
INTRODUCTION TO PROGRAMMING

the

PDP-ll

------_._---- ----------

•

The reproduction In part or whole Is strictly prohibited. For copy Information contact the Digital Educational Services Department in Maynard. Massachusetts 01754.

.-.;, /l 7(~
~-- ., ?' - \ -- t/ - - -.

INTRODUCTION TO PROGRAMMING

the

PDP-II

Donald S. Lawrence, Jr.

DIGITAL EQUIPMENT CORPORATION

Copyright @ 1974 by Digital Equipment Corporation
Printed in the U.S.A.

preliminary Printing, May, 1.973

(Chapters I-III)

!!Q!!

This handbook is for information purposes and is subject
to chanqe Without notice

A••oclated Document••

PDP-ll Proce••or Handbook

PDP-ll Peripheral. and Interfacinq Handbook

PDP-ll Paper Tape Software Proqramminq Handbook

Trademarks of Diqital Bquipment Corporation include.

DEC

DBCtape

DIGITAL (logo)

COMl'BX-ll

11

PDP-ll

RSTS-ll

RSX-ll

UNIBUS

Q

~
. ./

•

PREPACE

The primary purpose of this book i8 to serve as an

introduct:ion to the PDP-11 family of comput.ers, althouqh it

will meet t.he needs of a general readership as well. It

assumes little or no previoua computer experience on the pe":~

ot t.he reader, and thU8 contain. introductory information of

a qeneral nature and d18cu••ion of fundamental concepts in

addition t.o supplying material pertinent. to t.he PDP-l1.

It. i8 intended t.o provide an underst.anding of computers

1n general and the PDP-ll family in particular, and t.o serve

as a prelude t.o more advanced document.at.ion •

Donald S. Lawrence, Jr.

May, 1973

ili

TABLE or COm'BI1T8

CHAPI'BR PAGB

I. INTRODUCTION TO COMPt1l'BRS 1-1

1.1 PERSPECTIVE 1-1

1.2 DBFINITION 1-2

1.3 CLASSIFICATION 1-6

1.4 APPLICATION 1-8

II. NUMBERS AND OTHER STUFF 2-1

2.1 INTRODUCTION 2-1

2.2 NUMBER SYSTEMS 2-2

2.2.1 B••ie Prineiple.
2.2.2 Decimal _umber By.tem
2.2.3 Binary Number 8Y8~"

2 •2•4 octal NWDber Sylltem

2 •3 CONVBRSJ:ONS 2-23

2.3.1 Introduetion
2.3. 2 Decimal to Binary
2.3.3 Binary to Decimal
2.3.4 Decimal to octal
2.3.5 Oetal to Decimal
2.3.6 Binary to oc:tal
2.3. 7 oetal to Binary

2.4 ARITHMETIC OPBRATIONS 2-35

2.4.1 Introduction
2.4.2 Addition
2.4.3 Direct Subtraction
2.4.4 Complementary Addition

2.5 LOGIC OPERATIONS 2-55

2.5.1 Introduetion
2.5.2 AND
2.5.3 Incluaive OR
2.5.4 Bxcluaive OR

2.6 BXBRCISBS 2-63 ~

CHAPTER

III. THE PDP-11

3.1 SYSTEM ORGANIZATION

3.1..1 Introduction
3.1.2 The UNIBUS
3.1.3 Memory
3.1.4 Central Proces.or
3.1.5 Input-output Devices

3.2 ADDRESSING MODBS

3.2.1 Introduction
3.2.2 General Reqi8ter Addressinq Hodes
3.2.3 Prpgram Counter Addressinq Modes
3.2.4 !:xerei•••

3.3 INSTRUCTION SET

PAGE

3-1

3-1

3-19

3-49--

•

r

3.4 SYSTEM OPERATION

IV • PUNDAMBNTALS OF PROGRAMMING

4.1 THB PROGRAM

4.2 LANGUAGES

4.3 CONCEPTS AND TECHNIQUES

4.4 EXAMPLES

(FORTHCOMING)

.~ .-

I:)

..

Q

•

Chapter 1

INrRODUCTION TO COMPt11'ERS

1.1 PERSPECTIVE

The transition from manls first desire to count and measure

to your PDP-Il computer is indeed a great one, and the reader is

heartily encouraged to pursue the fascinating topic of computer

history. For the purpose of this text, it is sufficient to say

that the development and continuing evolution of the computer has

brought about a dramatic change in our lives and promises even

greater change in the years to come.

During the last twenty years especially, there has been an

explosive proliferation of computing machines designed to meet a

vast range of applications. Perhaps of even more importance than

the ever-improving developmental technology is the unceasing dis­

covery of new ways in which we may use computers. In fact, it

would seem that we have reached the point where :'he machine capa­

bility and the task are present, and it is only our lack of appli­

cational insight that limits us.

1.2 DEFINITION

The majority of everyday users, as well as the novice, view

the computer as a Ilblack box." That 1s to say, they know~ is

done (the performance characteristics) but not ~ it is done (the

components and/or means of operation). Though this knowledge is

superficial, it 1s 6ften sufficient; rarely 1s anyone required to

fully comprehend all the details of any computer system. It is

in fact customary for the individual to accept a tlblack box" des­

cription of a computer or computer function at some level, and

then deepen his understanding when motivated by desire or neces­

sity. As indicated in the preface, this text assumes that you

~)resently regard the computer itself as a .Iblack box, II and will

attempt to brlnq you beyond that level.

The computer may be defined a8 a machine, devised and used

by man because,(like other machines) it can perform certain tasks

better than man himself.

Technically, it is an electronic device capable of accepting

information, applyinq prescribed processes to that information.

and supplying the results of those processes. Very basically

then, the computer canl

(1) accept INPtn' (information t.o be processed)·

(2) P~OCESS the information (manipulate 1t in a prescribed way)

(3) produce Ot71'PUT (the results)

Based on this definition, we may represent the computer by

means of the followlnq block dlaqram (Fiqure 1-1).

INPtYr PROCESSING ourPUT.. ...
UNIT

..
UNIT

...
UNIT

Figure 1-1 Simplified Compu~er Block Diagram

At this point, our definition and diaqram might well encor.~-

~ pass other devices, such as the electric adding machine and desk

calculator. To differentiate, we will note that the computer

posseses two additional (and distinctive) characteristics I

(1) It is capable of manipulatinq a variety of symbols, and

is not restricted to numbers only. It processes data.

(2) It processes automatically, with only initial human in­

tervention reqUired. The sequence of operationI' to be performed

(called the program) is first stored in the computer.

A deeper observation of computer operation will help illus­

trate these aspects of your Programmed Data Processor.------_._--_._-------_.

Let us approach this more detailed representation by using

Y5!!:! as an example. You are given the verbal directive, "Mentally

add the numbers fifty-four, eighty-seven, and thirteen. N After an

individually dependent computational pawse, you orally respond,

liThe sum is one hundred and fifty-four." r:i

Figure 1-2 Analoqous Computer BloC:1c Dla~ram

What has happened? Your aural and vocal anatomy has served

as the means of INPOT and Ot1l'PtJT respectively, your brain has been

used to PROCESS the information. For the present, the terms INPUT

and Ot7l'POT sufficiently describe the operations performed, but the

term PROCESS appears to be somewhat obscure. Let us examine what

has taken place here a little more closely.

(1) You remembered the values given and called upon skills

previously learned and retained - therefore, MEMORY was· required

(2) The operations ~were ordered, With the values being man1p-

ulated in a pre8cibed manner - thu8, Bome element of CONTROL was

present

(3) A mathematical calculation was performed - hence, an

ARITHMETIC function was involved

o

low
1 path

It

r

We may directly associate these features with units in the

basic computer block d1aqram (Fiqure 1-3) to complete this qen­

eral definition.

r - - - - - -- - -- CONTROL ---- -----,
I r--- UNI'l' I
I I

I ~ .. I II I I I
J, I • ",

I
INPtn' I ... MEMORY ... Ot11'Pt11'
UNIT " ... UNIT ... UNIT

I
I
I ~ ~

I
I ~

,
I
L_~ ARITHMBTIC

UNIT data f
----- contro

Fiqure 1-3 Basic Compueer Block Diaqram

INPt11' UNIT - UlXler the direction of the CONTROL UNIT, it

supplies the computer with all the information needed to accom-

plish a qiven task, the values to be operated upon (data) and the

operations to be performed upon those values (proqram)

MEMORY UNIT - Cont.ains information for the CONTROL UNIT (pro­

qram) and the ARITBMJft'IC UNIT (dat.a) J holds intermediate and final

results

CONTROL UNIT - Direct.s the ent.ire proces8 by 8pecifylnq

to the ARITHMBTIC UNIT what operation. are to be performed, in

which order they are to be performed, and where t.o get/put the

data involved

ARITHMB'l'IC UNIT - Under the direction of the CONrROL UNIT,

it performs t.he actual operations, the aworkinq area"

Ot11'PUT UNIT - Under the direction of t.he CONl'ROL UNIT, it

records the results of computer operat.ions

1.3 CLASSIFICATION

A8 specified by the characteristic. in Table 1-1, every

comput.er may be basically cateqorized a. either ANALOO or DIGITAL

(there are hybrid computer. that have both analoq and digital

properties). We have been discussing (and will cont.inue to dis­

cuss) only the digital computer, .for your PDP-ll belongs to that

class. This comparison is made for reasons of completeness and

further definition.

Table 1-1 Comparison of Analog and Diqital Computers

AN&LOG DIGITAL

(1) Variable electrical or (1) Discrete numerical values
mechanical quantities U8ed t.o represent dat.a
used to represent. dat.a

(2' Varying and continuous level (2) Set and discontinuous level
of input. yields varylnq and of input yields set. and dis-
continuous level of out.put. cont.lnuou8 level of out.put

(3) Calculates by means of a (3) Calculates by means of a..
measurinq proce8s countinq process

(4) Example. speedometer (4) Example. odomet.er

•

,

We may also cateqorize compu~er. accord1nq to their ~.8iqn

·capability •• beinq eli:her SPECIAL PURPOSE or GBNBRAL PURPOSE,

terms that are very aelf-explanat.ory. The special purpose ma­

chine 18 constructed to perform one task, or a closely related

qroup of tasks. The 8in.,le sequence of operations it 1s to per­

form (its proqram) i8 "built in.· If ever a proqram chanqe be­

comes necessary, a hardware modification (physical restructur1nq)

is required. Conversely, the general purpose machine is desiqned

to be capable of performinq many varied tasks. The many possible

operation aequenc•• (proqrams) are kept in the memory unit of the

qeneral purpose computer, and for this reason it i8 sometime8 Z·.~·­

ferred to a8 a B.t.cred program machine. To pe~form a qiven task,

the user. simply calle upon the appropriate proqram. The change

from one task to another 1. accomplished by selectinq another

proqram already in the mentOry or enterinq it by means of the In-

put unit.

It should be apparent that previous di8cussion has been of

the general purpose comput.er, and we will conti~ue to confine our­

selves to thi8 type. Your PDP-II i8 classed a8 both dig-ital and

general purpose.

Now that you have a basie urder8tandinq of what the computer

1s, let us qenerally discUS8 why and 1n what manner it 18 used.

1.4 APPLICATION

If given unlimited time to complete a task, factors such as

volume of data, complexity of calculation, and deqree of accuracy

become immaterial. Por example, you alone could certainly process

the payroll of a larqe corporation or perform all the calculations

nece.sary to launch a mi••ile. The chance of you accurately doing

either in a matter of hours or minute., hoWever, is rather remote.

It i8 then speed of operation which i8 the ultimate consideration

in both cases. This element of 8~, coupled with acc~acy and

~ reliability, is the underlying advantaqe of the computer, it is

the major reason for its existence and use.

We have said that the computer i8 \l8ed because it performs

certain taSKS "better" than man. The interpretation of this term

18 dependent upon the -task, and may imply any combination of the

following features. speed, accuracy, preci8ion, reliability, econ­

omy, efficiency, fea8ibility. Where then 18 the computer to be

used? Wherever 1ts attribute. enable the t.ask to be done "better. II

'1'0 l18t the Wide and ever-expanding range of specific appli­

cations would be an arduous chore (surely requiring the use of a

cOIDpU1:erl). If, by way of example. t.he result.s of a PDP-ll appli­

cat10nal survey were immediately available to be given here, the

variety of response would easily fill the remainder of the book.

And this would be for only one cOIIlput.er model of one corporationl

Keep1nq this in mind, we may denot.e four general areas of applica­

tion.

o

"

•

Busine8S - Computers used ift busines. applications are

usually involved wl~h record keep1nq. automatinq the many t.edious,

repetitious tasks a88ociat.ed with clas8ify1nq. proce88inq, and

ma1nta1n1nq information of all kinds. A8 a rule, the business

computer 18 required to perform only a few simple calculations,

but it must be capable of hand11nq a qreat volume of data •

Simulation - Any qiveD task may be too danqeroUB, costly, or

intricate for man to attempt. It: may not be feasible for him at

all. In such situations, the computer is used to simulat.e all con­

dit.ions and interactlons, yieldlnq knowledge without. risk.

'..

'. . .

. . .'

. .

•

•

r

Chapt.er 2

NUMBERS AND OTHER STUFP

2.1 INTRODUCTION

In writing a book Buch as this, it is very often desirable to

explain several thinqs simultaneously. Thi8 is one of those timesl

The first chapter has defined the general purpose diqltal com­

puter~ and shown that it manipulates data accordinq to a proqram of

instructions. A loqical continuation could therefore be a detailed

look at .the PDP-1! in terms of orqanization and unit interaction.

On the other hand, since we have mentioned the program and indicated

its siqnificance, fundamentals of programming could just as reason­

ably follow. Then too, a discus.ion of proqramminq languages and

data repre8entation might serve as a likely sequel.

In developing any of these topics, however, there 1s an ines­

capable involvement With number concepts. Numerical references must

be made in describing the PDP-l1 and its operation, proqram instruc­

t.ions and data are ultimately represented in numerical code. This

chapter will then concern itself With those number concepts and op­

erations required for you to fully appreciate sUbsequent discussion

of proqramRdng the PDP-ll.

The subject of computer math. numbers and "other stuff," is

interruptive regardless of when it is introduced. For this reason,

the reader may wish to IItQve past it for the present and make back­

ward references where necessary.

2.2 NUMBBR SYSTEMS

2.2.1 Basic Principles

ManOs earliest form of notation wae the tally mark, where

there existed a one-to-one correspondence between the marker and

the object to be counted. The aggregate of the scratch marks,

pebbles, or notches was the "number" he wished to record. This

principle of repetition proved cumbersome for even moderately

large numbers, however, and so there evolved various number sys­

tems to meet the increasing demands of civilization.

The number system is a standard means of representinq quan­

tity. It consists of a finite set of symbols, called numerals or

digits, and rules Which specify how the symbols are arranged to

form numbers. The early number systeas offered an improvement

over recording each unit in that they combined unique quantities

of units int.o groups and assigned di8crete symbols to represent

those groups. They featured the principle of addition, Where the

value of an entire number is determined by adding the values of

the individual symbols that comprise it, irrespective of position.

(MMMCCCXXXIII = 1__;+1 +1__~l~;+1__+l'-'l-'l'+l9+1+1+l =3333).

Thouqh later development introduced subtractive (IV=4) and multi­

plicative CM::l.,Itf6f) principles, these systems still served pri-

marily for qtUlnt1fic:atlon and record keepinq_ and had little pro­

vision for calculation (even the IIlOSt. mathematically adept of .

~omans removed his sandals for MeVII times CLXXVIII).

o

The positional number _yet..s which followed contain two

additional and di8tinctive feature. which qreatly simplify the

operations needed to manipulate number.. the concept of position

and the inclusion of the zero symbol. Like their early counter­

parts, these 8ystems have discret.e symbols with unique values and

follow the principles of addition and multiplication. The major

distinction i8 the principle of place value, which specifies that

the:.!_~,!_..not--oEJ.Y_.~ ~~~~! ..".!~!~~! ..~"~~,.~h~_.~~.J..~J?_~,.~~l~~ .~..~,~Slpe--value for the position. Thus the value associated with a symbol

is determined by both its absolute value and the value of its rel­

ative position Within the number (3333 = 3~~~+3~~+3~+3 = 3333).

The importance of the zero symbol ift a positional number

system is illustrated by the application of the count and carry

(or reqroupinq) principle. For example, we count from zero to ten

in the familiar decimal system a8 follows.

Ii
1
2
3
4
5
6
7
8
9

10

We cycle throuqh the diqits to nine, but do not create another

symbol in countinq an additional unit. We instead carry the one

to the next (tens) place, and record it there. To indicate that

r there are no units, and to "hold" the units place, we record a

zero in that position.

The 'three number systems that we will di8CUS8 in some detail

are presented in Table 2-1. These are all positional number systems

which demonstrate the principles we have previously mentioned, addi­

tion, multiplication, place value, count and carry.

Table 2-1 Digits and Bases of Selected Number S¥Stems

,.

NUMBBR SYSTEM

Decimal

Binary

Octal

DIGITS

;,1,2,3,4,5,6,7,8,9

~,1

',1,2,3,4,5,6,7

BASE

1~

2

8

The term base, introduced 1n the Table, is commonly used to

name or describe a number system. The decimal system, for example,

is often referred to as the 'base ten system. Por any positional

number system, the base (or radix) 1s the number of diqits it con­

tains.

~
\"

r

2.2.2 Decimal Number System

One of the few assumptions made in this text 1s that

you are familiar with the decimal number system. It is the

mathematical language of the Itreal world; It a language that

you use on a daily basis. You have memorized the rules and

operational procedures to the point that they are automati­

cally applied, and performing any calculation is straight­

forward. The purpose of this chapter is to have you become

equally well acquainted with the binary and octal systems.

We will briefly reintroduce the decimal syStem here in re-

lation to our previous discussion of basic principles, and

later reference it to help illustrate those aspects it has

in common with the less familiar systems.

The decimal or base ten nwnber system is comprised of

the digits zero through nine <_,1,2,3,4,5,6,7,8,9). It is a

positional number system, so that in progressing from right

to left within a decimal number, the value associated with

each position is an increasing power or multiple of the base.

This place value principle is presented in Table 2-3 •

Table 2-2 Powers of Ten

/I
116 = 1 = 1 Ii

1
1/1 = 116 = 1.16 a

2
1/1 = 1J1xl16 = 116/1

3
1/1 = 1Jlx1~l/l = 1,flf4/1

4
1/1 = l/1x1J'xlJlxl/l = 1/1,/11616

5
1/1 = l/1xl..fx1~1J'xl/l = 1[6[6,/1/1/1

6 ~
1J1 = 1Pbc1J6xl.fxl~1J&lf6 = 1,1616/1,1616[6

Table 2-3 Positional Notation with Powers of Ten

Powers of Ten

6 5 4 3 2 1. 16
lf4 191 116 116 116 116 116

l,Jlf6f6,J6J6f6 116J6,J6J6f6 1J6,f6J6f1 1.,/11416 11616 114 1

Place Values

,..

o

r

As shown in Table 2-4, determininq the t.otal value' of

a decimal number is accomplished by applying the principles

of place value, multiplication, and addition. multiplying

the discrete value of the digit by the value of the position

in which it is placed, and then adding the resulting pro-

ducts.

Table 2-4 Decimal Number as the Sum of Powers

6 5 4 3 2 1 $f
191 191 111 191 1f6 116 III

1. 2 3 4 5 6 7

L..=
16

7xlll = 7xl = 7

1

= 6xl$f = 6xlf6 = 691

2

= 5xlJ6 = 5x1J6$f = 5~f6

3

= 4xl_ = 4xl,f6[616 = 4,161616

4
= 3xll1 = 3xll1,I1~16 = 316,16/116

5
= 2x116 = 2xl[616,f4[6Jl1 = 216[6,[616_

6
= lxll1 = lxl.f6J116,J6I1J1 = +1,16f6f6.f6J1J6

1,234,567

The count and carry principle, to be examined in more

detail when we later discuss arithmetic operations, can be

simply illustrated by counting or.addit10n. As eVidenced by

the example below, presented earlier in discussing basic prin­

ciples of positional number systems, we see that the terms

count and carry are qUite self-descriptive; count until the

base is equaled, and carry that indication to the next column.

~
1
2
3
4
5
6
7
8
9

carry. 1. 16

When performing addition, the procedure is as follows.

(1) Add the digits in the column, (2) If the base is neither

equaled nor exceeded, record the sumJ (3) If the base is

equaled or exceeded, divide by the base, record the remainder,

and carry the quotient to the next column.

carries. 1 1 1 !

51459

+7 8 6 2 4

1. 3 _ 16 8 3

Note the presence of the zero symbol in the sum,

indicating IIno hundreds ll and uno thousands," and also

"holding~ those places within the number.

."

2.2.3 Binary Number Syst&~

The binary or base two number system is comprised

of only two digits, zero and one, commonly referred to as

bits (!2!nary digi.!:.!). As illustrated in Figure 2-1., this

system 1s' capable of representing but two conditions, and

thus lends itself to the decision-making process; ideally

practical for the computer.

Fiqure 2-1 Popular Binary Device in Action

Since physical and electrical entities have' but two

states (i.e., sWitch open/switch closed, current/no current),

internal components of a computer can be easily desiqned to

accommodate data in binary form. Computers have been built

to operate with other number systems, but the increased num­

ber of digits along with the proportionally increased number

of possible conditions make these computers overly complex

in design and difficult to manufacture. For this reason,

the PDP-ll and a majority of computers operate with the bin-

r ary number system, considered the "language of the computer. II

Though the computer works internally with the binary

number system, this does not mean that all information input ~

must be so represented. In fact, rarely is the data initially

in binary form. If strictly numerical, it is generally octal

or decimal, but it is even more commonly expressed in one of

many alphanumeric computer languaqes. As we will later dis-

cuss, there are several methods by which information in any

of these forms is converted to binary before it is processed

by the computer.

We noted earlier that the binary or base two number ~

system 1s comprised of the digits zero and one (~,l.). Like

the decimal system, it too is a positional number system.

Progressing from right to left within a binary number, the

value associated With each position is an increasing power

or multiple of the base. This place value principle for the

binary system is presented in Table 2-6.

r
"- Table 2-5 Powers of Two

f6
12 = = 1

1
,~ 2 = 2 = 2

2
2 = 2x2 = 4

:,

3
2 = 2x2x2 = 8

4
2 = 2x2x2x2 = 16

5
2 = 2x2x2x2x2 = 32

6
2 = 2x2x2x2x2x2 = 64

~ 7
2 = 2x2x2x2x2x2x2 = 128

8
2 = 2x2x2x2x2x2x2x2 = 256

9
2 = 2x2x2x2x2x2x2x2x2 = 51.2

1~
2 = 2x2x2x2x2x2x2x2x2x2 = 1,1124

1.1
2 = 2x2x2x2x2x2x2x2x2x2x2 = 2,1648

•
12

2 = 2x2x2x2X2x2x2x2x2x2x2x2 = 4,1196

13
2 = 2x2x2x2x2x2x2x2x2x2x2x2x2 = 8,192

14
2 = 2x2x2x2x2x2x2x2x2x2x2x2x2x2 = 16,384

15

r 2 = 2x2x2x2x2x2x2x2x2x2x2x2x2x2x2 = 32,768

Table 2-6 Positional Notation with Powers of Two

Powers of Two

15 14 13 12 1l 1{6 9 8 7 6 5 4 3 2 1 16
2 2 2 2 2 2 .2 2 2 2 2 2 2 2 2 2

32,768: 16,384 8,192 4,1696 2,JU8 1,1624 512 256 128 64 32 16 8 4 2 1

Place Values

J-".-,". ... " J fi: !,lIf-
o,J

•

r

Since the binary system is a positional number system,

the rules are identical to those of the decimal and octal

systems. The only difference, of course, is that the base

is ~ rather than ten or eight.

Determining the total value of any binary number is then

accomplished-in the same manner used for the decimal system:

applying the principles of place value, multiplication, and

addition. The discrete value of the digit (¢ or 1) is multi­

plied by the value of the position in which it is placed, and

the resulting products are added.

This operation 1s presented in Table 2-7.

Table 2-7 Binary Number as the Sum of Powers

15 14 13 12 11 l~ 9 8 7 6 5 4 3 2 1 f8
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

l. l. ~ ~ 1. ~ 1. 1 ~ f4 1 , 1. 1 f4 1 ~

~:
lx2 = Ixl = 1_

1.
~2 = j6x2 = ~

2
= lx2 = lx4 = 4

3
= 1x2 = lx8 = 8

4
= j6x2 = .sx16 = /6

5
= lx2 = lx32 = 32

6
= J1fx2 = 9bt64 = 11

7
= f6x2 = ,QJx128 = f6

8

= lx2 = lx256 = 256
9

= lx2 = lxS12 = 512
l~

= j6x2 = .f6x1,1624 = 16
11

= lx2 = lx2,/l48 = 2,/648
12

= J6x2 = /i1x4,/696 = 16
13

= {6x2 = .f6xS,192 = /I
14

= lx2 = lxl6,384 = 16,384
15

= lx2 = lx32,768 = +32,768
52,/613

J J 'J

•

The count and carry principle also applies to the

binary number system, and can be simply illustrated by

counting or addition. In fact, one advantage of binary

notation is the simplicity of operation. Since the system

consists of only the symbols zero and one, all the digits

are used merely counting to onel Counting an additional

unit equals the base, ltand 1s represented as 11' (read as

"one zero, II not "ten"). You have counted until the base

was equaled, and then carried to the next colwnn. As shown

in Table 2-8, this occurs quite often in the binary number

systemI

Table 2-8 Counting in Binary with Decimal Equivalents

Binary Decimal Equivalents

~
1
2
3
4
5
6
7
8
9

11'
11
12
13
14
15
16
17
18
19
2/4

Binary addition illustrates both the count and carry

principle and the operational simplicity of the system. As

shown in Figure 2-2, there are only four possible individual

conditions.

Figure 2-2 The Four Possible Conditions for Binary Addition

Addend Addend Sum Carry

~ ~ ~ f6

f6 1 1 f6

1 16 1 f6

1 1 f6 1

1

:tL
1.

1.

+1

1[6

The procedure followed in the addition operation is

the same as that followed for the decimal systems (1) Add

the digits in the column, (2) If the base 1s neither equaled

nor exceeded, record the sum; (3) If the base is equaled or

exceeded, divide by the base, record the remainder, and

carry the quotient to the next column.

Note the importance of recordinq the zero remainders

in the example below, "holding-I those places Within the sumo

.-

carries.

1 16 1 fA

111

, 1 1 fA

1 1

f4 fA 1 1 1

1 1 1

fA ¢ 1 1

2.2.4 octal Number System

We may call the decimal number system the "numerical

language of the real world" because much computer input and

output data is in this form. The binary number system is

considered the "numerical language of the computer" because

the majority of computers are designed to work With this

notation. For the machine ~anquage and assembly language

user, the octal number system provides an easily handled

bridge between these two, and may be called the "numerical

language of the programmer."

As noted earlier, the binary system is mostcomrnonly

used with computers because its simplicity yields hardware

advantages; the components can be fast, yet relatively simple

and inexpensive to manufacture. Computers, however, don't

have to IIlook li at the binary numbers they manipulate, and due

to speed of operation, work with them one at a time. To the

programmer who must work With many cumbersome groupings, the

length of the numbers and the similarity of digits makes the

binary system far from ideal. As we will discuss shortly,

there exists a quick and direct conversion between the binary

and octal systems, and for reasons given any numerical work

at the machine language or assembly language level is done

with the latter system.

The octal or base eight number system is comprised of

the digits zero through seven (~,1,2,3,4,5,6,7). Like the

decimal and binary systems, it too is a positional number

system. Progressing from right to left within an octal num­

ber, the value associated with each position is an increasing

power or multiple of the base. This place value principle

for the octal system is presented in Table 2-191.

Table 2-9 Powers of Eight

fir. ,
a = 1 = 1.

1.
8 = e = 8

2
8 = axe = 64

3
8 = 8x8x8 = 512

4
8 = 8x8x8x8 = 4,~96

5

r 8 = 8x8x8x8x8 = 32,768

Table 2-1J~ Positional Notation with Powers of Eight

Powers of Eight

J 4 3 2 1. ~
8 8 8 8 8 8

32,768 4,f196 512 64 8 1.

Place Values

Since the octal system is a positional number system,

the rules are identical to those of the decimal and binary

systems. The only difference, of course, is that the base

is eight rather than ten or two.

As presented in Table 2-11, determi~ing the total

value of any octal number is accomplished in the same manner

used for the decimal and binary systems. applying the prin­

ciples of place value, multiplication, and addition. The

discrete value of the d1qit is multiplied by the value of

the position in which it is placed, and the resulting pro-

ducts are added.

Table 2-1.1. Octal Number as the Sum of Powers

5 4 3 2 1 ~
8 8 8 8 8 a
1 2 3 4 5 6

4= ~
6x8 = 6xl = 6

1

= Sx8 = 5x8 = 4~

2
= 4x8 = 4x64 = 256

3
= 3x8 = 3x512 = 1,536

4
= 2x8 = 2x4,~96 = 8,192

5
= lx8 = lx32,768 = +32,768

42,798

oj.

r

The count and carry principle also applies to the

octal number system, and can be simply illustrated by

counting or addition. As shown in Table 2-1.2, you count

until the base is equaled, and then carry to the next column.

Table 2-1.2 Counting in octal with Decimal Equivalents

Octal Decimal Equivalents

~ Ji1
1 1.
2 2
3 3
4 4
5 5
6 6
7 7

1~. 8
11 9
12 191
1.3 1.1.
14 12
15 13
16 14
17 15
2~ 1.6·

•
• •

3~ 24
•
• •

416 32

• •
5~ 4¢

• •
•

6[6 48
• •
• •

7¢ 56
•
• •

1~~ 64

The procedure followed for addition is the same as

that followed for the decimal and binary systems. (1) Add

the digits in the column, (2) If the base is neither equaled

nor exceeded, record the sum, (3) If the base is equaled or

exceeded, divide by the base, record the remainder, and

carry the quotient to the next column.

carriesJ

1.

];

3 4

6 1

1 6

1

5 6

5 2

Again note the importance of the zero remainders

recorded in the sum, "holdinq" those places Within the

number.

2.3 CONVERSIONS

2.3.1 Introduction

It should by now be established 'that the binary number

system 1s good for computers, but little elsel Therefore,

numerical data written in decimal or octal form must first

be converted to binary so that it can be processed by the

computer, and then the results converted back from binary to

decimal or octal so that they can be readily interpreted.

This process is represented by Figure 2-3.

Figure 2-3 The Conversion Process

Decimal Number Octal Number

342341 J234567

Binary Number
I ,

9J~l¢1J6~111~9J1.~111~111

As noted earlier, these conversion processes are

usually performed by programs previously written and stored

in toe computer. Specific conversion examples follow to

prOVide an understandinq of the processes.

2.3.2 Binary to Decimal Conversion

There are two commonly used methods for converting

binary numbers to decimal equivalents. the Place Value

method and the Double Dabble method.

The Place Value method is simply the procedure used

in representing a binary number as the sum of powers. The

discrete value of each digit is multiplied by the value of

the position in which it is placed, and the resulting pro­

ducts are added. An example of this method is presented

in Table 2-13.

Table 2-13 Place Value Binary to Decimal Conversion

,j

543
222

2 1
2 2

1 ¢ 1. 1 ¢ 1. (Binary Number)

l= lX/ = lxl = 1

1
= Ji1x2 . = pJx2 = ¢

2

= lX2 = lx4 = 4

3

= lx2 = lx8 = 8

4
= 1Jx2 = 91x16 = J6

5
= lx2 = lx32 = ill...

45 (Decimal Equivalent)

To convert binary numbers to decimal equivalents

by means of the Double Dabble method, begin with the most

significant bit (left-most one bit) of the binary number.

~ouble that bit, and if the next lower order bit is a one,

dabble (add one). If the next lower order bit 1s a zero,

do not dabble. Moving from left to right within the binary

number, repeat this process (doubling the s~~ if the next

bit is zero, doubling the sum and dabbling if the next bit

is one) until there are no more digits. An example of this

method is oresented in Table 2-14.

Table 2-14 Double Dabble Binary to Decimal Conversion

1~9J,--",,~~9J~1(Binary Number)

double double double double double

•

2 4 1_ 22 44

\dO noJ\ /\ /'dO notA
dabble dabble dabble dabble dabble

\/ \5/ \1 \2/ \5 (Decimal EqUivalent)

2.3.3 Decimal to Binary Conversion

There are two commonly used methods for converting

decimal numbers to binary equivalents. t he Subtraction of

Powers method and the Division method.

The procedure for the Subtraction of Powers method is

as follows. (1) Subtract the highest possible power of tw~

from the decimal number, and record a one in the apporpriate

place within the partially completed binary equivalent,

(2) Repeat this subtraction process With the resulting dif­

ferences and descending powers of two (recording a one if

that power can be SUbtracted, recording a zero if it cannot

be subtracted) until the decimal number is reduced to zero.

An example of this method is presented in Table 2-1.5.

Table 2-15 Subtraction of Powers Decimal to Binary Conversion

(Decimal Number)

54321
2 2 222

32 16 8 4 2

16
2 Place

1 Value

(Binary Equivalent)

The procedure for the Division method of decimal to

binary conversion is as follows. (1) Divide the decimal

number by two; the remainder is the LSD (Least Significant

Diait) of the binary equivalent, (2) Repeat this division

process with the resulting quotients (recording remainders

right to left within the binary eqUivalent) until the quo-

tient becomes zero. An example of this method is presented

in Table 2-16.

Table 2-16 Division Method Decimal to Binary Conversion

r' Divisor Quotient Remainder
(Decimal
Number)

2 45

2 22 1

2 1.l J6

2 5 1

2 2 1
G'

2 1

:~16
•

1 16 1 1 16 1 (Binary
EqUivalent)

r

2.3.4 Octal to Decimal Conversion

There are two commonly used methods for converting

octal numbers to decimal equivalents. the Place Value

method, and a method similar in principle and procedure to

the Double Dabble method for binary to decimal conversion.

The Place Value method is simply the procedure used

in representing an octal number as the sum of powers. The

discrete value of each diqit is multiplied by the value of

the position in which it is placed, and the resulting pro­

ducts are added. An example of this method is presented

in Table 2-17.

Table 2-17 Place Value Octal to Decimal Conversion

321 ~

888 8

3xl ::

6 3 (Octal Number)

L. = 3X/ = 3

1
= !6x8 = p1x8 =

2 ~

= 3x8 = 3x64 :: 192

3
Ae- ... = 6x8 = 6x512 = +3.'72

3.267 (Decimal
Equivalent)

The octal to decimal conversion method that 1s

similar to the Double Dabble method also begins with the

MSD .(Most Significant Digit). The procedure is as follows I

(1.) Record the MaD, (2) Multiply the MSD by eight, (3) Add

the next octal digit, (4) Repeat steps two and three until

the last digit of the octal number has been added. An ex­

ample of this method is presented in Table 2-18.

Table 2-18 octal to Decimal Conversion

3 (Octal Number)6 3 ~

I

Equivalent)

6~
x a
48"
+ 3.--------.1
5'l
x 8
4918

:j8~.1-------_.-#
x 8

3264
+ 3 ..----------'

3267 (Decimal

&

•

2.3.5 Decimal to octal Conversion

There are two commonly used methods for converting

decimal numbers to octal eqUivalents I the Subtraction of

Powers method and the Division method.

Using the Subtraction of Powers method for decimal to

binary conversion simply required sUbtracting powers of two

from the decimal number. The additional digits of the octal

system create the need for more work when using this method

for decimal to octal conversion. We may subtract not only

a power of eight, but up to seven times that power of eight

from the decimal number. The procedure is then as follows I

n
(1) Subtract the highest possible value of the form a8

(where ~ =~-7) from the decimal number, and record the value

of ~ in the appropriate place Within the partially completed

octal equivalent, (2) Repeat this subtraction process with

the resulting differences and descending powers of eight

(recording the value of ~) until the decimal number is zero.

An example of this method is presented in Table 2-19.

Table 2-19 S1.lbtraction of Powers Decimal to Octal Conversion

3267 (Decimal Number) 63~3 (Octal EqUivalent)

-3!72 = 6xS12 =~195
2

- 192 = 3x64 = 3x8
3

1 J~ = ~x8 = R1x8
3

~
3 = 3xl = 3x8
~

The procedure for the Division method of decimal to

octal conversion is as follows. (1) Divide the decimal

number by eight; the remainder is the LSD (Least Significant

Digit) of the octal equivalent, (2) Repeat this division

process with the resulting quotients (recording remainders

right to left within the octal equivalent) until the quo­

tient becomes zero. An example of this method is presented

in Table 2-216.

Table 2-2~ Division Method Decimal to Octal Conversion

Divisor Quotient Remainder

~
(Decimal
Number}

8 3267

8 4~8 3

8 51 ¢

f3 6 3

¢ 6

~
S 6 3 ¢ 3 (octal Equivalent)

II

2.3.6 Binary to Octal to Binary Conversion

As the numerical language of the machine language and

assembly language programmer, the octal number system serves

as a convenient "shorthand ll notation for the binary number

system, numerical lanquage of the computer. The unwieldy

strings of binary ones and zeros are converted to the more

workable octal notation by inspection, with 'no calculation
3

reqUired, because eight is an integral power of two (8=2).

As illustrated by Figure 2-4, three binary digits are the

direct equivalent of one octal digit; one ocbal digit is the

direct equivalent of three binary digits.

Three Binary Digits

9111

represent

3

One Octal Digit

Figure 2-4 Binary to Octal to Binary Conversion

~.

o

Knowing the binary and octal equivalents (Table 2-21),

we can then represent any binary number as an octal number

by means of the following stepsi (1) Beqinning with the LSD

of the binary number, group the bits by threes (filling in

leading zeros if necessary), (2) Convert these three bit

groupings to their octal equivalents. An example of this

procedure is given belowl

1 7 2 6 3 5

r

Table 2-21 Binary and Octal Equivalents

Binary Octal

~~~ ~

f4111. 1

f41.16 2

1611 3

116/6 4

1161 5

1191 6

111 7



As noted earlier, existing programs are available

for all conversion processes, but there may be several

occasions when you will need to make the binary to octal

and octal to binary conversion directly.

(1) Interpreting" reference texts and Instruction lists

Texts will often call upon the reader to make these

conversions when describing the computer, illustrating the

contents of various registers, and explaining instruction

formats.

(2) Hanually loading and verifying programs

While the machine language programmer must always do

this, it should be noted that even the most advanced com-

puter systems usually have short preparatory programs that

must be so entered and/or checked.

(3) Avoiding binary notation

You may be involved in s1tuationswhere you must work

directly with numbers. If any of the notation is binary,

convert to octal, operate, "and if necessary convert the

results back to binary.

~
I



2.4 ARITHM~~IC OPERATIONS

2.4.1 Introduction

No matter how complex the arithmetic problem, it is

eventually reduced to one of the four fundamental operations I

Addition, subtraction, multiplication, division (Figure 2-5).

+ADDITION

-SUBTRACTION

•MULTIPLICATION

+DIVISION

Figure 2-5 Four Fundamental Arithmetic Operations

As with the programs available to handle any conversion

process, there exist several arithmetic llpackages" that the

computer user may call upon to perform his calculations. It

is imoortant to keep in mind, however, that any of these

~ckages is a program comprised of instructions which are

essentially the four fundamental operations. It is the pro-

gram which '-breaks down" the complex problem; the computer

receives only the simplest of instructions.



,/

'\\.

Many computers, including the PDP-l1, reduce the

four fundamental arithmetic operations to one, addition.

For reasons of hardware simplicity and efficiency, comple-
~ ...~--

mentary (negative) addition is performed rather than direct
~~-------._..--- --- --'-_. -_.....--.-
subtraction. Though we will later examine other methods

(rotating and shifting) when we later discuss the PDP-ll.

instruction set, multiplication can be accomplished by

means of repeated addition, division by means of repeated

complementary addition (subtraction).
--- ~_.- --- '_. - . -. -.._- ,~._--

We will therefore limit ,our discussion of arithmetic

operations to the following topicSI Addition, complementary

addition, and (for comparision) direct subtraction. Examples

in the decimal, binary, and octal number systems will be

given for each operation.

~""""• ""'~

/

. ~

•



•

2.4.2 Addition

Our discussions on the count and carry principl~ of

positional number systems have also provided the steps re-

quired to perform decimal, binary, or octal addition. To

review, the procedure is as follows. (1) Add the digits

in the column, (2) If the base is neither equaled nor ex­

ceeded, record the sum, (3) If the base is equaled or ex-

ceeded, divide by the base, record the remainder, and carry

the quotient to the next column.

This procedure works with any positional number sys-

tern, and once the addition facts for the systems are learned

(see Tables 2-22, 2-23, 2-24), binary or octal addition be-

comes as automatic as decimal addition.

An addition problem is solved below in the decimal,

binary and octal systems. Note that when working with more

than one number system. the base number 1s subscripted to

differentiate.

_ ¢ 1 1. 1. _ 1. 1. 1(2)
+1. 1 1 1 1 , 1. 1. 1(2)

1. __ 1. 1. _ 1. 1 1. -(2)

r

carries I l.

1. 1. 8(1¢)
+5 f6 2 (116)

6 2 ~(1.~)

1. 1. 1 1 1. 1. 1. 1 1. 1. 1.

1. 6 7(A)
+7 6 7(8)

1. 1. 5 6(A)



Table 2-22 Binary Addition

+ 14 1

14 14 1

1 1 114

Table 2-23 Octal Addition

+ 14 1 2 3 4 5 6 7

14 14 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 1.11

2 2 3 4 5 6 7 1.{6 1.l

3 3 4 5 6 7 1J6 11 12

4 4 5 6 7 1.91 11 1.2 12

5 5 6 7 1{6 1.1. 12 1.3 1.4

6 6 7 1¢ 11. 12 13 1.4 1.5

7 7 1.91 11. 12 13 1.4 1.5 16

Table 2-24 Decimal Addition

+ ¢ 1 2 3 4 5 6 7 8 9

f4 91 1. 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 114

2 2 3 4 5 6 7 8 9 116 11

3 3 4 5 6 7 8 9 114 11. 12

4 4 5 6 7 8 9 111 1l 1.2 1.3

5 5 6 7 8 9 116 11 12 13 ·14

6 6 7 8 9 116 11 12 13 1.4 15

7 7 8 9 116 11 12 13 14 15 1.6

8 8 9 191 11 12 1.3 14 15 16 17

9 9 191 11 12 1.3. 14 15 16 17 18



/

.,

2.4.3 Direct subtraction

The operation of direct subtraction is performed in

the same manner for all positional number systems, regard­

less of the base. The procedure is as follows, (1) For

each column, subtract the subtrahend from the minuend (if

the subtrahend is greater than the minuend, "borrow" a

power of the base from the next column and then subtract),

(2) Record the difference.

As with addition, binary or octal subtraction should
.'- _ ........ --_••,..•+...-- .• ----.-.,.

become as automatic for you as decimal subtraction. The only

difference is the base, and you should keep this in mind; that

when you llborrow," you borrow a power of that base. Reference

~ the example problems below.

borrows I
f/J i !

~Jt-~ 1 V~~£~ 9.f {2}

- @ 1 l. 1. m 1. , 1. @(2) r--",

16 1. ). f4 ~ ~ 1. 1. Jt1 (2)
I
I

borrows.

V',.)2 (l~)
- 2 3 4 (l~)

J 9 8 (lJl1)

r

borrows.
5~ ~~..... ! I

6 VltJ(8) "'-.,W~ f5 I:
, v.., (/V

- 3 5 2 (8) 2-6~ t--v JOo ~
3 16 6

~ (( ~,r
(8) /r-i/ Y//

t/



2.4.4 Complementary Addition

To understand complements, and thus the way in which

negative numbers are commonly handled in the computer, con­

sider again the odometer of the automobile. If the mileage

indicator is rotated backwards, it will eventually approach

and pass through zero, as shown below.

•
•

~ i' ~ /6 ~ 3

/6 /6 f4 ~ ~ 2

/I f6 f6 ~ f6 1

f4 f6 -f6 f6 f6

9 9 9 9 9 9

9 9 9 9 9 8

9 9. 9 9 9 7
•
•
•

Considering zero to be a "boundary," we see that the

number 999998 corresponds to -2. Applyinq this relational

concept to the operation of complementary addition, we add

the numbers 5 and 999998.

If we ignore the last generated carry, we have

effectively performed the operation of subtraction (5-2=3).



o

o

The number 999998 in the above example is referred to

as the ten's complement of 2. For the complementary addition

operation, the term radix complement is defined as either of

two numbers which when added will result in a sum or zero

(last generated carry disregarded). This concept is illus­

trated by the example below and by Table 2-25. (It should

be noted that the term radix complement can by definition
I

apply to either a positive or negative number, but that it

is most commonly used to describe the neqative quantity.)

We can thus do away with direct subtraction; instead

of subtracting a positive number, we add the negative repre-

sentation of that number. In using a system of complements,

however g we omit the minus sign, and must therefore establish

what is and what is not a negative number. For example, is

123456 a positive 123456 or a negative 8765441 With the

odometer as an arbitrary example, we have the ability to

represent one million numbers (/6 to 999999), and it would be

reasonable to use half for positive and half for negative.

ThUS, by convention, we would regard /6 to 499999 as positive

and 5~~~~¢ to 999999 as negative. And this in fact is exact­

ly what is done With the computer; with a finite range of

binary numbers to represent, half are designated as positive

and half as negative.



Table 2-25 Radix Complements for the Decimal System

••• 999995 999996

(-5) (-4)

I I I . i I I .
999997 999998 999999 ~flflJ6~J6 16[1[111161 f6~J6¢J62 f6f6J6fAfd3 fI¢fAfAfA4 ¢¢J6J6J65

(-3) (-2) (-1) (+1) . (+2) (+3) (+4) (+5)

• • •

.J ~. J • 'IJ J



•

We have establ1shen the followinq point!; conccrn1.n'1

the radix complements

(1.) It is the negative representation of a
positive number.

(2) It is used because complementary notation
can be efficiently and simply handled by
the computer. All numbers can be treated
alike (added) in arithmetic operations;
complementary addition (add the negative)
rather than subtraction (subtract the pos­
itive) can be performed.

(3) Signs are not required. The computer works
with a finite range of binary numbers, ann
a convention can be established such that
the number itself designates whether it is
poSitiv~~:·~~~~·eqattve. . ----- \_ /

............--.~-

We will examine the radix complement, the radix minus

one complement, and the complementary addition operation

first with the familiar decimal system, and then with the

languages of the computer (binary) and programmer (octal).



The radix complement, which commonly takes the name

.of the base, is called the 1,'s complement in the decimal

system. The procedure for radix (1."s) complement addition

is as follows. (1) Subtract the subtrahend from the next

highest power of the base, the difference is the radix

(1~'s) complement, (2) Add the radix (1~'8) complement to

the minuend, (3) Record the sum, (4) Disregard the last

generated carry (the next highest power of the base was

introduced in st.ep one and is IItossed out" here); this is

the final result. Two examples are presented below.

231 (1') direct subtraction 84 (1..0)
(as a check)

- 1.25 (1¢) =2.2. (1~)
112 (191) 25 (1')

l¢~' (1.~) subtract the subtrahend from 1.[6~ (191)
next highest power of the base

- 1.25 (1.') - 59 (1.~)
the difference 1s the radix

875 (1.16) (116's) complement 41. (116)

875 (1.¢) add the 1.[6·s complement to thE 41. (116)
minuend and record the SURl

+ 237 (191) + 84 (191)
disregard the· last generated

(1) 1.12 (191) carrYJ this 1s the result :1.) 25 (1/1)

•



•

The radix minus one complement in the decimal system

is called the 9's complem~nt. 'l'he procedure for radix minus

one (9's) complement additiQn is as follows I (1) Subtract

the subtrahend from the next highest power of the base minus

one; the difference 1s the radix minus one (9's) complement,

(2) Add the radix minus one (9 I s) complement to the minuend,

(3) Record the sum, (4) aring the last generated carry

around to the least significant digit position and add it to

the sum; this is the final result. The same examples worked

with the radix (l_'s) complement are repeated below using

the radix minus one (9 I s) complement.

..

t

r

237(191)

- 125(191)

112(191)

999(191)

- 125(191)

874 (191)

874 (1/6)

+ 237(191)

(1) 111.(1~)

>-1(91)

112(191)

direct subtraction
(as a check)

subtract the subtrahend from
next highest power of the base
minus one

the difference is the radix
minus one (9 I s) complement

add the 9's complement to the
minuend and record the sum

bring the last generated carry
around to the LSD position and
add it to the sum)

this is the result

84 (1.2')

- 59(1.0)

25(116)

99(191)

::.....22(191)

4~(lpJ)

491(191)

~(1p1)

(1) 24(116)

~1(1"
25(191)



The radix complement in the binary (base 2) number

system is callen the 2's complement. But before we take up

the subject of 2'8 complement addition, let's relate ~ur pre­

vious discussion to the PDP-ll. 'and the binary number system.

The PDP-ll is a' variable word length machine, capable

of handling both 16 bltwords and 8 bit bytes. For the pur­

pose of our discussion, let us consider it to be like many

other computers, a fixed word length machine. This means

that all data processed by the computer will be in the form

of words (binary numbers) of the same length. It should be

noted that from the programmer's standpoint words may be in

varied formats and lengths; we are here veiwing words as the

computer will ultimately receive them - in the form of fixed

length binary numbers.

Viewing the PDP-II as a 16 bit fixed word length

machine, it has a binary number range of

9J ¢¢¢ J6~J6 J6¢~ ¢J6J6 ¢f6{6(2) to 1 111 111 111 1.11 111(2)'

15 14 13 12 1.1 1.16 9 8 7 6 5 4 3 2 1.

SB

By convention, half of these numbers are designated as

positive (Y' J69JJ6 ~¢fI 161616 1616¢ 111116 - ¢ 111 111 111 1.11 111) and

half as negative (1 ¢¢¢ J6J6J6 J61616 ~J6J6 161616 - 1. 111 111 1.11 Ill. 111)

(Figure 2-6). The bit 15 position then assumes the role of

sign bit; the number is considered positive if bit 15 = 11 and

negative if bit 15 = 1.



1 .~~¢ ~¢¢ ~¢~ f616~ ¢[616 [6 111 111 Ill" 113 III

SIGN BIT = fA

(POSITIVE)

SIGN BIT =1

(NEGATIVE)

- l(lPJ)

1 111 111 111 111 111 [6 fA[6[6 ¢/Af6 f6f6¢ f6f6f4 161616

Figure 2-6 PDP-ll Positive and Negative Number Ranges (Binary)

r



Now that we know the application, let's look at the

operation. The procedure for radix (2'8) complement addition

is as follows, (l) Subtract the subtrahend from the next

hiqhest power of the base; the difference is the radix (2's)

complement, (2) Add the radix (2's) complement to the minuend,

(3) Record the sum, (4) Disregard the last generated carry

(tne next highest power of the base was introduced in step

one and 1s "tossed out" here); this is the final result. An

example 1s given below.

•

~ 9J~{6 '11 1'[6 11' '161 (2)

- f6 W¢ tl.f! !,f6 1.W lpJl(2)

~ {A{A{6 {6{61 If6{6 ¢¢l 1.!6f6(2)

l¢ ~{6f6 ¢¢{6 ¢¢¢ ¢¢11 ¢~16(2)

¢ Wi! p11p1 t!, Ip19J 19J1( 2)

1 III 1¢1 111 fAll {611(2)

1 III 1_1 111 .11 {611(2)

+ p1 @gf6 p!11 1M 1116 91911.(2)

(1) {6 ¢y1¢ {6¢1 1[6[6 [6{61 11616(2)

direct subtraction
(as a check)

subtract the subtrahend from
next highest power of the base

the difference is the radix
(2'8) complement

add the 2'8 complement to the
minuend and record the sum

disregard the last generated
carry, this is the result

•



The radix minus one complement in the binary system

is called the lis complement. The procedure for radix minus

one (lis) complement addition is as follows & (l) Subtract

the subtrahend from the next h1qhest power of the base minus

one; the difference is the radix minus one (lis) complement,

(2) A~d the radix minus one (lis) complement to the minuend,

(3) Record the sum, (4) Dring the last generated carry

around to the least significant digit position and add it to

the su~; this is the final result. The example worked with

the radix (2 1 8) complement is repeated below using the radix

minus one (lis) complement.

t

r

~ ¢¢¢ 161.1 If6Y1 l191 9J~l(2)

- ,!M t1,,'1 116' 1811.(2)

¢ ~9fY1 t91l 1.f4~ 16161 If4J6 (2)

1 III III 111 111 111 (2)

- ! I'M '1' ", 1" 1p!1 (2)

1 111 IpJl 111 PIll 91111 (2)

1~ 111 1911 III 9111 911_ (2)

+ ¢ ¢lf4 [611 1" 11' "1 (2.)

(i2 ¢ f69116 J6f61 19116 16161 pJ11 (2)

+ ~(2)

91 J6f6J6 91_1. 1f491 11161 11616 (2)

direct subtraction
(as a check)

subtract the subtrahend from
next highest power of the base
minus one

'the difference is the radix
minus one (l's) complement

add the l's complement to the
minuend and record the sum

bring the last generated carry
around to the LSD position and
add it to the sum;

this is the result



Have you noticed something unsettling about our

complementary addition processes? The reason given for the

use of complementary addition was that direct subtraction

could not be performed with the PDP-11, and yet direct

subtraction was used in all previous cases to obtain the

complements I Let's see how the computer gets around this.

Note below that the bit patterns for any binary number

and its l's complement are exact opposites, and that the

2'8 complement is equal to the l's complement plus 1.

JfJ Ji1JfJ1 ¢1¢ ¢11 lf69J 11211. (binary number)

1 )]] ]]1 111 111 1]]

- ~ ¢p!] p!J¢ 9111 1@t1 1911.

1. ]1¢ 1911 1¢~ ¢l1 ¢1¢

1¢ 91¢¢ ¢¢¢ ¢¢¢ ¢¢¢ ¢91¢

- ¢ FfflI pl1, ¢]l In 1911

1 IIp! Ipf1 l¢¢ ¢11 9111

1. IIp! 1¢1 lp!~ 911.1 ~19! (lis complement)

1 11¢ 1911 11111 9111 9J11 (2 ' s complement)

The PDP-11 performs 2's complement addition, and there­

fore all negative numbers must be represented 1n 2'8 complement

form. The PDP-Il 2'8 complements any binary number Without

direct SUbtraction; it obtains the lis complement by simply

chanq1nq all bits to their opposites and then adds 1.



o

In the octal (base 8) number system, the radix co~ple-

ment is called the 8 1 s complement and the radix minus one

complement is called the 7 t s complement. Here too, the octal

system serves the programmer as shorthand notation for the

binary system; the l's complement is to the 7's complement as

the 2' s complement 1s to the 8' s complement. Aqa in j.t should

be stressed that the programmer rarely works in the binary

number system; that any numerical work he must perform is done

in the octal system and only if necessary converted to binary.

If the 2 1 s complement is required, for example, the,programmer

obtains the 8 1 s complement (or the 7'8 complement plus 1) and

then converts to binary.

Using the direct conversion that exists between the

binary and octal number systems, the 16 bit f'DP-l1 word may

be represented by 6 octal digits.

The octal representation of the PDP-II fixed length number

n nnn nnn nnn nnn nnn

..
N N N N

(2)

(8)

t

range is then ~ ¢~~~~ (8) to 177777 (8); the leading octal

digit will specify whether the bit 15 (sign bit) position

contains a zero or a one. By convention, the numbers from

~ ¢~¢~? (e) to ¢ 77777 (8) are designated as positive, and

the numbers from 1 ~¢¢¢~ (e) to 1. 77777 (8) are designated

~ as negative (Figure 2-7).



The procedure for radix (8 I s) complement addition is

as follows. (1) Subtract the subtrahend from the next high­

est power of the base; the difference is the radix (8 I s)

complement, (2) Add the radix (8's) complement to the minuend,

(3) Record the sum, (4) Disregard the last generated carry

(the next highest power of the base was introduced in step

one and is "tossed out" here), this is the final result.

The example worked with the 2 1 s complement is repeated below

using the 8's complement.

•

pJ pJ~461(8)

- R1 "2'45 (8)

l' 911414 ( 8)

l~ pJ¢¢pJ¢(8)

- , 9!2f!45 (8)

7 75733(8)

7 75733(8}

+ t 913461 (8)

( 1) pI 911414 ( 8 )

direct subtraction
(as a check)

subtract the subtrahend from
next highest power ~f the base

the difference is the radix
(8's) complement

add the S's complement to the
minuend and record the sum

disregard the last generated
carry; this is the result



, The procedure for radix minus one (7 1 s) complempl"'t

addition 1s as follows. (l) Subtract the subtrahend from

the next highest power of the base minus one; the ~ifference

is the radix minus one (7 1 8) complement, (2) Add the radix

minus one (7 I s) complement to.the minuend, (3) Record the

sum, (4) Bring the last generated carry around to the least

significant digit position and add it to the swn; this is

the final result. The example worked with the lis comple­

~ent is repeated below using the 7's complement.

·r

91 913461 (8)

- ¢ ·pJ2¢45(A)

~ 911414(8)

7 77777(8).

- pJ '28145(8)

7 75732(6)

7 75732(8)

+ m813461(8)

(1) ~ pl1413(8)

~1(8)
~ pJ1414(S)

direct subtraction
(as a check)

subtract the subtrahend from
next highest power of the base
minus one

the difference is the radix
minus one (7'8) complement

add the 7's complement to the
minuend and record the sum

bring the last generated carry
around to the LSD position and
add it to the sum;

this is the result



SIGN BIT = 1

(Nl::GATIVE)

SIGN BIT = ~

(POSITIVE)

- 1 (191)

1 77777 9J f6f6919J9J

.~

Figure 2-7 PDP-ll Positive and Negative Number Ranges (octal)



1'f.

2.5 r..r)GIC Of-EAATICNS

2.5.] Introduction

Computers use logic operations as well as arithmetic

operations in the e~ecut1on of ,programs. The logic opera­

tions we will discuss have a direct r~lationship to an

algebraic system used to re~resent logic statements ~nown

as 3001e~n'algebra (named in honor of George,Boole, EngYlsh

.nathematician and logician). We will be concerned with the

aoplication of two Boolean axioms to computer circuitry.

'I'hes~ are the two basic connectives'· used to e:xpre~;s the

r~1;)tion6hip between two statements, the AND ann the CR.

We will specifically examine the AND, I~CLUSIVE OR,

and EXCLUSIVE OR operations. Simple circuit diagrams,

truth tables, and applicational exan9les will be given to

help illustrate each of the operations.



2.5.2 The AND Operation

The diaqram below (Pigure 2-8) 18 that of a simple

circuit with two sWitches. Current 1s allowed to flow

throuah the switch .if it 1s closed, and is not allowed

to flow through the sWitch if it is open. Therefore, in

order for the Function to occur, current must be allowed

to flow through the ent~re length of the circuit; both

sWitch A~ switch a must be closed.

o

sWitch
O~-~O

sWitch function

A

Figure 2-8

B

Al~ Circuit Diagram

F



In computer logic, the closed switch (or true condition)

is represented as a 1, and the open switch (or false condition)

is represented as a~. Expressing the AND axiom in terms of

our variables, we can say that A & B = F (when using PDF-11
"

sy~bolic language, the ampersand sp~.~f1e~._1:he At~D qp.era.t.ion). \

If A is 1 (true), and B 1s 1 (true), then F will be 1. (true);

any o~her combination of the variables will result in a ~

(false) condition. The relationship between the variables and

the resulting value of F is summarized in Table 2-26 below.

Table 2-26 Truth Table for the AND Operation

A B F

~ , ~
m 1 ,
1 14 ,
1 1. 1.

When the AND operation is applied to binary numbers, a

hinary 1 will appear in the result wherever a binary 1 appeared

in the corresponding positions of the two numbers. A binary ¢

will appear in the result wherever a binary ~ appeared 1n either

(or both) of the corresponding positions o~ the two numbers.

The A~D ooerationis commonly used to extract (or ~) a portion

of a 16 bit number. In the example below, it is used to extract

the two least significant octal digits (~ the ten most sig­

nificant bits) of the number.

¢ 9f¢1 [61¢ .011 If4.0 lp11 (16 bit number)

& 91i!~p! !!@ f6'~ III 111 (mask number)

¢ ~,~ ,~~ f6~' l~~ l~l (result)



2.5.3 The INCLUSIVE OR Operation

The diagram below (Figure 2-9) is that of a parallel

circuit with two:switches. Recalling that current is allowed

to flow through a switch if it is closed and not allowed to

flow through a switch if it is open, we see that current will

flow through the entire length of this circuit if sWitch A 2!:.

switch B 2£ both are closed. The Function will be able to

occur as long as both switches are not open.

switch
A

function
F

SWitch
B

Fiqure 2-9 INCLUSIVE OR Circuit Diaqram



Recall that in computer logic the closed sWitch (or

true condition) is represented as a 1, and the open sWitch

(or false condition) is represented as a~. Expressing the

lOR axiom in terms of our variables, we can say that Al B = F'

(when using FDP-Il symbolic language. the exclamation point
_..-__ ~ ...~ • __ r __ • .• ,~. _. __ .__.·w .' ~.. ,,,•._~_._~.,,,,,,.,,.,,.,,,-, '. _ • ..---.----- ••----. --

r

f::Decifies the lOR operation). If A is 1. (true), or !J is )
............. _.-.-- - - .'

(true), or both are 1 (true), then F will be 1 (true); only

when both are ~ (false) will the result be ¢ (false). The

relationship between the variables and the resulting value

of F is summarized in 'rable 2-27 below.

Table 2-27 Truth Table for the lOR Operation

A B F

When the lOR operation is applied to binary numbers,

a binary 1 will appear in the result wherever a binary 1

appeared in the corresponding position of either (or both)

of the two numbers. A binary ~ will appear in the result

wherever a binary ¢ appeared in both corresponding positions

of the two numbers. The lOR operation is commonly used to

set bits within a 16 bit number, where the present bit pattern

cannot be known. In the example below, it is used to set bits

in positions ¢, 7, and 15.

1 111 ¢fl11 1191 ~1¢ 1911 (16 bit number)

1 1 P2? n? 91? 999 991 (lOR value)

1 111 ~9Jl ll,eJ 9J1~ 1.911. (result)



2.5.4 The EKCLUSIVE OR Operation

The diagram below (Figure 2-1.~) 1s that of a parallel

circuit with two sWitches. The dotted line between the

switches indicates they are mechanically connected such that

they cannot be simultaneously closed (1.e., close one, open

the other). Thus one set of conditions (both closed) 1s

excluded in this OR operation, and the Function will be able

to occur only if switch A or switch B 1s closed.

•

I
10---.....

sWitch I
A I

I
I
I
I
I
I

function
F

Figure 2-1~ EXCLUSIVE OR Circuit Diagram



o

..

r

Again recall that in computer logic the closed switch

(or true condition) is represented as a 1., and the open

sWitch (or false condition) is represented as a ¢. Express-

1ng theXOR operation in terms of our variables, we can say

that A (J) 13 = F (when using PDP-ll symbolic language, the en­

circled exclama_!-Jon point S2~~ifies.theXOR.. <?e.~~~~-~~~L~_ If--_. -- . -_.- _.~---
A is ) (true), or B is 1 (true), but not both are 1 (true),

then F will be 1 (true). The relationship between the vari-

abIes and.the resulting value of F is summarized in Table

2-28 below.

Table 2-28 Truth Table for the XOR Operation

A B F, , j1
S 1 i f/I
1 "1 1 f6

When the XOR operation is applied to binary numbers,

a binary 1 will appear 1n the result wherever a binary 1 an~

a binary ¢ appeared in the corresponding positions of the

two numbers. A binary ¢ will appear in the result wherever

binary f6's or binary 1. ' s appeared in both the corresponding

9Qsitions of the two numbers. The XOR operation is commonly

used to set and/or clear bits within a 16 bit number, where

the ~resent bit pattern is known. In the example below, it

is usee to set bits iT! positions 7 and l5 and clear bits in

positions ~ and 6.

~ ~fll ;6111 fI~l fllfl flfIl (binary number)

<D 1 fiJI! !flJI fill fI¢J' f6~1 (XOR value)

1 991. 919 91.9 919 999 (result)

,/
/Y-



2.6 BXBRCISBS

The followinq examples based upon the content ot this chapter

are presented as an optional exercise for the reader. The answers

can be found in Appendix A.

2.6.1 Decimal to Binary Conversion

Convert the followinq deci~l numbers to their binary equivalents

1. 11111

2. 235

2.6.2 Binary to Decimal Conversion

Convert the followinq binary numbers to their decimal equivalents

1. 111111 111111 1111_ 11111 11111 11_

2. 111111 111116 111111 1111/6 1116 1116

2.6.3 Decimal to Octal Conversion

Convert the followinq decimal numbers to their octal equivalents

1. 58$6

2. 1111116

2.6.4 octal to Decimal Conversion

Convert the followinq octal numbers to their decimal equivalents

1. 1111/6742

2 • /6111/61611

2.6.5 Binary to OCtal Conversion

Convert the followinq binary numbers to their octal equivalents

1. 1111/1 111116 /1111 Ill' .'11 11111

2. /11111 1111/1 /116/1 1/11 111 11/1

2.6.6 Octal to Binary Conversion

Convert the followinq octal numbers to their binary equlvqlents

1 • $f161673 6

2. 16115224

•



2.6.7 Binary Addition

Perform the indicated binary addition

2. ~16~ 16~f6 9111 1111 191¢ 1ftf]t'" 'II 11.@ 111. III 11.91.

2.6.8 Binary Subtraction

Subtract using both the direct and the complementary methods

2.6.9 octal Addition

Perform the indicated octal addition

1. 9154362
9173441

+@6775!

2. 16113321
9J~44167

+M5622

2.6.116 Octal Subtraction

Subtract usinq both the direct and the complementary methods

1. 1113421
-'12'54

2. 1611234
-pI1!567

r

2.6.11 Logical AND

Perform the indicated AND operation

2.6.12 Inclusive OR

Perform the indicated OR operation

1. 16111. 91]91 9111 191' 1911. II'
1!1@ pI1.] 1M 1'1 11@ III

2.6.1.3 Exclusive OR

Perform the indicated OR operation

1. 111' ~11 19116 1111 1191 111
(1)11111[111 1@1 11.@ 111 !P![6



· .' .



~.

r

'I'be IOP-l1

3 .1 ampl OJtCWlJZATIpR

3.1.1 Introduetlon

We !av. cll.c.Bed ~be C)eDUal orqanlsat.lon of t.1le

cc.p*er In t..... of t.he major Wllt.e (1apui:, IIGIIOry, cont.rol,

arlt.lllet.lc, out.pa1:), aDd Wit.h refereDCG t:o a baalc block dla­

gram. We Vill DOW cSi.cWl. t.~e _jor UD1t.. ift IIOre detail,

aDd relat.e .peclflcally t.o t.he element. of t.he 81mp!lfled

PDP-11 Syat... orgaalAt.ioa diagram (Ple,ure. 3-1).

3.1.2 The VlIBUS

'I'be URIBUI 1•••ingle, ee.DOD pat.h t.bat. CODftee1:. t.he

proc...or, IIAIIDOry, aDd all peripheral (iDpK aDd o=put.)

cI."ie.., it. carrie. all lDforat,1on. Baeh devlee on t.he

umBUS 1. a••igD" all .&Sr..., aDd cOIIIDunlcat... 1ft the ••lDe

way. .,bi_..au tbat. perlphftal " ..le.. _y be.. flexlbly

MDlpu1ated •• IIAIIDOry. ftoa tbe Pl'0CJZ'8-.r" ••taDdpolnt.,

t.h1s 1e t.he 110ft lIIponant feat....e of the UltIBU8. Mo8t.

cc.p*.- require a .eparate 11M (aDd ~hua • epeeial 1n­

.~loll .ub8et) for lnput.-o1&JM& 4.neu. Wit.h t.he PDP-l1

aid ita UIIlBUS, all of t.he poIIVfal 1~10D8 t.hat. caD be

app11e4 to dab 1n .-ory can be appl:1.e4 t.o dau in peripheral

clevic...



:~
(8

M
S

C)

IIHit
~H

m

CQ Jill
=151

H

I
It

•
I

D !

I

a
0

I ......,
~ I..a
Q !
~ 0

I I
<II

I ~
«0

I fI'4
r4

~I

I
1..
'N,..
i..•...,
CII

•! ~..
lire

&



3.1.3 JIEorY

"he 1Il8lllOry unl~ 1- uaed ~o s~or. lftforma~ioft Wl~11 1~

1. n• .sec.t. Jat. •• you remember f.c~. concerning pa.~ an4

pr".D~ event., the 1Il8llOry of t.he computer et.or.. infonB­

tion for f1Kure referenco.

We My concep:uallze the COlIlp1&er .emory •• a ...i ••

of locat.lona, 1n a pigeon-bole or slot-l1ke arraftg__M,

wMr. _ch locat.lon la8 a binary &&Sr... aDd eont.alna binary

iftformat.ion (Pi4JUre 3-2).

ADDUS8

ft81ft'El
Figure 3-2 Conceptual eoap1&er Memory SectiOD

iD8t.ruatloD, a~her (-forwarding-) _~dr"., or ~au. %t.
~.....-.~ft. ,-.-,--..,~-- ...--r.---.-~_o-_ •._ .....,----_·_--~,,~r v111 "epeDe! apon "heD (1ft wblch major 8t.a~.) and how (W11:h

Which addr...lng aIOd.) 1t. 1. acc•••ees by ~be COIlptKer.



'I'M PDP-l1 1. a vulable .,Id l.-.,th _chi•• world.ftCJ

V1~b eli:hK 16-1tl~ m.... calle&! sdI or 8-b1~ a".ber.

eall.. .... Any 16-bi~ wo~(bi1: pOII11:1ou '-15) Will ~heft

co_1ft of two 8-1»11: lIyt... 1:he.ll!..JZlS! (bit p08it1o.. "'7)

aid the~ (bit poa1t10. 8-15) •

.-------JIIII~~-----~-t·1
15 . 8 7 ,

.19'11"- 3-3 PDP-ll.ems ane Byte ae1at1oMhlp

'I'he ba.lc IOP-11 ..-01'1' ualt co.i.~. of 4.'"
. ,

'. I I

(111,•• oc1:al) _Ed locatio•• aat 1:hRefore 8,192 (211.,__

octal) ~. locatio•• a. "'loDe4, _he _chiu i. capabl.

of baldllllCJ eli:bu I.-bit woda OZ' a-bit lIyt•• aad tbe ....

ory 1. thuefore byte ~_.e4 .0 thai: ~h foru CAD be

accOW*)CJate4. 'lIMa addr._ I'~"_ for tile -.'__ oc1:al byte

locat1oM 1. 1f-17777. A. 111_"at84 ],y rigw.. 3-4 aD4
~---' --- .....-- ...;..••.--------. -~- ~.-.-.... - --"--1

3-5. t'he PDP-l! .-ozy _Y _ aODe.~_li." ail el1:bu ...

Jq\left1:1al word loaai:iou 01' ......t1.1 byte- 1oca1:1ona. Mote

that word. aad low lIyt_ .e foaD4 .t"'8 addr...... 1I19h

byt._ at o4d adIk••••

•



, .. ill ,~
:8 •

~

. ,
16-b1t. word

••,.,
_"11"2
11__11/14

law b~e

high b~.

low byt:.

high byte

low byte

high b~.

11/1'11_•

'"_~
11/111.2

.~

-~
••5

8-b1t. word
,-,

word{

word{

word {

h1CJh byte low~.

high b~. low b~.

h1CJh b~. low byt.e

a

_11__161

_11"1113

111111"5

1117772

1117773

Sf17774

jIl7775

1117776

1f17777

•I
I
I

~

low b~.

h1gb byte

low byt:e

high b~.

low byte

h1qh b~e

I
I
I
t

word {

word {

word {

'17772

1117774

fI17776

~

h1CJb byt:e tow bY'e

h19h byte low byte

high byt:_ low byte

1117773

~7775

1617777

P1gure 3-4 Wo~ organ1zat.1on P1gure 3-5 Byte orgaDi"~1oD



3.1.4 Central PrOCM_or

The cem:ra1 proc...or (P1CJure 3-6) 1. eOJllpr1eed of

thr.. f~lonal block•• · The Coptre1 UUl and Ar1t.Mlet:&s,

l!D.&! (as 81.0 glven 1n our ba.lc computer block 41a9l""')'

and the General Purpo.e .!lleter.. A figure ei9ht i8 formed

by the data pat_ coDllectift9 thue unite, and d••cribe. the

flow of dau t.hrough t.he proc•••or. ~M toUl funcxion of

the proc••801' 1. to proc... data. to execute t.he proqram,

cODtrol111l9 operat.iODs froa beqlulng to eDd.

tJIIUS.
15 876 543 2 1 _

UNIBUS
COm'ROL

OlttT

G....L
PORP08B

RBQI8'1'BRS

J'lgure 3-6 PDP-Ii Central !Toc....or

·0



r

'l'he UllIBU8 CoftUtol UDit. c!lrect.s t.he proc...lng by lIleaD8

of t.he following .equence. (1) l'et.ch an (tobe 1l8Xt.) lnat.ruc­

t.ion froa ~he program st.ored 1ft t.he ~ry Unit., (2) Decode

t.hat. ift8t.ruetion, (3) If 4au is r8fl\l1red, obtain ~h&~ data

from t.he Memory Unit. or a peripheral 4..100 and bring it t.o

t.he A(lt.1aftlc um, (4) Specify t.o t.he Arit.1Te!tle OM$- wbat.

operat.ion is to be performed apon the da~a, aftd (5) If re­

quired, st.ore t.he r ••\I1t of t.ho oporat.lon.

The PDP-II proce••or he. major stoat... of operat.ion,

and four are li.t.ed below t.o help 91ve ~he reader a basic

description of t.be ~oc•••or·. operat.ional flow.

Plft'CB - Obtain aid dec:ode an lD8t.rQC1:ion. .Whea ffteb 1~'!
ccmPiated, t.he procuaor eDt.ers &llOt:her _jor atat... It.
1. po88ibl. t:o go fZOCD fetch t.o any ot.her stat.., includ­
ing back t.o fetch, a.peDCIiftCJ upon t.he t.ype of inst.ruct-lon
decoded. .

80tJRCB - Decode t.he 80arce addr... field of a double op­
erand ift8t.ruct.ion (det8Z'll1ne t.he adar.tilIs of the dat.a), and
t.raufer t.hat. da" to tM arithmetic unit. The .oure. ma­
jor .t.a~e i. eMered only if ~he lnmt.ruct.ioD i8 t.he double
opera" type.

DBftlra'1'IOB - Decode t.he dut.lnat.loft ad4re.8 field (deter­
mine t.be addr... of ~he data). aDc! ~raD8fer ~ha~ daQ 1:0
~he arit:~lc Wl1t.. '1'M d..tlDa~loD major .ute 18 on­
1:er8l! for ~h 8lngl. aid double operand lnsUUC1:10D8.

BJalCt7IB - Perfoftl ~he lD81:ructlon. If dab 1s ~o be op­
erat.ed upon, 1:he arltbaftlc an1~ 1s d1rected to ..ft1pu1a~e
~... da" aecordlD91YJ if the r8sul1: 1s ~o be ftored, 11: 1s
~raDllferred froa the arithmetic unit. to the appropriate
loca~:1on.

Although t.he major 81:a~.. given follow thtt .equence of

fetch, 8OaZ'ce, cleRina~1oD., aDd execute, DOt all are needed

for every iD8truc1:1oDJ the proc...or enter. only ~he .tat.e.

nec...ary to porfora ~he curr.n~ lnatruet.ion.



PrOC••OF .Q~" wRd (1'19Ve 3-1) 1. a ••1f-4.1IC1'1~lv.

~ii:leJ it. i. an addr....b1. word loea~lon t.ba~ eonuln8 infor­

ma~ioft on ~be .aa~U8 of ~be proc...ing. Specifically, t.he low'

byte w1ll indicate ~he follovlftCJ. Current. priority 1.".1 of

t.he proc...o~ (bl~ po.i~1oft8 5-7), iDIJtructioft ~J:ap (bit. po.1­

t.ion 4), an&! r ..u1t of tlw pr..10ua operat,ion (bit po.it,lou

'-3).

'1'he priorit.y 1...1 of t.he proc...or, Which can be _Dip­

ulat.e4 by t.he prograa at. any t,1ale, i. an ln~egr.l part of t.he

Automat.ic: Priorit.y Int.errupt 81'8t.- of t.he PDP-l1. We Vill

look at. all of ~bl. in BIOI'. detail .hen .e lat.er discuss lnpui:­

out~ progr&mmtng. Dl.CU88ioft of t.he ~ap iadlcat.or w1ll a180

be poftponecS. It. role Will be .a1D1Mt1 When w. pr...nt. tAp

lD8i:ruct.lou during d1.e••loft of t.be I'DP-l1 1natruct10D e81:.

'I

w. w1l1 talk about. the four l ..t .19ft1t1can~ b1t.. of t.he

Proc:...or Sbt.U8 Word, c:alle4 the coDdUloD code bl~.. Upon

t.he CClllplft10ft of ~he _ec1&e _jor 8tat.. of aD 1aat.ruc:i:ion,

t.hese bit.. are condit.ionally modified ~ reflect t.he r ..u1t of

t.hat. lnet:r~ioft (~. t.he direct. 11ft. froa t.he Arit1aKic Unit. ~

t.o t.he Proc...or Stat.u Word). !'he prograa may t.hen WI. ~h18

informat.ion t.o det.rmine 8~equeD1: a~ioD. The.. bit.. are ••t.-
•• follonl

C bit. (.) - if 1:bere va. a SU'~y froa ~he mo.t.
.1gD1ficaat bi~ ~l~loD

V bl~ (1) - if ~her.... arlt.~lc o!.rflow
~

Z bit. (2) - if ~be r ..u1~ ... Zero-
• bit. (3) - if t.he r ..u1t. va. !egat.l98



'1-"

c

The central proc•••or a1eo contain. a set of eiCJ~

General Purpo.. Jt!CIi.t.er8 (Figure 3-7). 'l'he.. reqi.ters

(cOJIEOnly referre!l too .8 R_, .1. R2 •••R7) are aeSdre••able

word locat,ion. w1~h epecia1 f ..~ur.e t.hat. great,ly enhance

the power and flexibility of t.be PDP-Ii.

RH
R:
R: ,

R.~

R·
R:
It 18P)
R (PC)

P1CJUre 3-7 General Purpo•• Regi.~.r.

The regi.t,ers are called general purpo.. because each

may be used .a an.

ACCtJMtJLATOll
Where a 8U11l 18 accumulat.ed in t.he General Purpose R8CJiet.er

POII1'1'BR
Where t.he General Purpo.e R8CJ1.t.er~~o the operand
(contaln. ~he addre•• of ~be operandl . .

AtJ'l'OIIlCRBMBlfl' RBGISTBR
Where the General Purpoee R.,lst.er polnt:. ~o ~be operaDd
(cont.aiM t.he addre.. of tbo operand) J t.be addr... 1. uaec!
and t.hen a1Komat.lcaUy 1IlCrPlm:e4

AO'l'CI>BCUMlft IUlQISTBR
Where the General Pul'p088 &891.t... polnt.s t.o t.he operand
(conta1D8 t.he addr... of the operand). t.he addre•• 1. first.
aut.oauat.lcallY d8CX"..at.e4 aDd t.hen U8ecS

II1DBX ltBGIftBR
Where t.he General Purpoe8 R891.t... cont.aiM an lndex value
t.hat. 18 added 1:0 a ba•• addre•• t.o provide ~be addre.8 of
t.he ctperand "



All 144re••ina 'i\b tbl rpP-ll 1. ,csomp!1ehg4 ~b£oP9h

tohe General furpo.. '.1ftlE.. .nd t.hey t.herefor. play •

vital 1'01. in .ff1c1.M progr.-1DCJ of t.he _chin.. We have

only 11.t.ed t.he .ddre.81ftg feat.ur•• of t.he reg18t..r. bere,

an&! Will ex••lne them 1ft IIOr8 detail When w. lat.er dl.CU88

addre••lng mod...

It. .bould be not.eeI here t.hat. t.wo of the e1ght. reviet.ere

have unique capeb~11t.1•• J .7 'el'Ve8 a8 t.he Prosram COuM8r,

aDd R6 serve. •• the Suck Poit*er. Both wl11 lat.er be 4i8­

CWl8ec! in detail, but. • bl'ief •••crlpt.1on of each follove.

Proqram Count.er USl - Th1. r891.t..r IIl1ght be better

named the PrOCJram Point.er. i1; yil1 11_" SQPt;ain ,be 144r•••

of the next loc:a~loft to 1M rerer...ed. It. 1••utomat.1ca11y

up4at.ec! by t.he proe...or •• it. st.ape t.hrough t.he prOClram

(after aft lnstruc:t.ion 1. fet.chfK! from a location, t.he Pr~am

Count.er 1. .teppec! t.o contain t.he addre.. of t.he next. sequen­

tlal locat1on).

St.ack Point..r l.W. - Dur1DCJ the rUftD1DCJ of • prOCJram,

there are • .,er.l circUlUt.anc.. that. caD ea.e a CMIl9. from

one .equence of In.t.ruat.1on. t.o aD01:bu' (int..rru~. , t.rapll ,

error conditlons, ftc.). 'fhe proc•••or will automat.1cally

-rem.aberM where 1t. ... 1n ~he fir.t. 8equenc. of In.~ract.loft8

by "V1M a return addr••• (COD~.1lt. 0' She PC) Oil t.he Stack.

ThUl R6, a8 ~he S~ack Poillt.er, Will cont:aln t.he addr_s of

t.ba1: loea1:1on 'which hold. ~he ret.urn addr....

it·

•



3.1.5 InpS-out.put; Devices

The Input; Device. a ••oclated w1~h a comp&er 8ytatem

enable aau and con~rol inforMtion t.o be entered into the

computer. Some devlc.. require tbat t.he input: informat.ion

be in a apeeiel foZ'll (a card r ..der, for example, accept:8

only punche4 card.) J other device. do not require any prev­

ious preparat.ion of information (t.he Teletype allows 1nfor­

_t.ioft t.o be .1mply t.yped in). In all case., t.he•• devic..

t.ranslat.e t.he various forms of input informat.ion into a

form which can be handled by t.he computer.

The Ou1:put. Price. a••oc1at.ed With a comput.er .ytlt.em

enable information (int.ermediat.e and final resulte) to be

received from the computer. 'I'M. out.put information may be

in any of ••veral forma, depending upon t.he device and the

cont.rolling program.

'l'he list of Input-outp,* devic.. for t.he PDP-l1 system

i8 a lODq one. As example., .everal of t.he lIlore common de­

vices are described generally below.



The operat.or·. cODDole (1'19U8 3-8) proy14_ fUftCt.10n

1IV1t.che. to control t.he .y.t:_ aD! in4ic:at.or8 1:0 1IOft11:or the

.tatU8 of the .~t_.

.....'..JOU!!C! . eatlUmON IDCIItOS
'.~ . _.' ~ ~ Of. Ii. I

_·...::ItUIt~,....:.~IUS~ P'!a me:,.. ='::": I ' ... ' I
"0' .'~.

?~ J~

: . . ..:.)

. .
.- .=.. 'f":

I
DAta

.',
, ......1__....... ......_iliiiioo.- --'

Figure 3-8 PDP-II Conaole

Althouqh 1t ca~ be 4_cribed •• all iD~-om:pUt. device,

t.he conaole 18 cSi.cue.tId here becaU8. 1t. do.. provide tobe opera­

tor wit.h a dir-* .... of input. aDd oapt&.

'1'0 input. informat.ion (DBPOSr1'), t.he prOcedure i ••• follOVll'

(1) Specify t.he II-bit. addr... wit.h bl~" po.lt.ioM /1-15 of t.he
SWITCH RBGIftBR (..it.ch Uhl. ni~cll DOWR.,,)

(2) Depr... t.he~ ADDaDI key (t".'.1'8 cont.ent. of t.he
SWITCH RBGISlfBR t.o t.he ADDItB88 RBGI8'1'BR)

(3) Specify t.he IS-bit. coKent.. wit.h bit. .p08it.ioft8 11-15 of t.he
SWITCH RBaIS'!'BR

(4) Rai•• t.he DBPQ8rl' key (t.ralUlf... coDt.ent. of t.he SWrl'CB RBG­
IftBR t.o t.he a4ck.. .peclfled 1n·t.lie AmaaS RBGlftBR.
Con1:ent.. 81.0 41.playe4 in laB DX8R.&Y RBGlftBR.



The eon.ole aerY.. a. a means of ou~put. in two way••

The funct.ion keylJ may be ueed to JlKAMINB locat.iona on t.he

UNIBUS, and t.he content. of General Purpose Register _ 1.

automatically d18played in the DATA DISPLAY RBGISTBR upon

the completion of any proqralll.

The BXAMID procedure 1. a. tollo...

(1) Specify the 16-bi1: addre88 wit.h bit. po8it.ions '-15 of the
SWITCH RBGIftBR

(2) Depree. 1:he LOAD ADDItB88 key (t.ransfers content of the
SWITCH RBGIS'.L'BR t.o t.he ADDRESS RBGIftBR)

(3) Depress the BXAIIID key (t.rall8fer8 content. of t.he address
8pecified in t.he ADDRB88 RBGIftBR t.o t.he DATA DISPlAY
RBGIftBR)

I~ .hould be noted that. t.he operat.or _Wit LoaD ADDRBSS

only init.ially if DBP08D'lng or BXAMINlnq sequent.ial locations.

The content of the ADDRB8. RBGIftBR 18 automat.ically updated

with each DBPOSIT or BXAMINB tUllC'tion.

The procedure for running a pr09rUl which has been input

i8 a8 follows,

(1) Specify the 8t.artlnq addr... in the SWITCH RBGIS'J.'BR

(2) Depress the LOAD ADDRBS8 key

(3) Set the JDaBLB/HALT key to the BtaBLB po81tion (transfer.
I" cont.rol t.o t.he proce8.or)

(4) Depres. 1:he STAR'!' key (be91- proc•••or operation)

When the proqram 18 complet.ed, 1:he addr... of 1:he HALT

ins1:ruc~1on Will be in t.he ADDltB88 RBGISTBR, and t.he content.. .

of General Pur~. Req181:er _ (vtlieh can be t.he resu11:) will

be displayed in t.he taD DISPlAY RBGIftBR.



The !"Cd_I 33 Au1:C81tlc Se!!d-Recelve TeletYp! Unit

(Fiqure 3-9) 18 an input-out.put: device prov1de4 8S standard

equipment wit.h JD08t PDP-l1 syst.ems.

~

paper tape
punch

---~-..

paper tape
reeder ~

':"~J~r::!

Figure 3-9 ASR-33 '.l.type

keyboard

i

~\

'~-

Information i8 in~ in either of two ways. Typed in

by mean8 of the keyboard (116 character. per second), or read

1n by means of the low speed paper tape reader (111 characters

per .8COn&!).

Informat.ion 18 a180 output in either of two way••

printed out. by means of the teleprint.er (1' charact.er. per

second), or punched out by ID8aIUl of the low 8peed paPer tape

punch (116 charae1:er8 per second).

'$

•

~



The Higb Speed ,aper Tape 8..d~!, and Punch

(Figure 3-1_> i8 an 1nput-o~put device available for ~ho8e

user8 who require fas~.r paper tape reading and punching

.peed8 than those of ~he 8undard ASR-33 Teletype.

SPROCKET FEED WHEEL

TAPE HOLD KNOB

READER INPt11' HOPPER

PUNCH FEED SWITCH

READER fE~D SWITCH

Piqure 3-111 BiCJh Speed Reader and Punch .

Information 18 input: by meaDS of ~he h1CJb speed photo­

electric paper ~ape reaCler at the rate of· 3_11 characters per

second.

Information 18 out.put by means of t.he h1qh speed paper

tape punch at the rate of 5_ charac~er8 per second.



The High Sp!!d L1n, fE1pi;.,r (F1C)U1'e 3-11) 18' an out.put:

I device available in several models for the user who requires

a fast:er pr i nt:1ftCJ _peed ~ban ~ha1: ot tohe stAndard &8R-33.

Figure 3-11 H1qh Speed Line Prlnt:er

Using the e_ column, 64 cbaract:er model as an example,

1nforma~1on 1s printed 0'* a~ the :followinq rates I

356 lines per m1n~e, colmDft8 1-8'
4616 11ne. per JD1nut:e, colUIIlIl8 1-6'
6511 11nes per IIl1nut:e, column. 1-411

11111 linea per minut.e, coltam8 1-2'



r The DEetepe Unit (P1qure 3-12) is one of two maqnetic

tape options available for PDP-ll systems. It is a dual-unit

b1d1ree~lonal maqne~1c tape transport system for auxiliary

1ntorma~ion 8toraqe~

,~

Pigure 3-12 DBCtape Unit

Information may be inpu~ (read) from or output. (writt.en)

on this device &t the rate of 5/1__ 16-bit words per seconC!.

The system stores information at: tiXed positions on the maq­

ne~1c tape, allowinq blocks of the information to be read,

written, or replaced without disturbing other previously re­

eorded information.



The RC-ll Disk Unit. (Piqure 3-13) 18 one of many •••

• t.or.g. devices available for PDP-1l 8YSt.ems. Expandable di8k

ma.. st.orage syst.ems may be used 1n a number of comb1nat.lons,

and ranqe from ~he RC-11/RS-64 wit.h a haaie st.oraCJe of 65 t.hou-

.and word. (expandable t.o 262 t.'hoWland) t.o the RP-ll/RP-JlI2, ,

whlcb .tor.. up to 8/1 million words in an expanded c:onfiqurrat.ion.

Fiqure.3-13 RC-l1 Disk Unit.

Informat.ion may be inpu1: (read) from or out:put. (writ.t.en)

on t.he RC-l1 Disk at t.he rate of 62,5/111 16-bit words per second.

Information 18 st.ored at. fiXed po8it,loft8 on t.he d18k .ur~ae.,

al1OW1nq blOC::,kll of the intormation t.o be read, writt.en, or re-

placed without. dlst.urbinq ot.her previously record" informat.ion. ~



,.

3.2 ADDRBSSIblG MODBS

3 •2.1 I ntroduc:i:lon

A proqra. i. a ••ri.. of compU1:er words .equenced to

accompli8h a particular teak. TheB. computer vords which

compri8e the prOCJraa may be divided lni:o t.wo major cateqorle••

Data Words or operands (the values to be operat.ed upon by t.he

lnstructlon words), and Instruction Word. (those which acee••

and manipulate t.he data word.).

The Data Word (P1qure 3-14) is quite 8traiqhtforwardJ it

ia lat..-pre_ •• a numerical value to be operat.ed. upon.

I lIUMBllICAL VALOB I------------
Figure 3-14 Data Word

The Inet..J;uc:t.ion Word (PiCJure 3-15), t.hough a180 numer­

ical, must. be int.rpr~ed differently. In order to manipulate

the data word, t.he 1ft8truction word must. ace••• it., aDd you

will recall t.hat. words in memory are always referenced by

addre... The lft11tructioD word 18 therefore of t.wo part.s J by

convent.ion, certa1n bit.s specify t.he oeera~1on code (how the

data word 18 to be manipulat.ed), and t.he other bits specify

the addr••• of the dab word.

IOPBRA'l'IOIil CO!)BI Dl'l'A ADDRESS I
PiCJUre 3-15 INitruct,ion Word



The PDP-l1 1n.~r~lon .et ha. ttfO ~ype. of lnatruct.ion

WOrd8 t.bat manipulate data, t.he !1ngl. Cps.1M! In.tEystioft

and t.he Double operand In8~ruct.ion.

The Single operand Inst.ruction (Wigure 3-16) implies

one operand, and follow8 the general format presenteeS earl1er.

Bit positiofta 6-15 8peclfy the operation code that

defines t.he instructlon ~o be executed.

Bli: poa1t.loD8 11I-5 8petfy the de*t.lna~1on.addr...· r.teW..·
(the addr.8. of the operand). 'I'M••ix-bit aeetlnat,1on address

flel~ cODs1.t.e of tvo t.hree-bit eubfleld81

reg1ster .uhrlN! (b6t poeltloJl8 /1-2)
8p8ClfJ.•• ~irlileb of t.he eight
G.ft~r.l ,~~. Reglsters
18 t.o be ...

mode aubfleld (bit poalt1one 3-5)
8peclfi.. b2! that General Purpose
Reg18t.er 1. t.o be uaed

15 14 D 12 11 116 9 e ·7 6 5 4 3 2 1 _

I : : : : :: : : : I~ { f.i I
t..__... ,. _

1.. ...... ~_--.....~ V

" DBITINlTlOB
OPBRA'1'IOR COD. ADmtBSS PIBLD

Flqure 3~16 Sinqle operand IDSt.ruct:1oD Format

•



The Double Operand Ift8~ruction (Fiqure 3-17) implies

~wo operand., calle(! t.he .oure. operand and i:he destination

operand. The same qeneral format. 18 again followed, but

here there are t.wo addre.. field. (one for each operand),

arXI t.hus a shorter operation ccXie.

Bit po8ition. 12-15 specify the opera~ion cede that

defines the instruction to be executed.

Blt positions _-5 specify the destination address field

(the addre88 of t.he aeetinat10n operand). Thi8 8iX-bit de8­

tination address rield COns18ts of two three-bit sUbfield••

the register 8ubflelCl (bit. po81tloft8 16-2), and the E.!
subfield (bit positloM 3-5).

Bit. poe1t.lona 6-11 8pecify t.he source addre8s field

(the ad4r••• of the source operand). 'l'hi. aix-bit 80urce

a~dre8. field eon8ist.s of two t.hree-bit. eubfielda. the

resi8ter subtiela (bit. posit.lons 6-8), and ~he mode subfleld-
(bii: poS1t.1ofts 9-11).

15 14 13 12 11 111 9 8 7 6 5 4 3 2 1 _

I :::I~+I:U+I~BI:R~I
..., -.....--. ,.__I__~ ,.._.......,__~ ,..__...J

v V V
OPBRATION SOURCE DB8'1'~.'1'IO!1

CODB ADDRBSS PIELD ADDRB88 PIBLD

Figure 3-17 Double Operand In8~ru~ioD Porma~



The meaning of our earlier .~~...Dt - all addres8ing

with the rPP-11 18 accompli8 bed throusb ~he General PurFJD!.

R.,lat.... - 8bould now be clear. In 8peclfyinq the aMr•••

of ~he data (ad4r88. f1eld), one of tho eight. r.,1ster. 1•

••1ect:e4 (rec;ri.ter .ubflel4) aloDq with one of .everal

addre8sing lIlOdea (1DOd. subfle1d).

The.. addr...inq mod.. enable the easy accese and

maft1pulatlon of dat.a. They are especially efficient and

flexible in halXl11ng of etruct:ured data (tables, llst:s,

ebaraeter string_, etc.), since a great deal of the data

proc.ssed by the comput.r 18 organized in this manner.

w. w1l1 examine each of the addr...lnq mode. in 4eta11,

and use the following lD8tru~loft8 for l11uatrat1cnl ~

MNBMONIC COD" OCTAL CODB DBSCRIP1'IOB

.SL! D8'1' II!fDD CLeaR (replace wit.h zer08)
the contents of t.he
De8rlnat1on location

INC D8T flnDD IBCrement (add 1 to) t.he- conte~. of the
DesTination location

g SRC,DST 1188I)D HoVe t.be SouRCe operand to
the D8Ifiaation location
(.oure. operand unaffected.
destination operaDd replaced
by the source operand) ..

ADD SRC,DST f!88DD Am) the SouRCe operand to- theJ)eft':l.nation operand
(.oures operand unaffected,
De8'1':l.nat:l.oD operand replaced
by t:be .um)

*.ymbol1c code devi8ed for .... of recog~:l.t.1on and ret:ent.ion
~which aust be COD9ert.e4 1:0 machine (bift8ry) cod. by .Ollle

device or rout.ln. before it. caD be execut:ed by t.he cOliputer



3.2.2 General Register Addr•••lng MOde.

There are eiqht General Reqi8ter Addre88inq McXIes, and

any mode may be us'" wit.h any of t.he General Purpose Reqisters

to acceS8 the operand. ThoUCJh each of these eiqht modes 1s

unique, and we will discUS8 the specific applicat.ion ot eacb,

we may cateqorize them as tollows according to l!!! they use

the' General Purpose Reqistera

( 1) DIRBC'l' ADDRESSING

where the req1ster cont.ains t.he operand.

GPR IOPBRAlmI
( 2) INDIRBCT ADDRESSING

where the register contains t.he address of the
operand (the effective addre8s).

( 3) DEFBRRED ADDRESSING

where the reqi8ter contains the addre88 of the
effect.ive addre8••

GPR IAllDRBSS1-1 EPFBCTIVBtJt OPERANij
"ADDRESS



3.2.2.1 Direct Addre8.1ng

There 18 one mode where the regi8ter 1s us~ to

contain the operand.

RBGI8TBR MODB



RBGIftBR MODE

Assembler 8yn~ax*

Rn

OCtal Code

Req18ter Mode specifies ~hat the register con~a1n8 the

operand. The register 1s thu. used to hold da~a While it is

manipulated.

Example. . The content of R3 18 increment.ed

Loca~ion 511/1 contains ~he in8~ru~lon code
fer INC R3

/1111151616 1111165211131
Before Execution. Af~er Execution.

R3 1----141 .

Example a The con~.nt of a2 i8 added ~o ~h. con~.n~ of RS

Locat.ion 211/1/6 cont.aina the 1net.ruct1on code
tor ADD R2,R5

/11121111" [116/62111Sl

Before Bxecut1on.

R2 11111111'-61

RS IIIIIJ2311

Aft.er Execution.

R2 1111111""61
RS J1111112371

*'l'he percent 8ign (,,) indicates a General Purpose Reqi.~er to
t.he PDP-l1 A8sembler, and may be used. Typically, however,
~be reql.~.rs are defifted a. follow8 ra, . "III

R1 • "1.2 = "2
R3. g
R4 s ...
RS • ~5
sP. ~
PC • "7

Theee deflni~ioft. will be used throughout t.M. book.



3.2.2.2 Indirect Addressing

There ~hree mode. where the register 18 used to

contain the address of t.he operand (the effecti.e address).

. REGISTBR DBPBRRBD MODB - where the content: of the
reqister 18 used as a ·pointer- t.o the operand and 18 not
modified.

At11'OINCRBMD1T MOJ)B - where the cont.ent of t.he
req18t.er 18 used aa a "pointer- to the operand aDd then 1s
-automatically 8t:l*' aheat 80 that it polnte to the next.
sequentlai opera in a table or 11.t.

At7l'ODBCRBMBNl' MODB - Where ~be content of the
reql.t.er 1. first automaticallY .~ep~ and ~hen U8ed
as a apolnter to an oper.na~D • ~.~i.t.

Altbouqh INDBXBD MODB doe. not ...t. our general

stat.ement. exact.ly (r8CJ18t.er contains the effect.ive addr••• ),

it. i8 included 1n t.Me catevory beeaus. t.he regist.er will

contain .e!!!! of the effect.ive address. A8 we will 800n d18­

CWl8, t.he register containa an index word whlch i. added t.o

a base address to fora t.he addre.. of the operand.



r .BGIST.. DBnUBD MODE

A••embler Syntax

(Rn)

octal Code

1

R8CJi8ter Deferred Mode specifies that the reqi.tar

contains the a~~ress of the operand (the effective addr.8s1.

it The content of t.he select.ed req1at.er i8 not. affected·) it i8

used a8 • • pointer" t.o the operand.

Example. The cont.ent of R4 i8 the addree8 of the operand.
replace the operand with EarOD

Location 316311 cantaina the 1ft8truct1on c0c5e
for CLR (R4t

1111316311 1111651114t
Before Execution.

R4 'lIJ17,,-t
,_711_11 1123456J

After Bxecution.

R4 116_71116-1

/1117/11111 11111111111111

Example. The content of R2 18 the address of the operanCS,
move the operand to R5

Location 5" contains the 1n8t.ru~1on code
for HOV (.2) ,.5

1111115•• 1111121151

Before Execution I After Executions

~ R2 )-111'11-1 R2 1_1111191_1

RS 11116661 RS 1"91555
'

11111111111 IJlJlJlSssl Ifllll1" 1111111555I



AOTOD1C1UU1B1'l' MODB

A8.embler 8yn~ax

(Rn)+

octal Code

2

Au~olncremeft~ MOde specifie. ~ha~ ~be reql.~.r contains

~he addre•• of ~he operand (the effective aMr.... >" Jut a8 vl~h

Reqi.~.r Deferred Mode. The difference 1. ~bat. af~er t.he coM.n~

of t.he req18ter 1. used a•• pointer ~o the operand, 1t 1. auto-

matically 8tepped .0 thtt 'b! r'li.tt, lh'n ROinSI to \hi n"t

.!elUentlel operand. .

Autolncrement Mode thus provide. for t.he aut.omat.ic st.ep­

ping of a point.er t.broUCJh a table or 118t. of operand8. Al~houqh

especially useful for ~h1. type of proc:•••i.n9, ~h1. mode i8 com­

plet.ely qen.rel and ..y be used for a vari~y' of purpose••

Example. Rl contaill8 ~he adc!r... of the operaNSJ
lncr...nt.tbe 'operand aRcS then step the content
of .1 by t.WO .0 tbat it Will point ~o the next.
r.equ.n~la1Vor4 operand (in a u])le of operallCS.)

LoCation 1111111 c:on~aiDII t.he iMtruc:t.lon code
for IRe (Rla

11161111111 1_1152211
Before Execution.

Rl '.11125'''1
.11251616 I"..JlJllll

Aft.er Bxecutiona

Rl 111111251121

111112516/6 IJlJlJfll121

In t.ypical operat.ion, t.he proqram would loop back and

repeat. t.hi8 .... inst.ruction a sufficient number of 1:1..- to

increment. each of t.he entrie. 1n ~M uble.



Assembler .yn~ax

-(ltn)

Octal Code

4

Autodecremen~ Mode specifies that the register contains

the address of the operand (the effect.ive address>" and a8 with

Aut:olnerement HoeSe, this address will be modified. 'l'he differ-

enee is that With Autodecrement. Mode, the content of the reqls­

ter i8 automat.ieally stepped back, and then used as a point.er

t.o the operand. Autodecrement Mode thus provides for t.he pro-

ee88inq of structured data in an inverse direction.

We will la~er di.cu.. how the.. post-increment (Autoin­

crement Mode) and pre-decrement (Autodecrement Mode) features

are used to manipulate dynamic tabl•• called Btacks.

Exampl.. Replace the operand. in Table A with the
operands in Table B (1n inver.e order)

R3 containll the, address of the first operand
in Table AJ R4 contalns the address of the
n~ sequential location after the 1.8~ oper­
and in Table B

Location 5/1' contalns the instruction code
for NOV - (R4 ).....JR3 ).:t.

'1"5/1' 1!,14423l

The results of typical proqram operat.ion are shown below.

The proqram has looped back and repeat.ed the instructioD five

time. to accompli8h the task.



UFORB EXECtn'ION I AlTBR BXBCU'1'ION.

R3 "111_11161
R4 l"3t'121

RJ 111'''1_''21
R4 1"'3'1'1

7
Table B

'~

"~,,, ~;i;111'3"'2 44231
_~3'~
""3"116
'113$1111 'C"'C-C-'

Table B'labl. A

"'1'" .-_'_,/11,_2 111111
,/l111tH__1"'6
,,,lIDII I P~P~JO~'

"391__I
"3~fl2 442 1
~II311114 6
,_311_6__3,1_ 6 6

Table A

'$n'lI' •...-;.: --I_"lpf_2 ·
"1~~4 g......_,1__6 1.]
__1'1' 1 1

1t3 1'''111'21
R4 1__312111211

"1~1I9J 166 "'3"11122
,22"1"2 1 ~1'13"2 4

_'1'$64 "3121'4 6
"1'116 ,'3plpl6 7__1_1, _113'1' 6,

Table A Table B

B3 It,,1tt!1
R4·1"3,,61

Table A Table B

,nll" 116 6 'J3"'_,/I1t_2 t,,3,t2
"1/114 "1I3'1f4 6"1"6 ,_3"6
/I"l'~ "3111' 6 6 6

..

R3 1_'1'1141
R4 1/lJ!3'1I6t

Table A Table B

'111'" 16
. 6 11'3'~~II"1"2 7,. ,_3__2',lfJ'4 ""3'114"1"6 "3"6

'''1111' "3'1' 6

R3 ~"'1"61
R4 1,,3ffll

Table B Table B

'/61'" 16
6 "311" I"1/6112 7 16,3_/62

,_1111S4 56 '$43_~
,/61/6_ ,,3_116
_~/61J6 ,/63_116

~

R3 1"1111161
R4 'l21pJ3fJII41

R3 IJl1,11J19
R4 19ii3"2~

Table B

~

..

Table B

'J3{4'11 I&iI__3,'2 442.
,,3_'4
,/6311_6
'_3$4111'

'table A

'11116'_ ~~~
1'111'''2 ~~!"'"I

'I'l'~ ~~"'i!iI16/61._6 ~~...
/6_1111/6 ~~~

993,¢, ~~iiI"3"2 ~~l"!!t
11¢3,pJ4 ~~riIII"3"6 ~'i,pjIj'"
'¢3pJl~ ...-.~...

Table A

'111'" ~~....
"1~92 ...-~....
"1f1~4 ..-~"..
"111'6 ~~~
'~U'l' ~ ....

R3 J11111111#1

R4 '11113919121

R3 J1I~~21

R4 IJl11S31J16~
Table A

"lpl'~ 1oIiQ.~~
~'19Jgf2 ~~~
"111114 ................w"1"6 ~.;;:..;:.=. ....,sn,l, ..

Table B

'113'1111II~J63~P2
'II31/f~4 6

,'f1311116 ,"3111' 6 6

'fable A

"1'11_ .-'_...16'1'/62
,_111164 ~~_
16_1'_6
'111'1_ ,.~. .

'table B

'{4311" IJI'/63'162
'14316164
,_311,6
,,3_116 6 6 6

~

~



IBDBXBD MOJ)B

Assembler Syntax

X(Rn)

Octal Code

6

"."..

Indexed Mode 8pec1fle8 ~ha~ the r!ilster contains an

index word which 18 added to a baBe addres8 (contained 1n a

location following that of the instruction word) to form the

address of the operand.. Neither the index word nor the

base address word i8 affected.

Indexed Mode thus provides for the random access of

operand8 in data structures.' The index word (the content of

the selected reqi8ter) 1s modified by the program to access

the desired operands in the table or list.

Examples Clear the third operand .in Table A

R5 contains the index word. location 1/62
contains the base address of Table A

Before Execution.

RS '/6/61611164 ,

, __7112 1_111111111111

Table A

instruction code

After Execution.

R5 I--'IIJUI
[1[4167_2 1-_l 11l116t.

Table A

r
.*This 18 the more common usage. Realize that at the proqralll­

mer 18 option, the selected register may hold the baae addre•••



3.2.2.3 Deferred Addressing

There are two modes where the register is used to

conta1n the addre•• of the effective address.

AUTOINCRBMBNl' DEFBRRBD MODS - where the content of
the req18ter i8 used .8 a pointer to the address of t.he opexrand
in a table of effective addr...... It 18 first used, and then
automat.icallY stepped ahead. -

At11'ODECRBMBNT DEFBRaBD MODB - where the content of
the regi8ter 1s \18M! a. a pointer to the addr.ss of the operand
1n a table ot effective addr...... It is fir8t automatically
stepped back, and then \1884.

Although INDBXBD DBPBRRBD MODB 40es not Meet our qeneral

statement. exactly (regi8ter contains the addres8 of the effec­

tive addre8s), it i8 incluaed in this category because the req­

iater will contain~ of the addres8 of the effeetive address.

The req18ter conta1ns an index word which 1s added to a base

address to form the address of the effeetive addre8s.

~••'.J,

..



AtJTOINCRBMBNT DBPBRRBD MODB

Assembler Syntax

.(Rn).

octal Code

3

Aut.oinerement Deferred Mode specifies that the register

contains the address of the effective address. The content

of the .elected reqi8ter is used a8 the address of the effec­

tive addre8s, and then i8 automatically stepped ahead to the

next sequential address.

Autoincrement Deferred Mode thus prOVide. for automati­

eally stepp11lCJ throuqh a table of addr•••8., commonly ealleCl

a dispatch table, a8 a meane of aeees.inq operands. The

~ effect of the instruction 1s dispatched throuqh this table

to the operand.

Bxample, Clear the first operand in Tables A, B, and C

R4 contains the address of the first effective
addreBs in the dispatch table

Location 5/111 contains the instruction code
for~

1116/151111 JJ1I511341

The result8 of typical program execution are shown below.

The proqram hae looped back and repeated the instruction three

time. to accomplish the task.



R4 If!!"i2]
Dispatch Table

;11
;12
33

·1 iJ4 . ,
J )f5f'~ jJ

Table A Table B Table C Table A Table B Table C

Table CTable BTable ATable C

22221
3333
4444

15555
166661

Table B

R4 1__':1,61

Dispatch Table·

Table B Table C Table A Table B Table C



AUTODBCpt1BN'l' DBPgRBD MODE

Assembler Synt.ax

e-(Rn)

octal Coc.1e

5

Autodeerement. DeferreCI Mode specifies t.hat t.he register

contains ~he address of the effective address. The content

of the selected reqist.er is fir.to automatically st.epped back,

arKl then used a8 the addres8 of the effective address.

Autodecrement. Deferred Mode t.hus provides for automati­

cally stepping through a table of addresses in an inverse

direction.

Example. Increment the operand

The content of R·2 18 aut.omatically stepped
back, and then used as the ac5dres8 of the
effective address (the address of the addreS8
of t.he operand)

Location 2___ cont.ains the instruction code
for !!S...I::.{Yl

11112___ 1111152521

•

Before Execution.

R2 1-_l__2l

__1111111 ' __51111_1

11115111111 1.1111111

After Bxec:ut1on.

R2 IIIJII11Il'Jill

_161111111 [lIIl1SII"IIJ

11115/6/6_ 1111112]



INDBXBD DBPBRRBD MODB

A••embler Syntax

_(an)

octal Code,
Indexed Deferred Mode specifies t.hat the regi8t.er

contains an index word which 1. added to a base address
•(contained in a location following that of the instruction)

3;0 form the addr... of the ef'-*ive atar.... Neither the

index word nor the ba•••&Sr••• i8 affected.

InClexed Deferred Mode thu8 provide. for the random acce••

of operantS& in data structure. through a table of addresses.

Example. Using- Dispatch Table A, add the first operand ~..
in Table C t.o the content of RS 7

~ contains the index word J location S/l2
contains the base address for Dispat.ch Table A

Location S__ contains t.he instruction code
for~

1111,5__ Iiii.i.nl
_11/65/12~

Before Execution. Aft.er Execution.

R5 11111111
all IJlJlIlI'J14J

1611115112 1-117'-1

RS }11l11_1_1

RSf 1'11'161141
1616_5162 ).1116"._1

Di8patch Table A Table C Dispat.ch Table A Table C

'1 1 f1
J: 2 2

toll ~ ~

'. r! r~ "~



3.2.3 program Counter Reg18t8£ Addre.81ng Mod••

You will recall ~hat Req18ter 7, althouqh a General

Purpose Req18~er, a180 functions as the Proqram Counter for

the PDP-ll. In this role, 1t always contains the address

of the next location to be referenced, and i8 automatically

updated by the processor during program operation (after an

instruction -1. fetched from a loeation, the Program Counter

18 automatically stepped to contain the address of the next

sequential location).

Althouqh any of the e1qht General Reqi8ter Addressing

Modes we have just discussed may be used 1n conjunction with

~ any of the eight General Purpose Reqisters, there are four of

the8e modes with which the Program Counter can provide spec­

1al advantaqes for the hanClliDq of unstructureCI data. These

are called the Proqram Counter Reqi8ter AddreSsing Modes.

It is important to remember that th••• -special effect­

modes, although cla••" .eparately and CJlven unique names,

are 1n operation the same General Req181:er Addre.81nq Modes

we have discussed. the only difference is ~ha~ ~he register

selected 1s alwaY' Req18t:er 7, ~he Proqram Coun1:er.



IMMBDIATB MODE

A••ambler Syntax

*n
octal Code

r21~
Au~oincrem.nt Program Counter

MOde Req18ter

IMMBDIATE MODB provides for fast access of an operana

in t.hat. the· opera·~. 1s 1n a location ZNMBDIAT31y followiftC1

that. of t.he lD8uue~lonword. The operand 18 act.ually part.

(a second wor~) of the instruct.ion.

Thi8 mode uses t.o qood acSvantaqe t.he fact. t.hat t.he

processor automatically .t.~ the content of the Program

Counter (.0 t.hat it then point. to the operand) arter fetch-

inq the 1natruct,ion. When the in.truction 18 executed (t.he ~

aeSdr••• field i8 Aut.o1ncrement Mode wit.h the PC), t.he operand

18 obtained and t.he content of the Program Count.er 1••tapped

(because of the Mode) t.o the next. sequential location.

Example. Move the value 1 to R4

Locat.ions 5411 and 542 contain the code
for~

./1/15414 IiWiil
_1111542 I!!!!!!J

Sefore Executlon. After Execution.
~

R4 11234561 R4 1_11111"111
PC I_II1lI54!1 PC ['11"5441

/6111654_ lM _161154' •/611/1542 1 rpI 111111542

~



r

Program Counter conta1na
address of 1n8truction---p~'__54_ _127_4 INSTRUCTION

Instruction 18 fetched J
content of the PC 1.
automatically 8tepped
by t.he processor---........._./lS42 16/611116' IMMEDIATB OPERAND

Instruction i8 execut.ed J
cont.ent. of t.he PC 1.
st.epped because of
Aut.o1ncrement Mode--.-..--Jl/l1I544 16/65/6/62 NEXT INSTRUCTION

Piqure 3-18 Immediate Mode



ABSOLUTE MODE

Assembler Syntax octal Code

~37~
Autoincrement Program Counter
Deferred Mode Register

ABSOLUTE MODE 18 Autoincrement Deferred Mode using the

ProqramCounter, where the location immediatelY following that

of the instruction contains the address of the operand.

The immediate data i8 called an ABSOLt1l'E address because

this address remains constant no matter where in memory the"

instruction 1s located and executed •. What is the implication?

With the PDP-Il, proqrams (and thus the instruct.ions which

comprise them) can be relocat.ed in memory for subsequent execution. ~

ABSOLtJrE MODE 18 used to specify the address of an operand when

it 1s desired .to have that address be ABSOLUTE regardless of. the

proqram (instruction) location at execution time.

As illustrated by Figure 3-19, the same instruction 1s

executed from different locations in memory, and because ABSOLUTE

addressing is used, the address of the operand remains constant.
I , I ,
• I I I
I I I I

/6/65161616 3
16/6516162 ~iIIiiiiioIiIIliiI1IiiiIIII

111111, .
• I
• I

Fiqure 3-19 Absolute Addressing

1111]1
I I
I I
I I



Example. Move the content of location 7__ to R3 .

Locations 1 and 116_2 contain the code
for MOV 1!7@@,R3

__1/11111 Iiiiii3l
16161_162~

Before Execution. After Execution,

R3 1123456' R3 11111111.,
PC 191_11691911 PC '!ffll@p!41

f8¢fl7f1~ 111.1l11 J ~1'917~~ 11111] 11

"~.

Example. Move the content of location 71111 to R3

Before Execution.

R3 11234561

PC I!9J591¢fll

!l919J7~/I 111.1l111

After Execution.

R3 111111J I
PC J,@tJ5p!@4(

9J9JpJ7{1/1 11]11111



RELATIVE MODB

Assembler Syntax

A

oc:tal Code

~67~
Indexed Proqram Counter

MOde Reqister

RELATIVE MODE 1s used whenever direct reference i8 made to

a memory location, and 1. a••embled a. Indexed Mode \Wing the

Proqram Counter. Because the content of the Program Counter ls

ulled in the addre.. calculation, the address of the operand ls

~ absolute, it i. RBLATIVB to the address of the instruction.

Recall that Indexed Mode forms the effective address by

addinq the content of the specified reqister (index value) to

the content of a location following that of the instruction

word (baee address). Relative MOde works in the same way, with

two distinquiehing points.

1. The specified reqi.ter i8 the Proqram Counter, and
its content will be updated during the execution
of the instruction.

2. The addre•• in the location following that of the
instruction i8 here called an OPPSBT, because it
serves as an off8et to the content of the updated
Proqram Counter.

The following algorithms are used by the as.embler.
BPPBCTIVB ADDRBSS :s OPPSr:r + UP~TBD PC
OPPSft = BPPBCTIVB AJ)DRBS8 - UPMTED PC

Example. Increment the content of location TALLY

Locations 51616 and 5162 contain the code
for INC TALLY

16_1651616 Iii3Irn
1111115112~

Before Execution.

TALLY ~1234561

PC 'UlS16"

After Execution.

TALLY 11234571

PC 1IIIIIISIMi



..

r

Proqram Counter contains
address of instruction-........ !'JlJlS!'JI 16165267 INSTRUCTION

Instruction is Fetched;
content of PC is
automatically stepped
by the processor---......... tlI1fAS1I2 fA~161674 OFFSET

Source state is entered;
processor gets the offset
and automatically steps
content of PC. It i8
this updated content of ......1611165114 XXXXXX NEXT INSTRUCTION
the PC which is then
added to the offset to
yield the effective
address. The instruction
1s then executed.

BFPBCTIVB ADDRESS = OFFSBT + UPDATED PC

Fiqure 3-216 Relative MOde



Why have two modes (Absolute and Relative) which achieve the

same purpose? Though each is used to specify the addre.. of the

operand, the method u8ed is ~ the eame, and that is the reason

for the existence of both.

If the program 1s always to be loaded and executed at the

same locations in memory, either mode may be usedJ there is no

particular advantage to using one in preference to the other.

If, however, the program is to be loaded and executed at various

locations in memory (relocated), then there i8 a preference,

Relative mode should be used.

The key to this usage preference i8 that when a program is

relocated, it should be as a complete entity. This means that !!l

locations used by the program (instruetions ~ storage) should be

relocated, and that therefore no absolute references be made. .~

To help clarify this point, let's look at a simple (but not

terribly productivel) program wherein the same instructions are

used With both Absolute and Relative modee.

BEGINI CLR ",SAVE
HALT

SAVE. ~

BBGIN. CLR SAVE
HALT

SAVE,. /8

As illustrated by Pigure 3-21, both proqrams were assembled

and loaded beqinninq at location 51111. and then relocated so that

they begin at location 311_11. In relocating, the difference becomes

clear. With Absolute mode. a location used by the proqram has been

left "danqlinq" far behind J with Relative mode, our program remains

a "compact" Whole.



63 64 65 66 67 68 69 70 71

Index 100: 1963

~:: ,. ·Tcxtr'o·n V5,· 3M .'.:, .', .
, i NET INCOME .' . . . .

300

SOOI----+---+----+--~-_1_-_+_-.J__4-+-*-~

71 72 73

200~-+--4--:.l~-

600

i
-4

72 73

.- . -i
I

150

200'

,.... 350.

CHART # 12 CHART # 13

$2.70

2.25

1.80
i

~
35 . ,. t-·I

I I
! i l.45 ._~ . I

1
I
! i i I

.__L-L_ _-L
63 64 65 66 67 68 69 70 71 72 73

CHART # 14

72 73 74

Quarterly Clolings

64 65 66 67 68 69 70 71

CHART 1116

400!

300;

200~

500·

100,........,...........,.-

I
72 73

CHART 1115

I
I

63 64 65 66 67 68 69 70 71

.20'

r



{~ .



IAssembled and loaded to beqin at location 51611 I
Absolute Reference Relative Reference

I
I
I
J
I
I
f
I
I
I
I
I
I

I
I
I
I
I
I
I
I
J
I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I

I
I
I

Relative Reference
t •
I I

5 67
2

,
I
I

I
I
8

I • • I
I • I I

------~I Relocated to beqin at location 39J9J9J I~-----­

Absolute Reference

I :

~ Figure 3-22 Absolute Reference VB. Relative Reference



RBIATIVB DBPBRRBD MODB

Assembler Syntax Octal Code

RELATIVB DEFERRED MODB 1s assembled a8 Indexed Deferred

Mode us1nq the Proqram Countero It is similar to Relative Mode,

but with the additional level of deferral, the calculation

OFFSET + UPDATED PC yields the addres8 of the effective address.

Examples Clear the location pointed to 'by the content of
location 1111111

Locations 5/111 and 5112 contain the code
for CLR Ilfll .

1616/15/1/6 IiimiI
/1/1/65162 l!!!!!!J

"

Before Executions

fill] IIlIfI 1'@2'.
16162111616 r1717171

PC 1_"16516"1

After Bxecutlons

/6/11/1_11 '"281
_/12/11616 liiuu~

PC Iwsiij]



3.2.4 EXERCISES

The following examples based upon the discus8ion of General

Purpose Reqisters are presented a8 an optional exercise for the

reader. The answers can be found in Appendix B.

3.2.4.1 General Register Addressing Modes

C~mplete the chart below. Thi8 1s an instruction list, not a
program (consider the given values to be true for each instruction).
Given, (Rl):l1616/1, (R2)=2_J6J6, (2J6J6/6)=616J1f6~ (1776)=516JiJ14, (211611)=4161616

SYMBOLIC OCTAL SOURCE DESTINATION (R2)
CODE CODE EFFECTIVB ADDRESS EFFBCTIVB ADDRESS

HOV Rl,R2

HOV Rl, (R2)

MOV Rl, (R2)+ "~...Jj~~' R:L 2_ 2tlfb2,I.....
MOV Rl,-(R2)

MOV Rl,lJ6I6(R2) -~
,

MOV Rl,el/6/6(R2)

MOV Rl,@-(R2)

MOV Rl,Gt(R2)+

3.2.4.2 Program Counter Register "Addressing Modes

Complete the chart below. This 18 an instruction list, not a
program (consider the given values to be true for each instruction).
Givens (R16)=7/616/6, (PC):5JiJ16, (123456)=316JiJII, (316_16)=31611

SYMBOLIC OCTAL SOURCE DESTINATION (R,fj>
CODE CODE BFPECTIVB ADDRESS BFFECTIVB ADDRESS

MOV #123456,R16

MOV "'123456,R~

MOV 123456,RpI ... :1.%11$ • 3¢rI4~--.r_

MOV .123456,RI6



3.3 INSTRUCTION SET

. 3.3.1 Introduction

Before you can write a program. you must have a working

knowledge of the instruction set which you are to use. We will

then discuss the PDP-Il instruction set, but because this booK

is .1ntroductory in nature, we will limit our discussion to only

a part of the basic set. (It is expected that you shall soon

become expert and seek the power of the complete instruction setl)

Those instructions we are to discuss will be first listed

by format. and then grouped according to function for. a more

detailed presentation.

Abbreviations. symbols. and other esoteric markings used

are as followsl

R or req =general register (3 bits). _-7

SS or src = source address field

DD or dst = destination address field

1\ = AND

V = Inclusive OR

~= Exclusive OR

lcc = arbitrary location

• = , for word; 1 for byte

xxx =offset (8 bits)

CONDITION CODE LEGEND

It' =Clear

1 =Set

* =Conditionally Set

- - Not Affected

A



3.3.2 Formats

3.3.2.1 Condition Code Ooerate Group

15 4 3 2 1 16

F; ; ; :~se: ~od~ : : i·GEEEl
• F1qure 3-23 Condition Code. Operate Format

MNEMONIC INSTRUCTION OPERATION CODE CONDITION CODES
N Z V C

CLC CLear C 111616241 - 16
CLV CLear V 16__242 - - fI -
CLZ CLear Z 111616244 - II

CLN CLear N J6f1_25J6 16 -
~ SEC SEt C fl1616261 - 1

SEY SEt V 16/1/1262 1

SEZ SEt z 1616[1264 - 1

SEN SEt N [/1161627_ 1 - - -

CCC

sec

Clear all

Set all

16 16 16 16

1 1 1 1



3.3.2.2 Single Operand



~ 3.3.2.3 Double Operand

..



3.3.2.4 operate Group

Pigure 3-26 Operate Group Format

MNEMONIC INSTRUCTION OPERATION CODE CONDITION CODES
N Z V C

HALT HALT 1611/6/6/6/6 - - - -
RTI ReTurn from 1616/616/62 * * * *Interrupt

TRAP TRAP 1/644/6/6 * * * *
to 1164777





3.3.2.6 Subroutine C!!!

Flqure 3-27 Subroutine Call Format

MNEMONIC INSTRUCTION OPERATION CODE ~ONDITION CODES
N Z V C

JSR Jwnp to JlJ44RDD - - - -
SubRoutine



r· 3.3.2.7 Subroutine Return

Plqure 3-28 Subroutine Return Format

MNEMONIC INSTRUCTION OPERATION CODE CONDITION CODES
N Z V C

r

R'l'S ReTurn from
Subroutine



3.3.3 A Word About Bytes

You have already learned (and of course· ret.ainedl) some

import.ant. fact.s about PDP-ll memory organizat.ion and addressing.

1. Memory is bot.h byte and word addressable;
each (16 bit.) word is comprised of t.wo (8 bit.) bytes.
(Refer t.o Figure 3-4)

2. Bit. 15 is the Most Significant Bit. and siqn bit
for both the word and the high (odd) byte;
bit 7 is t.he Most Significant Bit and sign bit
for t.he low (even) byte. (Refer to'Figure 3-3)

The instruction set. then, must have the capability of dealing

With both word and byte operands.

We will for the most part restrict ourselves in this book

t.o working with words, and t.herefore word instructions, but it is

important to remember that the PDP-ll instruction set includes a

full compliment of instructions which manipulate byte operands.

A good general performance guide is this. Byte instructions op­

erate upon byte operands in the same way that word instructions

operate upon word operands.

In the lists of instructions on the previous pages, you

noted that those instructions used to handle both byte and word

operands were presented in the following manner. ,
MNEMONIC

OPR(B)

OPERATION CODE

mmNNN

The purpose was to indicate that both the mnemonic (symbolic)

code and the octal (or binary) operational code differ to specify

either the byte or the word operation.



As illustrated by the comparative examples below. the

coding procedure is as follows.

To specify a~ operation.
do not append the B to the mnemonic coae;
use a zero (JI) as the MSB of the operation code

To specify a~ operation,
do append the B to the mnemonic ·code J
use a one (1) as the MSB of the operation code

Example. Clear Register _

Location 1"~ contains the instruction code
for CLR R@

__1~'J6 t'J65J6J6J61

Before Execution. After Execution.

Example. Clear the low byte of Register _

Location 1~~~ contains the instruction code
for CLRB RJ6

__1_1616 '1~5f6f6f61

"

t

Before Execution.

R1J 11111111

After Execution.

RJ' 11I1J6J6J6(



3.3.4 Condition Code Operate Group

You will recall that the four least significant bits of the

Processor Status Word are referred to as the condition code bits.

15 87 6 5 4 .3 2 1 ~

Iunused in basic 11 ~r~or:it~

Figure 3-29 Processor Status Word

As was shown in the instruction lists presented earlier,

these bits may be implicitly modified by instruction execution

N =1 if the result was Negative

Z =1 if the result was Zero

v =1 if arithmetic oVerflow resulted

C =1 if a Carry from the MSB position resulted

and will therefore in these cases reflect the result of the

previously executed instruction. The information provided by

these bits can then be used by other instructions (i.e., Branches)

in the proqram.

These condition code bits may also be explicitly modified

by means of the Condition Code Operate instructions. These 1n-

struct10ns are commonly used to make sure that certain bit(s) are

set (or cleared) before a given programming sequence is begun.

,



r' '15 14 13 12 11 116 9 8 7 6 5 4 3 2 1 ~

·0 : : I :~ : I16 : :~'~16 16 /6 /I 16 1
, 1 1 1 ~ 1

Clear
N Z V C

Se~

Piqure 3-316 Condition Code operate Instruction

Description. Set or Clear condition code bit(s)

The bit 4 position specifies whether the
Condition Code Operate Instruction is a
Clear (bit 4'=/1) or a Set (bit 4 = 1)

Bit positions 16-3 of the Condition Code
Operate Instruction (correspondinq to the
positions of the condition code bits in
the Processor Status Word) specify whether
or not these bits are to receive the action
of the instruction (/6 = no) (1 = yes)

Be aware that many possible 'combinations
(other than CCC or SCC) may be selected for
use (1.e., ~J6/6243 Clears both C and V)

Condition Codes. All are explicitly Cleared or Set

Examples. MNEMONIC INSTRUCTION OPERATION CODE

CLC CLear C 16/616241

SEC SEt C /1/616261

CLV CLear V 161616242

SEV SEt V 161111262

CLZ CLear Z 111111244,

, SiZ SEt z Jl1I1I264

CLN CLear N /6111125{1

SEN SEt N /6161627/6

CCC CLear all 16/6/6257

SEC Sh all 16/6/6277



3.3.5 General/Arithmetic

3.3.5.1 Introduction

The qroup of sinqle and double operand instructions

which follows has been termed General/Ar1thme~icbecause each

instruction could, dependinq upon a qiven usaqe, be listed in

either cateqory.



3.3.5.2 CLEAR

CLeaR DeSTination

15 14 13 12 11 116 9

~91:91:91 11 :91: 1

Piqure 3-31 Clear Instruction

Description. Replaces the content of the destination
location With zeroes

Cond:Ltion Codes. N
Z
V
C

Cleared
Set
Cleared
Cleared

Example, Clear location l~__

Locat.ions 51616 and 5/62 contain the code
. for CLR @#l!@!

_~1651616~
16/1/15162~

•

r

Before Execution • After Execution.



MOVe SouRCe,DeSTination 81SSDD

~

15 14 13 12 11
1_

9 8 7 6 .5 4 3 2 1 -~~ :~ : 1 I : : 8~C : : I : : dSf : : I u

P1qure 3-32 Move Instruction

Descriptions Moves (a copy of) the source operand to the
destination location. The content of the
source location is not affected; the oriqinal
content of, the destination location is lost
(replaced by the copy of.the source operand)

Condition Codes. N Set if source operand less than zero; ~
Cleared otherwise

Z Set 1f source operand is equal to zero;
Cleared otherwise

V Cleared
C Not affected

Examples Move the value 123456 to Reqister 3

Locations 5f6[6[6 and 5[6[62 contain the code
for MOV #123456,.R3

_165[6_[6 ~~....
_[65[6162

Before Execution.

R3 1~1~1$l11

__5J6~2 )1234561

After Execution.

R3 '11234561

__516_2 1123456~



3.3.5.4 TEST-

TeST DeSTination .pJ57DD

..
15 14 13 12 11 116 9 e 7 6 5 4 3 2 1 /I

1KI~:~:~11:~: 1 11:1 :1 I : : d~t : : I
Piqure 3-33 Test Instruction

Descriptiona Tests the content of the destination
(Specifically for Negative and Zero)

The content of the destination is not affected

Condition Codesa N Set if destination operand less than zero;
Cleared otherwise

Z Set if the destination operand i8 equal
to zero, Cleared otherwise

V Cleared
C Cleared

.Examplea Test the content of Reqister 5

Location 7~pJ contains the code
for TST RS

1611/1791/6 I.@P!S791SI..
Before Executiona After Execution a

• R5 11777771 R5 li777771
N z V C N Z V c
If 1

_.
1. 1 -- 16



3.3.
0

5.5 COMPARE

CoMPare SouRCe.DeSTination 82SSDD

is 14 13 12 11 111 °9 8 7 6 5' 4 3 2 1 _

~-:1:-I~:~:~3~c~:~:~I~~:~:_.d~F~:~:_1

Plqure 3-34 Compare Instruction

c

Description. Compares the source and destination operands
by subtraction (source - destination)

Neither operand is affected

Condition Codes, N Set if the result is less than zero;
Cleared otherwise

Z Set 1f the result is equal to zero;
Cleared otherwise

V Set if there was arithmetic overflow
(operands of opposite signs. s1gn of the
result same as sign of the destination);
Cleared otherWise

C Set if there was no carry from the MSB
position ofOthe result; Cleared otherwise

Example. Compare the contents of Register 2 and Reqister 3

Location SI'I' contains the code
for CMP R2,R3

16~IIS_16 l1'2~2~31
Before Execution After Execution.

R2 1_~9J9J1'51 R2 r9J~9J9J9JS'
R3 117776! R3 1177761"1

N z V C N Z V C

~If 1 If 1 1 /I 1 1



3.3.5.6 SWAP BYTES

SWAp Bytes DeSTination

5' 4 3 2 1

: I
Pigure 3-35 Swap Bytes Instruction

Description I Exchanqes the hiqh order byte and low order byte
of the destination word

Condition Codes. N Set if MBB of low order byte (bit 7) of the
result is set; Cleared otherwise

Z Set if low order byte of the result is equal
to zero. Cleared otherwise

V Cleared
C Cleared

Example. Swap the hiqh order and low order bytes of R4

Location 2~~~ contains the code
for SWAB R4

•

Before Execution.

R4 123456

After Execution.

R4 ~27247

87654321



3.3.5'.7 ROTATE RIGHT

Rotate Riqht DesTination

15 1.4 . 13 12 11 111 9 8 7 6 5 4 . 3 2 1 11

~ II :/6 ~l : 1 : 16 I 91: /6 :/6 I : ' : aTt : : f'
0

Fiqure 3-36 Rotate Riqht Instruction

Description. Rotates all bits of the destination word one
place to the right. The content of 'the C bit
of the Processor Status Word is rotated into
the bit 15 position, and the content of bit ¢
is ··rotated into. the C bit position

c

D-+~-.......-........----....-...................-.~ .....
+-------~

A -17 bit connected serial shift- one position
to the riqht which facilitates sequential bit
testing and detailed bit manipulation.

Condition Codes a N

z
v

C

Set if the high order bit of the result is
set (reSUlt less than zero); Cleared otherwise

Set if· all bits of the result are zeroes:
Cleared otherwise

Loaded with the Exclusive OR.pf the N bit and
C bit (as set by the completion of the
Rotate instruction)

Loaded with the low order bit of the destination

Example. Rotate Right the content of Register /6

Location 1~~/6 contains the code
for Rca RPJ

lI/6ll1l1¢ I~{469J9J9JI
Before Execution.

RII 11234561

C bit f6

After Execution.

RJ6 1~516271

C bit _



~ 3.3.5.8 ROTATE LEFT

Rotate Left DeSTination

..,

Pigure 3-37 Rotate Left Instruction

Description. Rotates all bits of the destination word one
place to the left. The content of the C bit
of the Processor Status Word is rotated into
the bit 16 position, and the content of bit 15
is rotated into the C bit position

C 15D....~.....-.-..- .............-....-.-.........-..-...........-..
I....-.-------~

A -17 bit connected serial shiftM one position
to the left which facilitates sequential bit
testing and detailed bit manipulation.

•

Condition Codes. N Set if the high order-bit of the result is
set (result less than zero); Cleared otherwise

Z Set if all bits of the result are zeroes;
Cleared otherwise

V Loaded With the Exclusive OR of the N bit and
C bit (as set by the completion of the
Rotate instruction)

C Loaded with the high order bit of the destination

Example. Rotate Left the content of Register 16

Location 1~16~ contains the code
for ROL Rf6

/lJ61~[6~ 1919161i1911

Before Execution.

Rt6 11234561

C bit J6

After Execution a

RJ6 J~47l34l

C bit 1



3.3~-S.9 ARITHMETIC SHIFT RIGHT

·Arithmetic Shift Riqht DeSTination

5 4 3 2 ]

"
Fiqure 3-38 Arithmetic Shift R1qht Instruction

Description. Shifts all bits of the destination location one
place to the right. The present content of the
C bit is lost as the content of the bit ~

position is shifted in and bit 15 is replicated
(to maintain the sign)

C

~-)(---------
The ASR instruction performs signed division by

two on the content of the destination location.

Condition Codes. N Set if the high order bit of the result is set
(result less than zero); Cleared otherwise

Z Set if all bits of the destination are zeroes;
Cleared otherWise

V LOaded with the Exclusive OR of the N bit and
.C bit (as set by the completion of the Shift
instruction) ~

C Loaded with the low order bit of the destination

Example. Arithmetic Shift Right the content of Register ~

Location 1~¢¢ contains the code
for ASR R@

16161~~~ I¢{162¢{1t
Before Execution.

R/4 11234561

C bit ~

After Execution,'

R/4 '1516271

C bit /4



3.3.!.1~ ARrTHMETIC SHIFT LEFT

Arithmetic Shift Left DeSTination

..

...

Figure 3-39 Arithmetic Shift Left Instruction

Description. Shifts all b1ts of the destination location one
place to the left. The present content of the
C bit is lost as the content of the bit 15
position is shifted in and the bit ~ position
i8 (always) loaded with a zero

The ASL instruction performs s1qned multiplication
by two (with overflow indication) on the content
of the destination location.

Condition Codes, N Set if the hiqh order bit of the result is set
(result less than zero); Cleared otherwise

Z Set if all bits of the result are zeroes;
Cleared otherwise

V Loaded with the Exclusive OR of the N bit and
C bit (as set by the completion of the Shift
instruction)

C Loaded with the high order bit of the destination

Example I Arithmetic Shift Left the content of Register ~

~ Location l~~~ contains the code
for ASL R@

1616116[6[6 l¢¢63¢¢1

Before Execution. After Execution.

C bit 16 C bit 1



ADD SoURCe,DeSTination '6SSDD

~

15 14 13 12 11 116 9 e 7 6 5 4 3 2 1 16

m 1 :-I : : SiC : :. I : : d1 t : : I ~

Figure 3-4_ Add Instruction

Description, Adds the source operand to the destination operand
and stores the result in the destination location.

The source operand is unaffected, the destination
operand 1s lost (replaced by the result)

Condition Codes, N Set if the result is less than zero, ~
Cleared otherwise

Z Set if the result is equal to zero;
Cleared otherwise

V Set if there was arithmetic overflow
(operands of same sign; result of opposite
s1qn) , Cleared otherwise

C Set if there was a carry from the MSB of the
reSUlt, Cleared otherwise

Example. Add the content of Reqister 3 to' the content
of location S~~J6

Locations 7~~ and 7~2 contain the code
for ADD R3 ,@#5~{6~

JI!6!67~~~
__~7_2~

Before Exeqution'After Execution.

R3 1_~~1231

11115111111 I~fI~4561
R3 1~!6f61231

16115111111 I flfl1I6f61 1
~"J



3.3.5.12 SUBTRACT

SUBtract SouRCe.DeSTination

12 11 lltJ

:-1 .: : :
7

:
6 5 4 3 2

16SSDD

1

: I
Piqure 3-41 Subtract Instruction

Descriptions Subtracts the source operand from the destination
operand (destination - source) and stores the
"result in the destination location

The source operand is unaffected; the destination
operand is lost (replaced by the result)

•

Condition Codes. N Set if the result 1s less than zero;
Cleared otherwise

Z Set if the result is equa"l to zero;
Cleared otherwise

V Set if there was arithmetic overflow
(operands of opposite signs; sign of result
same as sign of source); Cleared otherwise

C Set 1f there was no carry from the MSB
position of the result; Cleared otherwise

Examples Subtract the content of Register ·3 from the
content of location 5~~1tJ

Locations 7~~ and 7162 contain the code
for SUB R3,@#5~f6f6

_16167_~ miml
/616167[62~

Before Execution.

R3 IW1231
__5/61616 JW'!6¢1.1

After Executions

R3 IWP!123'
16/651616¢ le¢¢456~



INCrement DeSTination

Piqure 3-42 Increment Instruction

Description. Adds one to the content of the destination
location

Condition Codes. N Set if the result is less than zero;
Cleared otherwise

Z Set if the result equal to zero;
Cleared otherwise

V Set if the destination operand was _77777;
Cleared otherwise

C Not affected

Example. Increment the content of. Register 5

Location 3~~16 contains the code
for INC RS

._'3'16_ I[6p!s2p!sl

~
I

Before Execution.

RS 11234561

After Executions

RS 11234571

./



3.3.5.14 DECREMENT

DECrement DeSTination

115

~
14 13 12 11 116 9 8 7

_ : _ : _ ~ _ : 1 1-: 1

6 5 4 3 2

: 1 1.......:'-:-.....-..d1~t .-.-:.--:(

..

Figure 3-43 Decrement Instruction

Descriptions Subtracts one from the content of the destination
location

Condition Codesl N Set if the result is less than zero;
Cleared 'otherwise

Z Set if the result is equal to zero;
Cleared otherwise

V Set if the destination operand was l~~~~~J

Cleared otherwise
C Not affected

Examples Decrement the content of Reqister 5

Location 3161616 contains the code
for DEC RS

,,3'_, J2[21539151

•

Before Execution.

RS J1234571

After Execution s



:3.-3.5.15- COMPLEMENT

COMplement DeSTination _1651DD

Flqure 3-44 Complement Instruction

Description. Replaces the content of the destination location
with its one's complement

Condition Codes. N Set if the MSB of the result. is set;
Cleared otherwise

Z Set if the result is equal to zero;
Cleared otherwise

V Cleared
C Set

Bxample. Complement the content of Register 5

Location 3~~~ contains the code
for COM RS

. 16_3161616 11616511651
Before Execution.

RS 11234561

After Execution.

RS 11654321' ·



3.3.5.16 NEGATE

NBGate DeST1na~1on

113 12 11 111 9 8 7 6 5 4 3 2

~ : ~ 1.....1
....: ~......: -..111 : ~ : ~ 1 .......: .-...:_d;.....t .....: _:_1

15 14

~ ~:

Piqure 3-45 Neqate Instruction

Descriptions Replaces the content of the destination location
With its two's complement

Condition Codes. N Set if the result is less than zero;
Cleared otherwise

Z Set if the result 1s equal to zero;­
Cleared otherwise

V Set if the res~lt is l~~~__ J
Cleared otherwise

Example. '!'wo's cQmplement the content of Register 5

Location 3~¢¢ contains the code
for NEG RS

Before Execution. After Execution.

• R5 J1234S6~ RS I~543221



3.3.6 Logical

3.3.6.1 Introduction

The qroup of double operand instructions which follows

has been termed Loqical because the instructions are based on

the loqic operations discussed earlier (Section 2.5).

These instructions permit operations on data at the

bit level.



3.3.6.2 BIT TEST

BIt Test SouRCe,DeSTi~tion 113SSDD

P1qure 3-46 Bit Test Instruction

Description. Performs a Loqical AND operation between the
source and destination operands

Neither operand is affected

This instruction is commonly used for status
checking; to determine whether or not certain
bit(s) are set (cleared) in a specified word

Condition Codes. N Set if the MSB of the result is set;
Cleared otherwise

Z Set if the result is equal to zero;
Cleared otherwise

V Cleared
C Not affected

Example. Location 1775616 contains the status word for an
Input Device; bit 7 is set when a transfer of
information 1s complete. Check this Iidone bit.·

Locations 5~~¢, 5¢¢2, and S¢¢4 contain the code
for BIT #2@@r@!17756@

J616S¢¢[6 ~~~__SI6162
16_516_4 ................

Before Execution.

Jl16516~2 I¢¢¢2~Jt' i
1775616 J¢Jl1¢f6¢~'

N Z V c
1 11611

After Execution,

16I1S16162 J¢~¢2¢¢j

17756_1 ¢$!1¢9J0Jt11

N Z V C
16 1 16 ~



BIt Clear SouRCe,DeSTination' a4SSDD

11 III 9 8 7' 6 S· 4 3 2 1 Jt1

: :-.-.Isj___..c:.....-..:~I__: .-..-:--.-dft......:......:__1

Fiqure 3-41 Bit Clear Instruction

Description. Clears each bit in the destination operand which
corresponds to a set bit in the source operand

The source operand is unaffected. The original
destination operand is lost (receives the action
of the instruction); replaced by the result

This instruction is commonly used for a function ~
called Masking (getting rid of unwanted bits)
or Extracting (saving wanted bits)

Condition Codess'N Set if the MSB of the result is set.
Cleared otherwise

Z Set if the'result 1s equal to zeroJ
Cleared otherwise

V Cleared
C Not affected

Examples Extract the two Least Significant Digits of the
content of location l~¢¢ for future action

Locations 6fi1fi1f6, 6J6fi12, and 611164 contain the code
for SIC #1777@@,@#1¢@@

1l1l6fi1Jt116
1116616162
11/1616164

Before Execution.

_/6616162 '1777@8d

/6/61/1fi1J1 '1234561

N Z V C
1 11616

After Execution.

JI{66J6J12 11777J?!P!1

/lJl1/1J6[4 J¢11111156I

N Z V C
_ 11 t6 16



3.3.6.4 BIT SET

BIt Set SouRCe.DeSTination

IS

~
Fiqure 3-48 Bit Set Instruction

Description. Performs an Inclusive OR operation between the
source and destination operands

The source operand is unaffected. The original
destination operand is lost (receives the action
of the instruction); replaced by the result

This instruction is commoniy used when it is
desired to set certain bites) within a given
word without affecting the other bits

Condition Codes. N Set if the MSB of the result is set;
Cleared otherwise

Z Set if the result is equal to zero;
Cleared otherwise

V Cleared
C Not affected

..

Example.

Before Execution.

~!67!6!62 If6919J1¢9J1

1775616 I f691919J919Jl·

N Z V C
1 11616

Location l7756~ contains the status word for an
Input Device; setting bit 6 enables the Proqram
Interrupt Facility. Do this.

Locations 7~~~, 7~~2, and 7~~4 contain the code
for BIS #1~,@#17756~

J6J67J6~¢
16J67f6~2

1616716164

After Execution.

1616716162 1919Jf619J~1

1 775616 19J¢f619J!l

N Z V c
11 _ 16 /II



3.3.7 Program Con~rol

3.3.7.1 IntrOduction

The qroup of instructions which follows has been termed

Program Control because these instructions control the flow of

the program. Typically, such instructions cause a chanqe from

one sequence of instructions to another.



JuMP DeSTination

Figure 3-49 Jump Instruction

Description. Transfers proqram control to any location .~~.

memory (destination address calculated and
loaded into the Program Counter)

Condition Codes. N
Z
V
C

Not affected
Not affected
Not affected
Not affected

Examples Transfer program control to location LOOP
(arbitrarily defined as location l~~~)

Locations S~~ and Sli12 contain the code
for JMP LOOP

___5~1i1~

1f161i15~2 ~

Before Execution. After Execution.



BRANCH INSTRUCTIONS

15 14 13 12 11 1_ 9 8 7 6 5 4 3 2 1 - ~
".-

SB M A G N

O'P B R A.'l' I ON C O'D E 0 F F S E'l'

OPBRATION

Uncondi~ional Branch
Transfer proqram con~rol to the location defined by the offset

Conditional Branches "
Check the appropriate Condition Code bit(s)

-If the condition(s) met, transfer program control to the
location defined by the offset

-If the condition(s) not met, pass control to the next
8equential location

OFFSET

The offset ~s a signed (two's,complement) displac&~ent to the PC
within the low order 8 bits of every branch instruction

It specifies the number of words from the updated PC to the
desired location

CALCUIATION

The PC expresses a byte address. Because the offset is expressed
in words, it is first converted to bytes and then added to the
PC to effect the transfer

The algorithms used arel

1&£= (OFFSE'l' x 2) + UPDATED PC

RANGE

OFFSET=(LOC - UPDATED PC)/2

The range of any branch instruction is limited b~ the offset
(forward 1778 words; backward 2¢~8 words), but advantages are
that. (1) All branch instructions (except for BRANCH) are
conditional, and (2) The instruction itself will always require
only one word (versus the usual two for the Jump instruction)

RANGE OFFSET
(WORDS) (LOW 8 BITS)

-2" 2_'
• •• •:2 •376

~-1 377, 11_'
+1 "1
+2 'Jl2• •• •• '.+177 177



3.3.7.3 BRANCH

saanch (to) l~

" ... ".>

"

15 14 13 12 11 1_ 9 8 7 6 5 4 3 2 1 ,

~_:_:_I_:_:_~~:o~:_p~:p~:~s:~E~~T~:~1

1'1qure 3-516 Branch Instruction

Descriptiona Transfers program control unconditionally to
~he location defined by the offset

(See next paqe for qeneral operational information)

Condition Code.. Not affected

Example, Transfer proqram control to location LOOP
(arbitrarily defined as locati~n l~~~)

Location 51616 contains the code fo
for BR LOOP

Before Execution.

* OS=(LOC-UPC)/2
OS=(1¢¢¢e-5¢2s)/2
OS=276s/2
OS=1378

After Execut.ion.



3.3.7.4 BRANCH iP EQUAL ZERO

Branch 1f EQual zero (to) lac: Jl1I14xxx

15 14 13 12 11 l~ 9

GJ,:,;,J-:';l
Piqure 3-51 Branch if Equal InB~ruc~ion

Descriptions

Condition Codess

.Transfers program con~rol to the location defined
by the offset!! the condition (Z bit set) is met.
If the condition is not met, control passes to the
n~ sequential location

Not affected

Example. Compare the contents of Reqieter 1 and Reqister 2.
Branch to location SAME (arbitrarily 1~5~) if the
contents are equal ~

Locations 1161616 and 116112 contain the code
for CMP R1,R2

BEQ SAME

'1I1~J616 ~
11161_162~ * .

Before Executions

Rl lp!p!¢59J~(

R2 IP!PJ[65f!!1
PC Ii1pJlf!¢IlJ)

* OS=(LOC-UPC)/2
OS~pJ5¢8-19JJ64e)/2
OS=448/2
OS=228

After Executions

R1 19J~~S9J9J1

R2 1p!P!9J5p!9J~

PC I~~19J59J1



3.3.7.5 BRANCH IF NOT EQUAL ZERO

Branch if Not Equal zero (to) loc

Q

Fiqure 3-52 Branch if Not Equal Instruction

Description. Transfers proqram control to the location defined
by the offset ![ the condition (Z bit clear) is
met. If the condition is not met, control passes
to the next sequential location

Condition Codes. Not affected

Example. Compare the contents of Register 1 and Reqister 2.
Branch to location DIFF (arbitrarily 1~5~) if the
content~ are not equal

Locations If6f6[6 and 116[62 contain the code
for CMP Rl,R2

BNE DIFF

_16116[616 IOOiiI
_11116162~ *

Before Execution.

Rl Imskm
R2 )wswl
PC 1.i19Jl¢.QJ~f

After Execution.

Rl 1t1t1¢sf6!~

R2 JM¢ysi9J1
PC IJi1¢1YJ¢4 I

* OS=(LOC-UPC)/2
OS=(l~S~8-1f6~48)/2
OS=44e/2
OS=228



3.3.7.6 BRANCH IF PLUS

Branch 1f PLus (1:0) 1oe:

15 14 .13. 12 11 116 9 8 7 6 5 4 3 2 1 _

~_:_:_I_:_:_~~:~O:~F~:~F:~'S~:-E~:T~:~1

Plgure 3-53 Branch if Plus Instruction

Description. Transfers proqram control to the location defined
by the offset II the condition (N bit clear) is
met. If the condition is nat met. control passes
to the next sequential location

Condition Codes. Not affected

Example, Test the content of Reqister 4; branch to location
PeS (arbitrarily 2~2_) if the content is positive ~

Locations 2~~~ and 2__4 contain the code
.for TST R4 .

BPL POS

_162'~' ~__216162.~ *

Before Execution.

R4 11111111

PC .J~J62¢9J-"J

" OS=(LOC-UPC)/2
OS=(2J62~8-2J6J648)/2
OS=14s/2
08=68

After Execution I

R4 '1111111

PC '161629J9J4(



~ 3.3.7.7 BRANCH IF MINUS

Branch 1f ~nu8 (to) loc

'II

15

GJ
14 13 12 11 116 9 8 7 6 5 4 3 2 1 16

_:_:_I _:- : - I 1 1--......:0.....: _P~__F : s :_E.-.-:T__: _I
Pigure 3-54 Branch if Minus Instruction

Description. Transfers program control to the location defined
by the offset!! the condition (N bit set) is met.
If the condition is not met, control passes to
the next sequential location

Condition Codes. Not affected

Example. Test the content of Reqister 4, branch to location
NEG (arbitrarily 2/62/6) if the content is negative

Locations 2~1616 and 216164 contain the code
for TST R4

BMI NEG

_162/61616~
_16216162~ It

Before Execution. After Execution.

-oar R4 t11l1111

PC I!9J2169J~1

* OS=(LOC-UPC)/2
oS=(2162f6e-29J~4e)/2

OS=14e/2
OS=6e

R41111111)

PC J9JPJ2912M



3.3. 7 ~8 BRANCH IF CARRY CLFAR

Branch if Carry Clear (to) lac

15 14 13 12 11 116 9

8-:-:-1-: 1
:

1

Pigure 3-55 Branch if Carry Clear Instruction

Description. Transfers program control to the location defined
by the offset!! the condition (C bit clear) 1s
met.. If the condition 1s not met. control passes
to the next sequential loc:at10n

Condition Codes. Not affected

Example. Add the contents of Reqister 3 and Reqister 4, '"
then check to see 1f a carry resulted. It there )
was no carry, branch to CNO (arbitrarily S~')

Locations 5416 and 542 contain the code
for ADD R3,R4

BeC CNO

___5411~
__16542~*

Before Execution.

R3 [fJ76543 I
R4 1123456)

PC IM'54,Q!1 .

.. OS=(LOC-DPC)/2
OS=(59JJt's-544e)/2
08=-448/2
OS=-22a08:3568 ,

After Execution.

R3 .IJtl76543I

R4 '16222211

PC t!I1P!544 ~



~ 3.3.7.9 BRANCH IF CARRY SET

Branch if Carry Set (to) loc lSll34xxx

•

Fiqure 3-56 Branch if Carry Set Instruction

Description. Transfers proqram control to the location defined
by the offset!! the condition (C bit set) 1s met.
If the condition 1s not met, control passes to
the next sequential location

Condition Codes. Not affected

Example. Add the contents of Reqister 3 and Register 4,
then check to see if a carry resulted. If there
was a carry, branch to eYES (arbitrarily 5~_)

Locations 54~ and 542 contain the code
for ADD R3,R4

BCS eYES

__~54_~
J6Sl1~542~

\

Before Execution.

R3 Ip!76543I
R4 11234561

PC (p19!9!54~f

* OS=(LOC-UPC)/2
06=(591918-5448)/2
OS=-448/2
OS=-22a
OS:356e

After Executiona

R3 191765431

R4 19122221'

PC I@f19!5~~1



. 3.3.7 .111 BRANCH IF OVERFLOW CLEAR .~

Branch 1f overflow Clear (to) lcc:

•
1235 415 14 13 12 11 116 9· 8 7 6

GJ -:-:-1- :1 :- 1- l~·......:o.....:-p:......p.....:S.....:-B.....; T....:~l
Fiqure 3-57 Branch 1f Overflow Clear Instruction

Descriptions Transfers program control to the location defined
by the offset !l the condition (V bit clear) is
met. If the condition is not met, control passes
to the next sequential location

Condition Codes. Not affected

Example. Rotate right the content of Reqister 3, and branch
to location OK (arbitrarily 5~3J6) if there was no ~
arithmetic overflow '

Locations 5~~J6 and S_~2 contain the code
for ROR R3

BVC OK

_165161616~
11165__2 ~*

Before Execution. After Execution.

·C bit 16

R3 19112345 ~

PC ~J6J65Jt1.PJ~1

C bit 1

R3 J9J9J5162~

PC 19J~59J9J4~

* OS=(LOC-UPC)/2
OS=(SJ63J6e-SJ6J64e)/2
08=24e/2
OS=128



r 3.3.7 .11 BRANCH XF OVERFLOW SET

Branch if oVerflow Set (to) lcc

2 135 46712 11 116 9 8

_ J - : 1 : - 11 1--......: 0.....: _F:__1' ......: ~s:_E...-.:T......: I
15 14 13

EJ -: -:
Figure 3-58 Branch 1f Overflow Set Instruction

Description, Transfers prog~am control to the location defined
by the offse~!I the condition (V bit set) is met.
If the condition is not met, control passes to
the next sequential location

Condition Codes. Not affected

Example a Rotate right the content of Register 3, and branch
location RESTOR (arbitrarily 5~3_) if there was
arithmetic overflow

Locations 5~~16 and 5~_2'contain the code
for ROR R3

BVS RESTOR

Before Exe~utiona After Executiona

C bit _

R3 J'12345~

PC It1g15JtUt!~J

C bit 1

R3 Iplf!5162J

PC J,'fflst3kl

* OS=(LOC-UPC)/2
OS=(5¢3~8-5~~48)/2
OS=24a/2
OS:12a



'.01-,

e.



APPENDIX A

Answers to selected exercises

Chapter 2

1 • ~[61 Ifl[6 1[616

1. 1.912

1. 11'4

1.. 482

2.6.5

2. 1611 1161 [611

2. 54

2. 17591

2. 512

2. 91/1/1576

2.6.7

1. 911691 ¢[ll [611 1111 [41[6 111. 2. 169JfI ¢¢l ¢11t1 Ilt11 1.f61t1 1611

1 • 237773

2.6.1'

1. [6/11345

2.6.11

1 • 9Ji'f6 161616 16116 161616 lf6f6 11111

2.6.12

1. [Ill f611 111 1911 111 111

2.6.13

1.. 9~1 III 11511 JIll 51'1 111

2. 9115552

2. 1616[6445



.' ./
\/



APPENDIX B

Answers to selected exercises

3.2.4.1 General Register Addressing Modes

SYMBOLIC
CODB

OCTAL SOURCE DESTINATION (R2)
CODE . BPncrIVB. ADDRUS EPPBC'l'IVB ADDRESS

HOV R~,R2

HOV R1,(R2)

HOV a1,(R2).

MOV R1,-(R2)

MOV R1,1911I(R2)

MOV. R1,.-(R2)

R:J..

R3. i

121··

R:l..
R:L·

3.2.4.2 Program Counter Register Addressing Modes

SYMBOLIC OCTAL SOURCB DBSTIMTION (R_>
CODE CODE BPl'BC'l'IVB:ADDRBSS BPFBCTIYB ADDRESS

MOV #123456,R/I 1(,; ~$

HOV "'123456,RJ 'R 3f/4<1;
HOV 123456,Rt' • 3f/4tIJ
MeV .123456,__ ~ ~



. -. .

...~

. .

. .

.W

~ .



mamaama
DIGITAL EQUIPMENT CORPORATION Maynard Massachuselts Telephone ,6171897·5111 • ARIZONA Phoer"llK • CALIFORNIA
5mnyva1e Santa Ana Los Angeles San Doege and San FranciSCO ,Mountam VIeW' • COlORAOO, Engelwood -CQNNECTIQ)T,
Meni1en • DISTRICT OF COLUMBIA, washington Rrverciale, Mel • FLORIDA Orlando. GEORGIA Atlanta. ILLINOIS Northbrook
• INDIANA lnchanapohs. LOUISIANA Metairie. MARYlAND, Riverdale. MASSACHUSETTS Cambndge and Waltham. MICHIGAN
A1V'I Arbor and DetrOIt Southfield • MINNESOTA MinneapolIS. MISSOURI Kansas Cty and Maryland Hetghts • NEW JERSEY
Fa.rloete' MetUChen and Pnncelon • NEW MEXICO AlbuQuerQue. NEW YORK Hunllnglon Slatoon Manhattan, New Yor1o; Syracuse
and !;'Xhe$lef. NORTH CAROliNA. Durham,Chapel HIli. OHIO Oeveland, Dayton and Euclid. OKlAHOMA. TUlsa-OREGON
Pc...-: • PENNSYLVANIA Bluebell Paoh and Plnso...gh • TENNESSEE KooKv,lIe • TEXAS Dallas and Houston • UTAH Salt Lake
City • Y'oi&.SHIN(;TQN Betlevue • WISCONSIN MIlwaukee • ARGENTINA Buenos AIres. AUSTRAliA Adelaide BrIStlrane Crows
~> NoI'wood Perth and Symey • AUSTRIA Vtenna • BELGIUM Brussels. BRAZIL RIO de Jane'fO sao Paulo

p. A f'9fe • CANADA Alberla Vancouver British ColumbIa, Hamilton M,sslssauga and Onawa Qnlaoo. and
..etleC • o-tlLE $antl.tgO • DENMARK. Copenhagen and Hellerup • FINlAND HeolSUllu • FRANCE Grenoble and RoogtS •

r Har'wlovef FrankfUrT MunICh and SIUt1gan • INOlA Bombay • ISRAEL Tel AvIV. ITALY. MIlano • JAP~
• MEXICO MeXICO C,ty • NETHERLANDS The Hague • NEW ZEALAND Auckland. NORMY Oslo.

• PUERTO RICO. M,ramar and SMturce • REPUBLIC OF CHINA. TaIwan • SCOTlAND Wesllottllan •
:u .nd Maond • SWEDEN Solna and Stockholm • SWITZERLAND Geneva and Zunch • UNITED

gham Sr stot EdInburgh, London, Manchesler ReadIng and WarwIckshIre • VENEZUELA. caracas

I

I


	Preface
	Table of Contents
	Chapter 1 Introduction to Computers
	Chapter 2 Numbers and Other Stuff
	Chapter 3 The PDP-11
	Appendix A Answers to selected exercises
	Appendix B Answers to selected exercises

