RT-11

Software Support Manual

Order No. DEC-11-ORPGA-B-D, DN1

RT-11
Software Support Manual

Order No. DEC-11-ORPGA-B-D, DN1

digital equipment corporation - maynard. massachusetts

First Printing, November 1973
Revised: June 1975
January 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1973, 1975, 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s5/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

10/77-15

CONTENTS

Page
CHAPTER 1 RT-11 OVERVIEW 1-1
1.1 INTRODUCTION 1-1
1.2 SYSTEM CONCEPTS AND TERMINOLOGY 1-1
CHAPTER 2 MEMORY LAYOUT 2-1
2.1 FOREGROUND JOB AREA LAYOUT 2-3
2.2 JOB BOUNDARIES IN F/B 2-4
2.3 '"FLOATING' USR POSITION 2-6
2.4 MONITOR MEMORY ALLOCATION 2-7
2.5 MEMORY AREAS OF INTEREST 2-9
2.5.1 Monitor Fixed Offsets 2-9
2.5.2 Table Descriptions 2-13
2.5.2.1 SPNAME (Permanent Name Table) 2-13
2.5.2.2 $STAT (Device Status Table) 2-13
2.5.2.3 $ENTRY (Handler Entry Point Table) 2-14
2.5.2.4 S$DVREC (Device Handler Block Table) 2-14
2.5.2.5 $HSIZE (Handler Size Table) 2-14
2.5.2.6 $DVSIZ (Device Directory Size Table) 2-15
2.5.2.7 SUNAM1, $UNAM2 (User Name Tables) 2-15
2.5.2.8 SOWNER (Device Ownership Table) 2-16
2.5.2.9 DEVICE Macro 2-16
2.5.3 F/B Impure Area 2-18
2.5.4 Low Memory Bitmap (LOWMAP) 2-21
2.5.4.1 8/J Restrictions 2-22
2.6 USING AUXILIARY TERMINALS AS THE CONSOLE
TERMINAL 2-23
2.7 MAKING TTY SET OPTIONS PERMANENT IN F/B
: MONITOR 2-25
2.7.1 Carriage Width 2-26
2.7.2 Other Options 2-26
CHAPTER 3 FILE STRUCTURES AND FILE FORMATS 3-1
3.1 DEVICE DIRECTORY SEGMENTS 3-1
3.1.1 Directory Header Format 3-1
3.1.2 Directory Entry Format 3-2
3.1.2.1 Status Word 3-3
3.1.2.2 Name and Extension 3-4
3.1.2.3 Total File Length 3-4
3.1.2.4 Job Number and Channel Number 3-4
3.1.2.5 Date 3-5
3.1.2.6 Extra Words 3-7
3.2 SIZE AND NUMBER OF FILES 3-7
3.2.1 Directory Segment Extensions 3-8

iii

Page

3.3 MAGTAPE AND CASSETTE FILE STRUCTURE 3-11
3.3.1 Magtape File Structure 3-11
3.3.1.1 Bootable Magtape File Structure 3-12.
3.3.1.2 Moving MT to Other Industry-Compatible
Environments 3-13
3.3.1.3 Recovering from Bad Tape Errors 3-13
3.3.2 Cassette File Structure 3-14
3.3.2.1 File Header 3-15
3.4 RT-11 FILE FORMATS 3-16
3.4.1 Object Format (.OBJ) 3-16
3.4.1.1 Global Symbol Directory 3-20
3.4.1.2 ENDGSD Block 3-22
3.4.1.3 TXT Blocks and RLD Blocks 3-22
3.4.1.4 ISD Internal Symbol Directory 3-28
3.4.1.5 ENDMOD Block 3-28
3.4.1.6 Librarian Object Format 3-28
3.4.2 Formatted Binary Format (.LDA) 3-30
3.4.3 Save Image Format (.SAV) 3-31
3.4.4 Relocatable Format (.REL) 3-32
3.4.4.1 Non-Overlay Programs 3-33
3.4.4.2 REL Files With Overlays 3-42
CHAPTER 4 SYSTEM DEVICE 4-1
4.1 DETAILED STRUCTURE OF THE SYSTEM DEVICE 4-1
4.2 CONTENTS OF MONITR.SYS 4-2
4.3 KMON OVERLAYS 4-3
4.4 DETAILED OPERATION OF THE BbOTSTRAP 4-3
4.5 FIXING THE SIZE OF A SYSTEM 4-5
CHAPTER 5 I/0 SYSTEM, QUEUES, AND HANDLERS 5-1
5.1 QUEUED I/0 IN RT-11 5-1
5.1.1 I/0 Queue Elements 5-1
5.1.2 Completion Queue Elements 5-5
5.1.3 Timer Queue Elements 5-7
5.2 DEVICE HANDLERS 5-8
5.2.1 Device Handler Format 5-8
5.2.2 Entry Conditions 5-9
5.2.3 Data Transfer 5-9
5.2.4 Interrupt Handler 5-9
5.3 ADDING A HANDLER TO THE SYSTEM 5-11
5.4 WRITING A SYSTEM DEVICE HANDLER 5-14
5.4.1 The Device Handler 5-14
5.4.2 The Bootstrap 5-15
5.4.3 Building the New System 5-16
" 5.5 DEVICES WITH SPECIAL DIRECTORIES 5-19
5.5.1 Special Devices 5-19
5.5.1.1 Interfacing to Special Device Handlers 5-19
5.5.1.2 Programmed Requests to Special Devices 5-20

iv January 1976

(9]
[¢)}

CHAPTER 6

CHAPTER 7

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

ADDING A SET OPTION 5-21
CONVERTING USER-WRITTEN HANDLERS 5-23
F/B MONITOR DESCRIPTION 6-1
INTERRUPT MECHANISM AND .INTEN ACTION 6-1
CONTEXT SWITCH 6-2
BLOCKING A JOB 6-3
JOB SCHEDULING AND USE OF .SYNCH REQUEST 6-3
USR CONTENTION 6-5
I/0 TERMINATION 6-5
RT-11 BATCH 7-1
CTL FORMAT 7-1
BATCH RUN-TIME HANDLER 7-2
BATCH COMPILER 7-4
BATCH Job Initiation 7-4
BATCH Job Termination 7-6
BATCH Compiler Construction 7-6
BATCH EXAMPLE 7-11
CTT TEMPORARY FILES 7-22
SAMPLE HANDLER LISTINGS A-1
RC11/RS64 DEVICE HANDLER A-2
RC11/RS64 BOOTSTRAP A-9
LP/LS11 DEVICE HANDLER A-28
CR11 DEVICE HANDLER A-34
TCll DEVICE HANDLER A-47
FOREGROUND TERMINAL HANDLER B-1
VERSION 1 EMT SUMMARY c-1
FOREGROUND SPOOLER EXAMPLE D-1

January 1976

APPENDIX E S/J AND F/B MONITOR FLOWCHARTS

KMON (KEYBOARD MONITOR) FLOWCHARTS
KMON Subroutines
KMON Overlays

.2 USR (USER SERVICE ROUTINES) FLOWCHARTS

3 CSI (COMMAND STRING INTERPRETER) FLOWCHARTS
3.1 CSI Subroutines

E.4 RMON (RESIDENT MONITOR) FLOWCHARTS FOR
SINGLE-JOB MONITOR

4.1 EMT Processors

4.2 Clock Interrupt Service

4.3 Console Terminal Interrupt Service

4.4 I/0 Routines

E.5 RMON (RESIDENT MONITOR) FLOWCHARTS FOR
FOREGROUND/BACKGROUND MONITOR

E.5.1 EMT Processors

E.5.2 Job Arbitration, Error Processing
E.5.3 Queue Managers (I/O, USR, Completion)
E.5.4 Clock Interrupt Service

E.5.5 Console Terminal Interrupt Service
E.5.6 Resident Device Handlers (TT, Message)

Entry Point Index

vi

Number

NN
i
[S; =S VI S N

1
HWOYOWI U WN

Wwwwww
| I I | 11

[|

1
B WN R

WWWwwWwwwwww
I
nmbWNOHO

(G200 I, W]
[I I |

FIGURES

Monitor Memory Layout
Foreground Job Area Layout
Job Limits

Background SYSLOW Examples
Memory Allocation

Directory Entry Format
Directory Segment

Object Module Processing
Formatted Binary Block
GSD Structure

TXT Block Format

RILD Format

Library File Format
Library Header Format
Entry Point Table Format
Library End Trailer
Formatted Binary Format
REL File Without Overlays
REL File With Overlays
Overlay Segment Relocation Block

I/0 Queue Element
Completion Queue Element
SYNCH Element

Timer Queue Element

TABLES

Fixed Offsets

Impure Area

Bitmap Byte Table

Default Functions for TTY Options
TTCNFG Option Bits

Directory Header Words

File Types

ANSI MT Labels Under RT-11

CT File Header Format

BATCH Compiler Data Base Description

V1 Programmed Requests

vii

Page

NN N
(. UL
0 Ul

WWwwwwwww
U
MNP EOE

O dNO 0

3-29

2-10

PREFACE

The RT-11 Software Support Manual covers the internal description

of the RT-11 software system. Chapter 1 presents an overview of the
system and discusses conventions used throughout the manual. Chapters
2 through 6 describe in detail various aspects of the monitor and
system structure, including memory layout, monitor tables, file
structures, file formats, system device structure, bootstrap operation,
I/0 queuing system, device handlers and F/B monitor description.

Chapter 7 discusses the operation of the BATCH compiler and run-time
handler.

The appendixes provide example handler listings, including a foreground
terminal handler (Appendix B) and a sample foreground program (Appendix
D). Complete flowcharts of both the Single-Job and Foreground/Background
Monitors are shown in Appendix E.

The reader should be thoroughly familiar with the RT-11 system.
Although the information in this manual is aimed at V02B and vo2C
users, it should be adeguate for Version 2 users also; excluding a
few minor alterations (to permit the addition of the new V02B de-
vices), the construction of the monitors has changed very little be-
tween the two versions. A comprehensive list of differences between
the V02B and V02C and between V2 and V02B systems is included in
RT-11 System Release Notes (V02C), (DEC-11-ORNRA-A-D) .

It is assumed that the user has read the RT-11 System Reference
Manual (DEC-11-ORUGA-B-D) or (DEC-11-ORUGA-C-D) and all other docu-

IR Vi

mentation inciuded in the RT-11 kit, and is an experienced ppP-11

programmer. It is recommended that RT-11 monitor source listings be

available for reference.

ix January 1976

CHAPTER 1

RT-11 OVERVIEW

1.1 INTRODUCTION

RT-11 is a single-user programming and operating system designed for
the PDP-11 series of computers. It permits the use of a wide range of
peripherals and up to 28K of either solid state or core memory (here-
after referred to as memory) .

RT-11 provides two operating environments: Single-Job (S/J) operation,
and a powerful Foreground/Background (F/B) capability. Either environ-
ment is controlled by a single user from the console terminal keyboard
by means of the appropriate monitor--S/J or ¥/B. The monitors are
upwards compatible; features that are used only in a F/B environment
are treated as no-ops under the S/J Monitor.

A feature common to both operating environments is the inclusion of
a full complement of system development and utility programs to aid

the programmer in the development of his own applications,

The normal use and operation of the monitors and system programs is

discussed in detail in the RT-11 System Reference Manual. Concepts

and applications that are specialized and useful to the more experienced

programmer are included in this manual.

1.2 SYSTEM CONCEPTS AND TERMINOLOGY

The basic concepts necessary to use RT-11 effectively are defined in
the RT-11 System Reference Manual. The user should be familiar with

those concepts before proceeding to use this manual.

Abbreviations used throughout this document are:

TERM

KMON

USR

CSI

RMON

Csw

MEANING

Keyboard Monitor

The console terminal interface to RT-11.
KMON runs as a background job and allows
the user to run programs, assign device
names, and generally control the system.

User Service Routines

The nonresident (swapping) part of RT-11.
The USR performs file-oriented operations.

Command String Interpreter

The CSI is part of the USR. It accepts

a string of characters from memory or

from the console and performs specified
file operations, or syntactically analyzes
a command string and constructs a table
from the information supplied.

Resident Monitor

RT-11 provides a choice of two Resident
Monitors: a Single-Job Monitor and a
Foreground/Background Monitor. RMON
specifically provides the following
services:

EMT dispatcher

Keyboard (console) interrupt service
TT: resident device handler (F/B only)
Read/Write processor

USR swap routines

I/0 queuing routines

System device handler

System I/0 tables

Message handler (F/B only)

Job scheduler (F/B only)

Channel Status Word

Each bit in the CSW contains information
relevant to the status of a channel; see
Chapter 9 (.SAVESTATUS) of the RT-11
System Reference Manual.

1-2 January 1976

TERM

JSW

F/B

s/J

B/G

F/G

<CR>

<LF>

MEANING

Job Status Word

The JSW contains information in bytes
44 and 45 about the job currently in
memory.

The Foreground/Background version of the
monitor

The Single-Job version of the monitor

The background job

The foreground job

Carriage Return

Line Feed

Various mnemonic names (e.g., BLIMIT, SYSLOW), referred to from within

the text and in diagrams and flowcharts, represent the actual symbolic

names as they appear in the monitor source listings.

To avoid confusion, underlining is used in most examples to designate

computer printout; square brackets, [and], are used to enclose

comments. Values for symbolic names used in examples can be found in
Table 2 of RT-11 System Release Notes.

1-3 January 1976

CHAPTER 2
MEMORY LAYOUT

RT-11 operates properly in any configuration between 8K and 28K (words)
of memory (16K to 28K for the F/B Monitor). ©No user intervention is
required when programs are moved to a different size machine; i.e.,
programs correctly developed in one environment will work in any size
environment (providing there is sufficient memory) with no relinking

necessary.

Figure 2-1 shows a general diagram of the memory layout in an RT-11

system.

-—=777776-——-
DEVICE DEVICE
REGISTERS —760000 - REGISTERS
RMON RMON
FOREGROUND AREA
USR/CSIT BACKGROUND —*
HIGH LIMIT USR/CSI
(SYSLOW)
KMON
KMON
USER
AREA 500 BACKGROUND AREA
RESERVED RESERVED
I/0 VECTORS 0 I/0 VECTORS
S/J Monitor F/B Monitor
Figure 2-1

Monitor Memory Layout

The memory area diagrammed is arranged as follows:

Memory Area Use
0-477 Reserved for I/O vectors, RT-11

system communication area.

500-SYSLOW Space available for user (background)
programs. (The high limit of memory
for the background is contained in
SYSLOW, a location in the monitor data
base.)

Space for foreground programs and LOADed handlers is allocated as
needed, reducing the amount of space available for a background job.

The areas marked KMON and USR/CSI are the areas that these units
normally occupy when they are in memory. The amount of memory that
a user program occupies is determined by:

1. The initial size of the program, or

2. The amount of memory the. user. program requests
via a .SETTOP programmed request.

When a user program (background job) is executed (via the KMON commands
R, RUN, or GET and START), the top of memory is set to correspond to
the size of the program. If the top of user memory never exceeds KMON,
both KMON and USR/CSI are resident. If all of memory (up to SYSLOW)

is requested (via a .SETTOP), neither the KMON nor the USR is resident
and swapping of the USR is required. Programs performing many file-
oriented operations gain from having the USR resident, since no time is
spent swapping the USR.

The KMON, USR, and RMON modules normally occupy the upper segment of
memory. This implies that larger memory configurations automatically

have more free memory available.

The area marked DEVICE REGISTERS is the top 4K of memory in any PDP-11
computer. This area is reserved for the status and control registers
of peripheral devices.

2.1 FOREGROUND JOB AREA LAYOUT

The foreground job area is located above the KMON/USR, as shown in
Figure 2-1, and is allocated by the FRUN command. The actual layout
of the job within the foreground area is shown in Figure 2-2. The
impure area (described in Section 2.5.3) occupies the lowest 207

words of the job area and contains terminal ring buffers, I/0 channels,

and other job-specific information.

The foreground stack is located immediately above the impure area with
a default size of 128 words; this may be changed using the FRUN /S
switch. The program may specify a different location for the stack

by using an .ASECT into location 42, in which case the /S switch

d and the

the p ram itself must allocate stack space. Wher-

is ignored an

ever the stack is located, stack overflow will most probably cause
program malfunction before penetrating the task area boundary, since

either the program itself or the impure area will be corrupted.

NOTE

Users must not use a relocatable symbol
as the contents of location 42 when
resetting the initial stack pointer via
an .ASECT in a foreground job; such a
symbol is not relocated when it occurs

in an .ASECT in a foreground job. To set
the stack to relative location 1000 in a
foreground job, use:

.ASECT
.=42
.WORD 1000

“ HIGH LIMIT
WORKING SPACE

FOREGROUND
PROGRAM

STACK

IMPURE AREA

* LOW LIMIT

Figure 2-2
Foreground Job Area Layout

The space allocated for the foreground program is sufficient to

contain the program code itself, as indicated by location 50 (in

block 0 of the file); location 50 is set by the Linker and designates
the program's high limit. If the foreground job requires working

space, this space must either be reserved from within the program

(e.g., using .BLKW) or allocated at run-time using the FRUN /N switch.
Space allocated with the /N switch is located above the program as shown
in Figure 2-2. Location 50 will point to the top of the program

area and a .SETTOP will permit access to any working space.

2.2 JOB BOUNDARIES IN F/B

The actual job boundaries are stored (in RMON) in limit tables for
both foreground and background jobs. The FLIMIT table contains high
and low boundaries for the foreground, and the BLIMIT table contains
boundaries for the background. .SETTOPs are permitted for any job up
to its high limit. The SYSLOW pointer mentioned earlier is equivalent
to the background BLIMIT high pointer entry. This is shown in

Figure 2-3.

RMON
- FLIMIT (HIGH)

FOREGROUND

JOB
-~ ~—

SYSLOW = BLIMIT (HIGH) FLIMIT (LOW)

KMON/USR

BACKGROUND JOB

BLIMIT (LOW) -
Figure 2-3
Job Limits

The limit pointers for a foreground job are fixed once the job has
been loaded into memory. A program that requires working space and
uses a .SETTOP will fail if the space is not allocated with the /N
switch (a FORTRAN program is a typical case; see Appendix G, Section
G.1l, of the RT-11 System Reference Manual). The high limit pointer
(SYSLOW) for the background, however, is not fixed and will change

as space is allocated for LOADed handlers, the text scroller, and
foreground jobs. In addition, if the USR is made permanently resident
(using the SET USR NOSWAP command), SYSLOW (BLIMIT HIGH) will again

change. This is shown in Figure 2-4.

RMON RMON
SYSLOW
USR LOADED
(SWAPPING) HANDLERS
KMON TEXT
(SWAPPABLE) SCROLLER
FOREGROUND
AVATLABLE JOB
FOR USR
B/G (NON-SWAPPING)
. SETTOP SYSLOW
KMON
(SWAPPABLE) AVATLABLE
FOR
B/G
.SETTOP
J]
BACKGROUND _ BACKGROUND
' JOB JOB
Figure 2-4

Background SYSLOW Examples

2.3 'FLOATING' USR POSITION

The RT-11 USR is normally located in the memory area directly below
that pointed to by SYSLOW. For the Version 1 monitor, this was
directly below the RMON. For the Version 2 and 2B monitors, the USR
position varies as handlers, the scroller, ‘and foreground jobs (in
F/B) are loaded into memory; the SYSLOW pointer is corrected for each
change in memory configuration. 1In any case, the SYSLOW position is
considered the normal USR swapping position.

It is possible, however, to cause the USR to swap into another location
in memory. This is done by setting location 46 (in the system communi-
cation area) to the address at which the USR is to swap; if the contents
of location 46 are nonzero and even, the monitor loads the USR at the
new address. Note, however, that if no swapping is required, the USR

is not loaded at the address indicated in location 46. Location 46

is cleared by an exit to the Keyboard Monitor (via an .EXIT, .HRESET,
.SRESET, or CTRL C).

It is possible to make the USR permanently resident‘(i.e., non-swapping) .
Using the SET USR NOSWAP Keyboard Monitor command makes the USR per-
manently resident at its normal position, that is, below the memory

area pointed to by SYSLOW.

2.4 MONITOR MEMORY ALLOCATION

RT-11 uses a dynamic memory allocation scheme to provide memory space
for LOADed handlers, foreground jobs (F/B Monitor only) and the dis-
play text scroller. Memory is allocated in the region above the KMON/
USR and below RMON. If there is insufficient memory in this region
(initially, after the system is bootstrapped, there is none), memory
is taken from the background region by "sliding down" the KMON/USR the

required number of words.

When memory allocated in this manner is released, the memory block

is returned to a singly-linked free memory list, the list head of which
is in RMON. Any contiguous blocks are concatenated into a single
larger block. A block found to be contiguous with the KMON/USR is
reclaimed by "sliding up" the KMON/USR, removing the block from the
list.

Memory allocation and release is achieved by calls to the GETBLK and
PUTBLK routines located in the KMON overlays (the GETBLK and PUTBLK
routines are flowcharted in Appendix E). The requested number of

words is passed to GETBLK in RO, and the address of the block is
returned in R4. An extra word of memory is allocated by GETBLK, which
then stores the size of the block in that word. R4 points to the first
available word in the block (see Figure 2-5a). When releasing memory,
R4 must point to the first available word, the same address returned
by GETBLK during allocation (as shown in Figure 2-5b). The block will
be linked into the free memory list (shown in Figure 2-5c¢).

é) Allocating a memory block

Call sequence:

Rf = SIZE

JSR PC,GETBLK SIZE
R4 —»
(returns with R4 pointing
to the allocated block)
b) Releasing a memory block
Call sequence:
R4 » BLOCK
JSR PC,PUTBLK
SIZE
R4 —»
c) Free memory list
LIST HEAD
CORPTR: o] -
NEXT BLOCK > SIZE
NEXT BLOCK
(One free block in list)
Figure 2-5

Memory Allocation

2-8

When a block of memory of sufficient size is not available, GETBLK must
create a hole in memory by sliding down the KMON/USR. This is achieved
by a call to KUMOVE, a small routine located physically at the front of
the KMON. KUMOVE does the actual work of moving the KMON/USR up in
memory. For moves downward, an auxiliary subroutine, MOVEDN, located
at the top of the USR, is used.

Whenever a request is made for a block of a certain number of words,
the memory allocator searches memory for the first highest block that
is large enough to satisfy the request (that is, equal to or larger
than the requested number). The goal of the memory allocator is to
minimize the amount of free (unused) memory in the foreground region,
making the maximum amount of memory available to the background.

Contiguous blocks of free memory are merged and reclaimed whenever
possible. The search time of the singly-linked list is not a factor,
since at any time there will be few nodes (free memory areas) in the

list, and the allocator minimizes the number.
2.5 MEMORY AREAS OF INTEREST

This section describes memory areas of particular interest and indicates

the contents of those locations. The areas covered are:

1. Monitor Fixed Offsets (F/B & S/J)
2. F/B Impure Area

3. Resident Bitmap (F/B & S/J)

4. Tables

2.5.1 Monitor Fixed Offsets
Certain values are maintained at fixed locations from the start of the

Resident Monitor in both F/B and S/J; these quantities (listed in
Table 2-1) may be accessed by user programs. The technique used to

]

access these offsets is as follows:

OFFSET = the byte offset to the word desired
RMON = 54

MOV @#RMON,Rn ;ANY GENERAL REGISTER
MOV OFFSET(Rn) ,Rn

2-9

Rn now contains the desired quantity. If a byte quantity is desired,
a better method is:

CLR Rm
MOV @#RMON,Rn
BISB OFFSET(Rn) ,Rm

This ensures that the high-order bits of the register are not set by
a MOVB into the register.

Table 2-1
Fixed Offsets

Offset (from
Start of RMON) Byte
Octal Decimal Tag Length Description

0 - 4 Serves as a link to interrupt
entry code.

4 SCSW 160 Default I/0 channels for the
background (1610 @ 5 words
each) .

10

244 164 S$SSYSCH 1010 Internal I/0 channel used for
system functions.

256 174 BLKEY 2 Segment number of the directory
now in memory. 0 implies no
directory is there.

260 176 CHKEY 2 Device index and unit number of
the device whose directory is
in memory. Bits 1-5 are the
device index, bits 8-10 are

the unit number.

262 178 SDATE 2 Current date value. (The format
is shown in Chapter 3, section
3.1.2.5,)

264 180 DFLG 2 "Directory operation in progress"
flag. Used to inhibit AC from
aborting a job until directory
operation is finished.

266 182 SUSRLC 2 Normal location of USR.

270 184 QCOMP 2 Address of I/O completion manager,
COMPLT.

272 186 SPUSR 2 Flag word used by MT/CT. 1If a
USR function performed by MT
or CT fails, this word is made
non-zero.

(continued on next page)

2-10 Januaxrv 1976

Table 2-1 (Cont.)
Fixed Offsets

Offset (from

Start of RMON) Byte
Octal Decimal Tag Length Description

274 188 SYUNIT 2 High-order byte contains the
unit number of the current
system device.

276 190 SYSVER 1 Monitor version number (2 in
Versions 2, 2B, and 2C).

277 191 SYSUPD 1 Version release number (1 for
v02, 2 for V02B, etc.)

300 192 CONFIG 2 System configuration word. A
16-bit series of flags whose
meanings are:

Bit # Meaning
0 0 >S/J Monitor
1- F/B Monitor
2 1+ VT1ll hardware
exists
3 1->RT-11 BATCH
controls the
background
5 0 ~60-cycle KW1lL
clock
1 >5Q-cycle clock
6 1->11/45 FPP pres-
ent
7 0+ No foreground
job present
1 > Foreground job
is in memory
8 1-+>User is linked
to VT1l scroller
9 1+ USR is resident
via SET USR
11 0 + No PDP-11/03
processor
1+ PDP-11/03
processor
15 1> KW1ll clock is
present (always
set if bit 11
is 1)
Any bits not currently assigned
are reserved by DIGITAL for
future use and should not be
used arbitrarily by user programs.

302 194 SCROLL 2 Address of the VT1ll scroller.

304 196 TTKS 2 Address of console keyboard
status.

306 198 TTKB 2 Address of console keyboard

buffer.

(continued on next page)

January 1976

Table 2-1 (Cont.)
Fixed Offsets

Offset (from

Start of RMON) Byte
Octal Decimal Tag Length Description

310 200 TTPS 2 Address of console printer
status.

312 202 TTPB 2 Address of console printer
buffer.

(See Section 2.6, Using Auxiliary
Terminals as the Console Termi-
nal.)

314 204 MAXBLK 2 Largest output file permitted
with an indefinite length
request (initially defined as
-1, which implies that no limit
is defined).

316 206 El6LST 2 Offset from start of RMON to the
dispatch table for EMT's 340-
357. (This is used by the BATCH
processor.)

320 208 CNTXT, 2 Pointer to the impure area for

\F/Bﬂ the current executing job.

322 210 JOBNU& 2 Executing job's number (0 =
B/G, 2 = F/G).

320 208 STIME 4 Two words of time of day in the

322 210 }(sm) §/J Monitor,

324 212 SYNCH 2 Address of monitor routine to
handle .SYNCH request.

326 214 LOWMAP 2010 Start of low memory protection
map. (This map protects vectors
at locations 0-476.)

352 234 USRLOC 2 Pointer to current entry point
of USR.

354 236 GTVECT 2 Pointer to VT1l vector. The
vector is initially positioned
at 320.

356 238 ERRCNT 1 Error count byte (for future
use by system programs).

357 239 FUTURE 5 Reserved by DIGITAL for future

use.

2.5.2 Table Descriptions

The monitor device tables discussed in this section include:

$PNAME

$STAT

$ENTRY

$DVREC

SHSIZE

$DVSIZ
SUNAM1, SUNAM2
$OWNER

The size of these tables is fixed and is governed by the $SLOT assign-
ment; the default value is 1410 entries per table. To alter this,
it is necessary to first edit a new value of $SLOT into the monitor

source program, then reassemble and relink new monitors.

2.5.2.1 $PNAME (Permanent Name Table) - $PNAME is the central table
around which all the others are constructed. There is an entry in
$PNAME for each device in the system. Each entry consists of a single
word that contains the .RAD50 code for the two-character permanent
device name for that device; for example the entry for DECtape is
.RAD50 /DT/. The position of devices in this table is non-critical,
but their relative position determines the general device index used
in various places in the monitor; thus, all other tables must be
organized in the same order as S$PNAME (the index into $PNAME serves

as the index into all the other tables for the equivalent device).

2.5.2.2 SSTAT (Device Status Table) - Each device in the system must
have a status entry in its corresponding slot in $STAT. The status
word is broken down into two bytes as follows:

Even byte - contains a device identifier. Each unique type
of device in the system has an identifying integer.
Those defined are:

0 = RK05 Disk
1 = TCll DECtape
2 = Reserved
3 = Line Printer (LP1l1l, LS1ll, LV1l1)
4 = Console Terminal (LT33/35, LA30/36,
VT05, VT50)
5,6 = Reserved
7 = PCll High-speed Reader
10 = PCll High-speed Punch
11 = Magtape (TM11l, TU1O0)
12 = RF1l1l Disk
13 = TAll Cassette

2-13

Card Reader (CR11l, CM1l)

15 = Reserved

16 = RIS03/4 Fixed-head Disks
17 = Reserved

20 = TJUl6 Magtape

21 = RP11/RP02/RP03 Disk

22 = RX11/RX01 Diskette

0dd byte - Bit flags with the following meanings:

Bit 15: 1 = Random-access device (disk, DECtape)

0 = Sequential-access device (line printer,
papertape, card reader, magtape, cassette,
terminal)

Bit 14: 1 = Read-only device (card reader, papertape
reader)

Bit 13: 1 = Write-only device (line printer, papertape
punch)

Bit 12: 1 = NonRT-11l directory-structured device (magtape,
cassette)

Bit 11: 1 = Enter handler abort entry every time a job is
aborted.

0 = Handler abort entry taken only if there is an
active queue element belonging to aborted job.
Bit 10: 1 = Handler accepts .SPFUN requests (e.g., MT,
CT, DX).
0 = .SPFUN requests are rejected as illegal.
Bits 9-8: Reserved

2.5.2.3 S$ENTRY (Handler Entry Point Table) - Whenever a handler is
made resident, either by a .FETCH or with the LOAD command, the S$SENTRY
slot for that device is made to point to the fourth word of the device
handler. The entry is zeroced when the handler is .RELEASEAQ or
UNLOADed.

2.5.2.4 S$DVREC (Device Handler Block Table) - This table (filled in
at system bootstrap time) reflects the absolute block position of each
of the device handlers on the system device. Since handlers are
treated as files under RT-11, their position on the system device is
not necessarily fixed. Thus, each time the system is bootstrapped,
the handlers are located and $DVREC is updated with the value of the
second block of the handler file. (Because the handlers are linked

at 1000, the actual handler code starts in the second block of the
file.) A zero entry in the $DVREC table indicates that no handler

for the device in that slot was found on the system device.

2.5.2.5 SHSIZE (Handler Size Table) - This table contains the size,
in bytes, of each device handler. The table is set up at assembly
time with the correct values and is used when a .FETCH is executed to
provide the size of the specified handler. This size is also returned
to the user as one of the values returned in a .DSTAT request.

2-14 January 1976

2.5.2.6 $DVSIZ (Device Directory Size Table) - Entries in this table
are non-zero for file-structured devices only and reflect the number of
25610-word blocks contained on the device. The current devices and

their entries are:

Number of Number of
Device 256-Word Blocks Device 256-Word Blocks
RK11 113008 RP02 1163008
TCll 11028 RJS03 20008
RJS04 40008
RF11 20008 (1 platter) RX01 7528
40008 (2 platters)
60008 (3 platters)
100008 (4 platters)

The default for RF1ll and RJS03/4 is one platter, or 20008 blocks. It
is possible to alter the system to indicate the correct number of
platters. Instructions are in Chapter 4 of the RT-11 System Genera-
tion Manual, (DEC-11-ORGMA-A-D).

2.5.2.7 $UNAM1, SUNAM2 (User Name Tables) - These tables are used in
conjunction with ASSIGN keyboard functions. The form of the ASSIGN

command is:

.ASSIGN pnam:unam<CR>

where:
pnam - a system device name/unit number
unam - a user-assigned device name

A typical example is:

.ASSIGN DT1:DK

2-15 January 1976

The default device name, DK, is now directed to DECtape unit 1. The
user-assigned name is stored in an available slot in $UNAM2, while the
device's permanent name/unit is stored in the corresponding slot in
SUNAM1. The system uses a common device name lookup routine that maps
any user-assigned name in the $UNAM2 table into a physical device

name to be used in an operation. The total number of ASSIGNs permitted
is limited by the value of $SLOT.

The command:

+ASSIGN<CR>

zeroes SUNAM2, thus removing all user assignments.

2.5.2.8 SOWNER (Device Ownership Table) - This table is used only
under F/B to arbitrate device ownership. The table is $SLOT*2 words

in length and is divided into 2-word entries per device. Each 2-word
entry is divided into eight 4-bit fields capable of holding a job
number. Thus, each device is presumed to have up to eight units, each
assigned independently of the others. However, if the device is
nonfile-structured, the ownership is assigned to all units.

When a job attempts to access a particular unit of a device, the F/B
Monitor checks to be sure the unit being accessed is either public
or belongs to the requesting job. If the unit is owned by the other
job, a fatal error is generated.

The device is assumed to be public if the 4-bit field is 0. If it

is not public, the field contains a code egual to the job number plus
one. Since job numbers are always even, the ownership code is odd.
Bit 0 of the field being set is then used to indicate that the unit
ownership is assigned to a job (1 for the background job and 3 for the
foreground job).

2.5.2.9 DEVICE Macro - The DEVICE macro call is used in RMON to
allow quick and easy insertion of new devices at assembly time. The

form of the macro call is:

DEVICE NAME,SIZ,STAT,ENTRY

where:

NAME - two characters of the permanent device name

S1Z - the size of the device's directory in 256-word
blocks; 0 means nonfile-structured or special

STAT - the sum of all $STAT table entries that apply
for this device plus the device id (from
section 2.5.2.2):

FILSTS = 100000 Random-access device (disk, DECtape)

RONLYS$ = 40000 Read-only device

WONLYS$ = 20000 Write-only device

SPECLS = 10000 Non RT-11 directory-structured
device (including MT and CT)

HNDLRS = 4000 Handler abort entry

SPFUNS = 2000 Special function requests

ENTRY - the 2-character device name with the SYS appended, if this
is a system device.

Thus, a sample call is:

DEVICE TT,0,4

The SIZ entry is 0, since TT is a nonfile-structured device.

The entry for DECtape is:

DEVICE DT,1102,1+FILST$,DTSYS

The 1+FILSTS indicates that the device code is 1 and FILST$ is defined
as 100000. The entry for DTSYS is present because DT can be a system

device.

In addition to the DEVICE macro, another macro, HSIZE, is defined and
sets the handler size for the $HSIZE table. The format of the HSIZE

macro call is:

HSIZE HAN,BYT,TYPE

where:
HAN - the 2-letter device name
BYT - the handler size in bytes

TYPE ~ SYS if the device can be a system device; blank
otherwise

2-17 January 1976

Chapter 5 shows the use of HSIZE in adding a handler to the RT-11
system. The KMON portion of the monitor source listing should be
consulted for greater detail.

2.5.3 F/B Impure Area

An impure area is defined here as that area of memory where the moni-
tor stores all job-dependent data. Thus, the impure area contains all
information that the monitor requires to effectively run two indepen-
dent jobs, both of which are memory-resident. This section details
the contents and location of each word (byte) in the impure area.

A table that points to the impure area for a particular job is in the
F/B monitor's data base. This table is at $IMPUR and currently consists
of two words: the first is a pointer to the background's impure area
(which is permanently resident in RMON at location BKGND) , the second

is the foreground's pointer. The $IMPUR table is accessed by using
IMPLOC, located at an offset of 422 into RMON. IMPLOC points beyond

the end of $IMPUR to $IMPUR +4 to facilitate accessing the $IMPUR

table from the top down in order of decreasing priority.

Under RT-11, a background job is always running and will be the KMON
if no other background job exists. However, the foreground impure
area pointer may be 0 if no foreground job is in memory. When an
FRUN command is given, a foreground impure area is created for the
job and the $IMPUR entry for the foreground pointer is updated to
point to the impure area.

A foreground program can determine whether the KMON is resident by
testing XMONIN, located at an offset of 424 into RMON. KMONIM is
non-zero if the KMON is resident and zero if a background job is run-
ning. In addition, the file name of the running foreground or back-
ground job is located in the job's impure area at offset I.NAME (37¢).
Note that for a background job, KMONIN must first be tested to deter-
mine whether the name belongs to an active job since the file descrip-
tor is not cleared when KMON is entered.

Table 2-2 is a detailed breakdown of the contents of the impure area.

The offset mentioned is the offset from the start of the impure area
itself; thus, the first word in the area has a 0 offset.

2-18 January 1976

Table 2-2

Impure Area

Octal Length

Offset Mnemonic (Bytes) Contents

0 I.JSTA 2 Job status.

2 I.QHDR 2 I/0 Queue Header.

4 I.CMPE 2 Last entry in completion queue.
I/0 completion routines are
queued for execution. This
is the pointer to the last
routine to be entered.

6 I.CMPL 2 Completion queue header.

10 I.CHWT 2 Pointer to channel during
I/0 wait. When a job is
waiting for I/0O, the address
of the channel area in use
goes here.

12 I.PCHW 2 Saved channel pointer during
execution of a completion
routine. The contents of
I.PCHW are put in RO when a
completion routine is entered.

14 I.PERR 2 Error byte 52 and 53 saved
during completion routines.

16 I.PTTI 2 Previous TT input character.

20 I.TTLC 2 Terminal input ring buffer
line count.

22 I.TID 2 Pointer to job ID area.

24 I.JNUM 2 Job number of job that owns
this impure area.

26 I.CNUM 2 Number of I/O channels defined.
16 is default, .CDFN can

10 :
be used to define new ones.

30 I.CSW 2 Pointer to job's channel area.

32 I.IOCT 2 Count of total I/0 operations
outstanding.

34 I.SCTR 2 Suspension count. Zero means
the number of .SPNDs = the
number of .RSUMs.

36 I.SPLS 2 Address of the .DEVICE request

list.

(continued on next page)

Table 2-2

(Cont.)

Impure Area

Octal Length

Offset Mnemonic (Bytes) Contents

40 I.TRAP 2 Address of user trap routine.
Set by .TRPSET.

42 I.FPP 2 Address of FPP exception
routine. Set by .SFPA.

44 I.SWAP 4 Address and number of extra
words to be included in the
context switch operation.

Set by .CNTXSW request.

50 I.SP 2 Saved stack pointer. When this
job is made inactive, the
active value of SP is saved
here.

52 I.BIT™ 24 Low memory protection bitmap.
This map reflects the user's
.PROTECT requests.

(76 through 332 concern the console terminal)

76 I.IRNG 2 Input ring buffer low limit.

100 I.IPUT 2 Input "PUT" pointer for inter-
rupts.

102 I.ICTR 2 Input character counter.

104 I.IGET 2 Input "GET" pointer for
.TTYIN.

106 I.1IT0P 2 Input ring buffer high limit

110 144 Input ring buffer.

254 I.0PUT 2 Output "PUT" pointer for
interrupts.

256 I.0CTR 2 Output character counter.

260 I.0GET 2 Output "GET" pointer for
interrupts.

262 I.0TOP 2 Output ring buffer high limit.

264 50 Output ring buffer.

334 I.QUE 20 Initial I/0 queue element.

(continued on next page)

Table 2-2 (Cont.)
Impure Area

Octal Length
Offset Mnemonic (Bytes) Contents

354 I.MSG 12 Message channel. Used by
.RCVD and .SDAT. This channel
is permanently open.

366 10 Job ID area. Contains
(<CR><LF>) B>(<CR><LF>) or
(<CR><LF>)F>(<CR><LF>) for
terminal prompting. Space
has been left for up to a 3-
character job name.

2.5.4 Low Memory Bitmap (LOWMAP)

RT-11 maintains a bitmap which reflects the protection status of

low memory, locations 0-476. This map is required in order to avoid
conflicts in the use of the vectors. In F/B, the .PROTECT request
allows a program to gain exclusive control of a vector or a set of
vectors. When a vector is protectéd, the bitmap is updated to indicate
which words are protected. If a word in low memory is protected, it
will not be destroyed when a new background program is run.

The bitmap is a 20lo byte table which starts 326 bytes from the be-
ginning of the Resident Monitor. Table 2-3 lists the offset from
RMON and the corresponding locations represented by that byte:

Table 2-3
Bitmap Byte Table
Offset Locations (octal) Offset Locations (octal)
32¢ 0-1a 340 240-256
327 20-36 341 260-277
330 40-56 342 300-316
331 60-76 343 320-336
332 100-116 344 340-356
333 120-136 345 360-376
334 140-156 346 400-416
335 160-176 347 420-436
336 200-216 350 440-456
337 220-236 351 460-476

Each byte in the table reflects the status of 1610
The first byte in the table controls locations 0-16, the second byte

words of memory.

controls locations 20-36, and so on. The bytes are read from left
to right. Thus, if locations 0-3 are protected, the first byte of
the table contains:

11000000

Note that only individual words are protected, not bytes. Thus,
protecting location 0 always implies that the word at location 0 is
protected, meaning both locations 0 and 1. If locations 24 and 26
are protected, the second byte of the table contains:

00110000
since the leftmost bit represents location 20 and the rightmost
bit represents location 36. To protect locations 300-306, the left-
most 4 bits of byte 342 must be set:

11110000

resulting in a value of 360 for that byte.

2.5.4.1 S/J Restrictions - The S/J Monitor does not support the
.PROTECT request. If users wish to protect vectors, the protection
must be done in one of two ways:

1. Manually, with PATCH, or

2. Dynamically (from within the user's program)

To protect locations 300-306 dynamically, the following instructions
are used:

MOV @#54,Rf
BISB #4B1111@g@@,342(RP)

Protecting locations with PATCH implies that the vector is permanently
protected, even if the system is re-bootstrapped, while the second
method provides a temporary measure and does not hold across bootstraps.
However, users are cautioned that the second method involves storing
directly into the monitor; for this reason it is recommended that S/J
users use method 1.

2.6 T1SING AUXILIARY TERMINALS AS THE CONSOLE TERMINAL

This section describes how RT-11 can be modified to allow a terminal
other than the standard console unit 0 to become the console terminal.
This procedure is useful in cases where it is desirable to be able to
use different console capabilities at different times (for example,

at certain times the hard copy dutput of an LA30 is required, while

at other times the speed of a VT05 is desirable). The only information
required to make the alteration is:

1) the address of the auxiliary terminal's
interrupt vectors, and

2) the I/0 page addresses of the keyboard
and printer status register and buffer.

RT-11 is designed so that all console references are done indirectly
through centralized pointers. Thus, changing several system locations
causes all operations to be transferred to a new terminal.

For this example, assume that the new terminal's interrupt vectors are
at 300,302 and 304,306 and that its I/O page addresses are:

TKS at 177500
TKB at 177502
TPS at 177504
TPB at 177506

1o
L1

'
'-l
n
(o]
Q
0
u
E'
)
cr
=
Q
ot
t
m

no f£ill characters are required.

- R PATCH <CR>

PATCH Version number

FILE NAME—--—
*MONITR.SYS/M<CR>
*BASE; JR<CR>
*68/ VECTIN<LF>

62/ STATIN<LF>
64/ VECTOUL<LF>
66/ STATOUT<CR>

*3008/ nnnnn VECTIN<LF>
3g2/ nnnnn STATINKLE>
384/ nnnnn VECTOUT<LF>
3d6/ nnnnn STATOUT<CR>

*f, xx3p4/ 177568 1775@@<LF>
B,xx346/ 177562 1775@2<LF>
g,xx314/ 177564 1775@4<LF>
B, xx312/ 177566 1775@6<CR>
*B,xx342\ a2 364 <CR>

*5

The bootstrap must also be changed to

[The current values for
the BASE address and for
the input/output vectors
and status are in Table 2
of RT-11 System Release
Notes. They must be
copied into the new ter-
minal's vectors.] [nnnnn
are arbitrary numbers]

[xx = 16 for S/J, 17 for F/B.
Modify monitor's central
I/0 page pointers]

[Protect new vectors]

relocate the new vector locations

when the monitor is first loaded into memory. The bootstrap contains
a list of items that must be relocated; the list is located at RELLST
in the bootstrap code. The exact position of RELLST varies with each

monitor and must be obtained from Table 2 of RT-11 System Release

Notes (V02C). The patching procedure is:

.R PATCH <CR>

PATCH Version number

FILE NAME—-—
*MONITR.SYS/M<CR>
¥RELLST+14/ 64 34¢<TP>
RELLST+12/ 64 3B4<CR>
*E

"R PIP<CR>
FA=MONITR.SYS/U<CR>
*SY:/0<CR>

[Bootstrap must be rewritten.
Rebootstrap; system will appear
on new terminal.]

January 1976

It is also possible to write a user program that would perform this
procedure dynamically at run-time. Such a program would modify the
monitor's protection map and the central I/O page pointers, then set
up locations 300-306 and exit. If done dynamically, the monitor file
itself is unchanged; thus when the system is bootstrapped, the console
terminal reverts to the usual unit.

2.7 MAKING TTY SET OPTIONS PERMANENT IN F/B MONITOR

The F/B Monitor may be configured for different console terminal
requirements by use of the TTY options of the SET command. These
changes are not permanent and must be made each time the monitor is
bootstrapped. By using the patching procedures in this section, the
various options required for the installation may be made a permanent
part of the F/B Monitor.

Table 2-4 is a description of the TTY options and their default
functions in the F/B Monitor as distributed.

Table 2-4
Default Functions for TTY Options

Option Default Description

TAB/NOTAB NOTAB Hardware tabs converted to
spaces.

CRLF/NOCRLF CRLF <CR><LF> inserted if WIDTH
reached.

FORM/NOFORM NOFORM Form Feed converted to Line
Feeds.

FB/NOFB FB CTRL F/CTRL B cause context
switch.

PAGE/NOPAGE PAGE CTRL S holds output, CTRL Q
continues it.

SCOPE/NOSCOPE NOSCOPE VT05, VT50, VT1ll is the con-
sole terminal (rubout produces
backspace, space, backspace).

WIDTH 72(10) Width of carriage.

2-25

The three options enabled are PAGE, CRLF, and FB. The carriage width
is set to 72(10) characters (110 octal).

To permanently change these options, the words TTCNFG, TTWIDT and
LISTFB in the F/B Monitor must be patched. The exact locations of
these words and the BASE address are found in Table 2 of RT-11 System
Release Notes (V02C). The numbers used in the following examples are
for illustration purposes only and may not be correct for all systems.

2.7.1 Carriage Width

The carriage width is the line width at which the CTRL option gener-
ates a carriage return/line feed. This width is changed by patching
the word TTWIDT, which for this example is assumed to be located at
21410. See Table 2 of RT-11 System Release Notes (V02C) for the
exact locations of BASE and TTWIDT.

.R PATCH <CR>

PATCH Version number

FILE-NAME—-—)
*MONITR.SYS/M<CR> [The /M is necessary; set
*BASE; JR<CR> relocation registers; open
*g,21410\ 119 2@4<CR> with backslash]

*E

In this example, the width is changed from 72 to 132 (2048).

10 10

2.7.2 Other Options

Other options are changed by setting or clearing the appropriate bits
in TTCNFG. To determine the new value to be inserted in TTCNFG, Table
2-5 is used. For each option, select the permanent value desired.

Add together the octal bit patterns for each value selected to determine
the new value of TTCNFG.

[\

-26 January 1976

Table 2-5
TTCNFG Option Bits

Bit Pattern

[819 5

000001
000002
000004
000010
000200
100000

000000

For example, the monitor default is PAGE, CRLF and FB.
together the bit patterns for PAGE, CRLF and FB produces the octal
value 212 (= 200 + 10 + 2).

Adding

To change this to SCOPE, PAGE, FB, add together the numbers 100000,

200 and 10 to get 100210, the new value of TTCNFG.

Using the loca-

tion of TTCNFG obtained from Table 2 of RT-11 System Release Notes

is:

.R PATCH <CR>

PATCH Version number

FILE NAME--

*MONITR.SYS/M<CR>

*BASE; fR<CR>
*g, TTCNFG/.

212

18@21@4<CR>

*E

If the FB option is changed, an additional step is necessary. Bit 15

of LISTFB must be changed to reflect the new FB option.
0 if the option is FB and must be 1 if the option is NOFB. For
example, to change the monitor default to FORM, TAB, NOFB, the value
of TTCNFG is 5 (4 + 1 + 0), and bit 15 of LISTFB must be a 1. The

patch procedure is:

Bit 15 must be

January 1976

.R PATCH <CR>

PATCH Version number

FILE NAME--

*MONITR.SYS/M<CR> [The /M is necessary;
*BASE; JR<CR> set relocation register;
*8, TTCNFG/ 212 5<CR> change TTCNFG;

*3, LISTFB/ 3316 1#3316<CR> set bit 15 in LISTFB.]
*B

After making any of these patches, it is necessary to bootstrap the
system to load the new version of the monitor.

CHAPTER 3
FILE STRUCTURES AND FILE FORMATS

3.1 DEVICE DIRECTORY SEGMENTS

The device directory begins with physical block 6 of any directory-
structured device and consists of a series of directory segments that
contain the names and lengths of the files on that device. The direc-—
tory area is variable in length, from 1 to 31 (decimal) directory seg-
ments. PIP allows specification of the number of segments when the
directory is zeroed. The default value is four directory segments.
Each directory segment is made up of two physical blocks; thus, a
single directory segment is 512 words in length.

A directory segment has the following format:

5 header words

file entries

3.1.1 Directory Header Format
Each directory segment contains a 5-word header block, leaving 507

(decimal) words for directory entries. The contents of the header

words are described in Tabkle 23-1.

3-1 January 1976

Table 3-1
Directory Header Words

Word

Contents

The number of segments available for entries. This
number is specified in PIP when the device is zeroed
and must be in the range l<=N<=3110.

Segment number of the next logical directory segment.
The directory may, in certain cases, be a linked
list. This word is the link word between logically
contiguous segments; if equal to 0, there are no
more segments in the list. Refer to Section 3.2.1,
Directory Segment Extensions, for more details on
the link word.

The highest segment currently open (each time a new
segment is created, this number is incremented).
This word is updated only in the first segment and
is unused in any but the first segment.

The number of extra bytes per directory entry. This
number can be specified when the device is zeroed
with PIP. Currently, RT-11 does not allow direct
manipulation of information in the extra bytes.

Block number where files in this segment begin.

3.1.2 Directory Entry Format

The remainder of the segment is filled with directory entries. Aan

entry has the following format:

STATUS WORD

NAME (CHARS 1-3)

NAME (CHARS 4-6) IN RAD5#

EXTENSION

TOTAL FILE LENGTH

JOB # CH #

DATE

EXTRA WORDS

OPTIONAL

Figure 3-1
Directory Entry Format

3.1.2.1 Status Word - The Status Word is brocken down into two bytes
of data:

Even byte: Reserved for future use.
0dd byte: Indicates the type of entry. Currently RT-11
recognizes the file types listed in Table 3-2:

Table 3-2
File Types

value File Type

=
3

entative File, i.e., one that has been .ENTERed
but not .CLOSEd. Files of this type are deleted
if not eventually .CLOSED and are listed by PIP

as <UNUSED> files.

2 An empty file. The name, extension, and date
fields are not used. PIP lists an empty file as
<UNUSED> followed by the length of the unused
area.

(continued on next page)

Table 3-2 (Cont.)
File Types

Value

File Type

10

A permanent entry. A tentative file that has been
.CLOSEd is a permanent file. The name of a perma-
nent file is unique; there can be only one file
with a given name and extension. If another exists
before the .CLOSE is done, it is deleted by the
monitor as part of the .CLOSE operation.

End-of-segment marker. RT-11 uses this to determine
when the end of the directory segment has been
reached during a directory search.

3.1.2.2 Name and Extension - These three words (in .RAD50) represent

the symbolic name and extension assigned to a file.

3.1.2.3

Total File Length - The file length consists of the number

of blocks currently a part of the file. Attempts to read or write

outside the limits of the file result in an End of File error.

3.1.2.4 Job Number and Channel Number - A tentative file is associ-

ated with a job in one of two ways:

1.

Under the S/J Monitor, the sixth word of the entry holds
the channel number on which the file is open. This enables
the monitor to locate the correct tentative entry for the
channel when the .CLOSE is given. The channel number is
loaded into the even byte of the sixth word.

In F/B, the channel number is put into the even byte of the
sixth word; in addition, the number of the job that is
opening the file is put into the odd byte of the word.

This is required to uniquely identify the correct tentative
file during the .CLOSE and is necessary because both jobs
may have files open on their respective channels; the job
number differentiates the tentative files.

NOTE

This sixth word is used only when the file
is marked as tentative. Once it becomes
permanent, the word becomes unused. Its
function while permanent is reserved for
future use.

3.1.2.5 Date - When a tentative file is created via .ENTER, the
system date word is put into the creation date slot for the file.

The date word is in the following format:

15 14 10 9 5 4 0

MONTH DAY YEAR-110 (8)

OHnaza
~—~
=
L}
[
[\
.
~—
~~~
[l
!
w
[
.
~

3.1.2.6 Extra Words - The number of extra words is determined by the

number of extra bytes per entry in the header words. Although PIP

provides for allocation and listing of extra words, RT-11 provides
no direct facilities for manipulating this extra information. Any

user program wishing to access these words must perform its own

direct operations on the RT-11l directory.

Figure 3-2 shows a typical RT-11 directory segment:



HEADER
BLOCK

FILE
ENTRIES

N\

<

4 FOUR SEGMENTS AVAILABLE
0 NO NEXT SEGMENT
1 HIGHEST OPEN IS #1
0 NO EXTRA WORDS/ENTRY
16 FILES START AT BLOCK 168
2000 PERMANENT ENTRY
51646 RAD5@ FOR "MON"
35562 RAD5F FOR "ITR"
75273 RAD5F FOR "SYys"
42 FILE IS 3410 (428) BLOCKS LONG
0
0 NO CREATION DATE
1000 AN EMPTY ENTRY
0 (THE NAME AND EXTENSION OF AN
0 EMPTY IS NOT IMPORTANT
0
100 641¢ (lﬂﬂa) BLOCKS LONG
0
0
2000 PERMANENT

62570 RAD5§ FOR "PIP"

50553 RAD5@ FOR "MAC"
11 FILE IS 910 (118) BLOCKS LONG

NO CREATION DATE

4p9 TENTATIVE FILE ON CHANNEL 1

62570 RADS5@ FOR "pIp"
0

50553 RADS# FOR "MAC™
20

[

JOB #, CHANNEL #

1000 EVERY TENTATIVE MUST BE FOLLOWED BY
0 AN EMPTY ENTRY
0
0
1020 FILE IS 5281g (lﬁZﬂa) BLOCKS LONG
0
0
4000 END OF DIRECTORY SEGMENT
Figure 3-2

Directory Segment



When the tentative file PIP.MAC is .CLOSEd, the permanent file
PIP.MAC is deleted.

To find the starting block of a particular file, first find the
directory segment containing the entry for the desired file. Then
take the starting block number given in the fifth word of that di-
rectory segment and add to it the length of each file in the directory
before the desired file. For example, in Figure 3-2, the permanent
file PIP.MAC will begin at block number 160 (octal).

3.2 ©SIZE AND NUMBER OF FILES

The number of files that can be stored on an RT-11 device depends on
the number of segments in the device's directory and the number of
extra words per entry. The maximum number of directory segments on

any RT-11 device is 31 This theoretically leaves room for a

10°
maximum of:

512~5
31 x |:7+N :I

directory entries, where N equals the number of extra information

words per entry. If N=0, this indicates that the maximum is 2232lO
entries.

If files are added sequentially (that is, one immediately after
another) without deleting any files, roughly one half the total
number of entries will fit on the device before a directory overflow
occurs. This results from the way filled directory segments are
handled.

When a directory segment becomes full and it is necessary to open a
new segment, approximately one half the entries of the filled seg-
ment are moved to the newly-opened segment (this process is illustra-
ted in Section 3.2.1); thus, when the final segment is full, all
previous segments have approximately one half their total capacity.
If this process were not done and a file was deleted from a full
segment, the space from the deleted file could not be reclaimed.
Every tentative file must be followed by an empty entry (for recover-
ing unused blocks when the file is made permanent). Though only

one file is deleted, two entries (tentative and empty) are needed to

reclaim the space.



If files are continuously added to a device, the maximum number of

entries will be:

507
(M+1) [m)]

where M equals the number of segments available on the device and N

equals the number of extra words.

The theoretical total can be realized by compressing the device
(using the PIP /S operation) when the directory fills up. PIP packs

the directory segments as well as the physical device.

3.2.1 Directory Segment Extensions

RT-11 allows a maximum of 31 (decimal) directory segments. This
section covers the processing of a directory segment. For illustra-

tive purposes, the following symbols are used:

n T . . .
* This represents a directory segment with some

number of directory entries. n is the segment number.

l This represents a segment wnich is full, i.e., no

more entries will fit in the segment.

Systems start out with entries entered into segment 1:
1
[

l

As entries are added, segment 1 fills:

1

When this occurs and an attempt is made to add another entry to the
directory, the system must open another directory segment. If

another segment is available, the following occurs:



1. one half of the entries from the filled segment are put
into the next available segment,

2. the shortened segment is re-written to the disk,
3. the directory segment links are set, and

4, the file is entered in the newly created segment.

NOTE
If the last segment becomes full and an
attempt is made to enter another file, a
fatal error occurs and an error message
is generated:

?M-DIR OVFLO?

Thus, in the normal case, the segment appears as:

1 Before extension
-
|1 l After extension; half the entries are in the
Link | 1 new segment, half in the old; segment 1 is
. -
7 l linked to segment 2.

If many more files are entered, they fill up the second segment and

overflow into the third segment, if it is available:



I
1|
Link
to 2 I
I
|
|
I_
2 " l
Link
to 3

In this case, the links between the segments are not strictly neces-
sary, as the segments are contiguous. However, the links do become
necessary if a large file is deleted from segment 2 and many small
files are entered, since it would then be possible to overflow seg-
ment 2 again. If this occurred and a fourth segment existed, the

directory would appear:

| —
1 | l In this case, segment 2 overflows into
Link ' segment 4 and the links are used to link
to 2 | logical pieces rather than physical pieces.
[
2—-— l
Link
to 4



3.3 MAGTAPE AND CASSETTE FILE STRUCTURE
3.3.1 Magtape File Structure

This section covers the magtape file structure as implemented in
RT-11, Versions 2B and 2C. The structure is slightly different from
that of Version 2. However, RT-11 V02B and V02C can read magtapes

written under Version 2.

RT-11 magtapes use a subset of the VOLl1l, HDR1l, and EOFl ANSI standard
labels. Each magtape file has the format:

HDR1*---data--—*EOF1*

A volume containing a single file has the following format:
VOL1 HDRl1*---data--—-*EQF1l**

A volume containing two files has the following format:
VOL1 HDR1*---data--—-*EOQOF1*HDRl*---data---*EQF1l**

A double tape mark following an EOFl label indicates logical end of
tape.

A zerced magtape has the following format:
VOL1*%*

Each label occupies the first 80 bytes of a 256-word physical block,
and each byte in the label contains an ASCII character (i.e., if the
content of a byte is listed as 'l', the byte contains the ASCII code
for '1'). Table 3-3 shows the contents of the first 80 bytes in the

three labels. ©Note that VOL1l, HDRL, an

-

t
256-word block, of which only the first 80 bytes are meaningful.
The meanings of the table headings are:

CP - character position in label
Field Name - reference name of field
L - length of field in bytes

Content - content of field

3-11 January 1976



Table 3-3

ANSI MT Labels Under RT-11

Volume-Header Label (VOL1)

CP Field Name L Content

1-3 Label identifier 3 VOL

4 Label number 1 1

5-10 Volume identifier 6 RT1101

11 Accessibility 1 Blank

12-37 (Reserved) 26 Blanks

38-51 Owner identifier 14 DD%% jused to indicate an

{RT—ll MT to RSX-11D

52-79 (Reserved) 28 Blanks

80 Label-Standard Version 1 1

First File Header Label (HDR1)

Cp Field Name L Content

1-3 Label identifier 3 HDR

4 Label number 1 1

5-21 File identifier 17 6-character ASCII file name,
followed by '.', followed
by 3-character ASCII file
extension; left justified,
remainder of field is blanks

22-27 File Set identifier 6 RT1101

28-31 File Section Number 4 0001

32-35 File Sequence Number 4 0001

36-39 Generation Number 4 0001

40-41 Generation Vsn Number 2 00

42-47 Creation Date 6 Blank then year*1000+day of
year in ASCII (AYYDDD); e.g.,
2/1/75=A75032

48-53 Expiration Date 6 blank then 00000

54 Accessibility 1 blank

55-60 Block Count 6 000000

61-73 System Code 13 RT11 left-justified followed
by blanks

74-80 (Reserved) 7 blanks

First End-of-File Label (EOF1)

Same as HDRl except that the label identifier (CP 1-3) is EOF, not
HDR, and the block count field (CP 55-60) contains the number of
blocks in the file as a decimal value encoded in ASCII characters
(for example, if the file was 12 blocks long, the block count field

would be 00012).




3.3.1.1 Bootable Magtape File Structure - An RT-11 bootable magtape
is a multi-file volume that has the following format:

VOL1 BOOT HDR1l*---data~-—*EQF1**

where BOOT is a 256-word physical block containing the magtape boot-
strap loaders.

The format of the bootable magtape is not standard, because of the
BOOT block, but other systems that will skip the BOOT block to HDRIL
will be able to read RT-11 bootable magtapes if they can read regular
RT-11 magtapes.

3-12.1 January 1976



3.3.1.2 Moving MT to Other Industry-Compatible Environments - RT-11
V02C magtapes may be read by RSX-11D Version 6. RT-11 magtapes

should be mounted, under RSX-11D, by using the /OVR switch of the

MOUNT command, or by specifying a volume label of "RT1101". RSX-11D
Version 6 will not allow the user to write on RT-11 VO02B magtapes

once they have been mounted. RT-11 V02C can read RSX-11lD Version 6
magtapes, but RT-11 users should not attempt to write on tapes created
by RSX-11D. Users should note that data structures differ between

the two systems and these differences must be handled by the user.

RT-11 V02C magtapes may be read on IBM systems that support ANSI
standard label processing. RT-11 V02C magtapes to be read by IBM
systems should consist of single file volumes (one file per magtape) .
Important JCL parameters for reading RT-11 V02C tapes under an IBM 0OS

system are as follows:

(In the DD statement of the Job Control Language)

DISP = OLD
LABEL = (01,AL,,IN)

VOL = (,RETAIN,SER=RT1101)

DSN = RTFILE.MAC

BLKSIZE = 512

DEN = 2 (for 800 bpi 7-track or 9-track tape)

The DSN parameter is the Data Set Name or the RT-11 filename and
extension. Files to be moved to other systems should be created with
full 6-character filenames and 3-character extensions; filenames less

than 6 characters should be enclosed in quotes.

3.3.1.3 Recovering From Bad Tape Errors - When a bad tape error
occurs on magtape, the magtape handler will retry the desired func-
tion, and, if the error persists, will attempt to save the tape's

for example, by retrying the
write 10 times, using the write with extended file gap to space past
the bad tape. 1If, after retrying, the error still exists. the file
will be closed, containing all data written prior to the write on
which the error occurred. The user should still be able to write
additional files on the tape, since the bad portion of the tape will

be within the area of the closed file.

3-13 January 1976



If a bad tape error occurs when writing the file header during ENTER,
and retry fails, the handler writes logical end of tape after the
previous file on the tape. The remainder of the tape can be accessed
only if the last complete file on the tape can be extended (or
overwritten by a file of different length) so that the bad tape error
does not occur on the file header when a subsequent file is ENTERed.

If a bad tape error occurs while writing the end of file label (EOF1)
during CLOSE, the handler writes a triple tape mark to signify end of
file and logical end of tape. Additional files can be added to the
tape only if the last complete file can be extended (or overwritten
by a file of different length) so that the bad tape error does not
occur at the EOFl label.

3.3.2 Cassette File Structure

A blank (newly initialized) cassette appears in the format:

Clear E:Ft?l'eded Sentinel [~~~
Leader File Garbage
Gap 9
32lo bytes

while a cassette with a file on it appears as:

Clear |Extended| Header| Block Data Block | Data File Sentinel

Leader| File Block Gap Block Gap Block Gap File
Gap
s e’ D Y
3216 12 81¢
bytes bytes



Files normally have data written in 128, .-byte blocks. This can be

10
altered by writing cassettes while in hardware mode. (In hardware

mode, the user program must handle the processing of any headers and
sentinel files; in software mode the handler automatically does this.

Refer to Appendix H of the RT-11 System Reference Manual.)

The preceding diagram shows a file terminated in the usual manner
(by a sentinel file). However, the physical end of cassette may

occur before the actual end of the file. This format appears as:

Block Data Block Clear
Gap Block Gap Trailer
or
Block Data Block Data Clear
Gap Block Gap Block Trailer
Partially
Written
Block

In the latter case, for multi-volume processing the partially written
block must be the first data block of the next volume.

3.3.2.1 File Header - The File Header is a 3210-byte block that is
the first block of any data file on a cassette. If the first byte of
the header is null, the header is interpreted as a sentinel file,

which is an indication of logical end of cassette. The format o
]

the header is described in Table 3-4.



Table 3-4
CT File Header Format

Byte Number Contents
0-5 File name in ASCII characters (ASCII is assumed to
imply a 7-bit code) :
6-8 Extension in ASCII characters
9 Data type (0 for RT-11)
10,11 Block length of 12810 (2008); Note: byte 10=0
(high-order), byte ll=2008 (low~-order)
12 File sequence number. (0 for a single-volume

file or the first volume of a multi-volume file;
successive numbers are used for continuations)

13 Level 1; this byte is a 1

14-19 Date of file creation (6 ASCII digits representing
day (01-31); month (01-12), and last two digits of
the year; 0 or 408 in first byte means no date

present)
20,21 zero
22 Record attributes (0 in RT-11 cassettes)
23-28 Reserved for future use
29-31 Reserved for user

3.4 RT-11 FILE FORMATS

3.4.1 Object Format (.OBJ)

An object module is a file containing a program or routine in a
binary, relocatable form; object files normally have an .0OBJ exten-
sion. Object modules are produced by language processors (such as
MACRO or FORTRAN) and are processed by the Linker to become a run-
nable program (in SAV, LDA, or REL format, discussed later). Object
files may also be processed by the Librarian to produce library .OBJ
files, which are then used by the Linker. Figure 3-3 illustrates
this process.

3-16




FORTRAN
COMPILER

MACRO
ASSEMBLER

SOURCE
PROGRAM
(?)

USER-WRITTEN
LANGUAGE
PROCESSOR

OBJECT
MODULES
.0OBJ

LINKER

LIBRARIAN

FILE

PROGRAM

Figure 3-3
Object Module Processing



Many different object modules may be combined to form one file; each
object module remains complete and independent. However, object mod-
ules combined into a library by the Librarian are no longer independ-
ent -- they become part of the library's structure.

Object modules are made up of formatted binary blocks. A formatted
binary block is a sequence of 8-bit bytes (stored in an RT-11 file,
on paper tape, or by some other means) and is arranged as illustrated
in Figure 3-4.

Byte containing octal value 1

Byte containing octal value #

Low-order byte of length

Length of Block
High-order byte of length

data bytes J {

77

Checksum byte

Figure 3-4
Formatted Binary Block

Each formatted binary block has its length stored within it; the length
includes all bytes of the block except the checksum byte. The data por-
tion of each formatted binary block contains the actual object module
information (described later). The checksum byte is computed such that
the sum of all bytes in the formatted binary block, including the check-
sum byte, is zero when the sum is masked to 8 bits.

Formatted binary blocks are used to hold various kinds of information
in an object module; this information is always contained completely in

the data portion of the block, surrounded by the formatted binary block
structure.



Eight types of data blocks may be present in an object module:

Identification
Code Type of Block Function

1 GSD blocks hold the Global Symbol
Directory information

2 ENDGSD block signals the end of GSD
blocks in a module

3 TXT blocks hold the actual binary
"text" of the program

4 RLD blocks hold Relocation Direc-
tory information

5 ISD blocks hold Internal Symbol
Directory - not sup-
ported by RT-11

6 ENDMOD block signals end of the ob-
ject module

7 Librarian Header 17 words holding the

Block status of the library Library
file File
Only
18 Librarian End Block signals the end of the

library file

The structure of object modules produced by a language processor will
be described first, followed by details specific only to Library .OBJ
files.

The first block of an object module must be a GSD block, and all GSD
blocks must appear before the ENDGSD block. The ENDMOD block must be
the last block of the module. Except for these three restrictions,
blocks may appear in any order within an object module.

When a 16-bit word is stored as part of the data in a block, it is
always stored as two consecutive 8-bit bytes, with the low-order byte

The first word (data word) of each type of block mentioned above con-
tains the identification code of that block type (1 = GSD block, etc.)
with any information present following the identification word.



3.4.1.1 Global Symbol Directory - The object module's global symbol
directory contains the following information:

- Module Name

- Program Section (CSECT) Definitions

Internal Symbol Table Name (not supported by RT-11)
- Transfer (Start) Address

S» W N = O
I

- Global Symbol Definitions or References

Each piece of information in the GSD is contained in a GSD item, for-
matted as shown in Figure 3-5:

g Two-word RADS5Z NAME field
, -
7 lé |5 |4 |3 IRE 'o
4 CODE BYTE FLAGS
A I A I
6 SIZE or OFFSET Word

Figure 3-5
GSD Structure

The code byte identifies the information contained in a GSD item ac-
cording to the codes listed above (0 = Module Name, 1 = Program Sec-
tion Definition, etc.). The first GSD item of an object module must
contain the Module Name information (FLAGS, CODE, and SIZE = 0).

There may be no more than five GSD items per GSD block (i.e., per
formatted binary block). As many GSD blocks as necessary may be pres-
ent, but all must appear before the ENDGSD block. GSD blocks need not
be contiguous.

Flags are coded as follows:

Bits 0,1,2,4,7 unused

Bit 3: 0 = undefined, 1 = defined (used only with
Global Symbols)

Bit 5: 0

absolute, 1 relocatable

Bit 6: 0 internal, 1

global

3-20



All program sections (CSECTs) defined in a module must be declared in
GSD items (code byte = 1). The size word of each program section
definition should contain the size in bytes to be reserved for the
section. Program sections may be declared more than once, in which
case the largest declared size of the section will be used. All glob-
al symbols that are defined in a given program section must appear in
the GSD items immediately following the definition item of that pro-
gram section.

A special program section named "..uABS." (where u represents a space)
is called the absolute section. The absolute section has the special
attribute that it is always allocated by the Linker beginning at loca-
tion 0 of memory. All global symbols that contain absolute (non-
relocatable) values should be declared immediately after the GSD item
that defines the absolute section. If it is not desired to allocate
any memory space to the absolute section, its size word may be. speci-
fied as zero, even if absolute global symbol definitions occur after
it. Flag bit 5 of each absolute global symbol is always set to zero.
GSD items that contain the definitions of global symbols (code byte =
4) must immediately follow the program section declaration into which
they are to be defined. Flag bit 3 is set to 1 to indicate a symbol
definition, bit 5 is set if and only if the symbol is relocatable, and
bit 6 is set to indicate that the symbol being defined is a global.

In addition, the offset word is set to contain the defined value of
the global symbol, relative to the base of the program section in which
the global is defined. At link time, the Linker assigned section base
is added to get the final value of the global symbol.

Global symbols that are referenced but not defined in the current ob-
ject module must also appear in GSD items. These global references
may appear in any GSD item except the very first (which contains the
module name). Global references are recognized by code byte 4 with
flag bit 3=0, bit 5 is undetermined, and bit 6=1. All global symbols
used in the RLD of the object module (described later) must appear in

o~ de Tamadk ~Awma 1 A~
gL LTaolL VlIT UlLw

If RT-11 is to begin execution of a program within a particular object
module of that program, then the information on where to start is given
in a Transfer Address (code=3) GSD item. The first even transfer ad-
dress encountered by the Linker will be passed to RT-11 as the program

start address. Whenever the resulting program is run (using R or RUN



for SAV images, FRUN for REL files, or the absolute loader for LDA
files), the start address is used to indicate the first executable in-
struction. If no transfer address is present or if all are odd, the
resulting program will not self-start when run. In a Transfer Address
GSD item, the name field is used to specify a program section (or glob-
al name) and the offset word is used to indicate the offset from the
base of that program section (or global) to the starting point of the
program. The program section or global name referenced need not be
defined in the current object module, but must be defined in some ob-
ject module included at link time.

NOTE

Program Section and Global names must
begin with an alphabetic or numeric
character, except for the names .LJABS.
and UL dLY.

3.4.1.2 ENDGSD Block - The ENDGSD block contains a single data word,
and that is the identification code of the ENDGSD block (2). All GSD
blocks in an object module must precede the ENDGSD block.

3.4.1.3 TXT Blocks and RLb Blocks - The first TXT block (3) in an ob-
ject module (if present) must be preceded by an RLD block (4).

TXT blocks contain the actual binaryv form of the programs and are for-

matted as shown in Figure 3-6:

Identification Word (TXT=3)

Load Address of following data

Absolute Load Data (up to 38 bytes)

[
-

Figure 3-6
TXT Block Format

The load address of a TXT block gives the relative address of the first
byte of the absolute load data. The address is relative to the base of
the last program section given in a Location Counter Definition RID
command (explained later).



The Absolute Load Data contains the actual bytes that will be loaded
into memory when the program is run (except for relocations, described
later).

RLD blocks contain variable length RLD commands, used to modify and
complete the information contained in TXT blocks. Except for the
Location Counter commands, RLD information must appear in an RLD
block immediately following the TXT block to be modified.

Available RLD commands are:

1. Internal Relocation
2. Global Relocation
3. Internal Displaced Relocation

5. Global Additive Relocation

6. Global Additive Displaced Relocation

7. Location Counter Definition

8. Location Counter Modification (not used by RT-11)
9. Set Program Limits

The location counter commands (numbers 7 and 8) are the only two RLD
commands that must appear in an RLD block preceding the text blocks
modified. The first RLD block must precede the first TXT block and
must contain only a location counter definition command (7) in order
to declare a program section for loading the first text block. (The
location counter modification command (8) is included for compatibil-
ity with other systems, but is not used by RT-11.)

The data portion of an RLD block must not be larger than 42 bytes

10
including the identification word (RLD=4) and all RLD commands.

All global names and program section names that appear in RLD commands
must appear in GSD items in the same object module. Figure 3-7 shows
the format of each RLD command (each part except the first word is op-
tional and may not appear in some commands) :



15 8 76 g

RELATIVE REFERENCE B COMMAND

Two-word RAD5@ NAME Field

CONSTANT

Figure 3-7
RLD Format

An-RLD command may be 1, 2, 3, or 4 words long.

The Command Field contains the command code (1 = Internal Relocation,
etc.). The Command Field occupies bits 0-6 of the first word of the
command. The B field (bit 7) indicates a word command if 0 or a byte
command if 1 (only valid for commands 1 through 6). The Relative
Reference Field is a pointer into the preceding TXT block and is used
with RLD commands that require text locations for modification (com-
mands 1 through 6 and 9). This field specifies the displacement from
the beginning of the preceding TXT block to the referenced text data
byte (or word). The beginning of the TXT block is the identification
word (the first word of the data portion of the block). Thus, the
smallest relative reference will normally be 4 (the first byte (word)
of the preceding TXT block).

The Name Field is used to hold a Global or Program Section name if the

command requires it.

The Constant Field is used to hold a relative address or additive quan-
tity if the command requires it. RLD commands are processed by the
Linker as shown in the following situations:

1. Internal Relocation {(code 1) - Add the current program
section's base to the specified constant and place the
result where indicated. This command relocates a direct
pointer to an internal relocatable symbol.

Relative Reference g/1 1
Constant

3-24



Examples:

a) .WORD LOCAL
b) MOV #LOCAL,%J

Global Relocation (code 2) - Place the value of the
specified global symbol where indicated. This com-
mand generates a direct pointer to an external sym-
bol.

Relative Reference g4/1 2

Global Name

Examples:

a) .WORD GLOBAL
b) MOV #GLOBAL,Rf#

Internal Displaced Relocation (code 3) -~ Calculate the
displacement from the position of the current location
plus two to the specified absolute address, and store

the result where indicated. This command occurs only
when there is a reference to an absolute (non-relocatable)
location from a relocatable section.

Relative Reference g/1 3

Constant

Examples:

a) ABS=17755%

TST ABS both addresses cause
internal displaced
b) CLR 177558 relocation to occur



Global Displaced Relocation (code 4) - Calculate the
displacement from the current location plus two to
the specified global address, and store the result
where indicated.

Relative Reference g4/1 4

Global Name

Example:

.GLOBL GLOBAL
MOV GLOBAL,RJ

Global Additive Relocation (code 5) - Add the value of
the specified global symbol to the specified constant,
and store the result where indicated.

Relative Reference g/1 5

Global Name

Constant

Example:

.GLOBL GLOBAL
CMP #GLOBAL+6,R@

Global Additive Displaced Relocation (code 6) - Calcu-
late the displacement from the current location plus
two to the address specified by the sum of the global
symbol value and the given constant, and place the re-
sult where indicated.

Relative Reference g/1 6

Global Name

Constant

Example:

.GLOBL GLOBAL
CLR GLOBAL+6

3-26



7. Location Counter Definition (code 7) - This command is
used to specify the program section into which the fol-
lowing TXT blocks are to be loaded.

Program Section Name

Constant

This command is generated whenever .ASECT or .CSECT is
used to initiate or continue a program section. The
constant word is effectively ignored by RT-11l and may
be used for diagnostic purposes to indicate the rela-
tive point at which a program section is being entered.

8. Location Counter Modification (code 108) - This command
is used to enter the current program section at a dif-
ferent point. This command is effectively ignored by

g
Constant
Examples:
a) .=100 ;IF WE ARE IN THE ASECT
b) =,=20 ;IF WE ARE IN A RELOCATABLE SECTION

9. Set Program Limits (code 11,) - This command (generated
by the .LIMIT assembler directive) causes two words in
the preceding TXT block to be modified. The first word
is to be set to the lowest relocated address of the pro-
gram. The second word is to be set to the address of the
first free location following the relocated code. Note
that both words to be modified must appear in the same
TXT block.

Relative Reference 11

158, and 168 can be generated by MACRO. These commands are identical
to commands 4, 5, and 6 respectively, but are used when the global

is really a program section name.



3.4.1.4 1ISD Internal Symbol Directory - Not supported by RT-11l.

3.4.1.5 ENDMOD Block - Every object module must end with an ENDMOD
block. The ENDMOD block contains a single data word -- the identifi-
cation code of the ENDMOD block (6).

3.4.1.6 Librarian Object Format - A library .0OBJ file contains in-
formation additional to that previously defined. The object modules
in a library file are preceded by a Library Header Block and Library
Directory, and are followed by the Library End Block or trailer. This
is illustrated in Figure 3-8.

LIBRARY HEADER

ENTRY POINT TABLE
. (EPT)

OBJECT MODULES

LIBRARY END TRAILER
BLOCK

Figure 3-8
Library File Format

Diagrams of each component in the library file structure are included
here, but Chapter 7 of the RT-1l1 System Reference Manual should be
consulted for details.

The library header is composed of 17 words describing the status of

10
the file. The contents of the 17 words are shown in Figure 3-9.



! FORMATTED BINARY
BLOCK HEADER

7 LIBRARIAN CODE

X VERSION NUMBER

o | RESERVED
MONTH-DAY-YEAR (OR @ IFNO DATE)

x

RESERVED

O |]Ooflo|O| O

12g | EPT RELATIVE START ADDRESS

Xl EPT ENTRIES ALLOCATED IN BYTES

0 EPT ENTRIES AVAILABLE (NOT USED IN VI)

X2 NEXT INSERT RELATIVE BLOCK NUMBER

X3 NEXT BYTE WITHIN BLOCK

0 NOT USED (MUST BE ZERO)

Figure 3-9
Library Header Format

The Entry Point Table (EPT), Figure 3-10, is composed of four-word en-
tries which contain information related to all object modules in the

library file.

0 SYMBOL CHARS -3 (RADS®Q)
2 SYMBOL CHARS 4 -6 (RAD5Q)
4 ADDRESS OF BLOCK BIT 15=1-MODULE NAME
?-CSECT OR ENTRY POINT NAME
6 # OF CSECTS IN RELATIVE BYTE RELATIVE BYTE MAXIMUM=7T77g
OBJECT MODULE IN BLOCK CSECTS MAXIMUM =177g

Figure 3-10
Entry Point Table Format



Object modules follow the Entry Point Table and consist of the types

of data blocks already discussed: GSD, ENDGSD, TXT, RLD, and ENDMOD.
The information in these blocks is used by the Linker during creation
of the load module.

Following all object modules is a specially coded Library End Block
(trailer), which signifies the end of the file, shown in Figure 3-11.

| | FORMATTED BINARY HEADER

10 | FORMATTED BINARY LENGTH

10 | TYPE CODE

O | NOT USED (MUSTBE ZERO)

357 | CHECKSUM BYTE

Figure 3-11
Library End Trailer

3.4.2 Formatted Binary Format (.LDA)

The Linker /L switch produces output files in a paper tape compatible
binary format.

Paper tape format, shown in Figure 3-12, is a sequence of formatted bi-
nary blocks (as explained in Section 3.4.1 and in Figure 3-4). Each
formatted binary block represents the data to be loaded into a specific
portion of memory. The data portion of each formatted binary block
consists of the absolute load address of the block followed by the
absolute data bytes to be loaded into memory beginning at the load ad-
dress. There may be as many formatted binary blocks as necessary in

an LDA file. The last formatted binary block of the file is special;
it contains only the program start address in its data portion. If
this address is even, the loader passes control to the loaded program
at this address. If it is odd, the loader halts upon completion of
loading. The final block of the LDA file is recognized by the fact
that its length is 6.



| BYTE
0 BYTE
BCL e Low order 8 bits of byte count
FIRST BCH —_—] Hi order 8 bits of byte count
DATA ADL —_— Low order load addr
ﬁl)-OCK ADH e Hi order load addr
DATA BYTES
CHECKSUM BYTE
| BYTE
0 BYTE
BCL
BCH This pattern is repeated
rn is
INTERMEDIATE ADL for all intermediote
DATA ADH bl
BLOCKS ocks
{2+=n-1 DATA BYTES
CHECKSUM BYTE
| BYTE
0 BYTE
ll._)ﬁ‘?AT 6 BYTE Indicates the last block
BLOCK O BYTE
(n) JL Either the start addr
JH or an odd number
CHECKSUM BYTE

Figure 3-12
Formatted Binary Format

The load module's binary blocks contain only absolute binary load data
and absolute load addresses; all global references have been resolved
and the appropriate relocation has been performed by the Linker.

3.4.3 Save Image Format (.SAV)
Save image format is used for programs that are to be run in the back-
ground. This format is essentially an image of the program as it would

appear in memory (block 0 of the file corresponds to memory locations
0-776, block 1 to locations 1000-1776, and so forth).

3-31



Locations 360-377 in block 0 of the file are restricted for use by the
system. The Linker stores the program memory usage bits in these
eight words. Each bit represents one 256-word block of memory and is
set if the program occupies that block of memory. This information is
used by the R, RUN, and GET commands when loading the program.

When loading a save image program into memory, KMON reads block 0 of
the file to extract the memory usage bits. These bits are used to
determine whether the program will overlay either the KMON or the USR.
If these portions of the monitor will not be overlaid, the entire pro-
gram is loaded; if the USR and KMON must swap, KMON loads the resident
portion of the program, up to the start of KMON. It then puts the por-
tion of the program that overlays KMON/USR into the system swap blocks.
When the program starts, the monitor swaps in the virtual portion of
the program, overlaying KMON.

When block 0 of a save image file is loaded, each word is checked
against the protection bit map (LOWMAP), which is resident in RMON.
Locations that are protected in the map, such as location 54 and the
system device vectors, are not loaded.

3.4.4 Relocatable Format (.REL)

A foreground job is linked using the Linker /R switch. This causes
the Linker to produce output in a linked, relocatable format, with a
REL file extension.

The object modules used to create a REL file have been linked and all
global references have been resolved. The REL file is not relocated,
so it has an effective start address of 0, with relocation information
included to be used at FRUN time. The relocation information in the
file is used to determine which words in the program must be relocated
when the job is installed in memory.

In order to determine if the code to be relocated (as indicated in the
relocation information blocks) is to have positive or negative reloca-
tion (relative to the start address of the program), the following cri-
teria from the text modification commands is used (R = relative ad-
dress, G = global address, C = constant):

1. 1Internal Relocation (.WORD R) - always positive relocation

(absolute)
2. Global Relocation (.WORD G) - positive relocation only if
(global) the global is not absolute

3-32



3. Internal Displaced Relocation

always negative relocation

(MOV 54,R)
4. Global Displaced Relocation - negative relocation only
(MOV G,R) where the global is de-
fined as absolute elsewhere
5. Global Additive Relocation - same as 2 above

(.WORD G + C)

6. Global Additive Displaced
(MOV G + C,R)

same as 4 above

7. Program Counter Commands - not applicable
8. Set Program Limits - always positive relocation

(requires 2 RELs; limit is
two words)

There are two types of REL files to consider, those programs with

overlay segments and those without.

3.4.4.1 Non-Overlay Programs - A REL file for a non-overlaid program
appears as shown in Figure 3-13:

Block #

Program Relocation
Text Informatiocn

Figure 3-13
REL File Without Overlays

Block 0 (relative to start of the file) contains certain information
required by the FRUN processor:

Offset from Begin-

ning of Block 0 Contents

52 Size of the program root segment in bytes

54 Size of the overlay region in words; 0 if
no overlays

56 REL file identification word, which must
contain the RAD50 value of the characters
'REL'

60 Relative block number of relocation in-
formation



In addition, the system communication locations (34-50) contain the

following information:

Offset from Begin-

ning of Block O Contents
34,36 TRAP vector
40 Start address of program
42 Initial setting of stack pointer
44 : Job Status Word
46 USR swap address
50 Highest memory address in user's program

In the case of non-overlaid programs, the FRUN processor performs the
following general steps to install a foreground job.

1.

Block 0 of the file is read into an internal monitor
buffer.

The amount of memory required for the job is obtained
from location 52 of block 0 of the file, and the space
is allocated.

The program text is read into the space just allocated
for it.

The relocation information is read into an internal
buffer.

The locations indicated in the relocation information

area are relocated by adding the relocation guantity,

which is the starting address the job occupies in mem-
ory.

The relocation information consists of a list of addresses relative to

the start of the user's program. This list is scanned, and the appro-

priate locations in the user's program area are updated with a con-

stant.

The job is then ready to be started.

3-34



The relocation information is in the following format:

15 14 ' [/}
RELATIVE WORD OFFSET

RELATIVE WORD OFFSET

RELATIVE WORD OFFSET

RELATIVE WORD OFFSET

RELATIVE WORD OFFSET

Bits 0-14 represent the relative address to relocate divided by two.
This implies that relocation is always done on a word boundary, which
is the case. Bit 15 is used to indicate the type of relocation to
perform, positive or negative. The relocation constant (which is the
load address of the program) is added to or subtracted from the in-
dicated location depending on the sense of bit 15; 0 implies addition,
1 implies subtraction. 177776 terminates the list of relocation in-
formation.

Following is an example of a simple, non-overlaid program linked to
produce a REL file. A dump of the file follows the program.

3-35



WTITLE FTYFST ‘
.HCAPL ..VE....HEGDEF,.LUHKUP'.pE‘DN'.QSETp.PpINTp.FXYT

QHVaII

+REGDEF

eT!e JOSET  #01 IST, 7
LLOOKUP #AREA,#0,#PTR
ACC Ls
«PRINT  # «FAIL
JEXIT

1812 LREADW #AREA,#0,#RUFF,#254,,#7
RcC ?s
JPRINT #RRFATIL
JEXIT

281 <PRINT #Qw
JEXIT

QLTIST: LBLKW Tx7
ARFEA? JBLKW 29,
PTRS LRADSQ /PP FILE12/
BUFF ! JNLIST
+REPY 254,
JWORD "
LENDR
JLIST
LKFATL? ,ASCIZ /LNOKUP FATLED/
RDFATL? LASCIZ /RFADW FAILEP/
oKt +ASCYZ /RFADW DK/
«EVEN
oNLIST
+REPT €ST+1776w,>/2
. WORD []
+ENDR
«NLIST
.END ST

3-36



LE-E

FTEST

PADIANY -

10

it

i?

14

18

RT*11 MACRA VMP2win

nePp00
200000
700p00
290200
no0eny
neep1o
noeQ12
fe0p12
no@p1e
n00024
neRee
np2p34
Pp0R4Q
neog4a2
nEPRUY
"e0244
naRR%0
nPeQase2
npea%2
nEoR%Y
nEYRSY
1Y)
"A0Rke
"e%270
neeRTe
np010y
"1
”p@4L20
n@oy2e
neeL24
nQv124
ne2130
mp2132
np21%2
npP1%4
"Qo13y
npoLUY

142700
ny12746
104353

As2700
112760
108010
nL2760
nasp6p
104378
102004

212700
10435y

104350

219709
112760
1o8p10
LER Y
RA12760
SEREY o
n12760
1043758
102074

n1279p
104381y

tpuise

nL2790
19439y

ngmeay
npoat4y”

NEN3Ne ¢
LLLTLY

n"an35e
L L

"P1364°

PPO3Ne*
apARI D

nerARR
LAY R

LT
200929

PR140R "

mo1417°*

2S=APR=7S

nerpRy

npneR2

LT

naMaR2
namata
nAMeRe
LR

10137181 PAGF |

aMEALL
.'l."z..
«REGDEF

8Tt
«ITF

ITF

181

ITF
.IYF
LITF
+ITF
CITF

WITF

281
oITF

NR

NR

NA

NR
NR
NR

NA

NR

NR

pTITLE FTEST L
D.VEDOUQREGDEF. .LOnKUPI GEE‘DNJ .QSET. .PQINT, .FXIT
JOSET  #QLIST,#7
<>, MOvB #7,%0 L
MOV EOLIST,=(6,)
EMT *035%
LLOOKUP #AREA,#p,#PTR
MOV ¥AREA, %D
Mova #4,1(02)
CLRB 2
<¥PTR>, MOV #PTR, 2, (M)
rLe a4,
FMT *py7s
REEC 18
WPRINT #KFATL
<#_KFATL>», MOV SUKFATIL, %O
FMT %0159
JEYIT
FMT *atsn
SRFANW #AREA, %0, #RUFF, #7256k, , #0
MOV ¥AREA,%0Q
Movae #8,,1(M)
eLRB tey |
k0>, MoV #0,2,(7)
<HRUFF>, MOV ¥BUFF, 4, (0
<#356,>, MOV #2846, ,6, (0"
x>, MOV #0,8,(7)
<X>», EMY *q71%
RCr oS
LPRINT #RNFAIL _
<#RDFATL>, MOV #RNFAIL, %0
FMY 0351
JEXIT
FMT =n350
LPRINT #pK
<#NK>, MOV #0K, %0
EMT ik 1X]



8¢-¢

16 0Q0142

npR142 10435
17
18 72090144
19 7@0302e
2® 0P03I%e MeTI2@ MRTI6U
26 221364 114 117
no1367 113 12§
ma13r2 edp 106
701375 114 114
Pelymp 194 ann
27 21402 122 175
nRl4ns 104 127
fRld1pQ 126 121
nO1413 114 105
ralate 0
28 apl4ly 1?2 175
FTEST RT*11 MACRNM VMO2=1nM
no1422 104 127
71428 117 113
29
FTEST RT=11 MACRN VMPRei®
SYMBN|, TABLE
ARFA NEY3INGR RUFF
PTR NRO3%ER ALTST
R2 =XP0000N2 R3
ST PQRPARR
. ABS, 0@0pnp anp
"R1776 201

FRRORS DFTECTEND: @
FRFE CORF: 15895, WORDS

+LPS/NITTM/| IMFRRFTEST

ne2070
117
120
104
1085

104
040
1114
124

1214

PSwAPR=7%

a4
o2

2S=APR=TR

PQNI6YR
PRP144R
=XNQ0Q03
el VP = DOAQRY

JEXIY
FMT *p1s50
ALTSTE ,BLKW Tw?
ARFAL <BLKW 20,
PTRS .RADSD /PR FILE12/

LKFATLE LASCTZ /LNOKUP FATLFD/

RDPATL! LASCT?

/RFADKW FATIED/

0K 3 WASCTZ - /READW 0K/

10137351 PAGF 1+

LEVEN

10137154 PAGF 1+

LKFATL CPO1364R al ¢
POFATL  MD1402R RO
P4 sYLAQNQAPYL RS

nAL41TR
SYNQAQAR
34PQNQARS

PC
R1
sP

s%AQRQ07
=XN07004
=X700Q06



BLOCK NUMBER popn
700/ PARNR0 NPRRRQ BFANQR MARNQANE PARRAN ARNRAQ DADARR MRARMAD Neopaposepepasapat
f27/ Q0QENRP NAEARNE AMRNRM ARAAND QMBARN NPAGNE ANEAMAM APPARAAQA ‘“‘»"l"";’;’i‘:‘""
B40/ 2nRNA0 NERQENP AARNEN ARARNQ AR1TT6 MRITTe AMAABD ATASPY -,.,.,...».,.,.IQ*
60/ PAONEA3 NPMENE PAAMRR NONPNE @ARNRA NPNAND POAMPR ARRQRMO t,.,.,.,.}.,.;-,.*
130/ 072000 PRRQMQ ANRNQN ARAANY PRARAN ARARAR QAARARN NPARNE Feapepnsnsaponnss
120/ 2nMeMe? NQNERE ANENAM ARRAME ANARRM PRANQANY GARNAN ARNPRR Xespoposesnpanags
140/ pPAODO 022200 AGRMQR NRPRMD QAARAN ARARNY POANRA APARKY Xeapepesesspnssye
160/ PRONQE NENENE PANEREM AQPR7A ANARARA PRMRARR QAARRAR AANRAR *..,.,.,.}.,.,.,.
200/ 2PONAR AQNRNE BARPER NRANRNE PMARRQAN MAPMAQRMAR RPANAN MPARNQR *..,.,...,.?.,.,.
220/ 9MpNR0 2PNAMRQ ARAAQAN ARAPAP AMQROQN MAOPAD BAPAGR MAQRAQAMQD *esespesesopesens
240/ 200000 AQRQENE RNRMRN ARPAANG BMPRARM NAQAMEND arpegn MpMP@ANQ ¥asosprensepasepe®
260/ Q0ENRP MQPRRND COPAEH HAQVNRAG AORRH COANND DRQRROR ARPBAD Feosoposeagasepngn?
300/ 0MONQ0 AQAQRNE 20QCPP ARNPNAD PRAMAN MRAGPD ANEMARM MPNRND *eeospescsepacega®
320/ gPePo? 0QPR0Q 20Q0AM MAAEAR RAGRRR NPAMANE APANAR NEMARNQR *__.._..p,._..,._..,.*
340/ 200000 MANRND PARACRER AQAANE QORBRN ARARMY PAANAN NRARNMR ¥eoagapseesepasrpet
360/ PNATR0 PQNANE ANRCRC NRMANE DOQRRN ARAANY QPOMAR ARPRNY ".'.-'p'."."r'f‘?"
420/ QMENA0 RRRENQR PAACEAN ARMAQRNAD QRMARMQM MPAPMD AMEAGD ARPRENQD Wanesorsenspapape®
422/ oPano? AQNENA ZNRCRT MPARANR RMRRQAM ARMAME BRDNRO NAMEMQ Neosepesnsepapogs
440/ @RE200 PANENE R0QARRM NEREMND POQAARR NEMQIND RPEANM MRNQEMD *eesspsensepanege
467/ QPBNE? P00EME GPERRF FRTGAE QPER0R READRP CFBROR FRRGRE easapesesapennse
San/ 9PRNER AQMEANE PORARA KRNPAQ QANRQDQM MARMPOD 2NPCAN ARPRMD Fespapopnpapapepel
S20/ 0rPRR2 CRAANY AAQRMAM MAARNE PARDAM NPRRRNQ AORORR ARRAMEA Keopopssesapasnss
S4n/ QrenE? AQPEPE ACENRN MARPRMY RMQRRQAR MRMARPAR PORARN MPPQEQ Fessepoaepssnsoss
Se2/ 00RMRP ARNQANE APPREN ARAGAY ARAPQAR ARAAND ANDNAP MAARNR eosoposenoposnse
600/ QPANER NRNQNQY ANARRR MARRNY AAAARN ARARRAD APANAD MAARAQ eosnpssanapasnge
620/ 2NE7Q0 APNQANR RRQNAN NRARNQD (PARARR MEARRRG ANANRNA NAMEANQG ¥aepapssnsnpasepe
640/ QMONRD NENQANE AOPARA MANRMAG POQARR MPMDNP ROQRNARN NAMRNQ ®eesspecepeprnspe
660/ QNROQD AQAAND ANPNET MARPNE AAARAN AQARND PNANRR MAAABNQ Neesapssnsapasese
702/ @PR0NR? 0QRQRRD AMEMARM NQAQRMR QAMAQDON MPMRATP PMENDA NAMPMD %easeapepesapasepe
720/ 00Q000 BPRENE QAPAGA AQROAND PNONER MARMDNY ANAMAD MEAAME eesspsoanupnpops
T40/ 200000 BQOPQMD POPARP MPPRND PMQPRM MNAMANE PARORAM MREMRAMD Feosagransepagnpe
760/ 20QN00 NRNRAR PNANER ARPANRD QAQPQAR NARMRAR APAMRN MAPBPD Weeeocssecasssses

* % % * % B

T % W

% % & % % % * ®F * ¥ B

In block 0, word 50 shows the highest, non-relocated, memory address
in the user program. Word 52 shows the program size in bytes. Word
54 shows the size of the overlay region. The value is non-zero only
for programs with overlays. Word 60 contains a 3, indicating that the
relocation information begins at block 3 of the file.



BLACK NUMBER poQ1

faM/ 112700 Mpapny
N0/ PA@”Q1 MEOQENY
740/ 104375 10%204
nen/ 112760 Na0p1Q
102/ 2PQ364 doMang
120/ 174375 103004
149/ 124351 104359
160/ AMQAQRP C@RRNQ
2p%/ pranp@ cpeeng
220/ @0o2pR2 apopne
240/ 020000 MEMQRAQD
260/ PPo?Q0 MAMQAMQ
30/ 2NpRE0 MpARNQ
320/ 20RME0 DEAPAQR
340/ @mE”00 ARNPNQ
360/ p23%64 022070
490/ QpPQORR2 PROEMR
420/ oapnQe MNQNQNP
440/ QARPRR MPRQRNQ
de?/ QPR009 NRMQRRR
SP0/ 27eMR2 PENQAMQ
S20/ 202000 NpMQ0Q
540/ 00Q0Q0 0@PpaQ
S0/ GOR0R2 ARMARAD
6P0/ 20Q2Q2 MooQMR
620/ BPQPRR QQPQRMQ
440/ 200000 220300
660/ 20Q0R0 Np0QMQ
TeN/ 2MQMR0 PRRQAND
1200/ @en@m@@ MApNEPe
740/ 00Q000 QAQRQ0Q
760/ GRQ0QRP PPMARD

This block

12746
{psoyo
21270
X
212760
12720
Ll
ereran
0@0@n
goeoem
PLYLLL
pneoen
pogego
eepoon
LI
200000
pReren
prpapn
arpoen
pnpagn
gopoagn
(6111
anprpo
ereaen
erpoapn
11014
ANQAa
dal [ 1]
poprE®
eapopn
negogn
(el L1

neoyay
12760
fQ1344
105010
feN40Q
201402
neNRRR
neraoa
11 1]"]
101 1" ]
LT
[od Ll 1]
noeARn"Q
meARme
"aNRNG
L1l Lt
nanNpnNe
nRPANQ
[T E L]
L] 10" ]
.11 1] "]
nEAROeD
npARR
L1l L]
fQArNRR
[ J1d 14l
202000
nanpNg
fpreng
11l
1ol I
neNpAQa

1043S%
2ro356
104351
at2760
emaros
174351
200000
oraA00
grgren
enpn@a
aMe?Pn
emrgnan
ampepn
popRan
argopn
poRAR™
renen
anpAgn
onpRron
engMgn
poergn
anefRn
arp2e0
enreron
en@PQan
pmaaan
o0aRen
enaooe
popnan
onpRen
anpAen
[ L1 1 1]

corresponds to locations

n1270Q
fnm@an2
194359
[ LY:1]]
ny2T760
1pa3se
[J-L114")]
oanang
[ L'l ]
famanQ
" 1L A
agnane
[ I.LI1T)
Ll Ll 1] ]
o Ll dd ]
2QMe20Q
"ANANR
fpoa0n
naNARG
nepmRAR
A@gmRAQ
npmRAR
nANDAQ
LI LT )
fnamanR
LI
L LELEY)
aamana
L Lt 1)
Q@00
fEMANG
nanatn

LA
ansSnen
p12700
anenp?
[J LT ]
12700
areo@n
pronan
AN@Anpn
L LY,
pe@Opn
poenpn
(LTI 1]
anponn
gogmon
popogoe
ARQMAMN
preman
praNaAn
pnanpn
pANQMRR
arpPan
nogann
aremnan
poQMRR
(LI LT
neenan
pmaron
anpnQn
arempa
afpnp0
arQoen

112740
o Tl ] 1)
Mg
n1P760
ngPa1o
201417
AQAQNQ
fpnEMQ
[l 1ad 1]
L)
nRARAY
nArARQY
apreee
ldRal 1l ]
n63320
LT Rl dol )
1Ll Lol ]
o] Lal L]
npARNQ
Ll id 1]
TILLY)
fpmAMp
[ d 10510
nprRen
faPQMA
npnRMQY

fp2209

(T LLL
Ll d 1))
200000
aQre0g
na”@rad

'l.."’lro’n?l’l
*.tpop.’o’l’l’.’t
*c-,-r-puropnfifn
'ptporoyopa,."po
*’.’.P.’.P.’.?.P.
*t.,n,op-,-,.'l’o

‘0.,0,".’0}.,';.

* & % % & % % F N R ES

*ln,.ro’opn,.,onc
*oo--rcoopofcpl?F'
*T&,srC’.l.,."’.*
*
"

*’l’!’.p.’.plpl}l
*’IP.?.,.’Q,IP".
.I':.Ir.’.._ﬂtpl‘-'!ll.
..-p-’o;ognrc’-pn
*P'f'f.""?."f‘
*lnylrll.pt,.,'gl
'.l,.’.’.,l’.’l’l
*o.:nrlpcgt,.’lp.
--lpnfo’n’orngl’l

*pu,-fn’.porn,o’-

* % % B % & X * %

*..‘.lr.l’.".’.p".

*F':.f.’.f.?.?."

»

*c-,-png-,u,.,o’-
”*

.’a,-r-p-’-pnfnyn
w

.ll’l’lp.’l,.?tao

*tnnt.li.lnt.-¢||*

0-776 1in the assembly listing.



BLOCK NUMBER pnp?
nan/ 0NANRR PPARNQ
n20/ 2nEMP? MRAPRQ
240/ QMA0NEe 0QNAMY
P60/ 2MR7Q0 MRARNQ
102/ preMEd PRAANE
120/ onene? Apapng
140/ 200200 PEAQAQ
160/ 203000 NEORNE
2p0/ p0E0RQ NPRR0R
220/ peened rprpnp

n0pPQn
pPp0An
anoeen
pagren
a2pnon
paprp®
27pnpa
okl L1
[ Xl 101
anpnen

T LLLY
T L LY
LY LL.
LT
207200
Ll 1.1 L]
LLLELT
nanEne
LPLELT
ngnnog

240/ 20QRPR0 Ppdong
260/ 20ANRAD MRMAQNQ
390/ epenMpe ApApRAQe
320/ anpA@® ApAQMP
340/ 20aRQ0 dpmpnp
60/ 00QNQ2 RQAAAMQ
420/ en109 242522
420/ 240503 053504
447/ pRERER 2B0QRD
460/ ONENR0 MQPMARANQ
S00/ 2PRARED MRnAQNR
T20/ 9MANAR AQRAQPRAQ
540/ 20QNER 2eMNEAR
Sen/ PoRNQR PRAQRAR
600/ 20RMRPQ AQAOAQANE
620/ QP29 230QNQ
640/ QoRNOR G2RAp”P
660/ 20RPRP PQ0RAY
T00/ 0MARRY ARAQAQR
720/ 0mENQR AaManp
T4n/ 20070 AAMQAMDP
Te0/ Q000QR ApRQAND

This block

aRpRpn
anpopn
papren
eAgPe™
2Ppean
a47514
24101
BavT840
Uikl el dd
anpmQn
pnangn
popMER
anpnen
PAPAAR
prgnan
orpapn
[l L0 1
anpopn
engoepn
2np0Qn
Ll LUL
pngren

corresponds

ApRpog
fpnQANQ
norpno
nenpe@
npramQ
M45517
n2M127
ngn113
AQnene
nAQEnp
nenpmg
nQApNo
"aNQnpE
famaop
ngnpne
nengea
I
M0N0
neapnp
naMRMQ
npNaNe
nPMPAR

onpAan
prenan
(L do 11
poaean
gepoan
aroagn
20nanan
goangn
onaAen
202000
grpoan
angean
anpean
enanpn
202000
250125
eansSee
ARAARN
orofon
pNQnAN
[dad 1401
poRrEn
pOARRA
20000
1414 L
anprQn
PPBMRN
(3" 1al 14
200020
pngeen
popean
praAQAn

LWL LT
"AMQANQY
fnpOeRQ
rananQ
fpeAQ
o] Ll dd ]
L1 L]
L LLL]
Panare
nanaan

ramana

"ANBAR
[ Lt 1ah ]
femMANE
n0RA0Q
nyTQLUQR
LTS BE]
apmeNQ
7eRSRY
nERANQ
rARQMAD
[l L 10
aamanp
Y3 L)
fQeaNQ
AamANQ
rae@a
ApOARQ
(ol el 1ol
fQABAD
nAmaArQe
"Ll 1ol d

CLLLLL
preran
pRrEREM
pepoan
prgAgn
pnEMAR
APRRQRA
arpoen
arAnQAn
arorae
argngn
prpren
L] 1ol
PRRANPA
aopmRn
44501
pa21@8s
PPRNAM
[-ka:kd 14
[l dal1d
pranan
gnengn
arpngo
[LLd 41
anenan
a0pe2n
[ 1ol 1l 1
ARRAQAN
aopopm
LT,
Ll L)
A1 A

naRRMNe
ngnang
nRARMQ
AANBAQD
faNQANY
fAQPRAR
nEoRNQR
npaena
nangon
[T Y1. 1)
KPAGOQ
npnana
o@aPrANQ
ApARANQ
Ll ol
?42514
m512m2
ARARAQ
"e2222
el 1l 1]"]
A272000
nEA@PQ
200070
el 1ol 4]
npRAAQ
ARMQAAA
ARAQANQ
ApRQNQ
AROQMND
2p000QA
AQARRQ
n419%6

.’.Pa’l?o,-’n’!pl
*,-po,tgt’.,-,.pc
.,ofsflfnrvrnpl;n
*’l’.f.’l,l’l'.’l
*p-r-,o’-pt’.’tr.
'p-r.,t,n,.,-!npl
*’.yo:.,o:.’-!lrn
*’t,cr".p-’-’lp'
*"f.f"""".?.
‘-.,lfl’l’l’l’.!l
*l"li’..'.’rl‘_l.’..
*-‘F-’Dp-po’-;lpi
'.ll'rlr.’.’l’l’l

*n-'-.o-'p.’nnupn
Seoeand !

PR BB B BF BF B R I R IR AR R R

*l.’..l.bl..l..'.

¥eueolOOKUP FAILE®
«D ,READW FATLFD,Rw
*FADN OK-?-p.p'pl*
"‘.l..';',".,l;..:.'
.A'.."".....’....’.
*)....‘P.‘..i.‘l.{l.’l
*..‘..!."'.‘.."-T'.V..
-‘.I’.f.liﬂlrl"‘"
*.l‘l"t'_."....'..’l
'.ct.p!’olnp-?‘yo
*'..-..r.-..:"’.f..f-
Hessepesesepngage
‘c.,-f.p-’-’.,-’n
.’l‘.'ﬂ‘v‘".r"ﬂ"..
"".?I’.P'P.?.P'

x
(R EFENEERFRERE S

L R B N N N EE N N N NN R N

¥eeesavtancances

to locations 1000-1776 in the assembly listing.



RLOCK NUMBER 003 . o
200/ 202A03 PRARNE DAQNIA ARARAT PNRA2T NEADLR AMBAST MBODST ky..u.esese obe/ot
#20/ 177776 2anQRQ 20ANER COAQRAG ANQNRN MAARQNAR APBRQAR ARARMD -*.;.,.,...,.,.,.
P42/ QMQAMQRR MEAPNE PMRNEM NDAQNY RPOGRRN MRNMROP ACAMARR APMQANQY ¥eesaposssepopaps
@60/ QAQPQOR 22RAQAR PMRNRR DENGAR ONACAN NEMRANA PMRNRR ARADNAQ Yeosnpracnepenagn
108/ 2002720 PMRAQARE NOEMRR ADAGME 2MRAQAM APMBAR AABMRN ARARNY *,.?.,.,.,.,-,.,.
128/ 20Q00R PRRQAR ANEMARA ARARMQ QNDADN ARNAND PAPARD ARMRNE Feeenpesepapugepe
140/ 000000 PEARRR AAQNRRA AOARAD QABROR ADNDAY APAABA MNRADAB %eue.,eneseprsaps
160/ 2M@AR0 22MpAE @ARNER APNAND PABROR NEABAB AAAADA NAADAD *4..s.ssesepapspe
aaﬂ/ sznﬂﬂ 200200 AAAMAR AQAAMG a0Q0D0 2QP200 AOQARC 2ANQRAR *"P'f"‘?'f'f'f’
220/ @000 NRAQPNR DPREARM MANENQ BAGRRAN APNRNE ACENRR NENAND oeaspssesnpepnpe®
240/ @non02 20PEAR BARNRN NANAND BNOARA AANANRD ANAABR AARGAR Ku....esesspaprpet
260/ GRENER M0AQRND BAPART NEAQANY RNQARQYN NEARBAR NARARN ARPEAMQ Feepopeanaepapepe®
300/ onenR2 200000 2MQRQC MAAAAR BADAGN AANRAR ANRABA ABPAPD Ky...,ceesepesepet
320/ 00070 200QRQ BMENAN ABORRD BPOCRN PRPAQRAG EPRAAT MPARAD Xeseopoononpasape®
340/ Q0on02 GpNpop 20RADA AQPRAAR GMEAQN APAQAR 2ABARR CQARRAQ ®sasepssrsepennpat
360/ 0M0RA2 2p0RAR 270PRN PRABNE @ARARA PANDAD DABNEN ARAVAD Neusepssseepssese?
420/ oMR7ER NPMARAR RVRRAR NRCANE PNRANEP MPMADNE BMBNAR APMAPAD Xeagapspaasapeness
420/ Qne2@Pl NENRNQ 2PPAQR MANANG QNRARR APANSD PAPADR APRANR Xeasapssenspapops
440/ 200000 Np0NERR 200000 NAARAD BNREAN ARABAD BADABY MPPBAB N.u..pssesepescss
460/ 20OMQY APMENE 2NPMRN AZARAQR BNRNRA NANERR APANDR ARNPND Wespsoposasapnpesna
500/ 00000 0AMQNQ 2MNAMDA NAMAAR ANANAN NAARNE ARANRA MNAMRAD Feosopesanspnpnsas
520/ 20@M00 PERANR FARNQN NENQANE AARBRR APNRANR PARNRN AAMAND Keogeprenpepnpegs
S47/ QmEne0 AENQRQ AANART NQRQARE PARACR NEMDAD PPONDO ARPENQ Feapspsenncpopese
560/ 000000 0oNRD 2ApARA AOARAG ANRAAR AANDAD BRRABA NRBAB ¥....resesapessps
600/ 2P0AR2 B0ARAR PARARP ARARND PARARR ARAAND BARABA ABABAD Xe...peessesessss
620/ 0n@NQR2 AQARAR ARARA ARPQND RARNQR APNDND DARADP NEMNEND *;.,.,-,.,.,.,-,.
640/ 200000 NEARAD 2MRARRA NBAAND BADARN NRNOND ANBADP APABOD ¥y, ...ceepepeness
660/ 220702 NEARAD 0ARPRY NRPAND PNODRRA APNEAD PARADY MRNBND K.y .i.peessepnssset
700/ 0RE0R0 ApPpAD 2ARRAR MRARAY AARARD MANRAR AARADRR ARPBAD He.sepepesspasese
720/ 2naN00 0000Ne 0ADPER NRAOAR ANRABD ARNANG PABNBR NBADAD Ny...ssessepesape
T40/ QRQNEO ARMRAQ PAAACH MPAENY QPANRN GENAND GMRORR MEADRQ ®eesepesesesegnps
760/ v700RR NEMRRE PARNEAX 0QPRMR ANQADN NPORAR PAANAN MBPRAD *,,,..cec00esc0ns

LR 2B 2B 2N B 2B 2B

* % % * ¥ % W F BN

* % % &

This block shows the root relocation information. The first word of
block 3 is a 3; since this is positive, positive relocation is indi-
cated. Locations 6, 14, 30, 46, 56, 100, 126, and 136 must all be

positively relocated at FRUN time. (On examination of the assembly
listing, those locations marked with a ' need to be relocated.) The

777 P R 2 e T T2
17176 tELm¢uat¢b tuc Llst.

[

Had negative relocation been indicated at relative location 6, block
3 would have shown 100003, 6, 14, 23, 27, 40, 53, 57, 177776.

3.4.4.2 REL Files with Overlays - When overlays are included in a
program, the file is similar to that of a non-overlaid program. How-
ever, the overlay segments must also be relocated. Since overlays are
not permanently memory resident but are read in from the file as

needed, they require an additional operation. Each overlay segment is
relocated (by FRUN) and then rewritten into the file. Then, when the
overlay is called in, it will be properly relocated. This process takes



place each time an overlaid file is run with FRUN. The relocation
information for overlay files contains both the list of addresses
to be modified and the original contents of each location. This
allows the file to be FRUN after the first usage.

NOTE

.ASECTs are illegal above 1000, and re-
stricted in an overlaid foreground job.
Refer to Chapter 6 of the RT-11l System
Reference Manual.

A REL file with overlays appears as shown in Figure 3-14:

Block REL Control Block
g
— » Overlay Handler and Tables
Root
Segment
Text
Overlay
1
Data
T
l
1
Overlay
N
Data
——» RoOOt Relocation Information
-1 ——»End of Root Relocation Information
——» Overlay 1 Relocation Information
T
!
1
—» Overlay N Relocation Information
-2 ——» End of all Relocation Information

Figure 3-14
REL File With Overlays

3-43



In this case, location 54 of block 0 of the REL file contains the size
of the overlay region, in words. This is used to allocate space for
the job when added to the size of the program base segment in location
52.

After the program base (root) code has been relocated, each existing
overlay is read into the program overlay region in memory, relocated
via the overlay relocation information, and then written back into the
file.

The root relocation information section is terminated with a -1. This
-1 is also an indication that an overlay segment relocation block fol-
lows. The overlay segment relocation block is shown in Figure 3-15:

-1 — Root (or Previous Overlay) Terminator
Overlay blk # — Start of Overlay Relative to Start of File

Overlay Size — (words)

Relative Word Offset

Text to Relocate

Relative Word Offset

Text to Relocate

I

Relative Word Offset

Text to Relocate

-1 —= Flag Indicating Start of New Overlay

Figure 3-15
Overlay Segment Relocation Block

3-44



The displacement is relative to the start of the program and is inter-
preted as in the nonoverlaid file (i.e., bit 15 indicates the type of
relocation, and the displacement is the true displacement divided by
two). Encountering -1 indicates that a new overlay region begins here.

A -2 indicates the termination of all relocation information.






CHAPTER 4

SYSTEM DEVICE -

4.1 DETAILED STRUCTURE OF THE SYSTEM DEVICE

The RT-11 system device holds all the components of the system and is
used by RT-11 to store device handlers and the monitor file. The lay-
out of the system device is:

Block # Contents

0 Bootstrap

1 Reserved for volume identification
information

2 Bootstrap

3 to 5 Reserved for monitor or bootstrap
expansion

6 to (N*2)+5 Directory segments; N is the num-

ber of directory segments

(N*2)+6 to end File storage

All other system components, i.e., the monitor and device handlers,
are files on the system device:

File Contains
MONITR.SYS The current RT-11 monitor; contains bootstrap,
KMON, USR/CSI, RMON, KMON overlays, scratch
blocks
SYSMAC.SML System Macro Library
SYSMAC.S8K 8K System Macro Library
LP.SYS Line printer handler



File

DT.SYS
TT.SYS
RK.SYS
DS.SYS
DX.SYS
DP.SYS
PR.SYS
PP.SYS
CR.SYS
RF.SYS
CT.SYS
MT.SYS
MM.SYS

BA.SYS

Contains

DECtape handler

Console handler (S/J only)

RK disk handler

RJS03/4 fixed-head disk handler

RX01 flexible disk handler

RP disk handler

High-speed reader handler

High-speed punch handler

Card reader handler

RF disk handler

Cassette handler

TM1l magtape handler

TJUl6 magtape handler

BATCH run-time handler

In general, files with the .SYS extension are parts of the monitor

system. The bootstrap records the block numbers of the relevant areas

in the monitor tables at bootstrap time. Thus, RT-11l is extremely

flexible with respect to the interchange and construction of systems.

4.2 CONTENTS OF MONITR.SYS

Following is the block layout of the RT-1ll monitor file, MONITR.SYS.
Block numbers are relative to the start of the file.

F/B
Monitor

Block # (decimal)

0-1

2-17

18-24

25-32
33-47

48-57

Contents
Copy of system bootstrap (blocks 0
and 2 of the system device)
Swap blocks

KMON (includes 2-block KMON over-
lay area)

USR/CSI
RMON

KMON overlays

4-2



s/J

Monitor Block # (decimal)

0-1
2-16

17-22

23-30

31-37

38-44

4.3 KMON OVERLAYS

The KMON overlays are one block in
blocks in size in the F/B Monitor.
described in this list:

Overlay # S/J
0 DATE, TIME
1 SAVE, ASSIGN
2 LOAD, UNLOAD,
CLOSE
3 GT ON/OFF
4 SET

Contents

Copy of system bootstrap
Swap blocks

KMON (includes l-block KMON over-
lay area)

USR/CSI
RMON

KMON overlays

size in the S/J Monitor and two
The contents of each overlay are

F/B

DATE, TIME, SAVE, ASSIGN

LOAD, UNLOAD, SUSPEND, RESUME,

CLOSE, FRUN (Part 1)

FRUN (Part 2)

GT ON/OFF, SET

4.4 DETAILED OPERATION OF THE BOOTSTRAP

Bootstrapping a system causes a fresh copy of that system to be in-

stalled in memory.
uprdated.

tables are also up =

bootstrap.

Following is

In the RT-11 boot, certain system device resident

. N
a detai escription of the



1.

Action

User executes hardware boot-
strap

Second part of bootstrap is
read

Determine  how much memory is
available

Look for special devices

Check memory size

Read in directory and find
MONITR.SYS

Read the monitor into memory

Put pointers to monitor
file blocks into RMON

Update position-dependent
areas in RMON.

Explanation

On all system devices except disk-
ette, this causes block 0 of the
system device to be read into
0-777. Control then passes to
location 0. On diskette, causes
logical block 0 to be read into
0-777. Hardware bootstrap reads
64 words from track 1, sector 1.
Control passes to location 0, where
64 words from each of sectors 3,
5, and 7 (track 1) are read.

The first part of the boot reads
the second half into 1000-1777.

On diskette, the first part of the
boot reads logical block 2 (sectors
9, 11, 13, 15) into 1000-1777.

Boot sets a trap at location 4 and
then starts addressing memory.
When the trap is taken, illegal
memory has been addressed.

Boot sets a trap at location 10 and
then tries to address the clock,
FPU, and VT1ll display processor.
Their presence or absence is indi-
cated in the CONFIG word in RMON.
(If a PDP-11/03 processor is pres-
ent, the bootstrap assumes that a
clock is present.)

If memory is too small to read in
the monitor, a message is printed
and the boot halts.

The entire directory is searched.
If MONITR.SYS is not found, a HALT
occurs after the boot prints an
error message.

The monitor file, MONITR.SY¥S, is
read into the highest bank of
memory.

RMON references the monitor swap
blocks directly. Thus, the posi-
tion of the swap blocks varies as
the placement of MONITR.SYS varies.
The real position of the blocks is
updated for each boot operation.

MONITR.SYS is initially linked at
8K. However, if more than 8K is
available, RT-11 uses it. To do
that, certain words must be updated
to point to the actual areas of
high memory where they will be.
Boot contains a list of all words
to be updated, located at RELLST in
BSTRAP.MAC.

4-4 : January 197¢



Action Explanation

10. Update processor-dependent If processor is a PDP-11/03, any

area in RMON PS references in the monitor are
changed to use the MFPS and MTPS
instructions.

11. LOOKUP the device handlers Boot looks at $PNAME table to find
in system and store their the names of the devices in the sys-
record numbers in $DVREC tem. The extension .SYS is appended.

Thus, the PR handler is a file called
PR.SYS. The location of the handler
is then placed in $DVREC. If the
LOOKUP fails, the device gets a 0 in
its $DVREC entry. That implies that
the device handler does not exist.
12. Print bootstrap header Boot prints monitor identification
message "RT-11" followed by moni-
tor type ("FB" or "SJ") followed by
version number.

13. Set up locations 0 and 2 Boot puts a "BIC RO,RO"™ in location

zero and an .EXIT EMT in location 2.
14. Turn on KW1ll-L Clock The bootstrap turns on the clock, if

present in the configuration and

processor is not a PDP-11/03.

15. Exit to Keyboard Monitor

4.5 FIXING THE SIZE OF A SYSTEM

RT-11 is designed to automatically operate from the top of the highest
available 4K memory bank. However, it is possible to force the system
to operate from a specified area that is not necessarily the highest..
For instance, the following series of commands causes RT-11 to run in

a 16K environment, even though the configuration actually has 28K of
memory:
<R PATCH<CR> [Run RT-11 PATCH program. ]

t, ‘)‘ i kaz -

PATCH Version number

FILE NAME-- [Specifying MONITR.SYS/M indicates
*MONITR.SYS/M<CR> it is a monitor file.

*BHALT/ 497 @<CR> Change location "BHALT" from a 407
*E to a 0 (HALT). The correct address
.R PIP of BHALT can be found in Table 2 of
*A=MONITR.SYS/U<CR> RT-11 System Release Notes (V02C).
*SY: /0 E causes an exit to the monitor.

Now run PIP to update the bootstrap

o A

and reboot the system.]

When the bootstrap is performed, the computer halts. The halt allows
the user to enter the desired size in the switch register. With this
patch installed, the V2 bootstrap uses the top five bits (bits 11-15)
of the switch register to determine memory size. If the switch regis-
ter contains the number 160000 or greater (e.g., if the register is
unchanged after booting the system), a normal memory determination is
Otherwise, the top five bits are taken to be a number rep-
Each bit has the

performed.
resenting the number of 1K word blocks of memory.

following value:
gl 4-5 January 1976



Switch Register Memory Size

4000 1K
10000 2K
20000 4K
40000 8K

100000 ' 16K

A combination of the bits will produce the range of system sizes from

8K through 28K, in 1K increments.

Examples:

1.

To boot a system into 24K on a 28K configuration, use
the combination:

140000 = 100000 (16K) + 40000 (8K)
To boot the S/J Monitor into 11K, use the combination:

54000 40000 (8K) + 10000 (2K) + 4000 (1K)

When the switch register is set properly, press the
CONTinue switch and the bootstrap will be executed.

If the CONTinue switch is pressed immediately follow-
ing the halt without changing the switch settings, a
normal memory determination is done. To change the
bootstrap back to its original (non-halting) form,
execute the same commands as above, but change the 0
at BHALT back to a 407.

This procedure allows the user to 'protect' memory
areas, since RT-1ll never accesses memory outside the
bounds within which it runs.

Another useful procedure, when desiring to always boot a system into a

specific

able, is

memory size or when the console switch register is not avail-

to determine the bit combination corresponding to the choice

of memory size, as explained above. Then enter the following commands,

where xxxxx represents the bit pattern just determined:

.R PATCH<CR> [Run RT-11 PATCH program. ]

PATCH Version number

FILE NAME--

*MONITR.SYS/M<CR>

*BHALT/ __ 487 24@<LF> [NOP the branch at BHALT
*BHALT+2/ 13782 1278 2<LF> Change MOV @#SR,R2 to
*BHALT+4/ 177578 ¥XXXXX<CR> MOV #VAL,R2. Address of

*E switch register is replaced
. with one of the bit combina-

-

tions described previously.]

4-6



For the patch addresses for other system devices, and for the address
of BHALT, consult Table 2 of RT-11 System Release Notes (vo2q) .







CHAPTER 5

I/0 SYSTEM, QUEUES, AND HANDLERS

I/0 transfers in RT-11 are handled by the monitor through routines
known as device handlers. Device handlers are resident on the system
mass storage device and can be called into memory at a location speci-
fied by the user (via a .FETCH handler request or KMON LOAD command) .
Only the device handlers distributed with the system in use (V2 or
V02B) may be used; the system will malfunction otherwise.

This chapter describes how to write a new device handler and add it to
the system. A summary of differences between Version 1 and Version 2
Device Handler requirements is included for the user who wishes to
update old device handlers. Instructions and examples for making a
device the system device and for writing a new bootstrap for the device

are also included.

5.1 QUEUED I/0O IN RT-11

Once a device handler is in memory, any .READ/.WRITE requests for

the corresponding devices are interpreted by the monitor and trans-
lated into a call to the I/O device handler. To facilitate overlapped
I/0 and computation, all I/O requests to RT-11 are done through an I/0
queue. This section details the structure of the I/0 queueing system.

5.1.1 TI/0 Queue Elements

The RT-11 I/O queue is made up of a linked list of queue elements.
A single element has the structure shown in Figure 5-1:



Link to next element

Pointer to CSW
(Channel Status Word)

Starting Block Number

13 1110 817 ) . [}
Job Unit Special Function

# # Code

Buffer address

Positive implies READ
g implies SEEK

Word count

1 implies .READ

g implies .READW
Even and nonzero
implies completion
routine address

Completion function

} Negative implies WRITE

Figure 5-1
I1/0 Queue Element

RT-11 maintains one queue element in the Resident Monitor. (In F/B,
one element per job is maintained in the job's impure area.) This is
sufficient for any program that uses wait-mode I/O {(.READW/.WRITW).
However, for ‘maximum throughput, the .QSET programmed request should

be used to create additional queue elements.

If an I/O operation is requested and a queue element is not available,
RT-11 must wait until an element is free to queue the request. This
obviously slows up program execution. If asynchronous I/0 is desired,
extra queue elements should be allocated. It is always sufficient to
allocate N new queue elements, where N is the total number of pending
requests that can be outstanding at one time in a particular program.
This produces a total of N+l available elements, since the Resident
Monitor element is added to the list of available elements.

Diagrammatically, the I/O queue appears as follows:



AVAIL: - AVAIL is the list header. It
always contains a pointer to an
available element. If AVAIL is
0, no elements are currently

available.
Ql: Q2 -
Q2: - Q3
Q3: 0 -

When an I/0O request is initiated, an element is allocated (removed
from the list of available elements) and is linked into the appropri-
ate device handler's I/0 queue. The handler's queue header consists
of two pointers: the current queue element (CQE) pointer, pointing to
the element at the top of the list, and the last queue element (LQE)
pointer, pointing to the last element entered in the queue. The LQE
pointer is used by the S/J monitor for fast insertion of new elements

into the queue.

AVAIL: Device Handler I/0 Queue
Ql: 0 IQE: Q1 (Pointer to last queue
element)

CQE: Q1 (Pointer to current
queue element)

0
b
\
10
w

In this case, the device is
associated with element Ql.

If another request comes in
for that same device before
the first completes, a waiting
queue is built up for that

B device.

Q3: 0

5-3 January 1976



AVAIL: Device Handler I/0 Queue
Q2 LQE: Q2
CQE: Q1
Q2: 0
Q3: 0 -

When the I/O transfer in progress completes, Ql is returned to the
list of available elements, and the transfer indicated by Q2 will be
initiated:

AVAIL: | Q1 l ' Device Handler I/0 Queue
Ql: Q3 ‘ LQE: Q2
CQE: Q2
Q2: 0
Q3: - 0




When Q2 is completed, it too is returned to the list of available

elements.
AVAIL: ‘ Device Handler I/0O Queue
Ql: Q3 ILQE: O
CQE: O
Q2: Q1 -
Q3: o *

Note that the order of the queue element linkages may be altered.

A distinction between S/J and F/B operation is that F/B maintains two
separate queue structures, one for each active job. The queue headers
(AVAIL) are words in the user's impure area. The centralized queue
manager dispatches transfers in accordance with job priority. Thus,

if two requests are queued waiting for a particular device, the fore-
ground request is honored first. At no time, however, will an I/0 re-
quest already in progress be aborted in favor of a higher priority
request; the operation in progress will complete before the next trans-
fer is initiated.

Another difference between S/J and F/B operation is that the F/B sched-
uler will suspend a job pending the availability of a free queue ele-
ment and will try to run another job.

5.1.2 Completion Queue Elements

The F/B Monitor maintains, in addition to the queue of I/0 transfer
requests, a queue of I/O completion requests. When an I/O transfer
completes and a completion routine has been specified in the request
(i.e., the seventh word of the I/0 queue element is even and non-
zero), the queue completion logic in the F/B Monitor transfers the
request node (element) to the completion queue, placing the channel



status word and channel offset in the node. This has the effect of
serializing completion routines, rather than nesting them. Completion
routines are called by the completion queue manager on a first-in/
first-out basis, and the completion routines are entered at priority
level 0 rather than at interrupt level.

The .SYNCH request also makes use of the completion queue. When the
.SYNCH request is entered, the seven-word area supplied with the re-
quest is linked into the head of the completion queue, where it ap-
pears to be a request for a completion routine. The .SYNCH request
then does an interrupt exit. The code following the .SYNCH request
is next called at priority level 0 by the completion queue manager.
To prevent the .SYNCH block from being linked into AVAIL (the queue
of available elements), the word count is set to -1. The completion
queue manager checks the word count before linking a queue element
back into the list of available elements, and skips elements with the

-1 word count.

Figures 5-2 and 5-3 show the format of the completion queue and .SYNCH

elements.

2 QUEUE LINK
2

4

6

19 CHANNEL STATUS WORD
12 CHANNEL OFFSET
14 COMPLiEIg:E sRsoumuz

Figure 5-2

Completion Queue Element



OFFSET

) QUEUE LINK

2 JOB NUMBER

4

6

12 SYNCH 1.D.

12 -1

14 SYNCH RETURN ADDRESS
Figure 5-3

.SYNCH Element

5.1.3 Timer Queue Elements

Another queue maintained by the F/B Monitor is the timer queue. This
queue is used to implement the .MRKT request, which schedules a comple-
tion routine to be entered after a specified period of time. The

first two words of the element are the high- and low-order time and

the seventh word is the completion routine address. An optional se-
quence number can be added to the request to distinguish this timer
request from others issued by the same job.

The F/B Monitor uses the timer queue internally to implement the .TWAIT
request. The .TWAIT request causes the issuing job to be suspended

and a timer request is placed in the queue with the .RSUM logic as the
completion routine. Refer to Figure 5-4 for the format of the timer

queue element.

OFFSET
") HIGH-ORDER TIME CHOT
2 LOW-ORDER TIME c.Lot
4 MEVJJ§$r19u, C.LINK

nNEA T cCLowiCiNg
6 JOB # OF OWNER C.JNUM
19 OWNER'S SEQUENCE # C.SEQ
12 "]
14 COMPLETION ADDRESS C.COMP
Figure 5-4

Timer Queue Element

5-7



5.2 DEVICE HANDLERS

This section contains the information necessary to write an RT-11l de-
vice handler. It is illustrated with an example, a driver for the

RS64 fixed-head disk (with RC1l1l controller). A source listing is in-
cluded in Appendix A, Section A.l; portions of this listing are refer-
enced throughout the remainder of this section and in future sections.

The user should refer to the PDP-11 Peripherals Handbook for details

regarding the operation of any particular peripheral.

NOTE

All RT~-11 handlers must be written in posi-
tion independent code (PIC). Consult the
PDP~-11 Processor Handbook for information
on writing PIC.

5.2.1 Device Handler Format

The first five words of any device handler are header words. The for-

mat is:
Word # Contents
1 Address of first word of device's interrupt vector.
2 Offset from current PC to interrupt handler.
3 Processor status word to be used when interrupt oc-
curs. Must be 340 (priority 7).
4,5 Zero. These are the queue pointers.

See area C in the example handler (Section A.l).

A word must be provided at the end of the handler. When the handler
is .FETCHed, the monitor places a pointer to the monitor common inter-
rupt entry code in the last word of the handler. This requires that
the handler size in the monitor's $HSIZE table be exact or the handler
will malfunction. See area M in the example in Section A.l.

The word preceding the interrupt handler entry point must be an uncon-
ditional branch to the handler's abort code. The abort code is used by
the F/B Monitor to stop I/0O for the device. The abort entry point is
shown at area G in the example and the abort code is at area K. (See
the RT-11l System Reference Manual, Section H.2, for further informa-

tion.)

5-8 January 1976



5.2.2 Entry Conditions

The device handler is entered directly from the monitor I/0 queue
manager, at which time it initiates the data transfer. The fifth
word of the header contains a pointer into the queue element to be
processed. This word (called CQE, for Current Queue Element) points
to the third word of the queue element, which is the block number to
be read or written. Referring to the example, location RCCQE contains
the address of the third word of the queue element to be processed.
It is generally advisable to put the pointer into a register, as that
greatly facilitates picking up arguments to initiate the transfer.

In the example, the entry point is at the location marked by E. No=-
tice that registers need not be saved.

-

5.2.3 Data Transfer

Most handlers use the interrupt mechanism when transferring data. The
handler initiates the transfer and then returns immediately to the
monitor with an RTS PC, shown at area F. When the transfer is com-
pleted, the device interrupts. When the interrupt routine determines
that I/0 is complete or that an error has occurred, it jumps to the
monitor completion routine in the manner shown at area J in the list-

ing.

If the interrupt mechanism is not used, the data transfer must be com-
pleted before returning to the moniteor. The handler must loop on a
device flag with the interrupt disabled. When I/0O is complete, the
driver returns to the monitor with a jump to the monitor completion

code, similar to that shown at area J in the example.
5.2.4 Interrupt Handler

Once the transfer has been initiated and control has passed back to
the monitor, data interrupts will occur.

Information in the header of the handler causes the interrupt to be
vectored to the interrupt handling code within the handler. The code
at the interrupt location should keep the transfer going, determine
when the transfer is complete, and detect errors.

When the transfer is done, control must be passed to the monitor's I/0
queue manager, which performs a cleanup operation on the I/O queue.

5-9



Restrictions that apply to the interrupt code are:

1. The common interrupt entry into the monitor must be
taken. Interrupt routines linked into a program use
the .INTEN request described in Chapter 9 of the
RT-11 System Reference Manual. Handlers made part
of the system have a more efficient method of entry.
The last word of the handler is set to point to the
monitor common interrupt entry code when the handler
is fetched. Upon reception of an interrupt, the
handler must execute this code by performing a JSR R5,
@SINPTR, where $INPTR is the tag commonly used by RT-11
handlers for the pointer word. See areas I and N in
the example. The JSR instruction must be followed by
the complement of the priority at which the handler
will operate. See area I for an easy method to make
the assembler compute the complement. On return from
the monitor's interrupt entry code, R4 and R5 have
been saved and may be used by the handler. Other
registers must be saved and restored if they are to
be used.

2. A check must be made to determine if the transfer is
complete. However, with nonfile-structured devices,
such as paper tape, line printer, etc., an interrupt
occurs whenever a character has been processed. For
these devices, the byte count, which is in the queue
element, is used as a character count.

Nonfile~-structured ihput devices should be able to
detect an end of file condition, and pass that on to
the monitor.

NOTE

The queue element contains a word count,
not a byte count. The initial entry to

the handler should change the word count
to a byte count if the device interrupts
at each character. The transfer is com-
plete when the byte count decrements to

0.

Before the conversion to bytes is made,
the sign of the word count must be deter-
mined since it specifies whether this
transfer is a Read or Write. A negative
word count implies a Write and should be
complemented before converting to bytes.

3. Check for occurrence of an error. If a hardware error
occurred, the hard error bit in the channel status word
(CSW) should be set, the transfer should be aborted, and
the monitor completion code executed. The address of the
channel status word is in word 2 of the queue element.
The error bit is bit 0 of the CSW. Generally, it is ad-
visable to retry a certain number of times if an error
occurs. RT-11 currently retries up to eight times be-
fore deciding an error has occurred. (Note that this
is true for file-structured devices only.) It is

5-10 January 1976



desirable, in case an error occurs, to do a drive
or control reset, where appropriate, to clear the
error condition before a retry is initiated. See
the area between I and H in the example.

4. If the transfer is not complete and no error has
occurred, registers used should be restored, and
an RTS PC executed.

To pass an EOF (End of File) to the monitor, the
2000 bit in the CSW should be set. Refer to the
sample handler in Appendix A for an example of
setting the EOF bit. When EOF is detected on non-
file structured devices, the remainder of the input
buffer must be zeroed.

5. When the transfer is complete, whether an error oc-
curred or not, the monitor I/0 completion code must
be entered to terminate activity and/or enter a com-
pletion routine. When return is made to the monitor,
R4 must point to the fifth word of the handler (RCCQE
in the example). See area J in the example for the
method of returning to the monitor completion routine.

Handlers should check for special error conditions
that can be detected on the initial entry to the
handler. For example, trying to write on a read-
only device should produce a hard error. It must
be emphasized that the user handlers should inter-
face to the system in substantially the same way
as the handler in Section A.l. This handler is
included as a guide and an example.

5.3 ADDING A HANDLER TO THE SYSTEM

When the handler has been written and debugged, it may be installed

in the system by following the procedures in this section. The process
consists of inserting information about the handler into the monitor
tables listed below.

Table to be Changed Contents
SHSIZE Size of handler (in bytes).
$DVSIZ Size of device in 256-word blocks. If

nonfile device, entry = 0.

SPNAME Permanent name of the device (should be
two alphanumeric characters entered in
.RAD50 notation, left-justified).

SSTAT Device status table. Refer to Section
2.5.2.2 for the format of S$STAT table.

LOWMAP Low memory protection map; refer to
Section 2.5.4.



There is no restriction on handler names; any 2-letter combination

not currently in use may be chosen for the new handler and the name
may be inserted in any unused slot in the $PNAME table, or in a slot
occupied by a nonexistent device (i.e., a device not installed on the
user's system). Note that the name must be entered in .RADS5O0. Since
PATCH does not have a .RADS50 interpretation switch, the name must be
entered to PATCH in its numerical form. Appendix C of the RT-11 System

Reference Manual contains a .RAD50 conversion table; ODT can also be

used to perform .RAD50 conversions.

As an example, assume again the handler for the RC11/RS64 disk (the
sample handler in Section A.l) is to be inserted in the system. First,
the values of the table entries for this device are determined (the ad-
dresses used in the example are for illustrative purposes only; con-
sult Table 2 of RT-1l System Release Notes (V02C) for the correct

table addresses for the version in use):

SHSIZE: 316 After assembly, the handler was
found to take up 316 bytes. See
area O in the example listing.

SDVSIZ: 2000 The disk has 1024 (decimal) 256-
word blocks for storage.

SPNAME: .RAD50 /RC/ or 78378
The name assigned is RC. The
.RAD50 value of RC is 70370.

$SSTAT: 100023 The device is file-structured, is
a read/write device, and uses the
standard RT-11 file structure.
The identifier (selected by the
user) is 23. Refer to Section
2.5.2.2 for the format of the
$STAT table.

LOWMAP: 14 Protect RC vector 210,212 at byte
336 of LOWMAP (refer to Section
2.5.4.).

Once these values have been decided, the steps for inserting the de-
vice handler are:

1. Assemble the handler, using either MACRO or ASEMBL.

2. ©Link the handler at 1000. The name of the handler
should be whatever the $PNAME entry is, with the .SY¥S
extension appended:

.R LINK

*RC.SYS=RC where RC.OBJ is the handler object

UNDEF GLBLS module. The default link address is
1000.

5-12 January 1976



NOTE

If the handler being linked is one that
could also be a system device handler,
the user can expect one undefined global,
SINTEN.

3. Run PATCH to modify the tables and protect the interrupt vec-
tors.

For this example, assume that the table addresses are found

to be:

Table S/J Address F/B Address
SHSIZE 13624 14556
SDVSIZ 13660 14612
SPNAME 16470 17630
$SSTAT 16524 17664

NOTE

The addresses above are for illustration
only. Consult Table 2 of RT-11 System
Release Notes (V02C) for current table
addresses and for the address of the
monitor base location, BASE.

The tables have room for fourteen (decimal) device entries; all are
already assigned by the monitor. Assuming that a given configuration
never has all supported devices, however, at least one slot should be
available to be overlaid. For example, assume the twelfth slot is
occupied by a device not installed on the system, and therefore avail-
able for change. The octal offset is 26, which, added to the table
addresses above, gives the address of the empty slot:

S/J Monitor:

-R PATCH<CR>

PATCH Version number

FILE NAME-~

*MONITR.SYS/M<CR> {/M is necessary;

*BASE; JR<CR> Monitor base:;

*@,13652/ A000 316<CR> $HSIZE table;

*9,13706/ g 2f@P@<CR> $DVSIZ table;

*@,16516/ 6250 70378<CR> S$PNAME table;

*p,16552/ 4 19PP23<CR> $STAT table;

ip'16336\ 77 <CR> Check that vectors in

:E permanent map are protected;

Exit to monitor]

5-13 ) January 1976



F/B Monitor

.R PATCH

PATCH Version number

FILE NAME--

*MONITR.SYS/M<CR> [/M is necessary;

*BASE; JR<CR> Monitor base;

*0,14556/ 4000 316<CR> SHSIZE table;

*g,14612/ [/} 2@@@<CR> $DVSIZ table;

fﬂ,l7630/ 6250 7@37F<CR> $SPNAME table;

*g,17664/ 4 19@@23<CR> SSTAT table;

*P,17336 77 <CR> Check that vectors in

*E permanent map are protected;
. Exit to monitor]

At this point, the system should be re-bootstrapped to make the modi-
fied monitor resident. The device RC will then be available for use.

5.4 WRITING A SYSTEM DEVICE HANDLER

This section describes the procedures for writing a new system device
handler. A system device is the device on which the monitor and
handlers are resident. RT-1l1l currently supports the RK, RF, DP, DS,
and DX disks, and DECtape as system devices. The procedures for
writing the handler and creating a new monitor are explained, illus-
trated by the example in Section A.l, the RC11/RS64 handler.

The basic requirements for a system device are random access and read/
write capability. These requirements are met by the RC1ll disk, which
is a multiple platter, fixed-head disk. When writing the driver, the
procedures in Section 5.2 should be followed. Because the system
handler is linked with the monitor, the additional tagging and global
conventions described here must also be followed.

5.4.1 The Device Handler

The following conditions must be observed when writing a system han-
dler. Refer to the example listing in Section A.l.

1. The handler entry point must tagged xxSYS, where
xx is the 2-letter device name. For the RC disk,
this is RCSYS. See area D in the listing.
Important: Note that the tag is placed after
the third word of the header block.

2. The entry points of all current system devices
must be referenced in a global statement. These

5-14 January 1976



currently include RKSYS, RFSYS, DSSYS, DXSYS, DPSYS,
DTSYS and RCSYS. See Area A.

3. The entry point tags of all other system devices
must be equated to zero. See area B in the listing.

4, A .CSECT SYSHND must be included at the top of the
handler code. It is located above area C in the
example.

5. The last word of the handler is used for the common
interrupt entry address. This should have the tag
SINPTR and should be set to the value $INTEN. See
areas M and N in the example listing. These tags
should be global. See area A.

6. The interrupt entry point should have the tag xxINT,
or RCINT for this example, and this must be a global.
See areas A and H.

7. The handler size must be global, with the symbolic
name xxSIZE, or RCSIZE. ©See area A. This step is
not necessary if the monitor sources are available
and are being reassembled, since the global will be
generated by the HSIZE macro. See Step 3 in Section

5.4.3.

5.4.2 The Bootstrap

This section describes the procedure for modifying the system bootstrap
to operate with a new system device. Either the bootstrap source must
be acquired, or the listing in Section A.2 may be used. Again, the
RC11/RS64 disk is used for an example. The references in this section,
however, are to the bootstrap listing found in Section A.2 of Appendix
A,

The following changes must be made to the bootstrap to support a new

system device:

1. Add a new conditional, $xxSYS, to the list at point
AA. Here xx is the 2-letter device name, and in this
case the conditional is SRCSYS.

2. Add a simple device driver for the device inside a
$xxSYS conditional. This is shown at area CC. Be-
cause the RCl1 is similar to the other disks, it is
possible to share code with the other device drivers,
reducing the implementation effort. To do this, the
SRCSYS conditional is added at area BB and the device
specific code is at area FF. This code merges with
the common code at area GG.



3. The device driver has these characteristics:

a. The SYSDEV macro must be invoked for the
device. The macro arguments are the 2-
letter device name and the interrupt vector
address. For this example, the arguments
are "RC" and "210", shown at area DD on the
listing.

b. The device driver entry point must have the
tag READ. See area EE.

c. When the driver is entered:

R@ = Physical Block Number

Rl = Word Count

R2 = Buffer Address
R3,R4,R5 = are available for use

by the driver routine

d. The driver must branch to BIOERR if a fatal
I/0 error occurs.

5.4.3 Building the New System

This section describes the procedure for building a new monitor using
the system device handler and bootstrap just developed. Again, the
example used is the RC11/RS64 disk, and the appropriate listings are
those in Sections A.l and A.2.

The procedure is:

1. Assemble the handler, producing an object module with
the name xx.0OBJ, where xx is the 2-letter device name.
In this example, the name is RC.

.R MACRO
*RC.OBJ=RC.MAC

2. Assemble the bootstrap, defining the conditional $xxSYS
(where xx is again the device name; e.g., $RCSYS). De-
fine the conditional BF if an F/B bootstrap is desired.
Let BF be undefined for an S/J bootstrap. For the S/J
bootstrap:

R MACRO<CR>
*RCBTSJ=TT: , DK: BSTRAP<CR>
~$RCSYS=1<CR>
~Z7$RCSYS=1<CR>

~ZERRORS DETECTED: {
FREE CORE: 156@8. WORDS

5-16



For the F/B bootstrap:

.R MACRO<CR>

*RCBTFB=TT:, DK:BSTRAP<CR>
~$RCSYS=1<CR>

BF=1<CR>

“Z7$SRCSYS=1<CR>

BF=1<CR>

“ZERRORS DETECTED: #

FREE CORE: 1558f. WORDS

If the monitor sources are available, the DEVICE macro
described in Section 2.5.2.9 can be invoked for the new
device by editing the macro call into RMONFB.MAC and
RMONSJ .MAC and reassembling the monitor. For the RC
device, the macro would be:

DEVICE RC 2000 100020 RCSYS

The HSIZE macro, described in the same section, must
also be invoked. For the RC device, the macro would
be:

HSIZE RC,316,S5YS

Monitor assembly instructions are in Chapter 5 of

the RT-11 System Generation Manual. If this approach
is used, the table patching procedure in step 5 is not
necessary.

Link the monitor with the new bootstrap and device
handler.

For S/J:

.R LINK
FRCMNSJ . SYS ,MAP=RCBTSJ, RT11SJ,RC

For F/B:

.R LINK
¥RCMNFB.SYS,MAP=RCBTFB,RT11FB,RC

If step 3 was not done and step 4 used the current
monitor object modules, then the monitor tables must
be patched to enter the device information. The moni-
tor device tables are located using the procedure in
Section 5.3. An additional table, the $ENTRY entry
point table, must also be patched. For this example,
assume the table addresses are:

Table S/J Address F/B Address
SHSIZE 13674 14602
$DVSIZ 13730 14636
SPNAME 16516 17640
SSTAT 16552 17674
SENTRY 16612 17612



NOTE

These table addresses are for illustration

conly.

Consult Table 2 of RT-11 System

Release Notes (V02C) for the table addresses

of the current monitor release and for the
address of BASE.

A link map was made during the linking sequence in Step 4.
Locate the value of the system handler entry point, xxSYS.
For this example, the tag is RCSYS and its value is found

to be 56266 for F/B.

The other values were determined in Section 5.3:

SHSIZE = 316

$DVSIZ = 2048

$PNAME = 7¢378

$STAT = 1¢@@23

$ENTRY = 56266 (F/B) 45056 (S/J)

This value is put in the $ENTRY table.

The patch procedure for the S/J monitor, using the twelfth

slot, would then be:

.R PATCH<CR>

PATCH Version number

FILE NAME--—
*RCMNSJ . SYS /M<CR>
*BASE; R <CR>

[The /M is necessary;
Monitor -base;

*8,13674/ 4098  316<CR> $HSIZE table;
*@,13738/ Ji 28@@<CR> $DVSIZ table;
*¥,16516/ 6250 _ 7837@<CR> $PNAME table;
*@,16552/ 4 1@@@23<CR> $STAT table;
*3,16612/ 2 45856<CR> S$ENTRY table;
*E Exit to monitor]

For the F/B monitor:

.R PATCH<CR>

PATCH Version number

FILE NAME—-—
*RCMNFEB. SYS/M<CR>
*BASE ; §R<CR>

316<CR> [SHSIZE table;
28@@<CR> $DVSIZ table;
78378<CR> S$SPNAME table;
140@23<CR> $STAT table;

*g,14692/ 4pp8
*g,14636/ [
*g,17649/ 6259
*3,17674/ 4
*g,17564/ ]

*E

-
-

56266<CR> SENTRY table;
Exit to monitor]

The new monitor is now complete and may be used by
transferring it to an RC disk and renaming it to

MONITR.SYS.

5-18 January

1976



5.5 DEVICES WITH SPECIAL DIRECTORIES

The RT-11 monitor can interface to devices having nonstandard (that is,

non RT-11) directories. This section discusses the interface to this
type of device.

5.5.1 Special Devices

Special devices are file-structured devices that do not use an RT-11
directory format. Examples are magtape and cassette as supported under
RT-11. They are identified by setting bit 12 in the device status word.
The USR processes directory operations for RT-11 directory—strucfured
devices; for special devices, the handler must process directory opera-
tions (LOOKUP, ENTER, CLOSE, DELETE),; as well as data transfers.

5.5.1.1 Interfacing to Special Device Handlers - There are three types
of processes that a special device handler must perform:

1. Directory operations (.LOOKUP, .ENTER, etc.)
2. Data transfer operations (.READ, .WRITE)

3. Special operations (rewind, backspace, etc.)

The particular process required is passed to the handler in the form

of a function code, located in the even byte of the fourth word of the
I/0 queue element (see Section 5.1.1). The function code may be posi-
tive or negative. Positive codes are used for processes of types 1 and

2 above; negative codes indicate device-dependent special functions.

The positive function codes are standard for all devices and include:

Code Function
g Read/Write
1 Close
2 Delete
3 Lookup
4 Enter

These functions correspond to the programmed requests .READ/.WRITE,
.CLOSE, .DELETE, .LOOKUP, and .ENTER, described in Chapter 9 of the
RT-11 System Reference Manual. The .RENAME request is not supported

for special devices.

5-19 January 1976



A gueue element for a special handler will look identical to an ele-
ment for a standard RT-11 handler when the function is a .READ/.WRITE
(negative word count implies a .WRITE). For the remaining positive
functions, word 5 of the queue element (the buffer address word dis-
cussed in Section 5.1.1) will contain a pointer to the file descriptor
block, containing the device name, file name, and file extension in
.RAD5Sf# format.

Negative function codes are used for device-dependent special func-
tions. Examples of these are backspace and rewind for magtape. Be-
cause these functions are characteristic of each device type, no
standard definition of negative codes is made; they are defined

uniquely for each device.

Software errors (for example, file not found or directory full) oc-
curring in special device handlers during directory operations are
returned to the monitor through the procedure described next. A
unique error code is chosen for each type of error. This error code

is directly returned by placing it in SPUSR (special device USR error),
located at a fixed offset (272) into RMON. (Section 2.5.1 discusses
monitor fixed offsets.) Hardware errors are returned in the usual
manner by setting bit g in the channel status word pointed to by the

second word of the queue element.

5.5.1.2 Programmed Requests to Special Devices - Programmed requests
for directory operations and data transfers to special devices are
handled by the standard programmed requests. When a .LOOKUP is done,
for example, the monitor checks the device status word for the special
device bit. If the device has a special directory structure, the
preoper function code is inserted into the queue element and the elemen
is directly queued to the handler, by-passing any processing by the
RT-11 USR. Device independence is maintained, since .READ, .WRITE,
.LOOKUP, .ENTER, .CLOSE, and .DELETE operations are transparent to the
user.

Requests for device-dependent special functions having negative fuhc-
tion codes, must be issued by using the .SPFUN special function pro-
grammed request, described in Chapter 9 of the RT-11 System Reference

Manual. Devices which need to use the .SPFUN requests must have a
bit set in the device status table (see Section 2.5.2.2).

5-20 January 1976



5.6 ADDING A SET OPTION

The Keyboard Monitor SET command permits certain device handler param-
eters to be changed from the keyboard. For example, the width of the

line printer on a system can be SET with a command such as:
SET LP WIDTH=88

This is an example of a SET command that requires a numeric argument.
Another type of SET command is used to indicate the presence or ab~-
sence of a particular function. An example of this is a SET command
to specify whether an initial form feed should be generated by the LP
handler:

SET LP FORM (generate initial form feed)

SET LP NOFORM (suppress initial form feed)

In this case, the FORM option may be negated by appending the NO pre-

fix.

The SET command is entirely driven by tables contained in the device
handler itself. Making additions to the list of SET options for a
device is easy, requiring changes only to the handler, and not to the
monitor. This section describes the method of creating or extending
the list of SET options for a handler. The example handler used is
the LP/LS1l line printer handler, listed in Appendix A in Section A.3.
The SET command is described in Chapter 2 of the RT-11 System Refer-

ence Manual.

Device handlers have a file name in the form xx.SYS, where xx is the
2-letter device name; e.g., LP.SYS. Handler files are linked in save
image format at a base address of 1000, in which a portion of block 0
of the file is used for system parameters. The rest of the block is
unused, and block 0 is never FETCHed into memory. The SET command
uses the area in block 0 of a handler from 400 to 776 (octal) as the
SET command parameter table. The first argument of a SET command must
always be the device name; e.g., LP in the previous example command
lines. SET looks for a file named xx.SYS (in this case LP.SYS) and
reads the first two blocks into the USR buffer area. The first block
contains the SET parameter table, and the second block contains han-
dler code to be modified. When the modification is made, the two blocks
are written out to the handler file, effectively changing the handler.

5-21



The SET parameter table consists of a sequence of 4-word entries.
The table is terminated with a zero word; if there are no options
available, location 400 must be zero. Each table entry has the form:

.WORD value

.RAD5¢  /option/ [2 words of RAD50]
.BYTE <routine-4gg>/2

.BYTE mode

where:

value is a parameter passed to the routine in
register 3.

option is the name of the SET option; e.g.,
WIDTH or FORM.

routine is the name of a routine following the
SET table that does the actual handler
modification.

mode indicates the type of SET parameter:

a. Numeric argument - byte value of 100
b. NO prefix valid - byte value of 200

The SET command scans the table until it finds an option name matching
the input argument (stripped of any NO prefix). For the first example
command string, the WIDTH entry would be found (area 2 in the listing
in Section A.3). The information in this table entry tells the SET
processor that O.WIDTH is the routine to call, that the prefix NO is
illegal and that a numeric argument is required. Routine O.WIDTH is
located at area 4 on the listing. It uses the numeric argument passed
to it to modify the column count constant in the handler. The value
passed to it in R3 from the table is the minimum width and is used for
error checking.

The following conventions should be observed when adding SET options to
a handler:

1. The SET parameter tables must be located in block 0
of the handler file and should start at location 400.
This is done by using an .ASECT 400 (area 1 on the
listing).

2. Each table entry is four words long, as described pre-
viously. The option name may be up to six .RAD50 char-
acters long, and must be left-justified and filled with
spaces if necessary. The table terminates with a zero
(area 3 on the listing).

5-22



3. The routine that does the modification must follow the
SET table in block 0 (area 4 on the listing). It is
called as a subroutine and terminates with an RTS PC
instruction. If the NO prefix was present and valid,
the routine is entered at entry point +4. An error is
returned by setting the C bit before exit. If a
numeric argument is required, it is converted from
decimal to octal and passed in RO. The first word of
the option table entry is passed in R3.

4. The code in the handler that is modified must be in
block 1 of the handler file, i.e., in the first 256
words of the handler. See areas 6 and 7 on the list-
ing for code modified by the WIDTH option.

5. Since an .ASECT 400 was used to start the SET table,
the handler must start with an .ASECT 1000. See area
5 on the listing.

6. The SET option should not be used with system device
handlers, since the ,ASECT will destroy the bootstrap
and cause the system to malfunction.

5.7 CONVERTING USER-WRITTEN HANDLERS

User-written device handlers must, in all cases, conform to the stan-
dard practices for Version 2 (2B and 2C). General programming infor-
mation is discussed in Appendix H of the RT-11 System Reference Manual.

Points to consider when converting user-written device handlers
(written under Version 1 of the RT-11 system) follow; the details of

these procedures have already been discussed.

1. The last word of a device handler is used by the moni-
tor, thus the user must be sure to include one extra
word at the end of his program when indicating the
handler size.

2. The third header word of the handler should be 340,
indicating that the interrupt should be taken at
level 7.

3. It is not necessary to save/restore registers when
the handler is first entered, although to do so is not
harmful.

4. When an interrupt occurs, the handler must execute an
.INTEN request or its equivalent. On return from
.INTEN, R4 and R5 may be used as scratch registers.
Device handlers may not do EMT requests without exe-
cuting a .SYNCH request.

5. The handler must return from an interrupt via an RTS
PC.

6. When the transfer is complete, the handler must exit
to the monitor to terminate the transfer or enter a
completion routine. When return is made to the moni-
tor, R4 should point to the fifth word of the handler.

5-23 January 1976



The handler should contain an abort entry point (lo-
cated at INTERRUPT SERVICE -2) to which control is
transferred on forced exit. The abort entry point
should contain a BR instruction to code that will
perform the necessary operations (stop device action
and exit to monitor completion code).



CHAPTER 6

F/B MONITOR DESCRIPTION

The RT-11 Foreground/Background Monitor permits two jobs to simultane-~
ously share memory and other system resources. The foreground job

aaaaa 3y -\r;l

1. 3 .
nNas prioricy ana cutes unt

executes d (i.e., execution is sus-
pended pending satisfaction of some condition, such as I/O completion).
When the foreground job is blocked, the background job is activated
and executes until it finishes or until the foreground blocking con-

dition is removed.
6.1 INTERRUPT MECHANISM AND .INTEN ACTION

All interrupt handlers must be entered at priority level 7 and must
execute a .INTEN request on entry. The handler will then be called
(as a co-routine of the monitor in system state) at its normal pri-
ority level. This is essential to the operation of RT1l for two

reasons:

1. As a co-routine of the monitor, the interrupt handler
exits to the monitor, which then does job scheduling.

2. Because of the above condition, there is a danger that
interrupt processing may be postponed due to a context
switch. For example, if a disk interrupts a lower pri-
ority device handler and goes to I/O completion, the
monitor may switch to the foreground job and delay the
lower priority interrupt until the foreground job is
again blocked. By requiring the .INTEN request of all
interrupt handlers, the monitor can assure that all in-
terrupts are processed before the context switch is made.

The .INTEN request is implemented as a JSR R5 to the first fixed-offset
location of RMON, which contains a jump to the interrupt entry code.
This code saves R4 (R5 was saved by the JSR) and increments the system
state counter. If the interrupt occurred on a job stack, the stack

pointer is switched to use the system stack. The priority is lowered



to the handler's requested priority and control returns to the handler

via another JSR instruction.

The handler interrupt code now executes in system state, with several
results: any further interrupts are handled on the system stack, pre-
venting their loss by a context switch to another job's stack; a con-
text switch or completion routine cannot occur until all pending in-
terrupts are processed; any error occurring in the handler occurs in
system state, causing a fatal halt. When the handler exits via an

RTS PC instruction, control returns to the monitor, which can now

enter the scheduling loop if all interrupts have been processed.
6.2 CONTEXT SWITCH

When passing control from one job to another, the F/B Monitor does
a complete context switch, changing the machine environment to that
of the new job. The current context is saved on the stack of the
current job and is replaced by the context of the new job.

The information saved on the stack includes:

1. The general registers (RO-R5)
2. The system communication area (memory locations 34-52)
3. The FPP registers, if used

4. The list of special locations supplied by the job (via
.CNTXSW) , if any

In addition, the stack pointer (R6) is saved in the job's impure area
at offset I.SP (=50). The switch requires a minimum of 2310 words of
stack, not including the special swap list.

The following are the minimum calculated times to context switch be-
tween jobs. The assumptions are that the F/G job is waiting for 1I/0
completion, the handler completes an I/O request, and there are no user
I/0 completion routines.

Processor 11/20 11/40 - 11/45
(core memory) .66 ms .36 ms .28 ms




6.3 BLOCKING A JOB

The F/B Monitor gives priority to the foreground job, which runs until
it is blocked by some condition. In this case, the background, if run-
nable (i.e., not blocked itself), is scheduled. The conditions which
may block a job are flagged in the I.JSTA word, which is located in
the job's impure area:

Tag Bit in I.JSTA Word Condition

TTIWTS 14 Waiting for terminal input

TTOWT$ 13 Waiting for room in output
buffer

CHNWTS$ 11 Waiting for channel to com-
plete

SPNDS$S 10 Suspended

NORUNS 9 Not loaded

EXITS 8 Waiting for all I/0 to stop

KSPND$ 6 Suspended from KMON

USRWTS 4 Waiting for the USR

6.4 JOB SCHEDULING AND USE OF .SYNCH REQUEST

The F/B Monitor uses a scheduling algorithm to share system facilities
between two jobs. The goal of the scheduler is to maximize system
utilization, with priority given to the foreground job. The scheduler
is generalized to use job numbers for scheduling, the higher job num-
ber having the higher priority. The background job is assigned job
number 0 and the foreground job number 2. Job numbers must be even.

The foreground job runs until it is blocked by some condition (see
Section 6.3), at which point the scheduler is initiated. The job list
is scanned top down (from highest to lowest priority) for the highest
priority job that is runnable. A job is runnable if it is not blocked,
or if it is only blocked pending completion and is not suspended. If
no jobs are currently runnable, the idle loop is entered.

If the new job is runnable, a context switch is made. The context
switch routine tests for the completion pending condition {(i.e., I/0
is finished and a user completion routine was queued). In this case,
a pseudo-interrupt is placed on the job's stack to call the completion
queue manager when the scheduler exits to the job.

6-3



The scheduler is event driven and is entered from the common interrupt
exit path whenever an event has occurred which requires action by
the scheduler. The set of such events include:

1. An .EXIT or .CHAIN request
2. A job abort from the console, or an error abort
3. I/0 transfer completed
4. Expiration of timed wait
5. A blocking condition encountered:
a. .TWAIT request or SUSPEND command
b. .TTYIN or .CSI waiting for end of line
¢c. .TTYOUT or .PRINT waiting for room in output buffer
d. Attempt to use busy channel
6. A blocking condition removed
7. No queue elements available

8. .SYNCH request (see below).

The .SYNCH request is used in interrupt routines to permit the issuing
of other programmed requests. The .SYNCH macro is expanded as a JSR R5
to the .SYNCH code in the F/B resident monitor. The .SYNCH routine
uses the associated 7-word block as a queue element for the completion
queue.

If the .SYNCH block is not in use, register R5 is incremented to the
successful return address and placed in the block as the completion
address. The word count is set to -1 to prevent the block from being
linked into the AVAIL queue. The block is placed in the completion
queue, at its head, and the job associated with the .SYNCH request is
flagged to have a completion routine pending. A request for a job
switch is entered before the .SYNCH logic exits with an interrupt re-
turn.

On exit from the interrupt with a job switch pending, the scheduler is
entered and the completion queue manager is called. When control fi-
nally returns to the code following the .SYNCH request, it is execut-
ing as a completion routine at priority level 0. It can now issue
programmed requests without fear of being interrupted. If another
interrupt comes in, and it requests a completion routine, the com-

pletion routine will be queued pending return of the current

6-4 January 1976



completion routine, since the .SYNCH block is freed before calling the
completion routine. Further interrupts will be rejected by the .SYNCH
code, unless provision is made for supplying extra .SYNCH blocks.

6.5 USR CONTENTION

The directory operations handled by the USR are not re-entrant, par-
ticularly since the directory segment is buffered within the USR.
Therefore, to use the USR in F/B, a job must have ownership of the
USR. To facilitate this, the F/B monitor maintains a USR queuing
mechanism.

Before issuing a USR request, a job must request ownership of the USR.
If the USR is in use by another job, even of lower priority, the re-
questing job is blocked and must wait for the USR. The USRWTS$ flag
is set in the I.JSTA word (see Section 6.3) and the job cannot con-~
tinue until the USR is released and the blocking bit cleared. When
the USR is released, the job list is scanned for jobs waiting for the

USR, starting with the job having highest priority.

Because of the impact this may have on system performance, CSI requests
are handled differently in the F/B system than in the S/J Monitor. If
the command string is to come from the console keyboard, the prompting
asterisk is printed and then the USR is released, pending completion

of command line input. This prevents a job doing a CSI request from
locking up the USR and blocking another, perhaps higher priority, job
from executing. A job can determine if the USR is available by doing

a .TLOCK request (see Chapter 9 of the RT-11 System Reference Manual) .

6.6 I/O TERMINATION

Because of the multi-job capabilities of RT-11 F/B, termination of
I/0 on job exit or abort must be handled differently than in the S/J
Monitor. The use of the RESET instruction is unacceptable, and a
form of I/O rundown must be used. This is done by the IORSET routine,
called when doing an abort or hard exit.

The IORSET routine searches the queue of every resident handler for
elements belonging to the aborted job. If a handler is found to be
resident and active (i.e., there are elements on its queue) , the
IORSET routine "holds" the handler from initiating a new transfer by
setting bit 15 of the LQOE word (entry point) in the handler. The

6-5



current transfer may complete, but the hold bit will prevent the queue
manager from initiating a new transfer.

While it is held, the handler's queue is examined for the current re-
guest. If it belongs to the aborted job, the handler's abort entry
point is called to stop the transfer. The queue of pending I/0 re-
quests is then examined and any elements belonging to the aborted job
are discarded. The hold flag is cleared and a test is made to see if
the current transfer completed while the handler was held. If it did,
the completion queue manager, COMPLT, is again called to return the
completed element and initiate the next transfer. At this point, any
elements belonging to the aborted job will have been removed from the
queue.

After the device handlers are purged, the internal message handler is
examined for waiting messages that were originated by the aborted job.
All such messages are discarded. Finally, all mark time requests be-
longing to the aborted job are cancelled.



CHAPTER 7

RT-11 BATCH

The RT-11 BATCH system is composed of a BATCH compiler and a run-time
handler. The BATCH compiler converts BATCH Job Control language into

hensible to the BATCH run-time handler. The compiler

Q
¢

e
K
o

creates a control (CTL) file (from the BATCH language statements)
which is then scanned by the handler; the CTL format is a versatile
programming language in its own right. The result is a BATCH system
that is simple to use, and yet easily customized to handle different
situations.

7.1 CTL FORMAT

The BATCH run-time handler uses a unique language format that includes
many programming features, such as labels, variables, and conditional
branches. The directives are explained in detail in Chapter 12 of

the RT-11 System Reference Manual.

Each directive consists of a backslash character followed by one or
more other characters. For example, to run PIP and generate a list-
ing, the CTL directives \E (execute) and \D (data line) are used:

\ER PIP
\DLP:=/L

Messages are sent to the console device by using the \@ directive:

\@ PLEASE MOUNT DT2



Labels and unconditional branches are implemented with the \L (label)
and \J (jump) directives:

\JEND 1

\ LEND

Each BATCH command is sent to the log as it is executed, using the \C

(comment) directive:

\¢c
$JOB

In this case, every character up to the next backslash is sent to the
log.

7.2 BATCH RUN-TIME HANDLER

The BATCH run-time handler (BA.SYS) is constructed as a standard RT-11
device handler. To use the handler, it must be made permanently resi-
dent via the monitor LOAD command. The handler links itself into the
monitor, intercepting certain EMTs described later.

The linking occurs the first time the BATCH compiler is run after the
BA handler is loaded. The compiler does a .READW to the BA handler,
which then links itself to the monitor and returns a table of addresses
to the BATCH compiler. The linking is achieved by replacing the ad~
dresses of monitor EMT routines with corresponding addresses in the
BATCH handler. Those EMTs that are diverted include:

EMT BATCH Handler Routine
LTTYIN BSTIN
.TTYOUT BS$STOT
+EXIT BSEXT
.PRINT BSPRN

Once the 1link is established, the BATCH handler cannot be unloaded.
The links must first be undone by again running the BATCH compiler
and specifying the /U switch. The compiler removes the links and
prints a prompting message, after which the UNL BA command can be
issued.



With the BA handler linked to the monitor, all console terminal com-
munication is diverted to BA, along with program exits. The BA han-
dler then dispatches the program request to the monitor routine or
diverts it to a routine in BA, depending on the values of switches in
BATSW1. The switches are:

TAG : BIT DESCRIPTION
HELP 0 0 = Do not log terminal input (.TTYIN)
1 = Log terminal input
DESTON 1 0 = EMT is going directly to monitor
1l = BA intercepts the EMT
SOURCE 2 0 = Character input by monitor from con-
sole terminal
1 = Character input comes from BATCH stream
COMWAT 3 0 = No command
1 = Command is waiting
ACTIVE 4 0 = Console terminal inactive
1l = Console terminal is active; i.e., BA
is waiting for input from console ter-
minal .
DATA 5 0 = Characters are going to KMON; i.e.,
KMON is active in B/G
1l = Characters are going to B/G programs
BDESTN 6 0 = Output characters are going to console
terminal
1 = Output characters are going to LOG
BGET 7 0 = Normal mode
1 = Get mode ( \G); input comes from con-
sole terminal until <CR><LF> is en-
countered
NOTTY 8 -0 = Log terminal output
1 = Do not log terminal output (.TTYOUT,
.PRINT)
9-13 Reserved
BSOURC 14 0 = BA directives come from console terminal
1l = BA directives come from CTL file
BEXIT 15 1l = A program has done an .EXIT while DATA

switch was set

The BATSW1 word, located six bytes past the handler entry point, deter-
mines the state of the system at any given moment. If the word is
zero, RT-11 operates normally. When the DESTON bit is set, EMTs are
diverted to routines in BA for action, but the specific action taken by
those routines is determined by the other switch bits.

7-3



For example, if the BDESTN bit is set, output from .TTYOUT and .PRINT
is diverted from the console terminal to the log device. If SOURCE is
set, the characters for the .TTYIN request are taken from the BATCH
stream rather than from the console terminal via the monitor ring buf-
fer. Directives for the BA handler itself may come from either the
CTL file or the console terminal, depending on the state of the BSOURC
bit.

The state of the background is reflected in the DATA bit. Either the
KMON is active (DATA=0) or a program is active (DATA=1l). If a program
issues an .EXIT request while in DATA mode, the BEXIT state is entered
until the BA handler encounters the next KMON directive (\E) in the
BATCH stream, causing any unused \D lines to be ignored. A program
can be aborted by diverting any of the .TTYIN, .TTYOUT or .PRINT re-
quests to the .EXIT code in the monitor.

7.3 BATCH COMPILER

The obvious function of the BATCH compiler is to convert BATCH Stan-
dard Commands into the BA handler directives mentioned in Section 7.1,
creating a control (CTL) file. BATCH jobs entered from a card reader
or a file-structured device are compiled into a CTL file stored on a
file-structured device for execution by the BA handler. However, the
BATCH Compiler has other important functions; these are described in
this section along with details on the initiation and termination of
BATCH jobs.

7.3.1 BATCH Job Initiation

The following sequence of actions is performed by the BATCH Compiler

when setting up a job for execution:

1. A check is made to ensure that LOG and BA device han-
dlers are loaded and assigned properly. The LOG han-
dler must be assigned the logical name LOG:; the
BATCH Compiler may be run several times during the
course of a job to do special tasks for the BA han-
dler, and it will reference LOG:.

2. A nonfile-structured .LOOKUP is done on BA and a .READW
is issued. If this is the first time BATCH has been
run since BA was loaded, the handler links itself to
the monitor (see Section 7.2). BA returns a list of



eleven pointers to important parameters within BA.
These include:

BA state word (BATSW1)

CTL file savestatus area (INDATA)

LOG file savestatus area (ODATA)

Output (LOG) buffer (OUTBUF)

Output buffer pointer (BATOPT)

Output character counter (BATOCT)

Input character counter (BATICT)
Monitor EMT dispatch address save areas

3. A command string is collected from the console ter-
minal and is processed by .CSISPC. An input file
must be specified.

4. If the input file is a .BAT file to be compiled, a
.CTL file is entered. 1If the LOG: device is file-
structured, a fixed-size enter is done and then the
file is initialized by writing zeroes in all blocks.

5. A .LOOKUP is done on all input files.

6. The .LOG file is .CLOSED so that a .LOOKUP and .SAVE-
STATUS may be done. The savestatus data is placed in
the ODATA area in BA.

7. If the input file is a .BAT file, it is now compiled,
with output going into the .CTL file.

8. The .CTL file is closed, again so that a .LOOKUP and
.SAVESTATUS may be done. The .SAVESTATUS data is
transferred to the INDATA area in BA. Buffer pointers
and counters in BA are initialized.

9. The BA handler is activated by setting the SOURCE,
DESTON, BSOURC and BDESTN bits in the BATSW1l state
word in BA. Control passes to BA when the compiler
does an .EXIT, assuming an abort is not requested.

10. If an abort is requested (an error occurred during
compilation or the /N switch was used), the .LOG
file is .REOPENed and all $ command lines are logged
out with any error diagnostics. The BATSW1 word is
then cleared before exiting, preventing the execution
of the job.

The following switches are used by the BATCH system during job initi-
ation and continuation, and should not be typed by the user:

/B BATCH continuation of jobs in input stream

/D Print the physical device name assigned a
logical device name in a S$DISMOUNT command

/M Make a temporary source file
/R Return from S$CALL
/S SCALL subroutine



7.3.2 BATCH Job Termination

Every BATCH job must be terminated with an $EOJ statement. The $EOJ
statement causes the compiler to insert the CTL directives:

\R BATCH
\D/R

The /R switch for the BATCH compiler, which is legal only when entered
from a BATCH stream, is used to terminate a BATCH job. This switch
causes the compiler to pop the BATCH stack up a level. If the stack
was empty, the stream is finished and the compiler cleans up, clears
the BATSW1 word in BA, and exits. If the stack is not empty, the /R
switch implies a return from a S$CALL. The stack contents are used to
restore parameters in the BA handler so that control will return to
the calling BATCH stream at the next statement after the $CALL.

7.3.3 BATCH Compiler Construction

The BATCH Compiler is constructed in two pieces: a data area and a
program area. The data area is located in low memory, in a .CSECT
named UNPURE. The contents are described in the accompanying table
(Table 7-1). The program section, located in the .CSECT named PROGRM,
starts at the symbol START. The general register R4 always points

to UNPURE and all references to the data base are made as indexed

references relative to R4.

Locations in the data base are created with the ENTRLO macro. For
example,

ENTRLO BOTLCT,d
allocates one word in the data base and initializes it to zero. The

symbol BOTLCT is an offset into the data base, so that references to
BOTLCT are made in the form BOTLCT (R4).



Table 7-1

BATCH Compiler Data Base Description

Byte
Tag Offset Description
BATSWT 0 BATCH Control Switches
ABORT = 100000 ABORT after compile
DATDOL = 40000 DATA or DOLLARS set
NO = 20000 "NO" prefix on switch
CTYOUB = 10000 Output to CTY (\ @)
LOGOUB = 4000 Output to LOG (\ C)
DATOUB = 2000 Output to user prog (\D)
COMOUB = 1000 Output to monitor (\E)
JOB = 400 $SJOB encountered
MAKEB = 200 /B switch on command
COMMA = 100 Comma terminates command
BFORLI = 40 Next link requires FORTRAN
library
UNIQUE = 20 UNIQUE command option set
BANNER = 10 Print BANNER on $JOB, SEOJ
RT11 = 4 RT11 default on NO 'S$' in
Column 1
TIME = 2 Print time of day
MAKE = 1 Create a source file
BATSW2 2 More BATCH Control Switches
ABORT =100000 Second time through ABORT
FIRST = 10000 First card processed
SBIT = 4000 /S switch on command
SEQ = 2000 $SEQ card processed
LSTBIT = 1000 Request temporary listing
file
COMSWB = 400 Command switches
MAKEB = 200 Same as BATSWT
STARFD = 100 Asterisk in FD field
STAROK = 40 Wild card option is valid
BNOEOJ = 20 SJOB or $SEQ before S$EOJ
LSTDAT = 10 List DATA sections
BEOF = 4 EOF encountered on .BAT
file
XSWT = 2 /X switch set
EOJ = 1 SEOJ encountered
TMPSWT 4 Temporary command switches
COMSWT 6 Current command switches
LINSIZ 10 Input line buffer size
BINLCT 12 Last buffer character count
INSTAT 14 Input buffer status (see OTSTAT)
ICHRPT 16 Input character pointer
BINCTR 20 Input buffer counter

(continued on next page)




Table 7-1 (Cont.)

BATCH Compiler Data Base Description

Byte
Tag Offset Description
BINARG 22 Input file EMT argument list
BATIBK 24 Input file block number
BATIBP 26 Input buffer address
30 Input buffer size
32 Wait I/0
BOTLCT 34 Last output buffer character count
OTSTAT 36 Output buffer status
BFREE = 1 0 —+ Buffer is free
BWAIT = 2 In I/0 wait
BEOF = 4 End of file
OCHRPT 40 Output character pointer
BOTCTR 42 Output character count
BOTARG 44 Output file EMT argument list
BATOBK 46 Output file block number
BATOBP 50 Output buffer address
52 Output buffer size
54 Wait I/0
STACK 56 Compiler stack pointer save area
These are the arguments passed between BATCH
and BA:
BATSW1 60 Pointer to BATSW1l in BA.SYS
INDATA 62 Pointer to INDATA
ODATA 64 Pointer to ODATA
OUTBUF 66 Pointer to BATCH handler output buffer
BATOPT 70 Pointer to output character pointer
BATOCT 72 Pointer to output character counter
BATICT 74 Pointer to input character counter

(continued on next page)



Table 7-1 (Cont.)
BATCH Compiler Data Base Description

Byte
Tag Offset Description
Pointers to EMT intercept pointers:
OS$EXT 76 ] .EXIT
O$TIN | 100 .TTYIN
OS$TOT 102 .TTYOUT
OSPRN 104 .PRINT
CSI Buffer:
SPCO 106 Channel 0
SPC1 120 1
SPC2 132 7 2
SPC3 144 3
SpC4 154 4
SPC5 164 5
SPC6 174 6
SPC7 204 7
SPC8 214 10
LINIMP 224 Pointer to command line buffer (LINIMM)
LINIMM 226 Command line input buffer
LINIMS 350 Command line buffer save area
LIBLST 470 ASCIZ name of FORTRAN default library
plus a line buffer
BATIBF 610 BATCH Compiler input buffers (INBSIZ * 2)
BATOBF 2610 BATCH Compiler output buffers (OTBSIZ * 2)
QSET 4610 Seven I/C gueue clements for double/buffering
SOUTMP 4700 Source temporary file descriptor
OBJTMP 4714 Object temporary file descriptor
LOGTYP 4730 LOG device status word (word @ of .DSTATUS)
ARGARG 4732 EMT argument list for BA handler initializa-
tion

(concluded on next page)




Table 7-1 (Cont.)
BATCH Compiler Data Base Description

Byte

Tag Offset Description
STKBLK 4744 EMT argument list for READ/WRITE of BATCH

stack

DEFCHN 4756 Default channel numbers
DEVSPC 4770 Pointer to device handler space
WDBLK2 4772 Two-word EMT argument block
WDBLK5 5000 Five-word EMT argument block
FTLPC 5012 Contents of PC on BATCH fatal error
AREAQ 5014 Pointer to impure area
LSTTMP 5016 Listing temporary file descriptor
SWTMSK 5026 Switch mask for this BATCH directive
FDO 5030 File descriptor 0 for BATCH directive
FD1 5034 1
FD2 5040 2
FD3 5044 3
FD4 5050 4
FD5 5054 5




7.4 BATCH EXAMPLE

The following example demonstrates how the compiler converts BATCH
Standard Commands into RT-11 BATCH handler directives. The example
consists of a main BATCH stream, EXAMPL.BAT, and a BATCH subroutine
file, EDITIT.BAT. EXAMPL creates a program, assembles and runs it.
The program, called FILE.MAC, prints a message that is diverted to
the log. The listing file from the assembly is printed and then de-
leted. The BATCH variable S is then tested and, if it is zero, the
BATCH subroutine EDITIT is called. The EDITIT stream uses EDIT to
edit the file FILE.MAC, changing the message to be printed. After
return from EDITIT, the stream branches unconditionally to label L1,
repeating the assembly and execution of FILE.MAC. EDITIT increments
the variable S before returning, so that the BATCH stream, on encoun-
tering the IF statement again, now branches to label L2, skipping the
call to EDITIT. S$DIRECTORY and S$DELETE operations are performed be-
fore finally exiting from BATCH.

Note the following about the .CTL files created:

1. The $J0OB command produces a comment for the log (the
\C directive, but no action directives). Its func-
tion is to initialize the BATCH compiler.

2. The S$CREATE command produces directives that run the
BATCH compiler, using the file name to be created with
a /M switch. This is a special function of the BATCH
compiler used to create data files. The compiler will
enter the data that follows in the CTL file into the
newly created file, until an EOF (CTRL/Z) is encoun-
tered. The data is fed to the compiler by the BATCH
handler through the .TTYIN programmed request. After
the EOF character is encountered, the BATCH compiler
closes the new file and exits, returning control to
the BATCH handler through the .EXIT request. In this
example, the file created is called FILE.MAC.

3. The S$MACRO command has the /RUN switch appended, which
forces the compiler to generate a series of assembly,
link and execute instructions. A temporary execution
file, 000000.SAV, is created from the assembled object

maoadeal A TTTT ADT ALl s Avrmssd tmen et bl Llea smamarmadmr D
HUUULCT L llsis e VDU o Dl LCeL CATLUULLUIL WilLll LilT lniviiisouwl N
command, the temporary execution file is deleted with
PIP.

4, PIP is used to implement $PRINT, S$DELETE, S$COPY, and
$DIRECTORY. The compiler translates these commands
into the appropriate PIP command strings.



The variable S is defined to be zero with the LET
statement. This translates into the BATCH handler
directive,

\KSl<null>

which instructs the BATCH handler to set variable
S to the value in the byte following the character 1.

Labels are implemented by inserting a \L directive

followed by the 6-character label name into the CTL
stream where the label was declared. The label is

also logged out with the \C directive so that the

labels will appear in the log.

The unconditional branch, or GOTO command, is imple-
mented with the \ J directive immediately followed
by the label. Note that the BATCH programmer must
indicate whether the branch is forward or reverse.
In this case, the branch is a backward reference

and a minus sign is prefixed to the label:

GOTO -Ll

There is no error checking done by the compiler. If
an error is made (e.g., the minus sign is left off
the L1), the BATCH handler searches forward in the
CTL stream until it finds the label. Since an error
was made, the label will not be found. The search
(and consequently the BATCH job) terminates when the
label stopper (\L$$$$$S) is encountered at the end
of the CTL file.

The IF conditional branch is implemented with the \I
directive. The \I directive is followed by the name
of the variable to be tested, the value to be tested
against, and three label fields. Each label field
consists of the 6-character label name with a refer-
ence character appended. The character 1 indicates
the label is a forward reference, a 0 indicates a
backward reference. The test value is subtracted
from the current value of the variable and the appro-
priate branch is taken. If no label is specified for
a field, it is filled with spaces and causes the BATCH
stream to f£all through to the next command 1f that

branch is elected.

The $CALL command is very useful and permits a BATCH
stream to call another BATCH file as a subroutine,
with control returning to the command following the
SCALL. The $CALL is implemented by simply running
the BATCH compiler, passing it the name of the $CALLed
routine with a /S switch appended. Another BATCH
compile/execute sequence will follow, but the /S
switch will cause the compiler to save certain loca-
tions in the BATCH handler in an internal stack in
the BA.SYS file. In this example, the S$CALL EDITIT
statement causes the file EDITIT.BAT to be compiled
and executed.



10.

11.

BATCH variables may be used to enter ASCII values
into a job stream. In the file EDITIT, the vari-
able A is set equal to the value of the ESC (or
ALT MODE) character. The variable A is inserted
into a string of EDIT commands in place of the
ALT MODE character.

The $EOJ must terminate every BATCH job. The $EOJ
command generates the stopper label, \L$$$$$$, and
then produces directives to run the BATCH compiler
again, this time with a /R switch. The compiler,
when given a /R switch, checks the BATCH stack. If
it is empty, the compiler exits. Otherwise, the
stack is popped to restore conditions in the BATCH
handler prior to the $CALL causing the push, and the
BATCH stream continues. The $EQJ finally generates
a \E to bring in the KMON and a \F<CR> to termi-
nate the BATCH stream.

7-13



EXAMPL.BAT

$Jo08
SMESSAGE EXAMPLE BATCH STRFAM
SCREATE FILE,MAC

JMCALL  ,RFGPEF, ,PRINT, ,EXTT

WREGDEF
START: LPRINT #Mes
LEXIT
«NLIST BEY
+EVEN
LIST REY
+END STARY
SEOD
SRT11
LET S0
Lyt

SMACRO/RUN FILE LST/LIST FTLE MAC/TINPUT FI|E/QRJECT
SPRINT FTLE,LST
SDELETF FILE,LST
SRT1Y
IF(8=2) ,,L2
SCALL EDITIY 1caLlL EDITIT TO EDYTY FILE, MAC
SRYL
6070 K|
L2t
SDIRFCTORY FILE, »
SDFLETE FILE,»
SENJ

$JOB/RT11

$1 JNB TN EDTT FILF,MAC
*$ IINCREMENT S TN PREVENT REFUPSTON
LET Ax33 1A IS ALT MQDE

+R ENIT

*ERFTLF MACPAPRrAr

*GMSHerACKI] JASCTZ /MADIFTEN RY ENITOR RUN RY BATCH/

WFAPEXPAPPAS

$EOJ



EXAMPL.CTL

\C
$JOB

SMESSAGE EXAMPLE BAYCH STRFAM
\E\® EXAMPLE BATCH STRFAM

\C

SCREATF FILE MAC

\ER RATCH

\DFILE,MAC/M=
.MCALL .RFGDEF!.PQINTlIFXYT
+REGDEF

START: LPRINT #MeG
LEXIY
+NLIST REY

MSG: «ASCIZ /THIS MESSAGE COMES FROM THWE BATCH STRFAM/
LEVEN
LIST REY
«END START

\C
SEOD
SRT1¢

LET S=2
\KS1 \ILL1 \CL1:

SMACRQ/RUN FYILF,LST/LIST FILE MAC/INPUT FILE/DRJFCT
\ER MACRD
\DFILE,FILE,LST=FI| E,MAC
\F\D\ER LINK
\DRonpMasFILE
\ER \pPga2®Q
\ER PIP
\D7geara, SAV/D
\C
SPRINT FILE,LST
\ER PIP
\DLSTsw, &«/XsFILE,|LST
\F\D\C
SDELETF FILE,LST
\ER PIP
\DFILE,LST/D
\C
$RT11
1F lS*G'J [] ,Lé
\IS 1 iLe 1AL \C
$CALL FDITIT icaLl FDITIT TN FDIT FILF, MAC
\F\ER RATCH
\DEDITYT/S
\C
S$RT1Y
80TO -1
\JL1 APLL?2 \rL2:



EXAMPL.CTL _ (Cont)

SDIRFCTORY FILE, %
\ER PIP
\DFILE,.*/L

\F\D\C

SDELETE FILE.*
\ER PIP
\DFILE,»/D

\C

SEOJ
\LSSSSSS\F\ER RATCH
\D/R

\E\F

EDITIT.CTL

\C
$JOB/RTLY

$) JOB TN EDIT FILF,MAC
xS LINCREMENT 8§ TN PRFEYENT RECURSTION
\KS@\C LET A=33 1A IS ALT MODE
\KA{ \ER EDIT
\DEBFILE MAC\KARR\KA2\KA2
\DGMSGI\KAEKY «ASCYZ /MNADIFTED RY ENIT RUN RY BATCH/
\DNKAREX\KA2\KA2 '
\C
SE0J
\LSSSSSS\F\ER RATCH
\D/R
\E\F

7-16



EXAMPL.LOG

$JOB

SMESSARE EXAMPLE BATCH STRFAM

SCREATF FILE,MAC

SEOD
SRT11

LET S=4
L1 L1

SMACRQ/RUN FILE,LST/LIST FTLE MAC/INPUT FIIE/QRJFCT

*ERRORS PETECTED: o
FREE CNRF: 1512p, wWORDS

L]



EXAMPL.LOG (Cont.)

WMAIN,

O~

[d 141
fQRQ2Q
aQeQne

720912

RT=11 MACRN VMAZe=10

STARTS

124 Msns

eegagar

SMEALL
<REGNEF
PRINT
LEXIT
CNLIST
LASCT2Z
«EVEN
WLTIST
END

1@=APR=75 19133145 PAGF |

«RFGDEF, ,PRINT, ,EXIT
¥MSG

REX
/THIS MESSAGE COMES FRNM THE BATCH STRFAM/

REY
START



EXAMPL.LOG (Cont.)

«MAIN, RT={1 MACRN VMB2e17 10=APR=T5 10233:45 PAGF 1+
SYMBDL TABLE

MSG 222p10R PC 2XP22007 RA =4AANARE
Ry =%208001 R2 24707002 R3 =%ARNEA3
R4y =%000@04 RS =Y220Q08 SP =%PRAQ%e
STARTY PRYR2AR
. ABS, 0Q0%pre 200

p0eose uel

FRRORS DETECTED: @
FREE CORE: 1510@, WORDS

FILE,FILE LSTeFILE MAC

THIS MESSAGE CNMES FROM THE RATCH STREAM
SPRINT FILE,LST

SDELFTF FILE,LST

SRT11

IF(8=2) ,,12
SCALL FDITIT ICALL EDTTIT TN EDTIT FILE MAC

SJOB/RT1Y
${ JoB YO EDIT FILF,MAC
Xs LINCREMENT S TO PRFVENT RECURSTON
LET As33 1A IS ALY MODE
*ERFILF,MACSRSS
*
GMSGISK] +ARCIZ /MNDIFTED RY EDITOR RUN RY BATCH/
SEXSS
$EOJ
558888
$RTLY
60To =L
L1t

SMACRO/RUN FILF,LST/LIST FILE,MAC/INPUT FILE/QRJFCT

*ERRORS NETECTED? 0
FREE CNRE! 15136, WORDS

*



EXAMPL.LOG (Cont.)

WMAIN, RT=11 MACRN VMO2=1D  10=APR=7S 10134:M8 PAGF 1

1 LMCALL RFGDEF, ,PRINT, ,FXTT

2 nenpne +RFGDEF

3 NePR0R START: LPRINT #MSG

4 200006 JEXIT

5 .NLIST REX

6 NEPQ1D 115 M§ne LASCIZ /MODIFTER RY ENITOR RUN RY BATCH/
7 LEVEN

8 LLTIST  REY

9 alpopar JEND START



EXAMPL.LOG (Cont.)

JMAIN, RT=11 MACRA VMA2ain
SYMBOL TABLE

MS6 PRv@1@R PC

Ry 2X020001Y r2

R4 4002004 RS

START 2pVQAAPR

. ABS, Q2p0@Rg 20
fevesSae @y

FRRORS DETECTED: 0@
FREE CORE: 15136, WORDS

FILE,FTLE,LST=FILE MAC

18=APR=7% 192343278 PAGF

24200007
24700002
=X%0200@S

MORIFIFD BY ECYTOR RUN BY RATCH

SPRINT FILE,LST

SOFLFTF FILE,LST

SRT1
TFKS‘@J vl 2
Let

SDIRFCTORY FILF,

1@=APR=T5

FILE LBAK { 12eAPR=7S
FILE ,MaC 1 10=APR=7R
FILE ,0BRJ 1 1¢=APR=TS

3 FILES, 3 BLOCKS
417 FREE BLOCKS

SDFLFTF FILE.%

$EOJ

R2
R3
SP

1+

=%000070
24000093
220026



7.5 CTT TEMPORARY FILES

In certain cases the BATCH compiler will produce temporary files with
the extension CTT and the file name of the BAT file being compiled.
These files occur when a multiple input file command string is issued,
or when an unexpected $JOB or $SEQ statement occurs in a BATCH stream,
or when multiple jobs are run from the card reader or a .BAT file.

The CTT file is actually a CTL file used to link together execution
of several BATCH jobs. Each CTT file contains the BA directives:

\ER BATCH
\D/B

which execute the BATCH compiler, passing it the /B switch.
The CTT file also contains the following information:

1. Current input channel number (range is 3-108)
2. Current input file block number

3. The CTL file descriptor block (device, file name and
file size)

4, The LOG file descriptor block (device, file name, and
file size)

5. The set of input (BAT) file descriptor blocks (device
and file name)

When the CTT file is executed, the compiler restores the input channel
number and block number and the entire set of file descriptor blocks
from the CTT file. 1If, for example, the input channel number is 4,

the second of a string of .BAT files is compiled and executed.



APPENDIX A

SAMPLE HANDLER LISTINGS



RC11 VAleDl (FYXFD WEAP PISK)

O EP AD AW -

RY={1 MACRA VMA2=@9  R=APR=TS {21M4126 PARE

. LTTTLE RCLT VQlwny (FIXER WEAD DTSK)
JRT=11 RC11/RS6A NEVICE WANDLPFR

1DPCatla¥XYXXud
)I*6

JOFTORFR 1974
ICAPYRTGHT (C) 197%

IDYGITAL EAUTPMENT COARPORATION
IMAYNARD, MASSACHUSETTS 0{7%4

PTHIS SOFPTWARE IS FURNTISHER UNPER A | ICENSFE FOR (ISP ﬂNLY
JON A SINGLE CAMPUTER SYSTEM AND MAY BF COPIFD ONLV WITH
JTHE INCLUSIAN OF THE ABOVF COPYRIAMY NOTIFE, THIS
ISAFTWARE, QR ANY ATHER roazls THEREAF, MAY NOT RE PROVINER
100 NTHERWTSF MANRE AVAYLlsl! TO ANY OTHER PERSNN EYCEPT
1FAR USE ON SUPH SYSTEM ANM TO ONE WHO AGRFES TO TH(S!
ILYCENSE TFRMS, TITLFE TO AND ONNFR!HYP OF THE SOFTWARE
PSHALL AT ALL TIMES REMATN IN PBIGITAL,

1THE INFARMATION IN THYS DﬂCUMPNT 1S SUBJEEY
ITA CHANRE WITHOUT NOTTCF AND SHAULD NOY

1BF CONSTRUED A8 A COMMITHPNT RY DYGTTAL
YEAUTPMENT CARPORATION, PIAITAL ASSUMES NO
IRFSPONSTRTLITY FOR ANY FRWORS THAT MAY APPEAR
PIN THTS DACUMFNT,

IDTGYITAL ASSUMES NA l!SPﬁNQI‘ILITV FOR THE
TUSE OR RELTIABYLYTY NF ITS SNFTWARF NN
!EQUTPMENT WHIPH IS NOT SUPPLIPD BY
IDYGITAL,

YATANVH dD0IAId $9S¥/TI09 T°Y



RCt1 VA1e@l (FIXFD HFAN NISK)

HANDLER PEFINITINANS

B> B> AN -

noAQaQ

702000

(I LI
[J-LLLI
[J.LI.LF]
nenonsy
nRmMARY
LY
L LYTI.IY
fpmANY

LAY
nemaTo

namang
nen01p

fpm3an
fomedp

[ LRYD
Ll Bl
nR1QAQ
nEmung
6NN

177400
177442
1Y7044
177446

1774%0
1774%2
177484
177488

RT=il MACRA VMA2e09

PORTTL HANPLER

ReAPR=TE (21M4124 PAGE 2

DFFINTTTONS

MEALL  LREGPEP, 'va.l

MONITOR NPEFPINED CONMSTANTS

Leval.

IRFGYSTER NEFINITINN
pLIST wE
«RFGHEF

RPeX?

RisX!

RauX2

R3eXY

Run¥%d

REaX®

Spa¥kh

PCuX? ‘
WNLIST MF

IRT=1
MON|. OWe =y
NFFSETS 27N
HDPRRs ¢
RCTRY: 8,

IPRINRTTY CONSTANTS

) RCetl

tRF=1y

PRY » ATT]
PRS » P40

IMANTTOR BASE POINTER
JPAINTER TA 0 MANAGER
1CAMPLEFTION FNTRY
JHARD ERROR RYT
IRFTRY FAR ERRORS

PHANDLER ENTERED AT PR?
IHANDLER RIINS AT PRE

COMMUNTICATION CONSTANTS

WRs 9%
L L,Y] 1%
TNHCAS 1000
ABNRTe 400
RTRYFRs 040000

1877 INTFRRUPT ENARLE,WRTTP & INTTIATE_FUNP,
1877 INTERRUPT ENARLF,READ & INITIATF FPUNC,
PINHTS, INCRF, CURRENY ABR REG (RCCAY

JARORT OPERATION IN PROGRESS (RCCS)

IRFTRY AFTFR ERROR MASK FOR RCPS

18T 14 = | =» DATA FRROP

18YT 4% = 4 »>» APDRESS ERARNR

CONTROL RERISTFRS

RCLA = 177440

RCPHA = 177442
REFR = 177444
RCrS 3 177448
RCUE 8 177480
RCEA » 1774%2
REMN & 1774%4
OCPAR & 1774%6

1LAOK AHFAD REGISTER

10T8K ADNRFSS REGISTER .
10YSK FRROR STATUS REGISTER
10Y8K CONTROL AND STATUS
IRPGYSTER

IWARD COUNT REGISTPR
JCURRENT ANDRESS RPGTSTER
IMAINTENANRE REGISTER

JOATA RUFFFR RFGYSTER



41 LILAY) RCVEE w 210 PINTFRRUPT VECTOR ADNRESS

42 - .

4y IRE SYSTEM DEFVYNTTTYONS

48

us ;GLORL ®EsYs, mKS¥s, RFSys, DPSYS, DSSYS, DTSYs, AXays

4 ————=] ,GLORL SINPTR, SINTEN, RCTYNTY _ ) 7
4y «GLOBL PCSI7E ~ J8TIF 1S RFQUIRED AY BSTRAP
4n

ae LTLELYL) (:%:} [rksys « n]

RCI1 VO1=01 (FIXED WEAPD NISK) RTefl M - i
HANDLER PEFINTTIONS Teil MACRA VMD2epO AuAPReTS 13104126 PAGE 24

) nomang RFSYS 4 o
5 npoanmg DPSYS = o
52 200000 e — nssYS « 0
sy fgnene DTAYS =
s4 LI DXSYS u o

RC11 VAL=Rl (FIXFD HEAD NISK) RY=11 MACRA VMA2=Q9 AeAPReTS 131m4124 PARE §
RC11 OFVICE HANNLER

| YSRTT RELY PEVIFE WANALPR . .

S ' (MAXTMIIM SUPPORT § CONTRALLER ANP 4 R844G DTSKS)

3 » ' f1M24 RLNCKS OF 2%4 WORDN)

4 LELT L "CSEFT SYSHND

4

4 DQ0p0p RCSTRYTY

’ ILAAR POINT

a

o poPeng mpm2iQ ;unnn RCVEC JANDRESS OF INTERRUPT VEETOR
1o 020202 o0pmaAp c pWARD  REYINTe, 10FFSET TO INTERRUPT ROUTINE
11 720084 o0pm3ap <WARN PRY IPRIARTITY 7
13
1% no%ese @——-
14 nelone npmame RCLO%S | LWARD o IPAINTFR TA LAST G _ENTRY
{% 0p0010 mEmRMp RCAGFL | ,WORD N IPAINTFR TN CURRPNT O ENTRY
16
17 JENTRY POINT
{8 000012 QY3737 0p0Q10 —_—— MOV #RETRY, (PCY+ 1SPECIFY THE RPTRY COUNT
19 702016 0npmoRp RETRYS ,LWARD n JRFTRY COUNTER ‘ .
20 MOPR2D 0QaRkT NOMR26 RCRETRY t8R RQ,RCCOMY PSET UP THROUGH COMMON ROUTINE
21 700024 moozap ZERO?  LWARD o INA ZERQ FTLL INTTTATION
22 700026 063724 0EPR1D ApN #(n,RY IPAINT TH RCEA
2% 000032 Mmya814 mav fR®)+, 8R4 18FT BUFFER ADR (RZCA)
24 M00%4 Mmy3%4g MoV (R®Y %, = (RGN 1SFT WARD COUNT ADR (REWR)

2% PoPp3s 019708 CQAL03 Mov #WR, RS PASSUMF WRTITE FUNCTIAN



26 00042 monYis TsY 8R4 JICHEEK WORP EOUNTY

27 002044 @142y RED REHOME LRV

28 P00Q4e toman AMY 18 , IWRITE SPECIFIED

29 009080 12»52% eMPB tR®)+, (RS)+ 18PT READ FUNECTION CODF

30 002082 00%4l4a . NE® #RY IMAKE WORD COUNT (=) (RCWE)
31 000084 nymSag 181 MOV RS, = (RU) 1SPT PROPER FUNCTINAN IN RCES
32 0000%6 0@maAny (:EE) [ rrs PC | IGNeAWAY FAR 1/0

RC1y VAi=pl fPIXFD HEAD NISK) RT=il MACRA VMA2«09 RaAPR=TS (21M4126 PARE 4
RCeit TNTERRUPT ROUTINF

! WSRTTL RFwiy INTFRRUPT ROUTINE
H
L ] -
4 MRPR6D NOMUYP AR RCABRY | JARORT ROUTINE FOR F/B
] IMAONTTOR
s .
7 000262 ARASTY ABA226 (:::)-L:glgjﬂ J8R RS, #SINPTR INOTIFY MONITOR & SEY
A ; .. 1PRIORTITY TO LEVEL S
o MpPphe Mpminp I LWORN  TcaprErpPRY JRE RUNB AT PRTORITY 8
1 PCHECK PAR ERRAR ON RC & RFTRY I® APPLYCABLE
11
12 "pPATA N4ATAS 177714 MoV RCEQE, RS 1GFT CURRENT QUEUE APR
1Y 008074 042TPG 177446 MoV #RECS, Ry IPAINT TOH PSK ENTRL. & STATUS RPG
14 7pR100 0Q@%Y4 TST #R4 IDATA ADPRFSS DR WRITE
= ICHESK ERROR OR WRTTFalLOfK
16 By INANSEXISTENT DTSK?
17 020102 100023 mpL RCFILL INA, . . . .
18 208104 O03371a M6MQNQ nyY #RTRYER, #R4 PONLY PATA & ADR ERRORS MERIT A RETRY
19 PaR110 MPi140Y RER 18 INPPF = 60 BACK WITH ERRAR
20 022112 0QS3IAY 1T77T7OQ nee RETRY JRFTRY FATAL ERROR & TIMPS
21 7Mp0ite 0Q%34p , AGT RCRETR POK PO IT AGAIN,
27 000127 038K ARNQANY 191 n1s #HPERR, 0w (P5) PCAN'T GFT BY HARD ERROR
2% 1SFT ERRNR FLAG &
24 . 160 BACK TO MONITO®
2" 000124 910704 RCHAOME 1| MOV PC,RY ) .
26 700126 NEPTRL 177662 ( : }-—————— ADR #RACOE=,,RA IPYC APDR AF CURMENT QUEUE ENTRY
27 000132 nmi1vIAs  MpmARSY MoV S#MONLOW, R® ‘ o )
28 0001%8 MPA1TS  MENR2TQ JIMP AOFFSET (RB) 1EXIT TO MANYTOR QUEUE COMPLFTION
29 - . ]
30 00142 MIdTXY  MEMUMD 177446 | RCABRTI MOV WARORT, 04RFACS PARORT CURRENT OPERATION
31 AD0L%Q 0AQENTAR BR RCHOME PEXIT TO MANITOR
3
3% (:::5// IFYLL REMATNPER OF DTSK RLACK WRTTTEN Y00 WITH ZPRAES,
34 MRB1%2 MPaeéyY Mpmi10Q RCFILLY J8R R@,RCCOMN PCALL COMMON RTN R o
3% 7001%6 nmatacQ L WORD TNHCA P8PT TAO INMYBYT INC OF CURRENTY ADR (RCCA)
36 PQOBLea D{aSHE  NPMEN2 MOV 2(RS), RS 16GPT WNRN GOUNT FRAM



9-¥

9.6T Axenuep

RC11 Vvalepdl (FIXFD HFAD
RC=11 INTERRUPT RONUTINF

5A
59
(14
61
(34
6%
[ Y]
6%
66

noR164
(L1 20X
00170
[L1X84]
2p0174

200176
202202
200204
ne%210

» PR0212

npR214
feR216
200220
mpR222

npl222
200224

Pe222¢

PpNele
LA 1"
np@249
moR24a2
meRaa4y
%002%0

1on3%7
1pu70s
f0175%
oos4ns
210846

B1274s
LI-LY L1 |
10406¢
10%316
fO137%
L1 4-TY
[ I.EX LI}
np=208

nemS24
N{260%

nEI7AS

8T 24
n12724
nymEay
LI RAY]
ne3714
npmgaY

RPL RCHOME
TS$TB RS

REN RCHOME
NES ng

MoV RS, m(8P)

PCURRENT QUE ELEMENT (RCEQR)
INAFTILL FOR RFADS B

JEVEN # RLACKS WRITTEN? _

IYPS o PTLI. NOT NERESSARY,
IWRITE WORN COUNTS ARE NEGATIVE TN
1THE QUE,

! RALCULATF THF # OF SECTORS IN TH® CURRENT OPERATTON

] 32 WORDS = ANF SECTOR)

apnons , MOV ¥5,=(8P)
18¢ ASR LE]
npagoy RORB 18P
PECS esp
ANT 18
TST (8P) e
REN s
. tNF s
23 N
! FND AF SPFCTOR CALCULATION
ADD RS, (RaYe
MOV fSP)e,RS

nISKY RTeli MACRA VMA2.p0 8eAPR=TE (A1M4124

177400 nrs #177400,R%
TST fRU)+

ne1L1ng MOV H#WRGTNHCA, FRUY+
MoV RS, (R4
Mov PC,0RyY

177%6p ADD 4ZPROw,, PRA
(::;) [ere *c |

1P1ISH REPEAT COUNT ONTH STACK
IDTVIDR THE & WORDS

ICHEEK FOR SECTOR AVERFLOW
JOPCREMENT REPEAT FOUNT

1SECTOR AVERFLOW 7
INA o
P1INCLUDE NEXY SEETAR

ICALEULATE CURRENY DTSK ADR, (RCDHAY

PARE 44

IWRITE MUSY RE LFSS THAN

1A BLOEK (RCWC TAKPS ,

12°S CAMPLEMENT NEB, VALUE,)
tPAINT TN RCCS

1SFT WRITE FUNRTTON

PSPT WARD COUNT (RAWE) ]
!PAINT MEMARY ADNRFSS Y0 A ZERD,
IPIC CINTO RECCAY

rEXIT



L-¥

RC1L VALleQY (FIXFD HFAD PISK)
COMMON SUBROUTYINF

e e e N
OB EP AL AW -2 DODAP>P AL MY =

~n
- S

NN
R

0002%2
(2 LELTY
Qo260
000262
np02s4
LLLLETYS
op0272
209274
nR02Te
nee3ng
(L'IL1.H]
noo3AY
nao3ne
no2310
npe312

200314

RTell MACRA VMA2=00  8«APReTS (2104125 PARE §

"SATTL COMMON SURRAUTINE

IRACOMN

PEOMMON SURRAUFINE USED Ry INTFRRUPY

PAND ENTRY ROUTINES

M197TM4 177446 RECOMLT MOV #RCCS, Ry
n31014 RCAOMNT RIT #RM, ARY
nR14m2 REN 18

nLo6Mp MOV (8®)#,Rp
fapmT1Y BR RCHOME
MIATAS {77816 18} MOV RCEQE,RS
nyaSde MOV (RRY¢, =l8P)
LITY ITY ASL (1.1

naK316 ASL osp

PEn31e ASL o8P

11 YIN RIS tROM) %, 8RU
naauay eMp «(R4Y,=(RYY
TR MoV (8P)+,0RA
88728 TaY (RR) ¢

e0n20p RTS »e

LPLLL <:§:> [ senprri][Lworn  sintEN] (EE)
[mpn31e RCSIZEs ,«RCSTRY

Apmany " wEND

IPT TD DSK CNTRL & STATUS RES
I1FTLL TN PRDGRESS

INA

1PAP RO . .
IFPINTS FILL OF BLK WITH @8

IPTR TO CUNRENT OQUFUF ENYRY

1GET BLOCK NUMBER )
1CALCULATE DISK ADNRESS FOR RCNHA
IUNIT, TRAECK® 4 SEFTOR ADDRESS)
10320882861 o o
1INKTA CURR, APR INC (YF NFENRER)
IPAINT TO RCPA . _

1SFT DTS ADR FOR TRANSFFR
1IGNORFE UNYT #

IRFTURN TO CALLE®

IMANTTAR ENTRY ADDR,

18TZF NF HANPLER



RC11 VOAl=dl (FYIXFD HEAD

SYMBOL TABLE

ABORTY » PQ0uOQ
HDERR » 0Q0QMY
PRS = 002240
RCCOMY 0RD2%2R
RCFR = 177444
RCLOF  MRPQ0eR
RCSYS MPOQMGRG
RETRY 0Q0216R
Ry X000
SP. wx0Q0Q06
peeV2 = n00QNY
. ABS, mp@gop
"00000
SYSHND Mo0316
FRRORS DETECTEN:T O

FREE CORF1 1%627, wORDS

RC,LPI/NITTM/CuRE

[ 1}]

o02
am2
-1} ]

LT
any
anp

PISK)

npPRYS
INHCA
PR?
RCPAQE
RCPILL
RCMN
RCTYRY
RESYS
2

WR

RTwil MACRN VMN2e09
= QMO0 G nasys
s AA100Q MONL OW
L LELY RCABRT

neMpLaR po2 RCes

[ LLYLEL] p®2 RCHOME
w 1774%4 RCRETR
s 0QMQ10Q RCVEE
= 0QMEPQ 6 AKSYS
sX0QM002 L) ]
. Q0103 7ERO

AeAPReTS 1P1M4126 PAGE Se

= 000000 G

. 0RAQ%Y4
200142R

e 177446
nQMy24R
ManE20R

s Q0210

= 0QMR0Q G

" X02N00T
nOME24R

en2
en2

PTSYS =
AFPFSFTe
RCEA ®
RCPA =
RETNT

RCSI7Es
RCWE =
RTRYFRE

809000 G
fgn270
177492
177442
707062R0
n0ns1e 6
1774%0
nen2np

L =XN00024

SINPYR

NRASLUNG

PXSYS = 7RQ0QORD G
PC_ X000007
RCEOMN  00P2SHR
RCAB = 1774%6
RCLA = 177440
RCSTRY. 000QARR
L 1)) s 0DNL0S
RO =%000002
Ry aX00000%
SINTEN® wwuwnwn G



BOOT VA2R=04

é= 2
1= 1
7= 29
10= 1
1i{=
1= 1

RY=il ROATSTRAP RTwili MACRA VMA2e09 AeAPReTS (1149104
TABLF OF CONTENTS

MARROS, GLOBALS
ASFCT

RONTSTRAP 1/0 PRIVER » RCYT
MONTSTRAP CORE DFTFRMINATION
READ MONYTOR, LONKUP HANDLFRS

REi OCATION LTST

RT=11 RANTSTRAP RT=ii MACRA VMA2=09 AcAPR=T5 11349104 PAGE |

LI LT saravs-: .
YTITLE ®OOT vA2aReny RT=l1 RONTSTRAP

T Y WS W W W T W W W W WM W W W Y W W W W W W

AT=11 RONTSTRAP
NECw11=0RBTA=D
FOPYRIGHT (CY 1978

NIGITAL PQUIPMENT CORPARATION
MAYNARP, MASSACHUSETTS Q1754

THIS SOFYWARE 78 FURNISHED UNDER A LYCENSE FNR USE ONLY

ON A SINALE POMPUTER SYSTEM ANP MAY RE CAPYED ONLY WITH

THE TNCLUSTON NF THE ARQVE COPYRYGHT NATICE, THIN SOFTYWARE,

AR ANY OTHFR COPTES THFRFOF, MAY NAT BE PROVIDFD OR OTHERWTSE MARE
AVATLARLF TO ANY OTHER PFRSON FXCEPYT FOR USE ON SUEH SYSTEM AND TO
ANE WHN AGREFS TN THFSF 'ICENSF TERMS, TITLE TO AND OWNERSHIP OF THE
SOFTWARE SWALL AT ALL TIMES REMAYN IN PIGITAL,

THE INFORMATTION IN THIS NORUMENT 18 SURJFCT TO
FHANGE WYTHOUT NNTICF ANA SHOULD NOT BF rostnuzn
48 A COMMITMENT RY DIGTTAL EQUYPMENT CORPORATION.

PIGITAL ASSUMES NO RESPONSIBILTTY FOR THF USE
AR RELTARILITY OF ITS SOFTWARE ON FQUIPMENT
WHYCH TS NAT SUPPLYED RY DYGTTAL'

dVIISI00g $9S4/TI0d 2°Y



0T-v

8007 VA2A=0}

-
-~ DO @R EN -

X N A
S 4TRSS AV

[IX R,
"N =

HuWuWwWwuHHMBOD YO
ARV I OSDPAT AL

-
o>

S W
- 0004

L X N NN
PR AN

s
» -~

200000

RTeil RONTSTRAP RT=1i MACRN VMA2=D9

P02000
204000
[l LI-EYY
177570

LILLLLL)
20000y
[LLILH
[ 1. L1120
memang
neapas
Aangng
[LLT-L}

WORTTL

aMEALL
,.\!h_.
SMEALL

MAPRAS, GLOBALS

eV,

LEXTIT,

BeAPReTS 11149104 PARE 2

LLOOKUP, \PRINT, ,SAVESTATUS

PR AR AR RRR AR TN ARA R TR AR A TRI AR NN TR RN R N .
) CONDITTONAL ASSEMBLY OF ROOT FOR SINGLE USER OR AF SYSTEM
«ITF NOF BF 1L T

) ALOBAL RFFFRENCES TO MANTTORE

SDVREC, SENTRY,
SSWPAL, SUSRLC,
RSTRNG, CORPTR,
KMON, KMNANSZ,
RTUEN, RTSIZE,
SYSLOW, TTIBUF,

2GLOBL
GLOBL
#GLOBL
26L0RL
sGLOBL
«GLORL

XL

RELLST

1 POLLOWING ARF BLOBALS

p1F NE
»GLOAL
GLOBL
pIFF

,6LOBL
.ENDC

PERM
ENPBLK
Jsw

SR

AF

RCNTYXT, RKBNDGY,
MSBENT, RMONSP,

‘V‘an !leswl

2a00
ap09
a4
177570

? REGISTER DFFINTTYIONS?

ROsX®
RieX!
RpuX2
R3eX%
RgeXa
RSy
PaXb
PCuX?

SINPTR,
SPNAMO

PKASSG,
KWILLS,
SWAPSZ,
TTABUF,

IDFFAULT TO SINGLE USER

AKMLAC, SMONBL, SPNAME, $8L0T

FILLFR, HWFPUS, HWPSPS, xMLOC
MAPQOFFP, GCOMP, RY;!SZ .
SYENTO, SYINDO, SYNCH, S8SYASSS
USRLOC, USRSZ, MAXSYM

FOR EITHPR BF OR SU SYSTEM, BUT NOT mOPH

AKANPR,
SWYPTR,

PPRADD,

? MONITOR OFFSET CONSTANTS

RKGNDS, ENTXT, PURGEL, PUDGER
SWAPTR, TTIUSR, TTAUSR, .SERTN

FPPIGN, MONLOC, TRAPLE, TRAPER

18TATUS WORD FOR PPRMANENT FILE
1STATUS OF END OF SEGMENT MARK
PADDRESS OF JOB STATUS

ICONSOLE SWITCH REGISTER



TT-¥Y

49
L1J
st
52
8%
sa
s
T
sy

ROOT VM2R=01

ASECT

OPAP>P AR AN~

R e
AP AR AN =D

19
2e
21
22

24
2%
26

28
29
3a
3
32
13
34
35

LLLLLT)
ne0%002

702034

aon30op
fenR74

17754¢
172000
177560
177862
177564
177566

RTa11 ROOTSTRAP RT={l MACRA VMAReD9

Qa0
fgop0Q
nomadQ
L. LIRN)

nemevy
[ LRUY

[ AL LY ]

CONFIG
SYUNTTY

LKES
GTaD
TKS
TKA
TPs
™.

s %00
274

177848
172000
177860
177862
177884
177566

WSATTL asrFCcT

" 1P NDF SRFSYS

a1F NDF SDTSVYS

o1F NDF SDPSYS

LI® NDP SDSSYS

¥ _NOF SRCSVS |

.1F NDF Sp¥Y8VYS

SRKSYSe 0

ENDE

ENDC

RENDE

»ENDE

«ENDE
L ASEECT
i = 0N
240
mR
;1! NpP

..., e« ® %

ROATIL  JIMP
WIFF
£880s
CSEBLIFe
rSRDs
CSUNTT™
FSNONEs
CSTR»
CSFRRAs
RXCS8w

JHARDWARE FONFIGURATION WORD
PSYSTEM UNTT #

1CLOCK STATUS REBISTER
1GT4B LOCATION
IKEYBOARD STATUS

y RUFFER
IPRINTER STATUS

oo BUFFER

AaAPRe7S 11149104 PARE 3

FTURN ON SRKSYS TF ALL OTHFRS ARE OFF

JIT MUSY BPF AN RK SYSTFM

ROATI
soxsyYs

RONT

1

?

[

20

a9

200
107000

177172

JBMOT VALINATION PATTERN
1BRANCH TO REAL BonY

1PUT THE JUMP BOAT_IN TRAP VECTOR
1START THE BOOTSTRAP

PSTART FUNETION
JEMPTY BUFFER

IREAD SECTOR

JUNIT | SELECTION
1RY PONE .
JRXDB TRANSFER REARY
IRY FRROR

JRXCS STATUS RPGISTER



¢T-¥

L1

37 p 18 PINITIALTIZ® BPT ANM Y0T VEETORS
3 fWORD  READS PON BPT INTERUPT TN READS ROUTINE
39 pWORD @ IPS SET TO 2
40 ) JWARN WATY JON TOT INTERUPTY TO WATT ROUTINE
49 UNTTRDI ,BYTE  £8B0+CSRD JREAD FROM UNIT B, SETS WEIRD RMUT 0K P8
43 ,svtr CSGO+CSROASUNTTIRFAN FROM UNIT ¢
4% " % 134082 USEABLE
44 nOATY Y MOVB UNTTRD (R@) ,RPCMDISET READ PUNCTION FOR CORREET UNIY
4% RETRYD MOV epPLC, 8P PINIT 8P WITH NEXT INSTRUCTION
46 MOV #200,R2 SAREA TD READ IN NEXY PART OF AQOT
4y eLR RO 1SFT TRACK NUMRER .
48 PR 28 10UT OF RONM HWERE, GO TO CONTINUATTION
49 ) ‘w70 1PAPER TAPE VECTORS
LT 281 MoV 8P ,R1 JSPT TO RIG WORD CAUNT
89 INE LT] )8FT TO ABSOLUTE TRACK 1§
LE] AR 3s PBRANCH TD CONTINUATION
L 3] , . " 1048 IPROGRAMMARLE €| OEK
L1 381 MOV #PC,R3 PARSOLUTE SECTOR 3 _FOR NEXT PART
5% RpT JCALL READS SUBROUTINE
L1 AR nonT2 PBRANCH TO CONTINUATION L
sy . w120 1L.OTS OF UNUSED VELTORS, (DRei187)
BOOT VA2R=Dy RT=11 BOATSTRAP RTel! MACRN VMOA2=09 AwAPR«TS 11129104 PAGE 3+
AsecT
S8 READSy MOV #RYXCS, R4 PR4 =» RY STATUS RFGISTER
59 MoV R4,RS ) !RS WILL POINT TO RX DATA AUFFER
(1. MoV (PeY¢, (RS PINITIATE READ FUNRTION
61 RDEMDI  ,WOARN @ 1GFTS FILLED WITH READ COMMAND
62 107 JCALL WAYT SUBROUTINE
63 MoV R, #RS ILOAD SECTOR NUMRER INTO RXDM
64 107 PEALL WAIT SUBROUTINE =
68 MOV RO, 0RS ILOAD TRACK NUMBER INTO RYDB
66 107 1CALL WAYT SUBROUTINE
'Y ) MOV #CSGO+CSERIF, #RGPOAD EMPTY RUPFER FUNETION INTO RXES
68 48t 107 PCALL WATT SUBROUTINE
69 TavR #R4 118 TRANSPER REANY_UP?
70 RPL RTYREY 1BRANCH TF NOT, SECTOR MUST BE LOAMED
71 Movse #RS, (R2)+ IMOVE PATA BYTE Tn MEMORY
14 nge ny JCHEEK BYTE COUNT
7% nGT 43 1LOOP AS LONB AS WORD COUNT NOY UP
74 eLR LH] IKLUDGE YO SLUFF BUFPER YP SHORT WB CNT
78 o AR a8 tLooP
76 WATTT  TST #RG 718 TR, FRR, DONF (IP? INT ENR CAN‘? BE
77 RED WATT ILOOP TILL SOMETHING
78 MY RETRY PSTART AGAIN IF ERROM
79 RTTRETI RTY PRPTURN



€T-¢

81 . 8 200 JSECTOR 2 NF RX AQAT

a2 BONT21 £MPB (RI)+, (RY) & JBUMP TO BECTOR %

&3 apT ) 1CALL READS SUBRNUTINE

Y] eMPB (R3)+, (RY) & 1BUMP TO SECTOR 7

as npT _ 1CALL READS SUBRNUTINE

86 ALY #CSUNIT,RDEAMD 1CHEEK UNIT ID .
&y RNF 18 1BRANCH IF BAOTING UNIT 1, RAst
a8 eLn LT 1887 TO UNIT O

89 191 Mov RO, (PCY+ 18AVE UNTT BOOTED FROM FOR LATER
$n RTUNTTS .WORD 0 _ ISAVE THE UNIT NERF

81 MoV #TRWAIT, w20 JLETS MANDLE ERRORS DIFPFERENTLY
92 JMP mony INDW WE ARE READY TO DO THE REAL BMOT
(1)

§a LENDE

RDOT VO2ReDY RT=i1 BDOATSTRAP RTeil MACRA VMA2e29 AcAPReTS 11149104 PABE 4

ASECT
1 ? POLLOWING ARE THF BONTSTRAP 1/0 NRYIVERS FOR EALW VALID
? ) SYSTEM DEVICE,
3 ) PALLING SEQUENCE? )
a ' RO = PHYSICAL BLNEK TO RFAD/WRITE
L] ! Ry = WORN POUNT
6 ’ R2 = BUFFER ADDRESS
7 ' R3,RA,RS ARE AVATLABLE AND MAY BE DESTROYER BY THE DRIVEN
a ! THE PRIVFR MUST 80 TO RIAERR IF A FATAL 1/0 ERRQOR OCEURS,
9 ) 1T MUST ALSO INVOKE THF MACRO SYSDEV
10 pMACRO SYSDEV NAME,VECTOR .
11 «GLOBL NAMEFINT, NAME*STZF IDFFINE SYSTEM DEVICE INTERRUPTY & SI2E
12 SYNAME = 0
13 L1RPE ¥, eNAME>
14 SYNAME = «SYNAMF¢‘ YaipnpwlR
1 LENDR
16 SYVEE = VERTOR P1T VECTORS TO THIS LOCATINN
17 » = SYVEEL 1AT THE VECTORS ) .
18 WWORP  NAME‘INT, 340 ? PUT A VECTOR TO THE SYSTEM HANDLER
19 . ® SYSIZE ) . .
FL] , VWARN  NAME’STZP JPUT HANDLFR STZIF WHERE 1T CAN BE UI8ED
21 . = 4p2 JAND START THE CODE AT 402
22 SYRITD s VECTOR / 27 JOFFSEY INTO BIT MAP FOR PROTEETION
23 SYRITS = "Bi10gnone I1COMPUTE ACTUAL RITS
24 REPT  «VFCTOR & 17» / & JIVPCTOR 18 A MULTIPLE OF 4
e SYRITS = SYRITS / 4 JSHIFT RIGHT 2 MORF AITS
26 »ENDR

27 WENDM SYSDFy



BOOT VA2R=24 RTei{{ BOOTSTRAP RTeil MACRN VMA2=00 A=APReTS 11149184 PARE 8
ASECY

PI-¥

{ oIF DF 8DSSYS RS SYSTEM.

] «SATTL ROOTSTRAP 1/0 NRIVER = RS{1

L]

a4 ) AS1Y DYSK HWANDLER

]

6 LIF DF MBUusSe

b SYSDEY N8, 1%

8 RSAS2 s 176310

9 sENDE

10 «IF NDF MBUSSC

11 ) SYSDEV NSs,204

12 RIC82u1720%0

13 LENDE

14 )

8 READY MOV RO,R4 1CNAPY BLOCK NUMBER
16 MOV #RSCS2,RY IPAINT TO REGISTERS
17 MOV (R%) , = (8P) 18AVE UNIT o

18 MOV #4m, PRS 1CONTROLLER CLEAR
19 Ry #2,16(R%) IWHAT 18 172

20 aNe 13 1178 AN RS04

21 ASL Ry PITES AN RSOY ‘
2?2 181 ASL R4 1CONVERT T0O TRACK/SECTOR
2% L3 {] ¥Ter, (sp) ISTRIP TO UNIT BITS
24 MoV (SP)e, (RY) 1887 UNIT
2% MOV RY,=(RY) 1SET BLOCK
26 MOV R2,=(R%)
27 MoV Ry, =(R%)
28 NER oRS
a9 . MoV #71,=(RS%) 160, READ, NO INTERRUPT
30 28 RIT #100200, 0R% IWAIT POR NONE OR FRROR
3¢ RED 23

32 AMY RIOERR 1800Y ERROR

33 RYS 114

34

3% WENDE



S1-¥

BOOT VAgRe0y RT=11 RNOTSTRAP RTmi{{ MACRA VMA2=09 A=APR=TS 11149104 PAGE 6

ASECT

1 I* DF  SDPSYS JCOANPITIONAL FOR RPL{! DISK
2 SATTL ROOTSTRAP 1/0 DRIVFR = RPYY
]
4 ! RP14 DISK DRTVER

) .
6 ) SYSDFV  DP,2%4 1OFVICE I8 _RP, IT VECTORS YO 284
’ RPCSe 176714 JRPL1 DEVICE CONTROL REG
8 RPNSE 176710 IRP23 DEVICE STATUS RES
9 RPPAS 176724 JRP2S NESK ADRS REGISTER
10 €s,G0s 200001 160 BIT YN _CONTROL & STATUS
1t CS,RDs  2000A4 IREAD FUNCTION CODE

19 C8,DRys 403400 TUNIT SELEET BITS

13 DS, ATTs 0QN3TY JUNIT ATYN BITS

14 .

15 READY - MDV RQ,RY JRY = BLOCK #

16 J8R R2,01V 1GET SECTOR NUMBER

17 . WORN 10, 1BY DIVINING BY 1D

18 MOV RY,=t8P) 1SAVE SECTOR

19 MoV RS,RY JSET NFW DIVIDEND

20 JSR R2,01V JAND COMPUTE CYL & TRAEK

21 "WORD 20, JBY DIVINING BY 22

22 SWAB Ry IPOSYITION TRACK IN HIGH BYTE

23 RS (8P)*, Ry 1AND INSTALL SECTOR

24 MOV #RPDA,R3 IRS «» DI8K ADRS RPFG

2% MoV R4, PR 1SFT TRACK & SECTOR

26 MOV RS, (RY) 1AND CYLINDER

27 MoV R2,=(RY) 1AND BUS APDRESS

28 mMov Ry,=(RY) P1AND WORD COUNT

29 NEB #RY IMAKF NEBATIVE _

30 nie #FCuals,DRY>,=(R3) JCLEAR ALL BUT UNIT #

31 RIS #CS,RD+CS,R0,0R3 § AND START READ

32 181 TsTB MR IWAIT UNTIL TRANSFFR COMPLETE

33 AP 18

34 ST OR% 1ANY ERRORS?

EL] AMT BRINERR 1YFS

36 MOVB ¥DS . ATT,eunPN8 JCLEAR UNIT ATTN FOR BOTH

37 rLRB e4RPNS !} OLD & EFO’D CONTROLLERS

38 RTS PC 1ELSE JUST RETURN

39

4n ? NIVINE RNUTINE FOR RP HANDLER,

a1 ? RS m RS 7 SR?, REMAINDFR IN R4

4»

4% pIVE eLR RS 1QUOT, = @

48 cLe R4 JREM, = O

4% ST n3 718 DIVINEND 07

46 REN 48 1YES » JUST RETURN.

4y coM RS 1QUOY, = = & SET CARRY

) 181 ROL R3 INORMALTZE



oT1-¥

49 RCce

L 1] 281 rROL
L] cMp
52 RLO
53 . sus
L1 I8 noL
58 ASL
56 BANE
124 coM

BOOT VO2ReOy RTell BOOTSTRAP RTe{! MACRN VMOAR«09

ASECT
58 a3 8T
se nYs
60
61 ENDE

B800T voa2Re=0y RT«ii RDOTSTRAP RTeii{ MACRO VMA2«09

Ry FSHIFT & SUBTRACY

RS IFIX QUOTIENT

RudPReTS (11491048 PAGE 64

(R2)+
R2

B«APReTS 111490108 PAGE Y

ASECY

[ +IF DF  SRKSYSISRPSYSSRCSYS @

?

3 217DF SRFSYS JCONDITIONAL FOR RP DISK

4 +SATTL BONTSTRAP 1/0 DRIVFR = RF§Y

L

6 7y RFty DYSK HWANDLER

4

L] SYSDEV RF,204 JOPVICE 18 RF, 1T VECTORS TO 100;

9 RFES s 177460 JCONTROL & STATUS REGISTER
10 RFWC ® 177462 JWARN COUNT
i1 RFMA ® 1T7464 IMPMORY ADDRESS

12 RFOA s 177466 JOTBK ADDRESS

13 RENE = 177470 1DYSK ADNRESS EXTENSION

14 RENG s 177472 JIDATA RUFFPER

18

16 READ!? MOV #RFDA,RY IPOINT TO NISK ADDRESS

1Y MOV Rg,RS JCOPY RLOCK NUMBER -
18 SWAB L] JMULYIPLY BY 2%6 70 GET WORD # ON AX8K
19 Mov RS,R4 18AVE HIAH ORDER DISK ADNRESS
20 cLRB L1 IMAKE DA AN EYEN B{ 0CK NUMBER
2t MOV RS, (R3)e 1PUT LOW ORDER ADDRESS IN CONTROLLER
22 81C #LTTT4Q,RG FISOLATE HIGH ORDER ADDRESS

2% MoV R4, (RS) $PUT IT IN CONTROLLER
24 TsT = (N3} JRPSET POINTER



LT-Y

26
27
as
29
30
3
32
3
34
3%
368
37
38
39
4@
41
42
43
4a
4s
46
47
48
49
L
51
52
53
sS4
L]
56
- 34

aplose

no0402
nRe406
200410
202412
200414
nRB416
#00420

8007 VO2B=04
BOOTSTRAP I/0 DRIVER » RCYY

L1
59
60
61
62
63
64
65
66
67
68
69
e

177488
1774482
1774088
177446
17748¢
177452
1774%¢
1774%¢

n1270%
NLmpny
20s30%
nRe30y
nRA30S
ninSey
26270

RT«11 BOOTSTRAP RT={! MACRA VMA2=029

177442

negnete

LENDC
LIFOF __ SRCAYS

! rCit D

PEANDITINNAL FOR. RE .(RS64) DISK

“SBTTL RONTSTRAP 1/0 NRYVFR = RCYLY

8K MWANDLE

R
SYSODEV RC,210

! RC1t CONTROL REGYSTERS

RCLA® 177440
RCNA® 1PY442
RCER® 177444
RCES= 177446
RCWCs 177450
RCCAS 177482
RCMN® 1774%4
RCHAS 1774%6

| READ?

]

LENDE
2 IFDF
SATTL

MOV $RCDA,RY
MOV RQ,RS
ASL RS

ASL L1 ]

ASL RS

MOV RS, eR3
ADD #12,R3
SRKSYS

1DPVICE IS RE, IT VECTORS TO 210

ILOOK AHEAD REGISTER
JDTSK ADPRESS REBISTER

IDTSK FRROR STATUS REGISTER
JDTSK CONTROL & STATUS REGISTER
TWORD COUNT REGISTPR

FCURRENT ANPORESS REGISTER
IMAINTENANCE REGISTER

JDATA BUFFFR REGTSTER

IPT YO DISK ADR REBISTER
1GFT BLOCK NUMRER

1CALEULATE DISK ADR FOR RECDA
P CUNIY,TRACK # & SFECTOR ADN)
1132 = Bm2ng) .

1IND PROPER DISK ANRR

IPY YO CURRENT ADR REG ¢ 12
/(INTERFACE TO COMMON CODE)

ROOTSTRAP T1/0 PRTIVPR = RKOS%

) RKDS DYSK WANDLER

RKNA
READ?
181
28

58

SYSDFV  RK,220

» 177412

MoV #14,R3

AR s

ADD #20,R3

sum #14,R0

APL 18

ADD R3,RM

MOV #RKDA, RS
RIC #17777,0R%

BIS RO, (R3)

8=APRTS (1149104 PARE Te

)JDPVICE IS8 RK, IT VECTORS TO 220
JRK NISK ADDRESS

JPHYSIEAL ALOCK TQ RK PISK ADD.
JENTER BLOCK # COMPUTATION
PCONVERT DYISK ADDRESS

IRA HAS NISK ADDRESS .
IPAINT TO HARDWARE DISK ADDR REGISTER
ILFAVE THE UNIT NUMBER .

IPUT DISK ADDRESS INTO CONTROLLER



8T-¥

14 JENDE
73 ! THIS CODF IS8 COMMON YO RKOS,RC11 AND RFiy HWANDLERS
14 202424 01M243 GG ) MOV R2,= (RS 1BUFFER ADD,
78 000426 OIM14S MOV Ry{,=(RY) IWORD COUNTY
76 000430 0Q%413 NES (RY) ) (NEGATIVE)
7Y 490432 612743 0Q0Q0S MoV #S,=(RY) )START DISK READ
78 000436 10%713 st T8YH (RY) IWALIY UNTIL COMPLEYE
79 020482 10M3T6 RPL s
80 000442 0pPSTLS ST trRY) JANY ERRORS?
81 009484 1@m40y AMY RIOERR JHARD HALT ON ERROR
82 000446 OQm207 RYS rCc
a3
8 JENDE
ROOT VA2R=01 RTel! BONTSTRAP RT=i! MACRA VMA2«D9 BsAPR=7S 11149104 PAGE 8

BOOTSTRAP I/0 DRIVFR = RC{Y

t +1IF DF 8DTSYS
! N
3 LSRTTL ROOTSTRAP 1/0 NRIVFR « DFCTAPE
4
5 ) RECTAPF RONTSRAP WANDLER
6 8yspfy DOT,214 JOFVICE 18 DY, IT VECTORS TO 2%4,
b4 TerM s 177342 JCOMMAND REGISTER
a TenT . 1773%0 )DATA REGISTER
9 TCsT ® 1773402 1STATUS REGISTER
10
11 READ! MOV #TCCM, R4 JR4 e» COMMAND REG
12 MgV #TCDT,RY JRY «» DATA RES
%] DTSRCHE MOV R@,RS ICAPY BLOCK NUMBER
14 LYVL) #2,RS 1SFEARCH FOR 2 FARLIER
L] ) MOV #400%,0R4 IRFVERSE, RNUM
16 28 RIT #100200,PR4 IWAIT YILL BLOCK FOUND
17 RED 23
18 pMY NTERR :
19 eMpP RS, 6R3 118 IT THE DFSIRED BLOECK
20 ALY PTSRECH INO,CONTINUE SEARCHING
21 DTFWRDE MOV #3,0Ry 1SEARCH FORWARD (RNUM)
22 'TY) (344 4100200, 8R4 ITWALY
23 REQ a8
24 AMY DTERR
2% cMp RQ, #R3 : 1DFSIRED BLOCK
26 RGT DTFWRD IND=SEARCH FORWARD
27 ALY PTSRCH INO=SEARCH REVERSF
28 MOV R2,«(RS) JBUFFER ADDRESS
29 NEG R1
50 MOV Ri,=(RY) FWORD COUNT



6T-Y

3
32
33
34
3%

37
L L]
3o

41
42
43

BOOT VO28Be0y

P
DOPAPT A AN -

-
-

- e g
rPARDAWY

PTas

DTFRR}

+ENDC

MoV
nyY
REQ
RMY
eLR
RTS
TsY
RPL
(323
ANE
AR

RT=iti BOOTSTRAP RTmi{ MACRA VMA2+09
BOOTSTRAP I/D NPRYVFR = RCH{

READ?

<18

a8y

TRWAITY

a1F DF
SSATTL

syspey

ASL
ASL
ASL
MoV
MoV
MoV
eLR
BR

SUR
e
sum
APy
eMp
ROL
L1VL)
mPL
ADD
mpY
mMov
INE
TsT
nGT
RTS
78T
REQ
RPL

#5, 00y
#100200,0R4
nT4
RIOERR
#Ra

Pc

HTCSY
RIOERR
#4000, 0R4
DYFWRD
DTSREH

IREAD
TWAIT FOR COMPLETINN

JREAN ERRORM
J8T0P NPT

IWNHAT KIND OF ERROR ?
INDT END ZONE

IREVERSBE?

ITHEN GO SFARCH FORWARD
JELSE SFEARCH REVERSE

B=APR=TS 11349104 PABE 9

s0x8Ys

1PLOPPY SYSTEM

BOOTSTRAP t/0 NRIVER = FLOPPY

DX,264

RO

RO

Ry
RO,=(8P)
RQ,RS
R0,R4

rQ

s _
#2%,,R3
RO

#26,,R4
28
"1“..'4
R3
#26,,R3
us
#27 ,.R3

(8P)+,RD
Ro

L3

18

PC

oR4
TRWAIT
RTIRET

1FLOPPY VECTORS THROUGH Ps4

JCONVERT BLOCK TO LOGICAL SEETOR
PLSN=BLOCK#4 ,

IMAKE WORD COUNT BYTE EOUNT

1SAVE SN FPOR LATEW ,
'WE NEED 2 COPYES NF L8N FOR MAPPER

JINIT FOR TRACK QUOTYIENT

PJUMP INTO DIVIDE | OOP

IPFRFORM MAGIC TRACK DYISPLACEMENT
PBUMP QUOTTIENT, STARTS AT TRACK
ITRACK®INTEGERC(LSN/26)

JILNOP = RUsREMILSN/26) w26

JSET C IF SECTOR MAPS TO =13
IPFRFORM 211 INTER|_EAVE .
PADJUST SEETOR INTO RANGE wi,w26
PCNIVIDE FOR REMAINDER ONLY) .

INOW PUT SECTOR INTO RANGE {26
JCALL READS SUBROUTINE

1GET THE LSN AGAIN

PSET UP FOR NEXT SN

IWHATS LEFT IN THE WORD COUNY
JBRANCH TO TRANSFER ANODTHER SECTOR
SRFTURN

INFW WATIT SUBRDUTINE, PRINTS ERRORS

JRETURN FROM INTERUPT



0¢-¥

32
33
34
3s
36
37
38
39

40

2004%p
2004%4
220487
098462
LELITY
200470
020473

B00T VO2R=04
BOOTSTRAP CORE

-
D OPACARAE AN -

. e e e o e
OPIPTADAN

LA R RN,
BdN - D

Mo NNR
o 8> A

[P A" ]
-2

700474
no8soe
200504
220506
202519
200512
200514
0gesie

neesae
0e0s24
opes3g
20083y
neesag

200544
2pP5%0
2p05%2
2e05%6

11417

nQa026Y
21%
{92
sy
108
117
L] ]

RT«il BOOTATRAP RT=il MACRN VMA2«29

nono24
12
1.1}
117
122
122

DETPRMINATINN
112037 177566
108737 177364
10m378
1e%710
”01374
fonpos
200000
200776
243706 A1P00Q
ni2700 OCEAROR
0127084 0QMY4RQ
812702 ona100Q
NO4TLY 177636
212703 00004
211308
22723 0EN62Q
20%013
LI LT

arr
114
240
122
e1e

Pakhien

LENDE

BINERRS J8R
wASCYZ

WEVEN

THTS MUSY PALL INTO BRIOERR wwwwww

RQ,REPORT 18SAY THAY WE GOT ERROR
<18»<¢122\TReT/0 FRROR\«{2>»

A«APReTS 11149104 PAGE {0

«SATTL MBOOTSTRAP CORE DFTPRMINAYION

REPORL1 MOVB

REPORTI T8TH
RPL
T878
BNE
RESET
HALT
BR

RONTY MOV
Y
MOV
MOV
Jan

J1TF GT Letl00Q,
MOV
MOV
MOV
LR

(ROY+,08TPR 1PUT ANOTHER CHARAETER OUT
exTps IWAIT POR TYPER READY
REPORY [ A
RO PANYTHING MORE 17
REPORY 1YES, LOOP
18TOP ALL NEVICES
w2 IKEEP HIM FROM CONTINUING
#10000, 8P 1SET STACK POINTER
#2,R0 SREAD IN SECOND PART OF BOOT
HEROOTIZuinwd@n, Ry JEVERY RLOCK MUY THE ONE WE ARE IN
#1000,R2 FINTO LOCATION 10an
PC,READ ,
LERROR IBAOTSTRAP BLOCK @ TOO BIG
#4,RS IPAINT TO TRAP LOCATIONS
#RY, RS 18AVE TRAP LOC
#NYM, (R3) e 18FT TRAF POR NON EXISTENT MEMNARY
RS

R N N NN NN NN NN N R NN RN R RN R R R A R A ]
THIS BOOTSTRAF CAN STIMULATE ANY SIZE PBRett,
'F LOCATION *pYDPLE? 18 A HALT, THE CPU . WILL 8YOP DURING THE BOOT,

SET THE TOP OF AVAYLABLE CORE A8 A MULTIPLE OF 1K,
TF THE SR IS »» 160000 OR IF FIDNLY 18 A BR i3 ,

!
!
'
? AN CONTINUE, THE TOP § BTYTS OF THE SWITCH REGISTER ARE USED TO
'
!
'

THE BOOTSTRAP WILL DO A NORMAL CORE NETERMINATION,
RN N R R N R R R N R R R R R R R R R R R N R R N R R RN AR RN RN A AR RN AN
13

FINDLE: BR

JCHANGE YO HALT FOR FIDDLING



1¢-¥¢

32
313

1s
36
37
1]
39
40
41
42
43
44
4%
46
47
4us
49
S0

s
53
sS4

%6
57

neo%62
200%66
nees72
POOSTe
LFLTY.T]
LL1-IY.H]
L T'1.IY.I'S
L TT-I3H]
200614
200616
700620
nod624
720630
#0634
nP063e
LYY ]
LI 1LY
200650
PP06%2
LELEY I
npR6%e
"B0660
LLLTYY)
000666
200672
000676

ROOT vo2R=0y
BOOTSYRAP CORE

58
59
(1
64
62
63
64
65
66
67
68
69
e
71
72
73

n00702

200786
000712
202716
200720
00722
no0B726
no0730
00734
200740
200744
"007Se
no@7%4
0027%6

21370
04270
nama2y
108419
fosenp
Ne270p
namaay
fR1409
LI LARE]
feNn77y
ALaT4Y
011367
1270y
210109
LI'La A3
AS2140
708737
LLERRY]
170000
as2110
aL1ns2Yy
N1a723
A1n%2y
pipY23%
162702
aea702

1775870 Mov PESR,R2
LI AN AR L} {4 #3777,R2
16M000 cMp R2,#160000
, BLO NXM
183 CLR R2

noseMe 28 ADD #4000, R2
160009 eMe R2,#160070

RED NXM

TSY #R2

BR 28
PO14%6 NXMS MOV #BELR, = (PR3
177162 MoV RS, 10
nR1604 MoV #TSLIST,RY

MoV R{,RQ
177546 TSY SHLKECS

(34} (R1)e,=(RDY
172000 TaY fR6TLUD

n1s (R1)+,8RD

erec

RIS (R1)+,0R0

MOV RS, (R3)e
nQn34Q Mov 4340, (R3Ye

MoV RS, (R3) ¢
LAY MOV *344,(RY) e
"ONRPQEG SUN #RTSIZE, R
fenoapn ADD #FILLER,R2

RTwil ROONTSTRAP RTmi!l MACRO VMN2e09 ReAPR=T7S 11149104
DETFRMINATION

162702 SUR (PeYe,R2

LI LI SYSIZE &

LT A 2 B G2

Ne2TN2  NQMRAOQE ADD #MAXSYH,R2
f2N227 M10Q0Q cMP R2,%10000
10%4658 BLO TOOSML
Aimeds Mov R2,=(8P)
P13700 0QMQ0Y MoV #{,RO

N2630p DFNDI ASL RO

Pe270p 0MOORN4 ADD *4,R0

1270y MO10070 MOV #1000,R4
212702 0R1634 Mov WBUFPR,R2
MOATHY 177432 J8R PC,READ
NL2704 0DL64Y MOV ¥BUFFB+1M, Ry
n1240p ) MoV (R1)#*,Rp
ngmyim MONF § MOV Ry ,R2

JGET SWITCH VALUE ‘
JISOLATE TOP 5 BITS (1K INCREMENTS)
1SHOULD WE DO NORMAL CHEEK ?

INO, USE THE SR VaALUE

JLOOK FOR TOP OF CORE

IMBVE TO NEXT 1K BANK

IREACHED 28K YET 7

1YES, B0 A 28K SYSTEM

INOG, SEE IF THIS LOCATION EXISTS
IKEEP BOING IF WE DIDN'Y TRAP
INONMEMORY TRAPS HERE

JBAD INSTRUCTIONS TRAP WERE

IBITS FOR CLEARING ON ERROR TRAPS

JICHECK PRESENCE OF CLOCK
PADVANCE L1187
J1CHEECK FOR DISPLAY

ICHECK FOR FPU

JRESTORE TRAP

1TRAP T0 4 I8 PR7, CARRY OFF

IRESTORE (1

ITRAP YO {m 1S PRY, CARRY ON

1R2 NOW POINTS TO WHERE WE WANT THP KMON
7ABUT IT AGAINST THE TOP QF CORE

PARE {0«

JRECOVER UNUSED CORE FROM SYi

PSYSTEM WANDLER SI7E PUT WERE
ITHIS WAY RECAUSE NO GLOBAL ARITH,
118 YT JUSY TOO TINY 7

1YFS

I1PUT LOAD ADDRESS ON 8TACK

INOW READ PIRST DIRECTNRY ALACK

PDIRECTORY STARTS AT o

IREAD THE SEGMENT

IPOINT TO START BLOCK WORD
1SAVE ADNRESS OF STATUS WORD



cZ-Y

74
78
76
77
78
79
80
81
a2
a3
84
8s
1)
ar
1.}
89
90
91
92
9%
94
95

96
97
98

S

200760
200764
PRBT6e
LI'12ad"]
Pe07Y2
neo774
LI LAY
eolonoo
LY -LH
721004
soipoe
aoiote
role1s
201216
eelo2e
221026
apiole
201034
epiole
epolode
eeipay
n010%0

201253

poiosSe
noloey
s0ie64
soiper
pelor?

001074
palice
p01103
Pe1106
20111y
”01114
PRL11Y
LI 2SEH]
egi12s

n32724
n01411
162724
281646
163724
038562
16271}
278273
a01002
asa14y
a01447
232712
901010
266200
063702
NeaT02
G1oeny
a0a7%e
216700
%0133y
00u06Y

e1s

102

117

117

124

123

212

2p4067
218
102
117
1o%
12%
Q4o
122
o%e

202020

LLLT-L]

LI RN
ranete
LI.L.I3Y

ap0ns74

177432
2t2
k1]
ede
116
122
134
eoe

177400
212
2%%
124
116
107
103
108

077
116
118
114
%6
123

077
116
4o
117
110
117
12

ToOSML1

RIT

BEQ

sum
JRADSD

LRAPSD

sus
JRADSD

ANE

L34.]

nED

arY

aNE

ADD

ADD

ADD

MOV

AR

MOV

BNE

J8R

ASCTZ

+EVEN
jse
«ASCTZ

+EVEN

WPERM, (R1) 4 118 IT A PERMANENY FILE?

18 ] INO. WE ARE TRYING TO FIND THE
fPeY+, (R1) IPILE  MONTTR,8YS, AS THAT 18
/MON/ i ITHE CURRENT MONTTNR,

trey+, (R1)+

/1TR/

tpe) e+, (RY)Y

/8v8/ \

18 JLAST WAS NOT ,8YS EXTENSION
w(R1),=(R]Y 1BNTH MUST BE 0

MONFND IFOUND THE MONYITOR

WENDBLK, (R2) 118 THIS ALL IN SEQMENT?

23 1YES, READ NEXT, IF ANY,
{RC¢R2),RO 1INCREASE START BLACK

wie,R2 IGPT TO NEXY ENTRY

BUFFBes,R2

n2,Rt PPOINT Ry TO NEXT

MONP

RUFFBe2,RD 1SEE 1P NEXT IS AVAILABLE

PFND IYES, CONTINUE
RQ,REPORT JHE AIN'Y BOT A MONITOR
«190¢1 20\ PNaND MONITR,8YS\ai2»

RQ,REPNRY ITHE 18 IN A TINY MACHINE
18592120\ PRaNOT ENNUGH CORE\«12»



£C-Y

BOOT Va2aR=0y RTell BOOTSTRAP RTeil MACRO VMA2.00 BuAPR=TS $1149104 PABE 11
READ MONYTOR, LOOKUP HANALERS

| VSRTTL READ MnN!TnR. LOOKUP HANDLERS
2 001126 Ni1602 MONFNDE MOV o8P, R2 JRECALL LOAD LOCATION
3 001130 Q2700 PonO02 ADD #BO0OTS2Z,RD 1BUMP R OVER BNOT RECORNS
4 001134 ogo0ae MoV RQ,=(8P) P3AVE SWAP BLOCK POINTER
5 001136 Q13704 MPNROQRG MoV #MAXSYH,RY 100 GLOBAL ARITHMETIC WERE
6 001142 168701 (7753¢ sus SYSIZE,R!Y JRY = MAXSYH=SYSIZE (BYTES)
7 001146 @6d701 DPMONAG ADD #FILLER,RY 1ADD AMOUNY OF EXTRA STUFF
8 0011%2 0pe20 ASR Ry 1 (WORDS)
9 0011%¢ O0pmyny NEG Ry 1(T0 SUBTRACT)
10 0011%6 06370( MONCOQE ADD #RTLEN,R!Y ILENGTH TO LOAD CWORDS)
11 001162 06279 MEMQAQG ADD #SWAPSZ,RD IRPOINT TO ALOCK WITH KMON
12 001166 ODaTST 177210 JaR PC,READ JREAD YHE MONITOR INTO PLACE
1% 201172 O12700 MR1%502 MoV WRFLLST,RQ SPOINT TO LIST OF THINGS TO RELOCATE
14 001176 012604 MoV (8P)+,RY IR1 = SWAP BL.OCK NUMRER
1% DRl2ne 013604 MOV sP) e, Ry JRG =» KMON IN CORE
16 D21202 169704 MENQEARG CITL #KMON, R4 JSUBTRACT LOBATION KMON WAS | INKED To
17 001206 OiMi64 MREMOMARG MoV Ry, SSWPBL (R4 IR4 » BIAS, SET UpP SWAP BLOCK &
18 001212 0262704 (ANQOQG ADD #SWAPSZ, Ry
19 221216 062701 (EMROQG ADD #KMONSZ,RY ,
20 0Qi222 omi1mi64 MEMOORG MoV Ry, SMONBL (R4) 188T USR BLOCK » .
21 701226 06043D 181 ADD R4,P(ROY e JRELOCATE A POINTER IN THE ASECT
22 001230 020027 MO152¢ (oA, 1d RO, wRELST2 JDONE YET 7
2% 021234 123774 BLO 18 IND ,
24 221236 0t200% . MoV (RM)+,RS IGPT POINTER TO THING IN MONITOR
28 0Q1240 O0en4ns EE Y] ADD R4,R% JBYAS THE POINTER
26 0R1242 O0em4tS ADD R4, ORE INOW RELOCATE THE WORD
27 001244 01200% MoV (RO)+,R% 1GET NEXT POINTER
&8 MPolade 001374 RNE 23
29 2212% NivTAR MEMO%4 MOV ##%4,R0O JPOINT TO MONITOR
k1
3t LIF DF  SRKSYSISPX4YS|SDP3YSISNSSYS JTHE RK,RX,RP,RJS0%/4 £AN BOOT FROM ANY UNTT
32
33 .17 DF SRKSYS 1CODE FOR RK
34 MoV SRRKDA, R 1GET THE RK UNTT NIIMRER
1} ROL Ry
38 ROL Ry
37 ROL ny
38 ROL R}
39 BIC *¥er,R 1EXTRACT IT
4n SENDC 1DP SRKSYS
41 I' nF 8DS8YS 1ICADF FOR RJSEX%/4
42 MQV PURSESI, Ry JUNIT # INTO R!
43 sIc *Fey Rt 18TRIP TD % BITS
44 «ENDE
45 <17 DF SpPSYS IRPLY
4s MoV AERPLS, R 1GET CONTROLLER STATUS REG INTO R{
4y nre #%Cut8,DRYS,RL  )STRIP TO UNIT NUMRER
4n SWAB Ry JUNIT # INTO BITS 2e0



vZ-v

49 LENDE 1DF SDPSYS

se

-3 “IF DF  SDX8YS 1FLOPPY

1] MOV RTUNIT,RY 1GPT BOOTED UNIT (STORED BY ROOT2)
53 ENDC 10F SDXSYS

54

5% ADD R{,DKASSG(RQ) IFTIX PERMANENT PSELDO=ASSIGNMENTS
%6 ADP Ry ,8YA88G(MOD)

1/ Move RY,8YUNIT# (RQ) §SET UNIT NUMBER WFr BOOTED

BOOT vO2R«04 RTw11 BOOTSTRAP RTeil MACRO VMN2=09 AeAPReTS (1149104 PAGE (&«
READ MONYITOR, LOOKUP WANDLFERS

ss

59 ‘ +ENDC IDF SRKSYS!SOXSYS|NPSYS

Y] ENABL LSA

61

62 0012%4 0%eT4D 0QEN332 APM3I0R nIs RCNFG, courrstnn) JSET HARDWARE CONFIGURATION
6% 001262 0ap%oN3 cLR R3 1COUNT DEVICE SLOTS

60 001264 012704 0QAE006 MOV #SENTRY,RY JPOINT TO SENTRY TABLE IN RMON
6% 0D1270 Qemuny ‘ ADD R4,RY

66 021272 @@%72) YTY] TarY tR1)» JRESIDENT DEVICE ?

67 001274 0Q1414 BEn LT ] INO, SKIP YT

68 001276 Demuay ADD R4,=(R1) PYES, FIX WANDLER POINTER

69 001300 0264127 0ANEMARE ATAITD eMp SPNAMDCR1), #SYNAME 118 THIS THE SYsTEM pEVICE?
70 801306 0Q1008 BANE ass IND

71 MQ1310 Nia36e CPNRAQRE MOV R3,SYINDO(RD) PSPT SYSTEM INDEX NUMBER

72 001314 Qem36p GAPNR206 ADD R3, SYINDO(RD)Y P (MOUBLED)

7% 0Q1320 011160 0PNOAQG MOV #R1,SYENTOCRA) JAND SETY UP SYSTEM ENTRY POINTFER
T4 001324 me%T2y asgy TsY tR1)

7% 201326 0NE%203 LT Y] INe R3 JANY MORE %

76 0213%0 022703 0RNRORG 71] #38L07T,RS

77 PO1334 0213% ANF as

78 0213% B62700 o0QMR1D ADD #SYBITO, RO JARD IN OFFSET TO SYSTEM VECTOR IN MAP
79 0Q1342 183760 0AQPMAL4 QAQAQ0QE6 1341} WSYBITS,MAPOFF(RA) JAND PROTECT 1T

80 AQ13%p N13704 0PMENQ6G MOV WSPNAME,RY JPOINT YO PERM NAMF TABLE

81 001384 OQem4ny ADD R4,RY B

82 MO13%6 062704 CQNANAG ADD #SNVREC, Ry )POINT R4 TO SDVREE IN RMON

A% 021362 013703 0PNQ0QG MOV #3SLOT,RY INUMRER TO LOOK UP

84 001366 013167 0EMR22 X1] MOV CR1Y*,PNAMP PFILL IN NAME TN LOOKUP

8% 091372 LLOOKUP #,8BLOOK ILOOKUP SYIHM, 8YS

86 BRL40D 103202 Ace 78 1GO IF THERE

87 201402 008024 eLr (RQ)# 1CLEAR RECORD NUMBER

88 001404 DPMUGS B8R LT ,

89 001406 781 LSAVESY 0, #CBL0K PSAVE STATUS OF THING

90 801414 01674 0MON204 MOV CBLOKe2,PRE 1SET STARTING RECORD

91 ®plu20 0pPm2y INE (RG)* IFTX IT

92 801422 o0Q%3Ny 83} NEC R3



SZ-Y

9% 001424 0Q136p BNE 68

94

9% 001426 0412737 (10N0PP 0QAQ44 MOV 4100000, A#I8W INOTHING TO SWAp

96 001434 LPRINT #BSTRNG PPRINT BOOT HEADER

97 ARL442 o0@uEAY eLR RO

98 001444 Oy272p MOV tPEY+, (RM) &

99 2021446 MymROY 34 RO,R®

100 2014%0 12720 MOV tPCY*, (RM) «

101 0014%2 JEXIT .

102 2014%4 033767 0QENQMQ6 MON120 nIY EKW11LS,RCNFS PAND IF HME HAS A CLOCK
10% 001462 @Q140Y RE® 109 ! WE TURN IT

104 Q01464 0O127Y) O0QALOQ 177546 MOV #100,08.KCS ] oN
10% 221472 00%00) 1081 CLR RO
106 001474 JEXIT
107 JDSABL L8P
108 , N
109 001476 0%y RCLR1 eLR oRY 1TRAP MEANS THIS CONFIGURATION NYEY
110 001500 QAQPMOAR RT? JUNTRAP

BOOT Vo2R-04 RT«11 BOOTSTRAP RTeil MACRN VMA2=P9 BeAPR=TS 11149104 PAGE 12
RELOCATION L1I8Y

1 «SARTTL RELOCATION LIST

2 001302 @anpPny RELLST! & PILLEGAL MEM AND INBT, TRAPMS
3 0Q1S84 0N01QD 10

4 M01506 0MOMPlQ 30 1EMT

% Ap1Sie Q20002%4 L1 1ANDRESS OF RMON

6 001%12 0QMQR6Q 6Q ITTY VECTORS

T 2018514 M2m064 64

8 001516 0onatOQ 100 1CLOCK VECTOR

9 AQiS20 Qen210 SYVEEL )SYSTEM DEVICE VECTOR
10 201522 0@m244 244 ILOCATION OF FPU TRAP
11 001524 Q@oeaps RELST21 USRLOC ILOCATION OF USR NOW
12 001526 0QAQ2006 SUSRLC JADDRESS OF °NORMAL® USR
1% 021530 0QARANG oeoMP JQUEUE COMPLETION
14 MD1832 0QpmpAR6 skMLOC PANDRESS DF KMON
1% 001534 0MEMEAQ6 TTIBUPF )TTY RING MUFFER==INPUT
16 00183 00006 TTIBUF+2
17 001840 0@NQMEG TTIBUF46
18 MD1S42 O0QMOIQG TYIBUF+10
19 M01844 MQODANG TTOBUF ITTY RING RUFFER==OUTPUT
20 001846 MPMOAAG TTOBUF#+4
21 00213%0 0ONRRALG TTOBUF+6 _
22 0015%2 0PMRMAP6 SYSLOW. JLOWESY USFED LOCATION
2% 0215%4 MEMRANG CORPTR#2 IFREE CORE L1S8T
20 201%%6 0QAQANG SINPTR IPOINTER T8 SINTEN IN RESIDENT WANDLER
2% 0Q1560 0QPARAPG SYNCH 1SYNCHRONIZATION ADDRESS



9Z-Y

FY)
27
28
29
30
31
32
33
34
38
36
37
38
39
40
49
42
43
44
4%
46
47
48
49
50
59

53
54
58
56
57

2R1562
PR156y
Poi%66
PoisTE
LI RL A 1)
P01%574
L.I'RY 317

naiedn
neled2
201604

epiet2

BOOT VO2Rely

RELOCATION (18T

S8
%9
(1

201614
eele20
poie2e

«IF NE BF

oIFF
nen2206
PemeRR6
LLLL-L I 1
LLLIL1d
aena026
nenRnR6
2pme006
.ENDC
roro0e

nampee BECNFGL
nEACRQG MENANEL AGADPR6 TSLISTY

! RLOOK
27182%0 BLOOKS

MSGENT
TTIUSR
TTOUSR
FUNGEY
FURGE2
BKBNDY
BKGNDR
AKBNDS
ENTXTY

RCNTXT
RMONSP
SWIPTR
SWOPTR
+SCRYN

TRAPLC
TRAPER
FPPAND
FPRIGN
MONLOC
1,C8W

AVAIL

”
 WORD

IRELOCATE AR BTUPF NERE

ILACS FOR TRAPS T0 4/19

JFPP SPERVICE FOR MONITOR
IWHERE USR WILL SIY

JSINGLE USER STUFF HERR
IMONITOR FREE Q POINTER

1END OF LISY

1BOOYT CONFIGURATION WORDeDO NOT MOVE
KW{ILS, HWDSPS,HWFPUS )BITS IN CONFIG WORD

1S THE ARGUMENT ARFA FOR AN RTe{i LODKUP,

«RADSQ

RTwlt BOATSTRAP RT={! MACRA VMA2eQ9

ngaplp @EA0Na FNAME)
DYS2TS .
CBLOKS

+WORD
RADSD
WBLKW

/8Y /

BaAPR=TS (1149104 PAGE §2+

n,a IFILENAME GOES MERE
/8Y8/
L] ISAVESTATUS GOES WFRE



LZ-Y

BONT VO2Be0}
RELOCATION LIST

& ul N -

BOOT VO2BeDy
SYMBOL TABLE

AVAIL & wwWaww
BLOOK LI-RY:3Y
BUFFR = 001634
DKASSGE #wdtwnn
FPPADDSE waWmun
1,080 = wnwpwy
KW {LL S waWiwn
MONFND @021%26
QCOMP & waWuwp
RCER » 177444
REWE = 1774%0
REPORY 000474
Ry XNp0Q0AY
sp wX0002006
SYRITSs 209014
SYSIZEs n0@704
TKS s 177560
TRAPLCS muWuww
USRSZ s wwtvawy
SMONBL® wwknhan
SSWPBLE wahwnn
. ABS, 002000

ne0Q0p

@ ooa®

2000

RTei1 BOOTSTRAP RTs{! MACRNA VMA2=00

201634
22ne02
202000

fopnony*

RT=i{ BOOTSTRAP

(1.1}
[IL.X

ERRORS DETECTED: ©

FREE CORE1 14985, WORDS

BCLR
soNnT
eaLOoK
ENDBLKSE
FPPIGN®
JSW L
LKCS =
MONLOCH
RCCA »
RCINT =
READ
RTLEN =

RT={1 MACRN VMN2e09

"R1476
*ens20
not622
np4e00
I
PonR4d
177546
T
177482
LTI
non4ne
WANR W

Re nX000002

RCATSJ,LPI/NITTM/CuRCSYS,BSTRAP

17757@
LTI
XTI
201074
701604
LI
T
LTI L

- N1 2]

. v
.,

+END

RCNFG
ROOTSZe
CONFIGe
FIDDLE
ETap =
KMLOE =
MAPOFFa
NXM
RCES =
RECLA =
RELLSY
RTSIZEs

BeAPReTS

np16a2
"00002
n0a300
"0n860
172000
(ST R 1]
(228 21}
n00620
177446
177440
P01502
Wl kW

RY =X22n003

SWAPSZs
SYINDDs
SYUNITs
TPA ]
TTIBUFe
SENTRYS
SPNAMOs
L.;Vl [

1T LT
JLLLL
"QaAR74
177866
R
T
LT
fenpny

+ 777 / 1000
= BOOTSZ w 1000

11149104

2R [~ N ] o

DO

ReAPRe7S 11149104 PAGE {3

PAGE 13«

BF L]
RDOTY
CORPTR»
PILLER®
HWNSPSs
KMON =
MAXSYHE
PCc ay
RCNA =
RCMN &
RELSTR
RT1182s
R4 (11
SYASSGe
SYNAMEs
SYVEE =
TS .
TTOBUF®
SINPTRe
SRCSYSs

LWL ]
e0ne3q
TITIT)
LTI
WRAANY
LTI
T
200007
177442
1774%¢
n01824
Wk
noneR4Y
LTI
fT03Y0
ne0210
177564
LTI
W
nonooy

o000

200450
TTITT
LITIATS
no16t4
(222 ] ]
(12127
L1 a1
sogoeR
1774%6

BINERR
BSTRANG=
DEND
FNAME
MWFPUSa
KMONSZ»
MONF
PERM =
RCNS =
RCSITES wuwuwy
REPORTY 000800
RO XA00000
ns 000008
SYRITOs Q00010
SYNCH # wawkww
TKB n {77862
TRAPERS® whmwunn
USRLOCE wwawwe
SKMLOCS awnwwy
S8LOT » wwwwww

fSoee O



8¢~Y

LP vVe2-23

- e
- DOPIPFPAD AN -

LRl R S
O PAT AL AN

NN
A - D

28 JUN=T8 PY=11 MAPRA VMA2=1®  14=APR=75 1@:0%s1{ PAGF 1

«TYTLE P Vp2=-n3 25=JIN=T4

TS WS WS W VS W W S YE G B YO T % YO W Y Y N W N e W W W W e W e

RT=11 ILINE PRINTER (LP/LS11) HANNLFR
NEC=11=0RTLA=D

PGR/FP/ARC/EF

MARCH 1973/FFBRUARY 1974

FOPYRIRHT (L) 1974,1978

NIRITAL FQUIPMFNY CORPARATTION
MAYNARN, MASSACHUSETTS 01754

THTS SAFTWARF T8 FURNISHFD UNDFR A LYCFNSE FOR USE ONLY

AN A STNBLF FOMPHTER SYSTEM ANP MAY RE CAPTEN ANLY WTTH

THE TNELNSTON NF THE AROVE CNPYRTGHT NATTCE, THIA SOFTWARE,

AR ANY QOTYHFR CAPTES THFRFOF, MAY NNT BF PRAVINED OR NATHERWTSF MANE
AVAILARLF T ANY OTHFR PFRSON FXFEPT FNR USE ON QUK SYSTEM ANP YO
ANFE WHN AGREFS TN THFSF | IFENSF TERMS, TTTLE TN AND NWMERSHIP NF THE
SOFTWARE SHALL AT ALL TIMES REMATN IN NIARITAL,

THF TNFORMATYON TN YHIS NOFUMENT IS SURJFCY TO
CHANGE WITHONUT NNTTCF ANN SHAULD NAT BF FONSTRUEN
AS A CAMMITHMENT mY DTGY.TAL ENUTPMENT CARPORATINN,

AIRITAL ASSUMES NO RFSPONSTBTILYTY FOR THF IISF
AR RFLYARII ITY OF TTS SOFTWARE 0N FQUIPMENT
WHYCH TS NPT SIIPPLTED Ay DTGTTAL,

YITANVH IOIAEA TIST/dTI €°Y



62-Y

LP

VR2«-03

O DAP A A -

o Wl Wl U TU U TU U RU R RN U &= e e e 5t o oo 0 e
V= 90PN AL AV FT ORI ANV

P5mJUN=T 4

ApmMAAQ
ILULT
LELULE)
Ll LT
ngnpng
nonaos
ARnpRe
apmany

177514
177516
fAeMmeNQ

APMENy
[l LIALT
aem27e
AQm340Q
LI LELD)

apMP1R
[l LI R-]
a1 4
faamaty

apmang

RT=11 MACRA VMARain 14=APR=75 10105311 PAGF ?

ROm¥?

RisX!

R2u%?

R3a%3

Ruu¥%4

R5=%%

SpaXé

PCeX?

t | INE PRINTFR CANTROL RFGYSTERS

LPS = 177514 ' ILINF PRINTER CQONTROL RERISTFR
LPR s 177516 1LYNF PRINTER NDATA BUFFER
LPVER n 200 JLTNF PRINTER VERTNR ANDR
JCANSTANTS FAR MANTTNR COAMMUNICATINN

HDFRR LI tHARPN FRROR RIT

MAONLOW = R4 PBASF ADNPR OF MONITOR

NFESFT = 27 tPNAINTFR TO N MANARER COMP EMTRY
PR7 ® T4n

PR4 T 200

7 ASPIT FONSTANTS

CR e 15
LF = 12
FF = 14
HT = 1]
fOLSYZ = 132, 112 CNLR

«GILORL  FQICNY



0e-v

LP

VR2=03

oW P> AL AN

mR04ng
npBYNM2
nPR4te

7oR410
nev412
ngB416

n@R420
700422
700426

(L1317}
neB432
f024%6

"T.LITY,)
200442
"oP4 a6

nQRA4%0

200452
nB24%6
PRB462
nRB46Y

nR0466
RR470Q
nRa472
nAR4Te

fR0S500
npA502
neaAsAy
7208519

n@es12
”@0S14
nEOS1e
npes22

npBS24
7@0526
nQR5%0
neos53y

25«JUN=T74

femanp
fpmanp

L LTATS
11masy
TLIEL]

apma4aq
ny2620
197283

npmedp
[ FARA-1]
fgmedQ

1omsSo@
31066
10m045

nemaun
m4s570
1gmoSe

npmaoQ

AIAART
AIMARY
r20en3
npn2ny

ny2703
PO140%
ISLELY
nemamy

Ri270%
fQ14Ty
AImI6T
npma0y

n1a72%
10044
ALm36T
famany

npsAny
[ L0
[SLELYS
nama2my

n77100

nprane

nS52760

(LA ]

LI L)

LI
1133

np0SnY

nOM3%8p

ngn332

LYY

RT=11 MACRA VMARwin

14=APR=78 1Q:DSs1) PAGF X

t THF FOLLAWING ARF THF PARAMETEPS FNR INTERFAFRE TN THF MONITOR “SFT’ COMMANND

: : «ASECT
. s 400

JWARA
2 +RADSQ
JWARM

1g, JMINTMUM WTDTH

IWYDTH /

€O ,WIDTH=4ARA>/DP+4pMQAR INO *NN’ QPTYON, NUMRER REQUTRED

INA CR a» NQOP RRAPT

nce /

<0,CR=UQM>/2+17pRBA PALLAW *NO*

INA FORMA => NNP FFQPT

JFORMG

<0, FNRMA=4M@>/2+10MARE JALILOW *NN°*

LPERRP=FRROPT#,

INQ HAN RY GOING TN FRROR

<O HANG=4QAM> /24100080 JALLOW *NO°

/HANG /
an
/e /

§FRR NO ILC, CONVFRT LC TMA UC

<0,LC=8an>/2+4100700

TEND OF 1| 18T |

A, WIRTHIMOV RQ,COLMNT INFW WIDTH TO 2 FONMSTANTS
Mav P@,RSTr+? _
rMP R@,RY YERRNR IF < 30,
TS PC
0.,cRt MOV (Pry+,R3 tNA NAF, 80 SFT TN Np CR
BFQ RSTC=CROPT+,
MOV R3,CROPT 1SFT CRP APYTINN
RTS PC
n,FORMALMOV (PF)+,R3 PSFT TA DO FARMFFENS ON RLOCK &
BFOQ ALKQ=FFOPT+,
MoV R3,FFQPT
RTS pC
N,HANG? MOV (PeI+,RY ISFT TN HAMG
BMI RET=FRAROPT+,
MoV R3,ERRNPT
eTS rc
0,10t rLR R3 JFAR *LC*, LFAVE LNWFR CASF STUFF ALONF
NOP
MoV R3,LEOPT
RTS PC



TE-Y

LP

VR2=23

DPAT A AV~

nolamg
nolan2
”piong
nolene
rololo

natote
nalot1e
"oip2e
Poload
noinle

noL1o%4

no103e
nolo4
nelpuy
n210%Q
n010%y
ne10%6
no1060
npipe62
201064
"Q1Q279
nplo72
nalaT4
no1076
neliee
npline
rQA1106
nplie
mralyte
n01114
nal11e
npl1122
nel124
"o11%0
ngl132
"Q1134
”"211%6
mrolidp
mRliug

2SmJUN=T 4 RT=11 MACRN VMMDayn {4=APR=TS
#pIpog e —.-mrm

T |LOAD POINT
nemanp LOADPTY ,WNRD LPVEEL
aamaty «WARD LPINTe,
npn20Q LWARD PRY
ARMaRQ LPIQGFt ,WNRA [
foARAR LPPQF: - WARN [

$ FNTRY PQOTINT
ALATRL 177772 LP? MOV LPrQF,Ry
PRAIHL  PQMA0E A8 s (RY)
1071158 RCE LPFRR
A5273%7 opmifp 177514 RIS #1000, 0% PS
npmany RTS8 PC

1 INTERRUPY SERVYCF
nams o2 RR L PPONE
nQ4sTy? men242 LPINT: ISR RS, 8TNTEN
nemisQ JWORD =C<«PRY>RPR7
PLaTO4 177740 MOV | PrQF,RY
nER73T 177514 TST oniPS
\ LR FRROPT? RMT RET
np=R1P4 TST R4+
2147 FFAPTs REN ALKQ
nAR7NY TSY (R4)+
10%737Y 1775%4 LPNEYT? TSTB e PS
187033 RPL PET
108327 AS|.B (PEY+
nampop TARFLG! ,WARD n
n@10%7 RNF TAR
113408 TGNORE? MQVB O (R4Y*,R5
fur705 177670 AIL #177600,R5
20%714 TST (RY)
AQ14hy REN L PRONE
nesei 4 INE (R4)
neR244 TNE =-(R4)
12M527 NanQ4p FMPB RS, #40
107%417 RLA FHRTST
1227108 onpejdp rMPB #140,R5
1aTan2 RHTS PCHAR
162708 SUR (PC)*,RS
ApMRdp LCAPT: 4D
na83PY PCHART NEC (Pr)+
opmany <:::}———1roucutz LWARN _ r01817]
LI ERATY RLY TGNORE

10105211 PAGF 4

PADRDR NF INTFRRUPT VFCTOR
$OFFSET TO IMTERRUPY SFRVICE
IPRINRTITY 7

IPAINTFR TR LAST @ ENTRY
tPNINTFR TN CURRENT R FNYRY

R4 POTINTS TN CYRRFNT N ENTRY

SWNRD COUNT TO BYTF CDUNT

tA RFAD REMUFST T8 ILLFGAL

JCAUSE AN YNTERRIUPT,STARTING TRANSFER

1ARDRT ENTRY POINT
PINTN SYSTFM STATE

JR4 w> CHRRENT QUENE ELEMENT
tERRNAR COANPITINAN?

JYFS=HANR TI!| CORRECTED

118 THYS BIOCK p?

tYFS = OHTPUT TNTTTAL FQRM FFED
$AND POINT TN ADRS OF NEXT CHAR
JRFADY FOR ANOTHFR CHAR YET?
tNAPF = RETURN FROM TNTERRUIPT
PTAB IN PRMGRESS?

$1BRANCH TF DNING TAR

PGFT NFXT FHAR (TF ANY)

17=BTT

1ANY MORF FHARS?

INAIFINISHFD

PYFS, NECREMFNT COUNT (IT WAS NEGATIVE)
1BIIMP RUFFFR PNINTFR

IPRINTINR CHAR?

INN=Q TFSY FOR SPPCYAL FCHAR,

tLNWFR CASF?

INA
1YFS, FONVFRT TF DFSTRFD

TANY RNQOM LEFT ON I 'INE?

1# OF PRINTER COLUMNS LEFT

INA MORE RAOM NN LTNF,NON’T PRINT FHAR



A%04

LP

49
50
51
52
S3
54
5%
56
s7

[T 2R
rel1de
na11%0
ng11%2
nel1%6
nat160
71162
neli6e
natiiTe

Ve2e03

sa
59
60
&1
6?
6%
64
65
66
67
6r
69
7
71
72
A
T4
7%
76
1A
74
79
80
a1
82
8%
84
8%
86
8y
an
89

"ei174
73117
nolam2
feleny
ngi210
nolet2
nela2p
na1a22e
ne123p
n01236
nelayu

nete44
relade
f01e2%0
neg12%4

fgicse

f@al262
ngLase
n@127¢@
fR1274
np1300

ne1304

106327

[ LY LK

"R142%

11m537 177596
L2} ]

207

120527 mom@ty
ne142p

120527 o0mpopte
25aJUN=T4
MR14ne

124527 MeMQ1S
npmadnp

12m527 rprO1Y
mp1333

M137TAT DpMRNY
M12767 0poany
nEM7SY

AL6TAT 177712
fL2705  MpmR4Q
nem?3s

npKady

m2r424

f{3708 pm@l1y
APMTSe

A537%4 nMEMARNY
ne%e37 177514
ALaT0g

NeA7M4 177520
ALRTINE  0RRQRSY
nEmLTs opm2TaR
femanp

ApM3INg

ngepoy "’

ASIB (Pr)«
TARCNT! ,WNRN [

REN RSTTAB
PC1t MOVA PS5, e# Pp

RR |LPNEXT
RET: RTS PC
CHRTSTI CMPR RS, #HT

REN TARSETY

cCMPB RS, #LF

PTell MACRA VMM2w10

JUPDATF TAR COQOUNT

IRFSFT TAB
IPRINT THE CHAR
PTRY FAR NEXT CHAR

118 CHAR A TAB?
1YFS=RFSFT TAB
P18 YT LF?

f4=APR=TS 10105311 PAGF 4+

REN RSTC
CMPB RS, #CR
CRAPT: NQOP
G)\ rMPR RS, #FF
ANE 1GNQRE
177720 |RSsTC! MOV #COLSIZ,COLENT |
1777122 RSTTABR! MOV #1,TARONTY
RR PCY
177636 TARSFTI MOV TARCNT, TARFLEG
TAR: MOV #40, RS
AR PCHAR
RLKQ! INF =(RY)
fMP (RUY+, (RAY+
MoV #FF,RS
AR RETC

LPFRR: RIS
} APFRATTON
LPNRONES LR
MOV
ADD
MOV
IMP
INTEN: @
LPSI?E = ,=

+END

¥HNERR, 0= (94)
FOMPLETE

o¥1 PS
PC, R4
¥ PCRE=,, R4
e#MONLOW, RS
SOFFSET (RSN

LOADPT

1YFS«RFSTORE COLUMN COUNY

118 1T CR?

PIGNARF UINLESS MADYFTED

118 IT A FF?

tNA=CHAR I8 NON=PRTNTING
JRE=INTTTALIZE COLIIMN FOUNTER
IRFSFT TAB COUNTFR

PPRINT THE CHAR

$SFT UP TaR

1PRINT SPACES

IMAKF SURE WF NANLY COMF HERE ONCF
JPAINT TN ADRS QOF NEXT CHAR
SPRINT INITIAL FF

1SFT HARD FRROR RIT

ITURN NFF TNTERRUPY

1ARDR AF CRE IM R3

PJIIMP TD B MANAGFR



€e-v

LP  VP2=03
SYMBOL TABLE

BLKD nO1244
CROPT  nmo12m2
HT = MooR11
LOADPT moio00
LPERR  0@12%¢
LPSIZEs 720376
0.FORM Mp05AP
PCHAR 721136
RSTC P@1212
R3 £X000203
TARCNT m@1146
. ABS, 0Q1306

7000

FRRORS DFTECTEN:

FRFE CNRE! 18070, WORDS

+LPI/NITTM/CuLP

RTeit MACRA YMAR=1N

PSeJlIN=T4

CHRTST 0@1162
FRROPT Mp1QS4
TGNORE Mp1100
LP ag1012
LPINT PR103s
LPVEC = ApmR0p
n,HANG 0QM512
PCt np1152
RSTYAB MQ12270
Ry 4020004
TARFLG ®B10QT4

e

eny

FOLCNT
FF ]
TNTEN
LLPR L]
| PLQF
MONLNWe
n,LC
PR4 ]

nR14p G
nanaty
ap1304
177516
retone
nEMAS 4
PBMSP 4
0200

RO XAAN27Q
RS =XPRMAQANS

TARSFT

ng12%o

14=APR=78 tQ1@5311 PAGF 4«

roLSTZ:
FFAPT
LCOAPT
L PCQF
| PNEXT
NFFSFT=
N WINT
PRY -]

MmNy
XLy
7Q113%4
I
731064
rar270
TLYLT)
npn34e

Ry YL LR
sp 2XQAMANG

R B MQMQLS
HDFRR & MQMQPMY
LF = Apmp1e
LPPONE MOt262
IL.P8 = 177514

n,CR nOM4g6e
PC 2XAQA0A7
RET nR1160
rR2 sXAQAQN2
TAR na12%6



ve-v

CR,SYS RT=11 MAPRA VMMARayn

DN A AU -

LV VI VIF VI VI VI TN T R VIO O DN PN N DA
PNPAC AV I OIDINPTPASAY-= IO

CR,SYS RT=11 MAFRA VMAR.iN
MISCFLI ANEDU® FQUATES

nganmp
' LELT
APAZH2
AQMRACY
ramamg
LI
LY T
nampmy

OB~NP A AVY-—-

- -
v -3

PR=APR=TS 161003 TA PAGF 1

PR=APR=TS

T N W W e W e W W Y W W W W T W W W e e e e e W sy e e

LTTTIE rR,8YS
PTait FARD RFAPE® (CP11) WANNLFR

NEFrelfaOfRHA=D

FCRP, AR(, RRA
MARCH 1975

FORPYRIRKWT fCY 1974, 197§

RIAITAL FRUIPMFNY . FNRPARATTON
MAYNARD, MASSAMHIISETTS Q1754

THYS SAFTWARFE TS FURMIQHED (INDFR A | TCFNSE FOAR LIRE ONLVY

AN A STNRLF FAMPIITFR SYSTEM ANR MAY RE CAPTEN ANIY WTTH

THE TNFLUSTON NF THE ARQVE CNPYRTGHT NATTCF, THIS SOFTWASE,

AR ANY OTHFR CAPTES THFRFQOF, MAY NNT RF PRAVIDFD OR NTHERWYSF MARE
AVATL ARLF TO ANY OTHFR PERSQON FYXFEPT FAR USE ON &UFH SYSTEM ANR Tp
ANF WHA AGRFFS TA THESF | IFENSF TEPMS, TTTILF YN aAND AWNMERSHIP NF THE
QOFTWARE SHAIL AT ALl TIMFS OFMATN IN PRIRITAL,

THF TNFORMATTON TN THIS& AQFUMENT I8 SURJECT Tp
FHANRE WTTHOIT NATTCF ANN SHAYI N NPT RF FONSTRIEN
AS A CAMMITMENT RY DTIGTTAL ENUTPMENT CARPORATINN,

NIRTTAL ASSUMER NO RFSPAMSTRYILTTY FQR THF UISF
AR RFILTARIITTY OF TT® SAFTWARE OM FQIIIPMFNT
WHYCH TS NAT SUPPLTEN BY DTIRTTAL

1htMIXR PAGF D

+SATTL MISCF I AMENUS FQRIIATES

RpeX?
R1e¥%t
RPRx%?
PleX?
Ryx%4
REg%&
Spe%h
PCaX?

rFARD RFAPRER rANTROL.

YdTANYH dO0IAFA TT¥D ¥°¢Y



SE-V¥

npn23p
177160
177162
177864

mAmAMg
AAMESY
npmaTn
177776
nem3dn
ANA3IAN

npmy 15
LU LUVIW]
APARLQP
LY

naAaRe |
PANAND
ARAYOQ
aApmnp
npmLMQ
apIemn
nparon
ARanPp
Aympnp
pANAAPR
AYAAMQR
13000

FRVECT=2T0Q

CReT=17716M
FRRI{R177162
CRR2E177164

! rONSTANTS FOR
HPFRRg 1
MOANLNWeS4
AFFSFTe27
PS2177774
PRY=aT4N

PR&ZINNM

PINTFRRUPT VFLTOP

tCARD READFR STATUS PERISTFR
'DATA RUFFFR 1

IDATA RUFFFR 2

MONTTOR FOMMIINTCATYONS
THARN FRRNOD

IBASF ADPRFSS NF MANTTNR
SDFFRET TN HANPNLFR RFTIHRN
TPROMRAM STATUS wWORD
IPRINRTTY 7

IPRIORTTY &

! ASPTT FONSTANTS

fRas1%
| Fai?
SPACF=AN
FOFz4y

ICARPTIAGF PETURN
ILINF FEFD
1SPAFE

TEND OF FII E

3 FARD RFANER FONTROL ANM QTATHS ATTS

READ=]
FJECT=a>
TNTERgIONM
c01D=200
READYzUNM
RUsy=1ap
ONIE TNa2am0
DATLAT=UOQM
MOTINsIARQA™
HORCKz220M
PAPDNZARAGH
FRRzINAAMQY

JRFAD

JETEFT CARM

S INTFRRUPT ENAR|F
PCALIIMN MOME

FRFADY

1BLISY

#ONLTNF

1DATA | ATE

IMATTON FHECK (FM11 ONLY)
IHNAPPER FHECK (FPM1Y DNLY)
1CARD NONE

tERPRNR



9¢-v

CR,8YS

PNA>rAS AV

RT=11

naRyne
naRum2
rR@yNe

fRR41Q
np0412
nRR416

npRa2g
mpR422
NpAu26

LT T
UL T
nad4dse

"pA440
@AYy
naRyUe

LI d Y]

MARRNA VUMA2atM
CONFYGURATION SEFPTYAN

nparop
ngmurp

remLny
myo6Ty
10225

nPAGAT
aATT7TRY
1a90%2

LT TRLT
A31066
1e0nn3y

agmm!a
my24%y
agmndy

Ll LIy
LELARE]
1teenT2

nEmErn

n22600

ASN5MQ

LELY A0

ny7500

[LELY-AN7]

2A=APR=TR 14:AM1%8 PAGF T

LSRTT

FONFTGIIRATTON

CEFTTOM

1 THF FOILLAWTINR FORE TS FYXECITED WHEN A "SFT CR" CANSOLE CAMMAND I®

'

RIVEN,

CASEFT

.UM

'
!

RET fR [NOY

FRIF

tCANFIRURPATINN ARES

APPENN/DN NOT APPEND CARRIAGF RETUPN/LTNF FEFD TN FACMH CARPM TMAGF

RR
<RADSD
TWARD

QET FR [NOY

JH*LXPRLF=XrRIF
/CRLF/ _
<CRLFallpmy /241

TRTM

apopm

TRTM/DM NOT TRTM TRATI TNR R_ANKS FROM fARD IMARES

AR
+RADRD
LWRRRP

fET FR (MO

o+ XTRTM=YTRTHM
/TRIMy ‘
€TRIM=dp?> /24

HANG

maap,

WANG/RFTIRN WARPD ERRNR TF READFR NAT RFARY AT START AF TRANSFER

aNF
LRADSA
LWARN

ET FfR CADF
SET TRANSLAT

LWARA
RADSQ
LWARN

QET FR [NOY
TRANSMTT EAC

LWPRN
LRADED
LWARD

LWARM

o+ EPRAR=XHANG
JHANR Y )
CHANR=UPAY 72+

rzsY Mm2A PPQY
TOM Y0 @26 (M29)

Ao,
/CADF/
CCADFalpn> /244

TMAGF
H FO)UMN A% 12 R

NOTMAG=IMRASF
JIMARE/
CIMARF=dAn/2+

[

apmpm

MANRE

Ll Aol

TTS (ONME WPRN/FONUMNY

1ARQMQ

tENNaOF=APTINANS FLAG



LE=Y

fR.SYS

RT=11

MAPRMA VMAQeyn

CONFTGURATION SURRAUTINESR

OB RS AV—-

naB4s2
neR4Sy
nPBase
rp04A2

nad4ky
npPube
NnALTQR
mp04T4

npRaT6
ngoeseQ
npasng
npR5NE

nRAS1 B
mpA512
"pRS1e
rRR520
fpNs22
NARRA Y
PRGBS TN
YRSty
LR T
nRAS4Q
ﬂ@ﬂsae
npasL4
nEASSA
npags?
nEASS4
nAASSe
PRP5AR
LY )

AANS6Y
npA570
naAs72
PpRPS76
npRena
naReRe
Pe0p12

n@efe14
72p%616
00622
nENeR4
apl626
ngReT2

ny270%
apma4np
LKLY
mamany

LA ]
opama4n
LA R LY
apma207

AN Ak
npmeup
n1m36T
apm2my

nEmIog
fe2T70
167300
1AMUNT
[J R Noh 4
MeATMY
n2r717p
L AN L]
npmeky
2pmany
ALmINY
NePTAT
nARPAR
152100
an177y
RemIOQG
112140
nAMTI Y2

ReAPTOY
neMTMI
m12367
AL2367
n123h7
PEOIAY
namamy

XN LE)
1145737
apmamy
LY
f1LTTRY
LI LYLY]

npmade’

npmexh "’

LY AT

npmyR2

nANASQ
"pMRN3

177716°

200010

LIRS
npm1Sy’
rpMIRe’
pamyeg’

n"eM306

177162

FRIFS

TRYM?

HAMG?

ronEe

FOMEYT?
SETCOAD?

|SeMNF e

TMAGF:

TMRASE !

NOTMAG:

YATMARG:

SA=APR=TE 1aeAMs3R PAGF 4

LSRTT|

MOV
NOP
MoV
PTS

MOV
NOR
MOv
PTS

MOV
NOP
MOV
pTe

MRV
ADN
SR
AMY
AgEN
ADN
rMp
REN
fEF
RTS
MOV
ADN
re
BISRK
REN
ADN
mMova
RR

ADN
ADN
MOV
MOV
MOV
MOV
RTS

REN
MOVA
LWARD
RR
MOV
WWARD

PONFTGURATTION SURRAYTINES

rPrY)e,R3 tNAP TF POSITIVE
R3,XFRILF FENTRY PNINT FAR NN
PC
(Pr)+,R3 INAP TF POSITIVE
RP3,XTRTM JEMTRY PAINT FAR NA
PC
(Pr)+,R3 INAP IF POSITIVE
P3,XHANG TENTRY PAINT FAR NM
PC
PC,RY tRY1 => CNANVERSTON TARLF FOR MDA
HEFTA26=-,,P1
RZ,RA 1026 RFQAUESTFP?
rFONEYT INAPF « FRROR (NNTE THAT C IR SETIY
SETCND 1YFS, TT’S @P¢6 = GM PO IT
#SFTADPORSETA?H,R1 TRY => CANVERSYON TARLF FOR M29
#3,R0 tWwas IT mpa7
SETCND tYFS
tEI SF AN ERRMR = INDTCATF SUMH
PC $ANMD RFTIRN TP KMAON
PC,RT IR? => CHARAMTFR TABIE
#CHRTRI =, , 0%
1] PPYCK 1IP NFXT NFFSFT TN RF MANTFTEN
fR1)+,Pp t FROM APPRNPRIATF TAR|F
FONEXT tALL DNNF INATF: ¢ I8 FLFAR)
R3,RM JPAINT TN RYTE TN MONIFY
fR1)+,8RN7 $AND PILUR TN NFW VALYE
SCADF ICANTINUF
#YAIMAGaNOTYMAG,RT $PAINMT TA "YFS" TAR|F
PC,R1 tEMNTRY FAR napnn
(RI)+, XMy $AND PATCH HANPLFR

fRT)+,X M2
fRT)+,YTM242
fR3)+,YIM342
PC

LANXTCHR X TM1
FHRTRL =X TMD (R5Y, 8 (PCY+
)]

LANXTCHR=YX TMI
GHrRRY,0fPr)

-]



8E-V

CR,8YS
P29 CONVERSTOM TARLFS

nas,

“
VOBIPTAS A Y-

RT=11 MACRA VMRARain

Q634 eve
nPR63e 713
"pde4n 215
[ 1LY ¥} A1e
rpledy 71y
"pPede as
LI d 1Y) 284
npReS2 nss
nANLSY NSea
n@ReSe R8T
fPReAD 112
LT Y] 118
AL 116
nPPsbe 117
700670 209
(LIS F 212
PeReT4 214
2p06T7e 215
Ll A Ao ] 214
PAATA2  Mpmanp
nQATRY “12
naRTAe "R
nanTLa 215
naNT12 [ ANY
L1 AR »17
("1 ANY LY
nau7TAQ ¢S4
Ll ] AL
ngR724 LT
200724 r=y
 ApA 7 T0 112
naR7 32 115
fnART Ry 116
LTIOATS 117
neaTun 200
"naYL2 212
npAT4Y 214
nE@74de 215
20PI%a 216
rARTIS2  MpaAnan

1%7
78
1%
pay
1%
273
oSa
g4ap
243
n4s
B72
123
276
Gle
PRy
ary
PRy
178
274

ate
a43
Qa7
aTs
Bap
1%
Q245
127
276
277
135
NS
ars
1%
Q46
133
074
n=e
2s3

P8=APR=T78 1610M:TR PAGF &

LSRTTL

M24, NP9 CAMVERSTON TARLFS

1 M2k FONMVFRETAN TARIE

RETA241

SETN29:

LITF GF

MONTIFIFS CHARAFPTER TARIE TN ACPEPT @26 KFYPUNCH rFONRES

LBYTF
«BYTF
WRYTF
LBVTF
WRYTF
WBYTF
"RYTF
LBYTF
LBYTF
;BVTE
JRYTF
LRVTF
LBYTF
LBYTF
JRYTF
LBYTF
LBYTF
LBYTF
“BYTF
LWARP

m3,137
myT, M8
m18,136
M6, 27
"17,134
a5, 07%
n54, M50
PS8, M42
M5k, My
n57,R4s
t{3,m72
115,13%
116,M74
117,744
20m,m5%
212,777
214,781
P18,13%
Pik, 274
”

m29 CANVFRETMN TAR!E

MORTFIFS CHARAFTFR TARIE TN ACFEPT AP9 KFYPUNCH rONRESR

JRYTF
WBYTF
JRYTF
VBYTF
LRYTF
LRYTF
LRVTF
LRYTF
WBYTF
WRYTF
LRYTF
LBYTF
LBYTF
LBYTF
LBYTF
LRYTF
LRYTF
LRAVTF
WRYTF
LWRRN

ni{a,n7?
nLx,my
nla,MNTR
P17 ,M42
ng2,134
54, MYR
ﬁ5='137
n56,A74A
ngy,ATY
112,135
115,75
11A,P7%
117,134
2pm, Myh
212,13
;100070
318,057
Pik,7287
L]

CLHRTRI «! DADPT+216emin@,

IRACK ARRPQW
PENUAL

2P ARROW
tAPOSTROPHF
TRACKS| ASH
1SFMTICALNN
tLFFTY PAREM
IQUDTES

fLR, STGN
tPFRFEEMT
1CNLAN

¢ BRAFKFT
IGREATFR THAN
$AMPFRSRAND
tPI US
1QIESTTON
1RTGHT PARFN
tR BRAFKFT
11LFSS THAN
tad FNN AF TARIF ww

tCNLON

fLR, STGN
1ARQSTROPHF
TFNAUAL
IRIOTES
PRACKS! ASH
'PFRPEMT
TRACK ARRQOW
IGREATFR THWAN
tVESTTON

tR BRACKFT
*RTGHT PARFN
PSFMYCNALNN
tUP ARROM
tAMPFERSAND

tL BRAFKFTY
tLFSR THAN
ILFFT PAREN
tPIUS

tuw FNR AF TARIF ww

JERRPR

ta=2)
(=3
(g=5Y
(8=61
t8=17)
fRmBu=p)
(D=B=q)
(N=8=5)
fR=8=p"
(R=8=7)
f11=Rad)
flieRag)
(11=8=4k)
f11=R27)
f12)
f{P=Ra2)
f12=Rad)
f1P=RaR)
SETLIYS!

fa=21
(R=3)
fg=51
fA=6)
(B=T71
(P=Bw2Y
fo=8=4"
(A=8=5"
(P=B=g)
(A=8=7)
fi1=Re2)
f{1mBug)
[EREY.ENS)
(11=2a7)
f12)
f1omfad)
(12=R=d)
f1P=RaR)
(FELLEYY)

tTABIE NAT IN R NCK

1



6€=Y

CR,8YS PT=11 MARRA VMMADw(M PB=APR=TR 160738 PAGF &~
HANDLE® PROPFR

LSATTL WANDI ER BRAPFR

1
-]
h nonang " LC8EFT FR1Y
4
5 1 1 0AD PAINT .
. NQPAQRE  PEmR3Q LDADPT?E LWNRM FRVEFT 1 INTFRRUPT VFCTAR
7 209072 NMpARSp LWARP PRINTa, 1OFFRET TO INTFRRUPT SFRVIFE
R AQAQAMY MApmIAp LWMRN LY L] [1-1
9 ApPpMme OAMEMR FRIGF:  ,WARD ” tLAST AUFUFr FNTRY
10 A1 opmann FRPQF ',wnlar\ m IRIIRPENT QUEIE ENTRY
19
12 ? ENTRY POTNT
it
14 2pAR12 nqaIPS 177772 CRHANDE MQV rrREQF, RS tRAINT TN N FLFMFNT
1R MpNRI6e MIATML MRl MOV FPHOPTR,R4 SPAINT INTN FARD IMARE
14 MQ0RR2 NPA3AS  2RNAME AS| h(RS) tCANVERT WARN COINT T RYTF FOIINT
17 PR0QP26 1Q1RS5 RLMS LERRMR tINUIL) RENUFST NR WRITFE IR | ORIC FRP
iR M@Wﬂ‘!g 03:1‘!7 nEtany 1771&@ RYT 9RFAﬂY&QIISV,O*ﬁRET 1S RFANER REANVY?
19 7p70% Npndne XHANR? NOP te PATPH HFRF TD ISSUF HARM FRROPR
2r 2QBpun  rex7RS TST fRR)+ tRIOFK @ RFQUEST 7
2¢ 7a%pu2  ~p18PR RFN READR PYFS, R0 INITIATF RENUFST
22 NA0R4y  NpRTPS TST fRE) + tNM, PAINT TN RUFFFR PTRS
2% ApPRde  MAMS14 fR rONT 16N SEF TF ANY STUFF IS I EFT IN NLP PARD
24
2% Mp2uSe PaMSKY RR ABART 1ARORT
26
27 1 YNTECGRIIPT FNTRY POTNT
FL
29 ”MQPaS2  MEasTT  MAp1246 FRYNT: ISP RG,88TNPTR 1ENTFR SYSTEM STATF
10 PPPRRe AnmRdn JMORD  “CePRE>RPRY
31 NROPAD  ANRIAT  ARMRAY nREF rOlCNT FCAUNT NAWN TNTEPRIIPTS THIS FARD
32 MPOPh4 MALTTINE 1T7TIAQ MmNV ARrRST,RE IGFT STATUS
IY APPRTA  1emS4y amMr FRRPOP PWHONPS == ERRNR
34 Mp0E72 12%70K TSTR RS 1CHERK FNR CALIIMN PRONF
35 MA0QT4  1ompdy Rp| rARD PRRANCH TF NAT CALIIMN PONE
36 NOAATE M{RTOASE 177164 MOV PH4FRRD,RR tGFT CNMPRESSEN FHAR
37 MEN1A2 MEA1ARR REN TNFOLT 1IT’S R ANK
3R NQALIN4  A1RT46  1T771A2 Mav OErRRY , = (SP) tGFT FYPANPED FHAR
30 AQAL1Q MRaTAT MAMQALY  MRART2 rMe rHMRPTR,RIIFRTR JFTRST CNLIIMNY
4m "pd11e  Pp1oMR RANF TSTRIN INAPF
41 CE2LP3  Mi1ehT  AANMLMQ MOV eSP,CHARY? 1EI 8F SAVE FNR ENF CHEFK
4> mMpB1As  MEDTIe  1TTOLT TSTPIINE RIF #177Ma%, 880 $CHEFK NMLY ROWS (=7
4T MpB13R  My114d6 MOV #SP, = (%P PCHEFK FAR INVALTN PIINFHFS
40 MEQ1%2 0opRuUte NER esSP 1RY PHFCKIMG FMR 2 OR MQORE PIINFHFS
4% PRIt 42676 RIC tsR)+, (SP) fIN POLUMNS 1a7
4n PRA136 P@ILND YIM1? REN NXTECHR PITS AKAY
47 MQR14Q M127ME  AQRMA3TY MOV #377,RS tFI SF FORCF TRANS{ATTON TNTD 134

4n NQBL4L  P1ATRT  AQAR1LD NXTCHRE MOV PHRRTR, (PCY+ IRFMFMRER PNSTITINAN OF NOM=R| ANK



0v-v

49
sm
81
52
SX
54
5=
54
57

CR,SYS
HANDI ER

58
59
an
61
&?
63
64
6%

nAR I8P
nAd1S2
PRR154
nRR 160
npR162
"27170
”eR176

AAMARQ
ngm7ng
11645937
nRApMR
ME3TAY
m§373y
fpm2ny

npn3ng

Q@R
npmyre

RT=11 MAPRA VpADein

PROPFR

npR2mpn
n@ARMy
npo2me
maR21n
naRB212
202216
fQ2270
ngR224
PR022P6
nRA2RQ
PQ0232
ngR2%p
npR24n
fp@4u4
npBade
200246
fpRA2S0
mnanasy
PPR240Q
L LETY
nQR2k6
raR27¢
npn273
npR274
rBP2%6
02300
[ J.1 R "
mRN3ne
"R2314
[T R Y
nEN3IAY

n3I>7IMg
LE XNy 1]
my1370y
apmpnp
M1aT708
LFEL L
maaray
nAMRAR
LI XR'R
nimyde
miaTog
npam240p
XYY LI
npReny

fam24p
112729
112724
LIRS ]
ﬂ‘:gmi
2RMUNY
11247358
PR3
nR14sy
nps24s
n26a1my
10437y
LEE AL
2p1328
myatey
RedTNY

rYAPMR

177872

faT4tY

1717722

1777124

anAN1 |
2gnQ1 2
1776K4

1776484

201400

apa5a2

1777702
1717162

28=APR=TS

177442

FNRPTR?: _WNRN ]

TNFPOLT: ADD PC,R%

XTMR! MOVR

CHRPTYRY WNRA

YIiM32 ApN #4{,CHRPTR

TNTRFT? RIS #INTFB, e#(CPST
RTS PC

162073 TR PAGF A+

IMAKF A PIf POTNTER TD TRANS TABLE

FHRTRL = (RR),8(Pr)+ JPUT TRANSLATEN CHAR IN | INE
]

! FrARD NANF AR FORMR

CARD?

AUFPTR?

CHARY D

XTRIM:

| XTRTM?
YCOLF:

I XPREF !

FIIBIF?

rONT?

FRRY®

READR S

RIT
agn
MOV
LWARN
MO\I
rMP
rMP
LTWARR
REM
MOV
MOV
NQP
MOV
NP

NDP
MDVRA
MOVR
MD\I
MOV
AR
Mova
nEr
REN
NP
~MD
RHTY
QIT
RNF
Mn\l
Apn

#CARPN,RER
FRRY
(PrY+, Ry

m

rFREQF ,PS
fRE)+, (RS) &
#THY1T, PPy
”

FNROF T
P1,=(5P)
FHRRTR, P

FNRPTR, R
R

#CR, (R1)+
4LF,IR1)+
Pi,ENDPTR
fSPY+, Ry
rOMT
(RUY+,P(PEY &
LI~A
PETYMNN

- (P8
FNPPTR,R4
F1iBIF

1PIISH RAYFFFR PAINTFR BY { NR 2
tEMARLF ANI INME INTR TF NFCFSSARY

tCARN NONE?

INNPF == SPURINUS TNTERRIPT « TGNODE
tRA4 =» CHRAYF

tPAINTFR TR FHRRIIF

tPATMT TN N FLFMFNT

1PIISH NVFR RIFFER POTNTER

1END OF FILE?

112=RIT FOR FIRST raARD CNL,

tYFS

ISAVF Ry

IPNINT TN BAST END OF AR CHARS

1w PATRH MFRF T S1PPRFSS TRTMMING
INA, GTVF YT TN HIM

1« PATFH HFRF T0 SIIPPRFS® PR/LF
PJA, GTVF TT HTM

PTHIR TS NAW THE ENMD
JRFSTORPE RAY

PENTFR FTLL ING Lnne

tPI'T A RYTF TN HYS BIIFFER
$1S ME FlILL ?

tYFP

tPIISH RUFFFR PATINTER

1END OF AyR raAQp 2

INAT YFT

HRFANY+RIISY,B4FR]T pNKAY TN TNYT RFAN%

TNTRFT
PC,RY
#CHRRYFw, ,mPy

INAPF = fiQ WANAR IINTII PREADY
tPAINT TN rHRAIIF



9-¥

91 MPB3I2Y MymUsT 177630 MOV Ry ,CHRPTR 1START FTL! ING FROM NEW FARD
9> PARIE  M(MUAT 177614 MOV R4 ,ENDPTP TWHIFH IS A4S YFT EMPTY
9% MARITL PymART 177650 MOV P4 ,RIFPTR tFSTABIL ISH BRIFFER PQYNTER
94 PRD3LR MEARKAT  1776AD rLR rHARY2 !CIEAR ERF FLAR
9% MAN34L My2727 opmilp MpV #BM , (PCY+ $SFT CNALUMN POHINT
9ka NPA3IRE  Apapmp rOLCNTE ,WPRN " SCAUNT OF FOLUMNS REMATNTNAR TN CARD
Q7 AYAISY MIATTY]  AgMIRY  1T7T1AR MOV #RFAP4TNTED, @ RET JRTART A CARD GNIN®
QR 2ARTLN  NARA2MRY RTS pC 1RYE
90
1am t VARINUS FRRNRS
191
102 7QR%62 MLIRTINAE 177422 | ERROR? MOV FREQF,RS tPATINT TN AUFUF FLEMFNT
10T MAV3I6p MEDTRE  mMpAANy nye ¥HNERR, = (PS) tYNU CAN’T WRITE OM A READFR
104 200372 2Qma & QR ARNART
108 .
106 ADR3IT4  NIDTOGE MPAAPR FRONR: RIY #DATL AT, RS 1DATA | ATE IS ANIY NNT CHRABIE
107 020400 @137 ANF | ERPRMR tT8SIIE HARN FRROP TF §N
10R ARR4AR  OGERT&T 177742 TST o1 CNT INNNF WITH DATA () UMNS?
129 MP24”e 1pM3TY Rpi FRP1 INAPF w= MIISY RE PYCK FHFCK, ETC,.,
1 t STAPT A NFW RFAM TO CARPEFT CANPITINAN,
111 7a0410 npmeTy RR rFARD tEI SF ASSUME CARDM NONE
142
112 ! END NF FTLF raPD FOUMD
114
fRL.SYS RT=1{ MAFRA VMMAR=in 28=APR=TS 16:0M3TR PAGF ke
HAND)I ER PROPFR
118 0R2412 Mm1250y FNRFTL? MOV fRE)+,RYy EPATNMYT INTA HIS RYFFFR
116 MOAY1Y 19824 FLRPRIIFL rLRB fRAY + tCIEAR 1T ALL
117 P@ARUIe PpR3IS REF ®R%
11R NQAR420 MR 3T7S RANF rLRAUF
119 ARRA4R2 AEDTITE  N20Q20@ 177770 RIS 420070 ,8=1m(RSY 18FT ENF BYT IN MHANNE]
127 npP43p  MQRAAT 177514 ARNRT: FLR FNRPTR PFMRFE A RFAN NEYT TTMF
121
122 t RETURN TP MONITOR (RFQUECT DANF, ENF, AR ERRNR)Y
12%
124 PYR4T4  MymukT 177520 PETMNNE MOV Py,CHRPTE 1SAVF POSITIAN N FARD
125 MpR44  0pRe3Y (77140 rLe BEFRST tNA TNTERRIIPTS
126 2R0U4L mymIPy “ov PC,R4 $THE USUAL MANTTNAR RFTIRM
127 0@RU4e Me2TMy 177342 ADN #CRCNE=, ,R4
128 MENUR2 myx708 AAAQS U MOV SYMON| N, RE
129 ARQUSe opmiTS MAEMR27Q TMP BOFFRET (PG



1472004

FR,8YS RT={1 MAPRA YMAD={M PBmAPR=7S 1610AMITR PAGF 7
CHARACTER TARLF

' LSRTT| FHARACTE® TARLF

»

T 1 YHF FNILNWTING MAPRN TAKFE® AS APGIIMFNTS TWE ASCTT TRANSLATINN
4 1 RESIPEM ANN THF | IST DF SUNCH FAMBINATTIONS FNR THAT PHARACTER,
[ 3

& <MACRO ~ SLTYST

7 T

[ LI0P ¥,<$ 78T>

e JIF NE ¥l

{o JIFLE ¥ a7

11 TaT+Y’

1?2 o IFF

1% g1

14 LREPT L

1% U

14 JENDR

17 TeTel!

iR +ENDE

10 CIFF
an TatedQ
21 LENDF

2? +EMDR
2% «3PHPTR( & T

20 JRYTE  SCHAR

25 SCHAR = SCHAR +
2k +ENDM r

27

2R ! OTHF FALLAWTNA TARLF TRAN®|LATFS @29 KFYPUNCK FONFR TO ARCTI,
29

30 PpR4eR FHRTR

31 AQALnQR JREPT 254,

3> LBYTF 134 IDFC STAMDARNM FRRN® CFHARACTER
3T +ENDR

34

1% LYY I LEMHETA



rFR,8YS

APARAR

(I LY]
nAATSY
[l R
207085
npRT7Re
npAs2
nRRSAN
nROS6A]
PRORALD
700611
"pR71@
7pP5SH
mad716
08117
"QATPR
apA72y
nprr22
LD B8 LN
naAemy
nYRens

RT=11 MAFRN VMAR={"

CHARACTER TARLF

58
50
60
61

6r
6%
64
65
6h
67
6A
69
"
T

72
77
74
7%
7%
77
7R
70
80

LYYy
oQAS1Y
apP520
apAsMRS
npAsSSy
npPe1y
PPk Y
nQPs22
nQB5S2
PpPe17
70?620
2p0e2y
npPe22
npRALT
npaATM2
npYSn2
nRRLTH
nans576
pOVSTY
nAPeART
fRASAN
nQRTrR
fpleRR

PR=APR=TS

fCHAR x N

«12,7,9,8,1>
«1?,9,1>
«12,0,2>
<€412,9,T>
<9,7>
<A,9,8,5>
«P,9,8,6>
“«P,9,8,7>
€11,9,6>
<12,9,8»
<0,9,5>
«{?,9,8,%>
€12,9,8,85
«12,9,R,8>
€12,9,8,h>
(19,0,l'7)
“172,11,9,8,1>
€11,9,1>
«11,9,2>
€11,9,%

TTIIIIIIIIIIIIIIIIIIIIAIIIIID

t6tAMITR PAGF T+

«9,8,4>
€9,B8,5>
«9,2>
“«P,9,6>
«11,9,8>
€11,0,8,1»
“9,8,7T>
«0,9,7>
<19,9,8,4>
<11,9,8,%>
«{1,9,R, >
«11,9,8,7>
<>
€¢12,8,7>
<8,7>
<B,3>»
€11,R, T
«<,B,4>
<1?>

<8,5>
<1?,R,R>
«i1,R,S5>»
<11,8,4>

99979797373 7737979377IIIIIADI N

ISTARY AY NACTAl opnr

INDILI

JCTRI =A
SCTRL =R
1CTRI =F
1CTRI =N
$CTRL =F
ICTRI =F
JICTRL=F
$CTRL =H
1CTRI =T
1CTRI = 1
ICTR! m¥
ICTRL -
1CTR! =M
1CTRL &N
1ICTRL =N
$CTRL =P
1CTRL=N
PCTRI =R
ICTRL =8

JCTRIL =T
ICTRL =}
ICTRI mV
1CTRI =W
ICTRI =Y
ICTRL=Y
ICTRL=7

© 1AL TMODE (FSPAPEDY

1CTRI =\
JCTRL m
ICTRL =™
PETRI =,
ISPAPE

P!

,"

14

1S

’Y

18

,'

r(

D]

tw



¥i-¥Y

114

PR,SVYS

naAST?
apATMy
"N Te
QNGRS
nEP6Te
naNs2y
nRR523
AQQyky
PRRURS
n"pAAbe
nARYATY
npRLTH
LI 1 240
np@4T2
24T
npRSA3
[ 11 X%A
(L1 XY
npReT?
mpAs0y
(11 4-LF1
mpRsSL?
np@av7
nRPe6Y
PPRBAS
(LAY
[ L1 X YN
neP6TR
nRALTY
npRe72
mR0e73
naRrIn3
PARS kY
nAR5AS

RT*11 MAFRA VMARayn

FHARACTER TARLF

18
114
147
118
119
1om
121
122

700566
PRRSKT
nePsSTR
naRSTy
PADST 2
rPRASTY
roRen3
rRRS2%

TBIITIYIINIIFIIITINIIIIIIIIIITIIIIIIIAIIITYONYY

PR=APR=TS 16:PM138 PAGF T«

FTIIIIIY

€13 ,R, A>
«h,8,3>
<11>
«12,R, 2>
«<P,i>
<>

<«i>

<>

3>

<y

5>

<h>

7>

B>

«<9>
8,2y
«i1,R, A
12,8, 4
«B,b6>
<P,B,0>
<A,B,T>
<f,4>
«<12,1>
€<12,2>
<12,
€«12,4»
12,5
€1P,h>
«12,7s»
«12,8s
12,9
€11,
«{1,?>
11, 3>

«11,4%
«11,%>
<11 ,Ak>
<{t,7>
1t ,A>
<11,9>
«@,2>
P, 3>

M
'N
10
1P
"0
1R
18
T



Sv-¥

12% POPSAe r R, U Tl

124 mpR527 r «?,5> v

12% PROS@ r <P, h> P

126 PO05TY r “0,7> 1y

127 PpAST2 r <0,8> rY

12 Mp05133 r <n,9> I

120 np0543 r «12,8,2, 't

130 0pPe75 r n,8,2> [AN

131 0pl535 r «{1,R,2> 7

132 MP@STsS r €11,8,7» &

133 AYBeng r <?,8,5> ',

134 MPPsAp r <8,1> tArCFNT RRAVF
138 MApRaT4 [ «<1P,?,1> ILr A
136 Pp0774 r «12,m,2> 1Lr R
137 mQ0725 ~ «12,0, > [T
138 PRB72e r «12,”,4> 1.~ N
130 ngdy2y r €«12,m,Ry 1.r F
1um ap?73p r «12,7, 6> rLr F
149 PRB7%y r <y42,m, 7y e
142 mpR732 r €12,Mm, Ry rLr M
143 MRTR3 r €«13,Mm,9> e
1448 n@R743 n «1?,11,1> e
14= MQP764 r «12,11,2» [ A
146 00765 r «12,11,3» Ly
147 2p@7h6 f <12,11,4> e M
148 OQATHT r €123,11,5> e N
140 00770 r €12,41,6> e N
150 n@p?774 r «12,11,7» L~ P
15¢ m@0Y772 e «12,11,8> e n
152 npRY73 [ <1?,11,9» rLr R
15% Pplpns r c1t,”,2> e ¢
1540 npPep2S r «11,0,% sLr T
155 nplePe r 11,7, 4> e
156 PORR2T r <}1,”, 8> [T
157 "pPe e 11,7, A> e
158 AuPepty r «11,7,7> e v
159 MpP61T2 r «11,7,R> e v
167 0PP633 r «i1,m, 0y er 7
161 M"pPe4T (o «<12,M> PNPEN RRACF
1P BRN7P3 r €e12,11> PVERTTIFAl RAR
167 200763 r <t1,m> 101 OSF RAR
ted MPPEP3 o <i1,7,1> ITTLPE
165 NAR6RY o <1?,9,7> tNFL
16k

167 PRIOAR’ . = FHRTR| + 256,

168

160 0R1pk2 FHBBIIFS LRIKW R,

170 AR1324  Apmenp SINPTRE: LWNRM s IPLURGFN TA POTNT TO CAMMON FNTRY
171



9v-¥

A8=APR=78

DA=APR=T7S

RUFPTR Mam210R
FHRRIIF LI XN 1LY-1-]
FONEXTY OARSAD
FRAL = t7716R2
FRIF LI LYY
PATLATR MQRAQ2R
FRR s 10mAPQ
HPFRR = PpPRNY
TNTER £ 0pm{0p
| XFPRLF OCanm2K@pR
NXTCHR Mami4d4R
PRY v PPN34p
RETMAN fAAYIYR
Ry PP QRY
REYRRPQ MpATIRY
TSTPIIN MAAML24R
viMe rAMIS4R
CTNPTR OQ13P4R

CR,SYS PRT={1 MAFRA VMPRain
CHARACTER TARLF

172 nEe 326

17%

174 mamrmy ®
CR,8YS PRT={1 MAFPRA VMP2ain
QYMBNL TABLE
ABNRY naR43pR [
CHAR12 PQR224R Yo F)
cORE npos1e
R s 2Q0Q15
PRINT rpPes2e nmp
FRVERTn 0Q02%Q
FQOF  ANOQRAY
HANG ne%476
INCOLY PaB1%2R U}l
LOADPT mQR@0@R nmp
NQTMAG 0MQPel1d
PRA s 7903np
READY = 0Q0400
R3 XP00073
SETNP6 M0P%mT4
TRIM LN
XIML "pA1TeR 202
KCHAR w 0R@20R
. ABS, 0OpR7sy pop

"aRRnAQ nmy
CR11 241376 2AMma
FRRORS DFTECTENR; 0
FRFE CMRF! 17698, WORDS

JLPS/NETTM/CuCP

1641AM2T8 PAGF T+

CRRI7Ee =« NAPPT

<LEMD

1hePPAITA PAGF T4

ama RijeY EY
g FHRPTR
FOLCNT
FRA2 =
FRIQF
EJFCT
FRROP
HOPCK =
ITNTRFT
pMm | XTRTM
pm2  NFFSFT=
LX) ]
pama  ep %
PS L34
&p LR
pma L]
ang  YIM3
anm2

cAILAPQ
"ML AQR
rPARISQAR
1771A4
NANAMER
fQapM2
fpm3T 40
na2oane
oM TAR
rPMRUaR
fape2TR
177776
WL L
PAMQMS
rAMAME
APRAPP
[ LIV Y-1]

L)
anz

ang
amg

ene
nnp

an2

L)
FHRTRYL
roLn
FREQF
FRRITE
FNPRFTL
FRPY
TMAGF
| ERRAR
MOML MW
ANIIN
DFAD
L3
QCNADF
SPACF
YCRLF
YTRIM

MAMRAQAR
AAP4&2R
rAm20A
apmpi AR
P16
PAMLT 2R
AAMIMAR
nEMSAL
AAMTAPR
ﬂmﬂ@:a
nAARMQ
neARnNy

Ly LY LY

nAMSSR
aNMmALn
AQMAUER
MAM2 AR

amre
erp

an2

on2
ame

an2

ae2
an2

FARDN = 040Q0Q
FLRBIIF 0QM414R
rONT PENIAQRR
FRHAND  OARMA12R
FRET 3 177160
FNRPTR 0QRMISQR
FILBUF mam27QR
TMRASRE nan572
I F s apmpti2
MOTIN = MIMEND
PC axoampMy
READR nANZI6R
B2 MLLLILE
SETCNAD 0@ms4p
v = AQM237
YHANR nANET6R
YATMAG 0DPe24

a0
eng
eng

on2
ang

an2

ong



Ly=¥Y

NT VAReD? 12=APR=TA

—
VO™ AC AV~

RYei! MAFRM VMA2={m  DRwAPR=TS& 16104334 PAGF 1

CTITIE BT VM2=nT 12=APR=T4

?
!
!
4
4
!
4
4
!
t
!
?
?
H
?
?
!
!
4
1
1
:
4
4
!
!
4
'
!

RT=11 PEFTARPF fTC11) WANALFR
NEF=i1=0PTRA=D

PB/EF

AURUST, 1974

FOPYRTRHT (CY 1974,1978

RIRTTAl FGUIPMFNT FORPARATTAN
MAYNARN, MASSAMHISFTTS p1754

THTS SNFYWARF T8 FURNTSHFD (INDFR A LYCFNRE FAR UYSE ONLY

AN A STNRLF POMPITFR SYSTEM ANP MAY RE CAPTEN NNIY WYTH

THF TNFLUSTON NF THE AROVE CAPYRTGHT NNTYTCF, THI® SOFTWARE,

AR ANY OTHFR CRPTES THFREQF, MAY NNT RF PROVIDFD OR NTHERWTSF MANRE
AVATLARLF T0 AMY QTHFR PFRSON FXFEPT FAR USE ON QUPH SYSTEM ANDP TO
ANF WHA AGREFS TN THFSF ) IFENSF TERMS, TYTLE TP ANPN NWUNERSHIP NF THE
SOFTWARE SHAI | AT AL TIMES REMATN IN NICTTAL,

THF TNFOPMATTION TN THIS ROFUMFMT IS SURJFCY TO
FHANBE WTTHOUT NATTCF AND SHAUI D NAT BF FONSTRIIEN
AS A COAMMITMENT RY DTGTTAL ERUTPMENT CNRPORATINN,

PRIRTITAlI ASSUMESR N RFSPONSTRTILTITY FOR THF LISF
AR RFLTARTILITY OF TTS SOFTWARE NN FQIITRPMENT
WHTCH TS NAT SUPPLTED RY DTGTTAL,

JATANYH HDIAEA TIOL 6&°Y



8v-V¥

NT VA2«BT 12«APR=74

-
DOBPAPFrAE AV -

rpapmp

[ L] Jdd
AAMANY
namam2
el ET7h i d
rpmpmy
nEMonsg
[l R d%] Ty
naap™y
177776

17735
177340
177342
177344
177346
agmeia

rRoAMy
ngnnsy
npme7Q

el LYl ]
nameOR
nAARAA
npMEMY
namEop
rpm3up

PTett

MACRA VMADatim

2B=APRTR 142104124 PAGF >

JCEEFT RYSWNP
JENARL | §R
PAeX™
RPi=X%1
R2ak?
PIal
RPy=%d
QS,X'
SP=XAk
PCa%?
PSz177774
t NREFTAPF PONTRNL REMISTFRE
TCNT s 17738p 1DATA PERTSTFR
TCeT = 177340 ' JCANTRNL AND STATUS RERISTFR
TCrM s 177342 1CAMMAND RFGTSTER
TewWe ® §77344 tWARN FOUNT REMBISTFR
TCRA = 177348 tBIIS APNRESS RFGYSTER
Tcvee s 214 PTRLY TNTERRUPT VEFTAR
1CANSTANTS FAR MANTTNR CAMMUNIRATIAN
HOFRR ® 1 : yHARN FRRQOP RIT
MOMLMW 3 R4 TMANTYTNR RASF POTNTER
AFFSFT = 270 : SPAINTFR TN N MANARER FrOMP ENTRY
LGI'ORL NTSYS, PKRYS, PFRYS, RpPEYys, NS&ys, nysys
WGl ORL  SINPTR, SINTFN, PTINT
PKEYS " tRK TS NAT RFSTDFNT
RFeYS LI tNFITHFR IS RF
R nyeys "
npeye ]
nsays e N :
PR7 s Ty tENTFRS AT LFVFL 7



6v-¥

DT VA2=@? 12=APR=74

[
DOPNAPAD AU

- a pa
E IR Bt

14

nEeRNY

"RRAND
apoam2
"PRMY
npRRre
rRARME
0010

200912
npRR16
np@2n
noRe24
"pPa3e

npRPT2
(171 X
npRgan
nanpup
neepdy
rQRR%Y
f"EAQSy
naRuSe
LY
npoaky
720270
faReT2

nQRR74
naRLAN
naR102
"pP110
npd11e
noR114
apli20

LYIEN
nawvyle

(T 1A ¥-]
npBL T
L1 IYY)
noR144

nemRiy
[ LY AT
apm340

nampMp
Ll LILL

m12727
LD
IR
APUTRT
npme oy

Ll LERY]
nQgasTY
[ LT
IR 2T
m1a70p
my27004
?12046
LEE 141
nuITOG
mIATIL
(N LYY
"py1502

A3RT1 4
(AR LN
M2RTAY
L X
nARURY
N52TNAY
1627144

LILILE)
nga7Myg

ngaTME
N12667
LA RN
N126M0

RTalt MACRA VMOAR=yn

nRMRID

177776
fOMARY

npm26e

177740
177342

176377
107100

opeang

177350

ARUBARA
npnang

mIARME

LI LINE
[ LERT

npm2Ra

DR=APR=7S 16:04124 PAGF %
RERS
1 1 0AD PNINT
LWNRN TrVEFR
TWARN ATINTe,
LWARN PRY
nTRYSS
PTIQF: LWARD 0
ATFQRF:  L,WNARN ™
! FNTRY POTNT
MOV #B,, fPMr)+
PTTRY: L,WPRN
MOV eePs,=(SP)
18R PC,DTINTY
PTS PC

1INTFROUPT SFRVIFE

AR
150
LT
MAvV
Mayv
MOV
MOV
MOV
nye
ﬂIT
AMY
REN

ATINTS

RYY
REN
rMB
RER

NIREFT: RF
REVERSFRT®
QR

RR
FORWi: RIS
FORWARNIRTR
MOV
RETRNIY MOV
MOV

nTeRTMP

PS5, eRINPTR
“Ce3Mp>4PRY
PRA,=(5P)
NTFQF,RP
¢TrCM, Ry
(RMY+, = (8P
fRA) +, RS
#5rec3ympy», 05
#10Q1a”, (R4)
FPTERP

PETRY

#2, (R4
ATPRONE
exTCNT ,RWANT
RLLKFND
FORPWARN
HANQN ,RE

#2, (SP)

FORWARN
#1PAMQ, RS

#1n3,RS
t5P)+ ,RWANT
RS, (RY)
($P)+,Rp

tANDRESS OF YNTFRRIPT VEFTAR
tNFFSET YO INTFRRUPT SFRVIFE
IPRINRTTY 7

tPAINTFR TN | AST Q ENTRY
tPAINTFR TR CURRFNT N FNTRY

PINIY THF RETRY FOUNT
1RFTRY CNUMTFR
IFAKF AN INTFRRUPT

SRACK TO MANTTOR

PARORT CALI FRNM RF SYSRTFM
INAW JSR TA FOMMAN CADF
SRUN AT LEVEL &

1RA POTNTS TN N FI_FMFNT

1RO POTNTS TN FONTROL RERISTFR
INFSYRFD Bl OFK # ONTNM STACK

JUNTIYT # TNTO RS

11801 ATE UNIT NUMBFR

$ERRNR RTT OM?

1YFS

11 TNTERRIIPT TS DFF,WF ARF TNTTTATING
tA RFQIEST
ISFARCHING®

tNM=a READ OP WRYTF
fCAMPARE AFTUAL
tFAUND IT
1SFARCH TN THE FPRWARD DYRFCTINN

18FT RFVFRRE RTT

§SFARCH FOR TWe® RLNCKS RFFARF NNF
TAFTIAL LY PNESIREP TN AL OW

1SPACE FNR THE TI'RN=ARNUND

IDMN®T SFT NFLAY INHTRTT

tTAPF T8 ALRFANRY MNVING FORPWARD

1SN TNHIRIT HARDWARE OQFLAY

PIMTFRRUPY ENAR|LF,DBNIIM, AND GNP
tRFMFMRER THF R NCK WE APE LNOKING FOR
PTFLI FONTROLLFR THM 0

IRFSTORE RM

1UST CAMPLETED
Ry ACK TN NFSTRFD Bt 0K



06-¥

4a rp@14e nromeMmy RTS® e tRACY YNTO MONTTNAR

sn
5t 2p01Sy M32T14  mpAQAR FNRZR: AIT #4000, (RY)Y IWFRF WE IN REVERSFE?
52 MPR1%4 m@17SY REN REVERSF INN=REVERSE TAPF
53 0p@15e MIATL4  ApaQPQ R ¥FNNDT RIT ¥40Q07, (RY) IWFRF WE GAING FNRWARD?
54 MpP162 MP1343 RNF FORWARD tNN=WE HAVF TO T!RN ARAUND
5%
564 1 TNTTTATE RFAN/WRYTF RENMUFSY
57
NT VP2=2T 12«APR=74 ATw=i1 MAFRN VMADwim 2R=APR=7HR 161P4524 PAGF R«
58 MPRi6d 052708 agm1ls ATe #1M]115,R5 tASSIIMF WRYTF
50 0QP17Q M12837 177346 MOV fRMY &, 04 TCRA JCARF ADDPRFSS
6Mm N@A1T4 My1018 MOV fRM), (SPY TWARP FOLINT (QVER ALACK #)
61 MA1Te tpaUmy RMT 15 tWRITE WAS A GNOD rUFSK
62 MPOP2MA  Mp1aR3 REN RTROME 11F 7ERQ,SFEK
6% Q0202 M@RUte NER rse) IRFANNERATE WOARN FOIINT
64 MRR20A4 M4>d7IMS  epnaiR RIF #1m,P5 $8FY RFAN FUNCTINN
65 70@217 Mi363Y 177344 18¢ MOV fSPY+,aRTCUC 1SET WARD POLINT
6k MRB214 nMpm7S) RR PETRNT
67 1 FRROR PDIITINFK
(Y]
60 Mp021e M32737 194Q0Q@ (77342 DTFRR: AT ¥1M4MQAM, 84TCST 1END7 FROOR?
17 AQ0R24 tomnny np| NQTE? INAT ENDY
71 MQ02Re M3I2TIY4  AOMPMR RyT #2,(RaY IWERF WE SFARCHING®
73 ApP2%2  Ap1 346 ANF FNRZPR 1YFS=RFVFRR]E TAPF
7% ARP234 MES3IKTY 177556 NOTE7: DEFr PRTTRY JMNARF TRTE® |LEFT?
74 200247 AQTQAY17 RGT RETRY IYFS
75 MAP242 MS27Tp  Mam@cy 177772 RI® #HNERR, #=6fRM) JNM=SET HARD ERRMAR BTT
Tk
77 )} APFRATTON FINIRHED
7R
79 020250 0MPRTIs RTYAONE? TST rsp)+ 1PNP RI QMK
&M ME@282 My denp MOV (SP)+,RPpn IRFSTNRE RM
81 0Q@2%4 1127%7 mpmp1y 177342 NTSTNPY MOVA #11,04TCrM 1STOP SEIEFPTFD DRYIVE
82 ApR24K2 AymIMy MOV PC,R4
8% MEB2hd MePTAL 177574 ADN #DTCNE=,,RH FANRDR NF CNE IN R4
84 PMAR27Q M137A5  ARNBR4 MoV A#MONLNW, RR
85 MPR2T4 A@miTS nMRTD IMP @OFFRET (RS
LYY
a7 7 RETRY FONE
88
8O MP@3n@ 198737 17734 RETRY: TSTB AxTCST 1TAPF (IP TR SPFEN?
9 00374 12mTIQ AMT FORWY IYFS=AVOTD STOPPTYNR TAPE
91 MER3NE MEPTAT  AQAANRL  AREMAARD ApN #4,BWANT tNN=TT TAKFS 4 RLOFKS TO START AND STOP

92 MR0314 M2271e rMe fPrY+, (SP) tMAKF AN ATTFMPYT TN START TN THE



16-Y

9% AP@31e Apmunp
94 0QP32p Mpn6T

9%

96 MPB322 nmameopn
97

L1 il L]
99

tgnm nampmy *

NY VA2e@? 12-APR=T4
SYMBAL TABLE

RER nEPRAPR LF)
NSSYS » NQPQAPQ G
NTLGF "RAPRALR naz

NXSYR = MEPQPD G
MONLNWe MQARSY

Ps s 177776
RK&YS = 0Q@pRQ 6
R4 2%7000n4

TCAT = 17738p
SINTFNE wnvuwn

. ABS, nplomp nAp
[l Al 1o nNy
SYSHND PWA324 nmp

FRRORS DFTECTEN: n

FRFE CARF! 1RQ78, wWORDS

1LPI/NETTM/CEDT

PARLSeR
APM@EI QR
Pam324
apmiSoR
npma34e
L LENF-1]

sXANMQPQ
sURQAPAS
z 177340

RWANT: @
AR NIREFT

SINPTR! ,WNARP SINTFN
NTSRI7E = ,=RER

+END

2M2  RKANT PN R
202 NTRONE  MAAM2SAR

RTYSTAP NMAMPSYR
PPp FORWAR MpMiT2R

QM2 NFFSFY= 2@anm27p

ama  RPETRY ranIenR

Ry PLLLL L
|p L LYLYS
TCVEr 3 mpm214

'STZF NF T HWANMDILER

MAFRA VMOA2m(m P8mAPRw78 16:04824 PAGF ¢

ana
an2
arp
an2

am2

nna2
ang
pme
ang

one

PPSYe
PTINT
MTTRY
HNFRA
PRY
RFRYS
RY
TCrM

SINPTR

DYRFCTINN RASFD ON LAST BLOFK

anmare 6
nAMRIURG
nAMRL6R
Ppany
npM34Q
noeane 6

24OQMQRY
= 177342

NPNI22RG






APPENDIX B

FOREGROUND TERMINAL HANDLER

The following listing is a terminal handler for the foreground. The
user can write his own handler using this code as an example, or use
the copy provided in the software kit. Instructions for its use are
found on the second and third pages of the listing.



KB,MAC V@ieB1 RTal! MACRA VMA2=D9 8«APR=TS {21%3159 PARE 1

!
2 TITLE KB,MAC V@yent ,

s ) RY=gt V2 DPYVYCP INDEPENDPNT TERMINAL HANDLER, X8,

4 '

L] ) NECati{=0RKRA=D

) ’

’ ! FOPYRIBHY (CY 1978

] )

L] } NRIGITAL FQUIPMENTY colrnRATYoN

10 1 MAYNARD, MASSACHUSETYS 017%4

1 '

12 ! THIS SOFTWAR® T8 FURNISHED UNDPR A LICENSE FOR USE ONLY

19 1 AN A STINGLF COMPUTER SYSYEM ANP MAY RE COPIER ONLY WITH

18 ? THF INELUSTON OF THE AROVE COPYRIGHMT NOTTICE, THIS SOFTWARE, -
18 ! OR ANY OTHFR COPYES THFRWOF, MAY NOT BF PROVIDED OR OTHERWISE MADE
16 ! AVAILARLF YO ANY OTHER PFRSON EXCEPT POR USE ON SUCH SYSTEM AND TO
17 ! ONE WHO AGREFS TN THESF | ICENSF TERMS, TITLE TO AND NWNERSHIP OF THE
18 ? SOFTWARE SHALL AT ALL TIMES REMATYN IN PISITAL,

19 '

14 § THE TNFORMATION IN THIS nOCuMEﬂT 18 SURJECT YO

3] ! CHANGE WITHOUT NOYICE ANPM SHOULD NOT BF CDNSYRUEP

22 ) A8 A COMMITMENT RY DYGTTAL ERUYPMENT CARPORATION,

29 '

24 } DIGITAI ASSUMES NO RESPONSTBTLITY FOR THE USE

29 ! AR RPLYABILITY OF TTS SOFTWARE ON FQUIPMENT

26 ! WHIECW TS NOT SUPPLIEN AY DIGTYTAL,

27 ' _

28 ’ MARCH 1975

29 ’ RGR

KB,MAC VO1le01 RY«11 MACRN VMD2eDS B=APReTS 12133181 PARE 2

1

» 1R§-1! V® DEVICE INDFPENMENT TERMINAL HWANDLER, KA, KA

3 PCAN BF USED BY FITHER THE FORFGROUND DR BACKGROLND (BUT NOT_
[ ] 180TH SIMULTAN!OUSLY? TO RFAD AND WRITF TO ANY DLetiA OR KLwtifh
L] JCANTROLLEN TERMINAL,

[} ’

7 JTHIS WANDLER HAS THE FOLLAWING CHARACTERISTICS)

) 1 {JCARRTARE RFTURN CAISES THE RFMAINDER

[ ] ! OF THE INPUT BUFFER FOR THE CALLING READ RPQUESTY YO AE
]

' TERQ=FTLLER,ANP THF READ IS COMPLETED, THWUS,THE HANDLER

-



R W N U W W W YR W W WS W W W W W W W W W N W W WS W W Y W YR WS S W W e

TRANSFFRS ONE LINE AT A TIME,NO MATTER HOW LONG THE

INPUT RUFFER 18 POR THE READ REQUEST) THe {INUSED _PORTION

OF THE sUFFER 18 ZPRn.PILLPD. CARRTIAGE RETURN !CHDE!

CARRTAGE RPTURN, /LYNFaPEED, AND INSERTS R _AND LF CHARACTERS

IN_THE BUFFER YF THERE 18 ROOM,ELS® ONLY CR 18 PLACED IN THE BUFFER,
2)RORM FEER FCHOES 7 LINE FEFDS,AND INSERTS A PR CHARAECTER IN

BUPFFR,

TIRUBOUT ECHAES "\" AND NE|ETES THE | AST CHARACTER IN THE BUEFER,
Ir THERE ARE ND CHARACTERS IN THE RUFFER,RUBOLUT PRORS NOT EFNO
AND S IGNORED,

A)TAR FCHOFS ENOUGH SPACFS TN POSITION THE PQ!NT HEADN AT THE
NEXT TAB svoP.ANn INSERTS A TAR CHARACTER IN THE surreR,

RIETRL U BCHOES "¥un ANnp ERASES THE CURRENY LIN!.

SIFTRL 7 ECHAES "Fyn AND CAUSES THE HANDLER T0 IQPORI ENDaOFpFIL P,
THE CTRL I CHARAGTFR IS NOT INSERTED IN THR AUPFER,

TITHE L OWeSPFED READFR w!LL RUN TF IY 18 TURNED ON NHIL! A READ
REAUEST 18 PENDING YO THF MANDLER, IF THP TAPE BFING READ HAS
MANY TABS,HOWEVER,THE TIME NECFSSARY TO FEHO TH! TABS WILL
LAUSE CHARACTE'S FHLLON!NB THE TABS TO arF LUGT. fo DrsAsLE THE
FCHOING OF TABS,THr uS!T' £OMMAND CAN BE USED AS FOLLOWSY?

HSPT KR LSRM w!LL BISABRLE TAB !cHn!Nﬁ.ALLOHING A TAPE
TO RE READ WITHOUT CHARACTER Loss'
"SPT KA NOi'SAM" H§LL gNAlL! TAB ECHOING,FOR NORMAL KEYBOARD
INPUY, THIS 18 THE NEFAULY.  _

S)WHEN THE WANDLER RFCYEVES A READ RFQUEST, A "en CHARAQTQR 18
PRINTED TN THE LPPFY MA*G!N OF THE YERMINAL_TO SIGNIFPY THAT THE
HANDLER 18 READY FAR !NPUY THIS CHARACTER PAN BE _CHANGED, OR THE
PROMPT FFATURE CAN BF REMOVED, BY REwASSIGNING THE SYMBOL
UPROMPTH TO THE ASAIY VA UR OF THE
DESIREN CHARACTER, SETTING PROMPY TO "O® wYLL EAUSE NO CHARACTER
TO BF PRINTED,

9)IF NO READ n!uueat 18 ACY!V!.TH! HANDLER WYLL NOT ACQ!’T JInpUT,
AND THE KEYBOARD WYLL NOY PCHO, TR IT DOES ECHO, THE HANDLER 78
ACREPTING TINPUT,

ITHIS WANDLER EONTAINS CONRITIONAL CODE YO SUPPORT TERMINALS THAY
JRPQUIRE PYL| ER CHARACTERS AFTER A PARTIPULAR CHMARACTER, TO cNAaLE THE
IFTLLER FUNCTIAN, PREFINE THE SYMROL "FYLEHAN EQUAL TO THE ASCIY

IVALUE FAR YHE CHARACTER TN .14 FiLL!D AFTER, AND TH! SyMBnL "PILCNT"
1T0 BE THE OCTAL NUMBER OF NULLS TH ARE Issuzn AFTER PACH OQCURANCE

JOF THE CHARACTER DEFINED mY NPT CHR", FOR EXMAPLE,TO PRoer!

(T FILL!R CHAIArTFRS AFTER A CARRYIAGE RETURN. srY 'P!Lcun-;!' AND
l“FILCNTllﬁ'



KB,MAC VOleB1 RTei! MAPRO VMN2eP0 AecAPRe?S (2133181 PARE 3

! JTHE WANDLER I8 INSTALLEN: VIA THE POLLAWING PROCEDURE}
L4 ' 1)ASSEMBLE 17 As FﬁLLONSl
b ' REFINE FILLER CONDYTIONAL'S IF NECESSARY
a ' R MACRO
s 4 iKQlKB
. ' 2)LINK IT AS FOLLOWSY
b4 ' R LINK
8 [] *KB,8Y3sKB
9 ’ SIINSTALL ?T_AS DEVIFE "KBi",AS DESCAIREN IN SECTION XXX¥XY
10 ' OF THE RT={y V2 SOFTWARE SUPPORT MANUAL, REMEMRER THAT
11 ! THE VEETORS FOR Tur T!!MINAL MUST RE PROTESTED IN THE RIT MAP
12 ' AS DFSCRIBFD IN THAT SPCTIGN.
1% ' THF VALUFS FOR THE VARIOUS TABLE ENTRIES SHOULD AE
14 ’ HSTIFRVALUP OF SYMROL "KASTZE® ON | AST LINE OF LYISTING
1% ] DVSIZESQ [NONFILE STRUCTUREN DEVIFE)
16 ' PNAMERG24pm (RADSD POR “KB ")
17 J $TATs WIAW ORDFR BYTF=0, LOW ORDER HY?!-ANY DEVICE NUMBER
18 ' AVATUARLF, NOTF THAT IT CANNAT BE 4, A VALUE »%8
19 ' 18 RPCOMM!NDFD.
20 ! 4)ONCE INSTALLF®D, nac WILL BPF AVATLARLE WHEN THE SYSTEM 18 RFAOOTED,
21 )
22 JTHE HANBLFR ITSELF 18 ACTIVATED WITH READ AND WRITE RPGU!BTS.AS AI! ALL
23 JRT=11 DEVICF HWANDLERS, WHPN USING SYSTEM PROGRAMS WHICH OPERATE ON
24 lLARG! BUFFERS,SEVFRAL LINFS MAY ACCUHMULATE IN THE BUFFER REPORE
L JTHEY APPEAR ON THE TERMINAL,AND_THEN ALL AT ONCE, TO AVOID THIS PROBLEM,
a6 JEACH AUTPUT BUFPER CAN RE ZERU-IILLFD AND SENT T0, THE TERMINAL TO PRINTY
27 JEACH LINE«THE WANDLER WPLi| YGNORE NULLS ON OUTPUY,
28 PTIN FORTRAN,FACH LINE CAN NE FOREED TN OR NUT By USING A, REWIND
29 IPALLOWING EACH READ OR WRYTF TO THE DFVICP, FOR-EXAMPLER
30 ' LOBICAL#Y INPUTL €30)
31 ’ £ALL ASSYON t?.‘w5|/c01
3 ' WRITE (7,19
3% ’ REWIND 7 .
sa ’ WRYITE €7,2)
39 ! REWIND 7
36 ' READ (7,%) INPUTL
37 ' REWIND 7
38 ' ’
39 ’ ’
40 ! »
‘1 ’1 ’ORM‘T " 8 s @
42 ’2 FORMAT , , .
43 3 FORMAT , , ,
44
11 ITHE HANBLFR CAN BF "APCONFIGURFD® FOR VARINUS VEETOR AND
46 IRPGISTER ADDRFSSES Ay CHANGINA THE ASSIBNMENTS OF THE sYMROLS
(34 INMBVEEH AND "KBPSRY ON THF FOLLAWING PAG!, EDITING THESE TWD
1] ISUFPICES TO CHANGE ALL PLNATING ANDRESSES,



KB, MAC

SWPE>T AL LY~

Voileny

UL LT

00400
700402
LL-LYT.I
ned410
np0412
mR2414
02416
ne2422

RTei1 MACRN VMO2=090

aening
174570

nam3Img
174802
176824
174506

LA

faoanp
200340
LT

L TLI-E¥}
LLLI'TE ]
"O9214
LLLIIL ]
L1 LI"1.11
(LA T]
nemadap
nem17Y

ngmo24

L.I.LI"AY

LELLLT
(LY TLT ]
LL-LI 2N
ngroie
100008
LI L)
agL270%
nAn3TY
NIn36T
(LLELL

CTLLLI Y

[ 111}

(L LIYT X

B=APR=?S (23133181 PARE 4

pMEALL  LRPGPEF, v2,., INTEN

LrEGDEF
l-vall
IVECTOR ANP PEVICE REGISTEN ADNRESSESFDIT THESE TWO TH REAONFIGURE
KBVECeRAR IKFYROARD VECTOR
KBESRR{76500 IKEYBOARD CONTROL REGISTER
10THER DEVICF ADPRFSSES
TPVECaKBVELeS IPRINTPR VCETOR
KBRUREKBLSRe2 IKFYROARD RUFFER RFGISTER
TRPESRRKBESRG Y. IPRINTER CONTROL RFGYSTER
TPBRUF AL 1PRINTER BUFFER
ICANSTANTS . _ L
OFPSETE270 JOFFSET TO MONITOR COMPLETION ENTRY
FOPE2p000 1EOF BAYT IN C8W .
PRYNS4O IPSW VALUE POR PRIARITY ¥
PRANSAN IPSW VALUE FOR PRIARTITY 2
HT®1 1TAB
LPul? ILIN® PEFD
rFega IFORM PEED
CReIE ICARRIAGE RETURNSSS
CTRLUs?S 1ETRL /U
CTRLY832 1CTRL /2
SPACFsap 18PACE
PELETsiTY IRUBOYT
PRLENGTHE20, ILENGTH OF ECHO RUFFER
PRAMP TS IPROMPT CHARACTER

18FT LSR CNDF , .
ITHE FOLLOWING IND THE HANDL'ER INTERFACF TO THE MONTTOR SET_COMUAND:
IFAR DETAILS OF TNTERFACTING YO THE SFT COMMAND,SFE THE RTs{i V2 SOFTWARE
1SUPPORT MANUAL
pASECT
«nao0
WY IFOR NOLSR,SET LARAPT TO OWT"
pRADSE  /LSR /
+WORD dOPLSR=40D» /24100000

[ ] X . .

OPi'SRY MOV (pPr) e+, Ry IFOR LSR,8FT LSROPT TO 377
s7Y ) i} o
Mov RY,LSROPT IMODIFY OPTION VARTABLE IN WANOLER
RTS rc IRFTURN TO SET PROFESSOR

LesEer



KB,MAC

VDO ADANN -

e en pa
=yl e -

VElety

nelorg
neop02
ngony
naltgne
ngf010

nolel2
”02014
n@2p20
node24
nedo%2
ne2036
nedod2
[ 111X}
2000%92
ne00%4
7000%6
200062
neoRey
LYY
LELTAL
LELEA L)
neoaTY
n0076
no2100
no0104
"02110
LI.LERT]

RTei{{ MACRO VMA2=09

nen3ng
LLLERY)
san3dp
LI
i LIt}

nimTop
262700
n1mesY
aLa73Y
NERAAY
n1aTON
LEELT L]
L FRR- 134
ny2S6T
"R6318
[IXR-1
LYY
10%420
ny19My
nyasox
10%02S
nos3ng
nQ137S
10%267
nRaLeY

.24
LI.LENY ]

nomaas
npasnQ
N340
nEATNR
177746

fp06Y2
npneTe

LI

00634
LILYLIY

377
npnaap

(113 1H]

8eAPR=T7S 12133151 PAGE 8

JTHIS T8 THE WANPLPR HEARER ARFA,USED RY FFTCH AND THE
1QUEUE MANAGER 7O STORP VARIABLES CRITICAL TO WANDLER OPFRATION,
KBATRTI ,WORM TPVEC : IPRINTER VPCTOR ADRRESS

WORD TPINTe, JOFFSET TO PRINTER INTERRUPT SERVICE
WORM PRY

BLQE? WORD ] ILAST QUEUF ENTRY _

KBrQEY  LWARD o JCURRENT QUEUE ENTRY

!FOLLOWING IS TME TRANSFFR INITIATION €OPE,

ITHE FYRST WORD AF THIS ROUTINE Y8 TWE ENTRY POINT FOR ALL ,
JTRANSFER REAUPSTS. THF KEYBOARD VFCTOR 18 SET UP (FETCH ONLY SETS UP THE
IPRINTER YPCTOR),AND THE PARAMETFRS FOR THF TRANSFFR ARE ESTABLISHED,

fI# THE REDUFST T8 A WRITE, CONTROL TRANSFFRS TO THE PRINTER ROUTINE TO
JOITPUT THF FIRST FHARACTER FROM THE USER RUFFPR, TF IT 18 A READ,

JTHE ENTIRE USER BUFFER 18 ZFROEN,A FLAG (READFL) 18 SFY 7O .

JSHOW THAT A RFAN T8 IN PRAGRESS,AND A PROMPY CHARACTER 18 ECHOER

JON THE TERMINAL BEFORE TH¥ KEYBAARD INTERRUPT 18 FNABLED,

Moy PC, RO . . L
ApP WKBINT=, , RO JCALEULATE ABSOLLTE ADDRPSS OF KEYROARD INTERRUPT SERVICE
MoV RO, PUKAYFC )SPT UP KEYBOARD vECTOR
MOV $PRY, eNKAVFCH2 } .
RETRY® CLM READPL PINIT READ _FLAGR ANP TABR ECOUNY
MOV KBEQE,RS IPOINT TO EURRENT A FLFMENT
eMp (RY) ¢+, (RS) & PAPD G TO RS ) ]
MOV (RS) ,URPTR 18PT UP POINTER TO USER RUFFER
MoV (RS)+,UBPTRY PAND SAVYE ARYGINAL POINTER FOR LATPR
ASL (RS) JMAKE WORD COUNT INTO RYTE COUNT
MOV (RS) ,BYTENT PAND SAVE T .
REQ DONE IWARD COUNT OF O I8 SEFK,WHICH I8 NOP IN THIS HWANDLER
RCS TPAUT2 PIP NEGATIVE,WRITE TO PRINTER
MOV fR%) ,R4 IBYTE COUNT TO R4
Mav «(R5), A% JUSER BUFFER POINTPFR IN RS
LT eLrs tRE) e 12PRO USER BUFFER REFORE STARTING TRANSFER
DE" RY
BNF 33 IBRANCH TF NOT DONF
INCB READFL ) PSFT NREAD IN PROGRESS" FLAG

Jan Ry, E0HA IPROMPY INPUT WITW Y
"BYTE  PROMPT,377 ,
M KBYN _ JENARLE KEYBOARD INTPRRUPT AND RETURN



KB ,MAC VQ1ws0@1 RTail MACRO VMA2=06 R=APRe?S 12133181 PARE §

1 1THIS 1S THE ARORY_ENTRY PAINTeTHE HANALER 18 ENTEREM AT THIS ADDRESS
» JIF TME MONITOR RECIEVES A RFQUEST TN ABORT ANY Y0 TRANSFER IN PROGRESS
3 PeCi16 O004bs AR ABORY
q
- JTHIS TS THE TERMINAL OUTPUT INTPRRUPT SPRVICE, AFTER ENTERING SYSYEM STATP,
) 11T DETERMINES IF THERE ARF ANY CHARACTERS [N THE FCHO BUFFER TO BF
b4 IPRINTED, TF NAT,IT THEN DFTERMINES WHETHER A WRITF REQUFST 18 IN PROGRESS
8 10R NOT, IP 80, THE NEXT CHARACTER IN THE USER RUPFER IS PRINTED,
9 PIF NOT,THR INTERRUPY 18 DTSMISSED|
10 117 THERF ARE CHARACTERS IN THE ECHO BUFPER,THE FPIRST CHARETER IN THE
11 ILYIST TS FETEHED INTO R4, THE LYST IN THE ECHO BUFFFR 18 "SLID UPP
12 1BY ONF CHARACTER,ANP THE FHARACTER TN R4 Y8 THEN PRINTED,
13 JIF THE FILLFR CONNITINNAL CODP TS INCLUNED AT ASSEMBLY TIME,
14 JTHE CHARABTFR IN R4 18 COMPARPD ARATNST THE CHARARTER 7O BE_FILLEN AFYER,
L] TIF THE SAME,A COAUNT OF NERESSARY PILLS IS STUFFED IN "FILENIR AND THE
16 JCHARACGTER 18 PRINTED, THE INTERRUPT SERVICE THEN CHECKS THE NUMBER
L7 JO® FILLS NEFDFD AS THE PIRST TTEM,AND PRINTS NULLS IF ANY ARE LPEPT
ta Ae0120 0nQas7T MEANL22 TRINTT  gSR RE,PSINPTR JENTER SYSTEM ATATE
19 000124 Mpnido WHWORD  ®CaPR4»LPRY ‘ )
am ap@126 W37 MPN2A@ 1765A4  TPAUT2: AIT #2000, 0¥ TPCAR 118 THE PRINTER READY ' . .
21 700434 QO14%¢ L] ;) RTSPC 1YPS=THEN WAIT FOR INTPRRUPT TA PRYINY ANYTHING
22
23 JIPDF  FILCHR JEONPITIONAL CODE FOR PY{|®R
ed rsYe FILCNY PANY FILLS NEED TO BE OUTPUT?
2% BLE 38 IBRANCH TF NOT
26 neEes FILENY IYFSaDFCREASE NUMBFR BY BNF
27 eLR RY INULL 18 FILLER
28 BR TROUTS 160 PRINT 1T
20 , LENDE
30 000136 O1aTNS 381 MoV PC.RS $CALC ABSOLUTE APDNESS
31 200142 062703 0PN5%R ADD #RRSTRTw, RS JOF PCHO BUFFER . B}
32 000144 111504 MOVB tR%) R4 1GPT CHAR TO ECHB FROM ECHO RUFFER
33 A00346 ODt41Q REN 18 . IBRANCH TF BUFFER EMPTY ) i
34 200182 MiP74e MOMO24 . MOV AERLENSTH, = (SPY INUMBER OF CHARS IN ECHO BUFFER ON STACK
39 M001%4 116828 AQMRRY 281 MOovSs 1(RS), (RS)+ 18LINE ECHO LIST UP .
36 000160 0B%316 nEe tsm)y JIDPCREASE FOUNT OF CHARS TH SLIDE
37 000162 MEY3IT4 BGY 23 JBRANCH IF NOT FINTSHEP
38 NP0164 0MO%T2e TSY (sP)e 1DONFRL EAN LP STACK
39 APB16e OQANLLD AR TPOUTY PAND PRINT CMAR
49 ,
41 m@17¢ 109747 @EMSA4 181 T87YR READFL JARE WF READING OR WRITING?
49 200174 BD1016 ~ BNP RTSPC IBRANCH IF READING
4% PE0176 117704 O0ONS4Q TPAUTE MOVE SURPTR,RE 1GPT CHAR FROM USER BUFFFR INTD R4
48 "e0202° MPR2LY MANSSY INE uBPTR )BUMP BUFFER POINTFER
4% 000206 MOR26T MENS524 NG RYTCNY 1AND DFCREASE TRANSFER COUNT
46 000212 Q0Y012 RGY NONE JBRANCH IF TRANSPER COMPLETE

47 MPR214 tO%TMg TPAUTLY T8TH R4 JOANST PRINT NULLS



48
a9
se
L]
s2

%4
s
L]
s7

KB,MAC

L1
L1
60
61
62
3
68
3
68
o7

KB, MAC

-
DOPIAPTADENY -

-
-

- n e m on e
N> ADAN

22216

npd220
000226
np02s2

Voleny

00234
Pp0240
nod24y4
med24e
nae2s%2
ne22%6

Volety

000262
neo266
nage27p
npB274
nRO3INY
neo3NY
neesoe

®0174%

nL27%7
140437
nemeaY

ngnice
174526

176524

RTeit MACRA VMA2=09

np%eyy
fesayy
atarng
nedTMA
ayv708
[ LERS-

176504
176800

177542
7000%4
nem2Y0

RTei! MACLRN VMA2=Q9

704577
namidp
148704
"43704
12muny
n01020
026767

npR460
176502
177670
neOLTY

fangsa

nanyxe

TPAUTIY

RTSPCY

BEQ
L1ror
tMPR
RN
MDVB”
tENDE
MOV
MOVB
RTS

TPOUT2

PILCHR
RG,PILERY
TPOUTY
#FTLENT,FTICNY

#100,04TPCSR
RG,e4TPRUF
rc

BuAPRe7S (91930184 PAGE 6+

IBRANCH TP NULL

ICONDITIONAL CODE FOR FILLFR

IDAES THIS CHAR NEFD TN RE FILLEP AFTER?
1BRANCH IF NOT

1YFS«8FT UP COUNY AF FTLLS NFEPED

JENABLE PRYNTER INTERRUPY
IPRINT CHARACTER
SRETURN TO MONITOR

IRFPQUEST TERMINATION AND ARQRT CADF

ITHIS ROUTTINF IS ENTERED WHEN THE 3/0 TRANSFER 18

JCOMPLETRD OR ABORTER, THE DEVICE INTERRUPTS ARE _DYSABLEN,AND
JSTANDARD MONITQOR COMPLETIAN ENTRY CODE 18 z!ecu*en

lﬂﬁRT'
DONE}

CLR
eLn
MoV
ADP
MOV
Jup

PRTPLSR
(114 14 1L}
PC.RE
#KRCOEe, ,RA
OR%Yy ,RY
COFFSET (REY

QwAPReT7S (3133154 PARE Y

IKEYROARD INTERRUPY SERVICP
PTHIS TS YHE KFYBOARD INTEARUPY SERVICE ROUTINE, AFTER ENTERING

JSYSTEM STATE,TT GPTS THE TYPEN EHARACTYER INTO R4, THEN

IPROCERDS NOWN A CHAIN OF FHECKS FOR THE SPECTIAL CAS! CHARACTERS

) (PUBOUT,CTRL U,CTRL Z,CR,FF), I' 1T 18 ONE OF THE SPECIAL_

JCHARAETFRS, THE RAUTINE HpCHO" ¥8 CALLED YO ECHO APPROPRIATE
JCHARACTERS ON THE TERMINAL ,THEN APPROPRITE ACTION FAR THE O'EC!AL cASE
JIS TAKEN, IF A NORMAL CHARACTER I8 YYPED,IT I8 PCHOED AND pLACED

$IN THE USER BUFPER AEFORE THE INTFRRUPT IS DISMYSSED,

KBYNT:

Jan
WWORD
mMove
a1e
cMPl
ANF
14

RS, 0SINPTR
T ePRargPRY
AUKBRUF, Ry
$177600,Ry
Ry, ¥DELET
149

LIBPTR, UU'TR!

1DTSABLE OUTPUT INTERRUPTS
IDYSABLE INPUT INTFPRRUPTS
1STANDARD MONITOR
1COMPLETION ENTRY

1c0or

JENTER SYSTEM STATP

IGFT CHAR

18TRIP TO SEVEN RIYS

118 THIS CHARACTFR A RUBOUT?
PBRANCH IF NOT

PANY CHARS LEFT TO RUB ouT?



18
19
29
a1
22
2%
24
23
26
a7
28
29

30
3
32
33

34
38
36
37
38
39

KB, MAC

nee314
nER31e
npo322
Pa2326
ne0330
200334
npd340
LAY
(LYY
200382
n023%4
ne0360
209363
LI 1YY
nea3Ty
npa374
200376
nRB4n2
200408
[.1.1-I'.I'8
720412
neB416
aR0422
ned424
ng0432

Vole0y

LIS T
nRR4up
POR442
no04ue
TR
TLIL

202460
209464
no04se
nev4T2
nQ047S
(- LLLL
n00S8A4
noosyp

2p0S14
200520
"pes22

ne1529
208367
004167

1%4
109267
10=077
neseey
[.I.L1}-10}
120427
201006
nRaL6y

012

a1

212
120427
netety
noatey

o1s

37y
11047y
(1L}
np%36Y
201706
1192777
naaToNR

npM420
nem240

37
fp040%
nPN402
fen372

namR14

nRN20e
012
(XX ]
37y
720018

npmiéy
012

npn33a
nan3ay
LLEAY

agna1e

eaa

npn310

RT=i1 MAPRD VMD2=D9

12042y
f0100Y
noal1éy
136
B12
aomisY

tamu2y
01013
mopaieT

13¢

212
Ni1aT0s8
nS377R
nEne%2

120427
202402
1Om26Y

fomp2s

"an120
128
ano

1773%2

npNR%2
"ONDY4

132

on
177324
naneae
npMean

npm213

1S
377

218
377

177776

1421

XY

781

l!@
NEC
188
«BYTF
INCB
[JR.].}
INE

CMPB
RNE
18e
BYTE

eMPB
ANE
san
.BYTF

MOovB
INE
NEC
REN
Movs
AR

CMPB
ANE
188
«BYTE

JImp

tMPB
RNE
J8R
«BYTF

Mov
RIS
AR

cMPB
ALY
ea

KBYN
upetTR
Ry{,ECHO
\,377
TARCNY
SURPTR
RYTCNY
KBYN
R4, uFPF
(1]

Ry ,ECHO

INO=IGNQORE RUBOUT
PBACK UP POINTER INTO USFR BUFFER

IBUMP TAR COUNTER FOR "\"

1ZERO RURBED QUT C£HAR

1AND INCREASE TRANAFER COUNT TO REFLECT LOST CHAR
IRE=ENABLE INTERRUPTS ANP FXTT

718 THYS CHAR A FORM FEEN?

1BRANCH TF NOT

IYES=ECHE Y LINE FREDS

LELF,LF,LFLF,LP,LF,377

R4, #CR

3

RL,ECHD
CR,LF,0,377

R4,PUBPTR
useTR
RYTENT
DONE
#LF,OURPTR
PONE

8mAPRe?S 12133151 PARE 8

R4, #CTRLY
as

:‘oQCHO

118 THIS CHAR A CR?
JBRANCH TF_NOT
IYESECHD AR,LF

1PUT CR IN USER AUFFER
1BUMP USER BUFFER BOINTER
IRAOM IN BUFFER POR LF TAO?
IDANYT INSERT TT TP NOT
1ELSE ADD LF TO RUFFER

118 CHAR CTRL U?
1BRANCH IF NOT
JECHD ¥y

WPULER,LF,0,377

RETRY

Ry, ¥CTRLY
08

M

R4, ECHO

JAND RPSTART RFADP

118 CHAR CTRL 27
JBRANCH_TF NOT
JECHO "Eyn

»*2,CR,LF,0,87Y

KseQE,Rs
#ENF, 002 (RR)
DONE

R4, #d40
218
TABCNT

IPOINT RS T0 O ELEMENT
1AND SET EAF FLAG IN CSW
PSTOP TRANSPER

118 THIS A PRINTING CHAR?
JBRANCH TF NOT )
JYFSwINCREASE TAR POSITION



0T-9

18
19
an
a1
22
23
24
2%
26

KB,MAC

[ J-1.11.T9
”02%32
(L 113.1)
700549
LI LLTY
nQ05%9
700584
[.I'14.1.13
LY

Voie0y

n00566
700370
[T11341
200600
220606
LLLITY]
neR6t2
LLLIYY)
npoe20
LELTY TS
LELIY ]
no2632

1{mUsy
Pea167

a%a
tyma7y
(L LH Y4
ngR3Iay
fot1e3y
nys73Y
nem207

LLLT LI
LLLIAL

377
nani7e
npnyT2
LELELY

namImy

218

2081

176502 KAYNI

RT=11 MACRN VMA2=0Q9

aym70%
nea708%
ALmShYy
A6rT76Y
10872%
01376
nORINS
160567
024727
nexeng
Mo601
npATSY

pony2gp
npoy Ry
pong23

LLERY
LL.LIRT:)

nomi26

[ -LI-RY

MOVE
Jan
LBYTE
MOVB
INC
PEF
RED
MOV
nTs

R4,208

Ry, ECHN
#,377
RG,0UBPTR
UBPTR

RYTCNT

NONE

#1014, PUKACAR
rc

RaAPRaTS 19133151 PARE §

1SIIBROUTINF FCHD

J8FPT UP TO ECHO CHAR

1PUT CHAR TN USER RUFFER
)BUMP BUFFER POINTER

1ANY MORE TO TRANSFER
JBRANCH IF NOT

JENARLE KEYBOARD INTERRUPT
JRETURN TO MONTTOR

1THIS SURRAUTINE SPERVES T0 PLACE THE SPECIFIED CHARACTFRS IN THE
JERHO RUFPER,AND START THE PRINTER IN CASE IT 18 INLP,
ITHE CALLING SFRUENCE T8

FCHOt

YY)

J8m
LBYTE

LVENARL
MoV
ADD
MoV
ADD
L
ANF
REC
sum
eMe
NGt
Mov
AR

Ry ,ECHO

CHARY,CHARS,CHARY, ., . CHARN, 377

JON ENTRY,R4 COANTAINS THF FHAR TYPPFD AT THF KEYBOARD,

INATE THAT THERE MUST RE AN FVEN NUMARER OF BYTES IN THE ARGUMENT LTST
JAND- TH!I!PORE THE NUMBER AF CHARACTERS EXCLUDINA THE %77

IMUST RE ODD.
IWHEN ENTEREND,P2HO SCANS THE ECHO AUFFER TN FIND THE END oF TH!

JEFHO LIST,WHICN IS MARKPD BY A NULL BYTE, WHEN THE END OF THE L1I8T

118 POUND, TT I8 NETERMINPD IF TWFRF ARE AT LEAST 8 FREF 80T IN THE LIST
TN ACCOMONAYTE A POSSBLE LINE r:yo OR FORM FEED, IF NOT,THE

JCHARAETPR JUST TYPEDR 18 IANORED, IF 80,THE CHARACYEI& FROM THE

JARGUMENT LIST #NL{OWING THE CALL ARF !NS!RT!D IN YHP BUFFER,

JTHE PRINTEPR I8 STARTEND TF IT TS INLE,AND THE RAUTINE RETURNS,

INATE THAT TAB IS A SPECYAL CASE) TP R4 CONTAINS A TAB CHARAETER

ITWHEN THTS ROUTINE IS ENTERED,THF ARGUMENT LTS8T 18 NOT USEP, RATHER,

JAN APPROPRIATE NUMBER OF SPACES TN MOVE THE PRINT_WEAD TO THE

INFXT YAR STOP ARE PLAPER YN THE ECHO BUFFFR,AND THE ROUTINE RETURNS

L8R

PC,RS
‘RHSTRT-.-.S
RS, TEMP

1CALE ABSOLUTE APDRESS
10P FCHO BUFFER
PSAVE ADDRESS OF !PHO RUFFPR

#ERLENGTH=T, TEMP)TPMP POINTS TO END OF ECHO RUFPER

(RS)+

as

L3

RS, TEMP
TEMP, 88,
b1}
(8P)+,RY
KBIN

118 THTS END OF PCHO LIST?

JBRANCH TF NAT

JYES=RS BOTINTS TO PIRSY PREE SLOT YN ECHO (18T
JFTND NUMBFR OF FREE 8LOTS_IN ECHO LI8T

118 THERE PNOUGH RAOM TO EEHO TAR OR FF?
IARANCH IF YES .

INA=IGNORE THIS CHAR THEN

IDTSMISS INTERRUPT



I1-9d

36 00Re34 Oim4de 381 MoV R4, w(8P) PSAVE CHAR

37 M20636 12mu2Y eMPB R4, (PCY+ 1IS THIS CHAR A TAR?

38 200640 0QMO1Y LSROPT! WY JYHIS COMPARE NPERAND CAN BE CHANGFD BY SET LSR
39 000642 MR1D13 ANE 18 IBRANCH TF NOT

40 000644 113728 MENQ40 L1 Move WSPACE, (PSY+ JECHO A SPALE

41 0006%2 10%267 NAPNQLS INEB TARCNT JBUMP POSITION COUNTER

42 0006%4 132767 ApMRAT MDNOSTY 1344} #7,TABENT JAT TAR STOP YET?

4% Mp0eb2 @2137p ANF 58 IBRANCH IF_NOT

44 000664 O0MO=TRY TavT (R1)* !VFS-ART!P!L!ALLY AUMP RETURN

4% NoPe6e 10%Q1S LS (R%) 1END ECHO LI8Y

46 700670 DOOLODY AR .S , PAND START [ICHO

47 000672 112128 181 move (R1)+, (RY)+ IMOVE CHAR INTO ECHO L18T

48 000674 100376 LLIN 18 1BRANCH IF LND-O'-L!!T NOT SEEN

49 72p06T6 12%04% eLRB = (RS) JELS® USE & TO MARK END AF ECHO LIST
5 NQOYTRAY OGQaYeY 177222 691 Jan PC,TPOUT? JPRINT A CHAR TO START PRINTER

Sy 0p0TN4  MLP6ns MOV 8P+, RY IRFSTORE CHAR

52 MpOTMe QQM2NY nTS Ry PRETURN

5% LDSARL LS

54

KB,MAC VOl=ly RYaif MAPRO VMA2e09 B=APR=7S 12)33151 PAGE 10

1 IDATA AREA

)

s TECHO RING_BUFFER=FELENGTH CHARACTFRS LONG

4 000710 LT RBSTRYI ,B¥TE 0

L) falke  FBLENGTHat

[}

’ IVARTIARLF ARFA

a

9 N RIPOF  FILCHR IFILLER EONDITIONAL

§0 FILCRLY LBYTF  FILCHR JCHARACTER TO BE FPYLLED AFTER
i1 FTILCNy1 BVTE [ SNUMBRER OF FILLS REMAINING
12 _ Tewoe
(s 700734 MRPMRAD TEMPI WORD ] PTEMPORARY
14 PRBT3e MOMEND RYTCNT! LWORR @ JUSER TRANSFER COUNT

18 200740 292 READFLI ,BYTF o 1FLAG FOR "READ IN_PROGRESSH
16 00074y "L} TARCNTI ,BYTF 0 YTAB POSTTION COUNTER

{7 200742 meMBMD UBPTRE ,WORD O JPOINTER INTO LSER BUFFER

18 0@BT44 PRARAR UBPTRIL WORM O JPAINTER TO START NF USER RUFFER
19
20 IMANTTOR SYSTEM STATE ENTRY LINK
21 M0074¢ mompop SINPTRI LWORD 0
22
k)] aem71%p KBSI7Es, -KHSYHT

24 namoay ¢ VEND



¢T-9

KB .MAC VO1le0y
SYMBOL TABLE

ABORY navd234R
DELET s 000177
FF = 000014
KBYIN PeOS%6R
KBVEE = 000309
PC sX02000Y
READFL 0Q@740R
Re sX002002
SPACF ¢ MQ0040
TPINT 2001200
TPVEC = 700304

. ABS, 000424
200750
ERRORS DRTECTEN

FREE CORFI 15460, WORDS

RTaii MACRA VMA2e029

200
X1
-]

KB,LPI/NITTM/CuKR

RYTCNT 0QATSAR
NONE LT LELEL]
HY N ULEIN
KBINT  PDM262R
LF s 000012
PRAMPTs 020ATE
RETRY  0p0p32R
R3 T ILLLE
TARCNT O@MT4IR
TPAUY  MBMLTER
UBPTR  @pmY4RR

BcAPR=TE 13133181 PAGE (0

R s 00001S
FRLENGe GQMB24
KBRUFP o 176802
KBLOF  MQMA0sR
LSROPT 0P@Me4pR
PRA = 000200
RTYSPE nemn2%an
ng nXQQN@aNy
TEMP faNT34R
TRPOUTL O0Q2214R
UBPTRYL O0Q0T44YR

CTRLL = QQRQ2S
PEHO LIS
KBEQE  B2AQiOM
KBSIZEs MRATSE
NFFSETs 0@R270
PRT = M0A34Q
"o X029200
s X000008
TPAUF = 176806
TROUT2 0001 26R
SINPTR 208T4eR

CTRLY « PpR%2
FOF  » B20000
KBESR = (74800
KBSTRT 0QQ0QMQR
OPLAR 000412
RRSTRY QgA7IQR
Ry aX000001
8P =X000006
TPESR = 174504
TPOUTS Gom220R
vesV2 = NEAROY



APPENDIX C

VERSION 1 EMT SUMMARY

Although Version 1 programmed requests are supported by Versions 2,

2B, and 2C of RT-11, it is strongly recommended that the Version 1

formats not be used. For purposes of compatibility, however, this

section provides a brief review of the V1 format. The V2/V2B/V2C

format is covered in detail in Chapter 9 of the RT-1l1l System Reference

Manual.

In brief, the major distinctions between V1 and V2/V2B formats are:

1.

V1l format has arguments pushed on the stack and in RO.
V2/V2B/V2C requests generally accept a set of arguments,
or an argument in RO.

V1l channel numbers are restricted to 16,.. Also, the
channel number in V1 is not a legal assémbler argument;
it is merely an integer in the range 0 to 1510.

V1 requests are non-reentrant because the channel num-
ber and function code are embedded within the EMT in-
struction.

Table C-1 lists all the Version 1 macro calls. Those in the left

column have the same format as the corresponding Version 2/2B/2C re-

quest;

those in the right column have a different format, shown after

the table. The operations performed by the requests are the same in

both versions.

Table C-1
V1 Programmed Requests
V1l - Format Same as V2/V2B V1l - Format Different fromV2/V2B/V2C
.CSIGEN .CLOSE
.CSISPC .DELETE
.DATE .ENTER
.DSTAT . LOOKUP
LEXIT .READ
.FETCH .READC

(continued on next page)
c-1 January 1976




Table C-1 (Cont.)
V1 Programmed Requests

V1l - Format Same as V2/V2B V1l - Format Different from V2/V2B/V2C
.HRESET .READW
.LOCK .RENAME
. PRINT .REOPEN
.QSET . SAVESTATUS
.RCTRLO WAIT
.RELEAS .WRITE
. SETTOP WRITC
.SRESET WRITW
.TTINR
. TTOUTR
LTTYIN
. TTYOUT
.UNLOCK

The formats of Vl-specific requests (those listed in the right column)
follow. Definitions of arguments used in these macro calls are:

.blk A block number specifying the relative block in a file
where an I/0 transfer is to begin.

.buff A buffer address specifying a memory location into
which or from which an I/0 transfer is to be performed.

.cblk The address of the five words of user memory where the
channel status will be stored.

.chan A channel number in the range 0-17 (octal).
.crtn The entry point of a completion routine.
.dblk The address of the 4-word RAD50 file description

(dev:file.ext).
.length The number of blocks allocated to the file being opened.

.went A word count specifying the number of words to be trans-
ferred to or from the buffer during an I/O operation.

.CLOSE .chan
.DELETE .chan, .dblk
.ENTER .chan, .dblk,.length

.LOOKUP .chan, .dblk

READ . .
: .crtn is required
.READ% .chan, .buff, .wcnt, .crtn, .blk [:only for .READC ]

.RENAME .chan,.dblk
.REOPEN .chan, .cblk

.SAVESTATUS .chan,.cblk
c-2 January 1976



.WAIT .chan

.WRITE : .
.crtn is required
f ?
.gg%z% } .chan, .buff, .went,.crtn, .blk {-only for .WRITC 1
. T |

The system macro library (SYSMAC.SML) can be used with Versions 2 and
2B to generate Version 1 programmed requests.

Under Version 2, the ..V2.. macro is capable of handling V1 expansions.

..V2.. normally expands as:

.MCALL ...CM1l,...CM2,...CM3,...CM4
..o V2=1

This causes Version 2 expansions in all cases. To allow expansion of
all V1 requests in their V1 format (and all new Version 2 requests in

V2 format) the ..V2.. macro should not be called, but the utility
macros must still be defined:

.MCALL ...CM1,...CM2,...CM3,...CM4

Omitting both ..V2.. and the utility macros causes all old V1 requests
to be expanded in V1 format; no V2 requests can be used.

Under Version 2B, the ..V1l.. macro call enables expansion of all macros
in Version 1 format. ..V1.. expands as:

...V1=1

To enable expansion of all Version 1 macros in V1 format and all new

Version 2 macros in V2 format, these statements must be included:

.MCALL ..V1l1..,...CM1,...CM2,...CM3,...CM4
..V1..

A listing of SYSMAC.SML is provided in the RT-11 System Reference

Manual.







APPENDIX D
FOREGROUND SPOOLER EXAMPLE

The following program is an example of a line printer spooler for the
foreground. Instructions for its use follow.

1. Create the program using the Editor and store it on
the system device under the name LSPOOL.MAC.

2. Next assemble it under MACRO and then link it to cre-
ate the REL format output file:

. R MACRO
*LSPOOL=LSPOOL

.R LINK
*LSPOOL=LSPOOL/R

3. Load the necessary handlers (in this case, LP and RF)
and run the program. All files on device RF with the
extension .LST are listed on the line printer and then
deleted from RF:

.LOA LP,RF<CR>

.FRU LSPOOL<CR>

F>
DEVICE TO SPOOL?

[oe]
v

[Control must be redirected
to the foreground via *F.]

F>
RF:* . LST<CR>

This program assumes device DK: and extension .LPT un-
less otherwise indicated.



9.6T Axenuep

LSPDONL =« LINF PRINTER SPOCLER

DP NPT AR ANY -

2p2one
nePenn

[l rd2dsladnl
Alpne
LA AU
nnente
rAlRP4
fRVPe
nARpRp
ANy

npmsvlde
aAmmiSp
ramiiy8
(11 TAR -}

mry2737
A{MR2T
apAon

1p34n3
APRRTATY
LEXERR|

fAn126n’

neA7Ten

RTei] MACRA VMAR=11 P6=NOVeTS APIATLIP] PAGE |

LYY T YT

W R e e W T e %e S Y G e e Y e W e e

«TYTLE LSPDOL = |_TNE PRINTER SPOQOLER
LSBTTL A USEFUL FNRFGROUND PROGRAM

THTIS PRORRAM FOR THE FNRFGROUND TS A LTINF PRINTER SPNOLER,
TT SEARCHES 4 SPECTFTEN NEVICE FNAR FTLFS WITH A PARTICULAR
FXTENSTON fTHE DFFAULT 19 LPT) AND PRINTS THEM, NELETING
AFTER PRYNTING, TF NONF ARF FOUNP, IT WILL GO TO SLEFP FOR
HALF A MTINITF, PERMITYINA THF RACKGRROUND TO RUN,

TO RUN LSPONL, FYRST LOAM LP HANNMLFR AND INPUT DEVICE WANDLER
TF IT 18 NAT TWE SYSTEM REVIRE TYPF,

F-noi

LLOA LP,RF
LFRU L8PNOI

I SPONL WIL! TYPE: '"DFVYCF To sPonL?"
TYPE INPIT DFVTEF AND FILLE DFSCRIPTINN, F, G, ¢

RFIx, LST

JMEALL L, V24., RERDFF

LMPALL L RFANW, ,WRTTW, [ NOKUP, ,DFLFTF, ,CSTQPC, ,TTYIN
JMEALL  JPRINT,,TTYOUT, ,RRFSFT, ,RCTRLD, ,FLNSF, ,EXIT
JMEAIL  ,DSTATIS, ,TWATT

"VE.O
«REGPEF
EPSWP = 46 TUSR SWAP |.OCATIAN POINTFR
FRPBYT = 52 tERRNR CODF
rR . 15 1CARRIAGE PETURN
LF . 12 PLINF FEFD
STARTI MOV HBUFF ,8#LUSRSWP yMAKF USP SWAP AVER RUFF
MOV SP, (PCY+ 1SAVF STACK POTNTER FOR RESET

STWSAV?! ,WARD 0

CDSTATIIS #TI0R, #LP IMUST RE IN MEMORY,
RCS 18 tILLFGAL DFVICF

T8t TORed ITFST ENTRY POTINT
RNE RERIN JRR TO REGIN IF LDADFR
183 SPRINT  #MSGO ILP NOT TN MEMORY!




9,61 Axenuep

4%
'L
47
4R
49
5n
51
82
S%®
54
55
54
59

npPpua

npvpag
rRORS2

PAVES6
anvoTe
ApvLT2
LYUTEY
P01 AL
Pov10e
opRLL2

PIeTPH

ny2702
RN

m2a7mp

JEYIT IRACK TO USER FpR A LLOAD LP
! COME HFRE ON RAD COMMAND STRING
RANCAM: _PRINT #M8G2 JPRINT ERRNR MESSARE
17773%2 MoV 8TKSAV,SP JIRFSFT STAMK, FaALL THRU TO BRFGIN
RERYIN: L,CLOSE %0 IWF WTLL USE CH 0, S0 ALFAN 1T UP
LRETRLA IRFSFT CTRIL/O FLAG SN
LPRINT #MSG1I 1PROMPTING MSG WTILIL PRINT,
PRt14p° MOV #CSIRLK,RR 1PAINT TO FCOMMAND STRING BUFFER
Mav R2,R1 $CAPY THE POINTER ANN INPUT COMMAND
181 JTTYTN 1A CHARACTFR AT A TIME,
nRPR1S cMP #CR,RQ JCARRIAGF RETURN?

LSPOOL = LINE PRYNTER &pNDLER RT=11 MACRN VMARw11 Ph=NOV=TS OQ307321 PAGE 1
A USFFIIL FORFGROUNP PROBRAM

5p
59
6n
61
6P
6%
64
]
b6
67
68
69
70
71
72
73
T4
A
76
77
78
10
aﬂ
a9
82
A%
AU
85

72116
"p0120
rpRLee
rr0126
npeyln
npY1p
mpRyuy
rn0146
rRC1ISE
npoLRa
npNeny
npv21o
fne21
nuletyd
npéd216
nrpRe22
PP
maR23n
npLate
Q0234
npR23e

poRgde
npLRS2
2PpVRSy
nAR2Ep
rplRep
o7

"RITTY
tinndp
122700
201367
198242

myaemp
mp13%e
1ARTRS

MiATOR
naLrAR
my27mp
Paab24
mymiahY
n1a700
I AR F-]
oypT0p
R F
Preryy
AL T

1A340%
ArRTAT
L XAy

apnhTp

REQ 18 JYES, IGNQOPE 1IT,

MOVB RD, (R2)+ IMOVFE TT INTO BUFFFR AND
rpaR12 CMPB #LF,RQ ITEST FOR END OF LTNF,

RNP 18 INN, GFT ANQTHER CHARARTFR,

PLRB -(R2) 1YES, CLEARP NUT THE LINE FEED

LCSISPC Ry, #DEFEXT, R IPROCESS THE COMMAND

MOV tS$PY+,Rp 1TEST # OF SWITCHER)JEC RIT UNCHANGED,

RNE RANCOM IND SWITCHES ALLOWFD

RS RANCOM PSYNTAX FERRDR

2LOOKUP #INB, &1, %P
nANTTA MOV CSTBLK+36,,R0 1IGFT FTILF FXTENSYON TD PRINT,

RNF s JBRANCH TF USER SPFCTFTED,

MAv (Pr)+,Rp 1ELSF USF LPT EXTENSTON

JRADSG /LPT/
LYY T8 MOV RA,LPT... ISAVF THE FXTENSTON FOR | ATER,
nARTS2 MOV FSTBLK*32, RO IGET THE INPUT DFVICFE NAME

RANF a8 JBRANCH TF USFR SPFCIFIED,

MOV (PR)+, RO PELSF ISE THE

LRADSE  /DKB/ tDFFAULT DEVICF,

ase MoV RO, PR} $8FT DFVICE NAME IN FILE
rOAMGOR FLR P(R1) JIDFSCRYPTOR RLOCK, CLEARTING
$01)T ANY FYLE NAME.

LDSTATUS #T0R,RY FINPUT DFVICFE HANDIER MUST RF RESINPENT

RCS 5$ tTLLEGAL DFVTICF
npms22 TST TOR+4 $TFST FNTRY POTNT

RNF X3 JRRANCH TF 0,K,,

5% +PRINT #MEGT 1EL SF PRINT MESSAGFE

RR REGIN




9L6T Axenuep

R&
L84
&8
R
9
99
92
CAJ
Qu
LA
9k
97
9R
gq

10

161

twe

12%

o4

1%

106

187

108

199

110

119

112

113

114

LSPONL = LINF PRINTER SPOOLER

ngpveTe
AALI2N

a3
nAC3IAk
NP3
npv334

200340
2eCUme
eRdeL
rgLune
mIvdLe
PRE4YE
npRLRY
fAvL24
XYY 1)
2ANLS2
rPVURY
PrRlU6R
D VI Y]
ARAU6E
naGdTn
npwvare
PARLT 6
nEUSAE
apoSNe

1pTi6T

m12702
137Ny
APA SN
neE210%

1ATURA
[ T-4-1}
PeATAS
232718
AMI LA
ALeEMT
mpy sdp

rpm?2l
n32728
I XY Y]
Ppas27
nOmARR
npIuny
ne2708
npm7as

epam71y

hs
RCS
1.§R
Mav
Mov
ASL
ADD

CENARL
ARL260°* FINDI P
MAMNAY

18
APAAAY

JREANW
PCe
MOV
ApP
RTT
REN
MOV
ANE
LTWATT
RR

RTT
REN
rMp
JWARN
REM
ADD

AR
PRINT
AR

LSA

20MA1e

na4ARR 28

rOMATe
nNPRAY LY ¥

apAARAY
LPT,..¢

L d 1.1 AW) ass
RANRERR!

«DSABRL

RT«ii MACRN VMO2=1{1{

A USFFUL FOREGRQOUNR PROGRAM

1458
tya
117
118
119
12n
121
12
12%
128
12%
126

/pR51p
neesia
na2s2oe
npRsS24
nRUvSS,y
nECESSe
ANUELQ
npvead
npLe26

n1256y
m125614
myoSky

1236h2
NEROAS

19424
pleveg

] THTS RNAUTIME PRINTS THF SPOOLEDP FILE JLUIST FOUND AND THFN DFLETES 1T,

anmAR
nRAARL
AAMANE

COoPIFRY MOV
MOV
“MAv
.Lnowup
RCS
LR
+READW
ACS
Mav

18

JLNOKUP #INB,8M, Ry

10PEN CHANNEL TO RFAP NIRECTNRY

AANERR

#BUFF,Rp 1R? => BUFFER

#{,R3 PIMNIT R3

r3 JMULTIPLY AY 2

#4,RY PAND APRD 4 TO GET RLNOCK NUMRFR

1OF NIRECTARY SEGMENT (STARTTINR
JAT RLNCK & OF DEVYCE),
#INB, #M,R2,#1000,RT JRFAD 2 DIRECTARY SEGMFNT

RANEPR . 1ERRNR RFANING NTRFCTORY!]
R2,RS ICOPY POINTER

#12,RS§ tMAVF PAST DIRFECTORY HFANER
HUMQR, ARS ITFST FOR FND NF SFGMENT

1$ ; tRRANCH TF MORF TO GO
2(R2),RY IGFT LTINK TO NEXT SEGMENT

1% : JBRANCH TF ANDTHFR SEGMENT EXISTS,
#INB,#TIMB) K JELSF WATT A WHILE

FINDLP JWFPRE AWAKE, |.OPK FOR A FTLF
#2700, (RS) + $ TFMPORARY FILE?

us JYFS, 8KTP IT

4(RSY, (PLY e JONES THE FXTENSTON MATCH?

o

COPIER 1YFS, GO PRINT IT,

#14,RS5 . INA, ARVANCE TO NEXT ENTRY

2§ PAND GO LOOK AT IT,

#MRGAY JPRINT A MFSSAGE

18 $THEN TRY NEXT SFGMENT

26«NOV=TS 0127121 PAGF 1+

(RS)*,2(R1Y
(RE)+,4(P1Y
tRR)#,6(R1Y
¥10B,42,R1

JCAPY FILE NAME ANN FXTENSTON
$INTO FILE DESCRIPYOR RLOCK
IFNR A LNOKUP,

LNOKUP THE FILE ON CHANNEL 2,
FINDLP PSNMFTHING FUNNY HAPPENED

(T 10,K,, COPY IT, RS IS RLNCK #
$I0B,#2,R2,#10%0,RS IRFAD 1000 WORNS

28 JERRNR ON READ

RO,RY fCAPY ACTUAL WNRPA COUNT TRANSFERRED




9.6T KAxenuep

127 2pQe30

12p APPeT? PAS7PR

129 AEP6TL mpel Ry

130 MEVeTEe 12KRT3T onmQR2
130 RQETP2  Pri4tp

132 27Ny

132 P0071¢

134 rpRT24 ComibT 177372
138 np@73y

136 G272

127 opRT72 nmpmlfiy

138

132 20774 N4k6Te

140 ape776

141 «NLIST RPINM
142 2011 Mgnv e LARCT?
14T c@1P16 Mgmy e LASCTY
144 Ma1p3T  MSRe! #ASCTYZ
14% opinSty MEPm 3 +ASCT?
14k OQIRKY MSP4D LASCTZ
147 2¢¥1ty1 ERPIME:  LASCTIZ
148 JEVEN

149

150 2R112p PORIDN OR160Y
159 221132 myerpy

152 P14 opns0p OOONCQR
1852 pplyde

154 eplemn

18% pomvep®

LSPONL = LINE PRINTER QPNOLER
SYMBOL TABLE

JWRITW #INB,#1,RP,RU,R5 pAND WRITF IT TO FHANNEL 1
TsT fRS)+ PBIIMP R NCK # RY 2
AR 18 JCANTINUF HINTIL FOF,
LY TSTH SKFRRBYT IWAS ERROR JUST AN EOF?
REN 0s 1YES,
.CLOSE #2 NN, CLOSE THE FTLE AND
+PRINT #ERRIN tRFPART AN INPUT ERROR
T8 Jmp FINDLP PTHEN FIND ANOTHER FTLF,
4% .CLOSE #2 PON FOF, CLNSE THE FILF
LDFLFTF #IMB,#3,Ry tMIST NELETE USING
AR s PTHEN FONTINUE
(-1 +RADBG /LPR/ 1SPOOLFR OUTPUT NPEVICE
T0R3 JBLKW 5 1EMT ARGUMENT RLOMCK

/INDLPY

/DEVICF To 5PONL?/
/TRY AGATINY/
/DFVICE?/

/ERROR REARING DTRFCTORY/

/INPUT ERRAR/

WLTST  RIN
TIMALK! ,WARD
NEFEXT! ,RADSQ
APAPAN JWARD
FSTBLKE ,BLKW
RUFF ! LBLKR
dEND

RT=11 MACRN VMA2e=1{1

RANCOM QQOQL4R RARERR p@as2pR BEGIN
CR s P0C021S £STBLK ¢R1142R DEFEXT
FINDLF ®p@322R T0R nORTT6R LF
MSGD noigior M8GY AR1Q16R MsE2
PC RyM20007 rR2 4NRN20Q R{
R4 s X00000y RS =XNEOQR0S sp
TIMBLK Mpli2eR 11SRSWPe MAEMNQA46 veaV?
. ABS, PpOuRQ -

myigen ey
FRRORS DETECTEN: @
FREE CORF: 15835, wnRp®

JLPI/NITTM/CRLSPNOL (MAL

P,AQ, %15,

JILPT/ tCRY DEFAULT EXTFNSINNS
¢,0,0

19, 1681 WNRK ARFA

tonpo 1RUFFER ARFA

START

26=NNV=7% PR107324 PAGF 1+

APAOSER AUFF 201260R fOPIER
PR1132R FRRBYT= #p2Q%2 ERRIN
* PPARL2 LP ABATT4R LPT.us
2212378 MSG3 TITLIL M8G4
TLLLLI R T LLILE RS
YL LLLIY START  0QODAQR aTYK8AY
s PQAQMY

AN INACTIVE CHANNFL

Nen510R
a01111R
NON466R
PR1D&LR

=X000Q03

rAMRAL0R







APPENDIX E
S/J AND F/B MONITOR FLOWCHARTS

The following flowcharts are of the Single-Job and Foreground/
Background Monitors. It is recommended that the reader have source
listings available for reference. Steps inside r_._-_7 are per-
formed only in the F/B or S/J Monitor, as noted.

An index of all entry points appears at the end of the appendix.






E.1l KMON (KEYBOARD MONITOR) FLOWCHARTS



KMON

— — w—

e - — — —

MEXIT2

=

INIT POINTERS &
DATA BASE WORDS

OR SOFT
EXIT

LHRESET & CLEAR
CHAIN BIT IN
JSW

INIT THE STACK
TO KMON STACK

.UNLOCK USR

SET R5 TO KMON
COMMAND BUFF

-LOCK USR

RUN

#.____________

el

BADCOM

< MEXIT )

\

FIX NEW USR

POINTERS

PRINT ?ILL CMD?

RTS PC

PRINT A DOT

!

COLLECT AN
INPUT LINE

GET OVERLAY
INTO MEMORY

NO-DISPATCH

e

i

INIT

REENTER

STARTK

g

GET

R

RESUME ASSIGN
SUSPEND SAVE
FRUN TIME
SET DATE
GT ON/OFF

CLOSE

UNLOAD

LOAD

January 1976



O
7=
=]
C

MAKE IT AN
EVEN NUMBER
AND SAVE IT

GET BASE
VALUE

GET UPPER
LIMIT

COUNT=UPPER-LOWER

il |

ADDRESS + BASE
= LOC TO EXAMINE

]

CHECK FOR
VIRTUAL
ADDRESS

PRINT CONTENTS
OF ADDRESS

y
E-5

-=GET BASE VALUE

OPRINT
S

BASE/EXAMINE

RETURN TO KMON MAIN LINE

-=--PRINT AND ADVANCE TO

NEXT ADDRESS

----- BACK TO KMON



DEPOSIT

- ~--GET LOCATION TO BEGIN STORE

PUT ADDRESS +
BASE IN R3

SAVEVC

---ADJUST TOP OF MEMORY (LOC. 5f);
TURN ON BIT IN INTERNAL MEMORY
CONTROL BLOCK

—-=SEE IF ADDRESS INTO WHICH TO STORE
COULD BE CURRENTLY IN SCRATCH BLOCK

SET BLOCK ---THIS CAUSES A SCRATCH BLOCK TO
SAVE FLAG BE RE-WRITTEN AT SAVEVC

-
-==CET NEXT VALUE TQ RE STORED

SAVE VALUE; GET
NEXT ADDRESS IN-
TO WHICH TO
STORE

®

SAVEVC - Entered to rewrite the current virtual block back into the

system scratch area. It also acts as the exit point for
Deposit; The RTS PC will return control to KMON.



&_‘;_/
MAKE DEFAULT
DEVICE = SY

-==PICK UP FILE DESCRIPTOR

N
CCBBfZ

READ BLOCK
8

INIT TO READ
FILE STARTING

AT 1000
( BEGIN } >
CHATINed
TO
?
N

SOFT RESET

SET USER SP
& LOC. 58

ENTRPG THE PROGRAM MAY BE ALL

WITHIN 508-776

ISET UP A .READW
FOR REMAINING
CODE

INTO RMON TO READ THE

REMAINDER; ENTER USER'S
RDOVLY PROGRAM




GET

GET - Used to load a .SAV image into memory. If parts of the file
overlay KMON/USR, those parts are placed into system scratch

blocks.

READ THE FILE

FIRS
INTO MEMORY

CALL TO
GET

/[ circce
CLEAR INTERNAL
CONTROL BLOCK,
CLEAR LOC. 58

'
. L READSF 1

SET FLAG, NOT
FIRST GET READ PART WHICH
CALL GOES INTO REAL
MEMORY

! ' —
1 i

'LOQ§HE,THE READ BLOCKS FROM
FILE FILE; WRITE THEM
INTO SYS. SCRATCH

?FIL NOT FND?

[ cceag
GET FILE'S -
BLOCK § INTO SET BITS ON IN
KMON RMON MEMORY BLOCK
OF FILE FROM A BITMAP OF RTS PC
LOCS. 360-377 | ——-BLOCKS USED BY
oF PILE THE FILE.




REENTR

GET START ADD.
MINUS TWO

OCTNUM

[ \
( GET SPECI- )
FIED START

ADDRESS

ADD LOC. 4§ TO
R2 TO GET ADDRESS

BADCOM

REENTER/RUN/START

PUT -2 INTO R2 FOR CODE AT
STRE.

INITIATE THE PROGRAM AT
START ADDR-2.

GET THE MEMORY IMAGE INTO
LOW MEMORY AND SCRATCH BLOCKS,
IF NECESSARY.

\

SETUP TO READ
PROG. INTO

BEGIN

=
53]
=
o]
o]
=






E.l.1 XMON Subroutines



OVREAD/OVLINK

OVREAD - Used to read overlay command processors into memory.

OVREAD

SET PARAMS
FOR .READW
OF OVERLAY

MARK THIS
OVERLAY AS
RESIDENT
- INTO RMON TO READ THE OVERLAY
/
RTS PC --- RETURN; OVERLAY NOW IN MEMORY
OVLINK = Called from overlay processors to allow linking from one

overlay to the other.

OVLINK

JMP @R3

READ IN THE OVERLAY

RE-ENTER THE SECOND PART
OF THE OVERLAY.



ADTRAN

ADTRAN - Used to determine if a user-typed address is a) legal (i.e.,
address of RMON), b) in scratch blocks on system device.

~==-GENERATE ?ADDR?

ADDR. IN
SCRATCH

--=-BACK TO KMON.

/ SAVEVC  \

REWRITE CURREN
SCRATCH BLOCK IF
IT WAS ALTERED

SAVE BLOCK # OF
THE ONE WE'RE
READING IN

READ THE

SCRATCH
BLOCK

GET THE ADDRESS
OF THE WORD IN
THE VIRT. BLOCK

RTS PC -=--BACK TO KMON.




SAVEVC/FILE

SAVEVC - Rewrites a block of memory back to the system scratch area

if the block's contents were altered with a Deposit.

SAVEVC

WRITE CURRENT
SCRATCH BLOCK
BACK INTO SYS

'
{ RTS PC ’

FILE - Called to pick up the .RADS5@ representation of DEV:FILE.EXT.

It will assume a default extension of .SAV,
( FILE ’
\i

PURGE CHANNEL
NO. 17

FILE DESCRIPTO#
IS AT
L0C. 5gg J

GETFD

FROM INPUT LIN

Q?ET DESCRIPTOR

~E D

Y
?FILE?

RTS PC



CCBBfg -

CCBB¢

The CCBBJ routine reads the first block of a .SAV file into
the USR buffer, then moves selected locations from that block
into the corresponding physical memory locations. The words
moved are those marked with @'s in the RMON bitmap. This pro-
cedure protects the system from having its vectors overlaid.
If a chain is being done to a program which does not accept a
CHAIN, 5#@-776 will be loaded with the contents of the file.

{ CCBBZ )

Y

READ A BLOCK INTO
THE USR BUFFER

(BLOCK @) COPY FILE'S MEM-
— ORY BLOCK INTO
‘ , RMON'S MEMORY
MOVE WORDS FROM BLOCK

FILE TO LOW MEMORY
IF THE WORD IS

UNPROTECTED RTS PC

MOVE 500-776
OF FILE INTO
REAL 500-776




SYSK

SYSK -

area.

‘ SYSK )

MARK NO
DIRECTORY IN
USR BUFFER

Is
OPERATION
OF PROPER
SIZE?

?0VR COR?

DO THE I1/0
OPERATION

RTS PC

Used to read/write blocks into and out of the system scratch

THE USR BUFFER IS USED TO HOLD
THE BLOCKS TO GO INTO THE
SCRATCH AREA.

CHECK TO SEE THAT MONITOR
IS NOT OVERWRITTEN.



E.l.2 KMON Overlays

E-17



DATE/TIME

N --- SET DATE

NUMK 4)

GET DAY &
CHECK LIMITS

?NO CLOCK?

P

SET FOR
+ 56 OR 60 ~
MATCH UP
MONTH

FOUND
MATCH IN

TABLE N -- SET IT
?
' INPUT TIME,
| CONVERT
[ NUMK \ AND SAVE.

k GET YEAR &

CHECK LIMITS )
{ EYIT

SAVE THE
DATE

EXIT l

GET THE
DATE

{

IF ONE,
PRINT IT

EXIT

GET TIME
AND PRINT

EXIT

E-18



SAVE

Y
COPY MEM CONTROL
BLOCK AND USER
HIGH (LOC 58)
FOR OUR USE

GETHAN

kGET FILE NAME )

AND HANDLER

BLOCK LIMITS
END Y
OF COMMAND DOSAVE

LINE
2

CLEAR COPY OF MEM
CONTROL BLOCK &
USER HIGH LOC

PROCESS A
MEMORY
SEGMENT

SPECIFICATION

END
OF COMMAND
LINE

DOSAVE

COMPUTE #
BLOCKS FOR
SAVE FILE

HIGH
MEMORY
LIMIT
8

2
¥ N

?PARAMS?

.ENTER
THE FILE

Y

COPY BLOCK
@ OF MEMORY
TO USR BUF.

USE MEM CONTROL

N -- INPUT USER LIMITS

SAVE

PUT IN CORRECT
HIGH LIMITS AND
SAVE FILE MEM
CONTROL BLOCK
-WRITW - -~ — WRITE BLOCK §#
BLOCK # TO FILE
.WRITW
MEMORY - - ~ WRITE MEMORY
RESIDENT RESIDENT PORTION,
CODE STARTING AT BLOCK 1
388
DECREMENT -
SORATCH NOW WRITE OUT

BLOCK COUNT

ANY
SCRATCH
BLOCKS

LEFT
2

READ 2 BLOCKS
INTO USR
BUFFER

1

WRITE 2
BLOCKS TO
SAVE FILE

{

BUMP BLOCK
# BY 2

.CLOSE THE

SAVE FILE

( RETURN )

E-19

SCRATCH BLOCKS,
IF ANY LEFT



ASSIGN

ASSIGN

GET SYSTEM
PERMANENT
NAME

END
OoF
COMMAND

LINE
2

GET USER
ASSIGNED
NAME

VALID
PERMANENT

?ILL DEV?

?2ILL DEV?

FIND A FREE
SLOT TN USER
TABLE

FREE
SLOT
AVAILABLE
?

?ILL DEV?

?ILL DEV?

Y

USE THAT
SLOT IN
USER TABLE

Y -- DEASSIGN ALL

CLEAR ENTIRE
USER TABLE

EXIT

SET PERMANENT
NAME IN TABLE

EXIT

ET

CLEAR USER
NAME FROM

TABLE

EXIT

SET USER
NAME IN
TABLE

E-20



LOAD

GET A DEVICE
NAME AND
MAP TO
PHYSICAL NAME

OWNER
ASSIGN

2

DETERMINE
OWNER'S
JOB #

DO .DSTAT
ON DEVICE

HANDLER
RESIDENT
?

ALLOCATE
SPACE AND

TMHMMATT mMIIm
LR A 7N LAY S Ay ¥ 7}

HANDLER.

!

PROTECT
THE HANDLER'S
VECTORS

LOAD

DETERMINE
DEVICE
TABLE

INDEX 4

1

COMPUTE UNIT
#; NONE
IMPLIES UNIT @

?ILL DEV?

FILE
STRUCTURED

I
I
I
|
I
I
I
I
I
I
I
I
I
|
|
|
I
I
|
I
I
I
I
I
I
I

DEV.
5 SET TO
\ ASSIGN JOB
Y # TO ALL
UNITS OF DEV.
1
O;ﬁgggﬁ;P A DEVICE MAY HAVE
70 ALL SEVERAL ENTRIES
neernpenems | IN OWNERSHIP TABLE
e Bavice. | (B-G-r SY1, DK:, RK:)

E-21



UNLOAD/SUSPEND/RESUME

UNLOAD

r_ F/B |
SUSPEND/
RESUME
GET A
DEVICE POINT TO
NAME FG IMPURE
AREA

FG
JOB IN
MEMORY

?NO FG?

L | S _ _F/B

SET SUSPEND CLEAR SUSPEND

MAP NAME BIT IN BIT AND FORCE

TO PHYSICAL JOB STATUS CONTEXT SWITCH

NAME
RETURN .EXIT

- __ .
rr— - - 1

IS
BATCH
ACTIVE

FG
IN
MEMORY

N
?NO FG?

| |

| |

| |

| |

[N B !

Y MAKE HANDLER i \/ i

NON-RESIDENT 1
e RETURN MEMORY,| | N |
INDEX # CLEAR VECTOR | | NONRESIDENT |
PROTECTION % RECOVER

—— ———— —— n BITS | MEMORY I

| CLEAR | |
| OWNERSHIP

FOR ALL | @ |

UNITS |

| L ___ /e]



GET/PUT A BLOCK OF MEMORY

GETBLK
PUTBLK

ADD 2 BYTES
TO REQUEST
FOR SIZE WD.
i POINT TO
L SIZE IN FIRST
POINT TO WORD OF BLOCK
FREE MEMORY i
L
IST POINT TO REMOVE
FREE MEMORY BLOCK FROM
LIST LIST
GET NEXT / KUMOVE 43
ELEMENT K RECLAIM |
TN LIST )
GET NEXT METORY 4j

ELEMENT
IN LIST
RETURN

NEXT
BLOCK
HIGHER

SUBTRACT
WHAT WE NEED
FROM IT
F;gﬁﬂgﬁgT CONCATENATE
NEW BLOCK
WITH HI
BLOCK
5%
NEGATE AND
CONVERT TO JUST LINK IN
: NEW BLOCK
PUT SIZE W?R?:FOUNT oL
IN WORD # -4
R ! Y CONCATENATE
RETURN | siipE kMoN/ | BLOCK & LO BLOCK

\___ J \ USR DOWN 4/ 2 I

FIX SIZE CAN
%fCK TO RECLAIM
POSITIVE BYTES MEMORY

©

{ N
RETURN

E-23



FRUN

F JOB
IN
MEMORY

?FACTIVE?

RECOVER
MEMORY
FROM DEAD
F JOB

.FETCH HANDLER
AND .LOOKUP
THE FILE ON
CHANNEL 17

¥

PROCESS
SWITCHES
AND SET
DEFAULTS
IF NEEDED

READ BLOCK @
OF FILE INTO
USR BUFFER

]

COMPUTE SIZE
OF ROOT AND
OVERLAYS

ADD STACK
SIZE (DEFAULT
OR /S:N)

?REL FIL
I/0 ERROR?

POINT CONTEXT
POINTER AT
IMPURE AREA

!

ANY
OVERLAYS
TO

LOAD
2

READ THE
OVERLAY INTO
MEMORY AND
RELOCATE

S

ADD FREE
MEMORY AND SET JOB
HIGH AND
ALLOCATE LOW LIMITS
MEMORY
ZERO THE PRINT
IMPURE AREA BASE RETURM
I ADDRESS
D
INITIALIZE
THE CONTEXT
SAVE AREA SET SUSPEND
AND JOB BIT IN JOB
STACK PTR. STATUS
INITIALIZE -—- GO TO KMON
OPRINT
OF THE JOB'S ROUTINE
IMPURE AREA
READ ROOT
SEGMENT
INTO MEMORY
& RELOCATE

—-== OVERLAYS WRITTEN OUT TO
FILE AFTER RELOCATION.



vTll
HARDWARFE

PRESENT
?

FG
ACTIVE

?ILL CMD?

ALREADY
THERE

?ILL CMD?

STOP DISPLAY
IF RUNNING
AND TEST
ITS SIZE

Y

PROCESS
SWITCHES,
IF ANY

!

DETERMINE
TOTAL SIZE
ANDC ALLOCATE
MEMORY

L
Y

PEAD SCROLLER
CODE INTO
MEMORY

STOP DISPLAY
AND PAISE
PRIORITY TO 7

RESTORE
TERMINAL-
SERVICE &

LOWER PRIORITY

!

RECOVER
MEMORY

RETURN

SCINIT -—— GO TO INITIALIZATION
ROUTINE IN SCROLLER

GT ON/OFF

RETURN



E-26



E.2 USR (USER SERVICE ROUTINES) FLOWCHARTS

E-27



USRBUF/FATAL/CDFN

The first 2 blocks of the USR are used by the USR for directory opera-
tions. They are also used by the KMON at various points for a 2-block
general purpose buffer. There is, however, executable code in the
buffer that can be executed every time a fresh copy of the USR is

read from the system device. The functions included in the buffer

are:

1. USR Relocation
This code is executed whenever the USR is newly read
into memory. It serves to make certain pointers into
RMON absolute.

2. Fatal error processor and fatal error messages
(S/J only)

3. CDFN {(channel define) EMT (S/J only)
The CDFN EMT call forces a new copy of the USR into

memory to guarantee the presence of the EMT processor.

The flows for these functions follow.

NOTE

Fatal error handler and CDFN processor are
RMON functions in the F/B Monitor. The only
code in the buffer in the F/B system will

be the USR relocation code.



USRBUF/FATAL/CDFN (CONT.)

USRBUF is the initial entry point for USR calls when the USR has just

been read into memory. LOCATE sets up pointers into RMON.

RTORG
USRBUF —-—= START OF USR BUFFER

]

UPDATE

OINTERS TO
RMON

i

JMP (R5) —— POINTED TO THE
TRANSFER. TO R5 WILL BE PO

" I T USR CODE.
BODY OF USR START OF RESIDENT U C

The LOCATE routine is called to update the list of pointers at RELIST.
The list is initially a list of address differences (i.e., VALUE~$RMON
where VALUE is the desired location and $RMON is the address of

the start of RMON). LOCATE then makes all the differences into ab-

solute addresses. Any errors which would generate a ?M-error use the

FATAL error processor code to generate the message in the S/J system.
This is a resident function in F/B.

--—-ENTERS WITH R4 INDICATING
ERROR CODE.

UPDATE USR
POINTERS

Y

GET POINTER TO
PROPER ERROR
MESSAGE

DISALLOW THE
REENTER COMMAND
EXECUTE .EXIT

E-29



USRBUF/FATAL/CDFN (CONT.)

CDEFN - A resident function in the F/B system.

GENERATE EMT
ERROR # #

LEGAL
REQUEST

WAIT FOR ALL
I/0 TO QUIESCE

1

COPY EXISTING
CHANNELS INTO
NEW SPACE

'

ZERO ANY CHAN-
NELS OVER AND
ABOVE # PREVI-
OUSLY DEFINED

Y

‘ COMXIT )

E-30

----IF REQUEST IS FOR FEWER THAN
THAN ALREADY EXIST, IT IS AN
ERROR.

----TAKE COMMON USR EXIT.



The following flowcharts detail the code contained in the main body
of the USR. On entry to the USR, R2 contains an index representing
the function to be performed. This is used to dispatch control to
the proper processor.



USR CODE

r CALLING THE USR FROM A
COMPLETION ROUTINE IS
ILLEGAL, AS THE USR
COULD HAVE BEEN

|

|

| FATAL ERROR:
| ?M-ILL USR
|

I

|

INTERRUPTED.
SAVE CERTAIN
PARAMS; GET
POINTER TO
FUNCTION
L] QSET
DELETE
DISPATCH TO |_ _ _ _ _ _ I FETCH/RELEASE
PROPER CLOSE
PROCESSOR 1 ENTER
LOOKUP
RENAME
DSTAT
CSI THESE ARE USR
FUNCTIONS ONLY
CDFN IN S/J. IN F/B
HARD/SOFT RESET ; THEY ARE
RESIDENT
FUNCTIONS.

E-32



LOOKUP/RENAME

( RENAME )
Y

TURN ON RENAME ----THIS SERVES AS RENAME FLAG.
BIT IN CHANNEL
WORD

- | LOOKUP )
|

USRCOM
-——-COMMON OPERATION IN OPENING A
CHANNEL
______ DEVICE IS NONFILE-
LNFILE STRUCTURED
TN
Y SPLOOK -—--DEVICE HAS ITS OWN FILE
STRUCTURE (MT,CT) .

————————————————————— GET A PERMANENT FILE OF THE
SPECIFIED NAME.

EMT ERROR
#1; FILE NOT COMXIT
FOUND

FILL IN NEW

FILE NAME
v DO COMMON
—___ CODE AT
FILL IN ( crocom ) CLOSE.
CSW AREA
1
COMXIT



LOOKUP/RENAME (CONT.)

( LNFILE ) --—-HERE ON NONFILE-STRUCTURED
LOOKUP

{ DELOUT )}

CLEAR OUT ~—-=-=-CHANNEL AREA WILL HAVE A FILE
STARTING BLOCK OPEN, WITH STARTING BLOCK =§.
# IN CHANNEL
AREA

COMXIT

----HERE ON LOOKUP/RENAME
ON 'SPECIAL' DEVICE.

SPLOOK

{ LKER1 )
Y | GENERATE EMT A RENAME ON A SPECIAL
ERROR #1; CLOSE COMXIT DEVICE IS CURRENTLY
CHANNEL ILLEGAL.

-=---DO THE INDICATED
FUNCTION (3) ON
THE DEVICE.

DELOUT



HARD/SOFT RESET

These are resident functions in F/B; USR functions in S/J.

WAIT FOR 11/05
TTY TO SETTLE
DOWN. RESET

HDRSET ---~ENTRY FOR HARD RESET

SET 'HARD'
RESET FLAG

COMXIT

MAKE SURE TTY IS
QUIET SO RESET
WON'T CLOBBER A
CHARACTER

TURN ON THE
CLOCK INTERRUPT

E-35

RESET TO NORMAL
16 I/0 CHANNELS;
ZERO CHANNELS

!

RELEASE NON-
RESIDENT DEVICE
HANDLERS

'

WAIT FOR ALL
I/0 TO QUIESCE;
SET QUEUE TO
1 ELEMENT

'

TURN ON
INTERRUPTS FOR
TTY OUTPUT

/_Lﬂ
( rrs pc )

SOFT RESET.

----ENTRY POINT FOR
SOFRST

IF JOB HAS OVER-

~---LAYS, CHAN 17 IS

NOT CLEARED.

THOSE RESIDENT

---VIA .LOAD ARE

NOT RELEASED.



DELETE

( DELETE )

\
USRCOM

—-----DO COMMON CHANNEL SETUP.

|  NONFILE DEV.
»~{ DELOUT
SPDEL —-—------SPECIAL DEVICE (MT/CT)

DLEET

——————— FIND PERMANENT FILE OF THE
SPECIFIED NAME.

_______ NOT FOUND; GENERATE
R ?
LKER1 ERROR #1.

MAKE THE
ENTRY AN
'EMPTY'

CLSQSH ----FINISH UP IN CLOSE CODE.

Y

E-36



DO CHANNEL

SETUP

L

NONFILE g
» COMXIT
SPECIAL
DEV.
&
4

CONSOL

—---CONSOLIDATE
THE DIRECTORY

SEGMENT IN MEM

GET NEXT
EMPTY

ENTER

TAKE 1/2 LARGEST
OR ENTIRE SECOND
LARGEST EMPTY

MAKE THIS RE-
QUEST LOOK LIKE
ENTER FOR THIS

FIXED LENGTH

OF -1 RE-
QUESTED
?

RENTR

BLKCHK
GET PROPER
DIRECT SEG
INTO MEM.

UPDATE LARGEST
& SECOND LAR-
GEST FILES LIST

THIS KEEPS
TRACK OF WHERE
THE LARGEST
AND SECOND
LARGEST EMPTY
SPACES ARE LOCATED.

ENTRY IN
DIRECTORY

THE CORRECT SEGMENT
WAS RECORDED WHEN THE
EMPTY WAS FOUND.



ENTER (CONT.)

EMT ERROR #1;

N DID NOT FIND DELOUT ---DEACTIVATE CHANNEL
EMPTY BIG AND RETURN.

ENOUGH

---HERE WHEN AN EMPTY
OF APPROPRIATE SIZE
WAS FOUND.

THIS
HOLE LARGE
ENOUGH

OVER-
LOW ON THIS

ENTER

ol

?

WE MUST EXPAND THE
DIRECTORY IN THIS CASE.

EXTEND

PUT A TENTATIVE
ENTRY AT THE
CORRECT SPOT

Y

FILL IN THE
CHANNEL STATUS
AREA

1

SPENTR

CODE 4
(ENTER)
COMXIT

REWRITE
THIS
SEGMENT




EXTEND

EXTEND

THERE
ANOTHER
SEG?

COMERR GENERATES A
FATAL ERROR, AND
WILL NOT RETURN.

DIRECTORY
OVERFLOW
OCCURRED

POINT TO THE
ENTRY WHICH IS
1/2 WAY DOWN
IN SEGMENT

GET FIRST PER-
MANENT ENTRY
AFTER 1/2 WAY
POINT

{

MARK THIS AS
END OF SEG;
LINK THIS SEG
TO NEW ONE

WRITE

SHORTENED
SEGMENT

WRITE OUT
THE NEW
SEGMENT

~-- THE NEW SEGMENT IS ADJUSTED IN
MEMORY, AND THEN WRITTEN OUT.

----THIS REQUIRES A READ & WRITE OF
UPDATE THE SEGMENT #1.
"HIGH BLOCK IN
USE' WORD IN

o 41
OET T

T

RENTR --—-NOW RESTART THE ENTER WITH

AN EXPANDED DIRECTORY.

E~39



DSTAT/FETCH/RELEASE

DSTAT- GET DEVICE STATUS

GESTAT
NOT
FO

[ _LK4DEV

SEARCH TA-
BLES FOR DE-
VICE NAME

FILL IN 4
WORDS FROM
TABLES

FETCH/RELEASE

PHETCH

FIND
NAME IN
TABLES

NOT EMT ERROR §
ILLEGAL COMXIT
DEVICE

Y

-~- RELEASING SYSTEM
HANDLER OR ONE
LOADED IS A
NO-OP.

RELEASE COMXTT

CLEAR THIS

HANDLER'S
ENTRY POINT




DSTAT/FETCH/RELEASE (CONT.)

|

|

| F JOB CANNOT FETCH HANDLER
| ----WHICH WAS NOT LOADED.
|
|
|
I

FATAL ERROR;
> ILLEGAL

LEGAL FETCH
2
Y

READ DEVICE
HANDLER; INIT
VECTORS

COMXIT




CLOSE

[/ sPESHL Aj\

Y
GO TO HANDLER DELOUT
FOR THE
CLOSE

KLOSE
N

[ BLKCHK
CET & ]
DIRECTORY — — START WITH SEGMENT
pix
SEGMENT INTO 42
MEMORY

2 o

NO TENTATIVE OF
\ THAT NAME WAS

‘ FOUND
ENTRY NG BLK ;l NO .
MORE NXBL

MORE |
GET FIRST READ NEXT —
TENTATIVE DIRECTORY |
ENTRY. / \; SCGMENT

/ INCR1 \

POINT TO NEXT o) TENTATIVE NOT ASSOCIATED

ENTRY "™/ WITH OUR CHANNEL/JOB.
IN SEGMENT

- - < CLOCOM ’

SAVE POINTERS

TO THIS < )
CLS
ENTRY. QSH

AIL.E., PERMANENT FILE WITH SAME NAME)

)

/_‘\

IS
THIS THEE
RIGHT
ONE?

\

CONSOLIDATE

N| THE SEGMENT

AND THEN REWRITE
IT.

MARX THE
OLD OIE AS
AN EMPTY.

OLD & NEW
IN THE SAME
-SEGMENT

GET THE
CORRECT SEGMENT
BACK IN MEMORY




CLOSE (CONT.)/QUEUE EXTEND

RE-INSERT
NEW FILE
NAME

ADJUST FINAL
LENGTH OF
FILE & TRAILING
EMPTY SPACE.

|

CONSOLIDATE
AND REWRITE
THIS
SEGMENT

DELOUT

QUEUE EXTEND (QSET)
QSET

SET POINTER
TO CURRENT
HEAD OF
I/0 QUEUE.

!

LINK ELEMENTS
OF USER'S
SPACE
TOGETHER.

! SET PRIORITY LEVEL 7

LINK NEW
ELEMENT INTO
EXISTING
QUEUE.

SET PRIORITY LEVEL £

COMXIT

E-43



E-44



E.3 CSI (COMMAND STRING INTERPRETER) FLOWCHARTS



CSI CODE

IS
THIS
SPECIAL
MODE?

CLOSE FIRST
NINE
CHANNELS.

USE PUT USER'S
TERMINAL STRING INTO
INPUT? CSI LINE
BUFFER.
OUTPUT A
PROMPTING
L ]
COLLECT CONSOLE
STRING; PUT
INTO CSI
LINE BUFFER.
r
) \\\\\\ ZERO THE
SPECIAL 39-WORD

?
MODE? OUTPUT AREA.

]

Is
THERE

OUTPUT

SIDE

STRTIN N
SET FLAGS
FOR INPUT A
SIDE.

--— PROCESS OUTPUT SIDE




CST CODE (CONT.)

NXTFIL

-- SYNTAX ERROR

?ILL CMD?

SPECIAL
MODE?

SPECIAL

N
Z;, GETFD ij
GET A FILE
DESCRIPTOR
Y
SWITCH VALUES
N
FETCH THE
HANDLER
REQUIRED.
Y LOOKUP ~ POSSIBLE FILE
THE FILE NOT FOUND;
RETURN
N 1
TN\
ENTER SWITCH
THE
FILE

SWITCH

4

E-47



CSI CODE (CONT.)

SPECIAL

/ GETFD AAX

SWITCH

DESCRIPTOR. Aa/
Y IS
THERE A
SWITCH
VALUE
?
N ?
/ OUSTUF :& Y
CHECK THAT OUTPUT SET BIT 15
FILE NOT BEING OF SWITCH
OPENED NONFILE WORD; SAVE
VALUE OF SWITCH
( SWITCH )
PUT. FILE
NUMBER INTO
] SWITCH WORD; |-
BUMP SWITCH |
COUNT |
|

NOSWIT

IS
NEXT CHAR

THIS ALLOWS FOR THE
/X:1:2:3 CONSTRUCTION

NXTFIL ~GET NEXT DESCRIPTOR

STRTIN

— NEW PROCESS INPUT FILES

RETURN

ERROR | _ _ RESTART CSI IF TERMINAL INPUT,
?ILL CMD? ELSE RETURN WITH USER ERROR.

E-48



CSI CODE (CONT.)

RETURN

RESTORE THE
USER'S STACK
SAVED ON
ENTRY TO CSI

e m—_—_—————— h |
] ]
] 1
| ]
1 RE-ENABLE 1
: ADDRESS |--- F/B DISABLES ADDRESS CHECKING
| CHECKING FOR I WHEN THE CSI IS RUNNING,
: F/B : THIS RE-ENABLES IT
1
b __E/B,

MONOUT

- RETURN TO USER PROGRAM

E-49






E.3.1 CSI Subroutines

These subroutines are used by the CSI, and, in certain cases by the
KMON.



OUSTUF

OUSTUF - This routine verifies that an output descriptor has a file
name. If not, a syntax error is generated. It also will

scan off the size in [ ] if it was specified.

OUSTUF

ERROR:
?ILL DEV?

GET DEVICE
STATUS WITH
.DSTAT
(:f:) GET SIZE
REQUEST AND
STORE IT.

E-52



GETFD -

GETFD/GETNAM

Picks up a file descriptor (DEV:FILE.EXT) from an input

string and packs it in 4 words of .RAD5{.

GETFD

/' GETNAM
NULL
GET DEVICE
NAME J/

NOTE:

GETNAM will pick up a string
of -6 characters and pack
them in up to 2 words of
.RADSH.

IS
NEXT CHAR

USE CURRENT

WE ALREADY HAVE THE
FILENAME NOW. GET THE
THE EXTENSION.

DEFAULT
DEVICE

NAME
INALID .

MAKE THIS

DEVICE THE

NEW DEFAULT
DEVICE.

!
GETNAM ij

GET FILE
NAME.

SKIP OVER
DEVICE &
FILE NAME

IS
THERE AN
EXTENSION?

USE DEFAULT
EXTENSION

GETNAM

™~
|~

GET
EXTENSION

RTS PC

RTS PC

GETNAM - Converts a string of @-6 alphanumeric characters to a 2-word

RAD5@ group.

The two words are zero filled when necessary.

See code at GETNAM in the source listing if greater detail

is necessary.



USRCOM

USRCOM -

This routine is used to

USRCOM

SAVE THE
CHANNEL #.

IS
CHANNEL
ALREADY
OPEN?

/ LK4DEV

FIND DEVICE NAME
IN TABLE.

IS IT IN

prepare a channel for I/O operations.

GIVE EMT
ERROR §;
ACTIVE
CHANNEL

COMXIT

ILLEGAL NAME

FATAL ERROR;

MEMORY?

IS THE
DEVICE
PUBLIC?

DOES
THIS JOB

IOWNIy

MARK THE
CHANNEL
ACTIVE

?M-NO DEV




USRCOM (CONT.)

POINT CHANNEL
WORD TO
CORRECT I/0
DEVICE.

IS IT A
FILE-STRUCT.
DEVICE?

Y

SET REWRITE
DIRECTORY BIT

IF RENAME
OR ENTER.
Y
RTS RS TAKE NONFILE RETURN.
N

BLKCHK :&
READ A DIRECTORY
SEGMENT INTO MEMCRY

TAKE NORMAL

RETURN.
RTS R5

SET DIRECTORY
REWRITE BIT
FOR SPECIAL

PEVICES
NO 'SPECIAL'
DEVICE EXIT EXIT
1

RTS R5 ‘ RTS R5 ’



DLEET/NXBLK

DLEET -

This routine scans a device directory to find a file of a

specified name.

DLEET :

BLKCHK

GET A SEGMENT
INTO MEMORY

\‘

IS IT THE
CORRECT
NAME?

UPDATE FILE

START BLOCK;
POINT TQ NEXT

4V NLAL

ENTRY

NXBLK -

exists.

NXBLK

Is
THERE ONE
MORE SEGMENT

OK
V
/ ENTRY \ NOT IN THIS / NXBLK \ ALL
SEGMENT
FIND A GET NEXT RTS RS
PERMANENT DIRECTORY

ENTRY SEGMENT Nd\FILﬁ

FOUND

RTS R5

-— THE START BLOCK OF THE
FILE IS UPDATED FOR

USE IN LOOKUP

Gets the next in the series of directory segments, if one

NO MORE
SEGMENTS

RTS RS

PUT SEGMENT #
INTO CSW FOR
BLKCHK

BLKCHK IS TREATED AS A

BLKCHK -0

CONTINUATION OF NXBLK,
ALTHOUGH IT IS A SUB-
ROUTINE ITSELF



BLKCHK
BLKCHK - This routine isolates the segment number contained in bits

8-12 of the CSW, and checks to see if that segment is in

memory at the current time. If not, it is read in.

BLKCHK

ISOLATE THE

SEGMENT #

AND DEVICE/
UNIT #.

IS
THIS SEGMENT
IN MEMORY?

Note that not only must the segment
numbers agree, but also the device

and unit numbers must be the same.

MARK THE
NEW BLOCK IN
MEMORY

!
SEGRW Aj\

{ READ THE )
SEGMENT.

Y

( RTS R5 ’

E-57



SEGRW

SEGRW - Segment Read/Write. This routine read/writes selected

directory segments. There are three entry points:
SEGRWl: Use segment #1

SEGRW2: Use the segment currently in memory (BLKEY)

SEGRW: Use the number in Rf as the segment #.
SEGRW1 SEGRW2 ‘ SEGRW )
MOV 2 1 INTO MOV BLKEY
R@ TO RF

L '

Y

BLOCK # =
SEG # *2
+4

!

SET UP AN THE ARGS ARE PUT

EMT 375 ON THE STACK
REZD. IN THIS CASE.

DO THE READ | =

RTS R5




ENTRY/INCR1/COMERR/SPESHL

ENTRY - This routine uses Rl as a pointer into a directory segment
to find a specified file type (Permanent, Tentative, Empty)
or the end of segment mark.

TAKE 'FOUND' EXIT

- RTS R5

Y
RTS R5 TAKE 'NOT FOUND' EXIT

N

[ om0\

POINT TO NEXT
ENTRY

INCR1 - This routine bumps Rl to the next entry in a directory segment.

COMERR - This routine generates a fatal error from the USR. The
call is:

JSR R5,COMERR
code

Code is used to indicate which error is to be generated. If

.SERR is in effect, control passes to COMXIT, which returns

SPESHL - This routine is used to effect file operations on MT/CT.
This is done by passing a READ request to the Q manager. The

even byte of the completion function will contain a 377.
The gueue manadger detects this, and modifies the I/0 queue element

to indicate that the handler should perform a USR function.

E-59



CONSOL

CONSOL - This routine is used to compact a directory segment. It
combines consecutive empties into one, and makes empties out

of tentative files which are not associated with an active
channel.

CONSOL

POINT TO TOP
OF THIS
SEGMENT

/' ENTRY

FIND A TENTATIVE
ENTRY

NO MORE ALL UNUSED TENTATIVES ARE NOW
EMPTIES. NOW COMBINE MULTIPLE
EMPTIES TOGETHER.

_ IF THE TENTATIVE IS STILL
_~—" ASSOCIATED WITH AN OPENED
- CHANNEL, IT IS CONSIDERED

- LEGAL.

IS THIS
TENTATIVE
ENTRY OK?

MARK THIS
OF SEGMENT.
ADVANCE TO
- NEXT ENTRY / ENTRY XDONE

POINT TO FIRST RTS PC
EMPTY.

1s
THIS ONE
LENGTH ¢

IS NEXT
ENTRY AN
EMPTY

POINT TO THE| N
NEXT ENTRY

COMBINE THE
EMPTIES'

LENGTHS &
SQUEEZE

SEGMENT




CONSOL (CONT.)/LK4DEV

IS

PREVIOUS
A

PERMANENT?

SQUEEZE THE
DIRECTORY
DOWN.

5%
\_
LK4DEV - This routine looks up a specified device name in the system
tables. It first attempts to fine the name in the user
assigned name table; failing that, the permanent name table

is searched.

LK4DEV

IS IT A POINT TO
USER ASSIGNED PERMANENT
NAME? NAME TABLE.

IS
DEVICE
HE SPECIFIED
LEGAL?

ERROR

SET UP TABLE NORMAL RETURN
POINTERS &

DEVICE INDEX RTS R4

FOR RETURN




E-62



E.4 RMON (RESIDENT MONITOR) FLOWCHARTS FOR SINGLE-JOB MONITOR



EMT DISPATCHER

The code of the EMT dispatcher is entered when an EMT instruction is

executed.

approproate code for processing.

EMTOUT

TOOBIG

( EMTPRO )

\

CLEAR C BIT
IN USER'S PS
SAVE REGS.

GET 'OLD' V1
STYLE ARGS FROM
EMT INSTRUCTION

|

'

GET ARGS. FOR
A NEW (374,375)
EMT

USE FUNCTION
CODE TO SELECT
EMT PROCESSOR

Y

DISPATCH TO
PROPER EMT
PROCESSOR

E-64

®

The EMT instruction is decoded and control passes to the

NEW FORMAT INCLUDES
374, 375, 376, 377

ARGUMENTS ARE TREATED THE
SAME WHETHER THEY WERE
NEW OR OLD FORMAT EMT
CALLS.



EMT DISPATCHER (CONT.)

CHANER ‘ TOOBIG )
Y

FATAL ERROR;
?M-ILL EMT

FATAL ERROR;
?M-ILL CHAN

EMTOUT EMTOUT

G

EMTOUT
EMTDON

\

RESTORE THE
SAVED REGS.

RETURN TO THE
-—— USER PROGRAM

The following EMT requests are no-ops in the S/J Monitor:

Mark Time .MRKT
Cancel Mark Time .CMKT
Timed Wait .TWAIT
Send Data .SDAT
Receive Data .RCVD
Channel Status .CSTAT
Protect Vectors .PROTECT
Channel Copy .CHCOPY
Special Device .DEVICE

Executing these requests in S/J will cause an immediate successful

returns with no action taken.



USR DISPATCHER TABLE FOR EMT'S 340-357

The USR Dispatch code handles dispatching those EMT's which require the
USR. At each entry point, an INC R2 is performed. Thus, R2 acts as a
function identifier once the USR is entered.

CLR R4.
CSI-GENERAL MODE ( C$SIGN FLAG FOR GEN. R4 IS NORMALLY NON-ZERO;
MODE MODE OF CSI IT IS CLEARED HERE FOR
DISTINCTION BETWEEN CSI
e GENERAL MODE AND CSI
CSI-SPECIAL C$SISP SPECIAL MODE.
MODE
HARD RESET HSRSET INC R2
SOFT RESET S$RSET INC R2
INC R2 GET USR - Séipgggﬁ o
INTO -=-
DEVICE STATUS. D$STAT o IN MEMORY
RENAME R$NAME INC R2 JMP @QUSRLOC
LOORUP ( wsoox ) TINC R2
ENTER ESNTER INC R2
INC R2
CLOSE C$L0S2
FETCH F$ETCH INC R2
DELETE DSLETE INC R2
CDFN CSDFN2 INC R2
SET I/0 QUEUE ( Q$sET ) ! ;@

E-66



E.4.1 EMT Processors

E~67



SET TRAP/SAVE STATUS

SET TRAP ADDRESS

TS$SRPST

PUT IN THE

ADDRESS OF
MONITOR'S
INTERNAL
ROUTINE

Y T

STORE THE TRAP
ADDRESS IN LINE

EMTOUT

SAVESTATUS

SSAVST

EMT ERROR #1;
SAVESTAT ILLEGAL

SAVE 5 WORDS OF
CHANNEL; DEAC-
TIVATE CHANNEL

peuy

i

( EMTDON ,

E-68



REOPEN /CLOSE/RDOVLY

REOPEN RSOPEN

Y EMT ERROR §#
CHANNEL IS IN
USE ALREADY

N

RESTORE 5 WORDS
OF STATUS TO IN-
DICATED CHANNEL

CLOSE

CSLOSE -~-- IF A LOOKUP WERE DONE, THE

USR IS NOT REQUIRED.

CSLOS2

RDOVLY

DEACTIVATE
CHANNEL RDOVLY

EMTDON READ USER IN
N FROM SWAP /
BLOCKS
=l q—

SET UP USER

STACK POINTER,|

FLAG USER
RUNNING

( GO TO USER )




READ

COMMON
READ/WRITE
CHECKS

PUT THE CORRECT
WORD COUNT INTO
USER'S Rf

TSWCNT HAS 3 POSSIBLE RETURNS;
READ ONLY REQUIRES THE

NORMAL ONE.

LEAR HARD ERROR
BIT; GIVE EMT
ERROR #1

CLEAR EOF BIT;
GIVE EMT ERROR
#9

FATAL ERROR
?M-NO DEV

CHANGE LOGICAL
BLOCK TO
PHYSICAL BLOCK

QUEUE THE
I/0 REQUEST,

elj EMTDON )

IF .SERR IS IN EFFECT,
RETURN IS MADE TO USER
PROGRAM.



WRITE

{ WSRITE )

Y

SET EOF ERROR
BIT

NONFILE
DEVICE

TSWCNT
EOF

R/W CHECKS

1

UP-
N DATE CLOSE IF THE LAST BLOCK
LENGTH BEING WRITTEN IS > THE

CURRENT LAST BLOCK WRITTEN,
CHANGE THE CLOSING FILE
LENGTH.

UPDATE THE
CLOSING LENGTH

\

PUT WORD COUNT
WRITTEN INTO
USER'S R

|

‘ NFWRIT )

NFREAD

E-71



WAIT/CDFN

N GENERATE EMT
ERROR #g
Y
THIS IS DONE BY WAITING
FOR THE NUMBER OF FREE
--------------------- QUEUE ELEMENTS TO BE
WAITOFgR ALLI/Q EQUAL TO THE TOTAL
TO FINISH NUMBER AVAILABLE.

GIVE EMT ERROR
#1; CLEAR HARD
ERROR BIT

r

CDFN

Channel Define - the resident portion of CDFN cuases a fresh copy of
the USR to be read in, then enters the USR,

CS$DFN
MARK USR
NON-RESIDENT THIS FORCES CALUSR TO
READ IN A NEW USR

E-72



GET JOB PARAMETERS
GET TIME OF DAY
SET FPP EXCEPTION

GET JOB PARAMETERS

GSTJB

MAKE JOB # = ¢

!

#=LOW LIMIT;
MOVE HI LIM.
ADDR OF
CHANNELS

¥

GET TIME OF DAY

GSTIM

MOVE HI ORDER, EMTDON
THEN LOW ORDER

SET FPP EXCEPTION

SS$FPA

Is
THERE A
USER AD-

MAKE ADDRESS
THE MONITOR'S

ROUTINE
Y -
Y
MOVE THE
ADDRESS TO
INTERNAL
LOCATION

EMTDON

E-73



SPECIAL FUNCTIONS/PURGE
SOFT/HARD ERRORS

SPECIAL FUNCTIONS/PURGE

SPECIAL FUNCTIONS (MAGTAPE/CASSETTE) SOFT/HARD ERRORS

S$PFUN

EMT ERROR § EMTDON

PUT A 377 INTO
LOW BYTE OF THE
FUNCTION CODE

WORD
y
RSEAD
PURGE SOFT/HARD ERRORS
| PSURGE '
‘ SSERR H$SERR
ZERO FIRST v
WORD OF
BIT ACTION BIT

e —

E-74



LOCK USR/CHAIN/UNLOCK USR

THIS BUMPS A COUNTER WHICH
IS DECREMENTED DURING A
.UNLOCK. THE USR IS REALLY
UNLOCKED ONLY WHEN THIS
COUNT IS 4.

CHAIN
C$HAIN
SET BIT 409 Rg NOT ZERO FORCES
IN JOB STATUS A SOFT CONDITION
WORD; MAKE R# AT EXIT
NON-ZERO
AT CHXIT
IF KMON IS IN, SO
IS USR.
UNLOCK USR

USNLOK

MONOUT

DECREMENT
.LOCK
COUNTER

KILL DIRECTORY
NOW IN MEMORY;
READ USR

EMTDON

E-75



PRINT

PRINT - Causes a line to be output to the console terminal.

< PSRINT ,

ECHO A CR/LF =< EMTDON )

OUTPUT THE

GET CHARACTER

NEXT CHAR




{ SSETOP )

Y

MARK JSW TO
NO SWAPPING

GO~
ING BE-
YOND SYS.
LIMIT?

MAKE REQUEST
= SYSTEM
LIMIT -2

BEYOND \\\\ N

KMON
?

Y

MARK KMON
NON-RESIDENT

BEYOND

USR?

MAKE REQUEST FOR
BOTTOM OF USR
MINUS TWO

E-77

MARK USR
NON-RESIDENT

Y

SET JSW TO
INDICATE
SWAPPING

Y

RETURN TOP
LOCATION IN 5¢
AND RY

SETTOP



EXIT

ES$XIT

SET EXIT IN
PROGRESS FLAG
CLEAR CHAIN BIT

( CHXIT ) —
|

WAIT FOR I/O TO
QUIESCE (# AVAIL-|~--- WAIT FOR AVAILABLE QUEUE ELEMENTS
ABLE = TOTAL) TO EQUAL TOTAL NUMBER.

'

SET STACK TO
RMON STACK

y
CLEAR .SERR
DISABLE .TRPSET
RESET FOR 16
IO CHANNELS

——-GO DIRECTLY TO KMON.

MEXIT2

ARE
WE IN
SWAPPING

READ USER
PROGRAM BACK IN

28

E~78



EXIT (CONT.)/TTYIN

SAVE USER
PROGRAM IN
SCRATCH BLOCKS ;

READ IN
KMON & USR

MEXIT J-———=———— TO KMON, WITH A FRESH
COPY OF THE USR
TSTIN

TTYIN

i

EMT ERROR §;
NO . LINE/CHAR
IN BUFFER

CYCLE TO HEAD
OF RING BUFFER

E~-79



TTYIN (CONT.)/TTYOUT

PUT CHAR INTO
R@; DECREASE
CHAR COUNT

EOLTST

N
EMTDON

DECREASE THE
LINE COUNT

.EXIT TO
SYSTEM

{ EMTDON

RTI
BACK TO
USER PROGRAM

EMTDON

EMT ERROR f#;
NO ROOM FOR
OUTPUT




FATAL ERROR PROCESSING

EMT 376 is reserved for reporting fatal monitor errors. When a fatal

error condition is encountered, a call of the form:

EMT 376
code

is executed. This indicates to RT-11 that a fatal error has occurred.
The normal response is to print a ?M-error message and then abort the
job. However, if a .SERR request has been done, no message will occur
and control will pass to the user's program. The error bit (C bit)
will be set and byte 52 will contain the negative of the error code.

SAVE ERROR CODE
AND PC OF
ERROR CALL

----- IF CODE <g, IT IS ALWAYS FATAL
AND WILL ALWAYS ABORT THE JOB.

TURN ON THE C
BIT IN HIS PS

N Y

Y ADJUST PC OF
INIT SP TO CALL TO BE PAST

1000; .SRESET CODE WORD
READ FRESH USR
! EMTOUT

-==INTO USR CODE
TO HANDLE
PRINTING THE
ERROR.

E-81



CALUSR

CALUSR is used to ensure that the USR is in memory for a USR type
request.

It will handle the situation where the user program must be
written to scratch blocks before the USR is read in.

in the USR buffer is required.

EITHER

'NORMAL' VALUE

OR WHAT THE USER HAS
PUT IN LOCATION 46.

‘ CALUSR }

\
INCREMENT
USR USAGE
COUNTER

SET UP USR
LOAD ADDRESS

WRITE USER
OUT OF THE
USR AREA

Y

READ USR
INTO MEMORY

RTS PC

Entry is made
at CLUSR2 when an error has occurred and the error processing code



E.4.2 Clock Interrupt Service

The interrupt service for the clock is primitive. The clock vector
is set up such that the interrupt routine is always entered with the
C bit = 1. At the interrupt routine, the code is:

ADC S$TIME+2
ADC S$TIME
RTI

Since the C bit is 1, S$STIME+2 is incremented by the ADC. When the
low order word goes from 177777 to 0, the C bit remains on and S$TIME
is then incremented. No 24 hour wrap around is provided.






E.4.3 Console Terminal Interrupt Service



TT INPUT INTERRUPT SERVICE

([ TTIINT ) —~— HERE ON INPUT INTERRUPT

i

SAVE REGS; PUT |—————- THIS LOWERS THE PROCESSOR
CHAR INTO R@ PRIORITY FROM LEVEL 4 TO
BACK TO PRIO. # LEVEL f.

CONVERT IT TO

UPPER CASE
l ~
CTRLC  “C
CTRLO ~0
DISPATCH TO |-—--— CTRLO "0
CTRLS S
CHARACTER x
PROCESSOR CIRLU  "U
ALT 33,175,176
RUB RUBOUT

NOTE: THE CHARS BELOW THE

LINE ARE ONLY CHECKED WHEN

TT IS IN LINE MODE. IN CHARACTER
MODE THEY ARE NOT ACTED UPON.

E-86



TT INPUT INTERRUPT SERVICE (CONT.)

"""" IF IT IS<4@g, IT IS A
NON-PRINTING CHARACTER.

~ V -——-MAKES NON-PRINTS INTO
ECHO FOLLOWED
BY CHAR + 100 EQUIVALENT CHARACTER

WAS
LAST CHAR
A RUBOUT

-—— THIS ONE IS NOT A RUBOUT.
IF LAST CHARACTER WAS, ECHO
A CLOSING '\',

( TTINC3 )
ECHO A \

MAKE CHARACTER
A BELL

UPDATE RING
BUFFER POINTERS,

COUNTER TERMINATOR
|
J I
/[ EOLTST __\ !
TEST FOR ! BUMP LINE
LINE COUNTER BY 1
\ TERMINATOR |

I

/

UPDATE PREVIOUS
CHAR TO BE THE
CURRENT ONE

E-87



TT INPUT INTERRUPT SERVICE (CONT.)

IN CHARACTER MODE, NO ECHOING IS DONE.

Y +  TTIEXZ )

IFNS IS UP, DON'T ECHO, AS OUTPUT IS
TEMPORARILY STOPPED.

ECHO THE
CHARACTER

i

---TT: USES HOOKS .INTO THE RESIDENT
ENTER TT: HAN- SERVICE TO EFFECT ITS PROCESSING.
DLER, IF RESI- SEE TT: HANDLER FOR DETAILS.
DENT, TO PROCESS

-==== IF <CR>, PUT IN AUTOMATIC LINEFEED.
WE SUBTRACT 3 FROM CHARACTER TO
CHECK FOR <CR>. THAT MAKES THE
CHARACTER A <LF> AT TTINC3.

TTINC3

THIS USES SAME EXIT SEQUENCE AS
DOES AN EMT.



ALTMODE/CONTROL O, S, Q
These routines are entered when any of the corresponding special

characters are struck.

ALTMODE - 33,175,176
T

a

—————— ALL POSSIBLE CODES ARE CONVERTED TO 33.
MAKE THE CHAR AT SUBROUTINE TTOPUT, A 33 ABOUT TO BE
RECEIVED A 33 ECHOED IS CHANGED TO A §.

TTINC3

CONTROL O CONTROL S, CONTROL Q

CTRLO
CTRLS CTRLQ

CLEAR OUTPUT
RING BUFFER;

it

ECHO "0 SET SYNC CLEAR THE
+ FLAG NON-ZERO SYNC FLAG
REVERSE THE ¥
CTRLO ~-DO THIS BY
FLIP-FLOP EMTDON FORCE AN CLEARING THEN
+ OUTPUT SETTING THE
INTERRUPT OUTPUT INTERRUPT
BIT
GENERATE
<CR><LF> EMTDON
EMTDON



CONTROL C

CTRLC

GENERATE
~C <CR><LF>

TTINC3

--EXIT IS ALREADY IN PROGRESS.
LET IT CONTINUE UNMOLESTED.

EMTDON

THIS WILL CAUSE THE ~C

SET DELAYED TO BE PICKED UP ON RETURN
“C FLAG TO EMTDON FROM THE INTERRUPTED
140000 OPERATION.

DELAY FOR 11/05
TT; DO A
RESET

TURN ON THE
ICLOCK INTERRUPT|

SET # FREE I/0 | ———= THIS INDICATES TO .EXIT
TOTAL AVAILABLE

LEXIT




RUBOUT

IS RING
BUFFER

TTORUB

ECHO A\

MAKE PREVIOUS
CHARACTER A
RUBOUT

DELETE A
CHAR FROM
RING

TTIEXZ

TTIBUM

CONTROL U

| CTRLU J

ECHO "U

EMPTY

RUBOUT/CONTROL U

LAST CHAR
STRUCK

TTIBUM

CLEAR OUT
PREVIOUS
CHARACTER

L

GENERATE
<CR><LF>

EMTDON



RUBCON/RUBCM2

RUBCOM will update the input ring buffer pointers when a character is

to be deleted.
RUBCOM

ADVANCE POINTER,
TO END OF
BUFFER

p

SET POINTER
TO DECREASE
THE COUNT

. RTS PC

RUBCM2 checks to see if the ring buffer is empty. The buffer is empty

if either the count = § or if the character to be deleted is a line
terminator. This routine falls into routine EOLTST. The zero con-
dition is returned if the buffer is empty.

RUBCM2

Y
I RTS PC
(  EOLTST ) >N Z BIT IS SET

Is
CHAR A
<LF>,”C OR
~z?

RTS PC

Z BIT IS NOT SET




TT OUTPUT INTERRUPT SERVICE

TT OUTPUT INTERRUPT SERVICE
-~- HERE ON OUTPUT

INTERRUPT

TTOINT

"S IS SET. DON'T OUTPUT ANYTHING.

PUT CHARACTER TTPOXT —=== (TELEPRINTER BUFFER)
OUT TO TPB

INTO TT: TO
SEE IF IT IS
ACTIVE

CHAR. <4f WILL
NOT PRINT.

TCHKSP

AT
END OF

RING BUFF
?

WRAP THE
POINTER AROUND|
g ADJUST TAB
STOP, IF
NECESSARY

DECREASE COUNT '
IN RING TPRNT2 o
/
BUMP
TTODON

BUFFER
POINTER

!

PUT CHARACTER
OUT TO TPB

GET CHARACTER
FROM RING
BUFFER

‘ ( TTPOXT

®




CLEAR FILL
COUNT

TT OUTPUT INTERRUPT SERVICE (CONT.)

TCHKSP ) ——====-

--------- HERE ON

CHARACTERS <4¢

SET TO ECHO
SPACES TO NEXT
TAB STOP

-RESET TAB
STOP TO 8

[
AN
DO WE N
HAVE TO
FILL?

Y

SETUP TO PRINT
REQUIRED # OF
NULLS

TPRNT7

y

BUMP
BUFFER
POINTER

CLEAR OUTPUT
INTERRUPT;
ZERO COUNT

TTODON

TTPOXT

RESTORED SAVED
R4, R5

RTI

) 0



TTORUB/TTOPUT

TTORUB and TTOPUT handle the printing of ALTMODE and RUBOUT. They
print a ¢ for ALTMODE and \ for RUBOUT.

TTORUB
( TTOPUT )
MAKE CHAR TO

PRINT A \ >

PRINT A $

NO ROOM

E-95



OPUT
OPUT actually puts the output character into the ring buffer. It

updates the ring pointers and sets the interrupt enable bit. If the
buffer is full, it returns with the C bit set.

OPUT

N

CLEAR OUT
PARITY BITS

N C BIT SET BY THE
RTS PC — — COMPARISON DONE
HERE.

Y

STORE THE
CHARACTER.
UPDATE POINTERS

AT
END OF
RING

Y
BUMP
COUNT

CYCLE BACK TO
START OF BUFF.
BUMP COUNT

Teas-

Y

SET OUTPUT
INTERRUPT
ENABLE

Y

CLEAR C BIT
IN CURRENT PS

RTS PC




E.4.4 I/O Routines

E-97



I/0 QUEUE MANAGEMENT ROUTINES

I/0 COMPLETION WILL
FREE QUEUE ELEMENTS

Y --- TO LEVEL 7

PICK UP THE
FIRST AVAILABLE]
ELEMENT

!

MAKE THE NEXT
ELEMENT THE
FIRST AVAILABLE

{ -— TO LEVEL §

FILL IN THE
I/0 QUEUE
ELEMENT

IF THE BYTE OF THE COMPLETION
ROUTINE WORD = 377, THIS IS
INTERPRETED AS A FILE REQUEST

ZERO THE
FUNCTION WORD

ON MT OR CT.

FILL IN
FUNCTION CODE

DEVICE
NOW BUSY

MARK THE

» A
DEVICE BUSY ‘<::>

E-98




TO LEVEL #

JSR PC, (R2)

GO TO
DEVICE

HANDLER

LINK THIS
ELEMENT INTO
DEVICE'S Q

{

MAKE HANDLERS
LAST QUEUE EL-
EMENT POINT TO
THIS ELEMENT

RTS PC

I/0 QUEUE MANAGEMENT ROUTINES (CONT.)

--- HERE WHEN DEVICE IS
ALREADY BUSY

,~== A SYNCHRONOUS REQUEST WILL
WAIT FOR I/O TO FINISH

e
7

E-99



I/0 QUEUE COMPLETION

COMPLT is entered when an I/0 transfer

( COMPLT )

SAVE
REGISTERS

WAS
THERE A
HARD ERROR

HALT
ON HARD
ERROR

CHANNEL #
INTO R1

DECREASE THE I/0
PENDING COUNT
ON THE CHANNEL

-—- TO

MORE
FOR DE-
VICE TO
DO?

LEVEL 7

finishes.

HALT

DO A
COMPLETION

ROUTINE
?

SET COMP. ROU-
TINE IN PROG.
FLAG; SAVE 52

SET
'DEVICE FREE'
FLAG

Y

i

PUT THIS Q ELE-
MENT BACK INTO
FREE LIST

'

BUMP THE
ELEMENT
FREE COUNTER

Y

GO BACK TO Ps
WE ENTERED
WITH

|

[ JSR PC,(Rgr\
TO

COMPLETION
ROUTINE

Y

RESTORE 52;
DECREMENT IN

PROG. FLAG

e

RECALL HANDLER
FOR NEXT
TRANSFER




E.5 RMON (RESIDENT MONITOR) FLOWCHARTS FOR
FOREGROUND/BACKGROUND MONITOR

E-101



E-102



E.5.1 EMT Processors

E-103



EMT DISPATCHER

EMTPRO }== INTERRUPT ENTRY POINT. EMT'S
ARE PROCESSED ON USER'S STACK.

EXIT WITH RTI.

377 <374

o EXTRACT

374
E376 276 CODE CHANNEL
NUMBER

| !

FATAL ERROR EMT CHECK ARG.
LIST ADDRESS EMTCOM

?ADDR?
ERROR
CHANNEL 2CHAN?
# TOO ERROR
BIG?
LEGAL N
T T T e d DTIAMIMD
FUNCTION ?EMT?
CODE I'RROR
EMTCOM
LOCATE EMT
IN DISPATCH
TABLE
ARGUMENTS >ADDR?
VALID ERROR

POINT TO
CHANNEL
AREA

DISPATCH
TO EMT

E-104




EMT 16 DISPATCH, .RCTRLO, .PRINT

RSCTLO --- .RCTRLC
DSSTAT
INC R2 CLEAR
CTRL O
FLAG
RSNAME
INC R2 Y

TTRSET

LSOOK

)

INC R2

EMTRTI
ESNTER

INC R2
CS$SLOS2

)

‘

T R2 FORCE CTY
Ne CONTEXT
SWITCH
FSETCH (EE) -
i
INC‘RZ
GET A
CHARACTER

DSLETE -

!

INC R2

QSSET

PRINT

1t

<CR><LF>
EMTUSR
EMTRTI
CALUSR (  EMTRTI -
CALL USR
TAIMN /S mmAartm

PUT CHAR
INTO OUTPUT,
BUFFER

MEMORY /
(——

E-105



.CLOSE,

DISSOCIATE
CHANNEL

.PURGE, .CSISPC,

C$LOS2

EMTRTI
_+CSIGEN
7
.~ .CSISPC
// //
C$SIGN
C$SISP
CLEAR
C BIT SET C BIT
]
]
SET CSI
RUNNING
BIT

.CSIGEN

E-106

PRINT AN
Tkt

!

CLEAR
SPECIAL
MODE BIT

WAIT FOR A
LINE OF TT
INPUT

CALL USR
BACK INTO
MEMORY

~-=-- MUST WAIT
FOR INPUT

-~- DON'T NEED

TO WAIT

--- GO TO CSI VIA EMT 16
DISPATCHER



MAKE R@
NON-ZERO

EMTRTI

E-107

+TTYIN, .TTYOUT, EMT RETURN

T$TOUT

PUT CHAR-
ACTER INTO
BUFFER

EMTRTI

RETURN
ERROR
CODE §#

EMTRTI

EMTRTI

RESTORE
ALL
REGISTERS
RTI
POP
ARGUMENTS
OFF STACK

EMTRTI



.READ, .RCVD,

OTHRJB

GET OTHER
JOB NUMBER

POINT TO

MESSAGE
CHANNEL

GET
COMPLETION
FUNCTION

SPREAD

POINT TO
HANDLER
ENTRY POINT

MAKE BLOCK
NUMBER
ABSOLUTE

1

GET DEVICE
UNIT #

GO CLEAN UP
3 ARGUMENTS

?NO DV?

EMTDON

-(® |4

CLEAR ERROR
BIT. RETURN
ERROR 1

E-108

GET CHANNEL{

STATUS WORD

AND DEVICE
INDEX

| COMPLETION

GET

FUNCTION

CHECK
VALIDITY
SPREAD

®
PURGE
STACK

5

CLEAR
EOF BIT

RWXTEZ

RETURN
ERROR #

RWXT

U

~-= MERGE
WITH
.READ
CODE



S$DAT

OTHRJB

CET OTHER
JOB'S #

RETURN
ERROR #

POINT TO
ITS IMPURE

ANTA
ANLA

NFWRIT

N -- SHORTENED FILE?

RETURN
ERROR
CODE ¢

DO ---
.WRITE NFWRIT
ANYWAY

NFWRIT

NEGATE
WORD

SHORTEN IT COUNT

NFWRIT

SPREAD +2

NONFILE~STRUCTURED

READ/WRITE _
\

~~- USE COMMON

.SDAT, .WRITE
TSWCNT ) ———-- READ/WRITE
COMMON ERROR CHECK
COMPUTE
LAST WORD
OF TRANSFER

CHKSP

CHECK IT
WITH JOB
LIMITS

SHORTEN IT

SHORT
N RETURN

CODE WITH .READ

E-109



.PROTECT, .CHCOPY

--- ERROR 1
OTHRJB
CONSTRUCT GET OTHER
THE MASK <;;> JOB'S IMPURE
COMPUTE
BYTE OFFSET RETURN
INTO MAP ERROR 1
POINT TO
MAP IN EMTRTI )
IMPURE AREA
ENTER
SYSTEM
STATE
|
RETURN RETURN
ERROR # ERROR §
TRANSFER
THE
CHANNEL
EMTRTL I EMTRTI
SET BITS IN
MEMORY MAP CLEAR DWRITS
REWRITE ON
‘ CLOSE BIT

SET BITS IN
"TASK MAP

EMTRT I N A .LOOKUP

- I

‘ EMTRTI '

E-110 January 1976




S$AVST

TRANSFER
STATUS WORD
IMAKE CHANNEL
INACTIVE

i

TRANSFER
REST OF
CHANNEL

EMTRTI
RSOPEN

N

TRANSFER
FROM SAVE
AREA TO
CHANNEL

=-= SAVESTATUS

—-==ERROR

/ﬁ

EMTRTI

!
( EMTRTI ’

EMTRTI

E-111

.SAVESTATUS,

.REOPEN,

+MWAIT, .WAIT,

.GTJB,

M$WAIT

.CSTATUS

GS$TJIB

t

POINT TO
MESSAGE
CHANNEL

RETURN JOB#,
PROGRAM
LIMITS, START
OF CHANNELS

WSAIT

WAIT FOR
CHANNEL
NOT BUSY

CLEAR HARD
ERROR BIT
IN CHANNEL

RETURN
ERROR 1

EMTRTI

EMTRTI

( cssTaT

RETURN

DEVICE

INDEX,
CSW

C

Y E5SER@ ’

RETURN FILE

START BLOCK,

LENGTH, HIGH-
EST BLOCK

( EMTRTI ’



.CDFN, .TWAIT, .SPND, .RSUM,
.CNTXSW, .SFPA, .TRPSET, .DEVICE

C$DFN --- .CDFN

FIND OLD
CSW AREA

WAIT FOR
I/0 TO
STOP

COPY OLD
CHANNELS TO
NEW AREA

!

STORE NEW
CHANNEL
COUNT

14%

.TWAIT ---

DO A .MARK
TIME FOR

DECREMENT
SUSPEND
COUNT

EMTERf@

.CNTXSW ---

S$SWAP

CLEAR
POINTER

R$SUME --- .RSUM

BUMP
SUSPEND
COUNT

EMTRTI

RESUM ~=- COMPLETION
ROUTINE FOR
.MRKT DONE
BY .TWAIT

BUMP
SUSPEND
COUNT

T

EXIT FROM
INTERRUPT

M$RKT
EMTERf
SSYSWT

MARKTM
SET UP A
MARK TIME
REQUEST

AN ADDRESS —--
OF @ MEANS
MONTTOR
HANDLES ERROR

E-112



.TRPSET, .DEVICE (CONT.)

MARKTM ) --- SUBROUTINE USED BY
.MRKT AND .TWAIT
CHKSP

GET NODE
FROM AVAIL
QUEUE

Y

SET UP HIGH
AND LOW OR-
DER TIME

EMTERJ !

SET UP
COMPLETION
ADDRESS

!
\;, CLEAR

CHANNEL
BUMP OFFSET
POINTER {

STORE I.D.

S$TRAP --- .TRPSET AND JOB #
BUMP ENTER
POINTER SYSTEM
STATE

SUBTRACT

_— ICE
D$VICE DEV PSEUDO-CLOCK ASSUME NO

ERRORS FROM

TO MAKE TIME

1

SYSTEM
POINT TO RELATIVE
WORD TO
FILL LINK INTO
CLOCK Q IN
ORDER OF
@ EXPIRATION
/
MOVE ADDRESS LEAVE
R T
FROM STACK SYSTEM BU?% EggBRN
TO IMPURE STATE ADDRESS
AREA
EMTRTT ~ RETURN ERROR —-~-
RETURN

E-113



.SYNCH, .GTIM

GS$STIM === .GTIM

ENTER
SYSTEM
STATE
POINT R5
AQET%OQND GET HIGH
AND LOW
‘ ORDER
PSEUDO-TIME

SET UP NODE TO
LOOK LIKE I/O

i

-

QUEUE NODE. PUT ADD IN AC-

SYNCH ADDR. IN CUMULATED

NODE. SET WORD ;gg%;ﬁ“gggh TICKS TO GET

COUNT TO -1 TO N omo REAL TIME
FLAG THIS A

ADJUST
TIME

SYNCH NODE
RTS PC
. ) EMTRTI

REQUEST WORDS
TASK LINK SYNCH
SWITCH NODE INTO *
TASK'S COM-
POINT TO PLETION QUEUE BUMP THE
TASK'S DATE

IMPURE AREA
EXIT FROM
INTERRUPT
7 --- DO THE .GTIM
/ ALL OVER AGAIN
!
CONTROL RETURNS TO
CODE AFTER .SYNCH
WHEN IT IS CALLED
BY COMPLETION QUEUE
MANAGER AT PRIORITY
ZERO.

SET CPENDS$
COMPLETION
PENDING

E~114



«EXIT
.CHAIN

CSHAIN

SET CHAIN
BIT

ESXIT

KMON
IN

MEMORY
?

/ ENQUSR AX

GET OWNERSHIP
OF THE USR
/ RIDUSR \ I
MAKE USR MAKE USR
GO AWAY NON-SWAPPING
Y
EXIT WILL
FROM X UABORT —_TLLEGAL KMON OVERLAY
COMPLETION ‘ TO EXIT USER
? FROM
N COMPLETION
ROUTINE
CANCEL ALL WRITE OUT
MARKTIMES SWAP BLOCKS
[ REVERT \ r
WAIT FOR ALL READ IN
I/0 TO STOP KMON/USR
PROCESS
SPECIAL DEVICE
LIST

CLEAR JOB IMPURE AREA.
REMOVE JOB'S SPECIAL

PROTECTION BITS
FROM LOW MEMORY RBRIT MAP

;
50$

N

FLUSE OUTPUT RING BUFFER.
MAXE JOB NOT RUNNABLE.
GIVE TT TO BACKGROUND.

EXIT
FROM
FOREGROUND

USWaAPO

E-115 January 1976



HARD AND SOFT RESET

HARD RESET
ENTRY H$RSET

ENTER SYSTEM

STATE WITH o DOES IORSET CODE FOLLOWED

SOFT RESET BY CALL TO S$RSET.
CALLED AT EXIT

I/0 RESET
ENTRY IORSET

SAVE REGS.
#-3

!

SCAN HANDLER
ENTRY POINT

TABLE

RESET HOLD FLAG

TOP
. ELEMENT
COMPLETE
r

IS
" HANDLER -
RESIDENT

CLEAR
COMPLETION FLAG
COMPLT ‘l
CALL QUEUE COMPL.
SET HANDLER HOLD FOR TOP ELEMENT
FLAG IN EANDLER
ol

ANY MORE
Q ELEMENTS
?

[ﬁ JBABRT *\

ABORT
PENDING
MESSAGES
— —— — GO CANCEL
DISCARD PENDING
IT CMARKT MARK TIMES

E-116



SS$RSET

RESET I/0

POINT TO
CHANNELS

§:

SKIP
CHANNEL 17

CLEAR ALL
CHANNELS

EMTRTI

QUIESCE

Ll

JOB'S IMPURE
AREA

!

WAIT FOR
I/0 TO STOP
(I.I0CT=6)

RETURN

0

HARD AND SOFT RESET (CONT.)/RDOVLY

REVERT STOPS ALL I/0,
RELEASES HANDLERS,
REMOVES EXTRA CHANNELS
AND RESETS THE I/O QUEUE

JOB THE
B/G

POINT TO
F/G
CHANNELS

RESET
CHANNELS TO
ORIGINAL 16

RESET
SUSPEND
COUNT

!

N

PURGE NON-
RESIDENT
HANDLERS

FROM SENTRY

|
ENABLE TT

INPUT
INTERRUPT

RETURN

RDOVLY

FLAG USER
PROGRAM RUNNING

RESET QUEUE OF
AVAILABLE NODES
TO POINT TO THE

CLEAR COMPLETION

QUEUE

READ IN USER

FROM SWAP
BLOCKS

ENTRPG

SET UP USER
STACK POINTER

ONE INTERNAL NODE.

!

E-117

FLAG USR GONE




. SETTOP

S$ETOP

--=- SET TOP MEMORY

LIMIT OF JOB

SET EQUAL
TO LOW
LIMIT OF JOB

r-CAN'T BE OUTSIDE LIMITS
SET BY MONITOR.

> JOB HIGH
LIMIT

SET EQUAL
TO JOB
HIGH LIMIT

ENQUSR

\

REQUEST
USR
OWNERSHIP

REQUEST
HIGHER THAM

KMON

FLAG KMON
NON-RESIDENT

REQUEST
HIGHER THAN
USR

CAN
WE
SWAP USR
?

SET TO
BOTTOM OF
USR

- MUST OWN THE
USR IN CASE
IT MUST BE
SWAPPED CUT

E-118

MAKE USR
NON-RESIDENT.
SET USR-IS-
SWAPPING FLAG

DEQUSR

[

A\

USR OWNERSHIP

GIVE UP

-

RETUFN TOP | RETURN HI
VALUE IN LIMIT
Rg AND 59 ACTUALLY

GRANTED



CANCEL MARK TIME

GO TO SYSTEM
STATE

CMARKT

GET A QUEUE

TLEMENT
[ﬁ AQLINK \
RETURN ELEMENT
Y END OF TO FFEE LIST
5$ = 0

N

?

THIS
JOB'S
LENMENT

EXIT
(RTS PC)

SET ERROR
BIT.
REMOVE
ELEMENT )
//j\\\ ( EXIT )

CANCEL

ALL
?

N

RETURK TIME
REMAINING

E-119



SWAP IN USR, LOCK/UNLOCK USR

USE NORMAL

CALUSR ~SWAP IN THE USR @

L ENQUSR \ WRITE OUT
GET OWNERSHIP SWAP BLOCKS
OF USR @
BUMP USR
USAGE COUNT READ IN

USR

USR IN
MEMORY

-=-- LOCK THE USR
IN MEMORY

EMTERf

GET FLOATING

CLAIM IT AND
ADDRESS

READ INTO MEM.

EMTRTI

—-= UNLOCK THE
USR FROM
MEMCRY

DOES
ONE EXIST

THIS JOB
OWNS CUSR

EMTRTI

DECREMENT
USR LEVEL
COUNT

RIDUSR —\

USR

CALLED

ITSELF
?

GET RID
\ OF USR

IS JOB IN

BACKGROUND
?

EMTDON

USR LOCATION

E-120



E.5.2 Job Arbitration, Error Processing

E-121



COMMON INTERRUPT
ENTRY AND EXIT

SENSYS

¢

SET UP RETURN
ADDRESS TO USE
WHEN EXITING

$INTEN

)

SAVE R4.
BUMP LEVEL
COUNTER.

(o>

N

—USED BY MONITOR TO

GO TO SYSTEM STATE.

INTERRUPT ROUTINE
ENTRY POINT

SET PRIORITY
TO 7

ANY ABORTS ——
OR CONTEXT EXSWAP )CALL
SWITCH? SCHEDULER

SWITCH TO USER JOB'S
STACK AND RESTORE
ITS REGISTERS.

l SWITCH STK PTRs:W

(-

EXINT
A

DECREMENT
LEVEL
COUNTER
LOWER TO
1
) (RTI) USER
14 N AY
CALL HANDLER
BACK AS
SUBROUTINE FAKE FPP
RETURN HERE == — — — INTERRUPT
FROM HANDLER
Y SAVF FPU
STATUS
REGISTER
N |
EXIT TO USER --- Yy
ENTRY POINT SET TO
(TIMER, EXSWAP RETURN TO
RETURN HERE) USER'S FPU
ROUTINE
DOES N USE RMON'S

RESTORE
REGS

EXINT

FPU
INTERRUPTS
?

JOB HAVE FPP ROUTINE

E-122



SCHEDULER

EXSWAP
CALLED BY COMMON EXIT TO USER

CODE TO PROCESS ACTION SWITCH

ABORT

NUMBER

{N --- DO A TASK SWITCH
CLEAR ACTION SWITCH | --- TRY TO RUN JOB NEXT LOWER
LOWER PRIORITY TO § IN PRIORITY (= JOB NUMBER)
DECREMENT JOB NUMBER I.E., RUN HIGHEST JOB RUNNABLE.
END v PLAY WITH
OF JOB CONSOLE
LIST LIGHTS I PROCESSOR IDLE LOOP
?
OB
EXUSER
N

JOB
BLOCKED

—TASK WAITING TO RUN ITS
I/0 COMPLETION ROUTINE

SUSPENDED
?

(a3
/ CNTXSW \---—IF COMPLETION PENDING, CNTXSW
WILL FAKE INTERRUPT ON TASK
SWITCH IN STACK TO CALL COMPLETION QUEUE
THIS JCB MANAGER ON EXIT.

EXUSER

E-123



JOB ABORT

UABORT |~ —— — — — REQUESTS ABORT OF
CURRENTLY RUNNING

JOB.

GO TO SYSTEM
STATE AND SET
ABORT REQUEST
FLAG FOR CURRENTLY
RUNNING JOB.
DONE AT LEVEL 7.

_____ ABORTS ALL JOBS WITH

ABORT REQUEST FLAG
SET IN THEIR JOB
STATUS WORD

DROP TO
PRI §

®
\
[ SWAPME \
FLAG ACTION
FOR CURRENT JOB

CLEAR ABORT REQUEST FLAG
FOR CURRENT JOB.
SEARCH TABLE OF IMPURE
POINTERS FOR JOBS IN MEMORY.

FOUND
A
JOB

EXUSER

E-124



JOB ABORT (CONT.)

DIRECTORY
OP IN PROGRESS

DON'T ABORT
JQ§T YET

CNTXSW

IORSET

RESET ACTIVE
I/0

SWITCH TO
ARORT CONTEXT

/”———(‘\\ T

FORCE JOB TO EXIT
WHFN RESUMED.
CLFAN UP JOB'S

IMPURE AREA

|

@

E-125



BLOCK A TASK/UNBLOCK A TASK
REQUEST TASK SWITCH

JOB
STILL
BLOCKED

RETURN

N I.E., BLOCKING
CONDITION STILL

TURN ON
BLOCKING BIT

EXISTS?

PREVIOUSLY
UNBLOCKED

Y
SWAPME

RETURN

CLEAR BLOCKING
BIT. GET
JOB NUMBER

!

$RQTSW

-—-=- WAIT UNTIL USR
IS AVAILABLE

DLYUSR

{

SET BLOCKING
BIT TO WAIT
FOR USR.

CAUSE SCHEDULER TO
SCAN TASK LIST
STARTING AT CURRENT
JOB NUMBER

SWAPME

il

GET CURRENT
JOB'S PRIORITY

$RQTSW AND
SRQSIG CAUSE
SCAN OF TASK

REQ. JOB
PRIORITY <
CURRENT

NEW REQUEST
PRIORITY <
PREV. REQ.

LIST STARTING
AT REQUESTED

JOB NUMBER.

REQUEST A
TASK SWITCH

[
\

RETURN

~ 1~

E-126

SET TASK
SWITCH
ACTION FLAG

EXIT RTS PC



CHANGE CURRENT CONTEXT
CNTXSW  )--- ENTER IN SYSTEM STATE, PRIORITY §

FETCH CURRENT
JOB'S STK PTR

SAVE REG @-3 ON ITS STACK.
SAVE 34-52 ON ITS STACK.

FETCH NEW
JOB STACK
POINTER

SWAP
IN SPECIAL
LIST

SWAP FPU
REGISTERS
SWAP IN
ITEMS IN
SPECIAL
LIST
SWAP 558
SPECTAL
LIST
2 N
SWAP
63 FPU?
SWAP ITEMS N
IN SPECTIAL v
LIST
¥ N FPU
TVvTOoOmo
NlLOo LD

e B
538 v 2
N 7

SAVE PTR TO TOP OF EXTRA SWAP FPU
LIST, OLD STACK PTR, REGISTERS
NEW JOB CONTEXT.

65

E-127



CHANGE CURRENT CONTEXT (CONT.)

RESTORE LOC. 32-52.
RESTORE REGISTERS.
SAVE POINTER TO JOB STACK.

!

SET UF JOB
NUMBER.

THAT'S IT!

JOB DOING
COMPLETION

FAKE INTERRUPT ON STACK.
UNBLOCK JOB.
SET COMPLETION FLAG.
SAVE CHANNEL { AND
ZRROR BYTE IN IMPURE AREA.

EXITS TO CCOMPLETION QUEUE MANAGLR.

EXIT
(RTS PC)

E-128



- TRAP4
TRAP1#

SAVE CONDITION
BIT IN LOC 52

TRAP
FROM
SYSTEM

ERROR PROCESSING

PRIORITY + §
RESTORE C BIT

SET TO PRINT
MESSAGE

-=- MERGE WITH
ERROR COMMON

IGNORE —=--
USER STACK CODE
TRAP SET OVERFLOW
ON STACK ?
OVERFLOW N
LOWER PRIOR. MAKE ERROR SET TO PRINT
TO # CODE POSITIVE 'DIR UNSAFE'
INTERCEPT @ e
ADDR
> GET ADDRESS
. OF ERROR PRINT ANY
RESET STACK. MESSAGES
CLEAR --- | CLEAR USER
USER INTERCEPT
ADDRESS ADDR. RESTORE @
TO AVOID C BIT TO FLAG UABORT
RECURSION |[TRAP TO 4 OR 10
ERRCOM
EXIT TO
USER
.HRESZT
.RCTRLO
CLEAN UP PRINT MESG.
OUR STACK THEN ERROR
ADDRESS
FETCH ADDR.
OF ERROR.
RESET STACK

E-129



E-130



E.5.3 Queue Managers (I/0, USR, Completion)

E-131



ENQUEUE/DEQUEUE USR

ENQUEUE USR

ENQUSR

DLYUSR

DECLARE
OUR
OWNERSHIP

EXIT

RIDUSR ~--- SWAP OUT USR

CLEAR USR
REQUEST LEVEL

REQUESTED
DURING DIRECT.
oP

UABORT

IS USR
SWAPPING
?

DEQUSR

WAS USER
SWAPPED
ouT

READ USER
BLOCKS BACK
INTO MEMORY

/

FLAG USR
NON-RESIDENT

EXIT

E-132

~--—- REQUEST USE OF
USR IF BUSY

-—=- SEE: REQUEST TASK SWITCH

DEQUEUE USR

DEQUSR

--~GIVE UP
THE USR

FLAG USR
NOT IN USE

/

GET UWEXT
JOB

WAITING
FOR
USR

[~

UNBLOK

LET THE
JOB RUN

1

GIVE USR
TO IT




INSERTS I/O REQUEST
NODE IN HANDLER'S
REQUEST QUEUE.

QMANGR

POINT TO Q
OF AVAILABLE
ELEMENTS

IS aN
ELEMENT

AVAILABLE
>

QFULL

ADVANCE QUEUE
AND BUMP
# OF REQUESTS

Y

BUMP CHANNEL
REQUEST
COUNTER

{

INSERT: BLOCK #, PTR TO
CSW, UNIT %, JOB #,
BUFFER ADDR, WORD
COUNT, COMPL. ADDR.

QFULL

I/0 QUEUE MANAGER

POINT TO
QUEUE HEAD

GET A
QUEUE ELEMENT

ELEM. PRIOR™NY.
<THIS ELEM. ~ p1.EMENTS

2 LINKED IN
- --- " PRIORITY
ORDER

LINK NEW
ELEMENT IN

DID
HANDLER
COMPLETE

WHILE HELD
?

MT/CT
SPECIAL LOWER
FUNCTION PRIORITY
? TO § UNHOLD THE
e HANDLER
PUT IN FUNCTION Y
BYTE AND USWAPO /** pp— Al
COMPLETION
FUNCTION DO THE
ENTER SYS. COMPLETION
~ STATE TO WAIT
FOR A
ENTER SYSTEM
STATE, THEN Q ELEMENT

HOLD THE HANDLER

HANDLER
ACTIVE

UNHOLD HANDLER
AND INSERT
THE Q NODE

HANDLER

E~133

-GO.
WAIT

WAIT UNTIL
DONE




QUEUE COMPLETION

COMPLT

POINT TO
IMPURE AREA
AND DECR.
PENDING REQUESTS
ON CHANNEL

WAITING
FOR IT

== ENTERED FROM DEVICE
HANDLERS WHEN I/0
REQUEST COMPLETED

MORE
REQUESTS
FOR

DEVICE
2

SET STACK TO

CLEAR LAST
QUEUE ELEMENT
FLAG IN HANDLER

CALL HANDLER
ON EXIT

|

DOING

COMPLETION
?

AQLINK

ZL, UNBLOK j\

UNBLOCK THE
TASK WAITING
FOR THE CHANNEL

SAVE CHANNEL STATUS WORD

AND CHANNEL OFFSET
IN THE QO ELEMENT.

1

DECR. # OF
I/0 REQUESTS
FOR THE TASK

Z; UNBLOK Aix

UNBLOCK TASK
IF WAITING FOR
I/0 TO FINISH

REMOVE USED
ELEMENT
FROM QUEUE

l[ $ROTSW \

REQUEST CONTEXT

SWITCH FOR
\L, THE TASK

!

INSERT THE
ELEMENT IN
THE COMPLETION
QUEUE

EXIT
RTS _PC)

AQLINK

INSERT THE
ELEMENT IN
AVAIL QUEUE.
BUMP COUNT

EXIT

E~134



COMPLETION QUEUE MANAGER

S$CRTNE —--- ENTRY POINT (ENTERED WHEN
CNTXSW FAKES AN INTERRUPT
ON STACK BEING SWITCHED IN.)

GET ANOTHER
COMPLETION
ROUTINE

GET COMPL.
ROUT. ADDRESS

[ 2\

CLEAR ( CALL COMPLETION
COMPLETION ROUTINE AS A
FLAG SUBROUTINE

EXIT TO
USER (RTI)

Y

LINK FORWARD
IN COMPL. QUEUE

CLEAR LAST
Q. ELEM. FLAG

D IiNLIL

ELEMENT

J
n

L
(%]
R,

RETURN TO
AVAIL. QUEUE

E-135



E-136



E.5.4 Clock Interrupt Service

E-137



CLOCK INTERRUPT HANDLER

LKINT

BUMP TICK
COUNTER

FAST EXIT
AT LEVEL 7

N --- INTERRUPTED A
TASK, O.K.
SAVE R5 ON
USER STACK.
SWITCH TO

SYSTEM STACK.
PRIORITY * ¢

SAVE R4 AND

SAVE C BIT.
LINK QUEUE
FORWARD

!

SRQTSW \

REQUEST A
CONTEXT SWITCH
FOR THIS JOB

!

SP. THEN GET SET COMPLETION
4 OF TICKS PENDING FLAG
ENTRY POINT IN JOB STATUS
INTERRUPT '
EXIT
CODE ADD TICXS CQLINK ij
TO SYSTEM LINK TIMER
PSEUDO-CLOCK NODE TO
BUMP HI-ORDER COMPLETION
PSEUDO CLOCK. NUEUE
CLEAR C BIT ‘ *
DONE
POINT 70
CLOCK QUEUE gggﬁgLIZING R§S§?§E
I.E., BRANCH ELEMENTS . VALUE
TO 4$ IF — — y (C_=1)
CARRY SET
(z = g IF
NON-EMPTY
QUEUE)
SUBTRACT 1
FROM HI ORDER
TIME. MOVE
. PAST LO ORLER
TEST FIRST — = ,~CAN'T HAVE EXPIRED TIME
ELEMENT TN pyproamion
QUEUE ®

Y --- TIMER EXPIRED FOR
THIS JOB

=2

E-138

LINK TO NEXT
QUEUE ELEMENT




E.5.5 Console Terminal Interrupt Service

E-139



TT INPUT INTERRUPT ROUTINE

TTIINT
/ SINTEN 4\

COMMON _
INTERRUPT
ENTRY

'

FETCH CHAR.

TTINC3

‘ROOM
IN
BUFFER

AND STRIP
Y
PARIT BUMP COUNT &
INPUT POINTER
Y
END
OF
< BUFFER
CONVERT WRAP
LOWER CASE POINTER
TO N TO TOP
UPPER CASE ]
CIRL.C INSERT CHAR
DISPATCH |-CTRL.O A
SPEgigi 4 T™ | _CTRL.S INTO BUFFEPR
AR PROCESSING [~CTRL.Q . I
HAR. ROUTINE |--~CTRL.F
. CcTRL.B [4, EOLTST 4\
TTIDSP CHECK FOR
END OF LINE
TTINC3
N
| 7S
pisparcy [ CTRL.U 7
TO L ALT
PROCESSING BUMP LINE
ROUTINE | RUB COUNT

TTHIN 4\

CALL HANDLER

TTINC3

E-140



TT INPUT INTERRUPT ROUTINE (CONT.)

7$
SAVE FOR CTRL.C CTRL.B TTOENB
PREVIOUS
CHAR. TEST I' ECHOZC AX GIVE INPUT ENABLE
* OWNERSHIP PRINTER
A \ ECHO "+C<CR><LF>j TO BG INTERRUPT

[ UNBLOK

\

IF WAITING

UNBLOCK USER )
FOR TT

AT
N

TTOPT3 4!&

ECHO THE
CHARACTER

i

CARRIAGE
RETURN

GIVE OUTPUT
OWNERSHIP
TO BG

REQUEST
TASK
ABORT

EXIT

( $RQABT >

CHANGE CODE
TO LINE FEED

TTINC3 — GO INSERT IN BUFFER

SET UP TO - - ECHOES
ECHO A BELL 'BELL’
WHEN INPUT
! BUFFER
SAVE CHAR. 1s FULL
IN CASE OF
tc +C

TTOPT4

| — - GENERATE A <LF>
ON RECEIPT OF <CR>

Y
SET UP TO
PRINT
OWNERSHIP
D (I|B>II)

TTOENB

GIVE INPUT
OWNERSHIP
TO FG

GIVE OUTPUT
OWNERSHIP
TO FG

Y

SET TO PRINT
D ("F >u)

EXIT

E-141

[ EcHO \

\ ECHO "F2" J

( EXIT )
|




TT INPUT INTERRUPT ROUTINE (CONT.)

CTRL.S

SET XEDOFF
SWITCH, IF
ENABLED

CTRL.U

WAS IT

[ ECEOR{
ECHO A
'fUl

ENABLED

TTIDSP -
CTRL.Q

CLEAR
XEDOFF

PROCESS
CHARACTER

TTIDSP

ANY
CHARS. IN

CLEAR PREVIOUS
CHAR, IF ONE

1
ECHO |

ECHO A
CR/LF
EXIT

WRAP PTR
AROUND"

]

RE-ENABLE N ye

TT OUTPUT DECREMENT

INTERRUPTS COUNT &
PTR

CTRL.O

CLEAR CHAR COUNT, SET
RUFFER POINTFRS EQUAL

[ ECHO \

DOING

RUBOUT
?

\ECHO " 40 CR LF"

SAVE PREVIOUS
CHARACTER

ECHO BACKSPACE,
SPACE,
'BACKSPACE

TOGGLE
40 FLAG

1

UNBLOK

™~

UNBLOCK

WAS
LAST A
RUBOUT

TASK IF STOPPING
OUTPUT WITH 40O

TYPE CHAR.
DELETED

E~142

EXIT

( EXIT ’



ECHOR#

CHARACTER

/ TTOPT3 \
FIRST ECHO
AN l*l
MAKE CTRL F-FALL THROUGH
CHARACTER TO TTOPT3 TO
A PRINTING CODE ECHO THE
LETTER

TTOPT3

ECHO A CHAR.

CHARACTER

TTOPT4

POINT TO
OWNER'S
BUFFER

TTOPT2

OUTPUT
COUNT <@
IMPLIES
CTRL O

E-143

—-- ECHO A CONTROL

ROOM
IN
BUFFER
?

INSERT CHAR.
BUMP PTR.
INCR. COUNT

TTOENB

TT ECHO SERVICE

EXIT
(WITH C = 1)

[
\

- RE-ENABLE
INTERRUPT,
EXIT WITH
C CLEAR
ECHOgC - ENTER HERE
WHEN ECHOING
A CTRL
[7 ECHORJ “\ CHARACTER
ECHO CTRL
CHARACTER
ECHO - ENTER HERE
TO ECHO UP
TO TWO CHAR-
[ Tropra | ACTERS
ECHO FIRST
CHARACTER
N
Y
TTOPTA 44\
ECHO THE

SECOND CHARACTER

)

Las-

EXIT



TT OUTPUT INTERRUPT ROUTINE

TTOINT

[ e )
\ DROP TO )

LEVEL 4

OFILL

DECREMENT
COUNT, THEN
PRINT A NULL

‘ EXIT >

XOFF

FLAG SET
?

EUMP TAB
FILL COUNT

STILL
PRTNTING
A TAB

CLEAR TAB
FILL COUNT

TURN OFF
PRINTING TT INTERRUPTS

AN ID

?

EXIT

PRINTS JOB =—-- ?gTnggT
I.D. (F> OR
B>)
()
Y
CLEAR ID
FLAG (TTOID)

E-144

POINT TO USER'S
IMPURE AREA

POINT TO
JOB TABLE

GET A JOB
POINTER

WAS

IT END

OF TABLE
?

JOB
ACTIVE
?

" USING
TT: HANDLER

453

WANTS
TO TYPE
ANYWAY




TT OUTPUT INTERRUPT ROUTINE (CONT.)

CHANGE TT
OWNERSHIP.
PRINT ID

\
UNBLOCK JOB
IF WAITING FOR

TT OUTPUT

GET RING
BUFFER
POINTERS

TTHOUT

PRINT <CR><LF>.
CLEAR LINE
POSITION COUNT

8$

WRAP
AROUND
TO TOP

CLEAR LINE
POSITION
COUNT

ANYTHING

TO PRINT
?

OBUMP

GET BYTE

TURN OFF
TT INTERRUPT

BUMP RING PTR.
DECR. CHARACTER
COUNT

CLEAR PARITY
BIT

PRINzABLE

BUMP LINE
POSITION

<CR><LF> AT
72 ENABLED

MAYBE NOT

'

)

OBUMP

E-145

PRINT THE
CHARACTER

A
NEEﬁ\\\\

FILL CHAR.
?

SET UP
FILLERS

EXIT

OBUMP




TT OUTPUT INTERRUPT ROUTINE (CONT.)

PROCESS ---
SPECIAL
CHARACTERS

OBUMP

BACK UP
CHARACTER
POINTER

OBUMP
TTHOUT

SIMULATE FF
WITH 8 <LF>S

TTHOCM

<

OUTPUT
COMPLETE
?

TTHOCM

N

HARDWARE GET A BYTE
TAB CHECK FOR
NULLS
MOVE LINE
POS. TO FILL N
COUNTER. SET
TO ECHO SPACES
Y
BUMP BYTE TTHOCM
PTR AND
DECR. COUNT

FIX LINE / TTCMPIL, \
POSITION L |
CALL COMPLETION

FUNCTION FOR
TT: OUTPUT

BUMP CHAR.
POIHTER

OBUMP

FOON

i

E-146



E.5.6 Resident Device Handlers (TT, Message)

E-147



TT: RESIDENT HANDLER

ENTRY
POINT

FIND IMPURE
AREA, THEN

GET WORD CT.

--= GET AS MANY LINES
AS POSSIBLE

-~ RT-11 FILLS
REST OF BUFFER
WITH ZEROES.

(NRITE) N
N
BUMP
BUFFER
POINTER
[ TTOPT2
PRINT A '+'
PROMPT CHAR.
BUMP
BUFFER
POINTER
TTHIN ---~ ENTER HERE WHEN
END OF LINE IS
DETECTED.
LINE
IN INPUT CLEAR AN
BUFFER UNFILLED
BYTE AND
COUNT DOWN
[ IGET \
GET A
CHARACTER

FROM BUFFER

DOUBLE SET LOF
CTRL O SROART FLAG
?
N
v /,WRITE
@ L TTCMPT, A
< \DO COMPLETION)
PASS CHAR SET UP POINTER
TO USER, ENABLE PRINTER
DECR. THE INTERRUPT
COUNT

=i

(: EXIT :) (ir EXIT

E-1438

|

TTCMPL

1

CLEAR IMPURE
AREA PTRS,
POINT TO QUEUE

COMPLT

J



TT: RESIDENT HANDLER (CONT.)

IGET

BUMP GET
POINTER

END
OF
BUFFER

WRAP POINTER
TO TOP

GET CHAR &
DECR. COUNT

EOLTST

[
K CHECK FOR

t1C, +tz, LF

-

DECREMENT
LINE COUNT.
SET Z IF
CTRL C

i

E-149



MESSAGE HANDLER

ITS A SEND DATA,-
MUST MATCH WITH

RCVD.

3

ENTRY
POINT

GET JOB #
OF NEXT
ELEMENT

CHANGE JOB #
TO # OF
RECEIVING JOB

ANY
MESSAGE
WAITING

IS IT A
RECEIVE

Y --- IGNORE

SET UP TO
TRANSFER

MATCH WITH SDAT

ABORT
ENTRY POINT

FIND END OF
QUEUE AND

IGNORE SEEKS
(WORD COUNT

TRANSFER DATA,
INDICATE
AMOUNT SENT.

Y

COMPLT

F\\

\

RETURN ELEMENT

IN QUEUE TO
FREE LIST.

-—— FREE THE OTHER
ELEMENT, RETURN
FROM COMPLT

COMFLT

LINK IN ELEMENT

e

POINT TO
A JOB'S
MSG QUEUE

CLEAR LAST
LINK WORD

@

GET AN ELEMENT
AND FREE IT

LINK IN
FIRST ELEMENT

@

E-150




ENTRY POINT INDEX

Page numbers marked by an asterisk indicate the flowchart of the entry

point.

S$SCRTNE, E-135%
$ENSYS, E-122%
SINTEN, E-122%
SROABT, E-141%*, E-148
SRQSIG, E-126%*, E-133
$RQTSW, E-126%*
$SYNCH, E-114*%*
$SYSWT, E-126%*

ABORT, E-123, E-124, E-150%
ADTRAN, E-13%

ALT, E-89%*, E-140%*

AQLINK, E-134%*

ASSIGN, E-20%*

B, E-4, E-5%

BADCOM, E-4%*, E-7, E-9
BEGIN, E-7*%, E-9
BLKCHK, E-56, E-57%

C$DFN, E-72%, E-112%

C$DFN2, E-66%, E-72

C$HAIN, E-75%, E-115%

C$1L0S2, E-66*, E-69, E-105*, E-106

C$LOSE, E-69*%, E-106*

C$MKT, E-119%

C$PYCH, E-110%

C$SIGN, E-66%, E-106%*

C$SISP, E-66%, E-106%*

C$STAT, E-111%*

CALUSR, E-82%, E-120%*

CCBBO, E-15%

CDFN, E-30%

CHANER, E-64, E-65%

CHKSP, E-113%

CHXIT, E-75, E-78%

CLOCOM, E-33, E-42%

CLSQSH, E-36, E-42%

CMARKT, E-116, E-119%

CMPLT2, E-134%*

CNTXSW, E-127%*

COMERR, E-59

COMPLT, E-100%, E-134%, E-148,
E-150

COMXIT, E-30, E-33, E-34, E-35,
E-37, E-38, E-40, E-41,
E-43, E-54, E-59%

CONSOL, E-60%

CSI, E-46*

CTRL.B, E-141%

CTRL.C, E-141*%

CTRL.F, E-141%

CTRL.O, E-142%

CTRL.Q, E-142%

CTRL.S, E-142%

CTRL.U, E-142%

CTRLC, E-90%*

CTRLO, E-89%

CTRLQ, E-89%

E-151

CTRLS, E-89%
CTRLU, E-91%*

D$DTAT, E-105%

D$LETE, E-66%, E-105%

D$STAT, E-66%

D$VICE, E-113

D, E-4, E-6%*

DATE, E-18%

DELETE, E-36%

DELOUT, E-34%, E-36, E-38, E-42,
E-43

DEQUSR, E-117, E-132%

DLEET, E-56%

DLYUSR, E-126%, E-132

DOSAVE, E-19

E$NTER, E-66%*, E-105%

E$XIT, E-78*%, E-115

E, E-4, E-5%

E376, E-64, E-81*, E-104

E5SER0, E-111%

E5ERl, E-111%

ECHO, E-143%

ECHOOC, E-143%

ECHORO, E-143%*

EMTCOM, E-104%

EMTDON, E-65*, E-68, E-69, E-70,
E-72, E-73, E-74, E-75, E-76,
E-77, E-79, E-80%, E-88,
E-89, E-90, E-91, E-107%,
E-108, E-120

EMTERO, E-107*, E-112, E-113,
E-120

EMTOUT, E-64, E-65%*, E-68, E-81

EMTPRO, E-64%*, E-104%

EMTRTI, E-105, E-106, E-107%,
E-110, E-111, E-112, E-113,
E-114, E-117, E-120

EMTUSR, E-105%, E-106

ENQUSR, E-132%

ENTER, E-37%

ENTRPG, E-7, E-69, E-117

ENTRY, E-59%

EQLTST, E-92%

ERRCOM, E-129%

EXINT, E-122*, E-138

EXSWAP, E-122, E-123*

EXTEND, E-38, E-39%

EXUSER, E-122%, E-123, E-124,
E-138

F$ETCH, E-66%, E-105%
FATAL, E-29%

FILE, E-14%

FOON, E-144%, E-146
FRUN, E-24%

January 1976



GS$TIM, E-73*, E-114%*
G$TJB, E-73*, E-111%
GESTAT, E-40%*

GET, E-4, E-8%*
GETBLK, E-23%

GETFD, E-53%*

GETNAM, E-53%*

GT, E-25%

HSERR, E-74%
H$RSET, E-66%, E-116%
HDRSET, E-35%

IGET, E-149%*
INCR1l, E-59
INIT, E-4%*
IORSET, E-116*

KLOSE, E-42*%*

LSOCK, E-75%

L$0OOK, E-66*, E-105*
LK4DEV, E-61%

LKERl1, E-34%*, E-36
LKINT, E=138%*
LNFILE, E-33, E-34%
LOAD, E-21*

LOOKRUP, E-33%

M$RKT, E-112%

M$SWAIT, E-111*%*

MARKTM, E-113%

MEXIT, E-4%, E-79

MEXIT2, E-4*, E-78

MONOUT, E-49, E-75%, E-120*%

NFREAD, E-70%, E-71

NFWRIT, E-71%*, E-109
NOSWIT, E-48%

NXBLK, E-56%*

NXTFIL, E-47%*, E-48

OBUMP, E-145%*, E-146
OCKCR, E-145*, E-146
OFILL, E-144*
OPRINT, E-5%, E-24
OPUT, E-96%*

OUSTUF, E-52%*
OVLINK, E-12*
OVREAD, E-12%*

PSRINT, E-76*, E-105%
P$ROTE, E-110%*

PSURGE, E-74%*, E-106
PHETCH, E-40%
PUTBLK, E-23*%*

Q$SET, E-66*, E-105%
QFULL, E-133%

OMANGR, E-98%, E-133%
QRESET, E-117*%

QSET, E-43*

QUIESCE, E-117%

R$CTLO, E-105%

R$CVD, E-108%

R$EAD, E-70%, E-74, E-108
R$NAME, E-66*, E-105*
R$OPEN, E-69*, E-111*
R$SUME, E-112%*

R, E-4, E-7*

RDOVLY, E-7, E-69*%, E-117%
REENTR, E-4, E-9%
RENAME, E-33%

RENTR, E-37%, E-39
RESUM, E-112%

RESUME, E-22%

REVERT, E-117%
RIDUSR, E-132*%*

RSTSR, E-35%

RTORG, E-29%*

RUB, E-91%*, E-142
RUBCM2, E-92*%

RUBCOM, E-92%

RUN, E-4, E-9*

RWXT, E-108%*, E-109
RWXTEO, E-108%*

S$AVST, E-68%, E-111%*
S$DAT, E-109*

SSERR, E-74%

S$ETOP, E-77*, E-118%
S$FPA, E-73%

SSFPP, E-112%

S$PFUN, E-74%, E-108%*
S$RSET, E-66*

S$SPND, E-112%
S$SRET, E-117%*
S$SWAP, E-112%*
SSTRAP, E-113*

SAVE, E-19*

SAVEVC, E-6, E-14%*
SEGRW, E-58%

SEGRWl, E-58%

SEGRW2, E-58%

SOFRST, E-35%

SPDEL, E-34*, E-36
SPECIAL, E-47, E-48%*
SPENTR, E-37, E-38%
SPESHL, E-59

SPLOOK, E-33, E-34*

E-152



SPREAD, E-108%* TTIDSP, E-140%, E-142

STARTK, E-4, E-9%* TTIEXZ, E-88%, E-91

STRE, E-9* TTIINT, E-86%, E-140%

STRTIN, E-46%*, E-48 TTINC3, E-87%*, E-88, E-89, E-90,
SUSPEND, E-22% E-140%*, E-141

SWAPME, E-126%* TTODON, E-93, E-94%

SWITCH, E-47, E-48%* TTOENB, E-141*, E-143

SYNERR, E-47 TTOINT, E-93%, E-144%*

SYSK, E-16% TTOPT2, E-143*%

TTOPT3, E-143*
TTOPT4, E-141, E-143%

T$LOCK, E-120% TTOPUT, E-95%
T$RPST, E-68* TTORUB, E-95%
T$TIN, E-79%, E-107% TTPOXT, E-93, E-94%*

T$TOUT, E-80%, E-107*%
TSWAIT, E-112%*

TCHKSP, E-93, E-94* USNLOK, E-75%, E-120%

TIME, E-18% UABORT, E-115, E-124*, E-129,
TIMER, E-122, E-138%* E-132

TOOBIG, E-64, E-65%* UNBLOK, E-126%

TPRNT7, E-93%, E-94 UNLOAD, E-22%

TRAP10, E-129% USR, E-32%

TRAP4, E-129% USRBUF, E-29%

TSWCNT, E-109* USRCOM, E-54*

TTCMPL, E-148%* USRNF, E-55%

TTHIN, E-148% USWAPO, E-115, E-133*

TTHOCM, E-146%*

TTHOUT, E-145, E-146%*

TTIBUM, E-91*%* WSAIT, E-72%, E-111
W$RITE, E-71%*, E-109

E-153






Abbreviations, 1-2
Abort,

code, 5-8

entry-point, 6-4
Absolute section, 3-21
Adding a handler to system, 5-11
Allocating space for F/G, 2-4
ANSI MT labels under RT-11, 3-12
ASSIGN command, 2~-15

Backslash character (\) (BATCH),
7-1
Bad tape errors, 3-13
BATCH, 7-1
compiler, 7-4, 7-6
CTL format, 7-1
CTT temporary files, 7-22
directives, 7-1, 7-2
example, 7-11
job termination, 7-6
language, 7-1
run-time handler, 7-2
BATSW1 switches, 7-3
B/G (definition), 1-3
Bitmap byte table, 2-21
BLIMIT table, 2-4

Block,
_ENDGSD, 3-19
GSD, 3-19

Blocking a job, 6-3
Blocks, data, 3-19
Bootable magtape, 3-12.1
Bootstrap, 2-24

operation, 4-3

system, 5-15
Building a new system, 5-16

$CALL command (BATCH), 7-12
Carriage width, 2-26
Cassette,
file header, 3-15
file structure, 3-14
Channel number, 3-4
Channel status word, 1-2
Checksum byte, 3-18
Clock interrupt service,
flowcharts, E-83, E-137
Command field, 3-24
Command string interpreter (CSI),
see CSI
Compatibility between.RT-11
versions, C-1
Compiler (BATCH), 7-4
construction, 7-6
temporary files, 7-22
Completion queue elements, 5-5,
5-6

Index-1

INDEX

Console terminal,
interrupt service (flowcharts),
E-85, E-139
substitution, 2-23
Constant field, 3-24
Context switch, 6-2, 6-3
Converting user-written handlers,
requirements, 5-23
$COPY command (BATCH), 7-11
<CR> (definition), 1-3
SCREATE command (BATCH), 7-11
CR1l1l device handler, A-35
CSECTs, 3-21
CSI (Command String Interpreter),
definition, 1-2
flowcharts, E-45
requests, 6-5
subroutines (flowcharts), E-51
$CSW (definition), 1-2
CT file header format, 3-16
CTL file (BATCH), 7-1, 7-22
CTT file (BATCH), 7-22
Current queue element, 5-3

Data base description (BATCH),
7-7, 7-10
Data blocks, 3-19
Data transfer operations,; 5-19
by device handlers, 5-9
Date, 3-5
Definitions, 1-2
SDELETE command (BATCH), 7-11
Determining user program memory,
2-2
Device directory, 2-15, 3-1
Device Directory Size table,
$DVSIZ, 2-15
Device driver, 5-16
Device Handler Block table,
SDVREC, 2-14
Device handlers, 5-1, 5-14
CR11l, A-35
format, 5-8
LP/LS1l, A-28
RC11/RS64, A-2
TC1ll, A-47
Device handlers changed by SET
command, 5-21
Device identifier, 2-13
DEVICE macro, 2-16
Device Ownership table, $OWNER,
2-16
Device Status table, $STAT, 2-13
Devices with special directories,
5-19
Differences between V1 and V2/
V2B EMTs, C-1

January 1976



File structure, 3-1

cassette, 3-14

magtape, 3-11
File types, 3-3

tentative, 3-3

empty, 3-3

permanent, 3-4
Files, size and number, .3-7
Filling directory segments, 3-7
First end-of-file label, 3-12
First file header label, 3-12
Fixed offsets, 2-10-2-12
FLIMIT table, 2-4
Flowcharts, S/J and F/B monitor,

CSI (Command String

Interpreter), E-45
KMON (Keyboard Monitor), E-3
RMON (Resident Monitor), F/B,

Directive, 7-1
SDIRECTORY command (BATCH), 7-11
Directory entries, 3-2
format, 3-3
Directory header,
format, 3-1
words, 3-2
Directory of devices, 2-15
Directory operations, 5-19
Directory segment, 3-1, 3-6
extensions, 3-8
format, 3-1
Double tape mark, 3-11
SDVREC (Device Handler Block
table), 2-14
$DVSIZ (Device Directory Size
table), 2-15
Dynamic memory allocation, 2-7

E-101
RMON (Resident Monitor), S/J,
. E-63
Empty file, 3-3 . .
EMT processors (flowcharts), E-67, Usg_égser Service Routines),

E-103
ENDGSD block, 3-19, 3-22
ENDMOD block, 3-28
Entry conditions, device handler,

Foreground job area, 2-3, 2-4
Foreground spooler example, D-1
Foreground terminal handler, B-1
Format, CT file header, 3-16

5-9 .
. Formatted binary block, 3-18
$ENT§EléHandler Entry Point table), Formatted binary format, 3-30,

3-31
Function codes, 5-19
negative, 5-20
positive, 5-19

Entry point,

index, E-151

table format (library), 3-29
SEOJ (BATCH)

command, 7-13

statement, 7-6

: _ Global,
Error checking (BATCH), 7-12 additive displaced relocation,
Errors, bad tape, 3-13 3-26

in special device handlers, 5-20
Events, scheduler, 6-4
Example,
BATCH, 7-11
program linked to produce REL
file, 3-35
Extra words, 3-5

additive relocation, 3-26
displaced relocation, 3-26
references, 3-21
relocation, 3-25
symbol directory (object
module), 3-20
symbols, 3-21
GOTO command (BATCH), 7-12
GSD
block, 3-19
item, 3-20
structure, 3-20

F/B (definition), 1-3

F/B monitor,
description, 6-1
flowcharts, E-1

F/G (definition), 1-3

File formats, RT-11, 3-1
formatted binary (.LDA), 3-30
object (.OBJ), 3-16
relocatable (.REL), 3-32 _
save image (.SAV), 3-31 gﬂﬁjhgaﬁr, 53

File, :
_ Handler Size table, $HSIZE, 2-14
header, cassette, 3-15 Handlers, 2-14

length, 3-4 .
; _ interrupt, 6-1
names and extensions, 3-4 for special devices, 5-19
user-written, 5-23

Handler Entry Point table,
SENTRY, 2-14
Handler,
installation, 5-11

Index-2



Hardware mode, 3-15
Header block, 3-1
format, library, 3-29
words, device handler, 5-8
High limit pointer, 2-5

SHSIZE (Handler Size table), 2-14

HSIZE macro, 2-17

IF conditional branch (BATCH),
7-12

Impure area, 2-3, 2-18, 2-19, 2-21

Initiating a BATCH job, 7-4
.INTEN request, 6-1
Internal relocation, 3-24
Internal displaced relocation,
3-25
Interrupt,
code restrictions, 5-10
handler, 5-9, 6-1
vector tables, 5-13
vectors, 2-23
I/0 queue elements, 5-1, 5-2
I/0 queuing system, 5-1
I/0 routines, E-97
I/0 termination, 6-5
I/0 transfers, 5-1
ISD (Internal Symbol Directory),
3-28

Job,
arbitration, error processing,
E-121
blocking, 6-3
boundaries (F/B), 2-4
ID area, 2-21
initiation (BATCH), 7-4
number, 3-4, 6-3
priority, 5-5, 6-3
scheduling, 6-3
status, 2-19
termination (BATCH), 7-6
Job Status Word, 1-3
$JOB command (BATCH), 7-11
JSW (definition), 1-3

KMON (definition), 1-2

KMON (Keyboard Monitor), 1-2
flowcharts, E-3
overlays, 4-3, E-17
subroutines, E-11

Label,
first end-of-file, 3-12
first file header, 3-12
volume header, 3-12

N Index-3

Labels,
BATCH, 7-12
magtape, 3-12
Language processor, 3-16
object modules, 3-19
Last queue element, 5-3
.LDA, formatted binary format,
3-30
<LF> (definition), 1-3
Library,
end trailer, 3-30
file format, 3-28
header, 3-28
object format, 3-28
Limit tables, 2-4
BLIMIT, 2-4
FLIMIT, 2-4
Linking BATCH, 7-2
Location counter,
commands, 3-23
definition, 3-27
modification, 3-27
Low memory bitmap (LOWMAP), 2-21
LP/LS1l device handler, A-28

Macro,
DEVICE, 2-16
HSIZE, 2-17
SMACRO command (BATCH), 7-11
Magtape
bootable, 3-12.1
compatibility, 3-13
file structure, 3-11
Making SET TTY options permanent,
2~25
Mode, hardware, 3-15
software, 3-15
Memory, 1-1, 2-1, 2-2
allocation, 2-7, 2-8, 2-9
areas, 2-9
Mnemonic names, 1-3
Monitor,
description (F/B), 6-1
device tables, 2-13
fixed offsets, 2-9
memory allocation, 2-7
memory layout, 2-1
operation, 1-1
MONITR.SYS contents, 4-2
.MRKT request, 5-7

Name field, 3-24

Names,
and extensions, file, 3-4
handler, 5-12
mnemonic, 1-3

Negative relocation, 3-32

January 1976



Object format (.0OBJ), 3-16
Object module processing, 3-17
Offsets, fixed, 2-10-2-12
Operations,
data transfer, 5-19
directory, 5-19
special, 5-19
Output (BATCH), 7-4
Overlay programs, 3-32
Overlay segment relocation block,
3-44
Overlays, 3-42
Overview, 1l-1
SOWNER (Device Ownership table),
2-16
Ownership code, 2-16

Paper tape format, 3-30

Patch procedures, TTY options,
2-26

Permanent file, 3-4

Permanent name table ($PNAME), 2-13
SPNAME (Permanent Name table), 2-13

Positive relocation, 3-32
$PRINT command (BATCH), 7-11
Priority level of handlers, 6-1
Program sections, 3-21
Programmed requests, 5-20

to special devices, 5-20

Vi, C-1
Public device, 2-16

Queue element for a special
handler, 5-20
Queue elements,
completion, 5-5
timer, 5-7
Queue header, handler, 5-3
Queue manager, 5-5
flowcharts, E-131
Queue structures, 5-5
Queued 1/0, 5-1

.RAD50 conversions, 5-12
RC11/RS64,

bootstrap, A-9

device handler, A-2
REL file,

without overlays, 3-33

with overlays, 3-42, 3-43
Relocatable format (.REL), 3-32
Relocation, 3-32

codes, 3-24, 3-25, 3-26

global, 3-25, 3-32

global additive, 3-26, 3-33

global additive displaced, 3-26,

3-33
global displaced, 3-26, 3-33

Relocation, {cont.)
information, 3-34
internal, 3-24, 3-32
internal displaced, 3-25, 3-33

Resident device handlers

(flowcharts), E-147

Resident monitor, 1-2

RLD,
block, 3-22
commands, 3-23
format, 3-24

RMON (definition), 1-2

RMON (Resident Monitor) flowcharts,

for F/B Monitor, E-101
for S/J Monitor, E-63
Root relocation, 3-44
RT-11 file formats, see file
formats, RT-11

Sample handler listings, A-1
Save image format (.SAV), 3-31
Scheduling, job, 6-3
Segments of directories, 3-8
Sentinel file, 3-15
SET command, 5-21
SET command options, 5-22
conventions for adding, 5-22
Set program. limits, 3-27
S/J (definitiomn), 1-3
S/J Monitor,
flowcharts, E-1
restrictions, 2-22
Software mode, 3-15
Special,
devices, 5-19
operations, 5-19
Square brackets, [ and ], 1-3
Stack, 6-2
information, 6-2
location, 2-3
pointer, 6-2
$STAT (Device Status table), 2-13
Status,
buffer, 2-23
register, 2-23
word, 2-13, 3-3
Symbolic names, 1-3
.SYNCH element, 5-7
.SYNCH request, 5-6, 6-3, 6-4
SYSLOW,
examples (background), 2-6
pointer, 2-4
System,
bootstrap, 5-15
communication locations, 3-34
components, 4-1
configuration word, 2-11
date word, 3-5
size, 4-5, 4-6

Index-4



System device handler,
requirements, 5-14
writing a, 5-14

System device structure, 4-1

Tables, monitor device, 2-13

TC1ll device handler, A-47

Temporary files, BATCH compiler,
7-22

Tentative file, 3-3

Terminating a BATCH job, 7-6

Terminology, 1-2

Timer gqueue element, 5-7

Trailer, library file, 3-30

Transfer address GSD item, 3-21

TTCNFG option bits, 2-27

TTY options, 2-25

.TWAIT request, 5-7

TXT block format, 3-22

SUNAM1, $UNAM2 (User Name tables),
2-15
Underlining, 1-3
User Name tables, SUNAM1, SUNAM2,
2-15
User service routines, 1-2
User-written handlers, 5-23
Using auxiliary terminals as
console terminal, 2-23
USR (User Service Routines),
contention, 6-5
definition, 1-2
flowcharts, E-27
ownership, 6-5
permanently resident, 2-7
queuing mechanism, 6-5_
swapping, 2-2, 2-6

Variables, BATCH, 7-13
Vector protection, 2-21, 2-22
Version 1 EMT summary, C-1
Volume-header label, 3-12

Writing a system device handler,
5-14

Index~-5



RT-11 SOFTWARE
SUPPORT MANUAL
DEC-11-ORPGA-B-D, DN1

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be repcrted on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

°

=

1=

B

<

|

12

-2

IU

5 Is there sufficient documentation on associated system programs
: required for use of the software described in this manual? If not,
8 what material is missing and where should it be placed?

O

[

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)

Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or
Country




Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltlall

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754



	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12.0
	3-12.1
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-001
	E-002
	E-003
	E-004
	E-005
	E-006
	E-007
	E-008
	E-009
	E-010
	E-011
	E-012
	E-013
	E-014
	E-015
	E-016
	E-017
	E-018
	E-019
	E-020
	E-021
	E-022
	E-023
	E-024
	E-025
	E-026
	E-027
	E-028
	E-029
	E-030
	E-031
	E-032
	E-033
	E-034
	E-035
	E-036
	E-037
	E-038
	E-039
	E-040
	E-041
	E-042
	E-043
	E-044
	E-045
	E-046
	E-047
	E-048
	E-049
	E-050
	E-051
	E-052
	E-053
	E-054
	E-055
	E-056
	E-057
	E-058
	E-059
	E-060
	E-061
	E-062
	E-063
	E-064
	E-065
	E-066
	E-067
	E-068
	E-069
	E-070
	E-071
	E-072
	E-073
	E-074
	E-075
	E-076
	E-077
	E-078
	E-079
	E-080
	E-081
	E-082
	E-083
	E-084
	E-085
	E-086
	E-087
	E-088
	E-089
	E-090
	E-091
	E-092
	E-093
	E-094
	E-095
	E-096
	E-097
	E-098
	E-099
	E-100
	E-101
	E-102
	E-103
	E-104
	E-105
	E-106
	E-107
	E-108
	E-109
	E-110
	E-111
	E-112
	E-113
	E-114
	E-115
	E-116
	E-117
	E-118
	E-119
	E-120
	E-121
	E-122
	E-123
	E-124
	E-125
	E-126
	E-127
	E-128
	E-129
	E-130
	E-131
	E-132
	E-133
	E-134
	E-135
	E-136
	E-137
	E-138
	E-139
	E-140
	E-141
	E-142
	E-143
	E-144
	E-145
	E-146
	E-147
	E-148
	E-149
	E-150
	E-151
	E-152
	E-153
	E-154
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	replyA
	replyB

