driver-writer subject to one
of these errors 1is to determine which of these four cases is the
source of the fault. Of prime concern will be the procedures which
may help the driver writer uncover the fault source. The repair of
the fault itself is assumed to be the driver writer's responsibility.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

Faults manifest themselves in roughly three ways (they are listed here
in order of increasing difficulty of isolation):

1. The system displays the CRASH printout and halts or, if XDT
has been included, an unintended trap to XDT occurs.

2. The system halts but displays nothing.

3. The system is in an unintended loop.

2.4.3.3 Immediate Servicing - RSX-11M can be built to contain
resident crash reporting and panic dump routines; the following

discussions assume the existence of such a system. (Note that the
minimal system will not have space for these routines). Section 2.5
contains sample listings from both crash and panic dump routines.

The immediate aim, regardless of the fault manifestation, 1is to
initiate the crash reporting and panic dump routines.

CASE 1 - The system has trapped to XDT:

The trap may or may not be 1intended (e.g., a previously set
breakpoint) . If it is not intended, type the X command, causing XDT
to exit to the crash reporting routine; 1if, however, the source of
the problem is suspected (for example, a recent coding change), then
pertinent data structures and code may be examined using XDT.

CASE 2 - The System Has Displayed the Crash Printout:

In this case, all the basic information describing the state of the
system has been displayed. The actual Crash printout will be
described after learning how to invoke Panic Dump for cases 3 and 4
(see below).

CASE 3 - The System Has Halted - No Information Displayed:

Before taking any action, preserve the current PS and PC and the
pertinent device registers (i.e., examine and record the information
these registers contain). The procédure depends on the particular
PDP-11 processor. Consult the appropriate PDP-11 Processor Handbook
for details.

After obtaining the PS and PC, 1invoke the Panic Dump Routine by
entering 40(8) in the switch register, depressing LOAD ADDR, and then
START.

The value 40(8) is the address of a JMP to the Panic Dump Routine in
all RSX-11M systems.

The Panic Dump Routine saves registers RO through R6 and then halts,
awaiting dump 1limits to be entered via the console switch register.
The PS is cleared when START is depressed, and the original PC is
destroyed; thus, the importance of recording these vital pieces of
debugging information before initiating the Panic Dump Routine should
be recognized.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

Dumps of selected blocks of memory may be obtained using the following
procedure:

1. Enter the low dump limit in the console switch register and
depress CONT. The processor will immediately halt again.

2. Enter the high dump limit in the console switch register and
depress CONT. The dump will begin on the device whose CSR
address is DS$SSBUG (usually 177514, which 1is the line
printer). The actual value of D$SBUG is determined during
system generation when answering the panic dump question. At
the end of the dump, the processor will again halt, awaiting
the input of another set of dump limits.

To reach the same status arrived at with crash reporting in
Case 2 above, enter the dump limits 0-520(8) when the panic
dump routine first halts. This will dump the system stack
and the general registers. The limit 520(8) changes if the
highest interrupt vector is above 400(8). The actual upper
limit is always the value of the global symbol $STACK and may
be obtained from the module LOWCR 1in the Executve memory
allocation map.

CASE 4 - System Is in an Unintended Loop:
Proceed as follows:
1. Halt the processor

2. Record PC, PS, and any pertinent device registers, as in case
3 above.

After recording the PS and PC, the driver-writer may want to step
through a number of instructions in an attempt to locate the loop.

After the attempt to locate the loop, transfer to the panic dump
routine as in Case 3.

This brings us to an equivalent status for the three fault situations.

2.4.3.4 Other Pertinent Fault Isolation Data - Before proceeding with
the task of locating the fault, the driver-writer is strongly advised
to dump system common (SYSCM). This can be accomplished by looking
for the module SYSCM in the Executive memory allocation map and
entering the appropriate limits to the Panic Dump Routine. SYSCM
contains a number of critical pointers and listheads.

In addition, the driver-writer should dump the dynamic storage region
and the device tables. The dynamic storage region is the module INITL
and the device tables are in SYSTB.
The driver-writer now has:

PS

PC

The Stack

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M
RO through R6
Pertinent device registers
The dynamic storage region
The device tables, and
System common.

This data is a minimal requirement for effective fault isolation.

2.4.3.5 Fault Tracing - Three pointers in SYSCM are critical in fault
tracing. These pointers are described below:

SSTKDP - Stack Depth Indicator
This data item will indicate which stack was being wused at the

time of the crash. As will be seen, this plays an important role
in determining the origin of a fault. The following values

apply:

+1 - User (task state) stack

0 or less - System stack
If the stack depth is +1, then the user has managed to crash the
system. In a system with brickwall protection (for example, the
mapped RSX-11M system), the non-privileged wuser should not be
able to crash the system.

STKTCB - Pointer to the Current Task Control Block (TCB)

This is the TCB of the user level task in control of the CPU.

SHEADR - Pointer to the Current Task Header.

Locating the task header provides additional data. The first
v 3 - tha bhandar 3o +hha aoa "o aobon~l mAasmbar ko T ack: 3ma 3+
wuULu 111 LT licauct Lo (SS9 L = uociL O ODLACRK pulLiiLciL Lilc 41 4aoLu L Llinc iU
was saved. If the user branches wildly into the Executive, it

will terminate the wuser task, but the system will continue to
function (possibly erroneously). Knowing the user's stack
pointer provides one more link in the chain which may lead to the
resolution of the fault.

The header (as pointed to by S$HEADR) also contains the last saved
register set, Jjust before the header guard word, which is the
last word in the header and is pointed to by H.GARD.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

RO

R1

R2

R3

H.NLUN n

H.GARD

. PS

H.HDLN LENGTH IN BYTES PC

Sp R5

R4

Figure 2-1
Unmapped System Header

2-14

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

R5

PC

PS

H.NLUN N

H.GARD

H.HDLN LENGTH IN BYTES

SP

Figure 2-2
Mapped System Header

A. Tracking Faults Following Automatic Display of System State (Cases
1 and 2):

First examine the system stack pointer. Usually an Executive failure
is the result of an SST type trap within the Executive.

If an SST does occur within the Executive, then the origin of the call
on the crash reporting routine will be in the SST service module.
(The crash call is initiated by issuing an IOT at a stack depth of

zero or less).

A call to crash also occurs in the Directive Dispatcher when an EMT
was issued at a stack depth of zero or less, or a trap instruction was
executed at a depth of less than zero. The stack structure 1in the
case of an internal SST fault is shown in Figure 2-3.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

PS

PC

R5

R4

R3

R2

R1

RO

RETURN TO SYSTEM EXIT

ZERO OR MORE SST PARAMETERS

SST FAULT CODE

NUMBER OF BYTES ~-— 5P

Figure 2-3
Stack Structure - Internal SST Fault

The fault codes are:

0. ;ODD ADDRESS AND TRAPS TO 4
2. ;MEMORY PROTECT VIOLATION
4. ;BREAK POINT OR TRACE TRAP
6. ;IOT INSTRUCTION

8. ; ILLEGAL OR RESERVED INSTRUCTION
10. ;NON RSX EMT INSTRUCTION

12. ;TRAP INSTRUCTION

14. :11/40 FLOATING POINT EXCEPTION
l6. ;SST ABORT-BAD STACK

18. ;AST ABORT-BAD STACK

20. ;ABORT VIA DIRECTIVE

22. ;TASK LOAD READ FAILURE

24. ;TASK CHECKPOINT READ FAILURE
26. ;TASK EXIT WITH OUTSTANDING I/O
28. ; TASK MEMORY PARITY ERROR

The PC points to the instruction following the one which caused the

SST failure. The number of bytes is the number of bytes that are
normally transferred to the user stack when the particular type of SST
occurs. If the number is 4, then just the PS and PC are transferred

and there are no SST parameters.

If the failure is detected in $DRDSP, the stack is the same as Figure
2-3, except the number of bytes, SST fault code (the fault codes are
listed above), and SST parameters are not present. The <crash report
message, however, will indicate that the failure occurred in $DRDSP.

2-16

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

There is one SST-type failure, stack underflow, that will not have the
stack structure of Figure 2-3. To determine where the crash occurred,
first establish the stack structure; this can be deduced by the value
of the stack pointer (SP} and the contents of the top word on the
stack. If the stack structure is that of Figure 2-3, then the failure
occurred in S$DRDSP, or was a normal SST crash. If the stack structure
is determined to be that of Figure 2-4, then a non-normal SST «crash
has occurred.

PS

PC

Figure 2-4
Stack Structure - Non-Normal SST Fault

Non-normal SST failures occur when it 1is not possible to push
information on the stack without forcing another SST fault. When this
occurs, a direct jump to the crash reporting routine 1is made rather
than an IOT crash. The PS and PC on the stack are those of the actual
crash, and the address printed out by the crash reporting routine 1is
the address of the fault rather than the address of the IOT that
crashes the system. Note that the crash reporting routine removes the
PC and PS of the IOT instruction from the stack, which in this case is
incorrect. Thus, the stack pointer will appear to be 4 greater than
it really is (i.e., as in Figure 2-4).

The driver writer now has all the information needed to isolate the
cause of the failure. From this point on, one must rely on personal
experience and a knowledge of the interaction between the driver and
the services provided by the Executive.

B. Tracking Faults When the Processor Halts Without Providing Fault
Display:

Tracking starts with an examination of S$STKDP, STKTCB, and S$SHEADR.
The difficulty 1in tracking failures in this case is that the system
stack is not directly associated with the cause of a failure.

By examining $STKDP, one can determine the system state at the time of
failure. If it was 1in user state, the next step is to examine the
user's stack. The examination process focuses on scanning the stack
for addresses which may turn out to be subroutine links which will
ultimately lead to a thread of events isolating the fault. This 1is
essentially the same aim in looking at the system stack if S$STKDP is
zero or less.

Freguently, a fault will occur such that the SP points to Top of Stack
(TOS) +4. This results from issuing an RTI when the top two items on
the stack are data; this will result in a wild branch, then, most
probably, a halt. Figure 2-5 shows a case, where two data items are
on the stack when the programmer executes an RTI. TOS points to a
word containing 40100. Suppose that location 40100 contains a halt.
This indicates that the original SP was four bytes below the final SP,
and fault tracing should begin from the previous SP.

2-17

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

40100 |=—SP

Figure 2-5
Stack Structure - Data Items on Stack

This type of fault also occurs when an RTS instruction 1is executed
with an inconsistent stack. However, in this case SP will point to
TOS+2.

A scan of the contents of the general registers may give some hint as
to the neighborhood in which a fault (or the sequence of events
leading up to the fault) occurred.

If the fault occurred in a new driver, a frequent source of <clues 1is
the buffer address and count words in the UCB (U.BUF, U.BUF+2, U.CNT),
as are the activity flags (US.BSY and S.STS). Other locations in both
the UCB and SCB may also provide information that may help locate the
source of the fault.

C. Tracking Faults When an Un-Intended Loop Has Occurred:

After halting the processor, the same state exists as in the preceding
section. Some specific suggestions are to check for a stack overflow
loop. Patterns of data successively duplicated on the stack indicate
a stack looping failure.

D. Additional Hints:

Also of value is the current (or last) 1I/0 Packet, the address of
which 1is found in S.PKT of the SCB. The packet function (I.FCN) will
define the last activity performed on the unit.

If trouble occurred in terminating an I/0 request, a scan of the
system dynamic memory region may provide some insight. This region
starts at the address contained in $CRAVL, a cell in SYSCM. Since all
I/0 packets are built 1in system dynamic memory, when they are
successfully terminated, their memory 1is returned to the dynamic
memory region. Following the link pointers in this region may reveal
whether or not I/O completion proceeded to that point. A frequent
error for an interrupt-driven device is to terminate an I/0 Packet
twice when the device is not properly disabled on I/O completion and
an unexpected interrupt occurs. This ultimately produces a double
de-allocation of the same packet memory. Double de-allocation of a
dynamic buffer in RSX-11M causes a loop in the module S$DEACB on the
next de-allocation (of a block of higher address) after the second
de-allocation of the same block. At that time, R2 and R3 both contain
the address of the 1I/0O Packet memory which has been doubly
de-allocated.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

2.5 SAMPLE OUTPUT FROM CRASH AND PANIC DUMP ROUTINES

2.5.1 Crash Output

A sample of Crash output is shown below:

SYSTEM CRASH AT LOCATION 047622

REGISTERS

R0=000340 R1=177753 R2=000353 R3=000000

R4=000004 R5=046712 SP=000472 PS=000340

LOCATION CONTENTS

000472
000474
000476
000500
000502
000504
000506
000510
000512
000514
000516
000520
300522
100524
000526
000530
000532
000534
000536
000540
000542

2.5.2

000004
000000
001514
000340
177753
000353
000000
000000
057750
002504
030011
100340
000340
056446
000000
102144
000000
101376
101372
102022

170000

Panic Dump Output

A portion of the output from
groupings.
The first address is
is the dump relative address.
octal word value;

three
shown.

line

Panic Dump is shown below. Output is in
the 1left-hand column, two addresses are
the absolute address; the second address
The first line in a 3-line group is the

the second line is the two octal byte values of the

word; the third line contains the ASCII representation of the bytes.
The ASCII representations are reversed to improve readability. The
first output grouping from Panic Dump displays, proceeding from right
to left, PS, RO, R4, R5, and the SP.

2-19

000544
000000

000000
000000

000020
000020

000040
0060040

000060
000060

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

000000 046076 000066
000 000 114 076 000 066
e " > L 6 e

022646 000340 045770
045 246 000 340 113 370
& % ¢ K

045776 000340 011124
113 376 000 340 022 124

~

K @ T R

000167 000543 000001
000 167 001 143 000 001
" A A “a

035444 000340 034034
073 044 000 340 070 034
$; “e "\ 8

000000
000 000
e e

000340
000 340
"e

000340
000 340
"e

000001
000 001
A e

000340
000 340
e

2-20

000000
000 000
e @

045770
113 370
K

045770
113 370
K

000000
000 000
e e

032776
065 376
5

000000
000 000
e e

000340
000 340
"e

000340
000 340
"e

000000
000 000
e e

000340
000 340
"e

000000
000 000
e e

045770
113 370
K

050500
121 100

e 0

000000
000 000
e e

032402
065 002
“B 5

045316
112 316
N J

000340
000 340
"e

000340
000 340
"e

000353
000 353
"e

000340
000 340
e

CHAPTER 3

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS

In Chapter 1, overviews were given for:

Data structures;

Executive services, and

Programming protocol.
In this chapter, the details for the data structures and Executive
services are given. The protocol coverage in Chapter 1 was, however,

detailed enough to make further elaboration of programming protocol
unnecessary.

3.1 DATA STRUCTURES

Of all the control blocks in the I/O data structure, only four are of
direct concern to a driver writer:

1. The I/0 Packet;

2. The DCB;

3. The UCB, and

4., The SCB.
Although the data structures contain an abundance of data pertaining
to input/output operations, drivers per se are involved only with a
subset of this data. Most of the data which requires the driver
writer's attention is supplied in the data structure source code, and

is not referenced during driver execution. Such an item is classified
as:

<initialized, not referenced>*

* The first field states whether the field is initialized in the data
structure source, and the second field gives the typical access at
execution time.

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS
Fields supplied statically in the source code at the creation of the
data structure, and subsequently referenced during driver execution,
are classified:
<initialized, read-only>.
Fields set up during driver execution are classified:
<not initialized, read-only>
This form implies that either an agent other than the
driver has established the field or that the driver has
set it up once and references it read-only thereafter.
or:

<not initialized, read-write>.

Fields which do not involve the driver writer at any 1level are
classified

<not initialized, not-referenced>.

These classifications cover most-likely cases, since exceptions do
exist and are appropriately noted.

3.1.1 The 1I/0 Packet

Figure 3-1 is a layout of the 18-word I/0 Packet which is constructed
and placed 1in the driver I/O queue by QIO directive processing and
subsequently delivered to the driver by a call to $GTPKT. Figure 3-2
is the DPB from which the I/O Packet is generated.

* The first field states whether the field is initialized in the data
structure source, and the second field gives the typical access at
execution time.

3-2

WRITING AN I/O DRIVER - PROGRAMMING SPECIFICS

I.LNK LINK TO NEXT I/O PACKET

I.EFN

I.PRI EFN PRI

I.TCB TCB ADDRESS OF REQUESTER
I.LN2 ADDRESS OF SECOND LUT WORD
I1.UCB ADDRESS OF REDIRECT UCB

I.FCN FUNCTION CODE | MODIFIER
I.IO0SB VIRTUAL 2DDR OF I/O STATUS BLK

RELOCATION BIAS OF IOSB

REAL ADDRESS OF IOSB

I.AST VIRTUAL ADDR OF AST SERVICE RTN
I.PRM
DEVICE
— PARAMETERS]
Figure 3-1

I/C Packet Format

3-3

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS

3.1.1.1 I/0 Packet Details - The I/O Packet is built dynamically by
QIO directive ©processing. Thus, no static fields exist with respect
to a driver. 1I/0 Packets are created dynamically and, therefore, the
first parameter does not apply. Fields in the I/0O Packet (described

below) are classified as:

Not referenced,
read-only, or
read/write.
I.LNK
Driver access:
Not referenced.

Description:

Links I/O Packets queued for a driver. A zero ends the
chain. The listhead is in the SCB (S.LHD).

I.PRL
Driver access:
Not referenced.
Description:
Priority copied from the TCB of the requesting task.
I.EFN
Driver access:
Not referenced.

Description:

Contains the event flag number as copied by QIO directive
processing from the requester's DPB.

I.TCB
Driver access:
Not referenced.
Description:
TCB address of the reguesting task.
I.LN2
Driver access:

Not referenced.

I.UCB

I.FCN

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS
Description:

Contains the address of the second word of the LUT entry
the task header to which the I/0 reguest was directed.

in

For

open files on file-structured devices, this word contains the

address of the Window Block; otherwise, it is zero.

Driver access:
Not referenced.
Description:

Contains th

e e
has been subj ¢ an MCR Redi command.

[0
o]

Driver access:
Read-only.
Description:

Contains the function code (see Table 3-1) for the
reguest.

I.IOSB

Driver access:
Not referenced.

Description:

address of the Redirect UCB if the starting UCB
tt rect

1/0

I.I0SB contains the virtual address of the I/0 Status block

(IOSB), if one is specified, or zero if not.

T TNSR
I.I0SB+2 and I.IOSB+4

c in the address doublewcord for
IOSB (see Appendix A

01094 e

L -]
for a detailed description of

the

the

address doubleword). On an unmapped system, the first word

is zero; the second word is the real address of the IOSB.

In a mapped system, the first word contains the relocation
bias of the I0SB; the bias is, in effect, the 32-word block

number in which the IO0OSB starts. This block number

is

derived by viewing available real memory as a collection of

32-word blocks numbered consecutively, starting with
Thus, 1if the IOSB starts at physical location 3210(8),
block number is 32(8).

The second word is formatted as follows:
Bits 0-5 Displacement in block (DIB)

Bits 6-12 All =zeros
Bits 13-15 6

0.
its

The displacement in block is the offset from the block base.

In the above example where the IOSB started at 3210(8),
DIB is equal to 10(8).

the

I.AST

I.PRM

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS

The value 6 in bits 13-15 is constant. It is used to cause
an address reference through Kernel Page Address Register 6.
Again, see Appendix A for details.

The deferral of a discussion of the address doubleword to an
appendix reflects the fact that a writer of a conventional
driver has almost no need to concern himself with the

contents or format of the address doubleword. Its
construction and subsequent manipulation are normally
external to the driver; subroutines are provided as
Executive services for programmed I/O to render the

manipulations of I/0 transfers transparent to the driver
itself.

Driver access:

Not referenced.

Description:

Contains the virtual address of the AST service routine to be
executed at I/0 completion. 1If no address is specified, the
field contains zero.

Driver access:

Not initialized, read-only.

Description:

Device dependent parameters copied from the DPB.

The QIO Directive Parameter Block (DPB) is constructed as shown in
Figure 3-2.

3-6

WRITING AN I/0O DRIVER - PROGRAMMING SPECIFICS

LENGTH DIC
FUNCT CODE MODIFIER

RESERVED LUN

PRIORITY EFN

I/0 STATUS BLOCK ADDRESS

AST ADDRESS

DEVICE

DEPENDENT

PARAMETERS

3-7

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS
The parameters in the DPB have the following interpretation.
Length (required):

The length of the DPB, which for the RSX-11M QIO directive, Iis
always fixed at twelve words.

DIC (required):

Directive Identification Code. For the QIO directive, this value
is a 1.

Function Code (required):
The code of the requested I/O function (0 thru 31.).
Modifier:
Device dependent modifier bits.
Reserved:
Reserved byte and must not be used.
LUN (required):
Logical Unit Number.
Priority:

Request priority. Ignored by RSX-11M, but space must
be allocated for RSX-11D compatibility.

EFN (optional):
Event flag number.
I/0 Status Block Address (optional):

This word contains a pointer to the I/O status block, which is a
2-word, device-dependent I/0 completion data packet formatted as:

Byte O
I/0 status byte.

Byte 1
Augmented data supplied by the driver.

Bytes 2 and 3
The contents of these bytes depend on the value of byte 0.
If byte 0 = 1, then these bytes wusually contain the
processed byte count. If byte 0 does not equal zero, then
the contents are device dependent.

AST Address (optional):

Address of an AST service routine.

3-8

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS
Device Dependent Parameters:

Up to six parameters specific to the device and I/0O function to
be performed. Typically, for data transfer functions, these are:

Buffer address

Byte count

Carriage control type
Logical block number

Any optional parameters that are not specified should be filled with
Zeros.

3.1.2 The Device Control Block (DCB)

Figure 3-3 is a schematic layout of the DCB. The DCB describes the
static characteristics of a device controller and the units attached
to the controller. All fields must be specified.

D.LNK LINK TO NEXT DCB (@=LAST)
D.UCB LINK TO FIRST UCB

D.NAM GENERIC DEVICE NAME
D.UNIT HIGHEST UNIT # | LOWEST UNIT #
D.UCBL LENGTH OF UCB

D.DSP ADDR OF DRIVER DISPATCH TABLE
D.MSK LEGAL FCN MSK BITS @-15.

CONTROL FCN MSK BITS @-15.

NO-OP'ED FCN MSK BITS g-15.

ACP FCN MSK BITS @-15.

LEGAL FCN MSK BITS 16.-32.

CONTROL FCN MSK BITS 16.-32.

NO-OP'ED FCN MSK BITS 16.-32.

ACP FCN MSK BITS 16.-32.

Figure 3-3
Device Control Block

3-9

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS

3.1.2.1 DCB Details - The fields in the DCB are described below:
D.LNK (Link to next DCB)*
Driver access:

Initialized, not referenced.

Description:

Address link to the next DCB. A zero in this field indicates
the 1last DCB in the chain. The driver writer links his DCB

into the system DCB's via the global 1label $USRTB on his
first DCB.

D.UCB (Pointer to First UCB)
Driver access:

Initialized, not referenced.

Description:

Address link to the first and,
asscciated with the DCB.
contiguous

possibly, the only UCB
All UCB's, for a given DCB, are in
memory locations and must all be the same length.

D.NAM (ASCII Device Name)
Driver access:

Initialized, not referenced.

Description:

Generic device name in ASCII by which

device units are
mnemonically referenced.

D.UNIT (Unit Number Range)
Driver access:

Initialized, not referenced.

Description:

Unit number range for the device. This

logical wunits available to the user for device assignment.
Typically, the lowest number is zero, and the highest is n-1,

where n is the number of device-units described by the DCB.
D.UCBL (UCB Length)

range covers those

Driver access:

Initialized, not referenced.

* Parenthesized contents indicate value to be

initialized in the data
base source code.

3-10

WRITING AN I/O DRIVER ~ PROGRAMMING SPECIFICS
Description:

The UCB may have any length to meet the needs of the driver
for variable storage. However, all UCB's for a given DCB
must have the same length.

D.DSP (Dispatch Table Pointer)
Driver access:
Initialized, not referenced.
Description:

Address of the driver dispatch table.

4-}». s s to A t}-..\ -

When the Executive es to enter e driver at any of
four entry points contained in the driver dispatch table, it
accesses D.DSP, locates the appropriate address in the table,
and calls the driver at that address. Thus, null addresses
are not permitted. If the driver does not process a given
function, then it simply returns. The driver writer must
provide a driver dispatch table in the driver source. The
label on this table is of the form $nnTBL and must be a
global label. The designation nn is the 2-character generic
device name for the device. Thus, S$TTTBL is the global label
on the driver dispatch table for the generic device name TT.
This table 1is an ordered, 4-word table containing the
following entry points:

R P
wish ne

I/0 Initiator;
Cancel I/0;

Device Timeout, and
Power failure.

When a driver is entered at one of these entry points, entry
conditions are as follows:

At Initiator:
If UC.QUE=1

R5 UCB address
R1 Address of the I/0O Packet

If UC.QUE=0
R5 = UCB address

Interrupts are allowed.

At Cancel I/0:

R5 = UCB address

R4 = SCB address

R3 = Controller index

Rl = Address of TCB of current task
RO = Address of active I/0O packet

Device interrupts are locked out.

3-11

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS

At Device Timeout:

R5 = UCB address

R4 = SCB address

R3 = Controller index

R0 = I/0 status code IE.DNR (Device Not Ready)

Device interrupts are locked out.

At Power Failure:

R5 = UCB address
R4 = SCB address
R3 = Controller index

Interrupts are allowed.
D.MSK (Function Masks)
Driver access:
Initialized, not referenced.
Description:

There are eight words, beginning at D.MSK, which are of
critical importance to the proper functioning of a device
driver. The Executive wuses these words to wvalidate and
dispatch the I/0 reguest specified by a QIO directive. The
description which follows applies only to non-file-structured
devices, since directions for writing drivers for
file-structured devices (drivers which interface to FCP) are
not included 1in this manual. Four masks, 2-words per mask,
are described by the bit configurations established by the
driver writer for these words.

1. Legal function mask;

2. Control function mask;

3. No-op'ed function mask, and
4. ACP function mask.

The QIO directive allows for 32 possible I/O functions. The
masks, as stated, are filters to determine validity and I/0
requirements for the subject driver.

The function value in the I/O request is filtered by the
Executive through the four mask words. I/0 function codes
range from 0-31. If the function corresponds to a true
condition in a mask word, a bit is set in the mask in the
position which numerically corresponds to the function code.
Thus, 1if the function 5 is legal, then bit 5 in the Legal
Function Mask is set.

The masks are laid out in memory in two 4-word groups. Each
4-word group covers 16 function codes. The first four words
cover the function codes 0-15; the second four words cover
codes 16-31. Below is the exact layout used for the driver
example in Chapter 5.

WRITING AN I/O DRIVER - PROGRAMMING SPECIFICS

.WORD 140033 ;LEGAL FUNCTION MASK CODES 0-15.
.WORD 30 ; CONTROL FUNCTION MASK CODES 0-15.
.WORD 140000 ;NO-OP'ED FUNCTION MASK-CODES 0-15.
.WORD 0 ;ACP FUNCTION MASK CODES 0-15.

.WORD 5 ; LEGAL FUNCTION MASK CODES 16.-31.
.WORD 0 ;CONTROL FUNCTION MASK CODES 16.-31.
.WORD 1 ;NO-OP'ED FUNCTION MASK CODES 16.-31.
.WORD 4 ;ACP FUNCTION MASK CODES 16.-31.

The mask words filter sequentially as follows:
Legal Function Mask:

Legal function values have the corresponding bit position 1in
this word set to 1. Function codes that are not legal are
rejected by QIO directive processing by returning IE.IFC in

T o 7 Py R e~ P [= P ~w T - -~ 3 4
the I/0 status block, provided an I0SB address was specified.

Control Function Mask:

If any device-dependent data exists in the DPB, and this data
does not require further checking by the QIO directive
processor, the function is considered in the <class <control
function>. Such a function allows QIO directive processing
to copy the DPB device-dependent data directly into the 1I/0
Packet.

No-op'ed Function Mask:

A no-op function 1is any function that is considered
successful as soon as it is issued. If the function is a
no-op, QIO directive processing immediately marks the request
successful; no additional filtering occurs.

ACP Function Mask:

If a function code is legal, but neither control nor no-op,
then it is either an ACP function or a transfer function. If
a function code may require intervention of an Ancillary
Control Processor (ACP), the <corresponding bit in the ACP
function mask must be set.

In the specific case of read/write wvirtual functions, the
corresponding mask bits may be set at the driver writer's
option. If the corresponding mask bits for a read/write
virtual function are set, QIO directive processing will
recognize that a file-oriented function is being requested to
a non-file-structured device and convert the request to a
read/write logical function.

This conversion is particularly useful. Consider a
read/write virtual function to a specific device:

1. If the device is file-structured and a file is open
on the specified LUN, the block number specified is
converted from a virtual block number in the file to
a logical block number on the medium, and the request
is gueued to the driver as a read/write logical
function.

2. If the device is file-structured and no file is open

on the specified LUN, then an error is returned and
no further action is taken.

3-13

WRITING AN I/O DRIVER - PROGRAMMING SPECIFICS

3. If the device 1is not file-structured, then the
request is simply transformed to a read/write logical
function and queued to the driver. (Specified block
number is unchanged).

Transfer Function Processing

Finally, if the function is not an ACP function, then, by
default, it 1is a transfer function. All transfer functions
cause the QIO directive processor to <check the specified
buffer for legality (i.e., being within the address space of
the reqguesting task) and proper alignment (i.e., word or
byte) . Also, the number of bytes being transferred is
checked for proper modulus (i.e., nonzero and a proper
multiple) .

Mask Word Creation

The creation of the function mask words involves three steps:

1.

2.

3a.

3b.

3c.

Establish the I/0 functions available on the device for which
driver support is to be provided.

Check the standard RSX-11M function code values in Table 3-1

for eguivalencies. Only function code 0 is mandatory.
Function codes 3 and 4, if used, must have the RSX-11lM system
interpretation. It 1is suggested that functions having an

RSX-11M system counterpart use the RSX-11M code, but this is
not required, except 1in the case where the device is to be
used in conjunction with an ACP. From the supported function
list, the two legal function mask words can be built.

Given the legal function mask,
The Control Function mask is built by asking:

Does this function carry a standard buffer address and
byte «count in the first two device-dependent parameter
words?

If it does not, then it either gualifies as a control
function, or the driver itself must effect the checking and
conversion of any addresses to the format required by the
driver. (Buffer addresses in standard format are
automatically converted to Address Doubleword format.)

Control functions are, essentially, those whose DPB's do not
contain buffer addresses or counts.

The No-op Function Mask is created by deciding which legal
functions are to be no-op'ed. Typically, for File Control
Services (FCS) compatibility on non-file-structured devices,
the file access/deaccess functions are selected as legal
functions, even though no specific action 1is required to
access or deaccess a non-file-structured device; thus, the
access/deaccess functions are no-op'ed.

Finally, the ACP functions Write Virtual Block and Read
Virtual Block may be included. Other ACP functions that
might be included fall into the non-conventional driver
classification and are beyond the scope of this document.

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS

3.1.2.2 1/0 Function Codes - The filtering ©process which cascades
through the function mask words in the DCB uses the function code byte
supplied in the QIO directive DPB as the match value. Table 3-1

contains the function code values used for DEC-supplied drivers.

Table 3-1
Standard 1I/0 Function Codes

FUNCTION EQUATED I1/0
VALUE (8) SYMBOLIC FUNCTION

0 IO.KIL Cancel I/0

1 IO.WLB Write Logical Block

2 IO.RLB Read Logical Block

3 IO.ATT Attach Device

4 IO.DET Detach Device

5 Unused

6 Unused

7 Unused
10 Unused
11 IO.FNA Find File in Directory
12 Unused

13 IO.RNA Remove File from Directory
14 I0.ENA Enter File in Directory
15 I0O.ACR Access File for Read

16 IO.ACW Access File for Read/Write
i7 IO0.ACE Access File for Read/Write/Extend
20 I0.DAC Deaccess File

21 IO.RVB Read Virtual Block

22 I0.WVB Write Virtual Block

23 I0.EXT Extend File

24 IO.CRE Create File

25 I0.DEL Mark File for Delete

26 IO.RAT Read File Attributes

27 IO.WAT Write File Attributes
30 Unused

31 Unused

32 Unused

33 Unused

34 Unused

35 Unused

36 Unused

37 Unused

WRITING AN I/O DRIVER - PROGRAMMING SPECIFICS

Of the function code values 1listed 1in Table 3-1, only IO.KIL is
mandatory and has a fixed interpretation. However, if IO.ATT and
IO.DET are wused, they must have the standard .meaning. If QIO
directive processing encounters a function code of 3 or 4 and the code
is not no-op'ed, it will assume that they represent Attach device and

Detach device, respectively. The other codes are suggested but not
mandatory. The driver writer is free to establish all other function
code values on non-file-structured devices. The mask words must

obviously reflect the proper filtering process.

If a driver 1is being written for a file-structured device, the
standard function codes of Table 3-1 must be used.

3.1.3 The Status Control Block (SCB)

Figure 3-4 is a layout of the 13-word SCB. The SCB describes the
status of a control unit which can run in parallel with all other
control units.

S.LHD DEVICE I/O QUEUE

LISTHEAD
S.PRI
S.VCT VECTOR ADDR/4 DEVICE PRIORITY
S.CTM
S.ITM INT TMOUT CNT CURNT TMOUT CNT
S.CON
S.STS CTRLR STATUS CONTROLLER #*2
S.CSR ADDRESS OF CONTROL STATUS REG
S.PKT ADDRESS OF CURRENT I/0 PACKET
S.FRK FORK LINK WORD

FORK PC

FORK R5

FORK R4

Figure 3-4

Status Control Block

WRITING AN I/O DRIVER ~ PROGRAMMING SPECIFICS
3.1.3.1 SCB Details - The fields in the SCB are described below:
S.LHD (first word equals zero; second word points to first)
Driver access:
Initialized, not referenced.
Description:
Two words which form the I/0 queue listhead. The first word
points to the first I/O Packet in the queue, and the second
word points to the last I/O Packet 1in the queue. If the
queue is empty, the first word is zero, and the second word
points to the first word.
S.PRI (device priority)
Driver access:
Initialized, not referenced.
Description:
Contains the priority at which the device interrupts.
S.VCT (interrupt vector divided by four)
Driver access:
Initialized, not referenced.
Description:
Interrupt vector address divided by four.
S.CTM (initialize to zero)
Driver access:
Not initialized, read/write.
Description:
RSX-11M supports device timeout, which enables a driver to
limit the time that elapses between the issuing of an I/0
operation and its termination. The current timeout count (in
seconds) 1s initialized by moving S.ITM (initial timeout
count) into S.CTM. The Executive clock service will examine
active times, decrement them and, if they reach 0, call the
driver at its device timeout entry point.
The internal clock count 1is kept 1in 1l-second 1increments.
Thus, a time count of 1 is not precise, since the internal
clocking mechanism is operating asynchronously with driver
execution. The only meaningful minimum clock interval is 2
if the programmer intends to treat timeout as a consistently
detectable error condition. Note, if the count is 0, thati no
timeout will occur; it 1is, in fact, an 1indication that
timeout 1is not operative. The maximum count is 255. The

driver writer 1is responsible for setting this field.
Resetting is at actual timeout or within $FORK.

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS

S.ITM (set to initial timeout count)

S.CON

S.STS

Driver access:

Initialized, read-only.

Description:

Contains the initial timeout value.

(controller number times 2)

Driver access:

Initialized, read-only.

Description:

Controller number multiplied by 2. Used by drivers which are
written to support more than one controller. S.CON may be
used by the driver to index into a controller table created
and maintained internally to the driver itself. 1Indexing the
controller table enables the driver to service the correct
controller when a device intorr:

Helkake]
vvvvvvvvvvv - ¥ oA o AliCoL L Uup Lo

(initialize to zero)

Driver access:

Initialized, not referenced.

Description:

S.CSR

Establishes the controller as busy/not busy. This byte is
the interlock mechanism for marking a driver as busy for a

specific controller. Tested and set by S$SGTPKT and reset by
$IODON.

(Control Status Register address)

Driver access:

Initialized, read/only.

Description:

Contains the address of the Control Status Register (CSR) for
the device controller. S.CSR is wused by the driver to
initiate I/0 operations and to access, via indexing, other
registers related to the device that are located in the I/0
page. This address need not be a CSR; it need only be a
member of the device's register set. It is accessed at
system bootstrap time to determine if the interface exists on
the system hosting the Executive. The Executive uses this to
set the off-line bit at bootstrap so system software can be
interchanged between systems without an intervening system

generation. Otherwise, it is only accessed by the driver
itself.

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS
S.PKT (Reserve one word of storage)
Driver access:
Not initialized, read-only.
Description:

Address of the current I/0 Packet established by S$GTPKT.
This field 1is wused to retrieve the I/0 Packet address upon
the completion of an I/0 regquest.

S.FRK (reserve four words of storage)

Driver access:

Mot initialized, not referenced.

Description:

The four words starting at S.FRK are wused for fork block
storage if and when the driver deems it necessary to
establish itself as a Fork process. Fork block storage
preserves the state of the driver, which is restored when the
driver regains control at fork level. This area is
automatically used if the driver calls S$SFORK.

3.1.4 The Unit Control Block (UCB)

Figure 3-5 is a layout of the UCB (a variable-length control block).
One UCB exists for each physical device-unit generated into a system
confiqguration. For user-added drivers, this control block is defined
as part of the source code for the driver data structure.

WRITING AN I/O DRIVER - PROGRAMMING SPECIFICS

U.DCB
U.RED
U.STS
U.CTL
U.ST2
U.UNIT
U.CWl
U.CW2
U.CW3
U.Cw4
U.SCB
U.ATT
U.BUF
U.BUF+2

U.CNT

BACK POINTER TO DCB

REDIRECT UCB POINTER

UNIT STATUS CONTROL FLAGS

STATUS EXT PHYSICAL UNIT #

CHARACTERISTICS WORD #1

CHARACTERISTICS WORD #2

CHARACTERISTICS WORD #3

CHARACTERISTICS WORD #4

POINTER TO SCB

ICB ADDR OF ATTACHED TASK

BUFFER RELOCATION BIAS

BUFFER ADDRESS

BYTE COUNT

DEVICE

DEPENDENT

STORAGE

Figure 3-5
Unit Control Block

3.1.4.1

WRITING AN I/O DRIVER - PROGRAMMING SPECIFICS

UCB Details - The fields in the UCB are described below:

U.DCB (pointer to associated DCB)

Driver access:

Initialized, not referenced.

Description:

Backpointer to the corresponding DCB. Since the UCB is a key
control block in the I/0 data structure, access to other
control blocks usually occurs via links implanted in the UCB.

U- RED (initialized to point to U.DCB of the UCB)

Driver access:

Initialized, not referenced.

Description:

Contains a pointer to the UCB to which this device unit has
been redirected. This field is updated as the result of an
MCR Redirect command. The redirect chain ends when this word
points to the UCB itself.)

U.CTL (set by driver writer)

Driver access:

Initialized, not referenced.

Description:

U.CTL and the function mask words in the DCB drive QIO
directive processing. The driver writer 1is totally
responsible for setting up this bit pattern. Any inaccuracy
in the bit setting of U.CTL will produce erroneous I/0
processing. Bit symbols and their meaning are as follows:

UC.ALG - Alignment bit.

If this bit = 0, then byte alignment of data buffers is
allowed. If UC.ALG =1, then buffers must be word
aligned.

UC.ATT - Attach/Detach notification.

If this bit is set, then the driver will be called when
an Attach/Detach I/0 function 1is processed by SGTPKT.
Typically, the driver has no need to obtain control for
Attach/Detach requests, and the Executive performs the
entire function without any assistance from the driver.

UC.KIL - Unconditional Cancel I/0 call bit.

If set, the driver is to be <called on a Cancel 1I/0
reguest, even 1if the unit specified 1is not Dbusy.
Typically, the driver is called on Cancel I/0 only if an
I/0 operation is in progress.

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS
UC.QUE - Queue bypass bit.

If set, the QIO directive processor is to cal

1 the driver

prior to queueing the 1I/0 Packet. Once gaining

to-be-queued control, the disposition of the

I/0 Packet

is the driver's responsibility. Typically, an I/0 Packet

is qgueued prior to a call to the driver,
retrieves it by a call to SGTPKT.

UC.PWF - Unconditional call on power failure bit.

If set, the driver is always to be called whe

which later

n power is

restored after a power failure occurs. Typically, the
driver is called on power restoration only when an 1I/0

operation is in progress.
UC.NPR - NPR device bit.

If set, the device is an NPR device. This bi
the format of the 2-word address in U.BUF (d
under the discussion of U.BUF below).

UC.LGH - Buffer size mask bits (2-bits).

These two bits are wused to check 1if the
specified in an I/0 request is a legal buffer

00 - Any buffer modulus valid

01 - Must have word alignment modulus

11 -~ Must have double word-alignment modulus
10 Combination invalid.

UC.ALG and UC.LGH are independent settings.

UC.ATT, UC.KIL, UC.QUE, and UC.PWF will wusuall
especially for conventional drivers.

Every driver must, however, be concerned with its
values for UC.ALG, UC.NPR, and UC.LGH,.

The driver writer is totally responsible for the
these bits, and erroneous values are likely
unpredictable results.
U.STS (initialize to zero)
Driver access:
Initialized, not referenced.

Description:

This byte <contains device~-independent status
The bit meanings are as follows:

US.BSY - If set, device~unit is busy.

US.MNT - If set, volume is not MOUnted.

t determines
etails given

byte count
modulus.

y be =zero,

particular

values in
to produce

information.

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS
US.FOR - If set, volume is foreign.
US.MDM - If set, device is marked for dismount.
The unused bits in U.STS are reserved for system use and

expansion. US.MDM, US.MNT, and US.FOR apply only to
MOUntable devices.

U.UNIT (unit number)

U.ST2

Driver access:

Initialized, read-only.

Description:

This byte contains the physical unit number of the
device-unit. If the controller for the device supports only
a single unit, the unit number is always zero.

(set by driver writer)

Driver access:

Initialized, not referenced.

Description:

This byte <contains additional device-independent status
information. The bit meanings are as follows:

US.OFL - If set, the device is off-line (that is, not 1in
the configuration).

US.RED ~ If set, the device cannot be redirected.

The remaining bits are reserved for system use and expansion.

U.CW]l (set by driver writer)

Driver access:

Initialized, not referenced.

Description:

The first of a 4-word contiguous cluster of device
characteristics information. U.CwWl and U.CwW4 are
device-independent. U.CW2 and U.CW3 are device-dependent.
The four characteristic words are retrieved from the UCB and
placed in the requester's buffer on issuance of a GLUNS
Executive directive (Get LUN Information). It 1is the
responsibility of the driver writer to supply the contents of
these four words 1in the assembly source code of the driver
data structure.

WRITING AN I/0O DRIVER - PROGRAMMING SPECIFICS

U.CW1l is defined as follows:

DV.REC Bit 0--Record-Oriented Device(l=yes)
DV.CCL Bit l--Carriage-Control Device(l=yes)
DV.TTY Bit 2--Terminal Device(l=yes)
DV.DIR Bit 3--Directory Device(l=yes)
DV.SDI Bit 4--Single Directory Device(l=yes)
DV.SQD Bit 5--Seqguential Device(l=yes)
DV.PSE Bit 12--Pseudo Device(l=yes)
DV.COM Bit 13--Device Mountable as a
Communications Channel (l=yes)
DV.F1ll Bit 1l4--Device mountable as a FILES-11
device(l=Yes)
DV.MNT Bit 15--Device mountable(l=yes)
U.CW2 (initialize to zero)
Driver access:
Initialized, read/write.
Description:
Specific to a given device driver (available for

storage or constants).

U.CW3 (initialize to zero)

Driver acces
Initiali

Description:

S

zed,

read/write.

Specific to a given device driver (available for
storage or constants).

U.CW4 (set by driver writer)

Driver acces
Initiali

Description:

S:

zed,

read-only.

Default buffer size.

U.SCB (SCB pointe

r)

Driver access:

Initialized, read-only.

Description:

This field contains a pointer to the SCB for this
on entry to the driver via the driver dispatch

general,

R4

table will contain the value in this word, since the
freguently referenced by service routines.

working

working

UCB.

SCB

In

is

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS
U.ATT (initialize to zero)
Driver access:
Initialized, not referenced.
Description:

If a task has attached itself to a device-unit, this field
contains its TCB address.

U.BUF (reserve two words of storage)
Driver access:
Not initialized, read/write.
Description:

U.BUF labels two consecutive words which serve as a
communication region between $GTPKT and the driver. 1If a
non-transfer function is indicated, then U.BUF, U.BUF+2, and
U.CNT receive the first three parameter words from the I/O
Packet.

For transfer operations, the format of these two words
depends on the setting of UC.NPR in U.CTL. The driver does
not format the words; all formatting is completed pricr to
the driver receiving control. For unmapped systems, the
first word is zero, and the second word 1is the physical
address of the buffer. For mapped systems, the format is
determined by the UC.NPR bit, which is set for an NPR device
and reset for a program transfer device.

Format for program transfer devices:

The format is identical to that for the second two words of
I.I0SB in the I/O Packet. See section 3.1.1.1.

In general, the driver will not manipulate these words when
performing I/O to ©program transfer device. It most likely
will use the Executive routines Get Byte, Get Word, Put Byte,
and Put Word to effect data transfers between the device and
the user's buffer.

Format for an NPR device:

For NPR device drivers, the word layout is as follows:

Word 1

Bit O Go bit initially set to zero

Bit 1-3 Function code - set to zeros

Bit 4,5 Memory extension bits

Bit 6 Interrupt enable-set to zero

Bits 7-15 Zero

Word 2

Bits 0-15 Low-order 1l6-bits of physical address

WRITING AN I/0 DRIVER - PROGRAMMING SPECIFICS

It is the driver's responsibility to set the function code,
interrupt enable, and go bits. This must be accomplished by
a Bit Set (BIS) operation so the extension bits are not
disturbed. The driver is also responsible for moving these
words into the device control registers to initiate the 1I/0
operation.

Note that when the system is unmapped, bits 4 and 5 will
always be zero, but this is transparent to the driver. Thus,
NPR device drivers will not be cognizant of the mapping state
in the system.

The construction of U.BUF, U.BUF+2 and U.CNT occurs only if
the requested function is a transfer function; if it is not,
these three words contain the first three words of the 1/0
Packet.

The details of the construction of the Address Doubleword
appear in Appendix A.

U.CNT (reserve one word of storage)
Driver access:
Not initialized, read/write.
Description:
Contains the byte count of the buffer described by U.BUF.
The driver will wuse this field in constructing the actual
device reguest.
U.BUF and U.CNT are used to keep track of the current data
item in the buffer for the current transfer (except for NPR
transfers). Since this field is being altered dynamically,
the I/0 Packet may be needed to reissue an I/0 operation.
Device-Dependent Words:
Driver access:
Not initialized, read/write.

Description:

The field is variable in length and 1is established by the
driver writer to suit driver-specific requirements.

CHAPTER 4

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

This section contains the Executive routines typically used by 1I/0
drivers. They are listed in alphabetical order. The descriptions are
taken directly from the code for the associated service.

4.1 SYSTEM-STATE REGISTER CONVENTIONS

In system state, R5 and R4 are, by convention, established as
non-volatile registers. This means that an internally called routine
is required to save and restore these two registers if it intends to
destroy their «contents. Note that drivers are entered directly from
interrupts and have to call $INTSV to preserve R5 and R4.

R3, R2, R1l, and RO are volatile registers and may be used by a called
routine without save and restore responsibilities.

A routine may violate these conventions, as 1long as an explicit
statement exists 1in the program preface detailing the departure from
conventions. Such departures should be avoided and employed only when
ample Jjustification can be given to demonstrate the value added to
overall system performance by virtue of the proposed departure.

4.2 SERVICE CALLS
DEVICE MESSAGE OUTPUT $DVMSG

Device Message Output is in the file IOSUB.

Calling seguence:

CALL $DVMSG

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

Description:

+

**-SDVMSG-DEVICE MESSAGE OUTPUT

THIS ROUTINE IS CALLED TO SUBMIT A MESSAGE TO THE TASK TERMINATION
NOTIFICATION TASK. MESSAGES ARE EITHER DEVICE RELATED OR A CHECKPOINT
WRITE FAILURE FROM THE LOADER.

INPUTS:

RO=MESSAGE NUMBER.
R5=ADDRESS OF THE UCB OR TCB THAT THE MESSAGE APPLIES TO.

OUTPUTS:

A FOUR WORD PACKET IS ALLOCATED, RO AND R5 ARE STORED IN THE
SECOND AND THIRD WORDS, RESPECTIVELY, AND THE PACKET IS THREADED
INTO THE TASK TERMINATION NOTIFICATION TASK MESSAGE QUEUE.

NOTE: IF THE TASK TERMINATION NOTIFICATION TASK IS NOT INSTALLED
OR NO STORAGE CAN BE OBTAINED, THEN THE MESSAGE REQUEST
IS IGNORED.

N9 NS NE NE Ne NS NE NS NE Na Ne NS NS NE e NE Ne e Ne Ne e e

|

Notes:

1. PDrivers use only two codes in calling $DVMSG: T.NDNR (device
not ready), and T.NDSE (select error). S$DVMSG can be set up
and called as follows:

MOV #T .NDNR, RO

or

MOV #T.NDSE, RO
CALL $DVMSG

EXECUTIVE SERVICES AVAILABLE TO I/0 DRIVERS
FORK I SFORK !
| I ehah N |

Fork is in the file SYSXT. SFORK is called by a driver to switch from
a partially interruptible level (its state following a call on S$INTSV)
to a fully interruptible level.)

Calling seguence:
CALL S$FORK

Description:

+

**-SFORK-FORK AND CREATE SYSTEM PROCESS

THIS ROUTINE IS CALLED FROM AN I/O DRIVER TO CREATE A SYSTEM PROCESS THAT
WILL RETURN TO THE DRIVER AT STACK DEPTH ZERO TO FINISH PROCESSING.

; INPUTS:

; R5=ADDRESS OF THE UCB FOR THE UNIT BEING PROCESSED.

; OUTPUTS:

H REGISTERS R5 AND R4 ARE SAVED IN THE CONTROLLER FORK BLOCK AND

; A SYSTEM PROCESS IS CREATED. THE PROCESS IS LINKED TO THE FORK

; QUEUE AND A JUMP TO SINTXT IS EXECUTED.

NOTES:

1. S$FORK cannot be called unless SINTSV has been previously called. T

fork processing routine assumes that entry conditions are set up
SINTSV.

4-3

EXECUTIVE SERVICES AVAILABLE TO I/0O DRIVERS

GET BYTE SGTBYT

Get Byte is in the file BFCTL.
Calling seguence:
CALL SGTBYT

Description:

+

**-SGTBYT-GET NEXT BYTE FROM USER BUFFER
TEIS ROUTINE IS CALLED TO GET THE NEXT BYTE FROM THE USER BUFFER
AND RETURN IT TO THE CALLER ON THE STACK. AFTER THE BYTE HAS BEEN
FETCHED, THE NEXT BYTE ADDRESS IS INCREMENTED.
INPUTS:

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS.
OUTPUTS:

THE NEXT BYTE IS FETCHED FROM THE USER BUFFER AND RETURNED
TO THE CALLER ON THE STACK. THE NEXT BYTE ADDRESS IS INCREMENTED.

ALL REGISTERS ARE PRESERVED ACROSS CALL.

NE NP NE NE NG NE N NP NS N NS NG N N e we we e

EXECUTIVE SERVICES AVAILABLE TO I/0 DRIVERS

GET PACKET SGTPKT

Get Packet is in the file IOSUB.

Calling sequence:

CALL $GTPKT

Description:

WO NG MO N N Me NE NE MO NS NG MO ME ME Ne NE W NE NE e Ne we e me w0 we

+

**-SGTPKT-GET I/O PACKET FROM REQUEST QUEUE

THIS ROUTINE IS CALLED BY DEVICE DRIVERS TO DEQUEUE THE NEXT I/0 REQUEST
PROCESS. IF THE DEVICE CONTROLLER IS BUSY, THEN A CARRY SET INDICATION I¢
RETURNED TO THE CALLER. ELSE AN ATTEMPT IS MADE TO DEQUEUE THE NEXT REQUE
FROM THE CONTROLLER QUEUE. IF NO REQUEST CAN BE DEQUEUED, THEN A CARRY
SET INDICATION IS RETURNED TO THE CALLER. ELSE THE CONTROLLER IS SET BUS}
A CARRY CLEAR INDICATION IS RETURNED TO THE CALLER.

INPUTS:
R5=ADDRESS OF THE UCB OF THE CONTROLLER TO GET A PACKET FOR.
OUTPUTS:

C=1 IF CONTROLLER IS BUSY OR NO REQUEST CAN BE DEQUEUED.
C=0 IF A REQUEST WAS SUCCESSFULLY DEQUEUED.
R1=ADDRESS OF THE I/O PACKET.
R2=PHYSICAL UNIT NUMBER.
R3=CONTROLLER INDEX.
R4=ADDRESS OF THE STATUS CONTROL BLOCK.
R5=ADDRESS OF THE UNIT CONTROL BLOCK.

NOTE: R4 AND R5 ARE DESTROYED BY THIS ROUTINE.

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS
GET WORD
Get Word is in the file BFCTL.
Calling seguence:
Call $GTWRD

Description:

+

**-SGTWRD-GET NEXT WORD FROM USER BUFFER
THIS ROUTINE IS CALLED TO GET THE NEXT WORD FROM THE USER BUFFER
AND RETURN IT TO THE CALLER ON THE STACK. AFTER THE WORD HAS BEEN
FETCHED, THE NEXT WORD ADDRESS IS CALCULATED.
INPUTS:

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS.
OUTPUTS:

THE NEXT WORD IS FETCHED FROM THE USER BUFFER AND RETURNED
TO THE CALLER ON THE STACK. THE NEXT WORD ADDRESS 1S CALCULATED.

ALL REGISTERS ARE PRESERVED ACROSS CALL.

WO NE Ma NS MG N NS NE NP Ne WO NS ME NS WO we N we

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

INTERRUPT SAVE $INTSV

Interrupt Save is in the file SYSXT.

Calling seguence:
CALL $INTSV, PRn
n has a range of 0-7.

Description:

<+

**_SINTSV~-INTERRUPT SAVE

THIS ROUTINE IS CALLED FROM AN INTERRUPT SERVICE ROUTINE WHEN AN
INTERRUPT IS NOT GOING TO BE IMMEDIATELY DISMISSED. A SWITCH TO

THE SYSTEM STACK IS EXECUTED IF THE CURRENT STACK DEPTH IS +1. WHEN
THE INTERRUPT SERVICE ROUTINE FINISHES ITS PROCESSING, IT EITHER FORKS
OR JUMPS TO SINTXT.

INPUTS:

4 (SP)=PS WORD PUSHED BY INTERRUPT.
2(SP)=PC WORD PUSHED BY INTERRUPT.

0 (SP)=SAVED R5 PUSHED BY 'JSR R5,S$INTSV'.
0 (R5)=NEW PROCESSOR PRIORITY.

OUTPUTS:

REGISTER R4 IS PUSHED ONTO THE CURRENT STACK AND THE CURRENT
STACK DEPTH IS DECREMENTED. IF THE RESULT IS ZERO, THEN
A SWITCH TO THE SYSTEM STACK IS EXECUTED. THE NEW PROCESSOR
STATUS IS LOADED AND A RETURN TO THE CALLER IS EXECUTED.

WO WO NE NE N N N M3 e NE MO e We Ne Ne Ne w6 NE e N we e g

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

INTERRUPT EXIT SINTXT

Interrupt Exit is in the file SYSXT.

Calling seguence:
JMP SINTXT

Description:

+

**_SINTXT~-INTERRUPT EXIT

THIS ROUTINE IS CALLED VIA A JUMP TO EXIT FROM AN INTERRUPT. IF THE
STACK DEPTH IS NOT EQUAL TO ZERO, THEN REGISTERS R4 AND R5 ARE
RESTORED AND AN RTI IS EXECUTED. ELSE A CHECK IS MADE TO SEE

IF THERE ARE ANY ENTRIES IN THE FORK QUEUE. IF NONE, THEN R4 AND

R5 ARE RESTORED AND AN RTI IS EXECUTED. ELSE REGISTERS R3 THRU

RO ARE SAVED ON THE CURRENT STACK AND A DIRECTIVE EXIT IS EXECUTED.

INPUTS: (MAPPED SYSTEM)
06 (SP)=PS WORD PUSHED BY INTERRUPT.
04 (SP)=PC WORD PUSHED BY INTERRUPT.
02 (SP)=SAVED R5.
00 (SP)=SAVED RA4.

INPUTS: (REAL MEMORY SYSTEM)

NONE.

NE NS NE ME NB WD NE NS NS NS NS NG MO NS we N4 N s we WO we

EXECUTIVE SERVICES AVAILABLE TO I/0 DRIVERS

I/0 ALTERNATE ENTRY and I/0 DONE

Thege routines are in the file IQOSUR.

Calling seguences:

CALL SIOALT
CALL SIODON

Description:

+

**~SIOALT-I/C DONE (ALTERNATE ENTRY)
**-SIODON-I/O DONE

merTo rmTD TAa A N DY MNDUTOAR N 7

THIS ROUTINE IS CALLED BY DEVICE DRIV

T
TO DO FINAL PROCESSING. THE UNIT AND
ENTERED TO FINISH THE PROCESSING.

AMm mtx
a4 4

INPUTS:

RO=FIRST I/0 STATUS WORD.
R1=SECOND I/O STATUS WORD.

SECOND STATUS WORD IS ZERO.
OUTPUTS:
THE UNIT AND CONTROLLER ARE SET IDLE.

R3=ADDRESS OF THE CURRENT I/0 PACKET.

NE NE NE NE NE NE ME Ne NE N NE NG NE e NG NE N8 N NC we Ne we wo

$IOCALT
$IODON

ER E COMPLET
CONTROLLER ARE SET

R5=ADDRESS OF THE UNIT CONTROL BLOCK OF THE UNIT BEING COMPLETED.

NOTE: IF ENTRY IS AT $IOALT, THEN R1 IS CLEARED TO SIGNIFY THAT THE

EXECUTIVE SERVICES AVAILABLE TO I/0 DRIVERS

I/0 FINISH $IOFIN

I/0 Finish is in the file IOSUB. Drivers rarely call I/0 Finish, but
they should be aware of the fact that this routine is executed when
SIOALT or SIODON is called.
Calling seguence:

CALL SIOFIN

Description:

+

**-SIOFIN-I/O FINISH

THIS ROUTINE IS CALLED TO FINISH I/O PROCESSING IN CASES WHERE THE UNIT AND
CONTROLLER ARE NOT TO BE DECLARED IDLE.

INPUTS:

RO=FIRST I/0 STATUS WORD.
R1=SECOND I/O STATUS WORD.
R3=ADDRESS OF THE I/0O REQUEST PACKET.
R5=ADDRESS OF THE UNIT CONTROL BLOCK.

WE Ne Ne e N6 N N “e we Ne we

OUTPUTS:
THE FOLLOWING ACTIONS ARE PERFORMED:

1-THE FINAL I/O STATUS VALUES ARE STORED IN THE I/O STATUS BLOCK IF
ONE WAS SPECIFIED.

2-THE I/0 REQUEST COUNT IS DECREMENTED. IF THE RESULTANT COUNT IS
ZERO, THEN 'TS.RDN' IS CLEARED IN CASE THE TASK WAS
STOPPED FOR I/0 RUNDOWN.

3-IF 'TS.CKR' IS SET, THEN IT IS CLEARED AND CHECKPOINTING OF THE
TASK IS INITIATED.

4-IF AN AST SERVICE ROUTINE WAS SPECIFIED, THEN AN AST IS QUEUED
FOR THE TASK. ELSE THE I/O PACKET IS DEALLOCATED.

5-A SIGNIFICANT EVENT OR EQUIVALENT IS DECLAREL.

NOTE: R4 IS DESTROYED BY THIS RCUTINE.

e NE Ne NE WE NE ME NE NE NG NG NE NS NE NG NE NE NS NP M we Ne N

4-10

EXECUTIVE SERVICES AVAILABLE TO I/0 DRIVERS
PUT BYTE
Put Byte is in the file BFCTL.
Calling sequence:
CALL SPTBYT

Description:

+

**-SPTBYT-PUT NEXT BYTE IN USER BUFFER

THIS ROUTINE IS CALLED TO PUT A BYTE IN THE NEXT LOCATION IN

USER BUFFER. AFTER THE BYTE HAS BEEN STORED, THE NEXT BYTE ADDRESS
IS INCREMENTED.

INPUTS:

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS.
2(SP)=BYTE TO BE STORED IN THE NEXT LOCATION OF THE USER BUFFER.

OUTPUTS:

THE BYTE IS STORED IN THE USER BUFFER AND REMOVED FROM
THE STACK. THE NEXT BYTE ADDRESS IS INCREMENTED.

ALL REGISTERS ARE PRESERVED ACROSS CALL.

WO Me NE NE NE WE NE WE NE WS NE NS M) NE NG NS We e W

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

PUT WORD SPTWRD

Put Word is in the file BFCTL.
Calling sequence:

CALL SPTWRD

Description:

+

**-SPTWRD-PUT NEXT WORD IN USER BUFFER

THIS ROUTINE IS CALLED TO PUT A WORD IN THE NEXT LOCATION IN

USER BUFFER. AFTER THE WORD HAS BEEN STORED, THE NEXT WORD ADDRESS
IS CALCULATED.

INPUTS:

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS.
2(SP)=WORD TO BE STORED IN THE NEXT LOCATION OF THE BUFFER.

OUTPUTS:

THE WORD IS STORED IN THE USER BUFFER AND REMOVED FROM
THE STACK. THE NEXT WORD ADDRESS IS CALCULATED.

ALL REGISTERS ARE PRESERVED ACROSS CALL.

NE Ne ME NS ME Ne ME W e WO N NS Ns e NS N e we N

CHAPTER 5

INCLUDING A USER-WRITTEN DRIVER - AN EXAMPLE

The example which follows is a complete illustration of the procedures
reguired to add a driver to an RSX-11M system. The driver in the
example supports the punch capability of the PCll Paper Tape
Reader /Punch.

5.1 DEVICE DESCRIPTION

The PCll Paper Tape Reader/Punch 1is capable of reading 8-hole,
unoiled, perforated paper tape at 300 characters-per-second, and
punching tape at 50 characters-per-second. The system consists of a
Paper Tape Reader/Punch and Controller. A unit containing a reader
only (PR1l1l) is also available.

In reading tape, a set of photodiocdes translates the presence or
absence of holes in the tape to logic levels representing 1l's and 0's.
In punching tape, a mechanism translates logic levels representing 1l's
and 0's to the presence or absence of holes 1in the tape. Any
information read or punched 1is parallel-transferred through the
Controller. When an address is placed on the UNIBUS, the Controller
decodes the address and determines if the reader or punch has been
selected. If one of the four device register addresses has been
selected, the Controller determines whetheér an input or an output
operation should be performed. An input operation from the reader is
initiated when the processcr transmits a command to the Paper Tape
Reader status register. An output operation is initiated when the
processor transfers a byte to the Paper Tape Punch buffer register.

The Controller enables the PDP-11 System to control the reading or
punching of paper tape 1in a flexible manner. The reader can be
operated independently of the punch; either device <can be under
direct program control or can operate without direct supervision,
through the use of interrupts, to maintain continuous operation.

INCLUDING A USER-WRITTEN DRIVER - AN EXAMPLE

5.2 DATA STRUCTURE AND DRIVER SOURCE

The simplicity of writing a conventional driver for RSX-11M is
obscured by the volume of explanation required to cover the universal
case. As will be seen below, 1in a particular case, building a
conventional driver is indeed a straightforward and modest
under taking.

5.2.1 The Data Structure

The data structure source is shown below and 1is self-explanatory.
Special note should be taken of the 1legal function mask words,
starting at line 45. The standard function codes listed in Table 3-1
were used in <creating the mask. Thus, the Punch driver will accept
the following I/0 functions:

Cancel I/0

Write Logical Block

Attach Device

Detach Device

Access File For Read/Write

Access File For Read/Write/Extend
Deaccess File

Write Virtual Block

Cancel I/0 is Mandatory. Write Logical Block 1is the only transfer
function actually supported.

Attach/Detach are control functions. The two Access/Deaccess
functions are 1legal for FCS compatibility, but are no-op'ed. Write
Virtual Block is legal but will be converted to Write Logical Block by
QIO directive processing.

The Bit Mask for each function is as follows:

FUNCTION FUNCTION CODE (OCTAL) MASK(OCTAL) BIT RANGE (DECIMAL)

CAN 0 000001 0-15.
WLB 1 000002 0-15.
ATT 3 0ooQ1o0 0-15.
DET 4 000020 0-15.
ACW 16 040000 0-15.
ACE 17 100000 0-15.
DEA 20 000001 16.-31.
WVB 22 000004 16.-31.

The legal masks result from adding the 0-15(10) bit-range words to
form a mask and all the 16(10)-31(10) bit-range words to form the
second mask.

The Control, No-op, and ACP masks are created in an analogous fashion,
matching bit positions with legal function code meanings.

5-2

INCLUDING A USER-WRITTEN DRIVER - AN EXAMPLE

The complete mask words appear on lines 45 thru 52 in the data
structure source. .

The function code selections for record-oriented devices are intended
to match FCS recguirements for file-structured devices. When FCS
executes an Access For Write, it will simply be marked a no-op. This
tends to minimize FCS device-dependent logic.

Note also on line 84 that the controller number, which is encoded 1in
the 1low byte of the interrupt vector PS word in RSX-11M, is set to
zero.

1 .TITLE USRTB

2 . IDENT /01/

3

4 ;

5 ; COPYRIGHT 1975, DIGITAL EQUIPMENT CORP.. MAYNARD, MASS.

6 ;

7 ; THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A LICENSE FOR USE
8 ; ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH INCLUSION
9 ; OF DEC'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT
10 ; AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC.

11 ;

12 ; THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
13 ; NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
14 ; EQUIPMENT CORPORATION.
15 ;

16 ; DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY

17 ; OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

18 ;

19 ; VERSION 01

20 ;

21 ; J. PASCUSNIK 25-NOV-74
22

23 ; CONTROL BLOCKS FOR PAPER TAPE PUNCH DRIVER

24 ;

25 ; MACRO LIBRARY CALLS

26 ;

27
28 .MCALL DEVDFS$,HWDDFS
2% DEVDFS ; DEFINE DEVICE CONTROL RBLOCK OFFSETS*
30 HWDDF S ;DEFINE HARDWARE REGISTERS

31

32 ;

33 ; PAPER TAPE PUNCH DEVICE DATA BASE

34 ;

35 ; PAPER TAPE PUNCH DEVICE CONTROL BLOCK

36 ;

37 SUSRTB::

38 PPDCB: .WORD 0 ;LINK TO NEXT DCB
39 .WORD .PPO ; POINTER TO FIRST UCB

40 .ASCII /pP/ ;DEVICE NAME

41 .BYTE 0,0 ; LOWEST AND HIGHEST UNIT NUMBERS COVE
42 H BY THIS DCB

43 .WORD PPND-PPST ; LENGTH OF EACH UCB IN BYTES

44 .WORD SPPTBL s POINTER TO DRIVER DISPATCH TABLE
45 .WORD 140033 ; LEGAL FUNCTION MASK CODES 0-15.

* Appendix B lists all macros which exist in RSX-11M and generate control
offsets.

5-3

INCLUDING A USER-WRITTEN DRIVER - AN EXAMPLE

.WORD 30 ; CONTROL FUNCTION MASK CODES 0-15.
.WORD 140000 :NO-P'ED FUNCTION MASK CODES 0-15.
.WORD 0 s ACP FUNCTION MASK CODES 0-15.
.WORD 5 s LEGAL FUNCTION MASK CODES 16.-31.
.WORD 0 ; CONTROL FUNCTION MASK CODES 16.-31.
.WORD 1 :NO-OP'ED FUNCTION MASK CODES 16.-31.
.WORD 4 sACP FUNCTION MASK CODES 16.-31.
; PAPER TAPE PUNCH UNIT CONTROL BLOCK
.PPO::
PPST=.
.WORD PPDCB sBACK POINTER TO DCB
.WORD =2 ; POINTER TO REDIRECT UNIT UCB
.BYTE UC.ATT, O ; CONTROL PROCESSING FLAG (PASS CONTROL
H ON ATTACH/DETACH), UNIT STATUS
.BYTE 0,0 ;PHYSICAL UNIT NUMBER, UNIT STATUS EXTENSION
.WORD DV.REC ;s FIRST DEVICE CHARACTERISTICS WORD
H (RECORD-ORIENTED DEVICE)
.WORD 0 ; SECOND DEVICE CHARACTERISTICS WORD
; (FOR INTERNAL USE BY DRIVER)
.WORD 0 ;THIRD DEVICE CHARACTERISTICS WORD
H (FOR INTERNAL USE BY DRIVER)
.WORD 64. ;s FOURTH DEVICE CHARACTERISTICS WORD
; (DEFAULT BUFFER SIZE IN BYTES)
.WORD PPSCB ;POINTER TO SCB
.WORD 0 ; TCB ADDRESS OF ATTACHED TASK
. BLKW 1 s RELOCATION BIAS OF BUFFER OF CURRENT
H I/0 REQUEST
. BLKW 1 ;ADDRESS OF BUFFER OF CURRENT I/0O REQUEST
.BLEKW 1 ;BYTE COUNT OF CURRENT 1I/0 REQUEST
PPND=.
7
; PAPER TAPE PUNCH INTERRUPT VECTOR
.ASECT
.=74
.WORD SPPINT ;ADDRESS OF INTERRUPT ROUTINE
.WORD PR7!0 ;s INTERRUPT AT PRIORITY 7 (CONTROLLER=0)
.PSECT
; PAPER TAPE PUNCH STATUS CONTROL BLOCK
r
PPSCB: .WORD 0 ; CONTROLLER I/0 QUEUE LISTHEAD
H (POINTER TO FIRST ENTRY)
.WORD .2 ; (POINTER TO LAST ENTRY)
.BYTE PR4,74/4 ;DEVICE PRI, INTERRUPT VECTOR ADDRESS/4
.BYTE 0,4 ;s CURRENT AND INITIAL TIMEOUT COUNTS
.BYTE 0,0 ;s CONTROLLER INDEX AND STATUS
H (0=IDLE, 1=BUSY)
.WORD 177554 ; ADDRESS OF CONTROL STATUS REGISTER
. BLKW 1 ; ADDRESS OF CURRENT I/O PACKET
. BLKW 4 ; FORK BLOCK ALLOCATION
.END

INCLUDING A USER-WRITTEN DRIVER - AN EXAMPLE
5.2.2 Driver Code

The code shown below for the punch capability of the PCll 1is typical
for a conventional driver. 1In fact, many of the descriptive comments
can be used as a template and easily tailored to a driver for another
device. A few preliminary comments will simplify the examination of
the code itself.

Since the PP driver is a DEC product and will eventually be part of a
released system, conditionalized sections in the code exist that will
be included or deleted based on answers provided by the user to the
configuration queries posed during system gdeneration. The system
generation guestions determine the value of a symbol defined in the
assembly prefix file RSXMC.MAC. The conditionalized sections of code
are then controlled by the value of the symbol. The conditionalized
code appears in multi-controller drivers and is recommended for all
A

river implementations
griver 1mpiementactions.

Conditionalized code for PP is implemented as follows:

PSSP1]l is set to the number of controllers the driver is to service.
This sets the size of CNTBL and conditionally creates 'TEMP', if
P$SSP11l >1. Also, if P$$SP1l >1, code is generated to save PS 1in TEMP
for retrieval on return from SINTSV, and the controller number is
decoded from the low-order four bits of the saved PS and used to index
into CNTBL to obtain the UCB address. For PSP1ll=1, CNTBL is one word
long, TEMP is not necessary, and the UCB address is always the first
entry in CNTBL.

The structure of the driver follows the <classic RSX-11M form being
separated into processing code for:

Initiator;
Power Failure;
Interrupt;

Timeout, and

Cancel 1/0
The driver itself services only Write Logical, Attach and Detach 1I/0
functions. Attach and Detach result in the punching of 170(10) nulls
each for header and trailer.

Power Failure and Cancel I/0 are handled via device timeout, as is the
device-not-ready condition.

The PP driver uses the following Executive services:

SINTSV
SINTXT
SGTPKT
SGTBYT
$SDVMSG

Comments beginning with ';;;' indicate the instruction is being
executed at a priority level greater than or eqgual to 4.

INCLUDING A USER-WRITTEN DRIVER -~ AN EXAMPLE

The code contained in lines 128-130 is used to inhibit the punching of
a trailer on ATT/DET if the task is being aborted. This is especially
desirable when the device is not ready (i.e., out of paper - tape) and
the system has generated the detach for the aborting process.

1 .TITLE PPDRV
2 .IDENT /01/
3
4 ;
5 ; COPYRIGHT 1975, DIGITAL EQUIPMENT CORP., MAYNARD, MASS. 01754
6 ;
7 ; THIS SCFTWARE IS FURNISHED TO PURCHASER UNDER A LICENSE FOR USE
8 ; ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH INCLUSION
9 ; OF DEC'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT
10 ; AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC.
11 ;
12 ; THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
13 ; NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
14 ; EQUIPMENT CORPORATION.
15 ;
16 ; DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY
17 ; OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.
18 :
19 ; VERSION 01
20 ;
21 ; J. PASCUSNIK 25-NOV-74
22 ;
23 ; PCll PAPER TAPE PUNCH DRIVER
24 ;
25 ; MACRO LIBRARY CALLS
26 ;
27
28 .MCALL ABODFS,CEVDFS,HWDDFS,PKTDFS, TCBDFS
29 ABODF$;DEFINE TASK ABORT CODES
30 DEVDFS ;DEFINE DEVICE CONTROL BLOCK OFFSETS
31 HWDDF S ;DEFINE HARDWARE REGISTER SYMBOLS
32 PKTDFS ;DEFINE I/0 PACKET OFFSETS
33 TCBDFS$; DEFINE TASK CONTROL BLOCK OFFSETS
34
35 ;
36 ; EQUATED SYMBOLS
37 ;
38 ; PAPER TAPE PUNCH STATUS WORD BIT DEFINITIONS (U.CW2)
39 ;
40
41 WAIT=100000 ;sWAITING FOR DEVICE TO COME ON-LINE (1=YES)
42 ABORT=40000 ;ABORT CURRENT I/0 REQUEST (1=YES)
43 TRAIL=200 s CURRENTLY PUNCHING TRAILER (1=YES)
44
45 ;
46 ; LOCAL DATA
47 ;
48 ; CONTROLLER IMPURE DATA TABLES (INDEXEC BY CONTROLLER NUMBER)
49 ;
50
51 CNTBL: . BLKW PSSPI11 ; ADDRESS OF UNIT CONTROL BLOCK
52
53
54 .IF GT PS$SspPll-1
55
56 TEMP: . BLKW 1 ; TEMPORARY STORAGE FOR CONTROLLER NUMBER

5-6

105
106
107
108
109
110
111
112
113
114
115
116
117

INCLUDING A USER-WRITTEN DRIVER - AN EXAMPLE

LIFTF
; DRIVER DISPATCH TABLE
H
SPPTBL:: .WORD PPINI ;DEVICE INITIATOR ENTRY POINT
.WORD PPCAN ;CANCEL I/0 OPERATION ENTRY POINT
.WORD PPOUT ;:DEVICE TIMEOUT ENTRY POINT
.WORD PPPWF - ;POWERFAIL ENTRY POINT
Hd
; **~PPINI-PCll PAPER TAPE PUNCH CONTROLLER INITIATOR
;
; THIS ROUTINE IS ENTERED FROM THE QUEUE I/0O DIRECTIVE WHEN AN I/O REQUEST
; IS QUEUED AND AT THE END OF A PREVIQUS I/C OPERATION TO PROPAGATE THE EXECU
; TION OF THE DRIVER. IF THE SPECIFIED CONTROLLER IS NOT BUSY, THEN AN ATTEMP
; IS MADE TO DEQUEUE THE NEXT I/0 REQUEST. ELSE A RETURN TO THE CALLER IS
; EXECUTED. IF THE DEQUEUE ATTEMPT IS SUCCESSFUL, THEN THE NEXT I/0 OPER~-
; ATION IS INITIATED. A RETURN TO THE CALLER IS THEN EXECUTED.
; INPUTS:
H
H R5=ADDRESS OF THE UCB OF THE CONTROLLER TO BE INITIATED.
; QUTPUTS:
;
; IF THE SPECIFIED CONTROLLER IS NOT BUSY AND AN I/0O REQUEST IS WAIT-
; ING TO BE PROCESSED, THEN THE REQUEST IS DEQUEUED AND THE I/O OPER-
; ATION IS INITIATED.
;-
.ENABL LSB
PPINI: CALL SGTPKT ;GET AN I/0 PACKET TO PROCESS
BCS PPPWF ; IF CS CONTROLLER BUSY OR NO REQUEST
; THE FOLLOWING ARGUMENTS ARE RETURNEL BY SGTPKT:
H R1=ADDRESS OF THE I/0 REQUEST PACKET.
; R2=PHYSICAL UNIT NUMBER OF THE REQUEST UCB.
; R3=CONTROLLER INDEX.
; R4=ADDRESS OF THE STATUS CONTROL BLOCK.
; R5=ADDRESS OF THE UCB OF THE CONTROLLER TO BE INITIATED.
H
; PAPER TAPE PUNCH I/0 REQUEST PACKET FORMAT:
;
; WD. 00 -- I/0 QUEUE THREAD WORD.
; WD. 01 -- REQUEST PRIORITY, EVENT FLAG NUMBER.
; WD. 02 -- ADDRESS OF THE TCB OF THE REQUESTER TASK.
; WD. 03 -~ POINTER TO SECOND LUN WORD IN REQUESTER TASK HEADER.
; WD. 04 -- CONTENTS OF THE FIRST LUN WORD IN RECUESTER TASK HEADER (U
H WD. 05 -- I/0 FUNCTION CODE (IO.WLB, IO.ATT OR IO.DET).
H WD. 06 ~- VIRTUAL ADDRESS QOF I1/0 STATUS BLOCK.
H WD. 07 -- RELOCATION BIAS OF I/O STATUS BLOCK.
; WD. 10 -- I/0 STATUS BLOCK ADDRESS (REAL OR DISPLACEMENT + 140000).
; WD. 11 -- VIRTUAL ADDRESS OF AST SERVICE ROUTINE.
; WD. 12 -- RELOCATION BIAS OF I/0 BUFFER.
; WD. 13 -- BUFFER ADDRESS OF I/0 TRANSFER.
; WD. 14 -- NUMBER OF BYTES TO BE TRANSFERRED.

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
16l
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

INCLUDING A USER-WRITTEN DRIVER - AN EXAMPLE

; WD. 15 -- NOT USED.
; WD. 16 -- NOT USED.
; WD. 17 -- NOT USED.
; WD. 20 -- NOT USED.
MOV R5,CNTBL (R3) ;SAVE UCB POINTER FOR INTERRUPT ROUTINE
CLR U.CW2 (R5) ;CLEAR ALL SWITCHES
CMPB I.FCN+1(R1) ,#I0.WLB/256. ;WRITE LOGICAL BLOCK FUNCTION?
BEQ 108 ;IF EQ YES
MOV I.TCB(R1) ,RO ;GET REQUESTER TCB ADDRESS
BITB #TS.ABO,T.STAT+2 (R0O) ;TASK BEING ABORTED?
BNE 65$;IF NE YES - DON'T PUNCH TRAILER
BIS #TRAIL,U.CW2 (R5) ;OTHERWISE FUNCTION IS ATTACH OR DETACH
; SET FLAG TO PUNCH TRAILER
MOV #170.,U.CNT(R5) ;SET COUNT FOR 170 NULLS
108: BIS #WAIT,U.CW2 (R5) ;ASSUME WAIT FOR DEVICE OFF LINE
TST @S.CSR (R4) ;DEVICE OFF LINE?
BMI 80s$;IF MI YES
208S: BIC #WAIT,U.CW2 (R5) ;DEVICE ON LINE, CLEAR WAIT CONDITION
MOVB S.ITM(R4) ,S.CTM(R4) ;SET TIMEOUT COUNT
MOV #100,@5.CSR(R4) ;ENABLE INTERRUPTS

THAT COULD EXIST IN RESTARTING THE I/0 OPERATION

Ne me Sa we e

PPPWF: RETURN

~e

+
**-SPPINT-PC1ll1 PAPER TAPE PUNCH CONTROLLER INTERRUPTS

~e w0 Ne

SPPINT:: ;7 REF LABEL
JIFT
MOV PS,TEMP ;:iSAVE CONTROLLER NUMBER
.IFTF
CALL SINTSV,PR4 ;:iSAVE REGISTERS AND SET PRIORITY
LIFT
MOV TEMP, R4 ; 7 s RETRIEVE CONTROLLER NUMBER
BIC #177760,R4 ;+CLEAR ALL BUT CONTROLLER NUMBER
ASL R4 ; 7 ;CONVERT TO CONTROLLER INDEX
MOV CNTBL (R4) ,R5 ; s s RETRIEVE ADDRESS OF UCB
.IFF
MOV CNTBL,R5 ; + s RETRIEVE ADDRESS OF UCB
. ENDC
MOV U.SCB(R5) ,R4 ;3 ;GET ADDRESS OF STATUS CONTROL BLOCK
MOVB S.ITM(R4),S.CTM(R4) ;;;RESET TIMEOUT COUNT

5-8

POWERFAIL IS HANDLED VIA THE DEVICE TIMEOUT FACILITY AND THEREFORE CAUSES
NO IMMEDIATE ACTION ON THE DEVICE. THIS IS DONE TO AVOID A RACE CONDITION

INCLUDING A USER-WRITTEN

DRIVER - AN EXAMPLE

179 MOV S.CSR{(R4) ,R4 :3;POINT R4 TO CONTROL STATUS REGISTER
180 MOV (R4)+,U.CW3(R5) ;;;SAVE STATUS

181 BMI 608 s33IF MI, ERROR

182 sSUB #1,U0.CNT(R5) ;5 s DECREMENT CHARACTER COUNT

183 BCS 508 ;713IF CS, THEN DONE

184 TSTB U.CW2 (R5) s+ ;CURRENTLY PUNCHING TRAILER?

185 BPL 308 ::3IF PL NO

186 CLRB (R4) ::;PUNCH A NULL

187 BR 408 ;1;BRANCH TO EXIT FROM INTERRUPT
188 30¢: CALL SGTBYT ;33GET NEXT BYTE FROM USER BUFFER
189 MOVB (SP)+, (R4) +33;LOAD BYTE IN OUTPUT REGISTER
190 40S: JMP SINTXT 3 ;EXIT FROM INTERRUPT

191 508: INC U.CNT (R5) 7 ;3 RESET BYTE COUNT

192 60S: CLR ~(R4) :::;DISABLE PUNCH INTERRUPTS

193 CALL SFORK ;3 ;CREATE SYSTEM PROCESS

194 MOV U.SCB(R5) ,R4 ¢+POINT R4 TO SCB

las MOV S.PKT (R4) ,R1 :POINT R1 TO I/0 PACKET

196 MOV I.PRM+4(R1l),R1 ; AND PICK UP CHARACTER COUNT
197 SUB U.CNT (R5) ,R1 s CALCULATE CHARACTERS TRANSFERRED
198 MOV #IS5.SUC&377,R0 ;ASSUME SUCCESSFUL TRANSFER

199 TST U.CW3 (R5) sDEVICE ERROR?

200 BPL 708 ; IF PL NO

201 65§S: MOV #IE.VER&377,R0 s UNRECOVERABLE HARDWARE ERROR CODE
202 708: CALL $IODON sINITIATE I/0 COMPLETION

203 BR PPINI s BRANCH BACK FOR NEXT REQUEST

204

205 ;

206 ; DEVICE TIMEOUT RESULTS IN A NOT READY MESSAGE BEING PUT OUT 4 TIMES A
207 ; MINUTE. TIMEOUTS ARE CAUSED BY POWERFAILURE AND PUNCH FAULT CONDITION
208 ;

209

210 PPOUT: CLRB @S.CSR(R4) ;3 DISABLE PUNCH INTERRUPT

211 CLRB PS 73 ;ALLOW INTERRUPTS

212 80S: MOV #IE.DNR&377,R0 ;ASSUME DEVICE NOT READY ERROR

213 MOV U.CW2(R5),R1 +ARE WE WAITING FOR DEVICE READY?
214 BPL 708 ;IF PL NO, TERMINATE I/O0 RECUEST
215 MOV #IE.ABO&377,R0 ;ASSUME REQUEST IS TO BE ABORTED
216 ASL R1 +ABORT REQUEST?

217 BMI 708 ;IF MI YES

218 TST @S.CSR(R4) + PUNCH READY?

219 BPL 208 s IF PL VES

220 MOV 4T .NDNR, RO ;SET FOR NOT READY MESSAGE

221 MOVB #1,S.CTM(R4) :SET TIMEOUT FOR 1 SECOND

222 DECB S.STS (R4) ;TIME TO OUTPUT MESSAGE?

223 BNE PPPWF ;IF NE NO

224 MOVB #15.,S.STS (R4) s SET TO OUTPUT NEXT MESSAGE IN 15. SEC
225 CALLR SDVMSG ;OUTPUT MESSAGE

226 .DSABL LSB :

227 ;

228

229 ; CANCEL I/O OPERATION-FORCE I/0O TO COMPLETE IF DEVICE IS NOT READY
230 ;

231

232 PPCAN: CMP R1,I.TCB(RO) ;1 :;REQUEST FOR CURRENT TASK?

233 BNE 10S ;:;IF NE NO

234 BIS #ABORT,U.CW2(R5) ;;:;SET FOR ABORT IF DEVICE NOT READY
235 10S: RETURN 13

236

237 . END

APPENDIX A

DEVELOPMENT OF THE ADDRESS DOUBLEWORD

A.1 INTROCUCTION

RSX-11M can be generated as a mapped or an unmapped system. Mapped
systems can accommodate configurations whose maximum physical memory
is 248K bytes. 1Individual tasks, however, are limited to 64K bytes.
The addressing in a mapped system is accomplished by using virtual
addresses and memory mapping hardware. I1I/0 transfers, however, use
physical addresses 18 bits in length. Since the PDP-11l word size is
16 bits, some scheme was necessary for internal representation of an
address until it was actually used in an I/0 operation.

Cne choice may have been to carry about the hardware virtual address.
This, however, was rejected since lengthy conversions are involved,
especially when the user for whom the address was being manipulated
was not presently mapped into the memory management registers.
Additionally, a scheme was needed whereby the mapped/unmapped
characteristic of a given system would be relatively transparent to
device drivers.

The choice was made to encode two words as the internal representation

of a vphysical address, and to transform virtual addresses for I/0
operations into the internal docubleword format.

A.2 CREATING THE ALCDRESS DOUBLEWORD

For unmapped systems, the doubleword 1is simply a word of zeros
followed by a word containing the real address.

Cn receipt of a QIO directive for mapped systems, the buffer address
in the ©DPB, which contains a task virtual address, is converted to
address doubleword format.

The virtual address in the DPB is structured as follows:

Bits 0-5 Displacement in 32-word block
Bits 6-12 Block number
Bits 13-15 Page Address Register Number (PAR#)

DEVELOPMENT OF THE ADDRESS DOUBLEWORD

The internal RSX-11M translation restructures this wvirtual address
into an address doubleword as follows:

The relocation base contained in the PAR specified by the PAR# in the
virtual address in the DPB is added to the block number in the virtual
address. This result becomes the first word of the address
doubleword. It represents the nth 32-word block in a memory viewed as
a collection of 32-word blocks. Note, that at the time the address
doubleword 1is computed, the user issuing the QIO directive is mapped
into the processor's memory management registers.

The second word is formed by placing the displacement in block (bits
0-5 of wvirtual address) into bits 0-5. The block number field was
accommodated in the first word and bits 6-12 are cleared. Finally, a
six 1is placed 1in bits 13-15 to enable use of PAR #6, which will be
used by the Executive to service I/0 for program transfer devices.

For non-program transfer (NPR) devices, the driver requirements for
manipulating the address doubleword are direct and are discussed with
the description of U.BUF in section 3.1.4.1.

APPENDIX B
SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«MACRO ABODFS,L,B

+
TASK ABQORT CODES

- wE e e we

NOTE: 8,C0AD=S,CFLT ARE ALSO SST VECTOR OFFSETS

S,C0AD="B*¢, yODD ADDRESS AND TRAPS TO 4
S,CSGF=*R’2, JSEGMENT FAULT

S,CBPT="R*4, $BREAK POINT OR TRACE TRAP
$,CICT=8"¢, $10T INSTRUCTION

S,CILI=*8’s, yILLEGAL OR RESERVED INSTRUCTION
S.CEMT="R°1, JNON RSX EMT INSTRUCTION
S.CTRP=*B*12, §TRAP INSTRUCTION

S.CFLT=8’14, 111740 FLOATING POINT EXCEPTION
$,C88Ta’6 16, 1SST ABORT=BAD STACK
S.CAST=*R*y8, 1AST ABORT=BAD STACK
$,CABO=°3°23, JABORT VIA DIRECTIVE
S,CLRF=°2°22, yTASK LOAD REQUEST FAILURE
S.CCRF=*R*24, }TASK CHECKPOINT READ FAILURE
$,10MG=8"2¢, JTASK EXIT WITH OUTSTANDING I/0
S, PRTY=’R’2%, JTASK MEMORY PARITY ERROR

)
§ TASK TERMIMATION NOTIFICATION MESSAGE CODES
!

T.NONRZ?B*7 JDEVICE NOT READY
T,NDSE=’R’2 ;DEVICE SELECT ERROR
T NCWF3’8°4 JCHECKPOINT WRITE FAILURE
T.NCRE=’B’¢ 1CARD READER HARDWARE ERROR
T.NDMOzR”R, JDISMOUNT COMPLETE
T.NLDON=’B*12, JLINK DOWA (NETWORKS)
T.NLUP=’R 14, JLINK UP (NETWORKS)

JHACKRD ABOOFS

CENDM

JEND¥

J*ACRG CLKDFS,L,B

-+

CLOCK GUEUE CONTRQL BLOCK OFFSET DEFINITIOMS
CLOCK QUEUE CONTROL RLOCK

THERE ARE FIVE TYPES COF CLOCK QUEUE CONTROL 8LOCKS, EACH CONTROL BLOCK HAS
THE 5aME FORMAT IN THE FIRST FIVE WORDS AND DIFFERS IN THE REMAINING THREE

THE FOLLC«ING CONTROL BLOCK TYPES ARE DEFINED3S

- MR NS wE R W e e wa we

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

s MRAKT=’B?2 JMARK TIME REQUEST

»SCHD=’B’2 1TASK REQUEST WITH PERIODIC RESCHEDULING

2 SSHT=’8°%4 §SINGLE SHOT TASK REGUEST

»SYST2B’¢ 1SINGLE SHCY IMTERNAL SYSTEM SUBRQUTINE (IDENT)
2 SYTK=’E%8, 9SINGLE SHOT INTERNAL SYSTEM SUBROUTINE (Ta8K)

CLOCK GUEUE CONTROL BLOCK TYPE INDEPENDENT OFFSET DEFINTIONS

ASECT
20

JLNKgOL?e BLKK
JROTI L® ,BLKB
JEFNz’L® ,8LK8
L TC83°L* ,3LKu
JTIMpeLe L alku

$CLOCK SUEUE THREAD WORD
JREQUEST TYPE
sEVENY FLAG NUMBER (MARK TIME CNLY)

N = o o b

gABSCLUTE TIME wWHEN REQUEST COMES DUE

CLOCK QUEUE CONTROL BLOCK=MARK TIME DEPENDENT CFFSET DEFINITIONS

C TIM+4 1START OF DEPENDENT AREA
pAST27L? ,BLKw | 1AST ADDRESS

sSACe L, BLKW sFLAG MASKX wORD F0R fBISY SQURCE
WDSTe?L” BLKkiw 1 1ADDRESS OF #BIS® DESTINATION

CLOCK GUEUE CONTROL BLOCK«PERIODIC RESCHEDULING DEPENDENT CFFSET DEFINITIONS

2CaTIM+y sSTART QF DEPEMDENT ARES4
WRSIS’PLY ,BLKw 2 JRESCHEDULE INTERVAL IN CLOCK TICKS
WUICE LY JBLxw | pSCHEDULING UIC

CLOCK GUEUE CONTRQOL BLOCK=SINGLE SHOT DEPENDENT CFFSET DEFINITIONS

BC,TIM+d 9START OF DEPENDENT AREA
o BLKW 2 §TwO UNUSED WORCS
o BLKW 1 g SCHEDULING UIC

CLOCk QUEUE COMTROL BLOCKwSINGLE SHOT INTERNAL SUBROUTINE CFFSET DEFINITICOMS

THERE ARE T»Q TYPE CODES FOR THIS TYPE CF REGUESTt’L”

§TCB ADDRESS OP SYSTE™ SUBROUTINE IDENTIFICATION

TYPE 6=SINGLE SHOT INTERNAL SURRCUTIMNE ~ITH & 1é B3IT VALUE AS A~ IDENTIFIER,
TYSE 8eSINGLE SHOT INTERNAL SUBRCUTINE wITH & TCB ADDRESS AS AN IDENTIFIER,

5C, TIM+d §START OF NPEPEMTENT AREA
JSUBE’L? ,8LKw 1 1SUBROUTINE ADDRESS
BLK 2 §T0 UNUSED wQRNS
JLGTHz 8", JLENGTH OF CLOCK QUEUE CONTRCL BLOCK
WPSECT
JAALRC CLKDFS
.El._{'\la
JENDY

" WO WS W R WS WS S W W R S we -

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

+MACRO DCBDFS,L,B

+

DEVICE CONTROL BLOCK

THE DEVICE CONTROL BLOCK (0CB) DEFINES GENERIC INFORMATICN ABQUT & DEVICE
TYPE aND THE LOWEST AND HIGHEST UNIT NUMBERS, THERE IS AT LEAST ONE DCB
FOR EACH DEVICE TYPE IN A SYSTEM, FOR EXAMPLE, IF THERE ARE TELETYPES IN A
SYSTEM, THEN THERE IS AT LEAST ONE DCB &ITH THE DEVICE NAME *TT?, IF PART
OF THE TELETYPES WERE INTERFACED vIa DLij=A’S AND THE REST VIA A DHif, THE
THERE wOULD BE TWO DCB’S, ONE FOR ALL CL1i=a INTERFACED TELETYPES, AND ONE
FOR aLL D~11 INTERFACED TELETYPES, A SIMILAR SITUATION WOULD ARISE IF 4
SYSTEM CONTAINMED TWO RK1t{ DISK CONTRCLLERS, ONE DCB WCULD B8E REQUIRED

FOR EACH COMTROLLER,

JASECT
=0
DoLNKS?L? ,8LKw { JLINK TO NEXT DCB
DJUCBE L ,BLKwW 1§ JPOINTER TC FIRST UNIT CONTRCL BLOCK
DJNAMg?L? ,3LK¥ 1 §GENERIC DEVICE NAME
D,UNITI?L? RLKB 1§ sLOWEST UNIT NUMBER COVERED BY THIS DCB
.BLKB 1 gHIGMEST UNIT NUMBER COVERED B3Y THIS DCR
D,uCBLs"L” JBLKw { JLENGTH OF EACH UNIT CONTRCL BLOCK IN BYTES
D.DSPI?L? ,BLKW | JPOINTER TO DRIVER DISPATCH TABLE
DeMSKE?L*" ,BLKW |§ ' JLEGAL FUNCTION #ASK CODES z=1S,
BLKH 1 $CONTROL FUNCTION MASK CODES 2a1i5,
o BLYH 1 gNOPPED FUNCTIONM MASK CODES 2«15,
JBLKu 1 $ACP FUNCTION MASK CCDES 2ei5,
o BLKW i JLEGAL FUNCTION MASK CODES {4,=31,
o ALK 1 $CONTROL FUNCTION MASK CODES 16,=3%,
o BLKW 1 gNOPPED FUNCTICN MASK CODES 16,314,
WBLKY 1 JACP FUNCTION MASK CODES 16,=31,
.PSECT
(R4
y DRIVER DISPATCH TABLE OFFSET DEFINITIOMS
’-
D,VINI=?’B*2 pDEVICE IMITIATOR
D,VCANZ?B*2 JCANCEL CURRENT 1/0Q FUNCTION
D,VOUT=’2*%4 pDEVICE TIMEOUT
D VPWF=’R’¢ sPOWERFAIL RECQVERY
»MACRO DCBDFS&,X,Y
ENDM
JENDM

!
y VOLUME COMTROL BRLOCK

VoTRCT:
VeIFWIt
V,FCR

V.IBLRS
V.IBSZ:

V. FMAX]
V. WisZ:

V.SBCL¢
V.SBSZ:
V.SBLAS
V,FIEX3

VeVOWH Y
V,VPRQ}
VeVCHAS
V,FPRO?
V.YFSG?
V.FRBK?
v,LRUC?

V. LGTH?

'
y FILE €
)

250

FeLINK?
FoFNLMyE
F.,FSEQS

F.FOuN?
F.FPROS
FnUCHA;
FeSCHAS
F,HDLB:

FeLBNS

FeSIZE?
FoNACS?
FoNLCK?

F.STAT:

F,DREF?
F.DRNM}

FoLGTHY

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«MACRO F1iDFS

JASECY

e BLKw
2 RLKW
o FLXw
JRLKR
L BLKR
s RLXW
‘BLKW
JBLKB

[R N S TR

JRLKR
o 3LKw
« BLKR
«RLKR
o RLKIv
s RLK®
o JLK»
BLKW
JEBLKw
BLX®
e BLKR
sHBLXB
o RLKw

S s A s (A s pea fm A A A e

OnTeOL BLOCK

«ASECT

o ALKW i
o BLKH 1
.BLKN 1
0 BLKw !
e PLKw 1
«BLKR i
JBLKG |
o BLKW 2

2

2

1

o BLKW
JBLKY

oBLKR
+ BLKA 1

$,8TRK=,=F ,LBN

BLKW 1

FC,wAC=10R220

FC,DIR=duE2?
FC,CEF=20:020
FC,FCO=igrea
W BLK® 1
o BLKw 1
e BLKN 1

sTRANSACTION COUNT

pINDEX FILE WINDOW

gFILE CONTROL BLOCK LIST HEAD

yINDEX BIT MAP 18T LBN HIGH BYTE

g INDEX BIT MAP SIZE IN BLOCKS

g INDEX BITMAP (ST LBN LOW BITS

JMAX NO, OF FILES ON VOLUME

§DFLT SIZE OF WINDOW IM NQ, OF RTRV PTRS
sVALUE IS < 128,

9)STORAGE RIT MAP CLUSTER FACTOR

§STORAGE RIT MAP SIZE IN RLOCKS

1ISTORAGE RIT MAP (ST LBN HIGH BYTE
sDEFAULT FILE EXTEND SIZE

$STORAGE BRIT MAP ST LBN LOW BITS
sVOLUME CWVER’S UIC

$VOLUMF PROTECTION

s VOLUME CHARACTERISTICS

JVOLUME DEFAULT FILE PROTECTION

JVOLUME FILE SEOGUENCE NUMBER i
tNUMBER OF FREE RLOCKS ON VOLUME HIGH RYTE
pCOUNT OF AVAILABLE LRU SLOTS IN FCB LIST
JNUMBER CF FREE RLOCKS ON VOLUME LOW BITS
$1SIZE IN RYTES OF VCB

$FCB CHAIN POINTER

gFILE NUMBER

sFILE SEQUENCE NUMBER

JUNUSED

$FILE OwWMER’S UIC

jFILE PROTECTION CODE

JUSER CONTROLLED CHARACTERISTICS
pSYSTEM CONTROLLED CHARACTERISTICS
pFILE WEADER LOGICAL BLOCK NUMBER
JBEGINNING OF STATISTICS 8LOCK

tLBN OF VIRTUAL BLOCK 1 IF CONTIGUOUS
y2 IF NON CONTIGUOUS

1SIZE QOF FILE IN BLOCKS

}NG, OF ACCESSES

gNO, OF LGCKS

$§SIZE OF STATICS BLNCK

$STATUS RITS FOR FCR COMSISTING OF
§SET IF FILE ACCESSED FOR WRITE

1SET IF FC® 1S IM DIRECTCRY LRU

$SET IF DIRECTORY EQF NEEDS UPDATING
§SET IF TRYING TO FORCE DIRECTORY CONTIG
$DIRECTORY ECF BLOCK NUMBER

$18T WORD OF DIRECTORY NAME

tUNUSED

yJSIZE IN BYTES OF FCR

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

; WINDOW

’ JASECT

' 52

WeCTLE (BLXW { sLO% BYTE = # NF MAP ENTRIES ACTIVE

gHIGH RYTE CONSISTS OF THRE FCLLOWING BITS

KI,RDVE427 JREAD VIRTUAL BLOCK ALLOWED IF SET
Wl,wRv=ieze $WRITE VIRTUAL BLOCK ALLCWEC IF SET
KI,EXT=2¢70¢ JEXTEND ALLOWED IF SET
rI.LCK=d4700 9SET IF LOCKED AGAINST SHARED ACCESS
Wwl,DLK=123¢2 9SET IF DEACCESS LOCH ENABLED
wI.RRS=17g0RQ $BYPASS ACCESS INTERLOCK IF SET

W,VBNY ,BLKB | gHIGH BYTE OF 1ST VBN MAPPRED BY WINDOW

W,WISZs ,BLKS 1 $SIZE IN RTRV PTRS OF wINDOW (7 BITS)
o SLKw 1 pLOw ORDER WORD COF (8T VBN MAPPED

W.FCBs ,BLKW 1 pFILE CONTROL BLOCK ADDRESS

WoRTRV jOFFSET TO (ST RETRIEVAL POINTER IN wINDOW
PSECT
JMACRG F{1DF$
(ENDM F{1DFS$
(ENDM F11DFS$

+MACRO HDRDFS$,L,8

1 R d
5 TASK HEADER OFFSET DEFINITIONS
’s

+A8ECT
=0 .
HoCSP3s’L*,BLK®k sCURRENT STACK POINTER
H MDLN$”L?_ 8LKW tHEADER LENGTH IN BYTES
H,PCBT3?L’,BLKW pTASK PARTITION DESCRIPTOR
H,PCBCE L’ BLKW 3wy gCOMMON PARTITION DESCRIPTORS

BLKw $BOUMDRY WORD FOR PCB ADDRESSES (ALWAYS=2)
Mo DSWE’L? BLKW 9TASK DIRECTIVE STATUS %ORD
HoFCS3°L* BLK $1FCS IMPURE POIANTER
HeFORT "L’ BLKMW $FORTRAN IMPURE POINTER
HoOVLYSs’L’,BLKuW gOVERLAY IMPURE POINTER
HeRSVDE?L? ,BLKW JRESERVED POINTER LOCATION
HeEFLMs?L % BLKW PEVENT FLAG MASX wQORDS
HyCUICS L’ BLKY s CURRENT TASK UIC
HoDUICS L’ JBLKW $DEFAULT TASK UIC
Ho IPSs*L?, BLKwu s INITIAL PRCOCESSCR STATUS w0ORD (PS)
He IPCY°L%,BLK» pINITIAL PROGRAM CCOUNTER (PC)

He ISP3°L° BLK®
HoODVAL®L®,BLKN
HeOOVLE’L’,BLKM
HeTKVAL’L?,BLKK
HoTKVL1°L?,BLKY
HoPFVAL®L®,BLKN
H FPVA1*L® BLKW
HeRCVAS*L "7 BLKN

~ WBLKe
HeFPSAL*L*,BLKw

 WBLKR
HoGARDI’L’,BLKN
HeNLUNE’L”,BLKM
HeLUNS$?L?,BLKw
LPSECT

s INITIAL STACK PCINTER (SP)

100T SST VECTOR ADDRESS

1007 SST VECTOR LENGTH

$TASK SST VECTOR ADDRESS

g)TASK SST VECTOR LENGTH

gPOWER FAIL AST CONTROL BLOCK ADDRESS
gFLOATING POINT AST CONTROL RBLOCK ADDRESS
gRECIEVE a4ST CONTROL BLOCK ACDRESS
sRESERVED WORD

tPOINTER TO FLOATING POINT/EAE SAVE AREA
$RESERVED ®wO0ORD

$PCINTER TO HEADER GUARD wWORD

$NUMBER OF LUN’S

gSTART OF LOGICAL UNIT TABLE

TN o A o ot s 0)t 0 42 5 5 B B 4o B b bt [pis 3B b A pa pea) £ e A

«MACRO HDRDF$
o ENDM
«END¥

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

+MACRC HWDDFS,L,B

L
¢y HARDWARE REGISTER ADDRESSES AND STATUS CODES

’-

MPCSR=*B"1777ué JADDRESS OF PDPwm{{/7@ MEMORY PARITY REGISTER
MPARZ®BE*172100 JADDRESS OF FIRST MEMORY PARITY REGISTER
PIRG=°B*"177772 JPROGRAMMED INTERRUPT REQUEST REGISTER
PR@z=’R’2 JPROCESSOR PRIORITY 2

PR{z’R* 4y §PROCESSCR PRIORITY 1

PR4=*3°222 tPROCESSCR PRIORITY 4

PRS=’B’244 pPROCESSCR PRIORITY S

PRées=’B* 302 tPROCESSOR PRINRITY &

PRT="8°34n sPROCESSCR PRIORITY 7

P§=’B8°177776 $PROCESSOR STATUS WORD

SWR=’B*177577 pCONSOLE SWITCH AND DISPLAY REGISTER
TPS2’B’ 177564 gCONSOLE TERMINAL PRINTER STATUS REGISTER

st
y EXTENDED ARITHMETIC ELEMENT REGISTERS

’-

LIF DF ESSEAE
AC2*B’177302 §ACCUMULATOR
MO=’B°1773v4 JMULTIPLIER=QUOTIENT
SC=’B*17731% §SHIFT CCUNT

JENDE
1+
3 MEMORY MANAGEMENT HARDwARE REGISTERS AND STATUS CODES
'-

JIF DF MEEMGE
KDSARA=*E*172360 JKERNEL D PAR 2
KDSDRG=?R*17232¢ JKERNEL D PDR &
KISARA=*R*172340 JKERNEL I PAR o
KISAR6=*R*172354 JKERNEL I PAR 6
KISAR7=°87172356 JKERNEL I PAR 7
KISDRP=’R?172327 JXERNEL I PDR ¢
KISDRe=’3°172314 yKERNEL I PDR 6
KISDR7=’57172316 tKERNEL 1 PAR 7
SISDRA=R#172277 JSUPERVISOR I PDR @
UDSARAZ’E* 177662 JUSER D PAR @
UDSDR2=8*17762¢ JUSER 0 PDR
UISARA=?R*177642 JUSER I PAR ¢
UISARUZ*R?{77652 JUSER I PAF 4
UISARS= R*177652 yUSER I PAR §
UISAR6=8°177654 JUSER 1 PAR &
UISAR72%83°({77656 JUSER I PAR 7
UISRRAz?E*17762% JUSER I POR 2
UISDR4=’8°177615 JUSER I POR &
UISDRS=*R* 177612 JUSER I POR 5
UISDRE=*RB*177614 JUSER I POR ¢
UISDRT=E*177616 JUSER I PDR 7

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

UBMPR=?3°172202 JUNIBUS MAPPING REGISTER @

CMODE=’RB*1U4Pvgd gCURRENT MODE FIELD OF PS WORD

PMODE=’R*327002)PREVIQUS ™ODE FIELD OF PS WORD

SR@=’B*177572 §SEGMENT STATUS REGISTER @

SR3z’B*172516) SEGMENT STATUS REGISTER 3
+ENDC

I R4
3 FEATURE SYMBOL DEFINITIONS

§=
FELEXT=’R"} 111772 EXTENDED MEMORY SUPPORT
FE,MUP=’R®?2 JMULTI-USER PROTECTION SUPPORT
oMACK0O HuDDF$
LENDN
o ENDM

«IIF NDF SS8SYDF , LLIST

+MACRC LCBDFS,L,8
't
3 LOGICAL ASSIGNMENT CONTROL BLOCK

'

y THE LOGICAL ASSIGNMENT CONTROL BLOCK (LCB) 1S USED TO ASSOCIATE A

t LOGICAL MAME WITH A PHYSICAL DEVICE UNIT, LCB’S ARE LINKED TOGETHER
) TO FORM THE LOGICAL ASSIGNMENTS OF A SYSTEM, ASSIGNMENTS MAY BE ON

} &4 SYSTE™ «IDE OR LOCAL (TERMINAL) BaASIS,

’-

JASECT
o =2
LeLNK3?L? oBLKW | JLINK TO KEXT LCB
L NaMgrLr BLKw 1§ sLOGICAL NAME OF DEVICE
L.UNIT:?L® ,BLKB | tLOGICAL UNIT NUMBER
LeTYPE1’L® ,BLKB { sTYPE OF ENTRY (@3SYSTEM WIDE)
L.UCBIL? ,BLKW | $TI UCB ADDRESS
LeASGE’L? ,BLKW 1ASSIGNMENT UCB ADDRESS
LeLGTH="R? = ,LNK JLENGTH CF LCB

PSECT

«¥4CFQ LCBDFS,X,Y

.END"!"‘

JENDK

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

+MACRO PCBDFS

IR
¢ PARTITION CONTROL BLOCK OFFSET DEFINITIONS
'-
¢ ASECT
50

PoLNKE ,BLKW
P,NAMg BLKW
P.SUBY ,BLKW
P.MAINS ,BLKW

JLINK TO NEXT PARTITION PCE

JPARTITION NAME IN RADS?

JPOINTER TO NMEXT SUBPARTITION

gPCINTER TO MAIN PARTITION

P.RELS oBLKW $STARTING PHYSICAL ADDRESS OF PARTITION
P,SIZEt ,BLKw 9SIZE OF PARTITION IN BYTES

P,BLKS1 1SIZE OF PARTITION IN 32w BLOCKS (SYSTEM ONLY)
PoWAITY ,BLKW JPARTITION WAIT QUEUE LISTHEAD (2 WORDS)
P,SWSZY ,BLKNW JPARTITION SWAP SIZE (SYSTEM ONLY)
P,BUSY:1 ,8LKB JPARTITION BUSY FLAGS

P,TCBs BLKW)TCB ADDRESS OF (QWNER TASK

P,NAPR: ,BLKB s NUMBER OF APR’S TO LOAD

P.STATI ,BLKB JPARTITICN STATUS FLAGS

—n pa e) =

— . e P\) A pn

o IF DF MSSMGE

P.PDRY ,BLKW 1 1CONTENTS OF LAST PDR TO BE LOADED

PoHDRE BLKW i JPOINTER TO WEADER CONTRCL BLOCK

P,HDR2P,REL gPOINTER TO KEADER CONTROL BLOCK
ENDC

PoLGTHE, JLENGTH OF PARTITICN CONTROL BLOCK
«PSECT

)+
? PARTITION STATUS BYTE BIT DEFINITIONS

,-
PS,.COM=220 gLIBRARY OR COMMON RLOCK (1sYES)
PS,PIC=1 §POSITION INDERENDENT LIBRARY QR COMMON (1=YESR)
PS,8YS=4y2 §SYSTEM CONTROLLED PARTITION ({=YES)
PS,ORV=22 gDRIVER IS LCADED IN PARTITION (1=YES)
PS.APR=?7 I1STARTING APR NUMBER MASK
+MACRQ PCBDFS
+ENDM
fENDM

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

JMACRLC PXTDFSE,L,R

| R4
§ ASYNCHRONOUS SYSTEM TRAP CONTROL BLOCK OFFSET DEFINITIONS
'.
JASECT
T
LK JAST QUEUE THREAD «ORD

A,CBLi*L’ LBLK»
ABYT?L? ,BLKw
A AST L’
AJNPRS?L? RL®NW
A PRMgPL? [RLKw

sLENGTH CF CONMTROL BLOCK IN BYTES

§NUMRER CF BYTES T3 ALLCCATE ON TASK STACK
sAST TRAP ADDRESS

$NUMERER COF AST PARAMETERS

§FIRST AST PARAMETER

-
v 3]
—
x
¥
A A s e s s

[R
} 1/0 PACKET CFFSET DEFINITIONS
’-

JASECT
=P
TLLNKE?LS 2Ly $1/0 GQUELE THREAD WORD
I,PRI’L’ 3LxE PREGUEST PRICRITY
I.EFNg?L? RLXKB 1EVENT FLAG NUMBRER
I.TCBePLY ,BLxw | $TCB ADDRESS CF REGUESTOR
T.LN2ePL? ,BLK o $PCINTER TO SECOND LUN wORD
T.UCRE*L® ,3LK= | $POINTER TO UMIT CONTROL BLOCK
T.FCNgPL® ,30K4 | 3170 FUNCTION CODE
I,I1088:°L" ,BLK« tVIRTUAL 4DDRESS OF 1/0 STATUS BLOC

o BLKw 1 $I/0 STATUS RLOCK RELOCATON BIAS
W RL&M 1 1170 STATUS BLOCK A4DDRESS
I,AS8TsL’ 3L« { $AST SERVICE ROQUTINE ADDRESS
T.PRMe LY _3L<= JRESERVED FQOR MAPPING PARAVETER #1
Bl b $PARAMETERS | TO 4
I.LGTHz*R", pLEMGTH CF I/0 REQUEST CONTRCL BLOCK
SJPSECT

JVACRC PKTLFS
JENOH
JENDN

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

+MACRC SCBDFS$,L,B

Tus CONTROL BLOCK

STATUS CONTROL BLOCK (SCRB) DEFINES THE STATUS CF 4 DEVICE CONTROLLER,
E IS CONE SCR FOR EACH CONTROLLER IN 4 SYSTE™, THE SCF IS PCINTED 710
JNIT CONTROL BLOCKS, TO EXPAND ON THE TELETYPE EXA#PLE ABOVE, EACH TELE=
I INTERFACED VIA 4 DLiiwd ~OULD HAVE A SCR SINCE EACH DLilmd 1S5 AN INa
INDENT INTERFACE UNIT, THE TELETYPES INTERFACED VIa THE DMy wOQULD aL8O
i+ HAVE AN SCR SINCE TWE DKl IS A SINGLE CONTROLLER BLT MULTIPLEXES MaNY
rs IN PARALLEL,

JASECT
172
FePL’ JELKB | gNUMBER CF REGISTERS TO COPY On ERROR
Frele JBLKA) tOFFSET TC FIRST QEVICE REUISTER
f1°L* (BLK# | §SAVED I/0C ACTIVE BITMAP AND POINTER TO EMSB
(1°L7 ,BLKL 1 fDEVICE 1/0 ACTIVE BIT ~aSK
1oL’ JBLkw 2 gsCONTROLLER I/0 QUEJE LISTHEAD
reLs LBLXE $DEVICE PRICRITY
P7L*® LBLRB | pINTERRUPT VECTOR ADNRESS /0
1fL" LRLKB g CURRENT TIMEGUT CCUNT
1LY LBLKE pINITIAL TIMEQUT COUMT
PPLY L8LKB gCONTRCLLER INDEX
1PL? JBLKB | JCONTROLLER STATUS (7=1IDLE,1=8USY)
PILY WBLEM pADDRESS OF CCNTRCL STATLS REGISTER
1L’ LBLKw | 1 ADDRESS OF CURRENT I/C PACKET
1PL? GBLKW tFORK/TIME REQUEST BLOCK LINK «ORC
s BLKw H §FORK=PC/TIME=GUEUE REGUEST TYPE
o BLKW 1 JFORKwRS/TIMEmREGUEST INENTIFICATION
o BLKW 1 tFORKeRY/TIME=LOw ORDER TIME
Pl GRLK4 | gFORKmUNUSED/TIMEmHIGH ORCER TIME/CHANNEL CONTROL BLCCH
W FLK 1 $FORKaUNUSED/TIVE=SURRCUTINE ADDRESS
A S) 211772 EXTENDED ME~MCRY UNIRUS DEVICE C=8L0CK

JPSECT

'US CONTRCL RLOCK PRICRITY BYTE COMUITION CODE STATLS 91T NEFINITIONS

zerey JERRC® IN FROGRESS (1=YES)
zere) JERRCR LCGGING ENABLED (/sYES)
i=PEOL JERROF | CGGING AVAILARLE (1=YES)
112 $SPARE BIY

WVACED SCEDFS, X,V

JENCH

JENDE

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

.MACRO TCBDFS,L,B8

L R4

9 TaSKk CONTROL BLOCK OFFSET AnND

!
3 TASK CONTRCL BLOCK
'.

JASECT
=2
TLLNKIL? LBLKw
T.PRIg?L* ,BLKB
T.I0Ce?L? ,BLKH
T.TCR3?L”? ,BLKw
TeNAMIPL? (BLKK
TL,RCVLS’L® BLKW 2
TLASTLsL? ,BLKW 2
TJEFLG1°L? LBLKW 2
T.UCRrL? ,BLXw
T.TCBLe?L" BLKW {
T.S5TAT:L” ,BLKE 3
T.LBN3?L? ,BLKkB 3
T.LDVEPL? BLKW |
TPCBIPL? BLKw |
T.MXSZs?L¢ ,BLKy
TJACTLI?L? ,BLKw
TLGTH=73"%,
TEXT2?E? ,=T,LGTH

+PSECT

N> re s e

1R
g Ta3SK STATUS DEFINITIONS

i
3 TASK STATUS wORD
,-

TS,EXEzs?R*° 122422
TS,]/DN=’3742000
TS.DST=°R*2A020
TS MS5=272°21 2000
T3,PMD=’B?4ACT
TS.,STP=’5%222¢
TS,REM=?R*14P7
TS, ACP=’R%2407
TS,AST=?R*227
TS,CHX=?8371 2
TS RFX=’R*42
TS,FXD=*"RB*22
TS.,0UT=*R*12
TS.CKP=*’B*4
TS,CKR="3°2
TS.CKD=*3"4

§+

1 TASK EBLOCKING STATUS MASK

JUTILITY LINK WORD

sTASK PRICRITY

3170 PENDING COUNT

JPOINTER TO T,LNX OF TCB ITSELF
JTASK NAME IN RADSZ

JRECEIVE QUEUE LISTHEAD

1AST QUEUE LISTHEAD

JTASK LOCAL EVENT FLAGS 1=32

JUCB ADDRESS FOR PSEUDO DEVICE *TI’
JTASK LIST THREAD WORD

yTASK STATUS #ORD AND EXTENSION BYTE
JLBN CF TASK LOAD IMAGE

$UCB ADDRESS OF LCAD DEVICE

yPCB ADDRESS OF TASK PARTITION
JMAXIMUM SIZE OF TASK IMAGE (MAPPED ONLY)
{ADDRESS OF NEXT TASK IN ACTIVE LIST
yLENGTR OF TASK CONTROL BLOCK
fLENGTH OF TCB EXTENSION

yTASK IS IN EXECUTION (2=’BYYES)

yI1/0 RUN DOWN IN PROGRESS (1=’B’YES)
}AST RECOGNITION DISABLED (12?B°YES)
JABORT MESSAGE REING OUTPUT (12°B?YES)
JDUMP TASK ON SYNCHRONOUS ABORT (@=sYES)
yTASK STOPPED FOR TERMINAL INPUT (1aYES)
JREMOVE TASK ON EXIT (1=°B°YES)
JANCILLARY CONTROL PRGCESSOR (1z’B’YES)
JAST IN PROGRESS (13’B’YES)

yTASK IS CHECKPOINTABLE (2s’B?YES)
JTASK BEING FIXED IN MEMORY ({=’B’YES)
JTASK FIXEC IN MEMORY ({z°BfYES)

JTASK IS QUT OF MEMORY (1=°B°YES)

JTASK IS CHECKPOINTED ({a’R*YES)
yCHECKPOINT REGUESTED (1a’B?YES)
JCHECKPOINT DISABLED (1=¢B°YES)

TS,8LK="B*TS5,CKP|TS,CKRITS,EXE}TS,MSG{TS,CUT|TS,RON|TS,STP

[A4

3y TASK STATUS BYTE EXTENSION

S,HLT=8°222
S,PRVE’R? 120
$,AB0=’B* Y4y
S,MCR=*R’22
S,SPNz*R*17

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

1 TASK
§TASK
§TASK
$TASK

IS BEING HALTED (1=’R°YES)

IS PRIVILEGED (1=°RBR’YES)

MARKED FOR ARBQRT (1=°B’YES)

REQUESTED AS EXTERNAL MCR FUNCTION ({s?B’YES)

§SAVED TS,SPN ON AST IN PROGRESS

S.SPNz’B?U pTASK SUSPENDED (1=’RB°YES)
§,WFR=’R’2)SAVED TS,wFR ON 88T IN PROGRESS
S,WFRs’R"} gTASK IN WAITFOR STATE (1=’B*YES)
JMACRO TCBDFS
JENDM
+ENDM
+MACRO UCBDFS,L,8
<+

UNIT CONTROL BLOCK

THE UNIT CONTROL BLOCX (UCB) DEFINES THE STATUS OF an INDIVIDUAL DEVICE
UNIT AND I8 THE CONTROL BLOCK THAT IS POINTED TC BY THE FIRST wORD OF
AN ASSIGNED LUN THERF IS ONE UCB FOR EACH DEVICE UNIT QF EACH DCB, THE

k4
UCB?3 ASSCCIATED WITH A PARTICULAR DC8 ARE CONTIGUOUS IN MEMORY

POINTED TO BY THE DCB, UCB’S ARE VARIABLE LENGTH BETWEEN DCR*S BUT ARE

AHR I5-14
.

OF THE SAME LENGTH FOR A SPECIFIC DCBR, TO FINIS™ THWE TELETYPE EXAMPLE ABOVE,

EACH UNIT ON BOTH INTERFACES 4OULD WAVE & UCB,

«ASECT
sP
I,DCBg®L? .BLKW 1 tBACK POINTER TO DCB
l.REDS"L? ,RLKw 1} tPOINTER TO REDIRECT UNIT UCS
JoCTLS?L’ ,BLKB iCONTROL PROCESSING FLAGS
IQSTSIfL’ .BLKB 1 ’UNIT STATUS
JJUNITg L BLKB { fPHYSICAL UNIT NUMBER
1,8T21°L" .BLXB | JUNIT STATUS EXTENSION
JuaCWisPL? ,BLKW | gFIRST DEVICE CHARACTERISTICS wWORD
J,CH2EPL? BLKW 1§ 9SECOND DEVICE CHARACTERISTICS wORD
J.CWIgeL’ ,BLK4 | $§THIRD DEVICE CHARACTERISTICS wORD
J.CWap?Le ,8LKW 1 $FOURTH DEVICE CHARACTERISTICS WQRD
J4SCB3*L?Y BLKK 1§ $POINTER TO SCH
JoATTI?L? LBLYw | §TCB ADDRESS OF ATTACHED TASK
JoBUF?L? ,BLKW { $RELCCATICN BIAS OF CURRENT 1/0 REQUEST
BLKw 1 38UFFER ADDRESS OF CURRENT I/0 REQUEST
JoCNT1°L? ,BLKw 3 JBYTE COUNT OF CURRENT I/0 REQUEST
JJACP=?R7Y, CNT+2 JADDRESS OF TCB OF MQUNTED ACP
JeVCB=?R?U,CNT4+4 $ADDRESS OF VOLUME CONTROL ALOCK

J4CBF=7870U,CNTH2
JoUIC=’B?,CMhT+<9, %2>
«PSECT

JCONTR0lL BUFFER RELOCATION AND ADDRESS
JTERMINAL UIC (TERMINALS ONLY)

)+
t DEVICE TABLE STATUS DEFINITIONS

]
! DEVICE CrRARACTERISTICS #»0RD { (U,Cwi) DEVICE TYPE DEFINITION BRITS,

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

DV,REC=8’1
DV,CCLa’B’2
DV,TTY=8*4u
DV,SDI=*B°20
DV,SQDE’B*42
DV,SWLz’B*u2ce
DV,PSEE’B’ 12000
OV,COM=8¢20000
DV,F113°8°420¢0
DV,MNTs*R’120¢02

JRECORD QRIENTED DEVICE (1asYES)

sCARRIAGE CONTROL DEVICE (1=YES)

JTERMINAL DEVICE (is=YES)

jFILE STRUCTURED DEVICE (isYES)

$SINGLE DIRECTORY DEVICE (1aYES)
9SEQUENTIAL DEVICE (1mYES)

JUNIT SOFTWARE WRITE LOCKED (1sYES)
yPSEUDO DEVICE (1=YES) _
gDEVICE 1S MOUNTABLE AS COM CHANNEL (1=YES)
9DEVICE 1S MOUNTABLE AS Fiy DEVICE (1sYES)
$DEVICE IS MOUNTABLE ({=YES)

e
9 TERMINAL DEPENDENT CHARACTERISTICS WORD 2 (U,CwW2) BIT DEFINITIONS

U2,DH12’B7136002
u2,0J1=’8°42020
U2,RMT=*B°22¢02
U2,L06=’B 420
U2,LwCa’B*202
U2,0FF=’g710¢
U2,PND=’B*4p
U2,AT.=’B’22
U2,PRV=’B*12
U2,L38=°8°4
U2,VT58°8°2
U2,8LVs?B?§

PUNIT IS A DH11/DJ11 (1=YES)

JUNIT IS A DJi1t ({sYES)

$UNIT IS REMOTE (1=YES)

fUSER LOGGED ON TERMINAL (2=YES)

tLOWER CASE TC UPPER CASE CONVERSION (1i=YES
$OUTPUT IS TURNED OFF (1=YES)

sOUTPUT BYTE PENDING (1=YES)

$MCR COMMAND AT, BEING PROCESSED (1=YES)
gUNIT IS A PRIVILEGED TERMINAL (1=YES)
JUNIT IS A LA32S TERMINAL (1=YES)

JUNIT IS A VT2SB TERMINAL (1sYES)

JUNIT IS A SLAVE TERMINAL (1aYES)

1+
)} RH11=RS23/RSA4 CHARACTERISTICS WORD 2 (U,Cw2) RIT DEFINITIONS

’—
U2,R24m’B? 1022022

R4

gUNIT IS A RSQ4 (1=YES)

3 RH11=TUlé CHARACTERISTICS WORD 2 (U,Cw2) BIT DEFINITIONS

’.
Uzg,7CHe’B? 122292

JUNIT IS A 7 CHANNEL DRIVE (1=YES)

pe
) UNIT CONTROL PROCESSING FLAG DEFINITIONS

UC,ALGE”B°222
UC,NPRz’R?10C
UC.QUE=’B*42
UC,PHF=’R*22
UC,ATT=’R? 1y
UC,KIL=’B"4

UC,LGHE’B*3

[R4

7 UNIT STATUS BIT DEFINTIONS

9BYTE ALIGNMENT ALLOWED (1=NOQ)

9DEVICE IS AN NPR DEVICE (1=YES)

1CALL DRIVER BEFORE QUEUING (1=YES)
gCALL DRIVER AT POWERFAIL ALWAYS (1=YES)
9CALL DRIVER ONM ATTACH/DETACH (1=YES)
sCALL DRIVER AT I/0 XILL ALWAYS (1=YES)
§ TRANSFER LENGTH MASK BITS

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

Us,B8ys*r*222 JUNIT IS BUSY (1=YES)

US,MNT=2*B* 152 JUNIT IS MOUNTED (@=’B°YES)

USFOR=’2%42 gUNIT IS MOUNTED AS FOREIGN VOLUME (1=msYES)
uUs,MDMz*R*22 gUNIT IS MARKED FOR DISMOUNT (1=3YES)

[R4

) UNIT STATUS EXTENSION BRIT DEFINITIONS

,-

S OFL="3"y JUNIT CFFLINE ({=YES)

US,RED=*8’2 JUNIT REDIRECTABLE (2=YES)

1+

g CARD READER DEPENDENT UNIT STATUS BIT DEFINITIOQNS
,-

US,ARD=’R*] pUNIT IS MARKED FOR ABORT IF NOT READY (1sYES)
Us,MDE=%12°*2 tUNIT IS IN P29 TRANSLATION NODE (1=YES)

[R4
y FILES=11 DEPENDENT UMIT STATUS BITS
'-

US,wCKx=’c*1? twRITE CHECK EMABLED (i=sYES)
1+

3 TERMINAL DEPENDENT UNIT STATUS BIT DEFINITIONS
,-

us,Ds3=ra’10 gUNIT IS DISABLED (i=YES)
US,Crus’r*y gUNIT IS WAITING FOR CARRIER (I=YES)
US,ECH=*R*?2 gUNIT HAS ECHO IN PROGRESS (13YES)
Us,QUT=z?B?{ JUNIT IS EXPECTING QUTPUT INTERRUPT (1eYES)
1
3 LPS11 DEPENDENT UNIT STATUS BIT DEFINITIONS
| R
US,FRK=*R*2 tFORK IN PROGRESS (1=YES)
US,85R=*H874 g SHAREABLE FUNCTICM IN PROGRESS (@=°B°YES)
JMACRD LCBDFS,X,Y
.E-\:'_}b-
W ENDN™

INDEX

Address doubleword, A-1

Bootstrapping the new system, 2-8

Cancel 1/0, 1-4

Crash output, 2-19

Create Fork process ($FORK), 1-11,
4-3

Creating the address doubleword,
A-1

Creating the data structure, 2-2

Creating the driver source code,
2-4

Data items on the stack, 2-18
Data structure and driver source,
5-2
Data structure, source format
of the, 2-4
Data structures, 1-5, 3-1, 5-2
Data structures and their inter-
relationships, 1-17
Data structures, creating, 2-2
Data structures summary, 1-20
Data structures (system),
symbolic definitions, B-1
DCB, 1-6, 3-9
DCB fields, required,

D.DSpP, 2-3, 3-11
D.LNK, 2-2, 3-10
D.MSK, 2-3, 3-12
D.NAM, 2-2, 3-10
D.UCB, 2-2, 3-10

D.UCBL, 2-3, 3-10

D.UNIT, 2-3, 3-10
Debugging Tool, Executive, 2-9
Device Control Block (DCB), 1-6,

3-9

Device description, 5-1
Device interrupt, 1-4
Device interrupt vector, 1-9
Device message output, 4-1
Device timeout, 1-4

Development of the address double-
word, A-1l

Driver code, 5-5

Driver debugging, 2-7

Dump output, panic, 2-19

$DVMSG, 4-1

Executive Debugging Tool, 2-9

Executive I/0 processing, 1-3

Executive services, 1-9

Executive services available to
I/0 drivers, 4-1

Fault,

classifications, 2-10

immediate servicing, 2-11

internal SST, 2-16

isolation, 2-10

non-normal SST, 2-17

other pertinent isolation data,

2-12

tracing, 2-13
FCS, 1-2
Flow of an I/0 r
SFORK, 1-11, 4-3
Fork list, 1-9
Function codes for I/0, 3-15
Function masks,

ACP, 3-13

control, 3-13

legal, 3-13

no-op'ed, 3-13

equest, 1-14
3 T

Get Byte ($GTBYT), 4-4
Get Packet (S$GTPKT), 1-11, 4-5
Get Word (S$GTWRD), 4-6

$GTBYT, 4-4
$GTPKT, 1-11, 4-5
$GTWRD, 4-6

Including a user-written driver -
an example, 5-1

Incorporating tasks into the
system, 2-8

Index-1

INDEX (Cont.)

Incorpor.ting the user<written
driver, 2-1, 2-7

Interrelation of the I/O Control
Blocks, 1-7

Interrupt exit (SINTXT), 4-8

Interrupt Save ($INTSV), 1-11,
4-7

SINTSV, 1-11, 4-7

$INTXT, 4-8

I/0 alternate entry, 4-9

I/0 control blocks, interrelation-

ship of the, 1-7

SIOALT, 4-9

$IODON, 1-11, 4-9

$IOFIN, 4-10

I/0 Done ($IODON), 1-11, 4-9

I1/0 Driver, role of an, i-4

I/0 finish, 4-10

I/0 function codes, 3-15

I/0 hierarchy, 1-1

I/0 initiator, 1-4

I/0 Packet, 1-8, 3-2

I/0 Packet fields,
I.AST, 3-6
I1.EFN, 3-4
I1.FCN, 3-
I1.I08B, 3
I.LN2, 3-
I.LNK, 3-
I.PRI, 3-
I.PRM, 3-
I.T7CB, 3-
I.UCB, 3-5

I/0 philosophy, 1-1

I/0 processing, Executive, 1-3

I/0 Queue, 1-8

I/0 request, flow of an, 1-14

I/0 system - philosophy and

structure, 1-1

Mapped system header, 2~15
Mask word creation, 3-14
Masks, function, 3-12

Panic dump output, 2-19

Post-driver initiation services,
1-10

Power failure, 1-4

Pre-driver initiation processing,
1-10

Processing at priority 7 with
interrupts locked out, 1-13

Process-1like characteristics of
a driver, 1-12

Processing at fork level, 1-14

Processing at priority of inter-
rupting source, 1-13

Programming conventions, 1-12

Programming protocol, 1-12

Programming standards, 1-12

$PTBYT, 4-11

SPTWRD, 4-~12

Put Byte, 4-11

Put Word, 4-12

QI10, 1-3

Re-assembly, 2-7

Rebuilding and re-incorporating
the user driver, 2-~7

Rebuilding the Executive, 2-8

Register conventions, system
state, 4-1

Required Device Control Block
(DCB) fields.

D.DSP, 2-3, 3-11
D.LNK, 2-2, 3-10
D.MSK, 2-3, 3-12
D.NaM, 2-2, 3-10
D.UCB, 2-2, 3-10
D.UCBL, 2-3, 3-10

D.UNIT, 2-3, 3-10
Required Status Control Block
(SCB) fields,

S.CON, 2-4, 3-18
S.CSR, 2-4, 3-18
S.IT™M, 2-4, 3-18
S.LHD, 2-4, 3-17
S.PRI, 2-4, 3-17
S.sTs, 2-4, 3-18
s.vct, 2—4, 3-17
Required Unit Control Block (UCB)
fields,
u.AaTT, 2-3, 3-25
U.CTL, 2-3, 3-21
U.CWl, 2-3, 3-23
U.Cw2, 2-3, 3-24
U.Cw3, 2-3, 3-24
U.Cw4, 2-3, 3-24
Uu.DCB, 2-3, 3-21
U.RED, 2-3, 3-21
U.sCB, 2-3, 3-24
U.sT2, 2-3, 3-23
U.STS, 2-3, 3-22
U.UNIT, 2-3, 3-23

Role of an I1/0 driver, 1-4

~.

Index-2

SCB, 1-6, 3-16

SCB fields other than required,
S.CTM, 3-18
S.FRK, 3-19
S.PKT, 3-19

SCB fields, required,

S.CON, 2-4, 3-18
S.CSR, 2-4, 3-18
S.IT™M, 2-4, 3-18
S.LHD, 2-4, 3-17
S.PRI, 2-4, 3-17
s.sTSs, 2-4, 3-18
s.vcr, 2-4, 3-17

Service calls, 4-1
Source format of the data struc-
ture, 2-4

ssT fault,

internal, 2-16

non-normal, 2-17
Stack structure,

data items on stack, 2-18
internal SST fault, 2-16
non-normal SST fault, 2-17

Status Control Block (SCB), l-6,
3-16
Structure, 1-1

Symbolic definitions, system
data structures, B-1l
System data structures symbolic
definitions, B-1
System header,
mapped, 2-14

unmapped, 2-15
System-state register conventions,
4-1
Tasks, incorporating into the
system, 2-8
ucB, 1-6, 3-19

UCB fields other than required,

U.BUF, 3-25
U.CNT, 3-26
UCB fields, required,

U.ATT, 2-3, 3-25
U.CTL, 2-3, 3-21
U.CWl, 2-3, 3-23
U.CwW2, 2-3, 3-24
U.CW3, 2-3, 3-24
U.cw4, 2-3, 3-24
U.DCB, 2-3, 3-21
U.RED, 2-3, 3-21
U.sCB, 2-3, 3-24

UCB fields, required (cont.),
u.sT2, 2-3, 3-23
U.sTs, 2-3, 3-22
U.UNIT, 2-3, 3-23
Unit Control Block (UCB), 1-6,
3-19
Unmapped system header, 2-14
Updating the executive object
module library, 2-7
User-written drivers, Incor-
porating, 2-7

Writing an I/0 driver - program-
ming specifics, 3-1

XDT, 2-9

Index-3

RSX-11M Guide to Writing an I/O Driver
DEC-11-OMWDA-B-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form

Did you finéd errors in this manual? If so, specify by page.

Did you f£ind this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

L]

(V]

£

o

£

E

12

2

o]

5 Is there sufficient documentation on associated system programs
° required for use of the software described in this manual? If not,
8 what material is missing and where should it be placed?

O

[

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

0000ao

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If yourequire a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

INESS REPLY MAIL
POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

age will be paid by:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

dlilgliltiall

digital equipment corporation

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	Index-1
	Index-2
	Index-3
	replyA
	replyB
	xBack

