
RT–11 Device Handlers Manual

Order Number AA–PE7VA–TC

August 1991

This manual describes the structure of device handlers, how to write your own device
handler, and provides specific programming information about distributed RT–11 device
handlers.

Revision/Update Information: This is a new manual for programmers; it is a complete
revision of the information previously located in Chapters
7 and 10 of the RT–11 Software Support Manual.

Operating System: RT–11 Version 5.6

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, August 1991

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this
document.

Any software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license. No responsibility is assumed for the use or reliability of
software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227–7013.

© Digital Equipment Corporation 1991
All rights reserved. Printed in U.S.A.

The Reader’s Comments form at the end of this document requests your critical evaluation to assist in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation: CTS–300, DDCMP, DECnet, DECUS,
DECwrite, DIBOL, MASSBUS, MicroPDP–11, Micro/RSX, PDP, Professional, Q-bus, RSTS, RSX, RT–
11, RTEM–11, UNIBUS, VMS, VT, and the DIGITAL logo.

S559

This document was prepared using VAX DOCUMENT, Version 1.2.

Contents

Preface xi

Chapter 1 Device Handlers

1.1 How to Plan a Device Handler . 1–1
1.1.1 Get to Know Your Device . 1–2
1.1.2 Study the Structure of a Standard Device Handler . 1–2
1.1.3 Study the Skeleton Device Handler . 1–2
1.1.4 Think About Using the Special Features . 1–2
1.1.5 Study the Sample Handlers . 1–2
1.1.6 Prepare a Flowchart of the Device Handler . 1–2
1.1.7 Write the Code . 1–3
1.1.8 Install, Test, and Debug the Handler . 1–3
1.2 Structure of a Device Handler . 1–3
1.2.1 Preamble Section . 1–4
1.2.1.1 .DRDEF Macro . 1–5
1.2.1.1.1 System Conditionals . 1–7
1.2.1.1.2 Queue Element Offsets . 1–7
1.2.1.1.3 Symbol Definitions . 1–9
1.2.1.1.4 Device-Identifier Byte . 1–9
1.2.1.1.5 Device Status Word . 1–10
1.2.1.1.6 Device Size Word . 1–11
1.2.1.2 .DREST Macro . 1–11
1.2.1.3 .DRINS Macro . 1–12
1.2.1.4 .DRPTR Macro . 1–13
1.2.1.5 .DRSPF Macro . 1–13
1.2.1.6 .DRTAB Macro . 1–13
1.2.1.7 .DRUSE Macro . 1–14
1.2.1.8 .DRSET Macro . 1–14
1.2.1.9 Information in File Image Block 0 . 1–14
1.2.2 Header Section . 1–16
1.2.2.1 .DRBEG Macro . 1–17
1.2.2.2 Multivector Handlers: .DRVTB Macro . 1–17
1.2.2.3 Information in File Image Block 1 . 1–19
1.2.3 I/O Initiation Section . 1–19
1.2.3.1 Guidelines for Starting the Data Transfer . 1–20
1.2.3.2 Transferring the Data . 1–21
1.2.3.2.1 Byte Transfer from the User Buffer to the Device . 1–21
1.2.3.2.2 Byte Transfer from the Device to the User Buffer . 1–22

iii

1.2.3.2.3 Word Transfer from the Device to the User Buffer . 1–23
1.2.3.2.4 Non-DMA Transfers . 1–24
1.2.3.2.5 DMA Transfers . 1–24
1.2.4 Interrupt Service Section . 1–24
1.2.4.1 .DRAST Macro . 1–25
1.2.4.2 Abort Entry Point . 1–25
1.2.4.3 Lowering the Priority to Device Priority . 1–26
1.2.4.4 Guidelines for Coding the Interrupt Service Section . 1–26
1.2.5 I/O Completion Section . 1–28
1.2.6 Handler Termination Section . 1–29
1.2.6.1 .DREND Macro . 1–29
1.2.7 Pseudodevices . 1–29
1.2.8 Handler Data Structures Related to Block 0 . 1–30
1.2.8.1 Handler Service Routine Environment . 1–30
1.2.8.2 Special Function Code Support Table (H.SPFx) . 1–34
1.2.8.3 Bad-Block Replacement Geometry Table (H.REPL) . 1–35
1.2.8.4 Bad-Block Replacement Table (HB.BAD) . 1–36
1.2.8.5 Second Handler Status Word (H.STS2) . 1–36
1.2.8.6 Handler SYSGEN Options Byte (H.GEN) . 1–37
1.2.8.7 Handler Internal Data Table and Descriptor Structure (H.TYPE, H.DATA, and

H.DLEN) . 1–37
1.2.8.8 UMR Support and Extended Device-Unit Handlers (H.64UM) 1–38
1.2.9 Handler Data Structures Related to Block 1 . 1–39
1.2.9.1 Handler Flag Word (H1.FLG) . 1–39
1.2.9.2 Handler Service Routine Entry Point Word (H1.NOP) . 1–39
1.2.9.3 Second Handler Flag Word (H1.FG2) . 1–40
1.2.10 Skeleton Outline of a Device Handler . 1–41
1.3 Abort Processing . 1–43
1.3.1 Handler Status Word Bits ABTIO$ and HNDLR$. 1–43
1.3.2 Types of Aborts and Action Taken by RMON . 1–44
1.4 Handlers That Queue Internally . 1–47
1.4.1 Implementing Internal Queuing . 1–47
1.4.2 Interrupt Service for Handlers That Queue Internally . 1–47
1.4.3 Abort Procedures for Handlers That Queue Internally . 1–48
1.5 Set Options . 1–49
1.5.1 How the SET Command Executes . 1–50
1.5.2 SET Table Format . 1–50
1.5.3 .DRSET Macro . 1–51
1.5.4 Routines to Modify the Handler . 1–52
1.5.5 Examples of SET Options . 1–53
1.6 Device I/O Timeout . 1–55
1.6.1 .TIMIO Macro . 1–55
1.6.2 .CTIMIO Macro . 1–57

iv

1.6.3 Device Timeout Applications . 1–58
1.6.3.1 Multiterminal Service . 1–58
1.6.3.2 Typical Timer Procedure for a Disk Handler . 1–59
1.6.3.3 Printer Handler Example . 1–60
1.7 Error Logging . 1–61
1.7.1 When and How to Call the Error Logger . 1–62
1.7.1.1 To Log a Successful Transfer . 1–62
1.7.1.2 To Log a Hard Error . 1–63
1.7.1.3 To Log a Soft Error . 1–63
1.7.1.4 Differences Between Hard and Soft Errors . 1–64
1.7.1.5 To Call the Error Logger . 1–64
1.7.2 Error Logging Examples . 1–64
1.7.3 How to Add a Device to the Reporting Program . 1–64
1.8 Special Functions . 1–65
1.8.1 .SPFUN Programmed Request . 1–66
1.8.2 How to Support Special Functions in a Device Handler . 1–67
1.8.3 Variable Size Volumes . 1–67
1.8.4 Bad-Block Replacement . 1–68
1.9 Devices with Special Directories . 1–68
1.10 Device Handlers in Mapped Systems . 1–69
1.10.1 Naming Conventions and the System Conditional . 1–69
1.10.2 Mapped Monitor Environment . 1–70
1.10.3 Address Translation . 1–71
1.10.3.1 $MPMEM Routine . 1–71
1.10.3.2 $MPPHY Routine . 1–71
1.10.4 Character Devices: $GETBYT and $PUTBYT Routines . 1–72
1.10.4.1 $GETBYT Routine . 1–72
1.10.4.2 $PUTBYT Routine . 1–73
1.10.5 Any Device: $PUTWRD Routine . 1–74
1.10.6 Mapping Directly to the User Buffer . 1–75
1.10.7 Extended Memory Subroutines . 1–78
1.10.7.1 Converting a Virtual Address into a Physical Address ($JBREL) 1–79
1.10.7.2 Moving Data Within Extended Memory ($BLKMV) . 1–81
1.10.7.3 Obtaining Free Memory (XALLOC) . 1–81
1.10.7.4 Returning Memory to the Free List (XDEALC) . 1–81
1.10.7.5 Finding a Global Region (FINDGR) . 1–82
1.10.7.6 Converting a Virtual Address into a Physical Address ($USRPH) 1–82
1.11 System Device Handlers and Bootstraps . 1–83
1.11.1 Monitor Files . 1–83
1.11.2 Creating a System Device Handler . 1–83
1.11.2.1 .DRBOT Macro . 1–83
1.11.2.2 Primary Driver . 1–84
1.11.2.3 Entry Routine . 1–84
1.11.2.4 Software Bootstrap . 1–85
1.11.2.5 Bootstrap Read Routine . 1–85

v

1.11.2.6 Bootstrap Error Routine . 1–86
1.11.3 DUP and the Bootstrap Process . 1–86
1.11.3.1 BOOT ddn:filnam . 1–86
1.11.3.2 COPY/BOOT xxn:filnam ddm: . 1–87
1.11.3.3 BOOT ddn: . 1–88
1.12 Including Support for Multiterminal Handler Hooks . 1–89
1.12.1 Installation Support . 1–91
1.12.2 SET Command Support . 1–91
1.12.3 Establish Hooks Connection with Monitor . 1–92
1.12.4 Handler Hook Interrupt Processing . 1–95
1.12.5 Remove Handler Hooks Connection to Monitor at UNLOAD/RELEASE 1–96
1.13 Including Extended Device-Unit Support . 1–97
1.13.1 .DRDEF and .DRBEG Macros . 1–97
1.13.2 LOAD/FETCH and UNLOAD/RELEASE Routines . 1–98
1.13.2.1 LOAD/FETCH Routine . 1–98
1.13.2.2 UNLOAD/RELEASE Routine . 1–98
1.13.2.3 Example LOAD/FETCH and UNLOAD/RELEASE Routines 1–98
1.13.3 Q.FUNC Definition . 1–101
1.13.4 Programmed Requests of Extended-Unit Handlers . 1–102
1.14 How to Assemble, Link, and Install a Device Handler . 1–102
1.14.1 Assembling a Device Handler . 1–102
1.14.2 Linking a Device Handler . 1–103
1.14.3 Installing a Device Handler . 1–103
1.14.3.1 Using the Bootstrap to Install Handlers Automatically . 1–103
1.14.3.2 Using the INSTALL Command to Install Handlers Manually 1–104
1.14.3.3 Using the DEV Macro to Aid Automatic Installation . 1–106
1.14.3.4 Installing Devices Whose Hardware Is Present . 1–107
1.14.3.5 Writing an Installation Verification Routine . 1–108
1.14.3.6 Overriding the Hardware Restriction . 1–110
1.15 How to Test and Debug a Device Handler . 1–110
1.15.1 Using DBG–11 to Test a Handler . 1–111
1.15.2 Using ODT to Test a Handler . 1–111
1.15.3 Using ODT in a Mapped Environment . 1–112
1.16 Contents of .SYS Image of a Device Handler . 1–113

Chapter 2 Programming for Specific Devices

2.1 DL (RL01/RL02 Disk Handler) . 2–3
2.1.1 Support for Special Functions . 2–3
2.1.2 Support for Bad-Block Replacement . 2–3
2.2 DM (RK06/RK07 Disk Handler) . 2–5
2.2.1 Support for Special Functions . 2–5
2.2.2 Support for Bad-Block Replacement . 2–6
2.3 DU (MSCP Disk Handler) . 2–8
2.3.1 Support for Special Functions . 2–8

vi

2.3.2 Determining Volume Size (SF.SIZ), Code 373 . 2–8
2.3.3 Obtaining the DU Device Status (STATU$) . 2–9
2.3.4 Support for Bad-Block Replacement . 2–10
2.3.5 Non-File-Structured Read and Write Operations . 2–12
2.3.5.1 JREAD and JWRITE . 2–12
2.3.5.2 Special Functions SF.ARD and SF.AWR . 2–12
2.3.5.3 Special Functions SF.R32 and SF.W32 . 2–12
2.3.6 DU Translation Table (SF.TAB), Code 372 . 2–14
2.3.7 Special Function Bypass (SF.BYP), Code 360 . 2–17
2.3.8 Addressing an MSCP Disk . 2–18
2.3.8.1 MSCP Unit Numbers . 2–18
2.3.8.2 Controller Port Numbers . 2–19
2.3.8.3 Disk Partition Numbers . 2–20
2.3.9 Creating a Second DU Handler . 2–22
2.3.9.1 Under Unmapped Monitors . 2–22
2.3.9.2 Under Mapped Monitors . 2–22
2.3.10 Multiport Booting . 2–23
2.4 DW (CTI Bus-based Disk Handler) . 2–25
2.4.1 Support for Special Functions . 2–25
2.5 DX and DY (Diskette Handlers) . 2–26
2.5.1 Support for Special Functions . 2–26
2.6 DZ (Diskette Handler) . 2–28
2.6.1 Support for Special Functions . 2–28
2.7 LD (Logical Disk Handler) . 2–29
2.7.1 Support for Special Functions . 2–29
2.7.2 LD Translation Tables (SF.TAB), Code 372 . 2–29
2.7.3 Other Bits Used by the LD Handler . 2–32
2.8 MM, MS, and MT (Magtape Handlers) . 2–33
2.8.1 File Structure Module (FSM) . 2–33
2.8.2 Compatibility of Magtape Operations with the FSM . 2–34
2.8.3 Spacing Error Recovery . 2–36
2.8.4 Magtape Operations That Use the FSM . 2–36
2.8.4.1 FSM Searching by Sequence Number . 2–36
2.8.4.2 FSM Searching by File Name . 2–37
2.8.4.3 .ENTER Programmed Request . 2–38
2.8.4.4 File-Structured .LOOKUP Programmed Request . 2–39
2.8.4.5 .READx Programmed Requests . 2–40
2.8.4.6 .WRITx Programmed Requests . 2–41
2.8.4.7 .CLOSZ, .DELETE, .GFxxx, .RENAME, and .SFxxx Programmed Requests 2–42
2.8.4.8 .CLOSE Programmed Request . 2–42
2.8.4.9 .PURGE Programmed Request . 2–43
2.8.5 Magtape Operations That Are Compatible with the FSM . 2–43
2.8.5.1 Non-File-Structured .LOOKUP Programmed Request . 2–43
2.8.5.2 Asynchronous Directory Operations (SF.USR), Code 354 2–44
2.8.5.3 Read Physical Blocks (SF.MRD), Code 370 . 2–47

vii

2.8.5.4 Write Physical Blocks (SF.MWR), Code 371 . 2–48
2.8.5.5 Exception (Error and Status) Reporting . 2–48
2.8.5.6 .CLOSE Programmed Request . 2–50
2.8.5.7 Enabling 100ips Streaming on a TS05/TSU05/TSV05 (SF.MST), Code 367 2–50
2.8.6 Magtape Operations That Are Not Compatible with the FSM 2–51
2.8.6.1 Rewinding and Going Off Line (SF.MOR), Code 372 . 2–51
2.8.6.2 Rewinding (SF.MRE), Code 373 . 2–52
2.8.6.3 Writing with Extended Gap (SF.MWE), Code 374 . 2–52
2.8.6.4 Spacing Backward (SF.MBS), Code 375 . 2–52
2.8.6.5 Spacing Forward (SF.MFS), Code 376 . 2–53
2.8.6.6 Writing a Tape Mark (SF.MTM), Code 377 . 2–54
2.8.7 Hardware Magtape Handler . 2–55
2.8.8 Transporting Tapes to RT–11 . 2–56
2.8.8.1 From RSTS/E . 2–56
2.8.8.2 From RSX–11M . 2–56
2.8.8.3 From RSX–11D and IAS . 2–57
2.8.8.4 From VMS . 2–58
2.8.9 Seven-Track Magnetic Tape . 2–58
2.9 MU (TMSCP Magtape Handler) . 2–60
2.9.1 Support for Special Functions . 2–60
2.9.1.1 TMSCP Translation Tables (SF.MTB), Code 352 . 2–60
2.9.1.2 Special Function Bypass (SF.BYP), Code 360 . 2–62
2.9.2 Unit Support, CSR and Vectors . 2–63
2.10 NL (Null Handler) . 2–64
2.11 NC, NQ, NU (Ethernet Handlers) . 2–65
2.11.1 Restrictions . 2–65
2.11.2 Support for Special Functions . 2–65
2.11.2.1 Allocate/Deallocate Unit (SF.NAL), Code 200 . 2–66
2.11.2.1.1 Allocate Unit . 2–66
2.11.2.1.2 Deallocate Unit . 2–67
2.11.2.2 Enable/Disable Protocol Type (SF.NPR), Code 202 . 2–67
2.11.2.2.1 Enable Protocol Type . 2–67
2.11.2.2.2 Disable Protocol Type . 2–68
2.11.2.3 Enable/Disable Multicast Address (SF.NMU), Code 203 . 2–69
2.11.2.3.1 Enable Multicast Address . 2–69
2.11.2.3.2 Disable Multicast Address . 2–70
2.11.2.4 Transmit Ethernet Frame (SF.NWR), Code 204 . 2–71
2.11.2.5 Receive Ethernet Frame (SF.NRD), Code 205 . 2–73
2.11.3 Example of Allocating an Ethernet Unit . 2–74
2.12 PI (CTI Bus-Based Processor Interface System Support Handler) 2–76
2.12.1 Support for Special Functions . 2–76
2.12.2 PI Keyboard Support . 2–76
2.12.2.1 Normal Mode . 2–76
2.12.2.2 Function Key Mode (DECFKM) . 2–77

viii

2.12.3 Video Terminal Support . 2–78
2.12.3.1 Advanced Video Option Emulation . 2–78
2.12.3.2 Text Cursor Mode (DECTCEM) . 2–78
2.12.3.3 Device Attributes (DA) . 2–78
2.13 UB (UNIBUS Mapping Register (UMR) System Support Handler) 2–80
2.13.1 UMR Support with Distributed Handlers . 2–80
2.13.2 Including Required UB Support in User-Written Non-DMA Handlers 2–82
2.13.3 Including UMR Support in User-Written DMA Handlers . 2–82
2.13.3.1 Defining Special Functions for Implicit UMR Allocation 2–84
2.13.3.2 Explicitly Allocating Permanent UMRs (ALLUMR) . 2–84
2.13.3.3 Explicitly Obtaining Temporary UMRs (GETUMR) . 2–86
2.13.3.4 Explicitly Releasing Permanent UMRs (RLSUMR) . 2–87
2.13.4 Example (Skeletal) Handler . 2–88
2.14 VM (Virtual Memory Handler) . 2–92
2.15 XC and XL (Communication Port (VTCOM) Handlers) . 2–94
2.15.1 .READx and .WRITx Support . 2–94
2.15.2 Special Functions (.SPFUN) Support . 2–94
2.15.3 EOF (End-of-File) Detection . 2–97

Appendix A DX, DL, and XL Device Handlers

Index

Figures

1–1 Skeleton Device Handler . 1–41
1–2 Printer Handler Example . 1–60
1–3 Device Handler Mapping to User Buffer Area . 1–77
1–4 PAR1 Mapping . 1–78
1–5 BOOT ddn:filnam Procedure . 1–87
1–6 COPY/BOOT xxn:filnam ddm: Procedure . 1–88
1–7 BOOT ddn: Procedure . 1–90
1–8 Relationship of $OWNER Table to Extended-Ownership Table 1–99
1–9 Bootstrap Algorithm for Installing Device Handlers . 1–105
1–10 Installing a New Device Handler . 1–106
2–1 Bad-Block Replacement Table . 2–4
2–2 DU Handler Translation Table . 2–15
2–3 MSCP Disk Block Number . 2–20
2–4 Two-Port DU Handler . 2–21
2–5 Operations Performed After the Last Block Written on Magtape 2–42
2–6 Asynchronous Directory Operation Example . 2–45
2–7 Seven-Track Tape . 2–59
2–8 VM Handler in a 22-Bit System . 2–93
2–9 VM Handler in an 18-Bit System . 2–93

ix

A–1 DX Diskette Handler . A–1
A–2 DL Disk Handler . A–23
A–3 XL Communications Handler . A–56

Tables

1–1 Queue Element Offsets . 1–7
1–2 Device Status Word . 1–10
1–3 Contents of .SYS Image Block 0 . 1–14
1–4 Contents of .SYS Image Block 1 . 1–19
1–5 Handler Service Routine Entry Environment . 1–30
1–6 RMON Abort Processing . 1–46
1–7 SET Option Table . 1–51
1–8 Timer Block Format . 1–56
1–9 DUP Information . 1–86
1–10 DUP Information . 1–89
1–11 Device Handler .SYS Image . 1–113
2–1 STATU$ Status Information . 2–9
2–2 MSCP Bad-Block Replacement (BBR) . 2–10
2–3 MSCP (DU) Translation Table Header . 2–15
2–4 MSCP (DU) Translation Table Entry . 2–16
2–5 Magtape Operations That Use the FSM . 2–34
2–6 Magtape Operations That Are Compatible with the FSM . 2–35
2–7 Magtape Operations That Are Not Compatible with the FSM 2–35
2–8 Sequence Number Values for .ENTER Requests . 2–38
2–9 .ENTER Errors . 2–38
2–10 Sequence Number Values for File-Structured .LOOKUP Requests 2–39
2–11 .LOOKUP Errors . 2–40
2–12 .READx Errors . 2–41
2–13 .WRITx Errors . 2–41
2–14 Sequence Number Values for Non-File-Structured .LOOKUP Requests 2–44
2–15 Non-File-Structured .LOOKUP Errors . 2–44
2–16 SF.MRD (Code 370) Errors . 2–47
2–17 SF.MWR (Code 371) Errors . 2–48
2–18 End-of-File Qualifying Information . 2–49
2–19 Hard Error Qualifying Information . 2–49
2–20 SF.MRE (Code 373) Errors . 2–52
2–21 SF.MWE (code 374) Errors . 2–52
2–22 SF.MBS (Code 375) Errors . 2–53
2–23 SF.MFS (Code 376) Errors . 2–54
2–24 SF.MTM (Code 377) Errors . 2–55
2–25 TMSCP (MU) Translation Table Header . 2–61
2–26 TMSCP (MU) Translation Table Entry . 2–61
2–27 Distributed Handler Support for UMRs . 2–82
2–28 XC/XL Special Function Codes . 2–95

x

Preface

Document Structure

This manual is divided into the following two chapters:

• Chapter 1, Device Handlers, describes the recommended structure of device
handlers and provides detailed information on how to write a device handler.

• Chapter 2, Programming for Specific Devices, alphabetically presents
programming information for specific distributed device handlers.

Audience

This manual is written for those users of the RT–11 operating system who want to
understand distributed device handlers and write their own device handlers.

Conventions

The following conventions are used in this guide.

Convention Meaning

Black print In examples, black print indicates output lines or prompting
characters that the system displays. For example:

.BACKUP/INITIALIZE DL0:F*.FOR DU1:WRK

Mount output volume in DU1:; continue? Y

Red print In examples, red print indicates user input.

Braces ({ }) In command syntax examples, braces enclose options that are
mutually exclusive. You can choose only one option from the
group of options that appear in braces.

Brackets ([]) Square brackets in a format line represent optional parameters,
qualifiers, or values, unless specified otherwise.

Lowercase
characters

In command syntax examples, lowercase characters represent
elements of a command for which you supply a value. For
example:

DELETE filespec

xi

Convention Meaning

UPPERCASE
characters

In command syntax examples, uppercase characters represent
elements of a command that should be entered exactly as given.

RET RET in examples represents the RETURN key. Unless
the manual indicates otherwise, terminate all commands or
command strings by pressing RET .

CTRL/x CTRL/x indicates a control key sequence. While pressing the key
labeled Ctrl, press another key. For example: CTRL/C

Associated Documents

Basic Books

• Introduction to RT–11

• Guide to RT–11 Documentation

• PDP–11 Keypad Editor User’s Guide

• PDP–11 Keypad Editor Reference Card

• RT–11 Commands Manual

• RT–11 Quick Reference Manual

• RT–11 Master Index

• RT–11 System Message Manual

• RT–11 System Release Notes

Installation Specific Books

• RT–11 Automatic Installation Guide

• RT–11 Installation Guide

• RT–11 System Generation Guide

Programmer Oriented Books

• RT–11 IND Control Files Manual

• RT–11 System Utilities Manual

• RT–11 System Macro Library Manual

• RT–11 System Subroutine Library Manual

• RT–11 System Internals Manual

xii

• RT–11 Volume and File Formats Manual

• DBG–11 Symbolic Debugger User’s Guide

xiii

Chapter 1

Device Handlers

The term device handler can mean three things, depending on the context in which
it is used. A device handler can be:

• The source program

This is a .MAC file that is distributed with RT–11 or you write.

• The file image

This is a .SYS file that is distributed with RT–11 or the assembled and linked
source program you write.

• The memory image

This is the part of the file image that resides in memory; the memory resident
portion of the device handler. Not all of the file image is normally loaded in
memory. The first block (block 0) of the file image, for example, is temporarily
loaded when the monitor requires information that is stored in handler block 0.
The memory resident portion of the device handler begins at block 1 of the file
image. Therefore, block 1 of the file image is the beginning of the memory image.

To write a device handler, you first need to know what points to consider in the
planning stage. These points are listed and cross-referenced in the first sections of
this chapter. The points that have not been treated elsewhere in this manual are
then described in detail. Device handler structure and a skeleton outline of a typical
handler are covered here. After this, details are given on the optional features
available to handlers and their implementation. Optional features include internal
queuing, SET options, device I/O timeout support, special functions, error logging,
and special services available in mapped systems.

To write a bootstrap for a system device, you first need to know the differences
between a standard handler and a system device handler. These differences are
discussed in several sections before the final sections of the chapter, where you will
find explained the assembly, installation, testing, and debugging procedures for the
new handler.

Be sure to also read Chapter 5 of the RT–11 System Internals Manual, as that chapter
can help you decide whether you need to write an in-line interrupt service routine
or a device handler.

1.1 How to Plan a Device Handler

The most important part of writing a device handler is taking the time to plan the
whole process carefully. Follow these guidelines:

Device Handlers 1–1

• Get to know your device

• Study the structure of a standard device handler

• Study the skeleton device handler

• Think about using the special features

• Study the sample handlers

• Prepare a flowchart of the device handler

• Write the code

• Install, test, and debug the handler

1.1.1 Get to Know Your Device

Learning about the characteristics of your device and the bus interface is crucial to
writing a handler that works correctly. Review the appropriate material in Chapter
5 of the RT–11 System Internals Manual so that you can answer all the pertinent
questions about your device before you attempt to write a handler for it.

1.1.2 Study the Structure of a Standard Device Handler

Section 1.2 describes the structure of a standard device handler. Read this section
carefully; your handler should conform to this structure.

1.1.3 Study the Skeleton Device Handler

Section 1.2.10 contains a skeleton outline of a standard device handler. You can use
this outline as a starting point when you begin to write your own handler.

1.1.4 Think About Using the Special Features

Sections 1.4 through 1.10 describe the special features available to device handlers.
Read these sections carefully to determine whether any features are applicable to
your handler.

1.1.5 Study the Sample Handlers

Appendix A contains assembly listings of three RT–11 device handlers (DL, DX,
and XL) with extensive explanatory comments. Study these listings until you feel
comfortable with the organization of the handlers, and you understand how they
implement some of the special features. Obtain listings of handlers for other devices
that resemble yours; you may be able to use some of the code that is already written.

1.1.6 Prepare a Flowchart of the Device Handler

Preparing a flowchart for your handler can help you plan the contents of the
various sections. Flowcharting can also help you spot loose ends and errors in your
programming logic. Unfortunately, flowcharts are not much help in pointing out
potential race conditions. (A race condition is a situation in which two or more
asynchronous processes attempt to modify the same data structure at the same
time; as a result, the data structure is corrupted and the integrity of the processes is
compromised.) Therefore, when you design the handler, examine every step carefully

1–2 RT–11 Device Handlers Manual

and keep in mind what would happen if an interrupt occurred at each instruction.
This kind of planning can help you avoid race conditions later.

1.1.7 Write the Code

If you have followed the recommended steps so far, writing the code for the device
handler should be relatively simple. You must write Position-Independent Code
(PIC) for the handler. Review the chapter on PIC code in the PDP–11 MACRO–
11 Language Reference Manual if you are not already familiar with it. Copy as
much code as possible from the commented device handlers in Appendix A or from
other reliable sources. Start with a general outline that conforms to the structure
presented in Section 1.2 and then add details to reflect the specifics of your particular
device. When you have thoroughly checked the code for logic errors and it assembles
properly, you are ready to test and debug it.

1.1.8 Install, Test, and Debug the Handler

Sections 1.14 and 1.15 show how to install a new device handler and how to begin
testing and debugging it.

1.2 Structure of a Device Handler

For ease of explanation and understanding, the RT–11 handler source program is
described as having the following six sections:

• Preamble

The preamble is the information section of the source. Much of the information
you put in the preamble as arguments to macro parameters and as system
conditionals is associated with symbols that are used by macros in other handler
sections. The macros you use in the preamble section create many of the
handler’s data structures and further define the handler.

• Header

The header section is where you code the beginning of the memory resident
portion of the handler.

• I/O initiation

The I/O initiation section contains the first executable instructions; the code to
get the handler ready to perform data transfers. The I/O initiation section is able
to use data structures and symbols that were defined in the previous sections and
defines further handler characteristics.

• Interrupt service

The interrupt service section is the heart of the handler. It contains the code
that processes interrupts as they are received from the device. It handles aborts
and manages the handler queue.

• I/O completion

Device Handlers 1–3

The I/O completion section contains code to inform the monitor of the success or
failure of the interrupt processing and perform appropriate actions depending on
success or failure.

• Handler termination

The handler termination section is the tail of the handler. It contains code to
build tables and handler service routines. Being at the end of the handler, it
defines a symbol that is used to determine the size of the handler.

The complexity of the coding you must write is reduced because the RT–11 system
macro library (SYSMAC.SML) provides device handler macros to generate much of
the required code.

You should read and think about the following points before working through this
section:

• Although the various macro parameters are listed and briefly described in this
chapter, you should consult the RT–11 System Macro Library Manual for complete
parameter argument descriptions. Refer to that manual as you read this chapter.

Some of the macros that you use to write a device handler are interdependent.
For example, the device status word is created from symbols that SYSMAC.SML
equates based on arguments you supply to .DRDEF parameters. Those symbols
are then used by .DRBEG to create the device status word and store it into the
handler’s block 0.

• RT–11 distributes a library of the system data structures (SYSTEM.MLB),
described in the RT–11 System Internals Manual. In this section, the symbols
that identify handler data structures and the elements in those structures
are as defined in SYSTEM.MLB. If your device handler is assembled with
SYSTEM.MLB, you can use those symbols and need not define them explicitly
in your handler.

• As you work through the parts of this section, you should look at the skeletal
device handler in Section 1.2.10. The skeletal handler illustrates the overall
structure.

For examples of specific handler structure, look at the sample device handlers in
Appendix A.

Also refer to Table 1–11, which illustrates the layout of a device handler .SYS
file image.

1.2.1 Preamble Section

Begin the device handler source file with the preamble section. Include a .MCALL
directive for the .DRDEF macro and any other macros you use that this chapter does
not explicitly mention. Also in the preamble, you should define system conditionals
that you will use later.

As shown in the skeletal handler, Figure 1–1, you include macros in the preamble
section that build various data structures and define symbols. The following macros
can be used in the preamble section:

1–4 RT–11 Device Handlers Manual

• .DRDEF

Provides the primary definition of the device handler and is the only mandatory
device macro. Many of the values you supply as arguments to .DRDEF’s
parameters are equated during assembly to symbols that are then used by other
handler macros.

• .DREST

Provides information about the handler, which is stored in block 0 of the handler’s
file image.

• .DRPTR

Points to handler service routines that can be run when the handler is loaded,
unloaded, fetched, and released. Those routines do not reside in memory (keeping
the memory resident portion of the handler smaller), but are read into and
executed from the USR buffer.

• .DRSPF

Defines which special functions the handler supports.

• .DRINS

Points to any installation checking code and defines how the handler CSRs are
to be displayed.

• .DRSET

Defines the handler SET commands.

As you work through this section, look at Table 1–3 to see which offsets in block 0
are written by those macros.

1.2.1.1 .DRDEF Macro

Use the .DRDEF macro near the beginning of your device handler. In the following
list of functions performed by .DRDEF, dd represents the device name you specify
in the macro’s name parameter. The .DRDEF macro’s functions are to:

• Issue .MCALL directives for all handler-related macros

• Provide default values for the key system conditionals

• Invoke the .QELDF macro to define queue element offsets

• Define bit patterns for device characteristics

• Define ddDSIZ as the device size in blocks

• Define dd$COD as the device identification

• Set up the device status word from information in ddDSIZ and dd$COD

• Provide default values for the device CSR in dd$CSR and vector in dd$VEC

• Make the symbols dd$CSR and dd$VEC global

Device Handlers 1–5

• Indicate whether the handler supports extended device units

• Indicate whether the handler supports DMA (direct memory access)

• Define the required number of permanent UNIBUS mapping registers if this
handler supports DMA on UNIBUS processors

• Indicate whether the handler requires serialized I/O request satisfaction

The format of the .DRDEF macro call is as follows:

Macro Call: .DRDEF name,code,stat,size,csr,vec
[,UNIT64=str][,DMA=str][,PERMUMR=n][,SERIAL=str]

name is the two-letter handler name, stored in H.HAN (offset 0 of
handler block 0) by .DREST.

code is the device identifier byte, stored in H.DSTS (offset 56 of handler
block 0) by .DRBEG.

stat is the device status bit pattern, stored in H.DSTS (offset 56 of
handler block 0) by .DRBEG.

size is the device size, stored in H.DSIZ (offset 54 of handler block 0)
by .DRBEG.

csr is the default value for the device’s control and status register,
stored in H.ICSR (offset 176 of block 0) by .DRBEG. To suppress
storing a value in 176, specify *NO* as the argument to csr.

vec is the default value for the device’s interrupt vector, stored in
H1.VEC (offset 0 of block 1) by .DRBEG.

UNIT64=str is the number of device units to be supported by this handler,
stored in H.UNIT (offset 76 of handler block 0) by .DRDEF.

DMA=str indicates whether this handler supports direct memory access,
stored in symbol DV2.DM of H1.FLG (offset 10 of block 1) by
.DRBEG.

PERMUMR=n indicates this handler should be assigned n permanent UNIBUS
mapping registers, stored in H.64UM (offset 100 of handler block
0) by .DRDEF.

SERIAL=str indicates handler requires serialized I/O completion, stored in
symbol HF2.SR of H1.FG2, (offset 16 of block 1) by .DRBEG.

The .DRDEF macro also issues the .MCALL directive for the following macros:

.DRAST .DRBEG .DREST .DRFIN

.DRBOT .DREND .DRINS .DRSPF

.DRSET .DRVTB .FORK .QELDF

.DRTAB .DRUSE

In addition, if you assemble your handler with the conditional TIM$IT set to 1,
.DRDEF issues a .MCALL directive for the .TIMIO and .CTIMIO macros.

1–6 RT–11 Device Handlers Manual

1.2.1.1.1 System Conditionals

RT–11 source files make extensive use of conditional assembly directives. Sections
of source code are included or omitted at assembly time, based on the value of
conditional symbols. For example, RT–11 uses the conditional ERL$G to indicate
whether routines for error logging should be assembled.

If you use conditional symbols in your handler, they should conform to RT–11
standard usage by setting the conditional equal to 0 to indicate that the feature
it represents is not to be included and by setting the conditional to 1 to include
the feature. (Note that RT–11 uses only the values 0 and 1 to indicate absence or
presence of a feature.) See the PDP–11 MACRO–11 Language Reference Manual for
information on the conditional assembly directives (.IF EQ, .IF NE, and so on).

The .DRDEF macro sets to 0 the system generation conditionals TIM$IT (for device
timeout), MMG$T (for extended memory support), and ERL$G (for error logging), if
you do not define them in a prefix file at assembly time. In addition, if the symbols
have values other than 0, .DRDEF sets them to 1.

1.2.1.1.2 Queue Element Offsets

The .DRDEF macro invokes .QELDF to define queue element offsets and define
symbols for those offsets.

As shown in Table 1–1, the size of a queue element is determined by whether or not
a monitor supports mapping.

Unmapped Monitors
For unmapped monitors, each queue element contains 168 bytes.

Mapped Monitors
Device handlers in a mapped environment require two more words of information to
locate the actual user buffer in physical memory. The offsets, Q.PAR and Q.MEM, are
values for PAR1 that, when combined with the user virtual buffer address (Q.BLKN),
provide the physical address of the buffer.

Q.PAR and Q.MEM initially contain the same PAR1 value. The value in Q.PAR
varies from Q.MEM only with UNIBUS Mapping Register (UMR) support; if the
UMR handler UB is loaded, Q.PAR becomes a relocation constant to load UMRs.
Q.MEM remains the PAR1 displacement bias for CPU memory management (MMU)
address values. If there is no UMR support, Q.PAR and Q.MEM continue to contain
the same PAR1 value. Therefore, you should use Q.MEM as the PAR1 displacement
bias because it is not affected by the presence of UMR support.

Table 1–1: Queue Element Offsets

Name Offset Meaning

With All Monitors:

Q.LINK 0 Link to next queue element

Device Handlers 1–7

Table 1–1 (Cont.): Queue Element Offsets

Name Offset Meaning

Q.CSW 2 Pointer to channel status word

Q.BLKN 4 Physical block number

Q.FUNC 6 Special function code

Q.JNUM 7 Job number

Q.UNIT 7 Device unit number

Q.BUFF ^O10 User virtual buffer address

Q.WCNT ^O12 Word count

Q.COMP ^O14 Completion routine code

With Unmapped Monitors:

Q.ELGH ^O16 Length of queue elements

^O20–
^O24

Reserved

With Mapped Monitors:

Q.PAR ^O16 Is initially PAR1 value. See text above

Q.MEM ^O20 Is always PAR1 value. See text above

^O22 Reserved

Q.ELGH ^O24 Length of queue elements

Since the handler usually deals with queue element offsets relative to offset Q.BLKN,
the .QELDF macro also defines the following symbolic offsets:

Symbolic
Offset

From
Q.BLKN

Q$LINK –4

Q$CSW –2

Q$BLKN 0

Q$FUNC 2

Q$JNUM 3

Q$UNIT 3

Q$BUFF 4

Q$WCNT 6

Q$COMP ^O10

1–8 RT–11 Device Handlers Manual

Symbolic
Offset

From
Q.BLKN

Q$PAR ^O12

Q$MEM ^O14

1.2.1.1.3 Symbol Definitions

Use direct assignment statements to define symbols that you will use later in the
handler. Typically, the definitions include the device registers and other useful
internal symbols. Some examples from the DY handler for mapped monitors follow:

; FIXED OFFSETS EQUATES (.FIXDF)

$PNPTR =: 000404 ;RMON OFFSET OF PNAME TABLE
P1$EXT =: 000432 ;RMON OFFSET OF $P1EXT ADDRESS
$H2UB =: 000460 ;RMON OFFSET OF UB ENTRY VECTOR PTR
MMG$T = 1

; EXTENDED MEMORY SUBROUTINE OFFSETS FROM $P1EXT (.P1XDF)

$MPMEM =: -22. ;OFFSET TO MAP KT-11 VIRTUAL TO PHYSICAL

NOUMRS = 1 ; NUMBER OF PERMANENT UMRS REQUIRED

; DY CHARACTERISTICS

DDNBLK = DYDSIZ*2 ;DOUBLE DENSITY SINGLE-SIDED

DYNREG = 3 ;# OF REGISTERS TO READ FOR ERROR LOG.
RETRY = 8. ;RETRY COUNT
SPFUNC = 100000 ;SPECIAL FUNCTIONS FLAG

; (IN COMMAND WORD)
; SPECIAL FUNCTION CODES

SIZ$FN = 373 ;373 - GET DEVICE SIZE
;374 - UNUSED

WDD$FN = 375 ;375 - WRITE WITH DELETED DATA
WRT$FN = 376 ;376 - WRITE ABSOLUTE SECTOR
RED$FN = 377 ;377 - READ ABSOULTE SECTOR

;NOTE: if you add a SPFUN code here also add it to .DRSPF

The .DRDEF macro also defines the following symbols for you:

HDERR$ = 1 ;HARD ERROR BIT IN THE CSW
EOF$ = 20000 ;END OF FILE BIT IN THE CSW

1.2.1.1.4 Device-Identifier Byte

The low byte of the device status word, the device-identifier byte, identifies each
device in the system. You specify the correct device identifier as the code argument
to .DRDEF. The values are defined in octal and listed under .DRDEF in the RT–11
System Macro Library Manual.

To create device-identifier codes for devices that are not already supported by RT–
11, start by using code 3778 for the first device, 376 for the second, and so on. This
procedure should avoid conflicts with codes that RT–11 will use in the future for new
hardware devices.

Device Handlers 1–9

1.2.1.1.5 Device Status Word

The device status word identifies each unique physical device in an RT–11 system
and provides other information about it, such as whether it is random or sequential
access. The .DRDEF macro sets up symbols based on the parameter arguments for
code and stat. The .DRBEG macro takes those symbols, builds the device status
word, and stores it in block 0 of the handler file at the offset H.DSTS and in the
$STAT table when the device is installed. The .DSTATUS programmed request can
return this value to a running program.

Table 1–2 shows the meaning of the bits in the device status word. Except for
ABTIO$ and HNDLR$, all bits have an individual meaning. The meaning of ABTIO$
and HNDLR$ is determined by their combination; they should be thought of as a
pair. More information on the ABTIO$/HNDLR$ pair is found in Sections 1.3.1 and
1.3.2.

Table 1–2: Device Status Word

Bit Symbol Meaning

0–7 — Device-identifier byte (see Section 1.2.1.1.4)

8 VARSZ$ 0 = SF.SIZ (special function code 373) requests are invalid for this
handler
1 = SF.SIZ (code 373) requests (return volume size) are valid for this
handler

9 ABTIO$† 0 = Handler is not entered at abort entry point on normal program
exits
1 = Handler is entered at abort entry point whenever a program
terminates

10 SPFUN$ 0 = .SPFUN requests are invalid
1 = Handler accepts .SPFUN requests

11 HNDLR$‡ 0 = Enter handler at abort entry point only if there is an active queue
element belonging to the aborted job
1 = Enter handler at abort entry point on all aborts

12 SPECL$ 1 = Special directory-structured device (examples are MS and MU)

13 WONLY$ 1 = This is a write-only device

14 RONLY$ 1 = This is a read-only device

15 FILST$ 0 = This is a sequential-access device (examples are LP, LS, MS)
1 = This is a random-access device (examples are DU and DY)

†ABTIO$ works in combination with HNDLR$. See Section 1.3.1.
‡HNDLR$ works in combination with ABTIO$. See Section 1.3.1.

The bit combinations for handlers that internally queue I/O requests are described
in Section 1.4. See Section 1.9 for details on special devices (such as magtape).

1–10 RT–11 Device Handlers Manual

All device handlers that have bit 15 set are assumed to be RT–11 file-structured
devices by most of the system utility programs.

An easy way to define the device status word is to use the symbols for the bit patterns
that .DRDEF defines for you. Thus, you can create the stat argument by ORing
together the appropriate symbols from the list below.

FILST$ == 100000 ;File-structured random access
RONLY$ == 40000 ;Read-only
WONLY$ == 20000 ;Write-only
SPECL$ == 10000 ;Special directory structured device
HNDLR$ == 4000 ;Enter handler on abort
SPFUN$ == 2000 ;Accepts special functions
ABTIO$ == 1000 ;Always take abort entry
VARSZ$ == 400 ;Handler supports variable-size volumes

For example, form the stat argument for the DY, MS, and LS handlers as follows:

• For DY: FILST$!SPFUN$!VARSZ$

• For MS: SPECL$!SPFUN$

• For LS: WONLY$!SPECL$

1.2.1.1.6 Device Size Word

The size argument for the .DRDEF macro defines ddDSIZ to be the size of the device
in 256-word blocks. The .DRDEF macro stores the value of ddDSIZ in H.DSIZ, offset
54 in the handler’s block 0.

The .DSTAT programmed request returns the value of the device size word to a
running program. For examples of the .DRDEF macro, see the device handler
listings in Appendix A.

1.2.1.2 .DREST Macro

The .DREST macro places device specific information about the handler into handler
block 0:

• The device class and any variation

• The presence of bad-block replacement information

• How the handler can be installed, loaded, and mounted

The format of the .DREST macro call is as follows:

Macro Call: .DREST [CLASS=str][,MOD=str][,DATA=dptr]
[,TYPE=str][,REPLACE=rptr][,STAT2=symb]

CLASS=str stores the class symbol in H.CLAS, offset 20 in handler block 0.

MOD=str stores the classification modifier in H.MOD, offset 21 in handler
block 0.

DATA=dptr stores an internal table file address in H.DATA, offset 72 in
handler block 0.

Device Handlers 1–11

TYPE=str stores an internal table device classification in H.TYPE, offset 70
in handler block 0.

REPLACE=rptr stores a pointer to a bad-block replacement table in H.REPL,
offset 32 in handler block 0.

STAT2=symb stores a second status word in H.STS2, offset 36 in handler block
0.

See Section 1.2.1.9 for more information on the contents of handler block 0, including
those offsets written by .DREST. For information on using the .DREST macro, see
the RT–11 System Macro Library Manual.

1.2.1.3 .DRINS Macro

The .DRINS macro sets up the installation code area in the handler’s block 0:

• Defines the display CSR addresses (displayed by RESORC)

• Defines the installation CSR addresses (used by INSTALL command) and
monitor bootstrap

• Defines system device (INSSYS) and data device (INSDAT) installation entry
points

INSSYS is located at symbol H.ISY, offset 202. INSDAT is located at symbol
H.IDK, offset 200.

The format of the .DRINS macro call is as follows:

Macro Call: .DRINS name,<csr,csr,...>

name is the device handler name.
If name is preceded by a minus sign (-), it indicates that the
specified CSR is for display purposes only; there is no installation
CSR for this invocation of .DRINS.

csr creates a symbolic reference to a CSR for this device. The first (or
only) specified is both the installation CSR and the first display
CSR. The .DRBEG macro stores the installation CSR in H.ICSR,
offset 176 in block 0. The .DRINS macro stores the first display
CSR in H.DCSR, offset 174 in handler block 0. (You must also
specify csr = *NO* in .DRDER for this to take effect.)
If more than one CSR is specified, the second and any subsequent
in the list are the secondary (and subsequent) display CSRs.
Those are written to offset 172, 170, and so forth. The list is
terminated with a word containing a zero value. (There remains
a single installation CSR.)

See Section 1.2.1.9 for more information on the contents of handler block 0, including
those offsets written by .DRINS. For information on using the .DRINS macro, see
the RT–11 System Macro Library Manual.

1–12 RT–11 Device Handlers Manual

1.2.1.4 .DRPTR Macro

The .DRPTR macro sets up pointers to handler service routines that can assist the
handler when it is fetched, loaded, released, or unloaded.

The pointers are located in handler block 0. The service routines are not normally
located in handlere block 0 and are not located in the handler memory image. When
called, any service routine is read from the handler file image into the shared area
of the USR and used by the handler.

The format of the .DRPTR macro call is as follows:

Macro Call: .DRPTR [FETCH=n][,RELEASE=n][,LOAD=n][,UNLOAD=n]

FETCH=n stores a pointer to a fetch service routine in H.FETC, offset 2 in
handler block 0.

RELEASE=n stores a pointer to a release service routine in H.RELE, offset 4
in handler block 0.

LOAD=n stores a pointer to a load service routine in H.LOAD, offset 6 in
handler block 0.

UNLOAD=n stores a pointer to an unload service routine in H.UNLO, offset
10 in handler block 0.

See Section 1.2.1.9 for more information on the contents of handler block 0, including
those offsets written by .DRPTR. For information on using the .DRPTR macro, see
the RT–11 System Macro Library Manual.

1.2.1.5 .DRSPF Macro

The .DRSPF macro defines a handler’s support for special functions. As explained
in the RT–11 System Macro Library Manual, two methods can be used to create that
support.

The format of the .DRSPF macro call is as follows:

Macro Call: .DRSPF arg[,arg2][,TYPE=n]

Up to three groups of special functions can be described in symbols H.SPF1, H.SPF2,
and H.SPF3, beginning at offset 22 in handler block 0. Any further groups require
the extension table method, which are stores in the pointer symbol H.SPFX at offset
30 in handler block 0. The offset H.SPFX points to that extension table of other
supported special functions.

See Section 1.2.1.9 for more information on the contents of handler block 0, including
those offsets written by .DRSPF. For information on using the .DRSPF macro, see
the RT–11 System Macro Library Manual.

1.2.1.6 .DRTAB Macro

The .DRTAB macro is normally reserved for use by Digital. Although .DRTAB is
described in the RT–11 System Macro Library Manual, you should use .DRUSE in
your handler.

Device Handlers 1–13

1.2.1.7 .DRUSE Macro

The .DRUSE macro defines a list of data tables for the device handler. There are
three levels of definition.

1. You write a data table (or tables) at some file address (or addresses) in your
device handler. You invoke .DRUSE enough times to define each data table. To
invoke .DRUSE, see the RT–11 System Macro Library Manual.

2. At a file address, the .DRUSE macro creates a descriptor table of those data
tables. The descriptor table is described in Section 1.2.8.7.

3. The .DRUSE macro places a pointer to the descriptor table file address in
H.USER, at offset 106 in the handler’s block 0.

The format of the .DRUSE macro call is as follows:

Macro Call: .DRUSE type,addr,size

type stores the value of type at symbol DT.ID in the descriptor table

addr stores the value of addr as symbol DT.PTR in the descriptor table

size stores the value of size as symbol DT.SIZ in the descriptor table

1.2.1.8 .DRSET Macro

The .DRSET macro must be invoked in the preamble section of the device handler.
Invoking .DRSET and the structure of the SET tables it creates are described in
Section 1.5.2.

1.2.1.9 Information in File Image Block 0

Table 1–3 describes the contents of block 0 of the assembled handler file image. This
is the informational block and is not normally loaded into memory.

The symbol names in the table are those used in the distributed system definition
library file, SYSTEM.MLB. The macros are those that actually write the offset;
they are not necessarily the originating macro. Where appropriate, the description
indicates where you can find more information about the offset, its contents, or the
structure pointed to by an address in the offset.

Table 1–3: Contents of .SYS Image Block 0

Offset Symbol Macro Description

000000 H.HAN .DREST Handler identifier in RAD50

H.HANV Value for H.HAN (RAD50 HAN)

000002 H.FETC .DRPTR Pointer to a FETCH service routine; See Section 1.2.8.1

000004 H.RELE .DRPTR Pointer to a RELEASE service routine; See
Section 1.2.8.1

000006 H.LOAD .DRPTR Pointer to a LOAD service routine; See Section 1.2.8.1

1–14 RT–11 Device Handlers Manual

Table 1–3 (Cont.): Contents of .SYS Image Block 0

Offset Symbol Macro Description

000010 H.UNLO .DRPTR Pointer to an UNLOAD service routine; See
Section 1.2.8.1

000012–
000016

Reserved

000020 H.CLAS .DREST Device classification; See Section 1.2.1.2

000021 H.MOD .DREST Device classification modifier; See Section 1.2.1.2

000022 H.SPF1 .DRSPF First special function (index method) list; See
Section 1.2.8.2

000024 H.SPF2 .DRSPF Second special function (index method) list; See
Section 1.2.8.2

000026 H.SPF3 .DRSPF Third special function (index method) list; See
Section 1.2.8.2

000030 H.SPFX .DRSPF Pointer to further special functions (extension table
method); See Section 1.2.8.2

000032 H.REPL .DREST Pointer to bad-block replacement table;
See Section 1.2.8.3

000034 Reserved

000036 H.STS2 .DREST Second status word; See Section 1.2.8.5

000040–
000050

SYSCOM area for runnable handlers.

000052 H.SIZ .DRBEG Handler size (ddEND–ddSTRT)

000054 H.DSIZ .DRBEG Device size (ddDSIZ); See Section 1.2.1.1.6

000056 H.DSTS .DRBEG Device status word (ddSTS); See Section 1.2.1.1.5

000060 H.GEN .DREND Result of standard SYSGEN conditionals OR’d
with the value of the FORCE= parameter; See
Section 1.2.8.6

000061 Reserved

000062 H.BPTR .DRBOT Pointer to the primary bootstrap; See Section 1.11.2.2

000064 H.BLEN .DRBOT Bootstrap size in bytes; See Section 1.11.2.1

000066 H.READ .DRBOT Pointer to the bootstrap read routine;
See Section 1.11.2.5

000070 H.TYPE .DRTAB
.DREST

If contains value –1, indicates written by .DRTAB
(only Digital distributed handlers)—otherwise:
If contains a RAD50 value, indicates invoked by
.DREST and is the device type classification for an
internal table

Device Handlers 1–15

Table 1–3 (Cont.): Contents of .SYS Image Block 0

Offset Symbol Macro Description

000072 H.DATA .DRTAB
.DREST

If H.TYPE written by .DRTAB, then H.DATA is a
pointer to the list of handler data table descriptors.
If H.TYPE written by .DREST, then H.DATA is the
file address of the internal data tables.
See Section 1.2.8.7

000074 H.DLEN .DRTAB
.DREST

Size in bytes of total list of handler data table
descriptors; See Section 1.2.8.7

000076 H.UNIT .DRDEF Pointer to extended device-unit ownership table

000100 H.64UM .DRDEF Letter name of extended device-unit handler and
device characteristics for UMR support;
See Section 1.2.8.8

000102–
000104

Reserved

000106 H.USER .DRUSE Pointer to the file address of the handler data
descriptor table; See Section 1.2.8.7

000110–
000173

.AUDIT

.MODULE
Information written by those two macros. Terminated
by –1. This list and the display CSR list cannot
overlap.

000164–
000174

H.DCSR .DRINS Display CSRs read by RESORC. If more than one,
each written into previous offset; See Section 1.2.1.3

000176 H.ICSR .DRDEF
.DRINS

Installation CSR; See Sections 1.2.1.1 and 1.2.1.3.

000200 H.IDK .DRINS Data device installation entry point (INSDAT); See
Section 1.2.1.3

000202 H.ISY .DRINS System device installation entry point (INSSYS); See
Section 1.2.1.3

000204–
000377

Installation code; See Section 1.14.3.5

000400–
000777

H.SET .DRSET SET code; See Section 1.5.2

1.2.2 Header Section

The second part of an RT–11 device handler is the header section. The header section
is the beginning of the memory resident portion of the handler and starts at the base
of file image block 1. In the header section, you invoke the .DRBEG macro to build
a data structure of variable size at the beginning of the handler’s memory image.
This macro also stores information in the handler file at offsets 52 through 60 of
block 0, and creates some global symbols.

The data you set up in the header section is used when the handler is brought into
memory with the .FETCH programmed request or LOAD monitor command. The

1–16 RT–11 Device Handlers Manual

contents of location 176, described below, are used by the bootstrap when it checks
for the presence of device hardware at handler installation time.

As shown in the skeletal handler, Figure 1–1, you include macros in the preamble
section that build various data structures and define symbols. The following macros
can be used in the header section:

• .DRBEG

Defines the handler queue entry point and provides other information about the
handler. Writes locations in the handler file image blocks 0 and 1.

• .DRVTB

Defines multiple vectors if the handler supports more than one interrupt vector.

1.2.2.1 .DRBEG Macro

The .DRBEG macro sets up offsets in block 0 and the header information in block 1.
This macro also generates the appropriate global symbols for your handler. Before
you invoke .DRBEG, invoke .DRDEF to define various symbols that .DRBEG uses
internally. The format for .DRBEG is as follows:

.DRBEG name[,SPFUN=spsym][,NSPFUN=nspsym]

name is the two-character device name.

spsym is the label on the list of DMA standard special functions. Sets HF2.SD
in offset H1.FG2 of handler block 1.

nspsym is the label on list of DMA nonstandard special functions. Sets
HF2.ND in offset H1.FG2 of handler block 1.

For examples of .DRBEG, see the DL handler listing in Appendix A and the UB
example in Chapter 2.

1.2.2.2 Multivector Handlers: .DRVTB Macro

An RT–11 device handler can service multiple controllers where each controller has
an interrupt vector. The handler can also service a device that has more than one
vector.

Device handlers support a single vector through the .DRDEF macro’s vec parameter.
A device handler that supports multiple vectors must contain the .DRVTB macro.
Invoke the .DRVTB macro once for each vector. Each invocation creates a table with
three entries. The table for each vector consists of the vector location, the interrupt
entry point, and the Processor Status, or PS, value.

You can invoke .DRVTB anywhere between the .DRBEG macro and the .DREND (or
.DRBOT) macro, as long as it does not interfere with the flow of control within the
handler. You must invoke this macro once for each vector, and the macro calls must
appear one after the other in the handler.

The format of the .DRVTB macro is as follows:

Device Handlers 1–17

.DRVTB name,vec,int[,ps]

name is the two-character device name. Specify it on the first .DRVTB call;
leave this argument blank on all subsequent calls.

vec is the location of the vector; it must be between 0 and 474. The first
vector is usually dd$VEC. The value must be a multiple of 4. The
.DRBEG stores the value for dd$VEC in H1.VEC, offset 0 of block 1.

int is the symbolic name of the interrupt handling routine; it must appear
elsewhere in the handler. It generally takes the form ddINT, where
dd represents the two-character device name. The .DRBEG stores the
value for ddINT in H1.ABT, offset 2 of block 1.

ps is an optional value you can use to specify the low-order four bits of
the new Processor Status word in the interrupt vector. If you omit
this argument, it defaults to 0.

An example of a handler that can use two vectors is the DY handler, when that
handler is built to support a second controller. The following example shows the
source lines and the code the macros generate:

.IF NE DYT$O ; If we support two controllers:

.DRVTB DY,DY$VEC,DYINT ; DY$VEC symbol for first vector table

.DRVTB ,DY$VC2,DYINT ; DY$VC2 symbol for second vector table
.ASSUME . LE DYSTRT+1000

.ENDC ;NE DYT$O

Generates:

.IF NE DYT$O

.DRVTB DY,DY$VEC,DYINT

.WORD DY$VEC&^C3.,DYINT-.,^o340!0,^o100000

.DRVTB ,DY$VC2,DYINT

.WORD DY$VC2&^C3.,DYINT-.,^o340!0,^o100000

.ASSUME . LE DYSTRT+1000

.ENDC ;NE DYT$O

In the example above, the priority bits of the PS are always set to PR7, even if you
omit the ps argument.

PS Condition Codes
In the .DRVTB macro, only the condition code bits of the ps argument are significant.
These can be useful if you have a common interrupt service entry point for two or
more vectors and you need to determine through which vector the interrupt occurred.
For example, the skeletal handler (Figure 1–1) has a single interrupt entry point
for its two vectors. For the handler to determine the source of the interrupt, one is
serviced with the carry bit clear and the other (INT2), when the carry bit is set.

1–18 RT–11 Device Handlers Manual

1.2.2.3 Information in File Image Block 1

The following table describes the contents of block 1 of the assembled handler file
image that are written by the .DRBEG macro. This is the first block that is normally
loaded into memory and is therefore block 0 of the handler memory image.

The symbol names used in the table are from the distributed system definition library
file, SYSTEM.MLB. All defined offsets are written by .DRBEG but .DRBEG is not
the originating macro for all locations. As appropriate, the description indicates
where you can find more information about each offset, its contents, or the structure
pointed to by an address in the offset.

Table 1–4: Contents of .SYS Image Block 1

Offset Symbol Macro Description

001000 H1.VEC .DRBEG Either the device vector if a single vector device or an
offset to the table of vectors for multivector devices
(ddSTRT)

001002 H1.ABT .DRBEG Offset to the interrupt service entry point

001004 H1.HLD .DRBEG Priority (340)

001006 H1.LQE .DRBEG Pointer to the last queue element (ddLQE)

001010 H1.CQE .DRBEG Pointer to the current queue element (ddCQE) in
handler memory image

001010 H1.FLG .DRBEG Flag word (in handler file image); See Section 1.2.9.1

001012 H1.NOP .DRBEG NOP instruction OR’d with flags; See Section 1.2.9.2

001014 H1.BR .DRBEG Branch instruction (optional)

001016 H1.FG2 .DRBEG Second flag word (optional); See Section 1.2.9.3

001020 H1.SCK .DRBEG Pointer to SPFUN address check routine (optional)

001022 H1.SDF .DRBEG Pointer to standard DMA SPFUN table (optional)

001024 H1.LDT .DRBEG Pointer to LD translation table (optional)

001026 H1.NDF .DRBEG Pointer to nonstandard DMA SPFUN table (optional)

1.2.3 I/O Initiation Section

The I/O initiation section contains the first executable instructions of the handler
and must follow the call to .DRBEG. The purpose of the code in this section is to
start a data transfer. Remember that you must write Position-Independent Code
(PIC) for the handler.

When a program issues a programmed request that requires device I/O, such as
.READ or .WRITE, control first passes to the Resident Monitor, which then calls the
device handler for the peripheral device with the CALL instruction. The monitor
calls the handler at the handler’s sixth word—that is, the first word immediately
after the five-word data header. The monitor makes the call whenever a new queue
element becomes the first element in a handler’s queue. This situation occurs when

Device Handlers 1–19

an element is added to an empty queue, or when an element becomes first in a
queue because a prior element was released. If any parameters in the I/O request
are invalid for the device (for example, the block number is too large, the unit number
is too high, and so on), the handler should proceed immediately to the I/O completion
section and signal a hard (fatal) error.

The I/O initiation code executes at processor priority 0 in system state, which means
that no context switch can occur, no completion routines can run, and any traps to
4 and 10 cause a system fatal halt. All registers are available for you to use in
this section. The fifth word of the handler header, ddCQE, contains a pointer to the
current queue element at its third word, Q.BLKN.

The queued I/O system guarantees that requests for data transfers are serialized
so that RT–11 device handlers need not be re-entrant. Therefore, you can minimize
the size of a handler by mixing, rather than separating, the pure code and the data
segments.

1.2.3.1 Guidelines for Starting the Data Transfer

Since the purpose of the I/O initiation section is to start up the data transfer, you
must now supply the instructions to do this. The following steps (from the RK
handler) represent guidelines for a generalized I/O initiation section:

1. You should have already decided how many times the handler will retry a transfer
should an error occur. Initialize a retry counter by moving the maximum number
of retries to it. The following two lines of code illustrate this step:

MOV #RKCNT,(PC)+ ;RKCNT = MAXIMUM # OF RETRIES
RETRY: .WORD 0 ;THE RETRY COUNTER

2. Put the pointer to the current queue element into a register, and get the device
unit number and the block number for the transfer from the queue element. The
following lines of code illustrate this.

MOV RKCQE,R5 ;GET CURRENT QUEUE ELEMENT POINTER
MOV @R5,R2 ;PICK UP BLOCK NUMBER
MOV Q$UNIT-1(R5),R4 ;GET REQUESTED UNIT NUMBER
ASR R4 ;SHIFT UNIT NUMBER
ASR R4 ; TO HIGH 3 BITS
ASR R4 ; OF LOW BYTE
SWAB R4 ;PUT UNIT NUMBER IN HIGH 3 BITS
BIC #^C<DAUNIT>,R4 ;ISOLATE UNIT IN DRIVE SELECT BITS

3. Next, perform the steps to calculate the address on the device for the data
transfer to begin. The instructions you use depend on the device’s structure,
of course. Once you have calculated the correct address, save it in a memory
location. If you need to retry this transfer, you will not have to recalculate the
address.

.

.

.
MOV R3,(PC)+ ;SAVE ADDRESS IN DISKAD

DISKAD: .WORD 0 ;SAVE CALCULATED ADDRESS HERE

1–20 RT–11 Device Handlers Manual

4. Steps 1 through 3 outlined above are executed only once for each data I/O request
from a running program. However, in case of a soft error, you may need to restart
a transfer as part of the retry operation. So, by placing a label here to use as
the retry entry point, you avoid repeating steps 1 through 3.

The following steps can be performed more than once. They are executed once
for the first I/O startup, and they can be executed again if an I/O error causes a
retry.

At this point, the handler should determine whether the I/O request is a read, a
write, or a seek. It should then generate the appropriate op code for the operation
and move it to the device control and status register. This step actually initiates
the I/O transfer.

CSIE = 100 ;INTERRUPT ENABLE
FNWRITE = 12 ;WRITE
CSGO = 1 ;GO BIT
.
.
.

AGAIN: MOV RKCQE,R5 ;POINT TO QUEUE ELEMENT
MOV #CSIE!FNWRITE!CSGO,R3 ;ASSUME A WRITE
MOV #RKDA,R4 ;POINT TO DISK
. ;ADDRESS REGISTER
.
.

5. Finally, return to the interrupted program by going through the monitor first.
Then when the I/O transfer finishes, the device will interrupt, and control will
pass to the handler at the interrupt entry point in the interrupt service section
of the handler.

RTS PC ;AWAIT INTERRUPT

1.2.3.2 Transferring the Data

Data can be transferred between a device and the user buffer as individual bytes,
words, or by direct memory access (DMA). How the data is transferred is largely
determined by whether or you are using a mapped or unmapped monitor. This
section describes transferring the three types of data into both unmapped and
mapped memory.

1.2.3.2.1 Byte Transfer from the User Buffer to the Device

The following examples are from the XL handler and illustrate transferring a byte
from the user buffer.

Device Handlers 1–21

Unmapped Monitor
GNXTCH: MOV XOCQE,R4 ;R4->current output queue element

BEQ 10$;None available...
ADD #Q$WCNT,R4 ;R4->word count
TST @R4 ;Any characters left to output?
BEQ 20$;Nope, this request is complete
INC @R4 ;Yes, now there is one less to do
MOVB @-(R4),R5 ;Get the byte to output
INC @R4 ;bump pointer to next byte

Mapped Monitor
RT–11 provides the $GTBYT routine to perform the address translation between a
user buffer in mapped memory and the device. The $GTBYT routine is described in
more detail in Section 1.10.4.1.

Before the call:

R4 must point to Q.BLKN, the third word in the queue element.

After the call:

(SP), the first word on the stack, contains the next byte from the user buffer in the
low byte. The contents of the high byte are not defined.

R4 is unchanged.

GNXTCH: MOV XOCQE,R4 ;R4->current output queue element
BEQ 10$;None available...

TST Q$WCNT(R4) ;Any characters left to output?
BEQ 20$;Nope, this request is complete
INC Q$WCNT(R4) ;Yes, now there is one less to do
CALL @$GTBYT ;Get the byte to output
MOV (SP)+,R5

The buffer address (Q.BUFF) in the queue element is updated by 1. If Q.BUFF is
greater than 20077, a 1 is added to Q.PAR and Q.MEM and Q.BUFF is reduced by
100.

1.2.3.2.2 Byte Transfer from the Device to the User Buffer

The following examples are from the XL handler and illustrate transferring a byte
into the user buffer.

Unmapped Monitor
30$:

ADD #Q$WCNT,R4 ;R4->Word count
MOVB R5,@-(R4) ;Return the character
INC (R4)+ ;Bump the buffer pointer
DEC (R4) ;Is transfer complete?

; (z-bit=1 if so)

Mapped Monitor
RT–11 provides the $PTBYT routine to perform the address translation between a
user buffer in mapped memory and the device. The $PTBYT routine is described in
Section 1.10.4.2.

1–22 RT–11 Device Handlers Manual

Before the call:

R4 must point to Q.BLKN, the third word in the queue element.

The byte to transfer to the user buffer must be on the top of the stack. The character
must be in the low byte of the stack’s first word. The high byte is unpredictable.

After the call:

The word containing the character to transfer is removed from the stack and
transferred to the user buffer.

R4 is unchanged.

30$:
MOVB R5,-(SP) ;Put character here for PUTBYT
CALL @$PTBYT ;Call the routine
DEC Q$WCNT(R4) ;Is transfer complete?

; (z-bit=1 if so)

The buffer address (Q.BUFF) in the queue element is updated by 1. If Q.BUFF is
greater than 20077, a 1 is added to Q.PAR and Q.MEM and Q.BUFF is reduced by
100.

1.2.3.2.3 Word Transfer from the Device to the User Buffer

The handler may have to change a word in user memory. The following examples
are taken from the DY handler and return a word of size information.

Unmapped Monitor
; DRIVER IS DUAL DENSITY ONLY

BIS #CSDN,R4 ;ALWAYS USE DOUBLE DENSITY
CMPB R1,#SIZ$FN ;SPECIAL SIZE FUNCTION?
BNE 3$;NO, CONTINUE
MOV #DDNBLK,@(R5)+ ;RETURN DOUBLE DENSITY SIZE
JMP DYDONE ;DONE WITH SIZE OPERATION

Mapped Monitor
RT–11 provides the routine $PTWRD to perform the address translation between
the device and a user buffer. The $PTWRD routine is described in Section 1.10.5.

; DRIVER IS DUAL DENSITY ONLY

BIS #CSDN,R4 ;ALWAYS USE DOUBLE DENSITY
CMPB R1,#SIZ$FN ;SPECIAL SIZE FUNCTION?
BNE 3$;NO, CONTINUE
MOV #DDNBLK,-(SP) ;RETURN DOUBLE DENSITY SIZE
MOV DYCQE,R4 ;CURRENT QUEUE ELEMENT
CALL @$PTWRD ;STORE SIZE IN BUFFER
JMP DYDONE ;DONE WITH SIZE OPERATION

The buffer address (Q.BUFF) in the queue element is updated by 2. If Q.BUFF is
greater than 20077, a 1 is added to Q.PAR and Q.MEM and Q.BUFF is reduced by
100.

Device Handlers 1–23

1.2.3.2.4 Non-DMA Transfers

The following examples are from the DY handler and illustrate getting a pointer to
the user buffer for use in DMA transfer initialization.

Unmapped Monitor
3$:

MOV (R5)+,R0 ;GET THE USER’S BUFFER ADDRESS
MOV @R5,WRDCNT ;GET WORD COUNT
BPL 4$;POSITIVE MEANS READ, SO ALL SET UP

Mapped Monitor
RT–11 provides the $MPMEM routine to perform address translation for non-
DMA transfers between the device and a user buffer. Non-DMA transfers are
typically done with the MOV instruction. The $MPMEM routine is described in
Section 1.10.3.1.

3$:
CALL @$MPPTR ;CONVERT MAPPED ADDRESS TO PHYSICAL ADDRESS
MOV (SP)+,R0 ;GET PHYSICAL BUFFER ADDRESS LOW ORDER BITS
MOV R4,(PC)+ ;SAVE CURRENT COMMAND WORD

35$: .BLKW
MOV (SP)+,R4 ;GET HIGH-ORDER ADDRESS BITS <21:18>
BIT #1700,R4 ;22-BIT ADDRESS SPECIFIED?
BNE DYERR ;YES, NOT VALID FOR THIS CONTROLLER
SWAB R4 ;MOVE TO CORRESPONDING POSITIONS IN HIGH BYTE
BIS 35$,R4 ;NOW MERGE COMMAND WORD WITH EXTENSION BITS

MOV @R5,WRDCNT ;GET WORD COUNT
BPL 4$;POSITIVE MEANS READ, SO ALL SET UP

1.2.3.2.5 DMA Transfers

The address translation for DMA transfers is performed by the $MPPHY routine,
described in Section 1.10.3.2. A complete description of doing DMA transfers using
UNIBUS mapping registers (UMRs) is in Section 2.13.

1.2.4 Interrupt Service Section

Control passes to the interrupt service section of the handler when a device
interrupts, when the program requesting the I/O transfer aborts, or a .ABORT is
issued for the channel. The code in this section must first determine if the data
transfer had an error, if it was incomplete, or if it was complete, and then take the
appropriate action. The same register usage restrictions that apply to the interrupt
entry point also apply to the abort entry point. See Chapter 5 in the RT–11 System
Internals Manual for information on interrupt service routines.

Your first step in coding the interrupt service section is to set up the interrupt entry
point and the abort entry point by using the .DRAST macro. (These entry points
are sometimes referred to as the asynchronous trap entry points.) The default name
for the interrupt entry point is ddINT, where dd is the device name. Under normal
conditions, the handler is called at the interrupt entry point when an interrupt
occurs. However, under some circumstances, the handler is called at the abort entry
point located at ddINT–2. The various situations are discussed in the following
sections.

1–24 RT–11 Device Handlers Manual

1.2.4.1 .DRAST Macro

Use the .DRAST macro to set up the interrupt entry point and the abort entry point,
and to lower the processor priority. The .DRDEF and .DRVTB macros fill in the
structure at bootstrap (for the system device) or at .FETCH time (for a data device).

The format of the .DRAST macro is as follows:

.DRAST name,pri[,abo]

name is the two-character device name.

pri is the priority of the device, and the priority at which the interrupt
service code is to execute.

abo is an optional argument that represents the label of the abort entry
point. If you omit this argument, the macro expansion generates a
RETURN instruction at the abort entry point. Either the branch to
the specified label or the RETURN instruction is the word immediately
preceding the interrupt entry point ddINT.

The following example from the DY handler shows the .DRAST macro call. In
the example, DYABRT is the label for the abort routine which would generate the
instruction BR DYABRT in the word preceding the interrupt entry point DYINT.

.SBTTL INTERRUPT ENTRY POINT

.DRAST DY,5,DYABRT ; AST entry point
BR DYABRT ; Jump to abort entry point

DYINT:: JSR R5,@$INPTR ; Jump to monitor INTEN code
.WORD ^C<5*^o40>&^o340 ; New priority
.FORK DYFBLK ; Request fork level immediately
JSR R5,@$FKPTR ; Jump to monitor fork code
.WORD DYFBLK-. ; Offset to fork queue element
CALL SETDY ; Setup registers
BMI DYERR2 ; Check out the error and retry

INTDSP: JMP @(PC)+ ; No error, return to called
INTRTN: .WORD 0 ; : Address of waiting routine

The next example, from the RK handler, does not have an abort routine. Notice the
instruction, RETURN, in the word immediately preceding the interrupt entry point
RKINT.

.DRAST RK,5

.GLOBL $INPTR ;MAKE THIS SYMBOL GLOBAL
RETURN ;JUST RETURN ON ABORT

RKINT:: JSR R5,@$INPTR ;JUMP TO MONITOR INTEN CODE
.WORD ^C<5*^O40>&^O340 ;NEW PRIORITY

1.2.4.2 Abort Entry Point

As described in Section 1.3, there are a number of situations that cause an abort
in the queued I/O system. The response to the abort situation by the handler and
RMON depends on the ABTIO$ and HNDLR$ bits in the device status word.

When an abort occurs, it is important to stop I/O on some devices. Character-
oriented devices, such as the communications handler XL, fall into this category.

Device Handlers 1–25

So, character-oriented devices generally contain an abort routine; the abort entry
point is simply a branch instruction to that routine. The following lines are from
the XL handler:

XLDONE:
.
.
.

BIC #RC.IE,@XIS ;Turn off input interrupts
.
.
.

RTS PC ;Return to monitor

Other devices, such as disks, should be allowed to complete an I/O transfer attempt,
even if an abort occurs. In fact, trying to abort in the middle of an operation can
corrupt data or formatting information on a disk. So, instead of having a separate
abort routine, most handlers for disks ignore an abort. Thus, a RETURN instruction
is located at the abort entry point, which simply returns control to the monitor.

The abort entry point is always located at the word previous to the interrupt entry
point (ddINT–2). If the optional .DRAST abo parameter is specified, the abort entry
point is a branch instruction to the label specified as the abo parameter argument.
If abo is not specified, the .DRAST macro expansion places a RETURN instruction
at the abort entry point (ddINT–2).

If you use .FORK in your handler, there is a special procedure you must follow if an
abort occurs. You must move 0 to F.BADR (the fork routine address, at offset 2) in
the fork block. This prevents the monitor from attempting to execute a meaningless
fork routine after the abort.

1.2.4.3 Lowering the Priority to Device Priority

When the interrupt occurs, the handler is entered at priority 7. As with interrupt
service routines, the handler’s first task is to lower the processor priority to the
priority of the device, thus permitting more important devices to interrupt this
service routine. Instead of using the .INTEN call, as in an interrupt service routine,
use the .DRAST macro to lower the priority.

1.2.4.4 Guidelines for Coding the Interrupt Service Section

Since the purpose of this section is to evaluate the results of the last device activity,
you must now supply the instructions to do this. Essentially, the code must
determine if the transfer was in error, if it was incomplete, or if it was complete.

1. If an Error Occurred

If an error occurred during the transfer, the handler must distinguish between
a hard error and a soft error that might vanish if the operation is retried.

If the error is hard, the handler should immediately exit through the I/O
completion section after setting HDERR$ in the CSW.

1–26 RT–11 Device Handlers Manual

If the error is soft, the handler should prepare to retry the transfer. It should
decrement the count of available retries. Then, possibly at fork level, it should
branch back to the I/O initiation section to restart the transfer. If the transfer
has already been retried enough times (the retry count is 0), treat the failure as
though it were a hard error. In that case, the handler should proceed to the I/O
completion section after setting HDERR$ in the CSW.

Note that dropping to fork level is not strictly required to process an error.
Whether or not to use .FORK depends on the length of time required for setting
up the retry. The .FORK call is especially useful because it gives you use of R0
through R3, thus permitting you to use common routines for the retry. If you do
not use .FORK, only R4 and R5 are available.

2. Perform Retries at Fork Level

As also described in the RT–11 System Internals Manual, the .FORK macro causes
a return to the Resident Monitor, which dismisses the current interrupt. The code
that follows .FORK executes at priority 0, rather than at device priority, after
all other interrupts have been serviced, but before any jobs or their completion
routines can execute. The code following .FORK executes, as does the main body
of the interrupt service section of the handler, in system state. (This is the same
state the I/O initiation section runs in.) Thus, context switching is prevented
while the fork level code is executing, and any traps to 4 and 10 cause a system
fatal halt.

The following example from the RK handler illustrates how the handler drops
priority to fork level to retry data transfers after a soft error occurred. Fork
level is ideal for performing the retries, since this may be a lengthy process. The
.FORK call and its expansion are as follows:

.FORK RKFBLK ;THE FORK CALL

JSR R5,@$FKPTR ;(JUMP TO MONITOR FORK CODE)
.WORD RKFBLK - . ;(OFFSET TO FORK QUEUE ELEMENT)

RKRETR: CLRB RETRY+1 ;RESET A FLAG
BR AGAIN ;BRANCH INTO I/O INIT SECTION

3. If the Transfer Was Incomplete

In general, a transfer is considered to be incomplete when there are more
characters or more blocks of data left to transfer. The handler should restart
the device and exit with a RETURN instruction to wait for the next interrupt.

4. If the Transfer Was Complete

When the transfer is complete, the handler can simply exit through the I/O
completion section.

Device Handlers 1–27

1.2.5 I/O Completion Section

The I/O completion section provides a common exit path to inform the monitor that
the handler is done with the current request, so that the monitor can release the
current queue element.

The I/O completion section is an extension of the interrupt service section. Control
passes from the interrupt service section to the I/O completion section when a data
transfer completes, when a hard error is detected, or when a soft error condition
exhausts the number of allowed retries.

(Note that you can branch directly to this section from the I/O initiation section if
you immediately detect a hard error.)

1. If an Error Occurred

There are two kinds of errors that cause control to pass to the I/O completion
section: hard errors, which should cause a branch to this section immediately,
and soft errors that have exhausted their allotted number of retries, which cause
a branch to this section after the last retry fails. Treat both cases alike in
handling the exit to the monitor.

First, set the hard error bit (HDERR$), bit 0, in the Channel Status Word for
the channel. The second word of the I/O queue element, Q.CSW, points to the
Channel Status Word. Then jump to the I/O completion routine in the Resident
Monitor. Use the .DRFIN macro, described below, to generate the code for this
jump.

The following lines of code are from the DY handler. They illustrate how the
handler sets the hard error bit and jumps back to the monitor.

10$: BIC #<CSINIT!CSINT>,@DYCSA ;DISABLE FLOPPY INTERRUPTS
;AND INHIBIT DRIVE RESET

11$: .DRFIN DY ;GO TO I/O COMPLETION
.
.
.

DYERR: MOV DYCQE,R4 ;R4 -> CURRENT QUEUE ELEMENT
BIS #HDERR$,@-(R4) ;SET HARD ERROR IN CSW
BR 10$;EXIT ON HARD ERROR

2. If the Transfer Was Complete

For a block-oriented device, such as a disk or diskette, the handler simply disables
interrupts and performs the jump to the monitor. The .DRFIN macro generates
the code to perform the jump.

For a character- or word-oriented device, the procedure is slightly more
complicated because the handler may have to report end-of-file to the job that
requested the I/O transfer. When the handler actually detects the EOF condition
on a READ operation, it should set an internal EOF flag, put the last character
in the user’s buffer, and then zero-fill the rest of the buffer. Then the handler
should jump back to the monitor, as it would if EOF were not detected but the

1–28 RT–11 Device Handlers Manual

buffer had simply filled up. The handler waits until it is called again to signal
EOF to the user.

This convention for indicating end-of-file makes character-oriented devices
appear to programs as random-access devices, which is in keeping with the RT–11
philosophy of device independence.

.DRFIN Macro

Use the .DRFIN macro to generate the instructions for the jump back to the monitor
at the end of the handler I/O completion section. The macro makes the pointer to the
current queue element a global symbol, and it generates Position-Independent Code
for the jump to the monitor. When control passes to the monitor after the jump, the
monitor releases the current queue element.

The format of the .DRFIN macro is as follows:

.DRFIN name

name is the two-character device name.

For examples of the .DRFIN macro, see the handler listings in Appendix A.

1.2.6 Handler Termination Section

The purpose of the handler termination section is to declare some global symbols and
to establish a table of pointers to locations in the Resident Monitor. The pointers
are filled in by the bootstrap, if the handler is for the system device. Otherwise,
they are filled in when the handler is made resident with .FETCH or LOAD. The
termination section also provides a symbol to determine the size of the handler. Use
the .DREND macro to generate the handler termination code.

1.2.6.1 .DREND Macro

The format of the .DREND macro is as follows:

.DREND name

name is the two-character device name.

In bootable handlers, the .DREND macro is invoked twice, once explicitly by the
programmer and once implicitly by the .DRBOT macro. When .DRBOT is invoked,
it implicitly generates a .DREND macro to close the memory resident part of the
handler. You end the boot area with a second .DREND macro.

For examples of the .DREND macro, see the handler listings in Appendix A. The
symbols defined by .DREND are shown in Table 1–11.

1.2.7 Pseudodevices

You can write a device handler for a pseudodevice (one that does not interrupt,
and is not a mass storage device) to take advantage of the queued I/O system
and the fact that handlers can remain memory resident. Examples of handlers
for pseudodevices are NL (the null device), MQ (the message queue handler), SL
(the single-line command editor), and UB (the UMR handler).

Device Handlers 1–29

All the executable code of such a handler must appear in the I/O initiation section.
The handler should then issue the .DRFIN macro call to terminate the operation
and return the queue element. Since pseudodevices do not interrupt, the handler
needs no interrupt service section and no .DRAST macro call.

1.2.8 Handler Data Structures Related to Block 0

The following sections describe data structures that relate to block 0 of the handler
file image. The data structure can reside within block 0 or be pointed to by an
address contained there.

1.2.8.1 Handler Service Routine Environment

This section describes the handler service routine entry environment and error
processing. The routines are defined by the .DRPTR macro and located at a file
address in the handler (See the .DRPTR section in the RT–11 System Macro Library
Manual).

Handler Service Routine Entry Environment
The following registers and their contents constitute the handler service routine
entry environment. These registers (R0 through R5) are set up by RT–11. All
registers are available and none needs to be preserved.

Table 1–5: Handler Service Routine Entry Environment

Register Contents

R0 Contains starting address of the current running handler service routine.

R1 Contains starting address of GETVEC routine if a CTI Bus-based processor.
Otherwise, R1 contains the address of a routine that always returns carry set.

1–30 RT–11 Device Handlers Manual

Table 1–5 (Cont.): Handler Service Routine Entry Environment

Register Contents

R2 Contains the value $SLOT*2. That value is the length of the $PNAME table
in bytes. You can use that value to locate information in the handler tables
concerning this handler. The following table shows the order in memory and size
in bytes, relative to $SLOT*2, of the pertinent handler tables and the contents
of those tables:

Table Size Contents

$OWNER: <$SLOT*2>*2 Ownership table; can be removed from
(generated out of) monitors

$UNAM1: <$SLOT*2>+4 Physical name of device table

$UNAM2: <$SLOT*2>+4 Logical name of device table

$PNAME: $SLOT*2 Installed handlers table

$ENTRY: <$SLOT*2>+2 Handler address table. Last word contains
value –1 and indicates end of table

$STAT: $SLOT*2 DSTATUS value table

$DVREC: $SLOT*2 Handler disk block table

$HSIZE: $SLOT*2 Handler memory size table

$DVSIZ: $SLOT*2 Device blocks table

$PNAM2: <$SLOT*2>+2 Optional physical device name table for
extended-unit (single letter) device names.
Last word contains default device name, if
assigned

You can use that table in the following manner. R5 contains the $ENTRY table
entry address for this device handler. You could find, for example, the name for
this handler in the $PNAME table by subtracting the value for $SLOT*2 from
the value contained in R5. Likewise, you could find the DSTATUS value for this
handler in the $STAT table by adding the value of <$SLOT*2>+2 to the value
contained in R5.
See the RT–11 System Internals Manual for more information about the handler
tables.

Device Handlers 1–31

Table 1–5 (Cont.): Handler Service Routine Entry Environment

Register Contents

R3 Indicates the type of entry. The value in R3 indicates the type of routine that
called the handler service routine:

Value Name Meaning

0 HRR.FF Entered from .FETCH

2 HRR.RE Entered from .RELEASE

4 HRR.LO Entered from the LOAD command

6 HRR.UN Entered from the UNLOAD command

10 HRR.AB Entered from a job abort (RELEASE routine)

12 HRR.SY Entered from a system bootstrap load (LOAD
routine)

R4 Contains the address of a read routine you can use to perform I/O to the
system device, which has been opened as non-file-structured. You must load
the following registers with the following contents to use the read routine:

Register Contents

R0 Block number to read

R1 Number of words to read

R2 Buffer address

You can read into only the low 28K words of memory. To read into high memory,
you must first read into low memory and then move the data. The read routine
returns with carry clear if there are no errors; carry bit is set if there are errors.

R5 Contains a pointer to the $ENTRY table entry for this handler.

Handler Service Routine Error Processing
The following list shows how errors in handler service routines should be processed:

• If no errors occur, exit with carry bit clear.

• If errors occur, exit with carry bit set.

The response from RT–11 to handler service routines that exit with the carry bit set
varies according to the following:

• If the handler service routine was called by the .FETCH request, RT–11 refuses
to fetch the handler.

1–32 RT–11 Device Handlers Manual

You should not depend on this response with handlers that should never be
fetched; use the .DRPTR FETCH=*NO* parameter instead.

• If the handler service routine was called by the .RELEASE request, RT–11
releases the handler.

• If the handler service routine was called by the LOAD command, RT–11 refuses
to load the handler.

You should not depend on this response with handlers that should never be
loaded; use the .DRPTR LOAD=*NO* parameter instead.

• If the handler service routine was called by the UNLOAD command, RT–11
refuses to unload the handler. Further RT–11 response is determined by the
contents of R0:

— If R0 is returned with value zero, RT–11 displays the error message, ?KMON-
F-Unable to unload handler.

— If R0 is returned with value other than zero, RT–11 displays the error message
located at the address (in low memory) contained in R0.

• If the handler service routine was called by a job abort, RT–11 ignores the carry
bit; the job aborts.

• If the handler service routine was called by a system bootstrap load, the handler
can do one of the following:

— Clear the carry bit and continue.

— Set the carry bit and return.

On UNIBUS and Q-bus processors, RT–11 displays the message, ?BOOT-U-
Failure to load system handler, and the system halts. On CTI Bus-based
processors, RT–11 displays code 000013 and the system halts.

— Set the carry bit and send an error message to the console terminal.

The handler sends an error message to the console terminal, using the
following code:

CODE =: <200!DEV.xx>
REPORT =: 672

JSR R1,@#REPORT
.WORD MSG
.BYTE CODE

MSG: .ASCIZ "message"
.EVEN

For UNIBUS and Q-bus processors:

• RT–11 ignores the contents of the byte CODE.

• RT–11 adds the prefix "?BOOT-U-" to "message".

(For the distributed RT–11, "message" is "Failure to load system handler".)

• The system halts.

Device Handlers 1–33

For CTI Bus processors:

• RT–11 ignores the contents of "message".

• RT–11 displays the octal value contained in CODE with no prefix. The
value in CODE should be 200!DEV.XX, where DEV.XX is the device id
for this handler. You can find DEV.XX for this handler in the $DVREC:
handler table.

(For the distributed RT–11, CODE is 000013.)

• The system halts.

1.2.8.2 Special Function Code Support Table (H.SPFx)

H.SPFx supports both the list and extension table method for describing those special
functions used within the handler. Using .DRSPF to create the table is described in
the RT–11 System Macro Library Manual.

The .DRSPF macro places the table in octal offsets 22 through 30 in the handler’s
block 0. Offsets 22 through 26 support the list method and each offset has the same
structure and is composed of a low and high byte. Offset 30 is a word pointer to a
list of other special functions.

The symbol names for the values in H.SPFx are defined in the .DSPDF macro in the
distributed file SYSTEM.MLB.

The following is the structure of offsets 22 through 26.

Bit Symbol Meaning

Low
Byte

DSP.XN The low byte, consisting of a bit mask that specifies the
supported low-order numbers (xxN):

Bit Symbol Meaning

001 DSP.X0 xx0 bit mask

002 DSP.X1 xx1 bit mask

004 DSP.X2 xx2 bit mask

010 DSP.X3 xx3 bit mask

020 DSP.X4 xx4 bit mask

040 DSP.X5 xx5 bit mask

100 DSP.X6 xx6 bit mask

200 DSP.X7 xx7 bit mask

1–34 RT–11 Device Handlers Manual

Bit Symbol Meaning

High
Byte

DSP.NX The high byte, made up of a value to specify the type
of special function and the high order numbers (NNx).
Specifying a type of special function forces the table entry
to a single special function.

001–
004

DSP.TY The type of special function:

Value Symbol Meaning

0 DSP.UK Unknown type

1 DSP.RD READ type

2 DSP.WR WRITE type

3 DSP.MV MOVEMENT type

4 DSP.RW TRANSFER type

5–7 Reserved

010–
200

DSP.NN Value for the special function’s high-order two numbers

As an example, assume support for special functions 372, 373, and 377 (no type
specified). The contents of the table entry for these would appear in a byte dump as:

370 214

For an example that includes the TYPE parameter, assume the special function 376
of type WRITE. The contents of the table entry for that would appear in a byte dump
as:

372 100

1.2.8.3 Bad-Block Replacement Geometry Table (H.REPL)

H.REPL stores the geometry of the software (not MSCP) bad-block replacement
table. The .DREST macro places a pointer to this table in offset 328 in the handler’s
block 0. The table must be located in block 0.

Of the distributed RT–11 device handlers, H.REPL is found in the RL01/02 and
RK06/07 handlers.

The symbol names for the values in H.REPL are defined in the .RGTDF macro in
the distributed file SYSTEM.MLB.

The table consists of 1-byte entries and is 6 bytes long.

Device Handlers 1–35

Offset Symbol Contents

0 RGT.FG A flag in bit 0. If bit 0 is clear, all blocks are replaceable; if set,
only some blocks are replaceable. Bits 1–7 are reserved.

1 RGT.PD A constant for locating the bad sector file. The last addressable
block plus this constant is the bad sector file location.

2 RGT.BS Size in sectors of bad sector file.

3 RGT.TC Number of tracks per cylinder.

4 RGT.ST Number of sectors per track.

5 RGT.SB Half the number of sectors per block, such that two times this
number is the sectors per block.

6 RGT.SZ Size of this table.

1.2.8.4 Bad-Block Replacement Table (HB.BAD)

The bad-block replacement table is stored in the home block of RL01/02 and RK06/07
volumes, beginning at offset 6 (HB.BAD) and ending at offset 200.

The symbol names for the values in HB.BAD are defined in the .BBRDF macro in
the distributed file SYSTEM.MLB.

Offset Name Meaning

0 BBR.BD Bad block number.

2 BBR.GD Replacement block number.

BBR.SZ Entry size.

1.2.8.5 Second Handler Status Word (H.STS2)

The following table defines the bits in the second handler status word (H.STS2),
which the .DREST macro places in offset 368 of block 0.

Bit Symbol Meaning

000001 HS2.BI Handler cannot be installed by the monitor bootstrap.

000002 HS2.KI Handler cannot be installed by the DCL INSTALL command.

000004 HS2.KL Handler cannot be loaded by the DCL LOAD command.

000010 HS2.KU Handler cannot be unloaded by the DCL UNLOAD
command.

000020 HS2.MO Handler supports DCL MOUNT and DISMOUNT commands.

1–36 RT–11 Device Handlers Manual

Bit Symbol Meaning

000040–
100000

Reserved.

1.2.8.6 Handler SYSGEN Options Byte (H.GEN)

The .DREND macro stores the SYSGEN option bits in H.GEN (byte offset 608 of
block 0).

The value stored in H.GEN is the values for the SYSGEN options OR’d with the
value of the .DREND FORCE= parameter.

The symbol names for the values in H.GEN are defined in the .SGNDF macro in the
distributed file SYSTEM.MLB. (Note that only symbols in the range 1–200 can be
used.)

Bit Symbol Meaning

001 ERLG$ Handler supports error logging.

002 MMGT$ Handler supports extended memory.

004 TIMIT$ Handler supports device timeout.

010 RTEM$ Handler is running under RTEM–11.

020–
200

Reserved.

1.2.8.7 Handler Internal Data Table and Descriptor Structure (H.TYPE, H.DATA, and H.DLEN)

The structure described in this section is a descriptor table. That is, the structure
describes tables located elsewhere in the handler. The contents and location of the
structure vary according to the macro that writes it. The structure can be placed in
block 0 or an address can be placed in block 0 that points to the structure:

• The .DREST or .DRTAB macro stores the structure in block 0 offsets 70 through
74. The indicated offsets are from location 70.

• The .DRUSE macro stores the structure in the handler file and writes a pointer
to the structure in block 0 offset 106. The indicated offsets are from handler file
address pointed to by offset 106.

The symbol names for the values in H.TYPE, H.DATA, and H.DLEN are defined in
the .DUSDF macro in the distributed file SYSTEM.MLB.

Device Handlers 1–37

Offset Symbol Contents

00 DT.ID If table generated by .DREST or .DRUSE, contains the
RAD50 device type identifier.
If table generated by .DRTAB, contains the value –1.

02 DT.PTR If table generated by .DREST, contains the file address of
internal data tables.
If table generated by .DRUSE or .DRTAB, contains the file
address of the list of data table descriptors.

04 DT.SIZ Length in bytes of the data table pointed to by this structure.

06 DT.ESZ When table is generated by .DRUSE only, is the length in
bytes of each entry in the table pointed to by this structure.

10 DT.EOL When table is generated by .DRUSE only, is a null word that
signifies the end of the descriptor list.

1.2.8.8 UMR Support and Extended Device-Unit Handlers (H.64UM)

The contents of H.64UM describes the attributes of an extended device-unit handler
and the support for UNIBUS Mapping Registers (UMRs).

The .DRDEF macro writes H.64UM in octal location 100 in the handler’s block 0.

The symbol names for the values in H.64UM are defined in the .HUMDF macro in
the distributed file SYSTEM.MLB.

Bit Symbol Meaning

000001–
000004

HUM.PU Required number of permanent UMRs.

000010 HUM.S6 Handler supports other extended device-unit handlers (used
in LD handler).

000020 HUM.DM Handler uses DMA.

000040 HUM.UB Handler includes .DRDEF macro DMA=str parameter
(argument YES or NO).

000100–
100000

HUM.64 Field containing RAD50 letter for extended device-unit
handler.

If HUM.UB bit is clear, bits HUM.UB, HUM.DM, and HUM.PU are reserved.

IF HUM.PU bits are nonzero, HUM.DM must be set.

1–38 RT–11 Device Handlers Manual

1.2.9 Handler Data Structures Related to Block 1

The following sections describe data structures that relate to block 1 of the handler
file image. The data structure can reside within block 1 or be pointed to by an
address contained there.

1.2.9.1 Handler Flag Word (H1.FLG)

H1.FLG contains flags that provide information about the handler.

The .DRBEG macro writes H1.FLG in octal location 10 of the handler’s block 1
(location 1010 of the file image).

The symbol names for the values in H1.FLG are defined in the .HBFDF macro in
the distributed file SYSTEM.MLB.

Bit Symbol Meaning

000001–
004000

Reserved.

010000 DV2.DM Handler supports DMA and is compatible with RT–11 V5.5
(and subsequent) UMR support.

020000 DV2.NL Handler cannot be loaded by KMON; can only be loaded by
BSTRAP (at bootstrap time).

040000 DV2.V2 The first vector table set up by .DRVTB is followed by a
second table. The second table is only for display purposes.

100000 DV2.NF Handler cannot be fetched but instead must be loaded.

1.2.9.2 Handler Service Routine Entry Point Word (H1.NOP)

H1.NOP describes whether entry points to various handler service routines exist. It
also defines the existence of a second handler flag word (H1.FG2). The low 5 bits
are significant; the other bits are used to construct a NOP instruction and can be
disregarded.

The .DRBEG macro stores the entry point in H1.NOP (offset 128 of block 1).

The symbol names for the values in H1.NOP are defined in the .HUMDF macro in
the distributed file SYSTEM.MLB.

Bit Symbol Meaning

000001 HNP.FE Handler contains entry point to a FETCH service routine.

000002 HNP.RE Handler contains entry point to a RELEASE service routine.

000004 HNP.LO Handler contains entry point to a LOAD service routine.

000010 HNP.UN Handler contains entry point to an UNLOAD service routine.

Device Handlers 1–39

Bit Symbol Meaning

000020 HNP.F2 Handler contains a second flag word (H1.FG2).

000040 HNP.N1 Part of the NOP instruction (disregard).

000100 Reserved.

000200 HNP.N2 Part of the NOP instruction (disregard).

000400–
100000

Reserved.

1.2.9.3 Second Handler Flag Word (H1.FG2)

H1.FG2 contains flags that provide additional information about the handler. If a
flag indicates that a location after H1.FG2 is defined, then the preceding locations
(to H1.FG2) are also defined.

The .DRBEG macro stores the second handler flag word in H1.FG2 (offset 168 in the
handler’s block 1).

The symbol names for the values in H1.FG2 are defined in the .HF2DF macro in the
distributed file SYSTEM.MLB.

Bit Symbol Meaning

000001 HF2.SC Handler code performs special function address checking
(therefore H1.SCK exists).

000002 HF2.SD Handler lists special functions that use DMA (therefore
H1.SDF and H1.SCK exist).

000004 HF2.LD Handler contains pointer to LD translation table (therefore
H1.LDT, H1.SDF, and H1.SCK exist).

000010 HF2.ND Handler contains nonstandard DMA special functions
(therefore H1.NDF, H1.LDT, H1.SDF, and H1.SCK exist).

000020–
002000

Restricted.

004000 HF2.SR Handler requires serial satisfaction of I/O requests.

010000 HF2.DM Handler performs DMA and is compatible with RT–11 V5.5
UMR support.

020000 HF2.S6 Handler supports other extended device-unit handlers (used
in LD handler).

040000 HF2.64 Handler supports extended device-unit requests.

100000 HF2.F3 Handler contains a third flag word.

1–40 RT–11 Device Handlers Manual

1.2.10 Skeleton Outline of a Device Handler

The skeleton outline in Figure 1–1 provides the structure for a simple device handler.
In the figure, SK is the device name.

Figure 1–1: Skeleton Device Handler

.Title SK -- Handler Skeleton

; SK DEVICE HANDLER

.IDENT /V05.05/

.SBTTL PREAMBLE SECTION

.MCALL .DRDEF ; Get handler definitions

.MCALL .ASSUME ; Checking macro

.MCALL .EXIT ; To finish run

.MACRO ... ; Define ellipsis (allow
; ellipsis to assemble)

.ENDM

; Generate nonexecutable handler information tables
; containing the following information:

; Handler is SK
; Handler ID is 350 (user-written handler)
; Handler accepts neither .READ nor .WRITE
; Handler accepts .SPFUN requests
; Device is 1 block in size
; Device has a CSR at 176544
; Device has a vector at 20

.DRDEF SK,350,WONLY$!SPFUN$,1,176544,20
; Handler has .Fetch and $LOAD code to be executed:

.DRPTR FETCH=Fetch,LOAD=Load
; Handler is for a "Null" class device
; Handler has a data table called DATABL
; Data table is of the SKL format

.DREST CLASS=DVC.NL,DATA=DATABL,TYPE=SKL
; Handler accepts the following SPFUN codes:
; 372,376,377

.DRSPF <372>,TYPE=T

.DRSPF <376>,TYPE=W

.DRSPF <377>,TYPE=R
; Handler CSR is not to be checked at install,
; but is to be displayed:

.DRINS -SK
; Here is any installation check code

...
RETURN

.ASSUME . LE 400,MESSAGE=<;Installation area overflow>

Figure 1–1 (continued on next page)

Device Handlers 1–41

Figure 1–1 (Cont.): Skeleton Device Handler

; Handler accepts SET SK [NO]BONES command:

.DRSET BONES,123456,CORPUS,NO

CORPUS: ; SET SK BONES
COM R3 ; Flip bits
NOP ; Pad code
.ASSUME . EQ CORPUS+4,MESSAGE=<;No option code in wrong place>

NOCORP: ; SET SK NOBONES
MOV R3,PICKNT ; Set value in block 1
RETURN

.ASSUME . LE 1000,MESSAGE=<;Set area overflow>

.SBTTL HEADER SECTION

.DRBEG SK ; Handler Queue Manager Entry point
BR START ; Skip data table

DATABL:
.RAD50 "SKL" ; Table ID

WRIST: .BLKW 1 ; Table contents
ANKLE: .BLKW 1 ; ...

;Set up the Vector table:

SK$VTB: .DRVTB SK,SK$VEC,SKINT,0
.DRVTB ,SK$VEC+4,SKINT,1

PICKNT: .BLKW 1 ; Value controlled by Set command
.ASSUME .-2 LE SKSTRT+1000,MESSAGE=<;Set object not in block 1>

.SBTTL I/O INITIATION SECTION

START: ; Executable Queue code
...
RETURN

.SBTTL INTERRUPT SERVICE SECTION

.DRAST SK,4,ABORT ; Interrupt entry point
BCS INT2 ; Interrupt from second vector
...
RETURN

INT2: ; Second interrupt vector code
...
RETURN

.SBTTL I/O COMPLETION SECTION

ABORT: ; Abort entry point
...
.DRFIN SK ; Completion return

; End of memory resident part of handler

.DRBOT SK,ENTRY ; Boot code

ENTRY:
... ; Hard boot code to call read routine
RETURN

Figure 1–1 (continued on next page)

1–42 RT–11 Device Handlers Manual

Figure 1–1 (Cont.): Skeleton Device Handler

READ:
... ; Read routine
RETURN

.SBTTL HANDLER TERMINATION SECTION

.DREND SK ; End of boot code

.PSECT SETOVR ; Suggested block aligned PSect

FETCH:
... ; Code executed on FETCH
RETURN

LOAD:
... ; Code executed on LOAD
RETURN

RUN:
... ; Code executed on RUN
.EXIT

.END RUN

1.3 Abort Processing

This section describes the behavior of the resident monitor (RMON) and a device
handler when a job abort occurs.

The action taken by RMON in abort processing is determined by three criteria:

• The setting of the ABTIO$ and HNDLR$ bits in the device status word (H.STS).

• The action that caused the abort.

• The presence or absence of a current queue element belonging to the aborting
job (or job and channel in the case of .ABTIO aborts).

The first two criteria are described in the following sections. Section 1.3.2 contains
a table showing the matrix and order of RMON actions based on combinations of all
those criteria.

1.3.1 Handler Status Word Bits ABTIO$ and HNDLR$

The combination of ABTIO$ and HNDLR$, whether set or clear, determines to the
following extent how RMON performs abort processing for that handler and other
handlers that are loaded in memory:

• If ABTIO$ is set, the handler is entered by RMON during any type of abort; the
status of HNDLR$ (set or clear) does not matter.

• If ABTIO$ or HNDLR$ is set (but not both), the handler is entered by RMON
when a .ABTIO request is issued by a program to any handler.

Device Handlers 1–43

When a program invokes the .ABTIO request for a channel associated with any
handler, RMON calls the abort entry point of all in-memory handlers having that
bit combination (ABTIO$ or HNDLR$ set, but not both). RMON checks each
handler for I/O requests that might be internally queued on the channel that
is specified in the .ABTIO request. RMON performs abort processing for any
outstanding I/O request on the channel being aborted by the .ABTIO request.
RMON does not discard the current queue element (ddCQE) and whether or not
it is satisfied is determined by the handler.

If the hanlder aborts the current queue element, it should clear the queue
element’s completion routine address (Q.COMP) and issue a .DRFIN to return
the queue element to the monitor. All outstanding queue elements that are
associated with the aborting job or job and channel are removed from the
handler’s queue element list.

• If HNDLR$ is set and ABTIO$ is clear, RMON does not keep count (in I.IOCT)
of the number of outstanding queue elements for that handler.

Some handlers, such as the distributed RT–11 MQ and Ethernet handlers, can
post a request without necessarily expecting satisfaction of that request. To allow
such handlers to be aborted, RMON is inhibited from keeping a count (in I.IOCT)
of all outstanding I/O requests. Such handlers can then be aborted when they
still contain outstanding queue elements.

Any user-written internally queued handler that can post an I/O request without
requiring satisfaction of that request should be built with HNDLR$ set and
ABTIO$ clear.

1.3.2 Types of Aborts and Action Taken by RMON

The resident monitor performs abort processing for any of the following actions:

Abort Type Description

.CHAIN I/O for the chaining job is allowed to complete.

.EXIT

.SRESET
Job I/O is allowed to complete.

.HRESET
?MON-F-
<CTRL/C>

Hard error condition. Job I/O is stopped. ?MON-F- means an
abort caused by a fatal monitor error. <CTRL/C> means a double
CTRL/C typed at the keyboard.

.ABTIO
(Handler
used by
this
channel)

A .ABTIO request is issued for a handler that is associated with
the aborting job’s channel control block.

1–44 RT–11 Device Handlers Manual

Abort Type Description

.ABTIO
(All other
handlers)

This handler assembled with device status word bit HNDLR$ set
and ABTIO$ clear, and is entered whenever a .ABTIO request is
called for any handler on any channel.

Table 1–6 illustrates RMON abort processing. It not only shows the actions
performed by RMON, but also the order in which they are performed. Before the
table is a legend that defines and explains the symbols used in the table.

The order of certain symbols in the tables is important. The symbols show the order
of abort processing for the type of abort. A note defines the symbols that should be
read in order.

Symbol Definitions and Explanations for Table 1–6

Symbol Definition/Explanation

Abort Type The action that caused the abort.

A$=0 The handler is not built with ABTIO$ (ABTIO$=0).

A$=1 The handler is built with ABTIO$ (ABTIO$=1).

H$=0 The handler is not built with HNDLR$ (HNDLR$=0).

H$=1 The handler is built with HNDLR$ (HNDLR$=1).

ddCQE The handler contains a current queue element belonging to the
aborting job (or job and channel if .ABTIO).
The absence of this symbol in a header indicates the handler has no
current queue element associated with the aborting job (or job and
channel if .ABTIO).

NOTE
The order of the following symbols in the tables is
important. The symbols show the order of abort
processing for the type of abort. For example, the
symbols EJ show that operation E is performed first and
operation J is performed next.

C RMON removes all queue elements belonging to the job and channel
from the queue and decrements I.IOCT one time for each element
removed.

C~ RMON removes all queue elements belonging to the job and channel
from the queue but does not decrement I.IOCT.

E RMON calls the handler’s abort entry point.

Device Handlers 1–45

Symbol Definition/Explanation

J RMON removes all queue elements belonging to the job from the
queue and decrements I.IOCT one time for each element removed.

J~ RMON removes all queue elements belonging to the job from the
queue but does not decrement I.IOCT.

Q RMON waits for all I/O requests for which it expects satisfaction to
be satisfied.

S RMON waits for all I/O requests for which it expects satisfaction to
be satisfied and then issues a .ABTIO for every channel associated
with the job.

() RMON performs abort processing only if there is outstanding I/O
on the channel.

– RMON does not perform abort processing on this handler.

Table 1–6: RMON Abort Processing

Abort Type

A$=0

H$=0

A$=0
H$=0
ddCQE

A$=0
H$=1

A$=0
H$=1
ddCQE

A$=1
H$=0

A$=1
H$=0
ddCQE

A$=1
H$=1

A$=1
H$=1
ddCQE

.CHAIN S S S S S S S S

.EXIT

.SRESET
Q Q QEJ~ QEJ~ QEJ QEJ QEJ QEJ

.HRESET
?MON-F-
<CTRL/C>

J EJ EJ~ EJ~ EJ EJ EJ EJ

.ABTIO
(Handler
used by
this
channel)

(C) (EC) (EC~) (EC~) (EC) (EC) (EC) (EC)

.ABTIO
(All other
handlers)

– – (EC~) (EC~) (EC) (EC) – –

1–46 RT–11 Device Handlers Manual

1.4 Handlers That Queue Internally

A device handler can maintain one or more of its own internal queues of outstanding
I/O requests instead of using the usual monitor/handler I/O queue. The purpose of
maintaining an internal queue is that it permits several operations to take place
on the device simultaneously—that is, the handler can service several requests to
access the device at once. Internal queuing might also be useful if a handler needs
to perform some type of request ordering based on device-specific criteria.

The distributed RT–11 handlers that control communications, XC, XL, NC, NQ,
and NU, use internal queuing to process simultaneous input and output requests.
See Figure A–3 for a commented source listing of the XL handler for guidance in
implementing internal queuing in your handler.

1.4.1 Implementing Internal Queuing

A handler is entered at its .DRBEG code whenever the queue manager places an I/O
request queue element on the handler’s empty device queue. The handler checks
the queue element for validity. An invalid request returns an immediate hard error.

A handler that implements internal queuing decides how to dispose of the current
queue element based on whether processing the request requires post-interrupt
activity (another interrupt). If the I/O request does not require post-interrupt
activity by the handler, the handler processes the queue element immediately and
returns, through .DRFIN, to the monitor. If processing the request cannot be
immediately satisfied, the handler removes the request queue element from the
device queue and places it on an internal queue. The device queue is then available
for another request.

The internally queued handler has sole responsibility for managing internally
queued queue elements; for moving them between the internal queue and the device
queue. The handler is also responsible for returning appropriate queue elements to
the monitor because of an abort on a channel or job.

1.4.2 Interrupt Service for Handlers That Queue Internally

When an operation completes, the handler is normally entered at its interrupt entry
point, ddINT:. After this, various actions are taken depending on the circumstances.
If there is more than one internal queue, the handler determines which request this
interrupt involves and, therefore, which internal queue. If the operation is not
complete, the handler restarts it or continues it and simply returns to the monitor.
If the transfer is complete, the handler returns the request to the monitor by using
a fake device queue and modified .DRFIN code.

The handler returns the request to the monitor without exiting in order to process
any further outstanding requests. The fake device queue is used to avoid any race
condition conflict with the monitor over the use of the device queue. The modified
form of .DRFIN code uses a CALL rather than a JMP instruction, so that the handler
can regain control after the request is returned to the monitor.

Device Handlers 1–47

The following example illustrates how an internally queued handler returns a queue
element to the monitor. In the example, R4 points to the third word of the queue
element to be returned.

.

.

.
MOV R4,ddFCQE ; Make queue element first
MOV R4,ddFLQE ; and last on fake device queue
CLR Q$LINK(R4) ; Make sure it doesn’t link anywhere
MOV PC,R4 ; R4 -> Fake device queue
ADD #ddFCQE-.,R4 ; ...
MOV @#$SYPTR,R5 ; R5 -> $RMON
CALL @$QCOMP(R5) ; Return the queue element
.
.
.

; Check the internal queue and start another operation if necessary
.
.
.
RETURN

; Fake device queue

.WORD 0 ; Required
ddFLQE: .BLKW ; Fake LQE
ddFCQE: .BLKW ; Fake CQE

1.4.3 Abort Procedures for Handlers That Queue Internally

As explained in Section 1.3, the contents of the handler status word, H.DSTS,
determines how a handler and RMON process aborts. In particular, it is the
ABTIO$/HNDLR$ bit combination in the handler status word. There are some
particular considerations with abort processing for a handler that internally queues
I/O requests:

• Does the handler expect satisfaction of all outstanding I/O requests?

Setting bit ABTIO$ and not HNDLR$ stops RMON from maintaining the count
(I.IOCT) of outstanding I/O requests for the handler.

• Do other handlers in the system need to be notified if the handler processes an
abort? Conversely, does the handler need to be notified if other handlers on the
system process an abort?

All in-memory handlers that are built with either ABTIO$ or HNDLR$ set (but
not both set) are entered at their abort entry point by RMON whenever a .ABTIO
request is issued by a program. Also, RMON checks for internally queued I/O
requests on the specified channel. Abort processing is performed on any handler
having outstanding I/O requests on the channel being aborted by a .ABTIO
request.

Whether or not the current I/O request (ddCQE) is satisfied is determined by the
handler code. All other queue elements associated with the job or the job and

1–48 RT–11 Device Handlers Manual

channel are removed from the handler’s queue element list. That is, ddLQE and
ddCQE are set to the same value.

When the handler is entered at the abort entry point, it checks its internal queue
for elements belonging to the aborted job. The job number is passed to the handler
in R4. Whether the handler aborts all queue elements belonging to that job or only
those for a particular channel is determined by the contents of R5. If R5 contains
zero, the handler should abort all queue elements assigned to that job. If R5 is
nonzero, it points to the first word of a channel control block (the channel status
word), and the handler should abort only the queue elements for that channel.

The handler should purge its internal queue of those elements and use the following
procedure to reduce the monitor’s count of outstanding I/O requests. R0 through R3
must be saved and restored.

1. Remove any internal queue elements that belong to the aborting job or channel.
If there are none, simply issue the RETURN instruction.

2. Otherwise, link the removed elements through the element’s link word (Q.LINK);
the last element’s link word must be 0. Set ddCQE to point to the last element
of this linked list.

3. Clear each aborting queue element’s completion routine address (Q.COMP).

4. Issue the .DRFIN macro.

1.5 Set Options

The keyboard monitor SET command permits you to change certain characteristics
of a device handler. The handler must exist as a dd.SYS file on the system device
(ddX.SYS for mapped systems), where dd is the two-character device name. For
example, the following command changes the column width for a printer:

SET LP WIDTH=80 (The default is 132 columns)

Another type of SET command can enable or disable a function. The following
example shows how a SET command can cause the system to send carriage returns
to a printer or to refrain from sending them.

SET LP CR (Sends carriage returns; this is the default)

SET LP NOCR (Does not send carriage returns)

Note that you negate the CR option by adding NO to the start of the option. See the
RT–11 Commands Manual for more information on the SET options available with
existing RT–11 device handlers.

A device handler you write can contain code to implement different options. Follow
the format outlined in the following sections to learn how to add SET options to your
handler. Adding a SET option affects only the handler file; you need not make any
changes to the monitor. Note that SET options are valid for both data and system
devices.

Device Handlers 1–49

1.5.1 How the SET Command Executes

The SET command is driven entirely by a table in block 0 of the handler file and by
a set of routines, also in block 0, that modify instructions and data in blocks 0 and 1
of the handler. Remember that block 0 refers to addresses 0 through 776, and that
the handler header starts in block 1 at location 1000 in the file.

When you type a SET command at the console terminal, the monitor parses the
command line and looks for the handler file on the system device. (The type of
handler matches the monitor, such as DU.SYS for unmapped monitors or DUX.SYS
for mapped monitors.) The handler need not be installed in the running system.
The monitor then reads blocks 0 and 1 of the handler into the USR buffer. It scans
the table in block 0 until it finds the table entries for the SET option you specified.
From the table entry, it can find the particular routine designed to implement that
option and the modifiers permitted by that routine, such as NO or a numeric value.
The monitor then executes the routine, which contains instructions that modify code
in blocks 0 or 1 of the handler. The code in block 1 is part of the body of the handler
and contains the instructions for the default settings of all the SET options. After
the code is modified, the monitor writes blocks 0 and 1 back out to the system device.
Thus, as a result of the SET command, some instructions or data in the handler file
are changed. However, any memory-resident copy of the handler is not affected.

1.5.2 SET Table Format

The table for the SET options consists of a series of four-word entries, with one
entry per option. The table begins at location 400 in block 0 of the handler and ends
an entry with a word zero. Use the .DRSET macro, described below, to generate
the table. Examples of overlaid SET code are located in the example handlers in
Appendix A.

The first word of the table is a value to be passed in R3 to the SET routine associated
with the option when the monitor processes this option. This word can be a numeric
value—such as the default column width for a printer—or it can be an instruction
to substitute for another instruction in block 1 of the handler. It must not be 0.

The second and third words of the table are the option name in Radix–50, such as
WIDTH or CR. In the table, the characters are left justified and filled with spaces.

The low byte of the fourth word is an offset to the routine that performs the code
modification. The high byte indicates the type of SET parameter that is valid.
Setting the 100 bit shows that a decimal argument is required. A value of 140
shows that an octal argument is required. Setting the 200 bit means that the NO
prefix is valid for this option.

Table 1–7 shows a summary of the SET option table.

1–50 RT–11 Device Handlers Manual

Table 1–7: SET Option Table

Offset Name Meaning

0 DSE.R3 Value to pass in R3 to the SET routine

2–4 DSE.NA Radix–50 for option name (two words)

6 DSE.SB Offset to option routine

7 DSE.PA Parsing option bits:

Bit Name Meaning

0–4 Reserved

5 DSE.8 Set means option has octal value
Clear means option has decimal value

6 DSE.NU Numeric value allowed

7 DSE.NO NO prefix allowed

DSE.ES Entry size

1.5.3 .DRSET Macro

Use the .DRSET macro to set up the option table by calling the macro once for each
option so that the macro calls appear one after the other. You must invoke the
.DRSET macro after .DRDEF and before the .DRBEG macro.

The format for the .DRSET macro is as follows:

.DRSET option,val,rtn[,mode]

option is the name of the SET option, such as WIDTH or CR. The name can
be up to six alphanumeric characters long and cannot contain any
embedded spaces or tabs.

val is a parameter that will be passed to the routine in R3. It can be a
numeric constant, such as the minimum column width, or an entire
instruction enclosed in angle brackets to substitute for an existing
instruction in block 0 or 1 of the handler. This parameter must not be
0.

rtn is the name of the routine that modifies the code in block 0 or 1 of the
handler. The routine must follow the option table in block 0 and not
extend above file address 776. If you need more space for SET code,
then this lets you overlay the SET code. See the DL example handler
in Appendix A.

Device Handlers 1–51

mode is an optional argument to indicate the type of SET parameter. Enter
NO to indicate that a NO prefix is valid for the option. Enter NUM if
a decimal value is required. Enter OCT if an octal value is required.
Omitting the mode argument indicates that the option takes neither
a NO prefix nor a numeric argument. You can combine the NO and
numeric arguments as follows. The construction <NO,NUM> indicates
that both a NO prefix and a decimal value are valid. The construction
<NO,OCT> indicates that both a NO prefix and an octal value are
valid. Omitting the mode argument forces a 0 into the high byte of
the last word of the table entry.

See the sections below for examples of the .DRSET macro.

The first .DRSET macro issues an .ASECT directive and sets the location counter to
400 for the start of the table. The macro also generates a zero word for the end of
the table. Because the macro leaves the location counter at the end of the table, you
should place the routines to modify code immediately after the .DRSET macro calls
in your handler. This makes sure that they are located in block 0 of the handler file.

1.5.4 Routines to Modify the Handler

Your handler needs a routine for each SET option. You need only one routine for an
option and the NO version of that option. The purpose of the routine is to modify
code in the body of the handler based on the SET command typed on the console
terminal. One routine can support several SET options. Typically, the value passed
in R3 is used to determine which SET option is being performed.

The routines must immediately follow the option table, described above, and they
must be located in block 0, after the table and below address 1000. The code in
the body of the handler that the routines modify must be in block 1 of the handler,
within the first 25610 words.

The name of the routine is its default entry point. This is the entry point for options
that take a numeric value, for options that take neither a numeric value nor a NO
prefix, and for options that accept a NO prefix but do not currently have it. The
entry point for options that allow and have a NO prefix is the default entry point +
4.

On entry to the routine, for all options, the carry bit is clear and registers R0, R1, and
R3 contain information for use by the routine and R4 and R5 should be preserved. If
numeric values are valid for the option, R0 contains the numeric value from the SET
command line. R1 contains the unit number specified as part of the device name; if
no unit number was specified, the sign bit is set. R3 contains the val word of the
SET option table (from .DRSET).

The routine can indicate that a command is illegal by returning with the carry bit
set. For example, the printer SET WIDTH option does not allow a width less than
30. If the option routine indicates failure, the monitor prints an error message and
does not write out blocks 0 and 1. Thus, the check can be made after the block 1
code is modified.

1–52 RT–11 Device Handlers Manual

Once you have added the routines for each option to your handler, you can use the
following line of code to make sure you are within the size bounds:

.IIF GT,<.-1000>, .ERROR .-1000 ; SET code too big!

Then you continue with the rest of the handler code, starting with the .DRBEG
macro, which implicitly resets the location counter to 1000 and establishes the
handler header.

1.5.5 Examples of SET Options

The following examples taken from a printer handler are implementations of SET
options.

The examples were chosen to reflect the SET command examples shown at the
beginning of this section. The SET commands were as follows:

SET LP WIDTH = 80

SET LP CR

SET LP NOCR

First, the handler invokes the .DRSET macro to set up the option tables for the two
options WIDTH and CR.

The first call indicates that the printer WIDTH option is being established, that 30
decimal is a default value of some kind, that O.WIDTH is the routine to process the
option, and that it takes a numeric argument.

.DRSET WIDTH,30.,O.WIDTH,NUM

The next call indicates that the printer CR option is being established, that NOP
is to be passed to the routine, that O.CR is the name of the routine to process the
option, and that the CR option can take a NO prefix.

.DRSET CR,NOP,O.CR,NO

The two macro calls generate the following table:

.ASECT

. = 400

.WORD 30. ;MINIMUM WIDTH

.RAD50 \WIDTH \ ;OPTION NAME

.BYTE <O.WIDTH-400>/2

.BYTE 100

.WORD NOP ;INSTRUCTION TO PASS

.RAD50 \CR \ ;OPTION NAME

.BYTE <O.CR-400>/2

.BYTE 200

.WORD 0 ;END OF TABLE

The routines to process these options immediately follow the end of the table. The
following examples show the routines. The body of the code in block 1 of the handler
that the routines modify is shown at the end of the section.

Device Handlers 1–53

O.WIDTH:MOV R0,COLCNT ;MOVE VALUE FROM USER TO
MOV R0,RSTC+2 ;TWO CONSTANTS
CMP R0,R3 ;COMPARE NEW VALUE TO

;MINIMUM WIDTH, 30.
RTS PC ;RETURN; C BIT SET ON ERROR

Note in the example above that the instructions in the routine O.WIDTH change
data in two locations in block 1 of the handler.

O.CR: MOV (PC)+,R3 ;ENTRY POINT FOR "CR"; MOVE
;ADDRESS OF NEXT LINE TO R3

MOV R3,CROPT ;ENTRY POINT FOR
;"NOCR" (O.CR+4);
;MOVE EITHER "NOP" OR
;PREVIOUS LINE TO CROPT

BEQ RSTC-CROPT+. ;A NEW INSTRUCTION
RTS PC ;RETURN

NOTE
While executing the routines to process a SET option,
R4 and R5 are not available for use.

The routine O.CR has two entry points: for the ‘‘CR’’ option, the routine is entered
at O.CR; for the ‘‘NOCR’’ option, the routine is entered at O.CR + 4. Note that (1)
the routine substitutes one of two instructions for an instruction located in block 1;
(2) a NOP instruction is moved to CROPT if the ‘‘NOCR’’ option is selected; (3) if
‘‘CR’’ is selected, the BEQ RSTC-CROPT+. instruction is moved to CROPT.

The construction of the BEQ instruction is necessary because the branch is being
assembled into a location other than the one from which it will be executed. In all
the routines, a branch instruction must use the following construction to generate
the correct address:

BR A-B+.

A is the destination of the branch instruction.

B is the address of the branch instruction.

. is the current location counter.

Generally, only routines for options that accept NO use these branch instructions.

Finally, look at the code in the interrupt service section of the handler that is modified
by the routines you have just seen. Remember that the code to be modified must be
located in block 1 of the handler, in the first 25610 words.

1–54 RT–11 Device Handlers Manual

.

.
COLCNT: .WORD COLSIZ ;# OF PRINTER COLUMNS LEFT

.

.
CHRTST: CMPB R5,#HT ;IS CHAR TAB?

BEQ TABSET ;YES, RESET TAB
CMPB R5,#LF ;IS IT LINE FEED?
BEQ RSTC ;YES, RESTORE COLUMN COUNT
CMPB R5,#CR ;IS IT CARRIAGE RETURN?

CROPT: NOP ;"NOP" IF "NOCR" OPTION;
;ELSE IF "CR" OPTION, USE
;"BEQ RSTC-CROPT+." FROM
;SET ROUTINES IN BLOCK 0.

CMPB R5,#FF ;IS IT FORM FEED?
BNE IGNORE ;NO, IT IS NON-PRINTING

RSTC: MOV #COLSIZ,COLCNT ;RE-INIT COLUMN COUNTER

From the examples in the first part of this section, you can see how the routines in
block 0 can modify data and instructions in block 1 of the handler.

1.6 Device I/O Timeout

The device timeout feature lets a handler assign a completion routine to be executed
if an interrupt does not occur within a specified time interval. Thus, the handler
can perform the equivalent of a mark time operation without the need for a .SYNCH
call and its attendant potential delay.

Device timeout is supported by all distributed mapped monitors and is an optional
feature on unmapped monitors, available through system generation. (Device
timeout support requires monitor timer support, which is included on all distributed
monitors except SB.) Device timeout is required by the RT–11 multiterminal monitor
and support for it is automatically included when you build that monitor.

Within the handler, you select device timeout by including the system conditional
TIM$IT=1. RT–11 provides two macros to help you implement device timeout in
your handler. The macros, which are described below, are .TIMIO and .CTIMIO.
They are available only to device handlers. If you assemble the handler file with
the conditional TIM$IT equal to 1, the .DRDEF macro issues a .MCALL directive
for the .TIMIO and .CTIMIO macros.

All code in your handler that applies strictly to device timeout support should be
placed inside conditional assembly directives. These directives should include the
device timeout code if the symbol TIM$IT is 1, and omit it otherwise. This way, the
system parameters select whether or not the device timeout code is included in the
handler each time you assemble it.

1.6.1 .TIMIO Macro

Use the .TIMIO macro in the handler I/O initiation section to issue the timeout call.
You can issue the request anywhere in the handler except at interrupt level. If you
need to issue the request at interrupt level, you must issue a .FORK macro call first.

Device Handlers 1–55

The .TIMIO request schedules a completion routine to run after the specified time
interval has elapsed. The completion routine runs in the context of the job indicated
in the timer block. In mapped monitor systems, the completion routine executes with
kernel mapping, since it is still a part of the interrupt service routine. (See the RT–
11 System Internals Manual for more information about interrupt service routines
and the mapped monitor environment.) As usual with completion routines, R0 and
R1 are available for use. When the completion routine is entered, R0 contains the
sequence number of the request that timed out.

Because you must go to fork level (and processor priority 0) to issue a .TIMIO or
.CTIMIO request at interrupt level, your handler must disable device interrupts
before issuing the .FORK, or must be carefully coded to avoid reentrancy problems.
Note that you cannot reuse a timer block until either the timer element expires and
the completion routine is entered, or the timer element is canceled successfully.

The format of the macro is as follows:

.TIMIO tbk,hi,lo

tbk is the address of the timer block, a seven-word pseudotimer queue
element, described below. Note that you must not use a number sign
(#) before tbk.

hi is a constant specifying the high-order word of a two-word time
interval.

lo is a constant specifying the low-order word of a two-word time interval.

The timer block format is shown in Table 1–8.

Table 1–8: Timer Block Format

Offset Name Agent Contents

0 C.HOT .TIMIO High-order time word.

2 C.LOT .TIMIO Low-order time word.

4 C.LINK monitor Link to next queue element; 0 indicates none.

6 C.JNUM user Owner’s job number; get this from the queue element.

10 C.SEQ user Sequence number of timer request. The valid range for
sequence numbers is from 177700 through 177377.

12 C.SYS monitor –1

14 C.COMP user Address of the completion routine to execute if timeout
occurs. The monitor zeroes this word when it calls the
completion routine, indicating that the timer block is
available for reuse.

Although the .TIMIO macro moves the high- and low-order time words to the timer
block for you, you must take care to specify them properly in the macro call. Express
the time interval in ticks. There are 6010 ticks per second if your system is running
with 60-cycle power. If your system is running with 50-cycle power, there are 5010

1–56 RT–11 Device Handlers Manual

ticks per second. Professional 300 series processors have 6010 ticks per second with
either line frequency. Time values for 50-cycle power are shown in square brackets
([]) immediately after the 60-cycle figure.

The low-order time word accommodates values of up to 6553510 ticks. That is equal
to about 1092 [1310] seconds, or about 18.2 [21.8] minutes. If you need to specify a
time interval of 18.2 [21.8] minutes or less, place a zero in the hi argument, and the
number of ticks in the lo argument to the .TIMIO macro.

If you need to specify a time interval longer than 18.2 [21.8] minutes, think of the
high-order word as a carry word. Each interval of 18.2 [21.8] minutes’ duration
causes a carry of 1 into the high-order word. So, to specify an interval slightly
greater than 18.2 [21.8] minutes, supply a 1 to the hi argument, and a 0 to the lo
argument. To specify 36.4 [43.6] minutes, move 2 to the hi argument, 0 to the lo
argument, and so on. Since the 2-word time permits you to indicate up to 65565
units of 18.2 [21.8] minutes each, the largest time interval you can specify is about
2.3 [2.7] years.

The only words of information you must set up yourself in the timer block are the
job number, the sequence number, and the address of the completion routine. You
can get the job number from the current queue element, and then move it to the
timer block. You assign the sequence number yourself. To ensure a unique number,
use a value of 177000+dd$COD, where dd$COD is the device identifier code used in
the .DRDEF macro at the beginning of the handler. The job number and sequence
number are passed to the completion routine when it is entered. You must move
the address of the completion routine to the seventh word of the timer block in a
position-independent manner.

The .TIMIO macro expands as follows:

.TIMIO tbk,hi,lo

JSR R5,@$TIMIT ;POINTER AT END OF HANDLER
.WORD tbk - .
.WORD 0 ;CODE FOR .TIMIO
.WORD hi ;HI ORDER TIME INTERVAL
.WORD lo ;LO ORDER TIME INTERVAL

1.6.2 .CTIMIO Macro

When the condition the handler was waiting for occurs, you should issue a cancel
timeout call, which disables the completion routine. Use the .CTIMIO macro call
in your handler to cancel the timeout request. Execution must be in system state
when you issue the call. Be sure to issue a .FORK call first if you use .CTIMIO at
interrupt level.

For example, a printer handler could check for an off-line condition. When a program
requests an I/O transfer, the handler’s I/O initiation section forces an immediate
interrupt. The handler’s interrupt service section then checks the device error bit.
If the bit is set, the printer is not on line and the handler prints a message, sets a 2-
minute timer with .TIMIO, and returns to the monitor with a RETURN instruction
to wait for another interrupt. The device should not interrupt again until the error
condition has been fixed by an operator. If no interrupt occurs within two minutes,

Device Handlers 1–57

the timer completion routine prints another error message, sets another 2-minute
timer, and returns again to the monitor with RETURN to wait for an interrupt. (See
Figure 1–2 for a printer handler example.)

In this example, when an interrupt finally occurs and the error bit is clear, the
handler issues the .CTIMIO call to cancel the timed wait.

As another example, a disk handler could set a timer before it starts up a seek
operation. When the interrupt occurs, the seek is complete, and the handler should
then cancel the timer.

If the time interval in any application has already elapsed and the device has,
therefore, timed out, the .CTIMIO request fails. Because the completion routine
has already been placed in the queue, the .CTIMIO call returns with the carry bit
set. You can usually ignore this condition.

The format of the .CTIMIO macro call is as follows:

.CTIMIO tbk

tbk is the address of the seven-word timer block described above. Note
that this time block you specify in the .CTIMIO call must be the same
one already used by the corresponding .TIMIO request.

The .CTIMIO macro expands as follows:

.CTIMIO

JSR R5,@$TIMIT ;POINTER AT END OF HANDLER
.WORD tbk - .
.WORD 1 ;CODE FOR .CTIMIO

Note that if a job aborts and your handler is entered at its abort entry point, you must
immediately cancel any outstanding timer requests. However, if a timer completion
routine has already been entered, you must wait for it to execute.

1.6.3 Device Timeout Applications

Device timeout support is used by RT–11 in only a few instances. However, there are
a number of conditions in which timer requests are appropriate. If you are writing
a handler for your own device, consider the following sections to determine whether
or not timer requests would be useful to you.

1.6.3.1 Multiterminal Service

The resident multiterminal service in RT–11 that supports DZ11 and DZV11 modems
uses device timeout to check the status of remote dial-up lines. The bootstrap starts
up a polling routine to check each modem for a change in status. If a change occurs,
the terminal service takes the appropriate action: it either recognizes a new line or
disconnects a line when carrier is lost. Finally, the polling routine issues a .TIMIO
call to start a half-second timer. The timer completion routine restarts the polling
routine after a half-second elapses.

1–58 RT–11 Device Handlers Manual

1.6.3.2 Typical Timer Procedure for a Disk Handler

A disk handler could implement a timer procedure for any disk operation. The
purpose of the timer routine is to cancel or restart any operation that takes too long.
If an operation does not complete within a reasonable amount of time, chances are
good that a disk error of some sort occurred.

The handler’s I/O initiation section sets a timer by using the .TIMIO call. Then
the handler starts up the operation that a job requested: a read, write, or seek
operation. The handler returns to the monitor with a RETURN instruction and
waits for a device interrupt.

If an interrupt occurs before the time limit expires, the handler cancels the timer
and performs its normal sequence of error checking on the results of the transfer.
In general, the handler either drops to fork level to restart an incorrect operation,
or exits to the monitor with .DRFIN to remove the current queue element.

If an interrupt does not occur within the time limit, the timer completion routine
begins to execute. Its first action should be to simulate an interrupt. This action
duplicates the handler environment after a genuine interrupt and makes sure that
the stack has the necessary information. Then the timer completion routine acts as
though the device interrupted but the transfer was in error. The timer completion
routine simply branches to the correct section of code in the interrupt service section
of the device handler to finish the processing.

The timer completion routine should use the following instructions to simulate an
interrupt and enter system state:

MOV @SP,-(SP) ;MAKE ROOM ON THE STACK
CLR 2(SP) ;FAKE INTERRUPT PS = 0
.MTPS #340 ;GO TO PRIORITY 7
.INTEN 0,PIC ;ENTER SYSTEM STATE

After the handler enters system state, it takes the appropriate action as a result of
the timeout. The handler can try the operation again. To do this, it decrements the
retry count, drops to fork level, and branches to the I/O initiation section. The code
in the initiation section sets another timer, restarts the transfer, and returns to the
monitor with a RETURN instruction to await another interrupt.

If the handler decides that the timeout indicates a serious error, one that should
not be retried, this same procedure can be followed for a transfer whose retry count
is used up. In this case, the handler sets the hard error bit in the Channel Status
Word and then exits to the monitor with the .DRFIN call to remove the current
queue element.

NOTE
Before a handler goes through the .DRFIN routine to
remove the current queue element, it must cancel any
timer request that has not yet expired.

Device Handlers 1–59

1.6.3.3 Printer Handler Example

The extended example shown in Figure 1–2 consists of excerpts from a version of
the RT–11 parallel interface printer handler modified to use timer support to check
for the device off-line condition.

When the handler’s I/O initiation section starts up a transfer, it forces an immediate
interrupt, which causes the handler’s interrupt service section to check the error bit
in the CSR. If there is an error, control passes to the routine OFFLIN, which issues
a .SYNCH call to enter user state, prints an error message on the console terminal,
and then sets a 2-minute timer. The handler then returns to the monitor with a
RETURN instruction and waits for the device to interrupt.

If the device interrupts, it means that the error condition has been corrected by an
operator. The handler cancels the timer and checks the error bit once again to make
sure there are no problems. If there is no error, the handler proceeds as usual. If
there is an error, the handler loops back to the OFFLIN routine. If an interrupt
does not occur within two minutes, the timer completion routine begins to execute.
It prints an error message, sets another 2-minute timer, and returns to the monitor
with a RETURN instruction to await an interrupt.

Figure 1–2: Printer Handler Example

; I/O INITIATION SECTION

.DRBEG LP
MOV LPCQE,R4 ;R4 POINTS TO CURRENT Q ENTRY
ASL 6(R4) ;WORD COUNT TO BYTE COUNT
BCC LPERR ;A READ REQUEST IS ILLEGAL
BEQ LPDONE ;SEEKS COMPLETE IMMEDIATELY

RET: BIS #100,@LPS ;CAUSE AN INTERRUPT, STARTING TRANSFER
RTS PC

; INTERRUPT SERVICE SECTION

.ENABL LSB

.DRAST LP,4,LPDONE
CLR @LPS ;DISABLE INTERRUPTS
.FORK FRKBLK
TST TICMPL ;IS A TIMER ELEMENT ACTIVE?
BEQ 1$;NO
.CTIMIO TIMBLK ;YES, CANCEL IT
BCS 1$;ERROR
CLR TICMPL ;AND DON’T DO IT AGAIN

1$: MOV LPCQE,R4 ;R4 POINTS TO CURRENT QUEUE ELEMENT
TST @(PC)+ ;ERROR CONDITION?

LPS: .WORD LP$CSR ;LINE PRINTER STATUS REGISTER
ERROPT: BMI OFFLIN ;YES, HANG TILL CORRECTED

.

.

.
; I/O COMPLETION SECTION

LPDONE: CLR @LPS ;TURN OFF INTERRUPT
.DRFIN LP
.
.
.

Figure 1–2 (continued on next page)

1–60 RT–11 Device Handlers Manual

Figure 1–2 (Cont.): Printer Handler Example

; PRINTER OFF LINE, PRINT WARNING EVERY 2 MINUTES

OFFLIN: MOV LPCQE,R5 ;POINT TO QUEUE ELEMENT
MOVB Q$JNUM(R5),R5 ;GET JOB NUMBER OF CURRENT JOB
ASR R5 ;SHIFT IT
ASR R5 ; RIGHT
ASR R5 ; 3 BITS
BIC #^C<16>,R5 ;ISOLATE JOB NUMBER
MOV R5,SYJNUM ;SAVE IT FOR .SYNCH
MOV R5,TIJNUM ;SAVE IT FOR .TIMIO
.SYNCH SYNBLK,PIC ;GO TO USER STATE
RTS PC ;SYNCH FAILED, PUNT

1$: CLR TICMPL ;INDICATE THAT WE GOT HERE
TST @LPS ;IS THERE STILL AN ERROR?
BPL 2$;NO, QUIT
MOV PC,R0 ;AS COMPLETION ROUTINE, PRINT MESSAGE
ADD #MESSAG-.,R0 ;POINT TO MESSAGE AS PIC
.PRINT ;PRINT IT
MOV PC,R0 ;IN A PIC WAY,
ADD #1$-.,R0 ; POINT TO TIMIO COMPLETION ROUTINE
MOV R0,TICMPL ;SAVE IT
.TIMIO TIMBLK,0,2*60.*60. ;SET A 2-MINUTE TIMER
RTS PC

2$: BIS #100,@LPS ;ENABLE INTERRUPTS
RTS PC ;RETURN LATER

TIMBLK: .WORD 0 ;TIMER BLOCK: HI ORDER TIME
.WORD 0 ;LO ORDER TIME
.WORD 0 ;LINK

TIJNUM: .WORD 0 ;JOB NUMBER
.WORD 177700+LP$COD ;SEQUENCE NUMBER
.WORD 0 ;MONITOR PUTS -1 HERE

TICMPL: .WORD 0 ;ADDRESS OF COMPLETION ROUTINE
SYNBLK: .WORD 0 ;SYNCH BLOCK
SYJNUM: .WORD 0 ;JOB NUMBER

.WORD 0,0,0,-1,0 ;OTHER
.FRKBLK:.BLKW 4 ;FORK BLOCK
MESSAG: .ASCIZ /?LP-W-LP off line - please correct/

.EVEN

.DREND LP

1.7 Error Logging

Error logging is an optional feature of RT–11 designed to help you monitor the
reliability of your system. Device handlers that include support for error logging
call the error logger after each I/O transfer. The error logger creates a historical
record of the device’s I/O activity that you can use to check its reliability.

You must perform a system generation to select error logging. Error logging is
supported in all environments. If your system has the capability to run system jobs,
the error logger runs as a system job; on FB systems, as an ordinary foreground job;
on single-job systems, as a handler.

The system generation conditionals for error logging are as follows:

ERL$G If this value = 1, it indicates that error logging is enabled for this system.

ERL$S This condition defines the number of 256-word blocks to use for the
internal logging buffer with single job monitors.

Device Handlers 1–61

ERL$U This represents the maximum number of individual device units for
which the error logger collects statistics. The default value is 10, and
the absolute maximum number is 30. Each unit adds seven words to the
error logger. One slot is required for each unit. (For example, two slots
are required for a system with an RK05 with two units.) Your response
to a system generation dialogue question establishes the value of this
variable.

You should consider your time and memory requirements before deciding to use error
logging because error logging creates a certain minimal amount of overhead for each
I/O transfer, and the error logger itself uses almost 2K words of memory. However,
the error logger does not have to run constantly, so that the memory it requires can
be made available to your programs when necessary, and calls that your handler
makes to the error logger return immediately. The most efficient way to use the
error logging system is as a check when you suspect device reliability problems,
which means using it only when necessary.

The following sections describe how to implement error logging in your device
handler and what information you should log. They also show you how to add
headings for your device to the error reporting program. See the RT–11 System
Utilities Manual for more information on the entire error logging system and how
to use it.

All code in your handler that applies strictly to error logging should be placed
inside conditional assembly directives. These directives should include the error
logging code if the symbol ERL$G is 1, and omit it otherwise. This way, the system
parameters select whether or not the error logging code is included in the handler
each time you assemble it.

1.7.1 When and How to Call the Error Logger

A handler calls the error logger after each I/O transfer, whether the transfer was
successful or not. If the transfer was in error, the handler calls the error logger once
for each retry of the transfer.

Since calls to the error logger must be serialized, the handler can issue them only
during I/O initiation or following a .FORK call.

The handler must set up registers before it issues the call to the error logger.
The register assignments for the three kinds of calls are described in the following
sections.

1.7.1.1 To Log a Successful Transfer

Set up R4 and R5 as described below before calling the error logger after each
successful transfer.

R5 must point to the third word (BLKN) of the current queue element.

1–62 RT–11 Device Handlers Manual

R4 contains two bytes of information: the high byte is the device-identifier
byte, dd$COD; the low byte is –1.

1.7.1.2 To Log a Hard Error

Set up R2 through R5 as described below before calling the error logger after a
hard error has occurred. Generally, hard errors are those that are not recoverable.
Examples of hard errors are device off line or not powered up, device write-locked,
and so forth. Further, a soft error that has exhausted its allotted number of retries
is considered a hard error.

R5 must point to the third word (BLKN) of the current queue element.

R4 contains two bytes of information: the high byte is the device identifier
byte, dd$COD; the low byte is 0.

R3 contains two bytes of information: the high byte contains the total number
of retries allotted for this transfer; the low byte contains the number of
device registers whose contents should appear in the error report.

R2 is a pointer to a buffer in the handler that contains the device registers to
be logged.

1.7.1.3 To Log a Soft Error

Set up R2 through R5 as described below before calling the error logger after a
soft error has occurred. Generally, soft errors are those that are recoverable and
can possibly be corrected by retrying the transfer. Examples of soft errors include
timing errors and hardware read or write errors.

Initialize a counter in your handler with the total number of retries allotted for each
transfer. Decrement the count as each retry for a soft error is performed. When the
count reaches zero, the error logger considers the error to be a hard error. On soft
error, the error report prints a separate entry for each retry of a given transfer.

All retries are printed in the report even if the registers are identical. The report does
not distinguish between hard or soft immediate errors. It prints only the contents of
the registers at the time of the error and the value of the retry count. An immediate
hard error can be recognized in the output since it will appear with a retry count of
0 with no immediately previous errors on that device and unit (with a retry count
greater than 0).

R5 must point to the third word (BLKN) of the current queue element.

R4 contains two bytes of information: the high byte is the device identifier
byte, dd$COD; the low byte is the current value of the retry counter. (This
value should decrease with each retry until it reaches 0, at which point the
error is considered a hard error.)

R3 contains two bytes of information: the high byte contains the total number
of retries allotted for this transfer; the low byte contains the number of
device registers whose contents should appear in the error report.

Device Handlers 1–63

R2 is a pointer to a buffer in the handler that contains the device registers to
be logged.

1.7.1.4 Differences Between Hard and Soft Errors

The error logger itself does not differentiate between hard and soft errors and records
the same information in both cases. However, by examining the report, you can
determine if a hard error occurred, because a transfer that has exhausted all its
retries will have records in the report for each of these retries, including one with a
retry count of 0. It is therefore up to you to interpret the error.

In some circumstances, user-correctable errors, such as device off line or write-
locked, should not call the error logger. Usually disk and tape hardware errors
are the only ones reported, since these are the errors that reflect device reliability.

1.7.1.5 To Call the Error Logger

Once the required registers are set up, call the error logger as follows:

CALL @$ELPTR

$ELPTR contains a pointer into the Resident Monitor. The .DREND macro allocates
space in the handler for this pointer. The pointer is filled in at bootstrap time (for
the system device) or at .FETCH or LOAD time (for a data device). If the error
logger is not running, the monitor returns immediately to the handler. If the error
logger is running, a link word in RMON contains its entry point. The following lines
of code from RMON show how the call to the error logger is accomplished.

$ERLOG: MOV (PC)+,-(SP) ;ENTER HERE FROM HANDLER
;PUSH NEXT WORD ON STACK

$ELHND::.WORD 0 ;0 IF ERROR LOGGER NOT RUNNING;
;ELSE CONTAINS ERROR
;LOGGER ENTRY POINT

BNE 1$;BRANCH IF LOADED
TST (SP)+ ;PURGE STACK

1$: RTS PC ;INVOKES ERROR LOGGER OR
;RETURNS TO HANDLER

On return from the error logger call, R0 through R3 are preserved and R4 and R5
are indeterminate.

1.7.2 Error Logging Examples

See the handler listings in Appendix A for examples of error logging.

1.7.3 How to Add a Device to the Reporting Program

After you implement error logging in your device handler, the next step is to modify
the reporting system so that the name of your device will appear in the report
headings and the registers will be printed properly. The file ERRTXT.MAC contains
the information for report headings for the devices supported by the RT–11 error
logging reporting utility ERROUT. To include your device, edit this file, reassemble
it, and relink it.

Use the following commands to reassemble and relink ERRTXT.MAC:

.MACRO/LIST ERRTXT

.LINK ERROUT,ERRTXT

1–64 RT–11 Device Handlers Manual

ELBLDR Macro

Use the ELBLDR macro to add a new device to the error log reporting system. Edit
the file ERRTXT.MAC to add the ELBLDR macro call for your device. The format
of the call is as follows:

ELBLDR xx,<type>,C1,C2,<C3>

xx is the device-identifier byte, dd$COD, that you specified in the
.DRDEF macro. It must be a value between 0 and 377 octal.

type is any ASCII string you want to print on the report as the device type.
It can be up to 59 characters long. Remember to enclose it in angle
brackets.

C1 is one of the two strings DISK or TAPE. It identifies the device general
classification.

C2 is the 2-character device name. You must specify exactly two
characters.

<C3> is a list of device register mnemonics (minus the first two characters)
representing the registers that the handler logs. Separate the
mnemonics with commas. Remember to use the angle brackets (<>).

Assembly errors result if you do not specify the parameters to ELBLDR correctly.

None of the parameters for the ELBLDR call is optional.

For example, the ELBLDR call for the RK handler is as follows:

ELBLDR 0,<RK11/RK05>,DISK,RK,<DS,ER,CS,WC,BA,DA,DB>

This example shows that the device is the RK11/RK05 disk, its 2-character name
is RK, its device-identifier byte is 0, and the registers its handler logs are RKDS,
RKER, RKCS, RKWC, RKBA, RKDA, and RKDB.

The default input file name for ERROUT is ERRLOG.DAT. However, you can
save previous ERRLOG.DAT files by renaming or copying them. Thus, ERROUT
can operate on any file with the same format as ERRLOG.DAT. The name is not
important; the format is. The internal format of the data in this file is documented
in the RT–11 Volume and File Formats Manual.

1.8 Special Functions

Handlers use special functions to perform device-specific actions for which there are
no corresponding RT–11 programmed requests. Chapter 2 describes those special
functions supported by the distributed RT–11 device handlers.

The .SPFUN programmed request initiates special functions. When a program
issues a .SPFUN request, it supplies a special function code as one of the arguments.
It is the handler’s responsibility to process the special function.

Device Handlers 1–65

1.8.1 .SPFUN Programmed Request

The format of the .SPFUN programmed request is as follows:

.SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

See the RT–11 System Macro Library Manual for a description of the .SPFUN
programmed request. See Chapter 2 for many special function examples within
distributed handlers.

To use special function calls in your handler, you define the interface between the
programmed request and the device handler. Thus, the meanings of the buf, wcnt,
and blk parameters depend on the particular special function the request invokes;
their meaning is dependent on the handler.

Note, however, the following:

• Although the monitor checks to make sure that buf is a valid address within the
job area, it does not make sure that buf plus wcnt is still within the job area.
It is therefore your responsibility to specify valid values if you use the .SPFUN
request to transfer data.

• When using a mapped monitor and therefore a virtual address for buf, the buffer
address must be mapped before the request is issued. Once the request is issued
and the EMT returns, address translation has been performed and the buffer
address can be unmapped. In the case of a read (input) operation, if the buffer
address is subsequently unmapped, the address must be remapped before data
can be accessed from the buffer.

• As previously mentioned, the buf, blk, and wcnt parameters can have any
meaning that is supported by the particular handler. You could, therefore, pass
an address as an argument.

Of those parameters, the RT–11 monitor performs address translation for only
buf. Therefore, if you pass a mapped address in blk or wcnt, you must not unmap
that address while the request is outstanding or active; that is:

— For nonwait, noncompletion I/O, until a .WAIT request succeeds on the
channel.

— For wait mode I/O, until the request returns.

— For completion mode I/O, until the completion routine is entered.

If the special function call is to return a single value, buf should be a one-word
buffer area. You are free to interpret wcnt and blk as anything you choose. They
can be specification words of some sort, pointers to more buffers, and so on, as long
as the handler interprets them according to the special function code. Note that the
monitor does not alter these values in any way when it passes them to the handler.
For example, it does not change the word count from positive to negative.

1–66 RT–11 Device Handlers Manual

1.8.2 How to Support Special Functions in a Device Handler

Do the following to implement support for special function calls in your handler:

• Specify SPFUN$ as one of the bits in the .DRDEF stat parameter argument.
This indicates that the handler can accept special functions.

• Use the .DRSPF macro to list the supported special functions.

• Define symbols in the handler to represent the types of special functions the
handler can perform. For example, the DY diskette handler defines the following
special function codes:

SIZ$FN = 373 ;GET DEVICE SIZE
WDD$FN = 375 ;WRITE WITH DELETED DATA MARK
WRT$FN = 376 ;WRITE ABSOLUTE SECTOR
RED$FN = 377 ;READ ABSOLUTE SECTOR

Note that all special function codes must be negative byte values (that is, they must
be in the range 200 through 3778). Consult Chapter 2 for those symbols and codes
already defined by RT–11. For the sake of consistency across devices, it is advisable
to have each special function code represent the same operation on all devices. So,
check first to see if a code for your function already exists and use it if it does. If
there is no existing code for your particular function, assign codes starting with 200
and work toward 377 from there. (For extended device-unit handlers, the range is
360–377.) This policy should avoid conflicts with future RT–11 codes.

When the handler is entered for an I/O transfer, it should check the fourth word of
the queue element to see if this is a request for a special function. Q.FUNC, which
is the low byte of the fourth word of the I/O queue element, contains the special
function code. On standard I/O requests for read, write, and seek operations, this
byte is 0. For special function calls, this value is the negative special function code.
Ignore any special function code that is not valid for your device.

If this is a request for a special function, the handler should initiate that function
and return with a RETURN instruction. In the interrupt service section the handler
should, as usual, check for errors and determine whether the operation is complete.
The handler returns either data or words of status information to the calling program
in the user buffer.

Since you are implementing the special functions for a particular device, you can
establish the calling convention for that function in the .SPFUN programmed request
as well as the return convention from the handler. Be sure the handler treats the
arguments appropriately for each different special function call.

For a good example of a handler that implements special functions, see the DX
handler in Appendix A.

1.8.3 Variable Size Volumes

A handler can control a device that permits volumes with two or more different sizes
to be used. Examples of such handlers are the DM handler—which can service both
RK06 and RK07 disks through a single controller—and the DY handler—which can
service either a single-density or a double-density diskette in a single device unit. A
handler for a device that supports volumes of different sizes should pass the size, in

Device Handlers 1–67

blocks, of the smallest volume in the size parameter of the .DRDEF macro. This is the
value that is returned to a running program when it issues the .DSTAT programmed
request.

If it is important that a running program know the size of the volume that is
currently mounted, the program can issue a special function to return the volume
size. The handler must be able to respond to the request by returning the actual
volume size in a one-word buffer area. The handler must have implemented support
for special functions, as described above. The standard special function code for
returning the actual volume size is 373.

1.8.4 Bad-Block Replacement

If your handler is to support bad-block replacement (BBR) by using a replacement
table in the home block, you must implement the BBR special function codes as they
are implemented for the DL and DM handlers. See Chapter 2 for more information.

1.9 Devices with Special Directories

The RT–11 monitor can interface to file-structured devices having nonstandard (that
is, non-RT–11) directories. Magtapes are an example of special devices. Their
handlers set bit 12 (SPECL$) of the device status word. The USR processes directory
operations for RT–11 directory-structured devices; for special devices, the handler
must process directory operations such as .CLOSE, .DELETE, .LOOKUP, .ENTER,
.RENAME, .PURGE, informational (.GFxxx, .SFxxx, and .FPROT), and .CLOSZ, as
well as data transfers. See the RT–11 System Macro Library Manual for information
on those requests.

The monitor requests a special directory operation by placing a positive, nonzero
value in the function code byte (Q.FUNC) of the queue element. The positive function
codes are standard for all devices. The symbol names are defined in the distributed
file, SYSTEM.MLB, and are as follows:

Code Name Function

1 CLOS Close

2 DELE Delete

3 LOOK Lookup

4 ENTR Enter

5 RENM Rename

7 INFO .GFxxx, .SFxxx, and .FPROT operations

10 CLOZ Close with size operation

In a queue element for a special directory operation, word 5 (Q.BUFF) of the queue
element contains a pointer to the file descriptor block containing the device name,
file name, and file type in Radix–50.

1–68 RT–11 Device Handlers Manual

Software errors (such as file not found, or directory full) occurring in special directory
device handlers during directory operations are returned to the monitor, processed,
and appear in byte 52 as the standard, documented error codes. Hardware errors are
returned in the usual manner by setting bit 0 in the Channel Status Word pointed
to by the second word of the queue element.

Programmed requests for directory operations to special directory devices are
handled by the standard programmed requests. When a .LOOKUP is issued, for
example, the monitor checks the device status word for the special device bit. If
the device has a special directory structure, the proper function code is inserted
into the queue element and the element is directly queued to the handler, bypassing
any processing by the USR. Device independence is maintained, since .LOOKUP,
.ENTER, .CLOSE, and .DELETE operations are transparent to the user.

For a special device .LOOKUP, the file length is returned in word 6 of the queue
element (Q.WCNT). For a .ENTER, word 6 returns the length of the new file.

1.10 Device Handlers in Mapped Systems

Device handlers for unmapped system environments require a few changes to work
properly in mapped systems. Before describing the environment for a handler in a
mapped system, the following sections outline the nomenclature conventions. The
final sections explain how a handler communicates with a user buffer in extended
memory.

1.10.1 Naming Conventions and the System Conditional

When you write a device handler, write a common source file called dd.MAC, where
dd is the 2-character device. That source file is then assembled with the correct
monitor conditional file such as XM.MAC and the system generation conditional file,
such as SYSGEN.CND. This procedure ensures that the system generation features
that the handler supports match those of the monitor.

The system generation conditional that represents extended memory support is
MMG$T, which has a value of 0 if extended memory support is not selected and a
value of 1 if extended memory support is selected. The system conditional MMG$T
is correctly set in the distributed monitor conditional files. This means that the
extended memory code is only assembled when the value of the conditional MMG$T
is 1. The assembly produces ddX.OBJ for mapped systems, or dd.OBJ for unmapped
systems.

All code in your handler that applies strictly to memory management support should
be placed inside conditional assembly directives. These directives should include the
memory management code if the symbol MMG$T is 1, and omit it otherwise. This
way, the system parameters select whether or not the memory management code is
included in the handler each time you assemble it.

Device Handlers 1–69

1.10.2 Mapped Monitor Environment

In a mapped monitor system, at least the handler’s root must reside within the low
28K words of physical memory. Typically the entire handler is written to reside in
low memory.

The distributed mapped monitors support the .FETCH request, so usually your
handler need not be continually loaded in memory. All Digital-supplied handlers
for mapped monitors are fetchable with the exception of those few listed in the
handler restrictions section of the RT–11 System Release Notes.

When handlers are entered, they run with kernel mapping, which permits access to
the lower 28K words of memory plus the device I/O page (see Chapter 3 in the RT–
11 System Internals Manual). The program that requests the I/O transfer, however,
need not have the same mapping as kernel mapping. In fact, the program can fall
into one of three valid categories:

• A privileged job whose mapping is identical to kernel mapping.

• A privileged job that maps to physical memory addresses above 28K words.

• A virtual job or completely virtual job with any kind of mapping.

Just as RT–11 supplies macros to ease the writing of parts of a device handler, so too
does it provide monitor routines that simplify managing mapped systems. RT–11
distributes subroutines that perform the address conversion for you.

The program requesting an I/O transfer supplies a 16-bit virtual buffer address in
the programmed request, although that portion of the user’s virtual addressing space
may be mapped somewhere else in physical memory. The handler must therefore
find the actual 18– or 22-bit physical address of the user data buffer before moving
information to it or from it. The monitor verifies that the user buffer area occupies
contiguous locations in physical memory.

The fact that in a mapped system, locations in physical memory are expressed as
18– or 22-bit addresses, is important when you need to specify an address within
the handler itself as a buffer address. If, for example, the handler contains a string
of zeroes that it writes to a device as part of initialization, the handler sets up the
device write operation, specifying the address of the string in the handler as the
buffer address. Since the handler is located within the lower 28K words of physical
memory, its physical address can be expressed as its virtual 16-bit address plus extra
mapping bits (bits 16 and 17 of an 18-bit address, or bits 16–21 of a 22-bit address),
which must be 0.

The RT–11 System Internals Manual describes memory mapping in detail.

The RT–11 monitor provides routines for handlers to use to access the real user data
buffer in physical memory. The following sections describe these routines and the
situations in which they are useful.

1–70 RT–11 Device Handlers Manual

1.10.3 Address Translation

RT–11 provides the following two routines for performing address translation for the
address passed in Q.BUFF.

• $MPMEM

Call $MPMEM to return the physical address to be used for MOV operations.

• $MPPHY

Call $MPPTR (which in turn points to $MPPHY in RMON) to perform address
translation for I/O DMA operations.

1.10.3.1 $MPMEM Routine

The $MPMEM subroutine uses queue element offsets Q.MEM (and Q.BUFF) to
perform the PAR1 offset mapping.

$MPMEM is located at an address 22(decimal) bytes below the entry address of
monitor routine $P1EXT. $P1EXT is pointed to by RMON fixed offset P1$EXT (432).

Before the call, R5 must point to Q.BUFF, the fifth word of the queue element.

On return from the call:

• The first word of the stack, (SP), contains the low-order 16 bits of the physical
buffer address.

• The second word of the stack, 2(SP), contains the high-order bits of the physical
buffer address. The bit positions for an 18-bit address are 4 and 5; those for a
22-bit address are 4 through 9.

The following code fragment illustrates using $MPMEM. (In code preceding the
fragment, R4 was pointed to Q.BLKN, the third word in the queue element.)

MOV @#$SYPTR,R3 ; Get start of RMON
MOV P1$EXT(R3),R3 ; R3 --> $P1EXT
MOV R4,R5 ; Make R5 --> 5th word (Q.BUFF) of
CMP (R5)+,(R5)+ ; queue element
CALL $MPMEM(R3) ; Map KT-11 virtual to physical
MOV (SP)+,R2 ; R2 = low 16 bits physical address
MOV (SP)+,R3 ; R3 = high 2 (or 6) bits physical

; address
.
.
.

See also Sections 1.10.6 and 1.10.7.2.

$MPMEM uses Q.MEM rather than Q.PAR because in the case of UMR on UNIBUS
processors, the value stored in Q.PAR can diverge from the value stored in Q.MEM.

1.10.3.2 $MPPHY Routine

Call the $MPPHY routine to find the user buffer in physical memory to perform
DMA I/O operations. $MPPHY uses the Q.PAR and Q.BUFF queue element offsets
to create the correct 18- or 22-bit address for the user buffer.

The format of the call for the $MPPHY routine is as follows:

Device Handlers 1–71

CALL @$MPPTR

$MPPTR contains a pointer to the $MPPHY routine in the Resident Monitor. The
.DREND macro allocates space for this pointer at the end of the handler. The pointer
is filled in at bootstrap time (for the system device) or at LOAD time (for a data
device).

Before the call:

R5 must point to Q.BUFF, the fifth word in the queue element.

After the call:

(SP), the first word on the stack, contains the low-order 16 bits of the physical buffer
address.

2(SP), the second word on the stack, contains the high-order bits of the physical
buffer address in bit positions 4 and 5, if it is an 18-bit address, or in bit positions
4 through 9, if it is a 22-bit address.

R5 points to Q.WCNT, the sixth word in the queue element. The value is not changed.

The following example is from the RK handler.

CMP (R5)+,(R5)+ ;Advance to bufr addr in queue elt
CALL @$MPPTR ;Convert user virtual addr to physical
MOV (SP)+,-(R4) ;Put low 16 bits in RKBA,

; High bits on stack
MOV (R5)+,-(R4) ;Put word count into RKWC
BEQ 7$;0 Count = SEEK
BMI 5$;Negative = WRITE, So

; all set up
NEG @R4 ;Positive = READ,

;Fix count for controller
MOV #CSIE!FNREAD!CSGO,R3 ;Function is READ

5$: BIS (SP)+,R3 ;Merge high order address
; bits into function

MOV R3,-(R4) ;Start the operation
6$: RTS PC ;Await interrupt

1.10.4 Character Devices: $GETBYT and $PUTBYT Routines

The handlers for character-oriented devices, such as printers, must transfer the data
from the device to the user buffer area themselves. The transfer is usually one byte
at a time. The device itself uses registers in the I/O page to store one character at
a time. The handler can use two monitor routines—$GETBYT and $PUTBYT—to
move data between the I/O page and the user buffer area.

1.10.4.1 $GETBYT Routine

A handler can use the $GETBYT monitor routine to move a byte from the user buffer
in physical memory to the stack. The handler can then move the character into the
device data buffer register in the I/O page and initiate an I/O transfer.

The format of the call for the $GETBYT routine is as follows:

CALL @$GTBYT

$GTBYT contains a pointer to the $GETBYT routine in the Resident Monitor. The
.DREND macro allocates space for this pointer at the end of the handler. The pointer

1–72 RT–11 Device Handlers Manual

is filled in at bootstrap time (for the system device) or at LOAD time (for a data
device).

Before the call:

R4 must point to Q.BLKN, the third word in the queue element.

After the call:

(SP), the first word on the stack, contains the next byte from the user buffer in the
low byte. The contents of the high byte are not defined.

R4 is unchanged.

The following example from the XL handler shows how the handler gets a byte from
the user buffer and outputs it.

GNXTCH: MOV XOCQE,R4 ; R4->current output queue element
BEQ 10$; None available...

.

.

.
TST Q$WCNT(R4) ; Any characters left to output?
BEQ 20$; Nope, this request is complete
INC Q$WCNT(R4) ; Yes, now there is one less to do
CALL @$GTBYT ; Get the byte to output
MOV (SP)+,R5

The buffer address (Q.BUFF) in the queue element is updated by 1. If a mapping
overflow occurs, the monitor routine subtracts 100 from the value in Q.BUFF and
adds 1 to the value in Q.PAR and Q.MEM. Mapping overflow occurs if Q.BUFF is
20100 or more.

1.10.4.2 $PUTBYT Routine

After a successful data transfer, a handler can get a character from the device
data buffer register in the I/O page and push it onto the stack. It can then use
the $PUTBYT monitor routine to move a byte from the stack to the user buffer in
physical memory.

The format of the call for the $PUTBYT routine is as follows:

CALL @$PTBYT

$PTBYT contains a pointer to the $PUTBYT routine in the Resident Monitor. The
.DREND macro allocates space for this pointer at the end of the handler. The pointer
is filled in at bootstrap time (for the system device) or at LOAD time (for a data
device).

Before the call:

R4 must point to Q.BLKN, the third word in the queue element.

The byte to transfer to the user buffer must be on the top of the stack. The character
must be in the low byte of the stack’s first word. The high byte is unpredictable.

After the call:

Device Handlers 1–73

The word containing the character to transfer is removed from the stack.

R4 is unchanged.

The buffer address (Q.BUFF) in the queue element is updated by 1. If a mapping
overflow occurs, the monitor routine subtracts 100 from the value in Q.BUFF and
adds 1 to the value in Q.PAR and Q.MEM. Mapping overflow occurs if Q.BUFF is
20100 or more.

The following example from the XL handler shows how the handler gets a character
and moves it to the user buffer.

30$:
.
.
.

MOVB R5,-(SP) ; Put character here for PUTBYT
CALL @$PTBYT ; Call the routine
DEC Q$WCNT(R4) ; Is transfer complete? (z-bit=1 if so)

1.10.5 Any Device: $PUTWRD Routine

The monitor routine, $PUTWRD, is similar to $PUTBYT, except that $PUTWRD
moves a word to the user buffer in physical memory instead of a byte. This routine
is useful when the handler needs to transfer a word of status information to the user
buffer, rather than a data character from a device. Handlers for any kind of device
can use $PUTWRD.

The format of the call for the $PUTWRD routine is as follows:

CALL @$PTWRD

$PTWRD contains a pointer to the $PUTWRD routine in the Resident Monitor.
The .DREND macro allocates space for this pointer at the end of the handler. The
pointer is filled in at bootstrap time (for the system device) or at LOAD time (for a
data device).

Before the call:

R4 must point to Q.BLKN in the queue element.

The word to transfer to the user buffer must be on the top of the stack.

After the call:

The word to transfer is removed from the stack.

R4 is unchanged.

The buffer address (Q.BUFF) in the queue element is updated by 1. If a mapping
overflow occurs, the monitor routine subtracts 100 from the value in Q.BUFF and
adds 1 to the value in Q.PAR and Q.MEM. Mapping overflow occurs if Q.BUFF is
20100 or more.

The following example from the DY handler shows the handler responding to a
special function call that requests the size of the currently mounted volume. In this

1–74 RT–11 Device Handlers Manual

case, the larger of two possible diskettes is mounted. The handler uses $PUTWRD
to move the size of the volume to the user buffer area.

MOV #DDNBLK,-(SP) ;Push size in blocks onto stack
MOV DYCQE,R4 ;Point R4 to Q.BLKN
CALL @$PTWRD ;Call the routine

1.10.6 Mapping Directly to the User Buffer

Some situations call for combinations of the procedures described in the previous
sections. Others require more effort on the handler’s part to accomplish a transfer.
Some handlers cannot make good use of monitor routines and must access the user
buffer directly.

The DM handler for the RK06 disk, for example, normally uses the $MPPHY monitor
routine to convert mapped addresses to physical addresses. However, when a Cyclic
Redundancy Check (CRC) error occurs, the handler performs its own mapping to
the user buffer and then applies the correction for the error before continuing the
transfer. The procedure for a handler to map to the user buffer is as follows.

Devices such as the RX01 diskette transfer data one sector at a time between the disk
itself and an internal disk data buffer called a silo. Monitor routines for character-
oriented devices available to a silo device are too slow for the RX01. So, the handler
for the RX01 diskette maps to the user buffer in physical memory and then performs
the I/O operation as though it were a simple transfer between memory and the
device. The handler implements this mapping by borrowing kernel PAR1.

The handler does this mapping through kernel PAR1. Handlers map to the user
buffer through the monitor routine $P1EXT1.

$P1EXT copies from the handler to the monitor stack the instructions necessary
to transfer the data, thereby removing the instructions from possible PAR1 space.
$P1EXT next sets the proper PAR1 value and then executes the instructions copied
to the stack. When finished, $P1EXT restores PAR1, clears the monitor stack, and
returns to the handler at the word following the instruction list. Upon return, all
registers are unchanged except as modified by the instruction list.

Call the routine $P1EXT with a JSR R0 followed by a word containing the number
of bytes+2 to copy to the monitor stack, a series of instructions to perform the
data transfer, and the PAR1 value (Q.PAR) from the queue element. The following
instructions from the DX handler illustrate this technique. R1 is the byte count to
transfer, R2 points to the user buffer, R4 points to the RX01 CSR, and R5 points to
the RX01 data register. P1$EXT is a monitor fixed offset containing a pointer to the
routine $P1EXT.

1 Because all relevant code is executed outside the PAR1 area, the interrupt service in the PAR1 area is handled in mapped
monitors by a vector forwarding technique that is transparent to the handler.

Device Handlers 1–75

MOV @#SYSPTR,R4 ;R4 -> monitor base
MOV P1$EXT(R4),(PC)+ ;Get addr of externalization routine

$P1EXT: .WORD P1$EXT ;Pointer to externalization routine
.
.
.

;--- Remove two lines below if not memory management
JSR R0,@$P1EXT ;Let monitor execute the following code
.WORD PARVAL-. ;Number of bytes + 2 to copy

;---

2$: TSTB @R4 ;Test transfer ready flag
BPL 2$;Wait till ready

3$: MOVB (R2)+,@R5 ;Move a char from user bufr to RX01
TSTB @R4 ;Set CSR for next time
DECB R1 ;Check transfer count
BNE 2$;If not 0, more to transfer

;--- If memory management, terminate list with PAR1 value
PARVAL: .WORD 0 ;Remove if not memory management
;---

;Continue with normal processing from here on.

The following restrictions apply to the instruction list passed to $P1EXT:

• No instruction in the list can reference any location in the handler, except for
relative-address references within the list itself.

• The instruction list can use the stack for temporary storage, but it cannot remove
any previous values from the stack or leave any values on the stack after it is
done.

• If used in the instruction list, R0 must be saved and restored.

• Instruction lists of more than 32 words are not recommended because of stack
space limitations.

If your handler must access the user buffer directly, it is important that you
understand how PAR1 maps to the user area. Figure 1–3 shows a virtual job in
a typical mapped system with the user buffer located in physical memory above the
28K-word boundary. The user program is mapped to the buffer through PAR6. The
handler calls $P1EXT, which borrows kernel PAR1, puts the Q.PAR value from the
queue element there, and then uses the Q.BUFF value from the queue element to
access the user buffer.

PAR1 maps to physical memory in units of 32-word decimal blocks and at most can
map an area 4K words long. (Note that the page length of PDR1 is always set to
map the entire page.) If the user buffer starts at a location in physical memory
that is not an even multiple of 32 words, PAR1 maps to the first 32-word boundary
below the start of the buffer. The PAR1 mapping area can start at any address in
physical memory whose low-order two octal digits are 0. Thus, with a particular
PAR1 mapping, as much as 4K words or 4K minus 31 decimal words of the user
buffer will be mapped. Figure 1–4 shows how this mapping works.

Figure 1–4 shows a buffer area located at 331724 in physical memory with the
application program mapped to the buffer through PAR6. The buffer is 24 octal

1–76 RT–11 Device Handlers Manual

Figure 1–3: Device Handler Mapping to User Buffer Area

bytes above 331700, which is a 32-word boundary. $P1EXT puts the Q.PAR value,
3317, into PAR1, replacing the default PAR1 value of 0200. This causes PAR1 to
map to a 4K-word area in physical memory starting at address 331700. As a result,
when the handler refers to kernel virtual addresses in the range 20000 through
37776, it accesses physical memory locations 331700 through 351676. Since the
value in Q.BUFF is 20024, by using that value, the handler can access the start of
the user buffer area at location 331724.

If the amount of data to be transferred is large, you may need to advance the buffer
pointer and adjust the mapping to account for it. There are two ways to advance the
buffer pointer. The easier way is to modify PAR1 as you go. For example, for every
32 words you advance through the buffer, add 1 to the PAR1 value and subtract
64 from the offset. The DX handler example just described transfers 64 words at a
time, adding 2 to PAR1 (and subtracting 128 from the offset) after each transfer to
avoid mapping overflow.

Another way to advance the buffer pointer is to modify the value of Q.BUFF by
modifying the value in the queue element itself. To adjust the mapping, step through
the following procedures, thinking in terms of 4K-word units. First, after you modify
the value of Q.BUFF, compare the new value to 40000. If the value is greater than
or equal to 40000, subtract 20000 from it, and add 200 to Q.PAR. These procedures
take care of not only adjusting the mapping, but also avoid mapping overflow.

Device Handlers 1–77

Figure 1–4: PAR1 Mapping

Finally, here are steps to follow to access any location in the user buffer area, if
you are given a byte offset from the beginning of the buffer. Essentially, you must
determine the number of 32-word units in the offset by dividing the 16-bit byte offset
by 100 octal and adding the quotient to PAR1 and the remainder to Q.BUFF. Then
you will be able to access the correct location in the buffer.

For example, suppose you needed to access the byte at offset 12345 from the start of
the buffer shown in Figure 1–4. Dividing 12345 by 100 yields a quotient of 123 and
a remainder of 45. Adding 123 to the current value of Q.PAR, which is 3317, yields
3442 for the new PAR1 value. Adding 45 to the value of Q.BUFF, which is 020024,
gives 020071 as the new buffer address. (Note that this is a byte address.)

1.10.7 Extended Memory Subroutines

This section describes a set of subroutines that allow you to perform the following
extended memory operations:

• Move data from one place to another in extended memory.

• Obtain a specified amount of memory from the free memory list maintained by
RT–11.

1–78 RT–11 Device Handlers Manual

• Find a specified global region.

• Convert a user virtual address into a 22-bit physical address.

The entry points for the subroutines that perform these operations are located
directly below P1EXT.

1.10.7.1 Converting a Virtual Address into a Physical Address ($JBREL)

The $JBREL subroutine returns the physical address that corresponds to a virtual
address for the job number you supply. Your program must be in Kernel mode when
it calls $JBREL. If your program is in User mode, use the .CALLK request to transfer
control to Kernel mode.

$JBREL is located at an address 2610 bytes below the entry address of monitor
routine $P1EXT. $P1EXT is pointed to by RMON fixed offset P1$EXT (432).

You supply a job number and virtual address to $JBREL in the following registers:

Register Contents

R0 The virtual address to be translated into a physical address.

R1 The job number, addressing mode, and space-type (instruction or
data) for which the virtual address applies. You can determine the
job’s number from the .GTJB request. R1 contains the following
information, none of which is validated for accuracy:

Bits Value Meaning

0 0 Reserved

1–3 0–7 Job Number

4–7 0 Reserved

8–9 Addressing mode:

00
01
10
11

User
Supervisor
Reserved
Reserved

10 Address space:

0
1

Data space (if enabled)
Instruction space

11–15 0 Reserved

R3 The size in 32-word chunks.

Device Handlers 1–79

$JBREL passes the job number and virtual address to the monitor. The monitor
performs the address translation and returns to $JBREL. If the specified virtual
address is not mapped to a virtual job, the equivalent kernel-mapped address is
returned.

On return, if the carry bit is clear, $JBREL provides the following information:

Register Contents

R1 The PAR1 relocation bias.

R2 The PAR1 displacement.

R3 The amount of contiguously mapped memory that begins at the
returned PAR1 bias and displacement, in 32-word chunks. If the value
returned is less than that specified in R3 as input to $JBREL. The V-
bit (overflow) is set; otherwise it is cleared.

If carry is set on return, R1 and R2 contain random data.

The following example code assumes you are running in User mode and, therefore,
require the .CALLK request to transfer control to virtual mapping in Kernel mode:

.MCALL .CALLK, .PRINT, .EXIT

.LIBRARY "SYSTEM.MLB"

.MCALL .SYCDF, .FIXDF, .P1XDF

.NLIST BEX

MMG$T =: 1
; Define system logicals:

.SYCDF ; $SYPTR - base of fixed area

.FIXDF ; P1$EXT - offset of $P1EXT

.P1XDF ; $CJVPT - routine offset from $P1EXT

VIRTAD =: 0 ; Virtual address to be translated
JOBNUM =: 16 ; Job number of virtual address

START: MOV #VIRTAD,R0 ; Virtual address to translate
MOV #JOBNUM,R1 ; Job number for translation

; virtual address is user mode
; and data space (if enabled)

MOV #5,R3 ; Check that 5 64-byte chunks
; are contiguously mapped

MOV @#$SYPTR,R2 ; R2 = RMON Base
MOV P1$EXT(R2),-(SP) ; Stack pointer to $P1EXT routine
ADD #$CJVPT,@SP ; Make it point to $JBREL for .CALLK
.CALLK ; Enter KERNEL mode

; Execute $JBREL
; Return to USER mode

BCS 10$; Branch if error occurred
BVS 20$; Branch if less than 5 64-byte

; chunks are contiguously mapped
MOV R1,PAR1BS ; Store returned PAR1 value
MOV R2,PAR1OF ; Store returned PAR1 offset
BR DONE ; Branch to program exit

10$: .PRINT #ERROR1 ; Report the error
BR DONE ; Branch to program exit

20$: .PRINT #ERROR2 ; Report the error
DONE: .EXIT ; Done with example

PAR1BS: .WORD 0 ; Physical address’s PAR1 value
PAR1OF: .WORD 0 ; Physical address’s PAR1 offset
ERROR1: .ASCIZ /Error: Check for invalid job number./
ERROR2: .ASCII /Error: Not all of requested address block is /

.ASCIZ /contiguously mapped./

1–80 RT–11 Device Handlers Manual

.END START

1.10.7.2 Moving Data Within Extended Memory ($BLKMV)

The $BLKMV subroutine moves the contents of memory from one place in 22-bit
physical memory to another. The entry point is $P1EXT-2.

In the following example, R0 contains the address of $P1EXT, and BLKMOV equals
–2. $BLKMV moves the data from the specified input buffer to the specified output
buffer.

MOV #input_buffer_par1,R1
MOV #input_buffer_par1offset,R2
MOV #output_buffer_par1,R3
MOV #output_buffer_par1offset,R4
MOV #word_count,R5
CALL BLKMOV(R0)

1.10.7.3 Obtaining Free Memory (XALLOC)

The XALLOC subroutine obtains a specified amount of memory from the free memory
list maintained by RT–11. The size argument passed in R2 is in units of 3210 words.
To allocate 3200010 words, specify 1000. as the size passed to R2. The entry point
for the subroutine is $P1EXT-6.

In the following example, R0 contains the address of $P1EXT, and XALLOC equals
–6.

MOV #required_size,R2
CALL XALLOC(R0)

If the required amount of memory is not available, the carry bit will be set on return.
In this event, R2 contains the size of the largest amount available.

If the required amount of memory is available, the carry bit will be reset on return.
In this event, the memory has been removed from the free list, and R1 contains the
region address divided by 3210.

XALLOC uses R3 and destroys the contents of this register.

1.10.7.4 Returning Memory to the Free List (XDEALC)

The XDEALC subroutine returns a specified section of extended memory to the free
memory list maintained by RT–11. The entry point for XDEALC is $P1EXT–1810.
$P1EXT is pointed to by RMON fixed offset P1$EXT (432).

The address and size of the section of extended memory to be returned are specified
in units of 3210 words. Load R1 with the starting address divided by 3210 and R2
with the size of the region in units of 3210 words.

In the following example, R0 contains the address of $P1EXT, and $XDEPT is –1810.

MOV #region_address,R1 ; Address in units of 32. words
MOV #region_size,R2 ; Size in units of 32. words
CALL $XDEPT(R0)

Device Handlers 1–81

On return from XDEALC, the carry bit is clear if the memory was returned. If the
carry bit is set, the memory was not returned because the free memory has become
too fragmented.

XDEALC destroys the contents of R1 and R2. If you want to preserve the contents
of those registers across the call, you must save them.

1.10.7.5 Finding a Global Region (FINDGR)

The FINDGR subroutine finds a global region that has a specific name. The entry
point for this subroutine is $P1EXT–10.

In the following example, R4 contains the address of $P1EXT, and FINDGR equals
–1010.

MOV #rad50_name_area,R5
CALL FINDGR(R4)

where rad50_name_area is the address of a 2-word area containing the RAD50 name
of the region to search for.

If the specified region is found, the carry bit is clear on return. In this event, R1
points to the size word of the associated global region control block.

If no region by the specified name is found, the carry bit is set on return. In this
event, R1 points to the size word of the next available global region control block.

If no more global region control blocks are available, R1 is returned with a zero
value.

1.10.7.6 Converting a Virtual Address into a Physical Address ($USRPH)

The $USRPH subroutine converts a user virtual address in the current running job
into a 22-bit physical address.

NOTE
No job number is specified. Ensuring that the current
running job is also the job for which the address
translation is intended is quite difficult. Therefore,
unless you have a very good reason for using this
routine, Digital recommends you instead use the
$JBREL routine, for which you can specify the job
number.

The entry point for this subroutine is $P1EXT–1410.

In the following example, R5 contains the address of $P1EXT, and CVAPHY equals
–14.

MOV #virtual_address,R0
CALL CVAPHY(R5)

On return, R1 will contain the high-order address bits, and R2 will contain the
low-order address bits.

1–82 RT–11 Device Handlers Manual

1.11 System Device Handlers and Bootstraps

In these sections, a description of monitor files precedes an explanation of how to
create a system device handler or modify an existing handler to use as a system
device. Within the main body of this explanation, details are given on the primary
driver and on various bootstrap routines. The final sections provide background
information on the DUP procedures for bootstrapping a new system device.

1.11.1 Monitor Files

A monitor file must reside on your system device and can have any name you
choose, but its required file type is .SYS. If you create a monitor through the system
generation process, its name is RT11xx.SYG. You must rename the monitor to .SYS
before you use it.

Blocks 1 through 4 of each monitor file contain the secondary bootstrap. The
secondary bootstrap loads the system device handler and the monitor into memory.
It also modifies the monitor tables to connect the monitor with the device handler
and assigns the default DK and SY names.

Each device handler that can be used as a system device handler has a special block
of device-specific code in it called the primary driver that is used by the secondary
bootstrap to read the system device handler file and the monitor file from the system
device. The secondary bootstrap has room in its own block 0 to store the primary
driver.

1.11.2 Creating a System Device Handler

To create a system device handler, you must add the primary driver to a standard
handler for a data device. As described in the following sections, the .DRBOT macro
does much of that work for you.

1.11.2.1 .DRBOT Macro

Use the .DRBOT macro to help you set up the primary driver. It also invokes the
.DREND macro to mark the end of the handler so that the primary driver will not be
loaded into memory during normal operations. In general, the code in the primary
driver does not have to be Position-Independent. However, any non-PIC reference
must be expressed relative to ddBOOT::. Note also that locations 608 through 1168
are not available for your use.

The format for the .DRBOT macro is as follows:

.DRBOT name,entry,read

name is the 2-character device name.

entry is the entry point of the software bootstrap routine.

read is the entry point of the bootstrap read routine.

The .DRBOT macro puts a pointer to the start of the primary driver into location 62
of the handler file. It puts the length, in bytes, of the primary driver into location
64. The primary driver, including the error routine supplied by .DREND, must not

Device Handlers 1–83

exceed 10008 bytes. Location 66 contains the offset from the start of the primary
driver to the start of the bootstrap read routine.

Issue the .DRBOT macro call before the .DREND macro call. Then put the primary
driver code between .DRBOT and .DREND, remembering that the primary driver
must be one block or less in size—that is, it must be 10008 bytes long or less,
including the error routine and the locations from 608 through 1168. The .DREND
macro is called twice in a system device handler: once by .DRBOT, and once when
you use it at the very end of the primary driver. The first occurrence of .DREND
closes out the nonsystem section of the device handler and sets up a table of pointers
into the monitor, among other things. The second .DREND call, the one you issue
yourself, creates the BIOERR bootstrap error routine, instead of repeating the
pointer table.

If you use the BOOT command to bootstrap the new device, DUP passes the system
unit number to the primary driver in location 4722 and in R0. If you bootstrap the
device with a hardware bootstrap or some non-RT–11 utility program, the primary
driver must determine the device unit number that was booted and save it in location
4722 and in R0.

1.11.2.2 Primary Driver

The primary driver you add to a standard handler for a data device consists of four
parts:

• Entry routine

• Software bootstrap

• Bootstrap read routine

• Bootstrap error routine

The primary driver works together with the RT–11 bootstrap, BSTRAP, to boot
the new system device. The primary driver is contained entirely within the p-sect
ddBOOT, where dd is the 2-character device name. The code is loaded and executes,
beginning at location 0 in physical memory.

For examples of the primary driver, see the handler listings in Appendix A.

1.11.2.3 Entry Routine

The entry point for the primary driver is ddBOOT::. This location must contain only
two instructions, and these must follow the Digital standard bootstrap sequence.
These instructions are a NOP and a branch to the start of the software bootstrap.
If the start of the software bootstrap is too far away for a branch, you can branch to
a JMP instruction that starts the software bootstrap. The entry routine for the RK
handler is as follows (BOOT1 is defined in the primary driver):

RKBOOT:: NOP
BR BOOT1

Any hardware bootstrap causes the code in p-sect ddBOOT to load into memory at
location 0. It also starts execution at ddBOOT::.

1–84 RT–11 Device Handlers Manual

1.11.2.4 Software Bootstrap

The DUP utility executes the software bootstrap as the result of a jump or branch
from the entry routine. Upon entry, all registers are available for use in the software
bootstrap. The software bootstrap performs the following functions in the order
shown:

1. Sets up the stack at location 10000.

2. Saves the number of the device unit from which the system was just bootstrapped.
The method you use to find the unit number varies depending on the device; some
unit numbers are passed in R0, and others must be extracted from the CSR. Save
the unit number on the stack, and elsewhere in memory, if necessary.

3. Calls the bootstrap read routine to read in the rest of the bootstrap.

4. Puts a pointer in B$READ to the bootstrap read routine.

5. Puts the Radix–50 value for ‘‘B$DNAM’’ in B$DEVN.

6. Stores the device unit number in B$DEVU.

7. Jumps to B$BOOT in RT–11’s bootstrap to continue.

The software bootstrap should be located in the primary driver immediately below
location ddBOOT + 664. (Locations 664 through 776 contain the error routine
created by .DREND.)

1.11.2.5 Bootstrap Read Routine

The purpose of the bootstrap read routine (the primary bootstrap) is to read the
volume in the device unit from which the system was just bootstrapped. It is called
by both the RT–11 bootstrap (BSTRAP, the secondary bootstrap) and by DUP (the
software boostrap), as described in the previous section.

The interface through which the other routines pass information to the bootstrap
read routine is as follows:

R0 contains the block number to read.

R1 contains the word count to read.

R2 contains the memory buffer address into which to store the data.

All registers are available for use in the bootstrap read routine, as is the stack.

The bootstrap read routine normally is a noninterrupt routine, used to read the
volume according to the parameters passed in R0 through R2. On error, the routine
should jump to BIOERR. If there are no errors, it should return with a RETURN
instruction, with the carry bit clear.

The bootstrap read routine should be located in your primary driver at location
ddBOOT + 120. (Location 120 is the lowest address at which the read routine can
be located.)

Device Handlers 1–85

1.11.2.6 Bootstrap Error Routine

The bootstrap error routine starts at location BIOERR::. The code in this routine
is supplied completely by the .DREND macro, which you place at the end of the
primary driver.

1.11.3 DUP and the Bootstrap Process

This section shows how DUP carries out three commands related to bootstrapping.
The commands are as follows:

BOOT ddn:filnam
COPY/BOOT xxn:filnam ddm:
BOOT ddn:

1.11.3.1 BOOT ddn:filnam

Use the BOOT ddn:filnam command to perform a software bootstrap of a specific
monitor file on a specific device. In the command line, dd represents the 2-character
device name; n is its unit number. Both the new monitor file and the new device
handler must be present on device dd.

As soon as this command is issued, DUP first checks that device dd is a random-
access device. Next, it locates the monitor file filnam.SYS on the device. (The .SYS
file type is both the default and the required file type.) Then DUP reads blocks 1
through 4 into a memory buffer. These blocks contain the secondary bootstrap for
the monitor.

The next-to-last word in block 4 contains the suffix for the handlers associated with
this monitor. DUP uses this to build the file name of the device handler, usually
dd.SYS or ddX.SYS. DUP reads block 0 of the device handler file into a memory
buffer, using the contents of locations 62 and 64 to locate the primary driver, and
reads it into a memory buffer.

Next, DUP copies the primary driver into a buffer at the beginning of the secondary
bootstrap, which is also in a memory buffer. It loads the information shown in
Table 1–9 for the primary driver and the secondary bootstrap.

Table 1–9: DUP Information

Offset from Start
of Memory Buffer Contents

4722 Booted unit number (B$DEVU)

4724–4726 Booted file name in Radix–50 (B$DNAM)

5000 Date at which booted

5002–5004 Time at which booted

DUP then copies the primary driver and secondary bootstrap from the memory buffer
into memory locations 0 through 5004. Then it jumps to location 1000 to start the
secondary bootstrap at its DUP entry point so that the secondary bootstrap can load
the monitor and the system device handler into memory.

1–86 RT–11 Device Handlers Manual

Figure 1–5 illustrates the procedure.

Figure 1–5: BOOT ddn:filnam Procedure

1.11.3.2 COPY/BOOT xxn:filnam ddm:

Use the COPY/BOOT xxn:filnam ddm: to copy the secondary bootstrap from the
monitor file on device xx to blocks 2, 3, 4, and 5 of device dd. In the command line,
xx represents the device on which the monitor file is stored; n is its unit number; dd
represents the 2-character name of the device that is to receive the bootstrap; m is
its unit number.

Device Handlers 1–87

As soon as this command is issued, DUP checks that devices xx and dd are random-
access devices. Next, it locates the monitor file filnam.SYS on the xxn: device. It
reads blocks 1 through 4 into a memory buffer. These blocks contain the secondary
bootstrap for the monitor.

DUP locates the appropriate handler file on device dd. DUP then reads block 0 of
the device handler file into a memory buffer, using the contents of locations 62 and
64 to locate the primary driver, and reads it into a memory buffer.

The handler for the system device dd must already be located on dd before you can
copy the bootstrap to the device. DUP loads two words of Radix–50 for filnam into
locations 4724 and 4726 of the memory buffer. Next, DUP copies the primary driver
into block 0 of device dd. Finally, DUP writes the secondary bootstrap to blocks 2
through 5 of device dd.

Figure 1–6 illustrates the procedure.

Figure 1–6: COPY/BOOT xxn:filnam ddm: Procedure

1.11.3.3 BOOT ddn:

Use the BOOT ddn: command to perform a software bootstrap of a specific device
that already has a specific monitor secondary bootstrap in blocks 2, 3, 4, and 5
(placed there by the COPY/BOOT command). In the command line, dd represents
the 2-character name of the device to be booted; n is its unit number. Both the new
monitor file and the new device handler must be present on device dd.

1–88 RT–11 Device Handlers Manual

As soon as this command is issued, DUP first checks that device dd is a random-
access device. Then it reads blocks 2, 3, 4, and 5 into a memory buffer. These blocks
contain the secondary bootstrap for the monitor. The primary driver is already in
locations 0 through 776.

DUP locates the appropriate handler file on device dd. This procedure is a check
that the volume has a system device handler stored on it so that it can be validly
bootstrapped.

DUP then extracts the file name of the monitor file from locations 724 and 726 of
block 4 and locates the monitor file on the device to make sure that it really exists.

Next, DUP loads the information shown in Table 1–10 for the primary driver and
the secondary bootstrap.

Table 1–10: DUP Information

Offset from Start
of Memory Buffer Contents

4722 Booted unit number

5000 Date booted

5002–5004 Time booted

DUP then copies the primary driver and secondary bootstrap from the device into
memory locations 0 through 4777. Then it jumps to location 1000 to start the
secondary bootstrap at its DUP entry point so that the secondary bootstrap can
load the monitor and the system device handler into memory.

If the /FOREIGN option is used, DUP reads in block 0 and jumps to location 0.

Figure 1–7 illustrates the procedure.

1.12 Including Support for Multiterminal Handler Hooks

Including handler hooks support in a multiterminal monitor and in your handler lets
the handler use any serial line on the system. The distributed LS and XL handler
source files contain conditionalized support for multiterminal handler hooks. In this
section, the XL handler is used to provide example code. A copy of the XL handler
with extended comments is located in Appendix A.

This section provides information on including support for multiterminal handler
hooks in your handler. Chapter four in the RT–11 System Internals Manual contains
a section that describes how the monitor supports such handlers. You should read
that section before you read this one, as that section describes the basic monitor
/handler protocol. It also describes the monitor data structures that your handler
writes and accesses and the interrupt service routines your handler uses to read and
write data.

Device Handlers 1–89

Figure 1–7: BOOT ddn: Procedure

Support for multiterminal handler hooks should be included in at least the following
places. Each item is described in detail with example code.

• Installation code following .DRINS, Section 1.12.1

• Set code for the supported SET command conditions at .DRSET, Section 1.12.2

• Establish the monitor hooks at installation or LOAD/FETCH code, Section 1.12.3

• Handler hook interrupt processing during execution of interrupt service code,
Section 1.12.4

• Remove handler hooks connection with the monitor at UNLOAD/RELEASE code
Section 1.12.5

1–90 RT–11 Device Handlers Manual

1.12.1 Installation Support

The handler does the following at installation:

• Determines if the handler should use the handler hooks monitor support.

If not required, the handler can install for nonmultiterminal support.

If required but not available, the handler refuses to install.

• Assuming the proper conditions are met, the handler accepts the installation.

The following code is from the installation section of the XL handler source. R0
contains the contents of RMON fixed offset 54, $SYPTR, and $THKPT has been
defined as 472:

TSTB I$MTTY ;Are handler hooks needed?
BEQ 20$;Nope...
TST $THKPT(R0) ;Yes, is the support available?
BEQ 40$;Nope, reject the installation
BR 30$;Yes, nothing to do until fetch/load

20$: .
.
.
.

30$: TST (PC)+ ;Accept the installation (carry=0)
40$: SEC ;Reject the installation (carry=1)

RETURN
.
.
.

I$MTTY: .BYTE -1 ; : Install-time ’hooks required’ flag
.BYTE ;reserved

1.12.2 SET Command Support

Two SET command conditions should be supported by a handler that has been built
with hooks support:

• SET dd LINE=n

Support for this condition is included so that the handler can change the serial
line to which it will attach. The default line number can be established during
system generation.

• SET dd [NO]MTTY

Support for this condition is included when a handler is built to support both
a standard interface and the multiterminal monitor hooks. In such a case,
by default the handler assumes connection to the standard interface until the
command is issued.

When the MTTY condition is specified, the handler should clear the installation
CSR (found in handler file image 176). The handler should also clear the vector
information in the handler header (handler file image offset 1002). The original
contents of these words can be built into words elsewhere in the handler from
which they can be restored when the NOMTTY condition is specified.

The code to support those SET command conditions for the XL handler follows:

Device Handlers 1–91

The following is in block 0, following the installation code:

I$MTTY: .BYTE -1 ; : Install-time ’hooks required’ flag
.BYTE ;reserved

VECSAV: .WORD 100000+<<XL$VTB-H1.VEC>/2-1> ; : Vector info for SET NOMTTY
CSRSAV: .WORD XL$CSR ; : CSR info for SET NOMTTY

.

.

.
.DRSET LINE 16. O.LINE NUM ;LINE=n
.DRSET MTTY -1 O.MTTY NO ;[NO]MTTY

.

.

.
; SET XL LINE=line_number

O.LINE: CMPB R0,R3 ;Is line number valid?
BHI O.ERR ;Nope...
MOVB R0,O$LINE ;Yes, set line number to use
BR O.NOR

; SET XL [NO]MTTY

O.MTTY: BR 10$;Entry point for MTTY
NOP ;placekeeper
CLR R0 ;Entry point for NOMTTY
MOV CSRSAV,INSCSR ;Nope, restore install-time CSR
MOV VECSAV,H1.VEC ; and vector information
BR 20$

10$: CLR INSCSR ;Reset install-time CSR and
CLR H1.VEC ; vector so handler installs

20$: MOVB R0,O$MTTY ;Set/Reset MTTY hooks use flag
MOVB R0,I$MTTY ; and inform install code of setting
BR O.NOR
.
.
.

O.NOR: TST (PC)+ ;Success (carry=0)
O.ERR: SEC ;Failure (carry=1)

RETURN
.
.
.

The following is in the executable portion of the handler (block 1 and beyond):

; *** SET ***
O$MTTY: .BYTE -1 ;Default to hooks used
.Assume <O$MTTY-XLSTRT> LE 1000 MESSAGE=<Code to set not in block 1>

; *** SET ***
O$LINE: .BYTE XL$LUN ;Default line to use
.Assume <O$LINE-XLSTRT> LE 1000 MESSAGE=<Code to set not in block 1>

1.12.3 Establish Hooks Connection with Monitor

The handler establishes hooks connection with the monitor at the LOAD/FETCH
code. The code should do the following:

• Determine if handler hooks are required and if not, proceed with
nonmultiterminal hooks code (connect to standard interface) so long as the CSR
and vector do not conflict with any TCB in the multiterminal configuration.

The handler installation code should determine if support exists in the monitor
for handler hooks. Therefore, because the handler is installed, support for
handler hooks can be assumed.

1–92 RT–11 Device Handlers Manual

• From RMON fixed offset $THKPT, the handler should access the monitor data
structure THOOKS and store the addresses of the hooks support routines in the
in-memory image of the handler.

• Conduct the following tests:

1. Determine which serial line is to be used and verify its validity.

Compare the requested line number with the maximum supported in
THOOKS.

2. Determine if the line is available.

From THOOKS data, access the TCB for the line and determine if the T.CSR
word exists (showing the interface is present on the system) and if the value
is correct.

3. Verify that the line is not the console line.

Check the CONSL$ bit in the T.STAT word of the TCB.

4. Verify that the line is not already owned.

Check that the T.OWNR word of the TCB is zero.

• If the tests above are passed, the handler should determine its physical name
and place it in the handler at the word just before the handler hooks routine.

• If the tests above are not passed, the handler should report a LOAD/FETCH
error by setting the PSW carry bit and return.

• The handler then performs the following operations in the indicated order (to
avoid any race condition):

1. Store the address of the TCB to which it is attached in memory.

2. Place the address of its handler hooks entry point in the T.OWNR word of
the TCB.

That address must reside in the low 28K-words of memory in Kernel mode
and Instruction address space.

3. Set the HANMT$ bit in the T.STAT word of the TCB.

4. If you handler needs to monitor modem control signals, set the HANMC$
bit in the T.STAT word of the TCB. Otherwise, modem control is handled by
the multiterminal monitor as described in the remote terminal section of the
RT–11 System Internals Manual

The following code from the XL handler source illustrates connection between the
handler and the monitor.

Device Handlers 1–93

;+
;
; LOAD
; This routine is entered on FETCH or LOAD of the XL handler
; and is used 1) to verify use of the handler in the specific
; configuration and, if needed, 2) to establish the required
; connections between the handler and the interrupt service of
; a monitor with support for multiterminal handler hooks.
;
;-

.ENABL LSB

FETCH::
LOAD::

MOV R5,ENTRY$; Save entry point
MOV R2,SLOT$; and table size
MOV @R5,R5 ; R5 -> Base of handler (in memory)
MOV @#$SYPTR,R0 ; R0 -> Base of RMON
TSTB <O$MTTY-XLLQE>(R5) ; Terminal hooks to be used?
BEQ 20$; Then use normal DL
MOV $THKPT(R0),R1 ; R1 -> Multiterminal handler hooks

; data structure in RMON
BEQ 60$; Monitor doesn’t have the support...
TSTB (R1)+ ; Bypass structure size byte
MOVB (R1)+,R2 ; R2 = Number of LUNs on system
MOV (R1)+,R3 ; R3 -> TCB list
MOV (R1)+,<MTOENX-XLLQE>(R5) ; Set pointer to output enable routine
MOV (R1)+,<MTYBRX-XLLQE>(R5) ; Set pointer to Break control routine
MOV (R1)+,<MTYCTX-XLLQE>(R5) ; Set pointer to Control routine
MOV (R1)+,<MTYSTX-XLLQE>(R5) ; Set pointer to Status routine
MOVB <O$LINE-XLLQE>(R5),R0 ; R0 = Line to attach to
BMI 60$; Must be a positive number
CMPB R0,R2 ; Is line in this configuration?
BGE 60$; Nope, invalid line number
ASL R0 ; Shift for word offset into TCB list
ADD R0,R3 ; R3 -> TCB list entry
MOV @R3,R3 ; R3 -> TCB for LUN
TST T.CSR(R3) ; Is the line present in hardware?
BEQ 60$; Nope...
TST T.STAT(R3) ; Is the line a console?

.Assume CONSL$ EQ 100000
BMI 60$; Yes...
MOV R5,R0 ; R0 -> Handler hook routine
ADD #<XLHOOK-XLLQE>,R0 ; ...
TST T.OWNR(R3) ; Is the line already attached?
BEQ 10$; Nope...
CMP R0,T.OWNR(R3) ; Yes, to this handler?
BNE 60$; Nope...

10$: MOV ENTRY$,R1 ; R1 -> $ENTRY entry
SUB SLOT$,R1 ; R1 -> $PNAME ENTRY
MOV @R1,-2(R0) ; Inform handler of its physical name,
MOV R3,<TCBADX-XLLQE>(R5) ; link the handler to the TCB
BIS #<HANMT$!HANMC$>,T.STAT(R3) ; declare line owned by handler

; and that handler will process modem,
MOV R0,T.OWNR(R3) ; finally link the TCB to the handler
BR 50$
.ENDC ;NE XL$MTY

20$: BIT #MTTY$,$SYSGE(R0) ; Is this a multiterminal monitor?
BEQ 50$; Nope, then there can’t be a conflict
.ADDR #MTAREA,R0 ; R0 -> .MTSTAT EMT area
.ADDR #MTSTAT,R1 ; R1 -> Status block
.MTSTA R0,R1 ; Get info about multiterminal system
BCS 60$; Errors?
MOV @#$SYPTR,R0 ; R0 -> $RMON
MOV MTSTAT,R1 ; R1 -> First TCB in system
ADD R0,R1 ; ...
MOV MTSTAT+MST.LU,R2 ; R2 = Highest LUN on the system

; (Number_of_LUNs - 1)
30$: TST T.CSR(R1) ; Is this a configured line?

BEQ 40$; Nope...
CMP <XIS-XLLQE>(R5),T.CSR(R1) ; Will use of the CSR conflict?
BEQ 60$; Yes, reject the load
CMP <XL$VTB-XLLQE>(R5),T.VEC(R1) ; Will use of the VECTOR conflict?
BEQ 60$; Yes, reject the load

40$: ADD MTSTAT+MST.ST,R1 ; On to next TCB
DEC R2 ; More TCB’s to check?

1–94 RT–11 Device Handlers Manual

BGE 30$; Yep...
.BR 50$; Nope, use of interface won’t conflict

50$: TST (PC)+ ; Success return
60$: SEC ; Error return

RETURN

ENTRY$: .BLKW ; : -> $ENTRY table entry
SLOT$: .BLKW ; : Size of a monitor handler table

MTAREA: .BLKW 3 ; : EMT area for .MTSTAT
MTSTAT: .BLKW 8. ; : Status block from .MTSTAT

1.12.4 Handler Hook Interrupt Processing

The handler hook interrupt entry point is called by the monitor whenever an
interrupt occurs on the line to which the handler is attached.

When an input interrupt occurs, the monitor calls the handler hook entry point with
the character in R5 and the TH.PIC function code in R0. The handler processes the
character, preserving the registers, and returns.

When an output interrupt occurs, the monitor calls the handler hook entry point with
the TH.GOC function code in R0. The handler returns the next output character
in R5 and the PS carry bit is clear. If the handler has no character for output, it
returns the PS carry bit set. All registers are preserved.

The multiterminal interrupt service controls character output. A handler cannot
send output directly to an interface, but must instead indicate it has output by
calling the MTOENB routine.

The following code from the XL handler source file illustrates the process.

; The following byte indicates whether the handler should make use
; of the multiterminal hooks during FETCH/LOAD and during operation.

; *** SET ***
O$MTTY: .BYTE -1 ;Default to hooks used
.Assume <O$MTTY-XLSTRT> LE 1000 MESSAGE=<Code to set not in block 1>

; *** SET ***
O$LINE: .BYTE XL$LUN ;Default line to use
.Assume <O$LINE-XLSTRT> LE 1000 MESSAGE=<Code to set not in block 1>

ISPND: .BYTE -1 ; : Input suspend flag
OSPND: .BYTE -1 ; : Output suspend flag

.EVEN

.

.

.
;+
;
; XLHOOK
; Entered from multiterminal input or output interrupt service.
;
; Call (TH.GOC):
; R0 = Function code
;
; Return (TH.GOC):
; PSW<C> = 0, R5 = character
; PSW<C> = 1, no character available
;
; Call (TH.PIC):
; R0 = Function code
; R5 = character
;
;-

.ENABL LSB

Device Handlers 1–95

XLPNAM: .Rad50 /XL/ ; : Rad50 physical name
; loaded by FETCH/LOAD code

XLHOOK:
.Assume <XLHOOK-XLPNAM> EQ 2 MESSAGE=<XLPNAM must preceed XLHOOK>

MOV R4,-(SP) ;Save register for awhile

; Function code = 1 = TH.GOC
; (Get Output Character)

CMP R0,#TH.GOC ;’Get Output Character’ request?
BNE 10$;Nope...
TSTB OSPND ;Is output suspended?
BNE 20$;Yep...
CALL HOINT ;Yes, hook handler output service
BR 30$

; Function code = 2 = TH.PIC
; (Put Input Character)

10$: CMP R0,#TH.PIC ;’Put Input Character’ request?
BNE 20$;Nope...
TSTB ISPND ;Is input suspended?
BNE 20$;Yep...
CALL HIINT ;Yes, hook handler input service
BR 30$

20$: SEC ;Return failure
30$: MOV (SP)+,R4 ;*C* Restore previously saved register

RETURN

1.12.5 Remove Handler Hooks Connection to Monitor at UNLOAD/RELEASE

Upon UNLOAD or RELEASE, the handler should perform the following operations
in the indicated order (to avoid any race conditions):

1. Clear the HANMT$ and HANMC$ bits in T.STAT in the TCB.

2. Clear the T.OWNR word of the TCB.

The following code from the XL source file illustrates the procedure:

UNLOAD::
MOV @R5,R5 ; R5 -> Handler entry point (XLLQE)
TST <STATFG-XLLQE>(R5) ; Is handler in use?
BNE 10$; Nope, it can be unloaded...
MOV <XICQE-XLLQE>(R5),-(SP) ; Check internal queues
BIS <XOCQE-XLLQE>(R5),(SP)+ ; ...
BEQ RELEAS ; They’re empty...
.ADDR #NOUNLO,R0 ; R0 -> Error message string

; (KMON reports error)
SEC ; Indicate error
RETURN ; and return to KMON

RELEAS::
MOV @R5,R5 ; R5 -> Handler entry point (XLLQE)

10$:
TSTB <O$MTTY-XLLQE>(R5) ; Terminal hooks in use?
BEQ 20$; Nope...
MOV <TCBADX-XLLQE>(R5),R1 ; R1 -> TCB we’re hooked to
BEQ 30$; We’re not...
CALL <DISINI-XLLQE>(R5) ; Disable input
CALL <DISOUI-XLLQE>(R5) ; and output interrupts
CLR R0 ; Deassert all modem control bits
CALL <SETSTT-XLLQE>(R5) ; ...
CLR T.OWNR(R1) ; Disconnect TCB from handler
BIC #<HANMT$!HANMC$>,T.STAT(R1) ; ...
BR 30$

20$: ; Perform UNLOAD/RELEASE operations
; for a nonhooked handler

.

.

.
30$: CLC

RETURN

1–96 RT–11 Device Handlers Manual

NOUNLO: .NLCSI TYPE=I,PART=PREFIX
.ASCIZ "F-Handler may not be unloaded while in use"

1.13 Including Extended Device-Unit Support

When modifying a user-written handler to enable extended device-unit support, you
should be aware of how an extended-unit handler interacts with two RMON tables
($OWNER and $PNAM2) and the functions specific to an extended-unit handler in
the following:

• .DRDEF and .DRBEG macros

• LOAD/FETCH routine

• UNLOAD/RELEASE routine

• Q.FUNC byte of an I/O queue element

See the RT–11 System Internals Manual for a description of the $PNAM2 table. See
the following sections for a description of the changes to the $OWNER table, the
macros, routines, and byte.

1.13.1 .DRDEF and .DRBEG Macros

The .DRDEF and .DRBEG macros generate required code for the preamble of a
device handler. Specify the UNIT64=YES parameter to the .DRDEF macro to place
the 1-letter extended-unit handler name and ownership table in blocks 0 and 1 of
the handler.

The format for calling .DRDEF is:

.DRDEF name,code,stat,size,csr,vec,[UNIT64=YES]

Note the name parameter to the .DRDEF call. The macro .DRDEF uses the first
letter of the name parameter as the 1-letter physical device name of an extended-unit
device.

The name parameter defines both the dd$NAM constant (the traditional 2-letter
physical device name) and the dd$PN2 constant (the 1-letter device name).

The macro .DRDEF places the RAD50 representation of the 1-letter device name
followed by two blanks in offset H.64UM (1008) of block 0 of an extended-unit
handler. It also places the location of the extended-ownership table in offset H.UNIT
(768) of block 0 of the handler and indicates generation of the table in the last 32-
bytes of memory-resident code. (If the monitor under which the handler is running
does not support extended device units, those last 32 bytes are not loaded into
memory.)

.DREND creates the extended-ownership table in the memory resident portion of
the handler because UNIT64=YES was specified in the previous call to the .DRDEF
macro. The extended-ownership table (dd$U64) is always 1610 words (6410 nibbles)
long.

Device Handlers 1–97

1.13.2 LOAD/FETCH and UNLOAD/RELEASE Routines

You place the new LOAD/FETCH and UNLOAD/RELEASE routines in the extended-
unit handler. You place those routines in the handler SETOVR PSECT and order
the PSECTs in the handler source code such that SETOVR is the last. You then link
the handler as illustrated in the following example command:

.LINK/NOBITMAP/EXE:BIN:SPX.SYG/BOUNDARY:512. OBJ:SPX
Boundary? SETOVR
.

1.13.2.1 LOAD/FETCH Routine

If the running RT–11 monitor has extended device-unit and device ownership
support, then the LOAD/FETCH routine:

1. Places a pointer to the handler’s extended-ownership table in the second word of
the handler’s entry in the monitor’s $OWNER table.

2. Sets the first word of the handler’s entry in the $OWNER table to a value of
2. This value, and any nonzero even value in the $OWNER unit 0 nibble, is a
flag (the $XUNIT flag) indicating both that the handler supports up to 64 units
and that the second word of the handler’s entry in the $OWNER table points
to a separate list holding the $OWNER nibbles. The $XUNIT flag is filled in at
bootstrap/install time.

The definition of a nibble (4 contiguous bits) in the $OWNER table for a
nonextended-unit device handler is that its value is either 0 or the job number +
1. Therefore, an $OWNER nibble of a nonextended-unit device handler is always
0 or odd, since job numbers are always even.

Figure 1–8 shows the handler entry in the $OWNER table pointing to the
extended-ownership table in the handler.

1.13.2.2 UNLOAD/RELEASE Routine

If extended-unit support is enabled in the running RT–11 monitor, the UNLOAD
/RELEASE code of an extended-unit handler clears the second word of the handler’s
entry in the monitor’s $OWNER table, since the extended-ownership table (along
with the handler itself) is being removed from memory.

1.13.2.3 Example LOAD/FETCH and UNLOAD/RELEASE Routines

The following example LOAD/FETCH and UNLOAD/RELEASE routines would be
appropriate for extended device-unit handers:

.IF NE,dd$N64

.PSECT SETOVR

.SBTTL LOAD - Load/Fetch code for extended device-unit handler

1–98 RT–11 Device Handlers Manual

Figure 1–8: Relationship of $OWNER Table to Extended-Ownership Table

first word second word

$XUNIT flag o

3 2 1 0

~ ~

extended−ownership handler table
containing 64(decimal) ownership nibbles

entry in $OWNER monitor table

.

.

.

77 76 75 74

;+
; Example LOAD/FETCH routine for a extended device-unit Handler.
;
; INPUT
;
; R0 -> handler routine being called
; R1 -> GETVEC routine
; R2 $SLOT*2
; R3 type code
; 0 -- .FETCH
; 2 -- .RELEASE
; 4 -- $LOAD
; 6 -- $UNLOAD
; 10-- Job Abort
; 12-- BSTRAP
; R4 -> read routine
; R5 -> $ENTRY word as above
;
;
; BSTRAP or KMON INSTALL modifies $PNAME, $PNAM2, and $OWNER+0
; for an extended device-unit handler. You need to insert only the
; address of the extended-ownership table into $OWNER+2 here.
;
;
; OUTPUT
; Registers need not be saved by the handler code
; Carry clear, unless an error was detected by
; $SYS or the handler code.
; If an I/O error occurred, R0 is cleared and Carry set.
; If the handler returns with Carry set, R0 is passed,
; as it was returned by the handler.
;-

.LIBRARY "SRC:SYSTEM" ;Indicates SYSTEM.MLB

.MCALL .CF3DF ; CF3.64 definition

.MCALL .FIXDF ; $CNFG3 and $PNPTR definitions

.MCALL .SYCDF ; $SYPTR definition

.CF3DF

.FIXDF

.SYCDF

Device Handlers 1–99

LOAD:
FETCH:

MOV @#$SYPTR,R0 ; R0 -> Base of RMON
BIT #CF3.64,$CNFG3(R0) ; Extended unit support in monitor?
BEQ 10$; Branch if not, done.
BIT #CF3.OW,$CNFG3(R0) ; Owner table support in monitor?
BEQ 10$; Branch if not, done.

20$: MOV R2,R3 ; R3 = $SLOT*2
ASL R3 ; *4
ASL R3 ; *8
ADD R2,R3 ; R3 = $SLOT*10
CALL FIXOWN ; Insert extended ownership table addr

; into $OWNER word #2.
; R1 -> $OWNER+2

10$: CLC
RETURN ; Done.

.SbTtl UNLOAD - Unload/release code for a extended device-unit handler

;+
; Example UNLOAD/RELEASE routine for a extended device-unit Handler.
;
; INPUT
;
; R0 -> handler routine being called
; R1 -> GETVEC routine
; R2 $SLOT*2
; R3 type code
; 0 -- .FETCH
; 2 -- .RELEASE
; 4 -- $LOAD
; 6 -- $UNLOAD
; 10-- Job Abort
; 12-- BSTRAP
; R4 -> read routine
; R5 -> $ENTRY word as above
;
;
; This routine should zero the $OWNER+2 pointer to the extended ownership
; table of an extended device-unit handler.
;
; OUTPUT
; Registers need not be saved by the handler code
; Carry clear, unless an error was detected by $SYS or the handler code
; If an I/O error occurred, R0 will be cleared and Carry set.
; If the handler returns with carry set, R0 will be passed
; as it was returned by the handler.
;-

RELEASE:
UNLOAD:

MOV @#SYPTR,R0 ; R0 -> base of RMON
BIT #CF3.64,$CNFG3(R0) ; extended device-unit support

; in monitor?
BEQ 10$; Branch if not
BIT #CF3.0W,$CNFG3(R0) ; Owner table support in monitor?
BEQ 10$
MOV R2,R3 ; R3 = $SLOT*2
ASL R3 ; *4
ASL R3 ; *8
ADD R2,R3 ; R3 = $SLOT*10.
CALL FIXOWN ; R1 -> $OWNER+2
CLR @R1

10$: CLC
RETURN

.SBTTL FIXOWN - insert pointer to extended ownership table into $OWNER

1–100 RT–11 Device Handlers Manual

;+
; FIXOWN - insert pointer to extended ownership table into second word
; of $OWNER table (64 UNITS ONLY!!!)
;
; INPUT
; R2 = $SLOT*2
; R3 = $SLOT*10.
; R5 -> $ENTRY entry for this handler
; dd$X64: extended ownership table
;
; OUTPUT
; $OWNER+2 points to extended ownership table
; R1 points to $OWNER+2
;-

FIXOWN: MOV @#SYPTR,R1 ; R1 -> $RMON
MOV $PNPTR(R1),-(SP)
ADD R1,@SP ; @SP -> beginning of $PNAME
ADD R2,@SP ; @SP -> beginning of $ENTRY
MOV R5,R1 ; R1 -> $ENTRY entry for this handler
SUB (SP)+,R1 ; R1 = byte offset into $ENTRY
ADD R5,R1 ; R1 = $ENTRY + double-word index
SUB R3,R1 ; R1 -> $OWNER of this handler + 8.
CMP -(R1),-(R1) ; R1 -> $OWNER of this handler + 4
MOV @R5,-(R1) ; move addr of ddLQE into $OWNER+2
ADD #dd$X64-ddLQE,@R1 ; make $OWNER (pic) to point to

; extended ownership table
RETURN

.ENDC ;NE dd$N64

1.13.3 Q.FUNC Definition

The Q.FUNC byte of an I/O queue element passed to an extended-unit handler is
different from the Q.FUNC byte of an 8-unit handler. However, the Q.FUNC byte
passed to an 8-unit handler is unchanged to allow upward compatibility and to
allow extended-unit handlers to function properly for units 0-7, when extended-unit
support is not included in the running RT–11 monitor.

Q.FUNC is the low byte of the fourth word of the I/O queue element passed to a
handler in an I/O request. Q.FUNC contains the special function code and the high
3 bits of the handler unit number.

The following diagram shows the bit layout of the Q.FUNC byte for an extended-unit
handler:

T N U M F U N C

T means the TYPE of I/O request.
NUM means the UNIT NUMBER.
FUNC means the FUNCTION.

The I/O request can be one of two types:

• On standard I/O requests or requests for special directory operations, the T bit
is 0. In this case:

– NUM is the high 3 bits of the handler unit number.

– FUNC is a value 0000 through 1111. (The value 0000 specifies a read, write,
or seek operation; 0001 through 1111 specifies a special directory operation.)

Device Handlers 1–101

• On special function (SPFUN) I/O requests, the T bit is 1. In this case:

– NUM is one’s complement of the high 3 bits of the handler unit number.

– FUNC is a value 0000 through 1111 that specifies an SPFUN operation from
SPFUN 360 (0000) to SPFUN 377 (1111).

1.13.4 Programmed Requests of Extended-Unit Handlers

You must modify programs that assemble device specifications from physical device
names and unit numbers for those programs to support extended-unit handlers.
You can do this in conjunction with use of the .CSTAT programmed request, which
reports the device on which a file is located.

For an extended-unit handler, .CSTAT returns the 2-letter device name from the
$PNAME table if the device unit specified falls in the 0-7 range. If the device unit
specified is greater than 7, .CSTAT returns the 1-letter device name found in the
new $PNAM2 table.

1.14 How to Assemble, Link, and Install a Device Handler

Assembling, linking, and installing a new device handler are simple procedures
described in detail in the following sections.

1.14.1 Assembling a Device Handler

The command you use to assemble your handler can include the following elements:

• Your MACRO–11 source file should be named dd.MAC, where dd is the 2-
character device name.

• You can use the /SHOW:MEB assembler option to print the expansions of macros
such as .DRBEG and .DRAST in the assembly listing.

• Each monitor has a corresponding conditional source file, such as XM.MAC,
which defines the basic features of that monitor.

• SYSGEN.CND is the default name of the SYSGEN conditional file and is a
product of the system generation process. Omit this file if you are assembling a
device handler that will run with a distributed RT–11 monitor.

If your handler is to be used with a monitor that was produced through the system
generation process, you must use the SYSGEN conditional file with which you
assembled that monitor so that the handler conditionals will match the monitor
conditionals and the handler will operate in the correct environment. You can
specify the name of the SYSGEN conditional file by requesting an answer file
during the SYSGEN process as the .CND file takes the file name of the answer
file.

• If you have used symbol names from the distributed system library
SYSTEM.MLB, you should assemble your handler with that library. The default
device for SYSTEM.MLB is SRC, so you should assign SRC to that device
on which SYSTEM.MLB resides and include SRC in the full file specification
(SRC:SYSTEM.MLB).

1–102 RT–11 Device Handlers Manual

Include the line .LIBRARY "SRC:SYSTEM.MLB" early in your program to call that
library.

To assemble a handler for an unmapped system, use the following command where
mon is the distributed monitor conditional source file:
.MACRO/CROSSREFERENCE/SHOW:MEB/LIST mon+SYSGEN.CND+SYSTEM.MLB/LIBRARY+dd/OBJECT

To assemble a handler for a mapped system, use the following command, where mon
is the distributed monitor conditional source file:
.MACRO/CROSSREFERENCE/SHOW:MEB/LIST mon+SYSGEN.CND+SYSTEM.MLB/LIBRARY+dd/OBJECT:ddX

1.14.2 Linking a Device Handler

Once your source file assembles without errors, you are ready to link it. To link a
handler for an unmapped system, use the following command:

.LINK/NOBITMAP/EXECUTE:dd.SYS dd

To link a handler for a mapped system, use the following command:

.LINK/NOBITMAP/EXECUTE:ddX.SYS ddX

If the handler requires block alignment of some code, use the following command
where nnn is the block alignment boundary for PSECT psect:

.LINK/NOBITMAP/EXECTURE:ddX.SYS/BOUNDARY:nnn ddX
psect

1.14.3 Installing a Device Handler

Before you can use your new handler, you must inform the monitor that the handler
is present and you want it installed. Add the monitor information about it to the
monitor device tables described in Chapter 2 of the RT–11 System Internals Manual.
The process of adding a new device is called installation. There are two separate
routines in the RT–11 system that can install a device handler: the bootstrap and the
monitor INSTALL command. Both routines require a device’s hardware to be present
on the system before they install the device handler. (Section 1.14.3.6 describes a
way to circumvent this restriction if you need to install a handler for a nonexistent
device.)

The following sections describe the various ways to install device handlers in an
RT–11 system.

1.14.3.1 Using the Bootstrap to Install Handlers Automatically

The bootstrap routine first locates the system device handler on the device from
which you booted the system and installs it. Then it scans the rest of the handler
files on the system device and tries to install the corresponding handler for each
hardware device it finds on the system. If the hardware is not present, the bootstrap
does not install the device.

The only difficulty with this procedure occurs when there are more handler files than
device slots. A distributed monitor reserves one device slot for each device RT–11
supports. A monitor you create through system generation reserves one slot for each
device you request. In addition, it provides the number of empty slots you specify.

Device Handlers 1–103

A slot is considered to be reserved for a particular device if the $PNAME monitor
table has an entry for that device. A slot is empty if $PNAME has a zero word.

The automatic device installation routine in the bootstrap has a set of priorities to
determine which handlers to install when there are more handlers than slots. If
all slots are empty, the bootstrap installs the system device handler plus the first
handlers it encounters on the system device whose device hardware is present. For
example, if a system has eight slots, all empty, the bootstrap installs the system
device handler and the first seven legitimate handlers it finds on the system device.

If one or more slots are reserved for specific devices (that is, the devices have entries
in the $PNAME table), the bootstrap reserves those slots for the corresponding
handlers until it can verify the presence of the appropriate hardware. If the
hardware exists, the bootstrap installs its device handler. If the hardware is not
present, the bootstrap clears its $PNAME entry, thus creating an empty slot.

Figure 1–9 summarizes the algorithm the bootstrap uses to install device handlers.

As you can see, handlers with entries in the $PNAME table have higher priority at
boot time. If the handler file is on the system device and the device hardware exists,
the bootstrap always installs the handler.

When you write a device handler yourself, you should have no problem installing it
in your RT–11 system because you can rely on the bootstrap to install the handler
for you if the handler resides on the system device, if its hardware is present, and
if there is an empty slot in the monitor tables. If your system has no free slot, you
can create one or more by simply storing fewer device handler files on your system
device and rebooting the system. You can also use the monitor INSTALL command
(described in Section 1.14.3.2) to install a new handler without rebooting the system.
(This new handler may be one that the bootstrap could not install due to lack of free
slots, or it may be a new handler that you just created or just copied to the system
device.) Or, if you created your system through system generation, you can use the
DEV macro (described in Section 1.14.3.3) to reserve a slot for a new device handler
and give it priority for installation at bootstrap time. Figure 1–10 summarizes the
ways you can install a new device handler.

1.14.3.2 Using the INSTALL Command to Install Handlers Manually

Before using the INSTALL command to install a handler manually, use the SHOW
command to see if there are any empty device slots on your system. If there are
none, use the REMOVE command to remove a device you do not need and make
room for your new device, which you then add by using the INSTALL command.
The formats of these commands are documented in the RT–11 Commands Manual.

If a device slot was already available, your device will install automatically the next
time you bootstrap the system. If you used REMOVE and INSTALL to add your
new device to the system, you must reissue the commands after each bootstrap. To

1–104 RT–11 Device Handlers Manual

Figure 1–9: Bootstrap Algorithm for Installing Device Handlers

Device Handlers 1–105

Figure 1–10: Installing a New Device Handler

install the new device automatically at each bootstrap, put REMOVE and INSTALL
commands in your system’s startup indirect file. This saves you the trouble of typing
the commands yourself. In addition, it gives the device the appearance of being
permanently installed.

1.14.3.3 Using the DEV Macro to Aid Automatic Installation

If you created your system through a system generation, you can edit a system
MACRO–11 source file to add a new device to the $PNAME table, thus giving it
preference in the automatic handler installation procedure. The file you edit is
SYSGEN.TBL, one of the files you assemble to create a monitor file.

Use the DEV macro in the file SYSGEN.TBL to add a new device to the system
permanently. The format of the DEV macro is as follows:

DEV name,s

1–106 RT–11 Device Handlers Manual

name is the 2-character device name.

s represents the device status word (leave this argument blank).

The following examples are taken from the SYSGEN.TBL file:

DEV RK ;INSTALLS THE RK DISK
DEV LP ;INSTALLS THE LINE PRINTER
DEV MT ;INSTALLS MAGTAPE

After you edit SYSGEN.TBL to add the DEV macro call for your device, you must
reassemble it. Use the following command:

.MACRO/OBJECT:TBxx mon+SYSGEN.CND+SYSGEN.TBL

xx represents the monitor type, such as SB, FB, XM, or another of the mapped
monitors.

mon represents the monitor conditional source file, such as XM.MAC, which defines
the basic features of that monitor. Once the assembly is complete, relink the object
files to create your new monitor. Follow the commands in the command file that
resulted from your system generation procedure to build the modified system.

1.14.3.4 Installing Devices Whose Hardware Is Present

Both routines in RT–11 that can install a device handler—the bootstrap code and
the monitor INSTALL command code—install handlers only for those devices whose
hardware is present on the current system configuration. The routines look at
location 176 in block 0 of the handler and test the address that 176 contains, which is
normally the base CSR for the device. If the hardware for the device is not present on
the system, a bus timeout occurs, causing a trap to 4, which the installation routines
field. As a result, neither the bootstrap routine nor the INSTALL command will
install the device handler. In addition, the INSTALL command prints the ?KMON–
F–Invalid device installation message.

The installation routines think the device’s hardware is present if its CSR responds
on the bus. However, this simple test is not sufficient to determine, in some cases,
which hardware device is present. For example, some devices are assigned the same
addresses in the I/O page for one or more of their status registers. If RT–11 just
tested a ‘‘shared’’ I/O page address, it still does not know which of two devices is
really present and therefore which handler to install. The RX01 and RX02 diskette
devices, for example, have the same bus address and the same number of status
registers in the I/O page. When RT–11 attempts to install the DX handler, it must
be able to determine whether or not hardware is present, and whether or not it is
the RX01 device. Clearly, it should not install the DX handler when the hardware
is really the RX02 device.

There is almost always some difference between two or more devices that is
discernible from their registers in the I/O page. Each handler for one of the hard-to-
identify devices can test for this difference and inform the RT–11 installation routine
whether or not it should install the device handler it is currently considering.

Device Handlers 1–107

1.14.3.5 Writing an Installation Verification Routine

RT–11 handlers for devices with shared I/O page addresses all contain an installation
verification routine to distinguish which hardware device is actually present and to
permit or inhibit installation of the current handler. If you write a device handler
yourself, you can include your own installation verification routine.

In general, the installation verification routines distinguish which hardware is
present based on one of the three following conditions:

• Of the two devices that share some registers, one device has more registers than
the other.

• If two devices share addresses for all their registers, and if they have the same
number of registers, sometimes one device has a read/write bit where the other
device has a read-only bit.

• Sometimes a device has a unique identification bit or byte.

The installation verification routines, then, determine which device is present based
on the results of testing one of the distinguishing conditions. Once this determination
has been made, the routine signals to the RT–11 installation routine whether or not
to install the current handler and then returns to the monitor with the carry bit set
to prevent installation and with the carry bit clear to permit installation.

Note that your installation verification routine can use all registers.

Entry Points of the Installation Verification Routine
An installation verification routine that you write in your own handler starts at
location 200 in block 0 of the handler. It must not extend beyond location 360,
unless you link your handler with the /NOBITMAP option – in which case location
376 is the limit. Location 200 is the entry point that the bootstrap code uses to
install a data device. The INSTALL monitor code always enters here, as well.

Location 202 is the entry point that the bootstrap code uses to install the system
device. The INSTALL monitor code never enters here.

If you do not care whether your handler is installed as the system device or as a data
device, put a NOP instruction at location 200. If your handler must be installed as
the system device handler, use the following instructions to prevent its installation
under any other circumstances:

. = 200 ;NON-SYSTEM ENTRY POINT
BR ERROR ;BRANCH TO ERROR ROUTINE
.
.
.
; Code to execute when installed as system device
.
.
.

ERROR: SEC ;SET CARRY TO PREVENT INSTALLATION
RTS PC ;AND RETURN

1–108 RT–11 Device Handlers Manual

The .DRINS macro sets up the installation code area in block 0 of a device handler.
.DRINS defines symbols for the installation verification code entry points and for
the installation CSR. After .DRINS is called, the location counter is set to 200, the
address of the data device installation entry point.

.DRINS Macro—Use the .DRINS macro near the beginning of your device handler,
before the header section. The .DRINS macro is described in Section 1.2.1.3.

If the Hardware for This Handler Has an Extra Register
If this handler is for a device that shares an I/O page address with another device,
you can identify which device is present if the two devices have a different number
of registers. When the device for the current handler has one more register than the
other device, use the following instructions to test for the extra register:

MOV 176,R0 ;GET THE SHARED CSR
TST n(R0) ;TEST THE EXTRA REGISTER AT OFFSET n

;THE SHARED CSR
RTS PC ;RETURN (WITH CARRY SET

;IF WRONG DEVICE)

This routine tests the extra register. If there is no device configured there, the bus
times out, causes a trap to 4, and sets the carry bit. The installation verification
routine returns to the monitor with the carry bit set, indicating that the correct
hardware for the current handler is not present, and that this handler should not
be installed.

On the other hand, if the extra register responds to the test, the TST instruction
returns with the carry bit clear, which means that the correct hardware for this
device handler is present, and that RT–11 should install the handler.

If the Hardware for This Handler Has Fewer Registers
If the hardware for the other device that shares an I/O address with the device for
this handler has more registers, this handler can test for the absence of the extra
register. If the extra register is not found, RT–11 should install the current handler.

The following instructions take care of this situation:
MOV 176,R0 ;GET THE SHARED CSR
TST n(R0) ;TEST THE EXTRA REGISTER AT OFFSET n

;FROM 176. IS A DEVICE HERE?
BCC 1$;YES, OTHER DEVICE IS HERE.
CLC ;NO, CLEAR CARRY
RTS PC ;INSTALL CURRENT HANDLER

1$: SEC ;SET CARRY
RTS PC ;DO NOT INSTALL CURRENT HANDLER

Essentially, this routine checks for the presence of the other device’s extra register.
If it is not present, the routine instructs RT–11 to install the current handler.

If an Identification Bit or Byte Exists
If the devices that share an I/O page address also share an identification bit or byte,
an installation verification routine can check the bit or byte and determine which
hardware is present. It can then permit or inhibit the installation of the current
handler based on that information.

Device Handlers 1–109

In RT–11, for example, the RX01 and RX02 devices share the CSR. Bit 11, called
CSRX02, is clear if the device is an RX01, and set if the device is an RX02. The
following example is from the DY device handler, which should only be installed if
RX02 hardware is present.

.ASECT

. = 200 ;VERIFICATION ROUTINE GOES HERE
NOP ;SAME CHECK FOR SYSTEM AND NON-SYSTEM
BIT #CSRX02,@176 ;IS RX02 BIT ON?
BEQ 1$;NO, THIS IS AN RX01.

;DON’T INSTALL THIS
;DY HANDLER.

TST (PC)+ ;CLEAR CARRY, SKIP SEC INSTRUCTION.
;WE HAVE AN RX02, INSTALL DY HANDLER

1$: SEC ;SET CARRY, DON’T INSTALL DY HANDLER
RTS PC ;RETURN TO MONITOR

If One Device Has a Read/Write Bit
If one of the devices that share an I/O page address has a read/write bit in the CSR
where the other device has a read-only bit, the verification routine can determine
which hardware is present by following a general procedure to check the bit and
permit or inhibit the installation of the current handler based on the results. The
routine should read the bit, toggle it, and write it back to the CSR. Then the routine
should read the bit again. If the value of the bit changed, the device with the
read/write register is present. If the value remained constant, the device with the
read-only register is present. The routine can set the carry bit appropriately and
return to the monitor. If carry is set, RT–11 does not install this handler. If carry is
clear, RT–11 does install this handler.

1.14.3.6 Overriding the Hardware Restriction

If for any reason you need to install a device handler whose hardware is not present
in your current system configuration, you can circumvent the checks in the bootstrap
and INSTALL routines by running SIPP and patching the handler. You clear location
176 in the handler file’s block 0, then use the INSTALL command or reboot the
system to install the device handler.

1.15 How to Test and Debug a Device Handler

Once your new handler is assembled, linked, and installed, you are ready to begin
testing it. Remember during debugging that you must remove the old handler and
install the new one each time you create a new version of dd(X).SYS.

Test the handler in three stages, according to these guidelines:

1. Use the hardware version (SDH.SYS or SDHX.SYS) of DBG–11 to observe the
handler as it processes a data transfer.

If for some reason you would rather use ODT or VDT to observe the handler as
it processes a data transfer, see Sections 1.15.2 and 1.15.3. However, debugging
is significantly easier when using a symbolic debugger, so look closely at using
DBG–11 before choosing ODT or VDT.

1–110 RT–11 Device Handlers Manual

2. Test the handler with keyboard monitor commands, with system utility
programs, and with FORTRAN, C, or another programming language. Try the
COPY command, for example, to copy data to and from the device, or run PIP
to do the same thing. Try using the handler with FORTRAN READ or WRITE
statements, or with BASIC–PLUS INPUT or PRINT statements. If your handler
sets the bit in the device status word that indicates that the handler is for an
RT–11 directory-structured device, DUP will operate correctly on the device with
no further modifications. That is, you should be able to use DUP to initialize
the device (through the INITIALIZE command) and to consolidate free space
(through the SQUEEZE command). The RESORC program needs no modification
to recognize the new device and will include it in its SHOW DEVICES report.

3. Give the handler an extended workout with an application program that uses
wait-mode I/O, asynchronous I/O, and completion routines.

When the handler passes all the tests successfully, you can begin using it as part of
your regular RT–11 system.

1.15.1 Using DBG–11 to Test a Handler

Chapter 5 of the DBG–11 Symbolic Debugger User’s Guide describes using DBG–11
to debug a device handler. If you have not used DBG–11 previously, you should work
through the examples in the manual before testing and debugging your handler.

1.15.2 Using ODT to Test a Handler

The easiest way to use ODT to test a handler is to run ODT as the foreground job. If
you normally use only a single-job monitor, it is worthwhile to switch to a multi-job
monitor just for debugging.

Since you will be doing some careful debugging work, Digital also recommends that
you be the sole user during this time. Bring up your system from a hardware
bootstrap. Do not start any system jobs or load any handlers.

Link ODT for the foreground with the following command:

.LINK/MAP/FOREGROUND ODT

Next, load the device handler you need to debug:

.LOAD dd[X]

Now, issue a SHOW D command. Note the address given for the device handler that
you are debugging. For this example, assume the value is 131634. Subtract 6 (in
octal) from this address to get the base address of the handler. In this case,

131634
- 6

131626

Start ODT as the foreground job:

.FRUN ODT

Device Handlers 1–111

ODT V01.04
*

Set relocation register 0 to the value computed from the address given by the SHOW
D command:

131626;0R

You can step through the handler in memory as you follow the instructions in your
assembly listing. The first five words are the header; the first executable instruction
is the sixth word. Set your first breakpoint at the sixth word:

0,12;0B

Set other breakpoints at various points in the handler that you want to examine
during debugging. Another critical place is the interrupt entry point. You can find
its location by checking the handler’s MACRO–11 listing. Remember, the interrupt
entry point is called ddINT:; you should be able to find it easily and set a breakpoint
there.

When you have finished setting breakpoints in the handler, exit from ODT:

0;G

Now try using the handler. You could try using DUP to initialize the device, or PIP
to copy data to the device. Or, run a test program that you have designed especially
for this purpose. When execution reaches the first breakpoint in the handler, ODT
takes control. Use ODT as usual to examine locations and check their values, or to
modify instructions. Note that the default priority of ODT is 7; this prevents other
interrupts from disturbing your debugging session. Since you are the only user on
the system, ODT’s high priority should cause no problem. (Note, however, that the
system clock will lose time, and that ODT usually cannot debug race conditions.)

When you are satisfied with the handler’s performance, remove the breakpoints from
it and proceed with the remainder of execution through the handler:

;B
;P

Be careful not to unload the foreground job (ODT) while there are still breakpoints
set in the handler.

1.15.3 Using ODT in a Mapped Environment

By following a few special guidelines, you can use ODT to debug a device handler in
the mapped environment.

Carefully select a place for ODT in memory. You can link it with an application
program, or link it so it resides somewhere in memory where it will not be destroyed.
If a breakpoint is to be taken in kernel mode, ODT must not reside in the PAR1 area
(locations 20000 through 37776). The safest place to put ODT is in the foreground
partition, as described in Section 1.15.2.

When you are debugging with ODT, the I/O page must always be mapped.

1–112 RT–11 Device Handlers Manual

Setting breakpoints also requires care. As soon as you enter ODT, look at the
breakpoint trap vector (BPT) at locations 14 and 16 in low memory. When you
set a breakpoint, you must manually set the current mode bits, bits 14 and 15, of
the PS at location 16. Set them to the mode you expect at the time the breakpoint
occurs. The values are 11 for User Mode, 01 for Supervisor, and 00 for Kernel. (RT–
11 utility programs such as PIP and DUP run in User Mode and expect the mode
bits to be set to 11.)

After setting breakpoints, type 0;G to exit from ODT. This causes an .EXIT request
to be performed, which destroys the BPT vector. So, after you exit from ODT, you
must manually reconstruct the contents of the vector by using the Deposit command,
as follows:

D 14=(correct contents of 14),(correct contents of 16)

Make sure no other jobs are running when you do this, since context switching causes
this technique to fail.

1.16 Contents of .SYS Image of a Device Handler

Table 1–11 shows the layout of the .SYS image of a handler after assembly and
linking. Tables 1–3 and 1–4 contain more information about blocks 0 and 1 of the
device handler file image. Locations not otherwise identified are reserved for future
use by Digital.

Table 1–11: Device Handler .SYS Image

Location Contents

000000 Handler identifier in RAD50

000002 Pointer to a FETCH service routine (file address)

000004 Pointer to a RELEASE service routine (file address)

000006 Pointer to a LOAD service routine (file address)

000010 Pointer to an UNLOAD service routine (file address)

000012-
000016

Reserved

000020 Device classification

000021 Device classification modifier

000022 First special function (index method) list

000024 Second special function (index method) list

000026 Third special function (index method) list

000030 Pointer to further special functions (extension table method)

000032 Pointer to bad-block replacement table

000034 Reserved

Device Handlers 1–113

Table 1–11 (Cont.): Device Handler .SYS Image

Location Contents

000036 Second status word

000040-
000050

Reserved

000052 Handler size (ddEND–ddSTRT)

000054 Device size (ddDSIZ)

000056 Device status word (ddSTS)

000060 Result of FORCE= parameter; byte contains device SYSGEN options for SET
dd SYSGEN

000061 Reserved

000062 Pointer to the primary bootstrap (file address)

000064 Bootstrap size in bytes

000066 Pointer to the bootstrap read routine (file address)

000070 Varies with the handler; see Table 1–3

000072 Varies with the handler; see Table 1–3

000074 Size in bytes of total list of handler data table descriptors

000076 Pointer to extended device-unit ownership table (file address)

000100 Letter name of extended device-unit handler and device characteristics for UMR
support

000102 Reserved

000104 Pointer to further block 0 type information not included in block 0 (file address)

000106 Pointer to the handler data descriptor table (file address)

000110-
000173

Information written by .MODULE and .AUDIT.

(The CSR table begins at 176 and expands downward to a zero word.)

000174-
000xxx

’Display’ CSRs (DISCSR) read by RESORC. If more than one, each written into
previous location

000176 ’Installation’ CSR (INSCSR); beginning of CSR table

000200 Data device installation entry point (INSDAT)

000202 System device installation entry point (INSSYS)

000204-
000377

Installation code; must link with /NOBITMAP option or else range is 204-357

000400-
000777

SET code/tables

001000 Either the device vector or an offset to the table of vectors (ddSTRT)

1–114 RT–11 Device Handlers Manual

Table 1–11 (Cont.): Device Handler .SYS Image

Location Contents

001002 Offset to the interrupt service entry point

001004 Priority (340)

001006 Pointer to the last queue element (ddLQE)

001010 Pointer to the current queue element (ddCQE) in the handler memory image

001010 Flag word (in handler file image)

001012 NOP instruction OR’d with flags

001014 Branch instruction (optional)

001016 Second flag word (optional)

001020 Pointer to SPFUN address check routine (optional)

001022 pointer to DMA SPFUN table (optional)

001024 Pointer to LD translation table (optional)

1012 Handler entry point

n Abort entry point (from .DRAST; may be above 1777)

n+2 Interrupt entry point (from .DRAST; may be above 1777)

1776 High limit of area modifiable by SET code

dd$END $RLPTR: (from .DREND)

$MPPTR: (from .DREND)

$GTBYT: (from .DREND)

$PTBYT: (from .DREND)

$PTWRD: (from .DREND)

$ELPTR: (from .DREND)

$TIMIT: (from .DREND)

$INPTR: (from .DREND)

$FKPTR: (from .DREND)

ddEND=. (from .DREND)

ddEND:

ddBOOT: NOP; Start of primary bootstrap (from .DRBOT)

Device Handlers 1–115

Table 1–11 (Cont.): Device Handler .SYS Image

Location Contents

BR entry; Label entry from .DRBOT

entry–14 020; (from .DRBOT) This byte identifies the type of CPU. A value of 20 indicates
a PDP–11.

entry–12 Controller types; (from .DRBOT) This byte indicates the type of controllers that
the operating sytem supports for this device. Its value in RT–11 V5 can be the
OR’d result of the following codes:
101 Non-MSCP UNIBUS controller
102 Non-MSCP LSI–11 buscontroller
110 MSCP UNIBUS controller
120 MSCP LSI–11 bus controller

entry–10 020; (from .DRBOT) This byte identifies the type of file structure on the disk.
A value of 20 indicates RT–11 file structure.

entry–6 checksum; (from .DRBOT)The checksum byte is a checksum of the previous
three bytes. It is computed as the complement of the sum of the bytes.

entry–4 0; (from .DRBOT)

entry–2 diskette type; (from .DRBOT) This byte contains a bootstrap identification
number in bits 0–6 and a flag to indicate single- or double-sided diskettes in
bit 7. The values can be:
Bit 7 = 0, Single-sided diskette
Bit 7 = 1, Double-sided diskette

entry: BR .+2 or BMI .+2 (from .DRBOT) Digital suggests that entry be located
above location 120 in the bootstrap block. This will avoid conflict with vectors
and the monitor SYSCOM area as the monitor is bootstrapped.

Start of primary bootstrap read routine

662 High limit of primary bootstrap

664 Start of bootstrap error code

776 End of bootstrap error code

1–116 RT–11 Device Handlers Manual

Chapter 2

Programming for Specific Devices

This chapter provides information on device handlers that have special device-
dependent characteristics. Read this chapter if you need to program specifically
for one of the following devices:

• DL (RL01/RL02 disk handler)

• DM (RK06/RK07 disk handler)

• DU (MSCP disk handler)

• DW (CTI Bus-based disk handler)

• DX and DY (RX01/RX02 diskette handlers)

• DZ (Diskette handler)

• LD (Logical disk handler)

• MM, MS, and MT (Magtape handlers)

• MU (TMSCP magtape handler)

• NL (Null handler)

• NC, NQ, and NU (Ethernet handlers)

• UB (UNIBUS mapping register handler)

• VM (Virtual Memory handler)

• XC and XL (Communications Port handlers)

Much of the information in this chapter is based on other information in the RT–
11 documentation set. You should be familiar with pertinent information found
elsewhere rather than relying only on the information in this chapter. For example,
much of the description of special functions as they apply to particular device
handlers in this chapter assumes you know and understand the description of special
functions (the .SPFUN request) in the RT–11 System Macro Library Manual.

You should look at the on-line index utility, INDEX, or in the printed RT–11 Master
Index for other information in the RT–11 documentation set that pertains to a
particular device handler or to various RT–11 features as they apply to that device
handler.

Device handler operations are often controlled by various special functions. In this
manual, you will be presented with both a code number and name for a special
function. You can use the code in the particular special function call (.SPFUN) as

Programming for Specific Devices 2–1

documented. You can use the name (rather than the code) if you include in your
program a macro call for the appropriate macro in the file, SYSTEM.MLB.

The following macros in SYSTEM.MLB define the names for the indicated type of
special functions:

Name Device type

.SFDDF Disk device handlers

.SFMDF Magtape device handlers

.SFNDF Ethernet device handers

.SFXDF VTCOM device handlers

.SFODF ’Other’ device handlers, such as PI

You could, for example, include the following code in your program or handler to
define the names of all the disk type special functions in this manual. Then you
could use the special function name, rather than the more cryptic function code. (Be
sure that the volume that contains SYSTEM.MLB is also assigned the logical name
SRC.)

.LIBRARY "SRC:SYSTEM.MLB"

.MCALL .SFDDF

.SFDDF

2–2 RT–11 Device Handlers Manual

2.1 DL (RL01/RL02 Disk Handler)

This section provides specific programming information for RL01 and RL02 disks.

2.1.1 Support for Special Functions

The RL01/RL02 disk handler supports the following special functions. The
device-specific parameter arguments are the same as for DM; see Section 2.2 for
information.

Code Name Action

377 SF.ARD Read operation without doing bad-block replacement; returns
definitive error data.

376 SF.AWR Write operation without doing bad-block replacement; returns
definitive error data.

374 SF.BBR Re-read the bad-block replacement table in the handler (the
program changed it).

373 SF.SIZ Determine the size, in 25610-word blocks, of a particular
volume.

2.1.2 Support for Bad-Block Replacement

Bad-block replacement for the RL01 and RL02 is similar to the bad-block support for
the RK06/RK07 (DM). However, the RL01 and RL02 generate neither the bad sector
error (BSE) nor the header validity error (HVRC). Therefore, the handler must check
the bad-block replacement table for each I/O transfer. Since the table is always in
memory as part of the DL handler, the I/O delay is not significant.

The last track of the RL01 and RL02 disks contains a table of the bad sectors that
were discovered during manufacture of the disk. The 1010 blocks preceding this
table (the last 1010 blocks in the second-to-last track) are set aside for bad-block
replacements. The maximum number of bad blocks (1010) is defined in the handler.

As with the RK06 and RK07, you determine at initialization time whether to cover
bad blocks with .BAD files or create a replacement table for them and substitute
good blocks during I/O transfers. The advantage of using bad-block replacement is
that it makes a disk with some bad blocks appear to have none. On the other hand,
covering bad blocks with .BAD files fragments the disk. Because RT–11 files must
be stored in contiguous blocks, this fragmentation limits the size of the largest file
that can be stored.

The monitor file cannot reside on a block that contains a replaced block if you are
using bad-block replacement. If this condition occurs, a boot error results when you
bootstrap the system. In this case, move the monitor so that it does not reside on a
block with an error.

If you specify the /REPLACE option during initialization of an RL01 or RL02 disk,
DUP scans the disk for bad blocks. It merges the scan information with the

Programming for Specific Devices 2–3

manufacturing bad sector table, allocates a replacement for each bad block, and
writes a table of the bad blocks and their replacements in the first 20 words of block
1 of the disk. Block 1 is a table of two-word entries. The first word is the block
number of a bad block; the second word is its allocated replacement. The last entry
in the table is 0. The entries in the table are in order by ascending bad block number.
A sample table is shown in Figure 2–1.

Figure 2–1: Bad-Block Replacement Table

Bad block 12
Entry 1

10210

553

0

Its replacement

37
Entry 2

10211

Bad block

Entry 3
10212

Its replacement

Entry 4

Bad block

Its replacement

End of list

The handler contains space to hold a resident copy of the bad block table for each
unit. The amount of space allocated is defined by the SYSGEN conditional DL$UN,
which represents the number of RL01/RL02 units to be supported. The value
defaults to 2 if it is not defined. The handler reads the disk copy of the table into
its resident area under the following three conditions:

• If a request is passed to the handler and the table for that unit has not been
read since the handler was loaded into memory.

• If a request is passed to the handler and the handler detects Volume Check drive
status. This status indicates that the drive spun down and spun up again, which
means that the disk was probably changed.

• If an SF.BBR request is passed to the handler. This special function is used by
DUP when it initializes the disk table to ensure that the handler has a valid
resident copy.

2–4 RT–11 Device Handlers Manual

2.2 DM (RK06/RK07 Disk Handler)

This section provides specific programming information for RK06 and RK07 disks.

2.2.1 Support for Special Functions

The RK06/RK07 disk handler supports the following special functions:

Code Name Action

377 SF.ARD Read operation without doing bad-block replacement; returns
definitive error data.

376 SF.AWR Write operation without doing bad-block replacement; returns
definitive error data.

374 SF.BBR Reread the bad-block replacement table in the handler (the
program changed it).
SF.BBR uses no parameters.

373 SF.SIZ Determine the size, in 25610-word blocks, of a particular
volume.

The special function (.SPFUN) request has the following general form, with the
area and chan parameters and the optional crtn, BMODE=str, and CMODE=str
parameters as described in the RT–11 System Macro Library Manual, and the other
parameter arguments as described below:

Macro Call: .SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

func is the code for the function to be performed or the name of the
function if the program has been assembled with the distributed
module SYSTEM.MLB.

Programming for Specific Devices 2–5

buf For SF.ARD and SF.AWR, the buffer size must be one word larger
than required for the data. The first word of the buffer contains any
returned error information. The remaining words in the buffer contain
the data transferred. The error codes and information are as follows:

Code Name Meaning

100000 ES.SUC The I/O operation is successful.

100001 ES.ECC An ECC error is corrected.

100002 ES.RTY An error was recovered on a retry.

100004 ES.UFF An error was recovered through an offset retry.

100010 ES.RCL An error was recovered after recalibration.

100200 ES.BBR A bad block is detected (BSE error).

1774xx ES.ERR An error was not recovered.

For SF.BBR, buf should be 0.
For SF.SIZ, buf is a 1-word buffer where the .SPFUN request returns
the size of the volume in 25610-word blocks.

wcnt For SF.BBR, wcnt should be 0.
For SF.SIZ, wcnt should be 1.

blk For SF.BBR, blk should be 0.
For SF.SIZ, blk should be 0.

2.2.2 Support for Bad-Block Replacement

The last cylinder of the RK06 and RK07 disks is used for bad-block replacement and
error information. RT–11 supports a maximum of 3210 replaceable bad blocks on
these disks. The bad-block information is stored in block 1 on track 0, cylinder 0, of
the disk. The replacement blocks are stored on tracks 0 and 1 of the last cylinder.
A bad-block replacement table is created in block 1 of the disk by the DUP utility
program when the disk is initialized. When a bad block is encountered and the
table is not present in the handler from the same volume, the DM handler reads a
replacement table from block 1 of the disk and stores it in the handler.

When a bad sector error (BSE) or header validity error (HVRC) is detected during a
read or write, the DM handler replaces the bad block with a corresponding good block
from the replacement tracks. The bad-block replacement feature of RT–11 requires
blocks 0 through 5 and tracks 0 and 1 of the last cylinder to be good. This procedure
causes an I/O delay since the read/write heads must move from their present position
on the disk to the replacement area, and back again.

If this I/O delay cannot be tolerated, the disk can be initialized without bad-block
replacement. In this case, bad blocks are covered by .BAD files. Neither the bad
blocks nor the replacement tracks will be accessed.

2–6 RT–11 Device Handlers Manual

You determine at volume initialization time whether to cover bad blocks with .BAD
files or to create a replacement table for them and substitute good blocks during I/O
transfers. The advantage of using bad-block replacement is that it makes a disk with
some bad blocks appear to have none. On the other hand, covering bad blocks with
.BAD files fragments the disk. Because RT–11 files must be stored in contiguous
blocks, this fragmentation limits the size of the largest file that can be stored.

Only BSE and HVRC errors trigger the DM handler’s bad block replacement
mechanism. If a bad block develops that is not a BSE or HVRC error, the disk
must be reformatted to have this new block included in the replacement mechanism.
Reformatting should detect the new bad block. Mark it so that it generates a BSE
or HVRC error and add the block number to the bad-block information on the disk.
The disk should then be initialized to add the bad block to the replacement table.

The monitor file cannot reside on a block that contains a BSE error if you are
using bad-block replacement. If this condition occurs, a boot error results when
you bootstrap the system. In this case, move the monitor so that it does not reside
on a block with a BSE error. Further, the monitor file (and any handler files) must
reside in physically contiguous blocks—none of the blocks can be in the replacement
table.

Programming for Specific Devices 2–7

2.3 DU (MSCP Disk Handler)

This section provides specific programming information for MSCP disk devices.

The DU handler for RT–11 supports any disk system using the Mass Storage
Communications Protocol (MSCP) interface. All disks using MSCP appear the same
to the host computer. Thus, a single RT–11 DU handler can access any kind of MSCP
disk.

2.3.1 Support for Special Functions

The DU handler supports the following special functions:

Code Name Section Action

377 SF.ARD 2.3.5.2 Read operation without doing bad-block replace-
ment; returns definitive error data.

376 SF.AWR 2.3.5.2 Write operation without doing bad-block replace-
ment; returns definitive error data.

373 SF.SIZ 2.3.2 Determine the size, in 25610-word blocks, of a
particular volume.

SF.S16 blk argument for SF.SIZ to indicate 16-bit
starting block.

SF.S32 blk argument for SF.SIZ to indicate 32-bit
starting block.

372 SF.TAB 2.3.6 Returns the MSCP translation table.

371 SF.OBY Obsolete; replaced by SF.BYP (360).

367 SF.R32 2.3.5.3 Read with 32-bit block number.

366 SF.W32 2.3.5.3 Write with 32-bit block number.

360 SF.BYP 2.3.7 Provides direct MSCP access.

2.3.2 Determining Volume Size (SF.SIZ), Code 373

Special function SF.SIZ returns the volume size in the word pointed to by the buf
parameter argument. For DU, this special function is enhanced over that provided
in the DL, DM, DY, and LD handlers. SF.SIZ for DU can return a 32-bit value for
the device volume size and is, therefore, appropriate for use with device volumes
that contain more than 65K blocks.

The volume size returned by the enhanced SF.SIZ is determined by any partition
mapping. If a partition is mapped to the unit to which the channel is opened, the
returned volume size is calculated from the base of the mapped partition to the
usable end of the volume. If, for example, you have mapped unit DU1 to partition 1,
an SF.SIZ for DU1 returns a volume size from the base of partition 1 to the usable
end of the volume. If you reference the first partition on the volume, SF.SIZ returns
the usable size of the entire volume.

2–8 RT–11 Device Handlers Manual

The following description of parameters lists any differences between those for
returning a 16-bit volume size and those for the 32-bit volume size.

Macro Call: .SPFUN area,chan,#SF.SIZ,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block

chan is the channel opened on the unit for which you want the volume size

SF.SIZ is code 373 or the name SF.SIZ if the program has been assembled with
the distributed module SYSTEM.MLB

buf For 16-bit value, is the address of a 1-word buffer in which volume size
is returned
For 32-bit value, is the address of a 4-word buffer that on return contains
a 32-bit value for the volume size followed by a 32-bit value for the MSCP
logical block number from which the volume size was calculated.
The low-order base bits contain the value 0 and the high-order base bits
contain a value indicating the partition to which this unit is currently
mapped. If the unit does not exist, SF.SIZ returns a hard error and the
contents of buf are undefined

wcnt For 16-bit volume size, is 1. For 32-bit volume size, is 4

blk For 16-bit volume size, is 0, indicating subcode SF.S16. For 32-bit volume
size, is 1, indicating subcode SF.S32

2.3.3 Obtaining the DU Device Status (STATU$)

DU has a status word containing information about the last operation performed
by the handler. The status word is called STATU$ and is located at an offset from
the base of DU. See Table 2–1. The offset is stored in the handler as an entry in
the table set up by the .DRTAB macro. The first word of the 2-word table entry is
the RAD50 characters UMS, followed by the value of STATU$. Using .DRTAB is
described in the RT–11 System Macro Library Manual. The low 5 bits of STATU$
contain the status information. All other bits are reserved.

Table 2–1: STATU$ Status Information

Octal
Value Meaning

00 Success

01 Invalid command

02 Command aborted

03 Unit off line

04 Unit available

05 Medium format error

06 Write-protected medium

Programming for Specific Devices 2–9

Table 2–1 (Cont.): STATU$ Status Information

Octal
Value Meaning

07 Compare error

10 Data error

11 Host buffer access error

12 Controller error

13 Drive error

Use DBG–11, ODT/VDT, Console ODT, or the E keyboard command to examine the
contents of STATU$. You will need to perform customization patch 2.7.32 located
in the RT–11 Installation Guide to use the E command. Use the SHOW MEMORY
command display to find the base of the DU handler and add the offset to that base.

You can obtain the information returned in STATU$ from within a program by calling
the sytem subroutine, IGTDUS, as described in the RT–11 System Subroutine Library
Manual.

2.3.4 Support for Bad-Block Replacement

All MSCP (DU) hard-disk systems support bad-block replacement (BBR), performed
either by the disk controller or as a feature of the DU handler. For those MSCP
hard disks for which BBR is provided by the controller, no support is required by
the DU handler; bad-block replacement is transparent to RT–11.

In MSCP systems that use an RQDX1, RQDX2, or RQDX3 controller, BBR is
performed by the controller. In those systems, BBR is done automatically by the
hardware and does not require bad-block support in the DU handler.

In MSCP systems that use a KDA50, UDA50, KLESI–QA, or KLESI–UA controller,
BBR can be performed by the DU handler.

Table 2–2 lists the MSCP controllers and drives supported by RT–11 and indicates
whether bad-block replacement (BBR) is performed by the controller or the DU
handler. (There is no BBR support for RX50 devices or write-only media.)

Table 2–2: MSCP Bad-Block Replacement (BBR)

MSCP
Controller

Bad Block
Replaced by: MSCP Drive

RQDX1 controller Supported RD-type drives

RQDX2 controller Supported RD-type drives

RQDX3 controller Supported RD-type drives

KLESI–QA handler Supported RC-type drives

2–10 RT–11 Device Handlers Manual

Table 2–2 (Cont.): MSCP Bad-Block Replacement (BBR)

MSCP
Controller

Bad Block
Replaced by: MSCP Drive

KLESI–UA handler Supported RC-type drives

UDA50 handler Supported RA-type drives

KDA50 handler Supported RA-type drives

The distributed DU for mapped monitors (DUX.SYS) supports handler BBR. If you
are going to use an unmapped monitor with MSCP disks that require handler BBR,
you should perform a system generation for that monitor and request support for
DU handler bad-block replacement. Once you have generated such support, you can
change monitors and continue DU handler bad-block replacement.

The following is general information on BBR as performed by DU:

• Bad-block replacement is a technique in which substitute blocks are provided for
blocks that have caused a read or write error. The replacement blocks appear to
occupy the disk positions of the original blocks, and the disk appears to contain
only good blocks. You can force bad-block replacement on a device by performing a
read and verify operation on all blocks. You perform such a read/verify operation
by issuing a FORMAT/VERIFY:ONLY command for the device.

• Whether bad-block replacement is performed by the controller or the handler, it
has the effect of making a disk appear to be error free. In certain cases, however,
an I/O operation, a verification procedure, or a bad-block search may report the
presence of bad blocks on a disk with replaced blocks. In such cases, any block
identified as a bad block should be considered to be a good block with bad data.
This means that the controller or handler provided a replacement block for a
defective block but was unable to recover the data it contained.

• You can force MSCP class devices to clear bad blocks that contain soft errors
by coupling the DUP /H option with the /B or /K option. The /H option is not
available as a KMON command. You should use only the DUP /H/B or /H/K
command options with blank media or a volume you have just backed up.

• If the DU handler is unable to replace a block on a device, DU displays the
following error message:

?DU-E-Replace command failure or inconsistent RCT.
?DU-E-Software write protecting volume.

If you receive that message, you should immediately back up that volume. Then
check any file you had open for lost data. You cannot write to that volume again
without first taking it off line and then placing it on line.

Programming for Specific Devices 2–11

2.3.5 Non-File-Structured Read and Write Operations

DU supports three methods for performing non-file-structured read and write
operations.

2.3.5.1 JREAD and JWRITE

You can perform absolute (non-file-structured access) reads and writes to any MSCP
device, using the JREAD and JWRITE system subroutines. JREAD and JWRITE
use a 32-bit starting block number, which lets you read and write to any block on
any DU device. See the RT–11 System Subroutine Library Manual for details on
JREAD and JWRITE.

2.3.5.2 Special Functions SF.ARD and SF.AWR

DU supports special functions SF.AWR (code 376) and SF.ARD (code 377). SF.AWR
and SF.ARD are appropriate for devices that contain no more than 65K blocks. If
the DU device contains more than 65K blocks, see Section 2.3.5.3. For DU, SF.AWR
performs a write to the specified sector, and SF.ARD performs a read from the
specified sector. Those writes and reads are not absolute; bad-block replacement
and block vectoring remain in force.

Special functions SF.AWR and SF.ARD are especially useful because they return
status information in the first word of the return buffer. Status information includes
any occurrence of a bad-block error, forced error, or drive error. No discrimination
for such errors is returned by a .WRITE or .READ request.

DU support for SF.AWR and SF.ARD is the same as DM with the following
exceptions:

• DU supports an additional error code:

Code Name Meaning

140000 ES.FRC A forced error occurred.
If the device is a disk drive that supports BBR, the
device controller or DU handler discovered bad data
on a good (replaced) block. (Bad-block replacement
was performed but no data was recovered.)
If the device does not support BBR, this is an
unexpected condition.

• For DU, bad-block replacement and block vectoring remain in force.

2.3.5.3 Special Functions SF.R32 and SF.W32

DU supports two special functions that perform non-file-structured block reads
(SF.R32, code 367) and writes (SF.W32, code 366) on devices that contain more than
65K blocks. Because these special functions perform non-file-structured operations,
they should generally not be used to perform operations on any device partition that
contains a file structure.

2–12 RT–11 Device Handlers Manual

Special functions SF.W32 and SF.R32 perform the same operations as the JWRITE
and JREAD functions; JWRITE and JREAD use special functions SF.W32 and
SF.R32. JWRITE and JREAD are described in the RT–11 System Subroutine Library
Manual.

CAUTION
SF.W32 can write data to the reserved blocks on
your DU device, which can render your DU device
useless, because those blocks contain the replacement
control table (RCT). You should, therefore, always issue
a special function SF.SIZ (373) to a DU device to
determine the volume size, because SF.SIZ returns the
size at the boundary between the usable logical blocks
and the RCT. Writing data only up to the volume size
returned by SF.SIZ ensures you will not write data into
the RCT.

The format for these special functions is:

Macro Call: .SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

chan is a channel number for I/O in the range 0 to 3768.

func is the symbol or numeric code value for the function to be performed:

Code Name Meaning

366 SF.W32 32-bit non-file-structured block write

367 SF.R32 32-bit non-file-structured block read

buf is the buffer address.

wcnt is the number of words to transfer. Valid values are 0 through 0777778.

Programming for Specific Devices 2–13

blk is the address of a 4-word argument block:

blk+0 is a 2-word (32-bit) starting block number for this request. The
first word contains the low-order bits. The second word contains
the high-order bits.
The correspondence between the starting block number and a
particular block on a device is determined by any partitioning
and unit mapping of the device:
If the device has not been partitioned, starting block 0 specifies
physical (and logical) block 0 — the start of the device. Any
starting block number is offset from physical block 0.
If the device has been partitioned, logical block 0 of partition 0
continues to contain physical block 0. However, the starting block
0 of this request, because of device partitioning, corresponds to
logical block 0 of the unit opened on this channel. Any starting
block number is offset from logical block 0 of the partition mapped
to the unit. For example, if the channel is opened for a non-file-
structured operation to unit DU1 and DU1 is mapped to partition
1 (block 2000008, starting block 0 corresponds to physical block
2000008 of this device).
If, for example, your device contains an RT–11 file structure
in partition 0, which is mapped to DU0, you could ensure the
integrity of that file structure by always performing non-file-
structured operations above partition 0 on the device.

blk+4 on return, contains the number of words actually transferred

blk+6 is reserved

2.3.6 DU Translation Table (SF.TAB), Code 372

The DU translation table defines the correspondence between RT—11 unit numbers
and MSCP unit numbers, ports, and partitions. The format of the table is given in
Figure 2–2.

Special function SF.TAB (code 372) interacts with the translation table from an
address contained in the buf argument of the SF.TAB call. You can read the contents
of the translation table to the buffer or write the contents of the buffer to the table.
Whether the SF.TAB request is a read or write operation is determined by the wcnt
parameter argument. This procedure is explained in this section.

For RT–11 V5.4, changes were made in the structure of the DU handler translation
table. The names of the offsets in the table and the size of the table was changed.
All programs you write to access the information contained in the table should use
the following offsets. All programs you have written should be changed to use the
following offset names.

Beginning with RT–11 V5.5, you can build a DU handler that supports more than
eight units. That affects the size of the translation table.

2–14 RT–11 Device Handlers Manual

Figure 2–2: DU Handler Translation Table

RT−11 Unit 0

RT−11 Unit 1

MSCP Unit Number

Port Partition

.

.

.

.

.

.

MSCP Unit Number

Port Partition

Whenever an I/O request is passed to the DU handler, DU uses the RT–11 unit
number as an index into this table, extracts the MSCP unit number, port, and
partition that have been assigned to that RT–11 unit, and uses the information
to access the proper disk.

Size of the Translation Table
The size of the DU translation table in the DU handler is related to the number
of device units supported by DU. The DU handler can support up to 6410 units.
Therefore, the translation table can contain up to 64 table entries.

Structure of the Translation Table
The DU unit translation table consists of a table header followed by table entries.
Previously, the DU unit translation table had no header. Now, the DU unit
translation table has a header starting at offset DU.ID, which is a word containing
the Radix–50 value for the characters DU.

DU.ID is followed by DU.NUM. The low byte of DU.NUM contains the number of
entries in the table. The high byte of DU.NUM is reserved.

The structure of the rest of the table remains as before. However, the offset names
you should use to specify elements of the table have changed. The following is the
structure of the table with the changed offset names:

Table 2–3: MSCP (DU) Translation Table Header

Offset Name Meaning

0 DU.ID Radix–50 value for characters DU

2 DU.NUM Byte containing number of entries in table

3 Reserved

4 DU.ENT The offset of the first table entry

Each table entry consists of 4 bytes. Digital recommends you use the symbol DU.ESZ
to represent the 4-byte size of each entry.

Programming for Specific Devices 2–15

Table 2–4: MSCP (DU) Translation Table Entry

Offset Name Meaning

0 DU.UNI Physical MSCP unit number.
The symbol DU$Uxx=nnnnnn is the initial value for the translation
table when the handler is assembled. In the symbol, xx is the octal RT–
11 DU unit number (0-7 or 0-77) and nnnnnn is the MSCP unit number.
The SET Dxx UNIT=nnnnnn command can subsequently change the
value.

2 DU.PAR Byte containing partition number.
The symbol DU$Axx=nnn is the initial value for the translation table
when the handler is assembled. In the symbol, xx is the octal RT–11 DU
unit number (0-7 or 0-77) and nnn is the partition number. The SET
DU PART=nnn command can subsequently change the value.

3 DU.POR Byte containing MSCP port (controller) number.
The symbol DU$Oxx=nnn is the initial value for the translation table
when the handler is assembled. In the symbol, xx is the octal RT–11 DU
unit number (0-7 or 0-77) and nnn is the MSCP port number. The SET
DU PORT=nnn command can subsequently change the value.

Accessing the Translation Table
Before Version 5.5, the translation table access special function code SF.TAB (372)
supported only eight units. The wcnt parameter for SF.TAB accepted two arguments,
SF.TRD (1) to indicate a read of the table and SF.TWR (–1) to indicate a write to the
table. The size of the table was fixed at eight entries. If the DU handler on your
system continues to support only eight DU devices, you continue to read and write
to the translation table as before.

However, if the DU handler on your system supports more than eight units, the
SF.TAB special function accepts other values for the wcnt parameter to support the
extended device units. For DU handlers that implement the extended device-unit
feature, you indicate both a read or write operation and the size of the table you
are reading and writing by specifying a positive or negative numeric argument for
the wcnt parameter. A positive numeric argument indicates a read operation of the
specified number of words from the DU translation table to the buffer. A negative
number indicates a write operation of the specified number of words from the buffer
to the DU translation table.

You can use the following procedure to read the translation table from a DU handler
that supports extended device units into a buffer and write the translation table
from a buffer to DU. The procedure assumes you want to verify or do not currently
know the number of entries in the table.

1. A translation table entry is created for each supported unit. You can determine
the number of entries by doing a read SF.TAB to return the table entry DU.NUM.
DU.NUM is the low byte of the second word in the table and contains the octal
number of table entries. Therefore, for the wcnt parameter, supply the argument
+2, and for the buf parameter, point to a 2-word buffer.

2–16 RT–11 Device Handlers Manual

2. The translation table header and each entry continue to contain two words.
Therefore, you can then read the entire DU handler extended device-unit
translation table by supplying the value HEADER+(2*DU.NUM) for the wcnt
parameter. For example, if DU.NUM indicated 16 entries, the value to specify
for wcnt to read the entire table would be +(2+(2*16)). The buf parameter would
point to a buffer of the same size.

3. You could write the contents of the buffer to the DU handler by specifying the
value -(2+(2*16)) for the wcnt parameter.

You can avoid the calculation process by specifying a buffer of 13010 words, which
can hold the largest translation table.

2.3.7 Special Function Bypass (SF.BYP), Code 360

Special function SF.BYP bypassess all unit number translations and allows direct
access to the MSCP port. For DU, SF.BYP (direct MSCP assess) serves the same
purpose as the MU handler’s SF.BYP (direct TMSCP access).

The request syntax and parameter argument definitions for SF.BYP are as follows:

Macro Call: .SPFUN area,chan,#SF.BYP,buf,wcnt,blk

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 3768.

SF.BYP is code 360 or the name SF.BYP if the program has been assembled with
the distributed module SYSTEM.MLB.

buf is the address of the 5210-word TMSCP area.

wcnt when nonzero, is the virtual address of a data buffer to send to the handler.
That virtual address is translated to a physical address and placed in the
buffer of the TMSCP area.
when zero, the buffer address in the TMSCP area is not altered

blk indicates whether the handler should perform retries:

1 = specifies retries

0 = specifies no retries

The buffer address in special function SF.BYP must point to a 52-word area in the
user’s job. The first 26 words are used to hold:

• A response packet length in bytes

• A virtual circuit identifier

• An end packet when the command is complete

The second 26 words are set up by the caller and contain:

• A length word (length of command)

• A virtual circuit identifier (must have octal 1 (001) in high byte)

Programming for Specific Devices 2–17

• A valid MSCP command (48-byte command buffer)

Except for port initialization, the user program must do all command packet
sequencing, error handling, and reinitialization when the bypass operations are
complete. The format of the control block is shown below:

Word Contents

0 Response Packet Length

1 Virtual Circuit ID (from UDA or QDA controller)

2 MSCP Response Buffer (24 words)

26 Command Packet Length (48 bytes)

27 Virtual Circuit ID (from host)

28 MSCP Command (24 words)

51 Last Word of MSCP Command Packet

2.3.8 Addressing an MSCP Disk

You identify an MSCP disk to the DU handler by specifying:

• The MSCP unit number, in the range 0 through 253

• The controller port number, in the range 0 through 3

• The disk partition number, in the range 0 through 255

As DU is distributed, you address a disk—DU0 through DU7, as desired—and
the DU handler references the disks that have been assigned to those RT–11 unit
numbers. You can perform a system generation and request extended device-unit
support for DU, which lets you address up to 6410 disks. See the RT–11 System
Generation Guide for information.

The default port number is 0, the default partition number is 0, and the default unit
numbers correspond to the RT–11 unit numbers. Thus, if no modifications or SET
commands are made to the DU handler, an MSCP disk will be referenced exactly
like any other RT–11 disk; DU0 will refer to disk unit 0, DU1 will refer to disk unit
1, and so on. However, the names DU0 through DU7 can be reassigned to the MSCP
disks of your choice by specifying MSCP unit, port, and partition numbers. Each of
these parameters is described below.

2.3.8.1 MSCP Unit Numbers

Traditionally, there has always been a one-to-one correspondence between a
physical disk drive unit number and an RT–11 disk unit number. This one-to-
one correspondence does not necessarily apply to disks using the MSCP interface.
Neither is an MSCP disk controller limited to eight units, nor are the unit identifying
numbers limited to the range 0 through 7. The MSCP unit number of a disk is
defined by the unit number plug of the disk drive. Although MSCP disks on most
RT–11 systems may never have a unit number plug greater than 7, MSCP unit

2–18 RT–11 Device Handlers Manual

numbers can be in the range 0 through 253. The DU handler supports a 16-bit
MSCP unit number, if required by the system configuration.

The relationship between an RT–11 unit number and an MSCP disk unit number is
defined within the DU handler. Typically, any necessary assignments are made at
system installation time by using a SET command in the following form:

SET DUn UNIT=x

For example, you might issue the SET command

SET DU7 UNIT=21

Any references to DU7 would then go to MSCP unit number 21.

2.3.8.2 Controller Port Numbers

The controller port number provides a way of logically identifying the vector/CSR
pair of a particular MSCP controller when your system has more than one.

You can access a second MSCP controller through the DU handler in one of two ways.
One way is to create a second copy of the handler, as described in Section 2.3.9.
You can then use the original DU handler to access disks connected through the
first controller port, and the new copy of the handler to access disks connected
through the second controller port. Although this procedure requires two copies of
the handler, it allows totally independent operation of the two ports, giving maximum
I/O throughput.

The second way is to configure the DU handler for multiple ports by defining the
conditional assembly parameter DU$PORTS=n. If memory space is at a premium,
this may be your best choice. However, the ports will not operate independently and
I/O throughput may be slower. If a request is pending for a disk interfaced through
port 0, any requests for a disk interfaced through port 1 must wait for the port 0
I/O to complete. The DU handler supports up to four ports, numbered 0 through
3. CSR and vector values for each port can be assigned with SET commands in the
following form:

SET DU VECTOR=nnnnnn
SET DU VECx=nnnnnn

SET DU CSR=mmmmmm
SET DU CSRx=mmmmmm

The value for x can be 2, 3, or 4.

If you configure the DU handler for multiple ports, you must specify the port number
when you assign an RT–11 unit number to a disk interfaced through a port other
than 0. You can do this with a SET command in the following form:

SET DUn PORT=x

For example, you might issue the SET command:

SET DU7 PORT=1

This command might be combined with an MSCP unit number assignment:

SET DU7 UNIT=21,PORT=1

Programming for Specific Devices 2–19

You can perform a system generation and request support for multiport booting, as
described in Section 2.3.10.

2.3.8.3 Disk Partition Numbers

Disk partition numbers allow RT–11 to use disks having more than 65,535 blocks.
The disk partition number can be thought of as a high-order block number, as shown
in Figure 2–3.

Figure 2–3: MSCP Disk Block Number

| 24 bits = MSCP block number |

Partition |

|

RT block number
number
8 bits 16 bits mbn

|

|

|

|

If a disk has more than 65,535 blocks, the DU handler divides the disk into logical
partitions of 65,5351 blocks each. The DU handler supports up to 25610 disk
partitions. Therefore, the largest disk DU can access has 256*65,535 blocks. To
an RT–11 user, such a disk would appear to be 256 separate 65,535-block disks,
each disk having its own directory.

Because the DU handler stores the partition numbers as bytes, DU supports an
MSCP block number of no more than 24 bits, even though full MSCP supports
block numbers of up to 32 bits. However, the partition number entries in the DU
handler’s translation table could be expanded to word entries if desired and 32-bit
block numbers supported with no particular difficulty. Refer to Section 2.3.1 for
details of the format of the DU handler’s translation table.

Partition numbers are assigned with a SET command in the following form:

SET DUn PART=x

For example, you might issue the SET command

SET DU3 PART=1

This command could be combined with unit and port assignments as well:

SET DU3 UNIT=2, PORT=0, PART=1

1 Although RT–11 block numbers can be 0 through 1777778, or a total of 65,53610 blocks (2000008 , or 000000 in 16 bits
since the 17th bit is lost), the size of a partition is defined as 65,53510 blocks (1777778), with RT–11 block numbers 0
through 177776. This avoids the problem of 16-bit overflow when dealing with the partition size. Because the partition
number is added onto the left of the RT–11 block number to give the MSCP block number, one block between each partition
is unused. Refer to the list below for the block numbers of the first three partitions:

Partition Block Numbers
0 000000–177776, block 177777 unused
1 200000–377776, block 377777 unused
2 400000–577776, block 577777 unused

2–20 RT–11 Device Handlers Manual

The mnemonic DU3 will then refer to the MSCP disk with unit plug 2 interfaced
through port 0, beginning at block 65,536 of the disk (partition 1).

An example using several disks may help to clarify these concepts. Consider the
example of a system with two UNIBUS Disk Adaptor (UDA) controllers interfaced
to six disks, shown in Figure 2–4.

Figure 2–4: Two-Port DU Handler

MSCP
Unit

Disk
Type
RC25
RC25
RA80
RA80

RC25
RC25

0
1
2
3

(removable)
(fixed)

(removable)
(fixed)

First

UDA

Con−
troller

D
U

H
a
n
d
l
e
r

Port 0

To user

20
21Second

UDA

Cont−
roller

Port 1

program

The user of the system illustrated issues the following SET commands:

SET DU0 UNIT=0,PORT=0,PART=0
SET DU1 UNIT=1,PORT=0,PART=0
SET DU2 UNIT=2,PORT=0,PART=0
SET DU3 UNIT=2,PORT=0,PART=1
SET DU4 UNIT=3,PORT=0,PART=0
SET DU5 UNIT=3,PORT=0,PART=1
SET DU6 UNIT=20,PORT=1,PART=0
SET DU7 UNIT=21,PORT=1,PART=0

These commands assign DU0 to the first (removable) disk of the RC25 with MSCP
unit number 0, and DU1 to the fixed disk of the RC25, identified as MSCP unit
number 1. The disk unit with MSCP unit number 2 is an RA80, which has more
than 65,535 blocks. Therefore, the next commands assign DU2 and DU3 to partition
0 and partition 1 of this disk, respectively. DU4 and DU5 are assigned in similar
fashion to partitions 0 and 1 of the RA80 with MSCP unit number 3. Another RC25,
interfaced to the second port of the UDA controller, is identified by MSCP units 20
and 21. The last two SET commands assign DU6 and DU7 to the two disks of this
RC25 disk system. See Table 2–3 for information on setting up the default settings.

Programming for Specific Devices 2–21

2.3.9 Creating a Second DU Handler

You can create a second DU handler under all monitors. The procedure is different
for unmapped or mapped monitors.

2.3.9.1 Under Unmapped Monitors

You cannot run multiple DU handlers through the same MSCP controller; each
handler must have a separate controller. Copy the handler to another file name
and then modify the new file. Use the handler SET commands to change the vector
and CSR of the copy to the values for the second port. For example, you could copy
DU.SYS to DA.SYS and use the following SET commands to change the CSR and
vector of the DA file:

SET DA VEC=nnnnnn
SET DA CSR=mmmmmm

The variables nnnnnn and mmmmmm are the vector and CSR addresses of the
second port.

2.3.9.2 Under Mapped Monitors

You cannot run multiple DU handlers through the same MSCP controller; each
handler must have a separate controller. You can use the following procedure to
create a second DU handler that can be used together with the distributed DU
handler under all mapped monitors:

1. If you intend to perform a system generation to build a DU handler with support
for extended device units or for any other reason, you must do that before creating
a second DU handler. You must also preserve the system generation work files.

2. The second DU handler must be assigned a name that does not conflict with any
distributed handler. If the second DU handler will be assembled for extended
device-unit support, the first letter of the second DU handler cannot be D or L. For
the purpose of this procedure, the second DU handler is named BU. Therefore,
copy the DU source file to BU:

.COPY DU.MAC BU.MAC RET

3. Unprotect BU.MAC and open it with the editor.

4. Perform a search operation for the symbol DU$NAM and on the other side of the
equal sign, change the string <^RDU > to <^RBU >, so that the entire line of
code resembles the following:

.IIF NDF DUNAM, DUNAM = <^RBU >

5. Exit from the editor.

6. If you used the system generation procedure to build the DU handler, use the
following procedure to assemble and link BU.MAC. If you did not build the DU
handler and are using the distributed DU, proceed to step 7.

a. Copy the device-build (.DEV) command file that was created during the
system generation to a file named BU.DEV.

2–22 RT–11 Device Handlers Manual

b. Open the file BU.DEV on the editor.

c. Perform a search operation for the string +DU. The search places the cursor
near the end of the first of three command lines that pertain to DU. The three
command lines begin with MACRO, LINK, and SETOVR.

By placing an exclamation mark (!) character at the beginning of each line,
comment out all command lines except the initial commands that assign
device logical names and the three command lines that apply to DU.

d. On the command lines that assemble and link DU, change all references from
DU to BU, by replacing the D with B.

e. Exit from the editor.

f. Issue the following command to run BU.DEV as a command file:

.$@BU.DEV RET

BU.DEV builds the file BUX.SYG.

g. When BU.DEV has completed, copy the file BUX.SYG to BUX.SYS.

h. Determine the current CSR and vector addresses for DU, using the following
command:

.SHOW DEV:DU RET

The MSCP port characteristics, such as CSR and vector addresses, for DU
and BU cannot overlap. Specify addresses for BU that do not conflict with
DU by using appropriate SET commands.

7. If you did not build DU by using the system generation process, issue the
following commands to assemble and link BU. In the commands, ddn represents
that device on which the distributed system conditional file (such as XM.MAC),
the created file, BU.MAC, and the system library SYSTEM.MLB reside:

.ASSIGN ddn: SRC RET

.MACRO/OBJ:BUX ddn:(XM+BU) RET

.LINK/NOBITMAP/EXE:BUX.SYS/BOUNDARY:512. DK:BUX RET

Boundary? SETOVR RET

8. Determine the current CSR and vector addresses for DU, using the following
command:

.SHOW DEV:DU RET

Specify addresses for BU that do not conflict with DU by using appropriate SET
commands.

2.3.10 Multiport Booting

During system generation, you can select an option for the DU handler that will let
you boot RT–11 from any DU port. If you do not specify DU multiport booting during
SYSGEN, you can boot RT–11 from DU port 0 only. Use the following procedure to
enable multiport DU booting:

Programming for Specific Devices 2–23

1. Use the SET DUn commands to map the particular DU device to the MSCP unit,
port, and partition numbers. For example:

.SET DU3 UNIT=0, PORT=1 RET

.SET DU4 UNIT=1, PORT=1 RET

.SET DU5 UNIT=2, PORT=1 RET

For the SET commands to take effect, you must UNLOAD and then LOAD the
handler if it is a data device or reboot it if it is a system device.

2. Copy the resulting DU handler to the port on the DU devices you want to be able
to boot. For example:

.COPY DUX.SYS DU3: RET

3. To hard-boot the DU unit on a new port, use the COPY/BOOT command to copy
the bootstrap to the volume on the desired port. The DU unit on that port will
also support the soft-boot BOOT DUn: command.

2–24 RT–11 Device Handlers Manual

2.4 DW (CTI Bus-based Disk Handler)

This section provides specific programming information for the hard disks on CTI
Bus-based computers.

2.4.1 Support for Special Functions

The DW handler supports the following special functions:

Code Name Action

377 SF.ARD Read

376 SF.AWR Write

373 SF.SIZ Return device size

The special function (.SPFUN) request has the following general form, with the
area and chan parameters and the optional crtn, BMODE=str, and CMODE=str
parameters as described in the RT–11 System Macro Library Manual and the other
parameter arguments as described below:

Macro Call: .SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

func is the special function code or the name if the program is assembled
with the distributed file SYSTEM.MLB.

buf For SF.ARD and SF.AWR, is the address of a 25610-word buffer.
For SF.SIZ, is the address of a one-word buffer in which the size of the
volume is returned.

wcnt For SF.ARD and SF.AWR, is the track to read or write.

blk For SF.ARD and SF.AWR, is the logical block (rather than physical
block) to be read or written. Because the physical block number for
DW is one less than the logical block number, address physical block
0 as logical block –1.
For SF.SIZ, should be set to 0.

Programming for Specific Devices 2–25

2.5 DX and DY (Diskette Handlers)

This section provides specific programming information for RX01 and RX02
diskettes.

As distributed, DX and DY support one controller that supports two drives. Each
DX and DY handler can support two controllers (and therefore four drives). For
example, if the RX01 handler is created through system generation to support two
controllers, it will support four devices: DX0, DX1, DX2, and DX3. DX0 and DX1 are
drives 0 and 1 of the standard diskette at CSR 177170 and vector 264. DX2 and DX3
are drives 0 and 1 of the other controller (standard alternate address CSR 177150
and vector 270). Note that only one I/O process can be active at one time, even
though there are two controllers. Overlapped I/O to the handler is not permitted.

Data is stored on DX and DY diskettes in sectors. Double-density diskette sectors
are 128 words long. RT–11 normally reads and writes them in groups of two sectors.
Single-density diskette sectors are 64 words long. RT–11 reads and writes them in
groups of four sectors. However, special function requests for absolute reads and
writes can access sectors individually.

2.5.1 Support for Special Functions

The DX and DY handlers support the following special functions:

Code Name Action

377 SF.ARD Read absolute sector

376 SF.AWR Write absolute sector

375 SF.WDD Write absolute sector with deleted data mark

373 SF.SIZ Return device size, in 25610-word blocks (DY only)

A request to write absolute blocks should not write anything in track 0 if you want
to use DUP or the COPY/DEVICE command to back up the volume. DUP does not
copy data in track 0. Also, be sure you specify a valid buffer address and word count.
The monitor checks that the buf parameter argument is in the job area, but it does
not check the validity of buf+(2*wcnt)-1.

The special function (.SPFUN) request has the following general form, with the
area and chan parameters and the optional crtn, BMODE=str, and CMODE=str
parameters as described in the RT–11 System Macro Library Manual and the other
parameter arguments as described below:

Macro Call: .SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

func is the code for the function to be performed, or the name of the
function if the program has been assembled with the distributed
module SYSTEM.MLB.

2–26 RT–11 Device Handlers Manual

buf For SF.ARD, SF.AWR, and SF.WDD, is the location of a 129-word
buffer (for double-density diskettes) or a 65-word buffer (for single-
density diskettes). The first word of the buffer, the flag word, is
normally set to 0.
The flag word set to 1 indicates a read on a physical sector containing
a deleted data mark. The data area of the buffer extends from the
second word to the end of the buffer.
buf for SF.SIZ is the location of a one-word buffer in which 494 is
returned by single-density diskettes and 988 is returned by double-
density diskettes.

wcnt For SF.ARD, SF.AWR, and SF.WDD, is the absolute track number, 0
through 76, to be read or written.
wcnt for SF.SIZ is reserved and should be set to 1

blk For SF.ARD, SF.AWR, and SF.WDD, is the absolute sector number, 1
through 26, to be read or written.
blk for SF.SIZ is reserved and should be set to 0.

The diskette should be opened with a non-file-structured .LOOKUP. The following
example performs a synchronous sector read from track 0, sector 7, into a 65-word
area called BUFF.

.SPFUN #RDLIST,#SF.ARD,#BUFF,#0,#7,#0

Programming for Specific Devices 2–27

2.6 DZ (Diskette Handler)

This section provides specific programming information for diskettes on CTI Bus-
based computers.

2.6.1 Support for Special Functions

The DZ handler supports the following special functions:

Code Name Action

377 SF.ARD Read absolute sector

376 SF.AWR Write absolute sector

The special function (.SPFUN) request has the following general form, with the
area and chan parameters and the optional crtn, BMODE=str, and CMODE=str
parameters as described in the RT–11 System Macro Library Manual and the other
parameter arguments as described below:

Macro Call: .SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

func is the code for the function or the name of the function if the program
is assembled with the distributed file SYSTEM.MLB.

wcnt is the track to be written.

blk is the sector.

buf is the address of a 25610-word buffer.

The .SPFUN requests do not interleave sectors. RX50 diskettes have 80 tracks, and
the .SPFUN requests wrap to track 0 after track 79.

2–28 RT–11 Device Handlers Manual

2.7 LD (Logical Disk Handler)

This section provides specific programming information for logical disks.

The Logical Disk handler implements logical disk support. The LD handler accepts
I/O requests just like any other disk handler. By means of embedded translation
tables, the LD handler determines which physical disk and which starting block
offset should be used for each LD I/O request. When the proper physical disk and
block number are determined, the LD handler updates the block number and unit
number in the I/O queue element so that they correspond to the values for the
assigned physical disk. The LD handler then places the queue element on the I/O
queue for the physical disk so that the actual I/O can take place.

In addition to operating as outlined above, the LD handler can also be run as a
program. When run, the LD handler accepts CSI command lines and switches to
initialize, assign, verify, write-enable, or write-lock logical disk units.

2.7.1 Support for Special Functions

The logical disk handler supports the following special functions:

Code Name Action

372 SF.TAB Access the translation tables

373 SF.SIZ Return unit size. The parameter arguments for SF.SIZ for LD
are the same as for DM. See Section 2.2 for information

2.7.2 LD Translation Tables (SF.TAB), Code 372

Special function SF.TAB (code 372) interacts with the translation tables from an
address contained in the buf parameter argument of the SF.TAB call. You can read
the contents of the translation tables to the buffer or write the contents of the buffer
to the tables. Whether the SF.TAB request is a read or write operation is determined
by the wcnt parameter argument. This procedure is explained in this section.

For RT–11 V5.4, changes were made to the structure of the LD translation tables.
All programs you write to access the information contained in those tables should
reflect the changes. All programs you have written to access LD translation tables
should be changed to reflect the changes.

The tables start at a header; previously they started at a label. Following the 2-word
header are four LD translation tables. That is unchanged. However, the names of
offsets you use to reference the tables have changed. Some table contents have also
changed.

Further, you can now build support for up to 64 logical disk units, which affects how
you use the tables.

Size of the Translation Tables
The size of the LD translation tables in the LD handler is related to the number
of logical disk units supported by LD. Beginning with Version 5.5, you can use

Programming for Specific Devices 2–29

the system generation procedure (SYSGEN) to build an LD handler that supports
extended device units. By default, SYSGEN builds support for 1610 logical disk units
when you request extended device-unit support. You can request up to 6410 units.
Of those 64 units, 32 can be mounted and 32 are reserved to Digital.

Structure of the Translation Tables
The LD translation tables consist of a 2-word header followed by four LD translation
tables. The LD translation tables start at header LD.ID. Header LD.ID is a 1-word
table identifier and contains the Radix–50 value for the characters LD. Header LD.ID
is followed by LD.NUM, a 1-byte count of the number of entries in the table. As LD
is distributed, the value in LD.NUM is 108, indicating eight table entries. If LD is
built for extended device-unit support, the value in LD.NUM can contain a value up
to 1008, indicating support for up to 64 logical disk units. LD.NUM is the low-order
byte of the word LD.ID+2. The high-order byte of LD.ID+2 is reserved.

The four LD translation table offset names, location, and contents are:

LD.FLG (LD.ID+4) The table beginning at offset LD.FLG is the table previously at
the label HANDLR. LD.FLG contains one word for each LD unit number. The count
of LD unit numbers is stored in LD.NUM. The bits in each word of LD.FLG have
the following meaning:

Bits Name Meaning

0–5 LD.NDX An index to the handler tables in RMON for the physical device
corresponding to the LD unit number.

6 LD.UNX A flag that signals the index entry (bits 0–5) may be inaccurate
and should be updated. LD sets LD.UNX for all units if, upon
entry, the LDREL$ bit in RMON fixed offset CONFG2 is set.

7 LD.UOF A flag that signals the entry in the LD.OFS table for that LD
unit may be inaccurate. LD.UOF is set whenever a volume is
squeezed. LD checks LD.UOF each time it uses an LD unit; if
set, LD verifies that unit’s LD.OFS table entry before proceeding.

8–13 LD.UNT Contain the unit number of the physical disk assigned to the
logical disk unit.

14 LD.RDO Is the write-lock bit. If LD.RDO set, the LD unit is read only.

15 LD.ACT Is the allocation bit. If LD.ACT set, the LD unit is assigned. If
LD.ACT clear, the LD unit is not assigned.

LD.OFS (LD.FLG+<2*Contents of LD.NUM>) The second translation table starts at the
offset LD.OFS and contains one word for each LD unit number. The count of LD
unit numbers is stored in LD.NUM. Each word in LD.OFS contains the offset in
blocks from the beginning of the assigned physical disk to the start of the area on
that physical disk assigned to that LD unit number.

2–30 RT–11 Device Handlers Manual

LD.SIZ (LD.FLG+<4*Contents of LD.NUM>) The third translation table starts at offset
LD.SIZ and contains one word for each LD unit number. The count of LD unit
numbers is stored in LD.NUM. Each word in LD.SIZ contains the size in blocks of
the area on the physical disk assigned to that logical disk unit.

LD.NAM (LD.FLG+<6*Contents of LD.NUM>) The fourth translation table starts at the
label LD.NAM and contains four words for each LD unit number. The count of LD
unit numbers is stored in LD.NUM.

The first word of each 4-word entry contains the Radix–50 2-character name of the
physical disk that is assigned to that logical disk unit. That Radix–50 word must
be the physical (not logical) device name without any unit number. DL is a valid
physical device name; DK and DL1 are not valid.

The second, third, and fourth words of each entry contain the Radix–50 file name
and file type assigned as the logical disk.

Accessing the Translation Tables
Before Version 5.5, the translation table access special function code SF.TAB (372)
supported only eight units. The wcnt parameter for SF.TAB accepted two arguments,
+1 to indicate a read of the table and -1 to indicate a write to the table. The size
of each LD translation table was fixed at eight entries. Beginning with Version 5.5,
if the LD handler on your system continues to support only eight logical disk units,
you continue to read and write to the translation tables as before.

However, if the LD handler on your system supports more than eight units, the
SF.TAB special function provides additional values for the wcnt parameter to support
the extended device units. For LD handlers that implement the extended device-
unit feature, you indicate both a read or write operation and the size of the table you
are reading and writing by specifying a positive or negative numeric argument for
the wcnt parameter. A positive numeric argument indicates a read operation of the
specified number of words from the LD translation tables to the buffer. A negative
number indicates a write operation of the specified number of words from the buffer
to the translation tables. For example, a wcnt parameter argument of +16 reads 16
words, and an argument of –16 writes 16 words.

You can use the following procedure to read the translation tables from an LD
handler that supports extended device units into a buffer and write the translation
table from a buffer to LD. The procedure assumes you do not currently know (or
want to verify) the number of entries in the table.

1. Entries are reserved in each translation table for the total number of logical
disk units supported by the handler. The offset at which each table starts
is determined by the number of supported units. Therefore, to determine
the starting offset for each table within the four translation tables, you first
determine how many logical disk units are supported by the handler.

2. You can determine the number of entries by doing a read SF.TAB to return the
table entry LD.NUM. LD.NUM is the low byte of the second word in the table
and contains the number of table entries. Therefore, for the wcnt parameter,
supply the argument +2, and for the buf parameter, point to a 2-word buffer.

Programming for Specific Devices 2–31

3. Once you have determined the number of supported logical disk units, you can
use that value to perform read/write operations for the tables.

4. You can read the LD translation tables into memory by performing a single
SF.TAB read operation. The number of words in the LD translation tables is two
for the header (LD.ID plus LD.NUM), the value in LD.NUM for each of the first
three tables and four times the value in LD.NUM for the fourth table:

2+7*(LD.NUM)

For example, if LD.NUM indicated 1008 entries, the value to specify for wcnt to
read the entire table would be +45010. The buf parameter would point to a buffer
of the same size.

You could write the contents of the buffer to the LD handler by specifying the
value –45010 for the wcnt parameter.

2.7.3 Other Bits Used by the LD Handler

The LD handler uses bit 4 (LDREL$) in CONFG2, monitor fixed offset 370. This
bit is set whenever a handler is unloaded or released. The LD handler checks this
bit to see if a handler assigned to an LD unit has been removed from memory since
it was last used. If the bit is set, the LD handler sets bit 7 in all the entries in
the HANDLR table, then clears the LDREL$ bit. When the LD handler begins to
process an I/O request, the LD handler checks bit 7 for the requested LD unit. If bit
7 is set, the LD handler verifies that the handler for the disk assigned to that LD
unit number is in memory, then clears the bit. The LD handler checks and clears
bit 7 for a unit only when an I/O request is sent to that unit. Checking only when
absolutely necessary ensures that the LD handler will not waste time verifying units
that may never be used by a particular user program.

2–32 RT–11 Device Handlers Manual

2.8 MM, MS, and MT (Magtape Handlers)

This section provides specific programming information for reel-type magnetic tape
devices.

Magnetic tape (magtape) has a sequential (not random-access) file structure. There
is no directory at the beginning of each tape. RT–11 magtape handlers support a
file structure that is compatible with ANSI tape labels and format, giving you full
access to the tape controller without concern for the specifics of the device. See RT–11
Volume and File Formats Manual for more information on the format of magtapes
and tape labels.

NOTE
Support for RT–11 magtape file structure is compatible
only among systems that support DEC and ANSI
standards for tape labels and file formats. DOS-
formatted tapes cannot be read or written.

See the RT–11 Commands Manual for SET command conditions for each of the
magtape handlers. Those conditions can set the number of tracks, the density, the
parity of the tape drive, and the CSR and vector addresses.

See also the RT–11 Master Index under Magtape and the individual magtape handlers
for more information.

2.8.1 File Structure Module (FSM)

The File Structure Module (FSM) creates the file structure on magtapes written
by the distributed magtape handlers. The FSM is a discrete module (FSM.MAC)
that is assembled with the magtape hardware handlers when handlers are built; it
is included in the distributed magtape handlers. The FSM uses a protocol that is
understood by RT–11 utilities and described in the RT–11 Volume and File Formats
Manual.

When you issue a call for a file-oriented operation, the monitor (and perhaps the
USR) builds a queue element and passes it to the FSM. The FSM processes the
operation by manipulating the magtape drive.

Through the system generation procedure, you can build each of the magtape
handlers without the FSM; a hardware-only version of each handler. A hardware
magtape handler is smaller and requires less memory, but does not contain any
routines that define a file structure. It does contain routines that manipulate the
magtape drive. See Section 2.8.7.

Further, unless you write your own file structure module that duplicates the
functionality of the FSM, RT–11 utilities do not understand whatever protocol you
use to manage the magtape.

Therefore, Digital recommends that you use the distributed magtape handlers
(unless special circumstances indicate that a handler without the FSM is
appropriate), since only the handlers that contain the FSM can communicate with
the RT–11 system utility programs.

Programming for Specific Devices 2–33

This section uses some magtape-specific abbreviations:

BOT beginning-of-tape

EOF end-of-file

EOT physical end-of-tape

LEOT logical end-of-tape
LEOT consists of an EOF1 label (which includes one tape mark) followed
by two tape marks.

2.8.2 Compatibility of Magtape Operations with the FSM

As briefly explained above, the distributed magtape handlers contain the basic
magtape hardware handler, which is assembled with a file structure module (FSM).
As shown in the following tables, some magtape operations are intercepted by the
FSM and some operations bypass the FSM and are processed directly by the basic
magtape hardware handler.

Although the distributed magtape handlers can process all the magtape operations
described in this section, performing hardware-oriented operations that are
incompatible with the FSM disrupts the magtape’s file structure and can make the
magtape unsuitable for further file-oriented operations. In other words, to preserve
the file-oriented nature of a magtape volume, perform only file-oriented operations
on that volume or other operations that are compatible with the FSM.

The operations you can perform on a magtape can be divided into three classes:

• Operations that use the FSM. These are file-structured operations that require
the distributed handlers.

• Operations that bypass the FSM but are compatible with the FSM. These are
non-file-structured operations that the FSM understands.

• Operations that bypass the FSM and produce a magtape that is incompatible
with the FSM. You can perform these operations with the distributed handlers
but the resulting magtape is not compatible with the FSM or any RT–11 utilities.

The following tables list magtape operations and their compatibility with the FSM.
The tables list where more information can be found for each operation.

Table 2–5: Magtape Operations That Use the FSM

Operation Section Description

FSM Search by
Sequence
Number

2.8.4.1 Search for a file on a magtape based on file’s sequence
number.

FSM Search by
File Name

2.8.4.2 Search for a file on a magtape based on the file name.

.ENTER 2.8.4.3 Open a file.

2–34 RT–11 Device Handlers Manual

Table 2–5 (Cont.): Magtape Operations That Use the FSM

Operation Section Description

.LOOKUP 2.8.4.4 Find a file.

.READx 2.8.4.5 Read from a file.

.WRITx 2.8.4.6 Write to a file.

.CLOSE 2.8.4.8 Close a file.

.PURGE 2.8.4.9 Delete entry and close channel.

Table 2–6: Magtape Operations That Are Compatible with the FSM

Operation Code Section Description

NFS .LOOKUP N/A 2.8.5.1 Open a channel to a device (non-file-structured
.LOOKUP operation). Required before any special
function.

SF.USR 354 2.8.5.2 After NFS .LOOKUP, can be used in the following
ways:
Perform asynchronous directory operations that do
not require the USR.
Emulate a file-structured .LOOKUP or .ENTER to
gain access to a file for further special function
operations.

SF.MRD 370 2.8.5.3 After initial NFS .LOOKUP and SF.USR, perform
read operations of variable length blocks.

SF.MWR 371 2.8.5.4 After initial NFS .LOOKUP and SF.USR, perform
write operations of variable length blocks.

SF.MST 367 2.8.5.7 After initial NFS .LOOKUP, stream TS05 (MS
only).

.CLOSE N/A 2.8.5.6 Close channel and make device available.

Table 2–7: Magtape Operations That Are Not Compatible with the FSM

Operation Code Section Description

SF.MOR 372 2.8.6.1 Rewind and place drive off line.

SF.MRE 373 2.8.6.2 Rewind.

SF.MWE 374 2.8.6.3 Write with extended gap.

SF.MBS 375 2.8.6.4 Backspace.

SF.MFS 376 2.8.6.5 Forward space.

SF.MTM 377 2.8.6.6 Write tapemark.

Programming for Specific Devices 2–35

Table 2–7 (Cont.): Magtape Operations That Are Not Compatible with the FSM

Operation Code Section Description

NFS .READx N/A Obsolete. Non-file-structured read operation (use
SF.MRD).

NFS .WRITx N/A Obsolete. Non-file-structured write operation (use
SF.MWR).

2.8.3 Spacing Error Recovery

Any errors detected during spacing operations abort the recovery attempt, and
generate a hard (position) error.

Magtape handlers both with or without the FSM perform the following operations
if a read parity error is detected.

1. Backspaces over the block and rereads. When unsuccessful, the procedure is
repeated until five read commands have failed.

2. Backspaces five blocks, spaces forward four blocks, then reads the record.

3. Repeats steps 1 and 2 eight times or until the block is read successfully.

The handler performs the following operations upon detection of a read after write
(RAW) parity error.

1. Backspaces over one block.

2. Erases 3 inches of tape and rewrites the block. In no case is an attempt made
to rewrite the block over the bad spot, since, even if the attempt succeeds, the
block could be unreliable and cause problems later.

3. Repeats steps 1 and 2 if the read after write still fails. When 25 feet of erased
tape have been written, a hard error is given.

2.8.4 Magtape Operations That Use the FSM

The following magtape operations, listed in Table 2–5, use the FSM. The distributed
magtape handlers support these operations.

2.8.4.1 FSM Searching by Sequence Number

The FSM can search for files on tape based on their sequence number. It uses the
relationship between the current tape position and the desired new position to find
the desired file according to the following algorithm:

1. When the file sequence number for the desired file is greater than the number
of the current position, the handler moves the tape forward.

For example, if the tape is currently positioned at file sequence number 1, and
the desired file is number 2, the tape moves forward from its position at the tape
mark after file number 1 to the tape mark at the start of file number 2.

2–36 RT–11 Device Handlers Manual

2. When the file sequence number for the desired file is less than the number of
the current position, the handler optimizes its seek time by moving the tape
backward or forward, depending on the location of the file. In practice, the
handler almost always rewinds the tape and then searches forward.

For example, assume the number of the current position is 2 and the desired file
has sequence number 1. The tape leaves its position at the tape mark for file 2
and rewinds to the beginning of the volume. It then moves forward to the tape
mark at the start of file 1. As another example, assume the current position is 9
and the desired file has sequence number 6. The tape rewinds to the beginning
of the volume and the search proceeds in the forward direction.

If you release the handler through the UNLOAD command or the .RELEASE
programmed request, the file position is lost. In this situation the tape moves
backward until the handler locates BOT or a label from which it can determine
the tape’s position.

2.8.4.2 FSM Searching by File Name

The FSM can search for files on tape based on their file names. The routine to match
file names uses an algorithm that enables the handler to recognize file names and
file types used by other Digital operating systems. The FSM uses the file identifier
field, translating the contents to a recognizable file name. This file name is matched
to a file name stored in Radix–50 format. The format is as follows:

filnam.typ

filnam is a valid RT–11 file name left-justified in a six-character field. Unused
character positions are not padded.

typ is a file type left-justified in a 3-character field.

The algorithm the handler uses is backward compatible across all versions of the
operating system. RT–11 tapes can be detected by the presence of RT11 in character
positions 64 through 67 of the HDR1 label. The algorithm is as follows:

1. Clear the character count (CC).

2. Check the next character in the file name. If it is a dot, do the following:

a. Mark a dot found.

b. When CC < 6, insert spaces and increment the CC until it equals 6.

c. When CC > 6, delete characters and decrement the CC until it equals 6.

3. If CC = 6 and if RT11 is found in character positions 64 through 67 of the system
code field, insert a dot in the translated name, mark the dot found, and increment
CC.

4. Move the character into the translated file name and point to the next character.

5. Increment the CC.

6. When CC < 1010 go back to step 2.

Programming for Specific Devices 2–37

7. Check the dot-found indicator. If no dot was found, back up four characters and
insert .DAT for the file type.

8. Perform a character-by-character comparison between the desired file name and
the file name that was just translated from the file identifier field in the HDR1
label. When they match exactly, consider the file found.

2.8.4.3 .ENTER Programmed Request

The .ENTER programmed request opens a file on a magtape by writing a HDR1 label
and tape mark on the tape and leaving the tape positioned after the tape mark. The
request initializes some internal tables and makes entries for the last block written
and current block number. (The last block or file on tape is always the most recent
one written.) Table 2–8 shows the sequence number values for .ENTER requests.

The .ENTER programmed request has the following format, with the area, chan,
and dblk parameters as described in the RT–11 System Macro Library Manual. The
seqnum parameter is described below.

Macro Call: .ENTER area,chan,dblk,,seqnum

Table 2–8: Sequence Number Values for .ENTER Requests

Seqnum
Argument File Name Action Taken Tape Position

>0 not null Position at file sequence number and
perform a .ENTER.

Found: ready to write.
Not found: at LEOT;
LEOT is an EOF1 label
followed by two tape
marks. LEOT is different
from the physical end-of-
tape.

0 not null Rewind tape and search tape for file
name. If found then give error. If not
found then enter the file.

Found: before file. Not
found: ready to write.

–1 not null Position tape at LEOT and enter file. Ready to write.

–2 not null Rewind tape and search tape for file
name. Enter file at found file or LEOT,
whichever comes first.

Ready to write.

0 null Perform a non-file-structured .LOOKUP. Tape is rewound.

The .ENTER request returns the errors shown in Table 2–9.

Table 2–9: .ENTER Errors

Byte 52
Code Meaning

0 Channel in use.

2–38 RT–11 Device Handlers Manual

Table 2–9 (Cont.): .ENTER Errors

Byte 52
Code Meaning

1 Device full. EOT was detected while writing HDR1. Tape is positioned after the
first tape mark following the last EOF1 label on the tape.
No such job exists (system job support only).

2 Device already in use. Magtape already has a file open on that unit.

3 File exists, cannot be deleted.

4 File sequence number not found. Tape is positioned the same as for device full.

5 Invalid argument error. A seqnum argument in the range –3 through –32767 was
detected. A null file name was passed to .ENTER.

The .ENTER request issues a directory hard error if errors occur while entering the
file.

2.8.4.4 File-Structured .LOOKUP Programmed Request

A file-structured .LOOKUP request finds a file by searching for a specific HDR1
label. Upon finding and reading the HDR1 label, the tape is positioned before the
first data block of the file.

The .LOOKUP request has the following format, with the area, chan, and dblk
parameters as described in the RT–11 System Macro Library Manual. The seqnum
parameter argument values are shown in Table 2–10:

Macro Call: .LOOKUP area,chan,dblk,seqnum

Table 2–10: Sequence Number Values for File-Structured .LOOKUP Requests

Seqnum
Argument File Name Action Taken Tape Position

>0 null Perform a file-structured .LOOKUP on
the file sequence number.

Found: ready to read
first data block. Not
found: at LEOT.

0 not null Rewind to the beginning of tape,
then use file name to perform a file-
structured .LOOKUP.

Found: ready to read
first data block.
Not found: at LEOT.

–1 not null Do not rewind; perform a file-structured
.LOOKUP for a file name.

Found: ready to read
first data block from the
current position.
Not found: at LEOT.

>0 not null Position at file sequence number and
perform a file-structured .LOOKUP. If
file name does not match file name
given, return error.

Found: ready to read first
data block.
Not found: at the begin-
ning of the file specified
by the sequence number.

Programming for Specific Devices 2–39

The file-structured .LOOKUP returns the errors shown in Table 2–11.

Table 2–11: .LOOKUP Errors

Byte 52
Code Meaning

0 Channel in use.

1 File not found. Tape is positioned after the first tape mark following the last EOF1
on the tape.

2 Device in use. Magtape already has a file open.

5 Invalid argument error. A seqnum argument in the range –2 through –32767 was
detected. A .LOOKUP request must have a positive sequence number.

6 Invalid unit number.

The .LOOKUP request issues a directory hard error if errors occur while entering
the file.

2.8.4.5 .READx Programmed Requests

In this section, the term .READx refers to the .READ, .READC, and .READW group
of programmed requests. Further, .READx requests are described for files that have
been opened with the .ENTER and file-structured .LOOKUP requests.

The .READx requests read data from magtape in blocks of 512 bytes each. If a
request is issued for fewer than 512 bytes, the handler reads the correct number of
bytes. If the request is for more than 512 bytes, the handler performs the request
with multiple 512-byte transfers (the last request may be for fewer than 512 bytes).

The .READx requests are valid in a file opened with a .LOOKUP request. They
are also valid in a file opened with an .ENTER request, provided the block number
requested does not exceed the last block written. (Exceeding the last block written
returns code 0.)

If a tape mark is read, the routine repositions the tape so that another request
causes the tape mark to be read again. When a .CLOSE is issued to a file opened
by an .ENTER request, the tape position is left unchanged. Because magtape
is sequentially accessed, a reposition in a file (a backup) without subsequently
positioning to the end of the file (before a .CLOSE) causes data loss.

The guidelines for block numbers are as follows:

1. When a .LOOKUP is used (to search the file) with this request, the handler tries
to position the tape at the indicated block number. When it cannot, a 0 (EOF
code) is issued, and the tape is positioned after the last block on the file.

2. On an entered file, .READx checks to determine if the block requested is past
the last block in the file. If it is, the tape is not moved and the 0 error code is
issued.

2–40 RT–11 Device Handlers Manual

The .READx request has the following format, with the area, chan, buf, wcnt, blk
and optional crtn, BMODE=str, and CMODE=str parameters as described in the
RT–11 System Macro Library Manual:

Macro Call: .READx area,chan,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

Table 2–12 shows the errors the .READx requests return.

Table 2–12: .READx Errors

Byte 52
Code Meaning

0 Attempt to read past a tape mark; also generated by block that is too large.

1 Hard error occurred on channel.

2 Channel not open.

2.8.4.6 .WRITx Programmed Requests

In this section, the term .WRITx refers to the .WRITE, .WRITC, and .WRITW group
of programmed requests. Further, .WRITx requests are described for files that have
been opened with the .ENTER and file-structured .LOOKUP requests.

The .WRITx requests write data to magtape in blocks of 512 bytes. If a request is
issued for fewer than 512 bytes, the handler forces the writing of 512 bytes from the
buffer address. If a request is issued for more than 512 bytes, the handler performs
multiple 512-byte transfers.

The .WRITx requests are valid in a file opened with an .ENTER. Once a file is
opened, .WRITx determines if the requested block is past the last block in the file.
If it is, the tape is not moved and the 0 error code is issued.

The .WRITx request has the following format, with the area, chan, buf, wcnt, blk and
optional crtn, BMODE=str, and CMODE=str parameters as described in the RT–11
System Macro Library Manual:

Macro Call: .WRITx area,chan,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

Table 2–13 shows the errors the .WRITx requests return.

Table 2–13: .WRITx Errors

Byte 52
Code Meaning

0 End-of-tape. The data for the last write was not written, but the previous block is
valid. Also issued if the block number is too large.

1 Hard error occurred on channel.

2 Channel not open.

After a write operation, the rest of the tape is undefined (see Figure 2–5).

Programming for Specific Devices 2–41

Figure 2–5: Operations Performed After the Last Block Written on Magtape

In example 1 in Figure 2–5, blocks A, B, and C are written on the tape with the head
positioned in the gap immediately following block C. Any forward operation of the
tape drive except by write commands (that is, write, erase gap and write, or write
tape mark) yields undefined results due to hardware restrictions.

In example 2 in Figure 2–5, the head is shown positioned at BOT after a rewind
operation so that successive read operations can read blocks A, B, and C. The head
is left positioned as shown in example 3. Note that this is the same condition as
shown in example 1, and all restrictions indicated in example 1 are applicable.

2.8.4.7 .CLOSZ, .DELETE, .GFxxx, .RENAME, and .SFxxx Programmed Requests

These requests are invalid operations on magtape, and any attempt to execute them
returns an invalid operation code (code 2) in byte 52.

2.8.4.8 .CLOSE Programmed Request

The action of the .CLOSE request depends on how the file was opened.

• When a file is opened with an .ENTER request, the file is closed by writing a
tape mark, an EOF1 label, and three more tape marks. In this operation, the
tape is left positioned just before the second tape mark at LEOT. Note that the
rest of the tape is no longer readable.

2–42 RT–11 Device Handlers Manual

• When a file is opened with a file-structured .LOOKUP, the tape is positioned
after the tape mark following the EOF1 label for that file.

The .CLOSE request has the following format, with the chan parameter as described
in the RT–11 System Macro Library Manual:

Macro Call: .CLOSE chan

This request issues a directory hard error if a malfunction is detected. The error
can be recovered with the .SERR request.

2.8.4.9 .PURGE Programmed Request

The action performed by a .PURGE request is determined by the following:

• If the magtape channel has been opened by a .ENTER request, a .PURGE request
deletes the current entry by a series of BACKUP and WRITE-TAPE-MARK
operations, leaving the magtape positioned just before the second tape mark
at LEOT.

• If the magtape channel has been opened with a file-structured or non-file-
structured .LOOKUP, the .PURGE request frees the unit table entry for the
handler, closes the channel, and makes the handler available for other operations.

The .PURGE request has the following format, with the chan parameter as described
in the RT–11 System Macro Library Manual:

Macro Call: .PURGE chan

2.8.5 Magtape Operations That Are Compatible with the FSM

The following magtape operations (as listed in Table 2–6), bypass the FSM but
are compatible with the FSM. The distributed magtape handlers support these
operations and a magtape that is manipulated by these functions is supported by
RT–11 utilities.

2.8.5.1 Non-File-Structured .LOOKUP Programmed Request

You must issue a non-file-structured .LOOKUP request to open a channel to the
device before starting any I/O operations. The non-file-structured .LOOKUP request
causes the handler’s hardware level to mark the drive busy so that no other channel
can be opened to that drive until a .CLOSE is issued.

The .LOOKUP request has the following format, with the area, chan, and dblk
parameters as described in the RT–11 System Macro Library Manual. The values
for the seqnum parameter argument are described in Table 2–14:

Programming for Specific Devices 2–43

Macro Call: .LOOKUP area,chan,dblk,seqnum

Table 2–14: Sequence Number Values for Non-File-Structured .LOOKUP Requests

Seqnum Ar-
gument File Name Action Taken Tape Position

0 null Perform a non-file-structured .LOOKUP. Rewound.

–1 null Perform a non-file-structured .LOOKUP. Not moved.

Table 2–15 shows the errors that can be returned by the non-file-structured
.LOOKUP request.

Table 2–15: Non-File-Structured .LOOKUP Errors

Byte 52
Code Meaning

0 Channel in use; channel already open.

1 File not found; no such job.

2 Device in use. The drive being accessed is already attached to another channel.

5 Argument is invalid; for example, magtape file sequence number.

6 Invalid unit number.

2.8.5.2 Asynchronous Directory Operations (SF.USR), Code 354

SF.USR must be preceded by a non-file-structured .LOOKUP and can be used to
perform two operations:

• SF.USR can perform asynchronous directory operations without the USR, which
makes it useful for long tape searches. It is particularly useful in multi-job
environments, because the search operation locks the USR during directly issued
.ENTER and .LOOKUP requests.

• SF.USR allows an emulation of the .ENTER and file-structured .LOOKUP
requests to be issued after a non-file-structured .LOOKUP assigns a channel
to the magtape handler.

The special function SF.USR has the following format, with the area and chan
parameters as described in the RT–11 System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.USR,buf,,blk

SF.USR is the code 354 or the name SF.USR if the program has been assembled
with the distributed file SYSTEM.MLB.

2–44 RT–11 Device Handlers Manual

buf is the address of a 7-word block with the following format:

Word Meaning

0–2 Radix–50 representation of the file name.

3 One of the following codes:
3 for .LOOKUP
4 for .ENTER

4 Sequence number value. See the corresponding sections
for .LOOKUP or .ENTER for complete information on the
interpretation of this value.

5,6 Reserved.

blk is the address of a 4-word error and status block used for returning
.LOOKUP and .ENTER errors that are normally reported in byte 52.
See Section 2.8.5.5. Only the first word of blk is used by this request.
The other three words are reserved for future use and must be zero.
If the value of blk is 0, no error information is returned. Figure 2–6
shows a programming example.

Figure 2–6: Asynchronous Directory Operation Example

.TITLE Asynchronous Directory Operation Example

.ENABLE LC ; Print lower case

.NLIST BEX ; Don’t list text storage

.MCALL .LOOKUP, .SPFUN, .CLOSE, .PRINT, .EXIT

; Definitions

SF.USR = -20. ; Asynchronous request
LOOKUP = 3 ; Lookup code for async request
ENTER = 4 ; Enter code for async request
CHAN = 0 ; Use channel 0
FNF = 1 ; 1 = File not found error
FSN = 0 ; Use 0 as file sequence number

;Example assumes that magtape handler is loaded.

Figure 2–6 (continued on next page)

Programming for Specific Devices 2–45

Figure 2–6 (Cont.): Asynchronous Directory Operation Example

START: .LOOKUP #AREA,#CHAN,#NFSBLK,#0 ; Open a channel
; for the next request

BCS LOOKER ; Branch if error occurred
.SPFUN #AREA,#CHAN,#SF.USR,#COMBLK,#ERRBLK

; Do a lookup
BCC FILFND ; Branch if file found
CMP #FNF,ERRBLK ; File not found error?
BEQ NOTFND ; Branch if yes
MOV #ASYERR,R0 ; No, some other error
BR CLOSE

LOOKER: MOV #LOOERR,R0 ; NFS Lookup error
BR CLOSE

FILFND: MOV #OK,R0 ; Report success
BR CLOSE

NOTFND: MOV #FNFERR,R0 ; Report file not found
CLOSE: .PRINT ; Print error pointed to

; by R0
.CLOSE #CHAN ; Clean up...
.EXIT ; and return to monitor

;Data area

AREA: .BLKW 5 ; EMT argument block
NFSBLK: .RAD50 /MT / ; Use this to open

.WORD 0 ; magtape in non-file-

.WORD 0 ; structured mode

.WORD 0

COMBLK: .RAD50 /FILNAMTYP/ ; This is the file name
; we’re looking for

.WORD LOOKUP ; This is the asynch op
; code for lookup

.WORD FSN ; This is file sequence
; number for the lookup

.WORD 0,0 ; Reserved (must be 0)
ERRBLK: .WORD 1 ; Set first word non-0

.WORD 0,0,0 ; so errors return here

;Messages

LOOERR: .ASCIZ /Non-file-structured lookup failed/
OK: .ASCIZ /File found, lookup successful/
FNFERR: .ASCIZ /File not found/
ASYERR: .ASCIZ /Error in asynchronous request/

.EVEN

.END START

2–46 RT–11 Device Handlers Manual

2.8.5.3 Read Physical Blocks (SF.MRD), Code 370

After an NFS .LOOKUP request (and optionally after an SF.USR), the SF.MRD
request reads blocks of any size.

The special function SF.MRD has the following format, with the area, chan, buf,
wcnt, and optional crtn, BMODE=str, and CMODE=str parameters as described in
the RT–11 System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.MRD,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

SF.MRD is the code 370 or the name SF.MRD if the program is assembled with
the distributed file SYSTEM.MLB.

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the errors shown in Table 2–16. Additional qualifying
information for these errors is returned in the first two words of the blk parameter
argument status block. See Section 2.8.5.5.

Table 2–16: SF.MRD (Code 370) Errors

Byte 52 Code
First Word
Code Qualifying Information

EOF
(Value = 0)

1 Tape before EOF only (tape mark detected).

2 Tape before EOT only (no tape mark detected).

3 Tape before EOF and EOT (tape mark detected).

Hard error
(Value = 1)

0 No additional information (consult documentation for your
particular tape drive for all possible error conditions).

1 Tape drive not available.

2 The controller lost the tape position.

3 Nonexistent memory accessed.

4 Tape is write locked.

5 The last block read had more information.
The MM handler returns (in the second status word) the number
of words not read.

6 A short block was read. The second status word contains the
difference between the number of words requested and the
number read.

Programming for Specific Devices 2–47

2.8.5.4 Write Physical Blocks (SF.MWR), Code 371

After an NFS .LOOKUP request and optionally after an SF.USR, the SF.MWR
request writes blocks of any size.

The special function SF.MWR has the following format, with the area, chan, buf,
wcnt and optional crtn, BMODE=str, and CMODE=str parameters as described in
the RT–11 System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.MWR,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

SF.MWR is the code 371 or the name SF.MWR if the program is assembled with
the distributed file SYSTEM.MLB.

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the errors shown in Table 2–17.

Table 2–17: SF.MWR (Code 371) Errors

Byte 52 Code
First Word
Code Qualifying Information

EOF
(Value = 0)

1 Tape before EOF only (tape mark detected).

2 Tape before EOT only (no tape mark detected).

3 Tape before EOF and EOT (tape mark detected).

Hard error
(Value = 1)

0 No additional information (consult documentation for your
particular tape drive for all possible error conditions.)

1 Tape drive not available.

2 The controller lost the tape position.

3 Nonexistent memory accessed.

4 Tape is write locked.

NOTE
The TJU16 tape drive can return a hard error if a write
request with a word count less than 7 is attempted.

2.8.5.5 Exception (Error and Status) Reporting

Special function requests report end-of-file and hard error conditions through byte
52 in the system communication area. You can also receive additional information
about those two error conditions. You can specify an address in the special function’s
blk parameter that points to a 4-word error and status block which returns that
information.

Specify #0 for blk if you do not want exception reporting.

2–48 RT–11 Device Handlers Manual

Although all four words in the error and status block must be initialized to 0 before
the first special function is called, only words 1 and 2 of the status block return
information. Words 3 and 4 are reserved and not written and therefore need only
be initialized once (remain as set to 0).

The meaning of the error and status block contents is tied to the contents of byte 52
in the system communications area. The program should therefore check the state
of the carry bit and byte 52 before attaching importance to the contents of the error
and status block.

End-of-File Condition Exception Reporting
Besides an actual EOF, the magtape handler’s hardware level returns an end-of-file
condition when the handler encounters an EOT, tape mark, or BOT. An end-of-file
condition produces the following:

• Sets the carry bit and byte 52 is zero.

• The first word of the error and status block is shown in Table 2–18.

• The second word contains the number of blocks not spaced when a tape mark is
detected during a spacing operation.

Table 2–18: End-of-File Qualifying Information

First
Word Meaning

1 Tape before EOF only (tape mark detected).

2 Tape before EOT only (no tape mark detected).

3 Tape before EOT and EOF (tape mark detected).

4 Tape before BOT (no tape mark detected).

Hard Error Condition Exception Reporting
A hard error condition:

• Sets the carry bit and byte 52 is 1.

• Returns in the first word the qualifying information shown in Table 2–19.

Table 2–19: Hard Error Qualifying Information

First
Word Meaning

0 No additional information (includes parity error and all others not listed below.
Consult documentation for your particular tape drive for all possible error
conditions.)

1 Tape drive not available.

Programming for Specific Devices 2–49

Table 2–19 (Cont.): Hard Error Qualifying Information

First
Word Meaning

2 The controller lost the tape position. When this error occurs, rewind or backspace
the tape to a known position.

3 Nonexistent memory was accessed.

4 Tape is write locked.

5 The last block read had more information. The MM handler returns (in the second
status word) the number of words not read.

6 A short block was read. The second status word contains the difference between
the number of words requested and the number of words read.

2.8.5.6 .CLOSE Programmed Request

The magtape handler at the hardware level accepts the .CLOSE request and causes
the handler to mark the drive as available; the channel becomes free.

The .CLOSE request has the following format, with the chan parameter as described
in the RT–11 System Macro Library Manual:

Macro Call: .CLOSE chan

2.8.5.7 Enabling 100ips Streaming on a TS05/TSU05/TSV05 (SF.MST), Code 367

The SF.MST special function places the TS05 drive in 100ips streaming mode.

The special function SF.MST has the following format, with the area and chan
parameters as described in the RT–11 System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.MST,buf,,blk

SF.MST is the code 367 or the name SF.MST if the program is assembled with
the distributed file SYSTEM.MLB.

buf is a word which enables or disables streaming.
If buf contains a 1, streaming is enabled.
If buf contains a 0, streaming is disabled.

blk is a pointer to a 4-word error block. (See Section 2.8.5.5.)

Streaming is automatically turned off when a .CLOSE is issued on a channel open
on magtape, when an abort occurs, or if there is a magtape I/O error.

This special function is valid only for a TS05 using the MS handler. An SF.MST call
is ignored if it is used with any other magtape handler or if it is used with the MS
handler running a TS11 magtape.

If you want to run a TS05 in streaming mode, you must also use double-buffered I/O
so that there is always a request pending in the magtape I/O queue. If there is not,
there will be too much delay between I/O requests and the streaming will not work
properly.

2–50 RT–11 Device Handlers Manual

2.8.6 Magtape Operations That Are Not Compatible with the FSM

The magtape operations listed in Table 2–7 and described below bypass the FSM
and are incompatible with the file structure produced by the FSM. The operations
are direct hardware calls to the magtape handler. The distributed magtape handlers
accept these operations, but a magtape that is manipulated by these functions is no
longer ANSI-compatible or supported by RT–11 utilities.

When any of the following operations is called, the stored file sequence number and
block number information are erased and are not reinitialized until a .CLOSE and
another file-opening command have been performed. Note that the .CLOSE moves
and, in the case of the file opened with .ENTER, writes the tape regardless of any
commands that have been issued since the file was opened. When the file is closed,
the magtape handler cannot write the size of the file because the file size is lost to
the handler. It writes a zero in its place. The file sequence number field will be
correct.

You initiate operations and use these special functions in the same manner as those
that are compatible with the FSM:

1. Open a channel to the device by issuing a non-file-structured .LOOKUP.

2. You can optionally open a file on the magtape volume by issuing an SF.USR.

3. Issue the special functions to read, write, or position the magtape.

4. Close the channel.

If you are going to be using the operations in this section consistently, you should
investigate performing a system generation and building a magtape handler that
does not contain the FSM; a hardware-level-only handler. Such a handler is
appropriate for the operations in this section and has a much smaller memory image.
See Section 2.8.7 and the RT–11 System Generation Guide for information.

2.8.6.1 Rewinding and Going Off Line (SF.MOR), Code 372

This request is the same as rewind, except that it takes the tape drive off line and
then rewinds to BOT. The handler is free to accept commands after the rewind is
initiated.

The special function SF.MOR has the following format, with the area, chan, and
optional crtn, BMODE=str, and CMODE=str parameters as described in the RT–11
System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.MOR,,,blk[,crtn][,BMODE=str][,CMODE=str]

SF.MOR is the code 372 or the name SF.MOR if the program is assembled with
the distributed file SYSTEM.MLB.

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the same error code and qualifying information as the rewind
request.

Programming for Specific Devices 2–51

2.8.6.2 Rewinding (SF.MRE), Code 373

The SF.MRE request rewinds the tape to BOT. The MT and MM handlers cannot
accept other requests until the rewind operation is complete; the MS handler can.

The special function SF.MRE has the following format, with the area, chan, and
optional crtn, BMODE=str, and CMODE=str parameters as described in the RT–11
System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.MRE,,,blk[,crtn][,BMODE=str][,CMODE=str]

SF.MRE is the code 373 or the name SF.MRE if the program is assembled with
the distributed file SYSTEM.MLB.

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the error shown in Table 2–20.

Table 2–20: SF.MRE (Code 373) Errors

Byte 52 Code
First Word
Code Qualifying Information

Hard error
(Value = 1)

0 No additional information (consult documentation for your
particular tape drive for all possible error conditions).

1 Tape drive not available.

2.8.6.3 Writing with Extended Gap (SF.MWE), Code 374

This request permits you to write on tapes that have bad spots. The call syntax
is identical to the SF.MWR request except for its function code, which is 374. The
errors are explained in Table 2–21.

Table 2–21: SF.MWE (code 374) Errors

Byte 52
Code Meaning

0 The EOT marker has been detected.

1 Hard error occurred on channel.

2 Channel not open.

Additional qualifying information for these errors is returned in the first two words
of the status block. See Section 2.8.5.5.

2.8.6.4 Spacing Backward (SF.MBS), Code 375

The SF.MBS request spaces the magtape backward block-by-block or until a tape
mark is detected.

2–52 RT–11 Device Handlers Manual

You should note that because magtape is sequentially accessed, an SF.MBS operation
in a file without a subsequent positioning to the end of the file (before a .CLOSE)
causes data loss.

The special function SF.MBS has the following format, with the area, chan, wcnt and
optional crtn, BMODE=str, and CMODE=str parameters as described in the RT–11
System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.MBS,,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

SF.MBS is the code 375 or the name SF.MBS if the program is assembled with
the distributed file SYSTEM.MLB.

wcnt is the number of blocks to space past (must not exceed 6553410).

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the errors shown in Table 2–22.

Table 2–22: SF.MBS (Code 375) Errors

Byte 52 Code
First Word
Code Qualifying Information

EOF
(Value = 0)

1 Tape before EOF only (tape mark detected).

2 Tape before EOT only (no tape mark detected).

3 Tape before EOF and EOT (tape mark detected).

4 Tape before BOT (no tape mark detected).
The second word in the status block contains the number of
blocks requested to be spaced wcnt, minus the number of blocks
spaced if a tape mark or BOT is detected. Otherwise, its value
is not defined.

Hard error
(Value = 1)

0 No additional information (consult documentation for your
particular tape drive for all possible error conditions).

1 Tape drive not available.

2 The controller lost the tape position.

2.8.6.5 Spacing Forward (SF.MFS), Code 376

The SF.MFS request spaces the magtape forward block-by-block or until a tape mark
is detected. When a tape mark is detected, the handler reports it along with the
number of blocks not skipped. These commands can be used to issue a space-to-
tape-mark command by passing a number greater than the maximum number of
blocks on a tape. The tape is left positioned after the tape mark or the last block
passed. The two spacing requests have the following forms.

The special function SF.MFS has the following format, with the area, chan and
optional crtn, BMODE=str, and CMODE=str parameters as described in the RT–11
System Macro Library Manual:

Programming for Specific Devices 2–53

Macro Call: .SPFUN area,chan,#SF.MFS,,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

SF.MFS is the code 376 or the name SF.MFS if the program is assembled with
the distributed file SYSTEM.MLB.

wcnt is the number of blocks to space past (must not exceed 6553410).

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the errors shown in Table 2–23.

Table 2–23: SF.MFS (Code 376) Errors

Byte 52 Code
First Word
Code Qualifying Information

EOF
(Value = 0)

1 Tape at EOF only (tape mark detected).

2 Tape at EOT only (no tape mark detected).

3 Tape at EOF and EOT (tape mark detected).
The second word in the status block contains the number of
blocks requested to be spaced (wcnt), minus the number of blocks
spaced if a tape mark or BOT is detected. (A tape mark is
counted as a block.) Otherwise, its value is not defined. The
tape will be positioned after the tape mark on forward spacing
and before the tape mark on backward spacing.

Hard error
(Value = 1)

0 No additional information (consult documentation for your
particular tape drive for all possible error conditions).

1 Tape drive not available.

2 The controller lost the tape position.

NOTE
Due to hardware restrictions, Digital recommends that
no forward space commands be issued if the reel is
positioned past the EOT marker.

2.8.6.6 Writing a Tape Mark (SF.MTM), Code 377

The SF.MTM request writes a tape mark.

The special function SF.MTM has the following format, with the area, chan and
optional crtn, BMODE=str, and CMODE=str parameters as described in the RT–11
System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.MTM,,,blk[,crtn][,BMODE=str][,CMODE=str]

SF.MTM is the code 377 or the name SF.MTM if the program is assembled with
the distributed file SYSTEM.MLB.

2–54 RT–11 Device Handlers Manual

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the errors shown in Table 2–24. Additional qualifying
information for these errors is returned in the first two words of the blk argument
status block. See Section 2.8.5.5.

Table 2–24: SF.MTM (Code 377) Errors

Byte 52 Code
First Word
Code Qualifying Information

EOF
(Value = 0)

1 Tape before EOF only (tape mark detected).

Hard error
(Value = 1)

0 No additional information (consult documentation for your
particular tape drive for all possible error conditions).

1 Tape drive not available.

2 The controller lost the tape position.

4 Tape is write locked.

2.8.7 Hardware Magtape Handler

The hardware magtape handlers are identical to the distributed handlers except they
are not built with the FSM. Therefore, the hardware magtape handlers accept only
hardware requests. These are applicable in I/O operations where no file structure
exists. Any file structure request you make to the hardware handler results in a
monitor directory I/O error. The hardware handler is a subset of the file structure
magtape handler. It can perform I/O operations on physical blocks, position the tape,
and recover from errors.

Any file-structured request causes the hardware handler to issue a hard error. The
hardware handler accepts only the non-file-structured .LOOKUP, .CLOSE, or special
function requests.

If you do not need the file structure support, use the hardware handlers. You must
perform a SYSGEN (see the RT–11 System Generation Guide) to get the hardware
magtape handlers, then you must rename them in order to use them. Use a series
of monitor commands similar to the following, which replace the file structure MS
handler with the hardware MS handler.

1. Remove the distributed handler:

.REMOVE MS RET

2. Save the distributed handler:

.RENAME/SYS MS[X].SYS MS[X]FS.SYS RET

3. Replace the distributed handler with the hardware handler you built during
SYSGEN:

.RENAME/SYS MS[X]HD.SYG MS[X].SYS RET

Programming for Specific Devices 2–55

4. Install the hardware handler:

.INSTALL MS RET

2.8.8 Transporting Tapes to RT–11

RT–11 can read files written on other computer systems that support the ANSI
standard labels. The following sections give a few examples of how to write ANSI
tapes on some common Digital PDP–11 operating systems. Keep in mind that
there are other factors involved in addition to the label and format compatibility,
including density, parity, and number of tracks. Consult the appropriate system
documentation for complete information on using magtapes under the different
operating systems. (See the RT–11 Volume and File Formats Manual and the RT–11
System Utilities Manual for information on transporting tapes from RT–11 to other
systems.)

2.8.8.1 From RSTS/E

RSTS/E supports two types of magtape format, DOS–11 and ANSI. In the following
examples, dd represents the magtape handler name. To ensure that an ANSI file
structure is written, issue the following commands:

Examples

1. ASSIGN ddn: .ANSI

Allocates the device to the job and ensures that an ANSI file structure is used.

2. RUN $PIP
ddn:xxxxxx/ZE

PIP initializes the tape; xxxxxx is the volume ID.

3. Really zero ddn:? YES

PIP prompts before initializing the tape.

4. PIP ddn:=TEST1.MAC,TEST2.MAC

PIP copies files to the tape.

5. DEASSIGN ddn:

Deallocates the device.

2.8.8.2 From RSX–11M

RSX–11M needs the following commands to access a magtape:

Examples

1. ALL ddn:

Allocates a drive.

2–56 RT–11 Device Handlers Manual

2. INI ddn:RT11

Initializes the tape and gives the name RT11 as the volume identification.

3. MOU ddn:RT11

Mounts the tape volume.

4. PIP ddn:=[13,14]TEST1.MAC,TEST2.MAC

Copies files to the tape.

5. DMO ddn:RT11

Dismounts the tape volume.

6. DEA ddn:

Deassigns the drive.

2.8.8.3 From RSX–11D and IAS

Use the following commands to write an ANSI tape on RSX–11D or IAS:

Examples

1. INI ddn:RT11

Initializes the tape and gives the name RT11 as the volume identification.

2. MOU ddn:RT11

Mounts the tape volume.

For RSX–11D, use PIP to write files to the tape; for IAS, use the COPY command.

Examples

1. DMO ddn:RT11

Dismounts the tape volume.

The contents of files written under the RSX–11D, RSX–11M, and IAS systems do
not necessarily correspond to those types of data files under RT–11. For example,
under RT–11, text files consist of stream ASCII data (carriage return and line feed
characters are embedded in the text); the other operating systems use a different
type of character storage. Be sure to pay attention to the contents of the files you
need to transfer.

When you write files to be read under RT–11, the only valid block size the utility
programs use is 512 characters per block. However, the DIR program will list the
directory of any ANSI compatible tape.

Programming for Specific Devices 2–57

2.8.8.4 From VMS

Creating a magtape on a VAX processor running the VMS operating system for
subsequent transfer to a PDP–11 running RT–11 is described in the RT–11 Volume
and File Formats Manual. Look there for the procedure.

2.8.9 Seven-Track Magnetic Tape

Seven-track tapes contain six data tracks and one parity track, so a maximum of six
data bits can be contained in one tape character. With seven-track tapes, the MT
handler operates in either six-bit mode or core dump mode.

Six-bit mode is not compatible with the data normally created by PDP–11 systems; it
is provided for transferring data to or from other systems. In addition, file structure
operations cannot be performed in this mode. With the density set at 200 or 556
bpi, the magtape always operates in six-bit mode. When reading in six-bit mode, the
handler places each six-bit tape character right-justified in a PDP–11 byte; the high-
order two bits of the byte are set to 0. When writing in six-bit mode, the handler
writes the low-order six bits of a PDP–11 byte as the six data bits of a tape character;
the high-order two bits of the PDP–11 byte are not transferred or affected.

Core dump mode is compatible with PDP–11 systems. At 800 bpi, seven-track tape
transfers can occur in either six-bit mode (SET MT: DENSE=807) or core dump mode
(the default). Figure 2–7 illustrates the differences between six-bit mode and core
dump mode.

In core dump mode, each PDP–11 byte is split into two tape characters. In writing
to the tape, the handler writes the low-order four bits of a PDP–11 byte as the low-
order four bits of the first tape character and the high-order four bits of the PDP–11
byte as the low-order four bits of the next tape character. The high-order two bits of
each tape character are set to 0.

In reading from the tape, the reverse process occurs. The low-order four bits of the
first tape character become the low-order four bits of the PDP–11 byte; the low-order
four bits of the next tape character become the high-order four bits of the PDP–11
byte.

The high-order two bits of each tape character are not involved in the transfer,
although they are included in the parity calculation. Thus, in core dump mode, the
actual number of tape characters read or written is twice the number of PDP–11
bytes requested to be transferred; this conversion is performed by the magtape
controller.

2–58 RT–11 Device Handlers Manual

Figure 2–7: Seven-Track Tape

Programming for Specific Devices 2–59

2.9 MU (TMSCP Magtape Handler)

This section provides specific programming information for TMSCP magtapes.

The MU handler supports magtape systems that use the tape mass storage
communication protocol (TMSCP).

NOTE
The MU handler contains the same basic structure and
provides the same support for programmed requests and
special functions as described in Section 2.8 except as
explicitly stated in this section. Therefore, this section
describes only how the MU handler is different from the
MM, MS, and MT handlers.

2.9.1 Support for Special Functions

The following special functions are either not supported by the reel-type magtape
handlers or are supported in a different manner.

The SF.MTB and SF.BYP special functions are not affected by the presence (or
absence) of the File Stucture Module (FSM), as they are not concerned with
operations on magtape volumes. Rather, they are conerned with data structures
within the handler itself or the handler’s controller.

Code Name Function

352 SF.MTB Magtape data table access

SF.TRD wcnt argument for a read from the table; specified with a +1

SF.TWR wcnt argument for a write to the table; specified with a –1

360 SF.BYP Direct TMSCP access; special function bypass

374 SF.MWE Not Supported; writes with extended file gap executes as a
write (SF.MWR) operation

2.9.1.1 TMSCP Translation Tables (SF.MTB), Code 352

Whenever an I/O request is passed to the MU handler, MU uses the RT–11 unit
number as an index into the translation tables. MU then extracts the TMSCP
unit number and port that have been assigned to that RT–11 unit, and uses the
information to access the proper magtape drive.

You can read or write (modify) the memory-resident contents of the translation tables
by using SF.MTB.

Size of the Translation Tables
The size of the translation tables is determined by the number of device units
supported by DU. The distributed MU supports one unit; you can build an MU

2–60 RT–11 Device Handlers Manual

that supports up to four units. You can determine the number of supported units
for a particular handler by reading the MU.NUM field, as explained further.

Structure of the Translation Tables
As shown in Tables 2–25 and 2–26, the MU unit translation tables consist of a table
header followed by table entries. The header starts at offset MU.ID, which is a word
containing the Radix–50 value for the characters MU.

The MU.ID offset is followed by MU.NUM. The low byte of MU.NUM contains the
number of entries in the table (and therefore the number of supported units). The
high byte of MU.NUM is reserved.

The next offset is MU.ENT, which contains a pointer to the first table entry.

Table 2–25: TMSCP (MU) Translation Table Header

Offset Name Meaning

0 MU.ID Radix–50 value for characters MU

2 MU.NUM Byte containing number of entries in table

3 Reserved

4 MU.ENT The offset of the first table entry

Each table entry is 4 bytes, and Digital recommends you use the symbol MU.ESZ to
represent the 4-byte size of each entry.

Table 2–26: TMSCP (MU) Translation Table Entry

Offset Name Meaning

0 MU.UNI Physical TMSCP unit number.
The symbol MU$Ux=nnnnnn is the initial value for the translation
table when the handler is assembled. In the symbol, x is the octal RT–
11 MU unit number (0–3) and nnnnnn is the TMSCP unit number.
The SET MUx UNIT=nnnnnn command can subsequently change the
value.

2 MU.JOB Byte containing the number of the job connected to this TMSCP unit.

3 MU.POR Byte containing the TMSCP port (controller) number.
The symbol MU$Ox=nnn is the initial value for the translation table
when the handler is assembled. In the symbol, x is the octal RT–11
MU unit number (0–3) and nnn is the TMSCP port number. The SET
MU PORT=nnn command can subsequently change the value.

4 MU.ESZ Size of an entry (4 bytes)

Programming for Specific Devices 2–61

Accessing the Translation Tables
Special function SF.MTB can read or write the TMSCP translation tables. Whether
a read or write operation is performed is determined by the wcnt argument. Specify
+1 (SF.TRD) for wcnt to read the tables; –1 (SF.TWR) to write the tables.

The translation tables are read from or written to a buffer, which is pointed to by
the buf parameter.

2.9.1.2 Special Function Bypass (SF.BYP), Code 360

Special function SF.BYP bypasses all unit number translation and allows direct
access to the TMSCP port. For MU, SF.BYP (direct TMSCP access) serves the same
purpose as the DU handler’s SF.BYP (direct MSCP access).

The request syntax and parameter argument definitions for SF.BYP are as follows:

Macro Call: .SPFUN area,chan,#SF.BYP,buf,wcnt,blk

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 3768.

SF.BYP is code 360 or the name SF.BYP if the program has been assembled
with the distributed module SYSTEM.MLB.

buf is the address of the 5210-word TMSCP area.

wcnt when nonzero, is the virtual address of a data buffer to send to the
handler. That virtual address is translated to a physical address and
placed in the buffer of the TMSCP area.
when zero, the buffer address in the TMSCP area is not altered.

blk indicates whether the handler should perform retries:

1 = specifies retries

0 = specifies no retries

The buffer address in special function SF.BYP must point to a 52-word area in the
user’s job. The first 26 words are used to hold:

• A response packet length in bytes

• A virtual circuit identifier

• An end packet when the command is complete

The second 26 words are set up by the caller and contain:

• A length word (length of command)

• A virtual circuit identifier (must have octal 1 (001) in high byte)

• A valid TMSCP command (4810-byte command buffer)

Except for port initialization, the user program must do all command packet
sequencing, error handling, and reinitialization when the bypass operations are
complete.

2–62 RT–11 Device Handlers Manual

2.9.2 Unit Support, CSR and Vectors

The distributed MU handler supports one unit. Using the system generation
procedure, you can build an MU handler that supports up to four units. Each unit
requires a separate controller and you can only boot RT–11 from unit MU0, which
must be installed at CSR address 774500 and vector address 260. The addresses for
MU1 through MU3 float; they depend on what other devices are on the bus. The
default CSR and vector addresses are as follows:

CSR Vector

774500 260

774504 340

774510 344

774514 350

Programming for Specific Devices 2–63

2.10 NL (Null Handler)

The null handler accepts all read and write requests. On output operations, this
handler acts as a data sink. When a program calls NL, the handler returns
immediately to the monitor indicating that the output is complete. The handler
returns no errors and causes no interrupts. On input operations, NL returns an
immediate EOF indication for all requests; no data is transferred. Hence, the
contents of the input buffer are unchanged.

2–64 RT–11 Device Handlers Manual

2.11 NC, NQ, NU (Ethernet Handlers)

RT–11 includes three Ethernet handlers that provide support for Ethernet class
controllers. The NC Ethernet handler supports the DECNA controller for CTI Bus-
based processors. The NQ Ethernet handler supports the DELQA and DEQNA
Ethernet controllers for Q-bus processors. The NU Ethernet handler supports the
DELUA and DEUNA controllers for UNIBUS processors.

Each handler supports only one controller and a maximum of eight units. These unit
numbers are used as a logical connection between a user program and an address
/protocol pair to be recognized by the Ethernet hardware.

2.11.1 Restrictions

Observe the following Ethernet handler restrictions:

• The handlers run only under mapped monitors.

• The handlers cannot be fetched and must be loaded.

• Programs that call the Ethernet handlers must be written to perform with the
following elements in the order indicated:

1. Use the .LOOKUP programmed request to open a channel to the device unit.

2. Allocate the unit using .SPFUN 200.

3. Perform the Ethernet operation or operations.

4. Deallocate the unit using .SPFUN 200.

5. Use the .CLOSE programmed request to close the channel to the specified
device unit.

2.11.2 Support for Special Functions

The Ethernet handlers support the following special functions. The special function
names are from the .NALDF macro in the distributed file SYSTEM.MLB.

Code Name Section Function

200 SF.NAL 2.11.2.1 Allocate/Deallocate unit

201 SF.PRO Reserved

202 SF.NPR 2.11.2.2 Enable/Disable protocol type

203 SF.NMU 2.11.2.3 Enable/Disable multicast address

204 SF.NWR 2.11.2.4 Transmit Ethernet frame

205 SF.NRD 2.11.2.5 Receive Ethernet frame

Successful completion of a .SPFUN request clears the carry bit. Completion with
error sets the carry bit, and the status word in the buffer contains an error code.

Programming for Specific Devices 2–65

2.11.2.1 Allocate/Deallocate Unit (SF.NAL), Code 200

The allocate unit special function allocates a unit of the Ethernet handler for a job’s
exclusive use.

The deallocate unit special function deallocates the unit so it can be used by another
job.

2.11.2.1.1 Allocate Unit

The following is the form of the special function allocate unit:

Macro Call: .SPFUN area,chan,#SF.NAL,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 3768.

SF.NAL is code 200 or the name SF.NAL if the program is assembled with the
distributed file SYSTEM.MLB.

buf is the address of a 4-word buffer containing the status word and space
for the station’s physical address. The buffer contents are returned by
the allocate unit special function.

buf 0 Status

Station’s

Physical

Address

The high byte of the status word contains a 0. Allocate unit returns
one of the following octal status codes in the low byte of the status
word:

Code Meaning

0 Success

2 Controller error while attempting to initialize the network
interface (controller).

3 No resources (unit in use).

11 Reserved.

wcnt is #0.

blk is #1.

2–66 RT–11 Device Handlers Manual

2.11.2.1.2 Deallocate Unit

The following is the form of the special function deallocate unit:

Macro Call: .SPFUN area,chan,#SF.NAL,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 3768.

SF.NAL is code 200 or the name SF.NAL if the program is assembled with the
distributed file SYSTEM.MLB.

buf is the address of a 1-word buffer containing the status word.

buf 0 Status

The high byte of the status word contains a 0. Deallocate unit returns
one of the following octal status codes in the low byte of the status
word:

Code Meaning

0 Success.

1 Unknown unit. The specified unit was not opened by the job
issuing the request.

2 Controller error while attempting to initialize the network
interface (controller).

11 Unit still active.

wcnt is #0.

blk is #0.

2.11.2.2 Enable/Disable Protocol Type (SF.NPR), Code 202

The enable protocol type special function adds a protocol type to the list of those to
be recognized by the unit. Only one protocol type can be specified for each unit. At
least one protocol type must be enabled to receive Ethernet frames.

The disable protocol type special function removes the protocol type from the list of
those recognized by the unit.

2.11.2.2.1 Enable Protocol Type

The following is the form of the special function enable protocol type:

Macro Call: .SPFUN area,chan,#SF.NPR,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

Programming for Specific Devices 2–67

chan is a channel number in the range 0 to 3768.

func is code 202 or the name SF.NPR if the program is assembled with the
distributed file SYSTEM.MLB.

buf is the address of a 2-word buffer that contains the status word followed
by the protocol type word.

buf 0 Status

Protocol

The high byte of the status word contains a 0. Enable protocol type
returns one of the following octal status codes in the low byte of the
status word:

Code Meaning

0 Success.

1 Unknown unit. The specified unit was not opened by the job
issuing the request.

2 Controller error while attempting to initialize the network
interface (controller).

3 No resources (unit’s protocol table is full).

6 Reserved.

10 Protocol type in use.

The protocol type is specified by the user.

wcnt is #0.

blk is #1.

2.11.2.2.2 Disable Protocol Type

The following is the form of the special function disable protocol type:

Macro Call: .SPFUN area,chan,#SF.NPR,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 3768.

SF.NPR is code 202 or the name SF.NPR if the program is assembled with the
distributed file SYSTEM.MLB.

2–68 RT–11 Device Handlers Manual

buf is the address of a 2-word buffer that contains the status word,
followed by the protocol type word.

buf 0 Status

Protocol

The high byte of the status word contains a 0. Disable protocol returns
one of the following octal status codes in the low byte of the status
word:

Code Meaning

0 Success.

1 Unknown unit. The specified unit was not opened by the job
issuing the request.

2 Controller error while attempting to initialize the network
interface (controller).

wcnt is #0.

blk is #0.

2.11.2.3 Enable/Disable Multicast Address (SF.NMU), Code 203

The enable multicast address special function adds a multicast address to the list
of those to be recognized by that unit. You need not specify the unit’s physical or
broadcast address. RT–11 supports only one multicast address per handler unit.

The disable multicast address special function removes a multicast address from the
list of those to be recognized by the unit.

2.11.2.3.1 Enable Multicast Address

The following is the form of the special function enable multicast address:

Macro Call: .SPFUN area,chan,#SF.NMU,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 3768.

func is code 203 or the name SF.NMU if the program is assembled with the
distributed file SYSTEM.MLB.

buf is the address of a 4-word buffer that contains the status word,
followed by the 3-word multicast address. The low-order bit of the
first address word should be a 1.

Programming for Specific Devices 2–69

buf 0 Status

1

cast

Multi−

Address

The high byte of the status word contains a 0. Enable multicast
address returns one of the following octal status codes in the low byte
of the status word:

Code Meaning

0 Success.

1 Unknown unit. The specified unit was not opened by the job
issuing the request.

2 Controller error while attempting to initialize the network
interface (controller).

3 No resources (unit’s address table is full, or hardware
address table is full).

wcnt is #0.

blk is #1.

2.11.2.3.2 Disable Multicast Address

The following is the form of the special function disable multicast address:

Macro Call: .SPFUN area,chan,#SF.NMU,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 3768.

func is code 203 or the name SF.NMU if the program is assembled with the
distributed file SYSTEM.MLB.

buf is the address of a 4-word buffer that contains the status word,
followed by the 3-word multicast address. The low-order bit at the
first address word should be a 1.

2–70 RT–11 Device Handlers Manual

buf 0 Status

Multi−

Address

1

cast

The high byte of the status word contains a 0. Disable multicast
address returns one of the following octal status codes in the low byte
of the status word:

Code Meaning

0 Success.

1 Unknown unit. The specified unit was not opened by the job
issuing the request.

2 Controller error while attempting to initialize the network
interface (controller).

wcnt is #0.

blk is #0.

2.11.2.4 Transmit Ethernet Frame (SF.NWR), Code 204

The special function transmit Ethernet frame transmits the Ethernet frame pointed
to in the buf parameter argument. If the source address field of the frame is nonzero,
it is kept and used. If the source field of the frame is zero, the unit’s physical address
is inserted in the source field before transmission.

The following is the form of the special function transmit Ethernet frame:

Macro Call: .SPFUN area,chan,#SF.NWR,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 3768.

func is code 204 or the name SF.NWR if the program is assembled with the
distributed file SYSTEM.MLB.

buf is the address of a variable-size buffer containing a word for returning
status, a reserved word, and up to 75710 words comprising the
Ethernet frame to be transmitted.

Programming for Specific Devices 2–71

buf High Low (Status Word)

Reserved

Data

.

.

.

.

.

.

Destination

Address

Words

Source

Address

Protocol

23 − 750

Decimal

Transmit Ethernet frame returns one of the following octal status
codes in the low byte of the status word:

Code Meaning

0 Success.

1 Unknown unit. The specified unit was not opened by the job
issuing the request.

2 Controller error while attempting to initialize the network
interface (controller).

13 Transmit failed.
When status code 13 is returned in the low byte of the status
word, transmit Ethernet frame returns one of the following
octal status subcodes in the high byte of the status word:
1 = Invalid frame length.
2 = Excessive collisions.
3 = Carrier check failed.

2–72 RT–11 Device Handlers Manual

wcnt is determined by the variable size of the user buffer (including the
status and reserved words). The packet size (including the status and
reserved words) can vary between 3210 and 75910 words.

blk is #0.

2.11.2.5 Receive Ethernet Frame (SF.NRD), Code 205

The receive Ethernet frame special function returns the next Ethernet packet with
the desired unit address and protocol type to the buffer. The function does not return
Ethernet frames that are received with errors.

The following is the form of the special function receive Ethernet frame:

Macro Call: .SPFUN area,chan,#SF.NRD,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 3768.

func is code 205 or the name SF.NRD if the program is assembled with the
distributed file SYSTEM.MLB.

buf is the address of a variable-size buffer containing a word for returned
status, a word for returned fram size, and up to 75710 words to receive
the Ethernet frame. The buffer contents are returned by the receive
Ethernet frame special function.

buf 0 Status

Frame Size

Space

up to

Decimal

Words

for

.

.

.

.

.

.

757

Programming for Specific Devices 2–73

The high byte of the status word contains a 0. The receive Ethernet
frame special function returns one of the following octal status codes
in the low byte of the status word:

Code Meaning

0 Success.

1 Unknown unit. The specified unit was not opened by the job
issuing the request.

2 Controller error while attempting to initialize the network
interface (controller).

wcnt is the size of the user buffer including the status and frame size words.
The maximum value allowed for the argument is 75910; the minimum
is 3210.

blk is #0.

2.11.3 Example of Allocating an Ethernet Unit

The following example allocates a unit of the Ethernet handlers.

CONFG2 = 370 ;Config word 2
; (RMON fixed offset)

PROS$ = 020000 ;RT is running on a PRO-3xx
BUS$ = 000100 ;Q-bus/UNIBUS processor

.

.

.
.GVAL #AREA,#CONFG2 ;Get contents of Config word 2
MOV #<^RNC >,DBLK ;Assume PRO
BIT #PROS$,R0 ;Correct assumption?
BNE 10$;yes...
MOV #<^RNQ >,DBLK ;No, so assume Q-bus
BIT #BUS$,R0 ;Correct assumption?
BNE 10$;yes...
MOV #<^RNU >,R0 ;Nope, must be

; UNIBUS after all
10$: .GTJB #AREA,#JOBDAT ;Get info on this job

MOV JOBDAT,R0 ;R0 = job number (*2)
ASR R0 ;Convert to job number 0-7
ADD #<^R 0>,R0 ;Make it final RAD50 digit
ADD R0,DBLK ; and add it to

; the device name
.LOOKUP #AREA,#0,#DBLK ;Open a channel to Ethernet

.

. ;.LOOKUP error processing

.
.SPFUN #AREA,#0,#200,#BUFFER,#0,#1

;Allocate the unit to this job
.

2–74 RT–11 Device Handlers Manual

. ;.SPFUN error processing

.
AREA: .BLKW 3
JOBDAT: .BLKW 12.
DBLK: .WORD 0,0,0,0
BUFFER: .BLKW 4

.

.

. ;END OF EXAMPLE

Programming for Specific Devices 2–75

2.12 PI (CTI Bus-Based Processor Interface System Support Handler)

This section contains specific information about the PI system support handler
and using RT–11 with CTI Bus-based processors. PI is called a system support
handler because RT–11 requires PI to provide certain necessary connections with
the computer hardware. At bootstrap time, the monitor loads PI before binding
with the system device handler file on the system volume.

2.12.1 Support for Special Functions

The PI handler supports the following special functions which are used only with
the GIDIS graphics package, as described in the RT–11 System Subroutine Library
Manual:

Code Name Action

371 SF.PWR Send command packet to GIDIS.

370 SF.PRD Get status from GIDIS.

2.12.2 PI Keyboard Support

PI supports the keyboard in normal mode or function key mode.

2.12.2.1 Normal Mode

PI supports the following keys in normal mode:

• All keys on the main keypad.

• All keys on the numeric keypad.

• Cursor control (arrow) keys on the editing keypad.

• The following special function keypad keys: HOLD SCREEN (F1), PRINT
SCREEN (F2), SETUP (F3), ESCAPE (F11), BACK SPACE (F12), and LINE
FEED (F13).

PRINT SCREEN (F2) prints a copy of the text from your terminal screen directly
on your printer. PRINT SCREEN cannot be used to print graphics. You must be
running the transparent spooling package (SPOOL) under a mapped monitor to
use PRINT SCREEN.

SETUP (F3) clears a locked keyboard and turns off the WAIT light when pressed.
Note that the SETUP key has nothing to do with the setup utility.

The following keys do not function in normal mode:

• Special function keys F4 through F10, F14, HELP (F15), DO (F16), and F17
through F20.

• Editing keypad keys FIND, INSERT HERE, REMOVE, SELECT, PREV
SCREEN, and NEXT SCREEN. Editing functions under RT–11 use the numeric
keypad (see the PDP–11 Keypad Editor User’s Guide.)

2–76 RT–11 Device Handlers Manual

2.12.2.2 Function Key Mode (DECFKM)

Programs written for the PI handler can place the terminal in function key mode. In
function key mode, each special function key sends an assigned control sequence to
the processor. The control sequence is not assigned a specific function, but software
can be programmed to recognize the control sequence.

A program places the terminal in function key mode by sending the 7-bit escape
sequence:

ESC[?39h (transmitted as octal 033 133 077 063 071 150)

A program returns the terminal to normal key mode by sending the 7-bit escape
sequence (note the lower-case l (?39l)):

ESC[?39l (transmitted as octal 033 133 077 063 071 154)

The following table lists control sequences for the special function keys:

Key
Control
Sequence Key

Control
Sequence

F1 ESC [11~ DO (F16) ESC [29~

F2 ESC [12~ F17 ESC [31~

F3 ESC [13~ F18 ESC [32~

F4 ESC [14~ F19 ESC [33~

F5 ESC [15~ F20 ESC [34~

F6 ESC [17~ COMPOSE
CHARACTER

ESC [10~

F7 ESC [18~ FIND ESC [1~

F8 ESC [19~ INSERT
HERE

ESC [2~

F9 ESC [20~ REMOVE ESC [3~

F10 ESC [21~ SELECT ESC [4~

F11 ESC [23~ PREV
SCREEN

ESC [5~

F12 ESC [24~ NEXT
SCREEN

ESC [6~

F13 ESC [25~

F14 ESC [26~

HELP (F15) ESC [28~

Programming for Specific Devices 2–77

2.12.3 Video Terminal Support

PI supports the CTI Bus-based processor’s video terminal in the following manner:

2.12.3.1 Advanced Video Option Emulation

The PI handler supports a limited emulation of the VT100 implementation of the
advanced video option, and uses the same escape sequences as the VT100 terminal.
The limited emulation supports all VT100 character renditions (attributes) except
BLINK; BLINK displays as BOLD. BOLD is not supported in 132-column mode, and
132-column mode is supported only by the mapped monitors.

2.12.3.2 Text Cursor Mode (DECTCEM)

Text cursor mode lets a program control whether the cursor is displayed on the video
screen. Enabling text cursor mode displays the cursor and is the default. Text cursor
mode is necessary when working with text because the cursor shows where the next
character will be displayed.

A program places the terminal in text cursor mode by sending the 7-bit escape
sequence:

ESC [?25h (transmitted as octal 033 133 077 062 065 150)

A program takes the terminal out of text cursor mode by sending the 7-bit escape
sequence (note the lower-case l (?25l)):

ESC [?25l (transmitted as octal 033 133 077 062 065 154)

The cursor display can also be controlled using the SETUP CURSOR and SETUP
NOCURSOR commands described in the RT–11 Commands Manual.

2.12.3.3 Device Attributes (DA)

A program uses the device attributes request/reply exchange to ask the terminal,
"what are you?". The response sent by the terminal to the program can identify the
terminal as a specific VT100 terminal (the default) or as a nonspecific member of
the VT100 series of terminals. The SETUP modes VT100 and GENERIC100 (see
the RT–11 Commands Manual) determine which of the two responses the terminal
sends the program. Digital recommends that all programs recognize both the VT100
and the GENERIC100 device attributes reply.

A program can request information on two levels. The primary level DA requests
basic compatibility information. The secondary level DA requests the specific version
and edit level of the PI handler.

The terminal reply to primary and secondary DA requests gives this information,
and also tells the program which monitor the system is running. The following is a
complete DA interchange:

A program requests primary DA by sending the 7-bit escape sequence:

ESC [c (transmitted as octal 033 133 143)

2–78 RT–11 Device Handlers Manual

• If the terminal is SETUP VT100, it responds by sending the 7-bit escape
sequence:

– When running under an unmapped monitor:

ESC [?1;1c (transmitted as octal 033 133 077 061 073 061 143)

– When running under a mapped monitor:

ESC [?1;3c (transmitted as octal 033 133 077 061 073 063 143)

• If the terminal is SETUP GENERIC100 without 132-column capability (running
under an unmapped monitor), it responds by sending the 7-bit escape sequence:

ESC [?61c (transmitted as octal 033 133 077 066 061 143)

• If the terminal is SETUP GENERIC100 with 132-column capability (running
under a mapped monitor), it responds by sending the 7-bit escape sequence:

ESC [?61;1c (transmitted as octal 033 133 077 066 061 073 061 143)

A program requests the secondary DA by sending the 7-bit escape sequence:

ESC [>c (transmitted as octal 033 133 076 143)

• If the terminal is operating under an unmapped monitor, it responds by sending
the 7-bit escape sequence:

ESC [>7;VVnnc (transmitted as octal 033 133 076 067 073 V V n n 143)

where VV is the version number, and nn is the edit level of the PI handler.

• If the terminal is operating under a mapped monitor, it responds by sending the
7-bit escape sequence:

ESC [>8;Vnnc (transmitted as octal 033 133 076 070 073 V V n n 143)

where VV is the version number, and nn is the edit level of the PI handler.

Programming for Specific Devices 2–79

2.13 UB (UNIBUS Mapping Register (UMR) System Support Handler)

This section describes the UB handler that provides support for the UNIBUS
mapping registers on UNIBUS processors. The UB handler provides DMA (direct
memory access) support for 22-bit memory addressing during I/O operations.

UB is called a system support handler because RT–11 requires UB to provide certain
necessary connections with the computer hardware. At bootstrap time, the monitor
loads UB before binding with the system device handler file on the system volume.
Therefore, UB cannot be installed with the INSTALL command. Instead, UB is
automatically installed and loaded in memory on UNIBUS processors with the
following configuration:

• The processor is running a mapped monitor.

• The processor contains more than 256K-bytes of memory.

• The processor contains UNIBUS Mapping Registers at addresses 170200 through
170400 to support 408 2-word UMRs.

• At least one device handler on the system uses DMA in performing I/O operations.
All distributed RT–11 handlers that can perform DMA are so marked.

Section 2.13.3 describes how to provide UMR support in a user-written DMA
handler.

• All installed user-written (not distributed) device handlers are compatible
with RT–11 support for UB. All installed device handlers must be marked as
compatible with UB, whether or not they perform DMA operations.

Section 2.13.2 describes how to make a non-DMA user-written device handler
compatible with RT–11 UB support.

UNIBUS Mapping Registers function in a manner that is similar to the Memory
Management Unit (MMU) registers that provide 22-bit address translation for the
CPU. The UMRs provide address translation (mapping) from the 18-bit UNIBUS to
the 22-bit memory bus.

2.13.1 UMR Support with Distributed Handlers

On supported UNIBUS system configurations, UB is automatically installed and
loaded when the processor is booted. At that point, DMA I/O operations are handled
transparently by the processor UMR hardware and the RT–11 operating system.
Programs that use distributed RT–11 device handlers require no modification to
support DMA access to a peripheral device.

The aspects of UMR support that apply to distributed handlers are:

• Permanent UMR allocation.

Because of internal buffers, some RT–11 device handlers, such as DL, DM, DU,
NU, and the various magtape handlers, require a preallocation of one or more
permanent UMRs. RT–11 preallocates those permanent UMRs when the device
handlers are installed at system boot. RT–11 reserves those permanent UMRs

2–80 RT–11 Device Handlers Manual

for those handlers when they are loaded. See Table 2–27. You can regain any
preallocated permanent UMRs for handlers that install but you are not using,
by renaming the device handler. Such a renamed handler does not install at the
next system boot.

Contiguous permanent UMRs are allocated from the list of reserved permanent
UMRs when handlers are loaded and returned to reserved status when handlers
are unloaded. After numerous load/unload operations, the list of reserved
permanent UMRs can become fragmented. A symptom of this condition is the
inability to load a device handler that requires multiple permanent UMRs even
when sufficient reserved permanent UMRs exist. Two courses of action are
available if that condition occurs. You can reboot your system, or you can issue
the SHOW UMR command and unload the device handlers that are displayed as
occupying slots between the available reserved permanent UMRs. The system
device handler resides at the top of the list. You should consolidate the list from
the base upward.

• Temporary UMR allocation.

Many distributed device handlers require one or more UMRs on a temporary
basis to process I/O requests. RT–11 allocates temporary UMRs as the need
occurs. Each processor contains 3110 accessible UMRs, and the allocation of
UMRs can be displayed by the command SHOW UMR.

• Serialization of I/O request satisfaction.

When UB is loaded in memory, RT–11 no longer always satisfies I/O requests in
serial order.

Of the distributed RT–11 device handlers, only DU and the magtape handlers
(MM, MS, MT, and MU) require that I/O requests are satisfied in serial order. The
guarantee of I/O request serialization is internal to those handlers and requires
no user intervention.

However, RT–11 does not guarantee that I/O requests for other device handlers
are satisfied in serial order. Rather, I/O requests are satisfied in the quickest
manner possible, which might or might not be serial. For example, an I/O request
that requires four UMRs might be queued for a time waiting for UMR allocation,
while a subsequent I/O request requiring fewer UMRs is satisfied. However,
if required, you can force serialized I/O request processing, using the SET UB
SERIAL=n command, described in the RT–11 Commands Manual.

You can control other aspects of UMR support by specifying conditions for the SET
UB command. Other than those conditions, UMR support is totally transparent
when using the distributed RT–11 device handlers.

Programming for Specific Devices 2–81

Table 2–27: Distributed Handler Support for UMRs

Device
Handler DMA= PERMUMR=

DL YES 1

DM YES 1

DU YES 2

DW NO

DY YES 1

MM YES If support for FSM included, requires 1
if no support for FSM, requires 0

MS YES If support for FSM included, requires 1
if no support for FSM, still requires 1

MT YES If support for FSM included, requires 1
if no support for FSM, requires 0

MU YES If support for FSM included, requires 3
if no support for FSM, requires 2

NU YES 3

RK YES 0

VM NO

2.13.2 Including Required UB Support in User-Written Non-DMA Handlers

All installed device handlers, including those that perform no DMA operations, must
be modified for compatibility with UB. Otherwise, the RT–11 monitor bootstrap does
not load UB and the system then operates with only the low 256K words of memory
accessible to DMA operations.

You must explicitly specify whether each user-written device handler supports DMA,
using the .DRDEF macro’s DMA=str parameter. If a device handler does not perform
DMA operations and, therefore, does not require UMR allocation, specify DMA=NO.

2.13.3 Including UMR Support in User-Written DMA Handlers

UMR support is appropriate for a device handler that performs I/O operations
and is capable of DMA. Including UMR support in such a device handler lets the
handler access computer memory beyond the 18-bit 256K-byte boundary during I/O
operations.

The following paragraphs describe elements of the new UMR support that must be
considered before you include UMR support in a device handler. Each element is
either described when listed or you are pointed to the appropriate section of this
manual where you will find the element description.

Including UMR support in any device handler requires that you understand the
following items:

2–82 RT–11 Device Handlers Manual

• The handler should not perform DMA operations from within its own install code.
If a handler must be written to perform DMA from within its install code, you
must turn off UB (SET UB NOINSTAL), reboot the system, and then install the
handler.

• The handler must use the .DRDEF macro and include one or more of the
parameters, DMA=str, PERMUMR=n, and SERIAL=str, as described in the RT–
11 System Macro Library Manual.

• If the handler uses the .QELDF macro to define queue elements, you should read
about the offset, Q.MEM, as described in RT–11 System Macro Library Manual.

• RMON automatically allocates temporary UMRs for all .READx and .WRITx
requests to handlers that are marked as DMA=YES. RMON also automatically
releases all such temporary UMRs. Both operations are completely transparent
to the handler.

• If the handler previously used queue element offsets Q.PAR and Q.BUFF to
calculate non-DMA I/O virtual addresses, it must now use the new offset Q.MEM
in conjunction with Q.BUFF. Q.MEM is described in Section 1.2.1.1.2. The
handler now uses Q.PAR to calculate only DMA I/O virtual addresses.

• If the handler previously used extended memory subroutines $GETBYT,
$PUTBYT, $PUTWRD, or $MPPHY, read the paragraphs Changes to extended
memory subroutines for UMR support, in RT–11 System Release Notes.

• You should examine the new RMON fixed offsets, $QHOOK, $H2UB, and the
bits defined for UB in $CNFG3. They are described in RT–11 System Internals
Manual.

• You should decide if I/O requests for the handler or the job must be satisfied in
serial order. Once UB is loaded in memory, I/O requests are not guaranteed to
be satisfied in serial order by default.

If the handler requires serialized I/O request satisfaction, you must specify the
.DRBEG macro SERIAL=YES parameter argument when you build the handler.
See the .DRDEF macro information in the RT–11 System Macro Library Manual.

If the job requires serialized I/O request satisfaction, see the SET UB SERIAL=n
command described in the RT–11 Commands Manual.

• The device handler must use permanent or temporary UMRs for each special
function that performs a DMA I/O operation.

The handler uses permanent UMRs for processing special functions that result
in a DMA I/O operation to the handler internal buffer.

If the handler contains internal buffers that store command packets and
responses, the handler has to use the ALLUMR routine to explicitly obtain at
least one permanent UMR. The handler must explicitly release all permanent
UMRs when it unloads, using the RLSUMR routine. Obtaining and releasing
permanent UMRs is described in Sections 2.13.3.3 and 2.13.3.4.

Programming for Specific Devices 2–83

The handler allocates at least one temporary UMR for each special function that
performs a DMA I/O operation to the user buffer. The temporary UMRs are
allocated either implicitly or explicitly.

Special functions (.SPFUNs) used by the handler are categorized as standard
or nonstandard. A standard special function uses the .SPFUN buf parameter
as the read/write buffer address and the wcnt parameter as the operation word
count. Temporary UMRs for standard special functions are allocated implicitly.
Defining standard special functions is described in Section 2.13.3.1.

A nonstandard special function does not use buf as the read/write buffer
address or wcnt as the operation word count. The handler must explicitly
obtain temporary UMRs for nonstandard special functions, requiring additional
processing by UB. Processing nonstandard special functions is described in
Section 2.13.3.3.

2.13.3.1 Defining Special Functions for Implicit UMR Allocation

The device handler should implicitly allocate UMRs for special functions that do the
following:

• Perform DMA operations.

• Use the buf and wcnt paramaters in the documented manner; are standard
special functions.

The handler supports implicit UMR allocation for standard special functions by using
the .DRBEG SPFUN=spsym parameter and a list of those functions. The spsym
argument is the label of the list of those functions. The list is structured in the
same manner as that used for the .DRSPF extension table method. However, unlike
the .DRSPF macro, no pointer to the list resides in block 0 of the handler and the
concept of special function type has no meaning and is not included.

The list of standard special functions must continuously reside in the low-memory
portion of the handler whenever the handler is loaded. For all special functions in
the list, RMON performs the UMR allocation and the address translation.

Defining special functions for implicit UMR allocation is illustrated in the example
program in this section.

2.13.3.2 Explicitly Allocating Permanent UMRs (ALLUMR)

If the device handler contains internal buffers that store command packets and
responses, you must allocate at least one permanent UMR to the device handler.

RT–11 allows up to 2210 UMRs to be permanently allocated to handlers and one
UMR is permanently allocated to the I/O page. When the system is booted, RT–
11 allocates the one UMR to the system’s I/O page and then reserves permanent
UMRs for requesting device handlers as each handler is installed. Therefore, unless
the 2310 limit is reached, RT–11 reserves sufficient permanent UMRs to support
all installed device handlers that request permanent UMR allocation. However,
reserved permanent UMRs are not allocated to a device handler until it is loaded.
Unallocated reserved permanent UMRs are available for explicit allocation, using

2–84 RT–11 Device Handlers Manual

the ALLUMR routine. You can determine the current UMR allocation on your system
by issuing the SHOW UMR command.

The ALLUMR routine, which resides in UB, is called to permanently allocate UMRs.
If the handler requires UMRs for a single, contiguous chunk of memory, you need
call ALLUMR only once. If the handler requires UMRs for noncontiguous chunks of
memory, repeatedly call ALLUMR to allocate UMRs for each chunk.

You reference the UB entry vector through the $H2UB fixed offset (460) in RMON.
The ALLUMR routine is offset 1 word ($H2UB+2) from the address pointed to by
$H2UB.

Use the following procedure to allocate permanent UMRs:

1. Calculate the number of permanent UMRs you need for each contiguous chunk
of memory. One permanent UMR is required for each 4096 words of contiguous
internal buffer space.

2. Specify the total number of permanent UMRs the handler requires in the
PERUMR=n parameter of the .DRDEF macro in your handler source code. The
RT–11 monitor bootstrap (BSTRAP) uses that information to reserve the number
of UMRs you permanently allocate to the handler.

3. Before calling ALLUMR to allocate permanent UMRs for an internal buffer space,
set up the following registers:

Register Contents

R0 Number of permanent UMRs to be allocated for this contiguous chunk
of internal buffer space.

If you request more than one permanent UMR, the address of the
first is defined by R1 and R2, and each subsequent UMR is offset
by a value of 200008.

R1 Bits 0–15 of the 22-bit physical memory base address (word aligned)
of the internal buffer.

R2 Bits 16–21 of the 22-bit physical memory base address of the internal
buffer.

R4 The address of a 1-word location in low memory that contains two
RAD50 identifying characters. The SHOW UMR command displays
these characters to identify this permanent UMR allocation. (In
distributed handlers, is the device handler name.) The monitor must
have continuous access to the specified memory location.

If ALLUMR is called more than once for this handler, R4 in
subsequent calls must contain a different address in low memory
for each call. The 1-word location contents can be, but do not need
to be, the same two RAD50 characters.

The contents of R3 and R5 are not defined or preserved across the call.

Programming for Specific Devices 2–85

4. Within the device handler FETCH/LOAD code, call the ALLUMR routine. On
return from ALLUMR:

If the carry bit is clear:

• R1 contains bits 0–15 of the 18-bit UNIBUS virtual address of the internal
buffer.

• R2 contains bits 16 and 17 of the 18-bit UNIBUS virtual address of the
internal buffer.

• The handler uses the address returned by ALLUMR (or some offset from
that address) to program the device for DMA I/O to/from the handler internal
buffer.

If the carry bit is set, insufficient UMRs are available for allocation and the
handler must fail its load code.

Once you have successfully called and returned from ALLUMR, your handler code
should confirm that the FETCH/LOAD succeeded. If the fetch/load operation fails
after successfully returning from ALLUMR, you must call RLSUMR to free the
allocated UMRs.

2.13.3.3 Explicitly Obtaining Temporary UMRs (GETUMR)

Device handlers that support nonstandard .SPFUN I/O DMA operations to or from
a user buffer must call GETUMR to explicitly obtain temporary UMRs to service
those requests. The temporary UMRs are automatically released after the request
is serviced. The handler uses the GETUMR routine, described in this section, to
obtain the UMRs. Be sure to call GETUMR before removing the queue element
from the handler’s current queue element (xxCQE) list.

The handler supports explicit UMR allocation for nonstandard special functions by
using the .DRBEG NSPFUN=nspsym parameter and a list of those functions. The
nspsym argument is a unique symbol name that is the same as the label at the list
of those functions. The list is structured in the same manner as that used for the
.DRSPF extension table method. However, unlike the .DRSPF macro, no pointer to
the list resides in block 0 of the handler and the concept of special function type has
no meaning and is not included.

The list of nonstandard special functions must continuously reside in the low-
memory portion of the handler whenever the handler is loaded. Also, the handler
must call GETUMR (with a word count of zero) even when a listed nonstandard
special function performs no I/O and no UMRs are needed.

Defining special functions for explicit UMR allocation is illustrated in the example
program in this section.

The handler calls the GETUMR routine, which resides in UB, to obtain temporary
UMRs. You reference the UB entry vector through the $H2UB fixed offset (460) in
RMON. The GETUMR routine is located at the address pointed to by $H2UB (offset
0).

2–86 RT–11 Device Handlers Manual

Use the following procedure to explicitly obtain temporary UMRs:

1. Before calling GETUMR, set up the following registers:

Register Contents

R0 Number of words to be transferred; the word count. If no DMA I/O
is to be performed by this request, R0=0.

R1 Contents determined by R3:

R3 = 0 R1 contains the Q.PAR value that is calculated by the
handler. RMON cannot calculate the Q.PAR value because
the special function’s buf parameter contains a nonstandard
argument.

R3 = 1 R1 contains bits 0-15 of the 22-bit physical memory base
address (word aligned).

R2 Contents determined by R3:

R3 = 0 R2 is unused.

R3 = 1 R2 contains bits 16-21 of the 22-bit physical memory base
address.

R3 Contents indicate the type of address being specified:

R3 = 0 Address is PAR value, specified in R1. R2 is not used.

R3 = 1 Address is 22-bit physical address, specified in R1 and R2.

R4 Queue element offset Q.BLKN.

The contents of all unused registers are not defined or preserved across the call.

2. Within the device handler code that processes nonstandard special functions, call
the GETUMR routine. On return from GETUMR:

• If the carry bit is clear, the contents on return for R1 and R2 are defined by
the contents of R3 when GETUMR was called. If GETUMR is called with R3
= 0, on return, R1 contains the new Q.PAR equivalent value and R2 is not
defined. If GETUMR is called with R3 = 1, on return, R1 contains bits 0–15
and R2 contains bits 16 and 17 of the 18-bit UNIBUS virtual address.

• If the carry bit is set, UB is unable to immediately allocate the requested
UMRs for the queue element and the handler should simply return to the
monitor.

2.13.3.4 Explicitly Releasing Permanent UMRs (RLSUMR)

All permanent UMRs that are allocated by a handler must be explicitly released by
the handler when the handler is unloaded. A corresponding RLSUMR routine must
be called for each ALLUMR routine that was called.

Programming for Specific Devices 2–87

The RLSUMR routine, which resides in UB, releases permanent UMRs. You
reference the UB entry vector through the $H2UB fixed offset (460) in RMON.
The RLSUMR routine is offset 2 words ($H2UB+4) from the address pointed to
by $H2UB.

Use the following procedure to explicitly release permanent UMRs:

1. Before calling RLSUMR, set up the following register:

Register Contents

R1 The address of the 2-character RAD50 device handler name
specified in R4 of the corresponding ALLUMR routine. (The
contents of RLSUMR R1 match the contents of corresponding
ALLUMR R4.)

The contents of R0 and R2–R5 are not defined or preserved across the call.

2. Within the device handler RELEASE/UNLOAD code, call the RLSUMR routine.

On return from RLSUMR, all UMRs that were permanently allocated to the
handler by the corresponding ALLUMR routine are released.

2.13.4 Example (Skeletal) Handler

The following example skeletal handler illustrates the macros and routines required
to support UMRs.

.SBTTL CONDITIONAL ASSEMBLY SUMMARY
;+
;COND
;
; MMG$T = 1 Std conditional (XM only)
; TIM$T Std conditional (no code effects)
; ERL$G Std conditional (no code effects)
;-

.MACRO ...

.ENDM

.MCALL .DRDEF .ASSUME .ADDR .DRSPF

.LIBRARY "SRC:SYSTEM"

.MCALL .SYCDF .FIXDF .HANDF .UBVDF .P1XDF

.SYCDF

.FIXDF

.HANDF

.UBVDF

.P1XDF

; UB Definitions

; XB internal DMA buffer equates

BUFSIZ =: 20000 ; Size of XB internal DMA buffer

NOUMRS =: <BUFSIZ+7777/10000> ; Number of permanent UMRs required

; Special function definitions
; All special functions are DMA except for FN$SIZ and FN$MPM.
; FN$WRT AND FN$RED go in UBTAB. FN$REP uses a permanent UMR.
; FM$NSP is nonstandard so it goes in UBNTAB.

2–88 RT–11 Device Handlers Manual

FN$MPM =: 370 ; Illustrate use of $MPMEM (not DMA)
FN$NSP =: 371 ; Nonstandard SPFUN (DMA to

; user buffer)
FN$SIZ =: 373 ; Get device size (not DMA)
FN$REP =: 374 ; Force reread of replacement table
FN$WRT =: 376 ; Absolute write (no bad block)
FN$RED =: 377 ; Absolute read (replacement)

.DRSPF <FN$MPM> ; Illustrate use of $MPMEM

.DRSPF <FN$NSP> ; Nonstandard SPFUN (DMA to
; user buffer)

.DRSPF <FN$SIZ> ; Get device size

.DRSPF <FN$REP> ; Force reread of replacement table

.DRSPF <FN$WRT> ; Absolute write (no bad block)

.DRSPF <FN$RED> ; Absolute read (replacement)

; DRDEF’S serial argument must be set equal to yes since XB calls
; GETUMR and depends on receiving queue elements from RMON in serial order.
; Calls to GETUMR can interfere with the serial ordering of queue elements
; unless "SERIAL = YES" is specified here.

.DRDEF XB,0,SPFUN$,0,0,0,DMA=YES,PERMUMR=NOUMRS,SERIAL=YES

.DRPTR FETCH=FETCH,LOAD=FETCH,RELEASE=RELEAS,UNLOAD=RELEAS

.DREST CLASS=DVC.NL

; Start of handler

.DRBEG XB,SPFUN=UBTAB,NSPFUN=UBNTAB
XBBASE=XBSTRT+6

BR BEGIN ; Branch around data area

; Data area

$ENTPT: .WORD 0 ; Pointer to $ENTRY table
$PNMPT: .WORD 0 ; Pointer to $PNAME table
H2UB: .WORD 0 ; Pointer to UBVECT
XBSLOT: .WORD 0 ; XB’S offset in device tables
XBENT: .WORD 0 ; XB’S $ENTRY table entry pointer
XBPNA: .WORD 0 ; XB’S $PNAME table entry pointer

;+
; Definition of the handler internal buffer and the words that are
; used to program DMA devices that transfer data to and from it.
;-

XBDBUF: .WORD BUFSIZE ; XB DMA buffer - it is
; mapped by permanent UMRs

BUFADH: .WORD 0 ; Bits 0-15 of UNIBUS virtual
; Pointer to XBDBUF

BUFADL: .WORD 0 ; Bits 16-18 of UNIBUS virtual
; Pointer to XBDBUF

; Table of standard DMA SPFUNs that do DMA transfers to areas of
; memory not mapped by XB’s permanent UMRS. UB will intercept these requests
; and assign temporary UMRs to them in the same manner as for .READx and
; .WRITx requests.

UBTAB: .DRSPF -,<FN$WRT> ; Absolute write, no bad block
.DRSPF -,<FN$RED> ; Absolute read (replacement)
.WORD 0 ; Table terminator

; Table of nonstandard DMA SPFUNs that do DMA transfers to areas of
; memory not mapped by XB’s permanent UMRs. XB MUST explicitly allocate
; UMRs for the nonstandard SPFUNs listed here by calling UB’s GETUMR
; routine. If no DMA transfer will take place (because of error, for
; example) XB should call GETUMR with a word count of 0. IF XB processes
; a nonstandard DMA SPFUN listed in UBNTAB without calling GETUMR,
; the job’s I/O stream will hang.

UBNTAB: .DRSPF -,<FN$NSP> ; DMA to user buffer
.WORD 0 ; Table terminator

Programming for Specific Devices 2–89

BEGIN: MOV XBCQE,R4 ; Point to current queue element
MOVB Q$FUNC(R4),R2 ; Get function code / unit number
CMPB R2,#FN$MPM ; Dispatch to function routine
BEQ FNMPM
CMPB R2,#FN$NSP
BEQ FNNSP
CMPB R2,#FN$SIZ
BEQ FNSIZ
CMPB R2,#FN$REP
BEQ FNREP
CMPB R2,#FN$WRT
BEQ FNWRT
CMPB R2,#FN$RED
BEQ FNRED
TST R2 ; Normal request?
BNE XBEXIT ; No, unknown SPFUN
BR XBRDWR ; Yes, process read,write

...

; Routines to perform SPFUN operations
; at entry, R4 -> queue element

FNNSP:
MOV #4000,R0 ; R0 = word count
MOV Q$PAR(R4),R1 ; Get address from QEL
MOV @#$SYPTR,R3 ; Get start of RMON
MOV $H2UB(R3),R5 ; R5 = UB entry vector
CLR R3 ; Address type is PAR value
CALL UB.GET(R5) ; Try to get UMRS

; (Note that at time of call, the
; Queue element must be on xxCQE)

BCS RETURN ; Unable to get UMRs-do simple RETURN

... ; Got UMRs, initiate transfer

BR XBEXIT ; DRFIN because this is an example
; Handler and there are really no
; Interrupts associated with it.
; If there were, the DRFIN would be
; Issued at interrupt time when
; The DMA transfer is finished.
; This is true for the other SPFUN
; Routines below, as well.

FNMPM:
; This routine illustrates how to call $MPMEM. $MPMEM is used
; to map KT-11 virtual addresses (as described by Q.MEM and Q.BUFF
; offsets in the queue element) to 18 or 22-bit physical addresses.
; $MPMEM must be used for this purpose instead of $MPPHY when the
; handler has DMA = YES. (When DMA = NO, the handler may use
; either $MPMEM or $MPPHY.)
;
; At entry: R4 -> Q.BLKN offset in queue element

MOV @#$SYPTR,R3 ; Get start of RMON
MOV P1$EXT(R3),R3 ; R3 -> $P1EXT
MOV R4,R5 ; Make R5 -> 5TH word (Q.BUFF) of
CMP (R5)+,(R5)+ ; Queue element
CALL $MPMEM(R3) ; Map KT-11 virtual to physical
MOV (SP)+,R2 ; R2 = low 16 bits physical address
MOV (SP)+,R3 ; R3 = HIGH 2 (OR 6) bits physical

; address
... ; Fall through to DRFIN

FNSIZ:
FNREP:
FNWRT:
FNRED:
XBRDWR:

XBEXIT: .DRFIN XB ; Return to monitor, done with
; queue element

RETURN: RETURN ; Return to monitor, not done with
; queue element

XBINT: ; Dummy ISR for XB
...

.DREND XB

2–90 RT–11 Device Handlers Manual

.SBTTL FETCH/LOAD CODE
;+
; FETCH
;
; ENTRY: R0 = Starting address of this handler service routine.
; R1 = Address of GETVEC routine.
; R2 = Value $SLOT*2. (length of the $PNAME table in bytes.)
; R3 = Type of entry.
; R4 = Address of SY read routine.
; R5 -> $ENTRY slot for this handler.
;
;-

FETCH: MOV R5,R1 ; Save PTR to XB’S $ENTRY slot
MOV @R1,R0 ; Get address of XBLQE
MOV @#$SYPTR,R4 ; Get start of RMON
MOV $H2UB(R4),R3 ; R3 = UBVECT pointer
MOV R3,<H2UB-XBBASE>(R0) ; H2UB = address of UBVECT
MOV $PNPTR(R4),R3 ; R3 = RMON offset to PNAME table
ADD R4,R3 ; R3 -> PNAME table address
MOV R3,<$PNMPT-XBBASE>(R0) ; $PNMPT -> PNAME table address
ADD R2,R3 ; R3 -> $ENTRY table
MOV R3,<$ENTPT-XBBASE>(R0) ; $ENTPT -> $ENTRY table
MOV R5,<XBENT-XBBASE>(R0) ; XBENT -> XB’S $ENTRY table entry
SUB R2,R5 ; R5 -> XB’S $PNAME table entry
MOV R5,<XBPNA-XBBASE>(R0) ; XBPNA -> XB’S $PNAME table entry

;+
; Allocate permanent UMRs to point into XB’s internal DMA buffers,
; XBDBUF and XBFILL, and get the UNIBUS virtual address.
;-

MOV #<XBDBUF-XBBASE>,R1 ; R1 = LOW 16 bits of DMABUF address
ADD R0,R1 ;
CLR R2 ; R2 = HIGH 6 Bits of DMABUF address
MOV <XBPNA-XBBASE>(R0),R4 ; R4 -> PNAME entry for XB
MOV <H2UB-XBBASE>(R0),R5 ; Get UB entry address
MOV R0,-(SP) ; Save XB starting address
MOV #NOUMRS,R0 ; R0 = number of UMRS required
CALL UB.ALL(R5) ; Call ALLUMR
MOV (SP)+,R0 ; Restore XB starting address
BCS 30$; Couldn’t get UMR, fail the load
MOV R1,<BUFADL-XBBASE>(R0) ; Store UNIBUS virtual address low
MOV R2,<BUFADH-XBBASE>(R0) ; Store UNIBUS virtual address high
CLC ; Load succeeded

30$: RETURN

;+
; RELEAS
;
; Routine to unload XB
;
; Entry: same as for load.
;
;-

.ENABL LSB
RELEAS::

MOV R5,R1 ; R1 = $ENTRY slot for DM
SUB R2,R1 ; R2 -> $PNAME SLOT for DM
MOV @#$SYPTR,R4 ; Get start of RMON
MOV $H2UB(R4),R5 ; R5 = UB entry vector
CALL UB.RLS(R5) ; Release UMRs
RETURN ; And exit

.END

Programming for Specific Devices 2–91

2.14 VM (Virtual Memory Handler)

This section contains specific programming information for the VM device. The
Introduction to RT–11 contains complete information on using the VM device. You
should read the VM chapter in the Introduction to RT–11 first.

The VM handler installation code determines the size of memory when the handler
is installed. After determining the size of memory, the handler installation code
reserves all extended memory above the handler’s base address. The handler does
not need to perform this operation each time it is loaded, thereby speeding the
handler load process.

If you do not want to use VM and do not want VM to reserve memory for its own
use, you have several options. You can remove the VM handler from your system
disk so that it will not be installed when you bootstrap your system. You can set the
base address above the high limit of available memory, which will prevent handler
installation. Or, you can put a command in your startup command file to remove
the VM handler from your system after the bootstrap has installed it. Otherwise,
the VM handler installation code will always reserve extended memory for its own
use, thereby making it unavailable to your program.

The base address (n) used in the SET VM BASE=n command is the desired base
address in octal, divided by 1008. For example, the value 1600 sets the base address
at the 28K-word address boundary, or 10000 sets the base address at the 128K-
word address boundary; any other value between 1600 and the physical memory
high limit is also acceptable. Lowering the value at which you set the VM base
increases the region size. The table below gives a list of some K-word memory sizes
and corresponding values for n.

K-words N

28 1600

32 2000

64 4000

96 6000

128 10000

256 20000

512 40000

1024 100000

Figure 2–8 shows a 22-bit system with a VM base address of 10000 (128K words).

If you are using a mapped monitor and your hardware does not have 22-bit
addressing, the default VM handler will not install; you will have to change the
base address to a lower value before using VM with your mapped system. You can

2–92 RT–11 Device Handlers Manual

Figure 2–8: VM Handler in a 22-Bit System

Up to 2044K words (22−bit addressing)

Space available for use as VM
volume if base address is set
at 128K−word boundary

128K−word boundary

Space available for use by XM programs

28K−word boundary
RMON,
low
memory

Figure 2–9: VM Handler in an 18-Bit System

Up to 124K words (18−bit addressing)

Space available for use as VM
volume if base address is set
at 60K−word boundary

60K−word boundary

Space available for use by XM programs

28K−word boundary
RMON,
low
memory

still use extended memory for both an extended memory program and a VM volume,
but the space available for one will be reduced by the space occupied by the other.
Refer to Figure 2–9, showing an 18-bit system with the VM base address set to 3600
(60K words).

Programming for Specific Devices 2–93

2.15 XC and XL (Communication Port (VTCOM) Handlers)

XC and XL are non-file-structured communications handlers. They support the
virtual terminal communication package, VTCOM. However, their design does not
preclude their use in other communication programs. The XC handler supports the
CTI Bus-based computer communication port. The XL handler supports a variety
of ports. See the RT–11 Software Product Description (SPD), included with your
documentation set, for a list of supported ports.

XC or XL (depending on your system) is required when you use VTCOM.

XC and XL support the VTCOM utility, using .READx, .WRITx, and .SPFUN
programmed requests.

2.15.1 .READx and .WRITx Support

The XC and XL handlers support the .READ, .READC, .READW, .WRITE, .WRITC,
and .WRITW requests. You use the .READx and .WRITx requests with XC and XL
handlers as described in the RT–11 System Macro Library Manual. Note, however,
the following additional information:

• You should specify the value 0 in the blk argument for the first request to XC or
XL. All subsequent calls should specify a nonzero value for the blk argument.

• NULL characters are ignored by XC and XL during both .READs from and
.WRITEs to the handlers.

• XC and XL pass only 7-bit data. The eighth (high-order) bit is stripped from each
byte.

2.15.2 Special Functions (.SPFUN) Support

In general, the XC and XL handlers support the .SPFUN request as described in
the RT–11 System Macro Library Manual. Note, however, the following general
information:

• You should specify the value 0 in the blk argument for the first request to XC or
XL. All subsequent calls should specify a nonzero value for the blk argument.

• NULL characters are ignored by the XC and XL handlers; NULL characters are
not stored or sent. However, SF.SRD (code 203) uses a NULL character to signal
the end of available data (see SF.SRD in Table 2–28).

• XC and XL pass only 7-bit data. The eighth (high-order) bit is stripped from each
byte.

The XC and XL handlers support the following special function codes. Specific
information about using each special function is included in the description for that
request.

2–94 RT–11 Device Handlers Manual

Table 2–28: XC/XL Special Function Codes

Code Name Description

201 SF.CLR Resets the internal flag, indicating a received XOFF. Then sends an XON
to the host.
Example:

.SPFUN #area,#chan,#SF.CLR,#buf,#wcnt,#blk[,#crtn][,BMODE=str][,CMODE=str]

202 SF.BRK Sets or resets the state of the BREAK bit in the serial interface. Transition
of the BREAK bit from 0 to 1 to 0 can get the attention of certain
communications devices, such as terminal concentrators.
The wcnt argument is a flag that indicates whether the BREAK bit should
be set or reset. Specify a value of 1 for the wcnt argument to set the
BREAK bit; specify 0 to reset it. Digital recommends you use some time
delay between turning the bit on and turning it off; do that by sending one
or two characters.
Examples:
To turn on (set) the BREAK bit:

.SPFUN #area,#chan,#SF.BRK,#buf,#1,#blk[,#crtn][,BMODE=str][,CMODE=str]

To turn off (reset) the BREAK bit:

.SPFUN #area,#chan,#SF.BRK,#buf,#0,#blk[,#crtn][BMODE=str][,CMODE=str]

203 SF.SRD Performs a special read from the handler. The wcnt argument specifies
the number of bytes to be read. The read is completed when one of the
following conditions is met:

• The number of bytes specified in the wcnt argument have been
transferred.

• The available characters have been transferred, when the number of
available characters was less than the value specified in the wcnt
argument.

• One character has been transferred, when no characters were available
when the request was issued.

The byte following the last transferred character contains a NULL. You
must allow for that NULL byte in your buffer.
Example:
The following example reads no more than six (but at least one) characters
from XC or XL and places them in the buffer RCVBUF. RCVBUF must be
at least seven bytes in length to receive the six characters and the NULL
byte.

.SPFUN #area,#chan,#SF.SRD,#RCVBUF,#6,#blk[,#crtn][,BMODE=str][,CMODE=str]

Programming for Specific Devices 2–95

Table 2–28 (Cont.): XC/XL Special Function Codes

Code Name Description

204 SF.STS Returns the driver status in the first word of the specified buffer. SF.STS
always returns one word.
The high byte of the returned word contains the driver support level. The
driver support level number will be updated as support is changed in the
XC and XL handlers. Programs should verify operation with an established
driver support level. The current (V5.6) driver support level is 1810.
The low byte contains the status of two internal flags and a modem control
signal. The significant bits of the low byte are:

Bit Meaning

0 Set if an XOFF has been sent to the host.

1 Set if an XOFF has been received from the host.

2 Set if the CLEAR TO SEND line is set.

3 Set if Carrier Detect is high (on); clear if Carrier Detect is low
(off).

4 Set if Ring Indicator is high (on); clear if Ring Indicator is low
(off).

5-7 Reserved.

Example:
The following example returns the driver support level in the high byte and
the status of internal flags in the low byte of the 1-word buffer STATUS.

.SPFUN #area,#chan,#SF.STS,#STATUS,#1,#blk[,#crtn][,BMODE=str][,CMODE=str]

205 SF.OFF Sets a flag that disables interrupts when the program exits. Digital
recommends you issue .SPFUN SF.OFF before your program exits.
Example:

.SPFUN #area,#chan,#SF.OFF,#buf,#wcnt,#blk[,#crtn][,BMODE=str][,CMODE=str]

2–96 RT–11 Device Handlers Manual

Table 2–28 (Cont.): XC/XL Special Function Codes

Code Name Description

206 SF.DTR Sets or resets the state of the DTR modem control signal. Setting
(asserting) DTR can cause modems to answer an incoming call. Resetting
(deasserting) DTR can cause modems to terminate a current call. DTR
can also get the attention of certain communications devices, such as the
Mini-Exchange. Specify a value of 1 for the wcnt argument to set the DTR
control signal; specify 0 to reset the DTR control signal.
Not all interfaces support the DTR control signal. On interfaces that do
not support DTR, the setting or resetting of DTR has no effect.
Example:
The following example sets the DTR control signal:

.SPFUN #area,#chan,#SF.DTR,#buf,#1,#blk[,#crtn][,BMODE=str][,CMODE=str]

The following example resets the DTR control signal:

.SPFUN #area,#chan,#SF.DTR,#buf,#0,#blk[,#crtn][,BMODE=str][,CMODE=str]

2.15.3 EOF (End-of-File) Detection

A CTRL/Z within data being read is treated as end-of-file (EOF) by the .READ
request. At least two .READ requests are necessary to return the EOF error (carry
bit set and byte 52 containing error code 0). The first .READ request transfers into
your buffer all data up to (but not including) the CTRL/Z. The rest of the buffer
is padded with nulls. A second .READ request is required to get the EOF error.
Subsequent .READ requests can return additional characters.

Programming for Specific Devices 2–97

Appendix A

DX, DL, and XL Device Handlers

This appendix contains annotated assembly listings of the commented DX, DL, and
XL device handler source files. Besides showing good handler writing practice and
demonstrating the various device handler macros, each listing illustrates certain
specific device handler features:

• DX illustrates a fairly simple serial device handler.

• DL illustrates software bad block replacement.

• XL illustrates internal queuing and multiterminal handler hooks.

Each device handler was assembled with both SYSMAC.SML and SYSTEM.MLB.

Figure A–1: DX Diskette Handler

DX - RX01 Floppy Disk Handler MACRO V05.05 Tuesday 26-Feb-91 14:15

Table of contents

3- 1 CONDITIONAL ASSEMBLY SUMMARY
4- 1 DEFINITIONS
5- 1 INSTALLATION CHECKS
6- 1 SET OPTIONS
7- 1 DRIVER REQUEST ENTRY POINT
8- 1 START TRANSFER OR RETRY
9- 1 SILOFE - FILL OR EMPTY THE SILO
10- 1 TABLES, FORK BLOCK, END OF DRIVER
11- 1 BOOTSTRAP DRIVER

1 000001 mmg$t= 1

.MCALL .MODULE
2 000000 .MODULE DX,VERSION=17,COMMENT=<RX01 Floppy Disk Handler>,AUDIT=YES
3
4 ; COPYRIGHT (c) 1989 BY
5 ; DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.
6 ; ALL RIGHTS RESERVED
7 ;
8 ;THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
9 ;ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
10 ;INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
11 ;COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
12 ;OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
13 ;TRANSFERRED.
14 ;
15 ;THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
16 ;AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
17 ;CORPORATION.

DX, DL, and XL Device Handlers A–1

18 ;
19 ;DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
20 ;SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

CONDITIONAL ASSEMBLY SUMMARY

1 .SBTTL CONDITIONAL ASSEMBLY SUMMARY
2 ;+
3 ;COND
4 ; DXT$O (0) Two controller support
5 ; 0 support 1 controller
6 ; 1 support 2 controllers
7 ;
8 ; DX$CSR (177170) primary CSR
9 ; DX$CS2 (177174) second CSR
10 ;
11 ; DX$VEC (264) primary Vector
12 ; DX$VC2 (270) second Vector
13 ;
14 ; MMG$T std conditional
15 ; TIM$IT std conditional (no code effects)
16 ; ERL$G std conditional
17 ;-

Preamble Section

1 .SBTTL DEFINITIONS
2
3 .ENABL LC
4

Monitor offsets and SYSCOM locations are defined with mnemonics so that
references to them can be found easily:

5 ; SOME RT-11 MACROS WE WILL USE
6
7 .MCALL .DRDEF .ASSUME .BR .ADDR
8
9 000342 .DSTATUS=:342 ;EMT code for .DSTATUS
10 000375 .READ =:375 ;EMT code for .READ
11 000010 ..READ =:010 ; subcode for .READ
12 000375 .WRITE =:375 ;EMT code for .WRITE
13 000011 ..WRIT =:011 ; subcode for .WRITE
14
15 000017 SYSCHN =:17 ; system channel
16
17 ; RT-11 SYSCOM LOCATIONS
18
19 000044 JSW =:44 ;JOB STATUS WORD
20 000054 SYSPTR =:54 ;POINTER TO BASE OF RMON
21 000432 P1EXT =: 432 ;OFFSET FROM $RMON TO EXTERNAL ROUTINE
22

If DXT$O=1, there are two controllers:

23 ; RX01 CONTROLLER DEFAULTS
24
25 .IIF NDF DXTO, DXTO=0 ;DEFAULT TO ONLY ONE CONTROLLER
26
27 .IIF NDF DX$CS2, DX$CS2 == 177174 ;2ND CONTROLLER CSR
28 .IIF NDF DX$VC2, DX$VC2 == 270 ;2ND CONTROLLER VECTOR
29

The .DRDEF macro (with macro expansion):

A–2 RT–11 Device Handlers Manual

30 000000 .DRDEF DX,22,FILST$!SPFUN$!DX$COD,494.,177170,264,DMA=NO
.MCALL .DRAST,.DRBEG,.DRBOT,.DREND,.DREST,.DRFIN,.DRFMS,.DRFMT
.MCALL .DRINS,.DRPTR,.DRSET,.DRSPF,.DRTAB,.DRUSE,.DRVTB
.MCALL .FORK,.QELDF
.IIF NDF RTE$M RTE$M=0
.IIF NE RTE$M RTE$M=1
.IIF NDF TIM$IT TIM$IT=0
.IIF NE TIM$IT TIM$IT=1
.IIF NDF MMG$T MMG$T=0

000001 .IIF NE MMG$T MMG$T=1
.IIF NDF ERL$G ERL$G=0
.IIF NE ERL$G ERL$G=1
.IIF NE TIM$IT, .MCALL .TIMIO,.CTIMI

000000 .QELDF
.IIF NDF MMGT,MMGT=1

000001 .IIF NE MMGT,MMGT=1
000000 Q.LINK=:0
000002 Q.CSW=:2.
000004 Q.BLKN=:4.
000006 Q.FUNC=:6.
000007 Q.JNUM=:7.
000007 Q.UNIT=:7.
000010 Q.BUFF=:^o10
000012 Q.WCNT=:^o12
000014 Q.COMP=:^o14

.IRP X,<LINK,CSW,BLKN,FUNC,JNUM,UNIT,BUFF,WCNT,COMP>
Q$’X=:Q.’X-^o4
.ENDR

DX - RX01 Floppy Disk Handler MACRO V05.05 Tuesday 26-Feb-91 19:46 Page 4-1
DEFINITIONS

177774 Q$LINK=:Q.LINK-^o4
177776 Q$CSW=:Q.CSW-^o4
000000 Q$BLKN=:Q.BLKN-^o4
000002 Q$FUNC=:Q.FUNC-^o4
000003 Q$JNUM=:Q.JNUM-^o4
000003 Q$UNIT=:Q.UNIT-^o4
000004 Q$BUFF=:Q.BUFF-^o4
000006 Q$WCNT=:Q.WCNT-^o4
000010 Q$COMP=:Q.COMP-^o4

.IF EQ MMG$T
Q.ELGH=:^o16
.IFF

000016 Q.PAR=:^o16
000020 Q.MEM=:^o20

.IRP X,<PAR,MEM>
Q$’X=:Q.’X-^o4
.ENDR

000012 Q$PAR=:Q.PAR-^o4
000014 Q$MEM=:Q.MEM-^o4
000024 Q.ELGH=:^o24

.ENDC
000001 HDERR$=:1
020000 EOF$=:^o20000
000400 VARSZ$=:^o400
001000 ABTIO$=:^o1000
002000 SPFUN$=:^o2000
004000 HNDLR$=:^o4000
010000 SPECL$=:^o10000
020000 WONLY$=:^o20000
040000 RONLY$=:^o40000
100000 FILST$=:^o100000
000756 DXDSIZ=:494.
000022 DX$COD=:22
102022 DXSTS=:<22>!<FILST$!SPFUN$!DX$COD>

.IIF NDF DXVEC,DXVEC=264

.GLOBL DX$VEC

The .DRPTR macro with no parameters:

31 000200 .DRPTR

The .DREST macro to define handler class and class modifier:

DX, DL, and XL Device Handlers A–3

32 000022 .DREST CLASS=DVC.DK,MOD=DVM.DX

The .DRSPF macro to define supported special functions:

33 000076 .DRSPF <377> ;Read Absolute
34 000032 .DRSPF <376> ;Write Absolute
35 000032 .DRSPF <375> ;Write Deleted
36
37 ; CONTROL AND STATUS REGISTER BIT DEFINITIONS
38
39 000001 CSGO =: 1 ;INITIATE FUNCTION
40 000020 CSUNIT =: 20 ;UNIT BIT
41 000040 CSDONE =: 40 ;DONE BIT
42 000100 CSINT =: 100 ;INTERUPT ENABLE
43 000200 CSTR =: 200 ;TRANSFER REQUEST
44 004000 CSRX02 =: 4000 ;CONTROLLER IS RX02 (ALWAYS 0)
45 040000 CSINIT =: 40000 ;RX11 INITIALIZE
46 100000 CSERR =:100000 ;ERROR
47
48 ; CSR FUNCTION CODES IN BITS 1-3
49
50 000000 CSFBUF =:0*2 ;0 - FILL SILO (PRE-WRITE)
51 000002 CSEBUF =:1*2 ;1 - EMPTY SILO (POST-READ)
52 000004 CSWRT =:2*2 ;2 - WRITE SECTOR
53 000006 CSRD =:3*2 ;3 - READ SECTOR
54 ;4 - UNUSED
55 000012 CSRDST =:5*2 ;5 - READ STATUS
56 000014 CSWRTD =:6*2 ;6 - WRITE SECTOR WITH DELETED DATA
57 000016 CSMAIN =:7*2 ;7 - MAINTENANCE
58
59 000002 CSREAD =:CSEBUF&CSRD&CSRDST&CSMAIN
60
61 000032 .ASSUME CSRD&2 NE 0 ;2 BIT MUST BE ON IN READ
62 000032 .ASSUME CSWRT&2 EQ 0 ;2 BIT MUST BE OFF IN WRITE
63 000032 .ASSUME CSWRTD&2 EQ 0 ;2 BIT MUST BE OFF IN WRITE
64
65 ; ERROR AND STATUS REGISTER BIT DEFINITIONS
66
67 000001 ESCRC =: 1 ;CRC ERROR
68 000002 ESPAR =: 2 ;PARITY ERROR
69 000004 ESID =: 4 ;INITIALIZE DONE
70 000100 ESDD =: 100 ;DELETED DATA MARK
71 000200 ESDRY == 200 ;DRIVE READY
72
73 ; ERROR LOG VALUES
74
75 000003 DXNREG =:3 ;# OF REGISTERS TO READ FOR ERROR LOG.
76 000010 RETRY =:8. ;RETRY COUNT
77
78 100000 SPFUNC =:100000 ;SPECIAL FUNCTIONS FLAG
79 ; (IN COMMAND WORD)
80
81 ; GENERAL COMMENTS:
82 ;
83 ; THIS HANDLER SERVES AS THE STANDARD RT-11 RX01 DEVICE HANDLER AS
84 ; BOTH THE SYSTEM DEVICE HANDLER AND NON-SYSTEM HANDLER. IT ALSO PRO-
85 ; VIDES THREE SPECIAL FUNCTION CAPABILITIES TO SUPPORT PHYSICAL I/O
86 ; ON THE FLOPPY AS A FOREIGN VOLUME. THE SPECIAL FUNCTIONS ARE:
87 ; CODE ACTION
88 ; 377 ABSOLUTE SECTOR READ. WCNT=TRACK, BLK=SECTOR, BUFFER=65
89 ; WORD BUFFER OF WHICH WORD 1 IS DELETED DATA FLAG.
90 ; 376 ABSOLUTE SECTOR WRITE. ARGUMENTS SAME AS READ.
91 ; 375 ABSOLUTE SECTOR WRITE WITH DELETED DATA. 1ST WORD
92 ; OF 65 WORD BUFFER ALWAYS SET TO 0.
93 ;
94 ; IN STANDARD RT-11 MODE A 2:1 INTERLEAVE IS USED ON A SINGLE TRACK AND
95 ; A 6 SECTOR SKEW IS USED ACROSS TRACKS. TRACK 0 IS LEFT ALONE FOR
96 ; PROPOSED ANSI COMPATABILITY.

Installation checks:

A–4 RT–11 Device Handlers Manual

1 .SBTTL INSTALLATION CHECKS
2
3 .IF EQ DXT$O
4 000032 .DRINS DX
5 .IFF
6 .DRINS DX,<DX$CS2>
7 .ENDC ;EQ DXT$O
8
9 000200 000240 NOP ;SAME CHECK FOR SYSTEM AND NON-SYSTEM HANDLER

10 000202 032777 BIT #CSRX02,@INSCSR ;IS THE RX02 BIT ON?
004000
177766

11 000210 001561 BEQ O.GOOD ;NOPE, IS AN RX01, INSTALL IT
12 000212 000561 BR O.BAD ;YES, AN RX02, DON’T INSTALL IT
13
14 ; Routine to find the entry for DX in the monitor device tables
15
16 000214 FINDRV:
17 000214 .ADDR #DEVNAM,R0 ;R0->DEVICE NAME
18 000222 .ADDR #DAREA+1,-(SP) ;(SP)->.DSTATUS INFO AREA(+physical)
19 000230 104342 EMT .DSTATUS ;*** (.DSTAT #DAREA+1,#DEVNAM) ***
20 000232 103551 BCS O.BAD ;IN CASE IT’S NOT KNOWN
21 000234 016701 MOV DAREA+4,R1 ;RETURN THE ENTRY POINT

000010
22 000240 001145 BNE O.GOOD
23 000242 000545 BR O.BAD ;UNLESS HANDLER’S NOT LOADED
24
25 000244 DAREA: .BLKW 4 ;.DSTAT INFORMATION BLOCK
26 000254 016300 DEVNAM: .RAD50 /DX / ;DEVICE NAME
27
28 ; The emt area for reads/writes of the handler is placed here
29 ; to leave room for code for the set options
30
31 000256 017 BAREA: .BYTE SYSCHN,..READ ;CHANNEL 17, READ

000257 010
32 000260 .BLKW ;BLOCK NUMBER
33 000262 .BLKW ;BUFFER
34 000264 000400 .WORD 256. ;WORD COUNT
35 000266 000000 .WORD 0 ;COMPLETION (WAIT)
36
37
38 ; NOW ALTER THE CODE WHICH WILL BE WRITTEN BACK TO DISK
39 000270 X.WP:
40 000270 .ADDR #DXWPRO,R0 ;R0-> THE WRITE PROTECT TABLE
41 000276 060300 ADD R3,R0 ; POINT TO ENTRY
42 000300 112710 MOVB (PC)+,(R0) ; AND SET IT THE WAY THE USER WANTS IT
43 000302 O.WPF: .BLKW 1
44
45 ; NOW TO ALTER THE IN-CORE COPY OF THE PROTECTION TABLE
46
47 000304 004767 CALL FINDRV ;IS THE HANDLER LOADED?

177704
48 000310 103521 BCS O.GOOD ;NOPE...
49 000312 023701 CMP @#SYSPTR,R1 ;is this the system handler?

000054
50 000316 101003 BHI 10$; no, then leave 1-shot as is
51 000320 012761 MOV #100000,DXW1-DXLQE(R1) ; yes, set it

100000
000076

52 000326 10$:
53 000326 060301 ADD R3,R1 ;ADD IN UNIT OFFSET
54 000330 116761 MOVB O.WPF,DXWPRO-DXLQE(R1) ;SET THE WRITE-PROTECT STATUS

177746
000010

55 000336 000506 BR O.GOOD
56
57 .IIF GT,<.-376> .ERROR ;INSTALLATION CODE IS TOO LARGE;

The DX handler supports several SET options. Immediately following the
installation code, the .DRSET macro is used to define the parameter table for each
SET option:

DX, DL, and XL Device Handlers A–5

1 .SBTTL SET OPTIONS
2
3 ; The write-protect/enable SET option makes use of the new
4 ; calling convention, i.e. the unit number (DXn, n=0 if a space)
5 ; passed in R1.
6
7 000340 .DRSET CSR, 160000, O.CSR, OCT
8 000412 .DRSET VECTOR, 500, O.VEC, OCT
9
10 .IF NE DXT$O
11 .DRSET CSR2, 160000, O.CSR2, OCT
12 .DRSET VEC2, 500, O.VEC2, OCT
13 .ENDC;NE DXT$O
14
15 000422 .DRSET RETRY, 127., O.RTRY, NUM
16
17 .IF NE ERL$G
18 .DRSET SUCCES, -1, O.SUCC, NO
19 .ENDC ;NE ERL$G
20
21 000432 .DRSET WRITE, 1, O.WP, NO
22
23 002256 BTCSR = <DXEND-DXSTRT>+<BOTCSR-DXBOOT>+1000
24

The code to process each SET options follows the .DRSET macro calls. Normally, SET
options change only the disk-resident copy of a handler, not the memory-resident
copy. The DX handler SET options include special code to modify both the memory-
resident and the disk-resident copy of the handler.

25 000442 020003 O.CSR: CMP R0,R3 ;IS CSR IN RANGE? (>160000)
26 000444 103444 BLO O.BAD ;NOPE...
27 000446 010067 MOV R0,INSCSR ;YES, INSTALLATION CODE NEEDS IT

177524
28 000452 010067 MOV R0,DISCSR ;FILL IN DISPLAY CSR

177516
29
30 ; When the csr for units 0 and 1 is changed, the bootstrap must
31 ; be altered such that it will use the correct controller.
32
33 ;R1->READ/WRITE EMT AREA
34 000456 .ADDR #BAREA+4,R1 ; (BUFFER ADDRESS WORD)
35 ;BUILD ADDRESS OF BUFFER
36 000464 .ADDR #1000,R2 ; (WHICH WILL OVERWRITE CORE
37 ; COPY OF BLOCK 1)
38 000472 010211 MOV R2,(R1) ;SET THE BUFFER ADDRESS
39 000474 012741 MOV #BTCSR/1000,-(R1) ;SET TO BLOCK NUMBER TO READ/WRITE

000002
40 ; (BOOT BLOCK THAT NEEDS MODIFICATION)
41 000500 005741 TST -(R1) ;R1->EMT AREA
42 000502 010003 MOV R0,R3 ;SAVE CSR ELSEWHERE, EMT NEEDS R0
43 000504 010100 MOV R1,R0 ;R0->EMT AREA FOR READ
44 000506 104375 EMT .READ ; *** (.READW) ***
45 000510 103422 BCS O.BAD
46 000512 010362 MOV R3,<BTCSR&777>(R2) ;SET THE NEW CSR

000256
47 000516 010100 MOV R1,R0 ;R0->EMT AREA FOR WRITE
48 000520 .ASSUME ..READ+1 EQ ..WRIT
49 000520 105260 INCB 1(R0) ;BUMP FROM ’READ’ TO ’WRITE’

000001
50 000524 104375 EMT .WRITE ; *** (.WRITW) ***
51 000526 103415 BCS O.SYWL ; SY: write-locked
52 000530 010100 MOV R1,R0 ;R0->EMT AREA
53 000532 .ASSUME ..WRIT-1 EQ ..READ
54 000532 105360 DECB 1(R0) ;CHANGE FROM ’WRITE’ TO ’READ’

000001
55 000536 012760 MOV #1,2(R0) ; OF BLOCK 1 OF HANDLER

000001
000002

56 000544 104375 EMT .READ ; *** (.READW) ***
57 000546 103403 BCS O.BAD
58
59 .IF EQ DXT$O
60 000550 010367 MOV R3,RXCSA

000504’

A–6 RT–11 Device Handlers Manual

61 .IFF
62 MOV R3,DXCSR
63 .ENDC ;EQ DXT$O
64
65 000554 005727 O.GOOD: TST (PC)+ ;GOOD RETURN (CARRY CLEAR)
66 000556 000261 O.BAD: SEC ;ERROR RETURN (CARRY SET)
67 000560 000207 RETURN
68
69 000562 O.SYWL:
70 000562 011600 MOV @SP,R0 ; copy return address
71 000564 005200 INC R0 ; point to opcode at return
72 000566 122720 CMPB #BR/400,(R0)+ ; is it a BR xxx?

000001
73 000572 001371 BNE O.BAD ; NO, old style SET
74 000574 010016 MOV R0,@SP ; use alternate return (RET+2)
75 000576 000767 BR O.BAD ; with carry set
76
77 000600 020003 O.VEC: CMP R0,R3 ;VECTOR IN RANGE?
78 000602 103365 BHIS O.BAD ;NOPE...
79 000604 032700 BIT #3,R0 ;YES, BUT ON A VECTOR BOUNDRY?

000003
80 000610 001362 BNE O.BAD ;NOPE...
81
82 .IF EQ DXT$O
83 000612 010067 MOV R0,DXSTRT ;YES, SET IT IN ENTRY AREA

000000’
84 .IFF
85 MOV R0,DX$VTB ;PLACE IT IN MULTI-VECTOR TABLE
86 .ENDC ;NE DXT$O
87
88 000616 000756 BR O.GOOD
89
90 .IF NE DXT$O
91 O.CSR2: CMP R0,R3 ;CSR IN RANGE?
92 BLO O.BAD ;NOPE...
93 MOV R0,DXCSR2 ;YES, PLACE IT IN CODE
94 MOV R0,DISCS2 ;SET DISPLAY CSR
95 BR O.GOOD
96
97 O.VEC2: CMP R0,R3 ;VECTOR IN RANGE?
98 BHIS O.BAD ;NOPE...
99 BIT #3,R0 ;YES, BUT IS IT ON A VECTOR BOUNDARY?
100 BNE O.BAD ;NOPE...
101 MOV R0,DX$VTB+6 ;YES, PLACE IN MULTI-VECTOR TABLE
102 BR O.GOOD
103 .ENDC ;NE DXT$O
104
105 000620 020003 O.RTRY: CMP R0,R3 ;ASKING FOR TOO MANY?
106 000622 101355 BHI O.BAD ;YES, USER IS BEING UNREASONABLE
107 000624 010067 MOV R0,DRETRY ;NOPE, SO TELL THE HANDLER

000034’
108 000630 001351 BNE O.GOOD ;OKAY IF NON-ZERO
109 000632 000751 BR O.BAD ;CAN’T ASK FOR NO RETRIES
110
111 .IF NE ERL$G
112 O.SUCC: MOV #0,R3 ;’SUCCESS’ ENTRY POINT
113 ; (MUST BE TWO WORDS)
114 N.SUCC: MOV R3,SCSFLG ;’NOSUCCES’ ENTRY POINT
115 .ASSUME O.SUCC+4 EQ N.SUCC
116 BR O.GOOD
117 .ENDC ;NE ERL$G
118
119 000634 000240 O.WP: NOP ;’WRITE’ ENTRY POINT
120 000636 005003 CLR R3 ;CLEAR FLAG
121 000640 N.WP: ;’NOWRITE’ ENTRY POINT
122 000640 .ASSUME O.WP+4 EQ N.WP
123 000640 010367 MOV R3,O.WPF ;SAVE THE USER’S SELECTION

177436
124 000644 010103 MOV R1,R3 ; save unit number
125 000646 020327 CMP R3,#DXT$O*2+1 ;IS IT A VALID UNIT

000001
126 000652 101341 BHI O.BAD ;NOPE...
127 000654 000167 JMP X.WP ; go to rest of the code

177410
128

DX, DL, and XL Device Handlers A–7

All of the code to process SET options must fit within the first block of the handler.
The following line tests to make sure that this condition is satisfied:

129 .IIF GT,<.-1000> .ERROR ;SET CODE IS TOO LARGE;

Header Section

1 .SBTTL DRIVER REQUEST ENTRY POINT
2
3 .ENABL LSB
4

The .DRBEG macro:

5 000660 .DRBEG DX

I/O Initiation Section

6 000014 000401 BR DXENT ;BRANCH AROUND PROTECTION TABLE
7
8 000016 DXWPRO:
9 000001 .REPT DXT$O+1
10 .BYTE 0,0
11 .ENDR
12 000020 .ASSUME . LE DXSTRT+1000
13
14 .IF NE ERL$G
15 SCSFLG: .WORD 0 ; :SUCCESSFUL LOGGING FLAG (DEFAULT=YES)
16 ; =0 - LOG SUCCESSES,
17 ; <>0 - DON’T LOG SUCCESSES
18 .ASSUME . LE DXSTRT+1000
19 .ENDC ;NE ERL$G
20
21 .IF NE DXT$O
22 .DRVTB DX,DX$VEC,DXINT
23 .DRVTB ,DX$VC2,DXINT
24 .ENDC ;NE DXT$O
25
26 000020 DXENT:
27 .IF NE MMG$T
28 000020 013704 MOV @#SYSPTR,R4 ; R4 -> MONITOR BASE

000054
29 000024 016427 MOV P1EXT(R4),(PC)+ ; GET ADDRESS OF EXTERNALIZATION ROUTINE

000432
30 000030 000432 $P1EXT: .WORD P1EXT ; POINTER TO EXTERNALIZATION ROUTINE
31 .ENDC ;NE MMG$T
32
33 000032 012727 MOV (PC)+,(PC)+ ;INITIALIZE RETRY COUNT
34 000034 000010 DRETRY: .WORD RETRY ; :RETRY MAXIMU
35 000036 .ASSUME . LE DXSTRT+1000
36 000036 000000 RXTRY: .WORD 0 ; :CURRENT RETRY COUNT

The following instructions assemble the controller function to start up an operation
and sort out special functions.

37
38 000040 016703 MOV DXCQE,R3 ;GET POINTER TO QUEUE ELEMENT

177744
39 000044 012305 MOV (R3)+,R5 ;GET BLOCK NUMBER
40 000046 012704 MOV #CSRD!CSGO,R4 ;GUESS THAT CONTROLLER FUNCTION IS READ

000007
41 000052 .ASSUME Q$BLKN+2 EQ Q$FUNC
42 000052 112301 MOVB (R3)+,R1 ;PICK UP SPECIAL FUNCTION CODE (SIGN EXTENDED)
43 000054 .ASSUME Q$FUNC+1 EQ Q$UNIT
44 000054 112300 MOVB (R3)+,R0 ;PICK UP THE UNIT NUMBER
45 000056 106200 ASRB R0 ;SHIFT IT TO CHECK FOR ODD UNIT
46 000060 103002 BCC 1$;BRANCH IF EVEN UNIT
47 000062 052704 BIS #CSUNIT,R4 ;SELECT ODD UNIT FOR TRANSFER

000020
48 000066 1$:
49 .IF EQ DXT$O ;ONE CONTROLLER

A–8 RT–11 Device Handlers Manual

50 000066 132700 BITB #6/2,R0 ;ANY UNITS BUT 0 OR 1?
000003

51 000072 001163 BNE RXERR ;BRANCH IF YES, ERROR
52 .IFF
53 MOV (PC)+,-(SP) ;ASSUME FIRST DX CONTROLLER
54 DXCSR = .
55 .WORD DX$CSR
56 .ASSUME . LE DXSTRT+1000
57 ASRB R0 ;SHIFT UNIT TO CHECK FOR SECOND CONTROLLER
58 BCC 2$;NOPE, FIRST CONTROLLER
59 MOV (PC)+,(SP) ;CHANGE CSR TO USE SECOND CONTROLLER
60 DXCSR2 = .
61 .WORD DX$CS2
62 .ASSUME . LE DXSTRT+1000
63 2$: MOV (SP)+,RXCSA
64 ASRB R0 ;BUT WAS IT UNIT 4 TO 7?
65 BCS RXERR ;ERROR IF SO
66 .ENDC ;EQ DXT$O

‘‘ 67 000074 .ASSUME Q$UNIT+1 EQ Q$BUFF
68 000074 012300 MOV (R3)+,R0 ;GET THE USER’S BUFFER ADDRESS
69 000076 .ASSUME Q$BUFF+2 EQ Q$WCNT
70 000076 012302 MOV (R3)+,R2 ;GET WORD COUNT
71 000100 100017 BPL 3$;POSITIVE MEANS READ, SO ALL SET UP
72
73 ; HERE TO CHECK IF UNIT IS WRITE-PROTECTED
74
75 000102 006327 ASL (PC)+ ; CHECK WRITE ANYWAY ONE-SHOT
76 000104 000000 DXW1: .WORD .-. ; 100000 MEANS WRITE ANYWAY
77 000106 .ASSUME . LE DXSTRT+1000
78 000106 103412 BCS 33$; SKIP TEST IF WRITE ANYWAY
79 000110 005046 CLR -(SP) ;SET TO GET UNIT
80 000112 .ASSUME Q$WCNT+2 EQ Q$COMP
81 000112 116316 MOVB Q$UNIT-Q$COMP(R3),(SP) ;GET IT (PLUS OTHER CRUFT

177773
82 000116 042716 BIC #<^C3>,(SP) ; WHICH WE DISCARD NOW)

177774
83 ;ADD ADDRESS OF WRITE-PROTECT TABLE
84 000122 .ADDR #DXWPRO,(SP),ADD; TO UNIT OFFSET
85 000130 105736 TSTB @(SP)+ ;CHECK UNIT WRITE STATUS
86 000132 001143 BNE RXERR ;IT’S WRITE-PROTECTED, USER CAN’T DO THIS
87 000134 .ASSUME CSRD-2 EQ CSWRT
88 000134 124444 33$: CMPB -(R4),-(R4) ;CHANGE CSRD (3*2) TO CSWRT (2*2) FOR WRITE

Ensure that a write equals a read code minus 2:

89 000136 .ASSUME CSWRT EQ CSRD-2
90 000136 005402 NEG R2 ; AND MAKE WORD COUNT POSITIVE
91 000140 006301 3$: ASL R1 ;DOUBLE THE SPECIAL FUNCTION CODE
92 000142 060701 ADD PC,R1 ;FORM PIC REFERENCE TO CHGTBL

The codes for read and write operations stay the same. If the operation is for a special
function, this routine sets the sign bit of the function code word, and modifies the
function:

93 000144 066104 ADD CHGTBL-.(R1),R4 ;MODIFY THE CODE, SET SIGN BIT IF SPFUN
000740

94 000150 010467 MOV R4,RXFUN2 ;SAVE THE FUNCTION CODE AND SPFUN FLAG
000320

95 000154 100435 BMI 7$;IF SPFUN, GO DO SPECIAL SETUP
96
97 ; NORMAL I/O, CONVERT TO TRACK AND SECTOR NUMBER AND INTERLEAVE
98

FILLCT indicates whether a multiple of four sectors has been written. If not, the
handler will later zero-fill to reach a multiple of four.

DX, DL, and XL Device Handlers A–9

99 000156 110267 MOVB R2,FILLCT ;SAVE WORD COUNT IN CASE WE HAVE TO FILL
000537

100 000162 105367 DECB FILLCT ; EXTRA SECTORS ON WRITE
000533

101 000166 006302 ASL R2 ;MAKE WORD COUNT UNSIGNED BYTE COUNT
102 000170 006305 ASL R5 ;NORMAL READ/WRITE. COMPUTE REAL SECTOR NUMBER
103 000172 006305 ASL R5 ; AS BLOCK*4
104 000174 012704 MOV (PC)+,R4 ;LOOP COUNT FOR 8 BIT DIVISION
105 000176 371 .BYTE -7,-26. ;COUNT BECOMES 1, -26 IN HIGH BYTE FOR LATER

000177 346
106 000200 022705 4$: CMP #26.*200,R5 ;DOES 26 GO INTO DIVIDEND?

006400
107 000204 101002 BHI 5$;BRANCH IF NOT, C CLEAR
108 000206 062705 ADD #-26.*200,R5 ;SUBTRACT 26 FROM DIVIDEND, SET C

171400
109 000212 006105 5$: ROL R5 ;SHIFT DIVIDEND AND QUOTIENT
110 000214 105204 INCB R4 ;DECREMENT LOOP COUNT
111 000216 003770 BLE 4$;BRANCH UNTIL DIVIDE DONE
112 000220 110501 MOVB R5,R1 ;COPY TRACK NUMBER 0:75, ZERO EXTEND
113 000222 060405 ADD R4,R5 ;BUMP TRACK TO 1-76, MAKE SECTOR<0
114 000224 010104 MOV R1,R4 ;COPY TRACK NUMBER
115 000226 006301 ASL R1 ;MULTIPLY
116 000230 060401 ADD R4,R1 ; BY
117 000232 006301 ASL R1 ; 6
118 000234 162701 6$: SUB #26.,R1 ;REDUCE TRACK NUMBER * 6 MOD 26

000032
119 000240 003375 BGT 6$; TO FIND OFFSET FOR THIS TRACK, -26:0
120 000242 010167 MOV R1,TRKOFF ;SAVE IT

000132
121 000246 000412 BR 8$;GO SAVE PARAMETERS AND START
122
123 ; SPECIAL FUNCTION REQUEST, SET TRACK AND SECTOR AND BYTE COUNT
124

The routine passes a 65-word buffer. The first word is 0 if there is no deleted data
mark.

125 000250 000305 7$: SWAB R5 ;PUT PHYSICAL SECTOR IN HIGH BYTE
126 000252 150205 BISB R2,R5 ; AND PHYSICAL TRACK IN LOW BYTE
127 000254 012702 MOV #128.,R2 ;SET THE BYTE COUNT TO 128

000200
128
129 .IF EQ MMG$T
130 CLR (R0)+ ;CLEAR DELETED DATA FLAG WORD, BUMP USER ADDR
131 .IFF
132 000260 016704 MOV DXCQE,R4 ;POINT TO QUEUE ELEMENT AT Q.BLKN

177524
133 000264 005046 CLR -(SP) ;STACK A ZERO AND STORE IT IN FIRST WORD OF
134 000266 004777 CALL @$PTWRD ; BUFFER. NOTE THAT Q.BUFF GETS BUMPED BY 2

000634
135 000272 005720 TST (R0)+ ;ADD 2 TO OUR COPY OF USER BUFFER ADDRESS
136 .ENDC ;EQ MMG$T
137
138 ; MERGE HERE TO START OPERATION

Save the user virtual buffer address, the track, the byte count, and the PAR1 value
for mapped systems:

139
140 000274 010027 8$: MOV R0,(PC)+ ;SAVE BUFFER ADDRESS
141 000276 000000 BUFRAD: .WORD 0 ; : USER VIRTUAL BUFFER ADDRESS
142 000300 010567 MOV R5,TRACK ;SAVE IT FOR STARTING I/O

000126
143 000304 010227 MOV R2,(PC)+ ; AND BYTE COUNT.
144 000306 000000 BYTCNT: .WORD 0 ; : BYTE COUNT FOR TRANSFER
145
146 .IF NE MMG$T
147 000310 005723 TST (R3)+ ;SKIP THE COMPLETION ROUTINE ADDRESS
148 000312 011367 MOV @R3,PARVAL ;SAVE THE PAR1 VALUE FOR MAPPING USER BUFFER

000542
149 .ENDC ;NE MMG$T
150
151 000316 .BR RXINIT ;GO TO FORK LEVEL AND START IT UP
152

A–10 RT–11 Device Handlers Manual

153 .DSABL LSB

The calculations are done; the routine can now start an operation or a retry. Before
it starts, however, it arranges transfer routines for interrupt entry. To get to the
ready state, force one interrupt, then return to 1$:

1 .SBTTL START TRANSFER OR RETRY
2
3 .ENABL LSB
4
5 000316 012767 RXINIT: MOV #100000,RXIRTN ;SET RETURN AFTER INITIAL INTERRUPT

100000
000172

6 000324 016704 MOV RXCSA,R4 ;ENSURE THAT WE POINT TO THE CSR
000154

7 000330 000441 BR RXIENB ;GO INTERRUPT, RETURN TO 1$ LATER
8
9 000332 032700 1$: BIT #CSREAD,R0 ;READ OR WRITE FUNCTION?

000002
10 000336 001005 BNE 3$;IF READ, GO FILL THE SILO FROM DISK
11 000340 004067 2$: JSR R0,SILOFE ;WRITE, LOAD THE SILO FROM THE USER BUFFER

000440

Parameters for SIOFE routine:

12 000344 000001 .WORD CSFBUF!CSGO ; FILL BUFFER COMMAND
13 000346 112215 MOVB (R2)+,@R5 ; MOVB TO BE PLACED IN-LINE IN SILOFE
14 000350 010115 MOV R1,@R5 ; ZERO-FILL INSTRUCTION FOR SHORT WRITES

The following routine changes a sector number to an interleaved sector number:

15 000352 116702 3$: MOVB SECTOR,R2 ;GET THE SECTOR NUMBER
000055

16 000356 003014 BGT 5$;POSITIVE MEANS SPFUN, DON’T INTERLEAVE
17 000360 162702 SUB #-14.,R2 ;ADD 14 TO DO INTERLEAVING

177762
18 000364 003003 BGT 4$;IF > 0, MAP -13:-1 TO 2:26, NOTE C=0
19 000366 062702 ADD #12.,R2 ; ELSE MAP -26:-14 TO 1:25

000014
20 000372 000261 SEC ;ADD 1 WHEN DOUBLING
21 000374 006102 4$: ROL R2 ;DOUBLE AND INTERLEAVE, SECTOR 1:26
22 000376 062702 ADD (PC)+,R2 ;ADD IN THE TRACK OFFSET, SECTOR -25:26
23 000400 000000 TRKOFF: .WORD 0 ; : TRACK OFFSET = TRACK*6 MOD 26, RANGE -26:0
24 000402 003002 BGT 5$;NO MODULUS PROBLEMS
25 000404 062702 ADD #26.,R2 ;FIX TO PUT SECTOR IN 1:26 RANGE

000032
26 000410 010014 5$: MOV R0,@R4 ;SET THE FUNCTION IN THE FLOPPY CONTROLLER
27 000412 105714 6$: TSTB @R4 ;WAIT FOR
28 000414 001776 BEQ 6$; TRANSFER READY
29 000416 100161 BPL RXRTRY ;TRANSFER DONE WITHOUT TRANSFER READY, ERROR
30 000420 110215 MOVB R2,@R5 ;SET SECTOR NUMBER
31 000422 105714 7$: TSTB @R4 ;WAIT AGAIN FOR
32 000424 001776 BEQ 7$; TRANSFER READY
33 000426 100155 BPL RXRTRY ;TRANSFER DONE WITHOUT TRANSFER READY, ERROR
34 000430 112715 MOVB (PC)+,@R5 ;SET THE TRACK NUMBER
35 000432 000 TRACK: .BYTE 0 ;TRACK NUMBER
36 000433 000 SECTOR: .BYTE 0 ;SECTOR NUMBER, KEPT < 0 UNLESS SPFUN

Start the operation and return to the monitor:

37 000434 052714 RXIENB: BIS #CSINT,@R4 ;SET IE TO CAUSE AN INTERRUPT WHEN DONE IS UP
000100

38 000440 000207 RETURN ;RETURN, WE’LL BE BACK WITH AN INTERRUPT
39
40 000442 016704 RXERR: MOV DXCQE,R4 ;R4 -> CURRENT QUEUE ELEMENT

177342
41 000446 052754 BIS #HDERR$,@-(R4) ;SET HARD ERROR IN CSW

000001
42 000452 000524 BR 13$;EXIT ON HARD ERROR
43

DX, DL, and XL Device Handlers A–11

Interrupt Service Section
The .DRAST macro:

44 000454 .DRAST DX,5,RXABRT ;AST ENTRY POINT TABLE

Drop to fork level rather than device priority because the routine is lengthy and it
needs all the registers.

45 000464 .FORK DXFBLK ;REQUEST FORK LEVEL IMMEDIATELY

Load registers; if the transfer is successful, this routine dispatches to the appropriate
section for this interrupt. The three possibilities are: the first interrupt occurred; a
read operation completed; a write operation completed. (A seek operation is treated
as a zero-length read.)

46 000472 012700 MOV (PC)+,R0 ;GET A VERY USEFUL FLAG WORD
47 000474 000000 RXFUN2: .WORD 0 ; : READ OR WRITE COMMAND ON CORRECT UNIT
48 000476 012703 MOV #128.,R3 ;LOAD A HANDY CONSTANT

000200
49 000502 012704 MOV (PC)+,R4 ;GET ADDRESS OF RX CONTROLLER
50 000504 177170 RXCSA: .WORD DX$CSR ; : ADDRESS OF CONTROLLER
51 000506 .ASSUME . LE DXSTRT+1000
52 000506 010405 MOV R4,R5 ;POINT R5 TO RX DATA BUFFER
53 000510 005725 TST (R5)+ ;CHECK FOR ERROR, R5 -> DX REGISTER WITH ERROR
54 000512 100523 BMI RXRTRY ;ERROR, PROCESS IT
55 000514 006327 ASL (PC)+ ;NO ERROR, DISPATCH AFTER INTERRUPT
56 000516 000000 RXIRTN: .WORD 0 ;OFFSET TO INTERRUPT CONTINUATION
57 000520 103704 BCS 1$;FIRST INTERRUPT, START I/O
58 000522 032700 BIT #CSREAD,R0 ;READ OR WRITE?

000002
59 000526 001442 BEQ 10$;WRITE, DON’T EMPTY SILO
60 000530 005700 TST R0 ;READ, IS THIS A SPECIAL FUNCTION?

The silo is a 128-byte (decimal) storage area in the diskette logic.

61 000532 100033 BPL 9$;NO, SIMPLY EMPTY THE SILO THAT WAS JUST READ
62 000534 032715 BIT #ESDD,@R5 ;IF SPFUN READ, IS DELETED DATA FLAG PRESENT?

000100
63 000540 001430 BEQ 9$;NOPE, JUST EMPTY THE SILO
64

This routine puts a 1 in the first word of the user buffer if a deleted data mark was
present on a special function read operation.

65 .IF EQ MMG$T
66 MOV BUFRAD,R2 ;GET ADDRESS OF USER BUFFER AREA
67 INC -(R2) ;SET FLAG WORD TO 1 TO INDICATE DELETED DATA
68 .IFF
69 000542 010401 MOV R4,R1 ;SAVE R4
70 000544 016704 MOV DXCQE,R4 ;POINT TO QUEUE ELEMENT

177240
71 000550 012746 MOV #1,-(SP) ;STACK A 1 TO PUT INTO FLAG WORD

000001
72 000554 162764 SUB #2,Q$BUFF(R4) ;MOVE BUFFER POINTER BACK TO FIRST WORD.

000002
000004

73 000562 026427 CMP Q$BUFF(R4),#20000 ;POINTER OUT OF THIS PAR’S RANGE?
000004
020000

74 000570 103011 BHIS 85$;NOPE...
75 000572 062764 ADD #20000,Q$BUFF(R4) ;YES, GET IT BACK IN RANGE

020000
000004

76 000600 162764 SUB #200,Q$PAR(R4) ; IN THE PREVIOUS PAR
000200
000012

77 000606 162764 SUB #200,Q$MEM(R4) ; IN THE PREVIOUS PAR

A–12 RT–11 Device Handlers Manual

000200
000014

78 000614 004777 85$: CALL @$PTWRD ;STORE IN 1ST WORD. Q.BUFF IS AGAIN ORIGINAL+2
000306

79 000620 010104 MOV R1,R4 ;RESTORE R4.
80 .ENDC ;EQ MMG$T
81
82 000622 004067 9$: JSR R0,SILOFE ;FOR READ, MOVE THE DATA FROM SILO TO BUFFER

000156
83 000626 000003 .WORD CSEBUF!CSGO ; EMPTY BUFFER COMMAND
84 000630 111522 MOVB @R5,(R2)+ ; MOVB TO BE PLACED IN LINE IN SILOFE
85 000632 011502 MOV @R5,R2 ; DATA SLUFFER TO BE USED FOR SHORT READ

This point marks the successful completion of one sector for a read or write operation.
The next routine increments the pointers for the next interleaved sector.

86 000634 105267 10$: INCB SECTOR ;RETURN HERE AFTER WRITES. BUMP SECTOR NUMBER
177573

87 000640 001012 BNE 11$;NOT OFF END OF TRACK YET
88 000642 062767 ADD #-26.*400+1,TRACK ;RESET SECTOR, BUMP TO NEXT TRACK

163001
177562

89 000650 062767 ADD #6,TRKOFF ;BUMP TRACK OFFSET VALUE
000006
177522

90 000656 003403 BLE 11$;OK IF STILL IN RANGE -25:0
91 000660 162767 SUB #26.,TRKOFF ;RESET TO PROPER RANGE MOD 26

000032
177512

The following routine increments the buffer address by 128 bytes, and reduces the
byte count by 128. If the operation is not complete, it transfers another sector.

92 000666 11$:
93 .IF EQ MMG$T
94 ADD R3,BUFRAD ;UPDATE BUFFER ADDRESS
95 .IFF
96 000666 062767 ADD #2,PARVAL ;CHANGE MAP TO BUMP ADDRESS FOR NEXT TIME

000002
000164

97 .ENDC ;EQ MMG$T
98
99 000674 160367 SUB R3,BYTCNT ;REDUCE THE AMOUNT LEFT TO TRANSFER

177406
100 000700 101214 BHI 1$;LOOP IF WE ARE NOT DONE

The transfer is done. The routine sets the byte count to 0, and goes to 12$ if this
was a read or a special function operation.

101 000702 005067 CLR BYTCNT ;FIX BYTE COUNT SO THAT WRITES ARE ALL 0-FILLS
177400

102 000706 032700 BIT #CSREAD!SPFUNC,R0 ;READ OR SPECIAL FUNCTION OPERATION?
100002

103 000712 001004 BNE 12$;IF SO, NO ZERO-FILLING, SO WE’RE DONE

The operation was a write. The routine may need to be zero-filled up to three sectors
(see FILLCT above).

104 000714 062727 ADD #040000,(PC)+ ;CHECK ORIGINAL WORD COUNT FOR # OF SECTORS
040000

105 000720 000 .BYTE 0 ; FILLER
106 000721 000 FILLCT: .BYTE 0 ; : ORIGINAL WORD COUNT LOW BYTE IN HIGH BYTE
107 000722 103206 BCC 2$;YES, LOOP FOR ZERO-FILLING ON WRITE
108 000724 12$: ;AHH, A SUCCESSFUL TRANSFER IS DONE
109 .IF NE ERL$G

Log a successful transfer:

DX, DL, and XL Device Handlers A–13

110 TST SCSFLG ;LOGGING SUCCESSFUL TRANSFERS?
111 BNE 13$;NOPE...
112 MOV #DX$COD*400+377,R4 ;SET UP R4 = ID/-1
113 MOV DXCQE,R5 ; AND R5 -> CURRENT QUEUE ELEMENT
114 CALL @$ELPTR ;CALL ERROR LOGGER TO REPORT SUCCESS
115 .ENDC ;EQ ERL$G
116
117 000724 005077 13$: CLR @RXCSA ;DISABLE FLOPPY INTERRUPTS

177554

I/O Completion Section

118 000730 14$: .DRFIN DX ;GO TO I/O COMPLETION
119

The abort routine:

120 ; ABORT TRANSFER
121
122 000746 012777 RXABRT: MOV #CSINIT,@RXCSA ;PERFORM AN RX11 INITIALIZE

040000
177530

123 000754 005067 CLR DXFBLK+2 ;CLEAR FORK BLOCK TO AVOID A DISPATCH
000130

Go to .DRFIN if no error:

124 000760 000763 BR 14$; AND FINISH UP THIS I/O
125

If error logging was built:

126 .DSABL LSB
127
128 ; TRANSFER ERROR HANDLING
129
130 000762 RXRTRY:
131 .IF NE ERL$G
132 .ADDR #DXRBUF,R3 ;R3 -> LOCATION TO STORE REGISTER INFO.
133 MOV R3,R2 ;SAVE IN R2 FOR LATER
134 MOV @R4,(R3)+ ;STORE RXCS
135 MOV @R5,(R3)+ ;STORE STATUS RXES
136 MOV #CSMAIN!CSGO,@R4 ;READ ERROR REGISTER (NO INTERRUPTS)
137 1$: BIT #CSDONE,@R4 ;WAIT FOR READ COMPLETION
138 BEQ 1$
139 MOV @R5,@R3 ;STORE IN BUFFER
140 MOV DRETRY,R3
141 SWAB R3
142 ADD #DXNREG,R3 ;R3 = MAX RETRIES/# OF REGS
143 MOV #DX$COD*400,R4 ;R4 = DEVICE ID IN HIGH BYTE
144 BISB RXTRY,R4 ; AND CURRENT RETRY COUNT IN LOW BYTE
145 DECB R4 ; -1 FOR THIS ERROR
146 MOV DXCQE,R5 ;R5 -> QUEUE ELEMENT
147 CALL @$ELPTR ;CALL ERROR LOGGER
148 MOV RXCSA,R4 ;RESTORE R4 = RXCS ADDRESS
149 .ENDC ;NE ERL$G
150

See if a retry is allowed:

151 000762 005367 DEC RXTRY ;SHOULD WE TRY AGAIN?
177050

152 000766 003002 BGT 2$;YES
153 000770 000167 JMP RXERR ;NOPE, REPORT AN ERROR

177446
154
155 000774 012714 2$: MOV #CSINIT,@R4 ;START A RECALIBRATE

040000

A–14 RT–11 Device Handlers Manual

Retry the operation:

156 001000 000167 JMP RXINIT ;EXIT THROUGH START OPERATION CODE
177312

1 .SBTTL SILOFE - FILL OR EMPTY THE SILO
2 ;+
3 ; SILOFE - FILL OR EMPTY THE SILO, DUMPING OR ZERO-FILLING IF NEEDED
4 ;
5 ; R3 = 128.
6 ; R4 -> FLOPPY CSR
7 ; JSR R0,SILOFE
8 ; COMMAND: CSFBUF!CSGO FOR FILL (WRITE)
9 ; CSEBUF!CSGO FOR EMPTY (READ)
10 ; FILL/EMPTY INSTRUCTION: (R2 -> USER BUFFER, R5 -> RXDB)
11 ; MOVB (R2)+,@R5 FOR FILL (WRITE)
12 ; MOVB @R5,(R2)+ FOR EMPTY (READ)
13 ; SLUFF INSTRUCTION: (R1 = 0, R5 -> RXDB)
14 ; CLRB @R5 FOR FILL (WRITE)
15 ; MOVB @R5,R2 FOR EMPTY (READ)
16 ; R1 = RANDOM
17 ; R2 = RANDOM
18 ;
19 ; NOTE: 1. THIS ROUTINE ASSUMES ERROR CAN NOT COME UP DURING A FILL OR EMPTY!!
20 ; 2. SEEK DOES A SILO EMPTY, A TIME WASTER
21 ;-
22 .ENABL LSB

The diskette deals only in units of 128 decimal bytes. If a request to read is for
fewer than 128 bytes, the handler reads 128 bytes and sloughs the extra bytes. If a
request to write is for fewer than 128 bytes, the handler zero-fills to reach 128 bytes.

23 001004 012014 SILOFE: MOV (R0)+,@R4 ;INITIATE FILL OR EMPTY BUFFER COMMAND
24 001006 012067 MOV (R0)+,3$;PUT CORRECT MOV INSTRUCTION IN FOR FILL/EMPTY

000036
25 001012 012067 MOV (R0)+,5$;PUT IN INSTRUCTION TO SLUFF DATA

000052
26 001016 016701 MOV BYTCNT,R1 ;GET BYTE COUNT

177264
27 001022 001417 BEQ 4$;IF ZERO, WE ARE SEEKING OR ZERO FILLING
28 001024 020103 CMP R1,R3 ;IS THE BYTE COUNT <= 128?
29 001026 101401 BLOS 1$;OK IF SO
30 001030 010301 MOV R3,R1 ;DO ONLY 128 BYTES AT A TIME
31 001032 016702 1$: MOV BUFRAD,R2 ;GET USER VIRTUAL BUFFER ADDRESS IN R2

177240

The following section of code can be executed in two different ways. If the handler is
assembled for an unmapped monitor, the code between the symbols 2$ and PARVAL
is simply executed in-line. If the handler is assembled for a mapped monitor, the JSR
to PIEXT and the word PARVAL are included. In this situation, the routine P1EXT
copies the code between 2$ and PARVAL to the monitor stack, uses the value passed
in PARVAL to map to the user buffer, and executes the code from the monitor stack.
This is done to ensure that the code is not in the PAR1 area when it is executed,
since PAR1 is used to map to the user buffer.

32 .IF NE MMG$T
33 001036 004077 JSR R0,@$P1EXT ;Let the monitor execute the following code.

176766
34 001042 000016 .WORD PARVAL-. ;Number of instructions in bytes plus 2.
35 .ENDC ;NE MMG$T
36 001044 105714 2$: TSTB @R4 ;**EXT** TRY FOR THE TRDY
37 001046 100376 BPL 2$;**EXT** TRANSFER READY
38 001050 000000 3$: HALT ;**EXT** INSTRUCTION TO MOV OR SLUFF DATA FROM
39 001052 105714 TSTB @R4 ;**EXT** TOUCH THE CSR TO GET IT READY
40 001054 105301 DECB R1 ;**EXT** CHECK FOR COUNT DONE
41 001056 001372 BNE 2$;**EXT** STILL MORE TO TRANSFER
42 .IF NE MMG$T
43 001060 000000 PARVAL: .WORD 0 ;using this value for the PAR 1 bias.
44 .ENDC ;NE MMG$T

DX, DL, and XL Device Handlers A–15

The slough routine:

45 001062 105714 4$: TSTB @R4 ;WAIT FOR TRANSFER READY OR TRANSFER DONE
46 001064 003003 BGT 6$;TDNE UP WITH NO TRDY, SO ALL DONE
47 001066 001775 BEQ 4$;LOOP
48 001070 000000 5$: HALT ;TRANSFER READY, SO SLUFF DATA
49 001072 000773 BR 4$;LOOP TO SLUFF MORE
50 001074 000200 6$: RTS R0 ;RETURN
51 .DSABL LSB

1 .SBTTL TABLES, FORK BLOCK, END OF DRIVER
2
3 ; CHANGES TO CSR CODE FOR SPECIAL FUNCTIONS
4
5 001076 100006 .WORD CSWRTD-CSRD+SPFUNC ;375: READ+GO -> WRITE DELETED+GO
6 001100 077776 .WORD CSWRT-CSRD+SPFUNC ;376: READ+GO -> WRITE+GO
7 001102 100000 .WORD CSRD-CSRD+SPFUNC ;377: READ+GO -> READ+GO
8 001104 000000 CHGTBL: .WORD 0 ; READ/WRITE STAY THE SAME
9
10 001106 000000 DXFBLK: .WORD 0,0,0,0 ;DX FORK QUEUE ELEMENT

001110 000000
001112 000000
001114 000000

11
12 .IF NE ERL$G
13 DXRBUF: .BLKW DXNREG ;ERROR LOG STORAGE
14 .ENDC ;NE ERL$G

Bootstrap driver

1 .SBTTL BOOTSTRAP DRIVER
2

The .DRBOT macro:

3 001116 .DRBOT DX,BOOT1,READ

Termination Section
The .DREND macro generated by .DRBOT (the macro expansion):

001116 .DREND DX,0,
.IF B <>

001116 .PSECT DXDVR
.IFF
.PSECT
.ENDC
.IIF NDF DXEND,DXEND::
.IF EQ .-DX$END
.IF NE MMG$T!<0&2.>

001116 000000 $RLPTR::.WORD 0
001120 000000 $MPPTR::.WORD 0
001122 000000 $GTBYT::.WORD 0
001124 000000 $PTBYT::.WORD 0
001126 000000 $PTWRD::.WORD 0

.ENDC

.IF NE ERL$G!<0&1>
$ELPTR::.WORD 0
.ENDC
.IF NE TIM$IT!<0&4.>
$TIMIT::.WORD 0
.ENDC

001130 000000 $INPTR::.WORD 0
001132 000000 $FKPTR::.WORD 0

.IIF NDF ...V22 ...V22=0

.IF NE ...V22&^o40000
DX$X64 =:.
.REPT 16.

.WORD 0
.ENDR
.ENDC
.GLOBL DXSTRT

A–16 RT–11 Device Handlers Manual

The following line marks the end of the loadable portion of the handler. It is used
to determine the handler’s length.

001134’ DXEND==.
.IFF
.PSECT DXBOOT
.IIF LT <DXBOOT-.+^o664>,.ERROR;?SYSMAC-E-Primary boot too large;
.=DXBOOT+^o664
BIOERR: JSR R1,REPORT

.WORD IOERR-DXBOOT
REPORT: MOV #BOOTF-DXBOOT,R0

MOV #30002$-DXBOOT,R2
CALL @R2
MOV @R1,R0
CALL @R2
MOV #CRLFLF-DXBOOT,R0
CALL @R2

30001$: HALT
BR 30001$

30002$: TSTB @#TPS
BPL 30002$
MOVB (R0)+,@#TPB
BNE 30002$
RETURN

BOOTF: .ASCIZ <CR><LF>"?BOOT-U-"
IOERR: .ASCII "I/O error"
CRLFLF: .ASCIZ <CR><LF><LF>

.EVEN
.IIF NDF ...V7,...V7=-1
.REPT 4.

.WORD ...V7
.ENDR
DXBEND::
.ENDC
.IIF NDF TPS,TPS=:^o177564
.IIF NDF TPB,TPB=:^o177566

000012 LF=:^o12
000015 CR=:^o15
001000 B$BOOT=:^o1000
004716 B$DEVN=:^o4716
004722 B$DEVU=:^o4722
004730 B$READ=:^o4730

.IF NDF B$DNAM

.IF EQ MMG$T
B$DNAM=:^RDX
.IFF
B$DNAM=:^RDXX
.ENDC ; EQ MMG$T
.ENDC ; NDF B$DNAM

000062 .ASECT
000062 .=^o62

000062 000000’ .WORD DXBOOT,DXBEND-DXBOOT,READ-DXBOOT
000064 001000
000066 000224
000000 .PSECT DXBOOT
000000 000240 DXBOOT::NOP
000002 000413 BR BOOT1-2.

000100 ...V2=^o100
.IRP X <UBUS,QBUS>
...V3=0
.IIF IDN <X> <UBUS> ...V3=1.
.IIF IDN <X> <QBUS> ...V3=2.
.IIF IDN <X> <CBUS> ...V3=4.
.IIF IDN <X> <UMSCP> ...V3=^o10
.IIF IDN <X> <QMSCP> ...V3=^o20
.IIF IDN <X> <CMSCP> ...V3=^o40
.IIF EQ ...V3 .ERROR;?SYSMAC-E-Invalid C O N T R O L, found - UBUS,QBUS;
...V2=...V2!...V3
.ENDR

000000 ...V3=0
000001 .IIF IDN <UBUS> <UBUS> ...V3=1.

.IIF IDN <UBUS> <QBUS> ...V3=2.

.IIF IDN <UBUS> <CBUS> ...V3=4.

.IIF IDN <UBUS> <UMSCP> ...V3=^o10

.IIF IDN <UBUS> <QMSCP> ...V3=^o20

.IIF IDN <UBUS> <CMSCP> ...V3=^o40

DX, DL, and XL Device Handlers A–17

.IIF EQ ...V3 .ERROR;?SYSMAC-E-Invalid C O N T R O L, found - UBUS,QBUS;
000101 ...V2=...V2!...V3
000000 ...V3=0

.IIF IDN <QBUS> <UBUS> ...V3=1.
000002 .IIF IDN <QBUS> <QBUS> ...V3=2.

.IIF IDN <QBUS> <CBUS> ...V3=4.

.IIF IDN <QBUS> <UMSCP> ...V3=^o10

.IIF IDN <QBUS> <QMSCP> ...V3=^o20

.IIF IDN <QBUS> <CMSCP> ...V3=^o40

.IIF EQ ...V3 .ERROR;?SYSMAC-E-Invalid C O N T R O L, found - UBUS,QBUS;
000103 ...V2=...V2!...V3
000026’ .=BOOT1-6.

000026 020 .BYTE ^o20,...V2,^o20,^o^C<20+...V2+20>
000027 103
000030 020
000031 234

.IF EQ <1-1>
000032 000400 BR BOOT1

.IFF

.IF EQ <1-2.>
BMI BOOT1

.IFF
.ERROR;?SYSMAC-E-Invalid S I D E S, expecting 1/2, found - 1;

.ENDC

.ENDC
4
5 000014’ . = DXBOOT+14
6 000014 000120 .WORD READS-DXBOOT
7 000016 000340 .WORD 340
8 000020 000070 .WORD WAIT-DXBOOT
9 000022 000340 .WORD 340
10

Locations 34 through 52 are reserved for Digital.

11 000034’ . = DXBOOT+34 ;34-52 USEABLE
12 000034 116067 BOOT1: MOVB UNITRD-DXBOOT(R0),RDCMD ;SET READ FUNCTION FOR CORRECT UNIT

000056
000066

13 000042 011706 REETRY: MOV @PC,SP ;INIT SP WITH NEXT INSTRUCTION
14 000044 012702 MOV #200,R2 ;AREA TO READ IN NEXT PART OF BOOT

000200
15 000050 005000 CLR R0 ;SET TRACK NUMBER
16 000052 000446 BR B2$;OUT OF ROOM HERE, GO TO CONTINUATION
17
18 000056’ . = DXBOOT+56
19 000056 007 UNITRD: .BYTE CSGO+CSRD ;READ FROM UNIT 0, SETS WEIRD BUT OK PS
20 000057 027 .BYTE CSGO+CSRD+CSUNIT;READ FROM UNIT 1
21
22 000070’ . = DXBOOT+70 ;PAPER TAPE VECTORS
23 000070 005714 WAIT: TST @R4 ;IS TR, ERR, DONE UP? INT ENB CAN’T BE
24 000072 001776 BEQ WAIT ;LOOP TILL SOMETHING
25 000074 100762 BMI REETRY ;START AGAIN IF ERROR
26 000076 000002 RTIRET: RTI ;RETURN
27
28 000120’ . = DXBOOT+120
29 000120 012704 READS: MOV (PC)+,R4 ;R4 -> RX STATUS REGISTER
30 000122 177170 BOTCSR: .WORD DX$CSR
31 000124 010405 MOV R4,R5 ;R5 WILL POINT TO RX DATA BUFFER
32 000126 012725 MOV (PC)+,(R5)+ ;INITIATE READ FUNCTION
33 000130 000000 RDCMD: .WORD 0 ;GETS FILLED WITH READ COMMAND
34 000132 000004 IOT ;CALL WAIT SUBROUTINE
35 000134 010315 MOV R3,@R5 ;LOAD SECTOR NUMBER INTO RXDB
36 000136 000004 IOT ;CALL WAIT SUBROUTINE
37 000140 010015 MOV R0,@R5 ;LOAD TRACK NUMBER INTO RXDB
38 000142 000004 IOT ;CALL WAIT SUBROUTINE
39 000144 012714 MOV #CSGO+CSEBUF,@R4;LOAD EMPTY BUFFER FUNCTION INTO RXCS

000003
40 000220 BROFFS = READF-. ;USE FOR COMPUTING BR OFFSET
41 000150 000004 RDX: IOT ;CALL WAIT SUBROUTINE
42 000152 105714 TSTB @R4 ;IS TRANSFER READY UP?
43 000154 100350 BPL RTIRET ;BRANCH IF NOT, SECTOR MUST BE LOADED
44 000156 111522 MOVB @R5,(R2)+ ;MOVE DATA BYTE TO MEMORY
45 000160 005301 DEC R1 ;CHECK BYTE COUNT
46 000162 003372 BGT RDX ;LOOP AS LONG AS WORD COUNT NOT UP
47 000164 005002 CLR R2 ;KLUDGE TO SLUFF BUFFER IF SHORT WD CNT

A–18 RT–11 Device Handlers Manual

48 000166 000770 BR RDX ;LOOP
49
50 000170 010601 B2$: MOV SP,R1 ;SET TO BIG WORD COUNT
51 000172 005200 INC R0 ;SET TO ABSOLUTE TRACK 1
52 000174 011703 MOV @PC,R3 ;ABSOLUTE SECTOR 3 FOR NEXT PART
53 000176 .ASSUME BPT EQ 3

.IF EQ <<BPT>>-<<3>>

.IFF

.IF B <>

.ERROR;?SYSMAC-W-"BPT EQ 3" is not true;

.IFF

.ERROR ;?SYSMAC-;

.ENDC

.ENDC
54 000176 000003 BPT ;CALL READS SUBROUTINE
55 ;SECTOR 2 OF RX BOOT
56 000200 122323 BOOT2: CMPB (R3)+,(R3)+ ;BUMP TO SECTOR 5
57 000202 000003 BPT ;CALL READS SUBROUTINE
58 000204 122323 CMPB (R3)+,(R3)+ ;BUMP TO SECTOR 7
59 000206 000003 BPT ;CALL READS SUBROUTINE
60 000210 032767 BIT #CSUNIT,RDCMD ;CHECK UNIT ID

000020
177712

61 000216 001173 BNE BOOT ;BRANCH IF BOOTING UNIT 1, R0=1
62 000220 005000 CLR R0 ;SET TO UNIT 0
63 000222 000571 BR BOOT ;NOW WE ARE READY TO DO THE REAL BOOT
64
65 000224 012737 READ: MOV (PC)+,@(PC)+ ;MODIFY READ ROUTINE
66 000226 000167 .WORD 167
67 000230 000150 .WORD RDX-DXBOOT
68 000232 012737 MOV (PC)+,@(PC)+
69 000234 000214 .WORD READF-RDX-4
70 000236 000152 .WORD RDX-DXBOOT+2
71 000240 012737 MOV #READ1-DXBOOT,@#B$READ ;CALLS TO B$READ WILL GO TO READ1

000300
004730

72 000246 012737 MOV #TRWAIT-DXBOOT,@#20 ;LETS HANDLE ERRORS DIFFERENTLY
000416
000020

73 000254 005037 CLR @#JSW ;CLEAR JSW SINCE THE DX BOOT IN SYSCOM AREA
000044

74 000260 005767 TST HRDBOT ;DID WE REACH HERE VIA A HARDWARE BOOT?
000346

75 000264 001405 BEQ READ1 ;YES, DON’T SET UP UNIT NUMBER
76 000266 013703 MOV @#B$DEVU,R3 ;NO, SET UP UNIT NUMBER

004722
77 000272 116367 MOVB UNITRD-DXBOOT(R3),RDCMD ;STORE UNIT NUMBER

000056
177630

78 000300 006300 READ1: ASL R0 ;CONVERT BLOCK TO LOGICAL SECTOR
79 000302 006300 ASL R0 ;LSN=BLOCK*4
80 000304 006301 ASL R1 ;MAKE WORD COUNT BYTE COUNT
81 000306 010046 1$: MOV R0,-(SP) ;SAVE LSN FOR LATER
82 000310 010003 MOV R0,R3 ;WE NEED 2 COPIES OF LSN FOR MAPPER
83 000312 010004 MOV R0,R4
84 000314 005000 CLR R0 ;INIT FOR TRACK QUOTIENT
85 000316 000402 BR 3$;JUMP INTO DIVIDE LOOP
86
87 000320 162703 2$: SUB #23.,R3 ;PERFORM MAGIC TRACK DISPLACEMENT

000027
88 000324 005200 3$: INC R0 ;BUMP QUOTIENT, STARTS AT TRACK 1
89 000326 162704 SUB #26.,R4 ;TRACK=INTEGER(LSN/26)

000032
90 000332 100372 BPL 2$;LOOP - R4=REM(LSN/26)-26
91 000334 022704 CMP #-14.,R4 ;SET C IF SECTOR MAPS TO 1-13

177762
92 000340 006103 ROL R3 ;PERFORM 2:1 INTERLEAVE
93 000342 162703 4$: SUB #26.,R3 ;ADJUST SECTOR INTO RANGE -1,-26

000032
94 000346 100375 BPL 4$;(DIVIDE FOR REMAINDER ONLY)
95 000350 062703 ADD #27.,R3 ;NOW PUT SECTOR INTO RANGE 1-26

000033
96 000354 000003 BPT ;CALL READS SUBROUTINE
97 000356 012600 MOV (SP)+,R0 ;GET THE LSN AGAIN
98 000360 005200 INC R0 ;SET UP FOR NEXT LSN
99 000362 005701 TST R1 ;WHATS LEFT IN THE WORD COUNT
100 000364 003350 BGT 1$;BRANCH TO TRANSFER ANOTHER SECTOR
101 000366 000207 RETURN

DX, DL, and XL Device Handlers A–19

102
103 000370 005714 READF: TST @R4 ;ERROR, DONE, OR TR UP?
104 000372 001776 BEQ READF ;BR IF NOT
105 000374 100533 BMI BIOERR ;BR IF ERROR
106 000376 105714 TSTB @R4 ;TR OR DONE?
107 000400 100011 BPL READFX ;BR IF DONE
108 000402 111522 MOVB @R5,(R2)+ ;MOVE DATA BYTE TO MEMORY
109 000404 005301 DEC R1 ;CHECK BYTE COUNT
110 000406 003370 BGT READF ;LOOP IF MORE
111 000410 012702 MOV #1,R2 ;SLUFF BUFFER IF SHORT WD CNT

000001
112 ;DON’T DESTROY LOC 0
113 000414 000765 BR READF ;LOOP
114
115 000416 005714 TRWAIT: TST @R4 ;ERROR, DONE, OR TR UP?
116 000420 100521 BMI BIOERR ;HARD HALT ON ERROR
117 000422 001775 BEQ TRWAIT ;BR IF NOT
118 000424 000002 READFX: RTI
119
120 000606’ . = DXBOOT+606
121 000606 012706 BOOT: MOV #10000,SP ;SET STACK POINTER

010000
122 000612 010046 MOV R0,-(SP) ;SAVE THE UNIT NUMBER
123 000614 012700 MOV #2,R0 ;READ IN SECOND PART OF BOOT

000002
124 000620 012701 MOV #<4*400>,R1 ;EVERY BLOCK BUT THE ONE WE ARE IN

002000
125 000624 012702 MOV #1000,R2 ;INTO LOCATION 1000

001000
126 000630 005027 CLR (PC)+ ;CLEAR TO SHOW HARDWARE BOOT
127 000632 000001 HRDBOT: .WORD 1 ;INITIALLY SET TO 1
128 000634 004767 CALL READ ;GO READ IT IN

177364
129 000640 012737 MOV #READ1-DXBOOT,@#B$READ ;STORE START LOCATION FOR READ ROUTINE

000300
004730

130 000646 012737 MOV #B$DNAM,@#B$DEVN ;STORE RAD50 DEVICE NAME
016330
004716

131 000654 012637 MOV (SP)+,@#B$DEVU ;STORE THE UNIT NUMBER
004722

132 000660 000137 JMP @#B$BOOT ;START SECONDARY BOOT
001000

133
134 000664 .DREND DX

.IF B <>
001134 .PSECT DXDVR

.IFF

.PSECT

.ENDC

.IIF NDF DXEND,DXEND::

.IF EQ .-DX$END

.IF NE MMG$T!<0&2.>
$RLPTR::.WORD 0
$MPPTR::.WORD 0
$GTBYT::.WORD 0
$PTBYT::.WORD 0
$PTWRD::.WORD 0
.ENDC
.IF NE ERL$G!<0&1>
$ELPTR::.WORD 0
.ENDC
.IF NE TIM$IT!<0&4.>
$TIMIT::.WORD 0
.ENDC
$INPTR::.WORD 0
$FKPTR::.WORD 0
.IIF NDF ...V22 ...V22=0
.IF NE ...V22&^o40000
DX$X64 =:.
.REPT 16.

.WORD 0
.ENDR
.ENDC
.GLOBL DXSTRT
DXEND==.
.IFF

000664 .PSECT DXBOOT

A–20 RT–11 Device Handlers Manual

.IIF LT <DXBOOT-.+^o664>,.ERROR;?SYSMAC-E-Primary boot too large;
000664’ .=DXBOOT+^o664

000664 004167 BIOERR: JSR R1,REPORT
000002

000670 000753 .WORD IOERR-DXBOOT
000672 012700 REPORT: MOV #BOOTF-DXBOOT,R0

000740
000676 012702 MOV #30004$-DXBOOT,R2

000722
000702 004712 CALL @R2
000704 011100 MOV @R1,R0
000706 004712 CALL @R2
000710 012700 MOV #CRLFLF-DXBOOT,R0

000764
000714 004712 CALL @R2
000716 000000 30003$: HALT
000720 000776 BR 30003$
000722 105737 30004$: TSTB @#TPS

177564
000726 100375 BPL 30004$
000730 112037 MOVB (R0)+,@#TPB

177566
000734 001372 BNE 30004$
000736 000207 RETURN
000740 015 BOOTF: .ASCIZ <CR><LF>"?BOOT-U-"
000741 012
000742 077
000743 102
000744 117
000745 117
000746 124
000747 055
000750 125
000751 055
000752 000
000753 111 IOERR: .ASCII "I/O error"
000754 057
000755 117
000756 040
000757 145
000760 162
000761 162
000762 157
000763 162
000764 015 CRLFLF: .ASCIZ <CR><LF><LF>
000765 012
000766 012
000767 000

.EVEN
.IIF NDF ...V7,...V7=-1

000004 .REPT 4.
.WORD ...V7

.ENDR
000770 177777 .WORD ...V7
000772 177777 .WORD ...V7
000774 177777 .WORD ...V7
000776 177777 .WORD ...V7
001000 DXBEND::

.ENDC
135
136 000001 .END

Symbol table

DX, DL, and XL Device Handlers A–21

ABTIO$ 001000 DVC.VT 000015 O.GOOD 000554
BAREA 000256 DVM.DM 000002 O.RTRY 000620
BIOERR 000664R 003 DVM.DX 000001 O.SYWL 000562
BOOT 000606R 003 DVM.NF 000200 O.VEC 000600
BOOTF 000740R 003 DVM.NS 000001 O.WP 000634
BOOT1 000034R 003 DV2.V2 040000 O.WPF 000302
BOOT2 000200R 003 DXBEND 001000RG 003 PARVAL 001060R 002
BOTCSR 000122R 003 DXBOOT 000000RG 003 P1EXT 000432
BROFFS= 000220 DXCQE 000010RG 002 Q$BLKN 000000
BTCSR = 002256 DXDSIZ 000756 Q$BUFF 000004
BUFRAD 000276R 002 DXEND = 001134RG 002 Q$COMP 000010
BYTCNT 000306R 002 DXENT 000020R 002 Q$CSW 177776
B$BOOT 001000 DXFBLK 001106R 002 Q$FUNC 000002
B$DEVN 004716 DXINT 000456RG 002 Q$JNUM 000003
B$DEVU 004722 DXLQE 000006RG 002 Q$LINK 177774
B$DNAM 016330 DXNREG 000003 Q$MEM 000014
B$READ 004730 DXSTRT 000000RG 002 Q$PAR 000012
B2$ 000170R 003 DXSTS 102022 Q$UNIT 000003
CHGTBL 001104R 002 DXSYS 000006RG 002 Q$WCNT 000006
CR 000015 DXT$O = 000000 Q.BLKN 000004
CRLFLF 000764R 003 DXWPRO 000016R 002 Q.BUFF 000010
CSDONE 000040 DXW1 000104R 002 Q.COMP 000014
CSEBUF 000002 DX$COD 000022 Q.CSW 000002
CSERR 100000 DX$CSR= 177170 G Q.ELGH 000024
CSFBUF 000000 DX$CS2= 177174 G Q.FUNC 000006
CSGO 000001 DX$END 001116RG 002 Q.JNUM 000007
CSINIT 040000 DX$NAM= 016300 Q.LINK 000000
CSINT 000100 DX$VC2= 000270 G Q.MEM 000020
CSMAIN 000016 DX$VEC= 000264 G Q.PAR 000016
CSRD 000006 EOF$ 020000 Q.UNIT 000007
CSRDST 000012 ERL$G = 000000 Q.WCNT 000012
CSREAD 000002 ESCRC 000001 RDCMD 000130R 003
CSRX02 004000 ESDD 000100 RDX 000150R 003
CSTR 000200 ESDRY = 000200 G READ 000224R 003
CSUNIT 000020 ESID 000004 READF 000370R 003
CSWRT 000004 ESPAR 000002 READFX 000424R 003
CSWRTD 000014 FILLCT 000721R 002 READS 000120R 003
DAREA 000244 FILST$ 100000 READ1 000300R 003
DEVNAM 000254 FINDRV 000214 REETRY 000042R 003
DISCSR 000174 HDERR$ 000001 REPORT 000672R 003
DRETRY 000034R 002 HNDLR$ 004000 RETRY 000010
DVC.CT 000006 HRDBOT 000632R 003 RONLY$ 040000
DVC.DE 000010 HS2.BI 000001 RTE$M = 000000
DVC.DK 000004 HS2.KI 000002 RTIRET 000076R 003
DVC.DL 000012 HS2.KL 000004 RXABRT 000746R 002
DVC.DP 000011 HS2.KU 000010 RXCSA 000504R 002
DVC.LP 000007 HS2.MO 000020 RXERR 000442R 002
DVC.MT 000005 INSCSR 000176 RXFUN2 000474R 002
DVC.NI 000013 INSDAT 000200 RXIENB 000434R 002
DVC.NL 000001 INSSYS 000202 RXINIT 000316R 002
DVC.PS 000014 IOERR 000753R 003 RXIRTN 000516R 002
DVC.SB 000020 JSW 000044 RXRTRY 000762R 002
DVC.SI 000016 LF 000012 RXTRY 000036R 002
DVC.SO 000017 MMG$T = 000001 SECTOR 000433R 002
DVC.TP 000003 N.WP 000640 SILOFE 001004R 002
DVC.TT 000002 O.BAD 000556 SPECL$ 010000
DVC.UK 000000 O.CSR 000442 SPFUNC 100000
SPFUN$ 002000 $MPPTR 001120RG 002 ...V15= 000340
SYSCHN 000017 $PTBYT 001124RG 002 ...V16= 000000
SYSPTR 000054 $PTWRD 001126RG 002 ...V17= 000000
TIM$IT= 000000 $P1EXT 000030R 002 ...V18= 000001
TPB 177566 $RLPTR 001116RG 002 ...V19= 000000
TPS 177564 .AUDIT 107123 G ...V2 = 000103
TRACK 000432R 002 .DSTAT 000342 ...V20= 000000
TRKOFF 000400R 002 .DX 000021 G ...V21= 000000
TRWAIT 000416R 003 .READ 000375 ...V22= 000000
UNITRD 000056R 003 .WRITE 000375 ...V27= 000000
VARSZ$ 000400 ..READ 000010 ...V28= 000270
WAIT 000070R 003 ..WRIT 000011 ...V3 = 000002
WONLY$ 020000 ...V10= 000040 ...V4 = 000000
X.WP 000270 ...V11= 000370 ...V5 = 000114
$FKPTR 001132RG 002 ...V12= 000370 ...V6 = 000270
$GTBYT 001122RG 002 ...V13= 000000 ...V7 = 177777
$INPTR 001130RG 002 ...V14= 000000 ...V9 = 000000

A–22 RT–11 Device Handlers Manual

. ABS. 000660 000 (RW,I,GBL,ABS,OVR)
000000 001 (RW,I,LCL,REL,CON)

DXDVR 001134 002 (RW,I,LCL,REL,CON)
DXBOOT 001000 003 (RW,I,LCL,REL,CON)

Figure A–2: DL Disk Handler

In the interests of clarity, code from the DL handler that does not apply to PDP–11
processors has been removed. Further, the contents of some of the macro expansions
has been removed when those contents served no instructive purpose. In both cases,
the removed lines are indicated by ellipses.

DL - RL01/RL02 Disk Handler MACRO V05.05 Thursday 28-Feb-91 15:01

Table of contents

CONDITIONAL ASSEMBLY SUMMARY
MACROS AND DEFINITIONS
*** THIS HANDLER SUPPORTS 2 UNITS ***
HANDLER MACROS
HARDWARE DEFINITIONS
INSTALLATION CODE
SET OPTIONS
REQUEST ENTRY POINT
INITIALIZE FOR TRANSFER, SET FUNCTION CODE, FIX WORD COUNT
COMPUTE DISK ADDRESS AND START TRANSFER
ENSURE THAT DISK IS ON TRACK BEFORE TRANSFER
DLXFER - START AN I/O TRANSFER
DLINT - INTERRUPT ENTRY POINT
HANDLE THE ERRORS
FINISH SUCCESSFUL OPERATION
GET DEVICE SIZE
DLXCT - FUNCTION EXECUTION ROUTINES
DLSQUE - SETUP PSEUDO QUEUE ELEMENT
DATA AREAS
BOOTSTRAP DRIVER
BOOTSTRAP READ ROUTINE
BOOTSTRAP CONTINUED
FETCH/LOAD CODE

Mapped monitor conditional:

1 000001 MMG$T = 1

.MCALL .MODULE
2 000000 .MODULE DL,VERSION=42,COMMENT=<RL01/RL02 Disk Handler>,AUDIT=YES
3
4 ; COPYRIGHT 1989, 1990 BY
5 ; DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.
6 ; ALL RIGHTS RESERVED
7 ;
8 ;THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
9 ;ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
10 ;INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
11 ;COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
12 ;OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
13 ;TRANSFERRED.
14 ;
15 ;THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
16 ;AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
17 ;CORPORATION.
18 ;
19 ;DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS

DX, DL, and XL Device Handlers A–23

20 ;SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

Conditional Assembly Summary

1 .SBTTL CONDITIONAL ASSEMBLY SUMMARY
2 ;+
3 ;COND

.

.

.

9 ; DL$UN (2) unit to support (additive only)
10 ; 1-4 valid range
11 ;
12 ; EIS$I (MMG$T) use SOB instruction (no code effects!)
13 ; 0 simulate SOB
14 ; 2 use SOB
15 ;
16 ; DL$CSR (174400) CSR
17 ; DL$VEC (160) Vector

19 ;
20 ; MMG$T std conditional
21 ; TIM$IT std conditional (no code effects)
22 ; ERL$G std conditional
23 ;-

Preamble Section
Each macro you use in the handler requires the .MCALL statement, as line 6 shows.
Note that .DRDEF issues many of the .MCALL statements for you so you need not
explicitly call them.

Macros and Definitions

1
2 .SBTTL MACROS AND DEFINITIONS
3
4 .ENABL LC
5
6 .MCALL .DRDEF, .MFPS, .MTPS, .ASSUME, .ADDR, .BR

A call is made to a macro (.UBVDF) in the system definition library SYSTEM.MLB.
SYSTEM.MLB is always found on logical device SRC:

7
8 .LIBRARY "SRC:SYSTEM.MLB"
9 .MCALL .UBVDF
10 000000 .UBVDF
11

Various monitor offsets and locations are defined with mnemonics so that references
to them can be found easily:

12 ; VECTOR DEFINITIONS
13
14 000004 NXM.V =: 4 ;NON-EXISTENT MEMORY TRAP VECTOR
15 000020 IOT.V =: 20 ;IOT TRAP VECTOR
16

.

.

.
29
30 ; SYSTEM GENERATION OPTION
31
32 .IIF NDF DLUN, DLUN == 2 ;NUMBER OF UNITS SUPPORTED
33 .IIF GT DL$UN-4, DL$UN == 4 ;CAN’T HAVE MORE THAN 4 UNITS
34 .IIF LE DLUN, DLUN == 1 ;CAN’T HAVE NO UNITS
35
36 .IRP X,<\DL$UN>

A–24 RT–11 Device Handlers Manual

Handler Unit Support

37 .SBTTL *** THIS HANDLER SUPPORTS X UNITS ***
38 .ENDR
39
40 ; SPECIAL FUNCTION DEFINITIONS
41 ; ALL SPECIAL FUNCTIONS ARE DMA EXCEPT FOR FN$SIZ AND FN$GET
42 ; FN$WRT AND FN$RED GO IN UBTAB. FN$REP USES A PERMANENT UMR
43
44 FN$GET =: 370 ;GET DEVICE STATUS
45 000373 FN$SIZ =: 373 ;GET DEVICE SIZE
46 000374 FN$REP =: 374 ;FORCE RE-READ OF REPLACEMENT TABLE

Use the replacement table with:

47 000376 FN$WRT =: 376 ;ABSOLUTE WRITE (NO BAD BLOCK)
48 000377 FN$RED =: 377 ;ABSOLUTE READ (REPLACEMENT)
49 ;NOTE: if you add a SPFUN code also add it to .DRSPF
50
51 ; ERROR LOGGING DEFINITIONS
52
53 000010 DLRCNT =: 8. ;ERROR RETRY COUNT
54 000006 DLREG =: 6 ;REGISTERS TO LOG ON ERROR
55
56 ; RL11/RL01 PARAMETERS
57 ; GEOMETRY: 256 CYLINDERS (512 ON RL02)

58 ; 2 TRACKS PER CYLINDER
59 ; 20 BLOCKS PER TRACK
60 ; 2 128-WORD SECTORS PER BLOCK
61
62 000024 DLBPT =: 20. ;NUMBER OF BLOCKS PER TRACK
63 012000 DLWPT =: 256.*DLBPT ;WORDS PER TRACK
64 000012 DLNBAD =: 10. ;NUMBER ALLOWABLE BAD BLOCKS PER DISK
65 023742 DLSIZE =: <256.*2-1>*DLBPT-DLNBAD ;BLOCKS PER RL01 (LESS BSF)
66 047742 DLSIZ2 =: <512.*2-1>*DLBPT-DLNBAD ;BLOCKS PER RL02 (LESS BSF)
67 000052 DLTSIZ =: DLNBAD*4.+2 ;SIZE OF BAD BLOCK TABLE
68 ; (PLUS END OF TABLE FENCE)
69
70 ; UB DEFINITIONS
71
72 ; FIXED OFFSETS EQUATES (.FIXDF)
73
74 000404 $PNPTR =: 000404 ;RMON OFFSET OF PNAME TABLE
75 000432 P1$EXT =: 000432 ;RMON OFFSET OF $P1EXT ADDRESS
76 000460 $H2UB =: 000460 ;RMON OFSET OF UB ENTRY VECTOR PTR
77
78 ; EXTENDED MEMORY SUBROUTINE OFFSETS FROM $P1EXT (.PIXDF)
79
80 177752 $MPMEM =: -22. ;OFFSET TO MAP KT-11 VIRTUAL TO PHYSICAL
81
82 ; UB ENTRY VECTOR EQUATES (.UBVDF)
83
84 ; UB.IDV =: 0 ; IDENTIFICATION WORD
85 ; UB.VDV =: <^rUBV> ; IDENTIFICATION WORD VALUE
86 ; UB.GET =: 2 ; JUMP TO GETUMR
87 ; UB.ALL =: 6 ; JUMP TO ALLUMR
88 ; UB.RLS =: 12 ; JUMP TO RLSUMR
89
90 ; DL INTERNAL DMA BUFFER EQUATES
91
92 000054 BUFSIZ =: 54/2*DL$UN ; SIZE OF DL INTERNAL DMA BUFFER
93 ; WORD SIZE OF DLBBUF*DL$UN
94 000001 NOUMRS =: <BUFSIZ+7777/10000> ; NUMBER OF PERMANENT UMRS REQUIRED
95
96

The .DRDEF performs much of the work of the preamble section. It is called with
different parameters depending on whether or not the handler supports memory
mapping (MMG$T=1). The following includes much of the macro expansion:

Handler Macros

DX, DL, and XL Device Handlers A–25

1 .SBTTL HANDLER MACROS
2

4 .IF EQ MMG$T

The .DRDEF macro (with macro expansion) for unmapped monitors:

5 .DRDEF DL,5,FILST$!SPFUN$!VARSZ$,DLSIZE,174400,160,DMA=NO
.MCALL .DRAST,.DRBEG,.DRBOT,.DREND,.DREST,.DRFIN,.DRFMS,.DRFMT
.MCALL .DRINS,.DRPTR,.DRSET,.DRSPF,.DRTAB,.DRUSE,.DRVTB
.MCALL .FORK,.QELDF
.IIF NDF RTE$M RTE$M=0
.IIF NE RTE$M RTE$M=1
.IIF NDF TIM$IT TIM$IT=0
.IIF NE TIM$IT TIM$IT=1
.IIF NDF MMG$T MMG$T=0
.IIF NE MMG$T MMG$T=1
.IIF NDF ERL$G ERL$G=0
.IIF NE ERL$G ERL$G=1
.IIF NE TIM$IT, .MCALL .TIMIO,.CTIMI

000000 .QELDF
.IIF NDF MMGT,MMGT=1
.IIF NE MMGT,MMGT=1

000000 Q.LINK=:0
000002 Q.CSW=:2.
000004 Q.BLKN=:4.
000006 Q.FUNC=:6.
000007 Q.JNUM=:7.
000007 Q.UNIT=:7.
000010 Q.BUFF=:^o10
000012 Q.WCNT=:^o12
000014 Q.COMP=:^o14

.IRP X,<LINK,CSW,BLKN,FUNC,JNUM,UNIT,BUFF,WCNT,COMP>
Q$’X=:Q.’X-^o4
.ENDR

177774 Q$LINK=:Q.LINK-^o4
177776 Q$CSW=:Q.CSW-^o4
000000 Q$BLKN=:Q.BLKN-^o4
000002 Q$FUNC=:Q.FUNC-^o4
000003 Q$JNUM=:Q.JNUM-^o4
000003 Q$UNIT=:Q.UNIT-^o4
000004 Q$BUFF=:Q.BUFF-^o4
000006 Q$WCNT=:Q.WCNT-^o4
000010 Q$COMP=:Q.COMP-^o4

.IF EQ MMG$T
000016 Q.ELGH=:^o16

.IFF
Q.PAR=:^o16
Q.MEM=:^o20
.IRP X,<PAR,MEM>
Q$’X=:Q.’X-^o4
.ENDR
Q.ELGH=:^o24
.ENDC

000001 HDERR$=:1
020000 EOF$=:^o20000
000400 VARSZ$=:^o400
001000 ABTIO$=:^o1000
002000 SPFUN$=:^o2000
004000 HNDLR$=:^o4000
010000 SPECL$=:^o10000
020000 WONLY$=:^o20000
040000 RONLY$=:^o40000
100000 FILST$=:^o100000
023742 DLDSIZ=:DLSIZE
000005 DL$COD=:5
102405 DLSTS=:<5>!<FILST$!SPFUN$!VARSZ$>

.IIF NDF DLVEC,DLVEC=160

.GLOBL DL$VEC

.

.

.

The .DRPTR macro with no parameters:

A–26 RT–11 Device Handlers Manual

6 .DRPTR
.
.
.

7 .IFF ;EQ MMG$T

The .DRDEF macro (with macro expansion) for mapped monitors. The handler is
defined for the RL01; if it is for an RL02, the size is changed later. Note that handler
supports UMRs.

8 000000 .DRDEF DL,5,FILST$!SPFUN$!VARSZ$,DLSIZE,174400,160,DMA=YES,PERMUMR=NOUMRS

The .DRPTR macro with parameters:

9 000200 .DRPTR FETCH=FETCH,LOAD=FETCH,RELEASE=RELEAS,UNLOAD=RELEAS
10 .ENDC ;EQ MMG$T

The .DREST macro (with macro expansion). Argument REPLACE=RTABLE shows
DL does a software bad-block replacement—see installation code:

11 000022 .DREST CLASS=DVC.DK,REPLACE=RTABLE
000000 DVC.UK =:0
000001 DVC.NL =:1
000002 DVC.TT =:^o2
000003 DVC.TP =:^o3
000004 DVC.DK =:^o4
000005 DVC.MT =:^o5
000006 DVC.CT =:^o6
000007 DVC.LP =:^o7
000010 DVC.DE =:^o10
000011 DVC.DP =:^o11
000012 DVC.DL =:^o12
000013 DVC.NI =:^o13
000014 DVC.PS =:^o14
000015 DVC.VT =:^o15
000016 DVC.SI =:^o16
000017 DVC.SO =:^o17
000020 DVC.SB =:^o20

000001 DVM.NS =:1
000001 DVM.DX =:1
000002 DVM.DM =:^o2
000200 DVM.NF =:^o200

040000 DV2.V2 =:^o40000

000001 HS2.BI =:1
000002 HS2.KI =:^o2
000004 HS2.KL =:^o4
000010 HS2.KU =:^o10
000020 HS2.MO =:^o20

.

.

.

Point to special functions for UNIBUS mapping register support:

18 .IF NE MMG$T
19 000076 .DRSPF +UBTAB ;SPFUN FOR UB GOES IN TABLE UBTAB
20 .ENDC ;NE MMG$T
21

Define special functions:

22 000032 .DRSPF
23 .DRSPF <FN$GET> ;GET DEVICE STATUS
24 000032 .DRSPF <FN$SIZ> ;GET DEVICE SIZE
25 000032 .DRSPF <FN$REP> ;FORCE RE-READ OF REPLACEMENT TABLE
26 000032 .DRSPF <FN$WRT> ;ABSOLUTE WRITE (NO BAD BLOCK)
27 000032 .DRSPF <FN$RED> ;ABSOLUTE READ (REPLACEMENT)
28
29 .IIF NDF EIS$I EIS$I = MMG$T
30 .IIF EQ EIS$I .MCALL SOB

DX, DL, and XL Device Handlers A–27

Define hardware offsets:

1 .SBTTL HARDWARE DEFINITIONS
2
3 ; RL11 DEVICE REGISTER OFFSETS
4
5 ;DEFINE THE OFFSETS
6 000000 RLCS =: 0 ;CONTROL STATUS REGISTER
7 000002 RLBA =: 2 ;BUS ADDRESS REGISTER
8 000004 RLDA =: 4 ;DISK ADDRESS REGISTER
9 000006 RLMP =: 6 ;MULTI-PURPOSE REGISTER
10 000010 RLBAE =: 10 ;BUS ADDRESS REGISTER (EXTENDED)

.

.

.
18
19 ; RLCS BIT ASSIGNMENTS
20
21 100000 CSERR =: 100000 ;ERROR SUMMARY
22 040000 CSDE =: 040000 ;DRIVE ERROR
23 036000 CSERRC =: 036000 ;ERROR CODE MASK
24 020000 CSNXM =: 020000 ;NON-EXISTENT MEMORY
25 010000 CSDLT =: 010000 ;DATA LATE
26 010000 CSHNF =: 010000 ;HEADER NOT FOUND
27 004000 CSDCRC =: 004000 ;DATA CRC ERROR
28 004000 CSHCRC =: 004000 ;HEADER CRC ERROR
29 002000 CSOPI =: 002000 ;OPERATION INCOMPLETE
30 001400 CSDS01 =: 001400 ;DRIVE SELECT BITS 0 AND 1
31 000400 CSDS0 =: 000400 ;DRIVE SELECT BIT 0
32 000200 CSCRDY =: 000200 ;CONTROLLER READY
33 000100 CSIE =: 000100 ;INTERRUPT ENABLE
34 000040 CSBA17 =: 000040 ;BUS ADDRESS BIT 17
35 000020 CSBA16 =: 000020 ;BUS ADDRESS BIT 16
36 000016 CSFUN =: 000016 ;FUNCTION CODE
37 000001 CSDRDY =: 000001 ;DRIVE READY
38
39 ; RLCS FUNCTION CODE VALUES
40
41 000000 FNNOP =: 0*2 ;NO OPERATION
42 000002 FNWCHK =: 1*2 ;WRITE CHECK
43 000004 FNGSTS =: 2*2 ;GET DRIVE STATUS
44 000006 FNSEEK =: 3*2 ;SEEK
45 000010 FNRDH =: 4*2 ;READ HEADERS
46 000012 FNWRITE =: 5*2 ;WRITE DATA
47 000014 FNREAD =: 6*2 ;READ DATA
48 000016 FNRDNH =: 7*2 ;READ DATA WITH NO HEADER CHECK
49
50 ; RLMP GET STATUS RETURNED BIT ASSIGNMENTS
51
52 100000 STWDE =: 100000 ;WRITE DATA ERROR
53 040000 STCHE =: 040000 ;CURRENT HEAD ERROR
54 020000 STWL =: 020000 ;WRITE LOCK STATUS
55 010000 STSKTO =: 010000 ;SEEK TIMEOUT ERROR
56 004000 STSP =: 004000 ;SPEED ERROR
57 002000 STWGE =: 002000 ;WRITE GATE ERROR

58 001000 STVC =: 001000 ;VOLUME CHECK
59 000400 STDSE =: 000400 ;DRIVE SELECT ERROR
60 000200 STDT =: 000200 ;DRIVE TYPE
61 000100 STHS =: 000100 ;HEAD SELECT STATUS
62 000040 STCO =: 000040 ;COVER OPEN
63 000020 STHO =: 000020 ;HEADS HOME
64 000010 STBH =: 000010 ;BRUSHES HOME
65 000007 STST =: 000007 ;STATE BIT MASK
66 000005 STSLM =: 000005 ;DRIVE IN SEEK-LINEAR MODE STATE
67
68 ; RLDA BIT VALUES FOR SEEK COMMANDS
69
70 077600 SKCADF =: 077600 ;CYLINDER ADDRESS DIFFERENCE
71 000200 SKCA0 =: 000200 ;CYLINDER ADDRESS DIFFERENCE BIT 0
72 000020 SKHS =: 000020 ;HEAD SELECT (SURFACE 0 OR 1)
73 000004 SKDIR =: 000004 ;DIRECTION (0 => OUTWARD, 1 => INWARD)
74 000001 SKMARK =: 000001 ;MARK BIT MUST BE 1 TO INDICATE A SEEK
75
76 ; RLDA BIT VALUES FOR I/O COMMANDS
77
78 077600 IOCA =: 077600 ;CYLINDER ADDRESS

A–28 RT–11 Device Handlers Manual

79 000200 IOCA0 =: 000200 ;CYLINDER ADDRESS BIT 0
80 000100 IOHS =: 000100 ;HEAD SELECT
81 000077 IOSA =: 000077 ;SECTOR ADDRESS MASK
82
83 ; RLDA BIT VALUES FOR GET STATUS COMMAND
84
85 000010 GSRST =: 000010 ;RESET DRIVE
86 000002 GSGS =: 000002 ;GET STATUS INDICATOR MUST BE 1
87 000001 GSMARK =: 000001 ;THIS MUST BE 1 TO INDICATE GET STATUS
88

More RMON references:

89 ; RMON REFERENCES
90
91 000054 SYSPTR =: 54 ; SYSCOM pointer to RMON
92 000370 CONFG2 =: 370 ; second configuration word
93 000100 BUS$ =: 000100 ;
94 020000 PROS$ =: 020000 ;
95 020100 BUS$M =: BUS$!PROS$;Mask for type bits
96 020100 BUS$X =: BUS$!PROS$;Strange (busless) KXJ
97 020000 BUS$C =: PROS$;CTI bus
98 000100 BUS$Q =: BUS$;QBUS
99 000000 BUS$U =: 0 ;UNIBUS
100
101
102 000375 .READ =: 375 ; EMT code for .READ
103 000010 ..READ =: 010 ; subcode for .READ
104 000375 .WRITE =: 375 ; EMT code for .WRITE
105 000011 ..WRIT =: 011 ; subcode for .WRITE
106
107 000017 SYSCHN =: 17 ; system channel

Installation checks (RL01/02 run on UNIBUS or Q-bus only):

3 .SBTTL INSTALLATION CODE
4
5 000032 .DRINS DL
6
7 000200 000401 BR 10$;Data device installation check
8 000202 .ASSUME . EQ INSSYS
9 000202 000414 BR 20$;System device installation check (none)
10
11 000204 013700 10$: MOV @#SYSPTR,R0 ; get address of RMON

000054
12 000210 016000 MOV CONFG2(R0),R0 ;Get configuration word for BUS check

000370
13 000214 042700 BIC #^C<BUS$M>,R0 ;Isolate bus bits

157677
14 000220 022700 CMP #<BUS$X>,R0 ;Running on KXJ?

020100
15 000224 001404 BEQ 30$;Yes, don’t install
16 000226 022700 CMP #<BUS$C>,R0 ;CTI?

020000
17 000232 001401 BEQ 30$;Yes, don’t install
18 000234 005727 20$: TST (PC)+ ; clear carry, skip setting carry
19 000236 000261 30$: SEC ; set carry
20 000240 000207 RETURN

The following is SET code. If there is insufficient room in the SET code area, some
code can be moved up into the installation code area.

21
22 000242 O.SYWL:
23 000242 011600 MOV @SP,R0 ; copy return address
24 000244 005200 INC R0 ; point to opcode at return
25 000246 122720 CMPB #BR/400,(R0)+ ; is it a BR xxx?

000001
26 000252 001135 BNE O.BAD ; NO, old style SET
27 000254 010016 MOV R0,@SP ; use alternate return (RET+2)
28 000256 000533 BR O.BAD ; with carry set
29

DX, DL, and XL Device Handlers A–29

The following sets up the table for software bad-block replacement:

30 000260 002 RTABLE: .BYTE 2,10.,5.,2.,40.,1. ; Replacement factors table
000261 012
000262 005
000263 002
000264 050
000265 001

All blocks can be replaced. This defines the geometry of the disk:

31 ; all replacable
32 ; 10. blocks to skip
33 ; 5. sectors of bad sector file
34 ; 2. tracks per cylinder
35 ; 40. sectors per track
36 ; 2**1 sectors per block
37

Installation code area size check:

38 000266 .Assume . LE 400,MESSAGE=<;Install code overflow>

The DL handler supports several SET command conditions:

Set Options

2 .SBTTL SET OPTIONS
3
4 000266 .DRSET CSR, 160000, O.CSR, OCT
5 000412 .DRSET VECTOR, 500, O.VEC, OCT
6
7 000422 .DRSET RETRY, 127., O.RTRY, NUM
8
9 .IF NE ERL$G

10 .DRSET SUCCES, -1, O.SUCC, NO
11 .ENDC ;NE ERL$G
12
13 004124 BTCSR = <DLEND-DLSTRT>+<BOTCSR-DLBOOT>+1000
14
15 ; SET DL CSR=address
16
17 000432 020003 O.CSR: CMP R0,R3 ;CSR IN RANGE?
18 000434 103444 BLO O.BAD ;NOPE...
19 000436 010067 MOV R0,INSCSR ;YES, INSTALLATION CODE NEEDS IT

177534
20 000442 010067 MOV R0,DISCSR ;AND RESORC DOES TOO

177526
21
22 ; When the CSR is changed, we must also alter the bootstrap so
23 ; that it will use the correct CSR.
24
25 ;R1->READ/WRITE EMT AREA
26 000446 .ADDR #BAREA+4,R1 ; (BUFFER ADDRESS WORD)
27 ;R2->BUFFER
28 000454 .ADDR #1000,R2 ; (OVERWRITES CORE COPY OF BLOCK 1)
29 000462 010211 MOV R2,(R1) ;SET THE BUFFER ADDRESS
30 000464 012741 MOV #BTCSR/1000,-(R1) ; THE BLOCK TO READ/WRITE

000004
31 ; (BOOT BLOCK THAT NEEDS ALTERING)
32 000470 005741 TST -(R1) ;R1->EMT AREA
33 000472 010003 MOV R0,R3 ;SAVE CSR ELSEWHERE, EMT NEEDS R0
34 000474 010100 MOV R1,R0 ;R0->EMT AREA FOR READ
35 000476 104375 EMT .READ ; *** (.READW) ***
36 000500 103422 BCS O.BAD
37 000502 010362 MOV R3,<BTCSR&777>(R2) ;SET THE NEW CSR

000124
38 000506 010100 MOV R1,R0 ;R0->EMT AREA FOR WRITE
39 000510 .ASSUME ..READ+1 EQ ..WRIT
40 000510 105260 INCB 1(R0) ;CHANGE FROM ’READ’ TO ’WRITE’

000001
41 000514 104375 EMT .WRITE ; *** (.WRITW) ***
42 000516 103651 BCS O.SYWL
43 000520 010100 MOV R1,R0 ;R0->EMT AREA (LAST TIME, HONEST)

A–30 RT–11 Device Handlers Manual

44 000522 .ASSUME ..WRIT-1 EQ ..READ
45 000522 105360 DECB 1(R0) ;CHANGE FROM ’WRITE’ TO ’READ’

000001
46 000526 012760 MOV #1,2(R0) ; OF HANDLER BLOCK 1

000001
000002

47 000534 104375 EMT .READ ; *** (.READW) ***
48 000536 103403 BCS O.BAD
49 000540 010367 MOV R3,DLCSR ;TELL HANDLER ABOUT NEW CSR

000032’
50 000544 005727 O.GOOD: TST (PC)+ ;GOOD RETURN (CARRY CLEAR)
51 000546 000261 O.BAD: SEC ;ERROR RETURN (CARRY SET)
52 000550 000207 RETURN
53
54 ; SET DL VECTOR=address
55
56 000552 020003 O.VEC: CMP R0,R3 ;VECTOR IN RANGE? (<500)
57 000554 103374 BHIS O.BAD ;NOPE...
58 000556 032700 BIT #3,R0 ;YES, BUT ON A VECTOR BOUNDRY?

000003
59 000562 001371 BNE O.BAD ;NOPE...
60 000564 010067 MOV R0,DLSTRT ;TELL HANDLER ABOUT NEW VECTOR

000000’
61 000570 000765 BR O.GOOD
62
63 ; SET DL RETRY=count
64
65 000572 020003 O.RTRY: CMP R0,R3 ;Test retry limits
66 000574 101364 BHI O.BAD ;Branch if out of bounds
67 000576 010067 MOV R0,DRETRY ;Store the user selected retry count

000742’
68 000602 001761 BEQ O.BAD ;Zero retries not allowed
69 000604 000757 BR O.GOOD ;Otherwise, good
70
71 .IF NE ERL$G
72
73 ; SET DL [NO]SUCCES
74
75 O.SUCC: MOV #0,R3 ;’SUCCESS’ ENTRY POINT
76 ; (MUST BE TWO WORDS)
77 MOV R3,SCSFLG ;’NOSUCCESS’ ENTRY POINT
78 BR O.GOOD
79 .ENDC ;NE ERL$G
80
81 000606 017 BAREA: .BYTE SYSCHN,..READ ;CHANNEL 17, READ

000607 010
82 000610 .BLKW ;BLOCK NUMBER
83 000612 .BLKW ;BUFFER ADDRESS
84 000614 000400 .WORD 256. ;WORD COUNT
85 000616 000000 .WORD 0 ;COMPLETION (WAIT)
86

SET code overflow check:

87 000620 .Assume . LE 1000,MESSAGE=<;Set area overflow>
88 .ENDC

Header Section
Request Entry Point

1 .SBTTL REQUEST ENTRY POINT
2
3 .ENABL LSB
4
5 .IF EQ MMG$T

The .DRBEG macro for unmapped monitors:

6 .DRBEG DL
7 .IFF ;EQ MMG$T

The .DRBEG macro for mapped monitors:

DX, DL, and XL Device Handlers A–31

8 000620 .DRBEG DL,SPFUN=UBTAB
9 .ENDC ;EQ MMG$T
10

I/O Initiation Section
11 000006’ DLBASE=DLSTRT+6
12
13 000024 016705 MOV DLCQE,R5 ;POINT TO CURRENT QUEUE ELEMENT

177760
14 000030 012704 MOV (PC)+,R4 ;POINT TO CONTROLLER CSR
15 000032 .ASSUME .-DLSTRT LT 1000
16 000032 174400 DLCSR: .WORD DL$CSR ;ADDRESS OF CONTROLLER
17 000034 016500 MOV Q$FUNC(R5),R0 ;GET FUNCTION CODE / UNIT NUMBER

000002
18 000040 110002 MOVB R0,R2 ;GET SPECIAL FUNCTION CODE

.

.

.
24 000042 120227 CMPB R2,#FN$SIZ ;.SPFUN LESS THAN 373 (SIGNED BYTE)

000373
25 000046 002403 BLT 5$;YES, .SPFUN 200 THRU 372 INVALID
26 000050 120227 CMPB R2,#FN$REP+1 ;IS THIS .SPFUN 375

000375
27 000054 001002 BNE 10$;NO, HAVE VALID SPFUN REQUEST
28 000056 000167 5$: JMP DLQCOM ;DISMISS QUEUE REQUEST

001572
29
30 000062 10$:

32 000062 042700 BIC #^C<7*400>,R0 ;ISOLATE UNIT NUMBER BITS
174377

33 000066 020027 CMP R0,#DL$UN*400 ;DO WE SUPPORT THIS UNIT?
001000

34 000072 103136 BHIS DLELNK ;NO, ERROR NOW
35
36 000074 010067 MOV R0,DLUNIT ;SAVE UNIT NUMBER

001062
37 000100 .ASSUME CSDS01 EQ 3*400
38 000100 012767 MOV #FNREAD!CSIE,DLCODE ;ASSUME READ (FOR TABLE)

000114
001050

39
40 .IF NE MMG$T
41 000106 120227 CMPB R2,#FN$SIZ ;SEE IF .SPFUN GET SIZE

000373
42 000112 001407 BEQ 15$;YES -- DON’T CHANGE Q.BUFF AND Q.PAR
43 000114 .ASSUME Q$BLKN+4 EQ Q$BUFF
44 000114 022525 CMP (R5)+,(R5)+ ;POINT TO Q.BUFF IN QUEUE ELEMENT
45 000116 .ASSUME Q$BUFF+2 EQ Q$WCNT ; done by MPPTR
46 000116 004777 CALL @$MPPTR ;CONVERT ADDRESS TO 18 BIT PHYSICAL

002160
47 000122 .ASSUME Q$WCNT-2 EQ Q$BUFF
48 000122 012645 MOV (SP)+,-(R5) ;REPLACE Q.BUFF WITH BITS <15:00>
49 000124 .ASSUME Q$BUFF-4 EQ Q$BLKN
50 000124 024545 CMP -(R5),-(R5) ;FIX QUEUE ELEMENT POINTER
51 000126 012665 MOV (SP)+,Q$PAR(R5) ;SAVE BITS <21:16> IN Q.PAR WORD

000012
52 .ENDC ;NE MMG$T
53

The software bad-block replacement table is named DLBBUF:

54 000132 15$:
55 000132 .ADDR #DLBBUF-<DLTSIZ+2>,R3 ; GET BIASED ADDRESS OF TABLE BUFFER
56 000140 000300 SWAB R0 ;GET UNIT NUMBER
57 000142 062703 20$: ADD #DLTSIZ+2,R3 ;POINT TO NEXT UNIT’S TABLE

000054
58 000146 005300 DEC R0 ; REDUCE UNIT NUMBER
59 000150 100374 BPL 20$; ALL GONE?
60 000152 010327 MOV R3,(PC)+ ;SAVE POINTER TO UNIT’S
61 000154 000000 DLCC: .WORD 0 ; CURRENT CYLINDER TABLE (LOW ADDR)
62 000156 005723 TST (R3)+ ;POINT TO REPLACEMENT TABLE
63 000160 .ASSUME .+4 EQ DLUSIZ

A–32 RT–11 Device Handlers Manual

65 000160 012727 MOV #DLSIZE,(PC)+ ;ASSUME RL01
023742

.

.

.

Test for RL01 or RL02; select correct size:

70 000164 000000 DLUSIZ: .WORD 0

72 000166 004767 CALL DLGST ;GET DISK STATUS
001546

73 000172 105701 TSTB R1 ;SINGLE DENSITY?
74 000174 100003 BPL 25$;IF ZERO, RL01 SINGLE DENSITY
75 000176 012767 MOV #DLSIZ2,DLUSIZ ;IF SET, RL02 DOUBLE DENSITY

047742
177760

76 000204 005700 25$: TST R0 ;Now, error in get status?
77 000206 100403 BMI 30$;Yes, invalidate everything
78 000210 032701 BIT #STVC,R1 ;IS THERE A NEW DISK IN THIS DRIVE?

001000
79 000214 001403 BEQ 35$;NO, SAME AS LAST TIME
80 000216 012743 30$: MOV #-1,-(R3) ;INVALIDATE CURRENT CYLINDER

177777
81 000222 012313 MOV (R3)+,@R3 ; AND INVALIDATE REPLACEMENT TABLE
82 .IFF
83 CMPB R2,#FN$GET ;SEE IF .SPFUN GET SPECIAL STATUS
84 BEQ DLGSTA ;YES, GO DO IT!
85 CALL DLGST ;GET DISK STATUS (NORMAL)
86 TST R0 ;Now, error in get status?
87 BMI 30$;Yes, invalidate everything
88 CALL INVVC ;INVALIDATE IF VOLUME CHECK ON
89 BR 35$;SKIP NEXT
90
91 30$: CALL INVAL ;UNCONDITIONAL INVALIDATION
92 .ENDC
93

Following code decides if we use bad-block replacement table (only for special
functions). DLSQUE, DLADDR, and DLEXFR are used for replacement table read.

94 000224 120227 35$: CMPB R2,#FN$REP ;CHECK OUT THE SPECIAL FUNCTION

000374
95 000230 002002 BGE 40$;BRANCH IF NOT ’GET SIZE’
96 ; (NOTE SIGNED COMPARE)
97 000232 000167 JMP DLGSIZ ;GO DO ’GET SIZE’

001434
98
99 000236 001410 40$: BEQ 50$;GO READ BAD-BLOCK REPLACEMENT TABLE

100 000240 101045 BHI 55$;GO DO ABSOLUTE BLOCK READ/WRITE
101 000242 005765 TST Q$WCNT(R5) ;NORMAL REQUEST, SEEK?

000006
102 000246 001002 BNE 45$;BRANCH IF NOT
103 000250 000167 DLFLNK: JMP DLQCOM ;.DRFIN TIME

001400
104
105 000254 005713 45$: TST @R3 ;IS TABLE IN MEMORY YET?
106 000256 100046 BPL DLTRAN ;YES, WE CAN GO DO THE TRANSFER

Reread the replacement table.

1. Read replacement table into memory if it’s not there.

a. Save current queue element.

b. Build pseudoqueue element to read the replacement table (DLSQUE).

c. Allow transfer to start (DLADDR).

d. Eventually, the request gets to the end of the I/O initiation section and returns
to monitor.

DX, DL, and XL Device Handlers A–33

e. Request is completed and returns to interrupt entry (.DRAST).

f. Continues down to DLEXFR to determine if we were rereading the table and
dismiss the the pseudoqueue element if we were. The queue element that
prompted the reading of the replacement table still exists. It can now be
processed.

2. Replacement table already in memory—use it. Go to DLTRAN to use it.

107 ;
108 ; WE ALWAYS COME HERE TO REREAD THE REPLACEMENT TABLE
109 ;
110 000260 50$:
111 .IF NE MMG$T
112 000260 010346 MOV R3,-(SP) ;SAVE R3
113 000262 .ADDR #DLBBUF,R3 ;R3=PIC ADDRESS OF START OF DLBBUF
114 000270 016701 MOV DLCC,R1 ;R1=START ADDRESS FOR THIS UNIT

177660
115 000274 160301 SUB R3,R1 ;R1=OFFSET INTO DLBBUF FOR THIS UNIT
116 000276 062701 ADD #2,R1 ;POINT TO REPLACEMENT TABLE

000002
117 000302 016702 MOV BUFADH,R2 ;GET HI ORDER DLBBUF ADDRESS

001760
118 000306 016703 MOV BUFADL,R3 ;GET LOW ORDER DLBBUF ADDRESS

001756
119 000312 060103 ADD R1,R3 ;R3=THIS UNIT’S START ADDR IN UMR
120 000314 103002 BCC 52$;BRANCH IF NO CARRY
121 000316 062702 ADD #CSBA16,R2 ;ADD CARRY TO HI ORDER ADDR

000020
122 000322 010267 52$: MOV R2,DLBPAR ;PUT HI ORDER ADDR INTO PSEUDO QEL

001550
123 ; MOV Q$MEM(R5),DLBMEM ;PUT Q$MEM INTO PSEUDO QEL (NOT NEEDED)
124 .ENDC ;NE MMG$T
125 000326 012701 MOV #1,R1 ;TABLE IS IN BLOCK 1

000001
126 000332 012702 MOV #DLTSIZ/2,R2 ;WORDS TO READ (TABLE SIZE)

000025

Build queue element to read table.

127 000336 004767 CALL DLSQUE ;SET UP REST OF PSEUDO QUEUE ELEMENT
001470

128
129
130 .IF NE MMG$T
131 000342 012603 MOV (SP)+,R3 ;RESTORE R3 (ADDR FOR MOV’S)
132 .ENDC ;NE MMG$T
133 000344 012713 MOV #-1,@R3 ;FLAG THAT THERE IS NO TABLE IN MEMORY

177777
134 000350 011343 MOV @R3,-(R3) ;VOID CURRENT CYLINDER, TOO

Read in the table.

At DLADDR, pseudoqueue element is processed to read in replacement table. I/O
initiation will start transfer and return to the monitor. When transfer is complete,
the .DRAST section is entered to dismiss the pseudoqueue element.

135 000352 000512 BR DLADDR ;COMPUTE DISK ADDRESS AND START THE
136 ; TABLE READ
137

A–34 RT–11 Device Handlers Manual

138 000354 105202 55$: INCB R2 ;ABSOLUTE BLOCK READ?
139 000356 .ASSUME FN$RED EQ 377
140 000356 001510 BEQ DLADDR ;YES, WE ARE ALL SET UP
141 000360 012767 MOV #FNWRITE!CSIE,DLCODE ;SET WRITE FUNCTION CODE

000112
000570

142 000366 000504 BR DLADDR ;GO DO IT
143
144 .IF NE ERL$G
145 .ASSUME .-DLSTRT LT 1000
146 SCSFLG: .WORD 0 ; :SUCCESS LOGGING FLAG (DEFAULT=YES)
147 ; =0 - LOG SUCCESSES
148 ;<>0 - DON’T LOG SUCCESSES
149 .ENDC ;NE ERL$G
150
151 .DSABL LSB

.

.

.
74
75 000370 000167 DLELNK: JMP DLEROR ;LINK TO FATAL ERROR

001212

Set up and perform I/O:

1 .SBTTL INITIALIZE FOR TRANSFER, SET FUNCTION CODE, FIX WORD COUNT
2
3 ;+
4 ; SET READ OR WRITE FUNCTION CODE
5 ; IF TRANSFER HAS REPLACED BLOCKS IN IT, BREAK IT INTO PIECES AND
6 ; SEND EACH PIECE TO DLADDR SEPARATELY FOR I/O
7 ; NOTE: ALL PIECES EXCEPT THE FIRST ARE BLOCK MULTIPLES
8 ;
9 ; R4 -> CSR
10 ; R5 -> USER QUEUE ELEMENT
11 ;-
12
13 .ENABL LSB
14
15 000374 005765 DLTRAN: TST Q$WCNT(R5) ;READ OR WRITE OPERATION?

000006
16 000400 100005 BPL 1$;READ...
17 ; (NOTE: THIS FAILS 2ND TIME THROUGH)
18 000402 005465 NEG Q$WCNT(R5) ;WRITE, MAKE WORD COUNT POSITIVE

000006
19 000406 012767 MOV #FNWRITE!CSIE,DLCODE ;SET WRITE FUNCTION CODE

000112
000542

20 000414 016502 1$: MOV Q$WCNT(R5),R2 ;MAYBE, DETERMINE LENGTH OF
000006

21 000420 010203 MOV R2,R3 ;TRANSFER IN BLOCKS
22 000422 062703 ADD #255.,R3

000377
23 000426 105003 CLRB R3
24 000430 000303 SWAB R3
25 000432 .ASSUME Q$BLKN EQ 0
26 000432 061503 ADD @R5,R3 ;COMPUTE FIRST BLOCK AFTER TRANSFER
27 000434 026703 CMP DLUSIZ,R3 ;DOES OPEATION EXTEND INTO REPLACEMENT

177524

Checking if bad-block replacement is needed:

DX, DL, and XL Device Handlers A–35

28 ;BLOCKS ?
29 000440 103753 BLO DLELNK ;YES, NOT ALLOWED W READ/WRITE
30 000442 016700 MOV DLCC,R0 ;POINT TO REPLACEMENT TABLE - 2

177506
31 000446 005760 TST 4(R0) ;IS THE FIRST REPLACEMENT BLOCK = 0?

000004
32 000452 001452 BEQ DLADDR ;YES, THEN INVALID TABLE (FILES-11)
33 000454 005720 2$: TST (R0)+ ;SKIP OVER REPLACEMENT BLOCK NUMBER
34 000456 012001 MOV (R0)+,R1 ;GET NEXT BLOCK NUMBER TO REPLACE
35 000460 001447 BEQ DLADDR ;END OF TABLE, NO REPLACEMENT, DO IO
36 000462 .ASSUME Q$BLKN EQ 0
37 000462 020115 CMP R1,@R5 ;THIS BAD BLOCK PART OF TRANSFER?
38 000464 103773 BLO 2$;NOPE, BELOW, IGNORE IT
39 000466 020103 CMP R1,R3 ;BAD BLOCK WITHIN TRANSFER?
40 000470 103043 BHIS DLADDR ;NOPE, BEYOND, WHOLE TRANSFER GOOD
41 000472 011001 MOV @R0,R1 ;YES, PICK UP REPLACEMENT BLOCK NUMBER
42 000474 014000 MOV -(R0),R0 ;GET BAD BLOCK NUMBER
43 000476 .ASSUME Q$BLKN EQ 0
44 000476 161500 SUB @R5,R0 ;COMPUTE DISTANCE OF BAD BLOCK
45 ; INTO TRANSFER
46 000500 001004 BNE 3$;NOT THE FIRST BLOCK,
47 ; GO DO GOOD FIRST PART
48

The replacement table is being used. Pseudoqueue elements are built to break-up
the transfer.

49 ; FIRST BLOCK OF TRANSFER IS BAD
50 ; FILL IN PSEUDO QUEUE TO TRANSFER THE REPLACEMENT
51
52 000502 005200 INC R0 ;SET BLOCK COUNT TO BE 1 BLOCK
53 000504 000302 SWAB R2 ;IS THE REAL COUNT > 1 BLOCK
54 ; HI BYTE>0?
55 000506 001403 BEQ 5$;COUNT < 256. WORDS, FIX AND USE IT
56 000510 000401 BR 4$;COUNT >= 256. WORDS, GO USE 1 BLOCK
57
58 ; BAD BLOCK IS IN MIDDLE OF TRANSFER
59 ; FILL IN PSEUDO QUEUE FOR A TRANSFER UP TO BUT NOT INCLUDING THE BAD
60 ; BLOCK.
61
62 000512 .ASSUME Q$BLKN EQ 0
63 000512 011501 3$: MOV @R5,R1 ;START BLOCK OF PARTIAL=ORIGINAL BLOCK
64 000514 010002 4$: MOV R0,R2 ;COPY BLOCK COUNT OF TRANSFER
65 000516 000302 5$: SWAB R2 ; MULTIPLY BY 256. TO GET WORD COUNT
66 000520 016503 MOV Q$BUFF(R5),R3 ;GET ORIGINAL BUFFER ADDRESS

000004
67 ; FOR PSEUDO QUEUE
68 000524 .ASSUME Q$BLKN EQ 0
69 000524 060015 ADD R0,@R5 ;UPDATE BLOCK NUMBER BY PARTIAL
70 ; BLOCK COUNT
71 000526 160265 SUB R2,Q$WCNT(R5) ;FIX WORD COUNT IN USER QUEUE ELEMENT

000006
72 000532 010200 MOV R2,R0 ;COPY THE WORD COUNT
73 000534 006300 ASL R0 ;CHANGE WORD COUNT TO BYTE COUNT
74 000536 060065 ADD R0,Q$BUFF(R5) ;UPDATE USER BUFFER ADDRESS

000004
75
76 .IF NE MMG$T
77 000542 016567 MOV Q$PAR(R5),DLBPAR ;*C*SET HI ADDR BITS IN PSEUDO QUEUE

000012
001326

78 000550 016567 MOV Q$MEM(R5),DLBMEM ;*C*SET HI ADDR BITS IN PSEUDO QUEUE
000014
001322

79 000556 103006 BCC 6$;NO OVERFLOW
80 000560 062765 ADD #CSBA16,Q$PAR(R5) ;OVERFLOW ORIGINAL ADDRESS INTO

000020
000012

81 ; HIGH BITS
82 000566 062765 ADD #CSBA16,Q$MEM(R5) ;OVERFLOW ORIGINAL ADDRESS INTO

000020
000014

83 ; HIGH BITS
84 000574 6$:
85 .ENDC ;NE MMG$T
86
87 000574 004767 CALL DLSQUE ;FILL IN REST OF PSEUDO QUEUE

A–36 RT–11 Device Handlers Manual

001232
88 000600 .BR DLADDR ;COMPUTE ADDRESS AND DO I/O
89
90 .DSABL LSB

1 .SBTTL COMPUTE DISK ADDRESS AND START TRANSFER
2
3 ;+
4 ; R4 -> CSR
5 ; R5 -> QUEUE ELEMENT (USER OR PSEUDO)
6 ;-
7
8 .ENABL LSB
9
10 000600 010527 DLADDR: MOV R5,(PC)+ ;SAVE POINTER TO QUEUE ELEMENT
11 ; WE ARE USING
12 000602 000000 DLQPTR: .WORD 0
13 000604 .ASSUME Q$BLKN EQ 0
14 000604 011502 MOV @R5,R2 ;GET BLOCK NUMBER
15 000606 100670 BMI DLELNK ;NO NEGATIVE BLOCK NUMBERS!
16 000610 012701 MOV #DLBPT,R1 ;GET NUMBER OF BLOCKS ON ONE TRACK

000024
17 000614 .ASSUME DLBPT EQ 20.
18 000614 005000 CLR R0 ;INITIALIZE I/O DISK ADDRESS TO 0
19 000616 000410 BR 2$;ENTER DIVIDE LOOP
20
21 000620 010203 1$: MOV R2,R3 ;COPY DIVIDEND
22 000622 042702 BIC #^C<17>,R2 ;COMPUTE DIV = 16Q + R

177760
23 000626 040203 BIC R2,R3 ; AND GET 16Q TO WORK WITH
24 000630 060300 ADD R3,R0 ;RESULT <- RESULT + IOHS/4
25 000632 .ASSUME IOHS/2/2 EQ 16.
26 000632 006203 ASR R3 ;COMPUTE 8Q
27 000634 006203 ASR R3 ; THEN 4Q
28 000636 160302 SUB R3,R2 ;NEW DIVIDEND = R - 4Q
29 000640 020201 2$: CMP R2,R1 ;DONE? (NUMBER NOW < DLBPT)
30 000642 103366 BHIS 1$;NOPE...
31 000644 006300 ASL R0 ;YES, QUOTIENT*IOHS/4 => QUO*IOHS/2
32 000646 050200 BIS R2,R0 ;MERGE BLOCK NUMBER WITH TRACK
33 000650 006300 ASL R0 ;*2 FOR TWO 128. WORD SECTORS/BLOCK
34 000652 103646 BCS DLELNK ;OVERFLOW MEANS BEYOND END OF DEVICE
35 000654 100004 BPL 3$;POSITIVE IS OK FOR EITHER RL01/02
36 000656 026727 CMP DLUSIZ,#DLSIZ2 ;NEGATIVE IS OK FOR RL02 ONLY

177302
047742

37 000664 001241 BNE DLELNK ; BUT NOT OK FOR RLO1
38 000666 010067 3$: MOV R0,DLDA ;SAVE STARTING DISK ADDRESS

000256
39 000672 160201 SUB R2,R1 ;CALCULATE BLOCKS LEFT ON TRACK
40 000674 000301 SWAB R1 ;CONVERT TO WORDS LEFT ON TRACK
41 000676 010167 MOV R1,DLWTRK ;SAVE THAT NUMBER

000224
42
43 .IF NE ERL$G
44 MOV Q$WCNT(R5),DLWC ;SET WORD COUNT FOR EL
45 .ENDC ;NE ERL$G
46
47 000702 012727 MOV #1,(PC)+ ;CLEAR RETRY COUNT

000001
48 ; (THESE ARE FATAL ERRORS)
49 000706 000000 DLRTY: .WORD 0
50 000710 004767 CALL DLRST ;RESET DRIVE

DX, DL, and XL Device Handlers A–37

001062
51 000714 004767 CALL DLGST ;AND GET STATUS

001020
52 000720 100434 BMI DLERJM ;ERROR HERE IS FATAL
53 000722 006200 ASR R0 ;IS THE DRIVE READY?
54 000724 .ASSUME CSDRDY EQ 1
55 000724 103032 BCC DLERJM ;NO, FATAL UNRETRYABLE ERROR
56 000726 042701 BIC #STWL!STHS!STDT,R1 ;IGNORE WRITE LOCK, HEAD SELECT,

020300
57 ; DRIVE TYPE
58 000732 022701 CMP #STHO!STBH!STSLM,R1 ;HEADS, BRUSHES AND STATE OK?

000035
59 000736 001025 BNE DLERJM ;NO, FATAL ERROR
60
61 000742’ DRETRY = .+2
62 000740 .ASSUME DRETRY-DLSTRT LT 1000
63 000740 012767 MOV #DLRCNT,DLRTY ;SET REAL RETRY COUNT

000010
177740

64 000746 .BR DLTRAK ;GET ON TRACK
65
66 .DSABL LSB

1 .SBTTL ENSURE THAT DISK IS ON TRACK BEFORE TRANSFER
2
3 ;+
4 ; CALCULATE THE DIFFERENCE WORD FOR THE SEEK.
5 ; TRY 16 TIMES TO READ A HEADER.
6 ; IF ALL FAIL, LOG AN ERROR AND ISSUE A REVERSE SEEK (SEEK -1 TRACK)
7 ; AND A READ HEADER TO CAUSE AN INTERRUPT.
8 ;
9 ; R4 -> CSR
10 ; R5 -> QUEUE ELEMENT
11 ;-
12
13 .ENABL LSB
14
15 000746 005027 DLTRAK: CLR (PC)+ ;RESET REVERSE SEEK FLAG
16 000750 000000 DLREV: .WORD 0
17 000752 017701 MOV @DLCC,R1 ;GET CURRENT CYLINDER

177176
18 000756 022701 CMP #-1,R1 ;IS IT VALID?

177777
19 000762 001015 BNE 2$;YES, USE IT TO START WITH
20 ;***ACTION*** OLD CODE HAS ANOTHER RETRY VALUE
21 000764 016702 MOV DRETRY,R2 ;SET READ HEADER RETRY COUNT

177752
22 000770 006302 ASL R2 ; (DLRCNT*2)
23 000772 012701 1$: MOV #FNRDH,R1 ;SET CODE FOR READ HEADERS FUNCTION

000010
24 000776 004767 CALL DLXCT ;EXECUTE THE FUNCTION

001006
25 001002 100005 BPL 2$;FUNCTION EXECUTED OK
26 001004 077206 SOB R2,1$; any retries left?
27 001006 105267 INCB DLREV ;SET REVERSE SEEK FLAG

177736
28 001012 000167 DLERJM: JMP DLERRH ;RETRY OPERATION

000452
29
30 001016 016700 2$: MOV DLDA,R0 ;RETRIEVE STARTING DISK ADDRESS

000126
31 001022 012702 MOV #IOSA,R2 ;MASK OUT

000077
32 001026 040200 BIC R2,R0 ;SECTOR BITS FROM DESIRED ADDRESS
33 001030 040201 BIC R2,R1 ; AND FROM CURRENT ADDRESS
34 001032 020001 CMP R0,R1 ;DO WE NEED TO DO A SEEK?
35 001034 001427 BEQ DLXFER ;NOPE, ALREADY ON CYLINDER AND HEAD
36 001036 010003 MOV R0,R3 ;YES, SAVE DESIRED CYLINDER AND HEAD
37 001040 005202 INC R2 ;GET MASK FOR HEAD SELECT
38 001042 .ASSUME IOHS EQ IOSA+1
39 001042 040200 BIC R2,R0 ;STRIP HEAD SELECT BIT FROM
40 ; DESIRED ADDRESS
41 001044 040201 BIC R2,R1 ; AND FROM CURRENT ADDRESS
42 001046 160001 SUB R0,R1 ;COMPUTE DISTANCE FROM DESIRED
43 ; TO ACTUAL CYLINDER
44 001050 .ASSUME SKCADF EQ IOCA
45 001050 103003 BHIS 3$;DESIRED <= ACTUAL, MOVE TOWARD EDGE

A–38 RT–11 Device Handlers Manual

46 001052 005401 NEG R1 ;DESIRED > ACTUAL, MOVE TOWARD SPINDLE
47 001054 052701 BIS #SKDIR,R1 ; (SET DIRECTION BIT)

000004

48 001060 005201 3$: INC R1 ;SET MARKER BIT
49 001062 .ASSUME SKMARK EQ 1
50 001062 030203 BIT R2,R3 ;DO WE WANT TO USE SURFACE 1?
51 001064 001402 BEQ 4$;NO
52 001066 052701 BIS #SKHS,R1 ;YES, SET SURFACE 1 BIT

000020
53 001072 012777 4$: MOV #-1,@DLCC ;VOID KNOWLEDGE OF CURRENT CYLINDER

177777
177054

54 001100 004767 CALL DLSEEK ;EXECUTE THE SEEK
000622

55 001104 100571 BMI DLERRH ;OOPS, ERROR EXECUTING SEEK
56 001106 016777 MOV DLDA,@DLCC ;SET CURRENT CYLINDER

000036
177040

57 001114 .BR DLXFER ;NOW DO THE TRANSFER
58
59 .DSABL LSB

1 .SBTTL DLXFER - START AN I/O TRANSFER
2
3 ;+
4 ; R4 -> CSR
5 ; R5 -> QUEUE ELEMENT
6 ;-
7
8 .ENABL LSB
9 001114 DLXFER:

11 001114 062704 ADD #RLMP,R4 ;POINT TO RLMP IN CONTROLLER
000006

13 001120 062705 ADD #Q$WCNT,R5 ;POINT TO WORD COUNT IN QUEUE ELEMENT
000006

14 001124 012703 MOV (PC)+,R3 ;GET NUMBER OF WORDS LEFT ON TRACK
15 001126 000000 DLWTRK: .WORD 0
16 001130 020315 CMP R3,@R5 ;COMPARE AGAINST TOTAL TRANSFER
17 001132 101401 BLOS 1$;<=, USE REMAINDER OF TRACK
18 001134 011503 MOV @R5,R3 ;>, USE TOTAL TRANSFER COUNT
19 001136 010327 1$: MOV R3,(PC)+ ;SAVE TRANSFER COUNT FOR LATER
20 001140 000000 DLWC: .WORD 0 ; : TRANSFER COUNT
21 001142 005403 NEG R3 ;MUST BE 2’S COMPLEMENT

23 001144 010314 MOV R3,@R4 ;LOAD WORD COUNT INTO CONTROLLER
24 001146 012744 MOV (PC)+,-(R4) ;LOAD STARTING DISK ADDRESS
25 001150 000000 DLDA: .WORD 0
26 001152 014544 MOV -(R5),-(R4) ;SET BUS ADDRESS

.

.

.
35 001154 012700 MOV (PC)+,R0 ;GET FUNCTION CODE
36 001156 000000 DLCODE: .WORD 0 ;READ OR WRITE CODE
37 001160 052700 BIS (PC)+,R0 ;ADD IN UNIT SELECT BITS
38 001162 000000 DLUNIT: .WORD 0 ;UNIT NUMBER IN BITS 8-9
39
40 .IF NE MMG$T
41 001164 000416 $RLV1A: BR 10$;IF NO RLV12...
42 ; (CHANGED TO ’NOP’ IF USING RLV12)
43 001166 016546 MOV Q$PAR-Q$BUFF(R5),-(SP) ;SAVE Q22 HIGH-ORDER BITS

000006
44 001172 006216 ASR (SP) ;SHIFT THEM TO THEIR CORRECT POSITIONS
45 001174 006216 ASR (SP)
46 001176 006216 ASR (SP)
47 001200 006216 ASR (SP)
48 001202 012664 MOV (SP)+,RLBAE-RLBA(R4) ;SET THE HIGH-ORDER BITS

000006
49 001206 016546 MOV Q$PAR-Q$BUFF(R5),-(SP) ;SAVE HIGH-ORDER BUS ADDRESS

000006
50 001212 042716 BIC #<^C60>,(SP) ;STRIP TO HIGH-ORDER BITS<17:16>

177717
51 001216 052600 BIS (SP)+,R0 ; AND MERGE WITH COMMAND WORD

DX, DL, and XL Device Handlers A–39

52 001220 000410 BR 30$
53
54 001222 032765 10$: BIT #1700,Q$PAR-Q$BUFF(R5) ;22-BIT ADDRESS SPECIFIED?

001700
000006

55 001230 001402 BEQ 20$;NOPE, THEN ADDRESS IS OKAY TO USE
56 001232 000167 JMP DLEROR ;YES, CAN’T BE USED ON NON RLV12

000350
57
58 001236 056500 20$: BIS Q$PAR-Q$BUFF(R5),R0 ;MERGE EXTENDED ADDRESS BITS INTO

000006
59 ; COMMAND WORD
60 001242 30$:
61 .ENDC ;NE MMG$T
62

64 001242 010044 MOV R0,-(R4) ;LOAD FUNCTION AND GO

68 001244 000207 RETURN ;WAIT FOR AN INTERRUPT
69
70 .DSABL LSB

Interrupt Service Section
1 .SBTTL DLINT - INTERRUPT ENTRY POINT
2
3 ; INTERRUPTS ENTER THE HANDLER HERE
4
5 .ENABL LSB

The .DRAST macro:

When a function is completed, the device interrupts, and the handler is entered here
to dismiss the interrupt and the queue element.

6
7 001246 .DRAST DL,5

.

.

.

Drop to fork level rather than device priority because the routine is lengthy and it
needs all the registers.

14 001256 .FORK DLFBLK ;GO TO FORK LEVEL

Load the registers.

15 001264 016704 MOV DLCSR,R4 ;POINT TO CSR ADDRESS
176542

16 001270 016705 MOV DLQPTR,R5 ;POINT TO QUEUE ELEMENT
177306

17 001274 105767 TSTB DLREV ;REVERSE SEEK IN PROGRESS?
177450

18 001300 001222 BNE DLTRAK ;YES, GO RETRY THE REAL TRANSFER

20 001302 005714 TST @R4 ;CHECK RLCS

25 001304 100471 BMI DLERRH ;IF ERROR, GO DIAGNOSE IT
26 001306 .ASSUME CSERR EQ 100000
27 001306 016703 MOV DLWC,R3 ;GET WORD COUNT OF THIS TRANSFER

177626
28 001312 160365 SUB R3,Q$WCNT(R5) ;CALCULATE WORDS REMAINING TO TRANSFER

000006
29 001316 001036 BNE 2$;MORE TO DO, USE NEXT TRACK
30 001320 026727 CMP DLCODE,#FNWRITE!CSIE ;WAS THE LAST FUNCTION A WRITE?

177632
000112

31 001326 001030 BNE 11$;NO, DONE WITH THIS (PARTIAL) ELEMENT

33 001330 032764 BIT #1,RLDA(R4) ;GOT A SECTOR TO WRITE YET?
000001
000004

A–40 RT–11 Device Handlers Manual

38 001336 001424 BEQ 11$;NO, DON’T ZERO FILL
39 001340 005265 INC Q$WCNT(R5) ;SET WORD COUNT TO 1

000006
40 ; (CONTROLLER FILLS 127.)
41 .IF EQ MMG$T
42 .ADDR #DLFILL,-(SP) ;GET THE BUFFER ADDRESS
43 .IFF ;EQ MMG$T
44 001344 016765 MOV BUFADH,Q$PAR(R5) ;GET HI ADDR OF UMR

000716
000012

45 001352 016746 MOV BUFADL,-(SP) ;GET LO ADDR OF UMR

000712
46 001356 062716 ADD #<BUFEND-DLBBUF>,@SP ;POINT TO DLFILL

000130
47 001362 103003 BCC 100$;IF NO OVERFLOW, BRANCH
48 001364 062765 ADD #CSBA16,Q$PAR(R5) ;UPDATE HI ORDER ADDRESS BITS

000020
000012

49 001372 100$:
50 .ENDC ;EQ MMG$T
51 001372 012665 MOV (SP)+,Q$BUFF(R5) ;SET THE BUFFER ADDRESS

000004

53 001376 016467 MOV RLDA(R4),DLDA ; AND THE DISK ADDRESS
000004
177544

57
58 001404 000167 1$: JMP DLTRAK ;GO DO IT (DLWTRK > 1 = Q$WCNT)

177336
59
60 001410 000167 11$: JMP DLEXFR ;GO FINISH TRANSFER

000204
61
62 001414 006303 2$: ASL R3 ;CHANGE WORD COUNT TO BYTE COUNT
63 001416 060365 ADD R3,Q$BUFF(R5) ;UPDATE USER BUFFER ADDRESS

000004
64
65 .IF NE MMG$T
66 001422 103003 BCC 3$;NO OVERFLOW
67 001424 062765 ADD #CSBA16,Q$PAR(R5) ;UPDATE HIGH ORDER ADDRESS BITS

000020
000012

68 001432 3$:
69 .ENDC ;EQ MMG$T
70
71 001432 052767 BIS #77,DLDA ;UPDATE SURFACE/CYLINDER ADDRESS

000077
177510

72 001440 005267 INC DLDA ; TO FIRST SECTOR, NEXT HEAD/CYLINDER
177504

73 001444 001460 BEQ DLEROR ;OVERFLOWED DEVICE !!!
74 001446 100004 BPL 301$;OK FOR EITHER RL01/02
75 001450 026727 CMP DLUSIZ,#DLSIZ2 ;MINUS OK ONLY FOR RL02

176510
047742

76 001456 001053 BNE DLEROR ; VERY BAD IF RL01 !!!
77 001460 012767 301$: MOV #DLWPT,DLWTRK ;SAVE NUMBER OF WORDS ON A WHOLE TRACK

012000
177440

78 001466 000746 4$: BR 1$;GO CONTINUE TRANSFER ON NEXT TRACK

1 .SBTTL HANDLE THE ERRORS
2
3 001470 DLERRH:
4 .IF EQ ERL$G

6 001470 011403 MOV @R4,R3 ;GET RLCS CONTENTS WITH ERROR BITS

DX, DL, and XL Device Handlers A–41

10 .IFF
11 MOV R4,R1 ;GET CSR ADDRESS
12 .ADDR #DLRBLK,R2 ; CALCULATE ADDRESS OF REGISTER BUFFER
13 MOV R2,R3 ;SAVE BUFFER ADDRESS
14 MOV (R1)+,(R3)+ ;TRANSFER RLCS
15 MOV (R1)+,(R3)+ ;TRANSFER RLBA
16 MOV (R1)+,(R3)+ ;TRANSFER RLDA
17 MOV (R1)+,(R3)+ ;TRANSFER RLMP
18 CALL DLGST ;GET THE DRIVE STATUS INFO
19 MOV R1,(R3)+ ; AND SAVE IT FOR ERROR LOGGER
20 COM R1 ;COMPLEMENT
21 BIT #STWL,R1 ;Write lock error?
22 BEQ 5$;Yes, don’t log it
23 ; (reversed logic due to COM above)
24 MOV DLDA,(R3)+ ;SAVE THE DISK ADDRESS THAT WE USED
25 $RLV1B: BR 10$;IF NO RLV12...
26 ; (CHANGED TO ’NOP’ IF USING RLV12)
27 MOV RLBAE(R4),(R3)+ ;TRANSFER RLBAE
28
29 10$: MOV DRETRY,R3
30 SWAB R3
31 ADD #DLREG,R3 ;R3= MAX RETRIES/ NUMBER OF REGISTERS
32
33 $RLV1C: BR 20$;IF NO RLV12...
34 ; (CHANGED TO ’NOP’ IF USING RLV12)
35 INC R3 ;BUMP FOR EXTRA REGISTER ON RLV12
36
37 20$: JSR R4,FIXWC ;GET Q$WCNT SET RIGHT, PUSH OLD VALUE
38 MOV DLRTY,R4 ;GET NUMBER OF RETRIES LEFT
39 ADD #DL$COD*400-1,R4 ;SET DEVICE ID FLAG, COUNT=COUNT-1
40 ; (report retries remaining, not
41 ; current retry number)
42 CALL @$ELPTR ;LOG THE ERROR
43 MOV (SP)+,Q$WCNT(R5) ;RESET WORD COUNT
44 5$: MOV DLCSR,R4 ;POINT TO CSR AGAIN
45 MOV DLRBLK,R3 ;GET RLCS AT TIME OF FAILURE
46 .ENDC ;EQ ERL$G
47
48 001472 012777 MOV #-1,@DLCC ;INVALIDATE CURRENT CYLINDER

177777
176454

49 ; (FORCE READ HEADER)
50 001500 004767 CALL DLRST ;RESET DRIVE

000272
51 001504 105767 TSTB DLREV ;REVERSE SEEK REQUIRED?

177240
52 001510 001415 BEQ 6$;NO, GO SEE IF WE CAN RETRY
53 001512 105267 51$: INCB DLREV ;SET REVERSE SEEK FLAG IF RETRY

177232
54 ; FROM DRIVE N;002
55 001516 012701 MOV #177600!SKMARK,R1 ;Reverse seek to cylinder zero

177601
56 001522 004767 CALL DLSEEK ;EXECUTE THE SEEK

000200
57 001526 100427 BMI DLEROR ;SEEK FAILED, CALL IT FATAL
58 001530 016700 MOV DLUNIT,R0 ;GET UNIT NUMBER TO USE

177426
59 001534 052700 BIS #CSIE!FNRDH,R0 ;ADD CODE FOR READ HEADER

000110

61 001540 010014 MOV R0,@R4 ;LOAD FUNCTION AND GO

65 001542 000207 RETURN ;WAIT FOR THE INTERRUPT
66
67 001544 106203 6$: ASRB R3 ;AT TIME OF FAILURE, WAS DRIVE READY?
68 001546 103361 BCC 51$;NO, REVERSE SEEK UNTIL IT IS
69 001550 .ASSUME CSDRDY EQ 1
70 001550 006303 ASL R3 ;SHIFT TO GET DRIVE ERROR BIT IN CARRY
71 001552 006303 ASL R3 ; AND NXM BIT IN SIGN
72 001554 100414 BMI DLEROR ;FATAL IF NON-EXISTENT MEMORY
73 001556 .ASSUME CSNXM EQ 020000
74 001556 103010 BCC 7$;GO RETRY IF NOT DRIVE ERROR
75 001560 .ASSUME CSDE EQ 040000
76 001560 004767 CALL DLGST ;DRIVE ERROR, GO GET DRIVE STATUS

000154
77 001564 032701 BIT #STWGE,R1 ;WRITE GATE ERROR?

002000
78 001570 001406 BEQ DLEROR ;FATAL IF NOT

A–42 RT–11 Device Handlers Manual

79 001572 032701 BIT #STWL,R1 ;YES, WRITE GATE WITH WRITE LOCK?
020000

80 001576 001003 BNE DLEROR ;YES, FATAL
81 001600 005367 7$: DEC DLRTY ;ANY RETRIES LEFT?

177102
82 001604 003330 BGT 4$;YES, GO DO ONE
83 001606 016705 DLEROR: MOV DLCQE,R5 ;GET QUEUE ELEMENT POINTER

176176
84 001612 .ASSUME Q$BLKN-2 EQ Q$CSW
85 001612 052755 BIS #HDERR$,@-(R5) ;FLAG CHANNEL ERROR

000001
86 001616 000416 BR DLQCOM ;FINISH-UP
87
88 .DSABL LSB

1 .SBTTL FINISH SUCCESSFUL OPERATION
2
3 .ENABL LSB
4
5 001620 016705 DLEXFR: MOV DLCQE,R5 ;GET ORIGINAL QUEUE ELEMENT POINTER

176164
6 001624 020567 CMP R5,DLQPTR ;PSEUDO QUEUE IN USE?

176752

Test if we’re dismissing a queue element for a replacement table reread or if we’re
doing a partial transfer using replacement. If a partial transfer, go back and get the
rest before we dismiss the original queue element.

7 001630 001411 BEQ 1$;NO, THIS IS THE END OF THE REQUEST
8 001632 126527 CMPB Q$FUNC(R5),#FN$REP ;WAS FUNCTION A FORCE TABLE RE-READ?

000002
000374

9 001640 001405 BEQ 1$;YES, WE ARE NOW DONE
10 001642 005765 TST Q$WCNT(R5) ;IS THERE ANYTHING LEFT TO TRANSFER?

000006
11 001646 001402 BEQ 1$;NOPE, ALL DONE
12 001650 000167 JMP DLTRAN ;GO DO NEXT PART OF BROKEN TRANSFER

176520
13
14 001654 1$:
15 .IF NE ERL$G
16 JSR R4,FIXWC ;FIX WORD COUNT FOR READ/WRITE
17 TST (SP)+ ;DUMP STACKED OLD VALUE
18 TST SCSFLG ;LOGGING SUCCESSES?
19 BNE DLQCOM ;NOPE...
20 MOV #DL$COD*400+377,R4 ;FLAG SUCCESS FOR EL
21 CALL @$ELPTR ;CALL THE ERROR LOG HANDLER
22 .ENDC ;NE ERL$G
23

I/O Completion Section
Dismiss the queue element.

24 001654 DLQCOM: .DRFIN DL ;COMPLETE I/O OPERATION
25
26 .DSABL LSB

1 .SBTTL GET DEVICE SIZE
2
3 ; SPECIAL FUNCTION TO GET VOLUME SIZE:
4 ; READ THE DRIVE TYPE BIT FOR THE SELECTED DRIVE. THEN RETURN THE
5 ; DRIVE’S SIZE, IN BLOCKS, IN THE FIRST WORD OF THE USER’S BUFFER.
6
7 001672 DLGSIZ:
8 .IF EQ MMG$T
9 MOV DLUSIZ,@Q$BUFF(R5) ;PUT SIZE IN BUFFER
10 .IFF
11 001672 016746 MOV DLUSIZ,-(SP) ;SET SIZE ON STACK

176266
12 001676 010504 MOV R5,R4 ;COPY QUEUE POINTER FOR PUTWORD
13 001700 004777 CALL @$PTWRD ;PUT SIZE IN BUFFER

000404

DX, DL, and XL Device Handlers A–43

14 .ENDC ;EQ MMG$T
15 001704 005700 TST R0 ;Was there an error (no drive?)
16 ;R0 should be CSR from DLGST
17 001706 .Assume CSERR EQ 100000
18 001706 100362 BPL DLQCOM ;Branch if not
19 001710 032700 BIT #CSERRC,R0 ;Is there an error code?

036000
20 001714 001334 BNE DLEROR ;Branch if yes

21 001716 032701 BIT #STVC,R1 ;Is it a volume check error?
001000

22 001722 001731 BEQ DLEROR ;If not, report hard error
23 001724 000753 BR DLQCOM

1 .SBTTL DLXCT - FUNCTION EXECUTION ROUTINES
2
3 ;+
4 ; EXECUTE A GET DRIVE STATUS OR ANY NON-INTERRUPT FUNCTION
5 ; AND WAIT FOR COMPLETION
6 ;
7 ; INPUTS:
8 ; R1 = FUNCTION CODE IF DLXCT
9 ; SEEK DIFFERENCE WORD IF DLSEEK
10 ; R4 -> CSR
11 ;
12 ; OUTPUTS:
13 ; FUNCTION EXECUTED
14 ;
15 ; R0 = CSR CONTENTS
16 ; R1 = MP CONTENTS
17 ; N = 1 IF ERROR
18 ;-
19
20 .ENABL LSB
21
22 001726 DLSEEK:

24 001726 010164 MOV R1,RLDA(R4) ;LOAD DIFFERENCE WORD IN CONTROLLER
000004

28 001732 012701 MOV #FNSEEK,R1 ;ISSUE SEEK COMMAND
000006

29 001736 000424 BR DLXCT
30
31 001740 DLGST:

33 001740 012764 MOV #GSGS!GSMARK,RLDA(R4) ;TELL DRIVE TO GET STATUS
000003
000004

37 001746 004767 CALL 1$;EXECUTE THE GET STATUS
000032

38 001752 100026 BPL 4$;NO ERROR SO EXIT

40 001754 005764 TST RLBA(R4) ;ERROR -- IS IT AFTER BUS INIT?
000002

45 001760 001023 BNE 4$;NO -- LOG THE ERROR
46 001762 004767 CALL DLRST ;YES -- DO A RESET

000010

48 001766 012764 MOV #GSGS!GSMARK,RLDA(R4) ;AND TRY THE GET STATUS AGAIN
000003
000004

52 001774 000403 BR 1$;BUT ONLY TRY IT ONCE!
53
54 001776 DLRST:

56 001776 012764 MOV #GSRST!GSGS!GSMARK,RLDA(R4) ;GET DRIVE RESET COMMAND
000013
000004

60 002004 012701 1$: MOV #FNGSTS,R1 ;GET ’GET STATUS’ FUNCTION CODE
000004

61 002010 056701 DLXCT: BIS DLUNIT,R1 ;ADD IN UNIT SELECT BITS
177146

63 002014 010114 MOV R1,@R4 ;GIVE IT TO DRIVER
64 002016 105714 2$: TSTB @R4 ;WAIT FOR FUNCTION TO BE ACCEPTED

A–44 RT–11 Device Handlers Manual

70 002020 100376 BPL 2$
71 002022 3$:

73 002022 016401 MOV RLMP(R4),R1 ;GET RETURNED STATUS WORD
000006

74 002026 011400 MOV @R4,R0 ; AND CSR VALUE (SET N-BIT IF ERROR)
.
.
.

83 002030 000207 4$: RETURN
84
85 .DSABL LSB

.

.

.
44 .DSABL LSB
45

DLSQUE is used to read the bad-block replacement table into memory and to break
up a transfer that uses the table.

1 .SBTTL DLSQUE - SETUP PSEUDO QUEUE ELEMENT
2
3 ;+
4 ; SET UP THE PSEUDO QUEUE FOR BAD BLOCK TABLE READS OR PARTIAL TRANSFERS
5 ;
6 ; INPUTS:
7 ; R1 = STARTING BLOCK NUMBER OF PARTIAL TRANSFER
8 ; R2 = WORD COUNT
9 ; R3 -> BUFFER
10 ; R5 -> USER QUEUE ELEMENT
11 ;
12 ; OUTPUTS:
13 ; R0 = RANDOM
14 ; R5 -> PSEUDO QUEUE ELEMENT
15 ;-
16
17 002032 DLSQUE:
18 002032 .ADDR #DLBWCT,R0 ; POINT TO PSEUDO QUEUE ELEMENT
19 002040 010210 MOV R2,@R0 ;STORE WORD COUNT
20 002042 010340 MOV R3,-(R0) ;STORE BUFFER ADDRESS
21 002044 016540 MOV Q$FUNC(R5),-(R0) ;COPY UNIT NUMBER AND

000002
22 ; SPECIAL FUNCTION BYTE
23 002050 010140 MOV R1,-(R0) ;STORE BLOCK NUMBER
24 002052 .ASSUME Q$BLKN-2 EQ Q$CSW
25 002052 014560 MOV -(R5),-2(R0) ;STORE POINTER TO CSW

177776
26 002056 010005 MOV R0,R5 ;POINT R5 AT PSEUDO QUEUE
27 002060 000207 RETURN
28
29 .IF NE ERL$G

1 .SBTTL FIXWC - FIX WORD COUNT FOR LOGGER
2
3 ;+
4 ; FIX WORD COUNT IN QUEUE ELEMENT FOR ERROR LOGGER
5 ;
6 ; INPUTS:
7 ; R5 -> QUEUE ELEMENT
8 ; DLWC = WORD COUNT USED FOR I/O
9 ;
10 ; OUTPUTS:
11 ; R4 = RANDOM
12 ; @SP = OLD VALUE OF Q$WCNT TO RESTORE
13 ; Q$WCNT(R5) = DLWC (NEGATED IF WRITE)
14 ;-
15
16 FIXWC: MOV Q$WCNT(R5),@SP ;SAVE OLD COUNT ON STACK
17 MOV DLWC,Q$WCNT(R5) ;SET THE CORRECT VALUE
18 CMP DLCODE,#FNWRITE!CSIE ;WAS IT A WRITE?
19 BNE 1$;NO
20 NEG Q$WCNT(R5) ;YES, FIX ELEMENT VALUE
21 1$: JMP @R4 ;RETURN
22
23 .ENDC ;NE ERL$G

DX, DL, and XL Device Handlers A–45

1 .SBTTL DATA AREAS
2
3 ; PSEUDO QUEUE ELEMENT
4
5 002062 177777 .WORD -1 ;ADDRESS OF CSW
6 002064 177777 .WORD -1 ;BLOCK NUMBER
7 002066 000 .BYTE 0 ;SPECIAL FUNCTION BYTE
8 002067 377 .BYTE -1 ;UNIT NUMBER
9 002070 177777 DLBADD: .WORD -1 ;BUFFER ADDRESS
10 002072 177777 DLBWCT: .WORD -1 ;WORD COUNT
11
12 .IF NE MMG$T
13 002074 000000 .WORD 0 ;COMPLETION ADDRESS
14 002076 177777 DLBPAR: .WORD -1 ;PAR VALUE
15 002100 177777 DLBMEM: .WORD -1 ;MEM VALUE
16 002102 000000 .WORD 0 ;(RESERVED)
17 .ENDC ;NE MMG$T
18
19
20 ; BAD BLOCK REPLACEMENT TABLE BUFFER AND CURRENT CYLINDER WORD
21 ;
22 ; CONSISTS OF ONE WORD AND ONE TABLE FOR EACH UNIT.
23 ; EACH TABLE CONSISTS OF TWO WORD ENTRIES. WORD 1
24 ; IS BAD BLOCK AND WORD 2 IS IT’S REPLACEMENT. A
25 ; TABLE IS ENDED BY A ZERO ENTRY.
26 ;
27 ; THIS TABLE WILL BE MAPPED INTO HIGH MEMORY WITH UB SUPPORT
28 ;
29

This is the bad-block replacement table:

30 002104 DLBBUF:
31 000002 .REPT DL$UN ;ONE TABLE PER UNIT
32 .WORD -1 ;CURRENT CYLINDER NUMBER (-1=UNKNOWN)
33 .WORD -1 ;INDICATES TABLE NOT READ YET
34 .BLKB DLTSIZ-2 ;THE TABLE
35 .ENDR
36 002234 BUFEND:
37
38 ; DLFILL ALSO USES THE PERMANENT UMR
39
40 002234 000000 DLFILL: .WORD 0 ;MUST BE 0 TO ZERO-FILL BUFFER
41
42 002236 000000 DLFBLK: .WORD 0,0,0,0 ;FORK QUEUE BLOCK

002240 000000
002242 000000
002244 000000

43
44 .IF NE ERL$G
45 DLRBLK: .BLKW DLREG+1 ;DL STATUS REGISTERS FOR CALL
46 ; TO ERROR LOGGER (+1 FOR RLBAE)
47 .ENDC ;NE ERL$G
48
49 .IF NE MMG$T
50
51 ;+
52 ; DL INTERNAL VARIABLE DEFINITIONS.
53 ;-
54

55 002246 000000 $ENTPT: .WORD 0 ; POINTER TO $ENTRY TABLE
56 002250 000000 $PNMPT: .WORD 0 ; POINTER TO $PNAME TABLE
57 002252 000000 H2UB: .WORD 0 ; POINTER TO UBVECT
58 002254 000000 DLSLOT: .WORD 0 ; DL’S OFFSET IN DEVICE TABLES
59 002256 000000 DLENT: .WORD 0 ; DL’S $ENTRY TABLE ENTRY POINTER
60 002260 000000 DLPNA: .WORD 0 ; DL’S $PNAME TABLE ENTRY POINTER
61 002262 000000 DLILQE: .WORD 0 ; DL INTERNAL QUEUE LAST QEL POINTER
62 002264 000000 DLICQE: .WORD 0 ; DL INTERNAL QUEUE FIRST QEL POINTER
63
64 ;+
65 ; DEFINITION OF THE HANDLER INTERNAL BUFFER AND THE WORDS THAT ARE
66 ; USED TO PROGRAM DMA DEVICES THAT TRANSFER DATA TO AND FROM IT.
67 ;-
68
69 002266 000000 BUFADH: .WORD 0 ; BITS 0-15 OF UNIBUS VIRTUAL POINTER TO DLBBUF
70 002270 000000 BUFADL: .WORD 0 ; BITS 16-21 OF UNIBUS VIRTUAL POINTER TO DLBBUF

A–46 RT–11 Device Handlers Manual

71
72 ; TABLE OF STANDARD DMA SPFUNS THAT DO NOT HAVE A PERMANENT UMR
73 ; ALLOCATED TO THEM
74
75 002272 UBTAB: .DRSPF -,<FN$WRT> ;ABSOLUTE WRITE, NO BAD BLOCK
76 002274 .DRSPF -,<FN$RED> ;ABSOLUTE READ (REPLACEMENT)
77 002276 000000 .WORD 0 ;TABLE TERMINATOR
78
79 .ENDC ;NE MMG$T

Bootstrap Driver
1 .SBTTL BOOTSTRAP DRIVER
2

The .DRBOT macro:

3 002300 .DRBOT DL,BOOT1,B.READ
177777 ...V7=-1

.IIF IDN NO,YES,...V7=0

Termination Section
The .DREND macro generated by .DRBOT (the macro expansion):

001770 .DREND DL,0,
.IF B <>

001770 .PSECT DLDVR
.IFF
.PSECT
.ENDC
.IIF NDF DLEND,DLEND::
.IF EQ .-DL$END
.IF NE MMG$T!<0&2.>
$RLPTR::.WORD 0
$MPPTR::.WORD 0
$GTBYT::.WORD 0
$PTBYT::.WORD 0
$PTWRD::.WORD 0
.ENDC
.IF NE ERL$G!<0&1>
$ELPTR::.WORD 0
.ENDC
.IF NE TIM$IT!<0&4.>
$TIMIT::.WORD 0
.ENDC

001770 000000 $INPTR::.WORD 0
001772 000000 $FKPTR::.WORD 0

.IIF NDF ...V22 ...V22=0

.IF NE ...V22&^o40000
DL$X64 =:.
.REPT 16.

.WORD 0
.ENDR
.ENDC
.GLOBL DLSTRT

The following line marks the end of the loadable portion of the handler. It is used
to determine the handler’s length in memory.

001774’ DLEND==.
.IFF
.PSECT DLBOOT
.IIF LT <DLBOOT-.+^o664>,.ERROR;?SYSMAC-E-Primary boot too large;
.=DLBOOT+^o664
BIOERR: JSR R1,REPORT

.WORD IOERR-DLBOOT
REPORT: MOV #BOOTF-DLBOOT,R0

MOV #30002$-DLBOOT,R2
CALL @R2
MOV @R1,R0
CALL @R2
MOV #CRLFLF-DLBOOT,R0
CALL @R2

30001$: HALT

DX, DL, and XL Device Handlers A–47

BR 30001$
30002$: TSTB @#TPS

BPL 30002$
MOVB (R0)+,@#TPB
BNE 30002$
RETURN

BOOTF: .ASCIZ <CR><LF>"?BOOT-U-"
IOERR: .ASCII "I/O error"
CRLFLF: .ASCIZ <CR><LF><LF>

.EVEN
.IIF NDF ...V7,...V7=-1
.REPT 4.

.WORD ...V7
.ENDR
DLBEND::
.ENDC
.IIF NDF TPS,TPS=:^o177564
.IIF NDF TPB,TPB=:^o177566

000012 LF=:^o12
000015 CR=:^o15
001000 B$BOOT=:^o1000
004716 B$DEVN=:^o4716
004722 B$DEVU=:^o4722
004730 B$READ=:^o4730

.IF NDF B$DNAM

.IF EQ MMG$T
B$DNAM=:^RDL
.IFF
B$DNAM=:^RDLX
.ENDC ; EQ MMG$T
.ENDC ; NDF B$DNAM

000062 .ASECT
000062 .=^o62

000062 000000’ .WORD DLBOOT,DLBEND-DLBOOT,B.READ-DLBOOT
000064 001000
000066 000210
000000 .PSECT DLBOOT
000000 000240 DLBOOT::NOP
000002 000415 BR BOOT1-2.

000100 ...V2=^o100
.IRP X <UBUS,QBUS>
...V3=0
.IIF IDN <X> <UBUS> ...V3=1.
.IIF IDN <X> <QBUS> ...V3=2.
.IIF IDN <X> <CBUS> ...V3=4.
.IIF IDN <X> <UMSCP> ...V3=^o10
.IIF IDN <X> <QMSCP> ...V3=^o20
.IIF IDN <X> <CMSCP> ...V3=^o40
.IIF EQ ...V3 .ERROR;?SYSMAC-E-Invalid C O N T R O L, found - UBUS,QBUS;
...V2=...V2!...V3
.ENDR

000000 ...V3=0
000001 .IIF IDN <UBUS> <UBUS> ...V3=1.

.IIF IDN <UBUS> <QBUS> ...V3=2.

.IIF IDN <UBUS> <CBUS> ...V3=4.

.IIF IDN <UBUS> <UMSCP> ...V3=^o10

.IIF IDN <UBUS> <QMSCP> ...V3=^o20

.IIF IDN <UBUS> <CMSCP> ...V3=^o40

.IIF EQ ...V3 .ERROR;?SYSMAC-E-Invalid C O N T R O L, found - UBUS,QBUS;
000101 ...V2=...V2!...V3
000000 ...V3=0

.IIF IDN <QBUS> <UBUS> ...V3=1.
000002 .IIF IDN <QBUS> <QBUS> ...V3=2.

.IIF IDN <QBUS> <CBUS> ...V3=4.

.IIF IDN <QBUS> <UMSCP> ...V3=^o10

.IIF IDN <QBUS> <QMSCP> ...V3=^o20

.IIF IDN <QBUS> <CMSCP> ...V3=^o40

.IIF EQ ...V3 .ERROR;?SYSMAC-E-Invalid C O N T R O L, found - UBUS,QBUS;
000103 ...V2=...V2!...V3
000032’ .=BOOT1-6.

000032 020 .BYTE ^o20,...V2,^o20,^o^C<20+...V2+20>
000033 103
000034 020
000035 234

.IF EQ <1-1>
000036 000400 BR BOOT1

.IFF

.IF EQ <1-2.>

A–48 RT–11 Device Handlers Manual

BMI BOOT1
.IFF

.ERROR;?SYSMAC-E-Invalid S I D E S, expecting 1/2, found - 1;
.ENDC
.ENDC

4
5 000040’ . = DLBOOT+40 ;PUT THE JUMP BOOT INTO SYSCOM AREA
6 000040 000137 BOOT1: JMP @#BOOT-DLBOOT ;START THE BOOTSTRAP

000600

1 .SBTTL BOOTSTRAP READ ROUTINE
2
3 .ENABL LSB
4
5 000210’ . = DLBOOT+210
6 000210 005004 B.READ: CLR R4 ;CLEAR TRACK COUNTER
7 000212 162700 1$: SUB #DLBPT,R0 ;COUNT DOWN ANOTHER WHOLE TRACK

000024
8 000216 103403 BLO 2$;IF OVERFLOW, DONE
9 000220 062704 ADD #IOHS,R4 ;ADD IN ANOTHER TRACK

000100
10 000224 000772 BR 1$;LOOP FOR MORE
11
12 000226 062700 2$: ADD #DLBPT,R0 ;CORRECT TRACK COUNTER

000024
13 000232 006300 ASL R0 ;CONVERT REMAINDER TO SECTOR IN TRACK
14 000234 050400 BIS R4,R0 ;MERGE SECTOR WITH TRACK/CYL

16 000236 016705 MOV BOTCSR,R5 ;GET ADDRESS OF CONTROLLER
000344

17 000242 062705 ADD #RLDA,R5 ;POINT TO DISK ADDRESS REGISTER
000004

18 000246 016567 MOV RLCS-RLDA(R5),B.DLCS ;GET CURRENT CSR VALUE
177774
000174

19 000254 042767 BIC #^C<CSDS01>,B.DLCS ;ISOLATE CURRENT UNIT NUMBER
176377
000166

21 000262 004767 CALL B.SEEK ;SEEK TO PROPER TRACK
000066

22 000266 005401 NEG R1 ;NEGATE WORD COUNT

24 000270 010265 MOV R2,RLBA-RLDA(R5) ;SET BUS ADDRESS
177776

.

.

.
28 000274 DLREAD:

30 000274 010165 MOV R1,RLMP-RLDA(R5) ;SET WORD COUNT
000002

31 000300 010015 MOV R0,@R5 ;SET DISK ADDRESS
.
.
.

36 000302 004067 JSR R0,B.XCT ;EXECUTE THE READ
000136

37 000306 000014 .WORD FNREAD ;READ FUNCTION CODE
38 000310 000241 CLC ;ENSURE CARRY=0 BEFORE RETURN
39 000312 100053 BPL 5$;SUCCESS, EXIT

41 000314 011503 MOV @R5,R3 ;GET LAST DISK ADDRESS
.
.
.

46 000316 042703 BIC #^C<IOSA>,R3 ;CLEAR ALL BUT SECTOR ADDRESS
177700

47 000322 022703 CMP #DLBPT*2,R3 ;TRACK OVERRUN?
000050

48 000326 001156 BNE BIOERR ;IF NOT, REAL ERROR, EXIT

DX, DL, and XL Device Handlers A–49

50 000330 011503 MOV @R5,R3 ;GET DISK ADDRESS
.
.
.

54 000332 160003 SUB R0,R3 ;COMPUTE SECTORS TRANSFERRED
55 000334 000303 SWAB R3 ;CONVERT SECTORS TO WORD COUNT
56 000336 006203 ASR R3
57 000340 060301 ADD R3,R1 ;REMOVE WORDS TRANSFERRED

59 000342 011500 MOV @R5,R0 ;GET DISK ADDRESS
.
.
.

63 000344 062700 ADD #IOHS-<DLBPT*2>,R0 ;INCREMENT SURFACE/TRACK
000030

64 000350 012746 MOV #DLREAD-DLBOOT,-(SP) ;CALL TO SEEK NEXT TRACK, THEN READ IT
000274

65 000354 .BR B.SEEK ;SEEK NOW
66
67 000354 004067 B.SEEK: JSR R0,B.XCT ;EXECUTE READ HEADERS

000064
68 000360 000010 .WORD FNRDH ;READ HEADER FUNCTION CODE

70 000362 016503 MOV RLMP-RLDA(R5),R3 ;GET CURRENT DISK TRACK AND SURFACE
000002

.

.

.
74 000366 042703 BIC #IOHS!IOSA,R3 ;CLEAR SURFACE/SECTOR TO GET

000177
75 ; CURRENT TRACK
76 000372 010004 MOV R0,R4 ;COPY DESIRED DISK ADDRESS
77 000374 042704 BIC #IOHS!IOSA,R4 ;CLEAR SURFACE/SECTOR TO GET

000177
78 ; DESIRED TRACK
79 000400 160403 SUB R4,R3 ;SUBTRACT DESIRED FROM CURRENT TRACK
80 000402 103003 BCC 3$;IF CURRENT >= DESIRED,
81 ; SEEK OUTWARD BY DIFF
82 000404 005403 NEG R3 ;MAKE POSITIVE DIFFERENCE OF
83 ; DELTA POSITION
84 000406 052703 BIS #SKDIR,R3 ;INDICATE MOVE TOWARD SPINDLE

000004
85 000412 032700 3$: BIT #IOHS,R0 ;DO WE DESIRE SURFACE 1?

000100
86 000416 001402 BEQ 4$;NO, LEAVE SURFACE SELECT 0
87 000420 052703 BIS #SKHS,R3 ;SET BIT TO SELECT SURFACE 1

000020
88 000424 005203 4$: INC R3 ;SET MARKER BIT

90 000426 010315 MOV R3,@R5 ;LOAD DIFFERENCE WORD

.

.

.
94 000430 004067 JSR R0,B.XCT ;EXECUTE A SEEK

000010
95 000434 000006 .WORD FNSEEK ;SEEK FUNCTION CODE
96 000436 100512 BMI BIOERR ;IF PL, OK

98 000440 010015 MOV R0,@R5 ;SET ACTUAL DISK ADDRESS
.
.
.

102 000442 000207 5$: RETURN ;RETURN
103
104
105 ; EXECUTE THE FUNCTION IN R3 AND RETURN ERROR STATUS
106
107 000444 012003 B.XCT: MOV (R0)+,R3 ;GET FUNCTION CODE

A–50 RT–11 Device Handlers Manual

109 000446 052703 BIS (PC)+,R3 ;ADD UNIT BITS TO FUNCTION CODE
110 000450 000000 B.DLCS: .WORD 0 ;BOOTED UNIT NUMBER
111 000452 010365 MOV R3,RLCS-RLDA(R5) ;EXECUTE FUNCTION

177774
112 000456 032765 6$: BIT #CSERR!CSCRDY,RLCS-RLDA(R5) ;WAIT FOR COMPLETION OR ERROR

100200
177774

.

.

.
118 000464 001774 BEQ 6$;NEITHER, LOOP
119 000466 000200 RTS R0 ;RETURN WITH N=1 IF ERROR

.

.

.
6 000600’ . = DLBOOT+600

8 000600 012706 BOOT: MOV #10000,SP ;SET STACK POINT
010000

10 000604 013746 MOV @(PC)+,-(SP)
11 000606 174400 BOTCSR: .WORD DL$CSR
12 000610 042716 BIC #^C1400,@SP ;STRIP TO UNIT NUMBER

176377
13 000614 000316 SWAB @SP ;MOVE TO BITS 0-1

15 000616 012700 MOV #2,R0 ;READ IN SECOND PART OF BOOT
000002

16 000622 012701 MOV #4*256.,R1 ;FOUR BLOCKS TO READ
002000

17 000626 012702 MOV #1000,R2 ;INTO LOCATION 1000
001000

18 000632 004767 CALL B.READ ;READ THE REST OF THE BOOT
177352

19 000636 012737 MOV #B.READ-DLBOOT,@#B$READ ;STORE START LOCATION OF READ ROUTINE
000210
004730

20 000644 012737 MOV #B$DNAM,@#B$DEVN ;STORE RAD50 DEVICE NAME
015370
004716

22 000652 012637 MOV (SP)+,@#B$DEVU ;SET THE UNIT NUMBER IN THE BOOT
004722

.

.

.
26 000656 000137 JMP @#B$BOOT ;GO DO THE BOOT WORK

001000
27
28 000662 .DREND DL
29

.IF B <>
001774 .PSECT DLDVR

.IFF

.PSECT

.ENDC

.IIF NDF DLEND,DLEND::

.IF EQ .-DL$END

.IF NE MMG$T!<0&2.>
$RLPTR::.WORD 0
$MPPTR::.WORD 0
$GTBYT::.WORD 0
$PTBYT::.WORD 0
$PTWRD::.WORD 0
.ENDC
.IF NE ERL$G!<0&1>
$ELPTR::.WORD 0
.ENDC
.IF NE TIM$IT!<0&4.>
$TIMIT::.WORD 0
.ENDC
$INPTR::.WORD 0
$FKPTR::.WORD 0
.IIF NDF ...V22 ...V22=0
.IF NE ...V22&^o40000
DL$X64 =:.
.REPT 16.

.WORD 0
.ENDR

DX, DL, and XL Device Handlers A–51

.ENDC

.GLOBL DLSTRT
DLEND==.
.IFF

000662 .PSECT DLBOOT
.IIF LT <DLBOOT-.+^o664>,.ERROR;?SYSMAC-E-Primary boot too large;

000664’ .=DLBOOT+^o664
000664 004167 BIOERR: JSR R1,REPORT

000002
000670 000753 .WORD IOERR-DLBOOT
000672 012700 REPORT: MOV #BOOTF-DLBOOT,R0

000740
000676 012702 MOV #30004$-DLBOOT,R2

000722
000702 004712 CALL @R2
000704 011100 MOV @R1,R0
000706 004712 CALL @R2
000710 012700 MOV #CRLFLF-DLBOOT,R0

000764
000714 004712 CALL @R2
000716 000000 30003$: HALT
000720 000776 BR 30003$
000722 105737 30004$: TSTB @#TPS

177564
000726 100375 BPL 30004$
000730 112037 MOVB (R0)+,@#TPB

177566
000734 001372 BNE 30004$
000736 000207 RETURN
000740 015 BOOTF: .ASCIZ <CR><LF>"?BOOT-U-"
000741 012
000742 077
000743 102
000744 117
000745 117
000746 124
000747 055
000750 125
000751 055
000752 000
000753 111 IOERR: .ASCII "I/O error"
000754 057
000755 117
000756 040
000757 145
000760 162
000761 162
000762 157
000763 162
000764 015 CRLFLF: .ASCIZ <CR><LF><LF>
000765 012
000766 012
000767 000

.EVEN
.IIF NDF ...V7,...V7=-1

000004 .REPT 4.
.WORD ...V7

.ENDR
000770 177777 .WORD ...V7
000772 177777 .WORD ...V7
000774 177777 .WORD ...V7
000776 177777 .WORD ...V7
001000 DLBEND::

.ENDC
31 .IF NE MMG$T

A–52 RT–11 Device Handlers Manual

1 .SBTTL FETCH/LOAD CODE
2 ;+
3 ; FETCH
4 ;
5 ; ENTRY: R0 = STARTING ADDRESS OF THIS HANDLER SERVICE ROUTINE.
6 ; R1 = ADRESS OF GETVEC ROUTINE.
7 ; R2 = VALUE $SLOT*2. (LENGTH OF THE $PNAME TABLE IN BYTES.)
8 ; R3 = TYPE OF ENTRY.
9 ; R4 = ADDRESS OF SY READ ROUTINE.
10 ; R5 -> $ENTRY SLOT FOR THIS HANDLER.
11 ;
12 ;-
13
14
15 001000 010501 FETCH: MOV R5,R1 ; SAVE PTR TO DL’S $ENTRY SLOT
16 001002 011505 MOV @R5,R5 ; GET ADDRESS OF DLLQE
17 001004 016504 MOV DLCSR-DLLQE(R5),R4 ; GET CSR FOR DL

000024
18 001010 005046 CLR -(SP) ; SPACE FOR RETURN VALUE
19 001012 .MFPS ; GET PROCESSOR STATUS
20 001024 .MTPS #340 ; RAISE PROCESSOR PRIORITY LEVEL TO 7
21 001044 013746 MOV @#NXM.V+2,-(SP) ;;;SAVE CURRENT NXM TRAP PSW

000006
22 001050 013746 MOV @#NXM.V,-(SP) ;;;SAVE CURRENT NXM TRAP VECTOR

000004
23 001054 .ADDR #$DLNXM,-(SP) ;;;BUILD ADDRESS TO OUR TRAP ROUTINE
24 001062 012637 MOV (SP)+,@#NXM.V ;;;SET UP THE NXM VECTOR

000004
25 001066 012737 MOV #340,@#NXM.V+2 ;;;SET UP THE NXM PSW

000340
000006

26 001074 005764 TST RLBAE(R4) ;;;BAE REGISTER EXIST?
000010

27 001100 012637 MOV (SP)+,@#NXM.V ;;;MAYBE, FIRST RESTORE NXM VECTOR
000004

28 001104 012637 MOV (SP)+,@#NXM.V+2 ;;; AND NXM PSW
000006

29 001110 006166 ROL 2(SP) ;;;SAVE THE CARRY BIT
000002

30 001114 .MTPS ; RESTORE PREVIOUS PRIORITY LEVEL
31 001126 006026 ROR (SP)+ ; RESTORE CARRY
32 001130 103403 BCS 20$; NOT AN RLV12... BR IS NOT AN ERROR
33
34 .IF EQ ERL$G
35 001132 012765 MOV #NOP,$RLV1A-DLLQE(R5) ; Change BR to NOP for RLV12

000240
001156

36 .IFF
37 MOV #NOP,R0 ; R0="NOP"
38 MOV R0,$RLV1A-DLLQE(R5) ; PATCH ’BR’ TO ’NOP’ FOR RLV12
39 MOV R0,$RLV1B-DLLQE(R5) ; PATCH ERROR LOGGING CODE SO IT KNOWS
40 MOV R0,$RLV1C-DLLQE(R5) ; ABOUT EXTRA REGISTER (RLBAE)
41 .ENDC ;EQ ERL$G
42
43 001140 000241 20$: CLC
44
45 ;+

46 ; LOAD UP LOCAL VARIABLES WITHIN DL
47 ;-
48
49 001142 010105 MOV R1,R5 ; RESTORE PTR TO DLLQUE TO R5
50 001144 011100 MOV @R1,R0 ; GET ADDRESS OF DLLQE
51 001146 013704 MOV @#SYSPTR,R4 ; GET START OF RMON

000054
52 001152 016403 MOV $H2UB(R4),R3 ; R3 = UBVECT POINTER

000460
53 001156 010360 MOV R3,<H2UB-DLBASE>(R0) ; H2UB = ADDRESS OF UBVECT

002244
54 001162 016403 MOV $PNPTR(R4),R3 ; R3 = RMON OFFSET TO PNAME TABLE

000404
55 001166 060403 ADD R4,R3 ; R3 -> PNAME TABLE ADDRESS
56 001170 010360 MOV R3,<$PNMPT-DLBASE>(R0) ; $PNMPT -> PNAME TABLE ADDRESS

002242
57 001174 060203 ADD R2,R3 ; R3 -> $ENTRY TABLE
58 001176 010360 MOV R3,<$ENTPT-DLBASE>(R0) ; $ENTPT -> $ENTRY TABLE

002240
59 001202 010560 MOV R5,<DLENT-DLBASE>(R0) ; DLENT -> DL’S $ENTRY TABLE ENTRY

DX, DL, and XL Device Handlers A–53

002250
60 001206 160205 SUB R2,R5 ; R5 -> DL’S $PNAME TABLE ENTRY
61 001210 010560 MOV R5,<DLPNA-DLBASE>(R0) ; DLPNA -> DL’S $PNAME TABLE ENTRY

002252
62

Allocate permanent UMRs if using UNIBUS mapping registers:

63 ;+
64 ; ALLOCATE PERMANENT UMRS TO POINT INTO DL’S INTERNAL DMA BUFFERS,
65 ; DLBBUF AND DLFILL, AND GET THE UNIBUS VIRTUAL ADDRESS.
66 ;-
67
68 001214 012701 MOV #<DLBBUF-DLBASE>,R1 ; R1 = LOW 16 BITS OF DMABUF ADDRESS

002076
69 001220 060001 ADD R0,R1 ;
70 001222 005002 CLR R2 ; R2 = HIGH 6 BITS OF DMABUF ADDRESS
71 001224 016004 MOV <DLPNA-DLBASE>(R0),R4 ; R4 -> PNAME ENTRY FOR DL

002252
72 001230 016005 MOV <H2UB-DLBASE>(R0),R5 ; GET UB ENTRY ADDRESS

002244
73 001234 010046 MOV R0,-(SP) ; SAVE DL STARTING ADDRESS
74 001236 012700 MOV #NOUMRS,R0 ; R0 = NUMBER OF UMRS REQUIRED

000001
75 001242 004765 CALL UB.ALL(R5) ; CALL ALLUMR

000002
76 001246 012600 MOV (SP)+,R0 ; RESTORE DL STARTING ADDRESS
77 001250 103411 BCS 30$; COULDN’T GET UMR, FAIL THE LOAD
78 001252 010160 MOV R1,<BUFADL-DLBASE>(R0) ; STORE UNIBUS VIRTUAL ADDRESS LOW

002262
79 001256 006302 ASL R2 ; SHIFT
80 001260 006302 ASL R2 ; HI BITS LEFT 4
81 001262 006302 ASL R2 ; TO GET THEM INTO THE
82 001264 006302 ASL R2 ; CORRECT PLACE
83 001266 010260 MOV R2,<BUFADH-DLBASE>(R0) ; STORE UNIBUS VIRTUAL ADDRESS HIGH

002260
84 001272 000241 CLC ; LOAD SUCCEEDED
85 001274 000207 30$: RETURN
86
87

88 ;
89
90 001276 052766 $DLNXM: BIS #1,2(SP) ;SET THE CARRY BIT

000001
000002

91 001304 000002 RTI
92

Routine to unload DL and release any UMRs:

1 ;+
2 ; RELEAS
3 ;
4 ; ROUTINE TO UNLOAD DL
5 ;
6 ; ENTRY: SAME AS FOR LOAD.
7 ;
8 ;-
9
10 .ENABL LSB
11 001306 RELEAS::
12 001306 010501 MOV R5,R1 ; R1 = $ENTRY SLOT FOR DM
13 001310 160201 SUB R2,R1 ; R2 -> $PNAME SLOT FOR DM
14 001312 013704 MOV @#SYSPTR,R4 ; GET START OF RMON

000054
15 001316 016405 MOV $H2UB(R4),R5 ; R5 = UB ENTRY VECTOR

000460
16 001322 004765 CALL UB.RLS(R5) ; RELEASE UMRS

000004
17 001326 000207 RETURN ; AND EXIT
18
19 .ENDC ;NE MMG$T
21
22 000001 .END

A–54 RT–11 Device Handlers Manual

Symbol Table From Assembly
ABTIO$ 001000 DLBWCT 002072R 002 DOC$UN= 000000
BAREA 000606 DLCC 000154R 002 DRETRY= 000742R 002
BIOERR 000664R 003 DLCODE 001156R 002 DVC.CT 000006
BOOT 000600R 003 DLCQE 000010RG 002 DVC.DE 000010
BOOTF 000740R 003 DLCSR 000032R 002 DVC.DK 000004
BOOT1 000040R 003 DLDA 001150R 002 DVC.DL 000012
BOTCSR 000606R 003 DLDSIZ 023742 DVC.DP 000011
BTCSR = 004124 DLELNK 000370R 002 DVC.LP 000007
BUFADH 002266R 002 DLEND = 002316RG 002 DVC.MT 000005
BUFADL 002270R 002 DLENT 002256R 002 DVC.NI 000013
BUFEND 002234R 002 DLERJM 001012R 002 DVC.NL 000001
BUFSIZ 000054 DLEROR 001606R 002 DVC.PS 000014
BUS$ 000100 DLERRH 001470R 002 DVC.SB 000020
BUS$C 020000 DLEXFR 001620R 002 DVC.SI 000016
BUS$M 020100 DLFBLK 002236R 002 DVC.SO 000017
BUS$Q 000100 DLFILL 002234R 002 DVC.TP 000003
BUS$U 000000 DLFLNK 000250R 002 DVC.TT 000002
BUS$X 020100 DLGSIZ 001672R 002 DVC.UK 000000
B$BOOT 001000 DLGST 001740R 002 DVC.VT 000015
B$DEVN 004716 DLICQE 002264R 002 DVM.DM 000002
B$DEVU 004722 DLILQE 002262R 002 DVM.DX 000001
B$DNAM 015370 DLINT 001250RG 002 DVM.NF 000200
B$READ 004730 DLLQE 000006RG 002 DVM.NS 000001
B.DLCS 000450R 003 DLNBAD 000012 DV2.V2 040000
B.READ 000210R 003 DLPNA 002260R 002 EIS$I = 000001
B.SEEK 000354R 003 DLQCOM 001654R 002 EOF$ 020000
B.XCT 000444R 003 DLQPTR 000602R 002 ERL$G = 000000
CONFG2 000370 DLRCNT 000010 FETCH 001000R 003
CR 000015 DLREAD 000274R 003 FILST$ 100000
CRLFLF 000764R 003 DLREG 000006 FIX$ED= 000001
CSBA16 000020 DLREV 000750R 002 FNGSTS 000004
CSBA17 000040 DLRST 001776R 002 FNNOP 000000
CSCRDY 000200 DLRTY 000706R 002 FNRDH 000010
CSDCRC 004000 DLSEEK 001726R 002 FNRDNH 000016
CSDE 040000 DLSIZE 023742 FNREAD 000014
CSDLT 010000 DLSIZ2 047742 FNSEEK 000006
CSDRDY 000001 DLSLOT 002254R 002 FNWCHK 000002
CSDS0 000400 DLSQUE 002032R 002 FNWRIT 000012
CSDS01 001400 DLSTRT 000000RG 002 FN$RED 000377
CSERR 100000 DLSTS 102405 FN$REP 000374
CSERRC 036000 DLSYS 000006RG 002 FN$SIZ 000373
CSFUN 000016 DLTRAK 000746R 002 FN$WRT 000376
CSHCRC 004000 DLTRAN 000374R 002 GSGS 000002
CSHNF 010000 DLTSIZ 000052 GSMARK 000001
CSIE 000100 DLUNIT 001162R 002 GSRST 000010
CSNXM 020000 DLUSIZ 000164R 002 HDERR$ 000001
CSOPI 002000 DLWC 001140R 002 HNDLR$ 004000
DISCSR 000174 DLWPT 012000 HS2.BI 000001
DLADDR 000600R 002 DLWTRK 001126R 002 HS2.KI 000002
DLBADD 002070R 002 DLXCT 002010R 002 HS2.KL 000004
DLBASE= 000006R 002 DLXFER 001114R 002 HS2.KU 000010
DLBBUF 002104R 002 DL$COD 000005 HS2.MO 000020
DLBEND 001000RG 003 DL$CSR= 174400 G H2UB 002252R 002
DLBMEM 002100R 002 DL$END 002300RG 002 INSCSR 000176
DLBOOT 000000RG 003 DL$NAM= 015340 INSDAT 000200
DLBPAR 002076R 002 DL$UN = 000002 G INSSYS 000202
DLBPT 000024 DL$VEC= 000160 G IOCA 077600

IOCA0 000200 RELEAS 001306RG 003 $ENTPT 002246R 002
IOERR 000753R 003 REPORT 000672R 003 $FKPTR 002314RG

DX, DL, and XL Device Handlers A–55

Figure A–3: XL Communications Handler

XL - Communications Driver MACRO V05.05 Thursday 18-Apr-91 13:00
Table of contents

Conditional assembly summary
MACROS AND DEFINITIONS
Block 0 of handler file
INSTALLATION CODE
SET OPTION PARAMETER TABLE
SET OPTION PROCESSING ROUTINES
DRIVER ENTRY
REGISTERS AND VECTOR TABLES
SPFUN PROCESSING
Multiterminal Handler Hooks Support Data
XLHOOK - Multiterminal Handler Hooks Hook Routine
PREMTY - Prepare for multiterminal hook
DRIVER RESET ENTRY
OUTPUT INTERRUPT SERVICER
GNXTCH - Get next output character
INPUT INTERRUPT SERVICER
PROCESS INPUT RECEIVED FROM INTERRUPT SERVICER
XLENQ - Place Qelement on internal queue
XLFIN - Internal Queue Element Completion
DISINI - Disable input interrupts
ENAINI - Enable input interrupts
DISOUI - Disable output interrupts
ENAOUI - Enable output interrupts
RESBRK - Turn off BREAK
SETBRK - Turn on BREAK
GETSTT - Get line status
RESSTT - Reset line state bits
SETSTT - Set line state bits
GETC - Input a character
PUTC - Output a character
INPUT BUFFER AREA
LOAD - Handler FETCH/LOAD code
UNLOAD - UNLOAD/.RELEASE CODE

1 .MCALL .MODULE
2 000000 .MODULE XL,VERSION=36,COMMENT=<Communications Driver>
3
4 ; COPYRIGHT 1989, 1990, 1991 BY
5 ; DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.
6 ; ALL RIGHTS RESERVED
7 ;
8 ;THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
9 ;ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
10 ;INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
11 ;COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
12 ;OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
13 ;TRANSFERRED.
14 ;
15 ;THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
16 ;AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
17 ;CORPORATION.
18 ;
19 ;DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
20 ;SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.
2
3 .ENABL LC
4
5 ;+
6 ;
7 ; FACILITY: RT-11 Device driver
8 ;

A–56 RT–11 Device Handlers Manual

9 ; FUNCTIONAL DESCRIPTION:
10 ;
11 ; This driver aids in the writing of virtual terminal software. It
12 ; supports the XON/XOFF protocol in that if receives too many chars
13 ; it will transmit a CTRL/S and send a CTRL/Q when it again has room.
14 ; It will also stop transmitting if it receives a CTRL/S and resume
15 ; on a CTRL/Q. Normal RT-11 READ/WRITE commands can be done to the
16 ; plus various special functions. On any data transfer, chars are
17 ; striped to seven bits and chars of value zero are ignored. On output
18 ; the character following a carriage return is not output.
19 ;

CONDITIONAL ASSEMBLY SUMMARY

1 .SBTTL Conditional assembly summary
2
3
4 000001 XL$LUN = 1
5 000001 XL$MTY = 1
6 000001 XL$PDP = 1
7 ;
8 ;
9 000001 MMG$T = 1
10 000001 TIM$IT = 1
11 ;+
12 ;COND
13 ;
14 ; XL$DVE (0) support for DLV11E
15 ; 0 no support
16 ; 1 support
17 ;
18 ; XL$PC (0) support for PRO300 series
19 ; 0 no support
20 ; 1 support
21 ;
22 ; XL$SBC (0) support for SBC-11/21[+] and MXV SLUs
23 ; 0 no support
24 ; 1 support
25 ;
26 ; Exactly one of XLPC, XLDVE and XL$SBC
27 ; may be specified.
28 ;
29 ; XL$PDT (0) support PDT lights
30 ; 0 no support
31 ; 1 support
32 ;
33 ; XL$PDT is ignored if XL$PC is 1
34 ;
35 ; XL$PRI (4) interrupt priority
36 ; (5) if XL$SBC is 1
37 ; 4-7 range
38 ;
39 ; XL$CSR (176500) CSR address
40 ; (173300) if XL$PC is 1
41 ;
42 ; XL$VEC (300) Vector address
43 ; (210) if XL$PC is 1
44 ;
45 ; XL$MTY (0) No support multiterminal handler hooks
46 ; 1 Support for multiterminal handler hooks
47 ;
48 ; XL$MTY may be 1 only when XL$PC is 0.
49 ;
50 ; XL$LUN (1) Line number to use in multiterminal
51 ;
52 ; MMG$T std conditional
53 ; TIM$IT std conditional (no code effect)
54 ; ERL$G std conditional (no code effect)
55 ;
56 ;-

MACROS AND DEFINITIONS

DX, DL, and XL Device Handlers A–57

1 .SBTTL MACROS AND DEFINITIONS
2
3 .LIBRARY "SRC:SYSTEM.MLB"
4

Prepare for using standard definitions:

5 ; Declare the RT system macros we’ll be using
6
7 .MCALL .DRDEF .MTPS .INTEN
8 .MCALL .ASSUM .ADDR .BR
9 .MCALL .MTSTA
10
11 ; Define and verify some conditionals
12
13 .IIF NDF XL$DVE XL$DVE = 0 ;Default to non DLV11-E interface
14
15 .IIF NDF XL$PC XL$PC = 0 ;Default to non PRO-3xx support
16
17 .IIF NDF XL$PDT XL$PDT = 0 ;Default to no PDT lights display
18
19 .IIF NDF XL$SBC XL$SBC = 0 ;Default to non SBC-11 interface
20
21 .IIF NDF XL$MTY XL$MTY = 0 ;Default to no support for MTY hooks
22 .IIF NDF XL$LUN XL$LUN = 1 ;Default to LUN 1
23
24 000000 .Assume <XL$PC & <XL$DVE ! XL$SBC>> EQ 0 MESSAGE=<Conflicting options>
25 000000 .Assume <XL$DVE + XL$SBC> LE 1 MESSAGE=<Conflicting options>
26 000000 .Assume <XL$PC & XL$MTY> EQ 0 MESSAGE=<Conflicting options>
27
28 ; Set the audit trail
29
30 000000 .XLGEN = XL$PC ! <XL$DVE * 2> !

<XL$SBC * 4> ! <XL$PDT * 10>
31 000020 .XLGEN = .XLGEN ! <XL$MTY * 20>
32
33 000000 .AUDIT .XL ;The handler

000110 107123 .WORD .AUDIT
000112 000044 .WORD .XL
000114 177777 .WORD -1

34 000000 .AUDIT .XLGEN ; and the conditionals
000114 000020 .WORD .XLGEN
000116 177777 .WORD -1

35
36 ; Define the device
37 ; o Entered on all aborts
38 ; o handles .SPFUN system call
39
40 .IF NE XL$PC
41 XL$CSR = 173300 ;Force these for a PRO
42 XL$VEC = 210
43 .ENDC ;NE XL$PC
44
45 .IIF NDF XL$PRI XL$PRI = 4 ;Interrupt processing level
46
47 .IF NE XL$SBC
48 XL$PRI = 5 ;Force this for SBC-11/12[+] and MXV
49 .ENDC ;NE XL$SBC
50

The .DRDEF macro with expansion:

51 000000 .DRDEF XL,57,<ABTIO$!HNDLR$!SPFUN$>,0,176500,300,DMA=NO
000100 000040 .WORD 40
000176 176500 .WORD XL$CSR

52
53 .IF EQ XL$PC

The .DRPTR macro with expansion:

A–58 RT–11 Device Handlers Manual

54 000200 .DRPTR FETCH=FETCH,LOAD=LOAD,UNLOAD=UNLOAD,RELEAS=RELEAS
000000 031066 .RAD50 "HAN"
000002 002704’ .WORD FETCH
000004 003312’ .WORD RELEAS
000006 002704’ .WORD LOAD
000010 003256’ .WORD UNLOAD
000021 000 .BYTE 0

55 .IFF ;EQ XL$PC
56 .DRPTR UNLOAD=UNLOAD,RELEAS=RELEAS
57 .ENDC ;EQ XL$PC
58

The .DREST macro with expansion:

59 000022 .DREST CLASS=DVC.VT
000000 031066 .RAD50 "HAN"
000020 015 .BYTE DVC.VT
000021 000 .BYTE 0
000032 000000 .WORD 0
000036 000000 .WORD 0
000072 000000 .WORD 0
000074 000000 .WORD 0

60

Support the following special functions (.DRSPF):

61 000076 .DRSPF <201> ;Reset ’received XOFF from host’ flag
000022 176 .BYTE 176
000023 200 .BYTE 200
000024 000 .BYTE 0
000025 000 .BYTE 0
000026 000 .BYTE 0
000027 000 .BYTE 0
000030 000000 .WORD 000000

62 ; and send XON to host
63 000032 .DRSPF <202> ;Set/clear BREAK

000022 176 .BYTE 176
000023 200 .BYTE 200
000024 000 .BYTE 0
000025 000 .BYTE 0
000026 000 .BYTE 0
000027 000 .BYTE 0
000030 000000 .WORD 000000

64 ; word count <> 0, BREAK
65 ; word count = 0, end BREAK
66 000032 .DRSPF <203> ;Special read. Word count is maximum

000022 176 .BYTE 176
000023 200 .BYTE 200
000024 000 .BYTE 0
000025 000 .BYTE 0
000026 000 .BYTE 0
000027 000 .BYTE 0
000030 000000 .WORD 000000

67 ; number of bytes to read. Terminates
68 ; when number of bytes specified have
69 ; been read or when the input buffer
70 ; is empty. Always reads at least one
71 ; byte even if buffer is empty when
72 ; the read is issued.
73 000032 .DRSPF <204> ;Returns driver status in first word

000022 176 .BYTE 176
000023 200 .BYTE 200
000024 000 .BYTE 0
000025 000 .BYTE 0
000026 000 .BYTE 0
000027 000 .BYTE 0
000030 000000 .WORD 000000

74 ; of buffer. High byte = driver edit
75 ; level. Low byte = XOFF status and
76 ; some modem signals.
77 000032 .DRSPF <205> ;Sets a flag which will cause

000022 176 .BYTE 176
000023 200 .BYTE 200
000024 000 .BYTE 0
000025 000 .BYTE 0
000026 000 .BYTE 0

DX, DL, and XL Device Handlers A–59

000027 000 .BYTE 0
000030 000000 .WORD 000000

78 ; interrupts to be turned off on
79 ; program exit
80 000032 .DRSPF <206> ;Sets/Resets DTR

000022 176 .BYTE 176
000023 200 .BYTE 200
000024 000 .BYTE 0
000025 000 .BYTE 0
000026 000 .BYTE 0
000027 000 .BYTE 0
000030 000000 .WORD 000000

81 ; word count
<> 0, set DTR

82 ; word count = 0, reset DTR
83
84 ; Handler version number given to VTCOM in INIT message
85
86 000022 $$$VER == 18. ;VTCOM and XL must be a matched set
87
88 ; RT-11 System communications area
89

The following macros (through .TSTDF) use the standard definitions from
SYSTEM.MLB:

90 .MCALL .SYCDF
91 000032 .SYCDF ;Define system communications area
92
93 ; RMON Fixed offset area
94
95 .MCALL .FIXDF .CF1DF .CF2DF
96 .MCALL .SGNDF
97
98 000032 .FIXDF ;Define RMON fixed offsets

1 000032 .CF1DF ;Define config word 1 bits
2 000032 .CF2DF ;Define config word 2 bits
3 000032 .SGNDF ;Define SYSGEN features word bits
4
5 ; Multiterminal status block
6
7 .MCALL .MSTDF
8
9 000032 .MSTDF ;Define .MTSTA status block

10
11 ; Handler header definitions
12
13 .MCALL .HBGDF
14 000032 .HBGDF ;Define handler header
15
16 ; Handler hooks related definitions
17
18 .MCALL .THKDF .TCBDF .TSTDF
19 000032 .TCBDF ;Define TCB offsets
20 000032 .THKDF ;Define handler hooks data structure
21 000032 .TSTDF ;Define T.STAT word bits
22
23 ; Input buffer definitions
24
25 000100 BUFSIZ = 64. ;Size of input buffer (in bytes)
26 000020 STPSIZ = BUFSIZ/4 ;Low-water mark (when to send XOFF)
27 000060 RSTSIZ = BUFSIZ*3/4 ;High-water mark (when to send XON)
28
29 ; Control Characters
30
31 000012 C.LF = 12 ;Line feed
32 000015 C.CR = 15 ;Carriage return
33 000021 C.CTLQ = 21 ;XON (^Q)
34 000023 C.CTLS = 23 ;XOFF (^S)
35 000032 C.CTLZ = 32 ;End-of-file (^Z)
36
37 ; .SPFUN codes supported by driver
38
39 000201 CLRDRV = 201 ;Reset ’received XOFF from host’ flag
40 ; and send XON to host
41 000202 BRKDRV = 202 ;Set/clear BREAK

A–60 RT–11 Device Handlers Manual

42 ; word count <> 0, BREAK
43 ; word count = 0, end BREAK
44 000203 SRDDRV = 203 ;Special read. Word count is maximum
45 ; number of bytes to read. Terminates
46 ; when number of bytes specified have
47 ; been read or when the input buffer
48 ; is empty. Always reads at least one
49 ; byte even if buffer is empty when
50 ; the read is issued.
51 000204 STSDRV = 204 ;Returns driver status in first word
52 ; of buffer. High byte = driver edit
53 ; level. Low byte =
54 000001 ST.XFH = 000001 ;XOFF sent to host
55 000002 ST.XOF = 000002 ;XOFF received from host
56 000004 ST.CTS = 000004 ;Dataset: Clear To Send asserted
57 000010 ST.CD = 000010 ;Dataset: Carrier Detect asserted
58 000020 ST.RI = 000020 ;Dataset: Ring Indicate asserted
59
60 000205 OFFDRV = 205 ;Sets a flag which will cause
61 ; interrupts to be turned off on
62 ; program exit
63 000206 DTRDRV = 206 ;Sets/Resets DTR
64 ; word count <> 0, set DTR
65 ; word count = 0, reset DTR
66 ;NOTE: if you add special function code, add them to .DRSPF too!
67
68 ; Interface bit definitions
69
70 040000 RC.RI = 040000 ;Ring indicator
71 020000 RC.CTS = 020000 ;Clear to send
72 010000 RC.CD = 010000 ;Carrier detect
73 000100 RC.IE = 000100 ;Interrupt enable
74 000004 RC.RTS = 000004 ;Request to send
75 000002 RC.DTR = 000002 ;Data terminal ready
76
77 000100 XC.IE = 000100 ;Transmitter: interrupt enable
78
79 .IF NE XL$DVE
80 XC.SMK = 170000 ;Speed mask
81 XC.SCE = 004000 ;Speed change enable
82 .ENDC ;NE XL$DVE
83
84 .IF NE XL$SBC
85 XC.SMK = 000070 ;Speed mask
86 XC.SCE = 000002 ;Speed change enable
87 .ENDC ;NE XL$SBC
88
89 000001 XC.BRK = 000001 ; BREAK
90
91 .IF NE XL$PC
92
93 ; PRO-3xx Interrupt controller registers
94
95 IC0DR = 173200 ;Interrupt controller 0 data register
96 IC0CR = IC0DR+2 ;Interrupt controller 0 csr register
97
98 ; PRO-3xx Communications port registers
99
100 XL$BUF = XL$CSR ;Recv/Xmit buffer register
101 XL$CSA = XL$CSR+2 ;CSR register A
102 XL$CSB = XL$CSR+6 ;CSR register B
103 XL$MC0 = XL$CSR+10 ;Modem control register 0
104 XL$MC1 = XL$CSR+12 ;Modem control register 1
105 XL$BAU = XL$CSR+14 ;Baud rate control register
106
107 ; CSRA Write/Read register bit definitions
108
109 RPT.R0 = 000 ;Write/Read register 0
110 CRC.TR = 300 ; Reset transmit underrun/end of message latch
111 CMD.RE = 020 ; Reset external/status interrupts
112 CMD.CR = 030 ; Channel reset
113 CMD.RT = 050 ; Reset transmitter interrupt pending
114 CMD.ER = 060 ; Reset error latches
115 CMD.EI = 070 ; End of interrupt
116 RPT.R1 = 001 ;Write/Read register 1
117 W1.RIE = 030 ; Receiver interrupt enable
118 ; (Int. on rec. char or special (no parity))
119 W1.TIE = 002 ; Transmitter interrupt enable

DX, DL, and XL Device Handlers A–61

120 RPT.R2 = 002 ;Write/Read register 2
121 RPT.R3 = 003 ;Write register 3
122 RCL.8 = 300 ; Receiver character length (8 bits)
123 W3.RXE = 001 ; Receiver enable
124 RPT.R4 = 004 ;Write register 4
125 CLK.16 = 100 ; 16x rate multiplier
126 STP.1 = 004 ; 1 stop bit
127 W4.EVN = 002 ; Even parity
128 W4.PEN = 001 ; Parity enable
129 RPT.R5 = 005 ;Write register 5
130 TCL.8 = 140 ; Transmit character length (8 bits)
131 W5.SB = 020 ; Send break
132 W5.TXE = 010 ; Transmitter enable
133
134 ; CSRB Write/Read register bit definitions
135
136 RPT.R1 = 001 ;Write/Read register 1
137 W1.REQ = 004 ; MUST be loaded with 004
138 RPT.R2 = 002 ;Write/Read register 2
139 W2.REQ = 000 ; MUST be loaded with 000
140 R2.IMK = 034 ; Interrupt vector mask
141 IMK.BE = 020 ; Transmit buffer empty
142 IMK.ES = 024 ; External/Status change
143 IMK.CA = 030 ; Received character available
144 IMK.SR = 034 ; Special receiver condition
145
146 ; Modem control Register bit definitions
147
148 CLK.BG = 000 ; Rx = RBRG, Tx = TBRG ->MD = none
149 M0.DTR = 020 ; Data terminal ready
150 M0.RTS = 010 ; Request to send
151 M1.RI = 100 ; Ring indicator
152 M1.CTS = 040 ; Clear to send
153 M1.CD = 020 ; Carrier detect
154 .ENDC ;NE XL$PC
155
156 ; Baud rate mask definitions (PRO-3xx, DLV11-E,F and MXV11-B)
157
158 .IF NE <XL$PC ! XL$DVE>
159 B.50 = 000 ; 50 baud
160 B.75 = 001 ; 75 baud
161 B.110 = 002 ; 110 baud
162 B.134 = 003 ; 134.5 baud
163 B.150 = 004 ; 150 baud
164 B.300 = 005 ; 300 baud
165 B.600 = 006 ; 600 baud
166 B.1200 = 007 ; 1200 baud
167 B.1800 = 010 ; 1800 baud
168 B.2000 = 011 ; 2000 baud
169 B.2400 = 012 ; 2400 baud
170 B.3600 = 013 ; 3600 baud
171 B.4800 = 014 ; 4800 baud
172 B.7200 = 015 ; 7200 baud
173 B.9600 = 016 ; 9600 baud
174 B.192K = 017 ; 19.2k baud
175 .ENDC ;NE <XL$PC ! XL$DVE>
176
177 ; Baud rate mask definitions [SBC-11 only]
178
179 .IF NE XL$SBC
180 B.300 = 000 ; 300 baud
181 B.600 = 001 ; 600 baud
182 B.1200 = 002 ; 1200 baud
183 B.2400 = 003 ; 2400 baud
184 B.4800 = 004 ; 4800 baud
185 B.9600 = 005 ; 9600 baud
186 B.192K = 006 ; 19.2K baud
187 B.384K = 007 ; 38.4k baud
188 .ENDC ;NE XL$SBC
189
190 ; Miscellaneous definitions
191
192 177776 PS =: 177776 ; Processor status word
193 000007 UNITMK =: 007 ;Q$UNIT unit number mask
194 000370 JOBMK =: 370 ;Q$JNUM job number mask
195
196 ; Macro to define LSB of bit field
197

A–62 RT–11 Device Handlers Manual

198 .MACRO LSBDF SYMBOL,VALUE
199 SYMBOL = VALUE & <-VALUE>
200 .ENDM ;LSBDF

Block 0 of handler file

1 .SBTTL Block 0 of handler file
2

The SPEED table is placed low in block 0 without conflicting with audit trail:

3 000032 .ASECT
4 000120 . = 120
5
6 .IF NE <XL$PC ! XL$DVE ! XL$SBC>
7 ; SPEED table. Mask for given speed is same as word offset into table.
8 ; To select 134.5 bps, specify 134 in the SET command.
9
10 SPEEDT:
11 .IF NE <XL$DVE ! XL$PC>
12 .WORD 50., 75., 110., 134., 150., 300.
13 .WORD 600., 1200., 1800., 2000., 2400., 3600.
14 .WORD 4800., 7200., 9600., 19200.
15 .ENDC ;NE <XL$DVE ! XL$PC>
16
17 .IF NE XL$SBC
18 .WORD 300., 600., 1200., 2400., 4800., 9600.
19 .WORD 19200., 38400.
20 .ENDC ;NE XL$SBC
21
22 .WORD 0 ;Table fence
23
24 .ENDC ;NE <XL$PC ! XL$DVE ! XL$SBC>
25

We must ensure that 0 fence for display CSRs is not overwritten:

26 000120 .Assume . LE DISCSR-2 MESSAGE=<Code before installation code too large>

INSTALLATION CODE

1 .SBTTL INSTALLATION CODE
2
3 .ENABL LSB
4
5 .IF EQ XL$MTY
6 .DRINS XL
7 .IFF ;EQ XL$MTY

Ensure that install-time CSR is zero when defaulting to MTTY, so the handler always
installs:

8 000120 .DRINS -XL
000172 000000 .WORD 0
000174 176500 DISCSR: .WORD -<-XL$CSR>
000176 000000 INSCSR: .WORD 0

9 .ENDC ;EQ XL$MTY
10
11 000200 000401 BR 10$;Install as a data device
12 000202 000416 BR 40$; never as a system device
13
14 000204 013700 10$: MOV @#$SYPTR,R0 ;R0->$RMON

000054
15 000210 032760 BIT #PROS$,$CNFG2(R0) ;Installing on a PRO-3xx?

020000
000370

16
17 .IF EQ XL$PC
18 000216 001010 BNE 40$;Yes, then reject the installation
19 .IF NE XL$MTY
20 000220 105767 TSTB I$MTTY ;Are handler hooks needed?

000020

DX, DL, and XL Device Handlers A–63

21 000224 001404 BEQ 20$;Nope...
22 000226 005760 TST $THKPT(R0) ;Yes, is the support available?

000000G
23 000232 001402 BEQ 40$;Nope, reject the installation

Hooks cannot be established until handler is in memory, which doesn’t happen until
Fetch/Load:

24 000234 000400 BR 30$;Yes, nothing to do until fetch/load
25
26 000236 20$:
27 .ENDC ;NE XL$MTY
28 .IFF ;EQ XL$PC
29 BEQ 40$;Nope, then reject the installation
30 .ENDC ;EQ XL$PC
31
32 .IF EQ XL$PC
33 .IF NE <XL$DVE ! XL$SBC>
34 MOV INSCSR,R0 ;R0->Receiver CSR

Speed set at install-time:

35 MOV ISPEED,4(R0) ;Set the speed (in transmitter CSR)
36 .ENDC ;NE <XL$DVE ! XL$SBC>
37 .IFF ;EQ XL$PC
38 MOVB ISPEED,@#XL$BAU ;Set the XMIT/RECV baud rate
39
40 ; Things to do through csr A
41
42 MOV #XL$CSA,R0 ;R0->csr A
43 MOVB #CMD.CR,@R0 ;Reset channel A
44 MOVB #CRC.TR,@R0 ;Reset transmitter underrun latch
45
46 MOVB #RPT.R4,@R0 ;Select csr A, write register 4
47 MOVB #<CLK.16!STP.1>,@R0 ; set clock rate x16, 1 stop bit
48
49 MOVB #RPT.R3,@R0 ;Select csr A, write register 3
50 MOVB #<W3.RXE!RCL.8>,@R0 ; set receiver enable, 8-bit chars
51
52 MOVB #RPT.R5,@R0 ;Select csr A, write register 5
53 MOVB #<W5.TXE!TCL.8>,@R0 ; set transmitter enable, 8-bit chars
54
55 MOVB #RPT.R2,@R0 ;Select csr A, write register 2
56 MOVB #0,@R0 ; *** must be loaded with 0 ***
57 MOVB #CMD.RE,@R0 ;Reset external/status interrupts
58
59 ; Things to do through csr B
60
61 MOV #XL$CSB,R0 ;R0->csr B
62 MOVB #CMD.CR,@R0 ;Reset channel B
63
64 MOVB #RPT.R2,@R0 ;Select csr B, write register 2
65 MOVB #W2.REQ,@R0 ; *** ensure base vector of 0 ***
66
67 MOVB #RPT.R1,@R0 ;Select csr B, write register 1
68 MOVB #W1.REQ,@R0 ; *** ensure correct vector info ***
69
70 ; Now we play with the interrupt controller
71
72 MOVB #<30!3>,@#IC0CR ;Enable comm port interrupts
73
74 ; And finally, the modem
75
76 MOVB #CLK.BG,@#XL$MC0 ;Set modem clock
77 .ENDC ;EQ XL$PC
78
79 000236 005727 30$: TST (PC)+ ;Accept the installation (carry=0)
80 000240 000261 40$: SEC ;Reject the installation (carry=1)
81 000242 000207 RETURN
82
83 .DSABL LSB
84
85 .IF NE <XL$PC ! XL$DVE ! XL$SBC>
86 .IF NE <XL$DVE ! XL$SBC>
87 LSBDF ...,XC.SMK ;Determine lowest bit of speed mask
88 .ENDC ;NE <XL$DVE ! XL$SBC>

A–64 RT–11 Device Handlers Manual

89 ISPEED:
90 .IF NE XL$PC
91 .WORD <B.1200 * 20> + B.1200 ;Default to 1200 baud RECV and XMIT
92 .ENDC ;NE XL$PC
93
94 .IF NE <XL$DVE ! XL$SBC>
95 .WORD <B.1200 * ...> ! XC.SCE ;Default to 1200 baud RECV and XMIT
96 .ENDC ;NE <XL$DVE ! XL$SBC>
97 .ENDC ;NE <XL$PC ! XL$DVE ! XL$SBC>
98
99 .IF NE XL$MTY

Default flag to MTTY if built for hooks support:

100 000244 377 I$MTTY: .BYTE -1 ; : Install-time ’hooks required’ flag
101 000245 000 .BYTE ;reserved

Duplicate code from .DRBEG to restore pointer to vector table when SET XL
NOMTTY is issued:

102 000246 000000C VECSAV: .WORD 100000+<<XL$VTB-H1.VEC>/2-1> ; : Vector info for SET NOMTTY
103 000250 176500 CSRSAV: .WORD XL$CSR ; : CSR info for SET NOMTTY
104 .ENDC ;NE XL$MTY
105
106 000252 .Assume . LE 400 MESSAGE=<Installation code too large>

SET OPTION PARAMETER TABLE

1 .SBTTL SET OPTION PARAMETER TABLE
2
3 ; Option Data Routine Syntax
4 ; ------ ---- ------- ------
5
6 .IF EQ 1
7 .DRSET BIT8 <^c177> O.BIT8 NO ;[NO]BIT8
8 .ENDC ;EQ 1
9
10 .IF EQ XL$PC
11 000252 .DRSET CSR 160012 O.CSR OCT ;CSR=n

000400 160012 160012
000402 012712 .RAD50 \CSR\
000406 021 .BYTE <O.CSR-^o400>/2.
000407 140 .BYTE ...V2
000410 000000 .WORD 0

12 000412 .DRSET VECTOR 477 O.VEC OCT ;VECTOR=n
000410 000477 477
000412 105113 .RAD50 \VECTOR\
000414 077552
000416 046 .BYTE <O.VEC-^o400>/2.
000417 140 .BYTE ...V2
000420 000000 .WORD 0

13 .ENDC ;EQ XL$PC
14
15 .IF EQ XL$PC
16 .IF NE XL$PDT
17 .DRSET LIGHTS -1 O.LGHT NO ;[NO]LIGHTS
18 .ENDC ;NE XL$PDT
19 .ENDC ;EQ XL$PC
20
21 .IF NE XL$MTY
22 000422 .DRSET LINE 16. O.LINE NUM ;LINE=n

000420 000020 16.
000422 046166 .RAD50 \LINE\
000424 017500
000426 056 .BYTE <O.LINE-^o400>/2.
000427 100 .BYTE ...V2
000430 000000 .WORD 0

23 000432 .DRSET MTTY -1 O.MTTY NO ;[NO]MTTY
000430 177777 -1
000432 052164 .RAD50 \MTTY\
000434 116100
000436 063 .BYTE <O.MTTY-^o400>/2.
000437 200 .BYTE ...V2
000440 000000 .WORD 0

DX, DL, and XL Device Handlers A–65

24 .ENDC ;NE XL$MTY
25
26 .IF NE <XL$PC ! XL$DVE ! XL$SBC>
27 .DRSET SPEED NOP O.SPEE NUM ;SPEED=n
28 .ENDC ;NE <XL$PC ! XL$DVE ! XL$SBC>

SET OPTION PROCESSING ROUTINES

1 .SBTTL SET OPTION PROCESSING ROUTINES
2
3 .IF EQ 1
4 ; SET XL [NO]BIT8
5
6 O.BIT8: CLRB R3 ;Ensure high bit is left alone
7 NOP ;placekeeper
8 MOV R3,CHMASK ;Save character alteration mask
9 RETURN
10 .ENDC ;EQ 1
11
12 .IF EQ XL$PC
13
14 ; SET XL CSR=octal_address
15

When SET XL MTTY in effect, cannot alter install-time CSR (176); must save it for
restore when SET XL NOMTTY issued:

16 000442 O.CSR:
17 .IF NE XL$MTY
18 000442 010067 MOV R0,CSRSAV ;Yes, update saved CSR for SET NOMTTY

177602
19 000446 105767 TSTB I$MTTY ;Are we set MTTY?

177572
20 000452 001002 BNE 20$;Yep, don’t set install-time word
21 .ENDC ;NE XL$MTY
22
23 000454 010067 10$: MOV R0,INSCSR ;Let installation code know

177516
24 000460 010067 20$: MOV R0,DISCSR ;Fill in display CSR

177510
25 000464 .ADDR #XIS,R1 ;R1 -> Where to put CSR info

000464 010701 MOV PC,R1
000466 062701 ADD #XIS-.,R1

177444’
26 000472 012702 MOV #4,R2 ;R2 = Count of words to set

000004
27 000476 010021 30$: MOV R0,(R1)+ ;Set a table entry
28 000500 062700 ADD #2,R0 ;Prepare for next entry

000002
29 000504 005302 DEC R2 ;More to do?
30 000506 003373 BGT 30$;Yep...
31 000510 020003 CMP R0,R3 ;Was address specified in range?
32 000512 000207 RETURN ; c-bit=0 if so, =1 if not
33
34 ; SET XL VECTOR=octal_address
35
36 000514 010067 O.VEC: MOV R0,XL$VTB ;Save the new input interrupt vector

000142’
37 000520 062700 ADD #4,R0

000004
38 000524 010067 MOV R0,XL$VTB+6 ; and output interrupt vector

000150’
39 000530 020300 CMP R3,R0 ;Was address specified in range?
40 000532 000207 RETURN ; c-bit=0 if so, =1 if not
41
42 .IF NE XL$PDT
43
44 ; SET XL [NO]LIGHTS
45
46 O.LGHT: CLR R3 ;LIGHTS entry point
47 NOP ; (padding)
48 COM R3 ;NOLIGHTS entry point
49 MOV R3,LitFlg ;Set/Reset lights flag
50 BR O.NOR
51 .ENDC ;NE XL$PDT

A–66 RT–11 Device Handlers Manual

52
53 .IF NE XL$MTY
54
55 ; SET XL LINE=line_number
56
57 000534 120003 O.LINE: CMPB R0,R3 ;Is line number valid?
58 000536 101027 BHI O.ERR ;Nope...
59 000540 110067 MOVB R0,O$LINE ;Yes, set line number to use

000511’
60 000544 000423 BR O.NOR
61
62 ; SET XL [NO]MTTY
63
64 000546 000411 O.MTTY: BR 10$;Entry point for MTTY
65 000550 000240 NOP ;placekeeper
66 000552 005000 CLR R0 ;Entry point for NOMTTY
67 000554 016767 MOV CSRSAV,INSCSR ;Nope, restore install-time CSR

177470
177414

68 000562 016767 MOV VECSAV,H1.VEC ; and vector information
177460
000210

69 000570 000404 BR 20$
70
71 000572 005067 10$: CLR INSCSR ;Reset install-time CSR and

177400
72 000576 005067 CLR H1.VEC ; vector so handler installs

000176
73 000602 110067 20$: MOVB R0,O$MTTY ;Set/Reset MTTY hooks use flag

000510’
74 000606 110067 MOVB R0,I$MTTY ; and inform install code of setting

177432
75 000612 000400 BR O.NOR
76 .ENDC ;NE XL$MTY
77 .ENDC ;EQ XL$PC
78
79 .IF NE <XL$PC ! XL$DVE ! XL$SBC>
80
81 ; SET XL SPEED=decimal_speed

Setting speed alters the on-disk image, but also takes immediate effect:

82
83 O.SPEE:

Can’t use when MTTY is in effect because not all lines have programmable baud
rate:

84 .IF NE XL$MTY
85 TSTB I$MTTY ;Handler hooks in use?
86 BNE O.ERR ;Yes, can’t touch the CSR
87 .ENDC ;NE XL$MTY
88
89 .ADDR #SPEEDT,R1 ;R1 -> Baud rate table
90 10$: TST @R1 ;End of table?
91 BEQ O.ERR ;Yes, speed requested is invalid
92 CMP R0,(R1)+ ;Nope, request match this entry?
93 BNE 10$;Nope, try another speed entry
94 SUB PC,R1 ;Yes, determine speed mask
95 SUB #<SPEEDT+2-.>,R1 ; ...
96
97 .IF NE XL$PC
98 ASR R1 ;Convert from byte to word offset
99 MOVB R1,-(SP) ;Save the receive speed mask
100 ASL R1 ;And make transmit speed match
101 ASL R1 ; by shifting
102 ASL R1 ; it to the
103 ASL R1 ; high nibble
104 BISB (SP)+,R1 ;OR in the receive speed mask
105 MOVB R1,@#XL$BAU ; and change the speed now
106 .ENDC ;NE XL$PC
107
108 .IF NE XL$DVE
109 SWAB R1 ;Move to high byte
110 ASL R1 ; then shift mask to where
111 ASL R1 ; it should be for

DX, DL, and XL Device Handlers A–67

112 ASL R1 ; a DLV11-E
113 .ENDC ;NE XL$PC
114
115 .IF NE XL$SBC
116 ASL R1 ;Shift mask to where it
117 ASL R1 ; should be for SBC or MXV SLU
118 .ENDC ;NE XL$SBC
119
120 .IF NE <XL$DVE ! XL$SBC>
121 BIS #XC.SCE,R1 ;Set the ’speed change enable’ bit
122 MOV INSCSR,R0 ;R0->Receiver CSR
123 .ENDC ;NE <XL$DVE ! XL$SBC>
124
125 MOV R1,ISPEED ;Save new speed for installation
126
127 .IF NE <XL$DVE ! XL$SBC>
128 MOV ISPEED,4(R0) ;Set the speed (in transmitter CSR)
129 .ENDC ;NE <XL$DVE ! XL$SBC>
130 .BR O.NOR
131 .ENDC ;NE <XL$PC ! XL$DVE ! XL$SBC>
132
133 000614 005727 O.NOR: TST (PC)+ ;Success (carry=0)
134 000616 000261 O.ERR: SEC ;Failure (carry=1)
135 000620 000207 RETURN
136
137 000622 .Assume . LE 1000 MESSAGE=<Set code too large>

DRIVER ENTRY

1 .SBTTL DRIVER ENTRY
2
3 ; The handler gets entered here each time the monitor places a new
4 ; request on the device queue. The handler either processes the
5 ; request immediately and returns it to the monitor or the request
6 ; is removed from the device queue and placed on one of the internal
7 ; queues. There is one internal queue for input and one for output.
8 ;
9 ; Because of the separate queues, simultaneous input and output may
10 ; be performed.
11
12 .ENABL LSB
13
14 .IF EQ XL$MTY
15 .DRBEG XL

Following code is for hooks support. Ensures vector word is zero so handler loads
without affecting any vectors when XL is SET MTTY. Restored with SET XL
NOMTTY.

16 .IFF ;EQ XL$MTY
17 000622 .DRBEG XL,0 ;Default to use handler hooks

000052 002704 .WORD <XLEND-XLSTRT>
000054 000000 .WORD XLDSIZE
000056 007057 .WORD XLSTS
000060 000006 .WORD ^o<ERL$G+<MMG$T*2>+<TIM$IT*4>+<RTE$M*10>>
000000 000000 .WORD 0&^C3.
000002 001120 .WORD XLINT-.,^o340
000004 000340
000006 000000 XLLQE:: .WORD 0
000010 000000 XLCQE:: .WORD 0
000012 000257 .WORD 257

18 .ENDC ;EQ XL$MTY
19
20 000014 016704 MOV XLCQE,R4 ;R4->Current queue element

177770
21 000022’ STATFG = <. + 2>
22 000020 006227 ASR #1 ;First call since .FETCH/LOAD or

000001
23 ; last shutdown?
24 000024 103013 BCC 40$;Nope...
25
26 .IF EQ XL$PC
27 000026 004767 CALL ENAINI ;Turn on receiver interrupts

002166

A–68 RT–11 Device Handlers Manual

28 000032 012700 MOV #<RC.RTS!RC.DTR>,R0 ;Assert DTR
000006

29 000036 004767 CALL SETSTT ; ...
002412

30 000042 012767 MOV #-2,SNDS ;Indicate we must send an XON
177776
001070

31 000050 004767 CALL ENAOUI ;Enable output interrupts
002216

32 .IF NE XL$PDT
33 CALL SETLIT ;Set the lights to indicate state
34 .ENDC ;NE XL$PDT
35 .IFF ;EQ XL$PC
36 MOV #RPT.R1,@CSRA ;Select csr A, write register 1
37 BIS #<W1.RIE!W1.TIE>,SSRAW1 ;Turn on RECV and XMIT interrupts
38 MOV SSRAW1,@CSRA ; (update from software register)
39 BIS #<M0.DTR!M0.RTS>,@MCR0 ;Force DTR and RTS
40 MOVB #C.CTLQ,@DBUF ;First thing we send is an XON
41 .ENDC ;EQ XL$PC
42
43 000054 116405 40$: MOVB Q$FUNC(R4),R5 ;Get the function code

000002
44 000060 001040 BNE SPFUN ;If non-zero, we have a .SPFUN
45 000062 006364 ASL Q$WCNT(R4) ;Convert word count to byte count

000006
46 000066 103406 BCS WRITE ;If negative, write request
47 ; otherwise, read
48 000070 004567 READ: JSR R5,XLENQ ;Queue the read request

002002

Internal input queue:

49 000074 000000 XICQE: .WORD 0 ; : address of first element on queue
50 000076 000000 XILQE: .WORD 0 ; : address of last element on queue
51 000100 000167 CALLR XIIN ;Process any input already received,

001436
52 ; read will be completed via
53 ; interrupts
54
55 000104 005267 WRITE: INC QCHG ;Set ’queue being modified’ flag

001066
56 000110 004567 JSR R5,XLENQ ;Queue the write request

001762

Internal output queue:

57 000114 000000 XOCQE: .WORD 0 ; : address of first element on queue
58 000116 000000 XOLQE: .WORD 0 ; : address of last element on queue
59 000120 005067 CLR QCHG ;Reset ’queue being modified’ flag

001052
60
61 .IF EQ XL$PC
62 000124 004767 CALL ENAOUI ;Enable output interrupts

002142
63 .IFF ;EQ XL$PC
64 CALL GNXTCH ;Get a character for output
65 BEQ 50$;None available...
66 MOVB R5,@DBUF ;Now prime the interrupt pump
67 .ENDC ;EQ XL$PC
68
69 000130 000207 50$: RETURN
70
71 .DSABL LSB

REGISTERS AND VECTOR TABLES

DX, DL, and XL Device Handlers A–69

1 .SBTTL REGISTERS AND VECTOR TABLES
2
3 .IF EQ XL$PC
4 ; *** Begin Critical Ordering ***
5 000132 176500 XIS: .WORD XL$CSR ; : Receiver status register
6 000134 176502 XIB: .WORD XL$CSR+2 ; : Receiver buffer register
7 000136 176504 XOS: .WORD XL$CSR+4 ; : Transmitter status register
8 000140 176506 XOB: .WORD XL$CSR+6 ; : Transmitter buffer register
9 ; *** End Critical Ordering ***
10 .IFF ;EQ XL$PC
11 DBUF: .WORD XL$BUF ; : Input/Output buffer register
12 CSRA: .WORD XL$CSA ; : Control/Status register A
13 CSRB: .WORD XL$CSB ; : Control/Status register B
14 MCR0: .WORD XL$MC0 ; : Modem control/status register 0
15 MCR1: .WORD XL$MC1 ; : Modem control/status register 1
16 BAUD: .WORD XL$BAU ; : Baud rate control register
17 .ENDC ;EQ XL$PC
18
19 ; Now for some software registers
20
21 .IF NE XL$PC
22 SSRAW1: .WORD 0 ;Software status A, write register 1
23 SSRAW5: .WORD <W5.TXE!TCL.8> ;Software status A, write register 5
24 .ENDC ;NE XL$PC
25
26 ; Define the interrupt vectors
27
28 .IF EQ XL$PC
29 000142 .DRVTB XL,XL$VEC,XIINT ;Input interrupt servicer

000142 000300 .WORD XL$VEC&^C3.,XIINT-.,^o340!0,^o100000
000144 001214
000146 000340
000150 100000

30 000152 .DRVTB ,XL$VEC+4,XLINT ;Output interrupt servicer
000150 000304 .WORD XL$VEC+4&^C3.,XLINT-.,^o340!0,^o100000
000152 000750
000154 000340
000156 100000

31 .IFF ;EQ XL$PC
32 .DRVTB XL,XL$VEC,XLINT ;Input/Output interrupt servicer
33 .DRVTB ,XL$VEC+4,XLINT
34 .ENDC ;EQ XL$PC
35
36 000160 177600 CHMASK: .WORD ^C177 ;Character mask
37
38 .IF EQ XL$PC
39 .IF NE XL$PDT

LIGHTS ROUTINE FOR PDT-11’S

1 .SBTTL LIGHTS ROUTINE FOR PDT-11’S
2
3 ;+
4 ;
5 ; Sets PDT lights to indicate XON/XOFF state.
6 ;
7 ; LED 1 on if PDT has sent XOFF
8 ; LED 2 on if PDT has received XOFF
9 ;
10 ;-
11
12 SETLIT: TST (PC)+ ;SET XL LIGHTS in effect?
13 LITFLG: .WORD 0 ; : lights flag (0 = no, <>0 = yes)
14 BEQ 30$;Nope...
15 MOV #040000,R5 ;Default to lights off
16 TST SNDS ;XOFF sent to host?
17 BLE 10$;Nope...
18 BIS #000100,R5 ;Yes, turn on LED 1
19 10$: TST RECS ;XOFF received from host?
20 BEQ 20$;Nope...
21 BIS #000200,R5 ;Yes, turn on LED 2
22 20$: MOV R5,@#177420 ;Force the new lights setting
23 30$: RETURN
24
25 .ENDC ;NE XL$PDT
26 .ENDC ;EQ XL$PC

A–70 RT–11 Device Handlers Manual

SPFUN PROCESSING

1 .SBTTL SPFUN PROCESSING
2
3 ; This section of code gets jumped to. It expects that the address of the
4 ; queue element is is R4 and the address of the special function code to
5 ; be executed is in R5.
6

Special read may require post-interrupt processing, so it must be internally queued:

7 000162 120527 SPFUN: CMPB R5,#SRDDRV ;Special read request?
000203

8 000166 001740 BEQ READ ; Yes, go queue it
9 000170 120527 CMPB R5,#BRKDRV ;[end]BREAK request?

000202
10 000174 001423 BEQ 20$; Yes...
11 000176 120527 CMPB R5,#CLRDRV ;Clear driver flags request?

000201
12 000202 001440 BEQ 40$; Yes...
13 000204 120527 CMPB R5,#STSDRV ;Status request?

000204
14 000210 001445 BEQ 50$; Yes...
15 000212 120527 CMPB R5,#OFFDRV ;Shutting us down?

000205
16 000216 001502 BEQ 100$;Yes...
17 000220 120527 CMPB R5,#DTRDRV ;DTR set/reset?

000206
18 000224 001514 BEQ 110$;Yes...
19 ;Unknown .SPFUN, ignore
20 000226 10$: .DRFIN XL ;Inform monitor of completion

SPFUN routines can be processed without post-interrupt processing, so they are
handled without being moved to internal queue and returned to RT–11:

000226 010704 MOV PC,R4
000230 062704 ADD #XLCQE-.,R4

177560
000234 013705 MOV @#^o54,R5

000054
000240 000175 JMP @^o270(R5)

000270
21
22 ; [end]BREAK processing
23 ; Word count indicates operation
24 ; (0 = end break, non-zero = break)
25
26 000244 005764 20$: TST Q$WCNT(R4) ;Break or end-break?

000006
27 000250 001406 BEQ 30$;If zero, end-break...
28 000252 012767 MOV #1,BRKFLG ;Break, set ’break in progress’ flag

000001
000652

29
30 .IF EQ XL$PC
31 000260 004767 CALL SETBRK ;Turn on break

002064
32 .IFF ;EQ XL$PC
33 MOV #RPT.R5,@CSRA ;Select csr A, write register 5
34 BIS #W5.SB,SSRAW5 ;Turn on break
35 MOV SSRAW5,@CSRA ; (update from software register)
36 .ENDC ;EQ XL$PC
37
38 000264 000760 BR 10$
39
40 000266 30$:
41 .IF EQ XL$PC
42 000266 004767 CALL RESBRK ;Turn off break

002030
43 .IFF ;EQ XL$PC
44 MOV #RPT.R5,@CSRA ;Select csr A, write register 5
45 BIC #W5.SB,SSRAW5 ;Turn off break
46 MOV SSRAW5,@CSRA ; (update from software register)
47 .ENDC ;EQ XL$PC

DX, DL, and XL Device Handlers A–71

48
49 000272 005067 CLR BRKFLG ;Reset the ’break in progress’ flag

000634
50
51 .IF EQ XL$PC
52 000276 004767 CALL ENAOUI ;Make sure output is running

001770
53 .ENDC ;EQ XL$PC
54
55 000302 000751 BR 10$
56
57 ; Clear driver flags request
58 ; resets received XOFF flag
59 ; sends XON to host
60
61 000304 005067 40$: CLR RECS ;Reset the ’received XOFF’ flag

000660
62
63 .IF EQ XL$PC
64 000310 012767 MOV #-2,SNDS ;Indicate we want an XON sent

177776
000622

65 000316 004767 CALL ENAOUI ;Make sure output is running
001750

66 .IF NE XL$PDT
67 CALL SETLIT ;Update lights display
68 .ENDC ;NE XL$PDT
69 .IFF ;EQ XL$PC
70 CLR SNDS ;Indicate that an XON has been
71 MOVB #C.CTLQ,@DBUF ; sent
72 .ENDC ;EQ XL$PC
73
74 000322 000741 BR 10$
75
76 ; Get Status request
77 ; returns handler version in high byte
78 ; returns XON/XOFF state in low byte
79 ; bit 0 on if host has been XOFF’d
80 ; bit 1 on if host has XOFF’d us
81 ; bit 2 on if CTS is asserted
82 ; bit 3 on if CD is asserted
83 ; bit 4 on if RI is asserted
84
85 000324 012705 50$: MOV #$$$VER*400,R5 ;High byte = handler version

011000
86 000330 005767 TST SNDS ;Have we XOFF’d host?

000604
87 000334 003401 BLE 60$;Nope...
88
89 000336 .ASSUME ST.XFH EQ 1
90 000336 005205 INC R5 ;Yes, set the indicator
91 000340 005767 60$: TST RECS ;Have we been XOFF’d?

000624
92 000344 001402 BEQ 70$;Nope...
93 000346 052705 BIS #ST.XOF,R5 ;Yes, set the indicator

000002
94 000352 70$:
95 .IF EQ XL$PC
96 000352 004767 CALL GETSTT ;Get current status

002022
97 000356 032700 BIT #RC.CTS,R0 ;Is ’Clear To Send’ asserted?

020000
98 .IFF ;EQ XL$PC
99 BIT #M1.CTS,@MCR1 ;Is ’Clear To Send’ asserted?
100 .ENDC ;EQ XL$PC
101
102 000362 001402 BEQ 80$;Nope...
103 000364 052705 BIS #ST.CTS,R5 ;Yes, set an indicator

000004
104
105 000370 80$:
106 .IF EQ XL$PC
107 000370 032700 BIT #RC.CD,R0 ;Is ’Carrier Detect’ asserted?

010000
108 .IFF ;EQ XL$PC
109 BIT #M1.CD,@MCR1 ;Is ’Carrier Detect’ asserted?
110 .ENDC ;EQ XL$PC
111

A–72 RT–11 Device Handlers Manual

112 000374 001402 BEQ 82$;Nope...
113 000376 052705 BIS #ST.CD,R5 ;Yes, set an indicator

000010
114
115 000402 82$:
116 .IF EQ XL$PC
117 000402 032700 BIT #RC.RI,R0 ;Is ’Ring Indicator’ asserted?

040000
118 .IFF ;EQ XL$PC
119 BIT #M1.RI,@MCR1 ;Is ’Ring Indicator’ asserted?
120 .ENDC ;EQ XL$PC
121
122 000406 001402 BEQ 84$;Nope...
123 000410 052705 BIS #ST.RI,R5 ;Yes, set an indicator

000020
124
125 000414 84$:
126 .IF EQ MMG$T
127 MOV R5,@Q$BUFF(R4) ;Return the status word
128 .IFF ;EQ MMG$T
129 000414 010546 MOV R5,-(SP) ;Return the status word
130 000416 004777 CALL @$PTWRD ; ...

002252
131 .ENDC ;EQ MMG$T
132
133 000422 000701 BR 10$
134
135 ; Shut down driver request (OFFDRV)
136 ; Sets a flag such that when VTCOM exits, interrupts will
137 ; not be re-enabled. STATFG is used as the once-only,
138 ; interrupt startup flag.
139
140 000424 116446 100$: MOVB Q$JNUM(R4),-(SP) ;Save Q$JNUM

000003
141 000430 042716 BIC #^C<JOBMK>,@SP ;Isolate job number issuing request

177407
142 000434 006216 ASR @SP ;Shift for abort code check
143 000436 006216 ASR @SP
144 000440 006216 ASR @SP
145 000442 112667 MOVB (SP)+,JNUM ;Save it for later check

000040
146 000446 012767 MOV #1,STATFG ;Reset us to pre-start state

000001
177346

147 000454 000664 BR 10$
148
149 ; Set/Reset DTR (DTRDRV)
150 ; Sets or resets DTR based on word count
151 ; (0 = DTR off, <>0 = DTR on)
152
153 000456 110$:
154 .IF EQ XL$PC
155 000456 004767 CALL GETSTT ;Get current state

001716
156 000462 042700 BIC #<RC.RTS!RC.DTR>,R0 ;Assume DTR is desired off

000006
157 .IFF ;EQ XL$PC
158 MOVB @MCR0,R0 ;Get current state
159 BIC #<M0.DTR!M0.RTS>,R0 ;Assume DTR is desired off
160 .ENDC ;EQ XL$PC
161
162 000466 005764 TST Q$WCNT(R4) ;Correct assumption?

000006
163 000472 001402 BEQ 115$;Yep...
164
165 .IF EQ XL$PC
166 000474 052700 BIS #<RC.RTS!RC.DTR>,R0 ;Nope, turn it on

000006
167 .IFF ;EQ XL$PC
168 BIS #<M0.DTR!M0.RTS>,R0 ;Nope, turn it on
169 .ENDC ;EQ XL$PC
170
171 000500 115$:
172 .IF EQ XL$PC
173 000500 004767 CALL SETSTT ;Assert desired bits

001750
174 .IFF ;EQ XL$PC
175 MOVB R0,@MCR0 ;Set desired state

DX, DL, and XL Device Handlers A–73

176 .ENDC ;EQ XL$PC
177
178 000504 000650 BR 10$
179
180 000506 JNUM: .BLKW ; :Job number which issued OFFDRV
181
182 .IF NE XL$PC

INTERRUPT SERVICE/DISPATCHER

1 .SBTTL INTERRUPT SERVICE/DISPATCHER
2
3 ;+
4 ;
5 ; Interrupt entry point for input and output interrupts. The interrupt
6 ; type is determined by bits <04:02> in RR2 of CSR B. The four defined
7 ; types of interrupts are:
8 ;
9 ; 1) Transmitter buffer empty (^B100xx)
10 ; 2) External/status change (^B101xx)
11 ; 3) Received character available (^B110xx)
12 ; 4) Special receiver condition (^B111xx)
13 ;
14 ;-
15
16 .DRAST XL,4,XLDONE
17
18 MOV #RPT.R2,@CSRB ;Select csr B, read register 2
19 MOV @CSRB,-(SP) ;Get the interrupt type
20 BIC #^C<R2.IMK>,@SP ;Strip the uninteresting stuff
21 ASR @SP ;Shift for word table offset
22 .ADDR #INTTAB,@SP,ADD ;Add address of start of table
23 MOV @(SP),@SP ;Get the table entry
24 ADD PC,@SP ;Convert to address
25 INTDSP: JMP @(SP)+ ;Dispatch the interrupt
26
27 ESINT: MOV #CMD.RE,@CSRA ;Reset external/status interrupts
28 IECOM: MOV #CMD.EI,@CSRA ;Declare end of interrupt
29 RETURN
30
31 SRINT: MOV #CMD.ER,@CSRA ;Reset error latches
32 JMP XIINT ; then handle as received character
33
34 INTTAB: .WORD IECOM-INTDSP ;unknown interrupt
35 .WORD IECOM-INTDSP ;unknown interrupt
36 .WORD IECOM-INTDSP ;unknown interrupt
37 .WORD IECOM-INTDSP ;unknown interrupt
38 .WORD XOINT-INTDSP ;Transmitter buffer empty
39 .WORD ESINT-INTDSP ;External/Status change
40 .WORD XIINT-INTDSP ;Received character available
41 .WORD SRINT-INTDSP ;Special receiver interrupt
42 .ENDC ;NE XL$PC
43
44 .IF NE XL$MTY

MULTITERMINAL HANDLER HOOKS SUPPORT DATA

1 .SBTTL Multiterminal Handler Hooks Support Data
2
3 ; The following byte indicates whether the handler should make use
4 ; of the multiterminal hooks during FETCH/LOAD and during operation.
5
6 ; *** SET ***

Set/reset by SET XL [NO]MTTY:

7 000510 377 O$MTTY: .BYTE -1 ;Default to hooks used
8 000511 .Assume <O$MTTY-XLSTRT> LE 1000 MESSAGE=<Code to set not in block 1>
9
10 ; *** SET ***

Set/reset by SET XL LINE=n:

A–74 RT–11 Device Handlers Manual

11 000511 001 O$LINE: .BYTE XL$LUN ;Default line to use
12 000512 .Assume <O$LINE-XLSTRT> LE 1000 MESSAGE=<Code to set not in block 1>
13
14 000512 377 ISPND: .BYTE -1 ; : Input suspend flag
15 000513 377 OSPND: .BYTE -1 ; : Output suspend flag
16 .EVEN

XLHOOK - Multiterminal Handler Hooks Hook Routine

1 .SBTTL XLHOOK - Multiterminal Handler Hooks Hook Routine
2
3 ;+
4 ;
5 ; XLHOOK
6 ; Entered from multiterminal input or output interrupt service.
7 ;
8 ; Call (TH.GOC):
9 ; R0 = Function code
10 ;
11 ; Return (TH.GOC):
12 ; PSW<c> = 0, R5 = character
13 ; PSW<c> = 1, no character available
14 ;
15 ; Call (TH.PIC):
16 ; R0 = Function code
17 ; R5 = character
18 ;
19 ;-
20
21 .ENABL LSB
22

The following line must reside before hook entry point:

23 000514 113740 XLPNAM: .Rad50 /XL/ ; : Rad50 physical name
24 ; loaded by FETCH/LOAD code
25
26 000516 XLHOOK:
27 000516 .Assume <XLHOOK-XLPNAM> EQ 2 MESSAGE=<XLPNAM must preceed XLHOOK>
28
29 000516 010446 MOV R4,-(SP) ;Save register for awhile
30
31 ; Function code = 1 = TH.GOC
32 ; (Get Output Character)
33
34 000520 020027 CMP R0,#TH.GOC ;’Get Output Character’ request?

000001
35 000524 001006 BNE 10$;Nope...
36 000526 105767 TSTB OSPND ;Is output suspended?

177761
37 000532 001014 BNE 20$;Yep...
38 000534 004767 CALL HOINT ;Yes, hook handler output service

000370
39 000540 000412 BR 30$
40
41 ; Function code = 2 = TH.PIC
42 ; (Put Input Character)
43
44 000542 020027 10$: CMP R0,#TH.PIC ;’Put Input Character’ request?

000002
45 000546 001006 BNE 20$;Nope...
46 000550 105767 TSTB ISPND ;Is input suspended?

177736
47 000554 001003 BNE 20$;Yep...
48 000556 004767 CALL HIINT ;Yes, hook handler input service

000604
49 000562 000401 BR 30$
50
51 000564 000261 20$: SEC ;Return failure
52 000566 012604 30$: MOV (SP)+,R4 ;*C* Restore previously saved register
53 000570 000207 RETURN
54
55 .DSABL LSB

DX, DL, and XL Device Handlers A–75

PREMTY - Prepare for multiterminal hook

1 .SBTTL PREMTY - Prepare for multiterminal hook
2
3 ;+
4 ;
5 ; PREMTY
6 ; Prepares for use of a multiterminal hook.
7 ;
8 ; Return:
9 ; R3 -> TCB
10 ;
11 ; Note:
12 ; *** Co-routine ***
13 ; Saves R3
14 ;
15 ;-
16
17 000572 105767 PREMTY: TSTB O$MTTY ;Terminal hooks in use?

177712
18 000576 001410 BEQ 10$;Nope...
19 000600 010346 MOV R3,-(SP) ;Save some registers for awhile
20 000602 016703 MOV TCBADX,R3 ;R3 -> TCB hooked to us

002046
21 000606 016646 MOV 2(SP),-(SP) ;Restack the return address

000002
22 000612 004736 CALL @(SP)+ ;Co-routine back to caller
23 000614 012603 MOV (SP)+,R3 ;Restore previously saved register
24 000616 005726 TST (SP)+ ;Discard old return address
25 ; to return to callers caller
26 000620 000207 10$: RETURN
27
28 .ENDC ;NE XL$MTY

DRIVER RESET ENTRY

1 .SBTTL DRIVER RESET ENTRY
2
3 ;+
4 ;
5 ; This routine is entered on the abort of a job or an HRESET. It
6 ; deques and tells RT that all I/O requests by a job are done. It
7 ; expects to be entered with the number of the aborting job in R4.
8 ;
9 ; Entered with:
10 ; R4 = Job number {aborting | issuing .ABTIO}
11 ; R5 = 0 if abort by job
12 ; -> Channel Control Block (CCB) if abort by channel (.ABTIO)
13 ;
14 ;-
15
16 .ENABL LSB
17
18 000622 010046 XLDONE: MOV R0,-(SP) ;Save R0 for awhile
19
20 .IF EQ XL$PC
21 000624 004767 CALL DISINI ;Turn off input interrupts

001342
22 .IFF ;EQ XL$PC
23 MOV #RPT.R1,@CSRA ;Select csr A, write register 1
24 BIC #W1.RIE,SSRAW1 ;Turn off input interrupts
25 MOV SSRAW1,@CSRA ; (update from software register)
26 .ENDC ;EQ XL$PC
27
28 000630 004467 JSR R4,50$; while we remove entries from the

000110
29 000634 177124 .WORD XICQE-60$-Q$LINK ; input queue
30
31 000636 120467 CMPB R4,JNUM ;Is aborting job same as one which

177644
32 ; issued OFFDRV call?
33 000642 001003 BNE 5$;No, so interrupts should still be on
34 000644 005767 TST STATFG ;Should we turn interrupts back on?

177152
35 000650 001002 BNE 10$;Nope...

A–76 RT–11 Device Handlers Manual

36 000652 5$:
37 .IF EQ XL$PC
38 000652 004767 CALL ENAINI ;Turn input interrupts back on

001342
39 .IFF ;EQ XL$PC
40 MOV #RPT.R1,@CSRA ;Select csr A, write register 1
41 BIS #W1.RIE,SSRAW1 ;Turn input interrupts back on
42 MOV SSRAW1,@CSRA ; (update from software register)
43 .ENDC ;EQ XL$PC
44
45 000656 005267 10$: INC QCHG ;Set the ’queue being modified’ flag

000314
46 000662 004467 JSR R4,50$; while we remove entries from the

000056
47 000666 177144 .WORD XOCQE-60$-Q$LINK ; output queue
48 000670 005067 CLR QCHG ;Reset the ’queue being modified’ flag

000302
49
50 000674 120467 CMPB R4,JNUM ;Is aborting job same as one which

177606
51 ;issued OFFDRV call?
52 000700 001003 BNE 15$;No, so interrupts should still be on
53 000702 005767 TST STATFG ;Again, interrupts back on?

177114
54 000706 001002 BNE 30$;Nope...
55 000710 15$:
56 .IF EQ XL$PC
57 000710 004767 CALL ENAOUI ;Turn output interrupts back on

001356
58 .IFF ;EQ XL$PC
59 MOV R5,-(SP) ;Save R5 for awhile
60 CALL GNXTCH ;Get a character for output
61 BEQ 20$;None available...
62 MOVB R5,@DBUF ;Now prime the interrupt pump
63 20$: MOV (SP)+,R5 ;Restore R5
64 .ENDC ;EQ XL$PC
65
66 000714 012600 30$: MOV (SP)+,R0 ;Restore R0
67 000716 005767 TST XLCQE ;Anything to return to RT?

177066
68 000722 001001 BNE 40$;Yes...

Use RETURN if no internally-queued elements are being aborted:

69 000724 000207 RETURN ;Nope, just return
70

Use .DRFIN if any abortable queue elements have been placed on the device queue.

NOTE
Only abortable queue elements should be placed on the
device queue.

71 000726 40$: .DRFIN XL
000726 010704 MOV PC,R4
000730 062704 ADD #XLCQE-.,R4

177060
000734 013705 MOV @#^o54,R5

000054
000740 000175 JMP @^o270(R5)

000270
72
73 ; The following code scans the internal queue for queue elements which
74 ; match the abort criteria (job number for job abort, channel if abort
75 ; by channel). It then dequeues them from the internal queue, returning
76 ; them to the device queue.
77

Internal queuing code. Used to remove abortable queue elements from internal
queues:

DX, DL, and XL Device Handlers A–77

78 000004 SP.CCB = 4 ;Stacked CCB pointer
79 000006 SP.JOB = 6 ;Stacked job number
80
81 000744 010546 50$: MOV R5,-(SP) ;Save CCB pointer
82 000746 012405 MOV (R4)+,R5 ;Pick up the displacement and
83 000750 010446 MOV R4,-(SP) ; store the return address
84 000752 060705 ADD PC,R5 ;Calculate actual address
85 ; (60$ must follow this)
86 000754 010546 60$: MOV R5,-(SP) ;Save the Q header address
87 000756 016504 70$: MOV Q$LINK(R5),R4 ;Link to the next entry

177774
88 000762 001450 BEQ 120$;If zero, no more
89 000764 005766 TST SP.CCB(SP) ;Abort by channel (.ABTIO) ?

000004
90 000770 001405 BEQ 80$;Nope, aborting job...
91 000772 026466 CMP Q$CSW(R4),SP.CCB(SP) ;Yes, this qelement for that channel?

177776
000004

92 001000 001037 BNE 110$;Nope...
93 001002 000412 BR 90$;Yes, go remove it
94
95 001004 116400 80$: MOVB Q$JNUM(R4),R0 ;Get number of job being aborted

000003
96 001010 006200 ASR R0 ; and
97 001012 006200 ASR R0 ; shift
98 001014 006200 ASR R0 ; to
99 001016 042700 BIC #^C<37>,R0 ; isolate job bits

177740
100 001022 020066 CMP R0,SP.JOB(SP) ;Job own this queue element?

000006
101 001026 001024 BNE 110$;Nope...
102 001030 016465 90$: MOV Q$LINK(R4),Q$LINK(R5) ;Yes, unlink it from the list

177774
177774

103 001036 005064 CLR Q$LINK(R4) ;Make sure it doesn’t link anywhere
177774

104 001042 005767 TST XLCQE ;Anything on the queue?
176742

105 001046 001005 BNE 100$;Yes, then link it in at the end
106 001050 010467 MOV R4,XLCQE ;Otherwise, make it the first

176734
107 001054 010467 MOV R4,XLLQE ; and only

176726
108 001060 000736 BR 70$;Check for more elements to abort
109
110 001062 016700 100$: MOV XLLQE,R0 ;R0->element at end of queue

176720
111 001066 010460 MOV R4,Q$LINK(R0) ;Link it to this new one

177774
112 001072 010467 MOV R4,XLLQE ; and make the new one last

176710
113 001076 000727 BR 70$;Check for more elements to abort
114
115 ; Here if element is not part of the aborting job
116
117 001100 010405 110$: MOV R4,R5 ;Skip this element
118 001102 000725 BR 70$;Check for more elements to abort
119
120 ; DeQueue is done, record the new end of the queue
121
122 001104 012604 120$: MOV (SP)+,R4 ;R4->Queue header
123 001106 010564 MOV R5,Q$LINK+2(R4) ;Set the new end of queue

177776
124 001112 012604 MOV (SP)+,R4 ;Recover the return address
125 001114 012605 MOV (SP)+,R5 ;Restore CCB pointer
126 001116 000204 RTS R4
127
128 .DSABL LSB

OUTPUT INTERRUPT SERVICER

A–78 RT–11 Device Handlers Manual

1 .SBTTL OUTPUT INTERRUPT SERVICER
2
3 .IF EQ XL$PC
4 001120 .DRAST XL,XL$PRI,XLDONE
001120 000640 BR XLDONE
001122 004577 XLINT::JSR R5,@$INPTR

001552
001126 000140 .WORD ^C<XL$PRI*^o40>&^o340

5 .IFF ;EQ XL$PC
6 XOINT:
7 .ENDC ;EQ XL$PC
8
9 .ENABL LSB

10

Hook output interrupt entry point:

11 001130 HOINT: ;Output interrupt hook point
12
13 001130 005727 TST (PC)+ ;Is break in progress?
14 001132 000000 BRKFLG: .WORD 0 ; : ’break in progress’ flag (0=no)
15 001134 001030 BNE 30$;Yes, then don’t do any output
16 001136 005727 TST (PC)+ ;Need to send an XON or XOFF?
17 001140 000000 SNDS: .WORD 0 ; : send XON/XOFF flag
18 ; -2 = XON should be sent
19 ; -1 = XOFF should be sent
20 ; 0 = XON has been sent
21 ; 1 = XOFF has been sent
22 001142 100011 BPL 10$;Neither...
23 001144 112705 MOVB #C.CTLQ,R5 ;Assume we are to send an XON

000021
24 001150 062767 ADD #2,SNDS ;Are we correct? (SNDS = 0 if yes)

000002
177762

25 001156 001414 BEQ 20$;Yes, go send it
26 001160 112705 MOVB #C.CTLS,R5 ;No, we must send an XOFF

000023
27 001164 000411 BR 20$;Now go send it
28
29 001166 005727 10$: TST (PC)+ ;Have we been XOFF’d?
30 001170 000000 RECS: .WORD 0 ; : received XOFF flag
31 001172 001011 BNE 30$;Yes, then don’t do any output
32 001174 005727 TST (PC)+ ;No, are output queues being modified?
33 001176 000000 QCHG: .WORD 0 ; : ’queues being modified’ flag
34 001200 001006 BNE 30$;Yes, then don’t do any output
35 001202 004767 CALL GNXTCH ;Go get a character to output

000024
36 001206 001403 BEQ 30$;None available...
37
38 001210 20$:
39 001210 004767 CALL PUTC ;Output the character

001276
40
41 .IF EQ XL$PC
42 .IF NE XL$PDT
43 CALL SETLIT ;Update the PDT lights display
44 .ENDC ;NE XL$PDT
45 001214 000403 BR 40$
46 .ENDC ;EQ XL$PC
47
48 001216 30$:
49 .IF EQ XL$PC
50 001216 004767 CALL DISOUI ;Turn off output interrupts

001022
51 .IFF ;EQ XL$PC
52 MOV #CMD.RT,@CSRA ;Reset transmitter interrupt pending
53 MOV #CMD.EI,@CSRA ;Declare end of interrupt
54 .ENDC ;EQ XL$PC
55
56 001222 000401 BR 50$
57
58 001224 005727 40$: TST (PC)+
59 001226 000261 50$: SEC
60 001230 000207 60$: RETURN
61
62 .DSABL LSB

DX, DL, and XL Device Handlers A–79

GNXTCH - Get next output character

1 .SBTTL GNXTCH - Get next output character
2
3 ;+
4 ;
5 ; GNXTCH
6 ; Obtains the next character from the output queue and returns
7 ; it in R5.
8 ;
9 ; CALL:
10 ; CALL GNXTCH
11 ;
12 ; RETURNS:
13 ; z-bit = 0, R5 contains character to be output
14 ; z-bit = 1, no characters available to output
15 ;
16 ; NOTES:
17 ; As requests are completed, the associated queue elements are
18 ; returned to RT-11.
19 ;
20 ;-
21
22 .ENABL LSB
23
24 001232 016704 GNXTCH: MOV XOCQE,R4 ;R4->current output queue element

176656
25 001236 001426 BEQ 10$;None available...
26
27 .IF EQ MMG$T
28 ADD #Q$WCNT,R4 ;R4->word count
29 TST @R4 ;Any characters left to output?
30 BEQ 20$;Nope, this request is complete
31 INC @R4 ;Yes, now there is one less to do
32 MOVB @-(R4),R5 ;Get the byte to output
33 INC @R4 ;bump pointer to next byte
34 .IFF ;EQ MMG$T
35 001240 005764 TST Q$WCNT(R4) ;Any characters left to output?

000006
36 001244 001424 BEQ 20$;Nope, this request is complete
37 001246 005264 INC Q$WCNT(R4) ;Yes, now there is one less to do

000006
38 001252 004777 CALL @$GTBYT ;Get the byte to output

001412
39 001256 112605 MOVB (SP)+,R5
40 .ENDC ;EQ MMG$T
41
42 001260 046705 BIC CHMASK,R5 ;Strip the undesired bits

176674
43 001264 001762 BEQ GNXTCH ; and nulls are not to be suffered
44 001266 006227 ASR (PC)+ ;Was last character a <CR>?
45 001270 000000 CRFLG: .WORD 0 ; : <CR> flag
46 001272 103003 BCC 5$;Nope...
47 001274 120527 CMPB R5,#C.LF ;Yes, is this character a <LF>?

000012
48 001300 001754 BEQ GNXTCH ;Yes, then suppress it...
49 001302 120527 5$: CMPB R5,#C.CR ;Is this character a <CR>?

000015
50 001306 001002 BNE 10$;Nope...
51 001310 005267 INC CRFLG ;Yes, set the flag

177754
52 001314 000207 10$: RETURN
53
54 001316 005267 20$: INC QCHG ;Set the ’queue being modified’ flag

177654
55
56 .IF EQ XL$PC
57 001322 004767 CALL DISOUI ;Shut off the output

000716
58 .ENDC ;EQ XL$PC
59
60 001326 016704 MOV XOCQE,R4 ;R4->Current output queue element

176562
61 001332 016467 MOV Q$LINK(R4),XOCQE ;Replace top of output queue with

177774
176554

A–80 RT–11 Device Handlers Manual

62 ; next element
63 001340 004767 CALL XLFIN ;Return the element to RT

000572
64 001344 005067 CLR QCHG ;Reset the ’queue being modified’ flag

177626
65
66 .IF EQ XL$PC
67 001350 004767 CALL ENAOUI ;Restart the output

000716
68 .ENDC ;EQ XL$PC
69
70 001354 000726 BR GNXTCH
71
72 .DSABL LSB

INPUT INTERRUPT SERVICER

1 .SBTTL INPUT INTERRUPT SERVICER
2
3 ; This is the input interrupt servicer. Input interrupts are always enabled
4 ; once this driver is called for the first time. Only a "RstDrv" SPFUN
5 ; request will shut off its interrupt enable.
6
7 .IF EQ XL$PC
8 001356 .DRAST XI,XL$PRI
001356 000207 RETURN
001360 004577 XIINT::JSR R5,@$INPTR

001314
001364 000140 .WORD ^C<XL$PRI*^o40>&^o340

9 .IFF ;EQ XL$PC
10 XIINT:
11 .ENDC ;EQ XL$PC
12
13 .ENABL LSB
14

Hook input interrupt entry point:

15 001366 HIINT: ;Input interrupt hook point
16
17 001366 004767 CALL GETC ;Get an input character

001104
18 001372 046705 BIC CHMASK,R5 ;Strip the undesired bits

176562
19 001376 001406 BEQ 10$; and nulls are not to be suffered
20 001400 120527 CMPB R5,#C.CTLS ;Are we being XOFF’d?

000023
21 001404 001004 BNE 20$;Nope...
22 001406 012767 MOV #1,RECS ;Yes, set the ’received XOFF’ flag

000001
177554

23 001414 10$:
24 .IF EQ XL$PC
25 .IF NE XL$PDT
26 CALL SETLIT ;Update the PDT lights display
27 .ENDC ;NE XL$PDT
28 .IFF ;EQ XL$PC
29 MOV #CMD.EI,@CSRA ;Declare end of interrupt
30 .ENDC ;EQ XL$PC
31
32 001414 000207 RETURN
33
34 001416 120527 20$: CMPB R5,#C.CTLQ ;Are we being XON’d?

000021
35 001422 001005 BNE 30$;Nope...
36 001424 005067 CLR RECS ;Yes, reset the ’received XOFF’ flag

177540
37
38 .IF EQ XL$PC
39 001430 004767 CALL ENAOUI ;Get the output going again

000636
40 .IFF ;EQ XL$PC
41 CLR SNDS ;Indicate that an XON has been
42 MOVB #C.CTLQ,@DBUF ; sent
43 .ENDC ;EQ XL$PC
44

DX, DL, and XL Device Handlers A–81

45 001434 000767 BR 10$
46
47 ; Here for characters other than XON (^Q) and XOFF (^S)
48
49 001436 005767 30$: TST XIBFRE ;Any room in the input buffer?

001170
50 001442 001427 BEQ 50$;Nope, go force an XOFF to the host
51
52 ; We have room, so store the character in the ring buffer. It will
53 ; be processed at FORK level.
54
55 001444 016704 MOV XIBIN,R4 ;Yes, R4=offset into buffer

001156
56 001450 .ADDR #XIBUF,R4,ADD ;Add address of start of buffer

001450 060704 ADD PC,R4
001452 062704 ADD #XIBUF-.,R4

001054
57 001456 110514 MOVB R5,@R4 ;Store the character
58 001460 005367 DEC XIBFRE ;Buffer has one less free byte now

001146
59 001464 005267 INC XIBIN ;Bump the offset for next time

001136
60 001470 026727 CMP XIBIN,#BUFSIZ ;Time to wrap?

001132
000100

61 001476 103402 BLO 40$;Nope...
62 001500 005067 CLR XIBIN ;Reset the buffer offset

001122
63
64 ; Here to check for ’low-water’ mark (running out of buffer space)
65
66 001504 026727 40$: CMP XIBFRE,#STPSIZ ;Crossed the ’low-water’ mark yet?

001122
000020

67 001512 101010 BHI 60$;Nope, then go process some input
68 001514 005767 TST SNDS ;Yes, have we already sent an XOFF?

177420
69 001520 003005 BGT 60$;Yes, so go process some input
70
71 ; Here to send an XOFF to the host
72
73 001522 50$:
74 .IF EQ XL$PC
75 001522 012767 MOV #-1,SNDS ;Request an XOFF to be sent

177777
177410

76 001530 004767 CALL ENAOUI ;Turn on output to make sure
000536

77 .IFF ;EQ XL$PC
78 MOV #1,SNDS ;Indicate that an XOFF has been
79 MOVB #C.CTLS,@DBUF ; sent
80 .ENDC ;EQ XL$PC
81
82 ; Here to process some input
83
84 001534 005767 60$: TST XICQE ;Any requests to satisfy?

176334
85 001540 001725 BEQ 10$;No, so just return
86
87 .IF NE XL$PC
88 MOV #CMD.EI,@CSRA ;Declare end of interrupt
89 .ENDC ;NE XL$PC
90
91 001542 .BR XIIN
92
93 .DSABL LSB

PROCESS INPUT RECEIVED FROM INTERRUPT SERVICER

A–82 RT–11 Device Handlers Manual

1 .SBTTL PROCESS INPUT RECEIVED FROM INTERRUPT SERVICER
2
3 .ENABL LSB
4
5 ; This routine runs at fork level. It’s purpose is to remove characters
6 ; from the ring buffer and use them to satisfy input requests.
7
8 001542 005267 XIIN: INC INPRC ;Did someone beat us to this routine?

000254
9 001546 001124 BNE 110$;Yes..
10
11 001550 004767 CALL SAV30

000250
12
13 ; We have the routine. Now we loop to process as much of the input as we can.
14 ; Clear flag to say we own routine and no others can come in. This can be
15 ; done because we are going to check to see if anything is in the input buffer
16 ; after clearing the flag.
17
18 001554 5$:;;; CLR INPRC ;We’re now the owner of this routine
19
.
.
.

22
23 001554 026727 CMP XIBFRE,#RSTSIZ ;Crossed the ’high-water’ mark yet?

001052
000060

24 001562 103410 BLO 10$;Nope...
25 001564 005767 TST SNDS ;Yes, have we already sent an XON?

177350
26 001570 001405 BEQ 10$;Yes...
27
28 .IF EQ XL$PC
29 001572 012767 MOV #-2,SNDS ;No, then request an XON to be sent

177776
177340

30 001600 004767 CALL ENAOUI ;Turn on output to make sure
000466

31 .IFF ;EQ XL$PC
32 CLR SNDS ;Now indicate that an XON has been
33 MOVB #C.CTLQ,@DBUF ; sent
34 .ENDC ;EQ XL$PC
35
36 001604 016704 10$: MOV XICQE,R4 ;Any input requests to satisfy?

176264
37 001610 001500 BEQ 100$;Nope...
38 001612 006227 ASR (PC)+ ;Time to return an EOF?
39 001614 000000 CTZFLG: .WORD 0 ; : EOF flag (^Z)
40 001616 103472 BCS 90$;Yes...
41 001620 026727 CMP XIBFRE,#BUFSIZ ;Anything in the buffer?

001006
000100

42 001626 001471 BEQ 100$;Nope...
43
44 ; Here to remove a character from the input ring buffer
45
46 001630 016705 MOV XIBOUT,R5 ;R5=Offset into buffer for next char.

000774
47 001634 .ADDR #XIBUF,R5,ADD ;Add address of start of buffer

001634 060705 ADD PC,R5
001636 062705 ADD #XIBUF-.,R5

000670
48 001642 111505 MOVB @R5,R5 ;Get a character from the ring buffer
49 001644 005267 INC XIBFRE ;Buffer has one more free byte

000762
50 001650 005267 INC XIBOUT ;Bump offset for next time

000754
51 001654 026727 CMP XIBOUT,#BUFSIZ ;Time to wrap?

000750
000100

52 001662 103402 BLO 20$;Nope...
53 001664 005067 CLR XIBOUT ;Yes, reset the buffer offset

000740
54 001670 105764 20$: TSTB Q$FUNC(R4) ;Special function read?

000002
55 001674 001003 BNE 30$;Yes..

DX, DL, and XL Device Handlers A–83

56 001676 120527 CMPB R5,#C.CTLZ ;No, is character a ^Z?
000032

57 001702 001420 BEQ 40$;Yes, handle it specially
58
59 001704 30$:
60 .IF EQ MMG$T
61 ADD #Q$WCNT,R4 ;R4->Word count
62 MOVB R5,@-(R4) ;Return the character
63 INC (R4)+ ;Bump the buffer pointer
64 DEC @R4 ;Is transfer complete? (z-bit=1 if so)
65 .IFF ;EQ MMG$T
66 001704 110546 MOVB R5,-(SP) ;Return the character
67 001706 004777 CALL @$PTBYT ; ...

000760
68 001712 005364 DEC Q$WCNT(R4) ;Is transfer complete? (z-bit=1 if so)

000006
69 .ENDC ;EQ MMG$T
70
71 001716 001422 BEQ 70$;Yes...
72 001720 026727 CMP XIBFRE,#BUFSIZ ;Anything left in buffer?

000706
000100

73 001726 001312 BNE 5$;Yes, go process it
74 001730 016704 MOV XICQE,R4 ;R4->Input request queue element

176140
75 001734 105764 TSTB Q$FUNC(R4) ;Special request?

000002
76 001740 001705 BEQ 5$;Nope, process some more input
77 001742 000402 BR 50$;Yes, then request is done
78
79 001744 005267 40$: INC CTZFLG ;Set the EOF flag

177644
80
81 001750 50$:
82 .IF EQ MMG$T
83 ADD #Q$WCNT,R4 ;R4->word count
84 60$: CLRB @-(R4) ;Return a zero byte
85 INC (R4)+ ;Bump the buffer pointer
86 DEC @R4 ;Is the transfer complete?
87 BNE 60$;Nope...
88 .IFF ;EQ MMG$T
89 001750 105046 CLRB -(SP) ;Return a zero byte
90 001752 004777 CALL @$PTBYT ; ...

000714
91 001756 005364 DEC Q$WCNT(R4) ;Is the transfer complete?

000006
92 001762 001372 BNE 50$;Nope...
93 .ENDC ;EQ MMG$T
94
95 001764 016704 70$: MOV XICQE,R4 ;R4->Current input queue element

176104
96 001770 016467 MOV Q$LINK(R4),XICQE ;Replace top of input queue with

177774
176076

97 ; next queue element
98 001776 004767 80$: CALL XLFIN ;Return the element to RT

000134
99 002002 000664 BR 5$;And check for more input
100
101 002004 052754 90$: BIS #EOF$,@-(R4) ;Indicate EOF

020000
102 002010 000765 BR 70$;And declare queue element done
103
104 002012 100$:
105 ;;; DEC INPRC ;Did anything else come in while
106 ;;; ; we were otherwise occupied?
107 ;;; BPL 5$;Yes, then go process it
108 002012 012767 MOV #-1,INPRC ;Release the input processing routine

177777
000002

109 002020 000207 110$: RETURN ;Nope, then we’ll retire for awhile
110
111 ; This flag is -1 when no one is executing the XIIN routine.
112 ; It is zero when someone is executing in the XIIN routine.
113 ; It becomes greater than zero to indicate that more input has come
114 ; in while someone was executing the XIIN routine.
115
116 002022 177777 INPRC: .WORD -1

A–84 RT–11 Device Handlers Manual

117
118 .DSABL LSB
119
120 ; The following routine is used by XIIN to simulate the effects of a
121 ; FORK (saving of registers 0-3 and lowering of priority)
122
123 002024 010046 SAV30: MOV R0,-(SP) ;Save some registers
124 002026 010146 MOV R1,-(SP) ; ...
125 002030 010246 MOV R2,-(SP) ; ...
126 002032 010346 MOV R3,-(SP) ; ...
127 002034 016646 MOV 10(SP),-(SP) ;Restack the return address

000010
128 002040 .MTPS #0 ;Lower our priority

002040 005046 CLR -(SP)
002042 112716 MOVB #0,(SP)

000000
002046 013746 MOV @#^o54,-(SP)

000054
002052 062716 ADD #^o360,(SP)

000360
002056 004736 CALL @(SP)+

129 002060 004736 CALL @(SP)+ ;Co-routine back to caller
130 002062 012603 MOV (SP)+,R3 ;Restore the registers
131 002064 012602 MOV (SP)+,R2 ; ...
132 002066 012601 MOV (SP)+,R1 ; ...
133 002070 012600 MOV (SP)+,R0 ; ...
134 002072 005726 TST (SP)+ ;Discard old return address
135 002074 000207 RETURN ; and return to caller’s caller

XLENQ - Place Qelement on internal queue

1 .SBTTL XLENQ - Place Qelement on internal queue
2
3 ;+
4 ;
5 ; XLENQ
6 ; Removes the current Qelement from the device queue and places
7 ; it on an internal queue. It is presumed (by virtue of the way
8 ; RT works) that there will be only one Qelement in the device
9 ; queue.
10 ;
11 ; Call:
12 ; R4 -> Qelement to be queued
13 ;
14 ; JSR R5,Q
15 ; .BLKW ;CQE pointer of internal queue
16 ; .BLKW ;LQE pointer of internal queue
17 ;
18 ; Return:
19 ; Qelement has been removed from the device queue and placed on
20 ; the specified internnal queue.
21 ;
22 ;-
23

Internal queuing code; moves queue element to an internal queue:

24 002076 005067 XLENQ: CLR XLCQE ;Ensure there are no Qelements
175706

25 002102 005067 CLR XLLQE ; on the device queue
175700

26 002106 005715 TST @R5 ;Is our internal queue empty?
27 002110 001003 BNE 10$;Nope...
28 002112 010425 MOV R4,(R5)+ ;Yes, so make it the first
29 002114 010425 MOV R4,(R5)+ ; and last element
30 002116 000205 RTS R5
31
32 002120 005725 10$: TST (R5)+ ;Bump to last element pointer
33 002122 010446 MOV R4,-(SP) ;Save address of new element
34 002124 011504 MOV @R5,R4 ;R4->Last queue element
35 002126 011664 MOV @SP,Q$LINK(R4) ;Link it to the new element

177774
36 002132 012625 MOV (SP)+,(R5)+ ; and make the new element the last
37 002134 000205 RTS R5

DX, DL, and XL Device Handlers A–85

XLFIN - Internal Queue Element Completion

1 .SBTTL XLFIN - Internal Queue Element Completion
2
3 ;+
4 ;
5 ; XLFIN
6 ; Used to inform RT-11 of a Qelement which has completed.
7 ;
8 ; Call:
9 ; R4 -> Completed Qelement
10 ;
11 ; Return:
12 ; Qelement has been returned to RT-11
13 ;
14 ; Note:
15 ; o All registers except R4 are preserved
16 ; o Fake device queue is used to return the Qelement to
17 ; RT-11 to avoid race conditions with the real device
18 ; queue.
19 ; o A CALL to monitor completion is used because there may
20 ; be more to do at this time, we don’t want to lose control
21 ; to the monitor yet.
22 ;
23 ;-
24

Internal queuing code; returns queue element, using fake device queue:

25 002136 010467 XLFIN: MOV R4,XLFCQE ;Queue element we are returning will
000520

26 002142 010467 MOV R4,XLFLQE ; become first and last element
000512

27 002146 005064 CLR Q$LINK(R4) ;Unlink it from everything else
177774

28 002152 .ADDR #XLFCQE,R4 ;R4 -> Fake device queue for passing
002152 010704 MOV PC,R4
002154 062704 ADD #XLFCQE-.,R4

000506
29 ; to DRFIN
30 002160 013705 MOV @#$SYPTR,R5 ;R5->$RMON

000054

Modified form of .DRFIN, used to return queue element to monitor and gain control
when monitor is done. Required for hooks support if queue element completes as a
result of call from multiterminal service:

31 002164 004775 CALL @$QCOMP(R5) ;Inform monitor of I/O completion
000270

32 002170 000207 RETURN
33
34 .IF EQ XL$PC

DISINI - Disable input interrupts
ENAINI - Enable input interrupts

1 .SBTTL DISINI - Disable input interrupts
2 .SBTTL ENAINI - Enable input interrupts
3
4 002172 DISINI:
5 .IF NE XL$MTY
6 002172 105767 TSTB O$MTTY ;Terminal hooks in use?

176312
7 002176 001404 BEQ 10$;Nope...
8 002200 112767 MOVB #-1,ISPND ;Disable input interrupt processing

177777
176304

9 002206 000403 BR 20$
10 .ENDC ;NE XL$MTY
11
12 002210 042777 10$: BIC #RC.IE,@XIS ;Turn off input interrupts

000100

A–86 RT–11 Device Handlers Manual

175714
13 002216 000207 20$: RETURN
14
15 002220 ENAINI:
16 .IF NE XL$MTY
17 002220 105767 TSTB O$MTTY ;Terminal hooks in use?

176264
18 002224 001403 BEQ 10$;Nope...
19 002226 105067 CLRB ISPND ;Enable input interrupt processing

176260
20 002232 000403 BR 20$
21 .ENDC ;NE XL$MTY
22
23 002234 052777 10$: BIS #RC.IE,@XIS ;Turn input interrupts back on

000100
175670

24 002242 000207 20$: RETURN

DISOUI - Disable output interrupts
ENAOUI - Enable output interrupts

1 .SBTTL DISOUI - Disable output interrupts
2 .SBTTL ENAOUI - Enable output interrupts
3
4 002244 DISOUI:
5 .IF NE XL$MTY
6 002244 105767 TSTB O$MTTY ;Terminal hooks in use?

176240
7 002250 001404 BEQ 10$;Nope...
8 002252 112767 MOVB #-1,OSPND ;Disable output interrupt processing

177777
176233

9 002260 000403 BR 20$
10 .ENDC ;NE XL$MTY
11
12 002262 042777 10$: BIC #XC.IE,@XOS ;Disable output interrupts

000100
175646

13 002270 000207 20$: RETURN
14
15 002272 ENAOUI:
16 .IF NE XL$MTY
17 002272 004767 CALL PREMTY ;Prepare for hook

176274
18 002276 001405 BEQ 10$;Terminal hooks not active...
19 002300 105067 CLRB OSPND ;Enable output interrupt processing

176207
20 002304 004777 CALL @MTOENX ; and then enable output interrupts

000334
21 002310 000403 BR 20$
22 .ENDC ;NE XL$MTY
23
24 002312 052777 10$: BIS #XC.IE,@XOS ;Enable output interrupts

000100
175616

25 002320 000207 20$: RETURN

RESBRK - Turn off BREAK
SETBRK - Turn on BREAK

DX, DL, and XL Device Handlers A–87

1 .SBTTL RESBRK - Turn off BREAK
2 .SBTTL SETBRK - Turn on BREAK
3
4 002322 RESBRK:
5 .IF NE XL$MTY
6 002322 004767 CALL PREMTY ;Prepare for hook

176244
7 002326 001404 BEQ 10$;Terminal hooks not active...
8 002330 005000 CLR R0 ;Deassert BREAK
9 002332 004777 CALL @MTYBRX ; ...

000310
10 002336 000403 BR 20$
11 .ENDC ;NE XL$MTY
12
13 002340 042777 10$: BIC #XC.BRK,@XOS ;Deassert BREAK

000001
175570

14 002346 000207 20$: RETURN
15
16 002350 SETBRK:
17 .IF NE XL$MTY
18 002350 004767 CALL PREMTY ;Prepare for hook

176216
19 002354 001405 BEQ 10$;Terminal hooks not active...
20 002356 012700 MOV #XC.BRK,R0 ;Assert BREAK

000001
21 002362 004777 CALL @MTYBRX ; ...

000260
22 002366 000403 BR 20$
23 .ENDC ;NE XL$MTY
24
25 002370 052777 10$: BIS #XC.BRK,@XOS ;Assert BREAK

000001
175540

26 002376 000207 20$: RETURN

GETSTT - Get line status
RESSTT - Reset line state bits
SETSTT - Set line state bits

1 .SBTTL GETSTT - Get line status
2 .SBTTL RESSTT - Reset line state bits
3 .SBTTL SETSTT - Set line state bits
4
5 ;+
6 ;
7 ; GETSTT
8 ; Returns the current line status
9 ;
10 ; Call:
11 ; none
12 ;
13 ; Return:
14 ; R0 = Line status
15 ;
16 ; Note:
17 ; R3 is altered
18 ;
19 ;-
20
21 002400 GETSTT:
22 .IF NE XL$MTY
23 002400 004767 CALL PREMTY ;Prepare for hook

176166
24 002404 001403 BEQ 10$;Terminal hooks not active...
25 002406 004777 CALL @MTYSTX ;Get current line status

000240
26 002412 000402 BR 20$
27 .ENDC ;NE XL$MTY
28
29 002414 017700 10$: MOV @XIS,R0 ;R0 = Current line status

175512
30 002420 000207 20$: RETURN
31
32 ;+

A–88 RT–11 Device Handlers Manual

33 ;
34 ; RESSTT
35 ; Deasserts line state bits
36 ;
37 ; Call:
38 ; R0 = Bits to deassert
39 ;
40 ; Return:
41 ; R0 = Updated line status
42 ;
43 ; Note:
44 ; o R3 is altered
45 ;
46 ; o Unlike SETSTT, which sets the bits as specified,
47 ; this routine first reads the status and then
48 ; deasserts the undesired bits.
49 ;
50 ;-
51
52 002422 010046 RESSTT: MOV R0,-(SP) ;Save bits to deassert
53 002424 004767 CALL GETSTT ;Get current status

177750
54 002430 042600 BIC (SP)+,R0 ;deassert the desired bits
55
56 .IF NE XL$MTY
57 002432 004767 CALL PREMTY ;Prepare for hook

176134
58 002436 001403 BEQ 10$;Terminal hooks not active...
59 002440 004777 CALL @MTYCTX ;Yes, set new line state

000204
60 002444 000402 BR 20$
61 .ENDC ;NE XL$MTY
62
63 002446 010077 10$: MOV R0,@XIS ;Set new line status

175460
64 002452 000207 20$: RETURN
65
66 ;+
67 ;
68 ; SETSTT
69 ; Asserts line state bits
70 ;
71 ; Call:
72 ; R0 = Bits to assert
73 ;
74 ; Return:
75 ; R0 = Updated line status
76 ;
77 ; Note:
78 ; o R3 is altered
79 ;
80 ; o Unlike RESSTT, which first reads the status and
81 ; deasserts the undesired bits, this routine simply
82 ; asserts the desired bits.
83 ;
84 ;-
85
86 002454 SETSTT:
87 .IF NE XL$MTY
88 002454 004767 CALL PREMTY ;Prepare for hook

176112
89 002460 001403 BEQ 10$;Terminal hooks not active...
90 002462 004777 CALL @MTYCTX ;Yes, set desired bits

000162
91 002466 000402 BR 20$
92 .ENDC ;NE XL$MTY
93
94 002470 050077 10$: BIS R0,@XIS ;Set new line status

175436
95 002474 000207 20$: RETURN
96
97 .ENDC ;EQ XL$PC

GETC - Input a character
PUTC - Output a character

DX, DL, and XL Device Handlers A–89

1 .SBTTL GETC - Input a character
2 .SBTTL PUTC - Output a character
3
4 ;+
5 ;
6 ; GETC
7 ; Gets a character from the interface.
8 ;
9 ; Return:
10 ; R5 = Character
11 ;
12 ; Note:
13 ; In the case of call during multiterminal hook operation,
14 ; the character is already in R5 due to the multiterminal
15 ; input interrupt service code.
16 ;
17 ;-
18
19 002476 GETC:
20 .IF NE XL$MTY
21 002476 105767 TSTB O$MTTY ;Terminal hooks in use?

176006
22 002502 001002 BNE 10$;Yep, bypass normal DL input
23 .ENDC ;NE XL$MTY
24
25 .IF EQ XL$PC
26 002504 117705 MOVB @XIB,R5 ;R5 = Character

175424
27 .IFF ;EQ XL$PC
28 MOVB @DBUF,R5 ;Get a character from input
29 .ENDC ;EQ XL$PC
30
31 002510 000207 10$: RETURN
32
33 ;+
34 ;
35 ; PUTC
36 ; Puts a character to the interface.
37 ;
38 ; Call:
39 ; R5 = Character
40 ;
41 ; Note:
42 ; In the case of call during multiterminal hook operation,
43 ; the character is already in R5 due to the multiterminal
44 ; input interrupt service code.
45 ;
46 ;-
47
48 002512 PUTC:
49 .IF NE XL$MTY
50 002512 105767 TSTB O$MTTY ;Terminal hooks in use?

175772
51 002516 001002 BNE 10$;Yep, bypass normal DL output
52 .ENDC ;NE XL$MTY
53
54 .IF EQ XL$PC
55 002520 110577 MOVB R5,@XOB ;Output the character

175414
56 .IFF ;EQ XL$PC
57 MOVB R5,@DBUF ;Output the character
58 .ENDC ;EQ XL$PC
59
60 002524 000207 10$: RETURN

INPUT BUFFER AREA

1 .SBTTL INPUT BUFFER AREA
2

Internal receive buffer:

A–90 RT–11 Device Handlers Manual

3 ; Reserve space for the input buffer and data to manage the input buffer
4
5 002526 XIBUF: .BLKB BUFSIZ ;Input buffer
6 002626 000000 XIBIN: .WORD 0 ;’Next Character In’ offset
7 002630 000000 XIBOUT: .WORD 0 ;’Next Character Out’ offset
8 002632 000100 XIBFRE: .WORD BUFSIZ ;Number of free bytes in buffer
9
10 ; Define areas for fork blocks used by the interrupt servicers
11
12 002634 000000 DQFBLK: .WORD 0,0,0,0

002636 000000
002640 000000
002642 000000

13
14 .IF NE XL$MTY
15

Handler hooks code; pointers loaded by LOAD code, used to reach hooks routines in
multiterminal monitor:

16 ; Multiterminal handler hooks pointers
17
18 002644 MTOENX: .BLKW ; : -> Output enable routine
19 002646 MTYBRX: .BLKW ; : -> Break control routine
20 002650 MTYCTX: .BLKW ; : -> Line control routine
21 002652 MTYSTX: .BLKW ; : -> Line status routine
22 002654 TCBADX: .BLKW ; : -> TCB we’re attached to
23 .ENDC ;NE XL$MTY
24
25 ; Fake queue header for returning completed Qelements
26

Internal queuing—fake device queue. Zero word required to simulate non-held
handler:

27 002656 000000 .WORD 0
28 002660 XLFLQE: .BLKW
29 002662 XLFCQE: .BLKW
30
31 002664 .DREND XL

002664 000000 $RLPTR::.WORD 0
002666 000000 $MPPTR::.WORD 0
002670 000000 $GTBYT::.WORD 0
002672 000000 $PTBYT::.WORD 0
002674 000000 $PTWRD::.WORD 0
002676 000000 $TIMIT::.WORD 0
002700 000000 $INPTR::.WORD 0
002702 000000 $FKPTR::.WORD 0

32
33 .IF EQ XL$PC

LOAD - Handler FETCH/LOAD code

1 .SBTTL LOAD - Handler FETCH/LOAD code
2
3 ;+
4 ;
5 ; LOAD
6 ; This routine is entered on FETCH or LOAD of the XL handler
7 ; and is used 1) to verify use of the handler in the specific
8 ; configuration and, if needed, 2) to establish the required
9 ; connections between the handler and the interrupt service of
10 ; a monitor with support for multiterminal handler hooks.
11 ;
12 ;-
13
14 .ENABL LSB
15
16 002704 FETCH::
17 002704 LOAD::
18 002704 010567 MOV R5,ENTRY$;Save entry point

000314
19 002710 010267 MOV R2,SLOT$; and table size

000312

DX, DL, and XL Device Handlers A–91

20 002714 011505 MOV @R5,R5 ;R5 -> Base of handler (in memory)
21 002716 013700 MOV @#$SYPTR,R0 ;R0 -> Base of RMON

000054
22

Hooks code. Establishes linkages between handler and TCB:

23 .IF NE XL$MTY
24 002722 105765 TSTB <O$MTTY-XLLQE>(R5) ;Terminal hooks to be used?

000502
25 002726 001463 BEQ 20$;Then use normal DL
26 002730 016001 MOV $THKPT(R0),R1 ;R1 -> Multiterminal handler hooks

000000G
27 ; data structure in RMON
28 002734 001531 BEQ 60$;Monitor doesn’t have the support...
29 002736 105721 TSTB (R1)+ ;Bypass structure size byte
30 002740 112102 MOVB (R1)+,R2 ;R2 = Number of LUNs on system
31 002742 012103 MOV (R1)+,R3 ;R3 -> TCB list
32 002744 012165 MOV (R1)+,<MTOENX-XLLQE>(R5) ;Set pointer to output enable routine

002636
33 002750 012165 MOV (R1)+,<MTYBRX-XLLQE>(R5) ;Set pointer to Break control routine

002640
34 002754 012165 MOV (R1)+,<MTYCTX-XLLQE>(R5) ;Set pointer to Control routine

002642
35 002760 012165 MOV (R1)+,<MTYSTX-XLLQE>(R5) ;Set pointer to Status routine

002644
36 002764 116500 MOVB <O$LINE-XLLQE>(R5),R0 ;R0 = Line to attach to

000503
37 002770 100513 BMI 60$;Must be a positive number
38 002772 120002 CMPB R0,R2 ;Is line in this configuration?
39 002774 002111 BGE 60$;Nope, invalid line number
40 002776 006300 ASL R0 ;Shift for word offset into TCB list
41 003000 060003 ADD R0,R3 ;R3 -> TCB list entry
42 003002 011303 MOV @R3,R3 ;R3 -> TCB for LUN
43 003004 005763 TST T.CSR(R3) ;Is the line present in hardware?

000016
44 003010 001503 BEQ 60$;Nope...
45 003012 005763 TST T.STAT(R3) ;Is the line a console?

000014
46
47 003016 .Assume CONSL$ EQ 100000
48 003016 100500 BMI 60$;Yes...
49 003020 010500 MOV R5,R0 ;R0 -> Handler hook routine
50 003022 062700 ADD #<XLHOOK-XLLQE>,R0 ; ...

000510
51 003026 005763 TST T.OWNR(R3) ;Is the line already attached?

000012
52 003032 001403 BEQ 10$;Nope...
53 003034 020063 CMP R0,T.OWNR(R3) ;Yes, to this handler?

000012
54 003040 001067 BNE 60$;Nope...
55 003042 016701 10$: MOV ENTRY$,R1 ;R1 -> $ENTRY entry

000156
56 003046 166701 SUB SLOT$,R1 ;R1 -> $PNAME ENTRY

000154
57 003052 011160 MOV @R1,-2(R0) ;Inform handler of its physical name,

177776
58 003056 010365 MOV R3,<TCBADX-XLLQE>(R5) ; link the handler to the TCB

002646

HANMC$ disables RT–11 processing of modem control; handler will process modem:

59 003062 052763 BIS #<HANMT$!HANMC$>,T.STAT(R3) ; declare line owned by handler
000000C
000014

60 ; and that handler will process modem,
61 003070 010063 MOV R0,T.OWNR(R3) ; finally link the TCB to the handler

000012
62 003074 000450 BR 50$
63 .ENDC ;NE XL$MTY
64

The following code protects against vector corruption. Won’t allow use of handler in
NOMTTY mode if CSR or vector conflicts with a line in multiterminal configuration:

A–92 RT–11 Device Handlers Manual

65 003076 032760 20$: BIT #MTTY$,$SYSGE(R0) ;Is this a multiterminal monitor?
020000
000372

66 003104 001444 BEQ 50$;Nope, then there can’t be a conflict
67 003106 .ADDR #MTAREA,R0 ;R0 -> .MTSTAT EMT area

003106 010700 MOV PC,R0
003110 062700 ADD #MTAREA-.,R0

000120
68 003114 .ADDR #MTSTAT,R1 ;R1 -> Status block

003114 010701 MOV PC,R1
003116 062701 ADD #MTSTAT-.,R1

000120
69 003122 .MTSTA R0,R1 ;Get info about multiterminal system

003122 012710 MOV #31.*^o400+8.,@R0
017410

003126 010160 MOV R1,2.(R0)
000002

003132 005060 CLR 4.(R0)
000004

003136 104375 EMT ^o375
70 003140 103427 BCS 60$;Errors?
71 003142 013700 MOV @#$SYPTR,R0 ;R0 -> $RMON

000054
72 003146 016701 MOV MTSTAT,R1 ;R1 -> First TCB in system

000064
73 003152 060001 ADD R0,R1 ; ...
74 003154 016702 MOV MTSTAT+MST.LU,R2 ;R2 = Highest LUN on the system

000062
75 ; (Number_of_LUNs - 1)
76 003160 005761 30$: TST T.CSR(R1) ;Is this a configured line?

000016
77 003164 001410 BEQ 40$;Nope...
78 003166 026561 CMP <XIS-XLLQE>(R5),T.CSR(R1) ;Will use of the CSR conflict?

000124
000016

79 003174 001411 BEQ 60$;Yes, reject the load
80 003176 026561 CMP <XL$VTB-XLLQE>(R5),T.VEC(R1) ;Will use of the VECTOR conflict?

000134
000020

81 003204 001405 BEQ 60$;Yes, reject the load
82 003206 066701 40$: ADD MTSTAT+MST.ST,R1 ;On to next TCB

000032
83 003212 005302 DEC R2 ;More TCB’s to check?
84 003214 002361 BGE 30$;Yep...
85 003216 .BR 50$;Nope, use of interface won’t conflict
86
87 003216 005727 50$: TST (PC)+ ;Success return
88 003220 000261 60$: SEC ;Error return
89 003222 000207 RETURN
90
91 003224 ENTRY$: .BLKW ; : -> $ENTRY table entry
92 003226 SLOT$: .BLKW ; : Size of a monitor handler table
93
94 003230 MTAREA: .BLKW 3 ; : EMT area for .MTSTAT
95 003236 MTSTAT: .BLKW 8. ; : Status block from .MTSTAT
96
97 .DSABL LSB
98
99 .ENDC ;EQ XL$PC

UNLOAD - UNLOAD/.RELEASE CODE

1 .SBTTL UNLOAD - UNLOAD/.RELEASE CODE
2
3 ;+
4 ; UNLOAD
5 ; On entry due to unload command, verifies interrupts have been
6 ; disabled unless the handler is still in use, indicated by
7 ; non-empty internal queues.
8 ;
9 ; On entry due to .RELEASE directive,disable interrupts
10 ;
11 ;-
12
13 .ENABL LSB
14

DX, DL, and XL Device Handlers A–93

Prevents unload if internal queues are not empty:

15 003256 UNLOAD::
16 003256 011505 MOV @R5,R5 ;R5 -> Handler entry point (XLLQE)
17 003260 005765 TST <STATFG-XLLQE>(R5) ;Is handler in use?

000014
18 003264 001013 BNE 10$;Nope, it can be unloaded...
19 003266 016546 MOV <XICQE-XLLQE>(R5),-(SP) ;Check internal queues

000066
20 003272 056526 BIS <XOCQE-XLLQE>(R5),(SP)+ ; ...

000106
21 003276 001405 BEQ RELEAS ;They’re empty...
22 003300 .ADDR #NOUNLO,R0 ;R0 -> Error message string

003300 010700 MOV PC,R0
003302 062700 ADD #NOUNLO-.,R0

000106
23 ; (KMON reports error)
24 003306 000261 SEC ;Indicate error
25 003310 000207 RETURN ; and return to KMON
26
27 003312 RELEAS::
28 003312 011505 MOV @R5,R5 ;R5 -> Handler entry point (XLLQE)
29 003314 10$:
30 .IF EQ XL$PC
31 .IF NE XL$MTY

Handler hooks code; disconnects TCB and handler:

32 003314 105765 TSTB <O$MTTY-XLLQE>(R5) ;Terminal hooks in use?
000502

33 003320 001420 BEQ 20$;Nope...
34 003322 016501 MOV <TCBADX-XLLQE>(R5),R1 ;R1 -> TCB we’re hooked to

002646
35 003326 001426 BEQ 30$;We’re not...
36 003330 004765 CALL <DISINI-XLLQE>(R5) ;Disable input

002164
37 003334 004765 CALL <DISOUI-XLLQE>(R5) ; and output interrupts

002236
38 003340 005000 CLR R0 ;Deassert all modem control bits
39 003342 004765 CALL <SETSTT-XLLQE>(R5) ; ...

002446
40 003346 005061 CLR T.OWNR(R1) ;Disconnect TCB from handler

000012
41 003352 042761 BIC #<HANMT$!HANMC$>,T.STAT(R1) ; ...

000000C
000014

42 003360 000411 BR 30$
43 003362 20$:
44 .ENDC ;NE XL$MTY
45 003362 016501 MOV <XIS-XLLQE>(R5),R1 ;R1->Device register base

000124
46 003366 042711 BIC #RC.IE,@R1 ;Turn off input and

000100
47 003372 042761 BIC #XC.IE,4(R1) ;Output interrupts

000100
000004

48 003400 042711 BIC #RC.DTR,@R1 ;Now turn off DTR
000002

49 .IFF ;EQ XL$PC
50 MOV #RPT.R1,@#XL$CSA ;Select csr A,write register 1
51 CLR @#XL$CSA ;Turn off input and output interrupts
52 BIC #<M0.DTR>,@#XL$MC0 ;Now turn off DTR
53 .ENDC ;EQ XL$PC
54
55 003404 000241 30$: CLC
56 003406 000207 RETURN
57
58 003410 NOUNLO: .NLCSI TYPE=I,PART=PREFIX

003410 077 .ASCII "?XL-"
.
.
.

59 003414 106 .ASCIZ "F-Handler may not be unloaded while in use"
.
.
.

A–94 RT–11 Device Handlers Manual

60
61 .DSABL LSB
62
63 000001 .END

Symbol table

ABTIO$ 001000 DVM.NS 000001 JNUM 000506R 002
BATCH$ 000010 DV2.V2 040000 JOBMK 000370
BRKDRV= 000202 DZ11$ 010000 KT11$ 010000
BRKFLG 001132R 002 EIS$ 000400 KW11P$ 040000
BUFSIZ= 000100 ENAINI 002220R 002 KXCPU$ 004000
BUS$ 000100 ENAOUI 002272R 002 LDREL$ 000020
BUS$C 020000 ENTRY$ 003224R 002 LIGHT$ 000010
BUS$M 020100 EOF$ 020000 LKCS$ 020000
BUS$Q 000100 ERLG$ 000001 LOAD 002704RG 002
BUS$U 000000 ERL$G = 000000 LSI11$ 004000
BUS$X 020100 FBMON$ 000001 MMGT$ 000002
CACHE$ 000001 FETCH 002704RG 002 MMG$T = 000001
CHMASK 000160R 002 FILL$ 000001 MPTYS$ 001000
CIS$ 000200 FILST$ 100000 MPTY$ 000002
CLK50$ 000040 FIX$ED= 000001 MST.CT 000002
CLOCK$ 100000 FJOB$ 000200 MST.LU 000004
CLRDRV= 000201 FPU11$ 000400 MST.ST 000006
CONSL$ 100000 GETC 002476R 002 MST.SZ 000020
CRFLG 001270R 002 GETSTT 002400R 002 MST.1T 000000
CSRSAV 000250 GNXTCH 001232R 002 MTAREA 003230R 002
CTRLC$ 040000 GSCCA$ 010000 MTOENX 002644R 002
CTRLU$ 000002 GTLNK$ 000400 MTSTAT 003236R 002
CTZFLG 001614R 002 HANMC$= ****** GX MTTY$ 020000
C.CR = 000015 HANMT$= ****** GX MTYBRX 002646R 002
C.CTLQ= 000021 HDERR$ 000001 MTYCTX 002650R 002
C.CTLS= 000023 HIINT 001366R 002 MTYSTX 002652R 002
C.CTLZ= 000032 HNDLR$ 004000 NOUNLO 003410R 002
C.LF = 000012 HNGUP$ 004000 OFFDRV= 000205
DBGSY$ 002000 HOINT 001130R 002 OSPND 000513R 002
DH11$ 020000 HS2.BI 000001 O$LINE 000511R 002
DISCSR 000174 HS2.KI 000002 O$MTTY 000510R 002
DISINI 002172R 002 HS2.KL 000004 O.CSR 000442
DISOUI 002244R 002 HS2.KU 000010 O.ERR 000616
DOC$UN= 000000 HS2.MO 000020 O.LINE 000534
DQFBLK 002634R 002 HWDSP$ 000004 O.MTTY 000546
DTACH$ 000020 HWFPU$ 000100 O.NOR 000614
DTRDRV= 000206 H1.ABT 001002 O.VEC 000514
DVC.CT 000006 H1.BR 001014 PAGE$ 000200
DVC.DE 000010 H1.CQE 001010 PDP60$ 100000
DVC.DK 000004 H1.FG2 001016 PDP70$ 040000
DVC.DL 000012 H1.FLG 001010 PREMTY 000572R 002
DVC.DP 000011 H1.HLD 001004 PROS$ 020000
DVC.LP 000007 H1.LDT 001024 PS 177776
DVC.MT 000005 H1.LQE 001006 PUTC 002512R 002
DVC.NI 000013 H1.NDF 001026 P1$EXT 000432
DVC.NL 000001 H1.NOP 001012 QCHG 001176R 002
DVC.PS 000014 H1.SCK 001020 QUEUE$ 002000
DVC.SB 000020 H1.SDF 001022 Q$BLKN 000000
DVC.SI 000016 H1.VEC 001000 Q$BUFF 000004
DVC.SO 000017 INCV$ 000400 Q$COMP 000010
DVC.TP 000003 INEXP$ 000100 Q$CSW 177776
DVC.TT 000002 INPRC 002022R 002 Q$FUNC 000002
DVC.UK 000000 INSCSR 000176 Q$JNUM 000003
DVC.VT 000015 INSDAT 000200 Q$LINK 177774
DVM.DM 000002 INSSYS 000202 Q$MEM 000014
DVM.DX 000001 ISPND 000512R 002 Q$PAR 000012
DVM.NF 000200 I$MTTY 000244 Q$UNIT 000003
Q$WCNT 000006 THK.OE 000004 XIBUF 002526R 002
Q.BLKN 000004 THK.ST 000012 XICQE 000074R 002
Q.BUFF 000010 THK.SZ 000014 XIIN 001542R 002
Q.COMP 000014 THK.TC 000002 XIINT 001360RG 002
Q.CSW 000002 TH.GOC 000001 G XILQE 000076R 002
Q.ELGH 000024 TH.PIC 000002 G XIS 000132R 002
Q.FUNC 000006 TIMER$ 002000 XITSW$ 000040
Q.JNUM 000007 TIMIT$ 000004 XLCQE 000010RG 002
Q.LINK 000000 TIM$IT= 000001 XLDONE 000622R 002
Q.MEM 000020 TSXP$ 100000 XLDSIZ 000000
Q.PAR 000016 TTBF$I 000206 XLEND = 002704RG 002
Q.UNIT 000007 TTBF$O 000050 XLENQ 002076R 002

DX, DL, and XL Device Handlers A–95

Q.WCNT 000012 T.CNFG 000000 XLFCQE 002662R 002
RC.CD = 010000 T.CNF2 000002 XLFIN 002136R 002
RC.CTS= 020000 T.CSR 000016 XLFLQE 002660R 002
RC.DTR= 000002 T.FCNT 000005 XLHOOK 000516R 002
RC.IE = 000100 T.ICTR 000044 XLINT 001122RG 002
RC.RI = 040000 T.IGET 000046 XLLQE 000006RG 002
RC.RTS= 000004 T.IPUT 000042 XLPNAM 000514R 002
READ 000070R 002 T.IRNG 000040 XLSTRT 000000RG 002
RECS 001170R 002 T.ITOP 000050 XLSTS 007057
RELEAS 003312RG 002 T.JOB 000024 XLSYS 000006RG 002
RESBRK 002322R 002 T.LPOS 000011 XL$COD 000057
RESSTT 002422R 002 T.NFIL 000026 XL$CSR= 176500 G
RONLY$ 040000 T.OCHR 000010 XL$DVE= 000000
RSTSIZ= 000060 T.OCTR 000262 XL$END 002664RG 002
RTEM$ 000010 T.OGET 000264 XL$LUN= 000001
RTE$M = 000000 T.OPUT 000260 XL$MTY= 000001
SAV30 002024R 002 T.OTOP 000266 XL$NAM= 113740
SETBRK 002350R 002 T.OWNR 000012 XL$PC = 000000
SETSTT 002454R 002 T.PRI 000022 XL$PDP= 000001
SHARE$ 002000 T.PTTI 000027 XL$PDT= 000000
SLEDI$ 000020 T.PUN 000025 XL$PRI= 000004
SLKMO$ 000002 T.STAT 000014 XL$SBC= 000000
SLOT$ 003226R 002 T.TCTF 000030 XL$SPC= 000001
SNDS 001140R 002 T.TFIL 000004 XL$VEC= 000300 G
SPECL$ 010000 T.TID 000032 XL$VTB 000142RG 002
SPFUN 000162R 002 T.TNFL 000031 XOB 000140R 002
SPFUN$ 002000 T.TTLC 000036 XOCQE 000114R 002
SP.CCB= 000004 T.VEC 000020 XOLQE 000116R 002
SP.JOB= 000006 T.WID 000006 XOS 000136R 002
SRDDRV= 000203 UNITMK 000007 $BLKEY 000256
STASK$ 040000 UNLOAD 003256RG 002 $CHKEY 000260
STATFG= 000022R 002 USR$ 001000 $CNFG1 000300
STPSIZ= 000020 VARSZ$ 000400 $CNFG2 000370
STSDRV= 000204 VECSAV 000246 $CNFG3 000466
ST.CD = 000010 VIRTV$ 105372 $CNTXT 000320
ST.CTS= 000004 VS6$0 001000 $CSW 000004
ST.RI = 000020 WONLY$ 020000 $DATE 000262
ST.XFH= 000001 WRITE 000104R 002 $DECNT 000474
ST.XOF= 000002 WRWT$ 000040 $DFLG 000264
SWREG$ 000004 XC.BRK= 000001 $DWTYP 000440
TCBADX 002654R 002 XC.IE = 000100 $ELTIM 000422
THK.BK 000006 XIB 000134R 002 $EMTRT 000400
THK.CT 000010 XIBFRE 002632R 002 $ERRBY 000052
THK.LE 000000 XIBIN 002626R 002 $ERRCN 000356
THK.NU 000001 XIBOUT 002630R 002 $ERRLE 000376
$EXTIN 000416 $QHOOK 000456 $USRRB 000053
$E16LS 000316 $RLPTR 002664RG 002 $USRSP 000042
$FKPTR 002702RG 002 $RMON 000000 $USRTO 000050
$FORK 000402 $RM2CO 000472 $VIRT 000000
$GETVE 000436 $RTSPC 000464 $VIRTO 000002
$GTBYT 002670RG 002 $SCROL 000302 $WILDD 000454
$GTVEC 000354 $SLOT2 000502 $XTTPB 000500
$HSUFF 000412 $SPSIZ 000504 $XTTPS 000476
$H2CA 000462 $SPSTA 000414 $$$VER= 000022 G
$H2UB 000460 $SPUSR 000272 .AUDIT 107123 G
$IFMXN 000377 $STATW 000366 .XL 000044 G
$IMPLO 000446 $SYCOM 000040 .XLGEN= 000020 G
$INCH 000007 $SYIND 000364 ...V1 = 000003
$INCL 000006 $SYNCH 000324 ...V10= 000100
$INDDV 000426 $SYPTR 000054 ...V11= 000200
$INDST 000417 $SYSCH 000244 ...V12= 000200
$INPTR 002700RG 002 $SYSGE 000372 ...V13= 000000
$JOBNU 000322 $SYSUP 000277 ...V14= 000000
$JOBS 000455 $SYSVE 000276 ...V15= 000176
$JSW 000044 $SYUNI 000274 ...V16= 000000
$JSX 000004 $TCFIG 000424 ...V17= 000000
$KMONI 000450 $THKPT= ****** GX ...V18= 000000
$LOWMA 000326 $TIMIT 002676RG 002 ...V19= 000000
$MAXBL 000314 $TRPLS 000434 ...V2 = 000000
$MEMPT 000430 $TRPSE 000442 ...V20= 000000
$MEMSZ 000420 $TTFIL 000056 ...V21= 000000
$MFPS 000362 $TTKB 000306 ...V22= 000000
$MONAM 000406 $TTKS 000304 ...V27= 000000
$MPPTR 002666RG 002 $TTNFI 000057 ...V28= 001714
$MTPS 000360 $TTPB 000312 ...V3 = 000170
$NULJB 000444 $TTPS 000310 ...V4 = 000000
$PNPTR 000404 $TT2RM 000470 ...V5 = 000116
$PROGD 000452 $UFLOA 000046 ...V6 = 001714

A–96 RT–11 Device Handlers Manual

$PROGF 000453 $USRAR 000374 ...V9 = 000017
$PTBYT 002672RG 002 $USRLC 000266 ...V97= 000014
$PTWRD 002674RG 002 $USRLO 000352 ...V98= 000000
$QCOMP 000270 $USRPC 000040 ...V99= 177777

. ABS. 000622 000 (RW,I,GBL,ABS,OVR)
000000 001 (RW,I,LCL,REL,CON)

XLDVR 003467 002 (RW,I,LCL,REL,CON)
Errors detected: 0

DX, DL, and XL Device Handlers A–97

