UPp YOUR ACP
Yersion 02.00

~April 17, 1980

Ralph ¥« Stamerjohn
#Honsanto

FOREWORD

Dedicated to Bsther, who knows more about
ACP“s than any other 370 programmer in the
World. ,

This document is written by an RSX-11M wuser for RSX-11M
UsSers. The 1initial seed for this document was planted when I
researched a project to implement DECHET DAP protocol at the FCS
level and discovered, contrary to popular belief, there is
nothing to prevent an user from writing an ACP. Quite the
contrary, 1 can now implement ACP”s as easily as device driverse.

The one thing lacking is documentation. This is my attempt
to fill the gap and save others the long nights spent poring
over listings and manuaise. This 1is not to say ACP°s are
trivial. It is important to remember that while the concept of
an ACP is simple, the implementation will be as difficult as the
problem you are attempting to solve.

The manual is directed towards three types of readerse.
rirst 1is the developer faced with the task of writing an ACP.
The entire manual applies to such a reader. Before refering to
this material, the RSX-11M Guide to %riting an I/0 Driver and
the chapters in the RSX-11M System Logic Manual on the I/0
mechanism and data structures should be covered.

Next, the manual can be usad by someone who merely wants a
batter wunderstanding of the ACP wmechanism. The first three
chapters should be sufficient for an introduction. Finally, the
manual can be used for reference. In particular, the appendices
contains useful reference materiale.

A sample ACP and supporting enabling and disabling tasks
have been developed to be used with the manual. The source code
saould also be studied, especially when reading chapter 3. The
sample code can also be used as a basis for a user-written ACP.

This document reflects ACP"s as of version RSX-11M V3.2.
It does not apply to IAS or VAX/VMS. The thrust of the document
i3 how to fit an ACP into RSX-11¥, not how to write any specific
ACP.

Haturally, neither the author, Xomsanto, nor DECUS claim
any responsibility of the accuracy <for the material in this
document. If nistakes are found or nmisinterpretations occur ,
please notify the author so that the material can be corrected.
ACP”"s are moving targets and, at best, this document can only
move slightly behind thems

The reader should be aware that some @aterial has only
racantly been added and has not been prooiread by anyone but the
author. This incluges aill of chapters 4, 5, and 5. The manual
sitould be considered with a yrain of szlt, especially, the new
cnapters.

The manual would have been impossible wmithout the aid of
many people. The management of the Monsanto Agricultural
Research department, especially John Schaefer and Larry dJasper,
nust be thanked for providing an environment that allous
programmers to be imaginative. From the RS3X SIG, Rick Aurbach,
Fred Veck, John #ood, and Jim McGlinchey have all contributed
ideas and time. Jim and Rick has been especially valuable in
aditting the material and providing insight into how the
material should be presented. Finally, the manual would never
have been completed without the constant aid of by wife, Esther.

Ralph Stamerjohn
¥onsanto, Zone T1lA
B00 N. Lindbergh

Ste. LOﬁj.S’ MD, 63166

TABLE OF CONTENTS

(@]
des
X
<

[z}
s

CHAP

AP

TABLEZ OF CONTENTS

-3
9
el

I = ACP PHILOSOPHYs o «

DEFINITION OF ™acep™.

101 £ J -
1.2 ACP CHARACTERISTICSe o «
143 I/70 HIERARCHYe » » e =
1o3el FCS/R¥Se o o o o o o @
132 QIO Directivas o « o
1.3+3 Device Drivers « « « «
-1‘3».4 ACLD'SO L J » L d » - - > »
1e325 SURRALYe o o = o o o =
1.4 ACP ABILITIESe o = = o o
1.5 ACP TMPLEMENTATION o o «
1.5+1 DCP Approachl = e = o
1.5.2 UCP APProach o« e » o =
1.5.3 FCP Approach « « = =« =
1.5 ACP APPLICATIONS o o <

)

ER 2 - DATA STRUCTURES . « »
QI0 DATA STRUCTURES. « «

I/0 Packe:l o o = o = =
Logical Unit Table .
DEVICE DATA STRUCTURES
1 Device Control Block
2 Unit Control Block »
3 Status Control Block .

¢ » o

1 Volume Control Block .
2 HWindow Control Block

OTHER DATA STRUCTURES. .

o NNNNMNMNNONONNMNNNMNRN

ER 3 - ACP CHECKLIST « « « »

DEVICE DATA BASE DESIGN.
1 Device Control Block .
2 Unit Confrol 310Ck «

ACP? DATA 3ASE DESICH .«
«1 Volume Control Block .
<2 #indow BloCk o o o « o
«3 OJther Data Structures.

& 6 & & & ¥ & 5 0 b 4 b w0

el Driver ENLrY o o « « =
2

¢ b & & % 8 & 8 b 6 b b 4

-
-
L
-
L J
»

ACP COMMON DATA STRUCTURES

ACP SPECIFIC DATA STRUCTURE

-

1l Function Code Selectione
«2 I/0 Parameter Selectione.
«3 Relationship Between 1I/0

>

L]

L Y T B)

-

¢ 6 & 8 b 8 & ¥ b 3 & b

»
»
»
»
-
»
®
-
S
£ d

-

S 6 ¥ b 8 8 e I @

DEVICE DRIVER THPLEMENTATION

Driver Packet Processing .

a8 & & o B ¥ & & & 5 ¢ s s s

» b 0 8 4w ¥ s s

» &

']
£

& 8 o 0 8 8 4 0 s 0

® & 8 & & 2 & 9 b b s

@I0 Directive Parameter Blocke

¢ & & 0 8 0 0 s 0 .

[~

® 6 b 6 6 6 ¥ s s s DO s »

& 5 8 8 & ¥ 6 B 0 b s 0 [] $ 9 & & & 5 0 o ¥ 0 ¢ s

%]

¢ ¢ 8 6 0 8 b B b Y s

8 & & 5 0 6 0 b b e b L] ¢ & & & & 4 ¥ b 4 6 9 ¥ b o

[

i o o

[}
¢

e & 8 b 4 b 6 & B

] o 8 & 8 6 B b 0 6 4 s 8 [} b 8 6 o & 8 8 4 6 5 0 & b b

¢ & 6 » o b o s H ¢ 4 v ¥ b

L] 5 ¢ & & & & b b s ¥ ¥ [] o o 0 & & & 5 B & b & b 8 &

¢ 3 & 0 0 9 b ¥ 0 b b b e

[} & 5 ¥ 5 ¢ 5 0 v b s b e . 6 & o 8 & & 6 4 & 6 s 4 s

& 8 8 0 ¥ 5 4 6 0 b 6 0 o

$ 9 8 0 & 5 0 8 0 s ¥ b @

¢ 6 & & & & & & 0 85 4 ¥ 0

¢ & 4 & & s 4 & 4 o v 6 B 2

L] e & b 8 4 6 v b 8 s 0 0 b [} o & & 8 8 8 b 4 4 b s v o0

S & 9 8 5 5 0 8 4 8 0 b

L] ® 6 0 8 b & 5 0 8 s 8 L] ® 5 & 8 6 8 B 8 e b s s

® 8 0 & ¥ b 5 0 8 ¥ 8 8 o

& o & & & 0 o 4 0 s s e s

[
» o o & L]

¢ 8 & 8 s ¢ 4

¢ 4 0 8 5 & b s b s v b 8

.2-5
a2’6

32"8

.3-9

.3-9
3-10
3-11

TABLE OF CONTENTS

3.5 AC? IMPLEMENTATION « o o o o o s = 2 o 2 o o 2 2 o 3=
32531 ACP Packet UequentinNg « + s » = 2 » =« s 2 2 = = » 3=12
3;.5.2 AC? ?aCKQt ?1‘{){38331{‘;3. s ® ® ®3 & ® e ® 2 ® % ° 3"13
3.5.3 ACP Packet Terminaltion « + « « o o o = = » o « « 3=14
3.0 TASK TERMINATION o o o o o 2 o o 2 o o s o » » = » 3=14
3»7 ALP E}}A%Lidb s ® ® ® 8 ® 8 8 ® @ 8 & = ° ®» 2 & e 3-14
3.8 A.C? DISABLIK\"G- ® ® ® e ® ® ® 2 3 5 ® a8 2 B o ® e 3"'16
3-9 ’:HECKLIST SGMMARYO e ®» ® ® » 8 8 ® S ®3 ®° o e s @ » 3-17
CHAPTER 4 - ACP,TASK IMTEQFACE: s o o 9 » . o " o ® @ ° ° @ -4-1
4.1 GI0 INTERFACE. o o o o o o = e s o o » ® o o » = «84=1
1.2 FCS INTERFACE. o o o » = o = * e ® ® & ° & s = » .4‘2
4021 File Specification « « » » e % o o 2 s o o » » o4=3
4.2.2 File ACCESSe o » + o s = = e s 2 s » o 2 o a s 24-4
42243 Input/@utput e ® e ® ® o = e % ® ° 2 o a » = o 24=5
40204 File Control o + « o o » s o o » o s » » o s »4=6

CHAPTER 5 -~ ACP/EXECUTIVE INTERFACE « o o o o

S

EXECUTIVE PROCESSING REQUIREMENTS

5.1 ® ® ® 8 8 ® * e @
5:2 DCP IﬁTERFACE. ® ® ® ®» ® 88 ® 3 ® = ® * 8 2 ° » & ° .5"3
5.2.1 SDRUIDC ProcCesSsSifni0e o o o 2 o o o« 2 o 2 o o« o« o = 29-4
S5e2.2 SDRQRY PI'OCBSSi.ngo s o s s = » e o » s » o o » » 95=10
5+2+3 $GTPKT Pl‘oceSSing- e ® ® ®» » ® 5 ® o ® @ s 2 ° @ 5"10
5.3 UCP INTERFACE. o o o o o o = o o » 2 2 @« o 2 » o » 5-11
5-4 FCP INTERFACE- » 5 @ & ® ® 2 3 ® ® S & 5 e ®» ° ® = 5-11
S5 ACP INTERFACES. o o o » 2 2 » o o o o s 2 o s » » e 5=12
5.6 TASK TERMINATION o o o o o o o e 2 o » o 2 o = » » 5-12
CHA?TER 6 - ACP EﬁABLIHG/DISABLING. e ®» ®» ®» ® & 3 3 ® ® ® .5-1
5.1 ENABLING REQUIREHMENTSe o o e o 2 2 » o o » = = o = ob-1
6.2 DISABLING REQUIREMENTS o e o o o @« o o s o o 2 = o ob6=3
643 STA&XDARD APPRGACH. » 8 @ ® 8 ® 8 8 e & ® ® S e B .6-4
5+3.1 MOU TASK o o @ 2 3 s 2 2 2 » o« 2 2 2 s s » s = e oH=5
603-2 !AGU]FGREIG?; e ® e ® 8 e ®» @ @ e ®» S =B @ B 2 = » 06‘.8
5.3.3 DMO T3SK o o = o o 2 2 o 2 2 2 » a » » 2 s 2 o = «5-8
bo‘i %IBN"STAHDARD APPRDAC&ES. ® ® e & 2 8 2 2 8 e 2 8 » 06-8
f.4.1 Self-Initializatione = o o » 2 = » o 2 = s o o« » 256=9
6.4.2 Driver Initializations o o o« o o 2 o a o o o « s «6=9
Bedal Alternate TASK o o » o » o o o o = 2 = s o + o » 2H=9
CHAPT R 7 - ACP I:"PLEHENTATIGH. 2 ® ®» ® e ® e e ® & 2 =» e ¢7-1

TASK ATIRIBUTES. « o = » o «7=1

‘i'l - > * - - > * » - - - L J

T.1la1 Task ‘fapblng » o o 3 o ®» 8 o 8 ® o o » =2 e e o » 21-1
Tala2 Task Build ReqUBLEMENtSe o = o « s s s o o o o o =72
7'2 DE S{Gu; C *)S—{ RAI OHSe o o « o o o & = 2 e e e » a?‘a
7-2.1 ACP I/Uo 2 ® ® ® ® 8 e e ®& ®» ®» ® e s e ® ® e 8 = 07‘3
Te2e2 Transportability e o = o o« o o o o o o = » - = «7-3
T22-3 Pool UtilizZALt1OoN o o o 2 o 2 2 2 2 o o« » o « = « =1=4
7‘214 ACP Vatiables- » 3 ® e 3 ® ® » & ® B 8 e 2 8 & » .7"4

TABLE OF CONTENTS

Teloe S
Te2a
1.3

CHAPTER 3

¢« 8 8 6 6 s 4 @

[]

APPENDIX

& & 6 & b o @
)
qmm.z:.wwr-'-

)
BRI BRI NI R RS N N b b b b ok i o b

e & & & &

R R T

L I R
N OVUL e o e

]

APPENBIX

Performance StRtistiCS o o o o 2 o o o o o
Serial Versus Paralliel Processing. . o« o o
D“‘BUGGII‘EG)‘iL}q’S - - ® - Y - - - - - - - - -
~ EXECUTIVE SERYVICESe o 2 = 2 2 2 2 = o o o =
SYSTE%& STATE » L J - - L d * - L 3 » - E] - - » » - -
I/O TER?—’:I%;ATIUM. L - - - » - £] - - & - * - - -
ADDARESS CHECKING o o o » = 2 o » 2 o o o » o =
ADDRESS RELOCATION o + o © = = s o o = » » o =
BU?.FER ALLBCATIGN' L] L *® » L 4 E 4 » - L - ® -» - »
BUFFER DEALLOCATIONe o o o = o s s o o s » o =
QUEUE MANIPULATION o o o 2 = s 2 o » s’ s o » »
DATA TR ANSFZRO L J L J £] - * - L J - L d - - L d » » - -
TASK SCHSDUL.{HS' L d - £ d - E » » - £ d » - - L] - R
A - READINGSIREFERENCSS. ® ® ® ®» ® ® ® ® ® ®» »
IGITA.L %ANUALSO ® - » L J - - L » - - - » - L] -
RSX~11¥ Executive Reference ¥anual . e o o
RS3X-11M Crash Dump Analyzer Reference Manual
IAS/R3X-11 I/0 Operations Refarence Manual »
IAS/R5X-11 R#S-11 Programmer”s Reference Manu
RSX~-11M I/Q Drivers Reference Manual « « - »
RSX-11M Guide to #driting an I/70 Driver « « «
RSX-IlH Sysltem Logic ﬁanuals e 3 & = ® o e =@
SBURCESD - - £ d - - - - - L] » L J - - - - E] - » -
Executive SOULCLSe o = = 2 s » © & » =» * =
0y SOUTCRSe o » o » = ® ® ®» ® ® ® e = ®» = e
DMO SOULCESa o e o = o © = = o o » « » s = =
FL1ACD SOUTCEBS o o » 2 s » 2 2 s » s = » o »
DECHET SOUTLC2S o o » s » © 2 s o = " o » o =
?cs‘ll So’dl‘ces e ® = - e » ® - » ® ®» ® » @
Other SOULCESe o o o o @ 2 2 © o = s =« » »
B - DATA STRHCTURE DETAILS * ® ® o - ®» e = * =
QIO DATA STRUCTURES e = o 2 = o » = » 2 s = »
QI0 Directive Parameter BloCKe s e » » o =
I/GPaCket..aooo-o.osoooooo
Logical Unit Table o « o o 2 o« « o « = = = =
DEVICE DATA STRUCTURES o o = = 2 o o o o s » »
D’QVice COﬂtro.l B,.‘.OCk e ® ®» ® ® ® ® = ® ® = @
Unit Control BlOCK « « o = o o o 5 » = = « =
Status Control BlOCK o o o o o« 2 o o = o = =
ACP COUMHMON DATA STRUCTURES « o = » o =« s o o »
gi)}.ume co.ﬂtroj. BlOCK o o 2 o = o = » ®» 8 ® e
WINdOow Bl0CK o o o 2 o o o o o o o o s 2 2 =
CTHER DATA STRUCTURES. o s = 2 s s o o s = » =
Clock Queue Entryo ® ® % 82 8 ®» ® 3 2 ®» ® ® »
Partition Control S10CKe + o o = = o « » o »
Task Control BloCK o o s 2 o « o o o = = = =
TASKk HeACCFs o @ = 2 2 2 o o o = » o @ » » =

R EEEEREEE
N EEEEEE

¢ s 0 0

1.

uunn000-uoomoo.o

.
[o 5 & & & 4 & & s

S & & & o & 0 B 4 b b & 2 s e
® 8 8 0 8 s 0 5 8 0 8 B s b 8

oA"’l
tA"l
= A-1
OA"Z
QA-Z
«A-2
‘A-Z
«A-2
oA‘B
«A-3
«A=3
.A"'4

«A-5

TABLE OF CONTENTS

- oc‘l

.C'}.

- -

CONDITIONALS

FC3

) .C"i

£ d

-

STRUCTURES.

—
&
L

#CsS DATA

» .C-‘l

-

.

File Descriptor Block.

Filename Block .

nc-4
oC’4

-

-

Dataset Descriptor .

S$3FSR1 Regione

.C-4
QC‘4

L J

SSFS5R2 Regione
FCS INTERNALS.

FCS MODULES.

1
2
3
4
5

LI I I B

c-11
c-11
c-11

® -

*

>

-»

L4

ANSPAD

ASCPPH .

NN M
L K Koo R
tr 1
Do
LI I T I)
[B T I}
* 0 0 0 0
R
[I T R
L I T I |
(I A A
L R T }
LI N T R |
L] [] []
I B)
[I N T
L I I B I}
¢ o o 0 []
LI Y S T
L I T I)
L T T R)
LI U
* " 9
I I A)
L R T)
jo B A 3 BN C VR]
[V QB 75 B o)

(3% 3 05 0D
L m Doy
(20 M W I ¥4
=% =t My 00 M
M Hin Qe

)

C-14
c-15
c-16
C-16
c-17
» = C—l?

CXALOC .

CLOSE. « «

Ce4.10 COMMON.

C.4.11

® -

L L d

-

- - -

CUNTRL.

C.4.12 CREATE.

C.4.13 DEL

-

£ L J

c-17
c-18
C-18
c-19
C-19
c-20
. C-ZO
- C'20

C.4.14 DELETE.
Ce.4.15 DIDF¥D

£ d

-

L d

£ Jd »

Cedeld DIFND

Cad.17
C.4.18

DIRECT.
DIRFND.
Ce4.19 DIRNAM.

C.4‘2O
C.4.21

-

DLFNB

ELPARS.
EQFCHK.
EXTEND.
FCSFSR.
FINIT .

GET

c-21
c-21
C-22
c-22
c-22
c-23
c-23
C-24
C-24
C-25
C-25
c=-25
C-26
€=-26
C=27
c-238
C-23
c-29
C-29
€c-30
c-31

-

Cade22
Ce4a223

L d - =

- -

-

C.4.24

C.4.25
Ca4.26

»

- »

GETDI

C.4.27

- -

C.4.28 GETDID.

Ce4.29
C.4.30
C.4.31

s -

»

L4

GETDIR.
HKDL.

HOVREC.

> - -

-

C.4.32 MRKDL .

JpPEN.

C.4.33
C.4.34

- -

- »

PARDI

»

- -

PARDID.

C.d4.35

»

PARSDI.
PARSDY.

PA

b

Ceda37

~
Lae

04'3

r
("

-

-

(ST .

a

PARS

g -38

t4
He

P
)
4

Cade39

s = o

PGCR. &

C.4.40

- -

PHTMEK.
POINT

C.4.41

- L

* -

Codad?2

TABLLE OF CONTEMTS

Cade243 POSIT + o ¢=-31
Cadatd POSREC. £-32
Ceds45S PPNASCa C=-32
Ca4.46 PPHRS0. o £-33
Cadad7T 20T = « » C-33
C-4048 RDRHa » C'34
Ce4.49 RDWAIT. » E-34
C.4.50 RDWRIT. . C-35
c.4a51 REAB. . C‘35
Co4.52 RENA&E. - C-36
Ce4.53 RETADR. » C-36
Ce4+54 RSTFDB. & C-37
C.4.55 R%BLK e C-3?
CO4-56 R%FSR2- - C-38
604957 RQLDEG. - 8'38
Ce4.58 TRNCLS. c-39
Ce4.59 UDIREC. = c-39
Cade60 UPWARD. . c-39
C'4361 HAITI » = C-40
Cn4a62 ﬁAITU . ° C-41
CQ4.63 AATNOD. « C-41
.4054 EATSETO) C‘41

» C-42

- C‘42

- C-43

. C-44

¢ 6 ¢ § & & & & ¢ 4 b 0 6 b > 8 6 8 6 4 w8 s

4.65 WRITE .
4.66 WTHAIT.
4.67 XQIOI .
C.4.68 XAICOU .

(2N B Y R I K R R R D R R R T RN D T T T T T T I N
NN EEEEEEEEEEEN » & & 4 & s 4 s
S 8 & 0 ¥ B 0 4 ¥V b 4 & B B 6 9 s s
& & 6 5 8 5 6 B & 0 b 5 S 8 b 6 B b s e s s
LI I I I O O L I I I I I T B R B B I
¢ 6 8 6 0 4 6 ¥ 5 8 8 B 8 S B s Y eo
& 8 8 8 6 B 6 b 4 & 4 6 & 6 6 ¥ 4 L & & b s 6 b s
nicoonlibtll‘.ltollloutogn
[T T R R B B R I R I N I I N N T T N
o 9 6 5 5 6 6 0 b P B B B B b s 8GN OE s
[N N T TR Y RN BT TN R REEE DY TR D DY D R T R N S T T S S
$ 6 & 8 & ¥ 0 & b 6 b 5 6 B 4 b 6 8 B OO b s
o 8 5 0 0 4 & 2 4 b 6 B B B 6 6 b B B 6 6 & 8 os
[I N I N N N N I I I I N N N N N N A A N
@ ¢ 4 & & 6 0 & 0 8 D W BB e
9 8 & & & 6 8 8 0 b 8L b NN s
& 8 0 ¥ & & 8 8 0 6 0 B & 6 6 B 4 8 e oo

s & & @
S & & % b & & b & B b 5 & b b s 4 &6 b 6 B ¥ s s

APPEXDIX D - FXLES-ll QID'S ® ® ® & ® 8 ®»& ®»® =2 ® ® ® = .D‘I

«D-1
.D-2

FILES-II QID DPB » ® ® ® 5 ® = 8 @& 85 2 » e =
FILES-ll QIO PARAMETERS: s o ® = * = 8 ® ® »
Parameter %ord 1 = FID Point2re o « » = o
Parameter ¥Word 2 - Attribute List Pointer . .
Parameter ¥Hords 3 and 4 - Size/Extend Contrele. .D-56
Parameter Word 5 - dindow SizefAccess Control . D=7
Parameter Hord 6 - Filename Block Pointer . .
FILES-11 QIO FUNCTIONS o o = o 2 = o o s o = »
pLACEMENT CDNTRBL. - L J » £ J - - - - » - - L] - -
BLOCK LDCKI i'{(;. ® L J - - L] - - :] - - » » - L J - -

«
s b 0
» b
[I

(will o Bl il e el v B ww J = I 5
I N
S 50 b
Ut b O RO

[

Ui WK NN N B

- » OD-B

Eal SDURCES. - - 8 -’
&:32 PRDCEDURE' - - - - - - - - - - - - - » - * - - - - 08‘2

.
]
.
[]
[]
L]
[]
[]
L]
L]
[}
1]
L]
L]
[
[
[}
(22]
!
[

&

APPEHDEX Fo- GSER’NE{TTES AEP'S s » ®» e 3 ® = 8 ® ® 2 ® e e og'l

F‘l DAPAC? L d - - - . - * - L d - - - - » - - - - » - - - .F’Z

CHAPTER 1

ACP PHILOSOPHY

Ancillary Control Processors (ACP“s) are an integral
component of the RSX-11M operating system. Yet they remain one
of the least understood portions of the system. This chapter
will develop a definition for WACPY and explore the
functionality ACP®s provide in an RSX-11¥ system.

1.1 DEFINITION OF “ACP™

Ancillary control procassors are a part of the RSX-11M I/0
mechanism. They implemesnt device protocols for a variety of I/C
devices. Because the operation of ACP”s 1is hidden from the
programmer, they have been considered untouchable in the past.
Conceptually, however, an ACP is nothing more than a task which
is tied to a device driver wvia the I/0 mechanism. As this
manual will show, the interface between an ACP and a driver is
very simple and allows ACP®s to be a powerful tool for system
devalopers.

Every operating system®s I/0 mechanism can be broken into
various functional components. At the louwest level are the
device service routinese. These routines perform the actual
device 1/0. The next level are the device protocol routinese.
The protocols allow various devices to be classed together as a
single logical type and extend the device functionality beyond
the actual device capabilities. File systems and communications
protocols fall into this classe. At the next lesvel is tha
mechanism for program I/0 requests. The same mechanism can be
used for each device or different devices may use different
methods. The final level of functionality are the 1logical I1/0
Sa@rvicaes. Record I/0 falls into this category. Logical I/C
sarvices allow data to be represented in 1logical, rather than
the actual machine format. In many systems, this level is also
used to implement device independence.

whiie different operating systems use different
implementations for their I/0 mechanism, similarities do existe.

ACP PHILOSOPHY PAGE 1-2

Devica sarvice routines are usuaily included in the monitor
bagause of their requirements for respoasiveness and close
coupling with the hardware devices. 3n the other hand, while a
property of the operating system, device proftocosl code is
usually excluded from the Xernel monitocr bscause of its
complexity and size. Some mechanisam is used to allow the device
protocol code to communicate with the device service routine.

RSX-11M4 uses ACP"s to implement device protocolse. The
concept of an ACP wmas first used for RSX-11D. Zach device wuas
serviced by a task which also contained the interrupt service
cade. These tasks w@er2 called device handlers and allowed the
programmer to use the pouwer of both task and executive statee.
For very complicated protocols such as the file system, other
tasks uwere used to perform the various file I/0 functionse.

This approach suffered from several flause. For simple
devices such as line printers, using a task for device service
was overkill. For complex devices, the structural 1limitations
complicated the implementation. ¥hen RSX-11M was introduced,
device service and device protocol uwere separated into distinct
coaponents. Simple device drivers were included in the kernel
executive. Special tasks (ACP“s) were coupled to the executive
to perform the device protocols. The coupling mechanism has
changed with various releases, but the separation of the tuo
components has remained.

In summary, an ACP is a task which 1is tied to the I/0
mechanisa and is used to provide a protocol for a class of
devices. ACP®s enjoy both the features of a task and the pouer
of the executive. As will be shown later, the coupling of ACP”s
to tne executive and device drivers 1is very simple, making
user-written ACP"s a workable solution to a wide variety of
application problemse.

1.2 ACP CHARACTERISTICS

Several ACP”s have been written by Digital. The common
Digital ACP”"s are the the disk file system (¥F11ACP), ANSI
magtapes (HTAACP), and the HdSP portion of DECNET (NETACP).
These ACP"s have the following attributes and characteristicse.

la EBach ACP 1is a oprivileged task: and has ail thea
attributes of a3 task (stack, priority, task name,
checkpointing, 21tCe)e.

2. Tach ACP c¢an be considered a portion the executive.

ACP”s are mapped into the executive and run in kernel

state wnenever necessarye.

ACP

PHILOSGPHY

4.

5

PAGE 1-3

fach ACP implements a protocol for 2 class of devices:

ls F11AC? implements the Files-11 protocol for all
disks (RK0S, RPOS, etc.) and DECtapes. ’

2. MTAACP implements the ANSI magtape protocol for all
supported tape drives (TU1l0, TE16, etcC.)e.

J. NETACP implements the NSP portion of +the DECNET
protocol for a wide variety of communication
interfaces (DL11, D¥Cl1l, etcC.)e.

The protocols extend the functionality of the devices
in several wayss: .

1. The burden of direct davice manipulation is removed
from the programmer and is handled by the ACP in
conjunction with the device drivers.

2. The burden of protocol level data wmanipulation is
handled by the ACP’s. The ACP®s strip any data
related to protocol and return only the information
related to the applicatione.

3. The ACP°s allow the devices to function as logical,
rather than physical, entities. Iin the case of
Files-11, a program deails uWith files 1instead of
physical disk blocks. F11ACP handles 2a3ll block
mapping and allocation. Programs view files as a
set of contiguous blocks, regardless of the actual
allocation.

4. The ACP®s5 allow different devices to be treated the
same from the program”s viewpoint. DECNET"s
support of 1logical links over asynchronous,
synchronous, and parallel interfaces is the most
vivid example of this.

5. The devices can be shared for simultaneous accesse.
Each accessing process is protected from others by
the ACP*s. The ACP®s also synchronize access to
the physical devices when necessarye.

6. The devices are protected against unauthorized and
destructive access. 4“hen an ACP is used with a
devica, ths ACP? "owns" the device.

Each ACP can De mounted/dismounted for a given device.
dnen mounted, the device is available only for use in
the context of the device protocol provided by the ACP.

ACP PHILOSOPHY PAGE 1-4

One lack of similarity must also be aentioned. The
intarnal implementation of the Digital ACP”"s hawve nothing in
commen. The only similarities are 1in the interface to the
operating systan. dowW an ACLP? accomplishes its purpose is left
to thne individual ACP.

1.3 1I/0 HIERARCHY

A3 wWas stated before, all I/0 mechanisms can be broken into
four functional <coumponents: 1logical 1I/80 services, program I/0
requests, device handling, and device protocol servicese. This
section will discuss how each of these functional components are
implemented by RSX-114. In particular, the relationship of each
component to an ACP w@ill be discussed.

The I/0 mechanism for RSX-11¥ can be mapped directly into
tne four areas. The FCS/RMS libraries provide the logical I/0
services. The @QI0D directive and the associated executive
processing form the I/0 request mechanisme. Device drivers are
used for device service. And finally, ACP"s are wused to
implement device protocols.

1.3.1 FCS/RMS

Logical I/9 services for R5X-11M are provided by the
file/record service libraries: Record Management Services (RMS5)
and File Control Services (FCS). The twWwo most important
services provided by these packages are device independenca and
iogical records. The packages also provide a conveniant
programming interface for issuing I/0 regquests.

Both FCS and RMS are implemented as macro and subroutine
libraries. RMS is the nauwer package. It extends the concept of
l1ogical records, particularly in the area of record organization
(relative and keyed). FCS 1is the traditional package and is
more widely used in RS5X-11M systems. However, the libraries are
equivalent 1in their relationship to the other components of the
I/C mechanism.

When cailed, FCS5/R¥3 translate the logical 1I/0 reaquests
into device specific [/0 reguests. This is done by =2xamining
the characteristics of the assigned device and 1issuing the
appropriate QI0 directives. The packages are also aware of the
existence of the §Files-11 and magtape ACP"s and issue 1I/0
raquests specific to these ACP7s. It is important to remember
that FCS/RHS do not implement the file system, they are only
aware of how to interface to it to accomplish the services

ACP PHILUSOPHY PAGE 1-5

ted by the programmer. 4 new ACP can be interfaced to
45 by teaching the packages the proper usage of the iCP.

1.3.2 QIO Directive

All user I/0 is requested by using the IO directive. The
directive can be issued directly by a program or indirectly from
the various run-time systemse.

The QI0 directive together with the executive processing
form the program I/0 request component of RSX-11M. The RSX-11M
executive is responsible for translating the QIO reguests into
their internal representation {(I/0 packets), checking for
Parameter validity, and dispatching the I/0 packet to the
correct processing routinee.

The device data bases are used by the executive to
determine how a packet is to be processed. The executive may
pass the function directly to a device driver or gqueue the
packet to the driver I/0 gqueue. If an ACP is mounted for the
device, the packet is specially processed and sent to the ACP
instead of the device driver. It is extremely important to
understand this mechanism when writing an ACP.

1.3.3 Device Drivers

Device drivers are the lowest lievel in the RSX-11M 1790
hierarchy. Drivers provide the device service functionality and
are small, responsive modules. RSX-11M device drivers do little
more than physical data transfers and device manipulations. The
driver 1/0 parameters are specified in a basic, often device
dependent forme. -

An ACP can interface to a device driver in a variety of
WaYS. The most common approach is to wuse the normal QIO
directive. An ACP will typically take the I/0 request gueued to
it and issue device specific I/0 requests to satisfy the
raquest. The driver code itself is not aware that an ACP 1is
calling it.

Device drivers serve another purposa in impla2menting ACP“s.
The driver mechanism 1s <convenient for extanding executive
processinge. As will bDbe sean later, pseudo drivers can be
implemented to provide the processing necessary for ACP I/0
Tagquests that is normally done by the executive. The use of
such drivers permits user-written ACP"s to be implemented
without modifying the kernel executive.

ACP PHILOSOPHY PAGE 1-6

}.13!4 QCP’S

Finaliy, ACP®5 ars the component @hich impleament device
protocols. These tasks taks I/0 functions from the axecutiva
and perform the desired operation according to the rules of the
protocol.

1.3.5 Summary

At this stage, a simplistic vied of the RSX-11M 1I/0
mechanism has been developed. The simplest case 1is a Qid
raquest from a task to a non-ACP device. The flow 1is through
the executive®s QI3 processor to the device driver to the
device. By adding FCS/RM3, the task makes a subroutine call to
the run-time 1library which then issues the actual RIC. The
final case (Figure 1-1) adds an ACP to the device. Here, the
I1/0 request is routed to the ACP by the executive. The ACP may
issue its own I/0 requests to the device driver or satisfy the
request wusing its internal data bases. In some special casss,
the executive may route the packet directly to the driver.

1.4 ACP ABILITIES

It is not often clear why ACP"s are such a necessary part
of the RSX-11M 1I/80 mechanism. This section will discuss the
abilities which are wunique to ACP”s and make them such 2
powerful application tool.

The key abilities come from the fact an ACP is a taske.
ACP*s are allowed to do things which are impossible from device
drivers. They <can issue all the RSX-11M directives. For
example, the ability of an ACP to issue GI0°s allows it to
service a complicated I/0 raquest by using the simpler services
provided by a dewvice or another ACP.

ACP PHILOSUPHY PAGE 1-7

A - - -

H FCS i
[==mmmmm e |
i

1 QId
\i/

| e

i
....... i Executive
I

| R -

s pans v on

! I/0 Packet

i/
i-- et
1--=>i |
o ace |
1--—-1 |
i--- i

i
>1 1/0 Packet

B e B G et W M G e BN GROK W W S

\ /
fommmm e e !
i i
i Device i
i i
f--- e

Figure 1-1
RSX-114 I/0 MECHANISH

ACP PHILGSOPHY PAGE 1-8

At the same time, ACP"s are privileged taskse. The full
abilitias of the sxecutive are availabie. For sxample, ALP"S
can aillocate and return sSystem pool merely 5Hy switching to
system state and calling tne executliye routines. In additiion,
as privileged tasks, AC2"s are mapped into the system pool and
can examine and manipulate ail RSK-11M executive data
structures.

Also, b&causs ACP“s are tasks, they can be wusaed wWith all
tne programming tools provided by RSX-11M. For example, they
may use disk and memory-resident overlays, be checkpointed, and
link- to 0ODT. The last ability 1is a very key feature as it
allows ACP”s to be debugged much less destructively than device
driver code.

The aXecultive interface to ACP®s also has abilities not
normally available to device drivers. A feature of the
interface allous ACP“s to establish a mapping between several
separate 1i/U requests. The process of opening a file, reading
and writing disk blocks, and closing the file is an example of
this mechanisme. Similarly, DECNET supports establishing a
logical 1ink, transmitting and receiving data, and terminating
the link.

This feature allows an "I/0 process™ to be established for
a logical unit in a task. Each process uses an ACP unique data
structure called a window to establisn the linkage between the
lun and the operations being performed by the ACP. The window
address 1is stored in the sscond =mord of the logical unit table.
Tnis address 1is passed to the ACP in the I/0 packet and allouws
the ACP to reference the window when serving a request. The
mechanism also includes support for notifying the ACP when the
task terminates and I/0 processes are still outstanding, even if
the task has no outstanding 1I/0.

1.5 ACP IMPLEMENTATION

This manual will cover three types of ACP implementations:
standard, wuser, and foreigne #hile each form fulfills the
definition of "ACP"™, standard ACP"s follow the rules used by
Digital in writing F11ACP and MTAACP. Such ACEF®s are "known™ to
the executive ana special code is included for their support.

On the other hand, user ACP"s are not "known to the
system, only to the device driver which uses their servicss.
The major advantage of the approach 1s that no changes to
existing executive code are necessary for the user ACP, yet, all
the advantages of having an ACP remaine

Foreign ACP“s are between standard and user ACP°s. The ACP

ACP PHILOSOPHY PAGE 1-9

is knoun to the executive, yet no special services are provided
for support of the ACP.

Throughout this paper, references will be made to the
requirements for writing stancard, user, and foreign ACP®s. In
order to simplify the tecminology, M™ACP"™ will be used when
discussing material relevant to all styles. W"DCP" (Digital
Control Processor) will be wused when refering strictly to
standard ACP"s. "UCP" (User Control Processor) will be used for
references concerned with the wuser form and "FCP" (Foreign
Control Processor) will refer to ACP”s which use the foreign
faature of RSX-11H.

The choice of writing a DCP, UCP, or FCP depends on the
purpose of the ACP. The major difference between the various
forms of ACP°s is how and where the I/0 requests designated for
the ACP are processed. No matter wnich form is implemented, a
certain amount of pre-processing is required before an I/0
request 1is received by an ACP. The next three sactions examine
how each form of ACP interfaces to the executive.

1.5.1 OCP Approach

Figure 1-2 diagrams the flow of an I/0 trequest from an user
task to a DCP. When a QIO is issued from a task, the directive
dispatcher calls the entry 3DR&I0. The common QI0 processing is
performed first. The current task state is checked to see if
the QI0 can be issued at this time. If it can, the common QIO
fieids are checked for legality. finally, an I/0 packet is
allocated from the systam pool and initialized with information
taken from the QID directive parameter blocke.:

Once the common processing is completed, the QI0 processor
dispatches to the function unique code. The current device
status stored in the Unit Control Block (UCB) and the function
bit masks in the Device Control Block (DCB) determine the type
of function processing selecteds 1In the case of an I/0 packet
designated for a DCP, the device driver must be loaded, the
device marked as mountable, mounted, and not foreign, and the
function marked as legal and ACP in the DCB mask fields. 4hen
these conditions are met, the ACP special packet processing is
invoked. Facn I/0 function supportad by Digital ACP*s is
Processad using special polish-driven routines.

ACP PHILOSOPHY

.

T

Check for Legality
Construct I/0 Packet

Special ACP Processing i

Queue to ACP if Specified]

i — i
i
] Jup
i
A1/
R it ———— |
{ Queue I/0 Packet i
fo—- -=-=]
i Call Driver Initiator i
jorwmmrnnsncenns - i
i
] J5R
i
\{/
f-—- - - i
H Call SGTPKT i
i i
i
1 JsSk
i
\i/
R Rttt et 1
i Get 1I/0 Packet i
jom— -1
i Determine ACP Function i
R ————— - i
|
------ —————- -->] JSR
i
AR ¥/
f e e o e e o - {
| Qdueue Packet to TC3 i
-—=}

Figure 1-2
DC?2 FLOW

PAGE 1-10

$DRQIQ

| $DRQRQ

Device Driver

5GTPKT

SEXRGP

ACP PHILOJSGOPHY ' PAGE 1-11

One function of the special processing is to decide whether
the I/0 packet needs Sequencing with the device driver state ot
@anather 1t can be Jueued directly to the ACP. If +the packet
does not need sequencing, ORQIC gueues the I/0 packet to the
recaive qusue of the ACP? and schedules the ACP for axecutione
Otharwise, the packet is piaced in the I/0 gqueue of the driver
and the driver initiator is called. The packeit will be queued
to the ACP when it 1is dequeued by $GTPKT. This occurs
transparently to the drivere.

I1/0 packets are gqueued to an ACP via the ACP task”s receive
queue. This 1is the same gqueue used by normal tasks to receive
messages from other programs. The entries $EXRQP/SEXRGF in the
executive queue the I/0 packet and also cause the ACP to be
scheduled for execution.

In short, a DCP is known to the executive. Special code in
the executive®s DRQAIJ module handles functions designated for a
DCPe. The features of this approach are as follows:

1. 1I/0 functions processed by the DCP are marked as legal
and ACP functions in the DCB function masks. DCP
function codes are required to be from 7-31{(10).

2. The device 1s marked as mountable, mounted, and
not-foreign in the UCB.

3. The I/0 packet is specially processed by DRQIC. The

: type of processing performed depends on the 1I/0
function code and is done by tha polish-driven routines
in DRGI0. ‘

4. The I/C packet is queued to the DCP by the executive,
however, for some functions the packet 1is queued
directly by DRQIO and for others it 1is handled by
GIPKT.

The DCP approach is appropriate for a user-written ACP when
the new ACP processes current Digital ACP functions. 1In this
case, no modification of the code in the executive is necessary
to support the usser-written ACP. It 1is also important to
understand the DCP approach when using the methods discussed 1in
the next two sectionse The FCP and UCP approaches are not
sqaort-cuts, they merely move the spacial processing performed in
ORRI0 to ocutside the sxacutive.

ACP PHILOS50PHY PAGE 1-12

1.5.2 UCP? Aporoach

The UCP approach provides all the- functionality found in
Digital”s implementation of ACP"s. The apprcach uses features
of the RSX-11M I/0 mechanism to move the special <c¢ode for ACP
I/0 processing to outside the executive. This permits a user to
write a totally new ACP swithout modifying the executive.

The key to the UCP apporoach is the UC.QUE bit in the UC3.
4hen this bit is set, I/3 packets are not queued to either the
device driver or any associated ACP. Instead, the driver
initiator 1is called directly from the DRQIO module. The driver
can then perform any necessary special packet processing in-line
with the executive’s I/0 processing. #hen finished the driver
is responsible for placing the I/0 packet in the correct gqueue.

The fact that no <context switch can occur between the
executive and the call to the device driver is critical to the
UCP implementation. Certain types of processing done on the I/0
packet, such as address checking and relocation, must occur in
the context of the task which issued the 1/0 regquest. Once a
packet 1is placed din driver or ACP queue, a context switch may
occur before it is retrieved. In the case of a packet queued to
an ACP, a context switch is implied by the fact that the ACP
must be scheduled.

Figure 1-3 illustrates the flow of an I/0 request from an
user task to a UCP. First, the common QRQI0 processing occurls.
The first difference between a DCP and UCP is evident when the
dispatch 1is made to the function unigue code. The UCP approach
marks all functions serviced by the UCP as legal and control
functions. By marking the function as a control function, the
executive merely copies the six QI0 parameters to the I/0
packet. This avoids any special 'processing built into the
executive for DCP-style ACP's.

Once the I/0 packet is constructed, the driver initiator is
called w=ithout any queueing, due to UC.QUE being set. The
driver can then process the I/0 parameters in the I/0 packet as
neaded. The driver then queues the packet and requests the UCP
by calling the normal ACP scheduling routine. If the packet
should not be routed to the UCP, the driver queues the packet to
itself and calls S$GTPKT to correctly synchronize driver packet
pProcessing.

ACP PHILOSOPHY

1 o e e e e w2 e e -

{ Task Code

i
i

;j > T o~ " S . > T 0 > > 2 i

|
| CTL QIO

| Check for Legality

{=--

- — T — q“-";

|
i

i Construct I/0 Packet
e —
i Copy I/0 Parameters
p— —
i
i Jup
i
\i/
3--_--_--------——-- - mn am
i Cali Driver Initiator
i_- -
i
1 JSk
{
AR ¥2
l-_ - -——
i Special ACP Processing
1_-- ————
H Queua to ACP
1 ----------------------------- ——
H
| Jsg
1
\i/
A —
i Gueue Packet to TCB
j=—-) -——i
i Request ACP
3----—----—-----
Figure 1-3

UCP FLO¥W

T

PAGE 1-13

ask

$DRQIO0

s

2

D

$

DRQRQ

evice Driver

EXRQP

ACP PHILOSCPUY PAGE 1-14

Therefere, an UCP is known to the device driver. The
axacutive 1is unawmare that a UC2 is being interfaced to thae
driver. This has the disadvantage of generally limiting a OCP
to supporting onily one device driver. The featucres of the UCP
approach are as follows:

1. The I/0 functions processed by the UCP are wmarked as
lagal and control functicns in the OLC3 function maskse.

2. The device 1is5 typically marked as mountable, mounted,
and not-foreign in the UCB. The driver is also set for
no queuging of the I/0 packet (UC.RUE=1).

3. The I/0 packet is processed as a control function by
DRGIG. Any special processing required by the UCP is
performed in the device driver.

4. The I/0 packet is queued to the UCP by the device
driver when it finishes its special processinge.

1.5.3 FCP Approach

The FCP approach is between the DCP and UCP techniquese.
The approach is based on the RSX-11Y4 V3.2 executive®s support of
the foreign ACP bit in the UCB {(US.FCR). When this bit is set,
the special processing applied to DCP functions is bypassede.
The I/0 parameters are merely copied to the I/0 packete.

Figure 1-4 shows the flow of an I/0 request to a FCP.
Functions to be rTouted to the FCP are marked as legal and ACP
functions in the DCB function bit masks. The device state in
the UCB must be mountable, mounted, and foreign ACP. When these
conditions are met, the QID parameters are copied without any
checks to the I/0 packet. This is the same as the processing
applied to a DCP. At this point, the I/0 packet 1is routed to
the FCP by DRGID if the gueue disable bit is not set (UC.QUE).
This is acceptable only if no special processing needs to bea
applied to the packetits. o

If this condition cannot bs met, the same approach used for
UCP"s must be applied. The packet mqust be passed without
queueing to the driver initiator wnich tihen apglies any special
srocessing npneeded. Hhen complated, tne driver can either gqueus
the packet directly to the FCP or gqueue it to itself and let
55TPKT dequeue the packet and send it to the FCP.

dhile FCP’s are known to the executive, the same processing
is appliad no matter what the I/0 fuanction. The following is a
summary of the FCP approacn:

ACP PHILOSOPHY PAGE 1-15

} - —— - —— i

i
i Task: Code { Task
|mm e ——— - i
i
] ACP QIO
\Ni/
R inted Dol - {
i Check for Legality i
-1
i Construct I/0 Packet |
j=-—- --={ 5DRQIO
i ~ Copy 1/0 Parameters i
jo—= el
Rt | Queus to ACP if UC.QUE=0 i
] R it —-— —-——- i
i i
I] Jnp
i i
i \1/
i i o - i
i i Call Driver Initiator ! 5DRQRQ
i == : i
i 1 JSR
i i
| \i/
i | - i
] i Special ACP Processing]
i ==~ -1 :
i | Queue I/0 Packet | Device Driver
i j=—- -]
i i Call 5GTPXT i
! R —— - i
{ i
i i JSR
i 1
i \i/
i = - |
i i Get I/0 Packet i
I = -==] $GTPKT
i i Determine ACP Function i
1 I=-- —-— —— - i
H i
e e >} JsSk
H
AR V4

mmm e -- i
i wueue Packet to IC3 i
{m—— -—={ SEXRQP
i i
i i

Reqguest AP

figure 1-4
FCP FLUOW

ACP PHILOSOPHY PAGE 1-16

1. The I/0 functions processed by the FCP are marked as
legal and AC? functions in the UDCB function masks.

2. The device is marked as mountabie, mountsad, and foreign
in the UCB. Any necassary specisl packet processing is
performed by the device driver and the queue disabie
bit (UC.QUE) must be set.

3. The executive only copies the QI3 parameters to the I/0
packet. As stated above, any special processing is
must be done by the device driver

4. The I/0 packet can be queued to the FCP by DRQIO, the
device driver, or GTPKT.

The advantage of the FCP over the UCP approach is not in the I/0O
packet processing. The executive services are minimal and like
all Digital software, subject to change. The advantage 1is the
support provided by the MOU and DMO task for mounting and
dismounting the foreign ACP.

1.6 ACP APPLICATIONS

ACP*s can be written for a wide variety of applications.
One type of application 1is a non-Files-11 file system,
particularly, 1if the ACP 15 interfaced to FCS/RMS for
device/file independence. Tuwo examplies are listed belou:

1. If a site supports mixed systems (RT-11 and RSX-11M for
example), an ACP could be implemented to support the
foreign file structure. If interfaced to FCS, the
RSX-11M wutilities <could be used to access the foreign
disk directlye.

2. If a site has a requirement to process foreign
magtapes, an ACP could be written for this task. This
is basically wnhat occurred when MTAACP was 1introduced
by Digital.

ACP°s could alse be usad to implement communications
protocols. Digital togok this approach with DECHNET. A
user-written ACP could be used to communicate w«with other
computars via some astaplished protocel (3YSYNC, SDLLC, etc.) ot
a sita-specific protocol. Alternatively, an ACP could be
4Citten to raplace H5P within the OECNET architecture. This ACP
could implement a specialized link level protocol.

Another <c¢lass of applications 1is be to extend the
functionality of =2 current Digital device. For example, one

ACP PHILOS5CPHY PAGE 1-17

method of implementing transparent line printer spooling would
b2 wvia a line printer ACP. This task would intercept write
r2quests to the line printer and output them to a disk file.
ihen the output 1is terminated, the file is queued Lo the
printer.

ACP“s can also be used to solve application problems. For
example, an application system may use a complex file
organization for storing and retrieving data. Usually with such
implementations, special subroutine libraries have to be
developed and linked to each task to access the information and
coordinate updating the data3. An ACP could be written that
would essentially implement a special database management system
for the applicatione.

Many other applications for ACP”s could be listed.
Appendix ¥ 1list wvarious wuser-written ACP®s that have been
reported to the author. Other users who have written ACP®s are
invited to submit a summary of their implementation to be
included in future versions of this manual.

CHAPTER 2

DATA STRUCTURES

ACP“s, like most system tasks, deal with the RSX-11M system
data structures. In the case of ACP”s, some of the data
structures are integral to the ACP concept.. This chapter
axamines the RSX-11M data structures 1in the context of ACP
usage. The emphasis is on the global relationship between the
data structure, the RSX~-114 I/0 wmechanism, and the ACP.
Appendix B presents a detailed view of the data structures
mentioned in this chapter.

The data structures of interest to ACP"s can be divided
into seven categories: QIO data structures, device driver data
structures, common ACP data structures, ACP specific data
structures, FCS data structures, R¥5 data structures, and other
structuress. This chapter deals with the first four areasSe The
FCS and RMS structures are discussed in Chapter 4. This chapter
will also touch on the how some of the other data structures are
used by ACP"s.

2.1 QIU DATA STRUCTURES

The QI0 data structures are used to package the 1I/0
raquests and route the request to the correct device. The data
structures used to package I/0 requests are the QIO directive
parameter block and the I/0 packet. The QIO directive parameter
block is formed in the issuing taske. The 1I/0 packet 1is the
executive representation of this structur2. The data structure
used to route I/0 packets to the correct device is the 1logical
unit table. This table is found in the task header and is used
to map a logical unit number *to 3 specific device.

DATA STRUCTURES PAGE 2-2

2.1.1 ®RI0O Directive Parameterc Block

The &ID diresctive paraametser block {(DPB) is the form an I/ 2
raquest takes 1n a user task. The biock 1s normally constructed
by the GI0S and QI0WS macrose. Alf 1I/80 requests, including
ragquests to ACP"s, are issued from =z task by using the QI0S5 and
RQICHS directives.

%hile the format of a QAI0 DPB is constant, some special
consideration must be given the DPB when writing a new ACP. The
ACP design must consider the I/0 functions it will service and
the format of the six QI parameterss.

The I/0 function is a two byte field. The executive only
considers the high byte in processing an I/0 reguest. This byte
is the function code and has a legal range of 0-31(10). The low
byt 1is the subfunction field. All values are legal for this
byte. The subfunction codes are used by drivers and ACP°s to
further delimit I/0 functionse. The only requirement for the
subfunction code 1is that all subfunctions of a particular
function <code must be the same type of request (transfer,
control, atc.). .

Some rules also apply to the function code byte. Some
codes have been traditionally reserved for special I/0
functions; in particular, «codes 0-7 all have traditional
meanings and should not be considered for new ACP I/0 codes.
Also, if the new ACP follows the DCP implementation, the
executive S$GTPXT routine requires the ACP function codes to
rang2 from 7-31(10).

Because the I/0 parameters for an ACP function are usually
processed specially, there is almost complete freedom in what
parameters are used. The only RSX-11M requirement applies to
transfar functionse. For such I/0 requests, the executive
expects the first parameter to De the address of a buffer and
the second parameter to be the size of the buffer in bytes.

2.1.2 1/0 Packet

The I/0 packet is the internal reonresentation of an I/0

raguast. ORQIC allocates the I/0 packet from systam pocl =3nd
initilaiizes 41t witn values taken from the QI0 diractive
parameter bDlock. The packet is then gqueued to the appropriate

driver or ACP for sarfvicinge

When writing a new ACP, the process of initializing the I/0O
packet parameter fislds must be considereds. For DCP”s, this is
the main purpose of the special ACP code in DRQAI0. A typicail

DATA STRUCTURES PAGE 2-3

1 addresses and special
ked and rtr=2located before
+ the parameters passed to
e to the original JIT
S3ing has repackaged the

Acp /0 request may pass. savera
parameiers. Zach address aust ba ¢
storted in the packet. In some ca
the- ACP have 1littls pnysical resambd
parameters. The special ACP o»pr
information for the ACP.

a7
hec
ses
n

ia
oce

The rest of the I/0 packet is typically of no interest to
ACP”s, with tuwo exceptions: the function code and the address
of the second lun word. The executive copies the function code
from the QIO directive parameter block into the I/0 packet. The
function code can then used by the ACP to dispatch the packet to
the appropriate function processor.

The second lun word address field is the one part of the
I/8 packet which is not typically used by device drivers. This
location contains the address of the second word in the logical
unit table entry for the 1lun of the I/0 request. (see next
section). The importance of this word will be explained in the
saction on window blockse.

2.1.3 Logical Unit Table

The purpose of the logical wunit table (LUT) is to map
logical wunit numbers to devices. The LUT table is also used to
map luns to I/0 processes. The table is a portion of the task
header and consist of a two word entry for each possible logical
unit a task may use. The size of the table is fixed at
taskbuild time by the UNITS opticne.

TK8 fills the table with the ASCII device name and wunit
number. When a task is installed, the first word of each entry
is replaced with the device UCB address and the second word is
zeroed. When an I/0 request is issued, the logical unit nuamber
maps the appropriate entry in the LUT. Any redirect pointers
are followed and the I/0 packet is dispatched to the resulting
device. This may result in the packet b2ing queued to an ACP
serving the device.

The second word of the LUT entry is used by ACP”s to map
I1/0 processes to logical wunit numberse. The address of tha
Wwindow block is kept in this worde. & window block is the /3
process unique data 3structure ana is discussad in 3 lattar
saction. an sxample of window blocks 1is the F11ACP window
Slocks wused to map virtual blocks to logical blockse Hote, an
ACP window biock is different <from a PLAS or task mapping
Windouw.

The second LUT word has two other uses important to ACP“s.
Bit 0 of the word is the lun lock bit. 4hen this bit is set,

DATA STRUCTURES PAGE 2-4

the axecutive prevents the user task from issuing any QI0°s for
the logical units. This can.be used by ALP"s. Lo insure proper
synchronization between 2 r2gquest it is currently servicing and
the user taske.

The other use of the sacond LUT word is to notify ACP’s
when a task exits with outstanding I/0 processes. A task is not
permitted to exit until all second LUT sords in the logical unit
table are 2zero. When a aon-zero entry is found, the executive
queues a special I/0 request to the ACP. The ACP is responsibie
for terminating the I/0 process and zeroing the second LUT word.

2.2 DEVICE DATA STRUCTURES

‘The device data structures are used to describe the generic
device type, each separate device, and each hardware controller.
The Device Control Block (DC3) names the device and contains the
I1/0 dispatch tables. There 1s one DCB for each device type.
The Unit Control Block (UCB) contains the information for each
device unit. The Status Control Block (SCB) 1is wused to
coordinate activity among device controllers. There is one SCB
for each controller. The RSX-11M executive typically permits
only one I/0 request to be outstanding for each controller. If
the controller supports multiple wunits (UCB”s) but requires
serial access, one SC3 will be used for all UCB%s. If the
controller permits multiple access, one SCB will be allocated
for each UCB.

Most of the information in the device data structures is
specific to the neesds of device drivers. ACP"s are usually only
concerned with a few fields. The next three sections comment on
how the DCB, UCB, and 5CB ara involved with ACP implementatione.

2+.2.1 Deyice Control Block

The Device Control 8lock (DCB) names the device, points to
the device wunit structures and controls how I/0 functions for
the device are processad. This last feature is important to ACP
implementation. The DCB function nasks decide whether a
particular I/0 function i35 1l1s2gal or 1invalida They further
classify legal functions into four types: control, noop, ACP?,
and transfer. #hen implementing a DCP or FC2, functions which
shouid DbDe routed to Lhe AC? are marxed as legai and ACP in the
DCB function masks. This causes the special packet processing
in ORGIO for ACP functions to be invoked. When implementing a
UCP, the functions are marked as legzl and control.

DATA STRUCTURES PAGE 2-5

2+2+2 Unit Control Block

The Unit Control 3lock (JCB) is the key deyice structuree.
There 1is one UC3 for each sSeparats devicee. Tha UCB’s are the
one device structure that are variable in 1lengthe The only
requirement for UC3°s 1is that all UCB”s belonging to a DCB be

allocated contiguously and that all are the same sizee.

4hen a device supports an ACP, the UCB”s are extended at
least two words beyond the normal length. These additional
Wwords are used to hold the Task Control Block address of the ACP
(U.ACP) and the Volume <Control &8lock address (U.V¥CB). The
address stored in U.ACP is the task TCB address the executive
will use when queueing ACP I/0 packets.

The flag fields in the UCB are also of interest to ACP’s.
The control flags byte (U.CTL) are used to decide how various
I/C requests are to be handled. One bit in this field is the
UC.QUE bit wused by UCP and FCP implementations to pass the I/0
packet to the device driver for ACP processing. The unit status
flags byte (U.STS) contains bits which define whether the unit
is busy (US.B8SY), mounted (US.MNT), foreign (US.FDOR), or marked
for dismount (US.MDM). The correct manipulation of all of these
bits is necessary for the correct operation of an ACP. A device
is marked busy whenever an I/D function is dequeued for the
device driver. The busy bit is cleared whenever an I/0 function
is completed by calling $I0DGN. A function will not be dequeued
for a device if it is marked busy. Because ACP functions are
not processed by the device driver, the driver is not marked
busy when an ACP function is dequeued and passed to the ACP.
This allows the driver to continue to service functions and
requires ACP°s to not clear the busy bit when they finish an I/0
request. The mounted bit signifies an ACP is mounted for the
device and can process I/0 requests. When an device 1is marked
mounted, U.ACP and U.VCB are assumed to contain valid values.
The US.MDM bit signifies a dismount raquest has been made for
the unit. No new I/0 processes should be allowed to start and
when all outstanding processes are completed, the ACP should
mark 1tself not mounted by setting US.MO0U. The ACP exits when
all devices are finally dismounted. Finally, the US.FOR bit is
the 1indication to the executive that the foresign ACP logic
should be invokede.

2+.2.3 Status Control Block

The Status Control Block (SCB) is wused to define and
control access to the hardware controlier. ACP“®s are usually
not concerned with this data structure unless they are closely
coupled to the device driver.

DATA STRUCTURES PAGE 2-56

2.3 ACP? CDOMMON DATSE STRUCTUR

%

2
2

Two data siructures are common to all ACP7s: JYolume
Control 8locks and ¥indow 3locks. The 7oilume Control 3locks are
used to hold information about each separate device an ACP
services. The %indow Blocks hold the 1/0 process informatione.
while all ACP”s typically use these structures, their format is
ACP dependent. '

231 Volume Control Block

gne feature of ACP”s is their ability to service several
differaent devices. The data structure used to keep the
information for each device is called a volume control block
(vecB). A VCB is allocated from the system pool when an ACP is
mounted for a device. The address of the VYCB is stored in
oftset U.YCB of the device UCB. The VCB is returned to the pool
when the ACP completes dismounting the devicee.

The length and format of a VCB is ACP-dependent. Only the
first word has a common meaning across ACP°s. This word of the
¥CB is the volume transaction count and is used as a counter of
the number of outstanding 1/0 requests gueued to the ACP for the
device. It also counts the number of 1I/0 processes created by
the ACP for the device. The ACP cannot dismount the device
until the transaction count reaches zero, indicating no activity
for the device.

For DCP and FCP implementations, the executive increments
the transaction count whensver it gqueues an I/0 packet to the
ACP. It is the responsibility of the device driver to increment
the transaction count when it gueues a packest to a UCP. The ACP
is then responsible for decrementing the counter when it
completas an I/0 function and incrementing and decrementing the
counter when it creates and destroys I/0 processes.

The remainder of the YCB <can be used for any purpose
desired by the implementation. The typical information kept in
a VCB is any data which is unique to the volume. For example,
F11ACP? keeps the index file mapring information and volume
defaults in disk VL3 7s.

22322 #indow Conttroi 3lock

As mentioned before, one powerful feature of ACP’s is their
ability to establish a mapping betwueen I/0 reguests. For

DATA STRUCTURES PAGE 2-7

example, F11ACP maps read and wcite virtual block I/30 to logical
1Sk DioCcKSe The information necessary to do this mapping is
established when the fils 1s opened.

This ability to create an. "I/3 process™ usas a data
structure called window blocks. These structur2s are completely
ACP dependent 1in 1length and format and contain whatever
information the ACP needs to keep for each separate process.
Typically, window blocks keep access masks, pointers to other
ACP unique data structures, and retrieval information for read
and write requestse.

Window blocks are allocated by the ACP when it creates an
I/0 process. #While the window block is typically allocated from
system pool, it can be allocated froam the ACP task space if only
the ACP accesses the window. The window block address is stored
in the second word of the logical wunit table entrye. This
address 1is passed in the I/0 packet in offset I.LN2. Further
I/6 requests from the same logical unit will always reference
the same logical unit table entry, allowing the ACP to retrieve
the window block addresse.

NOTE

The address of the second LUT word cannot be kept
internally by the ACP. The LUT table is located in
the task header, which is destroyed and reallocated if
the task is checkpointed. An ACP cannot depend on any
location in the task header being the same across 1/0
rsquests.

2.4 ACP SPECIFIC DATA STRUCTURES

ACP”s also can create their own data structurese. For
example, F11ACP creates File Control Blocks (FCB) for each open
file. The type and extent of data structures created by a
user-written ACP is one of the keys in the ACP designe.

One guideline to AC? specific data structures 1is to
ainimize the usage of system pool. Any information used only by
the ACP should be allocated first from an internail ACP pocl and
overfiow to systesm pool only if ailocation fails<. OCne way to
Binimize system pool usage is to use the window block to point
to the internal ACP data structures, allowing 1I/0 process
structures to be mapped on a process basis instead of keeping
all information in the window block. Similarly, volume control
blociks can point to information in the ACP pool which is used

DATA STRUCTURES PAGE 2-8

only by %the ACP.

2.5 CTHER DATA STRUCTURES

The structures mentioned so far are the key structures to
ACP"s. Other structures an ACP? may need to use include the Task
Control B8locks (TC8), task headers, and Partition Control Blocks
{PC3). Depending on the application, any and all RSX-11M data
structures may be used by an ACP.

One important structure to an ACP is its own TC3. An I/0
request 1is queued to an ACP by placing it in the ACP receive
queue. The ACP dequeues the I/0 packet by getting its TCB
address and removing an entry from the receive queue. The
technique for this operation will be shown later.

CHAPTER 3

ACP CHECXLIST

AC? implementation is a paradoxe ACP"s are integrally
coupled to the executive. It appears that a comprehensive
knowledge of the RSX-11M design philosophy, data structures, and
executive code 1s needed to implement an ACP. However, after
implementing an ACP, it is obvious that the coupling to the
executive 1is loose, logical, and straightforward. It is simple
to interface an ACP to RSX-11M; any difficulties come from the
internal ACP designe.

This chapter walks through the design of an UCp-style ACP.
In order to keep the emphasis on the executive/ACE interface,
the example ACP serves no useful function. Rather, the ACP
merely demonstrates the functionality available to an ACP. The
chapter emphasizes the empirical rules that apply to ACP designe
Later material will develop the rationale for the logic
presentad hers.

NOTE

Inciuded with the distribution of this manual are the
sources for the sample ACP, its associated driver, and
the enable and disable task. It would be useful to
obtain a listing or the sources and refer to them when
studying this material.

3.1 QIO DESIGH

The first step in AC? design is to decide what I/0 services
the ACP %ill provide. It is assume the aature of the services
needed is known; these fall out of the reasons an ACP is the
chosen solutione. This section deals with selecting the I/0
function codes to be used, the format of the I/0 parameters for
each function, and what relationships will the user [/0 requests

ACP CHECKLIST PAGE 3-2

aave to sach other.

Tha example ACP supports five user functionse. The first
functisn creates an [/J procass. Another function terminates
the process. Tuwo other functions perform input and output to
the pDIrocCesSS. The 1last function 1is a control function to a
created processe. The sample ACP services the Trequests by
outputting a message to the console terminal that the request
was processed and returns success. The driver serviced by the
ACP supports two I/0 requests, read and write logical blocke.

3.1.1 Function Code Selection

Tha choice of I/0 function codes is fairly straightforward.
If the ACP is emulating F11ACP for a new device, the Files-11
QIO functions will be usede If the ACP will provide unique I/0
services, new 4I0 codes should be chosane.

The latter 1is the case with the sample ACP. it is
advantageous not to redefine existing I/0 codes because this
could have undesirable effects if I/0 is directed to the wrong
device. For the sample ACP, the I/0 function code 31(10) will
be used for all user requests. The advantage of wusing this
function code is that it is the least used by Digital device
drivers and is not wused by any Digital ACP. The function
modifier field will be wused to differentiate the separate
requests. The following codes will be assigned:

IX.CRE 037,000 Create process
I1X.CLO 037,001 Terminate process
IX.PUT 037,002 Output to process
IX.GET 037,003 Input from process
IX.CTL 037,004 Process control

ACP”s also typically service ACP coatrol functions such as
mount and dismount ACP, and abort process. The sample ACP will
use the traditional I/0 function codes for these services:

If.M0Y 005,000 ¥Mount ACP
I0.D¥0 006,000 Dismount AC?
IG.CLHY 007,000 Abort I/T process

D.400 and I0.0M0O syambolics are not defined by Digital.
i ar , tradition has used these symbolic names and vailues as
local definitions. The I0.CLY symbolic is defined and the value
must be associated with this function.

Finally, the function codes for the driver must be <chosen.
For the sample driver, the traditicnal read and write function

ACP CHECKLIST PAGE 3-3

codes arz ussd, JIJ.RLB and I0.i#lLBe

(48]

1/0 Parameter Selection

[
[=]
[
[\

The next step in designing the QI0°s is to decide on the
format of the 1I/0 parameters to be used for each I/0 request.
Because ACP functions are processed uniguely, you have almost
complate freedom in this areae. However, the ACP and driver
implementations will depend heavily on the choice of I/0
parameters and the format chosen for each I/0 request. This is
A critical area in the design process.

The parameters for the sample ACP I/0 requests have been
chosen mostly to reflect some of the more common features found
in ACP parameter processing. The following is the format for
each request. In order to keep the logic simple, the same
parameter format is used for each 1I/0 function. The only
difference between functions is whether a particular parameter
is required or not present (zero) for the functione.

Parameter #1 - If present, the parameter 1is the output
buffer addresse. Byte alignmaent 1is allowed for the
buffer

Parameter #2 - If parameter #1 is present, this parameter
is the size of the output buffer in bytes. The size
may be byte aligned.

Parameter #3 - If present, the parameter is the input
buffer addresse. Byte alignment is allowed for the
buffere.

Parameter #4 - If parameter #3 is present, this parameter
is the size of the input buffer. The size may be byte
aligned

Parameter #5 - If present, the parameters 1is the access
control value. The parameter has legal values from 0
to 3. A zero indicates no process I/0 is allowed. A
value of one indicates IX.PUT functions are allowed
and a value of two 1indicates IX.GET functions are
alloweds A value of three ailows both type of process
/8

Pagameter #5 - This parameter 1is pnever user and aust always
D8 ZeTr Ve

The following table maps what I/0 parameters are required
(R) and illegal (blank) for the five ACP I/0 requests:

ACP CHECXLIST PAGE 3-4

I/0 Code |{ P1 | P2 { P23 | 24 | P5 | P6 |
————— i i et Bl Bt i Eatted bt
1X{.CRE | i | l I R | i
-— i i -1 { jm———————{
IX.CLO | i i]] i i
bttt et el Bt td Bea il Etietd Beletntnd Redutntnd |
IX.PUT { R 1 R | i i i i
--------- IR D Rt it Bl ELb il Bt |
IX.GET | I 12 {1 r { i
cmmmmmmme | cmme | e | mm e | e | s | =]
IX.CTL i i l {] R | l

----- e By e R e el

3.1.3 Relationship Between I/0 Regquests

The final step in QIO design is to decide the relationship
between I/0 requests. The typical requests serviced by an ACP
have relationships defined by the 1/0 process. For example, it
sould be illegal to perform an input before the I/0 process is
established. The general rules that must be applied to each ACP
I/0 request are as follous:

1. Must the ACP be mounted to service the regquest? This

rule applies to all functions serviced by the ACP. I/8
request serviced by the driver may be allowed if no ACP
is mounted. If an ACP 1is mounted, I/0 requests
serviced by the driver @may only be allowed from
privileged tasks.

2. Must the ACP not be marked for dismounting to service
the request? If an ACP 1is marked for dismounting but
has not vyet completed the dismount, no new I/0
processes should be allowad. HouWwever, all current I/0
processes should be allcuwed to run to completion.

3. Must an I/0 process be astablished to service the
request? This rule applies to functions which the ACP
%ill map to an 1/0 process. Typically, input, output,
and terminate process functions cannot be serviced
until the I/0 process is established.

ey

act to service the
W8 above fuis. A nNes
ne previous process

» Must an I/0 procsss nol be in af
request? This is tha reverszse of
orocess cannot e created until
nas Terpiaaiad.

.
-
>
-
-

Any other rules that make sense for your design may be
applied. In the case of the axample ACP, the only special rule
applies to the IX.PUT and IX.GET functions. When the process is

ACP CHECKXLIST PAGE 3-5

creatad wusing the IX.CRE function, pacameter 5 specifies the
type'oi process 170 aliowed: (see section 3el.2)% The - access
parameter can be changed by the IX.CTL functione

The following table summarizes hows the four common rules
listed abowe (R1-E4) and the one spacial case rule (SC) are
applied to each ACP function. An entry of "“A™ means the rule is
applied. Otherwise, the particular rule does not apply to the
function.

I/0 Code | R1 | R2 | R3 | R4 | SC |

vt BT EEREY RS Py PR

IX.CRE A 1 a4 | I a4 |]
----- f====] === j === === | ====]
IXCLO 1A | 1A | 1 |
et BT B PR B EE
IX.PUT L&A 1 1a 1 | a |
e EE S By oy B
IX-GET 1A 4 1A & 1A |
-- | ====] === ===] ==== |- ==~]
IX.CTL I A i i A | i i

e et EEE PRy PR BRSS!

3.2 DEVICE DATA BASE DESIGH

After it is determined how a user program will interface to
the ACP, the next step is to add ACP support to the device data
structures. This 1is a simple step. The basic structures
documented 1in the Guide to Writing an I/0 Driver manual still
apply. Adding ACP support to the driver merely involves setting
up some of the fields not normaliy used.

Only the device control block and unit control block need
to be considered when adding ACP support to a driver. The
status control block (3CB) is strictly driver related.

3.2.1 Device Control Block

The Device Control Block (DC3) i3 used to name the devicea
and coniroi the exacutive procassing of I/0 packets. For an ACP
supported device, the documentation on pages 4-7 to 4=15 of the
Guide to Writing an I/0 Ociver applies. The additional step
necessary for the suppori of thne ACP is to decide on how the ACP
functions will be processed and theretfore, how the DCB functlon
masks should be set up.

If a DCP or FCP style ACP is being implemented, ‘the

ACP CHECKLIST PAGE 3-6

functions u,51,nated for the ACP will be marked as “legal and
ACP" 1n the mask fieid. If a 0UCP 1is 2neing impi=2mented, the
functions will be marked as "iegal and control®.

Tha foliowing snows how the DC2 function masiks are set up
for th sample ACP. MNote how the IL.RL3 and IJ.WL3 functions
are marked as legal only, implying that the functions are
transfer fuanctions and will be handled by the driver. The
I1X.?2?? functions are marked as "legal and control®™. Also note
that the special I0.CLN function 1is marked as ™legal and
control™ but the mount and dismount requests are not included in
the DC3 maskse These functlons are queued directly to the ACP
by the enable and disable tasks and are not processed by the
executive.

«¥0RD 000206 j;Legal (I0.CLH, I0.4LB, I0LRLB)
«#0ORD 000200 ;Control (IOLCLHN)

«H0ORD 00000C j;No-op

- #0ORD 000000 ;ACP

~A0RD. 100000 ,Lontrol (IX.-??)

«HORD 000000 j;Ho-op

- #0RD 000000 ;ACP

3.2.2 Unit Control Block

The Unit Control Block is the key structure as far as ACP’s
are concerned. The basic UCB design is documented in the Guide
to Writing an I/0 Driver #anual (pages 4-19 to 4-26). The
fields 1in the UCB that must be properly set up for ACP"s are as
followss

U.CTL - Unit Control Hasks. The bit masks in this field
will typically be set up for the driver”s
requirements. The one bit which may be turned on
for ACP support is UC.RUE. This bit tells the
executive to call the driver with the I/0 packet
without gqueuing first. This is the mechanism used
for FCP and UCP style ACP”s that allows the driver
to specially process the ACP2 I/0 packets.

J+87TS = Unit Status ¥asiks. Some of the bit masks 1in this
fiesld are used to mark wheither an AL? is mountad,

foreign, and/or marked for dismounts. The fieid
will be initialized as not aounted (JS.MyT=1) for
all ACP7"s and foreign (US.T0R=1) for FCP'se. The

ACP? 1is then responsibie for properly handling the
states of these bits and the marked for dismount
bit (US.MDM).

ACP CHECKLIST

J.¥CB -

PAGE 3-7

#0T.

5]

The sense of the US.MNT mask is opposite
T0 m0si maskse. Tihe Dit is set if the ACP
is not mounted and clearad wnen the ACP
is mounted. '

Device Characteristics %Word #l. The word contains
bit aasks which define the device characteristics.
The masks are used by RSX-11M to properly handle
different devices. For example, FCS uses this word
to decide whether disk or terminal 1I/0 is being
performed.

For ACP*s, the DV.MNT bit signifies that an ACP can
be mounted for the device. The DV.COM and DV.F1l1
bits are used by RSX-11M H0U and DMO tasks to
decide what ACP shouid b2 mounted. If a DCP is
being implemented, the characteristics that apply
to currently supported Digital devices should be
used for the new device/ACP.

If an FCP or UCP is being implemented, only DV.MNT
needs to be set. 1In addition, the low byte of the
word should be set to accurately reflect the nature
0of the device itself. A description of the bit
masks for the U.CWl field can be found in Appendix
Ba

ACP TCB Address. This word is an extension to the
normal UC3 wused by K&SX-11H. The word must be
allocated for devices wnich are connected to ACP’s
and follows the U.CNT field. dhen an ACP is
enabled, the word will contain the addrass of the
ACP®s Task Control Blocke. This the the TCB the I/O
packet will be queued to when it 1is sent to the
ACP. U.ACP is initialized when the ACP is enablad.

Volume Control Block Address. This word is also an
extension to the normal UCB and follows U.ACP. The
Word contains the address of the volume control
blocks It is initialized when the AC2 is enablede.

The foilowing code segment 1is the UCB for <the 2xamplie

device. The

vaiues are set for a UCP-style ACP implementation.

ACP CHECRLIST PAGE 3-8

«40RD O > (U.34WN) OWNING TERMINAL UCB ADDRESS

LANDC
«ACDZ: ;REF. LABEL.
- #0RD +ACDCB ;(U.DCB) POIMTER TO DCB
<4 0KD =2 ;(ULRED) REDIRECT UCB POINTER

«BYTE UC.QUE ;(U.CTL) CONTROL FLAGS
«BYTE US.HNT 7(U.STS) STATUS FLAGS
«BYTE 0 ;(ULUNIT) UNIT NUMBER

«BYTE US.RED ;(U.STS2) STATUS FLAGS

«¥0ORD DV.HNT ;(U.C¥l) DEVICE CHARACTERISTICS
«#CRD 0 7(U.CH¥2) DEVICEZ CHARACTERISTICS
«#W0ORD 0 ;(U.CW3) DEVICE CHARACTERISTICS

- #0ORD 1000 ;(U.C4d4) BUFFER SIZE

«AORD SACO ;(U.SCB8) SCB POINTER

«H0ORD 0 7(ULATT) ATTACH WORD

«#0RD 0,0 ;(U.BUF) BUFFER RELOCATION ADDRESS
«WORD 0 7(U.CNT) BUFFER SIZE (BYTES)

«40RD 0 ;(U.ACP) ACP TCB ADDRESS

« W0RD 0 ;{U.V¥CB) VCB ADDRESS

3.3 ACP DATA BASE DESIGHN

The final step in ths general ACP design 1is the AC?
specific data bases. Here, the ACP implementation has complete
freadom as RSX-11M imposes very few rulese.

Je3=1 Volume Control Block

One data structure common to all ACP°s is the volume
control block. This structure is allocated from the system pool
when an ACP is mounted for a device. The VYCB is linked to the
UCB by storing its address in U.VCBe.

The YCB is used to hold all unit specific information for

the ACP. The ACP pailoscpny allows seyeral deyices to use tha
same ACP. typicalily, the ACP treats e3acn devica as an
independent entity; ther=afore, a separate data pase 1is neede.

The YC3 servas 1tals purpose.

The length and format of ¥C3”s is ACP dependent. Only the
first word has & common usage. This is the transaction count
and is used to count tne number of outstanding I{/0 requests and
processas for the device. +“hen the VCB is alliocated, this word

ACP CHECKLIST PAGE 3-9
snould be zeroed.

Je3.2 HWindow Block

The other structurs common to aost ACP®s 1is the window
blocka This structure is completely ACP dependent and need not
be aven allocated from poole. #Window blocks are the structures
used to keep I/0 process—dependent information. The window is
allocated when the process is created by the ACP. The address
of the window is stored in the second LUN word of the LUT table
for the task which issued the 1I/0 request. The LUT table
address can then be retrieved from future 1/0 packets from the
same lun, and from it, the window addresse.

Window blocks contain whatever information is needed by the
ACP to map the individual I/0 request to the I/0 process. For
example, F1l1ACP windows contains the mapping information betueen
the logical blocks of a file and the physical disk blockse
Window blocks also typically point to other data structures used
by the ACP and form the key structure for the I/0 process.

3.3.3 Q0Other Data Structures

Finally, ACP”s may create new data structures. Any ACP
implementation should keep the system pool utilization to a
minimum. One method of accomplishing this is to use an ACP task
pool for the structures used only by the ACP and overflow into
the system pool only when the internal pool is exhausted. The
VCB and sindow blocks, which are usually in the system pool, are
kept short and point to the new data structures. This technique
is used by F11ACP for File Control Blocks.

3.4 DEVICE DRIVER IMPLEMENTATION

Onca the design of the R2I0 requests and data bases 1is
finished, the npext step is to implement support for the ACP in
the executive (DCP) or dewvice driver (FCP, CP). This section
follouws the example UCP, 30 the special support will be added to
the sample device driver.

In most cases, the ACP 1is being used with a new device
driver. If this is the case, the recommendation is to implement
and test the device driver without ACP support. Dnce the driver
is functional, it is a small step to add the ACP.

ACP CHECKLIST PAGE 3-190

1f the implementation uses a DCP, *the driver is usuaily
dnaware of the ACP; not driver zodifications are necsesSsaryes
The ACP? packst processing is done in DBRQRID. In the <case of
FCP"s and UCP7s, the code to support the special processing for
the AC2 I/0 packets 1is in the driver. In any «case, th=e
functionality provided by the code is the same. The next tuwo
subsections discuss the considerations on driver entry and ACP
packet processinge

3.4.1 Driver Entry

For FCP"s and UCP’s, the driver is called directly from the
executive and the I/0 packst is not queued, because UC.QUE in
the UCB is set. The driver logic then determines if the packet
is for the ACP or for itself. If the latter, the packet is
queuned to the SCB and the driver «calls SGTPKT to correctly
sequence I/0 service. The driver then processes the packet in
the typical fashion. For ACP packets, the special packet
processing discussed in the next section is used.

The following code segment 1illustrates how the driver

WOTLKSe. The example 1is taken from the driver for the example
presented so fare.

7
7 DRVINI IS5 CALLED WHENEVER A I/0 REQUEST IS ISSUED 10

s THE SAMPLE DRIVER. THE PACKET IS NGT QchED AND THE

; FOLLOWING REGISTERS ARE SET:

7

; R1 = I/0 PACKET ADDRESS

7 R4 = SCB ADDRESS

7 RS = UCB ADDRESS

’

DRVINI: MOVSB I.FCN+#1(R1),R0 GET FUNCTION CODE
CHP3 #IX. ACP/400,R0 ;IS THIS A ACP REQUEST?
BEQ DRVACP ; IF EQ - YES, GO PROCESS
cMPB #I0.CLN/400,R0 ;IS THIS A I0.CLN REQUEST?
BEQ DRYVACP ; IF Eq - YES, GG PROCESS

7

; QUEUZ PACKET TC DEVICE AND GET NEXT PACKET.

7

CRVYPET: HOV J.5CB{(X5),R0 ;GET DEVICEZ WUEUE LISTHEAD
C AL SRLINSP ;RUEUE PACKET Tpo DEVICK
CALL SGTEXT JGET NEAT PACKET
gcce CRYSRY s IF CC - SERYICE REQUEST
KETURY ;80 PACXET, RETURH

ACP CHECKLIST PAGE 3-11

3e4s2 Driver Packet Processing.

Once the driver decides the packet 1s for the ACP, it
performs the speciai packet processing and queues. the packet to
the ACP. There are any number of special checks that could be
performed and any number of methods to perform the checke The
Digital approach used in DRQID is to use polish-driven routines
to perform each <checke This allows 2a list of routines to be
specified for each type of I/0 function. The same approach is
used in the sample driver.

More important than the technigue used to process the TI/0
packet 1is the type of processing performed. The typical
processing performed before queueing the packet to the ACP is
listed below (the-order of the list is basically the order the
items would be applied; however, this is not hard and fast).
The 1ist of items below are typical of the processing applied by
the executive for DCP style ACP“s. The example driver code also
demonstrates all of the below operations in its processing of
the ACP functions. The Tule which decides if the
executive/driver or the ACP should perform the processing is
whetier the processing needs to be performed in the context of
the task which 1issued the 1I/0 request. If not, the ACP can
perform the operation. Otherwise, the operation must be
performed by the executive for DCP”s and by the driver for FCP*s
and UCP*s. Once a packet is queued to an ACP, an indeterminate
amount of time and events may happen before the ACP dequeues and
Sarvices the request.

l. The function code is verified for legal ACP function.
The executive only checks the high byte when processing
function codes, the driver needs to check any
subfunction fieldsa

2. The UCB is checked to see if the ACP is mounted for the
device.

3.« For functions which create I/0 process, the UCB is
Cheacked to ses if the ACP is marked for dismounte.

4. For functions which create I/0 processes, the logical
unit table 1s checked to see if a process is already
active for the lune

5- For functions wnich must be mapped to an I/0. process,
the logical wunit tabdble is checked to see if a process
is active for the lune.

6. For functions which raquire a specific relationship to
another, the window is checked to see if the function
is legal for the current state of the I/0 processe.

ACP CHECKLIST PAGE 3-12

7T« 1f specific parameters are not usad or required, the
I1/0 parameters. are checkeu to sese if they ars zero o7
NON=ZE&T 0.

8- Any user task addresses are address checkeda.

9. Any user task addresses are relocated so the ACP «can
map the user taske.

10+ In some cases, user buffers ars copied to system pool
buffars. This allows the ACP to access information
Wwithout mapping the user taske This 1is especially
applicable to attribute lists.

"~ 11. The volume transaction count is incremented.

12. If the ACP requires no further I/0 request be issued
from the 1lun, the 1lun is locked. This is done by
setting the low bit of the second 1lun word 1in the
logical unit table.

13. The packet 1is gqueued to the ACP and the ACP scheduled
for executione. This 1is a simple operation which is
done by calling the executive routine SEXRQP with RO
set to the ACP TCB address and R1 set to the I/0 packet
addresse. \ ‘

3.5 ACP IMPLEMENTATICH

Once the driver interface is finished, the ACP
implementation <c¢an begine Some of the implementation will be
common to all ACP’s. However, most will be unique to the
application being addressed.

J.5.1 ACP Packet Dequeuing

One common functionm of all ACP”"s is the dequeuing of ths
I/8 packets queued tp it from the exscutive. The executive
passes 1/0 packets to ACP?”s by linking them to the ALP"s recaiwe
queue and sScheduling the ACP for execution. The ACP retriesves
tne packet by entering system state and dequeuing the first
entry from its recesive queuc.

The following coda segmant is taken from the example ACP
and 1illustrates the basic root of an ACP. On task startup, the
ACP 1initializes itself. 0Once done, it enters a 1loop where

ACP CHECKLIST PAGE 3-13

packets are <
ACP stops itsel

dequeued and processed. If no werk is found, the
1
ACP €ill be res

When- the executive queues another packet, the

e
fe
cheduled and can repeat the loop.

dULACPS: sREF. LABEL

7 GO PERFORM THE INITIALIZATION PROCESS.

CALL ACPTHI sINITIALIZE ACP

7

; ENTER SYSTEM STATE AND CHECK RECEIVE QUEUE.

7

100035: CLR R1 JMARX NOTHING DEQUEUED
CALL SSWSTK,20005% 7;ENTER SYSTEM STATE
HOY STKTCB,RO >7GET GUR TCB ADDRESS
ADD #TRCVL,RD 77PUOINT TO RECEIVE QUEUE LISTHEAD
CALL SQRMVF > 7REMOVE QUEUE EANTRY
BCS 110035 77 IF CS - NO ENTRY, STOP
MOV R1,4(5P) 77RETURN PACKET ADDRESS
RETURN 77RETURN TO TASKX STATE

7

7 STOP TASK. WHEN WOXE, RETURYN TO TASK STATE.

7

11005: CALLR SSTPCT 77STOP CURRENT TASK (Us)

7

7 IF NO ENTRY DEQUEUED, LOOP.

7

200035: MOV R1,R3 7HAS ENTRY FOUND?
BEQ 10005 ;7 IF EQ - N0, CONTINUE LGCP

7

; DISPATCH ON I/O FUNCTION AND CALL PROCESSING ROUTINE.

7
MOV I.UCB(R3),R5 JGET UCB ADDRESS
<function dispatch code> '

7

7 WHEN FINISHED, CHECK FOR DISMDUNT PENDING.

; +

400052 BITB #US.MDM,U.STS{R5) ;IS A DISMOUNT PENDING?
BEQ 10005 ; IF EG - ¥0O, LOOP THROUGH QUEUES
CALL ACPMDM 7TRY TO COMPLETE DISMOUNT
BR 10003 7 NO LUCK - LOOP THRDUGH QUEUE

-« END NUL ACP

3232 ACP Packet Processing

The real smork of an ACP takes place after the packet is
dagqueued. dow ACP 3 process packets i3 strictly a function of
the individual ACP. The sample ACP illustrates some of the
common types of processing that may take place, such as reading

ACP CHECKLIST PAGE 3-14

.and w€writing buffers in the user

LA5Ka However, wmost of code
impismented Lo saryica the packeis

w4ill be of your own cre23aiion.

3.5.3 ACP Packet Termination

The final step an ACP takes in processing a packet is
packet termination. This is done by calling the SICFIN rtoutine
in the executive. This routine, rather than the S$SICDON/SICALT
routines, should be used since the driver is not busy.

3.6 TASK TERMINATION

Cne important, but often overlocked, feature of ACP"s |is
properly handling of wuser task terminatione The RSX-11¥
executive will not let a task exit until all outstanding 1I/0
requests are terminatsed and all outstanding I/0 processes are
destroyed. The former is typically a function handled by the
I/0 driver. In the latter case, the executive checks the second
lun word for each entry in the logical unit table. If the value
is non-zero, an I/0 process is assumed. The value would
normally be the window block address.

#hen a non-zero second lun word is encountered, the
executive constructs a IDLCLN packet and issues it as if the
task had issued the QIO from the lun with the outstanding I/C
process. The ACP is expected to abort the 1/0 process and zero
the second lun uword entrye.

The logic of the ACP must be able to handle an I1I0.CLN
function no matter what the state of the I/0 process. It is
impossible to predict when a task will encounter an unexpected
trap, be aborted by the operator, or exit without terminating
all I/0 processese.

3.7 ACP ENABLING

Two finai steps rcamain aftsr the ACP and driver ara
finisheds. A mechanism nust be ilmplemented Io <nabliz and disaple
the ACP? for the device. The common name for thesSe operations is
mount and diswmount. There are a variety of methoas that can be
used. These are discussed in detail in chapter 6.

ACP mounting is really guite simple. The complexity of
Digital®s #00 task comes from the muitiple functions it provides

ACP CHECKLIST

PAGE 3-15

and the details of actuaiiy performing a Files-1i1 or ANSTI

magtape

nounte. The e2ssential steps that gpust be accompiished

Wien an AC?2 1is mounted are listed belows The first list

contains

Steps typically performed by a separate snabling tasik.

The sample task C¥A demonsitrates each. of the sStepse.

1.

2.

3a

4.

Te
3.

9.

10.

1i.

If wanted, get any “mount-time™ options from the mount
command line. It may be necessary to allow operator
specified options to provide grzater ACP flexibilitye.

Check if the device is mountable (DV.MiIT=1).

Check if the device is not currently mounted
(US.¥MNT=1).

Check if the device 1is not marked for dismount

Allocate the YCB from system pool and store its address
in U.¥C3 of the (UC3.

Search the task directory for the ACP task and get its
TCB addresse.

Check the found task is am ACP (T3.ACP=1).
Store the ACP®s TCB address in U.ACP of the UCB.

If necessary, add an entry to the mounted volume 1list.
This will typically not be required for user-written
ACP s.

Schedule the ACP task for execution. The ACP will then
typically start with its dinitialization code. This
step is traditionally combined with 3 TI0.MOU request
being queued to the ACP. This reguest contains the
"mount-time™ parameters for the ACP. The I10.M00
request is not necessary if no information needs to be
communicated to the ACP.

If the 1I0.400 1I/0 request was issued, wait for
success/failure. , 1f failurs, output an error message.
Otherwise, just exit.

The remaining steps Iin the mounting process arzs typically
performed by the ACP. These steps are as follows:

-

i

2.

If an I0.H0U request was qgueued, dequeue it from the
receive qua2ue and process the parameterse.

Count the device mounted. This is usually an internal
ACP counter.

ACP CHECKLIST _ PAGE 3-16

3. Perform any device I/0 necessary for the AC? to Dbecome
activas.

1, Mark the device mountad (US.MNT=0).

5. Enter the ACP? main loope.

Tha steps above are followed by the sample ACP and ENA
taske. This <code can be used as a template for your ACP
implementation, or one of the alternate approaches discussed in
chapter 6 «can be used. 1In any case, in order for an ACP to be

successfully mounted, the following must have happened:

1. The VCB has besn allocated and its address stored 1in
U.VCBe.

2. The ACP*s TCB address must have been stored in U.ACP.
3. The ACP must have been marked as mounted (US.MNT=0).

4. The ACP must be active and ready to receive ACP
functions.

3.8 ACP DISABLING

The last step in the checklist 1is to implement the ACP
disabling (dismount) mechanism. If the system will not function
without the ACP, no dismount mechanism other than rebooting may
be needad. However, usually a dismounting method will be used.
The following steps are usually accomplished by a dismount taske.
The sample DIS task demonstrates these steps.

1. Check if the device is mountable (DV.MNT=1).
2. Check if the device is mounted (US.MNT=0).

3. Check if the device 13 already. marksad for dismount
{US.MDM¥=1).

dismount (US.H4DM=1).

P
°
£
f
=
~
[
s}
("]
foy
1]
]
e
(2}
]
iy
]
i

» Construct and queue an {0.0M3 rsgquest Lo thes ACP.

(%]

Ds Wailt for complefion of the I0.0MU and exit.

When an ACP receives a dismount request, it typically
paerforms the following stepse.

ACP CHECXLIST PAGE 3-17

l« Harks a dismount 1s pending for the device. This can
airesady Dbe considered done 2s the US.HDM bit is. set in
the UCB.

Z» Return the IJ0.DM0 request.

After a dismount becomes pending, the ACP then waits for
all activity to the unit to cease. This means no I/0 requests
are outstanding and all I/0 processes have terminated. When
this occurs, the following steps are takene

l. Mark the device dismounted (US.4NT=1).
2. Mark the dismount complete (US.MDM=0).

3. Perform any device I/0 necessary to deaccess the ACP
from the device. ’

4« Return the VCB to the pool and zero U.VCB.
5. Zero the U.ACP word in the UCB.

6. When all mounted units are dismounted, axit the ACP.

3.9 CHECKLIST SUMMARY

This chapter has described all the steps necessary to
implement an ACP. The checklist presented here was followed to
implement the sample ACP, its driver, and the ENA and DIS tasks.
These routines can be used as a basis for a user-written ACP,
leaving only the job of solving the actual probleme.

It is usually easiest to implement a UCP. This involves no
modifications to the executive and is a straightforward approach
once the checklist 1is followed. fFor the more advanced
programmer, the DCP and FCP approaches may offer advantangese.
HoWever, you are at the mercy of Digital with regard to their
future executive implementationse.

The remaining chapters discuss the naterial orasented here
in @mors detail. In particular, they prfesent the philososhy
benind the actuzai opserationse.

C4dAPTER 4

ACP/TASK INTERFACE

A user task interfaces to an ACP using the QIO directive.
The I/0 requests can be issued directly from the task or from
one of the logical 1I/0 service libraries: FCS or RMS. This
chapter discusses the ACP/task interface from the first two
perspectives. The RMS sources are unavailable to the author.
However, the approach used for adding an new ACP to FCS is
expected to apply to RMS.

4.1 QIO INTERFACE

The most common way to interface to a user-written ACP is
the QI0 directive. In an RSX-11M system, all I/0 is requested
using this directive, including I/0 from ACP”s. Adding support
for 1I/0 service from a user-written ACP is the same as adding
new QIO directives for a wuser-written driver. The only
decisions necessary are what function codes the ACP will service
and the [/0 parameters that will be used for each functione

The choice of I/0 function codes is simple. If existing
Digital function codes apply to the new ACP, they should be
used. %#hen using existing codes, the 1/0 parameters should also
be the same as the current Digital format. Then, no errors will
occur when I/0 is directed to different devices.

However, the more typical case is that the new ACP will be
implementing new functionality. In this case, the 1less
frequently used I/0 function codes snould be considerade. Thase
are tiae codes from 25-31(10). The subfunction field can be used
Lo actuaily distinguish betfween separate 4CP functionsa

dacause ACP"s typically use special processing for the 177
parameters, there 1is a great deal of freedom in their layout.
The parameters can be as complex as needed to pass and receive
information from the ACP.

Cne common technique used by ACP"s to allow passing of many

ACP/TASK INTERFACE PAGE 4-2

parametars are attribute lists. 4n attribute list is a2 buifer
whicn contains. attribute descripitocrs.. Zach descriptor describes
a separate parameter Lo the ACP. A typical attribute descriptor
consist of 3 code to identify the atiribute, the address of the
actual attribute, and size of the attribute. dhnen the 170
request is processed, the special processing code @maps the
attribute list and individually address checks and relocates the
attribute addresses.

This technique is used by F11lACP to allow reading and
writing of the various fields 1in the file header. hen the
attribute list is processed, a buffer is alliocated from the
system pool and the attribute code and size are copisd from the
user task. The attribute buffer is reslocated and the relocation
bias and displacement are stored in the system buffer. ¥hen the
I/0 packet is received by F11ACP, it can use the information in
the system buffer to read and write the atitribute buffers in the
user task. Appendix D contzins a detailed description of the
Files-11 attribute 1list processing. Also see the DRQRI0 module
for an example of how the executive processes attribute lists.

4.2 FCS INTERFACE

In some special cases, interfacing an user-written ACP to
FCS can result in significant advantages. FCS is the component
of RSX-114 that provides device independence and record 1I/0.
FCS examines the device c¢haracteristics of the assigned device
and 1issues 1/0 appropriate for the type of device. For example,
if a terminal is the assigned device, a PUTS request will result
in a I0.&WVB being issued to the terminale. However, 1if the
device 1s a disk, FCS w@will block the record to the virtual disk
block.

By adding support for new ACP®s to FCS, users can perforn
I/0 from FCS to the devices supported by the ACP. In addition,
the languages and utility programs which use FCS will then
support the new device. For example, Fortran I/9 uses FCS. 1If
FCS supports the new ACP, standard Fortran I/0 statements could
be a powerful method of perforaing I/0. The users of the ACP do
not nave to learn any new syntax to use the ACP and its devices.

tnly a fraction of user-written

-~ e

AC2”s are candidates for
interfacing to FCSa. The typiczl appiication @will involve an
impiementation of an aiternats file zysteme For example, 1f an
ACP? 4as «Written to support RT-11 disxs, interfacing the AL? to
FCS3 would allow the standard RSI-114 utiiities to directly read
and w@rite RT-11 filese. Another possibility is an ACP which
suppotrts remote I/0. For example, an ACP could implemented
Digital®"s Data Access Protocol (DAP). If such an ACP was
interfaced to ¥CS, RSX-11M programs could transparently access

ACP/TASK INTERFACE PAGE 4-3

remote file and devices.

There are two methods for interfacing a user-writtesn AC? to
FC5a if the ACP? wuses the Files=-11 23I37s, the new ACP nmerely
needs to emulate the services suppilied by F11ACP. With this
approach, little or no wmodifications would be needed to FCSe.
However, the ACP will probably have to go to great lengths to

translate the device protocol into Files-11 compatible formate.

The other approacn involves modifying FCS to perform unique
operations for the new ACP. fiere, the goal is to provide
completa compatibility at the user interface into ¥CS. 1In other
words, the functionality documented 1in the RSX/IAS 1I/03
Operations Reference Manual is provided by the combination of
the modified FCS and the new ACP. As long as a program does not
depend on Files-11 specifics, it should function correctly when
used with the new ACP.

There are ng hard and fast rules which apply to adding
support for a neWw ACP to FCS. The overall approach is to
examine how FCS operates for current ACP"s and modifying the
appropriate points to add logic for the new ACP. The next four
subsections comment on some of the basic points. In addition,
Appendix C provides detailed descriptions of each FCS module and
the various data structures.

Some general rules are to apply conditional assembly
statements to all new <code and to maintain object-level
compatibility. By conditionalizing the new code, different
versions of the FCS library can be maintained. For user tasks
wxfiich do not need to support the newm ACP, the Digital standard
version of FCS can be used. 0Only tasks requiring the neu device
support need to be 1linked to the special versione. By
maintaining object-level compatibility, a task needs only to be
relinked to receive the benefits of the nes support.
Object-level <compatibility requires that the code generated by
the FCS macros is not changed by the modificationse In
particularly, the space generated for the File Descriptor Block
and Filename Blocks should stay the same. Houever, fields
within these data structures can be redefined by the modified
#CS for support of the new device.

ran
L)
3%
]
[y
oy

File Specification

The FCS modules can be bdroken into four categories. The
first are @odules wnich are concecrna2d with parsing the file
specification into the device, directory, and filename
components and assigning the user lun to the specified device.
The major modules in this category ares the four parsing modules:
PARSE (parsing control), PARSDV (parse device name), PARSDI

ACP/TASK INTERFACE PAGE 4-4

{parse directory), and PARSFN {parse f{iienzme). In addition,
the 48SLUH. module assigns. the user lun to the specified device
and reads the device characteristics. The auxiliary directory
modules {(DIDFND, ODIFND, s2TDI, GETDIL, GETDIR, PARDY, and
PARDID) process files-il diresctory files. Finally, the RSX-11M
coamand sScanning routines (CSI1, C5I2) are used to scan entire
command lines

¥hen adding support for a new ACP, the @major concern for
these m@modules 1is to add support for any new form of file
specifications and to set up the FCS device characteristicse.
For wexample, if adding network file support, it would be
necassary to add a nodename field to the device specification.
If adding RT-11 support, the routines would have to be modified
to ignore or declare an error if a directory was specified.

The key is the fact that the first step performed by FCS
for all operations is to assign the lun to the specified device
and establish the device characteristicse. The ASSLUN module
performs the assignment and gets the device characteristics. It
stores the low byte of the devices U.CW1 field in F.RCTL and the
device buffer size in F.VYBSZ and F.B5SZ. The important field is
the device characteristics byte. This byte contains the bit
masks which are examined by FCS to determine the appropriate
operation to take for a device. For example, if the
record-oriented bit (FD.REC) is set, FCS assumes the device is a
terminal-like device and performs no record blocking. If the
bit 1is «clear, a block-oriented device is assumed (disk) and
records are block within virtual blocks. Therefore, the first
steno in adding support for a new ACP is to modify PARSDV and
ASSLUN to correctly assign the new device and to establish
device <characteristics which will allow other FCS modules to
unigquely identify the new ACP. Then, whenever special
processing is needed to support the new ACP, the F.RCTL field
can be tested and the a branch made to the zppropriate code.
For example, special directory and filename parsing logic can be
invoked if the device is established as a RT-11 disk volume.
The easiest method to identify a new type of device is to use
one of the undefined bits in the F.RCTL field (bits 6 and 7) and
set the remaining bits as appropriate for the new device.

Tha naext category of FCS moaules are the varicus JPEY
routines. U5 supports thrse methods of opening files: normal,
filsname biock, and file-ID. The first form calls the parsing
routines to setup the filename block and then opans the
gpecifiad device/file. The filename block version assumes the
parsing routines have aiready been callad. The final form uses
information from a previous file access to directiy open the

ACP/TASK INTERFACE . PAGE 4~-5

file. Yo parsing logic is invokeda.

Adding a new ACP? wmersly involves dispatching at the
aporopriate point in the UOPEN logic to perform any I/0 required
by the ACP to establish an I/0 procass. The new logic 1is
responsible for returning the appropriate information to the
FDB, particularly the file—attribute section (F.RTYP, F.RATT,
F.RS5IZ, F.HIBK, F.EFBK, and F.FFBY). These fields are used by
¥CS to determine how records should be processed, when new
blocks need to be allocated to the file, and where the logical
EOF is positioned.e #For files-11, these fields are stored in the
file header. FCS retrieves them when an existing file is opened
and stores the current FD8 values when a file is createde.

Onless the new type of device supports some unique file
identifier, the open by file~ID mechanism will either have to be
emuliated by the ACP or made illegal. The most common use of
file~-ID"s 1is by programs which open a file briefly, close it,
and reopen it at a later point in time. The file-ID from the
first open is saved and reused on the next access. For example,
the MACRO assembler uses this technique. Dne method for an ACP
to emulate file-1ID“s would be to save file names in a
least-recently used buffer or file and assign a number to map
the enitrye. If an open by file-ID is attempted, the file~ID is
used to address the table and retrieve the original file
sSpecification. When a new filename 1is entered, the oldest
previous entry is destroyed. 1In this fashion, the most common
use of file-ID®s by RSX-11M utilities can be supported.

4+2+3 Input/Cutput

FCS supports two forms of input/output. The first 1is
record I/0 which wuses the GETS$/PUTS calls. The other form is
virtual block I/0 and is implemented by the READS/WRITES
routines. The general approach for adding support for a new ACP
is the same as for the OPEN routines: add logic at the
appropriate points to test for the new ACP and branch to special
I1/0 logice.

It is important to remember that FCS 1is the element of
®SX~114 that defines =hat 1is a record, not Files-11. When
paerforaing racord outpur to a disk, FCS packs the records into
disk biocks and 1issues write virtual biocks to F1laCP.
Similacly, winen inputting records from a disk, FCS inputs
virtual siocks and unpacks the records using the racord
infofmation it originally provided wanen the record was writtene
Most importantly, wuser programs do not care that block I/0 is
being performed for their record I/0. They are only 1interested
in the record itself.

ACP/TASK INTERFACE PAGE 4-6

Thereifore, if the concept of block I/0 does noi apply Lo
the nex ACP, thera is no nead for any new 1o0gic to be addead to
FCS to block the user records. Instead, each GETS/PUTS call can

result in an I/DN regquest to the new ACP. FT3S biock [/0 can be
treated as meraly fixed=length record 1/80. An 2xample woulid Dbe
an ACP which implements the DAP protocols The protocol is oniy
concerned with records, so each GETS/PUTS call would generate an
input/output record raquest to the ACP. This greatly simplifies
the modifications nece2ssary to FfFC5 because ail the code
concerned with record blocking can be bypassed.

4.2.4 File Control

The final category of FCS routines are used for file
control operations: delete, rename, truncate, extend, etc. The
modules in this category are straightforuard and can be modified
for support of a new ACP with little difficulty.

If a particular operation is not appropriate for the new
device, it can either be ignored or an error returned. For
example, FCS has a user <call to enter a filename into a
directorye. It would typically be appropriate to just return
success if this operation does not make any sense to the new
ACP.

CHAPTER 5

ACP/EXECUTIVE INTERFACE

The ACP/executive interface is almost totally contained in
two executive modules: DR&IO and I0SUB. These modules are
concerned with processing user I/0 requests and providing the
common I/0 services wused by drivers and ACP”s. This chapter
discusses the basic principles of ACP 1I/0 processing and walks
through the code used for each style of ACP. ‘

5.1 EXECUTIVE PROCESSING REQUIREMENTS

The module DRQIO contains all the code to transform a user
I/C request 1into 1its 1internal representation and route the
resulting packet to the correct device and/or DCP. For FCP*s
and UCP"s, DRQIO 1is used to perform the common operations and
device drivers are used for any unique processing required by
the ACP. for this section, where any particular piece of code
is placed is ignored. The emphasis is on the operations that
must be performed before an I/0 packet can be queued.

Up to a certain point, user 1/0 requests must be processed
in the context of the user task. The following list documents
operations which fall into this class.

1. Any address in the user task space must be validated.
Specifically, the address of the QIO directive
parameter block, I/0 status block, AST address must be
checked. In addition, any addresses in the 1I/Q
parameters. must also bDe addrass. checkads :

2. Anv address ia the user task space to he usad by the
device driver or ACP must be relocated to a address
bias and displacement. In other «ords, the 16-bit usar
virtual address aust 5e converted to a physical memory
address 1in order for ACP®s to access or store
informatione.

ACP/EXECUTIVE INTERFACE PAGE 5-2

ATP 3.
routed
appilled

The above list applies 2aqually to I/80 for drivers and
o a

Yhen g axecutive dsiermines I/0 packet is To be

to an ACP, there are some oither tests which @must ba

perore the packef can pe gqueued to the ACP. ACP"s arse

cunning as tasks and ace affsescted by the scheduling algorithms.
Therefore, an indetzrminate amount of time may elapse before an
I/0 packet queued to an ACP is actually processed by the ACP.
This requires the state of the ACP and any I/0 process bae
checked before the packet is gueued and that no changes 1in the

state

can be allopswed until the packet 1s degueued. The

follouwing operations fall into this class:

1.

The device must be checked to see 1if the ACP is
mounted. This 1is done by checking the US.MGU bit in
the J.STS fielde The bit will be zero if the ACP is
mounted.

This rule implies the state of the US.MOU will not
change once the I/0 request is queued to the ACP until
it is dequeued. This is the reason for the transaction
count (see below). An ACP should not be marked as
dismounted until the tranmsaction count for the device
is zeroe.

The device must be checked to see if the ACP is marked
for dismount. This is done by checking the US.¥DHM bit
in the U.STS field. The bit will be set if a dismount
has been requested.

When an ACP is in the marked-for~dismount state, no new
I/9 processes should be allowsd. Therefore, this test
is only performed for I/0 requests which will create an
new I/0 process. The test will not be applied to any
functions wnich operate on an existing 1I/0 process.

For functions which create I/0 processes, a check nmust
be made to see if an I/0 process is already created for
the user lun. This is done by checking the second word
in the LUT table entry for the presence of a window
block address. 1If the word is zero, no I/0 process 1is
in effect and the request can be allowed.

This rule implies that an I/3 orocess #ill not be
created for the user lun once tne I/0 request 1is gueued
to the ACP? apnd until 1t is dequaued Dy the ACP. This
is the reason the the lup lock bit in the LIT tablea.
When the lock bitl is set for a user iun, the user task
cannot i1ssue any further 170 request from the lpgical
unit. Thersfore, the I/0 packet processing will set
the lock bit when a I/0 packet which creates a process
is queued to the ACP and clear the bit once the process
is <created. Similarly, functions which destroy 1I/8
processes w@will also set the lock bit to insure proper

ACP/EXECUTIVE IKTERFACE PAGE 5-3

synchronizaticn between the ACP and the user taske

4. For functions which must be mapped to an I/0 process, a
check must D= performed tc see if the I/0 process
exists. This 1is done by checking thke second word of
the LUT table entry for the presence o¢f a window block.
If the word is non-zero, an I/J process is in effect
and the request can be allowed.

5. Finally, any specific relationships required by the ACP
between I/U requests are checked. For example, an ACP
may not allow a particular operation until some other
criteriz have been establishad. This 1is done by
checking information in the window block.

Also, the window block may contain enough 1information
for the I/0 requests to be mapped at this point and
queued directly to the device driver. This is what
occurs for I/0 to disk files. If the disk window block
contains the mapping information for the read/urite
virtual request, the remapping is performed directly
and the packet is sent directly to the disk driver.
Ctherwise, the read/write virtual request is sent to
the ACP which updates the window information and routes
the packet to the driver.

The purpose of the transaction count is to insure no change
in the state of the ACP can occur betuween the time the state is
checked and the I/0 packet is actually received by the ACP.
Therefore, an ACP «can only be dismounted when the transaction
count is zeroed. The transaction count is incremented whenever
a Dacket 1is queued to the ACP and decremented when the ACP
completes the packet. The transaction count is also used to
indicate the presence of I/0 processese.

Similarly, the lun lock bit is wused to insure the 1I/0
process state 1is not changed between the time the state is
checked and the packet is dequeued by the ACP. When this bit is
sat, ‘the executive guarantees no I/0 request can be issued from
the lun. Therefore, any I/0 request which will change the state
of the 1I/0 process should lock the lun before the request is
queued to the ACP. The bit does not need to be set if the 1I/0
request w@will not affect the process statea.

5.2 3C

V]
(o]
'3
]
s
F—g':
e
a
251

All of the operations described by the previous section can
be observed by reading how I/D requests are processed for DCP’s.
The overall process is described by the RSX-11¥ Guide to Writing

ACP/EXECUTIVE INTERFACE PAGE 5-4

an I/70 ODriver manuaia In addition, the HSZ-11M System Logic
sanual contzins a flouw-chart of the sxecutive processings in
Chanter b

The above descriptions are oriespntsd towards processing of
functions wiich will eventually b2 routed to device driverss.
Tne next two sections outline the processing that occurs for a
I/0 function which will be routed to a DCP. The following notes
assume the I/0 request is to be routad to f11ACP and that the
following features have been selectad/not selected/optional:

AS$SCHK Address checking salected
A55CPS ACP support ‘ selected
D$SIAG On-line diagnostics not selected
L3SDRV Loadable drivers optional
MSSMGE Memory management selected
M55M0P Multi-user protection optional

5.2.1 SDRQIO Processing

A11 QIO directive processing starts at the label $DRQIO 1in
the DEQIO module. The first operatioas apply to all I/8
functions. The initial code checks that a QI0 is legal at for
the «current task and device state. Then the parameters to the
QI0 are verified. The following checks are made. If all checks
prove false, processing continues with at label 2435.

1. The lun is mapped to the devics 2and any redirect

pointers are followed. If the 1lun is 1illegal
(LG.IBLN]I > [H.NLUN3), a directive error of -95. is
returned.:

2. If the lun is wunassigned (CLfirst lun wordl = 0), a
directive error of -5. is returned.

3. If the lum is interlocked for use (bit 0 Esecond 1lun
wordl = 1), the task PC is backed up to reissue the QIf
and the task is placed in WAIT FOR SIGNIFICANT EVENT
statee.

NOTE

L A)

This is the feature usse Dy ACP [unctions to
syncnronize access to the 1/0 procsssas.

4, If the driver 1is not resident {LD.DSPI = 0), a
directive error of -6. 1is resturned.

ACP/EXECUTIVE INTERFACE PAGE 5-5

()]

B

If an esvent flag Was specified, clear
srror gof =97, iz returned if t
iliegal.

ite A directive
a8 ayent flag is

if an I/0 status block address was specifieu, check the
address and clsar both wordses

Allocate an I/0 PACKET. I1f this fails a directive
arror of -l. 1is returneda

NOTE

This is the last possible directive errore.
Both the event flag and I/0 status are
cleared before this error can be detected.

Increment the outstanding i/¢0 count
{CT.INCI K- LT.IOCI+1).

If the function w@was QIDw and an event flag was
specified, place the task in WAIT FOR EVENT FLAG state
for the specified event flag.

If no directive errors occured, the common fields in the
I/8 packet are ffilled ine. The code that performs this step
starts at label 245. The next step is dJdispatch based on the
type of I/8 function. The following steps are performed:

1.

2e

If the I/0 function code was kill I/0 (CLR.I0OFN+11 = 0),
control 1is passed to the kill I/O0 code. This code
calls SIDKIL and returns success for the kill I/0
function.

If multiuser support was selected (M$35MUP), the 1I/0
request access to the device is checked. Access is
denied and an I/0 status code of IE.PRI is returned if
the all of the following are true.

1. The device is ouwned (LU.OWN] # 0).

2. Public access is not alloweg {bit US.PUB,

CU.5T223 = N

3. The currtent owner i3 not the task that issued the
I/C request (LU.0%H3 # LT.UCB of currenti taskl)e

4. The current task is not orivilegad (bit T3.PRYV,
£T.ST31 = Q). \

ACP/EXECUTIVE INTERFACE PAGE 5-%6

The I/70 function code i5 checked Lo make s3ur2 it does
aot axcesed the maximum {(31.)- If it is does, an I/U
status code of IZ.IFC is returnsde.

3

n2 I/70 function code is changed into a bit maske.

Tha 1/0 function code 1is checked against the 1legal
function table in the DCB. If it is not legal, an I/0
status code of [E.IFC is returnad.

The device is checked to see if it 1is offline (bit
0S.3FL, L[U.S5T23 = 1). If it is, an 1/0 status code of
IE.OFL is returnede.

The I/0 function code is checked. against the control
function table in the DCB. If it is, control is passed
to control function service. This service copies the
six 1I/80 parameters to the I/0 packet and continues at
SDRERQ.

NOTE

This is the point a {(CP departs from the
normal ODCP packet processing. 3See section
5.3 for a discussion of how the remainder of
the packet is processed.

The I/0 function code 1s <checked against the no-op
function table 1in the DCB. If it is, an I/0 status
code of I5.5UC is returnsede.

The device 1is checikad to see if it 1is not mountable
(LU.CH1T > 0). If it is not, control is passed to 8035
and the following checks are made.

1. The I/0 function code is checked against the ACP
function table in the DCB. If it is not an ACP
function, control 1is passed to the transfer
function secrvice code. ’

2. If function is an ACP function, tie functiiocn code
is changed %o I0.4LE uniless the 7/9 function code
%8S I3.4VB whicna is converted to. I10.3L3. Control
i3 then passed to the transter function service
coids.

ACP/EXECUTIVE INTERFACE PAGE 5-7

NOTE

If you get here, the I/0 function code
aust be 21ither 10.3Y8 or I0.¥¥8B. 411
others will be handled incorreciiv.

At this point, the function is known that the function 1is
for a device which could have an ACP servicing it. The first
check performed is to see if an ACP is mounted or is mounted as
foreigne. If the device 1is not mounted or mounted as foreign
(bits US.MNTIUS.FOR LU.STS] = 0), control is passed to 603%5. If
no AC? 1is mounted (bit US.MNT, CLU.ST3]) = 1), the following two
steps ar2 performed.

1. If the function is an ACP function, an I/0 status
return of TE.PRI is made.

2. Otherwise the control is passed to the transfer
function service cods.

If instead, a foreign ACP is mounted, control is passed to
iabel 655 and the foreign ACP processing is used.

NOTE

This is the point a FCP-style ACP departs from the
normal DCP packet processinge See section 5.4 for
further detailse.

If the device is mounted by a known ACP, a <check is
performed to see if the function is an ACP function. If it is
not, a branch is made to label 755 and the following checks
made:

1. If the 1I/0 function is load overlay (10.LOY),
orocessing continues 3s if the function is a transfer
C2quUest.

issuing task is orivileged {bit T3.2RY,
Jr the function is alicuweqd and treaated as a

=3 e

et 1 b
=3 i
.
[%]

b Lo oy

(8]

[+

o

t

® L
1

[+)

o
.
€3

Ctherwise, an 1I/0 status error of IE.PRI is returnede.

ACP/EXECUTIVE INTERFACE PAGE 5-8

At this point, DRB{[IV has finally cecognized the I/30
functicn 3as. an AC? function to a mounted device. The special

processing code used for OCP"s 1is then 1nvoked. This is
performed by using the polish tables listed in the front of
SRGIG These tables are usad tTo <correctly dispatch ACP

functions to the appropriate setup routines. The tables have
- two parts. Table FCDSP contains the starting address of the
appropriate polish table for each function. This is follosied by
the polish tables. The ragisters and stack ars satup as shoun
below when the dispatch into the polish code begins.

RO = Address of UCB.

R1 = Address of second lun w@worde

R2 = Index into polish function dispatch table.
R3 = Address of Q.IOPL in GIG DPB.

R4 = Address of I.PRM in I/0 PACKET.

R5 = Address of next poiish dispatch vector.
(SP) = Address of second lun sord.

{(3P)+2 = Address of UCB.

(5P)+4 = 1/0 function code.

The processing performed by the individual polish routines
is listed below. To sees which routines are used by a particular
DCP function, see the tables in DRQRI0. The routines are 1listed
in alphabetical order.

BDPKT - This routine completes the I/0 packet for F1llACP
and MTAACP. It expects the following 1I/0
parameters in the Q10 raequest:

Be I0PM4+) = Address of file-1D
Q.10PM+2 = Address of attribute list
Q«I0PH+4 = Extend control word 1

Q. 1I0PM+6 = Extend control word 2

Q. I0PM+10 = Access control word

Qs I0PM+12 = Address of filename block

The file ID block and filename block are relocated
if present. The attribute descriptor block is
processed by allocating a buffer from the systenm
pool and copying the attributes from the user task
to the system buffer. The attribute addresses are
relocated. 1f any address do not check out, an I/0
status code of [Z.353P2C is rceturned. Otherwise it
dispatches ts the next enttv.

Yhen 3DPXT is finished, the parameiers in the I/C
packel ares formattad as follows:

I.P34+400 = File-ID relocation bias

1.PRM+02 = File-ID relocation displacement
I.PRY¥M+04 = Lddress of system attribute buffer
I1.PRM#06 = Extend control word 1

ACP/EXECUTIVE INTERFACE PAGE 5-9

CXALN

CXCOH

CXDIs

CXDMO

CK¥M0U

CKNLN

CXRAC

:,x
(]

li\ “1

R]

LA AL L

I~ 9?”+1Q = Extend control worg 2
I«PRM+12 = Accass control word
I.PR%*lm = Filename block bias
I.2RH+16 = Filename biock displacement

This routine checks if a file is already accessed
on the lun (ILsecond lun wWordl # 0) and returns an
1/0 status code of IEL.ALN if so. Otherwise it
dispatches to the next enirye.

This routine copies the QI0 parametecrs into the 1I/0
packet. The routine requires the first tuwo
parameters to be a buffer address and size and
relocates the buffer before storing. If the buffer
is not specified or is illagal, an I/0 status code
of IE.BAD is returned. Otherwise it dispatches to
the next entry. This routine is wused for DECNET
processinge.

This routine copies the QIO parameters into the 1I/0
packet and dispatches to the next entry. It is
used for processing the DECNET disconnect request.

This routine checks if the volume is marked for
dismount (bit US.#DM, LU.STS]1 = 1) and returns an
I/0 status code of IE.PRI if s0e Dtherwise it
dispatches to the next entry.

This routine checks the mounted volume list to see
if the volume <can be access by the user. If the
volume is public or the wuser 1is enterad in the
mounted volume list, the routine dispatches to the
next entry. Otherwise an I/0 status code of IE.PRI
is returned.

This routine checks if z files is accessed on the
lun (Usecond lun wordl # 0) and returns an I/0
status code of TIE.NLY 1if not. Otheruise it
dispatches to the next entrye.

This routine checks if the user has read privileges
for the I/0 process. If processing for F11ACP, the
Wwindow 1is then addresseg to sse if the read regquest
can be directly =mapped and gqueued to the driver.

This routine performs the same processing for write
requests that CXRAC periorms {or r2ads.

This routine cleans the stack, 1increments the
volume transaction count (L7.TRCT] <- CV.TRCTI+1l),
and exits queue I/0 PACKET code (see section 7).

#hen all polish processing is finished, control 1is passed

ACP/EXECUTIVE INTERFACE PAGE 5-10

to label FCXIT. The polish code flagygs wnather the packel canm De
queged dgdirectly to the ALP or needs. to be Jusued- to the devics
driver for proper synchronization. The listing of DRRIO
contains a complete description of the queueing and interlocking
paerformed by the executive.

5e2e?2 SDRERG Processing

The second entry in the DRQIO module is S$DRQRG. This 1is
the code that queues I/0 packets to drivers and calls the driver
initiator. The foilowing steps are performed.

1. Get the SCB address (LU.5CB1).

2. If the packet 1is not to be queued (bit UC.QUE,
[U.CTL] = 1), goto step 4.

3. Ruaue the I/0 packet to the SC3 I/0 queue.
4. If the driver is loadable, map KISARS into the driver.
5. Call the driver at the initiator entry point.

6« If the driver 1is 1loadable, restore KISARS to its
original contents.

Te Exit from the DRR{AID code.

NOTE

The entry 5DRURRX can be used to gueue an I1I/8 packet
that has been constructied by osther means. R1 should
be the packet address and RS the UC3 address.

S5e2+3 3GTPYXT Processing

The sexecutive normaily gueues I/0 packets to 2CP°s from
ODRGID. doweyer, 1i the packet needs synchronization «@ith the
dgevice driver, it is gueusd to tne device instead. The routine
S3GTPKT is used by device drivers to get their next packet. #hen
SGTPKT recognizes the I/3 function as an ACP function, it queues
the packet to the ACP and loops to attempt to degqueue another
packet for the driver. The tests for this step occur at label

ACP/EXECUTIVE INTERFACE PAGE 5-11

305 Basically, SGTPXT assumes 1if the device is mountabie
{ZULCHWLI < 0) and an DCP=-style ACP, all I1/0 functions from 7 to
31(10) should be queued to the ACP.

If the ACP 1is marked as foreign, S$GTPXT will checik the ©DCB
function dispatch wmasks to see if the functicn is for the ACP.
If the DCB mask bit is set, the packet will be queued to the
ACP, otherwise, it is raturned to the drivere.

5.3 UCP INTERFACE

UCP-style ACP"s are used to avoid modifying the executive,
particularly DRQIO, for support for the new ACP. 3Section 5.2.1
notes the point in the I/0 processing where the UCP . approach
deviates from the traditional ACP packet processing logice.

The deviation occurs because the 1/0 function is marked for
control processinge Control functions are processed beginning
at the label FCCTL. First, the device is checked to see 1if it
is a mountable magtape device and the I/3 request is rejected if
the task is not privileged. Toe avoid this processing, the
US.LAB bit in the UCB status byte (U.S5TS) should be zeroe

The next step is to copy the six {I0 parameters to the 1I/0
packet. This done by a call to FCXP1 at label FCX0OP. No checks
are made on the parameters. 0Once the parameters are copied, the
packet 1s passed to $DRQRQ for queueing to the device. Here,
the packat is passad directly to the driver initiator becausse
the UC.QUE bit in the UCB control byte (U.CTL) is set. The
driver than performs any processing necessary and queues the
requesi on to the ACP.

Note that the UCP interface does not require any
modifications to the executive. In addition, the interface uses
standard features of the I/0 mechanisnme Therefore, UCP-styilie
ACP®s can be interfaced easily to £SX-11M and future operating
system releases will not affect the user-written code.

The intarface for FCP°s is very similar to the UC?P
BTOC2351NY- Tha FCP logic 1s invoked 1f the device is marked
mounted and fore2ign and the function @masks indicate an ACP?
request. Section 5.2.1 notes the point in the I/J processing
where the FCP approach deviates from the DCP logice.

The FCP logic first checks if an ACP has been specified by

ACP/EXECUTIVE INTERFACE PAGE 5-12

ACP in the JC3 1is wnonz=2ro- [E the location is
~giolation is declared ({B.2Hi)a. dexty 1f a
storad 1in J.9C2, the YC3 transaction count is

caecxing that
720, 4 privile
¥£3 addrass 1i:
incrameniada.

The next step is to copy the six (I0 parameters to the I/C
packetl. This done by a call to FCXP1l at label FCX0OP. DNote, at
this point, the processing is identical to the UC? interface.
However, 1f the UC.QUE bit 1is nolt set, the packet is queued
directly to the ACP. Otheruwise, the packeft is passed to S$SDRERG
for gusueing to the device and the packat is passed directly to
the driver initiator because the UGC.GUE bit in the UC3B control
byte (U.CTL) 1is set. The driver than performs any processing
nscessary and queues the request on to the ACP.

While the FCP approach does not require any modifications
to the axecutive, it does depend on continued support for
foreign ACP processing. For this reason, the UCP approach 1is
favored if all other considerations are equale. The main
advantage of FCP"s is the support provided by MOU and DMO.

5.5 ACP INTERFACE

No matter how the I/U0 packet 1is processed, the actual
queneing to the ACP is done by the executive routine SZXRGP or
SEXRgF. These routines place the packet in the receive gqueue of
the desired task and schedule the task for sxecution. S$EXRQP
queues the packet by prioritya. The alternate =2ntry, SEXRQF,
queues using first-in, first-out logic.

Note, that the routines are used by the executive to
interface to other tasks basides ACP®s. For example, this is
the mechanism used to pass command 1lines to M¥MCR and abort
messages to TKTN.

An ACP receives the packet by entering system state and
removing the first entry from 1its receive gueues The logic
nacassary has alresady been discussed in section 3.5.1.

fog - E X T ey ad T AT P
Sa8 TASK TERMINATION

The only othaer aodule in the exacutive whicn 1is aware of
ACP”"s bDesides DRRIU and [88UB is DREIF. This module contains
the code used to clean-up the system data bases when a task
exits. A part of this clean-up is tc check that all outstanding
I/0 is completed and all I/0 processes have been terminated.

ACP/EXECUTIVE INTERFACE PAGE 5-13

Thie code for these steps starts at label 53 in DREIF. Th=
3L siep-1s to lest for outstanding I/0 by testing T.I0C. IF
value is nonzero, SIOKIL is called for each device assigned

DY the a2xitting f3skKe. ,

dnce the I/0 count has been reduced to zero, the logical
unit table is scanned again for attached devices and I/0
processes. Any attached devices rezsult in an I0.DET packet
being issued by the executive on behalf of the task. Similarly,
an I/0 processes still active will result in an I0.CLN packet
being queued to the device. This is done by calling S$DRQGRQ.
The packet should then be forwarded to the ACP and it should
terminate the I/0 process in a timely fashion. Otherwise, the
task exit will not be completed.

The test for an I/0 process is to check the second word of
each logical wunit table entry. If the lun is non-zero, an I/0
process is assumed. However, if the lun is locked, the I0.CLN
function will not be issued.

CHAPTER 6

ACP ENABLING/DISABLING

An ACP must be enabled before it can be used for user I/0.
Similarly, the reverse capability is wusually provided. The
common names for these operations are mount and dismounte. This
chapter will discuss the requirements for ACP enabling and
disabling and present five approaches that could be used by an
ACP implementation.

6.1 ENABLING REQUIREMENTS

ACP enabling merely means satisfying certain conditions
that allow user tasks to issue I/0 requests to the ACP. For the
Digital ACP“s, enabling a device is pecrformed by the MOU task.
However, the MOU task 1s not the only method for enabling an
ACP. Essentially, an ACP can be considered as enabled when it
is servicing I/0 requests from user task. The conditions that
must be met to reach this state are as follows:

1. The device is marked as mounted. The US.X0U bit in the
device status byte of the UCB indicates if an ACP is
mounted or dismounted. If the bit is zero, the ACP is
considered as being mounted.

2. The TCB address of the ACP is stored in U.ACP of the
CBe. This wvalue %ill be used when an I/0 packet is
queued to the ACP. The field will be assumed to be
valid if U5.M00 indicates the device 1is mounted
{(75.400=0).

3« The VYCB is allocatad from *the system pool. The address
of the V€8 1is storsd in U.¥C3 of the UC3. The first
word of the YCB will be usec as a transaction countar

and will be incremented when an I/0 packet is gqueued to
the ACP. The field will be assumed to be walid if
US.M0U indicates the device is mounted (US.M0U=0).

4. The ACP has performed any operations necessary to

ACP ENABLING/DISABLING PAGE 6-2

initialize itsslf and the device. i1t has verified user
170 tegquest wiil be laegal Ior the device and the
currant state of the RSE~114 sysiem.

Finally, the ACP is degqueuing I/0 packets from its
receive gqusue wilen they are queued to it by the
exscutive.

n
®

The 1ogic necessary to reach the state listed above is very
Ssimple. The complexity of the Jigital MOU task is because of
the device initialization operations and command processing it
performs and not the actual mounting of the ACP. For example,
when mounting a Files-11 disk, MGOU must read the Ffiles-11 data
structures on the disk and setup all the information needed by
£11ACP for using the volume.

Before an ACP can be mounted, the current state of the
system must be <checked to see 1if conditions will allow the
operation. Among the more <common checks performed are the
following:

1. The device characteristics word (U.C%l) in the UCB is
checked to see 1if the device is mountable. If the
device is not mountable (DV.MNT=0), the mount request
is disallowed.

2. The device status byte (U.STS) in the UC3 is checked to
see if the device is already mounted. If the device is
already marked as mounted (US.MNT=0), the mount request
is disallosed.

3. The device status byte (U.STS) in the UCB is checked to
see 1if the device 15 marked for dismounte. If a
dismount request 1is pending (US.MDM=1), the mount
rtequest is disallowed.

4., The device DCB is checked to sea if the device driver
is 1loaded. If the driver is not loaded (D.DSP=0), the
mount request is disallowed.

5. The system task directory is searched for the ACP. if
the TCB 1is not found, thes mcunt request is disallowed.

Se. The third status word of the ACP 3 TC3 is checkesd fo
saa 1f the task «as duilt as an ACP. TII is was noZ
{(T3.ACP=0), thne aount request is diszilowed.

7« The priviieges of the user are checked o see 1f he 1is
allowed to mount the device. Typically, if multiuser
protection was selected and the user is nonprivileged,
he must own the device or it must be marked as public.
Otherwise, the user must be »privileged in order to

ACP ENABLING/DISABLING PAGE 6-3

mount the devica.

gesides the common checks 1list abovae, wusuaily device and
specific AC? checks wili be made. 7For example, if labeiing
information is available on the dewice, it will be <checked
against user supplied values to insure the right volume is being
mountada.

-

o

The other operation performed when an ACP is mounted is to
process command options specifiede. A typical ACP will allow
options which to be spacified when it is mounted. The options
override any defaults establishad at assembly and build time.

In summary, mounting an ACP involves determining if the
mount request «can Dbe allowed, processing any options, and
setting up the ACP to process user requestse. A separate task
can be wused for this process, the ACP can be self-mounting, or
some combination of the two approaches can be useda.

6.2 DISABLING REQUIREMENTS

Disabiing an ACP reverses the process of mounting it. The
same approach is followed. First, the dismount request is
validated, any options are processed, and the ACP is dismounted.
An ACP 1is considered dismounted when it is no longer marked as
mounted for a device (US.¥3U=1). When all devices serviced by
the ACP are dismountsd, the AC2 task exitse

One point to note is that the actual dismounting of an ACP
occurs asynchronously from the dismount request. Before the
device can be marked as dismounted, all outstanding I/0 requests
queued to the ACP must be completed and all I/0 process must be
terminated. For this reason, a mark-for-dismount bit (US.¥DM)
is awvailable 1in the U.STS byte of the UCB. When this bit is
set, it signifies a dismount request has been made. The ACP
will <complete the process when all outstanding activity on the
device is complete. Also, no new I/U processes will be allowed
to be initiated.

The usual aporoach to dismount an ACP is for a sSeparata
task *to process the dismount request from the terminal and gqueus
an [J.0M0 pac to *the ACP2. Jnce the packet is reca2ived by fhne

ACP, it comple
finishad. Digi
The checks pe
process:

25 the process when &ll activiiy for the unit is
al”s 0OM0 task is an 2xample of this processSe
formed Dy ODMO are typical for any dismounting

l. The device characteristics word (U.CW1) in the UCB is
checked to see 1if the device is mountabla. If the

ACP ENABLING/DISABLING PAGE 6-4

devic
raque

(o

is not wsountable (DV.HNT=0), the dismount
3

Ptaaoy 4 2
t ALSALI0WRBUS

@

2. The dewice status byte (J.S5T5) in the UYC3 is checked fo
see 1 the device is mountad. If the device is not
mounted (US.HMNT=1), the dismount request 1is disallouwed.

3. The device status byte (U.STS3) in the UCB is checked to
see2 1f a dismount request is already pending. If a
request 1is (¥Us.40M=1), the dismount request is
disallowed. ’

4. The privileges of the user are chaciked to see if he |is
allowed to dismount the device. Usually, the same
checks performed for mount privileges are appliede.

when all checks are finished, the dismount process sets the
JS.MDM bit and queues an IJ3.DHMO packet to the ACP. This packet
is processed by the ACP in the following manner.

1. The I0.DMO packet 1s returned with the appropriate
code. Usually, this w@will be success

2. If the transaction count in the VCB 1is used 1in the
usually fashion, it will indicate the number of
outstanding I/0 packets queued to the ACP and 1I/C
pProcessesSe. Yhen the count reaches zero, the ACP can
complete the dismount process. Otherwise, it continues
to service 1/0 packats, reexaaming the transaction count
after every packet is finishec.

3« The ACP is marked as not mounted (US.u0U=1).
4., The mark-for-dismount bit is turned off (US.MD¥=0).
5 The VC2 is returned to the system pool.

6. The internalvcount of mounted davices is decremented.
When the count reaches zero, the ACP can finally exit.

Y Pakiil £ Ay n E sy A YT
D STANDARD APDPROACH

Digital”s solution to =nabiinyg and (disabling ACP”3 1is the
A0U and DHE #CH tasks. The next two sections outline how these
tasks functions and their applicability to user-written ACP°s.
In general, the us2 of the MOU and DH0O task for user-uwritten
ACP°s i3 not recommended because of the support problem for
future releases of the operating systen.

ACP ENABLING/DISABLING PAGE 6-5

53«1 MOU Task

The MBI task supports aountling Fiies-11 disks and AHSI
magltapess It also contains 3upport for DECHNET Phasa I
However, ¥3U is no longer used by DECNET. In addition, the
RSX-11¥ ¥3.2 version of M0OU provides support for the /FOREIGN
swWwitch. This is intended to allow MUU to be used for FCP-style
ACP"s.

The fiow through 40U is diagrammed in Figure 6-1. MDU
consist of two common modules wused for all ACP"s (MOUROT,
HOUPAR) and ACP specific parsing anc m®mounting routinese The
overall approach to adding a new ACP is to code a new parsing
and mounting routine and modify the dispatch points in MOU to
correctly call these routines for the new device.

The task entry to MOU is in the module MOUROT. 0n task
entry, an immediate dispatch is made to the entry S$MPREP in the
module MOUPAR. The initial command processing performed by
MOUPAR 1Is as follouws:

1. The parameter area used by ¥0U is zeroed. This area is
in 40UROT and is referenced throughout the taske.

2. The command line is input from the users terminale.

3. The device to be mounted is parsed from the command
linee. The remaining switches are not examined at this
point.

4. Lun 2 of the MOU task is assigned to the specified
device.

5. The UCB address is retrieved from the LUT table and
stored at label 3MDEV.

6. The device DCB is chacked to ses if the device driver
is loaded.

7. If the device is not a magtape (DV.REC=0), the unit is

attached.
Gnce the common command parsing 1is finished, the Jdavice
specific parsers are c¢allad from MOUPAR. The (L3 deviga

cnaracteristics are examined. o determine which dewice parser
should be used: #PARI1 (Files-11), #PARNT (4dSI magtapes), ot
AP ARCH (communications device). If #0U is to be used for a
user-written ACP, the <code at this point will have to be
modified to dispatch to the new ACP parsing module.

ACP ENABLING/DISABLING PAGE 6-%6
SHOUEP (HMOURCT)
i
| JsR
i
S
SMPREP (HOUEAR)
i
{ Jup
i
..................... N ———
H l i
} Files-11 } Magtape] DECNET
| } i
N/ \1/ A\ ¥4
SM11PR {#PAR111) SMATPR (MPARMT) SHCMPR (MPARCHM)
i i i
| ! Return |
i 1 i
——————————————————————— +———-—— -
i
] JsSR
i
----------------------- -} - - - -
i] i
] Files-11] Magtape i DECNET
i i i
\/ {7/ A/
SM11EP (M110Y) SMMTEP (MMTOV) SMCMEP (MCHOY)
| i i
!] Return {
{ i i
....................... + -
i
} JSR
i
\l/
SMDISEP (MDIsOV)
‘ .
i Return
1
\i/
Exit Task

Figure 5-1
M04U TASK FLOw

P

ACP ENABLING/DISABLING PAGE 6-7

T™e parsing modules perform basically the same operationse.
The {following sieps are parformed:

1. The VYCB is allocated from the system pool. The address
of the buffer 1is stored in SMYCB and the size in
SM¥CBL. The initial ¥CB is zeroed.

3%
.

The remainder of the command line is parsed for the ACP
specific suitches.

3. The user privileges are examined to see if the user has
the necessary access to mount the device. The check is
performed by the routine $PVTST in the module MUUPAR.

4. If needed, the mount list entry is allocated and filled
in with the ussrs terminal UCB. The mount list entries
are used for disks and do not need to be used for
user-wWwritten ACP°s.

When all parsing is completed, control is returned to
M0URQOT. Here, some of the basic tests are performed and a
dispatch is made to the device specific mount modules: M110VY
(Files-11), MMTOV (ANSI magtapes), or MCMOV (communications
devices). This is the second point modifications will need to
be added to correctly dispatch for the new ACP.

The actual device mount takes place in the device specific
mount moduies. The disk and magtape routines perform device I/0
to read the volume labeling information. The best routine to
use as an example is MCMOV. This routine has no device specific
I/0 and therafore can be more easily read. The usual processing
performed for a device is as follows:

1. The system task directory is searched for the ACP”s
TCB.

2. The TCB is examined to see if the task was built as an
ACP.

3. The I/D packet for the ID.MOU raquest is allocated from
system pool and initialized.

4. The davice is detachede.

The =zddra
in the i€

®
&
[#]
L)
®
[«

5 of the VL3 allocatsd or

-

visusly is 31

[« ¥}

5. The VLB transaction count is incremented.
7. The device is marked as mounted by clearing US.MNT.

8. The TCB address of the ACP is stored in the UCB.

ACP ENABLING/OISABLING PAGE 6-8

MU

3. The ID.4D0 function is queued directly to- Lhe -
ts. 170

A

4

is »2iaced into I/ wait zand 1% increments
counte.

When the ACP completas the I10.¥0U function, it returns
success/failure to HGOU. The MDOU task then cleans up, outputs
any volume information, and exits.

6.3.2 MOU JFCREIGH

A new feature of ¥MOU in RSX-11M V3.2 is the support of the
JFOREIGN suitche. This switch allows user—-uwritten ACP"s to be
enabled for devices. Unfortunately, ths implementation 1is not
easy to follow. However, the feature does provide a mechanism
for mounting user-written ACP°s without modifing MOU or writing
any new code. If used, the MOU sources should be studied to see
how the switch affects the normal processing performed by MOU.

65.3.3 DMD Task

The DMO task consists of one module, DISMNT. The procedure
for dismounting a device is much simplier. In some cases, the
DMO task may be used for user-Written ACP”"s without
modificatione.

The flow through DMO begins at the task entry, SDMCEP. The
processing is as follows:

<To be uwWritten>

6.4 HNON-STANDARD APPROACHES

As stated bafore, the usa of the Dlgltal ¥0U and DMC task

is not ecommenced for user-w@ritten ALP scecauyse of the support
problem from raleass Lo Taelsasa of fise 2;er3t1aq sYsteta Th=
fa;laaing appronaches can be used inst2ad.

ACP ENABLING/DISABLING PAGE 6-9

Sedsl Self-Initialization

T™he easiest aethod of initializing an ACP is for it do the
mounting itself when 1t is first scheduled. This. approach is
appropriate for ACP“s which service only one device driver and
involve no option processing. The ACP can allocate the VCB,
setup the UCB status as needed, and perform any device
initiaiization. dnce mountad, the initialization code can be
sverwritten as data space. Another possibility is to place the
initialization code in an overlay seumente :

Usuwally, wnen tnis approach is used, the ACP is essential
to the operation of the device and there is no reason to every
dismount it. Therefore, the disabling step can be ignored.

6+.4.2 Driver Initialization

A aiternative to the ACP self-initialization approach would
ba for the device drivers serviced by the ACP to initiate the
mount. If the UC.PHF bit is set in UCB, the power Trecovery
entry in the driver is called when the system is booted or the
driver is loaded. This entry can be used to start the mount
pProcess. Either the driver <c¢an set the necessary status
directly or it could queue a IC.DMO packet to the ACP and let it
finish the operatione.

The same disadvantages apply to this approach as for the
previous section. There is no convenient method for dismounting
the AC? and inputting mount-time options. Houwever, the approach
does allow several different drivers to each mount the ACP
separately for themselvese.

Ds4¢3 Alternate Task

A final approach 1is to implement new system tasks to
specifically mount and dismount the user-written ACP. The tasks
can be modeled after tne #0U and DMO tasks. The new tasks can
serfora any speclal processing. reguigfed. The aajor advaniage of
Lhis. approach is the independence gained from future Digital
aodifications to “0U and OO

This approach w@was used by DECH¥ET to mount NETACP and set up
the Other softiare. e sample ENA and DI5 programs distributed
wWwith tiis manual can be used as 3 basis for the ACP specific
enabling and disabling tasks.

CHAPTER 7

ACP TMPLEMENTATIOHN

Tnis chapter covers some of the basic considerations of ACP
implementatione The material 1is not exhaustive and will not
apply to every ACP. All ACP implementations will be different
and no fixed set of guidelines can govern how an ACP will
function internally.

7.1 TASK ATTRIBUTES

ACP”s are constrained by the 1limits RSX-11M places on
privileged tasks. RSX-114 associates a set of attributes to
eacih task in the system. The proper definition for each
attribute will have to be decided when the ACP is implemented.
Some of the attributes involve trivial decisionss the
partition, taskname, =atc. Jthers are more important and ara
discussed in the following two sectionse.

T«1l.1 Task Mapping

The major task attribute to be considered is the ACP task
mapping. Figure 7-1 diagrams the mapping for a privileged taske.
The first four APR"s (APRO-APR3) are always mapped to the
executive. APR4 1is mapped to the exscutive if 20K executive
support was selected when the system was generatede. If the ACP
is to b2 portable betuwean systems, A2R4 should not be used.

tormally, the ACP is thea left with APRS and APR6 o aap
its task «code and APR7 to @map the I/0 page. If 8 %W is not
2nough @memory, the ACP can extend into the I/G page. dosever,
4nen a s«€itch is made to system state, Lhe executive will unmap
the ACP"s APRT and map the I/0 page. If the top of the ACP is
used for data and not code, this restriction will usually not be
a problem.

ACP IMPLEMENTATIUOHN PAGE 7-2

e D i {
7 i i/0 Page 1 1506000-177717H
=== -- -- i
5 4 |
je—- AC? -——] 120000~-157775
3 | i
- - - i
4 | ?2 (R$SEXV)] 100000~-117776
j=- = —————————{ '
3 ! i
| === -—i
2 i {
j=—- Executive -==1 000000-077717%
o1 | i
}=-—- -]
0 i _ i
i-- ——— - i
Figure 7-1

TASK MAPPING

Te«1.2 Task Build Requirements

When linking the ACP, several TKB options apply. First,
the task should be declared as an ACP with the /AC ssitch. This
TXB switch causes T3.ACP to be set in the TCB when the ACP is
instazlled. “hen T3.ACP i3 set, the executivs prewvents sends to
the ACP? taske. This is desirable beczuse the ACP? 1is rTeceiving
the TI/0 packets on its receive gueue and would have trouble if
some other task were allowed to sand it messages. The /JAC
sWwitch 1is also wuseful for identifying the task as an ACP when
the device is mounted.

The /AC switch also <causes the task to be marked as
privileged. The other TKB switches used can be set according
the ACP implementation.

There are no spacial TXB options that apply strictly to
ACP”" s Therefore, the options specified will be a function of
the ACP implementation and the enyvironment the ACP will be
axacuted in when it is mounted. 2One consideration is whether to
yse a separate partitisn for the ACP other than the one used forv
isar Laskss 4 lock=-out conditisn can occur if a3 usar tasx
issues z2n [/0 raguest to an ACL? wnicn is swapoad out because of
Lhe usar taske.

ACP? IMPLEMENTATION PAGE 7-3

7.2 DESIGH CONSIDERATIONS

This section commenis on scme generai design considerations
for ACP”s The list is not exnaustive and has been developed from
past experience in writing ACP"s.

Besides receiving I/0 requests from user tasks, ACP’s
usually issue 1I/0 requeste. These request can be to device
drivers or to other ACP”s. Normally, the ACP would use the QIO
directive for any I/0 it needs tc performe. However, when
performance is an issue, the ACP can bypass the normal executive
directives and interface directly to the driverse. In
high-performance environments, the ACP and the driver may
actually wuse cooperating code and bypass RSX-11¥ altogether.
How an ACP performs its 1/0 using non—standard logic is strictly
up to the implementation.

7.2.2 Transportability

Often, an ACP is required to run on a variety of wmachines.
The ACP coding can be greatly simplified if the -ACP is
restricted to one type of machine. However, by using
conditional assembly symbols and interfacing correctly to the
executive, it is possxble to write an ACP that will properly
function on all PDP-11-s

The biggest difference between machines is the presence or
absence of memory management. Typically, any code used to move
information between the ACP and a user task must be assembled
@ith conditionals for memoTy management. On a mapped systen,
the APR"s must be wmanipulated. Un an unmapped system, the
entire system can be addressed directly. The problem can be
avoided by wusing the executive routines to manage data
transfars.

The other large difference between aachines is arithmetic
instructions. The odder PDP-1173 do nei have the HUL/DIY
instructions. If iransportapliity is desired to such machines,
the exXecutives S$01Y/3580L routines should be useda.

ACP? IMPLEMENTATION PAGE 7-14

23 Pool Utilization

HostT RSA-11# systems suffer frow a lack of pool. ALP"S are
a potential large user of pool. Limits on the amount of pool an

ACP can use and use of internald versus system pools should be
considered in the design of an ACP.

The typical appcoacn is to create an internai AC? pool that
is structurad the same as tae ASX~11M system pool. The size of
the pool is a mount or link—-time option. Whenever the ACP needs
to allocate an intecnal structure, an attempt is first made to
allocate from the ACP poole If this fails, the allocation is
attempted from the system pool. dhen the structure 1is
deallocated, the address indicates to which pool the memory is
returned.

Te2.4 ACP Variables

The design of an ACP should consider the amount of
flexibility that will be built into the code. There are four
types of ACP variables: assembly-time statements, TKB switches,
mount-time options, and run~time I/0 functions. For example, an
ACP may use a separate LUN for each iI/0 process it supports. A
TKB option would specify the maximum number of luns the ACP can
use. A mount-time option would then specify the number of
actual luns to be used (up to the taskbuilder limit).

A good practice is to make the defaults for each option
settable by the taskbuilder GBLPAT and GBLSYM commands. This
allows each installation of the ACP to specifically configure
its default optionse.

Te.2.5 Parformance Statistics

If the ACP supports options, it should then accumulate
statistics on its parformance. This w@would allow adjustwent of
the entions to maximize 2erformance 1n a given aavironment.
£8P will be faczd with a

Yithout statistics, e users of the A
situation similar to F11ACP. Thers are many sSwitches for
aounting 23 diske. domevec, axcept for =2y=2bailing the systemn

pecformancs, there i3 no w<ay {0 teil how a particular option is
parforming.

I1f performance measurements are used by the ACP, it the
performance code should be conditionally assemblede. This would
“allow a smaller version of the ACP to be assembled after

ACP IMPLEMENTATION PAGE 7-5

sufficient experience with the variocus options is obtained. In
addition, some method of esxamining the sStatistics is. nesded.
This <c¢an be as simple 23s using the HMCR OPEN command to examine
Known locations. [n other cases, the ACP may support /0
functions to return i3 performance datzae One final method is to
Keep the performance data in the system pool and implement a
separate task to access the data and print reportse

Te2.6 Serial Versus Parailel Processing

The final consideration in the design of the ACP is whether
it will process wuser I/0 reagquests in serial or parallel. A
serial ACP will only process one I/0 request at a time. This
greatly simplifies the implementation because only one set of
internal data bases needs to be kept and the flow through the
ACP is completely synchronous. The ACP only attempts to dequeue
an I/0 request from its receive queue when it has finished the
previous request. F11ACP is implemented as a serial ACP.

The serial approach is appropriate for ACP”s which service
fast devices such as diskse There will be little delay for ACP
I/0 The disadvantage of the serial approach is that the ACP is a
bottleneck in the I/0 mechanismse

An ACP which allows parallel processing of user I/0
raquests will typically support cne I/0 request for each I/O0
process. Such an apprvach is particularly applicable for ACDP2"s
which service communication devices. NETACPF is an example of a
parallel implementation. There is a significant delay betueen
the time the wuser DECNET QIO is issued and the necessary NSP
protocol has been exchanged to fulfill the request.

However, this approach is much more complex to implemente.
Many of the data bases and variables used by the ACP will have
to be duplicated for each 1/0 process. In addition, the 1logic
of the ACP must be able to save the context of one operation
when it reaches a checkpoint, process another I/0 function for
another process, and eventually Tesume the original processe.
This requires the ACP code to be raentrant and some sort of
internal scheduling algorithm to be implemanted. :

7.3 CEBUGGING HNUTES

Because ACP"s usually involve complex 1logic to implement
tneir protocols, much of thne time spent in development will be
devoted to debugging. In addition, because bugs in the ACP are
likely to «corrupt the operating system, the stability of the

ACP IMPLEMENTATION PAGE 7-6

macnine for other users w@will be raducada.

One advantage of ACP” s 1s that 00T can be used on the task
portions of the implementation. However, JO0DT cannot be used to
breakpoint wWithin portions of the ACP code that run at systen
state. In such code, XDT would have to be useds. Similarly, L0717
would have to be used for debugging any driver or exeacutive coda
involved witn the ACP.

Anotner problem in developing ACP”s occurs 1if the ACP
tarminates abnormally while still mounted. The data structures
still mark the ACP as being mounted and the typical umethod to
clean them up is to reboot the systeme One alternative to this
approach would be to write a special privilege task that
destroys ths ACP data structures to the point where you can
remount the ACP. #While som= pool may be lost, the basic
integrity of the system can bea preserved.

CHAPTER 8

EXECUTIVE SERVICES

There are many executive services an ACP can use. This
chapter briefly describes some of the services available from
the executive. There are many other facilities which are not
documented in the chapter. The actual calling seguences for the
routines can be found in the executive listingse. The routines
are also documented in the RSX-11M System Logic Manual.

Be.1l SYSTEM S5TATE

Before an ACP can use an executive service or manipulate
system data structures, it nust make sure its access to the
executive is correctly sychronized with otner system activity.
This 1is done by switching to system state. Once a switch to
System state 15 made, the ACP is running as a part of the
executive and must follow all rules applicable to the kernel
state. For example, directives cannot be issued from systen
state and any unexpected trap will cause the system to crash,
rather than aborting the ACP.

The switch to system state is accomplished by issuing an
EMT 376. This instruction is followed by thes address to return
to #When a return is made to task state. The following
summarizes the switching to system state process:

Call By: CALL $SWSTK,addr (RSXHC . MAC)

Ganerstes: EMT 376
+WORD addr

ffact: X2fturns to next instruction
Switches to xernei mode
4aps user APR"s 4(?),53,5 10 kernei space
Xernel APR"s 0,1,2,3,4(?) mapped to executive
Kernel APR 7 mapped to I[/0 page
Saves all registers

EXECUTIVE S&RVICES PAGE 8-2

to "addr®

4 B ity i m A i F >~ 3 - p

Exit By RETHRAN instructione. EX t
r 24
r 2

Sre=-kernel registers.

o
i
=
;S

it i
estio

Jalues can be returned in R29-R3 by storing walue
in 2{38P) to 13(53P) before RETURYN

8.2 I/0 TERMINATION

One service used by ACP"s is I/U packet termination. The
1/C termination <code is located in the exscutive module I05UB.
Three entries are provided by the executive: SICDON, SIDALT,
and SIOF1Id. The first two entries are used by device driverse.
In addition to the I/0 packet termination, these routines free
the device for the next 1/80 packet. The SI0FIN routine is the
entry usually used by ACP"s as it does not affect the driver
data bases.

8.3 ADDRESS CHECKING

Another service provided by I0SUB 1is address checkinge.
dhenever an address 1is passed from a user task to an ACP, it
must be checked by the executive to make sure the address is
within the boundaries of the user task. This check must be done
in the context of the user taske. Therefore, address <checking
nust be performed before the I/0 packet is gqueued to the ACP.

The executive provides five entries for address checking.
The first three, S$ACHKP, SACHKY, and SACHK2, are only used for
directive processing and do not return errors to the caller.
Instead, they return an directive status error if the address
check failed.

The two entries used for I/0-related address checking are
SACHKB and SACHCK. The first entry checks for proper byte
alignment. The 5ACHCK requires word alignmente. The routines
return with the carry bit clear/set as a success/failure
indicator.

d.4 ADDRESS RELUCATION

In order for an ACP o address a user~task address on a
mapped system, the user-task virtual address must be transformed
into 2 relocation bias and offset. As in address checking, this
process must be performed in tne context of the user taske.

EXECUTIVE SERVICES PAGE 8-3

Two =ntries. in Ti35UB provids support for adgdrass
ralocation. The firs routine,. SREL3C, transfogrms the user

virtuali address into a relocation bias to be loaded into APRS
and the APRS displacement. Thesa vaiues can then be passed to
the ACP, wnich can then use them to Map the user task addresses.

The second routine 1is named SRELOM. The routine in
addition to performing the address relocation, loads kernel APRS
with the address bias. This routine is used by the executive
andfor drivers when procassing an ACP I/G requesi and
Teading/writing user-task memory.

8.5 BUFFER ALLOCATION

The executive module CORAL contains support for buffer pool
allocation. The routines are normally wused to allocate and
deallocate space in the system pool, however, they can be used
to manage any buffer pool which follows the RSX-11M system pool
mechanism. The System Logic Manuals provide details on this
mechanism.

Two entries in CORAL can be used for buffer allocatione.
The SALOCB entry is the general system pool allocation routine.
The SALOC1 is an alternate entrye. Here, the buffer listhead
address 1s passed to the routine instead of defaulting to the
system pool as in SALOCB.

HOTE

The SALCLX (allocate clock queue entry) and SALPKT
(allocate I/0 packet) should not be used by ACP’s.
These routines return a directive status error if the
allocation fails instead of an error return to the
callere.

3.5 BUFFER OEALLOCATION

(€

CORAL also provides two buffar deazllocation entries.
$DEACB is the general system opool deallocation routine. S$DEACI
is the aiternate entry for general deallocation of buffers for
nonN-system pools.

EXECUTIVE SERVICES - PAGE B-4

.7 QUEUE MANIPULATION

[«¥]

The wmoduile RUECE provides a vwariety of eniries to
manipulate the various KSAi-114 gueues. The aost usad entries
are S5uINSF, $31IMSP, and SQRHVF. The first two routines

respectively 1insert by first-in, first-out or by queue entry
priority. #hen priority insertion is used, byte 2 of the queue
2ntilry 1s assumed to contain the prioritye.

SURMYF removes the first entry in the queue. This routine
is used by all ACP“s to rtemove I/0 packets from the receive
gqueue. It may also be used for internal AC? queues or other
RSX-114 data structurese. .

8.8 DATA TRANSFER

The module BFCTL contains an extremsly useful routine for
passing data between ACP*s and the user task. The routine
SBLXI0 moves a block of data betseen any two points in a mapped
system. It 1is called with the number of bytes to move, the
source APR5 bias and offset, and the destination APR6 bias and
offset.

NOTE

The other routines 1in this moduls are for device
driver usage. They expect the UCB to be set up and
should not be used by ACP s.

8.9 TASK SCHEDULING

The last executive services commonly used by ACP®s are
found d4n the module REQSB. Thes toutipnaes in this module perform
tasx schedulings. The most uaseiul sntries are SEXRGF, SEXRGP,
and SCXRQH. These routines pass an I/70 packei {0 the raceive
queue of the raguestsd Task anag schedula the task {or sxecuiiona
If the task 1is not active, it 1s rfun for the first time.
Otherwise, the *task is unstopped and potantially becomes
avallable forf eXecuilion.

Another useful routine is $STPCT. This routine stops the
current task and is used by ACP"s to stop themselves when they
have no work to do. Hote, when calied at system state to stop

EXECUTIVE SERVICES PAGE 8-5

the ACP, the routine merely aarks the ACP? TCB as being stoppede
The actual rescheduiing does no& occur until the ALP exits
System sStatz.

APPENDIX A

READINGS/REFERENCES

This appendix lists documents that anyone «riting an ACP
should be familiar withe It 1is 1impossible to present an
exhaustive list because "everything™ one needs to know to wuwrite
an ACP is an intimate knowledge of the systen.

A.1 DIGITAL MANUALS

The following is a 1list of the most relevant RSX-11M
mAaAnuals. ¥o single manual deals with the subject of ACP"s. In
fact, the manuals contain little information directly applicable
to ACP”"s. The information concerning ACP”s must be extrapolated
from descriptions of other subjects.

A.l.1 RSX-11M Executive Reference M¥anual

This manual describes the available executive services and
system directives. It also presents some material on the
structure and design of the operating systeme.

A.1.2 RSX-11M Crash Dump Analyzer Reference Manual

This manual describes the use of the Crash Dump Analyzer
(CBA) wutilitve. ®hile the ACP implementor will certainly become
very familiar «with <crashes, the @most valuable section is
Appendix B which 1list the system data structures and symbolic
offsets. ‘

READINGS/REFERENCES PAGE A-2

A.1e3 IAS/RS5X-11 I/0 Uperations Reference Manual

This manual describes the use of the File Control Services
(FC3), including diagrams of the FCS data structures. The
manual is only important to someone interfacing an ACP to FCS.

3,1:4 IAS/RSX~-11 RMS5-11 Programmer s Reference Hanual

This manual describes thea wuse of the Record Management
Services (RMS). However, it contains no information on RMS
internals or data structures. The manual is only important to
someone interfacing an ACP to RMS.

A.1.5 RSX-11M 1I/0 Drivers Reference Manual

This manual describes esach RSX-118 1I/80 driver and the
format of the 1I/0 regquests serviced by each driver. The
appendices contain useful summaries of all Digital defined 1I/C
requests and error codes.

A.lebd RSX-11M Guide to Writing an I/0 Driver

This manual contains the information necessary to write an
I/80 drivere. It also presents the best description of the
overall I/0 process. It contains descriptions of the I/0 data
bases and basic I/0 flow. This manual is a good starting point
for anyone considering writing an ACP.

Aele7T RSX=-11M System Logic Hanuals

This two-volume set 1is not 1included 1in the RSX-11X
documantation kit. However, 1t should be considered a "must™
purchase for implementing an ACP. The set contains information
on the structure and design of 2SX-11M. It also includes
descriptions of all executive modules and data bases.

READINGS/REFEZRENCES PAGE A-3

4.2 SOURCES

The final authority on x3X~11# is the source listings. The
RS5X-11¥ binary distribution kit includes the sources for the
executive, device drivers, and MCR. The wutility source kit
supplies sources for all utilities, FCS, F11ACP, and the macro
libraries.

The sources are very well written. This section mentions
the most useful modules.

A.2.1 Executive Sources

A complete listing of the executive should be available
before writing an ACP. In particular, the following modules
should be read:

1. DRQIO - This module contains all the QIO processing
code, including the executive ACP processorse.

2. 1I0SUB - This module contains all routines related to
I1/0.

3. DREIF - This module contains the code related to task
exit. Of 1interest to the ACP writer 1is the code
relating to 1/0 cleanup.

A.2.2 MOU Sources

The sources for the ¥0OU task are found on the RSX-11M MCR
source disk in UIC [£12,103. The following modules comprise this
tasks :

1. MOUROT - This module is the root for the task. It
contains the dispatching code for the mount process and
the arror handling coda.

2. MOUPAR - This module is the general parser for the
taske. It determines the device name specified in the
command line and dispatches to the appropriate
devyice-specific parser.

3. MPAR11 - This module is the command 1line parser for
Files-11.

READINGS/REFERENCES PAGE A-4

4. MPAAMT - This module is the command line parser for
ANSTI magtapase.

S5« HPARCM - This module is the command 1line parser for
DECHET Phase I.
6. #8110V =~ This wmodule 1is the m@mount processor for

Files-11l.

T. MMTOY - This module is the mount processor for ANSI
magtapes.

B MCMOY - This module is the command 1line parser for
DECNET Phase 1.

9. MDISOV - This module displays tie volume attributese.

A.2.3 DHMD Sources

The DMO task source is the moduie DISMNT.MAC. This file is
found on the MCR source volume in UIC {12,10].

A.2.4 F11ACP Sources

F11ACP is the one Digital ACP for which sources are
available at most sites. The ACP sources are found in UIC
£13,101 on the MCR/FCP source disk of the RSX-11d4 ¥3.1 kits.
The source code was omitted from the R5X-11M V3.2 distribution.
Perhaps the most useful file 1s DISPAT.MAC. This module
contains the I/0 packet dequeueing and dispatching code.

R.2.5 DECNET Sources

The DECNET sources are another sxample of an ACP. However,
the sources are only available by purchasing the DECNET source
kit.

READINGS/REFERENCES PAGE A-S

Ae2.b FCS=11 Sources

The FCS sources are found on the X3X-11 utility source kit
in ©UIC £50,103. If FCS must be modifisd to use your ACP, this
kit should be purchased. FCS is very old and not written to the
standards used for other code. The rzader will find that the
code jumps around considerably and is difficult to followe. One
very wus2ful way of 1listing FCS 1is to make a concantenated
listinge The sources contain directions for doing thise.

A.2.7 Other Sources
The RSX-11M source distribution kit contains many other
useful modules. Among the most significant are the following:
1. [£32,10] - PIP sources.

2. I[55,101

Command line routines {GCML, CSI).

3. [60,101 PIP utility (PIPUTL) sources.

4. [66,103 - Macro definition files.

APPENDIX B

DATA STRUCTUR!

o]

DETALILS

This section details the features of data structures of
interest to the ACP implementor. Only the fields of interest to
ACP"s are discussed in this document. Further information <can
be obtained from the references listed. A& diagram is presented
for each structurs, along with information on which macros and
files define the symbolic offsets, values, and bit maskse.

NOTE

The macro definition files refered to are 1located on
the RSX-114 Utility Source kit in UIC [556,101. A
listing of these files is a very valuable referance
toole

The global definition file is the file used to create
an object wmodule containing the symbols defined as
globals.

B.1 QIO DATA STRUCTURES

The RI0 data structures structures are used to hold the I/0
‘parameters and route the reguest to the correct device. The
structures in this category are the AQI0 dicrective parameter
olock, the I/0 packat, and the window block portion of the task:

A—
deddarls

DATA STRUCTURE DETAILS

00] 12. i DIC i
| e e H
02 | 1/0 Function Code i
It e et i
04 | Logical Unit ANumber i
jo———emmrr e]
o6 1} Priority H EFN i
i - - e Stk ot |
10 | I/0 Status Block Address i
fommmm e -—==
12 i AST Address i
| - —— -1
14 | i
I==- -=-1
16 | i
=== -—-}
20 i : I/0 Parameters i
§=-- -1
22 i
= -—=1
24 | i
f = -—-1
26 i {
; S poedineereeeipore it et i el i g ‘
Symbol Definition Macro: QDPBS
Macro Source Filename: RSHMDIR.MAC
Macro Library Filenamel RSXMAC.SHL
Global Definition File: DIRDEF.MAC
Object Library Filename: SYSLIB.NOLSB

Figure B-1
QI8 DPB

Qe 1CFH
Qe ICLY
Q. ICEF
Q.I0SB
Q. I0AE

Q. ICPL

Q- IOPR

PAGE B-2

DATA STRXUCTURE DETAILS PAGE B-3

3211 4I0 Directivae Parameter Biock

The user task consiructs a3 RI0 directive parameter bdlock

{DP3) and issues a QIO directive whenever I/0 is to be requestad
-from- 3 device. This includes I/{ requests to ACP”s. The QIO
OPB 13 normally constructed by the QI0$ and GIOWS macrose. The
format of the QIT DPB is shown in Figure 3-1.

" The following fields in the QIO DP8S must be considared when
wTiting an ACP:

@« IOFN The I/C function is split into two bytes. The nigh
byte is the function c¢ode and wmust be from
0-31(10). This is the value which is used by the
executive to determine the action to be taken for
the functicne The low byte is the function
modifier. It is not processed by the executive but
is passed to the driver/ACP.

The choice of I/9 functions will depend on whether
a DCP or UCP is being written. DCP typically us=e
an existing set of function codes {such as
Files-11). Note, DCP"s require all ACP function
codes to be greater than or equal to savene In
fact, SGTPKT assumes all I/0 reguest Wwith codes
from 7-31(10) issued to a device with an ACP
enabled are ACP functions and dispatches thea to
the ACP.

4hen Wwriting a UCP, it is wise to choose a function
code that 1is not used by other drivers and ACP”"s.
If a 1/0 request is issued to the wrong device,
this prevents unexpected operations from occuringe.
The modifier byte can be used to separate a class
of I/0 functions into separate requests.
Currently, all function codes but 31(10) have been
used by Digital. However, codes above 24(10) are
used only for specialized functions for
communications devices and real-time interfaces.

G«I0PL How the I/0 parameter words will be used by an ACP
is ACP dependent. The only constraint on this set
of parameiars. is that for transfer functions tha
first oparametsr @Must be 3 buffer address and the
D= I0PL+2 must be the buifar szize in bhytes.

RSA-114 Executive Reference ¥anual, payes 6-90 to 6-94.
This section documents the format of the DP8 and how
to setup the RI0 macros.

DATA STRUCTURE DBETAILS PAGE B-4

A5KX=11M Guide -y§riting a Cevice DOriver, pages 4-8, 4=-7.
This sect*un documents the format of a DP3.
RSE=-114 I70 Drivers deferencs danual. This manudai

documentis ali curr _nt, deyice driver RI0 functions and
thelr associated parameter listse. af particular
interest are Appendices 4 and B which summaries tine
QI0°s, their parameters, and tne various error codese.

AS/7R5%~-11 I}B Operations Refarence Manual, Appendix 1.
This appendix contains z listing of RAINSYM.¥AC. This
file defines all I/0 function and error codes.

RSX-11¥ System Logic Manual, Voliume 2, pages C-41 to C-45.
This section documents the various macros used to
create QRI0 DPB’s and issue the GI0 requeste.

B.l.2 1I/0 Packet

The I/0 packet is constructed by the executive from the
information in the QIO directive parameter block. The I/0
packet is then dispatched to the proper service routine. If an
ACP 1is enabled for a device, the service routine is the ACP.
The format of the I/0 packet is shown in Figure 8-2.

ACP"5s5 are concerned with the following fielids in an T/0
packet. In general, the I/0 packet should be considered to D=
fead-only. The only exceptions are the function c¢ode and
parameter fields. These can be changed when the ACP is
reformating the regquest and forwarding it to a device drivere.

I.7C8 This field contains the TCB address of the
requesting task. The ACP may store this address
away for further referencse.

T.LN2 This is a very important field for ACP*s because it
contains the address of the address of the window
block (sees next section). 1Hote, that this address
cannot be saved but should be obtained from each
separate 1/3 packet. Task headers may be destroyed
and racr2atad during tasit sxecution. In generai,
only the TCS dddre“a can be sawved 2y an ACP for a
Ltask with an zctivae conpnaciiona

DATA STRUCTURE

DETAILS
- —— — b do e srandemrepomdomns %
00 | Link to Next I/3 Packet]
e tainde b B it it b S i
02 | EFN | Priority {
o e e !
04 i TC8 Address i
R e i i
06 | Address of Sacond LUT ¥Word |
fmmmmm e e 1
10) Address of Redirect UCH i
R D D DD kb el D et i
12 | Function Code | Modifier |
jo———— — - 1
14 Virtual aAddress of I0SB i
J-m—mee e ————=
16 | Relocation Bias of I0SS i
Rt - i
20 i Real Address of IOSB i
Rt mtatet bt i
22] Virtual Address of AST i
=== - - e i
24 7 7/
/ Parameters (B words) /
/ : /
/==:===::::::::::::::::::::::::: I
44
Symbol Definition Macro: PKTDFS
Macro Source Filename: PKTDF MAC
Macro Library Filename: EXEMC .HLB
Global Definition File: EXEDF .MAC
Cbject Library Filename: EXELIB.OLB

Figure B=2
1/0 PACKET

I.L3K
I.PRI
I.7CB
I.LN2
1.0C8
I.FCH

I.I0SB

T.AST

I1.PRM

I.LGTH

I.EFN

PAGE B-5

DATA STRUCTURE DETAILS PAGE B-8

S0 be usad Io obtained the original IC38
the lun. The preyious location.-in the
table i3 the original lun. The

i ;iﬂwﬁﬂ for =2yery R10 request
53 15 sitoraed in [.UCB.

I.FCHN This is the I/3 function issued by the user. It is
copiad from R.IUFN of the QAI0 DPR.

1.2R4 These are the parameters for the 1/0 request. YNote
that aight Words are available as opposed to the
original six in the QIUO DPB. Except for these
fieids, <common <code 13 wused to fill in the I/0
packet. The parameter fields are established from
the QI0 parameters according to the type of
request.

For control functions, the six QIO parameters are
copied unmodified to the first six locations. For
transfer functions, the buffer address doublesword
is placed in 1.PRM¥+0 and 1.PR¥+2. The rewmaining
five parameters are copied into I1.PRM+4, I1.PRM+DH,
etCe

For ACP°s, the QIO parameters are specially
processed and the results stored in the I/0 packet.
Ail addresses passed as parameters must be address
checked and relocated before the packet is queued
to the ACP. 1In the case of a DCP, this processing
takes place 1in DRAID. For UCP*s, the packet is
processad as a contrel function by the executive
and passed to the driver without gueueinge. The
driver then performs the necessary checking, sets
the I/0 packet parameters and send the packet to
the ACP.

References:

RSX-11¥ Guide to #riting a2 UDevice Driver, pages 4-2 to 4-5.
This section documents the various fields in the I/0
packet.

BSZ~11M Guide to #Writing a Device Driver, page C-16. This
section. documents thes =2acrs PYXTDFS. This macro is

used. to declare the I/0 pacitet symbolic¢ offsetis.

3d=114 Crash Oump Anailyzer H¥anual, pages 3=-3% to 3=-4l.
This section documents thoe macgro PYTDF3. This macro
i3 used to Jdeclars the I/0 packel symbolic offsetss

R5X-11¥ System Logic Manual, Volume 1, pages 8-30, 8-31.
This section documents the macro PKTDFS5. This macro
is used to declare the I/0 packet symbolic offsets.

€]

DATA STRUCTURE DETAILS ‘ PAGE B-7

i
74 4 fumbpDer of LUN's i He HLUN
j=—- -——- e eeece e ————— {
76 i JC3 Address { He LUH
i ~ ——————————— ———————— i
i dindow Address 1.
| Rttt D |
| {
== Rt |
i Remaining Entries i
o - --=1
i - |
. . -]
i . {
j--- . -=-1

Symbol Definition Macro: HDRDFS

Macro Source Filename: HDRDF .HAC
Macro Library Filename: EXEMC .MLB
Global Definition File: EXEDF .MAC
Object Library Ffilename: EXELIB.OLB

Figure 3-3
LUT TABLE

Bele3 ULowgical Unit Table

The logical unit table (LUT) is used to determine to which
device the I/0 request is directed. It is alsc used by ACP"s to
establish a logical connection between a specific LUN in a
specific task and a I/0 process (such as an open file or a NSP
logical connection). A diagram of the LUT table is shown in
Figure B-3.

The LUT table is located in the tasik nheader, beginning at
offset H.LUN. The previous location, H.NLUN, contains the
number of entries in the LUT table. The LUT table consist of a
series of two word entries, one antry for every possible LUN
number the task may use. The first word of the entry is the UCB
of the assigned device. Note, this is not the redirected UCS.

The second word 1s used for the window bDlock address. This

iz the structure wnich 135 used %o link a LUN to 2an ACP DrocesSsS..

This word also serves (w0 other pUCDOSESae The low b5it 1is

refarad to as the loci bit. If this bit is s=at, another I/C

raque st cannot be i33ued on the LUN. The axecutive backs up the

issueing task PC and places it in a wait-for-significant event

N state if such a request is issuede. This is very useful when an

ACP must enter a state where another I/0 packet cannot be
processed unti]l the current request completes.

DATA STRUCTURE DETAILS PAGE B-8

NOTE

2I0"s are affected by the lock bite. Any Dpacket
ne ACP? queue for the locked lun can be degueued Dy
ACP. Ipn order to ztfectively lock a luny, the Dit

t bhe set during the I/0 sacket processing prior to
queueing to the ACP.

<
=

“
%

&

The final use of the second word 1is to notify ACP“s about
abnormal task termination when it has an active process for a
lun. If the second word of the LUT entry is non—-zero (exclusive
of the lock bit), a IJCLN (code 3400) will be issued to the ACP
by the executive task termination routine.

3.2 DEVICE DATA STRUCTURES

The device data structures structures are used to describe
a generic device type, each wunit, and each controller. The
Device Control Block (DCB) names the device and contains the I/0
dispatch tables. Une Unit Control B8lock (UCB) exists for each
device unit and forms the data base necessary for handling one
I/80 request. The Status Control 8lock (5CB) 1is used to
coordinate activity among device controllers. :

B8e2e1 Dewvice Control Block

One device control block (DCB) is created for each generic
device type. The DC3 supplies the device name, points to the
device unit structures (UCB"s), and controls how I/0 functions
will be processed for the device. It is the function mask
fields (D.¥SK) that are important to the ACP writer.

In general, DCP”"s will set the appropriate ACP function bit
MaSKS» When DRQIO matches the function against this field, the
special processing code for ACP®s is then used. UCP*s, on the
stherhand, 4ill mark it3 fupnctions as control functionsa.
Zaction 4.2.1 discusses now the DCB fields snould 52 setup in
more detail,

#

-
o0

i

gferences:

pe

RSX-11¥ Guide to @Writing a Dewvice Driver, pages 4-8 to
4-15. This 15 a location by location description of
the DCBe. It is oriented to device drivers.

DATA STRUCTURE DETAILS

34

| Link to ¥Next DC3 ; Da LiX
3--—---“;;;st ggg-Address i D.0CB
| Toevics name | oo
§-‘;;gh Onit 3 | --Lou Unit # ; D.ONIT
;) Le;gth of a; gcs : D.UCBL
;-griver Dispatcg-;;gle Address : D.DSP
: Legal Function M;;; {0-=15) § DeM3K
;-‘Control-;;;ction Mask (0-15) ;
:--ﬁﬂp'ed Function-;ask (0-15) :

: ACP ;unctio;-;;;;-;g:;g;---g
§——-Legal Function %a;; (156-31) ;

| Control Function dask (1o-31) |

; HB?'ed Function ;ask.(16~31) ;

;- ACP F;;;tion Mask (16-31) 3

; i

Driver PCB Address 1 D.PCB

Symbol Definition Macro: DCBDFS

Macro Source Filename: DCBDF .MAC
Macro Library Filename: EXEMC .MLB
Globai Definition ¥File: EXEDF %ﬁc

b

Gect Library fFilepnames EXELIB.

-
ure- -4

3C3

PAGE B-9

DATA STRUCTURE DETAILS PAGE B8-10

28%=-114 Guide to Writing 3 Device Driver, page (-5. This
section documents. fthe azacro DCEDFS5. This macro is
ad to declars the LC3 sysbolic 0ffsetfsSe

R84=-11# Crash Dump Analyzer ¥anual, pages B-8, B-9. This
saction <documents the wmacro DCBDFS. This macro is
usad to declare the DCB symbolic offsats.

Q34{~114 System Logic ¥Manual, Volume 1, payes 8-34 to B8-36.
This section documents tiie macro DLBIF35. Tois macro
is used to declare the DC3 symbolic vffsets.

Be2.2 Unit Control Block

The Unit Control Block (UCB) is the key device structursa
and 1is very 1important to ACP’s. There is one UCB for each
separate device. The UCB provides the characteristics of the
device, pointers to the other device structures, and working
space for storing I/0 related parametars.

The UCB’s are variable in length. The following locations
are of concern to ACP*s3

UJ.CTL Control Flags. This byte contains flags which
control how and when the RSX~114 executive will
call the device drivere. while ACP®s are not
directly concerned w@with this process, the satting
of these bits is important to correct operation,
particularly if writing a UCP. The following bits
are defined for this byte:

UC.ALG Alignment bit. If this bit = 0, then byte
alignment of data buffers is allowed.
Otherwise, the buffers must be
word—-aligned. This setting is typically a
function of the device and 1is not of
importance to ACP“s.

UC.ATT Attach/Detach notificatione. If this bit is
set, the driver is <c¢alled when SGTPKT
sroce2s8s an Attachi/Detach 178 function.
dowever, 1if the devics 1s marksd nountable
{DY,.#88T=1) and 1is mqounted (US.MNT and
J5.70R=0), then attaches ars never silowed.
The device will not be notified regardlass
of the state 0f this bite.

DATA STRUCTURE DETAILS

-2 | JCB Address of Owner TT:
00 | DCB Address

‘ _____ - -
02 1 Redirect UCB Address

i -

04 | Unit Status | Control Flags

06 | Unit Status | Unit Y¥umber

= |

1

i

H

i

I

i

l

i

|

i

10 |} Characteristics word #1 i
I- i

12 | Characteristics word #2 i
| - - i

14] Characteristics dord %3 i
i - ——— i

15 |} Characteristics %Word #4]
- - H

20 | SCB Address i
R st le i

22] TCB of Attached Task i
i- - > e }

24 | H
=== Buffer Address —-—

26] i
i - i

30 | Byte Count i
- - - i

32 | ACP TCB Address]
== - ————— e |

34] YCB Address i

T — o — o ———————— — ‘ma,
——— T ——— — " — v " " — o o o —

Symbol Definition Macro:
Macro Source Filepame:?
¥acro Liorary Filename:
Globai Definiticn Fila:
Gbjact Library Fiisname:

Figure 3-5
3C3

UCBDFS

UCBDF .MAC
IXE¥C .MLB
EXEDF .#AC

EXELIB.OLB

U 0&N

U.CTL U.STS
U-UKNIT UeST2
U.CW1
U.CW2
U.C%3
U.Ch4a
U.5C8
U ATT

U.BUF

U.CNT
U. ACP

J.vC8

PAGE B-11

DATA STRUCTURE DETAILS

J.STS

JC . KIL

UC.RUE

UC . PWF

UC.NPR

UCL.LGH

PAGE B-12

Jnconditional Cancel I/70 notification. 1t
thiszs bhit is set, the driver is.called
Wnenaver a caancel I/9 reguest 1s issuad,
ayen 1f the- udevice iIs nof busy. For ACP

snabled devices {({S.MNT=0), the I/U queus
is never flushed. However, the driver will
be called if the wunit 1is busy and will
always ba callesd if this bit is set. This
feature can be used during I/0 rundown {see
saction 4.5)-.

Quaue bypass bit. If this bit is set, the
@%I3 processor calls the driver without
queueing the regquest. %hen ariting an UCP,
this bit is set. This alloxus the driver to
process the I/0 request and send it to the
ACP, bypassing the normal executive
ProcessSinge

Unconditional call on powsr Trecoverye. If
this bit is set, the device driver will be
always be called when pouwer recovers and
also whenever the driver is loaded or the
system booted. If the driver is involved
with enabling 1its ACP, this bit provides
one mechanism for calling the driver so it
can enable the ACP.

YPR device. This bit is set if the device
i3 an HPR Gevice. It determines how U.BUF
%111 be setup. The setting of this bit is
a function of the device and 1is not
important to the ACP writer.

Buffer size maske. These bits determine the
required buffer size. They are a function
of the device and are not important to the
ACP writer.

Unit status. This byte contains various flags

related

to the status of the device unit. The

following bits are defined:

5537

UJ

US.MNT

Jnit busve. This bit i3 s3et by SGTPKT
Wpenaver a3 packatl 13 dequeusd Ior 3 devicse
driver ana clileared bdHy SICDON/SICALT «When
tne packet 1is finished. The Dit is not

8
affectad Ly queueing a packat to an ACP and
is not of concern To the AL2 writer.

Device mountad. The bit is cleared if an
ACP 1is enabled for the unit. It is5 the
responsibility of the ACP enabling process

DATA STRUCTURE

JuCl

DETAILS PAGE B-13

to ciear this bit. The ACP itsell usually
sets. the bit when it finally a2xits. (ses
US<dDM DeiouW)e

U5.F0R Foreign 1CP. This hit is supposed Lo be
set if non-Digital ACP°s 3re enabled for a
device. HowWever, the interpretation of
this bit by the executive is currently is a
state of flux. For both LCP"s and UCP~*s,
this bit should be l12ft off.

US.MDM Device marked for dismounte. This bit is
set by the disabling process when the ACP?
is initially requested to be disabled.
ACP®s cannot exit until all processes are
terminated. Normally, the ACP examines
this bit and its own internal state. khen
this bit is set and the ACP is idle, it may
then exit properly.

Device characteristics word #l. This word contains
bit flags defining the type of device. This word
and other three device characteristics are returned
by a GLUNS directive. 1In particular, this word is
used by FCS to determine the type of I/0 request to
issue to the assigned device. The following bits
are defined for this word.

DVLREC Record-oriented device

DV.CCL Carriage-controi device

DY.TTY Terminail device

DVY.DIR Directory dewvice

DV.SDI Single directory device

DV.SQD Sequential device

DV.MXD Mixed Massbus device

DY.UOMD Device supports user-mode diagnostics
DV.SHL Device is software write—locked
DV.PSE Pseudo device

DV.COM Device mountable as DECNET Phase I device
DV.F11 Device mountable as Files-11 device
DV.MNT Device mountable

These bits should be set carefully. They are
axamined in g@any places and the interpretation is
not aiways consistent. FCS considers. any devica
Fith DYL.REC g0ff to e a Bblock: /8 device,
supporting the Flies=-11 (I075. It a3iso tasts
DV.0IR to see if directory operTatiocns are allowede.

" The #{U/0%G tasks also examine the bits to

determine the proper steps to be taken. 1In general
DV.MNT should always be set for devices your ACP
W@ill service. The remainder of the bits should be
setup according to the nature of the ACP and its

DATA STRUCTYRE DETAILS PAGE B-14

deviczs.

J= ACP ACP TCB address. Thils wmord is an J€3 axtension
uysed for mountabls devices. It 1s s2t wnen the ACP?
is snabled to contain the TCB address 2f the ACP.

J.¥CBH VCB address. This word is an UCB eaxtension used
for amountable devices. It is set when the ACP is
enabled to contzin the addra2ss of the V¥CB for the
unit.

References:

RSX=11# Guide to HWriting a Device Driver, pages 4-19 to
4-26. This 1is a location by location description of
the UCB. It is oriented to device driverse.

R5X-11M Guide to ¥riting a Device Driver, pages C-21 to
C-23. This section documents ths macro UC3DFS.

RSX-11M Crash Dump Analyzer Manual, pages B8-18 to B-25.
This section documents thes macro UCBDFS3.

RSX-11¥ System Logic Manual, Voiume 1, pages 8-51 to B8-56.
This section documents the macro UCBDFS. This macro
is used to declare the UCB symbolic offsets and bit
NASKSe.

Be 23 Status Control 3lock

The status control Dlocik is used to control access to the
hardware controller. ACP®"s are usually not concerned with this
data structure unless they are closely coupled to the device
drivere.

References:
RSX-11M Guide to Writing a Device ©Driver, pages 4-15 to

4=19. This is a location by location description of
the SC8. It is oriented to device drivers.

R84=-11% Guiace to dWriting 3 Dewvics Driver, pages C-17, C-18.
"his 3Section Jdoguwmenis the macro SCBSFga This macrs
15 used to deciare tae 3C3 sympoilc cifsetls.

25¥=1i4 Crash Dump Analyzsr Mdanual, pages d-il, 3-11. Ihis
sectien documents the macro SC30FS. This macro is

~ e Ty

used to declare tne SCB sywmbolic offsets.

DATA STRUCTYURE DETAILS

02
04

06

. - ——— L — T L - —— — T — s o " o~
——— — — T —— T ——— —— i — - — o —— L ——— o

H Controller
== 170
i Queue Listhead

s

[

i

|
"

R e -

Yactor/4 i Priority

A - — - > A ———— -

!

i
| i
i i
! Initial TM3 | Current THMO |
| - - i
i Status | Index H
Rttt - - 1
i CSR Address i
j———- - - i
{ Current I/D Packet Address i
j===—-- —— - i
i i
j=— =]
i l
j=-- Fork Block |
| i
j——- e |
|]
j=—— -]

|]

——— e — ——— — — — — - > " .

Symbol Definition Macro: SCBDFS

Macro Source Filename: SCBDF .MAC
dacro Library Filename: EXENC .HLB
Global Definition File: EXEDF .MAC
Object Library Filename: EXELIB.OLB

Figure B-6
s5C3

S5.PRI
S.CTH
5.CO¥
S.CSR
S«PXT

S« FRK

S.VCT
S.ITHM

S.STS

PAGE B-15

DATA STRUCTURE DETAILS PAGE B-16

2
it

£=1

[%51
g b
=
i

ory

System Logic Manual, Voiume 1, pages §-44 tgo B-4b6.
is section documents. the macro SC3DFS. This macro
is used to deciare the SC3 symboiic ofisetse.

B.3 ACP COMMOH DATA STRUCTURES

Two type of data structures ars cpmmon to all ACP"s:
window blocks and volume control blocks. Window blocks are used
to map a logical process to a specific logical unit. Volume
control blocks are usaed to hold information about each separate
entity the ACP processes. #Whilse all ACP°s use these structures,
their content is ACP dependent.

! R ST S N N S ST T AT SRR == !
06 | Transaction Count]
1 - - - i
02 /7 /
/ Remainder is /
7/ ACP Dependent /
/ - /
/ - 7/
/ o 7
Figure B-7
yCB

Be3=.1 Volume Control B8lock

Typically, each mounted unit serviced by an ACP has a
volume control block. This is the data structure in which the
ACP should hold information relating to each mounted unit. As
such, VCB“s are ACP dependent except for the first word.

The first word 1is called the transaction count. This
counter 1is used by the ACP to determine whether it is idle or
not. for DCP’s, the counter 1is incremented whenever a 1I/0
request 1is queued to the DCP and decrement by the DCP when the
reaquest is finished. [t is alisc incrementsd by the 5TP when 23
crocess 15 =2stsbiished zand decresmentaed when the orocess is
tarminaied. The DCP cannot axit ynili the counfeyr rz2aches Z2rde.

The executive does not touch the transaction count for
JC2°s, nvmever, 1t 1is recosmended thaat tThe UJT2°3 use th=e
transaction count for the same purpose. It is important that an
ACP never exit with I[/0 reguests still outstanding in 1ts queue.
These ragquests will never be terminated, 1leaving the issueing
task stuck in 170 rundowne.

DATA STRUCTURE DETAILS PAGE B-17

je====ssozss=szsmnos=== ========= H
a0/ /
J ?otally 7
7 ACP Dependent /
7/ o 7/
/ - 7
7/ . 7

Figure 3-3
AINDOW BLOCX

Be3de2 Hindow 3lock

One of the most useful features of an ACP is the ability to
establisn an I/0 process and tie various I/0 request to the
process. In the case of Files-11, this takes the form of
opening a file, reading and writing blocks and closing the file..
For DECNET, logical links are <created, data transmitted and
received, and the link closed.

The window block 1is the data structure used for such
PLOCE2558S e It ties the task”s LUN to a particular processe.
Howaver, the format of window blocks and how they are allocated
and deallocated is ACP dependent.

The window block address is storad in the second word of
the LUT entry. The address of this «ord is passed to the ACP in
the I/4 packet. #hile typically the window 1is allocated from
the executive®s pool but tnis need not be true. The executive
never references window address, therefore, the window may come
the the ACP”s address space. However, if access to the windowu
is needed in processing the I/0 request, the window will have to
come from the pool.

8.4 OTHER DATA STRUCTURES

This is a broad category of every thing elss. ACP"s are
privileged tasik and have the ability to examine, modify, and
T2ate any SITUCTUT2 NeC2sSSarlys Some of the most impoactant are
pentioneda .

n Q

DATA STRUCTURE DETAILS PAGE B-18

S«dal Clock Guseue Zntry

AC27s gften have a rtegquirament {or keeping internal timers,
particularly for =svent timeouts. Une aechanisam for doing this
is to use the mark time and svent flag directives like a normal
task. An alternative mechanism is to issue an internal timer
request. When this request expires, an executive or device
driver routine is called. The format of such a raquest 1s shown
balowas

When the internal timer mechanism is used, a 1linkage must
be made between the kernel code servicing the timer event and
the ACP. UOne method for doing this 1is for the device driver to
issue a special 1I/0 request to the ACP that signifies timer
service.

00 | Clock Queue Link C.LAK

02 | EFN (Unused) | Regquest Type C.RGT C.EFN

|
1
i
i
i
04 | TCB or System Subroutine ID | C.TCB
| - —— i
06 |] C.TIM
j-=— Absolute Time Entry Due =---|
10 |
i= - -—— i
12 i Subroutine Address 1 C.508
|===em————- ——— |
14 1 Relocation Base { C.AR5S
| - - ' i
16 | Unused i
20 C.LGTH

Symbol Definition #acro: CLKDFS

Macro Source Filename: CLKDF .MAC
Macro Library Filename: EXEMC .MLB
Slobal Jefinition File: EXEDF .MAC

Ohiect Library Tilename: EXELIB.0L3

Sigurse =%
CLOCY GUREUR =YTRY

v Asidhe i% Ly

DATA STRUCTURE DETAILS PAGE B-19

The advantage of the internal method is reliated to the ACP

STop AeCcN3Nisna.. dhen 1die, ACP’s can be suwapped out and not
brougit back until there 1is something to doa dowever, 1if the
ACP maintains a constant timer, it wiil be sSwapped in

continueiy, even if idle. Tf the timer is moved to a driver,
the driver can have the intelligance to notifv the ACP only when
an actual timer event processing 1s needed.

Referencess

A5¥%-11M Guide to Writing a Device Driver, pages -3, C-4.
This section documents the macro CLXDF$. This macro
is used to declare the clock queue entry symbolic
offsets and bit maskse.

R5X-11M Crash Dump Analyzer Manual, pages B-26, B-27. This
section documents the macro CLXDFS$. This macro is
used to declare the clock gqueue entry symbolic offsets
and bit maskse.

RSX-11M System Logic Manual, Volume 1, pages 8-31, 8=-32.
This section documents the macro CLXDFS$. This macro
is used to declare the clock queue entry. symbolic
offsets and bit maskse.

Be4.2 Partition Control Block

The Partition Control Block (PCE) defines how memory 1is
allocated. It also provides the linkage between the TCB and the
task header. Typically, ACP°s are unconcerned with PCB°s,
however, special applications may involve their usage.

Refarences:?

RS5X-11M Guide to Writing a Device Driver, pages C-14, C-15.
This section documents the macro PCBDFS. This macro
is used to declare the PCB symboiic offsets and bit
Basks.

R5X-11H Crash Dump Analyzer Manual, pages 3-12 to B-15.
This section documents the macro PC3DFS. This macro
15 used to declare the PC3 symbolic offsets and bHit
HASKS :

IS5X~-11H¥ System Logic Manual, Voiume 1, pages 8-41 tp 8-43.
This section documentis the macro PC30F3. This macro
is used to declare the PC3 symbolic offsets and bit

masksSe.

DATA STRUCTURE DETAILS PAGE B8-20

P.SUB

{

g0 | Link to Next PCB { P.LHK
' f=mm e e -1

202 i I/0 Count ! Priority i P.PEI P.IGC

o - - -

04 1] P.HNAM
j=—- artition dName el |
go i i
=== ———— |
i

10 | Pointer to Next Subpartition

12 | Pointer to Main Partition | P.MAIN

== - - i

14 | Startlng Address Bias { F.REL
jo——mmmrccnnne- e ————————————— i

16 | size of Partitlon | P.BLXS
|- - - - !

20 | 1 P.HAIT
}=-=-- Partition Hait dueus -]

22 | i
jomm—————- - i

24 | Partition Saap Size I P.SuWSZ
Rt it i 1

26] Partition Busy Flags 1 P.BUSY
= - - 1

30 i TCB Address of Cuning Task | P.CHN
‘ ------- D AP WD DS WD NS WD D WP - — !

32 | Partition Status Flags § P.STAT
R ettt - 1

34 | Address of Task Header i P.HDR
Rt D bt |

36 1} Protection Word | P.PRO
i e e e e |

40 | i P.ATT
j--- Attachment Descriptors =---}

42 | |
! oo rmnefpre ool i rm et forpoeed !

Sympol Deiinition Macros PC38DFS

Macrs Source Filename: PCIDF JHMAC

igecro Library Filename: ZXEHEC LJHLS

slobai Oefinition fFilas: EZXEDF LHAC

Obiect Library filename: ELELIDLOLA

DATA STRUCTOURE DETAILS PAGE B-21

B.423 Task Control Block

The Tasik Controi 3lock is the primary data structure for a
taska 4CP"s are tasiks and have a 7C3. Besides the normal
treatment, the ACP s TC3 receives the following special
treatmente.

1. The address of the ACP"s TCR is stored in the {(C8 for
aach enabled device. The addraess is usead to determine
to which task to queue the 1I/0 reguest.

2. The 1/0 packets are queued to the ACP through the
receive queue listhead (T.kKCVYL) and deallocated by the
ACP by removing an entry from this queue.

3. ACP°s are marked by a special bit in the third status
word (T.5T3). This bit (T3.ACP) is used to prevent
tasks from sending messages to the ACP. This is
necessary to presvent confusion resulting from multiple
usage of the receive queue. The bit is set by the task
builder /AC switche.

4. For certain Digital ACP*s (F11ACP, HMTAACP), the second
event flag word (T.EFLG+2) is used as a mounted volume
counter and therefore event flags 16-31{10) are not
useds dowever, this restriction applies only 1if
desired.

Referencess

R5X-11M Guide to Writing a Device Driver, pages C-19, C-20.
This section documents the macro TCBDF$. This macro
is used to daclare the TCB symbolic offsets and bit
masks.

RSX-11M Crash Dump Analyzer Manual, pages B8-15 to B8-17.
This section documents the macro TCBDFS$. This macro
is used to declare tie TCB symbolic offsets and bit
masks.

RSX~-11M System Logic ¥anual, Volume 1, pages 8-47 to B8-49.
This' section documen®ts tne macro. TLBDFS. This macro
5 used to decliare the TC32 symbolic offsets and bit

[
”

(O

=
)

at

DATA STRUCTURE DETAILS PAGE B=-22

GG 1 Jtility Link #Hord i TaLMNK
e e e e e e i

32 1/0 Count i °riority | T.P2RI T.I0C
e i

04 { Checkpoint PCB i T.CPCB
I et {

SISO | 1 T.HNAM
j——— Task Name ==

16 1 i
R it b b !

12 1}] T.RCVL
}]=-=- Recelive Queue Listhead =---}

i34 i i
j=cmcccnccrsnanccnccncccccccaaan]

15 |}] TSASTL
j=—-- AST gQueue Listhead ———1

20 | : }
R i

22 1 i T.EFLG
j=—- Local Event Flags -

24 |} i
| R it ittt et B i

26 1} TI: UCB Address i T.UCB
H ———m—mmee———————]

30 1 Task List Thread sord ! T.TCBL
R kbbbl et |

32 | Status ¥Word (Blocking Bits) | T.STAT
I= —————— - , |

34 | Status dWord {State Bitz) | T.ST2
e e m s e e e i

36§ Status Yord (Attribute Bits) | T.ST3
} —-— |

40 1 .] Def. Priority | T.CPRI T.LBY
} jem————————————— i

42 1 LBY of Load 1Image i

40 | PCB Address] T.PCB
| R e bttt bt et i

50 Maximum Task Size 1 T.¥XSZ
it ettt el |

32 i Pointer tTo dext Agctive TCH i~ TLACTL

4. Specified AST LisThesnd T.3AST

Figure 32-1i1
TCB

DATA STRUCTURE DETAILS

T

(v
[2}

-—= Attachment Listhead

- o B SR —— i

— - ———— - — . ——— —

—

i
{
i
B2 | Task Image Partition Offset
|
i

54 EFM Count H Unused
- jom———- - —————————————
86 |
{=—= Receive by Ref Listhead ==-|
70 |
{=-- - ——————————————]
72 |
{--- Offspring Control List -=-}
74
l P —— JRp— -
76 | O0ffspring Count
j========= === = ===
100

Symbol Definition Macro:
Hacro Source Filename:
~Macro Library Filename:
Global Definition File:
Object Library Filename:

Figure B3-11
TCB

TCBDFS

TCBDF .MAC
EXEMC .ML3
EXEDF .MAC
EXELIB.OLB

T.0FF

T«REFL

T.0CBH

T«RDCT

T.LGTH

PAGE B-23

T«SRCT

DATA STRUCTURE BETAILS PAGE B-24

Bed4ead Task Header

The Iask neader contains the contaxt of the taske. The aost
important thing to ramember about task aeadars i1s that they are
destroyed when a task 1s checkpointed and recresated when it is
sWappead ine Therefore, ACP”s cannot store the address of the
header (or the LUT table) for later use.

References:?

#5%=114 Guide to Writing a Device Driver, pages C-9, C=-10.
These sesctions document thne macro HLDRDFS. This macro
is used to declare the task header symbolic offsets.

R5X-11M4 Crash Dump Analyzer Manual, pages 8-4 to B-6.
These sections document the macro HDRDFS5. This macro
is used to declare the task header symbolic offsets.

RSX-11M System Logic Manual, Volume 1, pages 8-49, 8-50.
These sections document the macro HDRDFS. This macro
is used to declare the task header symbolic offsets.

DATA STRUCTURE DETAILS

14
16
20
22
24
26
30
32
34
36
10
42
44

46

[$)]
[

(W1}
i

(9]
(o3}

poneoginne i i rmss-gomgimesgisareipn g tocdpremms s gvesfssin sy gismetioed

- N - T —— ——— — — -

Header Length

——van -

Curreant Task

Event Flag Masks

|

UIC

i - —— o T > > "

Default Task

Uic

Initial PS

Initial PC

Initial SP

- —— - — - -

DT S5T Vector Address

ODT SST Vector Length

Task SST VYector Address

D - — -

Task SST Vactor Length

Powerfail AST Block Address

FPP AST Block

Address

-

Receive AST Block Address

-

Event Flag Save

. A ——— -

Address

Pointer to Number Windous

T T T D -

DSW

—— - - -

FCS Impure Pointer

——

- - e

oriran Impure

N S ————— N ———

Pointer

dJyeriay Impurs

Pointer

———

dork Area Zxtension Pointer

Figure B=-12
TASK HEADER

B it i WD Gk lpinid Bt S NS Gt ot it S ot AN Sl SO Wake Sais waiies Wkes W BN GOND VS e W Skt WA G ek Wil SNSA WIS i G WY SN Vewind W W o il o DA i s

He CUIL
He DUIC
deIPS
H.IPC
H.ISP
H.ODVA
H.ODYL
H. TKVA
He.TKVL
He.PFVA
H.FPYA
Ha RCVA
H.EFSYV
Ha.FPSA
HeWHND
He DSHW
He.¥FCS
He FORT
H.0VLY

He VEXT

PAGE B-25

DATA STRUCTURE DETAILS PAGE B-26

S - —— —— A W —— - —— -

] i

50 iailbox LUY¥. | Swapping Pri. 1 H.SPRI HaNML
jm—————————— i

82} Rec/Ref A5T 3locy iddress i Hd.RRYA
it ittt i

54 [/ /
/ Raserved /
/ /
jm——————— - s o e i

72 | Pointer to Suard ¥ord | He.GARD
D D i -1

T4 | Humber of LUN"s { H.LUHM
e e e e it |

1/ /
/ LUT Table /
/ . /

Symbol Definition Macro: HDRDFS

¥acro Source Filename: HDRDF MAC
Macro Library Filename: EXEMC .MLB
Global Definition Ffile: EXEDF .MAC
Object Library Filename: EXELIB.OLB

Figure B8-12
TASK HEADER

APPENDIX C

FC3=-11 HODULES

The File Control Services are a set of routines which are
linked to a task to perform various I/0 services. The routines
are typically called via macros. The documentation for FCS is
found in the IAS/RSX-11 1/0 Operation Reference Manuale.

There are two levels of FCS routines. The upper level
routines are called directly by the user”®s task or via the FCS
macros. These routines are named “.XXXXX°. The louwer 1level
routines are intended for FC5°s own use and are not expected to
ba called directly by the user. These routines are named
“e«XXXX®”. This appendix describes each FCS module, its entries,
and tneir calling parameters and functione The appendix also
discusses the FCS data structures and some basic internal
concepts.

C.1 FCS CONDITIONALS

FEach FCS5S module 1is assembled with the prefix file
FCSPRE.MAC. The file establishes various symbolic definitions
and common macros and defines the assembly control flags. FCS
is wvery heavily conditionally assembled. The symbols used and
their default RSX-114 values are as follows:

RSSANI ANSI magtape support. This variable is set to zero
for no support and to one if ANSI magtape support is
desired. The default for RSX-11M is zero unless the
ANSTI prefix file, ANSPRE.LIAC, is.used for assemblv.

R8588F 3ig buffer support. Thiz featurs is used. for 1/%8
deyicas that support plock sizes greater then 512
Dytesa The variabls is zef to zero for ne support
and to one 1f support is desired. The default for
RSX-11¥% 1is =zero wunless the ANSI prefix file,
ANSPRE.HAC, 15 used for assembly.

R5350P8 QIO DPB format. This variable is set to zero for

FCS-11

MODULES

RESEIS

RSSELP

RSSLCL

RISMPL

RSSMUL

RSSNAH

RS50PF

L
o
=
{941
B

PAGE C-2

d style IO
raat. at t
-1i) use th

3 and to opne £
nhis. time, ail sV
@ new foTH3T.

r the new RI0 0P8
tenms {including

Sxtended Instruction 3Set (EIS) suppotte. This
variabis is set to zero 1if no EIS instructions
should be used by FCS and to onme if EIS instructioens
are allowed. RSX-11M always sets this variable to
Z8T O

Extened parsing support. This variable 1s set if
extended parsiny support for VAX/VHS s5ystems is
desired. R5X-11M aluways sets this variable to zeroe.

Force local definition of symbols. This variable is
set to zero if global definitions for FCS variable
should be used and to one 1if 1local definitions
should be declared in FCSPRE.MAC. RSX-11M sets this
variable to one.

RS5X-11M PLUS support. This variable is set to onse
if FCS should be assembled for an RSX-11¥ PLUS
systeme. RS5X-11M always sets this variable to zero.

#Multiple buffering support. This variable is set to
zero if FCS supports only one I/0 block buffer and
non=-zero if multiple I/0 buffers are supported. The
symbol RSSMBF 1is equated to this symbol. RSX-11p
always sets this variables to zaroe.

H§amed directory support. This variable is set one
or two for named direciory support. This is a
feature of the 5CS-11 version of FCS. RSX-11M
always sets this variable to zerc.

Type of open. This variable is used to control the
type of assembly desired for the module UOPEN. If
set to zero, the normal CPEN routine 1is assembled.
Otherwise, a value of one (OPFNB.MAC) assembles the
open by FNB and a value of two (UGPFID.HMAC) assembles
the open by FID module. This variable is not set in
FCSPRE.MAC.

Assembie fnr 3Y3LIB or rasident 1library. This
vyariaole 1s seit to zecro 1f FTS should be assembled
for pilacament 1n 3Y3LIE.0OLEB or one 1f a resident
library should be built from 7CSe. RSX-11¥ always
sets this variable to one. Thais causes FCS to
assembied using the PSELT $3RE35L.

3C5-11 supporte This variable is set to one if FCS
should be assembled for the SCS-11 operating system.
KSX-11M¥ always sets the variable to zero.

FCS-11

MODULES PAGE C-3

A335EG Type of file I/0. This variaple is used to control
the type of asseably desired for the GET and: PYT

modules. If set to zero, the modules supporit Ddoth
sequential and random I/0. If set to one {(PUTSA,
GETSW), the modules are rTestricted to seguential
1/C- This variable is not set in FCSPRE.HAC.

R$3SPL Automatic spooling support. This variable is set to
zero if no automatic spooling support is desired and
to one 1f it is supporteds. RSX-11M always sets this
variable to zero, support of automatic spooling
requires the IAS5 spooling mechanisme.

Rssvﬂs YAX/VMS supporte. This variable is set to one if FCS
should be assembled for VAX/V#S operating systeme.
R35X-114 always sets this variable to zeroe.

R55114 RSX-11¥ support. This variable is set to zero if
IAS support is desired and to one if RSX-11M support
is to be generated. Naturally, RSX-11M sets this
variable to one. :

Figure C€-1 summarizes the default conditional switch
settings for the five operating systems supported by FCS. In
general, RS5X-11M sets the FCS conditional symbols to assemblse
the simplest version of FCSe. It is unclear what will happen if
some of the more useful features (RS$SEIS, RS$S5SPL, RS$SSMUL) are
turned on and used in an RSX-114 systeme.

-
i

i_-..—
I R$S11M
I RSSMPL
| R$355Cs
i R$SVYHS
R el S DL
] RS$SSANT
I RSSBBF
] R$SDPB
i RSSEIS
i RSSELP
] R$SLCL

255 MPL

= e e e e s e e o e o

RSX-11M | R3X=-11M+ | SC5-11 | VAX/VMS
+=- +=

—_——
iAs/11D {

0

O e

1
0
0
0

D b O
N~
DAOO

- -

[}
]

DL, OCORrOO

1

| RSSNAM
| R557SL
1

4

+

By S LY iaed RSN S e S B W

OO OOM OO
(o Bt Nl S e Nl & W B)
Bd D D b bd D b ek O

o~

Fb R L e e el OO

T o vy
A5 5FL

e e . o e e e e

[t
<

e m b ke N M) " S — U

L B it etk etk o+
e e MmO - s b

e s it e W S o W G o W G g

M e e m e M R B S

|
i
[

FIGURE C-1
FC3 DEFAULT CONDITIONALS

FCS-11 MODULES PAGE C-4

Ce2 FCS DATA STRUCTURES

{To be written

Cea2.1 TFile Descriptor 8lock

<To be wWritten>

CaZe2 Filename Block

<To be writtend>

C.2.3 Dataset Descriptor

<To be writtend>

C.2.4 S$3FSR1 Ragion

{To be uwritten>

C.2.5 §SFSR2 Region

<To be written>

FCs-11

HODULE

S

10
12
14
16
20
22
24
26
30
32
34
36
40
42
44
46

[y
8]

Record: Attr. | acord Type |

{=-- - - - i
| |
j—— EQF Block Number ——i
| i

=== == m oo oo i

{ First Free 8yte in EOF Block |

1 Device Chars | Record Access 1

| mm=m e === e oo o |

I Block 1/0 Buffer Descriptor |
j-—- or el |
{ User—-record Buffer Descriptor |
i- ———— - {
{ Block I/0 status & AST Addr. |
==~ or i

| Next-record Buffer Descriptor |
e nn e w o -]
i Buffer S1zeiﬂext Record Addr. |

! Create auant ty & Statistics |
{=-—- or -
i Record Number i
| e it —~— i

‘ i

] File Access | LUN NHumber i

1-- |

i Cataset Descriptor 901nuer l
R e e it i
i Default Filename Block Addr. 1}
i- - - ———— |

I Bookkeeping | EFN i

F.HIBX

F.EFBK

F.FFBY
F.RACC F.RCTL

F.BKDS/F.NRBD

F.BKST/F.HNRBD

F.OVBS/F.NREC
F.EGBB
Fe.CNTG/F.RCNHY
F.STBK
F.ALOC
F.LUN F.FACC
F.DSPT
F.DFNB
F.BKEF F.BKP1

En
Lo

Q]
j2&]

PAGE C-5

FCS-11

MUDULES

jem——————— e - {
54 1 Buffer Count | Mula. Bufa. Ho. |
|=———- - -——— -—— {
56 | Reservad] Muila. Buf. 3it 1
St - -1
50] Device Buffer Size {
et et |
2 | B8lock Buffer Size]
f-- - i
o4 | |
j=—- Y84 Number -1
66 | {
j=—- - i
70 1 Block Buffer Descriptor |
j-- e eeeme e —————— |
72 1 3pooling Device i
Rt ——————————————]
74 |} Reserved 1 Spooling Unit |
i - —— H
76 | Control Bits]
j-——- —— - {
100 |} Sequence ¥umber i
e R e T S S S T T T R RN T s RS sSsm===2= i
102 Start of FiB

Fe.¥BS4
F.BBSZ

F.BKVB/F.VBHN

F.BDB

F.SPDV
F.SPUN F.CHR
Fe ACTL
F.SEQN

F.FNB

Symbol Definition Macro: FCSBT3, FDOFFS$

Macro Source Filename: FCSMAC.MAC
Macro Library Filename: R3XHMAC.SHL
Global Definition File: FCSGBL.MAC
Object Library Filename: SYSLIB.ILB

Figure C=-2
FDB

FCS~11

#0DULES

00

04
06
10
12
14
16
20
22
24
26
30
32
34

i File Typa

’ -~~~ " - ;

i Version

=== m e e

i Status

i Next File

H Directory ID

| Rt

|

; - - - - 2

i Device Name

|=mmmm——mm———————— -
[Unit Number

e . o T ——— i ———— - — T -

NaF1D

N FNAH

N.FTYP
N.FVER
N.STAT
N.NEXT

N.DID

N.DVNHM

NeoUNIT

Symbol Definition Macro: FCSBTS5, XBOFFS
Macro Source Filename: FCSMAC.MAC
Macro Library Filename: RSAMAC.SML
Global Definition File: FCSGBL.MAC
Gbject Library Filename: SYSLIB.OLB

Figure C-3
FNB

PAGE C-7

FCS-11

¥ODULES

00
02
04

10

12

H

oo s e oot buueiegd

A D - D " D DD D T T D T D T -

Directory String Length

- - -——-— -—

Directory String Address

- - - D D T - — T -

Filename Stiring Length

- - -

Filename String Address

—— - —— o — — ——— — T

e o - —— ——— ———— — - . — —————, — o

Symbol Definition Macro: FDSQF$

Macro
Macro

Source Filename: FUSMAC.MAC
Library Filename? RSXAMAC.SML

Global Definition File:s FCSGHEL.MAC
gbject Library Filename: SYSLIB.OLS

Figure C-4
DATASET DESCRIPTOR

1

N.DEVD

N.DIRD

N.FuMD

PAGE C-8

FCs-11 MODULES ‘ PAGE C-9

— e v — o o o o o s

00 | |
= I/0 Status Block e |

02 1 i
Rt Lt -1

04 1] B.VBN
j=—- Virtual Block Humber =---}

06 | i
l - - — - - e - - i

10 - Address of Next Buffer } B.NXBD
! - - e —————

12 | Buffer Status | Empty i BeBFST
o e —-——=]

14 1 Empty i
o= - ——— e ———]

16 / Start of I/0 Buffer / S.BFHD
/ . /
/ - /
/ - 7/

Symbol Definition Macro: BDOFFS

Macro Source Filename: FCSMAC.MAC
Macro Library Filename: RSXMAC.SML
Global Definition FfFile: FCS3GBL.MAC
Object Library Filename: SYSLIB.OLB

FIGURE C=5
$5FSR1

FCS-11

HODULES
1 fo et ome it G ot oo
00 |
=== Allocation Listhead -
02 |
l -——
04 | First Address in FSR1
1 S S U P ———
06 | Last Address in FSR1
l PI— [P p———
10 1} File Uwner UIC
e et e —m——————————
12 | Default File Protection
’
14 /
/ Scratch Area and QI0C DPB
7/
! - - - R ——
44
j=—-= Scratch I/0Q Status Arezg =-—-
495 {
‘ -
50 /7
/ Default Directory Information
V4
I Rttt et et S
100 1} Default Buffer Count
:
102 1} Default Task UIC
! oo e oo dineee it i
Symbol Definition Macro: FSROFS
¥acro Source Filename: FCSMAC.HAC
lacro Library filename: RSAMAC.SML
Tlobail Detinifion Files FUSGBLLMAC
hiact Library ilaname: 3YSLIB.SLB
FIGURE C-6
53¢SRZ

i
i
i
l
i

1.BFSR
A.EFSR
A.08UI
A.FIPR

A.DPB

A.10ST

A-DFBC

A.DFUIL

PAGE C-10

FCS-11 MODULES PAGE C-11

3

FC3 INTERMNALS

¢
)
(9]
L&

{Tao be writtand>

C.4 FCS MODULES

The remainder of this appendix covers each FCS source
module. For eachih module, the «calling 1label and inputs and
outpuls are detailed

Ce.4e1 ANSPAD

This routine pads the rest of the buffer for magtape ANSI
"D" format. It is only generated if magtape support (RSSANI) is
selected.

Entrys .<.ANs?

Input: RO = FDB address

F.NREC(R0) = Starting address in buffer to pad
FLEOB8(R0) = Byte address beyond end of buffer
OQutput: ¢ 0, If buffer padded

won

1, If buffer not padded
RO-R4 preserved, R5 destroyed

Conditionals: RSSANI

Ce4.2 ASCPPH

This routine translates am 3IC siring in the form of
"C200,2101" to the dbinary equivalent. 3oth the ygroup snd owner
aumpers 3are assuwen o be octal unless followed by a period. In
this case, the numbers are translatea as decimal. The output is
Stored in ".3YTE owner,group”™ form.

Entrys <ASCPP

Input: R2 = Address of UIC string descriptor

FCs-11

MODULES PAGE C-12

23 = Address to return ths binary UIC

v

2)

2(R2)

Hn
¢

Siza of 41T
Address of
0, String converted and value stored
1, UIC string syntax errof

Sutput: C

N

411 registers preserved

Conditionals: None

C.4.3 ASCRSO0

This routine converts an ASCII string to RADS0 and stores
in the specified location(s)e.

Fntrys +.SGRS

Adddress of ASCII string
Size of ASCIYII string
Starting address to store RADS50 string

Input: R2
R3
R4

wiu

The storage area must be praviously zerosde.

0, Conversion complete

Output: C
1, Conversion failed, nonalphanumeric character

R4 = Address of last word written in RADSO
RO,R1 preserved, R2,R3,R5 destroyed

Conditionals:s RSSEIS

C.4.4 ASSLUN

This routine assigns the lun in FL.LUN of the FD3 to iIne
davyige specified by the filename blocka. If no deyice 1is
specifiad, the previously assigned device is used. 1f no device
was assignedy the defauir device {(5Y¥:i) 15 assigned.

snce the device 1is assigned, Tthe device charactsristics arse
stored in the FDB. Specifically, the low byte of the the device
characteristics (J.C¥W1l) is stored 1in F.RCTL and the device
buffer size (U.C4%4) is stored in F.V85Z and F.BBFS. Also, the
true device name and unit are stored in the filename blocke.

FCS-11 MODULES PAGE C-13

"

anfry: ASLUN, « s ALON

Y

¥0B address
F¥B address

b
3
(]
=
ot
[Y3

A 20

oo

(1O

MNeUNIT({R1) = Devica unit number
N.DVNM(R1) = Dewvice name or 0 if none

0, Assign successful
1, Bad device name

Cutputi C

[T 1]

F.RCTL(RQ) = Device characteristics
F.UYBSZ{R0Q) = Device block size
F+«8BSZ{R0J) = Device block size

If entry at .ASLUN, all registers preserved

If entry at ..ALUN, RO,Rl1 preserved, R2-RS
destroyed

Conditionals?: RSSANI,RSSSPL,RSS11HM

C.4.5 BOBREC

This routine sets up the block buffer header and the FDSB
for the next virtual block I/9.
S.ntry: ouBDRc

FDB address
Buffer descriptor address

Input: RO
Ri

([Tl

Qutput: B.VBN(R1) Set to F.VEBN(RD)

B.BBFS{R1l) = Sat to F.BEFS{(RO)
F.NREC(RQO) = Set to start of I/0 buffer
FLEOBB(RO) = Sat to end of I/0 buffer

RO,R2-R5 preserved, R1 destroved

Conditionals: fone

(@]
]

i
]

&
(e
[
[p]
£
<
F“J

This module contains routines used for large buifer
support. This support is not enabled for RSX-11M (R35$BBF>0).
INMBB checks for a specified VBN in the block buffer. RSTEOF

FCS-11 MODULES PAGE C-14

correctly processes #0F7s for large buffer I/0.

This routine sets up the registers for block I/0, using the
block buffer definition in the FDB.
Entry: «<3KRG
Input: RO = FDB address
F.BDB(RO) = Buffer descriptor address
Qutput: R1

R2
R3

Address of I/0 buffer
Buffer size (F.BBFS)
Carriage control, alWays set to zero

W

RO,R4,R5 preserved

Conditionals: None

C.4.8 CKALGC

This module contains routines to allocate blocks to a file.
The routines are desighed for internal ¥FCS usage.

The ««ALDOC and ..ALC1 routines are used to allocate blocks
if_necessary. The desired allocation is compared to the current
allocation and more blocks are allocated if necessarye.

cn try: -« ALDC

Inputs RO = FDB address

FT.EFBK{RY) specifies block to allocate to.

Intry:r .. ALC1
Tnputs 20 = 708 address
21 = High V3§ to allocate to
R2 = Low VBH to allocata to
Duiput: C 0, Hlocks allocated, F.HIBK({RG) updated

l
[T}

1, Allocation failed, F.ERR{R{O) contains
arror code

FCS-11 #4UDYLES

1

forad

A
A

The 2470 =3
e« 2XTD computes t
Ofherwise 1t subt

contents of R1,R2

registers

S wWwwm
nd «.23T1

ne extand

racts the
and usss

PAGE C-15

presarved

are used to extend the file.
size, using F.ALOC 1if it is non—-zeroa.
current zilocxk allocation from the
the Tesulting value. ..EXT1 actually

routines

issues the extend QID request.

ENIrys «<ZXTD
Input: RO = FDB address
21 = High Y8¥ to extend to
R2 = Louw V38 to extend to
Qutput: C = 0, Extend successful
= 1, Extend failed
All registers preserved
Entry:s «.EXT1
Input: RO = FDB address
R1 = 0, noncontiguous allocation
v = 1, contiguous allocation
R2 = flumber of blocks to extend
Qutput: C = 0, Successful extend, F.HIBX adjusted
= 1, Extend failed
RO preserved, R1-35 destroyed
Conditionals: RS55DPB
C.4.9 CLOSE

This module
buffers and

attributes. The

intrvs: s LD

Input: R0 =

GCutput: C =
Al1

rewriting the

file, writing any remaining
header with the final record

closes an open
file

FDB is reset.

Fi

-

8 address

0,
1,

successful completion
error w@writing header

registers preserved

FCS5-11 MOUDULES PAGE C-16

This module contains two commonly used routines. The
first, ..FC3{, is ussd tp properly set tne carcy bit if an error
code is set in F.&RR.

Entry: «.FCSX
Input: RO = FDB address

Cutput: C 0, F.ERR(RO) is positive

1, F.ERR(RO) is LE O

Hn

Al]l registers preserved
Conditionals: Yone
The second entry, .FATAL, is used by FCS to declare fatal

errorse. A BPT dinstruction is issued. The current version of
FCS only uses this routine if an event flag directive fails.

C.4.11 CONTRL

This module is used to issue the 10.APC function. It is
normally intended for use with magtapes.
Entrys «CTRL,..CTRL

Input: RO FD3 address

R1 = Function code
R2 = Value
R3 = Parameter list address

R

Jutpura: ©

Wi

P

3y operation successful
1y Opecation failed, F.ZRR{RY) = error c<ode:

If JCTRL, =il r=gisters preservs

-y

2

£

YT
2

I¥ ««CTRL, xU pr2served, H1-R5 destroyed

Conditionals: dHNone

FCS-11 HMODULES ' PAGE C-17

£

Ca4.12 CREATE

This wmodule contains the intecrnal FCS code for cr=ating a
new fils on the disk. If «cailed for a record I/0 device
(FDREC=1), the routine is effectively a no=-op. OJtherwise, the
I0.CRE function is issued.

Entry: ..CREA

Input: RO = FDB address
R1 = FNB address

Qutput: C 0, file created

1, operation failed, F.ERR(RO) = error code

i

RO,R1 preserved, R2-R5 destroyvyed

Conditionals: RSSANI

C.4.13 BDEL

This module contains the internal ¥FCS delete code. The
fila is removed from the directory and marked for delete. The
FNB is assumed to contain the filename and file-ID.

Entry: «-DEL1

Input: RO = FDB address
Rl = FN3 address

0, delete successful
1, operation failed, F.ERR{R0) set

Qutput: C

RO,R1 preserved, R2-R5 destroyed

Conditionals: None

Cadald DELETE

This module contains the user 1interface for deleting a
file. If the file is opened it is first closed. Then the FNB
is set up using the Jdataset descriptor in F.DSPT(RC) and default
filename block in F.DFHB(R0). Finaliy, the file is deleted.

FCS-11

MODULES PAGE C-18

Eatrys LOELET
Input: R0 = FO0B address

Gutput: © 0, deiste successiui

= 1, operation failed, F.IRR(RQ) set
All registers preserved

Conditionals: XNone

C.4.15 DIDFND

This routine begins to find the default task directorye.
The directory number stored in A.DFUI of $5FSR2 is converted to
RAD50 and stored in the filename portion of the FlNB. The
routine continues at ..DID.

FEntry: «.DIDF

Input: RO = FDB address
Rl = FNB address
R2 = FSR2 address

Dutput: Binary UIC converted to RADS(and stored in Fi¥B.
See DIFND (next section) for remainder.

Conditionals: None

C.4.16 DIFND

This module continues the directory 1lookup process. The
file type is set to DIR (RADS0) and the version to one. A find
is then performed on the master file directory. If successful,
the resulting £file=ID 1is set as the directory-ID and the
remainder of the FHR is clearsda.

Intty:r .-DI01, ..0ID
Input: R0 = FDB address
Rl = FNB address

NeFNAM(RL) = Directory nane

FC5-11 MODULES PAGE C-19

0{SP) = Saved R2
2{32} = Saved R3
4{3P) = Resturn address

«»DID1 sayes R2,R3 on stack and falls into ..DID

Jutput: C = 0, directory found, N.DID setup
= 1, no directorys, F.ERR(RD) set

R)=R3 preserved, R4,R5 destroyed

Conditionals: None

C.4.17 DIRECT

This module contains the code used to issue the directory
primitives: enter filename in directory (I0.ENA), find filename
in directory (ID.FHA), and remove filename from directory
(I0.RNA).

ENntry: «<ENTR, «FIND, ..RMOV

Input: RO
R1

FDB address
FNB address

Pilename block setup for desired operation

Cutput: C = 0, operation successful, FNB filled in
= 1, operation failed, F.ERR(R0) set

RO,R1 preserved, R2-R5 destroyed

Conditionals: RSSANIRS5D28B

C.4.18 DIRFND

s module confains the
N The diractory

2d as. the aessirad fl
i3 t ’nD,.{Da “’1? :OLI
actories, hosever, tnis co

irst half of directory siring
rg is turnead into z RADSD stiring
Name. Processing continues in

is nostly concerned with named
is disabled for RSX-114.

Entry: ..DIRF

Input: RO = FDB address

FC3-11 MODULES PAGE C-20

A

-non

B ad
irect

EJ "u
(J L"L
‘< &U

m

i

string Jdescriptorx

0, operation successful, directory-ID setup
1, operation failed, F.EZRR{RQ) set

o]
[
ot
o
[
ﬁ
(X
(9
[TIT]

R0~-R3 preserved, R4,R5 destroyed

Conditionals: RSFHAM,RSSSCS

Ca4s19 DIRHAM

This routine is only used for SCS-11 systems. It is a part
of that systems directory processinge.

Ce4.20 DLFNB

This routine is the user interface for deleting a file by
filename block. The FNB portion of the FDE is assumed to be
setup with the filename, type, version (must be explicit),
directory-I1D, device, and unite. The file is first closed,
removed from the directory, and then deleted.

Entrys DLFNB

Input: RO = FDB address

0, operation successful

Qutput: C =
= 1, operation failed, F.ERR(RO) set

All registers preserved

Conditionals: HNone

This routine contains code zhich bypasse the normal FCS
filename parsing and uses the facilities grovided by the
operat*ng 3ysiele. Such suppor:t is only turped on 1f FCS 1is

assa

mbied for a VAX/VMS system

FCS~11 MODULES PAGE C-21

C.4.22 E0FCHX

This module contains the EQF checking code for rscord 1/0.
The routine ..3EFBE checks to see if the current virtual block
(FL.¥8H) is at or beyond the EZDF block (F.EFBK).

Entrys: ««SEFZ

Input: RO = FDB address

FLUVBN(RO) = Current virtual block number

F<EFBXK(RO) = EOF block number

F.FFBY(RO) = Last byte in EJF block
Gutput: C 0, if before or at EQF block

1, if beyond EOF block
FD.EFB in F.BKP1{R0) set if at or beyond ECOF block
A1l registers preserved

The routines +.EFCK and «..EFC1 check: to see if the current
record position 1is at or beyond the EOF position. The first
antry calls ..SEFB to properly setup FD.EFB. ««EFC1 assumes
this bit 1is already properly set. If at the EDF block, the
current record position is compared against the placement of the
E0F within the block.

EHttY: ..EFCK’ e BFC1
Input: RO = FDB address

Qutput: C 0, if not at EOF

1, if at EOF, F.ERR(RO) = IE.EQOF

"o

R0,R2-R5 preserved, R1 destroyed

Conditionals: HNone

This module contains the user interface for sxtending 2
file. The file wmay Dbe opened or closed.

Entry: <EXTND

FCS-11

MODULES PAGE C-22

FD3 address
Number of blocks. to sxtend file bvw
Type 0f extend

21

"9
L

o n

Non~contiguous
Contiguous

<o
1T}

Qutput: C 0, operation successful, F.HIBK(RO) adjusted

1, operation failed, F.IiRR(RO) set

o

A1l registers preserved

Conditionals: HNone

C.4.24 FCSFSR

This module contains the FSR region declarationse. $5FSR1
is declared as a blank psect. The user is expected to expand it
later. The $35FSR2 region is declared to be of size S.FSR2.

Cs4.25 FINIT

This module contains the ¥CS initialization code.
Specifically, the size of the $3FSR1 region is calculated and
the default JIC is set from the task’s UIC.

Entry: SFINIT, <.FINI

Input: R1 = Address of $5FSR2 region (..FINTI only)

futput: FSR regions initialized

All registers preserved if entry at .FINIT
RUO,R1 preserved, R3I-R5 destroyed if entry at ..FIKI

Conaitionaiss XMgone

(]
*
b
.
[\
n
<
t5)
(2}

This module contains the code for inpuiting a logical
record from the devicef/file. The module can be assembled for
either sequential-only support (RS$535ERQ) or randoam/sequential

FCS-11 MODULES PAGE C-23

S5Upport. See ithe ASX~11/1IAS 1/0 Operations Raference Manual,
pages. 3-18 to.32-22 for further details on calling seguence and
rafurn vailues.

]

Ty «GETS

Eptryd: .G

£

Input: RO = FDB address

Sutputs C 0, record input

1, operation failed, F.ZRR{RQ) set

Tl

All registers presarved

Conditionals: RSSANI,RSSBBF,RSSEIS,RSSRSL,RSSSEQ,RSS11IM

C.4.27 GETDI

This routine is the second part of the directory look-up
process. It saves the current context of the FNB and calls
either ..PDID or «..DIRF to set the directory-ID. The FN3 is
then restored.

Entry: ..GTDI
Input: RO

R1
R2

FD8 address
FHB address
Directory string descriptor address

TN

0(sP)
2(SP)

Directory lookup routine {(«.PDID/e<DIRF)
Return address

Output: C = 0, operation successful
= 1, operation failed, F.ERR{RO) set

411 registars preserved

Conditionals: RSSSPL

C.4a228 GETDID

This routine geits the default task directory-ID and stores
it in the specified filename block. It sets-up to call <.PDID
and continues in «+GTDI.

"

FCS5-11 MODULES

PAGE C-24

Zntrys GTOID

Inputs 08 address
N3

address

"5y raj

Jutpuyts See ««6TDI
All registers presarved

Conditionals:y RSSELP

C.4.29 GETDIR

This routine look ups the specified directory and stores it
in directory-ID in the filename blocke It sets-up to call
«sDIRF and continues in ««GTDI.

Entry: «GTDID

Input: RO = FDB address
R1 = FNB address
R2 = Directory descriptor address

Jutput: See «-GTDI
All registers preassrved

Conditionals: RSSELP

C.4.30 MKDL

This module contains the internal routine to mark a file
for deletion. While the file is deleted by this routine, the
directory entry is not remowved.

input:

Cutputs C = 0, delete succassiud
= 1, delete failed, F-ERR{RO) set

R0 preserved, R1-R5 destroyed

FCS-11 MUODULES

Conditionals: Yone

This routine transfers records to and from

PAGE C-25

user bufferse.

It 1is designed to work correctly for odd address and odd byte
counts.
Entry: <-MYR1
Input: RC = FDB address
R1 = Address of source
R2 = Address of destination
R3 = Size of block to move
Qutput: R1 = Address of last byte moved+l
R2 = Address of last byte stored+l
RO,R4 preserved, R3,R4 destroyed
Conditionals: None
Cad232 HREDL

Caede33

be

This module contains the user interface for deleting a file
without removing the directory entrye.

Entry: «MRKDL
Input: RO = FDB address

JQutputs: C 0, delete successful

1, delete failed, F.ZRR(RD) set

([T}

All registers presarved

Conditionalss: None:

o]
)
e
o
e

Thiis module contains the code for accessing a file.

assembled into three different versions:

normal

It can
open

.

FCS-11 MOGDULES PAGE C-26

(R3509F=0), open by filsname block (R530PF=1), and open DLV
fila=1D (RS30PF=2)s Ses thne RSE~11/1I48 I1/0 Operations. Referancea
Manual, pages 3-2 to 3-17 for further descriptions of the
cailing sequenca and oulputis.

Entry: .0PEN, .0OPFNB, .0PFID
Input: RO = FDB address

Qutput: C 0, operation successful

1, operation failed, F.ERR(RO) set

Al]l registers preserved

Conditionals: RS$SANI,RSSBBF,RSSUPB,RISEIS
RSSMBF,RSSNAM, RS SUPF,RSSRSL,RSS511HM

C.4.34 PARDI

This routine continues the directory parsing process for
the default directory. If the device and unit agree with the
current saved directory-ID‘s device, the saved default
dirsctory-iD is copied. Otherwise, the directory-ID is obtained
and saved for later use. :

Entry: +.BDT

Input: RO = FDB address
R1 = FNB address
0(SP) Directory lookup routine (+..DIDF/..DIRF)

2(5P) = Return address

Qutput: € = 0, operation successful
= 1, operation failed, F.ERR(ROQ) set

All registers preserved

G

fal S S - TR el
Londivignaiss #5500

g

¥
[€3)

L

C.4.33 PARDBID

This routine is a short-hand version of the directory
lookup process, specifically designed for default directories.
It sets up to call ..DIOF for directcory processing and continues

FCS-11 MODULES PAGE C-27

10 ..PD1.

FAtrvi: «.20ID

Input: RO = FDB address
R1 = FNB address

Cutput: See ..P01

411 registers preserved

Conditionals: HNon=a

C.4.36 PARSDI

This module contains the logic for parsing the directory
specification.
Zntry: .PRSDI, ..PSDI
Input: RO = FDB address
R1 = ¥HB8 address
R2 = DSD address or zero if none
R3 = Default FY¥B address or zaro if none
Jutput: C = 0, operation successful
= 1}, operation failed, F.ERR(R0O) set
All registers presarved
Conditionals: HNone
Directory processing in FCS appears somewhat complex the

first time it is examined. The following routines and entries

are involved:

DIDFND <.DIDF

DIFND ««DID1 ..DID
JIRFHYD - ..DIRF

GETDIL 2+ GTDI

GATDIL LLTDID

GETDIR &5TOIR

PARDI +- P01

PARDID ..PDID

PARSDI .PRSDI ..PSDI

For the three usar-level entries (.GTDID,.GTDIXK, and .PRSDI) the

following flow OocCCurse

Note, for PRSDI, there are three flouws:

TN

FCS-11 MODULES

dataset{i), default-cNB8(2), a
+GTDID LGTDIR {1
..3?31 eni3TDI s JIRF
..PDI »+D1ID
<« JIDF

C.4.37 PARSDY

This module contains the
assign the FDB s LUN to the p

Entry: .PRSDV, ..PS5DVY
Input:- RO = FDB address
R1 = FNB address
R2 = DSD address
R3 = Default FiNB
Qutput: C = 0, operation
= 1, operation
If .PRSDV, all t
Tf +.-PSDY¥, R0=-R3
Conditionals: RSSELP

C.4.38 PARSE

This module cont2ins the routines

PAGE C-28

nd naither{d):

{(2) (3
none eePD1
CQD.IRf‘
.‘DID

code to parse the device name and

arsed device.

or zero if nonse
address or zero if none

successful
failed, F.SRR(R0) set

egisters preserved

presarved, R4,RS5 destroved

to completely parse a

file specificatione. The individusl parsing modules (PARSDI,
PARSDY, and PARSFN) are called for each component of a
specificatione.

The toutine ..STF4 is an internal 2airy used to parse the
filename if no file~ID nas been sete. LI 9arsing s needsds, it
£31ls into -.2388. Stherwise the toullne aerely 2xXits.

Eptrys ..3TFH

Input: RO = FDB address

Jutput: R1 = FN3 address

FCS-11 MODULES PAGE C-29

=3
o
|
2
%]

R) presarvad, dastroyed

The routines L.PARSE and s PARS parse a complietfe
spacification.

Entry: «PARSE, «..PARS

Input: RO = FDB address

R1 = F¥8 address

R2 = DSD address or zero if none

R3 = Default FN3B address or zero if none
Qutput: C

0, operation successful
1, operation failed, F.ERR{R0O) set

If .PARSE, all registers presarved
If ..PARS, R0O-R3 preserved, R4,R5 destroyed
Conditionals: RSSELP,RSSSPL
C.4.39 PARSFYN

This module contains the code to parse the filename.

Entry: JPRSFN, ..PSFN

Input: RO = FDB address

R1 = F3YB address

R2 = DSD address or zeroc if none

R3 = Default F¥8 address or zero if none
Jutput: C 0, operation successful

= 1, operation failed, F.ERR(R0) set
If .PRSFY, all rggisters preserved
If ..PSFN, R0-R3 preserved, R4,R5 destroyed

Cepditionzsls: None

This routine checks to see if the FDB is properly setup for
record 1input and output. The file is checked to see if it has

HODULES PAGE C-30
been openad and the proper 1/3 mode is checkead
(Sequentz?lj:u doma/blocik). The @module 1is assemblad. into tuo-
varsions depsnding on the defipnition of A535SEf.

The Toutine ..PGCR checks [or proper crandom of seguential
1/0. If random I/8, 1t chescks that the device is not sequential
in nature. The routine ..PGCS checks for sequential I/0 onlve.

The calling arguments to both are the sames.

Entry: «<PGCR, ..PGCS

Input: RO FDB address

Gutput: C 0, operation OX

1, operation illegal, F.ERR(RO) set

All registers preserved

Conditionals: RS3S5SEQ

Ced4.41 PYNTMRX

This module contains the user routines for returning to a
previously noted position in a file and for getting the current

position in the file. A file®”s position 1is designated by a
double-word block number and a single word byte within the
block.
The POINT routine positions a file to a previous marked
position.
Entry: POINT
Input: RO = FDB address
Rl = New VBN number (high part)
R2 = dew VBN number (lowm part)
R3 = Byte number within block
Jutputs ¢ = 0, operation successiul
= 1, aperation failed, F.Z8R(ELY set
411 czgisfers prassarved
The .4ARK routine reatrieves the currtent r2cord positione.

The

virtual

block

number

The byte number is calculated

block I/0 buffer (¢ .NREC+F.VBSZ-F

is taken from the F.VBY doubleword.

from the current position
+ECEB)e

in the

FCsS-11

MODULES PAGE C-31

intry: «#HARK

j address

(o)
o]
Q
[
“t
(Y]
A
)
[
[25)
(o}
oy

Outpuiz R1 = ¥BN number (high part)
R2 = V34 aumber (low part

R3 = Byte number within block
RO,R4,R5 preserved

Conditionals: ¥onsa

C.4.42 POINT

This module contains the internal code for repositioning a
file. 1If the desired block is different from the current block,
the old block is written if dirty and the new block read. The
racord pointers are then set up for the desired positione.

Entry: ..PNT1

Input: RO = FDB address
R1 = New VBN number (high part)
R2 = New VBN pnumber (low part)
R3 = Byte number within block
Jutput: C 0, operation successful

wou

1, operation failed, F.ERR(RO) set
RO preserved, R1~-R5 destroyed

Conditionals: RSSANI,RS$SSBBF

C.4.43 POSIT

This module contains the code for caiculiating the
positioning information necessary for use «with POINT for a file
with fixed=-length C2cD03S.

Yatry: .P0SIT, ..PSIT

Input: RO = FDB3 address

F.RCN# doubleword set to desired record number

FCs-11

TN

MODULES PAGE C-32

%, operation sSuccess
1, operation failed, FJ.IRR(RD)

Jutput: C

o
Ui
(]
a4

I1f successfiul, foiiowing registers resturneds:

VB8H number (high part)
VBN number {(lowm part)
Byte number within block

e
i
Wi u

If .POSIT, RO,R4,35 preservaed
If ««PSIT, KO preserved, R4,R5 destroyed

Conditionals: RSJEIS

C.4.44 POSREC

This module contains the routines used to position a
fixed-length file to a specific record. Besides the entry
documented below (.POSRC), the entries ..PSRl, ..PSRC, and
««PSRG are also in this module. However, they are merely call
other routines are are therefore are not documented further.

Entry:s POSRC

Input: RC = FDB address

F.RCNM doubleword set to desired record

Qutput: ¢ = 0, operation successful
= 1, operation failed, F.ERR(R0O) set

All registers preserved

Conditionalss: None

C.4.45 PPHASC

Lz string

e
Gl

s
cl}
1
e
il

routine Cranslates a3 binary JIT into

This
2ntations

T
Tapres
gntry: .PPASC

Input: R2 = String address to store ASCII UIC
R3 = Binary UIC (.BYTE owner,group)

FCS-11

4UDULES PAGE C-33

R4 = {onversion Flags

3it 0 = 0, suppress leading zaros
= 1, output leading zeros
8it 1 = 0, output separators (I,3)

-
-

suppress. separator ocutput
Qutput: String output

R2 = Last byte output+l

RO,R1,R3-R5 preserved

Conditionals: RSSEIS

C.4.46 PPURS0

This routine translates a binary UIC into two RADS0 words.

Entrys: .PPR5D

Input: R1
R2

Doubleword address to store RADS0 results
Binary UIC (.BYTE owner,group)

W

Output: UIC convertasd to RADSO
RO,R4,R5 preserved, R1-R3 destroyed

Conditionals: None

C.4.47 POUT

This module contains the code for outputting a logical
record to the device/file. The module can be assembled for
either sequential only support (RS$3SEQ) or random/sequential
sSupport. See the RSX-11/IAS I/0 UOperations Reference Manual,
pages 3~23 to 3-28 for further details on calling sequence and
raturn vaiues.

Entry: 20T, .PUTSQ

o]
(o]
1]

Input: FDB address

Cutput: C 0, record ianput

1, operation failed, F.ERR(RO) set

FCS-11 MODULES PAGE C-34

=]
[t4]
[%]
[
®
§d

tar LV

L

1%}

i

Ui

1 2

| =
b
[Fol

A

Conditionals: RSFANI,RSSEIS,RSSRSL,RSSSEQ,RSS1IM

Coed.48 RDIN

This routine inputs the next wvirtual block, writing the
current one 1if it is dirty (FD.H4RT=1).

Entry: «.RORW

Input: RO = FDB address

0, operation successful

Qutput: C
1, operation failed, F.ZRR{(RO) set

RO preserved, R1-R5 destroyed

Conditionals: Hone

Ce4.49 RDWAIT

This module contains the routines for rte2ading the next
yirtual blocke. e« RHAT increments the block number (F.VBY) and
falls into ..RWAC. It also checks for record—-oriented transfers
and handles them correctly. .

ERtry: «-RWAT
Input: RO = FDB address
See ««.RWAC for remaining description

The routine ..RWAC reads the curreant virtual blocke. It
only expects to be called for block 1I/0.

Input: Ry = FDB address

Block number
Address of buffer header
Number of bytes to read

F.VBN(RO)
F.BOB(RO)
F.BBFS(RD)

Wwouu

FCs-11

40DULES ’ PAGE C-35

Jutput: € = 0, operation successful
= 1, operzation failesd, F.ZRR(RO) 3et

Address of start of block
Address of last byte~+l

5y vy
[T

RO preserved, R1-R5 destroyesd

Conditionalss: RSSBBF,RSIMBF

Ce4e50 RDMWRIT

This module contains the common routines for READ/WRITE
I/¢C. The routine ..RWCK checks that block I/0 is allowed. It
checks that the file is opened (F.DBD nonzerc), READ/WRITE mode
is set (FD.RWAM=1), and the device is block orientad (FD.REC=0).

Entry: ..R&CK

Input: RO = FDB address

Jutput:s C = 0, Block 1I/8 allowéd
= 1, Block I/0 not allowad, F.ERR(RO) = IE.ILL
All registers preserved

The routine ..WTRD actually issues the block I/0 requests.
The block number is bumped after the I/0 completes.
Entry: «.HTRD.

Input: RO = FDB address
R4 = 1/0 function code {(IJ.4VB/I0.RYB)

F.VBN(RO) = Block number to read/uwrite
F.BKDS(RU) = Buffer descriptor
F.BXST(RO) = I/80 status block addreass
F.BXDN(R0) = I/2 done AST address

Jutputs: C 3, operation successful

1y, operation failed, F.2RB{z0} set

ion

R0 preserved, R1=-R5 desiroyed

Conditionals: ¥None

FCS-11

®0D UL

<]

his routine is 2 usear interfsce for reading a block
biock I/3 mcdea.
d4anual, pages 3-28 to 3-31

sequence and resturn valuese.

B Ly

LIl
2~
ey =]

for further detzails on

Entry: WREAD
Input: RO = FDB3 address

0, operation successful

Qutput: C =
= 1, operation failed, F.ERR{RQ) set

A1l registers preserved
Conditionals: None
Ced4e52 RENAME

This routine is the user interface for renaming a
Only the file”s directory

internal to the file header is untouched.

Entry: RENAYM

FDB address
FDB address

Input: RO
R1

{oid filenanme)
(new filename)

T]]

utput: C succaessful

failed, F.ERR{RO) set

0, operation
1, operation

All registers preserved

Conditionals: HNona

Coda

h

23
3 3

£

.
TADR

This routine corractly sets up the FDB record pointers
locate mode I/0. If called for move modae, it is a no—opa.

Entry: ..RTAD

3 PAGE C-36

via

the RSZ-11/IAS I/0 Operations Reference
calling

file.
entry is manipulated, the filename

for

FCS5-11 MODULES PAGE C-37

Tnput: R0 = FTB address
Cutput: F.H2BD{R0) = Set to record size, address
RO,R1,33=-R5 presearved, 22 destroyed

Conditionals: RSSANI,RSSBSBF

Ce.4.54 RSTFDB

This routine resets a FUB so it can be used for another
oDen» If record 1I/0 was used, the block buffer is returned to
the pool. Locations in the FDB that are assumed to be zero 1if
no file is opened are cleared.

Entry: <.RFDB

Input: RO = FDB address

Qutput: FDB reset to non—opened state
R0 preserved, R1-R5 destroyed

Conditionals: RS$SS5HBF

C.4.55 RWBLK

This module contains the routines used to issue the
read/urite requests for record 1I/0. The routines are used for
both record and block oriented devicese. The only difference
between the entries is the I/0 codes usede. «.RBLK uses I0.RVB.
.,'#BLK uses IB.'JH’B.

The carriage control and YBN are always stored in the
constructed QI0. When issued to record devices, RI0 parameters
4 and 5 are typically ignorad. Similarly, block I/0 devices
ignora parametar 3. The I[/0 stztus block is assumed to be at
the beaginning of the buffsr header, waich 1is assupmed to be
immediately in front of the data bufier.

Mo implicit wait for I/0 compietion is made. The carty bit
w11l be 3et onily if the QI0 directive failse.

Entrys: <<.RBLK, ..%¥BLK

FCS-11

MUDULES PAGE C-338

Input: R0 = FDB address
R1 = Address. of data buffer
2 = Size of data bufier
R3 = Carriage contreil chacvacter

F.YBN{R0) = 3lock number’

Output: R1 = Address of I/0 status block

-

R) preserved, RZ2-R5 destroyad

Conditionals: RSSMBF

C.4.56 RWFSR2

This module contains a collection of routines to allow the
user to read and write fields in $§5#SK2. The routines (.RDFDR,
+ADFDR, +RDFFP, +WDFFP, RFOWN, .WF0WH, ~.RDFUI, and -WDFUI) are
dascribed 1in the RSX-11/IAS 1/0 Gperations Reference Manual,
pages 4-2 to 4-6.

C.4.57 RHYLONG .

This routine is used to perform block I/70 transfers shen
the bDyte count 1is greater than one block (512 bytes). This
routine 1is selected by the «READ/®RITE routines when
appropriate. Otherwise, ..¥TRD is used.

Entrys: «.RELG

Input: RO
R4

FDB address
I/0 function code (I0.RVYB/I0.WYB)

i n

FDB setup for block I/0 request

Cutput: ¢ 0, operation successful

1, operation failsd, F.ZRR{EQ) s=2t

(TI1]

b

41l registers

]

fesarved

be

Conditionais: Hone

FCS-11 MODULES PAGE C-39

C.4.58 TRHLLS

fod
o
ts

o

L]
‘p-i .
st
¢}

This rToutine truncatias a-

Z3OF position and
closes the file. |

Entry: »TRANCL
Input: RO = FDB address
FOEFBK’ F.FFBY set to EOF pOSitiOD

Qutput: C 0, operation successful

1, operation failed, F.ERR{RQ) set

3411 registers presarved

Conditionals: None

C.4.59 UDIREC

This module contains the user interface routines for
issueing +the directory primitive functioas: find filenaame
(.FIND), enter filename (.ENTER), and remove filename (.RE¥MOV).
The calling sSequences and return values are documented fully in
the RSX-11/IAS I/0 Operations Reference Manual, pages 4-12 to
4-14.

Entry: FIND, .ENTER, REMOY

Input: RO = FDB address
R1 = FNB address

Output: C 0, operation successful

1, operation failed, F.EZRR(RO) set

Wwu

All registers preserved
Conditionals: RSSHAH
C.4.80 UPYARD

This routine provides extended file lockup abilities for
SCS-11 systems. It is not compiled for RSX-11¥ systeas

FC5-11 MOUDULES PAGE C-40

C.dabl HAITI

This module contains routines used to issue RI0°s for FCS
and @wait for their complation. The first routine, ..2I0W,
issues a 4I0 and falls into ..#AIT. It watches for errors due
to dinsufficient pool and #ill loop, waiting for a significant
event if this happens.

Fntry: «-GQI0%

£D8 address
I/0 function code

Input: RO
R4

i

Scratch DP3 setup in 3SE3R2

Qutput: C 0, operation successful

1, operation failed, F.ERR(R0) set

Rl = 1/0 status block address
R0 preserved, R2-RS5S destroyed
The routine ..WAIT stores the I/0 status into F.ERR(RO).
It waits for I/0 completion by waiting for a non-zero I/0 status

value. If the I/0 status is zero, it falls into ..9AEF and then
repeatse.

Entry: «-.%AIT

Input: RO = FDB address
Rl = I/0 status block address

0, I/0 completed successfully
1, 1/0 failed, F.ERR(RO) set from status block

Gutput: C

4111 registers preserved

The routine +.%AEF waits for the FDBE®"s avent flag,
F.EFN(RD). If no event flags was specified, event flag 32(190)
is usad. The flag is cleared after the wait completes.

Fnirvs ..39AEF
Input: R0 = FDR address

Sutput: Event flag cleared

A1l registers preserved

FCS-11 MUDULES PAGE C-41
Conditionalils: ilona

Cedabd #AITU

This routine is the user 1interface for waiting for I/0
completion when operforming block I/8. If an I/3 status block
has been specified (F.BXST nonzero), the routine ..#AIT is useda.
Otherwise, the routine ..¥AEr is called.

Entry: WAIT

Input: RO = FDB address

Jutput: 1/0 wait completad

All registers preserved

Conditionals: W¥one

C.4.63 WATNOD

This routine checks the 1I/80 status for errors dus to
insufficient pool (IE.UPY¥) and doers a wait-for-significant
event if true. {therwise it merely returnse.

Entry: <.WAND

Input: RO = FDB address

Rl = I/0 status block address
Cutput: C Oy IE.UPN occured, nait completed
1, Error ®Has not IE.UPHN

All registers pressarved

Conditiconalss: done

C.4.64 WATSET

This routine waits for I/3 completion and sets up the
record pointers based on the contents the the second I/C status
word.

-

FCS-11 MODULES PAGE C-42

Tntrv: .. ¥AST

DY address
I70 status block addraess

Input: RO
R1

(1T

I/0 status 13 assumed to be at start of buffer
descriptor.

9, I/0 completed successfiully

Cutputs C =
= 1, 1/0 failed, F.ERR{RD) set

F.NREC({RO) set to beginning of data
F.EUBB(RO) set to end of data
RO,R1,R3-R5 preserved, k2 destroyed

Conditionals: RS$S5BBF

Ceds65 HRITE

This routine is the user interface for writing a block. via
block 170 mode. See the RSX-11/IAS 1/0 Operations Reference
Manual, pages 3-31, 3-32 for further details on calling sequence
and return values.

cntry: < 4RITE

Input: RO = FDB address

Jutput: € = 0, operation successful
= 1, operation failed, F.ERR(RO)Vset

All registers preserved

Conditionals: flone

Cada®6d HWTWAIT

T™his moduls contains the Toutines for writing the next
virtual Dlocke. ~sdTHWA outputs the 7BH and returns wiith the
record buffers set up for the next PUT.

intrys: <.®THA

Input: RO = FDB address -

FCs-11

MODULES PAGE C-43

FLYBN(ROY = Block number
F.3DB(RYY = iddress of buffar header
F«BBFS(RD) = dumber of bytes to read

3, operation successful
1, operation failed, F.EZRR{RO) set

Cutput: C

F.NREC (RO

) = Address of start of block
F.S0BB{RY) =

Address of last byte+l
RO preserved, R1-RS5 destroyad

Conditionals: R$S8BF,RSIMUBF

C.4.67 XQIO0I

This module contains the routines used to build and issue
internal FCS RQI0°s. They wuse the 4QI0 DPB in §5FSR2. The
routine ..XRI0 sets up the standard parameters and 1issues the
@10 directive. It assumes the I/0 parameters have already been
set. This routine gets the I/9 status block address and AST
address from the FD3.

Entry: <.X{I0

Input: RO FDB address

R3 = Directive code, size
R4 = 1I/0 function code
RS = DPB address

Jutput: See «.X4dIl below

An alternate entry is «.%QI1. This routine is passed the
1/0 status block address and AST address. It gets the lun and
event flag from the FDB, sets up the DPB, and issues the I/0
raguesta.

Entrys .. XGI1

Input: R0 = FOB addraess
Rl = I/9 status block address or zero
R2 = 1/0 BDone AST address or zaro
R3 = Directive code, siza
X4 = I/5 function code
R5 = DPB address
Cutput: C 0, operation successful

0 u

1, RID directive failed, F.ERR(R0) set from

PAGE C-44

FCS5-11 MUODULES

Ly
[w]
(_f'
-3

81 = I/0 status block aadress
R0 ,R4 preserved, R2,R3,Rk5 destroyed
The routine +.IDPB dinitializes the DPB in S§SFSR2
raturns the address of the parameter area.
Entrys: ..IDPB
Input: dNones
Qutput: RS = Address of parameter area
R0-R4 preserved

Conditionals: HNone

C.4.68 XQICOU

N This routine is the user interface for issuing a
request using the lun and event flag from the FDB.

satrys XQI0D

Input: RO = FDB address
R1 = 1I/0 function code
R2 = Size of parameter 1list or zero if none
R3 = Address of parameter list

Qutput: C 0, operation successful

1, operation failed, F.ERR{RO) set

A1l registers praserved

Conditionals: MNone

and

QIO

APPENDIX D

FILES-11 QIG”S

This section documents the various RI0°s used by Files-11
{F11ACP and MTAACP)). The material is taken from an article
written by Andra« Goldstein of Digital in HNovember, 1976 and
from examination of various source modules.

D.1 FILES-11 QIO DPB

A11 F11ACP QID directive parameter blocks have the same
formate. The following diagram illustrates this format (note
only the parameter fields are different from all other QI07s):

;-—-——__-‘- - - — -

|
1 Size i Bic i
e Rt |
i Function Code i Modifier | Q.I0OFN Q.IDFN
o -—— o i
i Reserved i LUN i R.IOLU
R i L -—————— | g ——emmm————]
i Priority i EFN { Q.I0PR Q.IOEF
= - - - ——— i
i I/0 Status Block] Q.I0SB
Rl —————— |
i AST Address 1 QeIBAE
e cm e m—a e ——————————————— - ———
i FID Pointer Q. I0PL

l-_-—------_--— - -

] r‘t‘rtx’;’m!:e List Pointer

i Zxtend Contg~i ! Delrta Size {High)

|
i
|
i
i
i
= e e i
i
i
1
!
|
i

| Delta Size {(low 1 bits)

i-_-----—--—-_- - —— . -

i Access Lontrol i windouw Size

i FNB Pointer

j=—————————a -

L

FILES-11 R10°5 PAGE D=2

for 2 specific Dpurpose. If
quirzs the field, it must not bea
range Cchecks all parameter

[)

Tach parameter field is used
the particular 210 does not T
specified (set Lo Zero). Fl1aACP
fields.

(]

D.2 FILES-11 QI0 PARAMETERS

This section will discuss the six parameter words 1in a
Files=-11 GI0. %While none of the parameters require the FCS data
structures, it is obwvious the fields are set up for use 1in the
FCS environment.

De2.1 Parameter Word #1 - FID Pointer

This word contains the address of a three word block in the
issuing task®s space. This block is or will become the file ID.
If the word is zero, no file ID is specified.

In the FCS environment, this word «will typically contain
the address of the filename block. The file ID block has the
following format:

jmm—m e e ———— i
i #ile Humber i
e A b — —-— -1
| File Seguence Number H
- —— - - i
i Reserved {
l A S A W O e A D A D WD D - a I ‘

The file number is used by F11ACP as an index to the file
header block in the index file. The file sequence number is
used to maintain header integrity. Each time a header block is
used for a new file, the file sequence number is incremented.
The final word has no current meaning.

e

Dal2s2 Parameter ¥ord 52 - Attribute List Pointaer

This word contains the address of an attribute 1list in the
issuing task~“s space. This list controis which file attributes
are to be read or written by F11ACP. 1If no attribute 1list 1is
specified, the word is zero.

File attributes are various fields 1in the file header.

FILES-11 QIO“S PAGE D-3

o

These fieslds are documented in Appendix F of the IAS/RS{-11 I/0
Jperations Reference danual {(AA-2515C-TC).

An attribute 1ist consists of zecfo to six attribute
entries, followed by a bvte of zero. Zach attributie entry has
the following format:

«BYTE <Attribute typed>,<D>
« %0RD <Pointer to “¥° byte bufier>

The sign of the attribute type determines the direction of
the operation. If the attribute type is negative, the attribute
is read from the file header to the buffer. If the attribute
type 1is positive, the buffer is written to the file header as
the new attribute. The magnitude of the attribute type and size
of the buffer determine which fields in the file header will be
accesseds The following table lists all wvalid read attribute
types, valid buffer sizes, and the starting offset in the file
header. To write the attribute, make the sign of the attribute
type positive.

-01,02 Read file owner UIC (H.FOWN). The UIC is a binary
word. The low byte (H.PROG) is the owner numbere.
The high byte (H.PRUJ) is the group number. Note
that the file owner UIC 1is independent of the
directory UIC.

-01,04 Read file owner UIL, protection (H.FO¥¥). The UIC
is returned as described abowve. The sscond word is
set to the file oprotection code (see attribute
-02,02).

-01,05 Read file owner UIC, protection, <characteristics
(H.FOWN). The UIC and protection are returned as
described above. The fifth byte is set to the
user-controlled characterics (see attribute
-03,01). '

-02,02 Read protection (H.FPRO). The file protection word
is a bit mask with the following format: ‘

Bit 15 12 11 8 7 4 3 0

B] B -1-- -1 -1

i dorid | Group i Suner i Systam i
i [P } - - § 3 - com 3

3

ach of tae four categories above nas four bits.
ach bit has the following meaning with respect to
ile access:

s

Qi

W

=
P

FILES~11

21073

'0 21 03

-03,01

-04, 40

PAGE D-4
3it 3 Z 1 0
i- - -=1 -=] i
{ Deiete { Extend i srite i Read {
D Ll ittt d Dbt et Rttt bt e |

A bit value of zero (0) indicates the respective
type of access is allowed to the file. A bit value
of one (1) indicates access is denied.

Read protection, <characteristics (H.FPRQ). The
protection 1is returned as described above. The
third Dbyte is set to the user-controlled
characteristics (see attribute ~03,01).

Read characteristics {(H.UCHA). The user
characteristics 1s a one byte field containing
various bit definitions. The current bits defined
are listed below:

UC.CON = 200 Logically continuous file. %hen the
file is extended, this bit is
cleared.

UC.DLK = 100 File improperly closed. when ever
the file 1is opened for write, this
bit is set. It is not cleared wuntil
the file 1is <closed {(deaccessed).
This 1s the famous lock bit.

In addition to the user-controlled characteristics,
the next byte in the header is the
system—controlled characteristicse. This byte
cannot be accessed by an attribute field. The
current bits defined in this byte are listed below:

SC.MDL

]

200 File marked for delete.
SC.BAD = 100 B8ad data block in file.

Read record I/0 area (U.UFAT). The first 7 sords
of this area are a direct copy of the first 7 words
of tha FDB when tha file is opened {(see Table A-1,
I1/8 Operations Reference ¥anuai, ofifseits F.RTYP Lo
F.EFBYY» The ramaining 9 awords ¢f this arsa args
noet usade I dn not Xnom how this acea is defined
in the case 0f]MS~-11.

Read filename (I.f¥4¥). The filename is stored as
nine {9) RADS0 characters.

Read filename, type (I.FNAM). The filename 1is
returned as described above. The type is returned

FILES-11 QRIO°S PAGE D=5

to the fourth word (see attribute -06,02).

-05,12 Read filename, type, version (T.FHNAM). The
filename and type are raturned as described above.
The version is returned to the fifth sord (see
attribute -07,02).

-06,02 Read type (I.FTY¥P). The type is stored as three
{3) RADSYO characters.

~06,04 Read type, version (I.FTYP). The type is returned
as decsribed above. The version is returned to the
sacond word (see attribute -07,02).

-07,02 Read version (I.FVER). The version is stored as a
binary number. :

KOTE

The filename, type, and version are set
when the file is createde. If the file is
renamed by PIP, these. fields are not
changede.

-10,07 Read expiration date (I.EXDT). The expiration date
is intended to be the +time the file becomes
eligible for deletion. This feature is not
implemented. The date is kept in ASCII form in the
format day, month; and year (2 bytes, 3 bytes, and
2 bytes).

-11,12 Read statistics blocke The statistics block 1is
defined in Appendix H of the I/0 reference manuale.
No specific fields exist in the file header for
this attribute. Therefore, it cannot be written.

-12,00 Read entire file header. The buffer size 1is
assumed to bes 1000(8) bytes. This attribute has no
corresponding write function.

I

-13,902 Read bloc}
bed ed

i ize -’AN
bieck si Ta

labelled. tape oniv)e. The
S 3 positive lH-bit number

-

,.3 <6

=14, xx Read user label (ANSI labelled tape only)de This
attribute allows access to the user label on an
ANST standard tape. "xx™ 1is the lengtia of the
label (maximum 80). If the function is a rsad,
user header labels are read if a file is accessed.
If no file 1is accessed, user trailer labels are
reads If the function is a write, wuser header

FILES-11 QI3°s

labels are
labels are writtan.

Read compliete date
This attribute

-15, %%

raturned 1in the
stored

bytes of
foliowing format:

00-01

written during a3 creata.
during a

information {(disk
allouds
expiration dates to be r=ad.

format day
bytes), and year since 1900 (2 bytes).

Revision
incremented

PAGE D-6

User trailer
de83CC2SSa

files onlvy).
the ravison, c¢r=ation, and
Dates are stored and

(2 bytes), month (3
Times are

and rteturned in the format nours (2 bvytes),
minutes (2 bytes), and

seconds (2 bDytes)e. Hxx ¥

time/day information are returned in the

This
time

is
is

number
the file

number.
each

closed after being opened for output.

02-10
11-16

17-25 Creation

26-33
33-42

+16, 156
.file placement
Processed only . Dy
attribute only)e.

The magitude of the attribute
valid buffer size.
above are
largest
allowed.

sufficient to handle

size for each

De2.3 Parameter ¥Words #3 and §4 -

Thes= two param=ters arfe used
to pe 2llocated Lo a new file
40rds are also useg toe control
fermat of the two paraspeiars

o I 1]

£

od‘liu
«¥ORD

The high

the remaining fields are

Allocation control {disk
controli,
create

Any smaller size is legal.

attribute

Revision date.

Revison time.

date.

Crecation time.

Expiration date.

files only).
currently by
of write (ie.ca.ys

Used for
RMS oniy.
write

the maximun
The sizes listed
named attributes. The

also the largest buffer

type determines

the
is

SizelExtend Control

to specify how m@many Dlocks
of addsd o an existing filew.
the tyvpe of bilock ailocatione.

is as followms:

<Delta size {(high B8 bits})>,<Extend control>
<Delta size (low 16 bits)>

bit of parameter word #3 (bit 15) controls whether
used by F11ACP.

If the bit is zero

FILES-11 QI07S PAGE D=7

(0), no size change is desired. If the bit 1is one (1), the
remaining fields are processad.

The high byte of paramefer @ord #3 {(extand <controi)
determines the type of allocation desired. The low byte of this
word and parameter word 34 form z 24-bit number of blocks to
allocate (delta size). This number is the initial file size in
the case of a create and the change in size in the <case of an
extand.

The extend control byte consists of a bit maske. The bits
fiave the following meanings:

8it O A1l blocks must be allocated contigously (EX.ACl).

8it 1 Allocate largest contigious chunk up to delta size
(EX.AC2). This bit is pot examined unless bit 0 is

on (1).

Bit 2 File must end up contigious at operations end
(EX.FCO).

Bit 3 Use volume default as delta size (EX.ADF).

Bit 4 Placement control is desired (EX.ALL).

Bit 5 Unused.

Bit 6 Unused.

Bit7 Enable extend (EX.ENA) (see above).

De.2.4 Parameter Word #5 - #dindow Size/Accass Control

This word is used to specify the window size (low byte) and
the access control <(high byte). The word is processed if the
high bit (bit 15) is one (1). If this bit is zero (0), the wmord
is disabled. The format of the word is shown below:

«BYTE {Adindow sized>,<Access controld

The windoa size 1is the number of mapping entriss the window
-4

is. to hold at oncea. This is neot the window size in bvies. If
the byta i3 zero, the voiume default is used.

The access control byte consists of a bit masks The bits
have the fcllowing meanings:

Bit 0 Lock file from further accesses for write and/or
extend (AC.LCK).

N

FILES-11 QIO°S PAGE D-8

3it 1 fnabla- deaccess lock (AC.DL{Y.
BIT 2 Enable biock locking (AC.LKL).
3it 3 fSnable explicit block unlocking (Af.EXL).

Bit 4 Unused
3it 5 Unusade
3it 5 Onused.

Bit 7 Enable access (AC.ENB) (see above).

De 25 Parameter Word 6 - Filename Block: Pointer

This word contains the address of a 13(10) sword block in
the 1issuing task”s spacse. This block is the filename block.
See Appendix B in the I/0 Reference Manual for a description of
a filenam= block. If the word is zero, no filename block is
specified.

If the QIO function 1is a directory operation (I0.FYA,
I0.RNA, I0.ENA), the directory ID field (N.DID) of the filename
block is used. Files-~11l directories are merely files with names
of the form [0,0]99G000-DIR;1 where £0,0] refers to master file
diractory and "™ggg" 1is the group number and ™ooc®™ is the ouwner
number. The master fils directory is the file with ID 4,4,0 and
is also entered in the master file directory. The directory for
UFD £123,4561 is the file £0,03123456.01IR31

D.3 FILES-11 QIO FUNCTIONS

This section will discuss the various functions processed
by F1l1AiCP. This functions are normally issued by FCS or RMS,
however, the clever user can use them directly and save the
overhead of the run—-time systems.

The following ars the functions iamplemented by F11ALP.
mach function is tfollowed Dy a3 list of reguired and opliocnal
parameterss If g paramster is not listed, it wmust be st to
Z2I0 . Also, parametser 4 1s not shown as it is a part of
parametaer J.

I0.CRE Create File

#1 - FID block pointer, FID value returned with 1ID

FILES-11 21I3°S

I0.DEL

I0.ACR
T0.ACW
 I0.ACE

I0.DAC

I0LEXT

TOLRAT

I0.WAT

IJ.744
I0.RNA
TULENA

PAGE D=9

of file createda

42 = drite ztitribute controi list {optignal).

#3 = Size/extend controi {(optional).

#5 = Access contiroil’ {may be non-zero but a@ust be
disabled)e.

Delete or Truncate File

#1 - FID block pointer (optional if file is
accessad).

#3 = size/extend control. If not present or
enabled, file 1is deletad. Otheruwise, the
remaining 31 bits specify the size the file is
to be after truncation.

Access File for Read Oniy
Access File for Read/¥Write
Access File for Read/Write/Extend

#$1 - File ID pointer.
#2 - Read attributes control list (optional).
#5 = Access control.

Deaccess fFile

#1 - File 1D pointer {optional)e.

#2 - Write attribute control 1list (optional).

#5 - Access control (may be non-zero but must be
disabled).

Extend File

#1 - File ID pointer (optional if file aready
accassed)e.

#3 - Size/extend controle.

Read Attributes

#1 - File ID pointer (optional if file aready
accessed).

#2 - Read attribute control liste.

Write Attributes

¢%]

aready

i

#1 - Fila I3 pointer (optiopnal if f£fi
accassad)a

$2 - @rite attribute controi list.

Ffind Filename in Directory

Remove Name from Directory

Enter Hame into Diractory

#5 - Access control (may be non-zero, but must be

N

FILES-11 QI0°S

disabled).

PAGE D-10

E5 = Filename block pointer.

The following tabils summarizes the optional and regquired
parameters for each I/3 resquest. The key to the table 1is as
follows?

* = Required parameter.

0 = Optional parametsr.

A = (Optional 1 file already accesseds

D = May be non-zero, but must be disabled (bit 15 =
0).

If the entry is blank, the parameter must be
will

Dad

zero or the 1I/0

be in error. Parmeter 4 is a part of parameter 3 and is
not iisted in the table.

frmmmnencaa | ==——— jem——— == i i- i
] Function Il P 1 1 P2 P3jPS L P66 i

e Bl B Dt LRt B

| I0.ACE I * 1 0 1 I * 1 I
= m————— Rt et Bt B et B i
{ I0LACR 1 * | O | L | i
Entemend EES et Bt Sl Bt I !
| I0.ACHW 1 *» 1 0 1 I * i i
e L B B Bl B
1 ID.CRE | * | 0 I 0 1 D | !
i i i - i -1 i
| I0.DAC {1 0 1t 0 | { D 1} I
fmmm e e e { e | ===
! I0.0EL | A | 1 o | i i
et ey E e R 1=====]
] I0.ENA i i i i D | * 1
R B B Bt B K|
| I0LEXT | & | I | i i
e B B B B
| I0.FNA | i | I I
R et EE e Bt Bt | 1 1
] I0.RAT | A | =* | 1 i i
fmmmmmmmmm e e | = eme] [| =====1
! I0.RNA | i i i b § * 1
fmmmm- ————]e——- jmm—- I === | =====1
{ I0.WAT { & { * | | ! 1
e it e e P B L e B e | i

PLACEMENT CONTROL

One undocumented feature of Files-11 is placement control.
This feature allows the create or extend functions to specify an
exact or approxomate position to allocate the

desired blocks.

FILES-11 QIG°S PAGE D-11

?lacement control is implemented by an attribute list entry.
The placement attribute is valid for either the I0.CRE or ID.EXT
functions and if used, must be the first attribute in the
attribute list. The format of the placement <coatrol attribute
block is as follows:

«BYTE {Placement control>,0

« WORD <High order bits of VBN or LBM
«H0RD <Low order bits of VBN or LVB>
«BLXH 4 {Optional, saee below)

The placement control byte consists of a bit maska. The
bits have the following meaningss:

Bit 0 Set if block specified is VBN, otherwise LBY is
assumed (AL.YBYN).

Bit 1 Set if approximate placement is desired, otherwise,
+ exact placement is assume (AL.APX).

BIT 2 Set if starting and ending LBN information is
desired (AL.LBN).

Bit 3 Unused.

Bit Unused

4
Bit S Unused.
&

Bit Unusede.

Bit 7 Unuseda.

If AL.LBN is set, the control block must be 16(8) bytes
ionge. F11ACP will return the starting LBN in the first two
optional words and the last LBN in the last two optional words.
Otherswise, the attribute size must be 6 bytes. If AL.VBYN is
specified, AL.APX must also be set and the attribute will
allocate the new blocks as close to the specified block as
possible. This is useful if file extensions are desired to be
as close to the previous as possible.

2.5 BLOCK LOCKING

dnother undocumented feature of Files-11 1is block-locking
supporta. This feature was implemented to support RMS, however,
it can be used for FCS. Locking only occurs for access to
shared files and AC.LXL set in the access control byte. For FCS
users, this can be done by setting the FA.LXL bit in the F.ACTL
field of the FDB before opening a file shared. From then oft,

FILES-11 QIO°S PAGE D-12

whenever 3 user raads or writes a bliock, the system will insur=2
no. other user can have accesses Lo it. If the block is locked,
the sacond access will have a lock error (IE.LCX) returned to
it. This features, snen properly used, allows multiple readers
and w@writers to the same file.

There are two options for unlocking blocks. The simplest
mathod 1is to unlock the block whenever a new block is read or
written. This will occur wnhen the AC.EXL bit is set 1in the
accass control byta. FCS users can enabled this feature by
setting the bit in the F.ACTL byte of the FDBe

If the application requires multiple block locks, an unlock
Q10 is wused to unlock blocks. To uniock 3 block, the IQ.ULK
function is issued with the following parameterse.

Parameter #1 - Always zero.

Parameter #2 - Zero or number of blocks to unlock.
Parameter #3 - Aluways zZero.

Parameter #4 - High part of VBN number or zeroe.
Parameter #5 - Loa part of VBN number or zeroe.
Parameter #6 - Always 2ero.

If all the specified blocks are currently unlocked, an
arror will be returned (IE.ULK). If no VBN and count is
specified, all currently lockad blocks are unlocked if all 1I/0
i3 completed. If a user is waiting for I1/80, this could leave
some blocks locked because the I/0 was not finishede If a VBN
and not count is specified, the first lock-list entry with the
specified ¥BN is unlocked. Therefore, if the user issued tuo
raquests for the same YBN with differant sizes, the first one
encountered will be unlocked. The order of locked blocks bears
no relationship to the order the orignal reads/writes uere
issued. Finally, if a ¥BMN and count are specified, an exact
match is located.

APPENDIX E

SAMPLE ACP?

Included with the manual distribution is a sample ACP and
its associated device driver. The kit also includes sources for
sample ACP enabling and disabling taskse.

E.1 SOURCES

The software implements a UCP-stype ACP. No systenm
modifications are required to run the sample ACP. The file
ACPGEN.CMD is an indirect command file that will assemble and
taskbuild all sample software. The other files in the kit are
as follows:

COMACP.MAC - Prefix file used to define special symbols
used by the ACP and its device driver.

NULACP.HMAC - Source for sample ACP. The ACP performs no
useful oparations. However, it does demonstrate
packet dequeuing, device mounts and dismounts, I/0
process creation and termination, and data transfers
from an ACP to a user task.

NULDRV.MAC - Source for sample driver. The driver contains
a loadable database supports two devices (AC0:, ACl:).
The driver demonstrates how ACP packets are processed
and queued to an ACP.

SHABLZILHMAC - Source for bhasic MULAC? mounti fask. This task
parforms the basic steps Tegquired for snabliing an ACP.
It supports switches to. specify the AL? task name
(/ACP=name) and volume control block size (/¥C38=size).
The /PRM="siring” switch can be used to pass an ASCII
string to the ACP.

DISABL.MAC - Sourca for basic NULACP dismount taske This
task performs the basic steps required for disabling
an ACP. It supports the /PRM="string"™ switch.

SAMPLE ACP | PAGE E-2

- Source for test package for sample sofiwares.
; ig. a3 Fortran program that queries. the user for
e I/0 function to issue and can be used to test the
other softwaree.

TOR
i~
4

Tha %it also includes command files to link all taskse. The
ENABLD.CMD file allows the default ACP task name and volume
control block size to be set. The current defaults are "NULACP®™
and 2 bytes respectivelye.

E.2 PROCEDURE

The proceduras for using the sample code is to execute the
ACPGEN command file and generate the taskse. The listings should
then be printed and read. The ACDRY should be loaded using the
MCR LOA command and NULACP mounted using the ...ENA taske. The
NULTST task can then be used to issue 1/0 regquests to the ACP
and report success/failure. When finished, the mounted devices
can be dismounted with the ...DIS task and the driver unloaded.

The sample ACP processes I/0 packets by outputting an
appropriate message to the console terminal and returning
success to the user taske The software is intended to be used
in conjuction with the manual, particularly, Chapter 3 which
outlines the designed processed used in the development of the
sample ACP. The sources can also be used as a starting point
for a user~written ACP.

APPENDIX F

USER-WRITTEN ACP“S

This appendix describes various wuser-written ACP”s that
have bean reported to the author. The author uelcomes new
additions. Please send a description of vyour ACP to the
following address:

Ralph #®. Stamerjohn
Honsanto, Zone T1A
8§00 N. Lindbergh

St. Louis, 40, 63166

The submission should be typed and follow the format used for
the current submissions. Please limit the dascription to one
page if possible.

USER-WRITTEN ACP“S PAGE F-2

A A

£f+1 DAPACY

Author? falph #W. Stamerijohn Jate: 17-APR-80
Address: Honsanto, Zone T13i Phone: (314) 694-4252

800 N. Lindbergh
St. Louis,’ MG' 63166

DAPAC? implements Digital®s Data Access Protocol (DAP). The ACP
is 1interfaced to FC3 and allows RSX-11¥ utilities and languages
to transparently access remote files on other R3X-11¥ and
ECsystem=-10 systems. For example, normal Fortran IV Plus 1/0
statements can be used to read and write remote files.

ACP-Style: UCP, using pseudo driver as gatesay
I/0 Functions Codes: Uses 31(10), subfunctions
Serial/Parallel: Parallel

Transportability: Requires memory management, EIS
Pool Utilization: Minimumal, uses internal ACP pool
Mounting: Uses alternate task

Dismounting: Uses alternate task

FCS Support: Yes

BMS Support: No

Contact Author: Yes

Availablity: #o, proprietary donsantio scftware
References: Reports of the DECsysteam-10/20 Fall 79

U.S. DECUS Meeting, pages 57-65.

