March 1980

This document is an introductory manual for the RT-11 operating system. Its
purpose is to acquaint new users with the RT-11 commands that perform
common system operations. This manual presents the background material
necessary to understand the system operations. It also contains a series of
command examples and demonstration exercises that complement the text.

introduction to

RT-11

Order No. AA-5281B-TC

SUPERSESSION/UPDATE INFORMATION: This manual supersedes
Order No. DEC-11-ORITA-A-D, DN1.

OPERATING SYSTEM AND VERSION: RT-11 V4.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, March 1980

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no

responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by

DIGITAL or its affiliated companies.

Copyright © 1977, 1978, 1980 by Digital Equipment Corporation

YT oY AR AR ETINTINCY o

The postage-prepaid READER’S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL

DEC

PDP

DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX

DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC

LAB-8
DECSYSTEM-20
RTS-8

VMS

IAS

TRAX

MASSBUS
OMNIBUS
08/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-11
TMS-1i
ITPS-10

SBI

PDT

10/8015

CONTENTS

Page
PREFACE ix
CHAPTER 1 INTRODUCING THE RT-11
COMPUTER SYSTEM 1-1
SYSTEM HARDWARE. 1-1
The Computer v o v v v v v 1-1
The Terminal 1-3
The Storage Medium 1-5
Optional Devices 1-7
SYSTEM SOFTWARE 1-9
The RT-11 Operating System. 1-10
Language Processors, 1-12
Application Packages.o .. 1-12
SYSTEM DOCUMENTATION 1-13
Hardware Manuals 1-13
Software Manuals 1-13
Source Listings.o 1-14
CHAPTER 2 STARTING THE RT-11 COMPUTER
SYSTEM e e e e e e e e e 2-1
COMPUTER MEMORY 2-1
HARDWARE CONFIGURATION 2-1
Terminal.23
Computero e 2-3
System Volume 2-3
Storage Volume 2-4
Optional Devices and Supported Languages 2-4
BOOTSTRAP PROCEDURE 2-4
CHAPTER 3 INTERACTING WITH THE RT-11
COMPUTER SYSTEM 3-1
USING THE CONSOLE TERMINAL TO
EXCHANGE INFORMATION 3-1
USING MASS STORAGE VOLUMES TO STORE
INFORMATION o e e e 3-4
File Storage e 3-8
File Protection 3-8
CHAPTER 4 USING THE MONITOR COMMAND
LANGUAGE. 4-1
ENTERING COMMAND INFORMATION 4-1
General Command Format 4-2
Control Commands. 4-3
Recreating the Examples 4-3

CORRECTING TYPING MISTAKES L. . 44

iii

INITIAL MONITOR COMMAND OPERATIONS 4-5

Using VT11 Display Hardware 4-5
Entering the Date and Time-of-Day. 4-8
Assigning Logical Names to Devices. 4-9
Listing Volume Directories 4-12
Initializing the Storage Volume 4-15
YCHAPTER 5 CREATING AND EDITING TEXT FILES. 5-1
THE RT-11 EDITOR. 5-1
CREATINGATEXTFILE 5-2
EDITINGATEXTFILE 5-4
USING UPPER- AND LOWER-CASE CHARACTERS 5-12
USING A GRAPHICS DISPLAY TERMINAL
DURING EDITING. 5-15
Normal Use of the Graphics Display. 5-15
Immediate Mode 5-16
CREATING THE DEMONSTRATION PROGRAMS. 5-19
CHAPTER 6 COMPARING TEXTFILES. 6-1
PERFORMING A COMPARISON. 6-1
"CHAPTER 7 PERFORMING FILE MAINTENANCE
OPERATIONS 7-1
FILE DIRECTORY OPERATIONS 7-1
MULTIPLE FILE OPERATIONS 7-2
FILE COPYING OPERATIONS. 7-3
FILE RENAMING OPERATIONS. 7-5
FILE DELETION OPERATIONS 7-6
FILE LISTING OPERATIONS 7-7
CHAPTER 8 CHOOSING A PROGRAMMING
LANGUAGE. 8-1
HIGH-LEVEL VS MACHINE-LEVEL LANGUAGES 8-1
RT-11 PROGRAMMING LANGUAGES83
CHOOSING A LANGUAGE FOR THE
DEMONSTRATION 8-4
/ CHAPTER 9 RUNNING A FORTRAN IV PROGRAM 9-1
THE FORTRAN IV PROGRAMMING LANGUAGE 9-1
THE FORTRAN IV LANGUAGE PROCESSOR 9-2
USING LIBRARY MODULES. 9-2
COMPILING THE FORTRAN IVPROGRAM 9-3
LINKING OBJECT MODULES TOGETHER 9-9
RUNNING THE FORTRAN IV PROGRAM 9-10
COMBINING OPERATIONS 9-11
ALTERNATE FUNCTIONS 9-13
FILE MAINTENANCE 9-14
CHAPTER 10 RUNNING A BASIC-11 PROGRAM 10-1
THE BASIC-11 PROGRAMMING LANGUAGE 10-1

THE BASIC LANGUAGE PROCESSOR.10-1

iv

USING THE BASIC INTERPRETER 10-2
Immediate Mode 10-3
Creating and Editing a BASIC Program 104
RUNNING A BASICPROGRAM 10-8
FILE MAINTENANCE1012
CHAPTER 11 RUNNING A MACRO-11 ASSEMBLY
LANGUAGE PROGRAM 11-1
THE MACRO-11 ASSEMBLY LANGUAGE. 11-1
THE MACRO-11 LANGUAGE PROCESSOR 11-2
The Program Counter. 11-3
The Symbol Table 11-4
Machine Language Code 11-4
ASSEMBLING THE MACRO-11 PROGRAM 11-6
LINKING OBJECT MODULES TOGETHER 11-14
RUNNING THE MACRO-11 PROGRAM 11-15
COMBINING OPERATIONS 11-16
FILE MAINTENANCE e 11-18
CHAPTER 12 LINKING OBJECT PROGRAMS. 12-1
RESOLVING SYMBOLIC AND LIBRARY
REFERENCES. 12-2
PROGRAM RELOCATION AND ADDRESS
ASSIGNMENT. 12-3
Absolute and Relocatable Program Sections 12-4
The Overlay Feature 12-6
PRODUCING A LOAD MODULE AND
ALOADMAP 12-7
CHAPTER 13 CONSTRUCTING LIBRARY FILES 13-1
KINDS OF LIBRARY FILES 13-1
Macro Libraries 13-1
Object Libraries 13-1
CREATING AND MAINTAINING A LIBRARY FILE 13-2
Creating Object Library Input Files 13-2
Building the Object Library. 13-6
Updating the Object Library 13-7
FILE MAINTENANCE 13-8
CHAPTER 14 DEBUGGING A USER PROGRAM. 14-1
AVOIDING PROGRAMMING ERRORS 14-1
WHEN PROGRAMMING ERRORS OCCUR. 14-2
USING THE ON-LINE DEBUGGING TECHNIQUE. 144
FILE MAINTENANCE 14-13
CHAPTER 15 USING THE FOREGROUND/BACKGROUND
MONITOR 15-1
THE FOREGROUND/BACKGROUND
ENVIRONMENT. 15-1
Running the Foreground/Background
Programs 15-2

Creating the Background Job 15-3

Editing the Background Job 15-3

Running the Background Job 15-3
CHANGING MONITORS. 15-4
USING THE FB MONITOR 15-5
Communication in a Two-Job Environment 15-5

Creating the Foreground Job 15-6
Executing the Foreground and Background Jobs 15-7

FILE MAINTENANCE 15-11
CHAPTER 16 USING INDIRECT FILES 16-1
CREATING AN INDIRECT FILE. 16-1
Entering Monitor Commands 16-1

Using the Editor to Create an Indirect File 16-2
EXECUTING AN INDIRECTFILE. 16-4
FILE MAINTENANCE 16-8
CHAPTER 17 ADVICETONEWUSERS 17-1
USING THEHELP FILE. 17-2

APPENDIX A MANUAL BOOTSTRAPPING OPERATIONS. . . A-1

APPENDIX B SELECTED SYSTEM TOPICS B-1
GLOSSARY i i e e e e e e e e e e Glossary-1
INDEX.¢¢:¢'eesesasse:..Index-1
FIGURES
FIGURE 1 Flowchart for Selective Reading iv
1-1 RT-11 Computer System12
1-2 PDP-11 Computers.13
1-3 Terminal Devices. 1-4
1-4 Random-Access Storage Media and Their Devices . . 1-6
1-5 Peripheral Devices 1-8
1-6 RT-11 System Software. 1-10
1-7 RT-11 Operating System 1-11
2-1 Bootstrap/Computer Relationship 2-2
3-1 LA36/VT52 Terminals 3-2
3-2 Keyboard Layouts 3-3
3-3 Mass Storage Volumes 3-6
4-1 VTil Display Hardware 4-6
5-1 Editing with RT-11. 5-2
5-2 Text Window Format. 5-15
9-1 Evolution of a FORTRAN Program 9-1
9-2 Function of a FORTRAN Compiier 9-2
9-3 Dimensions of FUN(X,Y). 9-7
9-4 The Link Operation99
9-5 The Result of GRAPH.SAV. 9-12

vi

TABLE

I e e el e T
l\?l\DHD—*bI—*P—‘Hb—lO
DO = Gy OV i W2 DD = =

>~:|(>
l

DN =

NN

o
DO R GO DD

O‘CIHVIk

8-1

Functions of the BASIC Language Processor 10-2

PDP-11 Programming Card.11-1
Evolution of a MACRO-11 Program 11-2
Function of a MACRO-11 Assembler 11-2
PDP-11 Computer Memory 11-3
PDP-11Word, 11-5
The Link Operation 11-14
Link Functions. 12-1
Object Module Relocation. 12-4
Pushbutton Console A-2
Switch Register Consoles A-3
Representative System Volumes. 2-4
Keyboard Characters 3-5
Keyboard Symbols 4-4
Physical Device Names 4-10
Special Logical Device Names. 4-10
File Types 4-13
Command Arguments. 5-5
Immediate Mode Commands 5-16
Language Comparisons 8-2
Decimal/Octal/Binary Conversion 11-6
Binary Conversion A-4

vii

The RT-11 (Real Time-11) computer system is a single-user .-

computer/operating system that serves the programming needs of
both the beginning and the advanced programmer. It supports a
number of programming languages, including industry-standard
FORTRAN and BASIC; APL; and — for more advanced users —
the PDP-11 assembly language, MACRO-11. In addition, it pro-
vides a comprehensive set of operating commands that pro-
grammers at all levels use to control system operations.

The purpose of this introductory manual is to acquaint you with a
number of RT-11 operating commands that are used to perform
common system operations. The manual does this by first pre-
senting the background material that you need to understand a
particular system operation; then it shows you how to apply the
system operation in a series of operating commands and exercises
that you re-create; finally, it provides a list of reference materials
that contain more information about the operation. This ap-
proach makes it possible for you to learn quickly the major fea-
tures of the system; at the same time, it eliminates many of the
learning problems encountered by new users.

This manual describes system usage fundamentals. It is not the
intent of this manual to teach you to program the PDP-11 com-
puter. You may already be proficient in one or more of the avail-
able programming languages. Likewise, no attempt has been
made in this manual to cover all the possible applications for
which the RT-11 computer system is suited. You will discover
many applications yourself as you continue to use the system.

This manual is designed for three categories of RT-11 users:

e Those having little or no previous “hands-on” computer
experience (including those whose experience has been
limited to batch environments)

¢ Those who are experienced users of a computer system
other than RT-11

¢ Those who have used previous versions of the RT-11
computer system but wish a quick introduction to the
newest features of the current system (Version 4 and
later releases)

The manual contains 17 chapters and 2 appendixes. The descrip-

tions that follow and the chart at the end of this section will help
you determine your own reading path.

ix

PREFACE

MANUAL INTENT

MANUAL DESIGN

Preface

Chapter 1, Introducing the RT-11 Computer System, discusses
general system concepts. It introduces the roles of hardware and
software in a computer system and describes the specific hard-
ware and software components of the RT-11 computer system.
Chapter 1 is intended for users in the first two categories.

Chapter 2, Starting the RT-11 Computer System, shows all users
how to start the system.

Chapter 3, Interacting with the RT-11 Computer System, demon-
strates how you use the console terminal to control system opera-
tions. Again, this chapter is most helpful to users in the first two
categories.

Chapters 4 through 7 describe system operations that are useful to
all categories of users. Each chapter begins with a textual expla-
nation of a particular system operation and expands into com-
puter demonstrations showing the operation in use. Topics cov-
ered are: Using the Monitor Command Language; Creating and
Editing Text Files; Comparing Text Files; and Performing File
Maintenance Operations. Experienced RT-11 users may prefer to
skip the textual explanations and review only the computer exer-

Chapter 8, Choosing a Programming Language, helps you deter-
mine which language to use. Choose BASIC-11, FORTRAN 1V,
MACRO-11, or a combination of these three languages to con-
tinue the exercises in the manual (BASIC-11 and FORTRAN IV

capabilities are optional).

If your choice is FORTRAN 1V, read Chapter 9, Running a FOR-
TRAN IV Program.

If you wish to use BASIC-11, read Chapter 10, Running a
BASIC-11 Program.

If you choose MACRO-11, read Chapter 11, Running an As-
sembly Language Program.

MACRO and FORTRAN users continue to Chapter 12, Linking
Object Programs, and Chapter 13, Constructing Library Files.

All users should read Chapter 14, Debugging a User Program,
which provides some suggestions for finding and fixing errors in
user programs.

Those users who plan to exercise the foreground/background ca-
pability of the RT-11 system shouid read Chapter 15, Using the
Foreground/Background Monitor.

Finally, all users should continue to Chapter 16, Using Indirect
Files, which describes the procedure for performing operations
unattended, and Chapter 17, which gives some advice to new
users, including the use of the RT-11 Help file.

Two appendixes are provided for reference. Appendix A discusses
system bootstrapping procedures that are not generally needed,
but may be required by some system users. Appendix B provides
some additional information on selected system usage.

A glossary of technical terms appears at the end of the manual for
reference purposes.

The following flowchart will help you plan your reading path
through the manual. Read the chart from top to bottom; answer
the questions and follow the direction of the arrows to see which
chapters you should read.

NOTE

The demonstration portions of this manual are for use
with Version 4 and later releases of RT-11. The exer-
cises are quite lengthy, and you may prefer not to
complete them in one sitting. You may pause at the
end of any individual chapter. It is important that you
stop only at the end of a chapter since you will other-
wise not complete an exercise and thus may introduce
errors that will affect later exercises. Instructions for
pausing and beginning again are given in Appendix B.

X1

Preface

Preface

WHAT IS
YOUR COMPUTER
EXPERIENCE

Past Versions of RT-11

No Experience, or
other systems
READ
CHAPTER 2
READ CHAPTERS
1,2AND3
d
READ
CHAPTERS 4
THROUGH 8
WHICH
PROGRAMMING MACRO
LANGUAGE WILL
YOU USE
FORTRAN
READ READ READ
CHAPTER 10 CHAPTER 9 CHAPTER 11
READ READ
CHAPTERS 12 CHAPTERS 12
AND 13 AND 13
READ READ READ
CHAPTER 14 CHAPTER 14 CHAPTER 14
READ
CHAPTER 15
DO
YOU WANT
TO USE ANOTHER READ CHAPTERS
PROGRAMMING 16, 177 AND 18
LANGUAGE
DONE

Figure 1 Flowchart for Selective Reading

CHAPTER 1

INTRODUCING THE RT-11 COMPUTER SYSTEM

A computer system is a collection of components working together
to process data. The purpose of a computer system is to make it
as easy as possible for you to use a computer to solve problems. To
accomplish this goal, hardware elements are combined with soft-
ware elements to form a functioning unit. The hardware elements
are the mechanical devices in the system, the machinery and the
electronics that perform physical functions. The software ele-
ments are the programs that have been written for the system;
these perform logical and mathematical operations and provide a
means for you to control the system. Documentation includes the
manuals and listings that tell you how to use the hardware and
software. Collectively, these components provide a complete com-
puter system that allows both layman and expert alike to use a
computer.!

SYSTEM HARDWARE
SYSTEM SOFTWARE
+SYSTEM DOCUMENTATION

COMPUTER SYSTEM

The RT-11 computer system requires three basic hardware items:
the computer itself, which performs all data processing; a ter-
minal device, used like a typewriter for two-way communication
between the user and the system; and a storage medium, for
storing programs and data. Figure 1-1 illustrates the hardware
components of a typical RT-11 computer system.

The computer does the real work of the system; it performs all
instruction decoding and data processing. The RT-11 computer
system is constructed around a DIGITAL PDP-11 computer, sev-
eral of which are shown in Figure 1-2. Any model of PDP-11 can
be used in an RT-11 system.

Notice in Figure 1-2 that the front panel, or operator’s console, of
each PDP-11 computer is slightly different. The switches, but-
tons, and lights that are on the operator’s console can be used for
various kinds of computer operations and applications. In the
RT-11 computer system they are used only to start the system.
Once the system has been started, your interaction with the com-
puter system occurs through the terminal.

! This chapter attempts to build a working vocabulary that is both meaningful to
the new user and consistent with standard DIGITAL terminology. Some defini-
tions may appear inconsistent with those you have previously learned or used.

1-1

SYSTEM
HARDWARE

The Computer

Introducing the RT-11 Computer System

Figure 1-1 RT-11 Computer System

1-2

Introducing the RT-11 Computer System

The terminal allows two-way communication between you (the
user) and the computer system. You enter information — opera-
ting commands, for example — from the terminal keyboard,
which is operated much like a typewriter keyboard. The com-
puter, in turn, prints information and messages on the terminal’s
printer or screen. Figure 1-3 shows many of the terminal devices
that can be used in an RT-11 computer system.

1-3

The Terminal

Introducing the RT-11 Computer System

LA36

C!H"!H!Hl!“!!’HH!‘HU”!H!l!'Ml!HHHHﬂ!HUH’

VT52

Figure 1-3 Terminal Devices

Generally, an RT-11 computer system has only one terminal
through which all system/user interaction takes place. This is
called the console terminal. If the system has more than one
termmal one of them is still designated the console terminal;
/ provide auxiliary message-printing capabilities.

&
o
@
~t
w
w,
g

T
Pk

§<I

1-4

Introducing the RT-11 Computer System

VT100

LA120

Figure 1-3 Terminal Devices (Cont.)

The third important hardware device in an RT-11 computer The Storage
system is the storage medium (usually a disk). It stores programs Medium
— those that make up the computer system software and those

1-5

Introducing the RT-11 Computer System

that you create. It serves as a distribution medium; system soft-
ware is often packaged and distributed on a disk by the system
supplier. Finally, it stores other data, information that is eventu-
ally needed for a computer operation (called input), the results of
a computer operation (called output), or textual information such
as a report. Figure 1-4 shows the random-access storage media
(within their specific drive units) that can be used in an RT-11
computer system. (Random access means that access time for
data is independent of the location of data. Contrast this concept
with sequential access.)

DECtape

Introducing the RT-11 Computer System

RX01 Diskette

Figure 1-4 Random-Access Storage Media
and Their Devices (Cont.)

These three devices — the computer, the terminal, and the
storage medium — are the required hardware components of an
RT-11 computer system. With the exception of the computer, all
hardware devices are called peripheral devices. Peripheral devices
supplement the computer by providing external resources for op-
erations that the computer cannot handle alone. In addition to
the terminal and storage medium (which are required peripheral
devices), other peripheral devices can be used in an RT-11 com-
puter system.

Optional peripheral devices are added to a computer system ac-
cording to the specific needs of the system users. For example,
computer systems that are used primarily for program develop-

1-7

Optional Devices

Introducing the RT-11 Computer System

ment may have extra storage devices and a high-speed printing
device. Computer systems used in a laboratory environment may
have graphics display hardware, an oscilloscope device, and an
analog-to-digital converter. Computer systems that provide (or
use) information in conjunction with another kind of computer
system usually have a magtape device, because magtape is an
industry-standard storage device.

Peripheral devices are categorized as input/output (I/O) devices
since the functions they perform provide information (input) to
the computer, accept information (output) from the computer, or
do both. Some common input devices are card readers, paper tape
readers, and programmable clocks. Output devices include line
printers, paper tape punches, and plotters. Input/output devices
include terminals and storage devices because they are capable of
performing both input and output operations. Figure 1-5 shows
several of the optional peripheral devices that are often added to
an RT-11 computer system.

Magtape Card Reader

Paper Tape Reader/Punch

e PR » JRL | IR o YL
rigure 1-o reripnerail pevices

1-8

Introducing the RT-11 Computer System

Line Printer

VT-11 Display

Figure 1-5 Peripheral Devices (Cont.)

The hardware configuration of your own RT-11 computer system
includes the computer, the terminal, the storage medium, and
any other peripheral devices you choose to add.

System software is an organized set of supplied programs that SYSTEM
effectively transform the system hardware components into us- SOFTWARE
able tools. These programs include operations, functions, and

routines that make it easier for you to use the hardware to solve

problems and produce results. For example, some system pro-

grams store and retrieve data among the various peripheral de-

1-9

Introducing the RT-11 Computer System

The RT-11
Operating System

vices. Others perform difficult or lengthy mathematical calcula-
tions. Some programs allow you to create, edit, and process appli-
cation programs of your own. Still others handle entire
applications for you; these programs are strictly business-related
or laboratory-related.

As illustrated in Figure 1-6, system software always includes an
operating system, which is the “intelligence” of the computer
system. Usually the system software includes one or several lan-
guage processors; it sometimes also includes specific applications.

OPERATING
SYSTEM

APPLICATION
PROGRAMS

LANGUAGE
PROCESSORS

Figure 1-6 RT-11 System Software

An operating system is a collection of programs that provides an
environment in which you can create and run programs of your
own. The operating system organizes all the hardware and soft-
ware resources of the computer system into a working unit and
gives you control.

The RT-11 operating system comprises a monitor/executive pro-
gram for system control and supervision; several device handlers
(programs), one for each of the supported hardware devices; a
variety of utility programs for program/data creation and manip-
ulation; and finally, the interfaces that are necessary to support
several programming language processors. The operating system
is illustrated in Fieure 1 7

a3 i
alvvu 111l 1igulvc 1 i

1-10

Introducing the RT-11 Computer System

MONITOR

DEVICE
HANDLERS \ EDITOR
o
& FILE
)
&
&

MAINTENANCE

R

PROCESSORS
COMPARE

LIBRARIAN

Figure 1-7 RT-11 Operating System

The monitor (executive) program is the interface between the
system hardware, the system software, and you. Part of the mon-
itor function is to accept, process, and execute your instructions
for controlling the system. A comprehensive set of monitor opera-
ting commands allows you to direct, from the console terminal
keyboard, those system operations that you want to occur.

Device handlers are routines that provide the interface to the
various hardware devices that are part of the computer system. A
handler exists for every peripheral device that the system sup-

r\nv‘fn
PuULLS,

Utility programs cover a wide range of resources; such programs
allow you to create and edit text, maintain other programs, and
locate user-programming errors. Some specific utility programs in
the RT-11 operating system are the following:

e An editor, which allows you to create and modify tex-
tual material; this material could be the statements
that make up a computer program, a memo, or any text
vou wish to create

¢ File maintenance utility programs, which allow you to
manipulate and maintain your programs and data — to
transfer them between devices, to update them, and to
delete them when you are done with them

¢ A debugging program, which helps you uncover and cor-
rect errors in your programs

1-11

Introducing the RT-11 Computer System

Language
Processors

Application
Packages

¢ A librarian, which makes it easy for you to store and
retrieve often-used programming routines

* A linking program, which converts object modules into
a format suitable for loading and execution

e A source comparison program, which is used to compare
two ASCII files and to output any differences to a speci-
fied output device

¢ A dump program, which outputs to the console or line
printer all or any part of a file in octal words, octal
bytes, ASCII characters, or Radix-50 characters

The RT-11 operating system also provides support for several
programming languages and their respective language processors.

A language processor is a translating program that you use to
process a source program you have created. A language processor
exists for every programming language supported by the system,
whether it is a high-level language or a machine-level language.!

High-level languages, such as BASIC-11 and FORTRAN 1V, are
relatively easy languages to learn and use. Since a single language
statement often performs a whole series of intricate computer
operations, high-level languages let you direct your attention to
solving the problem at hand. They do not require that you under-
stand how the computer interprets the problem. High-level lan-
guages supported by the RT-11 operating system, in addition to
FORTRAN and BASIC, include APL and DIBOL, DIGITAL’s
interactive commercial language.

sers who

Machine-level or asecemblv lanouiages are available for u
ges are available for

AVAQUILIZITTITVIL Vi GOSTauiviy &Kiigha QY ~ ivid

prefer to work at the instruction level of the computer. At this
level, you have control over such factors as program size and
speed of execution. Machine-level languages do require that you
be familiar with the computer and the hardware devices of the
system. RT-11 provides the MACRO-11 assembly language proc-
essor for those who would rather work at this more intricate level.

The RT-11 operating system supports several applications pack-
ages. These include a laboratory applications package for the
standard functions found in most laboratory environments. A sci-
entific subroutine package (for FORTRAN users) provides a large
selection of mathematical and statistical routines commonly re-
quired in scientific programming. And a graphics support

1Language selection is discussed in Chapter 8 of this manual.

1-12

Introducing the RT-11 Computer System

package for BASIC and FORTRAN users provides display fea-
tures such as multiple intensity and blinking vectors (lines), al-
phanumerics, and points. Because of the specialized nature of
these applications packages, they are not described further in this
manual.

The third and final component of a computer system is its docu-
mentation. This includes manuals that tell how you use the soft-
ware and hardware of the computer system, plus any source list-

1v\n-n Af antiial nraoe malra 11 +tha nrnanrating o

ngs oi actual programs © that make up wne Upcl‘auius B:)’DbCLLA

Hardware manuals describe the devices in the computer system.
RT-11 hardware documentation includes a Processor Handbook
that describes the PDP-11 computer you are using, and a User’s
Guide or Maintenance Manual for each peripheral device in your
computer system. These manuals tell you how to operate the
devices and give you special programming information that you
may need if you intend to write device drivers or special system
software that involve the devices.

Software manuals' describe the operating system and the lan-
guage processors. RT-11 software documentation falls into three
major categories: introductory or once-only manuals (intended to
be used once and then stored away); computer manuals (intended
to be used at the computer); and desk manuals (intended to be
used at your desk for reference purposes).

Once-only manuals include this manual and others that are
needed only when your system is initially installed. You may have
little or no occasion to use these manuals once your computer
system is in operation and you are familiar with its use.

Computer manuals are those manuals that tell you how to use the
computer system. They describe in detail command usage and
syntax, list summaries of system operations, and give the mean-
ings of system messages. The RT-11 System User’s Guide is an
example of a computer manual.

Desk manuals are those manuals that you continually use for
reference as you write your own application programs. These
manuals include the general language reference manuals and the
advanced programming manuals that contain programming infor-
mation specific to the RT-11 computer system. The RT-11 Soft-
ware Support Manual is an example of a desk manual.

'All RT-11-related software manuals are listed in the RT-11 Documentation

Directory. Many of these manuals are provided with your system; others can be
ordered from the DIGITAL Software Distribution Center.

1-13

SYSTEM
DOCUMENTATION

Hardware Manuals

Software Manuals

Introducing the RT-11 Computer System

Source Listings Source listings are actual listings of the assembly language code
that makes up the RT-11 operating system. These listings are
very detailed and are generally needed only if you intend to
modify the system software. They can be ordered on micro-fiche
film from the DIGITAL Software Distribution Center.

This completes a general introduction to the RT-11 computer
system. Subsequent chapters of this manual describe how you use
the various system components mentioned here to perform a se-
ries of related computer operations. You begin in Chapter 2 by
learning how to start the RT-11 computer system.

REFERENCES Eckhouse, Richard H. and Morris, L. Robert, Minicomputer Systems: Organiza-
tion, Programming, and Applications (PDP-11), Englewood Cliffs, N.J.: Pren-
tice-Hall, 1979.

A guide to programming fundamentals, PDP-11 organization and struc-
ture, and programming techniques. See Chapters 1, 2, and 3.

Katzan, Harry Jr., Information Technology, The Human Use of Computers.
New York: Mason & Lipscomb, Petrocelli Books, 1974.

An introductory textbook covering basic computing concepts, program-
ming languages, and topics in computers and society. See Chapters 1, 2, 4,
5, and 10.

PDP-11 Computer Family, Products and Services. Maynard, Mass.: Digital
Equipment Corporation, 1977.
An overview of the available PDP-11 family products and services; in-
cludes capsule descriptions of the various PDP-11 computers, peripherals,

and operating systems, and describes the supportive services provided by
DIGITAL.

PDP-11 Peripherals Handbook. Maynard, Mass.: Digital Equipment Corpora-
tion, 1978.

A technical summary of the available PDP-11 peripheral devices; includes
descriptions, specifications, programming, and interfacing information for
PDP-11 peripheral devices.

PDP-11 Processor Handbook. Maynard, Mass.: Digital Equipment Corporation,
1978.

A hardware manual for the owners and users of the PDP-11 family of
computers and for those who will be using the PDP-11 assembly language
instruction set.

PDP-11 Software Handbook. Maynard, Mass.: Digital Equipment Corporation,
1978.

A general overview and introduction to available PDP-11 software, opera-
ting systems, and language processors.

RT-11 Documentation Directory (AA-5285E-TC). Maynard, Mass.: Digital
Bquipment Corporation, 1980.

A listing and brief summary of current RT-11-related software documen-
tation.

Spencer, Donald D., Fundamentals of Digital Computers. Indianapolis, Kansas
City, New York: Howard W. Sams, Bobbs-Merrill, 1969.

A discussion of the history and evolution of computers, computer applica-
i

[/ P [R, P
L1Ulls, allu 1unualiei

Chapter 20.

1-14

CHAPTER 2

STARTING THE RT-11 COMPUTER SYSTEM

Before you can use the RT-11 computer system to perform any
operations, you must start it. Starting the system involves

turning on the computer and the various hardware devices and

laadine tha ann
1\1auul= LIIT anyu?

memory.

Within every PDP-11 computer is a physical, designated storage
area called memory. Computer memory is where system informa-
tion and data is temporarily loaded and stored for use during the
various system operations.

Each time you use the computer system, there may already be
information in computer memory, left by the person who used the
system last. For example, there may be the results or data of
another user’s program; there may be the results of a particular
system operation; there may even be an entirely different opera-
ting system in memory. For your purposes, computer memory
must contain the RT-11 operating system, and specifically the
RT-11 monitor program. Thus, your first operation as a system
user is to transfer the monitor program from the disk device,
where it was stored during system installation, to computer
memory, where you can use it. The process of transferring the
RT-11 monitor to memory is called bootstrapping the system; it
is the only system operation that requires you to use the oper-

le on the front panel of the computer (see Figure 2-1).

atar’e nomnan
aAuvvl O LVULIDU

Starting the RT-11 computer system requires that you know how
to operate your system’s hardware devices. Since you may not
have had the opportunity to use any of the devices yet, ask an
experienced user to help you the first time. Follow the instruc-
tions in the section in this chapter entitled “Bootstrap Proce-
dure.” If necessary, refer to the various hardware manuals pro-
vided with your system and to any special instructions left by the
DIGITAL representative who installed your system.

First read through the following material and fill in the appro-
priate information where requested. You should be able to deter-
mine all responses by checking the RT-11 Installation and
System Generation Guide.

COMPUTER
MEMORY

HARDWARE
CONFIGURATION

Starting the RT-11 Computer System

RT-11
RESIDENT
MONITOR

i i SYSTEM BOOTSTRAP | —
[| DISK
e

You

] L

Figure 2-1 Bootstrap/Computer Relationship

NOTE

If your system device is one of the small devices (disk-
ette or DECtape Il), you need to build four volumes
and, when running some of the demonstration pro-
grams, limit the volumes to the components needed to
execute the programs. Also, you need to preserve the
distribution volume you received from DIGITAL by
making backup copies. The RT-11 Installation and
System Generation Guide contains the information
you need to copy and preserve the distribution volume
and create the volumes for use with this manual.

must have the following materials to start the system and to

perform the exercises in this manual:

* The disk device containing the RT-11 operating system
(called the system volume); a system volume may have

been created specifically for your use with this manual

* The volume containing the FORTRAN and/or BASIC
language processors if these languages are not stored on

the system volume (available only to FORTRAN and

BASIC users)

2-2

Starting the RT-11 Computer System

e A volume for program storage (for example, magtape or
another disk); this volume should contain no important
information since all information on it will be erased
during a later computer exercise

e A copy of the RT-11 Installation and System Genera-
tion Guide

NOTE

Hardware configuration information, along with in-
structions for starting (bootstrapping) your RT-11
system, should have been provided by the DIGITAL
representative who initiallly installed your system. This
information should appear in the RT-11 Installation
and System Generation Guide and should be ade-
guate for you to answer all the questions asked here. If
you have trouble, see Appendix B, Suggestions for
Bootsirapping the System. Do not continue to any
other chapter in this manual until you understand the
following configuration information and can bootstrap
the system yourself.

1. What kind of terminal device are you using (for ex- Terminal
ample, LA36 DECwriter II, VT52 video terminal, etc.)?

[N}
-l
Q
[4°]
n
<
=4
=]
o
Q
=)

iter operator’s console have pushbut- Computer

3. How much memory does your computer have?

4. What kind of system volume are you using (for example, System Volume
RKO06 disk, RX01 diskette, etc.)?

5. What is the two-letter code for this volume (typical
codes are given in Table 2-1; respond with the code for
your own volume)?

Starting the RT-11 Computer System

Storage Volume

Optional Devices
and Supported
Languages

BOOTSTRAP
PROCEDURE

Table 2-1 Representative System Volumes

Volume Code
RXO01 diskette DX
RX02 diskette DY
RKO5 disk RK*
RK06/07 DM
RP02/03 disk DP
RLO1 disk DL
RF11 disk RF
RJS03/4 disk DS
TC11 DECtape DT
TU58 DECtape 11 DD

*Use DK to bootstrap from an RK05 disk. See steps 7 and 10 in the Bootstrap

Procedures section of this chapter.

6. What volume are you using for program storage (for
example, TM11 magtape, RK05 disk)?

7. In which device unit will you use this volume (choose
any available device unit — for example, 0, 1, etc.)?

8. What peripheral devices are part of your system (for
example, line printer, magtape, VT'11 display hardware;
list all devices other than the terminal and the com-

puter)?

9. What programming languages does your system support
(MACRO-11 or BASIC-11, for example)?

Once you have determined your hardware configuration, you are
ready to bootstrap the system. The purpose of the bootstrap pro-
cedure is to load and start the RT-11 monitor in computer
memory, making the RT-11 computer system available for you to
use.

1. Turn the terminal to an on-line condition.

24

Starting the RT-11 Computer System

2. Make sure the computer power is on and that the com-
puter is not already in use. Stop the computer, following
one of two procedures:

ow Cie. Covwy ey
e If your operator’s console has switches, set the
switches to HALT, then ENABLE.

e If your operator’s console has pushbuttons, locate
o the button labeled CNTRL; hold it down and push
the button labeled HLT/SS; then release both.

'd{»:c.‘
3. Place the system volume in its corresponding device

unit 0. Make sure that the system volume is write-pro-
tected (for all except RX0Fdiskette, which is always
write-enabled).

4. Place the storage volume in the device unit_noted in
question 7 in the Hardware Configuration section. Make
sure that this volume is write-enabled.

5. Check the operator’s console on your computer (refer to
question 2 in the Hardware Configuration section). If
your console has pushbuttons, continue. Otherwise, go
to step 8. o

6. Locate the pushbutton labeled CNTRL, hold it down
and push the button labeled BOOT. Check the terminal
printer or screen. If there is no response, read the sec-
tion in Appendix A entitled Using a Pushbutton Con-
sole to Bootstrap; otherwise, continue to step 7.

should show several

Type on the terminal keyboard the two-letter code that
represents your system volume (from question 5 in the
Hardware Configuration section) followed by a carriage
return (the RETURN key), represented throughout the
text by the characters @D!. Be sure to use the SHIFT
key so that you type upper-case characters. For ex-
ample, for RX01 diskette, type:

DX GED

Continue to step 11.

'The RKO05 disk is an exception. Hardware bootstraps use DK, not RK, for
RKO05.

Starting the RT-11 Computer System

8. Check your switch console. If it has a three-way dial
labeled DC OFF, DC ON, and STAND BY, go to step 9.
 If it has three individual switches labeled DC ON/OFF,
* ENABLE/HALT, and LTC ON/OFF, go to step 10. If it
" has a row of switches across the entire console, read the
" section in Appendix A entitled Using a Switch Register
Console to Bootstrap.

AUX
9. Set the three-way dial to BP€- ON. Then locate the
resr#tBOOT switch (to the left of the dial) and raise it. Go to
step 11.

10. Put all three switches in the up position; then move the
w? DC ON/OFF switch down and up and check the ter-

Y8 AR My

“minal response.

. If it is:
$

type on the terminal keyboard the two-letter code
that represents your system volume (from question
5 in the Hardware Configuration section) followed
by a carriage return (the RETURN key), repre-
sented throughout the text by the symbol GED. Be
sure to use the SHIFT key so that you type upper-
case characters. For example, for RX01 diskette,
type:

de DY

DX

Continue to step 11.

* Any other response indicates that you must type
- the bootstrap on the terminal keyboard. Read the
section in Appendix A entitled Typing the Boot-
strap on the Terminal Keyboard.

11. If your system has been correctly bootstrapped, a mes-
sage prints on the console terminal. Check this message;
it should read:

RT-11SJ VO04.xx (the xx’s have developmental signif-
icance only and can be ignored)

If this version number (with the exception of the xx’s)

does not appear, read the section in Appendix B enti-
tled Suggestions for Bootstrapping the System.

2-6

Starting the RT-11 Computer System

The proper response indicates that the monitor compo-
nent of the RT-11 operating system is active. Set the
system volume to a write-enabled condition (for all ex-
cept RXO01 diskette, which is always write-enabled).

You should now direct your attention to the console terminal,
since system interaction continues on this device.

DECscope Users’ Manual' (EK-VT5X-OP-001). Maynard, Mass.: Digital REFERENCES
Equipment Corporation, 1975.

A manual for the owners and operators of the DECscope (VT50) family of
video terminals and for those who will be programming computers to
interact with these devices.

VT100 User Guide (EK-VT100-UG-002). Maynard, Mass.: Digital Equipment
Corporation, 1978.

A manual for the owners and operators of the VT'100 video terminal and
for those who will be programming computers to interact with these de-
vices.

PDP-11 Processor Handbook, Maynard, Mass.: Digital Equipment Corporation,
1978.

A hardware manual for the owners and users of the PDP-11 family of
computers and for those who will be using the PDP-11 assembly language
instruction set.

RX8/RX11 Floppy Disk System Maintenance Manual* (EK-
ORX01-MM-PRE2). Maynard, Mass.: Digital Equipment Corporation, 1975.

A hardware manual for the owners and operators of RX01 diskettes and for
those who will be programming computers to interact with this device.

RT-11 Installation and System Generation Guide (AA-H376A-TC) and RT-11
System Release Notes (AA-5286C-TC). Maynard, Mass.: Digital Equipment
Corporation, 1980.

Two RT-11-specific software manuals that contain instructions for in-
stalling, customizing, and starting the RT-11 computer system.

1 . .
Used as an example; consult hardware user or maintenance manuals specific to
your system.

CHAPTER 3

INTERACTING WITH THE RT-11 COMPUTER SYSTEM

Interaction with the RT-11 computer system involves an ex-
change of information between you (the user) and the software
operating system. The exchange may be active, with you dic-

PREE. P, I Y o SRR R, TR S [R, S, B DR
tatine command information from the tarminal kevhoard and the
vaviiig COLLINQIING LV InQuaUiL 1205 ViaT VWOLIAG: AT VUKL L Qi viil

system responding immediately; or it may involve the storing of
information on mass storage volumes for later use.

During the bootstrap procedure you activated the RT-11 com-
puter system by loading and starting the monitor program in
computer memory. One of the functions of the monitor program is
to provide you with the capability to use the console terminal.
Since the console terminal can perform both input and output
operations, it is used to interface between the system and the
user. With it, you can:

e Type the commands that control system operation
¢ Receive messages and responses from the system

All console terminals have a keyboard — used to enter informa-
tion — and a paper output device or video screen — used to echo
characters typed at the keyboard and to print system messages
and responses. Figure 3-1 shows two commonly used terminals,
the LA36 and the ¥F52: + /7

These two terminals differ in their output mechanism. While the
LA36 terminal has only a paper printer, the VT52 has a video
screen. The screen and the paper printer serve the same purpose
— they show user input and system responses; however, paper
output can be saved for later use while screen output is tempo-
rary. The keyboards of both terminals are the same and are shown
in Figure 3-2. Also shown in this figure is an LA30 (VT05) key-
board so that you can note some of the differences found in the
keyboards of older terminals.

3-1

USING THE
CONSOLE
TERMINAL TO
EXCHANGE
INFORMATION

Interacting with the RT-11 Computer System

VT52

T orrzzen 91 T ANC/NTTED Maseeeaizenla
LIFUIT v—1 LifAJUY/ V 1Jda 1 TI1ILIIALD

Interacting with the RT-11 Computer System

HHHHHHHHH@@@U
3 ouogugonogus . NI

SERRDZLIDELINTD)NE R
SDLR0000098R0 22

{

—4
i
%
i
I

VT05/LA30 Keyboard

EEEE AR EEE
M@@@@@WU@@@@WU@
;g;@@@@@l@li@l
@%@@HHE@@%:A@;

VT52/LA36 Keyboard

Figure 3-2 Keyboard Layouts

Using Figure 3-2 as a guide, study your own terminal keyhoard.
First, notice that the keys for the alphabetic characters are posi-
tioned in the same way as on most standard typewriters. The
SHIFT key allows you to select between numeric and special
characters and between upper- and lower-case characters.! The
position of the numeric and special characters varies somewhat
among the different terminals so you may need to hunt for a
particular key until you become familiar with your own terminal.
T T T
Locate the DELETE key (LA36/VT52, VT100 terminals) or the
RUBOUT key (LA30/VTO05 terminals). These keys perform the
same function: they are used to correct a typing mistake. Pressing
the key once cancels the last character typed. Pressing it twice
cancels the last two characters, and so on, back to the beginning
of the line.

lWith the exception of system messages and one other exception explained in
Chapter 5, the RT-11 computer system uses upper-case characters exclusively.

3-3

Interacting with the RT-11 Computer System

USING

MASS STORAGE
VOLUMES

TO STORE
INFORMATION

Locate the TAB key. Tab stops on a computer terminal are posi-
tioned every eight spaces across the line, beginning at column 1.
Pressing the TAB key moves the character pointer (that is, the
position on the line where the next character will be typed) to the
beginning of the next tab stop.

The key marked RETURN (LA36/VT52, VT100 terminals) or CR
(LA30/VTO05 terminals) performs a carriage return; it both returns
the character pointer to the beginning of the line and advances it
to the next line. This key is used to terminate the line currently
being typed and to terminate certain RT-11 system commands.

Locate the ESC (SEL) key and LINE FEED key (LA36/VT52,
/T100 terminals) and ALT and LF keys (LA 30/VT05 terminals).
These are special command terminators that are described later
in Chapters 5 and 14.

An important key is the CTRL key. The CTRL key is always used
in conjunction with another character key to perform one of sev-
eral specific system operations. CTRL commands are explained
in detail when you begin to use them later in the manual.

Table 3-1 reviews the console terminal keyboard characters. Keys
not specifically mentioned are not used by the RT-11 computer
system and can be ignored.

You will have ample opportunity to become familiar with your
terminal keyboard as you perform the demonstration in this
manual.

Mass storage volumes provide an area (apart from computer
memory) to keep information for later use. The information may
be user application programs, data needed by a program, the
results of a program run, textual information, batch-type pro-
grams, and so on. As an example, the RT-11 operating system is
stored on a mass storage volume called the system volume. When
information is needed, as it was during bootstrapping, you can
transfer the information from the storage volume into computer
memory, where it can be used.

Before you can access the information stored on any storage
volume, however, you must first insert the volume (the medium)
into its corresponding device unit (drive), which is the hardware
device connected to the computer. Once a volume has been in-
serted into a device unit, the unit’s symbol also identifies the
volume. There may be more than one device unit for any given
volume, in which case each individual device unit is numbered 0,
1, 2, and so on. As you learned in the bootstrap procedure, the
system volume is inserted in device unit 0 and remains in this
device unit as long as you are using the system. Other storage

3-4

Interacting with the RT-11 Computer System

volumes can be inserted in any available (corresponding) device
units. Figure 3-3 illustrates several mass storage volumes.

Table 3-1 Keyboard Characters

Key Function

ALT See ESC

ALTMODE

BACK SPACE| Ignored during normal system use

BREAK Ignored during normal system use

CR See RETURN

CTRL Control; part of several two-key command
combinations that perform specific system
functions

DELETE Erase; cancels the last character typed

ESC Command terminator; terminates an

editing command string; transmits the
command to the computer and performs a
carriage return

LF Command terminator; terminates certain
LINE FEED system commands; transmits the com-
mand to the computer and performs a car-
riage return

NEW LINE See LF
REPEAT Ignored dpuring normal system use

RETURN Line terminator, command terminator;
terminates the current line; terminates
certain system commands; transmits the
! ' command to the computer and performs a
carriage return

RUBOUT See DELETE
SHIFT Selects the uppermost of two characters
appearing on a key
TAB Moves the character pointer ahead to the
. beginning of the next tab stop |
any other | Transmits the alphanumeric or special |
key : character to the computer

3-5

Interacting with the RT-11 Computer System

Diskette

R e

RKO06

Figure 3-3 Mass Storage Volumes

3-6

Interacting with the RT-11 Computer System

DECtape 11

RKO05

Magtape

Figure 3-3 Mass Storage Volumes (Cont.)

Interacting with the RT-11 Computer System

File Storage

File Protection

Mass storage volumes are capable of holding large amounts of
information. However, most volumes are physically small enough
so that you can transport them from the system, to your desk
perhaps. or to another computer system. In addition to all disks
(shown earlier in Figure 1-4), magtapes and cassettes are also
mass storage volumes.

You store information on a mass storage volume in the form of
files. Each file is simply a logical collection of data. Files may be
parts of programs or entire programs, program input data, or text
such as a letter or report. Whatever its content, each file is treated
as a unit and occupies a fixed physical area of the volume.

Every file on a mass storage volume has a unique name that is
composed of a file name and file type. The file name and file type
serve to identify the file and distinguish it from other files on the
volume. You can instruct the system to print on your terminal the
names of all files on any given volume. The resulting list is called
the volume directory listing. By referring to the volume directory,
you can find the name, size, and creation date of each file residing
on that volume and erase old files that you no longer need. When-
ever you perform an operation that affects the contents of the
volume, a new volume directory reflects the change.

Occasionally, after many files are added to a storage volume, the
volume runs out of room for new information. The storage volume
may also become damaged, lost, stolen, or worn through use. For
these reasons it is a good idea to have several extra storage vol-
umes on hand and to protect your more important files against
accidental erasure or loss.

One way to protect a file is to make a copy of it on a second
storage volume. The copy is called a backup file and insures you
against the loss or damage of your original file (or its respective

ataracn wvnlitmae)
DLULAgL vULULGIU S,

In addition, some storage volumes provide a mechanism that pro-
tects files against accidental erasure. This mechanism is generally
a switch on the volume itself, or on the device unit, that you can
manually set to a write-protect or write-enable condition (as you
did during bootstrapping). When the volume is write-protected,
information can be copied only from the volume to computer
memory or to another volume that is write-enabled. A volume
that is write-enabled, on the other hand, also allows information
to be copied from memory back to the volume.

The RT-11 operating system itself provides a protection feature.
This optional feature requires that you confirm certain system

3-8

Interacting with the RT-11 Computer System

commands that might otherwise erase important information.
The system also issues prompting messages so that you provide
the proper file information when it is needed by a command.

Chapter 4 and succeeding chapters require you to use the ter-
minal to enter command information and start performing file
copy and other system operations. Before you continue, make sure
that there is a backup copy of your system volume. If you cannot
locate one, read Appendix B, Backing Up the System Volume,
before going on.

DECscope Users’ Manual' (EK-VT5X-OP-001) Maynard, Mass.: Digital REFERENCES
Equipment Corporation, 1975.

A manual for the owners and operators of VT-50 and VT-52 video termi-
nals and for those who will be programming the computer to interact with
these devices.

VT100 User Guide (EK-VT100-UG-002). Maynard, Mass.: Digital Equipment
Corporation, 1978.

A manual for the owners and operators of the VT'100 video terminal and
for those who will be programming computers to interact with these de-
vices.

LAS36/LA35 DECuwriter II User’s Manual* (EK-LA3635-0P-001) Maynard,
Mass.: Digital Equipment Corporation, 1975.

A hardware manual for the owners and operators of the LA36/LA35
DECwriter II and for those who will be programming the computer to
interact with these devices.

RT-11 System Message Manual (AA-5284C-TC) Maynard, Mass.: Digital
Equipment Corporation, 1980.

An explanation of system messages that may occur during normal system
use; includes required user actions.

1 . .
Used as an example; consult hardware user or maintenance manuals specific to
your system.

3-9

CHAPTER 4

USING THE MONITOR COMMAND LANGUAGE

During the bootstrap operation, the RT-11 monitor was copied
into computer memory and started. The RT-11 monitor is actu-

1 Ison , . 1 . . i1 i 1 1 .
alilvy mMmanyu AiITTarant AaNMNANONTS TZNATYIZIING TOOoOAT hoar
ally liialiy Wiiiviviiv \,ULLJHULI%AL Ul ¥YYul n}lls vugo uueL '\:O supplfy’ DaSlC

system functions. For example, part of the monitor is called the
resident monitor (RMON) which provides console terminal ser-
vice and centrally required program code to provide a working
environment for both system and user programs. The resident
monitor is so named because it always remains in computer
memory, regardless of other system operations that may be occur-
ring. Other parts of the monitor are brought into memory from
the system volume as needed. These include the user service rou-
tine (USR), which provides support for the RT-11 file system,
and the keyboard monitor (KMON), which controls terminal key-
board interaction. From your standpoint, the keyboard monitor is
the most visible part of the system software. Among other ser-
vices, it supplies the monitor command language that you use to
control system operations.

The monitor command language is a set of English-like command
words that you type on the terminal keyboard to initiate and
control system operations. There are two general formats that you
can use to type a command; one is a long format and the other a
short format. The long format causes the system to print
prompting messages. These messages ask you to supply specific
information, such as file names and device names. The long
format is helpful until you become familiar with the commands.
You will then probably prefer to use the short format. This format
allows you to enter all required information on a single command
line; prompts are issued only if you neglect to supply necessary
information. Both formats are demonstrated throughout this
manual.

You terminate all monitor commands by typing a carriage return.
That is, after you type the required command information, you
press the carriage return key (represented in this manual by GED).
This instructs the monitor to initiate the command and to per-
form the operation.

The monitor prints a period at the left margin of the terminal
printer or screen whenever it is waiting for you to type a com-
mand. The period is your cue that the system is in monitor com-
mand mode and ready to accept a monitor command. Check the

ENTERING
COMMAND
INFORMATION

*
-

.

Using the Monitor Command Language

output on your terminal printer or screen. You should see at the

left margin:

RT-11GJ WO4 o xx

+

RT-11SJ identifies the RT-11 monitor called the single-job (Sd)
monitor. Following this is the version (and update) number of the
system in use, in this case, Version 4. The period on the next line
indicates that the system is in monitor command mode and is
waiting for you to type a monitor command.

General Command Whenever you issue a monitor command, you must supply certain
Format information to guide command processing. This information in-
cludes the following (square brackets indicate optional qualifiers

and characters):

COMMAND//option]

INPUT[/option]

OUTPUT{/option]!

NDTIT

First you indicate, by command, which
system operation you want initiated.
Command options are available to allow
you to alter the normal (default) opera-
tion.

You next indicate, by device and file
name, input information that is to be
used during the operation. The system
volume serves as the default input de-
vice. You must explicitly indicate other
volumes that you want used for input,
and you must usually indicate the file
names and file types of the input files.
Input file options are available to allow
you to alter agsumed (default) input on-

umed (defaul D
erations.

Finally you indicate, by device and file
name, output information that is to be
created as a result of the operation. The
system volume serves as the default
output device. You must explicitly indi-
cate other volumes that you want used
for output, and you must usually indi-
cate the file names and file types of the
output files to be created. Output file
options are available to allow you to
alter assumed (default) output opera-
tions.

1OUTPUTVoption] is not always used; sometimes output must be specified as
T

COMMAND//option]

ANE

IOTTPDITT. flaanan
/UU LI UL ILESPEC.

Using the Monitor Command Language

As mentioned earlier, there are two ways you can type this com-
al iAna

mand information on the terminal ke bOaI‘u, illustrations of both
formats follow:

Long Command Format (system prompts for specific informa-
tion)

.COMMAND//option]
INPUT PROMPT? INPUT{/option]
OUTPUT PROMPT? OUTPUT [/option]

Short Command Format (no prompts)

.COMMAND//option] INPUT[/option] OUTPUT[/option]

Notice that you use a slash (/) character to separate an option
from the portion of the command that it qualifies, and a carriage
return to terminate each individual command line. When you
have supplied all the necessary information, the carriage return
signals the monitor to execute the command. You may use which-
ever format you wish. Both command formats are demonstrated
throughout the manual.

In addition to monitor commands, there are several special func-
tion commands, called control commands, that you type by first
pressing the CTRL key on the terminal keyboard, and then (while
holding it down) typing the appropriate letter key of the com-
mand. These commands require no terminator; the system per-
forms the function as soon as you type the command.

Control commands are special function commands used to inter-

+
rupt program execution, to inhibit terminal output, and to per-

form other similar special system operations. They are described
in the manual as you need to use them.

During the course of this chapter, and throughout the remainder
of the manual, you will use a number of monitor commands to
perform some common system operations. For example, you will
list the directories of device volumes, copy files between devices,
create files, and execute system and user programs. You perform
these operations by re-creating on the terminal keyboard the ex-
amples already provided for you.

You should first read the entire explanation of a command to be
aware of its format, the operation it performs, and the options
that are available. Then type the command on the terminal key-
board exactly as you see it used. Characters that you type appear
in the demonstrations in red print. Characters that are system
responses are shown in black print.

Control
Commands

Recreating
the Examples

Using the Monitor Command Language

CORRECTING
TYPING
MISTAKES

CTRL/U

Table 4-1 lists symbols that you will see used throughout the
demonstrations. These symbols represent various keys on the ter-
minal keyboard. When you see one of these symbols in a com-
mand line, type the appropriate key on the keyboard.

Table 4-1 Keyboard Symbols

Symbol Type

RET carriage return key
line feed key

space bar (once for each time the symbol is shown).
Assume that you should type a single space unless you
are otherwise instructed; the space symbol is used
only if there is doubt about the number of spaces to

type.
TAB key (once for each time the symbol is shown)

DELETE (RUBOUT) key (once for each time the
symbol is shown)

ESCAPE (ALTMODE) key (once for each time the
symbol is shown)

TRUx) |CTRL key (hold down CTRL key while typing the
letter character [x])

™ (=) =
[%2] m x>

All commands that you give the system are typed on the terminal
keyboard. If you make a mistake while typing a command, there
are two easy ways that you can correct it.

One way to correct a typing error is to use the DELETE key on
ihe keyboard. Pressing the DELETE key once cancels the char-
acter just typed; pressing it a second time cancels the next to last
character typed, and so on, from right to left, until the beginning
of the line is reached. Then additional DELETEs are ignored.

The second way to correct a typing error is to use a special control
command, CTRL/U. Typing this command once is equivalent to
typing as many DELETEs as are needed to cancel every character
in the current line.

Al natinon the ctanm’c

+ P oy o
y il LIUULILVL LLliL O}D\/\/AJL AN S

nyva
i

Type on the keyboard the
LETEs, followed by the lc
sponse:

letters DABE, followed by two DE-
+

an
A

4-4

Using the Monitor Command Language

The monitor echoes each deleted character and encloses them
within backslashes. As far as the monitor is concerned, the only
characters you have typed are DATE.

+DABENEBATE

Thus, your current line is DATE. Continue by typing a CTRL/U.
Remember to first press the CTRL key and then type the U key
while holding the CTRL key down; no carriage return is neces-
sary.

CIRLY,

Notice that CTRL/U echoes on the terminal printer or screen as
"U.
+DABENEBATE U

All characters on the line are effectively canceled and the char-
can enter another command. You are still in monitor command
mode even though no prompting period appears at the left
margin.

Once the carriage return or line feed key is pressed, the previous
line cannot be corrected via DELETE or CTRL/U.

These two methods are commonly used to correct typing errors
made at the keyboard. You can choose whichever method seems
most convenient.

The kinds of command operations that you usually perform im- INITIAL MONITOR
mediately after the monitor is bootstrapped are those that set up COMMAND
initial conditions such as the current date and time of day, and OPERATIONS

those that initialize and prepare the system for future operations
such as file transfers. If your system has VT11 display hardware
and you decide that you want to use it, you should also enable
(turn on) the graphics display screen.

Display hardware on an RT-11 computer system consists of a Using VT11
cathode ray tube that allows programs to use graphics displays. If Display Hardware
your system has display hardware!, which is illustrated in Figure

4-1, you can use the graphics screen in place of the terminal

printer or screen if you wish.

'Video terminal screens are not considered graphics display hardware.

Using the Monitor Command Language

GT

NOTE

Check question 5 in the Hardware Configuration sec-
tion of Chapter 2 to determine if your system has dis-
play hardware. If you do not have display hardware, go
on to the next section in this chapter, Entering the Date
and Time-of-Day.

The monitor command that enables the graphics screen is the GT
command. The GT command is used to change the condition of
the graphics display. In this case, you will use it to activate the
graphics display hardware so that the VT11 display screen re-
places the console terminal printer or screen as the terminal
output device.

Figure 4-1 VTI11 Display Hardware

Type the following on your terminal keyboard (if necessary, refer
to Table 4-1 to review the special symbols):

Long and Short Command Format

. GT ON

If your system does not have display hardware, the monitor prints

a message! on the terminal printer or screen informing you that

the command is illegal for your system configuration:
TKMON-F-I1ledal command

'The meanings of all system messages are listed in the RT-11 System Message
Manual.

Using the Monitor Command Language

Otherwise, the command is accepted. You should notice that all
character-echoing and system responses are now directed to the
graphics screen instead of to the terminal printer or screen. After
the command has been accepted, a period appears on the
graphics screen, indicating that the system is waiting for another
command. The character pointer is visible as a blinking rectan-
gular cursor situated after the period (In the edit mode, the cursor
is L-shaped.)

Like output on the terminal screen, output that appears on the
graphics screen is temporary. Once the screen is filled, lines are
rolled off the top and are lost to view. However, if your terminal
has a printer, a special control command allows you to control
console terminal output so that it appears on both the graphics
screen and the terminal printer simultaneously. In this manner,
you can direct selected portions of terminal output — directory
listings, for example — to be both displayed and printed at the
same time. The advantage of this is that although the display

copy is eventually lost, you have a printed copy for later use.

The control command that provides this function is CTRL/E,
which is initiated by holding the CTRL key down while typing the
E key. No carriage return is necessary. When you type this com-
mand, no characters echo on the graphics screen, but you should
notice that all subsequent characters (both input and output)
appear on both the graphics screen and the terminal printer.

Thus, if your terminal has a printer and you wish to use the
printer in addition to your VT11 graphics screen, type once: CTRL/E

(Remember, this command does not echo.)

,WRONG COMMAND CRLU

To disable the printer at any time so that character echoing oc-
curs only on the graphics screen, type another CTRL/E com-
mand:

Finally, to return terminal output control to the terminal, disa-
bling the graphics screen, use the GT OFF command; this
changes the terminal device handler back to its original output
setting:

Long and Short Command Format
.GT OFF @&

Decide now whether to use the graphics screen for the remaining
demonstrations. If so, use the GT ON command to enable the

Using the Monitor Command Language

Entering the Date
and Time-of-Day

DATE

TIME

graphics screen, and remember that the CTRL/E command is
available when you wish to produce simultaneous output.

Entering the current date and time-of-day are record-keepng
system operations; they help you later identify when other system
operations were performed.

For example, by entering the current date you instruct the system
to assign this date to all files you create. The date will also appear
in volume directories and listings produced by the various lan-
guage processors and utility programs. If your system has a clock,
by specifying the current time-of-day you instruct the system to
keep track of time based on the time you set. The current time is
printed on listings when they are produced, and may also be used
to control certain program operations.

Enter the date by typing the monitor DATE command as follows
(there is only one format):
Long and Short Command Format

+DATE B8-JAN-BO
This sets the date to January 8, 1980. Since this date is not
current, reenter the correct date using the same command format:

+DATE dd-mmm-vy @D
Typing the new date overrides the previous date.

The monitor TIME command is used to set the time-of-day, spec-
ified in 24-hour notation. The system keeps track of time in hours,
minutes, and seconds, based on the initial time that you enter in
the command. Enter the time as follows (there is only one
format):

Long and Shori Command Formai

+TIME 15:01:00 @D

If your system does not have a clock, the monitor prints a message
on the terminal informing you that the command is not valid for

.~ your system configuration:

TRMON-W-No clack

Otherwise, the time is set to 3:01 p.m. If your system has a clock,
reenter the correct time, using the same command format:

+TIME hh:i:mm:ss ([@ED

[
o+
o
@

Typing the new time override

id

4-8

Using the Monitor Command Language

To check the time and date at any time while you are using the
system, simply type either the DATE command or the TIME
command, followed by a carriage return only:

Long and Short Command Format

+DATE
8-JAN-80

The system responds by printing the date or the time, based on
the information you previously entered.

Setting the time is temporary. If you want it to be kept current,
you must reenter it whenever you bootstrap the system. If your
system has a clock and you do not set the time, the TIME com-
mand will return the time elapsed since the last hardware boot.

Each hardware device in the RT-11 system is identified by a two-
character code name. These names, listed in Table 4-2, are de-
fined in the system software and are recognized and used by the
operating system. These are the device names that you generally
use in command input and output lines. However, you may want
to change any of these device names temporarily, for a variety of
reasons. The following paragraphs describe both using the phys-
ical device names shown in Table 4-2 and assigning logical (tem-
porary) device names to devices.

Two additional logical device names are used. These special
names are described in Table 4-3.

You use device names in the input and output portions of a com-
mand line to identify where input information can be found and
where output information will be sent. If a file is involved, you
also include its file name and file type in the following format:

devicename:filename.filetype

The device name is followed by a colon and is always separated
from any file name and file type by a colon. The device name is
generally one of the codes listed in Tables 4-2 and 4-3. When you
use a device name in any command, you must also include the
device unit number (represented by the letter n in Table 4-2)
unless the number is 0. The system assumes unit 0 of the device if
no unit number is given. Thus, diskette unit 0 is DX: or DXO0:;
diskette unit 1 is DX1:; RK: disk unit 2 is RK2:; and so on. Note
that, according to Table 4-3, you can use the device codes SY: or
DK: for your system volume in addition to its standard device

Assigning Logical
Names to Devices

Using the Monitor Command Language

name. However, since the system volume is initially the default
storage volume for all operations, you do not need to use a device
name for your system volume.

Table 4-2 Physical Device Names

Code Device
CR: Card Reader
CTn: Cassette
DDn: DECtape I
DLn: RIL01 Disk
DMn: RKO06/07 Disk
DPn: RP02/03 Disk
DSn: RJS03/4 Disk
DTn: DECtape
DXn: RXO01 Diskette
DYn: RX02 Diskette
LP: Line Printer
MMn: TJU16 Magtape
MSn: TS11 Magtape
MTn: TM11 Magtape
PC: Paper Tape Punch/Reader
RF: RF11 Disk
RKn: RKO05/RK11 Disk
TT: Console Terminal Keyboard/Printer

Table 4-3 Special Logical Device Names

Code Device

SY: |The volume from which the monitor was bootstrapped;
that is, the system volume.

DK: |The default storage volume (initially the same as SY:;
that is, the system volume).

The names listed in Tables 4-2 and 4-3 are the device names
defined within the system software. However, you can change any
of these name assignments temporarily, either by reassigning ex-
isting names to different devices, or by assigning new logical
names of your own choosing to devices.

There are many reasons why you might want to change a device

name temporarily and assign it a logical name. You may, for
example, have a program that is written for a specific device that

4-10

Using the Monitor Command Language

is not available on your system. If you assign its name to a device
that is available, the program then uses the new device instead.!

Since not all RT-11 users have access to the same kind of storage
volume, you are instructed to assign the logical name VOL: to
whatever volume you are using for storage. After you make this
assignment, subsequent command lines can be the same for ev-
eryone using this manual.

Similarly, the special logical device name DK:, presently assigned
to your system volume, could be assigned to any kind of storage
volume. Not only would DK: signify your storage volume, regard-
less of its physical device name, but you could also avoid typing
.DK: since it is the default storage volume for most commands
(only the R command requires that the file specified be on the
system volume SY:).

J

To assign a logical name to your storage volume, first determine
its physical device name. Check questions 6 and 7 in the Hard-
ware Configuration section of Chapter 2 to see which device and
which device unit you are using for your storage volume. Trans-
late this into the appropriate name and number using Table 4-2
as a guide.

Use the monitor ASSIGN command to change this physical name
to a logical name. Substitute for physical-device-name in the fol- ASSIGN
lowing command lines the physical name and device unit number
for your storage volume (for example, for RK05 disk unit 1, sub-
stitute RK1):

Long Command Format

.ASSIGN @D
Physical device name? physical-device-name
Lodical device mame? WOL: @D

Short Command Format
+ASBIGN pPhysical-device-name YOL: @D

Once the assignment is made, the system recognizes the logical
name VOL: as the device name for your storage volume. This is
the only logical assignment you need to make. Since you are not
changing the DK: assignment, the system volume remains the
default device for all I/O operations.

As you continue to use the system, you may well make many
device assignments and deassignments. To check the status of all SHOW

"This is called device independence.

Using the Monitor Command Language

Listing Volume
Directories

DIRECTORY

CTRL/O

assignments made during a computer session, you can use the
monitor SHOW command to print on your terminal a list of all
the logical assignments currently in effect. For example, use the
SHOW command now to check the status of the assignment just
made:

Long and Short Command Format

+ SHOW

Check the list printed on your terminal to make sure that the
code VOL: has been assigned to your storage volume. The letters
VOL: should follow the appropriate device name in the list, as in
the following response, in which VOL: represents disk unit 1:

TT
“YRE (Resident)
RKO = 8Y » DK
RK1 VoL

i

BA
MT
NL
LS
LP
DD
DM
DX

93 free slots

Logical device assignments are temporary. Thus, if you want a
particular device assignment to remain in effect, you must reas-
sign it each time the system is bootstrapped.

Both your system volume and your storage volume have directo-
ries, which are compiled lists of all the files stored on the volume.
You can print a volume directory on your terminal, using the
monitor DIRECTORY command.! For example, to list the direc-
tory of your system volume, type:

Long and Short Command Format
+DIRECTORY (The system volume is the default device.)

Since the directory of the system volume may be quite long, after
approximately 10 lines have printed on the terminal, type:

!Users of VTI11 display hardware may wish to use the CTRL/E command to
“"enable both the graphics screen and the terminal printer for the following
exercises.

4-12

Using the Monitor Command Language

This special control command echoes as “O and inhibits the re-
mainder of the listing output from printing on the terminal, al-
though the information on the total number of files and blocks is
still given. When control returns to monitor command mode, look
at the directory listing. At the top of the listing is today’s date, as
you entered it earlier in the DATE command. Following the date
is a list of the files on the volume. Notice the two-column format
of each line in the directory:

08-Jan—80

SWAF .8YS 25 19-Now-79 RT118.J.6Y8 67 19-Nov-79
RT1LFE.SYS 80 19-Nov-79 RT11EL.SYS 64 15-Nov=79
T L8YS 2 19-Nov-79 o LBYS 3 19-Nov-79
oF .5YS 3 19-Nov-79 nX JBYS 3 19-Nov-79
oY L5YS 4 19-Nov-79 RF L5YY 3 19-Now-79
RK LBYS 3 19-Nov-79 L L8Y8 4 19-Nov-79
oM .5YS 5 19-Nov-79 e LBYS 3 19-Nov-79
oo \5Y8 5 0

189 Filess 3785 Rlochks
@77 Free blocks

First the file name appears, followed by a dot and a file type that
is frequently used to identify the file’s format. For example, SYS
represents a system file; other RT-11 file types used to represent
different kinds of files are listed in Table 4-4. After the file type is
a number that indicates the size of the file. The size is given in
blocks, a term used to designate a standard amount of informa-
tion. A file that is 1 to 10 blocks long is fairly small, while a file

Table 4-4 File Types

File Type Meaning

.BAC BASIC compiled file
.BAK Editor backup file
.BAS BASIC source file

BAT BATCH source file
.COM Indirect command file
.CTL BATCH control file

.DAT BASIC or FORTRAN data file
.DBL DIBOL source file

.DIF SRCCOM output file

.DIR Directory listing file

.FOR FORTRAN source file

.LOG Batch log file

.LST Listing file

.MAC MACRO source file

.MAP Linker map file

.OBJ MACRO, FORTRAN, or DIBOL object output
file or library file

.REL Executable foreground program file

.SAV Executable background program file

.SML System MACRO library

.SYS System files and handlers

4-13

Using the Monitor Command Language

DIRECTORY
/BRIEF

CTRL/C CTRL/C

DIRECTORY
/PRINTER

over 100 blocks in length is quite large. The date on which the file
was created is shown at the right. This space is empty if a date
was not specified (with the DATE command) on the day the file
was created. At the end, you are told how many files are on the
volume, their total length, and the number of free blocks avail-
able for your use.

NOTE

Files furnished on the distribution medium have a pro-
tected status, which means they cannot be deleted.
This is indicated by the letter P after the file size when
you print a directory listing. You cannot perform any
operation on a protected file if the resuit is to delete it.
You can change the protected status of a file or give a
protected status to a file by using the RENAME key-
board monitor command with the /PROTECTION or
/NOPROTECTION option (see the RT-11 System
User’s Guide).

You can also obtain an abbreviated directory, which omits file
lengths and dates and lists only file names and file types in five-
column format. To do this, you use the DIRECTORY command
with its /BRIEF option. Type the following, and after several lines
have listed, interrupt the directory by typing two CTRL/C com-
mand characters. This double control command echoes two “Cs,
and requests the running program to abort immediately, regard-
less of what the program is doing (one CTRL/C aborts an exe-
cuting program waiting for input from the console terminal). Con-
trol returns to monitor command mode.

Long and Short Command Formats

+DIRECTORY/BRIEF @

QB- fan-80
SWAP 1 SYS RT1154.8%¥5 RT11FB.SYS RT11BL.SYS 1T +SYS
DT +SYS pe +SYS DX +5YS DY +SYS RF +8YS
RK +BYS DL +SYS oM +8Y¥8S 0s +SY5 o8] »SYS
RO (R

Volume directories can be printed on a line printer if one is avail-
able on your system. Check question 8 in the Hardware Configu-
ration section of Chapter 2 to determine if your system has a line
printer. Since listings print faster on a line printer than on the
console terminal, it is to your advantage to use the line printer for
large amounts of output. The /PRINTER option is used with the

 DIRECTORY command to cause a directory to be printed on the
~_line printer instead of on the terminal. Make sure your line
~ printer is turned on, and then type the DIRECTORY command

as shown:

Long and Short Command Format
+DIRECTORY/PRINTER @ED

4-14

Using the Monitor Command Language

The entire listing may be quite long. When the line printer is done
printing, retrieve the listing.

Initializing a storage volume completely clears its directory. A
new (unused) volume should always be initialized before it is first
used. In addition, any storage volume that contains files that are
no longer needed can be initialized to recover the storage space.
Note, however, that the effect of an initialize operation is to re-
move all file names from the directory. So before you initialize
any volume, be sure that there are no files on it that you might
want later.

Since you will use your storage volume to store several new files
(created as a result of the various exercises in this manual), clear
its directory using the monitor INITIALIZE command. This en-
sures that there is room on the volume for new files.

Long Command Format

+INITIALIZE @D

Device? U0OL: @ (VOL: is the assigned
logical device name for
your storage volume.)

RKl:/Initialize’ Are vou sure?Y @D

Short Command Format

+INITIALIZE YOL: @
RKl:/Initialized Are vou sure?Y @

The system prompt physical-device-name/Initialize; Are you
sure? is always printed to give you an opportunity to verify the
command. Typing a Y initiates the operation, while N aborts
(ignores) the operation and returns control to monitor command
mode. Check your command line, make sure you are initializing
your storage volume, and then type a Y. Again, list the directory
of the storage volume. It should be empty.

Long and Short Command Formats
+DIRECTORY VOL: @
8-Jan-B0O

O Files» O BlocKks
4762 Free block

The number of blocks available for use on the volume is printed

at the end of the directory and varies depending on the type of
device you use as your storage volume.

4-15

Initializing the
Storage Volume

INITIALIZE

Using the Monitor Command Language

SUMMARY:
INITIAL MONITOR
COMMANDS

The commands you have performed in this chapter have prepared
the system for major operations that will follow. In Chapter 5 you
begin by using the RT-11 editor to create text files that you will
store on your initialized storage volume.

ASSIGN physical-device-name logical-device-name
Assign a logical device name to a physical device name.

DATE
Print the current date, if previously set.

DATE dd-mmm-yy
Set the current date (day-month-year).

DIRECTORY dn:
List the volume directory on the terminal (dn: is the code for
the device name; the default storage volume (DK:) is assumed
if dn: is not specified).

DIRECTORY/BRIEF dn:
List a brief volume directory on the terminal, showing only file

names.

DIRECTORY/PRINTER dn:
List. the volume directory on the line printer.

DIRECTORY/PRINTER/BRIEF dn:
List a brief volume directory on the line printer.

INITIALIZE dn:
Clear the directory of the indicated volume (dn: is the code for
the device name and must be specified).

GT OFF
Disable the VT11 display hardware.

GT ON
Enable the VT11 display hardware so that the graphics screen
replaces the terminal printer/screen as the terminal output de-
vice.

SHOW
Print the status of all current logical device name assignments.

TIME

Print the current time, if previously set.

awr (+)
ay \(11IUUL.1H1Iuve.dciuliuy.

4-16

Using the Monitor Command Language

CTRL/C CTRL/C SUMMARY:
Interrupt the current operation or program and return control SPECIAL
to monitor command mode. CONTROL

COMMANDS

CTRL/E

Direct terminal output to both the graphics screen and the
terminal printer simultaneously. Type a second CTRL/E to

return output control to the graphics screen only. (Valid only
when VT11 display hardware is enabled.)

CTRL/O
Inhibit the remainder of output from printing on the terminal.

CTRL/U
Cancel every character in the current line.

DELETE
Cancel the last character typed on the current line.

LP11/LS11 Line Printer Manual (EK-LP11-TM-005). Maynard, Mass.: Digital REFERENCES
Equipment Corporation, 1975.

A hardware manual for the owners and operators of LP11/LS11 line
printers and for those who will be programming computers to interact with
these devices.

RT-11 Pocket Guide (AV-5287C-~-TC). Maynard, Mass.: Digital Equipment
Corporation, 1980.

A summary of all RT-11 monitor commands, command options, and
system utility program operating commands.

RT-11 System User’s Guide (AA-5279B-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1980.

A guide to the use of the RT-11 operating system. See Chapters 3 and 4.

4-17

CHAPTER 5

CREATING AND EDITING TEXT FILES

The ability to create and edit text files is one of the most useful
features of the RT-11 operating system. Not only can you create
computer programs, data files, memos, and reports on line (that

1c under the control of the svstem). but vou ¢

WAIUTL ViU LUVLAVIUVL UL LT Sy SuTillij, Muv Y

create without retyping the entire file.

+ vt

-
!
o
o
<5}
c
1%
C
£

You create and edit text files more often than you perform any
other system operation. Therefore it is essential that you become
familiar with the editing process as quickly as possible. Editing
should become second nature to you as you learn to use the RT-11
computer system.

The RT-11 editor is a system utility program called EDIT.SAV,
which is stored as part of the RT-11 operating system on your
system volume. Text files that you create with the editor are
stored in the computer in ASCII format. ASCII, which stands for
the American Standard Code for Information Interchange, is an
industry-standard code that consists of a numeric representation
for each of the alphabetic characters (A to Z), the numeric char-
acters (0 to 9), the punctuation characters, and some special com-
munication control characters. When you type text on the ter-
minal keyboard, the system automatically converts the text to the
appropriate ASCII codes; when you request listings on the ter-
minal or line printer, the system converts the ASCII code back to
the appropriate text characters.

The RT-11 editor uses a specially reserved area of computer
memory to hold the text you are creating or editing. This area of
memory is called the text buffer. When you create text, the char-
acters that you type on the terminal keyboard are transmitted
directly into the text buffer. When you edit existing text, the
characters are copied from the input file into the text buffer,
where you can modify them. When you have edited the text in the
buffer to your satisfaction, the characters are moved out of the
text buffer to the output file (Figure 5-1).

Since the text buffer is a finite area of computer memory, you
may at times try to input more text than the buffer can accommo-
date. If this condition becomes apparent to the editor, it prints a
warning message on the terminal telling you that before you can
input any more text, you must make room in the buffer, either by
transferring text to the output file or by erasing text already in

 the buffer.

THE RT-11 EDITOR

Creating and Editing Text Files

CREATING A
TEXT FILE

EDIT/CREATE

COMPUTER

INPUT 0
[

OUTPUT

.

==

.
e

Figure 5-1 Editing with RT-11

[

You can avoid this inconvenience during editing if you make use
of a concept called paging. When you create a large text file,
instead of typing the file as one long stream of text, divide it into
individual pages of approximately 50-60 lines in length; this cor-
responds roughly to the size of a line printer or terminal listing
page. You can copy the text into and out of the buffer one page at
a time. A single page of text is never too large for the text buffer
and also fits on the line printer or terminal perforated paper when
you obtain a listing.

You activate the editing capability by using the monitor EDIT
command. When creating a file, you must use the /CREATE
option followed by the file name and file type you want assigned
to the new file. The default storage volume (DK:) serves as the
default device, so unless you specify a aevme using one of the
codes in Table 4-2, the editor creates the new file on the device

niz. I R 1 N %
NS \wuu,u is the axaucxu vuluuxc\, unless \,haugcd via ASSIG}I)

First, if you are using display hardware, disable it with the mon-
itor GT OFF command; the editor has a special display capahility

that is not described until later in the chapter

Long and Short Command Format

.GT OFF
Next, use the editor to create a text file of five lines. Call the file
DECIND.USA, and use the default storage volume (currently the

same as the system volume) for the file.

Long Command Format

LEDIT/CREATEGE
File? DECIND.USAGD

*

5-2

Short Command Format

)

EDIT/CREAT

M
m

DECIND.USS G@ED

{w

+
*

Once the output file is open (that is, when the appropriate file has
been established for output operations), the editor prints a
prompting asterisk at the left margin. The asterisk indicates that
control is in editing command mode and is your cue to enter an
editing command.

The editing command used to create text is the I (Insert) com-
mand. Type:

*1

All subsequent characters that you type on the terminal keyboard
will now be entered into the text buffer just as you type them.
Enter the following text exactly as shown, including all spaces
and errors. Before you type the RETURN key, check the line to
make sure that it matches what is shown here. Remember, if you
make a typing mistake that is not intentional, you can use the
DELETE key on the terminal keyboard to erase individual char-
acters and the CTRL/U command to erase all characters on the
current line. When you have finished typing the five lines, type
the ESCAPE (ALTMODE) key twice. The ESCAPE key echoes
on the terminal as a $; it is used to execute an editing command
and to return control to editing command mode.

*IWE HOLD THESE TRUTS TO BEE SELF-EVIDENT .@ED
THAT ALL MEN ARE CREATED EQUAL . THAT THEYGED
HAVE UNRELIABLE TENDENCIES OF WHICH THEYGED
AR ENDOWED BY THEIR CREATOR: THAT AMONGEED
THESE ARE LIFE: LIBERTY AND HAPLENESS.@ED

*

Forget for the moment that this text contains several misspellings
and other errors, and assume instead that you are satisfied with it
and ready to transfer it from the text buffer to the output file. The
EX (Exit) editing command performs this function. This com-
mand terminates editing, transfers all text currently in the text
buffer to the output file, closes the currently open output file
(making it unavailable for further output operations), and returns
control to monitor command mode, indicated by a dot at the left
margin. Use the EX command to close the file DECIND.USA:

*EX 6D ED

You now have a file on your system volume called DECIND.USA,
consisting of the five lines of text you just created.

5-3

Creating and Editing Text Files

INSERT

ESCAPE ESCAPE

EXIT

Creating and Editing Text Files

EDITING A
TEXT FILE

EDIT

READ

BEGINNING

LIST

The file DECIND.USA needs editing. To edit an existing file, you
again use the EDIT command to activate the editor. Next indi-
cate in the command line the two-character device code for the
volume on which the file resides (the default storage volume,
DK:, is assumed) Following this, you indicate the file name and
file type of the file. The editor then opens the file, making it
available for input operations.

Thus, to open the file DECIND.USA for editing, type:

Long Command Format

VEDITED
File? DECIND.USAGE
*

Short Command Format

+EDIT DECIND.USAGED
*

The EDIT command opens the input (and output) files. Use the
R (Read) editing command to read the first page of text from the

input file into the text buffer. No output occurs to the output file, - --

but the file is available for output at a later time. The input file
itself is not altered in any way.

R €0 EsO

*

Whenever text is read into the text buffer, a pointer is automati-
cally positioned at the beginning of the text. This pointer is an
invisible indicator that serves as a target for editing commands.
The pointer pinpoints the exact location in the file where the next
character will be inserted. For example, when you finished in-
serting text earlier (just before using the EX command), the
pointer was positioned at the end of the file. Now that the EDIT
cominand has been used to read texi into the texi buffer, the
pointer is positioned at the beginning of the text in the text
buffer. If the pointer is not at the beginning and you want to move
it there, you can use the B (Beginning) command; this command
moves the pointer to the beginning of the text in the text buffer,
no matter where the pointer is currently positioned:

B €0 €0

*

With the pointer positioned at the beginning of the text buffer,
you can use the L (List) editing command to list the text cur-
rently in the text buffer on your terminal printer. The List com-
mand lists text, starting at the pointer and continuing to what-
ever place you indicate by the command argument.

A command argument is simply a prefix to an editing command
that sets limits on the command’s actions. Command arguments
are used frequently and are summarized in Table 5-1. Study this
table for a moment before continuing.

Table 5-1 Command Arguments

Argument Meaning

n Represents any integer in the range -16383 to
+16383; it may be preceded by a + or -. If no
sign precedes n, it is assumed to be positive.
Whenever an argument is acceptable in a
command, its absence implies an argument of
1 (or -1 if only the - is present).

0 Refers to the beginning of the current line.
/ Refers to the end of text currently in the text
buffer.

Thus, with the pointer positioned at the beginning of the text, use
the / argument and the L command to list on the términal all text
in the buffer. The position of the pointer does not change. List the
text and compare your output with the five lines shown in the
following example: they should match exactly.

* /L ESOE0

WE HOLD THESE TRUTS TO BEE SELF-EUIDENT.
THAT ALL MEN ARE CREATED EQUAL s THAT THEY
HAVE UNRELIABLE TENDENCIES OF WHICH THEY
AR ENDOWED BY THEIR CREATOR: THAT AMONG
THESE ARE LIFE, LIBERTY AND HAPLENESS.

*

If your output and the five lines above do not match exactly, then

you probably typed some unintentional errors into DE-
CIND.USA.

The remaining EDIT commands in this exercise depend upon an
exact reproduction of DECIND.USA to function properly. There-
fore, since you are not yet familiar with the EDIT commands
necessary to correct your file, an existing copy of DECIND.USA
with intentional errors st be substituted, freen DYC ans oy
I T dovra s roeag @ T
Prepare the text buffer, by erasing it, with CTRL/CESDESC. This
unusual command combination is required by the EDIT program

5-5

Creating and Editing Text Files

Creating and Editing Text Files

JUMP

when you want to exit without creating an output file. The struc-

ture of the command prevents you from accidentally eliminating
a file with a single CTRL/C.

* (RO

The monitor command mode period appears, signaling your de-
parture from the edltlng command mode. Your system volume
still contains the *f le DECIND USA that you created earlier.
However, it also contains thé.¢ (:opy provided with the system,
DEMOED.TXT, which you w1ll use for the remainder of the ex-
ercise.

Before going any further, you must rename DEMOED.TXT to
DECIND.USA to avoid confusion. A RENAME operation, ex-
plained fully in the FILE COPYING OPERATIONS section of
Chapter 7, is the method of choice. Type

+RENAME DEMOED.TXT DECIND.USA

The contents of DEMOED.TXT are now labeled DECIND.USA.
Note, however, that if a file labeled DECIND.USA already exists
and you rename another file to DECIND.USA, the system deletes
the first file named DECIND.USA and renames the current one.
Type EDIT DECIND.USA to open the file for input, and type
the R command to read it into the text buffer.

LEDIT DECIND.,USA
*REOED

Since the pointer automatically returns to the beginning of the
text with an R command, you can type /L to list the entire file.

*/L

WE HOLD THESE TRUTS TO BEE SELF-EVIDENT:
THAT ALL MEN ARE CREATED EQUAL + THAT THEY
HAVE UNRELIABLE TENDENCIES OF WHICH THEY
AR ENDOWED BY THEIR CREATORs THAT AMONG

THESE ARE LIFE: LIBERTY AND HAPLENESS.
*

The text contains errors and misspellings deliberately introduced
for the purposes of the exercises in this chapter. To correct the
errors, reposition the pointer so that it is near the text you want to
change. The J (Jump) command, for instance, in conjunction
with a command argument, moves the pointer either backward or
forward by the specified number of characters, including spaces.
Type the J command now, using an argument of 18, to reposition
the pointer 18 places ahead!:

1Anytime you use the Jump command to move the pointer forward (or back-
ward) by enough characters so that it moves to a new line, you must account for
two extra characters in the command argument. This is because the editor
treats the carriage return at the end of each line as two characters — a return
and a line feed.

5-6

% 18.JECED
*

Although you cannot see it, the pointer has moved from the be-
ginning of the text buffer to the right of the 18th character. You
g the List command again. The List com-
mand with no argument prints from the pointer to the end of the
current line and thus exposes the location of the pointer:

*L
S TO BEE SELF-EVIDENT s
*

. . .
ocan ‘(701‘1{"‘7 f]’\lQ h‘! 11€1h
Vii VOiary .

The characters in the example should match the current line on
your terminal, showing the pointer positioned at the first error in
the text where an H is missing in the word TRUTS. Since the
pointer is positioned between the second T and the S, use the
Insert command to insert an H in the proper place:

* I HESO €S0

*

Now use the V (Verify) command to verify the line. The V com-
mand, which does not require arguments, prints the entire line
containing the pointer (the current line) on the terminal. It allows
you to verify that a correction was properly made. The pointer is
not moved as a result of the V command; its position remains just
to the right of the last inserted character (shown here by the
arrow):

* 4 [ESC) €S0
WE HOLD THESE TRUTHS TO BEE SELF-EVIDENT s
* 1

So far you have entered and executed editing commands one at a
time. You can enter multiple commands by separating each indi-
vidual command with a single ESCAPE. Typing two ESCAPEs
then executes all the commands in the entire command string in
consecutive order. For example, combine the J and L commands
as shown in the following command string:

%7 JESOL €SO ESD
E SELF-EVIDENT
*

7J moves the pointer seven positions to the right, and L then lists
the text from the pointer to the end of the line so that you can see
the pointer’s new position.

A special CTRL command is available to erase multiple editing
commands. The CTRL/X command (hold the CTRL key down
and type the X key) causes the editor to ignore an entire com-
mand string that might extend over several lines if the I com-
mand is involved. The editor echoes with "X, issues a carriage

Creating and Editing Text Files

VERIFY

CTRL/X

Creating and Editing Text Files

DELETE

ADVANCE

KILL

return, and prints an asterisk indicating that you are still in
editing command mode and can enter a new command. For ex-
ample, type:

*70JEOISTART ARD

NEW LINE

%
In addition to the CTRL/X command, you may still use the DE-
LETE key to erase individual characters in the command line hne
at a time, and the CTRL/U command to erase all characters
entered on the current command line.

Since you used the CTRL/X to ignore this last command string,
the pointer is still positioned at the next error in the file — just
before the extra E in the word BEE. You can erase this extra
character by using the D (Delete) command.! The D command
removes one character (or space) to the right of the pointer for
every +1 in its argument and one character to the left for every -1.
Use the D command to erase the extra E and then verify the line
(+1 is assumed if no argument is used):

*[) €SO €SO €SO
WE HOLD THESE TRUTHS TO BE SELF-EUIDENT .
* 1

As you can see from the position of the pointer in the example
(shown by the arrow), the D command does not actually move the
pointer, but simply erases characters around the pointer. Since
the extra E was erased, the pointer is now positioned between the
E and the space.

Just as you can use the Jump command to move the pointer by
characters, you can use the A (Advance) command to move the
pointer by entire lines. Again you give the command an argument
that indicates the number of lines, either forward or backward.
The pointer is positioned at the beginning of the new line. Use the
A command to move the pointer forward two lines, and then list
the current line:

*2AESOL ESOESD
HAVE UNRELIABLE TENDENCIES OF WHICH THEY
*

This entire line does not belong in the text. To erase it, you could
count the number of characters in the line and use this number as
an argument to the D command; however, there is an easier way.

'The Deiete command should not be confused with the DELETE key on the
terminal keyboard. While both perform the delete function, the D command is
used to erase characters already within a text file; the DELETE key is used to
erase typed characters in a command string or during text creation.

5-8

The K (Kill) command erases the entire line following the pointer
and positions the pointer at the beginning of the next line in the
text. Type:

* K ESOL €SO ED

AR ENDOWED BY THEIR CREATOR: TH

*

The pointer is now at the beginning of the next line in the text. As
you can see, this line also contains an error, the word ARE is
incorrectly spelled as AR. Use the J command to jump over two
characters, and insert the E. Then verify the line:

* 2 JESDIEESCY ESO EST
ARE ENDOWED BY THEIR CREATOR.: THAT AMONG
* 1

The arrow shows where the pointer is now positioned. This line
still contains an error — it is missing; the words WITH CER-

CREATOR. You can count the number of characters from the
pointer to the second R in CREATOR and then jump the pointer
by this number, or you can use the G (Get) command. The G
command searches, from the pointer, for the first occurrence of a
specified character string and leaves the pointer at the end of that
string. Use the G command to search for the string OR (in CRE-
ATOR); then insert the missing words and list the lines that have
changed. Notice how you use the carriage return to break the line
into two parts (the symbol is used to show where you should
insert spaces):

*GOREOICPH WITHEP CERTAINGED
INALIENABLEGD RIGHTSESD - AESD 2 L €S0 €SS

ARE ENDOMWED BY THEIR CREATOR WITH CERTAIN
INALIENABLE RIGHTS, THAT AMONG

*

To list both lines, it was necessary to move the pointer back to the
beginning of the first line you changed; this was done by the -A
command. The 2L, command then listed both lines. Notice where
the pointer is; it was moved by the —~A command and was not
repositioned by the L. command.

You must be careful when you use the Get command, because the
character string you specify must be unique if you want the
pointer to move to the correct spot. For example, if the characters
OR had occurred anywhere after the pointer and before the word
CREATOR, the pointer would have stopped there instead, and
you would have inserted text in the wrong place.

The final errors in this text occur in the last line. The words THE
PURSUIT OF are missing, and the word HAPLENESS is a mis-

5-9

Creating and Editing Text Files

GET

Creating and Editing Text Files

CTRL/L

spelling. Use the Get command to move the pointer to the word
AND and insert the missing text. Move the pointer again with the
Get command to the PLE of HAPLENESS; erase the LE, and
insert PI. Then verify the line:

€sC
*GANDGET 16D THEG® PURSU I TED OF €9
#GPLED-ZDEDIPIEQVED ED
THESE ARE LIFE, LIBERTY AND THE PURSUIT OF HAPPINESS.
*

Large text files of 50 lines or more should be delimited into pages.
To do this, insert a form feed into the text at the place where you
want the page to end. A form feed is typed as a CTRL/L (hold the
CTRL key down and type the L key), which the editor recognizes
as a page break.

Since this text file is only five lines long, there is really no need to
delimit it as a page. However, for the sake of practice, insert a
form feed at the end of this file. Then move the pointer to the
beginning of the text buffer and list the entire text. Compare your
text with the following example. If errors remain in your file, fix
them by using the commands described so far.

*GC.E0IED
CTRLIL) (CTRL/L echoes as eight line feeds.)

€06 €50 /L €0 €0

WE HOLD THESE TRUTHS TO BE SELF-EYIDENT:

THAT ALL MEN ARE CREATED EQUAL.» THAT THEY

ARE ENDOWED BY THEIR CREATOR WITH CERTAIN
INALIENABLE RIGHTS: THAT AMONG

THESE ARE LIFE, LIBERTY AND THE PURSUIT OF HAPPINESS.

*

This text is correct in spelling and content, but the last two lines
should be justified to make them easier to read. The pointer is
currently at the beginning of the text. Use the G command to
search for the character string AMONG; then insert and delete
text to justify the lines. Finally, list the text again:

o T N o e s - mTR m TR

*CAMONGESD LEP THESEGP AREEDAED 1 0D &0 B &Y /L €0 &9
WE HOLD THESE TRUTHS TO BE SELF-EVIDENT.
THAT ALL MEN ARE CREATED EQUAL: THAT THEY
ARE ENDOWED BY THEIR CREATOR WITH CERTAIN
INALIENABLE RIGHTS» THAT AMONG THESE ARE

PR i T

LIFE, LIBERTY AND THE PURBUIT OF HAPPINESS.

5-10

Once you are satisfied with your text, you are ready to transfer it
to the output file. You could use the EX command to transfer the
text, as you did earlier in the section Creating a Text File. How-
ever, suppose your input file has additional pages of text that
require editing. If you use the EX command, all remaining text in
the input file will be read through the text buffer into the output
file, and the files will be closed although you may want to do more
editing. To avoid this, you can use the N (Next) command. This
command transfers the text currently in the text buffer to the
output file, clears the text buffer, and reads in the next page from
the input file. The pointer is positioned at the beginning of the
text buffer.

* NSO €0
TEDIT-F-End of input file
* (No text remains in the input file.)

If you use the N command when no text remains in the input file
(as just happened), the editor prints a message on the terminal
telling you so. At this point, you can type the EX command to
close the file.

* E ¥ S0 ESD

When you close a file after editing, the editor creates a file on the
default storage volume (or system volume). It gives this new file
the file name and file type that you indicated for input. It then
renames the input file so that the. file retains its file name but is
assigned a file type of .BAK. .BAK identifies it as a backup file,
here an original input file retained in case of editing mistakes or
accidental deletion of the new file. Thus you now have two ver-
sions of the DECIND file on your system volume: DECIND.USA,
which is the edited version, and DECIND.BAK, which is the
unedited (original) input file. Verify this by using the monitor
DIRECTORY command:

Long and Short Command Format

VUIREGTORY DECIND %G
0B-Jan-80
DECIND.BAK 1 19-Nouv-79 DECIND.USA 1 0B-Jan-80

2 Files: 2 BlocKs
7890 Free blocks

The * following DECIND. is a type of shorthand notation called
wildcard construction. Here it means to list all files named
DECIND, regardless of their file type. Wildcard construction is
explained in detail in the Multiple File Operations section of
Chapter 7.

Whenever you edit the same file a number of times, new versions
overwrite old versions. Thus only two versions of the edited file
(filnam.BAK and filnam.typ) ever reside on a volume at one
time.

5-11

Creating and Editing Text Files

NEXT

Creating and Editing Text Files

USING UPPER-
AND
LOWER-CASE
CHARACTERS

Edit Lower

Edit Upper

Later model terminals (for example, LA36 DECwriters and VT52
DECSCOPE terminals) have the capability to print in upper and
lower case. Certain line printers also have this capability. You can
use the upper-/lower-case capability of these devices if you type
the EL (Edit Lower) editing command before entering the text
you want to insert in lower case. The EL command instructs the
system to accept all characters typed as they appear on the key-
board. The monitor facility, which converts all alphabetic charac-
ters to upper case, is disabled. In addition, the characters are
echoed on the terminal printer or screen as upper- and lower-case
characters.

Open the file DECIND.USA again, and type the EL command:

Long and Short Command Format

+EDIT DECIND.USAGE
*EL ESOED
*

Once you have typed the EL command, you can use the SHIFT
key on the terminal to designate upper case, just as you do on a
typewriter. Editing commands may be entered as either upper- or
lower-case characters. For example, type the following com-
mands, which change the characters in the first line of the file
DECIND.USA to upper and lower case:

L

* 1 €0 L ESC 1 60 €0

WE HOLD THESE TRUTHS TO BE SELF-EVIDENT
*KEDiWe hold these truths to be cwelr-puidant . @D
€S0 - a €50 v 60 €SO

We hold these truths to be self-evident:

*

The upper- and lower-case capability is useful for reports, memos
and other textual material that you list on upper-/lower-case de-
vices. However, all characters are printed as upper-case if you list
the file on a line printer or terminal that does not have the upper-
/lower-case capability.

If at any time you want to revert to strictly upper-case editing,
type the EU (Edit Upper) command:

* e 1 €S0 €S0
+*

Upper-case editing is a default mode. Whenever you open a file
for editing or create a new file, you must enter the EL command if

tramt Fa otion 1imrnan locccam anca anng

e 4+l \ . hilide.
Uu walillit v0 udc uiie u CI-/10WEI-CasSt Capauiliity.
J

Close the file DECIND.USA by typing:
*E XSO ESD

+

EDIT filespec ,
Activate the editor and open the file for editing.

EDIT/CREATE filespec
Activate the editor and create a new file.

Control Commands

CTRL/L
Insert a form feed. The form feed character is used to delimit
pages of text in a file (introduced as part of text by the Insert
command).

CTRL/X
Ignore all commands in the current editing command string.

Command Arguments

n(+ or -)
An integer value between -16383 and +16383 that sets the

Creating and Editing Text Files

SUMMARY:
EDITING

'aYaY Vi
UV

range of a command’s actions based on the pointer’s current

position.

0
Beginning of the current line (the line containing the pointer).

/
End of the text in the text buffer.

Input/Output Commands (pointer is not repositioned)
(x indicates that an argument may be used)

EX
Exit; terminate editing, transfer the contents of the text buffer
and the remainder of input file to the output file; close input
and output files; return to monitor command mode.

xL
List; list, from the pointer, x lines of text.

5-13

AAAN

VIAI

[F aYel
o

Creating and Editing Text Files

xN
Next; write the contents of the text buffer to the output file,
clear the text buffer, and read into it the next page from the
input file; perform this write/read sequence x times.

\Y
Verify; list the current line (the line containing the pointer) on
the terminal.

Pointer Location Commands (pointer is repositioned)
(x indicates that an argument may be used)

xA
Advance; move the pointer to the beginning of the xth line from
the current pointer position.

B
Beginning; move the pointer to the beginning of the text buffer.

xd
Jump; move the pointer forward or backward by x characters.

Text Modification Commands (pointer is repositioned)
(x indicates that an argument may be used)

xD
Delete; erase x characters to the right (or left) of the pointer.

I text
Insert; insert text into the text buffer at the present pointer
position.

xK
Kill; erase x lines of text, beginning at the pointer.

Search Command (pointer is repositioned)
{(x indicates that an argument may be used)

xG text
Get; search the text buffer, beginning at the pointer, for the x
occurrence of the indicated text string and leave the pointer at
the end of the text string.

Upper-/Lower-Case Commands (pointer is not affected)

EL
Edit Lower; accept characters typed at the keyboard as
upper/lower case.

EU
Edit Upper; revert to upper-case editing (after EL).

5-14

Creating and Editing Text Files

If your system configuration included VT11 display hardware,
there are several advantages to your using it during editing.!
First, the graphics screen becomes a window into the text buffer,
exposing twenty lines of text at a time (the current line, the ten
lines preceding it, and the nine lines following it). Figure 5-2
illustrates this format. As you edit, the lines in view shift to
conform to the current line. In addition, the pointer is visible and
appears as a blinking L-shaped cursor. Its position is automati-
cally adjusted as you execute editing commands. Finally, the four
lines at the bottom of the screen display the last three command
lines plus the current command line. Horizontal dashes separate
the text of the file from your commands.

10 PRECEDING
LINES OF TEXT

CURSOR M
{CURRENT LINE)

AND 8
FOLLOWING
LINES OF TEXT

SEPARATION
LINE

3 PRECEDING
COMMAND LINES
CURRENT .
COMMAND LINE

Figure 5-2 Text Window Format

All editing commands and functions described so far can be used
when the graphics screen is enabled. The only difference is that
terminal I/0O is rearranged on the screen as shown in Figure 5-2.
Note that the L and V editing commands become superfluous
since the pointer is always displayed on the screen. Also, since
twenty lines of text are always displayed, any List command
within that range is unnecessary.

Currently, your graphics screen is not enabled. To enable it, use
the monitor GT ON command as you did in Chapter 4:

Long and Short Command Format

+GT ON

1
If your system does not have VT'11 display hardware, skip to the next section,
Creating the Demonstration Programs.

5-15

USING A
GRAPHICS
DISPLAY
TERMINAL
DURING EDITING

Normal Use of the
Graphics Display

Creating and Editing Text Files

Immediate Mode

ESCAPE ESCAPE

Now when you use the EDIT command to activate the editor, the
graphics screen will be rearranged as shown in Figure 5-2. You
can use the CTRL/E command, described in Chapter 4, to request
simultaneous I/O on the terminal printer and graphics screen.

In addition to the regular editing capability, a quick and easy
method of graphics editing, called immediate mode, is available.
Immediate mode uses a simplified set of editing commands that
are limited to pointer relocation and character deletion and inser-
tion. Most of these commands are similar to the special CTRL
commands because to type them you use the CTRL key in combi-
nation with another character key. However, the use of these
particular control commands is meaningful only in the editor im-
mediate mode. Table 5-2 lists the commands.

Table 5-2 Immediate Mode Commands

Command Meaning

CTRL/N Advance the cursor to beginning of next line
(equivalent to A).

CTRL/G Move the cursor to the beginning of the previous
line (equivalent to —-A).

CTRL/D Move the cursor forward by one character
(equivalent to J).

CTRL/V Move the cursor back by one character (equiva-
lent to -J).

DELETE Delete the character immediately preceding the
cursor (equivalent to -D).

ESCAPE Return control to the editing command mode.

double
ESCAPE Summon immediate mode.

Use the editor to open a new file called IMMODE.TXT:

Long and Short Command Format

+EDIT/CREATE IMMODE.TXTGEED
*

Now activate immediate mode. You do this by typing the ES-
CAPE key twice in response to the editing command mode as-
terisk. Since there are no other commands in the command line,
the editor recognizes the double ESCAPE as an immediate mode
command.

* [ESO €D
|

5-16

The editor responds by printing an exclamation mark in the com-
mand portion of the screen; the exclamation mark signifies that
you are using immediate mode.

Character insertion is the default operation and occurs whenever
you type a character other than one of the immediate mode com-
mands listed in Table 5-2.

The next several paragraphs demonstrate the use of the imme-
diate mode commands on a selected portion of text. Remember
that all characters you type that are not immediate mode com-
mands are treated as input. Commands do not echo on the
graphics screen, so all you ever see is the current text file. Type
the following:

TO BE, OR NOT TO BE — THAT IS THE QUESTION:ED
WHETHER 'TIS NOBLER IN THE MIND AND HEART TO SUFFERGED
THE SLINGS OF OUTRAGEOUS FORTUNEGED

35

OR TO TAKE ARMS AGAINST A SEA OF TROUBLES, @&

AND BY OPPOSING END THEM?@&D

As you can see on the graphics screen, the cursor (pointer) is
positioned at the beginning of a new line. CTRL/G, equivalent to

-A in standard editing, moves the cursor to the beginning of the
previous line; the cursor is repositioned immediately. Type:

L/G)
€rRle
CTRLIG

The cursor has moved backward three lines, one line for each
CTRL/G command, and is positioned before the line:

- ~T - -~ o~ N - =~

THE SLINGS OF OUTRAGEOUS FORTUNE,

CTRL/V, equivalent to -J, moves the cursor back one character.
Move the cursor back over the carriage return and line feed at the
end of the previous line by typing the CTRL/V command eleven
times (remember, the carriage return and line feed count as two
characters):

(eleven [11] times)
WHETHER ’TIS NOBLER IN THE MIND AND HEART TO SUFFER

This positions the cursor before the word TO. The command DE-
LETE, equivalent to -D, deletes the character immediately pre-
ceding the cursor. Type the DELETE key ten times:

(ten {10} times)
WHETHER ’'TIS NOBLER IN THE MIND TO SUFFER

5-17

Creating and Editing Text Files

Character Insertion

CTRL/G

CTRL/V

DELETE

Creating and Editing Text Files

CTRL/N

CTRL/D

ESCAPE

CTRL/C ESCAPE
ESCAPE

CTRL/N, equivalent to A, advances the cursor to the beginning of
the next line:

THE SLINGS OF OUTRAGEOUS FORTUNE,

CTRL/D, equivalent to J, moves the cursor forward one char-
acter; type CTRL/D ten times:

(ten [10] times)
THE SLINGS OF OUTRAGEOUS FORTUNE,

Next type this text (it will be inserted immediately to the left of
the cursor):

ANDGE ARROWS

The text on the screen should now look as follows:

TO BE OR NOT TO BE — THAT IS THE QUESTION;
WHETHER 'TIS NOBLER IN THE MIND TO SUFFER

THE SLINGS AND ARROWS OF OUTRAGEOQOUS FORTUNE,
OR TAKE ARMS AGAINST A SEA OF TROUBLES,

AND BY OPPOSING END THEM?

Check your results and correct any other mistakes you may no-
tice.

To return to the standard editing command mode, type a single
ESCAPE.

€9

*

This ESCAPE command does not echo on the screen. Notice that
the exclamation point immediately disappears and the text
window format returns; an asterisk appears immediately below
the exciamation point on the screen.

You use immediate mode only to create and edit text. Operations
that move text in and out of the text buffer must be done with
standard editing commands.

You do not need to save the text you have just created, so use the
CTRL/C command and two ESCAPEs to return control directly
to monitor command mode. As mentioned before, EDIT requires
this unusual command combination to prevent an accidental
CTRL/C from killing your text.

5-18

Creating and Editing Text Files

Following are two demonstration programs. One is written in the

FORTRAN IV programming language and one is written in the

MACRO-11 assembly language. Both programs are used in later
chapters of this manual, and both contain intentional misspell-
ings and errors.

Use the editor to create these programs. Type them exactly as
they are shown, including errors. Use tabs and spaces to format
each line as shown (remember that tab stops are positioned every
eight spaces across the terminal page). Make sure that the FOR-
TRAN program is formatted properly so that a source comparison
described in the next chapter will operate properly. Except for the
comment lines (those beginning with a C), begin all lines with a
tab. Use any of the editing commands described in this chapter.
Activate the display editor and immediate mode if you wish.

When you have finished, check each file carefully. The two files
should match those shown here exactly, including tabs and
spaces. Correct any errors that you find that are not intentional.
Obtain a listing of each file by using B €0/L before closing

the file.

Create the FORTRAN file first. Call it GRAPH.FOR and use the
system volume for storage. Then create the MACRO program.
Call it SUM.MAC and again use the system volume for storage.

NOTE

Knowledge of the FORTRAN IV and MACRO-11 lan-
guages is not necessary to create these demonstration
programs.

21 ™ A AT 3

The following program, GRAPH.FOR, is the FORTRAN demon-
stration program.

oonooo0on

GRAPH.FOR (VERSION 1)

THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL

OF AN EXTERNAL FUNCTIONs FUNCX»Y)

THE LIMITS OF THE PLOT ARE DETERMINED BY THE DATA STATEMENTS
"STAB" IS FILLED WITH A TABLE OF MWEIGHT FLAGS

"STRING" IS USED TO BUILD A LINE OF GRAPH FOR PRINTING

LOGICAL*1 STRING(13:3):STAB(100)

DATA XMIN . XMAX sMAXX/-5:+5,45/

DATA YMINYMAXsMAXY/-5:+54+72/

DATA FMINsFMAX/0.0+1.0/

SCAL(ZMINZMAX 'MAXZ 1K) =ZMIN+FLOAT(K-1)*(ZMAX- ZMIN) /FLOAT(MAXZ-1)
CALL SCOPY(’- 12 3 456 7 89 +',5TAB)
MAXFLEN(STAB)

DO 20 IX=1:MAXX

IIX=1IX

X=GCAL (XMIN s XMAX sMAXX »11IX)

CALL REPEAT(‘#’:STRING/)MAXY)

IF(IIX.EQ.1 .0OR., IX.EQ.MAXX) GOTO 20

DO 10 IY=2)MAXY-1

IIY=1Y

5-19

CREATING THE

DEMONSTRATION

PROGRAMS

Creating and Editing Text Files

Y=GCAL (YMIN »¥YMAX MAXY +IIY)
IFUN=2+INT(FLOAT{(MAXF-3)* (FUN(X¥)-FMIN)/ (FMAX-FMIN))

i0 STRING(IIY)=STAB(MINO(MAXF ,MAXO(1, ,IFUN)))
30 CALL PUTSTRING(7,:8TRING:’ %)

CALL EXIT

END

FUNCTION FUN(X YY)
R=SQRT (X% %2+ *%2)
FUN=X*Y*R*EXP(-R))**2
RETURN

END

The following program, SUM.MAC, is the MACRO demonstra-
tion program.

+TITLE SUM.MAC VERSION 1

+MCALL .TTYOUT. +EXITs PRINT

N = 70, §NO. OF DIGITS OF ‘E’ TO CALCULATE

‘E’ = THE SUM OF THE RECIPROCALS OF THE FACTORIALS
1700 + 1710 + 1/20 + 1/30V + 1740 + 1/31 + ..,

- e

EXP: +PRINT #MESSAG FPRINT INTRODUCTORY TEXT
MOy #N RS iNO., OF CHARS OF ‘E‘ TO PRINT
FIRST: MOU #N+1,RO iNO. OF DIGITS OF ACCURACY
Mov #AR1 iADDRESS OF DIGIT VECTOR
SECOND: ASL @r1 iDO MULTIPLY BY 10 (DECIMAL)
MOV @r1,-(SP) iSAVE *2
ASL @Rr1 ixd
ASL BR1 i*B
ADD (SP)+,(R1)+ SNOW #10, POINT TO NEXT DIGIT
DEC RO iAT END OF DIGITS?
BNE ZND FBRANCH IF NOT
Mou #N+RO iGO THRU ALL PLACES: DIVIDING
THIRD: MOV ~-{R1)+R3 iBY THE PLACES INDEX
Mov #-14+R2 SINIT QUOTIENT REGISTER
FOURTH: INC R2 SBUMP QUOTIENT
sug RGR3 iSUBTRACT LOOP ISN‘T BAD
BCC FOURTH SNUMERATOR IS ALWAYS < 10#N
ADD RO +R3 SFIX REMAINDER
MOy R3,EBR1 iSAVE REMAINDER AS BASIS
iFOR NEXT DIGIT
ADD R2-2(R1) SGREATER INTEGER CARRIES
iTO CTUE DICIT
DEC RO iAT END OF DIGIT YECTOR?
BNE THIRD iBRANCH IF NOT
MOy -(R1)+RO iGET DIGIT TO QUTPUT
FIFTH: SUB #10, RO SFIX THE 2.7 70 .7 SO
iTHAT IT IS ONLY 1 DIGIT
BCC FIFTH i (REALLY DIVIDE BY 1)
ADD #10+ /0RO iMAKE DIGIT ASC II
+TTYON JOUTPUT THE DIGIT
CLR @r1 SCLEAR NEXT DIGIT LOCATION
DEC RS iMORE DIGITS TO PRINT?
BNE FIRST iBRANCH IF YES
JEXIT iWE ARE DONE
EXP: +REPT N+1
+WORD 1 FINIT VECTOR TO ALL ONES

.ENDR

MESSAG: ,ASCII /THE YALUE OF E IS:/ <15:412% /2./ <200%

CUEN

[RS8 =N]

+ENDEXP

5-20

Creating and Editing Text Iiles

When you have created and checked these two programs, ob-
tained listings, and stored them as files on your system volume,
go on to Chapter 6, Comparing Text Files. Chapter 6 demon-
strates a proofreading aid that helps you evaluate your editing
ability.

RT-11 System User’s Guide (AA-5279B-TC). Maynard, Mass.: Digital Equip- REFERENCE
ment Corporation, 1980.

1

A ida +
A guide to the use of the

i

5-21

CHAPTER 6

COMPARING TEXT FILES

The RT-11 operating system provides a proofreading aid, called a
source comparison, to help you quickly establish the differences

s . . .
between two ASCII text files. During a source comparison, the

system compares the two files, character for character, and prints
on the terminal (or line printer) any lines that contain differences.

Usually, you perform a source comparison against two files that
you expect to be the same, or at least similar. For example, if an
individual has copied one of your files to make changes to it, you
can quickly scan the changes by performing a source comparison
between the new version and your original. Another use of a
source comparison is to check edits you have made to a file your-
self. By comparing the backup file against the edited version, you
can proofread the changes since only the portions of text that are
different are printed.

In this chapter, you will use source comparisons to find editing
errors that may exist in the demonstration programs (SUM.MAC
and GRAPH.FOR) that you created in Chapter 5. These demon-
stration programs contain intentional misspellings and misplaced
text that you must correct before the programs can be used in
later demonstrations. On your system volume is a counterpart of
each file. These counterparts are provided as part of the RT-11
operating system so that you can use them to perform a source
comparison against your own versions. Essentially, the counter-
part programs have been carried one step further in the editing
process than your own; they contain no editing errors. Therefore,
when you compare them against your versions, the printed list of
differences will reflect the typing errors that still exist in your
versions—some of these errors are intentional; others you may
have inadvertently introduced during editing. All must be cor-
rected before you can use the programs.

The monitor command used to compare two text files is the DIF-
FERENCES command. When you type this command on the
terminal, it activates the RT-11 utility program called
SRCCOM.SAV, which is part of the RT-11 operating system
stored on the system volume. The system prompts you for the
input file names. Respond to the input prompts with the names of
the files you want to compare; the default storage volume is the
system volume. The output will be sent to the terminal, which is
the default device for output.

6-1

PERFORMING
A COMPARISON

Comparing Text Files

DIFFERENCES

The programs that you created in Chapter 5, SUM.MAC and
GRAPH.FOR, have their respective counterparts on the system
volume called DEMOX1.MAC and DEMOF1.FOR. Use the DIF-
FERENCES command to compare the MACRO (.MAC) files
first. The /MATCH option indicates the number of lines that
determine a “match”, explained in a moment.!

Long Command Format

+DIFFERENCES/MATCH: 1
File DEMOX1.MAC
File 27 SUM.MAC

Short Command Format

+DIFFERENCES/MATCH:1 DEMOX1.MAC SUM.MAC

The list of differences printed on your console terminal should be
similar to the following example. It will show all the differences
listed here, plus any others that you may have introduced yourself
during editing.

Notice the format of the list. Individual sections are marked to
help you become acquainted with the format. A description fol-
lows the list, and you should refer to it as you study the list.

A 1) DK:DEMOX1.MAC
A Z) DK:SUM.MAC
FEEERERRRR

[«TITLE EXAMP.MAC (VERSION PROVIDED)
1)
D 1) +MCALL TTYOUT,» LEXIT» PRINT
B *%x¥%
C 231 +TITLE SUM.MAC YERSION 1
2)
D 2) «MCALL .TTYOUTs +EXIT: .PRINT
FERRRRHERE
cC 1)1 BNF SECOND FRRANCH IF NOT
D1 Moy #N RO iGO THRU ALL PLACES:
iDIVIDING
B *%*x%
c &) BNE ZND iBRANCH IF NOT
D 2) Moy #N L RO fC0 THRU oLl PLACEG:
sDIVIDING

EAEEERENEF

c 11 ADD #10+ 04RO iMAKE DIGIT ASCII
D 1) +TTYON JOUTPUT THE DIGIT
B *x%x¥x
cC 2 ADD #10+0+R0O FMAKE DIGIT ASC II
D 2) +TTYON iOUTPUT THE DIGIT
EEFKXREFER
c it +END EXP
B #%%x
C 2)1 +ENDEXP
EEREREHH XX

7SRCCOM-W-Files are different

"Users of display hardware may wish to enable botli the graphics screen and the
terminal printer by first typing the CTRL/E command.

The first two lines identify the two files that are being compared.
The file name and the device on which the file resides is printed.
Also, the numbers 1) and 2) are assigned to the files (see lines
labeled A in the example list above).

The first difference that is listed occurs in the title line of the
program. Usually differences that occur in these two lines are
intentional and reflect information that is unique to each file,
such as name and file type, version or edit number, and perhaps
date of creation.

The numbers that appear at the left margin of the list further
identify the files. For example, 1)1 indicates the first page of the
first file and 2)1 indicates the first page of the second file.

The lines of both files are compared character for character.
Blank lines are ignored, but all other characters, including tabs
and spaces, are compared. When two lines are found to be dif-
ferent, the system prepares a difference section, which it subse-

quently prints (see B).

The system prepares the difference section as follows. When it
finds two lines that are different, it notes the page number and
records the lines (see C). Next it searches for a match. A match is
a certain number of lines in each file that are exactly the same.
Since you specified a match of 1 in the /MATCH:n option
(/MATCH:1), the system in this case searches for a single line in
each file that is exactly the same. When the system finds a
match, it records the last line of the match for identification
purposes (see D). Then it prints the difference section and repeats
the process, preparing a subsequent difference section if more
differences exist. Individual difference sections are separated
from each other by a long row of asterisks, while the short rows of
asterisks separate the lines of the first file from those of the
second.

A message is printed following the comparison. Files are different
is printed if differences exist; No differences encountered is
printed if the files are exactly the same.

Check the list printed on your terminal to find the errors the
system detected. Mark each error on the listing of SUM.MAC
that you obtained in Chapter 5.

Now perform a source comparison between the FORTRAN files,
DEMOF1.FOR and GRAPH.FOR.

6-3

Comparing Text Files

DIFFERENCES/
MATCH:n

Comparing Text Files

Long Command Format

+DIFFERENCES/MATCH: 1
File 17 DEMOFi.FOR @D
File 27 GRAPH.FOR @

Short Command Format

+DIFFERENCES/MATCH:1 DEMOF1.FOR GRAPH,.FOR (RET

1) DK:DEMOF1.FOR
Z) DK:GRAPH.FOR

EERERERRREHR
1 C EXAMP,FOR (VERSION PROVIDED)

1) C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL

*ERR

201 C GRAPH.,FOR (VERSION 1)

2) C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
FEEERERENES

ni C "STAB" IS FILLED WITH A TABLE OF HEIGHT FLAGS

1) C "STRING" IS USED TO BUILD A& LINE OF GRAPH FOR PRINTING
*EER

211 C "STAB" IS FILLED WITH A TABLE OF WEIGHT FLAGS

2) C "STRING" IS USED TO BUILD A LINE OF GRAPH FOR PRINTING
ERERERERKR

1)1 MAXF=LEN{(STAB)

1 DO 20 IX=1:MAXK

T2

2)1 MAXFLEN(STAB)

2) DO 20 IX=1MAKXHK

EEERERKKEFE

It 30 CALL PUTSTR(7:5TRING,‘ ')

1) CALL EXIT

EEER

21 30 CALL PUTSTRING(7sSTRING.’ 7)

2) CALL EXIT

HER XXX EEXN

7SRCCOM-W-Files are different

Similarly, mark the errors on the listing of GRAPH.FOR that you
obtained in Chapter 5.

Now return to the section in Chapter 5 entitled Editing a Text
File. Review the editing commands described there and the sum-
mary at the end of the section. Use the appropriate commands to
correct the files SUM.MAC and GRAPH.FOR. When you have

finished editing, perform the source comparisons again against
DEMOX1.MAC and DEMOF1.FOR. If you have edited the files
correctly, the comparison only finds differences between the first
lines of each program. The following messages should print on
your console:

+DIFFERENCES/MATCH: 1
File 17 DEMOF1.FOR
File 27 GRAPH.FOR

1) DK:DEMOF1.,FOR

2) DK:GRAPH.FOR
EEFEXEER RS

il C ENAMP.FOR (WERSION PROVIDED)
1) C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
*E XK

Comparing Text Files

231 C GRAPH.FOR (VERSION 1)
21 C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
EREREEERRE

PSRCCOM-W-Files are different

and

+DIFFERENCES/MATCH: 1
File 1% DEMOX1.,MAC

= bl

1) DK:DEMOX1.MAC

2) DK:SUM.MAC

EHEEREEEES

i1 +TITLE EXAMP.MAC (VERSION
PROVIDED)

1

1) +MCALL +TTYOUT+ +EXITs JPRINT
%R

231 +TITLE SUM.MAC VERSION 1

)

2) +MCALL ~TTYOUT,, LEXIT: PRINT
XHEEEEEEER

TSRCCOM-W-Files are different

Crie R A
UM s TR

These messages indicate that a difference exists in the first line of
each program. However, no other differences were found in the
programs during the comparison. Thus, your programs are ready
for use in later demonstrations, and you know how to create and
edit programs.

If differences still exist in your files and you cannot seem to re-
solve them by reediting, you may continue to the next chapter if
you wish. However, you need practice editing, and it is to your
advantage to rework the examples in both Chapter 5 and this

chapter.
DIFFERENCES SUMMARY:
List the differences between two ASCII text files. COMPARISON
COMMAND
DIFFERENCES/MATCH:n
Indicate the number of lines (n) to determine a match; the
default number is 3.
RT-11 System User’s Guide (AA-5279B-TC). Maynard, Mass.: Digital Equip- REFERENCE

ment Corporation, 1980.

A guide to the use of the RT-11 operating system. See Chapters 4 and 15.

6-5

CHAPTER 7

PERFORMING FiLE MAINTENANCE OPERATIONS

The system volume, as it is initially supplied, contains only the
files of the RT-11 operating system—the monitor files, the system

device handlers, the system utility programs, and perhaps the
lanaiiaga nrocscanre Since the svetem vnlnmp. serves as the de-

LAlZUAgT PiULTOEULS, RJ1iiLT viiv S5 SV il OIUINE SeIVES as

fault storage volume for all system operations (unless DK: was
assigned to another volume), you will discover that it acquires
many additional files during normal use. For example, files that
you create with the editor are written on the system volume;
edited files automatically create backup versions on the system
volume; many utility programs create output and listing files on
the system volume as part of their normal processing operations.
By the time you finish an average session of computer operations,
several new file names have been added to the directory of your
system volume. Eventually your system volume may become full
and its directory cluttered with the names of files for which you
have no use. To avoid this you should perform regular house-
keeping, or file maintenance, operations as you use the system.
You should update and transfer copies of your important files to
other storage volumes for safekeeping and later use, and you
should delete from your system and storage volume directories the
names of files you no longer have a need.

The RT-11 operating system provides a number of monitor com-
mands for this purpose. These commands activate the RT-11
utility programs called PIP.SAV, DUP.SAV, and DIR.SAV,
which are part of the RT-11 operating system stored on your
system volume. These utility programs allow you to transfer and
erase files. The commands used in this chapter show one way to
maintain your system and storage volume. When you become
more familiar with system operations and learn some of the com-
mands not described here, you may prefer other methods.

Before you perform operations that might move or erase files on a
volume, list a directory of the volume involved. The directory tells
you the full names of files, their sizes, and whether backup copies
exist. A directory of your system volume shows the files that have
been added to it through normal use.

First obtain a directory of your system volume (as you learned in
Chapter 4), using the appropriate command to list it on either the
terminal or the line printer. The directory is relatively long; let it
list to completion.

T]
—

FILE DIRECTORY
OPERATIONS

Performing File Maintenance Operations

MULTIPLE FILE
OPERATIONS

Long and Short Command Formats

(Line printer)

+DIRECTORY/PRINTER @ET

(Terminal)
+DIRECTORY @)
At the end of the system volume directory you should see several

additional entries. These files are the result of the system opera-
tions you have performed so far:

DECIND.USA 1 8-JAN-BO
DECIND.BAK 1 B8-JAN-80
GRAPH .FOR 2 B8-JAN-80
GRAPH .BAK 2 8-JAN-80
SUM +MAC 3 8-JAN-8O
SUM +BAK 3 8-JAN-80

Next list a brief directory of your storage volume. This directory
should be empty (void of any file names or file types) because you
initialized it in Chapter 4.

Long and Short Command Formats

(Line printer)

+DIRECTORY/BRIEF/PRINTER VOL: G

(Terminal)

+DIRECTORY/BRIEF VOL: @D

These directories give you the information you need for erasing
and copying files. For example, you know the additional files that
are now on your system volume, and you know that since the
directory of the storage volume is empty, there ic ample room on

it for new files.

You often have occasion to perform the same utility operation on
several files. For example, you may copy from one volume to
another all files with the file type .MAC, or you may erase from a
volume all files with the name TEST. Rather than perform the
required operation on the files one at a time, it is easier to use a
shorthand method provided by the RT-11 operating system called
the wildcard construction. This construction allows you to substi-
tute an asterisk (*) or percent sign (%) for a portion of the file
name that is variable among all the files you want used in the
operation. For example, specifying DECIND.* in a command

Performing File Maintenance Operations

causes the operation to act on all files with the file name DE-
CIND, regardless of their file type; *.BAK causes the system to
act on files with the file type BAK, regardless of their file name.
Specifying TEST%.FOR causes the operation to act on all files
having a type of FOR, starting with the four characters TEST,
and having any fifth character (for example, TESTA.FOR,

TESTL.FOR, etc.).

A special use of the wildcard construction involves substitution of
an asterisk for both file name and file type. *.* implies that all

files, regardiess of the file name or file type, are to be used in the
operation.

Exercises in this chapter and throughout the remainder of the
manual demonstrate various uses of the wildcard construction.
However, it is valid only for the file maintenance commands
listed in this chapter; the wildcard construction is not valid for
any other commands.

Storage volumes provide an area where you can store important FILE COPYING
files. Since most files are originally created on the default system OPERATIONS
volume, you must copy them from the system volume to the

storage volume. The following exercises show you how to make

backup copies on your storage volume of the two provided demon-

stration programs (DEMOF1.FOR and DEMOX1.MAC), and

how to copy to the storage volume the two programs you created

(GRAPH.FOR and SUM.MAC).

The monitor command that copies files between volumes is the
COPY command. This command instructs the system to dupli- COPY

cate the file t
the name and file type that you specify as output. The original
version of the file is unaffected; that is, the original version is not
physically moved to the new volume, but a copy of it is made

there.

hat you indicate as input; it then gives the new file

To copy GRAPH.FOR to your storage volume under the new
name GRAPH.TWO, type:

Long Command Format

LCOPY @ET

From? GRARH.FOR B (System volume is as-
sumed for input.)

TJo 7 VOL:GRAPH.TWO G

Short Command Format
+COPY GRAPH.FOR VYOL:GRAPH.TWO

7-3

Performing File Maintenance Operations

The system makes an exact copy of the file GRAPH.FOR on the
storage volume and gives the copy the name GRAPH.TWO.
When the operation is complete, the monitor prints a period at
the left margin and waits for you to enter the next command. This
time, copy SUM.MAC to the storage volume.

Long Command Format

LCOPY
From? SUM.MAC
To 7 VYOL:SUM.MAC

Short Command Format
LCOPY SUM.MAC YOL:SUM.MAC

The system copies the file SUM.MAC to your storage volume and
gives the copy the name SUM.MAC.

Now, copy the‘ two provided demonstration programs,
DEMOF1.FOR and DEMOX1.MAC, to the storage volume.

Long Command Format

LCOPY @D

From?™ DEMOF1.FOR

To 7 VYOL:DEMOF1.FOR
,CORY

From? DEMOX1.MAC

To 7 VYOL:DEMOX1.MAC G

Short Command Format
,COFY DEMOF1.FOR YOL:DEMOF!1.FOR G@ED
.COPY DEMOX1.MAC VYOL:DEMOX1.MAC
A directory of your storage volume should verify that it now con-

tains these four files:!

Long and Short Command Formats

LDIRECTORY YOL: @D

08-Jan-B80
GRAPH . THWO 2 0B-Jan-80 SUM +MAC 3 o08-Jan-80
DEMOX1.MAC 3 19-Nouv-789 DEMOF1.FOR 2 19-Now-79

4 Files:s 10 Blocks
4752 Free blocks

"It you are using magtape or cassette as your storage volume, read the section in
Appendix B entitled Directory vs Nondirectory-Structured Volumes.

7-4

Performing File Maintenance Operations

The directory you just listed shows that you copied the GRAPH FILE RENAMING
demonstration file to your storage volume under a new file type, OPERATIONS
.TWO. Assume you did not intend to copy it using a new file type
and now wish that it were assigned its original file type, .FOR.
Use the monitor RENAME command to rename the file already
on the storage volume.' R

Long Command Format

. RENAME @ED
From? WOL:GRAPH.TWO
To 7 YOL:GRAPH.FOR

Short Command Format
,RENAME UOL:GRAPH,TWO YOL:GRAPH.FOR @

The RENAME command simply changes the file name or file
type of a file in the volume directory without altering or moving
the file itself. When you perform a rename operation, the volume
indicated in the input and output portions of the command must
be the same; otherwise a system message is printed.

Rename the file copies DEMOX1.MAC and DEMOF1.FOR pres-

ently on your storage volume to EXAMP.MAC and
EXAMP.FOR respectively.

L RENAME VOL:DEMOX1,MAC VOL:EXAMP.MAC

,RENAME VOL:DEMOF1.FOR YOL:EXAMP.FOR GED

Again list a directory of your storage volume to verify that the
renaming operation occurred.

Long and Short Command Formats

,DIRECTORY VOL: GED

08-Jan-B0O
GRAPH .FOR 2 0B-Jan-80 SUM +MAC 3 0B-Jan-80
EXAMP MAC 3 19-Nov-79 EXAMP JFOR 2 19-Now-79

4 Filesy, 10 BlocKs
4752 Free blocKks

'Magtape and cassette users cannot use the RENAME command and should
read Appendix B, Alternate RENAME Operation for Magtape and Cassette
Users.

Performing File Maintenance Operations

FILE DELETION
OPERATIONS

DELETE

Once copies of your important files are stored on a storage
volume, you can delete (erase) from the system (or any other)
volume those files that you no longer need. The file deletion oper-
ation deletes the entry from the volume directory. Thus the space
that the file occupies on the volume becomes available for reuse.
Files that you want to delete generally include .BAK files created
during editing, temporary files created by utility programs, or any
other unnecessary files.

Now that you have copies of your important files, you can delete
several file names from your system volume. For example, you
can delete all files with a .BAK file type created as a result of
editing. You can delete the file DECIND.USA, since this was
created only for editing practice. Finally, you can delete the files
GRAPH.FOR and SUM.MAC, since copies of these are now on
VOL..

Do not delete DEMOF1.FOR and DEMOX1.MAC from your
system volume, even though copies of these are also on VOL:. You
should consider these two files as part of the RT-11 operating
system, which therefore should not be erased from the system
volume. These copies can serve as additional backups for the files
on the storage volume.

The monitor DELETE command is used to delete file names from
a volume. The DELETE command defaults to requesting confir-
mation from the user by printing each file name on the terminal
before it deletes it. This gives you the opportunity to confirm each
file before deletion. If you type a Y response, the system deletes
the file name, while an N response instructs the system to ignore
that file name and go on to the next. You can specify as many as
six input files for deletion. Notice how you use the wildcard con-
struction in one of the input files to delete all files with a .BAK
file type.

Long Command Format

+DELETE
Files? DECIND.USA:*,BAK GRAPH.FOR:SUM.MAC @D
Files deleted:
DK:DECIND.USA * Y
DK:GRAPH.BAK 7 Y

DK:DEMOF1.BAK 7
DK:DECIND.BAK 7 Y
DK:GRAPH.FOR 7 Y
DK:SUM.MAC 7Y @

Short Command Format
+DELETE DECIND.USAs*,BAK GRAPH.FOR ,SUM.MAC G

7-6

Performing File Maintenance Operations

Files deleted:
DK:DECIND.USA
DK:GRAPH.BAK
DK:DEMOF1.BAK
DK:DECIND.BAK
DK:GRAFH.FOR
DK:5UM.MAC

X I R A |

-

<
)
m
3

You sometimes need to obtain a listing of a file before you can
decide whether or not to delete it. In Chapter 5, you used the
RT-11 editor to obtain listings of the files you created. You can
also obtain listings of files using monitor commands. One com-
mand lists a file on the console terminal; another lists a file on the
line printer.! The system volume is the assumed storage volume
for the input file.

Type one of the following sets of commands to obtain listings of
EXAMP.MAC and EXAMP.FOR.

Long Command Format

(Line Printer) (Terminal)

JPRINT ,TYPE

Files? YOL:EXAMP.MAC Files? VOL:EXAMP.MAC
JPRINT JTYPE @

Files? VOL:EXAMP,FOR G Files? VYOL:EXAMP.FOR @

Short Command Format

(Line Printer) (Terminal)
,PRINT VOL:EXAMP,MAC ,TYPE VOL:EXAMP.MAC G
JPRINT UOL:EXAMP,FOR ,TYPE UOL:EXAMP.FOR @D

These file maintenance operations are the kinds of operations
that you should perform periodically as you use the system. File
maintenance keeps your system and storage volumes up-to-date
and provides maximum free space on volumes for new files.

'If a line printer is available on your system, you should always use it for listings.
Line printer listings are neater and print faster than terminal listings.

-7

FiLE LISTING

OPERATIONS

PRINT

TYPE

Performing File Maintenance Operations

SUMMARY: FILE
MAINTENANCE
COMMANDS

REFERENCE

COPY
Copy the specified file from one volume to another.

DELETE
Delete the specified file(s) from the volume’s directory. Confir-
mation required before deleting the file.

DIRECTORY fe- ¥¥>0 o LJE T f/yeyt w2y
List the volume directory on the terminal. = «v,, s ./

DIRECTORY/PRINTER ,. -
List the volume directory on the line printer.

PRINT
List the contents of the specified file on the line printer.

RENAME
Give a new name to the specified file.

TYPE
List the contents of the specified file on the terminal.

RT-11 System User’s Guide (AA-5279B-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1980.

A guide to the use of the RT-11 operating system. See Chapter 4.

7-8

CHAPTER 8

CHOOSING A PROGRAMMING LANGUAGE

Programming languages and language processors are aids pro-
vided by the operating system to help you develop programs of
your own. Whenever you plan to write a program, you must first
decide on the programming language that you will use, since most
computer systems support several. After you have chosen the lan-
guage, you must design and code your program using appropriate
language statements and being careful to follow formatting rules
and restrictions. Finally, you must use the corresponding lan-
guage processor, which is stored on the system volume or on a
volume of its own, to convert your program statements into a
format suitable for execution.

Hundreds of programming languages have been developed for
computer systems. Some languages can be used only for specific
applications or in conjunction with a particular computer system.
Other languages are general purpose; they are suitable for a va-
riety of problem-solving situations and, in addition, are easy to
learn and use. The languages demonstrated in this manual in-
clude two well-known and widely-used high-level programming
languages (BASIC and FORTRAN IV) and one RT-11 system-
specific machine-level programming language (MACRO-11).

High-level languages, like BASIC and FORTRAN, are usually
easy to learn and use. You write programs using language state-
ments that need not deal with the specifics of the computer
system. The language processor (and perhaps other utility pro-
grams as well) handle all conversions that are necessary for pro-
gram execution. Since a single high-level language statement may
perform several computer operations, and since you need not be
concerned or familiar with the structure of the computer and
peripheral devices, you can concentrate solely on solving the
problem at hand. The language processor takes care of translating
the statements into the appropriate computer information.

Thus, high-level languages are considered machine-independent
languages because language statements are such that any pro-
gram written in the language can usually be executed on an en-
tirely different computer system (that supports the language)
with few, if any, modifications.

On the other hand, machine-level languages, such as the as-
sembly language MACRO-11, require that you know about the

8-1

HIGH-LEVEL VS
MACHINE-LEVEL
LANGUAGES

Choosing a Programming Language

computer and the peripheral devices and how they work together.
You write programs in formats that are closer to those required for
execution. Since a single machine-level language statement usu-
ally performs only one computer operation, you must account in
your program for each computer operation that will be required.

For this reason, machine-level languages are machine-dependent
languages. The program is coded in a format that is not usually
interchangeable among systems. Machine-level language pro-
grams can be efficient because the knowledgeable programmer
will choose the fastest and most precise instructions for getting
the job done.

Table 8-1 lists a comparison of high-level vs. machine-ievel lan-
guages.

Table 8-1 Language Comparisons

High-Level Machine-Level

More difficult to learn and
use; familiarity with the
computer system required

Easy to learn and use; no experi-
ence required

Machine-independent Machine-dependent

Many hidden conversions neces- | Only direct translation is

sary for program execution; more
computer memory is used

Slower execution time

Less efficient; the system makes
decisions concerning computer
operations

Easier to debug (find and fiy er-
rors)

Easier to understand programs;
functions added with less diffi-
culty

necessary for program exe-
cution; less computer
memory is used

Faster execution time

More efficient; the pro-
grammer makes decisions
concerning computer oper-
ations

Harder to debug
fix errors)
Harder to understand pro-

grams; functions added
with greater difficulty

Tw o 1

In general, beginning programmers, students, commercial appii-

cations programmers, and the casual computer user tend to prefer
high-level languages because they are less difficult to learn and
use and produce fast results. System programmers, on the other
hand, may prefer machine-level languages. The programs they
write (those that make up an operating system, for example)
must often be as fast, efficient, and concise as possible,

Choosing a Programming Language

The designers of a computer system generally select programming
languages that they feel will satisfy and suit the current (or per-
haps potential) system user environment. The RT-11 computer
system is designed for use in many environments: education,
business, laboratory, etc. Some of its applications include data
acquisition and analysis, record keeping, control systems, and
learning through computer simulation. RT-11 programmers and
users include both the very knowledgeable and the student/be-
ginner.

To satisfy the varied requirements of these environments, RT-11
supports several programming languages:

High-Level Machine-Level
BASIC-11 MACRO-11
FORTRAN IV

DIBOL

APL

Whenever you choose one or more of these programming lan-
guages for your own use, consider the following criteria:

e What is your programming experience? What languages
do you already know?

¢ How much time do you have to learn a new language?

e For what applications will you use the language? How
important are program speed and efficiency?

e Will you use your program on any other computer sys-
‘?

tems’

If you are already familiar with a language supported by the
system, you may prefer to continue using that language rather
than spend time learning a new one. However, if you want to
learn a language, consider your application. High-level languages
handle most programming jobs. Unless you plan to write ex-
tremely detailed or time-critical programs, you should select a
high-level language.

If you are a beginning programmer, you may prefer to start with a
language like BASIC, which is a conversational, interactive lan-
guage. Language statements use simple, English-like words and
common mathematical expressions. You can request immediate
answers to problems by using the immediate modes of the lan-
guage, or you can create detailed programs by combining single

RT-11
PROGRAMMING
LANGUAGES

Choosing a Programming Language

CHOOSING

A LANGUAGE

Lol AR

FOR THE
DEMONSTRATION

language statements into larger segments. BASIC-11 is a superset
of the industry-standard BASIC developed at Dartmouth College.
Chapter 10 of this manual describes BASIC-11 in more detail.

If your application mainly requires the use of complicated mathe-
matical operations or mixed data types, you may prefer to select
the programming language APL. This language uses a concise
and powerful shorthand notation to perform arithmetic and log-
ical operations on vectors, matrices, and arrays.

RT-11 FORTRAN 1V is a superset of the industry-standard FOR-
TRAN 1V. This language has long been recognized for its use in
the scientific field; in addition, it is one of the most commonly
supported languages across systems. You may decide to choose
FORTRAN 1V because it is a more powerful language than
BASIC or because you plan to use your programs on more than
one system. Chapter 9 of this manual describes FORTRAN IV in
more detail.

Finally, if you are an experienced user, you may select the ma-
chine-level programming language MACRO-11. This is a pow-
erful language that allows user programs to access and utilize
every possible feature available on the RT-11 computer system.
The language requires a considerable amount of computer experi-
ence and knowledge to be used effectively, however. The
MACRO-11 language is best for you if you are a system pro-
grammer or an experienced high-level language programmer. It is
described in more detail in Chapter 11 of this manual.

Three RT-11 programming languages are demonstrated in the
next several chapters of this manual; FORTRAN IV, BASIC-11,
and MACRO-11. Consider your ability as a programmer. If you
are a beginner, BASIC is probably the best language for you to
start with: FORTRAN 18 ﬂ]Qﬂ a vnnﬂ nhmnn nnnrnvnr you need
not be proficient in any of these programming languages to per-

form the exercises provided in this manual.

Your particular RT-11 computer system may not provide all
three languages. First check question 9 in the Hardware Configu-
ration section of Chapter 2 to find out which languages are avail-
able on your system.

Then select a language to continue the demonstration. If you
choose FORTRAN 1V, continue to Chapter 9. If you choose
BASIC-11, go on to Chapter 10. If you choose MACRO-11, go to
Chapter 11.

8-4

Choosing a Programming Language

Katzan, Harry Jr., Information Technology, The Human Use of Computers.
New York: Mason & Lipscomb Publishers Petrocelli Books, 1974.

A textbook covering basic computing concepts, programming languages,
and topics in computers and society. See Part I, Chapters, 7, 8, and 9.

PDP-11 Computer Family—Software and Services. Maynard, Mass.: Digitai
Equipment Corporation, 1977.

An overview of the available PDP-11 family products and services.

1978

DP-11 Software Handbook. Maynard, Mass.: Digital Equipment Corporation,

A general overview and introduction to available PDP-11 software, opera-
ting systems, and language processors. See Chapters 1, 2, and 3.

REFERENCES

CHAPTER 9

RUNNING A FORTRAN IV PROGRAM

The FORTRAN IV programming language' is a machine-inde-
pendent programming language that was originally designed as a
quick and easy aid for solving mathematical equations and for-
mulas. However, FORTRAN IV is a powerful language and not

18 nne 11 o4 1]
MITPIMIIIT TN Ioarn Nr 1160 ann
\illiivual LU 1lvdAlil Vi udvy, Qaiu

kinds of applications.

1 11) 1 . a1
1@ algn wall @1nirtan Tn ' m
A0 QIDV YYUll DUiuvu vy ;u&ny ouvner

FORTRAN (FORmula TRANslation) is an algebraically-oriented
language. You write a FORTRAN program as a sequence of lan-
guage statements that combine common English words with
quasi-algebraic formulas. You then arrange groups of the lan-
guage statements into logical units called program units. One or
more program units comprise the entire executable FORTRAN
source program.

When you are satisfied with the logic of your FORTRAN source
program, you use the RT-11 editor to create it as a file (see
Chapter 5). You use tabs and spaces to format each line properly,
and you may choose to insert comment statements throughout
the source code to explain what various parts of the program are
doing. When you have finished creating the program as a com-
plete, edited file, you next enter it as input to the FORTRAN IV
language processor, which is stored on your system volume or on a
separate volume of its own. The FORTRAN IV language proc-
essor processes (compiles) the language statements, converting
them into internal machine-language code called object code.
This code is next processed by the system linker, which combines
your program units and necessary system-supplied routines to
make your program suitable for execution. The development of an
executable FORTRAN program is represented in Figure 9-1.

CREATE EDIT COMPILE LINK RUN

Figure 9-1 Evolution of a FORTRAN Program

'The PDP-11 FORTRAN IV programming language conforms to the specifica-
tions for American National Standard FORTRAN X3.9-1966.

THE FORTRAN IV
PROGRAMMING
LANGUAGE

Running a FORTRAN 1V Program

THE FORTRAN IV
LANGUAGE
PROCESSOR

USING LIBRARY

MODULES

The FORTRAN IV language processor is a compiler that accepts
information in one format (that is, your source program) and
translates it into another format (that is, a machine language
program). Since you originally use the editor to create a FOR-
TRAN source program in ASCII format, you must next translate
it into a machine format that the computer can use. The FOR-
TRAN compiler performs the translation, producing as output a
new version of the program in object format, called an object
module. You may optionally instruct the FORTRAN compiler to
produce a listing of the source program at the same time. Figure
9-2 is a diagram of the compiler’s function.

we wniEy
SOURCE - COMPILE > OBJECT
PROGRAM rows wier a _MODULE
f !‘s‘:; i Wethoen g e AR
LISTING
(OPTIONAL)

Figure 9-2 Function of a FORTRAN Compiler

Typical FORTRAN IV programs often require similar operations.
For example, most programs use routines and instructions that
calculate square roots, exponentials, and other arithmetic func-
tions; handle input and output operations; detect certain kinds of
error conditions; test values; calculate subscripts; perform
conversions; and other similar kinds of processes. Thus, these
commonly used operations have been gathered into a special file
called SYSLIB.OBJ (default System Library), which is provided
with the RT-11 operating system and is stored on your system
volume,

During processing of your source program, the FORTRAN IV
compiler examines each language statement in the program. If
you use operations that are provided in SYSLIB, the compiler
notes this and makes the appropriate references to SYSLIB. It
translates all the information gathered during processing (your
converted language statements and the references to SYSLIB)
into numerical data called object code, a machine language code
that the system linker can use. The result of the compilation,
therefore, is an object format file, called an object module, which
is automatically joined with SYSLIB (containing many object
modules) and with any other required object modules, at link
time. Linking all the necessary object modules together produces
a complete, workable FORTRAN program.

1RaAl) SERATHIE AV e WY j all

9-2

Running a FORTRAN IV Program

In Chapter 5 you used the RT-11 editor to create a FORTRAN
source program, which you then stored on your storage volume.
Since a source program is in ASCII format, the next step is to use
the FORTRAN IV compiler to convert it to object code.

Some RT-11 systems store the FORTRAN IV compiler on a
volume apart from the system volume.! You can quickly deter-
mine whether the FORTRAN IV compiler is on your system
volume by using the DIRECTORY command.

+DIRECTORY SY:FDRTRA.SAV

In the directory listing that results, if the directory entry for
FORTRA.SAV is included, then the required FORTRAN files are
on your system volume. However, if FORTRA.SAV did not ap-
pear in the directory listing, then the required files are not part of
your system volume. Before you can use the compiler, you must
make a volume substitution. Read the section in Appendix B

......

The next step involves using the monitor COPY command to copy
the FORTRAN source program from the storage volume (where
you stored it in Chapter 7) back to the system volume, which
serves as the default volume for input/output operations.

Remember that on your storage volume are two FORTRAN
source programs, the one you created (GRAPH.FOR) and the one
provided as part of the system (EXAMP.FOR). Which of these
you should use depends on the results of the source comparison
you performed in Chapter 6. If the comparison resulted in no

differences except for the title lines, copy your own program
(GRAPH.FOR) as follows:

Long Command Format

.COPY @ —1'"
From? VOL:GRAPH.FOR
To 7 GRAPH.FOR

Short Command Format
LCOPY UQL:EXAMP,FOR GRAPH.FOR @D
However, if differences were printed in addition to the title lines,

use the provided program (EXAMP.FOR) instead, copying it
under the new name GRAPH.FOR:

"This is true for any RT-11 system volume that does not have enough free blocks
to accommodate the FORTRAN system files. RX01 diskette is an example.

COMPILING THE
FORTRAN 1V
PROGRAM

Running a FORTRAN IV Program

FORTRAN

Long Command Format

+COPY (@ED
From? YOL:EXAMP.FOR @)
To 7 GRAPH.FOR GED

Short Command Format

+COPY VOL:EXAMP.FOR GRAPH.FOR @

The FORTRAN source file now resides on your system volume
under the name GRAPH.FOR and is the file that you will process
with the FORTRAN IV compiler. The command used to compile
a FORTRAN source program is the monitor FORTRAN com-
mand.

Use the FORTRAN command with its /LIST option to compile
your program and produce a listing, The system prompt asks you
to supply the input file name. You can omit typing the .FOR file
type since the FORTRAN command assumes this file type unless
you indicate otherwise. The system will assign the name
GRAPH.OBJ to the object module and GRAPH.LST to the
listing file and store both newly created files on your system
volume, which is the default storage volume for input/output op-
erations.

Long Command Format

+FORTRAN ’ S A
Files? GRAPH/LIST @D ‘

Short Command Format

+FORTRAN GRAPH/LIST

Compilation begins. If the compiler discovers an error during
processing, it prints a message. In this particular case, you should
see the following on your terminal printer or screen:

+MAIN,

TFORTRAN-I-L.,MAIN.,] Errors: S5+ Warnings: O
FUN

TFORTRAN-I-LFUN] Errors: 1 Warninds: O

This indicates that during processing, the FORTRAN IV compiler

P, ~ PR UPS R R U T e e T LV 1
found a total of six errors in the source program. it helps at this

9-4

Running a FORTRAN IV Program

point to look at the listing;produced by the compiler, because
more information is shown there. Print the listing on either the
line printer or terminal, using one of the following commands:

Long Command Format

(Line printer) (Terminal)
+ PRINT +TYPE GED
Files? GRAPH.LST @D Files? GRAPH.LSTGEED

Short Command Format
(Line printer) (Terminal)

+PRINT GRAPH.LST +TYPE GRAPH.LST
Your listing should look like the following example.

NOTE

You do not need to understand the FORTRAN [V lan-
guage or the way this program works to successfully
complete the exercises in this chapter.

FORTRAN IV VO2.1-10 TUE 08-Jan-80 12:14:07 PAGE 001

C GRAPH.FOR (VERSION 1)

C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
C OF AN EXTERNAL FUNCTIONs FUNCXY)
C THE LIMITS OF THE PLOT ARE DETERMINED BY THE DATA STATEMENTS
C "STAB" IS FILLED WITH A TABLE OF HEIGHT FLAGS
C "STRING" IS5 USED TO BUILD A LINE OF GRAPH FOR PRINTING
Qootl LOGICAL#*1 STRING(13:3):STAB(100)
Q0oz DATA XKMIN:XMAXMAXK/-5:5,45/
0003 DATA YMIN:YMAX sMAXY/-5:5,72/
Good DATA FMINFMAX/0.0,1.,0/
G0as SCAL (ZMINZMAX +MAXZ »K)=ZMIN+FLOAT(K-1) *# (ZMAX-ZMIN) /FLOAT(MAXZ-1)
Q006 CALL SCOPY(‘-1 2 3 4 56 78 8 +',8TAB)
Q007 MAXF=LEN(STAB)
Q008 DO 20 IX=1,MAXX
Q009 IIX=1IX
Q010 K=GCAL (XMIN s XMAX »MAXN 1IN
ooty CALL REPEAT (/%4 ,STRING MAXY)
00Lz2 IF(ITH,EQ,1 OR. IIN.EQ.MAXX) GOTO 20O
o014 DO 10 IY=2sMAXY-
001s IIY=IY
Q016 Y=8CAL(YMIN ¥MAX sMAXY »IIY)
0017 IFUN=25INT(FLOAT(MAXF-3)* (FUNCX +Y)-FMIN)/(FMAX-FMIN))
00ig 10 STRING(IIV)I=8TAB{(MINO(MAXF sMAXKCG{1,,IFUNIJ)
Q019 30 CALL PUTSTR(7:8TRING,’ ')
Q0zZo CALL EXIT
0021 END

FORTRAN IV
Diadrostics for Prodram Unit «MAIN.

In line 0002, Error: Modes of variable "XMIN" and data item differ
In line 0003, Error: Modes of variable "YMIN" and data item differ
Irn line 0008y Error: Reference to undefined statement label

In limne 0013y Error: Reference to undefined statement lacel

In line 0018 Error: Wrond number of subkscrirpts for arrav "STRING"
FORTRAN IV Storagde Mar for Program Unit +MAIN,

Local Yariakless PSECT $DATAs Size = 000340 (112, words)

Name Tvrpe Offset Name Tvepe O0Offset Name Tvre Offset

FMAX R#*4 000230 FMIN R#d4 0Q0QO0Z2 IFUN I#2
IIX I#2 000262 IIY i#2 000304 IX I*2
1Y I#2 Q00302 K I#2 000256 MAXF I*2
MANY I#2 0G0276 MAXY I¥2 000300 MAXZ I*2

Running a FORTRAN IV Program

MAXD I#2 Q00322 MINO I*2 000320 X R*d

HMAX R*d Q00272 HMIN R*d N R*d

YMAX R¥*4 000312 YMIN R*d ZMAX R*d

ZMIN R*d 000244

Local and COMMON Arravs:

Name Tvre Section Dffset Size Dimensians
S5TAB L*i sDATA aoo0d7 000144 o S50.) (100)
STRING L+t Uec $DATA Q00000 000047 2040 (1343}

Subroutiness Functions, Statement and Processor-Defired Functions:

Name Tvpe Name Tvere Name Tyepe Name Tvre Name Tyvee

EXIT R*4 FLOAT R*4 FUN ¥4 INT I*2 LEN I*2
PUTSTR R*4 REPEAT Rk*4 SCAL R*4 SCOPY R*4
FORTRAN IV VOZ.1-10 PAGE 001t
Q001 FUNCTION FUN(X Y}

0003 FUN=X*Y*R*¥EXP(-R))*%2

*EE%E P

0004 RETURN

000s END

FORTRAN IV Diadgnostics for Prodram Unit FUN

In line 0003+ Error: ([See source listingl
FORTRAN IV Storade Mar for Program Unit FUN

Local Variables,» .PSECT $DATA, Size = Q00020 (B8, words)
Name Tvpe Offset Name Type Offset Name Tvre Offset
FUN R¥d 000004 Eaqu R R*d4 000010 X R¥4 B 000000
Y R*d4 @ 000002

Subroutines, Functionss Statement and Processar-Defined Functions:

Name Trepe Name Trre Name Tvyre Name Tvepe Name Tyrpe
SORT R*d

The first part of the listing shows the main program unit and
consists of the language statements up to, but not including, the
function. This is followed by a diagnostics list, then by a storage
map. Next the language statements comprising the function pro-
gram unit are listed, again followed by a diagnostics list and a
storage map.

Before considering the individual sections of the program listing,
first examine the program logic to determine what this program
should do. The first few lines of this program are user comment
lines that briefly describe the program. Essentially, this program
produces on the terminal a graph of a “three-dimensional” func-
tion, FUN(X, Y). The graph is plotted using 45 lines down and 72
characters across the terminal page. The limits of the X and Y
axes are +5 and -5. The third dimension, height, is a real number
within the range 0 to 1 and is represented in the listing as a
number within a scale of 1 to 9. These dimensions are illustrated
in Figure 9-3.

The SCAL function determines the value of the next coordinate
on the graph. The statements within the DO loops calculate the
coordinates using the SCAL function and determine the height
value. This is done for an entire line of coordinates across the
terminal page. The entire line is then printed on the terminal,
using the CALL PUTSTR statement; the number 7 in this state-
ment is the FORTRAN method of naming the terminal as the
output device. This procedure is repeated until all 45 lines of the
graph have been printed.

Running a FORTRAN 1V Program

~4—————— 72 Characters ————————»

-5
7/
/
/
z /
/
[
i /
/ ’ /
/ .
——————————— -———————————/+5 45 Lines
/ /
,/
/ /
/
/
/
/
X //

Figure 9-3 Dimensions of FUN(X,Y)

The function to be plotted is shown in the last few lines of the
program. It is compiled as a separate program unit and you can
edit these lines to plot any function of your choice (several alter-
nate functions are suggested later in the chapter). -

This program as it stands contains errors. The compiler detected
certain error conditions during processing that prevent the pro-
gram from working properly. The compiler printed appropriate
messages in the diagnostics sections of the program listing.! Look
first at the messages following the main program unit. Errors were
discovered in lines 2, 3, 8, 13, and 18.

The messages for lines 2 and 3 indicate that the floating-point
variables “XMIN” and “YMIN” are assigned integer values. The
DATA statements must be changed. (Note that the same error
exists for “XMAX” and “YMAX”; however, the compiler lists
only the first error that it discovers in a line. Both “MAXX” and
“MAXY” are integer variable names, so no error exists for them.)
You must correct the DATA statements (lines 2 and 3), then, as
follows:

DATA XMIN XMAX I MAXK/-5.0:5.0.:45/
DATA YMIN¥YMAXMAXY/-53.0,:3.0,72/

The next two messages in the diagnostics section show that refer-
ence has been made from both lines 8 and 13 to an undefined
label. (Line 13 is actually the second portion of line 12, the GO

'Refer to the RT-11 System Message Manual for greater detail about any system
messages printed.

Running a FORTRAN IV Program

TO statement.) Statement label 20 is referenced in each case, but
only labels 10 and 30 are shown in the program. This indicates
that either a statement is missing, or that a typing error exists.
Examination of the program logic shows a typing error in line 19.
Label 30 should actually be 20. Correct line 19 as follows:

20 CALL PUTSTR(7,STRING:’ /)

The last message in this diagnostics section states that an incor-
rect number of subscripts was given for the array “STRING”.
Again, examination of program logic shows that the error is actu-
ally in line 1. “STRING” is really a vector (a one-dimension
array), not a matrix (a two-dimension array). Thus the comma is
a typing error and line 1 should be changed as follows:

LOGICAL*1 STRING(133),:STAB(100)

Skip next to the diagnostics section for the FUN program unit.
The message printed there refers you to the source listing, to line
3. A letter “P” appears next to this line. The RT-11 System
Message Manual describes a P error as an indication of unbal-
anced parentheses. Notice that the parentheses are not properly
matched in this line. Thus, line 3 should be corrected as follows:

FUN= (XY 2R*¥EXP(-R)) *%2

This explains the errors flagged by the compiler in the diagnostics
sections. Other sections of the program listing (storage map, for
example) simply provide additional information that is helpful to

e o e e ~at et e e sann

. . I, PR S P S T dlhn Jadm doamnn AL comn _— | I,
PIograiiliinesrs wilu wislil LU CIICCK UIC Udla Ly PEDd Ul valluus dY 111DUILS
and later make sure that object modules have been appropriately
linked.

Before you can continue the exercises in this chapter, you must
edit those statements in the source program that contain errors. If
necessary, review the editing commands in Chapter 5. Then use
the RT-11 editor to edit the file GRAPH.FOR on your system
volume so that the five lines are error-free. Do not rename the file.
When you are ready, recompile the program, using the FOR-
TRAN command, and obtain a new object module and a new
listing. This time the program should compile without error (that
is, no diagnostics should list). If diagnostics occur, you have not
edited the program correctly. Compare listings and try to correct
vour errors, or go back to the beginning of this chapter and repeat
the demonstration.

9-8

Running a FORTRAN 1V Program

The object module produced by the FORTRAN command is in
itself incomplete. As mentioned earlier, it needs parts of the
system library, SYSLIB, and perhaps other object modules and
libraries as well, to form a complete functioning program.! All
required object modules must be joined, or linked together, before
the program can work.

Even if your program did not require any other object modules,
you must still link it. In addition to joining object modules to-
gether, the link operation adjusts the object code to account for
many program units being placed one after the other. The resuit
of the link operation is a memory image load module, which is
actually a picture of what computer memory looks like just before
program execution. Figure 9-4 is a diagram of the link operation.

SYSLIB
Other OBJ's
 J
OBJECT > LINK > LOAD
MODULE MODULE

Figure 9-4 The Link Operation

To link the object modules, use the monitor LINK command. The
system prompts you to enter the names of the input modules and
any libraries other than the system library to be joined together.
You can omit typing the .OBJ file types in the command line,

since the LINK command assumes this file type for input. The

system automatically assigns the file name of the first input file.
“and a file type of .SAV to the output file. The linker will always
scan the SYSLIB library if it is present on the system volume.

'For more information on linking files and using library files, see Chapters 12
and 13 respectively.

9-9

LINKING OBJECT
MODULES
TOGETHER

LINK

Running a FORTRAN 1V Program

RUNNING THE
FORTRAN IV
PROGRAM

Some RT-11 systems store the linker (LINK.SAV) and the de-
fault system library (SYSLIB.OBJ) on a volume apart from the
system volume or the FORTRAN/BASIC language volume.! You
can quickly determine whether the system library is on your
system volume by using the DIRECTORY command.

+DIRECTORY SY:SYSLIB.OBJ

If SYSLIB.OBJ did not appear in the directory listing on your
terminal, the required files are not part of your system volume.
Before you can link GRAPH.OBJ, you must make a volume sub-
stitution. Read the section in Appendix B entitled Using the
LINK Volume.

Long Command Format

+LINK
Files? GRAPH @&

Short Command Format

+LINK GRAPH

Any messages printed on the terminal identify error conditions
discovered by the system during the link operation (for example,
if you fail to specify all the object modules that are needed as
input). However, assuming you edited your source program cor-
rectly and that it compiled without error, it should also now link
without error.

A load module,is one that you can run on the system. Unless your
program contains logic errors that prevent it from running prop-
erly (errors that the system cannot always detect), running the
.SAV version of your file should produce the results you intended.
However, if logic errors exist within your program, running the
program will produce either erroneous results or none at all. If this
is the case, you must study the source program, rework it, reedit
it, and perform the compile and link operations again.

If your FORTRAN program is error-free, running the .SAV ver-
sion should produce the expected results. In this demonstration,
running the GRAPH.SAYV file should produce a graph on the ter-
minal printer or screen.

"This is true for any RT-11 system volume that does not have enough free blocks
to accommodate the files required for linking. The RX01 diskette is an ex-
ample.

9-10

Running a FORTRAN IV Program

Before you run GRAPH.SAYV, you have the option of changing the
output device from the terminal printer or screen to the line
printer by using the monitor ASSIGN command to assign device
names (see Chapter 4, Assigning Logical Names to Devices). If
you prefer to print the graph on the line printer, simply assign the
logical device name 7 (which is the FORTRAN code for the ter-
minal) to the line printer code (LP:). You have designated a new
output device without altering the source program. To change the

device assignment to the line printer, type:

+AS5IGN
Physical ' 'device name? LP:
Lodical -“device name? 7

Short Command Format
+ASSICGN LP: 7

This assignment remains in effect until you deassign the names or
reboot the monitor.

Now, to execute the FORTRAN demonstration program, use the
monitor RUN command. You can omit typing the .SAYV file type
since it is assumed within the RUN command. Type:

Long and Short Command Format
+RUN GRAPH GED

After a brief pause, the graph begins to print on the terminal (or
line printer) and should look like the graph shown in Figure 9-5.

To produce these results, you first compiled the FORTRAN
source program (GRAPH.FOR), and finally linked it with the
default library (SYSLIB.OBJ), then ran the resulting .SAV file
(GRAPH.SAV). You can combine these three operations using
one monitor command, the EXECUTE command.

NOTE

In order to use the EXECUTE command, the following
files must be present on your system volume:

FORTRA.SAV LINK.SAV
GRAPH.FOR SYSLIB.OBJ

9-11

RUN

COMBINING
OPERATIONS

EXECUTE

Running a FORTRAN IV Program

If you have substituted the special LINK volume for
your system volume, you do not have the necessary
files to use the EXECUTE command. Proceed to the
next section, entitled Alternate Functions.

KKK KK KK KKK 50K K K 3K 3K KKK KK KK 3K 3K 3 3K KK KKK KK KKK K oK oK K oK oK 3K KK 3K 2K K K K oK oK 3K oK KK K oK K oK K K K K oK K

X 111111111341111111 1111131113111411114 X
X 111111111442111111111 1ii11i111141111111441 X
* 11113111 11111 11111 11111111 L
* 1111111 111t 1111 1111111 X%
*x 111111 22222222222 i1 111 111111 %
*11111 22222 2222 111 111 22 : 11111x%
¥1111 2222 3 22 11 11 22 2222 1111x%
x1111 222 333333333 22 11 11 22 333333333 222 1111x%
X111 22 333 333 22 11 11 22 333 333 22 111x%
X111 222 333 4444 332 1 i 233 4444 333 222 111x%
*111 222 33 4444444 3 2 11 11 2 3 4444444 33 222 111x%
%111 222 33 4444 444 33 2 11 11 2 33 444 4444 33 222 111%
X111 222 33 4444 444 3 2 11 11 2 3 444 4444 33 222 111%
*1111 222 33 44444444 33 2 11 11 2 33 44444444 33 222 1111x
11111 222 33 444 3 211 12 3 444 33 222 11111%
¥ 1111 22 3333 333 2 1 i 2 333 3333 22 1111 %
X 11111 222 22 11 11 22 222 11111 X
* 11111 222222222 111 111 222222222 11111 X
X 11111111 1111 1111 11111111 X
* 1111 1111 *
X X
X *
X *
X 1111 1111 X
X 11111111 1111 1111 11111111 X
X 222222222 111 111 222222222 1i111 X
X 222 22 11 11 22 222 11111 X
X 3333 333 2 1 1 2 333 3333 22 1111 %
X 33 444 3 211 112 3 444 33 1i111x%

33 44444444 33 2 11 11 2 33 44444444 33 1111x%
xiil 33 4444 444 3 2 ii il 2 3 444 4444 33 1iix
111 33 4444 444 33 2 11 11 2 33 444 4444 33 111%
*111 33 4444444 3 2 11 11 2 3 4444444 33 111%
X111 333 4444 332 1 1 233 4444 333 111%
¥111 333 333 22 11 11 22 333 333 111%
*1111 333333333 11 11 22 333333333 1111x
*1111 3 £ 1111%
11111 22222 11111x%
¥ 111111 111111 %
* 1111111 1111111 %
X 11111111 11111 11111111 X
X 1111114111 143114212112 11i1111111113112111111 *
X 111111111311213111111 1131111113111211111 *

AR AOKOKOK A KRR KR K AR A AK KK FOK AN K KKK A K KKK K KK KKK KKK R KKK KKK KOk

Figure 9-5 The Result of GRAPH.SAV

The EXECUTE command instructs the system to select the ap-
propriate language processor, then process, link, and run the pro-
gram. There are several ways to establish which language proc-
essor the EXECUTE command invokes. One way is to specify a
language-name option, such as /MACRO, which invokes the
MACRO assembler. Another way is to omit the language-name
option and explicitly specify the file type for the source files. The
EXECUTE command then invokes the language processor that
corresponds to that file type. Specifying the file GRAPH.FOR, for
example, invokes the FORTRAN compiler. A third way to estab-
lish the language processor is to let the system choose a file type
of .MAC, .DBL, or .FOR for the source file you name. If, for
example, you specify the file GRAPH, the monitor searches de-
vice SY: (your system device) for the files GRAPH.MAC,
GRAPH.DBL, and GRAPH.FOR, in that order. If it finds neither
GRAPH.MAC nor GRAPH.DBL, it invokes the FORTRAN lan-

9-12

Running a FORTRAN IV Program

guage process to compile GRAPH.FOR. For example, to combine
the compile-link-run operations that you performed in this
chapter, you would use the following command (do not actually
type this command until you have read the next section, Alter-
nate Functions):

Long and Short Command Format

+EXECUTE GRAPH/FORTRAN/LIST

The following are some alternate functions that you can substi-
tute in your FORTRAN source program to produce different
graphs. Simply reedit the program (GRAPH.FOR) so that lines
1-5 in the function portion at the end contain one of the following
alternate functions. Then compile, link, and run the programs as
described in the previous sections. If the necessary files are avail-
able on your system volume (see the previous section, Combining
Operations), use the EXECUTE command to run the program.
The source program compiles, links, and runs, and the new graph
automatically prints on the terminal (or line printer).

FUNCTION 1

FUNCTION FUNCXY)
FUN=EXP{-SORT(X**2+Y%%2))
RETURN

END

FUNCTION 2

FUNCTION FUN(X+Y)

R=SORT(XK*%2+Y%%2)
FUN=X*¥#(R-3,)/(1,+EXP(3.,#(R-3.:3)))
RETURN

END

FUNCTION 3

FUNCTION FUNCX.Y)
FUN=EXP(+SORT(X**2+Y%%2))/1177.4
RETURN

END

EXECUTE
Combine the compile-link-run operations into one command.

EXECUTE file
Combine the compile-link-run operations into one command.
Specify the libraries to be used during linking.

9-13

ALTERNATE
FUNCTIONS

SUMMARY:
COMMANDS TO
RUN FORTRAN
PROGRAMS

Running a FORTRAN 1V Program

FILE
MAINTENANCE

EXECUTE file/FORTRAN
Combine the compile-link-run operations into one command,
and specify the input file to be a FORTRAN file.

EXECUTE/LIST
Combine the compile-link-run operations into one command.
Obtain a listing file of the source program and print on line
printer.

FORTRAN
Compile the FORTRAN source program and produce an object
module.

FORTRAN/LIST
Compile the FORTRAN source program and produce both an
object module and a listing file.

LINK
Link individual object modules together to form a complete
program and produce a load module.

RUN
Run the indicated load module

Before continuing further you should perform the necessary file
maintenance operations.

NOTE

If you used a special LINK volume to perform this
demonstration, turn now to the section in Appendix B
entitlted FORTRAN/LINK File Maintenance.

Obtain a directory of all files on your system volume t 1at have the
name GRAPH regardless of file type; these files were created as a
result of the exercises in this chapter.

Long and Short Command Format

+DIRECTORY GRAPH.=*

08-Jan-80Q

GRAPH .BAK 2 19-Nouv-79 GRAPH .FOR 2 0B-Jan-80
GRAPH ,5AY 18 08-Jan-B0O GCRAPH .0B. 16 08-Jan-80
GRAPH .LST 8 0B-Jan-80

3 Files: 46 Blocks
797 Free blocks

ors in the source file

err
kot A1 Py
na 1

The fact that you have corrected
of file on your storage

ADADIT TNOD waaclras +ha vonaian
LiiE VEidivil

o

UnAalri.ruiy IaKkes

9-14

Running a FORTRAN 1V Program

volume obsolete. Thus, transfer the updated copy from your
system volume to VOL:, replacing the copy of GRAPH.FOR on
the storage volume with the new version.

Long Command Format

+ COPY @ED
From? GRAPH.FOR @
To 7 VOL:GRAPH.FOR @D

+.COPY GRAPH.FOR VOL:GRAPH.FOR G@ET

Similarly, transfer GRAPH.LST, GRAPH.OBJ, and
GRAPH.SAV to your storage volume. This allows you to examine
a listing or rerun the FORTRAN program without recompiling
and relinking the source.

Long Command Format

+COPY @D

From? GRAPH.LST.:GRAPH.OBJ ;GRAPH.8AY &ED
To 7 V0OL: G

Files corpied:

DK:GRAPH.LST to VOL:GRAPH.LST
DK:GRAPH.OBJ to VOL:GRAPH.OBJ
DK:GRAPH.8AV to YOL:GRAPH.GAV

Short Command Format

+COPY GRAPH.LST:GRAPH.0OBJ :GRAPH.SAY UOL: LD
Files coried:
DR:GRAPH.LBT t
DK:GRAPH.O0BJ to
DK:GRAPH.SAY t

to YOL:GRAFH.LS
YOL:GRAPH.OBJ
UOL:GRAPH.SAU

m

—

Once you have transferred all files of value to your storage
volume, delete the useless files from the system volume (that is,
all the GRAPH files):

Long Command Format

+ DELETE
Files? GRAPH.* @D
Files deleted:

DK:GRAPH.BAK 7 Y @D
DK:GRAPH.5AV 7 Y G
DK:GRAPH.FOR * Y @
DK:GRAPH.LST 7 VY GO
DK:GRAPH.OBJ 7 Y G

9-15

Running a FORTRAN IV Program

REFERENCES

Short Command Format

+DELETE GRAPH.*
Files deleted:

DK:GRAPH.,BAK 7 Y
DK:GRAPH.BAV 7 ¥ @)
DK:GRAPH.FOR 7 ¥
DK:GRAPH.LST 7 Y
DK:GRAPH.OBJ 7 ¥ @

Finally, obtain an up-to-date directory listing of your storage
volume so that you can see its current status:

Long and Short Command Format
.DIRECTORY VOL:

08-Jan-80

SUM +MAC 3 08-dan-80 EXAMP .MAC 3 18-Nov-789
GRAPH .FOR 2 0B8-Jan-BO EXAMP .FOR 2 18-Nov-789
GRAPH ,S5AY 18 08-Jan-80 GRAPH .LST 8 08-Jan-80
GRAPH .0BJ 16 08-Jan-80

7 Filess 52 blocks
4710 Free blocks

This completes the FORTRAN demonstration. Continue to
Chapter 12 to read about the linking process. If you followed
the special instructions in Appendix B to load the language
volume, leave this volume in device unit 0 until you have finished
Chapter 12.

McCracken, Daniel D., A Simplified Guide to FORTRAN Programming. New
York: Wiley, 1974.

An introduction to programming in the FORTRAN language.

PDP-11 FORTRAN Language Reference Manual (DEC-11-LFLRA-C-D,
DN1). Maynard, Mass.: Digital Equipment Corporation, 1977.

A reference manual and guide to programming in the PDP-11 FORTRAN
IV language.

RT-11 FORTRAN IV Installation Guide (AA-5240B-TC). Maynard, Mass.:
Digital Equipment Corporation, 1978.

An RT-11-specific manual that contains instructions for installing the
RT-11 FORTRAN langusge processor, and describes differences between
versions and known problems.

RT-11 RSTS-E _FORTRAN IV User's Guide (DEC-11-LRRUB-A-D).
Maynard, Mass.: Digital Equipment Corporation, 1977.

An RT-11-specific manual that contains information necessary to com-
pile, link, run, and debug a FORTRAN IV program.

9-16

CHAPTER 10

RUNNING A BASIC-11 PROGRAM

The BASIC-11 program language! is a machine-independent pro-
gramming language that is one of the easiest languages for the
beginning programmer to learn. It has both elementary language
features that you use to write simple programs, and more ad-

wanAann AMmaratinNng hat allaer nradl fnmnloy anA

vcuu,cu Uycxauuun bllab QLiuYy yuu bU IJLUUU\;C \JULLIP].UA auu effi'
cient programs. In addition, a special “immediate mode” lets you
use BASIC like a calculator to obtain instant answers to mathe-
matical problems.

BASIC (Beginners All-purpose Symbolic Instruction Code) is
conversational in nature. It uses simple English keywords and
common mathematical expressions to form easily understood lan-
guage statements.

You write a BASIC program as a series of one or more program
lines. You begin each program line with a number that both iden-
tifies the line and indicates the order in which the line will be
processed. Individual program lines contain one or more BASIC
language statements that define the operations to be performed.

When you are satisfied with the logic of your BASIC source pro-
gram, you create it as a file. However, unlike other programming
languages that you may use, you create the file under the control
of the BASIC language processor, which is part of the RT-11
operating system and is stored on your system volume or on a
separate volume of its own. Thus, you use commands that are
part of the BASIC language processor to create and edit the pro-
gram, list it, run it, and save it for later use.

The BASIC language processor is an interactive interpreter. It
allows you to create and execute a program in its entirety or a few
lines at a time. The interpreter examines each program language
statement, interprets it, and executes it before going on to the
next. If it discovers an error that prevents further processing, it
prints a message on the terminal informing you of the error condi-
tion and stops. You correct the error so that execution can con-
tinue past that point, and then rerun the program.

'BASIC-11 is a superset of the standard BASIC language developed at Dart-
mouth College.

10-1

THE BASIC-11
PROGRAMMING
LANGUAGE

THE BASIC
LANGUAGE
PROCESSOR

Running a BASIC-11 Program

USING
THE BASIC
INTERPRETER

BASIC

CREATE EDIT

Y

Y

|

I

|

I

I

RUN |
I

|

|

Figure 10-1 Functions of the BASIC Language Processor

The functions of program creation, editing, processing, and exe-
cution are all handled by the BASIC language processor. Some
RT-11 systems store the BASIC interpreter (language processor)
on a volume apart from the system volume.! You can quickly
determine whether the BASIC interpreter is on your system
volume by typing the monitor DIRECTORY command and speci-
fying the BASIC.SAV program.

+DIRECTORY BASIC.S5AV @D

In the directory listing that results, if the directory entry for
BASIC.SAV is listed on your terminal, then the required BASIC
files are on your system volume and you are ready to use the
interpreter. However, if BASIC.SAV did not appear in your
listing, then the required files are not part of your system volume.
Before you can use the interpreter, you must make a volume
substitution. Read the section in Appendix B entitled Using the
FORTRAN/BASIC Language Volume.

Now use the monitor BASIC command to activate the BASIC
interpreter:

Long and Short Command Format

» BASICGED
BASIC-11/RT-11 VOZ-03B
OPTIONAL FUNCTIONS (ALL: NONE: OR INDIVIDUAL)?

A prompting message is printed by BASIC. You must respond
with an A, N, or I and a carriage return to indicate whether you
want to preserve all, none, or some of the arithmetic functions
initially provided by BASIC. BASIC’s functions include opera-

"This is true for any RT-11 system volume that does not have enough free blocks
to accommodate the BASIC system files. RX01 diskette is an example.

10-2

tions that calculate random numbers, determine absolute values,
convert octal and binary numbers to decimal, and so on. You can
conserve memory space by saving only those functions that your
program needs. However, for now, instruct BASIC to save all the
functions by typing:

AGED
READY

BASIC prints the READY message to indicate that it is ready to
accept a BASIC command. Any text that you type that is not
preceded by a BASIC command is accepted as program (or imme-
diate mode) input. If at any time you wish to return to the mon-
itor command mode, simply type the BYE command following
the READY message. READY appears after any BASIC execu-
tion that is completed or interrupted by a double CTRL/C, or
after any BASIC wait condition that is terminated by a single
CTRL/C.

NOTE

You do not need to understand the BASIC language or
the way the examples work to successfully perform the
exercises in this chapter.

Immediate mode allows you to use the BASIC interpreter like a
calculator to obtain immediate answers to arithmetic problems.
You enter the appropriate BASIC statement keyword and any
necessary mathematical formula.' When you type a carriage re-
turn (the RET key), BASIC immediately calculates and prints
the results. Use the terminal DELETE key and the CTRL/U com-
mand to correct any typing errors. For example, type:

PRINT {128475:%3 G
609

BASIC adds the two numbers in parentheses, multiplies them by
3, and prints the answer. The PRINT statement causes the an-
swer to be printed on the terminal. As another example:

OETRT TNTDN C=y G
[N S doi — =4 Sud e
34

READY

The greatest integer less than or equal to 34.67 is printed.

10-3

Running a BASIC-11 Program

BYE

immediate Mode

PRINT

Running a BASIC-11 Program

Creating and
Editing a
BASIC Program

SuB

You can combine several statements on a single line, or on several
lines, including variable names, arithmetic equations, and data.
Individual statements are separated from one another by a back-
slash (\) character. BASIC considers all the information, calcu-
lates the answer and prints it on the terminal. For example:

A=0\B=14\C=,372896D

READY
PRINT "THE HEIGHT IS"3iA*SIN(C)+Bi"METERS"@ED
THE HEIGHT IS 15.8216 METERS

READY

The first statement equates variable names with values; the
second statement introduces a formula for calculating a result
and prints it.

You can use immediate mode to solve fairly lengthy and compli-
cated mathematical problems by combining statements and
printing identifying messages. However, immediate mode infor-
mation is temporary. You cannot save it, and you can change it
only by retyping every statement line. If your needs are more
complex, or if you want to save your statements, you should
create a BASIC program.

To create a BASIC program, simply assign line numbers to lan-
guage statements and then type the numbered statements on the
terminal keyboard.

Now your program lines are saved in memory and you can
transfer program control to specific lines within the program, re-
peat parts of the program any number of times, store the entire
program for later use, and perform other similar operations that
are not possible in immediate mode.

Once you have created the program, you use BASIC editing com-
mands to list lines, change lines, add and erase lines, and correct
typing errors. In addition to the DELETE key and the CTRL/U
command, BASIC provides a SUB command (SUBSTITUTE) for
correcting typing errors. This command allows you to substitute
new characters for existing ones in a line. For example, type:

10 PRINT "THIS IS5 A& BADIC PROGRAM"
SUB 10 EBADBBASE G
10 PRINT “"THIS IS A BASIC PROGRAM"

EAny
[=S = 1P

10-4

The SUB command substitutes the letters BAS for BAD in line
10. Use a delimiting character (shown here as @) to separate the
old text from the new. The delimiter can be any character as long
as it is unique in the line. The corrected line is automatically
printed by BASIC after you use the command. As another ex-
ample, type:

15 B=10\C=5
20 LET A-B+CAPRINT C GO

i . . .
TUNIN P o h
WO vy pi l 11Ul nil IU ~i\J g

There are two -5
the C at the end of the line should be A. Thes
corrected with the SUB command, as follows

can be

a

error

wn

SUB 20 B-B=B
20 LET A=B+C \ PRINT C

READY

SUB 20 ECRARZ @ED

20 LET A=B+C \ PRINT A
READY

The second SUB command changes the second occurrence (speci-
fied by the 2 after the last @) of C to A.

You can erase an entire line by typing the line number followed
by a carriage return,

10
or by using BASIC’s DEL command!. Use the DEL command
(DELETE) to erase a single line or several:

DEL 15-20@D

This erases all numbered statement lines with numbers between,
including lines 15 and 20.

To list lines of a program, BASIC provides the LIST command.
First, create a few program lines:

5 FOR I=1 TO 10

20 INPUT O GED

253 LET T=T+d

S0 NEXT I @D

55 PRINT "THE TOTAL IS"iT G
88 END

'Do not confuse the BASIC DEL command with the DELETE key on the ter-
minal keyboard.

10-5

Running a BASIC-11 Program

LIST

Running a BASIC-11 Program

List individual lines by specifying the line number. For example,
type:

LIST 5 @
NONAME 08-JUL-77 00:18:49
3 FOR I=1 TO 10

READY

Notice that BASIC prints a header line. Since you have not as yet
assigned a name to your program, BASIC assigns it the name
LISTNH NONAME and prints this name, along with the date (which is
only correct if previously entered via the DATE monitor com-
mand) and the time when you use the LIST command. You can
omit the header line by using the LISTNH command instead of

the LIST command:

LISTNH 50-88

S0 NEXT I
35 PRINT "THE TOTAL IS"3T
88 END

READY

By typing the LIST or LISTNH commands without indicating
any line numbers, you can print on the terminal a listing of your
entire program. Terminate the command with a carriage return:

LISTNH

= OEME T =4 T 4
wl [™ A E S 4 [4w

20 INPUT J

23 LET T=T+dJ

30 NEXMT T

53 PRINT "THE TOTAL IS":T
88 END

READY

Finally, to erase the entire program, which you must do before
SCR typing a new program, use the SCR (SCRATCH) command.
Type:

SCR G

READY

10-6

Running a BASIC-11 Program

All program lines are erased from memory.

line # SUMMARY:
Erase the indicated program lines. BASIC EDITING
COMMANDS

DEL line #

Erase the indicated program lines.

LIST
List the entire program and print a header that includes the
program name, date, and time.

LIST line #
List the indicated lines and print a header that includes the
program name, date, and time.

LISTNH

List the entire program but do not print a header.

LISTNH line #
List the indicated lines but do not print a header.

SCR
Erase all program lines from memory and change the name to
NONAME.

SUB line #@FIRST@SECOND@n
Replace the nth occurrence of the FIRST character(s) with the
SECOND character(s) in the indicated line (default is n=1).

Create the following demonstration program?, using the appro-
priate BASIC editing commands, exactly as it appears here. If
you forget to insert a line, type it at the end or when you notice
the omission; BASIC sorts and arranges lines by number before
execution, regardless of the order in which they are typed. When
you have finished, list the entire program and make a final check
for typing errors.

100 REM THE PROGRAM 23 MATCHES

101 REM
110 PRINT “WE BEGIN WITH 23 MATCHES. ¥0U MOVE FIRST. YOU MAY TAKE"
115 PRINT “1s 2, OR 3 MATCHES. TvFE OUR CRHOICE FOLOOWED BY A Cak-

120 PRINT "RIAGE RETURN, THEN THE COMPUTER CHOOSES t, 2, OR 3"
125 PRINT "MATCHES, YCU CHOOSE AGAIN. AND S0 0N, WHOEVUER MUST"
225 PRINT "TAKE THE LAET MATCOR. LOSES.”

140 PRINT \ LET M=23

'93 Matches, 101 BASIC Computer Games, Maynard, Mass.: Digital Equip-
ment Corporation, 1975.

10-7

Running a BASIC-11 Program

RUNNING A
BASIC PROGRAM

RUN

200 REM THE HUMAN MOVES

201 REM

210 PRINT \ PRINT “THERE ARE NOW"3iMi"MATCHES,"
215 PRINT N\ PRINT "HOW MANY DD Y0OU TAKE"}

230 INPUT H

240 IF H:*M THEN 510

250 ©*INT(H THEN 510

260 THEN 510

270 IF Hx=4 THEN 510

280 LET M=M-H

290 IF M=0 then 410

300 REM THE COMPUTER MOVES

301 REM

305 IF M=1 THEN 440

310 LET R=M-4%INT(M/4)

320 IF R<>1 THEN 350

330 LET C=INT(3*#RND)+1 \ GO TO 3B0

350 LET C=(R+3)-4*INT((R+3)/4)

360 LET M=M-C

370 IF M=0 THEN 440

380 PRINT \ PRINT “THE COMPUTER TOOK"3SC3i"...,"3
390 GO TO 310

400 REM SOMEBODY WON

401 REM

410 PRINT \ PRINT "THE COMPUTER WCN." \ GO
440 PRINT \ PRINT "YOU WON." \ GO TOD 999
500 REM BAD INPUT

501 REM

510 PRINT "ENTER ONLY 1, 2y OR 3." \ GO TO Z15
999 END

-4
o
w
[}
[z}

As you can see from the first few lines of the listing, this program
is a mathematical game where you match your logic against the
program logic. The PRINT statements in the program print mes-
sages, game instructions, results, and so forth, on the terminal.
The REM statements identify comment lines — remarks that
provide general information about the program, but that are ig-
nored by BASIC during processing. The INPUT statement in line
230 allows you to supply data from the terminal. Depending on
the value you enter, program control transfers to various other
parts of the program. For example, if you type an illegal value,
program control skips ahead to a PRINT statement in line 510
informing you of your mistake and then returns to line 215 to ask
for a value again. The mathematical algorithms of this program
are in lines 310 through 350, which determine the number of
matches the computer will select based on your choice.

Once you have typed the program and checked the listing to be
sure that it corresponds to the example, you are ready to run it.
The BASIC RUN command initiates program execution. This
command prints a header that includes the program name, data,
and time. If you want to omit the header line, type the RUNNH
commmand instead.

RUNNH

10-8

If you typed the program correctly, you will see this text print on
your terminal:

WE BEGIN WITH 23 MATCHES. YOU MOVE FIRST. ¥YOU
MAY TARKE 1+ 2+ OF 3 MATCHES. TYPE YOUR CHOICE
FOLLOWED BY A CARRIAGE RETURM. THEN THE COM-
PUTER CHOOSES 1+ 2, OR 3 MATCHES. YOU CHOOSE
AGAINM: AND SO ON. WHOEVER MUST TAKE THE LAST
MATCH: LOSES.

THERE ARE NOW 23 MATCHES.

HOW MANY DO YDU TAKE?

NOTE

If this response does not appear, you have not entered
the program correctly. Compare your listing very care-
fully against the one provided earlier. Spacing does
not matter, but all other characters must match. To
correct your errors type CTRL/C, which, under control
of BASIC only, returns you to BASIC command mode,
indicated by the READY message. Correct the pro-
gram and then rerun it.

When the program pauses and asks you a question, you must
supply data, in this case a 1, 2, or 3. Type your choice (repre-
sented here by n), followed by a carriage return:

n @D
PSYNTAX ERROR AT LINE 230

READY

BASIC discovered an error! in line 250 that prevents further pro-
cessing. Check line 250 in your listing or list it on the terminal:

250 IF H<*INT(H THEN 3510

READY

'Refer to the RT-11 System Message Manual for greater detail about any mes-
sages printed during normal system use.

10-9

Running a BASIC-11 Program

Running a BASIC-11 Program

CTRL/C CTRL/C

Note that a right parenthesis is missing after the second H in this
line. Correct the line using the SUBSTITUTE command:

SUB 250 B(HE(H)E
250 IF H«<*INT(H) THEN 510

READY

You are ready to run the program again. Type:

RUNNH

BASIC begins processing at the start of the program.

WE BEGIN WITH Z3 MATCHES. YOU MOVE FIRST. YOU
MAY TAKE 1+ Z» OR 3 MATCHES. TYPE YOUR CHOICE
FOLLOWED BY A CARRIAGE RETURN. THEN THE COM-

PUTER CHOOSES 1, 2, OrR 3 MATCHES. YOU CHOOSE

AGAIN: AND S0 ON., WHOEVER MUST TAKE THE LAST

MATCH:» LOSES.,

HOW MANY DO YOU TAKE®Y

Type your choice again. But notice this time that a different kind
of error is detected. The BASIC interpreter has entered an infinite
loop, a series of commands that it repeats endlessly. After several
lines have printed, type a double CTRL/C; this interrupts execu-
tion and returns control to BASIC command mode.

n (RET

THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
STOP AT LINE 380

Ll = J = = MR MW~ -

READY

10-10

An infinite loop is a programming logic error. However, since the
error does not prevent processing, BASIC does not print an error
message. Instead BASIC is caught in a loop of instructions and
executes them endlessly. This particular loop is obvious because
it prints a line of text; other kinds of loops may not be so evident.
At this point you must examine the program logic to determine
why these instructions are being repeated.

Look at your listing of this program. The problem in this case is in
line 390. This line instructs program control to return to line 310;
therefore lines 310 through 390 are repeated endlessly without
ever obtaining your next value choice. Program control should
really return to line 210. Correct line 390 as follows:

SUB 390 E310BZ10E
380 GO TO 210

READY

Now you are ready to run the program again. This time the entire
program should execute without error. Enter your value choices
when requested. (A hint to playing the game: your first value
choice determines whether you can win; if your first choice is
wrong, the program has the advantage throughout.) A sample run
follows.

WE BEGIN WITH 23 MATCHES. YOU MOVE FIRST. YOU
MAY TAKE 1 2, OR 3 MATCHES. TYPE YOUR CHOICE
FOLLOWED BY A CARRIAGE RETURN. THEN THE COM-
PUTER CHOODOSES 1. 2 OR 3 MATCHES. YOU CHOOSE
AGAIN: AND SO ON, WHOEVER MUST TAKE THE LAST
MATCH. LOSES.

THERE ARE NOW 23 MATCHES.
HOW MANY DO YOU TAKE?T 1 &

THE COMPUTER TOOK 1 ...
THERE ARE NOW 21 MATCHES.

HOW MANY DO YOU TAKE? 1 &D

THE COMPUTER TOOK 3 4.
THERE ARE NOW 17 MATCHES.

HOW MANY DO YOU TAKE? 2 G

THE COMPUTER TOOK 2 44
THERE ARE NOW 13 MATCHES.

10-11

Running a BASIC-11 Program

Running a BASIC-11 Program

SUMMARY:
BASIC EXECUTION
COMMANDS

FILE
MAINTENANCE

HOW MANY DO YOU TAKE?T 1 G

THE COMPUTER TOOK 3 ..+
THERE ARE NOW 9 MATCHES.

HOW MANY DO YOU TAKE? 1

THE COMPUTER TOOK 3 444,
THERE ARE NOW 5 MATCHES.

HOW MANY DO ¥YOU TAKE? 3

THE COMPUTER TOOK 1 ...
THERE ARE NOW 1 MATCHES.

HOW MANY DO YOU TAKE? O
ENTER ONLY 1. 2, OR 3,

HOW MANY DO YOU TAKET 1
THE COMPUTER WON.

READY

RUN
Execute the BASIC program currently in memory; print a
header line including the program name, date, and version
number.

RUNNH
Execute
1
1

Lands

the BASIC program currently in memory; omit the
header lin

i1ie.

CTRL/C

TInder control of RASIC iny’ intgrrupf axecution of th

w22 0 227 a v vavuvwuiy,

program and return control to BASIC command mode.

BYE
Return control to monitor command mode (only when using
BASIC).

You can transfer the BASIC program currently in memory to a
storage volume by using the SAVE command of BASIC. The
SAVE command copies the program to the storage volume giving
it the file name and file type that you indicate in the command
line. A file type of .BAS is assigned automatically unless you

indicate otherwise.

F8 L34

10-12

Use the SAVE command to store this BASIC program as
MATCH.BAS on the storage volume (VOL:) as follows:

SAVE YDOL:MATCH GED

READY

After

create a new program in memory by typing the BASIC NEW
command. This command erases the current memory contents
and asks you for a new program name:

ou save a BASIC program on you can

(%
<)

NEW @D
NEW FILE NAME--

Type any file name you wish and BASIC assigns it to the file you
create. Or you can respond by typing only a carriage return;
BASIC then assigns the file name NONAME.

Another way to create a new program in memory is to type the
BASIC SCR command. This command simply erases the current
memory contents. It assigns the name NONAME:

S5CR @D

READY

To use an existing BASIC program, one that you have previously
stored on a storage volume, type the BASIC OLD command:

o EET
e bt Y

OLD FILE NAME--

Reply by typing the device name, file name, and file type of the
file that you want to use. If you omit an explicit device name,
BASIC assumes DK: (the default volume); if you omit an explicit
file type, BASIC assumes .BAS. BASIC erases memory and then
copies the program from the volume into memory. For example,
tvpe:

WOL:MATCH
READY

This copies VOL:MATCH.BAS back into memory.

10-13

Running a BASIC-11 Program

SAVE

NEW

OoLD

Running a BASIC-11 Program

SUMMARY:
BASIC FILE
MAINTENANCE
COMMANDS

Assume that you have edited or changed the MATCH.BAS file
and now want to transfer it back to VOL:. Since the file already
exists as MATCH.BAS on that volume, you must use the BASIC
REPLACE command:

REPLACE VOL:MATCH

READY

The REPLACE command replaces an existing file with a new

Version.

The SAVE and REPLACE commands copy a BASIC program
from computer memory to a storage volume. As these commands
copy the program, they convert it from the internal format used
by BASIC to ASCII format. Thus, you can, if you prefer, use the
RT-11 editor to create and edit BASIC programs, since the editor
also uses ASCII format. However, many users would rather use
BASIC to create and edit a BASIC program, since they can then
run the program, reedit it, rerun it, and save the new
version — all in BASIC command mode — rather than perform
the several corresponding monitor commands.

The last file maintenance operation that you should perform is to
obtain an up-to-date directory of your storage volume so that you
can see its current status; however, you must return to monitor
command mode to do this. Type the BYE command; this BASIC
command (rather than CTRL/C) returns control to monitor com-
mand mode. Next use the DIRECTORY monitor command to
check the status of your storage volume.

BYE

JLDIRECTORY/BRIEF WOL:
08-Jan-80

SUM +MAC EXAMP
MATCH .BAS GRAPH
8 Files, 55 Blocks
4707 Free blaocks

+MAC
+LST

GRAPH
GRAPH

+FOR
.0BJ

EXAMP .FOR GRAPH .5AV

NEW
Create a new BASIC program, assigning the file name indi-
cated.

OLD

Copy into memory (for use under BASIC) an existing BASIC
program.

10-14

Running a BASIC-11 Program

REPLACE
Copy the BASIC program currently in memory to the indicated
storage volume, replacing the version that already exists on
that volume.

SAVE
Copy the BASIC program currently in memory to the indicated
storage volume.

This completes the BASIC demonstration. Before you continue to
Chapter 14 to learn about program debugging, make sure that the
main system volume is loaded in device unit 0. If you followed the
special instructions in Appendix B to load the language volume,
you should now stop the system, unload that volume, load the
- main system volume, and rebootstrap the system.

BASIC-11 Language Reference Manual (DEC-11-LIBBB-A-D). Maynard, REFERENCES
Mass.: Digital Equipment Corporation, 1976.

A reference manual and guide to programming in the BASIC-11 language.

BASIC-11/RT-11 Installation Guide (DEC-11-LIBTA-A-D). Maynard, Mass.:
Digital Equipment Corporation, 1977.

An RT-11-specific manual that contains instructions for installing the
RT-11 BASIC language processor and lists known probiems and differ-
ences between versions.

BASIC-11/RT-11 User’s Guide (DEC-11-LIBUA-A-D,DN1). Maynard, Mass.:
Digital Equipment Corporation, 1978.

An RT-11-specific manual that contains information necessary to create,
edit, run, and debug a BASIC program.

10-15

CHAPTER 11

RUNNING A MACRO-11 ASSEMBLY LANGUAGE PROGRAM

The MACRO-11 programming language is a machine-dependent
programming language developed for the PDP-11 programmer, or
for the FORTRAN IV programmer who intends to combine as-
sembly language routines and FORTRAN routines. The
MACRO-11 language enables the knowledgeable programmer to
access all the features of the RT-11 computer system using a

precise and efficient programming code.

The MACRO-11 assembly language uses the PDP-11 instruction
set, a list of mnemonic instructions that correspond to various
PDP-11 computer operations. These instructions allow you to
add, compare, increment, complement, and perform many other
manipulations on numerical data. The instructions are summa-
rized in a pocket-sized folding card, called the PDP-11 Program-
ming Card (Figure 11-1), and are described in detail in the
PDP-]11 Processor Handbook. By choosing the appropriate in-
structions and by providing any additional data needed, you can
create a complete program.

Bl pdpn

Poyimieg Covd

—1

-
-

il

Pams & -

L]
Miean 8 oy Unwme
s e
Cede Omasin
- Lk
- -
- — —

Gfidel squeprmad eomibion

Figure 11-1 PDP-11 Programming Card

You write the MACRO-11 program as a sequence of lines, each a
single assembly language statement in the following format:

LABEL: OPERATOR OPERAND(S) COMMENTS

The operator and/or operand are either instructions selected from
the PDP-11 instruction set, data needed by the instructions, or
assembler directives (instructions to the assembler to guide the
assembly process). The optional statement label identifies the
statement line so that you can refer to the instructions or data on
that line from other parts of the program. Optional comments

11-1

THE MACRO-11

ASSEMBLY

LANGUAGE

Running a MACRO-11 Assembly Language Program

THE MACRO-11
LANGUAGE
PROCESSOR

describe generally what operations are being done. Sequences of
language statements constitute a routine (to perform a specific
function); groups of routines and data compose the entire execut-
able program.

When you are satisfied with the logic of your MACRO-11 source
program, you use the RT-11 editor to create it as a file (see
Chapter 5). You use tabs and spaces to make the program more
readable. When you have finished creating the program as a com-
plete, edited file, you next enter it as input to the MACRO-11
language processor, which is part of the RT-11 operating system
and is stored on your system volume. The MACRO-11 language
processor processes (assembles) the language statements, con-
verting them into an internal machine language code called object
code. This code is next processed by the system linker, which
combines your program units,and make the program suitable for
execution. Figure 11-2 represents the development of an execut-
able MACRO-11 program.

CREATE [EDIT ASSEMBLE LINK RUN

Figure 11-2 Evolution of a MACRO-11 Program

The MACRO-11 language processor is an assembler that accepts
information in one format (that is, your source program) and
translates it into another format (that is, a machine language
program). The assembler interprets and processes the assembly
language statements, one at a time, and generates one or more
computer instructions or data items. Since you originally use the
editor to create a MACRO-11 program in ASCII format, you must
next translate it into a machine format that the computer can
use. The MACRO-11 assembler performs this conversion, pro-
ducing as output a new version of the program in object format,
called an object module. You may request the MACRO assembler
to produce a listing of the source program at the same time. The
roie of the assembier is represented beiow in Figure 11-3.

V"‘ Lo "",
SOURCE > ASSEMBLE »| OBJECT
PROGRAM LT MODULE
it FUN gL :
LISTING
(OPTIONAL)

Figure 11-3 Function of a MACRO-11 Assembler

11-2

Running a MACRO-11 Assembly Language Program

During assembly processing, the MACRO-11 assembler:

e Accounts for all instructions used within the source pro-
gram and determines their relative positions in com-
puter memory; it does this by means of a storage loca-
tion (program) counter.

e Keeps track of all user-defined symbols and their re-
spective values in a symbol table.

e Converts assembly language mnemonics, user-defined
symbols, and data values into their respective machine
language (object code) equivalents.

The program counter keeps track of addresses in computer
memory where instructions and data will be stored.

PDP-11 computer memories are composed of physical storage
locations that can hold numerical data. These locations are
numbered consecutively from 0 up to the highest memory loca-
tion, which varies according to the amount of memory acquired
with the computer system (Figure 11-4). PDP-11 computers used
in an RT-11 system have at least 16,384 bytes (8,192 words); most
RT-11 systems have more than that number.

CONVERTED INSTRUCTION

CONVERTED INSTRUCTION

CONVERTED INSTRUCTION

Figure 11-4 PDP-11 Computer Memory

11-3

The Program
Counter

Running a MACRO-11 Assembly Language Program

The Symbol Table

Machine
Language Code

During processing, the assembler converts each program language
statement into numerical data (the object code) and assigns the
data a relative storage location. The system linker will convert the
relative storage locations assigned by the assembler to absolute
storage locations in the computer memory.! The location’s associ-
ated number is called its address. As the assembler translates and
assigns each statement, it updates the value of the program
counter accordingly.

Since you may not know which locations, or how many locations,
the program needs, you use symbolic names (variables, constants,
and labels) to represent individual locations and their contents.
As the assembler processes the source program, it constructs a
symbol table, which is a compiled list of all the symbolic names
and labels that you have used within the program. The
MACRO-11 assembler defines each symbolic name by assigning
an address or data value, as appropriate, and adds the symbol
definition to the symbol table. After assembly, you can refer to
the symbol table, which is printed at the end of the assembly
listing, to find all symbol definitions.

The third function of the assembler is to convert your MACRO-11
source language statements into machine language code (the ob-
ject module).

NOTE

The following information will help you understand the
assembly listing used later in this chapter.

Machine language code is numerical data in the form of binary
numbers (numbers composed of only the digits 0 and 1). Binary
numbers are appropriate because the digits 0 and 1 can be easily
manipulated by the two-state electronic logic of the computer.

For example, a typical assembled instruction in PDP-11 com-
puter memory looks like this:

location location

address contents
01000 11000000
01001 11100101

"The system linker is discussed in Chapter 12.

11-4

Running a MACRO-11 Assembly Language Program

Since a single instruction requires two (or more) consecutive
memory locations, the instruction is actually put together in
memory in the following manner:

01001 11100101 11000000 01000

Each individual digit of the instruction is called a bit (binary
digit). A single memory location, called a byte, contains 8 bits;
two memory locations, called a PDP-11 word, contain 16 bits.

The byte in the even-numbered memory address is called the low-
order byte and is stored first; the byte in the odd-numbered
memory address is called the high-order byte and is stored next.
Both bytes together form one PDP-11 16-bit word (Figure 11-5).

PDP-11 Word
01001111001011100000001000
‘\\‘\T etc.
bit
N -~ NG ~ .
High-order byte Low-order byte

Figure 11-5 PDP-11 Word

The computer works in terms of 8-bit bytes and 16-bit words of
binary data. However, binary numbers are generally too long and
cumbersome to be used effectively by a programmer. But binary
numbers can be easily represented as octal numbers (numbers
composed of digits within the range 0 to 7). Since octal numbers
are closer to the familiar decimal number system and are much
more readable than binary numbers, the programmer more often
uses octal numbers than binary numbers.

Table 11-1 shows the decimal numbers 0 through 10 and their
respective octal and binary equivalents. Tables and formulas are
available to calculate higher conversions.

Thus, you can think of the binary instruction shown earlier in
terms of its octal equivalent as follows (conversion is done from
low-order to high-order byte in groups of three bits):
01001 11100101 11000000 01000
1 6 2 7 0 0 = 162700(8)

A MACRO-11 assembly listing shows the addresses of memory
locations and their contents as octal numbers. The octal numbers

11-5

Running a MACRO-11 Assembly Language Program

ASSEMBLING
THE MACRO-11
PROGRAM

represent the respective binary machine language code that
makes up the object module.

Table 11-1: Decimal/Octal/Binary Conversion

Decimal Octal Binary
0 0 000
1 1 001
2 2 010
3 3 011
4 4 100
5 5 101
6 6 110
7 7 111
8 10 1 000
9 11 1 001
10 12 1 010

In Chapter 5 you used the RT-11 editor to create a MACRO-11
source program; you then stored it on your storage volume. Since
a source program is in ASCII format, the next step is to use the
MACRO-11 assembler to convert it to object code.

Copy the MACRO source program from the storage volume back
to the system volume (which is the default volume for
input/output operations).

On your storage volume are two MACRO source programs, the
one you created (SUM.MAC) and the one provided for you
(EXAMP.MAC). Which of these you should copy depends on the
results of the source comparison you performed in Chapter 6. If
the comparison resulted in no differences except for the title lines,

conv vour own nrogram (SITUTM MACQC) ac follows:
aad MEVEG IR AT i - R I Lt)
Long Command Format

+COPY
From? VUOL:SUM.MAC
Toe 7 SUM.MAC

Short Command Format

+COPY VOL:SUM.,MAC SUM.MAC GED

However, if differences were listed in addition to the title lines,
substitute the program EXAMP.MAC:

11-6

Running a MACRO-11 Assembly Language Program

Long Command Format

+COPY QRET
From? UOL:EXAMP.MAC @D
To 7 SUM.MAC G

Short Command Format

+COPY YOL:EXAMP.MALC SUM.MAC GED

Whichever source file you copied now resides on your system
volume under the name SUM.MAC and is the file that you will
process with the MACRO-11 assembler. The command used to
assemble a MACRO source program is the monitor MACRO com-
mand.

Use the MACRO command with its /LIST and /CROSSREFER-
ENCE options to assemble your source program and produce a MACRO
cross-referenced assembly listing. The system prompt asks you to
supply the input file name. You can omit typing the .MAC file
type, since the MACRO command assumes this file type unless
you indicate otherwise. The system will automatically assign the
name SUM.OBJ to the object module and SUM.LST to the
listing file, and store both newly created files on the system
volume. (The system volume is the default storage volume for
input/output operations.)

Long Command Format

«MACRD

Files? SUM/LIST/CROSSREFERENCE
Short Command Format

+MACRO SUM/LIST/CROSSREFERENCE
Assembly begins. When it is finished, a message similar to the
following prints on the terminal printer or screen:

TERRORS DETECTED: ©&
This message indicates the number of lines in which the assem-
bler detected errors during processing. In this case, the assembler
found six lines in your source program with errors. It helps at this

point to look at the listing produced by the assembler for informa-
tion.

Long Command Format

(Line Printer) (Terminal)
«PRINT @D +TYPE
Files?™ SUM.,LST @D Files?® SUM.LST @D

11-17

Running a MACRO-11 Assembly Language Program

Short Command Format

(Line Printer) (Terminal)

+PRINT SUM.LST +TYPE SUM.LST

Your listing should look like the following example. An explana-
tion of this listing follows. You should refer to the listing as you
read the accompanying explanation.

NOTE

You do not need to understand the MACRO-11 lan-
guage or the way this program works to successfuily
complete the exercises in this chapter.

TY SUM.LST

SUM.MAC VERSION 1 MACRO V04,00 246-NOV-79 12:18:37 FAGE 1

1
b4
3
4
5
6
7
8
@

10

11

+TITLE SUM.MAC VERSION 1

SHMCALL .TTYOUTy LEXITs JFRINT

©00106 N = 70, #NO. OF DIGITS OF ‘E° TO CALCULATE

E’ = THE SUM OF THE RECIFROCALS OF THE FACTORIALS
1700 + 1710 4+ 1/20 4 1731 4 1/4F + L/St 4+ L.

i 2 000000 EXF3 JFRINT #MESSAG SFRINT INTRODUCTORY TEXT
000006 000106 Moy NSRS §NO. OF CHARS OF “E° T FRINMT
000012 000107 FIRST: MOV #N+17RO FNO. UF BIGITS OF ACCURACY
1 i 000014 012701 000000 MoV #AsR1 FADDRESS OF DIGIT VECTOR
000022 006311 SECONI': ASL eR1 SO0 MULTIFLY EY 10 (DECTMAL)
000024 011146 MoV @R1s-(SF) SSAVE %2
000026 00&313 ASL @R iXa
000030 006311 AsH @R ix8
000032 062621 dd (SFY+s (R1V4+ FNOW *10» FOINT T NEXT It
000034 005300 DEC RO SAT ENL OF DIGYTS?
0000346 001371 BNE SECONI! SBRANCH IF NOT
000040 012700 000104 MOV #NyRO 560 THRU ALL PLACES: LIVILING
000044 014103 THIRDG MOV ~(R1) k3 #BY THE FLACES INDEX
000045 012702 177777 Moy #-1,R2 SINIT QUOTIENT REGISTER
000052 005202 FOURTH: INC K2 S RUMF QUOTIENT
0000%4 160003 SUR RO7R3 $SUBTRACT LODOF ISN‘T EAD
000056 103375 BCC FOURTH INUMERATOR IS ALWAYS - 10xN
000060 040003 ADD ROsR3 $FIX REMAINIER
30 000062 010311 MOV R3rBR1 FSAVE REMAINIER AS BASLY
31 iFOR NEXT DIGIT
Ak 32 000064 066167 000000 000000 ADD R2-2(R1) FGREATEST INTEGER CARFIES
23 PIU GLIVE UIGLL
34 000072 005300 DEC RO 3AT END OF DIGIT VECTOR®
35 000074 001363 ENE THIRD PERANCH IF NOT
36 000076 014100 LY - (K1) yRO SGET DIGIT TO OUTFUT
37 000100 162700 000012 FIFTH: SUR #10.,R0 SFIX THE 2.7 TO .7 S0
38 STHAT IT IS ONLY 1 DIGLT
39 000104 103375 BCC FIFTH S CREALLY DIVIDE BY 10)
40 000108 062700 000070 ALD $10+ 02RO SMAKE DIGIT ASCII
u 41 VQULLY QOVVOO LTTYON FOUTFUT THE DIGIT
42 000114 005011 CLR @Rl SCLEAR NEXT DIGIT LOCATION
43 000116 005305 DEC RS SMORE DIGITS TO FRINT?
44 000120 001334 ENE FIRST FERANCH IF YES
45 000122 LEXIT SWE ARE NONE
46
" 47 000124 000107 EXF? CREFT N#L
a8 JWORDN 1 $INIT VECTOR TO ALL ONES
49 JENDR
50
51 000342 124 110 105 MESSAG! .ASCII /THE VALUE OF E ISi/ <15»<12: /2./ <2005
000345 040 126 101
000350 114 125 105
000353 040 117 106
000356 040 105 040
000361 111 123 072
000364 015 012 062
C VERSION 1 MACRD V04,00 24-NOV 77 12:118!37 PAGE i-i
000367 056 200
52 +EVEN
53
D 54 000000 «END EXP
SUM.MAC VERSION 1 MACRO V04.00 26-NOV-79 12:18:37 PAGE 1-2
SYMEOL TABLE
n ORROKK TIFTH G00LGOR FOURTH G000B2K [= GUUive THIKL 000044K
EXF 000000R FIRST 000012R MESSAG 000342R SECOND' 0CO0022R CTTYON= HoRKKKK
000000 000
000372 001
DETECTED:! &

11-8

Running a MACRO-11 Assembly Language Program

VIRTUAL MEMORY USELN? 8448 WORLS ¢ 33 PAGES)
DYNAMIC MEMORY AVAILARLE FOR 66 FAGES

DN QUM DK ISUM/C=TIKISUM

SUM.MAC VERSION 1 MACRO V04,00 26-NOV-7%9 12318137 FAGE S-1
CROSS REFERENCE TAELE (CREF V04.00)

JTTYON 1-41
A

1-15
EXF 1-12% 1-474% 1-54
FIFTH 1-37% 1-39
FIRST 1-14% i-44
FOURTH 1-26#% 1-28
MESSAG 1-12 1-51%
N 1-7% 1-13 1-14 1-23 1-47
SECONT 1-16% i-22
THIRD 1-24% 1-35
SUM.MAC VERSION 1 MACRO V04,00 26-NOV-79 12:18:137 FAGE M-1

CROSS REFERENCE TABLE (CREF V04.00)

CEXIT i-3% 1-43

SFRINT 1-3% 1-12

+TTYOU 1-3%

SUM.MAC VERSION 1 MACRO V04,00 26-NOU-79 121183137 FABE E-1
CRUSS REFERENCE TABLE (CREF V04,00)

A 1-32
I 1-54
™ 1-12 1-47
R 1-32
u 1-15 1-41

The first part of the listing has four logical sections, as follows:

line octal octal statement line
number memory instruction
address value(s)

The assembler assigns consecutive decimal line numbers to each
line of the source program, including blank lines and comment
lines. These numbers are used for reference purposes. The next
column to the right shows the relative! even-numbered octal
memory (byte) addresses of storage locations assigned by the pro-
gram counter to each instruction in the program. This program
has been assigned relative memory addresses 0 through 370. The
third column (and possibly fourth and fifth) shows the octal
equivalent of the assembled instruction or data value. An apos-
trophe following an octal value indicates a relative value that
must be modified before it can be used (the actual value is deter-
mined during linking). Finally, the source program as you created
it appears in the right-hand portion of the listing.

For example, look at line 19 of the listing:

19 000030 006311 ASL BRr1 %8

'The assembler assigns relative memory addresses to instructions. Actual ad-
dresses are not determined until the link operation is performed. Linking and
address relocation are discussed in Chapter 12.

11-9

Running a MACRO-11 Assembly Language Program

The instruction ASL @RI is stored in relative memory locations
30 and 31 as binary data (the comment, ;*8, is ignored):

31 00001100 11001001 30
0 0 6 3 1 1

Some instructions require more than two memory locations, for
example, those at lines 13 and 14. The number of memory loca-
tions required depends upon the operation.

Following the assembled code in the listing is the symbol table,
an alphabetical listing of user-defined symbols and labels in the
program and their respective definitions. Symbols are defined as
values. For example, the symbolic variable name N is defined (in
line 7) as 000106(octal) or 70(decimal), an absolute value. Labels
are defined as addresses. The symbolic label FIRST is defined (in
line 14) as 000012, a relocatable address (the R following 000012 in
the symbol table indicates that the address will be relocated or
modified during linking.) A row of asterisks next to any symbolic
name in the table indicates that for some reason (possibly a pro-
gramming error) the assembler could not define the symbol.

At the very end of the symbol table (where the . ABS. occurs) is
the program’s size information (or synopsis) in terms of the total
number of octal storage locations it requires (in this case, 372).
Following is the number of errors detected, and the amount of free
and used memory pages (statistics provided by the assembler).

Following the symbol table is the cross reference (CREF) listing.
The CREF listing is optional (as is the assembly listing) but
provides you with useful reference and debugging information,
especially if the program is large. The CREF listing can contain
several kinds of tables of reference information, each beginning on
a new page. The defauit tabies are the three shown here.

Every reference in a CREF table shows the page number of the
listing (in the preceding example, all references are on page 1),
followed by the appropriate line number. A number sign following
a line number indicates that this line is where a label or symbol
definition occurs.

The first CREF table shown here lists alphabetically all user-
defined symbol and label references.

The second CREF table lists alphabetically all macro symbol
references. (Macro symbols are a special feature of the
MACRO-11 assembly language; they are described shortly.)

The third CREF table lists alphabetically the codes of the errors
detected during assembly. These errors must be corrected before

TN Ao Wi YW oy o A

+h
¥Ou Cam run tné prograrmi.

11-10

Running a MACRO-11 Assembly Language Program

Now that you are familiar with the format of an assembly listing,
go back to the beginning of the example listing to determine what
this program should do.

The first two comment lines {preceded by semicolons) indicate
that the program calculates the value of ‘E’, which is the sum of
the inverse of the factorials between 1 and infinity. The algorithm
used in this program is somewhat complicated (this was necessary

to keep the program reasonably short). ‘E’ is calculated one digit
at a time by using a difference function between its actual value

& VAl Y Slllg & WRAAITATAAUT LRRAZCRVARALY XBUVWECRA s Qlylial valil

and the current approximation for each new digit. The program
forms:

1+(1+(1+...+(1+((1+(1/N))/(N-1))/N-2))/.../2)/1)

and is 2.11111...in the inverse factorial base system, which is the
first sum shown in the program listing.

The statements between lines 1 through 7 define initial states to
the assemblers, such as the value of N, and designate the macros
that will be used throughout the program.

Macros, from which the MACRO-11 language processor derives
its name, are a very important and useful feature of the
MACRO-11 assembly language. You can define as a macro any
recurring sequence of coding instructions. By giving the macro a
name, you can thereafter call it by name from any other part of
the program using a single language statement.

In addition to the macros you define yourself, the RT-11 system
provides system macros that your programs can access. System
macros are defined in a special system library file called
SYSMAC.SML. (SML stands for System Macro Library)
SYSMAC.SML is part of the RT-11 operating system and is
stored on the system volume. If you request a system macro from
your source program, the MACRO-11 assembler automatically

searches SYSMAC.SML for the required information.

The system macros defined in SYSMAC.SML are calls to certain
services performed by the RT-11 monitor, such as terminal han-
dling, input and output operations, program termination, file ca-
pabilities, and so on. The portion of the monitor that performs
these services, or that is capable of getting the necessary program
code to perform these services, is always in memory and is there-
fore called the resident monitor. Thus, whenever your source pro-
gram is in memory and is to be executed, the resident monitor is
also there with its available services.

You communicate the need for a monitor service by issuing a
programmed request in your source program. A programmed re-

11-11

Running a MACRO-11 Assembly Language Program

quest consists simply of a macro call to a specific macro defined
in SYSMAC.SML. The macro expands into the appropriate ma-
chine language code, which, during program execution, makes a
request to the resident monitor to supply the desired service.

You specify all programmed requests that you intend to use in
your source program in an .MCALL statement, like the one
shown at line 3 in the listing. For example, the programmed re-
quest .TTYOUT requests the monitor to print an ASCII character
on the console terminal. During assembly, the . TTYOUT macro
in SYSMAC.SML is expanded into machine language code.
During program execution this code requests the resident monitor
to take the indicated ASCII character and send it to the console
terminal.

Line 12 in the program uses another programmed request,
.PRINT, to print a message on the terminal.

Lines 13 through 15 are initialization instructions: they set initial
values in three of the special registers. Lines 16 through 22 repre-
sent a routine that does a multiplication by 10. Lines 23 and 24
are setup instructions for the division routine of lines 25 through
28. Lines 29 through 35 save the quotient and remainder. Lines 36
through 40 print the digits of E. Lines 43 and 44 count the number
of digits.

The statements at lines 47 through 49 reserve a buffer area (a
series of locations in memory) to be used by the program and
therefore not to be assigned to other instructions. The statement
at line 51 provides the data for printing the ASCII text message
THE VALUE OF E IS: 2.

This program, however, contains errors. The assembler discovered
six lines with errors that prevent the program from assembling
properly. The assembler flags (points out) errors by printing a
code letter in the assembly listing or on the terminal if no listing

ia rannactad 1
AN LV““\/QUV“.

dl B e
for B I A

' ¢ . -
A i PrengnlTagr apiaas L Do

The first error occurs at line 12 and is an M error. This means a
label was defined more than once. You can refer to a label any
number of times, but you may define it only once. By looking at
the CREF user symbol table, you can see that the label is defined
at line 12 and again at line 47; one of these definitions is wrong.
Examination of the program logic reveals that the definition at
line 12 is correct. Before deciding how to change line 47, though,
check the other errors to see if one of them indicates what should

'Refer to the RT-11 System Message Manual for greater detail about any system
messages printed during normal system use.

11-12

Running a MACRO-11 Assembly Language Program

be done. In fact, the next error encountered (line 15) shows what
is wrong. A U error identifies an undefined symbol. The label A is
referenced in line 15, but is never defined within the program. It
should logically be defined at line 47. Therefore, line 47 should be
changed to read:

A +REPT N+1

Thus, this one change eliminates three errors flagged by the as-
ose at lines 12, 15, and 47.

Q
D Lbay Ay Raz

sembler: th

.
ST aiinsiTL

The next error occurs at line 32. Actually, the assembler flagged
two errors here. An A error indicates an addressing problem and
an R error indicates a register error (illegal use of a register, a
special PDP-11 storage feature). If you look at the language state-
ment in line 32, you can see that the ADD operator is followed by
one operand. However, ADD is an instruction that requires two
operands (two values to be added together) separated by a
comma. This statement simply contains a typing error, which can
be corrected by inserting a comma between the R2 and the -
2(R1). Thus, changing the line as follows both corrects the ad-
dressing problem and eliminates the illegal register expression:

ADD RZ2:-2(R1)

At line 41 is another undefined symbol, the macro symbol
.TTYON. Since the program designated the macro symbol
.TTYOUT in line 3, this error indicates a misspelling. Correct line
4] to read:

+TTYOUT

Finally, a D error occurs in line 54. This indicates that reference
was made to a symbol that is defined more than once. This error
has already been eliminated as a result of the correction made to
line 47.

Thus, by changing the three lines indicated, you can correct all
the errors flagged during assembly. So the next step is to edit the
appropriate lines in the source program. If necessary, review the
editing commands in Chapter 5, and then edit the file SUM.MAC
on your system volume so that the three lines indicated are error-
free. Do not rename the file. When you are ready, reassemble the
program, using the MACRO command, and obtain a new object
module and a new listing. This time the program should assemble
without error. If errors occur, you have not edited the program
correctly. Compare listings and try to correct your errors, or go
back to the beginning of this chapter and repeat the demonstra-
tion.

11-13

Running a MACRO-11 Assembly Language Program

LINKING OBJECT
MODULES
TOGETHER

The object module produced by the MACRO command may in
itself be incomplete. It may need to be joined with other object
modules or library files to form a complete functioning program,!
since all required object modules must be joined before the pro-
gram can work.

Thus, you must next link the SUM object module with any other
object modules it requires. However, the only file used by this
program was the macro library file SYSMAC.SML, and it was
used during assembly. So in this case, you do not need to join the
SUM object module with any other modules.

NOTE

Some other MACRO programs that you write later may
reference system subroutines supplied in the system
subroutine library, SYSLIB.OBJ. Programs that refer-
ence these routines must be linked with the system
subroutine library to satisfy external references. If
SYSLIB.OBJ is not present on your system volume,
follow the guidelines in the section of Appendix B enti-
tled Using the LINK Volume.

Even though SYSLIB is not required for SUM.ORBJ, you must
still link the file. The link operation, in addition to joining object
modules together, also assigns absolute memory addresses to the
relative addresses calculated by the MACRO-11 assembler. Since
the memory addresses of one object module must be relocated to
accommodate addresses used in another object module, the link
operation serves to resolve all address changes. The result of the
link is a memory image load module, with all module links re-
solved and all absolute memory addresses and storage informa-
tion assigned (Figure 11-6). The memory image module, then, is
actually a picture of what computer memory looks like just before
program execution.

OTHER
OBJECTS

OBJECT LINK - LOAD
MODULE ~| MODULE

vy

Figure 11-6 The Link Operation

1Chapters 12 and 13, respectively, give more information on linking files and
using library files.

Lraly 1

11-14

Running a MACRO-11 Assembly Language Program

To link the object modules, use the LINK command. The system
prompts you to enter the names of the input object modules to be
linked together. You can omit typing the .OBJ file type in the
command line since the LINK command assumes this file type
for input. After you have entered the input information, the
system begins linking the object module. You do not have to
specify an output file, since the system automatically assigns the
file name of the first input file and a file type of .SAV to the
output file.

Long Command Format

+LINK
Files? SUM

Short Command Format

+LINK SUM
Any messages printed inform you of error conditions discovered
during the link operation (for example, if you fail to specify all the
necessary input object modules). However, assuming you edited
your source program correctly and that it assembled without
error, it should also now link without error.

A load module is one that you can run on the system. Unless your
program contains logic errors that prevent it from running prop-
erly (errors that the system cannot always detect), running the
.SAV version of your program should produce the results you
intended. However, if logic errors exist within your program, run-
ning the program will produce either erroneous results or none at
all. If this is the case, you must study the source program, rework
it, reedit it, then perform the assembly and link operations again.

If your MACRO program is error-free, running the .SAV version
should produce the expected results. In this demonstration, run-
ning the SUM.SAV file should produce a vaiue on the terminal
that is the constant E (2 followed by 70 digits).

To execute the MACRO demonstration program, use the monitor
RUN command. You can omit typing the .SAYV file type, since the
RUN command assumes this file type. Type the following, and
note the results printed on the terminal:

Long and Short Command Format

+RUN SUM
THE VALUE OF E IS:

2,5/B06/606237.2301314,06525/130440275535025,7147773735274474340302.544

11-15

LINK

RUNNING THE
MACRO-11
PROGRAM

Running a MACRO-11 Assembly Language Program

COMBINING
OPERATIONS

EXECUTE

You can see that something is wrong. Slashes and periods appear
in the result, indicating that an error still exists somewhere in the
program.

Programming errors, called “bugs,” can be very difficult to find
and fix. A debugging aid called ODT (On-line Debugging Tech-
nique) is described in Chapter 14. You will use it to correct the
program’s final error and to rerun the program. For now, however,
the error will be pointed out and explained.

Look at line 40 in the assembly listing. Notice that the instruction
in this line converts a digit into the appropriate ASCII code before
printing it on the terminal. To do this, the constant 10 is added
into the value of the digit already stored in memory, and then the
value is converted (via ’0, which is the ASCII code for 0) to an
ASCII code that can be printed. However, unless you explicitly
designate a value as decimal, the assembler assumes all values
used in the program are octal. Therefore, it interprets the con-
stant as 10(octal) or 8(decimal), and adds the wrong value every
time. The conversion consequently causes the codes of the ASCII
characters / and . to be used as results in some cases. The codes of
other digits, while representing numeric values, are also off by
two. To correct this error, you must insert a period after the 10 in
line 40. The period instructs the assembler to accept the constant
value 10 as a decimal value.

To produce program results, you first assembled the MACRO
source program (SUM.MAC), then linked it, and finally ran the
resulting .SAV file (SUM.SAV). You can combine these three
operations using one monitor command, the EXECUTE com-
mand.

B o o —

In order to use the EXECUTE command, the following
files must be present on your system volume:

SUM.MAC
MACRO.SAV
LINK.SAV
SYSLIB.OBJ

The last file, SYSLIB.OBJ, is required only if the
MACRO program you need to link refers to routines
that are contained in the system library. The program
used in this demonstration, SUM.MAC, does not re-
quire SYSLIB.OBJ.

The EXECUTE command instructs the system to select the ap-
propriate language processor, then process, link, and run the pro-

11-16

Running a MACRO-11 Assembly Language Program

gram. There are several ways to establish which language proc-
essor the EXECUTE command invokes. One way is to specify a
language-name option, such as /MACRO, which invokes the
MACRO assembler. Another way is to omit the language-name
option and explicitly specify the file type for the source file. The
EXECUTE command then invokes the language processor that
corresponds to that file type. Specifying the file SUM.MAC, for
example, invokes the MACRO assembler. A third way to estab-
lish the language processor is to let the system choose a file type
of .MAC, .DBL, or .FOR for the source file you name. If, for

example, you specify the file SUM, the monitor searches device
SY: (your system device) for the files SUM.MAC, SUM.DBL,
and SUM.FOR, in that order. If it finds a file named SUM.MAC,
it invokes the MACRO assembler to process the file. For example,
to combine the assemble-link-run operations you performed in

this chapter, you use the following command:

Long Command Format

EXECUTE
Files? SUM/LIST/CROSSREFERENCE

Short Command Format

L EXECUTE SUM/LIST/CROSSREFERENCE @&

ERRORS DETECTED: ©

THE YALUE OF E IS:
2,5/606/606237.2301314,08525/130440275535025.,7147773735274474540502.,544

Notice how you use the /LIST and /CROSSREFERENCE options
following the file name to request both an assembly and a cross-
referenced listing.

EXECUTE SUMMARY:
Combine the assemble-link-run operations into one command. COMMANDS TO
RUN MACRO-11

EXECUTE file/MACRO PROGRAMS

Combine the process-link-run operations into one command,
and specify the input file to be a MACRO file.

EXECUTE/CROSSREFERENCE
Produce a cross-referenced listing file.

EXECUTE/LIST
Produce a listing file of the source program.

LINK
Link individual object modules together to form a complete
program and produce a load module.

11-17

Running a MACRO-11 Assembly Language Program

FILE
MAINTENANCE

MACRO
Assemble the MACRO-11 source program, and produce an ob-
ject module.

MACRO/CROSSREFERENCE
Assemble the MACRO-11 source program, and produce both
an object module and a cross-referenced listing file.

MACRO/LIST
Assemble the MACRO-11 source program, and produce both a
listing on the line printer and an object module.

RUN
Run the indicated load module.

Before continuing, you should perform the necessary file mainte-
nance operations. Obtain a directory of all files on your system
volume that have the name SUM, regardless of file type; these
files were created as a result of the exercises in this chapter:

Long and Short Command Format

+DIRECTORY SUM.* @D

26-NOV-79

SUM +SAY 2 2B-NOV-79 SUM +BAK 3 Z6-NOV-79
SUM «+MAC 3 Z6-NOY-78 SumM +0BJ 1 ZB-NOV-79
SumM «LS8T 9 ZB-NOV-78

S Files, 18 Blocks
2832 Free blocks

The fact that you have corrected errors in the source file of
SUM.MAC makes the version of that file on your storage volume
obsolete. Thus, transfer the updated copy from your system
volume back to VOL:, replacing the copy of SUM.MAC on the
storage volume with the new version:

Long Command Format

+ COPY
From? SUM.MAC
To 7 YOL:SUM.MAC

Short Command Format
+COPY SUM.MAC VOL:SUM.MAC
Similarly, transfer SUM.SAV and SUM.OBJ to your storage

volume. This allows you to rerun the MACRO program without
reassembling and relinking the source.

11-18

Running a MACRO-11 Assembly Language Program

Long Command Format

. COPY@ED

From? SUM.SAY:5UM.0BJEED
To? VOL:GD

Files coried

DK :SUM.5AY to YOL:5UM.5AV
DKR:SUM.OBJ to YOL:5UM.O0BJ

Short Command Format

,COPY SUM.SAY,S5UM.0BJ VOL:GD
Files coried:

DK:S5UM.S5AV to YOL:S5UM.5AY
DK:S5UM.0BJ to YOL:S5UM.OBJ

Once you have transferred to your storage volume the files you

want saved, delete from the system volume those you no longer
need (that is, all the SUM files):

Long Command Format

+DELETE/NOQUERY G
Files? SUM.*

Short Command Format

+DELETE/NOQUERY SUM.* &

Finally, obtain an up-to-date directory listing of your storage
volume so that you can see its current status:

Long and Short Command Formats

+DIRECTORY VOL:GED

01-Dec-77

GRAPH .FOR 2 20-NOYW-79 SUM +MAC 3 Z26-NOV-79
EXAMP .FOR 2 22-0CT-79 EXAMP MAC 5 Z2-0CT-79
SuUM +0BJ 1 2B-Now-78 SUM «8AY 2 Z6-NOV-79
GRAPH .FOR 10 20-NOV-79 GRAPH .OBJ 14 Z0-NOW-79
GRAPH .SAV 3 20-NOV-78 MATCH .BAS 20-N0Y-79

10 Filess B1 Blocks
4701 Free blocks

This completes the MACRO demonstration. Continue now to
Chapter 12 to learn more about the link operation.

PDP-11 MACRO-11 Language Reference Manual (AA-5075B-TC). Maynard,
Mass.: Digital Equipment Corporation, 1979.

A reference manual for the PDP-11 programmer using the MACRO-11
assembly language.

11-19

REFERENCES

Running a MACRO-11 Assembly Language Program

PDP-11 Peripherals Handbook. Maynard, Mass.: Digital Equipment Corpora-
tion, 1978.

A technical description of the PDP-11 peripheral devices, including neces-
sary programming information.

PDP-11 Processor Handbook. Maynard, Mass.: Digital Equipment Corporation,
1978.

A technical description of the various PDP-11 processors, including com-
plete information concerning the PDP-11 instruction set.

PDP-11 Programming Card. Maynard, Mass.: Digital Equipment Corporation,
1975.

Vo4 L TIITNTS

A pocket-sized folding card summary of PDP-11 machine instructions
used by the various PDP-11 assembly language processors.

PDP-11 Software Handbook. Maynard, Mass.: Digital Equipment Corporation,
1978.

A general overview and introduction to available PDP-11 software, opera-
tion systems, and language processors. See especially Chapters 1, 2, and 3.

RT-11 Programmer’s Reference Manual (AA-H378A-TC). Maynard, Mass.:
Digital Equipment Corporation, 1980.

An RT-11 system-specific programming manual for the MACRO-11 pro-
grammer.

RT-11 System User’s Guide (AA-5279B-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1980.

A guide to the use of the RT-11 operating system. See Chapters 4 and 10.

11-20

CHAPTER 12

LINKING OBJECT PROGRAMS

Programs that you write in the MACRO-11 and FORTRAN IV
programming languages require additional processing after their
conversion to object format. Before you can run them on the
system, you must link them. The link operation:

e Joins together the object modules that use a symbol
with the object module that defines it.

¢ Relocates individual object modules as necessary and
assigns absolute (permanent) memory addresses; it can
also define an overlay structure.

o Produces a load module and an optional load map
(Figure 12-1).

OBJECT o LOAD
MODULE(S) - LINK > MODULE
LOAD MAP
(OPTIONAL)

Figure 12-1 Link Functions

Program linking gives you the advantage of a modular approach
to programming. You can create an entire program as a series of
smaller, independent subprograms. One of these is written as the
main, or controlling, program, and the rest as subordinate sub-
programs and subroutines. You use the appropriate language
processor to translate each part of the program into an object
module. Then you use the linker to join all the object modules
together into a complete, functioning unit.

Modular programming makes program creation and debugging
easier. For example, several programmers can simultaneously
work on a single program, each creating a portion of it. The indi-
vidual portions, or subprograms, can be processed and linked
with test programs and debugged for logic errors separately. Then
all the object modules can be joined together to form a complete
program that can be tested as a whole. If errors occur at this
stage, only those object modules with errors need be debugged
and changed.

12-1

Linking Object Programs

In addition, modular programming allows you to make use of
library files. These are files containing subprograms and sub-
routines that have already been debugged. After you join library
files with your program at link-time, their routines can be used by
your program as needed.

RESOLVING The linker reads through all the object modules that you indicate
SYMBOLIC AND as input to the LINK command. It gathers and evaluates infor-
LIBRARY mation (provided to the modules by the language processor) that
REFERENCES is necessary for program linking. For each input module, this

information includes the object code, information needed for relo-
cation, the relative address of the first instruction, the global
symbols used, and the absolute length of each program and pro-
gram section.

One of the linker’s first functions is to resolve all user-defined
symbolic references and library references in the joined routines.
There are actually two types of user-defined symbols — internal
symbols and global symbols.

Internal symbols are limited to the object module in which they
appear; thus, they cannot be referenced from or defined in any
other module. A program containing only internal symbolic refer-
ences (like those in the demonstration program in Chapter 11) is
complete in itself and does not need to be joined with any other
object programs at link-time. Thus, internal symbols are not re-
solved at link-time because they have already been resolved by
the language processor.

Global symbols, on the other hand, are the key to modular pro-
gramming. Global symbols provide the communication between
object modules. Such symbols may be symbolic labels to instruc-

tions, symbolic labels to data, or symbols that are equated to a
value or constant. Global symbols are defined in one object

2T U2 aS V&AL, FaLoRL FOES VAV IV IS SV L R R s vail LyeSY

module and referenced from other object modules that have been
separately assembled or compiled. Such symbols must be desig-
nated as global in the source code. The following segment of
MACRO-11 assembly language code illustrates the use of global
symbols.

MAIN. MACRO V03.00 5-JUL-77 13:39:00 PAGE I

1 000000 000000 000010° 000000 <GLOBL A»CrVALUE SDECLARKE Ay C» AND! VALUE
000006 000030°
2 iAS GLOBAL SYMBOLS
3
4 000010 013500 LH Hov @(KS)I+,RO iGLOBAL SYMBOL A IS DEFINED
5 $HERE AND CAN BE REFERENCED
é FFROM OTHER MODULES. PROBARLY
7 iRY A SUBRROUTINE CALL
6 000012 01670% 000014 HOV LGCALRI SLOCAL IS AN INTERNAL SYMBOL
? FDEFINED' AND REFERENCED ONLY
10 FWITHIN THIS MODULE
11
u 12 000016 004747 000000 UsSR FCrC FCALL TD GLORAL ROUT]NE C»
13 SDEFINED IN ANOTHER MODULE
14
15 000022 013501 Ll @(RZ)+sR1
16 000024 003003 CLR R3
17
18 000026 000207 RTS FC
19
20 000030 000011 VALUE: .WORD 11 5GLOPAL SYMBOL VALUE IS USED TO
21 IREFERENCE THIS DATA LOCATION

22
23 000032 177777 LOCAL: .WORL 172727 INTERNAL SYMROL USED FOR DaTA
24 000001 <END

12-2

While internal symbolic references, such as LOCAL in the ex-
ample, can be resolved by the assembler or compiler within the
single program unit, global references, such as C, cannot. They
require other object modules. During translation, the language
processor notes in the object module those symbols that are
global. During linking, the linker keeps track of the global refer-
ences and definitions found in all the object modules. As linking
proceeds, it makes the appropriate correlations and modifies in-
structions or data as necessary. After linking, the linker prints on

the terminal a list of all symbolic references that were not re-

] b S B B B i B N e B 7 T T e =0 o a5 e o
selveq (ungelineq giopais), eitner Que to a Prograininiig ciiur vl

because all necessary object modules were not included in the
linking process.

References to library files also involve the use of global symbols.
You access the routines in a library by naming a routine as a
global symbol in the source code of your program. You then link
your program with the appropriate library file, and the linker
resolves the library references just as it does any global symbol.
Library usage is discussed in greater detail in Chapter 13.

A second important function of the linker is to “fix” the relative
memory addresses so that they are absolute.! The object module
represents translated source instructions that have been assigned
memory addresses relative to a base address of 0.

Look back at the assembly listing in Chapter 11. Note the second
column; these addresses are relative to a base address of 0. Thus
the first instruction is assembled at relative address 0, the second
at relative address 2, and so on. A program cannot actually be
stored and run in memory using locations relative to address 0,
however, because system information is already stored in some of
these locations. For example, the RT-11 operating system uses
byte addresses 40 through 57 to store information about the pro-
gram currently executing. In addition, the RT-11 operating
system uses locations in the upper range of memory for storing the
resident monitor. Thus, the linker must assign memory addresses
to your program that are not already in use or that will not be
used during program execution. It must, therefore, assign abso-
lute memory addresses to the relative addresses assigned by the
language processor.

The linker normally starts assigning memory addresses at address
1000, since this begins a large section of free memory space. So, to

'"FORTRAN and BASIC users who have not performed the demonstration in
Chapter 11, may wish to read the section in that chapter entitled The
MACRO-11 Language Processor. That section explains the concept of con-
verting and storing instructions in computer memory.

12-3

Linking Object Programs

PROGRAM
RELOCATION
AND ADDRESS
ASSIGNMENT

Linking Object Programs

Absolute and
Relocatable
Program Sections

obtain the actual addresses used for program loading, you must
add the relocation constant 1000 to each relative address shown in
the assembly listing.

A conflict arises when several individually processed object mod-
ules are linked together. The linker cannot assign memory ad-
dresses starting at 1000 to every module, since address assign-
ments of one would then override those of another. However, part
of the information that the language processor calculates and
passes to the linker is the size of each program section in each
module. So the linker simply adds this size into the relocation
constant for each module and assigns higher addresses, appropri-
ately modifying all instructions and data as necessary to account
for the relocation of each individual module. Figure 12-2 illus-
trates the relocation that must occur to accommodate object
modules linked together.!

0 0
372 (octal)
PROG bytes RESERVED
370 1000
0 PROG
. 42 (octal)
SUBONE bytes 1370
40 1372
SUBONE
1432
0 1434
170 (octal)
SUBTWO bytes SUBTWO
166 1622
1624
Reiative addresses of three

assembled/compiled programs | |

I |
L I

Absolute addresses of three
linked programs

Figure 12-2 Object Module Relocation

Just as global symbols allow you to create an entire program,
using several individual object modules, program sections allow
you to create an object module as a series of individual sections.
The advantages gained through the sectioning of programs relate
primarily to control of memory allocation, program modularity,
and more effective partitioning of memory. The linker processes

'A load map for this relocation example is shown later in the chapter.

12-4

the program section information in the object modules as direc-
tions on how to create the executable program image.

The FORTRAN IV and MACRO-11 language processors insert
program sectioning information into the object module. The
FORTRAN IV language processor does this automatically when
program sectioning is implied by the source language statements
in a user program. For example, FUNCTION, SUBROUTINE,
and COMMON statements result in the production of program
section directives. In MACRO-11 assembly language, you are re-
sponsible for explicitly directing the assembler to output program
section information for the linker. You do this through the
.PSECT (or .CSECT and .ASECT) MACRO-11 assembly lan-
guage statement.

Some of the basic functions associated with program sections are:

1. Instructions or data can be placed in absolute loca-
tions in memory. The named absolute program section
(. ABS.) allows you to instruct the linker on exactly
where to place program code or data. Declaring a sec-
tion as part of the absolute program section instructs
the assembler or compiler to use the internal value of
the program counter as the physical memory address to
be assigned after linking. This section is processed rela-
tive to absolute memory address 0 and is not relocated
at link time.

2. Named relocatable program sections are used to group
data or instructions into logical portions of memory.
The FORTRAN COMMUON statement invokes this con-
struct to allow access to named data areas from many
separate routines. Declaring a section as part of a
named relocatable program section causes the section to
be processed at relocatable address 0. Such sections are
relocated by the linker.

3. If you do not care about having exact control over where
a portion (section) of a program will be placed in
memory, use the blank program section — a special
program section that the linker treats as relocatable.
The linker decides where to place this program section
in the loadable memory image. The blank program sec-
tion is the default for a MACRO-11 source program and
remains in effect until an explicit program section is
identified (the program example in Chapter 11 used the
blank program section).

4. A program section can be identified as an instruction
section. The linker, using this information, can provide

12-5

Linking Object Programs

Linking Object Programs

The Overlay
Feature

automatic loading of declared overlay code when needed
by the executing program (this will be discussed in more
detail).

The language processor, then, actually maintains several program
counters — one for the absolute program section, one for the
unnamed relocatable program section, and as many as needed
(maximum is 254) for named relocatable program sections. The
assembled example that follows helps explain this concept.

-MAIN. MACRO VO .00 9-JUN-77 15:56:48 PAGE 1

1
2 $UNNAMED RELOCATABLE PROGRAM
3 $SECTION IS DECLARED (BY DFFAULT)
4 ${".PSECT" IS ASSUMED)
5
6
7
8 000000 005000 START: CLR RO
$ 000002 012701 000034' Mov #BEG,R1
10 000006 062100 Loop: ADD (R1)+,R0
11 000010 022701 000044' cNp ¥BEG+10,R1
12 000014 100374 BPL Loop
13 000016 012767 002000 000020 Moy #2000,ADDR
14 000024 005003 CLR R3
15
16 000000 +PSECT CLEAR $NAMED RELOCATABLE PROGRAW
17 000000 012703 000100 MOV ¥100,R3 $SECTION 1S DECLARED (VIA ".PSECT NAML™)
18 000004 012701 000044" MOV #ADDR,R1
19
20 000010 005021 AGAIN: CLR (R1)+
21 000012 005303 DEC R3
22 000014 001375 BNE AGAIN
23
24 000000 «ASECT JARSOLUTF PROGRAM SECTION
25 000042 .342 sDECLARED (VIA ", ASECT")
26 000042 001000 +WORD 1000 FTHE VALUE 1000 #ILL BE
27 FSTORED IN ABSOLUTE MEMORY LDCATION 42
28 FWHEN THE PROGRAM 1S EXFCUTED
29
30 000026 «PSECT 7BACK T0 UNNAMED RELUCATABLE
31 000026 005267 000012 INC ADDR :PRPOGRAM SECTION
32 000032 000000 HALT
33 000034 000001 000002 000003 BEG: «WORD 1,2,3,4
000042 000004
34
35 000044 000000 ADOR: +WORD 0
36 3NOTE THAT YOU CAN WRITE LANGUAGE STATEMENTS THAT WILL BE LOADED
37 sCONTIGUDUSLY IN MEMURY, BUT DO NOT NECESSARLILY UCCUR CONTIGUUUSLY
s 71N THE SOURCE PROGRAM (1.E., THE CODFE AT LINES 3 = 15AND 29 = 40)

41 000001} <END

Since the system does not know at assembly (or compile) time
into which actual memory locations each relocatable section goes,
all references among sections (see line 18) are relative to the base

of the section, This information is then nassed to the linker g

e
Asdi UL diiGvaUas AVAL MAOOTUM VYU VAT daiai oV

that it can make the appropriate adjustments at link-time.

The RT-11 linker is capable also of handling the special reloca-
tion and address assignments that are required whenever you in-
dicate that an overlay structure is needed. An overlay structure is
necessary when you write a program that is too large to fit in the
available memory of your system. You write the program in dis-
crete parts (some programming restrictions must be observed) so
that your program can subsequently be executed in parts. Some
of these parts, or segments, are allowed to share memory with
other segments, thus reducing the overall memory requirements
of the program. One segment of the program is called the root
segment and must remain in memory at all times. The root seg-
ment contains the necessary information for use by the other

12-6

needed. The purpose of the overlay structure is for parts of the
program to share the available memory in such a way that when
one part is complete, it is overlaid (and therefore erased) by an-
other.

You indicate how to plan to overlay your program by using the
/PROMPT option in the LINK command line. The linker then
creates a load module that contains the necessary information for
loading the appropriate segments as needed during execution.
The RT-11 System User’s Guide explains the overlay feature in
more detail in Chapter 11. You need not specify an overlay struc-
ture for the examples demonstrated in this chapter.

The load module is the result of the linking processes described so
far; joining object modules, resolving symbolic and library refer-
ences, relocating object modules, assigning absolute addresses,
and creating an overlay structure if required. The load map is
essentially a synopsis of the load module — that is, what memory
looks like when the program is loaded and ready to be executed.

In Chapters 9 and 11, you produced load modules, but you did not
request load maps. You obtain a load map by using the /MAP
option with the LINK (or EXECUTE) command. At this time,
relink the FORTRAN or MACRO object module that you stored
on VOL: and use the /MAP option to produce a load map.! The
load map is created as a file on the system volume, which is the
default storage volume for input/output operations. The load map
has the name of the first input module and a file type of .MAP.

Long Command Format
(MACRO object moduie)

+LINK
Files? VOL:SUM/MAF

(FORTRAN object module)
+LINK

Files? VYOL:GRAPH/MAF @D

Short Command Format

(MACRO object module)

JLINK WOL s SUM/MAP BET

'FORTRAN users who followed the special instructions in Appendix B for
loading the LINK volume should check that this volume is loaded in device
unit 0. FORTRAN users who have a special FORTRAN language volume, but
not a LINK volume, should make sure that the FORTRAN volume is now
loaded in device unit 0.

12-7

Linking Object Programs

PRODUCING A
LOAD MODULE
AND A LOAD
MAP

/MAP

Linking Object Programs

(FORTRAN object module)
+LINK YOL:GRAPH/MAP

Now list the .MAP file on either the line printer or terminal,

choosing the appropriate command:
Long Command Format
(Line printer)

(MACRO object module)

+ PRINT
Files? SUM.MAP

(FORTRAN object module)
«PRINT

Files? GRAPH.MAP
Short Command Format

(Line printer)

(MACRO object module)
+ PRINT SUM.MAP

(FORTRAN object module)
+ PRINT GRAPH.MAP

(Terminal)

+ TYPE
Files? SUM.MAP

+ TYPE
Files? GRAPH,MAP

(Terminal)

+ TYPE SUM.MAPGED

. TYPE GRAPH.MAP

oth maps are provided here. In addition, a

e, .
load map of the relocation example used in Figure 12-2 is also

provided.
RT-ii LINK WV06.01 Load Mar Tue 08-JAN-80 00:51:32
SUM +SAV Title! SUM.MA Ident?
Section Addr Size Globkal Value Global Value Global Vslue
+« ARBRS. 000000 001000 (RW»I>GBLrABRSyOVR)
001000 000372 (RWrI+LCLyRELsCON)
Transfer address = 001000, High limit = 001370 = 380, words
RT-11 LINK V06,01 Load Mar Tue OB—JAN—BO 14100347
GRAFH .SAV Title! .MAIN. Ident: FORVOZ2
Section Addr Size Global VUalue Global Valus Global Ualue

« ARS. 000000 001000

0TS84T 001000 014342

12-8

(RWy IsGELrARSsOVR)
$USRSW 000000 $RF2A1 000000 $HRIDWR 0000073
ENLCHN 000006 $5YSV4 000011 $WASIZ]
$LRECL. 000210 $TRACE 004737 $EAE

(RWs Iy LCLyREL yTONY
$$0TST 001000 $0TI
$HSET 0025346 $CUTIF
$CUTID 003044 CCI4

001026 $$0TI 001030
003032 $CVTTN 003044
003060 CIDI$ 2

$IC Q030460 $ID 003060 CFI
IR 003074 EXF 0031460 SHARY
MUF$FS 003714 MUF$MS 003720 MUF$IS
HMULF 003740 MUFS5S 00S/We $MLK

QTSR
SYS$I

USER$I
$COLE

aTS4$0

SYS$0
$0ATAF

2 000030
000244

01546746 000000
0156746 001334

017234 001010

020244 000000
020244 000106

DIFEMS

mannb
FHRR
AT
Maxo

FSURF
AUF#5S8
IDINT
MINO
I8N4
SLENTR
MOTHFF
MOL$F H
MOT
MOF4SE
LGTH
LIT$
HUL$Hﬁ

MOL%MQ

MOT$RM 372 1 :
NGDES 004404 NGF%S
NGF$M 004416 NGLSF
NGL$EA 006436 HNGF A

ADTI$ESA 006444 ALTHSH
ADTHIA 006462 ALISIM
ADTEMA 0046476 ADLIEMM
SUT$5A 008512 SUISSM
SUT$IA 0065246 SUIHIM
SUIEMA 006542 SUIHMM

ICIsM 004556 ICISF
LCIs$S 0046570 DCI$M
DCI%A 0064602 CMI$SS

CMI$SM 0064616 CMISIS
CHISIM 0064632 CMISMS
CMI$MM 004646 NMI$1IM
BLE$ 006674 BEQ#%
BGES 0046706 ERA%
EBLT$ 006716 MOF$RS
MOF$RA 0046744 MOF4$RF
MOF$FS 0046766 MOF&MM
MOF$MF 007012 MOF$FM
MOF$FF 007030 I0R4
EQUs 007046 XOR$

TSL6M 007070 TYSL$I
$0TIS 007110 %3$0TIS
RETS$F 007234 RETS$IL

MOI$SS 007302 MOL4SS
MOI$SA 007312 HOI$IS
REL$ 007316 HMOI$IM
MOI$MS 007332 MOL$MM
MOI$0S 007346 MOI4$O0M
MOI$1S 007342 MOI%$1M
EXIT 007404 SAL$IM
SVUL$IM 007420 GUIL$SM
SULEMM 007434 S$CVTFER
$CVTCE 007454 $CVTCI
$CVTHTD 007454 CICs
ClLCs 007486 CLD$
CIFs$ 0074746 FLF$
CIL$ 007620
$SHORT 0076°6
sTUL
TUL%
$TVQ
TUis
STF$
SEXLT 010 00 FNU$
SEND 010650 $ERR
$IFW 010714 IFW$%
+10EXT 011082 4EOL
SURINT 011216 SALSTF

SULSIF 011”30 SUL$8F
SULSMP SAT$IM
$EOUND GUISTIM
SAT$MM SVUIT$MM
THET : $FUTRE
$FCHNL 01"0 $INITI
$FUTRL 013/30 SGETEL

$EOF2 013340 ¢F10
$TUMPL 015234
(RW»s Tty GRLyREL y OUR)
(RWs I7LCLyREL,CON)
LEN 015432 REPEAT
(RWsIyLCLyREL »CON)
(RWrIsL.CLrRELCON)
$60TEC 015676 FUN
(RWs I LCLyRELsCON)
$$0TS0 017234 $OFEN
(RWy I,I.CLyREL »CON)
(RWs Dy LCLyREL »CON)

004354 NIF$IS
004404 $LVR

(04386
004406
o A

QOLIGD

QOS

G0s 46
0063466 MUL*h"
005376 HMOLSRA
006404 NGOEM
NGF $F
ADLESS
ANT$IS
AI‘!TS&M‘?

5)i$MS
ICT$8
ICIsA

006562
006574 DCI$F
0066046 CMI$SI 006612
006622 CMISII 00465626
006636 CMISMI 006642

0046564
006600

006652 NMI$LI 006664
Q0064676 BGT$ 0046704
0046710 ENE$ 0046714

006726 MOF$RM 006734
0046750 MOF$MS 006754
006772 MOF$MA 007004

007020 MOFsFa 007024
007034 AND® 007040
007050 TSL$S 007064

007074 TSL$F
007112 RET$L
Q007244 RETS$
Q07302 HMOL$SM 007306
007316 MOL$IS
007322 NMOIs$IA
007336 MOI$MA 007342
007352 MOI$0A 007356
Q07370 MOI$1lA 007376
007410 BALESM 007412
007422 SALEMM 007430
007440 $CVTFI 007440
Q07454 SCUTDER 0074354

007466 CLi% 0074466
007466 $DI 07446
007476 $RI 00/47b

$ERRTE
TVUL$
010262 $TVF
Q10270 010‘76
010304 010304
010444
010450
010624
010666
0107%

SAI$EM
BUT$EM
SAVRGE
FWALT
$CLOSE
SEOF L
$HFI0

013140

014100 0]11u1

015450 SCOFY Q15602

016574 FUTETR 016742

017234

12-9

Linking Object Programs

Linking Object Programs

OTSsD 020352 000006 (RWy Dy LCL s REL » CONY

0TS$S 0203460 000002 (RWsD»LCLyREL yCON)
$A0TS 0203460

5YS4$8 020342 000004 (RW LIy LCLy REL y COND

$6YSLE 020342 $L.OCK 020344 $CRASH 020365
$DATA 0203466 000542 (RWs X LCL yREL » CON)
USER$II 021130 000000 (RWyDy LCLyREL yCON)
+$8%%, 021130 000000 (RWy Ly GBL s REL » OVR)

Transfer address = 015674y High limit = 021126 = 4395, words

RT-11 LINK V06,01 Load Mar TUE 08-JAN-80 00:20:09
TITLE: TEST INDENT: V00.00

SECTION ALDR SIZE GLOBAL VALUE GLOBAL VALUE GLOBAL VALUE
+ ABRS 000000 001000 (RW» IyGRL»ARSyOVR)
001000 000624 (RWrIyLCL,RELCON)
FROG 001000 SURONE 001372 SUBTWO 001434

TRANSFER ADDRESS = 001000y HIGH LIMIT = 001624 = 458.WORDS

The second line has the name and file type of the load module
created. Next, the absolute section and each named and un-
named section are listed under the SECTION column. To the
right are abbreviated codes designating whether the section con-
tains Instructions or Data, is Read/Write or Read Only, is a Local
or Global section, is Relocatable or Absolute, is Concatenated or
Overlaid. Below this falls a listing of all the global symbols
(GLOBAL) and their values (VALUE). Finally, at the end of the
map is the transfer address where the program actually starts
when executed, followed by the high limit — the total number of

bytes used by all the individual program sections.

Look first at the MACRO load map. The default absolute section
starts at absolute location 0; its size is 1000 bytes. Thus, it ex-
tends from absolute memory location 0 through absolute memory
location 777. The unnamed program section (there were no named
program sections in this program) starts at absolute 1000; its size
is 372 bytes. Thus it extends from absolute location 1000 to abso-
lute location 1370. The high limit of this program (total bytes) is
therefore 1370. Since this program is not linked to any other ob-
ject modules, there are no global symbols and the rest of the map
is blank.

Look now at the FORTRAN load map, remembering that it re-
flects the appropriate expansions into machine language code
provided by the FORTRAN compiler. Again, the absolute section
extends from absolute 0 through absolute 777. Globals listed in
the absolute section show the global variable names that the pro-
gram uses as constants throughout the program.

The unnamed relocatable program section begins at absolute lo-
cation 1000. Some of the named relocatable sections that are de-
clared are OTSP, SYSI, and $CODE. Global symbols and their
respective addresses appear to the right of all sections. The total
number of bytes used is 21126, or 4395 (decimal) words.

The third load map is for the program illustrated in Figure 12-2.
First, the map shows the absolute program section, labeled .ABS.

12-10

It extends from location 0 through location 777. Next, the map
shows the unnamed program section, which begins at location
1000 and is 624 bytes long. This program section consists of a
main program, caller PROG, and the subroutines SUBONE and
SUBTWO that were linked with PROG. Look again at Figure
12-2 to see how these routines fit into memory. The transfer, or
starting, address is 1000, and the total number of bytes the pro-
gram occupies is 1624, or 458 (decimal) words.

Load maps are most helpful when used in debugging to locate and
correct assembly language programming errors. They are not gen-
erally obtained or used for FORTRAN programs, except to deter-
mine program size. In Chapter 14 you will see how a load map is
used to debug the one remaining error in the MACRO demonstra-

tion program.

LINK
Link individual object modules together to form a complete
program and to produce a load module.

LINK/MAP
Link individual object modules, and produce a load map
showing all address assignments made during linking.

NOTE

FORTRAN users who followed the special instructions
in Appendix B to load the language or LINK volume
should now stop the system, unload that volume, load
the main system volume, and rebootstrap the system
before going on to Chapter 13.

RT-11 System User’s Guide (AA-5279B-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1980.

A guide to the use of the RT-11 operating system. See Chapter 11.

12-11

Linking Object Programs

SUMMARY:
COMMANDS FOR
LINKING
PROGRAMS

REFERENCE

CHAPTER 13

CONSTRUCTING LIBRARY FILES

A library is a specially constructed file consisting of one or more
programming routines. Generally, these routines provide services
that you are apt to need repeatedly, or services that are related
and so have been gathered together for ease in use and storage.
You use the routines in a library by joining the library file with
your source program. Usually this occurs at link-time: but in the
case of assembly language programs, it may also occur at as-

sembly-time.

The RT-11 operating system provides several library files;
SYSLIB and VTLIB for example. These libraries supply the mon-
itor services, input and output routines, conversion routines, and
other programming services that user programs may need. You
can create other library files yourself. Thus you can construct
libraries that contain routines specific to your programming needs
or to the combined needs of those using your RT-11 system.

There are two kinds of library files — macro libraries and object
libraries.

Macro libraries, such as SYSMAC.SML, are used by MACRO-11
source programs at assembly-time and consist entirely of macros.
A macro is described in Chapter 11 as a recurring sequence of
coding instructions, which, when defined in a .MACRO state-
ment, can then be called and used anywhere in your program. A
macro library is merely several macro definitions gathered to-
gether into a single file. To use the macros in a macro library, you
simply name those macros you plan to use in a .MCALL state-
ment. When the assembler encounters the .MCALL statement
during processing, it searches the appropriate macro library
(SYSMAC.SML is default) for the definitions. It takes the defini-
tions from the library and inserts them in a special table called
the macro symbol table where they become available for use

during assembly.

Object libraries, such as SYSLIB, are used by assembled
MACRO-11 source programs and/or by compiled FORTRAN IV
source programs at link-time. These libraries consist of object
modules that contain global routines; such routines have been
defined with global entry points and then named as global sym-
bols in the source program. During the link operation, the linker
searches the object libraries to determine if they provide defini-
tions for any undefined globals. If the linker finds definitions, it
takes those object modules containing the definition from the
library and includes them in the link.

13-1

KINDS OF
LIBRARY FILES

Macro Libraries

Object Libraries

Constructing Library Files

CREATING AND
MAINTAINING A
LIBRARY FILE

Creating Object
Library Input Files

A special table, called the global symbol table, lists each global in
a given object library. You can print this list on the terminal or
the line printer and thus keep track of an object library’s current
contents.

You create a library file by combining several macro routines, or
several object modules, into a single larger file using the monitor
LIBRARY command.

To build a macro library, first use the editor to create an ASCII
text file that contains all the macro definitions. Then process this
file using the LIBRARY command in combination with its
/MACRO option. To update a macro library (that is, to add or
delete macro definitions), simply edit the ASCII text file and then
reprocess the file with the LIBRARY command.

To build an object library, use the editor to create an ASCII text
file. The file contains the routines and functions written as com-
plete program segments in either the MACRO-11 assembly lan-
guage or the FORTRAN IV programming language. Then process
the file, producing an object module. Next, use the LIBRARY
command in combination with its /CREATE option. Once the
library file is created, update it (add and delete routines) by
means of various other options to the LIBRARY command.

In the following exercises, you create an object library that con-
tains three input object modules. The routines in two of these
modules can be used by both MACRO and FORTRAN programs;
the routine in the third module can be used only by FORTRAN
programs.

To build the library file, first use the editor to create the three
AQFTI toxt filog Than convert the AQCTT toxt f“‘nc: to n}nnnf

P YL US S SR V1 v). § A1ATTe 4 2aTAL UVLLY U ViU LSadaa uTAaUv 1xiU0 vU Uagv

format. Finally, process the object files with the LIBRARY com-
mand. Once you create the library files, use LIBRARY command
operations and options to add and delete modules and globals and
to obtain a listing of the library file contents.

The first step in building an object library is to prepare the source
code of the routines and functions that you choose to include in
the library. Use the editor to create the following three text files,
calling them FIRST.MAC, SECOND.MAC, and THIRD.FOR re-
spectively. FORTRAN users should create all three files; MACRO
users (who do not use FORTRAN) should create only the first two
files.

13-2

FIRST.MAC

Constructing Library Files

LTITLE COME

+MCALL
; I=LEN(A)
+GLORL
LEN? T8T
MOV
1%: TSTR
EBNE
LEC
SUER
RTS

CcALL
«GLOEL
FRINT: MOV
JFRINT
RTS
+ENDI

-

SECOND.MAC

+TITLE
I=ITTOU
I=0
=1
+MCALL
+GLOEL
ITTOUR!MOVE
+TTOUTR
RIC
AlC
RTS
«END

- ur ‘e

+FRINT

LEN

(RSt sSKIF # OF ARGS
@RSyRO $GET STRING FOINTER

(RO)+ SFIND END OF STRING

1% $LO0OF UNTIL NULL BYTE

RO s BACK UF

@R5,RO $CALC # OF CHARS IN STRING

FC

FRINT(ISTRNG)

FRINT

2(RS) RO sADDR OF ISTRNG

$ +FPRINT

FC $ AND RETURN
ITTOUR

R(ICHAR)

CHARACTER HAS REEN OQUTFUT
RING BUFFER IS FULL

+«TTOUTR
ITTOUR
@2(RS) RO $GET CHARACTER
. TTOUTR
ROYRO sCLEAR ERROR FLAG
RO
FC # RETURN

13-3

Constructing Library Files

THIRD.FOR

c CALL FUTSTR(LUNsAREAsCC)
SUBROUTINE FUTSTR(LUNsAREA,CC)
LOGICALX1 AREA(250),CC
IF(CC) GOoTO 1
WRITE (LUNy?9)(AREA(I)yI=1yLEN(AREA))

RETURN
1 WRITE(LUNy9?9)CCy (AREACI) yI=1,LEN(AREA))
?9 FORMAT(250A1)

END

The routines in these files are representative of the kinds of ser-
vices generally provided in a library file. They are, in fact, taken
from the RT-11 system subroutine library, SYSLIB.

FIRST.MAC contains two global routines, LEN and PRINT. The
LEN routine returns the number of characters in a string. PRINT
outputs an ASCII string terminated with a zero byte to the ter-
minal (it is the FORTRAN equivalent of the system macro
PRINT, used in the demonstration program in Chapter 11).
SECOND.MAC contains one global routine, ITTOUR, which
transfers a character to the console terminal. THIRD.FOR also
contains one global routine, PUTSTR. This routine can be used
only by FORTRAN programs and writes a variable-length char-
acter string on a specified FORTRAN logical unit (see GRAPH
example).

Once you create these text files, the next step is to convert them
from ASCII format to object format. Assemble or compile the text
files as appropriate, first assembling FIRST.MAC and obtaining
an object module (a listing is not necessary). FORTRAN users
who are not familiar with the assembly process simply type the

MACRO commands as shown.

+MACROGED
Files? FIRSTGED
ERRORS DETECTED: O

Short Command Format

I u o el

ERRORS DETECTED: ¢

The command creates an object module called FIRST.OBJ on the
system volume. The assembler prints a message on the terminal,
indicating the number of errors encountered during assembly.
This message should show 0 errors.

13-4

In the same way, assemble SECOND.MAC. Again, no errors
should occur.

Long Command Format

+ MACRO®GED
FilesT™ SECONDGED
ERRORS DETECTED: O

Short Command Format

+ MACRO SECONDGED
ERRORS DETECTED: ©

If any errors occur during the assembly operations, you have
typed the source files incorrectly. Find and correct the typing
errors, and reassemble.

If you are a FORTRAN user, continue by compiling THIRD.FOR.

NOTE

If in Chapter 9 you needed to load the special
FORTRAN/BASIC language volume, you must again
load that volume before you can compile THIRD.FOR.
Read Appendix B, Substituting Volumes During Oper-
ations, before continuing.

Long Command Format

+ FORTRANGED
Files? THIRDGED
PUTSTR

Short Command Format

+ FORTRAN THIRDGED
PUTSTR

Notice that the compiler prints the name of the global (PUTSTR)
generated. If any errors occur during the compile operation, you
have typed the source file incorrectly. Find and correct the typing
errors, and recompile.

Once you have produced the object modules, you are ready to
build the object library file.

13-5

Constructing Library Files

Constructing Library Files

Building the
Object Library

LIBRARY/
CREATE

LIBRARY/LIST

Use the LIBRARY command in combination with its /CREATE
option to construct a library file. You must indicate in the com-
mand the name of the library file and the names of the input
object modules. Call the library file LIBRA and specify as input
the two object modules, FIRST and SECOND. The LIBRARY
command assumes that the input modules have the .OBJ file

type (unless you indicate otherwise) and automatically assigns
.OBJ to the library file.

Long Command Format

+LIBRARY/CREATEGD
Libkrarv? LIBRAGED

Cailac D ETRST .SECLOMDEED
rii€5 EE i O o o B QR o mif SR A4 § W3\ 15

Short Command Format

+LIBRARY/CREATE LIBRA FIRST.SECONDGED

Once the CREATE operation is complete, obtain a listing of the
library file’s contents, using the LIBRARY command with its
LIST operation. The line printer is the assumed output device for
the list file, although you may indicate a different output device
by adding the two-letter device code to the LIST option that
follows.

Long Command Format

(Line printer) (Terminal)
JLIBRARY/LISTEE .LIBRA.F{‘:’/LIST:TT:
Librarv¥? LIBRAGED Libkrary? LIBRAGE

Short Command Format

(Line printer) (Terminal)
I TMr AL 2 T T A e T Ay b TOOT T . i A
slolldRHR T/ LLL O e liregey L lLINHIT T /bW e B 1w b & W/EA T

The listing produced shows the library file’s current contents.
This library has three entry points: LEN and PRINT in the first
module, and ITTOUR in the second niodule.

RT-11 LIBRARIAN V03,10 TUE 11-JAN-BO 11:03:29

DK:LIBRA.OBJ TUE 11-JAN-B80 10:589:43
MODULE GLOBALS GLOBALS GLOBALS
LEN PRINT
ITTOUR »

13-6

Once you have created an object library, you use various LI-
BRARY command operations to update and maintain it by
adding and deleting modules and globals.

If you created the THIRD.OBJ object module, you can add it to
the library file using the INSERT option. If you did not create
this module, read through this section anyway; the command
steps apply to any object module you wish to insert.

Long Command Format

LLIBRARY/INSERTGEED
Librarv? LIBRAGED
Files 7% THIRDED

Short Command Format

JLIBRARY/INSERT LIBRA THIRDGED

This operation inserts the object module contained in the file
THIRD.OBJ, including all its globals, into the library file LIBRA.
Obtain a listing of the library contents, using the LIST option, to
verify that the new globals have been added. The listing should
look like this:

RT-11 LIBRARIAN VO3.,10 TUE 11-JAN-BO 11:03:1

DK:LIBRA.OBJ TUE 11-JAN-80 11:04:21
MODULE GLOBALS GLOBALS GLOBALS
LEN PRINT
ITTOUR
PUTETR

This listing shows the complete library file containing the globals
from all three modules.

You can remove individual globals by using the REMOVE option.
For example, to remove the global ITTOUR, type:

Long Command Format

+LIBRARY /REMOVEGED
Librarvy? LIBRAGED
Globkal? ITTOURGED
Global?EED

13-7

Constructing Library Files

Updating the
Object Library

LIBRARY/
INSERT

LIBRARY/
REMOVE

Constructing Library Files

SUMMARY:
COMMANDS FOR
MAINTAINING
‘LIBRARY FILES

FILE
MAINTENANCE

Short Command Format

,LIBRARY/REMOVE LIBRARED
Globkal? ITTOURGD
Global?@®D

The library file’s contents now look like this:

RT-11 LIBRARIAN V03,10 TUE 11-JAN-80 11:10:22

DR:LIBRA,OBJ TUE 11-JAN-80 11:10:03
MODULE GLOBALS GLOBALS GLOBALS
LEN PRINT
PUTSTR

These are some of the library maintenance operations that you
can perform by using the LIBRARY command. Other library op-
erations are available and are explained in the RT-11 System
User’s Guide, Chapter 12.

LIBRARY/MACRO
Create a macro library.

LIBRARY/CREATE
Create an object library.

LIBRARY/INSERT
Insert object modules into the object library.

LIBRARY/LIST!:filespec]
List the current contents of an object library on the line
printer: [:filespec] is an optional output file and/or device.

LIBRARY/REMOVE
Remove globals from the object library.

Since all the object modules used in this chapter already exist as
modules within the provided system library SYSLIB, there is no
need to save them or the LIBRA library file. You can delete these
object modules and their source files from your system volume by
using the DELETE command as follows {exclude THIRD.* from
the command line if you did not create this file):

Long Command Format

« DELETE/NOQUERY @E
Files? FIRST..* »SECOND.*sTHIRD.*+LIBRA.DBJRED

13-8

Constructing Library Files

Short Command Format

+DELETE/NDOQUERY FIRST.*:;SECOND,*:THIRD.*: :LIBRA.0BJED

FORTRAN users who performed the special instructions given in

Appendix B should also delete the THIRD files from the storage

volume.

Long Command Format

+DELETE/NDQUERY BED
Files? WOL:THIRD.*@D

Short Command Format

,DELETE/NOQUERY WOL:THIRD,*GED

RT-11 System User’s Guide (AA-5279B-TC), Maynard, Mass.: Digital Equip- REFERENCE
ment Corporation, 1980.

A guide to the use of the RT-11 operating system. See Chapter 12.

13-9

CHAPTER 14

DEBUGGING A USER PROGRAM

Debugging is the process of finding and fixing the programming
errors that almost every user program initially contains. From
your experience in Chapters 9, 10, and 11, you already know

TTOTS +th ot fon nravan
T101S uwiiay Caii ulCVCllt a

amm i AL AL L d o AL A pnn ~

/Ihlllll \llllll—'lll IIIPK llll\ mi £ e
apouy some {if Of Programming €

program from working properly when you run it on the system.

Frequently, debugging a program requires more time and persis-
tence than actually writing the program code. Therefore, you
should anticipate the debugging process throughout the entire
program development cycle. That is, you should follow some
common programming practices that help you first to make as
few programming errors as possible. When errors become ap-
parent during the various phases of development, correct them
immediately. Test the validity of any algorithms used within your
program. Finally, even though the program appears to be working
properly, check it thoroughly with test data.

There are several steps you can take to decrease the likelihood of
introducing errors into your program and to make debugging
easier.

First, always use a high-level language if one will suit your pro-
gramming needs. High-level language programs tend to use fewer
statements. English-like words and phrases in the language state-

ments make the program logic easier to follow.

Design the program. The technique of flowcharting the program
and then correlating it with the program coding simplifies
tracking the program logic and module interrelationships.

Use modular programming. Create the program as a series of
smaller, self-contained subprograms. Debug the program in parts.

For frequently used functions, maximize the use of subroutines,
subprograms, and — in the case of assembly language programs
— macros. These help to structure the program and make it
easier to alter or to add features that may be required in the
future.

Make use of any software provided by the system, such as library

routines and functions. System software has already been de-
bugged and can save you the trouble of re-creating the services.

14-1

AVOIDING
PROGRAMMING
ERRORS

Debugging a User Program

WHEN
PROGRAMMING
ERRORS OCCUR

Make the general flow of a program proceed down the page. Avoid
nonstructured branching and convoluted logic, as these tend to
produce programs that are difficult to debug. Finally, use com-
ments liberally throughout the program to show what individual
statements or groups of statements do. Use spaces and tabs in the
program code to make it easier to read.

Following these preventative steps eliminates many common pro-
gramming errors and helps to create a programming style. How-
ever, even the most careful programmer may overlook a small
detail: a typing error during program creation, an undefined label
in the code, or some other programming bug. When something is
overlooked, debugging becomes necessary.

There are three general types of programming errors — syntax,
clerical, and logical.

Syntax errors are errors in the physical coding, such as omitting
necessary portions of the statement (delimiters for example),
reversing the order of information within the statement, or mis-
spelling keywords or instructions.

Clerical errors are non-syntax errors in the physical coding, such
as mistyped letters or digits in data. Clerical errors may result in
valid statements that do not reflect correct programming logic.

Logical errors are errors made in program development.

The translating program (compiler/assembler/interpreter) gener-
ally catches syntax errors and flags them as such in the program
listing or on the terminal. On the other hand, you must locate
clerical and logical errors by reexamining the program code and
logic, using one or more debugging techniques.

Some debugging techniques invoive insertion of special debugging
code within the program. For example, one way to locate logical
errors is to write out intermediate results of a program. You can
insert WRITE or PRINT statements at strategic points in the
program logic to show the intermediate state of values being cal-
culated. When debugging is complete, you can remove these
statements or change them to comments.

You may also find it useful to write a special debugging subrou-
tine that writes out values, particularly if the same variables

must be examined in several places or many times.

Another method for finding logic errors — unit testing — is to
break the program into smaller parts and test each part sepa-

14-2

rately with artificial data. After you test all parts individually,
you can test routine and module linkage — system testing — to
see that all related code fits together properly.

Check the program with test data. A standard method for
checking out modules is to write a test program that calls the
program with possible options. The test should cause the program
to execute all steps in all algorithms. Check programs first with

representative data, then with improper data (data that is not in
the correct range or size). You should also do volume testing to see

that the program works successfully with a representative amount
of data.

Each programming language has special debugging aids for exam-
ining immediate states. For example, BASIC has a STOP state-
ment that you can insert at strategic points in the program. When
the program arrives at a STOP statement, it pauses so that you
can use BASIC’s immediate mode to examine variables, values,
and so on. Use an immediate mode GO TO statement pointing to
the appropriate line number to continue execution.

FORTRAN IV has a special DEBUG statement indicator, a D in
the first column of a statement line. Operations in statements
marked with a D can perform useful debugging functions, such as
printing intermediate results. You can treat such statements as
source text (and thus execute them) or as comments (and thus
ignore them), depending on whether you use a special compiler
command option. In addition, FORTRAN IV has a traceback
feature that locates the actual program unit and line number of a
run-time error. If the program unit is a subroutine or function
subprogram, the error handler traces back to the calling program
unit and dispiays the name of that program unit and the line
number where the call occurred. This process continues until the
calling sequence has been traced back to a specific line number in
the main program unit. Finally, FORTRAN IV has an optional
interactive debugger called FDT (FORTRAN DEBUGGING
TECHNIQUE) that can be linked with a user program.

For MACRO-11 users, RT-11 provides a special on-line debug-
ging tool called ODT (On-line Debugging Technique). This is
provided as part of the RT-11 operating system and is an object
program on your system volume. It is used exclusively for debug-
ging assembled MACRO-11 programs.

The use of ODT is described next for MACRO-11 users and for
those FORTRAN IV users who will be combining MACRO and
FORTRAN program code. Other users can continue to Chapter
15, or go back and perform one of the other language demonstra-
tions. Refer to the reading path outlined in the Preface.

14-3

Debugging a User Program

Debugging a User Program

USING THE
ON-LINE
DEBUGGING
TECHNIQUE

ODT is an interactive debugging tool that allows you to monitor
program execution from the console terminal. ODT is provided as
the object module ODT.OBJ on your system volume. To use it,
you link ODT.OBJ with the assembled MACRO program that
needs debugging. You then start execution of the resulting load
module, not at the transfer address of your program, but at the
entry point of the ODT module (shown on the linker load map as
the global symbol O.0ODT). Once ODT is started, you can use its
special debugging commands to control the execution of your as-
sembled machine language program from the console terminal, to
examine memory locations, to change their contents, and to stop
and continue program execution.

The MACRO demonstration program in Chapter 11 stiil contains
one error, which you can locate and correct using ODT. Several
ODT debugging commands are demonstrated in the process.

Throughout the examples in this chapter you need to refer to the
program assembly listing that you produced in Chapter 11 (SUM)
and stored on the storage volume. Print it now on either the
terminal or line printer:

Long Command Format

(Line printer) (Terminal)
+PRINTGEED « TYPEGED
Files? VOL:SUM,.LSTEED Files? UOL:SUM.LSTED

Short Command Format

(Line printer) . (Terminal)
JPRINT VDL :SUM.LSTGEED +TYPE UOL:SUM.LSTGEED
SUMJMAC VERSION 1 MACRO V04.00 B8-JAN-80 00:40:00 PAGE 1

»TITLE SUM.MAC VERSION 1
S+MCALL .TTYOUT» JEXITr PRINT

DN U D G

000104 N = 70, #NO, OF DIGITS OF ‘E‘ TO CALCULATE
i ‘E’ = THE SUM OF THE RECIPROCALS OF THE FACTORIALS
10 i 170! + 17110 + 1721 4 1731 + 1/74! + 1/50 + ...
11
M 12 000000 EXF$ +FRINT #MESSAG SPRINT INTRODUCTORY TEXT
13 000006 012705 000106 MOV #NsRS #NO, OF CHARS OF ‘E‘ TO FRINT
14 000012 012700 000107 FIRST: MOV #N+1sRO #NO. OF DIGITS OF ACCURACY
B} 15 0000146 ©12701 000000 MoV #ArR1 FADDRESS OF DIGIT VECTOR
16 000022 006311 SECOND: ASL @R1 00 MULTIFLY BY 10 (DECIMAL)
17 000024 011148 MoV @R1s+~(SF) §SAVE X2
18 000024 004311 ASL 2R b 4]
19 000030 006311 ASL @eR1 %8
20 000032 042621 ADD (SF)+s(R1)+ FNOW %10y FOINT TO NEXT DIGIT
21 000034 005300 DEC RO #AT ENI' OF DIGITS?
22 000036 001371 BNE SECONI FBRANCH IF NOT
23 000040 012700 000104 MOV NIRO iG0 THRU ALL PLACES, DIVIDING
24 000044 014103 THIRD? MOV ~{R1)YyR3 FBY THE FILLACES INDEX

14-4

000046 177777 MoV #-1»R2 #INIT QUOTIENT REGISTER
000052 FOURTH: INC R2 #BUMP QUOTIENT
000054 SUB RO/R3 FSUBTRACT LOOF ISN’T RAL
000056 BCC FOURTH FSNUMERATOR IS ALWATS -1 10%N
7 000060 0560003 AGD ROSR3 FFIX REMAINDGER
30 000062 010311 MoV R3s@R1 FSAVE REMAINDER A5 BASIS
31 #FOR NEXT DIGIT
AR 32 000064 064167 000000 000000 ADI R2-2(R1) FGREATEST INTEGER CARRIES
33 $TO GIVE DIGIT
34 000072 0035300 DEC RO AT END OF DIGIT VECTOR?
35 000074 001343 EBNE THIRD #BRANCH IF NOT
36 000076 014100 MoV —-(R1)sRO FGET DIGIT TO QUTFUT
37 000100 1462700 000012 FIFTH: SuB #10,sR0 FJFIX THE 2.7 70 .7 SO
FTHAT TT 1S NNLY 1 TTRTT
000104 1033735 EkCC FIFTH i (REALLY DIVIDE RY 10)
40 000106 062700 000070 ADD #10+°0sRO FMAKE DIGIT ASCI1
u 41 000112 000000 STTYON FOUTFUT THE DIGIT
42 000114 005011 CLR @R1 FCLEAR NEXT DIGIT LOCATION
43 000116 005305 DEC RS $MORE DIGITS TOD FRINT?
44 000120 001334 BNE FIRST #BRANCH IF YES
45 000122 JEXIT FWE ARE DONE
46
L 47 000124 000107 EXP? «REFT N+1
48 +WORD 1 #INIT VECTOR TO ALL ONES
49 <ENDR
S0
Hi 000342 iza 110 100 HESSAG! JABCII /THE VALUE OF £ IS3/ <1Sk112: 20¢.
000345 040 126 101
000350 114 125 105
000353 040 117 106
000356 040 105 040
000361 111 123 072
000364 015 012 062

SUM.MAC VERSION 1 MACRO V04,00 8-JAN-80 00:40:00 PAGE 1-1

000347 056 200
52 +EVEN
53
n 54 000000° +END EXP

BUM,MAC VERSION 1
SYMEOL TABLE

MACRO V04.00 8-JAN-80 00:40:00 PAGE 1-2

= Kkkk¥k FIFTH 000100R FOURTH 000QS2R N = 000106 THIRD 000044R

EXF 000000KR FIRST 000012R MESSAG 000342R SECONI 000022R STTYON= ¥0kkk
« ABS. 000000 000
000372 001

ZRRORS DETECTED: &
VIRTUAL MEMORY, USED! 8448 WORDS (33 PAGES)

DYNAMIC MEMORY AVAILABLE FOR 66 PAGES
IK§ SUM» DK 3SUM/C=DK 2 SUM

SUM.MAC VERSION 1 MACRO V04.00 8-JAN-80 00:40:00 PAGE S-1
CROSS REFERENCE TAELE (CREF V04.00)

+TTYON 1-41
a

1-15
EXP 1-12% 1-47% 1-54
FIFTH 1-37% 1-39
IFIRST i-14% 1-44
FOURTH 1-26% 1-28
MESSAG 1-12 1-51%

N 1=7% 1-13 1-14 1-23 1-47
SECOND 1-16% 2

1-22
THIRD 1-24% 1-35

SUM.MAC VERSION 1 MACRO V04.00 B-JAN-80 00:40:00 FPAGE M-1
CROSS REFERENCE TABLE (CREF V04,00)

SJEXTT 1-3% 1-45
<FRINT 1-3% 1-12
+TTYOU 1-3%

CROSS REFERENC

SUM.MAC VERSION 1 MACRO V04,00 B-JAN-BO 00340:00 PAGE E-1
£ TABLE (CREF ¥04.00 !}

a 1-32
n 1-54
L 1-12 1-47
R 1-32
u 1-15 1-41

Now link the MACRO program object module (SUM.OBJ) stored
on the storage volume (VOL:) with ODT.OBJ by using the
/DEBUG option, and print a load map directly on the terminal or
line printer, choosing one of the following commands:

Long Command Format

(Line printer) (Terminal)

LLINK/MAP:TT:/DEBUGGEED
Files? WOL:SUMEED

+LINK/MAP/DEBUGEED)
Files? WOL:5UM

14-5

Debugging a User Program

LINK/DEBUG

Debugging a User Program

Short Command Format

(Line printer) (Terminal)

JLINK/MAP/DEBUG VYOL:SUMGED JLINK/MAP:TT:/DEBUG VDL :SUMBET

RT-11 LINK U0OG.01 Load Mar Fri 11-Jan-80 13:11:26
SUM +8AY Title: anT Tdent: Wod, 00
Section Addr Size Global Value Global- Walue Global VYalue
+ ABS. 000000 001000 (RW+I+GBL+ABSOVR)
001000 Q00372 (RW,I+LCLYREL sCONY
$0DT$ Q01372 Q0B15Z (RWsI+LCLREL +CON)

0.0DT 001624

Transfer address = Q01GB24, High limit = 007542 = 1969. wards

Look at the load map, and note that ODT starts at address 1372.
The two modules together, ODT and SUM, reside in memory up
to location 7542, the high limit. Look at the symbol table listing
for the MACRO program. This shows that the program is 372
(octal) bytes long and starts at location 1000.

To load and start execution of the load module, use the monitor
RUN command. The RUN command brings the entire load
module, called SUM.SAYV, into the absolute (physical) memory
locations shown in the load map and begins execution automati-
cally at the starting, or transfer, address of the first module in
memory, which is ODT. Type:

Long and Short Command Format

+RUN SUMGEED
anpT wad, o0
*

ODT prints an identifying message on the terminal and an as-
terisk indicating that you are in ODT command mode and can
enter an ODT command. You are now using ODT to control the
execution of your program.! ODT commands let you execute the
entire program or just portions of it, examine individual locations,
examine the contents of the PDP-11 general registers, and change
the contents of any locations in your program you wish. If you
make a mistake while you are typing any commands, type the
DEL key; ODT responds with a ? and an asterisk, allowing you to
enter another command.

'Be sure to read Chapter 21 of the RT-11 System User’s Guide before you use

ODT with any of your own programs. You must observe certain precautions
when you write your program and when you load it with ODT. For example, you
should make sure that ODT is not loaded into memory locations used by your
program. There are steps you can take to prevent this from occurring.

14-6

Look at locations 6 through 16 in the assembly listing. With ODT,
you can examine these locations in memory as follows (all ODT
commands use octal numbers, as does the assembly listing):

*1006/0127050
goioio /00010608
QO1012 /701270009
001014 /700010700
QO101iBE /012701

TVs st o Tmmadlinen A ddmace oA o glachk w7t ATAR +hat 1
DY Lyping a 10Cation audress dallu a Siasil, you Upeil tllav itauivil
for examination and possible modification. A line feed closes that
location and opens the next sequential location for examination.

A carriage return simply closes the currently open location.

Note that since the MACRO program was linked to begin at
address 1000, you must add the constant 1000 to each address
shown in the assembly listing to obtain the actual address used
during loading. ODT can do this for you by using special internal
locations called relocation registers. Each register can be set to a
relocation constant. Thus, if you have linked several modules
together, you can set various relocation registers to the corre-
sponding relocation constants of the individual modules. You
then indicate in your command which register to use, and ODT
automatically adds the constant in that register to the address
specified in your command. For example, set relocation register 0
to 1000:

Now, to examine locations 0 through 10 in the assembly listing,
type:

*¥040/0127001F

0000002 /700134209
0000004 /10435100
03000006 /0127051
0000010 /00010GED)

In your commands, indicate the number of the relocation register
(followed by a comma), since generally you will have more than
one register set at a time.

Execute the MACRO program now, using the ODT ;G command,
indicating in the command where you wish execution to start. In
this case, the program’s start (transfer) address is 1000, so type:

#0030

THE YALUE OF E IS:

2.5/B0B/B0BZ37.2301314.,06525/130440275535025.,7147773735274474540302.544

14-7

Debugging a User Program

Debugging a User Program

As you discovered in Chapter 11, these program results are incor-
rect. Note that a period has printed, indicating that you are back
in monitor command mode. This particular MACRO program
returns to the monitor after execution. Therefore, to continue
using ODT, you must RUN the load module again:

Long and Short Command Format

+RUN SUMGEED

abpT vod.,00
*

Changes that you make to a program while using ODT, and ODT
register assignments that you make, are temporary. Thus when
you restart ODT, you must reenter any commands, such as relo-
cation register commands, that you want to remain in effect.
Reset relocation register 0:

*100050R

To help you find programming errors, ODT provides a breakpoint
feature. Setting one or more breakpoints in a program causes
program control to pause at those locations during execution.
When control pauses, ODT prints a short message on the ter-
minal, informing you that a breakpoint has occurred and showing
the location at which execution has stopped. This pause returns
control to ODT and gives you the opportunity to examine and
possibly modify variables or data. Breakpoints are numbered
from 0 to 7, so that you can have a total of eight breakpoints set at
various instructions in the program at one time.

For example, set breakpoint 0 at location 22 (line 16 in the as-
aomhlyy Heting) and hroalbnaint 1 at lacatinan AN (1ina 992).
D\/LJ.AULJ -I.LDUI.-II.S’ Uriva UL\;“I\.PVLIJV 4 AV 1vVLvAuviIVLIL TV lae Loy

*#0 22308
*0,4051B

Now when you run the program, control pauses first at location
22. Since the breakpoint was set at the instruction at location 22,
that instruction has not yet been executed, but all preceding in-
structions have:

*¥0 035G
TBOIQ 000022

Note the message that ODT prints when execution reaches the
breakpoint. Normally when execution encounters a breakpoint,
only the breakpoint number and location are printed on the ter-
minal. In this case, the letter T precedes the breakpoint message.
This happens because of the way the ODT program uses the

14-8

console terminal. The assembly instruction at line 12 of the as-
sembly listing (. PRINT) requests the monitor to print a program
message at the same time that ODT needs to print the breakpoint
message. ODT, however, has higher priority. By the time the
.PRINT request starts to print the program message, execution
reaches the breakpoint and gives control to ODT. The .PRINT
request has time to print only one character of its message before
ODT takes over and prints the breakpoint message. When the
program regains control, its message will continue printing from
the second character.

Program control has paused at location 22 in the MACRO pro-
gram. Look in the assembly listing at the instructions that occur
there. The instruction at location 16 (line 15) stores the address of
the digit vector (at label A) in register 1 (R1). Examine the con-
tents of register 1 to discover what this address is; then open the
address and examine its contents and the contents of the next
several addresses following it by using two new ODT commands,
$ and @:

*$1/001124 @

05000124 /700000100
Q000126 /000001
0000130 /00000100
03000132 /7000001

The $ command opens for examination the contents of one of the
general PDP-11 registers 0 through 7. The @ command uses the
contents of the currently open location as an address and opens
that location for examination. Notice that the digit vector A,
which begins at location 124, has been initialized to the value 1,
the precise value indicated by the comments at line 48 of the
program listing.

If you were to continue program execution now, the branch in-
struction at line 22 of the assembly listing would cause program
control to loop back to the instruction at line 16 where breakpoint
0 is set, again causing execution to pause. Since you wanted to
continue to the next breakpoint (set at location 40), you must first
cancel the breakpoint at location 22. To do this, type:

#*350B

This removes the breakpoint at location 22. The number (in this
case 0) indicates which breakpoint is to be removed. Now con-
tinue program execution using the ;P command (proceed from
breakpoint). Execution progresses through the loop and continues
until it reaches the breakpoint set at location 40:

* 5P
HB1310 000040

14-9

Debugging a User Program

Debugging a User Program

(Note that the monitor has time to print the second character,
and perhaps additional characters, of the program message before
ODT gains control.) Now examine the contents of several of the
program vector locations beginning at location 124:

*¥0,124/00001209
0000126 /700001200
0000130 /00001200
0000132 /000012

The instructions prior to the breakpoint at location 40 constitute
a multiplication routine. This routine multiplies the vector con-
tents by 10 (12 octal), as you have just verified.

You can see how the breakpoint feature is a very useful debugging
aid. It allows you to execute selected portions of a program and
verify that data and variables are being used correctly during
execution. You can use the breakpoint feature to locate the error
that is in this program.

First, clear all previously set breakpoints (in this case, there is
only the one at location 40) by typing the ;B command with no

rgument.
*1B

Now set a breakpoint at location 110 (line 41 of the assembly
listing). You want to verify the data that is being passed to the
monitor in register 0 in the ADD instruction in line 40. Type:

*¥0,110350B
* 3P
EBO3O 000110

Now examine the contents of register 0.

*$0/0000B5 \OBS =35@D

At this point in execution, register 0 contains 000065. The back-
slash (\) command prints the low-order byte of the opened loca-
tion on the console terminal and also converts this to an ASCII
character (if it is a valid ASCII code) and prints the character. In
this case, the number 5 prints. If you look back at the program
results printed earlier in this chapter, you can see that 5 is the
first digit of the tabulated result (following the message THE
VALUE OF E IS 2). If you are experienced in mathematics, you
know this result is incorrect because the approximate value of E is
2.718. And you now also know that the program error is not in the
interface to the monitor service used to print the result

14-10

(. TTYOUT), but that it occurs somewhere before location 110. So
the next step in debugging this program is to set a breakpoint at
some earlier point in the program logic and to rerun the program.
You must restart ODT to do this. Return to monitor mode by
typing CTRL/C. The remainder of the program message prints on
the terminal; then the monitor period appears, indicating that
you are in monitor mode:

* CTRL/C
#UALUE OF E I8:

Restart ODT and reset relocation register 0:

+RUN SUMEED

onT Yod, 00

Set a breakpoint at location 76 (line 37 in the assembly listing),
and start program execution at its beginning:

*#0+70308
*0 403G
TBO3:0Q,0000786

Again, examine register 0 to verify its contents:

*$0/000033RED

By following the program logic in the assembly listing, you know
that the value in register 0 should at this point be 33(octal) (2.7,
previously multiplied by 10, = 27[decimal] = 33[octal]). So the
value in register 0 is correct. From this, you can deduce that the
error must occur somewhere between locations 76 and 110. The
proper step now is to check the assembly listing, where you find
the error at line 40. The decimal point that should follow the 10,
identifying it as a decimal 10, is missing. Therefore the program
treats the 10 as an octal 10, or 8(decimal), making each digit in
the result off by an additive factor of 2. The data in location 106,
then, should be 72, not 70. Since this data has not yet been used,
you can change it now with ODT and continue program execu-
tion; if it had been used, you would need to restart ODT and then
change the data. To change the contents of a location, simply
open the location, type in the new contents, and close the loca-
tion, using a carriage return.

*01GE/000070 TIZRE

14-11

Debugging a User Program

Debugging a User Program

Now eliminate all breakpoints, and continue program execution;
the correct results should print:

*iP
THE VALUE OF E IS:
2,7182818284590452353602874713526624977572470936999595749669676277240768

SUMMARY: To Start ODT
COMMANDS FOR
DEBUGGING LINK/DEBUG
Link the assembled program (the program to be debugged)
PROGRAMS with the ODT object module.
To Use ODT!

Close the currently open location and open the next sequential
location for examination and possible modification.

RET
Close the currently open location.

addr/
Open the location indicated (addr) for examination and pos-
sible modification.

addr;G
Begin program execution at the indicated address (addr).

;P
H
Continue program execution from a previous breakpoint.

ad
(=104

nR
1L

dr;
Set one of the eight available breakpoints (n) at the indicated
address (addr).

:nB
Cancel the indicated breakpoint (n).

;B
Cancel all breakpoints.

addr;nR
Set one of the eight available relocation registers (n) to the
relocation constant value indicated by addr.

1Only a very few of the available debugging commands have been demonstrated
in this chapter. Consult Chapter 21 of the RT-11 System User’s Guide for all
ODT commands.

14-12

$n
Open one of the eight general registers (n) for examination and

possible modification.

@
Use the contents of the currently open Iocation as an address;
close the currently open location; go to the new address, and
open it for examination and possible modification.

Print on the console terminal the low-order byte of the cur-
rently open location; if possible, convert the value to an ASCII

code and print the corresponding character on the terminal.

Changes you make with ODT are temporary. Therefore you
should now use the editor to correct the source program
SUM.MAC. You should edit line 40 so that it reads:

ADD #10.+ 70RO iMAKE DIGIT ASCII

The file SUM.MAC is currently stored on the storage volume
VOL:. Edit this file, then reassemble, relink, and rerun it to verify
that it is correct. When you have done this, store the updated
version of the source file on the storage volume under the same
name (SUM.MAC), including the files SUM.OBJ and
SUM.SAV.

After you have corrected and rerun the program, continue on to
Chapter 15, or go back and perform one of the other language
demonstrations. Refer to the reading path outlined in the Preface.

RT-11 System User’s Guide (AA-5279B-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1980.

A guide to the use of the RT-11 operating system. See Chapter 21 for a
detailed description of ODT.

14-13

Debugging a User Program

FILE
MAINTENANCE

REFERENCE

CHAPTER 15

USING THE FOREGROUND/BACKGROUND MONITOR

A special feature of the RT-11 operating system is that it provides
a choice of operating environments. Thus far, you have used its
single-job environment when running the system utility programs

and the demonstration programs one at a time. A second environ-
ment, called the foreground/background environment, is also
available. This environment allows two independent programs to

reside in memory at the same time and to execute concurrently.

Because there are different operating environments, there are ac-
tually different monitors. You are familiar with the single-job
(SJ) monitor. You have used the single-job monitor so far to con-
trol the system and to perform the various exercises in this
manual.

To run in the foreground/background environment, you activate a
second monitor, called the foreground/background (FB) monitor.
The FB monitor is simply an extension of the SJ monitor; it is
completely compatible with the SJ monitor, but provides ex-
tended monitor command operations for controlling a two-job en-
vironment.!

The foreground/background environment is designed so that two
programs can (but need not) share memory and run concurrently.
One of these programs you designate as the foreground program.
The system gives priority to the foreground program (or job, as it
is usually called) and allows it to run until some condition, per-
haps waiting for an I/O completion, causes it to relinquish control
to the other program (the background job). The system then al-
lows the background job to run until the foreground job again
requires control, and so on. In this way, the two programs share
system resources. Whenever the foreground program is idle, the
background program runs. Yet whenever the foreground program
requires service, its requests are immediately satisfied. To the
user at the terminal, the two programs appear to run simultane-
ously.

Foreground priority programs are generally time-critical. For ex-
ample, you may want to designate as the foreground job a pro-

'The RT-11 operating system also provides a third operating environment called
the extended memory environment. This environment is governed by the ex-
tended memory (XM) monitor and allows advanced users to utilize up to 128K
(words) of memory. See the RT-11 Software Support Manual for more informa-
tion.

15-1

THE
FOREGROUND/
BACKGROUND

ENVIRONMENT

Using the Foreground/Background Monitor

Running the
Foreground/
Background
Programs

gram that collects and analyzes data. Background programs are
usually non-time-critical. Thus, you can continue to do program
development as the background job by using monitor commands
to run the editor, the FORTRAN compiler, the linker, and so
forth.

Foreground/background operation requires that you have at least
16K words of computer memory (each 4K equals 4096 words) plus
a system clock. Not all RT-11 computer systems support
foreground/background operation, since the hardware it requires
is optional. To determine if your system can support FB opera-
tion, check the Hardware Configuration section in Chapter 2. If
you have at least 16K of memory and the system accepts a TIME
command, you can use the foreground/background monitor to
perform the exercises in this chapter. Otherwise, you do not have
the hardware necessary to support an FB environment, and you
should skip ahead to Chapter 16.

Two programs are provided for you to run a foreground/back-
ground demonstration. These programs reside on your system
volume. The background job is called DEMOBG, and the fore-
ground job DEMOFG. The function of the foreground job is to
send messages every two seconds to the background job, telling it
to ring the terminal bell. Besides printing the terminal message
when used as a single-job exercise, the background job in a
foreground/background environment recognizes these messages
and rings the bell once for each message sent by the foreground
job.

Although the foreground job is always active, sending messages to
the background job every two seconds, other programs can be
executed in the background besides DEMOBG. Only when DE-
MOBG is active, however, is the circuit compiete so that mes-
sages can be successfully received and honored. During the pe-
riods when DEMOBG is not running, the foreground program
enters the messages in the monitor message queue. Once you
restart DEMOBG in the background, the system immediately
dequeues all the messages since the last exit of DEMOBG, re-
sulting in many successive bell rings. When the queue is empty,
the normal send/receive cycle resumes, and the bell rings every
two seconds as each current message is sent and honored.

You first edit, assemble, and link the background job under the
single-job monitor. Then you boot the FB monitor into memory.
After creating the foreground job, you execute both jobs in a

or A4 3 +
foreground/background environment.

15-2

Using the Foreground/Background Monitor

The background program DEMOBG.MAC is an assembly lan-
guage source file and must be assembled and linked before you
can use it. When you execute DEMOBG in a single-job environ-
ment, it displays a message on the terminal. It is assumed that
you are running the SJ monitor and that you have set the date.

Use the text editor to modify the background job, DE-
MOBG.MAC. One of the lines of the message that is output by
the program has a semicolon character preceding it, which makes
the line a comment field. This will prevent the line from being
printed as part of the message. Thus, the semicolon must be
deleted from that line.

Change the line

i +ABCII /WELL DONE./

to
+ASCIT /WELL DONE./

If you performed the demonstration in Chapter 11, you are al-
ready familiar with assembly/link operations and the following
command explanations can serve as a review. If you did not read
Chapter 11, simply type the command lines as shown.

Assemble the background job

Long Command Format

. MACRD

Files? DEMOBG/LIST @D

ERRORS DETECTED: ©
Short Command Format

+MACRO DEMOBG/LIST

ERRORS DETECTED: ©

Link the .OBJ file produced by the assembler to create a runnable
job.
Long Command Format

LJLINK BT
Files: DEMOBG

Short Command Format

+LINK DEMOBG

Creating the
Background Job

Editing the
Background Job

Running the
Background Job

Using the Foreground/Background Monitor

CHANGING
MONITORS

BOOT

Now run the background job and check the results.

+RUN DEMOBG GED

RT-11 DEMONSTRATION PROGRAM

IF INCORRECTLY EDITED. THIS IS5 THE LAST LINE.
WELL DONE.

If you did not delete the semicolon character, the last line will not
be output. Return to the monitor by typing two successive
CTRL/C’s.

TRL/C
CTRL/C

e
-

Whenever you bootstrap the RT-11 system, it prints a message on
the console terminal telling you which monitor has been loaded
into memory. The message for the single-job monitor is:

RT-1154 Vod . xx

The single-job monitor is currently in memory. To use the FB
environment, you must reboot the system so that the FB monitor
is loaded into memory, overwriting the SJ monitor. You use the
monitor BOOT command to make this switch.

TF XTM1T
AL J vu
the FB monitor. These features remain active throughout the
booting procedure if the BOOT command is used. When changing

monitors, any logical names you assigned are lost. Thus, you must
reassign your storage volume device as VOL.

A dat A+ ~ hafa hndims
i

- A
have not entered the date and time, do so before booting

LAY U LiVuv Uil A

Long Command Format

LBOOT
Deuvice or file?™ RT1IFB

-1

KT-11iFD VO, xy

Short Command Format

- [—
[|

LIFB Bey

=

» 500

RT-11FB UOd, wyx

154

Using the Foreground/Background Monitor

Once the system executes the BOOT command, the monitor for-
merly in memory is no longer active. It is replaced by the alter-
nate monitor. The message printed on the console terminal tells
you which monitor has been loaded.!

Using the FB monitor is essentially no different from using the SJ
monitor. All commands that are legal in the SJ environment are
legal in the FB environment; their syntax and use are exactly the

same. In addition, programs that you wrlte for the single-job envi-
______ P . +thn T'D Asmerinan

+ Ao wew ~ o
Tonmeny can Alwa.\/b TUN as 1© 18] !Ll LIl r 1 ETIViToUli-

ment.

Since the FB monitor is actually an extension of the SJ monitor,
it provides some commands and programming features that the
SJ monitor does not have. These allow you to control the two-job
environment. They let you interact with the two jobs and let the
two jobs interact with one another.

When two jobs run simultaneously, you must have some means of
indicating the job to which you are directing commands. Like-
wise, the two jobs must have the means to identify themselves
when they have messages to print. The following are some con-
ventions that apply to system communication in a two-job envi-
ronment.

1. The foreground job has priority. If both the foreground
and the background job are ready to print output at the
same time, the foreground job prints first. The fore-
ground job prints a complete line, then the background
job prints a complete line, and so on.

2. Either job can interrupt your input at the terminal if it
has a message to print.

3. Messages printed by the background job are preceded
by the characters B>.

4. Messages printed by the foreground job are preceded by
the characters F>.

5. Typed commands are initially directed to the back-
ground job. You can redirect control alternately to the
foreground and background jobs using the CTRL/F and
CTRL/B commands.

To direct typed input to the foreground job, type
CTRL/F. This command instructs the monitor that all

"To reboot the single-job monitor, simply reply to the BOOT command’s DE-
VICE OR FILE? prompt by typing RT11SJ.SYS '

15-5

USING THE FB
MCNITOR

Communication
in a Two-Job
Environment

Using the Foreground/Background Monitor

Creating the
Foreground Job

LINK/
FOREGROUND

subsequent terminal input (commands and text) is di-
rected to the foreground job. Typing this command
causes the system to print an F> on the terminal, unless
output is already coming from the foreground job. Com-
mand input remains directed to the foreground job until
the foreground job terminates, or until it is redirected to
the background job through CTRL/B.

To direct typed input to the background job, type
CTRL/B. This command instructs the monitor that all
subsequent terminal input (commands and text) is di-
rected to the background job. Typing this command
causes the system to print a B> on the terminal, unless
output is already coming from the background job.
Command input remains directed to the background
job until redirected to the foreground job through
CTRL/F.

These conventions apply only if two jobs are running simultane-
ously. If only one job is running, communication is the same as in
the single-job environment.

The foreground program DEMOFG is an assembly language
source file; it must be assembled and linked before you can use it.
Following assembly, the system prints a message on the terminal
indicating the number of errors encountered during assembly.
This message will show 0 errors.

Long Command Format

+MACRO
Files? DEMOFG/LIST
ERRORS DETECTED: 0

Short Command Format

+MACRO DEMOFG/LIST

ErikORS DETECTED: v

The output resulting from this MACRO command includes an
object file called DEMOFG.OBJ and a listing file called DE-
MOFG.LST. The command creates both files on your system
volume. You must link the .OBJ file to produce a runnable fore-
ground program. You use the LINK command, just as you have in
earlier chapters, but you also use the /FOREGROUND option.!
This option produces a load module with a .REL file type which
signifies to the system that the file is a foreground program and is
to be run as the priority job.

'This command option also applies to compiled FORTRAN programs that are to
be linked as a foreground job.

15-6

Using the Foreground/Background Monitor

Long Command Format

P TNK /EORECROUN RET)
dea NN/ P U S WITUUIND BE

Files® DEMOFG GED

+LINK/FOREGROUND DEMOFG @D

Now you are ready to operate the two-job environment. Many
times, you have to consider the devices that are used for output in
a foreground/background environment. For example, if your pro-
gram assumes that the output device is a line printer, and you do
not have a line printer or you want to output to another device,
use the ASSIGN command. Type this command in the following
way, substituting the two-character code from Table 4-2 for the
storage volume in place of xx.

Long Command Format

+ASSIGN @D
Physical device name? xx: (E
Logical device wame: LP: @E

Short Command Format

JASSIGN xw: LP: @ED

You do not have to consider the above information for the demon-
stration programs that are provided, since the foreground job
communicates with the background job, and both jobs send their
output to the terminal.

When you use the FB monitor, you must always load into memory
the peripheral device handlers needed by the foreground job. You
use the monitor LOAD command to make a device handler per-
manently resident in memory. For example, if your foreground
job requires the use of the line printer, you must load the LP
device handler. You must specify the jobtype with the command.
For a foreground job, the jobtype is F; for a background job, the
jobtype is B. If you have assigned the code LP: to another device,
the system automatically loads the assigned handler and you
need not enter a LOAD command. If you are using the line
printer, type:

Long Command Format

,LOAD
Device? LP:=F

Executing the
Foreground and
Background Jobs

LOAD

Using the Foreground/Background Monitor

FRUN

Short Command Format

+LOAD LP:=F

The command to load and start execution of the foreground job is
FRUN, which is similar to the RUN command except that the
system automatically loads and starts the execution of the fore-
ground .REL program. Use this command to start the execution
of DEMOFG.REL.

Long and Short Command Format

+FRUN DEMOFG

Fo
FOREGROUND DEMONSTRATION PROGRAM

SENDS A MESSAGE TO THE BACKGROUND PROGRAM"DEMOBG"
EVERY 2 SECONDS., TELLING IT TO RING THE BELL.

The foreground program DEMOFG is now running and queuing
the message for the background program every two seconds. You
now execute the background program DEMOBG to allow it to
receive the messages that were queued and to ring the bell.

+HUN DEMOBG

RT-11 DEMONSTRATION PROGRAM

IF INCORRECTLY EDITED. THIS IS THE LAST LINE.
WELL DONE.

The bell rings several times in rapid succession as the monitor
dequeues the messages, and then every two seconds as the fore-
ground job sends its message to the background job.

You can run other jobs in the background. You can use the back-
ground of an FB environwment in the same way as the SJ environ-
ment. First, terminate the background job DEMOBG, using the
double CTRL/C command.

+

Execute a DIRECTORY command in the background to get a
listing of all the .OBJ files on the system volume by typing

LDIRECTORY *.0BJ

15-8

Using the Foreground/Background Monitor

The foreground job is still running and queuing its messages to
the monitor. Rerun the background program to collect all the
foreground messages while the background job was stopped and
the directory was printing.

RUN DEMOBG @D

RT-11 DEMONSTRATION PROGRAM

IF INCORRECTLY EDITEDs THIS I8 THE LAST LINE.
WELL DONE.

Now stop the foreground job and remove it from memory. To do
this, you must first use the CTRL/F command to direct terminal
input to the foreground. Type:

. CTRUR)

-n

The system prints the characters F> to remind you that you are
now directing command input to the foreground job. Use the
double CTRL/C command to interrupt and terminate the execu-
tion of the foreground job, and return control to the background
job.

CRLO)
B
Since you are now wusing only the background of the

foreground/background environment, the system is operating like
a single-job system.

You should unload the foreground job to reclaim memory space
for background use. Use the monitor UNLOAD command as fol- UNLOAD
lows:

Long and Short Command Format

UNLOAD F

15-9

Using the Foreground/Background Monitor

SUMMARY:
COMMANDS
USED IN AN FB
ENVIRONMENT

F represents the foreground job; you should use this code when-
ever you want to unload the foreground job. To unload any loaded
device handlers, you must use their two-character device codes.

Check to see if the .LST files were produced as a result of this
demonstration.

Long and Short Command Form

+DIRECTORY *.L8T

10-Jan-80
DEMOBG.,LST 4 10-JAN-80O
DEMOFG.LST E 10-JAN-80

2 Files:s 10 Blocks
988 Free blocks

The foreground program has access to all the system features
available to a background program—opening and closing files,
reading and writing data, and so on. However, before you begin to
write and use programs in the foreground, be sure to read the
RT-11 Software Support Manual for coding restrictions.

BOOT
Bootstrap the indicated monitor (RT-11SJ, RT-11FB,
RT-11XM) on the system volume.

CTRL/B
Direct all keyboard input to the background job (until
CTRL/F).

CTRL/F

Direct all keyboard input to the foreground job (until
CTRL/R),

(S D)

FRUN
Load and start execution of the foreground job.

LOAD dh
Make the indicated device handler (dh) resident in memory.

UNLOAD dh
Make the indicated device handler (dh) nonresident in
memory, reclaiming its memory space.

UNLOAD FG
Reclaim the memory space used by the foreground job.

15-10

Using the Foreground/Background Monitor

You assembled the source file DEMOFG.MAC and produced an FILE
.OBYJ file, linking it to produce DEMOFG.REL. You also created MAINTENANCE
a .LST file on your system volume named DEMOFG.LST. Thus,
you should save on your storage volume the files DEMOFG.REL
and DEMOFG.MAC, and delete from your system volume the

MTOIAAINTI -1 MEANTLY TG N~ A
lllcb UEJLV.[UI‘U UDU ana voavivrua.awoi. o uuu dclctc DE'

MOFG.MAC, since this file was distributed as part of the RT-11
operating system. Do the same for the file DEMOBG, which you
created as a .SAV file instead of a .REL file.

)|

- -
H Fa .
Long Lommand o

+COPY (ED

From? DEMOFG.MAC sDEMOFG.REL

To 7 VOL:%.%x G

Files corpied:

DK :DEMOFG.MAC to VOL:DEMOFG.MAC
DK:DEMOFG.REL to VOL:DEMOFG.REL

+DELETE/NOQUERY @ET
Files? DEMOFG.0BJDEMOFG.LST G

Short Command Format

,COPY DEMOFG.MACDEMOFG.REL Y0OL:*.* GO
Files copied:

DK :DEMOFG.MAC to VOL:DEMOFG.MAC
DK:DEMOFG.REL to YOL:DEMOFG.REL

,DELETE/NDQUERY DEMOFG.OBJ.DEMOFG.LET

Finally, obtain a brief directory listing of your storage volume so
that you can see its current status:

Long and Short Command Format

+OIRECTORY/BRIEF VOL: G@ET

RT-11 Software Support Manual (AA-5280B-TC). Maynard, Mass.: Digital REFERENCES
Equipment Corporation, 1980.

A technical manual providing RT-11 programming concepts.

RT-11 System User’s Guide (AA-5279B-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1980.

A guide to the use of the RT-11 operating system. See Chapters 2, 3, and
4.

15-11

CHAPTER 16

USING INDIRECT FILES

The RT-11 system provides an operational aid called an indirect
file, which allows the system to run unattended. An indirect file is
a file composed entirely of monitor operating commands. When
you start the execution of the indirect file, the monitor processes
these commands in consecutive order. So once you have created
an indirect file and started its execution, you can direct your
attention to other tasks or even physically leave the system, since
the monitor executes the commands automatically and consecu-

tively.!

The kinds of operations that RT-11 can best perform in an indi-
rect file are those that involve much computer processing but that
do not require your supervision or intervention. For example,
multiple assemblies, compilations, and data transfer operations
are ideal operations for indirect file processing. Also, any series of
commands that you are likely to type often can easily run as an
indirect file.

Use the editor to create an indirect file as a text file. You can call
the file by any file name you wish, but you should give it a file
type of .COM, since this file type is the default used by the
monitor to locate the file.

You structure the lines of text that make up an indirect file just
like keyboard input. Thus, if you were to list the indirect file it
would look like terminal keyboard text without any monitor
prompts.

You enter monitor commands into the indirect file as you would
on the terminal. As an example, both of the following accomplish
the same operation when executed as part of an indirect file:

COPY @EeT
INFIL.MAC
DUTFIL.MAC

COPY INFIL.MAC QOUTFIL.MAC

'The indirect file concept is similar to BATCH processing. Although indirect
files lack many of the BATCH capabilities, they are easier to use than BATCH.
(The RT-11 computer system also supports a BATCH processor discussed in
the RT-11 System User’s Guide.)

16-1

CREATING AN
INDIRECT FILE

Entering Monitor
Commands

Using Indirect Files

Using the Editor
to Create
an Indirect File

Since monitor prompts are not included in the indirect file, using
the long command format requires that you anticipate each
prompt and its proper response. It is suggested that you use the
short command format and insert the command as a single line of
text. Terminate each command line with a carriage return.

The indirect file that you will now create incorporates several of
the commands previously demonstrated in this manual. Thus it
serves both as an example of the format of indirect file input and
as a brief review of the monitor commands used to copy, process,
and delete files. In addition, one new command, DEASSIGN, is
demonstrated.

Use the EDIT/CREATE monitor command to create a file called
INDCT.COM, inserting the commands according to the direc-
tions in the right-hand column. When you have finished creating
the file, list it and check for typing errors. Correct any errors you
find, and then close the file, using the EX editing command.

+EDIT/CREATE INDCT.COM

*IDATE 14-JAN-80

TIME 8:00:00 Enter a hypothetical date
and time (if your system
has a clock).

DATE Print the date.
DEASSIGN @D Deassign all previous de-

vice assignments and set
new ones as tollows:

ASSIGN TT: LP: Assign the logical name
LP: to the terminal.

ASSIGN X¥n VOL: G Assign the logical name
VOL: to the storage
volume (xx).

DIRECTORY/BRIEF VOL: List an abbreviated direc-
tory of VOL:.

COPY WOL:GRAPH.FOR GRAPH.FOR @ET
FORTRAN users insert
this command to copy the
FORTRAN demo program
to the system volume.

COPY YOL:SUM.MAC SUM.MAC @D MACRO users insert this
command to copy the
MACRO demo program to
the system volume.

16-2

copy WOL:MATCH.BAS
MAT

IATCH.BAS (T

FORTRAN/LIST GRAPH BT
LINK/MAP GRAPH &T

BASIC users insert this
command to copy the
BASIC demo program to
the system volume.

FORTRAN users who do
not need to load the lan-
guage volume include
these commands to com-
pile and link the demo

DIOgTram.
Drograin.

MACRO/LIST/CROSSREFERENCE SUM GED

LINK/MAP SUM GED

RENAME MATCH.BAS MATCH.MAPR

A

DIRECTORY +.0BJ G

DELETE/NOQUERY GRAPH.* @D

DELETE/NOQUERY SUM.* @D

DELETE/NOQUERY MATCH.MAFP

DEASSIGN

TIME
&E &

*B/L
DATE 14-JAN-80
TIME B:00:00

DATE

DEASSIGN

ASSIGN TT: LP:

ASSIGN RK1: YOL:
DIRECTORY/BRIEF WOL:

COPY VYOL:GRAPH.FDR GRAPH.FOR
COPY WUOL:5UM.MAC SUM.MAC
COPY UDL:MATCH.BAS MATCH.BAS
FORTRAN/LIST GRAPH

LINK/MAP GRAPH

All users assemble and
link the demo program.

BASIC wusers simply re-
name the demo program.

orT
o

All users assemble and
link the DEMOFG file.

List a directory of object
files.

FORTRAN users delete
the GRAPH files.

MACRO users delete the
SUM files.

BASIC users delete the
MATCH file.

Deassign all device assign-
ments.

If your system has a clock,
print the time to show how
long total processing took.

Now terminate the insert
command and list the in-
direct file to check for er-
rors. (Example input is
shown here.)

16-3

Using Indirect Files

Using Indirect Files

EXECUTING AN
INDIRECT FILE

MACRO/LIST/CROSSREFERENCE SUM
LINK/MAP SUM

RENAME MATCH.BAS MATCH.MAP
MACRO/LIST/CROSSREFERENCE DEMOFG
LINK/FOREGROUND/MAP DEMOFG
DIRECTORY *.0BJ

DELETE/NDQUERY GRAPH.*
DELETE/NDOQUERY SUM, *
DELETE/NOQUERY MATCH.MAP
DEASSIGN

TIME
*EX Close the file
INDCT.COM.

Once you have created an indirect file with the editor and
checked it for errors, you are ready to start its execution. You can
run an indirect file under control of the single-job monitor or as
the background job under control of the foreground/background
system. While a foreground job is running however, you must take
care to avoid conflicts between nondirectory-structured devices of
the two jobs. For example, the jobs should not request the same
magnetic tape or cassette.

The command to start the execution of an indirect file is the At
sign (@) character followed by the appropriate file name (the file
type .COM is assumed unless you indicate otherwise). Execution
starts immediately, and the system processes commands in the
indirect file in consecutive order. Each command is echoed on the
terminal as it is processed. If an error within the indirect file
affects the processing of a command, the system prints a system
message on the terminal and stops execution of the entire file.
Therefore, it is particularly important that you check your indi-
rect file for errors before you start it and then leave the area. You
can stop execution of an indirect file at any time by typing two
CTRL/Cs.

Run the indirect file that you have just created by typing:

+BINDCT

It takes a minute or two for the commands in this file to be
processed and for the listings to print. If your system has a clock,
the time printed at the end of execution tells you exactly how long
command processing has taken. Following is an example run.

«@INDCT.COM
<DATE 14-JAN-80
«TIME B8:100:00

+DATE
1a-yan-sy

«DEASSIGN

»ASSIGN TT! LF:

SASSIGN RK1! VOL:

16-4

<OIRECTORY/ERIEF VOL:
14-Jan-80

GRAFH (FOR MATCH .BAS SuM +MAT
3 Filesy B Hlocks
4754 Free blocks
+COPY VOL:BRAFH.FOR GRAFH.FOR
-COPY VOL:SUM.MAC SUM.MAC
+COPY VOLIMATCH.BAS MATCH.EAS
«FORTRAN/LIST GRAFH
FORTRAN IV V02.1-10 Mor 14-Jan-80 0B:00:13 FAGE 001
C BRAFH.FOR (VERSION 1)
C THIS PROGRAM FRODUCES A FLOT ON THE TERMINAL
C OF AN EXTERNAL FUNCTIONs FUN(X»Y)
C THE LIMITS OF THE FLOT ARE DETERMINEL BY THE DATA STATEMENTS
C "STAB* IS FILLELD WITH A TABLE OF HEIGHT FLAGS
€ *STRING" IS USED 7O BUILD A LINE OF GRAFH FOR PRINTING
LOGICALXL STRING(133),STAB(100)
DATA XMINyXMAXsMAXX/=5.095.0545/
DATA YMINsYHAX»MAXY/-5,0¢5.0,72/
n /
’ TMAXZ K FAINTFLOAT (K-1) X (ZMAX~ZMIN) /FLOAT (MAXZ-1)
0006 CALL SCOPY(’'- 1 2 3 45 6 7 2 9 +',STAR)
0007 MAXF=LEN(STAB)
0008 DO 20 IX=1,MAXX
0009 IIX=IX
0010 X=SCAL (XMIN»XMAXyHAXX s IIX)
0011 CALL REFEAT(X’ sSTRINGyMAXY)
0012 IF(IIX.EQ.1 .OR. IIX.EQ.MAXX) GOTO 20
0014 DO 10 IY=2,MAXY-1
0015 IIY=IY
0016 CAL CYMIN»YMAX,MAXY,IIY)
0017 IFUN=2+INT(FLOAT (MAXF=3)X(FUN(XyY)-FHIN)/ (FMAX-FMIN))
0018 10 STRING(IIY)>=STAE(MINO (MAXF»MAXO(1sIFUN)))
001% 20 CALL FUTSTR(7,STRINGs’ ')
0020 CALL EXIT
0021 END
SHMAIN.
FORTRAN IV Storade Mar for Frogram Unit .MAIN.
Local Varisbles, .FSECT $DATAs, Size = 000474 (158. words)
Name Tere Offset Name Ture Offset Neme Ture Offset
FMay RX4 000402 FMIN RE4 000374 IFUN ix2 200454
IIX Ix2 000436 Iy %2 000446 Ix Ix2 000434
Iy I%x2 000444 K Ix2 000430 MAXF Ix2 000432
MAXX T2 000362 MAXY %2 000374 MAXT ™2 000426
X Rx4 000440 XMAX R4 000356 XMIN kx4 QQU3IL
Y R*4 000450 YHAX R*4 000370 YMLN Rx4 000354
ZMAX Rx4 000422 ZHMIN Rx4 0004156
Local and CUMMON Arrasust
Neme Tare Section Offset ~——- dze----= Dimerssions
STAR Lx1 $DATA 000205 000144 ¢ S0.) (100)
GTRING Lx1 SOATA 000000 000205 ¢ 6740 (133)

Subroutines, Functionss Statement and Frocessor-lefined Functionss
Neme Ture Name Ture Name Ture Name Ture Mame Ture
EXIT RX4 FLOAT RX4 FUN Rx4 INT Ix2 LEN Tx2
MAXO Ix2 MINO %2 FUTSTR Rx%4 REFEAT Rx4 SCAL R*4
SCOPY RX4

FORTRAN IV voz2,1-10 Mor 14-Jar~80 08:01:44 FAGE 001
0001 FUNCTION FUN(X.Y)

0002 R=SART (X*X2+Y%X2)

0003 FUN=(XKYARXEXF (=R}) %%2

0004 RETURN

0005 END

FUN

FORTRAN IV Starage Mar for Frodram Unit FUN

Local Variabless .PSECT $DATA, Size = 000024 (10. words)

Name Ture Offset Name Ture Offset Name Tuere Offset
FUN R*4 000004 Eav K R%4 000010 X R¥4 @ 000000
Y R¥4 @ 000002

Subroutinesr Functionsr Statement and Frocessor-Defined Functions:

Nawe Ture Name Ture Name Ture

EXF R¥4 SART R4

+LINK/MAP GRAFH

RT-11 LINK V06.01 Load Mar

GRAPH .SAY Title!: .HAIN.

Section Addr Size Global

.+ ABS. 000000 001000 (RU» I,GBLsAES,OVR)

SNLCHN
$LRECL

Ident?

Value

000004
000210

Name

Ture

Name

Mon 14-Jan-80 08:02:20

FORVO2
Global
WREZAY

$SYSVUS
$TRACE

OTS$I 001000 014362 (RWs I+ LCLyREL »CON)

$307SI
$$SET
$CVTID
$IC
$IR
MUF $FS
$MULF
DIFSFS
$DIVF
ADF$IS
SUF$MS
$ADDF
$SER

ADISIA

001000
002536
003044
003060
003074
003714
003740
004350
004374
005612
005030
005060
005106
005126
005600
005656
005726
006070
006112
0046134
006164
006202
006222
006234
006254
006272
0046314
006336
006356
004372
006404
006416
006436
006446
006462

$0T1
$CVTIF
CCIs
$ID
EXF

MUF $MS
MUF$SS
DIF$MS
DIFsSS
ADF$FS
ALF$MS
$SUBF
ADF$SS
IDINT
MINO
ISNs
$LSNTR
MOISFF
MOISFM
MOLI$1F
MOF $SF
LGTS
LLTS
MOL$NS
MOL$SF
MOLS$FH
MOLSIM
STKS$L
MOISRS
MOISRP
NGF$S
NGD$P
NGF$&4
ADISSH
ADISIM

Value

Rlelole i)
000011
004737

001026
003032
003060
003060
003140
003720
003752
004354
004406
005020
005042
005074
005112
005552
0054624
005706
005732
C08G76
006120
©0s142
006174
006210
006224
006240
006260
006302
006322
006346
006346
006376
006404
006432
006436
006452
006464

Global

SHRTUR
SWASTZ
SEAE

$$0T1
$CYUTIC
CDI$
CFI$
SaRT
MUF$IS
SHLR
DIF$IS
SDUR
SUF$FS
SUF$IS
SUF$5S
+ADR
INT
cals
SISNTR
HMOL$IF
MOISMF
HOI$FA
MOF $5%
LLE$
LGE$
HOL $SH
MOL$MM
HOLS$FP
HOL$FS
MOLS$IA
STK$T
MOL$RS
HOI$RA
NGI$M
NGF$P
ANT$SS
ADISIS
ALTSNS

Ture

Value

olaleleloled
000131
177304

001030
003046
003060
003074
002520
003732
003752
004366
004406
005024
005092
005106
005112
005552
005650
005712
005066
006102
006126
006152
0046200
006212
006230
006250
005268
006310
006330
006352
006366
006400
006416
006432
006442
006456
006472

16-5

Using Indirect Files

Using Indirect Files

ADISMA 004474 ADISMM 008502 SUISSS 008506
SUI$SA 004512 SUISSM 0046516 SUISIS 006522
SUISIA 006526 SUISIM 006532 SUISMS 006536
SUISHA 006542 SUISMM 0046546 ICISS 006552
ICT*M 004554 TCISF 006542 ICIsSA 0046564
DCIsS 006570 DCISH 004574 DCISF 006600
DCIsA 006602 CMISSS 008606 CMISSI 008612
CMIS$SM 006616 CMISIS 004622 CMI$II 006626
CHMISIM 006632 CMISMS 004636 CHISMI 0064842
CMISMM 006646 NMI$IM 006652 NMIS1I 004664
BLES 004674 BEQS 004676 BGTS 0046704
BGE$ 0056706 BRAS 006710 BNES$ 006714
BLTS 006716 MOFSRS 004726 MOFSRM 006734
MOF$RA 004744 MOFSRP 006750 MOFSMS 006754
MOF$FPS 006766 MOFsHMM 006772 MOFsHA 007004
MOF$MP 007012 HMOF$PM 007020 NOFSPA 007024
MOF$PF 007030 IOR$ 007034 ANDS 007040
EQUs 007044 XOR$ 007050 TSL$S 007064
TSL3$M 007070 TSL$I 007074 TSL$F 007102
$0T1S 007110 $$0TIS 007112 RETS$L 007232
RETS$F 0072346 RETS$I 007244 RETS 0072458
MOI$SS 007302 NMOL$SS 007302 MOISSHM 007306
MOI$SA 007312 MOISIS 007316 MOL$IS 007316
RELS$ 007316 MOISIM 007322 MOISIA 007326
MOISMS 007332 MOISHM 007336 MOISMA 007342
MOISOS 007346 MDI$OM 007352 MOI$0A 007356
MOI$SIS 007342 MOISIM 007370 MOIS$1A 007376
EXIT 007404 SALS$IM 007410 SAL$SM 007412
SULSIM 007420 SVULSSM 007422 SAL$SMMN 007430
SULSMM 007434 $CVTFE 007440 SCVUTF1 007440
$CVUTCE 007454 $CUTCI 007454 $CUTDE 007454
$CVUTDI 007454 CIC% 00744646 CID$ 007466
CLCs 007466 CLI$ 007466 DI 007466
CIF$ 007476 CLF$ 007476 $RI 007476
CILS 007620 CLI$ 007624 S$ERRTE 007626
$SHORT 007626 SERRS 007733 TULS 010254
$TUL 010254 TUF$ 010262 $TYF 010262
TVD$S 010270 $TVD 010270 Tua$ 010276
$TVQ 010276 TUPs$ 010304 $TUF 010304
TVIs 010312 $TVI 010312 $STFS 010444
STF$ 010454 $STF 010454 FOO$ 010440
SEXIT 010500 END$ 0104624 ERR$ 010636
SEND 010650 $ERR 0106646 IFUWS 010710
$IFW 010714 IFWs$ 010756 S$CHKER 011026
$I0EXT 011052 $FOL 011100 EOL$ 011102
$URINT 0112146 SALSIF 011220 SALSSF 011222
SULSIF 011230 SUL$SF 011232 SALSHF 011240
SULSMF 011244 SAISIN 011250 SAT$SH 011252
SBOUND 011256 SVIdlh 011302 SVISSH ©11304
SAISMM 011314 SUISMM 011320 SAVRGS 011324
THRD'$ 011502 UTRE 011504 $WALT 012012
SFCHNL 012054 S$INITI 012152 SCLOSE 012264
$FUTEL. 012730 $GETEL 013140 $EOFIL 013324
SEOF2 013340 ¢FI10 014100 3F1I0 014104
SDUNFL. 015234

OTS$F 015342 000050 (RWrD»GBL »REL r QUR)

SYS$I 015432 000244 (RWrIyLCLREL rCON)Y
LEN 015432 REFEAT 015450 &COFY 015602

USER$I 0154676 000000 (RWs I+LCL P REL yCON)

SCODE 015474 001334 (RUWT.I NI wRFI 4 CONY
+$0TSC Q15676 FUN 014574 FUTSTR 016742

0TS$0 017234 001010 (RWyTrLCL»RELyCON)
$$0TS0 017234 $OPEN 017234

SYS$0 020244 000000 (RWyIsLCLyRELYCON)

$DATAP 020244 000106 (RWsDsLCLsREL yCONY

aTSsI 020352 000006 (RW D LCLREL,CON)

0TS%8 0203460 000002 (RWyDsLCLyREL +CON)
$A0TS 020360

SYS$S 0203462 000004 (RWrDsLCLsREL»CON)
$SYSLB 020342 SLOCK 020344 $SCRASH 020365

$DATA 020344 000542 (RWsT LM +RFL«CONY

. USER$D 021130 000000 (RWsDyLCL rREL yCON)
8388, 021130 000000 (RW>DsGBL»REL s OVR)

Transter address = 015476» Hish limit = 021124 = 4395. words

«MACRO/1.IST/CROSSREFERENCE SUM

SUM.MAC VERSION 1 MACRO V04,00 14-JAN-BO 08307:25 PAGE 1
1 STITLE SUM.MAC VERSION 1
2
3 JMCALL S TTYOUTs LEXIT, .FRINT
4
5
&
7 N00104 N = 70. iNO. OF DIGITS OF ‘E‘ TO CALCULATE
a
9 b ‘E’ = THE SUM OF THE RECIFROCALS OF THE FACTORIALS
10 i 1700 4 1710 + 1/31 4 1731 4 1740 + 1/50 + ou
11
12 000000 EXF: JFRINT #MESSAG FPRINT INTRODUCTORY TEXT
13 000006 012705 000106 MOV #NsRS $ND. OF CHARS OF ‘E‘ TO PRINT
14 000012 012700 000107 FIRST: MOV #N+15RO iNO. OF DIGITS OF ACCURACY
15 000016 012701 000124 Hov $ArsR1 3ADDRESS OF DIGIT VECTOR
16 800020 Sralit SECoMDY AcL ant IR0 M TTRLY RY 10 (NECTMAL Y
17 000024 011146 MOV BR15-(SFY FSAVE k2
18 000026 006311 ASL. @R1)
19 000030 006311 ASL @R1 i%8
20 000032 042421 ADD (SF)+s(R1)+ iNDW %10» FOINT YO NEXT DIGIT
21 000034 005300 LEC RO 5AT END OF DIGITS?
22 000036 001371 ENE SECOND FERANCH IF NOT
T 23 000040 012700 000106 MoV #NsRO iG0 THRU ALL FLACES, DIVIDING.
24 000044 014103 THIRD: MOV ~(R1)sR3 iRY THE PLACES INDEX
25 000046 012702 177777 HOY #-15R2 5INIT QUOTIENT REGISTER
26 000052 005202 FOURTH: TINC R2 FBUMP QUOTIENT
27 000054 160003 SUR ROSR3 FSUBTRACT LDOF ISN'T BAD
28 000056 103375 BCC FOURTH FNUMERATOR IS ALWAYS < 10%N
29 0000460 050003 ADDY ROsR3 #FIX REMAINDER
30 000062 010311 Hov R3s@R1 5SAVE REMAINLER AS BASIS
31 FFDR NEXT DIGIT
32 000064 040261 177776 ADD R2s-2¢R1) FBREATEST INTEGER CARRIES
33 $T0 BIVE DIGIT
34 000070 005300 DEC RO FAT END OF DIBIT VECTOR?
35 000072 001384 ENE THIRD SERANCH IF NOT
36 000074 014100 KOV =(R1) RO #GET DIGIT TO OUTFUT
37 0000746 142700 000012 FIFTH: SUB RO iFIX THE 2.7 TO .7 SO
38 THAT IT IS ONLY 1 DIGIT
39 000102 103375 BCC FIFTH #(REALLY DIVIDE BY 10)
40 000104 062700 000070 ADD #10+°0+RO FMAKE DIGIT ASCII
41 000110 LTTYOUT FOUTPUT THE DIGIT
42 000114 005011 CLR 2R1 $CLEAR NEXT DIGIT LOCATION
43 000116 005305 DEC RS #MORE DIGITS TO PRINT?
44 000120 001334 BNE FIRST FERANCH IF YES
45 000122 SEXIT $WE ARE DONE
46
47 000124 000107 Al +REFT NEL
48 «WORTD 1 5INIT VECTOR TO ALL ONES
49 +ENDR
50
51 000342 124 110 105 MESSAG! JASCII /THE VALUE OF E IS/ 1S 2 /2.7 <200
0 45 040 126 101
50 iis 125 105
000353 040 117 106

16-6

000356 040
000341 111
015

000364
BUM.MAC VERSION 1
000347 056

S4 000000
SUH.MAC VERSION 1

SVHROL TABLE

A 000124R

EXP COCOCOR

. AES. 000000 000
000372 001

ERRORS DETECTED: ©

VIRTUAL MEMORY USED:

105 040
123 072
012 062

MACKRO V04.00

200

MACRO V04.00

FIFTH
FIRST

8448 WORDS

33
DYNAMIC MEMORY AVAILARLE FOR 45 FAGES

DK:SUMyLF $SUM=DK:SUM/C
FRRORS TFTECTEN: 0

SUM.MAC VERSION 1

MACRO V04,00

CROSS REFERENCE TABLE (CREF V04,00)

A 1-15
EXF
FIFTH
FIRST
FOURTH
MESSAG
N

1-54

1-39

SECOND
THIRID
SUM. MAC

i-24%
UVERSION 1
UR0OSS REFERENCE TAELE

EXTT 1-3% 145
JERINT 1 3% 1-12
JTTYOU 1-3# 1-41
JLINK/TAF UM
RT-11 LINK V06,01
GUM .SAV Title:
Section Addr Size

. ABS. 000000 001000

001000 000372

1-47%

MACRO V04.00

(CREF V04,00 »

Load Har
SUM.MA Tderti
Global Velue

(RWs 1y GELsARS
(RUWsIsLCLPREL

Transfer address = 001000r High limit

+RENAME MATCH.BAS MATCH.MAF

<MACRO/LIST/CROSSREFERENCE DEMOFG

DEMOFG MACRO V04.00

000000
000006
000020
000054

15 000062
16 000070
17 000072
18 000126
19 000132

20 000186

026727
003020

005267

900207

24 000170
25 000174

005367
000207

30 000174 106
1 DOODED 123
32 000324 105

35 000402 000000
&

38 000404
39 000404

000000
000170

0
41 000410

43 000424

46 001424

48 QOOLUL
DEMOFG MACRO V04.00
SYMBOL TARLE

AREA CO0410R [FVIVIE I (LTS (R Ll ERFNIV N .-
BUFFER 000424R DOOL7ER shae RILE “l () RV
MEIL VUOULLK EVIVETTaS
+ ABS. 000000 000

05344 001
ERRORS LETECTEL: 0
VIRTUAL MEMORY USEL:! 9472 WORDS (37 FAGES)

DYNAHIC MEMORY AVAILABLE FOR

14-JAN-80 08:1i

000314 000132

000250

000206
117 122
hikd e
126 105

14-JAN-80 081111

65 FAGES

DK ! DEMOFGy LF ! IEMOF G=DK : DEMOFG /(0

ERRORS DETECTED: O©

DEMOFG MACRO V04.00

CROSS REFERENCE TABLE (CREF V04.00 !

000076R
0000 12K

14-JAN-80 08107:25 FAGE i-1

<EVEN
END EXF
14~JAN-BO 08:07:25 FABGE 1-2

FOURTH
MESSAG

000052R N = 000106
VO0342R SECOND O00GZZR

THIRD 000044R

FAGES)

14-JAN-80 08107128 FAGE S-1

LA Jap-BG 08I0TIL PAGE ML

Wove LA g 80 02010157

£l Vezlue Globel Vel
7 OUR)
rCUNY
= Q01370 80, Wit
115 FAGE 1
LTITLE DEMOFG
JIDENT /903,017

FOREGROUND DEMONSTRATION FRUGRAM TO FRINT MESSABE TO BACKGROUND» THEN
QUEUE A MESSAGE EVERY 2 SECONDS FOR THE BACKGROUND T RING THE BELL.

JMCALL «SDATCs JFRINT s WMRRTs GSETr « SFND

START:: .FRINT #MSG RINT INTRODUCTORY MESSAGE
JQSET #QUEUE»#100 . $SET ASIDE 100 U ELENENTS FOR MESSAGES
<MRRT #AREA» #TIME »#MRTC, #1 FSET UF MKTIM FOR 2 SECONDS FROM NOW
+SPND $SUSPEND THE FG TILL MKTIM SATISFIED

3 MKTIM COMPLETION ROUTINE

MKTC? CHF

MSGCNT »#90.

90 MESSAGES QUEUED YET?

BGT HMRKTCL $YES—-NO SENSE QUEUEING ANOTHER
JSDATC #AREA,#RUFFER,#1,#SDIATC $SEND MESSAGE TO BG
INC MSGCUNT BUMF MESSAGE COUNTER
MKTC1: .MRKT #AREAs #TIME » #MKTCr 1 $SET UF ANOTHER MKTIM FOR 2 SECONDS
RETURN SRETURN FROM COMPLETION ROUTINE
H SDAT COMFLETION ROUTINE
SIATC: DEC MSGCNT SONE OF THE MESSAGES HAS BEEN RECEIVED
RETURN $RETURN(RTS FC)
3 ASCII MESSAGES
SNLIST BEX
MSG: JASCITI /FOREGRDUNI DEMONSTRATION FROGRAM/<15:-012%
LASCYT YGENRS A MESSAGE Y0 THE RACKARNUND PROBRAM *AEMOBG™ /153012
JASCTZ /EVERY 7 SECONDSs TELLING IT TO RING THE BELL./
<EVEN
MSGCNT: JWORD o FMESSAGE COUNTER
s TIME CONSTANT
TIMES +WORD o HIGH ORDER
LR E1s0S 340 TICKS A SECOND,Z SECONDS
ARE +BLKW & FEMT ARGUMENT AREA
BUFFERS JBLRW 400 BUFFER FOR MESSAGES
UL ARE A
WUELR D R LW (PE STV P10, WORUS FER QUELE T EReNT FOR THE XM MONITOR
chi slaki

15 FAGF 1

14-JAN-80 08:11:15 PAGE 5-1

16-7

Using Indirect Files

Using Indirect Files

SUMMARY:
COMMAND TO
START AN
INDIRECT FILE

FILE
MAINTENANCE

REFERENCE

eVl 1-9 1-10 1-17 1-19
eeaV2 1-17 1-17 1-17% 1-17%
AREA 1-10 1-17 1-19 1-41%
BUFFER 1-17 1-43%

MKTC i-10 1-15% 1-19

MKTC1 1-16 1-19%

MSG i-8 1-30%

MSGCNT 1-15 1-18% 1-24% 1-35#
QUEUE 1-9 1-46%

SDATC 1-17 1-24%

START 1-8% 1-48

TIME 1-10 1-19 1-38%

DEMOFG MACRO V04,00 14-JAN-80 08:11:15 PAGE M-1
CROSS REFERENCE TAELE (CREF V04.00)

+++CHO i-9
vo.CM1 1-17

vooCH2 1-10 1-10 1-10 1-17 1-17 1-17 1-17 =18 1-19 1-19
+esCMA 1-17

+e.CM5 1-9 1-10 1-17 1-19

+ v oCHE 1-10 1-19

JHRKT 1-4% 1-10 1-19

SFRINT 1-6% 1-8

+BSET 1-6% 1-9

+SDATC 1-6% 1-17

+SPNIDI 1-6% 1-11

+LINK/FOREGROUND/MAF DEMOFG
RT-11 LINK V06,01 Load #ar ~ Mon 14-Jan-80 08:14:30
DEMOFG.REL Title! DEMOFG Ident: V03.01

Section Addr Size Global Value Global Value Global Vslue
« ABS, 000000 001000 (RW» IyGELyABSOVUR)

001000 005344 (RWy IyLCL,REL CON)
START 001000
Transfer address = 001000 Hish limit = 004342 = 1649. wards

+DIRECTORY X.OBJ

14-Jan-80

opT .0BJ 9 19-Nov-79 VOt LORJ 9 19-Nav-79
UTHDLR.OEJ 9 19-Nov-79 3 19-Nov- 9
LIBSYS.0BJ 47 19-Nov-79 E . 16 - ;
SUM .OBJ 1 14-Jan-80 SYSLIR.OBJ 245 25-Nov-79
DEMOFG.0E. 1 14-Jan-BO

9 Filess 340 Blocks
1064 Free blocks

+DELETE/NDQUERY GRAFH. X
DELETE/NDQUERY SUM.X
+DELETE/NQQUERY MATCH.MAF
+DEASSIGN

»TIME
08115103

@filnam.COM
Start the execution of the specified indirect file (filnam.COM).

CTRL/C CTRL/C
Halt execution of the indirect command file (use with caution).

DEASSIGN
Remove logical device assignments.

This indirect file contains commands that perform the appro-
priate copy and delete file mainienance operations. If the com-
mands were not already part of the file, you would need to per-
form the appropriate file maintenance commands, in monitor
command mode, after execution.

RT-11 System User’s Guide (AA-5279B-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1980.

A guide to the use of the RT-11 operating system. See Chapter 4.

16-8

CHAPTER 17

ADVICE TO NEW USERS

This manual introduces you to several common RT-11 functions
but is neither exhaustive nor comprehensive in its treatment of
system features, commands, or their options. For many, these
fundamental system operations are sufficient; other users, how-

Y

ever, may need or want to learn a programming language, ex-
tended system features, or the internal workings of the RT-11
system. These people should consult the references at the end of
each chapter, the RT-1i Documentation Directory, or the RT-11
System User’s Guide. The RT-11 Documentation Directory lists
all RT-11-related material available from DIGITAL: the User’s
Guide explains in detail each command contained in this manual
and additional monitor commands, including all possible com-

mand options.

The Introduction to RT-11 has shown you the right way to use
some important system features and their associated monitor
commands. This information, combined with the following basic
guidelines for using the system, can help you to avoid pitfalls
common to new users:

e Do not become dependent on a single copy of a file.
Always make a backup copy of any useful file.

e When using the editor, do not insert text in large seg-
ments. Divide long editing sessions into short ones so
that user (or hardware) errors do not cost long hours of
editing. Close the file with the EX command and begin
editing again from where you left off.

e Avoid careless use of wildcard operations that manipu-
late multiple files. Use the /QUERY option to verify the
operation to be performed.

* When using indirect files or BATCH streams, avoid op-
erations that manipulate any of the system (.SYS) files
or the indirect file in use. Check the indirect file care-
fully for errors before you use it. Once the command
stream is initiated, you may be unable to detect and
prevent possibly serious errors.

e If you run two jobs under the control of the foreground/
background monitor, be sure there is no conflict of non-
directory-structured devices (LP:, MT:, CT:, PC:, TT:)
used by the two jobs.

17-1

Advice to New Users

USING THE A HELP file is distributed with RT-11 that contains information

HELP FILE about the keyboard monitor commands and how to use them. A
list of keyboard monitor commands and a description of their
functions can be displayed at the terminal by typing

+HELP =

HELP

To get a detailed description of the use of the HELP command
itself, type

. HELP

The following information is provided:

HEL.P Lists helpful information
SYNTAX
HELPL/options]ll torpicl subtoricliitemss slss.]1]
or HELP *
SEMANTICS

HELP * lists the items for which help is
available,

HELP lists the HELP text (of which this is

a Part).

HELP topic lists information on the srecific
toric onlvy.

HELP torpac subtorpiec lists information on the
specific subtoric only (for example:

HELP HELP SEMANTICS lists the rparadrarh of
which this text is a Part).

HELP topic subtoric:item lists only the text
associated with the specific item,

HELP topic/item lists the text associated
with the specific item under the

subtoric OPTIONS.

Yalid torics are the Kevboard monitor
commands .

Subtorics are "SYNTAX", "SEMANTICS" .,
"OPTIONS"» and "EXAMPLES".

Items are specific command orPtions.

OPTIONS
PRINTER
Prints the HELP text on the line printer
TERMINAL (default)

Tyvepes the HELP text on the terminal

HELP COPY ILists information about COPY

feommand

17-2

HELP/PRINTER EXECUTE IPrints information
labout EXECUTE command

HELP PRINT OPTION:COPIES !Describes the COPIES
logption for PRINT

In the command syntax shown above, topic represents a specific
keyboard monitor command about which you need information.
The subtopic represents a specific category within a topic; the
subtopics are syntax, semantics, options, and examples. The item
represents one of the members within the subtopic group. You can
specify more than one item in the command line if you separate
the items with a colon ().

There are only two options you can use with the HELP command:
they are /PRINTER and /TERMINAL. The option /PRINTER
sends the help information to a printer if one is available. The
option /TERMINAL (the default mode) sends the output to the
terminal.

To get all the information in the help file about the keyboard
monitor command ASSIGN, type

+HELP ASSIGN

You have used this command in examples in the other chapters.
The following information is displayed at your terminal.

ASS5IGN Associates a lodical device name
with a phyvsical device

SYNTAX
ASSIGN phvsical-device-name
lodical-device-name

SEMANTICS
Phvysical-device-name is the RT-11
standard permanent name for the device.
lLodical-device-name is one to three
alphanumeric characters lond with no
interveningd spaces or taks.
The phvsical wname and lodical name must be
serparated by a space.

OPTIONS
None

EXAMPLES
ASSIGN RK1: DK:

Advice to New Users

Advice to New Users

When you want specific information for a keyboard monitor com-
mand, such as the syntax, semantics, options, or examples, in-
clude that subtopic in the command.

+HELP DIRECTORY DOPTIONS RED

lists all the options that are available for use with the DIREC-
TORY keyboard monitor command.

If you need information only about a specific item in a list of
options, type the item in the command line as follows:

JHELP DIRECTORY OPTIONS:ORDER

UORDERL:catedory]

Orders the directorvy listing according to the catedory

specifri same as /S50RT, Catedories are:
NAME-~ orders alrhabetically by file name
TYPE- orders alephabetically by file tvre
SIZE- orders by file sicze
DATE- orders by creation date
POSITION- orders by file Position
on the device

17-4

APPENDIX A

MANUAL BOOTSTRAPPING OPERATIONS

This appendix describes the manual bootstrapping procedures
used for PDP-11 computers that do not have the automatic
bootstrapping capability described in Chapter 2. Three categories
are covered:

Typing the Bootstrap on the Terminal Keyboard

Using a Pushbutton Console to Bootstrap
Using a Switch Register Console to Bootstrap

The bootstrap for your RT-11 computer system consists of a series
of six-digit numbers that you must type on the terminal key-
board. First, obtain the bootstrap from the RT-11 Installation
and System Generation Guide, and copy the numbers into the
space below:

Now, type each number in the column on your terminal keyboard
using the following method (if you make a mistake, type the
DELETE key on the terminal keyboard, once for each typing
error, and then retype the digit(s]):

1. Type 001000.

2. Type slash (/).

3. Type the first number in the bootstrap column.
4. Type the LINE FEED key on the keyboard.

5. Type the next number in the bootstrap column.

6. Repeat steps 4 and 5 until you have typed all the num-
bers in the column.

7. Type the RETURN key on the keyboard.
8. Type 1000G.

9. Continue to step 11 in Chapter 2.

TYPING THE
BOOTSTRAP ON
THE TERMINAL
KEYBOARD

Manual Bootstrapping Operations

USING A
PUSHBUTTON
CONSOLE TO
BOOTSTRAP

If your computer has a pushbutton console on its front panel
similar to that shown in Figure A-1, you can use the buttons to
manually give the computer the information it needs to bootstrap
the system.

Figure A-1 Pushbutton Console

The bootstrap for your RT-11 computer system consists of a series
of six-digit numbers that you must load into the computer using
the pushbutton console. First, obtain the bootstrap of your system
device from the RT-11 Installation and System Generation
Guide, and copy the numbers into the space provided below. If
your system has a hardware bootstrap,! the bootstrap will consist
of only two numbers, which you should copy into the left-hand
space; otherwise, the bootstrap will consist of two columns of
numbers labeled Location and Contents, which you should copy
into the right-hand space:

Hardware Bootstrap Other Bootstraps®»

Load Address =
Start Address =

To activate the hardware bootstrap, set the numbers into the
pushbuttons using the following method (if you make a mistake,
push the button labeled CLR, then reenter the number):

1. Push the appropriate buttons for the load address (read
the number from ieft to right).

2. Push LAD.

3. Push the appropriate buttons for the start address (read
the number from left to right).

4. Push the button labeled CNTRL, and, while holding it
down, push the button labeled START.

5. Continue to step 11 in Chapter 2.

'A hardware bootstrap is bootstrapping information that is already in computer
memory but that you must activate by entering a load address and a start
address, each a six-digit number.

A-2

Manual Bootstrapping Operations

To activate other bootstraps, set the numbers into the pushbut-
tons, using the following method (if you make a mistake, push the
button labeled CLR, then reenter the number):

1. Push 1000 (read the number from left to right).
2. Push LAD.

3. Push the appropriate buttons for the first number in the
Contents column (read the number from left to right).

4. Push DEP; push CLR.

5. Push the appropriate buttons for the next number in
the Contents column (read the number from left to
right).

6. Repeat steps 4 and 5 until all numbers in the column
have been used.

7. Push 1000.
8. Push LAD.

9. Push the button labeled CNTRL, and, while holding it
down, push the button labeled START.

10. Continue to step 11 in Chapter 2.

If your computer has a switch register console on the front panel USING A SWITCH
similar to those shown in Figure A-2, you can use the switches to REGISTER
manually give the computer the bootstrapping information it CONSOLE TO

s to st BOOTSTRAP

Figure A-2 Switch Register Consoles

Several switches on the console are spring-loaded. This means
that the switch moves in only one direction and returns to its
initial position after you use it. You must set the remaining
switches either up or down as instructed.

A-3

Manual Bootstrapping Operations

The bootstrap for your RT-11 computer system consists of a series
of six-digit numbers that you must load into the computer using
the switch register console. First, obtain the bootstrap of your
system device from the RT-11 Installation and System Genera-
tion Guide, and copy the numbers into the space provided below.
If your system has a hardware bootstrap,' the bootstrap consists
of only two numbers, which you should copy into the left-hand
space; otherwise, the bootstrap consists of two columns of num-
bers labeled Location and Contents, which you should copy into
the right-hand space:

Hardware Bootstrap Other Bootstraps

T.cad Address
Start Address =

Next, convert the numbers in the column to binary numbers,
using the conversion process shown in Table A-1.

Table A-1: Binary Conversion

Octal Binary

= 000
001
010
011
100
101
110
111

N U WO
|

For example, the number 173100 is converted to 001 111 011 001
000 000. You set this 18-digit binary number into the switch reg-
ister by piacing each individuai switch in an up position for a 1 or
a down position for a 0. The number 173100 is set into the switch
register as follows:

(I R 10 0 R N SRS IR0 SO I R N

The number 012700 is converted to 000 001 010 111 000 000 and
is set into the switch register as follows:

PEr bbbty iy b itt

'A hardware bootstrap is bootstrapping information that is already in computer

memory but that you must activate by entering a load address and a start
address, each a six-digit number.

Manual Bootstrapping Operations

NOTE

The switch register is the group of switches appearing
on the left of the console. Your switch register may
have only 16 switches rather than 18; in this case you
number when you set the switches.

To activate the hardware bootstrap:

2

L1 .1 L N i1 LY IR 1
A Qrintnih vyoaoiQrar T TNRao ann Y P - i s
he swilch réegister 10 TN appropriale pPoOSILIOIs

the load address.

at
cL

ct

i
1.

2. Press the spring-loaded LOAD ADDR switch.

3. Set the switch register to the appropriate positions for
the start address.

4. Press the spring-loaded START switch.

5. Continue to step 11 in Chapter 2.

To activate other bootstraps, set the numbers into the switch
register using the following method:

1. Set the switch register to the appropriate positions for
the number 001000.

2. Press the spring-loaded LOAD ADDR switch.

3. Set the switch register to the appropriate positions for
the first number in the Contents column.

4. Press the spring-loaded DEP switch.

5. Set the switch register to the appropriate positions for
the next number in the Contents column.

6. Repeat steps 4 and 5 until all the numbers in the
column have been used.

=]

Set the switch register to the appropriate positions for
the number 001000.

8. Press the spring-loaded LOAD ADDR switch.
9. Press the spring-loaded START switch.

10. Continue to step 11 in Chapter 2.

A-5

APPENDIX B

SELECTED SYSTEM TOPICS

The remarks in this appendix cover a variety of topics that should
prove helpful to you as you perform the demonstrations in the
manual. Included, for example, are instructions for starting and
stopping the system, alternate methods for performing some
system operations, and directions for using the language volume.
The sections are listed here in the order in which they are refer-
enced from within the text of the manual.

You can plan to take a break at the end of any individual chapter
in this manual. If you intend to be away from the computer
system for any length of time, you should halt the system and
remove your system and storage volumes.

Perform the following steps in order:
1. Stop the computer. Press the HALT switch if your com-
puter operator’s console has switches; hold the CNTRL
button down and push the HLT/SS button if your com-

puter operator’s console has pushbuttons.

2. Unload the system volume. Turn the device unit to an
off-line condition, and remove the system volume.

3. Unload the storage volume. Turn the device unit to an
off-line condition, and remove the storage volume.

4. Remove and save all terminal and line printer output
listings.

Perform the following steps in order:

1. Follow the bootstrap procedure in Chapter 2.

[\

Enter the current date and time-of-day (Chapter 4).

3. Make any necessary logical device assignments. For the
examples in this manual, you must assign the logical
name VOL: to your storage volume (Chapter 4).

If for any reason the computer system stops unexpectedly, request
help from an experienced user. Once the problem is diagnosed,
start the system again.

STOPPING AND
STARTING THE
SYSTEM

Stopping the
System

Starting the
System

THE SYSTEM
STOPS
UNEXPECTEDLY

Selected System Topics

SUGGESTIONS
FOR
BOOTSTRAPPING
THE SYSTEM

You must be able to bootstrap your RT-11 system before you can
perform the demonstrations in this manual. Three common
bootstrapping problems and suggestions for their correction
follow.

L. You cannot locate the bootstrapping information pro-
vided by the DIGITAL representative who installed
your system.

First, if an experienced RT-11 user is available to help
you, ask this person to fill in the missing information in
the RT-11 Installation and System Generation Guide.
Then retry the bootstrap procedures in Chapter 2 of this
manual.

If no one is available to help you, consult the appro-
priate hardware manuals for the devices that are part of
your system; these manuals provide a description of the
device and operating procedures. Read the system build
and start operations that are outlined in the RT-11 In-
stallation and System Generation Guide. Then try the
bootstrap procedures in Chapter 2 again.

2. You have followed the bootstrapping instructions cor-

rectly, but your system printed a message other than
what you expected.

a. If the message is one of the following:

T?BO0OT-U-Insufficient memory

TBOOT-U-No memory manadement hardware
7?BO0T-U-Monitor file on volume
it is a bootstrap error message, indicating that a
problem in the system is preventing bootstrapping.
These four messages are fully explained in the
RT-11 System Message Manual, but you should
not attempt to correct the problem yourself if an
experienced user is available to help.

b. If the message is one of the following:

RT-11FB Wod, xx

RT-11XM VO4d ., xx

a valid RT-11 V4 monitor program has been
bootstrapped, but it is not the one you should be
using. Reboot the correct monitor program by
typing the following commands on the terminal (sy
is the appropriate two-character code for your
system volume — see question 5 in the Hardware
Configuration section of Chapter 2); indicates
that you should type the RETURN key on your

terminal keyboard:

LBOOT GED
Device or file? RT1154.8%¥5

c. Any other message indicates that an old version of
RT-11 (V1, V2, V2B, V2C) has been bootstrapped.
Only Version 3 and later releases of RT-11 can be
used to perform the demonstrations in this
manual.

3. You followed the bootstrapping instructions correctly,
but nothing happened, that is, there was no terminal
response at all.

Retry the bootstrap procedure from the beginning. Be-
fore you begin, be sure that the system volume is prop-
erly mounted in device unit 0. Check that the computer
is on but is not running (the light labeled RUN should
not be lit); if it is running, stop it as described above.
Check that the terminal is on line and that its baud rate
switch (if present) is set to 300. If you are using a dis-
play, be sure the screen is bright enough. If your ter-
minal uses a paper printer, be sure that the paper is
properly loaded.

A copy of the system volume should have been made during
system installation. This copy is called the master copy and
should be stored for safekeeping. If you cannot locate a master
copy for your system volume, make one before you continue.
Backup instructions are in the RT-11 Installation and System
Generation Guide and should be performed by an experienced
user.

Storage volumes are called file-structured volumes because they
are capable of physically storing files. They can be further ca-
tegorized as directory-structured and nondirectory-structured vol-
umes based on their method of directory information storage,
collection, and printing.

Selected System Topics

BACKING UP THE
SYSTEM VOLUME

DIRECTORY VS
NONDIRECTORY-
STRUCTURED
VOLUMES

Selected System Topics

The directory information kept on a volume includes file names
and file types, dates of creation, and (in most cases) file lengths.
When you type the DIRECTORY command, this directory infor-
mation prints on the terminal. Volumes such as disk, diskette,
and DECtape keep this information in a single place at the begin-
ning of the volume. Each time you add or erase a file, the direc-
tory information at the beginning of the volume is updated ac-
cordingly. Thus, these volumes have a true volume directory and
are said to be directory-structured. Magtape and cassette vol-
umes, on the other hand, do not keep directory information in any
single place on the tape but rather with each individual file. Their
directory information is obtained by sequentially reading through
all the files on the tape and collecting the directory for printing as
each file is encountered. Thus, these volumes are said to be non-
directory-structured.

You can list the volume directories in either a complete or an
abbreviated format. Complete volume directories include the file
name, file type, file length (usually), and date of creation if you
entered a date via the DATE command before creation. For most
volumes, the directory format is as follows:

16-Jan-80
FILE .TYP 26 23-JUN-77

Cassette directories are slightly different. Their directories do not

indicate file lengths but instead show a sequence number for each
file:

16-Jan-80
FILE .TYP 0 23-JUN-77

The sequence number simply indicates whether the file is con-
tinued from another cassette. The number 0 means the file is not
continued from another cassette while any other number indi-
cates that the file is continued. The number of blocks printed at
the end of a cassette directory does not represent the total size of
the files on the volume but instead represents the total of the
sequence numbers.

Abbreviated volume directories are handled in the same way for
all directory-structured volumes; they include only the file name
and file type, and are printed in five columns on the terminal. For
more information about directory-structured and nondirectory-
structured volumes, see the RT-11 System User’s Guide,
Chapter 3.

Because of the sequential (nondirectory-structured) nature of
magtapes and cassettes, you cannot use the RENAME monitor
command. To perform the RENAME operation, you must first
copy the file, using the new file name, and then erase the old file
name.

Thus, to change the name of GRAPH. TWO on your magtape or
cassette storage volume to GRAPH.FOR, first make a copy of
GRAPH.TWO, giving the new file the name GRAPH.FOR.

Long Command Format

+COPY ®ED

From? YOL:GRAPH.TWO @D

Te 7? GRAPH.FOR G
Short Command Format

.COPY VOL:GRAPH.TWO GRAPH.FOR G

Now there are two copies of the GRAPH file. Erase the one not
wanted, using the monitor DELETE command (this command is
described in Chapter 7 in the section entitled File Delete Opera-
tions):

Long Command Format

+DELETE/NOQUERY @D
Files? VOL:GRAPH.THWD

Short Command Format

+DELETE/NOQUERY YOL:GRAPH.TWO

A single copy of GRAPH.FOR now resides on your default storage
(system) volume. Copy the file onto your MT: or CT: storage
volume:

Long Command Format

. COPY ,
From? GRAPH,FOR @D

AR

To 7 YOL:GRAPH.FOR G

Short Command Format

.COPY GRAPH.FOR VOL:GRAPH.FOR

B-5

Selected System Topics

ALTERNATE
RENAME
OPERATION FOR
MAGTAPE AND
CASSETTE
USERS

Selected System Topics

USING THE
FORTRAN/BASIC
LANGUAGE
VOLUME

SUBSTITUTING
VOLUMES
DURING
OPERATIONS

Delete the original file:

Long Command Format

+DELETE/NOQUERY
Files? GRAPH.FOR

Short Command Format

+DELETE/NOQUERY GRAPH.FOR

The combined effect of these four commands is to “rename”
GRAPH.TWO to GRAPH.FOR.

During system installation, a special system volume was created
specifically for your use with this manual. This volume contains
the FORTRAN and/or BASIC language processors and those
monitor files required to use these language processors. Before you
can perform the FORTRAN or BASIC demonstrations, you must
substitute this FORTRAN/BASIC language volume for the
system volume currently mounted in device unit 0. The language
volume then serves as the system volume during the course of the
FORTRAN and BASIC demonstrations.

Make sure no system operations are in progress (the monitor
prompting period should appear at the left margin of the terminal
printer), and stop the system (see Stopping and Starting the
System, this appendix). Now remove the system volume currently
loaded in device unit 0, and insert the language volume, write-
protected. Bootstrap the system (see Stopping and Starting the
System, this appendix). The following monitor message should
appear:

RT-118.J VOd . xx

Write-enable the volume. Then enter the current date and time-
of-day, and assign the logical name VOL: to your storage volume,
just as you did in Chapter 4. When you have done this, you are
ready to run the language demonstration. Return to the main text
of the manual.

Diskette users and FORTRAN users who have the FORTRAN
language processor on a volume apart from their system voiume
must occasionally perform the kinds of file copying and volume
swapping operations that follow. These operations are necessary
when the files you need to use are not stored on the volume(s)
currently mounted. The situation requires that you make the ap-
propriate volume substitutions before you continue.

Thus, before you can compile the FORTRAN file THIRD.FOR,
you must substitute the language volume containing the FOR-
TRAN compiler for the system volume currently loaded in device
unit 0. First, however, you must copy the file THIRD.FOR to your
storage volume so that it will be available for use.

Long Command Format

.COPY @D .
From? THIRD.FOR
To 7 WOL:THIRD.FOR

Short Command Format

.COPY THIRD.FOR YOL:THIRD.FOR

Stop the system, remove the system volume currently loaded in
unit 0, and insert the language volume write-protected. See Stop-
ping and Starting the System (this appendix) if necesary. The
following message should appear when you bootstrap the lan-
guage volume.

RT-118. VOd . xx

Write-enable the volume. Then enter the current date and time-
of-day, and assign the logical name VOL: to your storage volume,
just as you did in Chapter 4.

Next, compile the FORTRAN program THIRD.FOR, which is
now on VOL:

Long Command Format

.FORTRAN GED
Files? WOL:THIRD.FOR
PUTSTR

Short Command Format

+FORTRAN WOL:THIRD
PUTETR

This command causes the object module to be created on the
default storage volume (DK:), which is presently the system
volume (that is, the language volume). If errors occur during the
compile operation, they indicate that you have incorrectly typed
the source file. In this case, you must edit the file THIRD.FOR,
recompile, and then copy the file to VOL:. Once you have an
object module that compiles without error and is stored on VOL:,
reload the main system volume in unit 0. Again, follow the direc-
tions in Stopping and Starting the System. Once you have

Selected System Topics

Selected System Topics

USING THE
LINK VOLUME

bootstrapped the volume, write-enable the system volume, enter
the current date and time-of-day, and assign the logical name
VOL: to your storage volume.

Now copy the object module on VOL: back to the system volume.

Long Command Format

LCOPY G@ET
From? VOL:THIRD OBJ
To % THIRD.OBJ

Short Command Format

,COPY UOL:THIRD,O0BJ THIRD.OBJ @

BJ &

|
-

Return to Chapter 13, to the section entitled Building the Object
Library.

During system installation, a special system volume was created
for you to use with this manual. This volume contains the linker
(LINK.SAV) and the system subroutine library (SYSLIB.OBJ).
Before you can perform the linking demonstrations in Chapters 9
and 12, you must substitute this LINK volume for your current
system volume, which is mounted in device unit 0. The LINK
volume then serves as the system volume during the course of the
linking demonstration.

First, transfer the object file you need to link to the storage
volume:

Long Command Format

,COPY
From? GRAPH.ODB.
To 7 VOL:GRAPH,OBJ

Short Command Format
,COPY GRAPH.O0BJ YOL:GRAPH.OB.J

Now, make sure no system operations are in progress (the monitor
prompting period should appear at the left margin of the terminal
printer), and stop the system (see Stopping and Starting the
System, this appendix). Next, remove the system volume cur-
rently loaded in device unit 0, and insert the LINK volume, write-
protected if possible. Bootstrap the system (see Stopping and
Starting the System, this appendix). The following monitor mes-
sage should appear:

RT-118J Yod,ux

B-8

Write-enable the volume. Then enter the current date and time,
and assign the logical name VOL: to your storage volume, just as
you did in Chapter 4.

Finally, transfer the object file from the storage volume to the
system volume:

Long Command Format

LCOPY
From? VOL:GRAPH.OBJ
Toe 7 GRAPH.OBJ G

Short Command Format
LCOPY YOL:GRAPH.0BJ GRAPH.DBJ

When you have done this, you are ready to run the linking demon-
stration. Return to the main text of the manual.

Follow the file maintenance operations outlined in this section if
you substituted both a FORTRAN language volume and a LINK
volume to perform the demonstrations in Chapter 9.

First, mount the FORTRAN language volume in device unit 0. If
you do not remember how to do this, follow the instructions in the
section of this appendix entitled Using the FORTRAN/BASIC
Language Volume.

Next, obtain a directory listing of all the files on your FORTRAN
volume that have the name GRAPH, regardless of file type; these
files were generated as a result of the exercises in Chapter 9.

Long and Short Command Formats

,DIRECTORY GRAPH.#*

18-Jan-80
GRAPH .BAK 2 19-Now-79 GRAPH ,0BJ 14 08-Jan-8B0
GRAPH FOR 2z 08-Jan-B80 GRAPH ,LST io 0B-Jan-80

4 Files, 2B Blocks
48 Free blockKs

The fact that you have corrected errors in the source file
GRAPH.FOR makes the version on your storage volume obsolete.
Thus, transfer the updated copy from your system volume to
VOL:, replacing the copy of GRAPH.FOR on the storage volume
with the new version.

B-9

Selected System Topics

FORTRAN/LINK
FILE
MAINTENANCE

Selected System Topics

Long Command Format

+COPY @
From? GRAPH.FOR GED

To 7 VOL:GRAPH.FOR G@ED

Short Command Format

+ COPY GRAPH.FOR YOL:GRAPH.FOR G

Next, transfer GRAPH.LST to your storage volume. This enables
you to examine the listing without having to recompile the pro-
gram.

Long Command Format

. COPY @ET
From? GRAPH.LST
To 7 UOL:GRAPH.LST

Short Command Format

» COPY GRAPH.LST VOL:GRAPH.LST

Once you have transferred all files of value to your storage
volume, delete the useless files from the system volume:

Long Command Format

+DELETE @&

Files?™ GRAPH.=*
Files deleted:

DK.GRAPH.BAK 7+ ¥

DK.GRAPH.FOR 7 ¥

DK.GRAPH.OBJ = Y

DK.GRAPH.LST » ¥

Short Command Format

+DELETE GRAPH.,*
Files deleted:
DK.GRAPH.BAK 7 Y
DK, GRAPH.FOR 7 Y
DK.GRAPH.DOBJ ~* Y
DK:+GRAPH.LST = Y

Make sure no system operations are in progress (the monitor
prompting period should appear at the left margin of the terminal
printer), and stop the system (see Stopping and Starting the
System, this appendix). Next, remove the system volume cur-
rently loaded in device unit 0, and insert the LINK volume, write-
protected if possible. Bootstrap the system (see Stopping and

B-10

Starting the System, this appendix). The following monitor mes-
sage should appear:

RT-1154 VOd . ux

Write-enable the volume. Then enter the current date and time,
and assign the logical name VOL: to your storage volume, just as
you did in Chapter 4.

(g
)
]
)
=h

name GRAPH, regardless of file type; these files were created as a
result of the linking demonstrations in Chapter 9.

s 0O
cs U

Long and Short Command Formats

,DIRECTORY GRAPH.* G

16-Jan-80

GRAPH .0BJ 14 08B-dan-80 GRAPH .SAV 19 0B-Jan-80
2 Filessy 33 Blocks

80 Free blocKs

Transfer GRAPH.SAYV to your storage volume. This allows you to
rerun the program without relinking it.

Long Command Format

,COPY @D
From? GRAPH.SAY @D
To 7 VOL:GRAPH.SAY

Short Command Format

. COPY GRAPH.SAY VOL:GRAPH.SAU

Next, delete the useless files from your system volume:

Long Command Format

. DELETE

Files? GRAPH.O0BJ:GRAPH.SAY
Files deleted:

DK.GRAPH.,0BJ 7 ¥
DK,GRAPH.8AY 7 ¥

Selected System Topics

Selected System Topics

Short Command Format
+DELETE GRAPH.OBJ:GRAPH.SAV
Files deleted:
DKL.GRAPH.OBJ 7 ¥
DK.GRAPH.88Y 7 Y

Finally, obtain an up-to-date directory listing of your storage
volume so that you can see its current status by typing

+DIRECTORY WVOL: G

Leave the LINK volume mounted in device unit 0, and proceed to
Chapter 12, Linking Object Programs.

B-12

Absolute address

The binary number that is assigned as the address of a phy-
sical memory storage location.

Absolute section

The portion of a program in which the programmer has spec-
ified physical memory locations of data items.

Access time

The interval between the instant at which data is required
from or for a storage device and the instant at which the data
actually begins moving to or from the device.

ADC (Analog to Digital Converter)

A circuit that converts analog (voltages) signals to binary
data.

Address

A label, name, or number that designates a location in
memory where information is stored.

Algorithm
A prescribed set of well-defined rules or processes for the
solution of a problem in a finite number of steps.
Alphanumeric
Referring to the subset of ASCII characters that includes the
26 alphabetic characters and the 10 numeric characters.
ANSI

American National Standards Institute.
APL (A Programming Language)

A condensed, high-level language capable of describing com-
plex information processing in convenient notation. It uses
arrays as basic data elements and manipulates them with a
set of powerful operators. Statements are usually interpreted
during execution and require no compilation whatsoever.

Application program (or package)

A program that performs a function specific to the needs of a
particular end-user or class of end-users. An application pro-
gram can be any program that is not part of the basic opera-
ting system.

Glossary-1

Glossary

Glossary

Argument

A variable or constant value supplied with a command that
controls its action, specifically its location, direction, or
range.

Array
An ordered arrangement of subscripted variables.

ASCII

The American Standard Code for Information Interchange; a
standard code using a coded character set consisting of eight-
bit coded characters for upper- and lower-case letters, num-
bers, punctuation, and special communication control char-
acters.

Assembler

A program that translates symbolic source code into ma-
chine instructions by replacing symbolic operation codes
with binary operation codes, and symbolic addresses with
absolute or relocatable addresses.

Assembly language

LA SV L diiiiriis iia. T wviiQv
4 t=]

translated directly into machine language instructions and
is, therefore, specific to a given computing system.

A svmbolic programming]nnguaga that normally can be

Assembly listing

A listing, produced by an assembler, that shows the symbolic
code written by a programmer next to a representation of the
actual machine instructions generated.

Asynchronous

Pertaining to an event trig

iiip VW il

related event rather than
tions scheduled by time intervals.

Background program
A program operating automatically, at a low priority, when a
higher priority (foreground) program is not using system re-
sources.

Backup file
A copy of a file created in case the primary file is lost or
destroyed.

Base address

An address used as the basis for computing the value of some
other relative address; the address of the first location of a
program or data area.

Glossary-2

BASIC (Beginner’s All-purpose Symbolic Instruction Code)

An interactive, “algebraic” type of computer language that
combines English words and decimal numbers. 1t is a widely
available, standardized, simple beginner’s language capable
of handling industry and business applications.

Batch processing

A processing method in which programs are run consecu-
tively without operator intervention.

Baud
A unit of signaling speed.

Binary
The number system with a base of two used by the internal
logic of all digital computers.

Binary code
A code that uses two distinct characters, usually the num-
bers 0 and 1.

Bit

A binary digit. The smallest unit of information in a binary
system of notation. It corresponds to a 1 or 0 and to one digit
position in a physical memory word.

Block

A group of physically adjacent words or bytes of a specified
size that is peculiar to a device. The smallest system-ad-
dressable segment on a mass storage device in reference to
I/0.

Bootstrap
A technique or routine whose first instructions are sufficient
to load the remainder of itself and start a complex system of
programs.

BOT (Beginning Of Tape)
A reflective marker applied to the backside of magtape,
which identifies the beginning of the magtape’s recordable
surface.

Bottom address
The lowest memory address into which a program is loaded.

Breakpoint

A location at which program operation is suspended to allow
operator investigation.

Buffer

A storage area used to temporarily hold information being
transferred between two devices or between a device and

Glossary-3

Glossary

Glossary

memory. A buffer is often a special register or a designated
area of memory.

Bug
A flaw in the design or implementation of a program that
may cause erroneous results.

Bus
A flat, flexible cable that consists of many transmission
lines, or wires. It interconnects computer system components
to provide communication paths for addresses, data, and
control information.

Byte
The smallest memory-addressable unit of information. In a
PDP-11 computer system, a byte is equivalent to eight bits.

Call

A transfer from one part of a program to another with the
ability to return to the original program at the point of the
call.

Calling sequence

A specified arrangement of the instructions and data neces-
sary to pass parameters and control to a given subroutine.

Central processing unit (CPU)

A unit of a computer that includes the circuits controlling
the interpretation and execution of instructions.

Character

A single letter, numeral, or symbol used to represent infor-
mation.

Character pointer

The place where the next character typed will be entered.
(The character pointer is visible as a blinking cursor on
VT-11 digplay hardware.) During editing, the character
pointer indicates the place in an ASCII text file where the
next character typed will be entered into the file.

Clear

To erase the contents of a storage location by replacing the
contents, normally with Os or spaces.

Clock

A device that generates regular periodic signals for synchron-
ization.

Code

A system of symbols and rules used for representing informa-
tion — usually refers to instructions executed by computer.

Glossary-4

Coding
The writing of instructions for a computer, using symbols
meaningful to the computer itself or to an assembler, com-
piler, or other language processor.

Command

A word, mnemonic, or character that, by virtue of its syntax
in a line of input, causes a computer system to perform a
predefined operation.

e a2 tsr-To) i

Loimmand ianguage

The vocabulary used by a program or set of programs that
directs the computer system to perform predefined opera-
tions.

Command language interpreter

The program that translates a predefined set of commands
into instructions that a computer system can interpret.

Command string

A line of input to a computer system that generally includes
a command, one or more file specifications, and optional
qualifiers.

Compile

To produce binary code from symbolic instructions written
in a high-level source language.

Compiler

A program that translates a high-level source language into a
language suitable for a particular machine.

Computer

A machine that can be programmed to exe
s

fore they can be executed.
Computer program
A plan or routine for solving a problem on a computer.

Computer system

A data processing system that consists of hardware devices,
software programs, and documentation that describes the
operation of the system.

Concatenation
The joining of two strings of characters to produce a longer
string.

Conditional assembly

The assembly of certain parts of a symbolic program that
occurs only when certain conditions are met during the as-
sembly process.

Glossary-5

Glossary

Glossary

Configuration
A particular selection of hardware devices, software routines,
or programs that function together.

Console terminal

A keyboard terminal that acts as the primary interface be-
tween the computer operator and the computer system. It is
used to initiate and direct overall system operation through
software running on the computer.

Constant
A value that remains the same throughout a distinct opera-
tion. (Compare with Variable.)

Context switching

The saving of key registers and other memory areas before
switching between jobs with different modes of execution, as
in background/foreground programming.

Conversational

See Interactive.

CPU
See Central processing unit.

Crash

A hardware crash is the complete failure of a particular de-
vice, sometimes affecting the operation of an entire com-
puter system. A software crash is the complete failure of an
operating system, usually characterized by some failure in
the system’s protection mechanisms or flaw in the executing
software.

O
-
-

To open, write data to, and close a file for the first time.

Cross-reference listing

A printed listing that identifies all references in a program to
each specific symbol in a program. It includes a list of all
symbols used in a source program and the statements where
they are defined or used.

Current location counter

A counter kept by an assembler tc determine the address
assigned to an instruction or constant being assembled.

Data

A term used to denote any or all facts, numbers, letters, and
symbols. Basic elements of informatlon that can be pro-
cessed by a computer.

Glossary-6

Data base

An organized collection of interrelated data items that allows
one or more applications to process the items without regard
to physical storage locations.

Data coiiection
The act of bringing data from one or more points to a central
point for eventual processing.

Debug

Default
The value of an argument, operand, or field assumed by a
program if not specifically supplied by the user.

Define
To assign a value to a variable or constant.

Delimiter
A character that separates, terminates, or organizes ele-
ments of a character string, statement, or program.

Device

A hardware unit such as an I/O peripheral, magnetic tape
drive, card reader, etc. Often used erroneously to mean
“volume.”

Device control unit

A hardware unit that electronically supervises one or more of
the same type of devices. It acts as the link between the
computer and the I/O devices.

Device handler
A routine that drives or services an I/O device and controls
the physical hardware activities on the device.

Device independence

The ability to program I/O operations independently of the
device for which the I/O is intended.

Device name

A unique name that identifies each device unit on a system.
It usually consists of a two-character device mnemonic fol-
lowed by an optional device unit number and a colon. For
example, the common device name for RK05 disk drive unit
1is “RK1.."”

Device unit

One of a set of similar peripheral devices (for example, disk
unit 0, DECtape unit 1, etc.). May be used synonymously
with volume.

Glossary-7

Glossary

Glossary

Diagnostics
A set of procedures for the detection and isolation of a mal-
function or mistake.

Digit
A character used to represent one of the non-negative in-
tegers smaller than the radix (for example, in decimal nota-
tion, one of the characters 0 to 9; in octal notation, one of the
characters 0 to 7; in binary notation, one of the characters 0
and 1).

Direct access

See Random access.

Directive
Assembler directives are mnemonics in an assembly lan-
guage source program that are recognized by the assembler
as commands to control a specific assembly process.
Directory
A table that contains the names of and pointers to files on a
mass storage volume.
Directory-structured

Refers to a storage volume with a true volume directory at its
beginning that contains information (file name, file type,
length, and date-of-creation) about all the files on the
volume. Such volumes include all disks, diskettes, and DEC-
tapes.

Disk device

An auxiliary storage device on which information can be read

An vxrmiddna

-
Ul ¥WI1iLULUlL,.

Display

A nerinheral device 1ced to nortrav da
A peripheral vice used to portray da

Mo VA o J

a gra
mally refers to some type of cathode-ray tube system).

Downtime

The time interval during which a device or system is inopera-
tive.

Echo

The printing by an I/O device, such as terminal or CRT, of
characters typed by the programmer.

Edit

To arrange and/or modify the format of data (for example, to
insert or delete characters).

Glossary-8

Editor
A program that interacts with the user to enter text into the

computer and edit it. Editors are language-independent and
will edit anything in character representation.

The address actually used in the execution of a computer

instruction.

Emulator
A hardware device that permits a program written for a spe-
cific computer system to be run on a different type of com-

puter system.
Entry point

A location in a subroutine to which program control is trans-
ferred when the subroutine is called.

EOT (End Of Tape)

A reflective marker applied to the backside of magtape,
which precedes the end of the reel.

Error
Any discrepancy between a computed, observed, or meas-
ured quantity and the true, specified, or theoretically correct
value or condition.

Execute
To carry out an instruction or run a program on the com-
puter.

Expression
A combination of operands and operators that can be evalu-
ated to a distinct result by a computing system.

Extension

Historically used synonym for file type.

External storage

A storage medium other than main memory, for example, a
disk or tape.

Field

A specified area of a record used for a particular category of
data.

FIFO (First In/First Out)

A data manipulation method in which the first item stored is
the first item processed.

File
A logical collection of data treated as a unit, which occupies

one or more blocks on a mass storage volume such as disk or
magtape, and has an associated file name (and file type).

Glossary-9

Glossary

Glossary

File maintenance

The activity of keeping a mass storage volume and its direc-
tory up to date by adding, changing, or deleting files.

File name

The alphanumeric character string assigned by a user to
identify a file. It can be read by both an operating system
and a user. A file name has a fixed maximum length that is
system-dependent. (The maximum in an RT-11 operating
system is six characters, the first of which must be alpha-
betic. Spaces are not allowed.)

File specification

A name that uniquely identifies a file maintained in any
operating system. A file specification generally consists of at
least three components: a device name identifying the
volume on which the file is stored, a file name, and a file

type.

File-structured device

A device on which data is organized into files. The device
usually contains a directory of the files stored on the volume.
(For example, a disk is a file-structured device, but a line

nrimtar ie nab)
printer is not.)

File type

Flag

The alphanumeric character string assigned to a file either
by an operating system or a user. It can be read by both the
operating system and the user. System-recognizable file
types are used to identify files having the same format or
type. If present in a file specification, a file type follows the
file name in a file specification, separated from the file name
by a period. A file type has a fixed maximum length that is
system-dependent. (The maximum in an RT-11 operating
system is three characters, not including any spaces and ex-
cluding the preceding period.)

A variable or register used to record the status of a program
or device; the noting of errors by a translating program.

Floating point

A number system in which the position of the radix point is
indicated by the exponent part and another part represents
the significant digits or fractional part (for example, 5.39 X
10® — Decimal; 137.3 X 8¢ — Octal; 101.i0
X 2B — Binary).

Flowchart

A graphical representation for the definition, analysis, or so-
lution of a problem, in which symbols are used to represent
operations, data, flow, and equipment.

Glossary-10

Foreground

The area in memory designated for use by a high-priority
program. The program that gains the use of machine facili-
ties immediately upon request.

FORTRAN (FORmuia TRANSsiaiion)
A problem-oriented language designed to permit scientists
and engineers to express mathematical operations in a form
with which they are familiar. It is also used in a variety of

applications, including process control, information re-
trieval, and commercial data processing.

Full duplex

In communication, pertaining to a simultaneous, two-way,
independent, “asynchronous” transmission.

Function

An algorithm, accessible by name and contained in the
system software, that performs commonly used operations.
For example, the square root calculation function.

Garbage
Meaningless signals or bit patterns in memory.
General register

One of eight 16-bit internal registers in the PDP-11 com-
puter. These are used for temporary storage of data.

Global

A value defined in one program module and used in others.
Globals are often referred to as entry points in the module in
which they are defined and as externals in the other modules
that use them.

Hack

A seemingly inspired, but obscure, solution that is superior
by some measure to a straightforward one.

Half duplex

Pertaining to a communication system in which two-way
communication is possible, but only one way at a time.

Handler

See Device handler.
Hardware

The physical equipment components of a computer system.
Hardware bootstrap

A bootstrap that is inherent in the hardware and need only
be activated by specifying the appropriate load and start
address.

Glossary-11

Glossary

Glossary

High-level language

A programming language whose statements are typically
translated into more than one machine language instruction.
Examples are BASIC and FORTRAN.

High-order byte

The most significant byte in a word. The high-order byte
occupies bit positions 8 through 15 of a PDP-11 word and is
always an odd address.

Image mode
A mode of data transfer, in which each byte of data is trans-
ferred without any interpretation or data changes.

Indirect address

An address that specifies a storage location containing either
a direct (effective) address or another indirect (pointer) ad-
dress.

Indirect file

A file containing commands that are processed sequentially,
but that could have been entered interactively at a terminal.

Industry-standard

A condition, format, or definition that is accepted as the
norm by the majority of the (computer) industry.

Initialize
To set counters, switches, or addresses to starting values at
prescribed points in the execution of a program, particularly
in preparation for re-execution of a sequence of code. To
format a volume in a particular file-structured format in
preparation for use by an operating system.

Input

The data to be processed; the process of transferring data
from external storage to internal storage.

Input/Output device

A device attached to a computer that makes it possible to
bring information into the computer or get information out.

Instruction

A coded command that tells the computer what to do and
where to find the values it is to work with. A symbolic in-
struction looks like ordinary language. Symbolic instructions
must, however, be changed into machine instructions (usu-
ally by another program) before they can be executed by the

combnuter,

LU PRl

Glossary-12

Interactive processing

A technique of user/system communication in which the op-
erating system immediately acknowledges and acts upon re-
quests entered by the user at a terminal. Compare with

hateh nrocessing
patch processing,

interface

A shared boundary. An interface might be a hardware com-

ponent to link two devices, or it might be a portion of storage

or registers accessed by two or more computer programs.
Internal storage

The storage facilities forming an integral physical part of the
computer and directly controlled by the computer, for ex-
ample, the registers of the machine and main memory.
Interpreter
A computer program that translates, then executes, a source
language statement before translating (and executing) the
next statement.
Interrupt

A signal that, when activated, causes a transfer of control to
a specific location in memory, thereby breaking the normal
flow of control of the routine being executed.

Interrupt-driven

Pertaining to software that uses the interrupt facility of a
computer to handle I/O and respond to user requests: RT-11
is such a system.

Interrupt vector

Two words containing the address of an interrupt service
routine and the processor state at which that routine is to
execute.

Iteration
Repetition of a group of instructions.

Job
A group of data and contro! statements that does a unit of
work, for example, a program and all of its related su-
broutines, data, and control statements; also, a batch control
file.

Label
One or more characters used to identify a source language
statement or line.

Language

A set of representations, conventions, and rules used to
convey information.

Glossary-13

Glossary

Glossary

Latency

The time from initiation of a transfer operation to the begin-
ning of actual transfer; that is, verification plus search time.
The delay while waiting for a rotating memory to reach a
given location.

Library

A file containing one or more macro definitions or one or
more relocatable object modules that are routines that can
be incorporated into other programs.

LIFO (Last In/First Out)

A data manipulation method in which the last item stored is
the first item processed; a push-down stack.

Light pen
A device resembling a pencil or stylus that can detect a
fluorescent CRT screen. Used to input information to a CRT
display system.

Linkage

In programming, code that connects two separately coded
routines and passes values and/or control between them.

Linked fiie
A file whose blocks are joined together by references rather
than by consecutive locations.

Linker

A program that combines many relocatable object modules
into an executable module. It satisfies global references and
combines program sections.

Listing

The printed copy generated by a line prin ni

Load

To store a program or data in memory. To place a volume on
a device unit and put the unit on line.

Load map

A table produced by a linker that provides information about
a load module’s characteristics (for example, the transfer
address, the global symbol values, and the low and high
limits of the relocatable code).

Load module
A program in a format ready for loading and executing.
Location

An address in storage or memory where a unit of data or an
instruction can be stored.

Glossary-14

Locked
Pertaining to routines in memory that are not presently (and
may never be) candidates for swapping or transferring
around.

1 ccelcmal
LUYIval ucvive naile

An alphanumeric name assigned by the user to represent a
physical device. The name can then be used synonymously
with the physical device name in all references to the device.
Logical device names are used in device-independent sys-
tems to enable a program to refer to a logical device name
that can be assigned to a physical device at run-time.

Loop
A sequence of instructions that is executed repeatedly until a
terminal condition prevails.

Low-order byte

The least significant byte in a word. The low-order byte oc-
cupies bit positions 0 through 7 in a PDP-11 word and is
always an even address.

Machine language
The actual language used by the computer when performing
operations.

Macro

An instruction in a source language that is equivalent to a
specified sequence of assembler instructions, or a command
in a command language that is equivalent to a specified
sequence of commands.

Main program

The module of a program that contains the instructions at
which program execution begins. Normally, the main pro-
gram exercises primary control over the operations per-
formed and calls subroutines or subprograms to perform spe-
cific functions.

Manual input
The entry of data by hand into a device at the time of pro-
cessing.

Mask
A combination of bits that is used to manipulate selected
portions of any word, character, byte, or register while re-
taining other parts for use.

Mass storage

Pertaining to a device that can store large amounts of data
readily accessible to the computer.

Glossary-15

Glossary

Glossary

Matrix

A rectangular array of elements. Any matrix can be consid-
ered an array.

Memory

Any form of data storage, including main memory and mass
storage, in which data can be read and written. In the strict
sense, memory refers to main memory.

Memory image

A replication of the contents of a portion of memory, usually
in a file.

Mnemonic

An alphabetic easy-to-remember representation of a function
or machine instruction. '

Monitor

The master control program that observes, supervises, con-
trols or verifies the operation of a computer system. The
collection of routines that controls the operation of user and
system programs, schedules operations, allocates resources,
performs I/0, etc.

Monitor command

An instruction or command issued directly to a monitor from
a user.

Monitor command mode

The state of the operating system (indicated by a period at
the left margin) that allows monitor commands to be entered
from the terminal.

Mount a volume

To logically associate a
physical device unit. T
unit (for example, place a magtape on a magtape drive and

put the drive on line).

a madiitm with a
< cualulll Wil a

Multiprocessing

Simultaneous execution of two or more computer programs
by a computer which contains more than one central proc-
€essor.

Multiprogramming
A processing method in which more than one task is in an
executable state at any one time, even with one CPU.
Nondirectory-structured

Refers to a storage volume that is sequential in structure and
therefore has no volume directory at its beginning. File infor-
mation (file name, file type, length, and date-of-creation) is

Glossary-16

provided with each file on the volume. Such volumes include
magtape and cassette.

Non-file-structured device

A device, such as paper tape, line printer, or terminal, in
which data cannot be organized as multiple files.

Object code
Relocatable machine language code.

Object module

The primary output of an assembler or compiler, which can
be linked with other object modules and loaded into memory
as a runnable program. The object module is composed of
the relocatable machine language code, relocation informa-
tion, and the corresponding global symbol table defining the
use of symbols within the module.

Object Time System (OTS)
The collection of modules that is called by compiled code in
order to perform various utility or supervisory operations (for
example, FORTRAN Object Time System).

Octal
Pertaining to the number system with a radix of eight; for
example, octal 100 is decimal 64.

oDT
On-line Debugging Technique: an interactive program for
finding and correcting errors in programs. The user commun-
icates in octal notation.

Off-line
Pertaining to equipment or devices not currently under di-
rect control of the computer

Offset

The difference between a base location and the location of an
element related to the base location. The number of loca-
tions relative to the base of an array, string, or block.

One’s complement

A number formed by interchanging the bit polarities in a
binary number: for example, 1s become 0s; Os become 1s.

On-line

Pertaining to equipment or devices directly connected to and
under control of the computer.

Op-code (operation code)

The part of a machine language instruction that identifies
the operation the CPU is to perform.

Glossary-17

Glossary

Glossary

Operand
The data that an instruction operates upon. An operand is
usually identified by an address part of an instruction.
Operating system
The collection of programs, including a monitor or executive
and system programs, that organizes a central processor and

peripheral devices into a working unit for the development
and execution of application programs.

Operation
The act specified by a single computer instruction. A pro-
gram step undertaken or executed by a computer, for ex-

ample, addition, multiplication, comparison. The operation
is usually specified by the operator part of an instruction.

Operation code
See Op-code.
Operator’s console

The set of switches and display lights used by an operator or
a programmer to determine the status of the computer
system and to start the computer.

Option
An element of a command or command string that enables
the user to select from among several alternatives associated
with the command. In the RT-11 computer system, an op-
tion consists of a slash character (/) followed by the option
name and, optionally, a colon, and an option value.

Output
The result of a process; the transferring of data from internal
storage to external storage.

Overflow

A condition that occurs when a mathematical operation
yields a result whose magnitude is larger than the program is
capable of handling.

Overlay segment

A section of code treated as a unit that can overlay code
already in memory and be overlaid by other overlay seg-
ments when called from the root segment or another resident
overlay segment.

Overlay structure

A program overlay system consisting of a root segment and
optionally one or more overlay segments.

Page
That portion of a text file delimited by form feed characters
and generally 50-60 lines long. Corresponds approximately
to a physical page of a program listing.

Glossary-18

Parameter
A variable that is given a constant value for a specific pur-
pose Or process.

Parity

A binary digit appended to an array of binary digits to make
the sum of all bits always odd or always even.

Patch

10

To modify a routine in a rough or expedient way, usually by

=)
E
E

odifying the binary
PC

See Program counter.
PDP

Programmable data processor.

Peripheral device

Any device distinct from the computer that can provide
input and/or accept output from the computer.

Physical device

An 1/O or peripheral storage device connected to or associ-
ated with a computer.

Priority

A number associated with a task that determines the order
in which the monitor will process the request for service by
that task, relative to other tasks requesting service.

Process

A set of related procedures and data undergoing execution
and manipulation by a computer.

Processor

In hardware, a data processor. In software, a computer pro-
gram that includes the compiling, assembling, translating,
and related functions for a specific programming language
(for example, FORTRAN processor).

Processor status word (PSW)

A register in the PDP-11 that indicates the current priority
of the processor, the condition of the previous operation, and
other basic control items.

Program

A set of machine instructions or symbolic statements com-
bined to perform some task.

Program counter (PC)

A register used by the central processor unit to record the
locations in memory (addresses) of the instructions to be

Glossary-19

Glossary

Glossary

executed. The PC (register 7 of the eight general registers)
always contains the address of the next instruction to be
executed, or the second or third word of the current instruc-
tion.

Program development
The process of writing, entering, translating, and debugging
source programs.

Programmed request
A set of instructions (available only to programs) that is used
to invoke a monitor service.

Program section

A named, contiguous unit of code (instructions or data) that
is considered an entity and that can be relocated separately
without destroying the logic of the program.

Protocol

A formal set of conventions governing the format and rela-
tive timing of information exchange between two communi-
cating processes.

PSW
See Processor status word.

Queue
Any dynamic list of items; for example, items waiting to be
scheduled or processed according to system- or user-assigned
priorities.

Radix
The base of a number system; the number of digit symbols
required by a number system.

RAM (Random-Access Memory)

See Random access.

Handom access
Access to data in which the next location from which data is
to be obtained is not dependent on the location of the previ-
ously obtained data. Contrast Sequential access.
Read-only memory (ROM)
Memory whose contents are not alterable by computer in-
structions.
Real-time processing

Computation performed while a related or controlled phy-
sical activity is occurring so that the results of the computa-
tion can be used in guiding the process.

Glossary-20

Record

A collection of related items of data treated as a unit; for
example, a line of source code or a person’s name, rank, and
serial number.

Pertaining to a repetitive process in which the result of each
process is dependent upon the result of the previous one.

Re-entrant

— L. ; 1 o
i "nin a nracram sam nnaen nt
1 “w L

AntaIMming
<1 bauuus w a P.I.Usla.lll LCULLL PJUD v

pure code and a nonsharable segment that is the data area.

=y
)
3
o]
[*)

Q
Q.

Register
See General register.
Relative address

The number that specifies the difference between the actual
address and a base address.

Relocate

In programming, to move a routine from one portion of
storage to another and to adjust the necessary address refer-
ences so that the routine, in its new location, can be exe-
cuted.

Resident

Pertaining to data or instructions that are normally perma-
nently located in main memory.

Resource

Any means available to users, such as computational power,
programs, data files, storage capacity, or a combination of
i1

these.

Restart

To resume execution of a program.
ROM

See Read-only memory.
Root segment

The segment of an overlay structure that, when loaded, re-
mains resident in memory during the execution of a pro-
gram.

Routine

A set of instructions arranged in proper sequence to cause a
computer to perform a desired operation.

Run
A single, continuous execution of a program.

Glossary-21

Glossary

Glossary

Sector
A physical portion of a mass storage device.

Segment
See Overlay segment.

Sequential access

A method of data access in which the next location from
which data is to be obtained immediately follows the loca-
tion of the previously obtained data. Contrast Random ac-
cess.

Software
The collection of programs and routines associated with a
computer (for example, compilers, library routines).
Software bootstrap
A bootstrap that is activated by manually loading the in-
structions of the bootstrap and specifying the appropriate
load and start address.
Source code

Text, usually in the form of an ASCII format file, that repre-
sents a program. Such a file can be processed by an appro-
priate system program.

Source language
The system of symbols and syntax, easily understood by
people, used to describe a procedure that a computer can
execute.

Spooling
The technique by which I/O with slow devices is placed on
mass storage devices to await processing.

Storage
Pertaining to a device into which data can be entered, in
which it can be held, and from which it can be retrieved at a
later time.

String

A connected sequence of entities, such as a line of characters.

Subprogram

A program or a sequence of instructions that can be called to
perform the same task (though perhaps on different data) at
different points in a program, or even in different programs.

Subroutine
See Subprogram.

Glossary-22

Subscript

A numeric valued expression or expression element that is
appended to a variable name to uniquely identify specific
elements of an array. Subscripts are enclosed in parentheses.
There is a subscript for each dimension of an array. Multiple

subscripts must be separated by commas. For example, a
two-dimensional subscript might be (2,5).

Supervisory programs
Computer programs that have the primary function of sched-
uling, allocating, and controlling system resources, rather
than processing data to produce results.

Swapping

The process of moving data from memory to a mass storage
device, temporarily using the evacuated memory area for
another purpose, and then restoring the original data to
memory.

Synchronous

Pertaining to related events where all changes occur simulta-
neously or in definite timed intervals.

Syntax

The structure of expressions in a language and the rules gov-
erning the structure of a language.

System program

A program that performs system-level functions. Any pro-
gram that is part of or supplied with the basic operating
system (for example, a system utility program).

System volume
The volume on which the operating system is stored.

Table
A collection of data in a well-defined list.

Terminal

An I/O device, such as an LA36 terminal, that includes a
keyboard and a display mechanism. In PDP-11 systems, a
terminal is used as the primary communication device be-
tween a computer system and a person.

Time sharing

A method of allocating resources to multiple users so that the
computer, in effect, processes a number of programs concur-
rently.

Toggle

To use switches on the computer operator’s console to enter
data into the computer memory.

Glossary-23

Glossary

Glossary

Translate
To convert from one language to another.
Trap

A conditional jump to a known memory location performed
automatically by hardware as a side effect of executing a
processor instruction. The address location from which the
jump occurs is recorded. It is distinguished from an inter-
rupt, which is caused by an external event.

Truncation

The reduction of precision by ignoring one or more of the
least significant digits; for example, 3.141597 truncated to
four decimal digits is 3.141.

Turnkey
Pertaining to a computer system sold in a ready-to-use state.

Two’s complement

A number used to represent the negative of a given value in
many computers. This number is formed from the given bi-
nary value by changing all 1s to Os and all Os to 1s and then
adding 1.

Underflow

A condition that occurs when a mathematical operation
yields a result whose magnitude is smaller than the smallest
amount the program can handle.

User program
An application program.
Utility program

Any general-purpose program included in an operating
system to perform common functions.

Variable

The symbolic representation of a logical storage location that
can contain a value that changes during a processing opera-
tion.

Vector
A consecutive list of associated data.
Volume

A mass storage medium that can be treated as file-struc-
tured data storage.

Wildcard

A representation of file names and file types in a file specifi-
cation with asterisks or partially with question marks.

Glossary-24

Wildcard operation
A shorthand method of referring to all files with a specific
characteristic in their name.

Word

Sixteen binary digits treated as a unit in PDP-11 computer
memory.

Write-enabled
The condition of a volume that allows transfers that would

xr Tt Aanee ot

write information on it.
Write-protected

The condition of a volume that is protected against transfers
that would write information on it.

Glossary-25

Glossary

A

Address assignment, 12-3
Advance command (A),
EDIT, 5-8
Advice to new users, 17-1
Application packages, 1-12
Assembler errors, 11-12
Assembling the MACRO-11 program,
11-6
Assembly language program,
MACRO-11, 11-1
Assembly listing, 11-7
ASSIGN command, 4-11, 15-7
Assigning logical names to
devices, 4-9
At sign (@), 16-4
Avoiding program errors, 1l4-1

Background job, 15-3
Backing up the system volume, B-3
Backup copy, 17-1, B-3
BASIC command, 10-2
BASIC execution command,
BYE, 10-3
DEL, 10-5
LIST, 10-5
LISTNH, 10-6
NEW, 10-13
oLD, 10-13
PRINT, 10-3
REPLACE, 10-14
RUN, 10-8
SAVE, 10-13
SCR, 10-6
SUB, 10-4
BASIC language processor, 10-1
BASIC~11 programming language,
10-1
BATCH streams, 17-1
Beginning (B) editing command,
5-4
Boostrap the system, 2-4
BOOT command, 15-4
Bootstrap,
pushbutton console, A-2
switch register console, A-3
terminal keyboard, A-l
Bootstrap/computer relationship,
2-2
Bootstrapping,
manual operations, A-1
suggestions, B-2
Bootstrapping the system, 2-2
/BRIEF option, 4-14

INDEX

BYE command;
BASIC, 10-3

C

Carriage return, 4-1
Changing monitors, 15-4
Character Search, 5-9
Choosing a programming language,
8-1
Closing a file, 5-11
Command,
FORTRAN, 9-4
Command arguments,
EDIT, 5-5
Communicating,

background and foreground jobs,

15-5
Comparing text files, 6-1
Compiling FORTRAN IV programs,
9-3
Computer,
PDP-11, 1-1
Computer memory, 2-1
Constructing library files, 13-1
Control commands, 4-3
COPY command, 7-3
Copying files, 7-3
Correcting typing mistakes,
CTRL/U, 4-4
DELETE, 4-4
/CREATE option, 5-2, 13-%

Creating a library file, 13-2

Creating files, 5-2

Creating indirect files,
monitor commands, 16-1
using the editor, 16-2

Creating library files, 13-1

Creating the background job, 15-3

Creating the demonstration
programs, 5-19

CREF listing, 11-10

Cross reference table, 11-10

/CROSSREFERENCE option, 11-7

CTRL command key, 3-4

CTRL/B, 15-5

CTRL/C, 4-14

CTRL/D, 5-18

CTRL/E, 4-7

CTRL/F, 15-5

CTRL/G, 5-17

CTRL/L, 5-10

CTRL/N, 5-18

CTRL/0O, 4-12

Index-1

CTRL/U, 4-4, 5-3
CTRL/V, 5-17
CTRL/X, 5-7

D

DATE command, 4-8
/DEBUG option,

OoDT, 14-5
Debugging a program, 14-1
Debugging tool,

oDT, 14-4
Decimal/octal/binary conversion,

11-6

DEL command,

BASIC, 10-5
DELETE command, 7-6
Delete command (D),

EDIT, 5-8
DELETE key, 3-3, 3-4, 4-4, 5-17
Deleting files, 7-6
Demonstration programs,

creating, 5-19
Device assignment, 15-7
DIFFERENCES command, 6-2
Directory,

volume, 4-12
DIRECTORY command, 4-12
Directory listing,

file, 7-1

Directory-structured volumes, B-3

Double CTRL/C, 4-14, 10-10, 16-4

EDIT backup file,; 5-11
EDIT command, 5-2, 5-3
EDIT command arguments, 5-5
EDIT command mode exit, 5-6
Edit Lower command (EL),
EDIT, 5-12
Edit Upper command (EU),
EDIT, 5-12
Editing a BASIC program, 10-4
Editing commands,
summary, 5-13
Editing files, 5-3
Editing practice, 17-1
Editing the background job, 15-3
Editor,
RT-11, 5-1
Enabling the printer, 4-7

INDEX

Errors,
assembler, 11-7
assembly, 11-12

avoiding programming, 14-1

clerical, 14-2
logical, 14-2
syntax, 14-2

ESC, See ESCAPE key.

ESCAPE key, 3-4, 5-3, 5-16, 5-18
EX editing command, 5-11

EXECUTE command, 9-11,

11-16

Executing indirect files, 16-4
Executing the foreground and
background jobs, 15-7

Exit,

EDIT command mode, 5-

Exit command (EX),
EDIT, 5-3

F

F/B monitor, 15-1
File protection, 3-8
File storage, 3-8
File types, 4-13
Files,
backup copy, 17-1
comparing, 6-1
copying, 7-3
creating, 5-2
deleting, 7-6
directories, 7-1
editing, 5-1
indirect, 16-1
listing, 7-7
multiple, 7-2
renaming, 7-5
transferring, 7-3

6

/FOREGROUND option, 15-6
/FOREGROUND option/ LINK, 15-6

Foreground/background p
BOOT command, 15-4
communications, 15-5
FRUN command, 15-8
LINK/FOREGROUND comma
LOAD command, 15-7

Format,
monitor commands, 4-2

FORTRAN command, 9-4

FORTRAN 1V,
compiling, 9-3
library modules, 9-3
linking, 9-9

Entering command information, 4-1 processor, 9-1

Entering the date, 4-8

Entering the time, 4-8

Erasing multiple editing
commands, 5-7

programming language,
running a program, 9-

Yyoaram

eyl an;

nd, 15-6

9-1
10

FORTRAN IV language processor,

9-2

Index-2

INDEX

FORTRAN IV programming language,
9-1

FORTRAN/BASIC language volune,
B-6

FRUN command, 15-8

G

General command format,
control commands, 4-3
correcting typing mistakes, 4-4
keyboard symbols, 4-4
monitor commands, 4-2
recreating the examples, 4-3
Get command (G),
EDIT, 5-9.
Global symbols, 12-2
Graphics display terminal,
immediate mode commands, 5-16
GT command, 4-6, 5-2, 5-15
GT OFF command, 4-6
GT ON command, 4-6

H

Hardware configuration,
computer, 2-3
optional devices, 2-4
storage volume, 2-4
supported languages, 2-4
system volume, 2-3
terminal, 2-3

Hardware manuals, 1-13

HELP command, 17-2

Help file, 17-2

Immediate control command,
ESCAPE key, 5-18
Immediate mode,
graphics display terminal, 5-16
Immediate mode command,
graphics display,
CTRL/D, 5-18
CTRL/G, 5-17
CTRL/N, 5-18
CTRL/V, 5-17
DELETE key, 5-17
double escape, 5-16
Immediate mode commands, 5-16
Indirect command files,
executing, 16-4
Indirect files, 16-1, 17-1
Initial monitor command
operations,
enabling the printer, 4-7

Initial monitor command
operations, (Cont.)
entering the date, 4-8
entering the time, 4-8
VT-11 display hardware, 4-5
INITIALIZE command, 4-15
Initializing the storage volume,
4-15
Insert command (I),
EDIT, 5-3
/INSERT option, 13-7
Interpreter,
BASIC, 10-2
immediate mode, 10-3

Job,
background, 15-3
Jump command (J),

EDIT, 5-6

K

Keyboard commands,
See Monitor command language.
Keyboard layouts, 3-3
Keyboard symbols, 4-4
Kill command (X),
EDIT, 5-8
KMON, 4-1

L

Lanquage comparisons, 8-2
Language processors, 1-12
Language volume,
FORTRAN/BASIC, B-6
LIBRARY command, 13-6
LIBRARY command options,
/CREATE option, 13-6
/INSERT option, 13-7
/LIST option, 13-6
/REMOVE option, 13-7
Library files,
creating, 13-1
Macro libraries, 13-1
Object libraries, 13-1
Library modules, 9-2
LINE FEED key, 3-4
LINK command, 9-9, 11-15
Link operation,
address assignment, 12-3
overlay feature, 12-6
producing a load map, 12-7
producing a load module, 12-7
program relocation, 12-3
program sections, 12-4

Index-3

Link operation, (Cont.)
resolving library references,
12-2
resolving symbolic references,
12-2
Link volume, B-8
Linking object modules, 9-9,
11-14
Linking object programs, 12-1
List (L) editing command, 5-4
LIST command,
BASIC, 10-5
/LIST option, 9-4, 11-7, 13-5
Listing,
assembly, 11-7
Listing files, 7-7
Listing volume directories, 4-12
LISTNH command,
BASIC, 10-6
LOAD command, 15-7
Load map,
producing, 12-7
Logical device names,
assigning, 4-9
Logical names,
devices, 4-9
special, 4-9
Lower case characters, 5-12

Machine language code, 11-4
MACRO command, 11-7
MACRO-11 assembly language, 11-1

MACRO-11 command options,
/CROSSREFERENCE, 11-7

LAaveoAL S Hadahe

/LIST, 11-7
/MAP, 12-7
MACRO-11 language processor,
machine language code; 11-4
program counter, 11-2
symbol table, 11-4
MACRO-11 programs,
assembling, 11-6
linking, 11-15
running, 11-15
Macros, 11-11
Maintaining a library file, 13-2
Manual bootstrapping operations,
A-1
/MAP option, 12-7
/MATCH option, 6-3
Monitor,
changing, 15-4
Monitor command,
ASSIGN, 4-11, 15-7
BASIC, 10-2
BOOT, 15-4

INDEX

Monitor command, (Cont.)
COoPY, 7-3
DATE, 4-8
DELETE, 7-6
DIFFERENCES, 6-2
DIRECTORY, 4-12
EDIT, 5-2, 5-3
EXECUTE, 9-11, 11-16
FRUN, 15-8
GT, 4-6, 5-2, 5-15
HELP, 17-2
INITIALIZE, 4-15
LIBRARY, 13-6
LINK, 9-9, 11-15
LOAD, 15-7
MACRO, 11-7
PRINT, 7-7
RENAME, 7-5
RUN, 9-11, 11-15
SHOW, 4-11
TIME, 4-8
TYPE, 7-7
UNLOAD, 15-9
Monitor command language, 4-1
Meonitor command mode,
returning to, 5-18
Monitor command operations,
initial, 4-5
Monitor prompt, 4-1
Multiple editing commands,
erasing, 5-7
Multiple files, 7-2

N

NEW command,
BASIC, 10-13
New RT-11 users,
advice, 17-1
NEXT command (N),
EDIT, 5-11
Nondirectory-structured volumes,
17-1, B-3

(o)

Object libraries,
building, 13-3
creating input files, 13-3
Object modules,
linking, 9-9, 11-14
ODT, 14-4
ODT /DEBUG option, 14-5
OLD command,
BASIC, 10-13

On~-line debugging technique, 14-4

Optional devices, 1-7
Overlay feature, 12-6

Index-4

P

Paging a file, 5-10
PDP-11 word, 11-5
Performing file maintenance
operations, 7-1

Physical device names, 4-9
PRINT command, 7-7

BASIC, 10-3
/PRINTER option, 4-14
Processor,

BASIC language, 10-1

FORTRAN IV lanuguage, 9-2

MACRO-11, 11-2
Producing a load module, 12-7
Program counter, 11-3
Program relocation, 12-3
Program section,

absolute, 12-4

blank, 12-5

instruction, 12-5

named relocatable, 12-4
Programming language, 8-1

APL, 8-3

BASIC-11, 8-3

DIBOL, 8-3

FORTRAN IV, 8-3

MACRO-11, 8-3
Prompt,

keyboard monitor, 4-1

Q

/QUERY option, 17-2

R

Read command (R),
EDIT, 5-4
/REMOVE option, 13-7
RENAME command, 7-5
Rename operations,
cassette users, B-5
magtape users, B-5
Renaming files, 7-5
REPLACE command,
BASIC, 10-14
Resolving library references,
12-2
Resolving symbolic references,
12-2
RETURN Kkey, 3-4
Returning to monitor command
mode, 5-18
RT-11 computer system,
introduction, 1-1
RT-11 operating systenm,
application packages, 1-12

INDEX

device handiers, 1-11
monitor program, 1-11
system software, 1-10
utility programs, 1-11
RUN command, 9-11, 11-15
BASIC, 10-8
Running a BASIC-11l program, 10-1,
10-8
Running a FORTRAN IV program,
9-10
Running a MACRO-11 program, 11-1,
11-15
Running foreground/background
programs, 15-2
Running the background job, 15-3

S

SAVE command,
BASIC, 10-13
SCR command,
BASIC, 10-6
SHOW command, 4-11
Software manuals, 1-13
Source comparison, 6-2
Source listings, 1-14
Starting the system, B-1
Stopping the system, B-1
Storage medium, 1-5
Storage volumes, 2-4, 3-4, 3-8
SUB command,
BASIC, 10-4
Substituting volumes during
operations, B-6
Summary,
BASIC editing commands, 10-7
BASIC execution commands, 10-12
commands to run FORTRAN
programs, 9-13
comparison commands, 6-5
editing commands, 5-13
file maintenance commands, 7-8
immediate mode editing
commands, 5-16
.initial monitor commands, 4-16
Symbol table, 11-4, 11-10
SYSLIB, 9-2
System documentation,
hardware manuals, 1-13
software manuals, 1-13
source listings, 1-14
System hardware components, 1-1
System macro library, 11-11
System software, 1-9
language processors, 1-12
System volumes,
back up, B-3
representative, 2-4

Index-5

INDEX

TAB key, 3-4
Terminal, 1-3
Text files,

editing, 5-1
TIME command, 4-8
TYPE command, 7-7
Types of files, 4-13

U

UNLOAD command, 15-9
Unloading foreground jobs,
15-9
Upper case characters, 5-12
Using indirect files, 16-1
Using library modules, 9-2
Using mass storage volumes,
file protection, 3-8
file storage, 3-4
Using the BASIC interpreter,
10-2
Using the console terminal, 3-1
Using the FB monitor, 15-5
Using the graphics display
terminal,
immediate mode, 5-16
normal use, 5-15
Using the HELP file, 17-2
Using the monitor command
language, 4-1

USR, 4-1
‘i
Verify command (V),
EDIT, 5-7

AL P o A 10
Volume GilrelTCiory, 4-ic

VT-11 display hardware, 4-5

w

Wildcards, 5-11, 7-2, 17-1
Write enable, 2-5
Write protect, 2-5
Writing a MACRO-11 program,

[
et
I
=t

Index-6

P

Paging a file, 5-10
PDP-11 word, 11-5
Performing file maintenance
operations, 7-1

Physical device names, 4-9
PRINT command, 7-7

BASIC, 10-3
/PRINTER option, 4-14
Processor,

BASIC language, 10-1

FORTRAN IV lanuguage, 9-2

MACRO-11, 11-2
Producing a load module, 12-7
Program counter, 11-3
Program relocation, 12-3
Program section,

absolute, 12-4

blank, 12-5

instruction, 12-5

named relocatable, 12-4
Programming language, 8-1

APL, 8-3

BASIC-11, 8-3

DIBOL, 8-3

FORTRAN IV, 8-3

MACRO-11, 8-3
Prompt,

keyboard monitor, 4-1

Q

/QUERY option, 17-2

R

Read command (R),
EDIT, 5-4
/REMOVE option, 13-7
RENAME command, 7-5
Rename operations,
cassette users, B-5
magtape users, B-5
Renaming files, 7-5
REPLACE command,
BASIC, 10-14
Resolving library references,
12-2
Resolving symbolic references,
12-2
RETURN key, 3-4
Returning to monitor command
mode, 5-18
RT-11 computer system,
introduction, 1-1
RT-11 operating systen,
application packages, 1-12

INDEX

device handlers, 1-11
monitor program, 1-11
system software, 1-10
utility programs, 1-11
RUN command, 9-11, 11-15
BASIC, 10-8
Running a BASIC-11 program, 10-1,
10-8
Running a FORTRAN IV progranm,
9-10
Running a MACRO-11l program, 1l1l-1,
11-15
Running foreground/background
programs, 15-2
Running the background job, 15-3

S

SAVE command,
BASIC, 10-13
SCR command,
BASIC, 10-6
SHOW command, 4-11
Software manuals, 1-13
Source comparison, 6-2
Source listings, 1-14
Starting the system, B-1
Stopping the system, B-1
Storage medium, 1-5
Storage volumes, 2-4, 3-4, 3-8
SUB command,
BASIC, 10-4
Substituting volumes during
operations, B-6
Summary,
BASIC editing commands, 10-7

BASIC execution commands, 10-12
commands to run FORTRAN
programs, 9-13

comparison commands, 6-5

editing commands, 5-13

file maintenance commands, 7-8

immediate mode editing

commands, 5-16

.initial monitor commands, 4-16
Symbol table, 11-4, 11-10
SYSLIB, 9-2
System documentation,

hardware manuals, 1-13

software manuals, 1-13

source listings, 1-14
System hardware components, 1l-1
System macro library, 11-11
System software, 1-9

language processors, 1-12
System volumes,

back up, B-3

representative, 2-4

Index-5

INDEX

TAB key, 3-4
Terminal, 1-3
Text files,

editing, 5-1
TIME command, 4-8
TYPE command, 7-7
Types of files, 4-13

U

UNLOAD command, 15-9
Unloading foreground jobs,
15-9
Upper case characters, 5-12
Using indirect files, 16-1
Using library modules, 9-2
Using mass storage volumes,
file protection, 3-8
file storage, 3-4
Using the BASIC interpreter,
10-2
Using the console terminal, 3-1
Using the FB monitor, 15-5
Using the graphics display
terminal,
immediate mode, 5-16
normal use, 5-15
Using the HELP file, 17-2
Using the monitor command
language, 4-1

USR, 4-1
‘i
Verify command (V),
EDIT, 5-7

WA Tramn A3 e omde o oao A_1n
vOoiUmE€ GlireCtory, 4a4—-ic

VT-11 display hardware, 4-5

w

wildcards, 5-11, 7-2, 17-1
Write enable, 2-5
Write protect, 2-5
Writing a MACRO-11 program,

=t

[
|

[}

Index=-6

Introduction to RT-11
No. AA-5281B-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. If you require a written reply and are eligible to receive one under Software

Dol msnnnamnn Dammet FODD) nacrinn srrlecenid vrmzre mmsmmcmnnsmdn o oo QDD £nn
Icriviinalnve l\cPUll \Ql IN) DOLVILT, dUUILIILL yuul CUILLLIICHILD UILL dall O I\ 1UlLllL.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

O Assembly language programmer
O Higher-level language programmer
O Occasional programmer (experienced)
0O User with little programming experience
O Student programmer
O Other (please specify)
Name Date
Organization
Street
City : State— Zip Code

or
Country

— — — Do Not Tear - Fold Here and Tapg — — — — — — — — —

I
No Postage
Necessary |
if Mailed in the [
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION
1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

-_— — Do Not Tear - Fold Here —_—_——— — — — — = = - = = — — — — - — —]

Introduction to RT-11
No. AA-5281B-TC

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. If you require a written reply and are eligible to receive one under Software

Do L nanns Dace nd (QDD) qnserina qirhmnit vranie ey
CETIONMAance neport \or vy SCIViCe, Suoiiiit y our comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

O Assembly language programmer
O Higher-level language programmer
O Occasional programmer (experienced)
L3 User with little programming experience
O :Student programmer
O Other (please specify)
Name Date
Organization
Street
City State — Zip Code

or
Country

— — — Do Not Tear - Fold Here and Tape — — — — — — — — — — — — - — _— _

- — Do Not Tear - Fold Here

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION
1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

