
EK-DCT11-UG-003

T-11

USER'S GUIDE

1 st Edition, October 1980
2nd Edition, January 1982
3rd Edition, June 1982

Copyright © 1982 by Digital Equipment Corporation

All Rights Reserved

The material in this manual is for informational purposes and is
subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any
errors which may appear in this manual.

Printed in U.S.A.

The manuscript for this book was created on a DIGITAL Word
Processing System and, via a translation program, was
automatically typeset on DIGITAL's DECset-8000 Typesetting
System. Book production was done by Educatioria:I Services
Development and Publishing in Marlboro, MA.

The following are trademarks of Digital ~quipment Corporation:

DEC EduSystem RSTS
DECnet lAS RSX
DECUS MASSBUS TOPS-I 0
DECsystem-IO MINt-II TO~20
DECSYSTEM-20 OMNIBUS U~IBUS
DECwriter OS/8 VAX
DIBOL PDP VMS

PDT VT

PREFACE

CHAPTER 1

1.1
1.2
1.2.1
1.2.2
1.2.3
1.3
1.4
1.5
1.5.1
1.5.2
1.5.3
1.5.4
1.5.4.1
1.5.4.2
1.5.5
1.5.5.1
1.5.5.2
1.6

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.4
2.4.1
2.4.2
2.5
2.S.1
2.5.1.1
2.5.1.2
2.5.1.3
2.S.2

CONTENTS

Page

ARCHITECTURE

INTRODUCTION... I-I
REGISTERS .. ,... I-I

General-Purpose Registers ... I-I
Status Register ... 1-3
Mode Register 1-4

ARITHMETIC LOGIC UNIT (ALU) ... 1-4
DCTII-A HARDWARE STACK ... 1-4
INTERRUPTS... 1-5

Interrupt Mechanism.. I-S
Interrupt Posting... 1-5
Interrupt Request (IRQ) .. I-S
Vectors.. 1-6

Internal Vector Address ... 1-7
External Vector Address.. 1-7

Priority .. 1-7
Maskable Interrupts ... 1-7
Nonmaskable Interrupts... 1-8

DIRECT MEMORY ACCESS (DMA) MECHANISM 1-8

BUS TRANSACTIONS

INTRODUCTION... 2-1
BUS TRANSACTION .. 2-1

Transaction ... 2-2
Microcycle .. 2-2
Clock Phase .. 2-2

16-BIT STATIC READ TRANSACTION ... 2-2
Output of Address .. 2-2
Input of Data .. 2-2
Instruction Fetch , ,.. 2-4

16-BIT STATIC WRITE TRANSACTION ... 2-4
Output of Address .. 2-4
Output of Data.. 2-4

16-BIT DYNAMIC READ TRANSACTION ... 2-6
O\,ltput of Address .. 2-6

Dynamic Address 2-6
Static Address .. 2-6
Address Control.. 2-6

Input of Data .. 2-6

III

2.5.3
2.5.3.1
2.5.3.2
2.6
2.6.1
2.6.1.1
2.6,1.2
2.6.1.3
2.6.2
2.7
2.7.1
2.7.2
2.7.3
2.8
2.8.1
2.8.2
2.9
2.9.1
2.9.1.1
2.9.1.2
2.9.1.3
2.9.2
2.9.3
2.9.3.1
2.9.3.2
2.10
2.10.1
2.10.1.1
2.10.1.2
2.10.1.3
2.10.2
2.11
2.11.1
2.11.2
2.11.3
2.12
2.12.1
2.12.2
2.13
2.14
2.14.1
2.14.2
2.14.3
2.14.4
2.15

CONTENTS (Cont)

Page

Instruction Fetch ... 2-9
4K/16K Mode.. 2-9
64K Mode... 2-9

16-BIT DYNAMIC WRITE TRANSACTION ... 2-10
Output 'of Address .. 2-10

Dynamic Address... 2-10
Static Address .. 2-10
Address Control.............. 2-12

Output of Data.. 2-12
8-BIT STATIC READ TRANSACTION ... 2-13

Output of Address ... 2-13
Input of Data ... , .. 2-13
Instruction Fetch .. 2-14

8-BIT STATIC WRITE TRANSACTION ... 2-14
Output of Address .. 2-16
Output of Data...... 2-16

8-BIT DYNAMIC READ TRANSACTION ... 2-16
Output of Address .. 2-18

Dynamic Address 2-18
Static Address 2-18
Address Control .. 2-20

Input of Data .. 2-20
Instruction Fetch .. 2-21

4K/16K Mode .. 2-21
64K Mode ... 2-21

8-BIT DYNAMIC WRITE TRANSACTION ... 2-21
Output of Address .. 2-21

Dynamic Address ... 2-21
Static Address 2-21
Address Control .. 2-24

Output of Data.. 2-24
REFRESH TRANSACTION ... 2-25

Output of Refresh Address ... 2-25
Address Control .. 2-25
Output of SEL<O> and SEL< 1 > ~ ... 2-27

lACK (INTERRUPT ACKNOWLEDGE) TRANSACTION 2-27
Output of Interrupt Acknowledge Data ... 2-27
Input of Vector Address ... 2-28

BUSNOP (NO OPERATION) TRANSACTION ... 2-29
DMA (DIRECT MEMORY ACCESS) TRANSACTION 2-29

Three-State of DAL< 15:0> ... 2-29
Output of - RAS, - CAS, and Pl ... 2-31
Output of Direct Memory Grant (DMG) ... 2-31
READY Input .. 2-31

ASPI (ASSERT PRIORITY IN) TRANSACTION .. 2-31

iv

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.3

3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.4.1
3.4.4.2
3.4.5
3.4.6
3.5
3.5.1
3.5.2
3.5.2.1
3.5.2.2
3.5.2.3
3.5.2.4
3.5.2.5
3.5.2.6
3.5.3
3.5.4
3.6
3.6.1
3.6.2

CHAPTER 4

4.1
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.2
4.2.2.1
4.2.2.2

CONTENTS (Coot)

Page

PIN DESCRIPTIONS

INTRODUCTION... 3-1
DATA ADDRESS LINES (DAL<15:0>).. 3-4

16-Bit Mode - DAL<15:0> ... 3-5
8-Bit Mode - DAL< 15:8> ... 3-6
8-Bit Mode - DAL<7:0> ... 3-6

ADDRESS INTERRUPT (AI <7:0>)... 3-7
AI<7:0> at -RAS and -CAS Time (Static Mode) 3-7
AI<7:0> at -RAS and -CAS Time (Dynamic Mode) 3-7
AI <7:0> at Priority In (PI) Time
(Dynamic and Static Modes).. 3-8

CONTROL LINES.. 3-9
-RAS (Row Address Strobe) .. 3-10
-CAS (Column Address Strobe) .. 3-10
PI (Priority In) .. 3-11
Rj - WHB and Rj - WLB ... 3-11

Rj - WHB and Rj - WLB (l6-Bit Mode) ... 3-11
Rj - WHB (-RD) and Rj - WLB (- WT) (8-Bit Mode) 3-11

SEL< 1 > and SEL<O> .. 3-11
READY .. 3-11

MISCELLANEOUS SIGNALS ... 3-13
- BCLR (Bus Clear) 3-13
PUP (Power-Up) ... 3-13

Power-Up (PUP) Input ... 3-14
Bus Clear (-BCLR) .. 3-14
Mode Register Load. 3-14
Refresh or Busnop Transaction .. 3-14
Loading the SP, PC, and PSW ... 3-14
ASPI Transaction.... 3-15

COUT (Clock Output) ... 3-15
XTLl and XTLO (Crystal Inputs) .. 3-15

POWER PINS .. 3-16
GND and BGND .. 3-16
Vee ... 3-16

MODE SELECTION

INTRODUCTION... 4-1
MODES RELATED TO FUNCTION ... 4-1

16-Bit or 8-Bit Mode (MR < 11 >) 4-1
16-Bit Mode.. 4-1
8-Bit Mode.. 4-2

Dynamic or Static Mode (MR<9>)... 4-3
Dynamic Mode ... 4-3
Static Mode .. 4-3

v

4.2.3
4.2.4
4.2.5
4.3
4.3.1
4.3.2
4.3.3
4.4
4.5
4.5.1
4.5.1.1
4.5.1.2
4.5.1.3
4.5.2
4.5.2.1
4.5.2.2
4.5.2.3
4.5.3
4.5.3.1
4.5.3.2
4.5.4
4.5.4.1
4.5.4.2

CHAPTERS

5.1
5.2
5.3
5.4
5.4.1
5.4.2
5.5
5.6
5.6.1
5.6.2
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.8
5.8.1
5.8.1.1

5.8.1.2

CONTENTS (Cont)

Page

64K or 4K/ 16K Mode (MR < 10>) .. 4-3
Tester or User Mode (MR < 12» ... 4-3
Start and Restart Address (MR<15:13» .. 4-4

MODES RELATED TO TIMING ... 4-4
Constant or Processor Clock (MR <0>) ... 4-4
Long or Standard Microcycle (MR < 1 >) ... 4-4
Normal or Delayed Read/Write (MR<8>)... 4-4

MODE REGISTER BIT SETTING ... 4-4
MODE REGISTER SELECTION GUIDELINES ... 4-5

Minimum Cost .. 4-5
8-Bit Mode.. 4-5
Dynamic Mode ... 4-5
Long Microcycle Mode .. 4-5

Maximum Speed... 4-5
16-Bit Mode .. ,... 4-5
Static Mode .. 4-5
Standard Microcycle 4-5

Minimum Size (Chip Count) .. 4-5
8-Bit Mode.. 4-6
Static Mode .. 4-6

Minimum Development Time... 4-6
16-Bit Mode.. 4-6
Static Mode .. 4-6

INTERF ACING

INTRODUCTION... 5-1
POWER-UP.. 5-1
LOADING THE MODE REGISTER.. 5-1
CLOCK... 5-2

Crystal-Based Clock ... 5-3
TTL Oscillator-Based Clock... 5-4

ADDRESS LATCH AND DECODE :... 5-4
MEMORY SUBSYSTEMS .. 5-5

16-Bit Mode Memory System... 5-5
8-Bit Mode Memory System... 5-8

INTERRUPTS ... 5-11
Posting Interrupts ... 5-11
Decoding lACK Information .. 5-11
External Vectors........................... .. 5-11
Using a Priority Encoder Chip .. 5-11
Direct CP Encoding.. 5-16

DMA ... 5-16
Single-Channel DMA Controller (16-Bit Mode) .. 5-17

Address Latches
(Single-Channel DMA Controller) ... 5-17
Pulse Mode Clock
(Single-Channel DMA Controller) ... 5-17

vi

5.8.1.3
5.8.1.4

5.8.2
5.9
5.9.1
5.9.2
5.9.3

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.3.1
6.2.3.2
6.2.3.3
6.2.3.4
6.2.4
6.2.5
6.2.5.1
6.2.5.2
6.2.5.3
6.2.5.4

6.2.6

6.3
6.3.1
6.3.2
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.3.4
6.3.4
6.3.4.1
6.3.4.2
6.3.5
6.3.5.1
6.3.5.2
6.3.5.3
6.3.5.4
6.3.5.5
6.3.5.6

CONTENTS (Cont)

Page

Address Decode Structures .. 5-17
Operation Sequence
(Single-Channel DMA Controller) ... 5-17

Software DMA Requests .. 5-19
WORKING WITH PERIPHERAL CHIPS ... 5-20

8155 - RAM, Three Ports, and Timer .. 5-20
2651-PUSART ... 5-20
DC003 - Interrupt Logic .. 5-21

ADDRESSING MODES AND INSTRUCTION SET

INTRODUCTION... 6-1
ADDRESSING MODES... 6-1

Single-Operand Addressing 6-3
Double-Operand Addressing 6-3
Direct Addressing...................... 6-4

Register Mode........... ... 6-6
Autoincrement Mode [OPR (Rn) +] ... 6-7
Autodecrement Mode [OPR-(Rn)].. 6-9
Index Mode [OPR X(Rn)] ... 6-10

Deferred (Indirect) Addressing .. 6-12
Use of the PC as a General-Purpose Register ... 6-16

Immediate Mode [OPR #n,OO] ... 6-16
Absolute Addressing [OPR @#A] .. 6-17
Relative Addressing [OPR A or OPR X(PC)] 6-18
Relative-Deferred Addressing
[OPR @A or OPR @X(PC)] .. 6-19

Use of the Stack Pointer as a
General-Purpose Register ... 6-20

INSTRUCTION SET .. 6-20
Instruction Formats .. 6-21
List of Instructions .. 6-24
Single-Operand Instructions ... 6-27

General................. 6-27
Shifts and Rotates .. 6-31
Multiple-Precision .. 6-35
PS Word Operators .. 6-37

Double-Operand Instructions ... 6-39
General ... 6-39
Logical .. 6-42

Program Control Instructions ... 6-45
Branches... 6-45
Signed Conditional Branches ... 6-49
Unsigned Conditional Branches ... 6-51
Jump and Subroutine Instructions ... 6-52
Traps ... 6-57
Reserved Instruction Traps .. 6-61

vii

6.3.5.7
6.3.S.8
6.3.S.9
6.3.S.10
6.3.S.11
6.3.6
6.3.7

APPENDIX A

APPENDIX 8

B.I
B.2
B.2.1
B.2.2
B.2.3
B.2.4

B.3
B.3.1
B.3.1.1
B.3.1.2
B.3.1.3
B.3.2
8.3.2.1
B.3.2.2
B.3.3
8.3.4
B.4

B.5
B.S.I
B.S.2
8.6

Figure No.

1-1
1-2
1-3
1-4
1-5
1-6

CONTENTS (Cont)

Page

Halt Interrupt ... 6-61
Trace Trap .. 6-61
Power Failure Interrupt .. 6-61
CP<3:0> Interrupts ... 6-61
Special Cases of the T Bit .. 6-61

Miscellaneous Instructions ... 6-62
Condition Code Operators .. 6-63

T A8LES AND TIMING DIAGRAMS

SOFTWARE DIFFERENCES

INTRODUCTION... B-1
ADDRESSING MODES... 8-1

Modes 2 and 4... 8-1
Modes 3 and S B-2
Using the PC Contents as the Source Operand .. B-2
Jump (JMP) and Jump to Subroutine (JSR)
Instructions ... 8-3

PDP-II INSTRUCTION SET .. B-3
Instructions Not Common to All PDP-lIs ... B-3

MFPT Instruction... 8-4
MFPS Instruction.. B-4
MTPS Instruction :... B-S

Basic Instruction Execution.. B-S
Halt Instruction.. 8-6
Reset Instruction .. 8-6

Instructions Not Executed.. B-7
Effect of the T Bit (Instruction Trace Trap) .. B-7

DCTlI-AA INSTRUCTION EXECUTION SEQUENCE
ON THE DATA BUS .. B-8
EXCEPTIONS AND INTERRUPTS .. B-8

Bus Errors............. B-9
Internal Register Access ... B-I0

POWER-UP .. B-IO

FIGURES

Title Page

DCTII-AA, Block Diagram ... 1-2
General-Purpose Registers 1-3
Processor Status Word 1-3
Mode Register... 1-4
Interrupt Request.. I-S
I nterrupt Timing ... 1-6

viii

--
Figure No.

1-7
\-8
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-\ 0
2-\1
2-\2
2-13
2-14
2-\5
2-16
2-\7
2-18
2-\9
2-20
2-2\
2-22
2-23
2-24
3-1
3-2
3-3
3-4
3-5
3-6
4-\
5-\
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-\3
5-\4
5-15

FIGURES (Cont)

Title Page

DMA Timing .. 1-9
DMA, Block Diagram... 1-9
Parts of a Transaction 2-1
16-Bit Static Read, Block Diagram .. 2-3
16-Bit Static Read Timing .. 2-3
16-Bit Static Write, Block Diagram.. 2-5
16-Bit Static Write Timing ... 2-5
16-Bit Dynamic Read, Block Diagram ... 2-7
16-Bit Dynamic Read Timing ... 2-8
16-Bit Dynamic Write, Block Diagram .. 2-10
16-Bit Dynamic Write Timing .. 2-11
8-Bit Static Read, Block Diagram .. 2-14
8-Bit Static Read Timing .. 2-15
8-Bit Static Write, Block Diagram ... 2-16
8-Bit Static Write Timing ... 2-17
8-Bit Dynamic Read, Block Diagram ... 2-18
8-Bit Dynamic Read Timing : .. 2-19
8-Bit Dynamic Write, Block Diagram .. 2-22
8-Bit Dynamic Write Timing .. 2-23
Refresh Transaction, Block Diagram .. 2-26
Refresh Transaction Timing ... 2-26
lACK Transaction, Block Diagram .. 2-27
lACK Transaction Timing .. 2-28
DMA Timing .. 2-30
ASPI Transaction, Block Diagram ... 2-32
ASPI Transaction Timing ... 2-32
DCTI1-AA Pin Layout... 3-2
Leading and Trailing Edge... 3-10
READY Timing .. 3-12
Power-Up Sequence, Block Diagram .. 3-14
Power-Up Sequence Timing .. 3-15
COUT Timing ... 3-16
Mode Register... 4-2
Power-Up Circuit .. 5-2
Mode Register Loading .. 5-2
Crystal Oscillator Clock... 5-3
TTL Oscillator Clock 5-4
TTL Oscillator Waveform .. 5-4
Gating XTL1 .. 5-4
16-Bit Address Latch and Decode .. 5-5
8-Bit Address Latch and Decode 5-5
16-Bit ROM (4K) and Dynamic RAM (32K) Subsystem 5-6
16-Bit System Memory Map... 5-7
Column Address Setup and Hold-Time Calculations ... 5-8
16-Bit/8-Bit Memory Organization .. 5-9
8-Bit System Memory Map ... 5-10
8-Bit ROM (2K) and Dynamic RAM (16K) Subsystem .. 5-10
General Interrupt .. 5-11

IX

Figure No.

5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37

FIGURES (Coot)

Title Page

Decoding lACK Information for 16 CP Devices .. 5-12
Interrupt System ... 5-13
Driving an External Vector During lACK ... 5-14
Interrupt Request Circuit (Priority Encoder) ... 5-15
Direct CP Encoding Interrupt System .. 5-16
Single-Channel DMA ... 5-18
Software DMR Control .. 5-19
8155 RAM .. 5-20
2651 PUSART .. 5-21
DC003 Interrupt Logic ... 5-22
DC003 at Different Priority Levels .. 5-23
Single-Operand Addressing .. 6-3
Double-Operand Addressing... 6-3
Mode 0 Register....... 6-4
Mode 2 Autoincrement 6-5
Mode 4 Autodecrement 6-5
Mode 6 Index .. 6-5
INC R3 Increment.. 6-6
ADD R2, R4 Add ... 6-7
COMB R4 Complement Byte... 6-7
CLR (R5)+ Clear .. 6-8
CLRB (R5) + Clear Byte ... 6-8
ADD (R2) + R4 Add... 6-8
INC -(RO) Increment ... 6-9
INCB -(RO) Increment Byte .. 6-9
ADD -(R3), RO Add ... 6-10
CLR 200 (R4) Clear ... 6-11
COMB 200 (Rl) Complement Byte ... 6-11
ADD 30 (R2), 20 (R5) Add .. 6-12
Mode 1 Register-Deferred .. 6-12
Mode 3 Autoincrement-Deferred .. 6-13
Mode 5 Autodecrement-Deferred ... 6-13
Mode 7 Index-Deferred ... 6-14
CLR @ R5 Clear ... 6-14
INC @ (R2) + Increment .. 6-14
COM @ (RO) Complement ... 6-15
ADD @ 1000 (R2), Rl Add .. 6-15
ADD # 10, RO Add ... 6-17
CLR@#1100Clear ... 6-17
ADD @ # 2000 Add .. 6-18
INC A Increment. ... 6-19
CLR @ A Clear ... 6-19
Single-Operand Group .. 6-21
Double-Operand Group .. 6-21
Program Control Group Branch .. 6-21
Program Control Group JSR .. 6-21
Program Control Group RTS .. 6-22
Program Control Group Traps .. 6-22

x

Figure No.

6-38
6-39
6-40
6-41
A-I
A-2
A-3
A-4
A-S
A-6
A-7
A-8
A-9
A-IO
A-II
A-12
A-13
A-14
A-IS
A-16
A-17
A-18
A-19
A-20
A-21
A-22

Table No.

1-\
1-2
2-1
2-2
2-3
2-4
2-S
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13

FIGURES (Coot)

Title Page

Program Control Group Subtract ... 6-22
Operate Group .. 6-22
Condition Group ... 6-22
Byte Instructions ... 6-23
DCTlI-AA, Block Diagram ... A-23
16-Bit Static Read ... A-24
16-Bit Static Write .. A-26
16-Bit Dynamic Read .. A-28
16-Bit Dynamic Write ... A-30
8-.Bit Static Read ... A-32
8-Bit Static Write .. A-34
8-Bit Dynamic Read .. A-36
8-Bit Dynamic Write ... A-38
Refresh .. A-40
lACK Transaction .. A-42
Busnop Transaction ... A-44
D MA Transaction ... A-46
ASPI Transaction ... A-48
Ready .. A-SO
Power-Up .. A-S2
XTAL and COUT ... A-S4
DCTII-AA Pin Layout ... A-S6
Mode Register ... A-S7
Processor Status Word .. A-S7
16-Bit Application ... A-S8
8-Bit Application ... A-S9

TABLES

Title Page

I nterrupt Signals ... 1-6
Interrupt Decode... 1-7
16-Bit Static Write Conditions.. 2-6
16-Bit Static Write Data Strobes .. 2-6
16-Bit Dynamic Read Addressing Scheme 2-8
16-Bit Dynamic Read AI Addressing ... 2-9
16-Bit Dynamic Read Address Strobes... 2-9
16-Bit Dynamic Write Addressing ~cheme .. 2-11
16-Bit Dynamic Write AI Addressing .. 2-12
16-Bit Dynamic Write Address Strobes .. 2-12
16-Bit Dynamic Write Data Strobes ... 2-12
16-Bit Dynamic Write Conditions ... 2-13
16-Bit Dynamic Write Control Timing ... 2-13
8-Bit Static Read Control Timing ... 2-1S
8-Bit Static Read Data Strobes ... 2-18

Xl

Table No.

2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
3-1
3-2
3-3
3-4

3-5
3-6
3-7
3-8
4-1
4-2
5-1
5-2
A-I
A-2
A-3
A-4
A-5
A-6
A-7

A-8
A-9
A-IO
A-II
A-I2
A-I3
A-14
A-I5
A-I6
A-I7
A-I8
A-I9
A-20
A-21
A-22

TABLES (Coot)

Title Page

8-Bit Static Write Control Timing .. 2-18
8-Bit Dynamic Read Addressing Scheme ... 2-20
8-Bit Dynamic AI Addressing ... 2-20
8-Bit Dynamic Read Address Strobes .. 2-20
8-Bit Dynamic Read Control Timing .. 2-20
8-Bit Dynamic Write Addressing Scheme .. 2-24
8-Bit Dynamic Write AI Addressing .. 2-24
8-Bit Dynamic Write Address Strobes .. 2-24
8-Blt Dynamic Write Data Strobes ... 2-24
8-Bit Dynamic Write Control Timing ... 2-25
Interrupt Acknowledge Data .. 2-28
Mapping of AI onto DAL in an lACK Transaction ... 3-1
Signal and Pin Utilization, 16-Bit Mode ... 3-3
Signal and Pin Utilization, 8-Bit Mode... 3-4
SEL< 1 :0> Functions in Static Mode
or Dynamic 64K Mode.. 3-5
SEL< 1 :0> Functions in Dynamic 4K/ 16K Mode ... 3-5
AI Functions................ 3-8
Control Signal Usage .. 3-9
Refresh and Busnop .. 3-15
Mode Register Bit Settings... 4-2
DCTII-AA Modes.. 4-3
Control Signals for Each Transaction.... 5-8
Data Bus for Each Transaction... 5-9
Interrupt Decode.. A-I
DC Characteristics ... A-2
Sequences of Transactions A-4
Signal and Pin Utilization, 16-Bit Mode ... A-5
Signal and Pin Utilization, 8-Bit Mode ... A-6
I6-Bit Dynamic Write Addressing Scheme .. A-7
SEL< 1 :0> Functions in Static Mode
or Dynamic 64K Mode .. A-7
SEL<I:O> Functions in Dynamic 4K/I6K Mode ... A-7
AI Functions... A-7
Control Signals for Each Transaction.. A-8
Data Bus for Each Transaction.. A-8
Summary of DCTII-AA Instructions ... A-9
Numerical Op Code List.. ... A-II
Reserved Trap and Interrupt Vectors ... A-II
7-Bit ASCII Code ... A-12
Octal, Hex, Decimal Memory Addresses ... A-13
XOR and Single-Operand Instructions ... A-I5
Double-Operand Instructions .. A-I6
Jump and Subroutine Instructions .. A-17
Branch, Trap, and Interrupt Instructions .. A-I8
Miscellaneous and Condition Code Instructions ... A-I9
Maximum Latencies ... A-20

xii

Table No.

B-1
B-2
B-3
B-4
B-5
B-6

TABLES (Cont)

Title Page

Processor Codes.. B-4
PDP-II Instructions Not Executed by the DCTII-AA .. B-7
Interrupt Priority Codes .. B-I0
Start/Restart Addresses ... B-ll
Software Differences and Compatibilities .. B-12
Hardware Differences - Traps
(Transparent to Software) ... B-21

xiii

PRELIMINARY

PREFACE

This user's guide is designed for engineers familiar with PDP-II architecture. Chapters I through 6
offer a tutorial on DCTII-AA architecture and operation. (Chapter 5 includes some design examples.)
Appendix A contains reference material (instruction set tables and timing diagrams). Appendix B
briefly describes the software differences and compatibilities among the DCT1I-AA and other mem­
bers of the PDP-II family.

This guide can be used by both hardware and software specialists. The hardware specialist should espe­
cially become familiar with Chapters I through 5, whereas the software specialist should become famil­
iar with Chapters I, 4, and 6.

One of the characteristics of the DCTlI-AA is that it can be user-programmed to operate in a variety
of modes, which affect both its functionality and timing. Chapter 2 (Bus Transactions) and Chapter 3
(Pin Descriptions) are arranged by mode. This allows the user to find, in one place, all the information
relevant to a selected mode. A user not knowing which mode to use for a given application should first
read Chapter 4 (Mode Selection).

xv

--

1.1 INTRODUCTION

PRELIMINARY

CHAPTER 1
ARCHITECTURE

This chapter describes the internal architecture of the DCTII-AA microprocessor. The chapter is di­
vided into five sections covering all aspects of the architecture:

• Registers
• Arithmetic and logic unit (ALU)
• DCTII-AA hardware stack
• Interrupts
• DMA mechanism

1.2 REGISTERS
The DCTII-AA contains a number of internal registers used for various purposes (refer to Figure 1-1).
The registers are divided into three groups:

• General-Purpose
• Status
• Mode

1.2.1 General-Purpose Registers
The DCTII-AA microprocessor contains eight 16-bit general-purpose registers that can perform a vari­
ety of functions. These registers can serve as accumulators, index registers, autoincrement registers,
autodecrement registers, or stack pointers for temporary storage of data. Arithmetic operations can be
performed between one general-purpose register and another, one memory location or device register
and another, between memory locations, or between a device register and a general register. The eight
16-bit general-purpose registers (RO-R 7) are identified in Figure 1-2.

1-1

-I
N

DATAl
ADDRESS
BUFFER
liN/OUT)

VCC _

GND _

BGND -

OPERATING
MODE REGISTER

PUP -BCLR

RO-R7, PS
REGISTER

CLOCK
GENERATOR

XTLO XTLI COUT

Figure I-I DCTII-AA, Block Diagram

INTERRUPTS

DYNAMIC
MEMORY
SUPPORT

BUS
CONTROL
SIGNAL
BUFFERS

ADDRESS/
INTERRUPT
BUFFER

SEL <0>, SEL <1>

-RAS

-CAS

R/-WLB

R/-WHB

PI

READY

MR 5759

."
::JJ m r--3: -Z
l>
::JJ
-<

PRELIMINARY

HI ~O LO

HI R1 LO

HI R2 LO
GENERAL REGISTERS

HI R3 LO

HI R4 LO

HI R5 LO

STACK POINTER HI ~6 LO

PROGRAM COUNTER HI ~7 LO

MR-5272

Figure 1-2 General-Purpose Registers

Registers R6 and R 7 in the OCT ll-AA are dedicated. R6 serves as the stack pointer (SP) and contains
the location (address) of the last entry in the stack. Register R7 serves as the processor program
counter (PC) and contains the address of the next instruction to be executed. The PC is normally used
for addressing purposes only and not as an accumulator.

1.2.2 Status Register
The processor status word (PSW) contains information on the current processor status. This informa­
tion includes the current processor priority, the condition codes describing the arithmetic or logic re­
sults of the last instruction, and an indicator for detecting the execution of an instruction to be trapped
during program debugging. This indicator (the T bit) cannot be directly set or cleared. The T bit can
only be set or cleared when entering or exiting an interrupt routine.

The PSW format is shown in Figure 1-3. Certain instructions allow programmed manipulation of condi­
tion code bits and loading and storing (moving) the processor status.

PROCESSOR STATUS

15 14 13 12

<15:8> READ AS ZEROS

03 NEGATIVE

11 10 09 08 07 06 05 04 03 02 01 00

MR-5273

Figure 1-3 Processor Status Word

1-3

PRELIMINARY

1.2.3 Mode Register
The DCTII-AA incorporates a user-loadable mode register (refer to Figure 1-4). The mode register is
loaded at power-up or when a reset instruction is issued. Access to the mode register is not possible at
any other time. The user has the option of selecting any combination of the following modes.

• l6-bit or 8-bit data bus
• Dynamic or static memory support
• 64K or 4K/ 16K dynamic memory support
• Constant or processor clock
• Long or standard microcycle
• Normal or delayed read/write timing
• Tester or user operation
• One of eight start/restart address pairs

A complete discussion of the mode register is contained in Chapter 4.

15 14 13 12 11 10

<15:13> START/RESTART ADDRESS
12 TESTER/U.SER MODE
11 16·BIT/8·BIT BUS
10 64K/4K OR i6K MEMORY

09 08 07 06 05 04 03 02 01

08
<7:2>
01

NORMAL/DELAYED RIW
RESERVED

LONG
STD

09 DYNAMIC/STATIC MEMORY 00
LONG/STANDARD MICROCYCLE
CONSTANT/PROCESSOR MODE CLOCK

ADDRESS BITS
<15:13>

7
6
5
4
3
2
1
0

START
ADDRESS

172000
173000
000000
010000
020000
040000
100000
140000

RESTART
ADDRESS

172004
173004
000004
010004
020004
040004
100004
140004

Figure \-4 Mode Register

1.3 ARITHMETIC LOGIC UNIT (ALU)

MR 4843

Arithmetic and logical instructions of the 16-bit CPU are executed in the ALU. The ALU internally
communicates with registers and buffers in order to execute instructions.

1.4 DCTll-AA HARDWARE STACK
The hardware stack is part of the basic design architecture of the DCT II-AA. It is an area of memory
set aside by the programmer or by the operating system for temporary storage and linkage. It is handled
on a LI FO (last in/first out) basis, where items are retrieved in the reverse of the order in which they
were stored. On the DCTll-AA the stack starts at the highest location reserved for it (3768 at power­
up) and expands linearly downward to a lower address as items are added to the stack. There is no stack
overflow warning.

I t is not necessary to keep track of the actual locations into which data is being stacked. This is done
automatically through the use of the stack pointer (SP). Register six (R6) always contains the memory

1-4

PRELIMINARY

address of the last item stored in the stack. Instructions associated with subroutine linkage and inter­
rupt service automatically use register six as the hardware stack pointer. For this reason, R6 is fre­
quently referred to as the system SP. The hardware stack is organized in full-word units only.

1.5 INTERRUPTS
Interrupts are requests (made by peripheral devices) that cause the processor to temporarily suspend its
present program execution to service the requesting device. A device can interrupt the processor only
when its priority is higher than the processor priority indicated by PSW <7:5>.

The DCTII-AA supports a vectored interrupt structure (with optional internally generated vector ad­
dresses) with priority on four levels encoded on four lines. In addition, on separate pins it supports two
nonmaskable interrupts, power fail (- PF) and - HALT.

1.5.1 Interrupt Mechanism
When the DCT II-AA receives an interrupt, no action is taken until the end of the current instruction
(refer to Figure 1-5). Interrupts are only read during a read transaction or assert priority in (ASP!)
transaction. Before fetching the next instruction, the DCTII-AA arbitrates the interrupt priority. If the
interrupt request has a higher priority than the processor's, it initiates an interrupt acknowledge
(lACK) transaction (refer to Paragraph 2.12). Following the lACK transaction, the current PC and
PSW are saved on the stack and the new PC and PSW are loaded from the vector address.

1.5.2 Interrupt Posting
With the assertion of the priority in (PI) signal, interrupts are read into the DCTII-AA during any read
transaction and ASPI transaction. Interrupts are read in only at the occurrence of PI.

1.5.3 Interrupt Request (IRQ)
During the assertion of PI the interrupt request is read by the DCTII-AA (refer to Figures 1-5 and 1-
6). Refer to Table I-I for signal names. Interrupt requests are implemented from the following seven
different signals.

LAST
INSTRUCTION

A
I
I

B
I
I

I I

IRQ L 1 .. ___;..: __
I
I
I

PI H ~

lACK FIRST INSTRUCTION OF
SERVICE ROUTINE

SEL<l>H n
--------~ -------
A. INTERRUPT REQUEST
B. INTERRUPT REQUEST LATCHED INTO DCTll·AA

MR-4997

Figure 1-5 Interrupt Request

1-5

PRELIMINARY

AI<7:0> ({{{{(({{{{{{{({((INTERRUPTREQUEST)))))

Maskable interrupts:

• -CP<3:0>

Nonmaskable interrupt:

• -PF
• -HALT

PI --.l
Figure 1-6 Interrupt Timing

(coded priority)

(power fail)
(halt)

Control (internal or external) vector:

• -VEC (vector)

Table 1-1 Interrupt Signals

Interrupt Pin
Signals Name

-CP<3> AI<I>
-CP<2> AI<2>
-CP<I> AI<3>
-CP<O> AI<4>
-VEC AI<5>
-PF AI<6>
-HALT AI<7>

_-
MR·4996

Pin
Number

33
34
35
36
37
38
39

The DCT I J-AA detects an interrupt request if during the assertion of PI at least one of the following
signals is asserted low.

• -CP<3>
• -CP<2>
• -CP<I>
• -CP<O>
• -PF
• -HALT

1.5.4 Vectors

(AI<1 »
(AI<2>)
(AI<3>)
(AI<4»
(AI<6»
(AI<7»

Every interrupt except - HALT is associated with an interrupt vector. An interrupt vector consists of
two words: the next PC and next PSW. The PC is the address of the routine to service an interrupt
device. The PSW has new information to load into the processor status register. After the lACK trans­
action, the current PC and PSW are saved on the stack and the new PC and PSW are loaded from the
vector address.

1-6

PRELIMINARY

Up to 64 vectors may reside in the first 256 memory locations (3748 is the highest vector location). The
vector address is provided by the interrupting device (external vector address) or by a fixed table stored
in the DCT ll-AA (internal vector address).

NOTE
The power fail (- PF) interrupt uses interrupt vec­
tor address 24 and is not acknowledged with an
lACK transaction. (Refer to Paragraph 2.12.) The
- HALT interrupt is not associated with a vector; it
pushes the PC and PSW onto the stack and immedi­
ately goes to the restart address with PSW (3408)'
- HALT is not acknowledged.

1.5.4.1 Internal Vector Address - If - VEt (AI <5» is not asserted (high) during the assertion of
PI, the DCTII-AA gets the vector address from an internal fixed table by decoding the inputs
- HALT, - PF, and -CP<3:0>. Refer to Table 1-2.

Table 1-2 Interrupt Decode

-CP<3> -CP<2> -CP<I> -CP<O> Priority Vector
(AI<I» (AI<2» (AI<3» (AI<4» Level Address

-HALT* X X X X 8 -

-PF X X X X 8 24
L L L L 7 140
L L L H 7 144
L L H L 7 150
L L H H 7 154
L H L L 6 100
L H L H 6 104
L H H L 6 110
L H H H 6 114
H L L L 5 120
H L L H 5 124
H L H L 5 130
H L H H 5 134
H H L L 4 60
H H L H 4 64
H H H L 4 70
H H H H No action

*PC is loaded with the restart address; PSW = 340.

1.5.4.2 External Vector Address - If during the assertion of PI (- PF or - HALT not asserted)
- VEC (AI<5» is asserted (low), the DCTII-AA obtains the vector from the external device during
an lACK transaction. Asserting READY causes the DCTII-AA to wait for the vector.

1.5.5 Priority
Each interrupt is assigned a priority level (refer to Table 1-2). The DCTII-AA divides interrupts into
two groups:

• Maskable
• Nonmaskable

1.5.5.1 Maskable Interrupts - Interrupts on -CP<3:0> are maskable. The interrupts are serviced
according to their priority level (refer to Table 1-2).

1-7

PRELIMINARY

NOTE
As in any multilevel priority structure, the PSW of
the service routine must contain a priority level as
high or higher than that of the interrupt request.
Otherwise, the interrupt request continues to cause
lACK transactions until the stack is full. (Refer to
Paragraph 2.12.)

1.5.5.2 Nonmaskable Interrupts - The - HALT interrupt has the highest priority; it interrupts the
processor whatever the processor's status.

NOTE
The - HALT interrupt or execution of the - HALT
instruction results in an interrupt, not in a stopping
of the processor.

1.6 DIRECT MEMORY ACCESS (DMA) MECHANISM
During a DMA transaction the only lines that are three-stated are DAL<15:0>. Low current pull-ups
are placed on:

• AI<7:0>
• Rj-WHB
• Rj-WLB

The processor maintains control of - RAS, - CAS, and PI.

A device requests control of the DMA bus (DAL<15:0>, AI<7:0>, Rj-WHB, and Rj-WLB) by
asserting direct memory request [(DMR (AI<O»] during the assertion of PI (refer to Figure 1-7).
DMR is read during any assertion of PI, unlike interrupts that are read only during a read or ASPI
transaction. The processor waits for the end of the current transaction (read, write, DMG, or ASPI)
and then releases the DMA bus. The requesting device is signaled (by the processor) when it asserts the
two signals:

• SEL<O> (high)
• SEL< 1 > (high)

SEL<O> and SEL< 1 > indicate a direct memory grant (DMG).

The requesting device, having received DMG, performs the DMA by controlling the DMA bus. The
processor continues to output PI in order to allow the negation of DMR. The device holds control of the
DMA bus until DMR is negated during PI. Multiple DMA devices can be implemented using a daisy­
chain structure, as shown in Figure 1-8.

1-8

PRELIMINARY

AI<O>

PI

SEL<O>

SEL<1>

DMA BUS

MA·5275

Figure 1-7 DMA Timing

DEVICE 1 DEVICE 2

SEL<1 :0> (DMG)
DCT11-AA

MR-5276

Figure 1-8 DMA, Block Diagram

1-9

2.1 INTRODUCTION

PRELIMINARY

CHAPTER 2
BUS TRANSACTIONS

This chapter provides a basic discussion of each bus transaction. Paragraphs 2.3 through 2.10 pertain to
the read and write transactions. The details of the read and write transactions change considerably in
each of the following modes.

• 8-bit static
• 8-bit dynamic
• 16-bit static
• 16-bit dynamic

Therefore, a separate discussion of each read and write transaction is presented. All other transactions
are described as they apply to the DCTl1-AA bus. .

2.2 BUS TRANSACTION
Refer to Figure 2-l. Each PDP-II instruction is composed of a number of transactions.

01

PDP-11 INSTRUCTION

TRANSACTION
TRANS-

TRANSACTION ACTION

MICRO I MICRO MICRO MICRO I MICRO
CYCLE CYCLE CYCLE CYCLE CYCLE

. : .. : ::.: ~'.:: : .. :. ~
-.~.:.:: .. : ... ::.-. .: .. :.:.;' ... ::.,.:.:

, :-:.:.~.

TRANSACTION

MICRO
CYCLE

FETCH

MICRO
CYCLE

TRANSACTION

MICRO
CYCLE

REFRESH

Figure 2-1 Parts of a Transaction

2-1

TRANS-
ACTION

MICRO
CYCLE

MR-4842

PRELIMINARY

2.2.1 Transaction
A transaction is defined as an activity that takes place on the DCTII-AA bus in order to perform a
function such as:

• Read
• \\Zrite
• Refresh
• lACK (interrupt acknowledge)
• DMA (direct memory access)
• ASPI (assert priority in)
• NOP (no operation)

2.2.2 Microcycle
Each transaction is made up of either one or two microcycles. A microcycle is defined as the activity
required for one microinstruction to be executed. The microcycle performs the functions necessary to
transfer information to and from the DCTII-AA bus, move data internally, and calculate values.

2.2.3 Clock Phase
The basic building block of the DCTlI-AA timing is the clock phase. Each microcycle is normally
constructed of three clock phases: ¢ I, ¢ 2, and ¢ W. During an ASPI transaction, lACK transaction,
DMA transaction, or when operating in long microcycle mode, it is necessary to add a fourth phase,
phase D (¢ D), between ¢ 2 and ¢ W. All clock phases have the same duration between assertions.

2.3 16-BIT STATIC READ TRANSACTION
A read transaction consists of three distinct processes:

• Output of address
• Input of data
• Input of interrupt and DMA request (refer to Paragraphs 1.5 and 2.14)

Detailed timing of a 16-bit static read transaction is found in Figure A-2 in Appendix A.

NOTE
All references to input or output are to the processor.

2.3.1 Output of Address
Refer to Figures 2-2 and 2-3. The address is output on the data address lines (DALs) 15-0 « 15:0».
The condition of DAL<O> indicates the address of a word, high byte, or low byte. Data address lines
are time multiplexed and are used for both address and data.

Address Control - Refer to Figures 2-2 and 2-3. Address strobe, which is used to latch the address into
the memory system or register, is accomplished by means of row address strobe (- RAS). The address
is latched upon the assertion (leading edge) of - RAS.

2.3.2 Input of Data
The input data should be valid on DAL< 15:0> during the period that priority in (PI) is asserted (refer
to Figure 2-3).

2-2

PRELIMINARY

MEMORY
SYSTEM

;-1- ~ DAL<15:0> DATA

"r ADDRESS

-RAS

DCTll·AA -CAS ADDRESS

DAL<15:0>

AI<7:0>

-RAS

-CAS

PI

RI -WHB

RI -WLB

PI STROBE

WRITE
CONTROL

RI -WHB t
RI -WLB

Figure 2-2 l6-Bit Static Read, Block Diagram

ADDRESS STROBE

DATA IN

INT & DMA
REQUEST

Figure 2-3 l6-Bit Static Read Timing

2-3

i
MR·4844

MA-4845

PRELIMINARY

Data Control - The data strobe, which the processor uses to latch the input data, is accomplished by
means of column address strobe (-CAS). The data is latched upon the negation (trailing edge) of
-CAS. Read/write control is accomplished through the use of two signals:

• Read/ - Write High Byte (R/ - WHB)
• Read/ - Write Low Byte (Rj - WLB)

Both these signals remain high during a read transaction.

2.3.3 Instruction Fetch
An instruction fetch is indicated by two signals:

• SEL<O> high
• SEL<I> low

Refer to Figure A-2 in Appendix A.

2.4 16-BIT STATIC WRITE TRANSACTION
A write transaction is composed of three distinct processes:

• Output of address
• Output of data
• Input of DMA request (refer to Paragraph 2.14)

Detailed timing of a 16-bit static write transaction is found in Figure A-3 of Appendix A.

NOTE
All references to input or output are to the processor.

2.4.1 Output of Address

A write transaction is always preceded by a read
transaction (the two are indivisible) except when
writing the stack during an interrupt or trap.

Refer to Figures 2-4 and 2-5. The address is output on DAL<15:0>. The condition of DAL<O>
indicates the addressing of a word, high byte, or low byte. Refer to Table 2-1. DAL< 15:0> are time
multiplexed and used for both address and data.

Address Control - Address strobe, which is used to latch the address into the memory system or regis­
ter, is accomplished by means of - RAS. The address is latched upon the assertion (leading edge) of
-RAS.

2.4.2 Output of Data
Refer to Figure 2-5. The data is output on DAL< 15:0> before the assertion (leading edge) of PI.

Data Control - The signal used to latch the data into the memory system or register and the edge re­
quired is found in Table 2-2. Write control is accomplished through the use of two signals:

• R/-WHB
• R/-WLB

Table 2-1 indicates the conditions necessary to address and write a memory.

2-4

PRELIMINARY

MEMORY
SYSTEM

/'-) DATA
DAL<15:0>

"f ADDRESS

-RAS ADDRESS
-CAS AND

DCT11-AA
PI DATA

STROBES

WRITE
CONTROL

R/ -WHB t J R/ -WLB

MA4846

Figure 2-4 16-Bit Static Write, Block Diagram

DAL<15:0> DATA

AI<O> DMA REQUEST

-RAS

-CAS

PI

R/ -WHB
R/ -WLB
NORMAL

R/ -WHB
RI -WLB
DELAYED

ADDRESS STROBE
'--v------'
DATA STROBES

Figure 2-5 16-Bit Static Write Timing

2-5

MR-48.7

PRELIMINARY

Addressed Memory

Word
Low byte
High byte

Table 2-1 I6-Bit Static Write Conditions

Address

Even (DAL<O> =0)
Even (DAL<O> =0)
Odd (DAL<O> = I)

Table 2-2 I6-Bit Static Write Data Strobes

Signal

-RAS
-CAS
PI
PI

Edge

Negation (trailing)
Negation (trailing)
Assertion (leading)
Negation (trailing)

2.5 16-BIT DYNAMIC READ TRANSACTION
A read transaction consists of three distinct processes:

• Output of address
• Input of data

Rj-WHB

0
1
0

• Input of interrupt and DMA request (refer to Paragraphs l.5 and 2.14)

Rj-WLB

0
0
1

Detailed timing of a 16-bit dynamic read transaction is found in Figure A-4 in Appendix A.

NOTE
All references to input or output are to the processor.

2.5.1 Output of Address
Both static and dynamic addresses are output concurrently while in dynamic mode.

2.5.1.1 Dynamic Address - Refer to Figures 2-6 and 2-7. The address is output on the address inter­
rupt (AI) lines 7-0 «7:0». The AI lines output the row address first and the column address second.
Table 2-3 lists the address bits required in 4Kj 16K mode and 64K mode.

NOTE
The AI lines are not in order. Refer to Table 2-4.

2.5.1.2 Static Address - The addressing of a static ROM, RAM, or register in a system supporting
dynamic devices is accomplished by outputs concurrent with the AI<7:0>. The concurrent address is
output on DAL<15:0>.

2.5.1.3 Address Control - Table 2-5 indicates the signals and edges required to latch each portion of
the address into the memory system or register.

2.5.2 Input of Data
Refer to Figure 2-7. The input data should be valid on DAL< 15:0> during the period of time that PI
is asserted. The negation of -CAS strobes the data into the DCTI1-AA.

2-6

PRELIMINARY

MEMORY
SYSTEM

K;) DATA
DAL<15:0>

ADDRESS

) AI<7:0> ADDRESS
DCT11-AA

-RAS

-CAS ADDRESS

PI STROBES

WRITE
CONTROL

R/-WHB f
R/-WLB

MR-4848

Figure 2-6 16-Bit Dynamic Read, Block Diagram

2-7

PRELIMINARY

DAL<15:0>

AI<7:0>

-RAS

-CAS

PI

R/ -WHB

R/ -WLB

'----.r----'
ADDRESS STROBES

Figure 2-7 16-Bit Dynamic Read Timing

Table 2-3 16-Bit Dynamic Read Addressing Scheme

Mode Memory Chip Address

4K/16K 4K X 1 AI-Al2
4K/16K 16K Xl AI-A14
64K 64K X 1 AI-A15

2-8

MR-4849

AI Used

<6:1>
<7:1>
<7:0>

PRELIMINARY

Table 2-4 16-Bit Dynamic Read AI Addressing

Address

4K/16K 64K
AI -RAS -CAS -RAS -CAS

<0> FET AI4 AI5 A14
<1> Al A2 Al A2
<2> A3 A4 A3 A4
<3> A5 A6 A5 A6
<4> A7 AS A7 AS
<5> A9 AID A9 AIO
<6> All AI2 All AI2
<7> A13 AI4 AI3 AI2

Table 2-5 16-Bit Dynamic Read Address Strobes

Address Signal Edge Device Rj-WHB Rj-WLB

Row -RAS Assertion (leading) Dynamic I I
Column -CAS Assertion (leading) Dynamic I I
DAL -RAS Assertion (leading) Dynamic or static I I

Data Control - The data strobe, which the processor uses to latch the input data, is accomplished by
means of -CAS. The data is latched upon the negation (trailing edge) of -CAS. Write control is
accomplished through the use of two signals:

• Rj-WHB
• Rj-WLB

Both these signals remain high during a read transaction.

2.5.3 Instruction Fetch
An instruction fetch is indicated by different signals, depending on the mode. Refer to Tables A-4, A-7,
and Figure A-4 in Appendix A.

2.5.3.1 4K/16K Mode - In 4Kj16K 16-bit dynamic mode, AI<O> is asserted at the leading edge of
- RAS to indicate a fetch operation. AI <0> is three-stated before the leading edge of PI. Fetch is
indicated by AI <0> high during - RAS.

NOTE
During refresh the AI lines have the refresh counter
address on them.

2.5.3.2 64K Mode - Static modes and 64K use SEL<O> high and SEL< 1 > low to indicate a fetch
condition. When SEL<O> signifies a fetch, it is asserted only during the read cycle. Fetch is indicated
by SEL<O> high and SEL< 1 > low.

2-9

PRELIMINARY

2.6 16-BIT DYNAMIC WRITE TRANSACTION
A write transaction consists of three distinct processes:

• Output of address
• Output of data
• Input of DMA request (refer to Paragraph 2.14)

Detailed timing of a 16-bit dynamic write transaction is found in Figure A-5 of Appendix A.

NOTE
All references to input or output are to the processor.

2.6.1 Output of Address

A write transaction is always preceded by a read
transaction (the two are indivisible) except when
writing the stack during an interrupt or trap.

Both static and dynamic addresses are output concurrently while in dynamic mode.

2.6.1.1 Dynamic Address - Refer to Figures 2-8 and 2-9. The address is output on AI<7:0>. The AI
lines output the row address first and the column address second. Table 2-6 indicates the address bits
required by memories in 4Kj 16K mode and 64K mode.

NOTE
The AI lines are not in order. Refer to Table 2-7.

2.6.1.2 Static Address - The addressing of a static ROM, RAM, or register in a system supporting
dynamic devices is accomplished by outputs concurrent with the AI <7:0>. The concurrent address is
output on DAL< 15:0>.

MEMORY
SYSTEM

<:) DATA
DAL<15:0> ADDRESS

~ AI<7:0> ADDRESS

DCTll-AA
-RAS DATA
-CAS AND

PI
ADDRESS
STROBES

WRITE
CONTROL

R/-WHB i
R/-WLB

MA·4850

Figure 2-8 16-Bit Dynamic Write, Block Diagram

2-10

DAL<15:0>

AI<7:0>

-RAS

-CAS

PI

R/-WHB
R/-WLB
NORMAL

R/-WHB
R/-WLB
DELAYED

"--y-----'
ADDRESS
STROBES

DATA OUT

'--_----..y,--_--J

DATA STROBES

Figure 2-9 16-Bit Dynamic Write Timing

Table 2-6 16-Bit Dynamic Write Addressing Scheme

Mode Memory Chip Address*

4Kjl6K 4K X I AI-A12
4Kjl6K 16K X I AI-AI4
64K 64K X I AI-AI5

* Address lines necessary to address all bits in each chip.

2-11

PRELIMINARY

MR-4851

AI Used

<6:1>
<7:1>
<7:0>

PRELIMINARY

Table 2-7 16-Bit Dynamic Write AI Addressing

Address

4K/16K 64K
AI -RAS -CAS -RAS -CAS

<0> FET AI4 AI5 AI4
<I> Al A2 AI A2
<2> A3 A4 A3 A4
<3> A5 A6 A5 A6
<4> A7 AS A7 AS
<5> A9 AlO A9 AIO
<6> All AI2 All AI2
<7> AI3 AI4 A13 AI2

2.6.1.3 Address Control - Table 2-8 indicates the signals and edges required to latch each portion of
the address into the memory system or register.

2.6.2 Output of Data
Refer to Figure 2-9. The data is output on DAL<15:0>.

Data Control - The signals used to latch the data into the memory system or register and the edges
required are found in Table 2-9. Write control is accomplished through the use of two signals:

• Rj-WHB
• Rj-WLB

Table 2-10 indicates the conditions necessary to address and write a memory system or register. The
timing of Rj - WHB and Rj - WLB is found in Table 2-11.

Address

Row
Column
DAL

Table 2-8 16-Bit Dynamic Write Address Strobes

Signal Edge

-RAS Assertion (leading)
-CAS Assertion (leading)
-RAS Assertion (leading)

Table 2-9 16-Bit Dynamic Write Data Strobes

Signal

-RAS
-CAS
PI
PI

Edge

Negation (trailing)
Negation (trailing)
Assertion (leading)
Negation (trailing)

2-12

Device

Dynamic
Dynamic
Dynamic or static

Addressed Memory

Word
Low byte
High byte

Signal

Rj-WHB
Rj-WLB
Rj-WHB
Rj-WLB

PRELIMINARY

Table 2-10 16-Bit Dynamic Write Conditions

Address Rj-WHB Rj-WLB

Even (DAL<O> =0) 0 0
Even (DAL<O> =0) I 0
Odd (DAL<O> = I) 0 I

Table 2-11 16-Bit Dynamic Write Control Timing

Mode Parameter

Normal
Normal
Delayed
Delayed

Write control before -CAS assertion
Write control before -CAS assertion
Write control at or after -CAS assertion
Write control at or after -CAS assertion

2.7 8-BIT STATIC READ TRANSACTION
A read transaction consists of three distinct processes:

• Output of address
• Input of data
• Input of interrupt and DMA request (refer to Paragraphs 1.5 and 2.14)

Detailed timing of an 8-bit static read transaction is found in Figure A-6 of Appendix A.

When a word read or a word write is being executed. the transaction is repeated twice and the two
transactions are indivisible. For example, the MOV (move word) instruction first does a read transac­
tion and addresses the low-byte data. The address is then incremented by one and the second read trans­
action addresses the high byte data. In the case of the MOVB (move byte) instruction, the transaction
occurs only once.

NOTE
All references to input or output are to the processor.

2.7.1 Output of Address
Refer to Figures 2-10 and 2-11. The high byte address is output on the static address lines (SALs) 15-8
« 15:8». The low byte of the address is output on DAL<7:0>. Data address lines are time multi­
plexed and used for both address and data.

Address Control - Address strobe, which is used to latch the address into the memory system or regis­
ter, is accomplished by means of - RAS. The address is latched upon the assertion (leading edge) of
-RAS.

2.7.2 Input of Data
Refer to Figure 2-11. The input data should be valid on DAL<7:0> during the period PI is asserted.

Data Control - The data strobe, which the processor uses to latch the input data, is accomplished by
means of - CAS. The data is latched upon the negation (trailing edge) of - CAS. Read control is ac­
complished through the use of the signal - Read (Rj - WHB). The timing of - Read is found in Table
2-12.

2-13

PRELIMINARY

MEMORY
SYSTEM

'" SAL(DAL)<15:8>) ADDRESS

~ ~ DATA
DAL<7:0>

DCT11-AA vi ADDRESS

-RAS ADDRESS

-CAS STROBE

PI

WRITE CONTROL

-RD (RI -WHB) i
MR-4852

Figure 2- \0 8-Bit Static Read, Block Diagram

2.7.3 Instruction Fetch
An instruction fetch is indicated by two signals:

• SEL<O> high
• SEL<I> low

Refer to Figure A-6 in Appendix A.

2.8 8-BIT STATIC WRITE TRANSACTION
A write transaction consists of three distinct processes:

• Output of address
• Output of data
• Input of DMA request (refer to Paragraph 2.14)

Detailed timing of an 8-bit static write transaction is found in Figure A-7 in Appendix A.

When a word read or a word write is being executed, the transaction is repeated twice and the two
transactions are indivisible. For example, the MOY (move word) instruction first does a read transac­
tion and addresses the low byte data. The address is then incremented by one and the second read trans­
action addresses the high byte data. In the case of the MOYB (move byte) instruction, the transaction
occurs only once.

NOTE
All references to input or output are to the processor.

A write transaction is always preceded by a read
transaction (the two are indivisible) except when
writing the stack during an interrupt or trap.

2-14

SAL<15:8>
(DAL)

DAL<7:0>

AI<7:0>

-RAS

-CAS

PI

-RD (R/ -WHB)
NORMAL

-RD (R/ -WHB)
DELAYED

-WT (R/ -WLB)

Signal

- RD (Rj - WHB)
- RD (Rj - WHB)

HI BYTE OF ADDRESS

La BYTE OF
ADDRESS

ADDRESS STROBE

DATA IN

INT & DMA
REQUEST

Figure 2-11 8-Bit Static Read Timing

Table 2-12 8-Bit Static Read Control Timing

Mode Parameter

PRELIMINARY

MR-4853

Normal
Delayed

Read control before -CAS assertion
Read control at or after - CAS assertion

2-15

PRELIMINARY

2.8.1 Output of Address
Refer to Figures 2-12 and 2-13. The high byte address is output on the static address lines (SALs) 15-8
«15:8». The low byte of the address is output on DAL<7:0>. Data address lines are time multi­
plexed and used for both address and data.

Address Control - Address strobe, which is used to latch the address into the memory system or regis­
ter, is accomplished by means of - RAS. The address is latched upon the assertion (leading edge) of
-RAS.

2.8.2 Output of Data
Refer to Figure 2-13. The data is output on DAL<7:0> before the assertion (leading edge) of PI.

Data Control - The signals used to latch the data into the memory system or register and the edges
required are found in Table 2-13. Write control is accomplished through the use of the signal - Write
(Rj - WLB). The timing of - Write is found in Table 2-14.

2.9 8-BIT DYNAMIC READ TRANSACTION
A read transaction consists of three distinct processes:

• Output of address
• Input of data
• Input of interrupt and DMA request (refer to Paragraphs 1.5 and 2.14)

Detailed timing of a 8-bit dynamic read transaction is found in Figure A-8 of Appendix A.

When a word read or a word write is being executed, the transaction is repeated twice and the two
transactions ate indivisible. For example, the MOV (move word) instruction first does a read transac­
tion and addresses the low byte data. The address is then incremented by one and the second read trans­
action addresses the high byte data. In the case of the MOVB (move byte) instruction, the transaction
occurs only once.

NOTE
All references to input or output are to the processor.

MEMORY
SYSTEM

....
SAL(DAL)<15:8>) ADDRESS

If'

V "\ DATA
DAL<7:0>

i'r ,/ ADDRESS

DCT11-AA -RAS DATA

-CAS AND

PI
ADDRESS
STROBES

WRITE CONTROL

-WT (RI -WLB) r
MR·4854

Figure 2-12 8-Bit Static Write, Block Diagram

2-16

SAL<15:8>
(DAL)

DAL<7:0>

AI<O>

-RAS

-CAS

PI

-RD (R/ -WHS)

-WT (R/ oWLS)
NORMAL

-WT (R/ oWLS)
DELAYED

HI SYTE OF ADDRESS

LO 8YTE OF
ADDRESS

ADDRESS STROBE

DATA OUT

'--v----'
DATA STROBES

Figure 2-13 8-Bit Static Write Timing

2-17

PRELIMINARY

MR~855

PRELIMINARY

Signal

Table 2-13 8-Bit Static Read Data Strobes

Signal

-RAS
-CAS
PI
PI

Edge

Negation (trailing)
Negation (trailing)
Assertion (leading)
Negation (trailing)

Table 2-14 8-Bit Static Write Control Timing

Mode Parameter

- WT (Rj - WLB) Normal
Delayed

Write control before -CAS assertion
Write control at or after -CAS assertion - WT (Rj - WLB)

2.9.1 Output of Address
Both static and dynamic addresses are output concurrently while in dynamic mode.

2.9.1.1 Dynamic Address - Refer to Figures 2-14 and 2-15. The address is output on AI <7:0>. The
AI lines output the row address first and the column address second. Table 2-15 lists the address bits
required in 4K/ 16K mode and 64K mode.

NOTE
The AI lines are not in order. Refer to Table 2-16.

2.9.1.2 Static Address - Addressing of a static ROM, RAM, or register in a system supporting dy­
namic devices is accomplished by outputs concurrent with the AI < 7 :0>. The high byte of the address
is output on the static address lines (SALs) 15-8 « 15:8». The low byte of the address is output on
DAL<7~>. .

MEMORY
SYSTEM

SAL(DAl\<15,a> ::> ADDRESS

/' ~ DAL<7:0> DATA

~ ADDRESS

DCT"·AA AI<7:0> ::> ADDRESS

-RAS

-CAS ADDRESS

PI
STROBES

WRITE CONTROL

-RD (RI -WHB) i
MR-4856

Figure 2-14 8-Bit Dynamic Read, Block Diagram

2-18

SAL<15:B>
(DAL)

DAL<7:0>

AI<7:0>

-RAS

-CAS

PI

-RD (R/-WHB)
NORMAL

-RD (R/-WHB)
DELAYED

-WT (R/-WLB)

HI BYTE OF ADDRESS

LO BYTE OF
ADDRESS

ADDRESS STROBES

DATA IN

INT& DMA
REQUEST

Figure 2-15 8-Bit Dynamic Read Timing

2-19

PRELIMINARY

MR-4857

PRELIMINARY

Table 2-15 8-Bit Dynamic Read Addressing Scheme

Mode Memory Chip Address AI Used

4K/16K 4K X I AO--AII <6:1>
4K/16K 16K X I AO--AI3 <7:1>
64K 64K X I AO--AI5 <7:0>

Table 2-16 8-Bit Dynamic AI Addressing

Address

4K/16K 64K
AI -RAS -CAS -RAS -CAS

<0> FET AI4 AI5 AI4
<I> Al A2 AI A2
<2> A3 A4 A3 A4
<3> A5 A6 A5 A6
<4> A7 A8 A7 A8
<5> A9 AIO A9 AIO
<6> All AO All AO
<7> AI3 AI2 AI3 AI2

2.9.1.3 Address Control - Table 2-17 indicates the signals and edges required to latch each portion of
the address into the memory system or register.

2.9.2 Input of Data
Refer to Figure 2-15. The input data should be valid on DAL<7:0> during the period PI is asserted .

•
Data Control - The data strobe, which the processor uses to latch the input data, is accomplished by
means of -CAS. The data is latched upon the negation (trailing edge) of -CAS. Read control is ac­
complished through the use of one signal - Read (Rj - WHB). The timing of - Read is found in Table
2-18.

Table 2-17 8-Bit Dynamic Read Address Strobes

Address Signal Edge Device

Row -RAS Assertion (leading) Dynamic
Column -CAS Assertion (leading) Dynamic
SAL -RAS Assertion (leading) Dynamic or static
DAL -RAS Assertion (leading) Dynamic or static

Table 2-18 8-Bit Dynamic Read Control Timing

Signal

- RD (R/ - WHB)
- RD (R/ - WHB)

Mode

Normal
Delayed

Parameter

Read control before -CAS assertion
Read control at or after -CAS assertion

2-20

PRELIMINARY

2.9.3 Instruction Fetch
An instruction fetch is indicated by different signals, depending on the mode. Refer to Figure A-8 in
Appendix A.

2.9.3.1 4Kj16K Mode - In 4Kjl6K 8-bit dynamic mode, AI<O> is asserted at the leading edge of
- RAS to indicate a fetch operation. AI <0> is three-stated before the leading edge PI. Fetch is in­
dicated by AI <0> high.

NOTE
During refresh the AI lines have the refresh counter
address on them.

2.9.3.2 64K Mode - Static modes and 64K use SEL<O> high and SEL< 1 > low to indicate a fetch
condition. When SEL<O> signifies a fetch, it is asserted only during the low-byte read cycle. Fetch is
indicated by SEL<O> high and SEL< 1> low.

2.10 8-BIT DYNAMIC WRITE TRANSACTION
A write transaction consists of three distinct processes:

• Output of addresses
• Output of data
• Input of DMA request (refer to Paragraph 2.14)

Detailed timing of an 8-bit dynamic write transaction is found in Figure A-9 in Appendix A. .

When a word read or a word write is being executed, the transaction is repeated twice and the two
transactions are indivisible. For example, the MOV (move word) instruction first does a read transac­
tion and addresses the low-byte data. The address is then incremented by one and the second read trans­
action addresses the high-byte data. In the case of the MOVB (move byte) instruction, the transaction
occurs only once.

NOTE
All references to input or output are to the processor.

A write transaction is always preceded by a read
transaction (the two are indivisible) except when
writing the stack during an interrupt or trap.

2.10.1 Output of Address
Both static and dynamic addresses are output concurrently while in dynamic mode.

2.10.1.1 Dynamic Address - Refer to Figures 2-16 and 2-17. The address is output on AI<7:0>. The
AI lines output the row address first and the column address second. Table 2-19 lists the address bits
required in 4Kj16K mode and 64K mode.

NOTE
The AI lines are not in order. Refer to Table 2-20.

2.10.1.2 Static Address - Addressing of a static ROM, RAM, or register in a system which is support­
ing dynamic devices is accomplished by outputs concurrent with AI<7:0>. The high byte of the ad­
dress is output on SAL<15:8>. The low byte of the address is output on DAL<7:0>.

2-21

PRELIMINARY

MEMORY

SAL(DAL)<15:8> .)

SYSTEM

ADDRESS

Vt) DATA
DAL<7:0>

~ ADDRESS

DCT11-AA AI<7:0> "\
./ ADDRESS

-RAS DATA
-CAS AND

PI ADDRESS
STROBES

WRITE CONTROL

-WT (RI -WLB) i
MR·4858

Figure 2-16 8-Bit Dynamic Write, Block Diagram

2-22

SAL<15:8>
(DAL)

DAL<7:0>

AI<7:0>

-RAS

-CAS

PI

-RD (R/ -WHB)

-WT (R/ -WLB)
DELAYED

-WT (R/ -WLB)
NORMAL

HI BYTE OF ADDRESS

'----y---J
ADDRESS STROBES

DATA OUT

y

DATA STROBES

Figure 2-17 8-Bit Dynamic Write Timing

2-23

PRELIMINARY

MR-4859

PRELIMINARY

Table 2-19 8-Bit Dynamic Write Addressing Scheme

Mode Memory Chip Address AI Used

4Kj16K 4K X 1 AO-AII <6:1>
4Kjl6K 16K X I AO-AI3 <7:1>
64K 64K X 1 AO-AlS <7:0>

Table 2-20 8-Bit Dynamic Write AI Addressing

Address

4Kj16K 64K
AI -RAS -CAS -RAS -CAS

<0> FET A14 AIS Al4
<I> Al A2 Al A2
<2> A3 A4 A3 A4
<3> AS A6 AS A6
<4> A7 A8 A7 A8
<5> A9 AIO A9 AIO
<6> All AD All AO
<7> A13 AI2 AI3 Al2

2.10.1.3 Address Control - Table 2-21 indicates the signals and edges required to latch each portion of
the address into the memory system or register.

2.10.2 Output of Data
Refer to Figure 2-17. The data is output on DAL<7:0>.

Data Control - The signals used to latch the data into a memory system or register and the edge re­
quired are found in Table 2-22. Write control is accomplished through the use of one signal, -Write
(Rj - WLB). The timing of - Write is found in Table 2-23.

Address

Row
Column
SAL
DAL

Table 2-21 8-Bit Dynamic Write Address Strobes

Signal Edge

-RAS Assertion (leading)
-CAS Assertion (leading)
-RAS Assertion (leading)
-RAS Assertion (leading)

Table 2-22 8-Bit Dynamic Write Data Strobes

Signal

-RAS
-CAS
PI
PI

Edge

Negation (trailing)
Negation (trailing)
Assertion (leading)
Negation (trailing)

2-24

Device

Dynamic
Dynamic
Dynamic or static
Dynamic or static

PRELIMINARY

Table 2-23 8-Bit Dynamic Write Control Timing

Signal Mode Parameter

- WT (R/ - WLB)
- WT (R/ - WLB)

Normal
Delayed

Write control before -CAS assertion
Write control at or after -CAS assertion

2.11 REFRESH TRANSACTION
A refresh transaction consists of three distinct processes:

• Output of refresh address
• Address control
• Output of SEL<O> and SEL< 1 > (in 4Kj 16K mode only)

Detailed timing of a refresh transaction is found in Figure A-I0 in Appendix A.

NOTE
All references to input or output are to the processor.

2.11.1 Output of Refresh Address
Refer to Figures 2-18 and 2-19. The refresh address is output on AI <7:0>. Refresh occurs at different
times:

• After an instruction fetch:

8-bit mode - every instruction
16-bit mode - after every other instruction

• After addressing modes 5, 6, and 7:

Index
Index -deferred
Au todecrement -deferred

• During the following instructions:

HALT
TRAP
BPT
lOT

• During all interrupts and traps.

2.11.2 Address Control
Address strobe, which is used to latch the address' into the memory, is accomplished by means of
- RAS. The address is latched upon the assertion (leading edge) of - RAS.

2-25

PRELIMINARY

'\ AI<7:0> DYNAMIC vi MEMORY
-RAS SYSTEM

DCT11-AA

MR-4864

Figure 2-18 Refresh Transaction, Block Diagram

DAL <15:0> ««<<<<<<<<<<»»>»»)))))))))))))

AI<7:0> REFRESH ADDRESS

-RAS

-CAS

PI

SEL<O> j
4K/16K
MODE ------

SEL <1>

Figure 2-19 Refresh Transaction Timing

2-26

MA-4865

2.11.3 Output of SEL<O> and SEL<l>
Refer to Figure 2-19. If mode register bit 10 is not set (MR<10>
refresh transaction:

• SEL<O> high
• SEL<I> low

PRELIMINARY

1, 4Kj16K mode) during the

If MR<IO> is set (MR<10> = 0, 64K mode) during the refresh transaction:

• SEL<O> low
• SEL<I> low

SEL < I :0> are low for other transactions (refer to Table A-lOin Appendix A).

2.12 lACK (INTERRUPT ACKNOWLEDGE) TRANSACTION
An lACK transaction, which clears the interrupt request, consists of two distinct processes:

• Output of interrupt acknowledge data
• Input of vector address [if - VEC (AI <5» was asserted]

Detailed timing of an lACK transaction is found in Figure A-II in Appendix A.

NOTE
All references to input or output are to the processor.

2.12.1 Output of Interrupt Acknowledge Data
Refer to Figures 2-20 and 2-21. The processor first outputs the interrupt acknowledge data on
DAL< 12:8> with the same polarity as the received data. The acknowledge data consists of the coded
priority of the interrupting device. This coded priority was first received on Al<5:1> at the time of
the interrupt request. Refer to Table 2-24. The strobe, which is provided for the interrupting device to
use, is - RAS. The interrupt acknowledge is valid upon the assertion (leading edge) of - RAS.

,
DAL<12:8>

~
V

DAL<7:1>
DCT11·AA DEVICE

SEL 0

SEL 1

-RAS

MA-4860

Figure 2-20 lACK Transaction, Block Diagram

2-27

PRELIMINARY

DAL<12:8> INTERRUPT ACKNOWLEDGE DATA

DAL<7:1> VECTOR DATA

-RAS

-CAS

PI

SEL<O>

SEL <1>

Figure 2-21 lACK Transaction Timing

Table 2-24 Interrupt Acknowledge Data

Interrupt Request

-CP<3>
-CP<2>
-CP<I>
-CP<O>
-VEC

2.12.2 Input of Vector Address

AI<I>
AI<2>
AI<3>
AI<4>
AI<5>

Acknowledge

DAL<8>
DAL<9>
DAL<10>
DAL<II>
DAL<12>

MA-4861

If vector (- VEC) AI < 5 > was asserted at the time of the interrupt request, the input of an external
vector address should be driven by the user on DAL<7:2>. If - VEC was not asserted at the time of
the interrupt request, 1 of the 15 vector addresses internal to the processor is used.

Refer to Figure 2-21. Select (SEL) output flag 1 « 1 » is used by the processor to input the vector.
The vector address is latched upon the negation (trailing edge) of SEL < 1 >. If the READY input is
asserted, the latching of the vector address into the DCTI1-AA is delayed by one microcycle. (Depend­
ing on the pulsing of READY, more microcycles may be added.)

2-28

PRELIMINARY

2.13 BUSNOP (NO OPERATION) TRANSACTION
A busnop transaction is a specific processor state in which no processes occur at the outputs. The fol­
lowing is a list of the states found at the outputs.

• DAL<15:0>
• AI<7:0>
• -RAS
• -CAS
• PI
• Rj-WHB
• Rj-WLB
• SEL<O>
• SEL<I>

Previously latched data
Three-state (static mode) invalid output (dynamic mode)
High
High
Low
High
High
Low
Low

A busnop transaction occurs, for example, during an instruction decode cycle and internal processor
computations. Detailed timing of a busnop transaction is found in Figure A-12 in Appendix A.

2.14 DMA (DIRECT MEMORY ACCESS) TRANSACTION
A DMA transaction consists of three processes:

• Three-state of DAL< 15:0> and internal pull-ups on AI<7:0>, Rj - WHB, Rj - WLB
• Output of -RAS, -CAS, and PI
• Output of DMG

Detailed timing of a DMA transaction is found in Figure A-13 in Appendix A.

NOTE
All references to input or output are to the processor.

Upon receiving a DMA request on AI<O>, the processor (at the end of the current transaction) in­
itiates a DMA transaction. The DCTII-AA provides - RAS, -CAS, PI, and COUT signals. The ex­
ternal circuitry is responsible for controlling the Rj - WHB and Rj - WLB lines, providing the ad­
dress, and providing or accepting data.

During DMA transfers, system circuity goes through the following sequence.

1. A DMA request (DMR) to the DCTII-AA is made by driving AI<O> low during PI.

2. The request is latched into the DCTII-AA during PI and shortly thereafter a DMA grant is
issued.

3. The processor relinquishes control of the bus to the device requesting the DMA.

If the bus is required for a longer period of time, the requesting device must insure that AI <0> is low
at the negation (trailing edge) of each PI.

2.14.1 Three-State of DAL<15:0>
Refer to Figure 2-22. The processor three-states DAL< 15:0>. This is required to free the bus for the
requesting device. AI <7:0>, Rj - WHB, and Rj - WLB have internal pull-ups.

2-29

PRELIMINARY

COUP

DAL<15:0>

AI<O>

-RAS

-CAS

PI

RI -WHB
RI -WLB

DMG
(SEL<O»

DMG
(SEL<l»

.... -------- SINGLE DMA TRANSACTION --------......

J~-----

J~-----

'PULSE MODE CLOCK (MODE REGISTER<O> = 1).

MA-4867

Figure 2-22 DMA Timing

2-30

PRELIMINARY

2.14.2 Output of -RAS, -CAS, and PI
The -RAS and -CAS signals are generated during the DMA transaction for use by the dynamic
memory system as timing strobes. Refer to Figure 2-22. The output of PI is continued for the purpose of
strobing the input of another DMA request on AI <0>. The DMA request is latched into the processor
upon the negation (trailing edge) of PI.

2.14.3 Output of Direct Memory Grant (DMG)
Refer to Figure 2-22. When the grant is issued the DCTII-AA takes the following actions.

• SEL<O> and SEL< 1 > are asserted (high), informing the system that the grant has been
issued and both signals are valid at the assertion (leading edge) of - RAS.

• -RAS, -CAS, PI, and COUT are driven with the timings specified in the DMA transac­
tion timing diagram (refer to Figure A-14 in Appendix A).

• The DALs are three-stated.

• AI <7:0>, Rj - WHB, and Rj - WLB are implemented by internal pull-ups.

When the grant is issued, external circuitry must drive the Rj - WHB and Rj - WLB lines and initially
drive the DALs with the address. In dynamic memory systems the address must be multiplexed on
AI <7:0> so that the memory chips are provided with row and column addresses at the appropriate
times. Later in the transaction the data transfer on the DALs takes place in a direction controlled by
the state of the Rj - WHB and Rj - WLB lines.

2.14.4 READY Input
If the READY input is activated (refer to Paragraph 3.4.6), the DMA transaction is extended by one
microcycle. (Depending on the pulsing of READY, more microcycles may be added.)

2.15 ASPI (ASSERT PRIORITY IN) TRANSACTION
An ASPI transaction consists of two processes:

• Input of interrupt and DMA request
• -CAS without -RAS

Detailed timing of an ASPI transaction is found in Figure A-14 in Appendix A.

NOTE
All references to input or output are to the processor.

Refer to Figures 2-23 and 2-24. The processor reads AI<7:0>. If any line is asserted, the processor
acts on the interrupt (depending on the priority); if not, no action takes place. For information con­
cerning the interrupt structure, refer to Paragraph l.5. The ASPI transaction generates a -CAS with­
out generating a - RAS. ASPI transactions occur only during a reset instruction, halt instruc­
tionjinterrupt, wait instruction, or during the power-u'p sequence.

Input Control
The interrupt strobe, which the processor uses to latch the interrupt and DMA request data, is accom­
plished by means of PI. The interrupt is latched by the processor upon the negation (trailing edge) of
PI.

2-31

PRELIMINARY

/'- \ DAL<15:0>

'\r V

DCT11-AA (AI<7:0>) DEVICE

AI<7:0>

-RAS

-CAS

PI

....
-RAS

-CAS

PI

Figure 2-23 ASP! Transaction, Block Diagram

INT& DMA
REQUEST

Figure 2-24 ASP! Transaction Timing

2-32

MR-4862

MA-4863

3.1 INTRODUCTION

PRELIMINARY

CHAPTER 3
PIN DESCRIPTIONS

This chapter describes the functions performed by each DCTII-AA pin. The pins, and thus, the chap­
ter, are divided into five groups:

• Datajaddress lines (DAL<15:0»
• Addressjinterrupt (AI <7:0»
• Control lines (SEL<I:0>, Rj-WHB, Rj-WLB, -RAS, -CAS, PI, Ready)
• Miscellaneous signals (- BCLR, PUP, COUT, XTLl, XtLO)
• Power pim. (BGND, GND, Vce)

Refer to Figure 3-1 and Tables 3-1 through 3-5. Several DCTII-AA pins perform different functions
depending on the mode. Therefore, signal names vary from pin names. The mode-dependent pins are

• DAL<15:0>
• AI<7:0>
• Select (SEL < I :0>)
• Readj - Write High Byte (Rj - WHB)
• Readj - Write Low Byte (Rj - WLB)
• Clock Output (COUT)

Each pin function is described under the pin name. If the pin is mode-dependent, a description of each
mode is found under the pin name.

Table 3-1 Mapping of AI onto DAL during an lACK Transaction*

Interrupt Request Time

-CP<3>
-CP<2>
-CP<I>
-CP<O>
-VEC

AI<I>
AI<2>
AI<3>
AI<4>
AI<5>

AI <0> (not mapped)
AI <6> (not mapped)
AI<7> (not mapped)

lACK Transaction

DAL<8>
DAL<9>
DAL<IO>
DAL<II>
DAL<12>

DAL<7:0> ("don't care")
DAL<15:13> ("don't care")

*The logic level is maintained in the AI-to-DAL mapping. For example, if
AI < I > is high at interrupt request time, DAL<8> is high at lACK time.

3-1

PRELIMINARY

DATA/ADDRESS LINES DAL15 40 VCC +5V

DAL14 2 39 AI7 -HLT ADDRESS/INTERRUPT

DAL13 3 38 AI6 -PF DYNAMIC MODE

OUTPUT
DAL12 4 37 AI5 -VEC ROW ADDRESS

COLUMN ADDRESS
DALll 5 36 AI4 -CPO

INPUT
INTERRUPT & DMR

DAL10 6 35 AI3 -CPl DURING PI TIME

DAL9 7 34 AI2 -CP2
STATIC MODE

2ND GROUND BGND B 33 All -CP3 INPUT ONLY

DALB 9
DCT11-AA

32 AIO -DMR ADDRESS/INTERRUPT

DAL7 10 31 PI PRIORITY IN STROBE

DAL6 11 30 -CAS COLUMN ADDRESS STROBE

DAL5 12 29 -RAS ROW ADDRESS STROBE

DAL4 13 28 R/-WL8 READIWRITE LOW BYTE (16)
WRITE (8)

DAL3 14 27 R/-WHB READ/WRITE HIGH BYTE (16)
READ (B)

DAL2 15 26 READY EXTEND TRANSACTION

DALl 16 25 SELO
} SELECT OUTPUT FLAGS

DATA/ADDRESS LINES DALO 17 24 SELl
SEE BELOW

BUS CLEAR -BCLR 18 23 XTLO CRYSTAL

POWER-UP PUP 19 22 XTLl CRYSTAL /EXT OSC

1ST GROUND GND 20 21 COUT CLOCK OUTPUT

SELECT OUTPUT FLAGS

SEL<l> SEL<O> FUNCTION
L L READIWRITE
L H REFRESH/FETCH
H L lACK
H H DMG

MlA·5211

Figure 3-1 DCTlI-AA Pin Layout

3-2

PRELIMINARY

Table 3-2 Signal and Pin Utilization, 16-Bit Mode

Signal Names

Pin(s) I Pin Name Static 4Kj16K Dynamic 64K Dynamic

Data Address Lines

1-7,9 DAL<IS:8> DAL<IS:8> DAL<IS:8> DAL<IS:8>
10-17 DAL<7:0> DAL<7:0> DAL<7:0> DAL<7:0>

Address Interrupt Lines

-RAS -CAS PI -RAS -CAS PI

32 AI<O> -DMR FET* AI4 -DMR AIS AI4 -DMR
33 AI<I> -CP<3> Al A2 -CP<3> Al A2 -CP<3>
34 AI<2> -CP<2> A3 A4 -CP<2> A3 A4 -CP<2>
3S AI<3> -CP<I> AS A6 -CP<I> AS A6 -CP<I>
36 AI<4> -CP<O> A7 A8 -CP<O> A7 A8 -CP<O>
37 AI<S> -VEC A9 AIO -VEC A9 AIO -VEC
38 AI<6> -PF All AI2 -PF All AI2 -PF
39 AI<7> -HALT AI3 AI4 -HALT AI3 AI4 -HALT

Control Signals

24 SELlt lACK + DMG lACK + DMG lACK + DMG
2S SELot FET + DMG REF + DMG FET + DMG
26 READY READY READY READY
27 Rj-WHB Rj-WHB Rj-WHB Rj-WHB
28 Rj-WLB Rj-WLB Rj-WLB Rj-WLB
29 -RAS -RAS -RAS -RAS
30 -CAS -CAS -CAS -CAS
31 PI PI PI PI

Miscellaneous Signals

18 -BCLR -BCLR -BCLR -BCLR
19 PUP PUP PUP PUP
21 COUT COUT COUT COUT
22 XTLI XTLI XTLI XTLI
23 XTLO XTLO XTLO XTLO

Power Pins

8 BGND BGND BGND BGND
20 GND GND GND GND
40 VCC VCC VCC VCC

NOTES

* During - RAS, AI <0> is used to indicate a fetch operation in progress. During refresh, AI <0> is the output of the re­
fresh counter at - RAS time.

tSEL< I > and SEL<O> are encoded; refer to Tables 3-4 and 3-S.

3-3

PRELIMINARY

Table 3-3 Signal and Pin Utilization, 8-Bit Mode

Signal Names

Pin(s) I Pin Name Static 4Kj16K Dynamic 64K Dynamic

Data Address Lines

1-7,9 DAL<15:8> SAL<15:8> SAL<15:8> SAL<15:8>
10--17 DAL<7:0> DAJ-,<7:0> DAL<7:0> DAL<7:0>

Address Interrupt Lines

-RAS -CAS PI -RAS -CAS PI

32 AI<O> -DMR FET* AI4 -DMR AI5 AI4 -DMR
33 AI<I> -CP<3> Al A2 -CP<3> Al A2 -CP<3>
34 AI<2> -CP<2> A3 A4 -CP<2> A3 A4 -CP<2>
35 AI<3> -CP<I> A5 A6 -CP<I> A5 A6 -CP<I>
36 AI<4> -CP<O> A7 A8 -CP<O> A7 A8 -CP<O>
37 AI<5> -VEC A9 AIO -VEC A9 AIO -VEC
38 AI<6> -PF All AO -PF All AO -PF
39 AI<7> -HALT AI3 AI2 -HALT AI3 AI2 -HALT

Control Signals

24 SELlt lACK + DMG lACK + DMG lACK + DMG
25 SELOt FET + DMG REF + DMG FET + DMG
26 READY READY READY READY
27 Rj-WHB -RD -RD -RD
28 Rj-WLB -WT -WT -WT
29 -RAS -RAS -RAS -RAS
30 -CAS -CAS -CAS -CAS
31 PI PI PI PI

Miscellaneous Signals

18 -BCLR -BCLR -BCLR -BeLR
19 PUP PUP PUP PUP
21 eOUT COUT COUT eOUT
22 XTLI XTLI XTLI XTLI
23 XTLO XTLO XTLO XTLO

Power Pins

8 BGND BGND BGND BGND
20 GND GND GND GND
40 Vec Vce Vee Vee

NOTES

* During - RAS, AI <0> is used to indicate a fetch operation in progress. During refresh, AI <0> is the output of the re­
fresh counter at - RAS time.

tSEL< I> and SEL<O> are encoded; refer to Tables 3-4 and 3-5.

3.2 DATA ADDRESS LINES (DAL< 15:0»
DAL< 15:0> functions depend upon the selection of 8-bit or 16-bit mode. During read/write transac­
tions (refer to Paragraph 2.2.1) the DALs are time multiplexed in two ways. In 16-bit mode, they multi­
plex the address, then the data. In 8-bit mode, in addition to the address/data multiplexing, there is low
byte/high byte multiplexing.

3-4

--

PRELIMINARY

Table 3-4 SEL<1:0> Functions in Static Mode or Dynamic 64K Mode

SEL<l>

L
L
H
H

SEL<O>

L
H
L
H

Function

Read, write, ASPI, or busnop
Fetch (PDP-II instruction fetch)
lACK (interrupt acknowledge)
DMG (direct memory grant)

Table 3-5 SEL<1:0> Functions in Dynamic 4Kj16K Mode

SEL<l>

L
L
H
H

3.2.1 16-Bit Mode - DAL<15:0>
DAL< 15:0> are used in six cases.

SEL<O>

L
H
L
H

1. During a read/write transaction:

Function

Read, write, ASPI, or busnop
Refresh
lACK (interrupt acknowledge)
DMG (direct memory grant)

DAL< 15:0> are time multiplexed and used for the address and the data. Read/write trans­
actions are defined in Paragraphs 2.3 through 2.10.

2. During an lACK transaction:

The information present on AI<5:1> at the time of the interrupt request is output on
DAL<12:8>. Refer to Table 3-1. Paragraph 2.12 defines the lACK (interrupt acknowl­
edge) transaction.

3. During a DMA transaction:

DAL< 15:0> are three-stated. The DMA (direct memory access) transaction is defined in
Paragraph 2.14.

4. During a busnop and refresh transaction:

DAL< 15:0> contain previously latched data.

5. During an ASPI transaction:

DAL< 15:0> are three-stated.

6. During the power-up sequence or a reset instruction:

The mode register bits are read in from DAL< 15:8, 1:0>. Low-current internal pull-ups are
enabled on these lines when - BCLR is asserted. This avoids the need to drive the bits that
are to be high.

3-5

PRELIMINARY

3.2.2 8-Bit Mode - DAL<15:8>
The signal name for DAL<15:8> in 8-bit mode is static address lines (SAL<15:8», which are used
in six cases.

I. During a read/write transaction:

SAL< 15:8> contains the high byte of the address throughout the transaction. In 8-bit mode
two transactions (one data byte per transaction) are required for a word read or write.
Read/write transactions are defined in Paragraphs 2.3 through 2.10.

2. During an lACK transaction:

The information present on AI <5: 1> at the time of the interrupt request is output on
DAL<12:8>. Refer to Table 3-1. Paragraph 2.12 defines the lACK (interrupt acknowl­
edge) transaction.

3. During a DMA transaction:

DAL< 15:8> are three-stated. The DMA (direct memory access) transaction is defined in
Paragraph 2.14. .

4. During a busnop and refresh transaction:

DAL< 15:0> contain previously latched data.

5. During an ASPI transaction:

DAL< 15:0> are three-stated.

6. During the power-up sequence or a reset instruction:

The mode register bits are read in from DAL<15:8>. Low-current internal pull-ups are en­
abled on these lines when - BCLR is asserted. This avoids the need to drive the bits that are
to be high.

3.2.3 8-Bit Mode - DAL<7:0>
DAL<7:0> are used in six cases.

1. During a read/write transaction:

DAL<7:0> are time multiplexed and used for the low byte of address and data. In 8-bit
mode the data is either the low byte or the high byte. Refer to Figure 3-1. Read/write trans­
actions are defined in Paragraphs 2.3 through 2.10.

2. During an lACK transaction:

DAL<7:2> are used for the input of an external vector address (if - VEC was asserted
during the interrupt request). DAL<I:0> are irrelevant because the DCTII-AA replaces
them with a 0 after reading them in. This is due to the fact that vectors use two words: PC
and PSW. Paragraph 2.12 defines the lACK (interrupt acknowledge) transaction.

3-6

'-

--

PRELIMINARY

3. During a DMA transaction:

DAL<7:0> are three-stated. The DMA (direct memory access) transaction is defined in
Paragraph 2.14.

4. During a busnop and refresh transaction:

DAL< 15:0> contain previously latched data.

5. During an ASPI transaction:

DAL< 15:0> are three-stated.

6. During the power-up sequence or a reset instruction:

The mode register bits are read in from DAL< 1 :0>. Low-current internal pull-ups are en­
abled on these lines when - BCLR is asserted. This avoids the need to drive the bits that are
to be high.

3.3 ADDRESS INTERRUPT (AI <7:0>)
During read, write, refresh, DMA, and ASPI transactions the AI lines (AI <7:0» perform various
functions. The function of AI <7:0> depends upon the selection of one of the following modes: static,
dynamic 4K/16K, or dynamic 64K. Three functions are time multiplexed on AI<7:0>:

• Output of row address
• Output of column address
• Input of interrupts and/or DMA requests

During busnop and lACK transactions, AI <7:0> act as inputs in static modes and contain previously
latched data in dynamic modes. The AI lines are described in three parts:

• At - RAS and -CAS time (static mode)
• At -RAS and -CAS time (dynamic mode)
• At PI time (static or dynamic mode)

3.3.1 AI<7:0> at -RAS and -CAS Time (Static Mode)
While in static mode the address interrupt lines are used as inputs for interrupts and/or DMA requests
during all transactions. AI <7:0> are implemented by internal active low-current pull-ups.

3.3.2 AI<7:0> at -RAS and -CAS Time (Dynamic Mode)
During read/write transactions the address interrupt lines are used as outputs at - RAS and - CAS
time only. The AIs are time multiplexed in two ways:

• Prior to the assertion (leading edge) of row address strobe (- RAS), the Al lines output the
row address for a dynamic RAM. At the occurrence of - RAS, the data on the AI lines is
valid.

• Prior to the assertion (leading edge) of column address strobe (- CAS), the AI lines output
the column address for a dynamic RAM. At the occurrence of - CAS, the data on the AI
lines is valid.

3-7

PRELIMINARY

During refresh transactions· AI <7:0> are used to output the row address at - RAS time. During
DMA and ASPI transactions AI <7:0> have internal low-current pull-ups and are used as inputs.

NOTE
The dynamic address on AI<7:0> available at
- RAS and - CAS time is duplicated on
DAL<15:0> at -RAS time.

3.3.3 AI<7:0> at Priority In (PI) Time (Dynamic and Static Modes)
During read/write, DMA, and ASPI transactions at PI time, AI <7:0> are used as inputs. These lines
are implemented by internal low-current pull-ups. The AI lines input interrupt and DMA requests at
the negation (trailing. edge) of PI. Refer to Table 3-6.

Transaction

Read (static)

Write (static)

Read (dynamic)

Write (dynamic)

Refresh

DMA

ASPI

NOTE
The DCTll-AA does not react to interrupt requests
posted during write and DMA transactions.

Table 3-6 AI Functions

@ -RAS (L.E.) @ -CAS (L.E.)
Output Output

* *

* *
Row address Column address

Row address Column address

Row address N/A

* *

N/A *

* - Internal low-current passive pull-ups.
N/ A - Not applicable.

Interrupt and DMA requests are implemented by the following signals.

@PI (T.E.)
Input

Interrupt/DMR

DMR

Interrupt/DMR

DMR

N/A

DMR

Interrupt/DMR

-DMR (Direct Memory Request) AI<O>. When the processor reads a DMA request as­
serted, it (upon termination of almost any current bus transaction) frees the bus for the
DMA device. Refer to Paragraph 2.14 for the definition of a DMA transaction.

-CP<3:0> (Coded Priority) AI<I:4>. Logic internal to the processor decodes these inputs as an
interrupt request on one of four maskable levels. Refer to Paragraph 1.5 for the defini­
tion of the DCTII-AA interrupt structure.

- VEC (Vector) AI<5>. The signal has meaning only if one or more of -CP<3:0> are
asserted. - VEe signals the processor to ignore the internal vector address indicated
by -CP<3:0> and instead uses the vector address to be provided by the user. The
priority of the -CP lines is not ignored. The user-provided vector address is read dur­
ing the lACK transaction.

3-8

-PF

-HALT

PRELIMINARY

(Power Fail) AI<6>. -PF has the highest priority on level seven. If -PF and a level
seven request from CP<3:0> are both present at PI time, the DCTlI-AA services the
- PF first by stacking the PC and PS and jumping to vector address 24. The input
circuit requires no data setup time. Internal logic samples the - PF and then pauses
for up to one instruction before recognizing a request. The - PF input is pseudo-edge
sensitive. It must be read as a negation before another assertion is recognized.

(Halt) AI<7>. -HALT is an unmaskable interrupt. It always causes a jump, after
stacking the PS and PC, to the restart address with PS = 3408. The - HALT input is
pseudo-edge sensitive. It must be read as a negation before another assertion is recog­
nized.

3.4 CONTROL LINES
The control lines are composed of signals the DCTII-AA uses to control the normal operation of the
system. The lines are

• -RAS
• -CAS

• PI
• Rj-WHB
• Rj-WLB
• SEL<l>
• SEL<O>
• READY

Table 3-7 indicates the transactions in which each of these signals is used. During all transactions not
mentioned in the following description, the control lines remain in their unasserted state (except
READY, which is an input).

Table 3-7 Control Signal Usage

Transaction -RAS -CAS PI R/-WHB R/-WLB SEL<O> SEL<l> READY

Read/write X X X X X *

Refresh X 2

lACK X X *

DMG X X X 3 3 X X *

ASPI X X

X - Asserted.
* - Causes one or more microcycle slips.
I - Asserted in static mode and dynamic 64K mode when read as a PDP-II instruction fetch; in 8-bit mode, asserted only in

the low-byte transaction of a fetch.
2 - Asserted in dynamic 4K/I6K mode.
3 - Three-stated.

The - RAS, - CAS, and PI signals are control strobes and act on a iogic transition. Rj - WHB,
Rj - WLB, SEL< 1 >, SEL<O>, and READY are static control lines and act on a logic level. Figure
3-2 shows the leading and trailing edges. The leading edge is the edge that changes the signal from the
unasserted state to the asserted state.

3-9

PRELIMINARY

LEADING EDGE ~~-______ -JP TRAILING EDGE
-RAS

-CAS

PI LEADING EDGE ~

ASSERTED

ASSERTED r TRAILING EDGE

Figure 3-2 Leading and Trailing Edge

3.4.1 -RAS (Row Address Strobe)

MA·5274

The - RAS signal is the system address strobe. Table 3-7 indicates the transactions in which - RAS is
asserted. During read/write transactions the assertion (leading edge) of -RAS is used to strobe the
address present on the DALs (for memories not using the - RAS / - CAS multiplexing) and the row
address present on the AIs (for the dynamic memories that use it). During a write transaction the nega­
tion (trailing edge) of - RAS may be used as the data output strobe.

During a refresh transaction (dynamic mode only) the assertion (leading edge) of -RAS is used to
strobe the row address present on the AI lines.

During an lACK transaction the assertion (leading edge) of - RAS strobes the lACK information,
which is present on DAL< 12:8>, to the system. The negation (trailing edge) of - RAS strobes the
vector address (user-supplied) into the DCTII-AA.

During a DMA transaction - RAS provides the DMA device with the same function and timing as
used in read/write transactions.

3.4.2 -CAS (Column Address Strobe)
The -CAS signal is an address and chip select strobe. Table 3-7 indicates the transactions in which
-CAS is asserted. During read/write transactions -CAS provides various functions:

• The assertion (leading edge) of - CAS provides an early warning of the impending occur­
rence of PI, and therefore, may be used to latch interrupt and DMA requests before they are
strobed onto the AI lines.

• In dynamic read/write transactions the assertion (leading edge) of -CAS strobes the col­
umn address present on the AI lines.

• In read transactions the negation (trailing edge) of -CAS is used to strobe the data (user­
supplied) from the DALs into the DCTII-AA.

• In write transactions the negation (trailing edge) of -CAS may be used as the data output
strobe.

During a DMA transaction the assertion (leading edge) of -CAS provides the DMA device with the
same function and timing used in read/write transactions.

During ASPI transactions the assertion (leading edge) of -CAS may be used to latch interrupt and
DMA requests before they are strobed onto the AI lines.

3-10

PRELIMINARY

3.4.3 PI (Priority In)
PI is the system interrupt request strobe. PI is used in read, write, DMA, and ASPI transactions. Refer
to Tables 3-6 and 3-7. The function and timing of PI are the same in all four transactions.

Whenever PI is asserted the AI lines are used as inputs. These lines are implemented by internal low­
current pull-ups. Therefore, the assertion (leading edge) of PI can be used to strobe the signals
- HAL T, PF, - VEC, -CP<3:0>, and DMR onto the AI lines. (Refer to Paragraph 3.3.)

During write transactions both the assertion (leading edge) and the negation (trailing edge) of PI can be
used as data output strobes.

During write transactions PI can be used to gate the write enable signals (R/ - WHB and R/ - WLB)
for memories and peripherals requiring write enable after the assertion of -CAS.

3.4.4 Rj - WHB and Rj - WLB
The signal names for pin 27 (Rj - WHB) and pin 28 (R/ - WLB) change according to the selection of
8-bit or 16-bit data bus mode.

3.4.4.1 Rj - WHB and Rj - WLB (l6-Bit Mode) - The write enable signals Read/ - Write High
Byte (R/ - WHB) and Read/ - Write Low Byte (Rj- WLB) are used exclusively in read/write trans­
actions. R/ - WHB and R/ - WLB are asserted (low) when the transaction is a write to a high byte or a
low byte.

Normal or delayed mode affects the timing of R/ - WHB and R/ - WLB. In normal mode the
read/write timing is compatible with that of the Motorola 6800 bus peripherals. In delayed mode the
timing is compatible with that of the Intel™ 8080 bus peripherals. During a DMA transaction both pins
are internal low-current pull-ups.

3.4.4.2 R/ - WHB (- RD) and R/ - WLB (-WT) (8-Bit Mode) - The mutually exclusive signals
- RD (read enable) and - WT (write enable) are used only in read/write transactions. The - RD sig­
nal is asserted low during a read transaction and - WT is asserted low during a write transaction.

Normal or delayed mode affects the timing of - RD and - WT. In normal mode the read/write timing
is compatible with that of the Motorola 6800 bus peripherals. In delayed mode the timing is compatible
with that of the Intel 8080 bus peripherals. During a DMA transaction both pins are internal low-cur­
rent pull-ups.

3.4.5 SEL< 1 > and SEL<O>
Select I (SEL< I» and Select 0 (SEL<O» are encoded lines and indicate which transaction is
being performed. Refer to Tables 3-4 and 3-5.

3.4.6 READY
Through the use of the READY signal, I/0 devices or memory of any speed may be synchronized with
the DCTII-AA. The READY signal is not generated by the DCT11-AA but by some peripheral device.
The signal is input to the DCTII-AA via the READY input. The signal is used to place the DCTII-AA
into an idle state while the peripheral device finishes its operation.

Refer to Figure 3-3. A single assertion of READY causes a single microcycle slip. An additional cycle
slip requires the READY signal to be pulsed again. The assertion of READY has no effect unless
- RAS is also asserted. The microcycle slip starts after the assertion of - RAS, - CAS, and PI leading
edges. A single microcycle slip occurs during every bus transaction if the READY input is connected to
ground.

TMlntel is a trademark of the Intel Corporation.

3-11

\,U , -IV

COUT r-, I \ I \ ,--, __ _

READY NOTE 2
NOTE 5
NOTE 6 \\S\~\\\\\\\\ ~t~~ 07//7 ~_~~t;~ 111111111111111111111111111111111771//1/

NOTE 1:
NOTE 2:
NOTE 3:
NOTE 4:
NOTE 5:
NOTE 6:

I. MICROCYCLE SLIP 1 'I' MICROCYCLE SLIP 2 ·1
DAL<15:O> _---'XrTTT((((TTTT((((TTTT((('7TT1(((('T'TT1(((("TTT1(((("'TTT1((((rTrr{(((rrrT(((TT-r1((((""T'T"T"1((((rrT"r((((rTTT""(((-D-A T A -I N -----'r« «fC({(f{ [~ ~ _-~~~ ~ ~ ~ ~ ~]I

I. MICROCYCLE SLIP 1 .1. MICROCYCLE SLIP 2 ,

AI<7:0> '---'x X ((((((((((((((((((((((((((((((((((((((~NETQ~E~~A xr ~ IT (Q UIIQ ~ ~t~E~~~ ~ ~ ILK
I. MICROCYCLE SLIP 1 I. MICROCYCLE SLIP 2 ·1

-RAS
\ ,---------------7 ! t I ______________ -J

I. MICROCYCLE SLIP 1 ·1· MICROCYCLE SLIP 2 -I
-CAS \ r--- -------7 :

____________ -1

I' MICROCYCLE SLIP 1 '1' MICROCYCLE SLIP 2 '1
PI _____ ---.JI \L__________ \ ---- ------\

\

WAVEFORMS ARE DRAWN FOR IS-BIT DYNAMIC READ
READY WAVEFORM IS VALID FOR ANY CASE
R/-WLB R/-WHB ARE ASSERTED HI THROUGHOUT THE TRANSACTION
SEL 0 SEL 1 ARE ASSERTED LO THROUGHOUT THE TRANSACTION
THE READY PULSE MAY BE OBTAINED BY GATING COUT WITH A READY ENABLE SIGNAL
HOLDING READY PERMANENTLY LOW RESULTS IN ONE MICROCYCLE SLIP PER BUS TRANSACTION

Figure 3-3 READY Timing

VALID
OUTPUT r::::::I IGNORED

INPUT

I N V A LID "iV'T'TT'1\'Cr
OUTPUT ~ CONDITIONAL

VA LID -y-----y-
INPUT ..A-----A...

1XillillXI
- -- -_ •• ., r-

I I _J'- ______ .I~_

MR-4869

"0
:D m r--~ -Z
l>
:D
-<

PRELIMINARY

The READY signal extends the following transactions.

• Read
• Write
• lACK
• DMA

Detailed timing of READY is found in Figure A-15 in Appendix A.

3.5 MISCELLANEOUS SIGNALS
This group of signals includes the following.

• -BCLR
• PUP
• COUT
• XTLI
• XTLO

3.5.1 - BCLR (Bus Clear)
The signal - BCLR on pin 18 is asserted low by the processor during the power-up sequence and during
the execution of a PDP-II reset instruction. The -BCLR signal asserted (low) enables the mode regis­
ter pull-ups on DAL<I5:8,I:0>. The -BCLR pin must be connected to ground through a lK fl, 1%
resistor. The signal's characterisitics are given in Table A-2 in Appendix A.

3.5.2 PUP (Power-Up)
PUP is a Schmitt-triggered input having a low-current internal pull-down that is always enabled. When
PUP is forced high, the Schmitt-trigger senses the transition. When the processor detects a change
from high back to low, the power-up sequence begins.

If PUP is asserted high during a DCTII-AA operation, the current transaction is terminated and all
internal registers go to an undefined state. The DALs and AI lines output undefined data and the con­
trol and miscellaneous signals are in an unasserted state. As soon as PUP is asserted low the power-up
sequence begins.

The power-up sequence is a series of events that initializes the DCTlI-AA. The power-up sequence
occurs in. two cases.

1. When Vee is applied:

• PUP changes state (low to high).
• The - BCLR output is asserted.
• PUP changes state (high to low).
• The mode register is loaded.
• The - BCLR output is cleared.
• 20 refresh transactions (8-bit dynamic) and 10 refresh transactions (l6-bit dynamic) or

20 busnop transactions (8-bit static) and 10 busnop transactions (l6-bit dynamic) occur.
• The stack pointer is loaded to 3768, the program counter is loaded to the start address,

and the processor status word is loaded to 3408.
• An ASPI transaction occurs.

3-13

PRELIMINARY

2. When a reset instruction is executed:

• The - BCLR output is asserted.
• The mode register is loaded.
• The - BCLR output is cleared.
• An ASPI transaction occurs.

Detailed timing of power-up is found in Figure A-16 in Appendix A.

3.5.2.1 Power-Up (PUP) Input - Refer to Figures 3-4 and 3-5. The processor detects a transition from
low to high on the PUP input. The transition is sensed by an internal Schmitt trigger, which provides a
clean, fast edge when the input reaches a predetermined level (TTL VIL = 0.8 V). When the processor
detects a change from high back to low, the mode register load begins.

-BCLR J MODE I -I BUFFER

A I I MEMORY

i<lAL<15:a.1:0> SYSTEM
(DYNAMIC)

-RAS

DCT11·AA ~ AI<7:0>

"" I
,/

PUP ~
V

DEVICE
-CAS

PI

~A-4870

Figure 3-4 Power-Up Sequence, Block Diagram

3.5.2.2 Bus Clear (- BCLR) - As a result of PUP being high, the processor is forced to an initial
condition with undefined register states. It is at this time (PUP high) that - BCLR is asserted. The
- BCLR signal is also asserted as a result of a program reset instruction. The - BCLR signal is a
strobe used by the user to enable pull-downs on data address lines (DALs) < 15:8>,< 1 :0> at mode
register read time. The mode register is loaded through DAL<15:0>. However, DAL<7:2> are re­
served. The - BCLR signal may also be used to initialize the rest of the system.

3.5.2.3 Mode Register Load - The mode register input begins after - BCLR is asserted and PUP is
low. The load process continues until the microcode returns - BCLR to a high.

3.5.2.4 Refresh or Busnop Transaction - Depending on the condition of the mode register the proces­
sor generates either refresh or busnop transactions. Refer to Table 3-8 for the conditions and the num­
ber of transactions generated.

3.5.2.5 Loading the SP, PC, and PSW - After the completion of the refresh or busnop transactions
the processor loads the stack pointer (SP) with 3768. The program counter (PC) is loaded with the start
address and, finally, the processor status word (PSW) is loaded with 3408.

3-14

PRELIMINARY

PUP J \~\~~~s~s ------~s~s---
-BelR \\\\\\\\\ IS I

ss

MODE REGISTER MODE REGISTER

LOAD ~ ~rAD

OAl<15 0> = = 1(((((((m ((c }}~R---A-= = = = =: = = = X
REFRESH 1 REFRESH 20 (8-BIT MODE)

Al<70> = = l(((mmmmm :: m))))m}~~\ ltD10 !16"T MOOEI

- - - r--------~55r------_r_--~1 H \ I
-RAS __ J \ I \ I

L_..J L_-'
MR-4871

Figure 3-5 Power-Up Sequence Timing

Table 3-8 Refresh and Busnop

Mode Busnop Refresh

8-bit/dynamic 20
16-bit/dynamic 10
8-bit/static 20
16-bit/static 10

3.5.2.6 ASPI Transaction - The last process in the power-up sequence is an ASPI transaction to check
for interrupts and DMA. At the completion of the ASPI transaction, normal operation begins. Refer to
Paragraph 2.15 for details on the ASPI transaction.

3.5.3 COUT (Clock Output)
COUT outputs a TTL-level clock that is a function of mode register bit 0 (MR <0». MR <0> deter­
mines if the output is to be processor mode clock (MR <0> = 1) or constant clock (MR <0> = 0).
Refer to Figure 3-6. In constant clock mode the output is at a frequency half that of the operating
frequency (the frequency of XTLO and XTLl). In processor clock mode a clock pulse is asserted once
every microcycle (every three or four oscillator periods). Detailed timing of COUT is found in Figure
A-17 in Appendix A.

3.5.4 XTLI and XTLO (Crystal Inputs)
These two pins (22 and 23) are the external crystal connections to the internal clock generator. If an
external TTL clock is used, it must be applied to XTLl (pin 22), and XTLO (pin 23) must be grounded.
Detailed timing of XT AL is found in Figure A-17 in Appendix A.

3-15

PRELIMINARY

XTLO I

COUT
CONSTANT
(MRO = 0)"

COUT I
PMC
(MRO= 1)

"MAY BE EITHER POLARITY DEPENDING ON THE OCCURRENCE OF PHASE D.

Figure 3-6 eOUT Timing

3.6 POWER PINS
The following are pins associated with the power source of the DCTlI-AA.

• BGND
• GND

• Vee

3.6.1 GND and BGND

MA-4868

BGND and GND should be connected together. They provide the reference ground for all lines of the
DCTII-AA.

3.6.2 Vee
Pin 40 is the + 5 V supply for the DCTII-AA. This voltage must be maintained to within ± 5% of 5 V.

3-16

--

4.1 INTRODUCTION

PRELIMINARY

CHAPTER 4
MODE SELECTION

Most DCTII-AA features are programmable through the use of an internal 16-bit mode register (MR).
The DCTII-AA must be programmed during the power-up sequence and may be reprogrammed when
the PDP-II reset instruction is executed.

The four sections of this chapter describe:

• Modes related to function
• Modes related to timing
• Mode register bit settings
• Mode register selection guidelines

4.2 MODES RELATED TO FUNCTION
Refer to Figure 4-1 and Table 4-1. The modes related to function effect the functionality of the proces­
sor. These modes are

• 16-bit or 8-bit data bus MR< II >
• Dynamic or static memory MR<9>
• 64K or 4K/16K memory chip size MR<10>
• Tester or user MR<12>
• Start/restart address MR<15:13>

4.2.1 16-Bit or 8-Bit Mode (MR<l1»
Mode register bit II determines if the processor operates the data bus in 8-bit mode or 16-bit mode.
The selection of either 8-bit or 16-bit data bus effects the DAL< 15:0>, R/ - WHB, R/WLB, and
AI <7:6> lines during read/write transactions. It also determines the number of transactions needed to
read or write a word.

4.2.1.1 16-Bit Mode - I f mode register bit II is asserted low (MR < II> = 0), 16-bit data bus mode
is selected and the following occurs in a read or write transaction (refer to Figures 2-2 through 2-9).

Data address lines:

DAL<15:0> - Output of the 16-bit address before the assertion (leading edge) of - RAS.

DAL<15:0> - Input or output of 16-bit data at read/write time.

Read/write control:

Each byte of a PDP-II 16-bit word is assigned a separate write control signal (R/ - WHB and
R/-WLB).

4-1

PRELIMINARY

<15:13>
12
11
10
09

START/RESTART ADDRESS
TESTER/USER MODE
16-BIT/8-BIT BUS
64K/4K OR 16K MEMORY
DYNAMIC/STATIC MEMORY

ADDRESS BITS START
<15:13> ADDRESS

7 172000
6 173000
5 000000
4 010000
3 020000
2 040000
1 100000
0 140000

08
<7:2>
01
00

07

RESTART
ADDRESS

172004
173004
000004
010004
020004
040004
100004
140004

06

NORMAL/DELAYED R/W
RESERVED
LONG/STANDARD MICROCYCLE
CONSTANT/PROCESSOR MODE CLOCK

Figure 4-1 Mode Register

Table 4-1 Mode Register Bit Settings

Mode Register Bit

o

8

9

10

II

12

State

I
o
I
o
I
o
I
o
I
o
I
o
I
o

Mode

Processor clock
Constant clock
Standard microcycle
Long microcycle
Delayed read/write
Normal read/write
Static memory
Dynamic memory
4K/ 16K memory
64K memory
8-bit bus
16-bit bus
User
Tester

MR 4843

4.2.1.2 8-Bit Mode - I f mode register bit 11 is not asserted (MR < 11 > = 1), 8-bit data bus mode is
selected. Two transactions are required to perform a word read or word write. The following occurs
during a word read or word write operation (refer to Figures 2-10 through 2-17).

Data address lines:

DAL<I5:0> Output of the 16-bit address before the assertion (leading edge) of - RAS.

DAL< 15:8> - The signal names for these pins are static address lines (SAL< 15:8:;»;
they hold the high byte of the address throughout the. two transactions.

DAL<7:0> - Contains the low byte of the address during the read/write time of the first
transaction and the data during the read/write time of the second transaction.

4-2

PRELIMINARY

Read/write control:

A separate read/write control signal is provided for a read and for a write. The read/write control
signals are Read (- RD, pin name R/ - WHB) and Write (- WT, pin name R/ - WLB). These
signals are mutually exclusive.

4.2.2 Dynamic or Static Mode (MR <9>)
Mode register bit 9 determines if the processor supports dynamic or static memories. This mode affects
the operation of the AI lines and SEL< 1 :0> during read/write transactions, and the occurrence of the
refresh transaction (which adds time to the instruction execution time).

4.2.2.1 Dynamic Mode - If mode register bit 9 is asserted low (MR<9> = 0), dynamic mode is
selected and dynamic memories are directly supported. Besides outputting the address on
DAL < 15:0> before the assertion of - RAS, the DCTII-AA also outputs row and column addresses
on A 1< 7 :0>. The row address is output before the assertion (leading edge) of - RAS, which strobes it
into the memory chips. The column address is output before the assertion (leading edge) of -CAS,
which strobes it into the memory chips. In addition, automatic refresh is provided by means of the
refresh transaction (refer to Paragraph 2.11).

4.2.2.2 Static Mode - If mode register bit 9 is not asserted (MR<9> = 1), static mode is selected.
The memory is addressed using DAL< 15:0> at - RAS time and no refresh is provided. AI <7:0>
are used only for inputting interrupt and/or DMA information.

4.2.3 64K or 4K/16K Mode (MR<10»
Mode register bit 10 applies to dynamic mode only (in static mode it has no effect) and is used for
selecting the dynamic memory chip type. In 64K mode (MR < 10> = 0), memory chips such as 64K
X I-bit are supported.

In 4K/16K mode (MR<IO>
Refer to Table 4-2.

1), memory chips such as 4K X I-bit or 16K X I-bit are supported.

4.2.4 Tester or User Mode (MR<12»
Tester mode is for Digital Equipment Corporation's use only. If mode register bit 12 IS high
(MR<12> = 1), user mode is selected.

Table 4-2 DCTlI-AA Modes

Class Bit Mode Name Function

Modes related MR<9> Static or dynamic Dynamic RAM support
to function. MR<IO> 4K/ 16K or 64K RAM chip type

MR<II> 8-bit or 16-bit bus Data bus width
MR<12> Tester or user Tester or user
MR<15:13> Start/restart Start/restart address

Modes related MR<O> Processor clock or COUT timing
to timing. constant clock

MR<I> Long or standard Microcode length
microcycle

MR<8> Normal or delayed Read/write timing
read/write

4-3

PRELIMINARY

4.2.5 Start and Restart Address (MR<15:13»
Mode register bits 15-13 are used to specify one of eight start/restart addresses. The start address is
internally loaded into the program counter (PC) during the power-up sequence. For details on the pow­
er-up sequence refer to Paragraph 3.5.2. The restart address is loaded into the PC when a halt interrupt
is received or during the execution of a PDP-II halt instruction. Figure 4-1 indicates the available
start / restart addresses.

4.3 MODES RELATED TO TIMING
The following modes related to timing affect the timing of the processor but not its functionality.

• Constant or processor clock MR<O>
• Long or standard microcycle MR < I >
• Normal or delayed read/write MR<8>

4.3.1 Constant or Processor Clock (MR<O»
If mode register bit 0 is asserted low (MR<O> = 0), constant clock mode is selected. The output of
COUT (pin 21) is a continuous clock waveform at a frequency half that of the operating frequency (the
frequency at XTLO and XTLl).

If mode register bit 0 is high (MR<O> = 1), processor clock mode is selected. In processor clock
mode, COUT outputs a clock pulse once every microcycle at phase W. This will occur every three or
four clock phases, depending on the presence of phase D.

4.3.2 Long or Standard Microcycle (MR < 1 >)
Mode register bit 1 allows for the selection of a long or standard microcycle. If the bit is low (MR < 1 >
= 0), long microcycle mode is selected. Long microcycle mode is used in conjunction with memory or
peripherial chips that require a long access time. When long microcycle mode is selected, all micro­
cycles are made up of four operating frequency periods (they all contain OD).

If mode register bit I is high (MR < 1 > = I), a standard microcycle takes place. A standard micro­
cycle is three or four operating frequency periods long, depending on the type of transaction.

4.3.3 Normal or Delayed Read/Write (MR <8»
If mode register bit 8 is low (MR<8> = 0), the DCTII-AA is in the normal read/write mode. In
normal read/write mode, the read/write control lines (R/ - WHB and R/ - WLB) become valid before
the assertion (leading edge) of - RAS and remain valid after its negation (trailing edge).

If mode register bit 8 is not asserted (MR<8> = 1), the DCTII-AA is in the delayed read/write
mode and the read/write control signals have the same timing as -CAS.

4.4 MODE REGISTER BIT SETTING
The mode register is set during the power-up sequence, or when the reset instruction is executed. At
either of these times the DCTII-AA asserts (low) the bus clear (- BCLR) signal, which may be used to
enable external drivers. The external drivers assert specific bits on the DALs to load the desired mode
in the mode register. The data on the DALs must be stable throughout the duration of the - BCLR
pulse.

NOTE
The assertion of - BCLR enables active internal
pull-ups on DAL<lS:8,1:0>. Only those mode reg­
ister bits that must be driven low need be asserted.

4-4

PRELIMINARY

4.5 MODE REGISTER SELECTION GUIDELINES
The general guidelines below presume the DCTII-AA user has one or more of the following goals in
mind.

• Minimum cost
• Maximum speed
• Minimum size (chip count)
• Minimum development time

The suggested user modes are listed in the order of their influence upon the desired goal.

4.5.1 Minimum Cost
In order to minimize the cost of a system, the implementation of the following modes is suggested.

• 8-bit
• Dynamic
• Long microcycle

4.5.1.1 8-Bit Mode - This mode allow.s the use of 8-bit-wide device registers, data bus, and memories.
In this mode the minimum memory (typically n X 1 organization) uses eight chips.

4.5.1.2 Dynamic Mode - Although dynamic RAMs require refresh logic (provided by the DCT 11-
AA) they provide greater memory capacity at less cost.

4.5.1.3 Long Microcycle Mode - Long microcycle mode allows for the use of slower (less expensive)
chips.

4.5.2 Maximum Speed
In order to maximize the speed of a system, the implementation of the following modes is suggested.

• 16-bit
• Static
• Standard microcycle

4.5.2.1 16-Bit Mode - Every word read or word write operation is performed in a single transaction
rather than in two (8-bit mode). The 16-bit mode is typically 50% to 70% faster than 8-bit mode.

4.5.2.2 Static Mode - In static mode no refresh transactions occur. Without refresh transactions a
10% time saving for computational code is possible.

4.5.2.3 Standard Microcycle - A minor saving in time is possible through the use of this mode because
of the use of faster chips.

4.5.3 Mimimum Size (Chip Count)
In order to minimize the size (chip count) of a system, the implementation of the following modes is
suggested.

• 8-bit
• Static

4-5

PRELIMINARY

4.5.3.1 8-Bit Mode - This mode allows the use of 8-bit-wide device registers, data bus, and memories.
In this mode the minimum memory (typically n X 1 organization) uses eight chips.

4.5.3.2 Static Mode - Static mode can take advantage of n X 4 and n X 8 static RAMs in order to
minimize chip count.

4.5.4 Minimum Development Time
I n order to minimize the development time of a system, the implementation of the following modes is
suggested.

• 16-bit
• Static

4.5.4.1 16-Bit Mode - A 16-bit system is simpler to develop than an 8-bit system because in 16-bit
mode a single transaction performs a word read and a word write. Also, a 16-bit system is easier to
debug.

4.5.4.2 Static Mode - A static mode system is simpler to develop because no refresh transactions are
needed. Also, in a static system the AI lines are inputs at all times.

4-6

5.1 INTRODUCTION

PRELIMINARY

CHAPTER 5
INTERFACING

This chapter contains information that is useful for interfacing the DCTll-AA to most systems. The
chapter does not provide answers to all possible questions, but offers a few examples and solutions that
will enable the reader to get started. Interfacing information is presented on the following areas.

• Power-up
• Loading the mode register
• System clock
• Address latch and decode
• Memory subsystems
• Interrupts
• DMA
• Working with peripheral chips

NOTE
This chapter assumes that the reader is familiar with
the material presented in the previous chapters.

5.2 POWER-UP
Refer to Figure 5-1. A simple circuit can be constructed from a single ceramic capacitor C. The capaci­
tor must satisfy the following conditions:

• C;;;;' 0.04 /iF
• C (/iF) ;;;;. 0.05 tR (ms)

where tR is the rise time of Vee.

NOTE
The DCTII-AA powers up in an undefined state (re­
gardless of the state of PUP) until Vee is stable at
Vee minimum.

5.3 LOADING THE MODE REGISTER
Figure 5-2 shows how to program the mode register. On power-up, or when executing a reset instruc­
tion, the - BCLR pin is asserted low; this enables the desired bits onto the data address lines (DALs).
While - BCLR is asserted the DALs map one-for-one onto the internal mode register. When - BCLR
is negated the mode register is write-protected and the LS244 (buffer) shows a three-state load onto the
DALs. Unasserted bits may be left floating since they are pulled up internally by the DCTII-AA when
- BCLR is low. The - BCLR signal is buffered to provide enough drive for system initialization. All

5-1

PRELIMINARY

DAl <15:8.
1:0>

DCT11-A

Vcc

ct
L..------t pUP

DCT11-AA

MR-5501

Figure 5-\ Power-Up Circuit

-BClR u---.-----c~

1Kn
1%

-PUP

Figure 5-2 Mode Register Loading

Vcc

lS244

MR-5502

devices in the system (except the buffer containing data for the mode register) should three-state their
outputs connected to DAL<15:0> at -BCLR time. This is done to prevent the mode register from
being loaded with questionable data.

S.4 CLOCK

NOTE
The pull-down resistor on - BCLR must be 1 K 1"2 @
1 % to guarantee timing specifications. The - BCLR
signal can sink up to 3.2 rnA and source 80 /-LA (can
drive two TTL loads in addition to the IK 1"2 load).

The DCTII-AA clock is generated by an internal clock circuit. This circuit uses as an input one of two
sources:

• A crystal
• A TTL oscillator

5-2

PRELIMINARY

5.4.1 Crystal-Based Clock
The DCTII-AA oscillator circuit is a quasi-linear wide-band amplifier. Refer to Figure 5-3. Three com­
ponents and proper layout are required to use a crystal with the DCTII-AA. The three components are

• A crystal, with loss resistance (RS) at various resonancies
• An input capacitor (CA) connected to XTLO (pin 23)
• An output capacitor (CB) connected to XTLl (pin 22)

cA

D
I---r----i XTL 1

'::'

CB c::J DCTll-AA

XTLO

MR-550B

Figure 5-3 Crystal Oscillator Clock

A fourth component (caused by stray effects of crystal and layout) is a strong input-output capacitance
(CD) between XTLO and XTL 1. Other stray components, such as high frequency inductance of the
connections, have only minor effects at frequencies « 7.5 MHz) when connection paths are less than
two inches_

The capacitors CA and CB are needed to adjust the load to the crystal. The inputs XTLO and XTLl
load the crystal to more than 30 pF (which is the nominal load for most crystals), thus pulling it off
frequency.

The recommended circuit values for the crystal oscillator clock in Figure 5-3 are

Crystal:

Cut at fundamental (At)
Load 30 pF
Rs < 200 Q -7- fMHz (fundamental; i.e., 27 Q @ 7.5 MHz)
Rs > 4000 Q -7- fMHz (spurious)
Rs > 400 Q -7- fMHz (harmonic)
Co < 4 pF

Capacitors:

Type mica
Nominal value (± 10%)

CA (XTLO) 500 pF -7- fMHz (example: 67 pF @ 7.5 MHz)
C B (XTLl) 200 pF -7- fMHz (example: 27 pF @ 7.5 MHz)

These specifications guarantee against third harmonic and spurious start-ups. If such guarantees are
not necessary and only a steady oscillation is required, most crystals can be used. Detailed timing of
XT AL is found in Figure A-I7 in Appendix A.

5-3

PRELIMINARY

5.4.2 TTL Oscillator-Based Clock
Refer to Figures 5-4 and 5-5. A TTL signal may be used to drive XTLl (pin 22) while XTLO (pin 23) is
grounded. The XTL 1 TTL signal must satisfy the following criteria.

• Period T > 133 ns
• Rise time tR < 80 ns
• Fall time tF < 80 ns
• Low time tL > 60 ns
• High time tH > 60 ns

t------i XTL 1

DCTll-AA

XTLO

MR-5509

Figure 5-4 TTL Oscillator Clock

MR-5503

Figure 5-5 TTL Oscillator Waveform

Refer to Figure 5-6. The XTLl signal may be gated to stop operation of the DCTII-AA as long as the
signal at the XTL 1 pin meets or exceeds the above criteria. XTL 1 may be left high or low indefinitely.

STOP L

XTLl

DCT11-AA

XTLO

MR-5504

Figure 5-6 Gating XTL 1

5.5 ADDRESS LATCH AND DECODE
Refer to Figure 5-7. In 16-bit mode the 16 bits of address can be conveniently latched by a transparent
latch (such as an LS373) enabled by the row address strobe (- RAS) leading edge.

Refer to Figure 5-8. In 8-bit mode only the low byte of the address needs to be latched since the high
byte remains stable on the static address lines (SAL< 15:8» throughout the whole read or write trans­
action.

Address decoding can be done in a number of traditional ways. In Figures 5-7 and 5-8 PLAs are used to

5-4

PRELIMINARY

provide direct strobing of several registers. Because the circuit uses a transparent latch, the PLA inputs
are stable before - RAS; therefore, some of the strobes have - RAS timing, whereas others have col­
umn address strobe (-CAS) timing. The CAS signal should be ANDed with RAS to prevent the en­
abling of strobes during an ASP! transaction.

DAL <15:0>
2X 16
LS373 t--.,...~ 82S101

DCTll-AA

-RAS ~,,----~----~--~
VCC

-CAS ~--a._~

RAS
TIMING
STROBES

CAS
TIMING
STROBES

MR·5SQ7

Figure 5-7 16-Bit Address Latch and Decode

SAL < 15:8 >~8~ ___
VCC

8

DAL < 7:0 > ~8"""""-t LS373 t--+-... 8+--t 82S101

DCT11-AA

-RAS~,-----~--~~--~

Vec

-CASD--<LJ 8

RAS
TIMING
STROBES

CAS
TIMING
STROBES

MR-5506

Figure 5-8 8-Bit Address Latch and Decode

5.6 MEMORY SUBSYSTEMS
Two examples of memory subsystems are described below, one using 16-bit mode and the other using 8-
bit mode.

5.6.1 16-Bit Mode Memory System
An example of a 16-bit mode dynamic memory system is shown in Figure 5-9. The memory map is
shown in Figure 5-10. The address is latched in the LS373 chips by -RAS. The address is then de­
coded in the LS138 into eight sectors in the upper half of the memory. The sector 140000 to 147776

5-5

Vo
I
0\

ADDR. LATCH
r--"------.

ADDR.DECODE
~

ROM RAM
r---------------~A~ ________________ ~

AI<7:1>1 7 (
DAL<15:0:;: I ; (16

I) 16 i i •

16

LDAL<i5:0> H I ROM
LDAL<II:I>H 2716-1

n---01----....IA 10: (X2)

DCTll-AA

ADDR
LATCH
LS373
(X2)

10 AO

ADDR
DECODE

A

B LS138

C.

Gl

-RASO~--------~--------~

-CAS~
Plt-~--~

R/-WLBO 01

R/-WHB 0 01

WLB L

RD L

RAMCAS L

RAMCAS L

NOTE' 15 0

MODE' REGISTER = MR<150> = 11 10 1 0 1 1 1011 101 0 IX I X I Xix IX IX 11 11 I
X = DON'T CARE

o

~ , L

RAM LB
4116-3
(XB)

RAM HB
4116-3
(X8)

DIN _

7

Figure 5-9 16-Bit ROM (4K) and Dynamic RAM (32K) Subsystem

177776
170000

160000

140000

LS244
(X2)

RD L

Y7

Y6

16

64KB
60KB

56KB

48KB

~;""jj;;;;;';;»>;;;;",j 32 K B

16KB

Wff/P/L«////ff/ffPpA OKB

MR 5"17

"'tJ
:ll m r-.-
3C -z »
:0
.-<

PRELIMINARY

maps into the ROM. This is implemented by selecting the ROM (- CE) with the output Y 4 and select­
ing -OE with -CAS (refer to Figure 5-10). The fast variation ROM (2716-1) must be used, if run­
ning at more than 6.9 MHz, in order to meet the DCT11-AA specification of tRRD (405 ns at 7.5
MHz).

177776 .------......, 64KB

170000 60KB

160000 56KB

140000 f""=..:. ="1 48KB

100000 ='?777'7~ 32KB

40000 16KB

o OKB

Figure 5-10 16-Bit System Memory Map

The RAM is made of high-byte and low-byte sections that have everything in common except the
- WE strobe. The whole RAM is chip selected by controlling - CAS and sending - RAS to all chips
at all times. Using -CAS as chip select has the advantage of refreshing a row at every occurrence of
-RAS.

Although -CAS drives 160 pF (10 pF per RAM chip), it does not require buffering. The DCT11-AA
output timings are specified for a purely capacitive load of 80 pF. For loading other than 80 pF use the
following correction factors.

•
•

80 pF < CL < 200 pF
25 pF < CL < 80 pF

+0.3 nsjpF
-0.3 nsjpF

This results in a -CAS delay of 80 X 0.3 = 24 ns with respect to the nominal timing specifications.
Such a delay still meets the RAM chip specifications for -RAS and -CAS hold time (55 ns min­
imum for 4116-3). Refer to Figure 5-11.

The DALs drive the DIN inputs of the RAMs directly. The DOUT lines cannot be connected directly
to the DAL bus and must be buffered. This is required because the DCTII-AA does not drive the data
on the DALs soon enough (before the -CAS leading edge) to perform an early write on the RAMs.
Thus, the system only performs a read-modify-writet which would result in contention on the DALs.
The contention would occur between the data driven by the DCTI1-AA and the DOUT driven by the
RAM chips.

5-7

PRELIMINARY

AI AT DCT11-AA
PIN NOMINAL (COLUMN ADDRESS

tAHC = 90 ns MIN

CAS AT DCTll-AA
PIN NOMINAL

CAS AT RAM
PIN ACTUAL

i--tCD = 24-

~\\\\\ \ \\ \'

tCD = CAS DELAY CAUSED BY 160 pF LOAD (160-80) X.3 = 24ns

ALL TIMINGS IN ns

1--90-24 = 66 ns MIN-

Figure 5-11 Column Address Setup and Hold-Time Calculations

MA-5511

The buffer is enabled only when the DCTII-AA is performing a read from RAM (signal RD L). Tables
5-1 and 5-2 list the control signals and the states of the data bus for each transaction, respectively.

Table 5-1 Control Signals for Each Transaction

Transaction -RAS -CAS

Read * *

Fetch * *

Write * *

Refresh *

lACK *

DMA * *

ASPI *

Busnop

* - Signal asserted during the transaction.
I - Static modes and dynamic 64K.
2 - Dynamic modes 4Kj16K.
X - Signal asserted during 8-bit mode only.

- Signal asserted during 16-bit mode only.
3S - Three-state.

5.6.2 8-Bit Mode Memory System

PI Rj-WHB Rj-WLB

* X

* X

* *

* 3S 3S

*

SELO SELl

2

*

* *

Refer to Figure 5-12. Since the data bus is 8 bits wide and the memory organization is different from
that of a 16-bit system, an 8-bit minimum system can be implemented using only half as many memory
chips as a 16-bit minimum system. The memory map implemented is shown in Figure 5-13 and the
circuit schematic in Figure 5-14. The signals WT Land RD L are easily generated in this con­
figuration.

5-8

PRELIMINARY

Table 5-2 Data Bus for Each Transaction

Transaction DALLow Byte DAL High Byte

Read X

Fetch X

Write * X

Refresh * *

lACK *

DMA 3S 3S

ASPI

Busnop * •
X - Lines driven after address portion of transaction (8-bit mode only).
* - Lines driven after address portion of transaction (8-bit and 16-bit modes).

- Dynamic modes only.
3S - Three-state.

4

ADDR. 2

o
HB b

HB a

15 B 7

16 BIT

LB b

LB a

o

4

3

ADDR. 2

1

0

7

Figure 5-12 16-Bit/8-Bit Memory Organization

5-9

HB b

LB b

HB a

LB a

0

8 BIT

MR·5513

AI

*

1

3S

1

PRELIMINARY

177777 .-------......., 64KB

160000 I---~---I

140000 ""'='""'""'""=~ 48KB

1 00000 1---...:...::.----1 32KB

16KB

o OKB

MR-5514

Figure 5-13 8-Bit System Memory Map

ADDR.LATCH ADDR.DECODE ROM RAM

7
~ ~ ~ ,

AI<7:1>

DAL<7:0>
8

SAL<15:8> 8
3 8

SAL<10:8>H
Al0:A8 8 8

LDAL<7:0>H
ROM
2716·1

ADDR A7:AO
8 RAM

LATCH 4116·3 LS244
LS373 (x8)

ADDR
DECODE 7

DCT11·AA

B
LS138

C
WT L

Gl
RD L

PI

R/-WLBn-_____ --<::J
(-WT)

WTL SAL <15> L

R/-WHB~--------------------------<l
(-RD)

MR·!)515

Figure 5-14 8-Bit ROM (2K) and Dynamic RAM (16K) Subsystem

5-10

PRELI.MINARY

5.7 INTERRUPTS
The examples of interrupts cover the following areas.

• Posting interrupts
• Decoding lACK information
• External vectors
• Using a priority encoder chip
• Direct CP (coded priority) encoding

5.7.1 Posting Interrupts
Refer to Figure 5-15. To avoid propagation of metastable states, it is necessary to drive stable signals as
interrupt requests. A latch can be used for this purpose. The delay between - CAS and PI (tcsp = 105
ns @ 7.5 MHz) is long enough to settle any metastable states on the output of the flip-flop.

INIT L ~.--­

lACK L'

ANY AI

DCTll-AA

IRQ L

-CAS D-~(l

Vcc PI ~ ______________________ ~

'lACK L; (SEL Q·SEL 1) + (-RAS)

MA·5519

Figure 5-15 General Interrupt

5.7.2 Decoding lACK Information
Figure 5-16 shows an example of how to decode lACK information for 15 CP devices. An LS 138 can
be used instead of an LS 154 when fewer interrupts are needed. The LS 138 can also be used if care is
taken to pick CP codes such that one of the CP lines is always low for all CP codes (3-line encoding).

Figure 5-17 shows an example of a complete interrupt system (interrupt request and interrupt acknowl­
edge) for six CP devices.

5.7.3 External Vectors
If - VEC (AI <5» is asserted (low) during the interrupt request, the DCTI1-AA obtains the vector
on DAL<7:2> from the device during the lACK transaction. Figure 5-18 shows an example of such a
circuit.

5.7.4 Using a Priority Encoder Chip
Refer to Figure 5-19. Six devices can generate an interrupt using the internal vectors of the DCTll­
AA.

In order to handle more than 15 CP interrupts, each of the 15 prioritized lines can be made up of a
daisy chain of several devices. All devices on the same daisy chain have the same CP code, but they are
distinguished from one another by different external vectors during the lACK transaction.

5-11

PRELIMINARY

(CPO) DAL<ll>

(CP1) DAL<lO>

(CP2) DAL<9>

(CP3) DAL<8>

DCT11-AA

-RAS

SEL 1

SEL 0

INCREASING
PRIORITY

A 15 lACK 1 L

1
B

154
C

D 1 lACK 15 L

0
G1 G2

lACK L

NOTE:
lACK 1 CORRESPONDS TO ALL CPs ASSERTED
AT IRQ TIME (I.E., INTERNAL VECTOR 140).
lACK 15 CORRESPONDS TO ONLY CPO ASSERTED
(I.E., INTERRUPT VECTOR 70)_

MR-5518

Figure 5-16 Decoding lACK Information for 16 CP Devices

5-12

--

DEV61ROL

DEV51ROL

DEV 4 IRO L

DEV31ROL

DEV21ROL

DEV1IROL

CAS L

LS138

LS148

DURING lACK

DURING IRO{

A

AO

DAL11

-CPO

AI4

L
H
L
H
L
H

GS

DAL10

-CPl

AI3

L
L
L
L
L
L

SELl H----------~

SELO H

PRELIMINARY

INTERRUPT REOUEST CIRCUIT

VCC
LS148

7 EN-
6 CODER

. LS244
DMR L AI<O> (-DMRI

LS273 BUFFER

LATCH 5 A2 AI<l> (-CP31

4 Al AI<2> (-CP21

3 GS AI<3> (-CP1)

2 AO AI<4> (-CPO)

1 AI<5> (-VEOI

0 AI<6> (-PFI
El

VCC AI<7> (-HLTI

GND

INITL
PI H

B C Y2 Y3 Y4 Y5 Y6 Y7

Al A2 0 1 2 345

DAL9 DAL8

-CP2 -CP3 INTERNAL
AI2 All VECTORS

H L H H H H H L L H H H H H DEV6 100
H L H H H H L H H L H H H H DEV5 104
L H H H H L H H H H L H H H DEV4 120
L H H H L H H H H H H L H H DEV3 124
H H H L H H H H H H H H L H DEV2 60
H H L H H H H H H H H H H L DEVl 64

lACK CIRCUIT

LS138
Y7 DEV 1 lACK L

(CPO DAL<ll> A
Y6 DEV 2 lACK L

(CP21 DAL<9> B
Y5 DEV 3 lACK L

(CP31 DAL<8> C
Y4 DEV 4 lACK L

VCC Gl
Y3 DEV 5 lACK L

DEV 6 lACK L

'SIGNAL IS GENERATED BY THE USER AND MUST BE STABLE AT PI TIME.
MR 5520

Figure 5-17 Interrupt System

5-13

PRELIMINARY

RESUL TlNG
GND

VECTOR"

(34) DEV 3 lACK L

(54) DEV 2 lACK L

(64)

(70)

lACK L •

DEV 1 lACK L

DEV 0 lACK L

DAL<12> -~_~

LS244

'lACK L = (SE L O·SE L 1) + (-RAS)

DAL<7>

DAL<6>

DAL<5>

DAL<4>

DAL<3>

DAL<2>

"CAN BE HARDWI RED I F A SI NG LE EXTERNAL VECTOR INTER RUPT IS USED

'··USED ONLY WITH BOTH EXTERNAL AND INTERNAL VECTOR
(IF EXTERNAL ONLY, USE lACK L)

Figure 5-18 Driving an External Vector During lACK

5-14

MR-5521

IRO 6 L

IR05 L

IR04 L

IRO 3 L

IRO 2 L

IRO 1 L

PF I RO L

HLTIROL

CAS L

LS374

9

B

7

6

5

4

3

2

DMR L*

D

C
LS147

B

A

VEC L*

PI H

PRELIMINARY

AI<O> (-DMR)

AI<l> (-CP3)

AI<2> (-CP2)

AI<3> (-CP1)
LS244

AI<4> (-CPO)

AI<5> (-VEC)

AI<6> (-PF)

AI<7> (-HLT)

'SIGNALS ARE GENERATED BY THE USER AND MUST BE STABLE AT PI TIME (L.E.).

INTERNAL
-CP<3> -CP<2> -CP<l> -CP<O> PRIORITY VECTOR DEVICES
(AI<l» (AI<2» (AI<3» (AI<4» LEVEL ADDRESS IMPLEMENTED

X X X X B HLT IRO
X X X X B 24 PF IRO
L L L L 7 140
L L L H 7 144
L L H L 7 150
L L H H 7 154
L H L L 6 100
L H L H 6 104
L H H L 6 110
L H H H 6 114
H L L L 5 120
H L L H 5 124 IR06
H L H L 5 130 IR05
H L H H 5 134 IR04
H H L L 4 60 IR03
H H L H 4 64 IR02
H H H L 4 70 IROl
H H H H NO ACTION

MR·5522

Figure 5-19 Interrupt Request Circuit (Priority Encoder)

5-15

PRELIMINARY

5.7.5 Direct CP Encoding
Direct CP encoding (refer to Figure 5-20) can be accomplished only when there are four or less CP
devices (one device per CP line). The highest priority device D3 will connect directly to CP<3> and
the lowest to CP<O>. If internal vectors are used, locations 140-154 and 100-114 must be loaded
with the vector address relative to D3. Locations 120-134 must be loaded with the vector address rela­
tive to D2. Locations 60 and 64 must be loaded with the vector address relative to D 1 and 70 to DO.
AI<7:5,0> do not need to be driven high because the DCTII-AA has internal pull-ups on those lines
at PI time. Refer again to Figure 5-20. A higher device lACK will clear a lower device interrupt
request before the request is serviced.

5.8 DMA

DEV3 IRO L

DEV2 IRO L

DEV1 IRO L

DEVO IRO L

CAS H

PI L

LS173

GND

AI<1> (CP3)

AI<2> (CP2)

AI<3> (CP1)

AI<4> (CPO)

'lACK L = (SEL O·SEL 1) + (-RAS)

DAL<8> ---(:JI
DEV3 lACK L

DAL<9> --i--CJl
DEV2 lACK L

DAL <10> -r--<T-""
DEV1 lACK L

DAL<11>-r--«-""
DEVO lACK L lACK L* --___ ./

-CP<3> -CP<2> -CP<l> -CP<O> PRIORITY VECTOR
(AI<1» (AI<2» (AI<3» (AI<4» LEVEL ADDRESS

x
x

L
L
L
L
L
L
L
L
H
H
H
H
H
H
H

H

x
x

L
L
L
L
H
H
H
H
L
L
L
L
H
H
H

H

l

x
x

L
L
H
H
L
L
H
H
L
L
H
H
L
L
H

H
I

x
x

L
H
L
H
L
H
L
H
L
H
L
H
L
H
L

H

8
8

7
7
7
7
6
6
6
6
5
5
5
5
4
4
4

24

140
144
150
154
100
104
110
114
llU
124
130
134
60
64
70

NO ACTION

"

}
)

-HALT
-PF

DEVICE 3

DEVICE 2

DEVICE 1

DEVICE 0

Figure 5-20 Direct CP Encoding Interrupt System

MA·5523

During DMA the DCTII-AA provides -RAS, -CAS, PI, and COUT signals. The external circuitry
has the responsiblity for controlling the Rj - WHB and Rj - WLB lines, providing the address, and
supplying or accepting data.

During DMA transfers, system circuitry goes through the following sequence.

1. A DMA request (DMR) to the DCTII-AA is made by driving AI<O> low during PI.

5-16

PRELIMINARY

2. The request is latched into the DCTll-AA during PI and shortly thereafter a DMA grant is
issued.

The maximum time from the request's origination to the grant's issuance is a function of the DCTll­
AA mode. This time is specified in Table A-22 in Appendix A. When the grant is issued the DCTll­
AA takes the following actions.

• SELO and SEL 1 become high, thus informing the system that the grant has been issued.

• - RAS, - CAS, PI, and COUT are driven with the timings specified in the DMA transac­
tion timing diagram (Appendix A, Figure A-l3).

• The DALs are three-stated.

• AI<7:0>, Rj-WHB, and Rj-WLB have low-current pull-ups.

When the grant is issued, external circuitry must drive the Rj - WHB and Rj - WLB lines, and in­
itially drive the DALs with the address. In dynamic memory systems the address must be multiplexed
on AI <7:0> so that the memory chips are provided with row and column addresses at the appropriate
times. Later in the transaction the data transfer on the DALs takes place in a direction controlled by
the state of the Rj - WHB and Rj - WLB lines. The DCTII-AA continues issuing grants for DMA
transactions until DMR L is no longer asserted low on AI <0> during PI. When this happens the cur­
rent sequence of DMA transactions finishes and the DCTII-AA resumes normal operation.

5.8.1 Single-Channel DMA Controller (16-Bit Mode)
This section describes a single-channel DMA controller for use with dynamic or static memory systems.
Refer to Figure 5-21.

5.8.1.1 Address Latches (Single-Channel DMA Controller) - Address latches can be shared with the
rest of the system. In a static memory system, if address latches are not necessary for the rest of the
system, the four chips E3-E6 may be eliminated. In a dynamic memory system, if address latches are
not necessary for the rest of the system, the two chips E3 and E4 may be replaced by one latch that will
save the appropriate AI bits for the -CAS strobe.

5.8.1.2 Pulse Mode Clock (Single-Channel DMA Controller) - Refer to Figure 5-21. The pulse mode
clock is used in this circuit. If this is not possible, a delay line or RC combination can be used for the
generation of an edge between -RAS assertion (low) and -CAS assertion (low). This edge switches
the Al multiplexer from row address to column address in dynamic memory systems. In a static memo­
ry system this switching is not needed. Pulse mode clock also produces a convenient edge in the middle
of PI that is useful when writing to peripherals.

5.8.1.3 Address Decode Structures - A PLA or any other address decode structure provides the follow­
ing register selects.

S-A L
S-C L
DMACR L

Select address counter in the DC006s (DEC DMA chip)
Select word counter in the DC006s
DMACR (DMA control register) is an optional register that may specify DMA
direction and make DMA requests under software control.

5.8.1.4 Operation Sequence (Single-Channel DMA Controller) - The DCTII-AA software loads the
DC006s with the 2's complement of the word count and then with the bus address. After the loading the
peripheral is signaled that the DMA setup is complete.

5-17

VI
I -00

I'EAD l "ADlb elKA ""1'
H CLKC 64D/F

~ ~ CNTIA 32D/F
RI -WLB -
RI -WHB ,., ':' LD 16D/F

S-AL-< S-A 8D/F

vg PIH S-CL--c SoC E1 4D/F

(: RD 2D/F
RD-A 1D/F

MAX-A
DMGH- o I--ROWAD L MAX-C

S74 DCOO6
E7A

ROWADHR-PMCCO~T-~ -yO ~A

eASl >-~
SEL 0 ~==r-> L
SEL 1 H ------' CLK A

WO~ CLK C
CNTIA

XFER
LD
S-A E2 S-A~~ ~ S:-C

S-C L-):>
"

RD

IRE~ RD-A

DC006

D$
N DATA FROM PERIPHERAL H

DMG H

CAS H EN DATA INTO PERIPHERAL H

PMCCOUT H

DAL BUS
, . ADDRESS LATCH

DAL 15 HU DAL 15 H
D1 R1

I D2 R2 .
D3 R3 LS
D4 373 R4
D5 R5
D6 E3 R6
D7 R7

DALB H DAL8 H D8 RB
I--
I-- WD CNT H

ENB CLR

RAl L
?

VCC

DAL BUS

DAL7H'11

. • ADDRESS LATCH

DAL 7 H
D1 R1

I D2 . R2
D3 LS R3
D4 373 R4
D5 R5
D6 E4 R6

DALO H DALO H
D7 R7
D8 RB

f--

~ ENB CLR

1 -?
RAS L Vee

DAL LAT
15 H

I
ALLATBH

DAL LAT
7 H

I
AL LAT 0 H

DMG H

PI H

LS257

MUX
E5

LS257

MUX

E6

}A"-'

ROWAD L

}" B-3

ROW AD L

r--------------------------------------~
I CAS H DMG L I
I PERIPHERAL :
I DMA REO H
I PERIPH. IN HB L RI -WHB L I

I
: CONNECTED TO R/ -WHB I
I AND RI -WLB DCT11-AA I

DMR L I
I PERIPH. IN LB L RI -WLB L I
I WDCNTH I

• WIRE MUX INPUTS WITH DAL LATOUTPUTS FOR EITHER BYTE I BCLR H I
ORWORD TRANSFER AND FOR TYPE OF DYNAMIC MEMORY L ______________________________________ ...J

MA·5561

Figure 5-21 Single-Channel DMA

'"0 ::u
m r--s:: -Z
> ::u
-<

PRELIMINARY

The peripheral device makes a DMA request by asserting the upper DMA REQ H, which in turn
causes the assertion of DMR L. The DCTII-AA issues a DMG and drives -RAS, -CAS, PI, and
COUTo The peripheral drives Rj - WHB and Rj-WLB and negates the signal, upper DMA REQ H.
The signal ROW AD H is already asserted high when the DMG cycle starts. ROW AD Hand DMG H
send the output of AND gate E8A high, which asserts the read input to the DC006s. The DC006s drive
the address onto the DALs, where it is input by the address latches. These in turn drive the AI multi­
plexer inputs. During this period the AI multiplexer is pointing to the row address inputs.

Between - RAS assertion (low) and -CAS assertion (low) the trailing edge of the PMC COUT signal
clocks latch E7 A, driving ROW AD H to a low state. When ROW AD L goes high the Al multiplexer
inputs switch to the column address and the output of AND gate E8A goes low, which affects the
DC006s in two ways:

• The DC006s' inputs become three-stated, so they stop driving the address onto the DALs.

• The word count and bus address registers of the low-byte DC006 are incremented. The word
count increments by one if the CNTIA input to E2 (WORD XFER) is low and increments
by two if it is high.

I f the count in E2 reaches a maximum, the next count edge will also increment E I. When the word
count overflows, WDCNT H is asserted, which sets the DMR latch E7B; no further DMA requests are
made.

5.8.2 Software DMA Requests
A small modification to the hardware permits software DMA requests and software specification of the
transfer direction. Substitution of the schematic in Figure 5-22 for the enclosed section of Figure 5-21
results in the necessary hardware modification.

CAS H

PERIPHERAL DMA REO H

DMACR L
PI L

R/ WLB L

WDCNT H

INIT H

R200 SOFTWARE DMR CONTROL

VCC

BUF DAL 1 H 0 a BUF DAL 0 H D a

S74

WRITE CR H
DMR L

VCC

DMG L

MA-5562

Figure 5-22 Software DMR Control

The transfer direction is specified by writing to bit 0 of the DMACR (DMA control register). Writing a
1 to bit 0 of the DMACR specifies DMA transfers from memory to the peripheral. Writing a 0 to bit a
of the DMACR specifies DMA transfers from the peripheral to memory. Writing a 1 to bit 1 of the
DMACR makes an immediate DMA request. The request will be latched into the DCTII-AA during
the same transaction that wrote the DMACR.

5-19

PRELIMINARY

5.9 WORKING WITH PERIPHERAL CHIPS
Though almost all peripheral chips will work with the DCT l1-AA, this section discusses only these
three selected ones:

• 8155 RAM, three ports, and timer
• 2651 PUSART
• DC003 interrupt logic

5.9.1 8155 - RAM, Three Ports, and Timer
Refer to Figure 5-23. This example uses 8-bit mode, delayed read/write mode. If normal read/write is
desired, it is necessary to gate the read/write lines with -CAS. Chip enable and IO/M control is ac­
complished by static addresses, which remain valid throughout the transaction.

8155
SAL < 8 > 10/M

SAL <15> ~
DAL <7:0> I 8 AD 7:0

DCT11-AA I 1"'1 CE ~ -
I/O PORT A

I/O PORT B

-RAS ALE -
R/-WHB RD ~
(-RDI

.., - I/O PORT C

R/-WLB WT
(-WTI I'"" -

MR-5524

Figure 5-23 8155 RAM

5.9.2 2651 - PUSART
Refer to Figure 5-24. Two facts must be understood when interfacing the 2651 PUSART to the
DCT II-AA. Compatibility depends on these two facts:

• Every DCTII-AA write is preceded by a read from the same location (except in stack oper­
ations, traps, interrupts, and subroutines).

• The 2651 PUSART's receive data buffer and transmit data buffer have the same address
inside the chip. The buffers are selected by the R/W input.

An involuntary read from the receive buffer clears the receive ready pin, and may result in the resetting
of the receiver interrupt. To avoid this it is necessary to assign separate addresses to the receive and
transmit buffers and disable read transactions from the transmit buffer.

For the same reason, the 2651 mode registers must be accessed by a proper sequence of reads and
writes. For example, in 16-bit mode:

• To write mode register I: disable transmit and receive, read the mode register, and write the
mode register.

• To write mode register 2: disable transmit and receive, and write the mode register.

In 8-bit mode the same operation takes place but byte instructions must be used. If word instructions
are used, the same 2651 register is accessed twice, thus incrementing the mode register pointer.

5-20

READY L
VCC

...L
I-------+--+-----IR ESET

-t-'--I(J CE 2651CE L
(-CAS TIMING) 07:00

OAL <2>

OAL <3>

2651 RO L

-I---~AO

-1---~A1 2651

-L..-~(JRO/WT

R X ROY D---'------<(l

TX R OY D-~-+---1:l

Figure 5-24 2651 PUSART

PRELIMINARY

RXIRO L

TXIRO L

MR-5525

The 2651 's access time is 250 ns. A REAOY slip should be used when the OCTII-AA is running at
frequencies greater than 7 MHz.

If the DCTll-AA is running at a frequency greater than 6 MHz, <00:07> require buffering to the
DALs. The buffering is necessary because the 2651 's turn-off time is 150 ns (maximum) with a 100 pF
load. The tCDE for the OCTII-AA at 6 MHz is 148 ns (maximum).

5.9.3 DC003 - Interrupt Logic
Refer to Figures 5-25 and 5-26. The interrupt chip is an 18-pin, dual in-line package device that provid­
es the circuits for handling interrupts. The chip can be used in any externally vectored interrupt scheme
and the system does not have to be daisy-chained. The device is used in peripheral interfaces to provide
two interrupt channels, labeled A and B, with the A section at a higher priority than the B section.
DC003s may be daisy-chained at any priority level.

Daisy-chaining multiple DC003s may cause an error condition. If the requesting device receives the
signal IAK L too late, it will not be able to assert its vector during the lACK transaction.

5-21

PRELIMINARY

RD OA CONTROL STATUS REGISTER (CSR) H -...-----,

DEV OA IRQ H

IAK L

BCLR L

- DEV OB IRQ H

DAL<6>

RQSTA

BIAKI

BINIT

BDIN

RQSTB

ENA DAT

ENB DAT

ENA
CLK

LOAD OA
CSR H

DC 003

ENAST

BIRQ

BIAKO

INITO

VECTOR

VEC RQST

ENB ST

ENB
CLK

LOAD OB
CSR H

DAL < 7 >

DAL < 6 >

+5
470 n
TO AI DRIVER

TO NEXT DC 003 IN DAISY CHAIN

}USED TO GENERATE EXTERNAL VECTORS

DAL < 6 >

DEV OB IRQ H -+-~ DAL < 7 >

RD OB CSR.H

Figure 5-25 DC003 Interrupt Logic

5-22

+5
DEV OA DC 003 470 .11

IRQ H RQST A ENA ST DEVIA

BIRQ
IRQ H

BIAKI

BCLR L BINIT
BCLR L

CAS L BDIN INITO
DEV OB

CAS L

IRQ H
RQSTB DEVIB

B DAL ENA DAT VEC RQS IRQ H

<6> ENB DAT

ENA

LOAD OA CSR H

READ DRIVERS FOR
INTERRUPT ENABLE
AND DONE BITS ARE
NOT SHOWN IN THIS
DIAGRAM.

ENB ST
IAK H

B DAL<6>
ENB

LOAD OB CSR H

DEV 2A DC 003
IRQ H

IAK L BIAKI BIRQ

+5V

470.11

PRELIMINARY

LS173

GND

AI < 2 > (CP2)

AI <3> (CP1)

AI < 4 > (CPO)

AI < 5 > (·VEC)

BCLR L

CAS L

DEV2BIRQH

BIAKO I(}--------------'

B DAL <6>

LOAD 2A LOAD 2B
CSR H CSR H

DEV 21AK H

DEV 2B IAK H

INTERRUPT PRIORITY EXTERNAL
VECTOR DEVICE CHANNEL

0
0
1
1
2
2

A 4 10
B 4 14 DEV 1B IAK H
A 4
B 4

;~ DEV 2B IAK H

A 5 40
B 5 44

THIS SECTION CAN BE REPLACED
WITH A ROM FOR BETTER SELECTION
OF EXTERNAL VECTORS.

GND

GND

DEV 2 IAK H

DEV 1 IAK H

DEV 0 IAK H

LS 244

DAL < 7 >

DAL < 6 >

DAL < 5 >

DAL < 4 >

DAL < 3 >

DAL < 2 >

DCT11·AA
IAK L----- READY

PIN

MR 5526

Figure 5-26 De003 at Different Priority Levels

5-23

6.1 INTRODUCTION
This chapter is divided into six major sections:

PRELIMINARY

CHAPTER 6
ADDRESSING MODES AND

INSTRUCTION SET

• Single-Operand Addressing - One part of the instruction word specifies the registers; the oth­
er part provides information for locating the operand.

• Double-Operand Addressing - One part of the instruction word specifies the registers; the
remaining parts provide information for locating two operands.

• Direct Addressing - The operand is the content of the selected register.

• Deferred (Indirect) Addressing - The contents of the selected register is the address of the
operand.

• Use of the PC as a General-Purpose Register - The PC is different from other general-pur­
pose registers in one important respect. Whenever the processor retrieves an instruction, it
automatically advances the PC by 2. By combining this automatic advancement of the PC
with four of the basic addressing modes, we produce the four special PC modes - immediate,
absolute, relative, and relative-deferred.

• Use of the Stack Pointer as a General-Purpose Register - General-purpose registers can be
used for stack operations.

6.2 ADDRESSING MODES
Data stored in memory must be accessed and manipulated. Data handling is specified by a DCTII-AA
instruction (MOY, ADD, etc.), which usually indicates:

• The function (operation code).

• A general-purpose register is to be used when locating the source operand, and/or a general­
purpose register is to be used when locating the destination operand.

• An addressing mode (for specifying how the selected register(s) is/are to be used).

A large portion of the data handled by a computer is structured (in character strings, arrays, lists, etc.).
The DCTII-AA addressing modes provide for efficient and flexible handling of structured data.

6-1

PRELIMINARY

A general-purpose register may be used with an instruction in any of the following ways.

• As an accumulator - The data to be manipulated resides in the register.

• As a pointer - The contents of the register is the address of an operand, rather than the oper­
and itself.

• As a pointer that automatically steps through memory locations - Automatically stepping
forward through consecutive locations is known as autoincrement addressing; automatically
stepping backwards is known as autodecrement addressing. These modes are particularly use­
ful for processing tabular or array data.

• As an index register - In this instance, the contents of the register and the word following the
instruction are summed to produce the address of the operand. This allows easy access to
variable entries in a list.

An important DCTII-AA feature, which should be considered with the addressing modes, is the regis­
ter arrangement.

• Six general-purpose registers (RO-RS)
• A hardware stack pointer (SP) register (R6)
• A program counter (PC) register (R 7)

Registers RO-RS are not dedicated to any specific function; their use is determined by the instruction
that is decoded.

• They can be used for operand storage. For example, the contents of two registers can be
added and stored in another register.

• They can contain the address of an operand or serve as pointers to the address of an operand.

• They can be used for the autoincrement or autodecrement features.

• They can be used as index registers for convenient data and program access.

The DCTII-AA also has instruction addressing mode combinations that facilitate temporary data stor­
age structures. These can be used for convenient handling of data that must be accessed frequently.
This is known as stack manipulation. The register that keeps track of stack manipulation is known as
the stack pointer (SP). Any register can be used as a stack pointer under program control; however,
certain instructions associated with subroutine linkage and interrupt service automatically use register
R6 as a "hardware stack pointer." For this reason, R6 is frequently referred to as the SP.

• The stack pointer (SP) keeps track of the latest entry on the stack.

• The stack pointer moves down as items are added to the stack and moves up as items are
removed. Therefore, the stack pointer always points to the top of the stack.

• The hardware stack is used during trap or interrupt handling to store information, allowing
the processor to return to the main program.

Register R7 is used by the processor as its program counter (PC). It is recommended that R7 not be
used as a stack pointer or accumulator. Whenever an instruction is fetched from memory, the program
counter is automatically incremented by two to point to the next instruction word.

6-2

PRELIMINARY

6.2.1 Single-Operand Addressing
The instruction format for all single-operand instructions (such as clear, increment, test) is shown in
Figure 6-1.

15 06 05 04 03 02 00

Rn

~ __________________ ~ __________________ ~A~ __________ ~ __________ ~

t f
OP CODE DESTINATION ADDRESS

MR-5458

Figure 6-1 Single-Operand Addressing

Bits 15-6 specify the operation code that defines the type of instruction to be executed.

Bits 5-0 form a 6-bit field called the destination address field. The destination address field consists of
two subfields:

• Bits 0-2 specify which of the 8 general-purpose registers is to be referenced by this instruc­
tion word.

• Bits 3-5 specify how the selected register will be used (in address mode). Bit 3 is set to in­
dicate deferred (indirect) addressing.

6.2.2 Double-Operand Addressing
Operations that imply two operands (such as add, subtract, move, and compare) are handled by instruc­
tions that specify two addresses. The first operand is called the source operand; the second is called the
destination operand. Bit assignments in the source and destination address fields may specify different
modes and different registers. The instruction format for the double operand instruction is shown in
Figure 6-2.

15 12 11 10 09 08 06 05 04 03 02 00

OP ~ODE : MODE: Rn :MODE: Rn

t
J.

t
SOURCE ADDRESS DESTINATION ADDRESS

MR-5459

Figure 6-2 Double-Operand Addressing

The source address field is used to select the source operand (the first operand). The destination is used
similarly, and locates the second operand and the result. For example, the instruction ADD A, B adds
the contents (source operand) of location A to the contents (destination operand) of location B. After
execution, B will contain the result of the addition and the contents of A will be unchanged.

6-3

PRELIMINARY

Examples in this paragraph and the rest of the chapter use the following sample OCTII-AA instruc­
tions. (A complete listing of the OCTII-AA instructions appears in Paragraph 6.3.)

Mnemonic

CLR

CLRB

INC

INCB

COM

COMB

AOO

Description

Clear. (Zero the specified destination.)

Clear byte. (Zero the byte in the specified
destination.)

Increment. (Add one to contents of the
destination.)

Increment byte. (Add one to the contents of
the destination byte.)

Complement. (Replace the contents of the
destination by its logical complement;
each 0 bit is set and each one bit is
cleared.)

Complement byte. (Replace the contents of
the destination byte by its logical
complement; each 0 bit is set and each
1 bit is cleared.)

Add. (Add the source operand to the
destination operand and store the result
at the destination a·ddress.)

DD = destination field (six bits)
SS = source field (six bits)
o = contents of

6.2.3 Direct Addressing

Octal Code

005000

105000

005200

105200

005100

105100

06SS00

The following summarizes the four basic modes used with direct addressing.

Direct Modes (Figures 6-3 to 6-6)

Assembler
Mode Name Syntax Function

0 Register Rn Register contains operand.

I INSTRUCTION H OPERAND

MR-5460

Figure 6-3 Mode 0 Register

6-4

PRELIMINARY

Assembler
Mode Name Syntax Function

2 Autoincrement (Rn)+ Register is used as a pointer to se-
quential data and then incremented.

INSTRUCTION ADDRESS OPERAND

L...-_____ ~ +2 FOR WORD,

+1 FOR BYTE

MA-5461

Figure 6-4 Mode 2 Autoincrement

Assembler
Mode Name Syntax Function

4 Autodecrement -(Rn) Register is decremented and then
used as a pointer.

INSTRUCTION -2 FOR WORD, OPERAND
-1 FOR BYTE

MA-5462

Figure 6-5 Mode 4 Autodecrement

Assembler
Mode Name Syntax Function

6 Index X(Rn) Value X is added to (Rn) to produce
address of operand. Neither X nor
(Rn) is modified.

INSTRUCTION ADDRESS

OPERAND

x

MR·5463

Figure 6-6 Mode 6 Index

6-5

PRELIMINARY

6.2.3.1 Register Mode - With register mode any of the general registers may be used as simple accu­
mulators, with the operand contained in the selected register. Since they are hardware registers (within
the processor), the general registers operate at high speeds and provide speed advantages when used for
operating on frequently accessed variables. The assembler interprets and assembles instructions of the
form OPR Rn as register mode operations. Rn represents a general register name or number and OPR
is used to represent a general instruction mnemonic. Assembler syntax requires that a general register
be defined as follows.

RO = %0 (% sign indicates register definition)
Rt"= %1
R2 = %2, etc.

Registers are typically referred to by name as RO, Rl, R2, R3, R4, R5, R6, and R7. However, R6 and
R 7 are also referred to as SP and PC, respectively.

OPRRn

Register Mode Examples (Figures 6-7 to 6-9)

1. Symbolic Octal Code Instruction Name

INCR3 005203 Increment

Operation: Add one to the contents of general-purpose register R3.

15 06 05 04 03 02

0 : 0 0 : 0 : 1 : 0 : 1 : 0 : 1 : 0 I 0 o 1 0 I 0 : 1

\

f
A

f
OP CODE (INC(0052)) DESTINATION FIELD

RO

R1

R2

R3

R4

R5

R6 (SP)

R7 (PC)

Figure 6-7 INC R3 Increment

6-6

00

1 ~ -, SELECT
I REGISTER

J

-+-

I
I

I
I

J

PRELIMINARY

2. Symbolic Octal Code Instruction Name

ADD R2, R4 060204 Add

Operation: Add the contents of R2 to the contents of R4.

BEFORE AFTER

R21 000002 R21 000002

R41 000004 R41 000006

MR-5468

Figure 6-8 ADD R2, R4 Add

3. Symbolic Octal Code Instruction Name

COMBR4 105104 Complement byte

Operation: 1 's complement bits 0-7 (byte) in R4. (When general registers are used, byte instructions
operate only on bits 0-7; i.e., byte 0 of the register.)

BEFORE

R4 I 022222

AFTER

R41 022155

MA-5469

Figure 6-9 COMB R4 Complement Byte

6.2.3.2 Autoincrement Mode [OPR (Rn) +] - This mode (mode 2) provides for automatic stepping of a
pointer through sequential elements of a table of operands. It assumes the contents of the selected gen­
eral-purpose register to be the address of the operand. Contents of registers are stepped (by one for
bytes, by two for words, always by two for R6 and R 7) to address the next sequential location. The
autoincrement mode is especially useful for array processing and stack processing. It will access an
element of a table and then step the pointer to address the next operand in the table. Although most
useful for table handling, this mode is completely general and may be used for a variety of purposes.

OPR (Rn)+

Autoincrement Mode Examples (Figures 6-10 to 6-12)

t. Symbolic Octal Code Instruction'Name

CLR (R5)+ 005025 Clear

Operation: Use contents of R5 as the address of the operand. Clear selected operand and then in­
crement the contents of R5 by two.

6-7

PRELIMINARY

BEFORE AFTE~

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

20000 I 005025 R5 L--_-.-_..J 20000 I 005025 R5 1 030002

30000 000000

MR-5464

Figure 6-10 CLR (RS)+ Clear

2. Symbolic Octal Code Instruction Name

CLRB (R5)+ 105025 Clear byte

Operation: Use contents of R5 as the address of the operand. Clear selected byte operand and then
increment the contents of R5 by one.

3.

BEFORE

ADDRESS SPACE

20000 I 1 05025

t

30000111116

30002

AFTER

REGISTER ADDRESS SPACE REGISTER

R51 030000 I 20000 1 105025 R5 030001

I

30000~
30002~

Figure 6-11 CLRB (R5)+ Clear Byte

MR-5465

Symbolic Octal Code Instruction Name

ADD (R2)+,R4 062204 Add

Operation: The contents of R2 are used as the address of the operand, which is added to the contents
of R4. R2 is then incremented by two.

BEFORE

ADDRESS SPACE

10000 1 062204 I R2 L--_-.-_..J

R4 010000

1000021 010000

AFTER

ADDRESS SPACES

10000 1 062204 I

100002 1 010000

Figure 6-12 ADD (R2)+ R4 Add

6-8

REGISTERS

R2 1 100004

R41 020000

PRELIMINARY

6.2.3.3 Autodecrement Mode [OPR-(Rn)] - This mode (mode 4) is useful for processing data in a list
in reverse direction. The contents of the selected general-purpose register are decremented (by two for
word instructions, by one for byte instructions) and then used as the address of the operand. The choice
of postincrement, predecrement features for the DCTII-AA were not arbitrary decisions, but were in­
tended to facilitate hardware/software stack operations.

OPR-(Rn)

Autodecrement Mode Examples (Figures 6-13 to 6-15)

1. Symbolic Octal Code Instruction Name

INC -(RO) 005240 Increment

Operation: The contents of RO are decremented by two and used as the address of the operand. The
operand is incremented by one.

BEFORE AFTER

ADDRESS SPACE REGISTERS ADDRESS SPACE

1000 I 005240 RO I 017776 1000 I . 005240 RO '---r----'

17774 000000 17774 I 000001

MR-5466

Figure 6-13 INC -(RO) Increment

2. Symbolic Octal Code Instruction Name

INCB -(RO) 105240 Increment byte

Operation: The contents of RO are decremented by one and then used as the address of the operand.
The operand byte is increased by one.

BEFORE

ADDRESS SPACE REGISTER

1000 105240 RO I 017776

17774E8

17776 o=J

AFTER

ADDRESS SPACE REGISTER

1000 I 105240 RO I 017775 I
J

+
17774 001 I 000

17776

MA·5471

Figure 6-14 INCB -(RO) Increment Byte

6-9

PRELIMINARY

3. Symbolic Octal Code Instruction Name

ADD -(R3),RO 064300 Add

Operation: The contents of R3 are decremented by two and then used as a pointer to an operand
(source), which is added to the contents of RO (destination operand).

BEFORE

ADDRESS SPACE

10020 I 064300

77774~
77776 c=J

REGISTER

RO I 000020

R31 077776

AFTER

ADDRESS SPACE

10020 I 064300 I

.t=j 77774 000050

77776

Figure 6-15 ADD -(R3), RO Add

REGISTER

RO I 0000070

R31 077774

MR·5472

6.2.3.4 Index Mode [OPR X(Rn)] - In this mode (mode 6) the contents of the selected general-purpose
register, and an index word following the instruction word, are summed to form the address of the oper­
and. The contents of the selected register may be used as a base for calculating a series of addresses,
thus allowing random access to elements of data structures. The selected register can then be modified
by program to access data in the table. Index addressing instructions are of the form OPR X(Rn),
where X is the indexed word located in the memory location following the instruction word and Rn is
the selected general-purpose register.

OPR X(Rn)

Index Mode Examples (Figures 6-16 to 6-18)

1. Symbolic

CLR 200(R4)

Octal Code Instruction Name

005064
000200

Clear

Operation: The address of the operand is determined by adding 200 to the contents of R4. The oper­
and location is then cleared.

6-10

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE

1020 005064 R4 001000 1020 005064 R4

1022 000200 1022 000200

1024 1000 1024
+200

+
1200

1200

~
1200

~ 1202

Figure 6-16 CLR 200 (R4) Clear

2. Symbolic Octal Code Instruction Name

COMB 200(Rl) 105161
000200

Complement byte

PRELIMINARY

REGISTER

I 001000

MA·5473

Operation: The contents of a location, which are determined by adding 200 to the contents of Rl, are
l's complemented (i.e., logically complemented).

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 105161 R1 I 017777 1020 105161 R1 I 017777

1022 000200 1022 000200

017777
+200

I O~, ! ~ I
020177

20176 20176 ffi 20200 20200

MR-5474

Figure 6-17 COMB 200 (Rl) Complement Byte

3. Symbolic Octal Code Instruction Name

ADD 30(R2),20(R5) 066265 Add
000030
000020

Operation: The contents of a location, which are determined by adding 30 to the contents of R2, are
added to the contents of a location that is determined by adding 20 to the contents of R5.
The result is stored at the destination address, that is, 20(R5).

6-11

PRELI~INARY

1020

1022

1024

1130

2020

BEFORE
ADDRESS SPACE

066265

000030

000020

000001

000001

1100 2000
+30 +20

1130 2020

R2

R5

AFTER

REGISTER ADDRESS SPACE

I 001100 1020 066265

1022 000030

002000 1024 000020

1130 000001

2020 000002

Figure 6-18 ADD 30 (R2), 20 (R5) Add

6.2.4 Deferred (Indirect) Addressing

REGISTER

R2 I 001100

R5 002000

MR-5475

The four basic modes may also be used with deferred addressing. Whereas in register mode the operand
is the contents of the selected register, in register-deferred mode the contents of the selected register is
the address of the operand.

In the three other deferred modes, the contents of the register select the address of the operand rather
than the operand itself. These modes are therefore used when a table consists of addresses rather than
operands. The assembler syntax for indicating deferred addressing is ® [or 0 when this is not am­
biguous]. The following summarizes the deferred versions of the basic modes.

Deferred Modes (Figures 6-19 to 6-22)

Assembler
Mode Name Syntax Function

1 Register-
deferred @Rn or (Rn) Register contains the address of the

operand.

I INSTRUCTION H ADDRESS H OPERAND

MA-5476

Figure 6-19 Mode 1 Register-Deferred

6-12

PRELIMINARY

Assembler
Mode Name Syntax Function

3 Autoincrement-
Deferred @(Rn) + Register is first used as a pointer to a

word containing the address of the op-
erand and then incremented (always
by two, even for byte instructions).

INSTRUCTION ADDRESS ADDRESS OPERAND

+2

MR-5477

Figure 6-20 Mode 3 Autoincrement-Deferred

Assembler
Mode Name Syntax Function

5 Autodecrement-
deferred @-(Rn) Register is decremented (always by

two, even for byte instructions) and
then used as a pointer to a word con-
taining the address of the operand.

INSTRUCTION -2 ADDRESS OPERAND

MR-5478

Figure 6-21 Mode 5 Autodecrement-Deferred

Assembler
Mode Name Syntax Function

7 Index-deferred @X(Rn) Value X (stored in a word following
the instruction) and (Rn) are added;
the sum is used as a pointer to a word
containing the address of the operand.
Neither X nor (Rn) is modified.

6-13

PRELIMINARY

INSTRUCTION ADDRESS

ADDRESS OPERAND

x

MR-5479

Figure 6-22 Mode 7 Index-Deferred

The following examples illustrate the deferred modes.

Register-Deferred Mode Example (Figure 6-23)

Symbolic Octal Code Instruction Name

CLR@R5 005015 Clear

Operation: The contents of location specified in R5 are cleared.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1677

~
R5 001700 1677

~
R5 001700

1700 1700

MR·6480

Figure 6-23 CLR @ R5 Clear

Autoincrement-Deferred Mode Example (Mode 3) (Figure 6-24)

Symbolic Octal Code Instruction Name

INC@(R2)+ 005232 Increment

Operation: The contents of R2 are used as the address of the address of the operand. The operand is
increased by one; the contents of R2 are incremented by two.

1010

1012

BEFORE

ADDRESS SPACE

§g R2

10000 ~

AFTER

ADDRESS SPACE

§3 1010

1012

Figure 6-24 INC @ (R2) + Increment

6-14

REGISTER

R2 I 010302

MA·5481

'"

PRELIMINARY

Autodecrement-Deferred Mode Example (Mode 5) (Figure 6-25)

Symbolic Octal Code

COM@-(RO) 005150

Operation: The contents of RO are decremented by two and then used as the address of the address
of the operand. The operand is 1 's complemented (i.e., logically complemented).

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE

10100 B RO I 010776 10100 B RO

10102 10102

10774 t=J 10774 B
10776 10776

MR-5482

Figure 6-25 COM @ (RO) Complement

Index-Deferred Mode Example (Mode 7) (Figure 6-26)

Symbolic Octal Code Instruction Name

ADD @1000(R2),Rl 067201 Add
001000

Operation: 1000 and the contents of R2 are summed to produce the address of the address of the
source operand, the contents of which are added to the contents of R 1; the result is stored
in Rl.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 067201 Rl 001234 1020 067201 R1 I 001236

1022 001000 1022 001000 I R2 000100 R2 000100

1024 1024

1050 r=g 1050 B
1100 1100 B 1 1000

+100
1100

MR·5483

Figure 6-26 ADD @ 1000 (R2), Rl Add

6-15

PRELIMINARY

6.2.5 Use of the PC as a General-Purpose Register
Although register 7 is a general-purpose register, it doubles in function as the program counter for the
DCTII-AA. Whenever the processor uses the program counter to acquire a word from memory, the
program counter is automatically incremented by two to contain the address of the next word of the
instruction being executed or the address of the next instruction to be executed. (When the program
uses the PC to locate byte data, the PC is still incremented by two.)

The PC responds to ail the standard DCTlI-AA addressing modes. However, with four of these modes
the PC can provide advantages for handling position-independent code and unstructured data. When
utilizing the PC, these modes are termed immediate, absolute (or immediate-deferred), relative, and
relative-deferred. The modes are summarized below.

Assembler
Mode Name Syntax Function

2 Immediate #n Operand follows instruction.

3 Absolute @#A Absolute address of operand follows
instruction.

6
Relative A Relative address (index value) follows

7 the instruction.

Relative- @A Index value (stored in the word after
deferred the instruction) is the relative address

for the address of the operand.

When a standard program is available for different users, it is often helpful to be able to load it into
different areas of memory and run it in those areas. The DCTII-AA can accomplish the relocation of a
program very efficiently through the use of position-independent code (PIC), which is written by using
the PC addressing modes. If an instruction and its operands are moved in such a way that the relative
distance between them is not altered, the same offset relative to the PC can be used in all positions in
memory. Thus, PIC usually references locations relative to the current location.

The PC also greatly facilitates the handling of unstructured data. This is particularly true of the imme­
diate and relative modes.

6.2.5.1 Immediate Mode [OPR #n,DD] - Immediate mode (mode 2) is equivalent in use to the au­
toincrement mode with the Pc. It provides time improvements for accessing constant operands by in­
cluding the constant in the memory location immediately following the instruction word.

OPR #n.DD

Immediate Mode Example (Figure 6-27)

Symbolic Octal Code Instruction Name

ADD #IO,RO 062700 Add
000010

6-16

~-

PRELIMINARY

Operation: The value lOis located in the second word of the instruction and is added to the contents
of RO. Just before this instruction is fetched and executed, the PC points to the first word
of the instruction. The processor fetches the first word and increments the PC by two.
The source operand mode is 27 (autoincrement the PC). Thus, the PC is used as a pointer
to fetch the operand (the second word of the instruction) before it is incremented by two
to point to the next instruction. .

AFTER BEFORE

ADDRESS SPACE REGISTER

I 000020

ADDRESS SPACE REGISTER

1020 1--_06_2_70_0--1' RO 1020 062700 RO I 000030

1022 000010 ""-pc

1024

1022 000010

V
PC

1024

MR·5484

Figure 6~27 ADD # 10, RO Add

6.2.5.2 Absolute Addressing [OPR @#A] - This mode (mode 3) is the equivalent of immediate-de­
ferred or autoincrement-deferred using the Pc. The contents of the location following the instruction
are taken as the address of the operand. Immediate data is interpreted as an absolute address (i.e., an
address that remains constant no matter where in memory the assembled' instruction is executed).

OPR@#A

Absolute Mode Examples (Figures 6-28 and 6-29)

1. Symbolic Octal Code Instruction Name

CLR @#IIOO 005037
001100

Clear

Operation: Clear the contents of location 1100.

20

22

1100

1102

BEFORE

ADDRESS SPACE

005037

001100 PC

20

22

24

1100

1102

AFTER

ADDRESS SPACE

005037

1--_00_1_10_°--iVPC

MA-5485

Figure 6-28 CLR ® # 1100 Clear

6-17

PRELIMINARY

2. Symbolic

ADD @#2000,R3

Octal Code Instruction Name

063703
002000

Add

Operation: Add contents of location 2000 to R3.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE

20 063703

~ 22 002000

24

R3 I 000500

PC

20 063703 R3

22 002000

/
PC

24

I

•

Figure 6-29 ADD @ # 2000 Add

REGISTER

I 001000

MR-5486

6.2.5.3 Relative Addressing [OPR A or OPR X(PC)] - This mode (mode 6) is assembled as index mode
using R 7. The base of the address calculation, which is stored in the second or third word of the instruc­
tion, is not the address of the operand, but the number which, when added to the (PC), becomes the
address of the operand. This mode is useful for writing position-independent code since the location
referenced is always fixed relative to the PC. When instructions are to be relocated, the operand is
moved by the same amount. .

OPR A or OPR X(PC) (X is the location of A relative to the instruction)

Relative Addressing Example (Figure 6-30)

Symbolic Octal Code Instruction Name

INC A 005267 Increment
000054

Operation: To increment location A, contents of memory location immediately following instruction
word are added to (PC) to produce address A. Contents of A are increased by one.

6-18

BEFORE
ADDRESS SPACE

1020 005267

~ 1022 000054 PC

1024

1026

1100 000000 1024

t ffi4
~-------------------1100

1020

1022

1024

1026

1100

AFTER
ADDRESS SPACE

0005267

000054

~

000001

PRELIMINARY

PC

MR-5481

Figure 6-30 INC A Increment

6.2.5.4 Relative-Deferred Addressing [OPR @A or OPR @X(PC)] - This mode (mode 7) is similar to
relative mode, except that the second word of the instruction, when added to the PC, contains the ad­
dress of the address of the operand, rather than the address of the operand.

OPR @A or OPR @X(PC) (X is the location containing the address of A, relative to the instruction)

Relative-Deferred Mode Example (Figure 6-31)

Symbolic Octal Code Instruction Name

CLR@A 005077 Clear
000020

Operation: Add second word of instruction to updated PC to produce address of address of operand.
Clear operand.

(PC = 1020) 1020

1022

BEFORE
ADDRESS SPACE

005077 '-

'-"-00-0-02-0--11 '" PC

1024
+20

,~------------------1~4

'~

(PC = 1022) 1024

10100 I 100001 I

1020

1022

1024

1~4

10100

Figure 6-31 CLR @ A Clear

6-19

AFTER
ADDRESS SPACE

005077

t--_000 __ 02_°---iVC

010100

000000]

MR-5488

PRELIMINARY

6.2.6 Use of the Stack Pointer as a General-Purpose Register
The processor stack pointer (SP, register 6) is in most cases the general register used for the stack
operations related to program nesting. Autodecrement with register 6 "pushes" data onto the stack and
autoincrement with register 6 "pops" data off the stack. Since the SP is used by the processor for inter­
rupt handling, it has a special attribute: autoincrements and autodecrements are always done in steps of
two. Byte operations using the SP in this way leave odd addresses unmodified.

6.3 INSTRUCTION SET
Thc rcst of this chapter describes the DCTII-AA's instruction set. Each instruction's explanation in­
cludes the instruction's mnemonic, octal code, binary code, a diagram showing the format of the in­
struction, a symbolic notation describing its execution and effect on the condition codes, a description,
special comments, and examples.

Each instruction's explanation is headed by its mnemonic. When the word instruction has a byte equiva­
lent, the byte mnemonic also appears.

The diagram that accompanies each instruction shows the octal op code, binary op code, and bit assign­
ments. [Notc that in byte instructions the most significant bit (bit 15) is always a one.]

Symbols:

o = contents of

SS or src = source address

DD or dst = destination address

loc = location

<- = becomes

T = "is popped from stack"

1 = "is pushed onto stack"

1\ boolean AND

V boolean OR

V exclusive OR

boolean not

REG or R = register

B = Byte

• = 0 for word, I for byte

, = concatenated

6-20

PRELIMINARY

6.3.1 Instruction Formats
The following formats include all instructions used in the DCT II-AA. Refer to individual instructions
for more detailed information.

I.

2.

Single-Operand Group:
(Figure 6-32)

15

Double-Operand Group:
(Figure 6-33)

15 12 11

CLR, CLRB, COM, COMB, INC, INCB, DEC, DECB, NEG,
NEGB, ADC, ADCB, SBC, SBCB, TST, TSTB, ROR, RORB,
ROL, ROLB, ASR, ASRB, ASL, ASLB, JMP, SWAB, MFPS,
MTPS, SXT, XOR

06 05 00

MA-5191

Figure 6-32 Single-Operand Group

BIT, BITB, BIC, BICB, BIS, BISB, ADD, SUB, MOV, MOVB,
CMP, CMPB

06 05 00

: : ~D :

MR-5192

Figure 6-33 Double-Operand Group

3. Program Control Group:

a. Branch (all branch instructions) (Figure 6-34)

15 08 07 00

MR·5193

Figure 6-34 Program Control Group Branch

b. Jump to Subroutine (JSR) (Figure 6-35)

15 09 08 06 05 00

: D~ :

MR-5194

Figure 6-35 Program Control Group JSR

6-21

PRELIMINARY

c. Subroutine Return (RTS) (Figure 6-36)

15 03 02 00

o o o 2 o R

MA-5195

Figure 6-36 Program Control Group RTS

d. Traps (breakpoint, lOT, EMT, TRAP, BPT) (Figure 6-37)

15 00

OP C~DE
MR-5196

Figure 6-37 Program Control Group Traps

e. Subtract 1 and Branch (if = 0) (SOB) (Figure 6-38)

09 08 06 05 00

: N~
MR-5197

Figure 6-38 Program Control Group Subtract

4. Operate Group: HALT, WAIT, RTI, RESET, RTT, NOP, MFPT (Figure 6-39)

15 00

MA-5198

Figur.e 6-39 Operate Group

5. Condition Code Operators (all condition code instructions) (Figure 6-40)

15 06 05 04 03 02 01 00

I 0 0 : : 0 : 2 I 4 I 011 I N I z I v I C

MR·5199

Figure 6-40 Condition Group

6-22

PRELIMINARY

Byte Instructions
The OCTII-AA includes a full complement of instructions that manipulate byte operands. Since all
OCT I I-AA addressing is byte-oriented, byte manipulation addressing is straightforward. Byte instruc­
tions with autoincrement or autodecrement direct addressing cause the specified register to be modified
by one to point to the next byte of data. Byte operations in register mode access the low-order byte of
the specified register. These provisions enable the OCTII-AA to perform as either a word or byte pro­
cessor. The numbering scheme for word and byte addresses in memory is shown in Figure 6-41.

HIGH BYTE
ADDRESS

002001

002003

BYTE 1 BYTE 0

BYTE 3 BYTE 2

WORD OR BYTE
ADDRESS

002000

002002

MR-5201

Figure 6-41 Byte Instructions

The most significant bit (bit IS) of the instruction word is set to indicate a byte instruction.

Example:

Symbolic

CLR
CLRB

Octal Code

0050DO
l050DD

Instruction Name

Clear word
Clear byte

6-23

PRELIMINARY

6.3.2 List of Instructions
The following is a list of the OCT 1 I-AA instruction set.

SINGLE-OPERAND

General

Mnemonic Instruction OpCode

CLR(B) Clear destination .05000
COM(B) Complement destination .05100
INC(B) Increment destination .05200
OEC(B) Oecrement destination .05300
NEG(B) Negate destination .05400
TST(B) Test destination .05700

Shift and Rotate

Mnemonic Instruction Op Code

ASR(B) Arithmetic shift right .06200
ASL(B) Arithmetic shift left .06300
ROR(B) Rotate right .06000
ROL(B) Rotate left .06100
SWAB Swap bytes 000300

M ultiple-Precision

Mnemonic Instruction Op Code

AOC(B) Add carry .05500
SBC(B) Subtract carry .05600
SXT Sign extend 006700

PS Word Operators

Mnemonic Instruction OpCode

MFPS Move byte from PS 106700
MTPS Move byte to PS 1064SS

DOUBLE-OPERAND

General

Mnemonic Instruction Op Code

MOY(B) Move source to destination .ISSOO
CMP(B) Compare source to destination .2SS00
AOO Add source to destination 06SS00
SUB Subtract source from destination 16SS00

6-24

Logical

Mnemonic

BIT(B)
BIC(B)
BIS(B)
XOR

Instruction

Bit test
Bit clear
Bit set
Exclusive OR

PROGRAM CONTROL

Branch

Mnemonic

BR
BNE
BEQ
BPL
BMI
Bye
BYS
Bee
Bes

Instruction

Branch (unconditional)
Branch if not equal (to zero)
Branch if equal (to zero)
Branch if plus
Branch if minus
Branch if overflow is clear
Branch if overflow is set
Branch if carry is clear
Branch if carry is set

Signed Conditional Branch

Mnemonic

BGE
BLT
BGT
BLE

Instruction

Branch if greater than or equal (to zero)
Branch if less than (zero)
Branch if greater than (zero)
Branch if less than or equal (to zero)

Unsigned Conditional Branch

Mnemonic

BHI
BLOS
BHIS
BLO

Jump and Subroutine

Mnemonic

JMP
JSR
RTS
SOB

Instruction

Branch if higher
Branch if lower or same
Branch if higher or same
Branch if lower

Instruction

Jump
Jump to subroutine
Return from subroutine
Subtract one and branch (if =1= 0)

6-25

PRELIMINARY

OpCode

.3SSDD

.4SSDD

.5SSDD
074RDD

Op Code or Base Code

000400
001000
001400
100000
100400
102000
102400
103000
103400

Op Code or Base Code

002000
002400
003000
003400

Op Code or Base Code

101000
101400
103000
103400

Op Code or Base Code

0001DD
004RDD
00020R
077 ROO

PRELIMINARY

Trap and Interrupt

Mnemonic Instruction

EMT Emulator trap
TRAP Trap
BPT Breakpoint trap
lOT Input/output trap
RTI Return from interrupt
RTT Return from interrupt

MISCELLANEOUS

Mnemonic Instruction

HALT Halt
WAIT Wait for interrupt
RESET Reset external bus
MFPT Move processor type

RESERVED INSTRUCTIONS

CONDITION CODE OPERATORS

Mnemonic

CLC
CLY
CLZ
CLN
CCC
SEC
SEV
SEZ
SEN
SCC
NOP

Instruction

Clear C
Clear Y
Clear Z
Clear N
Clear all CC bits
Set C
Set Y
Set Z
Set N
Set all CC bits
No operation

6-26

Op Code or Base Code

104000-104377
104400-104777

000003
000004
000002
000006

Op Code or Base Code

000000
000001
000005
000007

00021R
00022R

Op Code or Base Code

000241
000242
000244
000250
000257
000261
000262
000264
000270
000277
000240

PRELIMINARY

6.3.3 Single-Operand Instructions

6.3.3.1 General

CLR
CLRB

NOTE
In all DCTll-AA instructions a write operation
(which in 8-bit mode consists of two adjacent and in­
divisible write transactions) to a memory location or
register is always preceded by a read operation from
the same location. The exceptions are when writing
the PC and PSW to the stack in two cases:

1. During the execution of the microcode preced­
ing an interrupt or trap service routine.

2. In interrupt and trap instructions (HL T,
TRAP, BPT, lOT).

CLEAR DESTINATION -05000

15

Operation:

Condition Codes:

Description:

Example:

06 05 00

MR·5202

(dst) <- 0

N: cleared
Z: set
V: cleared
C: cleared

Word: The contents of the specified destination are replaced with Os.
Byte: Same.

CLR RI

Before

(RI) = 177777

NZVC
1111

After

(RI) = 000000

NZVC
0100

6-27

PRELIMINARY

COM
COMB

COMPLEMENT OST -051 DO

15

011 : o :

Operation:

Condition Codes:

Description:

Example:

INC
INCB

INCREMENT OST

15

06 05

o : o : 1 : o :
1 : o : o :

1 I d

: d : d : d :

(dst) <- -- (dst)

N: set if most significant bit of result is set; cleared otherwise
Z: set if result is 0; cleared otherwise
V: cleared
C: set

00

d : d I
MR-5203

Word: Replaces the contents of the destination address by their logical com­
plement. (Each bit equal to 0 is set and each bit equal to 1 is cleared.)
Byte: Same.

COM RO

Before

(RO) = 013333

NZVC
0110

After

(RO) = 164444

NZVC
1001

06

-05200

05 00

I 011: 0 : 0 : 0 : 1 : 0 : 1
: 0 : 1 : 0 I d : d : d : d : d : d I

Operation:

Condition Codes:

Description:

(dst) <- (dst) +

N: set if result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: set if (dst) held 077777; cleared otherwise
C: not affected

Word: Add I to the contents of the destination.
Byte: Same.

6-28

MA-5204

Example:

DEC
DECB

INC R2

Before

(R2) = 000333

NZVC
0000

After

(R2) = 000334

NZVC
0000

DECREMENT DST

15

Operation:

Condition Codes:

Description:

Example:

NEG
NEGB

NEGATE DST

15

0/1 : o :

06 05

(dst) <- (dst) - 1

N: set if result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: set if (dst) was 100000; cleared otherwise
C: not affected

Word: Subtract 1 from the contents of the destination.
Byte: Same.

DEC R5

Before

(R5) = 000001

NZVC
1000

o : o : 1

: o : 1 :

After

(R5) = 000000

NZVC
0100

06

1 : 0
: 0 I

6-29

05

d
d :

d

PRELIMINARY

00

MR-S205

-054DD

00

: d : d : d I
MR·5206

PRELIMINARY

Operation:

Condition Codes:

(dst) <- - (dst)

N: set if result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: set if result is 100000; cleared otherwise
C: cleared if result is 0; set otherwise

Description: Word: Replaces the contents of the destination address by its 2's complement.
Note that 100000 is replaced by itself. (In 2's complement notation the most nega­
tive number has no positive counterpart.)

Example:

TST
TSTB

TEST OST

15

I 0/1 : o :

Byte: Same.

NEG RO

Before

(RO) = 000010

NZVC
0000

o : o : 1 :

Operation: (dst) <- (dst)

o : 1 :

After

(RO) = 177770

NZVC
1001

06

1 :
1 : 1 I

Condition Codes: N: set if result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: cleared
C: cleared

-05700

05 00

d : d : d : d :
d : d I

MR-S207

Description: Word: Sets the condition codes Nand Z according to the contents of the destina­
tion address; the contents of dst remain unmodified.
Byte: Same.

Example: TST Rl

Before

(RI) = 012340

NZVC
0011

After

(RI) = 012340

NZVC
0000

6-30

PRELIMINARY

6.3.3.2 Shifts and Rotates - Scaling data by factors of two is accomplished by the shift instructions:

ASR - Arithmetic shift right

ASL - Arithmetic shift left

The sign bit (bit 15) of the operand is reproduced in shifts to the right. The low-order bit is filled with
Os in shifts to the left. Bits shifted out of the C bit, as shown in the following instructions, are lost.

The rotate instructions operate on the destination word and the C bit as though they formed a 17-bit
"circular buffer." These instructions facilitate sequential bit testing and detailed bit manipulation.

ASR
ASRB

ARITHMETIC SHIFT RIGHT -06200

15 06 05 00

0/< 0 : 0 : 0 : 1 : 1 : 0 : 0 : 1 : 0

Operation:

Condition Codes:

Description:

Example:

MR·5208

(dst) +- (dst) shifted one place to the right

N: set if high-order bit of result is set (result < 0); cleared otherwise
Z: set if result = 0; cleared otherwise
V: loaded from exclusive OR of N bit and C bit (as set by the completion of the

shift operation)
C: loaded from low-order bit of destination

Word: Shifts all bits of the destination right one place. Bit 15 is reproduced. The
C bit is loaded from bit 0 of the destination. ASR performs signed division of the
destination by 2.
Byte: Same.

BYTE:

ODD ADDRESS 08 '- 07 EVEN ADDRESS 00 : rD L.r-'--T: -----,---,.:----.:-.,..---,~I__D

6-31

PRELIMINARY

ASL
ASLB

ARITHMETIC SHIFT LEFT -063DD

15 06 05 00

0/1: 0 : 0 : 0 :
1 : 1

:
0

: 0 :
1

: 1 I d : d : d
: d : d : d I

Operation:

Condition Codes:

Description:

Example:

WORD:

BYTE:

ROR
RORB

ROTATE RIGHT

15

0/1
: 0 : 0

MA·5210

(dst) <- (dst) shifted one place to the left

N: set if high-order bit of result is set (result < 0); cleared otherwise
Z: set if result = 0; cleared otherwise
V: loaded with exclusive OR of N bit and C bit (as set by the completion of the

shift operation)
C: loaded with high-order bit of destination

Word: Shifts all bits of the destination left one place. Bit 0 is loaded with a O. The
C bit of the status word is loaded from the most significant bit of the destination.
ASL performs a signed multiplication of the destination by 2 with overflow in­
dication.
Byte: Same.

MR·5211

-060DD

06 05 00

: 0 : 1 : 1 : 0 : 0 : 0 : 0 I d : d : d : d : d : d I
MR-5212

6-32

PRELIMINARY

Operation: (dst) <- (dst) rotate right one place

Condition Codes: N: set if high-order bit of result is set (result < 0); cleared otherwise
Z: set if all bits of result = 0; cleared otherwise
V: loaded with exclusive OR of N bit and C bit (as set by the completion of the

rotate operation)
C: loaded with low-order bit of destination

Description: Word: Rotates all bits of the destination right one place. Bit 0 is loaded into the C
bit and the previous contents of the C bit are loaded into bit 15 of the destination.
Byte: Same.

Example:

WORD:

BYTE:

+r------1D~-----, ~ D
15

ROL
ROLB

ROTATE LEFT

15

0/1: 0 : a

Operation:

Condition Codes:

08 07 00

I I EV:EN

MR~5213

-061DD

06 05 00

: 0 : 1 : 1 : 0 : a : 0 : 1 I d : d : d : d : d : d I
MA·5214

(dst) <- (dst) rotate left one place

N: set if high-order bit of result word is set (result < 0); cleared otherwise
Z: set if all bits of result word = 0; cleared otherwise
V: loaded with exclusive OR of the N bit and C bit (as set by the completion of

the rotate operation)
C: loaded with high-order bit of destination

6-33

PRELIMINARY

Description: Word: Rotates all bits of the destination left one place. Bit 15 is loaded into the C
bit of the status word and the previous contents of the C bit are loaded into bit 0
of the destination.
Byte: Same.

Example:

WORD:

I 15 OST

,
00

~I~~~~~~~~~
BYTE:

r---------~~~----------~
1

~[] l
08 07 00

) I E~EN
15

MR·5215

SWAB

SWAP BYTES 000300

MA-5216

Operation: byte l/byte 0 <- byte O/byte 1

Condition Codes: N: set if high-order bit of low-order byte (bit 7) of result is set; cleared otherwise
Z: set if low-order byte of result = 0; cleared otherwise
V: cleared
C: cleared

Description: Exchanges high-order byte and low-order byte of the destination word. (The desti­
nation must be a word address.)

Example: SWAB R 1

Before

(Rl) = 077777

NZVC
1111

After

(Rl) = 177577

NZVC
0000

6-34

PRELIMINARY

6.3.3.3 Multiple-Precision - It is sometimes necessary to do arithmetic operations on operands consid­
ered as multiple words or bytes. The DCTII-AA makes special provision for such operations with the
instructions ADC (add carry) and SBC (subtract carry) and their byte equivalents.

For example, two 16-bit words may be combined into a 32-bit double-precision word and added or sub­
tracted as shown below.

32-BIT WORD

(
.-.

)
31 16 15 0

OPERANDI A1 I I AO I

~------------------------------~-----------------------------~ (1
31 16 ~15~ ________________ ---;;O

OPERANDI~ _________ B_1 ____________ ~1 ~I _____________ BO ___________ ~I

31 16 15

RESULTI I I
Example:

The addition of - 1 and - 1 could be performed as follows.

- 1 = 37777777777

(R I) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD Rl,R2
ADC R3
ADD R4,R3

l. After (R 1) and (R2) are added, 1 is loaded into the C bit.
2. The ADC instruction adds the C bit to (R3); (R3) = O.
3. The (R3) and (R4) are added.
4. The result is 37777777776, or - 2.

6-35

0

I
MR-5217

PRELIMINARY

ADC
ADCB

ADD CARRY -05500

15 06 05 00

0/1: 0 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : 1 I d : d : d : d : d : d I

Operation:

Condition Codes:

Description:

Example:

SBC
SBCB

(dst) <- (dst) + (C bit)

N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if (dst) was 077777 and (C) was I; cleared otherwise
C: set if (dst) was 177777 and (C) was I; cleared otherwise

MR·5218

Word: Adds the contents of the C bit to the destination. This permits the carry
from the addition of the low-order words to be carried to the high-order result.
Byte: Same.

Double-precision addition may be done with the following instruction sequence.

ADD
ADC
ADD

AO,BO
BI
AI,Bl

;add low-order parts
;add carry into high-order
;add high-order parts

SUBTRACT CARRY -05600

14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Operation:

Condition Codes:

Description:

(dst) <- (dst) - (C)

N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if (dst) was 100000; cleared otherwise
C: set if (dst) was 0 and C was 1; cleared otherwise

Word: Subtracts the contents of the C bit from the destination. This permits the
carry from the subtraction of two low-order words to be subtracted from the high­
order part of the result.
Byte: Same.

6-36

PRELIMINARY

Example: Double-precision subtraction is done by:

SUB AO,BO
SBC B1
SUB AI,BI

SXT

SIGN EXTENO 006700

15 06 05 00

Operation:

Condition Codes:

Description:

Example:

(dst) <- 0 if N bit is clear
(dst) ~ I if N bit is set

N: not affected
Z: set if N bit is clear
V: cleared
C: not affected

MR-5220

If the condition code bit N is set, a - I is placed in the destination operand; if the
N bit is clear, a 0 is placed in the destination operand. This instruction is particu­
larly useful in multiple-precision arithmetic because it permits the sign to be ex­
tended through multiple words.

SXT A

Before

(A) = 012345

NZVC
1000

After

(A) = 177777

NZVC
1000

6.3.3.4 PS Word Operators

MFPS

MOVE BYTE FROM PROCESSOR STATUSWORO 106700

15 08 07 00

I 1

:
0

:
0

:
0 : 1

:
1

:
0

:
1 I 1

:
1

:
d : d

:
d

:
d

: d :
d I

MA-5221

6-37

PRELIMINARY

Operation:

Condition Codes:

(dst) <- PS
dst lower 8 bits

N: set if PS <7> = 1; cleared otherwise
Z: set if PS <7:0> = 0; cleared otherwise
V: cleared
C: not affected

Description: The 8-bitcontents of the PS are moved to the effective destination. If the destina­
tion is mode 0, PS bit 7 is sign-extended through the upper byte of the register.
The destination operand address is treated as a byte address.

Example: MFPS RO

Before

RO [0]
PS [000014]

MTPS

MOVE BYTE TO PROCESSOR STATUS WORD

15

I 1

: 0
:

0

:
0

:
1

:
1 :

Operation: PS <- (src)

0

:

After

RO [000014]
PS [000000]

08 07

1 I 0 : 0 : s : s : s

Condition Codes: Set according to effective SRC operand bits <3:0>

1064SS

00

: s : s : s I
MR-5222

Description: The eight bits of the effective operand replace the current contents of the PS. The
source operand address is treated as a byte address. Note: The T bit (PS bit 4)
cannot be set with this instruction. The SRC operand remains unchanged. This
instruction can be used to change the priority bits (PS bits <7:5» in the PS.

Example: MTPS Rl

Before

(R 1) = 000777
(PS) = XXXOOO

NZVC
0000

After

(Rl) = 000777
(PS) = XXX357

NZVC
1111

6-38

PRELIMINARY

6.3.4 Double-Operand Instructions
Double-operand instructions save instructions (and time) since they eliminate the need for "load" and
"save" sequences such as those used in accumulator-oriented machines.

6.3.4.1 General

MOV
MOVB

MOVE SOURCE TO DESTINATION .1SSDD

15

011: 0

Operation:

Condition Codes:

Description:

Example:

12 11 06

: 0 :
1 I 5 : 5 : 5

: 5 : 5 : 5

(dst) <- (src)

N: set if (src) < 0; cleared otherwise
Z: set if (src) = 0; cleared otherwise
Y: cleared
C: not affected

05 00

I d : d : d
: d : d : d I

MR-5223

Word: Moves the source operand to the destination location. The previous con­
tents of the destination are lost. Contents of the source address are not affected.
Byte: Same as MOY. The MOYB to a register (unique among byte instructions)
extends the most significant bit of the low-order byte (sign extension). Otherwise,
MOYB operates on bytes exactly as MOV operates on words.

MOY XXX,Rl ;loads register 1 with the contents of memory lo­
cation; XXX represents a programmer-defined
mnemonic used to represent a memory location

MOY #20,RO ;loads the number 20 into register 0; # indicates
that the value 20 is the operand

MOY @#20, - (R6) ;pushes the operand contained in location 20 onto
the stack

MOY (R6) + ,@#177566 ;pops the operand off a stack and moves it into
memory location 177566 (terminal print buffer)

MOY RI,R3 ;performs an inter-register transfer

MOYB @#177562,@#177566 ;moves a character from the terminal keyboard
buffer to the terminal printer buffer

6-39

PRELIMINARY

CMP
CMPB

COMPARE SRC TO DST -2SSDD

15

011: 0

Operation:

Condition Codes:

Descri ption:

ADD

ADD SRC TO DST

15

o : 1 :

Operation:

Condition Codes:

Description:

12 11 06

(src) - (dst)

N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise

05 00

MR·5224

V: set if there was arithmetic overflow; that is, operands were of opposite signs
and the sign of the destination was the same as the sign of the result; cleared
otherwise

C: cleared if there was a carry from the result's most significant bit; set otherwise

Compares the source and destination operands and sets the condition codes, which
may then be used for arithmetic and logical conditional branches. Both operands
are not affected. The only action is to set the condition codes. The compare is
customarily followed by a conditional branch instruction. Note: Unlike the sub­
tract instruction, the order of operation is (src) - (dst), not (dst) - (src).

12 11 06

1 : o I s : s :
s : s : s : s

(dst) <-- (src) + (dst)

N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise

06SSDD

05 00

I d : d : d : d : d : d I
MR-5225

V: set if there was arithmetic overflow as a result of the operation; that is, both
operands were of the same sign and the result was of the opposite sign; cleared
otherwise

C: set if there was a carry from the result's most significant bit; cleared otherwise

Adds the source operand to the destination operand and stores the result at the
destination address. The original contents of the destination are lost. The contents
of the source are not affected. Two's complement addition is performed. Note:
There is no equivalent byte mode.

6-40

•

Example:

SUB

Add to register:

Add to memory:

Add register to register:

Add memory to memory:

ADD 20,RO

ADD R1,XXX

ADD Rl,R2

PRELIMINARY

ADD @#17750,XXX

XXX is a programmer-defined mnemonic for a memory location.

SUBTRACT SRC FROM DST 16SSDD

15 12 11 06

1

:
1

:
1

: o I s : s : s

:
s

:
s : s

Operation: (dst) <- (dst) - (src)

Condition Codes: N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise

05 00

d : d : d :
d

: d : d I
MR-5226

V: set if there was arithmetic overflow as a result of the operation; that is, if oper­
ands were of opposite signs and the sign of the source was the same as the sign
of the result; cleared otherwise

C: cleared if there was a carry from the result's most significant bit; set otherwise

Description: Subtracts the source operand from the destination operand and leaves the result at
the destination address. The original contents of the destination are lost. The con­
tents of the source are not affected. In double-precision arithmetic the C bit, when
set, indicates a "borrow." Note: There is no equivalent byte mode.

Example: SUB R 1 ,R2

Before

(Rl) = 011111
(R2) = 012345

NZVC
1111

After

(R1) = 011111
(R2) = 001234

NZVC
0000

6-41

PRELIMINARY

6.3.4.2 Logical - These instructions have the same format as those in the double-operand arithmetic
group. They permit operations on data at the bit level.

BIT
BITB

BIT TEST

15 12 11 06 05 00

0/1: a : 1 : 1 I s : s : s : s : s

Operation:

Condition Codes:

Description:

Example:

BIC
BICB

BIT CLEAR

15

I 0/1 :

Operation:

Condition Codes:

(src) 1\ (dst)

N: set if high-order bit of result set; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: not affected

MR-5227

Performs logical AND comparison of the source and destination operands and
modifies condition codes accordingly. Neither the source nor the destination is af­
fected. The BIT instruction may be used to test whether any of the corresponding
bits set in the destination are also set in the source, or whether all corresponding
bits set in the destination are clear in the source.

BIT #30,R3 ;test bits three and four of R3 to see if both are off.

R3 = 0000000 000 011 000

Before

NZVC
11 1 1

12

: a : a

11

I s : s : s

After

NZVC
0001

: s : s

(dst) <- -- (src) 1\ (dst)

06 05

: s I d : d : d

N: set if high-order bit of result set; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: not affected

6-42

.

-4SSDD

00

: d : d : d I
MA-5228

-~--

PRELIMINARY

Description: Clears each bit in the destination that corresponds to a set bit in the source. The
original contents of the destination are lost. The contents of the source are not
affected.

Example:

HIS
HISH

BIT SET

15

I 0/1:
1

BIC R3,R4

Before

(R3) = 001234
(R4) = 001111

NZVC
1111

After

(R3) = 001234
(R4) = 000101

NZVC
0001

Before: (R3) = 0 000001 010011 100
(R4) = 0 000 001 001 001 001

After: (R4) = 0 000000001 000001

12 11 06 05

: a :
1 I s :

s
: s : s : s : s I d

Operation: (dst) <- (src) V (dst)

: d : d

Condition Codes: N: set if high-order bit of result set; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: not affected

-5SSDD

00

: d : d : d I
MR·5229

Description: Performs an inclusive OR operation between the source and destination operands
and leaves the result at the destination address; that is, corresponding bits set in
the source are set in the destination. The contents of the destination are lost.

Example: BIS RO,R 1

Before

(RO) = 001234
(R I) = 00 1 1 1 1

NZVC
0000

After

(RO) = 001234
(Rl) = 001335

NZVC
0000

Before: (RO) = 0000001 010011 100
(Rl) = 0000001 001 001 001

After: (R1) = 0000001 011 011 101

6-43

PRELIMINARY

XOR

EXCLUSIVE OR

Operation:

Condition Codes:

Description:

Example:

(dst) <- (reg) V (dst)

N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: not affected

074RDD

MR-5230

The exclusive OR of the register and destination operand is stored in the destina­
tion address. The contents of the register are not affected. The assembler format
is XOR R,D.

XOR RO,R2

Before

(RO) = 001234
(R2) = 001111

NZVC
I111

After

(RO) = 001234
(R2) = 000325

NZVC
0001

Before: (RO) = 0000001 010011 100
(R2) = 0000001 001 001 001

After: (R2) = 0000000011 010 101

6.3.5 Program Control Instructions

6.3.5.1 Branches - These instructions cause a branch to a location defined by the sum of the offset
(multiplied by 2) and the current contents of the program counter if:

I. The branch instruction is unconditional.
2. It is conditional and the conditions are met after testing the condition codes (NZVC).

The offset is the number of words from the current contents of the PC, forward or backward. Note that
the current contents of the PC point to the word following the branch instruction.

Although the offset expresses a byte address, the PC is expressed in words. The offset is automatically
multiplied by 2 and sign-extended to express words before it is added to the Pc. Bit 7 is the sign of the
offset. If it is set, the offset is negative and the branch is done in the backward direction. If it is not set,
the offset is positive and the branch is done in the forward direction.

6-44

PRELIMINARY

The 8-bit offset allows branching in the backward direction by 2008 words (4008 bytes) from the cur­
rent PC, and in the forward direction by 1778 words (3768 bytes) from the current Pc.

The DCTII-AA assembler handles address arithmetic for the user and computes and assembles the
proper offset field for branch instructions in the form:

Bxx loc

Bxx is the branch instruction and loc is the address to which the branch is to be made. The assembler
gives an error indication in the instruction if the permissible branch range is exceeded. Branch instruc­
tions have no effect on condition codes. Conditional branch instructions where the branch condition is
not met are treated as NOPs.

DR

BRANCH (UNCONDITIONAL) 000400 PLUS OFFSET

15 08 07 00

o : 0 : 0 : 0 : 0 : 0 : 1

Operation:

Condition Codes:

Description:

Example:

PC +- PC + (2 X offset)

Not affected

Provides a way of transferring program control within a range of - 12810 to
+ 12710 words with a one word instruction.

New PC address = updated PC + (2 X offset)

Updated PC = address of branch instruction + 2

With the branch instruction at location 500, the following offsets apply.

New PC Address Offset Code Offset (decimal)

474 375 -3
476 376 -2
500 377 -1
502 000 0
504 001 +1
506 002 +2

6-45

PRELIMINARY

8NE

BRANCH IF NOT EQUAL (TO ZERO) 001000 PLUS OFFSET

15

0

:
0 :

Operation:

Condition Codes:

Description:

Example:

BEQ

08 07 00

0 : 0 : o : o :
1 : 0 I OFF:SET

MR-5232

PC .-- PC + (2 X offset) if Z = 0

Not affected

Tests the state of the Z bit and causes a branch if the Z bit is clear. BNE is the
complementary operation of BEQ. It is used to test: (1) inequality following a
CMP, (2) that some bits set in the destination were also in the source following a
BIT operation, and (3) generally, that the result of the previous operation was not
o.

Branch to C if A.=I= B

CMPA,B
BNE C

;compare A and B
;branch if they are not equal

Branch to C if A + B =1= 0

ADD A,B
BNE C

;add A to B
;branch if the result is not equal to 0

BRANCH IF EQUAL (TO ZERO) 001400 PLUS OFFSET

15

Operation:

Condition Codes:

Description:

Example:

08 07 00

MA-5233

PC .-- PC + (2 X offset) if Z = 1

Not affected

Tests the state of the Z bit and causes a branch if Z is set. It is used to test: (1)
equality following a CMP operation, (2) that no bits set in the destination were
also set in the source following a BIT operation, and (3) generally, that the result
of the previous operation was O.

Branch to C if A = B (A - B = 0)

CMPA,B
BEQ C

;compare A and B
; branch if they are equal

6-46

BPL

Branch to C if A + B = 0

ADD A,B
BEQ C

;add A to B
;branch if the result = 0

PRELIMINARY

BRANCH IF PLUS 100000 PLUS OFFSET

15

1 : 0 :

Operation:

Condition Codes:

Description:

BMI

08 07 00

0 : 0 : o : o : 0 : 0 I OFF:SET

MR-5234

PC <-- PC + (2 X offset) if N = 0

Not affected

Tests the state of the N bit and causes a branch if N is clear (positive result). BPL
is the complementary operation of BMI.

BRANCH IF MINUS 100400 PLUS OFFSET

15

1 : o :

Operation:

Condition Codes:

Description:

Bve

08 07 00

o : o : o : o : o : 1 I OFF~ET
MA-5235

PC <-- PC + (2 X offset) if N = 1

Not affected

Tests the state of the N bit and causes a branch if N is set. It is used to test the
sign (most significant bit) of the result of the previous operation), branching if
negative. BMI is the complementary function of BPL.

BRANCH IF OVERFLOW IS CLEAR 102000 PLUS OFFSET

00 15

MR·5236

6-47

PRELIMINARY

Operation:

Condition Codes:

Description:

BVS

PC <- PC + (2 X offset) if V = 0

Not affected

Tests the state of the V bit and causes a branch if the V bit is clear. BVC is com­
plementary operation to BVS.

BRANCH IF OVERFLOW IS SET 102400 PLUS OFFSET

00 15

Operation:

Condition Codes:

Description:

Bee

08 07

MR-5237

PC <- PC + (2 X offset) if V = 1

Not affected

Tests the state of the V bit (overflow) and causes a branch if V is set. BVS is used
to detect arithmetic overflow in the previous operation.

BRANCH IF CARRY IS CLEAR 103000 PLUS OFFSET

Operation:

Condition Codes:

Description:

Bes

08 07 00

MR·5238

PC <- PC + (2 X offset) if C = 0

Not affected

Tests the state of the C bit and causes a branch if C is clear. BCC is the com­
plementary operation of BCS.

BRANCH IF CARRY IS SET 103400 PLUS OFFSET

08 07 00

MR·5239

6-48

"-

Operation:

Condition Codes:

Description:

PC <- PC + (2 X offset) if C = 1

Not affected

Tests the state of the C bit and causes a branch if C is set. It is used to test for a
carry in the result of a previous operation.

6.3.5.2 Signed Conditional Branches - Particular combinations of the condition code bits are tested
with the signed conditional branches. These instructions are used to test the results of instructions in
which the operands were considered as signed (2's complement) values.

Note that the sense of signed comparisons differs from that of unsigned comparisons in that in signed,
16-bit, 2's complement arithmetic the sequence of values is as follows.

largest
positive

smallest
negative

077777
077776

000001
000000
177777
177776

100001
100000

Whereas, in unsigned, 16-bit arithmetic, the sequence is considered to be:

highest

lowest

BGE

177777

000002
000001
000000

BRANCH IF GREATER THAN OR EQUAL
(TO ZERO)

15

a : a : a : a : a : 1

08 07

: a
:

a I OFF~ET

6-49

002000 PLUS OFFSET

00

MA-5240

PRELIMINARY

Operation:

Condition Codes:

Description:

BLT

PC <- PC + (2 X offset) if N \f V = 0

Not affected

Causes a branch if N and V are either both clear or both set. BGE is the com­
plementary operation of BLT. Thus, BGE will always cause a branch when it fol­
lows an operation that caused addition of two positive numbers. BGE will also
cause a br~nch on a 0 result.

BRANCH IF LESS THAN (ZERO) 002400 PLUS OFFSET

Operation:

Condition Codes:

Description:

BGT

08 07 00

MR-5241

PC <- PC + (2 X offset) if N, \f V = I

Not affected

Causes a branch if the exclusive OR of the N and V bits is one. Thus, BL Twill
always branch following an operation that added two negative numbers, even if
overflow occurred. In particular, BL T will always cause a branch if it follows a
CMP instruction operating on a negative source and a positive destination (even if
overflow occurred). Further, BLT will never cause a branch when it follows a
CMP instruction operating on a positive source and negative destination. BL T will
not cause a branch if the result of the previous operation was 0 (without overflow).

BRANCH IF GREATER THAN (ZERO) 003000 PLUS OFFSET

00 15

Operation:

Condition Codes:

Description:

08 07

MA-5242

PC <- PC + (2 X offset) if Z V (N \f V) = 0

Not affected

Operation of BGT is similar to BGE, except that BGT will not cause a branch on
a 0 result.

6-50

PRELIMINARY

BLE

BRANCH IF LESS THAN OR EQUAL (TO ZERO) 003400 PLUS OFFSET

Operation:

Condition Codes:

Description:

08 07 00

MR-5243

PC +- PC + (2 X offset) if Z V (N V V) = 1

Not affected

Operation is similar to BLT, but in addition will cause a branch if the result of the
previous operation was O.

6.3.5.3 Unsigned Conditional Branches - The unsigned conditional branches provide a means for test­
ing the result of comparison operations in which the operands are considered as unsigned values.

BHI

BRANCH IF HIGHER 101000 PLUS OFFSET

15

1

:
0

:

Operation:

Condition Codes:

Description:

BLOS

08 07 00

0

:
0

: o : o : 1 : 0 I OFF~ET
MR-5244

PC +- PC + (2 X offset) if C = 0 and Z = 0

Not affected

Causes a branch if the previous operation caused neither a carry nor a 0 result.
This will happen in comparison (CMP) operations as long as the source has a high­
er unsigned value than the destination.

BRANCH IF LOWER OR SAME 101400 PLUS OFFSET

00 08 07

MA-5245

6-51

PRELIMINARY

Operation:

Condition Codes:

Description:

BHIS

PC <- PC + (2 X offset) if C V Z = I

Not affected

Causes a branch if the previous operation caused either a carry or a 0 result.
BLOS is the complementary operation of BHI. The branch will occur in com­
parison operations as long as the source is equal to or has a lower unsigned value
than the destination.

BRANCH IF HIGHER OR SAME 103000 PLUS OFFSET

Operation:

Condition Codes:

Descri ption:

BLO

BRANCH IF LOWER

Operation:

Condition Codes:

Descri ption:

08 07 00

MA·5246

PC <- PC + (2 X offset) if C = 0

Not affected

BHIS is the same instruction as BCe. This mnemonic is included for convenience
only.

103400 PLUS OFFSET

08 07 00

MA-5247

PC <- PC + (2 X offset) if C = I

Not affected

BLO is the same instruction as BCS. This mnemonic is included for convenience
only.

6.3.5.4 Jump and Subroutine Instructions - The subroutine call in the DCTII-AA provides for tluto­
matic nesting of subroutines, reentrancy, and multiple entry points. Subroutines may call other sub­
routines (or indeed themselves) to any level of nesting without making special provision for storage of
return addresses at each level of subroutine call. The subroutine calling mechanism does not modify
any fixed location in memory, and thus provides for reentrancy. This allows one copy of a subroutine to
be shared among several interrupting processes.

6-52

JMP

JUMP

15

o : o :

Operation:

Condition Codes:

Description:

Example:

JSR

PRELIMINARY

0001 DD

06 05 00

o : o : o : o : 0

:
0

:
0

:
1 I d

d :
d : d

:
d

:
d I

MR·5248

PC .- (dst)

Not affected

JMP provides more flexible program branching than the branch instructions do.
Control may be transferred to any location in memory (no range limitation) and
can be accomplished with the full flexibility of the addressing modes, with the
exception of register mode o. Execution of a jump with mode 0 will cause an "ille­
gal instruction" condition, and will cause the CPU to trap to vector address four.
(Program control cannot be transferred to a register.) Register-deferred mode is
legal and will cause program control to be transferred to the address held in the
specified register. Note that instructions are word data and must therefore be fet­
ched from an even-numbered address.

Deferred-index mode JMP instructions permit transfer of control to the address
contained in a selectable element of a table of dispatch vectors.

First:

JMP FIRST

JMP @LlST

List:

FIRST

JMP @(SP)+

;transfers to FIRST

;transfers to location pointed to at LIST

;pointer to FIRST

;transfer to location pointed to by the top of the stack,
and remove the pointer from the stack

JUMP TO SUBROUTINE 004RDD

15 09 08 06 05 00

o : o : o : o : : o :

I

I 1 0 d d d d d d

\

MR-5249

6-53

PRELIMINARY

Operation:

Description:

Example:

SBCALL:
SBCALL+4:

SBCALL+2+2M:
CONT:

(tmp) ~ (dst) (tmp is an internal processor register)

1 (SP) ~ reg (Push reg contents onto processor stack)

reg ~ PC (PC holds location following JSR; this address now put in reg)

PC ~ (dst) (PC now points to subroutine destination)

In execution of the JSR, the old contents of the specified register (the "linkage
pointer") are automatically pushed onto the processor stack and new linkage in­
formation is placed in the register. Thus, subroutines nested within subroutines to
any depth may all be called with the same linkage register. There is no need either
to plan the maximum depth at which any particular subroutine will be called or to
include instructions in each routine to save and restore the linkage pointer. Fur­
ther, since all linkages are saved in a reentrant manner on the processor stack,
execution of a subroutine may be interrupted. The same subroutine may be reen­
tered and executed by an interrupt service routine. Execution of the initial sub­
routine can then be resumed when other requests are satisfied. This process
(called "nesting") can proceed to any level.

A subroutine called with a JSR reg,dst instruction can access the arguments fol­
lowing the call with either autoincrement addressing, (reg) +, if arguments are
accessed sequentially, or by indexed addressing, X(reg), if accessed in random or­
der. These addressing modes may also be deferred, @(reg)+ and @X(reg), if the
parameters are operand addresses rather than the operands themselves.

JSR PC, dst is a special case of the DCTII-AA subroutine call suitable for sub­
routine calls that transmit parameters through the general registers. The SP and
the PC are the only registers that may be modified by this call.

Another special case of the JSR instruction is JSR PC,@(SP) +, which ex­
changes the top element of the processor stack with the contents of the program
counter. This instruction allows two routines to swap program control and resume
operation from where they left off when they are recalled. Such routines are
called "coroutines."

Return from a subroutine is done by the RTS instruction. RTS reg loads the con­
tents of reg into the PC and pops the top element of the processor stack into the
specified register.

JSR R5,SBR
ARG 1
ARG2

ARGM
Next Instruction

6-54

R5
#1

#1

R6
n

n

R7
SBCALL

CONT

PRELIMINARY

SBR: MOY (R5) + ,dst 1 SBCALL+4 n-2 SBR
MOY (R5)+,dst 2

MOY (R5) + ,dst M SBCALL+2+2M
Other Instructions CONT

EXIT: RTSR5 CONT n-2 EXIT

JSR R5, SBR

BEFORE: (PC) R7 I PC I STACK

(SP) R6 I n I DATA 0
I

R5 I #1 I

AFTER: R7 I SBR I
DATA 0

R6 I n-2 I #1 I

R5 PC+2

JSR PC, SBR

BEFORE: (PC) R7 I PC STACK

(SP) R6 I I DATA 0 n f

AFTER: R7 I SBR

~
DATA 0

R61 n-2 PC+2

MA·6250

6-55

PRELIMINARY

RTS

RETURN FROM SUBROUTINE 00020R

15 03 02 00

o : 0 : 0 : 0 : 0 o o o o

Operation:

Description:

Example:

PC <- (reg)
(reg) <- (SP) T

MA-5251

Loads the contents of the register into PC and pops the top element of the proces­
sor stack into the specified register.

Return from a nonreentrant subroutine is typically made through the same regis­
ter that was used in its call. Thus, a subroutine called with a JSR PC, dst exits
with a RTS PC and a subroutine called with a JSR R5, dst, may pick up parame­
ters with addressing modes (R5) +, X(R5), or @X(R5) and finally exits, with an
RTS R5. .

RTS R5

RTS R5
STACK

BEFORE: (PC) R7 I SBR I
DATA 0

(SP) R6 I n I
#1 I

PC R51 L.. ___

AFTER: R71. PC .

R6 l n+2 I DATA 0 I

R5 I #1 I
MA-5252

6-56

PRELIMINARY

SOB

SUBTRACT ONE AND BRANCH (IF *- 0) 077RNN

15

o : 1

:

Operation:

Condition Codes:

Descri ption:

09 08 06 05 00

1

:
1

:
1 : 1

:
1 I r

:
r

:
r I OFF~ET

MR-5253

(R) - (R) - 1; if this result =1= 0, then PC - PC - (2 X offset); if (R) = ° then
PC -PC

Not affected

The register is decremented. If the contents does not equal 0, twice the offset is
subtracted from the PC (now pointing to the following word). The offset is inter­
preted as a 6-bit positive number. This instruction provides a fast, efficient meth­
od of loop control. The assembler syntax is SOB R,A where A is the address to
which transfer is to be made if the decremented R is not equal to 0. Note: the
SOB instruction cannot be used to transfer control in the forward direction.

6.3.5.5 Traps - Trap instructions provide for calls to emulators, I/O monitors, debugging packages,
and user-defined interpreters. A trap is effectively an interrupt generated by software. When a trap
occurs, the contents of the current program counter (PC) and processor status word (PS) are pushed
onto the processor stack and replaced by the contents of a 2-word trap vector containing a new PC and
new PS. The return sequence from a trap involves executing an RTI or RTT instruction, which restores
the old PC and old PS by popping them from the stack. Trap instruction vectors are located at per­
manently assigned fixed addresses.

EMT

EMULATOR TRAP

15

Operation:

Condition Codes:

08 07

1 (SP) - PS
1 (SP) <--- PC
PC <--- (30)
PS +- (32)

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

6-57

104000-1 04377

00

MR-5254

PRELIMINARY

Description:

TRAP

TRAP

All operation codes from 104000 to 104377 are EMT instructions and may be
used to transmit information to the emulating routine (e.g., function to be per­
formed). The trap vector for EMT is at address 30. The new PC is taken from the
word at address 30; the new processor status (PS) is taken from the word at ad­
dress 32.

CAUTION: EMT is used frequently by DIGITAL system software and is there­
fore not recommended for general use~

PC I PC 1 STACK

BEFORE:

l n I DATA 1
I

SP

AFTER: PS I (32)

PC I (30) I DATA 1

PS 1

I n-4 I PC 1
I

SP

MR-5255

104400-104777

15 08 07 00

Operation: 1 (SP) -- PS
1 (SP) -- PC
PC -- (34)
PS +- (36)

MA-5256

6-58

Condition Codes:

Description:

BPT

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

PRELIMINARY

Operation codes from 104400 to 104777 are TRAP instructions. TRAPs and
EMTs are identical in operation, except that the trap vector for TRAP is at ad­
dress 34.

NOTE: Since DIGITAL software makes frequent use of EMT, the TRAP in­
struction is recommended for general use.

BREAKPOINT TRAP 000003

Operation:

Condition Codes:

Description:

lOT

1 (SP) <- PS
1 (SP) <- PC
PC <- (14)
PS <- (16)

N: loaded from trap vector
Z: loaded from trap vector
V: "loaded from trap vector
C: loaded from trap vector

MR-5257

Performs a trap sequence with a trap vector address of 14. Used to call debugging
aids. The user is cautioned against employing code 000003 in programs run under
these debugging aids. (No information is transmitted in the low byte.)

INPUT/OUTPUT TRAP 000004

00 15

I 0 0: 0 : 0 o : 0 : 0 : 0 : 0 : 0 : 0

Operation: 1 (SP) <- PS
1 (SP) <- PC
PC <- (20)
PS <- (22)

6-59

o : 0 : 1 : 0 : 0 I
MR·5258

PRELIMINARY

Condition Codes:

Description:

RTI

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Performs a trap sequence with a trap vector address of 20. (No information is
transmitted in the low byte.)

RETURN FROM INTERRUPT 000002

Operation:

Condition Codes:

Description:

RTT

PC <- (SP) T
PS <- (SP) T

N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

MR-5259

Used to exit from an interrupt or TRAP service routine. The PC and PS are re­
stored (popped) from the processor stack. If a trace trap is pending, the first in­
struction after RTI will not be executed prior to the next T trap.

RETURN FROM INTERRUPT 000006

15

Operation:

Condition Codes:

Descri ption:

o o o

PC <- (SP) T
PS <- (SP) T

o o o

N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

00

o o

MR-5260

Operation is the same as RTI except that it inhibits a trace trap whereas RTI
permits trace trap. If the new PS has the T bit set, a trap will occur after execu-
tion of the first instruction after R TT. .

6-60

PRELIMINARY

6.3.5.6 Reserved Instruction Traps - These are caused by attempts to execute instruction codes re­
served for future processor expansion (reserved instructions) or instructions with illegal addressing
modes (illegal instructions). Order codes not corresponding to any of the instructions described are con­
sidered to be reserved instructions. JMP and JSR with register mode destinations are illegal instruc­
tions; they trap to vector address 4. Reserved instructions trap to the vector addresses as listed in Table
A-14 in Appendix A.

6.3.5.7 Halt Interrupt - This is caused by the - HALT line (AI <7». The - HALT interrupt saves
the PC and PS and goes to the restart address with PS = 3408.

6.3.5.8 Trace Trap - Trace trap is enabled by bit 4 of the PS and causes processor traps at the end of
instruction execution. The instruction that is executed after the instruction that set the T bit will pro­
ceed to completion and then trap through the trap vector at address 14. Note that the trace trap is a
system debugging aid and is transparent to the general programmer.

NOTE
Bit 4 of the PS can only be set indirectly by execu­
ting a RTI or RTT instruction with the desired PS
on the stack.

6.3.5.9 Power Failure Interrupt - Occurs when the - PF line (AI <6» is asserted. The vector for
power failure is in locations 24 and 26. A trap will occur if an RTI instruction is executed in a power­
fail service routine.

6.3.5.10 CP<3:0> Interrupts - Refer to Paragraph 1.5.3.

6.3.5.11 Special Cases of the T Bit - The following are special cases of the T bit.

NOTE
The traced instruction is the instruction after the
one that set the T bit.

I. An instruction that cleared the T bit - Upon fetching the traced instruction, an internal flag,
the trace flag, was set. The trap will still occur at the end of this instruction's execution. The
status word on the stack, however, will have a clear T bit.

2. An instruction that set the T bit - Since the T bit was already set, setting it again has no
effect. The trap will occur.

3. An instruction that caused an instruction trap - The instruction trap is performed and the
entire routine for the service trap is executed. If the service routine exits with an RTI, or in
any other way restores the stacked status word, the T bit is set again, the instruction follow­
ing the traced instruction is executed, and, unless it is one of the special cases noted pre­
viously, a trace trap occurs.

4. Interrupt trap priorities - In the case of multiple processor trap and interrupt conditions oc­
curring simultaneously, the following order of priorities is observed (from high to low).

Halt Line
Trace Trap

Power-Fail Trap
CP<3:0> Interrupt Request

Instruction Traps

6-61

PRELIMINARY

6.3.6 Miscellaneous Instructions

HALT

HALT 000000

15 00

o : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 ~ : 0 : 0 I
Operation: 1 (SP) <- PS

1 (SP) <- PC
PC <- restart address
PS <- 340

Condition Codes: Not affected

MA·5261

Description: The processor goes to the restart address after placing the current PC and PS on
the stack. PS is initialized to 340.

WAIT

WAIT FOR INTERRUPT OOpOOl

15 00

o : o : o : o : o : o : o : o : o : o : o : o : o : o : o : 1 I
MA-5262

Condition Codes: Not affected

Description: In WAIT, as in all instructions, the PC points to the next instruction following the
WAIT instruction. Thus, when an interrupt causes the PC and PS to be pushed
onto the processor stack, the address of the next instruction following the WAIT is
saved. The exit from the interrupt routine (i.e., execution of an RTI instruction)
will cause resumption of the interrupted process at the instruction following the
WAIT.

RESET

RESET EXTERNAL BUS 000005

15 00

o : 0: 0: 0 : 0: 0: 0 : 0.: 0 : 0 : 0 : 0: 0 : 1 : 0 : 1 I
MA-5263

6-62

Condition Codes:

Description:

MFPT

PRELIMINARY

Not affected

The - BCLR line is asserted and the mode register is loaded. The - BCLR line is
negated and an ASPI transaction takes place. PC, PS, and RO-R5 are not affect­
ed.

MOVE FROM PROCESSOR TYPE WORD 000007

00 15

Operation:

Condition Codes:

Description:

MA-7198

RO.- 4

Not affected

The number 4 is placed in RO, indicating to the system software that the processor
type is DCTII-AA.

6.3.7 Condition Code Operators

CLN SEN
CLZ SEZ
CLV SEV
CLC SEC
CCC SCC

CONDITION CODE OPERATORS 0002XX

15 05 04 03 02 01 00

I 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 1 011 I N I z I V I C I

Description:

MR-5266

Set and clear condition code bits. Selectable combinations of these bits may be
cleared or set together. Condition code bits corresponding to bits in the condition
code operator (bits 0-3) are modified according to the sense of bit 4, the set/clear
bit of the operator; i.e., set the bit specified by bit 0, I, 2, or 3, if bit 4 = l. Clear
corresponding bits if bit 4 = o.

6-63

PRELIMINARY

Mnemonic Operation OPCode

CLC Clear C 000241
CLV Clear V 000242
CLZ Clear Z 000244
CLN Clear N 000250
SEC SetC 000261
SEV Set V 000262
SEZ Set Z 000264
SEN Set N 000270
SCC Set all CCs 000277
CCC Clear all CCs 000257

Clear V and C 000243
NOP No operation 000240

Combinations of the above set or clear operations may be ORed together to form
combined instructions.

6-64

-CP<3>
(AI<I»

-HALT* X
-PF X

L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H

PRELIMINARY

APPENDIX A
TABLES AND TIMING DIAGRAMS

Table A-I Interrupt Decode

-CP<2> -CP<l> -CP<O> Priority Vector
(AI<2» (AI<3» (AI<4>) Level Address

X X X 8 -

X X X 8 24
L L L 7 140
L L H 7 144
L H L 7 150
L H H 7 154
H L L 6 100
H L H 6 104
H H L 6 110
H H H 6 114
L L L 5 120
L L H 5 124
L H L 5 130
L H H 5 134
H L L 4 60
H L H 4 64
H H L 4 70
H H H No action

*PC is loaded with the restart address; PSW = 340.

A-I

PRELIMINARY

Table A-2 DC Characteristics

Absolute Maximum Ratings

Pin voltages
Storage temperature range

Maximum power dissipation
Chip ambient temperature operating range

NOTE

-0.5 V to +7 V
-55 0 C to + 125° C
(-67 0 F to 257 0 F)
l.lW
0° C to 70° C
(32° F to 1580 F)

Stresses greater than those listed may cause permanent damage
to the device. Exposure to absolute maximum rating conditions
for extended periods may affect the device's reliability.

Static Characteristics

TA = 0° C to 70° C (32° F to 158° F), VCC = 5.0 V ± 5%, VSS = 0 V

Comments and
Symbol Parameter jPins Min. Max. Units Conditions

IlL (Low input) Three-state -50 J.lA VIN = 0.4 V
leakage current on
DAL<15:0>

IlL (High input) Three-state +10 J.lA VIN = VCC max.
leakage current on
DAL<15:0>

IIH (Min.) Input current -0.1 rnA VIN = 2.4 V
for internal pull-ups
on AI<7:0>, READY,
DAL< 15:7,2:0>

IIH (Max.) Input current -0.1 rnA VIN = 0.4 V
for internal pull-ups
on AI <7:0>, READY,
DAL< 15:7,2:0>

ICC Power supply current 190 rnA TCYC = 400 ns
on VCC

IXLIH Input high current on +700 J.lA 2.4 < VIN < VCe.
XTLI XTLO grounded

IXLIL Input low current on -6.4 rnA -0.5 < VIN < +0.8 V,
XTLI XTLO grounded

VIH Input high voltage on 2 VCC V
READY, DAL<15:0>, AI<7:0>

VIL Input low voltage -0.5* +0.8 V
on READY, DAL<15:0>,
AI<7:0>

VOH Output high voltage 2.4 V IOH = 700J.lA
for DAL<15:0>, COUT,
PI, SELl, SELO

VOHA Output high voltage for 2.6 V IOH = -700J.lA
AI<7:0>

VOHB Output high voltage for 2.2 V IOH = -700J.lA
BCLR terminated with

I K resistor to V SS

VOHC Output high voltage for 2.8 V IOH = -700J.lA
- RAS, - CAS, Rj - WLB,
Rj-WHB

A-2

Table A-2 DC Characteristics (Cont)
~,

Comments and
Symbol Parameter j Pins Min. Max. Units Conditions

VOL Output low voltage 0.0 0.4 V IOL = 3,2 rnA
for DAL<15:0>. AI<7:0>.
COUTo PI. SEll. SELO.
-BCLR. -RAS. -CAS.
Rj - WLB. Rj - WHB

VILPUP Input low level for PUP -0.5* +0,8 V

VIHPUP I nput high level for PU P 1.6 VCC V
VHY Hysteresis. PUP 0.6 V

CIN I nput capacitance 10 pF
for READY. DAL< 15:0>.
AI<7:0>

("OUT Output capacitance 20 pF
for three-state load
calculation on DAL< 15:0>.
AI<7:0>. COUTo PI. SELl.
SELO. - BCLR. - RAS. -CAS.
Rj - WHB. Rj - WLB

* -0.5 Von input pins allows for ringing on unterrninated lines,

A-3

PRELIMINARY
,~ ~ -

Table A-3 Sequences of Transactions

Instruction

CLRRO

CLR (RO) or
MOY RO, (Rl)
or MOY RO, (RI)+

MOY RO, -(R!)

MOY RO, @X(R!)

MTPS RO

JMP (RO)

JSR RO, (R!)

WAIT

HLT

EMT

RESET

Interrupt sequence

DMA sequence

R- Read
W - Write
Ref - Refresh
(replaced by N in
static modes)

I6-Bit

X

X

X

X

X

X

X

X

X

X

X

X

X

! Missing transaction in static mode.

8-Bit

X

X

X

X

X

X

X

X

X

X

X

X

I - lACK
D-DMA
A-ASPI
N - Busnop

NOTE: R-W means
read-modify-write
(- indicates
indivisible)

Sequence of Transaction

RRefN
R-RRefN

R RefR-W
R-R Ref R-R-W-W

RRefN R-W
R-R Ref N R-R-W-W

R Ref R N R-W Ref!
R-R Ref R-R N R-R-W-W Refl

RRefNN NNN
R-RRefNN N N N

R RefN N
R-R RefN N

RRefNNNNN
R-R RefN N W-W N N

R [RefN A)2
R-R [Ref N A)2

R Ref NNW Ref N W N NAN
R-R RefN N W-W RefN W-W N NAN

R Ref NNW Ref N W R R N
R-R Ref N N W-W Ref N W-W R-R R N

R Ref N N N N [N N N)3 N N NAN
R-RRefNN N N [N N N)3 N N NAN

... R-W4[I N N5 N W RefN W R R N) R6 ...

... R-R-W-W5[I N N5 N W-W Ref N
W-W R-R R N) R-R6 ...

... R-W7 DR ...

... R-R-W_W7 D R-R ...

2 Sequence repeated until interrupt request.
3 Sequence repeated nine times. (- BCLR is low during this time.)
4 Last transactions of instruction in which interrupt is posted.
5 Transaction missing if internal vector is used.
6 Fetch of first instruction of interrupt service routine.
7 R-W (R-R-W-W) are indivisible.

A-4

PRELIMINARY

Table A-4 Signal and Pin Utilization, 16-Bit Mode

NOTES

Signal Names

Pin(s) I Pin Name Static

Data Address Lines

1-7,9
10-17

DAL<IS:8> DAL<IS:8>
DAL<7:0> DAL<7:0>

Address Interrupt Lines

32 AI<O> -DMR
33 AI<I> -CP<3>
34 AI<2> -CP<2>
3S AI<3> -CP<I>
36 AI<4> -CP<O>
37 AI<S> -VEC
38 AI<6> -PF
39 AI<7> -HALT

Control Signals

24 SELlt lACK + DMG
25 SELOt FET + DMG
26 READY READY
27 R/-WHB R/-WHB
28 R/-WLB R/-WLB
29 -RAS -RAS
30 -CAS -CAS
31 PI PI

Miscellaneous Signals

18 -BCLR -BCLR
19 PUP PUP
21 COUT COUT
22 XTLI XTLI
23 XTLO XTLO

Power Pins

8 BGND BGND
20 GND GND
40 VCC VCC

4K/16K Dynamic

DAL<IS:8>
DAL<7:0>

-RAS -CAS

FET* AI4
Al A2
A3 A4
AS A6
A7 A8
A9 AlO
All Al2
AI3 Al4

lACK + DMG
REF + DMG
READY
R/-WHB
R/-WLB
-RAS
-CAS
PI

-BCLR
PUP
COUT
XTLI
XTLO

BGND
GND
VCC

PI

-DMR
-CP<3>
-CP<2>
-CP<I>
-CP<O>
-VEC
-PF
-HALT

64K Dynamic

DAL<IS:8>
DAL<7:0>

-RAS -CAS

AI) AI4
AI A2
A3 A4
AS A6
A7 A8
A9 AIO
All AI2
AI3 AI4

lACK + DMG
FET + DMG
READY
R/-WHB
R/-WLB
-RAS
-CAS
PI

-BCLR
PUP
COUT
XTLI
XTLO

BGND
GND
VCC

PI

-DMR
-CP<3>
-CP<2>
-CP<I>
-CP<O>
-VEC
-PF
-HALT

*During -RAS, AI<O> is used to indicate a fetch operation in progress. During refresh, AI<O> is the output of the re­
fresh counter at - RAS time.

tSEL< I > and SEL<O> are encoded; refer to Tables 3-4 and 3-S.

A-5

PRELIMINARY

Table A-5 Signal and Pin Utilization, 8-Bit Mode

Signal Names

Pin(s) I Pin Name Static

Data Address Lines

1-7,9
10-\7

DAL<15:8> SAL<15:8>
DAL<7:0> DAL<7:0>

Address Interrupt Lines

32 AI<O> -DMR
33 AI<I> -CP<3>
34 AI<2> -CP<2>
35 AI<3> -CP<I>
36 AI<4> -CP<O>
37 AI<5> -VEC
38 AI<6> -PF
39 AI<7> -HALT

Control Signals

24 SELlt lACK + DMG
25 SELOt FET + DMG
26 READY READY
27 Rj-WHB -RD
28 Rj-WLB -WT
29 -RAS -RAS
30 -CAS -CAS
31 PI PI

Miscellaneous Signals

18 -BCLR -BCLR
19 PUP PUP
21 COUT COUT
22 XTLI XTLI
23 XTLO XTLO

Power Pins

8 BGND BGND
20 GND GND
40 VCC VCC

NOTES

4Kj16K Dynamic

SAL<15:8>
DAL<7:0>

-RAS -CAS

FET* AI4
Al A2
A3 A4
AS A6
A7 A8
A9 AIO
All AO
AI3 AI2

lACK + DMG
REF + DMG
READY
-RD
-WT
-RAS
-CAS
PI

-BCLR
PUP
COUT
XTLI
XTLO

BGND
GND
VCC

PI

-DMR
-CP<3>
-CP<2>
-CP<I>
-CP<O>
-VEC
-PF
-HALT

64K Dynamic

SAL<15:8>
DAL<7:0>

-RAS -CAS

AI5 AI4
Al A2
A3 A4
AS A6
A7 A8
A9 AIO
All AO
AI3 AI2

lACK + DMG
FET + DMG
READY
-RD
-WT
-RAS
-CAS
PI

-BCLR
PUP
COUT
XTLI
XTLO

BGND
GND
VCC

PI

-DMR
-CP<3>
-CP<2>
-CP<I>
-CP<O>
-VEC
-PF
-HALT

"'During -RAS, AI<O> is used to indicate a fetch operation in progress. During refresh, AI<O> is the output of the re­
fresh counter at - RAS time.

tSEL< I > and SEL<O> are encoded; refer to Table.!' 3-4 and 3-5.

A-6

PRELIMINARY

Table A-6 16-Bit Dynamic Write Addressing Scheme

Mode Memory Chip Address* AI Used

4K/16K 4K X I AI-Al2 <6:1>
4K/16K 16K X I AI-AI4 <7:1>
64K 64K X I AI-A15 <7:0>

* Address lines necessary to address all bits in each chip.

Table A-7 SEL<1:0> Functions in Static Mode or Dynamic 64K Mode

SEL<l>

L
L
H
H

SEL<O>

L
H
L
H

Function

Read, write, ASPI, or busnop
Fetch (PDP-II instruction fetch)
lACK (interrupt acknowledge)
DMG (direct memory grant)

Table A-8 SEL<l:O> Functions in Dynamic 4Kj16K Mode

SEL<l>

L
L
H
H

SEL<O>

L
H
L
H

Function

Read, write, ASPI, or busnop
Refresh
lACK (interrupt acknowledge)
DMG (direct memory grant)

Table A-9 AI Functions

@ - RAS (L.E.)
Transaction Output

Read (static) •
Write (static) •
Read (dynamic) Row address

Write (dynamic) Row address

Refresh Row address

DMA •

ASPI NjA

• - Internal low-current passive pull-ups.
N/A - Not applicable.

@ -CAS (L.E.)
Output

•
*

Column address

Column address

NjA

•
•

A-7

@PI (T.E.)
Input

InterruptjDMR

DMR

InterruptjDMR

DMR

NjA

DMR

InterruptjDMR

PRELIMINARY

Table A-tO Control Signals for Each Transaction

Transaction -RAS -CAS

Read '" '"

Fetch '" '"
Write '" '"
Refresh '"
lACK '"
DMA '" '"
ASPI '"
Busnop

* - Signal asserted during the transaction.
1 - Static modes and dynamic 64K.
2 - Dynamic modes 4Kj 16K.
X - Signal asserted during 8-bit mode only.

- Signal asserted during 16-bit mode only.
3S - Three-state.

PI Rj-WHB Rj-WLB

'" X

'" X

'" * -

'" 3S 3S

'"

Table A-ll Data Bus for Each Transaction

Transaction DALLow Byte DAL High Byte

Read X

Fetch X

Write '" X

Refresh '" '"
lACK '"

DMA 3S 3S

ASPI

Busnop '" '"
X - Lines driven after address portion of transaction (8-bit mode only).

SELO

I

2

*

AI

*
1

3S

1

'" - Lines driven after address portion of transaction (8-bit and 16-bit modes).
1 - Dynamic modes only. .
3S - Three-state.

A-8

SELl

'"
*

PRELIMINARY

Table A-12 Summary of DCTll-AA Instructions

SINGLE OPERAND

Mnemonic Instruction dst Result NZVC

General

CLR(B) .05000 Clear 0 0 I o 0
COM(B) .05IDO Complement (1 's) -d * * o I
INC(B) .05200 Increment d+! * * * -

OEC(B) .05300 Decrement d-l * * * -

NEG(B) .05400 Negate (2's complement) -d * * * *
TST(B) .05700 Test d * * o 0

Rotate and Shift

ROR(B) .06000 Rotate right -C,d * * * *
ROL(B) .06100 Rotate left C, d +-- * * * *
ASR(B) .06200 Arithmetic shift right d/2 * * * *
ASL(B) .06300 Arithmetic shift left 2d * * * *
SWAB 000300 Swap bytes * * o 0

Multiple-Precision

AOC(B) .05500 Add carry d+c * * * *
SBC(B) .05600 Subtract carry d-c * * * *
SXT 006700 Sign extend o or -I - * 0 -

Processor Status (PS) Operators

MFPS 106700 Move byte from PS d +-- PS * * 0 -
MTPS 1064SS Move byte to PS PS +-- s * * * *

DOUBLE OPERAND

General

MOV(B) .ISSOO Move d+--s * * 0 -
CMP(B) .2SS00 Compare s - d * * * *
ADD 06SS00 Add d+--s+d * * * *
SUB 16SS00 Subtract d+--d-s * * * *

Logical

BIT(B) .3SS00 Bit test (AND) sAd * * 0 -
BIC(B) .4SS00 Bit clear d +-- (-s) V d * * 0 -
BIS(B) .5SS00 Bit set (OR) d+--sVd * * 0 -

XOR 074ROO Exclusive (OR) d+--r'v'd * * 0 -

BRANCH

Base
Mnemonic Code Instruction Branch Condition

Branches

BR 000400 Branch (unconditional) (always)
BNE 001000 Branch if not equal (to 0) *0 Z=O
BEQ 001400 Branch if equal (to 0) =0 Z=I
BPL 100000 Branch if plus + N = 0
BMI 100400 Branch if minus - N = 1
BVC 102000 Branch if overflow is clear V=O
BVS 102400 Branch if overflow is set V=! •

A-9

PRELIMINARY

BCC
BCS

Branch if carry is clear
Branch if carry is set

Signed Conditional Branches

BGE 002000 Branch if greater or equal
BLT 002400 Branch if less than (0)
BGT 003000 Branch if greater than (0)
BLE 003400 Branch if less or equal

Unsigned Conditional Branches

BHI 101000 Branch if higher
BLOS 101400 Branch if lower or same
BHIS 103000 Branch if higher or same
BLO 103400 Branch if lower

JUMP and SUBROUTINE

Mnemonic OpCode

JMP OOOIDD
JSR 004RDD
RTS 00020R
SOB 077RNN

TRAP and INTERRUPT

EMT

TRAP

BPT
lOT
RTI
RTI

104000 to
104377
104400 to
104777
000003
000004
000002
000006

MISCELLANEOUS

Mnemonic OpCode

HALT 000000
WAIT 000001
RESET 000005
MFPT 000007
NOP 000240

Instruction

Jump
Jump to subroutine
Return from subroutine
Subtract I and branch
(if =1= 0)

Emulator trap
(not for general use)
Trap

Breakpoint trap
Input/output trap
Return from interrupt
Return from interrupt

Instruction

Halt
Wait for interrupt
Reset external bus
Move from processor type
(No operation)

CONDITION CODE OPERATORS

Mnemonic OpCode Instruction

CLC 000241 Clear C
CLV 000242 Clear V
CLZ 000244 Clear Z
CLN 000250 ClearN
CCC 000257 Clear all CC bits
SEC 000261 Set C
SEV 000262 Set V
SEZ 000264 Set Z
SEN 000270 Set N
SCC 000277 Set all CC bits

A-1O

~O
<0
>0

.;;;

>
.;;;
~

<

Notes

PC +- dst
Use same R
Use same R

C = 0
C=I

NVV=O
N 'lfV= 1
Z V (N 'If V) = 0
Z V (N 'If V) = 1

C V Z = 0
C VZ = 1
C=O
C=I

R - I, then if R =1= 0:
PC +-- Updated PC - (2 X NN)

PC at 30, PS at 32

PC at 34, PS at 36

PC at 14, PS at 16
PC at 20, PS at 22

Inhibit T bit trap

NZVC

---0
--0 -
-0 --
o ---
o 0 0 0
-- -I
- -I -
-1 --
1 ---
1 1 I 1

PRELIMINARY

Table A-13 Numerical Op Code List

OpCode Mnemonic OpCode Mnemonic OpCode Mnemonic

000000 HALT 0053 DD DEC 10 34 XXX BCS, BLO
000001 WAIT 0054 DD NEG 10 40 00 EMT
000002 RTI 0055 DD ADC through
000003 BPT 0056 DD SBC 10 4377
000004 lOT 0057 DD TST 104400 TRAP
000005 RESET 0060 DD ROR through
000006 RTT 0061 DD ROL]04777
000007 MFPT 0062 DD ASR]050 DD CLRB
000077 Unused 0063 DD 10 51 DD COMB
000] DD JMP 0067 DD SXT 10 52 DD INCB
0002 OR RST 007000 Unused 10 53 DD DECB
000210 Reserved through 1054 DD NEGB
through 007777 10 55 DD ADCB
000227 01 SS DD MOV 10 56 DD SBCB
000240 NOP 02 SS DD CMP 1057 DD TSTB
000241 Condition 03 SS DD BIT 10 60 DD RORB
through codes 04 SS DD BIC 1061 DD ROLB
000277 05 SS DD BIS 10 62 DD ASRB
0003 DD SWAB 06 SS DD ADD 1063 DD ASLB
0004 XXX BR 075040 Unused 10 64 SS MTPS
0010 XXX BNE through 10 67 DD MFPS
0014XXX BEQ 076777 11 SS DD MOVB
0020 XXX BGE 077RNN SOB 12 SS DD CMPB
0024 XXX BLT 1000 XXX BPL 13 SS DD BITB
0030 XXX BGT 1004 XXX BMI 14SS DD BICB
0034 XXX BLE 10 10 XXX BHI 15 SS DD BISB
004R DD JSR 1014 XXX BLOS 16 SS DD SUB
0050 DD CLR 10 20 XXX BVC 170000 Reserved
0051 DD COM 10 24 XXX BVS through
0052 DD INC 10 30 XXX BCC, BHIS 177777

Table A-14 Reserved Trap and Interrupt Vectors

Vector Description

000
004
010
014
020
024
030
034

Default vector = 0 for interrupting device failing to put vector out on DALs.
If mode 0 is the destination address in a JMP or JSR instruction, a trap will occur to vector location 4.
Illegal and reserved instruction.
BPT instruction and T bit.
lOT instruction.
Power fail.
EMT instruction.
TRAP instruction.

A-II

PRELIMINARY

Table A-IS 7~Bit ASCII Code

Octal Char. Octal Char. Octal Char. Octal Char.

000 NUL 040 SP 100 @ 140 0

001 SOH 041 ! 101 A 141 a
002 STX 042 .. 102 B 142 b
003 ETX 043 # 103 C 143 c
004 EOT 044 $ 104 D 144 d
005 ENQ 045 % 105 E 145 e
006 ACK 046 & 106 F 146 f
007 BEL 047 . 107 G 147 g
010 BS 050 (110 H 150 h
011 HT 051) III I 151 i
012 LF 052 * 112 J ' 152 j
013 VT 053 + 113 K 153 k
014 FF 054 . 114 L 154 I
015 CR 055 - 115 M 155 m
016 SO 056 116 N 156 n
017 SI 057 / 117 0 157 0
020 DLE 060 0 120 P 160 P
021 DCI 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t
025 NAK 065 5 125 U 165 u
026 SYN 066 6 126 V 166 v
027 ETB 067 7 127 W 167 w
030 CAN 070 8 130 X 170 x
031 EM 071 9 131 Y 171 y
032 SUB 072 132 Z 172 z
033 ESC 073 , 133 [173 {
034 FS 074 < 134 \ 174 I
035 GS 075 = 135 1 175 I
036 RS 076 > 136 /\ 176 -037 US 077 ? 137 - 177 DEL

A-12

PRELIMINARY

Table A-16 Octal, Hex, Decimal Memory Addresses

Octal K bytes Hex
Octal of High Byte

Decimal 8-Bit Mode

200 000 64 10000 65536 N/A
177 000 FEOO 65024 376
176 000 63 FCOO 64512 374
175 000 FAOO 64 000 372
174 000 62 F 800 63488 370
173 000 F600 62976 366
172 000 61 F400 62464 364
171000 F 200 61952 362
170 000 60 FOOO 61440 360
167 000 EEOO 60 928 356
166 000 59 ECOO 60 416 354
165 000 EAOO 59904 352
164 000 58 E 800 59392 350
163 000 E600 58880 346
162 000 57 E400 58368 344
161000 E 200 57856 342
160 000 56 EOOO 57344 340

150 000 52 0000 53248 320
140 000 48 C 000 49152 300
130 000 44 BOOO 45 056 260
120 000 40 A 000 40 960 240
110 000 36 9 000 36864 220
100 000 32 8 000 32768 200
70 000 28 7 000 28672 160
60 000 24 6 000 24576 140
50 000 20 5 000 20480 120
40 000 16 4000 16384 100
30 000 12 3 000 12288 60
20 000 8 2000 8 192 40
IO 000 4 1000 4 096 20

7 000 EOO 3584 16
6 000 3 COO 3 072 14
5 000 AOO 2560 12
4 000 2 800 2 048 IO
3 000 600 1 536 6
2 000 1 400 1024 4
1000 200 512 2

a a a a

A-13

PRELIMINARY

DCTll-AA Instruction Execution Times at Maximum Operating Frequency

Tables A-I7 to A-22 list the execution times for all instructions executable by the DCT Il-AA. The
tables are organized so as to help you calculate program execution times. To do such computations, you
must first choose a system configuration and then find the columns in the tables that apply to it. Only
those execution times listed may be used. The possible system configurations are

• I 6-bit mode - REFRESH on
• I6-bit mode - REFRESH off
• 8-bit mode - REFRESH on
• 8-bit mode - REFRESH off

It is possible for an instruction to have varying execution times when REFRESH is on. In 8-bit mode
REFRESH is done every instruction cycle; in 16-bit mode it is done every other cycle. The refresh
cycle adds a small increment of time to the machine cycle. Addressing modes 5, 6, and 7, I/O, and trap
(two occurrences) also add time. Therefore, minimum and maximum execution times are given in RE­
FRESH ON configurations. The program execution time is computed for REFRESH ON con­
figurations by totaling the average execution times of the instructions used.

The following notes apply to Tables A-17 through A-22.

• All times are in microseconds.

• Add 0.4 j.LS for every - READY pulse that occurs during an I/O transaction.

• Operating frequency is 7.5 MHz. Use the following formula to compute instruction execution
times (lETs) for different operating frequencies.

IET(fOP) = (7.5 MHz/fOP) * IET(7.5)

where:

IET(fOP) = Instruction Execution Time for the new frequency, fOP.

fOP = The operating frequency at which the instruction execution times are needed.

IET(7.5) = Instruction Execution Times with an operating frequency of 7.5 MHz.
These times are listed in the tables.

• NA = Not applicable.

NOTE
The times calculated are those using revision 5.18 of
the microcode.

A-14

PRELIMINARY

Table A-17 XOR and Single-Operand Instructions

16-Bit Mode 8-Bit Mode

REFRESH ON ON OFF ON ON OFF OFF

Dest. Word Byte Word Byte
Instructions Mode Min. Max. lostr. lostr. lostr. lostr.

CLR(B), COM(B), 0 1.60 1.73 1.6 2.53 2.53 2.4 2.4
lNC(B), DEC(B), 1 2.80 2.93 2.8 5.33 3.73 5.2 3.6
NEG(B), ROR(B), 2 2.80 2.93 2.8 5.33 3.73 5.2 3.6
ROL(B), ASR(B), 3 3.60 3.73 3.6 6.93 5.33 6.8 5.2
ASL(B), SWAB, 4 3.20 3.33 3.2 5.73 4.13 5.6 4.0
ADC(B), SBC(B), 5 4.13 4.26 4.0 7.46 5.86 7.2 5.6
SXT, MFPS, 6 4.13 4.26 4.0 7.46 5.86 7.2 5.6
XOR 7 4.93 5.06 4.8 9.06 7.46 8.8 7.2

TST (B) 0 1.60 1.73 1.6 2.53 2.53 2.4 2.4
1 2.40 2.53 2.4 4.13 3.33 4.0 3.2
2 2.40 2.53 2.4 4.13 3.33 4.0 3.2
3 3.20 3.33 3.2 5.73 4.93 5.6 4.8
4 2.80 2.93 2.8 5.33 3.73 5.2 3.6
5 3.73 3.86 3.6 6.26 5.46 6.0 5.2
6 3.73 3.86 3.6 6.26 5.46 6.0 5.2
7 4.53 4.66 4.4 7.86 7.06 7.6 6.8

MTPS 0 3.20 3.33 3.2 4.13 4.13 4.0 4.0
1 4.00 4.13 4.0 4.93 4.93 4.8 4.8
2 4.00 4.13 4.0 4.93 4.93 4.8 4.8
3 4.80 4.93 4.8 6.53 6.53 6.4 6.4
4 4.40 4.53 4.4 5.33 5.33 5.2 5.2
5 5.33 5.46 5.2 7.06 7.06 6.8 6.8
6 5.33 5.46 5.2 7.06 7.06 6.8 6.8
7 6.13 6.26 6.0 8.66 8.66 8.4 8.4

NOTE:

XOR and single-operand instruction execution times include instruction fetch, instruction decode, operand fetch, instruction
operation, and result output (except in mode 0 and the TST(B) instruction, where there is no output).

A-IS

PRELIMINARY

Table A-18 Double-Operand Instructions

NOTE
Double Operand Execution Time = Source Mode Time + Destination Mode Time.

Source Mode Time*

16-Bit Mode 8-Bit Mode

REFRESH ON ON ON ON OFF ON ON OFF OFF

Ost. Mode (0-4) Dst. Mode (5-7)
Src. Word Byte Word Byte

Instructions Mode Min. Max. Min. Max. Instr. Instr. Instr. Instr.

MOY(B), CMP(B), 0 1.20 1.33 1.33 1.33 1.2 2.13 2.13 2.0 2.0
ADD, SUB, BIT(B), I 2.00 2.13 2.13 2.13 2.0 3.73 2.93 3.6 2.8
BIC(B), BIS(B) 2 2.00 2.13 2.13 2.13 2.0 3.73 2.93 3.6 2.8
BIT(B), BIC(B), 3 2.80 2.93 2.93 2.93 2.8 5.33 4.53 5.2 4.4
BIS(B) 4 2.40 2.53 2.53 2.53 2.4 4.13 3.33 4.0 3.2

5 3.33 3.33 3.33 3.46 3.2 5.86 5.06 5.6 4.8
6 3.33 3.33 3.33 3.46 3.2 5.86 5.06 5.6 4.8
7 4.13 4.13 4.13 4.26 4.0 7.46 6.66 7.2 6.4

*Source mode times include instruction fetch, instruction decode, and source operand fetch.

Destination Mode Timet

16-Bit Mode 8-Bit Mode

REFRESH ON ON OFF ON ON OFF OFF

Dest. Word Byte Word Byte
Instructions Mode Min. Max. Instr. Instr. Instr. Instr.

MOY(B), ADD, 0 0.4 0.4 0.4 0.40 0.40 0.4 0.4
SUB, BIC(B) I \.6 \.6 \.6 2.40 \.60 2.4 \.6
BlS(B) 2 \.6 1.6 1.6 2.40 1.60 2.4 1.6

3 2.4 2.4 2.4 4.00 3.20 4.0 3.2
4 2.0 2.0 2.0 2.80 2.00 2.8 2.0
5 2.8 2.8 2.8 4.53 3.73 4.4 3.6
6 2.8 2.8 2.8 4.53 3.73 4.4 3.6
7 3.6 3.6 3.6 6.13 5.33 6.0 5.2

CMP(B), BIT(B) 0 0.4 0.4 0.4 0.40 0.40 0.4 0.4
I 1.2 1.2 \,2 2.00 \.20 2.0 1.2
2 1.2 1.2 1.2 2.00 1.20 2.0 1.2
3 2.0 2.0 2.0 3.60 2.80 3.6 2.8
4 \.6 1.6 1.6 2.40 1.60 2.4 1.6
5 2.4 2.4 2.4 4.13 3.33 4.0 3.2
6 2.4 2.4 2.4 4.13 3.33 4.0 3.2
7 3.2 3.2 3.2 5.73 4.93 5.6 4.8

tDestination mode times include destination operand fetch, instruction operation, and result output (except in destination
mode 0 and the CMP(B) and BIT(B) instructions, where there are no outputs).

A-16

PRELIMINARY

Table A-19 Jump and Subroutine Instructions

16-Bit Mode 8-Bit Mode

REFRESH ON ON OFF ON ON OFF OFF

Dest. Word Byte Word Byte
Instructions Mode Min. Max. Instr. Instr. Instr. Instr.

JMP 1 2.00 2.13 2.0 2.93 NA 2.8 NA
2 2.40 2.53 2.4 3.33 NA 3.2 NA
3 2.40 2.53 2.4 4.13 NA 4.0 NA
4 2.40 2.53 2.4 3.33 NA 3.2 NA
5 2.93 2.93 2.8 4.53 NA 4.4 NA
6 2.93 2.93 2.8 4.53 NA 4.4 NA
7 3.73 3.73 3.6 6.13 NA 6.0 NA

JSR 1 3.60 3.73 3.6 5.33 NA 5.2 NA
2 4.00 4.13 4.0 5.73 NA 5.6 NA
3 4.00 4.13 4.0 6.53 NA 6.4 NA
4 4.00 4.13 4.0 5.73 NA 5.6 NA
5 4.53 4.53 4.4 6.93 NA 6.8 NA
6 4.53 4.53 4.4 6.93 NA 6.8 NA
7 5.33 5.33 5.2 8.53 NA 8.4 NA

RTS NA 2.80 2.93 2.8 4.53 NA 4.4 NA

SOB NA 2.40 2.53 2.4 3.33 NA 3.2 NA

NOTES:

I. JMP / JSR destination mode 0 is an illegal instruction that traps to vector location 10.

2. JMP execution times include instruction fetch, instruction decode, operand fetch, and loading the Pc.

3. JSR execution times include instruction fetch, instruction decode, operand fetch, pushing the linkage register onto the
stack, and loading the Pc.

4. RTS execution times include instruction fetch, instruction decode, loading the PC, popping the stack, and loading the
linkage register.

5. SOB execution times include instruction fetch, instruction decode, decrementing the count register, testing for zero, and
branching, if necessary. (NOTE: Whether or not a branch is taken does not affect the execution time.)

A-17

PRELIMINARY

Table A-20 Branch, Trap, and Interrupt Instructions

16-Bit Mode 8-Bit Mode

REFRESH ON ON OFF ON ON OFF OFF

Dest. Word Byte Word Byte
Instructions Mode Min. Max. Instr. Instr. Instr. Instr.

BR, BNE, BEQ, NA 1.60 1.73 1.6 2.53 NA 2.4 NA
BPL, BMI, BYC,
BYS, BCC, BCS,
BGE, BLT, BGT,
BLE, BHI, BLOS,
BHIS, BLO

EMT,TRAP, NA 6.53 6.66 6.4 9.73 NA 9.6 NA
BPT,IOT

RTI NA 3.20 3.33 3.2 4.93 NA 4.8 NA

RTT NA 4.40 4.53 4.4 7.13 NA 7.0 NA

NOTES:

I. Branch instruction execution times include instruction fetch, instruction decoding, doubling the offset, testing the condi­
tions, and adding the offset to the PC if the conditions are met. (NOTE: Whether or not a branch is taken does not
affect the execution times.)

2. Trap instruction execution times include instruction fetch, instruction decode, pushing the PS and PC onto the stack,
loading the PC with the contents of the vector location, and loading the PS with the contents of the vector location plus
two.

3. Return from interrupt instruction execution times include instruction fetch, instruction decode, and popping the PC and
PS from the stack.

A-I8

PRELIMINARY

Table A-21 Miscellaneous and Condition Code Instructions

16-Bit Mode 8-Bit Mode

REFRESH ON ON OFF ON ON OFF OFF

Dest. Word Byte Word Byte
Instructions Mode Min. Max. Instr. Instr. Instr. Instr.

HALT NA 5.73 5.86 5.6 8.4 NA 8.0 NA

WAIT NA 1.60 1.73 1.6 2.43 NA 2.4 NA

RESET NA 14.60 14.73 14.6 16.53 NA 16.4 NA

NOP NA 2.40 2.53 2.4 3.33 NA 3.2 NA

CLC, CLY, CLZ, NA 2.40 2.53 2.4 3.33 NA 3.2 NA
CLN, CCC, SEC,
SEY, SEZ, SEN,
SCC

MFPT NA 2.00 2.13 2.0 2.93 NA 2.8 NA

NOTES:
I. HAL T execution times include instruction fetch, instruction decode, writing the PC and PS onto stack, then loading the

PS with 340, and loading the PC with the RESTART address.

2. WAIT execution times include instruction fetch, instruction decode, pulsing PI to sample the interrupt lines, and doing
a REFRESH cycle if REFRESH is on. [NOTE: If no interrupt lines were asserted during the PI pulse, the WAIT
instruction will cycle in a 1.2 f.ts loop pulsing PI. (If REFRESH is on the loop will be 1.33 f.ts maximum). The looping
will continue until an interrupt line is asserted and sensed by the DCT11-AAj

3. RESET execution times include instruction fetch, instruction decode, the assertion of - BCLR, and the writing of
DAL< 15:0> into the mode register.

4. NOP execution times include instruction fetch, instruction decode, and idle time.

5. Condition code instruction execution times include instruction fetch, instruction decode, and the setting or resetting of
the appropriate status flags in the PS.

A-19

PRELIMINARY

Table A-22 Maximum Latencies

16-Bit Mode 8-Bit Mode

Dest.
Active Inputs Mode Dynamic Static Dynamic Static

-CP<3:0>, -PF NA 15.47 15.20 22.13 21.60
(Internal vector)

- VEC, -CP<3:0> NA 15.87 15.60 22.53 22.00
(External vector)

DMR NA 3.66 3.52 4.46 4.32

WAIT Instruction
Internal vector NA 7.87 7.73 10.53 10.13

External vector NA 8.27 8.13 10.93 10.53

DMR NA 1.66 1.66 1.79 1.66

NOTES:

These timings are given in microseconds and assume a clock frequency of 7.5 MHz.

I. Interrupt latency is measured from the time the interrupt request is asserted either on the AI lines (in static modes) or
on the input of the AI line driver (in dynamic modes) to the time the DCTll-AA is ready to fetch the first instruction in
the interrupt's service routine. During this time the DCT1I-AA:

a) Keeps going until a PI latches the request. (This could happen in the instruction following the request.)

b) Finishes the instruction that latched the request.

c) Executes the lACK microcode (which involves priority arbitration), issuing lACK, generating the interrupt vector
(or in the case of - VEC being asserted, reading in the external vector), pushing PSW and PC onto the stack, and
loading PC and PSW from vector and vector + 2.

IRQ

LAST
INSTRUCTION

I
I

lACK I
MICROCODE I I: I

__ A_-I-_ B-....,--- C ----I

---.
I
I

I I
I I
I I
I I

I :

FIRST INSTRUCTION
OF SERVICE
ROUTINE

~ I
PI I I I
__J' L.-:

lACK

I
f---,
I I - _____ ~I ,~ _____ _

Note that the time to synchronize the IRQ and perform any external priority arbitration is not included in the interrupt
latency.

2. DMG latency is calculated from the time DMR is valid on the input of the AI line driver to the time the DCTII-AA
asserts DMG.

3. WAIT instruction latencies are the maximum encountered in the instruction's execution state. These times do not in­
clude the instruction fetch or the instruction decode.

A-20

'~

--

-

4.

5.

PRELIMINARY

Times refer to IRQ occurring during a JSR (mode 2 or 4) EMT sequence, which is the worst case.

Times refer to DMR occurring during a MTPS (mode 0) instruction, which is the worst case.

6. Timings assume the DCTlI-AA is not in long bus cycle (mode register bit 1) and there are no ready slips.

A-21

> I

IV
~

,,- Yo, ~
20- GND POWER

8_ BGND CONTROL
19_ PUP

18- -BCLR

COUT

l
21

RO

~ R3

R4

R5

R6(SP)

XTL 1 XTLO AI<7:0>

t r {}
22 23 32-39

Figure A-I

16·BIT INTERNAL BUS

INSTRUCTION REGISTER

ALU

STATUS REGISTER

CONTROL

SEL <0> -RAS
READY SEL <1> -CAS

1 ~ PI

.t}
26 24-25 29-31

DCTII-AA, Block Diagram

RI -WHB
RI -WLB

~
27-28

INTERNAL
CONTROL

DAL<15:8> DAL <7:0>

n n
1-7,9 10-17

MA 5577

" :xl
m
r--3: -z »
:xl
-<

:>
I

N
+;.

COUT

OAL<15.0>

AI<7:0>

"RAS

-CAS

PI

R/-WLB
R/-WHB
NORMAL

R/-WLB
R/-WHB
DELAYED

SE L 0 IFETI
NOTE 1
NOTE 2

• ~ CPU READ TRANSACTION :1
READ ADDRESS _I_ READ INPUT

\ J \ / ,'----_

F=SFR--i

I r _______ t~F - - - - - - - {

, \

NOTE 1 ASSERTED DNLY IF READ TRANSACTION IS AN INSTRUCTION FETCH
NOTE 2 SEL 1 IS NEGATED LOW THROUGHOUT THE TRANSACTION

• THE PREVIOUS AND FOLLOWING TRANSACTIONS ARE ASSUMED TO BE READ TRANSACTIONS

Figure A-2 16-Bit Static Read

MODE REGISTER

11 10 9 8 1 0

101 X 11 1 x 1 X 11 I
1 = HIGH
o ~ LOW

X -= IRRELEVANT

VAliD
OUTPUT ~
~~VT~~I~ mrmmxr
~N~~~~

IGNORED
INPUT IXTIID1XI

CONDITIONAL ~)=~-_~-_-_-_~I~~

MR-4703

."
::%J
m r--s: -z
> ::u
-<

:>
I

N
VI

SYMBOL PARAMETER FUNCTION OF tCYC MIN/MAX

tCDE -CAS (T.E.I to next DAL<15:0> (T -181 = 115 ns min
Address Enable

tCRD -CAS (L.E.I or Delayed Mode RM (3T -1801 = 220 ns max
(L.E.I to Read Data Valid

tcsp -CAS (L.E.I Set Up Time to PI (L.E.I (T -281 = 105 ns min
tCYC XTL 1, XTLO Operating Period T=133ns min
tDFC DAL<15:0> Address Float to o ns min

-CAS (L.E.I
tDHR DAL<15:0> Address Hold Time (T -121 = 121 ns min

from -RAS (L.E.I
tDRD DAL<15:0> Address Set Up Time (5T -1571 = 510 ns max

to Read Data Valid
tDSC DAL<15:0> Address Set Up Time (2T -221 = 245 ns min

to -CAS (L.E.)
tDSP DAL<15:0> Address Set Up Time (3T -201 = 380 ns min

to PI (L.E.I
tDSR DAL<15:0> Address Set Up Time (T -481 = 85 ns min

to -RAS (L.E.I
tlHP Input on AI<7:0> Hold Time from o ns min

PI (T.E.I
tlSP PI (L.E.I to Input on AI<7:0> Valid (2T -1671 = 100 ns max
tPHC PI Hold Time from -CAS (T.E.I 10 ns min
tPIP PI Pulse Width (2T -471 = 220 ns min
tpPR PI Precharge Time (4T -331 = 500 ns min
tpRD PI (L.E.I to Read Data Valid (2T -1761 = 91 ns max
tpsc PI (L.E.I Set Up Time to -CAS (T.E.I (2T -751 = 192 ns min
tpSR PI (L.E.I Set Up Time to -RAS (T.E.I (2T -141 = 281 ns min
tRAS -RAS Pulse Width (4T -351 = 568 ns min
tRDC Read Data Hold Time from -CAS (T.E.) o ns min
tRDE -RAS (T.E.I to next DAL<15:0> (T -1181 = 15 ns min

Address Enable
tRHC -RAS (T.E.I Hold Time from -CAS 50 ns min

(T.E.I
tRHP -RAS (T.E.) Hold Time from PI (T.E.I 10 ns min
tRPR -RAS Pre charge Time (2T -1201 = 147 ns min
tRRD -RAS (L.E.I to Read Data Valid (4T -1281 = 405 ns max
tRSC -RAS (L.E.I Set Up Time to -CAS (T+ 101 = 143ns min

(L.E.I
tRSP -RAS (L.E.I Set Up Time to PI (L.E.I (2T + 101 = 277 ns min
tSFR DMA on SEL<O> (L.E.I Set Up Time to (2T -231 = 243 ns min

-RAS (L.E.I
tSSF Fetch SE L <0> Pulse Width (3T -381 = 362 ns min

_.

1: Add T ns if in long bus cycle mode, then if RDY slips are initiated, add H*T ns, where:
T = l/fop, H = number of RDY pulses times 3 if mode = normal, times 4 if mode = long bus cycle.

MR-5581

\'

"'D
::xJ
m
r-
~ -z »
::xJ
-<

~
IV
0\

CDUT

DAL<lS,O>

AI<7,O>

RAS

CAS

PI

R/-WHB
R/-WLB
NORMAL

R/-WHB
R/-WLB
DELAYED

SEL<l"O> NOTE 1

'I: CPU WRITE TRANSACTION ~
WRITE ADDRESS .+. WRITE OUTPUT

\ J '-J \~ __
,

ADDRESS • DATA OUT (J
'WSR

I---'DHN

)))))))))))): : (((((((I~ ((((((((((((((((((((((((((; DMA REDUEST ~) XI)
-tDSR~ -'RWD 'IH~ I-

r--- tRPA
-tNSR 'RAS I---tWHR-

-tDHR- tRHC_ t-
tRSP tRHP

~'RSC~ tpSR
~'NHR.

I
'DSC~ 'CSR

I 'CPR tCAS I- -'WHC--

-'CSP f--- tpsc_

I+-'ISP~ -tNHC-

-'WHP-r-

tDSP tplP
tpSN

-'NHP~ - >--'WDP

l tpPR
tNSC

- tCWD I--- tpHC- -
tNM]

>- twsp
tNSP

(\ t NMP

twsc

, If

NOTE L SEL 0 AND SEL 1 ARE ASSERTED LD THROUGHOUT THE TRANSACTION.
, THE PREVIOUS AND FOLLOWING TRANSACTIONS ARE ASSUMED TO BE WRITE TRANSACTIONS.

Figure A-3 16-Bit Static Write

MODE REGISTER

11 10 9

[OJYEP1!B
HIGH
LOW

X IRRELEVANT

VALID
OUTPUT x:::::::r.
~UVT~~'~ mrmmxr

VALID
INPUT

IGNORED
INPUT

~

lXITIDlXI
CONOI llONAL ~): ~-_-_-_-_-_~.~~

MR 4704

"tJ
:xl
m
r--s: -Z
l>
:xl
-<

~
N
-...I

SYMBOL PARAMETER FUNCTION OF tCYC MINIMAX

tCAS -CAS Pulse Width 13T -90) = 310 ns min
tCPR -CAS Precharge Ti me 13T -5) = 395 ns min
tcsp -CAS IL.E.) or Delayed Mode RM IT -28) = 105 ns min

IL.E.) Set Up Time to PI IL.E.)
tCSR -CAS IL.E.! Set Up Time to 13T -40) = 360 ns min

-RAS IT.E.)
tCWD -CAS IL.E.) or Delayed Mode RNi 80 ns max

I L.E.) to Write Data Valid
tCYC XTL 1, XTLO Operating Period T = 133 ns min
tDHN DAL<15:0> Address Hold Time 12T -20) = 247 ns min

from Normal Mode RiW I L.E.)
tDHR DAL<15:0> Address Hold Time IT-12) = 121 ns min

from -RAS I L.E.)
tDSC DAL<15:0> Address Set Up Time to 12T -22) = 245 ns min

-CAS IL.E.! or Delayed Mode
RiW IL.E.)

tDSP DAL <15:0> Address Set Up Time 13T -20) = 380 ns min
to PI IL.E.)

tDSR DAL<15:0> Address Set Up Time to IT -48) = 85 ns min
-RAS IL.E.)

tlHP Input on AI<7:0> Hold Time from o ns min

PIIT.E.!
tlSP PI IL.E.) to Input on AI<7:0> Valid 12T -167) = 100 ns max
tNHC Normal Mode RM Hold Time from IT -32) = 101 ns min

-CAS IT.E.)
tNHP Normal Mode RM Hold Time from IT -43) = 90 ns min

PI IT E.)
tNHR Normal Mode RM Hold Time from IT -108) = 25 ns min

RAS IT.E.)
tNMP Normal Mode RM Pulse Width 16T -66) = 734 ns min
tNMR Normal Mode RM Reoovery Time o ns min
tNSC Normal Mode RM Set Up Time to 12T -37) = 230 ns min

-CAS IL.E.!
tNSP Normal Mode RM Set Up Time to 13T -45) = 355 ns min

PI IL.E.)
tNSR Normal Mode RNi Set Up Time to IT -78) = 55 ns min

-RAS IL.E.!
tPHC PI Hold Time from -CAS IT.E.) or 10 ns min

Delayed Mode RM IT.E.)
tplP PI Pulse Width 12T -47) = 220 ns min
tpPR PI Precharge Time 14T -33) = 500 ns min
tpsc PI IL.E.! Set Up Time to -CAS IT.E.) 12T -75) = 192 ns min

or Delayed Mode RM IT.E.)
tPSN PI IL.E.)2,et Up Time to Normal 13T -90) = 310 ns min

Mode RfW IT.E.!
tPSR PI IL.E.) Set Up Time to -RAS IT.E.! 12T -14) = 281 ns min

1: Add T ns if in long bus cycle mode, then if RDY slips are initiated, add HOT ns, where:
T = l/fop, H = number of RDY pulses times 3 if mode = normal, times 4 if mode = long bus cycle.

SYM80L PARAMETER

tRAS -RAS Pulse Width
tRHC -RAS IT.E.) Hold Time from -CAS

IT.E.) or Delayed Mode RM IT.E.)
tRHP -RAS IT. E.) Hold Time from PI IT.E.)
tRPR -RAS Precharge Time
tRSC -RAS IL.E.) Set Up Time to -CAS

IL.E.) or Delayed Mode RfW IL.E.)
tRSP -RAS IL.E.) Set Up Time to PI IL.E.!
tRWD -RAS IL.E.) to Write Data Valid
tWDP Write Data Set Up Time to PI IL.E.)
tWHC Write Data or SAL<15:8> Hold Time

from -CAS IT.E.) or Delayed Mode
RNi ITE.)

tWHP Write Data Hold Time from PI IT.E.)
tWHR Write Data or SAL<15:B> Hold Time

from -RAS IT.E.)
twsc Write Data Set Up Time to -CAS IT.E.!
twsp Write Data Set Up Time to PI IT.E.)
tWSR Write Data Set Up Time to -RAS IT.E.)

FUNCTION OF tCye

14T + 35) = 568 ns
50 ns

10 ns
12T -120) = 147 ns
IT + 10) = 143 ns

12T + 10) = 277 ns
12T + 4) = 270 ns
IT -83) = 50 ns
IT -28) = 105 ns

IT -88) = 45 ns
IT -118) = 15 ns

13T -150) = 250 ns
(3T -110) 0 7'J0 ns
13T -55) = 345 ns

MINIMAX

min
min

min
min
min

min

max

min
min

min
min

min
min
min

MR-5582

."
:Jl m r--3:--z »
:Jl
-<

I: CPU READ TRANSACTION ~
• READ ADDRESS _I" READ INPUT

COUT \ IL /\~_

DAL<150>)'j)'J)))) 00 ADDRESS : \ : \\ ((: \\ \(\\ \1:(DATA IN ~)): OC
tORO

AI<7co>

-RAS

tRAS - 1--

))))))))))'f/J.
II

tADC

@ ~ ROW ADDRESS COL ADDR l~ \ \ \ ((((; INT. & DMA 0) REOUEST

... tASR~ I----- tAHR_ I--'DFC -tCDE~

t--tRPR
""':'tDSR--<O t---tDHR-

- II - fADE 1--'-
tRRD

I----tRSC- r--- tCSA
i---tRSP tpSR - tASC r-

tose _tpRD_ ~ tRHC_ fo--
L tCPR

tCRD-~
tRHP - fo--

tCAS--------I

-CAS tPSC--1 .tIHPO

).
I

IV
00

--<0 tAHC _tISP_ tpHC~ 0-

tosp tPIP tpAE_

I --0 -tAFP
tpPR

PI I-tCSP.

R/-WLB
R/-WHB

NORMAL --

R/-WLB
R/-WHB

DELAYED

SEL 0 (FETI
(NOTE II

~'~'m ____ ~
(NOTE 21 , \

NOTE I ASSERTED ONLY IN 64K MODES IF READ TRANSACTION IS AN INSTRUCTION FETCH.
NOTE 2 SEL 1 IS ASSERTED LO THROUGH THE TRANSACTION.

• THE PREVIOUS AND FOLLOWING TRANSACTIONS ARE ASSUMED TO BE READ TRANSACTIONS.

Figure ;\-4 16-Bit Dynamic Read

MODE REGISTER

11 10 9 8

lolxlolxlxTiJ
1 '" HIGH o 0 LOW

X '" IRRELEVANT

~~~~~T x::::::r. -
~:VT~~t~ lXillIDITXr 

~N~~I~ -r=:r 
IGNORED 
INPUT 

CONDITIONAL 

IillID1XI 
~): ~ ----~-_-_~I~~ 

MR-4701 

"'tJ 
::0 m r--3C -Z 
l> 
::0 
-< 



> I 

tv 
1.0 

SYMBOL PARAMETER FUNCTION OF tCYC MINIMAX 

tAFP Column Address on AI<7:0> o ns mon 
Float to PI I L.E.I 

tAHC Column Address on AI<7:0> IT -431 0 90 ns mIn 
Hold Time from -CAS IL.E.I 

tAHR Row Address on AI<7:0> IT -601 0 73 ns mon 
Hold Time from -RAS IL.E.I 

tASC Column Address on AI<7:0> 20 ns mon 
Set Up Time to -CAS I L.E.I 

tASR Row Address on AI<7:0> IT -681 065 nsl mon 
Set Up T,me to -RAS IL.E.I 

tCAS -CAS Pulse Width 13T -901 0310 ns min 
tCDE -CAS IT.E.I to next DAL<15:0> IT-1Bl o 115ns mon 

Address Enable 
tCPR -CAS Precharge Time 13T -51 0 395 ns min 
tCRD -CAS IL.E.I to Read Data Valid 13T -1801 0220 ns max 
tcsp -CAS IL.E.! Set Up Time to PI IL.E.I IT -281 0 105 ns min 
tCSR -CAS IL.E.I Set Up Time to -RAS 13T -401 0 360 ns mIn 

IT.E.I 
tCYC XTLI, XTLO Operating Period T o 133ns min 
tDFC DAL<15:O>Address Float to o ns min 

-CAS IL.E.I 
tDHR DAL<15:0> Address Hold Time IT -121 0 121 ns mon 

from -RAS Il.E.1 
tDRD DAL<15:0> Address Set Up Time 15T -1571 0 510 ns max 

to Read Data Valid 
tDSC DAL<15:0> Address Set Up Time 12T -221 0 245 ns min 

to -CAS IL.E.I 
tDSP DAL<15:0> Address Set Up Time 13T -201 0 380 ns mon 

to PI IL.E.I 
tDSR DAL<15:0> Address Set Up Time IT -481 0 85 ns min 

to -RAS IL.E.! 
tlHP Input on AI<7:0> Hold T,me from o ns min 

PI IT.E.I 

tlSP PI IL.E.I to Input on AI<7:0> Valid 12T -1671 0 100 ns max 
tpAE PI IT.E.! to next AI<7:0> Address IT -401 0 93 ns min 

Enable 
tPHC PI Hold Time from -CAS IT.E.I 10 ns min 
tplP PI Pulse Width 12T -371 0 230 ns mm 
tpPR PI Precharge Time 14T -331 0 500 ns mIn 
tpRD PI IL.E.! to Read Data Valid 12T -1761 0 91 ns max 
tpsc PI IL.E.I Set Up Time to -CAS IT.E.I 12T -751 0 192 ns min 
tpSR PI IL.E.I Set Up T,me to -RAS IT.E.I 12T + 241 0291 ns mon 
tRAS -RAS Pulse Width 14T + 351 0568 ns mon 
tRDC Read Data Hold Time from -CAS IT.E.I o ns min 
tRDE -RAS IT.E.I to Next DAL<15:0> IT -l1BI 0 15 ns mon 

Address Enable 
tRHC -RAS IT.E.I Hold Time from 50 ns mon 

-CAS IT.E.I 
-----

1: Add T ns if In long bus cycle mode, then if ROY slips are initiated, add H·T ns, where: 
To llfop, H 0 number of ROY pulses times 3 if mode 0 normal, times 4 if mode 0 long bus cycle. 

SYMBOL PARAMETER 

tRHP -RAS IT.E.! Hold T,me from 
PI ITE.I 

tRPR -AAS Precharge Time 
tRRD -RAS IL.E.I to Read Data Valid 
tRSC -RAS IL.E.I Set Up Time to 

-CASILEI 
tRSP -RAS IL.E.I Set Up T,me to PI IL.E.I 
tSFR Fetch SEL<O> IL.E.I Set Up Time 

to -RAS IL.E.I 
tSSF Fetch SEL<O> Pulse W,dth 

FUNCTION OF tCYC 

10 ns 

12T -1201 0 147 ns 
14T -1281 0 405 ns 
IT + 101 0 143 ns 

12T I 101 0277 ns 
IT -231 0 110 ns 

13T -381 0 362 ns 

MINIMAX 

mon 

min 
max 
mon 

mon 
min 

mon 

MA·5579 

I 

"'0 
:J:J m 
r--3C -Z 
:t> 
:J:J 
-< 



> I 

V-J 
0 

*1: CPU WRITE TRANSACTION ~ 
WRITE ADDRESS .1. WRITE OUTPUT 

COUT L_ ___ _J\ / ,'---_ 

DAL<150> 

AI<70> 

RAS 

CAS 

PI 

R/-WHB 
R/-WLB 
NORMAL 

R/-WHB 
R/-WLB 
DELAYED 

SEl <1.0> NOTE 1 . 

-------'x ADDRESS. DATA OUT t 
)))))))'j ROW ADDRESS 

+-

'OSC----+-! 

II 'CPR ~I----+--++H-- H+'WHC-t=! 

II I • Jr...!-.:- -\--4 

I 
~ 

Ii 'OSP :ENHC

-'ASC 'wHP-t---

I ____ ~I---_ , 'NHP~ 
• 'N:;R----+if-----1- -'. 

- tewD ~ I twsp tPHc1. r 
~ I .r :Jf 'NS? 113M? 

I. 'wsc 01 

If 

NOTE 1, SEL 0 AND SEL 1 ARE ASSERTED LO THROUGHOUT THE TRANSACTION 
• THE PREVIOUS AND FOLLOWING TRANSACTIONS ARE ASSUMED TO BE WRITE TRANSACTIONS. 

Figure A-5 16-Bit Dynamic Write 

MODE REGISTER 

11 10 9 8 1 0 

\olxlolxlxll\ 
HIGH 

LOW 

X -=- IRRELEVANT 

VALID 
OUTPUT r=:r. 
~:V~~I~ mrrmxr 

VALID 
INPUT 

IGNORED 
INPUT 

~ 

mm:m 
CONDITIONAL ~~(~·_-_-_-_-_~I~~ 

MA 4702 

"tJ 
::D 
m r--3: -Z 
l> 
::D 
-< 



> I 
W 
W 

SYMBOL PARAMETER FUNCTION OF tCYC MIN/MAX 

tCAS -CAS Pulse Width (3T -90) ~ 310 ns min 
tCDE -CAS (T.E.) or Delayed Mode Riiii (T-18)~115ns min 

(T.E.) to next DAL<15:0> Address 
Enable 

tCPR -CAS Precharge Time (3T -5) ~ 395 ns min 
tCRD -CAS (L.E.) or Delayed Mode Riiii (3T -180) ~ 220 ns max 

(L.E.) to Read Data Valid 
tcsp -CAS (L.E.) or Delayed Mode Riiii (T -28) ~ 105 ns min 

(L.E.) Set Up Time to PI (L.E.) 
tCSR -CAS (L.E.) Set Up Time to (3T -40) ~ 360 ns min 

-RAS (T.E.) 
tCYC XTL 1. XTLO Operating Period T ~ 133 ns min 
tDFC DAL<15:0> Address Float to -CAS o ns min 

(L.E.) or Delayed Mode Riiii (L.E.) 
tDHN DAL<15:0> Address Hold Time from (2T -201 ~ 247 ns min 

Normal Mode Riiii (L.E.) 
tDHR DAL<15:0> Address Hold Time from (T -12) ~ 121 ns min 

-RAS (L.E.) 
tDRD DAL<15:0> Address Set Up Time to (5T-157) ~510ns max 

Read Data Valid 
tDSC DAL<15:0> Address Set Up Time to (2T -22) ~ 245 ns min 

-CAS (L.E.) or Delayed Mode 
Riiii (L.E.) 

tDSP DAL<15:0> Address Set Up Time to (3T -20) ~ 380 ns min 
PI (L.E.) 

tDSR DAL<15:0> Address Set Up Time to (T -48) ~ 85 ns min 

-RAS (L.E.) 
tlHP Input on AI<7:0> Hold Time from o ns min 

PI (T.E.) 
tlSP PI (L.E.) to Input on AI<7:0> Valid (2T -167) ~ 100 ns max 
tNHC Normal Mode Riiii Hold Time from IT -32) ~ 101 ns min 

-CAS (T.E.) 
tNHP Normal Mode RiW Hold Time from IT -43) ~ gO ns min 

PIIT.E.) 
tNHR Normal Mode RiW Hold Time from IT -108) ~ 2511s min 

-RAS IT.E.) 
tNMP Normal Mode RiW Pulse Width 16T -66) ~ 734 ns min 
tNMR Normal Mode Riff. Recovery Time o ns min 
tNRD Normal Mode R/W Set Up Time to (5T -148) ~ 519 ns max 

Read Data Valid 
tNSC Normal Mode RiW Set Up Time to 12T -37) ~ 230 ns min 

-CAS IL.E.) 
tNSP Normal Mode Riiii Set Up Time to 13T -45) ~ 355 ns min 

PI IL.E.) 
tNSR Normal Mode Riiii Set Up Time to (T -78) ~ 55 ns min 

-RAS (L.E.) 
tpHC PI Hold Time from -CAS IT.E.) or 10 ns min 

Delayed Mode RiW IT.E.) 

1: Add T ns if in long bus cycle mode, then if RDY slips are initiated, add H*r ns, where: 
T ~ l/fop. H ~ number of RDY pulses times 3 if mode ~ normal. times 4 if mode ~ long bus cycle. 

SYMBOL PARAMETER 

tPIP PI Pulse Width 
tpPR PI Precharge Time 
tpRD PI I L.E.} to Read Data Valid 
tpsc PI (L.E.) Set Up Time to -CAS IT.E.} 

or Delayed Mode Rffl IT.E.} 
tpSN PI I L.E.} Set Up Time to Normal Mode 

Rffl IT.E.) 
tpSR PI IL.E.) Set Up Time to -RAS IT.E.} 
tRAS -RAS Pulse Width 

tRDC Read Data Hold Time from -CAS 
IT.E.) or Delayed Mode RiW IT. E.} 

tRDE -RAS IT.E.) to next DAL<15:0> 
Address Enable 

tRHC -RAS IT.E.) Hold Time from -CAS 
IT.E.) or Delayed Mode Rffl (T.E.) 

tRHP -RAS IT.E.) Hold Time from PI IT.E.) 
tRPR -RAS Precharge Time 
tRRD -RAS IL.E.) to Read Data Valid 
tRSC -RAS IL.E.) Set Up Time to -CAS 

(L.E.) or Delayed Mode Rffl IL.E.} 
tRSP -RAS IL.E.) Set Up Time to PI IL.E.) 
tSFR DMA on SE L <0> I L.E.) Set Up 

Time to -RAS I L.E.) 

tSSF SE L <0> Pulse Width 
tWHC Write Data or SAL<15:8> Hold Time 

from -CAS (T.E.) or Delayed Mode 
Rffl (T.E.) 

tWHR Write Data or SAL<15:8> Hold Time 
from -RAS (T.E.) 

FUNCTION OF tCYC 

12T -47} = 220 ns 

14T -33) ~ 500 ns 
12T -176) ~ 91 ns 
(2T -75) ~ 192 ns 

13T -gO} ~ 310 I1S 

12T --14} = 281 ns 
14T + 35} ~ 568 ns 

o ns 

IT-118)~15ns 

50 ns 

10 ns 
12T -120} ~ 147 ns 
(4T -128) ~ 405 ns 
(T + 10) ~ 143 ns 

(2T + 10) ~ 277 ns 

12T -23) ~ 243 ns 

13T -38) ~ 362 ns 
IT -28) ~ 105 ns 

(T -118) ~ 15 ns 

MIN/MAX 

min 

min 

max 
min 

min 

min 
min 

min 

min 

min 

mIn 
min 

max 
min 

min 

min 

min 
min 

min 

MA·5585 

." ::u 
m' r--. 
3: -z » ::u 
-< 



:> 
I 

I..;.J 
..j::.. 

. r CPU WRITE TRANSACTION (LO BYTEI:r CPU WRITE TRANSACTION (HI BYTEI :1 r .. o----WRITE ADDRESS _I_ WRITE OUTPUT -~ WRITE ADDRESS "I- WRITE OUTPUT------.!-· 

COUT r\ r\ r\ !\L.....-__ 
DAL<IS,S> 
SAL<IS,S> 

DAL<7,0> 

AI<7,O> 

-RAS 

-CAS 

PI 

R/-WLB (-WTI 
NORMAL 

R/-WLB (-WTI 
DELAYED 

SEL<1-0> NOTE 2 

:J HI BYTE OF ADDRESS " HI BYTE OF ADDRESS C 
] LO BYTE OF ADDRESS (((I ))) LOBYTEDATA LO BYTE OF ADDRESS _ HI BYTE DATA r--
---I ............ 1_ 

_ '--'IHP 

))))): (((((((((((((((((( ((( (((((( ~((((((( DMAREQUEST ))))))) :(((((( ~(((((((((([(((((((K( ((((((( DMAREQUEST ~)))))\:(((((( 
I--'DHR---O 'RPR 'RWD 'WSR i-'WHR-

f.-'DSR--q."""'RSP 'DFC- I-- I-'NSR~ f.'NHR' __ -+ ___ '"" -,pl.-------I-----+--+-'RAS 'CSR----+-IIr-_-++-__ _ 

'
I----'RSC~ 

~----------+_~---H::::::~:-'P-S-R~--~~ \~------~--~-4------------------__ ~ 
I-- 'ISP~ 'RHP - I--

'RHC~ ~ 'wsc I+I--'NHC~ ---4---------.....,j i--'csp- I-- I-'WHC - 'DSC 'PSC----IIr ...... __ -4..+-__ _ 

__ ~~d:::H:::::::~~::~!t~----~----...... tCPR------l--1\~l...-l-------~ 
1--------- 'DSP - 'PIP 'PSN ___ ~~ _____ ~ 

'CAS ~ I- 'WDP '~'WHP-
1-------- 'PPR rI-- 'NHP-

'CWD- t-- 'PHC - t-- --lJ ~ 'D~~SC 'WSP Ir\ 

p ..... ---- 'NSP --------+----1 f '---
1------------------1--- 'NMP I 

, j ~ ____ II 
11 10 9 

MODE 
VALID 

OUTPUT r=J. IGNORED 
INPUT rfJ1JillJJ. 

NOTE 1 RI -WHB IS ASSERTED HI THROUGHOUT THE TRANSACTION REGISTER [}IX 11 I X I X I 1 I 
I N V A LID TVTTf'1\\rrVT 

NOTE 2· SELO AND SEll ARE ASSERTED LO THROUGHOUT THE TRANSACTION 
NOTE 3 ASSERTED ONLY IN 64K MODE, IF THE WRITE TRANSACTION IS AN INSTRUCTION FETCH 
NOTE 4. SHOWN IS A WORD WRITE (2 TRANSACTIONSI. 

* THE PREVIOUS AND FOLLOWING TRANSACTIONS ARE ASSUMED TO BE WRITE TRANSACTIONS 

, '" HIGH 

0" LOW 
X-= IRRELEVANT 

Figure A-7 8-Bit Static Write 

- ....... ------ ..... -
OUTPUT ~ CONDITIONAL _ ... J

L 
______ }'-_ 

~N~~I~~ 

." 
:ll m r--3: -Z 
l> 
:ll 
-< 



:> 
I 

W 
Vl 

SYMBOL PARAMETER FUNCTION OF tCYC MIN/MAX J 
tCAS -CAS Pulse Width 13T -90) = 310 ns I mIn 
tCPR -CAS Precharge Time 13T -5) = 395 ns min 
tcsp -CAS Il.E.) or Delayed Mode R/W IT -28) = 105 ns min 

Il.E.) Set Up Time to PI IL.E.) 
tCSR -CAS IL.E.) Set Up Time to 13T -40) = 360 ns min I 

-RAS IT.E.! ! 

tCWD -CAS IL.E.) or Delayed Mode Rm 80 ns max 
IL.E. to Write Data Valid 

tCYC XTL 1. XTLO Operating Period T = 133 ns min 
tDFC DAL<15:0> Address Float to -CAS o ns min 

IL.E.) or Delayed Mode Rm Il.E.) 
tDHN DAL<15:0> Address Hold Time 12T -20) = 247 ns min 

from Normal Mode RNi Il.E.) 
tDHR DAL<15:0> Address Hold Time IT -12) = 121 ns min 

from -liAS Il.E.) 
tDSC DAL<15:0> Address Set Up Time to 12T -22) = 245 ns min 

-CAS I L.E.) or Delayed Mode 
RNi IL.E.) 

tDSP DAL<15:0> Address Set Up Time to 13T -20) = 380 ns min 
PI IL.E.) 

tDSR DAL<15:0> Address Set Up Time to IT -48) = 85 ns min 
-RAS Il.E.) 

tlHP Input on AI<7:0> Hold Time from o ns min 
PIIT.E.) 

tlSP PI Il.E.) to Input on AI<7:0> Valid 12T -167) = 100 ns max 
tNHC Normal Mode RNi Hold Time from IT -32) = 101 ns min 

-CAS IT.E.) 
tNHP Normal Mode RNi Hold Time from IT -43) = 90 ns min 

PI IT.E.) 
tNHR Normal Mode RNi Hold Time from IT --108) = 25 ns min 

-RAS IT.E.) 
tNMP Normal Mode RNi Pulse Width 16T -66) = 734 ns min 
tNMR Normal Mode Rm Recovery Time o ns min 
tNSC Normal Mode Rm Set Up Time to 

-CAS IL.E.) 
12T -37) = 230 ns min 

I 

tNSP Normal Mode RNi Set Up Time to 13T -45) = 355 ns min 
PI Il.E.) 

tNSR Normal Mode Rm Set Up Time to IT -78) = 55 ns min 
-RAS Il.E.) 

tpHC PI Hold Time from -CAS IT.E.) or 10 ns min 
Delayed Mode RNi IT.E.) 

tplP PI Pulse Width 12T -471 = 220 ns min 
tpPR PI Precharge Time 14T -33) = 500 ns min 
tpsc PI Il.E.) Set Up Time to -CAS IT.E.) 12T -75) = 192 ns min 

or Delayed Mode RNi IT.E.) 

1: Add T n5 If in long bus cycle mode, then if ROY slips are initiated, add H·r ns, where: 

T:::: 1 ffop. H = number of RDY pulses times 3 if mode:::: normal, times 4 if mode:::: long bus cycle. 

2: Add 4T for each READY pulse. 

2 
2 
2 

SYMBOL 

tpSN 

tpSR 
tRAS 
tRHC 

tRHP 
tRPR 
tRSC 

tRSP 
tRWD 
tWDP 
tWHC 

tWHP 
tWHR 

twsc 
twsp 
tWSR 

PARAMETER 

PI IL.E.) Set Up Time to Normal 
Mode RNV IT. E.) 
PI I L.E.) Set Up Time to -RAS IT.E.) 
-RAS Pulse Width 
-RAS IT.E.) Hold Time from -CAS 
IT.E.) or Delayed Mode RNV IT.E.) 
-RAS IT.E.) Hold Time from PI IT.E.) 
-RAS Pre charge Time 
-RAS Il.E.) Set Up Time to -CAS 
Il.E.) or Delayed Mode RmlL.E.) 
-RAS IL.E.) Set Up Time to PI IL.E.) 
-RAS I L.E.) to Write Data Valid 
Write Data Set Up Time to PI Il.E.) 
Write Data or SAL<15:8> Hold Time 
from -CAS IT.E.) or Delayed Mode 
Rm IT.E.) 
Write Data Hold Time from PI IT.E.) 
Write Data or SAL<15:8> Hold Time 
from -RAS IT.E.) 
Write Data Set Up Time to -CAS IT.E.) 
Write Data Set Up Time to PI (T.E.) 
Write Data Set Up Time to -RAS (T.E.) 

FUNCTION OF tCYC 

13T -90) = 310 ns 

12T -14) = 281 ns 
14T + 35) = 568 ns 
50 ns 

10 ns 
12T -120) = 147 ns 
IT+ 10) = 143ns 

12T + 101 = 277 ns 
12T + 4) = 270ns 
IT -83) = 50 ns 
IT -28) = 105 ns 

IT -88) = 45 ns 
IT -118) = 15 "s 

(3T - 150) = 250 ns 
(3T - 110) = 290 ns 
(3T -55) = 345 ns 

MIN/MAX 

min 

min 
min 

min 

min 

min 

min 

min 

max 
min 

min 

min 
min 

min 
min 
min 

MR 5586 

I 

! 

I 

I 

""0 
::D 
m 
r--3: -z » 
::D 
-< 



>-
I 

W 
0\ 

*t CPU READ TRANSACTION (LO BYTEI + CPU READ TRANSACTION (HI BYTE':I 

READ ADDRESS _I_ READ INPUT + READ ADDRESS _I_ READ INPUT------4-"l· r 

COUT __ ~I\ 1\ 1\ I\~ __ __ 
DAL<158> 
SAL<158> 

DAL<70> 

AI<70> 

··RAS 

-CAS 

PI 

R/-WHB I-RDI 
NORMAL 

R/-WHBI-RDI 
DELAYED 

SEL 0 

NOTE 2 
NOTE 3 

) HI BYTE OF ADDRESS -

~ LO BYTE OF ADDRESS r((( ~((( :((((((((( 
'ORO 

JJJ1. ~ ROW ADDRESS ) COL ADDR :(((((((( 
I"'" 

i---tASR4 I--tAH~~ 
i---'DHR-r-

I--tDSR- tRRD 
tRAS 

I----tRSC 
r----'RSP 

I- r----
tOFC t-- I-

Io-tASC. 'CRD-

- tAHC ~ I-'PRD-

!""-'CSP t-- I--t,SP-- f--tAFP 

tDSP 

tNRD 

Y 

r-tSFR~ 
trr .... I !;:----oor i "t--------------- \, 

NOTE ,- R/-WLB IS ASSERTED HI THROUGHOUT THE TRANSACTION 

HI BYTE OF ADDRESS x..-
I'WHC~ 

.tWHR~ 

LO BYTE DATA ))j~ LO BYTE OF ADDRESS K(C(((((:((((((((( HI BYTE DATA 1): ,-

INT & DMA .\ ~l ROW ADDRESS COL ADDR : ( ( ( ( ( ( ( ( ( (( '~;oei's~A ) f))' REOUEST 'f 
tRPR_ 

- tRDE 

'eSR 
tpSR 

-1-~ 
tRHC~ - tosc 

tRHP _ -
IpSC 

J- 'CDE r-
t'HP '--

tPIP tpPR 'PSN 
I-tPAE-

'CPA 
tCAS 

-tNSR- \ 
'PHC- -'DHN I- tNHP_ 

Ii tNMR 
I--tNHR4 

tNMP 

fL 

11 10 9 
NOTE 2 SEL' IS ASSERTED LO THROUGHOUT THE TRANSACTION 
NOTE 3 ASSERTED DNL YIN 64K MODES, IF READ TRANSACTION IS AN INSTRUCTION FETCH ~~g'~TER I ' I X I 0 I X I X I' I 

VALID 

OUTPUT -r=r.. IGNORED 
INPUT 

INVALID 
OUTPUT ~ CONDITIONAL 

lfJJIilljJ 
_,,.. ______ 'r_ 

NOTE 4 SHOWN IS A WORD READ (2 READ TRANSACTIONSI 
* THE PREVIOUS AND FOLLOWING TRANSACTIONS ARE ASSUMED TO BE READ TRANSACTIONS 1 = HIGH 

OoLOW 
X= IRRELEVANT 

Figure ;\-H H-Bit Dynamic Read 

_ .iJ,- ______ ~I .... -

~N~~I~~ 
MR 4705 

'"'0 
:::0 
m 
r--3: -Z 
l> 
:::0 
-< 



>-I 
W 
-.J 

2 

SYMBOL PARAMETER FUNCTION OF tCYC MINIMAX 

tAFP Column Address on AI<7:0> o ns min 
Float to PI Il.E.1 

tAHC Column Address on AI<7:0> IT ~431 c 90 ns min 
Hold Time from ~CAS Il.E.1 

tAHR Row Address on AI<7:0> IT ~601 = 73 ns min 
Hold Time from ~RAS Il.E.1 

tASC Column Address on AI<7:0> 20 ns mIn 
Set Up Time to ~CAS Il.E.1 

tASR Row Address on AI<7:0> IT -831 - 50 ns mIn 
Set Up Time to ~RAS Il.E.1 

tCAS ~CAS Pulse Width 13T ~901 = 310 ns mIn 
tCDE ~CAS IT.E.I or Delayed Mode RiW IT~181=115ns min 

IT.E.I to next DAl<15:0> 
Address Enable 

tCPR -CAS Precharge Time 13T ~51 = 395 ns min 
tCRD ~CAS I l.E.! or Delayed Mode RiW 13T ~1801 = 220 ns max 

Il.E.1 to Read Data Valid 
tcsp ~CAS I l.E.1 or Delayed Mode RiW IT ~281 = 105 ns min 

Il.E.1 Set Up Time to PI Il.E.1 

tCSR ~CAS Il.E.1 Set Up Time to 13T ~401 = 360 ns min 
~RAS IT.E.! 

tCYC XTll, XTlO Operating Period T = 133 ns mIn 
tDFC DAl<15:0> Address Float to ~CAS o ns min 

Il.E.1 or Delayed Mode RiW Il.E.1 
tDHN DAl<15:0> Address Hold Time from 12T ~201 = 247 ns min 

Normal Mode RIW Il.E.1 
tDHR DAl<15:0> Address Hold Time from IT~121=121ns mIn 

~RAS IL.E.I 
tDRD DAl<15:0> Address Set Up Time to 15T ~1571 = 510 ns max 

Read Data Valid 
tDSC DAl<15:0> Address Set Up Time to 12T ~221 = 245 ns m,n 

~CAS Il.E.1 or Delayed Mode 
RiW Il.E.1 

tDSP DAl<15:0> Address Set Up Time to 13T ~201 = 380 ns min 
PlllE.1 

tDSR DAl<15:0> Address Set Up T,me to IT ~481 = 85 ns min 
~RAS IL.E.I 

tlHP Input on AI <7:0>Hold Time from o ns min 

PI ITEI 
tlSP PI IL.E.I to Input on AI<7:0> Valid 12T ~ 1671 = 100 ns max 
tNHP Normal Mode RiW Hold T,me from IT ~211 = 112 ns TIln 

PI IT.E.I 
tNHR Normal Mode RiW Hold Time from IT ~1081 = 25 ns min 

~RAS IT.E.I 
tNMP Normal Mode RiW Pulse Width 16T -661 = 734 ns min 
tNMR Normal Mode RiW.... Recovery Time o ns min 
tNRD Normal Mode RIW Set Up Time to 15T ~ 1481 = 519 ns max 

Read Data Valid 
-_ .. _ .. _---- ---

Add T ns if in long bus cycle mode, then If RDY slips are initiated, add H*T ns, where: 

T == l/fop, H = number of RDY pulses times 3 if mode = normal, times 4 if mode = long bus cycle. 

2: Add 4T for each READY pulse. 
3: Add 3T if multiple DMA cycles are granted. 

SYMBOL PARAMETER 

tNSR Normal Mode RIW Set Up Time to 
~RAS Il.E.1 

tpAE PI IT.E.I to next AI<7:0> 
Address Enable 

tpHC PI Hold Time from ~CAS IT.E.I or 
Delayed Mode RM IT.E.I 

tPIP PI Pulse Width 
tpPR PI Precharge Time 
tpRD PI Il.E.1 to Read Data ValId 
tpsc PI Il.E.1 Set Up T,me to ~CAS IT.EI 

or Delayed Mode R/W IT.E.I 

2 tpSN PI~.E.I Set Up Time to Normal Mode 
RIW IT.E.I 

tpSR PI Il.E.1 Set Up Time to ~RAS ITE.I 
tRAS ~RAS Pulse W,dth 
tRDC Read Data Hold Time from ~CAS 

IT.E.I or Delayed Mode RiW IT.E.I 
tRDE ~RAS IT.E.I to next DAl<15:0> 

Address Enable 
tRHC ~RAS IT.E.I Hold Time from ~CAS 

IT.E.lor Delayed Mode RiW IT.E.I 
tRHP ~RAS IT.E.I Hold Time from PI IT.E.I 
tRPR -RAS Precharge Time 
tRRD ~RAS Il.E.1 to Read Data Valid 
tRSC ~RAS Il.E.1 Set Up Time to ~CAS 

Il.E.1 or Delayed Mode RiWlL.E.1 
tRSP ~RAS Il.E.1 Set Up Time to PI Il.E.1 
tSFR DMA on SEl<O> Il.E.1 Set Up Time 

to~RAS Il.E.1 

3 tSSF SEl<O> Pulse Width 
tWHC Write Data or SAl<15:8> Hold Time 

from ~CAS IT.E.I or Delayed Mode 
RiW ITE.I 

tWHR Write Data or SAl<15:8> Hold Time 
from ~RAS IT.E.I 

FUNCTION OF tCYC 

IT ~781 = 55 m 

IT ~401 = 93 ns 

10 ns 

12T -471 - 2201ls 
14T ~331 = 500 ns 
12T --1761 = 91 ns 
12T ~751 = 192 ns 

13T -901 - 310 ns 

12T 14) - 281 ns 

14T + 351 = 568 ns 
o ns 

IT ~ 1181 = 15 ns 

50 ns 

10 ns 
12T ~1201 = 147 ns 
14T ~ 1281 = 405 ns 
IT + 101 = 143 ns 

12T + 101 = 277 ns 
12T ~231 = 243 ns 

13T ~381 = 362 ns 

IT ~281 - 105 ns 

IT ~1181 = 15 ns 

MINIMAX 

m,n 

mIn 

m,n 

min 

min 
max 
min 

min 

mIn 

min 
mIn 

mIn 

min 

min 
min 
max 
min 

mIn 
min 

mIn 

min 

m,n 

MA 5583 

"'tJ 
::%J 
m r--31: -z » 
::%J 
-< 



:> 
I 

W 
00 

COUT 

DAL<15,B> 

SAL<15,B> 

DAL<7,O> 

AI<7,O> 

-RAS 

-CAS 

PI 

R/-WLB (-WTI 
NORMAL 

R/-WLB (-WTI 
DELAYED 

SEL<l :0> NOTE 2 

. r CPU WRITE TRANSACTION (LO BYTE) :1: CPU WRITE TRANSACTION (HI BYTE) ~ 
"r-----WR�TE ADDRESS -I- WRITE OUTPUT -.- WRITE ADDRESS _I. WRITE OUTPUT-------t~ 

__ ~I\ 1\ 1\ I\~ __ __ 
~ I 1_ 
--l HI BYTE OF ADDRESS l HI BYTE OF ADDRESS L 

~ LOBYTEOFADDRESS (((O))X LOBYTEDATA j LO BYTE OF ADDRESS a HI BYTE DATA C 
I 

_ ROWADDRESS _~ ~~~R ~((((((((i DMAREQUEST f))))): ,X ROW ADDRESS X ~~~R ~\\\\(\\(( DMAREQUEST f)>»)X~ 
[.o-'ASR_ I--'DHR- 'RPR_ ~'RWD 'WSR I--'WHR~ 

I--'AHR-
I--'DSR_ I--'RSP _'NSR_ I-'NHR. 

'RAS 'CSR -----....; ir---+-I----
I--'RSC 'AFP~ - I 

'DFC - _ 'PSR ----..... 

'ASC _ _ I---"SP~ 'RHP- _ - - 'CWD 

I""'AHC~ I 'RHC_ _ 'WSC I--'WHC-

___ +-__________ ,I--'csP- 'IHP-~ I-- 'DSC 'PSC-----lir-____ I+ __ _ 

~+---_+-f----'CPR 'CAS 'NHC-

1-------'DSP---++::::::::t1:::::::::'i;'P~,P;:::::::::.~ I--'PAE~, , -----11+------1 
----PPR PSN 

- f- 'WDP 1l:::::WHP-
{ 'NHP-

~-----+------------~~-+~ ~----~----
'PHC- t-- _'DHN----ooj 

[00-----' NSC 'WSP----+t-., ---u >-- 'NMR 

/1111-----'NSP rL 
~1::::::::::::::::~::~'~N~M;P:::::::::::::::t::::::~, 

I 

NOTE 1, R/-WHB IS ASSERTED HI THROUGHOUT THE TRANSACTION MODE 11 10 9 B 1 ~~~~~T -r::::::£ :~~~TREO lXillillXI NOTE 2- SEL 0 AND SEL 1 ARE ASSERTED LO THROUGHOUT THE TRANSACTION 
NOTE 3, ASSERTED ONLY IN 64K MODES IF THE WRITE TRANSACTION ISAN INSTRUCTION FETCH 

NOTE 4 SHOWN IS A WORD WRITE (2 TRANSACTIONS) 
• THE PREVIOUS AND FOLLOWING TRANSACTIONS ARE ASSUMED TO BE WRITE TRANSACTIONS 

REGISTER 1, I x I 0 I x I xi' I 
HIGH 
LOW 

X '" IRRELEVANT 

Figure A-9 8-Bit Dynamic Write 

~NUVT~~I~ ~ CONDITIONAL 
- .. ,....------ ..... -
_.}L _____ .} .... _ 

~N~~I~~ 

'"tJ 
2J 
m 
r--~ -Z 
l> 
2J 
-< 



( 

SYMBOL PARAMETER FUNCTION OF tCYC MINIMAX 

tAFP Column Address on AI<7:0> o ns min 
Float to PI (L.E.) 

tAHC Column Address on AI<7:0> (T -43) = 90 ns min 
Hold Time from -CAS (L.E.) 

tAHR Row Address on AI<7:0> (T -60) = 73 ns min 
Hold Time from -RAS (L.E.) 

tASC Column Address on AI<7:0> 20 ns min 
Set Up Time to -CAS (L.E.) 

tASR Row Address on AI<7:0> (T -83) = 50 ns min 
Set Up Time to -RAS (L.E.) 

tCAS -CAS Pulse Width (3T -90) = 310 ns min 
tCPR -CAS Precharge Time (3T -5) = 395 ns min 
tcsP -CAS (L.E.) or Delayed Mode (T -28) = 105 ns min 

Rm (L.E.! Set Up Time to PI (L.E.) 
tCSR -CAS (L.E.! Set Up Time to (3T -40) = 360 ns min 

-RAS (T.E.) 
tewD -CAS (L.E.) or Delayed Mode 80 ns max 

RNi (L.E.) to Write Data Valid 
tCYC XTL 1, XTLO Operating Period T = 133 ns min 
tDFC DAL<15:O>Address Float to o ns min 

-CAS (L.E.) or Delayed Mode 
RNi (L.E.) 

tDHN DAL<15:0> Address Hold Time (21 -20) = 247 ns min 
from Normal Mode Rm (L.E.) 

tDHR DAL<15:0> Address Hold Time (T -12) = 121 ns min 

:> 
I 

\,0.) 

from -RAS (L.E.) 
tosc DAL<15:0> Address Set Up (2T -22) = 245 ns min 

\0 Time to -CAS (L.E.) or 

Delayed Mode RNi (L.E.) 
tDSP DAL <15:0> Address Set Up (3T -201 = 380 ns min 

Time to PI (L.E.) 
tDSR DAL <15:0> Address Set Up (T -48) = 85 ns min 

Time to -RAS (L.E.) 
tlHP Input on AI <7:0> Hold Time o ns min 

from PI (T.E.) 
tlSP PI (L.E.) to Input on (2T -167) = 100 ns max 

AI <7:0> Valid 
tNHC Normal Mode RNi Hold Time IT -32) = 101 ns min 

from -CAS (T.E.) 
tNHP Normal Mode RNi Hold Time (T -43) = 90 ns min 

from PI (T.E.! 
tNHR Normal Mode RNi Hold Time (T -108) = 25 ns min 

from -RAS (T.E.) 
tNMP Normal Mode RNi Pulse Width (6T -66) = 734 ns min 

1: Add T ns if in long bus cYcle mode, then if RDY slips are initiated, add HOT ns, where: 
T = llfop, H = number of RDY pulses times 3 if mode = normal, times 4 if mode = long bus cycle. 

SYMBOL PARAMETER 

tNMR Normal Mode RNi Recovery Time 
tNSC Normal Mode RNi Set Up Time 

to -CAS (L.E.) 
tNSP Normal Mode RIW Set Up Time 

to PI (L.E.) 
tNSR Normal Mode RIW Set Up Time 

to -RAS (L.E.) 
tpAE PI (T.E.) to Next AI <7:0> 

Address Enable 
tPHC PI Hold Time from -CRS (T.E.) 

or Delayed Mode RNi (T.E.) 
tplP PI Pulse Width 
tpPR PI Precharge Time 
tpsc PI (L.E.) Set Up Time to -CAS 

(T.E.) or Delayed Mode RNJ (T.E.) 
tPSN PI (L.E.!~et Up Time to Normal 

Mode RIW (T.E.) 
tpSR PI (L.E.) Set Up Time to 

-RAS (T.E.) 
tRAS -RAS Pulse Width 
tRHC -RAS ("t.E.) Hold Time from -CAS 

(T.E.) or Delayed Mode RNi (T.E.) 
tRHP -RAS (T.E.) Hold Time from 

PI (T.E.! 
tRPR -RAS Precharge Time 
tRSC -RAS (L.E.) Set Up Time to -CAS 

(L.E.) or Delayed Mode RNJ (L.E.) 
tRSP -RAS (L.E.) Set Up Time to 

PI (L.E.) 
tRWD -RAS (L.E.) to Write Data Valid 
tWDP Write Data Set Up Time to 

to PI (L.E.) 
tWHC Write Data or SA L <15:8> Hold 

Time from -CAS (T.E.) or 
Delayed Mode RNi (T.E.) 

tWHP Write Data Hold Time from 
PI IT.E.) 

tWHR Write Data or SAL <15:8> Hold 
Time from -RAS (T.E.! 

twsc Write Data Set Up Time to -CAS 
(T.E.! 

twsp Write Data Set Up Time to PI (T.E.) 
tWSR Write Data Set Up Time to -RAS 

(T.E.) 

FUNCTION OF tCYC 

o ns 
(2T -37) = 230 ns 

(3T -45) = 355 ns 

IT -78) = 55 ns 

IT -40) = 93 ns 

10 ns 

(2T -47) = 220 ns 

(4 T -33) = 500 ns 
(2T -75) = 192 ns 

(3T -90) c 310 ns 

(2T --14) = 281 ns 

(4T + 35) = 568 ns 

50 ns 

10 ns 

(2T -120) = 147 ns 
(T+ 10) = 143ns 

(2T + 10) = 277 ns 

(2T + 4) = 270 ns 

(T -83) = 50 ns 

(T -28) = 105 ns 

(T -88) = 45 ns 

(T-118)=15ns 

(3T -1!~0) = 250 ns 

(3T -110) = 290 ns 
(3T -55) = 345 ns 

MINIMAX 

min 

min 

min 

min 

min 

min 

min 

min 
min 

min 

min 

min 
min 

min 

min 
min 

min 

max 

min 

min 

min 

min 

min 

min 
min 

MR-5584 

"tJ 
::Jl m r--~ -z » :n 
-< 



>-I 
.j:::. 

o 

I. REFRESH TRANSACTION .1 

COUT , <NOTE 6> / ,'-________ _ 

DAL<150> NOTE 3 ))))))))))X((((((((((((((((((O))))))))))))))))))))C 
t ASR II tAHR '1 

-rr'.,-' M" ,.,.." iM'~' M' 

AI<7,O> REFRESH ADDRESS 

tFFR .1. tFRP .j 

-RAS 

-CAS NOTE 1 
PI NOTE 2 
R/-WHB NOTE 1 
R/-WLB NOTE 1 I. 'FSP 

SEL 0 

SEL 1 NOTE 2 

NOTE 1, ASSERTED HI THROUGHOUT THE TRANSACTION 
NOTE 2, ASSERTED LO THROUGHOUT THE TRANSACTION. 
NOTE 3, CONTAINS THE LAST LATCHED DATA. 
NOTE 4: SEL 0 ASSERTED HI IN 4/16K MODE. ASSERTED LO IN 64K MODE 
NOTE 5, READY HAS NO EFFECT 
NOTE 6· EXTRA TIMING PHASE (ODI ALWAYS PRESENT. 

Figure A-IO Refresh 

.1 

MODE REGISTER 

11 10 9 8 

I x I X I 0 I xlXJ!l 
HIGH 
LOW 

X '" IRRELEVANT 

VALID 
OUTPUT r::::r.. 
I N VA II 0 \'VTTT'1f:mVT 
OUTPUT ~ 

~N~~~~ 
IGNORED 
INPUT IXillJlXI 

CONDITIONAL ~)=~-_~-_-_-_~.~~ 

"tJ 
:ll m 
r--3C -z » 
:ll 
-< 



SYMBOL PARAMETER 

tASR Refresh Address on AI<7:0> 
Set Up Time to -RAS (L.E.) 

tAHR Refresh Address on AI<7:0> 
Hold Time from -RAS (L.E.) 

tCYC XTL 1, XTLO Operating Period 
tFRP Refresh -RAS Pulse Width 
tFSP Refresh Select on SE L <0> 

Pulse Width 
tFFR Refresh Select on SEL<O> (L.E.) 

Set Up Time to -RAS (L.E.) 
tSHF Refresh Select on SEL<O> (T.E.) 

Hold Time from -RAS (T.E.) 

:> 
I 
~ 

FUNCTION OF tCYC 

(T -83) " 50 ns 

(T -60) "73 

T" 133 ns 
(2T + 35) " 302 ns 
(4T -20) " 513 ns 

(T -23) " 110 ns 

(T-123) "10 

MINIMAX 

min 

min 

min 

min 
min 

min 

min 

MR-5587 

." 
2J m r--i: -z » 
::D 
< 



:> 
I 
~ 
tv 

I- lACK TRANSACTION .1 

COUT \ <NOTE]> / \ / \ 

DAL<12:8> NOTE 3 INTERRUPT REOUEST DATA 

DAL<7:1> NOTE 4 

AI<7:O> NOTE 6 

-RAS 

=-t=tDSR~'~"U--' 

-CAS NOTE 1 
PI NOTE 2 
RI -WHB NOTE 1 
RI -WLB NOTE 1 
SEL 0 NOTE 2 

I-
SEL 1 
ClACKI 

DAL<15:13> NOTE 6 
DAL<O> NOTE 5 

NOTE 1: ASSERTED HI THROUGHOUT THE TRANSACTION 
NOTE 2: ASSERTED LO THROUGHOUT THE TRANSACTION 

tKSP 

tKAP 

NOTE 3: DAL<12:8> OUTPUTS THE IRO DATA LATCHED FROM AI<5:1> DURING IRO ACKNOWLEDGE 
NOTE 4: DAL<7:1> READS VECTOR DATA IF AI<5> WAS ASSERTED 
NOTE 5: TRISTATED AND IGNORED THROUGHOUT THE TRANSACTION 
NOTE 6: CONTAINS PREVIOUSLY LATCHED DATA (OUTPUTI 

NOTE 7: EXTRA TIMING PHASE (ODI ALWAYS PRESENT 

Figure A-II lACK Transaction 

MODE REGISTER 

11 10 9 8 

[XTXlx] X I XIQ 
1" HIGH 
0" LOW 
X" IRRELEVANT 

VALID 
OUTPUT r:::::r. 
~:VT~~'~ romoo: 
~N~~I~~ 

:~~~;ED IXillillXr 
CONDITIONAL ::(~-_-_-_-_-_~.~: 

MR-4710 

"tJ 
:XI m r--3: -z » 
:XI 
-< 



> 
~ 
~ 

SYMBOL PARAMETER FUNCTION OF tCYC MINIMAX 

tCYC XTL I, XTLO Operating Period T=133ns min 

tDSR lACK Data Set Up Time (T -48) = 85 ns min 
tKDS Vector Data on DAL<7:2> Hold Ons min 

Time from lACK Select on SEL<I> 
(T.E.) 

tKHR lACK info on DAL<15:8> Hold (T-118)=15ns min 
Time from -RAS (T.E.) 

tKHS lACK info on DAL<15:8> Hold (T -50) = 83 ns min 
Time from lACK Select on SEL<I> 
(T.E.) 

tKKR lACK Select on SEL<l> (l.E.) Set (T -63) = 70 ns min 
Up Time to -RAS (l.E.) 

tKRD lACK -RAS (l.E.) to Vector Data (2T -148) = 119 ns max 
on DAL<7:0> Valid 

tKRP lACK -RAS Pulse Width (2T + 35) = 302 ns min 
tKSD lACK Select on SEL<l> (l.E.) to (3T -155) = 245 ns max 

Vector Data on DAL<7:2> Valid 
tKSP lACK Select on SEL<I> Pulse Width (3T -66) = 334 ns min 
tRDE -RAS <T.E.) to next DAL<15:0> (T -118) = 15 ns min 

Addre .. Enable 
tRHS -RAS (T.E.) Hold Time from lACK 45 ns min 

Select on SEL<I> <T.E.) 
tSPR lACK or DMA Select on SEL<I> (T) = 133 ns min 

Recovery Time 

1: Add T ns if in long bus cycle mode, then if RDY slips are initiated. add H*T ns, where: 
T = llfop, H = number of RDY pulses times 3 if mode = normal, times 4 if mode = long bus cycle. 

MR-5588 

.. 

." 
:D m 
r -3C -z 
> 
:D 
-< 



~ 
I 
~ 
~ 

", 

fo---BUS NOP TRANSACTION------l 

COUT\ / \ r 
OAL<15:O> )((((((((((((+~~}I)))))))))))'( - - - -

AI<7:O> )((((((((((((1oj~~I)))))))))))X= - - - -

-RAS 
___ -1 

, 
-CAS I 

__ oJ 

---, 
PI \ 

\ 

-------; \-----
RI -WHB I \ 
RI -WLB ______ --1 L ___ _ 

SEL 0 

SEL 1 

NOTE 1 PREVIOUSLY LATCHED DATA 
NOTE 2 THREE-STATE IN STATIC MODES 

I 
I 

r----

NOTE 3 LONG BUS CYCLE MODE AND READY HAVE NO EFFECT 

Figure A-12 Busnop Transaction 

MODE REGISTER 

111098 

Ixlxlxlxlxl'l 
1 " HIGH 
o " LOW 

X " IRRELEVANT 

~~~~~T -:r:::::r. 
~NUVT~~I~ mImIDXI
~N~~~ r=::L

IGNORED
INPUT

CONDITIONAL

m:nrnxr
- ... ,..------ -
_~J ______ }

MA-4715

•

"'C
:xl m r--3C -Z
l>
:xl
-<

> I
~
VI

(A Busnop transaction is a specific state; therefore, no timings are provided.)

• •

."
:JJ m
r--3: -z »
:JJ
-<

;J>
J,..
0\

COUT

f. DYNAMIC OMA TRANSACTION .,

r---J 'ORO jr'OPW-l

<NOTE 5> <NOTE 5>

tMOR- I--
tOFS r--

DAL<'5:O> ~ F I II r'DSE=K=~ ___ ~

AI<O>

NOTE 4
\ \ \ \ \ \\ \ \ DMA REOUEST

l---'ISP--1 'IHP-

-f I jt= tMAREOUESTt ~+-----
I--'MRO 'MOC ---.l _N::T~ ~ - -

'AFs--II------'sKR fl. 'MRC:---

,tRDE -

-RAS "\I. I 'MRP 11

-CAS I
'CAS '~'CDEl

!-'CSP-! fo 'PIP ~ i--'PAF-

PI J
, 'rJ-

R/-WHR 'RSD--j ~
R/-WLR - ~

SEL 0

SEL 1

NOTE 1-

NOTE 2:
NOTE 3:
NOTE 4

NOTE 5-

'-N~TE 1

II' 'MSF======= ___ -------l---~~ - - - -

t 'SPR---< Io----=='SF=R==I====~'M~S:.K-=_=_=_=_=__-_-_-_ -_ -_ -_ -~..::--=-=-.,J - - - - t7 __ _ L= NOTE 2 '~-1f

IF THE NEXT RRANSACTION IS REFRESH OR A SECOND DMA SELO REMAINS SET
IF THE NEXT TRANSACTION IS ANOTHER DMA OR AN lACK SEL 1 REMAINS SET
DMA TRANSACTION IS TERMINATED IF AI<O> IS ASSERTED HI
AI<7:11> HAVE INTERNAL PASSIVE PULLUP THRU THE TRANSACTION_ DURING
THIS TIME INTERRUPT REOUESTS ARE INHIBITED
EXTRA TIMING PHASE 100) ALWAYS PRESENT

11 10 9 B 1 0

~~gl~TER I X I X I 0 I X I X l' I
1 '" HIGH
o 0 LOW

X = IRRELEVANT

Figure A-13 DMA Transaction

VALID
OUTPUT r::::=r. IGNORED

INPUT

I N V A LID TVTTr'1\rr\VT
OUTPUT ~ CONDITIONAL

m:rrnxr
~:(~--~-_-_-_~I~~

~N~~~ ~ THREE-STATE J---C

~
:%J m
r--3: -Z
l>
~
<

t
-.I 2

2,3

2,3

(

SYMBOL PARAMETER FUNCTION OF tCYC MINIMAX

tAFS AI<7:0> Float to DMA Select on o ns min
SEL<O>

tCAS -CAS Pulse Width (3T -90) = 310 ns min
tCDE -CAS IT.E.) to next DAL<15:0> (T-18)=115ns min

Address Enable
tcsP -CAS (L.E.J Set Up Time to PI (L.E.) (T -28) = 105 ns min
tCYC XTL I, XTLO Operating Period T = 133 ns min
tDFS DAL<15:0> Float to DMA Select On o ns min

SEL<O> (L.E.J
tDSE DAL<15:0> Enable from DMA IT -27) = 106 ns min

Select on SEL<I> IT.E.)
tlHP Input on AI<7:0> Hold Time from Ons min

PI (T.E.)
tlSP PI (L.E.) to Interrupt or DMA Input (2T -167) = 100 ns max

on AI<7:0> Valid
tMOC Pulse Mode COUT (T.E.) Set Up Time (T+l0) = 143 ns min

to -CAS (L.E.)
tMOR Pulse Mode COUT Ons min

(L.E.) Set Up Time to -RAS (L.E.)
tMRC DMA Select -RAS (2T + 10) = 277 ns min

(L.E.) Set Up Time to -CAS (L.E.)
tMRO DMA Pulse Mode COUT IT -51) = 82 ns min

(T.E.) Hold Time from -RAS (L.E.)
tMRP DMA Select -RAS (5T + 35) = 702 ns min

Pulse Width
tMSF DMA Select on SE L <0> (8T -38) = 1029 ns min

Pulse Width
tMSK DMA Select on SEL<I> (7T -68) = 865 ns min

Pulse Width
tOPW Pulse Mode COUT Pulse Width (T -33) = 100 ns min
tORD Pulse Mode COUT Recovery Time (3T -37) = 363 ns min

when OD is present
tpAE PI IT.E.) to next AI<7:0> Address (T -40) = 93 ns min

Enable
tPIP PI Pulse Width (2T -47) = 220 ns min
tRDE -RAS (T.E.) to next DAL<15:0> IT -118) = 15 ns min

Address Enable
tRSD RNI Drivers disabled and o ns min

Passive Pull Up Enabled Set Up Time to
DMA Select on SE L <0> (L.E.)

tRSE PtiW driver enable from (T -27) = 106 ns min
DMA Select on SEL<l> (T.E.)

tSFR DMA Select on SEL<O> (2T -23) = 243 ns min
(L.E.) Set Up Time to -RAS (L.E.)

tSKR DMA Select on SEL<I> (2T -63) = 203 ns min
(L.E.) Set Up Time to-RAS (L.E.)

tSPR lACK or DMA Select on SEL<I> IT) = 133 ns min
Recovery Time

tsss SEL<O> (L.E.) Set Up Time to o ns min
SEL<I> (L.E.)

1: Add T ns if in long bus cycle mode, then if RDY slips are initiated, add HOT ns, where:
T = l/fop, H = number of RDY pulses times 3 if mode = normal, times 4 if mode = long bus cycle.

2: Add 4T for each READY pulse.

3: Add aT if multiple DMA cycles are granted
MA 5590

" :JJ

1!! -:sc
::Z
:»
;:JJ
-<

:>
I

~
00

I. ASPI TRANSACTION .1

COUT / \ <NOTE 6> / \ ,-\

DAL<15:O> NOTE 3

AI<7:O>

-RAS NOTE 1

-CAS

R/-WHB NOTE 1
R/-WLB NOTE 1
SEL 0 NOTE 2
SEL 1 NOTE 2

PI

NOTE I: ASSERTED HI THROUGHOUT THE TRANSACTION

NOTE 2
NOTE 3
NOTE 4:
NOTE 5.
NOTE 6

ASSERTED LO THROUGHOUT THE TRANSACTION

THREE·STATED
ASPI OCCURS AT THE END OF A HL T. PUP TRANSACTION. AND DURING A WAIT INSTRUCTION
READY HAS NO EFFECT
EXTRA TIMING PHASE IDOl ALWAYS PRESENT

Figure A-14 ASPI Transaction

MODE REGISTER

11109810

Ixl xl xlxl xiII
I " HIGH
o " LOW

X '" IRRELEVANT

~~~~~T x::=r. 
INVALID~ 

OUTPUT ~ 

~N~~~ :x-:=I. 
IGNORED 
INPUT 

CONDITIONAL 

lXillillXI 
~ ...... ~ ~.- -- .. ,.-
.. }\..- ----~ ....... -

"tJ 
:u m 
r--3:. -~. 
:u. 
-(' 



>-I 
+:>. 
\0 

SYMBOL PARAMETER FUNCTION OF tCYC MINIMAX 

tCAS -CAS Pulse Width (3T -90) = 310 ns min 
tCOE -CAS (T.E.) to next OAL<15:0> (T -18) = 115 ns min 

Address Enable 
tcsP -CAS (L.E.) Set Up Time to PI (L.E.) (T -28) = 105 ns min 
tCYC XTL 1, XTLO Operating Period T=133ns min 
tlHP Input on AI<7:0> Hold Time from o ns min 

PI (T.E.) 
tlSP PI (L.E.) to Input on AI<7:0> Valid (2T -167) = 100 ns max 
tpHC PI Hold Time from -CAS (T.E.) 10 ns min 
tplP PI Pulse Width (2T -37) = 230 ns min 

1: Add T ns if in long bus cycle mode, then if ROY slips are initiated, add H*T ns, where: 

T = l/fop, H = number of ROY pulses times 3 if mode = normal, times 4 if mode = long bus cycle. 

MA·5592 

" ~ m 
C 
J: -Z 
l> 
:D 
-< 



;I> 
I 

VI 
o 

COUT 

READY NOTE 2 
NOTE 5 
NOTE 6 

DAL<15,0> 

AI<7:D> 

-RAS 

-CAS 

PI 

lySO 

+ --MICROCYCLE SLIP 2---~ 

,rl,"T,T, T"ljj"T,+J .." ,""',""-,T, '"" ,"',T, .", ,'"",T", '"" ,"T,T", '"" ''"'''...,-, T"", ,,",,,""T,-'-, """ ,""',""T,-'-, ,""',""T,-'-, .", ''"'''...,-,-.-, ''"'''---------,'~« GfCWJ{[ ~ _-~~~~ ~ ~ ~ ~ ]I 
DATA IN 

------+~----MICROCYCLE SLIP 2 , 
{~CutuIC~1~~~t~~~ILL[ INT. & DMA 

REOUEST 

I' MICROCVCLE SLIP 1 MtCRQCYCLE SLIP 2 ·1 
r - - - - - - - - - - - - - - - -, 
I 

r --------------
I 

I 
~ 

I· MICROCYCLE SLIP 1 ·1· MICROCYCLE SLIP 2 .[ 

r--- --------, 
I 

r ------------
I 

-1 

I· MtCROCVCLE SLIP 1 ·1· MICROCYCLE SLIP 2 -I 
___ --.J! 'L _____________ ~ ---- -', 

I 

NOTE l' WAVEFORMS ARE DRAWN FOR 16-BIT DYNAMIC READ 
NOTE 2' READY WAVEFORM IS VALID FOR ANY CASE 

11 10 9 VALID 
OUTPUT r::::::x. IGNORED 

INPUT 

NOTE 3, RI-WLB RI-WHB ARE ASSERTED HI THROUGHOUT THE TRANSACTION 
NOTE 4, SEL 0 SEL 1 ARE ASSERTED LO THROUGHOUT THE T8ANSACTION 

~~gl~TE R I X I X I X I X I X I 1 I 
1 = HIGH 
0= LOW 

INVALID 
OUTPUT ~ CONDITIONAL 

NOTE 5, THE READY PULSE MAY BE OBTAINED BY GATING COUT WITH A READY ENABLE SIGNAL 
NOTE 6, HOLDING READY PERMANENTLY LOW RESULTS IN ONE MICROCYCLE SLIP PER BUS TRANSACTION X'" IRRELEVANT :N~~I~~ 

Figure A-IS Ready 

liilliJJJl 
~ =-= ~-_-_-_-_-_~J~~ 

"tJ 
::r:J m 
r--3:' _. 
z 
> ::D-
-< 



:> 
I 

V> 

2 
1 
2 
2 

2 

SYMBOL PARAMETER FUNCTION OF tCYC MINIMAX 

tCYC XTL I, XTLO Operating Period T= 133ns max 
tYHC Ready (L.E.) Hold Time from o ns min 

COUT (T.E.) 
typw Ready Unassorted Pulse Width 60ns min 
tYRT Ready Recovery Time 60 ns min 
tySC Ready (T.E.) Delay from -CAS (L.E.) (2T -135) = 132 ns max 
tySO Ready (L.E.) Delay from Pulsed Mode (2T -127) = 140 ns max 

COUT (T.E.) 
tYSR Ready (T.E.) Delay from -RAS (L.E.) (3T -100) = 300 ns max 

1: These timing parameters apply only to cases where multiple READY pulses are required; 
i.e., multiple microcycle slips. 

2: READY is an edge-triggered input that is usually activated by asserting a low on its pin. 
However, READY is internally activated by the leading edge of -RAS if its pin has been 
asserted low before these edges. 

MR·5593 

,\' 

"lJ 
::0: 
m, 
r-
E: 
Z » 
::0 
< 



» 
I 

VI 
tv 

I- POWER UP SEQUENCE -I 

_ tupp--------I 

PUP 

------!.. "\\ \\\\ 
tpBC 

-BClR \lli \ \\\ 
____ ~:.u.:----<o 

DAl<15.0> lilli ---------
---------

Al<7'O> ---------- ( ( \\ ( 
---------

-RAS _____ _____ J 

----------
-CAS _____ _____ J 

PI 
----------, 
----------
---------

RI -WHB __________ J 

----------
RI -WlB _________ ..J 

SEL r 
- --- ------, 
---------
---- -----, 

SEll ---------
~ 

COUT 
---- ------, 
- -- -----

ASSERTED IN DYNAMIC MODES ONLY 

ASSERTION DEPENDS ON MODE 

_tpMU~ 

J NO\E 3 NOT{ 8 ( 
MOOt 
INPUT I 

( ( ( ( ( NO,T~' ( (( 

tpco ~ 
T OSC. WITH MODE 

REG 101 " 1 

NOTE 1 

NOTE 2 

NOTE 3 

NOTE 4 

LOW CURRENT PULLUP ON DAL <158,1-0> UNTIL -BelA NEGATION 

LOW CURRENT PULLUP 

NOTE 5 INTERRUPTS AND DMA REQUEST ARE SERVICED BEFORE THE FIRST FETCH 

tpBU 

))Jill ~,~~; , 

1)))))1))) 

OSC. PE R MODE 
BIT 1 - ....J 

NOTE 6 ASSERTED IN DYNAMIC MODE ONLY, REFLECTS CONTENTS OF THE MODE REGISTER 

NOTE 7 20 REFRESH TRANSACTIONS IN 8 81T MODE 10 REFRESH TRANSACTIONS IN 16 BIT MODE 

NOTE 8 DAL S ALWAYS DRIVING EXCEPT DURING DMA AND DATA PORTION OF READ TRANSACTION 

NOTE 9 DURING BelR ASSERTION AT POWER UP THERE MAY BE CONTROL SIGNAL ASSERTIONS 

PRIOR TO THE POINT WHERE THE OCT-11 READS IN THE MODE REGISTER 

NOTE 10 ON THE LEADING EDGE OF PUP THE OUTPUT SIGNALS ARE INVALID UNTIL !PUT. THIS 

CONDITION EXISTS ON POWER UP AND IF PUP IS ISSUED DURING EXECUTION OF A RESET 

tpFF - ---------·1 

~n--n-l 'I 

::, J :,1--1 ---+---
-l 

Illi~ 

~ 
I---

I---

,--- --j \----- -- ------r-----I FIRST FETCH 
ADDRESS 

,NOTE " 4,NOTE 1,' \ 
L __ J \... __ J L-, 

'I', U \ 

-+-___ ....;\\ n ~ r--
r----~--------------~\ , , , L ______ _ 

r--

~~~ ~~~ r------_+ ___ --'1...:.,' _...I.' "";fi \ J 2 \ , I---

I--
I--
_l~

OSC. PER MODE BIT 9

11 10 9

~~gl~TE R I x I x I x I x I x I x I
HIGH

lOW

X IRRELEVANT

VALID

OUTPUT ~
IGNORED

INPUT

~:\~~I~ lXillIDTI:XI CONDITIONAL

~N~~~~

liIJ§JJJl
-....... ------"'\ ... -
.. } _---_ -

INSTRUCTION MR.4711

Figure A-16 Power-Up

"tJ
:lJ m
r -3: -Z
l>
:lJ
-<

;I>
I
VI
VJ

SYMBOL

tCYC
tpBC

tpBU

tpco
tpFF

tpMU

tpUT
tupp

PARAMETER

XTl1. XTLO Operating Period
Power Up to -BCLR Il.E.1
Set Up Time
Power Up IT.E.I to -·BCLR IT.E.I

Power Up IT.E.I to COUT Il.E.1
Power Up IT .E.I to Beginning of
First I nstruction Fetch
Power Up IT.E.I to Mode Bits on
DAL<15:00> Valid
Power Up Il.E.1 to Output Pins Preset
Power Up Time

FUNCTION OF tCYC

T = 133 ns
100 ns

99T = 13200 ns
lOOT = 13333 ns
IT + 601 193 ns
295T = 39333 ns
315T = 42000 ns
18T = 2400 ns
19T = 2533 ns
250 ns
100"s

MINIMAX

min
max

min
max
max
min
max
min
max
max
min

MR-5589

."
::0

.. m
r
.~ .-z »
::0
'<

~
VI
~

XTALO

XTAL 1 NOTE 1

__ -....,..1. 'ORO '1t='OPW=11 'CRT 1.,.._--..
COUT

I' 'Cap .j

COUT NOTE 2

NOTE 1:
NOTE 2:

-RAS

-CAS

XTAL1 MAY BE USED ASAN OUTPUT
BUS MODE CLOCK (MODE REG <0>'0) PHASE DEPENDS ON MODE AND CODE
EXECUTED AS SHOWN WITH CONDITIONAL OUTPUT. FOR LONG MICROCYCLE

MODE AND BUS MODE CLOCK, THE VAll 0 OUTPUT IS SHOWN (PHASE IS UNCON­

DITIONAL)
NOTE 3: EXTRA TIMING PHASE 1001 PRESENT. 00 IS PRESENT ONLY DURING ASPI, DMA,

REFRESH AND lACK IN STANDARD MICROCYCLE MODE MR<1 >'1. 00 IS PRESENT
IN ALL MICROCYCLES IN LONG MICROCYCLE MODE MR<1 >. O.

Figure A-I? XT AL and COUT

,r-,r-=x -1"- __ ""- __ MODE REG ISTE R

11 10 9 8

[1] X IYEl xEJ
1 '" HIGH
o • LOW

X '" IRRELEVANT

~~~~~T x::::::::::L 
~NUVT~~I~~ 

~N~~~~ 
IGNORED 
INPUT 

CONDITIONAL 

mIIDIXI 
~:-: ~----------~.~~ 

MR·.?1. 

"'tJ 
::u m 
r -3: -z; 
» ::u 
< 



:> 
I 

Vl 
Vl 

SYMBOL 

tCYC 

tMOC 

tMOR 

tMRO 

tOPW 
tORD 

tORT 

PARAMETER 

XTL I, XTLO Operating Period 

Pulse Mode COUT (T.E.) Set Up Time 
to -CAS (L.E.) 

Read/Write or DMA 
Pulse Mode COUT (L.E.) Set Up 
Time to -RAS (L.E.) 
Read/Write or DMA 
Pulse Mode COUT (T.E.) Hold 
Time to -RAS (L.E.) 
Pulse Mode COUT Pulse Width 
Pulse Mode COUT Reoovery Time 
when Phase 0 is Present 
Pulse Mode COUT Recovery Time 

( 

FUNCTION OF tCYC 

T=133ns 
(T+l0) = 143 ns 

10 ns 

(T -51) = 82 ns 

(T -33) = 100 ns 
(3T -37) = 363 ns 

(2T -37) = 230 ns 

MINIMAX 

min 

min 

min 

min 

min 
min 

min 

~~--

MA-5591 

." ", m' 
r--3:. -z » 
" -< 



PRELIMINARY 

DATA/ADDRESS LINES DALl5 40 vee +5V 

DALl4 2 39 AI7 -HLT ADDRESS/INTERRUPT 

DALl3 3 38 AI6 -PF DYNAMIC MODE 

OUTPUT 
DAL12 4 37 AI5 -VEC ROW ADDRESS 

COLUMN ADDRESS 
DALl1 5 36 AI4 -CPO 

INPUT 
INTERRUPT & DMR 

DALlO 6 35 AI3 -CP1 DURING PI TIME 

DAL9 7 34 AI2 -CP2 
STATIC MODE 

2ND GROUND BGND 8 33 AI1 -CP3 INPUT ONLY 

DAL8 9 
DCT11-AA 

32 AIO -DMR ADDRESS/INTERRUPT 

DAL7 10 31 PI PRIORITY IN STROBE 

DAL6 11 30 -CAS COLUMN ADDRESS STROBE 

DAL5 12 29 -RAS ROW ADDRESS STROBE 

DAL4 13 28 R/-WLB READ/WRITE LOW BYTE (16) 
WRITE (8) 

DAL3 14 27 R/-WHB READ/WRITE HIGH BYTE (16) 
READ (8) 

DAL2 15 26 READY EXTEND TRANSACTION 

DAL1 16 25 SELO 
} SELECT OUTPUT FLAGS 

DATA/ADDRESS LINES DALO 17 24 SEL1 SEE BELOW 

BUS CLEAR -BCLR 18 23 XTLO CRYSTAL 

POWER-UP PUP 19 22 XTL1 CRYSTAL /EXT OSC 

1STGROUND GND 20 21 COUT CLOCK OUTPUT 

SELECT OUTPUT FLAGS 

SEL<1> SEL<O> FUNCTION 
L L READ/WRITE 

L H REFRESH/FETCH 
H L lACK 

H H DMG 

MR·6271 

Figure A-18 DCTII-AA Pin Layout 

A-56 



15 14 13 12 11 10 

<15:13> START/RESTART ADDRESS 
12 TESTER/USER MODE 
11 16-81T /8-BIT BUS 
10 64K/4K OR 16K MEMORY 
09 DYNAMIC/STATIC MEMORY 

ADDRESS BITS START 
<15:13> ADDRESS 

7 172000 
6 173000 
5 000000 
4 010000 
3 020000 
2 040000 
1 100000 
0 140000 

PROCESSOR STATUS 

15 14 13 12 

<15:8> READ AS ZEROS 

03 NEGATIVE 

11 10 

PRELtMlNARY 

09 08 

08 
<7:2> 
01 
00 

07 

RESTART 
ADDRESS 

172004 
173004 
000004 
010004 
020004 
040004 
100004 
140004 

06 05 04 

NORMAL/DE LAYED RNJ 
RESERVED 

03 02 01 

LONG 
STD 

LONG/STANDARD MICROCYCLE 
CONSTANT/PROCESSOR MODE CLOCK 

Figure A-19 Mode Register 

09 08 07 06 05 04 03 02 01 

MR 4843 

00 

Figure A-20 Processor Status Word 

A-57 



PRELIMINARY 

LS32 WLB L LS32 WHB L LSOO -RD H R/-WLB~ R/-\NH~ R!-WLB=8-
CAS L CAS L R/-WHB 

LS368A 

~INITH 
G2 V 

LDAL <15,14> 2 

GND CC 

1A 
1K 

::::GT 
1Y 

0 

BCLR 

VCC -H- PUP AI 

DCT11-AA 
HIDAL 

LO DAL 

1- CTRLi 
XTL1 

c::J 

40~ 
5.0688 
MHZ 
XTAL J- XTLO

COUT 

J 
100pF 

74LS373 

HI 

~ 0 0 
8 

2A 3A 
RD L 

1/2 LS36BA 
L DAL<1> 

MODE 
2Y 3Y BUFFER 
8 11 (16 BIT, 

NORMAL 

2 
BMCI 

8 

DAL <15:8> 
8 

RAS L 

CAS L 

R/-WLB 

'-R/-WHB 

LDAL<15:8> 

VCC-

~L'm)--< 
~ 

CAS L-C 

L DAL <2:1> 
2 

8 

RD L -(l 

WL8 L-<l 

IOSEL L-a 

INITH-

L DAL 3 
<10:8> 

A, B 

IC 1YO P- 411BSEL L 

-
2C 2Y3 P-- 2651 SE L L 

-
1G 1Y1 P-- 2716 SEL L 

P- B255SELL 2G IY2 
74LS155 

A1:0 

07:0 

8 
A +1/0 PORT 

RD 8 ~I/O PORT 

C ~I/OPORT -
WT 

- INTEL 
CE 8255A 

RESET 

MOSTEK I--
A9:7 

RD L 8 A6:0 8 
VCC --c 1/0 

OUT LS32 6E 4118 
'" CTRL EN 1K x 8 

:i L RAMSEL L RAM SEL L-C CS STATIC 
RAS L WLB L~ WE RAM 

WHB L-Oj"WE 

74LS373 
LO 

4 

~ 

R EGISTER 

RA 
RO 

M (RIWI 
M (RI 

0 

OUT 
CTRL 

:t, 

MMAND (RIWI 

2{~~ DE (RIWI 
6 ST ATUS (RI 
5 RB UF (RI 
1 XB UF (WI 

MMAND (WI 
PORT (RIWI 
PORT (RIWI 
PORT (RIWI 

8{ CO 2 C 
5 B 
5 A 

0 
8 L DAL<7:0> LDAL <118> 

LDAL <7:1> 7 

RAS L 
-C 

EN 
ROM SEL L--o 

LRAS L 

VALID ADDRESS 

()()()()-3776 
100000-107776 8 
177016 
177012 LDAL <3.2> 2 
177006 
177002 LS368A 

_-RWLB L 177000 -RWL8 H 

40006 2651 SEL L~ 
40004 
40002 INITH-
40000 

Figure A-21 16-Bit Application 

A-58 

A10:7 

A6:0 

-
CE 

OUT 
-
OE 

INTEL 
2716 
2K X 8 
EPROM 

I 

07:0 
-
RX 

AO,A1 ROY 

_ TX 
RDIWT ROY 

-
CE 

RESET 

BRCLK 

1/0 ~ 

I---

8 

OUT ~ 

~ 2 

~' 

SIGNETICS 
2651 
PUSART 

MR 5601 



C-H-

l-
40~ p 

5.0688 
MHz 
XTAL 1-

l 

LS368A 

~INITH 
Gl 

GND 5A 
lK 

C G2 

5Y 

0 
8CLR 

PUP AI 
2 

DCTllAA 
5 

HIDAL 

8 
La DAL 

XTLl CTRL 
4 I RAS,CAS,RD,wTI 

XTL 0 COUT RD L 

LDAL <1> 

RD L 

CAS L :::JLS3r 
~ ./' 

CAS L __ 

WT L ;:JLS3~ -

74LS373 

~ D Q 
8 LDAL<7:0> 

OUT 
CTRL EN 

:t RAS L 

PRELIMINARY 

V1C 

6A 

1/2 LS368A MODE BUFFER 
INORMAL,BMCI 

6Y 

8 

74LS155 
2 

A,8 
SAL <15,14> 

VCC lC 

CAS L 
lG 

~ - p-2651 SEL L 2G 2Y3 
~ 

;:JLS02}--< -
P-2716 SEL L 2C lYl 

~ 

INTEL 

8 
8155 

AD7:0 

SAL <14> 
101M 

RAS L 
_ ALE A ~I/OPORT 

~ RD B ~ 1/0 PORT 

6 
SAL <15> ,.. 

CE 
C +- 1/0 PORT 

~WT 

INITH- RESET 

SAL <10:8> 3 
Al0:8 

8 
A7:0 

~ RAS L 
OUT 

"TI INTEL 
2716 

ROM SEL L--o OE 2K X 8 
EPROM 

8 
D7:0 

R EGISTER VALID ADDRESS 
DAL<3,2> 2 

AO,Al R 

i{~T 
1 R 

X 

OM IRI 1 00000- 1 03777 RX ... 2 
OMMANDI RIW) 177016 RD L 

" RDIWT ~Y 

~ ODE IRIWI 177012 
'" TX 

ATUS IRI 177006 
BUF IRI 177002 BRCLK RDY 

BUF IWI 177000 
2651 SEL L--<:J CE 

8 {~T 1 CO 
5 A 
5 8 

C PORT IRIWI 40003 

AM (R/WI 0-377 
INITH- RESET 

ATUS IRI 40000 
MMAND (WI 40000 SIGNETICS 

2651 
PORT IRIWI 40001 PUSART 
PORT IRIWI 40002 

NOTE: 
2651 MUST BE ACCESSED BY BYTE 
INSTRUCTIONS ONLY. MA 5600 

Figure A-22 8-Bit Application 

A-59 



B.l INTRODUCTION 

PRELIMINARY 

APPENDIX B 
SOFTW ARE DIFFERENCES 

This appendix is meant to make the reader aware of the variations between the DCTII-AA and other 
members of the PDP-II family. These variations fall into the following major categories. 

• Addressing modes 
• PD P-I I instruction set 
• DCTII-AA instruction execution sequence on the data bus 
• Exceptions and interrupts 
• Power-up 

The processors that are compared with the DCTII-AA in this appendix are 

PDP-I 1/03 
PDP-I 1/04 
PDP-I 1/23 

PDP-I 1/24 PDP-I 1/44 
PDP-II/34A PDP-II/45 
PDP-I 1/40 PDP-I 1/70 

Table 8-5 (found at the end of this appendix) describes the software differences and compatibilities 
among the DCTII-AA and other members of the PDP-II family. 

B.2 ADDRESSING MODES 
Most basic instructions operate in the same way from one PDP-II processor to another. However, there 
are variations in the wayan address is computed, depending on the addressing mode being used. This 
section covers the variations in the addressing modes that are implemented by the DCTII-AA. An ex­
planation of the symbols used in this section is found in Paragraph 6.3. 

When executing a double-operand instruction, the same general-purpose register may be used for both 
the source and destination fields of the instruction. Note that when the same registers are used in the 
DCTII-AA, PDP-I 1/23, PDP-I 1/24, and PDP-I 1/40, the results vary from o~her PDP-II processors. 

B.2.1 Modes 2 and 4 
If the addressing mode of the destination operand is autoincrement (mode 2), the contents of the regis­
ter are incremented by 2 before being used as the source operand. If the addressing mode of the desti­
nation operand is autodecrement (mode 4), the contents of the register are decremented by 2 before 
being used as the source operand. 

8-1 



PRE;LIMINARY 

In the other processors covered in this appendix, the initial content of the source register is not modified 
and is used as the source operand. 

The following is an example of an autoincrement (mode 2). Register 0 contains 10008. 

MOY RO, (RO)+ In the DCTII-AA, the quantity 1002 is moved to location 1000. 

In the other processors, the quantity 1000 is moved to location 1000. 

The following is an example of an autodecrement (mode 4). Register 0 contains 10008. 

MOY RO, -(RO) In the DCTII-AA, the quantity 776 is moved to location 776. 

In the other processors, the quantity 1000 is moved to location 776. 

8.2.2 Modes 3 and 5 
If the addressing mode of the destination operand is autoincrement-deferred (mode 3), the contents of 
the register are incremented by 2 before being used as the source operand. If the addressing mode of 
the destination operand is autodecrement-deferred (mode 5), the contents of the register are decrement­
ed by 2 before being used as the source operand. 

In the other processors covered in this appendix, the initial content of the source register is not modified 
and is used as the source operand. 

The following is an example of an autoincrement-deferred (mode 3). Register 0 contains 10008 and 
location 1000 contains 20008. 

MOY RO, @(RO)+ In the DCTII-AA, the quantity 1002 is moved to location 2000. 

In the other processors, the quantity 1000 is moved to location 2000. 

The following is an example of an autodecrement-deferred (mode 5). Register 0 contains 10008 and 
location 776 contains 20008. 

MOY RO, @-(RO) In the DCTII-AA, the quantity 776 is moved to location 2000. 

In the other processors, the quantity 1000 is moved to location 2000. 

B.2.3 Using the PC Contents as the Source Operand 

Op Code PC, X(R) 
Op Code PC, @X(R) 
Op Code PC, @A 
Op Code PC, A 

In the operations above, the resulting source operand is the value of the location of the op code plus 4. 
This is true for the DCTlI-AA, PDP-11/23, PDP-11/24, and PDP-I 1/40. This varies from other PDP­
I I processors covered in this appendix, where the source operand is the value of the location of the op 
code plus 2. 

In the following example, the PC contains the value 10008. Location 1002 contains the offset value 2. 
RO contains the value 20008. 

B-2 



--

PRELIMINARY 

MOY pc, 2(RO) In the DCTII-AA, the value 1004 is moved to location 2002. 

In the other processors, the value 1002 is moved to location 2002. 

The final source operand is the same (I004) for all the addressing modes explained above. 

NOTE 
The use of the above forms of addressing should be 
avoided. The MACRO-ll assembler generates an 
error code (Z), which is printed in the listing. This 
occurs in each instruction when the addressing mode 
is found not to be compatible among all members of 
the PDP-ll family. 

B.2.4 Jump (JMP) and Jump to Subroutine (JSR) Instructions 

JMP %R 
JSR reg, %R 

When programming JMP and JSR instructions, take care in selecting the destination mode of the in­
struction. When mode 0 is selected, an error condition is created and the DCTII-AA traps through 
location 4 of the trap vectors (refer to Paragraph B.5). This is true of all PDP-II processors except the 
PDP-I 1/45. 

The PDP-II /45 causes a trap through memory location 10 when executing this instruction. 

B.3 PDP-II INSTRUCTION SET 
The DCTII-AA implements the basic PDP-II instruction set. This instruction set offers a wide choice 
of operations, and often a single instruction will do a task that would need many in other computers. 
PDP-II instructions allow byte and word addressing in both single- and double-operand formats. This 
saves memory space and simplifies the implementation of control and communications applications. 

I nstruction set variations fall into these categories: 

• Instructions not common to all PDP-lIs 
• Basic instruction execution 
• Instructions not executed 
• Effect of the T bit (instruction trace trap) 

B.3.1 Instructions Not Common to All PDP-lIs 
As the number of PDP-II processor types increased, instructions were added to the basic instruction 
set. The OCT II-AA includes the following instructions. 

MFPT (move from processor type) 
MFPS (move byte from processor status) 
MTPS (move byte to processor status) 

B-3 



PRELIMINARY 

8.3.1.1 MFPT Instruction 

MOVE FROM PROCESSOR TYPE 000007 

15 00 

I 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 
0 : 0 

: 0 : 0 : 0 : 1 : 1 : 1 I 
MA-5969 

Operation: RO f- processor type 

Condition Codes: Not affected 

The DCTII-AA, PDP-I 1/23, PDP-I 1/24, and PDP-I 1/44 are the only processors that execute the 
MFPT instruction. The model code is placed in the low byte of register RO, indicating to the system 
software the processor type. Table B-1 shows the codes assigned to identify the processor in use. 

NOTE 
The PDP-llj23 and PDP-llj24 are controlled by 
the same processor and have the same model code. 

Table B-1 Processor Codes 

Model Code 

4 
3 
I 

Processor Type 

DCTlI-AA 
PDP-l 1/23 or PDP-l 1/24 
PDP-l 1/44 

8.3.1.2 MFPS Instruction 

MOVE BYTE FROM PROCESSOR STATUS WORD 

Operation: 

Condition Codes: 

08 07 

(dst) f- PS 

N: set if PS bit 7 = I; cleared otherwise 
Z: set if PS bits <7:0> = 0; cleared otherwise 
V: cleared 
C: not affected 

106700 

00 

MA-5221 

The low byte of the PS is used as the source operand. The destination operand is treated as a byte. 

The DCTII-AA, PDP-I 1/03, PDP-I 1/23, PDP-I 1/24, and PDP-I 1/34 implement this instruction to 
save the processor status register (PS) without directly accessing the PS on the data/address bus. 

B-4 



NOTE 
The DCT11-AA is not restricted from having memo­
ry or a device at the PS address 177776. In addition, 
the DCTll-AA does not recognize that an error has 
occurred when addressing a nonexistent memory lo­
cation. (Refer to Paragraph B.5.) Attempting to 
read or write data at address 177776 and expecting· 
the PS will cause unpredictable results. 

B.3.1.3 MTPS Instruction 

MOVE BYTE TO PROCESSOR STATUS WORD 

15 

Operation: 

Condition Codes: 

08 07 

PS <- (src) 

N: set according to effective source operand 
Z: set according to effective source operand 
V: set according to effective source operand 
C: set according to effective source operand 

1064SS 

00 

MR-S222 

The source operand is treated as a byte and the destination operand is always the low byte of the PS. 
The source operand is not affected by the MTPS instruction. 

NOTE 
The T bit (bit 4 of the PS) cannot be set with the 
MTPS instruction. 

The DCTII-AA, PDP-I 1/03, PDP-I 1/23, PDP-I 1/24, and PDP-I 1/34 implement this instruction in 
order to load the low byte of the processor status register without directly addressing the PS on the 
data/address bus. 

NOTE 
When developing software for the DCT11-AA on 
PDP-ll systems that have memory management, 
the priority bits of the PS (bits <7:5» may not be 
affected. Refer to the appropriate processor hand­
book. 

B.3.2 Basic Instruction Execution 
The OCT II-AA executes all basic PDP-II instructions except MARK. Some instructions vary in exe­
cution from other PDP-II processors. These instructions are covered in this section. 

B-5 



PR,ELIMINARY 

8.3.2.1 Halt Instruction 

HALT 000000 

15 00 

o : 0 o : o : o : o : 0 0 : 0 0 0 
: 0 : 

0 0 0 : o I 
MA-5261 

Condition Codes: Not affected 

When the other PDP-II processors covered in this appendix execute the halt instruction, their oper­
ations cease. Control goes to the console (if one is present) or to a console microprogram within the 
processor. The DCTII-AA has neither console nor console microprogram; it executes a halt instruction 
the way it would a trap. 

The DCTII-AA pushes the current PS and PC onto the stack. The PC is loaded with the value of the 
restart address (power-up address + 4), and the PS is loaded with a value of 340 to inhibit interrupts. 
The power-up and restart addresses are explained in Paragraph B.6. 

NOTE 
When developing software for the DCTII-AA on 
PDP-ll systems that have memory management, be 
aware that the trap sequence is different when exec­
uting a halt instruction. Refer to the appropriate 
processor handbook. 

8.3.2.2 Reset Instruction 

RESET EXTERNAL BUS 

15 

o : o : o : o : o : o : o : o : o : o : o : o : o : 

Condition Codes: Not affected 

000005 

00 

1 : o : 1 I 
MA-5263 

The OCT I I-AA reset instruction causes the assertion of the bus clear ( - BCLR) signal. An assert pri­
ority in (ASP)) transaction takes place to input interrupt and DMA information. The condition codes 
and general-purpose registers RO-RS, SP, and PC are not affected. The - BCLR signal is asserted low 
for a minimum of 8.4 /-LS followed by a minimum ISO ns pause. No processor operations are performed 
during this pause. The next programmed instruction is executed after the pause. Timing for the 
- BCLR signal is a function of the processor clock or crystal frequency. 

If the power-fail interrupt is asserted during the reset instruction, it is not recognized until the instruc­
tion has completed the -BCLR sequence. This is also true with the PDP-I 1/03, PDP-I 1/23, and PDP-
11/24. 

A power-fail interrupt occurring during a reset instruction in the PDP-II /04 and PDP-II /34 is a fatal 
error, and no power-down sequence occurs. PDP-I 1/44, PDP-II/4S, and PDP-l 1/70 reset instructions 
are aborted in the event of a power-fail. 

B-6 



---

PRELIMINARY 

B.3.3 Instructions Not Executed 
The DCT II-AA does not execute the PDP-II instructions and op codes listed in Table B-2. An attempt 
to execute these instructions causes the processor to trap through location 10. 

Table B-2 PDP-Il Instructions Not Executed by the DCTIl-AA 

OpCode Mnemonic OpCode Mnemonic 

000010 Reserved 0704 SS MUL 
through 07 IR SS DIY 
000077 07 2R SS ASH 
0002 10 Reserved 07 3R SS ASHC 
through 0750 OR FADD 
000227 0750lR FSUB 
00023N SPL 07502R FMUL 
0064 NN MARK 07503R FDIY 
0065 SS MFPI 075040 Unused 
0066 DD MTPI through 
007000 Reserved 076777 
through 10 65 SS MFPD 
007777 1066 DD MTPD 

170000 FPP Instructions 
through 
177777 

B.3.4 Effect of the T Bit (Instruction Trace Trap) 
The processor status register contains information on the current status of the CPU. This information 
includes: 

• The current processor priority for interrupts. 
• The condition codes describing the result of the last instruction. 
• A bit that indicates a trap will occur after the execution of the current instruction. 

The DCTII-AA does not allow the T bit to be set directly. This is true of all processors covered in this 
appendix, except the PDP-II /04. Only indirect references to the PS can cause the T bit to be set. Such 
references occur when executing: 

• RTI (return from interrupt) instruction 
• RTT (return from trap) instruction 
• Trap instructions 
• Exceptions or interrupts 

If the RTI instruction causes the T bit to be set, the T bit trap is taken through location 14 before the 
execution of the next instruction. If the RTT instruction causes the T bit to be set, the T bit trap is 
taken after the execution of the next instruction. The above is true for all processors covered in this 
appendix. 

The DCTII-AA and all processors (except the PDP-I 1/45 and PDP-I 1/70) acknowledge the T bit trap 
before they acknowledge an interrupt that occurs during instruction execution. The PDP-II /45 and 
PO P-I 1/70 give the pending interrupt priority over the T bit trap. 

I f a wait instruction is executed and the T bit is set, the OCT II-AA sequences out of the wait. After the 
T bit is serviced the instruction following the wait is executed. This is true of all processors except the 
PDP-II /03, PDP-II /45 and PDP-II /70. These processors return to the wait until an interrupt occurs. 

B-7 



PRELIMINARY 

B.4 DCTll-AA INSTRUCTION EXECUTION SEQUENCE ON THE DATA BUS 
Each PDP-II instruction executed by the DCTII-AA performs a number of transactions on the 
datal address bus. The number and type of transaction is determined by the instruction being executed. 
Every instruction that ends in a write transaction to a memory location is always preceded by a read 
transaction from the same location. 

Using the Move (MOV) Instruction 
I n all other processors covered in this appendix, the MOY instruction consists of the following bus 
transactions. 

• The processor fetches the op code of the instruction. 
• The processor then obtains the source operand. 
• The destination operand is computed. 
• The source operand is written into the destination address. 

The MOY instruction operates similarly in the DCTII-AA and the other processors, except for the last 
bus transaction. After the destination address has been computed, the DCTII-AA reads from the desti­
nation address before it writes to that address. Clear (CLR) and sign extend (SXT) follow a similar bus 
sequence. 

This bus sequence is important when connecting the DCTII-AA directly to interface devices. For ex­
ample, the I ntel'M 8251 A serial interface contains data input and output registers at the same bus ad­
dress. When the data has been assembled in the input register, the signal (RxRDY) is generated to 
indicate the receiver is ready. The RxRDY signal is cleared when the processor reads the input register. 
During a write operation to the Intel 8251A data registers, the DCTII-AA first reads the input register 
and then writes to the output register. This may result in the RxRDY signal's being cleared. Data may 
be lost when RxRDY is cleared in this manner. 

NOTE 
When connecting interface devices to the DCT 11-
AA that do not have DEC standard bus addresses 
and status registers, it is important to know the de­
vice addresses and bit patterns in the status register. 

B.5 EXCEPTIONS AND INTERRUPTS 
The DCT Il-AA has a flexible hardware and software interrupt structure. Hardware interrupts cause 
the DCT II-AA to temporarily suspend program operation in order to execute a service routine. Soft­
ware interrupts call service routines required by the program. They occur when executing trap instruc­
tions or when the trace bit is set in the processor status register. Program execution is resumed when the 
service routine is completed. 

The DCTII-AA services calls and interrupts in the following order of priority. 

I. HALT (nonmaskable interrupt or instruction) 
2. Power-fail (nonmaskable interrupt) 
3. Trace trap (T bit) 
4. CP<3:0> priority 7 (interrupt) 
5. CP<3:0> priority 6 (interrupt) 
6. CP<3:0> priority 5 (interrupt) 
7. CP<3:0> priority 4 (interrupt) 
8. Trap instruction call 

TMlntel is a trademark of the Intel Corporation. 

B-8 



PREliMINARY 

The DCT J J-AA supports a vectored interrupt structure with four priority levels. Interrupts are input on 
four coded priority lines (CP<3:0». The value encoded on these lines indicates an interrupt request is 
pending from I of 15 devices on I of 4 priority levels. Interrupts are maskable in that the priority code 
of the interrupting device must exceed the value in the PS (bits <7:5»; otherwise the interrupts are 
not acknowledged. 

The DCT ll-AA also has two nonmaskable interrupt lines, HALT and Power-fail (PF). Assertion of 
either of these lines interrupts the processor regardless of the priority level in the PS. HALT and PF 
have individual input lines. The nonmaskable interrupt HALT is not associated with an interrupt vec­
tor. When a HALT interrupt occurs, the current PS and PC are pushed onto the stack, the PC is loaded 
with the restart address, and the PS is loaded with 340. 

A device requests service by asserting one or more of the CP lines (CP<3:0». If the priority of the 
requesting device is higher than that of the processor, the interrupt is acknowledged and the device is 
serviced at the completion of the current instruction. 

NOTE 
If the T bit is set in the PS, the trace trap is taken 
before the interrupt is serviced. The T bit must not 
be set in the PS word of the T bit trap vector. If it is, 
continuous T bit trapping will result. 

The current state of the machine is saved so that program execution may continue after completion of 
the service routine. The contents of the program counter (address of the next instruction) and the PS 
are pushed onto the system stack. The new contents of the PS and PC are loaded from two consecutive 
memory locations called "vector locations." The first location contains the address of the service rou­
tine and the second contains the new PS value. All information in the vector locations must be loaded 
under program control. 

NOTE 
The device requesting an interrupt must remove the 
request when it receives an interrupt acknowledge 
(lACK) from the DCTII-AA. If the request is not 
removed and the PS word of the service vector does 
not contain a prority level as high or higher than that 
of the interrupt request, the request continues to be 
serviced until the stack is full. This causes a loss of 
program and data. 

During an interrupt acknowledge transaction, the vector address is provided by either a fixed table 
stored in the DCTll-AA (internal vector address) or by the interrupting device (external vector ad­
dress). Table 8-3 lists the internal vectors assigned to interrupt priority codes. 

8.5.1 Bus Errors 
The DCTll-AA does not support bus errors. Most PDP-II processors indicate that an error has oc­
curred and interrupt program execution when: 

• A word instruction executes with an odd address (odd address error). 
• A nonexistent memory location is accessed (nonexistent memory (NXM) error). 

• The stack value approaches the vector location area (stack overflow error). 

8-9 



PRELIMINARY 

Table 8-3 Interrupt Priority Codes 

Vector Address 

Priority Level New PC at: New PS at: 

Nonmaskable HALT Restart address 340 
Nonmaskable PF 24 26 

7 140 142 
7 144 146 
7 150 152 
7 154 156 
6 100 102 
6 104 106 
6 110 112 
6 114 116 
5 120 122 
5 124 126 
5 130 132 
5 134 136 
4 60 62 
4 64 66 
4 70 72 

If a word instruction is executed and the source or destination address is odd, the least significant ad­
dress bit is ignored and a word operation is performed at the even address. 

If the DCTII-AA attempts to read or write a nonexistent memory location, the transaction is com­
pleted and program execution continues. If the transaction is a read, undefined data is received. A write 
to a nonexistent memory location outputs data onto the data address lines as if memory is present and 
the data is lost. 

No warning is given by the DCTII-AA if the hardware stack pointer (SP) decrements below 3778. If it 
does, unpredictable results may occur when the contents of the vector addresses are changed. 

NOTE 
It is important to leave enough room for the stack 
area so the vector locations will not be destroyed. 

B.5.2 Internal Register Access 
None of the internal registers of the DCTII-AA are directly accessible to the programmer as memory 
locations. All transactions involving these registers are done internally by the DCT 11-AA. The address­
es assigned to these registers by other PDP-II processors are within the 16-bit address space of the 
DCTII-AA. These addresses can be used as memory locations or as peripheral device registers. 

B.6 POWER-UP 

NOTE 
The PS, general-purpose registers RO-R5, SP, and 
PC are examples of registers that cannot be directly 
accessed by the programmer as memory locations. 

The DCTII-AA is a flexible microprocessor that can be adapted to many different applications. The 
power-up process is used to set one of eight different start/restart addresses. The instruction in the start 
address is always the first executed after power is applied to the DCTII-AA. During power-up, or when 
executing a reset instruction, the DCTl1-AA loads an internal register with a 3-bit code that represents 
one of the eight start/restart addresses. Table B-4 lists the start/restart addresses. 

B-I0 



Table B-4 Start/Restart Addresses 

Start Address 
(Used at Power-Up) 

000000 
010000 
020000 
040000 
100000 
140000 
172000 
173000 

NOTE 

Restart Address 
(Used for HALT) 

000004 
010004 
020004 
040004 
100004 
140004 
172004 
173004 

The start address is used only at the time power is 
applied to the DCTll-AA. The reset instruction 
loads the mode register; it does not cause the start 
address to be loaded into the Pc. 

PRELIMINARY 

When a halt instruction is executed, or a hardware halt interrupt is asserted, the values of the PS and 
PC are placed on the hardware stack. The DCTII-AA loads the PC with the restart address and sets 
the PS to 340. 

SYMBOLS AND NOTATION 
The following symbols are used in the explanations of the various modes described in Table ~-5. 

%R 

(R)+ 

-(R) 

@(R)+ 

@-(R) 

PC 

X(R) 

@X(R) 

A 

@A 

Mode 0 addressing. The contents of the register are to be used as the source operand. 

Mode 2 addressing. The register contents are to be used as the address of the destination 
operand and then incremented by 2 (autoincrement). 

Mode 4 addressing. The register contents are to be decremented by 2 and then used as the 
address of the destination operand (autodecrement). 

Mode 3 addressing. The contents of the register are to be used as the address of the address 
of the destination operand. The contents of R are incremented by 2 (autoincrement-de­
ferred). 

Mode 5 addressing. The contents of the register are to be decremented by 2 and then used 
as the address of the address of the destination operand (autodecrement-deferred). 

Program counter mode 0 addressing. The contents of the program counter are to be used as 
the source operand. 

Indexed addressing (register mode 6). The value of X is added to the contents of register R 
to form the address of the destination operand. 

Index-deferred addressing (register mode 7). The value of X is added to the contents of 
register R to form the address of the address of the destination operand. 

Program counter relative addressing. Relative addressing uses the contents of the location 
following the op code as the address of the destination operand. 

Program counter relative-deferred addressing. Relative-deferred addressing uses the con­
tents of the location following the op code as the address of the address of the destination 
operand. 

B-ll 



Table 8-5 Software Differences and Compatibilities "C 

PDP-Ill 
:ll m 

Activity OCT I I LSI-II I 23 04 34 05,10 15,20 35,40 45 
r--.3: 

I. aPR %R,(R)+ or aPR %R,-(R) using the same register X X X X -
as both source and destination: contents of Rare Z 
incremented (or decremented) by 2 before being used as l> 
the source operand. ':Jl 

-< 
aPR %R,(R)+ or aPR %R,-(R) using the same register X X X X X 
as both register and destination: initial contents 
of R are used as the source operand. 

2. aPR %R,@,(R)+ or aPR %R,@-(R) using the same register X I X X X 
as both source and destination: contents of Rare 
incremented (or decremented) by 2 before being used as 
the source operand. 

aPR %R,@(R)+ or aPR %R,@-(R) using the same X X X X X 
register as both source and destination: initial 

t:c 
contents of R are used as the source operand. 

, 
N 3. aPR PC,X(R); aPR PC,@X(R); aPR PC,@A; aPR PC,A: X IX X X 

Location A will contain the PC of aPR + 4. 

aPR PC.X(R); aPR PC,@,X(R); aPR PC,A; aPR PC,@,A: X X X X X 
Location A will contain the PC or aPR + 2. 

4. JMP (R)+ or JSR reg,(R)+: Contents of Rare X X 
incremented by 2, then used as the new PC address. 

JMP (R)+ or JSR reg,(R)+: Initial contents of R X X IX X X X 
are used as the new pc. 

5. JMP %R or JSR reg,%R traps to 4 (illegal X X IX X X X X X 
instruction). 

JMP %R or JSR reg,%R traps to 10 (illegal X 
instruction). 

6. SWAB does not change V. X 

SW AB clears V. X X X X X X X X 

7. Register addresses 177700-177717 are valid X 
program addresses when used by the CPU. 



Table 8-5 Software Differences and Compatibilities (Cont) 

PDP-It I 

Activity ocrll LSI-It 23 04 34 05,10 15,20 35,40 45 

Register addresses 177700-177717 timeout when X X X X X 
used as a program address by the CPU. Can be 
addressed under console operation. NOTE: 
Addresses cannot be addressed under console for LSI-II 
or PDP-II 123. 

Register addresses 177700-177717 are handled as X 
regular memory addresses (in the BSIO page). No 
internal registers are addressable from either the 
bus or the console. 

8. Basic Instructions noted in PDP-II Processor X X IX X X X X X X 
Handbook. 

MFPT (move from processor type). X 

SOB, RTT, SXT instructions. X X X X X X X 
O:f 
I 

w MARK instruction. X X X X X X 

ASH, ASHC, DIY, MUL instructions. X X X X X 

XOR instruction. X X X X X X 

The external option KEII-A provides MUL, DIY and X . X 
SHIFT operations in the same data format. 

'The KEII-E (expansion instruction set) provides the X 
instructions MUL, DIY, ASH, and ASHe. These new 
instructions are PDP-II 145-compatible. 

The KE II-F adds unique, stack-ordered, floating-point :1 X "'0 instructions: FADD, FSUB, FMUL, FDIV. ::JJ! 
The KEV-II adds EIS/FIS instructions. X mi. 

I -. SPL instruction. X 3:: _c 
9. A power-fail during a RESET instruction is not recog- X X Z 

nized until after the instruction is finished (70 ms). » A RESET instruction consists of a 70 ms pause with INIT ::JJc 
occurring during the first 20 ms. < 



Table 8-5 Software Differences and Compatibilities (Cont) "'0 

PDP-Ill 
::D m 

DCfIl LSI-Il 23 04 34 05,10 15,20 35,40 45 
r-

Activity -~ 
A power-fail immediately ends the RESET instruction X -
and traps if an INIT is in progress. A minimum INIT Z 
of I jLS occurs if instructions aborted. l> 

.::D 
A power-fail acts the same as in the PDP-I 1/45 (22 ms X X X -< 
with about 300 ns minimum). A power-fail during a RESET 
fetch is fatal with no power-down sequence. 

The RESET instruction consists of 10 jLS of INIT X I X 
followed by a 90 jLS pause. A power-fail is not 
recognized until the instruction is complete. 

The RESET instruction consists of a minimum 8.4 jLS X 
followed by a minimum 150 ns pause. A power-fail is 
not recognized until the instruction is complete. 

10. No RTT instruction. X X 
OJ 

I If RTT sets the T bit, the T bit trap occurs after X X X X X X X -~ the instruction following RTT. 

I I. If RTI sets the T bit, the T bit trap is acknowledged . I X X 
after the instruction following RTI. 

If RTI sets the T bit, the T bit trap is acknowledged X X I X X X X X 
immediately following RTI. 

When operating with the T bit set (e.g., when X 
single-stepping), no interrupt requests will be 
serviced. At the end of instruction execution, the 
T bit has higher priority than interrupt requests. 
Once in the T bit service routine, other interrupts 
are blocked to ensure no unexpected occurrences. 
When the RTT instruction is executed to leave 
the service routine, interrupts will not be 
serviced if the T bit is set in the new PS 
popped off the stack. The user will, therefore, 
not see any interrupt requests he is expecting. 

12. If an interrupt occurs during an instruction that X X I X X X X X X 
has the T bit set, the T bit trap is acknowledged 
before the interrupt. 





Table 8-5 Software Differences and Compatibilities (Cont) "0 ::u 
PDP· 11 I m 

r-
Activity OCTII LSI· 11 23 04 34 05,10 15,20 35,40 45 -3: 

18. PSW address 177776 not implemented; must use new X X -Z instructions, MTPS (move to PS) and MFPS (move from 
l> PS). :u 

PSW address implemented; MTPS and MFPS not imple- X X X X X -< 
mented. 

PSW address and MTPS and MFPS implemented. X X 

19. Only one interrupt level (BR4) exists. X 

Four interrupt levels exist. I X X X X X X X 

Four interrupt levels exist encoded in four lines. X 

20. Stack overflow not implemented. X X 

0::1 Some sort of stack overflow implemented. X X X X X X X 
I 

0- 21. Odd address trap not implemented. X. X X 

Odd address trap implemented. X X X X X X 

22. FMUL and FDIV instructions implicitly use R6 (one X 
push and pop); hence R6 must be set up correctly. 

FMUL and FDIV instructions do not implicitly use R6. X 

23. Due to their execution time, EIS instructions can X 
abort because of a device interrupt. 

EIS instructions do not abort because of a device X X X 
interrupt. 

24. Due to their execution time, FIS instructions can X X 
abort because of a device interrupt. 

25. EIS instructions do a DATI P and DATa bus sequence X 
when fetching a source operand. 

EIS instructions do a DATI bus sequence when I X X X 
fetching a source operand. 

.. 



Table B-S Software Differences and Compatibilities (Cont) 

PDP-III 

Activity ocrtl LSI-II 23 04 34 05,10 15,20 35,40 45 

26. MaV instruction does only a DATa bus sequence for X X X X X X 
the last memory cycle. 

May instruction does a DATI P and DATa bus sequence X X X 
for the last memory cycle. 

MaV instruction does a READ (DATI) and a WRITE (DATa) X 
bus sequence for the last memory cycle. 

27. If the PC contains a nonexistent memory address and a X X X X X X X 
bus error occurs, the PC will have been incremented. 

If the PC contains a nonexistent memory address and a X 
bus error occurs, the PC will be unchanged. 

Does not support bus errors. X 

CO 28. If a register contains a nonexistent memory address X , Ix X X X X 

-.l in mode 2 and a bus error occurs, the register will 
be incremented. 

If a register contains nonexistent memory address X X 
in mode 2 and a bus error occurs, the register will 
be unchanged. 

Does not support bus errors. X 

29. If a register contains an odd value in mode 2 and a X I X X X 
bus error occurs, the register will be incremented. 

'If a register contains an odd value in mode 2 and a 
.1 

X X X X 
bus error occurs, the register will be unchanged. "'tJ' 
Does not support bus errors. I X :u 

m 
30. Condition codes restored to original values after X r -' .,FIS interrupt abort. (EIS does not abort on the 3:, 

PDP-I 1/35 and PDP-l 1/40.) -Z 
Condition codes that are restored after EIS/FIS X > 
interrupt abort are indeterminate. ::1'J 

-< 



Table B-S Software Differences and Compatibilities (Cont) "'0 

PDP-HI 
2J m 

OCTll LSI-ll 23 04 34 05,10 15,20 35,40 45 
r-

Activity -
3l. Op codes 075040-075377 unconditionally trap X X X X X X X X 3: -to 10 as reserved op codes. 

~ If the KEV-II option is present, op codes 075040- X 2J 075377 perform a memory read using as a pointer -< the register specified by the low-order 3 bits. 
I f the register contents is a nonexistent address, 
a trap-to-4 occurs. I f the register contents is 
an existent address, a trap-to-I 0 occurs (if user 
microcode is not present). If no KEV-II option is 
present, a trap-to-I 0 occurs. 

32. Op codes 210-217 trap to 10 as reserved op codes. X I X X X X X X X 

Op codes 210-2 I 7 are used as a maintenance X 
instruction. 

t:x:I 
33. Op codes 75040-75777 trap to 10 as reserved X I X X X X X X X 

I op codes. -00 

Op codes 75040-75377 can be used as escapes X 
to user microcode only if the KEV-II option is 
present. Op codes 75400-75777 can also be used 
as escapes to user microcode and the KEV-II 
option need not be present. If no user microcode 
exists, a trap-to-I 0 occurs. 

34. Op codes 170000-177777 trap to 10 as reserved X X X X X 
instructions. 

Op codes 170000-177777 are implemented as X X 
floating-point instructions. 

Op codes 170000-177777 can be used as escapes X 
to user microcode. If no user mocrocode exists, 
a trap-to-I 0 occurs. 

35. CLR and SXT do only a DATO sequence for the last IX 
bus cycle. 

CLR and SXT do a DATIP-DATO sequence for the last X X X X X X 
bus cycle. 



.,' 

Table 8-5 Software Differences and Compatibilities (Cont) 

PDP-II/ 

Activity 0Cf1l LSI-II I 23 04 34 05,10 15,20 35,40 45 

CLR and SXT do a READ (DATI) and a WRITE (DATO) X 
sequence for the last bus cycle. 

36. MEM. MGT. maintenance mode SRO bit 8 is implemented. x x x 

MEM. MGT. maintenance mode SRO bit 8 is not x 
implemented. 

37. PS< 15:12>. user mode. user stack pointer. and the x x 

MTPX and MFPX instructions exist even when MEM. MGT. 
is not configured. 

PS< 15: 12>. user mode. user stack pointer. and the x 
MTPX and MFPX instructions exist only when 
MEM. MGT. is configured. 

t:::tl 
I 38. Current mode PS bit < 15: 14> set to 01 or JO x X x 
\0 will cause a MEM. MGT. trap upon any memory 

reference. 

Current mode PS bits < 15:14> set to 01 or 10 x 
will be treated as kernel mode (00) and not cause 
a MEM. MGT. trap. 

39. MTPS in user mode will cause a MEM. MGT. trap if PS x 
address 177776 is not mapped. If mapped. PS<7:5> 
and <3:0> are affected. 

MTPS in user mode will only affect PS<3:0>. x 
regardless of whether PS address 177776 is mapped. ,"'0 

40. MFPS in user mode will cause a MEM. MGT. trap if PS 
address 177776 not mapped. If mapped. PS<7:0> 
are addressed. 

2J m X 

r--
MRPS in user mode will access PS<7:0>. regardless '3C -X 
of whether PS address 177776 is mapped. z » 

2J 
-< 



~ 
I 

IV o 

Table 8-5 Software Differences and Compatibilities (Cont) 

Acthity 

41. A HALT instruction in user mode traps to 4. 

A HALT instruction in user mode traps to 10. 

42. A HALT instruction pushes the PS and PSW to the 
stack, loads the PS with 340, and loads the 
PC with power-up address + 4 (restart address). 

43. Resident ODT microcode. 

44. All data outs (DATOs) are preceded by a data in 
(DATI). 

45. Instruction execution runs to completion regardless 
of bus errors. 

46. Vector address range limited to 4 to 374. 

PDP-Ill 

0Cf1l LSI-Il I 23 04 

x 

x 

x x 

x 

x 

x 

34 05,10 15,20 35,40 45 

x 

x x 

"tJ 
:u m r--i: -Z 
l> 
:xJ 
-< 



DCTll 

Priority of internal 
processor traps, ex-
ternal interrupts, 
HALT and WAIT: 

TRAP instructions 
HALT interrupt 
TRACE trap 
External vector 
interrupt 
I nternal vector 

ttl 
I 

interrupt 
IV Power-fail trap 

WAIT loop 
Test mode request 

LSI-ll 

Priority of internal 
processor traps, ex-
ternal interrupts, 
HALT and WAIT: 

Bus error trap 

Table 8-6 Hardware Differences - Traps 
(Transparent to Software) 

PDP-ll/23 PDP-ll/04 

Priority of internal Priority of internal 
processor traps, ex- processor traps, ex-
ternal interrupts, ternal interrupts, 
HALT and WAIT: HALT and WAIT: 

Memory parity errors Bus error trap 
Memory management TRAP intructions 
Fault TRACE trap 
Bus error traps OVFL trap 
TRAP instructions Power-fail trap 
TRACE trap Unibus bus request 
OVFL trap Console HALT 
Power-fail trap WAIT loop 
Console bus request 
QBus bus request 
WAIT loop 

PDP-ll/05,IO PDP-ll/15,20 

Priority of internal Priority of internal 
processor traps, ex- processor traps, ex-
ternal interrupts, ternal interrupts, 
HALT and WAIT: HAL T and WAIT: 

Bus error trap Bus error trap 

PDP-ll/34 

Priority of internal 
processor traps, ex-
ternal interrupts, 
HALT and WAIT: 

Memory parity errors 
Memory management 
Fault 
Bus error traps 
TRAP instructions 
TRACE trap 
OVFL trap 
Power-fail trap 
Console bus req uest 
Unibus bus request 
WAIT loop 

PDP-II /35,40 

Priority of internal 
processor traps, ex-
ternal interrupts, 
HAL T and WAIT: 

Memory parity errors 

"tJ 

" m 
r -3C -z » 
" -< 



I1IT-ll User's Guide 
EK-DCTII-UG-003 

Reader's Comments 

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our 
publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well 
writlen, ekJIs it easy to use? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

What faults or errors have you found in the manual? _~~~~~~~ __ ~~~ ___ ~ __ _ 

Does this manual satisfy the need you think it was intended to satisfy? ____________ _ 

Does it satisfy your needs? ____________ _ Why? __ ~~~~~~~~~~ ___ 

o Please send me the current copy of the Technical Documentation ~atalog, which contains information on 
the remainder of DIGIT A,L's technical documentation. , , 

Name ______________ ~_ 
Street _~ ___ ~~~~~~~.':"", .. --~--

Title _____ ~~_~~~~ ___ _ City _______________________________ __ 

Company~_~~~ __ ~~ __ ~_~ __ State/Country ~ ____________ _ 

Department __ ~~~~ __ ~ ____ _ Zip 

Additional copies of this document are available from: 

Digital Equipment Corporation 
'. 444 Whitney Street 
Northboro, MA 01532 
Attention: Printing and Circulating Service (NR2/M 15) 

Customer Services Section 

Order No. EK-DCTll-UG MR 


	0-01
	0-02
	0-03
	0-04
	0-05
	0-06
	0-07
	0-08
	0-09
	0-10
	0-11
	0-12
	0-13
	0-15
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	a-01
	a-02
	a-03
	a-04
	a-05
	a-06
	a-07
	a-08
	a-09
	a-10
	a-11
	a-12
	a-13
	a-14
	a-15
	a-16
	a-17
	a-18
	a-19
	a-20
	a-21
	a-23
	a-24
	a-25
	a-26
	a-27
	a-28
	a-29
	a-30
	a-33
	a-34
	a-35
	a-36
	a-37
	a-38
	a-39
	a-40
	a-41
	a-42
	a-43
	a-44
	a-45
	a-46
	a-47
	a-48
	a-49
	a-50
	a-51
	a-52
	a-53
	a-54
	a-55
	a-56
	a-57
	a-58
	a-59
	b-01
	b-02
	b-03
	b-04
	b-05
	b-06
	b-07
	b-08
	b-09
	b-10
	b-11
	b-12
	b-13
	b-14
	b-15
	b-16
	b-17
	b-18
	b-19
	b-20
	b-21
	z-00

