RT-11 Device Handlers Manual

Order Number AA-PE7VA-TC

August 1991

This manual describes the structure of device handlers, how to write your own device
handler, and provides specific programming information about distributed RT-11 device

handlers.

Revision/Update Information: This is a new manual for programmers; it is a complete
revision of the information previously located in Chapters
7 and 10 of the RT-11 Software Support Manual.

Operating System: RT-11 Version 5.6

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, August 1991

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this
document.

Any software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license. No responsibility is assumed for the use or reliability of
software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as

set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

© Digital Equipment Corporation 1991
All rights reserved. Printed in U.S.A.

The Reader’s Comments form at the end of this document requests your critical evaluation to assist in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation: CTS-300, DDCMP, DECnet, DECUS,
DECwrite, DIBOL, MASSBUS, MicroPDP-11, Micro/RSX, PDP, Professional, Q-bus, RSTS, RSX, RT-
11, RTEM-11, UNIBUS, VMS, VT, and the DIGITAL logo.

S559

This document was prepared using VAX DOCUMENT, Version 1.2.

Contents

Preface

xi

Chapter 1 Device Handlers

1.1 How to Plan a Device Handler
Get to Know Your Device
Study the Structure of a Standard Device Handler
Study the Skeleton Device Handler
Think About Using the Special Features
Study the Sample Handlers
Prepare a Flowchart of the Device Handler
Writethe Code
Install, Test, and Debug the Handler
1.2 Structure of a Device Handler

1.1.1
1.1.2
1.1.3
114
1.1.5
1.1.6
1.1.7
1.1.8

1.2.1
1.2.11
1.2.1.11
1.2.1.1.2
1.2.1.1.3
1.2.1.14
1.2.1.15
1.2.1.1.6
1.2.1.2
1.2.1.3
1.2.14
1.2.15
1.2.1.6
1.2.1.7
1.2.1.8
1.2.1.9
1.2.2
1.2.2.1
1.2.2.2
1.2.2.3
1.2.3
1.2.3.1
1.2.3.2
1.23.2.1
1.2.3.2.2

Preamble Section
.DRDEF Macro

System Conditionals
Queue Element Offsets
Symbol Definitions
Device-Identifier Byte
Device Status Word
Device Size Word

.DREST Macro
.DRINS Macro
.DRPTR Macro
.DRSPF Macro
.DRTAB Macro
.DRUSE Macro
.DRSET Macro

Information in File Image Block 0
Header Section........................

.DRBEG Macro

Multivector Handlers: .DRVTB Macro
Information in File Image Block 1
I/O Initiation Section
Guidelines for Starting the Data Transfer
Transferring the Data
Byte Transfer from the User Buffer to the Device
Byte Transfer from the Device to the User Buffer

......................... 1-2

............................. 14

1.2.3.2.3 Word Transfer from the Device to the User Buffer. 1-23

1.2.3.24 Non-DMA Transfers e e 1-24
1.2.3.2.5 DMA Transfers.t e e e e e 1-24
1.24 Interrupt Service Section e 1-24
1.24.1 DRAST Macro . ..ot e e e 1-25
1.2.4.2 Abort Entry Point e 1-25
1.2.4.3 Lowering the Priority to Device Priority 1-26
1.244 Guidelines for Coding the Interrupt Service Section 1-26
1.2.5 I/O Completion Section e 1-28
1.2.6 Handler Termination Section 1-29
1.2.6.1 DREND Macro e e e e e e 1-29
1.2.7 Pseudodevices 1-29
1.2.8 Handler Data Structures Related to Block 0 1-30
1.2.8.1 Handler Service Routine Environment. 1-30
1.2.8.2 Special Function Code Support Table (H.SPFx) 1-34
1.2.8.3 Bad-Block Replacement Geometry Table (HREPL) 1-35
1.2.84 Bad-Block Replacement Table (HB.BAD) 1-36
1.2.8.5 Second Handler Status Word (H.STS2) 1-36
1.2.8.6 Handler SYSGEN Options Byte (H GEN) 1-37
1.2.8.7 Handler Internal Data Table and Descriptor Structure (H.TYPE, H.DATA, and
H.DLEN) ... e e 1-37
1.2.8.8 UMR Support and Extended Device-Unit Handlers (H.64UM) 1-38
1.2.9 Handler Data Structures Related to Block 1 1-39
1.2.9.1 Handler Flag Word (HL.FLG). 1-39
1.2.9.2 Handler Service Routine Entry Point Word (HI.NOP) 1-39
1.2.9.3 Second Handler Flag Word (H1.LFG2) 1-40
1.2.10 Skeleton Outline of a Device Handler 1-41
1.3 Abort Processingt e 1-43
1.3.1 Handler Status Word Bits ABTIO$ and HNDLRS 1-43
1.3.2 Types of Aborts and Action Taken by RMON 1-44
1.4 Handlers That Queue Internally 1-47
1.4.1 Implementing Internal Queuing. i 1-47
1.4.2 Interrupt Service for Handlers That Queue Internally 1-47
1.4.3 Abort Procedures for Handlers That Queue Internally 1-48
1.5 Set Options e e e 1-49
1.5.1 How the SET Command Executes 1-50
1.5.2 SET Table Format e e e 1-50
1.5.3 DRSET Macro oo e 1-51
1.5.4 Routines to Modify the Handler 1-52
1.5.5 Examples of SET Options 1-53
1.6 Device /O Timeout e e 1-55
1.6.1 TIMIO Macro . .oovve e et e e e e e e e e e e e 1-55
1.6.2 CTIMIO MaCro . oo v v et e e e e e e e e e e e e e e e e e e e 1-57

1.6.3 Device Timeout Applications i 1-58

1.6.3.1 Multiterminal Service 1-58
1.6.3.2 Typical Timer Procedure for a Disk Handler 1-59
1.6.3.3 Printer Handler Example. 1-60
1.7 Error Logging oo e e e e e e e 1-61
1.7.1 When and How to Call the Error Logger 1-62
1.7.1.1 To Log a Successful Transfer 1-62
1.7.1.2 To Log a Hard Error e 1-63
1.7.1.3 To Log a Soft Error e 1-63
1.7.14 Differences Between Hard and Soft Errors 1-64
1.7.1.5 To Call the Error Logger it 1-64
1.7.2 Error Logging Examples i e 1-64
1.7.3 How to Add a Device to the Reporting Program. 1-64
1.8 Special Functions e e 1-65
1.8.1 .SPFUN Programmed Request 1-66
1.8.2 How to Support Special Functions in a Device Handler. 1-67
1.8.3 Variable Size Volumes i e 1-67
1.8.4 Bad-Block Replacement 1-68
1.9 Devices with Special Directories 1-68
1.10 Device Handlers in Mapped Systems 1-69
1.10.1 Naming Conventions and the System Conditional 1-69
1.10.2 Mapped Monitor Environment 1-70
1.10.3 Address Translation e 1-71
1.10.3.1 $MPMEM RoUbINE\ttt et e ettt e e 1-71
1.10.3.2 SMPPHY RoULINe.ot ot e e e e e e 1-71
1.10.4 Character Devices: $GETBYT and $PUTBYT Routines., 1-72
1.10.4.1 $GETBYT Routineottt e e 1-72
1.10.4.2 $PUTBYT ROULING . . . o o ottt e e e e e e e e e e e e e e e s s 1-73
1.10.5 Any Device: $SPUTWRD Routine 1-74
1.10.6 Mapping Directly to the User Buffer 1-75
1.10.7 Extended Memory Subroutinest 1-78
1.10.7.1 Converting a Virtual Address into a Physical Address ($JBREL) 1-79
1.10.7.2 Moving Data Within Extended Memory ($BLKMV) 1-81
1.10.7.3 Obtaining Free Memory (XALLOC) i, 1-81
1.10.7.4 Returning Memory to the Free List XDEALC) 1-81
1.10.7.5 Finding a Global Region (FINDGR) 1-82
1.10.7.6 Converting a Virtual Address into a Physical Address (JUSRPH) 1-82
1.11 System Device Handlers and Bootstraps, 1-83
1.11.1 Monitor Files e 1-83
1.11.2 Creating a System Device Handler 1-83
1.11.2.1 DRBOT MacCro . . oottt e e e e e e e e e e e e e 1-83
1.11.2.2 Primary Driver e 1-84
1.11.2.3 Entry Routine e 1-84
1.11.2.4 Software Bootstrap e 1-85
1.11.2.5 Bootstrap Read Routine e 1-85

1.11.2.6 Bootstrap Error Routine e 1-86

1.11.3 DUP and the Bootstrap Process i, 1-86
1.11.3.1 BOOT ddn:filnam 1-86
1.11.3.2 COPY/BOOT xxn:filnam ddm: 1-87
1.11.3.3 BOOT ddm:.ottt e 1-88
1.12 Including Support for Multiterminal Handler Hooks 1-89
1.12.1 Installation Support i e 1-91
1.12.2 SET Command Supportt e 1-91
1.12.3 Establish Hooks Connection with Monitor 1-92
1.12.4 Handler Hook Interrupt Processing 1-95
1.12.5 Remove Handler Hooks Connection to Monitor at UNLOAD/RELEASE 1-96
1.13 Including Extended Device-Unit Support.............., 1-97
1.13.1 .DRDEF and .DRBEG Macros0 it 1-97
1.13.2 LOAD/FETCH and UNLOAD/RELEASE Routines 1-98
1.13.2.1 LOAD/FETCH Routinettt 1-98
1.13.2.2 UNLOAD/RELEASE Routine. 1-98
1.13.2.3 Example LOAD/FETCH and UNLOAD/RELEASE Routines 1-98
1.13.3 Q.FUNC Definitionttt e e 1-101
1.13.4 Programmed Requests of Extended-Unit Handlers 1-102
1.14 How to Assemble, Link, and Install a Device Handler 1-102
1.14.1 Assembling a Device Handler 1-102
1.14.2 Linking a Device Handler 1-103
1.14.3 Installing a Device Handler 1-103
1.14.3.1 Using the Bootstrap to Install Handlers Automatically 1-103
1.14.3.2 Using the INSTALL Command to Install Handlers Manually 1-104
1.14.3.3 Using the DEV Macro to Aid Automatic Installation 1-106
1.14.3.4 Installing Devices Whose Hardware Is Present 1-107
1.14.3.5 Writing an Installation Verification Routine 1-108
1.14.3.6 Overriding the Hardware Restriction. 1-110
1.15 How to Test and Debug a Device Handler 1-110
1.15.1 Using DBG-11toTestaHandler............. 1-111
1.15.2 Using ODT to Testa Handler 0. 1-111
1.15.3 Using ODT in a Mapped Environment. 1-112
1.16 Contents of .SYS Image of a Device Handler 1-113

Chapter 2 Programming for Specific Devices

2.1 DL (RLO1/RLO2 Disk Handler). e e 2-3
2.1.1 Support for Special Functions i 2-3
2.1.2 Support for Bad-Block Replacement. 2-3
2.2 DM (RKO6/RKO7 Disk Handler) i 2-5
2.2.1 Support for Special Functions 2-5
2.2.2 Support for Bad-Block Replacement. 2-6
2.3 DUMISCP Disk Handler) e 2-8
2.3.1 Support for Special Functions 2-8

Vi

2.3.2 Determining Volume Size (SE.SIZ), Code 373
2.3.3 Obtaining the DU Device Status (STATUS)o oo e e e
2.3.4 Support for Bad-Block Replacement.
2.3.5 Non-File-Structured Read and Write Operations
2.3.5.1 JREAD and JWRITE e
2.3.5.2 Special Functions SFARD and SFAWR
2.3.5.3 Special Functions SFFR32 and SEW32,,
2.3.6 DU Translation Table (SE.TAB), Code 372
2.3.7 Special Function Bypass (SE.BYP), Code 360
2.3.8 Addressing an MSCP Disk e
2.3.8.1 MSCP Unit Numbers e et e
2.3.8.2 Controller Port Numbers
2.3.8.3 Disk Partition Numbers
2.3.9 Creating a Second DU Handler
2.3.9.1 Under Unmapped Monitors
2.3.9.2 Under Mapped Monitorsttt
2.3.10 Multiport Booting. e
2.4 DW (CTI Bus-based Disk Handler) i
2.4.1 Support for Special Functions e
2.5 DX and DY (Diskette Handlers).
2.5.1 Support for Special Functions
2.6 DZ (Diskette Handler)
2.6.1 Support for Special Functions
2.7 LD (Logical Disk Handler) it
2.7.1 Support for Special Functions
2.7.2 LD Translation Tables (SF.TAB), Code 372
2.7.3 Other Bits Used by the LD Handler
2.8 MM, MS, and MT (Magtape Handlers)
2.8.1 File Structure Module (FSM) e
2.8.2 Compatibility of Magtape Operations withthe FSM
2.8.3 Spacing Error Recovery e
2.8.4 Magtape Operations That Usethe FSM.
2.8.4.1 FSM Searching by Sequence Number
2.8.4.2 FSM Searching by File Name
2.8.4.3 .ENTER Programmed Request.
2.8.4.4 File-Structured .LOOKUP Programmed Request
2.8.4.5 .READx Programmed Requests iiiiiinoo..
2.8.4.6 WRITx Programmed Requests i,
2.8.4.7 .CLOSZ, .DELETE, .GFxxx, . RENAME, and .SFxxx Programmed Requests
2.8.4.8 .CLOSE Programmed Request i,
2.8.4.9 PURGE Programmed Request...........
2.8.5 Magtape Operations That Are Compatible with the FSM
2.8.5.1 Non-File-Structured .LOOKUP Programmed Request
2.8.5.2 Asynchronous Directory Operations (SF.USR), Code 354
2.8.5.3 Read Physical Blocks (SEEMRD), Code 370.

vii

2.8.5.4 Write Physical Blocks (SEE.MWR), Code 371 2-48

2.8.5.5 Exception (Error and Status) Reporting. 2-48
2.8.5.6 .CLOSE Programmed Request 2-50
2.8.5.7 Enabling 100ips Streaming on a TS05/TSU05/TSV05 (SF.MST), Code 367 2-50
2.8.6 Magtape Operations That Are Not Compatible with the FSM 2-51
2.8.6.1 Rewinding and Going Off Line (SE.MOR), Code 372 2-51
2.8.6.2 Rewinding (SEEMRE), Code 373 e 2-52
2.8.6.3 Writing with Extended Gap (SFEMWE), Code 374 2-52
2.8.6.4 Spacing Backward (SE.MBS), Code 375 2-52
2.8.6.5 Spacing Forward (SFMFS), Code 376, 2-53
2.8.6.6 Writing a Tape Mark (SEEMTM), Code 377 it 2-54
2.8.7 Hardware Magtape Handler i, 2-55
2.8.8 Transporting Tapes to RT=11 i 2-56
2.8.8.1 From RSTS/E 2-56
2.8.8.2 From RSX—11M e e e 2-56
2.8.8.3 From RSX-11D and IAS e 2-57
2.8.8.4 From VS . .. e 2-58
2.8.9 Seven-Track Magnetic Tape e 2-58
2.9 MU (TMSCP Magtape Handler) 2-60
29.1 Support for Special Functions 2-60
2.9.1.1 TMSCP Translation Tables (SFEMTB), Code 352 2-60
2.9.1.2 Special Function Bypass (SE.BYP), Code 360 2-62
2.9.2 Unit Support, CSR and Vectors 2-63
2.10 NL (Null Handler) e e e e e et e e e 2-64
2.11 NC, NQ, NU (Ethernet Handlers) 2—-65
2.11.1 Restrictions e e 2—-65
2.11.2 Support for Special Functions 2-65
2.11.2.1 Allocate/Deallocate Unit (SF.NAL), Code 200. 2-66
2.11.2.1.1 Allocate Unit e 2-66
2.11.2.1.2 Deallocate Unit e 2-67
2.11.2.2 Enable/Disable Protocol Type (SF.NPR), Code 202 267
2.11.2.2.1 Enable Protocol Type e 267
2.11.2.2.2 Disable Protocol Type. e 268
2.11.2.3 Enable/Disable Multicast Address (SE.NMU), Code 203.................... 2—-69
2.11.2.3.1 Enable Multicast Address i 2-69
2.11.2.3.2 Disable Multicast Address 2-70
2.11.24 Transmit Ethernet Frame (SF.NWR), Code 204 2-71
2.11.2.5 Receive Ethernet Frame (SF.NRD), Code 205 2-73
2.11.3 Example of Allocating an Ethernet Unit 2-T74
2.12 PI (CTI Bus-Based Processor Interface System Support Handler) 2-76
2.12.1 Support for Special Functions 2-76
2.12.2 PI Keyboard Support e 2-76
2.12.2.1 Normal Mode e 2-76
2.12.2.2 Function Key Mode (DECFRKM) 2-77

viii

2.12.3 Video Terminal Support e 2-78

2.12.3.1 Advanced Video Option Emulation................ 2-78
2.12.3.2 Text Cursor Mode (DECTCEM)ttt 2-78
2.12.3.3 Device Attributes (DA) 2-78
2.13 UB (UNIBUS Mapping Register (UMR) System Support Handler) 2-80
2.13.1 UMR Support with Distributed Handlers 2-80
2.13.2 Including Required UB Support in User-Written Non-DMA Handlers........... 2-82
2.13.3 Including UMR Support in User-Written DMA Handlers 2-82
2.13.3.1 Defining Special Functions for Implicit UMR Allocation 2-84
2.13.3.2 Explicitly Allocating Permanent UMRs (ALLUMR) 2-84
2.13.3.3 Explicitly Obtaining Temporary UMRs (GETUMR) 2-86
2.13.3.4 Explicitly Releasing Permanent UMRs (RLSUMR) 2-87
2.13.4 Example (Skeletal) Handler 2-88
2.14 VM (Virtual Memory Handler) i, 2-92
2.15 XC and XL (Communication Port (VTCOM) Handlers) 2-94
2.15.1 .READx and .WRITx Support 2-94
2.15.2 Special Functions (SPFUN) Support 2-94
2.15.3 EOF (End-of-File) Detectiono e e e e e e e e e 2-97

Appendix A DX, DL, and XL Device Handlers

Index

Figures

1-1 Skeleton Device Handler 1-41
1-2 Printer Handler Example. e 1-60
1-3 Device Handler Mapping to User Buffer Area 1-77
1-4 PARI Mappingottt e et e e e e e e e 1-78
1-5 BOOT ddn:filnam Procedure 1-87
1-6 COPY/BOOT xxn:filnam ddm: Procedure........ 1-88
1-7 BOOT ddn: Procedure e e 1-90
1-8 Relationship of $OWNER Table to Extended-Ownership Table 1-99
1-9 Bootstrap Algorithm for Installing Device Handlers 1-105
1-10 Installing a New Device Handler i, 1-106
2-1 Bad-Block Replacement Table 2-4
2-2 DU Handler Translation Table. 2-15
2-3 MSCP Disk Block Number. 2-20
2-4 Two-Port DU Handler e 2-21
2-5 Operations Performed After the Last Block Written on Magtape. 2-42
2-6 Asynchronous Directory Operation Example 2-45
2-7 Seven-Track Tape. e e e e 2-59
2-8 VM Handler in a 22-Bit System 2-93
2-9 VM Handler in an 18-Bit System 2-93

A-1 DX Diskette Handler e e A-1
A-2 DL Disk Handler e A-23
A-3 XL Communications Handler.......... A-56
Tables

1-1 Queue Element Offsets e 1-7
1-2 Device Status Word e 1-10
1-3 Contents of .SYS Image Block 0. 1-14
1-4 Contents of .SYSImage Block 1........... 1-19
1-5 Handler Service Routine Entry Environment 1-30
1-6 RMON Abort Processing e e 1-46
1-7 SET Option Table. e e e e e e 1-51
1-8 Timer Block Format 1-56
1-9 DUP Information e e e 1-86
1-10 DUP Information e et e e 1-89
1-11 Device Handler .SYS Imaget e i 1-113
2-1 STATUS Status Information s 2-9
2-2 MSCP Bad-Block Replacement (BBR) 2-10
2-3 MSCP (DU) Translation Table Header 2-15
2-4 MSCP (DU) Translation Table Entry 2-16
2-5 Magtape Operations That Usethe FSM. 2-34
2-6 Magtape Operations That Are Compatible with the FSM 2-35
2-7 Magtape Operations That Are Not Compatible withthe FSM 2-35
2-8 Sequence Number Values for . ENTER Requests 2-38
2-9 ENTER Errors ittt e e et e 2-38
2-10 Sequence Number Values for File-Structured .LOOKUP Requests 2-39
2-11 LOOKUP Errorso vttt e e e e e e e e e e e e e e e e 2-40
2-12 READX Errors. e 2-41
2-13 WRITX Errors e e e e e e e 2-41
2-14 Sequence Number Values for Non-File-Structured .LOOKUP Requests............ 2-44
2—-15 Non-File-Structured .LOOKUP Errorst 2-44
2-16 SE.MRD (Code 370) Errors.ttt e e e e e e 2-47
2-17 SE.MWR (Code 371) Errorsottt et e 2-48
2-18 End-of-File Qualifying Information 2-49
2-19 Hard Error Qualifying Information 2-49
2-20 SEMRE (Code 373) Exrors oo ittt e e e e e 2-52
2-21 SE.MWE (code 374) Errorsot e e e e et et e e 2-52
2-22 SEMBS (Code 375) Errorsottt e e e e e e e e 2-53
2-23 SEMFS (Code 376) Exrorsttt e e e e e e e e 2-54
2-24 SE.MTM (Code 377) Errorsttt et et et 2-55
2-25 TMSCP (MU) Translation Table Header 2-61
2-26 TMSCP (MU) Translation Table Entry. 2-61
2-27 Distributed Handler Support for UMRs 2-82
2-28 XC/XL Special Function Codest 2-95

Preface

Document Structure

This manual is divided into the following two chapters:

* Chapter 1, Device Handlers, describes the recommended structure of device
handlers and provides detailed information on how to write a device handler.

¢ Chapter 2,

Programming for Specific Devices, alphabetically presents

programming information for specific distributed device handlers.

Audience

This manual is written for those users of the RT-11 operating system who want to
understand distributed device handlers and write their own device handlers.

Conventions

The following conventions are used in this guide.

Convention

Meaning

Black print

Red print
Braces ({ })

Brackets ([1)

Lowercase
characters

In examples, black print indicates output lines or prompting
characters that the system displays. For example:

. BACKUP/ I NI TI ALI ZE DLO: F*. FOR DUL: WRK
Mount out put volume in DUl:; continue? Y
In examples, red print indicates user input.

In command syntax examples, braces enclose options that are
mutually exclusive. You can choose only one option from the
group of options that appear in braces.

Square brackets in a format line represent optional parameters,
qualifiers, or values, unless specified otherwise.

In command syntax examples, lowercase characters represent
elements of a command for which you supply a value. For
example:

DELETE fil espec

Xi

Convention Meaning

UPPERCASE In command syntax examples, uppercase characters represent
characters elements of a command that should be entered exactly as given.
RET in examples represents the RETURN key. Unless

the manual indicates otherwise, terminate all commands or
command strings by pressing [RET].

indicates a control key sequence. While pressing the key

labeled Ctrl, press another key. For example:

Associated Documents

Xii

Basic Books

Introduction to RT-11

Guide to RT-11 Documentation
PDP-11 Keypad Editor User’s Guide
PDP-11 Keypad Editor Reference Card
RT-11 Commands Manual

RT-11 Quick Reference Manual

RT-11 Master Index

RT-11 System Message Manual

RT-11 System Release Notes

Installation Specific Books

RT-11 Automatic Installation Guide
RT-11 Installation Guide
RT-11 System Generation Guide

Programmer Oriented Books

RT-11 IND Control Files Manual

RT-11 System Utilities Manual

RT-11 System Macro Library Manual
RT-11 System Subroutine Library Manual
RT-11 System Internals Manual

e RT-11 Volume and File Formats Manual
e DBG-11 Symbolic Debugger User’s Guide

xiii

Chapter 1
Device Handlers

The term device handler can mean three things, depending on the context in which
it is used. A device handler can be:

* The source program
This is a .MAC file that is distributed with RT-11 or you write.
* The file image

This is a .SYS file that is distributed with RT-11 or the assembled and linked
source program you write.

* The memory image

This is the part of the file image that resides in memory; the memory resident
portion of the device handler. Not all of the file image is normally loaded in
memory. The first block (block 0) of the file image, for example, is temporarily
loaded when the monitor requires information that is stored in handler block 0.
The memory resident portion of the device handler begins at block 1 of the file
image. Therefore, block 1 of the file image is the beginning of the memory image.

To write a device handler, you first need to know what points to consider in the
planning stage. These points are listed and cross-referenced in the first sections of
this chapter. The points that have not been treated elsewhere in this manual are
then described in detail. Device handler structure and a skeleton outline of a typical
handler are covered here. After this, details are given on the optional features
available to handlers and their implementation. Optional features include internal
queuing, SET options, device I/O timeout support, special functions, error logging,
and special services available in mapped systems.

To write a bootstrap for a system device, you first need to know the differences
between a standard handler and a system device handler. These differences are
discussed in several sections before the final sections of the chapter, where you will
find explained the assembly, installation, testing, and debugging procedures for the
new handler.

Be sure to also read Chapter 5 of the RT-11 System Internals Manual, as that chapter
can help you decide whether you need to write an in-line interrupt service routine
or a device handler.

1.1 How to Plan a Device Handler

The most important part of writing a device handler is taking the time to plan the
whole process carefully. Follow these guidelines:

Device Handlers 1-1

* Get to know your device

¢ Study the structure of a standard device handler
* Study the skeleton device handler

¢ Think about using the special features

* Study the sample handlers

* Prepare a flowchart of the device handler

* Write the code

¢ Install, test, and debug the handler

1.1.1 Get to Know Your Device

Learning about the characteristics of your device and the bus interface is crucial to
writing a handler that works correctly. Review the appropriate material in Chapter
5 of the RT-11 System Internals Manual so that you can answer all the pertinent
questions about your device before you attempt to write a handler for it.

1.1.2 Study the Structure of a Standard Device Handler

Section 1.2 describes the structure of a standard device handler. Read this section
carefully; your handler should conform to this structure.

1.1.3 Study the Skeleton Device Handler

Section 1.2.10 contains a skeleton outline of a standard device handler. You can use
this outline as a starting point when you begin to write your own handler.

1.1.4 Think About Using the Special Features

Sections 1.4 through 1.10 describe the special features available to device handlers.
Read these sections carefully to determine whether any features are applicable to
your handler.

1.1.5 Study the Sample Handlers

Appendix A contains assembly listings of three RT-11 device handlers (DL, DX,
and XL) with extensive explanatory comments. Study these listings until you feel
comfortable with the organization of the handlers, and you understand how they
implement some of the special features. Obtain listings of handlers for other devices
that resemble yours; you may be able to use some of the code that is already written.

1.1.6 Prepare a Flowchart of the Device Handler

Preparing a flowchart for your handler can help you plan the contents of the
various sections. Flowcharting can also help you spot loose ends and errors in your
programming logic. Unfortunately, flowcharts are not much help in pointing out
potential race conditions. (A race condition is a situation in which two or more
asynchronous processes attempt to modify the same data structure at the same
time; as a result, the data structure is corrupted and the integrity of the processes is
compromised.) Therefore, when you design the handler, examine every step carefully

1-2 RT-11 Device Handlers Manual

and keep in mind what would happen if an interrupt occurred at each instruction.
This kind of planning can help you avoid race conditions later.

1.1.7 Write the Code

If you have followed the recommended steps so far, writing the code for the device
handler should be relatively simple. You must write Position-Independent Code
(PIC) for the handler. Review the chapter on PIC code in the PDP-11 MACRO-
11 Language Reference Manual if you are not already familiar with it. Copy as
much code as possible from the commented device handlers in Appendix A or from
other reliable sources. Start with a general outline that conforms to the structure
presented in Section 1.2 and then add details to reflect the specifics of your particular
device. When you have thoroughly checked the code for logic errors and it assembles
properly, you are ready to test and debug it.

1.1.8 Install, Test, and Debug the Handler

Sections 1.14 and 1.15 show how to install a new device handler and how to begin
testing and debugging it.

1.2 Structure of a Device Handler

For ease of explanation and understanding, the RT-11 handler source program is
described as having the following six sections:

e Preamble

The preamble is the information section of the source. Much of the information
you put in the preamble as arguments to macro parameters and as system
conditionals is associated with symbols that are used by macros in other handler
sections. The macros you use in the preamble section create many of the
handler’s data structures and further define the handler.

e Header

The header section is where you code the beginning of the memory resident
portion of the handler.

¢ T/O initiation

The I/0 initiation section contains the first executable instructions; the code to
get the handler ready to perform data transfers. The I/O initiation section is able
to use data structures and symbols that were defined in the previous sections and
defines further handler characteristics.

¢ Interrupt service

The interrupt service section is the heart of the handler. It contains the code
that processes interrupts as they are received from the device. It handles aborts
and manages the handler queue.

* T/O completion

Device Handlers 1-3

The I/O completion section contains code to inform the monitor of the success or
failure of the interrupt processing and perform appropriate actions depending on
success or failure.

e Handler termination

The handler termination section is the tail of the handler. It contains code to
build tables and handler service routines. Being at the end of the handler, it
defines a symbol that is used to determine the size of the handler.

The complexity of the coding you must write is reduced because the RT-11 system
macro library (SYSMAC.SML) provides device handler macros to generate much of
the required code.

You should read and think about the following points before working through this
section:

e Although the various macro parameters are listed and briefly described in this
chapter, you should consult the RT-11 System Macro Library Manual for complete
parameter argument descriptions. Refer to that manual as you read this chapter.

Some of the macros that you use to write a device handler are interdependent.
For example, the device status word is created from symbols that SYSMAC.SML
equates based on arguments you supply to .DRDEF parameters. Those symbols
are then used by .DRBEG to create the device status word and store it into the
handler’s block 0.

e RT-11 distributes a library of the system data structures (SYSTEM.MLB),
described in the RT-11 System Internals Manual. In this section, the symbols
that identify handler data structures and the elements in those structures
are as defined in SYSTEM.MLB. If your device handler is assembled with
SYSTEM.MLB, you can use those symbols and need not define them explicitly
in your handler.

* As you work through the parts of this section, you should look at the skeletal
device handler in Section 1.2.10. The skeletal handler illustrates the overall
structure.

For examples of specific handler structure, look at the sample device handlers in
Appendix A.

Also refer to Table 1-11, which illustrates the layout of a device handler .SYS
file image.

1.2.1 Preamble Section

Begin the device handler source file with the preamble section. Include a .MCALL
directive for the .DRDEF macro and any other macros you use that this chapter does
not explicitly mention. Also in the preamble, you should define system conditionals
that you will use later.

As shown in the skeletal handler, Figure 1-1, you include macros in the preamble
section that build various data structures and define symbols. The following macros
can be used in the preamble section:

1-4 RT-11 Device Handlers Manual

1211

.DRDEF

Provides the primary definition of the device handler and is the only mandatory
device macro. Many of the values you supply as arguments to .DRDEF’s
parameters are equated during assembly to symbols that are then used by other
handler macros.

.DREST

Provides information about the handler, which is stored in block 0 of the handler’s
file image.

.DRPTR

Points to handler service routines that can be run when the handler is loaded,
unloaded, fetched, and released. Those routines do not reside in memory (keeping
the memory resident portion of the handler smaller), but are read into and
executed from the USR buffer.

.DRSPF
Defines which special functions the handler supports.
.DRINS

Points to any installation checking code and defines how the handler CSRs are
to be displayed.

.DRSET
Defines the handler SET commands.

As you work through this section, look at Table 1-3 to see which offsets in block 0
are written by those macros.

.DRDEF Macro

Use the .DRDEF macro near the beginning of your device handler. In the following
list of functions performed by .DRDEF, dd represents the device name you specify
in the macro’s name parameter. The .DRDEF macro’s functions are to:

Issue .MCALL directives for all handler-related macros

Provide default values for the key system conditionals

Invoke the .QELDF macro to define queue element offsets

Define bit patterns for device characteristics

Define ddDSIZ as the device size in blocks

Define dd$COD as the device identification

Set up the device status word from information in ddDSIZ and dd$COD
Provide default values for the device CSR in dd$CSR and vector in dd$VEC
Make the symbols dd$CSR and dd$VEC global

Device Handlers 1-5

¢ Indicate whether the handler supports extended device units

¢ Indicate whether the handler supports DMA (direct memory access)

* Define the required number of permanent UNIBUS mapping registers if this
handler supports DMA on UNIBUS processors

¢ Indicate whether the handler requires serialized I/O request satisfaction

The format of the .DRDEF macro call is as follows:

Macro Call: .DRDEF name,code,stat,size,csr,vec

name

code

stat

size

cSsr

vec

UNIT64=str

DMA=str

PERMUMR=n

SERIAL=str

[,UNIT64=str][,DMA=str][,PERMUMR=n][,SERIAL=str]

is the two-letter handler name, stored in H.HAN (offset 0 of
handler block 0) by .DREST.

is the device identifier byte, stored in H.DSTS (offset 56 of handler
block 0) by .DRBEG.

is the device status bit pattern, stored in H.DSTS (offset 56 of
handler block 0) by .DRBEG.

is the device size, stored in H.DSIZ (offset 54 of handler block 0)
by .DRBEG.

is the default value for the device’s control and status register,
stored in H.ICSR (offset 176 of block 0) by .DRBEG. To suppress
storing a value in 176, specify *NO* as the argument to csr.

is the default value for the device’s interrupt vector, stored in
H1.VEC (offset 0 of block 1) by .DRBEG.

is the number of device units to be supported by this handler,
stored in H.UNIT (offset 76 of handler block 0) by .DRDEF.

indicates whether this handler supports direct memory access,
stored in symbol DV2.DM of H1.FLG (offset 10 of block 1) by
.DRBEG.

indicates this handler should be assigned n permanent UNIBUS
mapping registers, stored in H.64UM (offset 100 of handler block
0) by .DRDEF.

indicates handler requires serialized I/O completion, stored in
symbol HF2.SR of H1.FG2, (offset 16 of block 1) by .DRBEG.

The .DRDEF macro also issues the .MCALL directive for the following macros:
.DRAST .DRBEG .DREST .DRFIN

.DRBOT .DREND .DRINS .DRSPF

.DRSET .DRVTB .FORK .QELDF

.DRTAB .DRUSE

In addition, if you assemble your handler with the conditional TIMS$IT set to 1,
.DRDEF issues a .MCALL directive for the .TIMIO and .CTIMIO macros.

1-6 RT-11 Device Handlers Manual

1.2.1.1.1 System Conditionals

RT-11 source files make extensive use of conditional assembly directives. Sections
of source code are included or omitted at assembly time, based on the value of
conditional symbols. For example, RT-11 uses the conditional ERL$G to indicate
whether routines for error logging should be assembled.

If you use conditional symbols in your handler, they should conform to RT-11
standard usage by setting the conditional equal to 0 to indicate that the feature
it represents is not to be included and by setting the conditional to 1 to include
the feature. (Note that RT-11 uses only the values 0 and 1 to indicate absence or
presence of a feature.) See the PDP-11 MACRO-11 Language Reference Manual for
information on the conditional assembly directives (.IF EQ, .IF NE, and so on).

The .DRDEF macro sets to 0 the system generation conditionals TIMS$IT (for device
timeout), MMG$T (for extended memory support), and ERL$G (for error logging), if
you do not define them in a prefix file at assembly time. In addition, if the symbols
have values other than 0, .DRDEF sets them to 1.

1.2.1.1.2 Queue Element Offsets

The .DRDEF macro invokes .QELDF to define queue element offsets and define
symbols for those offsets.

As shown in Table 1-1, the size of a queue element is determined by whether or not
a monitor supports mapping.

Unmapped Monitors
For unmapped monitors, each queue element contains 16g bytes.

Mapped Monitors

Device handlers in a mapped environment require two more words of information to
locate the actual user buffer in physical memory. The offsets, Q.PAR and Q. MEM, are
values for PAR1 that, when combined with the user virtual buffer address (Q.BLKN),
provide the physical address of the buffer.

Q.PAR and Q.MEM initially contain the same PAR1 value. The value in Q.PAR
varies from Q.MEM only with UNIBUS Mapping Register (UMR) support; if the
UMR handler UB is loaded, Q.PAR becomes a relocation constant to load UMRs.
Q.MEM remains the PAR1 displacement bias for CPU memory management (MMU)
address values. If there is no UMR support, Q.PAR and Q. MEM continue to contain
the same PAR1 value. Therefore, you should use Q. MEM as the PAR1 displacement
bias because it is not affected by the presence of UMR support.

Table 1-1: Queue Element Offsets

Name Offset Meaning
With All Monitors:
Q.LINK 0 Link to next queue element

Device Handlers 1-7

Table 1-1 (Cont.): Queue Element Offsets

Name Offset Meaning
Q.CSW 2 Pointer to channel status word
Q.BLKN 4 Physical block number
Q.FUNC 6 Special function code
Q.JNUM 7 Job number
Q.UNIT 7 Device unit number
Q.BUFF ~O10 User virtual buffer address
Q.WCNT 72012 Word count
Q.COMP 7014 Completion routine code
With Unmapped Monitors:
Q.ELGH ~O16 Length of queue elements
~O20- Reserved
~024
With Mapped Monitors:
Q.PAR ~O16 Is initially PAR1 value. See text above
Q.MEM 7020 Is always PAR1 value. See text above
~O22 Reserved
Q.ELGH ~024 Length of queue elements

Since the handler usually deals with queue element offsets relative to offset Q. BLKN,
the .QELDF macro also defines the following symbolic offsets:

Symbolic From
Offset Q.BLKN
Q$LINK —4
Q$CSW -2
Q$BLKN 0
Q$FUNC 2
Q$JNUM 3
Q$UNIT 3
Q$BUFF 4
Q$WCNT 6
Q$COMP AO10

1-8 RT-11 Device Handlers Manual

Symbolic From

Offset Q.BLKN
Q$PAR 012
Q$MEM r014

1.2.1.1.3 Symbol Definitions

Use direct assignment statements to define symbols that you will use later in the
handler. Typically, the definitions include the device registers and other useful
internal symbols. Some examples from the DY handler for mapped monitors follow:

; FI XED OFFSETS EQUATES (. FI XDF)

$PNPTR =: 000404 ; RMON OFFSET OF PNAME TABLE
P1$EXT =: 000432 ; RMON OFFSET OF $P1EXT ADDRESS
$H2UB = 000460 ; RMON OFFSET OF UB ENTRY VECTOR PTR
MVGHT = 1
; EXTENDED MEMORY SUBROUTI NE OFFSETS FROM $P1EXT (. P1XDF)
SMPMVEM = -22. ; OFFSET TO MAP KT-11 VI RTUAL TO PHYSI CAL
NOUMRS = 1 ; NUMBER OF PERVANENT UMRS REQUI RED
;DY CHARACTERI STI CS
DDNBLK = DYDSI Z* 2 ; DOUBLE DENSI TY SI NG-E- SI DED
DYNREG = 3 ; # OF REGA STERS TO READ FOR ERROR LOG
RETRY = 8. ; RETRY COUNT
SPFUNC = 100000 ; SPECI AL FUNCTI ONS FLAG

. (1 N COMVAND WORD)
SPECI AL FUNCTI ON CODES

SI Z$FN = 373 ;373 - GET DEVI CE Sl ZE
; 374 - UNUSED
WDD$FN = 375 ;375 - WRITE W TH DELETED DATA
WRT$FN = 376 ;376 - WRI TE ABSCLUTE SECTOR
RED$FN = 377 ; 377 - READ ABSOULTE SECTOR
;NOTE: if you add a SPFUN code here also add it to . DRSPF

The .DRDEF macro also defines the following symbols for you:

HDERR$ 1 ; HARD ERROR BI T IN THE CSW
ECF$ 20000 ; END OF FILE BIT I N THE CSW

1.2.1.1.4 Device-ldentifier Byte

The low byte of the device status word, the device-identifier byte, identifies each
device in the system. You specify the correct device identifier as the code argument
to .DRDEF. The values are defined in octal and listed under .DRDEF in the RT-11

System Macro Library Manual.

To create device-identifier codes for devices that are not already supported by RT-
11, start by using code 3775 for the first device, 376 for the second, and so on. This
procedure should avoid conflicts with codes that RT-11 will use in the future for new
hardware devices.

Device Handlers 1-9

1.2.1.1.5 Device Status Word

The device status word identifies each unique physical device in an RT-11 system
and provides other information about it, such as whether it is random or sequential
access. The .DRDEF macro sets up symbols based on the parameter arguments for
code and stat. The .DRBEG macro takes those symbols, builds the device status
word, and stores it in block 0 of the handler file at the offset H.DSTS and in the
$STAT table when the device is installed. The .DSTATUS programmed request can
return this value to a running program.

Table 1-2 shows the meaning of the bits in the device status word. Except for
ABTIO$ and HNDLRS$, all bits have an individual meaning. The meaning of ABTIO$
and HNDLR$ is determined by their combination; they should be thought of as a
pair. More information on the ABTIO$/HNDLRS$ pair is found in Sections 1.3.1 and
1.3.2.

Table 1-2: Device Status Word

Bit Symbol Meaning
0-7 — Device-identifier byte (see Section 1.2.1.1.4)
8 VARSZ$ 0 = SF.SIZ (special function code 373) requests are invalid for this
handler
1 = SF.SIZ (code 373) requests (return volume size) are valid for this
handler
9 ABTIO$t 0 = Handler is not entered at abort entry point on normal program
exits

1 = Handler is entered at abort entry point whenever a program
terminates

10 SPFUN$ 0 = .SPFUN requests are invalid
1 = Handler accepts .SPFUN requests

11 HNDLR$+ O = Enter handler at abort entry point only if there is an active queue
element belonging to the aborted job

1 = Enter handler at abort entry point on all aborts

12 SPECL$ 1 = Special directory-structured device (examples are MS and MU)
13 WONLY$ 1 = This is a write-only device

14 RONLY$ 1 = This is a read-only device

15 FILST$ 0 = This is a sequential-access device (examples are LP, LS, MS)

1 = This is a random-access device (examples are DU and DY)

TABTIO$ works in combination with HNDLR$. See Section 1.3.1.
FHNDLR$ works in combination with ABTIO$. See Section 1.3.1.

The bit combinations for handlers that internally queue I/O requests are described
in Section 1.4. See Section 1.9 for details on special devices (such as magtape).

1-10 RT-11 Device Handlers Manual

All device handlers that have bit 15 set are assumed to be RT-11 file-structured
devices by most of the system utility programs.

An easy way to define the device status word is to use the symbols for the bit patterns
that .DRDEF defines for you. Thus, you can create the stat argument by ORing
together the appropriate symbols from the list below.

FI LST$ == 100000 ; Fil e-structured random access

RONLY$ == 40000 ; Read-only

WONLY$ == 20000 ;Wite-only

SPECL$ == 10000 ; Special directory structured device
HNDLR$ == 4000 ; Enter handl er on abort

SPFUN$ == 2000 ; Accepts special functions

ABTI O == 1000 ; Al ways take abort entry

VARSZ$ == 400 ; Handl er supports vari abl e-si ze vol unmes

For example, form the stat argument for the DY, MS, and LS handlers as follows:
e For DY: FILST$!SPFUNS$!VARSZ$

e For MS: SPECL$!SPFUN$

e For LS: WONLY$!SPECL$

1.2.1.1.6 Device Size Word

1.21.2

The size argument for the .DRDEF macro defines ddDSIZ to be the size of the device
in 256-word blocks. The .DRDEF macro stores the value of ddDSIZ in H.DSIZ, offset
54 in the handler’s block 0.

The .DSTAT programmed request returns the value of the device size word to a
running program. For examples of the .DRDEF macro, see the device handler
listings in Appendix A.

.DREST Macro

The .DREST macro places device specific information about the handler into handler
block O:

* The device class and any variation
* The presence of bad-block replacement information
e How the handler can be installed, loaded, and mounted

The format of the .DREST macro call is as follows:

Macro Call: .DREST [CLASS=str][,MOD=str][,DATA=dptr]
[, TYPE=str][,REPLACE=rptr][,STAT2=symb]

CLASS=str stores the class symbol in H.CLAS, offset 20 in handler block 0.

MOD=str stores the classification modifier in H.MOD, offset 21 in handler
block 0.

DATA=dptr stores an internal table file address in H.DATA, offset 72 in

handler block 0.

Device Handlers 1-11

1.2.1.3

TYPE=str

REPLACE=rptr

STAT2=symb

stores an internal table device classification in H.TYPE, offset 70
in handler block 0.

stores a pointer to a bad-block replacement table in H.REPL,
offset 32 in handler block 0.

stores a second status word in H.STS2, offset 36 in handler block
0.

See Section 1.2.1.9 for more information on the contents of handler block 0, including
those offsets written by .DREST. For information on using the .DREST macro, see
the RT-11 System Macro Library Manual.

.DRINS Macro

The .DRINS macro sets up the installation code area in the handler’s block 0:
* Defines the display CSR addresses (displayed by RESORC)

* Defines the installation CSR addresses (used by INSTALL command) and
monitor bootstrap

* Defines system device (INSSYS) and data device (INSDAT) installation entry

points

INSSYS is located at symbol H.ISY, offset 202. INSDAT is located at symbol
H.IDK, offset 200.

The format of the .DRINS macro call is as follows:

Macro Call: .DRINS name,<csr,csr,...>

name

csr

is the device handler name.

If name is preceded by a minus sign (-), it indicates that the
specified CSR is for display purposes only; there is no installation
CSR for this invocation of .DRINS.

creates a symbolic reference to a CSR for this device. The first (or
only) specified is both the installation CSR and the first display
CSR. The .DRBEG macro stores the installation CSR in H.ICSR,
offset 176 in block 0. The .DRINS macro stores the first display
CSR in H.DCSR, offset 174 in handler block 0. (You must also
specify csr = *NO* in .DRDER for this to take effect.)

If more than one CSR is specified, the second and any subsequent
in the list are the secondary (and subsequent) display CSRs.
Those are written to offset 172, 170, and so forth. The list is
terminated with a word containing a zero value. (There remains
a single installation CSR.)

See Section 1.2.1.9 for more information on the contents of handler block 0, including
those offsets written by .DRINS. For information on using the .DRINS macro, see
the RT-11 System Macro Library Manual.

1-12 RT-11 Device Handlers Manual

1.2.1.4

1.2.15

1.2.1.6

.DRPTR Macro

The .DRPTR macro sets up pointers to handler service routines that can assist the
handler when it is fetched, loaded, released, or unloaded.

The pointers are located in handler block 0. The service routines are not normally
located in handlere block 0 and are not located in the handler memory image. When
called, any service routine is read from the handler file image into the shared area
of the USR and used by the handler.

The format of the .DRPTR macro call is as follows:
Macro Call: .DRPTR [FETCH=n][,RELEASE=n][,LOAD=n][,UNLOAD=N]

FETCH=n stores a pointer to a fetch service routine in HFETC, offset 2 in
handler block 0.

RELEASE=n stores a pointer to a release service routine in H.RELE, offset 4
in handler block 0.

LOAD=n stores a pointer to a load service routine in H.LOAD, offset 6 in
handler block 0.
UNLOAD=n stores a pointer to an unload service routine in H-UNLO, offset

10 in handler block 0.

See Section 1.2.1.9 for more information on the contents of handler block 0, including
those offsets written by .DRPTR. For information on using the .DRPTR macro, see
the RT-11 System Macro Library Manual.

.DRSPF Macro

The .DRSPF macro defines a handler’s support for special functions. As explained
in the RT-11 System Macro Library Manual, two methods can be used to create that
support.

The format of the .DRSPF macro call is as follows:
Macro Call: .DRSPF arg[,arg2][,TYPE=n]

Up to three groups of special functions can be described in symbols H.SPF1, H.SPF2,
and H.SPF3, beginning at offset 22 in handler block 0. Any further groups require
the extension table method, which are stores in the pointer symbol H.SPFX at offset
30 in handler block 0. The offset H.SPFX points to that extension table of other
supported special functions.

See Section 1.2.1.9 for more information on the contents of handler block 0, including
those offsets written by .DRSPF. For information on using the .DRSPF macro, see
the RT-11 System Macro Library Manual.

.DRTAB Macro

The .DRTAB macro is normally reserved for use by Digital. Although .DRTAB is
described in the RT-11 System Macro Library Manual, you should use .DRUSE in
your handler.

Device Handlers 1-13

1.2.1.7

1.2.1.8

1.2.1.9

.DRUSE Macro

The .DRUSE macro defines a list of data tables for the device handler. There are
three levels of definition.

1. You write a data table (or tables) at some file address (or addresses) in your
device handler. You invoke .DRUSE enough times to define each data table. To
invoke .DRUSE, see the RT-11 System Macro Library Manual.

2. At a file address, the .DRUSE macro creates a descriptor table of those data
tables. The descriptor table is described in Section 1.2.8.7.

3. The .DRUSE macro places a pointer to the descriptor table file address in
H.USER, at offset 106 in the handler’s block 0.

The format of the DRUSE macro call is as follows:
Macro Call: .DRUSE type,addr,size

type stores the value of type at symbol DT.ID in the descriptor table
addr stores the value of addr as symbol DT.PTR in the descriptor table
size stores the value of size as symbol DT.SIZ in the descriptor table
.DRSET Macro

The .DRSET macro must be invoked in the preamble section of the device handler.
Invoking .DRSET and the structure of the SET tables it creates are described in
Section 1.5.2.

Information in File Image Block 0

Table 1-3 describes the contents of block 0 of the assembled handler file image. This
is the informational block and is not normally loaded into memory.

The symbol names in the table are those used in the distributed system definition
library file, SYSTEM.MLB. The macros are those that actually write the offset;
they are not necessarily the originating macro. Where appropriate, the description
indicates where you can find more information about the offset, its contents, or the
structure pointed to by an address in the offset.

Table 1-3: Contents of .SYS Image Block 0
Offset Symbol Macro Description

000000 H.HAN .DREST Handler identifier in RAD50
H.HANV Value for HHAN (RAD50 HAN)
000002 H.FETC .DRPTR Pointer to a FETCH service routine; See Section 1.2.8.1

000004 H.RELE .DRPTR Pointer to a RELEASE service routine; See
Section 1.2.8.1

000006 H.LOAD .DRPTR Pointer to a LOAD service routine; See Section 1.2.8.1

1-14 RT-11 Device Handlers Manual

Table 1-3 (Cont.):

Contents of .SYS Image Block 0

Offset Symbol Macro Description

000010 H.UNLO .DRPTR Pointer to an UNLOAD service routine; See
Section 1.2.8.1

000012— Reserved

000016

000020 H.CLAS .DREST Device classification; See Section 1.2.1.2

000021 H.MOD .DREST Device classification modifier; See Section 1.2.1.2

000022 H.SPF1 .DRSPF First special function (index method) list; See
Section 1.2.8.2

000024 H.SPF2 .DRSPF Second special function (index method) list; See
Section 1.2.8.2

000026 H.SPF3 .DRSPF Third special function (index method) list; See
Section 1.2.8.2

000030 H.SPFX .DRSPF Pointer to further special functions (extension table
method); See Section 1.2.8.2

000032 H.REPL .DREST Pointer to bad-block replacement table;
See Section 1.2.8.3

000034 Reserved

000036 H.STS2 .DREST Second status word; See Section 1.2.8.5

000040— SYSCOM area for runnable handlers.

000050

000052 H.SI1Z .DRBEG Handler size (ddEND—-ddSTRT)

000054 H.DSIZ .DRBEG Device size (ddDSIZ); See Section 1.2.1.1.6

000056 H.DSTS .DRBEG Device status word (ddSTS); See Section 1.2.1.1.5

000060 H.GEN .DREND Result of standard SYSGEN conditionals OR’d
with the value of the FORCE= parameter; See
Section 1.2.8.6

000061 Reserved

000062 H.BPTR .DRBOT Pointer to the primary bootstrap; See Section 1.11.2.2

000064 H.BLEN .DRBOT Bootstrap size in bytes; See Section 1.11.2.1

000066 H.READ .DRBOT Pointer to the bootstrap read routine;
See Section 1.11.2.5

000070 H.TYPE .DRTAB If contains value -1, indicates written by .DRTAB

.DREST (only Digital distributed handlers)—otherwise:

If contains a RAD50 value, indicates invoked by
.DREST and is the device type classification for an
internal table

Device Handlers 1-15

Table 1-3 (Cont.):

Contents of .SYS Image Block 0

Offset Symbol Macro Description
000072 H.DATA .DRTAB If HTYPE written by .DRTAB, then H.DATA is a
.DREST pointer to the list of handler data table descriptors.
If HTYPE written by .DREST, then H.DATA is the
file address of the internal data tables.
See Section 1.2.8.7
000074 H.DLEN .DRTAB Size in bytes of total list of handler data table
.DREST descriptors; See Section 1.2.8.7
000076 H.UNIT .DRDEF Pointer to extended device-unit ownership table
000100 H.64UM .DRDEF Letter name of extended device-unit handler and
device characteristics for UMR support;
See Section 1.2.8.8
000102— Reserved
000104
000106 H.USER .DRUSE Pointer to the file address of the handler data
descriptor table; See Section 1.2.8.7
000110- AUDIT Information written by those two macros. Terminated
000173 .MODULE by —-1. This list and the display CSR list cannot
overlap.
000164— H.DCSR .DRINS Display CSRs read by RESORC. If more than one,
000174 each written into previous offset; See Section 1.2.1.3
000176 H.ICSR .DRDEF Installation CSR; See Sections 1.2.1.1 and 1.2.1.3.
.DRINS
000200 H.IDK .DRINS Data device installation entry point (INSDAT); See
Section 1.2.1.3
000202 H.ISY .DRINS System device installation entry point (INSSYS); See
Section 1.2.1.3
000204— Installation code; See Section 1.14.3.5
000377
000400— H.SET .DRSET SET code; See Section 1.5.2
000777

1.2.2 Header Section

The second part of an RT-11 device handler is the header section. The header section
is the beginning of the memory resident portion of the handler and starts at the base
of file image block 1. In the header section, you invoke the .DRBEG macro to build
a data structure of variable size at the beginning of the handler’s memory image.
This macro also stores information in the handler file at offsets 52 through 60 of
block 0, and creates some global symbols.

The data you set up in the header section is used when the handler is brought into
memory with the .FETCH programmed request or LOAD monitor command. The

1-16 RT-11 Device Handlers Manual

1221

1.2.2.2

contents of location 176, described below, are used by the bootstrap when it checks
for the presence of device hardware at handler installation time.

As shown in the skeletal handler, Figure 1-1, you include macros in the preamble
section that build various data structures and define symbols. The following macros
can be used in the header section:

e .DRBEG

Defines the handler queue entry point and provides other information about the
handler. Writes locations in the handler file image blocks 0 and 1.

e .DRVTB

Defines multiple vectors if the handler supports more than one interrupt vector.

.DRBEG Macro

The .DRBEG macro sets up offsets in block 0 and the header information in block 1.
This macro also generates the appropriate global symbols for your handler. Before
you invoke .DRBEG, invoke .DRDEF to define various symbols that .DRBEG uses
internally. The format for .DRBEG is as follows:

.DRBEG name[,SPFUN=spsym][,NSPFUN=nspsym]

name is the two-character device name.

spsym is the label on the list of DMA standard special functions. Sets HF2.SD
in offset H1.FG2 of handler block 1.

nspsym is the label on list of DMA nonstandard special functions. Sets

HF2.ND in offset H1.FG2 of handler block 1.

For examples of .DRBEG, see the DL handler listing in Appendix A and the UB
example in Chapter 2.

Multivector Handlers: .DRVTB Macro

An RT-11 device handler can service multiple controllers where each controller has
an interrupt vector. The handler can also service a device that has more than one
vector.

Device handlers support a single vector through the .DRDEF macro’s vec parameter.
A device handler that supports multiple vectors must contain the .DRVTB macro.
Invoke the .DRVTB macro once for each vector. Each invocation creates a table with
three entries. The table for each vector consists of the vector location, the interrupt
entry point, and the Processor Status, or PS, value.

You can invoke .DRVTB anywhere between the .DRBEG macro and the .DREND (or
.DRBOT) macro, as long as it does not interfere with the flow of control within the
handler. You must invoke this macro once for each vector, and the macro calls must
appear one after the other in the handler.

The format of the .DRVTB macro is as follows:

Device Handlers 1-17

.DRVTB name,vec,int[,ps]

name is the two-character device name. Specify it on the first .DRVTB call;
leave this argument blank on all subsequent calls.

vec is the location of the vector; it must be between 0 and 474. The first
vector is usually dd$VEC. The value must be a multiple of 4. The
.DRBEG stores the value for dd$VEC in H1.VEC, offset 0 of block 1.

int is the symbolic name of the interrupt handling routine; it must appear
elsewhere in the handler. It generally takes the form ddINT, where
dd represents the two-character device name. The .DRBEG stores the
value for ddINT in H1.ABT, offset 2 of block 1.

ps is an optional value you can use to specify the low-order four bits of
the new Processor Status word in the interrupt vector. If you omit
this argument, it defaults to 0.

An example of a handler that can use two vectors is the DY handler, when that
handler is built to support a second controller. The following example shows the
source lines and the code the macros generate:

.1 F NE DYT$O ; If we support two controllers:
. DRVTB DY, DY$VEC, DYI NT ; DY$VEC synmbol for first vector table
.DRVTB , DY$VC2, DYI NT ; DY$VC2 synbol for second vector table

. ASSUME . LE DYSTRT+1000
. ENDC ; NE DYT$O

Generates:

.1 F NE DYT$O

. DRVTB DY, DY$VEC, DYI NT

.WORD DY$VEC&C3., DYI NT-., ~0340! 0, ~0100000
.DRVTB , DY$VC2, DYI NT

.WORD DY$VC2&*C3., DYI NT- ., ~0340! 0, ~0100000
.ASSUME . LE DYSTRT+1000

. ENDC ; NE DYT$O

In the example above, the priority bits of the PS are always set to PR7, even if you
omit the ps argument.

PS Condition Codes

In the .DRVTB macro, only the condition code bits of the ps argument are significant.
These can be useful if you have a common interrupt service entry point for two or
more vectors and you need to determine through which vector the interrupt occurred.
For example, the skeletal handler (Figure 1-1) has a single interrupt entry point
for its two vectors. For the handler to determine the source of the interrupt, one is
serviced with the carry bit clear and the other (INT2), when the carry bit is set.

1-18 RT-11 Device Handlers Manual

1.2.2.3 Information in File Image Block 1

The following table describes the contents of block 1 of the assembled handler file
image that are written by the .DRBEG macro. This is the first block that is normally
loaded into memory and is therefore block 0 of the handler memory image.

The symbol names used in the table are from the distributed system definition library
file, SYSTEM.MLB. All defined offsets are written by .DRBEG but .DRBEG is not
the originating macro for all locations. As appropriate, the description indicates
where you can find more information about each offset, its contents, or the structure
pointed to by an address in the offset.

Table 1-4: Contents of .SYS Image Block 1
Offset Symbol Macro Description

001000 H1.VEC .DRBEG Either the device vector if a single vector device or an
offset to the table of vectors for multivector devices
(ddSTRT)

001002 H1.ABT .DRBEG Offset to the interrupt service entry point
001004 H1.HLD .DRBEG Priority (340)
001006 H1.LQE .DRBEG Pointer to the last queue element (ddLQE)

001010 H1.CQE .DRBEG Pointer to the current queue element (ddCQE) in
handler memory image

001010 H1.FLG .DRBEG Flag word (in handler file image); See Section 1.2.9.1
001012 H1.NOP .DRBEG NOP instruction OR’d with flags; See Section 1.2.9.2
001014 H1.BR .DRBEG Branch instruction (optional)

001016 H1.FG2 .DRBEG Second flag word (optional); See Section 1.2.9.3
001020 H1.SCK .DRBEG Pointer to SPFUN address check routine (optional)
001022 H1.SDF .DRBEG Pointer to standard DMA SPFUN table (optional)
001024 H1.LDT .DRBEG Pointer to LD translation table (optional)

001026 H1.NDF .DRBEG Pointer to nonstandard DMA SPFUN table (optional)

1.2.3 1/O Initiation Section

The I/0 initiation section contains the first executable instructions of the handler
and must follow the call to .DRBEG. The purpose of the code in this section is to
start a data transfer. Remember that you must write Position-Independent Code
(PIC) for the handler.

When a program issues a programmed request that requires device I/0, such as
.READ or .WRITE, control first passes to the Resident Monitor, which then calls the
device handler for the peripheral device with the CALL instruction. The monitor
calls the handler at the handler’s sixth word—that is, the first word immediately
after the five-word data header. The monitor makes the call whenever a new queue
element becomes the first element in a handler’s queue. This situation occurs when

Device Handlers 1-19

1.231

an element is added to an empty queue, or when an element becomes first in a
queue because a prior element was released. If any parameters in the I/O request
are invalid for the device (for example, the block number is too large, the unit number
is too high, and so on), the handler should proceed immediately to the I/O completion
section and signal a hard (fatal) error.

The I/O initiation code executes at processor priority 0 in system state, which means
that no context switch can occur, no completion routines can run, and any traps to
4 and 10 cause a system fatal halt. All registers are available for you to use in
this section. The fifth word of the handler header, ddCQE, contains a pointer to the
current queue element at its third word, Q. BLKN.

The queued I/O system guarantees that requests for data transfers are serialized
so that RT-11 device handlers need not be re-entrant. Therefore, you can minimize
the size of a handler by mixing, rather than separating, the pure code and the data
segments.

Guidelines for Starting the Data Transfer

Since the purpose of the I/O initiation section is to start up the data transfer, you
must now supply the instructions to do this. The following steps (from the RK
handler) represent guidelines for a generalized 1/O initiation section:

1. You should have already decided how many times the handler will retry a transfer
should an error occur. Initialize a retry counter by moving the maximum number
of retries to it. The following two lines of code illustrate this step:

MoV #RKCNT, (PC) + ; RKCNT = MAXI MUM # OF RETRI ES
RETRY: . WORD O ; THE RETRY COUNTER

2. Put the pointer to the current queue element into a register, and get the device
unit number and the block number for the transfer from the queue element. The
following lines of code illustrate this.

MoV RKCQE, R5 ; GET CURRENT QUEUE ELEMENT PO NTER
MoV @Rr5, R2 ; P CK UP BLOCK NUMBER

MoV @GUNI T-1(R5) , R4 ; GET REQUESTED UNI' T NUMBER

ASR R4 ; SHEFT UNI'T NUMBER

ASR R4 ; TOHGH 3 BITS

ASR R4 ; OF LOWBYTE

SWAB R4 ;PUT UNIT NUMBER IN HIGH 3 BITS

Bl C #"C<DAUNI T>, R4 ; 1 SOLATE UNIT IN DRI VE SELECT BI TS

3. Next, perform the steps to calculate the address on the device for the data
transfer to begin. The instructions you use depend on the device’s structure,
of course. Once you have calculated the correct address, save it in a memory
location. If you need to retry this transfer, you will not have to recalculate the
address.

MOV R3, (PC) + : SAVE ADDRESS | N DI SKAD
DI SKAD: .WORD 0O : SAVE CALCULATED ADDRESS HERE

1-20 RT-11 Device Handlers Manual

4. Steps 1 through 3 outlined above are executed only once for each data I/O request
from a running program. However, in case of a soft error, you may need to restart
a transfer as part of the retry operation. So, by placing a label here to use as
the retry entry point, you avoid repeating steps 1 through 3.

The following steps can be performed more than once. They are executed once
for the first I/O startup, and they can be executed again if an I/O error causes a
retry.

At this point, the handler should determine whether the I/O request is a read, a
write, or a seek. It should then generate the appropriate op code for the operation
and move it to the device control and status register. This step actually initiates
the I/O transfer.

CSIE = 100 ; | NTERRUPT ENABLE
FNVRI TE = 12 VWRITE
CSQO = 1 ;O BIT
AGAI N: I\/D\/ RKCQE, RS ; PONT TO QUEUE ELEMENT
MoV #CSI E! FNVRI TE! CSGO, R3 ; ASSUME A WRI TE

MoV #RKDA, R4 ; PONT TO DI SK
. ; ADDRESS REG STER

5. Finally, return to the interrupted program by going through the monitor first.
Then when the I/O transfer finishes, the device will interrupt, and control will
pass to the handler at the interrupt entry point in the interrupt service section
of the handler.

RTS PC ; AWAL T | NTERRUPT

1.2.3.2 Transferring the Data

Data can be transferred between a device and the user buffer as individual bytes,
words, or by direct memory access (DMA). How the data is transferred is largely
determined by whether or you are using a mapped or unmapped monitor. This
section describes transferring the three types of data into both unmapped and
mapped memory.

1.2.3.2.1 Byte Transfer from the User Buffer to the Device

The following examples are from the XL handler and illustrate transferring a byte
from the user buffer.

Device Handlers 1-21

Unmapped Monitor

GNXTCH: MOV XOCQE, R4 ; RA->current output queue el enent
BEQ 10% : None avail abl e. ..
ADD #QBWCNT, R4 ; R4->wor d count
TST @4 ; Any characters left to output?
BEQ 20% ; Nope, this request is conplete
I NC @4 ;Yes, now there is one less to do
MOVB @(R4),R5 ; Get the byte to output
I NC @4 ; bunp pointer to next byte

Mapped Monitor

RT-11 provides the $GTBYT routine to perform the address translation between a
user buffer in mapped memory and the device. The $GTBYT routine is described in
more detail in Section 1.10.4.1.

Before the call:
R4 must point to Q. BLKN, the third word in the queue element.
After the call:

(SP), the first word on the stack, contains the next byte from the user buffer in the
low byte. The contents of the high byte are not defined.

R4 is unchanged.

GNXTCH: MOV XOCCQE, R4 ; RA->current output queue el enent
BEQ 108 ; None avail able. ..
TST Q@BWENT(R4) ; Any characters left to output?
BEQ 20% ; Nope, this request is conplete
I NC BWENT(R4) ;Yes, now there is one less to do
CALL @GTBYT ; Get the byte to output
MoV (SP)+, R5

The buffer address (Q.BUFF) in the queue element is updated by 1. If Q. BUFF is
greater than 20077, a 1 is added to Q.PAR and Q. MEM and Q.BUFF is reduced by
100.

1.2.3.2.2 Byte Transfer from the Device to the User Buffer

The following examples are from the XL handler and illustrate transferring a byte
into the user buffer.

Unmapped Monitor

30%:
ADD #QBWCNT, R4 ; RA->Word count
MOVB R5, @ (R4) ; Return the character
I NC (R4) + ; Bunp the buffer pointer
DEC (R4) ;1s transfer conplete?

;7 (z-bit=1if so)

Mapped Monitor

RT-11 provides the $PTBYT routine to perform the address translation between a
user buffer in mapped memory and the device. The $PTBYT routine is described in
Section 1.10.4.2.

1-22 RT-11 Device Handlers Manual

Before the call:
R4 must point to Q. BLKN, the third word in the queue element.

The byte to transfer to the user buffer must be on the top of the stack. The character
must be in the low byte of the stack’s first word. The high byte is unpredictable.

After the call:

The word containing the character to transfer is removed from the stack and
transferred to the user buffer.

R4 is unchanged.

30%:
MOVB R5, - (SP) ; Put character here for PUTBYT
CALL @PTBYT :Call the routine
DEC GBWCNT(R4) ;1s transfer conplete?

7 (z-bit=1if so)

The buffer address (Q.BUFF) in the queue element is updated by 1. If Q. BUFF is
greater than 20077, a 1 is added to Q.PAR and Q MEM and Q.BUFF is reduced by
100.

1.2.3.2.3 Word Transfer from the Device to the User Buffer
The handler may have to change a word in user memory. The following examples
are taken from the DY handler and return a word of size information.

Unmapped Monitor
; DRIVER |I'S DUAL DENSI TY ONLY

BI S #CSDN, R4 ; ALWAYS USE DOUBLE DENSI TY
CvPB R1, #SI Z$FN ; SPECI AL SI ZE FUNCTI ON?

BNE 3% ; NO, CONTI NUE

MoV #DDNBLK, @ R5) + ; RETURN DOUBLE DENSI TY Sl ZE
JwP DYDONE ; DONE W TH SI ZE OPERATI ON

Mapped Monitor

RT-11 provides the routine $PTWRD to perform the address translation between
the device and a user buffer. The $PTWRD routine is described in Section 1.10.5.

; DRIVER | S DUAL DENSI TY ONLY

Bl S #CSDN, R4 ; ALMAYS USE DOUBLE DENSI TY
CcvPB R1, #SI Z$FN ; SPECI AL Sl ZE FUNCTI ON?

BNE 3% ; NO, CONTI NUE

MoV #DDNBLK, - (SP) ; RETURN DOUBLE DENSI TY SI ZE
MoV DYCCE, R4 ; CURRENT QUEUE ELEMENT

CALL @PTWRD ; STORE SI ZE | N BUFFER

JwP DYDONE ; DONE W TH SI ZE OPERATI ON

The buffer address (Q.BUFF) in the queue element is updated by 2. If Q. BUFF is
greater than 20077, a 1 is added to Q.PAR and Q. MEM and Q.BUFF is reduced by
100.

Device Handlers 1-23

1.2.3.2.4 Non-DMA Transfers

The following examples are from the DY handler and illustrate getting a pointer to
the user buffer for use in DMA transfer initialization.

Unmapped Monitor

3%:
MoV (R5) +, RO ; GET THE USER S BUFFER ADDRESS
MOV @r5, WRDCNT : GET WORD COUNT
BPL 4% : POSI TI VE MEANS READ, SO ALL SET UP

Mapped Monitor
RT-11 provides the $MPMEM routine to perform address translation for non-
DMA transfers between the device and a user buffer. Non-DMA transfers are
typically done with the MOV instruction. The $MPMEM routine is described in
Section 1.10.3.1.

3%:

CALL @MPPTR ; CONVERT MAPPED ADDRESS TO PHYSI CAL ADDRESS
MoV (SP) +, RO ; GET PHYSI CAL BUFFER ADDRESS LOW ORDER BI TS
MoV R4, (PC) + ; SAVE CURRENT COMIVAND WORD

35%: . BLKW
MoV (SP) +, R4 ; GET HI GH ORDER ADDRESS BI TS <21: 18>
BIT #1700, R4 ;22-BI T ADDRESS SPECI Fl ED?
BNE DYERR ; YES, NOT VALID FOR THI S CONTROLLER
SWAB R4 ; MOVE TO CORRESPONDI NG PCSI TIONS | N H GH BYTE
BI S 35%, R4 ; NOW MERGE COMMAND WORD W TH EXTENSI ON BI TS
MoV @r5, WRDCNT ; GET WORD COUNT
BPL 4% ; PCSI TI VE MEANS READ, SO ALL SET UP

1.2.3.2.5 DMA Transfers

The address translation for DMA transfers is performed by the $MPPHY routine,
described in Section 1.10.3.2. A complete description of doing DMA transfers using
UNIBUS mapping registers (UMRs) is in Section 2.13.

1.2.4 Interrupt Service Section

Control passes to the interrupt service section of the handler when a device
interrupts, when the program requesting the I/O transfer aborts, or a .ABORT is
issued for the channel. The code in this section must first determine if the data
transfer had an error, if it was incomplete, or if it was complete, and then take the
appropriate action. The same register usage restrictions that apply to the interrupt
entry point also apply to the abort entry point. See Chapter 5 in the RT-11 System
Internals Manual for information on interrupt service routines.

Your first step in coding the interrupt service section is to set up the interrupt entry
point and the abort entry point by using the .DRAST macro. (These entry points
are sometimes referred to as the asynchronous trap entry points.) The default name
for the interrupt entry point is ddINT, where dd is the device name. Under normal
conditions, the handler is called at the interrupt entry point when an interrupt
occurs. However, under some circumstances, the handler is called at the abort entry
point located at ddINT-2. The various situations are discussed in the following
sections.

1-24 RT-11 Device Handlers Manual

1241

1.2.4.2

.DRAST Macro

Use the .DRAST macro to set up the interrupt entry point and the abort entry point,
and to lower the processor priority. The .DRDEF and .DRVTB macros fill in the
structure at bootstrap (for the system device) or at . FETCH time (for a data device).

The format of the DRAST macro is as follows:
.DRAST name,pri[,abo]
name is the two-character device name.

pri is the priority of the device, and the priority at which the interrupt
service code is to execute.

abo is an optional argument that represents the label of the abort entry
point. If you omit this argument, the macro expansion generates a
RETURN instruction at the abort entry point. Either the branch to
the specified label or the RETURN instruction is the word immediately
preceding the interrupt entry point ddINT.

The following example from the DY handler shows the .DRAST macro call. In
the example, DYABRT is the label for the abort routine which would generate the
instruction BR DYABRT in the word preceding the interrupt entry point DYINT.

. SBTTL | NTERRUPT ENTRY PO NT

. DRAST Dy, 5, DYABRT ; AST entry point
BR DYABRT ; Junmp to abort entry point
DYI NT: : JSR R5, @l NPTR ; Junmp to nonitor | NTEN code
.WORD "C<5*"040>&"0340 ; New priority
.FORK DYFBLK ; Request fork level imrediately
JSR R5, @FKPTR ; Junp to nonitor fork code
.WORD DYFBLK-. ; OfFfset to fork queue el enent
CALL SETDY ; Setup registers
BM DYERR2 ; Check out the error and retry
| NTDSP: JMP @ PC) + ; No error, return to called
INTRTN:. .WORD O ; ¢ Address of waiting routine

The next example, from the RK handler, does not have an abort routine. Notice the
instruction, RETURN, in the word immediately preceding the interrupt entry point
RKINT.

. DRAST RK, 5

.GLOBL $I NPTR ; MAKE THI S SYMBOL GLOBAL

RETURN ; JUST RETURN ON ABORT
RKI'NT: : JSR R5, @l NPTR ; JUVP TO MONI TOR | NTEN CODE

.MORD A"C<5*"O40>&" B340 NEW PRI ORI TY

Abort Entry Point

As described in Section 1.3, there are a number of situations that cause an abort
in the queued I/O system. The response to the abort situation by the handler and
RMON depends on the ABTIO$ and HNDLRS$ bits in the device status word.

When an abort occurs, it is important to stop I/O on some devices. Character-
oriented devices, such as the communications handler XL, fall into this category.

Device Handlers 1-25

1.2.4.3

1.24.4

So, character-oriented devices generally contain an abort routine; the abort entry
point is simply a branch instruction to that routine. The following lines are from
the XL handler:

XLDONE:

BI C #RC. | E, @I S ; Turn off input interrupts

RTS PC ;Return to nonitor

Other devices, such as disks, should be allowed to complete an I/O transfer attempt,
even if an abort occurs. In fact, trying to abort in the middle of an operation can
corrupt data or formatting information on a disk. So, instead of having a separate
abort routine, most handlers for disks ignore an abort. Thus, a RETURN instruction
is located at the abort entry point, which simply returns control to the monitor.

The abort entry point is always located at the word previous to the interrupt entry
point (ddINT-2). If the optional .DRAST abo parameter is specified, the abort entry
point is a branch instruction to the label specified as the abo parameter argument.
If abo is not specified, the .DRAST macro expansion places a RETURN instruction
at the abort entry point (ddINT-2).

If you use .FORK in your handler, there is a special procedure you must follow if an
abort occurs. You must move 0 to F.BADR (the fork routine address, at offset 2) in
the fork block. This prevents the monitor from attempting to execute a meaningless
fork routine after the abort.

Lowering the Priority to Device Priority

When the interrupt occurs, the handler is entered at priority 7. As with interrupt
service routines, the handler’s first task is to lower the processor priority to the
priority of the device, thus permitting more important devices to interrupt this
service routine. Instead of using the .INTEN call, as in an interrupt service routine,
use the .DRAST macro to lower the priority.

Guidelines for Coding the Interrupt Service Section

Since the purpose of this section is to evaluate the results of the last device activity,
you must now supply the instructions to do this. Essentially, the code must
determine if the transfer was in error, if it was incomplete, or if it was complete.

1. If an Error Occurred

If an error occurred during the transfer, the handler must distinguish between
a hard error and a soft error that might vanish if the operation is retried.

If the error is hard, the handler should immediately exit through the I/O
completion section after setting HDERR$ in the CSW.

1-26 RT-11 Device Handlers Manual

If the error is soft, the handler should prepare to retry the transfer. It should
decrement the count of available retries. Then, possibly at fork level, it should
branch back to the I/O initiation section to restart the transfer. If the transfer
has already been retried enough times (the retry count is 0), treat the failure as
though it were a hard error. In that case, the handler should proceed to the I/O
completion section after setting HDERR$ in the CSW.

Note that dropping to fork level is not strictly required to process an error.
Whether or not to use .FORK depends on the length of time required for setting
up the retry. The .FORK call is especially useful because it gives you use of RO
through R3, thus permitting you to use common routines for the retry. If you do
not use .FORK, only R4 and R5 are available.

Perform Retries at Fork Level

As also described in the RT-11 System Internals Manual, the . FORK macro causes
areturn to the Resident Monitor, which dismisses the current interrupt. The code
that follows .FORK executes at priority O, rather than at device priority, after
all other interrupts have been serviced, but before any jobs or their completion
routines can execute. The code following .FORK executes, as does the main body
of the interrupt service section of the handler, in system state. (This is the same
state the I/O initiation section runs in.) Thus, context switching is prevented
while the fork level code is executing, and any traps to 4 and 10 cause a system
fatal halt.

The following example from the RK handler illustrates how the handler drops
priority to fork level to retry data transfers after a soft error occurred. Fork
level is ideal for performing the retries, since this may be a lengthy process. The
.FORK call and its expansion are as follows:

.FORK RKFBLK : THE FORK CALL

JSR R5, @FKPTR : (JUMP TO MONI TOR FORK CODE)

.WORD RKFBLK - . - (OFFSET TO FORK QUEUE ELEMENT)
RKRETR CLRB RETRY+1 RESET A FLAG

BR AGAI N *BRANCH INTO | /O I NI T SECTI ON

If the Transfer Was Incomplete

In general, a transfer is considered to be incomplete when there are more
characters or more blocks of data left to transfer. The handler should restart
the device and exit with a RETURN instruction to wait for the next interrupt.

If the Transfer Was Complete

When the transfer is complete, the handler can simply exit through the I/O
completion section.

Device Handlers 1-27

1.2.5 /O Completion Section

The I/0 completion section provides a common exit path to inform the monitor that
the handler is done with the current request, so that the monitor can release the
current queue element.

The I/O completion section is an extension of the interrupt service section. Control
passes from the interrupt service section to the I/O completion section when a data
transfer completes, when a hard error is detected, or when a soft error condition
exhausts the number of allowed retries.

(Note that you can branch directly to this section from the I/O initiation section if
you immediately detect a hard error.)

1.

If an Error Occurred

There are two kinds of errors that cause control to pass to the I/O completion
section: hard errors, which should cause a branch to this section immediately,
and soft errors that have exhausted their allotted number of retries, which cause
a branch to this section after the last retry fails. Treat both cases alike in
handling the exit to the monitor.

First, set the hard error bit (HDERRS$), bit 0, in the Channel Status Word for
the channel. The second word of the I/O queue element, Q.CSW, points to the
Channel Status Word. Then jump to the I/O completion routine in the Resident
Monitor. Use the .DRFIN macro, described below, to generate the code for this
jump.

The following lines of code are from the DY handler. They illustrate how the
handler sets the hard error bit and jumps back to the monitor.

10$: BI C #<CSI NI T! CSI NT>, @DYCSA ; Dl SABLE FLOPPY | NTERRUPTS
; AND | NHI BI T DRI VE RESET
11$: .DRFIN DY ; GO TO |/ O COVPLETI ON
DYERR MOV DYCQE, R4 ; R4 -> CURRENT QUEUE ELEMENT
BI S #HDERRS$, @ (R4) ; SET HARD ERROR | N CSW
BR 10% ; EXI'T ON HARD ERROR

If the Transfer Was Complete

For a block-oriented device, such as a disk or diskette, the handler simply disables
interrupts and performs the jump to the monitor. The .DRFIN macro generates
the code to perform the jump.

For a character- or word-oriented device, the procedure is slightly more
complicated because the handler may have to report end-of-file to the job that
requested the I/O transfer. When the handler actually detects the EOF condition
on a READ operation, it should set an internal EOF flag, put the last character
in the user’s buffer, and then zero-fill the rest of the buffer. Then the handler
should jump back to the monitor, as it would if EOF were not detected but the

1-28 RT-11 Device Handlers Manual

buffer had simply filled up. The handler waits until it is called again to signal
EOF to the user.

This convention for indicating end-of-file makes character-oriented devices
appear to programs as random-access devices, which is in keeping with the RT-11
philosophy of device independence.

DRFIN Macro

Use the .DRFIN macro to generate the instructions for the jump back to the monitor
at the end of the handler I/O completion section. The macro makes the pointer to the
current queue element a global symbol, and it generates Position-Independent Code
for the jump to the monitor. When control passes to the monitor after the jump, the
monitor releases the current queue element.

The format of the .DRFIN macro is as follows:
.DRFIN name

name is the two-character device name.

For examples of the .DRFIN macro, see the handler listings in Appendix A.

1.2.6 Handler Termination Section

The purpose of the handler termination section is to declare some global symbols and
to establish a table of pointers to locations in the Resident Monitor. The pointers
are filled in by the bootstrap, if the handler is for the system device. Otherwise,
they are filled in when the handler is made resident with .FETCH or LOAD. The
termination section also provides a symbol to determine the size of the handler. Use
the .DREND macro to generate the handler termination code.

1.2.6.1 .DREND Macro
The format of the .DREND macro is as follows:
.DREND name

name is the two-character device name.

In bootable handlers, the .DREND macro is invoked twice, once explicitly by the
programmer and once implicitly by the .DRBOT macro. When .DRBOT is invoked,
it implicitly generates a .DREND macro to close the memory resident part of the
handler. You end the boot area with a second .DREND macro.

For examples of the .DREND macro, see the handler listings in Appendix A. The
symbols defined by .DREND are shown in Table 1-11.

1.2.7 Pseudodevices

You can write a device handler for a pseudodevice (one that does not interrupt,
and is not a mass storage device) to take advantage of the queued I/O system
and the fact that handlers can remain memory resident. Examples of handlers
for pseudodevices are NL (the null device), MQ (the message queue handler), SL
(the single-line command editor), and UB (the UMR handler).

Device Handlers 1-29

All the executable code of such a handler must appear in the I/O initiation section.
The handler should then issue the .DRFIN macro call to terminate the operation
and return the queue element. Since pseudodevices do not interrupt, the handler
needs no interrupt service section and no .DRAST macro call.

1.2.8 Handler Data Structures Related to Block O

The following sections describe data structures that relate to block 0 of the handler
file image. The data structure can reside within block 0 or be pointed to by an
address contained there.

1.2.8.1 Handler Service Routine Environment

This section describes the handler service routine entry environment and error
processing. The routines are defined by the .DRPTR macro and located at a file
address in the handler (See the .DRPTR section in the RT-11 System Macro Library
Manual).

Handler Service Routine Entry Environment

The following registers and their contents constitute the handler service routine
entry environment. These registers (RO through R5) are set up by RT-11. All
registers are available and none needs to be preserved.

Table 1-5: Handler Service Routine Entry Environment

Register Contents

RO Contains starting address of the current running handler service routine.

R1 Contains starting address of GETVEC routine if a CTI Bus-based processor.
Otherwise, R1 contains the address of a routine that always returns carry set.

1-30 RT-11 Device Handlers Manual

Table 1-5 (Cont.): Handler Service Routine Entry Environment

Register

Contents

R2

Contains the value $SLOT*2. That value is the length of the $PNAME table
in bytes. You can use that value to locate information in the handler tables
concerning this handler. The following table shows the order in memory and size
in bytes, relative to $SLOT*2, of the pertinent handler tables and the contents
of those tables:

Table Size Contents

$OWNER: <$SLOT*2>*2 Ownership table; can be removed from
(generated out of) monitors

$UNAM1: <$SLOT*2>+4 Physical name of device table
$UNAM2: <$SLOT*2>+4 Logical name of device table
$PNAME: $SLOT*2 Installed handlers table

$ENTRY: <$SLOT*2>+2 Handler address table. Last word contains
value —1 and indicates end of table

$STAT: $SLOT*2 DSTATUS value table
$DVREC: $SLOT*2 Handler disk block table
$HSIZE: $SLOT*2 Handler memory size table
$DVSIZ: $SLOT*2 Device blocks table

$PNAM2: <$SLOT*2>+2 Optional physical device name table for
extended-unit (single letter) device names.
Last word contains default device name, if
assigned

You can use that table in the following manner. R5 contains the $ENTRY table
entry address for this device handler. You could find, for example, the name for
this handler in the $PNAME table by subtracting the value for $SLOT*2 from
the value contained in R5. Likewise, you could find the DSTATUS value for this
handler in the $STAT table by adding the value of <$SLOT*2>+2 to the value
contained in R5.

See the RT-11 System Internals Manual for more information about the handler
tables.

Device Handlers 1-31

Table 1-5 (Cont.): Handler Service Routine Entry Environment

Register Contents

R3 Indicates the type of entry. The value in R3 indicates the type of routine that
called the handler service routine:

Value Name Meaning
0 HRR.FF Entered from .FETCH
2 HRR.RE Entered from .RELEASE
4 HRR.LO Entered from the LOAD command
6 HRR.UN Entered from the UNLOAD command
10 HRR.AB Entered from a job abort (RELEASE routine)
12 HRR.SY Entered from a system bootstrap load (LOAD
routine)
R4 Contains the address of a read routine you can use to perform I/O to the

system device, which has been opened as non-file-structured. You must load
the following registers with the following contents to use the read routine:

Register Contents

RO Block number to read
R1 Number of words to read
R2 Buffer address

You can read into only the low 28K words of memory. To read into high memory,
you must first read into low memory and then move the data. The read routine
returns with carry clear if there are no errors; carry bit is set if there are errors.

R5 Contains a pointer to the $ENTRY table entry for this handler.

Handler Service Routine Error Processing
The following list shows how errors in handler service routines should be processed:

e If no errors occur, exit with carry bit clear.
e If errors occur, exit with carry bit set.

The response from RT-11 to handler service routines that exit with the carry bit set
varies according to the following:

e If the handler service routine was called by the .FETCH request, RT-11 refuses
to fetch the handler.

1-32 RT-11 Device Handlers Manual

You should not depend on this response with handlers that should never be
fetched; use the .DRPTR FETCH=*NO* parameter instead.

If the handler service routine was called by the .RELEASE request, RT-11
releases the handler.

If the handler service routine was called by the LOAD command, RT-11 refuses
to load the handler.

You should not depend on this response with handlers that should never be
loaded; use the .DRPTR LOAD=*NO* parameter instead.

If the handler service routine was called by the UNLOAD command, RT-11
refuses to unload the handler. Further RT-11 response is determined by the
contents of RO:

— If RO is returned with value zero, RT-11 displays the error message, ZKMON-
F-Unable to unload handler.

— IfROis returned with value other than zero, RT-11 displays the error message
located at the address (in low memory) contained in RO.

If the handler service routine was called by a job abort, RT-11 ignores the carry
bit; the job aborts.

If the handler service routine was called by a system bootstrap load, the handler
can do one of the following:

— Clear the carry bit and continue.
— Set the carry bit and return.

On UNIBUS and Q-bus processors, RT-11 displays the message, 2BOOT-U-
Failure to load system handler, and the system halts. On CTI Bus-based
processors, RT-11 displays code 000013 and the system halts.

— Set the carry bit and send an error message to the console terminal.

The handler sends an error message to the console terminal, using the
following code:

CCODE =: <200! DEV. xx>
REPORT =: 672
JSR R1, @REPORT
.WORD MBG
.BYTE CODE
MSG .ASCl Z "nessage"
. EVEN

For UNIBUS and Q-bus processors:
e RT-11 ignores the contents of the byte CODE.
e RT-11 adds the prefix "?BOOT-U-" to "message".
(For the distributed RT-11, "message" is "Failure to load system handler".)
* The system halts.

Device Handlers 1-33

For CTI Bus processors:
e RT-11 ignores the contents of "message".

e RT-11 displays the octal value contained in CODE with no prefix. The
value in CODE should be 200'DEV.XX, where DEV.XX is the device id
for this handler. You can find DEV.XX for this handler in the $DVREC:
handler table.

(For the distributed RT-11, CODE is 000013.)
* The system halts.

1.2.8.2 Special Function Code Support Table (H.SPFx)

H.SPFx supports both the list and extension table method for describing those special
functions used within the handler. Using .DRSPF to create the table is described in
the RT-11 System Macro Library Manual.

The .DRSPF macro places the table in octal offsets 22 through 30 in the handler’s
block 0. Offsets 22 through 26 support the list method and each offset has the same
structure and is composed of a low and high byte. Offset 30 is a word pointer to a
list of other special functions.

The symbol names for the values in H.SPFx are defined in the .DSPDF macro in the
distributed file SYSTEM.MLB.

The following is the structure of offsets 22 through 26.

Bit Symbol Meaning
Low DSPXN The low byte, consisting of a bit mask that specifies the
Byte supported low-order numbers (xxN):

Bit Symbol Meaning

001 DSP.X0 xx0 bit mask
002 DSPX1 xx1 bit mask
004 DSP.X2 xx2 bit mask
010 DSP.X3 xx3 bit mask
020 DSP.X4 xx4 bit mask
040 DSP.X5 xx5 bit mask
100 DSP.X6 xx6 bit mask
200 DSP.X7 xx7 bit mask

1-34 RT-11 Device Handlers Manual

1.2.8.3

Bit Symbol Meaning

High DSPNX The high byte, made up of a value to specify the type

Byte of special function and the high order numbers (NNx).
Specifying a type of special function forces the table entry
to a single special function.

001- DSP.TY The type of special function:
004

Value Symbol Meaning

0 DSP.UK Unknown type
1 DSPRD READ type
2 DSPWR WRITE type
3 DSPMV MOVEMENT type
4 DSPRW TRANSFER type
5-17 Reserved
010- DSP.NN Value for the special function’s high-order two numbers

200

As an example, assume support for special functions 372, 373, and 377 (no type
specified). The contents of the table entry for these would appear in a byte dump as:

370 214

For an example that includes the TYPE parameter, assume the special function 376
of type WRITE. The contents of the table entry for that would appear in a byte dump
as:

372 100

Bad-Block Replacement Geometry Table (H.REPL)

H.REPL stores the geometry of the software (not MSCP) bad-block replacement
table. The .DREST macro places a pointer to this table in offset 32g in the handler’s
block 0. The table must be located in block 0.

Of the distributed RT-11 device handlers, H.REPL is found in the RL01/02 and
RKO06/07 handlers.

The symbol names for the values in H. REPL are defined in the .RGTDF macro in
the distributed file SYSTEM.MLB.

The table consists of 1-byte entries and is 6 bytes long.

Device Handlers 1-35

Offset Symbol Contents

0 RGT.FG A flagin bit 0. If bit O is clear, all blocks are replaceable; if set,
only some blocks are replaceable. Bits 1-7 are reserved.

1 RGT.PD A constant for locating the bad sector file. The last addressable
block plus this constant is the bad sector file location.

2 RGT.BS Size in sectors of bad sector file.

3 RGT.TC Number of tracks per cylinder.

4 RGT.ST Number of sectors per track.

5 RGT.SB Half the number of sectors per block, such that two times this
number is the sectors per block.

6 RGT.SZ Size of this table.

1.2.8.4 Bad-Block Replacement Table (HB.BAD)

The bad-block replacement table is stored in the home block of RL01/02 and RK06/07
volumes, beginning at offset 6 (HB.BAD) and ending at offset 200.

The symbol names for the values in HB.BAD are defined in the .BBRDF macro in
the distributed file SYSTEM.MLB.

Offset Name Meaning
BBR.BD Bad block number.
BBR.GD Replacement block number.
BBR.SZ Entry size.

1.2.8.5 Second Handler Status Word (H.STS2)

The following table defines the bits in the second handler status word (H.STS2),
which the .DREST macro places in offset 365 of block 0.

Bit Symbol Meaning

000001 HS2.BI Handler cannot be installed by the monitor bootstrap.

000002 HS2.KI Handler cannot be installed by the DCL INSTALL command.

000004 HS2.KLL. Handler cannot be loaded by the DCL LOAD command.

000010 HS2.KU Handler cannot be unloaded by the DCL UNLOAD
command.

000020 HS2.MO Handler supports DCL MOUNT and DISMOUNT commands.

1-36 RT-11 Device Handlers Manual

1.2.8.6

1.2.8.7

Bit Symbol Meaning

000040— Reserved.
100000

Handler SYSGEN Options Byte (H.GEN)

The .DREND macro stores the SYSGEN option bits in H.GEN (byte offset 60g of
block 0).

The value stored in H.GEN is the values for the SYSGEN options OR’d with the
value of the .DREND FORCE= parameter.

The symbol names for the values in H.GEN are defined in the .SGNDF macro in the
distributed file SYSTEM.MLB. (Note that only symbols in the range 1-200 can be
used.)

Bit Symbol Meaning

001 ERLG$ Handler supports error logging.

002 MMGT$ Handler supports extended memory.
004 TIMIT$ Handler supports device timeout.
010 RTEM$ Handler is running under RTEM-11.
020— Reserved.

200

Handler Internal Data Table and Descriptor Structure (H.TYPE, H.DATA, and H.DLEN)

The structure described in this section is a descriptor table. That is, the structure
describes tables located elsewhere in the handler. The contents and location of the
structure vary according to the macro that writes it. The structure can be placed in
block 0 or an address can be placed in block 0 that points to the structure:

¢ The .DREST or .DRTAB macro stores the structure in block 0 offsets 70 through
74. The indicated offsets are from location 70.

¢ The .DRUSE macro stores the structure in the handler file and writes a pointer
to the structure in block 0 offset 106. The indicated offsets are from handler file
address pointed to by offset 106.

The symbol names for the values in H TYPE, H.DATA, and H.DLEN are defined in
the .DUSDF macro in the distributed file SYSTEM.MLB.

Device Handlers 1-37

Offset Symbol Contents

00 DT.ID If table generated by .DREST or .DRUSE, contains the
RAD50 device type identifier.
If table generated by .DRTAB, contains the value —1.

02 DT.PTR If table generated by .DREST, contains the file address of
internal data tables.
If table generated by .DRUSE or .DRTAB, contains the file
address of the list of data table descriptors.

04 DT.SI1Z Length in bytes of the data table pointed to by this structure.

06 DT.ESZ When table is generated by .DRUSE only, is the length in
bytes of each entry in the table pointed to by this structure.

10 DT.EOL When table is generated by .DRUSE only, is a null word that

signifies the end of the descriptor list.

1.2.8.8 UMR Support and Extended Device-Unit Handlers (H.64UM)

The contents of H.64UM describes the attributes of an extended device-unit handler
and the support for UNIBUS Mapping Registers (UMRs).

The .DRDEF macro writes H.64UM in octal location 100 in the handler’s block O.

The symbol names for the values in H.64UM are defined in the . HUMDF macro in
the distributed file SYSTEM.MLB.

Bit Symbol Meaning

000001- HUM.PU Required number of permanent UMRs.

000004

000010 HUM.S6 Handler supports other extended device-unit handlers (used
in LD handler).

000020 HUM.DM Handler uses DMA.

000040 HUM.UB Handler includes .DRDEF macro DMA=str parameter
(argument YES or NO).

000100- HUM.64 Field containing RAD50 letter for extended device-unit

100000 handler.

If HUM.UB bit is clear, bits HUM.UB, HUM.DM, and HUM.PU are reserved.
IF HUM.PU bits are nonzero, HUM.DM must be set.

1-38 RT-11 Device Handlers Manual

1.2.9 Handler Data Structures Related to Block 1

1.29.1

1.2.9.2

The following sections describe data structures that relate to block 1 of the handler
file image. The data structure can reside within block 1 or be pointed to by an
address contained there.

Handler Flag Word (H1.FLG)

H1.FLG contains flags that provide information about the handler.

The .DRBEG macro writes H1.FLG in octal location 10 of the handler’s block 1
(location 1010 of the file image).

The symbol names for the values in H1.FLG are defined in the .HBFDF macro in
the distributed file SYSTEM.MLB.

Bit Symbol Meaning
000001— Reserved.
004000

010000 DV2.DM Handler supports DMA and is compatible with RT-11 V5.5
(and subsequent) UMR support.

020000 DV2.NL Handler cannot be loaded by KMON; can only be loaded by
BSTRAP (at bootstrap time).

040000 DV2.V2 The first vector table set up by .DRVTB is followed by a
second table. The second table is only for display purposes.

100000 DV2.NF Handler cannot be fetched but instead must be loaded.

Handler Service Routine Entry Point Word (H1.NOP)

H1.NOP describes whether entry points to various handler service routines exist. It
also defines the existence of a second handler flag word (H1.FG2). The low 5 bits
are significant; the other bits are used to construct a NOP instruction and can be
disregarded.

The .DRBEG macro stores the entry point in H1.NOP (offset 125 of block 1).

The symbol names for the values in H1.NOP are defined in the . HUMDF macro in
the distributed file SYSTEM.MLB.

Bit Symbol Meaning

000001 HNP.FE Handler contains entry point to a FETCH service routine.
000002 HNPRE Handler contains entry point to a RELEASE service routine.
000004 HNP.LO Handler contains entry point to a LOAD service routine.
000010 HNP.UN Handler contains entry point to an UNLOAD service routine.

Device Handlers 1-39

Bit Symbol Meaning

000020 HNPF2 Handler contains a second flag word (H1.FG2).
000040 HNP.N1 Part of the NOP instruction (disregard).
000100 Reserved.

000200 HNP.N2 Part of the NOP instruction (disregard).
000400—- Reserved.

100000

1.2.9.3 Second Handler Flag Word (H1.FG2)

H1.FG2 contains flags that provide additional information about the handler. If a
flag indicates that a location after H1.FG2 is defined, then the preceding locations
(to H1.FG2) are also defined.

The .DRBEG macro stores the second handler flag word in H1.FG2 (offset 165 in the
handler’s block 1).

The symbol names for the values in H1.FG2 are defined in the . HF2DF macro in the
distributed file SYSTEM.MLB.

Bit Symbol Meaning

000001 HF2.SC Handler code performs special function address checking
(therefore H1.SCK exists).

000002 HF2.SD Handler lists special functions that use DMA (therefore
H1.SDF and H1.SCK exist).

000004 HF2.LD Handler contains pointer to LD translation table (therefore
H1.LDT, H1.SDF, and H1.SCK exist).

000010 HF2.ND Handler contains nonstandard DMA special functions
(therefore H1.NDF, H1.LDT, H1.SDF, and H1.SCK exist).

000020- Restricted.

002000

004000 HF2.SR Handler requires serial satisfaction of I/O requests.

010000 HF2.DM Handler performs DMA and is compatible with RT-11 V5.5
UMR support.

020000 HF2.S6 Handler supports other extended device-unit handlers (used
in LD handler).

040000 HF2.64 Handler supports extended device-unit requests.

100000 HF2.F3 Handler contains a third flag word.

1-40 RT-11 Device Handlers Manual

1.2.10 Skeleton Outline of a Device Handler

The skeleton outline in Figure 1-1 provides the structure for a simple device handler.
In the figure, SK is the device name.

Figure 1-1: Skeleton Device Handler

.Title

SK -- Handl er Skel et on

; SK DEVI CE HANDLER

. | DENT

/ VO5. 05/

. SBTTL PREAMBLE SECTI ON

. MCALL
. MCALL
. MCALL

. MACRO

. ENDM

. DRDEF

. DRPTR

. DREST

. DRSPF
. DRSPF
. DRSPF

. DRI NS

RETURN

.DRDEF ; Get handler definitions
. ASSUME ; Checking macro
CEXIT ; To finish run

; Define ellipsis (allow
; ellipsis to assenbl e)

;. Gener at e nonexecutabl e handl er informati on tabl es

; containing the follow ng i nformati on:

; Handler is SK

; Handler IDis 350 (user-witten handler)
; Handl er accepts neither .READ nor .WRI TE
; Handl er accepts .SPFUN requests

; Device is 1 block in size

; Device has a CSR at 176544

;. Device has a vector at 20

SK, 350, WONLY$! SPFUNS, 1, 176544, 20

; Handl er has .Fetch and $LOAD code to be execut ed:

FETCH=Fet ch, LOAD=Load

: Handler is for a "Null" cl ass device

; Handl er has a data table called DATABL
; Data table is of the SKL format

CLASS=DVC. NL, DATA=DATABL, TYPE=SKL
; Handl er accepts the foll owi ng SPFUN codes:
;372,376,377

<372>, TYPE=T

<376>, TYPE=W

<377>, TYPE=R

; Handler CSR is not to be checked at install,
; but is to be displayed:

- SK
; Here is any installation check code

.ASSUME . LE 400, MESSAGE=<;Install ati on area overfl ow>

Figure 1-1 (continued on next page)

Device Handlers

1-41

Figure 1-1 (Cont.): Skeleton Device Handler

; Handl er accepts SET SK [NO| BONES conmand:
. DRSET BONES, 123456, CORPUS, NO

CORPUS: ; SET SK BONES

com R3 ; Flip bits

NOP ; Pad code

. ASSUME . EQ CORPUS+4, MESSAGE=<; No option code in wong pl ace>
NOCORP: ; SET SK NOBONES

MOV R3, Pl CKNT ; Set value in block 1

RETURN

.ASSUME . LE 1000, MESSAGE=<; Set area overfl ow
.SBTTL HEADER SECTI ON

. DRBEG SK ; Handl er Queue Manager Entry point
BR START ; Skip data table

DATABL.:
. RAD50 " SKL" Table ID

WRI ST: .BLKW 1 Tabl e contents
ANKLE: .BLKW 1

; Set up ih.e. Vect or table:

SK$VTB: . DRVTB SK, SK$VEC, SKI NT, 0
.DRVTB , SK$VEC+4, SKI NT, 1

Pl CKNT: .BLKW 1 ; Value controlled by Set command
. ASSUME . -2 LE SKSTRT+1000, MESSAGE=<; Set object not in block 1>

.SBTTL /O I NI TI ATI ON SECTI ON

START: ; Executabl e Queue code
RETURN
. SBTTL | NTERRUPT SERVI CE SECTI ON
. DRAST SK, 4, ABORT ; Interrupt entry point
BCS | NT2 ; Interrupt from second vector
RETURN
| NT2: ; Second interrupt vector code
RETURN
.SBTTL |/ O COVWPLETI ON SECTI ON
ABORT: ; Abort entry point
:bi?FIN SK ; Conpletion return
; End of nenory resident part of handler
. DRBOT SK, ENTRY ; Boot code
ENTRY:

; Hard boot code to call read routine
RETURN

Figure 1-1 (continued on next page)

1-42 RT-11 Device Handlers Manual

Figure 1-1 (Cont.): Skeleton Device Handler

READ:
. ;. Read routine
RETURN
.SBTTL HANDLER TERM NATI ON SECTI ON
.DREND SK ;. End of boot code
. PSECT SETOVR ; Suggested bl ock aligned PSect
FETCH:
; Code executed on FETCH
RETURN
LOAD:
; Code executed on LOAD
RETURN
RUN:
; Code executed on RUN
CEXLT
. END RUN

1.3 Abort Processing

This section describes the behavior of the resident monitor (RMON) and a device
handler when a job abort occurs.

The action taken by RMON in abort processing is determined by three criteria:
* The setting of the ABTIO$ and HNDLR$ bits in the device status word (H.STS).
* The action that caused the abort.

¢ The presence or absence of a current queue element belonging to the aborting
job (or job and channel in the case of .ABTIO aborts).

The first two criteria are described in the following sections. Section 1.3.2 contains
a table showing the matrix and order of RMON actions based on combinations of all
those criteria.

1.3.1 Handler Status Word Bits ABTIO$ and HNDLR$

The combination of ABTIO$ and HNDLRS$, whether set or clear, determines to the
following extent how RMON performs abort processing for that handler and other
handlers that are loaded in memory:

e If ABTIOS is set, the handler is entered by RMON during any type of abort; the
status of HNDLRS$ (set or clear) does not matter.

e If ABTIO$ or HNDLR$ is set (but not both), the handler is entered by RMON
when a .ABTIO request is issued by a program to any handler.

Device Handlers 1-43

When a program invokes the .ABTIO request for a channel associated with any
handler, RMON calls the abort entry point of all in-memory handlers having that
bit combination (ABTIO$ or HNDLR$ set, but not both). RMON checks each
handler for I/O requests that might be internally queued on the channel that
is specified in the .ABTIO request. RMON performs abort processing for any
outstanding I/O request on the channel being aborted by the .ABTIO request.
RMON does not discard the current queue element (ddCQE) and whether or not
it is satisfied is determined by the handler.

If the hanlder aborts the current queue element, it should clear the queue
element’s completion routine address (Q.COMP) and issue a .DRFIN to return
the queue element to the monitor. All outstanding queue elements that are
associated with the aborting job or job and channel are removed from the
handler’s queue element list.

e If HNDLRS$ is set and ABTIO$ is clear, RMON does not keep count (in I.IOCT)
of the number of outstanding queue elements for that handler.

Some handlers, such as the distributed RT-11 MQ and Ethernet handlers, can
post a request without necessarily expecting satisfaction of that request. To allow
such handlers to be aborted, RMON is inhibited from keeping a count (in I.IOCT)
of all outstanding I/O requests. Such handlers can then be aborted when they
still contain outstanding queue elements.

Any user-written internally queued handler that can post an I/O request without
requiring satisfaction of that request should be built with HNDLR$ set and
ABTIOS$ clear.

1.3.2 Types of Aborts and Action Taken by RMON

The resident monitor performs abort processing for any of the following actions:

Abort Type Description

.CHAIN I/O for the chaining job is allowed to complete.

EXIT Job I/O is allowed to complete.

.SRESET

.HRESET Hard error condition. Job I/O is stopped. ?MON-F- means an
?MON-F- abort caused by a fatal monitor error. <CTRL /C> means a double
<CTRL/C> CTRL/C typed at the keyboard.

ABTIO A .ABTIO request is issued for a handler that is associated with
(Handler the aborting job’s channel control block.

used by

this

channel)

1-44 RT-11 Device Handlers Manual

Abort Type Description

ABTIO This handler assembled with device status word bit HNDLRS$ set
(All other and ABTIOS$ clear, and is entered whenever a .ABTIO request is
handlers) called for any handler on any channel.

Table 1-6 illustrates RMON abort processing. It not only shows the actions
performed by RMON, but also the order in which they are performed. Before the
table is a legend that defines and explains the symbols used in the table.

The order of certain symbols in the tables is important. The symbols show the order
of abort processing for the type of abort. A note defines the symbols that should be
read in order.

Symbol Definitions and Explanations for Table 1-6

Symbol Definition/Explanation

Abort Type The action that caused the abort.

A$=0 The handler is not built with ABTIO$ (ABTIO$=0).

A$=1 The handler is built with ABTIO$ (ABTIO$=1).

H$=0 The handler is not built with HNDLR$ (HNDLR$=0).

H$=1 The handler is built with HNDLR$ (HNDLR$=1).

ddCQE The handler contains a current queue element belonging to the

aborting job (or job and channel if .ABTIO).

The absence of this symbol in a header indicates the handler has no

current queue element associated with the aborting job (or job and
channel if .ABTIO).

NOTE
The order of the following symbols in the tables is
important. The symbols show the order of abort
processing for the type of abort. For example, the
symbols EJ show that operation E is performed first and
operation J is performed next.

C RMON removes all queue elements belonging to the job and channel
from the queue and decrements I.IOCT one time for each element
removed.

C~ RMON removes all queue elements belonging to the job and channel
from the queue but does not decrement I.IOCT.

E RMON calls the handler’s abort entry point.

Device Handlers 1-45

Symbol

Definition/Explanation

@)

RMON removes all queue elements belonging to the job from the
queue and decrements I.IOCT one time for each element removed.

RMON removes all queue elements belonging to the job from the
queue but does not decrement I.IOCT.

RMON waits for all I/O requests for which it expects satisfaction to
be satisfied.

RMON waits for all I/O requests for which it expects satisfaction to
be satisfied and then issues a .ABTIO for every channel associated
with the job.

RMON performs abort processing only if there is outstanding 1/0
on the channel.

RMON does not perform abort processing on this handler.

Table 1-6: RMON Abort Processing

A$=0
Abort Type H$=0

A$=0 A$=0 A$=1 A$=1
H$=0 A$=0 HS$=1 A$=1 H$=0 AS$=1 H$=1
ddCQE H$=1 ddCQE H$=0 ddCQE H$=1 ddCQE

.CHAIN S

EXIT Q
.SRESET

HRESET dJ
?MON-F-
<CTRL/C>

ABTIO ©
(Handler

used by

this

channel)

ABTIO —
(All other
handlers)

S S S S S S S

Q QEJ~ QEJ~ QEJ QEJ QEJ QEJ

EJ EJ~ EJ~ EJ EJ EJ EJ

(EC) (EC~) (EC~) (EC) (EC) (EC) (EC)

- (EC~) (EC~) (EO) (EO) - -

1-46 RT-11 Device Handlers Manual

1.4 Handlers That Queue Internally

A device handler can maintain one or more of its own internal queues of outstanding
I/0 requests instead of using the usual monitor/handler I/O queue. The purpose of
maintaining an internal queue is that it permits several operations to take place
on the device simultaneously—that is, the handler can service several requests to
access the device at once. Internal queuing might also be useful if a handler needs
to perform some type of request ordering based on device-specific criteria.

The distributed RT-11 handlers that control communications, XC, XL, NC, NQ,
and NU, use internal queuing to process simultaneous input and output requests.
See Figure A-3 for a commented source listing of the XL handler for guidance in
implementing internal queuing in your handler.

1.4.1 Implementing Internal Queuing

A handler is entered at its .DRBEG code whenever the queue manager places an I/O
request queue element on the handler’s empty device queue. The handler checks
the queue element for validity. An invalid request returns an immediate hard error.

A handler that implements internal queuing decides how to dispose of the current
queue element based on whether processing the request requires post-interrupt
activity (another interrupt). If the I/O request does not require post-interrupt
activity by the handler, the handler processes the queue element immediately and
returns, through .DRFIN, to the monitor. If processing the request cannot be
immediately satisfied, the handler removes the request queue element from the
device queue and places it on an internal queue. The device queue is then available
for another request.

The internally queued handler has sole responsibility for managing internally
queued queue elements; for moving them between the internal queue and the device
queue. The handler is also responsible for returning appropriate queue elements to
the monitor because of an abort on a channel or job.

1.4.2 Interrupt Service for Handlers That Queue Internally

When an operation completes, the handler is normally entered at its interrupt entry
point, ddINT:. After this, various actions are taken depending on the circumstances.
If there is more than one internal queue, the handler determines which request this
interrupt involves and, therefore, which internal queue. If the operation is not
complete, the handler restarts it or continues it and simply returns to the monitor.
If the transfer is complete, the handler returns the request to the monitor by using
a fake device queue and modified .DRFIN code.

The handler returns the request to the monitor without exiting in order to process
any further outstanding requests. The fake device queue is used to avoid any race
condition conflict with the monitor over the use of the device queue. The modified
form of .DRFIN code uses a CALL rather than a JMP instruction, so that the handler
can regain control after the request is returned to the monitor.

Device Handlers 1-47

The following example illustrates how an internally queued handler returns a queue
element to the monitor. In the example, R4 points to the third word of the queue
element to be returned.

MOV R4, ddFCQE ; Make queue el enent first

MoV R4, ddFLCQE ; and last on fake device queue
CLR Q@BLI NK(R4) ; Make sure it doesn’'t |ink anywhere
MoV PC, R4 ; R4 -> Fake device queue

ADD #ddFCQE- . , R4 P

MoV @*$SYPTR, RS : R5 -> $RMVON

CALL @QCOVP(R5) ; Return the queue el enent
Check the internal queue and start another operation if necessary

RETURN

; Fake devi ce queue

.MORD O ; Required
ddFLQE: . BLKW ; Fake LQE
ddFCQE: . BLKW ; Fake CQE

1.4.3 Abort Procedures for Handlers That Queue Internally

As explained in Section 1.3, the contents of the handler status word, H.DSTS,
determines how a handler and RMON process aborts. In particular, it is the
ABTIO$/HNDLR$ bit combination in the handler status word. There are some
particular considerations with abort processing for a handler that internally queues
I/O requests:

Does the handler expect satisfaction of all outstanding I/O requests?

Setting bit ABTIO$ and not HNDLR$ stops RMON from maintaining the count
(I.IOCT) of outstanding I/0 requests for the handler.

Do other handlers in the system need to be notified if the handler processes an
abort? Conversely, does the handler need to be notified if other handlers on the
system process an abort?

All in-memory handlers that are built with either ABTIO$ or HNDLRS$ set (but
not both set) are entered at their abort entry point by RMON whenever a .ABTIO
request is issued by a program. Also, RMON checks for internally queued I/O
requests on the specified channel. Abort processing is performed on any handler
having outstanding I/O requests on the channel being aborted by a .ABTIO
request.

Whether or not the current I/0 request (ddCQE) is satisfied is determined by the
handler code. All other queue elements associated with the job or the job and

1-48 RT-11 Device Handlers Manual

channel are removed from the handler’s queue element list. That is, ddLQE and
ddCQE are set to the same value.

When the handler is entered at the abort entry point, it checks its internal queue
for elements belonging to the aborted job. The job number is passed to the handler
in R4. Whether the handler aborts all queue elements belonging to that job or only
those for a particular channel is determined by the contents of R5. If R5 contains
zero, the handler should abort all queue elements assigned to that job. If R5 is
nonzero, it points to the first word of a channel control block (the channel status
word), and the handler should abort only the queue elements for that channel.

The handler should purge its internal queue of those elements and use the following
procedure to reduce the monitor’s count of outstanding I/O requests. RO through R3
must be saved and restored.

1. Remove any internal queue elements that belong to the aborting job or channel.
If there are none, simply issue the RETURN instruction.

2. Otherwise, link the removed elements through the element’s link word (Q.LINK);
the last element’s link word must be 0. Set ddCQE to point to the last element
of this linked list.

3. Clear each aborting queue element’s completion routine address (Q.COMP).

4. Issue the .DRFIN macro.

1.5 Set Options

The keyboard monitor SET command permits you to change certain characteristics
of a device handler. The handler must exist as a dd.SYS file on the system device
(ddX.SYS for mapped systems), where dd is the two-character device name. For
example, the following command changes the column width for a printer:

SET LP W DTH=80 (The default is 132 col ums)

Another type of SET command can enable or disable a function. The following
example shows how a SET command can cause the system to send carriage returns
to a printer or to refrain from sending them.

SET LP CR (Sends carriage returns; this is the default)
SET LP NOCR (Does not send carriage returns)

Note that you negate the CR option by adding NO to the start of the option. See the
RT-11 Commands Manual for more information on the SET options available with
existing RT-11 device handlers.

A device handler you write can contain code to implement different options. Follow
the format outlined in the following sections to learn how to add SET options to your
handler. Adding a SET option affects only the handler file; you need not make any
changes to the monitor. Note that SET options are valid for both data and system
devices.

Device Handlers 1-49

1.5.1 How the SET Command Executes

The SET command is driven entirely by a table in block 0 of the handler file and by
a set of routines, also in block 0, that modify instructions and data in blocks 0 and 1
of the handler. Remember that block 0 refers to addresses 0 through 776, and that
the handler header starts in block 1 at location 1000 in the file.

When you type a SET command at the console terminal, the monitor parses the
command line and looks for the handler file on the system device. (The type of
handler matches the monitor, such as DU.SYS for unmapped monitors or DUX.SYS
for mapped monitors.) The handler need not be installed in the running system.
The monitor then reads blocks 0 and 1 of the handler into the USR buffer. It scans
the table in block 0 until it finds the table entries for the SET option you specified.
From the table entry, it can find the particular routine designed to implement that
option and the modifiers permitted by that routine, such as NO or a numeric value.
The monitor then executes the routine, which contains instructions that modify code
in blocks 0 or 1 of the handler. The code in block 1 is part of the body of the handler
and contains the instructions for the default settings of all the SET options. After
the code is modified, the monitor writes blocks 0 and 1 back out to the system device.
Thus, as a result of the SET command, some instructions or data in the handler file
are changed. However, any memory-resident copy of the handler is not affected.

1.5.2 SET Table Format

The table for the SET options consists of a series of four-word entries, with one
entry per option. The table begins at location 400 in block 0 of the handler and ends
an entry with a word zero. Use the .DRSET macro, described below, to generate
the table. Examples of overlaid SET code are located in the example handlers in
Appendix A.

The first word of the table is a value to be passed in R3 to the SET routine associated
with the option when the monitor processes this option. This word can be a numeric
value—such as the default column width for a printer—or it can be an instruction
to substitute for another instruction in block 1 of the handler. It must not be 0.

The second and third words of the table are the option name in Radix—50, such as
WIDTH or CR. In the table, the characters are left justified and filled with spaces.

The low byte of the fourth word is an offset to the routine that performs the code
modification. The high byte indicates the type of SET parameter that is valid.
Setting the 100 bit shows that a decimal argument is required. A value of 140
shows that an octal argument is required. Setting the 200 bit means that the NO
prefix is valid for this option.

Table 1-7 shows a summary of the SET option table.

1-50 RT-11 Device Handlers Manual

Table 1-7: SET Option Table

Offset

Name Meaning

DSE.R3 Value to pass in R3 to the SET routine
DSE.NA Radix—50 for option name (two words)
DSE.SB Offset to option routine

DSE.PA Parsing option bits:

Bit Name Meaning
0-4 Reserved
5 DSE.8 Set means option has octal value

Clear means option has decimal value
DSE.NU Numeric value allowed
DSE.NO NO prefix allowed

DSE.ES Entry size

1.5.3 .DRSET Macro

Use the .DRSET macro to set up the option table by calling the macro once for each
option so that the macro calls appear one after the other. You must invoke the
.DRSET macro after .DRDEF and before the .DRBEG macro.

The format for the .DRSET macro is as follows:
.DRSET option,val,rtn[,mode]

option

val

rtn

is the name of the SET option, such as WIDTH or CR. The name can
be up to six alphanumeric characters long and cannot contain any
embedded spaces or tabs.

is a parameter that will be passed to the routine in R3. It can be a
numeric constant, such as the minimum column width, or an entire
instruction enclosed in angle brackets to substitute for an existing
instruction in block O or 1 of the handler. This parameter must not be
0.

is the name of the routine that modifies the code in block 0 or 1 of the
handler. The routine must follow the option table in block 0 and not
extend above file address 776. If you need more space for SET code,
then this lets you overlay the SET code. See the DL example handler
in Appendix A.

Device Handlers 1-51

mode is an optional argument to indicate the type of SET parameter. Enter
NO to indicate that a NO prefix is valid for the option. Enter NUM if
a decimal value is required. Enter OCT if an octal value is required.
Omitting the mode argument indicates that the option takes neither
a NO prefix nor a numeric argument. You can combine the NO and
numeric arguments as follows. The construction <NO,NUM> indicates
that both a NO prefix and a decimal value are valid. The construction
<NO,OCT> indicates that both a NO prefix and an octal value are
valid. Omitting the mode argument forces a 0 into the high byte of
the last word of the table entry.

See the sections below for examples of the .DRSET macro.

The first .DRSET macro issues an .ASECT directive and sets the location counter to
400 for the start of the table. The macro also generates a zero word for the end of
the table. Because the macro leaves the location counter at the end of the table, you
should place the routines to modify code immediately after the .DRSET macro calls
in your handler. This makes sure that they are located in block 0 of the handler file.

1.5.4 Routines to Modify the Handler

Your handler needs a routine for each SET option. You need only one routine for an
option and the NO version of that option. The purpose of the routine is to modify
code in the body of the handler based on the SET command typed on the console
terminal. One routine can support several SET options. Typically, the value passed
in R3 is used to determine which SET option is being performed.

The routines must immediately follow the option table, described above, and they
must be located in block 0, after the table and below address 1000. The code in
the body of the handler that the routines modify must be in block 1 of the handler,
within the first 256, words.

The name of the routine is its default entry point. This is the entry point for options
that take a numeric value, for options that take neither a numeric value nor a NO
prefix, and for options that accept a NO prefix but do not currently have it. The
entry point for options that allow and have a NO prefix is the default entry point +
4,

On entry to the routine, for all options, the carry bit is clear and registers R0, R1, and
R3 contain information for use by the routine and R4 and R5 should be preserved. If
numeric values are valid for the option, RO contains the numeric value from the SET
command line. R1 contains the unit number specified as part of the device name; if
no unit number was specified, the sign bit is set. R3 contains the val word of the
SET option table (from .DRSET).

The routine can indicate that a command is illegal by returning with the carry bit
set. For example, the printer SET WIDTH option does not allow a width less than
30. If the option routine indicates failure, the monitor prints an error message and
does not write out blocks 0 and 1. Thus, the check can be made after the block 1
code is modified.

1-52 RT-11 Device Handlers Manual

Once you have added the routines for each option to your handler, you can use the
following line of code to make sure you are within the size bounds:

.11 F GT, <.-1000>, .ERROR .-1000 ; SET code too big!
Then you continue with the rest of the handler code, starting with the .DRBEG

macro, which implicitly resets the location counter to 1000 and establishes the
handler header.

1.5.5 Examples of SET Options
The following examples taken from a printer handler are implementations of SET
options.
The examples were chosen to reflect the SET command examples shown at the
beginning of this section. The SET commands were as follows:
SET LP WDTH = 80
SET LP CR
SET LP NOCR

First, the handler invokes the .DRSET macro to set up the option tables for the two
options WIDTH and CR.

The first call indicates that the printer WIDTH option is being established, that 30
decimal is a default value of some kind, that O.WIDTH is the routine to process the
option, and that it takes a numeric argument.

. DRSET W DTH, 30., O W DTH, NUM

The next call indicates that the printer CR option is being established, that NOP
is to be passed to the routine, that O.CR is the name of the routine to process the
option, and that the CR option can take a NO prefix.

. DRSET CR, NOP, O. CR, NO

The two macro calls generate the following table:

. ASECT

. = 400

.VWWORD 30. M NI MUM W DTH
. RAD50 \W DTH \ ; OPTI ON NAME
.BYTE <O W DTH- 400>/ 2

.BYTE 100

.WORD NOP ; NSTRUCTI ON TO PASS
.RAD50 \CR \ ; OPTI ON NAME
.BYTE <O CR-400>/2

.BYTE 200

.WORD O ; END OF TABLE

The routines to process these options immediately follow the end of the table. The
following examples show the routines. The body of the code in block 1 of the handler
that the routines modify is shown at the end of the section.

Device Handlers 1-53

O W DTH: MOV RO, COLCNT ; MOVE VALUE FROM USER TO

MoV RO, RSTC+2 ; TWO CONSTANTS
cwP RO, R3 ; COMPARE NEW VALUE TO
; M NI MUM W DTH, 30.
RTS PC ; RETURN, C BIT SET ON ERROR

Note in the example above that the instructions in the routine O.WIDTH change
data in two locations in block 1 of the handler.

OCR MWV (PC) +, R3 . ENTRY PO NT FOR "CR'; MOVE
. ADDRESS OF NEXT LINE TO R3
VoY R3, CROPT - ENTRY POl NT FOR

; "NOCR' (O. CR+4);

; MOVE ElI THER " NOP" OR

; PREVI QUS LI NE TO CROPT
BEQ RSTC- CROPT+. ; A NEW | NSTRUCTI ON
RTS PC ; RETURN

NOTE
While executing the routines to process a SET option,
R4 and R5 are not available for use.

The routine O.CR has two entry points: for the “CR” option, the routine is entered
at O.CR; for the “NOCR” option, the routine is entered at O.CR + 4. Note that (1)
the routine substitutes one of two instructions for an instruction located in block 1;
(2) a NOP instruction is moved to CROPT if the “NOCR” option is selected; (3) if
“CR” is selected, the BEQ RSTC-CROPT+. instruction is moved to CROPT.

The construction of the BEQ instruction is necessary because the branch is being
assembled into a location other than the one from which it will be executed. In all
the routines, a branch instruction must use the following construction to generate
the correct address:

BR A- B+.
A is the destination of the branch instruction.
B is the address of the branch instruction.
. is the current location counter.
Generally, only routines for options that accept NO use these branch instructions.

Finally, look at the code in the interrupt service section of the handler that is modified
by the routines you have just seen. Remember that the code to be modified must be
located in block 1 of the handler, in the first 256, words.

1-54 RT-11 Device Handlers Manual

COLCNT: :V‘U?D CaLsI Z ; # OF PRI NTER COLUWNS LEFT

CHRTST: CMPB RS, #HT ;1S CHAR TAB?
BEQ TABSET ; YES, RESET TAB
CcvPB RS, #LF ;1S 1T LINE FEED?
BEQ RSTC ; YES, RESTORE COLUMN COUNT
CvPB R5, #CR ;1S 1T CARRI AGE RETURN?
CROPT: NOP ; "NOP" | F "NOCR' OPTI ON;

 ELSE I F "CR' OPTI ON, USE
; "BEQ RSTC CROPT+." FROM
; SET ROUTI NES I N BLOCK 0.

CvPB R5, #FF ;1S 1T FORM FEED?
BNE | GNORE ;NO, I'T I'S NON- PRI NTI NG
RSTC: MoV #COLSI Z, COLCNT ; RE-ITNI'T COLUWN COUNTER

From the examples in the first part of this section, you can see how the routines in
block 0 can modify data and instructions in block 1 of the handler.

1.6 Device I/O Timeout

16.1

The device timeout feature lets a handler assign a completion routine to be executed
if an interrupt does not occur within a specified time interval. Thus, the handler
can perform the equivalent of a mark time operation without the need for a .SYNCH
call and its attendant potential delay.

Device timeout is supported by all distributed mapped monitors and is an optional
feature on unmapped monitors, available through system generation. (Device
timeout support requires monitor timer support, which is included on all distributed
monitors except SB.) Device timeout is required by the RT-11 multiterminal monitor
and support for it is automatically included when you build that monitor.

Within the handler, you select device timeout by including the system conditional
TIM$IT=1. RT-11 provides two macros to help you implement device timeout in
your handler. The macros, which are described below, are .TIMIO and .CTIMIO.
They are available only to device handlers. If you assemble the handler file with
the conditional TIMS$IT equal to 1, the .DRDEF macro issues a .MCALL directive
for the .TIMIO and .CTIMIO macros.

All code in your handler that applies strictly to device timeout support should be
placed inside conditional assembly directives. These directives should include the
device timeout code if the symbol TIMS$IT is 1, and omit it otherwise. This way, the
system parameters select whether or not the device timeout code is included in the
handler each time you assemble it.

.TIMIO Macro

Use the .TIMIO macro in the handler I/O initiation section to issue the timeout call.
You can issue the request anywhere in the handler except at interrupt level. If you
need to issue the request at interrupt level, you must issue a .FORK macro call first.

Device Handlers 1-55

The .TIMIO request schedules a completion routine to run after the specified time
interval has elapsed. The completion routine runs in the context of the job indicated
in the timer block. In mapped monitor systems, the completion routine executes with
kernel mapping, since it is still a part of the interrupt service routine. (See the RT-
11 System Internals Manual for more information about interrupt service routines
and the mapped monitor environment.) As usual with completion routines, RO and
R1 are available for use. When the completion routine is entered, RO contains the
sequence number of the request that timed out.

Because you must go to fork level (and processor priority 0) to issue a .TIMIO or
.CTIMIO request at interrupt level, your handler must disable device interrupts
before issuing the .FORK, or must be carefully coded to avoid reentrancy problems.
Note that you cannot reuse a timer block until either the timer element expires and
the completion routine is entered, or the timer element is canceled successfully.

The format of the macro is as follows:
.TIMIO tbk,hi,lo

tbk is the address of the timer block, a seven-word pseudotimer queue
element, described below. Note that you must not use a number sign
(#) before tbk.

hi is a constant specifying the high-order word of a two-word time
interval.
lo is a constant specifying the low-order word of a two-word time interval.

The timer block format is shown in Table 1-8.

Table 1-8: Timer Block Format

Offset Name Agent Contents
0 C.HOT .TIMIO High-order time word.
2 C.LOT .TIMIO Low-order time word.
4 C.LINK monitor Link to next queue element; 0 indicates none.
6 C.JNUM user Owner’s job number; get this from the queue element.
10 C.SEQ user Sequence number of timer request. The valid range for
sequence numbers is from 177700 through 177377.
12 C.SYS monitor -1
14 C.COMP user Address of the completion routine to execute if timeout

occurs. The monitor zeroes this word when it calls the
completion routine, indicating that the timer block is
available for reuse.

Although the .TIMIO macro moves the high- and low-order time words to the timer
block for you, you must take care to specify them properly in the macro call. Express
the time interval in ticks. There are 60, ticks per second if your system is running
with 60-cycle power. If your system is running with 50-cycle power, there are 50,

1-56 RT-11 Device Handlers Manual

1.6.2

ticks per second. Professional 300 series processors have 60;q ticks per second with
either line frequency. Time values for 50-cycle power are shown in square brackets
([immediately after the 60-cycle figure.

The low-order time word accommodates values of up to 65535, ticks. That is equal
to about 1092 [1310] seconds, or about 18.2 [21.8] minutes. If you need to specify a
time interval of 18.2 [21.8] minutes or less, place a zero in the Ai argument, and the
number of ticks in the lo argument to the .TIMIO macro.

If you need to specify a time interval longer than 18.2 [21.8] minutes, think of the
high-order word as a carry word. Each interval of 18.2 [21.8] minutes’ duration
causes a carry of 1 into the high-order word. So, to specify an interval slightly
greater than 18.2 [21.8] minutes, supply a 1 to the hi argument, and a 0 to the lo
argument. To specify 36.4 [43.6] minutes, move 2 to the hi argument, O to the lo
argument, and so on. Since the 2-word time permits you to indicate up to 65565
units of 18.2 [21.8] minutes each, the largest time interval you can specify is about
2.3 [2.7] years.

The only words of information you must set up yourself in the timer block are the
job number, the sequence number, and the address of the completion routine. You
can get the job number from the current queue element, and then move it to the
timer block. You assign the sequence number yourself. To ensure a unique number,
use a value of 177000+dd$COD, where dd$COD is the device identifier code used in
the .DRDEF macro at the beginning of the handler. The job number and sequence
number are passed to the completion routine when it is entered. You must move
the address of the completion routine to the seventh word of the timer block in a
position-independent manner.

The .TIMIO macro expands as follows:
.TIMO tbk,hi,lo

JSR RS, @TIMT : PO NTER AT END OF HANDLER

. WORD tbk -

.WORD O :CODE FOR . TIM O

.WORD hi :H ORDER TI ME | NTERVAL

.WORD lo : LO ORDER TI ME | NTERVAL
.CTIMIO Macro

When the condition the handler was waiting for occurs, you should issue a cancel
timeout call, which disables the completion routine. Use the .CTIMIO macro call
in your handler to cancel the timeout request. Execution must be in system state
when you issue the call. Be sure to issue a .FORK call first if you use .CTIMIO at
interrupt level.

For example, a printer handler could check for an off-line condition. When a program
requests an I/O transfer, the handler’s I/O initiation section forces an immediate
interrupt. The handler’s interrupt service section then checks the device error bit.
If the bit is set, the printer is not on line and the handler prints a message, sets a 2-
minute timer with .TIMIO, and returns to the monitor with a RETURN instruction
to wait for another interrupt. The device should not interrupt again until the error
condition has been fixed by an operator. If no interrupt occurs within two minutes,

Device Handlers 1-57

the timer completion routine prints another error message, sets another 2-minute
timer, and returns again to the monitor with RETURN to wait for an interrupt. (See
Figure 1-2 for a printer handler example.)

In this example, when an interrupt finally occurs and the error bit is clear, the
handler issues the .CTIMIO call to cancel the timed wait.

As another example, a disk handler could set a timer before it starts up a seek
operation. When the interrupt occurs, the seek is complete, and the handler should
then cancel the timer.

If the time interval in any application has already elapsed and the device has,
therefore, timed out, the .CTIMIO request fails. Because the completion routine
has already been placed in the queue, the .CTIMIO call returns with the carry bit
set. You can usually ignore this condition.

The format of the .CTIMIO macro call is as follows:
.CTIMIO tbk

tbk is the address of the seven-word timer block described above. Note
that this time block you specify in the .CTIMIO call must be the same
one already used by the corresponding .TIMIO request.

The .CTIMIO macro expands as follows:

.CTIMO

JSR R5, @TIMT ; POONTER AT END OF HANDLER
.WORD thk -

MORD 1 ; CODE FOR . CTIM O

Note that if a job aborts and your handler is entered at its abort entry point, you must
immediately cancel any outstanding timer requests. However, if a timer completion
routine has already been entered, you must wait for it to execute.

1.6.3 Device Timeout Applications

1.6.3.1

Device timeout support is used by RT-11 in only a few instances. However, there are
a number of conditions in which timer requests are appropriate. If you are writing
a handler for your own device, consider the following sections to determine whether
or not timer requests would be useful to you.

Multiterminal Service

The resident multiterminal service in RT-11 that supports DZ11 and DZV11 modems
uses device timeout to check the status of remote dial-up lines. The bootstrap starts
up a polling routine to check each modem for a change in status. If a change occurs,
the terminal service takes the appropriate action: it either recognizes a new line or
disconnects a line when carrier is lost. Finally, the polling routine issues a .TIMIO
call to start a half-second timer. The timer completion routine restarts the polling
routine after a half-second elapses.

1-58 RT-11 Device Handlers Manual

1.6.3.2 Typical Timer Procedure for a Disk Handler

A disk handler could implement a timer procedure for any disk operation. The
purpose of the timer routine is to cancel or restart any operation that takes too long.
If an operation does not complete within a reasonable amount of time, chances are
good that a disk error of some sort occurred.

The handler’s I/O initiation section sets a timer by using the .TIMIO call. Then
the handler starts up the operation that a job requested: a read, write, or seek
operation. The handler returns to the monitor with a RETURN instruction and
waits for a device interrupt.

If an interrupt occurs before the time limit expires, the handler cancels the timer
and performs its normal sequence of error checking on the results of the transfer.
In general, the handler either drops to fork level to restart an incorrect operation,
or exits to the monitor with .DRFIN to remove the current queue element.

If an interrupt does not occur within the time limit, the timer completion routine
begins to execute. Its first action should be to simulate an interrupt. This action
duplicates the handler environment after a genuine interrupt and makes sure that
the stack has the necessary information. Then the timer completion routine acts as
though the device interrupted but the transfer was in error. The timer completion
routine simply branches to the correct section of code in the interrupt service section
of the device handler to finish the processing.

The timer completion routine should use the following instructions to simulate an
interrupt and enter system state:

MoV @P, - (SP) ; MAKE ROOM ON THE STACK
CLR 2(SP) ; FAKE | NTERRUPT PS = 0
.MIPS #340 ;GO TO PRORITY 7
.INTEN O,PIC ; ENTER SYSTEM STATE

After the handler enters system state, it takes the appropriate action as a result of
the timeout. The handler can try the operation again. To do this, it decrements the
retry count, drops to fork level, and branches to the I/O initiation section. The code
in the initiation section sets another timer, restarts the transfer, and returns to the
monitor with a RETURN instruction to await another interrupt.

If the handler decides that the timeout indicates a serious error, one that should
not be retried, this same procedure can be followed for a transfer whose retry count
is used up. In this case, the handler sets the hard error bit in the Channel Status
Word and then exits to the monitor with the .DRFIN call to remove the current
queue element.

NOTE
Before a handler goes through the .DRFIN routine to
remove the current queue element, it must cancel any
timer request that has not yet expired.

Device Handlers 1-59

1.6.3.3 Printer Handler Example

The extended example shown in Figure 1-2 consists of excerpts from a version of
the RT-11 parallel interface printer handler modified to use timer support to check
for the device off-line condition.

When the handler’s I/0 initiation section starts up a transfer, it forces an immediate
interrupt, which causes the handler’s interrupt service section to check the error bit
in the CSR. If there is an error, control passes to the routine OFFLIN, which issues
a .SYNCH call to enter user state, prints an error message on the console terminal,
and then sets a 2-minute timer. The handler then returns to the monitor with a
RETURN instruction and waits for the device to interrupt.

If the device interrupts, it means that the error condition has been corrected by an
operator. The handler cancels the timer and checks the error bit once again to make
sure there are no problems. If there is no error, the handler proceeds as usual. If
there is an error, the handler loops back to the OFFLIN routine. If an interrupt
does not occur within two minutes, the timer completion routine begins to execute.
It prints an error message, sets another 2-minute timer, and returns to the monitor
with a RETURN instruction to await an interrupt.

Figure 1-2: Printer Handler Example

1/O I NI TI ATI ON SECTI ON

.DRBEG LP
MoV LPCQE, R4 ; R4 PO NTS TO CURRENT Q ENTRY
ASL 6(R4) ; WORD COUNT TO BYTE COUNT
BCC LPERR ;A READ REQUEST IS | LLEGAL
BEQ LPDONE ; SEEKS COVPLETE | MVEDI ATELY
RET: BI S #100, @Q.PS ; CAUSE AN | NTERRUPT, STARTI NG TRANSFER
RTS PC

I NTERRUPT SERVI CE SECTI ON

.ENABL LSB
. DRAST LP, 4, LPDONE
CLR @rs : DI SABLE | NTERRUPTS
.FORK FRKBLK
TST TI CVPL ;1S A TIMER ELEMENT ACTI VE?
BEQ 1% : NO
. CTIM O TI MBLK :YES, CANCEL IT
BCS 1$; ERROR
CLR TI cVPL ;AND DON' T DO | T AGAIN
1$: YeY; LPCQE, R4 ;R4 PO NTS TO CURRENT QUEUE ELEMENT
TST @Pro) + : ERROR CONDI TI ON?
LPS: .WORD LP$CSR ;LI NE PRINTER STATUS REG STER

ERROPT: BM OFFLI N ; YES, HANG TI LL CORRECTED

1/ O COVPLETI ON SECTI ON

LPDONE: CLR @Ps ; TURN OFF | NTERRUPT
.DRFIN LP

Figure 1-2 (continued on next page)

1-60 RT-11 Device Handlers Manual

Figure 1-2 (Cont.): Printer Handler Example

; PRINTER OFF LI NE, PRI NT WARNI NG EVERY 2 M NUTES

OFFLIN. MOV LPCQE, RS ; PONT TO QUEUE ELEMENT
MOVB QBINUM R5) , R5 ; GET JOB NUMBER OF CURRENT JOB
ASR R5 SHIFT I T
ASR R5 ; RICGHT
ASR R5 ; 3 BITS
Bl C #7C<16>, RS ; 1 SOLATE JOB NUMBER
MoV R5, SYINUM 7 SAVE | T FOR . SYNCH
MoV R5, TI INUM ySAVE I T FOR .TIMO
. SYNCH SYNBLK, PI C ; GO TO USER STATE
RTS PC ; SYNCH FAI LED, PUNT
1$: CLR TI CWPL ; | NDI CATE THAT WE GOT HERE
TST @PS ;1S THERE STILL AN ERROR?
BPL 2$ s NO QUIT
MoV PC, RO ; AS COMPLETI ON ROUTI NE, PRI NT MESSAGE
ADD #MESSAG . , RO ; PONT TO MESSAGE AS PIC
. PRI NT PRINT IT
MoV PC, RO ;N A PIC WAY,
ADD #1%$-., RO ; PONT TO TIM O COVPLETI ON ROUTI NE
MoV RO, TI CVPL i SAVE I T
.TIMO TIMLK, 0, 2*60. *60. ; SET A 2-M NUTE TI MER
RTS PC
28: BIS #100, @PS ; ENABLE | NTERRUPTS
RTS PC ; RETURN LATER
TI MBLK: . WORD 0 ; TIMER BLOCK: H ORDER TI ME
.WORD O ; LO ORDER TI ME
.WORD 0 s LIENK
TIINUM . WORD 0 ; JOB NUMBER
. VORD 177700+LP$COD ; SEQUENCE NUMBER
.WORD O ; MONI TOR PUTS -1 HERE
TICWPL: .WORD O ; ADDRESS OF COVPLETI ON ROUTI NE
SYNBLK: . WORD 0 ; SYNCH BLOCK
SYINUM . WORD 0 ; JOB NUMBER
.W\ORD 0,0,0,-1,0 ; OTHER
. FRKBLK: . BLKW 4 ; FORK BLOCK
MESSAG .ASCIZ /?LP-WLP off line - please correct/
. EVEN
.DREND LP

1.7 Error Logging

Error logging is an optional feature of RT-11 designed to help you monitor the
reliability of your system. Device handlers that include support for error logging
call the error logger after each I/O transfer. The error logger creates a historical
record of the device’s I/O activity that you can use to check its reliability.

You must perform a system generation to select error logging. Error logging is
supported in all environments. If your system has the capability to run system jobs,
the error logger runs as a system job; on FB systems, as an ordinary foreground job;
on single-job systems, as a handler.

The system generation conditionals for error logging are as follows:

ERL$G If this value = 1, it indicates that error logging is enabled for this system.

ERL$S This condition defines the number of 256-word blocks to use for the
internal logging buffer with single job monitors.

Device Handlers 1-61

ERL$U This represents the maximum number of individual device units for
which the error logger collects statistics. The default value is 10, and
the absolute maximum number is 30. Each unit adds seven words to the
error logger. One slot is required for each unit. (For example, two slots
are required for a system with an RKO05 with two units.) Your response
to a system generation dialogue question establishes the value of this
variable.

You should consider your time and memory requirements before deciding to use error
logging because error logging creates a certain minimal amount of overhead for each
I/O transfer, and the error logger itself uses almost 2K words of memory. However,
the error logger does not have to run constantly, so that the memory it requires can
be made available to your programs when necessary, and calls that your handler
makes to the error logger return immediately. The most efficient way to use the
error logging system is as a check when you suspect device reliability problems,
which means using it only when necessary.

The following sections describe how to implement error logging in your device
handler and what information you should log. They also show you how to add
headings for your device to the error reporting program. See the RT-11 System
Utilities Manual for more information on the entire error logging system and how
to use it.

All code in your handler that applies strictly to error logging should be placed
inside conditional assembly directives. These directives should include the error
logging code if the symbol ERL$G is 1, and omit it otherwise. This way, the system
parameters select whether or not the error logging code is included in the handler
each time you assemble it.

1.7.1 When and How to Call the Error Logger

1711

A handler calls the error logger after each I/O transfer, whether the transfer was
successful or not. If the transfer was in error, the handler calls the error logger once
for each retry of the transfer.

Since calls to the error logger must be serialized, the handler can issue them only
during I/O initiation or following a .FORK call.

The handler must set up registers before it issues the call to the error logger.
The register assignments for the three kinds of calls are described in the following
sections.

To Log a Successful Transfer

Set up R4 and R5 as described below before calling the error logger after each
successful transfer.

R5 must point to the third word (BLKN) of the current queue element.

1-62 RT-11 Device Handlers Manual

1.71.2

1.7.1.3

R4 contains two bytes of information: the high byte is the device-identifier
byte, dd$COD; the low byte is —1.

To Log a Hard Error

Set up R2 through R5 as described below before calling the error logger after a
hard error has occurred. Generally, hard errors are those that are not recoverable.
Examples of hard errors are device off line or not powered up, device write-locked,
and so forth. Further, a soft error that has exhausted its allotted number of retries
is considered a hard error.

R5 must point to the third word (BLKN) of the current queue element.

R4 contains two bytes of information: the high byte is the device identifier
byte, dd$COD; the low byte is 0.

R3 contains two bytes of information: the high byte contains the total number

of retries allotted for this transfer; the low byte contains the number of
device registers whose contents should appear in the error report.

R2 is a pointer to a buffer in the handler that contains the device registers to
be logged.
To Log a Soft Error

Set up R2 through R5 as described below before calling the error logger after a
soft error has occurred. Generally, soft errors are those that are recoverable and
can possibly be corrected by retrying the transfer. Examples of soft errors include
timing errors and hardware read or write errors.

Initialize a counter in your handler with the total number of retries allotted for each
transfer. Decrement the count as each retry for a soft error is performed. When the
count reaches zero, the error logger considers the error to be a hard error. On soft
error, the error report prints a separate entry for each retry of a given transfer.

All retries are printed in the report even if the registers are identical. The report does
not distinguish between hard or soft immediate errors. It prints only the contents of
the registers at the time of the error and the value of the retry count. An immediate
hard error can be recognized in the output since it will appear with a retry count of
0 with no immediately previous errors on that device and unit (with a retry count
greater than 0).

R5 must point to the third word (BLKN) of the current queue element.

R4 contains two bytes of information: the high byte is the device identifier
byte, dd$COD; the low byte is the current value of the retry counter. (This
value should decrease with each retry until it reaches 0, at which point the
error is considered a hard error.)

R3 contains two bytes of information: the high byte contains the total number
of retries allotted for this transfer; the low byte contains the number of
device registers whose contents should appear in the error report.

Device Handlers 1-63

1.7.1.4

1.7.1.5

R2 is a pointer to a buffer in the handler that contains the device registers to
be logged.

Differences Between Hard and Soft Errors

The error logger itself does not differentiate between hard and soft errors and records
the same information in both cases. However, by examining the report, you can
determine if a hard error occurred, because a transfer that has exhausted all its
retries will have records in the report for each of these retries, including one with a
retry count of 0. It is therefore up to you to interpret the error.

In some circumstances, user-correctable errors, such as device off line or write-
locked, should not call the error logger. Usually disk and tape hardware errors
are the only ones reported, since these are the errors that reflect device reliability.

To Call the Error Logger
Once the required registers are set up, call the error logger as follows:

CALL @ELPTR

$ELPTR contains a pointer into the Resident Monitor. The .DREND macro allocates
space in the handler for this pointer. The pointer is filled in at bootstrap time (for
the system device) or at . FETCH or LOAD time (for a data device). If the error
logger is not running, the monitor returns immediately to the handler. If the error
logger is running, a link word in RMON contains its entry point. The following lines
of code from RMON show how the call to the error logger is accomplished.

$ERLOG MOV (PC)+, - (SP) : ENTER HERE FROM HANDLER
: PUSH NEXT WORD ON STACK
$ELHND: : .WORD 0 :0 |F ERROR LOGGER NOT RUNNI NG

; ELSE CONTAI NS ERROR
; LOGGER ENTRY PO NT

BNE 1% : BRANCH | F LOADED
TST (SP) + : PURGE STACK
1$: RTS PC ;1 NVOKES ERROR LOGGER CR

; RETURNS TO HANDLER

On return from the error logger call, RO through R3 are preserved and R4 and R5
are indeterminate.

1.7.2 Error Logging Examples

See the handler listings in Appendix A for examples of error logging.

1.7.3 How to Add a Device to the Reporting Program

After you implement error logging in your device handler, the next step is to modify
the reporting system so that the name of your device will appear in the report
headings and the registers will be printed properly. The file ERRTXT.MAC contains
the information for report headings for the devices supported by the RT-11 error
logging reporting utility ERROUT. To include your device, edit this file, reassemble
it, and relink it.

Use the following commands to reassemble and relink ERRTXT.MAC:

. MACRQ/ LI ST ERRTXT
. LI NK ERRQUT, ERRTXT

1-64 RT-11 Device Handlers Manual

ELBLDR Macro

Use the ELBLDR macro to add a new device to the error log reporting system. Edit
the file ERRTXT.MAC to add the ELBLDR macro call for your device. The format
of the call is as follows:

ELBLDR xx,<type>,C1,C2,<C3>

xx is the device-identifier byte, dd$COD, that you specified in the
.DRDEF macro. It must be a value between 0 and 377 octal.

type is any ASCII string you want to print on the report as the device type.
It can be up to 59 characters long. Remember to enclose it in angle
brackets.

Cl is one of the two strings DISK or TAPE. It identifies the device general
classification.

C2 is the 2-character device name. You must specify exactly two
characters.

<C3> is a list of device register mnemonics (minus the first two characters)

representing the registers that the handler logs. Separate the
mnemonics with commas. Remember to use the angle brackets (<>).

Assembly errors result if you do not specify the parameters to ELBLDR correctly.
None of the parameters for the ELBLDR call is optional.
For example, the ELBLDR call for the RK handler is as follows:

ELBLDR 0, <RK11/ RK05>, DI SK, RK, <DS, ER, CS, WC, BA, DA, DB>

This example shows that the device is the RK11/RK05 disk, its 2-character name
is RK, its device-identifier byte is 0, and the registers its handler logs are RKDS,
RKER, RKCS, RKWC, RKBA, RKDA, and RKDB.

The default input file name for ERROUT is ERRLOG.DAT. However, you can
save previous ERRLOG.DAT files by renaming or copying them. Thus, ERROUT
can operate on any file with the same format as ERRLOG.DAT. The name is not
important; the format is. The internal format of the data in this file is documented
in the RT-11 Volume and File Formats Manual.

1.8 Special Functions

Handlers use special functions to perform device-specific actions for which there are
no corresponding RT-11 programmed requests. Chapter 2 describes those special
functions supported by the distributed RT-11 device handlers.

The .SPFUN programmed request initiates special functions. When a program
issues a .SPFUN request, it supplies a special function code as one of the arguments.
It is the handler’s responsibility to process the special function.

Device Handlers 1-65

1.8.1 .SPFUN Programmed Request
The format of the .SPFUN programmed request is as follows:

.SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

See the RT-11 System Macro Library Manual for a description of the .SPFUN
programmed request. See Chapter 2 for many special function examples within
distributed handlers.

To use special function calls in your handler, you define the interface between the
programmed request and the device handler. Thus, the meanings of the buf, wcnt,
and blk parameters depend on the particular special function the request invokes;
their meaning is dependent on the handler.

Note, however, the following:

* Although the monitor checks to make sure that bufis a valid address within the
job area, it does not make sure that buf plus went is still within the job area.
It is therefore your responsibility to specify valid values if you use the .SPFUN
request to transfer data.

* When using a mapped monitor and therefore a virtual address for buf, the buffer
address must be mapped before the request is issued. Once the request is issued
and the EMT returns, address translation has been performed and the buffer
address can be unmapped. In the case of a read (input) operation, if the buffer
address is subsequently unmapped, the address must be remapped before data
can be accessed from the buffer.

* As previously mentioned, the buf, blk, and wcnt parameters can have any
meaning that is supported by the particular handler. You could, therefore, pass
an address as an argument.

Of those parameters, the RT-11 monitor performs address translation for only
buf. Therefore, if you pass a mapped address in blk or wcnt, you must not unmap
that address while the request is outstanding or active; that is:

— For nonwait, noncompletion I/O, until a .WAIT request succeeds on the
channel.

— For wait mode I/O, until the request returns.
— For completion mode I/O, until the completion routine is entered.

If the special function call is to return a single value, buf should be a one-word
buffer area. You are free to interpret wcnt and blk as anything you choose. They
can be specification words of some sort, pointers to more buffers, and so on, as long
as the handler interprets them according to the special function code. Note that the
monitor does not alter these values in any way when it passes them to the handler.
For example, it does not change the word count from positive to negative.

1-66 RT-11 Device Handlers Manual

1.8.2 How to Support Special Functions in a Device Handler

Do the following to implement support for special function calls in your handler:

e Specify SPFUN$ as one of the bits in the .DRDEF stat parameter argument.
This indicates that the handler can accept special functions.

* Use the .DRSPF macro to list the supported special functions.

* Define symbols in the handler to represent the types of special functions the
handler can perform. For example, the DY diskette handler defines the following
special function codes:

SI Z$FN = 373 ; GET DEVI CE SI ZE

WDDSFN = 375 ; WRI TE W TH DELETED DATA MARK
WRT$FN = 376 ; WRI TE ABSOLUTE SECTCOR
REDSFN = 377 ; READ ABSOLUTE SECTOR

Note that all special function codes must be negative byte values (that is, they must
be in the range 200 through 377g). Consult Chapter 2 for those symbols and codes
already defined by RT-11. For the sake of consistency across devices, it is advisable
to have each special function code represent the same operation on all devices. So,
check first to see if a code for your function already exists and use it if it does. If
there is no existing code for your particular function, assign codes starting with 200
and work toward 377 from there. (For extended device-unit handlers, the range is
360-377.) This policy should avoid conflicts with future RT-11 codes.

When the handler is entered for an I/O transfer, it should check the fourth word of
the queue element to see if this is a request for a special function. Q. FUNC, which
is the low byte of the fourth word of the I/O queue element, contains the special
function code. On standard I/O requests for read, write, and seek operations, this
byte is 0. For special function calls, this value is the negative special function code.
Ignore any special function code that is not valid for your device.

If this is a request for a special function, the handler should initiate that function
and return with a RETURN instruction. In the interrupt service section the handler
should, as usual, check for errors and determine whether the operation is complete.
The handler returns either data or words of status information to the calling program
in the user buffer.

Since you are implementing the special functions for a particular device, you can
establish the calling convention for that function in the .SPFUN programmed request
as well as the return convention from the handler. Be sure the handler treats the
arguments appropriately for each different special function call.

For a good example of a handler that implements special functions, see the DX
handler in Appendix A.

1.8.3 Variable Size Volumes

A handler can control a device that permits volumes with two or more different sizes
to be used. Examples of such handlers are the DM handler—which can service both
RKO06 and RKO07 disks through a single controller—and the DY handler—which can
service either a single-density or a double-density diskette in a single device unit. A
handler for a device that supports volumes of different sizes should pass the size, in

Device Handlers 1-67

blocks, of the smallest volume in the size parameter of the .DRDEF macro. This is the
value that is returned to a running program when it issues the .DSTAT programmed
request.

If it is important that a running program know the size of the volume that is
currently mounted, the program can issue a special function to return the volume
size. The handler must be able to respond to the request by returning the actual
volume size in a one-word buffer area. The handler must have implemented support
for special functions, as described above. The standard special function code for
returning the actual volume size is 373.

1.8.4 Bad-Block Replacement

If your handler is to support bad-block replacement (BBR) by using a replacement
table in the home block, you must implement the BBR special function codes as they
are implemented for the DL and DM handlers. See Chapter 2 for more information.

1.9 Devices with Special Directories

The RT-11 monitor can interface to file-structured devices having nonstandard (that
is, non-RT-11) directories. Magtapes are an example of special devices. Their
handlers set bit 12 (SPECL$) of the device status word. The USR processes directory
operations for RT-11 directory-structured devices; for special devices, the handler
must process directory operations such as .CLOSE, .DELETE, .LOOKUP, .ENTER,
.RENAME, .PURGE, informational (.GFxxx, .SFxxx, and .FPROT), and .CLOSZ, as
well as data transfers. See the RT-11 System Macro Library Manual for information
on those requests.

The monitor requests a special directory operation by placing a positive, nonzero
value in the function code byte (Q.FUNC) of the queue element. The positive function
codes are standard for all devices. The symbol names are defined in the distributed
file, SYSTEM.MLB, and are as follows:

Code Name Function

1 CLOS Close

2 DELE Delete

3 LOOK Lookup

4 ENTR Enter

5 RENM Rename

7 INFO .GFxxx, .SFxxx, and .FPROT operations
10 CLOZ Close with size operation

In a queue element for a special directory operation, word 5 (Q.BUFF) of the queue
element contains a pointer to the file descriptor block containing the device name,
file name, and file type in Radix—50.

1-68 RT-11 Device Handlers Manual

Software errors (such as file not found, or directory full) occurring in special directory
device handlers during directory operations are returned to the monitor, processed,
and appear in byte 52 as the standard, documented error codes. Hardware errors are
returned in the usual manner by setting bit 0 in the Channel Status Word pointed
to by the second word of the queue element.

Programmed requests for directory operations to special directory devices are
handled by the standard programmed requests. When a .LOOKUP is issued, for
example, the monitor checks the device status word for the special device bit. If
the device has a special directory structure, the proper function code is inserted
into the queue element and the element is directly queued to the handler, bypassing
any processing by the USR. Device independence is maintained, since .LOOKUP,
.ENTER, .CLOSE, and .DELETE operations are transparent to the user.

For a special device .LOOKUP, the file length is returned in word 6 of the queue
element (Q.WCNT). For a .ENTER, word 6 returns the length of the new file.

1.10 Device Handlers in Mapped Systems

Device handlers for unmapped system environments require a few changes to work
properly in mapped systems. Before describing the environment for a handler in a
mapped system, the following sections outline the nomenclature conventions. The
final sections explain how a handler communicates with a user buffer in extended
memory.

1.10.1 Naming Conventions and the System Conditional

When you write a device handler, write a common source file called dd.MAC, where
dd is the 2-character device. That source file is then assembled with the correct
monitor conditional file such as XM.MAC and the system generation conditional file,
such as SYSGEN.CND. This procedure ensures that the system generation features
that the handler supports match those of the monitor.

The system generation conditional that represents extended memory support is
MMGS$T, which has a value of 0 if extended memory support is not selected and a
value of 1 if extended memory support is selected. The system conditional MMG$T
is correctly set in the distributed monitor conditional files. This means that the
extended memory code is only assembled when the value of the conditional MMG$T
is 1. The assembly produces ddX.OBdJ for mapped systems, or dd.OBdJ for unmapped
systems.

All code in your handler that applies strictly to memory management support should
be placed inside conditional assembly directives. These directives should include the
memory management code if the symbol MMGS$T is 1, and omit it otherwise. This
way, the system parameters select whether or not the memory management code is
included in the handler each time you assemble it.

Device Handlers 1-69

1.10.2 Mapped Monitor Environment

In a mapped monitor system, at least the handler’s root must reside within the low
28K words of physical memory. Typically the entire handler is written to reside in
low memory.

The distributed mapped monitors support the .FETCH request, so usually your
handler need not be continually loaded in memory. All Digital-supplied handlers
for mapped monitors are fetchable with the exception of those few listed in the
handler restrictions section of the RT-11 System Release Notes.

When handlers are entered, they run with kernel mapping, which permits access to
the lower 28K words of memory plus the device I/O page (see Chapter 3 in the RT-
11 System Internals Manual). The program that requests the I/O transfer, however,
need not have the same mapping as kernel mapping. In fact, the program can fall
into one of three valid categories:

¢ A privileged job whose mapping is identical to kernel mapping.
e A privileged job that maps to physical memory addresses above 28K words.
e A virtual job or completely virtual job with any kind of mapping.

Just as RT-11 supplies macros to ease the writing of parts of a device handler, so too
does it provide monitor routines that simplify managing mapped systems. RT-11
distributes subroutines that perform the address conversion for you.

The program requesting an I/O transfer supplies a 16-bit virtual buffer address in
the programmed request, although that portion of the user’s virtual addressing space
may be mapped somewhere else in physical memory. The handler must therefore
find the actual 18- or 22-bit physical address of the user data buffer before moving
information to it or from it. The monitor verifies that the user buffer area occupies
contiguous locations in physical memory.

The fact that in a mapped system, locations in physical memory are expressed as
18— or 22-bit addresses, is important when you need to specify an address within
the handler itself as a buffer address. If, for example, the handler contains a string
of zeroes that it writes to a device as part of initialization, the handler sets up the
device write operation, specifying the address of the string in the handler as the
buffer address. Since the handler is located within the lower 28K words of physical
memory, its physical address can be expressed as its virtual 16-bit address plus extra
mapping bits (bits 16 and 17 of an 18-bit address, or bits 16—21 of a 22-bit address),
which must be 0.

The RT-11 System Internals Manual describes memory mapping in detail.

The RT-11 monitor provides routines for handlers to use to access the real user data
buffer in physical memory. The following sections describe these routines and the
situations in which they are useful.

1-70 RT-11 Device Handlers Manual

1.10.3 Address Translation

RT-11 provides the following two routines for performing address translation for the
address passed in Q.BUFF.

e $MPMEM
Call $SMPMEM to return the physical address to be used for MOV operations.
e $MPPHY

Call $MPPTR (which in turn points to $MPPHY in RMON) to perform address
translation for I/O DMA operations.

1.10.3.1 $MPMEM Routine

The $MPMEM subroutine uses queue element offsets Q. MEM (and Q.BUFF) to
perform the PAR1 offset mapping.

$MPMEM is located at an address 22(decimal) bytes below the entry address of
monitor routine $P1EXT. $P1EXT is pointed to by RMON fixed offset PISEXT (432).

Before the call, R5 must point to Q. BUFTF, the fifth word of the queue element.
On return from the call:

* The first word of the stack, (SP), contains the low-order 16 bits of the physical
buffer address.

* The second word of the stack, 2(SP), contains the high-order bits of the physical
buffer address. The bit positions for an 18-bit address are 4 and 5; those for a
22-bit address are 4 through 9.

The following code fragment illustrates using $MPMEM. (In code preceding the
fragment, R4 was pointed to Q.BLKN, the third word in the queue element.)

MoV @$SYPTR, R3 ; Get start of RMON

MoV PI$EXT(R3),R3 ; R3 --> $P1EXT

MOV R4, R5 ; Make R5 --> 5th word (Q BUFF) of

CcwP (R5) +, (R5) + ; queue el enent

CALL $MPMVEM R3) ; Map KT-11 virtual to physical

MoV (SP) +, R2 ; R2 = low 16 bits physical address

MoV (SP) +, R3 ; R3 = high 2 (or 6) bits physical
addr ess

See also Sections 1.10.6 and 1.10.7.2.

$MPMEM uses Q.MEM rather than Q.PAR because in the case of UMR on UNIBUS
processors, the value stored in Q.PAR can diverge from the value stored in Q. MEM.

1.10.3.2 $MPPHY Routine

Call the $SMPPHY routine to find the user buffer in physical memory to perform
DMA 1/0 operations. $SMPPHY uses the Q.PAR and Q.BUFF queue element offsets
to create the correct 18- or 22-bit address for the user buffer.

The format of the call for the $MPPHY routine is as follows:

Device Handlers 1-71

CALL @$MPPTR

$MPPTR contains a pointer to the $MPPHY routine in the Resident Monitor. The
.DREND macro allocates space for this pointer at the end of the handler. The pointer
is filled in at bootstrap time (for the system device) or at LOAD time (for a data
device).

Before the call:
R5 must point to Q.BUFF, the fifth word in the queue element.
After the call:

(SP), the first word on the stack, contains the low-order 16 bits of the physical buffer
address.

2(SP), the second word on the stack, contains the high-order bits of the physical
buffer address in bit positions 4 and 5, if it is an 18-bit address, or in bit positions
4 through 9, if it is a 22-bit address.

R5 points to Q. WCNT, the sixth word in the queue element. The value is not changed.
The following example is from the RK handler.

cwP (R5) +, (R5) + ; Advance to bufr addr in queue elt
CALL @MPPTR ; Convert user virtual addr to physical
MoV (SP) +, - (R4) ;Put low 16 bits in RKBA
; High bits on stack
MoV (R5) +, - (R4) ; Put word count into RKWC
BEQ 7$;0 Count = SEEK
BM 5% ; Negative = WRITE, So
; all set up
NEG a4 ; Positive = READ,
;Fix count for controller
MoV #CSI E! FNREAD! CSGO, R3 ; Function i s READ
5%: Bl S (SP) +, R3 ; Merge high order address
; bits into function
MoV R3, - (R4) ;Start the operation
6%: RTS PC ; Awai t i nterrupt

1.10.4 Character Devices: $GETBYT and $PUTBYT Routines

The handlers for character-oriented devices, such as printers, must transfer the data
from the device to the user buffer area themselves. The transfer is usually one byte
at a time. The device itself uses registers in the I/O page to store one character at
a time. The handler can use two monitor routines—$GETBYT and $PUTBYT—to
move data between the I/O page and the user buffer area.

1.10.4.1 $GETBYT Routine

A handler can use the $GETBYT monitor routine to move a byte from the user buffer
in physical memory to the stack. The handler can then move the character into the
device data buffer register in the I/O page and initiate an I/O transfer.

The format of the call for the $GETBYT routine is as follows:
CALL @$GTBYT

$GTBYT contains a pointer to the $§GETBYT routine in the Resident Monitor. The
.DREND macro allocates space for this pointer at the end of the handler. The pointer

1-72 RT-11 Device Handlers Manual

is filled in at bootstrap time (for the system device) or at LOAD time (for a data
device).

Before the call:
R4 must point to Q. BLKN, the third word in the queue element.
After the call:

(SP), the first word on the stack, contains the next byte from the user buffer in the
low byte. The contents of the high byte are not defined.

R4 is unchanged.

The following example from the XL handler shows how the handler gets a byte from
the user buffer and outputs it.

GNXTCH: MOV XOCQE, R4 ; R4->current output queue el enent
BEQ 10% : None avail able...
TST @WENT(R4) ; Any characters left to output?
BEQ 20% ; Nope, this request is conplete
I NC QBWENT(R4) ; Yes, now there is one less to do
CALL @GTBYT ; Get the byte to output
MoV (SP)+, R5

The buffer address (Q.BUFF) in the queue element is updated by 1. If a mapping
overflow occurs, the monitor routine subtracts 100 from the value in Q. BUFF and
adds 1 to the value in Q.PAR and Q. MEM. Mapping overflow occurs if Q. BUFF is
20100 or more.

1.10.4.2 $PUTBYT Routine

After a successful data transfer, a handler can get a character from the device
data buffer register in the I/O page and push it onto the stack. It can then use
the $PUTBYT monitor routine to move a byte from the stack to the user buffer in
physical memory.

The format of the call for the $PUTBYT routine is as follows:
CALL @$PTBYT

$PTBYT contains a pointer to the $PUTBYT routine in the Resident Monitor. The
.DREND macro allocates space for this pointer at the end of the handler. The pointer
is filled in at bootstrap time (for the system device) or at LOAD time (for a data
device).

Before the call:
R4 must point to Q. BLKN, the third word in the queue element.

The byte to transfer to the user buffer must be on the top of the stack. The character
must be in the low byte of the stack’s first word. The high byte is unpredictable.

After the call:

Device Handlers 1-73

The word containing the character to transfer is removed from the stack.
R4 is unchanged.

The buffer address (Q.BUFF) in the queue element is updated by 1. If a mapping
overflow occurs, the monitor routine subtracts 100 from the value in Q.BUFF and
adds 1 to the value in Q.PAR and Q. MEM. Mapping overflow occurs if Q.BUFF is
20100 or more.

The following example from the XL handler shows how the handler gets a character
and moves it to the user buffer.

30%:

MOVB R5, - (SP) ; Put character here for PUTBYT
CALL @PTBYT ; Call the routine
DEC BWCNT(R4) ; Is transfer conplete? (z-bit=1if so)

1.10.5 Any Device: $PUTWRD Routine

The monitor routine, $PUTWRD, is similar to $PUTBYT, except that $SPUTWRD
moves a word to the user buffer in physical memory instead of a byte. This routine
is useful when the handler needs to transfer a word of status information to the user

buffer, rather than a data character from a device. Handlers for any kind of device
can use $PUTWRD.

The format of the call for the $PUTWRD routine is as follows:
CALL @$PTWRD

$PTWRD contains a pointer to the $PUTWRD routine in the Resident Monitor.
The .DREND macro allocates space for this pointer at the end of the handler. The
pointer is filled in at bootstrap time (for the system device) or at LOAD time (for a
data device).

Before the call:

R4 must point to Q.BLKN in the queue element.

The word to transfer to the user buffer must be on the top of the stack.
After the call:

The word to transfer is removed from the stack.

R4 is unchanged.

The buffer address (Q.BUFF) in the queue element is updated by 1. If a mapping
overflow occurs, the monitor routine subtracts 100 from the value in Q.BUFF and
adds 1 to the value in Q.PAR and Q. MEM. Mapping overflow occurs if Q.BUFF is
20100 or more.

The following example from the DY handler shows the handler responding to a
special function call that requests the size of the currently mounted volume. In this

1-74 RT-11 Device Handlers Manual

case, the larger of two possible diskettes is mounted. The handler uses $PUTWRD
to move the size of the volume to the user buffer area.

MoV #DDNBLK, - (SP) ; Push size in blocks onto stack
MOV DYCCE, R4 ; Point R4 to Q BLKN
CALL @PTWRD ;Call the routine

1.10.6 Mapping Directly to the User Buffer

Some situations call for combinations of the procedures described in the previous
sections. Others require more effort on the handler’s part to accomplish a transfer.
Some handlers cannot make good use of monitor routines and must access the user
buffer directly.

The DM handler for the RK06 disk, for example, normally uses the $MPPHY monitor
routine to convert mapped addresses to physical addresses. However, when a Cyclic
Redundancy Check (CRC) error occurs, the handler performs its own mapping to
the user buffer and then applies the correction for the error before continuing the
transfer. The procedure for a handler to map to the user buffer is as follows.

Devices such as the RX01 diskette transfer data one sector at a time between the disk
itself and an internal disk data buffer called a silo. Monitor routines for character-
oriented devices available to a silo device are too slow for the RX01. So, the handler
for the RX01 diskette maps to the user buffer in physical memory and then performs
the I/O operation as though it were a simple transfer between memory and the
device. The handler implements this mapping by borrowing kernel PAR1.

The handler does this mapping through kernel PAR1. Handlers map to the user
buffer through the monitor routine $P1EXT!.

$P1EXT copies from the handler to the monitor stack the instructions necessary
to transfer the data, thereby removing the instructions from possible PAR1 space.
$P1EXT next sets the proper PAR1 value and then executes the instructions copied
to the stack. When finished, $P1EXT restores PAR1, clears the monitor stack, and
returns to the handler at the word following the instruction list. Upon return, all
registers are unchanged except as modified by the instruction list.

Call the routine $P1EXT with a JSR RO followed by a word containing the number
of bytes+2 to copy to the monitor stack, a series of instructions to perform the
data transfer, and the PAR1 value (Q.PAR) from the queue element. The following
instructions from the DX handler illustrate this technique. R1 is the byte count to
transfer, R2 points to the user buffer, R4 points to the RX01 CSR, and R5 points to
the RX01 data register. PISEXT is a monitor fixed offset containing a pointer to the
routine $P1EXT.

1 Because all relevant code is executed outside the PAR1 area, the interrupt service in the PAR1 area is handled in mapped
monitors by a vector forwarding technique that is transparent to the handler.

Device Handlers 1-75

MoV @*SYSPTR, R4 ;R4 -> nonitor base
MoV P1$EXT(R4), (PC) + ; CGet addr of externalization routine
$P1EXT: . WORD P1$EXT ;Pointer to externalization routine

- Renove two lines belowif not menmory managenent

JSR RO, @P1EXT ;Let nonitor execute the follow ng code
.WORD PARVAL-. ; Nunber of bytes + 2 to copy

2%: TSTB a4 ; Test transfer ready flag
BPL 2% Wit till ready

3$: MOVB (R2) +, @5 ; Move a char fromuser bufr to RX01l
TSTB @4 ;Set CSR for next tine
DECB R1 ; Check transfer count
BNE 2% ;1f not O, nore to transfer

;--- |f menory managenent, terminate |list with PARL val ue
PARVAL: .WORD O ; Renove i f not nenory nanagenent

; Continue with nornmal processing fromhere on.
The following restrictions apply to the instruction list passed to $P1EXT:

* No instruction in the list can reference any location in the handler, except for
relative-address references within the list itself.

* The instruction list can use the stack for temporary storage, but it cannot remove
any previous values from the stack or leave any values on the stack after it is
done.

e If used in the instruction list, RO must be saved and restored.

¢ Instruction lists of more than 32 words are not recommended because of stack
space limitations.

If your handler must access the user buffer directly, it is important that you
understand how PAR1 maps to the user area. Figure 1-3 shows a virtual job in
a typical mapped system with the user buffer located in physical memory above the
28K-word boundary. The user program is mapped to the buffer through PAR6. The
handler calls $P1EXT, which borrows kernel PAR1, puts the Q.PAR value from the
queue element there, and then uses the Q. BUFF value from the queue element to
access the user buffer.

PAR1 maps to physical memory in units of 32-word decimal blocks and at most can
map an area 4K words long. (Note that the page length of PDR1 is always set to
map the entire page.) If the user buffer starts at a location in physical memory
that is not an even multiple of 32 words, PAR1 maps to the first 32-word boundary
below the start of the buffer. The PAR1 mapping area can start at any address in
physical memory whose low-order two octal digits are 0. Thus, with a particular
PAR1 mapping, as much as 4K words or 4K minus 31 decimal words of the user
buffer will be mapped. Figure 1-4 shows how this mapping works.

Figure 1-4 shows a buffer area located at 331724 in physical memory with the
application program mapped to the buffer through PAR6. The buffer is 24 octal

1-76 RT-11 Device Handlers Manual

Figure 1-3: Device Handler Mapping to User Buffer Area

bytes above 331700, which is a 32-word boundary. $P1EXT puts the Q.PAR value,
3317, into PAR1, replacing the default PAR1 value of 0200. This causes PAR1 to
map to a 4K-word area in physical memory starting at address 331700. As a result,
when the handler refers to kernel virtual addresses in the range 20000 through
37776, it accesses physical memory locations 331700 through 351676. Since the
value in Q.BUFF is 20024, by using that value, the handler can access the start of
the user buffer area at location 331724.

If the amount of data to be transferred is large, you may need to advance the buffer
pointer and adjust the mapping to account for it. There are two ways to advance the
buffer pointer. The easier way is to modify PAR1 as you go. For example, for every
32 words you advance through the buffer, add 1 to the PAR1 value and subtract
64 from the offset. The DX handler example just described transfers 64 words at a
time, adding 2 to PAR1 (and subtracting 128 from the offset) after each transfer to
avoid mapping overflow.

Another way to advance the buffer pointer is to modify the value of Q. BUFF by
modifying the value in the queue element itself. To adjust the mapping, step through
the following procedures, thinking in terms of 4K-word units. First, after you modify
the value of Q. BUFF, compare the new value to 40000. If the value is greater than
or equal to 40000, subtract 20000 from it, and add 200 to Q.PAR. These procedures
take care of not only adjusting the mapping, but also avoid mapping overflow.

Device Handlers 1-77

Figure 1-4: PAR1 Mapping

Finally, here are steps to follow to access any location in the user buffer area, if
you are given a byte offset from the beginning of the buffer. Essentially, you must
determine the number of 32-word units in the offset by dividing the 16-bit byte offset
by 100 octal and adding the quotient to PAR1 and the remainder to Q.BUFF. Then
you will be able to access the correct location in the buffer.

For example, suppose you needed to access the byte at offset 12345 from the start of
the buffer shown in Figure 1-4. Dividing 12345 by 100 yields a quotient of 123 and
a remainder of 45. Adding 123 to the current value of Q.PAR, which is 3317, yields
3442 for the new PAR1 value. Adding 45 to the value of Q.BUFF, which is 020024,
gives 020071 as the new buffer address. (Note that this is a byte address.)

1.10.7 Extended Memory Subroutines

1-78

This section describes a set of subroutines that allow you to perform the following
extended memory operations:

* Move data from one place to another in extended memory.

* Obtain a specified amount of memory from the free memory list maintained by
RT-11.

RT-11 Device Handlers Manual

* Find a specified global region.

¢ Convert a user virtual address into a 22-bit physical address.

The entry points for the subroutines that perform these operations are located

directly below P1EXT.

1.10.7.1 Converting a Virtual Address into a Physical Address ($JBREL)

The $JBREL subroutine returns the physical address that corresponds to a virtual
address for the job number you supply. Your program must be in Kernel mode when
it calls $JBREL. If your program is in User mode, use the .CALLK request to transfer
control to Kernel mode.

$JBREL is located at an address 26;, bytes below the entry address of monitor
routine $P1EXT. $P1EXT is pointed to by RMON fixed offset P1SEXT (432).

You supply a job number and virtual address to $JBREL in the following registers:

Register Contents

RO The virtual address to be translated into a physical address.

R1 The job number, addressing mode, and space-type (instruction or
data) for which the virtual address applies. You can determine the
job’s number from the .GTJB request. R1 contains the following
information, none of which is validated for accuracy:

Bits Value Meaning

0 0 Reserved

1-3 0-7 Job Number

4-7 0 Reserved

8-9 Addressing mode:
00 User
01 Supervisor
10 Reserved
11 Reserved

10 Address space:
0 Data space (if enabled)
1 Instruction space

11-15 0 Reserved

R3 The size in 32-word chunks.

Device Handlers

1-79

$JBREL passes the job number and virtual address to the monitor. The monitor
performs the address translation and returns to $JBREL. If the specified virtual
address is not mapped to a virtual job, the equivalent kernel-mapped address is

returned.

On return, if the carry bit is clear, $JBREL provides the following information:

Register Contents

R1 The PAR1 relocation bias.

R2 The PAR1 displacement.

R3 The amount of contiguously mapped memory that begins at the

returned PAR1 bias and displacement, in 32-word chunks. If the value
returned is less than that specified in R3 as input to $JBREL. The V-
bit (overflow) is set; otherwise it is cleared.

If carry is set on return, R1 and R2 contain random data.

The following example code assumes you are running in User mode and, therefore,
require the .CALLK request to transfer control to virtual mapping in Kernel mode:

. MCALL

.CALLK, .PRINT, .EXIT

. LI BRARY " SYSTEM M.B"

. MCALL
.NLI ST

MVGST

. SYCDF
. FI XDF
. PLXDF

VI RTAD
JOBNUM

START: MOV
MoV

MoV

MoV
MoV
ADD
. CALLK

BCS
BVS

BR
10$: . PRINT

20%: . PRINT
DONE: CEXIT

PARLBS: . WORD
PAR1OF: . WORD
ERRORL: . ASCl Z
ERROR2: . ASCl |
.ASCl Z

. SYCDF, .FIXDF, .P1XDF

BEX
=1

; Define systeml ogicals:

. $SYPTR - base of fixed area

i P1$EXT - offset of $PLEXT

i $CIVPT - routine offset from $PLEXT
= 0 ; Virtual address to be translated
= 16 ; Job nunber of virtual address
#VI RTAD, RO ; Virtual address to translate
#JOBNUM R1 Job nunber for translation

virtual address is user node
and data space (if enabl ed)
#5, R3 ; Check that 5 64-byte chunks
are contiguously mapped

@$SYPTR, R2 ; R2 = RMON Base
P1$EXT(R2), - (SP) ; Stack pointer to $PLEXT routine
#$CIVPT, @P ; Make it point to $JBREL for .CALLK
; Enter KERNEL node
: Execute $JBREL
; Return to USER node
10% ; Branch if error occurred
20% ; Branch if less than 5 64-byte
; chunks are contiguously nmapped
R1, PAR1BS Store returned PAR1 val ue

R2, PAR1OF Store returned PARL of fset

DONE Branch to program exit
#ERRORL ; Report the error
DONE ; Branch to programexit
#ERROR2 ; Report the error

; Done with exanple
0 ; Physical address’s PARL val ue
0 Physi cal address’s PAR1 of fset

/Error: Check for invaIi’djob nunber . /
/Error: Not all of requested address block is /
/ cont i guously nmapped./

1-80 RT-11 Device Handlers Manual

. END START

1.10.7.2 Moving Data Within Extended Memory ($BLKMV)

The $BLKMYV subroutine moves the contents of memory from one place in 22-bit
physical memory to another. The entry point is $P1EXT-2.

In the following example, RO contains the address of $P1EXT, and BLKMOV equals
—2. $BLKMV moves the data from the specified input buffer to the specified output

buffer.
MoV #i nput _buffer_parl, Rl
MOV #i nput _buffer_parloffset, R2
MoV #out put _buffer _parl, R3
MoV #out put _buffer _parloffset, R4
MoV #word_count, R5

CALL BLKMOV(RO)

1.10.7.3 Obtaining Free Memory (XALLOC)

The XALLOC subroutine obtains a specified amount of memory from the free memory
list maintained by RT-11. The size argument passed in R2 is in units of 32;7 words.
To allocate 32000,y words, specify 1000. as the size passed to R2. The entry point
for the subroutine is $P1EXT-6.

In the following example, RO contains the address of $P1EXT, and XALLOC equals
—6.

MoV #requi red_si ze, R2

CALL XALLOC(RO)

If the required amount of memory is not available, the carry bit will be set on return.
In this event, R2 contains the size of the largest amount available.

If the required amount of memory is available, the carry bit will be reset on return.
In this event, the memory has been removed from the free list, and R1 contains the
region address divided by 321.

XALLOC uses R3 and destroys the contents of this register.

1.10.7.4 Returning Memory to the Free List (XDEALC)

The XDEALC subroutine returns a specified section of extended memory to the free
memory list maintained by RT-11. The entry point for XDEALC is $P1EXT-18;,.
$P1EXT is pointed to by RMON fixed offset P1$EXT (432).

The address and size of the section of extended memory to be returned are specified
in units of 32,5 words. Load R1 with the starting address divided by 32;7 and R2
with the size of the region in units of 32;, words.

In the following example, RO contains the address of $P1EXT, and $XDEPT is —18;.

MOV #regi on_address, Rl ; Address in units of 32. words
MoV #regi on_si ze, R2 ; Size in units of 32. words
CALL $XDEPT(RO)

Device Handlers 1-81

On return from XDEALC, the carry bit is clear if the memory was returned. If the
carry bit is set, the memory was not returned because the free memory has become
too fragmented.

XDEALC destroys the contents of R1 and R2. If you want to preserve the contents
of those registers across the call, you must save them.

1.10.7.5 Finding a Global Region (FINDGR)

The FINDGR subroutine finds a global region that has a specific name. The entry
point for this subroutine is $P1EXT-10.

In the following example, R4 contains the address of $P1EXT, and FINDGR equals
—104p.

MOV #rad50_nane_area, R5
CALL FI NDGR(R4)

where rad50_name_area is the address of a 2-word area containing the RAD50 name
of the region to search for.

If the specified region is found, the carry bit is clear on return. In this event, R1
points to the size word of the associated global region control block.

If no region by the specified name is found, the carry bit is set on return. In this
event, R1 points to the size word of the next available global region control block.

If no more global region control blocks are available, R1 is returned with a zero
value.

1.10.7.6 Converting a Virtual Address into a Physical Address (SUSRPH)

The $USRPH subroutine converts a user virtual address in the current running job
into a 22-bit physical address.

NOTE

No job number is specified. Ensuring that the current
running job is also the job for which the address
translation is intended is quite difficult. Therefore,
unless you have a very good reason for using this
routine, Digital recommends you instead use the
$JBREL routine, for which you can specify the job
number.

The entry point for this subroutine is $P1EXT-14,.

In the following example, R5 contains the address of $P1EXT, and CVAPHY equals
-14.

MoV #virtual address, RO
CALL CVAPHY(R5)

On return, R1 will contain the high-order address bits, and R2 will contain the
low-order address bits.

1-82 RT-11 Device Handlers Manual

1.11 System Device Handlers and Bootstraps

In these sections, a description of monitor files precedes an explanation of how to
create a system device handler or modify an existing handler to use as a system
device. Within the main body of this explanation, details are given on the primary
driver and on various bootstrap routines. The final sections provide background
information on the DUP procedures for bootstrapping a new system device.

1.11.1 Monitor Files

A monitor file must reside on your system device and can have any name you
choose, but its required file type is .SYS. If you create a monitor through the system
generation process, its name is RT11xx.SYG. You must rename the monitor to .SYS
before you use it.

Blocks 1 through 4 of each monitor file contain the secondary bootstrap. The
secondary bootstrap loads the system device handler and the monitor into memory.
It also modifies the monitor tables to connect the monitor with the device handler
and assigns the default DK and SY names.

Each device handler that can be used as a system device handler has a special block
of device-specific code in it called the primary driver that is used by the secondary
bootstrap to read the system device handler file and the monitor file from the system
device. The secondary bootstrap has room in its own block 0 to store the primary
driver.

1.11.2 Creating a System Device Handler

To create a system device handler, you must add the primary driver to a standard
handler for a data device. As described in the following sections, the .DRBOT macro
does much of that work for you.

1.11.2.1 .DRBOT Macro

Use the .DRBOT macro to help you set up the primary driver. It also invokes the
.DREND macro to mark the end of the handler so that the primary driver will not be
loaded into memory during normal operations. In general, the code in the primary
driver does not have to be Position-Independent. However, any non-PIC reference
must be expressed relative to ddBOOT::. Note also that locations 60g through 1164
are not available for your use.

The format for the DRBOT macro is as follows:
.DRBOT name,entry,read

name is the 2-character device name.
entry is the entry point of the software bootstrap routine.
read is the entry point of the bootstrap read routine.

The .DRBOT macro puts a pointer to the start of the primary driver into location 62
of the handler file. It puts the length, in bytes, of the primary driver into location
64. The primary driver, including the error routine supplied by .DREND, must not

Device Handlers 1-83

exceed 1000g bytes. Location 66 contains the offset from the start of the primary
driver to the start of the bootstrap read routine.

Issue the .DRBOT macro call before the .DREND macro call. Then put the primary
driver code between .DRBOT and .DREND, remembering that the primary driver
must be one block or less in size—that is, it must be 10005 bytes long or less,
including the error routine and the locations from 60g through 1165. The .DREND
macro is called twice in a system device handler: once by .DRBOT, and once when
you use it at the very end of the primary driver. The first occurrence of .DREND
closes out the nonsystem section of the device handler and sets up a table of pointers
into the monitor, among other things. The second .DREND call, the one you issue
yourself, creates the BIOERR bootstrap error routine, instead of repeating the
pointer table.

If you use the BOOT command to bootstrap the new device, DUP passes the system
unit number to the primary driver in location 4722 and in RO. If you bootstrap the
device with a hardware bootstrap or some non-RT-11 utility program, the primary
driver must determine the device unit number that was booted and save it in location
4722 and in RO.

1.11.2.2 Primary Driver

The primary driver you add to a standard handler for a data device consists of four
parts:

¢ Entry routine

* Software bootstrap

* Bootstrap read routine
* Bootstrap error routine

The primary driver works together with the RT-11 bootstrap, BSTRAP, to boot
the new system device. The primary driver is contained entirely within the p-sect
ddBOOT, where dd is the 2-character device name. The code is loaded and executes,
beginning at location 0 in physical memory.

For examples of the primary driver, see the handler listings in Appendix A.

1.11.2.3 Entry Routine

The entry point for the primary driver is ddBOOT::. This location must contain only
two instructions, and these must follow the Digital standard bootstrap sequence.
These instructions are a NOP and a branch to the start of the software bootstrap.
If the start of the software bootstrap is too far away for a branch, you can branch to
a JMP instruction that starts the software bootstrap. The entry routine for the RK
handler is as follows (BOOT1 is defined in the primary driver):
RKBOOT: : NOP

BR BOOT1
Any hardware bootstrap causes the code in p-sect ddBOOT to load into memory at
location 0. It also starts execution at ddBOOT:..

1-84 RT-11 Device Handlers Manual

1.11.2.4 Software Bootstrap

The DUP utility executes the software bootstrap as the result of a jump or branch
from the entry routine. Upon entry, all registers are available for use in the software
bootstrap. The software bootstrap performs the following functions in the order
shown:

1. Sets up the stack at location 10000.

2. Saves the number of the device unit from which the system was just bootstrapped.
The method you use to find the unit number varies depending on the device; some
unit numbers are passed in RO, and others must be extracted from the CSR. Save
the unit number on the stack, and elsewhere in memory, if necessary.

Calls the bootstrap read routine to read in the rest of the bootstrap.

Puts the Radix—50 value for “B$DNAM” in BSDEVN.
Stores the device unit number in B§DEVU.
7. Jumps to B$BOOT in RT-11’s bootstrap to continue.

3
4. Puts a pointer in BSREAD to the bootstrap read routine.
5
6

The software bootstrap should be located in the primary driver immediately below
location ddBOOT + 664. (Locations 664 through 776 contain the error routine
created by .DREND.)

1.11.2.5 Bootstrap Read Routine

The purpose of the bootstrap read routine (the primary bootstrap) is to read the
volume in the device unit from which the system was just bootstrapped. It is called
by both the RT-11 bootstrap (BSTRAP, the secondary bootstrap) and by DUP (the
software boostrap), as described in the previous section.

The interface through which the other routines pass information to the bootstrap
read routine is as follows:

RO contains the block number to read.

R1 contains the word count to read.

R2 contains the memory buffer address into which to store the data.

All registers are available for use in the bootstrap read routine, as is the stack.

The bootstrap read routine normally is a noninterrupt routine, used to read the
volume according to the parameters passed in RO through R2. On error, the routine
should jump to BIOERR. If there are no errors, it should return with a RETURN
instruction, with the carry bit clear.

The bootstrap read routine should be located in your primary driver at location
ddBOOT + 120. (Location 120 is the lowest address at which the read routine can
be located.)

Device Handlers 1-85

1.11.2.6 Bootstrap Error Routine

The bootstrap error routine starts at location BIOERR::. The code in this routine
is supplied completely by the .DREND macro, which you place at the end of the
primary driver.

1.11.3 DUP and the Bootstrap Process

This section shows how DUP carries out three commands related to bootstrapping.
The commands are as follows:

BOOT ddn: fil nam
COPY/ BOOT xxn:fil nam ddm
BOOT ddn:

1.11.3.1 BOOT ddn:filnam

Use the BOOT ddn.filnam command to perform a software bootstrap of a specific
monitor file on a specific device. In the command line, dd represents the 2-character
device name; n is its unit number. Both the new monitor file and the new device
handler must be present on device dd.

As soon as this command is issued, DUP first checks that device dd is a random-
access device. Next, it locates the monitor file filnam.SYS on the device. (The .SYS
file type is both the default and the required file type.) Then DUP reads blocks 1
through 4 into a memory buffer. These blocks contain the secondary bootstrap for
the monitor.

The next-to-last word in block 4 contains the suffix for the handlers associated with
this monitor. DUP uses this to build the file name of the device handler, usually
dd.SYS or ddX.SYS. DUP reads block 0 of the device handler file into a memory
buffer, using the contents of locations 62 and 64 to locate the primary driver, and
reads it into a memory buffer.

Next, DUP copies the primary driver into a buffer at the beginning of the secondary
bootstrap, which is also in a memory buffer. It loads the information shown in
Table 1-9 for the primary driver and the secondary bootstrap.

Table 1-9: DUP Information

Offset from Start
of Memory Buffer Contents

4722 Booted unit number (B$DEVU)
4724-4726 Booted file name in Radix—50 (B$DNAM)
5000 Date at which booted
5002-5004 Time at which booted

DUP then copies the primary driver and secondary bootstrap from the memory buffer
into memory locations 0 through 5004. Then it jumps to location 1000 to start the
secondary bootstrap at its DUP entry point so that the secondary bootstrap can load
the monitor and the system device handler into memory.

1-86 RT-11 Device Handlers Manual

Figure 1-5 illustrates the procedure.

Figure 1-5: BOOT ddn:filnam Procedure

1.11.3.2 COPY/BOOT xxn:filnam ddm:

Use the COPY/BOOT xxn:filnam ddm: to copy the secondary bootstrap from the
monitor file on device xx to blocks 2, 3, 4, and 5 of device dd. In the command line,
xx represents the device on which the monitor file is stored; n is its unit number; dd
represents the 2-character name of the device that is to receive the bootstrap; m is
its unit number.

Device Handlers 1-87

As soon as this command is issued, DUP checks that devices xx and dd are random-
access devices. Next, it locates the monitor file filnam.SYS on the xxn: device. It
reads blocks 1 through 4 into a memory buffer. These blocks contain the secondary
bootstrap for the monitor.

DUP locates the appropriate handler file on device dd. DUP then reads block 0 of
the device handler file into a memory buffer, using the contents of locations 62 and
64 to locate the primary driver, and reads it into a memory buffer.

The handler for the system device dd must already be located on dd before you can
copy the bootstrap to the device. DUP loads two words of Radix—50 for filnam into
locations 4724 and 4726 of the memory buffer. Next, DUP copies the primary driver
into block 0 of device dd. Finally, DUP writes the secondary bootstrap to blocks 2
through 5 of device dd.

Figure 1-6 illustrates the procedure.

Figure 1-6: COPY/BOOT xxn:filnam ddm: Procedure

1.11.3.3 BOOT ddn:

Use the BOOT ddn: command to perform a software bootstrap of a specific device
that already has a specific monitor secondary bootstrap in blocks 2, 3, 4, and 5
(placed there by the COPY/BOOT command). In the command line, dd represents
the 2-character name of the device to be booted; n is its unit number. Both the new
monitor file and the new device handler must be present on device dd.

1-88 RT-11 Device Handlers Manual

1.12

As soon as this command is issued, DUP first checks that device dd is a random-
access device. Then it reads blocks 2, 3, 4, and 5 into a memory buffer. These blocks
contain the secondary bootstrap for the monitor. The primary driver is already in
locations 0 through 776.

DUP locates the appropriate handler file on device dd. This procedure is a check
that the volume has a system device handler stored on it so that it can be validly
bootstrapped.

DUP then extracts the file name of the monitor file from locations 724 and 726 of
block 4 and locates the monitor file on the device to make sure that it really exists.

Next, DUP loads the information shown in Table 1-10 for the primary driver and
the secondary bootstrap.

Table 1-10: DUP Information

Offset from Start
of Memory Buffer Contents

4722 Booted unit number
5000 Date booted
5002-5004 Time booted

DUP then copies the primary driver and secondary bootstrap from the device into
memory locations 0 through 4777. Then it jumps to location 1000 to start the
secondary bootstrap at its DUP entry point so that the secondary bootstrap can
load the monitor and the system device handler into memory.

If the /FOREIGN option is used, DUP reads in block 0 and jumps to location 0.

Figure 1-7 illustrates the procedure.

Including Support for Multiterminal Handler Hooks

Including handler hooks support in a multiterminal monitor and in your handler lets
the handler use any serial line on the system. The distributed LS and XL handler
source files contain conditionalized support for multiterminal handler hooks. In this
section, the XL handler is used to provide example code. A copy of the XL handler
with extended comments is located in Appendix A.

This section provides information on including support for multiterminal handler
hooks in your handler. Chapter four in the RT-11 System Internals Manual contains
a section that describes how the monitor supports such handlers. You should read
that section before you read this one, as that section describes the basic monitor
/handler protocol. It also describes the monitor data structures that your handler
writes and accesses and the interrupt service routines your handler uses to read and
write data.

Device Handlers 1-89

Figure 1-7: BOOT ddn: Procedure

Support for multiterminal handler hooks should be included in at least the following
places. Each item is described in detail with example code.

¢ Installation code following .DRINS, Section 1.12.1
* Set code for the supported SET command conditions at .DRSET, Section 1.12.2
e Establish the monitor hooks at installation or LOAD/FETCH code, Section 1.12.3

e Handler hook interrupt processing during execution of interrupt service code,
Section 1.12.4

¢ Remove handler hooks connection with the monitor at UNLOAD/RELEASE code
Section 1.12.5

1-90 RT-11 Device Handlers Manual

1.12.1 Installation Support

The handler does the following at installation:

Determines if the handler should use the handler hooks monitor support.
If not required, the handler can install for nonmultiterminal support.
If required but not available, the handler refuses to install.

Assuming the proper conditions are met, the handler accepts the installation.

The following code is from the installation section of the XL handler source. RO
contains the contents of RMON fixed offset 54, $SYPTR, and $THKPT has been
defined as 472:

TSTB | $SMITY ; Are handl er hooks needed?
BEQ 20% : Nope. . .
TST $THKPT(RO) ;Yes, is the support avail abl e?
BEQ 40% ; Nope, reject the installation
BR 30% ;Yes, nothing to do until fetch/I oad
20%:
30%: TST (PO + ;Accept the installation (carry=0)
40$: SEC ;Reject the installation (carry=1)
RETURN
| SMITY: :BYTE -1 ; o Install-time ' hooks required flag
. BYTE ;reserved

1.12.2 SET Command Support

Two SET command conditions should be supported by a handler that has been built
with hooks support:

SET dd LINE=n

Support for this condition is included so that the handler can change the serial
line to which it will attach. The default line number can be established during
system generation.

SET dd [NOIMTTY

Support for this condition is included when a handler is built to support both
a standard interface and the multiterminal monitor hooks. In such a case,
by default the handler assumes connection to the standard interface until the
command is issued.

When the MTTY condition is specified, the handler should clear the installation
CSR (found in handler file image 176). The handler should also clear the vector
information in the handler header (handler file image offset 1002). The original
contents of these words can be built into words elsewhere in the handler from
which they can be restored when the NOMTTY condition is specified.

The code to support those SET command conditions for the XL handler follows:

Device Handlers 1-91

The following is in block 0, following the installation code:

| $MITY: . BYTE
. BYTE
VECSAV: . WORD

-1

100000+<<XL$VTB- HL. VEC>/ 2- 1> ;

; o Install-time 'hooks required flag
;reserved
: Vector info for SET NOMITY

CSRSAV: .WORD XL$CSR ; : CSRinfo for SET NOMITY
. DRSET LINE 16. QO LINE NUM ; LI NE=n
-1 O MITY NO s [N MITY

.DRSET MITY

. SET XL LINE=line_nunber

O. LINE: CwPB RO, R3 ;ls line nunber valid?
BHI O ERR ; Nope. . .
MOVB RO, G5LI NE ; Yes, set line nunber to use
BR O NOR

; SET XL [N MITY

O MITY: BR 10$;Entry point for MITY
NOP ; pl acekeeper
CLR RO ;Entry point for NOMITY
MoV CSRSAV, | NSCSR ; Nope, restore install-tinme CSR
MoV VECSAV, Hl1. VEC ; and vector information
BR 20%
10%: CLR I NSCSR ;Reset install-tine CSR and
CLR H1. VEC ; vector so handler installs
20$: MOVB RO, CBMTTY ; Set/ Reset MITY hooks use flag
MOVB RO, | SMITY ; and informinstall code of setting
BR O NOR
O NOR TST (PO + ; Success (carry=0)
O ERR SEC ;Failure (carry=1)

RETURN

The following is in the executable portion of the handler (block 1 and beyond):

: * % % SEI' * % %
OPMITY: . BYTE -1 ;Default to hooks used
. Assume <CBMTTY- XLSTRT> LE 1000 MESSAGE=<Code to set not in block 1>

; * % % SEI' * % %
GHLI NE: . BYTE XL$LUN ;Default line to use
. Assume <OHLI NE- XLSTRT> LE 1000 MESSAGE=<Code to set not in block 1>

1.12.3 Establish Hooks Connection with Monitor

The handler establishes hooks connection with the monitor at the LOAD/FETCH
code. The code should do the following:

* Determine if handler hooks are required and if not, proceed with
nonmultiterminal hooks code (connect to standard interface) so long as the CSR
and vector do not conflict with any TCB in the multiterminal configuration.

The handler installation code should determine if support exists in the monitor
for handler hooks. Therefore, because the handler is installed, support for
handler hooks can be assumed.

1-92 RT-11 Device Handlers Manual

e From RMON fixed offset $THKPT, the handler should access the monitor data
structure THOOKS and store the addresses of the hooks support routines in the
in-memory image of the handler.

* (Conduct the following tests:
1. Determine which serial line is to be used and verify its validity.

Compare the requested line number with the maximum supported in
THOOKS.

2. Determine if the line is available.

From THOOKS data, access the TCB for the line and determine if the T.CSR
word exists (showing the interface is present on the system) and if the value
is correct.

3. Verify that the line is not the console line.

Check the CONSLS$ bit in the T.STAT word of the TCB.
4. Verify that the line is not already owned.

Check that the TOWNR word of the TCB is zero.

e If the tests above are passed, the handler should determine its physical name
and place it in the handler at the word just before the handler hooks routine.

e If the tests above are not passed, the handler should report a LOAD/FETCH
error by setting the PSW carry bit and return.

* The handler then performs the following operations in the indicated order (to
avoid any race condition):

1. Store the address of the TCB to which it is attached in memory.

2. Place the address of its handler hooks entry point in the T.OWNR word of
the TCB.

That address must reside in the low 28K-words of memory in Kernel mode
and Instruction address space.

3. Set the HANMTS bit in the T.STAT word of the TCB.

4. If you handler needs to monitor modem control signals, set the HANMC$
bit in the T.STAT word of the TCB. Otherwise, modem control is handled by
the multiterminal monitor as described in the remote terminal section of the
RT-11 System Internals Manual

The following code from the XL handler source illustrates connection between the
handler and the monitor.

Device Handlers 1-93

; LOAD
; This routine is entered on FETCH or LOAD of the XL handl er
; and is used 1) to verify use of the handler in the specific
; configuration and, if needed, 2) to establish the required
; connections between the handl er and the interrupt service of
; a nmonitor with support for multiterm nal handl er hooks.
.ENABL LSB
FETCH: :
LOAD: :
MoV R5, ENTRY$; Save entry point
MOV R2, SLOTS$; and table size
MoV @5, R ; R5 -> Base of handler (in nenory)
MoV @t$SYPTR, RO ; RO -> Base of RMON
TSTB <OBMTTY- XLLQE>(R5) ; Terminal hooks to be used?
BEQ 20% ; Then use nornmal DL
MoV $THKPT(RO) , RL ; RL -> Multiterm nal handl er hooks
; data structure in RMON
BEQ 60% ; Monitor doesn’t have the support...
TSTB (R1) + ; Bypass structure size byte
MOVB (R1) +, R2 ; R2 = Nunber of LUNs on system
MOV (R1) +, R3 : R3 -> TCB |ist
MoV (R1) +, <MTCENX- XLLQE>(R5) ; Set pointer to output enable routine
MoV (R1) +, <MTYBRX- XLLQE>(R5) ; Set pointer to Break control routine
MoV (R1) +, <MTYCTX- XLLQE>(R5) ; Set pointer to Control routine
MoV (R1) +, <MTYSTX- XLLQE>(R5) ; Set pointer to Status routine
MOVB <OBLI NE- XLLQE>(R5) , RO ; RO = Line to attach to
BM 60% ; Must be a positive nunber
CvPB RO, R2 ; Is line in this configuration?
BGE 60% ; Nope, invalid |ine nunber
ASL RO ; Shift for word offset into TCB I|i st
ADD RO, R3 ; R3 ->TCB list entry
MoV @3, R3 R3 -> TCB for LUN
TST T. CSR(R3) ; Is the line present in hardware?
BEQ 60$; Nope. ..
TST T. STAT(R3) ; Is the line a consol e?
. Assune CONSL$ EQ 100000
BM 60% ; Yes. ..
MoV R5, RO ; RO -> Handl er hook routine
ADD #<XLHOOK- XLLQE>, RO Lo
TST T. OMNR(R3) ; Is the line already attached?
BEQ 10% ; Nope. ..
CwP RO, T. OANR(R3) Yes, to this handler?
BNE 60% ; Nope. ..
10%: MoV ENTRYS, R1 ; RL -> $ENTRY entry
SUB SLOTS, R1 ; Rl -> $PNAME ENTRY
MoV @Rr1, - 2(RO) ; Inform handl er of its physical nane,
MoV R3, <TCBADX- XLLQE>(R5) link the handler to the TCB
BI S #<HANMT$! HANMCS$>, T. STAT(R3) decl are |ine owned by handl er
; and that handler will process nbdem
MoV RO, T. OANR(R3) ; finally link the TCB to the handl er
BR 50%
ENDC ; NE XL$MTY
20%: BIT #MITY$, $SYSCE(RO) ; Is this a multiterm nal nonitor?
BEQ 50% ; Nope, then there can't be a conflict
. ADDR #MI'AREA, RO ; RO -> . MTSTAT EMI area
. ADDR #MISTAT, R1 ; RL -> Status bl ock
.MISTA RO, Rl ; Get info about nultiterm nal system
BCS 60% ; Errors?
MoV @$SYPTR, RO ; RO -> $RVON
MoV MI'STAT, R1 ; RL -> First TCB in system
ADD RO, R1 R
MoV MTSTAT+MST. LU, R2 ; R2 = Highest LUN on the system
7 (Nunber _of _LUNs - 1)
30%: TST T. CSR(R1) ; Is this a configured |ine?
BEQ 40% ; Nope. ..
CwP <Xl S- XLLQE>(R5), T. CSR(R1) ; WII use of the CSR conflict?
BEQ 60% ; Yes, reject the |oad
cwP <XL$VTB- XLLQE>(R5), T. VEC(R1) ; WII| use of the VECTOR conflict?
BEQ 60% ; Yes, reject the |oad
408: ADD MISTAT+MST. ST, RL ; On to next TCB
DEC R2 ; More TCB's to check?

1-94 RT-11 Device Handlers Manual

BGE 30$. Yep. ..

.BR 50% ; Nope, use of interface won't conflict
50%: TST (PO + ; Success return
603%: SEC ; Error return

RETURN
ENTRY$: . BLKW ; ¢ -> $ENTRY table entry
SLOT$: . BLKW ; ¢ Size of a nonitor handler table
MIAREA: . BLKW 3 ; . EMI area for .MISTAT
MISTAT: . BLKW 8. ;. Status block from.MISTAT

1.12.4 Handler Hook Interrupt Processing

The handler hook interrupt entry point is called by the monitor whenever an
interrupt occurs on the line to which the handler is attached.

When an input interrupt occurs, the monitor calls the handler hook entry point with
the character in R5 and the TH.PIC function code in RO. The handler processes the
character, preserving the registers, and returns.

When an output interrupt occurs, the monitor calls the handler hook entry point with
the TH.GOC function code in R0. The handler returns the next output character
in R5 and the PS carry bit is clear. If the handler has no character for output, it
returns the PS carry bit set. All registers are preserved.

The multiterminal interrupt service controls character output. A handler cannot
send output directly to an interface, but must instead indicate it has output by
calling the MTOENB routine.

The following code from the XL handler source file illustrates the process.

; The follow ng byte indicates whether the handl er should make use
; of the multiterm nal hooks during FETCH LOAD and during operation.

; * Kk SE" * Kk
CGBMITY: .BYTE -1 ;Default to hooks used
. Assume <CBMITY- XLSTRT> LE 1000 MESSAGE=<Code to set not in block 1>
: * ok ok SE" * ok ok
OBLI NE: .BYTE XL$LUN ;Default line to use
. Assunme <OBLI NE- XLSTRT> LE 1000 MESSAGE=<Code to set not in block 1>
ISPND: .BYTE -1 ;¢ Input suspend flag
OCSPND: . BYTE -1 ; ¢ Qutput suspend flag
. EVEN
;T
XLHOOK

Entered fromnultiterm nal input or output interrupt service.

Call (TH GOO):
RO = Function code

Return (TH. GOC):
PSWC> = 0, R5 = character
PSWC> = 1, no character available

Call (TH PIO):
RO = Function code
R5 character

.ENABL LSB

Device Handlers 1-95

XLPNAM . Rad50 / XL/ ; : Rad50 physical nanme
; | oaded by FETCH LOAD code

XLHOOK:
. Assume <XLHOOK- XLPNAM> EQ 2 MESSAGE=<XLPNAM nust preceed XLHOOK>

MoV R4, - (SP) ; Save register for awhile

; Function code = 1 = TH. GOC
; (Get Qutput Character)

cawP RO, #TH. GOC ;' Get Qutput Character’ request?
BNE 10%$; Nope. . .

TSTB OSPND ;1's output suspended?

BNE 20% ; Yep. ..

CALL HO NT ; Yes, hook handl er output service
BR 30%

; Function code = 2 = TH. PIC
; (Put I nput Character)

10%: CwP RO, #TH. PI C ;" Put I nput Character’ request?
BNE 20% ; Nope. . .
TSTB | SPND ;I's input suspended?
BNE 20% ; Yep. ..
CALL HI | NT ; Yes, hook handl er input service
BR 30%
20$: SEC ;Return failure
30$%: MoV (SP)+, R4 ; *C* Restore previously saved register
RETURN

1.12.5 Remove Handler Hooks Connection to Monitor at UNLOAD/RELEASE

Upon UNLOAD or RELEASE, the handler should perform the following operations
in the indicated order (to avoid any race conditions):

1. Clear the HANMT$ and HANMCS$ bits in T.STAT in the TCB.
2. Clear the TOWNR word of the TCB.

The following code from the XL source file illustrates the procedure:

UNLOQAD: :
MoV @R5, R5 ; R5 -> Handl er entry point (XLLQE)
TST <STATFG XLLQE>(R5) ; I's handler in use?
BNE 10% ; Nope, it can be unloaded...
MoV <Xl CQE- XLLQE>(R5), - (SP) ; Check internal queues
BI S <XOOQE- XLLQE>(R5), (SP) + ; ...
BEQ RELEAS ; They're enpty. ..
. ADDR #NOUNLO, RO ; RO -> Error nessage string
; (KMON reports error)
SEC ; Indicate error
RETURN ; and return to KMON
RELEAS: :
MoV @5, R ; RS -> Handler entry point (XLLQE)
10%:
TSTB <CBMTTY- XLLQE>(R5) ; Terminal hooks in use?
BEQ 20% ; Nope. ..
MoV <TCBADX- XLLQE>(R5) , R1 ; RL -> TCB we' re hooked to
BEQ 30% ; We're not...
CALL <Dl SI NI - XLLQE>(R5) ; Disable input
CALL <DI SOUI - XLLQE>(R5) ;and output interrupts
CLR RO ; Deassert all mbdemcontrol bits
CALL <SETSTT- XLLQE>(R5) Co
CLR T. OANR(R1) ; Di sconnect TCB from handl er
BI C #<HANMT$! HANMC$>, T. STAT(R1) ;
BR 30%
20%: ; Perform UNLOAD/ RELEASE oper at i ons
;. for a nonhooked handl er
30%: CLC
RETURN

1-96 RT-11 Device Handlers Manual

NOUNLG: . NLCSI TYPE=I , PART=PREFI X
.ASCIZ "F-Handl er nay not be unl oaded while in use"

1.13 Including Extended Device-Unit Support

When modifying a user-written handler to enable extended device-unit support, you
should be aware of how an extended-unit handler interacts with two RMON tables
($JOWNER and $PNAM2) and the functions specific to an extended-unit handler in
the following:

¢ _DRDEF and .DRBEG macros

* LOAD/FETCH routine

¢ UNLOAD/RELEASE routine

¢ Q.FUNC byte of an I/O queue element

See the RT-11 System Internals Manual for a description of the $PNAM2 table. See
the following sections for a description of the changes to the $OWNER table, the
macros, routines, and byte.

1.13.1 .DRDEF and .DRBEG Macros

The .DRDEF and .DRBEG macros generate required code for the preamble of a
device handler. Specify the UNIT64=YES parameter to the .DRDEF macro to place

the 1-letter extended-unit handler name and ownership table in blocks 0 and 1 of
the handler.

The format for calling .DRDEF is:
. DRDEF nane, code, st at, si ze, csr, vec, [UNI T64=YES]

Note the name parameter to the .DRDEF call. The macro .DRDEF uses the first
letter of the name parameter as the 1-letter physical device name of an extended-unit
device.

The name parameter defines both the dd$NAM constant (the traditional 2-letter
physical device name) and the dd$PN2 constant (the 1-letter device name).

The macro .DRDEF places the RAD50 representation of the 1-letter device name
followed by two blanks in offset H.64UM (100g) of block 0 of an extended-unit
handler. It also places the location of the extended-ownership table in offset H.UNIT
(763) of block 0 of the handler and indicates generation of the table in the last 32-
bytes of memory-resident code. (If the monitor under which the handler is running
does not support extended device units, those last 32 bytes are not loaded into
memory.)

.DREND creates the extended-ownership table in the memory resident portion of
the handler because UNIT64=YES was specified in the previous call to the .DRDEF
macro. The extended-ownership table (dd$U64) is always 16,y words (64, nibbles)
long.

Device Handlers 1-97

1.13.2 LOAD/FETCH and UNLOAD/RELEASE Routines

You place the new LOAD/FETCH and UNLOAD/RELEASE routines in the extended-
unit handler. You place those routines in the handler SETOVR PSECT and order
the PSECTs in the handler source code such that SETOVR is the last. You then link
the handler as illustrated in the following example command:

. LI NK/ NOBI TMAP/ EXE: Bl N: SPX. SYG BOUNDARY: 512. OBJ: SPX
Boundary? SETOVR

1.13.2.1 LOAD/FETCH Routine

If the running RT-11 monitor has extended device-unit and device ownership
support, then the LOAD/FETCH routine:

1. Places a pointer to the handler’s extended-ownership table in the second word of
the handler’s entry in the monitor’s $OWNER table.

2. Sets the first word of the handler’s entry in the $OWNER table to a value of
2. This value, and any nonzero even value in the $OWNER unit 0 nibble, is a
flag (the $XUNIT flag) indicating both that the handler supports up to 64 units
and that the second word of the handler’s entry in the $OWNER table points
to a separate list holding the $OWNER nibbles. The $XUNIT flag is filled in at
bootstrap/install time.

The definition of a nibble (4 contiguous bits) in the $OWNER table for a
nonextended-unit device handler is that its value is either 0 or the job number +
1. Therefore, an $OWNER nibble of a nonextended-unit device handler is always
0 or odd, since job numbers are always even.

Figure 1-8 shows the handler entry in the $OWNER table pointing to the
extended-ownership table in the handler.

1.13.2.2 UNLOAD/RELEASE Routine

If extended-unit support is enabled in the running RT-11 monitor, the UNLOAD
/RELEASE code of an extended-unit handler clears the second word of the handler’s
entry in the monitor’s $OWNER table, since the extended-ownership table (along
with the handler itself) is being removed from memory.

1.13.2.3 Example LOAD/FETCH and UNLOAD/RELEASE Routines

The following example LOAD/FETCH and UNLOAD/RELEASE routines would be
appropriate for extended device-unit handers:

F NE, dd$N64
. PSECT SETOVR
.SBTTL LOAD - Load/ Fetch code for extended device-unit handler

1-98 RT-11 Device Handlers Manual

Figure 1-8: Relationship of $OWNER Table to Extended-Ownership Table

first word second word

$XUNIT flag 0

entry in $SOWNER monitor table

77(76|75|74

extended-ownership handler table
containing 64(decimal) ownership nibbles

T+
; Exanpl e LOAD) FETCH routine for a extended device-unit Handl er.

I NPUT

-> handl er routine being called
-> GETVEC routine
$SLOT* 2

type code

0 -- .FETCH

2 -- . RELEASE

4 -- $LOAD

6 -- $UNLOAD

10-- Job Abort

12-- BSTRAP

R4 -> read routine

R5 -> $ENTRY word as above

38R

BSTRAP or KMON | NSTALL nodifies $PNAVE, $PNAMZ2, and $OWNER+O
for an extended device-unit handler. You need to insert only the
address of the extended-ownership table into $OMER+2 here.

QUTPUT
Regi sters need not be saved by the handl er code
Carry clear, unless an error was detected by
$SYS or the handl er code.
If an I/O error occurred, RO is cleared and Carry set.
If the handler returns with Carry set, RO is passed,
as it was returned by the handler.

. LI BRARY " SRC. SYSTEM' ; I ndi cat es SYSTEM M.B

. MCALL . CF3DF ; CF3.64 definition

. MCALL . FI XDF ; $CNFG3 and $PNPTR definitions
. MCALL . SYCDF ; $SYPTR definition

. CF3DF

. FI XDF

. SYCDF

Device Handlers

1-99

LOAD:

FETCH:
MOV @*$SYPTR, RO ;. RO -> Base of RMON
BIT #CF3. 64, $CNFG3(R0O) ; Extended unit support in nonitor?
BEQ 10% ; Branch if not, done.
BIT #CF3. OW $CNFG3(R0O) ; Owner table support in nonitor?
BEQ 10%$. Branch if not, done.
20%: MoV R2, R3 ; R3 = $SLOT*2
ASL R3 ;¥4
ASL R3 ; *8
ADD R2, R3 ; R3 = $SLOT*10
CALL FI XOAN ; Insert extended ownership table addr
; into $OMER word #2.
7 RL -> $OMNER+2
10%: CLC
RETURN ; Done.
.SbTtl UNLOAD - Unl oad/rel ease code for a extended device-unit handler
;+

; Exanpl e UNLOADY RELEASE routine for a extended device-unit Handl er.
I NPUT

-> handl er routine being called
-> CETVEC routine
$SLOT* 2

type code

0 -- .FETCH

2 -- . RELEASE

4 -- $LOAD

6 -- $UNLCAD

10-- Job Abort

12-- BSTRAP

R4 -> read routine

R5 -> $ENTRY word as above

88R3B

This routine should zero the $OANNER+2 pointer to the extended ownership
tabl e of an extended device-unit handl er.

QUTPUT
; Regi sters need not be saved by the handl er code
; Carry clear, unless an error was detected by $SYS or the handl er code
; If an 1/O error occurred, RO will be cleared and Carry set.
; If the handler returns with carry set, RO will be passed
; as it was returned by the handl er.
RELEASE:
UNLQAD:
MoV @#SYPTR, RO ; RO -> base of RMON
BI T #CF3. 64, $CNFG3(R0) ; extended device-unit support
; in nmonitor?
BEQ 10%$; Branch if not
BIT #CF3. OW $CNFG3(RO) ; Omner table support in nonitor?
BEQ 10$
MoV R2, R3 ; R3 = $sLOT*2
ASL R3 , *4
ASL R3 , *8
ADD R2, R3 ; R3 = $SLOT*10.
CALL FI XOMN ; R1L -> $OMNER+2
CLR arl
10%: CLC
RETURN
.SBTTL FIXOM - insert pointer to extended ownership table into $OMER

1-100 RT-11 Device Handlers Manual

; FIXOMWN - insert pointer to extended ownership table into second word
; of $SOMER table (64 UNITS ONLY!!!)

;I NPUT
; R2 $SLOT* 2

R3 $SLOT* 10.

R5 -> $ENTRY entry for this handler
dd$X64: extended ownership table

QUTPUT
; $OMER+2 points to extended ownership table
Rl points to $OMER+2

FI XOWN: MOV @*SYPTR, RL ;. RL -> $RMVON
MOV $PNPTR(RL) , - (SP)
ADD R1, @GP ; @P -> beginning of $PNAMVE
ADD R2, @GP ; @P -> beginning of $ENTRY
MOV R5, R1 ; RL -> $ENTRY entry for this handler
SUB (SP) +, R1 ; RL = byte offset into $ENTRY
ADD R5, R1 ; R1L = $ENTRY + doubl e-word i ndex
SuUB R3, R1 ; RL -> $OMER of this handler + 8.
CwWP -(R1),-(R1) ; RL -> $OMER of this handler + 4
MoV @R5, - (R1) ; nove addr of ddLQE into $OMNER+2
ADD #dd$X64- ddLQE, @GR1 ; make $OWNER (pic) to point to

; extended ownership table
RETURN

. ENDC ; NE dd$N64

1.13.3 Q.FUNC Definition

The Q.FUNC byte of an I/O queue element passed to an extended-unit handler is
different from the Q. FUNC byte of an 8-unit handler. However, the Q. FUNC byte
passed to an 8-unit handler is unchanged to allow upward compatibility and to
allow extended-unit handlers to function properly for units 0-7, when extended-unit
support is not included in the running RT-11 monitor.

Q.FUNC is the low byte of the fourth word of the I/O queue element passed to a
handler in an I/O request. Q. FUNC contains the special function code and the high
3 bits of the handler unit number.

The following diagram shows the bit layout of the Q. FUNC byte for an extended-unit
handler:

T means the TYPE of I/0 request.
NUM means the UNIT NUMBER.
FUNC means the FUNCTION.

The I/0O request can be one of two types:

¢ On standard I/O requests or requests for special directory operations, the T bit
is 0. In this case:

— NUM is the high 3 bits of the handler unit number.

— FUNC is a value 0000 through 1111. (The value 0000 specifies a read, write,
or seek operation; 0001 through 1111 specifies a special directory operation.)

Device Handlers 1-101

On special function (SPFUN) I/O requests, the T bit is 1. In this case:
— NUM is one’s complement of the high 3 bits of the handler unit number.

— FUNC is a value 0000 through 1111 that specifies an SPFUN operation from
SPFUN 360 (0000) to SPFUN 377 (1111).

1.13.4 Programmed Requests of Extended-Unit Handlers

You must modify programs that assemble device specifications from physical device
names and unit numbers for those programs to support extended-unit handlers.
You can do this in conjunction with use of the .CSTAT programmed request, which
reports the device on which a file is located.

For an extended-unit handler, .CSTAT returns the 2-letter device name from the
$PNAME table if the device unit specified falls in the 0-7 range. If the device unit
specified is greater than 7, .CSTAT returns the 1-letter device name found in the
new $PNAM2 table.

1.14 How to Assemble, Link, and Install a Device Handler

Assembling, linking, and installing a new device handler are simple procedures
described in detail in the following sections.

1.14.1 Assembling a Device Handler

The command you use to assemble your handler can include the following elements:

Your MACRO-11 source file should be named dd.MAC, where dd is the 2-
character device name.

You can use the /SHOW:MEB assembler option to print the expansions of macros
such as .DRBEG and .DRAST in the assembly listing.

Each monitor has a corresponding conditional source file, such as XM.MAC,
which defines the basic features of that monitor.

SYSGEN.CND is the default name of the SYSGEN conditional file and is a
product of the system generation process. Omit this file if you are assembling a
device handler that will run with a distributed RT-11 monitor.

If your handler is to be used with a monitor that was produced through the system
generation process, you must use the SYSGEN conditional file with which you
assembled that monitor so that the handler conditionals will match the monitor
conditionals and the handler will operate in the correct environment. You can
specify the name of the SYSGEN conditional file by requesting an answer file
during the SYSGEN process as the .CND file takes the file name of the answer
file.

If you have used symbol names from the distributed system library
SYSTEM.MLB, you should assemble your handler with that library. The default
device for SYSTEM.MLB is SRC, so you should assign SRC to that device
on which SYSTEM.MLB resides and include SRC in the full file specification
(SRC:SYSTEM.MLB).

1-102 RT-11 Device Handlers Manual

Include the line . LI BRARY " SRC: SYSTEM MLB" early in your program to call that
library.

To assemble a handler for an unmapped system, use the following command where
mon is the distributed monitor conditional source file:

. MACRO' CROSSREFERENCE/ SHOW MEB/ LI ST non+SYSGEN. CND+SYSTEM MLB/ LI BRARY+dd/ OBJECT

To assemble a handler for a mapped system, use the following command, where mon
is the distributed monitor conditional source file:

. MACRO' CROSSREFERENCE/ SHOW MEB/ LI ST non+SYSGEN. CND+SYSTEM MLB/ LI BRARY+dd/ OBJECT: ddX

1.14.2 Linking a Device Handler

Once your source file assembles without errors, you are ready to link it. To link a
handler for an unmapped system, use the following command:

. LI NK/ NOBI TMAP/ EXECUTE: dd. SYS dd

To link a handler for a mapped system, use the following command:
. LI NK/ NOBI TMAP/ EXECUTE: ddX. SYS ddX

If the handler requires block alignment of some code, use the following command
where nnn is the block alignment boundary for PSECT psect:

. LI NK/ NOBI TMAP/ EXECTURE: ddX. SYS/ BOUNDARY: nnn ddX
psect

1.14.3 Installing a Device Handler

Before you can use your new handler, you must inform the monitor that the handler
is present and you want it installed. Add the monitor information about it to the
monitor device tables described in Chapter 2 of the RT-11 System Internals Manual.
The process of adding a new device is called installation. There are two separate
routines in the RT-11 system that can install a device handler: the bootstrap and the
monitor INSTALL command. Both routines require a device’s hardware to be present
on the system before they install the device handler. (Section 1.14.3.6 describes a
way to circumvent this restriction if you need to install a handler for a nonexistent
device.)

The following sections describe the various ways to install device handlers in an
RT-11 system.

1.14.3.1 Using the Bootstrap to Install Handlers Automatically

The bootstrap routine first locates the system device handler on the device from
which you booted the system and installs it. Then it scans the rest of the handler
files on the system device and tries to install the corresponding handler for each
hardware device it finds on the system. If the hardware is not present, the bootstrap
does not install the device.

The only difficulty with this procedure occurs when there are more handler files than
device slots. A distributed monitor reserves one device slot for each device RT-11
supports. A monitor you create through system generation reserves one slot for each
device you request. In addition, it provides the number of empty slots you specify.

Device Handlers 1-103

A slot is considered to be reserved for a particular device if the $PNAME monitor
table has an entry for that device. A slot is empty if $PNAME has a zero word.

The automatic device installation routine in the bootstrap has a set of priorities to
determine which handlers to install when there are more handlers than slots. If
all slots are empty, the bootstrap installs the system device handler plus the first
handlers it encounters on the system device whose device hardware is present. For
example, if a system has eight slots, all empty, the bootstrap installs the system
device handler and the first seven legitimate handlers it finds on the system device.

If one or more slots are reserved for specific devices (that is, the devices have entries
in the $PNAME table), the bootstrap reserves those slots for the corresponding
handlers until it can verify the presence of the appropriate hardware. If the
hardware exists, the bootstrap installs its device handler. If the hardware is not
present, the bootstrap clears its PNAME entry, thus creating an empty slot.

Figure 1-9 summarizes the algorithm the bootstrap uses to install device handlers.

As you can see, handlers with entries in the $PNAME table have higher priority at
boot time. If the handler file is on the system device and the device hardware exists,
the bootstrap always installs the handler.

When you write a device handler yourself, you should have no problem installing it
in your RT-11 system because you can rely on the bootstrap to install the handler
for you if the handler resides on the system device, if its hardware is present, and
if there is an empty slot in the monitor tables. If your system has no free slot, you
can create one or more by simply storing fewer device handler files on your system
device and rebooting the system. You can also use the monitor INSTALL command
(described in Section 1.14.3.2) to install a new handler without rebooting the system.
(This new handler may be one that the bootstrap could not install due to lack of free
slots, or it may be a new handler that you just created or just copied to the system
device.) Or, if you created your system through system generation, you can use the
DEV macro (described in Section 1.14.3.3) to reserve a slot for a new device handler
and give it priority for installation at bootstrap time. Figure 1-10 summarizes the
ways you can install a new device handler.

1.14.3.2 Using the INSTALL Command to Install Handlers Manually

Before using the INSTALL command to install a handler manually, use the SHOW
command to see if there are any empty device slots on your system. If there are
none, use the REMOVE command to remove a device you do not need and make
room for your new device, which you then add by using the INSTALL command.
The formats of these commands are documented in the RT-11 Commands Manual.

If a device slot was already available, your device will install automatically the next
time you bootstrap the system. If you used REMOVE and INSTALL to add your
new device to the system, you must reissue the commands after each bootstrap. To

1-104 RT-11 Device Handlers Manual

Figure 1-9: Bootstrap Algorithm for Installing Device Handlers

Device Handlers 1-105

Figure 1-10: Installing a New Device Handler

install the new device automatically at each bootstrap, put REMOVE and INSTALL
commands in your system’s startup indirect file. This saves you the trouble of typing
the commands yourself. In addition, it gives the device the appearance of being
permanently installed.

1.14.3.3 Using the DEV Macro to Aid Automatic Installation

If you created your system through a system generation, you can edit a system
MACRO-11 source file to add a new device to the $PNAME table, thus giving it
preference in the automatic handler installation procedure. The file you edit is
SYSGEN.TBL, one of the files you assemble to create a monitor file.

Use the DEV macro in the file SYSGEN.TBL to add a new device to the system
permanently. The format of the DEV macro is as follows:

DEV name,s

1-106 RT-11 Device Handlers Manual

name is the 2-character device name.

S represents the device status word (leave this argument blank).
The following examples are taken from the SYSGEN.TBL file:

DEV RK ; I NSTALLS THE RK DI SK

DEV LP ; I NSTALLS THE LI NE PRI NTER

DEV Mr ; | NSTALLS MAGTAPE

After you edit SYSGEN.TBL to add the DEV macro call for your device, you must
reassemble it. Use the following command:

. MACRO OBJECT: TBxx non+SYSGEN. CND+SYSGEN. TBL

xx represents the monitor type, such as SB, FB, XM, or another of the mapped
monitors.

mon represents the monitor conditional source file, such as XM.MAC, which defines
the basic features of that monitor. Once the assembly is complete, relink the object
files to create your new monitor. Follow the commands in the command file that
resulted from your system generation procedure to build the modified system.

1.14.3.4 Installing Devices Whose Hardware Is Present

Both routines in RT-11 that can install a device handler—the bootstrap code and
the monitor INSTALL command code—install handlers only for those devices whose
hardware is present on the current system configuration. The routines look at
location 176 in block 0 of the handler and test the address that 176 contains, which is
normally the base CSR for the device. If the hardware for the device is not present on
the system, a bus timeout occurs, causing a trap to 4, which the installation routines
field. As a result, neither the bootstrap routine nor the INSTALL command will
install the device handler. In addition, the INSTALL command prints the ZKMON-
F-Invalid device installation message.

The installation routines think the device’s hardware is present if its CSR responds
on the bus. However, this simple test is not sufficient to determine, in some cases,
which hardware device is present. For example, some devices are assigned the same
addresses in the I/O page for one or more of their status registers. If RT-11 just
tested a “shared” I/O page address, it still does not know which of two devices is
really present and therefore which handler to install. The RX01 and RX02 diskette
devices, for example, have the same bus address and the same number of status
registers in the I/O page. When RT-11 attempts to install the DX handler, it must
be able to determine whether or not hardware is present, and whether or not it is
the RX01 device. Clearly, it should not install the DX handler when the hardware
is really the RX02 device.

There is almost always some difference between two or more devices that is
discernible from their registers in the I/O page. Each handler for one of the hard-to-
identify devices can test for this difference and inform the RT-11 installation routine
whether or not it should install the device handler it is currently considering.

Device Handlers 1-107

1.14.3.5 Writing an Installation Verification Routine

RT-11 handlers for devices with shared I/O page addresses all contain an installation
verification routine to distinguish which hardware device is actually present and to
permit or inhibit installation of the current handler. If you write a device handler
yourself, you can include your own installation verification routine.

In general, the installation verification routines distinguish which hardware is
present based on one of the three following conditions:

e Of the two devices that share some registers, one device has more registers than
the other.

e If two devices share addresses for all their registers, and if they have the same
number of registers, sometimes one device has a read/write bit where the other
device has a read-only bit.

* Sometimes a device has a unique identification bit or byte.

The installation verification routines, then, determine which device is present based
on the results of testing one of the distinguishing conditions. Once this determination
has been made, the routine signals to the RT-11 installation routine whether or not
to install the current handler and then returns to the monitor with the carry bit set
to prevent installation and with the carry bit clear to permit installation.

Note that your installation verification routine can use all registers.

Entry Points of the Installation Verification Routine

An installation verification routine that you write in your own handler starts at
location 200 in block 0 of the handler. It must not extend beyond location 360,
unless you link your handler with the /NOBITMAP option — in which case location
376 is the limit. Location 200 is the entry point that the bootstrap code uses to
install a data device. The INSTALL monitor code always enters here, as well.

Location 202 is the entry point that the bootstrap code uses to install the system
device. The INSTALL monitor code never enters here.

If you do not care whether your handler is installed as the system device or as a data
device, put a NOP instruction at location 200. If your handler must be installed as
the system device handler, use the following instructions to prevent its installation
under any other circumstances:

. = 200 ; NON- SYSTEM ENTRY PO NT
BR ERRCR ; BRANCH TO ERROR ROUTI NE

Code to execute when installed as system device

ERRCOR: SiEC ; SET CARRY TO PREVENT | NSTALLATI ON
RTS PC ; AND RETURN

1-108 RT-11 Device Handlers Manual

The .DRINS macro sets up the installation code area in block 0 of a device handler.
.DRINS defines symbols for the installation verification code entry points and for
the installation CSR. After .DRINS is called, the location counter is set to 200, the
address of the data device installation entry point.

.DRINS Macro—Use the .DRINS macro near the beginning of your device handler,
before the header section. The .DRINS macro is described in Section 1.2.1.3.

If the Hardware for This Handler Has an Extra Register

If this handler is for a device that shares an I/O page address with another device,
you can identify which device is present if the two devices have a different number
of registers. When the device for the current handler has one more register than the
other device, use the following instructions to test for the extra register:

MoV 176, RO ; GET THE SHARED CSR

TST n(RO) ; TEST THE EXTRA REG STER AT OFFSET n
; THE SHARED CSR

RTS PC ; RETURN (W TH CARRY SET

; | F W\RONG DEVI CE)

This routine tests the extra register. If there is no device configured there, the bus
times out, causes a trap to 4, and sets the carry bit. The installation verification
routine returns to the monitor with the carry bit set, indicating that the correct
hardware for the current handler is not present, and that this handler should not
be installed.

On the other hand, if the extra register responds to the test, the TST instruction
returns with the carry bit clear, which means that the correct hardware for this
device handler is present, and that RT-11 should install the handler.

If the Hardware for This Handler Has Fewer Registers

If the hardware for the other device that shares an I/O address with the device for
this handler has more registers, this handler can test for the absence of the extra
register. If the extra register is not found, RT-11 should install the current handler.

The following instructions take care of this situation:

MoV 176, RO ; GET THE SHARED CSR
TST n(RO) ; TEST THE EXTRA REG STER AT OFFSET n
; FROM 176. IS A DEVI CE HERE?
BCC 1% ; YES, OTHER DEVI CE | S HERE.
CLC ; NO, CLEAR CARRY
RTS PC ; INSTALL CURRENT HANDLER
13$: SEC ; SET CARRY
RTS PC ; DO NOT | NSTALL CURRENT HANDLER

Essentially, this routine checks for the presence of the other device’s extra register.
If it is not present, the routine instructs RT-11 to install the current handler.

If an Identification Bit or Byte Exists

If the devices that share an I/O page address also share an identification bit or byte,
an installation verification routine can check the bit or byte and determine which
hardware is present. It can then permit or inhibit the installation of the current
handler based on that information.

Device Handlers 1-109

In RT-11, for example, the RX01 and RX02 devices share the CSR. Bit 11, called
CSRX02, is clear if the device is an RX01, and set if the device is an RX02. The
following example is from the DY device handler, which should only be installed if
RX02 hardware is present.

. ASECT
. = 200 ; VERI FI CATI ON ROUTI NE GOES HERE
NOP ; SAVE CHECK FOR SYSTEM AND NON- SYSTEM
BIT #CSRX02, @L.76 ;1S RX02 BIT ON?
BEQ 1% ;NO, THIS I'S AN RX01.
; DON'T INSTALL TH' S
; DY HANDLER.
TST (PO + ; CLEAR CARRY, SKIP SEC | NSTRUCTI ON.
; WVE HAVE AN RX02, | NSTALL DY HANDLER
13$: SEC ; SET CARRY, DON T I NSTALL DY HANDLER
RTS PC ; RETURN TO MONI TOR

If One Device Has a Read/Write Bit

If one of the devices that share an I/0O page address has a read/write bit in the CSR
where the other device has a read-only bit, the verification routine can determine
which hardware is present by following a general procedure to check the bit and
permit or inhibit the installation of the current handler based on the results. The
routine should read the bit, toggle it, and write it back to the CSR. Then the routine
should read the bit again. If the value of the bit changed, the device with the
read/write register is present. If the value remained constant, the device with the
read-only register is present. The routine can set the carry bit appropriately and
return to the monitor. If carry is set, RT-11 does not install this handler. If carry is
clear, RT-11 does install this handler.

1.14.3.6 Overriding the Hardware Restriction

If for any reason you need to install a device handler whose hardware is not present
in your current system configuration, you can circumvent the checks in the bootstrap
and INSTALL routines by running SIPP and patching the handler. You clear location
176 in the handler file’s block 0, then use the INSTALL command or reboot the
system to install the device handler.

1.15 How to Test and Debug a Device Handler

Once your new handler is assembled, linked, and installed, you are ready to begin
testing it. Remember during debugging that you must remove the old handler and
install the new one each time you create a new version of dd(X).SYS.

Test the handler in three stages, according to these guidelines:

1. Use the hardware version (SDH.SYS or SDHX.SYS) of DBG-11 to observe the
handler as it processes a data transfer.

If for some reason you would rather use ODT or VDT to observe the handler as
it processes a data transfer, see Sections 1.15.2 and 1.15.3. However, debugging
is significantly easier when using a symbolic debugger, so look closely at using
DBG-11 before choosing ODT or VDT.

1-110 RT-11 Device Handlers Manual

2. Test the handler with keyboard monitor commands, with system utility
programs, and with FORTRAN, C, or another programming language. Try the
COPY command, for example, to copy data to and from the device, or run PIP
to do the same thing. Try using the handler with FORTRAN READ or WRITE
statements, or with BASIC-PLUS INPUT or PRINT statements. If your handler
sets the bit in the device status word that indicates that the handler is for an
RT-11 directory-structured device, DUP will operate correctly on the device with
no further modifications. That is, you should be able to use DUP to initialize
the device (through the INITIALIZE command) and to consolidate free space
(through the SQUEEZE command). The RESORC program needs no modification
to recognize the new device and will include it in its SHOW DEVICES report.

3. Give the handler an extended workout with an application program that uses
wait-mode I/0, asynchronous I/O, and completion routines.

When the handler passes all the tests successfully, you can begin using it as part of
your regular RT-11 system.
1.15.1 Using DBG-11 to Test a Handler

Chapter 5 of the DBG-11 Symbolic Debugger User’s Guide describes using DBG-11

to debug a device handler. If you have not used DBG—11 previously, you should work

through the examples in the manual before testing and debugging your handler.
1.15.2 Using ODT to Test a Handler

The easiest way to use ODT to test a handler is to run ODT as the foreground job. If
you normally use only a single-job monitor, it is worthwhile to switch to a multi-job
monitor just for debugging.

Since you will be doing some careful debugging work, Digital also recommends that
you be the sole user during this time. Bring up your system from a hardware
bootstrap. Do not start any system jobs or load any handlers.

Link ODT for the foreground with the following command:
. LI NK/ MAP/ FOREGROUND QDT

Next, load the device handler you need to debug:

. LOAD dd[X]

Now, issue a SHOW D command. Note the address given for the device handler that
you are debugging. For this example, assume the value is 131634. Subtract 6 (in
octal) from this address to get the base address of the handler. In this case,

131634

131626

Start ODT as the foreground job:
. FRUN ODT

Device Handlers 1-111

ODT VO01. 04
*

Set relocation register 0 to the value computed from the address given by the SHOW
D command:

131626; OR

You can step through the handler in memory as you follow the instructions in your
assembly listing. The first five words are the header; the first executable instruction
is the sixth word. Set your first breakpoint at the sixth word:

0,12; 0B

Set other breakpoints at various points in the handler that you want to examine
during debugging. Another critical place is the interrupt entry point. You can find
its location by checking the handler’s MACRO-11 listing. Remember, the interrupt
entry point is called ddINT:; you should be able to find it easily and set a breakpoint
there.

When you have finished setting breakpoints in the handler, exit from ODT:
0;G

Now try using the handler. You could try using DUP to initialize the device, or PIP
to copy data to the device. Or, run a test program that you have designed especially
for this purpose. When execution reaches the first breakpoint in the handler, ODT
takes control. Use ODT as usual to examine locations and check their values, or to
modify instructions. Note that the default priority of ODT is 7; this prevents other
interrupts from disturbing your debugging session. Since you are the only user on
the system, ODT’s high priority should cause no problem. (Note, however, that the
system clock will lose time, and that ODT usually cannot debug race conditions.)

When you are satisfied with the handler’s performance, remove the breakpoints from
it and proceed with the remainder of execution through the handler:

;B

P

Be careful not to unload the foreground job (ODT) while there are still breakpoints
set in the handler.

1.15.3 Using ODT in a Mapped Environment

By following a few special guidelines, you can use ODT to debug a device handler in
the mapped environment.

Carefully select a place for ODT in memory. You can link it with an application
program, or link it so it resides somewhere in memory where it will not be destroyed.
If a breakpoint is to be taken in kernel mode, ODT must not reside in the PAR1 area
(locations 20000 through 37776). The safest place to put ODT is in the foreground
partition, as described in Section 1.15.2.

When you are debugging with ODT, the I/O page must always be mapped.

1-112 RT-11 Device Handlers Manual

Setting breakpoints also requires care. As soon as you enter ODT, look at the
breakpoint trap vector (BPT) at locations 14 and 16 in low memory. When you
set a breakpoint, you must manually set the current mode bits, bits 14 and 15, of
the PS at location 16. Set them to the mode you expect at the time the breakpoint
occurs. The values are 11 for User Mode, 01 for Supervisor, and 00 for Kernel. (RT-
11 utility programs such as PIP and DUP run in User Mode and expect the mode
bits to be set to 11.)

After setting breakpoints, type 0;G to exit from ODT. This causes an .EXIT request
to be performed, which destroys the BPT vector. So, after you exit from ODT, you
must manually reconstruct the contents of the vector by using the Deposit command,
as follows:

D 14=(correct contents of 14),(correct contents of 16)
Make sure no other jobs are running when you do this, since context switching causes
this technique to fail.

1.16 Contents of .SYS Image of a Device Handler

Table 1-11 shows the layout of the .SYS image of a handler after assembly and
linking. Tables 1-3 and 1-4 contain more information about blocks 0 and 1 of the
device handler file image. Locations not otherwise identified are reserved for future
use by Digital.

Table 1-11: Device Handler .SYS Image

Location Contents

000000 Handler identifier in RAD50

000002 Pointer to a FETCH service routine (file address)
000004 Pointer to a RELEASE service routine (file address)
000006 Pointer to a LOAD service routine (file address)
000010 Pointer to an UNLOAD service routine (file address)

000012- Reserved
000016

000020 Device classification

000021 Device classification modifier

000022 First special function (index method) list

000024 Second special function (index method) list

000026 Third special function (index method) list

000030 Pointer to further special functions (extension table method)
000032 Pointer to bad-block replacement table

000034 Reserved

Device Handlers 1-113

Table 1-11 (Cont.): Device Handler .SYS Image

Location Contents

000036 Second status word

000040- Reserved

000050

000052 Handler size (dldEND-ddSTRT)

000054 Device size (ddDSIZ)

000056 Device status word (ddSTS)

000060 Result of FORCE= parameter; byte contains device SYSGEN options for SET
dd SYSGEN

000061 Reserved

000062 Pointer to the primary bootstrap (file address)

000064 Bootstrap size in bytes

000066 Pointer to the bootstrap read routine (file address)

000070 Varies with the handler; see Table 1-3

000072 Varies with the handler; see Table 1-3

000074 Size in bytes of total list of handler data table descriptors

000076 Pointer to extended device-unit ownership table (file address)

000100 Letter name of extended device-unit handler and device characteristics for UMR
support

000102 Reserved

000104 Pointer to further block 0 type information not included in block 0 (file address)

000106 Pointer to the handler data descriptor table (file address)

000110- Information written by .MODULE and .AUDIT.

000173
(The CSR table begins at 176 and expands downward to a zero word.)

000174- Display’ CSRs (DISCSR) read by RESORC. If more than one, each written into

000xxx previous location

000176 Installation’ CSR (INSCSR); beginning of CSR table

000200 Data device installation entry point (INSDAT)

000202 System device installation entry point (INSSYS)

000204- Installation code; must link with /NOBITMAP option or else range is 204-357

000377

000400- SET code/tables

000777

001000 Either the device vector or an offset to the table of vectors (ddSTRT)

1-114 RT-11 Device Handlers Manual

Table 1-11 (Cont.): Device Handler .SYS Image

Location Contents

001002 Offset to the interrupt service entry point

001004 Priority (340)

001006 Pointer to the last queue element (ddLQE)

001010 Pointer to the current queue element (ddCQE) in the handler memory image
001010 Flag word (in handler file image)

001012 NOP instruction OR’d with flags

001014 Branch instruction (optional)

001016 Second flag word (optional)

001020 Pointer to SPFUN address check routine (optional)
001022 pointer to DMA SPFUN table (optional)

001024 Pointer to LD translation table (optional)

1012 Handler entry point

n Abort entry point (from .DRAST; may be above 1777)
n+2 Interrupt entry point (from .DRAST; may be above 1777)
1776 High limit of area modifiable by SET code

dd$END $RLPTR: (from .DREND)
$MPPTR: (from .DREND)
$GTBYT: (from .DREND)
$PTBYT: (from .DREND)
$PTWRD: (from .DREND)
$ELPTR: (from .DREND)
$TIMIT: (from .DREND)
$INPTR: (from .DREND)
$FKPTR: (from .DREND)
ddEND=. (from .DREND)

ddEND:

ddBOOT: NOP; Start of primary bootstrap (from .DRBOT)

Device Handlers 1-115

Table 1-11 (Cont.): Device Handler .SYS Image

Location

Contents

entry—14

entry—12

entry—10

entry—6

entry—4
entry—2

entry:

662
664

776

BR entry; Label entry from .DRBOT

020; (from .DRBOT) This byte identifies the type of CPU. A value of 20 indicates
a PDP-11.

Controller types; (from .DRBOT) This byte indicates the type of controllers that
the operating sytem supports for this device. Its value in RT-11 V5 can be the
OR’d result of the following codes:

101 Non-MSCP UNIBUS controller

102 Non-MSCP LSI-11 buscontroller

110 MSCP UNIBUS controller

120 MSCP LSI-11 bus controller

020; (from .DRBOT) This byte identifies the type of file structure on the disk.
A value of 20 indicates RT-11 file structure.

checksum; (from .DRBOT)The checksum byte is a checksum of the previous
three bytes. It is computed as the complement of the sum of the bytes.

0; (from .DRBOT)

diskette type; (from .DRBOT) This byte contains a bootstrap identification
number in bits 0—6 and a flag to indicate single- or double-sided diskettes in
bit 7. The values can be:

Bit 7 = 0, Single-sided diskette

Bit 7 = 1, Double-sided diskette

BR .+2 or BMI .+2 (from .DRBOT) Digital suggests that entry be located
above location 120 in the bootstrap block. This will avoid conflict with vectors
and the monitor SYSCOM area as the monitor is bootstrapped.

Start of primary bootstrap read routine
High limit of primary bootstrap

Start of bootstrap error code

End of bootstrap error code

1-116 RT-11 Device Handlers Manual

Chapter 2
Programming for Specific Devices

This chapter provides information on device handlers that have special device-
dependent characteristics. Read this chapter if you need to program specifically
for one of the following devices:

* DL (RLO1/RLO02 disk handler)

* DM (RK06/RKO07 disk handler)

e DU (MSCP disk handler)

¢ DW (CTI Bus-based disk handler)

¢ DX and DY (RX01/RX02 diskette handlers)
¢ DZ (Diskette handler)

¢ LD (Logical disk handler)

e MM, MS, and MT (Magtape handlers)

e MU (TMSCP magtape handler)

e NL (Null handler)

e NC, NQ, and NU (Ethernet handlers)

¢ UB (UNIBUS mapping register handler)

e VM (Virtual Memory handler)

¢ XC and XL (Communications Port handlers)

Much of the information in this chapter is based on other information in the RT-—
11 documentation set. You should be familiar with pertinent information found
elsewhere rather than relying only on the information in this chapter. For example,
much of the description of special functions as they apply to particular device
handlers in this chapter assumes you know and understand the description of special
functions (the .SPFUN request) in the RT-11 System Macro Library Manual.

You should look at the on-line index utility, INDEX, or in the printed RT-11 Master
Index for other information in the RT-11 documentation set that pertains to a

particular device handler or to various RT-11 features as they apply to that device
handler.

Device handler operations are often controlled by various special functions. In this
manual, you will be presented with both a code number and name for a special
function. You can use the code in the particular special function call (SPFUN) as

Programming for Specific Devices 2-1

documented. You can use the name (rather than the code) if you include in your
program a macro call for the appropriate macro in the file, SYSTEM.MLB.

The following macros in SYSTEM.MLB define the names for the indicated type of
special functions:

Name Device type

.SFDDF Disk device handlers

.SFMDF Magtape device handlers

.SFNDF Ethernet device handers

.SFXDF VTCOM device handlers

.SFODF ’Other’ device handlers, such as PI

You could, for example, include the following code in your program or handler to
define the names of all the disk type special functions in this manual. Then you
could use the special function name, rather than the more cryptic function code. (Be
sure that the volume that contains SYSTEM.MLB is also assigned the logical name

SRC.)
. LI BRARY " SRC: SYSTEM M.B"
. MCALL . SFDDF
. SFDDF

2—2 RT-11 Device Handlers Manual

2.1 DL (RLO1/RLO2 Disk Handler)

This section provides specific programming information for RL0O1 and RL02 disks.

2.1.1 Support for Special Functions

The RLO1/RL02 disk handler supports the following special functions. The
device-specific parameter arguments are the same as for DM; see Section 2.2 for
information.

Code Name Action

377 SF.ARD Read operation without doing bad-block replacement; returns
definitive error data.

376 SF.AWR Write operation without doing bad-block replacement; returns
definitive error data.

374 SE.BBR Re-read the bad-block replacement table in the handler (the
program changed it).

373 SF.S1Z Determine the size, in 256;p-word blocks, of a particular
volume.

2.1.2 Support for Bad-Block Replacement

Bad-block replacement for the RLO1 and RLO02 is similar to the bad-block support for
the RK0O6/RK07 (DM). However, the RL0O1 and RL02 generate neither the bad sector
error (BSE) nor the header validity error (HVRC). Therefore, the handler must check
the bad-block replacement table for each I/O transfer. Since the table is always in
memory as part of the DL handler, the I/O delay is not significant.

The last track of the RLO1 and RL02 disks contains a table of the bad sectors that
were discovered during manufacture of the disk. The 10;, blocks preceding this
table (the last 107y blocks in the second-to-last track) are set aside for bad-block
replacements. The maximum number of bad blocks (104() is defined in the handler.

As with the RK06 and RKO07, you determine at initialization time whether to cover
bad blocks with .BAD files or create a replacement table for them and substitute
good blocks during I/O transfers. The advantage of using bad-block replacement is
that it makes a disk with some bad blocks appear to have none. On the other hand,
covering bad blocks with .BAD files fragments the disk. Because RT-11 files must
be stored in contiguous blocks, this fragmentation limits the size of the largest file
that can be stored.

The monitor file cannot reside on a block that contains a replaced block if you are
using bad-block replacement. If this condition occurs, a boot error results when you
bootstrap the system. In this case, move the monitor so that it does not reside on a
block with an error.

If you specify the /REPLACE option during initialization of an RLO1 or RL02 disk,
DUP scans the disk for bad blocks. It merges the scan information with the

Programming for Specific Devices 2-3

manufacturing bad sector table, allocates a replacement for each bad block, and
writes a table of the bad blocks and their replacements in the first 20 words of block
1 of the disk. Block 1 is a table of two-word entries. The first word is the block
number of a bad block; the second word is its allocated replacement. The last entry
in the table is 0. The entries in the table are in order by ascending bad block number.
A sample table is shown in Figure 2-1.

Figure 2-1: Bad-Block Replacement Table

Bad block 12
Entry 1
Its replacement | 10210
Bad block 37
Entry 2
Its replacement | 10211
Bad block 553
Entry 3
Its replacement | 10212
End of list 0 Entry 4

The handler contains space to hold a resident copy of the bad block table for each
unit. The amount of space allocated is defined by the SYSGEN conditional DL$UN,
which represents the number of RLO1/RL0O2 units to be supported. The value
defaults to 2 if it is not defined. The handler reads the disk copy of the table into
its resident area under the following three conditions:

e If a request is passed to the handler and the table for that unit has not been
read since the handler was loaded into memory.

e Ifarequestis passed to the handler and the handler detects Volume Check drive
status. This status indicates that the drive spun down and spun up again, which
means that the disk was probably changed.

e If an SF.BBR request is passed to the handler. This special function is used by
DUP when it initializes the disk table to ensure that the handler has a valid
resident copy.

2—-4 RT-11 Device Handlers Manual

2.2 DM (RKO0O6/RKO0O7 Disk Handler)

This section provides specific programming information for RK06 and RKO07 disks.

2.2.1 Support for Special Functions
The RK06/RKO07 disk handler supports the following special functions:

Code Name Action

377 SF.ARD Read operation without doing bad-block replacement; returns
definitive error data.

376 SF.AWR Write operation without doing bad-block replacement; returns
definitive error data.

374 SE.BBR Reread the bad-block replacement table in the handler (the
program changed it).
SF.BBR uses no parameters.

373 SF.SIZ Determine the size, in 256;p-word blocks, of a particular
volume.

The special function ((SPFUN) request has the following general form, with the
area and chan parameters and the optional crtn, BMODE=str, and CMODE=str
parameters as described in the RT-11 System Macro Library Manual, and the other
parameter arguments as described below:

Macro Call: .SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

func is the code for the function to be performed or the name of the
function if the program has been assembled with the distributed
module SYSTEM.MLB.

Programming for Specific Devices 2-5

buf For SF.ARD and SF.AWR, the buffer size must be one word larger
than required for the data. The first word of the buffer contains any
returned error information. The remaining words in the buffer contain
the data transferred. The error codes and information are as follows:

Code Name Meaning

100000 ES.SUC The I/O operation is successful.

100001 ES.ECC An ECC error is corrected.

100002 ES.RTY An error was recovered on a retry.

100004 ES.UFF An error was recovered through an offset retry.

100010 ES.RCL An error was recovered after recalibration.
100200 ES.BBR A bad block is detected (BSE error).
1774xx ES.ERR An error was not recovered.

For SF.BBR, buf should be 0.

For SFE.S1Z, buf is a 1-word buffer where the .SPFUN request returns
the size of the volume in 256;,-word blocks.

went For SF.BBR, wcnt should be 0.
For SF.SIZ, went should be 1.
blk For SF.BBR, blk should be 0.

For SF.SIZ, blk should be 0.

2.2.2 Support for Bad-Block Replacement

The last cylinder of the RK06 and RKO07 disks is used for bad-block replacement and
error information. RT-11 supports a maximum of 32;7 replaceable bad blocks on
these disks. The bad-block information is stored in block 1 on track 0, cylinder 0, of
the disk. The replacement blocks are stored on tracks 0 and 1 of the last cylinder.
A bad-block replacement table is created in block 1 of the disk by the DUP utility
program when the disk is initialized. When a bad block is encountered and the
table is not present in the handler from the same volume, the DM handler reads a
replacement table from block 1 of the disk and stores it in the handler.

When a bad sector error (BSE) or header validity error (HVRC) is detected during a
read or write, the DM handler replaces the bad block with a corresponding good block
from the replacement tracks. The bad-block replacement feature of RT-11 requires
blocks 0 through 5 and tracks 0 and 1 of the last cylinder to be good. This procedure
causes an I/O delay since the read/write heads must move from their present position
on the disk to the replacement area, and back again.

If this I/O delay cannot be tolerated, the disk can be initialized without bad-block
replacement. In this case, bad blocks are covered by .BAD files. Neither the bad
blocks nor the replacement tracks will be accessed.

2—6 RT-11 Device Handlers Manual

You determine at volume initialization time whether to cover bad blocks with .BAD
files or to create a replacement table for them and substitute good blocks during I/O
transfers. The advantage of using bad-block replacement is that it makes a disk with
some bad blocks appear to have none. On the other hand, covering bad blocks with
.BAD files fragments the disk. Because RT-11 files must be stored in contiguous
blocks, this fragmentation limits the size of the largest file that can be stored.

Only BSE and HVRC errors trigger the DM handler’s bad block replacement
mechanism. If a bad block develops that is not a BSE or HVRC error, the disk
must be reformatted to have this new block included in the replacement mechanism.
Reformatting should detect the new bad block. Mark it so that it generates a BSE
or HVRC error and add the block number to the bad-block information on the disk.
The disk should then be initialized to add the bad block to the replacement table.

The monitor file cannot reside on a block that contains a BSE error if you are
using bad-block replacement. If this condition occurs, a boot error results when
you bootstrap the system. In this case, move the monitor so that it does not reside
on a block with a BSE error. Further, the monitor file (and any handler files) must
reside in physically contiguous blocks—none of the blocks can be in the replacement
table.

Programming for Specific Devices 2-7

2.3 DU (MSCP Disk Handler)

This section provides specific programming information for MSCP disk devices.

The DU handler for RT-11 supports any disk system using the Mass Storage
Communications Protocol (MSCP) interface. All disks using MSCP appear the same
to the host computer. Thus, a single RT-11 DU handler can access any kind of MSCP
disk.

2.3.1 Support for Special Functions
The DU handler supports the following special functions:

Code Name Section Action
377 SF.ARD 2.3.5.2 Read operation without doing bad-block replace-
ment; returns definitive error data.
376 SF.AWR 2.3.5.2 Write operation without doing bad-block replace-
ment; returns definitive error data.
373 SFE.SI1Z 2.3.2 Determine the size, in 256;,-word blocks, of a
particular volume.
SF.S16 blk argument for SF.SIZ to indicate 16-bit
starting block.
SF.S32 blk argument for SF.SIZ to indicate 32-bit
starting block.
372 SF.TAB 2.3.6 Returns the MSCP translation table.
371 SF.OBY Obsolete; replaced by SF.BYP (360).
367 SF.R32 2.3.5.3 Read with 32-bit block number.
366 SF.W32 2.3.5.3 Write with 32-bit block number.
360 SF.BYP 2.3.7 Provides direct MSCP access.

2.3.2 Determining Volume Size (SF.SI1Z), Code 373

Special function SF.SIZ returns the volume size in the word pointed to by the buf
parameter argument. For DU, this special function is enhanced over that provided
in the DL, DM, DY, and LD handlers. SF.SIZ for DU can return a 32-bit value for
the device volume size and is, therefore, appropriate for use with device volumes
that contain more than 65K blocks.

The volume size returned by the enhanced SF.SIZ is determined by any partition
mapping. If a partition is mapped to the unit to which the channel is opened, the
returned volume size is calculated from the base of the mapped partition to the
usable end of the volume. If, for example, you have mapped unit DU1 to partition 1,
an SF.SIZ for DU1 returns a volume size from the base of partition 1 to the usable
end of the volume. If you reference the first partition on the volume, SF.SIZ returns
the usable size of the entire volume.

2—-8 RT-11 Device Handlers Manual

The following description of parameters lists any differences between those for
returning a 16-bit volume size and those for the 32-bit volume size.

Macro Call: .SPFUN area,chan,#SF.SIZ,buf,wcnt,blk[,crtn][, BMODE=str][,CMODE=str]
area is the address of a 6-word EMT argument block
chan is the channel opened on the unit for which you want the volume size

SESIZ is code 373 or the name SF.SIZ if the program has been assembled with
the distributed module SYSTEM.MLB

buf For 16-bit value, is the address of a 1-word buffer in which volume size
is returned

For 32-bit value, is the address of a 4-word buffer that on return contains
a 32-bit value for the volume size followed by a 32-bit value for the MSCP
logical block number from which the volume size was calculated.

The low-order base bits contain the value 0 and the high-order base bits
contain a value indicating the partition to which this unit is currently
mapped. If the unit does not exist, SF.SIZ returns a hard error and the
contents of buf are undefined

wcent For 16-bit volume size, is 1. For 32-bit volume size, is 4

blk For 16-bit volume size, is 0, indicating subcode SF.S16. For 32-bit volume
size, is 1, indicating subcode SF.S32

2.3.3 Obtaining the DU Device Status (STATUS$)

DU has a status word containing information about the last operation performed
by the handler. The status word is called STATU$ and is located at an offset from
the base of DU. See Table 2—1. The offset is stored in the handler as an entry in
the table set up by the .DRTAB macro. The first word of the 2-word table entry is
the RAD50 characters UMS, followed by the value of STATU$. Using .DRTAB is
described in the RT-11 System Macro Library Manual. The low 5 bits of STATU$
contain the status information. All other bits are reserved.

Table 2-1: STATUS$ Status Information

Octal

Value Meaning

00 Success

01 Invalid command

02 Command aborted

03 Unit off line

04 Unit available

05 Medium format error
06 Write-protected medium

Programming for Specific Devices 2-9

Table 2—1 (Cont.): STATU$ Status Information

Octal

Value Meaning

07 Compare error

10 Data error

11 Host buffer access error
12 Controller error

13 Drive error

Use DBG-11, ODT/VDT, Console ODT, or the E keyboard command to examine the
contents of STATUS$. You will need to perform customization patch 2.7.32 located
in the RT-11 Installation Guide to use the E command. Use the SHOW MEMORY
command display to find the base of the DU handler and add the offset to that base.

You can obtain the information returned in STATUS$ from within a program by calling
the sytem subroutine, IGTDUS, as described in the RT-11 System Subroutine Library
Manual.

2.3.4 Support for Bad-Block Replacement

All MSCP (DU) hard-disk systems support bad-block replacement (BBR), performed
either by the disk controller or as a feature of the DU handler. For those MSCP
hard disks for which BBR is provided by the controller, no support is required by
the DU handler; bad-block replacement is transparent to RT-11.

In MSCP systems that use an RQDX1, RQDX2, or RQDX3 controller, BBR is
performed by the controller. In those systems, BBR is done automatically by the
hardware and does not require bad-block support in the DU handler.

In MSCP systems that use a KDA50, UDA50, KLESI-QA, or KLESI-UA controller,
BBR can be performed by the DU handler.

Table 2-2 lists the MSCP controllers and drives supported by RT-11 and indicates
whether bad-block replacement (BBR) is performed by the controller or the DU
handler. (There is no BBR support for RX50 devices or write-only media.)

Table 2-2: MSCP Bad-Block Replacement (BBR)

MSCP Bad Block

Controller Replaced by: MSCP Drive

RQDX1 controller Supported RD-type drives
RQDX2 controller Supported RD-type drives
RQDX3 controller Supported RD-type drives
KLESI-QA handler Supported RC-type drives

2-10 RT-11 Device Handlers Manual

Table 2-2 (Cont.): MSCP Bad-Block Replacement (BBR)

MSCP Bad Block

Controller Replaced by: MSCP Drive
KLESI-UA handler Supported RC-type drives
UDA50 handler Supported RA-type drives
KDAS50 handler Supported RA-type drives

The distributed DU for mapped monitors (DUX.SYS) supports handler BBR. If you
are going to use an unmapped monitor with MSCP disks that require handler BBR,
you should perform a system generation for that monitor and request support for
DU handler bad-block replacement. Once you have generated such support, you can
change monitors and continue DU handler bad-block replacement.

The following is general information on BBR as performed by DU:

Bad-block replacement is a technique in which substitute blocks are provided for
blocks that have caused a read or write error. The replacement blocks appear to
occupy the disk positions of the original blocks, and the disk appears to contain
only good blocks. You can force bad-block replacement on a device by performing a

read and verify operation on all blocks. You perform such a read/verify operation
by issuing a FORMAT/VERIFY:ONLY command for the device.

Whether bad-block replacement is performed by the controller or the handler, it
has the effect of making a disk appear to be error free. In certain cases, however,
an I/O operation, a verification procedure, or a bad-block search may report the
presence of bad blocks on a disk with replaced blocks. In such cases, any block
identified as a bad block should be considered to be a good block with bad data.
This means that the controller or handler provided a replacement block for a
defective block but was unable to recover the data it contained.

You can force MSCP class devices to clear bad blocks that contain soft errors
by coupling the DUP /H option with the /B or /K option. The /H option is not
available as a KMON command. You should use only the DUP /H/B or /H/K
command options with blank media or a volume you have just backed up.

If the DU handler is unable to replace a block on a device, DU displays the
following error message:

?DU- E- Repl ace command failure or inconsistent RCT.
?DU- E- Software write protecting vol une.

If you receive that message, you should immediately back up that volume. Then
check any file you had open for lost data. You cannot write to that volume again
without first taking it off line and then placing it on line.

Programming for Specific Devices 2-11

2.3.5 Non-File-Structured Read and Write Operations

2351

2352

2353

DU supports three methods for performing non-file-structured read and write
operations.

JREAD and JWRITE

You can perform absolute (non-file-structured access) reads and writes to any MSCP
device, using the JREAD and JWRITE system subroutines. JREAD and JWRITE
use a 32-bit starting block number, which lets you read and write to any block on
any DU device. See the RT-11 System Subroutine Library Manual for details on
JREAD and JWRITE.

Special Functions SF.ARD and SFAWR

DU supports special functions SF.AWR (code 376) and SF.ARD (code 377). SF.AWR
and SF.ARD are appropriate for devices that contain no more than 65K blocks. If
the DU device contains more than 65K blocks, see Section 2.3.5.3. For DU, SF.AWR
performs a write to the specified sector, and SF.ARD performs a read from the
specified sector. Those writes and reads are not absolute; bad-block replacement
and block vectoring remain in force.

Special functions SF.AWR and SF.ARD are especially useful because they return
status information in the first word of the return buffer. Status information includes
any occurrence of a bad-block error, forced error, or drive error. No discrimination
for such errors is returned by a .WRITE or .READ request.

DU support for SFLAWR and SF.ARD is the same as DM with the following
exceptions:

* DU supports an additional error code:

Code Name Meaning

140000 ES.FRC A forced error occurred.
If the device is a disk drive that supports BBR, the
device controller or DU handler discovered bad data
on a good (replaced) block. (Bad-block replacement
was performed but no data was recovered.)
If the device does not support BBR, this is an
unexpected condition.

* For DU, bad-block replacement and block vectoring remain in force.

Special Functions SF.R32 and SF.W32

DU supports two special functions that perform non-file-structured block reads
(SF.R32, code 367) and writes (SF.W32, code 366) on devices that contain more than
65K blocks. Because these special functions perform non-file-structured operations,
they should generally not be used to perform operations on any device partition that
contains a file structure.

2-12 RT-11 Device Handlers Manual

Special functions SF.W32 and SF.R32 perform the same operations as the JWRITE
and JREAD functions; JWRITE and JREAD use special functions SF.W32 and
SF.R32. JWRITE and JREAD are described in the RT-11 System Subroutine Library
Manual.

CAUTION

SF.W32 can write data to the reserved blocks on
your DU device, which can render your DU device
useless, because those blocks contain the replacement
control table (RCT). You should, therefore, always issue
a special function SF.SIZ (373) to a DU device to
determine the volume size, because SF.SIZ returns the
size at the boundary between the usable logical blocks
and the RCT. Writing data only up to the volume size
returned by SF.SIZ ensures you will not write data into
the RCT.

The format for these special functions is:
Macro Call: .SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]
area is the address of a 6-word EMT argument block.

chan is a channel number for I/O in the range 0 to 376g.
func is the symbol or numeric code value for the function to be performed:
Code Name Meaning

366 SF.W32 32-bit non-file-structured block write
367 SF.R32 32-bit non-file-structured block read

buf is the buffer address.

went is the number of words to transfer. Valid values are 0 through 0777775.

Programming for Specific Devices 2-13

blk is the address of a 4-word argument block:

blk+0 is a 2-word (32-bit) starting block number for this request. The
first word contains the low-order bits. The second word contains
the high-order bits.
The correspondence between the starting block number and a
particular block on a device is determined by any partitioning
and unit mapping of the device:
If the device has not been partitioned, starting block 0 specifies
physical (and logical) block 0 — the start of the device. Any
starting block number is offset from physical block 0.
If the device has been partitioned, logical block 0 of partition 0
continues to contain physical block 0. However, the starting block
0 of this request, because of device partitioning, corresponds to
logical block 0 of the unit opened on this channel. Any starting
block number is offset from logical block 0 of the partition mapped
to the unit. For example, if the channel is opened for a non-file-
structured operation to unit DU1 and DU1 is mapped to partition
1 (block 2000004, starting block 0 corresponds to physical block
2000005 of this device).

If, for example, your device contains an RT-11 file structure
in partition 0, which is mapped to DUO, you could ensure the
integrity of that file structure by always performing non-file-
structured operations above partition 0 on the device.

blk+4 on return, contains the number of words actually transferred

blk+6 is reserved

2.3.6 DU Translation Table (SF.TAB), Code 372

The DU translation table defines the correspondence between RT—11 unit numbers
and MSCP unit numbers, ports, and partitions. The format of the table is given in
Figure 2-2.

Special function SF.TAB (code 372) interacts with the translation table from an
address contained in the buf argument of the SF.TAB call. You can read the contents
of the translation table to the buffer or write the contents of the buffer to the table.
Whether the SF.TAB request is a read or write operation is determined by the wcnt
parameter argument. This procedure is explained in this section.

For RT-11 V5.4, changes were made in the structure of the DU handler translation
table. The names of the offsets in the table and the size of the table was changed.
All programs you write to access the information contained in the table should use
the following offsets. All programs you have written should be changed to use the
following offset names.

Beginning with RT-11 V5.5, you can build a DU handler that supports more than
eight units. That affects the size of the translation table.

2-14 RT-11 Device Handlers Manual

Figure 2-2: DU Handler Translation Table

RT-11 Unit O MSCP Unit Number
Port Partition

RT-11 Unit 1 MSCP Unit Number
Port Partition

Whenever an I/O request is passed to the DU handler, DU uses the RT-11 unit
number as an index into this table, extracts the MSCP unit number, port, and
partition that have been assigned to that RT-11 unit, and uses the information
to access the proper disk.

Size of the Translation Table

The size of the DU translation table in the DU handler is related to the number
of device units supported by DU. The DU handler can support up to 64;, units.
Therefore, the translation table can contain up to 64 table entries.

Structure of the Translation Table

The DU unit translation table consists of a table header followed by table entries.
Previously, the DU unit translation table had no header. Now, the DU unit
translation table has a header starting at offset DU.ID, which is a word containing
the Radix—50 value for the characters DU.

DU.ID is followed by DU.NUM. The low byte of DU.NUM contains the number of
entries in the table. The high byte of DU.NUM is reserved.

The structure of the rest of the table remains as before. However, the offset names
you should use to specify elements of the table have changed. The following is the
structure of the table with the changed offset names:

Table 2-3: MSCP (DU) Translation Table Header
Offset Name Meaning

DU.ID Radix—50 value for characters DU

0
2 DU.NUM Byte containing number of entries in table
3 Reserved

4

DU.ENT The offset of the first table entry

Each table entry consists of 4 bytes. Digital recommends you use the symbol DU.ESZ
to represent the 4-byte size of each entry.

Programming for Specific Devices 2-15

Table 2-4: MSCP (DU) Translation Table Entry
Offset Name Meaning

0 DU.UNI Physical MSCP unit number.

The symbol DU$Uxx=nnnnnn is the initial value for the translation
table when the handler is assembled. In the symbol, xx is the octal RT—
11 DU unit number (0-7 or 0-77) and nnnnnn is the MSCP unit number.
The SET Dxx UNIT=nnnnnn command can subsequently change the
value.

2 DU.PAR Byte containing partition number.

The symbol DU$Axx=nnn is the initial value for the translation table
when the handler is assembled. In the symbol, xx is the octal RT-11 DU
unit number (0-7 or 0-77) and nnn is the partition number. The SET
DU PART=nnn command can subsequently change the value.

3 DU.POR Byte containing MSCP port (controller) number.

The symbol DU$Oxx=nnn is the initial value for the translation table
when the handler is assembled. In the symbol, xx is the octal RT-11 DU
unit number (0-7 or 0-77) and nnn is the MSCP port number. The SET
DU PORT=nnn command can subsequently change the value.

Accessing the Translation Table

Before Version 5.5, the translation table access special function code SF.TAB (372)
supported only eight units. The wcnt parameter for SF.TAB accepted two arguments,
SFE.TRD (1) to indicate a read of the table and SF.TWR (-1) to indicate a write to the
table. The size of the table was fixed at eight entries. If the DU handler on your
system continues to support only eight DU devices, you continue to read and write
to the translation table as before.

However, if the DU handler on your system supports more than eight units, the
SF.TAB special function accepts other values for the went parameter to support the
extended device units. For DU handlers that implement the extended device-unit
feature, you indicate both a read or write operation and the size of the table you
are reading and writing by specifying a positive or negative numeric argument for
the went parameter. A positive numeric argument indicates a read operation of the
specified number of words from the DU translation table to the buffer. A negative
number indicates a write operation of the specified number of words from the buffer
to the DU translation table.

You can use the following procedure to read the translation table from a DU handler
that supports extended device units into a buffer and write the translation table
from a buffer to DU. The procedure assumes you want to verify or do not currently
know the number of entries in the table.

1. A translation table entry is created for each supported unit. You can determine
the number of entries by doing a read SF.TAB to return the table entry DU.NUM.
DU.NUM is the low byte of the second word in the table and contains the octal
number of table entries. Therefore, for the wcnt parameter, supply the argument
+2, and for the buf parameter, point to a 2-word buffer.

2-16 RT-11 Device Handlers Manual

2. The translation table header and each entry continue to contain two words.
Therefore, you can then read the entire DU handler extended device-unit
translation table by supplying the value HEADER+(2*DU.NUM) for the wcnt
parameter. For example, if DU.NUM indicated 16 entries, the value to specify
for went to read the entire table would be +(2+(2%16)). The buf parameter would
point to a buffer of the same size.

3. You could write the contents of the buffer to the DU handler by specifying the
value -(2+(2%16)) for the wcnt parameter.

You can avoid the calculation process by specifying a buffer of 130, words, which
can hold the largest translation table.
2.3.7 Special Function Bypass (SF.BYP), Code 360

Special function SF.BYP bypassess all unit number translations and allows direct
access to the MSCP port. For DU, SF.BYP (direct MSCP assess) serves the same
purpose as the MU handler’s SF.BYP (direct TMSCP access).

The request syntax and parameter argument definitions for SE.BYP are as follows:
Macro Call: .SPFUN area,chan,#SF.BYP,buf,wcnt,blk

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 3765.

SFE.BYP is code 360 or the name SF.BYP if the program has been assembled with
the distributed module SYSTEM.MLB.

buf is the address of the 52;3-word TMSCP area.

went when nonzero, is the virtual address of a data buffer to send to the handler.
That virtual address is translated to a physical address and placed in the
buffer of the TMSCP area.

when zero, the buffer address in the TMSCP area is not altered

blk indicates whether the handler should perform retries:
1= specifies retries
0= specifies no retries

The buffer address in special function SF.BYP must point to a 52-word area in the
user’s job. The first 26 words are used to hold:

* A response packet length in bytes

¢ A virtual circuit identifier

* An end packet when the command is complete

The second 26 words are set up by the caller and contain:

* A length word (length of command)

* A virtual circuit identifier (must have octal 1 (001) in high byte)

Programming for Specific Devices 2-17

¢ A valid MSCP command (48-byte command buffer)

Except for port initialization, the user program must do all command packet
sequencing, error handling, and reinitialization when the bypass operations are
complete. The format of the control block is shown below:

Word Contents

Response Packet Length
Virtual Circuit ID (from UDA or QDA controller)

2 MSCP Response Buffer (24 words)
26 Command Packet Length (48 bytes)
27 Virtual Circuit ID (from host)
28 MSCP Command (24 words)
51 Last Word of MSCP Command Packet

2.3.8 Addressing an MSCP Disk

2381

You identify an MSCP disk to the DU handler by specifying:
* The MSCP unit number, in the range 0 through 253

* The controller port number, in the range 0 through 3

* The disk partition number, in the range 0 through 255

As DU is distributed, you address a disk—DUO through DU7, as desired—and
the DU handler references the disks that have been assigned to those RT-11 unit
numbers. You can perform a system generation and request extended device-unit
support for DU, which lets you address up to 64;, disks. See the RT-11 System
Generation Guide for information.

The default port number is 0, the default partition number is 0, and the default unit
numbers correspond to the RT-11 unit numbers. Thus, if no modifications or SET
commands are made to the DU handler, an MSCP disk will be referenced exactly
like any other RT-11 disk; DUO will refer to disk unit 0, DU1 will refer to disk unit
1, and so on. However, the names DUO through DU7 can be reassigned to the MSCP
disks of your choice by specifying MSCP unit, port, and partition numbers. Each of
these parameters is described below.

MSCP Unit Numbers

Traditionally, there has always been a one-to-one correspondence between a
physical disk drive unit number and an RT-11 disk unit number. This one-to-
one correspondence does not necessarily apply to disks using the MSCP interface.
Neither is an MSCP disk controller limited to eight units, nor are the unit identifying
numbers limited to the range 0 through 7. The MSCP unit number of a disk is
defined by the unit number plug of the disk drive. Although MSCP disks on most
RT-11 systems may never have a unit number plug greater than 7, MSCP unit

2-18 RT-11 Device Handlers Manual

2.3.8.2

numbers can be in the range 0 through 253. The DU handler supports a 16-bit
MSCP unit number, if required by the system configuration.

The relationship between an RT-11 unit number and an MSCP disk unit number is
defined within the DU handler. Typically, any necessary assignments are made at
system installation time by using a SET command in the following form:

SET DUn UNI T=x

For example, you might issue the SET command
SET DU7 UNI T=21

Any references to DU7 would then go to MSCP unit number 21.

Controller Port Numbers

The controller port number provides a way of logically identifying the vector/CSR
pair of a particular MSCP controller when your system has more than one.

You can access a second MSCP controller through the DU handler in one of two ways.
One way is to create a second copy of the handler, as described in Section 2.3.9.
You can then use the original DU handler to access disks connected through the
first controller port, and the new copy of the handler to access disks connected
through the second controller port. Although this procedure requires two copies of
the handler, it allows totally independent operation of the two ports, giving maximum
I/O throughput.

The second way is to configure the DU handler for multiple ports by defining the
conditional assembly parameter DU$PORTS=n. If memory space is at a premium,
this may be your best choice. However, the ports will not operate independently and
I/O throughput may be slower. If a request is pending for a disk interfaced through
port 0, any requests for a disk interfaced through port 1 must wait for the port 0
I/O to complete. The DU handler supports up to four ports, numbered 0 through
3. CSR and vector values for each port can be assigned with SET commands in the
following form:

SET DU VECTOR=nnnnnn
SET DU VECx=nnnnnn

SET DU CSR=mmmmmm
SET DU CSRx=nmmmmm

The value for x can be 2, 3, or 4.

If you configure the DU handler for multiple ports, you must specify the port number
when you assign an RT-11 unit number to a disk interfaced through a port other
than 0. You can do this with a SET command in the following form:

SET DUn PORT=x

For example, you might issue the SET command:
SET DU7 PORT=1

This command might be combined with an MSCP unit number assignment:
SET DU7 UNI T=21, PORT=1

Programming for Specific Devices 2-19

2.3.8.3

You can perform a system generation and request support for multiport booting, as
described in Section 2.3.10.

Disk Partition Numbers

Disk partition numbers allow RT-11 to use disks having more than 65,535 blocks.
The disk partition number can be thought of as a high-order block number, as shown
in Figure 2-3.

Figure 2-3: MSCP Disk Block Number

|<«——— 24 bits = MSCP block number ——

[T PPy

< Partition —»}<—— RT block number —3|
number

< 8 bits —»|<——— 16 bits —————>] mbn

If a disk has more than 65,535 blocks, the DU handler divides the disk into logical
partitions of 65,5351 blocks each. The DU handler supports up to 256;, disk
partitions. Therefore, the largest disk DU can access has 256%65,535 blocks. To
an RT-11 user, such a disk would appear to be 256 separate 65,535-block disks,
each disk having its own directory.

Because the DU handler stores the partition numbers as bytes, DU supports an
MSCP block number of no more than 24 bits, even though full MSCP supports
block numbers of up to 32 bits. However, the partition number entries in the DU
handler’s translation table could be expanded to word entries if desired and 32-bit
block numbers supported with no particular difficulty. Refer to Section 2.3.1 for
details of the format of the DU handler’s translation table.

Partition numbers are assigned with a SET command in the following form:

SET DUn PART=x

For example, you might issue the SET command

SET DU3 PART=1

This command could be combined with unit and port assignments as well:
SET DU3 UNI T=2, PORT=0, PART=1

1 Although RT-11 block numbers can be 0 through 177777, or a total of 65,5361 blocks (2000005 , or 000000 in 16 bits
since the 17th bit is lost), the size of a partition is defined as 65,5351y blocks (177777g), with RT-11 block numbers 0
through 177776. This avoids the problem of 16-bit overflow when dealing with the partition size. Because the partition
number is added onto the left of the RT-11 block number to give the MSCP block number, one block between each partition
is unused. Refer to the list below for the block numbers of the first three partitions:

Partition Block Numbers
0 000000-177776, block 177777 unused
1 200000-377776, block 377777 unused
2 400000-577776, block 577777 unused

2-20 RT-11 Device Handlers Manual

The mnemonic DU3 will then refer to the MSCP disk with unit plug 2 interfaced
through port 0, beginning at block 65,536 of the disk (partition 1).

An example using several disks may help to clarify these concepts. Consider the
example of a system with two UNIBUS Disk Adaptor (UDA) controllers interfaced
to six disks, shown in Figure 2—4.

Figure 2—-4: Two-Port DU Handler

MSCP Disk
Unit Type
—— 0 —>» RC25 (removable)
First —— 1 —>»RC25 (fixed)
—— 2 —»RA80
D Port 0 UDA —— 3 —>RAS80
U S
Con-
H troller
To user a
B n
program d —— 20 —>» RC25 (removable)
| Second |—— 21 —3 RC25 (fixed)
e I
r Port 1 UDA —
Cont- —
roller —

The user of the system illustrated issues the following SET commands:

SET DUO UNI T=0, PORT=0, PART=0
SET DUl UNI T=1, PORT=0, PART=0
SET DU2 UNI T=2, PORT=0, PART=0
SET DU3 UNI T=2, PORT=0, PART=1
SET DU4 UNI T=3, PORT=0, PART=0
SET DUS UNI T=3, PORT=0, PART=1
SET DU6 UNI T=20, PORT=1, PART=0
SET DU7 UN T=21, PORT=1, PART=0

These commands assign DUO to the first (removable) disk of the RC25 with MSCP
unit number 0, and DU1 to the fixed disk of the RC25, identified as MSCP unit
number 1. The disk unit with MSCP unit number 2 is an RA80, which has more
than 65,535 blocks. Therefore, the next commands assign DU2 and DUS3 to partition
0 and partition 1 of this disk, respectively. DU4 and DU5 are assigned in similar
fashion to partitions 0 and 1 of the RA80 with MSCP unit number 3. Another RC25,
interfaced to the second port of the UDA controller, is identified by MSCP units 20
and 21. The last two SET commands assign DU6 and DU7 to the two disks of this
RC25 disk system. See Table 2—3 for information on setting up the default settings.

Programming for Specific Devices 2-21

2.3.9 Creating a Second DU Handler

2391

2.3.9.2

You can create a second DU handler under all monitors. The procedure is different
for unmapped or mapped monitors.

Under Unmapped Monitors

You cannot run multiple DU handlers through the same MSCP controller; each
handler must have a separate controller. Copy the handler to another file name
and then modify the new file. Use the handler SET commands to change the vector
and CSR of the copy to the values for the second port. For example, you could copy
DU.SYS to DA.SYS and use the following SET commands to change the CSR and
vector of the DA file:

SET DA VEC=nnnnnn
SET DA CSR=nmmmmm

The variables nnnnnn and mmmmmm are the vector and CSR addresses of the
second port.

Under Mapped Monitors

You cannot run multiple DU handlers through the same MSCP controller; each
handler must have a separate controller. You can use the following procedure to
create a second DU handler that can be used together with the distributed DU
handler under all mapped monitors:

1. If you intend to perform a system generation to build a DU handler with support
for extended device units or for any other reason, you must do that before creating
a second DU handler. You must also preserve the system generation work files.

2. The second DU handler must be assigned a name that does not conflict with any
distributed handler. If the second DU handler will be assembled for extended
device-unit support, the first letter of the second DU handler cannot be D or L. For
the purpose of this procedure, the second DU handler is named BU. Therefore,
copy the DU source file to BU:

. COPY DU. MAC BU. NAC
3. Unprotect BU.MAC and open it with the editor.

4. Perform a search operation for the symbol DUSNAM and on the other side of the
equal sign, change the string <ARDU > to <"RBU >, so that the entire line of
code resembles the following:

. I F NDF DU$NAM DUSNAM = <"RBU >
5. Exit from the editor.

6. If you used the system generation procedure to build the DU handler, use the
following procedure to assemble and link BU.MAC. If you did not build the DU
handler and are using the distributed DU, proceed to step 7.

a. Copy the device-build (.DEV) command file that was created during the
system generation to a file named BU.DEV.

2—-22 RT-11 Device Handlers Manual

b. Open the file BU.DEV on the editor.

c. Perform a search operation for the string +DU. The search places the cursor
near the end of the first of three command lines that pertain to DU. The three
command lines begin with MACRO, LINK, and SETOVR.

By placing an exclamation mark (!) character at the beginning of each line,
comment out all command lines except the initial commands that assign
device logical names and the three command lines that apply to DU.

d. On the command lines that assemble and link DU, change all references from
DU to BU, by replacing the D with B.

e. Exit from the editor.
f. Issue the following command to run BU.DEV as a command file:
. $@8U. DEV
BU.DEV builds the file BUX.SYG.
g. When BU.DEV has completed, copy the file BUX.SYG to BUX.SYS.

Determine the current CSR and vector addresses for DU, using the following
command:

. SHOW DEV: DU [eT]

The MSCP port characteristics, such as CSR and vector addresses, for DU
and BU cannot overlap. Specify addresses for BU that do not conflict with
DU by using appropriate SET commands.

7. If you did not build DU by using the system generation process, issue the
following commands to assemble and link BU. In the commands, ddn represents
that device on which the distributed system conditional file (such as XM.MAC),
the created file, BU.MAC, and the system library SYSTEM.MLB reside:

. ASSI GN ddn: SRC

. MACRQO OBJ: BUX ddn: (XM+BU)

. LI NK/ NOBI TMAP/ EXE: BUX. SYS/ BOUNDARY: 512. DK: BUX
Boundary? SETOVR

8. Determine the current CSR and vector addresses for DU, using the following
command:

. SHOW DEV: DU
Specify addresses for BU that do not conflict with DU by using appropriate SET
commands.

2.3.10 Multiport Booting

During system generation, you can select an option for the DU handler that will let
you boot RT-11 from any DU port. If you do not specify DU multiport booting during
SYSGEN, you can boot RT-11 from DU port 0 only. Use the following procedure to
enable multiport DU booting:

Programming for Specific Devices 2-23

1. Use the SET DUn commands to map the particular DU device to the MSCP unit,
port, and partition numbers. For example:

. SET DU3 UNI T=0, PORT=1
.SET DU4 UN T=1, PORT=1
. SET DU5S UNI T=2, PORT=1

For the SET commands to take effect, you must UNLOAD and then LOAD the
handler if it is a data device or reboot it if it is a system device.

2. Copy the resulting DU handler to the port on the DU devices you want to be able
to boot. For example:

. COPY DUX. SYS DU3:

3. To hard-boot the DU unit on a new port, use the COPY/BOOT command to copy
the bootstrap to the volume on the desired port. The DU unit on that port will
also support the soft-boot BOOT DUn: command.

2-24 RT-11 Device Handlers Manual

2.4 DW (CTI Bus-based Disk Handler)

This section provides specific programming information for the hard disks on CTI
Bus-based computers.

2.4.1 Support for Special Functions
The DW handler supports the following special functions:

Code Name Action

377 SFARD Read
376 SF.AWR Write
373 SF.S1Z Return device size

The special function ((SPFUN) request has the following general form, with the
area and chan parameters and the optional crtn, BMODE=str, and CMODE=str
parameters as described in the RT-11 System Macro Library Manual and the other
parameter arguments as described below:

Macro Call: .SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

func is the special function code or the name if the program is assembled
with the distributed file SYSTEM.MLB.
buf For SF.ARD and SF.AWR, is the address of a 256,y-word buffer.

For SF.SIZ, is the address of a one-word buffer in which the size of the
volume is returned.

went For SF.ARD and SF.AWR, is the track to read or write.

blk For SF.ARD and SF.AWR, is the logical block (rather than physical
block) to be read or written. Because the physical block number for
DW is one less than the logical block number, address physical block
0 as logical block —1.

For SF.SIZ, should be set to 0.

Programming for Specific Devices 2-25

2.5 DX and DY (Diskette Handlers)

This section provides specific programming information for RX01 and RXO02
diskettes.

As distributed, DX and DY support one controller that supports two drives. Each
DX and DY handler can support two controllers (and therefore four drives). For
example, if the RX01 handler is created through system generation to support two
controllers, it will support four devices: DX0, DX1, DX2, and DX3. DX0 and DX1 are
drives 0 and 1 of the standard diskette at CSR 177170 and vector 264. DX2 and DX3
are drives 0 and 1 of the other controller (standard alternate address CSR 177150
and vector 270). Note that only one I/O process can be active at one time, even
though there are two controllers. Overlapped 1I/O to the handler is not permitted.

Data is stored on DX and DY diskettes in sectors. Double-density diskette sectors
are 128 words long. RT-11 normally reads and writes them in groups of two sectors.
Single-density diskette sectors are 64 words long. RT-11 reads and writes them in
groups of four sectors. However, special function requests for absolute reads and
writes can access sectors individually.

2.5.1 Support for Special Functions
The DX and DY handlers support the following special functions:

Code Name Action

377 SF.ARD Read absolute sector

376 SF.AWR Write absolute sector

375 SFEWDD Write absolute sector with deleted data mark

373 SFE.SI1Z Return device size, in 2561¢-word blocks (DY only)

A request to write absolute blocks should not write anything in track 0 if you want
to use DUP or the COPY/DEVICE command to back up the volume. DUP does not
copy data in track 0. Also, be sure you specify a valid buffer address and word count.
The monitor checks that the buf parameter argument is in the job area, but it does
not check the validity of buf+(2*wcnt)-1.

The special function ((SPFUN) request has the following general form, with the
area and chan parameters and the optional crtn, BMODE=str, and CMODE=str
parameters as described in the RT-11 System Macro Library Manual and the other
parameter arguments as described below:

Macro Call: .SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

func is the code for the function to be performed, or the name of the
function if the program has been assembled with the distributed
module SYSTEM.MLB.

2-26 RT-11 Device Handlers Manual

buf

wcent

blk

For SF.ARD, SF.AWR, and SF.WDD, is the location of a 129-word
buffer (for double-density diskettes) or a 65-word buffer (for single-
density diskettes). The first word of the buffer, the flag word, is
normally set to 0.

The flag word set to 1 indicates a read on a physical sector containing
a deleted data mark. The data area of the buffer extends from the
second word to the end of the buffer.

buf for SF.SIZ is the location of a one-word buffer in which 494 is
returned by single-density diskettes and 988 is returned by double-
density diskettes.

For SF.ARD, SF.AWR, and SF.WDD, is the absolute track number, 0
through 76, to be read or written.

wcnt for SF.SIZ is reserved and should be set to 1

For SF.ARD, SF.AWR, and SF.WDD, is the absolute sector number, 1
through 26, to be read or written.

blk for SF.SIZ is reserved and should be set to 0.

The diskette should be opened with a non-file-structured .LOOKUP. The following
example performs a synchronous sector read from track 0, sector 7, into a 65-word
area called BUFF.

. SPFUN #RDLI ST, #SF. ARD, #BUFF, #0, #7, #0

Programming for Specific Devices 2-27

2.6 DZ (Diskette Handler)

This section provides specific programming information for diskettes on CTI Bus-
based computers.

2.6.1 Support for Special Functions
The DZ handler supports the following special functions:

Code Name Action

377 SF.ARD Read absolute sector
376 SF.AWR Write absolute sector

The special function ((SPFUN) request has the following general form, with the
area and chan parameters and the optional crtn, BMODE=str, and CMODE=str
parameters as described in the RT-11 System Macro Library Manual and the other
parameter arguments as described below:

Macro Call: .SPFUN area,chan,func,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

func is the code for the function or the name of the function if the program
is assembled with the distributed file SYSTEM.MLB.

went is the track to be written.

blk is the sector.

buf is the address of a 256,3-word buffer.

The .SPFUN requests do not interleave sectors. RX50 diskettes have 80 tracks, and
the .SPFUN requests wrap to track 0 after track 79.

2-28 RT-11 Device Handlers Manual

2.7 LD (Logical Disk Handler)

This section provides specific programming information for logical disks.

The Logical Disk handler implements logical disk support. The LD handler accepts
I/O requests just like any other disk handler. By means of embedded translation
tables, the LD handler determines which physical disk and which starting block
offset should be used for each LD I/O request. When the proper physical disk and
block number are determined, the LD handler updates the block number and unit
number in the I/O queue element so that they correspond to the values for the
assigned physical disk. The LD handler then places the queue element on the I/O
queue for the physical disk so that the actual I/O can take place.

In addition to operating as outlined above, the LD handler can also be run as a
program. When run, the LD handler accepts CSI command lines and switches to
initialize, assign, verify, write-enable, or write-lock logical disk units.

2.7.1 Support for Special Functions
The logical disk handler supports the following special functions:

Code Name Action

372 SF.TAB Access the translation tables

373 SF.S1Z Return unit size. The parameter arguments for SF.SIZ for LD
are the same as for DM. See Section 2.2 for information

2.7.2 LD Translation Tables (SF.TAB), Code 372

Special function SF.TAB (code 372) interacts with the translation tables from an
address contained in the buf parameter argument of the SF.TAB call. You can read
the contents of the translation tables to the buffer or write the contents of the buffer
to the tables. Whether the SF.TAB request is a read or write operation is determined
by the wcnt parameter argument. This procedure is explained in this section.

For RT-11 V5.4, changes were made to the structure of the LD translation tables.
All programs you write to access the information contained in those tables should
reflect the changes. All programs you have written to access LD translation tables
should be changed to reflect the changes.

The tables start at a header; previously they started at a label. Following the 2-word
header are four LD translation tables. That is unchanged. However, the names of
offsets you use to reference the tables have changed. Some table contents have also
changed.

Further, you can now build support for up to 64 logical disk units, which affects how
you use the tables.

Size of the Translation Tables
The size of the LD translation tables in the LD handler is related to the number
of logical disk units supported by LD. Beginning with Version 5.5, you can use

Programming for Specific Devices 2-29

the system generation procedure (SYSGEN) to build an LD handler that supports
extended device units. By default, SYSGEN builds support for 16, logical disk units
when you request extended device-unit support. You can request up to 647, units.
Of those 64 units, 32 can be mounted and 32 are reserved to Digital.

Structure of the Translation Tables

The LD translation tables consist of a 2-word header followed by four LD translation
tables. The LD translation tables start at header LD.ID. Header LD.ID is a 1-word
table identifier and contains the Radix—50 value for the characters LD. Header LD.ID
is followed by LD.NUM, a 1-byte count of the number of entries in the table. As LD
is distributed, the value in LD.NUM is 10g, indicating eight table entries. If LD is
built for extended device-unit support, the value in LD.NUM can contain a value up
to 100z, indicating support for up to 64 logical disk units. LD.NUM is the low-order
byte of the word LD.ID+2. The high-order byte of LD.ID+2 is reserved.

The four LD translation table offset names, location, and contents are:

LD.FLG (LD.ID+4) The table beginning at offset LD.FLG is the table previously at
the label HANDLR. LD.FLG contains one word for each LD unit number. The count
of LD unit numbers is stored in LD.NUM. The bits in each word of LD.FLG have
the following meaning:

Bits Name Meaning

0-5 LD.NDX An index to the handler tables in RMON for the physical device
corresponding to the LD unit number.

6 LD.UNX A flag that signals the index entry (bits 0-5) may be inaccurate
and should be updated. LD sets LD.UNX for all units if, upon
entry, the LDREL$ bit in RMON fixed offset CONFG2 is set.

7 LD.UOF A flag that signals the entry in the LD.OFS table for that LD
unit may be inaccurate. LD.UOF is set whenever a volume is
squeezed. LD checks LD.UOF each time it uses an LD unit; if
set, LD verifies that unit’s LD.OFS table entry before proceeding.

8-13 LD.UNT Contain the unit number of the physical disk assigned to the
logical disk unit.

14 LD.RDO Is the write-lock bit. If LD.RDO set, the LD unit is read only.

15 LD.ACT Is the allocation bit. If LD.ACT set, the LD unit is assigned. If
LD.ACT clear, the LD unit is not assigned.

LD.OFS (LD.FLG+<2*Contents of LD.NUM>) The second translation table starts at the
offset LD.OFS and contains one word for each LD unit number. The count of LD
unit numbers is stored in LD.NUM. Each word in LD.OFS contains the offset in
blocks from the beginning of the assigned physical disk to the start of the area on
that physical disk assigned to that LD unit number.

2-30 RT-11 Device Handlers Manual

LD.SIZ (LD.FLG+<4*Contents of LD.NUM>) The third translation table starts at offset
LD.SIZ and contains one word for each LD unit number. The count of LD unit
numbers is stored in LD.NUM. Each word in LD.SIZ contains the size in blocks of
the area on the physical disk assigned to that logical disk unit.

LD.NAM (LD.FLG+<6*Contents of LD.NUM>) The fourth translation table starts at the
label LD.NAM and contains four words for each LD unit number. The count of LD
unit numbers is stored in LD.NUM.

The first word of each 4-word entry contains the Radix—50 2-character name of the
physical disk that is assigned to that logical disk unit. That Radix—50 word must
be the physical (not logical) device name without any unit number. DL is a valid
physical device name; DK and DL1 are not valid.

The second, third, and fourth words of each entry contain the Radix—50 file name
and file type assigned as the logical disk.

Accessing the Translation Tables

Before Version 5.5, the translation table access special function code SF.TAB (372)
supported only eight units. The went parameter for SF.TAB accepted two arguments,
+1 to indicate a read of the table and -1 to indicate a write to the table. The size
of each LD translation table was fixed at eight entries. Beginning with Version 5.5,
if the LD handler on your system continues to support only eight logical disk units,
you continue to read and write to the translation tables as before.

However, if the LD handler on your system supports more than eight units, the
SF.TAB special function provides additional values for the wcnt parameter to support
the extended device units. For LD handlers that implement the extended device-
unit feature, you indicate both a read or write operation and the size of the table you
are reading and writing by specifying a positive or negative numeric argument for
the went parameter. A positive numeric argument indicates a read operation of the
specified number of words from the LD translation tables to the buffer. A negative
number indicates a write operation of the specified number of words from the buffer
to the translation tables. For example, a wcnt parameter argument of +16 reads 16
words, and an argument of —16 writes 16 words.

You can use the following procedure to read the translation tables from an LD
handler that supports extended device units into a buffer and write the translation
table from a buffer to LD. The procedure assumes you do not currently know (or
want to verify) the number of entries in the table.

1. Entries are reserved in each translation table for the total number of logical
disk units supported by the handler. The offset at which each table starts
is determined by the number of supported units. Therefore, to determine
the starting offset for each table within the four translation tables, you first
determine how many logical disk units are supported by the handler.

2. You can determine the number of entries by doing a read SF.TAB to return the
table entry LD.NUM. LD.NUM is the low byte of the second word in the table
and contains the number of table entries. Therefore, for the wcnt parameter,
supply the argument +2, and for the buf parameter, point to a 2-word buffer.

Programming for Specific Devices 2-31

3. Once you have determined the number of supported logical disk units, you can
use that value to perform read/write operations for the tables.

4. You can read the LD translation tables into memory by performing a single
SF.TAB read operation. The number of words in the LD translation tables is two
for the header (LD.ID plus LD.NUM), the value in LD.NUM for each of the first
three tables and four times the value in LD.NUM for the fourth table:

2+7*(LD.NUM)

For example, if LD.NUM indicated 100g entries, the value to specify for wcnt to
read the entire table would be +450,,. The buf parameter would point to a buffer
of the same size.

You could write the contents of the buffer to the LD handler by specifying the
value —450,, for the wcnt parameter.

2.7.3 Other Bits Used by the LD Handler

The LD handler uses bit 4 (LDREL$) in CONFG2, monitor fixed offset 370. This
bit is set whenever a handler is unloaded or released. The LD handler checks this
bit to see if a handler assigned to an LD unit has been removed from memory since
it was last used. If the bit is set, the LD handler sets bit 7 in all the entries in
the HANDLR table, then clears the LDREL$ bit. When the LD handler begins to
process an I/O request, the LD handler checks bit 7 for the requested LD unit. If bit
7 is set, the LD handler verifies that the handler for the disk assigned to that LD
unit number is in memory, then clears the bit. The LD handler checks and clears
bit 7 for a unit only when an I/O request is sent to that unit. Checking only when
absolutely necessary ensures that the LD handler will not waste time verifying units
that may never be used by a particular user program.

2-32 RT-11 Device Handlers Manual

2.8 MM, MS, and MT (Magtape Handlers)

This section provides specific programming information for reel-type magnetic tape
devices.

Magnetic tape (magtape) has a sequential (not random-access) file structure. There
is no directory at the beginning of each tape. RT-11 magtape handlers support a
file structure that is compatible with ANSI tape labels and format, giving you full
access to the tape controller without concern for the specifics of the device. See RT-11
Volume and File Formats Manual for more information on the format of magtapes
and tape labels.

NOTE
Support for RT-11 magtape file structure is compatible
only among systems that support DEC and ANSI
standards for tape labels and file formats. DOS-
formatted tapes cannot be read or written.

See the RT-11 Commands Manual for SET command conditions for each of the
magtape handlers. Those conditions can set the number of tracks, the density, the
parity of the tape drive, and the CSR and vector addresses.

See also the RT-11 Master Index under Magtape and the individual magtape handlers
for more information.

2.8.1 File Structure Module (FSM)

The File Structure Module (FSM) creates the file structure on magtapes written
by the distributed magtape handlers. The FSM is a discrete module (FSM.MAC)
that is assembled with the magtape hardware handlers when handlers are built; it
is included in the distributed magtape handlers. The FSM uses a protocol that is
understood by RT-11 utilities and described in the RT-11 Volume and File Formats
Manual.

When you issue a call for a file-oriented operation, the monitor (and perhaps the
USR) builds a queue element and passes it to the FSM. The FSM processes the
operation by manipulating the magtape drive.

Through the system generation procedure, you can build each of the magtape
handlers without the FSM; a hardware-only version of each handler. A hardware
magtape handler is smaller and requires less memory, but does not contain any
routines that define a file structure. It does contain routines that manipulate the
magtape drive. See Section 2.8.7.

Further, unless you write your own file structure module that duplicates the
functionality of the FSM, RT-11 utilities do not understand whatever protocol you
use to manage the magtape.

Therefore, Digital recommends that you use the distributed magtape handlers
(unless special circumstances indicate that a handler without the FSM is
appropriate), since only the handlers that contain the FSM can communicate with
the RT-11 system utility programs.

Programming for Specific Devices 2-33

This section uses some magtape-specific abbreviations:
BOT beginning-of-tape

EOF end-of-file

EOT physical end-of-tape

LEOT logical end-of-tape

LEOT consists of an EOF1 label (which includes one tape mark) followed
by two tape marks.

2.8.2 Compatibility of Magtape Operations with the FSM

As briefly explained above, the distributed magtape handlers contain the basic
magtape hardware handler, which is assembled with a file structure module (FSM).
As shown in the following tables, some magtape operations are intercepted by the
FSM and some operations bypass the FSM and are processed directly by the basic
magtape hardware handler.

Although the distributed magtape handlers can process all the magtape operations
described in this section, performing hardware-oriented operations that are
incompatible with the FSM disrupts the magtape’s file structure and can make the
magtape unsuitable for further file-oriented operations. In other words, to preserve
the file-oriented nature of a magtape volume, perform only file-oriented operations
on that volume or other operations that are compatible with the FSM.

The operations you can perform on a magtape can be divided into three classes:

* Operations that use the FSM. These are file-structured operations that require
the distributed handlers.

* Operations that bypass the FSM but are compatible with the FSM. These are
non-file-structured operations that the FSM understands.

* Operations that bypass the FSM and produce a magtape that is incompatible
with the FSM. You can perform these operations with the distributed handlers
but the resulting magtape is not compatible with the FSM or any RT-11 utilities.

The following tables list magtape operations and their compatibility with the FSM.
The tables list where more information can be found for each operation.

Table 2-5: Magtape Operations That Use the FSM

Operation Section Description

FSM Search by 2.84.1 Search for a file on a magtape based on file’s sequence
Sequence number.

Number

FSM Search by 2.8.4.2 Search for a file on a magtape based on the file name.
File Name

.ENTER 2.8.4.3 Open a file.

2-34 RT-11 Device Handlers Manual

Table 2-5 (Cont.):

Magtape Operations That Use the FSM

Operation Section Description

.LOOKUP 2.8.44 Find a file.

.READx 2.8.4.5 Read from a file.

WRITx 2.8.4.6 Write to a file.

.CLOSE 2.8.4.8 Close a file.

.PURGE 2.8.4.9 Delete entry and close channel.

Table 2—6: Magtape Operations That Are Compatible with the FSM

Operation Code Section Description

NFS .LOOKUP N/A 2.8.5.1 Open a channel to a device (non-file-structured
.LOOKUP operation). Required before any special
function.

SF.USR 354 2.8.5.2 After NFS .LOOKUP, can be used in the following
ways:
Perform asynchronous directory operations that do
not require the USR.
Emulate a file-structured .LOOKUP or .ENTER to
gain access to a file for further special function
operations.

SF.MRD 370 2.8.5.3 After initial NFS .LOOKUP and SF.USR, perform
read operations of variable length blocks.

SF.MWR 371 2.8.5.4 After initial NFS .LOOKUP and SF.USR, perform
write operations of variable length blocks.

SE.MST 367 2.8.5.7 After initial NFS .LOOKUP, stream TS05 (MS
only).

.CLOSE N/A 2.8.5.6 Close channel and make device available.

Table 2—7: Magtape Operations That Are Not Compatible with the FSM

Operation Code Section Description

SF.MOR 372 2.8.6.1 Rewind and place drive off line.
SF.MRE 373 2.8.6.2 Rewind.

SF.MWE 374 2.8.6.3 Write with extended gap.
SF.MBS 375 2.8.6.4 Backspace.

SE.MFS 376 2.8.6.5 Forward space.

SF.MTM 377 2.8.6.6 Write tapemark.

Programming for Specific Devices 2-35

Table 2-7 (Cont.): Magtape Operations That Are Not Compatible with the FSM

Operation Code Section Description

NFS .READx N/A Obsolete. Non-file-structured read operation (use
SF.MRD).

NFS .WRITx N/A Obsolete. Non-file-structured write operation (use
SF.MWR).

2.8.3 Spacing Error Recovery

Any errors detected during spacing operations abort the recovery attempt, and
generate a hard (position) error.

Magtape handlers both with or without the FSM perform the following operations
if a read parity error is detected.

1. Backspaces over the block and rereads. When unsuccessful, the procedure is
repeated until five read commands have failed.

2. Backspaces five blocks, spaces forward four blocks, then reads the record.
3. Repeats steps 1 and 2 eight times or until the block is read successfully.

The handler performs the following operations upon detection of a read after write
(RAW) parity error.

1. Backspaces over one block.

2. Erases 3 inches of tape and rewrites the block. In no case is an attempt made
to rewrite the block over the bad spot, since, even if the attempt succeeds, the
block could be unreliable and cause problems later.

3. Repeats steps 1 and 2 if the read after write still fails. When 25 feet of erased
tape have been written, a hard error is given.
2.8.4 Magtape Operations That Use the FSM

The following magtape operations, listed in Table 2-5, use the FSM. The distributed
magtape handlers support these operations.

2.8.4.1 FSM Searching by Sequence Number

The FSM can search for files on tape based on their sequence number. It uses the
relationship between the current tape position and the desired new position to find
the desired file according to the following algorithm:

1. When the file sequence number for the desired file is greater than the number
of the current position, the handler moves the tape forward.

For example, if the tape is currently positioned at file sequence number 1, and
the desired file is number 2, the tape moves forward from its position at the tape
mark after file number 1 to the tape mark at the start of file number 2.

2-36 RT-11 Device Handlers Manual

2.8.4.2

2. When the file sequence number for the desired file is less than the number of
the current position, the handler optimizes its seek time by moving the tape
backward or forward, depending on the location of the file. In practice, the
handler almost always rewinds the tape and then searches forward.

For example, assume the number of the current position is 2 and the desired file
has sequence number 1. The tape leaves its position at the tape mark for file 2
and rewinds to the beginning of the volume. It then moves forward to the tape
mark at the start of file 1. As another example, assume the current position is 9
and the desired file has sequence number 6. The tape rewinds to the beginning
of the volume and the search proceeds in the forward direction.

If you release the handler through the UNLOAD command or the .RELEASE
programmed request, the file position is lost. In this situation the tape moves
backward until the handler locates BOT or a label from which it can determine
the tape’s position.

FSM Searching by File Name

The FSM can search for files on tape based on their file names. The routine to match
file names uses an algorithm that enables the handler to recognize file names and
file types used by other Digital operating systems. The FSM uses the file identifier
field, translating the contents to a recognizable file name. This file name is matched
to a file name stored in Radix—50 format. The format is as follows:

filnam.typ

filnam is a valid RT-11 file name left-justified in a six-character field. Unused
character positions are not padded.

typ is a file type left-justified in a 3-character field.

The algorithm the handler uses is backward compatible across all versions of the
operating system. RT-11 tapes can be detected by the presence of RT'11 in character
positions 64 through 67 of the HDR1 label. The algorithm is as follows:

1. Clear the character count (CC).
2. Check the next character in the file name. If it is a dot, do the following:
a. Mark a dot found.
b. When CC < 6, insert spaces and increment the CC until it equals 6.
c. When CC > 6, delete characters and decrement the CC until it equals 6.

3. If CC =6 and if RT'11 is found in character positions 64 through 67 of the system
code field, insert a dot in the translated name, mark the dot found, and increment
CC.

4. Move the character into the translated file name and point to the next character.
5. Increment the CC.
6. When CC < 10¢¢ go back to step 2.

Programming for Specific Devices 2-37

7. Check the dot-found indicator. If no dot was found, back up four characters and
insert .DAT for the file type.

8. Perform a character-by-character comparison between the desired file name and
the file name that was just translated from the file identifier field in the HDR1
label. When they match exactly, consider the file found.

2.8.4.3 .ENTER Programmed Request

The .ENTER programmed request opens a file on a magtape by writing a HDR1 label
and tape mark on the tape and leaving the tape positioned after the tape mark. The
request initializes some internal tables and makes entries for the last block written
and current block number. (The last block or file on tape is always the most recent
one written.) Table 2—-8 shows the sequence number values for . ENTER requests.

The .ENTER programmed request has the following format, with the area, chan,
and dblk parameters as described in the RT-11 System Macro Library Manual. The
seqnum parameter is described below.

Macro Call: .ENTER area,chan,dblk,,segnum

Table 2-8: Sequence Number Values for .ENTER Requests

Seqnum

Argument File Name Action Taken Tape Position

>0 not null Position at file sequence number and Found: ready to write.

perform a . ENTER. Not found: at LEOT,

LEOT is an EOF1 label
followed by two tape
marks. LEOT is different
from the physical end-of-
tape.

0 not null Rewind tape and search tape for file Found: before file. Not
name. If found then give error. If not found: ready to write.
found then enter the file.

-1 not null Position tape at LEOT and enter file. = Ready to write.
-2 not null Rewind tape and search tape for file Ready to write.
name. Enter file at found file or LEOT,
whichever comes first.
0 null Perform a non-file-structured .LOOKUP. Tape is rewound.

The .ENTER request returns the errors shown in Table 2-9.

Table 2-9: .ENTER Errors

Byte 52
Code Meaning

0 Channel in use.

2-38 RT-11 Device Handlers Manual

2.8.4.4

Table 2-9 (Cont.): .ENTER Errors

Byte 52
Code Meaning

1 Device full. EOT was detected while writing HDR1. Tape is positioned after the
first tape mark following the last EOF1 label on the tape.
No such job exists (system job support only).

Device already in use. Magtape already has a file open on that unit.
File exists, cannot be deleted.

File sequence number not found. Tape is positioned the same as for device full.

T o~ W N

Invalid argument error. A seqnum argument in the range —3 through -32767 was
detected. A null file name was passed to .ENTER.

The .ENTER request issues a directory hard error if errors occur while entering the
file.
File-Structured .LOOKUP Programmed Request

A file-structured .LOOKUP request finds a file by searching for a specific HDR1
label. Upon finding and reading the HDR1 label, the tape is positioned before the
first data block of the file.

The .LOOKUP request has the following format, with the area, chan, and dblk
parameters as described in the RT-11 System Macro Library Manual. The seqnum
parameter argument values are shown in Table 2-10:

Macro Call: .LOOKUP area,chan,dblk,segnum

Table 2-10: Sequence Number Values for File-Structured .LOOKUP Requests

Seqnum
Argument File Name Action Taken Tape Position
>0 null Perform a file-structured .LOOKUP on Found: ready to read
the file sequence number. first data block. Not
found: at LEOT.

0 not null Rewind to the beginning of tape, Found: ready to read
then use file name to perform a file- first data block.
structured .LOOKUP. Not found: at LEOT.

-1 not null Do not rewind; perform a file-structured Found: ready to read
.LOOKUP for a file name. first data block from the
current position.
Not found: at LEOT.
>0 not null Position at file sequence number and Found: ready to read first

perform a file-structured .LOOKUP. If data block.

file name does not match file name Not found: at the begin-

given, return error. ning of the file specified
by the sequence number.

Programming for Specific Devices 2-39

2.8.4.5

The file-structured .LOOKUP returns the errors shown in Table 2—-11.

Table 2-11: .LOOKUP Errors

Byte 52
Code Meaning

0 Channel in use.

1 File not found. Tape is positioned after the first tape mark following the last EOF1
on the tape.

2 Device in use. Magtape already has a file open.

5 Invalid argument error. A segqnum argument in the range —2 through -32767 was

detected. A .LOOKUP request must have a positive sequence number.

6 Invalid unit number.

The .LOOKUP request issues a directory hard error if errors occur while entering
the file.

.READx Programmed Requests

In this section, the term .READx refers to the .READ, .READC, and .READW group
of programmed requests. Further, .READx requests are described for files that have
been opened with the .ENTER and file-structured .LOOKUP requests.

The .READx requests read data from magtape in blocks of 512 bytes each. If a
request is issued for fewer than 512 bytes, the handler reads the correct number of
bytes. If the request is for more than 512 bytes, the handler performs the request
with multiple 512-byte transfers (the last request may be for fewer than 512 bytes).

The .READx requests are valid in a file opened with a .LOOKUP request. They
are also valid in a file opened with an .ENTER request, provided the block number
requested does not exceed the last block written. (Exceeding the last block written
returns code 0.)

If a tape mark is read, the routine repositions the tape so that another request
causes the tape mark to be read again. When a .CLOSE is issued to a file opened
by an .ENTER request, the tape position is left unchanged. Because magtape
is sequentially accessed, a reposition in a file (a backup) without subsequently
positioning to the end of the file (before a .CLOSE) causes data loss.

The guidelines for block numbers are as follows:

1. When a .LOOKUP is used (to search the file) with this request, the handler tries
to position the tape at the indicated block number. When it cannot, a 0 (EOF
code) is issued, and the tape is positioned after the last block on the file.

2. On an entered file, . READx checks to determine if the block requested is past
the last block in the file. If it is, the tape is not moved and the 0 error code is
issued.

2-40 RT-11 Device Handlers Manual

2.8.4.6

The .READx request has the following format, with the area, chan, buf, went, blk
and optional crin, BMODE=str, and CMODE=str parameters as described in the
RT-11 System Macro Library Manual:

Macro Call: .READx area,chan,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]
Table 2—12 shows the errors the .READx requests return.

Table 2-12: .READX Errors

Byte 52
Code Meaning

0 Attempt to read past a tape mark; also generated by block that is too large.
1 Hard error occurred on channel.

2 Channel not open.

WRITx Programmed Requests

In this section, the term .WRITx refers to the .WRITE, .WRITC, and .WRITW group
of programmed requests. Further, WRITx requests are described for files that have
been opened with the .ENTER and file-structured .LOOKUP requests.

The .WRITx requests write data to magtape in blocks of 512 bytes. If a request is
issued for fewer than 512 bytes, the handler forces the writing of 512 bytes from the
buffer address. If a request is issued for more than 512 bytes, the handler performs
multiple 512-byte transfers.

The .WRITx requests are valid in a file opened with an .ENTER. Once a file is
opened, .WRITx determines if the requested block is past the last block in the file.
If it is, the tape is not moved and the O error code is issued.

The .WRITx request has the following format, with the area, chan, buf, went, blk and
optional crtn, BMODE=str, and CMODE=str parameters as described in the RT-11
System Macro Library Manual:

Macro Call: .WRITx area,chan,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]
Table 2—13 shows the errors the .WRITx requests return.

Table 2-13: .WRITx Errors

Byte 52
Code Meaning

0 End-of-tape. The data for the last write was not written, but the previous block is
valid. Also issued if the block number is too large.

1 Hard error occurred on channel.

2 Channel not open.

After a write operation, the rest of the tape is undefined (see Figure 2-5).

Programming for Specific Devices 2-41

2.8.4.7

2.8.4.8

Figure 2-5: Operations Performed After the Last Block Written on Magtape

In example 1 in Figure 2-5, blocks A, B, and C are written on the tape with the head
positioned in the gap immediately following block C. Any forward operation of the
tape drive except by write commands (that is, write, erase gap and write, or write
tape mark) yields undefined results due to hardware restrictions.

In example 2 in Figure 2-5, the head is shown positioned at BOT after a rewind
operation so that successive read operations can read blocks A, B, and C. The head
is left positioned as shown in example 3. Note that this is the same condition as
shown in example 1, and all restrictions indicated in example 1 are applicable.

.CLOSZ, .DELETE, .GFxxx, .RENAME, and .SFxxx Programmed Requests

These requests are invalid operations on magtape, and any attempt to execute them
returns an invalid operation code (code 2) in byte 52.

.CLOSE Programmed Request

The action of the .CLOSE request depends on how the file was opened.

* When a file is opened with an .ENTER request, the file is closed by writing a
tape mark, an EOF1 label, and three more tape marks. In this operation, the
tape is left positioned just before the second tape mark at LEOT. Note that the
rest of the tape is no longer readable.

2-42 RT-11 Device Handlers Manual

2.8.4.9

* When a file is opened with a file-structured .LOOKUP, the tape is positioned
after the tape mark following the EOF1 label for that file.

The .CLOSE request has the following format, with the chan parameter as described
in the RT-11 System Macro Library Manual:

Macro Call: .CLOSE chan

This request issues a directory hard error if a malfunction is detected. The error
can be recovered with the .SERR request.

.PURGE Programmed Request
The action performed by a .PURGE request is determined by the following:

¢ Ifthe magtape channel has been opened by a .ENTER request, a .PURGE request
deletes the current entry by a series of BACKUP and WRITE-TAPE-MARK
operations, leaving the magtape positioned just before the second tape mark
at LEOT.

e If the magtape channel has been opened with a file-structured or non-file-
structured .LOOKUP, the .PURGE request frees the unit table entry for the
handler, closes the channel, and makes the handler available for other operations.

The .PURGE request has the following format, with the chan parameter as described
in the RT-11 System Macro Library Manual:

Macro Call: .PURGE chan

2.8.5 Magtape Operations That Are Compatible with the FSM

2.8.5.1

The following magtape operations (as listed in Table 2-6), bypass the FSM but
are compatible with the FSM. The distributed magtape handlers support these
operations and a magtape that is manipulated by these functions is supported by
RT-11 utilities.

Non-File-Structured .LOOKUP Programmed Request

You must issue a non-file-structured .LOOKUP request to open a channel to the
device before starting any I/O operations. The non-file-structured .LOOKUP request
causes the handler’s hardware level to mark the drive busy so that no other channel
can be opened to that drive until a .CLOSE is issued.

The .LOOKUP request has the following format, with the area, chan, and dblk
parameters as described in the RT-11 System Macro Library Manual. The values
for the seqnum parameter argument are described in Table 2—14:

Programming for Specific Devices 2-43

2.8.5.2

Macro Call: .LOOKUP area,chan,dblk,segnum

Table 2-14: Sequence Number Values for Non-File-Structured .LOOKUP Requests

Seqnum Ar-

gument File Name Action Taken Tape Position
0 null Perform a non-file-structured .LOOKUP. Rewound.

-1 null Perform a non-file-structured .LOOKUP. Not moved.

Table 2-15 shows the errors that can be returned by the non-file-structured
.LOOKUP request.

Table 2—-15: Non-File-Structured .LOOKUP Errors

Byte 52
Code Meaning

0 Channel in use; channel already open.

1 File not found; no such job.

2 Device in use. The drive being accessed is already attached to another channel.
5 Argument is invalid; for example, magtape file sequence number.

6 Invalid unit number.

Asynchronous Directory Operations (SF.USR), Code 354

SF.USR must be preceded by a non-file-structured .LOOKUP and can be used to
perform two operations:

e SF.USR can perform asynchronous directory operations without the USR, which
makes it useful for long tape searches. It is particularly useful in multi-job
environments, because the search operation locks the USR during directly issued
.ENTER and .LOOKUP requests.

e SF.USR allows an emulation of the .ENTER and file-structured .LOOKUP
requests to be issued after a non-file-structured .LOOKUP assigns a channel
to the magtape handler.

The special function SF.USR has the following format, with the area and chan
parameters as described in the RT-11 System Macro Library Manual:
Macro Call: .SPFUN area,chan,#SF.USR,buf,,blk

SF.USR is the code 354 or the name SF.USR if the program has been assembled
with the distributed file SYSTEM.MLB.

2-44 RT-11 Device Handlers Manual

buf is the address of a 7-word block with the following format:

Word

Meaning

0-2
3

5,6

Radix—50 representation of the file name.

One of the following codes:
3 for .LOOKUP
4 for ENTER

Sequence number value. See the corresponding sections
for .LOOKUP or .ENTER for complete information on the
interpretation of this value.

Reserved.

blk is the address of a 4-word error and status block used for returning
.LOOKUP and .ENTER errors that are normally reported in byte 52.
See Section 2.8.5.5. Only the first word of blk is used by this request.
The other three words are reserved for future use and must be zero.
If the value of blk is 0, no error information is returned. Figure 2—6
shows a programming example.

Figure 2-6: Asynchronous Directory Operation Example

. TITLE Asynchronous

Directory Operation Exanple

; Print |ower case
; Don’t |ist text storage

. MCALL . LOOKUP, .SPFUN, .CLCSE, .PRINT, .EXIT

. ENABLE LC
.NLI ST BEX

; Definition
SF. USR = -20.
LOOKUP = 3
ENTER = 4
CHAN = 0
FNF = 1
FSN = 0

S

; Asynchronous request

; Lookup code for async request
; Enter code for async request
; Use channel O

; 1 = File not found error

; Use 0 as file sequence nunber

; Exanpl e assunes that magtape handl er is | oaded.

Figure 2-6 (continued on next page)

Programming for Specific Devices 2-45

Figure 2-6 (Cont.):

START: . LOOKUP #AREA, #CHAN, #NFSBLK, #0 ; Open a channel
; for the next request
BCS LOOKER ; Branch if error occurred
. SPFUN #AREA, #CHAN, #SF. USR, #COVBLK, #ERRBLK
; Do a | ookup
BCC FI LEND ; Branch if file found
CwP #FNF, ERRBLK ; File not found error?
BEQ NOTFND ; Branch if yes
MoV #ASYERR, RO ; No, sone other error
BR CLOSE
LOOKER: MOV #LOOERR, RO ; NFS Lookup error
BR CLOSE
FI LFND: MOV #OK, RO ; Report success
BR CLOSE
NOTFND: MOV #FNFERR, RO ; Report file not found
CLCSE: . PRINT ; Print error pointed to
; by RO
. CLCSE #CHAN ; Clean up...
EXIT ; and return to nonitor
; Data area
AREA: .BLKW 5 ; EMT argurent bl ock
NFSBLK: . RAD50 /M / ; Use this to open
.MORD O ; magtape in non-file-
.\W\ORD 0 ; structured node
.VWORD O
COVBLK: . RAD50 / FI LNAMTYP/ ; This is the file nane
; we're |ooking for
.VWORD LOOKUP ; This is the asynch op
; code for |ookup
.WWORD FSN ; This is file sequence
; nunber for the | ookup
.MORD 0,0 ; Reserved (rmust be 0)
ERRBLK: .WORD 1 ; Set first word non-0
.MORD 0,0,0 ; SO errors return here
; Messages
LOOERR: .ASCIZ /Non-file-structured | ookup failed/
X .ASClZ [File found, |ookup successful/
FNFERR. .ASCIZ /File not found/
ASYERR: .ASCIZ /Error in asynchronous request/
. EVEN
.END START

Asynchronous Directory Operation Example

2-46 RT-11 Device Handlers Manual

2.8.5.3 Read Physical Blocks (SF.MRD), Code 370
After an NFS .LOOKUP request (and optionally after an SF.USR), the SF.MRD
request reads blocks of any size.

The special function SF.MRD has the following format, with the area, chan, buf,
went, and optional crtn, BMODE=str, and CMODE=str parameters as described in
the RT-11 System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.MRD,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

SFEMRD is the code 370 or the name SF.MRD if the program is assembled with
the distributed file SYSTEM.MLB.

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the errors shown in Table 2-16. Additional qualifying
information for these errors is returned in the first two words of the blk parameter
argument status block. See Section 2.8.5.5.

Table 2-16: SF.MRD (Code 370) Errors

First Word
Byte 52 Code Code Qualifying Information
EOF 1 Tape before EOF only (tape mark detected).
(Value = 0)
2 Tape before EOT only (no tape mark detected).
Tape before EOF and EOT (tape mark detected).
Hard error 0 No additional information (consult documentation for your
(Value = 1) particular tape drive for all possible error conditions).
1 Tape drive not available.
2 The controller lost the tape position.
3 Nonexistent memory accessed.
4 Tape is write locked.
5 The last block read had more information.
The MM handler returns (in the second status word) the number
of words not read.
6 A short block was read. The second status word contains the

difference between the number of words requested and the
number read.

Programming for Specific Devices 2-47

2.8.5.4 Write Physical Blocks (SFFMWR), Code 371

2.85.5

After an NFS .LOOKUP request and optionally after an SF.USR, the SF.MWR
request writes blocks of any size.

The special function SFEMWR has the following format, with the area, chan, buf,
went and optional crtn, BMODE=str, and CMODE=str parameters as described in
the RT-11 System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.MWR,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

SEMWR is the code 371 or the name SF.MWR if the program is assembled with
the distributed file SYSTEM.MLB.

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the errors shown in Table 2-17.

Table 2-17: SFMWR (Code 371) Errors

First Word
Byte 52 Code Code Qualifying Information
EOF 1 Tape before EOF only (tape mark detected).
(Value = 0)
2 Tape before EOT only (no tape mark detected).
Tape before EOF and EOT (tape mark detected).
Hard error 0 No additional information (consult documentation for your
(Value = 1) particular tape drive for all possible error conditions.)
1 Tape drive not available.
2 The controller lost the tape position.
3 Nonexistent memory accessed.
4 Tape is write locked.
NOTE
The TJU16 tape drive can return a hard error if a write
request with a word count less than 7 is attempted.
Exception (Error and Status) Reporting

Special function requests report end-of-file and hard error conditions through byte
52 in the system communication area. You can also receive additional information
about those two error conditions. You can specify an address in the special function’s
blk parameter that points to a 4-word error and status block which returns that
information.

Specify #0 for blk if you do not want exception reporting.

2-48 RT-11 Device Handlers Manual

Although all four words in the error and status block must be initialized to 0 before
the first special function is called, only words 1 and 2 of the status block return
information. Words 3 and 4 are reserved and not written and therefore need only
be initialized once (remain as set to 0).

The meaning of the error and status block contents is tied to the contents of byte 52
in the system communications area. The program should therefore check the state
of the carry bit and byte 52 before attaching importance to the contents of the error
and status block.

End-of-File Condition Exception Reporting

Besides an actual EOF, the magtape handler’s hardware level returns an end-of-file
condition when the handler encounters an EOT, tape mark, or BOT. An end-of-file
condition produces the following:

* Sets the carry bit and byte 52 is zero.
e The first word of the error and status block is shown in Table 2—18.

* The second word contains the number of blocks not spaced when a tape mark is
detected during a spacing operation.

Table 2-18: End-of-File Qualifying Information

First
Word Meaning

1 Tape before EOF only (tape mark detected).

2 Tape before EOT only (no tape mark detected).
3 Tape before EOT and EOF (tape mark detected).
4 Tape before BOT (no tape mark detected).

Hard Error Condition Exception Reporting
A hard error condition:

* Sets the carry bit and byte 52 is 1.
¢ Returns in the first word the qualifying information shown in Table 2-19.

Table 2-19: Hard Error Qualifying Information

First
Word Meaning

0 No additional information (includes parity error and all others not listed below.
Consult documentation for your particular tape drive for all possible error
conditions.)

1 Tape drive not available.

Programming for Specific Devices 2-49

Table 2-19 (Cont.): Hard Error Qualifying Information

First
Word Meaning

2 The controller lost the tape position. When this error occurs, rewind or backspace
the tape to a known position.

Nonexistent memory was accessed.
4 Tape is write locked.

The last block read had more information. The MM handler returns (in the second
status word) the number of words not read.

6 A short block was read. The second status word contains the difference between
the number of words requested and the number of words read.

2.8.5.6 .CLOSE Programmed Request

The magtape handler at the hardware level accepts the .CLOSE request and causes
the handler to mark the drive as available; the channel becomes free.

The .CLOSE request has the following format, with the chan parameter as described
in the RT-11 System Macro Library Manual:

Macro Call: .CLOSE chan

2.8.5.7 Enabling 100ips Streaming on a TS05/TSUO05/TSV05 (SF.MST), Code 367
The SF.MST special function places the TS05 drive in 100ips streaming mode.
The special function SF.MST has the following format, with the area and chan
parameters as described in the RT-11 System Macro Library Manual:
Macro Call: .SPFUN area,chan #SF.MST,buf,,blk

SEMST is the code 367 or the name SF.MST if the program is assembled with
the distributed file SYSTEM.MLB.

buf is a word which enables or disables streaming.
If buf contains a 1, streaming is enabled.
If buf contains a 0, streaming is disabled.

blk is a pointer to a 4-word error block. (See Section 2.8.5.5.)

Streaming is automatically turned off when a .CLOSE is issued on a channel open
on magtape, when an abort occurs, or if there is a magtape I/O error.

This special function is valid only for a TS05 using the MS handler. An SF.MST call
is ignored if it is used with any other magtape handler or if it is used with the MS
handler running a TS11 magtape.

If you want to run a TS05 in streaming mode, you must also use double-buffered I/0
so that there is always a request pending in the magtape I/O queue. If there is not,
there will be too much delay between I/O requests and the streaming will not work
properly.

2-50 RT-11 Device Handlers Manual

2.8.6 Magtape Operations That Are Not Compatible with the FSM

2.8.6.1

The magtape operations listed in Table 2-7 and described below bypass the FSM
and are incompatible with the file structure produced by the FSM. The operations
are direct hardware calls to the magtape handler. The distributed magtape handlers
accept these operations, but a magtape that is manipulated by these functions is no
longer ANSI-compatible or supported by RT-11 utilities.

When any of the following operations is called, the stored file sequence number and
block number information are erased and are not reinitialized until a .CLOSE and
another file-opening command have been performed. Note that the .CLOSE moves
and, in the case of the file opened with .ENTER, writes the tape regardless of any
commands that have been issued since the file was opened. When the file is closed,
the magtape handler cannot write the size of the file because the file size is lost to
the handler. It writes a zero in its place. The file sequence number field will be
correct.

You initiate operations and use these special functions in the same manner as those
that are compatible with the FSM:

1. Open a channel to the device by issuing a non-file-structured .LOOKUP.

2. You can optionally open a file on the magtape volume by issuing an SF.USR.
3. Issue the special functions to read, write, or position the magtape.

4. Close the channel.

If you are going to be using the operations in this section consistently, you should
investigate performing a system generation and building a magtape handler that
does not contain the FSM; a hardware-level-only handler. Such a handler is
appropriate for the operations in this section and has a much smaller memory image.
See Section 2.8.7 and the RT-11 System Generation Guide for information.

Rewinding and Going Off Line (SF.MOR), Code 372

This request is the same as rewind, except that it takes the tape drive off line and
then rewinds to BOT. The handler is free to accept commands after the rewind is
initiated.

The special function SF.MOR has the following format, with the area, chan, and
optional crtn, BMODE=str, and CMODE=str parameters as described in the RT-11
System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.MOR,,,blk[,crtn][,BMODE=str][,CMODE=str]

SF.MOR is the code 372 or the name SF.MOR if the program is assembled with
the distributed file SYSTEM.MLB.

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the same error code and qualifying information as the rewind
request.

Programming for Specific Devices 2-51

2.8.6.2

2.8.6.3

2.8.6.4

Rewinding (SF.MRE), Code 373

The SF.MRE request rewinds the tape to BOT. The MT and MM handlers cannot
accept other requests until the rewind operation is complete; the MS handler can.

The special function SF.MRE has the following format, with the area, chan, and
optional crtn, BMODE=str, and CMODE=str parameters as described in the RT-11
System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.MRE,,,blk[,crtn][, BMODE=str][,CMODE=str]

SFMRE is the code 373 or the name SF.MRE if the program is assembled with
the distributed file SYSTEM.MLB.

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the error shown in Table 2-20.

Table 2-20: SF.MRE (Code 373) Errors

First Word
Byte 52 Code Code Qualifying Information
Hard error 0 No additional information (consult documentation for your
(Value = 1) particular tape drive for all possible error conditions).

1 Tape drive not available.

Writing with Extended Gap (SFMWE), Code 374

This request permits you to write on tapes that have bad spots. The call syntax
is identical to the SEEMWR request except for its function code, which is 374. The
errors are explained in Table 2—-21.

Table 2-21: SF.MWE (code 374) Errors

Byte 52
Code Meaning

0 The EOT marker has been detected.
1 Hard error occurred on channel.
2 Channel not open.

Additional qualifying information for these errors is returned in the first two words
of the status block. See Section 2.8.5.5.

Spacing Backward (SF.MBS), Code 375

The SF.MBS request spaces the magtape backward block-by-block or until a tape
mark is detected.

2-52 RT-11 Device Handlers Manual

2.8.6.5

You should note that because magtape is sequentially accessed, an SF.MBS operation
in a file without a subsequent positioning to the end of the file (before a .CLOSE)
causes data loss.

The special function SF.MBS has the following format, with the area, chan, went and
optional crtn, BMODE=str, and CMODE=str parameters as described in the RT-11
System Macro Library Manual:

Macro Call: .SPFUN area,chan,#SF.MBS,,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

SF.MBS is the code 375 or the name SF.MBS if the program is assembled with
the distributed file SYSTEM.MLB.

went is the number of blocks to space past (must not exceed 65534).

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the errors shown in Table 2-22.

Table 2-22: SF.MBS (Code 375) Errors

First Word
Byte 52 Code Code Qualifying Information
EOF 1 Tape before EOF only (tape mark detected).
(Value = 0)
2 Tape before EOT only (no tape mark detected).
Tape before EOF and EOT (tape mark detected).
4 Tape before BOT (no tape mark detected).
The second word in the status block contains the number of
blocks requested to be spaced wcnt, minus the number of blocks
spaced if a tape mark or BOT is detected. Otherwise, its value
is not defined.
Hard error 0 No additional information (consult documentation for your
(Value = 1) particular tape drive for all possible error conditions).
1 Tape drive not available.
2 The controller lost the tape position.
Spacing Forward (SF.MFS), Code 376

The SF.MFS request spaces the magtape forward block-by-block or until a tape mark
is detected. When a tape mark is detected, the handler reports it along with the
number of blocks not skipped. These commands can be used to issue a space-to-
tape-mark command by passing a number greater than the maximum number of
blocks on a tape. The tape is left positioned after the tape mark or the last block
passed. The two spacing requests have the following forms.

The special function SFMFS has the following format, with the area, chan and
optional crtn, BMODE=str, and CMODE=str parameters as described in the RT-11
System Macro Library Manual:

Programming for Specific Devices 2-53

Macro Call: .SPFUN area,chan,#SF.MFS,,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

SEMFS is the code 376 or the name SF.MF'S if the program is assembled with
the distributed file SYSTEM.MLB.

went is the number of blocks to space past (must not exceed 65534).

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the errors shown in Table 2—-23.

Table 2-23: SF.MFS (Code 376) Errors

First Word
Byte 52 Code Code Qualifying Information
EOF 1 Tape at EOF only (tape mark detected).
(Value = 0)
2 Tape at EOT only (no tape mark detected).
3 Tape at EOF and EOT (tape mark detected).
The second word in the status block contains the number of
blocks requested to be spaced (went), minus the number of blocks
spaced if a tape mark or BOT is detected. (A tape mark is
counted as a block.) Otherwise, its value is not defined. The
tape will be positioned after the tape mark on forward spacing
and before the tape mark on backward spacing.
Hard error 0 No additional information (consult documentation for your
(Value = 1) particular tape drive for all possible error conditions).
1 Tape drive not available.
2 The controller lost the tape position.
NOTE

Due to hardware restrictions, Digital recommends that
no forward space commands be issued if the reel is
positioned past the EOT marker.

2.8.6.6 Writing a Tape Mark (SF.MTM), Code 377

The SF.MTM request writes a tape mark.

The special function SF.MTM has the following format, with the area, chan and
optional crtn, BMODE=str, and CMODE=str parameters as described in the RT-11
System Macro Library Manual:

Macro Call: .SPFUN area,chan #SF.MTM,,,blk[,crtn][,BMODE=str][,CMODE=str]

SEMTM is the code 377 or the name SF.MTM if the program is assembled with
the distributed file SYSTEM.MLB.

2-54 RT-11 Device Handlers Manual

blk is the address of a 4-word error and status block used for returning
the exception conditions. See Section 2.8.5.5.

This request returns the errors shown in Table 2-24. Additional qualifying
information for these errors is returned in the first two words of the blk argument
status block. See Section 2.8.5.5.

Table 2-24: SF.MTM (Code 377) Errors

First Word
Byte 52 Code Code Qualifying Information
EOF 1 Tape before EOF only (tape mark detected).
(Value = 0)
Hard error 0 No additional information (consult documentation for your
(Value = 1) particular tape drive for all possible error conditions).
1 Tape drive not available.

The controller lost the tape position.

4 Tape is write locked.

2.8.7 Hardware Magtape Handler

The hardware magtape handlers are identical to the distributed handlers except they
are not built with the FSM. Therefore, the hardware magtape handlers accept only
hardware requests. These are applicable in I/O operations where no file structure
exists. Any file structure request you make to the hardware handler results in a
monitor directory I/O error. The hardware handler is a subset of the file structure
magtape handler. It can perform I/O operations on physical blocks, position the tape,
and recover from errors.

Any file-structured request causes the hardware handler to issue a hard error. The
hardware handler accepts only the non-file-structured .LOOKUP, .CLOSE, or special
function requests.

If you do not need the file structure support, use the hardware handlers. You must
perform a SYSGEN (see the RT-11 System Generation Guide) to get the hardware
magtape handlers, then you must rename them in order to use them. Use a series
of monitor commands similar to the following, which replace the file structure MS
handler with the hardware MS handler.

1. Remove the distributed handler:
. REMOVE MS
2. Save the distributed handler:
. RENAME/ SYS MS[X] . SYS MS[X] FS. SYS

3. Replace the distributed handler with the hardware handler you built during
SYSGEN:

. RENAVE/ SYS MS[X] HD. SYG MS[X] . SYS

Programming for Specific Devices 2-55

2.8.8

2.8.8.1

2.8.8.2

2-56

4. Install the hardware handler:
_INSTALL MB

Transporting Tapes to RT-11

RT-11 can read files written on other computer systems that support the ANSI
standard labels. The following sections give a few examples of how to write ANSI
tapes on some common Digital PDP-11 operating systems. Keep in mind that
there are other factors involved in addition to the label and format compatibility,
including density, parity, and number of tracks. Consult the appropriate system
documentation for complete information on using magtapes under the different
operating systems. (See the RT-11 Volume and File Formats Manual and the RT-11
System Utilities Manual for information on transporting tapes from RT-11 to other
systems.)

From RSTS/E

RSTS/E supports two types of magtape format, DOS-11 and ANSI. In the following
examples, dd represents the magtape handler name. To ensure that an ANSI file
structure is written, issue the following commands:

Examples
1. ASSI GN ddn: . ANSI|

Allocates the device to the job and ensures that an ANSI file structure is used.

2. RUN $PI P
ddn: xxxxxx/ ZE

PIP initializes the tape; xxxxxx is the volume ID.

3. Really zero ddn:? YES

PIP prompts before initializing the tape.
4. PI P ddn: =TEST1. MAC, TEST2. MAC

PIP copies files to the tape.
5. DEASSI GN ddn:

Deallocates the device.

From RSX-11M

RSX-11M needs the following commands to access a magtape:

Examples

1. ALL ddn:

Allocates a drive.

RT-11 Device Handlers Manual

2.8.8.3

2. INl ddn: RT11

Initializes the tape and gives the name RT'11 as the volume identification.

3. MU ddn: RT11

Mounts the tape volume.

4. PI'P ddn: =[13, 14] TEST1. MAC, TEST2. MAC

Copies files to the tape.
5. DMO ddn: RT11

Dismounts the tape volume.
6. DEA ddn:
Deassigns the drive.

From RSX-11D and IAS
Use the following commands to write an ANSI tape on RSX-11D or IAS:

Examples

1. INl ddn: RT11

Initializes the tape and gives the name RT'11 as the volume identification.

2. MOU ddn: RT11

Mounts the tape volume.

For RSX-11D, use PIP to write files to the tape; for IAS, use the COPY command.

Examples

1. DMO ddn: RT11

Dismounts the tape volume.

The contents of files written under the RSX-11D, RSX-11M, and IAS systems do
not necessarily correspond to those types of data files under RT-11. For example,
under RT-11, text files consist of stream ASCII data (carriage return and line feed
characters are embedded in the text); the other operating systems use a different
type of character storage. Be sure to pay attention to the contents of the files you
need to transfer.

When you write files to be read under RT-11, the only valid block size the utility
programs use is 512 characters per block. However, the DIR program will list the
directory of any ANSI compatible tape.

Programming for Specific Devices 2-57

2.8.8.4 From VMS

Creating a magtape on a VAX processor running the VMS operating system for
subsequent transfer to a PDP-11 running RT-11 is described in the RT-11 Volume
and File Formats Manual. Look there for the procedure.

2.8.9 Seven-Track Magnetic Tape

Seven-track tapes contain six data tracks and one parity track, so a maximum of six
data bits can be contained in one tape character. With seven-track tapes, the MT
handler operates in either six-bit mode or core dump mode.

Six-bit mode is not compatible with the data normally created by PDP-11 systems; it
is provided for transferring data to or from other systems. In addition, file structure
operations cannot be performed in this mode. With the density set at 200 or 556
bpi, the magtape always operates in six-bit mode. When reading in six-bit mode, the
handler places each six-bit tape character right-justified in a PDP-11 byte; the high-
order two bits of the byte are set to 0. When writing in six-bit mode, the handler
writes the low-order six bits of a PDP—-11 byte as the six data bits of a tape character;
the high-order two bits of the PDP-11 byte are not transferred or affected.

Core dump mode is compatible with PDP-11 systems. At 800 bpi, seven-track tape
transfers can occur in either six-bit mode (SET MT: DENSE=807) or core dump mode
(the default). Figure 2-7 illustrates the differences between six-bit mode and core
dump mode.

In core dump mode, each PDP-11 byte is split into two tape characters. In writing
to the tape, the handler writes the low-order four bits of a PDP-11 byte as the low-
order four bits of the first tape character and the high-order four bits of the PDP-11
byte as the low-order four bits of the next tape character. The high-order two bits of
each tape character are set to 0.

In reading from the tape, the reverse process occurs. The low-order four bits of the
first tape character become the low-order four bits of the PDP-11 byte; the low-order
four bits of the next tape character become the high-order four bits of the PDP-11
byte.

The high-order two bits of each tape character are not involved in the transfer,
although they are included in the parity calculation. Thus, in core dump mode, the
actual number of tape characters read or written is twice the number of PDP-11
bytes requested to be transferred; this conversion is performed by the magtape
controller.

2-58 RT-11 Device Handlers Manual

Figure 2-7: Seven-Track Tape

Programming for Specific Devices 2-59

2.9 MU (TMSCP Magtape Handler)

This section provides specific programming information for TMSCP magtapes.

The MU handler supports magtape systems that use the tape mass storage
communication protocol (TMSCP).

NOTE
The MU handler contains the same basic structure and
provides the same support for programmed requests and
special functions as described in Section 2.8 except as
explicitly stated in this section. Therefore, this section
describes only how the MU handler is different from the
MM, MS, and MT handlers.

2.9.1 Support for Special Functions

The following special functions are either not supported by the reel-type magtape
handlers or are supported in a different manner.

The SF.MTB and SF.BYP special functions are not affected by the presence (or
absence) of the File Stucture Module (FSM), as they are not concerned with
operations on magtape volumes. Rather, they are conerned with data structures
within the handler itself or the handler’s controller.

Code Name Function

352 SF.MTB Magtape data table access
SE.TRD wcnt argument for a read from the table; specified with a +1
SETWR wcnt argument for a write to the table; specified with a —1
360 SF.BYP Direct TMSCP access; special function bypass

374 SE.MWE Not Supported; writes with extended file gap executes as a
write (SF.MWR) operation

2.9.1.1 TMSCP Translation Tables (SF.MTB), Code 352

Whenever an I/0 request is passed to the MU handler, MU uses the RT-11 unit
number as an index into the translation tables. MU then extracts the TMSCP
unit number and port that have been assigned to that RT-11 unit, and uses the
information to access the proper magtape drive.

You can read or write (modify) the memory-resident contents of the translation tables
by using SF.MTB.

Size of the Translation Tables
The size of the translation tables is determined by the number of device units
supported by DU. The distributed MU supports one unit; you can build an MU

2-60 RT-11 Device Handlers Manual

that supports up to four units. You can determine the number of supported units
for a particular handler by reading the MU.NUM field, as explained further.

Structure of the Translation Tables

As shown in Tables 2-25 and 2-26, the MU unit translation tables consist of a table
header followed by table entries. The header starts at offset MU.ID, which is a word
containing the Radix—50 value for the characters MU.

The MU.ID offset is followed by MU.NUM. The low byte of MU.NUM contains the
number of entries in the table (and therefore the number of supported units). The
high byte of MU.NUM is reserved.

The next offset is MU.ENT, which contains a pointer to the first table entry.

Table 2-25: TMSCP (MU) Translation Table Header

Offset Name Meaning

0 MU.ID Radix—50 value for characters MU

2 MU.NUM Byte containing number of entries in table
3 Reserved

4 MU.ENT The offset of the first table entry

Each table entry is 4 bytes, and Digital recommends you use the symbol MU.ESZ to
represent the 4-byte size of each entry.

Table 2-26: TMSCP (MU) Translation Table Entry
Offset Name Meaning

0 MU.UNI Physical TMSCP unit number.

The symbol MU$Ux=nnnnnn is the initial value for the translation
table when the handler is assembled. In the symbol, x is the octal RT—
11 MU unit number (0-3) and nnnnnn is the TMSCP unit number.
The SET MUx UNIT=nnnnnn command can subsequently change the
value.

2 MU.JOB Byte containing the number of the job connected to this TMSCP unit.

MU.POR Byte containing the TMSCP port (controller) number.

The symbol MU$Ox=nnn is the initial value for the translation table
when the handler is assembled. In the symbol, x is the octal RT-11
MU unit number (0-3) and nnn is the TMSCP port number. The SET
MU PORT=nnn command can subsequently change the value.

4 MU.ESZ Size of an entry (4 bytes)

Programming for Specific Devices 2-61

Accessing the Translation Tables

Special function SF.MTB can read or write the TMSCP translation tables. Whether
a read or write operation is performed is determined by the wcnt argument. Specify
+1 (SF.TRD) for wcnt to read the tables; —1 (SF.TWR) to write the tables.

The translation tables are read from or written to a buffer, which is pointed to by
the buf parameter.
2.9.1.2 Special Function Bypass (SF.BYP), Code 360

Special function SF.BYP bypasses all unit number translation and allows direct
access to the TMSCP port. For MU, SE.BYP (direct TMSCP access) serves the same
purpose as the DU handler’s SE.BYP (direct MSCP access).

The request syntax and parameter argument definitions for SE.BYP are as follows:
Macro Call: .SPFUN area,chan,#SF.BYP,buf,wcnt,blk

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 3763.

SF.BYP is code 360 or the name SF.BYP if the program has been assembled
with the distributed module SYSTEM.MLB.

buf is the address of the 52;5-word TMSCP area.

went when nonzero, is the virtual address of a data buffer to send to the

handler. That virtual address is translated to a physical address and
placed in the buffer of the TMSCP area.

when zero, the buffer address in the TMSCP area is not altered.

blk indicates whether the handler should perform retries:
1= specifies retries
0= specifies no retries

The buffer address in special function SF.BYP must point to a 52-word area in the
user’s job. The first 26 words are used to hold:

* A response packet length in bytes

* A virtual circuit identifier

* An end packet when the command is complete

The second 26 words are set up by the caller and contain:

¢ A length word (length of command)

* A virtual circuit identifier (must have octal 1 (001) in high byte)
e A valid TMSCP command (48;5-byte command buffer)

Except for port initialization, the user program must do all command packet
sequencing, error handling, and reinitialization when the bypass operations are
complete.

2—-62 RT-11 Device Handlers Manual

2.9.2 Unit Support, CSR and Vectors

The distributed MU handler supports one unit. Using the system generation
procedure, you can build an MU handler that supports up to four units. Each unit
requires a separate controller and you can only boot RT-11 from unit MUO, which
must be installed at CSR address 774500 and vector address 260. The addresses for
MU1 through MUS float; they depend on what other devices are on the bus. The
default CSR and vector addresses are as follows:

CSR Vector
774500 260
774504 340
774510 344
774514 350

Programming for Specific Devices 2-63

2.10 NL (Null Handler)

The null handler accepts all read and write requests. On output operations, this
handler acts as a data sink. When a program calls NL, the handler returns
immediately to the monitor indicating that the output is complete. The handler
returns no errors and causes no interrupts. On input operations, NL returns an
immediate EOF indication for all requests; no data is transferred. Hence, the
contents of the input buffer are unchanged.

2—-64 RT-11 Device Handlers Manual

2.11 NC, NQ, NU (Ethernet Handlers)

RT-11 includes three Ethernet handlers that provide support for Ethernet class
controllers. The NC Ethernet handler supports the DECNA controller for CTI Bus-
based processors. The NQ Ethernet handler supports the DELQA and DEQNA
Ethernet controllers for Q-bus processors. The NU Ethernet handler supports the
DELUA and DEUNA controllers for UNIBUS processors.

Each handler supports only one controller and a maximum of eight units. These unit
numbers are used as a logical connection between a user program and an address
/protocol pair to be recognized by the Ethernet hardware.

2.11.1 Restrictions

Observe the following Ethernet handler restrictions:
* The handlers run only under mapped monitors.
* The handlers cannot be fetched and must be loaded.

* Programs that call the Ethernet handlers must be written to perform with the
following elements in the order indicated:

1. Use the .LOOKUP programmed request to open a channel to the device unit.
2. Allocate the unit using .SPFUN 200.

3. Perform the Ethernet operation or operations.

4. Deallocate the unit using .SPFUN 200.

5. Use the .CLOSE programmed request to close the channel to the specified

device unit.
2.11.2 Support for Special Functions

The Ethernet handlers support the following special functions. The special function
names are from the .NALDF macro in the distributed file SYSTEM.MLB.

Code Name Section Function

200 SFENAL 2.11.2.1 Allocate/Deallocate unit

201 SF.PRO Reserved

202 SENPR 2.11.2.2 Enable/Disable protocol type

203 SFENMU 2.11.2.3 Enable/Disable multicast address
204 SENWR 2.11.24 Transmit Ethernet frame

205 SENRD 2.11.25 Receive Ethernet frame

Successful completion of a .SPFUN request clears the carry bit. Completion with
error sets the carry bit, and the status word in the buffer contains an error code.

Programming for Specific Devices 2-65

2.11.2.1 Allocate/Deallocate Unit (SF.NAL), Code 200

The allocate unit special function allocates a unit of the Ethernet handler for a job’s
exclusive use.

The deallocate unit special function deallocates the unit so it can be used by another
job.
2.11.2.1.1 Allocate Unit
The following is the form of the special function allocate unit:
Macro Call: .SPFUN area,chan,#SF.NAL,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 3765.

SF.NAL is code 200 or the name SF.NAL if the program is assembled with the
distributed file SYSTEM.MLB.

buf is the address of a 4-word buffer containing the status word and space

for the station’s physical address. The buffer contents are returned by
the allocate unit special function.

buf = 0 Status

Station’s

Physical

Address

The high byte of the status word contains a 0. Allocate unit returns
one of the following octal status codes in the low byte of the status
word:

Code Meaning

0 Success

Controller error while attempting to initialize the network
interface (controller).

3 No resources (unit in use).
11 Reserved.
went is #0.
blk is #1.

2-66 RT-11 Device Handlers Manual

2.11.2.1.2 Deallocate Unit
The following is the form of the special function deallocate unit:

Macro Call: .SPFUN area,chan,#SF.NAL,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 376g.

SF.NAL is code 200 or the name SF.NAL if the program is assembled with the
distributed file SYSTEM.MLB.

buf is the address of a 1-word buffer containing the status word.

buf 0 Status

The high byte of the status word contains a 0. Deallocate unit returns
one of the following octal status codes in the low byte of the status
word:

Code Meaning

0 Success.

Unknown unit. The specified unit was not opened by the job
issuing the request.

2 Controller error while attempting to initialize the network
interface (controller).
11 Unit still active.
went is #0.
blk is #0.

2.11.2.2 Enable/Disable Protocol Type (SF.NPR), Code 202

The enable protocol type special function adds a protocol type to the list of those to
be recognized by the unit. Only one protocol type can be specified for each unit. At
least one protocol type must be enabled to receive Ethernet frames.

The disable protocol type special function removes the protocol type from the list of
those recognized by the unit.

2.11.2.2.1 Enable Protocol Type
The following is the form of the special function enable protocol type:
Macro Call: .SPFUN area,chan,#SF.NPR,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

Programming for Specific Devices 2-67

chan is a channel number in the range 0 to 3765.

func is code 202 or the name SF.NPR if the program is assembled with the
distributed file SYSTEM.MLB.
buf is the address of a 2-word buffer that contains the status word followed

by the protocol type word.

buf > 0 Status

Protocol

The high byte of the status word contains a 0. Enable protocol type
returns one of the following octal status codes in the low byte of the
status word:

Code Meaning

Success.

Unknown unit. The specified unit was not opened by the job
issuing the request.

2 Controller error while attempting to initialize the network
interface (controller).

No resources (unit’s protocol table is full).
Reserved.

10 Protocol type in use.

The protocol type is specified by the user.
wcnt is #0.
blk is #1.

2.11.2.2.2 Disable Protocol Type
The following is the form of the special function disable protocol type:
Macro Call: .SPFUN area,chan,#SF.NPR,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]
area is the address of a 6-word EMT argument block.
chan is a channel number in the range 0 to 376g.

SF.NPR is code 202 or the name SF.NPR if the program is assembled with the
distributed file SYSTEM.MLB.

2—-68 RT-11 Device Handlers Manual

buf

is the address of a 2-word buffer that contains the status word,
followed by the protocol type word.

buf > 0 Status
Protocol
The high byte of the status word contains a 0. Disable protocol returns
one of the following octal status codes in the low byte of the status
word:
Code Meaning
0 Success.
Unknown unit. The specified unit was not opened by the job
issuing the request.
2 Controller error while attempting to initialize the network
interface (controller).
went is #0.
blk is #0.

2.11.2.3 Enable/Disable Multicast Address (SF.NMU), Code 203

The enable multicast address special function adds a multicast address to the list
of those to be recognized by that unit. You need not specify the unit’s physical or
broadcast address. RT-11 supports only one multicast address per handler unit.

The disable multicast address special function removes a multicast address from the
list of those to be recognized by the unit.

2.11.2.3.1 Enable Multicast Address

The following is the form of the special function enable multicast address:

Macro Call:
area
chan

func

buf

.SPFUN area,chan #SF.NMU,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

is the address of a 6-word EMT argument block.
is a channel number in the range 0 to 376g.

is code 203 or the name SF.NMU if the program is assembled with the
distributed file SYSTEM.MLB.

is the address of a 4-word buffer that contains the status word,
followed by the 3-word multicast address. The low-order bit of the
first address word should be a 1.

Programming for Specific Devices 2-69

buf - 0 Status

Multi- Ji

cast

Address

The high byte of the status word contains a 0. Enable multicast
address returns one of the following octal status codes in the low byte
of the status word:

Code Meaning

0 Success.

1 Unknown unit. The specified unit was not opened by the job
issuing the request.

2 Controller error while attempting to initialize the network
interface (controller).

3 No resources (unit’s address table is full, or hardware
address table is full).

went is #0.
blk is #1.

2.11.2.3.2 Disable Multicast Address
The following is the form of the special function disable multicast address:
Macro Call: .SPFUN area,chan,#SF.NMU,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]

area is the address of a 6-word EMT argument block.

chan is a channel number in the range 0 to 376g.

func is code 203 or the name SF.NMU if the program is assembled with the
distributed file SYSTEM.MLB.

buf is the address of a 4-word buffer that contains the status word,

followed by the 3-word multicast address. The low-order bit at the
first address word should be a 1.

2-70 RT-11 Device Handlers Manual

buf -

0

Status

Multi- Ji

cast

Address

wcent

blk

The high byte of the status word contains a 0. Disable multicast
address returns one of the following octal status codes in the low byte
of the status word:

Code Meaning

0 Success.

1 Unknown unit. The specified unit was not opened by the job
issuing the request.

2 Controller error while attempting to initialize the network
interface (controller).

is #0.
is #0.

2.11.2.4 Transmit Ethernet Frame (SFENWR), Code 204

The special function transmit Ethernet frame transmits the Ethernet frame pointed
to in the buf parameter argument. If the source address field of the frame is nonzero,
it is kept and used. If the source field of the frame is zero, the unit’s physical address
is inserted in the source field before transmission.

The following is the form of the special function transmit Ethernet frame:

Macro Call:
area
chan

func

buf

.SPFUN area,chan #SF.NWR,buf,wcnt,blk[,crtn][,BMODE=str][,CMODE=str]
is the address of a 6-word EMT argument block.
is a channel number in the range 0 to 376g.

is code 204 or the name SF.NWR if the program is assembled with the
distributed file SYSTEM.MLB.

is the address of a variable-size buffer containing a word for returning
status, a reserved word, and up to 7579 words comprising the
Ethernet frame to be transmitted.

Programming for Specific Devices 2-71

buf - High Low (Status Word)

Reserved

Destination

Address

Source

Address

Protocol

Data

23 - 750

Decimal

Words

Transmit Ethernet frame returns one of the following octal status
codes in the low byte of the status word:

Code Meaning

0 Success.
1 Unknown unit. The specified unit was not opened by the job
issuing the request.
2 Controller error while attempting to initialize the network
interface (controller).
13 Transmit failed.

When status code 13 is returned in the low byte of the status
word, transmit Ethernet frame returns one of the following
octal status subcodes in the high byte of the status word:

1 = Invalid frame length.

2 = Excessive collisions.

3 = Carrier check failed.

2-72 RT-11 Device Handlers Manual

wcent

blk

is determined by the variable size of the user buffer (including the
status and reserved words). The packet size (including the status and
reserved words) can vary between 32, and 759;, words.

is #0.

2.11.2.5 Receive Ethernet Frame (SF.NRD), Code 205

The receive Ethernet frame special function returns the next Ethernet packet with
the desired unit address and protocol type to the buffer. The function does not return
Ethernet frames that are received with errors.

The following is the form of the special function receive Ethernet frame:

Macro Call:

area
chan

func

buf

buf

.SPFUN area,chan #SF.NRD,buf,wcnt,blk[,crtn][, BMODE=str][,CMODE=str]

is the address of a 6-word EMT argument block.
is a channel number in the range 0 to 3765.

is code 205 or the name SF.NRD if the program is assembled with the
distributed file SYSTEM.MLB.

is the address of a variable-size buffer containing a word for returned
status, a word for returned fram size, and up to 7575 words to receive
the Ethernet frame. The buffer contents are returned by the receive
Ethernet frame special function.

0

Status

Frame Size

Space
for

up to
757

Decimal

Words

Programming for Specific Devices 2-73

wcent

blk

2.11.3 Example of
The following

The high byte of the status word contains a 0. The receive Ethernet
frame special function returns one of the following octal status codes
in the low byte of the status word:

Code Meaning

0 Success.

1 Unknown unit. The specified unit was not opened by the job
issuing the request.

2 Controller error while attempting to initialize the network
interface (controller).

is the size of the user buffer including the status and frame size words.
The maximum value allowed for the argument is 759;(; the minimum
is 3210.

is #0.

Allocating an Ethernet Unit

example allocates a unit of the Ethernet handlers.

CONF& = 370 ; Config word 2
; (RMON fixed offset)
PROS$ = 020000 ; RT is running on a PRO 3xx
BUS$ = 000100 ; @ bus/ UNI BUS processor
. GVAL #AREA, #CONFQ2 ; Get contents of Config word 2
MOV #<"RNC >, DBLK ; Assune PRO
BIT #PROSS$, RO ; Correct assunption?
BNE 10% ;yes. ..
MoV #<"RNQ >, DBLK ; No, so assunme Q bus
BIT #BUSS$, RO ; Correct assunption?
BNE 10% ;yes. ..
MOV #<"RNU >, RO ; Nope, must be
; UNIBUS after all
10%: .GIIB #AREA, #JOBDAT ;Get info on this job
MoV JOBDAT, RO ; RO = job nunber (*2)
ASR RO ; Convert to job nunber 0-7
ADD #<"R 0> RO ; Make it final RAD50 digit
ADD RO, DBLK ; and add it to
; the device nane

. LOOKUP #AREA, #0, #DBLK ; Open a channel to Ethernet

;. LOOKUP error processing

. SPFUN #AREA, #0, #200, #BUFFER, #0, #1

;Allocate the unit to this job

2-74 RT-11 Device Handlers Manual

;. SPFUN error processing

AREA: .BLKW 3

JOBDAT: .BLKW 12.
DBLK: .WORD 0,0,0,0

BUFFER: . BLKW 4

; END OF EXAMPLE

Programming for Specific Devices 2-75

2.12 PI (CTI Bus-Based Processor Interface System Support Handler)

This section contains specific information about the PI system support handler
and using RT-11 with CTI Bus-based processors. PI is called a system support
handler because RT-11 requires PI to provide certain necessary connections with
the computer hardware. At bootstrap time, the monitor loads PI before binding
with the system device handler file on the system volume.

2.12.1 Support for Special Functions

The PI handler supports the following special functions which are used only with
the GIDIS graphics package, as described in the RT-11 System Subroutine Library
Manual:

Code Name Action

371 SF.PWR Send command packet to GIDIS.
370 SF.PRD Get status from GIDIS.

2.12.2 Pl Keyboard Support

PI supports the keyboard in normal mode or function key mode.
2.12.2.1 Normal Mode

PI supports the following keys in normal mode:

¢ All keys on the main keypad.

¢ All keys on the numeric keypad.

* Cursor control (arrow) keys on the editing keypad.

* The following special function keypad keys: HOLD SCREEN (F1), PRINT
SCREEN (F2), SETUP (F3), ESCAPE (F11), BACK SPACE (F12), and LINE
FEED (F13).

PRINT SCREEN (F2) prints a copy of the text from your terminal screen directly
on your printer. PRINT SCREEN cannot be used to print graphics. You must be

running the transparent spooling package (SPOOL) under a mapped monitor to
use PRINT SCREEN.

SETUP (F3) clears a locked keyboard and turns off the WAIT light when pressed.
Note that the SETUP key has nothing to do with the setup utility.

The following keys do not function in normal mode:

¢ Special function keys F4 through F10, F14, HELP (F15), DO (F16), and F17
through F20.

e Editing keypad keys FIND, INSERT HERE, REMOVE, SELECT, PREV
SCREEN, and NEXT SCREEN. Editing functions under RT-11 use the numeric
keypad (see the PDP-11 Keypad Editor User’s Guide.)

2-76 RT-11 Device Handlers Manual

2.12.2.2 Function Key Mode (DECFKM)

Programs written for the PI handler can place the terminal in function key mode. In
function key mode, each special function key sends an assigned control sequence to
the processor. The control sequence is not assigned a specific function, but software
can be programmed to recognize the control sequence.

A program places the terminal in function key mode by sending the 7-bit escape
sequence:

Esc ?39h (transnmitted as octal 033 133 077 063 071 150)

A program returns the terminal to normal key mode by sending the 7-bit escape
sequence (note the lower-case 1 (?391)):

Esc[?391 (transnmitted as octal 033 133 077 063 071 154)

The following table lists control sequences for the special function keys:

Control Control

Key Sequence Key Sequence

F1 [Escl[11~ DO (F16) [Esc][29~

F2 [Esc][12~ F17 [Esc][31~

F3 [Esc][13~ F18 [Esc][32~

F4 [Escl[14~ F19 [Esc][33~

F5 [Escl[15~ F20 [Esc[34~

F6 [Escl[17~ COMPOSE [esc][10~
CHARACTER

F7 [Esc][18~ FIND [Escl[1~

F8 [Esc][19~ INSERT [Esc][2~
HERE

F9 [Escl[20~ REMOVE [Esc][3~

F10 [Escl[21~ SELECT [EsCl[4~

F11 [Esc][23~ PREV [Escl[5~
SCREEN

F12 [Escl[24~ NEXT [Esc][6~
SCREEN

F13 [Escl[25~

F14 [Esc][26~

HELP (F15) [Esc][28~

Programming for Specific Devices

2-77

2.12.3 Video Terminal Support

PI supports the CTI Bus-based processor’s video terminal in the following manner:

2.12.3.1 Advanced Video Option Emulation

The PI handler supports a limited emulation of the VT'100 implementation of the
advanced video option, and uses the same escape sequences as the VI'100 terminal.
The limited emulation supports all VT'100 character renditions (attributes) except
BLINK; BLINK displays as BOLD. BOLD is not supported in 132-column mode, and
132-column mode is supported only by the mapped monitors.

2.12.3.2 Text Cursor Mode (DECTCEM)

Text cursor mode lets a program control whether the cursor is displayed on the video
screen. Enabling text cursor mode displays the cursor and is the default. Text cursor
mode is necessary when working with text because the cursor shows where the next
character will be displayed.

A program places the terminal in text cursor mode by sending the 7-bit escape
sequence:

[ESC][?25h (transmitted as octal 033 133 077 062 065 150)

A program takes the terminal out of text cursor mode by sending the 7-bit escape
sequence (note the lower-case 1 (?7251)):

[Esc][?25] (transmitted as octal 033 133 077 062 065 154)

The cursor display can also be controlled using the SETUP CURSOR and SETUP
NOCURSOR commands described in the RT-11 Commands Manual.

2.12.3.3 Device Attributes (DA)

A program uses the device attributes request/reply exchange to ask the terminal,
"what are you?". The response sent by the terminal to the program can identify the
terminal as a specific VI'100 terminal (the default) or as a nonspecific member of
the VT100 series of terminals. The SETUP modes VT100 and GENERIC100 (see
the RT-11 Commands Manual) determine which of the two responses the terminal
sends the program. Digital recommends that all programs recognize both the VT'100
and the GENERIC100 device attributes reply.

A program can request information on two levels. The primary level DA requests
basic compatibility information. The secondary level DA requests the specific version
and edit level of the PI handler.

The terminal reply to primary and secondary DA requests gives this information,
and also tells the program which monitor the system is running. The following is a
complete DA interchange:

A program requests primary DA by sending the 7-bit escape sequence:

[EsC][c (transmitted as octal 033 133 143)

2-78 RT-11 Device Handlers Manual

If the terminal is SETUP VT100, it responds by sending the 7-bit escape
sequence:

— When running under an unmapped monitor:

[Esc|[?1;1c (transmitted as octal 033 133 077 061 073 061 143)
— When running under a mapped monitor:

[EsC|[?1;3c (transmitted as octal 033 133 077 061 073 063 143)

If the terminal is SETUP GENERIC100 without 132-column capability (running
under an unmapped monitor), it responds by sending the 7-bit escape sequence:

[Esc][?61c (transmitted as octal 033 133 077 066 061 143)

If the terminal is SETUP GENERIC100 with 132-column capability (running
under a mapped monitor), it responds by sending the 7-bit escape sequence:

[Esc][?61;1c (transmitted as octal 033 133 077 066 061 073 061 143)

A program requests the secondary DA by sending the 7-bit escape sequence:

[Esc|[>c (transmitted as octal 033 133 076 143)

If the terminal is operating under an unmapped monitor, it responds by sending
the 7-bit escape sequence:

[Esc][>7;VVnnc (transmitted as octal 033 133 076 067 073 V V n n 143)
where VV is the version number, and nn is the edit level of the PI handler.

If the terminal is operating under a mapped monitor, it responds by sending the
7-bit escape sequence:

[Esc|[>8;Vnnc (transmitted as octal 033 133 076 070 073 V'V n n 143)

where VV is the version number, and nn is the edit level of the PI handler.

Programming for Specific Devices 2-79

2.13 UB (UNIBUS Mapping Register (UMR) System Support Handler)

This section describes the UB handler that provides support for the UNIBUS
mapping registers on UNIBUS processors. The UB handler provides DMA (direct
memory access) support for 22-bit memory addressing during I/O operations.

UB is called a system support handler because RT-11 requires UB to provide certain
necessary connections with the computer hardware. At bootstrap time, the monitor
loads UB before binding with the system device handler file on the system volume.
Therefore, UB cannot be installed with the INSTALL command. Instead, UB is
automatically installed and loaded in memory on UNIBUS processors with the
following configuration:

* The processor is running a mapped monitor.
* The processor contains more than 256K-bytes of memory.

* The processor contains UNIBUS Mapping Registers at addresses 170200 through
170400 to support 405 2-word UMRs.

¢ Atleast one device handler on the system uses DMA in performing I/O operations.
All distributed RT-11 handlers that can perform DMA are so marked.

Section 2.13.3 describes how to provide UMR support in a user-written DMA
handler.

e All installed user-written (not distributed) device handlers are compatible
with RT-11 support for UB. All installed device handlers must be marked as
compatible with UB, whether or not they perform DMA operations.

Section 2.13.2 describes how to make a non-DMA user-written device handler
compatible with RT-11 UB support.

UNIBUS Mapping Registers function in a manner that is similar to the Memory
Management Unit (MMU) registers that provide 22-bit address translation for the
CPU. The UMRs provide address translation (mapping) from the 18-bit UNIBUS to
the 22-bit memory bus.

2.13.1 UMR Support with Distributed Handlers

On supported UNIBUS system configurations, UB is automatically installed and
loaded when the processor is booted. At that point, DMA I/O operations are handled
transparently by the processor UMR hardware and the RT-11 operating system.
Programs that use distributed RT-11 device handlers require no modification to
support DMA access to a peripheral device.

The aspects of UMR support that apply to distributed handlers are:
¢ Permanent UMR allocation.

Because of internal buffers, some RT-11 device handlers, such as DL, DM, DU,
NU, and the various magtape handlers, require a preallocation of one or more
permanent UMRs. RT-11 preallocates those permanent UMRs when the device
handlers are installed at system boot. RT-11 reserves those permanent UMRSs

2-80 RT-11 Device Handlers Manual

for those handlers when they are loaded. See Table 2—27. You can regain any
preallocated permanent UMRs for handlers that install but you are not using,
by renaming the device handler. Such a renamed handler does not install at the
next system boot.

Contiguous permanent UMRs are allocated from the list of reserved permanent
UMRs when handlers are loaded and returned to reserved status when handlers
are unloaded. After numerous load/unload operations, the list of reserved
permanent UMRs can become fragmented. A symptom of this condition is the
inability to load a device handler that requires multiple permanent UMRs even
when sufficient reserved permanent UMRs exist. Two courses of action are
available if that condition occurs. You can reboot your system, or you can issue
the SHOW UMR command and unload the device handlers that are displayed as
occupying slots between the available reserved permanent UMRs. The system
device handler resides at the top of the list. You should consolidate the list from
the base upward.

¢ Temporary UMR allocation.

Many distributed device handlers require one or more UMRs on a temporary
basis to process I/O requests. RT-11 allocates temporary UMRs as the need
occurs. Each processor contains 31;7 accessible UMRs, and the allocation of
UMRs can be displayed by the command SHOW UMR.

* Serialization of I/O request satisfaction.

When UB is loaded in memory, RT-11 no longer always satisfies I/O requests in
serial order.

Of the distributed RT-11 device handlers, only DU and the magtape handlers
(MM, MS, MT, and MU) require that I/O requests are satisfied in serial order. The
guarantee of I/O request serialization is internal to those handlers and requires
no user intervention.

However, RT-11 does not guarantee that I/O requests for other device handlers
are satisfied in serial order. Rather, I/O requests are satisfied in the quickest
manner possible, which might or might not be serial. For example, an I/O request
that requires four UMRs might be queued for a time waiting for UMR allocation,
while a subsequent I/O request requiring fewer UMRs is satisfied. However,
if required, you can force serialized I/O request processing, using the SET UB
SERIAL=n command, described in the RT-11 Commands Manual.

You can control other aspects of UMR support by specifying conditions for the SET
UB command. Other than those conditions, UMR support is totally transparent
when using the distributed RT-11 device handlers.

Programming for Specific Devices 2-81

Table 2-27: Distributed Handler Support for UMRs

Device
Handler DMA= PERMUMR=

DL YES 1

DM YES

DU YES 2

DW NO

DY YES 1

MM YES If support for FSM included, requires 1
if no support for FSM, requires 0

MS YES If support for FSM included, requires 1
if no support for FSM, still requires 1

MT YES If support for FSM included, requires 1
if no support for FSM, requires 0

MU YES If support for FSM included, requires 3
if no support for FSM, requires 2

NU YES 3

RK YES 0

VM NO

2.13.2 Including Required UB Support in User-Written Non-DMA Handlers

All installed device handlers, including those that perform no DMA operations, must
be modified for compatibility with UB. Otherwise, the RT-11 monitor bootstrap does
not load UB and the system then operates with only the low 256K words of memory
accessible to DMA operations.

You must explicitly specify whether each user-written device handler supports DMA,
using the .DRDEF macro’s DMA=str parameter. If a device handler does not perform
DMA operations and, therefore, does not require UMR allocation, specify DMA=NO.

2.13.3 Including UMR Support in User-Written DMA Handlers

UMR support is appropriate for a device handler that performs I/O operations
and is capable of DMA. Including UMR support in such a device handler lets the
handler access computer memory beyond the 18-bit 256K-byte boundary during I/0
operations.

The following paragraphs describe elements of the new UMR support that must be
considered before you include UMR support in a device handler. Each element is
either described when listed or you are pointed to the appropriate section of this
manual where you will find the element description.

Including UMR support in any device handler requires that you understand the
following items:

2-82 RT-11 Device Handlers Manual

The handler should not perform DMA operations from within its own install code.
If a handler must be written to perform DMA from within its install code, you
must turn off UB (SET UB NOINSTAL), reboot the system, and then install the
handler.

The handler must use the .DRDEF macro and include one or more of the
parameters, DMA=str, PERMUMR=n, and SERIAL=str, as described in the RT-
11 System Macro Library Manual.

If the handler uses the .QELDF macro to define queue elements, you should read
about the offset, Q. MEM, as described in RT-11 System Macro Library Manual.

RMON automatically allocates temporary UMRs for all .READx and .WRITx
requests to handlers that are marked as DMA=YES. RMON also automatically
releases all such temporary UMRs. Both operations are completely transparent
to the handler.

If the handler previously used queue element offsets Q.PAR and Q.BUFF to
calculate non-DMA I/0O virtual addresses, it must now use the new offset Q. MEM
in conjunction with Q. BUFF. Q.MEM is described in Section 1.2.1.1.2. The
handler now uses Q.PAR to calculate only DMA I/O virtual addresses.

If the handler previously used extended memory subroutines $GETBYT,
$PUTBYT, $PUTWRD, or $MPPHY, read the paragraphs Changes to extended
memory subroutines for UMR support, in RT-11 System Release Notes.

You should examine the new RMON fixed offsets, $QHOOK, $H2UB, and the
bits defined for UB in $CNFG3. They are described in RT-11 System Internals
Manual.

You should decide if I/O requests for the handler or the job must be satisfied in
serial order. Once UB is loaded in memory, I/O requests are not guaranteed to
be satisfied in serial order by default.

If the handler requires serialized I/O request satisfaction, you must specify the
.DRBEG macro SERIAL=YES parameter argument when you build the handler.
See the .DRDEF macro information in the RT-11 System Macro Library Manual.

If the job requires serialized I/O request satisfaction, see the SET UB SERIAL=n
command described in the RT-11 Commands Manual.

The device handler must use permanent or temporary UMRs for each special
function that performs a DMA I/O operation.

The handler uses permanent UMRs for processing special functions that result
in a DMA T/O operation to the handler internal buffer.

If the handler contains internal buffers that store command packets and
responses, the handler has to use the ALLUMR routine to explicitly obtain at
least one permanent UMR. The handler must explicitly release all permanent
UMRs when it unloads, using the RLSUMR routine. Obtaining and releasing
permanent UMRs is described in Sections 2.13.3.3 and 2.13.3.4.

Programming for Specific Devices 2-83

The handler allocates at least one temporary UMR for each special function that
performs a DMA I/O operation to the user buffer. The temporary UMRs are
allocated either implicitly or explicitly.

Special functions ((SPFUNSs) used by the handler are categorized as standard
or nonstandard. A standard special function uses the .SPFUN buf parameter
as the read/write buffer address and the wcnt parameter as the operation word
count. Temporary UMRs for standard special functions are allocated implicitly.
Defining standard special functions is described in Section 2.13.3.1.

A nonstandard special function does not use buf as the read/write buffer
address or wcnt as the operation word count. The handler must explicitly
obtain temporary UMRs for nonstandard special functions, requiring additional
processing by UB. Processing nonstandard special functions is described in
Section 2.13.3.3.

2.13.3.1 Defining Special Functions for Implicit UMR Allocation

The device handler should implicitly allocate UMRs for special functions that do the
following:

¢ Perform DMA operations.

e Use the buf and wcnt paramaters in the documented manner; are standard
special functions.

The handler supports implicit UMR allocation for standard special functions by using
the .DRBEG SPFUN=spsym parameter and a list of those functions. The spsym
argument is the label of the list of those functions. The list is structured in the
same manner as that used for the .DRSPF extension table method. However, unlike
the .DRSPF macro, no pointer to the list resides in block 0 of the handler and the
concept of special function type has no meaning and is not included.

The list of standard special functions must continuously reside in the low-memory
portion of the handler whenever the handler is loaded. For all special functions in
the list, RMON performs the UMR allocation and the address translation.

Defining special functions for implicit UMR allocation is illustrated in the example
program in this section.

2.13.3.2 Explicitly Allocating Permanent UMRs (ALLUMR)

If the device handler contains internal buffers that store command packets and
responses, you must allocate at least one permanent UMR to the device handler.

RT-11 allows up to 22;; UMRSs to be permanently allocated to handlers and one
UMR is permanently allocated to the I/O page. When the system is booted, RT—
11 allocates the one UMR to the system’s I/O page and then reserves permanent
UMRs for requesting device handlers as each handler is installed. Therefore, unless
the 2319 limit is reached, RT-11 reserves sufficient permanent UMRs to support
all installed device handlers that request permanent UMR allocation. However,
reserved permanent UMRs are not allocated to a device handler until it is loaded.
Unallocated reserved permanent UMRs are available for explicit allocation, using

2-84 RT-11 Device Handlers Manual

the ALLUMR routine. You can determine the current UMR allocation on your system
by issuing the SHOW UMR command.

The ALLUMR routine, which resides in UB, is called to permanently allocate UMRs.
If the handler requires UMRs for a single, contiguous chunk of memory, you need
call ALLUMR only once. If the handler requires UMRs for noncontiguous chunks of
memory, repeatedly call ALLUMR to allocate UMRs for each chunk.

You reference the UB entry vector through the $H2UB fixed offset (460) in RMON.
The ALLUMR routine is offset 1 word ($H2UB+2) from the address pointed to by
$H2UB.

Use the following procedure to allocate permanent UMRs:

1.

Calculate the number of permanent UMRs you need for each contiguous chunk
of memory. One permanent UMR is required for each 4096 words of contiguous
internal buffer space.

Specify the total number of permanent UMRs the handler requires in the
PERUMR=n parameter of the .DRDEF macro in your handler source code. The
RT-11 monitor bootstrap (BSTRAP) uses that information to reserve the number
of UMRs you permanently allocate to the handler.

Before calling ALLUMR to allocate permanent UMRs for an internal buffer space,
set up the following registers:
Register Contents
RO Number of permanent UMRs to be allocated for this contiguous chunk
of internal buffer space.
If you request more than one permanent UMR, the address of the
first is defined by R1 and R2, and each subsequent UMR is offset
by a value of 20000g.
R1 Bits 0—15 of the 22-bit physical memory base address (word aligned)
of the internal buffer.
R2 Bits 16-21 of the 22-bit physical memory base address of the internal
buffer.
R4 The address of a 1-word location in low memory that contains two

RAD50 identifying characters. The SHOW UMR command displays
these characters to identify this permanent UMR allocation. (In
distributed handlers, is the device handler name.) The monitor must
have continuous access to the specified memory location.

If ALLUMR is called more than once for this handler, R4 in
subsequent calls must contain a different address in low memory
for each call. The 1-word location contents can be, but do not need
to be, the same two RAD50 characters.

The contents of R3 and R5 are not defined or preserved across the call.

Programming for Specific Devices 2-85

4. Within the device handler FETCH/LOAD code, call the ALLUMR routine. On
return from ALLUMR:

If the carry bit is clear:

¢ R1 contains bits 0-15 of the 18-bit UNIBUS virtual address of the internal
buffer.

e R2 contains bits 16 and 17 of the 18-bit UNIBUS virtual address of the
internal buffer.

* The handler uses the address returned by ALLUMR (or some offset from
that address) to program the device for DMA I/O to/from the handler internal
buffer.

If the carry bit is set, insufficient UMRs are available for allocation and the
handler must fail its load code.

Once you have successfully called and returned from ALLUMR, your handler code
should confirm that the FETCH/LOAD succeeded. If the fetch/load operation fails
after successfully returning from ALLUMR, you must call RLSUMR to free the
allocated UMRs.

2.13.3.3 Explicitly Obtaining Temporary UMRs (GETUMR)

Device handlers that support nonstandard .SPFUN I/O DMA operations to or from
a user buffer must call GETUMR to explicitly obtain temporary UMRs to service
those requests. The temporary UMRs are automatically released after the request
is serviced. The handler uses the GETUMR routine, described in this section, to
obtain the UMRs. Be sure to call GETUMR before removing the queue element
from the handler’s current queue element (xxCQE) list.

The handler supports explicit UMR allocation for nonstandard special functions by
using the .DRBEG NSPFUN=nspsym parameter and a list of those functions. The
nspsym argument is a unique symbol name that is the same as the label at the list
of those functions. The list is structured in the same manner as that used for the
.DRSPF extension table method. However, unlike the .DRSPF macro, no pointer to
the list resides in block 0 of the handler and the concept of special function type has
no meaning and is not included.

The list of nonstandard special functions must continuously reside in the low-
memory portion of the handler whenever the handler is loaded. Also, the handler
must call GETUMR (with a word count of zero) even when a listed nonstandard
special function performs no I/O and no UMRs are needed.

Defining special functions for explicit UMR allocation is illustrated in the example
program in this section.

The handler calls the GETUMR routine, which resides in UB, to obtain temporary
UMRs. You reference the UB entry vector through the $H2UB fixed offset (460) in
RMON. The GETUMR routine is located at the address pointed to by $H2UB (offset
0).

2-86 RT-11 Device Handlers Manual

Use the following procedure to explicitly obtain temporary UMRs:

1. Before calling GETUMR, set up the following registers:

Register

Contents

RO

R1

R2

R3

R4

Number of words to be transferred; the word count. If no DMA I/O
is to be performed by this request, R0=0.

Contents determined by R3:

R3 =0 R1 contains the Q.PAR value that is calculated by the
handler. RMON cannot calculate the Q.PAR value because
the special function’s buf parameter contains a nonstandard
argument.

R3 =1 RI1 contains bits 0-15 of the 22-bit physical memory base
address (word aligned).

Contents determined by R3:
R3 =0 R2 is unused.

R3 =1 R2 contains bits 16-21 of the 22-bit physical memory base
address.

Contents indicate the type of address being specified:

R3 =0 Address is PAR value, specified in R1. R2 is not used.

R3 =1 Address is 22-bit physical address, specified in R1 and R2.
Queue element offset Q. BLKN.

The contents of all unused registers are not defined or preserved across the call.

2. Within the device handler code that processes nonstandard special functions, call
the GETUMR routine. On return from GETUMR:

e If the carry bit is clear, the contents on return for R1 and R2 are defined by
the contents of R3 when GETUMR was called. If GETUMR is called with R3
= 0, on return, R1 contains the new Q.PAR equivalent value and R2 is not
defined. If GETUMR is called with R3 = 1, on return, R1 contains bits 0-15
and R2 contains bits 16 and 17 of the 18-bit UNIBUS virtual address.

e If the carry bit is set, UB is unable to immediately allocate the requested
UMRs for the queue element and the handler should simply return to the
monitor.

2.13.3.4 Explicitly Releasing Permanent UMRs (RLSUMR)

All permanent UMRs that are allocated by a handler must be explicitly released by
the handler when the handler is unloaded. A corresponding RLSUMR routine must
be called for each ALLUMR routine that was called.

Programming for Specific Devices 2-87

The RLSUMR routine, which resides in UB, releases permanent UMRs. You
reference the UB entry vector through the $H2UB fixed offset (460) in RMON.
The RLSUMR routine is offset 2 words ($H2UB+4) from the address pointed to
by $H2UB.

Use the following procedure to explicitly release permanent UMRs:

1. Before calling RLSUMR, set up the following register:

Register Contents

R1 The address of the 2-character RADS50 device handler name
specified in R4 of the corresponding ALLUMR routine. (The
contents of RLSUMR R1 match the contents of corresponding
ALLUMR R4.)

The contents of RO and R2—-R5 are not defined or preserved across the call.
2. Within the device handler RELEASE/UNLOAD code, call the RLSUMR routine.

On return from RLSUMR, all UMRs that were permanently allocated to the
handler by the corresponding ALLUMR routine are released.

2.13.4 Example (Skeletal) Handler

The following example skeletal handler illustrates the macros and routines required
to support UMRs.

. SBTTL CONDI TI ONAL ASSEMBLY SUMVARY

; COND
MVGBT = 1 Std conditional (XM only)
TI MBT Std conditional (no code effects)
ERL$G Std conditional (no code effects)
. ENDM

.MCALL .DRDEF .ASSUME . ADDR . DRSPF
. LI BRARY " SRC: SYSTEM'
.MCALL .SYCDF .FIXDF .HANDF .UBVDF .P1XDF

. SYCDF
. FI XDF
. HANDF
. UBVDF
. PLXDF

; UB Definitions
XB internal DMA buffer equates
BUFSI Z =: 20000 ; Size of XB internal DVA buffer
NOUMRS =: <BUFSI Z+7777/10000> ; Nunber of pernmanent UMRs required

; Special function definitions

; Al special functions are DVA except for FN$SIZ and FN$VPM
; FNSVWRT AND FNSRED go in UBTAB. FN$REP uses a permanent UWR
; FMBNSP i s nonstandard so it goes in UBNTAB.

2-88 RT-11 Device Handlers Manual

FN$MPM =: 370 ; Illustrate use of $MPMEM (not DMA)
FNSNSP =: 371 ; Nonstandard SPFUN (DMA to

;user buffer)
FN$SI z =: 373 ; Get device size (not DWVA)
FNSREP =: 374 ; Force reread of replacenment table
FNSWRT =: 376 ; Absolute wite (no bad bl ock)
FN$SRED =: 377 ; Absolute read (replacenent)
. DRSPF <FN$MPM> ; Illustrate use of $MPMVEM
. DRSPF <FN$NSP> ; Nonst andard SPFUN (DMA to

; user buffer)
. DRSPF <FN$SI 2> ; Get device size
. DRSPF <FN$REP> ; Force reread of replacenent table
. DRSPF <FN$WRT> ; Absolute wite (no bad bl ock)
. DRSPF <FN$RED> ; Absolute read (replacenent)

; DRDEF' S serial argument nust be set equal to yes since XB calls

; GETUMR and depends on receiving queue el enents from RMON in serial order.
; Calls to GETUWR can interfere with the serial ordering of queue elenents
; unless "SERIAL = YES" is specified here.

. DRDEF XB, 0, SPFUN$, 0, 0, 0, DVA=YES, PERMUMR=NOUNRS, SERI AL=YES
. DRPTR FETCH=FETCH, LOAD=FETCH, RELEASE=RELEAS, UNLOAD=RELEAS
. DREST CLASS=DVC. NL

Start of handler

. DRBEG XB, SPFUN=UBTAB, NSPFUN=UBNTAB
XBBASE=XBSTRT+6
BR BEG N ; Branch around data area

, Data area

$ENTPT: . WORD
$PNVPT: . WORD
H2UB: . WORD
XBSLOT: . WORD
XBENT: . WORD
XBPNA: . WORD

; Pointer to $ENTRY table

Pointer to $PNAME table

Poi nter to UBVECT

XB' S offset in device tables
XB' S $ENTRY table entry pointer
XB'S $PNAME tabl e entry pointer

[eNeoloNoNoNa]

;T
; Definition of the handler internal buffer and the words that are
; used to program DVA devices that transfer data to and fromit.

XBDBUF: . WORD BUFSI ZE ; XB DVA buffer - it is
; mapped by pernmanent UMRs
BUFADH: .WORD 0 ; Bits 0-15 of UNIBUS virtual
;. Pointer to XBDBUF
BUFADL: . WORD 0 ; Bits 16-18 of UNI BUS virtual

; Pointer to XBDBUF

; Table of standard DVA SPFUNs that do DVA transfers to areas of

nmenory not mapped by XB's permanent UVRS. UB will intercept these requests
; and assign tenporary UVRs to themin the same manner as for .READx and
;. WRI Tx requests.

UBTAB: .DRSPF -, <FN$SWRT> ; Absolute wite, no bad bl ock
.DRSPF -, <FN$RED> ; Absolute read (repl acenent)
.WORD O ; Tabl e term nator

; Tabl e of nonstandard DMA SPFUNs that do DVA transfers to areas of

; menory not mapped by XB' s permanent UVRs. XB MUST explicitly allocate
; UMRs for the nonstandard SPFUNs |isted here by calling UB's GETUMR

; routine. |If no DVA transfer will take place (because of error, for

; exanple) XB should call GETUMR with a word count of 0. |F XB processes
; a nonstandard DVMA SPFUN |isted in UBNTAB without calling GETUWR,

; the job’s 1/0O streamwi |l hang.

UBNTAB: .DRSPF -, <FN$NSP> ; DMA to user buffer
.WORD O ; Tabl e term nator

Programming for Specific Devices

2-89

BEG N:

FNNSP:

FNVPM

FNSI Z:
FNREP:
FNWRT:
FNRED:
XBRDWR:

XBEXI T:

RETURN:

XBI NT:

MoV XBCQE, R4 ; Point to current queue el enent
MOVB BFUNC(R4) , R2 ; Get function code / unit nunber
CVPB R2, #FNSMPM ; Dispatch to function routine
BEQ FNVPM

CwPB R2, #FN$NSP

BEQ FNNSP

CVPB R2, #FN$SI Z

BEQ ENSI Z

BEQ FNWRT

CvPB R2, #FN$RED

BEQ FNRED

TST R2 ; Nornmal request?

BNE XBEXI T ; No, unknown SPFUN

BR XBRDVR ; Yes, process read,wite

Routi nes to perform SPFUN operations
at entry, R4 -> queue el ement

MOV #4000, RO ; RO = word count

MOV BPAR(R4) , R1 ; Get address from QEL

MoV @*$SYPTR, R3 ; Get start of RMON

MoV $H2UB(R3) , RS ; R5 = UB entry vector

CLR R3 ; Address type is PAR val ue

CALL UB. GET(R5) Try to get UMRS
(Note that at time of call, the

Queue el enent nust be on xxCQE)

BCS RETURN Unabl e to get UMRs-do sinple RETURN
; Got UMRs, initiate transfer
BR XBEXI T ; DRFIN because this is an exanpl e

Handl er and there are really no
Interrupts associated with it.

If there were, the DRFIN would be
I ssued at interrupt time when

; The DMA transfer is finished.

; This is true for the other SPFUN
; Routines below, as well.

This routine illustrates howto call $MPMEM $MPMEM i s used

to map KT-11 virtual addresses (as described by Q MEM and Q BUFF
of fsets in the queue element) to 18 or 22-bit physical addresses.
$MPMEM nust be used for this purpose instead of $MPPHY when the
handl er has DVA = YES. (Wien DVA = NO, the handl er may use
either $MPMEM or $MPPHY.)

At entry: R4 -> Q BLKN of fset in queue el ement
MoV @$SYPTR, R3 ; Get start of RMON
MOV P1$EXT(R3) , R3 : R3 -> $P1EXT
MoV R4, RS ; Make R5 -> 5TH word (Q BUFF) of
CwP (R5) +, (R5) + ; Queue el enent
CALL $MPMVEM R3) ; Map KT-11 virtual to physical
MoV (SP) +, R2 ; R2 = low 16 bits physical address
MoV (SP) +, R3 ; RB=HGH 2 (OR 6) bits physical
; address
; Fall through to DRFIN
.DRFIN XB ; Return to nonitor, done with
; queue el enent
RETURN ; Return to nonitor, not done with
; queue el enent
; Dummy ISR for XB
.DREND XB

2-90 RT-11 Device Handlers Manual

FETCH:

+

30%:

. ENABL
RELEAS: :

. END

FETCH

ENTRY:

Al | ocate pernmanent UVRs to point
XBDBUF and XBFI LL,

MoV
ADD
CLR
MoV
MoV
MoV
MoV
CALL
MoV
BCS
MoV
MoV
CLC
RETURN

RELEAS
Routi ne

Entry:

LSB

SuB

CALL
RETURN

. SBTTL FETCH LOAD CODE

Starting address of this handler service routine.

Val ue $SLOT*2. (length of the $PNAME table in bytes.)

Save PTR to XB' S $ENTRY sl ot
Get address of XBLQE
Get start of RMON

RO =

Rl = Address of GETVEC routine.
R2 =

R3 = Type of entry.

R4 = Address of SY read routine.
R5 -> $ENTRY slot for this handler.
R5, R1 ;

@r1, RO ;

@*$SYPTR, R4 ;
$H2UB(R4) , R3

R3, <H2UB- XBBASE>(R0)
$PNPTR(R4) , R3

R4, R3

R3, <$PNVPT- XBBASE>(R0)
R2, R3

R3, <SENTPT- XBBASE>(R0)
R5, <XBENT- XBBASE>(R0)
R2, R5

R5, <XBPNA- XBBASE>(R0)

#<XBDBUF- XBBASE>, R1
RO, R1

rR2

<XBPNA- XBBASE>(R0) , R4
<H2UB- XBBASE>(R0) , R5
RO, - (SP)

R1, <BUFADL- XBBASE>(R0)
R2, <BUFADH XBBASE>(R0)

to unl oad XB

sane as for |oad.

R5, RL
R2, RL
@$SYPTR, R4
$H2UB(R4) , R5
UB. RLS(R5)

R3 = UBVECT poi nter

H2UB = address of UBVECT

R3 = RMON of fset to PNAME table
R3 -> PNAME tabl e address
$PNVPT -> PNAME t abl e address

R3 -> $ENTRY tabl e

$ENTPT -> $ENTRY table

XBENT -> XB'S $ENTRY table entry
R5 -> XB'S $PNAME table entry
XBPNA -> XB'S $PNAME table entry

into XB's internal DVA buffers,
and get the UNIBUS virtual address.

Rl = LON 16 bits of DMABUF address

R2 = HHGH 6 Bits of DMABUF address
R4 -> PNAME entry for XB

Get UB entry address

Save XB starting address

RO = nunber of UWVRS required

Cal | ALLUMR

Restore XB starting address
Couldn’t get UWR fail the |oad
Store UNIBUS virtual address |ow
Store UNIBUS virtual address high
Load succeeded

Rl = $ENTRY slot for DM
R2 -> $PNAME SLOT for DM
Cet start of RMON

R5 = UB entry vector

Rel ease UVRs

And exit

Programming for Specific Devices

2-91

2.14 VM (Virtual Memory Handler)

This section contains specific programming information for the VM device. The
Introduction to RT-11 contains complete information on using the VM device. You
should read the VM chapter in the Introduction to RT-11 first.

The VM handler installation code determines the size of memory when the handler
is installed. After determining the size of memory, the handler installation code
reserves all extended memory above the handler’s base address. The handler does
not need to perform this operation each time it is loaded, thereby speeding the
handler load process.

If you do not want to use VM and do not want VM to reserve memory for its own
use, you have several options. You can remove the VM handler from your system
disk so that it will not be installed when you bootstrap your system. You can set the
base address above the high limit of available memory, which will prevent handler
installation. Or, you can put a command in your startup command file to remove
the VM handler from your system after the bootstrap has installed it. Otherwise,
the VM handler installation code will always reserve extended memory for its own
use, thereby making it unavailable to your program.

The base address (n) used in the SET VM BASE=n command is the desired base
address in octal, divided by 1005. For example, the value 1600 sets the base address
at the 28K-word address boundary, or 10000 sets the base address at the 128K-
word address boundary; any other value between 1600 and the physical memory
high limit is also acceptable. Lowering the value at which you set the VM base
increases the region size. The table below gives a list of some K-word memory sizes
and corresponding values for n.

K-words N

28 1600
32 2000
64 4000
96 6000
128 10000
256 20000
512 40000
1024 100000

Figure 2—-8 shows a 22-bit system with a VM base address of 10000 (128K words).

If you are using a mapped monitor and your hardware does not have 22-bit
addressing, the default VM handler will not install; you will have to change the
base address to a lower value before using VM with your mapped system. You can

2-92 RT-11 Device Handlers Manual

Figure 2-8: VM Handler in a 22-Bit System

~—— Up to 2044K words (22-bit addressing)

Space available for use as VM
~<«—— volume if base address is set
at 128K-word boundary

- 128K-word boundary

-~—— Space available for use by XM programs

-«— 28K-word boundary
RMON,
low

memory

Figure 2-9: VM Handler in an 18-Bit System

-~ Up to 124K words (18-bit addressing)

Space available for use as VM
-«—— volume if base address is set
at 60K-word boundary

-«— 60K-word boundary

~«——— Space available for use by XM programs

-«— 28K-word boundary
RMON,
low
memory

still use extended memory for both an extended memory program and a VM volume,
but the space available for one will be reduced by the space occupied by the other.
Refer to Figure 2-9, showing an 18-bit system with the VM base address set to 3600
(60K words).

Programming for Specific Devices 2-93

2.15 XC and XL (Communication Port (VTCOM) Handlers)

XC and XL are non-file-structured communications handlers. They support the
virtual terminal communication package, VITCOM. However, their design does not
preclude their use in other communication programs. The XC handler supports the
CTI Bus-based computer communication port. The XL handler supports a variety
of ports. See the RT-11 Software Product Description (SPD), included with your
documentation set, for a list of supported ports.

XC or XL (depending on your system) is required when you use VTCOM.

XC and XL support the VI'COM utility, using .READx, .WRITx, and .SPFUN
programmed requests.

2.15.1 .READx and .WRITx Support

The XC and XL handlers support the .READ, .READC, .READW, .WRITE, .WRITC,
and .WRITW requests. You use the .READx and .WRITx requests with XC and XL
handlers as described in the RT-11 System Macro Library Manual. Note, however,
the following additional information:

* You should specify the value 0 in the blk argument for the first request to XC or
XL. All subsequent calls should specify a nonzero value for the blk argument.

* NULL characters are ignored by XC and XL during both .READs from and
.WRITEs to the handlers.

* XC and XL pass only 7-bit data. The eighth (high-order) bit is stripped from each
byte.

2.15.2 Special Functions (.SPFUN) Support

In general, the XC and XL handlers support the .SPFUN request as described in
the RT-11 System Macro Library Manual. Note, however, the following general
information:

* You should specify the value 0 in the blk argument for the first request to XC or
XL. All subsequent calls should specify a nonzero value for the blk argument.

e NULL characters are ignored by the XC and XL handlers; NULL characters are
not stored or sent. However, SF.SRD (code 203) uses a NULL character to signal
the end of available data (see SF.SRD in Table 2—-28).

e XC and XL pass only 7-bit data. The eighth (high-order) bit is stripped from each
byte.

The XC and XL handlers support the following special function codes. Specific
information about using each special function is included in the description for that
request.

2-94 RT-11 Device Handlers Manual

Table 2-28: XC/XL Special Function Codes

Code Name Description

201 SF.CLR Resets the internal flag, indicating a received XOFF. Then sends an XON
to the host.

Example:
. SPFUN #ar ea, #chan, #SF. CLR, #buf , #wcnt , #bl k[, #crtn] [, BMODE=str] [, CMODE=st r]

202 SE.BRK Sets or resets the state of the BREAK bit in the serial interface. Transition
of the BREAK bit from 0 to 1 to 0 can get the attention of certain
communications devices, such as terminal concentrators.
The went argument is a flag that indicates whether the BREAK bit should
be set or reset. Specify a value of 1 for the went argument to set the
BREAK bit; specify 0 to reset it. Digital recommends you use some time
delay between turning the bit on and turning it off; do that by sending one
or two characters.
Examples:
To turn on (set) the BREAK bit:
. SPFUN #ar ea, #chan, #SF. BRK, #buf , #1, #bl k[, #crtn] [, BMODE=str] [, CMODE=st r]
To turn off (reset) the BREAK bit:
. SPFUN #ar ea, #chan, #SF. BRK, #buf , #0, #bl k[, #crtn] [BMODE=str] [, CMODE=st]

203 SF.SRD Performs a special read from the handler. The wcnt argument specifies

the number of bytes to be read. The read is completed when one of the
following conditions is met:

¢ The number of bytes specified in the wcnt argument have been
transferred.

¢ The available characters have been transferred, when the number of
available characters was less than the value specified in the wcnt
argument.

¢ One character has been transferred, when no characters were available
when the request was issued.

The byte following the last transferred character contains a NULL. You
must allow for that NULL byte in your buffer.

Example:

The following example reads no more than six (but at least one) characters
from XC or XL and places them in the buffer RCVBUF. RCVBUF must be
at least seven bytes in length to receive the six characters and the NULL
byte.

. SPFUN #ar ea, #chan, #SF. SRD, #RCVBUF, #6, #bl k[, #crtn] [, BMODE=str] [, CMODE=st r]

Programming for Specific Devices 2-95

Table 2-28 (Cont.): XC/XL Special Function Codes

Code Name Description

204 SF.STS Returns the driver status in the first word of the specified buffer. SF.STS
always returns one word.

The high byte of the returned word contains the driver support level. The
driver support level number will be updated as support is changed in the
XC and XL handlers. Programs should verify operation with an established
driver support level. The current (V5.6) driver support level is 18;.

The low byte contains the status of two internal flags and a modem control
signal. The significant bits of the low byte are:

Bit Meaning

Set if an XOFF has been sent to the host.
Set if an XOFF has been received from the host.
Set if the CLEAR TO SEND line is set.

Set if Carrier Detect is high (on); clear if Carrier Detect is low

(off).

4 Set if Ring Indicator is high (on); clear if Ring Indicator is low
(off).

5-7 Reserved.

w N = O

Example:

The following example returns the driver support level in the high byte and
the status of internal flags in the low byte of the 1-word buffer STATUS.

. SPFUN #ar ea, #chan, #SF. STS, #STATUS, #1, #bl k[, #crtn] [, BMODE=str] [, CMODE=st]

205 SF.OFF Sets a flag that disables interrupts when the program exits. Digital
recommends you issue .SPFUN SF.OFF before your program exits.

Example:

. SPFUN #ar ea, #chan, #SF. OFF, #buf , #wcnt , #bl k[, #crtn] [, BMODE=str] [, CMODE=st r]

2-96 RT-11 Device Handlers Manual

Table 2-28 (Cont.): XC/XL Special Function Codes

Code Name Description

206 SFEDTR Sets or resets the state of the DTR modem control signal. Setting
(asserting) DTR can cause modems to answer an incoming call. Resetting
(deasserting) DTR can cause modems to terminate a current call. DTR
can also get the attention of certain communications devices, such as the
Mini-Exchange. Specify a value of 1 for the went argument to set the DTR
control signal; specify 0 to reset the DTR control signal.

Not all interfaces support the DTR control signal. On interfaces that do
not support DTR, the setting or resetting of DTR has no effect.

Example:
The following example sets the DTR control signal:

. SPFUN #ar ea, #chan, #SF. DTR, #buf , #1, #bl k[, #crtn] [, BMODE=str] [, CMODE=str]

The following example resets the DTR control signal:

. SPFUN #ar ea, #chan, #SF. DTR, #buf , #0, #bl k[, #crtn] [, BMODE=str] [, CMODE=st r]

2.15.3 EOF (End-of-File) Detection

A CTRL/Z within data being read is treated as end-of-file (EOF) by the .READ
request. At least two .READ requests are necessary to return the EOF error (carry
bit set and byte 52 containing error code 0). The first .READ request transfers into
your buffer all data up to (but not including) the CTRL/Z. The rest of the buffer
is padded with nulls. A second .READ request is required to get the EOF error.
Subsequent .READ requests can return additional characters.

Programming for Specific Devices 2-97

Appendix A
DX, DL, and XL Device Handlers

This appendix contains annotated assembly listings of the commented DX, DL, and
XL device handler source files. Besides showing good handler writing practice and
demonstrating the various device handler macros, each listing illustrates certain
specific device handler features:

* DX illustrates a fairly simple serial device handler.
¢ DL illustrates software bad block replacement.
¢ XL illustrates internal queuing and multiterminal handler hooks.

Each device handler was assembled with both SYSMAC.SML and SYSTEM.MLB.

Figure A-1: DX Diskette Handler

DX - RX01 Fl oppy Di sk Handl er MACRO V05.05 Tuesday 26-Feb-91 14:15

Tabl e of contents

3- 1 CONDI TI ONAL ASSEMBLY SUMVARY
4- 1 DEFI NI TI ONS
5- 1 | NSTALLATI ON CHECKS
6- 1 SET OPTI ONS
7- 1 DRI VER REQUEST ENTRY PO NT
8- 1 START TRANSFER OR RETRY
9- 1 SI LOFE - FILL OR EMPTY THE SILO
10- 1 TABLES, FORK BLOCK, END OF DRI VER
11- 1 BOOTSTRAP DRI VER
1 000001 my$t= 1
. MCALL . MODULE
2 000000 . MODULE DX, VERSI ON=17, COMMENT=<RX01 Fl oppy Di sk Handl er >, AUDI T=YES
3
4 ; COPYRI GHT (c) 1989 BY
5 ; DI G TAL EQUI PMENT CORPORATI ON, MAYNARD, MNASS.
6 ; ALL RI GHTS RESERVED
7 ;
8 ; TH'S SOFTWARE | S FURNI SHED UNDER A LI CENSE AND MAY BE USED AND COPI ED
9 ;ONLY |IN ACCORDANCE WTH THE TERMS OF SUCH LICENSE AND W TH THE
10 ; INCLUSI ON OF THE ABOVE COPYRI GHT NOTICE. TH S SOFTWARE OR ANY OTHER
11 ; COPI ES THEREOF MAY NOT BE PROVI DED OR OTHERW SE MADE AVAI LABLE TO ANY
12 ; OTHER PERSON. NO TI TLE TO AND OANERSHI P OF THE SOFTWARE | S HEREBY
13 ; TRANSFERRED.
14 ;
15 ; THE | NFORMATION IN THI'S SOFTWARE | S SUBJECT TO CHANGE W THOUT NOTI CE
16 ; AND SHOULD NOT BE CONSTRUED AS A COWM TMENT BY DI G TAL EQUI PMENT
17 ; CORPORATI ON.

DX, DL, and XL Device Handlers A-1

18 ;
19 ; DI G TAL ASSUMES NO RESPONSI BI LITY FOR THE USE OR RELIABILITY OF ITS
20 ; SOFTWARE ON EQUI PMENT THAT 1S NOT SUPPLI ED BY DI G TAL.

CONDI TI ONAL ASSEMBLY SUMVARY

1 . SBTTL CONDI TI ONAL ASSEMBLY SUMVARY
2 v+
3 ; COND
4 ; DXT$O (0) Two controller support
5) 0 support 1 controller
6 ; 1 support 2 controllers
7
8 ; DX$CSR (177170) primary CSR
9 ; DX$CS2 (177174) second CSR
10 ;
11 ; DX$VEC (264) primary Vector
12 ; DX$VC2 (270) second Vect or
13 ;
14 : MGST std conditional
15 ; TIMBIT std conditional (no code effects)
16 ; ERL$G std conditional
17 -

Preamble Section
. SBTTL DEFI NI TI ONS

.ENABL LC

A WNE

Monitor offsets and SYSCOM locations are defined with mnemonics so that
references to them can be found easily:

5 ; SOME RT-11 MACRCS WE W LL USE
6
7 .MCALL .DRDEF .ASSUME .BR . ADDR
8
9 000342 . DSTATUS=: 342 ; EMT code for .DSTATUS
10 000375 . READ =:375 ; EMI code for .READ
11 000010 ..READ =:010 ; subcode for .READ
12 000375 .WRITE =:375 ; EMI code for .WRI TE
13 000011 LWRIT =011 ; subcode for .WRITE
14
15 000017 SYSCHN =:17 ; system channel
16
17 ; RT-11 SYSCOM LOCATI ONS
18
19 000044 JSW =144 ; JOB STATUS WORD
20 000054 SYSPTR =:54 ; PO NTER TO BASE OF RMON
21 000432 P1EXT =: 432 ; OFFSET FROM $RMON TO EXTERNAL ROUTI NE
22

If DXT$0=1, there are two controllers:

23 ; RX01 CONTROLLER DEFAULTS

24

25 .II'F NDF DXTO, DXT0=0 ; DEFAULT TO ONLY ONE CONTROLLER
26

27 .1 F NDF DX$CS2, DX$CS2 == 177174 ; 2ND CONTROLLER CSR

28 .1 I'F NDF DX$VC2, DX$VC2 == 270 ; 2ND CONTROLLER VECTOR

29

The .DRDEF macro (with macro expansion):

A-2 RT-11 Device Handlers Manual

30 000000

. MCALL
. MCALL

. DRDEF DX, 22, FI LST$! SPFUN$! DX$COD, 494. , 177170, 264, DMA=NO
. DRAST, . DRBEG, . DRBOT, . DREND, . DREST, . DRFI N, . DRFNMS, . DRFMTI
. DRI'NS, . DRPTR, . DRSET, . DRSPF, . DRTAB, . DRUSE, . DRVTB

. MCALL
F NDF RTE$M RTE$M=0

F NE RTE$M RTE$M=L

F NDF TIMSI T TI M5l T=0
F NE TIMIT TI MBI T=1
F NDF MMVGST MVG$ST=0

F NE MVGST MVGHT=1

F NDF ERL$G ERL$G=0
F
F
L
F
F
|

. FORK, . GELDF

000001

NE ERL$G ERL$G=1
NE TIMBI T, .MCALL

000000 GE
|
|

000001
000000 Q
000002 Q

000004 Q BLKN=:
000006 Q

000007
000007
000010
000012
000014

T
C
N~No N

Q BUFF=: 010
Q WCNT=: "012
Q COwP=: "014

@' X=: Q' X-"04

DX - RX01 Floppy Di sk Ha.ndl er
DEFI NI TI ONS

177774
177776
000000
000002
000003
000003
000004
000006
000010

@BLI NK=: Q LI NK- ~04
@BCSWE: Q CSW o4
@BLKN=: Q BLKN- 204
@BFUNC=: Q FUNC-"04
QBINUME: Q JNUM o4
GBUNI T=: Q UNI T-~04
@BUFF=: Q BUFF- 04
@WCNT=: Q VWCNT- ~04
@BCOVP=: Q COWP-"04
I F EQ MVGST

Q ELGH=: "016

. FF

Q PAR=: "016

Q MEME: 2020

. IRP X, <PAR, NEM>
Q' X=: Q' X-"04

. ENDR

QBPAR=: Q PAR-"04
GBMEME: Q MEM " 04
Q ELGH=: 024

. ENDC

HDERR$=: 1

ECF$=: 7020000
VARSZ$=: ~0400

ABTI O$=: ~01000
SPFUN$=: 202000
HNDLR$=: 204000
SPECL$=: 7010000
WONLY$=: 7020000
RONLY$=: ~040000

FI LST$=: ~0100000
DXDSI Z=: 494.
DX$COD=: 22

DXSTS=: <22>! <FI LST$! SPFUN$! DX$COD>
.1 F NDF DXVEC, DXVEC=264
.GLOBL DX$VEC

000016
000020

000012
000014
000024

000001
020000
000400
001000
002000
004000
010000
020000
040000
100000
000756
000022
102022

The .DRPTR macro with no parameters:

31 000200 . DRPTR

.TIMG,.CTIM

X, <LI NK, CSW BLKN, FUNC, JNUM UNI T, BUFF, WCNT, COVP>

MACRO V05. 05 Tuesday 26-Feb-91 19:46 Page 4-1

The .DREST macro to define handler class and class modifier:

DX, DL, and XL Device Handlers

A-3

32 000022 . DREST CLASS=DVC. DK, MOD=DVM DX

The .DRSPF macro to define supported special functions:

33 000076 . DRSPF <377> ; Read Absol ute

34 000032 . DRSPF <376> ;Wite Absolute

35 000032 .DRSPF <375> ;Wite Del eted

36

37 ; CONTROL AND STATUS REG STER BI T DEFI NI TI ONS

38

39 000001 CS®O = 1 ; I NIETI ATE FUNCTI ON

40 000020 CSUNIT = 20 JUNIT BIT

41 000040 CSDONE =: 40 ;DONE BI' T

42 000100 CSI NT =: 100 ; | NTERUPT ENABLE

43 000200 CSTR =: 200 ; TRANSFER REQUEST

44 004000 CSRX02 =: 4000 ; CONTROLLER |'S RX02 (ALWAYS 0)
45 040000 CSINIT =: 40000 ; RX11 I NI TI ALI ZE

46 100000 CSERR =:100000 ; ERROR

47

48 ; CSR FUNCTION CODES IN BITS 1-3

49

50 000000 CSFBUF =:0*2 ;0 - FILL SILO (PRE-WRI TE)

51 000002 CSEBUF =:1*2 ;1 - EMPTY SILO (POST- READ)
52 000004 CSWRT =:2*2 ;2 - WRITE SECTOR

53 000006 CSRD =:3%2 ;3 - READ SECTOR

54 ;4 - UNUSED

55 000012 CSRDST =:5*2 ;5 - READ STATUS

56 000014 CSWRTD =:6*2 ;6 - WRITE SECTOR W TH DELETED DATA
57 000016 CSMAIN =:7*2 ;7 - MAI NTENANCE

58

59 000002 CSREAD =: CSEBUF&CSRD&CSRDST&CSMAI N

60

61 000032 . ASSUME CSRD&2 NE O ;2 BIT MUST BE ON | N READ

62 000032 . ASSUME CSWRT&2 EQ O ;2 BIT MUST BE OFF | N WRI TE

63 000032 . ASSUME CSWRTD&2 EQ O ;2 BIT MUST BE OFF IN WRI TE

64

65 ; ERROR AND STATUS REGQ STER BI T DEFI NI TI ONS

66

67 000001 ESCRC =: 1 ; CRC ERROR

68 000002 ESPAR =: 2 ; PARITY ERROR

69 000004 ESI D =: 4 ;I NI TI ALI ZE DONE

70 000100 ESDD =: 100 ; DELETED DATA MARK

71 000200 ESDRY == 200 ; DRI VE READY

72

73 ; ERROR LOG VALUES

74

75 000003 DXNREG =:3 ;# OF REG STERS TO READ FOR ERROR LOG
76 000010 RETRY =: 8. ; RETRY COUNT

77

78 100000 SPFUNC =: 100000 ; SPECI AL FUNCTI ONS FLAG

79 ; (I'N COMVAND WORD)

80

81 ; GENERAL COMVENTS:

82 ;

83 ; TH'S HANDLER SERVES AS THE STANDARD RT-11 RX01 DEVI CE HANDLER AS
84 ; BOTH THE SYSTEM DEVI CE HANDLER AND NON- SYSTEM HANDLER. | T ALSO PRO-
85 ;. VIDES THREE SPECI AL FUNCTI ON CAPABI LI TI ES TO SUPPORT PHYSICAL 1/0O
86 ; ON THE FLOPPY AS A FOREI GN VOLUME. THE SPECI AL FUNCTI ONS ARE:

87) CODE ACTI ON

88 ; 377 ABSCOLUTE SECTOR READ. WCNT=TRACK, BLK=SECTOR, BUFFER=65
89 ; WORD BUFFER OF WHICH WORD 1 | S DELETED DATA FLAG

90 ; 376 ABSCLUTE SECTOR WRI TE. ARGUMENTS SAME AS READ.

91 ; 375 ABSOLUTE SECTOR WRI TE W TH DELETED DATA. 1ST WORD

92) OF 65 WORD BUFFER ALWAYS SET TO 0.

93 ;

94 ;I N STANDARD RT-11 MODE A 2:1 INTERLEAVE IS USED ON A SI NGLE TRACK AND
95 ;A 6 SECTOR SKEW IS USED ACROSS TRACKS. TRACK 0 | S LEFT ALONE FOR
96 ; PROPCSED ANSI COWPATABI LI TY.

Installation checks:

A-4 RT-11 Device Handlers Manual

1 . SBTTL | NSTALLATI ON CHECKS
2
3 .| F EQ DXT$O
4 000032 .DRINS DX
5 I FF
6 .DRINS DX, <DX$CS2>
7 . ENDC ; EQ DXT$O
8
9 000200 000240 NOP ; SAME CHECK FOR SYSTEM AND NON- SYSTEM HANDLER
10 000202 032777 BIT #CSRX02, @ NSCSR ;| S THE RX02 BI T ON?
004000
177766
11 000210 001561 BEQ O GOoD i NOPE, IS AN RX01, INSTALL IT
12 000212 000561 BR O BAD ; YES, AN RX02, DON' T INSTALL IT
13
14 ; Routine to find the entry for DX in the nonitor device tables
15
16 000214 FI NDRV:
17 000214 . ADDR #DEVNAM RO ; RO- >DEVI CE NAMVE
18 000222 . ADDR #DAREA+1, - (SP) ; (SP) - >. DSTATUS | NFO AREA(+physi cal)
19 000230 104342 EMT . DSTATUS ;*** (. DSTAT #DAREA+1, #DEVNAM) ***
20 000232 103551 BCS O BAD ;1IN CASE | T''S NOT KNOMWN
21 000234 016701 MoV DAREA+4, R1 ; RETURN THE ENTRY PO NT
000010
22 000240 001145 BNE O GOCOD
23 000242 000545 BR O BAD ; UNLESS HANDLER S NOT LOADED
24
25 000244 DAREA: . BLKW 4 ;. DSTAT | NFORMATI ON BLOCK
26 000254 016300 DEVNAM .RAD50 /DX / ; DEVI CE NAME
27
28 ; The ent area for reads/wites of the handler is placed here
29 ; to leave roomfor code for the set options
30
31 000256 017 BAREA: .BYTE SYSCHN,..READ ; CHANNEL 17, READ
000257 010
32 000260 . BLKW ; BLOCK NUMBER
33 000262 . BLKW ; BUFFER
34 000264 000400 .WORD 256. ; WORD COUNT
35 000266 000000 .WORD O ; COVPLETI ON (WAI'T)
36
37
38 ; NOW ALTER THE CODE WHICH W LL BE WRI TTEN BACK TO DI SK
39 000270 X. WP:
40 000270 .ADDR #DXWPRO, RO ; RO-> THE WRI TE PROTECT TABLE
41 000276 060300 ADD R3, RO ; PO NT TO ENTRY
42 000300 112710 MOVB (PO +, (RO) ; AND SET I T THE WAY THE USER WANTS I T
43 000302 O WPF: .BLKW 1
44
45 ; NOW TO ALTER THE | N-CORE COPY OF THE PROTECTI ON TABLE
46
47 000304 004767 CALL FI NDRV ;1S THE HANDLER LOADED?
177704
48 000310 103521 BCS O. GOaD ; NOPE. . .
49 000312 023701 CwP @SYSPTR, R1 ;is this the system handl er?
000054
50 000316 101003 BHI 10% ; no, then leave 1-shot as is
51 000320 012761 MoV #100000, DXWL- DXLQE(R1) ; yes, set it
100000
000076
52 000326 10%:
53 000326 060301 ADD R3, R1 ;ADD I N UNI T OFFSET
54 000330 116761 MOVB O WPF, DXWPRO- DXLQE(R1) ; SET THE WRI TE- PROTECT STATUS
177746
000010
55 000336 000506 BR O GOOD
56
57 .I1F GT,<.-376> . ERROR ;| NSTALLATI ON CODE | S TOO LARGE;

The DX handler supports several SET options. Immediately following the
installation code, the .DRSET macro is used to define the parameter table for each
SET option:

DX, DL, and XL Device Handlers A-5

1 . SBTTL SET OPTI ONS
2
3 ; The wite-protect/enable SET
4 ; calling convention, i.e. the
5 ; passed in R1.
6
7 000340 .DRSET CSR, 160000,
8 000412 .DRSET VECTOR, 500,
9
10 .1 F NE DXT$O
11 .DRSET CSR2, 160000,
12 .DRSET VEC2, 500,
13 . ENDC; NE DXT$0O
14
15 000422 .DRSET RETRY, 127.,
16
17 .1 F NE ERL$G
18 .DRSET SUCCES, -1,
19 . ENDC ; NE ERL$G
20
21 000432 .DRSET WRITE, 1,
22
23 002256
24

opti on makes use of the new
unit nunber (DXn, n=0 if a space)

O CSR,
O VEC,

O CSR2,
O VEC2,

88 48

O RTRY, NUM

O. SUCC,

8

ow, NO

BTCSR = <DXEND- DXSTRT>+<BOTCSR- DXBOOT>+1000

The code to process each SET options follows the .DRSET macro calls. Normally, SET
options change only the disk-resident copy of a handler, not the memory-resident
copy. The DX handler SET options include special code to modify both the memory-
resident and the disk-resident copy of the handler.

25 000442 020003 O CSR Qw RO, R3 ;1S CSR I N RANGE? (>160000)

26 000444 103444 BLO O. BAD ; NOPE. . .

27 000446 010067 MoV RO, I NSCSR ; YES, | NSTALLATI ON CODE NEEDS | T
177524

28 000452 010067 MoV RO, DI SCSR ; FILL I N DI SPLAY CSR
177516

29

30 ; When the csr for units 0 and 1 is changed, the bootstrap nust

31 ; be altered such that it will use the correct controller.

32

33 ; R1- >READ/ VRl TE EMT AREA

34 000456 . ADDR #BAREA+4, R1 ; (BUFFER ADDRESS WORD)

35 ; BU LD ADDRESS OF BUFFER

36 000464 . ADDR #1000, R2 ; (WHICH WLL OVERWRI TE CORE

37 ; COPY OF BLOCK 1)

38 000472 010211 MoV R2, (R1) ; SET THE BUFFER ADDRESS

39 000474 012741 MoV #BTCSR/ 1000, - (R1) ; SET TO BLOCK NUMBER TO READ/ WRI TE
000002

40 ; (BOOT BLOCK THAT NEEDS MODI FI CATI ON)

41 000500 005741 TST -(R1) ; R1- >EMI' AREA

42 000502 010003 MoV RO, R3 ; SAVE CSR ELSEVWHERE, EMI' NEEDS RO

43 000504 010100 MoV R1, RO ; RO- >EMI' AREA FOR READ

44 000506 104375 EMT . READ **% (READW ***

45 000510 103422 BCS O. BAD

46 000512 010362 MoV R3, <BTCSR&777>(R2) ; SET THE NEW CSR
000256

47 000516 010100 MoV R1, RO ; RO->EMI' AREA FOR WRI TE

48 000520 .ASSUME ..READ+1 EQ . . WRIT

49 000520 105260 I NCB 1(RO) ; BUMP FROM ' READ' TO ' WRI TE'
000001

50 000524 104375 EMT .VRI TE *ExE(CWRITW ***

51 000526 103415 BCS O SYW ; SY: wite-locked

52 000530 010100 MoV R1, RO ; RO- >EMT AREA

53 000532 .ASSUME .. WRIT-1 EQ .. READ

54 000532 105360 DECB 1(RO) ; CHANGE FROM " WRI TE' TO ' READ
000001

55 000536 012760 MoV #1, 2(RO) ; OF BLOCK 1 OF HANDLER
000001
000002

56 000544 104375 EMI . READ *xx (READW ***

57 000546 103403 BCS O. BAD

58

59 . I F EQ DXT$O

60 000550 010367 MoV R3, RXCSA
000504’

A—6 RT-11 Device Handlers Manual

126
127

128

000554
000556
000560

000562
000562
000564
000566

000572
000574
000576

000600
000602
000604

000610

000612

000616

000620
000622
000624

000630
000632

000634
000636
000640
000640
000640

000644
000646

000652
000654

005727
000261
000207

011600
005200
122720
000001
001371
010016
000767

020003
103365
032700
000003
001362

010067
000000’

000756

020003
101355
010067
000034
001351
000751

000240
005003

010367
177436
010103
020327
000001
101341
000167
177410

O. GOOD:
O. BAD:

O SYW

O VEC2:

O. RTRY.

O. SUCC:

N. sucC

O WpP:

N. WP:

.| FF
MoV R3, DXCSR
. ENDC ; EQ DXT$O

TST (PO +

SEC
RETURN

MV @P, RO

I NC RO

CWPB #BR/ 400, (R0) +
BNE 0. BAD

MOV RO, @P

BR 0. BAD

cwe RO, R3
BHI S O. BAD

BIT #3, RO
BNE 0. BAD

.1 F EQ DXT$O

MOV RO, DXSTRT
I FF

MOV RO, DX$VTB
.ENDC ; NE DXT$0O
BR 0. GOOD
.IF NE DXT$O

cowe RO, R3
BLO O. BAD

MoV RO, DXCSR2
MoV RO, DI SCS2
BR O GOOD

CcwP RO, R3
BHI S O BAD

BIT #3, RO

BNE O. BAD

MoV RO, DX$VTB+6
BR O. GooD

. ENDC ; NE DXT$O

cwP RO, R3

BHI O BAD
MoV RO, DRETRY
BNE O GOoD

BR O BAD

. I F NE ERL$G

MoV #0, R3

MoV R3, SCSFLG
BR O. GOAD

. ENDC ; NE ERL$G
NoP

CLR R3

MoV R3, O WPF

MoV R1, R3

cwP R3, #DXT$O" 2+1
BHI O BAD

JwP X. WP

GOOD RETURN (CARRY CLEAR)
ERROR RETURN (CARRY SET)

copy return address
point to opcode at return
is it a BR xxx?

NO, old style SET
use alternate return (RET+2)
with carry set

VECTOR | N RANGE?
NOPE. . .
YES, BUT ON A VECTOR BOUNDRY?

NOPE. . .

YES, SET IT IN ENTRY AREA

PLACE I T IN MULTI - VECTOR TABLE

CSR I N RANGE?

NOPE. .

YES, PLACE IT I N CCDE
SET DI SPLAY CSR

VECTOR | N RANGE?

NOPE. . .

YES, BUT IS IT ON A VECTOR BOUNDARY?
NOPE. . .

YES, PLACE IN MULTI - VECTOR TABLE

ASKI NG FOR TOO MANY?
YES, USER | S BEI NG UNREASONABLE
NOPE, SO TELL THE HANDLER

OKAY | F NON- ZERO
CAN' T ASK FOR NO RETRI ES

;" SUCCESS' ENTRY PO NT

(MJUST BE TWO WORDS)
" NOSUCCES' ENTRY POl NT
ASSUME O SUCG+4 EQ N. SUCC

"WRI TE' ENTRY PO NT

CLEAR FLAG

"NOVRI TE. ENTRY PO NT
ASSUME O WP+4 EQ N. WP
SAVE THE USER S SELECTI ON

save unit nunber
ISITAVALIDUNIT

NOPE. .
go to rest of the code

DX, DL, and XL Device Handlers A-7

All of the code to process SET options must fit within the first block of the handler.
The following line tests to make sure that this condition is satisfied:

129 .II'F GT, <.-1000> . ERROR ; SET CODE | S TOO LARGE;

Header Section

1 . SBTTL DRI VER REQUEST ENTRY PO NT
2
3 .ENABL LSB
4
The .DRBEG macro:
5 000660 .DRBEG DX
1/0O Initiation Section
6 000014 000401 BR DXENT ; BRANCH AROUND PROTECTI ON TABLE
7
8 000016 DXWPRO.
9 000001 . REPT DXT$O+1
10 . BYTE 0,0
11 . ENDR
12 000020 .ASSUME . LE DXSTRT+1000
13
14 . I F NE ERL$G
15 SCSFLG . WORD 0 ; : SUCCESSFUL LOGA NG FLAG (DEFAULT=YES)
16 ; =0 - LOG SUCCESSES,
17 ; <>0 - DON T LOG SUCCESSES
18 .ASSUME . LE DXSTRT+1000
19 . ENDC ; NE ERL$G
20
21 .IF NE DXT$0O
22 .DRVTB DX, DX$VEC, DXI NT
23 .DRVTB , DX$VC2, DXI NT
24 . ENDC ; NE DXT$O
25
26 000020 DXENT:
27 .IF NE MVGHT
28 000020 013704 MOV @SYSPTR, R4 ; R4 -> MONI TOR BASE
000054
29 000024 016427 MoV P1EXT(R4), (PC)+ ; GET ADDRESS OF EXTERNALI ZATI ON ROUTI NE
000432
30 000030 000432 $P1EXT: .WORD P1EXT ; PO NTER TO EXTERNALI ZATI ON ROUTI NE
31 . ENDC ; NE MME$T
32
33 000032 012727 MOV (PO) +, (PC) + ; I NI TI ALI ZE RETRY COUNT
34 000034 000010 DRETRY: .WORD RETRY ;¢ RETRY MAXI MU
35 000036 .ASSUME . LE DXSTRT+1000
36 000036 000000 RXTRY: .WORD O ; CURRENT RETRY COUNT

The following instructions assemble the controller function to start up an operation
and sort out special functions.

37
38 000040 016703 MoV DXCQE, R3 ; GET PO NTER TO QUEUE ELEMENT
177744
39 000044 012305 MoV (R3)+, RS ; GET BLOCK NUMBER
40 000046 012704 MoV #CSRD! CSGO, R4 ; QUESS THAT CONTROLLER FUNCTI ON IS READ
000007
41 000052 . ASSUME (BBLKN+2 EQ QBFUNC
42 000052 112301 MOVB (R3)+, RL ; PICK UP SPECI AL FUNCTI ON CODE (SI GN EXTENDED)
43 000054 . ASSUME (BFUNC+1 EQ CQBUNI T
44 000054 112300 MOVB (R3) +, RO ; PICK UP THE UNI T NUMBER
45 000056 106200 ASRB RO SHIFT I T TO CHECK FOR ODD UNI' T
46 000060 103002 BCC 1% ; BRANCH | F EVEN UNI T
47 000062 052704 BI S #CSUNI T, R4 ; SELECT ODD UNI T FOR TRANSFER
000020
48 000066 1%:
49 .IF EQ DXT$O ; ONE CONTROLLER

A-8 RT-11 Device Handlers Manual

50 000066 132700 BI TB #6/ 2, RO ;ANY UNITS BUT 0 OR 1?

000003
51 000072 001163 BNE RXERR :BRANCH | F YES, ERRCR
52 IFF
53 MOV (PQ) +, - (SP) : ASSUME FI RST DX CONTROLLER
54 DXCSR =
55 .WORD DX$CSR
56 . ASSUME . LE DXSTRT+1000
57 ASRB RO SHIFT UNIT TO CHECK FOR SECOND CONTROLLER
58 BCC 2% :NOPE, FI RST CONTROLLER
59 MOV (PO +, (SP) : CHANGE CSR TO USE SECOND CONTROLLER
60 DXCSR2 =
61 .WORD DX$CS2
62 .ASSUME . LE DXSTRT+1000
63 28: MOV (SP) +, RXCSA
64 ASRB RO :BUT WAS IT UNIT 4 TO 7?2
65 BCS RXERR :ERROR | F SO
66 . ENDC ; EQ DXT$O
X 67 000074 . ASSUME QBUNI T+1 EQ QBBUFF
68 000074 012300 MOV (R3) +, RO : GET THE USER S BUFFER ADDRESS
69 000076 . ASSUME QBBUFF+2 EQ QSWCNT
70 000076 012302 MOV (R3) +, R2 : GET WORD COUNT
71 000100 100017 BPL 3% : POSI TI VE MEANS READ, SO ALL SET UP
72
73 : HERE TO CHECK |F UNIT I'S WRI TE- PROTECTED
74
75 000102 006327 ASL (PC) + : CHECK WRI TE ANYWAY ONE- SHOT
76 000104 000000 DXWL: .WORD . -. ;100000 MEANS WRI TE ANYWAY
77 000106 .ASSUME . LE DXSTRT+1000
78 000106 103412 BCS 33% : SKIP TEST | F WRI TE ANYWAY
79 000110 005046 CLR -(SP) :SET TO GET UNI T
80 000112 . ASSUME QBWCNT+2 EQ QSCOVP
81 000112 116316 MOVB QBUNI T- GBCOVP(R3), (SP) ; GET IT (PLUS OTHER CRUFT
177773
82 000116 042716 BIC #<7C3>, (SP) ; WHI CH VE DI SCARD NOW
177774
83 : ADD ADDRESS OF W\RI TE- PROTECT TABLE
84 000122 _ADDR #DXWPRO, (SP), ADD, TO UNI T OFFSET
85 000130 105736 TSTB @SP)+ : CHECK UNI T WRI TE STATUS
86 000132 001143 BNE RXERR ;1 TS WRI TE- PROTECTED, USER CAN T DO THI S
87 000134 . ASSUME CSRD-2 EQ CSWRT
88 000134 124444 33$: CWPB - (R4),-(R4) : CHANGE CSRD (3*2) TO CSWRT (2*2) FOR WRI TE

Ensure that a write equals a read code minus 2:

89 000136 . ASSUME CSVWRT EQ CSRD- 2

90 000136 005402 NEG R2 ; AND MAKE WORD COUNT POCSI Tl VE

91 000140 006301 3$: ASL R1 ; DOUBLE THE SPECI AL FUNCTI ON CCODE
92 000142 060701 ADD PC R1 ; FORM PI C REFERENCE TO CHGTBL

The codes for read and write operations stay the same. If the operation is for a special
function, this routine sets the sign bit of the function code word, and modifies the
function:

93 000144 066104 ADD CHGTBL-. (R1), R4 ; MODI FY THE CODE, SET SIGN BIT | F SPFUN
94 000150 8284712(; MoV R4, RXFUN2 ; SAVE THE FUNCTI ON CODE AND SPFUN FLAG
95 000154 (l)ggigg BM 7% ;| F SPFUN, GO DO SPECI AL SETUP

gz ; NORVAL 1/ 0O, CONVERT TO TRACK AND SECTOR NUMBER AND | NTERLEAVE

FILLCT indicates whether a multiple of four sectors has been written. If not, the
handler will later zero-fill to reach a multiple of four.

DX, DL, and XL Device Handlers A-9

99 000156 110267 MOVB R2, FI LLCT ; SAVE WORD COUNT I N CASE WE HAVE TO FI LL

000537
100 000162 105367 DECB FI LLCT ; EXTRA SECTORS ON WRI TE
000533
101 000166 006302 ASL R2 ; MAKE WORD COUNT UNSI GNED BYTE COUNT
102 000170 006305 ASL R5 ; NORVAL READ WRI TE. COVPUTE REAL SECTOR NUMBER
103 000172 006305 ASL R5 ; AS BLOCK*4
104 000174 012704 MoV (PO +, R4 ; LOOP COUNT FOR 8 BIT DI VI SI ON
105 000176 371 .BYTE -7,-26. ; COUNT BECOMES 1, -26 IN H GH BYTE FOR LATER
000177 346
106 000200 022705 4$: cwP #26.*200, R5 ; DOES 26 GO | NTO DI VI DEND?
006400
107 000204 101002 BHI 5% ; BRANCH | F NOT, C CLEAR
108 000206 062705 ADD #-26.*200, RS ; SUBTRACT 26 FROM DI VI DEND, SET C
171400
109 000212 006105 5$: ROL R5 ; SHIFT DI VI DEND AND QUOTI ENT
110 000214 105204 1 NCB R4 ; DECREMENT LOOP COUNT
111 000216 003770 BLE 4% ; BRANCH UNTI L DI VI DE DONE
112 000220 110501 MOVB R5, R1 ; COPY TRACK NUMBER 0: 75, ZERO EXTEND
113 000222 060405 ADD R4, RS ; BUWP TRACK TO 1-76, MAKE SECTOR<O
114 000224 010104 MoV R1, R4 ; COPY TRACK NUMBER
115 000226 006301 ASL R1 ; MULTI PLY
116 000230 060401 ADD R4, R1 , BY
117 000232 006301 ASL R1 ;6
118 000234 162701 6$: SuUB #26., Rl ; REDUCE TRACK NUMBER * 6 MOD 26
000032
119 000240 003375 BGT 6% ; TO FIND OFFSET FOR THI S TRACK, -26:0
120 000242 010167 MoV R1, TRKOFF ySAVE I T
000132
121 000246 000412 BR 8% ; GO SAVE PARAMETERS AND START
122
123 ; SPECI AL FUNCTI ON REQUEST, SET TRACK AND SECTOR AND BYTE COUNT
124

The routine passes a 65-word buffer. The first word is O if there is no deleted data

mark.
125 000250 000305 7%: SWAB R5 ; PUT PHYSI CAL SECTOR I N HI GH BYTE
126 000252 150205 Bl SB R2, R5 ; AND PHYSI CAL TRACK I N LOW BYTE
127 000254 012702 MOV #128.,R2 ; SET THE BYTE COUNT TO 128
000200
128
129 .IF EQ MVGT
130 CLR (RO) + ; CLEAR DELETED DATA FLAG WORD, BUMP USER ADDR
131 I FF
132 000260 016704 MOV DXCCQE, R4 . PO NT TO QUEUE ELEMENT AT Q BLKN
177524
133 000264 005046 CLR -(SP) ; STACK A ZERO AND STORE I T I N FI RST WORD OF
134 000266 004777 CALL @PTWRD ; BUFFER. NOTE THAT Q BUFF GETS BUMPED BY 2
000634
135 000272 005720 TST (RO) + ; ADD 2 TO OUR COPY OF USER BUFFER ADDRESS
136 . ENDC ; EQ WST
137
138 ;. MERGE HERE TO START OPERATI ON

Save the user virtual buffer address, the track, the byte count, and the PAR1 value
for mapped systems:

139

140 000274 010027 8$: MoV RO, (PC) + ; SAVE BUFFER ADDRESS

141 000276 000000 BUFRAD: .WORD O ;- USER VI RTUAL BUFFER ADDRESS

142 000300 010567 MoV R5, TRACK ; SAVE | T FOR STARTING I/ O
000126

143 000304 010227 MoV R2, (PC) + ; AND BYTE COUNT.

144 000306 000000 BYTCNT: .WORD O ;- BYTE COUNT FOR TRANSFER

145

146 IF NE MVGBT

147 000310 005723 TST (R3) + ; SKI P THE COVPLETI ON ROUTI NE ADDRESS

148 000312 011367 MoV @R3, PARVAL ; SAVE THE PARL VALUE FOR NMAPPI NG USER BUFFER
000542

149 . ENDC ; NE MVBT

150

151 000316 . BR RXINI T ; GO TO FORK LEVEL AND START IT UP

152

A-10 RT-11 Device Handlers Manual

153 .DSABL LSB

The calculations are done; the routine can now start an operation or a retry. Before
it starts, however, it arranges transfer routines for interrupt entry. To get to the
ready state, force one interrupt, then return to 1$:

1 . SBTTL START TRANSFER OR RETRY

2

3 .ENABL LSB

4

5 000316 012767 RXINIT: MWV #100000, RXI RTN ; SET RETURN AFTER | NI TI AL | NTERRUPT
100000
000172

6 000324 016704 MoV RXCSA, R4 ; ENSURE THAT WE PO NT TO THE CSR
000154

7 000330 000441 BR RXI ENB ; GO | NTERRUPT, RETURN TO 1$ LATER

8

9 000332 032700 1$: BIT #CSREAD, RO ; READ OR WRI TE FUNCTI ON?
000002

10 000336 001005 BNE 3% ;1 F READ, GO FILL THE SILO FROM DI SK

11 000340 004067 2%: JSR RO, SI LOFE ; WRITE, LOAD THE SI LO FROM THE USER BUFFER
000440

Parameters for SIOFE routine:

12 000344 000001 .WORD CSFBUF! CSGO ; FILL BUFFER COMIVAND
13 000346 112215 MOVB (R2) +, @5 ; MOVB TO BE PLACED IN-LINE IN SILOFE
14 000350 010115 MoV R1, @5 7 ZERO-FI LL I NSTRUCTI ON FOR SHORT WRI TES

The following routine changes a sector number to an interleaved sector number:

15 000352 116702 3$: MOVB SECTOR, R2 ; GET THE SECTOR NUMBER
000055
16 000356 003014 BGT 5% ; POSI TI VE MEANS SPFUN, DON T | NTERLEAVE
17 000360 162702 suB #-14. | R2 ; ADD 14 TO DO | NTERLEAVI NG
177762
18 000364 003003 BGT 4% IF >0, MAP -13:-1 TO 2:26, NOTE C=0
19 000366 062702 ADD #12.,R2 ; ELSE MAP -26:-14 TO 1:25
000014
20 000372 000261 SEC ; ADD 1 WHEN DOUBLI NG
21 000374 006102 4$: RCL R2 ; DOUBLE AND | NTERLEAVE, SECTOR 1:26
22 000376 062702 ADD (PO +, R2 ; ADD I N THE TRACK OFFSET, SECTCR -25: 26
23 000400 000000 TRKCOFF: .WORD O ;o TRACK OFFSET = TRACK*6 MOD 26, RANGE -26:0
24 000402 003002 BGT 5% ; NO MODULUS PROBLEMS
25 000404 062702 ADD #26., R2 ; FI X TO PUT SECTOR IN 1: 26 RANGE
000032
26 000410 010014 5%: MoV RO, @GR4 ; SET THE FUNCTION I N THE FLOPPY CONTROLLER
27 000412 105714 6$: TSTB @4 WALT FOR
28 000414 001776 BEQ 6% ; TRANSFER READY
29 000416 100161 BPL RXRTRY ; TRANSFER DONE W THOUT TRANSFER READY, ERRCOR
30 000420 110215 MOVB R2, @5 ; SET SECTOR NUMBER
31 000422 105714 7$: TSTB @4 WALT AGAIN FOR
32 000424 001776 BEQ 7% ; TRANSFER READY
33 000426 100155 BPL RXRTRY ; TRANSFER DONE W THOUT TRANSFER READY, ERROR
34 000430 112715 MOVB (PO +, @5 ; SET THE TRACK NUMBER
35 000432 000 TRACK: .BYTE O ; TRACK NUMBER
36 000433 000 SECTOR: .BYTE 0 ; SECTOR NUMBER, KEPT < 0 UNLESS SPFUN

Start the operation and return to the monitor:

37 000434 052714 RXIENB: BI'S #CSI NT, @4 : SET | E TO CAUSE AN | NTERRUPT VHEN DONE | 'S UP
000100

38 000440 000207 RETURN :RETURN, WE' LL BE BACK W TH AN | NTERRUPT

39

40 000442 016704 RXERR MOV DXCQE, R4 R4 -> CURRENT QUEUE ELENENT
177342

41 000446 052754 BI S #HDERRS, @ (R4) ; SET HARD ERROR | N CSW
000001

42 000452 000524 BR 13% :EXIT ON HARD ERROR

43

DX, DL, and XL Device Handlers A-11

Interrupt Service Section
The .DRAST macro:

44

000454

. DRAST DX, 5, RXABRT ; AST ENTRY PO NT TABLE

Drop to fork level rather than device priority because the routine is lengthy and it
needs all the registers.

45

000464

.FORK DXFBLK ; REQUEST FORK LEVEL | MVEDI ATELY

Load registers; if the transfer is successful, this routine dispatches to the appropriate
section for this interrupt. The three possibilities are: the first interrupt occurred; a
read operation completed; a write operation completed. (A seek operation is treated
as a zero-length read.)

46
47
48

49
50
51
52
53
54
55
56
57
58

59
60

The silo is a

61
62

63
64

000472
000474
000476

000502
000504
000506
000506
000510
000512
000514
000516
000520
000522

000526
000530

000532
000534

000540

012700
000000
012703
000200
012704
177170

010405
005725
100523
006327
000000
103704
032700
000002
001442
005700

RXI RTN.

MOV (PO +, RO ; GET A VERY USEFUL FLAG WORD

.WORD 0 ; ¢ READ OR WRI TE COMWWAND ON CORRECT UNI'T
MoV #128. ,R3 ; LOAD A HANDY CONSTANT
MoV (PO +, R4 ; GET ADDRESS OF RX CONTROLLER

.WORD DX$CSR ; - ADDRESS COF CONTROLLER

. ASSUME . LE DXSTRT+1000

MoV R4, RS ; PONT R5 TO RX DATA BUFFER
TST (R5) + ; CHECK FOR ERROR, R5 -> DX REQ STER W TH ERROR
BM RXRTRY ; ERROR, PROCESS I T
ASL (PO + ; NO ERROR, DI SPATCH AFTER | NTERRUPT

.WORD 0 ; OFFSET TO | NTERRUPT CONTI NUATI ON
BCS 1% ; FIRST | NTERRUPT, START I/0O
BIT #CSREAD, RO ; READ OR WRI TE?
BEQ 10% ;WRITE, DON' T EMPTY SILO
TST RO ;READ, IS THIS A SPECI AL FUNCTI ON?

128-byte (decimal) storage area in the diskette logic.

100033
032715
000100
001430

BPL 9% ;NO SIMPLY EMPTY THE SILO THAT WAS JUST READ
BIT #ESDD, @5 ;IF SPFUN READ, | S DELETED DATA FLAG PRESENT?
BEQ 9% ; NOPE, JUST EMPTY THE SILO

This routine puts a 1 in the first word of the user buffer if a deleted data mark was
special function read operation.

present on a

65
66
67
68
69
70
71

72

73

74
75

76

77

000542
000544

000550

000554

000562

000570
000572

000600

000606

A-12 RT-11 Device

010401
016704
177240
012746
000001
162764
000002
000004
026427
000004
020000
103011
062764
020000
000004
162764
000200
000012
162764

JF EQ MVGST

MOV BUFRAD, R2 : GET ADDRESS OF USER BUFFER AREA

I NC -(R2) : SET FLAG WORD TO 1 TO | NDI CATE DELETED DATA
I FF

MOV R4, R ; SAVE R4

MOV DXCQE, R4 : PO NT TO QUEUE ELEMENT

MOV #1, - (SP) :STACK A 1 TO PUT | NTO FLAG WORD

SuUB #2, QBBUFF(R4) ; MOVE BUFFER PO NTER BACK TO FI RST WORD.

cwP BBUFF(R4) , #20000 ; PO NTER OUT OF THI S PAR' S RANGE?
BHI S 85% ; NOPE. .

ADD #20000, BBUFF(R4) ; YES, GET I T BACK I N RANGE

suB #200, QBPAR(R4) ; I N THE PREVI QUS PAR

suB #200, BMEM R4) ; I N THE PREVI QUS PAR

Handlers Manual

78 000614

79 000620

82 000622

83 000626
000630
85 000632

000200
000014
004777
000306
010104

004067
000156
000003
111522
011502

85%

9%:

CALL

MoV

@PTWRD ; STORE IN 1ST WORD. Q BUFF 1S AGAIN ORI G NAL+2

R1, R4 , RESTORE R4

. ENDC ; EQ MMBT

JSR
. WORD
MOvB
MOV

RO, SI LOFE ; FOR READ, MOVE THE DATA FROM SI LO TO BUFFER
CSEBUF! CSGO ; EMPTY BUFFER COMVAND

@5, (R2) + ; MOVB TO BE PLACED IN LINE I N SILCFE

@5, R2 ; DATA SLUFFER TO BE USED FOR SHORT READ

This point marks the successful completion of one sector for a read or write operation.
The next routine increments the pointers for the next interleaved sector.

86 000634

87 000640

88 000642

89 000650

90 000656
91 000660

105267
177573
001012
062767
163001
177562
062767
000006
177522
003403
162767
000032
177512

10%:

I NCB

BNE

ADD

ADD

BLE
SuB

SECTOR ; RETURN HERE AFTER WRI TES. BUWP SECTOR NUMBER

11% ; NOT OFF END OF TRACK YET
#-26. *400+1, TRACK ; RESET SECTOR, BUWP TO NEXT TRACK

#6, TRKOFF ; BUMP TRACK OFFSET VALUE
11$ yOK ITF STILL IN RANGE -25:0
#26. , TRKOFF ; RESET TO PROPER RANGE MOD 26

The following routine increments the buffer address by 128 bytes, and reduces the
byte count by 128. If the operation is not complete, it transfers another sector.

92 000666
93
94
95
96 000666

97
98
99 000674

100 000700

062767
000002
000164

160367
177406
101214

11$:

IF EQ
ADD
I FF
ADD

MVGST
R3, BUFRAD ; UPDATE BUFFER ADDRESS
#2, PARVAL ; CHANGE MAP TO BUWP ADDRESS FOR NEXT TI ME

. ENDC ; EQ MV$T

suB

BHI

R3, BYTCNT ; REDUCE THE AMOUNT LEFT TO TRANSFER

1$; LOOP | F VE ARE NOT DONE

The transfer is done. The routine sets the byte count to 0, and goes to 12$ if this
was a read or a special function operation.

101 000702

102 000706

103 000712

005067
177400
032700
100002
001004

CLR

BIT

BNE

BYTCNT ; FI X BYTE COUNT SO THAT WRI TES ARE ALL O-FILLS
#CSREAD! SPFUNC, RO ; READ OR SPECI AL FUNCTI ON OPERATI ON?

12% ;I F SO, NO ZERO FI LLING SO WE' RE DONE

The operation was a write. The routine may need to be zero-filled up to three sectors
(see FILLCT above).

104 000714
105
106
107
108
109

000720
000721
000722
000724

Log a successful transfer:

062727
040000
000
000
103206

FI LLCT:

12%

ADD
. BYTE
. BYTE
BCC

I F NE

#040000, (PC) + ; CHECK ORI G NAL WORD COUNT FOR # OF SECTORS

0 ; FI LLER
0 ; ORI G NAL WORD COUNT LOW BYTE IN HI GH BYTE
2% i YES, LOOP FOR ZERO FI LLI NG ON WRI TE
; AHH, A SUCCESSFUL TRANSFER | S DONE
ERL$G

DX, DL, and XL Device Handlers A-13

#DX$COD* 400+377, R4 ; SET UP R4 =

110 TST SCSFLG
111 BNE 13%
112 MoV
113 MOV DXCCE, R5
114 CALL @ELPTR
115 . ENDC ; EQ ERL$G
116
117 000724 005077 13$: CLR @RXCSA
177554

/0 Completion Section
118 000730 14$: .DRFIN DX
119

The abort routine:

120 ; ABORT TRANSFER
121
122 000746 012777 RXABRT: MV #CSI NI T, GRXCSA
040000
177530
123 000754 005067 CLR DXFBLK+2
000130
Go to .DRFIN if no error:
124 000760 000763 BR 14%
125
If error logging was built:
126 .DSABL LSB
127
128 ; TRANSFER ERROR HANDLI NG
129
130 000762 RXRTRY:
131 .IF NE ERL$G
132 . ADDR #DXRBUF, R3
133 MV R, R
134 MV @4, (R3)+
135 MOV @5, (R3) +
136 MoV
137 1$: BIT #CSDONE, @R4
138 BEQ 1%
139 MV @, @3
140 MoV DRETRY, R3
141 SWAB R3
142 ADD #DXNREG, R3
143 MoV #DX$COD* 400, R4
144 Bl SB RXTRY, R4
145 DECB R4
146 MoV DXCQE, RS
147 CALL @ELPTR
148 MOV RXCSA R4
149 . ENDC ; NE ERL$G
150

See if a retry is allowed:

151 000762 005367 DEC
177050

152 000766 003002 BGT

153 000770 000167 JWP
177446

154

155 000774 012714 2$: MoV
040000

A-14 RT-11 Device Handlers Manual

; LOGA NG SUCCESSFUL TRANSFERS?

; NOPE. . .

I1D-1

; AND R5 -> CURRENT QUEUE ELEMENT

; CALL ERROR LOGGER TO REPORT SUCCESS

; DI SABLE FLOPPY | NTERRUPTS

; GO TO I/ O COWPLETI ON

; PERFORM AN RX11 | NI TI ALI ZE

; CLEAR FORK BLOCK TO AVO D A DI SPATCH

; AND FINNSH UP THIS I/0O

; R3 -> LOCATI ON TO STORE REGQ STER | NFO.
; SAVE IN R2 FOR LATER

; STORE RXCS

; STORE STATUS RXES

#CSMAI Nl CSGO, @4 ; READ ERROR REGQ STER (NO | NTERRUPTS)

RXTRY

2%
RXERR

#CSINIT, @4

 WAIT FOR READ COVPLETI ON

; STORE | N BUFFER

; RB = MAX RETRI ES/ # OF REGS
yR4& = DEVICE ID IN H GH BYTE
AND CURRENT RETRY COUNT I N LOW BYTE
;-1 FOR TH S ERRCR
; RS -> QUEUE ELEMENT
; CALL ERROR LOGGER
; RESTORE R4 = RXCS ADDRESS

; SHOULD VEE TRY AGAI N?

; YES
; NOPE, REPORT AN ERROR

; START A RECALI BRATE

Retry the operation:

156 001000 000167

©CoO~NOOR~WNE

177312

JMWP RXINI'T y EXIT THROUGH START OPERATI ON CODE
.SBTTL SILCFE - FILL OR EMPTY THE SILO
+

SILOFE - FILL OR EMPTY THE SILO, DUWPI NG OR ZERO- FI LLI NG | F NEEDED

R3 = 128
R4 -> FLOPPY CSR
JSR RO, SI LOFE

COVMAND: CSFBUF! CSGO FOR FILL (WRI TE)
CSEBUF! CSGO FOR EMPTY (READ)
FI LL/ EMPTY I NSTRUCTI ON: (R2 -> USER BUFFER, R5 -> RXDB)
MOVB (R2)+, @5 FOR FILL (VR TE)
MOVB @5, (R2) + FOR EMPTY (READ)

SLUFF I NSTRUCTION: (R1 = 0, R5 -> RXDB)

CLRB @5 FOR FILL (WRI TE)
: MOVB @5, R2 FOR EMPTY (READ)
; RL = RANDOM
; R2 = RANDOM
! NOTE: 1. TH S ROUTI NE ASSUMES ERROR CAN NOT COME UP DURING A FILL OR EMPTY!!

SEEK DOES A SILO EMPTY, A TI ME WASTER

.ENABL LSB

The diskette deals only in units of 128 decimal bytes. If a request to read is for
fewer than 128 bytes, the handler reads 128 bytes and sloughs the extra bytes. If a
request to write is for fewer than 128 bytes, the handler zero-fills to reach 128 bytes.

23
24

25

26

27
28
29
30
31

001004
001006

001012

001016

001022
001024
001026
001030
001032

012014
012067
000036
012067
000052
016701
177264
001417
020103
101401
010301
016702
177240

SI LOFE: MOV (RO) +, @4 ;NI TIATE FILL OR EMPTY BUFFER COMMVAND
MoV (RO) +, 3% ; PUT CORRECT MOV | NSTRUCTI ON I N FOR FI LL/ EMPTY
MoV (RO) +, 5% ; PUT IN I NSTRUCTI ON TO SLUFF DATA
MoV BYTCNT, R1 ; GET BYTE COUNT
BEQ 4% ;I F ZERO, WE ARE SEEKI NG OR ZERO FI LLI NG
Ccw R1, R3 ;1S THE BYTE COUNT <= 1287
BLCS 1% ;K I F SO
MoV R3, R1 ; DO ONLY 128 BYTES AT A TIME
1%: MOV BUFRAD, R2 ; GET USER VI RTUAL BUFFER ADDRESS I N R2

The following section of code can be executed in two different ways. If the handler is
assembled for an unmapped monitor, the code between the symbols 2$ and PARVAL
is simply executed in-line. If the handler is assembled for a mapped monitor, the JSR
to PIEXT and the word PARVAL are included. In this situation, the routine P1IEXT
copies the code between 2$ and PARVAL to the monitor stack, uses the value passed
in PARVAL to map to the user buffer, and executes the code from the monitor stack.
This is done to ensure that the code is not in the PAR1 area when it is executed,
since PARI1 is used to map to the user buffer.

32
33

34
35
36
37
38
39

001036

001042

001044
001046
001050
001052
001054
001056

001060

004077
176766
000016

105714
100376
000000
105714
105301
001372

000000

.IF NE MBT
JSR RO, @P1EXT ;Let the nonitor execute the follow ng code.
.WORD PARVAL-. ; Number of instructions in bytes plus 2.

. ENDC ; NE MVGST

2$: TSTB @4 ; **EXT** TRY FOR THE TRDY
BPL 2$; **EXT** TRANSFER READY

3%: HALT ; **EXT** | NSTRUCTI ON TO MOV OR SLUFF DATA FROM
TSTB a4 s **EXT** TOUCH THE CSR TO CGET | T READY
DECB R1 ; **EXT** CHECK FOR COUNT DONE
BNE 2$; **EXT** STILL MORE TO TRANSFER

.IF NE MVGHT

PARVAL: .WORD O ;using this value for the PAR 1 bias

. ENDC ; NE MVGST

DX, DL, and XL Device Handlers

A-15

The slough routine:

45 001062 105714 4$: TSTB
46 001064 003003 BGT
47 001066 001775 BEQ
48 001070 000000 5%: HALT
49 001072 000773 BR
50 001074 000200 6%: RTS
51 . DSABL
1 . SBTTL
2
3
4
5 001076 100006 . WORD
6 001100 077776 . WORD
7 001102 100000 . WORD
8 001104 000000 CHGTBL: .WORD
9
10 001106 000000 DXFBLK: .WORD
001110 000000
001112 000000
001114 000000
11
12 .IF NE
13 DXRBUF: . BLKW
14

Bootstrap driver

1 . SBTTL
2

The .DRBOT macro:
3 001116

. DRBOT

Termination Section

@4 ;WAL T FOR TRANSFER READY OR TRANSFER DONE
6% ; TDNE UP W TH NO TRDY, SO ALL DONE
4% , LOOP
; TRANSFER READY, SO SLUFF DATA
43 ; LOOP TO SLUFF MORE
RO ; RETURN
LSB

TABLES, FORK BLOCK, END OF DRI VER

; CHANGES TO CSR CODE FOR SPECI AL FUNCTI ONS

CSVWRTD- CSRD+SPFUNC ; 375: READ+GO -> WRI TE DELETED+GO
CSWRT- CSRD+SPFUNC ; 376: READ+GO - > WRI TE+GO

CSRD- CSRD+SPFUNC ; 377: READ+GO - > READ+GO

0 ; READ/ WRI TE STAY THE SAME
0,0,0,0 ; DX FORK QUEUE ELEMENT

ERL$G

DXNREG ; ERROR LOG STORAGE

. ENDC ; NE ERL$G

BOOTSTRAP DRI VER

DX, BOOT1, READ

The .DREND macro generated by .DRBOT (the macro expansion):

001116 .DREND DX 0,

.IF B <>
001116 . PSECT DXDVR

. I FF

. PSECT

. ENDC

.1’ F NDF DXEND, DXEND: :

.IF EQ .-DX$END

. I F NE MMG3T! <0&2. >
001116 000000 $RLPTR: :.WORD 0
001120 000000 $MPPTR :.WORD O
001122 000000 $GIBYT::.WORD O
001124 000000 $PTBYT::.WORD O
001126 000000 $PTWRD: : . WORD 0

. ENDC

.IF NE ERL$G <0&1>

$ELPTR: : . WORD 0

. ENDC

I F NE TI MBI T! <0&4. >

$TIMT:: .WORD O

. ENDC
001130 000000 $INPTR :.WORD O
001132 000000 $FKPTR :.WORD 0

IITFE NDF L. V22 ... V22=0

.IF NE ...V22& 040000

DX$X64 =:.

. REPT 16.

. WORD 0
. ENDR
. ENDC

.GLOBL DXSTRT

A-16 RT-11 Device Handlers Manual

The following line marks the end of the loadable portion of the handler. It is used
to determine the handler’s length.

001134’ DXEND==.
I FF
. PSECT DXBOOT
.II'F LT <DXBOOT-. +"0664>, . ERROR; ?SYSMAC- E- Pri mary boot too | arge;
. =DXBOOT+" 0664
Bl CERR JSR R1, REPORT
. WORD | CERR- DXBOOT
REPORT: MOV #BOOTF- DXBOOT, RO

MOV #30002%- DXBOOT, R2
CALL @
MOV @1, RO
CALL ar
MOV #CRLFLF- DXBQOT, RO
CALL @
30001$: HALT
BR 30001%
30002$: TSTB @ TPS
BPL 30002%
MOVB (RO)+, @TPB
BNE 30002%
RETURN
BOOTF: .ASCIZ <CR><LF>"?BOOT- U-"
ICERR .ASCIl "I/Oerror"
CRLFLF: .ASCIZ <CR><LF><LF>
. EVEN
JIFE NDF ... V7, ... V7=-1
.REPT 4.
MWORD ... V7
. ENDR
DXBEND: :
. ENDC

.11 F NDF TPS, TPS=: 70177564
.11 F NDF TPB, TPB=: ~0177566
000012 LF=: 7012
000015 CR=: “015
001000 B$BOOT=: ~01000
004716 B$DEVN=: A04716
004722 B$DEVU=: A04722
004730 B$READ=: 204730
.| F NDF B$DNAM
I F EQ MVGST
B$DNAME: ARDX
I FF
B$DNAME: A RDXX
.ENDC ; EQ MVGST
.ENDC : NDF B$DNAM
000062 . ASECT
000062 .="062
000062 000000’ .WORD DXBOOT, DXBEND- DXBOOT, READ- DXBOOT
000064 001000
000066 000224

000000 . PSECT DXBOOT
000000 000240 DXBOOT: : NOP
000002 000413 BR BOOT1- 2.
000100 ...V2="0100
. IRP X <UBUS, QBUS>
... V3=0
AIF | DN <X> <UBUS> ...V3=1.
AITF | DN <> <Q@BUS> ...V3=2.
JAIF | DN <X> <CBUS> ...V3=4.
AIF | DN <X> <UMSCP> ... V3="010
AIF | DN <X> <QVBCP> . ..V3="020
AIF | DN <X> <CMBSCP> ... V3="040
IF EQ ... V3 . ERROR; ?SYSMAC-E-Invalid CONT R OL, found - UBUS, QBUS;
LoV2=00.0Vv20 . Vv3
ENDR
000000 .. V3=0
000001 .IIF I DN <UBUS> <UBUS> ...V3=1.
JAIF | DN <UBUS> <@BUS> ...V3=2.
AIF | DN <UBUS> <CBUS> ...V3=4.
AIF | DN <UBUS> <UMSCP> ...V3="010
AIF I DN <UBUS> <QWBCP> ...V3="020
IF | DN <UBUS> <CMSCP> ...V3="040

DX, DL, and XL Device Handlers A-17

ATF EQ ... V3 . ERROR; ?SYSMAC-E-Invalid CONT R OL, found - UBUS, QBUS;

000101 V2=...V21...V3
000000 ...V3=0
IF | DN <@BUS> <UBUS> ...V3=1.
000002 .IIF I DN <@BUS> <@BUS> ...V3=2.
ILF | DN <@BUS> <CBUS> ...V3=4.
IF | DN <@BUS> <UMBCP> ...V3="010
AIF I DN <@BUS> <QWBCP> ...V3="020
IF | DN <@BUS> <CMSCP> ...V3="040
LF EQ ... V3 . ERROR; ?SYSMAC-E-Invalid CONT R OL, found - UBUS, QBUS;
000103 ...V2=...V2!...V3
000026’ .=BOOT1-6.
000026 020 .BYTE 020, ...V2,"020, "0o"C<20+. .. V2+20>
000027 103
000030 020
000031 234
IF EQ <1-1>
000032 000400 BR BOOT1
| FF
I F EQ <1-2.>
BM BOOT1
I FF
. ERROR; ?SYSMAC-E-Invalid S| DE S, expecting 1/2, found - 1;
ENDC
ENDC
4
5 000014’ . = DXBOOT+14
6 000014 000120 .WORD READS- DXBOOT
7 000016 000340 .WORD 340
8 000020 000070 .WORD WAl T- DXBOOT
9 000022 000340 .WORD 340
10

Locations 34 through 52 are reserved for Digital.

11 000034’ . = DXBOOT+34 ; 34-52 USEABLE

12 000034 116067 BOOT1: MOVB UNI TRD- DXBOOT(RO) , RDCVD ; SET READ FUNCTI ON FOR CORRECT UNI T
000056
000066

13 000042 011706 REETRY: MOV @&cC, sP INET SP W TH NEXT | NSTRUCTI ON

14 000044 012702 MoV #200, R2 ; AREA TO READ | N NEXT PART OF BOOT
000200

15 000050 005000 CLR RO ; SET TRACK NUMBER

16 000052 000446 BR B2$; OUT OF ROOM HERE, GO TO CONTI NUATI ON

17

18 000056’ . = DXBOOT+56

19 000056 007 UNITRD: .BYTE CSGO+CSRD ; READ FROM UNI T 0, SETS WEI RD BUT K PS

20 000057 027 .BYTE = CSGO+CSRD+CSUNI T; READ FROM UNI'T 1

21

22 000070’ . = DXBOOT+70 ; PAPER TAPE VECTORS

23 000070 005714 WAIT: TST @4 ;1S TR ERR, DONE UP? INT ENB CAN T BE

24 000072 001776 BEQ VAI T ; LOOP TILL SOVETHI NG

25 000074 100762 BM REETRY ; START AGAIN | F ERROR

26 000076 000002 RTIRET: RTI ; RETURN

27

28 000120’ . = DXBOOT+120

29 000120 012704 READS: MW (PO +, R4 ;R4 -> RX STATUS REG STER

30 000122 177170 BOTCSR .WORD DX$CSR

31 000124 010405 MOV R4, R5 :R5 WLL PO NT TO RX DATA BUFFER

32 000126 012725 MOV (PC) +, (R5) + I NI TI ATE READ FUNCTI ON

33 000130 000000 RDCMD: .WORD O : GETS FI LLED W TH READ COMVAND

34 000132 000004 | or :CALL WAI T SUBROUTI NE

35 000134 010315 MOV R3, @R5 : LOAD SECTOR NUMBER | NTO RXDB

36 000136 000004 | or :CALL WAI T SUBROUTI NE

37 000140 010015 MOV RO, @5 : LOAD TRACK NUMBER | NTO RXDB

38 000142 000004 | or :CALL WAI T SUBROUTI NE

39 000144 012714 MOV #CSGO+CSEBUF, @4; LOAD EMPTY BUFFER FUNCTI ON | NTO RXCS
000003

40 000220 BROFFS = READF- . : USE FOR COMPUTI NG BR OFFSET

41 000150 000004 RDX: | or :CALL WAI T SUBROUTI NE

42 000152 105714 TSTBE @4 :1'S TRANSFER READY UP?

43 000154 100350 BPL RTI RET BRANCH | F NOT, SECTOR MUST BE LOADED

44 000156 111522 MVB @5, (R2)+ : MOVE DATA BYTE TO MEMORY

45 000160 005301 DEC RL : CHECK BYTE COUNT

46 000162 003372 BGT RDX :LOOP AS LONG AS WORD COUNT NOT UP

47 000164 005002 CLR R2 : KLUDGE TO SLUFF BUFFER | F SHORT WD CNT

A-18 RT-11 Device Handlers Manual

48

50
51
52
53

72

73

74

75
76

77

78
79
80
81
82

84
85
86
87

88
89

90
91

92
93

000166

000170
000172
000174
000176

000176

000200
000202
000204
000206
000210

000216
000220
000222

000224
000226
000230
000232
000234
000236
000240

000246

000254

000260

000264
000266

000272

000300
000302
000304
000306
000310
000312
000314
000316

000320

000324
000326

000332
000334

000340
000342

000346
000350

000354
000356
000360
000362
000364
000366

000770

010601
005200
011703

000003

122323
000003
122323
000003
032767
000020
177712
001173
005000
000571

012737
000167
000150
012737
000214
000152
012737
000300
004730
012737
000416
000020
005037
000044
005767
000346
001405
013703
004722
116367
000056
177630
006300
006300
006301
010046
010003
010004
005000
000402

162703
000027
005200
162704
000032
100372
022704
177762
006103
162703
000032
100375
062703
000033
000003
012600
005200
005701
003350
000207

#READL1- DXBOOT, @BS$READ ; CALLS TO B$READ

; LOOP

; SET TO BI G WORD COUNT
; SET TO ABSOLUTE TRACK 1

; ABSOLUTE SECTOR 3 FOR NEXT PART

. ASSUVE BPT EQ 3

; CALL READS SUBROUTI NE

; BUWP TO SECTOR 5
; CALL READS SUBROUTI NE
; BUWP TO SECTOR 7
; CALL READS SUBROUTI NE

;CHECK UNIT I D

y BRANCH | F BOOTING UNIT 1, RO=1

;SET TOUNIT O

; NOWVWE ARE READY TO DO THE REAL BOOT

; MODI FY READ ROUTI NE

W LL GO TO READ1

#TRWAI T- DXBOOT, @20 ; LETS HANDLE ERRORS DI FFERENTLY

; CLEAR JSW SI NCE THE DX BOOT | N SYSCOM AREA

; DI D VE REACH HERE VI A A HARDWARE BOOT?

v YES, DON'T SET UP UNI'T NUMBER

;NO, SET UP UNI T NUMBER

UNI TRD- DXBOOT(R3) , RDCVD ; STORE UNI T NUMBER

; CONVERT BLOCK TO LOG CAL SECTOR

; LSN=BLOCK* 4

; MAKE WORD COUNT BYTE COUNT

; SAVE LSN FOR LATER

; WE NEED 2 COPIES OF LSN FOR MAPPER

; INIT FOR TRACK QUOTI ENT
; JUWP I NTO DI VI DE LOOP

; PERFORM MAG C TRACK DI SPLACEMENT

; BUMP QUOTI ENT, STARTS AT TRACK 1

: TRACK=| NTEGER(LSN/ 26)

; LOOP -

RA=REM LSN 26) - 26

; SET C I F SECTOR MAPS TO 1-13

; PERFORM 2: 1 | NTERLEAVE

; ADJUST SECTOR | NTO RANCGE -1, - 26

; (DI VI DE FOR REVAI NDER ONLY)
; NOW PUT SECTOR | NTO RANGE 1- 26

; CALL READS SUBROUTI NE
; GET THE LSN AGAI N
; SET UP FOR NEXT LSN

; WHATS LEFT I N THE WORD COUNT
; BRANCH TO TRANSFER ANOTHER SECTOR

BR RDX
B2$: MoV SP, R1
I NC RO
MoV @&cC R3
IF EQ <<BPT>>-<<3>>
I FF
IF B <>
. ERROR; ?SYSMAC- W " BPT EQ 3" is not true
I FF
. ERROR ; ?SYSMAC-;
. ENDC
. ENDC
BPT
; SECTOR 2 OF RX BOOT
BOOT2: CWPB (R3) +, (R3) +
BPT
CwPB (R3)+, (R3) +
BPT
BIT #CSUNI T, RDCVD
BNE BOOT
CLR RO
BR BOOT
READ: MoV (PO +, @PC) +
.WORD 167
. WORD RDX- DXBOOT
MoV (PC)+, @PC) +
.WORD READF- RDX- 4
. WORD RDX- DXBOOT+2
MoV
MoV
CLR @ ISW
TST HRDBOT
BEQ READ1
MoV @B$DEVU, R3
MOVB
READ1: ASL RO
ASL RO
ASL R1
1$: MoV RO, - (SP)
MoV RO, R3
MoV RO, R4
CLR RO
BR 3%
2$: SuB #23., R3
3$: I NC RO
SuB #26. , R4
BPL 2$
CcwP #-14. | R4
ROL R3
4%: SuB #26., R3
BPL 4%
ADD #27., R3
BPT
MoV (SP) +, RO
I NC RO
TST R1
BGT 1%
RETURN

DX, DL, and XL Device Handlers

A-19

102

103 000370 005714 READF: TST a@r4 ; ERROR, DONE, OR TR UP?
104 000372 001776 BEQ READF ; BRI F NOT
105 000374 100533 BM Bl CERR ; BR | F ERROR
106 000376 105714 TSTB @4 ; TR OR DONE?
107 000400 100011 BPL READFX ; BR | F DONE
108 000402 111522 MOVB @5, (R2) + ; MOVE DATA BYTE TO MEMORY
109 000404 005301 DEC R1 ; CHECK BYTE COUNT
110 000406 003370 BGT READF ; LOOP | F MORE
111 000410 012702 MoV #1, R2 ; SLUFF BUFFER | F SHORT WD CNT
000001
112 ; DON' T DESTROY LCC 0O
113 000414 000765 BR READF ; LOOP
114
115 000416 005714 TRWAIT: TST @4 ; ERROR, DONE, OR TR UP?
116 000420 100521 BM Bl CERR ; HARD HALT ON ERROR
117 000422 001775 BEQ TRWAI T ; BR I F NOT
118 000424 000002 READFX: RTI
119
120 000606’ . = DXBOOT+606
121 000606 012706 BOOT: MoV #10000, SP ; SET STACK PO NTER
010000
122 000612 010046 MoV RO, - (SP) ; SAVE THE UNI T NUMBER
123 000614 012700 MoV #2, RO ; READ | N SECOND PART OF BOOT
000002
124 000620 012701 MoV #<4* 400>, R1 ; EVERY BLOCK BUT THE ONE WE ARE I N
002000
125 000624 012702 MoV #1000, R2 ; I NTO LOCATI ON 1000
001000
126 000630 005027 CLR (PO + ; CLEAR TO SHOW HARDWARE BOOT
127 000632 000001 HRDBOT: .WORD 1 ; INITIALLY SET TO 1
128 000634 004767 CALL READ ;GOREAD IT IN
177364
129 000640 012737 MoV #READL- DXBOOT, @B$READ ; STORE START LOCATI ON FOR READ RQOUTI NE
000300
004730
130 000646 012737 MoV #B$DNAM @*B$DEVN ; STORE RAD50 DEVI CE NAMVE
016330
004716
131 000654 012637 MoV (SP) +, @B$DEVU ; STORE THE UNI T NUMBER
004722
132 000660 000137 JIMP @B$BOOT ; START SECONDARY BOOT
001000
133
134 000664 .DREND DX
.IF B <>
001134 . PSECT DXDVR
I FF
. PSECT
. ENDC

.11 F NDF DXEND, DXEND: :
.IF EQ .-DX$END
. I F NE MMGHT! <0&2. >
$RLPTR: : . WORD
$MPPTR: : . WORD
$GTBYT: : . WORD
$PTBYT: : . WORD
$PTWRD: : . WORD
. ENDC
.IF NE ERL$G <0&1>
$ELPTR: : . WORD 0
. ENDC
I F NE TI MBI T! <0&4. >
$TIMT: : . WORD 0
. ENDC
$I NPTR: : . WORD 0
$FKPTR : .WORD 0
I FE NDF L. V22 ... V22=0
.IF NE ...V22& 040000
DX$X64 =: .
. REPT 16.

.MORD O

ooooo

. ENDR
. ENDC
.GLOBL DXSTRT
DXEND==.
.| FF
000664 . PSECT DXBOOT

A-20 RT-11 Device Handlers Manual

135
136

Synbol

000664

000670
000672

000676

000702
000704
000706
000710

000714
000716
000720
000722

000726
000730

000734
000736
000740
000741
000742
000743
000744
000745
000746
000747
000750
000751
000752
000753
000754
000755
000756
000757
000760
000761
000762
000763
000764
000765
000766
000767

000770
000772
000774
000776
001000

tabl e

000664

004167
000002
000753
012700
000740
012702
000722
004712
011100
004712
012700
000764
004712
000000
000776
105737
177564
100375
112037
177566
001372
000207

015

012

077

102

117

117

124

000004

177777
177777
177777
177777

000001

.II'F LT <DXBOOT-. +"0664>, . ERROR; ?SYSMAC- E- Pri mary boot too |arge;

. =DXBOOT+" 0664
Bl OERR. JSR R1, REPORT

. WORD | OERR- DXBOOT
REPORT: MOV #BOOTF- DXBOOT, RO

MoV #30004$- DXBOOT, R2
CALL a2
MoV @1, RO
CALL @ar2
MoV #CRLFLF- DXBOOT, RO
CALL a2
30003%: HALT
BR 30003%
30004%: TSTB @TPS
BPL 30004%
MOVB (RO) +, @TPB
BNE 30004%
RETURN

BOOTF: .ASClZ <CR><LF>"?BOOT-U"

ICERR .ASCIl "lI/Oerror”

CRLFLF: .ASClZ <CR><LF><LF>

. EVEN
JITFE NDF V7, L V==
.REPT 4.
. WORD V7
. ENDR
. WORD V7
. WORD V7
. WORD V7
. WORD V7
DXBEND:
. ENDC
. END

DX, DL, and XL Device Handlers

A-21

A-22

SYSPTR
TI MBI T=
TPB

$GTBYT
$I NPTR

001000
000256
000664R
000606R
000740R
000034R
000200R
000122R
000220
002256
000276R
000306R
001000
004716
004722
016330
004730
000170R
001104R
000015
000764R
000040
000002
100000
000000
000001
040000
000100
000016
000006
000012
000002
004000
000200
000020
000004
000014
000244
000254
000174
000034R
000006
000010
000004
000012
000011
000007
000005
000013
000001
000014
000020
000016
000017
000003
000002
000000
002000
000017
000054
000000
177566
177564
000432R
000400R
000416R
000056R
000400
000070R
020000
000270
001132RG
001122RG
001130RG

003
003
003
003
003
003

002
002

003
002

003

002

003 ..

002 ...
002 ...
002 ...

000015
000002
000001
000200
000001
040000
001000RG
000000RG
000010RG
000756

= 001134RG

000020R
001106R
000456RG
000006RG
000003
000000RG
102022
000006RG
000000
000016R
000104R
000022
177170 G
177174 G
001116RG
016300
000270 G
000264 G
020000
000000
000001
000100
000200 G
000004
000002
000721R
100000
000214
000001
004000
000632R
000001
000002
000004
000010
000020
000176
000200
000202
000753R
000044
000012
000001
000640
000556
000442
001120RG
001124RG
001126RG
000030R
001116RG
107123 G
000342
000021 G
000375
000375
000010
000011
000040
000370
000370
000000
000000

RT-11 Device Handlers Manual

003
002
002
002
002
002
002
002

002
002

002

002

003

003

002 ...
002 ...
002 ...
002 ...
002 ...

000554
000620
000562
000600
000634
000302
001060R
000432
000000
000004
000010
177776
000002
000003
177774
000014
000012
000003
000006
000004
000010
000014
000002
000024
000006
000007
000000
000020
000016
000007
000012
000130R
000150R
000224R
000370R
000424R
000120R
000300R
000042R
000672R
000010
040000
000000
000076R
000746R
000504R
000442R
000474R
000434R
000316R
000516R
000762R
000036R
000433R
001004R
010000
100000
000340
000000

= 000000
= 000001
= 000000

000103
000000
000000
000000
000000
000270
000002
000000
000114
000270
177777
000000

002

003
003
003
003
003
003
003
003
003

003
002
002
002
002
002
002
002
002
002
002
002

ABS. 000660 000 (RWI, GBL, ABS, OVR)
000000 001 (RWI, LCL, REL, CON)

DXDVR 001134 002 (RWI, LCL, REL, CON)
DXBOOT 001000 003 (RW 1, LCL, REL, CON)

Figure A-2: DL Disk Handler

In the interests of clarity, code from the DL handler that does not apply to PDP-11
processors has been removed. Further, the contents of some of the macro expansions
has been removed when those contents served no instructive purpose. In both cases,
the removed lines are indicated by ellipses.

DL - RLO1/RLO2 Di sk Handl er MACRO V05. 05 Thursday 28-Feb-91 15:01
Tabl e of contents

CONDI TI ONAL ASSEMBLY SUMVARY

MACRCS AND DEFI NI TI ONS

*** TH S HANDLER SUPPORTS 2 UNI TS ***
HANDLER MACROS

HARDWARE DEFI NI TI ONS

| NSTALLATI ON CCDE

SET OPTI ONS

REQUEST ENTRY PO NT

I'NI TI ALI ZE FOR TRANSFER, SET FUNCTI ON CODE, FI X WORD COUNT
COVMPUTE DI SK ADDRESS AND START TRANSFER
ENSURE THAT DI SK | S ON TRACK BEFORE TRANSFER
DLXFER - START AN |/ O TRANSFER

DLI NT - | NTERRUPT ENTRY PO NT

HANDLE THE ERRORS

FI' NI SH SUCCESSFUL OPERATI ON

GET DEVI CE S| ZE

DLXCT - FUNCTI ON EXECUTI ON ROUTI NES
DLSQUE - SETUP PSEUDO QUEUE ELEMENT
DATA AREAS

BOOTSTRAP DRI VER

BOOTSTRAP READ ROUTI NE

BOOTSTRAP CONTI NUED

FETCH LOAD CODE

Mapped monitor conditional:

1 000001 MMGST = 1

. MCALL . MODULE
2 000000 . MODULE DL, VERSI ON=42, COWWENT=<RL01/ RL02 Di sk Handl er >, AUDI T=YES
3
4 ; COPYRI GHT 1989, 1990 BY
5 ; DI G TAL EQUI PMENT CORPORATI ON, MAYNARD, MASS.
6 ; ALL RI GHTS RESERVED
7 ;
8 ; TH'S SOFTWARE | S FURNI SHED UNDER A LI CENSE AND MAY BE USED AND COPI ED
9 ;ONLY IN ACCORDANCE WTH THE TERMS OF SUCH LICENSE AND WTH THE
10 ; | NCLUSI ON OF THE ABOVE COPYRI GHT NOTICE. THI' S SOFTWARE OR ANY OTHER
11 ; COPI ES THEREOF MAY NOT BE PROVI DED OR OTHERW SE MADE AVAI LABLE TO ANY
12 ; OTHER PERSON. NO TI TLE TO AND OANERSHI P OF THE SOFTWARE | S HEREBY
13 ; TRANSFERRED.
14 ;
15 ; THE | NFORMVATION I N THI S SOFTWARE | S SUBJECT TO CHANGE W THOUT NOTI CE
16 ; AND SHOULD NOT BE CONSTRUED AS A COW TMENT BY DI G TAL EQUI PMENT
17 ; CORPORATI ON.
18 |
19 ; DI G TAL ASSUMES NO RESPONSI BI LI TY FOR THE USE OR RELIABILITY OF ITS

DX, DL, and XL Device Handlers A-23

20 ; SOFTWARE ON EQUI PMENT THAT |'S NOT SUPPLI ED BY DI Gl TAL.

Conditional Assembly Summary

1 . SBTTL CONDI TI ONAL ASSEMBLY SUMVARY
2 v+
3 ; COND
9 ; DLSUN (2) unit to support (additive only)
10 | 1-4 valid range
11 ;
12 ; El S$I (MVGST) use SOB instruction (no code effects!)
13 ; 0 sinul ate SOB
14 ; 2 use SOB
15 ;
16 ; DL$CSR (174400) CSR
17 ; DL$VEC (160) Vect or
19 ;
20 ; MVGST std conditional
21 ; TI MBI T std conditional (no code effects)
22 : ERL$G std conditional
23 i

Preamble Section

Each macro you use in the handler requires the MCALL statement, as line 6 shows.
Note that .DRDEF issues many of the .MCALL statements for you so you need not
explicitly call them.

Macros and Definitions

.SBTTL MACROS AND DEFI NI TI ONS

.ENABL LC

o wWNE

.MCALL .DRDEF, .MFPS, .MIPS, .ASSUME, .ADDR, .BR

A call is made to a macro (UBVDF) in the system definition library SYSTEM.MLB.
SYSTEM.MLB is always found on logical device SRC:

7

8 . LI BRARY " SRC: SYSTEM M.B"
9 . MCALL . UBVDF

10 000000 . UBVDF

11

Various monitor offsets and locations are defined with mnemonics so that references
to them can be found easily:

12 ; VECTOR DEFI NI TI ONS

13

14 000004 NXMV = 4 ; NON- EXI STENT MEMORY TRAP VECTOR
15 000020 Ior.v. = 20 ;1 OT TRAP VECTOR

16

29

30 ; SYSTEM GENERATI ON OPTI ON

31

32 .II'F NDF DLUN, DLUN == 2 ; NUMBER OF UNI TS SUPPORTED

33 .II'F GT DL$UN-4, DL$UN == 4 ; CAN' T HAVE MORE THAN 4 UNI TS
34 .IIF LE DLUN, DLSUN ==1 ; CAN' T HAVE NO UNI TS

35

36 . I RP X, <\ DL$UN>

A-24 RT-11 Device Handlers Manual

Handler Unit Support

37 .SBTTL *** THI' S HANDLER SUPPORTS X UNI TS ***

38 . ENDR

39

40 ; SPECI AL FUNCTI ON DEFI NI TI ONS

41 ; ALL SPECI AL FUNCTI ONS ARE DMA EXCEPT FOR FN$SI Z AND FN$GET

42 ; FNSVRT AND FNSRED GO | N UBTAB. FN$SREP USES A PERVANENT UMR

43

44 FN$GET =: 370 ; GET DEVI CE STATUS

45 000373 FN$SIZz =: 373 ; GET DEVI CE SI ZE

46 000374 FN$SREP =: 374 ; FORCE RE- READ OF REPLACEMENT TABLE

Use the replacement table with:

47 000376 FN$SWRT =: 376 ; ABSOLUTE WRI TE (NO BAD BLOCK)
48 000377 FNSRED =: 377 ; ABSOLUTE READ (REPLACEMENT)
49 ;NOTE: if you add a SPFUN code al so add it to . DRSPF

50

51 ; ERROR LOGGE NG DEFI NI TI ONS

52

53 000010 DLRCNT =: 8. ; ERROR RETRY COUNT

54 000006 DLREG = 6 ; REG STERS TO LOG ON ERROR

55

56 ; RL11/RLO1 PARAMETERS

57 ; GEOMETRY: 256 CYLI NDERS (512 ON RL0O2)

58 H 2 TRACKS PER CYLI NDER

59 ; 20 BLOCKS PER TRACK

60 ; 2 128-WORD SECTORS PER BLOCK

61

62 000024 DLBPT = 20. ; NUMBER OF BLOCKS PER TRACK
63 012000 DLWPT =: 256.*DLBPT ; WORDS PER TRACK

64 000012 DLNBAD =: 10. ; NUMBER ALLOMABLE BAD BLOCKS PER DI SK
65 023742 DLSI ZE =: <256.*2-1>*DLBPT- DLNBAD ; BLOCKS PER RLO1 (LESS BSF)
66 047742 DLSI Z2 =: <512.*2-1>*DLBPT- DLNBAD ; BLOCKS PER RL02 (LESS BSF)
67 000052 DLTSIZ =: DLNBAD*4. +2 ; SI ZE OF BAD BLOCK TABLE

68 ; (PLUS END OF TABLE FENCE)

69

70 ; UB DEFI NI TI ONS

71

72 ; FI XED OFFSETS EQUATES (. FI XDF)

73

74 000404 $PNPTR = 000404 ; RMON OFFSET OF PNAME TABLE

75 000432 P1$EXT =: 000432 ; RMON OFFSET OF $P1EXT ADDRESS

76 000460 $H2UB =: 000460 ; RMON OFSET OF UB ENTRY VECTOR PTR

77

78 ; EXTENDED MEMORY SUBROUTI NE OFFSETS FROM $P1EXT (. Pl XDF)

79

80 177752 $MPVEM = -22. ; OFFSET TO MAP KT-11 VI RTUAL TO PHYSI CAL
81

82 ; UB ENTRY VECTOR EQUATES (. UBVDF)

83

84 ; UB.IDV = 0 ;| DENTI FI CATI ON WORD

85 ; UB. VDV = <"r UBV> ;| DENTI FI CATI ON WORD VALUE
86) UB. GET = 2 ; JUWP TO GETUWR

87 ; UB. ALL =: 6 ; JUMP TO ALLUMR

88 ; UB. RLS =: 12 ; JUMP TO RLSUMR

89

90 ;DL I NTERNAL DVA BUFFER EQUATES

91

92 000054 BUFSIZ =: 54/2*DL$UN ; SIZE OF DL | NTERNAL DVA BUFFER

93 ; WORD S| ZE OF DLBBUF* DL$UN

94 000001 NOUMRS =: <BUFSI Z+7777/10000> ; NUVBER OF PERMANENT UVMRS REQUI RED
95

96

The .DRDEF performs much of the work of the preamble section. It is called with
different parameters depending on whether or not the handler supports memory
mapping (MMG$T=1). The following includes much of the macro expansion:

Handler Macros

DX, DL, and XL Device Handlers A-25

. SBTTL HANDLER MACRCS

N -

4 AF EQ MGST

The .DRDEF macro (with macro expansion) for unmapped monitors:

5 .DRDEF DL, 5, FI LST$! SPFUN$! VARSZ$, DLSI ZE, 174400, 160, DMA=NO
. MCALL . DRAST, . DRBEG, . DRBOT, . DREND, . DREST,
.MCALL .DRINS,.DRPTR, . DRSET, . DRSPF, . DRTAB,

.MCALL . FORK, . QELDF
F NDF RTE$SM RTE$M-0
F NE RTE$M RTE$M-1

F NDF TI MBI T TI MbI T=0
F NE TIMBIT TI MBI T=1
F NDF MMGST MMGEET=0
F NE MVGT MVGPT=1

F NDF ERL$G ERL$G=0
F NE ERL$G ERL$G=1

F
L
F
F
|

000000 | QELDF

|
[

000000 Q

000002 Q CSW: 2.

000004 Q

000006 Q FUNC=:

000007 Q JNUME:

000007 Q UNIT=:

000010 Q BUFF=: %010

000012 Q WCNT=: ~012

000014 Q COVP=: ~ol4

NNo A

. DRFI N, . DRFMS, . DRFMT
. DRUSE, . DRVTB

NE TIMBIT, .MCALL .TIMO,.CTIM

| RP X, <LI' NK, CSW BLKN, FUNC, JNUM UNI T, BUFF, WCNT, COVP>

@ X=: Q" X- o4

. ENDR
177774 QLI NK=: Q LI NK- ~04
177776 QBCSWE: Q CSW ~04
000000 QBBLKN=: Q BLKN- 704
000002 QBFUNC=: Q FUNC- ~04
000003 QBJINUME: Q JNUM ~04
000003 QBUNI T=: Q UNI T- ~04
000004 QBBUFF=: Q BUFF- "04
000006 QBWCNT=: Q WCNT- ~04
000010 QBCOMP=: Q COVP- %04

I F EQ MMGST
000016 Q ELGH=: “016

I FF

Q PAR=: 016

Q MEME: 2020

JIRP X, <PAR MEM>

@ X=: Q’ X- 04

. ENDR

Q ELGH=: 7024

. ENDC
000001 HDERR$=: 1
020000 EOF$=: #020000
000400 VARSZ$=: 0400
001000 ABTI O$=: ~01000
002000 SPFUNS$=: 202000
004000 HNDLRS$=: 204000
010000 SPECL$=: ~010000
020000 WONLY$=: 2020000
040000 RONLY$=: 2040000
100000 FI LST$=: ~0100000
023742 DLDS| Z=: DLSI ZE
000005 DL$COD=: 5

102405 DLSTS=: <5>! <FI LST$! SPFUN$! VARSZ$>

.I'I'F NDF DLVEC, DLVEC=160
.GLOBL DL$VEC

The .DRPTR macro with no parameters:

A-26 RT-11 Device Handlers Manual

6 . DRPTR

7 JIFF ; EQ MVGST

The .DRDEF macro (with macro expansion) for mapped monitors. The handler is
defined for the RLO1; if it is for an RL02, the size is changed later. Note that handler
supports UMRs.

8 000000 . DRDEF DL, 5, FI LST$! SPFUN$! VARSZ$, DLSI ZE, 174400, 160, DMA=YES, PERMUVR=NOUVRS
The .DRPTR macro with parameters:

9 000200 . DRPTR FETCH=FETCH, LOAD=FETCH, RELEASE=RELEAS, UNLOAD=RELEAS
10 .ENDC ; EQ MWGET

The .DREST macro (with macro expansion). Argument REPLACE=RTABLE shows
DL does a software bad-block replacement—see installation code:

11 000022 .DREST CLASS=DVC. DK, REPLACE=RTABLE
000000 DVC.UK =:0
000001 DVC. NL =:1
000002 DVC. TT =702
000003 DVC.TP =:"03
000004 DVC.DK =: 704
000005 DVC.MI =: 705
000006 DVC.CT =:"06
000007 DVC.LP =: 707
000010 DVC. DE =:"010
000011 DVC.DP =:7oll
000012 DVC.DL =: ~012
000013 DVC. NI = 7013
000014 DVC.PS =:7ol4
000015 DVC. VT =: 7015
000016 DVC.SI =:"016
000017 DVC. SO =:7o0l7
000020 DVC.SB =: 7020
000001 DVM NS =:1
000001 DVM DX =:1
000002 DVM DM =:"02
000200 DVM NF =: 40200
040000 DV2.V2 =: 7040000
000001 HS2.BI =1
000002 HS2.KI =702
000004 HS2.KL =:"o04
000010 HS2.KU =: 7010
000020 HS2.MD =: 7020

Point to special functions for UNIBUS mapping register support:

18 IF NE MVGBT

19 000076 . DRSPF +UBTAB ; SPFUN FOR UB GOES | N TABLE UBTAB
20 . ENDC ; NE MVGHT

21

Define special functions:

22 000032 . DRSPF

23 . DRSPF <FN$GET> ; GET DEVI CE STATUS

24 000032 . DRSPF <FN$SI Z> ; GET DEVI CE SI ZE

25 000032 . DRSPF <FN$REP> ; FORCE RE- READ OF REPLACEMENT TABLE
26 000032 . DRSPF <FN$WRT> ; ABSOLUTE VRI TE (NO BAD BLOCK)

27 000032 . DRSPF <FN$RED> ; ABSOLUTE READ (REPLACEMENT)

28

29 IF NDF El S$I El S$I = MVGST

30 IF EQ El S$I . MCALL SsOB

DX, DL, and XL Device Handlers A-27

Define hardware offsets:

1 . SBTTL HARDWARE DEFI NI TI ONS
2
3 ; RL11 DEVI CE REGQ STER OFFSETS
4
5 ; DEFI NE THE OFFSETS
6 000000 RLCS = 0 ; CONTROL STATUS REQ STER
7 000002 RLBA = 2 ; BUS ADDRESS REQ STER
8 000004 RLDA = 4 ; DI SK ADDRESS REG STER
9 000006 RLMP = 6 ; MULTI - PURPCSE REG STER
10 000010 RLBAE = 10 ; BUS ADDRESS REG STER (EXTENDED)
18
19 ; RLCS BI T ASSI GNMENTS
20
21 100000 CSERR =: 100000 ; ERROR SUMVARY
22 040000 CSDE =: 040000 ; DRI VE ERROR
23 036000 CSERRC =: 036000 ; ERROR CODE MASK
24 020000 CSNXM = 020000 ; NON- EXI STENT MEMORY
25 010000 CSDLT =: 010000 ; DATA LATE
26 010000 CSHNF =: 010000 ; HEADER NOT FOUND
27 004000 CSDCRC =: 004000 ; DATA CRC ERROR
28 004000 CSHCRC =: 004000 ; HEADER CRC ERROR
29 002000 CSOPI =: 002000 ; OPERATI ON | NCOVPLETE
30 001400 CSDS01 =: 001400 ; DRI'VE SELECT BITS 0 AND 1
31 000400 CSDS0 =: 000400 ;DRIVE SELECT BIT O
32 000200 CSCRDY =: 000200 ; CONTROLLER READY
33 000100 CSIE =: 000100 ; | NTERRUPT ENABLE
34 000040 CSBA17 =: 000040 ; BUS ADDRESS BI T 17
35 000020 CSBA16 =: 000020 ; BUS ADDRESS BIT 16
36 000016 CSFUN =: 000016 ; FUNCTI ON CODE
37 000001 CSDRDY =: 000001 ; DRI VE READY
38
39 ; RLCS FUNCTI ON CODE VALUES
40
41 000000 FNNOP = 0*2 ; NO OPERATI ON
42 000002 FNWCHK =: 1*2 ; WRI TE CHECK
43 000004 FNGSTS = 2*2 ; GET DRI VE STATUS
44 000006 FNSEEK =: 3*2 ; SEEK
45 000010 FNRDH = 4*2 ; READ HEADERS
46 000012 FNVWRI TE =: 5*2 ; VWRI TE DATA
47 000014 FNREAD =: 6*2 ; READ DATA
48 000016 FNRDNH =: 7*2 ; READ DATA W TH NO HEADER CHECK
49
50 ; RLMP GET STATUS RETURNED BI T ASSI GNMVENTS
51
52 100000 STVWDE =: 100000 ; WRI TE DATA ERROR
53 040000 STCHE =: 040000 ; CURRENT HEAD ERROR
54 020000 STW. =: 020000 ; WRI TE LOCK STATUS
55 010000 STSKTO =: 010000 ; SEEK TI MEQUT ERRCR
56 004000 STSP =: 004000 ; SPEED ERROR
57 002000 STWGE =: 002000 ; WRI TE GATE ERROR
58 001000 STVC =: 001000 ; VOLUME CHECK
59 000400 STDSE =: 000400 ; DRI VE SELECT ERROR
60 000200 STDT =: 000200 ; DRI VE TYPE
61 000100 STHS =: 000100 ; HEAD SELECT STATUS
62 000040 STCO =: 000040 ; COVER OPEN
63 000020 STHO =: 000020 ; HEADS HOVE
64 000010 STBH =: 000010 ; BRUSHES HOVE
65 000007 STST =: 000007 ; STATE BI T MASK
66 000005 STSLM =: 000005 ; DRI VE | N SEEK- LI NEAR MODE STATE
67
68 ; RLDA BIT VALUES FOR SEEK COVMANDS
69
70 077600 SKCADF =: 077600 ; CYLI NDER ADDRESS DI FFERENCE
71 000200 SKCAO =: 000200 ; CYLI NDER ADDRESS DI FFERENCE BI T 0
72 000020 SKHS =: 000020 ; HEAD SELECT (SURFACE 0 OR 1)
73 000004 SKDI R =: 000004 ; DIRECTION (0 => OUTWARD, 1 => | NWARD)
74 000001 SKMARK =: 000001 ; MARK BI T MUST BE 1 TO | NDI CATE A SEEK
75
76 ; RLDA BIT VALUES FOR |/ O COMVANDS
77
78 077600 | OCA =: 077600 ; CYLI NDER ADDRESS

A-28 RT-11 Device Handlers Manual

79 000200 IOCA0O =: 000200 ; CYLI NDER ADDRESS BIT 0
80 000100 | OHS =: 000100 ; HEAD SELECT
81 000077 | OSA =: 000077 ; SECTOR ADDRESS MASK
82
83 ; RLDA BI T VALUES FOR GET STATUS COMVAND
84
85 000010 GSRST =: 000010 ; RESET DRI VE
86 000002 GSGS =: 000002 ; GET STATUS | NDI CATOR MUST BE 1
87 000001 GSMARK =: 000001 ; THHS MUST BE 1 TO | NDI CATE GET STATUS
88
More RMON references:
89 ; RMON REFERENCES
90
91 000054 SYSPTR =: 54 ; SYSCOM poi nter to RVON
92 000370 CONFR = 370 ; second configuration word
93 000100 BUS$ = 000100 ;
94 020000 PROS$ = 020000 ;
95 020100 BUS$SM =: BUS$! PRCS$; Mask for type bits
96 020100 BUS$X =: BUS$! PRCS$; Strange (busless) KXJ
97 020000 BUS$C =: PRCS$; CTl bus
98 000100 BUS$Q =: BUS$; QBUS
99 000000 BUS$U =: 0 ; UNI BUS
100
101
102 000375 . READ =: 375 ; EMI code for .READ
103 000010 ..READ =: 010 ; subcode for .READ
104 000375 .WRITE = 375 ; EMT code for .WRI TE
105 000011 CWRIT = 011 ; subcode for .WRITE
106
107 000017 SYSCHN =: 17 ; system channel

Installation checks (RL01/02 run on UNIBUS or Q-bus only):

3 . SBTTL | NSTALLATI ON CCDE
4
5 000032 .DRINS DL
6
7 000200 000401 BR 10% ;Data device installation check
8 000202 . ASSUME . EQ I NSSYS
9 000202 000414 BR 20% ; System device installation check (none)
10
11 000204 013700 10$: MoV @#SYSPTR, RO ; get address of RMON
000054
12 000210 016000 MoV CONF&(RO) , RO ; Get configuration word for BUS check
000370
13 000214 042700 BI C #"C<BUS$M>, RO ;lsolate bus bits
157677
14 000220 022700 CwWP #<BUS$X>, RO ; Runni ng on KXJ?
020100
15 000224 001404 BEQ 30% ;Yes, don't install
16 000226 022700 CcwP #<BUS$C>, RO ; CTI?
020000
17 000232 001401 BEQ 30% ;Yes, don't install
18 000234 005727 20%: TST (PO + ; clear carry, skip setting carry
19 000236 000261 30%: SEC , set carry
20 000240 000207 RETURN

The following is SET code. If there is insufficient room in the SET code area, some
code can be moved up into the installation code area.

21
22 000242 O SYWL:
23 000242 011600 MoV @P, RO ; copy return address
24 000244 005200 I NC RO ; point to opcode at return
25 000246 122720 CvPB #BR/ 400, (RO) + ; is it a BR xxx?
000001
26 000252 001135 BNE O. BAD ; NO old style SET
27 000254 010016 MoV RO, @P ; use alternate return (RET+2)
28 000256 000533 BR Q. BAD ; With carry set
29

DX, DL, and XL Device Handlers A-29

The following sets up the table for software bad-block replacement:

30 000260 002 RTABLE: .BYTE 2,10.,5.,2.,40.,1. ; Replacenment factors table
000261 012
000262 005
000263 002
000264 050
000265 001

All blocks can be replaced. This defines the geometry of the disk:

31 ; all replacabl e

32 ; 10. blocks to skip

33 ; 5. sectors of bad sector file
34 ; 2. tracks per cylinder

35 ; 40. sectors per track

36 ; 2**1 sectors per block

37

Installation code area size check:

38 000266 .Assune . LE 400, MESSAGE=<;Install code overflow>
The DL handler supports several SET command conditions:

Set Options

2 . SBTTL SET OPTI ONS
3
4 000266 .DRSET CSR, 160000, O CSR, COCT
5 000412 .DRSET VECTOR, 500, O VEC, OCCT
6
7 000422 .DRSET RETRY, 127., O RTRY, NUM
8
9 .1 F NE ERL$G
10 .DRSET SUCCES, -1, O SUCC, NO
11 . ENDC ; NE ERL$G
12
13 004124 BTCSR = <DLEND- DLSTRT>+<BOTCSR- DLBOOT>+1000
14
15 ; SET DL CSR=address
16
17 000432 020003 O CSR Cw RO, R3 ; CSR | N RANGE?
18 000434 103444 BLO O BAD ; NOPE. . .
19 000436 010067 MoV RO, | NSCSR ; YES, | NSTALLATI ON CODE NEEDS | T
177534
20 000442 010067 MoV RO, DI SCSR ; AND RESORC DCES TOO
177526
21
22 ; Wien the CSR is changed, we nust also alter the bootstrap so
23 ; that it will use the correct CSR
24
25 ; R1- >READ/ WRI TE EMT AREA
26 000446 .ADDR #BAREA+4, R1 ; (BUFFER ADDRESS WORD)
27 ; R2- >BUFFER
28 000454 .ADDR #1000, R2 ; (OVERWRI TES CORE COPY OF BLOCK 1)
29 000462 010211 MOV R2, (R1) ; SET THE BUFFER ADDRESS
30 000464 012741 MoV #BTCSR/ 1000, - (R1) ; THE BLOCK TO READ/ W\RI TE
000004
31 ; (BOOT BLOCK THAT NEEDS ALTERI NG
32 000470 005741 TST -(R1) ; R1- >EMT AREA
33 000472 010003 MoV RO, R3 ; SAVE CSR ELSEWHERE, EMI NEEDS RO
34 000474 010100 MoV R1, RO ; RO- >EMT AREA FOR READ
35 000476 104375 EMT . READ ;o *** (. READW ***
36 000500 103422 BCS O BAD
37 000502 010362 MoV R3, <BTCSR&777>(R2) ; SET THE NEW CSR
000124
38 000506 010100 MoV R1, RO ; RO- >EMI' AREA FOR WRI TE
39 000510 .ASSUME ..READ+1 EQ . . WRI T
40 000510 105260 1 NCB 1(RO) ; CHANGE FROM ' READ TO ' WRI TE'
000001
41 000514 104375 EMT .WRI TE ;oREE (CVMRITW *xx
42 000516 103651 BCS O SYW
43 000520 010100 MoV R1, RO ; RO- >EMT AREA (LAST TI ME, HONEST)

A-30 RT-11 Device Handlers Manual

44
45

46

SET code overflow check:

87
88

000522
000522

000526

000534
000536
000540

000544
000546
000550

000552
000554
000556

000562
000564

000570

000572
000574
000576

000602
000604

000606
000607
000610
000612
000614
000616

000620

105360
000001
012760
000001
000002
104375
103403
010367

000032’
005727
000261
000207

020003
103374
032700
000003
001371
010067
000000’
000765

020003
101364
010067
000742
001761
000757

017
010

000400
000000

Header Section
Request Entry Point

abhwNE

O. GOOD:
O BAD:

DECB 1(R0)

MOV #1, 2(RO)
EMI . READ
BCS 0. BAD
MOV R3, DLCSR
TST (PQ) +
SEC

RETURN

SET DL VECTOR=address

O VEC:

cawe RO, R3

BHI S O BAD
BIT #3, RO

BNE QO BAD
MoV RO, DLSTRT
BR O GOOD

; SET DL RETRY=count

O. RTRY:

CwP RO, R3

BHI 0. BAD
MOV RO, DRETRY
BEQ 0. BAD

BR 0. GooD
.IF NE ERL$G

; SET DL [NQ SUCCES

Q. succ:;

BAREA:

. Assune .

. ENDC

I F EQ MVGBT

MoV #0, R3
MoV R3, SCSFLG
BR O. GOAD

. ENDC ; NE ERL$G

.BYTE SYSCHN, .. READ

. BLKW

. BLKW
.WORD 256.
.WORD O

. SBTTL REQUEST ENTRY PO NT

.ENABL LSB

The .DRBEG macro for unmapped monitors:

6
7

.DRBEG DL

I FF ; EQ MMGST

The .DRBEG macro for mapped monitors:

.ASSUME . .WRIT-1 EQ .. READ
; CHANGE FROM ' VRI TE' TO ' READ

; OF HANDLER BLOCK 1

* Kk k (READN * k Kk
; TELL HANDLER ABOUT NEW CSR

; GOOD RETURN (CARRY CLEAR)
: ERROR RETURN (CARRY SET)

; VECTOR | N RANGE? (<500)
; NOPE. . .
; YES, BUT ON A VECTOR BOUNDRY?

; NOPE. . .
; TELL HANDLER ABOUT NEW VECTOR

;Test retry limts
;Branch if out of bounds

;Store the user selected retry count

;Zero retries not allowed
; Ot herw se, good

;" SUCCESS ENTRY POl NT
: (MJST BE TWD WORDS)
;" NOSUCCESS' ENTRY POl NT

; CHANNEL 17, READ

; BLOCK NUMBER
: BUFFER ADDRESS

: WORD COUNT

: COVPLETI ON (WAl T)

LE 1000, MESSAGE=<; Set area overfl ow>

DX, DL, and XL Device Handlers

A-31

.DRBEG DL, SPFUN=UBTAB

8 000620
9 . ENDC ; EQ MVGST

10

1/O Initiation Section

11 000006’ DLBASE=DLSTRT+6
12
13 000024 016705 MoV DLCQE, RS ; PONT TO CURRENT QUEUE ELEMENT
177760
14 000030 012704 MoV (PC)+, R4 ; PONT TO CONTROLLER CSR
15 000032 . ASSUME . - DLSTRT LT 1000
16 000032 174400 DLCSR .WORD DL$CSR ; ADDRESS OF CONTROLLER
17 000034 016500 MoV BFUNC(R5) , RO ; GET FUNCTI ON CODE / UNI'T NUMBER
000002
18 000040 110002 MOVB RO, R2 ; GET SPECI AL FUNCTI ON CODE
24 000042 120227 CVPB R2, #FN$SI Z ;. SPFUN LESS THAN 373 (S| GNED BYTE)
000373
25 000046 002403 BLT 5% ; YES, . SPFUN 200 THRU 372 | NVALI D
26 000050 120227 CwPB R2, #FN$REP+1 ;1S THL'S . SPFUN 375
000375
27 000054 001002 BNE 10$; NO, HAVE VALI D SPFUN REQUEST
28 000056 000167 5$%: JWP DLQCOM ; DI SM SS QUEUE REQUEST
001572
29
30 000062 10%:
32 000062 042700 Bl C #7C<7* 400>, RO ; 1 SOLATE UNI' T NUMBER BI TS
174377
33 000066 020027 CcwP RO, #DL$UN* 400 ; DO VE SUPPORT THI'S UNI T?
001000
34 000072 103136 BHI S DLELNK ; NO, ERROR NOW
35
36 000074 010067 MoV RO, DLUNI' T ; SAVE UNI T NUMBER
001062
37 000100 . ASSUME CSDS01 EQ 3*400
38 000100 012767 MoV #FNREAD! CS| E, DLCODE ; ASSUME READ (FOR TABLE)
000114
001050
39
40 .IF NE MEBT
41 000106 120227 CVPB R2, #FN$SI Z ; SEE | F . SPFUN GET Sl ZE
000373
42 000112 001407 BEQ 15% ; YES -- DON' T CHANGE Q BUFF AND Q PAR
43 000114 . ASSUME BBLKN+4 EQ BBUFF
44 000114 022525 CcwP (R5) +, (R5) + ; PONT TO Q BUFF | N QUEUE ELEMENT
45 000116 . ASSUME (BBUFF+2 EQ QBWCNT ; done by MPPTR
46 000116 004777 CALL @MPPTR ; CONVERT ADDRESS TO 18 BI T PHYSI CAL
002160
47 000122 . ASSUME QBWCNT- 2 EQ BBUFF
48 000122 012645 MoV (SP) +, - (R5) ; REPLACE Q BUFF W TH BI TS <15: 00>
49 000124 . ASSUME (BBUFF- 4 EQ QBBLKN
50 000124 024545 CcwP -(R5), - (R5) ; FI X QUEUE ELEMENT PO NTER
51 000126 012665 MoV (SP) +, @PAR(R5) ; SAVE BI TS <21:16> I N Q PAR WORD
000012
52 . ENDC ; NE MMGBT
53

The software bad-block replacement table is named DLBBUF"

000132
000132
000140
000142

000146
000150
000152
000154
000156
000160

A-32 RT-11 Device

15%:
. ADDR

000300 SWAB
062703 20%: ADD
000054
005300 DEC
100374 BPL
010327 MoV
000000 DLCC: . WORD
005723 TST

Handlers Manual

#DLBBUF- <DLTSI Z+2>, R3

RO
#DLTSI Z+2, R3

RO
20%

R3, (PC) +
0

(R3)+

; GET BI ASED ADDRESS OF TABLE BUFFER
; GET UNI'T NUMBER
; PONT TO NEXT UNIT'S TABLE

; REDUCE UNI T NUMBER
: ALL GONE?

: SAVE POINTER TO UNIT' S

. CURRENT CYLI NDER TABLE (LOW ADDR)
: PO NT TO REPLACEMENT TABLE

. ASSUME . +4 EQ DLUSI Z

65 000160 012727 MoV #DLSI ZE, (PC) +
023742

Test for RLO1 or RL02; select correct size:

70 000164 000000 DLUSIZ: .WORD O

72 000166 004767 CALL DLGST
001546

73 000172 105701 TSTB RL

74 000174 100003 BPL 25%

75 000176 012767 MOV #DLSI 22, DLUSI Z
047742
177760

76 000204 005700 25%: TST RO

77 000206 100403 BM 308

78 000210 032701 BIT #STVC, R1
001000

79 000214 001403 BEQ 35%

80 000216 012743 30%: MOV #-1, - (R3)
177777

81 000222 012313 MOV (R3) +, @3

82 I FF

83 CWPB R2, #FNSGET

84 BEQ DLGSTA

85 CALL DLGST

86 TST RO

87 BM 30%

88 CALL I NWC

89 BR 35%

90

91 30%: CALL | NVAL

92 . ENDC

93

; ASSUME RLO1

; GET DI SK STATUS

; SINGLE DENSI TY?
;1 F ZERO, RLO1 SINGLE DENSI TY
;1 F SET, RLO2 DOUBLE DENSI TY

; Now, error in get status?
; Yes, invalidate everything
;1S THERE A NEW DI SK I N THI S DRI VE?

; NO, SAME AS LAST TI ME
; | NVALI DATE CURRENT CYLI NDER

; AND | NVALI DATE REPLACEMENT TABLE

; SEE | F . SPFUN GET SPECI AL STATUS
; YES, GO DO I T!

; GET DI SK STATUS (NORVAL)

; Now, error in get status?

; Yes, invalidate everything

; | NVALI DATE | F VOLUME CHECK ON

; SKI' P NEXT

; UNCONDI TI ONAL | NVALI DATI ON

Following code decides if we use bad-block replacement table (only for special
functions). DLSQUE, DLADDR, and DLEXFR are used for replacement table read.

94 000224 120227 35$: CVWPB R2, #FNSREP
000374

95 000230 002002 BGE 40$

96

97 000232 000167 WP DLGSI Z
001434

98

99 000236 001410 40$: BEQ 50$

100 000240 101045 BHI 55%

101 000242 005765 TST QBVCNT(R5)
000006

102 000246 001002 BNE 45%

103 000250 000167 DLFLNK: JMP DLQCOM
001400

104

105 000254 005713 45%: TST a3

106 000256 100046 BPL DLTRAN

Reread the replacement table.

; CHECK QUT THE SPECI AL FUNCTI ON

; BRANCH | F NOT * GET Sl ZF
; (NOTE SI GNED COVPARE)
; GO DO ' GET SI ZF

; GO READ BAD- BLOCK REPLACEMENT TABLE
; GO DO ABSOLUTE BLOCK READ/ VRl TE
; NORVAL REQUEST, SEEK?

; BRANCH | F NOT
;. DRFIN TI ME

;1'S TABLE I N MEMORY YET?
; YES, VE CAN GO DO THE TRANSFER

1. Read replacement table into memory if it’s not there.

a. Save current queue element.

b. Build pseudoqueue element to read the replacement table (DLSQUE).

c. Allow transfer to start (DLADDR).

d. Eventually, the request gets to the end of the I/O initiation section and returns

to monitor.

DX, DL, and XL Device Handlers A-33

e.

f.

Request is completed and returns to interrupt entry (DRAST).

Continues down to DLEXFR to determine if we were rereading the table and
dismiss the the pseudoqueue element if we were. The queue element that
prompted the reading of the replacement table still exists. It can now be
processed.

2. Replacement table already in memory—use it. Go to DLTRAN to use it.

107
108
109
110
111
112
113
114

115
116

117
118
119
120
121
122
123
124
125

126

Build queue

127

128
129
130
131
132
133

134

000260
000260
000262
000270

000274
000276

000302
000306
000312
000314
000316

000322

000326

000332

000336

000342

000344

000350

010346

016701
177660
160301
062701
000002
016702
001760
016703
001756
060103
103002
062702
000020
010267
001550

012701
000001
012702
000025

; WE ALWAYS COVE HERE TO REREAD THE REPLACEMENT TABLE

50%

I F NE MVGBT
MoV
. ADDR
MOV

suB
ADD

MOV
MoV
ADD
BCC
ADD

52%: MoV

| MOV

. ENDC ; NE MVGBT
MoV

MoV

R3, - (SP)
#DLBBUF, R3
DLCC, RL

R3, R1
#2, Rl

BUFADH, R2
BUFADL, R3

RL, R3

52%

#CSBA16, R2

R2, DLBPAR

QSNMEM R5) , DLBVEM
#1, Rl

#DLTSI Z/ 2, R2

element to read table.

004767
001470

012603

012713
177777
011343

Read in the table.

CALL

. F NE MVGST
MoV

. ENDC ; NE MVGBT
MoV

MoV

DLSQUE

(SP)+ R3
#-1, @3
@3, - (R3)

; SAVE R3
; R3=PI C ADDRESS OF START OF DLBBUF
; RL=START ADDRESS FOR THIS UNI T

; RI=OFFSET I NTO DLBBUF FOR THIS UNIT
; PONT TO REPLACEMENT TABLE

:GET H ORDER DLBBUF ADDRESS
: GET LOW ORDER DLBBUF ADDRESS
{R3=THI'S UNIT'S START ADDR I N UVR
:BRANCH | F NO CARRY

: ADD CARRY TO HI ORDER ADDR

:PUT H ORDER ADDR | NTO PSEUDO QEL

: PUT QBMEM | NTO PSEUDO GEL (NOT NEEDED)
; TABLE 1S IN BLOCK 1

; WORDS TO READ (TABLE SI ZE)

; SET UP REST OF PSEUDO QUEUE ELEMENT

: RESTORE R3 (ADDR FOR MOV S)
: FLAG THAT THERE |'S NO TABLE | N MEMORY

; VO D CURRENT CYLI NDER, TOO

At DLADDR, pseudoqueue element is processed to read in replacement table. I/O
initiation will start transfer and return to the monitor. When transfer is complete,
the .DRAST section is entered to dismiss the pseudoqueue element.

135 000352 000512

136
137

BR

A-34 RT-11 Device Handlers Manual

DLADDR

; COMPUTE DI SK ADDRESS AND START THE
TABLE READ

138 000354
139 000356
140 000356
141 000360

142 000366
143
144
145
146
147
148
149
150
151

74

105202

001510
012767
000112
000570
000504

55%:

. ASSUME .

SCSFLG

I NCB R2
BEQ DLADDR
MoV #FNWRI TE! CSI E, DLCODE
BR DLADDR
I F NE ERL$G

. \ORD

-DLSTRT LT 1000

0

. ENDC ; NE ERL$G

. DSABL

75 000370 000167 DLELNK: JMP

001212

Set up and perform I/O:

CoOoO~NOOA~WNE

15 000374

16 000400

18 000402

19 000406

20 000414

21 000420
22 000422

23 000426
24 000430
25 000432
26 000432
27 000434

005765
000006
100005

005465
000006
012767
000112
000542
016502
000006
010203
062703
000377
105003
000303

061503
026703
177524

;+

. SBTTL

LSB

DLEROR

; ABSOLUTE BLOCK READ?

. ASSUME FN$RED EQ

377

; YES, WE ARE ALL SET UP
; SET WRI TE FUNCTI ON CODE

;O DOIT

1 SUCCESS LOGA NG FLAG (DEFAULT=YES)

;:0_
1 <>0 -

LOG SUCCESSES
DON T LOG SUCCESSES

; LINK TO FATAL ERRCR

I'NITI ALI ZE FOR TRANSFER, SET FUNCTI ON CODE, FI X WORD COUNT

; SET READ OR WRI TE FUNCTI ON CCDE
; | F TRANSFER HAS REPLACED BLOCKS IN I T, BREAK I T I NTO PI ECES AND

NOTE:

DLTRAN.

1%$:

SEND EACH PI ECE TO DLADDR SEPARATELY FOR I/ O

ALL PI ECES EXCEPT THE FI RST ARE BLOCK MJLTI PLES

R4 -> CSR
R5 -> USER QUEUE ELEMENT

. ENABL

TST

BPL

NEG

MoV

MoV

MoV
ADD

CLRB
SWAB

ADD
Ccw

LSB
QBWCNT(R5)
13

QBWCNT(R5)

#FNWRI TE! CSI E, DLCODE

QBWCNT(R5) , R2

R2, R3
#255. , R3

R3
R3

@5, R3
DLUSI Z, R3

Checking if bad-block replacement is needed:

DX, DL, and XL Device Handlers

; READ OR WRI TE OPERATI ON?

; READ. .

; (NOTE: THI'S FAILS 2ND TI ME THROUGH)

; WRITE, MAKE WORD COUNT POSI Tl VE

; SET WRI TE FUNCTI ON CODE

; MAYBE, DETERM NE LENGTH COF

; TRANSFER | N BLOCKS

. ASSUVE QBBLKN EQ 0
: COVPUTE FI RST BLOCK AFTER TRANSFER
: DOES OPEATI ON EXTEND | NTO REPLACEMENT

A-35

000440
000442

000446

000452
000454
000456
000460
000462
000462
000464
000466
000470
000472
000474
000476
000476

000500

103753
016700
177506
005760
000004
001452
005720
012001
001447

020115
103773
020103
103043
011001
014000

161500

001004

2$:

BLO

TST

BEQ
TST

BEQ

BLO

BHI S

SUB

BNE

DLELNK
DLCC, RO

4(RO)
DLADDR
(RO) +
(RO) +, R1
DLADDR

R1, @5

R1, R3
DLADDR

-(R0), RO
@5, RO
3%

; BLOCKS ?
; YES, NOT ALLONED W READ/ WRI TE
; PONT TO REPLACEMENT TABLE - 2

;1S THE FI RST REPLACEMENT BLOCK = 07?

: YES, THEN | NVALI D TABLE (FI LES-11)
: SKI P OVER REPLACEMENT BLOCK NUMBER
: GET NEXT BLOCK NUMBER TO REPLACE
: END OF TABLE, NO REPLACEMENT, DO | O
. ASSUVE QBBLKN EQ 0
: TH'S BAD BLOCK PART OF TRANSFER?
: NOPE, BELOW IGNORE IT
: BAD BLOCK W THI N TRANSFER?
: NOPE, BEYOND, WHOLE TRANSFER GOOD
:YES, Pl CK UP REPLACEMENT BLOCK NUMBER
: GET BAD BLOCK NUMBER
. ASSUVE QBBLKN EQ 0
; COVPUTE DI STANCE OF BAD BLOCK
I NTO TRANSFER
: NOT THE FI RST BLOCK,
; GO DO GOOD FI RST PART

The replacement table is being used. Pseudoqueue elements are built to break-up

the transfer.

49
50
51
52
53
54

81
82

83
84
85
86
87

000502
000504

000506
000510

000512
000512
000514
000516
000520

000524

000524

000526

000532
000534
000536

000542

000550

000556

000560

000566

000574

000574

A-36 RT-11 Device

005200
000302

001403
000401

011501
010002
000302
016503
000004

060015

160265
000006
010200
006300
060065
000004

016567
000012
001326
016567
000014
001322
103006
062765
000020
000012

062765

000020
000014

004767

; FIRST BLOCK OF TRANSFER IS BAD
; FILL I'N PSEUDO QUEUE TO TRANSFER THE REPLACEMENT

; BAD BLOCK IS IN M DDLE OF TRANSFER

I NC
SWAB

BEQ
BR

RO
R2

5%
4%

; SET BLOCK COUNT TO BE 1 BLOCK

;1S THE REAL COUNT > 1 BLOCK

; H BYTE>0?

; COUNT < 256. WORDS, FIX AND USE I T
; COUNT >= 256. WORDS, GO USE 1 BLOCK

; FILL I N PSEUDO QUEUE FOR A TRANSFER UP TO BUT NOT | NCLUDI NG THE BAD

; BLOCK.

3%:
4%:
5%:

6%:

MoV
MoV
SWAB

BCC

NE

@5, RL
RO, R2

R

QBUFF(RS5) , R3

RO, @5
R2, QBVLCNT(R5)
R2, RO

RO
RO, QBUFF(R5)

MVGST
QBPAR(R5) , DLBPAR

QSMEM R5) , DLBVEM

6%
#CSBA16, QSPAR(R5)

#CSBA16, QGBMEM R5)

. ENDC ; NE MMGBT

CALL

Handlers Manual

DLSQUE

. ASSUME QBBLKN EQ 0

: START BLOCK OF PARTI AL=ORI Gl NAL BLOCK
: COPY BLOCK COUNT OF TRANSFER

: MULTIPLY BY 256. TO GET WORD COUNT

: GET ORI G NAL BUFFER ADDRESS

; FOR PSEUDO QUEUE
. ASSUME QBBLKN EQ 0

: UPDATE BLOCK NUMBER BY PARTI AL

; BLOCK COUNT

:FI X WORD COUNT | N USER QUEUE ELENENT
; COPY THE WORD COUNT

; CHANGE WORD COUNT TO BYTE COUNT
; UPDATE USER BUFFER ADDRESS

; *C*SET H ADDR BI TS | N PSEUDO QUEUE
; *C*SET HI ADDR BI TS I N PSEUDO QUEUE

; NO OVERFLOW
; OVERFLOW ORI G NAL ADDRESS | NTO

H GH BITS
; OVERFLOW ORI G NAL ADDRESS | NTO

; HGH BITS

;FILL IN REST OF PSEUDO QUEUE

000600

000600

000602
000604
000604
000606
000610

000614
000614
000616

000620
000622

000626
000630
000632
000632
000634
000636
000640
000642
000644
000646
000650
000652
000654
000656

000664
000666
000672

000674
000676

000702

000706
000710

001232

010527 DLADDR

000000 DLQPTR

011502
100670
012701
000024

005000
000410

010203
042702
177760
040203
060300

006203
006203
160302
020201
103366
006300
050200
006300
103646
100004
026727
177302
047742
001241
010067
000256
160201
000301
010167
000224

012727
000001

000000
004767

1$:

2$:

3%:

. BR DLADDR ; COWPUTE ADDRESS AND DO I/ O

.DSABL LSB

. SBTTL COWUTE DI SK ADDRESS AND START TRANSFER

R4 -> CSR
RS -> QUEUE ELEMENT (USER OR PSEUDO)

.ENABL LSB
MoV R5, (PC) + ; SAVE PO NTER TO QUEUE ELEMENT
; VEE ARE USI NG
.WORD 0

. ASSUME QBBLKN EQ 0
MOV @S5, R2 ; GET BLOCK NUMBER

BM DLELNK : NO NEGATI VE BLOCK NUMBERS!
MOV #DLBPT, RL : GET NUMBER OF BLOCKS ON ONE TRACK
.ASSUME DLBPT EQ 20.
CLR RO :INITIALI ZE 1/ 0 DI SK ADDRESS TO 0
BR 2% : ENTER DI VI DE LOOP
MOV R2, R3 ; COPY DI VI DEND
BI C #7C<17>, R2 : COWPUTE DIV = 16Q + R
BI C R2, R3 ; AND GET 16Q TO WORK W TH
ADD R3, RO iRESULT <- RESULT + | OHS/ 4
. ASSUME | OHS/ 2/ 2 EQ 16.
ASR R3 : COVPUTE 8Q
ASR R3 ; THEN 4Q
SuB R3, R2 :NEWDIVIDEND = R - 4Q
o R2, RL : DONE? (NUMBER NOW < DLBPT)
BHIS 1% : NOPE. . .
ASL RO : YES, QUOTI ENT*| OHS/ 4 => QUO*I OHS/ 2
BIS R2, RO : MERGE BLOCK NUMBER W TH TRACK
ASL RO ;%2 FOR TWD 128. WORD SECTORS/ BLOCK
BCS DLELNK : OVERFLOW MEANS BEYOND END OF DEVI CE
BPL 3% :POSI TIVE | S OK FOR EI THER RLO1/ 02
ow DLUSI Z, #DLSI Z2 : NEGATI VE | S OK FOR RLO2 ONLY
BNE DLELNK ; BUT NOT OK FOR RLOL
MOV RO, DLDA : SAVE STARTI NG DI SK ADDRESS
suB R2, Rl : CALCULATE BLOCKS LEFT ON TRACK
SWB R1 : CONVERT TO WORDS LEFT ON TRACK
MOV R1, DLWIRK : SAVE THAT NUMBER
.IF NE ERL$G

MOV QVCNT(R5) , DLW
.ENDC ; NE ERL$G

; SET WORD COUNT FOR EL

MOV #1, (PC) + ; CLEAR RETRY COUNT
(THESE ARE FATAL ERRORS)
WORD 0
CALL DLRST : RESET DRI VE

DX, DL, and XL Device Handlers

A-37

51
52
53
54
56

57
58

59
60
61

62
63

18
19
20
21

22
23

24

25

27

28

29
30

31

000714

000720
000722
000724
000724
000726

000732

000736

000740
000740

000746

000746
000750
000752

000756

000762

000764

000770
000772

000776

001002
001004
001006

001012

001016

001022

001026
001030
001032
001034
001036
001040
001042
001042

001044
001046

001050
001050

A-38 RT-11 Device

001062
004767
001020
100434
006200

103032
042701
020300

022701
000035
001025

000742

012767
000010
177740

005027
000000
017701
177176
022701
177777
001015

016702
177752
006302
012701
000010
004767
001006
100005
077206
105267
177736
000167
000452

016700
000126
012702
000077
040200
040201
020001
001427
010003
005202

040200
040201
160001

103003

CALL DLGST : AND GET STATUS
BM DLERIM : ERROR HERE 1S FATAL
ASR RO ;1S THE DRI VE READY?
. ASSUME CSDRDY EQ 1
BCC DLERIM :NO, FATAL UNRETRYABLE ERROR
BI C #STWL! STHS! STDT, R1 ;| GNORE WRI TE LOCK, HEAD SELECT,
; DRI VE TYPE
o #STHO STBH! STSLM RL : HEADS, BRUSHES AND STATE OK?
BNE DLERIM :NO, FATAL ERROR
DRETRY = .+2
. ASSUME DRETRY- DLSTRT LT 1000
MOV #DLRCNT, DLRTY : SET REAL RETRY COUNT
.BR DLTRAK ; GET ON TRACK
.DSABL LSB

. SBTTL ENSURE THAT DI SK I S ON TRACK BEFORE TRANSFER

D+

; CALCULATE THE DI FFERENCE WORD FOR THE SEEK

; TRY 16 TI MES TO READ A HEADER

; |F ALL FAIL, LOG AN ERROR AND | SSUE A REVERSE SEEK (SEEK -1 TRACK)
7 AND A READ HEADER TO CAUSE AN | NTERRUPT.

R4 -> CSR
: R5 -> QUEUE ELEMENT

.ENABL LSB
DLTRAK: CLR (PC) + ; RESET REVERSE SEEK FLAG
DLREV: .MORD 0
MoV @LCC, R1 ; GET CURRENT CYLI NDER
CwWP #-1,R1 ;1S 1T VALI D?
BNE 2% yYES, USE IT TO START WTH
; ¥** ACTI ON*** OLD CODE HAS ANOTHER RETRY VALUE
MoV DRETRY, R2 ; SET READ HEADER RETRY COUNT
ASL R2 : (DLRCNT*2)
1$: MoV #FNRDH, R1 ; SET CODE FOR READ HEADERS FUNCTI ON
CALL DLXCT ; EXECUTE THE FUNCTI ON
BPL 2% ; FUNCTI ON EXECUTED OK
SOB R2, 1$; any retries left?
| NCB DLREV ; SET REVERSE SEEK FLAG
DLERIM JMWP DLERRH ; RETRY OPERATI ON
2%: MoV DLDA, RO ; RETRI EVE STARTI NG DI SK ADDRESS
MoV #1 OSA, R2 ; MASK QUT
BI C R2, RO ; SECTOR BI TS FROM DESI RED ADDRESS
Bl C R2, R1 ; AND FROM CURRENT ADDRESS
CwWP RO, R1 ; DO VE NEED TO DO A SEEK?
BEQ DLXFER ; NOPE, ALREADY ON CYLI NDER AND HEAD
MoV RO, R3 ; YES, SAVE DESI RED CYLI NDER AND HEAD
I NC R2 ; GET MASK FOR HEAD SELECT
. ASSUME | OHS EQ | CSA+1
BI C ; STRIP HEAD SELECT BI T FROM

R2, RO
; DESI RED ADDRESS
BIC R2, R1 ; AND FROM CURRENT ADDRESS
RO, R1

suB ; COMPUTE DI STANCE FROM DESI RED
; TO ACTUAL CYLI NDER
. ASSUME SKCADF EQ I OCA
BHI S 3% ; DESI RED <= ACTUAL, MOVE TOWARD EDGE

Handlers Manual

54
55
56

57
58

CoOoO~NOOR~WNE

[N
[N

001052
001054

001060
001062
001062
001064
001066

001072

001100

001104
001106

001114

001114
001114

001120

001124
001126
001130
001132
001134
001136
001140
001142

001144
001146
001150
001152

001154
001156
001160
001162

001164
001166
001172
001174
001176
001200
001202
001206
001212

001216

005401
052701
000004

005201

030203
001402
052701
000020
012777
177777
177054
004767
000622
100571
016777
000036
177040

062704
000006

062705
000006
012703
000000
020315
101401
011503
010327
000000
005403

010314
012744
000000
014544

012700
000000
052700
000000

000416

016546
000006
006216
006216
006216
006216
012664
000006
016546
000006
042716
177717
052600

3$:

4%:

DLXFER:

DLWIRK:

1%$:
DLWC:

DL CCDE:

DLUNI T:

$RLV1A:

NEG R1

BI S #SKDI R, R1

INC R1

BIT R2, R3 .
BEQ 4%

BI S #SKHS, R1

MoV #-1, @LCC

CALL DLSEEK

BM DLERRH

MoV DLDA, @LCC

. BR DLXFER

.DSABL LSB

.SBTTL DLXFER - START AN I/ O
R4 -> CSR

R5 -> QUEUE ELEMENT

. ENABL

ADD

BI C

Bl S

LSB
#RLMP, R4

#QBWCNT, RS
(PO) +, R3

0

R3, @5

1%

@5, R3

R3, (PC) +

0

R3

R3, @4
(PC) +, - (R4)
0

-(R5), - (R4)

(PO +, RO
0

(PO +, RO
0

MVGST
10$

QBPAR- @BUFF(R5) , - (SP)
(SP)

(SP)

(SP)

(SP)

(SP) +, RLBAE- RLBA(R4)
QBPAR- @BBUFF(R5) , - (SP)
#<ACB0>, (SP)

(SP) +, RO

DX,

: DESI RED > ACTUAL, MOVE TOWARD SPI NDLE
: (SET DI RECTION BIT)

; SET MARKER BI T
ASSUME SKMARK EQ 1
; DO VE WANT TO USE SURFACE 17
; NO
; YES, SET SURFACE 1 BIT

; VO D KNOALEDGE OF CURRENT CYLI NDER

; EXECUTE THE SEEK
; OOPS, ERROR EXECUTI NG SEEK
; SET CURRENT CYLI NDER

; NOW DO THE TRANSFER

TRANSFER

; PONT TO RLMP I N CONTROLLER

; PONT TO WORD COUNT | N QUEUE ELEMENT
; GET NUMBER OF WORDS LEFT ON TRACK

; COWPARE AGAI NST TOTAL TRANSFER
; <=, USE REMAI NDER OF TRACK

;>, USE TOTAL TRANSFER COUNT

; SAVE TRANSFER COUNT FOR LATER
; TRANSFER COUNT

; MUST BE 2 S COVPLEMENT

; LOAD WORD COUNT | NTO CONTROLLER
; LOAD STARTI NG DI SK ADDRESS

; SET BUS ADDRESS

; GET FUNCTI ON CODE

; READ OR WRI TE CODE
;ADD I N UNI' T SELECT BI TS
; UNIT NUMBER IN BITS 8-9

:1F NO RLVI2. ..
: (CHANGED TO ' NOP' | F USI NG RLV12)
: SAVE @2 HI GH ORDER BI TS

: SHI FT THEM TO THEI R CORRECT PCSI TI ONS
: SET THE H GH ORDER BI TS

: SAVE H GH ORDER BUS ADDRESS
: STRI P TO H GH ORDER Bl TS<17: 16>

AND MERGE W TH COMVAND WORD

DL, and XL Device Handlers A-39

52
53
54

55
56

001220

001222

001230
001232

001236

001242

001242
001244

000410 BR
032765 10%: BIT
001700
000006
001402 BEQ
000167 JwP
000350
056500 20%: BI S
000006
30%:

30%

#1700, QBPAR- QBBUFF(R5)

20%
DLERCR

QBPAR- BBUFF(R5) , RO

. ENDC ; NE MMGBT

Interrupt Service Section

O WNPE

; 22-BI T ADDRESS SPECI FI ED?

; NOPE, THEN ADDRESS | S OKAY TO USE
; YES, CAN'T BE USED ON NON RLV12

; MERGE EXTENDED ADDRESS BI TS | NTO

; COVVAND WORD

; LOAD FUNCTI ON AND GO
; WAL T FOR AN | NTERRUPT

010044 VoY RO, - (R4)
000207 RETURN
.DSABL LSB
.SBTTL DLINT - | NTERRUPT ENTRY POl NT

I NTERRUPTS ENTER THE HANDLER HERE

.ENABL LSB

The .DRAST macro:

When a function is completed, the device interrupts, and the handler is entered here
to dismiss the interrupt and the queue element.

6
7

001246

.DRAST DL, 5

Drop to fork level rather than device priority because the routine is lengthy and it
needs all the registers.

14

001256

Load the registers.

15

16

17

18
20

25
26
27
28

29
30

31
33

001264

001270

001274

001300
001302

001304
001306
001306
001312

001316
001320

001326
001330

A-40 RT-11 Device

. FORK
016704 MOV
176542

016705 MOV
177306

105767 TSTB
177450

001222 BNE
005714 TST
100471 BM
016703 MOV
177626

160365 SuB
000006

001036 BNE
026727 v
177632

000112

001030 BNE
032764 BIT
000001

000004

Handlers Manual

DLFBLK

DLCSR, R4
DLQPTR, RS
DLREV
DLTRAK

@4

DLERRH

DLVC, R3

R3, GBWCNT(RS)

2%

DLCODE, #FNWRI TE! CSI E

11%
#1, RLDA(R4)

; GO TO FORK LEVEL

; PONT TO CSR ADDRESS
; PONT TO QUEUE ELEMENT
; REVERSE SEEK | N PROGRESS?

; YES, GO RETRY THE REAL TRANSFER

; CHECK RLCS
;I F ERROR, GO DIAGNGCSE I T
. ASSUME CSERR EQ 100000

; GET WORD COUNT OF THI' S TRANSFER

; CALCULATE WORDS REMAI NI NG TO TRANSFER
; MORE TO DO, USE NEXT TRACK

; WAS THE LAST FUNCTI ON A WRI TE?

;NO, DONE WTH THI S (PARTI AL) ELEMENT
; GOT A SECTOR TO WRI TE YET?

45

46

47

49

51

53

78

[«2) A WNE

001336
001340

001344

001352

001356

001362

001364

001372

001372

001376

001404

001410

001414
001416

001422
001424

001432

001432

001440

001444

001446
001450

001456
001460

001466

001470

001470

001424
005265
000006

016765
000716
000012
016746

000712
062716
000130
103003
062765
000020
000012

012665
000004

016467
000004
177544

000167
177336

000167
000204

006303
060365
000004

103003
062765
000020
000012

052767
000077
177510
005267
177504
001460
100004
026727
176510
047742
001053
012767
012000
177440
000746

011403

BEQ 11$
I NC QBWCNT(R5)

I F EQ MMGST
.ADDR #DLFILL, - (SP)

I FF ; EQ MVGST
MOV BUFADH, GBPAR(R5)

MOV BUFADL, - (SP)

ADD #<BUFEND- DLBBUF>, @P
BCC 100$
ADD #CSBA16, GSPAR(R5)

100%:

. ENDC ; EQ MVGST

MOV (SP) +, @BBUFF(R5)

MOV RLDA(R4) , DLDA
1$: JIMP DLTRAK
11$: JWP DLEXFR
2$: ASL R3

ADD R3, QBBUFF(R5)

.IF NE MET

BCC 3%

ADD #CSBA16, QBPAR(R5)
3%:

. ENDC ; EQ MM$T

BI S #77, DLDA

I NC DLDA

BEQ DLEROR

BPL 301%

CwP DLUSI Z, #DLSI 22

BNE DLEROR
301%: MoV #DLWPT, DLWRK
4%: BR 1%

. SBTTL HANDLE THE ERRORS
DLERRH

.IF EQ ERL$G

MoV @4, R3

DX, DL, and XL Device Handlers

;NO, DON' T ZERO FI LL
; SET WORD COUNT TO 1

; (CONTROLLER FILLS 127.)
; GET THE BUFFER ADDRESS
; GET H

ADDR COF UMR

; GET LO ADDR OF UMR

; PONT TO DLFILL

;I F NO OVERFLOW BRANCH
; UPDATE HI ORDER ADDRESS BI TS

; SET THE BUFFER ADDRESS

; AND THE DI SK ADDRESS

;GO DO IT (DLWRK > 1 = GBWONT)
: GO FI NI SH TRANSFER

; CHANGE WORD COUNT TO BYTE COUNT
; UPDATE USER BUFFER ADDRESS

; NO OVERFLOW
; UPDATE HI GH ORDER ADDRESS BI TS

; UPDATE SURFACE/ CYLI NDER ADDRESS
; TO FIRST SECTOR, NEXT HEAD/ CYLI NDER
; OVERFLONED DEVI CE !!

; OK FOR EI THER RLO1/ 02
; MNUS OK ONLY FOR RLO2

; VERY BAD | F RLO1 !!
; SAVE NUMBER OF WORDS ON A WHOLE TRACK

; GO CONTI NUE TRANSFER ON NEXT TRACK

; GET RLCS CONTENTS W TH ERROR BI TS

A-41

49
50

51

52
53

54

56

57
58

59

001472

001500

001504

001510
001512

001516

001522

001526
001530

001534

001540
001542

001544
001546
001550
001550
001552
001554
001556
001556
001560
001560

001564

001570

A-42 RT-11 Device

012777
177777
176454

004767
000272
105767
177240
001415
105267

177232

012701
177601
004767
000200
100427
016700
177426
052700
000110

010014
000207

106203
103361

006303
006303
100414

103010

004767
000154
032701
002000
001406

$RLVI1B:

10%:

$RLVIC:

20%:

ADD

5%:

518%:

6$:

.1 FF
MoV R4, RL ; GET CSR ADDRESS
. ADDR #DLRBLK, R2 ; CALCULATE ADDRESS OF REGQ STER BUFFER
MoV R2, R3 ; SAVE BUFFER ADDRESS
MoV (R1)+, (R3) + ; TRANSFER RLCS
MoV (R1) +, (R3) + ; TRANSFER RLBA
MV (RL) +, (R3) + ; TRANSFER RLDA
MOV (R1) +, (R3) + : TRANSFER RLMP
CALL DLGST ; GET THE DRI VE STATUS | NFO
MoV R1, (R3) + ; AND SAVE | T FOR ERROR LOGGER
cov R1 ; COMPLEMENT
BIT #STW,, R1 Wite lock error?
BEQ 5% ;Yes, don't log it
; (reversed | ogic due to COM above)
MoV DLDA, (R3) + ; SAVE THE DI SK ADDRESS THAT WE USED
BR 10$;1 F NO RLV12. ..
; (CHANGED TO ' NOP' | F USI NG RLV12)
MOV RLBAE(R4), (R3) + ; TRANSFER RLBAE
MoV DRETRY, R3
SWAB R3
ADD #DLREG, R3 ; R3= MAX RETRI ES/ NUMBER OF REG STERS
BR 20% ;I F NO RLV12. ..
; (CHANGED TO ' NOP' | F USI NG RLV12)
I NC R3 ; BUMP FOR EXTRA REG STER ON RLV12
JSR R4, FI X\WC ; GET @BWCNT SET RI GHT, PUSH OLD VALUE
MoV DLRTY, R4 ; GET NUMBER OF RETRI ES LEFT
#DL$COD* 400- 1, R4 ; SET DEVI CE | D FLAG COUNT=COUNT- 1
; (report retries renmmining, not
;current retry nunber)
CALL @ELPTR ; LOG THE ERROR
MoV (SP) +, QBWCNT(R5) ; RESET WORD COUNT
MoV DLCSR, R4 ; PONT TO CSR AGAI N
MoV DLRBLK, R3 ; GET RLCS AT TI ME OF FAI LURE
. ENDC ; EQ ERL$G
MoV #-1, @LCC ; | NVALI DATE CURRENT CYLI NDER
; (FORCE READ HEADER)
CALL DLRST ; RESET DRI VE
TSTB DLREV ; REVERSE SEEK REQUI RED?
BEQ 6% ; NO, GO SEE | F WE CAN RETRY
I NCB DLREV ; SET REVERSE SEEK FLAG | F RETRY
; FROM DRI VE N, 002
MoV #177600! SKMARK, R1 ; Reverse seek to cylinder zero
CALL DLSEEK ; EXECUTE THE SEEK
BM DLEROR ; SEEK FAI LED, CALL I T FATAL
MoV DLUNI T, RO ; GET UNIT NUMBER TO USE
Bl S #CSI E! FNRDH, RO ; ADD CODE FOR READ HEADER
MoV RO, @4 ; LOAD FUNCTI ON AND GO
RETURN ; WAL T FOR THE | NTERRUPT
ASRB R3 ; AT TI ME OF FAI LURE, WAS DRI VE READY?
BCC 51% ;NO, REVERSE SEEK UNTIL IT IS
. ASSUME CSDRDY EQ 1
ASL R3 ; SHEFT TO GET DRI VE ERROR BIT I N CARRY
ASL R3 ; AND NXM BIT IN SI GN
BM DLEROR ; FATAL | F NON- EXI STENT MEMORY
. ASSUME CSNXM EQ 020000
BCC 7$; GO RETRY | F NOT DRI VE ERROR
. ASSUME CSDE EQ 040000
CALL DLGST ; DRI VE ERROR, GO GET DRI VE STATUS
BIT #STWGE, R1 ; WRI TE GATE ERROR?
BEQ DLEROR ; FATAL | F NOT

Handlers Manual

79

80
81

82
83

001572

001576
001600

001604
001606

001612
001612

001616

001620

001624

032701
020000
001003
005367
177102
003330
016705
176176

052755
000001
000416

016705
176164
020567
176752

BIT

BNE
7$: DEC

BGT
DLEROR MOV

BI' S

BR

. DSA

BL

. SBTTL

. ENAI

DLEXFR: MoV

cwP

BL

#STW,, R1 ; YES, WRITE GATE W TH WRI TE LOCK?
DLEROR ; YES, FATAL

DLRTY ; ANY RETRIES LEFT?

4% ; YES, GO DO ONE

DLCCE, RS ; GET QUEUE ELEMENT PO NTER

#HDERRS, @ (R5)
DLQCOM
LSB

. ASSUME (BBLKN-2 EQ QBCSW
; FLAG CHANNEL ERROR

; FI NI SH- UP

FI' NI SH SUCCESSFUL OPERATI ON

LSB

DLCGE, R5
R5, DLQPTR

; GET ORI G NAL QUEUE ELEMENT PO NTER

; PSEUDO QUEUE | N USE?

Test if we're dismissing a queue element for a replacement table reread or if we're
doing a partial transfer using replacement. If a partial transfer, go back and get the

rest before we dismiss the original queue element.

7
8

001630
001632

001640
001642
001646
001650

001654

001411
126527
000002
000374
001405
005765
000006
001402
000167
176520

BEQ
CVPB

BEQ
TST

BEQ
IVP

1$:
IF
JSR
TST
TST
BNE
MoV
CALL

NE

1%
QBFUNC(R5) , #FNS$REP

1%
QBVONT(RS)

13
DLTRAN

ERL$G

R4, FI X\WC

(SP) +

SCSFLG

DLQCOM

#DL$COD* 400+377, R4
@ELPTR

. ENDC ; NE ERL$G

I/0 Completion Section
Dismiss the queue element.

24
25
26

=
CQOWWONOOUITAWNE

11

12
13

001654

001672

001672

001676
001700

016746
176266
010504
004777
000404

DLQCOM .DRFIN DL

.DSABL LSB

. SBTTL GET DEVICE SIZE

; SPECI AL FUNCTI ON TO GET VOLUME S| ZE:

;NO, THIS IS THE END OF THE REQUEST
; WAS FUNCTI ON A FORCE TABLE RE- READ?

; YES, VE ARE NOW DONE
;1S THERE ANYTHI NG LEFT TO TRANSFER?

; NOPE, ALL DONE
; GO DO NEXT PART OF BROKEN TRANSFER

; FI X WORD COUNT FOR READ/ VRl TE
; DUMP STACKED OLD VALUE

; LOGGE NG SUCCESSES?

; NOPE. . .

; FLAG SUCCESS FOR EL

; CALL THE ERROR LOG HANDLER

; COWPLETE |/ O OPERATI ON

; READ THE DRI VE TYPE BI T FOR THE SELECTED DRI VE. THEN RETURN THE
I'N BLOCKS, IN THE FI RST WORD OF THE USER S BUFFER

. DRIVE' S S| ZE,
DLGSI Z:

JIF EQ MVGST

MOV DLUSI Z, @$BUFF(R5)

JIFF

MOV DLUSI Z, - (SP)

MOV RS, R4

CALL @PTWRD

; PUT SI ZE | N BUFFER
; SET SI ZE ON STACK

; COPY QUEUE PO NTER FOR PUTWORD
; PUT SI ZE | N BUFFER

DX, DL, and XL Device Handlers A-43

20
21

22
23

©CoOoO~NOGOR~WNE

28
29

30
31

33

37

38
40

45
46

48

52
53
54

56

60

61

63

001704
001706
001706
001710

001714
001716

001722
001724

001726
001726

001732

001736

001740
001740

001746

001752
001754

001760
001762

001766

001774

001776
001776

002004

002010

002014
002016

A-44 RT-11 Device

. ENDC ; EQ MMGST

005700 TST RO ;Was there an error (no drive?)
; RO shoul d be CSR from DLGST
. Assune CSERR EQ 100000
100362 BPL DLQCOM ;Branch if not
032700 BIT #CSERRC, RO ;1s there an error code?
036000
001334 BNE DLEROR ;Branch if yes
032701 BI T #STVC, R1 ;ls it a volune check error?
001000
001731 BEQ DLEROR ;1f not, report hard error
000753 BR DLQCOM
.SBTTL DLXCT - FUNCTI ON EXECUTI ON ROUTI NES

D+

; EXECUTE A CET DRI VE STATUS OR ANY NON- | NTERRUPT FUNCTI ON

) AND WAI T FOR COWPLETI ON

L INPUTS:

; R1 = FUNCTI ON CODE I F DLXCT

; SEEK DI FFERENCE WORD | F DLSEEK

; R4 -> CSR

. OUTPUTS:

; FUNCTI ON EXECUTED

: RO = CSR CONTENTS

) R1 = MP CONTENTS

; N =1 I1F ERROR

.ENABL LSB

DLSEEK
010164 MoV R1, RLDA(R4) ; LOAD DI FFERENCE WORD | N CONTROLLER
000004
012701 MoV #FNSEEK, R1 ; 1 SSUE SEEK COMVAND
000006
000424 BR DLXCT

DLGST
012764 MoV #GSGS! GSVARK, RLDA(R4) ; TELL DRI VE TO GET STATUS
000003
000004
004767 CALL 1% ; EXECUTE THE GET STATUS
000032
100026 BPL 4% ; NO ERROR SO EXI T
005764 TST RLBA(R4) ;ERROR -- IS | T AFTER BUS | NI T?
000002
001023 BNE 4% ; NO -- LOG THE ERROR
004767 CALL DLRST ; YES -- DO A RESET
000010
012764 MoV #GSGS! GSMARK, RLDA(R4) ; AND TRY THE GET STATUS AGAI N
000003
000004
000403 BR 1% ; BUT ONLY TRY | T ONCE!

DLRST
012764 MoV #GSRST! GSGS! GSMARK, RLDA(R4) ; GET DRI VE RESET COMVAND
000013
000004
012701 1%: MoV #FNGSTS, R1 ; GET ' GET STATUS' FUNCTI ON CODE
000004
056701 DLXCT: BIS DLUNI T, R1 ;ADD IN UNIT SELECT BI TS
177146
010114 MoV R1l, @4 G VE IT TO DRI VER
105714 2$: TSTB @4 ; WAL T FOR FUNCTI ON TO BE ACCEPTED

Handlers Manual

70 002020 100376 BPL 2%
71 002022 3%:
73 002022 016401 MOV RLMP(R4) , RL . GET RETURNED STATUS WCRD
000006
74 002026 011400 MOV @%, RO . AND CSR VALUE (SET N-BIT | F ERROR)
83 002030 000207 48: RETURN
84
85 . DSABL LSB
24 DSABL LSB
45

DLSQUE is used to read the bad-block replacement table into memory and to break
up a transfer that uses the table.

1 .SBTTL DLSQUE - SETUP PSEUDO QUEUE ELEMENT

2

3 p+

4 ; SET UP THE PSEUDO QUEUE FOR BAD BLOCK TABLE READS OR PARTI AL TRANSFERS
5 ;

6 ;I NPUTS:

7 ; Rl = STARTI NG BLOCK NUMBER OF PARTI AL TRANSFER

8 ; R2 = WORD COUNT

9 ; R3 -> BUFFER

10 ; R5 -> USER QUEUE ELEMENT

11 ;

12 ; OUTPUTS:

13 ; RO = RANDOM

14 ; R5 -> PSEUDO QUEUE ELEMENT

15 ;-

16

17 002032 DLSQUE:

18 002032 .ADDR #DLBWCT, RO ; PO NT TO PSEUDO QUEUE ELEMENT
19 002040 010210 MoV R2, @RO ; STORE WORD COUNT
20 002042 010340 MoV R3, - (RO) ; STORE BUFFER ADDRESS
21 002044 016540 MoV BFUNC(R5) , - (RO) ; COPY UNI T NUMBER AND

000002
22 ; SPECI AL FUNCTI ON BYTE
23 002050 010140 %o Y R1, - (RO) ; STORE BLOCK NUMBER
24 002052 . ASSUME BBLKN-2 EQ QBCSW
25 002052 014560 MoV -(R5), -2(R0) ; STORE PO NTER TO CSW
177776

26 002056 010005 MoV RO, RS ; PONT R5 AT PSEUDO QUEUE
27 002060 000207 RETURN
28
29 .IF NE ERL$G

1 .SBTTL FI XWC - FI X WORD COUNT FOR LOGGER

2

3 D+

4 ; FI' X WORD COUNT I N QUEUE ELEMENT FOR ERROR LOGGER

5 ;

6 ;I NPUTS:

7 ; R5 -> QUEUE ELEMENT

8 ; DLWC = WORD COUNT USED FOR 1/ 0O

9 ;

10 ; QUTPUTS:

11 ; R4 = RANDOM

12 ; @P = OLD VALUE OF QBWCNT TO RESTORE

13 ; BWENT(R5) = DLWC (NEGATED | F WRI TE)

14 ;-

15

16 FI XWC. MOV QBWCNT(R5) , @P ; SAVE OLD COUNT ON STACK
17 MoV DLWC, QBWENT(R5) ; SET THE CORRECT VALUE
18 CcwP DLCODE, #FNWRI TE! CSI E ;WAS I T A WRITE?

19 BNE 1% ; NO
20 NEG BWENT(R5) ; YES, FI X ELEMENT VALUE
21 1$: JwP @4 ; RETURN
22
23 . ENDC ; NE ERL$G

DX, DL, and XL Device Handlers A-45

CoOoO~NOORAWNE

This is the bad-block replacement table:

30
31
32
33
34
35
36

002062
002064
002066
002067
002070
002072

002074
002076
002100
002102

002104

002234

002234

002236
002240
002242
002244

002246
002250
002252
002254
002256
002260
002262
002264

002266
002270

A-46 RT-11 Device

177777
177777
000
377
177777
177777

000000
177777
177777
000000

000002

000000

000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000
000000

000000
000000

. SBTTL DATA AREAS

; PSEUDO QUEUE ELEMENT

DLBADD:
DLBWCT:

DLBPAR:
DLBVEM

DLBBUF:
.REPT DL$UN
WORD -1
.MWORD -1
.BLKB DLTSI Z- 2
. ENDR

BUFEND:

; DLFILL

DLFILL: .VWORD O

DLFBLK: .WORD 0,0,0,0
.IF NE ERL$G

DLRBLK: .BLKW DLREG+1
. ENDC ; NE ERL$G

. F NE MVGST

D+

$ENTPT: .WORD O

$PNWPT: .WORD O

H2UB: .WORD 0

DLSLOT: .WORD O

DLENT: .WORD O

DLPNA: .WORD O

DLILQE: .WORD O

DLICQE: .WORD O

L+

WORD -1
WORD -1
.BYTE O
.BYTE -1
WORD -1
WORD -1
IF NE MVGST
.WORD O
WORD -1
WORD -1
.WORD O

. ENDC ; NE MMG$T

; ADDRESS OF CSW

; BLOCK NUMBER

; SPECI AL FUNCTI ON BYTE
; UNI T NUMBER

; BUFFER ADDRESS

; WORD COUNT

; COVPLETI ON ADDRESS
: PAR VALUE

: MEM VALUE

: (RESERVED)

BAD BLOCK REPLACEMENT TABLE BUFFER AND CURRENT CYLI NDER WORD

CONSI STS OF ONE WORD AND ONE TABLE FOR EACH UNIT.
EACH TABLE CONSI STS OF TWO WORD ENTRIES. WORD 1
I'S BAD BLOCK AND WORD 2 IS I TS REPLACEMENT. A
TABLE |'S ENDED BY A ZERO ENTRY.

THI S TABLE WLL BE MAPPED I NTO H GH MEMORY W TH UB SUPPORT

; ONE TABLE PER UNIT

; CURRENT CYLI NDER NUMBER (- 1=UNKNOWN)
; 1 NDI CATES TABLE NOT READ YET

; THE TABLE

ALSO USES THE PERVANENT UMR

; MUST BE 0 TO ZERO FI LL BUFFER

; FORK QUEUE BLOCK

;DL STATUS REG STERS FOR CALL
: TO ERROR LOGGER (+1 FOR RLBAE)

DL | NTERNAL VARI ABLE DEFI NI TI ONS.

PO NTER TO $ENTRY TABLE

PO NTER TO $PNAVE TABLE

PO NTER TO UBVECT

DL’ S OFFSET I N DEVI CE TABLES

DL’ S $ENTRY TABLE ENTRY PO NTER

DL’ S $PNAME TABLE ENTRY PO NTER

DL I NTERNAL QUEUE LAST QEL PO NTER
DL I NTERNAL QUEUE FI RST QEL PO NTER

DEFI NI TI ON OF THE HANDLER | NTERNAL BUFFER AND THE WORDS THAT ARE

BUFADH:
BUFADL :

. WORD
. WORD

Handlers Manual

0
0

; USED TO PROGRAM DVA DEVI CES THAT TRANSFER DATA TO AND FROM I T.

BI TS 0-15 OF UNI BUS VI RTUAL PO NTER TO DLBBUF
BI TS 16-21 OF UNI BUS VI RTUAL PO NTER TO DLBBUF

72 ; TABLE OF STANDARD DVA SPFUNS THAT DO NOT HAVE A PERVANENT UWR
73 ; ALLOCATED TO THEM

74

75 002272 UBTAB: .DRSPF -, <FN$WRT> y ABSOLUTE WRI TE, NO BAD BLOCK
76 002274 .DRSPF -, <FN$RED> ; ABSOLUTE READ (REPLACEMENT)

77 002276 000000 .MWORD O ; TABLE TERM NATOR

78

79 . ENDC ; NE MVGBT

Bootstrap Driver

1 .SBTTL BOOTSTRAP DRI VER
2
The .DRBOT macro:
3 002300 .DRBOT DL, BOOT1, B. READ
177777 .. .V7=-1

.II'F IDN NO YES, ... V7=0

Termination Section
The .DREND macro generated by .DRBOT (the macro expansion):

001770 .DREND DL, 0,
IF B <>
001770 . PSECT DLDVR
I FF
. PSECT
. ENDC

.11 F NDF DLEND, DLEND: :
.IF EQ .-DL$END
.IF NE MVG$T! <0&2. >
$RLPTR: : . WORD
$MPPTR: : . WORD
$GTBYT: : . WORD
$PTBYT: : . WORD
$PTWRD: : . WORD
. ENDC
.IF NE ERL$G <0&1>
$ELPTR : .WORD O
. ENDC
I F NE TI MBI T! <0&4. >
$TIMT: : . WORD 0
. ENDC

001770 000000 $INPTR :.WORD O

001772 000000 $FKPTR :.WORD O
IITE NDF L. V22 ... V22=0

ooooo

.IF NE ...V22&" 040000
DL$X64 =: .
.REPT 16.
.WORD 0
. ENDR
. ENDC

.GLOBL DLSTRT

The following line marks the end of the loadable portion of the handler. It is used
to determine the handler’s length in memory.

001774’ DLEND==.
I FF
. PSECT DLBOOT
.II'F LT <DLBOOT-. +"0664>, . ERROR; ?SYSMAC- E- Pri mary boot too | arge;

. =DLBOOT+" 0664
Bl CERR: JSR R1, REPORT
. WORD | OERR- DLBOOT
REPORT: MOV #BOOTF- DLBOOT, RO
MoV #30002%- DLBOOT, R2
CALL (@24
MoV @R, RO
CALL a2
MoV #CRLFLF- DLBOOT, RO
CALL a2
30001%: HALT

DX, DL, and XL Device Handlers A-47

000062

000062
000064
000066
000000
000000
000002

000032
000033
000034
000035

000036

000012
000015
001000
004716
004722
004730

000062
000000’
001000
000210

000240
000415
000100

000000
000001

000101
000000

000002

000103
000032’
020
103
020
234

000400

300028%:

BOOTF:
| CERR:
CRLFLF:

IIF NDF ...

. REPT

. ENDR
DLBEND: :
. ENDC

BR
TSTB
BPL
MOVB
BNE
RETURN
.ASCl Z
. ASCl |
.ASCl Z
. EVEN
V7,
4.

. WORD

30001$
@TPS
30002%
(RO) +, @TPB
30002%

<CR><LF>"?BOOT- U-"
"I/Oerror"
<CR><LF><LF>

Lo V7=-1

V7

.I'I'F NDF TPS, TPS=: ~0177564
.1 I'F NDF TPB, TPB=: "0177566

LF=: 7012
CR=: "015
B$BOOT=:
B$DEVN=:
B$DEVU=:
BSREAD=:
.| F NDF
I F EQ
BSDNAM=:
I FF
BSDNAM=:
. ENDC ;

. ENDC ;

. ASECT

. =062

. PSECT
DLBOOT: :

... V2="0
. IRP

i
o

<KTTmTTmTnTTm

. ENDR
=0

© .

¥

_=BOOT1-

. FF
I F

2=. ..

found -

found -

UBUS, QBUS;

UBUS, QBUS

701000

N04716

N04722

~04730

B$DNAM

MBT

~RDL

ARDLX

EQ MMGHT

NDF B$DNAM

.WORD DLBOOT, DLBEND- DLBOCT, B. READ- DLBOOT

DLBOOT

NOP

BR BOOT1- 2.

100

X <UBUS, QBUS>

| DN <X> <UBUS> .. V3=1.

| DN <X> <@BUS> ...V3=2.

| DN <X> <CBUS> ...V3=4.

| DN <X> <UMBCP> . ..V3="010

| DN <> <QVBCP> ...V3="020

| DN <X> <CMSCP> . ..V3="040

EQ ... V3 . ERROR; ?SYSMAC-E-Invalid CONT RO L,
V2!... V3

I DN <UBUS> <UBUS> ...V3=1.

| DN <UBUS> <@BUS> ...V3=2.

I DN <UBUS> <CBUS> ...V3=4.

I DN <UBUS> <UMBCP> . ..V3="010

| DN <UBUS> <QVBCP> . ..V3="020

| DN <UBUS> <CMBCP> . ..V3="040

EQ ... V3 . ERROR; ?SYSMAC-E-Invalid CONT R OL, found - UBUS, QBUS;
V2l .. V3

I DN <QBUS> <UBUS> ...V3=1.

I DN <QBUS> <@BUS> ...V3=2.

| DN <QBUS> <CBUS> ...V3=4.

| DN <QBUS> <UMBCP> ...V3="010

| DN <QBUS> <QVBCP> . ..V3="020

| DN <QBUS> <CMBCP> ... V3="040

EQ ... V3 . ERROR; ?SYSMAC-E-Invalid CONT RO L,
V2l . Vv3

6.

.BYTE 7020, ...V2, 7020, "o"C<20+. .. V2+20>
EQ <1-1>

BR BOOT1

EQ <1-2.>

A-48 RT-11 Device Handlers Manual

o Ul b

~NO A WN B

©

18

19

21

22
24

28
30

31

36
37

38
39

41

46

47

48

000040

000210
000212

000216
000220

000224

000226

000232
000234

000236

000242

000246

000254

000262

000266
000270

000274
000274

000300

000302
000306

000310
000312

000314

000316

000322

000326

000040’
000137
000600

000210’
005004
162700
000024
103403
062704
000100
000772

062700
000024
006300
050400

016705
000344
062705
000004
016567
177774
000174
042767
176377
000166

004767
000066
005401

010265
177776

010165
000002
010015

004067
000136
000014
000241
100053

011503

042703
177700
022703
000050
001156

. FF

. ENDC
. ENDC

BOOT1:

B. READ:
1$:

2$:

DLREAD.

BM

BOOT1

. ERROR; ?SYSMAC-E-Invalid S |

JWP

. SBTTL BOOTSTRAP READ ROUTI NE

DLBOOT+40

@BOOT- DLBOOT

JENABL LSB
. = DLBOOT+210
R R4
SUB #DLBPT, RO
BLO 2%
ADD # OHS, R
BR 1$
ADD #DLBPT, RO
ASL RO
BIS R4 RO
MV BOTCSR RS
ADD #RLDA R5
MV RLCS RLDA(RS), B. DLCS
BIC #AC<CSDSO1>, B. DLCS
CALL B.SEEK
NEG RL
MV R2, RLBA-RLDA(RS5)
MV RL, RLVP- RLDA(R5)
MY RO, @S
JSR RO, B. XCT
VICRD FNREAD
ac
BPL 5%
M @S R3
BIC #-C<l 0SA>, R3
OV #DLBPT*2, R3
BNE BIOERR

DX, DL, and XL Device Handlers

D E S, expecting 1/2,

found -

; PUT THE JUWP BOOT | NTO SYSCOM AREA

; START THE BOOTSTRAP

; CLEAR TRACK COUNTER

; COUNT DOWN ANOTHER WHOLE TRACK

; | F OVERFLOW DONE
; ADD | N ANOTHER TRACK

; LOOP FOR MORE

; CORRECT TRACK COUNTER

; CONVERT REMAI NDER TO SECTOR | N TRACK

; MERGE SECTOR W TH TRACK/ CYL
; GET ADDRESS OF CONTROLLER

; PONT TO DI SK ADDRESS REG STER

; GET CURRENT CSR VALUE

; 1 SOLATE CURRENT UNI'T NUMBER

; SEEK TO PROPER TRACK

; NEGATE WORD COUNT
; SET BUS ADDRESS

; SET WORD COUNT

; SET DI SK ADDRESS

; EXECUTE THE READ

; READ FUNCTI ON CODE

; ENSURE CARRY=0 BEFORE RETURN

; SUCCESS, EXIT

; GET LAST DI SK ADDRESS

; CLEAR ALL BUT SECTOR ADDRESS

; TRACK OVERRUN?

;I F NOT, REAL ERROR, EXIT

A-49

50 000330 011503 MoV @5, R3 ; GET DI SK ADDRESS

54 000332 160003 SUB RO, R3 ; COWPUTE SECTORS TRANSFERRED

55 000334 000303 SWAB R3 ; CONVERT SECTORS TO WORD COUNT

56 000336 006203 ASR R3

57 000340 060301 ADD R3, R1 ; REMOVE WORDS TRANSFERRED

59 000342 011500 MoV @5, RO ; GET DI SK ADDRESS

63 000344 062700 ADD #| OHS- <DLBPT* 2>, RO ; | NCREMENT SURFACE/ TRACK
000030

64 000350 012746 MoV #DLREAD- DLBQCT, - (SP) ; CALL TO SEEK NEXT TRACK, THEN READ I T
000274

65 000354 . BR B. SEEK ; SEEK NOW

66

67 000354 004067 B.SEEK: JSR RO, B. XCT ; EXECUTE READ HEADERS
000064

68 000360 000010 .WORD FNRDH ; READ HEADER FUNCTI ON CODE

70 000362 016503 MoV RLMP- RLDA(R5) , R3 ; GET CURRENT DI SK TRACK AND SURFACE
000002

74 000366 042703 i3| C #1 OHS! | OSA, R3 ; CLEAR SURFACE/ SECTOR TO CET
000177

75 ; CURRENT TRACK

76 000372 010004 MoV RO, R4 ; COPY DESI RED DI SK ADDRESS

77 000374 042704 BI C #1 OHS! | OSA, R4 ; CLEAR SURFACE/ SECTOR TO CGET

000177

78 ; DESI RED TRACK

79 000400 160403 suB R4, R3 ; SUBTRACT DESI RED FROM CURRENT TRACK

80 000402 103003 BCC 3% ;I F CURRENT >= DESI RED,

81 ; SEEK QUTWARD BY DI FF

82 000404 005403 NEG R3 ; MAKE PCSI Tl VE DI FFERENCE OF

83 ; DELTA PGsI TI ON

84 000406 052703 BI S #SKDI R, R3 ; | NDI CATE MOVE TOMRD SPI NDLE
000004

85 000412 032700 3$: BIT #l OHS, RO ; DO VE DESI RE SURFACE 1°?
000100

86 000416 001402 BEQ 4% ; NO, LEAVE SURFACE SELECT 0

87 000420 052703 BI S #SKHS, R3 ; SET BIT TO SELECT SURFACE 1
000020

88 000424 005203 4$: INC R3 ; SET MARKER BI T

90 000426 010315 MoV R3, @5 ; LOAD DI FFERENCE WORD

94 000430 004067 jSR RO, B. XCT ; EXECUTE A SEEK
000010

95 000434 000006 .WORD FNSEEK ; SEEK FUNCTI ON CODE

96 000436 100512 BM Bl CERR IFPL K

98 000440 010015 MoV RO, @5 ; SET ACTUAL DI SK ADDRESS

102 000442 000207 5$: i?ETURN ; RETURN

103

104

105 ; EXECUTE THE FUNCTI ON I N R3 AND RETURN ERROR STATUS

106

107 000444 012003 B.XCT: MWV (RO) +, R3 ; GET FUNCTI ON CODE

A-50 RT-11 Device Handlers Manual

109

111

112

118
119

10

12

13
15

16

17

18

19

20

22

26

27
28
29

000446
000450
000452

000456

000464
000466

000600

000604
000606
000610

000614
000616

000622

000626

000632

000636

000644

000652

000656
001000

000662

001774

052703
000000
010365
177774
032765
100200
177774

001774
000200

000600

012706
010000

013746
174400
042716
176377
000316

012700
000002
012701
002000
012702
001000
004767
177352
012737
000210
004730
012737
015370
004716

012637
004722

000137

Bl S (PO +, R3 ;ADD UNIT BI TS TO FUNCTI ON CODE
B. DLCS: .WORD O ; BOOTED UNI T NUMBER
MoV R3, RLCS- RLDA(R5) ; EXECUTE FUNCTI ON
6$: BIT #CSERR! CSCRDY, RLCS- RLDA(R5) ; WAI T FOR COVPLETI ON OR ERROR
BEQ 6% ; NEl THER, LOOP
RTS RO ; RETURN WTH N=1 | F ERROR
= DLBOOT+600
BOOT: MoV #10000, SP ; SET STACK PO NT
MoV @ PC) +, - (SP)
BOTCSR: . WORD DL$CSR
BI C #7C1400, @P ; STRIP TO UNI T NUMBER
SWAB @P :MOVE TO BI TS 0-1
MoV #2, RO ; READ | N SECOND PART OF BOOT
MoV #4*256. , RL ; FOUR BLOCKS TO READ
MoV #1000, R2 ; I NTO LOCATI ON 1000
CALL B. READ ; READ THE REST OF THE BOOT
MoV #B. READ- DLBOOT, @*B$READ ; STORE START LOCATI ON OF READ ROUTI NE
MoV #B$DNAM @¢B$DEVN ; STORE RAD50 DEVI CE NAMVE
MoV (SP) +, @B$DEVU ; SET THE UNI T NUMBER | N THE BOOT
jNP @+B$BOOT ; GO DO THE BOOT WORK
.DREND DL
IF B <>
. PSECT DLDVR
I FF
. PSECT
. ENDC
.11’ F NDF DLEND, DLEND: :
.IF EQ .-DL$END
.IF NE MVG$T! <0&2. >
$RLPTR : .WORD O
$MPPTR: : . WORD 0
$GTBYT:: .WORD O
$PTBYT:: .WORD O
$PTWRD: : . WORD 0
. ENDC
.IF NE ERL$G <0&1>
$ELPTR: : . WORD 0
. ENDC
I F NE TI MBI T! <0&4. >
$TIMT: : . WORD 0
. ENDC
$I NPTR: : . WORD 0
$FKPTR. : .WORD O
IITFE NDF L. V22 ... V22=0
.IF NE ...V22&" 040000
DL$X64 =:.
. REPT 16.
.MORD O
. ENDR

DX, DL, and XL Device Handlers A-51

. ENDC
.GLOBL DLSTRT
DLEND==.
I FF
000662 . PSECT DLBOOT
.II'F LT <DLBOOT-. +"0664>, . ERROR; ?SYSMAC- E- Pri mary boot too | arge;
000664’ . =DLBOOT+"0664

000664 004167 BIOERR JSR R1, REPORT
000002
000670 000753 . WORD | OERR- DLBOOT
000672 012700 REPORT: MOV #BOOTF- DLBOOT, RO
000740
000676 012702 MoV #30004$- DLBOOT, R2
000722
000702 004712 CALL a2
000704 011100 MoV @R1, RO
000706 004712 CALL (@24
000710 012700 MoV #CRLFLF- DLBOOT, RO
000764
000714 004712 CALL a2
000716 000000 30003%: HALT
000720 000776 BR 30003$%
000722 105737 30004%: TSTB @TPS
177564
000726 100375 BPL 30004%
000730 112037 MOVB (RO) +, @¥TPB
177566
000734 001372 BNE 30004%
000736 000207 RETURN
000740 015 BOOTF: .ASCIZ <CR><LF>"?BOOT-U"
000741 012
000742 077
000743 102
000744 117
000745 117
000746 124
000747 055
000750 125
000751 055
000752 000
000753 111 I1CERR .ASCll "I/Oerror"
000754 057
000755 117
000756 040
000757 145
000760 162
000761 162
000762 157
000763 162
000764 015 CRLFLF: .ASCIZ <CR><LF><LF>
000765 012
000766 012
000767 000
. EVEN
JITF NDF V7, L V==
000004 .REPT 4
. WORD V7
. ENDR
000770 177777 . WORD o7
000772 177777 . WORD V7
000774 177777 . WORD V7
000776 177777 . WORD V7
001000 DLBEND: :
. ENDC
31 I F NE MVGST

A-52 RT-11 Device Handlers Manual

CoO~NOORAWNE

23
24

25

26

27

28

001000
001002
001004
001010
001012
001024
001044
001050

001054
001062

001066

001074
001100
001104
001110
001114

001126
001130

001132

001140

001142
001144
001146
001152
001156
001162

001166
001170

001174
001176

001202

010501
011505
016504
000024
005046

013746
000006
013746
000004

012637
000004
012737
000340
000006
005764
000010
012637
000004
012637
000006
006166
000002

006026
103403

012765
000240
001156

000241

010105
011100
013704
000054
016403
000460
010360
002244
016403
000404
060403
010360
002242
060203
010360
002240
010560

+

’
’
,
,

FETCH

FETCH

ENTRY:

. MFPS

LOAD UP

. SBTTL FETCH LOAD CODE

TH'S HANDLER SERVI CE ROUTI NE

VALUE $SLOT*2. (LENGTH OF THE $PNAME TABLE | N BYTES.)

RO = STARTI NG ADDRESS OF

Rl = ADRESS OF GETVEC ROUTI NE.
R =

R3 = TYPE OF ENTRY.

R4 = ADDRESS OF SY READ ROUTI NE.

R5 -> $ENTRY SLOT FOR THI S HANDLER

R5, RL ;
@r5, RS ;
DLCSR- DLLQE(R5) , R4 ;
-(SP) ;

#340 :

@NXM V+2, - (SP) s
@NXM V, - (SP) H

#$DLNXM - (SP) o
(SP) +, @NXM V i

#340, @INXM V+2 N

RLBAE(R4) i
(SP) +, @*NXM V i
(SP) +, @NXM V+2 s

2(SP) i

(SP) + ;
20$;

ERL$G
#NOP, $RLVIA- DLLQE(R5)

#NCP, RO ;
RO, $RLV1A- DLLQE(R5) ;
RO, $RLV1B- DLLQE(R5) :
RO, $RLV1C- DLLQE(R5) ;
EQ ERL$G

LOCAL VARI ABLES W THI N DL

R1, R5 |
@1, RO ;
@#SYSPTR, R4 ;
$H2UB(R4) , R3 ;
R3, <H2UB- DLBASE>(R0) ;
$PNPTR(R4) , R3)

R4, R3 :
R3, <$PNVPT- DLBASE>(R0) ;

R2, R3 ;
R3, <$ENTPT- DLBASE>(R0)

R5, <DLENT- DLBASE>(R0) ;

SAVE PTR TO DL’ S $ENTRY SLOT

GET ADDRESS OF DLLQE

GET CSR FOR DL

SPACE FOR RETURN VALUE

GET PROCESSOR STATUS

RAI SE PROCESSCOR PRI ORI TY LEVEL TO 7
; SAVE CURRENT NXM TRAP PSW

; SAVE CURRENT NXM TRAP VECTOR

; BUI LD ADDRESS TO OUR TRAP ROUTI NE
; SET UP THE NXM VECTOR

; SET UP THE NXM PSW

; BAE REG STER EXI ST?

; MAYBE, FI RST RESTORE NXM VECTOR
; AND NXM PSW

; SAVE THE CARRY BIT

RESTORE PREVI QUS PRI ORI TY LEVEL

RESTORE CARRY
NOT AN RLV12... BR IS NOT AN ERROR

Change BR to NOP for RLV12

RO=" NOP"

PATCH ' BR TO'NOP' FOR RLV12

PATCH ERROR LOGGI NG CODE SO I T KNOWS
ABOUT EXTRA REG STER (RLBAE)

RESTORE PTR TO DLLQUE TO R5

GET ADDRESS OF DLLQE

GET START OF RMON

R3 = UBVECT PO NTER

H2UB = ADDRESS OF UBVECT

R3 = RMON OFFSET TO PNAME TABLE

R3 -> PNAME TABLE ADDRESS
$PNVPT -> PNAME TABLE ADDRESS

R3 -> $ENTRY TABLE
$ENTPT -> $ENTRY TABLE

DLENT -> DL’'S $ENTRY TABLE ENTRY

DX, DL, and XL Device Handlers A-53

60
61

62

001206
001210

002250
160205
010560
002252

SUB

R2, R5
R5, <DLPNA- DLBASE>(R0)

R5 -> DL'S $PNAME TABLE ENTRY
DLPNA -> DL’ S $PNAME TABLE ENTRY

Allocate permanent UMRs if using UNIBUS mapping registers:

63
64
65
66
67
68

69
70
71

72

001214

001220
001222
001224

001230

001234
001236

001242

001246
001250
001252

001256
001260
001262
001264
001266

001272
001274

001276

001304

012701
002076
060001
005002
016004
002252
016005
002244
010046
012700
000001
004765
000002
012600
103411
010160
002262
006302
006302
006302
006302
010260
002260
000241
000207

052766
000001
000002
000002

o+

30%

$DLNXM

ALLOCATE PERMANENT UVRS TO PO NT S
DLBBUF AND DLFILL, AND GET THE UNI BUS VI RTUAL ADDRESS.

MoV

ADD
CLR

ASL
ASL
ASL
ASL
MoV

CLC
RETURN

BI S

#<DLBBUF- DLBASE>, R1
RO, R1

R2

<DLPNA- DLBASE>(R0) , R4
<H2UB- DLBASE>(R0) , R5

RO, - (SP)
#NOUMRS, RO

UB. ALL(R5)

(SP) +, RO

30%

R1, <BUFADL- DLBASE>(R0)
R2
R2
R2
R2
R2, <BUFADH DLBASE>(R0)

#1, 2(SP)

Routine to unload DL and release any UMRs:

©CoOoO~NOOR~WNE

16
17
19

21
22

001306
001306
001310
001312
001316
001322

001326

010501
160201
013704
000054
016405
000460
004765
000004
000207

000001

;+
’
’
,
,
’
,
,

. ENABL

RELEAS:

RELEAS

ROUTI NE TO UNLOAD DL

ENTRY:

LSB
MoV
suB
MoV
MoV
CALL

RETURN

SAME AS FOR LOAD.

R5, R
R2, RL

@ SYSPTR, R4
$H2UB(R4) , R5

UB. RLS(R5)

. ENDC ; NE MMG$T

. END

A-54 RT-11 Device Handlers Manual

NTO DL’ NTERNAL DVA BUFFERS,

R
I

= LOW 16 BI TS OF DVABUF ADDRESS

R2 = HHGH 6 BITS OF DVABUF ADDRESS
R4 -> PNAME ENTRY FOR DL

GET UB ENTRY ADDRESS

SAVE DL STARTI NG ADDRESS
RO = NUMBER OF UMRS REQUI RED

CALL ALLUMR

RESTORE DL STARTI NG ADDRESS
COULDN T GET UMR, FAIL THE LOAD
STORE UNI BUS VI RTUAL ADDRESS LOW

SHI FT

H BITS LEFT 4

TO GET THEM I NTO THE

CORRECT PLACE

STORE UNI BUS VI RTUAL ADDRESS H GH

LOAD SUCCEEDED

; SET THE CARRY BIT

R1 = $ENTRY SLOT FOR DM
R2 -> $PNAME SLOT FOR DM
GET START OF RMON

R5 = UB ENTRY VECTOR
RELEASE UVRS

AND EXI'T

Symbol Table From Assembly

ABTI G
BAREA
Bl CERR
BOOT
BOOTF
BOOT1
BOTCSR
BTCSR =
BUFADH
BUFADL
BUFEND
BUFSI Z
BUS$
BUS$C
BUS$M

001000
000606
000664R
000600R
000740R
000040R
000606R
004124
002266R
002270R
002234R
000054
000100
020000
020100
000100
000000
020100
001000
004716
004722
015370
004730
000450R
000210R
000354R
000444R
000370
000015
000764R
000020
000040
000200
004000
040000
010000
000001
000400
001400
100000
036000
000016
004000
010000
000100
020000
002000
000174
000600R
002070R

= 000006R

002104R
001000RG
002100R
000000RG
002076R
000024

000200
000753R

003
003
003
003
003

002
002
002

003
003
003
003

003

002
002
002
002
003
002
003
002

003

DLBWCT

DLXFER

DL$CSR=
DL$END
DL$NAM=
DL$UN =
DL$VEC=

RELEAS
REPORT

002072R
000154R
001156R
000010RG
000032R
001150R
023742
000370R

= 002316RG

002256R
001012R
001606R
001470R
001620R
002236R
002234R
000250R
001672R
001740R
002264R
002262R
001250RG
000006RG
000012
002260R
001654R
000602R
000010
000274R
000006
000750R
001776R
000706R
001726R
023742
047742
002254R
002032R
000000RG
102405
000006RG
000746R
000374R
000052
001162R
000164R
001140R
012000
001126R
002010R
001114R
000005
174400 G
002300RG
015340
000002 G
000160 G

001306RG
000672R

002
002
002
002
002
002

002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002

002
002
002

003

002
002
002
002

002
002
002

002
002
002
002
002
002

002
002

002

003
003

DOCSUN=
DRETRY=

$ENTPT
$FKPTR

000000
000742R 002
000006
000010
000004
000012
000011
000007
000005
000013
000001
000014
000020
000016
000017
000003
000002
000000
000015
000002
000001
000200
000001
040000
000001
020000
000000
001000R 003
100000
000001
000004
000000
000010
000016
000014
000006
000002
000012
000377
000374
000373
000376
000002
000001
000010
000001
004000
000001
000002
000004
000010
000020
002252R 002
000176
000200
000202
077600

002246R 002
002314RG

DX, DL, and XL Device Handlers

A-55

Figure A-3: XL Communications Handler

XL - Communi cations Driver MACRO VO05. 05 Thursday 18-Apr-91 13:00
Tabl e of contents

Condi ti onal

MACROS AND DEFI NI TI ONS
Bl ock 0 of handler file
| NSTALLATI ON CCDE

SET OPTI ON PARAMETER TABLE

SET OPTI ON PROCESSI NG ROUTI NES
DRI VER ENTRY
REG STERS AND VECTOR TABLES
SPFUN PROCESSI NG
Mil titerm nal

XLHOOK
PREMTY

- Milt
- Prep

assenbly summary

Handl er Hooks Support Data
iterm nal Handl er Hooks Hook Routine

are for nul

DRI VER RESET ENTRY

OUTPUT | NTERRUPT SERVI CER
- Get next output character
I NPUT | NTERRUPT SERVI CER
PROCESS | NPUT RECEI VED FROM | NTERRUPT SERVI CER
- Place Qelenent on internal queue

GNXTCH

XLENQ
XLFI N
DI SI NI
ENAI NI
DI soUl
ENACUI
RESBRK
SETBRK
GETSTT
RESSTT
SETSTT
GETC
PUTC

LOAD
UNLOAD -

OCoO~NOOUR~WNE

- Inte
- Disa
- Enab
- Disa
- Enab
- Turn
- Turn
- Get

rnal Queue
bl e input i
le input in
bl e out put

| e output i
of f BREAK
on BREAK

line status

- Reset line stat

- Set

line state

titerm nal hook

El ement Conpl etion
nterrupts

terrupts
interrupts
nterrupts

e bits
bits

- Input a character
- CQutput a character
| NPUT BUFFER AREA
- Handl er FETCH LOAD code
UNLOADY . RELEASE CODE

000000

’
,
,
,
’
’
,
,
’
’
,
,
’

A-56 RT-11 Device Handlers

MCALL . MODULE
MODULE XL, VERSI ON=36, COMVENT=<Conmuni cati ons Driver>

COPYRI GHT 1989, 1990, 1991 BY
DI G TAL EQUI PMENT CORPORATI ON, NMAYNARD, MASS.
ALL RI GHTS RESERVED

TH'S SOFTWARE | S FURNI SHED UNDER A LI CENSE AND MAY BE USED AND COPI ED
ONLY |IN ACCORDANCE WTH THE TERVS OF SUCH LICENSE AND W TH THE
I NCLUSI ON OF THE ABOVE COPYRI GHT NOTICE. THI S SOFTWARE OR ANY OTHER
COPI ES THEREOF MAY NOT BE PROVI DED OR OTHERW SE MADE AVAI LABLE TO ANY
OTHER PERSON. NO TITLE TO AND OMNERSHI P OF THE SOFTWARE | S HEREBY
TRANSFERRED.

THE | NFORVATION IN THI'S SOFTWARE 1S SUBJECT TO CHANGE W THOUT NOTI CE
AND SHOULD NOT BE CONSTRUED AS A COW TMENT BY DI G TAL EQUI PMENT
CORPORATI ON.

DI G TAL ASSUMES NO RESPONSI BI LI TY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUI PMENT THAT IS NOT SUPPLI ED BY DI G TAL.

.ENABL LC

FACI LI TY: RT-11 Device driver

Manual

9 ; FUNCTI ONAL DESCRI PTI ON:

10 ;

11 ; This driver aids in the witing of virtual terminal software. It

12 ; supports the XON XOFF protocol in that if receives too many chars
13 ; it will transmt a CTRL/S and send a CTRL/ Q when it again has room
14 ; It will also stop transmitting if it receives a CTRL/S and resune
15 ; on a CTRL/Q Normal RT-11 READ/ WRI TE commands can be done to the

16 ; plus various special functions. On any data transfer, chars are

17 ; striped to seven bits and chars of value zero are ignored. On output
18 ; the character following a carriage return is not output.

19 |

CONDITIONAL ASSEMBLY SUMMARY

1 .SBTTL Conditional assenbly summary

2

3

4 000001 XL$LUN =1

5 000001 XLSMTY =1

6 000001 XL$PDP =1

7 ;

8 ;

9 000001 MVGST =1

10 000001 TIMBIT =1

11 ;+

12 ; COND

13 ;

14 ; XL$DVE (0) support for DLVI1E

15 ; 0 no support

16 ; 1 support

17 ;

18 ; XL$PC (0) support for PROBOO series

19 ; 0 no support

20 ; 1 support

21 ;

22 ; XL$SBC (0) support for SBC 11/21[+] and MXV SLUs
23 ; no support

24 ; 1 support

25 ;

26 ; Exactly one of XLPC, XLDVE and XL$SBC

27 ; may be specified.

28 ;

29 ; XL$PDT (0) support PDT |ights

30 ; 0 no support

31 ; 1 support

32 ;

33 ; XL$PDT is ignored if XL$PCis 1

34 ;

35 ; XL$PRI (4) interrupt priority

36 ; (5) if XL$SBC is 1

37 ; 4-7 range

38 ;

39 ; XL$CSR (176500) CSR addr ess
40 ; (173300) if XL$PC is 1
41 ;
42 ; XL$VEC (300) Vect or address
43 ; (210) if XL$PC is 1
44 ;
45 ; XLSMTY (0) No support multiterminal handl er hooks
46 ; 1 Support for nultiterm nal handl er hooks
47 ;
48 ; XL$MIY may be 1 only when XL$PC is O.
49 ;

50 ; XLSLUN (1) Line nunber to use in nultiterm nal
51 ;

52 ; MVGBT std conditional

53 ; TIMBIT std conditional (no code effect)
54 ; ERL$G std conditional (no code effect)
55 ;

56 -

MACROS AND DEFINITIONS

DX, DL, and XL Device Handlers A-57

A WNBE

. SBTTL MACROS AND DEFI NI TI ONS

. LI BRARY

Prepare for using standard definitions:

24 000000

25 000000

26 000000

27

28

29

30

<XL$SBC * 4>

31

32

33 000000
000110
000112
000114

34 000000
000114
000116

35

36

37

38

39

40

41

42

43

44

. Assunme <XL$PC & <XL$DVE

Decl are the RT system macros we'l|l

. MCALL
. MCALL
. MCALL

Define and
AF
AR
IF
AE

IE
IE

verify sonme conditionals

NDF
NDF
NDF
NDF

NDF
NDF

. DRDEF
. ASSUM
. MTSTA

XL$DVE
XL$PC

XL$PDT
XL$SBC

XL$MTY
XL$LUN

" SRC: SYSTEM MLB"

. MrPs
. ADDR

XL$DVE
XL$PC

XL$PDT
XL$SBC

XL$MrY
XLSLUN

be using

. | NTEN

. BR

=0

0

0

=0

0
1

;Default to non DLV11-E interface

;Default to non PRO 3xx support

;Default to no PDT lights display

;Default to non SBC-11 interface

;Default to no support for MIY hooks

;Default to LUN 1

. Assune <XL$DVE + XL$SBC> LE 1 MESSAGE=<Conflicting options>
. Assune <XL$PC & XL$MIY> EQ 0 MESSAGE=<Conflicting options>

Set the audit trail

000000 . XLGEN
<XL$PDT * 10>

000020 . XLGEN

.AUDI T

107123 . WORD

000044 . WORD

177777 . WORD

.AUDI T

000020 . WORD

177777 . WORD

= XL$PC

= . XLGEN

. XL
CAUDET
XL

-1

. XLGEN
. XLGEN
-1

Define the device
o Entered on all

o handl es . SPFUN system cal |

. F NE XL$PC
XL$CSR
XL$VEC
. ENDC ; NE XL$PC

= 173300
= 210

. Il F NDF XL$PR

. I F NE XL$SBC
XLS$PRI
. ENDC ; NE XL$SBC

=5

The .DRDEF macro with expansion:

51 000000
000100
000176

52

53

000040
176500

I <XL$DVE * 2>

aborts

XL$PR

=4

<XL$MTY * 20>

; The handl er

; and the conditionals

; Force these for a PRO

;Interrupt processing |evel

;Force this for SBC 11/12[+]

. DRDEF XL, 57, <ABTI G! HNDLR$! SPFUN$>, 0, 176500, 300, DVMA=NO

.WORD 40
_WORD XL$CSR
I F EQ XL$PC

The .DRPTR macro with expansion:

A-58 RT-11 Device Handlers Manual

XL$SBC>> EQ 0 MESSAGE=<Conflicting options>

and MXV

54

55
56
57
58

000200
000000
000002
000004
000006
000010
000021

031066
002704
003312
002704
003256

000

. WORD
. BYTE

FETCH=FETCH, LOAD=LOAD, UNLOAD=UNLOAD, RELEAS=REL EAS

HAN
FETCH
RELEAS
LOAD
UNLOAD
0

.1 FF ; EQ XL$PC
. DRPTR UNLOAD=UNLOAD, RELEAS=RELEAS

. ENDC ; EQ XL$PC

The .DREST macro with expansion:

59

60

000022
000000
000020
000021
000032
000036
000072
000074

031066
015
000

000000

000000

000000

000000

. DREST
. RAD50
. BYTE
. BYTE
. WORD
. WORD
. WORD
. WORD

CLASS=DVC. VT

" HAN
DVC. VT

ooooo

Support the following special functions (.DRSPF):

61

62
63

67
68
69
70
71
72
73

000076
000022
000023
000024
000025
000026
000027
000030

000032
000022
000023
000024
000025
000026
000027
000030

000032
000022
000023
000024
000025
000026
000027
000030

000032
000022
000023
000024
000025
000026
000027
000030

000032
000022
000023
000024
000025
000026

176
200
000
000
000
000
000000

176
200
000
000
000
000
000000

176
200
000
000
000
000
000000

176
200
000
000
000
000
000000

176
200
000
000
000

. DRSPF

. DRSPF

. DRSPF

. DRSPF

. DRSPF

<201>
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. VORD

<202>
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. WORD

<203>
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. VORD

<204>
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. WORD

<205>
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE

; Reset 'received XOFF from host’ flag

176
200
0
0
0
0
000000
and send XON to host
; Set/cl ear BREAK
176
200
0
0
0
0
000000
; word count <> 0, BREAK
; word count = 0, end BREAK
; Speci al read. Word count is maxi num
176
200
0
0
0
0
000000
nunber of bytes to read. Term nates
; when nunber of bytes specified have
; been read or when the input buffer
; is enpty. Always reads at |east one
; byte even if buffer is enpty when
the read is issued.
;Returns driver status in first word
176
200
0
0
0
0
000000
; of buffer. High byte = driver edit
; level. Low byte = XOFF status and
; sone nodem signal s
;Sets a flag which will cause
176
200
0
0
0

DX, DL, and XL Device Handlers A-59

000027 000 .BYTE 0

000030 000000 . VORD 000000
78 ; interrupts to be turned off on
79 ; program exit
80 000032 . DRSPF <206> ; Set s/ Resets DIR
000022 176 .BYTE 176
000023 200 . BYTE 200
000024 000 . BYTE 0
000025 000 .BYTE 0
000026 000 .BYTE 0
000027 000 .BYTE 0
000030 000000 . VORD 000000
81 ; word count
<> 0, set DIR
82 ; word count = 0, reset DIR
83
84 ; Handl er version nunber given to VICOMin IN T nessage
85
86 000022 $$SVER == 18. ; VTCOM and XL nust be a matched set
87
88 ; RT-11 System communi cations area
89

The following macros (through .TSTDF) use the standard definitions from

SYSTEM.MLB:
90 . MCALL . SYCDF
91 000032 . SYCDF ; Define system comuni cations area
92
93 ; RVMON Fi xed of fset area
94
95 .MCALL .FIXDF .CF1DF .CF2DF
96 . MCALL . SG\DF
97
98 000032 . FI XDF ;Define RVON fixed of fsets
1 000032 . CF1DF ;Define config word 1 bits
2 000032 . CF2DF ;Define config word 2 bits
3 000032 . SG\DF ; Define SYSGEN features word bits
4
5 ; Multiterm nal status bl ock
6
7 . MCALL . MSTDF
8
9 000032 . MSTDF ; Define . MISTA status bl ock
10
11 ; Handl er header definitions
12
13 . MCALL . HBGDF
14 000032 . HBCDF ; Define handl er header
15
16 ; Handl er hooks related definitions
17
18 .MCALL .THKDF .TCBDF .TSTDF
19 000032 . TCBDF ;Define TCB of fsets
20 000032 . THKDF ; Define handl er hooks data structure
21 000032 . TSTDF ;Define T.STAT word bits
22
23 ; Input buffer definitions
24
25 000100 BUFSI Z = 64. ; Size of input buffer (in bytes)
26 000020 STPSI Z = BUFSI Z/ 4 ; Low-water mark (when to send XOFF)
27 000060 RSTSI Z = BUFSI Z*3/ 4 ; Hgh-water mark (when to send XON)
28
29 ; Control Characters
30
31 000012 C. LF =12 ;Line feed
32 000015 C.CR =15 ;Carriage return
33 000021 C.CTLQ =21 i XON ("Q
34 000023 C.CTLS = 23 ; XOFF (MS)
35 000032 C.CTLZ = 32 ;End-of -file (72)
36
37 ;. SPFUN codes supported by driver
38
39 000201 CLRDRV = 201 ; Reset 'received XOFF from host’ flag
40 ; and send XON to host
41 000202 BRKDRV = 202 ; Set/ cl ear BREAK

A-60 RT-11 Device Handlers Manual

000203

000204

000001
000002
000004
000010
000020

000205

000206

040000
020000
010000
000100
000004
000002

000100

000001

SRDDRV

STSDRV

OFFDRV

DTRDRV

203

204

ST. XFH
ST. XOF
ST. CTS
ST. CD
ST.RI

= 205

= 206

;NOTE: if you add speci al

; Interface bit definition
RC. Rl = 040000
RC. CTS = 020000
RC.CD = 010000
RC.1E = 000100
RC. RTS = 000004
RC. DTR = 000002
XC.1E = 000100
.1 F NE XL$DVE
XC. SMK = 170000
XC. SCE = 004000
. ENDC ; NE XL$DVE
.1 F NE XL$SBC
XC. SMK = 000070
XC. SCE = 000002
. ENDC ; NE XL$SBC
XC.BRK = 000001
.1 F NE XL$PC

000001
000002
000004
000010
000020

function code,

S

; PRO-3xx Interrupt controller registers

| CODR
1 COCR

173200
| CODR+2

; PRO-3xx Communi cations port

XL$BUF
XL$CSA
XL$CSB
XL$MO0
XL$MCL
XL$BAU

XL$CSR

XL$CSR+2
XL$CSR+6
XL$CSR+1
XL$CSR+1
XL$CSR+1

; CSRA Wite/Read register

RPT. RO

RPT. RL

= 000

CRC. TR
C\VD. RE
CMWD. CR
CWVD. RT
C\VD. ER
C\D. El
= 001

WL.. R E

W.TIE =

0
2
4

registers

word count <> 0, BREAK
word count = 0, end BREAK

Speci al read. Wrd count is maxi num
nunber of bytes to read. Term nates
when nunber of bytes specified have
been read or when the input buffer
is enpty. Always reads at |east one
byte even if buffer is enpty when
the read is issued.

Returns driver status in first word
of buffer. High byte = driver edit
level. Low byte =

XOFF sent to host

XOFF received from host

Dat aset: Clear To Send asserted

Dataset: Carrier Detect asserted

Dataset: Ring Indicate asserted

Sets a flag which will cause
interrupts to be turned off on
program exit

Set s/ Resets DIR
word count <> 0, set DTR
word count = 0, reset DIR
add themto . DRSPF too!

Ri ng i ndicator
Clear to send
Carrier detect
Interrupt enable
Request to send
Data term nal ready

Transmtter: interrupt enable

Speed mask
Speed change enabl e

Speed mask
Speed change enabl e

BREAK

Interrupt controller O data register
Interrupt controller O csr register

Recv/ Xmt buffer register
CSR register A

CSR register B

Mbdem control register 0
Mbdem control register 1
Baud rate control register

bit definitions

300
020
030
050
060
070

030

002

;Wite/ Read register 0
Reset transmit underrun/end of message |atch
Reset external/status interrupts

’
’

’

Channel

reset

Reset transmitter interrupt pending
Reset error |atches

End of

interrupt

;Wite/Read register 1
Recei ver interrupt enable

’

(Int.
Transm

on rec. char or special (no parity))
tter interrupt enable

DX, DL, and XL Device Handlers A-61

->MD = none

120 RPT. R2 = 002 ;Wite/ Read register 2

121 RPT.R3 = 003 ;Wite register 3

122 RCL. 8 = 300 ; Receiver character length (8 bits)
123 WB. RXE = 001 ; Receiver enable

124 RPT. R4 = 004 ;Wite register 4

125 CLK. 16 = 100 16x rate multiplier

126 STP. 1 = 004 ; 1 stop bit

127 WL EVN = 002 ; Even parity

128 Wi PEN = 001 ; Parity enable

129 RPT.R6 = 005 ;Wite register 5

130 TCL.8 = 140 Transmit character length (8 bits)
131 Wb. SB = 020 ; Send break

132 Ws. TXE = 010 ; Transmitter enable

133

134 ; CSRB Wite/Read register bit definitions

135

136 RPT.R1 = 001 ;Wite/ Read register 1

137 WL.. REQ = 004 ; MUST be | oaded with 004
138 RPT. R2 = 002 ;Wite/ Read register 2

139 W2. REQ = 000 ; MUST be | oaded with 000
140 R2.IMK = 034 ; Interrupt vector mask

141 I MK.BE = 020 ; Transmt buffer enpty

142 IMKES = 024 ; External/Status change

143 IMK. CA = 030 ; Received character avail able
144 IMK. SR = 034 ; Special receiver condition
145

146 ; Modem control Register bit definitions

147

148 CLK. BG = 000 ; Rx = RBRG Tx = TBRG
149 M. DTR = 020 ; Data term nal ready

150 M. RTS = 010 ; Request to send

151 ML. RI = 100 ; Ring indicator

152 ML. CTS = 040 ; Clear to send

153 ML.CD = 020 ; Carrier detect

154 . ENDC ; NE XL$PC

155

156 ; Baud rate nask definitions (PRO 3xx, DLV11-E, F and MXV11-B)
157

158 .I'F NE <XL$PC ! XL$DVE>

159 B. 50 = 000 ; 50 baud

160 B. 75 = 001 ; 75 baud

161 B. 110 = 002 X 110 baud

162 B.134 = 003 ; 134.5 baud

163 B.150 = 004 ; 150 baud

164 B.300 = 005 ; 300 baud

165 B. 600 = 006 ; 600 baud

166 B. 1200 = 007 ;1200 baud

167 B. 1800 = 010 ;1800 baud

168 B.2000 = 011 ;2000 baud

169 B. 2400 = 012 ;2400 baud

170 B. 3600 = 013 ;3600 baud

171 B. 4800 = 014 ;4800 baud

172 B. 7200 = 015 ;7200 baud

173 B. 9600 = 016 ;9600 baud

174 B. 192K = 017 ;19. 2k baud

175 .ENDC ; NE <XL$PC ! XL$DVE>

176

177 ; Baud rate nmask definitions [SBC-11 only]

178

179 .1 F NE XL$SBC

180 B. 300 = 000 ; 300 baud

181 B.600 = 001 ; 600 baud

182 B. 1200 = 002 1200 baud

183 B. 2400 = 003 ;2400 baud

184 B. 4800 = 004 ;4800 baud

185 B. 9600 = 005 ;9600 baud

186 B. 192K = 006 ; 19. 2K baud

187 B. 384K = 007 38. 4k baud

188 . ENDC ; NE XL$SBC

189

190 ; M scel |l aneous definitions

191

192 177776 PS = 177776 Processor status word
193 000007 UNI TMK =: 007 s QBUNIT unit nunber nmask
194 000370 JOBMWK =: 370 ; @BINUM j ob nunber mask
195

196 ; Macro to define LSB of bit field

197

A-62 RT-11 Device Handlers Manual

198
199
200

. MACRO LSBDF SYMBOL, VALUE
SYMBOL = VALUE & <-VALUE>
. ENDM ; LSBDF

Block 0 of handler file

1
2

.SBTTL Block 0 of handler file

The SPEED table is placed low in block 0 without conflicting with audit trail:

. ASECT
= 120

.IF NE <XL$PC ! XL$DVE ! XL$SBC>
SPEED table. Mask for given speed is same as word offset into table.
; To select 134.5 bps, specify 134 in the SET command.

SPEEDT:
.IF NE <XL$DVE ! XL$PC>
.WORD 50., 75., 110., 134., 150., 300.
.WORD 600., 1200., 1800., 2000., 2400., 3600.

.WORD 4800., 7200., 9600., 19200.
.ENDC ; NE <XL$DVE ! XL$PC>

.I'F NE XL$SBC
.WORD 300., 600. , 1200., 2400., 4800., 9600.
.WORD 19200., 38400.

. ENDC ; NE XL$SBC
. WORD 0 ; Tabl e fence

.ENDC ; NE <XL$PC ! XL$DVE ! XL$SBC>

We must ensure that 0 fence for display CSRs is not overwritten:

26 000120

.Assune . LE DI SCSR-2 MESSAGE=<Code before installation code too |arge>

INSTALLATION CODE

~NOoO O~ WNE

. SBTTL | NSTALLATI ON CODE
.ENABL LSB
I F EQ XL$MIY

.DRINS XL
LI FF ; EQ XL$MTY

Ensure that install-time CSR is zero when defaulting to MTTY, so the handler always

installs:

8 000120
000172
000174
000176

11 000200
12 000202
14 000204

15 000210

18 000216

20 000220

000000
176500
000000

000401
000416

013700
000054
032760
020000
000370

001010

105767
000020

_DRINS -XL
WORD 0
DI SCSR .WORD - <- XL$CSR>
INSCSR: .WORD O
. ENDC ; EQ XL$MIY

BR 10% ;lnstall as a data device
BR 40% ; never as a system device
10%: MoV @$SYPTR, RO ; RO- >$RMON
BIT #PROS$, $CNFG2(RO) ;Installing on a PRO 3xx?
. I F EQ XL$PC
BNE 40% ;Yes, then reject the installation
. I F NE XL$MTY
TSTB I $MITY ; Are handl er hooks needed?

DX, DL, and XL Device Handlers A-63

21 000224
22 000226

001404
005760
000000G

23 000232 001402

BEQ 20%
TST $THKPT(RO)
BEQ 40%

; Nope. . .
;Yes, is the support avail abl e?
; Nope, reject the installation

Hooks cannot be established until handler is in memory, which doesn’t happen until

;Yes, nothing to do until fetch/|oad

; Nope, then reject the installation

; RO- >Recei ver CSR

;Set the speed (in transmitter CSR)

; Set the XM T/ RECV baud rate

; RO->csr A

; Reset channel A
;Reset transmitter underrun latch
; Sel ect
; set clock rate x16,

csr A, wite register 4
1 stop bit

; Sel ect
; set receiver

csr A, wite register 3
enabl e, 8-bit chars

;Select csr A, wite register 5
; set transmitter enable, 8-bit chars
;Select csr A, wite register 2
*** nust be loaded with 0 ***

; Reset external/status interrupts

; RO->csr B
; Reset channel B

; Sel ect
*** ensure base vector

csr B, wite register 2
of O***

;Select csr B, wite register 1
info ***

*** ensure correct vector

; Enabl e comm port interrupts

; Set nodem cl ock

; Accept the installation (carry=0)
;Reject the installation (carry=1)

;Determine |lowest bit of speed mask

Fetch/Load:
24 000234 000400 BR 30%
25
26 000236 20%:
27 . ENDC ; NE XL$MTY
28 .| FF ; EQ XL$PC
29 BEQ 40%
30 . ENDC ; EQ XL$PC
31
32 . I F EQ XL$PC
33 . F NE <XL$DVE ! XL$SBC>
34 MoV I NSCSR, RO
Speed set at install-time:
35 MoV | SPEED, 4(RO)
36 .ENDC ; NE <XL$DVE ! XL$SBC>
37 .1 FF ; EQ XL$PC
38 MOVB | SPEED, @*XL$BAU
39
40 ; Things to do through csr A
41
42 MoV #XL$CSA, RO
43 MOVB #CMD. CR, @R0
44 MOVB #CRC. TR, @0
45
46 MOVB #RPT. R4, @0
47 MOVB #<CLK. 16! STP. 1>, @RO
48
49 MOVB #RPT. R3, @R0
50 MOVB #<WB. RXE! RCL. 8>, @R0
51
52 MOVB #RPT. R5, @GRO
53 MOVB #<Wb. TXE! TCL. 8>, @R0
54
55 MOVB #RPT. R2, @RO
56 MOVB #0, GRO
57 MOVB #CMD. RE, @0
58
59 ; Things to do through csr B
60
61 MoV #XL$CSB, RO
62 MOVB #CMVD. CR, @R0
63
64 MOVB #RPT. R2, @RO
65 MOVB #W2. REQ @RO
66
67 MOVB #RPT. R1, @RO
68 MOVB #WL. REQ @R0
69
70 ; Now we play with the interrupt controller
71
72 MOVB #<30! 3>, @ COCR
73
74 ; And finally, the nodem
75
76 MOVB #CLK. BG @XL$MCO
77 . ENDC ; EQ XL$PC
78
79 000236 005727 30$%: TST (PC) +
80 000240 000261 40%: SEC
81 000242 000207 RETURN
82
83 .DSABL LSB
84
85 .IF NE <XL$PC ! XL$DVE ! XL$SBC>
86 .IF NE <XL$DVE ! XL$SBC>
87 LSBDF ..., XC. S\
88 .ENDC ; NE <XL$DVE ! XL$SBC>

A—-64 RT-11 Device Handlers Manual

89 | SPEED:

90 .1 F NE XL$PC
91 . WORD <B. 1200 * 20> + B.1200 ;Default to 1200 baud RECV and XM T
92 . ENDC ; NE XL$PC
93
94 . F NE <XL$DVE ! XL$SBC>
95 . WORD <B. 1200 * ...> ! XC. SCE ;Default to 1200 baud RECV and XM T
96 .ENDC ; NE <XL$DVE ! XL$SBC>
97 .ENDC ; NE <XL$PC ! XL$DVE ! XL$SBC>
98
99 I F NE XL$MIY
Default flag to MTTY if built for hooks support:
100 000244 377 I1$MITY: .BYTE -1 ; ¢ Install-time 'hooks required flag
101 000245 000 . BYTE ;reserved

Duplicate code from .DRBEG to restore pointer to vector table when SET XL
NOMTTY is issued:

102 000246 000000C VECSAV: .WORD 100000+<<XL$VTB-Hl. VEC>/2-1> ; : Vector info for SET NOMITY
103 000250 176500 CSRSAV: .WORD XL$CSR ; ¢ CSRinfo for SET NOMITY

104 . ENDC ; NE XL$MIY

105

106 000252 .Assune . LE 400 MESSAGE=<Installation code too |arge>

SET OPTION PARAMETER TABLE

1 . SBTTL SET OPTI ON PARAMETER TABLE
2
3 ; Option Data Rout i ne Synt ax
4 s el e,
5
6 JIFEQ1
7 .DRSET BIT8 <rcl77> O BIT8 NO ;[NJ BI T8
8 .ENDC ; EQ 1
9
10 .1 F EQ XL$PC
11 000252 .DRSET CSR 160012 QO CSR OCT ; CSR=n
000400 160012 160012
000402 012712 .RAD50 \CSR\
000406 021 .BYTE <O CSR-"0400>/ 2.
000407 140 .BYTE ...W2
000410 000000 .WORD 0
12 000412 .DRSET VECTOR 477 O VEC OCT ; VECTOR=n
000410 000477 477
000412 105113 . RAD50 \ VECTOR\
000414 077552
000416 046 .BYTE <O VEC "0400>/ 2.
000417 140 .BYTE ...W2
000420 000000 .WORD 0
13 . ENDC ; EQ XL$PC
14
15 .1 F EQ XL$PC
16 .| F NE XL$PDT
17 .DRSET LIGHTS -1 O LGHT NO s [NJ LI GHTS
18 . ENDC ; NE XL$PDT
19 . ENDC ; EQ XL$PC
20
21 .1 F NE XL$MTY
22 000422 .DRSET LINE 16. O LINE NUM ; LINE=n
000420 000020 16.
000422 046166 .RAD50 \ LI NE\
000424 017500
000426 056 .BYTE <O. LI NE-"0400>/ 2.
000427 100 LBYTE ...W2
000430 000000 .WORD 0
23 000432 .DRSET MITY -1 O MITY NO s [N MITY
000430 177777 -1
000432 052164 .RAD50 \ MITW
000434 116100
000436 063 .BYTE <O MITY-"0400>/ 2.
000437 200 .BYTE ...W2
000440 000000 .WORD 0

DX, DL, and XL Device Handlers A-65

24 . ENDC ; NE XL$MIY

25

26 I F NE <XL$PC ! XL$DVE ! XL$SBC>

27 .DRSET SPEED NOP O SPEE NUM ; SPEED=n
28 .ENDC ; NE <XL$PC ! XL$DVE ! XL$SBC>

SET OPTION PROCESSING ROUTINES

1
2
3 IFEQ1
4 ; SET XL [NQO BI T8
5
6 QO BIT8: CLRB R3
7 NOP
8 MoV R3, CHVASK
9 RETURN
10 .ENDC ; EQ 1
11
12 .1 F EQ XL$PC
13
14 ; SET XL CSR=oct al _address
15

. SBTTL SET OPTI ON PROCESSI NG ROUTI NES

; Ensure high bit is left alone

; pl acekeeper

; Save character alteration mask

When SET XL MTTY in effect, cannot alter install-time CSR (176); must save it for

restore when SET XL NOMTTY issued:

16 000442 O CSR:

17 .I'F NE XL$MTY

18 000442 010067 MoV RO, CSRSAV
177602

19 000446 105767 TSTB I $SMITY
177572

20 000452 001002 BNE 20%

21 . ENDC ; NE XL$MTY

22

23 000454 010067 10%: MoV RO, | NSCSR
177516

24 000460 010067 20%$: MoV RO, DI SCSR
177510

25 000464 . ADDR #XI'S, R1

000464 010701 MoV PC, RL
000466 062701 ADD #X1S-., RL

177444

26 000472 012702 MoV #4, R2
000004

27 000476 010021 30%: MoV RO, (R1) +

28 000500 062700 ADD #2, RO
000002

29 000504 005302 DEC R2

30 000506 003373 BGT 30%

31 000510 020003 cwP RO, R3

32 000512 000207 RETURN

33

34 ; SET XL VECTOR=oct al _addr ess

35

36 000514 010067 O VEC. MV RO, XL$VTB
000142’

37 000520 062700 ADD #4, RO
000004

38 000524 010067 MoV RO, XL$VTB+6
000150’

39 000530 020300 CwP R3, RO

40 000532 000207 RETURN

41

42 .I'F NE XL$PDT

43

44 ; SET XL [NQ LI GHTS

45

46 O LGHT: CLR R3

47 NOP

48 COM R3

49 MoV R3,LitFl g

50 BR O NOR

51 . ENDC ; NE XL$PDT

A-66 RT-11 Device Handlers Manual

; Yes, update saved CSR for SET NOMITY
;Are we set MITY?

;Yep, don't set install-time word

;Let installation code know
;Fill in display CSR

;RL -> Where to put CSR info

;R2 = Count of words to set

;Set a table entry
;Prepare for next entry

;More to do?

;Yep. ..

; WAs address specified in range?
; c-bit=0if so, =1 if not

; Save the new input interrupt vector

and output interrupt vector

; WAas address specified in range?
; c-bit=0 if so, =1 if not

; LIGHTS entry point
(paddi ng)

; NOLI GHTS entry poi nt

; Set/ Reset lights flag

53 .I'F NE XL$MTY

54

55 ; SET XL LI NE=Il i ne_nunber

56

57 000534 120003 O LINE CQwB RO, R3 ;s line nunber valid?

58 000536 101027 BHI O ERR ; Nope. . .

59 000540 110067 MOVB RO, G5LI NE ;Yes, set line nunber to use
000511’

60 000544 000423 BR O NOR

61

62 : SET XL [NO MITY

63

64 000546 000411 O MITY: BR 108 ;Entry point for MITY

65 000550 000240 NOP ; pl acekeeper

66 000552 005000 CLR RO ; Entry point for NOMITY

67 000554 016767 MoV CSRSAV, | NSCSR ; Nope, restore install-time CSR
177470
177414

68 000562 016767 MoV VECSAV, H1. VEC and vector information
177460
000210

69 000570 000404 BR 20%

70

71 000572 005067 10%: CLR | NSCSR ;Reset install-tinme CSR and
177400

72 000576 005067 CLR Hl. VEC ; vector so handler installs
000176

73 000602 110067 20%: MOVB RO, GBMITY ; Set/ Reset MITY hooks use flag
000510’

74 000606 110067 MOVB RO, | SMITY ; and informinstall code of setting
177432

75 000612 000400 BR O NOR

76 . ENDC ; NE XL$MIY

77 . ENDC ; EQ XL$PC

78

79 .IF NE <XL$PC ! XL$DVE ! XL$SBC>

80

81 SET XL SPEED=deci mal _speed

Setting speed alters the on-disk image, but also takes immediate effect:

82

83 O. SPEE:

Can’t use when MTTY is in effect because not all lines have programmable baud
rate:

84 .1 F NE XL$MTY

85 TSTB I SMITY ; Handl er hooks in use?

86 BNE O ERR ;Yes, can’t touch the CSR

87 . ENDC ; NE XL$MIY

88

89 . ADDR #SPEEDT, R1 ;RL -> Baud rate table

90 10%: TST @r1 ;End of table?

91 BEQ O ERR ; Yes, speed requested is invalid
92 CcwP RO, (R1) + ; Nope, request match this entry?
93 BNE 10$; Nope, try another speed entry
94 suB PC, R1 ; Yes, determ ne speed mask

95 SuB #<SPEEDT+2-. >, Rl HE

96

97 . I F NE XL$PC

98 ASR R1 ; Convert frombyte to word of fset
99 MOVB R1, - (SP) ; Save the receive speed nask

100 ASL R1 ; And make transmt speed match
101 ASL R1 ; by shifting

102 ASL R1 ; it to the

103 ASL R1 , hi gh nibble

104 Bl SB (SP) +, RL ;OR in the receive speed mask
105 MOVB R1, @XL$BAU and change the speed now

106 . ENDC ; NE XL$PC

107

108 .1 F NE XL$DVE

109 SWAB R1 ; Move to high byte

110 ASL R1 ; then shift nmask to where

111 ASL R1 ; it should be for

DX, DL, and XL Device Handlers

A-67

122
123
124
125
126
127
128
129
130
131
132
133 000614
134 000616
135 000620
136
137 000622

ASL R1 ; a DLV11-E
. ENDC ; NE XL$PC
.1 F NE XL$SBC
ASL R1 ;Shift mask to where it
ASL R1 ; should be for SBC or MXV SLU

. ENDC ; NE XL$SBC

. F NE <XL$DVE ! XL$SBC>

Bl S #XC. SCE, R1 ; Set the 'speed change enabl e’ bit
MOV I NSCSR, RO ; RO- >Recei ver CSR
.ENDC ; NE <XL$DVE ! XL$SBC>
MoV R1, | SPEED ; Save new speed for installation
. F NE <XL$DVE ! XL$SBC>
MoV | SPEED, 4(R0) ;Set the speed (in transmitter CSR)
. ENDC ; NE <XL$DVE ! XL$SBC>
.BR O NOR
.ENDC ; NE <XL$PC ! XL$DVE ! XL$SBC>
005727 O NOR TST (PC) + ; Success (carry=0)
000261 O ERR SEC ;Failure (carry=1)
000207 RETURN

.Assune . LE 1000 MESSAGE=<Set code too | arge>

DRIVER ENTRY

CoO~NOORAWNE

. SBTTL DRI VER ENTRY

; The handl er gets entered here each tine the nonitor places a new
; request on the device queue. The handl er either processes the

; request immediately and returns it to the nmonitor or the request
is removed fromthe device queue and placed on one of the internal
queues. There is one internal queue for input and one for output.

Because of the separate queues, simultaneous input and output may
be perforned.

.ENABL LSB

. I F EQ XL$MIY
.DRBEG XL

Following code is for hooks support. Ensures vector word is zero so handler loads
without affecting any vectors when XL is SET MTTY. Restored with SET XL

NOMTTY.

16

17 000622
000052
000054
000056
000060
000000
000002
000004
000006
000010
000012

18

20 000014

21
22 000020

23
24 000024
25
26
27 000026

A-68 RT-11 Device

.1 FF ; EQ XL$MTY

.DRBEG XL, 0 ;Default to use handl er hooks
002704 .WORD <XLEND- XLSTRT>
000000 .WORD XLDSI ZE
007057 . WORD XLSTS
000006 .WORD "O<ERL$GH<MVGST* 2>+<TI| MBI T* 4>+<RTES$SM 10>>
000000 .WORD 0&*C3.
001120 .WORD XLINT-.,"0340

000340

000000 XLLQE:: .WORD O

000000 XLCQE:: .WORD O

000257 .WORD 257
. ENDC ; EQ XL$MIY

016704 MoV XLCQE, R4 i R4->Current queue el enent
177770
000022’ STATFG = <. + 2>
006227 ASR #1 ;First call since .FETCH LOAD or
000001
; last shut down?

103013 BCC 40% ; Nope. . .

. I F EQ XL$PC
004767 CALL ENAI NI ; Turn on receiver interrupts
002166

Handlers Manual

28

29

30

000032

000036

000042

000050

000054

000060
000062

000066

000070

012700
000006
004767
002412
012767
177776
001070
004767
002216

116405 40$:
000002
001040
006364
000006
103406

004567 READ:
002002

Internal input queue:

49
50
51

52
53
54
55

56

000074
000076
000100

000104

000110

000000 XI CQE:
000000 XI LGE:

000167
001436

005267 WRI TE:

001066
004567
001762

Internal output queue:

57
58
59

60
61
62

000114
000116
000120

000124

000130

000000 XOCCQE:
000000 XOLCE:

005067
001052

004767
002142

000207 50$:

MoV #<RC. RTS! RC. DTR>, RO ; Assert DTR

CALL SETSTT

MoV #- 2, SNDS

CALL ENAQUI

. F NE XL$PDT
CALL SETLIT

. ENDC ; NE XL$PDT
.| FF ; EQ XL$PC

;Indicate we nust send an XON

; Enabl e output interrupts

;Set the lights to indicate state

MoV #RPT. R1, @SRA ;Select csr A, wite register 1
Bl S #<WL. R E! WL. TI E>, SSRAW. ; Turn on RECV and XM T interrupts
MoV SSRAWL, @SRA ; (update from software register)
Bl S #<MD. DTR! MD. RTS>, @/CRO ; Force DIR and RTS

MOVB #C. CTLQ @BUF

. ENDC ; EQ XL$PC

MovB BFUNC(R4) , R5

BNE SPFUN
ASL QBWONT(R4)
BCS VR TE
JSR R5, XLENQ
_WORD 0

_WORD 0

CALLR XIIN

INC QHG

JSR R5, XLENQ
_WORD 0

WORD 0

CLR QcHG

.1F EQ XL$PC

CALL ENAQUI

(I FF ; EQ XL$PC
CALL GNXTCH
BEQ 50%

MOVB R5, @BUF
. ENDC ; EQ XL$PC

RETURN

.DSABL LSB

REGISTERS AND VECTOR TABLES

;First thing we send is an XON

; Get the function code

;1 f non-zero, we have a . SPFUN

; Convert word count to byte count

;1 f negative, wite request
; otherwi se, read
; Queue the read request

; : address of first elenment on queue
; © address of |ast el enent on queue
; Process any input already received,

; read will be conpleted via
; interrupts

; Set ' queue being nodified flag

; Queue the wite request

; : address of first elenment on queue
; . address of |last elenent on queue
; Reset ’'queue being nodified flag

; Enabl e output interrupts

; Get a character for output
; None avail able. ..
; Now prine the interrupt punp

DX, DL, and XL Device Handlers

A-69

30

31
32
33
34
35
36
37
38
39

000132
000134
000136
000140

000142
000142
000144
000146
000150
000152
000150
000152
000154
000156

000160

176500
176502
176504
176506

000300
001214
000340
100000

000304
000750
000340
100000

177600

*** Ba
Xl'S:

**% En

; Now fo

SSRAWL:
SSRAVb:

. Define

CHWVASK:

.SBTTL REG STERS AND VECTOR TABLES

.1 F EQ XL$PC

gin Critical Odering ***

.WORD XL$CSR ; ¢ Receiver status register

. WORD XL$CSR+2 ; © Receiver buffer register

. WORD XL$CSR+4 ;¢ Transnmitter status register
. WORD XL$CSR+6 ;¢ Transmitter buffer register
d Critical Odering ***

.| FF ; EQ XL$PC

.WORD XL$BUF ;¢ Input/CQutput buffer register

.WORD XL$CSA Control/Status register A
.WORD XL$CSB Control/Status register B
.WORD XL$MCO : Modem control /status register 0
.WORD XL$MC1 ; ¢ Modemcontrol /status register 1
. WORD XL$BAU ; : Baud rate control register

. ENDC ; EQ XL$PC

r some software registers

.1 F NE XL$PC
. WORD 0 ; Software status A, wite register 1
.WORD <Wh. TXE! TCL. 8> ; Software status A, wite register 5

. ENDC ; NE XL$PC
the interrupt vectors

.1 F EQ XL$PC
.DRVTB XL, XL$VEC, XI | NT ;I nput interrupt servicer
.WORD XL$VEC&'C3., XI | NT-., ~0340! 0, 70100000

.DRVTB , XL$VEC+4, XLI NT ; Qut put interrupt servicer
.WORD XL$VEC+4&"C3., XLI NT-., ~0340! 0, 0100000

.| FF ; EQ XL$PC

.DRVTB XL, XL$VEC, XLI NT ; I nput/ Qut put interrupt servicer
.DRVTB , XL$VEC+4, XLI NT

. ENDC ; EQ XL$PC

.WORD "C177 ; Character mask

. I F EQ XL$PC
.I'F NE XL$PDT

LIGHTS ROUTINE FOR PDT-11'S

©CoO~NOOR~WNE

+

SETLIT:
LI TFLG

10%:

20%:
30%:

.SBTTL LI GHTS ROUTI NE FOR PDT-11'S

Sets PDT lights to indicate XOV XOFF state.

LED 1 on if PDT has sent XOFF
LED 2 on if PDT has recei ved XOFF

TST (PC) + ; SET XL LIGHTS in effect?
.WORD 0 ; ¢ lights flag (0 = no, <>0 = yes)

BEQ 30% ; Nope. . .

MOV #040000, R5 ;Default to lights off

TST SNDS ; XOFF sent to host?

BLE 10% ; Nope. . .

BI S #000100, R5 ;Yes, turn on LED 1

TST RECS ; XOFF received from host?

BEQ 20% ; Nope. . .

Bl S #000200, RS ;Yes, turn on LED 2

MoV R5, @177420 ;Force the new |lights setting

RETURN

. ENDC ; NE XL$PDT
. ENDC ; EQ XL$PC

A-70 RT-11 Device Handlers Manual

SPFUN PROCESSING

. SBTTL SPFUN PROCESSI NG

; This section of code gets junped to. It expects that the address of the
; queue elenent is is R4 and the address of the special function code to
; be executed is in R5.

OO WNE

Special read may require post-interrupt processing, so it must be internally queued:

7 000162 120527 SPFUN. CWPB R5, #SRDDRV ; Speci al read request?
000203
8 000166 001740 BEQ READ ; Yes, go queue it
9 000170 120527 CwvPB R5, #BRKDRV ; [end] BREAK r equest ?
000202
10 000174 001423 BEQ 20% ;o Yes. ..
11 000176 120527 CVPB R5, #CLRDRV ;Cear driver flags request?
000201
12 000202 001440 BEQ 40% ;o Yes. ..
13 000204 120527 CvPB R5, #STSDRV ; Status request?
000204
14 000210 001445 BEQ 50% ; Yes. ..
15 000212 120527 CvPB R5, #OFFDRV ; Shutting us down?
000205
16 000216 001502 BEQ 100% ;Yes. ..
17 000220 120527 CwvPB R5, #DTRDRV ; DTR set/reset?
000206
18 000224 001514 BEQ 110% ;Yes. ..
19 ; Unknown . SPFUN, ignore
20 000226 10$: .DRFIN XL ;Informmonitor of conpletion

SPFUN routines can be processed without post-interrupt processing, so they are
handled without being moved to internal queue and returned to RT-11:

000226 010704 MoV PC, R4
000230 062704 ADD #XLCQE-. , R4
177560
000234 013705 MoV @" o054, R5
000054
000240 000175 JMP @ 0270(R5)
000270
21
22 ;[end] BREAK processi ng
23 ; Word count indicates operation
24 ; (0 = end break, non-zero = break)
25
26 000244 005764 20$: TST QBWCNT(R4) ; Break or end-break?
000006
27 000250 001406 BEQ 30% ;1 f zero, end-break...
28 000252 012767 MoV #1, BRKFLG ; Break, set 'break in progress’ flag
000001
000652
29
30 .1 F EQ XL$PC
31 000260 004767 CALL SETBRK ; Turn on break
002064
32 . I FF ; EQ XL$PC
33 MoV #RPT. R5, @CSRA ;Select csr A, wite register 5
34 BI S #Wb. SB, SSRAVWG ; Turn on break
35 MoV SSRAVG, @CSRA ; (update from software register)
36 . ENDC ; EQ XL$PC
37
38 000264 000760 BR 10%
39
40 000266 30%:
41 .1 F EQ XL$PC
42 000266 004767 CALL RESBRK ; Turn of f break
002030
43 .1 FF ; EQ XL$PC
44 MoV #RPT. R5, @CSRA ;Select csr A, wite register 5
45 BI C #Wb. SB, SSRAVG ; Turn of f break
46 MoV SSRAWS, @CSRA ; (update from software register)
47 . ENDC ; EQ XL$PC

DX, DL, and XL Device Handlers A-71

48

49 000272 005067 CLR BRKFLG ; Reset the 'break in progress’ flag
000634
50
51 . I F EQ XL$PC
52 000276 004767 CALL ENAQUI ; Make sure output is running
001770
53 . ENDC ; EQ XL$PC
54
55 000302 000751 BR 10%
56
57 ; Cear driver flags request
58 ; resets received XOFF flag
59 ; sends XON to host
60
61 000304 005067 40%: CLR RECS ; Reset the 'received XOFF flag
000660
62
63 . I F EQ XL$PC
64 000310 012767 MoV #- 2, SNDS ;Indicate we want an XON sent
177776
000622
65 000316 004767 CALL ENAQUI ; Make sure output is running
001750
66 .I'F NE XL$PDT
67 CALL SETLI T ; Update |ights display
68 . ENDC ; NE XL$PDT
69 .1 FF ; EQ XL$PC
70 CLR SNDS ;Indicate that an XON has been
71 MOVB #C. CTLQ @BUF ; sent
72 . ENDC ; EQ XL$PC
73
74 000322 000741 BR 10%
75
76 ; CGet Status request
77 ; returns handl er version in high byte
78 ; returns XOV XOFF state in | ow byte
79 ; bit 0 on if host has been XOFF d
80 ; bit 1 on if host has XOFF d us
81 ; bit 2 onif CISis asserted
82 ; bit 3 onif CDis asserted
83 ; bit 4 onif R is asserted
84
85 000324 012705 50%: MoV #$$SVER* 400, RS ; High byte = handl er version
011000
86 000330 005767 TST SNDS ; Have we XOFF' d host ?
000604
87 000334 003401 BLE 60% ; Nope. ..
88
89 000336 . ASSUME ST. XFH EQ 1
90 000336 005205 I NC R5 ;Yes, set the indicator
91 000340 005767 60$: TST RECS ; Have we been XOFF d?
000624
92 000344 001402 BEQ 70% ; Nope. . .
93 000346 052705 BI S #ST. XOF, R ;Yes, set the indicator
000002
94 000352 70$:
95 . I F EQ XL$PC
96 000352 004767 CALL CETSTT ; Get current status
002022
97 000356 032700 BIT #RC. CTS, RO ;1s "Clear To Send’ asserted?
020000
98 .1 FF ; EQ XL$PC
99 BIT #ML. CTS, @/CR1 ;ls "Clear To Send’ asserted?
100 . ENDC ; EQ XL$PC
101
102 000362 001402 BEQ 80% ; Nope. . .
103 000364 052705 BI S #ST. CTS, R ; Yes, set an indicator
000004
104
105 000370 80$%:
106 . I F EQ XL$PC
107 000370 032700 BIT #RC. CD, RO ;s "Carrier Detect’ asserted?
010000
108 .1 FF ; EQ XL$PC
109 BIT #ML. CD, @/CRL ;1s "Carrier Detect’ asserted?
110 . ENDC ; EQ XL$PC
111

A-72 RT-11 Device Handlers Manual

112 000374 001402 BEQ 82% ; Nope. . .

113 000376 052705 BI S #ST. CD, RS ; Yes, set an indicator
000010

114

115 000402 828%:

116 .1 F EQ XL$PC

117 000402 032700 BIT #RC. Rl , RO ;1s "Ring Indicator’ asserted?
040000

118 .1 FF ; EQ XL$PC

119 BIT #ML. R, @/CR1 ;1s "Ring Indicator’ asserted?

120 . ENDC ; EQ XL$PC

121

122 000406 001402 BEQ 84% ; Nope. . .

123 000410 052705 Bl S #ST. R, R5 ; Yes, set an indicator
000020

124

125 000414 84$%:

126 I F EQ MVGHT

127 MoV R5, @®¥BUFF(R4) ; Return the status word

128 .| FF ; EQ MMG$T

129 000414 010546 MOV R5, - (SP) ;Return the status word

130 000416 004777 CALL @PTVRD ; .
002252

131 . ENDC ; EQ WET

132

133 000422 000701 BR 10%

134

135 ; Shut down driver request (OFFDRV)

136 ; Sets a flag such that when VICOM exits, interrupts will

137 ; not be re-enabl ed. STATFG is used as the once-only,

138 ; interrupt startup flag.

139

140 000424 116446 100%: MOVB @GINUM R4) , - (SP) ; Save QBINUM
000003

141 000430 042716 BI C #NC<IOBMK>, @P ;1solate job nunber issuing request
177407

142 000434 006216 ASR @P ;Shift for abort code check

143 000436 006216 ASR @sP

144 000440 006216 ASR @P

145 000442 112667 MOVB (SP) +, INUM ;Save it for later check
000040

146 000446 012767 MoV #1, STATFG ;Reset us to pre-start state
000001
177346

147 000454 000664 BR 10%

148

149 ; Set/Reset DTR (DTRDRV)

150 ; Sets or resets DIR based on word count

151 ; (0 = DIR of f, <>0 = DTR on)

152

153 000456 110%:

154 .1 F EQ XL$PC

155 000456 004767 CALL GETSTT ;Get current state
001716

156 000462 042700 BIC #<RC. RTS! RC. DTR>, RO ;Assune DTR is desired off
000006

157 .1 FF ; EQ XL$PC

158 MOVB @/CRO, RO ;Get current state

159 BI C #<MD. DTR! M). RTS>, RO ;Assune DTR is desired off

160 . ENDC ; EQ XL$PC

161

162 000466 005764 TST QBWCNT(R4) ; Correct assunption?
000006

163 000472 001402 BEQ 115% ; Yep. ..

164

165 .1 F EQ XL$PC

166 000474 052700 Bl S #<RC. RTS! RC. DTR>, RO ;Nope, turn it on
000006

167 . I FF ; EQ XL$PC

168 BI S #<MD. DTR! MD. RTS>, RO ; Nope, turn it on

169 . ENDC ; EQ XL$PC

170

171 000500 115%:

172 .1 F EQ XL$PC

173 000500 004767 CALL SETSTT ;Assert desired bits
001750

174 .| FF ; EQ XL$PC

175 MOVB RO, @/CRO ; Set desired state

DX, DL, and XL Device Handlers A-73

176 . ENDC ; EQ XL$PC

177

178 000504 000650 BR 10$

179

180 000506 JNUM . BLKW ;1 Job nunber which i ssued OFFDRV
181

182 .1 F NE XL$PC

INTERRUPT SERVICE/DISPATCHER

1 . SBTTL | NTERRUPT SERVI CE/ DI SPATCHER
2
3 ot
4 ;
5 ; Interrupt entry point for input and output interrupts. The interrupt
6 type is determned by bits <04:02> in RR2 of CSR B. The four defined
7 ; types of interrupts are:
8 ;
9 ; 1) Transmitter buffer enpty (~B100xx)
10 ; 2) External/status change (~B101xx)
11 ; 3) Received character available (~B110xx)
12 ; 4) Special receiver condition (~B111xx)
13 ;
14 ;-
15
16 .DRAST XL, 4, XLDONE
17
18 MOV #RPT. R2, @CSRB ; Select csr B, read register 2
19 MoV @CSRB, - (SP) ;Get the interrupt type
20 BI C #7C<R2. | MK>, @P ;Strip the uninteresting stuff
21 ASR @®P ;Shift for word table offset
22 . ADDR #| NTTAB, @P, ADD ; Add address of start of table
23 MoV @ SP) , @P ;Get the table entry
24 ADD PC, @P ; Convert to address
25 | NTDSP: JMP @ SP) + ; Dispatch the interrupt
26
27 ESINT: MWV #CMWD. RE, @CSRA ; Reset external/status interrupts
28 | ECOM MOV #CMD. El , @SRA ; Decl are end of interrupt
29 RETURN
30
31 SRINT: MV #C\D. ER, @CSRA ; Reset error |atches
32 JMP Xl | NT ; then handl e as received character
33
34 INTTAB: . WORD | ECOM | NTDSP ; unknown i nterrupt
35 .WORD | ECOM | NTDSP ; unknown i nterrupt
36 . WORD | ECOMt | NTDSP ; unknown i nt errupt
37 . WORD | ECOMt | NTDSP ; unknown i nt errupt
38 .WORD XO NT- | NTDSP ;Transmitter buffer enpty
39 .WORD ESI NT- | NTDSP ; External / St atus change
40 .WORD XI'| NT- | NTDSP ; Recei ved character avail able
41 .WORD SRI NT- | NTDSP ; Speci al receiver interrupt
42 . ENDC ; NE XL$PC
43
44 I F NE XL$MIY

MULTITERMINAL HANDLER HOOKS SUPPORT DATA

1 .SBTTL Miltiterm nal Handl er Hooks Support Data
2
3 The following byte indicates whether the handl er shoul d make use
4 ; of the multiterm nal hooks during FETCH LOAD and during operation.
5
6 * k% SET * k%
Set/reset by SET XL [NOIMTTY:
7 000510 377 CBMITY: .BYTE -1 ;Default to hooks used
8 000511 . Assune <OBMTTY- XLSTRT> LE 1000 MESSAGE=<Code to set not in block 1>
9
10 ’ * %k SET * k%

Set/reset by SET XL LINE=n:

A-74 RT-11 Device Handlers Manual

11 000511 001 GBLINE: .BYTE XL$LUN ;Default line to use

12 000512 . Assune <OBLI NE- XLSTRT> LE 1000 MESSACGE=<Code to set not in block 1>
13

14 000512 377 ISPND: .BYTE -1 ; ¢ Input suspend flag

15 000513 377 OSPND: .BYTE -1 ;¢ Qutput suspend flag

16 . EVEN

XLHOOK - Multiterminal Handler Hooks Hook Routine

interrupt service.

1 .SBTTL XLHOOK - Miltiterm nal Handl er Hooks Hook Routine
2

3 p+

4 ;

5 ;. XLHOOK

6 ; Entered frommultitermnal input or output
7

8 ; Call (TH GOO):

9 ; RO = Function code

10 ;

11 ; Return (TH GOO):

12 ; PSWc> = 0, R5 = character

13 | PSWe> = 1, no character avail able
14 ;

15 ; Call (TH.PIO:

16 ; RO = Function code

17 ; R5 = character

18 |

19 ;-

20

21 .ENABL LSB

22

The following line must reside before hook entry point:

23 000514 113740 XLPNAM .Rad50 [/ XL/ ; © Rad50 physical name

24 ; | oaded by FETCH LOAD code

25

26 000516 XLHOOK:

27 000516 . Assune <XLHOOK- XLPNAM> EQ 2 MESSAGE=<XLPNAM nust preceed XLHOOK>

28

29 000516 010446 MoV R4, - (SP) ; Save register for awhile

30

31 ; Function code = 1 = TH. GCC

32 ; (Get Qutput Character)

33

34 000520 020027 CwP RO, #TH. GOC ;' Get Qutput Character’ request?
000001

35 000524 001006 BNE 10% ; Nope. . .

36 000526 105767 TSTB OSPND ;1's output suspended?
177761

37 000532 001014 BNE 20% ; Yep. ..

38 000534 004767 CALL HO NT ; Yes, hook handl er output service
000370

39 000540 000412 BR 30%

40

41 ; Function code = 2 = TH PIC

42 ; (Put Input Character)

43

44 000542 020027 10$: CwP RO, #TH. PI C ;" Put I nput Character’ request?
000002

45 000546 001006 BNE 20% ; Nope. . .

46 000550 105767 TSTB | SPND ;1's input suspended?
177736

47 000554 001003 BNE 20% ; Yep. ..

48 000556 004767 CALL HI | NT ; Yes, hook handl er input service
000604

49 000562 000401 BR 30%

50

51 000564 000261 20$: SEC ;Return failure

52 000566 012604 30$: MoV (SP)+, R4 ;*C* Restore previously saved register

53 000570 000207 RETURN

54

55 .DSABL LSB

DX, DL, and XL Device Handlers A-75

PREMTY - Prepare for multiterminal hook

OCoOoO~NOUDWNE

17 000572
18 000576
19 000600
20 000602
21 000606
22 000612
23 000614
24 000616

26 000620

PREMIY - Prepare for multiterm nal hook

Prepares for use of a multiterm nal hook.

. SBTTL

+

. PREMTY

: Ret ur n:

; R3 -> TCB

Not e:

; *** Co-routine ***

; Saves R3
105767 PREMIY: TSTB CBMITY
177712
001410 BEQ 10%
010346 MoV R3, - (SP)
016703 MoV TCBADX, R3
002046
016646 MOV 2(SP), - (SP)
000002
004736 CALL @ SP) +
012603 MoV (SP)+, R3
005726 TST (SP) +
000207 10%: RETURN

. ENDC ; NE XL$MIY

DRIVER RESET ENTRY

OCoO~NOUDWNE

18 000622

21 000624

28 000630
29 000634
31 000636
33 000642
34 000644

35 000650

A-76 RT-11 Device

010046

004767
001342

004467
000110
177124

120467
177644

001003
005767
177152
001002

. SBTTL DRI VER RESET ENTRY

; Term nal hooks in use?

; Nope. . .
; Save some registers for awhile
; R3 -> TCB hooked to us

;Restack the return address

; Co-routine back to caller

; Restore previously saved register
;Discard old return address

; toreturn to callers caller

This routine is entered on the abort of a job or an HRESET. It
I's RT that all I/Orequests by a job are done. It
expects to be entered with the nunber of the aborting job in R4.

deques and tel

Entered with:
R4 =

R5 = 0
-> Ch

. ENABL

XLDONE: MoV

Job nunber {aborting |

if abort by job

i ssuing . ABTI G

annel Control Block (CCB) if abort by channel (.ABTIO

LSB

RO, - (SP)

I F EQ XL$PC

CALL

DI SINI

. I FF ; EQ XL$PC

MoV
BIC
MoV

#RPT. R1, @CSRA
#WL.. Rl E, SSRAWM
SSRAWL, @SRA

. ENDC ; EQ XL$PC

JSR

. WORD

CvPB

BNE

TST

BNE

Handlers Manual

R4, 50$

XI CQE- 60%$- QBLI NK
R4, INUM

5%

STATFG

108

;Save RO for awhile

;Turn of f input interrupts

;Select csr A, wite register 1
;Turn of f input interrupts
(update from software register)
; while we renove entries fromthe
i nput queue
;1s aborting job sane as one which
; issued OFFDRV cal | ?
;No, so interrupts should still be on

; Should we turn interrupts back on?

; Nope. . .

68

000652

000652

000656

000662

000666

000670

000674

000700

000702

000706
000710

000710

000714
000716

000722

004767
001342

005267
000314
004467
000056
177144
005067
000302

120467
177606

001003
005767
177114
001002

004767
001356

012600
005767
177066
001001

5%:

.1 F EQ XL$PC
CALL ENAI NI
.1 FF ; EQ XL$PC
MoV #RPT. R1, @CSRA
Bl S #WL. Rl E, SSRAWL
MoV SSRAWL, @CSRA
. ENDC ; EQ XL$PC
10$: I NC QCHG
JSR R4, 50%
.WORD XOCQE- 60$- GBLI NK
CLR QCHG
CwvPB R4, INUM
BNE 15%
TST STATFG
BNE 30%
15%:
.1 F EQ XL$PC
CALL ENAQUI
I FF ; EQ XL$PC
MOV R5, - (SP)
CALL GNXTCH
BEQ 20%
MOVB R5, @BUF
20%: MOV (SP) + R5
. ENDC ; EQ XL$PC
30$: MoV (SP) +, RO
TST XLCQE
BNE 40%

; Turn input interrupts back on

;Select csr A, wite register 1

; Turn input interrupts back on

; (update from software register)

; Set the 'queue being nodified flag

; while we renove entries fromthe

; output queue

; Reset the ’'queue being nodified flag
;1s aborting job sane as one which
;issued OFFDRV cal | ?

;No, so interrupts should still be on

;Again, interrupts back on?

; Nope. . .

; Turn output interrupts back on

;Save R5 for awhile

; Get a character for output

; None avail able. ..

;Now prime the interrupt punp
; Restore RS

; Restore RO
;Anything to return to RT?

;Yes. ..

Use RETURN if no internally-queued elements are being aborted:

69 000724 000207

70

RETURN

; Nope, just return

Use .DRFIN if any abortable queue elements have been placed on the device queue.

71

72
73
74
75
76
7

Internal queuing code.

000726
000726
000730
000734

000740

queues:

NOTE

Only abortable queue elements should be placed on the
device queue.

010704
062704
177060
013705
000054
000175
000270

40%: _DRFIN XL
MOV PC, R4
ADD #XLOQE- . , R4
MOV @"054, RS
IVP @0270(R5)

; The followi ng code scans the internal

queue for queue el ements which

; match the abort criteria (job nunber for job abort, channel if abort

; by channel).

themto the device queue.

It then dequeues themfromthe internal queue, returning

Used to remove abortable queue elements from internal

DX, DL, and XL Device Handlers A-77

78 000004 SP.CCB = 4 ; Stacked CCB poi nter

79 000006 SP.JOB =6 ; Stacked job nunber

80

81 000744 010546 50%: MoV R5, - (SP) ; Save CCB poi nt er

82 000746 012405 MoV (R4) +, RS ; Pick up the displacenment and

83 000750 010446 MoV R4, - (SP) store the return address

84 000752 060705 ADD PC, R5 ; Cal cul ate actual address

85 ; (60% must follow this)

86 000754 010546 60%: MoV R5, - (SP) ; Save the Q header address

87 000756 016504 70$: MoV LI NK(R5) , R4 ;Link to the next entry
177774

88 000762 001450 BEQ 120% ;1f zero, no nore

89 000764 005766 TST SP. CCB(SP) ; Abort by channel (.ABTIO) ?
000004

90 000770 001405 BEQ 80% ; Nope, aborting job...

91 000772 026466 cwP BCSW R4) , SP. CCB(SP) ;Yes, this gelenent for that channel ?
177776
000004

92 001000 001037 BNE 110% ; Nope. . .

93 001002 000412 BR 90% ; Yes, go renove it

94

95 001004 116400 80$%: MOVB GBINUM R4) , RO ; Get nunber of job being aborted
000003

96 001010 006200 ASR RO ; and

97 001012 006200 ASR RO shift

98 001014 006200 ASR RO ; to

99 001016 042700 BI C #"C<37>, RO ; isolate job bits
177740

100 001022 020066 CcwWP RO, SP. JOB(SP) ;Job own this queue el enent?
000006

101 001026 001024 BNE 110% ; Nope. . .

102 001030 016465 90%: MOV QBLINK(R4), BLINK(RS) ;Yes, unlink it fromthe list
177774
177774

103 001036 005064 CLR QBLI NK(R4) ; Make sure it doesn't |ink anywhere
177774

104 001042 005767 TST XLOQE ; Anyt hing on the queue?
176742

105 001046 001005 BNE 100% ;Yes, then link it in at the end

106 001050 010467 MOV R4, XLCQE ; Qtherwise, make it the first
176734

107 001054 010467 MoV R4, XLLQE ; and only
176726

108 001060 000736 BR 70% ; Check for nore elenents to abort

109

110 001062 016700 100$%: MoV XLLQE, RO ; RO->el enent at end of queue
176720

111 001066 010460 MoV R4, QGBLI NK(RO) ;Link it to this new one
177774

112 001072 010467 MoV R4, XLLQE ; and make the new one | ast
176710

113 001076 000727 BR 70% ; Check for nore elenents to abort

114

115 ; Here if element is not part of the aborting job

116

117 001100 010405 110$: MoV R4, RS ; Skip this el enent

118 001102 000725 BR 70% ; Check for nore elenents to abort

119

120 ; DeQueue is done, record the new end of the queue

121

122 001104 012604 120%: MoV (SP)+, R4 ; R4- >Queue header

123 001106 010564 MoV R5, QBLI NK+2(R4) ; Set the new end of queue
177776

124 001112 012604 MOV (SP) +, R4 ; Recover the return address

125 001114 012605 MoV (SP) +, R ; Restore CCB poi nter

126 001116 000204 RTS R4

127

128 .DSABL LSB

OUTPUT INTERRUPT SERVICER

A-78 RT-11 Device Handlers Manual

A WNE

001120
001120
001122

001126

Cwo~NO U

1

Hook output

11 001130

13 001130
14 001132
15 001134
16 001136
17 001140

22 001142
23 001144

24 001150
25 001156
26 001160
27 001164
29 001166
30 001170
31 001172
32 001174
33 001176
34 001200
35 001202
36 001206

38 001210
39 001210

45 001214

48 001216

50 001216

56 001222

58 001224
59 001226
60 001230

. I F EQ XL$PC

.DRAST XL, XL$PRI , XLDONE
000640 BR XLDONE
004577 XLINT:: JSR R5, @l NPTR
001552
000140 . WORD

XO NT:

. SBTTL QUTPUT | NTERRUPT SERVI CER

.| FF ; EQ XL$PC
. ENDC ; EQ XL$PC

.ENABL LSB

interrupt entry point:

HO NT:

005727
000000
001030
005727
000000

BRKFLG

SNDS:

100011
112705
000021
062767
000002
177762
001414
112705
000023
000411

005727 10$:
000000 RECS
001011
005727
000000
001006
004767
000024
001403

20%:

004767
001276

000403

30%

004767
001022

000401

005727 40%$
000261 50%
000207 60%

; Qut put i nterrupt

TST (PO +
WORD 0

BNE 30%

TST (PC) +
WORD 0

BPL 10%

MWVB #C. CTLQ R5
ADD #2, SNDS
BEQ 20%

MWVB #C. CTILS, R5
BR 20%

TST (PO +
_WORD 0

BNE 308

TST (PO) +
WORD 0

BNE 30%

CALL GNXTCH

BEQ 30%

CALL PUTC

.1 F EQ XL$PC

.1 F NE XL$PDT
CALL SETLIT

. ENDC ; NE XL$PDT
BR 40%
. ENDC ; EQ XL$PC

I F EQ XL$PC
CALL DI SQUI

.| FF ; EQ XL$PC

MoV #CMD. RT, @SRA
MoV #CWD. El , @CSRA

. ENDC ; EQ XL$PC
BR 50%

TST (PO) +
SEC

RETURN

.DSABL LSB

ANC<XL$PRI *"040>&"0340

hook poi nt

;1's break in progress?
break in progress’ flag (0=no)

; Yes,

then don’t do any out put
:Need to send an XON or XOFF?

;o send XON/ XOFF flag

-2 = XON shoul d be sent
; -1 = XOFF shoul d be sent
; 0 = XON has been sent
;1 = XOFF has been sent
; Neither. ..

;Assune we are to send an XON

;Are we correct? (SNDS = 0 if yes)

; Yes,

;No, we nmust send an XOFF

; Now

go send it

go send it

; Have we been XOFF' d?
;1 received XOFF flag

; Yes,

then don’t do any out put

; No, are output queues being nodified?

; Yes,

; Go get

' queues being nodified
then don’t do any out put
a character to output

; None avail able...

; Qut put the character

; Update the PDT |ights display

; Turn of f out put

;Reset transmitter

; Decl

DX, DL, and XL Device Handlers

are end of interrupt

interrupts

interrupt

pendi ng

A-T79

GNXTCH - Get next output character

OCoOoO~NOOUDWNE

24 001232

25 001236

35 001240

36 001244
37 001246

38 001252

39 001256

42 001260
43 001264
44 001266
45 001270
46 001272
47 001274

48 001300
49 001302

50 001306
51 001310

52 001314
54 001316

57 001322

60 001326

61 001332

A-80 RT-11 Device

016704
176656
001426

005764
000006
001424
005264
000006
004777
001412
112605

046705
176674
001762
006227
000000
103003
120527
000012
001754
120527
000015
001002
005267
177754
000207

005267
177654

004767
000716

016704
176562
016467
177774
176554

; GNXTCH
; Obt ai ns the next character fromthe output queue and returns

; it in R5.
. CALL:
; CALL GNXTCH
. RETURNS:
; z-bit =
; z-bit =
; NOTES
| As requests are conpl eted,
; returned to RT-11.
.ENABL LSB
G\XTCH: MOV XOCQE, R4
BEQ 10$
I F EQ MVGST
ADD #QBWCNT, R4
TST @4
BEQ 20%
I NC @4
MOVB ©@(R4),R5
I NC a4
.| FF ; EQ MMG$T
TST QBWCNT(R4)
BEQ 20%
I NC QBVCNT(R4)
CALL @GTBYT
MOVB (SP) +, R5
. ENDC ; EQ MMBT
BI C CHVASK, R5
BEQ GNXTCH
ASR (PC) +
CRFLG .WORD 0
BCC 5%
CvPB R5, #C. LF
BEQ GNXTCH
5%: CVPB R5, #C. CR
BNE 10%
I NC CRFLG
10$: RETURN
20$: I NC QCHG
.1 F EQ XL$PC
CALL DI SCQUI

.SBTTL GNXTCH - Get

. ENDC ; EQ XL$PC
MOV XOOGE, R4

MoV @BLI NK(R4) , XOCQE

Handlers Manual

next out put

character

0, R5 contains character to be output
1, no characters avail able to output

the associ ated queue el enents are

i R4->current output queue el ement

; None avail abl e. .

; R4->wor d count

; Any characters left to output?

; Nope, this request is conplete
;Yes, now there is one less to do
;Cet the byte to output

; bump pointer to next byte

; Any characters left to output?

; Nope,
; Yes,

this request is conplete
now there is one less to do

;Get the byte to out put

;Strip the undesired bits

; and nulls are not to be suffered
;Was | ast character a <CR>?

;1 <CR> flag

; Nope. . .

:Yes, is this character a <LF>?
; Yes
;s this character

then suppress it...
a <CR>?

; Nope. . .
;Yes, set the flag

; Set the ’queue being nodified

; Shut

of f the output

; R4->Current output queue el enent

; Repl ace top of output queue with

flag

62
63

64

65
66
67

68
69
70
71
72

001340

001344

001350

001354

004767
000572
005067
177626

004767
000716

000726

CALL XLFI'N

CLR HG

. I F EQ XL$PC
CALL ENAQUI

. ENDC ; EQ XL$PC
BR GNXTCH

.DSABL LSB

INPUT INTERRUPT SERVICER

O~NOURAWNPE

001356
001356
001360

001364

000207
004577
001314
000140

; This is the input

;. next el enent
;Return the elenent to RT

; Reset the 'queue being nodified flag

; Restart the out put

. SBTTL | NPUT | NTERRUPT SERVI CER

interrupt servicer. Input interrupts are always enabl ed

; once this driver is called for the first tine. Only a "RstDrv" SPFUN
; request will shut off its interrupt enable.

I F EQ XL$PC
.DRAST XI, XL$PRI
RETURN

XII'NT: : JSR R5, @l NPTR

XI'I NT:

.WORD "C<XL$PRI *"040>&"0340

I FF ; EQ XL$PC
.ENDC ; EQ XL$PC

.ENABL LSB

Hook input interrupt entry point:

15
16
17

18

19
20

21
22

001366

001366

001372

001376
001400

001404
001406

001414

001414

001416

001422
001424

001430

004767
001104
046705
176562
001406
120527
000023
001004
012767
000001
177554

000207

120527
000021
001005
005067
177540

004767
000636

HI | NT:

10$

20%

;Input interrupt hook point

CALL GETC
BIC CHVASK, R5

BEQ 108$
CVPB R5, #C. CTLS

BNE 20$
MoV #1, RECS

I F EQ XL$PC
.1 F NE XL$PDT
CALL SETLIT
. ENDC : NE XL$PDT
.1 FF ; EQ XL$PC
MOV #CO\D. El , @SRA
. ENDC ; EQ XL$PC

RETURN

CWPB R5, #C. CTLQ

BNE 30%
CLR RECS
.| F EQ XL$PC
CALL ENACUI
.| FF ; EQ XL$PC
CLR SNDS

MOVB #C. CTLQ @BUF
. ENDC ; EQ XL$PC

;Get an input character
;Strip the undesired bits

and nulls are not to be suffered
; Are we being XOFF d?

; Nope. . .
; Yes, set the 'received XOFF flag

; Update the PDT |ights display

; Decl are end of interrupt

; Are we being XON d?

; Nope. . .
;Yes, reset the 'received XOFF flag

; Get the output going again

;Indicate that an XON has been
sent

DX, DL, and XL Device Handlers A-81

45 001434 000767 BR 108$

46

47 ; Here for characters other than XON ("Q and XOFF ("S)

48

49 001436 005767 30%: TST Xl BFRE ;Any roomin the input buffer?
001170

50 001442 001427 BEQ 50% ; Nope, go force an XOFF to the host

51

52 ; We have room so store the character in the ring buffer. It wll

53 ; be processed at FORK | evel .

54

55 001444 016704 MOV Xl BI N, R4 ;Yes, R4=offset into buffer
001156

56 001450 .ADDR #XI BUF, R4, ADD ; Add address of start of buffer

001450 060704 ADD PC, R4
001452 062704 ADD #XI BUF-. , R4

001054

57 001456 110514 MOVB R5, @4 ;Store the character

58 001460 005367 DEC XI BFRE ;Buffer has one less free byte now
001146

59 001464 005267 I NC Xl BI N ; Bunp the offset for next tine
001136

60 001470 026727 CwWP XI Bl N, #BUFSI Z ;Time to wap?
001132
000100

61 001476 103402 BLO 40% ; Nope. . .

62 001500 005067 CLR Xl BI N ; Reset the buffer offset
001122

63

64 ; Here to check for 'lowwater’ mark (running out of buffer space)

65

66 001504 026727 40$: cwP Xl BFRE, #STPSI Z ;Crossed the 'lowwater’ mark yet?
001122
000020

67 001512 101010 BHI 60% ; Nope, then go process sone input

68 001514 005767 TST SNDS ; Yes, have we already sent an XOFF?
177420

69 001520 003005 BGT 60% ;Yes, so go process sone input

70

71 ; Here to send an XOFF to the host

72

73 001522 50%:

74 .1 F EQ XL$PC

75 001522 012767 MoV #- 1, SNDS ; Request an XOFF to be sent
177777
177410

76 001530 004767 CALL ENAQUI ; Turn on output to nake sure
000536

77 .| FF ; EQ XL$PC

78 MOV #1, SNDS ;I ndicate that an XOFF has been

79 MOVB #C. CTLS, @BUF ; sent

80 . ENDC ; EQ XL$PC

81

82 ; Here to process some input

83

84 001534 005767 60$%: TST XI CQE ; Any requests to satisfy?
176334

85 001540 001725 BEQ 10% ;No, so just return

86

87 .1 F NE XL$PC

88 MoV #C\D. El , @SRA ; Decl are end of interrupt

89 . ENDC ; NE XL$PC

90

91 001542 .BR XII'N

92

93 .DSABL LSB

PROCESS INPUT RECEIVED FROM INTERRUPT SERVICER

A-82 RT-11 Device Handlers Manual

O~NOUTA WNE

22
23

24

25

26

28
29

48
49

50

51

52

53

54

55

001542

001546

001550

001554

001554

001562

001564

001570

001572

001600

001604
001610
001612
001614

001616
001620

001626

001630
001634
001634
001636

001642
001644

001650

001654

001662

001664

001670

001674

005267
000254
001124

004767
000250

026727
001052
000060
103410
005767
177350
001405

012767
177776
177340
004767
000466

016704
176264
001500
006227
000000
103472
026727
001006
000100
001471

016705
000774

060705
062705
000670
111505
005267
000762
005267
000754
026727
000750
000100
103402
005067
000740
105764
000002
001003

. SBTTL PROCESS | NPUT RECElI VED FROM | NTERRUPT SERVI CER

.ENABL LSB

; This routine runs at fork level. It’'s purpose is to renove characters
; fromthe ring buffer and use themto satisfy input requests.

XITN:

I NC I NPRC ;Did soneone beat us to this routine?
BNE 110% ;Yes. .

CALL SAV30

We have the routine. Now we |oop to process as nuch of the input as we can.

; Cear

flag to say we own routine and no others can cone in. This can be

; done because we are going to check to see if anything is in the input buffer

; after

5%:;;;

10%:

CTZFLG

clearing the flag.

CLR I NPRC ;W're now the owner of this routine
CWP Xl BFRE, #RSTSI Z ; Crossed the ' high-water’ mark yet?
BLO 10% ; Nope. . .
TST SNDS ; Yes, have we al ready sent an XON?
BEQ 10$: Yes. ..
.IF EQ XL$PC
MoV #- 2, SNDS ;No, then request an XON to be sent
CALL ENACUI ;Turn on output to naeke sure
.1 FF ; EQ XL$PC
CLR SNDS ;Now i ndi cate that an XON has been
MOVB #C. CTLQ, @BUF ; sent
. ENDC ; EQ XL$PC
MoV XI CQE, R4 ; Any input requests to satisfy?
BEQ 100$: Nope. . .
ASR (PO + ;Time to return an EOF?
.WORD 0 EOF flag ("2)
BCS 90% ;Yes. ..
CwWP Xl BFRE, #BUFSI Z ;Anything in the buffer?

BEQ 100$: Nope. . .

; Here to renpve a character fromthe input ring buffer

20%

MoV XI BOUT, R ; R5=CFfset into buffer for next char.
. ADDR #XI BUF, R5, ADD ; Add address of start of buffer

ADD PC, R5

ADD #XI BUF- . , RS

MOVB @5, R5 ;Get a character fromthe ring buffer
I NC Xl BFRE ;Buffer has one nore free byte

I NC XI BOUT ; Bunp of fset for next tine

CwP X BOUT, #BUFSI Z ;Time to wap?

BLO 20% ; Nope. . .

CLR XI BOUT ; Yes, reset the buffer offset

TSTB QBFUNC(R4) ; Speci al function read?

BNE 30% ;Yes. .

DX, DL, and XL Device Handlers A-83

56

57
58
59
60
61

63
64
65

67

68

69
70
71
72

92
93

95

96

109
110
111
112
113
114
115
116

001676

001702

001704

001704
001706

001712

001716
001720

001726

001730

001734

001740
001742

001744

001750

001750
001752

001756

001762

001764

001770

001776

002002

002004

002010

002012

002012

002020

002022

A-84 RT-11 Device

;No, is chara
; Yes, handl e

; R4->Word cou
;Return the ¢

; Bunp the buffer
conplete? (z-bit=1if so)

;1s transfer

;Return the ¢

;1s transfer

;Yes. ..

; Anything left

; Yes,
; R4->Input re

go proc

; Speci al requ

; Nope,
; Yes,

proces
then re

cter a "Z?

it specially

nt
har act er
poi nter

har act er

conplete? (z-bit=1if so)

in buffer?

ess it

quest queue el enent
est?

s some nore input
quest is done

; Set the EOF flag

; R4->word cou
;Return a zer

; Bunp the buffer

nt
o byte
poi nter

;1s the transfer conplete?

; Nope. . .

;Return a zer

o byte

;1s the transfer conplete?

; Nope. . .

; R4->Current
; Repl ace top
; next queue
;Return the e
; And check fo
;I ndi cate EOF
; And decl are
;Did anyt hing
;. we were oth

; Yes, then go
; Rel ease the

; Nope,

then we'll

i nput queue el enent
of input queue with
el ement

lement to RT

r nore input

queue el ement done

else cone in while
erw se occupi ed?
process it

i nput processing routine

retire for

This flag is -1 when no one is executing the X IN routine.

nore

120527 CVPB R5, #C. CTLZ
000032
001420 BEQ 40%
30%:
IF EQ MVGST
ADD #QBVCNT, R4
MOVB R5, @ (R4)
I NC (R4) +
DEC @4
I FF ; EQ MM$T
110546 MOVB R5, - (SP)
004777 CALL @PTBYT
000760
005364 DEC BWCNT(R4)
000006
. ENDC ; EQ MVG$T
001422 BEQ 70%
026727 CcwP XI BFRE, #BUFSI Z
000706
000100
001312 BNE 5%
016704 MoV Xl CQE, R4
176140
105764 TSTB QBFUNC(R4)
000002
001705 BEQ 5%
000402 BR 50%
005267 40%: I NC CTZFLG
177644
50%:
I F EQ MVGST
ADD #QBVCNT, R4
60$: CLRB @ (R4)
I NC (RA) +
DEC @4
BNE 60$
.| FF ; EQ MVGT
105046 CLRB -(SP)
004777 CALL @PTBYT
000714
005364 DEC QBWCNT(R4)
000006
001372 BNE 50%
. ENDC ; EQ WET
016704 70%: MoV Xl CQE, R4
176104
016467 MOV QBLI NK(R4) , XI CQE
177774
176076
004767 80%: CALL XLFI' N
000134
000664 BR 5%
052754 90%: BI S #EOFS$, @ (R4)
020000
000765 BR 70%
100%:
I DEC I NPRC
T BPL 5%
012767 MoV #-1, 1 NPRC
177777
000002
000207 110%: RETURN
oIt
; It becones greater than zero to indicate that
; in while soneone was executing the Xl IN routine.
177777 | NPRC. .WORD -1

Handlers Manual

is zero when soneone is executing in the XIIN routine.

i nput has cone

awhi | e

129
130
131
132
133
134
135

002024
002026
002030
002032
002034

002040
002040
002042

002046

002052

002056
002060
002062
002064
002066
002070
002072
002074

. DSABL

LSB

; The following routine is used by XIINto sinulate the effects of a

; FORK (saving of

010046 SAV30
010146
010246
010346
016646
000010

005046
112716
000000
013746
000054
062716
000360
004736
004736
012603
012602
012601
012600
005726
000207

TST
RETURN

RO, - (SP)
RL, - (SP)
R2, - (SP)
R3, - (SP)
10(SP) , - (SP)

#0
-(SP)
#0, (SP)

@054, - (SP)
#0360, (SP)

@ SP) +
@ SP) +
(SP) +, R3
(SP) +, R2
(SP)+, R1
(SP) +, RO
(SP) +

XLENQ - Place Qelement on internal queue

OCoO~NOOR~WNE

+

XLENQ

. SBTTL

XLENQ -

registers 0-3 and lowering of priority)

; Save sone registers

; Restack the return address

; Lower

our

priority

; Co-routine back to caller
;Restore the registers

;Discard old return address

; and return to caller’s caller

Pl ace Qel enent on internal

queue

Renpves the current Qelenment fromthe device queue and pl aces

it on an internal
RT works) that there wll

queue.

queue.

It is presuned (by virtue of the way

be only one Qel

R4 -> Qel ement to be queued

JSR
. BLKW
. BLKW

Ret ur n:

R5, Q

; CQE poi nter of
; LQE poi nter of

internal
internal

enment

queue
queue

in the device

Qel erent has been renoved fromthe device queue and pl aced on

the specified internnal

queue.

Internal queuing code; moves queue element to an internal queue:

24

25

002076

002102

002106
002110
002112
002114
002116

002120
002122
002124
002126

002132
002134

005067 XLENQ
175706
005067
175700
005715
001003
010425
010425
000205

005725
010446
011504
011664
177774
012625
000205

10%

CLR

CLR

TST
BNE
MoV
MoV
RTS

XLCQE
XLLQE

@5

10$

R4, (R5) +
R4, (R5) +
R5

(R5) +

R4, - (SP)

@5, R4
@P, QLI NK(R4)

(SP) +, (R5) +
R5

; Ensure there are no Qel enents

on the device queue

;s our
; Nope. . .
; Yes,

internal

queue enpty?

so nake it the first

; and | ast el enent

;Bunp to last el enment pointer
; Save address of new el enent
gqueue el ement

;Link it to the new el enent

; R4->Last

; and nmake the new el enent the | ast

DX, DL, and XL Device Handlers

A-85

XLFIN - Internal Queue Element Completion

1 .SBTTL XLFIN - Internal Queue El enent Conpletion

2

3 o+

4 ;

5 ; XLFIN

6 ; Used to inform RT-11 of a Qel enent which has conpl et ed.
7 ;

8 o Call:

9 ; R4 -> Conpl eted Qel enent

10 ;

11 ; Return:

12 ; Qel ement has been returned to RT-11

13 ;

14 ; Note:

15 ; o All registers except R4 are preserved

16 ; o Fake device queue is used to return the Qelenment to
17 | RT-11 to avoid race conditions with the real device
18 | queue.

19 ; o A CALL to nonitor conpletion is used because there may
20 ; be nore to do at this time, we don’t want to | ose control
21 ; to the nonitor yet.

22 |

23 V-

24

Internal queuing code; returns queue element, using fake device queue:

25 002136 010467 XLFIN MOV R4, XLFCQE ; Queue el enent we are returning will
000520
26 002142 010467 MoV R4, XLFLQE ; becone first and | ast el enent
000512
27 002146 005064 CLR QBLI NK(R4) ;Unlink it fromeverything el se
177774
28 002152 .ADDR #XLFCCE, R4 ;R4 -> Fake devi ce queue for passing
002152 010704 MoV PC, R4
002154 062704 ADD #XLFCQE- . , R4
000506
29 ; to DRFIN
30 002160 013705 MoV @#$SYPTR, R5 ; R5- >$RVON
000054

Modified form of .DRFIN, used to return queue element to monitor and gain control
when monitor is done. Required for hooks support if queue element completes as a
result of call from multiterminal service:

31 002164 004775 CALL @QCOVP(R5) ;Informmonitor of 1/0 conpletion
000270

32 002170 000207 RETURN

33

34 . I F EQ XL$PC

DISINI - Disable input interrupts
ENAINI - Enable input interrupts

1 .SBTTL DISINI - Disable input interrupts
2 .SBTTL ENAINI - Enable input interrupts
3
4 002172 DI SIN :
5 . F NE XL$MIY
6 002172 105767 TSTB OBMITY ; Term nal hooks in use?
176312
7 002176 001404 BEQ 10% ; Nope. . .
8 002200 112767 MOVB #-1, | SPND ;Disabl e input interrupt processing
177777
176304
9 002206 000403 BR 20%
10 . ENDC ; NE XL$MTY
11
12 002210 042777 10%: BIC #RC. | E, @I S ;Turn of f input interrupts
000100

A-86 RT-11 Device Handlers Manual

24

DISOUI - Disable

002216

002220

002220
002224
002226
002232

002234

002242

175714
000207 20%

ENAI NI

105767
176264
001403
105067
176260
000403

052777 10%:
000100
175670
000207 20%

RETURN

I F NE XL$MIY

TSTB

BEQ
CLRB

BR
. ENDC

BI S

RETURN

OBMITY

108
| SPND

20%

; NE XL$MTY

#RC. | E, @I S

output interrupts

ENAOUI - Enable output interrupts

O WNE

0 ~

10
11
12

25

002244

002244

002250

002252

002260

002262

002270

002272

002272

002276
002300

002304

002310

002312

002320

DI SQUI :

105767
176240
001404
112767
177777
176233
000403

042777 10%:
000100
175646
000207 20%

ENAQUI :

004767
176274
001405
105067
176207
004777
000334
000403

052777 10%:
000100
175616
000207 20%

; Term nal hooks in use?

; Nope. . .

; Enabl e i nput interrupt processing

;Turn input interrupts back on

.SBTTL DISOU - Disable output interrupts
.SBTTL ENAQUI - Enable output interrupts
.1 F NE XL$MTY
TSTB CBMITY ; Terminal hooks in use?
BEQ 10$; Nope. . .
MOVB #- 1, OSPND ; Di sabl e output interrupt processing
BR 20%
. ENDC ; NE XL$MTY
BI C #XC. | E, @XCS ; Disabl e output interrupts
RETURN
. I F NE XL$MTY
CALL PREMIY ; Prepare for hook
BEQ 10% ; Termi nal hooks not active...
CLRB OSPND ; Enabl e output interrupt processing
CALL @TOENX ; and then enable output interrupts
BR 20%
. ENDC ; NE XL$MIY
Bl S #XC. | E, @XCS ; Enabl e output interrupts
RETURN

RESBRK - Turn off BREAK
SETBRK - Turn on BREAK

DX, DL, and XL Device Handlers

A-87

002322

OUhA WNE

002322

002326
002330
002332

© 0o~

002336

002340

002346

002350

002350

002354
002356

002362

002366

002370

26 002376

.SBTTL RESBRK -
. SBTTL SETBRK -

GETSTT - Get line status
RESSTT - Reset line state bits
SETSTT - Set line state bits

OCoO~NOUTA WNE

002400
002400

002404
002406

002412

002414

002420

A-88 RT-11 Device

Turn of f BREAK
Turn on BREAK

RESBRK
.I'F NE XL$MTY
004767 CALL PREMIY ; Prepare for hook
176244
001404 BEQ 10% ; Termi nal hooks not active...
005000 CLR RO ; Deassert BREAK
004777 CALL @ITYBRX HE
000310
000403 BR 20%
. ENDC ; NE XL$Mry
042777 10%: BI C #XC. BRK, @XCs ; Deassert BREAK
000001
175570
000207 20%: RETURN
SETBRK
.IF NE XL$MTY
004767 CALL PREMIY ; Prepare for hook
176216
001405 BEQ 10$; Termi nal hooks not active. ..
012700 MoV #XC. BRK, RO ; Assert BREAK
000001
004777 CALL @T'YBRX
000260
000403 BR 20%
. ENDC ; NE XL$MTY
052777 10%: Bl S #XC. BRK, @XCs ; Assert BREAK
000001
175540
000207 20%: RETURN
.SBTTL GETSTT - Get line status
.SBTTL RESSTT - Reset line state bits
.SBTTL SETSTT - Set line state bits

; GETSTT

; Returns the curren

L ocall:

; none

Ret ur n:

; RO = Line status

; Note:

; R3 is altered

GETSTT:

. I F NE XL$MTY
004767 CALL PREMIY
176166
001403 BEQ 10$
004777 CALL @IrYSTX
000240
000402 BR 20%
. ENDC ; NE XL$Mry

017700 10%: MoV @ S, RO
175512
000207 20%: RETURN

D+

,

Handlers Manual

t line status

; Prepare for

; Term nal

; Get current

; RO = Current

hook

hooks not active...
l'ine status

line status

reads the status and then

; Save bits to deassert
; Get current status

;deassert the desired bits

; Prepare for hook

hooks not active...
new | ine state

; Term nal
; Yes, set

;Set new |ine status

reads the status and

this routine sinply

; Prepare for hook

hooks not active. ..
desired bits

; Termi nal
; Yes, set

; Set new |ine status

34 ; RESSTT
35 ; Deasserts line state bits
36 ;
37 ; Call
38 ; RO = Bits to deassert
39 ;
40 ; Return:
41 ; RO = Updated |ine status
42
43 ; Note
44 ; o RBis altered
45 ;
46 ; o Unlike SETSTT, which sets the bits as specified,
47 ; this routine first
48 | deasserts the undesired bits.
49 ;
50 P -
51
52 002422 010046 RESSTT: MOV RO, - (SP)
53 002424 004767 CALL CETSTT
177750
54 002430 042600 BI C (SP) +, RO
55
56 .I'F NE XL$MTY
57 002432 004767 CALL PREMIY
176134
58 002436 001403 BEQ 10$
59 002440 004777 CALL @ITYCTX
000204
60 002444 000402 BR 20%
61 . ENDC ; NE XL$MTY
62
63 002446 010077 10$: MoV RO, @I S
175460
64 002452 000207 20%$: RETURN
65
66 o+
67 ;
68 ; SETSTT
69 ; Asserts line state bits
70 ;
71 ; Call
72 ; RO = Bits to assert
73 ;
74 i Return:
75 ; RO = Updated |line status
76 ;
77 ; Note
78 ; o RBis altered
79 ;
80 ; o Unlike RESSTT, which first
81 ; deasserts the undesired bits,
82 | asserts the desired bits.
83 ;
84 ;-
85
86 002454 SETSTT:
87 . I F NE XL$MTY
88 002454 004767 CALL PREMIY
176112
89 002460 001403 BEQ 10%
90 002462 004777 CALL @ITYCTX
000162
91 002466 000402 BR 20%
92 . ENDC ; NE XL$MTY
93
94 002470 050077 10$: BI S RO, @XI S
175436
95 002474 000207 20%: RETURN
96
97 . ENDC ; EQ XL$PC

GETC - Input a character
PUTC - Output a character

DX, DL, and XL Device Handlers

A-89

I nput a character

Qut put a character

fromthe interface.

during multiterm nal hook operation,

the character is already in R5 due to the nultitermnnal

; Term nal hooks in use?

; Yep, bypass nornmal DL input

;RS = Character

;Get a character from i nput

to the interface.

during nultiterm nal hook operation,

is already in R5 due to the nultiterm nal
interrupt service code.

; Terminal hooks in use?

; Yep, bypass nornmal DL out put

; Qut put the character

; Qut put the character

1 . SBTTL CETC -
2 . SBTTL PUTC -
3
4 D+
5 ;
6 ; GETC
7 ; Cets a character
8 ;
9 ; Return:
10 ; R5 = Character
11 ;
12 ; Note:
13 ; In the case of call
14 ;
15 input interrupt service code.
16 ;
17 ;-
18
19 002476 GETC:
20 . F NE XL$MIY
21 002476 105767 TSTB CBMITY
176006
22 002502 001002 BNE 10$
23 . ENDC ; NE XL$MIY
24
25 .1 F EQ XL$PC
26 002504 117705 MOVB @I B, R5
175424
27 .| FF ; EQ XL$PC
28 MOVB @BUF, R5
29 . ENDC ; EQ XL$PC
30
31 002510 000207 10$: RETURN
32
33 ;+
34 ;
35 ;. PUTC
36 ; Puts a character
37
38 ; Call
39 ; R5 = Character
40 ;
41 ; Note
42 In the case of call
43 | the character
44 ; i nput
45 ;
46 ;-
47
48 002512 PUTC:
49 .1 F NE XL$MIY
50 002512 105767 TSTB CBMITY
175772
51 002516 001002 BNE 10%
52 . ENDC ; NE XL$MTY
53
54 . I F EQ XL$PC
55 002520 110577 MOVB R5, @XOB
175414
56 .1 FF ; EQ XL$PC
57 MOVB R5, @BUF
58 . ENDC ; EQ XL$PC
59
60 002524 000207 10$%: RETURN
INPUT BUFFER AREA
. SBTTL

1
2

Internal receive buffer:

A-90 RT-11 Device Handlers Manual

I NPUT BUFFER AREA

3 Reserve space for the input buffer and data to manage the input buffer
4

5 002526 XI BUF: . BLKB BUFSI Z ; I nput buf fer

6 002626 000000 XIBINN .WORD O ;" Next Character In’ offset

7 002630 000000 XIBOQUT: .WORD O ;" Next Character CQut’ offset

8 002632 000100 XIBFRE: .WORD BUFSIZ ; Number of free bytes in buffer
9

10 ; Define areas for fork blocks used by the interrupt servicers

11

12 002634 000000 DQFBLK: .WORD 0,0,0,0
002636 000000
002640 000000
002642 000000
13
14 . F NE XL$MIY
15

Handler hooks code; pointers loaded by LOAD code, used to reach hooks routines in
multiterminal monitor:

16 ; Multiterm nal handl er hooks pointers

17

18 002644 MICENX: . BLKW ;1 -> Qutput enable routine
19 002646 MIYBRX: . BLKW ; -> Break control routine
20 002650 MIYCTX: . BLKW ; ¢ -> Line control routine
21 002652 MTYSTX: . BLKW ; -> Line status routine
22 002654 TCBADX: . BLKW ;0 ->TCB we're attached to
23 . ENDC ; NE XL$MTY

24

25 ; Fake queue header for returning conpleted Qelenents

26

Internal queuing—fake device queue. Zero word required to simulate non-held
handler:

27 002656 000000 .WORD 0O

28 002660 XLFLQE: . BLKW

29 002662 XLFCQE: . BLKW

30

31 002664 .DREND XL
002664 000000 $RLPTR :.WORD O
002666 000000 $MPPTR :.WORD O
002670 000000 $GTBYT::.WORD O
002672 000000 S$PTBYT::.WORD O
002674 000000 $PTWRD::.WORD 0O
002676 000000 S$TIMT::.WORD O
002700 000000 S$INPTR:.WORD O
002702 000000 $FKPTR :.WORD O

32

33 .I'F EQ XL$PC

LOAD - Handler FETCH/LOAD code

1 . SBTTL LOAD - Handl er FETCH LOAD code
2
3 +
4 ;
5 ; LOAD
6 | This routine is entered on FETCH or LOAD of the XL handl er
7 ; and is used 1) to verify use of the handler in the specific
8 ; configuration and, if needed, 2) to establish the required
9 ; connections between the handler and the interrupt service of
10 ; a nonitor with support for nultiterm nal handl er hooks.
11 ;
12 -
13
14 .ENABL LSB
15
16 002704 FETCH: :
17 002704 LQAD: :
18 002704 010567 MoV R5, ENTRY$; Save entry point
000314
19 002710 010267 MOV R2, SLOTS$; and table size
000312

DX, DL, and XL Device Handlers A-91

20 002714 011505 MoV @5, RS ;R5 -> Base of handler (in nmenory)

21 002716 013700 MoV @$SYPTR, RO ; RO -> Base of RMON
000054

22

Hooks code. Establishes linkages between handler and TCB:

23 . I F NE XL$MTY

24 002722 105765 TSTB <CBMITY- XLLQE>(R5) ; Termi nal hooks to be used?
000502

25 002726 001463 BEQ 20% ; Then use nornmal DL

26 002730 016001 MoV $THKPT(RO) , R1 ;RL -> Multiterm nal handl er hooks
000000G

27 ; data structure in RVON

28 002734 001531 BEQ 603% ; Moni tor doesn’t have the support. ..

29 002736 105721 TSTB (R1) + ; Bypass structure size byte

30 002740 112102 MOVB (R1)+, R2 ; R2 = Nunber of LUNs on system

31 002742 012103 MoV (R1)+, R3 ;R3 -> TCB I|i st

32 002744 012165 MoV (R1) +, <MTOENX- XLLQE>(R5) ; Set pointer to output enable routine
002636

33 002750 012165 MoV (R1) +, <MTYBRX- XLLQE>(R5) ; Set pointer to Break control routine
002640

34 002754 012165 MoV (R1) +, <MT'YCTX- XLLQE>(R5) ; Set pointer to Control routine
002642

35 002760 012165 MoV (R1) +, <MTYSTX- XLLQE>(R5) ; Set pointer to Status routine
002644

36 002764 116500 MOVB <O$LI NE- XLLQE>(R5) , RO ;RO = Line to attach to
000503

37 002770 100513 BM 60%$; Must be a positive nunber

38 002772 120002 CVPB RO, R2 ;s line in this configuration?

39 002774 002111 BGE 60% ; Nope, invalid Iine nunber

40 002776 006300 ASL RO ;Shift for word offset into TCB |i st

41 003000 060003 ADD RO, R3 ;R3 -> TCB list entry

42 003002 011303 MoV @3, R3 ;R3 -> TCB for LUN

43 003004 005763 TST T. CSR(R3) ;1s the line present in hardware?
000016

44 003010 001503 BEQ 60%$; Nope. . .

45 003012 005763 TST T. STAT(R3) ;s the line a consol e?
000014

46

47 003016 . Assume CONSL$ EQ 100000

48 003016 100500 BM 60%$;Yes. ..

49 003020 010500 MoV R5, RO ; RO -> Handl er hook routine

50 003022 062700 ADD #<XLHOOK- XLLQE>, RO ; .
000510

51 003026 005763 TST T. OMNR(R3) ;1s the line already attached?
000012

52 003032 001403 BEQ 10% ; Nope. . .

53 003034 020063 cwP RO, T. O\NR(R3) ;Yes, to this handler?
000012

54 003040 001067 BNE 60%$; Nope. . .

55 003042 016701 10%: MOV ENTRYS$, R1 ; RL -> $ENTRY entry
000156

56 003046 166701 SUB SLOTS$, R1 ; RL -> $PNAME ENTRY
000154

57 003052 011160 MOV @Rr1, - 2(RO) ;Inform handl er of its physical nane,
177776

58 003056 010365 MoV R3, <TCBADX- XLLQE>(R5) ; link the handler to the TCB
002646

HANMCS$ disables RT-11 processing of modem control; handler will process modem:

59 003062 052763 Bl S #<HANMT$! HANMC$>, T. STAT(R3) ; declare |ine owned by handl er
000000C
000014

60 ; and that handler will process nbdem

61 003070 010063 MoV RO, T. OANR(R3) ; finally link the TCB to the handl er
000012

62 003074 000450 BR 50%

63 . ENDC ; NE XL$MIY

64

The following code protects against vector corruption. Won’t allow use of handler in
NOMTTY mode if CSR or vector conflicts with a line in multiterminal configuration:

A-92 RT-11 Device Handlers Manual

65

66
67

68

69

70

72

73
74

75
76

7
78

79
80

003076

003104
003106
003106
003110

003114
003114
003116

003122
003122

003126
003132
003136
003140
003142
003146
003152
003154
003160
003164
003166

003174
003176

003204
003206

003212
003214
003216

003216
003220
003222

003224
003226

003230
003236

032760
020000
000372
001444

010700
062700
000120

010701
062701
000120

012710
017410
010160
000002
005060
000004
104375
103427
013700
000054
016701
000064
060001
016702
000062

005761
000016
001410
026561
000124
000016
001411
026561
000134
000020
001405
066701
000032
005302
002361

005727
000261
000207

20%:

30%:

40%

50%
60%$

ENTRY$
SLOT$

MTAREA:
MI'STAT:

BIT #MITY$, $SYSGE(RO) ;Is this a nultiterm nal nonitor?
BEQ 50% ; Nope, then there can’t be a conflict
. ADDR #MTAREA, RO ; RO -> . MTSTAT EMI area

MoV PC, RO

ADD #MTAREA- . , RO

.ADDR #MISTAT, R1
MoV PC, R1

;RL -> Status bl ock

ADD #MTSTAT-. , RL
.MISTA RO, R1 ;Get info about nmultiterm nal system
MoV #31. *~0400+8. , @RO
MoV R1, 2. (RO)
CLR 4. (RO)
EMT ~0o375
BCS 60% ; Errors?
MoV @$SYPTR, RO ;RO -> $RVON
MoV MI'STAT, R1 ;RL -> First TCB in system
ADD RO, RL Lo
MoV MISTAT+MST. LU, R2 ; R2 = Highest LUN on the system
; (Nunber _of _LUNs - 1)
TST T. CSR(R1) ;1s this a configured |ine?
BEQ 40% ; Nope. .
CcwP <XI S- XLLQE>(R5), T.CSR(R1) ;WII| use of the CSR conflict?
BEQ 60% ;Yes, reject the |oad
CcwP <XL$VTB- XLLQE>(R5), T. VEC(R1) ; WI I use of the VECTOR conflict?
BEQ 60% ; Yes, reject the |oad
ADD MISTAT+MST. ST, R1L ;On to next TCB
DEC R2 ;Mre TCB's to check?
BCE 30% ; Yep. ..
.BR 50% ; Nope, use of interface won't conflict
TST (PC)+ ; Success return
SEC ;Error return
RETURN
. BLKW ; ¢ -> $ENTRY table entry
. BLKW ; © Size of a nonitor handler table
.BLKW 3 ;¢ EMT area for .MISTAT
.BLKW 8. ;. Status block from . MSTAT
. DSABL LSB

. ENDC ; EQ XL$PC

UNLOAD - UNLOAD/.RELEASE CODE

OCoO~NOUWNE

+

.SBTTL UNLOAD - UNLOAD/ . RELEASE CCDE

UNLOAD

On entry due to unload command, verifies interrupts have been
di sabl ed unl ess the handler is still in use, indicated by
non-enpty internal queues.

On entry due to . RELEASE directive,disable interrupts

.ENABL LSB

DX, DL, and XL Device Handlers

A-93

Prevents unload if internal queues are not empty:

15
16
17

003256
003256
003260

18
19

003264
003266
20 003272
003276
003300

003300
003302

003306
003310

003312
003312
003314

; R5 -> Handl er entry point (XLLQE)
;1's handl er in use?

; Nope, it can be unl oaded.. .
; Check internal queues

; They' re enpty. ..
;RO -> Error nmessage string

; (KMON reports error)
;Indicate error
; and return to KMON

;R5 -> Handl er entry point (XLLQE)

UNLOAD: :
011505 MoV @r5, RS
005765 TST <STATFG XLLQE>(R5)
000014
001013 BNE 10$
016546 MoV <Xl CQE- XLLQE>(R5) , - (SP)
000066
056526 Bl S <XOCQE- XLLQE>(R5), (SP) + ;
000106
001405 BEQ RELEAS

.ADDR #NOUNLO, RO

010700 MoV PC, RO
062700 ADD #NOUNLO- . , RO
000106
000261 SEC
000207 RETURN

RELEAS: :
011505 MoV @5, RS

10$:

.1 F EQ XL$PC
.IF NE XL$MIY

Handler hooks code; disconnects TCB and handler:

32 003314

33
34

003320
003322

35
36

003326
003330
37 003334

38
39

003340
003342
40 003346

41 003352

003360
003362
003362
003366

003372

003400

003404
003406

003410
003410

59 003414

A-94 RT-11 Device

<CBMITY- XLLQE>(R5)

20$
<TCBADX- XLLQE>(R5) , RL

30%
<Dl SI NI - XLLQE>(R5)

<Dl SOUI - XLLQE>(R5)

RO
<SETSTT- XLLQE>(R5)

T. OMR(RL)

; Term nal hooks in use?

; Nope. . .
;R1 -> TCB we’re hooked to

;We're not. ..
; Di sabl e i nput
and output interrupts

; Deassert all nodemcontrol bits

; Di sconnect TCB from handl er

#<HANMTS$! HANMCS$>, T. STAT(R1) ;

30%

; NE XL$MTY

<XI S- XLLQE>(R5) , RL
#RC. | E, @RL

#XC. | E, 4(R1)

#RC. DTR, @R1

.1 FF ; EQ XL$PC

#RPT. R1, @XL$CSA
@XL$CSA
#<MD. DTR>, @XL$M0

. ENDC ; EQ XL$PC

105765 TSTB
000502
001420 BEQ
016501 MoV
002646
001426 BEQ
004765 CALL
002164
004765 CALL
002236
005000 CLR
004765 CALL
002446
005061 CLR
000012
042761 BI C
000000C
000014
000411 BR
20%:
. ENDC
016501 MoV
000124
042711 BI C
000100
042761 BI C
000100
000004
042711 BI C
000002
MoV
CLR
BI C
000241 30%: CLC
000207 RETURN
NOUNLO: . NLCSI
077 . ASCl |
106 . ASCl Zz

Handlers Manual

TYPE=I , PART=PREFI X
"X

"F-Handl er may not

; Rl->Devi ce regi ster base

; Turn of f i nput and

;Qutput interrupts

;Now turn off DTR

;Select csr A wite register 1
; Turn of f input and output interrupts
;Now turn off DTR

be unl oaded while in use"

61 .DSABL LSB
62
63 000001 . END

Symbol table

ABTI G 001000 DVM NS 000001 JNUM 000506R 002
BATCH$ 000010 Dv2.Vv2 040000 JOBWK 000370
BRKDRV= 000202 Dz11$ 010000 KT11$ 010000
BRKFLG 001132R 002 EI S$ 000400 KWL1P$ 040000
BUFSI Z= 000100 ENAINI 002220R 002 KXCPU$ 004000
BUS$ 000100 ENAQUI 002272R 002 LDREL$ 000020
BUS$C 020000 ENTRY$ 003224R 002 LIGHT$ 000010
BUS$M 020100 ECF$ 020000 LKCS$ 020000
BUS$Q 000100 ERLGS 000001 LOAD 002704RG 002
BUS$U 000000 ERL$G = 000000 LSl 11$ 004000
BUS$X 020100 FBMON$ 000001 MMGT$ 000002
CACHE$ 000001 FETCH 002704RG 002 MMET = 000001
CHVASK 000160R 002 FILL$ 000001 MPTYS$ 001000
Cl s$ 000200 FILST$ 100000 MPTY$ 000002
CLK50$ 000040 FI X$ED= 000001 MST. CT 000002
CLOCK$ 100000 FJOB$ 000200 MST. LU 000004
CLRDRV= 000201 FPUL1$ 000400 MST. ST 000006
CONSL$ 100000 GETC 002476R 002 MST.SZ 000020
CRFLG 001270R 002 GETSTT 002400R 002 MST. 1T 000000
CSRSAV 000250 GNXTCH 001232R 002 MIAREA 003230R 002
CTRLC$ 040000 GSCCA$ 010000 MICENX 002644R 002
CTRLU$ 000002 GTLNK$ 000400 MISTAT 003236R 002
CTZFLG 001614R 002 HANMCH= ****x* GX MITY$ 020000
C.CR = 000015 HANMI$= ****** GX MI'YBRX 002646R 002
C. CTLQ= 000021 HDERR$ 000001 MIYCTX 002650R 002
C. CTLS= 000023 HINT 001366R 002 MIYSTX 002652R 002
C. CTLZ= 000032 HNDLR$ 004000 NOUNLO 003410R 002
C.LF = 000012 HNGUP$ 004000 OFFDRV= 000205
DBGSY$ 002000 HO NT 001130R 002 OSPND 000513R 002
DH11$ 020000 HS2. Bl 000001 OBLI NE 000511R 002
DI SCSR 000174 HS2. KI 000002 CSMITY 000510R 002
DI SINI 002172R 002 HS2. KL 000004 O CSR 000442
DI SQUI 002244R 002 HS2. KU 000010 O ERR 000616
DOC$UN= 000000 HS2. MO 000020 O LINE 000534
DQFBLK 002634R 002 HWDSP$ 000004 O MITY 000546
DTACH$ 000020 HWFPU$ 000100 O NOR 000614
DTRDRV= 000206 H1. ABT 001002 O VEC 000514
DVC. CT 000006 HL.BR 001014 PAGE$ 000200
DVC. DE 000010 Hl. CQE 001010 PDP60$ 100000
DVC. DK 000004 Hl. FG 001016 PDP70$ 040000
DVC. DL 000012 HL. FLG 001010 PREMIY 000572R 002
DVC. DP 000011 HL. HLD 001004 PRCS$ 020000
DVC. LP 000007 HL. LDT 001024 PS 177776
DVC. Ml 000005 HlL.LQE 001006 PUTC 002512R 002
DVC. NI 000013 H1. NDF 001026 P1$EXT 000432
DVC. NL 000001 HL. NOP 001012 QCHG 001176R 002
DVC. PS 000014 HL. SCK 001020 QUEUE$ 002000
DVC. SB 000020 Hl. SDF 001022 QBBLKN 000000
DVC. SI 000016 H1. VEC 001000 QBBUFF 000004
DVC. SO 000017 INCV$ 000400 QGCOWP 000010
DVC. TP 000003 I NEXP$ 000100 CSW 177776
DVC. TT 000002 INPRC 002022R 002 QBFUNC 000002
DVC. UK 000000 I NSCSR 000176 QBIJNUM 000003
DVC. VT 000015 I NSDAT 000200 QBLINK 177774
DVM DM 000002 I NSSYS 000202 GBMEM 000014
DVM DX 000001 ISPND 000512R 002 QBPAR 000012
DVM NF 000200 I $SMITY 000244 QSUNIT 000003
QBWCNT 000006 THK. CE 000004 XIBUF 002526R 002
Q BLKN 000004 THK. ST 000012 XICQE 000074R 002
Q BUFF 000010 THK. Sz 000014 XII'N 001542R 002
Q COW 000014 THK. TC 000002 XII'NT 001360RG 002
Q CSw 000002 TH. GOC 000001 G XILQE 000076R 002
Q ELGH 000024 TH.PIC 000002 G X's 000132R 002
Q FUNC 000006 TI MER$ 002000 XI TSW8 000040
Q JNUM 000007 TIMT$ 000004 XLCQE 000010RG 002
Q LINK 000000 TI M5l T= 000001 XLDONE 000622R 002
Q MEM 000020 TSXP$ 100000 XLDSI Zz 000000
Q PAR 000016 TTBF$lI 000206 XLEND = 002704RG 002
Q UNIT 000007 TTBF$O 000050 XLENQ 002076R 002

DX, DL, and XL Device Handlers A-95

A-96

3BRAAAC
gazagaeé
WII II;I?LIII’II

$I NDST
$I NPTR
$JOBNU
$JOBS
$ISW
$JSX
$KMONI
SLOWA
$MAXBL
SMVEMPT
$MEMSZ
$MFPS
$MONAM
$MPPTR
$MTPS
$NULJB
$PNPTR
$PROGD

000012
010000
020000
000002
000100
040000
000004
000070R
001170R
003312RG
002322R
002422R
040000
000060
000010

= 000000

002024R
002350R
002454R
002000
000020
000002
003226R
001140R
010000
000162R
002000
000004
000006
000203
040000
000022R
000020
000204
000010
000004

= 000020

000001
000002
000004
002654R
000006
000010
000000
000001
000416
000316
002702RG
000402
000436
002670RG
000354
000412
000462
000460
000377
000446
000007
000006
000426
000417
002700RG
000322
000455
000044
000004
000450
000326
000314
000430
000420
000362
000406
002666RG
000360
000444
000404
000452

002
002
002
002
002

002
002
002

002
002

002

002

002

002

002

002

002

CNFG
CNF2
CSR

FCNT
I CTR
I GET
I PUT

I TOP

AAdAAdAAAAAAAAAAAAAAAAAAAAAAAAA

000000
000002
000016
000005
000044
000046
000042
000040
000050
000024
000011
000026
000010
000262
000264
000260
000266
000012
000022
000027
000025
000014
000030
000004
000032
000031
000036
000020
000006
000007
003256RG
001000
000400
000246
105372
001000
020000
000104R
000040
000001
000100
000134R
002632R
002626R
002630R
000456
002664RG
000000
000472
000464
000302
000502
000504
000414
000272
000366
000040
000364
000324
000054
000244
000372
000277
000276
000274
000424

= *kkkxkxkx GX

002676RG
000434
000442
000056
000306
000304
000057
000312
000310
000470
000046

RT-11 Device Handlers Manual

002

002

002
002
002
002

002

$ELTIM

002 ...

002662R
002136R
002660R
000516R
001122RG
000006RG
000514R
000000RG
007057
000006RG
000057
176500 G
000000
002664RG
000001
000001
113740
000000
000001
000000
000004
000000
000001
000300 G
000142RG
000140R
000114R
000116R
000136R
000256
000260
000300
000370
000466
000320
000004
000262
000474
000264
000440
000422
000400
000052
000356
000376
000053
000042
000050
000000
000002
000454
000500
000476
000022
107123
000044
000020
000003
000100
000200
000200
000000
000000
000176
000000
000000
000000
000000
000000
000000
000000
000000
000000
001714
000170
000000
000116
001714

OO0

002
002
002
002
002
002
002
002

002

002

002
002
002
002
002

$PROGF
$PTBYT
$PTWRD
$QoOVP

ABS.

XLDVR

000453 $USRAR
002672RG 002 $USRLC
002674RG 002 $USRLO
000270 $USRPC

000622 000 (RWI, GBL, ABS, OVR)
000000 001 (RWI, LCL, REL, CON)
003467 002 (RWI, LCL, REL, CON)

Errors detected: O

000374
000266
000352
000040

.. V9 = 000017
.. V97= 000014
.. Vo98= 000000
.V99= 177777

DX, DL, and XL Device Handlers

A-97

