dlilgliltlall

.

The reproduction In part or whole is strictly prohibited. For copy information contact the Digital Educational Services Department in Maynard, Massachusetts 01754.

COPYRIGHT € 1974 DIGITAL EQUIPMENT CORPORATION

-4

. g, Xryrats

INTRODUCTION TO PROGRAMMING
the

PDP-11

Donald S. Lawrence, Jr.

DIGITAL EQUIPMENT CORPORATION

Copyright (€) 1974 by Digital Equipment Corporation
Printed in the U.S.A.

N

Preliminary Printing, May, 1973

NOTE

(Chapters I-III)

This handbook is for information purposes and is sub ject

to change without notice

Associated Documents:

PDP-11 Processor Handbook

PDP-11 Peripherals and Interfacing Handbook

PDP-11 Paper Tape Software Programming Handbook

Trademarks of Digital Equipment Corporation include;

DEC
DECtape
DIGITAL (logo)

COMIEX-11

ii

PDP-11
RSTS-11
RSX-11

UNIBUS

PREFACE

The primary purpose of this book is to serve as an
introduction to the PDP-1ll family of computers, although it
will meet the needs of a general readership as well. It
assumes little or no previous computer experience on the pa-c
of the reader, and thus contains introductory information of
a general nature and discussion of fundamental concepts in

addition to supplying material pertinent to the PDP-1l,

It is intended to provide an understanding of computers
in general and the PDP-ll family in particular, and to serve

as a prelude to more advanced documentation.

Donald 8. Lawrence, Jr.

May, 1973

i1

TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCTION TO COMPUTERS 1-1
1.1 PERSPECTIVE 1-1
1.2 DEFINITION 1-2
1.3 CLASSIFICATION 1-6
1.4 APPLICATION 1-8
II. NUMBERS AND OTHER STUFF 2-1
2.1 INTRODUCTION 2-1

2.2 NUMBER SYSTEMS 222

2.2.1 Basic Principles
2.2.2 Decimal Number System
2.2.3 Binary Number System
2.2.4 Octal Number System

2,3 CONVERSIONS 2-23

1 Introduction

«2 Decimal to Binary
3 Binary to Decimal
+4 Decimal to Octal
5 Octal to Decimal
.6 Binary to Octal
7 Octal to Binary

2.4 ARITHMETIC OPERATIONS 2-35

1 Introduction

2 Addition

3 Direct Subtraction

4 Complementary Addition

2.5 LOGIC OPERATIONS 2-55
1l Introduction
2 AND

3 Inclusive OR
4 Exclusive OR

2.6 EXERCISES 2-63

CHAPTER

III.

Iv.

THE PDP-11

3.1 SYSTEM ORGANIZATION
3.1.1 Introduction
3.1.2 The UNIBUS
3.1.3 Memory
3.1.4 Central Processor
3.1.,5 Input-Output Devices

3.2 ADDRESSING MODES
3.2.1 Introduction
3.2.2 General Register Addressing Modes
3.2.3 Program Counter Addressing Modes
3.2.4 Exercises

3.3 INSTRUCTION SET

3.4 SYSTEM OPERATION (FORTHCOMING)

FUNDAMENTALS OF PROGRAMMING
4,1 THE PROGRAM

4.2 LANGUAGES

4,3 CONCEPTS AND TECHNIQUES

4.4 EXAMPLES

PAGE

3-1
3-1

3-19

Chapter 1

INTRODUCTION TO COMPUTERS

l.1 PERSPECTIVE

The transition from man's first desire to count and measure
to your PDP-1ll computer is indeed a great one, and the reader is
heartily encouraged to pursue the fascinating topic of computer
history. For the purpose of this text, it is sufficient to say
that the development and continuing evolution of the computer has
brought about a dramatic change in our lives and promises even

greater change in the years to come,

During the last twenty years especially, there has been an
explosive proliferation of computing machines designed to meet a
vast range of applications. Perhaps of even more importance than
the ever-improving developmental technology is the unceasing dis-
covery of new ways in which we may use computers. In fact, it
would seem that we have reached the point where :he machine capa-
bility and the task are present, and it is only our lack of appli-

cational insight that limits us.

1.2 DEFINITION

The ma jority of everyday users, as well as the novice, view
the computer as a "black box." That is to say, they know what is
done (the performance characteristics) but not how it is done (the
components and/or means of operation). Thougﬁ this knowledge is
superficial, it is often sufficient; rarely is anyone required to
fully comprehend all the details of any computer system. It is
in fact customary for the individual to accept a "black box" des-
cription of a computer or computer function at some level, anrd
then deepen his understanding when motivated by desire or neces-
sity. As indicated in the preface, this text assumes that you
oresently regard the computer itself as a "black box," and will

attempt to bring you beyond that level.

The computer may be defined as a_machine, devised and used

by man because.(like other machines) it can perform certain tasks
better than man himself.

Technically, it is an_electronic device capable of accepting

information, applying prescribed processes to that information,
and supplying the results of those processes. Very basically

then, the computer cani
(1) accept INPUT (information to be processed)

(2) PROCESS the information (manipulate it in a prescribed way)

(3) produce OUTPUT (the results)

Based on this definition, we may represent the computer by

means of the following block diagram (Figure 1-1):

PROCESSING

UNIT

Figure 1-1 Simplified Computer Block Diagram

At this point, our definition and diagram might well encor.-
pass other devices, such as the electric adding machine and desk
calculator. To differentiate, we will note that the computer
posseses two additional (and distinctive) characteristics:

(1) It is capable of manipulating a variety of symbols, and
is not restricted to numbers only. It processes data.

(2) It processes automatically, with only initial human in-
tervention required. The sequence of operations to be performed

(called the program) is first stored in the computer.

A deeper observation of computer operation will help illus-

trate these aspects of your Programmed Data Processor.

e e e e,

e

Let us approach this more detailed representation by using
you as an example., You are given the verbal directive, "Mentally
add the numbers fifty-four, eighty-seven, and thirteen." After an
individually dependent computational pause, you orally respond,
“The sum is one hundred and fifty-four,"

Figure 1-2 Analogous Computer Block Diagram

What has happened? Your aural and vocal anatomy has served
as the means of INPUT and OUTPUT respectively; your brain has been
used to PROCESS the information. For the present, the terms INPUT
and OUTPUT sufficiently describe the operations performed, but the
term PROCESS appears to be somewhat obscure. Let us examine what
has taken place here a little more closely.

(1) You remembered the values given and called upon skills
previously learned and retained - therefore, MEMORY was required

(2) The operations -were ordered, with the values being manip-
ulated in a prescibed manner - thus, some element of CONTROL was
present

(3) A mathematical calculation was performed - hence, an
ARITHMETIC function was involved

We may directly associate these features with units in the
basic computer block diagram (PFPigure 1-3) to complete this gen-

eral definition.

R |

24

data flow
----- control path

Figure 1-3 Basic Computer Block Diagram

INPUT UNIT - Under the direction of the CONTROL UNIT, it
® supplies the computer with all the information needed to accom-
plish a given task; the values to be operated upon (data) and the
operations to be performed upon those values (program)
MEMORY UNIT - Contains information for the CONTROL UNIT (pro-
gram) and the ARITHMETIC UNIT (data); holds intermediate and final

results

CONTROL UNIT - Directs the entire process by specifying

to the ARITHMETIC UNIT what operations are to be performed, in
vhich order they are to be performed, and where to get/put the
data involved

ARITHMETIC UNIT - Under the direction of the CONTROL UNIT,

it performs the actual operations; the "working area"

OUTPUT UNIT - Under the direction of the CONTROL UNIT, it

records the results of computer operations

1.3 CLASSIFICATION

As specified by the characteristics in Table 1-1, every
computer may be basically categorized as either ANALOG or DIGITAL
(there are hybrid computers that have both analog and digital
properties). We have been discussing (and will continue to dis-
cuss) only the digital computer, for your PDP-11 belongs to that

class. This comparison is made for reasons of completeness and

further definition.

Table 1-1 Comparison of Analog and Digital Computers

ANALOG DIGITAL
(1) variable electrical or (1) Discrete numerical values
mechanical quantities used to represent data

used to represent data

(2) varying and continuous level|(2) S8et and discontinuous level

of input yields varying and of input yields set and dis-
continuous level of output continuous level of output

(3) Calculates by means of a (3) Calculates by means of a
measuring process counting process

(4) Example: speedometer (4) Example: odometer

i

We may also categorize computers according to their design
capability as being either SPECIAL PURPOSE or GENERAL PURPOSE,
terms that are very self-explanatory. The special purpose ma-
chine is constructed to perform one task, or a closely related
group of tasks. The single sequence of operations it is to per-
form (its program) is “built in.* If ever a program change be-
comes necessary, a hardware modification (physical restructuring)
is required. Conversely, the general purpose machine is designed
to be capable of performing many varied tasks. The many possible
operation sequences (programs) are kept in the memory unit of the
general purpose computer, and for this reason it is sometimes : :-
ferred to as a stored proqram machine. To perform a given task,
the user simply calls upon the appropriate program. The change
from one task to another is accomplished by selecting another

program already in the memory or entering it by means of the in-

put unit.

It should be apparent that previous discussion has been of
the general purpose computer, and we will continue to confine our-
selves to this type. Your PDP-1l1 is classed as both digital and
general purpose.

Now that you have a basic understanding of what the computer

is, let us generally discuss why and in what manner it is used.

1.4 APPLICATION

If given unlimited time to complete a task, factors such as
volume of data, complexity of calculation, and degree of accuracy
become immaterial. For example, you alone could certainly process
the payroll of a large corporation or perform all the calculations
necessary to launch a missile. The chance of you accurately doing
either in a matter of hours or minutes, however, is rather remote.
It is then speed of operation which is the ultimate consideration
in both cases. This element of_ggggg, coupled with accuracy and

it

reliability, is the underlying advantage of the computer; it is

h"’m
the ma jor reason for its existence and use.

We have said that the computer is used because it performs
certain tasks "better" than man. The interpretation of this term
is dependent upon the task, and may imply any combination of the
following features: speed, accuracy, precision, reliability, econ-
omy, efficiency, feasibility. Where then is the computer to be

used? Wherever its attributes enable the task to be done *better."

To list the wide and ever-expanding range of specific appli-
cations would be an arduous chore (surely requiring the use of a
computer!). If, by way of example, the results of a PDP-1ll appli-
cational survey were immediately available to be given here, the
variety of response would easily £ill the remainder of the book.
And this would be for only one computer model of one corporationi
Keeping this in mind, we may denote four general areas of applica-

tions

Business - Computers used in business applications are
usually involved with record keeping; automating the many tedious,
repetitious tasks associated with classifying, processing, and
maintaining information of all kinds. A3 a rule, the business
computer is required to perform only a few simple calculations,

but it must be capable of handling a great volume of data.

Scientific - In the scientific application, the computer is
primarily used for problem solving; the repeated evaluation of
expregsions with different values. It has made practical the ex-
trapolation of immensely complex algorithms. In contrast to th-
business computer, there is usually a small amount of data involv-

ed, but a great deal of calculation.

Control - The capability of the computer to make precise cal-
culations and evaluations at a high rate of speed causes it to he
used in control environments ranging from national defense to the
industrial production line. Here the computer receives informa-
tion, uses it in calculations, and based upon the result "decides"

what to do as an appropriate response.

Simulation - Any given task may be too dangerous, costly, or

intricate for man to attempt. It may not be feasible for him at
all. In such situations, the computer is used to simulate all con-

ditions and interactions, yielding knowledge without risk.

Chapter 2

NUMBERS AND OTHER STUFF

2.1 INTRODUCTION

In writing a book such as this, it is very often desirable to

explain several things simultaneously. This is one of those times!

‘The first chapter has defined the general purpose digital com-
puter, and shown that it manipulates data according to a program of
ingstructions. A logical continuation could therefore be a detailed
look at the PDP-11 in terms of organization and unit interaction.

On the other hand, since we have mentioned the program and indicated
its significance, fundamentals of programming could just as reason-
ably follow. Then too, a discussion of programming languages and

data representation might serve as a likely sequel.

In developing any of these topics, however, there is an ines-
capable involvement with number concepts. Numerical references must
be made in describing the PDP-11 and its operation; program instruc-
tions and data are ultimately represented in numerical code. This
chapter will then concern itself with those number concepts and op-
erations required for you to fully appreciate subsequent discussion
of programming the PDP-11,

The subject of computer math, numbers and “other stuff," is
interruptive regardless of when it is introduced. For this reason,

the reader may wish to move pasat it for the present and make back-

ward references where necessary.

2.2 NUMBER SYSTEMS

2.2.1 Basic Principles

Man’s earliest form of notation was the tally mark, where
there existed a one-to-one correspondence between the marker and
the object to be counted. The aggregate of the scratch marks,
pebbles, or notches was the “number" he wished to record. This
principle of repetition proved cumbersome for even moderately
large numbers, however, and so there evolved various number sys-

tems to meet the increasing demands of civilization,

The number system is a standard means of representing quan-
tity. It consists of a finite set of symbols, called numerals or
digits, and rules which specify how the symbols are arranged to /ﬁ%
form numbers. The early number systems offered an improvement
over recording each unit in that they combined unique quantities
of units into groups and assigned discrete symbols to represent
those groups. They featured the principle of addition, where the
value of an entire number is determined by adding the values of
the individual symbols that comprise it, irrespective of position.
(MMMCCOXXXIII = 1§pp+19¢0+1000+100+100+1p00+10+10+10+14+141 = 3333),
Though later development introduced subtractive (IV=4)‘and multi- @
plicative (M=1¢,#¢p) principles, these systems still served pri-
marily for quantification and record keeping, and had little pro-

vision for calculation (even the most mathematically adept of .
Fomans removed his sandals for MCVII times CLXXVIII).

The positional number systems which followed contain two
additional and distinctive features which greatly simplify the
operations needed to manipulate numbers: the concept of position
and the inclusion of the zero symbol. Like their early counter-
parts, these systems have discrete symbols with unique values and
follow the principles of addition and multiplication. The ma jor
distinction is the principle of place éalue, which specifies that

there is not.only a unique value for the symbol but also a unique

//—'“ NpaRTERRm A

value for the position. Thus the value associated with a symbol
is determined by both its absolute value and the value of its rel-
ative position within the number (3333 = 39@g+3@@+3¢+3 = 3333).

The importance of the zero symbol in a positional number
system is illustrated by the application of the count and carry
(or regrouping) principle. For example, we count from zero to ten

in the familiar decimal system as follows:

-
BWODIOULD WN S

We cycle through the digits to nine, but do not create another
symbol in counting an additional unit. We instead carry the one
to the next (tens) place, and record it there. To indicate that
there are no units, and to *hold® the units place, we record a

zero in that position.

The three number systems that we will discuss in some detail
are presented in Table 2-1. These are all positional number systems
which demonstrate the principles we have previously mentioned:s addi-

tion, multiplication, place value, count and carry.

Table 2-1 Digits and Bases of Selected Number Systems

NUMBER SYSTEM DIGITS BASE
Decimal | #,1,2,3,4,5,6,7,8,9 14
Binary #,1 2
Octal 4,1,2,3,4,5,6,7 8

The term base, introduced in the Table, is commonly used to
name or describe a number system. The decimal system, for example,
is often referred to as the base ten system., For any positional
number system, the base (or radix) is the number of digits it con-

tains.

2.2.2 Decimal Number System

One of the few assumptions made in this text is ﬁhat
you are familiar with the decimal number system., It is the
mathematical language of the “"real world;" a language that
you use on a daily basis. You have memorized the rules and
operational procedures to the point that they are automati-
cally applied, and performing any calculation is straight-
forward. The purpose of this chapter is to have you become
equally well acquainted with the binary and octal systems.
We will briefly reintroduce the decimal aystem here in re-
lation to our previous discussion of basic principles, and
later reference it to help illustrate those aspects it has

in common with the less familiar systems.

The decimal or base ten number system is comprised of
the digits zero through nine (#,1,2,3,4,5,6,7,8,9). It is a
positional number system, so that in progressing from right
to left within a decimal number, the value associated with
each position is an increasing power or multiple of the base.

This place value principle is presented in Table 2-3.

Table 2-2 Powers of Ten

2

14 = 1 = 1
1

19 = 19 = 18
2

19 = 19x18 = 199
3

17 = 11 px1g = 1,899
4

g = 1gx1Px19x18 = 19,008
5

g = 1gx19x1@x1@x1lg = 190,200
6

12 = 1#x12x12x1@x1gx1g = 1,000,000

Table 2-3 Positional Notation with Powers of Ten

Powers of Ten

6 5 4 3 2 1l
14 1p 19 18 1g 1p
1,008,200 |190,2008 | 18,208 | 1,090 189 1g

Place Values

3

As shown in Table 2-4, determining the total value of
a decimal number is accomplished by applying the principles
of place value, multiplication, and addition: multiplying
the discrete value of the digit by the value of the position
in which it is placed, and then adding the resulting pro-

ducts.
Table 2-4 Decimal Number as the Sum of Powers

6 5 4 3 2 1 g
1[16 19 1g 14 18 18 14

y 4 5 6 7
Ly - s
= 7x1¢ = 7x1 = 7
1
= 63(1” = 6x1ﬂ = 6ﬂ
2
_——’ = leﬂ = SXIﬂﬂ = Sﬂﬂ
3
P = 4x18 = 4x1,208 = 4,008
4
» = x1F = 3x14,20¢ = 38,000
5
P = 2x1¢ = 2x190,900 = 20p,900
6
» = Ix1¢ = 1x1,000,000 = +1,008,000

1,234,567

The count and carry principle, to be examined in more
detail when we later discuss arithmetic operations, can be
simply illustrated by counting or addition. As evidenced’by
the example below, presented eaflier in discussing basic prin-
ciples of positional number systems, we see that the terms
count and carry are quite self-descriptive; count until the

base is equaled, and carry that indication to the next column.
2
1
2
3
4
5
6
7
8
9
carrys 1 @

When performing addition, the procedure is as follows:
(1) Add the digits in the column, (2) If the base is neither
equaled nor exceeded, record the sum; (3) If the base is
equaled or exceeded, divide by the base, record the remainder,

and carry the gquotient to the next column.

carries: 1A 1§ 14 1e

5{114 5|9
+7 1816 214
1t3tg'g 8 %3

Note the presence of the zero symbol in the sum,
indicating "no hundreds" and "no thousands," and also

“holding" those places within the number.

2.2.3 Binary Number System

The binary or base two number system is comprised
of only two digits, zero and one, commonly referred to as
bits (binary digits). As illustrated in Figure 2-1, this
system is capable of representing but two conditions, and
thus lends itself to the decision-making process; ideally

practical for the computer.

Figure 2-1 Popular Binary Device in Action

Since physical and electrical entities have but two
states (i.e., switch open/switch closed, current/no current),
internal components of a computer can‘be easily designed to
accommodate data in binary form. Computers have been built
to operate with other number systems, but the increased num-
ber of digits along with the proportionally increased number
of possible conditions make these computers overly complex
in design and difficult to manufacture. For this reason,
the PDP-1l]1 and a majority of computers operate with the bin-

ary number system, considered the "language of the computer,"

Though the computer works internally with the binary
number system, this does not mean that all information input
must be so represented. In fact, rarely is the data initially
in binary form. 1If strictly numerical, it is generally octal
or decimal, but it is even more commonly expressed in one of
many alphanumeric computer languages., As we will later dis-
cuss, there are several methods by which information in any
of these forms is converted to binary before it is processed

by the computer.

We noted earlier that the binary or base two number
system is comprised of the digits zero‘and one (@,1). Like
the decimal system, it too is a positional number system.
Progressing from right to left within a binary number, the
value associated with each position is an increasing power
or multiple of the base., This place value principle for the

binary system is presented in Table 2-6.

it

Table 2-5 Powers of Two

2x2

2%X2%2

2%2%x2x2

2xX2X2x2x2

2X2X2%X2%X2x2

2X2%X2%2x2%x2x2

2X2X2X2X2%2x 2% 2

2X2X2X2X2%x2%x2x2x 2

2X2K2X2%2X2X2X2x 2% 2

2R 2X2X2X2X2X2X2X2X 2% 2

2X2X2X2X 2K 2X2X2X2%x2X2x 2

2X2X2X 2K 2K 2K 2K 2X2X2X2X2X 2

2X2X2X2X 2X2X2X 2X 2K 2X 2% 2% 2X 2

i

2X2X2X2X2R2K2K 2K 2X2X 2K 2X2X2X2 =

16

32

64

128

256

512

1,924

2,048

4,896

8,192

l6,384

32,768

Table 2-6 Positional Notation with Powers of Two

Powers of Two

15 14 13 12 11 19 9 8 7 6 5 4 3
2 2 2 2 2 2 2 2 2 2 2 2 2

32,768]16,384]8,192{4,79612,248)1,024 | 512 | 256 | 128] 64| 32| 16 8

Place Values

Since the binary system is a positional number system,
the rules are identical to those of the decimal and octal
systems. The only difference, of course, is that the base

is two rather than ten or eight.

Determining the total value of any binary number is then
accomplished in the same manner used for the decimal system:
applying the principles of place value, multiplication, and
addition. The discrete value of the digit (€ or 1) is multi-

plied by the value of the position in which it is placed, and
the resulting products are added.

This operation is presented in Table 2-7.

Table 2-7 Binary Number as the Sum of Powers

15 14 13 12 1 1 9 8 7 6 5 4 3 2 1 ¢
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1l g 2 1 '] l1 1 ¢ g1 g 1 1 g 1 g
L’: 1x2 = i1x]l = 1
: 1
= ﬁxz = ﬁxz = ﬂ
2
= 1lx2 = 1x4 = 4
3
>_ 1x2 = 1x8 = 8
4
b: ﬂx25 = ﬁle = 16
= 1lx2 = 1x32 = 32
6
= Px2 = %64 = g
7
’: ﬂxz = ¢x128 = ﬂ
8
= 1x2 = 1x%256 = 256
9
= 1x2 = 1x512 = 512
-5 19
= ¢x2ll = @Px1,024 = g
> 12
>= ¢x2 = ¢x4,¢96 = ﬂ
13
14
» = 1x2 = 1x16,384 = 16,384
15
»: 1x2 = 1X32,768 = +32,768
52,213

The count and carry principle also applies to the
binary number system, and can be simply illustrated by
counting or addition. 1In fact, one advantage of binary
notation is the simplicity of operation. Since the system
consists of only the symbols zero and one, all the digits
are used merely counting to onel Counting an additional

unit equals the base, -and is represented as lﬂ (read as

I e T e~

“one zero,” not ”ten") You have counted until the base
waé equaled, and then carried to the next column. As shown
in Table 2-8, thia occurs quite often in the binary number

system!

Table 2-8 Counting in Binary with Decimal Equivalents

Binary Decimal Equivalents
g g
1 1
1g 2
11 3
1gg 4
171 5
119 6
111 7
1989 8
1g@1 -9
1919 1g
1911 11
1129 12
1191 13
1119 14
1111 15
12929 16
19971 17
19919 18
1911 19

18100 28

Binary addition illustrates both the count and carry
principle and the operational simplicity of the system. As
shown in Figure 2-2, there are only four possible individual

conditions,

Figure 2-2 The Four Possible Conditions for Binary Addition

2 1
4 +1_
g 1g

The procedure followed in the addition operation is
the same as that followed for the decimal systems (1) Add
the digits in the column, (2) If the base is neither equaled
nor exceeded, record the sum; (3) If the base is equaled or
exceeded, divide by the base, record the remainder, and

carry the quotient to the next column.

Note the importance of recording the zero remainders

in the example below, "holding! those places within the sum.

carries: 1€ 14 14 1+ 16 14 14
glelr 1 gle|lr s 12 2 slo|e|2 1 2
22211 g plaly 1 g p glilall g g
1-¢-¢11L¢v11¢1-¢-¢-¢11

2.2.4 Octal Number System

We may call the decimal number system the "numerical
language of the real world" because much computer input and
output data is in this form. The binary number system is
considered the "numerical language of the computer" because
the ma jority of computers are designed to work with this
notation., For the machine language and assembly language
user, the octal number system provides an easily handled
bridge between these two, and may be called the "numerical

language of the programmer."

As noted earlier, the binary system is most commonly
used with computers because its simplicity yields hardware
advantages; the components can be fast, yet relatively simple
and inexpensive to manufacture., Computers, however, don't
have to "look" at the binary numbers they manipulate, and due
to speed of operation, work with them one at a time. To the
programmer who must work with many cumbersome groupings, the
length of the numbers and the similarity of digits makes the
binary system far from ideal. As we will discuss shortly,
there exists a quick and direct conversion between the binary
and octal systems, and for reasons given any numerical work
at the machine language or assembly language level is done

with the latter system,

The octal or base eight number system is comprised of
the digits zero through seven (#,1,2,3,4,5,6,7). Like the
decimal and binary systems, it too is a positional number
system. Progressing from right to left within an octal num-
ber, the value associated with each position is an increasing
power or multiple of the base. This place value principle

for the octal system is presented in Table 2-14,

Table 2-9 Powers of Eight

w
"

8x8

8x8x8

8x8x8x8

B8x8x8x8x8

]

Powers of Eight

64

512

4,096

32,768

Table 2-1@ Positional Notation with Fowers of Eight

3
8

2
8

32,768

4,96

512

64

Place Values

Since the octal system is a positional number system,
the rules are identical to those of the decimal and binary
‘systems, The only difference, of course, is that the base

is eight rather than ten or two.

As presented in Table 2-11, determining the total
value of any octal number is accomplished in the same manner
used for the decimal and binary systems: applying the prin-
ciples of place value, multiplication, and addition. The
discrete value of the digit is multiplied by the value of
the position in which it is placed, and the resulting pro-

ducts are added.
Table 2-11 Octal Number as the Sum of Powers

5 4 3 2 1

g
8 8 8 8 8 8
l 2 3 4 5 6
]
= 6X8 = 6x] = 6
1l
= 58 = 5x8 = 4ﬂ
2
’ = 4x8 = 4xX64 = 256
3
’ = 38 = 3x512 = 1,536
4
- = 2x8 = 2x4 ,096 = 8,192
5
p = 1x8 = 1x32,768 =_+32,768

42,798

The count and carry principle also applies to the
octal number system, and can be simply illustrated by

counting or addition. As shown in Table 2-12, you count

until the base is equaled, and then carry to the next column.

Table 2-12 Counting in Octal with Decimal Equivalents

Octal Decimal Equivalents
g g
1l 1l
2 2
3 3
4 4
5 5
6 6
7 7

12 8
11 S
12 14
13 11
14 12
15 13
16 14
17 15
20 16
3 24
49 32
59 a9
6% 48
79 56

mé 64

The procedure followed for addition is the same as
that followed for the decimal and binary systemss (1) Add
the digits in the column, (2) If the base is neither equaled
nor exceeded, record the sum; (3) If the base is equaled or
exceeded, divide by the base, record the remainder, and

carry the quotient to the next column.

carries: 19 1+ 1€ 14
l] 213 41516
+7 16 11512

l1bg 381 63 Ly

Again note the importance of the zero remainders
recorded in the sum, "holding" those places within the

number.

2.3 CONVERSIONS

2.3.,1 Introduction

It should by now be established that the binary number
aystem is good for computers, but little elsel Therefore,
numerical data written in decimal or octal form must first
be converted to binary so that it can be processed by the
computer, and then the results converted back from binary to
decimal or octal so that they can be readily interpreted.

This process is represented by Figure 2-3,.

Figure 2-~3 The Conversion Process

Decimal Number Octal Number
342341 1234567
Conversion Process Conversion Process

N rd

Binary Number

AP P P 114111

As noted earlier, these conversion processes are
usuvally performed by programs previously written and stored
in the computer. Specific conversion examples follow to

provide an understanding of the processes.

2.3.,2 Binary to Decimal Conversion

There are two commonly used methods for converting
binary numbers to decimal equivalents: the Place Value

method and the Double Dabble method.

| The Place Value method is simply the procedure used
in representing a binary number as the sum of powers. The
discrete value of each digit is multiplied by the value of
the position in which it is placed, and the resulting pro-
ducts are added. An example of this method is presented

in Table 2-13,

Table 2-13 Place Value Binary to Decimal Conversion

5 4 3 2 1 g
2 2 2 2 2 2

l # 1 1 g 1 (Binary Number)

B 4

= 1x2 = 1lxl = l
1:

—p = X2 = @x2 = £
2

—p= 1x2 = 1x4 = 4
3

= 1x2 = 1x8 = 8
4

~’= ﬂxz = ﬂx16 = ﬂ
5

P= 1x2 = 1x32 = +32

45 (Decimal Equivalent)

To convert binary numbers to decimal equivalents

by means of the Double Dabble method, begin with the most
significant bit (left-most one bit) of the binary number.
Double that bit, and if the next lower order bit is a one,
dabble (add one). If the next lower order bit is a zero,
do not dabble. Moving from left to right within the binary
number, repeat this process (doubling the sum if the next
bit is zero, doubling the sum and dabbling if the next bit
is one) until there are no more digits. An example of this

method is presented in Table 2-14,

Table 2-14 Double Dabble Binary to Decimal Conversion

[’ 1 1 q\--—’)'l (Binary Number)
double double double double double

14 22 44

\do no\:/\ /\ /\ do not/\

dabble dabble dabble dabble dabble

N/ NS VS

45 (Decimal Equivalent)

2.3.3 Decimal to Binary Conversion

There are two commonly used methods for converting

decimal numbers to binary equivalents: the Subtraction of

Eowers method and the Division method.

The procedure for the Subtraction of Powers method is
as follows: (1) Subtract the highest possible power of two
from the decimal number, and record a one in the apporpriate
place within the partially completed binary equivalent,

(2) Repeat this subtract;on process with the resulting dif-
ferences and descending powers of two (recording a one if

that power can be subtracted, recording a zero if it cannot
be subtracted) until the decimal number is reduced to zero.

An example of this method is presented in Table 2-15,

Table 2-15 Subtraction of Powers Decimal to Binary Conversion

45 (Decimal Number)
-32

Place

value 'y

(Binary Equivalent)

The procedure for the Division method of decimal to

binary conversion is as follows: (1) Divide the decimal

@

number by two; the remainder is the LSD (Least Significant
Digit) of the binary equivalent, (2) Repeat this division

process with the resulting quotients (recording remainders
right to left within the binary equivalent) until the quo-
tient becomes zero. An example of this method is presented

in Table 2-16.,

Table 2-16 Division Method Decimal to Binary Conversion

ﬁw\ Divisor |Quotient |Remainder
(Decimal
Number)
2 45
2 22 1
2 11 .
2 5 1
2 2 l
© 2 1 g
. g 1 j
X R
l 1 1 g 1 (Binary
Equivalent)

2.3.4 Octal to Decimal Conversion

There are two commonly used methods for converting
octal numbers to decimal equivalents: the Place Value

method, and a method similar in principle and procedure to

the Double Dabble method for binary to decimal conversion.

The Place Value method is simply the procedure used
in representing an octal number as the sum of powers. The
discrete value of each digit is multiplied by the value of
the position in which it is placed, and the resulting pro-
ducts are added. An example of this method is presented
in Table 2-17,

Table 2-17 Place Value Octal to Decimal Conversion

3 21 @
8 8 8 8

6 3 g 3 (Octal Number)

g
= 3x8 = 3x1 = 3
1l
= #x8 = #x8 = 2
2
3
P = 6XE = 6x512 = 43,872

3,267 (Decimal
Equivalent)

The octal to decimal conversion method that is
similar to the Double Dabble method also begins with the
MSD (Most Significant Digit). The procedure is as follows:
(1) Record the MSD, (2) Multiply the MSD by eight, (3) Add
the next octal digit, (4) Repeat steps two and three until
the last digit of the octal number has been added, An ex-

ample of this method is presented in Table 2-18.

Table 2-18 Octal to Decimal Conversion

6 3 g 3 (Octal Number)

‘_

(e o)}

X
4
+
5
X
458
+ 74
498
x 8
3264
+3‘
3267 (Decimal Equivalent)

‘k

m =jWw m

2.3.5 Decimal to Octal Conversion

There are two commonly used methods for converting
decimal numbers to octal equivalents: the Subtraction of

Frowers method and the Division method.

Using the Subtraction of Powers method for decimal to
binary conversion simply required subtracting powers of two
from the decimal number. The additional digits of the octal
system create the need for more work when using this method
for decimal to octal conversion. We may subtract not only

a power of eight, but up to seven times that power of eight

from the decimal number. The procedure is then as follows:
(1) Subtract the highest possible value of the form ggf
(where a = @-7) from the decimal number, and record the value
of a in the appropriate place within the partially completed
octal equivalent, (2) Repeat this subtraction process with
the resulting differences and descending powers of eight

(recording the value of a) until the decimal number is zero.

An example of this method is presented in Table 2-19.

Table 2-19 Subtraction of Powers Decimal to Octal Conversion

3267 (Decimal Number) 6373 (Octal Equivalent)
3
-3g72 = 6x512 = 6x8
195
2
- 192 = 3x64 = 3x8
3 1
1
- g = ﬂx8 = gxe
3
"]
- 3 = 3Ixl = ?XB

M

The procedure for the Division method of decimal to
octal conversion is as follows: (1) Divide the decimal
number by eight; the remainder is the LSD (Least Significant
Digit) of the octal equivalent, (2) Repeat this division
process with the resulting quotients (recording remainders
right to left within the octal equivalent) until the quo-
tient becomes zero. An example of this method is presented

in Table 2-24.

Table 2-2¢ Division Method Decimal to Octal Conversion

Divisor |Quotient | Remainder

(Decimal
Number)

8 3267

8 498 3

8 51 ']

8 6 3 '

6

—

v
6 3 @ 3 (Octal Equivalent)

2.,3.6 Binary to Octal to Binary Conversion

As the numerical language of the machine language and
assembly language programmer, the octal number system serves
as a cdnvenient "shorthand" notation for the binary number
system, numerical language of the computer. The unwieldy
strings of binary ones and zeros are converted to the more
workable octal notation by inspection, with 'no calculation
required, because eight is an integral power of two (8=23).
As illustrated by Figure 2-4, three binary digits are the
direct equivalent of one octal digit; one octal digit is the

direct equivalent of three binary digits.

Three Binary Digit&_

211

TAN

represent

V

3

One Octal Digit

Figure 2-4 Binary to Octal to Binary Conversion

Xnowing the binary and octal equivalents (Table 2-21),
we can then represent any binary number as an octal number
by means of the following steps: (1) Beginning with the LSD
of the binary number, group the bits by threes (filling in
leading zeros if necessary), (2) Convert these three bit

groupings to their octal equivalents. An example of this

procedure is given below:
1111 lgllggl l1g
&8 I I
1 7 2 6 3 S

Table 2-21 Binary and Cctal Equivalents

Binary Octal
209 g
201
219
g11
128
121
11¢

NSNjojuouildhilwio]-

111

As noted earlier, existing programs are available
for all conversion processes, but there may be several
occasions when you will need to make the binary to octal

and octal to binary conversion directly:

(1) Interpreting reference texts and instruction lists

Texts will often call upon the reader to make these
conversions when describing the computer, illustrating the
contents of various registers, and explaining instruction
formats.

(2) itanually loading and verifying programs

While the machine language programmer must always do
this, it should be noted that even the most advanced com-
puter systems usually have short preparatory programs that
must be so entered and/or checked.

(3) Avoiding binary notation

You may be involved in situations where you must work
directly with numbers. If any of the notation is binary,
convert to octal, operate, and if necessary convert the

results back to binary.

2.4 ARITHMETIC OPERATIONS

2.4.1 Introduction

o matter how complex the arithmetic problem, it is
eventually reduced to one of the four fundamental operations:

Addition, subtraction, multiplication, division (Figure 2-5).

.3

ADDITION

SUBTRACTION

MULTIPLICATION

DIVISION

Figure 2-5 Four Fundamental Arithmetic Operations

As with the programs available to handle any conversion
process, there exist several arithmetic "packages" that the
computer user may call upon to perform his calculations. It
is important to keep in mind, however, that any of these
vackages is a program comprised of instructions which are
essentially the four fundamental operations. It is the pro-
gram which "breaks down" the complex problem; the computer

receives only the simplest of instructions.

Mahy computers, including the PDP-11, reduce the
four fundamental arithmetic operations to one; addition,
For reasons of hardware simplicity and efficiency, gomple-
EEEEEfY (ngggp;gg) addition is performed rather than direct
éﬁbtractién. Though we will later examine other methods
(rotating and shifting) when we later discuss the PDP-11
instruction set, multiplication can be accomplished by

means of repeated addition; division by means of repeated

complementary addition (subtraction).

o —— _

We will therefore limit our discussion of arithmetic
operations to the following topics: Addition, complementary
addition, and (for comparision) direct subtraction. Examples
in the decimal, binary, and octal number systems will be

given for each operation.

[

2.4.2 Addition

Our discussions on the count and carry principle of
positional number systems have also provided the steps re-
quired to perform decimal, binary, or octal addition. To
review, the procedure is as follows: (1) Add the digits
in the column, (2) If the base is neither equaled nor ex-
ceeded, record the sum; (3) If the base is equaled or ex-
ceeded, divide by the base, record the remainder, and carry

the quotient to the next column.

This procedure works with any positional number sys-
tem, and once the addition facts for the systems are learned
(see Tables 2-22, 2-23, 2-24), binary or octal addition be-

comes as automatic as decimal addition.

An addition problem is solved below in the decimal,
binary and octal systems. Note that when working with more

than one number system, the base number is subscripted to

differentiate,

carries: 1 1 1111 111 111
11 sag FPL1I1F111(2) 16 7(s)
+5_ B 2(1g) #1 1 1311 213113 1) +7 6 _7(8)
6 2 ﬂ(lﬂ) l ggl1l1gi1ll ﬂ(z) 115 6(8)

Table 2-22 Binary Addition

Table 2~23 Octal Addition

+ gl 1Y 2] 3§ 4

]] 1l 2 3 4

1 1 2 3 4 5
_hq‘r,

2 2 3 4 5 6

3 3 4 5 6 7
| NS SN

4 4 6 7

5 7

6

Table 2-24 Decimal Addition

" .
+ g1l 1] 233} 4)5sfi 6] 74 8 ©
q
1l 21 3} af 516f 7] 8
ERER d
1 {101 2131 4) 5 6§ 71 8] 9119
- b o S e
21213 4] 51 6§ 7081 81 9117811
31314 5s5) 6] 71 8f 9t11g111]12
I
alal 5] 6l 71 8 9f1gfi11}]12 13-'
s {s| e] 7] 8 |
6 el 71 81 o
7171 8l 9119
g8 | 8 17 111
| 9o lofiglir]12

1C

2.4.3 Direct Subtraction
The operation of direct subtraction is performed in
the same manner for all positional number systems, reqgard-
less of the base. The procedure is as follows: (1) For
each column, subtract the subtrahend from the minuend (if
the subtrahend is greater than the minuend, "borrow" a
power of the base from the next column and then subtract),

(2) Record the difference.

As with addition, binary or octal subtraction should
pecome as automatic for y;ﬁééé decimal subtractiqn. The only
difféfé;;;"ié»ﬁﬁé‘base, and you should keep this in mind; that
when you "borrow," you borrow a power of that base. Reference

the example problems below.,

borrows: 3;?¢
X \’12(12‘)
=2 3 419
1% B
borrows1
¢ s ¢ 1 1
\/{/ﬂ 1 \’!W"K”'ﬂ £ (2)
- 1 1 1 1 21 B2y
g 11 8 4811 g3
borrows: 5' ;

s X% (s) Y

=3 3 2 (g)

2.4.,4 Complementary Addition

To understand complements, and thus the way in which
negative numbers are commonly handled in the computer, con-
sider again the odometer of the automobile. If the mileage
indicator is rotated backwards, it will eventually approach

and pass through zero, as shown below.

viviviwaliwlw

vwijovjvliwlw]lw|w
vivivimnlimnlalw
SNjojlovoviIiwi-=InNvV]w

Considering zero to be a "boundary," we see that the
number 999998 corresponds to -2. Applying this relational
concept to the operation of complementary addition, we add

the numbers 5 and 999998,

222pP5
999998
1 gPpee3
If we ignore the last generated carry, we have

effectively performed the operation of subtraction (5-2=3).

The number 999998 in the above example is referred to

as the ten's complement of 2. For the complementary addition

cperation, the term radix complement is defined as either of

two numbers which when added will result in a sum or zero
(last generated carry disregarded). This concept is illus-
trated by the example below and by Table 2-25. (It should

be noted that the term radix complement can by definition
apply to either a positive or negative number, but that it

is most commonly used to describe the negative quantity.)

999998

o
1

We can thus do away with direct subtraction; instead
of subtracting a positive number, we add the negative repre-
sentation of that number. 1In using a system of complements,
however, we omit the minus sign, and must therefore establish
what is and what is not a negative number. For example, is
123456 a positive 123456 or a negative 8765447 With the
odometer as an arbitrary example, we have the ability to
represent one million numbers (F to 999999), and it would be
reasonable to use half for positive and half for negative.
Thus, by convention, we would regard @ to 499999 as positive

and S#7PPP to 999999 as negative. And this in fact is exact-
ly what is done with the computer; with a finite range of

binary numbers to represent, half are designated as positive

and half as negative.

Table 2-25 Radix Complements for the Decimal System

ees 999995 999996 999997 999998 999999 I'Jf)] ﬁﬂﬂ‘ﬂml 2oppa2 PEPPI3 FPPPEPs PPPEES ...
(-5) (-4) (-3) (-2) (-1) (+1) - (+2) (+3) (+4) (+5)

We have established the following points concerning

the radix complement:

(1)

(2)

(3)

It is the negative representation of a
positive number.

It is used because complementary notation
can be efficiently and simply handled by
the computer. All numbers can be treated
alike (added) in arithmetic operations;
complementary addition (add the negative)
rather than subtraction (subtract the pos-
itive) can be performed.

Signs are not required. The computer works
with a finite range of binary numbers, and
a convention can be established such that
the number itself designates whether it is
positive ornegative, " T

- e T

We will examine the radix complement, the radix minus

one complement, and the complementary addition operation

first with the familiar decimal system, and then with the

languages of the computer (binary) and programmer (octal).

The radix complement, which commonly takes the name

of the base, is called the 1g's complement in the decimal
system. The procedure for radix (1g's) complement addition
is as follows: (1) Subtract the subtrahend from the next
highest power of the base; the difference is the radix
(19's) complement, (2) Add the radix (1¢'s) complement to
the minuend, (3) Record the sum, (4) Disregard the last
generated carry (the next highest power of the base was
introduced in step one and is “tossed out" here); this is

the final result. Two examples are presented below.

237 direct subtraction 84
(12) (as a check) (12)
=122 (19 =22 (19)
112 (19) > ag)
1709 (12) subtract the subtrahend from 194 (12)
) next highest power of the base| ‘
- 25 - 59
(lﬂ)'the difference is the radix (12)
875 (19) (19's) complement 41 (1g)

875 (1p)|2dd the 1#'s complement to thq 41 (1)
minuend and record the sum

+ 237 + 84
(14) disregard the last generated (12)
(1) 112(1ﬂ) carry; this is the result (1) 25(1¢)

The radix minus one complement in the decimal system

is called the 9's complement. The procedure for radix minus

one (9's) complement addition is as follows: (1) Subtract
the subtrahend from the next highest power of the base minus
one; the difference is the radix minus one (9's) complement,
(2, Add the radix minus one (9's) complement to the minuend,
(3) Record the sum, (4) Bring the last generated carry
around to the least significant digit position and add it to

the sum; this is the final result. The same examples worked
with the radix (1@'s) complement are repeated below using

the radix minus one (9's) complement.

237(1g) direct subtraction 84 (17)
(as a check)
=.125(1g) = 32(1p2)
112(19) 25(19)
999 (1g)] subtract the subtrahend from 29(1g2)
next highest power of the base
- 125(1g) minus one = 59(19)
874 (1g)| the difference is the radix 49 (19)

minus one (9's) complement

274 (1g)jadd the 9's complement to the 48 (19)
minuend and record the sum
+ 237(19) +_84(1g)

bring the last generated carry
(1) 111 (1g)jaround to the LSD position and | (1) 24(1g)
add it to the sum;

+ Tl(1g) +221(12)
this is the result

112(19) 25(19)

The radix complement in the binary (base 2) number 3

system is called the 2's complement. But before we take up
the subject of 2's complement addition, let's relate our pre-

vious discussion to the PDP-11 and the binary number system.,

The PDP-11 is a variable word length machine, capable
of handling both 16 bit words and 8 bit bytes. For the pur- o
pose of our discussion, let us consider it to be like many

-

other computers, a fixed word length machine. This means

that all data processed by the computer will be in the form
of words (binary numbers) of the same length. It should be
noted that from the programmer's standpoint words may be in
varied formats and lengths; we are here veiwing words as the
computér will ultimately receive them - in the form of fixed ﬁa%

length binary numbers.,

Viewing the PDP-11 as a 16 bit fixed word length

machine, it has a binary number range of

7 208 gog 297 2298 ﬂﬂﬂ(z) to 1 111 111 111 111 111(2).
15 14 13 12 11 1g 9 8 7 6 5 4 3

=] [11 -

By convention, half of these numbers are designated as
positive (7 29¢ 299 2gP 2pP #9¢ - ¢ 111 111 111 111 111) and
half as negative (1 Zg¢ gg@ 2@@ g9g #g@ - 1 111 111 111 111 111)

(Figure 2-6). The bit 15 position then assumes the role of
sign bit; the number is considered positive if bit 15 = # and 3

negative if bit 15 = 1.

1 gpg ppp gef g9g AP | # 111 111 111 111 111

< 32,768(1g) P 32,767(1g)

SIGN BIT = 1 SIGN BIT = f#

(NEGATIVE) (POSITIVE)

1 111 111 111 111 111 | @ ¢2@@ 2p@ P ppp pog

Figure 2-6 FPDF-11 Positive and Negative Number Ranges (Binary)

Mow that we know the application, let's look at the
operation. The procedure for radix (2's) complement addition
is as follows: ()) Subtract the subtrahend from the next
highest power of the base; the difference is the radix (2's)
comnplement, (2) Add the radix (2's) complement to the minuend,
(3) Record the sum, (4) Disregard the last generated carry
(the next highest power of the base was introduced in step
one and is "tossed out" here); this is the final result. An

example is given below.

7 op 1 18 118 ﬂﬂl(z) direct subtraction
= 2 2pp gA\p gpg 178 181 (o) (as a check)
g 998 991 199 BP0 1995

12 ggp gpg #pp 2od ﬂﬂﬂ(z) subtract the subtrahend from
next highest power of the base
= 7 PPg PP ggg 1p8 101 (o)
the difference i8 the radix

1 111 1971 111 212 ﬂll(z) (2's) complement

1 111 121 111 @11 ﬂll(z) add the 2's complement to the
minuend and record the sum
+ @ g9g 211 198 118 #0915y |
' disregard the last generated
(1) ¢ 7o 291 198 221 lﬂﬂ(z) carry; this is the resuilt

The radix minus one complement in the binary system

is called the l's complement.

one (1's) complement addition is as follows:

The procedure for radix minus

(1) Subtract

the subtrahend from the next highest power of the base minus

one; the difference is the radix minus one (1's) complement,

(2) Add the radix minus one (1's) complement to the minuend,

(3) Record the sum, (4) Bring the last generated carry

around to the least significant digit position and add it to

the sum; this is the final result.

The example worked with

the radix (2's) complement is repeated below using the radix

minus one (l's) complement,

g 998 911 198 118 gm (4,
- 7 g79 P19 998 197 191 (5
7 99p #PL 199 gg) 199 5

direct subtraction
(as a check)

1111 111 111 111 111(2)

- 2 99 gIg gpg 198 121 (2)
1 111 141 111 @11 214 ()

subtract the subtrahend from
next highest power of the base
minus one

the difference is the radix
minus one (1l's) complement

1111 171 111 A1) A7 (5
+ 7 gPg 911 199 119 gg1 (5
(1) # 279 271 198 pp1 P11 (5,

+ —_3 WP
PO AP1 198 g 199 ()

add the l's complement to the
minuend and record the sum

bring the last generated carry
around to the LSD position and
add it to the sum;

this is the result

Have you noticed something unsettling about our
compl ementary addition processes? The reason given for the
use of complementary addition was thét direct subtraction
could not be performed with the PD¥-11, and yet direct
subtraction was used in all previous cases to obtain the

complements! Let's see how the computer gets around this.

Note below that the bit patterns for any binary number

and its 1's complement are exact opposites, and that the

2's complement is equal to the l's complement plus 1.

g 291 21g §11 1g¢ 1§91 (binary number)

1 311 111 111 111 111
-7 g 21g 711 198 121
1 11g 141 1g2 @11 @1g 1 119 121 189 #11 #1¢ (1l's complement)

174 9229 Ppg 2008 2978 PP
g 271 Mg 1) 1gg 19l
1 112 1741 194 #11 @11 1119 121 19¢ #11 211 (2's complement)

The PDP-11 performs 2's complement addition, and there-
fore all negative numbers must be represented in 2's complement
form. The PDP-11 2's complements any binary number without

direct subtraction; it obtains the l's complement by simply

changing all bits to their opposites and then adds 1.

In the octal (base 8) number system, the radix comple-

ment is called the 8's complement and the radix minus one

complement is called the 7's complement. Here too, the octal

system serves the programmer as shorthand notation for the
binary system; the 1's complement is to the 7's complement as
the 2's complement is to the 8's complement. Again it should
be stressed that the programmer rarely works in the binary
number system; that any numerical work he must perform is done
in the octal system and only if necessary converted to binary.
If the 2's complement is required, for example, the programmer
okttains the 8's complement (or the 7's complement plus 1) and

then converts to binary.

Using the direct conversion that exists between the
binary and octal number systems, the 16 bit EDr-11 word may

be represented by 6 octal digits.

n nnn nnn nnn nnn nnn (2)

N N N N N KN (g)

The octal representation of the PDP-11 fixed length number
range is then @ @#gagy (g) to 1 77777 (g); the leading octal
Cigit will specify whether the bit 15 (sign bit) position
contains a zero or a one. By convention, the numbers from
7 PARRA (2) to 72 77777 (g) are designated as positive, and
the numbers from 1 ggggg (g) to 1l 77777 (g) are designated

as negative (Figure 2-7).

The procedure for radix (8's) complement addition is
as follows: (1) Subtract the subtrahend from the next high-
est power of the base; the difference is the radix (8's)
complement, (2) Add the radix (8's) complement to the minuend,
(3) Record the sum, (4) Disregard the last generated carry
(the next highest power of the base was introduced in step
one and is “tossed out" here); this is the final result.

The example worked with the 2's complement is repeated below

using the 3's complement.

#3461 direct subtraction
(8) (as a check)
- 2045
(8)
7 #1414
(8)
14 ﬂﬂﬂﬂﬂ(a) subtract the subtrahend from
next highest power of the base
- g #2045 -
(8) the difference is the radix
7 75733(8) (8's) complement
7 75733(8) add the 8!'s complement to the
minuend and record the sum
+ g2 23461(8) a1
sregard the last generated
(1) # ﬁ1414(8) carry; this is the result

' The procedure for radix minus one (7's) complement
addition 18 as follows: (1) Subtract the subtrahend from
the next highest power of the base minus one; the difference
is the radix minus one (7's) complement, (2) Add the radix
minus one (7's) complement to the minuend, (3) Record the
sum, (4) Bring the last generated carry around to the least
significant digit position and add it to the sum; this is
the final result. The example worked with the 1l's comple-

ment is repeated below using the 7's complement.

73461 (g) direct subtraction
(as a check)
= £ P45 q)
7 ﬁl4l4(8)
7 77777 g) subtract the subtrahend from
next highest power of the base
- p 22245(9) minus one
7 75732(5) the difference is the radix
minus one (7's) complement
7 75732(8) add the 7's complement to the
minuend and record the sum
+ 2 g3461(8)
bring the last generated carry
(1) # ﬂl413(8) around to the LSD position and
add it to the sum;
+ Pl
this is the result
A ¢1414(8)

1 pppep

- 32,768(1g)

SIGN BIT = 1

(NEGATIVE)

-1
(12)

g 77777

SIGN BIT = #
(POSITIVE)

1 77777

2 poppp

Figure 2-7 PDP-11 Positive and Negative Number Ranges (Octal)

2.5 L1L0OGIC CFERATICHNS

2.5.) Introduction

Computers use logic operations as well as arithmetic
operations in the execution of programs. The logic opera-

tions we will discuss have a direct relationship to an

algebraic'system used to represent logic statements known
as 3oolean algebra (named in honor of George -8ocole, English
nathematician and logician). We will be concerned with the
anplication of two Boolean axioms to computer circuitry.
These are the two basic connectives used to express the

relationship between two statements, the AND and the CR.

We will specifically examine the AND, INCLUSIVE OF,
and EXCLUSIVE OR operations. Simple circuit diagrams,
truth tables, and applicational examoles will be given to

help illustrate each of the operations.

2.5.2 The AND Operation

The diagram helow (Pigure 2-8) is that of a simple
circuit with two switches, Current is allowed to flow
throuah the switch if it is closed, and is not allowed
to flow through the switch if it is open. Therefore, in
order for the Function to occur, current must be allowed
to flow through the entire length of the circuit; both

switch & and switch 8 must be closed.

O o))
switch switch function
A B F

Figure 2-28 AND Circuit Diagram

In computer logic, the closed switch (or true condition)
is represented as a 1, and the open switch (or false condition)
is represented as a @. Expressing the AND axiom in terms of
our variables, we can say that A & B = F (when using PDF-11
symbolic language, the ampersand specifies the AND operation).
If A is 1 (true), and szgﬁi (true), then F will be 1 (true);
any other combination of the variables will result in a #
(false) condition. The relationship between the variables and

the resulting value of F is summarized in Table 2-26 below.

Table 2-26 Truth Table for the AND Operation

AlIBJ| F
AN
i

A
TIIT

When the AND operation is applied to binary numbers, a
binary 1 will appear in the result wherever a binary 1 appeared
in the corresponding positions of the two numbers. A binary #
will appear in the result wherever a binary @ appeared in either
(or both) of the corresponding positions of the two numbers.

The AND operation is commonly used to extract (or mask) a portion
of a 16 bit number. In the example below, it is used to extract
the two least significant octal digits (mask the ten most sig-
nificant bits) of the number.

7 71 g1g P11 188 181 (16 bit number)

& 7 797 229 #2¢ 111 111 (mask number)
A 979 gA2 P29 1A@ 1gl (result)

2.5.3 The INCLUSIVE OR Operation

The diagram below (Figure 2-9) is that of a parallel
circuit with two:switches. Recalling that current is allowed
to flow ihrough a switch if it is closed and not allowed to

flow through a switch if it is open, we see that current wiil
flow through the entire length of this circuit if switch A or
switch B or both are closed. The Function will be able to

occur as long as both switches are not open.

switch
A
0—-——]
function
F
switch
B

Figure 2-9 INCLUSIVE OR Circuit Diagram

Recall that in computer logic the closed switch (or
true condition) is represented as a 1, and the open switch
(or false condition) is represented as a g. Expressing the
IOR axiom in terms of our variables, we can say that AlB = F

(when using PDr—ll symbolic lanquaqe, the exclamatlon point

,nec1fies the I0R operation) If A is l (true), or 3 is 1]
(trued, or both are 1 (true), then F will be 1 (true); only
when both are §#§ (false) will the result be @ (false). The
relationship between the variables and the resulting value

of ¥ is summarized@ in Table 2-27 below,.

Table 2-27 Truth Table for the IOR Operation

'JPJEQSa >
e —hs w
e e Lo L !

When the IOR operation is applied to binary numbers,
a binary 1 will appear in the result wherever a binary 1
appeared in the corresponding position of either (or both)
of the two numbers. A binary @ will appear in the result
wherever a binary @ appeared in both corresponding positions
of the two numbers. The IOR operation is commonly used to
set bits within a 16 bit number, where the present bit pattern
cannot be known. In the example below, it is used to set bits
ir positions #, 7, and 15,

111 gl 114 g1g 141 (16 bit number)

! 1 900 pg9 219 9PP $P1 (IOR value)
1 111 g@l 11g §18 181 (result)

2.5.4 The EXCLUSIVE OR Operation

The diagram below (Figure 2-1§) is that of a parallel
circuit with two switches. The dotted line between the
switches indicates they are mechanically connected such that
they cannot be simultaneously closed (i.e., close one, open
the other). Thus one set of conditions (both closed) is
excluded in this OR operation, and the Function will be able

to occur only if switch A or switch B is closed.

\

switch |
A |
:
o I O
| function
| F
|
;______{L-.__LJE:*
switch
B

Figure 2-1g EXCLUSIVE OR Circuit Diagram

Again recall that in computer logic the closed switch
(or true condition) is represented as a 1, and the open
switch (or false condition) is represented as a @#. Express-
ing the XOR operation in terms of our variables, we can say
that AQQ B = F (when using FDP-11 symbolic language, the en-
circled exclamation point specifies the XOR operation). If
A iéﬂf.ktrue), or B i8 1 (true), but not both are 1 (true),
then F will be 1 (true). The relationship between the vari-

ables and the resulting value of F is summarized in Table

2-28 below.

Table 2-28 Truth Table for the XOR Cperation

A

vﬁ-"'\ _(”\

el
el W
- i

When the XOR operation is applied to binary numbers,
a binary 1 will appear in the result wherever a binary 1 and
a binary # appeared in the corresponding positions of the
two numbers. A binary @ will appear in the result wherever
binary @#'s or binary 1's appeared in both the corresponding
positions of the two numbers. The XOR operation is commonly

used to set and/or clear bits within a 16 bit number, where

the present bit pattern is known. In the example below, it
is used to set bits in positions 7 and 15 and clear bits in

positions # and 6.

2 221 219 gpl g1g $P1 (binary number)
D 1 gpp gog 211 292 2P (XOR value)

1 991 919 919 910 pPP (result)

2.6 EXERCISES

The following examples based upon the content of this chapter

are presented as an optional exercise for the reader. The answers

can be found in Appendix A.

2.6.1

Decimal to Binary Convergion
Convert the following decimal numbers to their binary equivalents

1, 19p
2. 235

2.6,2 Binary to Decimal Conversion

2.6.3

2.6.4

2.6.5

2.6.6

Convert the following binary numbers to their decimal equivalents

1. 92p0 299 992 2p1 198 118
2. P20 gpp 290 PP 119 119

Decimal to Octal Conversion

Convert the following decimal numbers to their octal equivalents
l, 58g
2. 1ggp

Octal to Decimal Conversion

Convert the following octal numbers to their decimal equivalents

1, gppr42
2., ppLpep

Binary to Octal Conversion

Convert the following binary numbers to their octal equivalents
l. 299 gog 291 219 g1l 199
2. gpP 292 209 191 111 119

Octal to Binary Conversion
Convert the following octal numbers to their binary equivqlents

l. @@gp736
2. p@@5224

2,6.7

2.6,.8

2‘6.9

Binary Addition

Perform the indicated binary addition

1. 2o 29¢ 198 118 211 199 2. ggg 2pg 211 141 198 141
+209 g2g 11g 11p 111 g11 +£28 292 119 111 111 11g

Binary Subtraction

Subtract using both the direct and the complementary methods

1. 220 gpp gpp pll 118 pop 2. gpp ppp pep 199 APl 191
-29% Po¢ 920 ggg 111 1g1 229 ggg ggg g11 118 111

Octal Addition

Perform the indicated octal addition

1. 254362 2, @@3321
73441 #pa4g7
+#67758 +295622

2.6,18 Octal Subtraction

Subtract using both the direct and the complementary methods

l, @g13421 2. 11234
-g12@54 -g1g567

2.6.11 Logical AND

Perform the indicated AND operation

1. 2gp 201 p1g gLl 1gp 141
&021 g1g g1l 1gg 141 11g

2.6.12 Inclugive OR

Perform the indicated OR operation

1, ﬂﬂ] ﬂlﬂ 211 1gp 191 119
1gg 191 11g 111

2.6.13 Exclusive OR

Perform the indicated OR operation

1. 218 211 1gg 121 11g 111
Og11 1gg 191 11g 111 ggg

Chapter 3

The FDP-11

3.1 SYSTEM ORGANIZATION

3.1.1 Intreduction
We have discussed the general organigzation of the

computer in terms of the major units (imput, memory, control,
arithmetic, output), and with roference to a basic block dia-
gram, We w111 now digscuss these ma jor units in more detail,
and relate spacifically to the elemsnts of the S8implified
PDP-1l1 System Organigation diagram (riéuro 3-1).

3.1.2 The UNIBUS

The UNIBUS is a single, common path that connects the
processor, memory, and all peripheral (input and output)
devices; it carries all information. Bach device on the
UNIBUS is assigned an address, and communicates in the same
wvay. This means that peripheral devices may be as flexibly
manipulated as memory. From the programmer‘’s standpoint,
this is the most important feature of the UNIBUS, Most
computers require a separate line (and thus a special in-
struction subset) for input-output devices. With the PDP-11
and its UNIBUS, all of the powerful instructions that can be
applied to data in memory can be applied to data in peripheral
devices,

uotIezTUEbI0 WIIBAg TT-ddd POTITTIdWT8 T-¢ oxnbta

24vIO8a

SEDIANG INdINO - JINANY

\

¥IIATYL _
TANAS BOTH

EIXITTIL

YOB8TAOOUI

3.1.3 Memory

The memory unit is used to store information until it
is needed., Just as you remeamber facts concerning past and
present events, the memory of the computer stores informa-

tion for future referenco.

We may conceptualize the computar memory &as a series
of locations, in a pigeon-hele or slot-like arrangement,
where each location hes a binary address and contains binary

information (FPigure 3-2),

i
;
:

Figure 3-2 Conceptual Computer Memory Section

When the binary information in any location is accessed
(used, modified, erased), that information will always be
referenced by its address - never directly. As we will
later discuss, that htmry content may be interpreted as an

instruction, anothor ("fomrding") address, or data. It

U e S e iy e el T

wnl'dopoud upon when (in which major stats) and how (with

which addressing mode) it is accessed by ths computer.

The PDP-11 is a variable word length machine, working
with either 16-bit mumbers called wopdg or 8-bit numbers
called bytes. Any 16-bit word (bit positions $-15) will then
consist of two 8-bit bytes; the Jow bvte (bit positions P-7)
and the high byte (bit positions 8-15),

Figure 3-3 PDP-11 Word and Byte Relationship

The basic FDP-1l memory unit consists of 4,896
(19,888 octal) word locations, and therefore 8,192 (28,g09
octal) byte locations. As mentioned, the machine is capable
of handling either 16-bit words or 8-bit bytes, and the mem-
ory is therefore byte addressed so that both forms can be
accommodated. The address range for the 2¢,8¢8 octal byte
locations is ﬂ-17777. As illustrated by r:lqu:oi 3-4 ana

3-S5, the PDP-n memOory may be conceptualized as either “4
;quential word locations or sequential byte locations. Note
that words and low bytes are to&nd at even addresses; high
bytes at odd addresses.

16=-bit word

g1
PPPpP3
PoPEpS

217773 high byte|zow byte]s17772
217775 high byte]|iow byte]|g17774

#17777)high byte]low byte]H17776

Figure 3-4 Word Organization Figure 3-§5 Byte Organigzation

3.1.4 Central Processox
The central processor (Figure 3-6) is comprised of

three functional blocks: The Control Upit and Axithmetic
Unit (as also given in our basic computer block diagram),
and the General Purpose Registers. A figure eight is formed

by the data paths connecting these units, and describes the
flow of data through the processor. The total function of
the processor is to process data; to execute the program,

controlling operations from beginning to erd.,

PROCBSSOR STATUS WORD
| uwess fesoriny|r]sjafvic]

817 6 5 43219

Pigure 3-6 PDP-11l Central Processor

ﬁ

The UNIBUS Control Unit directs the processing by means

of the following sequence: (1) Fetch an (the next) instruc-
tion from the program stored in the Memory Unit, (2) Decode
that instruction, (3) If Gata is regquired, obtain that data
from the Mexory Unit or a peripheral device and bring it to

the Arithametic Unit, (4) Specify td the Arithmetic Unit what
operation is to be performed upon the data, and (5) If re-

quired, store the result of the operation,

The PDP-1l]l processor has ma jor states of operation,
and four are listed below to help give the reader a basic
description of the processor's operational flow,

FETCH - Obtain and decode an inatruction. When feteh i~

campleted, the procegssor enters another ma jor state. It

is possible to go from fetch to any other state, includ-

ing back to fetch, depending upon the type of instruction
decoded, V

S8OURCE - Decode the source address £16ld of a double op-
erand instruction (detezmine the addrescs of the data), and
transfor that asta to the arithawtic unit. The source ma-
jor state is entered only if the instruction is the doudle

operand type.

DESTINATION -~ Decode the destination address field (deter-
mine the address of the data), and transfer that data to
the arithmetic unit. The destination ma jor state ig on-
tered for both single and double oparand instructions,

EXBCUTE - Perform the instruction. If data is to be op-

erated upon, the arithretic unit is directed to manipulate

the data accordingly; if the result is to be stored, it is

transferred from the arithmetic unit to the appropriate

location.

Although the ma jor states given follow the sequence of
fetch, source, destination, and execute, not all are needed
for every imstruction; the processor enters only the states

necessary to perform the current instruction.

Processor Status Word (Figure 3-6) is a self-descriptive
title; it is an addressable word location that contains infor-

mation on the status of the processing, B8pecifically, the low
byte will indicate the following: Current priority level of
the processor (bit positions 5-7), instruction trap (bit posi-
tion 4), and result of the previous operation (bit positions
g-3).

The priority level of the processor, which can be manip-
ulated by the program at any time, is an integral part of the
Automatic Priority Interrupt System of the PDP-1l., We vill
look at all of this in more detail when we later discuss input-
output programming. Discuseion of the trap indicator will also

be postponed. 1Its role will be examined when we present trap
instructions during discussion of the PDP-1l instruction set.

We will talk about the four least significant bits of the
Processor Status Word, called the condition code bita. Upon
the completion of the execute ma jor state of an imstruction,
these bits are conditionally modified to reflect the result of
that instruction (note the direct line from the Arithmetic Unit
to the Processor Status Word). The program may then use this
information to determine subsequent action. These bits are set
as follows:

C bit (#) - 1f there was a Carry from the most
significant bit position

Vv bit (1)

if there wvas arithmstic oVerflow
Z bit (2) - if the result was Zero

N bit (3) - if the result was Negative

The cantral processor also contains a set of eight
General Purpose Registers (Figure 3-7), These registers
(commonly referred to as Rf, Rl, R2...R7) are addressable
word locatione with special features that greatly enhance
the power and flexibility of the FDP-11,

R
M ¢ —
| R P

R)

Figure 3-7 General Purpose Registers

The registers are called gensral purpose because each
may be used as an:

ACCUMULATOR
Where a sum is accumulated in the General Purpose Register

POINTER
Where the General Purpose Register ints to the operand
(contains the address of the opera

AUTOINCREMENT REGISTER
Where the General Purpose Register points to the operand
(contains the addrass of the operand); the address is used

and then automatically incremented

AUTODECREMENT REGISTER
Where the General Purpose Register points to the operand
(contains ths address of the operand); the address is first

automatically decremsnted and then used

INDEX REGISTER
Where the General Purpose Register contains an index value
that is added to a base address to provide the address of
the gperand

) 2addressine h the PDP-] acconp) 3
the General Purpose Registers, and they thesrefore play a
vital role in efficient programming of the machine. We have
only listed the addressing features of the registers here,
and will examine them in more detail when we later diacuss
addressing modes.

It should bes noted here that two of the eight registers
have unique capabilities; R7 serves as the Program Counter,
and R6 serves as the Stack Pointer. Both will later be dis-
cussed in detail, but a brief description of each follows,

Proqram Counter (PC) - This register might be better
named the Program Pointer; if will alwayg contain the address

of the next location to be referenued., It is automatically
updated by the processor as it steps through the program

(after an instruction is fetched from a location, the Program
Counter is stepped to contain the address of the next sequen-
tial location).

Stack Pointer (SP) - During the running of a program,
there are several circumstances that can cause a change from

one sequence of instructions to another (interrupts, traps,
error conditions, etc.). The processor will automatically
"remember" where it was in the first sequence of instructions
by saving a return address ntent o PC) on _the Stack.
Thus R6, as the Stack Pointer, will contain the address of
that location which holds the return address.

3.1.5 Input-Output Devices

The Input Devices associated with a computer system
enable data and control information to be entered into the
computer. 8Sonme devices require that the input information
be in a special form (a card reader, for example, accepts
only punched cards); other devices do not require any prev-
ious preparation of information (the Teletype allows infor-
mation to be simply typed in). 1In all cases, these devices
translate the various forms of input information into a
form which can be handled by the computer.

The Qutput Devices associated with a computer system
enable information (intermediate and final results) to be
received from the computer. This output information may be
in any of several forms, depending upon the device and the
controlling program,

The list of Input-Output devices for the PDP-1l1 systenm
is a long one., As examples, several of the mcre common de-

vices are described gonerally below.

The goparator's console (Figure 3-8) provides function
switches to control the system and indicators to monitor the
status of the systenm,

- - 'f maidificion .
dlilgliltfalll [pcpm | .
.m;m s
r | - e .’ml
DATA ‘
| — I 3 B 5200 |

Figure 3-8 PDP-11l Console

Although it cannot be described as an input-output device,
the console is Aiscussed here because it does provide the opera-
tor with a direct means of input and output.

To input information (DEPOSIT), the procedure is as follows:

(1) Specify the 16-bit address with bit positions @-15 of the
SWITCH REGISTBR (switch UPsl, switch DOWRag)

(2) Depress the LOAD ADDRESB key (transfers content of the
SWITCH REGISTER to the ADDRESS REGISTER)

(3) Specify the 16-bit contents with bit positions $-15 of the
SWITCH REGISTER

(4) Raise the DEPOSIT key (txansfers content of the SWITCH REG-
ISTER to the address specified in the ADDRES8S REGISTER.
Contents also displayed in DATA DISPLAY REGISTER.

™

1

The console serves as & means of output in two ways:
The function keys may be used to EXAMINE locations on the
UNIBUS, and the content of General Purpose Register # is
automatically édisplayed in the DATA DISPLAY REGISTER upon
the completion of any program,

The EXAMINE procedure is as follows:

(1) ggecify the 16-bit address with bit positions @-15 of the
ITCH REGISTER

(2) Depress the LOAD ADDRESS key (transfers content of the
SWITCH REGISTER to the ADDRESS REGISTER)

(3) Depress the EXAMINE key (transfers content of the address
specified in the ADDRESS REGISTER to the DATA DISFLAY
REGISTER)

It should be noted that the operator must LOAD ADDRESS
only initially if DEPOSITing or EXAMINing sequential locations.

The content of the ADDRESS REGISTER is automatically updated

with sach DEPOSIT or EXAMINBR function.

The procedure for running a program which has been input
is as follows:

(1) 8pecify the starting address in the SWITCH REGISTER
(2) Depress the LOAD ADDRESS key

(3) 8et the BMABLE/HALT key to the ENABLE position (transfers
control to the processor)

(4) Depress the START key (begins processor operation)

When the program is completed, the address of the HALT
instruction will be in the ADDRESS REGISTER, and the content
of General Purpose Register @ (which can be the result) will
be displayed in the DATA DISPIAY REGISTER.

The gggel 33 Automatic Send-Receive Teletype Unit
(Figure 3-9) is an input-output device provided as standard

equipment with most PDP-1ll systems.

paper tape
punch

paper tape | R
reader

Figure 3-9 ASR-33 Teletype

Information is input in either of two ways: Typed in
by means of the‘keyboafd (17 characters per seconmd), or read
in by means of the low speed paper tape reader (lf characters
per second),

Information is also output in either of two ways:
printed out by means of the teleprinter (1§ characters per
gecond), or punched out by means of the low speed paper tape
punch (1¢ characters per second).

The High Spsed Paper Ta eadexr and Punch

(Pigure 3-1g) is an input-output device availeable for those
users wvho require faster paper taps reading and punching
speeds than those of the standard ASR-33 Teletype.

TAPE HOLD KNOB

/nmm—:a INPUT HOPPER|
C / / g4—{runcs FEED swiTce]

= : ¢4—{READER ON/OFF SWiTCH;

Q0«0

}+—1{READER FEED SWITCH |

/ N < |

(Reaper ourpur roreer| [srocker reep wheeL| | PAPER TaPE GuIDE | [puncr ourpur HoppER|

Figure 3-1F High Speed Reader and Punch

Information is input by means of the high speed photo-
electric paper tape reader at the rate of 3¢@ characters per

second,

Information is output by means of the high speed paper

tape punch at the rate of S@ characters per second.

The High Spesed Line Printor (Figure 3-11) is an output

device available in several models for the user who requires

a faster printing speed than that of the standard ASR-33,

Figure 3-11 High Speed Line Printer

Using the 8¢ column, 64 character model as an example,
information is printed out at the following rates:

356 lines per minute, columns 1-8¢
46¢ lines per minute, columns l-6¢
65¢ lines per minute, columns l-4g
1114 lines per minute, columns l1-2¢

w

L

The DECtape Unit (Pigure 3-12) is one of two magnetic
tape options available for PDP-1l systems., It is a dual-unit

bidirectional magnetic tape transport system for auxiliary

information storage.

Figure 3-12 DECtape Unit

Information may be input (read) from or output (written)
on this device at the rate of 5¢¢¢ 16-bit words per second.
The system stores information at fixed positions on the mag-
netic tape, allowing blocks of the information to be read,
written, or replaced without disturbing other previously re-

corded information.

The RC-11 Diak Unit (Pigure 3-13) is one of many mass
storage devices available for PDP-ll systems. Expandable disk
mass storage systems may be used in a number of combinations,

and range from the RC-11/R8-64 with a basic storage of 65 thou-
sand words (expandable to 262 thousand) to ths RP-11/RP-§2,
which stores up to 8¢ million words in an expanded configuration.

Figure 3-13 RC-11l Pisk Unit

Information may be input (read) from or output (written)
on the RC-1l Disk at the rate of 62,58@¢ l6-bit words per second.
Information is stored at fixed positions on the disk surface,

allowing blocks of the information to be read, written, or re-
placed without disturbing otlier previously recordad inflormation.

3.2 ADDRESSING MODES
3.2.1 Introduction

A program is a series of computer words sequenced to
accomplish a particular task. These computer words which
comprise the program may be divided into two ma jor categoriaes:
Data Words or operands (the values to be operated upon by the

instruction words), and Instruction Words (those which access

and manipulate the data wordas).

The Data Word (Figure 3-14) is quite straightforward; it

is internreted as a numerical value to be operated upon.

E-L NUMERICAL VALUB E

Figure 3-14 Data Word

The Instruction Word (Figure 3-15), though also numer-
ical, must be interpreted dAifferently. 1In order to manipulate
the data word, the instruction word must access it, and you
will recall that words in memory are always referenced by
address. The instruction word is therefore of two parts; by
convention, certain bdits specify the oparation code (how the
data word is to be manipulated), and the other bits specify
the address of the data word.

OPERATION CODEl DATA ADDRESS

Figure 3-15 Instruction Word

The FDP-11 instruction set has two types of instruction

words that manipulate data; the 8ingle Operand Instruction
and the Double Operand Instruction.

The S8ingle Operand Instruction (Figure 3-16) implies

one operand, and follows the general format presented earlier.

Bit positions 6-15 specify the operation code that
defines the instruction to be executed,

Bit positions #-5 specify the destination address field
(the address of the operand). This six-bit destination address

field consists of two three-bit subfields:

register subfield (bét positions g-2)
specifies whieh of the eight
General Purpose Registers
is to be used

mode subfield (bit positions 3-5)

specifies how that General Purpose
Register is to be used

151413121119 9 8 76 54 3 21 g#

v L | | L} | L L L B L) | | LI

MODE | REG
1 1 ']] [[1 1 0 'y i 1 [[
t 1
L D) 4
v DESTINATION
OPERATION CODB ADDRESS FPIELD

FiguroySAle Single Operand Instruction Format

The Double Operand Instruction (Figure 3-17) implies
tvo operands, called the source operand and the destination
operand., The same general format is again followed, but
here there are two address fislds (one for each operand),

and thus a shorter operation code.

Bit positions 12-15 apecify the operation code that
defines the instruction to be executed.

Bit positions @-5 specify the destination address field

(the address of the destination operand). This six-bit des-
tination address field consists of two three-bit subfields:

the register subfield (bit positions @g-2), and the mode
subfield (bit positions 3-5).

Bit positions 6-1]l specify the gsouxce address field
(the address of the source operand), This six-~-bit source
address field consists of two three~bit subfields: the

register suvbfield (bit positions 6-8), and the mode subfield
(bit positions 9-11),

15 1413121119 9 8 7 65 4 3 21 @
T L Ll

MODE REG MODE REG
T | 1L

a1 3. 4 L1
L 1 1 4
V \V Vo
OPERATION SOURCE DESTIRATION

CODE ADDRESS FIELD ADDRESS FIELD

Figure 3-17 Double Operand Instruction Format

The meaning of our earlier statement - all addressing

with the P-1ll 48 accom

Registers - should now be clear,

[thr

h the General o
In specifying the address

of the data (address field), one of the eight registers is

selected (register subfield) along with one of several

addressing modes (mode subfield),

These addressing modes enable the easy access anmd

manipulation of data.

They are especially efficient and

flexible in handling of structured data (tables, lists,

character strings, etc.), since a great deal of the data

processed by the computer is organized in this manner.

We will examine each of the addressing modes in detail,

and use the following instructions for illustration:

MNEMONIC CODE* OCTAL CODE

CLR DST 225goD
INC DST gg520D
MOV 8RC,DST @188DD
ADD SRC,DST @68SDD

DESCRIPTION

CLeaR (replace with zeros)
the contents of the
DeSTination location

INCrement (add 1 to) the
contents of the
DeSTination location

MOVe the SouRCe operand to
the De8Tination location
(source operand unaffected;
destination operand replaced
by the source operand)

ADD the SouRCe operand to
the DeSTination operand
(source operand unaffected;
DeSTination operand replaced
by the sum)

*gymbolic code devised for ease of recognition and retention
which must be converted to machine (binary) code by some
~device or routine before it can be executed by the computer

3.2.2 General Register Addressing Modes

There are eight General Register Addressing Modes, and
any mode may be used with any of the General Purpose Registers
to access the operand. Though each of these eight modes is

unique, and we will discuss the specific application of each,
we may categorize them as follows according to how they use

the General Purpose Registers

(1) DIRECT ADDRESBING

where the register contains the operand.

(2) INDIRECT ADDRESSING

where the register contains the address of the
operand (the effective address).

[BFFECTIVE]
ADDRESS |

GPR

(3) DEFERRED ADDRESSING

where the register contains the address of the
effective address,

pi EFFECTIVE |
| - ADDRESS |

GPR

3.2.2.1 Direct Addressing

There is one mode where the register is used to
contain the operand:
REGISTER MODE

REGISTER MODE

Assembler Syntax* Octal Codé

Rn g

Register Mode specifies that the register contains the
operand. The register is thus used to hold data vhile it is
manipulated,

Example: The content of R3 is incremented

Location S5@¢ contains the instruction code
for INC R3

gopsgp | gP5283
Before Execution: After Execution:

R3 |PPpP13 : R3 |gggg1e

Example: The content of R2 is added to the content of RS

Location 2@@@ contains the instruction code
for ADD R2‘R5

pgp2ppg | gegeps

Before Execution: After Execution:
R2 | gppgpe R2 |gggpge
RS |@g@g@g231 RS |@@pP237

*The percent sign (%) indicates a General Purpose Register to
the PDP-1l Assembler, and may be used. Typically, however,
the registers are defined as follows:

R a %@
Rl = %1
R2 = %2
R3 = %3
R4 = %4
RS = %5
8P = %6
PC = %7
These definitions will be used throughout this book,

3.2.2.2 Indirect Addressing

There three modes where the register is used to
contain the address of the operand (the effective address):
REGISTER DEFERRED MODE - where the content of the
register is used as a "pointer® to the operand and is not
modified. ’

AUTOINCREMENT MODE - where the content of the
register is used as a "pointer® to the operand and then is

-automatically otegggg ahead so that it points to the next
sequential operand in a table or list,

AUTODECREMENT MODE - where the content of the
register is g%rnt gutgggtgea;%x 't'aﬁfg back and then used
as a "pointer® to an opera n a table or list.

Although INDEXED MODE does not meet our general
statement exactly (register contains the effective address),
it is included in this category because the register will
contain part of the effective address. As we will scon dis-

cuss, the register contains an index word which is added to
a base address to form the address of the operand.

REGISTER DEFERRED MODE

Aasembler Syntax

Octal Code
(Rn) 1

Register Deferred Mode specifies that the register

contains the address of the operand (the effective address).

The content of the selected register is not affected; it is

used as &8 "pointer" to the operand,

Examples

The content of R4 is the address of the operand;
replace the operand with zeros

Location 393¢ contains the instruction code

for CLR (R4)
29393¢ | pPspL4
Before Execution: After Execution:
R4 |PR79P4 R4 | pR79P0
297989 |123456 287920 12008PP
Example: The content of R2 is the address of the operand;
move the operand to RS
Location 5g@ contains the instruction code
for MOV (R2),RS5
2PPsSeg | #1125
Before Execution: After Execution:
R2 |gP1pgP R2 |PP1ppP
RS]111666 RS |2@@555
PPLEPY | PPES55 2pLEPY |@PB55S

AUTOINCREMENT MODE
Assembler Syntax Octal Code

(Rn)+ 2

Autoincrement Mode specifies that the reqgister contains
the address of the operand (the effective address), Jjust as with
Register Deferred Mode. The difference is that after the content
of the register is used as a pointer to the operand, it is auto-
matically ste t te next

sequential operand.

Autoincrement Mode thus provides for the automatic step-
ping of a pointer through a table or list of operands. Although
especially useful for this type of processing, this mode is com-
pletely general and may be used for a variety of purposes.

Example: Rl contains the address of the operand;
increment the operand and then step the content

of Rl by two so that it will point to the next
rsequential word operand (in a table of operands)

Location 1gg@ contains the instruction code

for INC (Rl)s -
201998 |Pp5221
Before Execution: After Execution:
Rl |@@2508 Rl |@gp2sg2
gp25gg |PpPA1L gpasgy | oppE12

In typical operation, the program would loop back and
repeat this same instruction a sufficient number of times to
increment each of the entries in the table.

%

AUTODECREMENT MODE

Asgembler 3yntax Octal Code
-(Rn) 4

Autodecrement Mode specifies that the register contains

the address of the operand (the effective address), and as with
Autoincrement Mode, this address will be modified., The differ-

ence is that with Autodecrement Mode, the content of the regis-
ter is automatically stepped back, and then used as a pointer
to the operand. Autodecrement Mode thus provides for the pro-

cessing of structured data in an inverse direction.

We will later discuss how these post-increment (Autoin-
crement Mode) and pre-decrement (Autodecrement Mode) features
are used to manipulate dynamic tables called stacks.

Example: Replace the operands in Table A with the

operands in Table B (in inverse order)

R3 contains the address of the first operand
in Table A; R4 contains the address of the
next sequential location after the last oper-
and in Table B

Location 5@ contains the instruction code

for MOV -(R4),(R3

pogsep [p14423]

The results of typical program operation are shown below.

The program has looped back and repeated the instruction five
times to accomplish the task.

BEFORE EXECUTION:

» [
~e (D

Table A Table B

gorppg [F12345] pa3ppp
gapp2 (1111111 9#p3gs2

goIppa |y 2221 pAp3gs4
gprgge 1) pP3296
281918 | £1P1 pe3pLp

R3 |gp1gp2
R4 [g@3210

Table A Table B

gorpep [Feaehe] pgooog

£01982 $p38p2
#1224 2e3gp4
£p1pp6 ge3pge

2p101 ¢ po3gLg
R3
R4
Table A Table B
sprppg [Ap3EAp
golgp2 pR3p32
£oLAg4 gp3pgpa
goLAP6 283gge 187870

#P1P1P po3g1p [Poges

> [
e [

Table B
99390

Table A

smppp [Fepese
gorgp2 |Fipigi| PP3eR2
porppa [sSigp| ppagps
ppigee [1g1p1p] ga3ge
gag [Fipial] peapLs

R3
R4
Table A Table B
1 ‘egrl gpapgep (822222
gglggg 1010 ge3gp2
poLEE4 67 pe3aga 6
poIgpge | £442 PA3EP6
gapLg | g1812] pE3PLE | 2626

AFTER EXECUTION:

R3 |ggigge
R4 [gp3p1g
Table A Table B

poropp [Fegese] eoanee
£PIEA2 1111111] @P3gp?
2819p4

#9196
#1919 |

pge3ppd
pp3¢pe
po3pLg
83
re .[EEE5EE]

Table B
go3pp2

Table A

re [g23784)

Table B Tadble B
AL gp3epp |p22222)
ppLgp2 gp3gp2
poLEpA pgE3pa4
poLEP6 pE3906
£orLgLp pe3pgrg

R3
e

Table A Table B
po1p0P pe3gpg 1922222
gorgp2 2p3gp2 19442
pRLEpS pR3pg4
goLEpe ge3gge
poLEALR 2p3g1g |

R3
R4 | PP3p00

Table A Table B
gorppp [peg 22222
gorg@2 (gigily 24233
polgpa |
poLope 12
pPIPLE | 1 £626

¢~ INDEXED MODE

Assembler Syntax Octal Code
X(Rn) 6

Indexed Mode specifies that the register contains an

index word which is added to & base address (contained in a

location following that of the instruction word) to form the

address of the operand.* Neither the index word nor the

base address word is affected.

Indexed Mode thus provides for the random access of
operands in data structures, The index word (the content of
the selected register) is modified by the program to access
the desired operands in the table or list,

Example: Clear the third operand in Table A

RS contains the index word; location 7@2
contains the base address of Table A

Location 7¢¢ contains the instruction code

for CLR 1 RS

geg79¢ |BP5865
pgegIs2 [#P1
. Before Execution: After Execution:
RS [ZPpPpa RS |gpppps
! pop192 (291000 popIp2 |#01090|
Table A Table A
21990 | @e 201999
gg1pp2 g 291992
291994 2019p4
291996 201906
ﬁ gELE1P o101 0

*This is the more common usage. Realize that at the program-
mer's option, the selected register may hold the base address.

3.2,2,3 Deferred Addressing

There are two modes where the register is used to
contain the address of the effective address:
AUTOINCREMENT DEFERRED MODE - where the content of

the register is used as a pointer to the address of the operand
in a table of effective addresses. It is first used, and then

utomatically ste ahead.

AUTODECREMENT DEFERRED MODE - where the content of
the register is used as a pointer to the address of the operand
in a table of effective addresses. It is first automatically
stepped back, and then used.

Although INDEXED DEFERRED MODE does not meet our general
statement exactly (register contains the address of the effec-
tive address), it is included in this category because the reg-
ister will contain part of the address of the effective address.
The register contains an index word which is added to a base

address to form the address of the effective address.

AUTOINCREMENT DEPERRED MODE

Asgembler Syntax Octal Code
@®(Rn)+ 3

Autoincrement Deferred Mode specifies that the register
containg the address of the effective address. The content

of the selected register is used as the address of the effec-

tive address, and then is automatically stepped ahead to the
next sequential address.

Autoincrement Deferred Mode thus provides for automati-
cally stepping through a table of addresses, commonly called
a dispatch table, as a means of accessing operands, The
effect of the instruction is dispatched through this table
to the operand.

Examples Clear the firat operand in Tables A, B, and C

R4 contains the address of the first effective
address in the dispatch table

Location 5@8 contains the instruction code
for CLR @(R4)s

299508 |#P5934

The results of typical program execution are shown below.

The program haé looped back and repeated the instruction three
times to accomplish the task. '

go1pp8 |#12345)

gergpg2

[JAY)) 4
gpLRA2

Table A

gpLeo8

g2 :}

ra [ppa729]
Dispatch Table
2e9708 | ,

gg20g8 1122221
gg2gp2 [133331
po2gp4 [144441
gp2pg6 [155551
£P2018 (166661

R4 |poprg2

Dispatch Table
gea198

Dispatch Table
goai9g |2

gpgige

pgR2p88
pgpegp2
pgp2gpa
pgp2ppe
pR2p1p

] (.2

Table C

pgp3pes
gp3pg2

a3gp4
2p3ppe
pp3pLe

141414

161616

151515

177
3

1313]

Table C

gp3gLE

Table C

go3ppe
2g3pp2
£gp3ppa
pgp3IPP6
gp3pLp

141414

151515

161616
7

P———
131313

Table A

291008
#0192
PP2004

282996 |

ppapL g

5432)
123456
11

Table A

2arppp
pgplrpgp2
ge2004
ggapgs .
ppaprg

R4 |gpp7g2]

Dispatch Table

gpg s 1
pgEBI82
28R4 3

2ogTE6 |£94026
pgEp1IE | BPSP0P

Table B
gr2pgs 1122221
gg2gp2 133331
gp2ppa [1333a1
gP2g@6 | 155551
PP2p19 1166661

S

Dispatch Table

#8208
gpaIg2
2ppI84
PpPIg6 |BPAPLE
29718 -

Nt Mot e

gP2p18 116666

7 [amprce]

Dispatch Table

2e2 798 1
2pp782 27
gpRI84 1093288
goRIg6 | 271
pPENY | gP52P8

Table B

gp20088

99202 [
go2gpa [Tdaaal
go2pge [155551
222018 (166661

¢ ¥ |

Table ¢

2P3gps

£a3pa2
Pgo3gps [161616
£03pg6 117

!
£P3g1g 11313

Table C

e
#o3gas [161616]
#p3gpe (171717
#g23818 (131313

Table C

223¢88 |

933992 [151510
161616
171717
gg3p1g (13131

AUTODECREMENT DEFERRED MODE

Agsembler Syntax Octal Code
@-(Rn) 5

Autodecrement Deferred Mode specifies that the register
containg the address of the effective address. The content

of the selected register is first automatically stepped back,
and then used ags the address of the effective address.

Autodecrement Deferred Mode thus provides for automati-
cally stepping through a table of addresses in an inverse

direction.

Example:s Increment the operand

The content of R2 is automatically stepped
back, and then used as the address of the
effective address (the address of the address
of the operand)

Location 2g@¢ contains the instruction code

for INC @-(R2)
202000 |PP5252
Before Execution: After Execution:
R2 |gP1gp2 R2 |@gp1PP8
291998 295928 2p1P0¢ |2058PP
2o509¢ 1111111 2PSpps |111112

INDEXED DEFERRED MODE ﬁ

Assembler Syntax octal Code
@X(Rn) 7
Indexed Deferred Mode specifies that the register S

contains an index word which is added to a base address

(contained in a location following that of the instruction)

to form the address of the effective address. Neither the
index word nor the base address is affected.

Indexed Deferred Mode thus provides for the random access
of operands in data structures through a table of addresses.
Examples Using Dispatch Table A, add the first operand
in Table C to the content of RS A%%

RZ contains the index word; location 582
contains the base address for Dispatch Table A

Location 5¢¢ contains the instruction code

for ADD g7gggggz gRS

gpasgp (967885
pREsSE2
Before Execution: After Execution:
RS |1g1@1g RS 111111 ®
RP |PPPPR4 RE |2PPPRA
gopsp2 |pepTEp gepsp2 [PppT18p *
Dispatch Table A Table C Dispatch Table A Table C
7 PO3980 | 2097998 293998
ggg“lgg pa3gp2 2ppIp2 pgE3gp2
AL K 2oP7984 pH3gga
Pgg 786 pp3gpe PPEIAs go3gpe |papag
[T gp3pLp 2ep1LP 293918 75058

3.2.3 Program Counter Register Addressing Modes

You will recall that Register 7, although a General
Furpose Register, also functions as the Program Counter for
the FDP-11l. 1In this role, it always contains the address
of the next location to be referenced, and is automatically
updated by the processor during program operation (after an
instruction is fetched from a location, the Program Counter
is automatically stepped to contain the address of the next

sequential location).

Although any of the eight General Register Addressing
Modes we have just discussed may be used in conjunction with
any of the eight General Purpose Registers, there are four of
these modes with which the Program Counter can provide spec-
ial advantages for the handling of unstructured data, These
are called the Program Counter Register Addressing Modes.

It is important to remember that these "special effect®
modes, although classed separately and given unique names,
are in operation the same General Register Addressing Modes
we have discussed; the only difference is that the register

selected is always Register 7, the Program Counter.

IMMEDIATE MODE

Assembler Syntax
#n 27

Octal Code

Autoincrement Program Counter
Mode Register

IMMEDIATE MODE provides for fast access of an operand
in that the operand is in a loc¢ation IMMEDIATELy following
that of the instruction word. The operand is actually part

(a second word) of the instruction.

This mode uses to good advantage the fact that the
processor automatically steps the content of the Program

Counter (so that it then points to the operand) after fetch-

ing the instruction. When the instruction is executed (the
address field is Autoincrement Mode with the PC), the operand

is obtained and the content of the Program Counter is stepped

(because of the Mode) to the next sequential location.

Example: Move the value 18¢@ to R4
Locations 548 and 542 contain the code

for MoV #198¢.Re
poses (RLEE
Before Execution: After Execution:
R4 123456 R4 |2P10pP
e [55548 e [F544
gopsag |g127 2pasag
gpgs42 1990 ppgs42

Program Counter contains
address of instruction —w

Instruction is fetched;
content of the PC is
automatically stepped

—P2Pg540

by the processor

Instruction is executed;
content of the PC is
stepped because of

P gpg542

Autoincrement Mode

—P gPP544

ﬁ

p12794

po19PP

gespp2

INSTRUCTION

IMMEDIATE OPERAND

NEXT INSTRUCTION

Figure 3-18 Immediate Mode

ABSOLUTE MODE

Assembler Syntax Octal Code
SHA 37
Autoincrement Program Counter

Deferred Mode Register

ABSOLUTE MODE is Autoincrement Deferred Mode using the

Program Counter, where the location immediately following that
of the instruction containa the address of the operand.

The immediate data is called an ABSOLUTE address because

this address remains constant no matter where in memory the’
instruction is located and executed. What is the implication?

With the PDP-l1, programs (and thus the instructions which
comprise them) can be relocated in memory for subsequent execution.
ABSOLUTE MODE is used to specify the address of an operand when

it is desired to have that address be ABSOLUTE regardless of. the

program (instruction) location at execution time.

As illustrated by Figure 3-19, the same instruction is
executed from different locations in memory, and because ABSOLUTE

addressing is used, the address of the operand remains constant.
]
H ‘ | |
] ']
PRSPee
#asgp2

201229 3793
gp1 g2

gog1gs (111111 ggg7eg 1111111
’ :

')
' ' g
Figure 3-19 Absolute Addressing

Example: Move the content of location 7@@ to R3
Locations l1g@@ and 1g@2 contain the code

for MOV _QH77F,R3

goropp [213703
poLIpp2 (200 100)
Before Execution: After Execution:
R3 (123456 R3 1111121
rc [ggiggp PC
gag1ag 1111111 2eA1gg 1111111

Example: Move the content of location 7@@ to R3

Locations 5¢@@ and 5g@2 contain the code

for MOV @#79@,R3

2P509% 1413783
pgosgp2 (22128

Before Execution: After Execution:

R3 |123456 R3]11111)

r (D e [

gpg78g 1111111 2p3799 1111111

RELATIVE MODE

Assembler Syntax Octal Code
A 67

Indexed Program Counter
Mode Register

RELATIVE MODE is used whenever direct reference is made to

a_memory location, and is assembled as Indexed Mode using the

Program Counter. Because the content of the Program Counter is
used in the address calculation, the address of the operand is

not absolute; it is RELATIVE to the address of the instruction.

Recall that Indexed Mode forms the effective address by
adding the content of the specified register (index value) to
the content of a location following that of the instruction

word (base address). Relative Mode works in the same way, with
two distinguishing points:

1. The specified register is the Program Counter, and
its content will be updated during the execution
of the instruction,

2. The address in the location following that of the
instruction is here called an OFFSET, because it
serves as an offset to the content of the updated
Program Counter.

The following algorithms are used by the assembler:
EFFECTIVE ADDRESS = OFFSET ¢ UPDATED PC
OFFSET = EFFECTIVE ADDRESS - UPDATED PC
Example: Increment the content of location TALLY

Locations 5g@ and 5¢2 contain the code
for INC TALLY

29psep 5267

gppsg2 4
Before Execution: After Execution:
TALLY 123456 TALLY 123457

BC rc [gEp5pa

Program Counter contains
address of instruction—=§p g@FSPI #F5267 | INSTRUCTION

Instruction is Fetched;
content of PC is

automatically stepped _
by the processor D pgasp2| g@@74 | OFFSET

Source state is entered;
processor gets the offset
and automatically steps
content of PC, It is
this updated content of ——tefp FHFSH4] XAXXXX | NEXT INSTRUCTION
the PC which is then
added to the offset to
vield the effective
address. The instruction pr—
is then executed.

EPFECTIVE ADDRESS = OFFSET + UPDATED PC
¢¢¢¢74(8) + pppspa

(8)
= gppegg
(8)

Figure 3-2@ Relative Mode

Why have two modes (Absolute and Relative) which achieve the .
same purpose? Though each is used to specify the address of the ﬂﬁ%
operand, the method used is not the same, and that is the reason
for the existence of both,

If the program is always to be loaded and executed at the
same locations in memory, either mode may be used; there is no
particular advantage to using one in preference to the other.
If, however, the program is to be loaded and executed at various
locations in memory (relocated), then there is a preference;

Relative mode should be used.

The key to this usage preference is that when a program is

relocated, it should be as a complete entity. This means that all
locations used by the program (instructions and storage) should be

relocated, and that therefore no absolute references be made, ﬁm%

To help clarify this point, let's look at a simple (but not
terribly productivel) program wherein the same instructions are

used with both Absolute and Relative modes.

BEGINs: CLR Q#SAVE BEGINs CLR SAVE
HALT HALT
SAVE: # SAVE:; g2

As illustrated by Figure 3-21, both programs were assembled
and loaded beginning at location 5¢@%, and then relocated so that
they begin at location 3g@@. 1In relocating, the difference becomes

clear. With Absolute mode, a location used by the program has been

left "dangling" far behind; with Relative mode, our program remains
a “compact" whole, ™

.Tcx_tr'o'n vs. 3M
. NET INCOME

600

400

N
,.,"7/

s 63 64 65 66 67 68 69 70 N 72 73

CHART #12

) "Té.)itron vs.m3 M)
7 .EARNINGS" Per SHARE
$2.70 T

2.25(¢ -

180t ¢ o | A
' 90k . b T
S

u |

L | i | | l
63 64 65 66 67 68 69 70 N1 72 73

451

CHART #14

Te_x(.ron. vs. 3-M
STOCK PRICES..

Index 100 = 1963

Textron vs, 3 M .)
DIVIDENDS (Pd . S : 600"

: Quarterly Closings
400

300:

Textron

200!

| 1

f :
Py 100
. . . . i : : |
64 65 66 67 68 69 70 71 72 73 g

64 65 66 67 68 69 70 71 72 73 74
CHART #15 CHART #16

Assembled and loaded to begin at location 5¢@g

@ Absolute Reference Relative Reference

' |
| |
I l
I |
| |
| |
!]
| |
I |
| |
' |
[}

UD SIS GED SNV MEN SHNS R MNP GED CEE) SEP e e

l
|
|
J
l
|
I
l
i
i
|

229588 m:m. 2pB598
2p@502 PIPSEE] 2pp582
200504 PIPPOD L 2ppspa
gppsP6 PLEpgep e spgsge

Relocated to begin at location 3ggg@g

Mwm
' Absolute Reference Relative Reference
! \ ’
']]
2p3208 PP3998 i@@SEeT |
2930802 pp39@2
pp3gg4 gp3gga
p@39@6 p@3pg6

2p9546

@FM Figure 3-22 Absolute Reference vs. Relative Reference

RELATIVE DEFERRED MODE

Assembler Syntax Octal Code
aA /\ 77’\
Relative Deferred Program®Counter
Mode Register

RELATIVE DEFERRED MODE is assembled as Indexed Deferred
Mode using the Program Counter, It is similar to Relative Mode,
but with the additional level of deferral, the calculation
OFFSET + UPDATED PC yields the address of the effective address.

Example: Clear the location pointed to by the content of
location 1ggg

Locations 5g@ and 5¢2 contain the code

for CLR @129
e B
Before Execution: After Execution:
20100p |Bp2090 291008
292009 go2009

rc [g7050 ec [ggg5p4]

3.2.4 EXERCISES

The following examples based upon the discussion of General
Purpose Registers are presented as an optional exercise for the

reader. The answers can be found in Appendix B,

3.2.4.1 General Register Addressing Modes

Complete the chart below. This is an instruction list, not a
program (consider the given values to be true for each instruction).

Given: (R1)=109028, (R2)=20p0, (20p@)=608P, (1776)=580¢, (210P)=4209

SYMBOLIC OCTAL SOURCE DESTINATION (R2)
CODE CODE | EFFECTIVE ADDRESS |EFFECTIVE ADDRESS
MOV R1,R2
MOV R1,(R2)
MOV R1,(R2)+ 1122 Ri 2046 2062

MOV R1,-(R2)

MOV R1,18@(R2)

MOV R1,9187(R2)

MOV R1,8-(R2)

MOV R1,8(R2)+

3.2.4.2 Program Counter Register Addressing Modes

Complete the chart below., This is an instruction list, not a
program (consider the given values to be true for each instruction).

Given: (R@)=72¢@, (PC)=5@@, (123456)=300¢, (3908)=30p

SYMBOLIC OCTAL SOURCE DESTINATION (R@)
CODE CODE | EFFECTIVE ADDRESS |EFFECTIVE ADDRESS

MOV #123456,R@

MOV @#123456,RZ

MOV 123456 ,RZ @ 223456 R 3¢

MOV @123456,RZ

3.3 INSTRUCTION SET

- 3.3.1 Introduction

Before you can write a program, you must have a working
knowledge of the instruction set ﬁhich you are to use. We will
then discuss the PDP-11l instruction set; but because this book
is introductory in nature, we will limit our discussion to only
a part of the basic set. (It is expected that you shall soon

become expert and seek the power of the complete instruction set!)

Those instructions we are to discuss will be first listed
by format, and then grouped according to function for. a more

detailed presentation.

Abbreviations, symbols, and other esoteric markings used
are as follows:
R or reg = general register (3 bits), @g-7
SS or src = source address field

DD or dst = destination address field

/\ = AND
V = Inclusive OR
“*= Exclusive OR
loc = arbitrary lccation
8 = g for word; 1 for byte
xxx = offset (8 bits)
CONDITION CODE LEGEND

g
l = Set

Clear

* = Conditionally Set

Not Affected

@;@\ 3.3.2 Formats

3.3.2.1 Condition Code Operate Group

15 4 3 21 g

NN B R SN NN NENN BN BN BN BN
i¢———Dbase code ———PI N|Z| V]|C
L4 s 2 2 4 2 3 ¢ £ 1

° Figure 3-23 Condition Code Operate Format

MNEMONIC INSTRUCTION OPERATION CODE CONDITION CODES

N 2 VvV C

CLC CLear C ppg241 - - - g

CLV CLear V gpg42 - - g -

CLZ CLear 2 gpg244 , - g - -

CLN CLear N 2p@258 g - - =

@ SEC SEt C gog2e6l - - =1
SEV SEt V ‘ 292262 - -1 -

SEZ SEt 2 pgogg264 -1 - =

SEN SEt N 2282798 l = =« =

ccce Clear all pgeP257 g g g g

v scc Set all 299277 1111

3.3.2.2 Single Operand

15 . 6 5 g
| [] [] i 1 1 1 1 | | [B 1 ’
operation code -* dst ’l
PN NN W VN R N W U I W W

Figure 3-24 Single Operand Format

MNEMONIC INSTRUCTION OPERATION CODE CONDITION CODES

N Z2 V C

CLR(B) CLeaR * . @g5¢DD g1 g g
COM(B) | COMplement @gs51DD LA B S |
INC(B) INCrement @g52DD . o« % .
DEC(B) DECrement @253DD * e
NEG(B) NEGate . ®Z54DD * %
TST(B) TesT 8257DD * * g g
ROR(B) ROtate Right BF69DD * * = =
ROL(B) ROtate Left @g61DD * & % #
ASR(B) Arithmetic ®Z62DD * & & &

Shift Right
ASL(B) Arithmetic ®g63DD * % o *

Shift Left
JMP JuMP #PF1DD - - - -

SWAB SWAp Bytes P##P3DD * *» g g

F 3.3.2.3 Do‘lble OEerand

15 12 11 6 5 g

LR L SRR S NN N |
l‘pp code ﬁd src >4 dst
1 1 t It 1 1 1 1 1. 41 1

Figure 3-25 Double Operand Format

hd MNEMONIC INSTRUCTION OPERATION CODE CONDITION CODES
N Z2 V C
MOV(B) MOVe W1SSDD * * g
CMP(B) CoMPare W2ssDhD * * % @
BIT(B) BIt Test @®3SsSDD . * o o
BIC(B) BIt Clear @4SsDD * + g 1
BIS(B) BIt Set @5SsSDD * +« g]
f\ ‘ ADD ADD #6SSDD * a2 ox e
SUB SUBtract 16ssDD * & * @

3.3.2.4 Operate Group

g
] L4 T 1 s 1 | | 1 L L |} 1 V 1
}& , A operation code !ﬂ
1] 1

1 i 1 1] 1 (] 2 1 | U '\

Figure 3-26 Operate Group Format

MNEMONIC INSTRUCTION OPERATION CODE CONDITION CODES

N 2 V C

HALT HALT 2peees - - - =

RTI ReTurn from . peap@2 * * % @
Interrupt

TRAP | TRAP 1g4499 ® * % %

to 194777

3.3.2.5 Branches

15 8 7 ")
[] } | LB |] v § L ! | § | LE | A L] L)
l‘—base code —Ni offset
P | 4 | 1 1

i [} 1 [} 1 1 I 1

Figure 3-27 Branch Format

MNEMONIC INSTRUCTION OPERATION CODE CONDITION
N 2 V

BR BRanch PRPABB+xxx - - -
(unconditional)

BNE Branch if Not Equal § gglggdsxxx - - -

BEQ Branch if Equal # PPL14GB+xxx - - -

BPL Branch if PLus 128878 +xxx - - -

BMI Branch if MInus 1874 @B +30cx - - -

BVC Branch if oVerflow 172830 +3ex - - -
Clear

BVS Branch if oVerflow Set 1@24gg+xxx - - -

BCC Branch if Carry Clear 1@3g@@+xxx - - -

BCS Branch if Carry Set 1934 2F+xxx - - -

BHI Branch if HIgher 121 g@P+xxx - - -

BLOS Branch if LOwer or 1214 FF+xxx - - -
Same

BHIS Branch if Hlgher or 123880 xxx - - -
Same

BLO Branch if LOwer 1734 gF+xxx - - -

BGE Branch if Greater than @g@2g@@+xxx - - =
or Equal #

BLT Branch if Less Than @ @@248@+xxx - - -

BGT Branch if Greater PA3PPBexxx - - -
Than @

BLE Branch if Less thail PP34gP+xxx - - -

or Equal &

CCDES

3.3.2.6 Subroutine Call

15 g

s 3]
peration code ﬁlﬂ-reg-* dst ‘Dl
[l 4 } 8

Figure 3-27 Subroutine Call Format

MNEMONIC INSTRUCTION OPERATION CODE CONDITION CODES
N 2 V C

JSR Jump to ZP4RDD - = - =
SubRoutine .

Q

3.3.2.7 Subroutine Return

15
=TT 7

Q—Operation) code —D‘Qreqj
1 1 [N |

Figure 3-28 Subroutine Return Format

MNEMONIC INSTRUCTION OPERATION CODE CONDITICN CODES
N Z V C

RTS ReTurn from PEB2AR - - = -
Subroutine

3.3.3 A Word About Bytes

You have already learned (and of course retainedl) some
important facts about PDP-1l1 memory organization and addressing:
l. Memory is both byte and word addressable; v

each (16 bit) word is comprised of two (8 bit) bytes.
(Refer to Figure 3-4)
2. Bit 15 is the Most Significant Bit and sign bit
for both the word and the high (odd) byte;
bit 7 is the Most Significant Bit and sign bit
for the low (even) byte. (Refer to Figure 3-3)
The instruction set, then, must have the capability of dealing

with both word and byte operands.

We will for the most part restrict ourselves in this book
to working with words, and therefore word instructions, but it is
important to remember that the PDP-11l instruction set includes a
full compliment of instructions which manipulate byte operands.

A good general performance guide is this: Byte instructions op-

erate upon byte operands in the same way that word instructions

operate upon word operands.

In the lists of instructions on the previous pages, you
noted that those instructions used to handle both byte and word
operands were presented in the following manner:

MNEMONIC OPERATION CODE
OPR(B) ENNNNN
The purpose was to indicate that both the mnemonic (symbolic)
code and the octal (or binary) operational code differ to specify

either the byte or the word operation.

As illustrated by the comparative examples below, the
coding procedure is as follows:
To specify a word operation,
do not append the B to the mnemonic code;
use a zero (g) as the MSB of the operation code
To specify a byte operation,

do append the B to the mnemonic -code;
use a one (1) as the MSB of the operation code

Examples Clear Register @

Location 1g@¢7 contains the instruction code

for CLR Rg
291208 (225229
Before Executions After Execution:
RZ 1111111 R |\ 2202202

Example: Clear the low byte of Register #

Location 1@7@¢ contains the instruction code

for CLRB RS
gorgpp 195079

Before Execution: After Execution:

RF }]111111 R | 111009

3.3.4 Condition Code Operate Group
You will recall that the four least significant bits of the

Processor Status Word are referred to as the condition code bits.

15 8 76 S 4 3 2149

Iunused in basic 11 riorit;l‘r NiZ|vVv cl

Figure 3-29 Processor Status Word

As was shown in the instruction lists presented earlier,

these bits may be implicitly modified by instruction execution

if the result was Negative

l
= 1 1if the result was Zero
l

< N =

= if arithmetic oVerflow resulted

C =1 if a Carry from the MSB position resulted
and will therefore in these cases reflect the result of the
previously executed instruction. The information provided by
these bits can then be used by other instructions (i.e., Branches)

in the program,

These condition code bits may also be explicitly modified
by means of the Condition Code Operate instructions. These in-
structions are commonly used to make sure that certain bit(s) are

set (or cleared) before a given programming sequence is begun.

15 14 13 12 11 1g 9 8 7 6 5 4 3 2 1l

g Vg ! "1 Vg 2 /) 2712
Islo 9, ,0|0,5 s|e, 10| PAPALK

Figure 3-3F Condition Code Operate Instruction

Description: Set or Clear condition code bit(s)

The bit 4 position specifies whether the
Condition Code Operate Instruction is a
Clear (bit 4 = g) or a Set (bit 4 = 1)

Bit positions g-3 of the Condition Code
Operate Instruction (corresponding to the
positions of the condition code bits in
the Processor Status Word) specify whether
or not these bits are to receive the action
of the instruction (# = no) (1 = yes)

Be aware that many possible combinations
(other than CCC or SCC) may be selected for
use (i.e., #@P243 Clears both C and V)
Condition Codes:s All are explicitly Cleared or Set

Examples: MNEMONIC INSTRUCTION OPERATION CODE

CLC CLear C pggp241
SEC SEt C gpg26l1
cLv CLear V geg242
SEV SEt V P2@262
CLZ CLear 2 ggg244
SEZ SEt 2 geg264
CLN CLear N pgeg2sy
SEN SEt N pgpg219
cce CLear all pPP257

SEC SEt all gea277

3.3.5 General/Arithmetic

3.3.5.1 Introduction

The group of single and double operand instructions
which follows has been termed General/hrithmegic because each

instruction could, depending upbn a given usage, be listed in
either category.

3.3.5.2 CLEAR

CLeaR DeSTination 82g52DD

14 13 12 11 1 9 8 7 6 5 4 3 2 1

15
s o J 1 T T T T T T 1 T 7
M¢|g|¢~lnﬂnllgngnﬁ N B A R

- Pigure 3-31 Clear Instruction

Description: Replaces the content of the destination
location with zeroes

Condition Codes: Cleared
Set

N

: '
@WR \'/ Cleared
) C Cleared

Bxample: Clear location 1ggg

Locations 5¢@ and 582 contain the code

for CLR @417
v [
Before Execution: ' : : " After Execution:
" o1 opp [123456 . o008 (Po708

3.305;3 MOVE

MOVe SouRCe,DeSTination

@1SSsDD

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1l
4 | I | 1 §] § .I] | | | T
, “ l,g i 1 i i 1 53¢ i | A dsF | 1
Figure 3-32 Move Instruction
Description: Moves (a copy of) the source operand to the

Condition Codes:

Example:

Before Execution:
21191
95082

R3

destination location. The content of the
gource location is not affected; the original
content of the destination location is lost
(replaced by the copy of the source operand)

N Set if source operand less than zero;
Cleared otherwise

' Set if source operand is equal to zero;
Cleared otherwise

V Cleared

C Not affected

Move the value 123456 to Register 3

Locations 5¢@¢¢ and 5¢@2 contain the code
for MOV #123456,R3

st [

gpspa2

After Execution:

r3 [12335¢]
gosgp2 [123456

@\ 3.3.5.4 TEST

TeST DeSTinaticn : ‘ ®g57DD

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1

? 'g'gll'g'l 11 1 bl g
i [R | 1 | i 1 —l 1 1 1 4

Figure 3-33 Test Instruction

Description: Tests the content of the destination
(Specifically for Negative and Zero)

The content of the destination is not affected

5ﬁh Condition Codess N Set if destination operand less than zero;
‘ Cleared otherwise
2 Set if the destination operand is equal
to zero; Cleared otherwise
V Cleared
C

Cleared

‘Example: Test the content of Register 5

Location 7¢¢ contains the code
for _TST RS :

- gpp19p

Before Execution: After Execution:

RS 177777 RS 177777

N 2z V C N 2 V C
g1 g1 l1 8 2 2

3.3.5.5 COMPARE

CoMPare SouRCe,DeSTination W2SsSDD

15 14 13 12 11 1 9 8 7 6 S 4 3 2 1 g
ﬁ | 1 ¥ I] | f | | ¥ I]] d't T T
2 [| 1 2 | 1 sﬁc [1 2 g . ? 1 9

Figure 3-34 Compare Instruction

Description: Compares the source and destination operands
by subtraction (source - destination)

Neither operard is affected

Condition Codess N Set if the result is less than zero;

Cleared otherwise ,
Set if the result is equal to zero;
Cleared otherwise
Set if there was arithmetic overflow
(operands of opposite signs; sign of the
result same as sign of the destination);
Cleared otherwise

C Set if there was no carry from the MSB
position of the result; Cleared otherwise

Example: Compare the contents of Register 2 and Register 3

Location 52@ contains the code
for CMP R2,R3

gposeg [p20203]

Before Execution | After Execution:
r2 [ggpes] r2 [gpopss
r3 [177764 | r3 [177767

N 2 V C ; o N 2 V C

g 1 g1 ' . A 1 g 11

@MA 3.3.5.6 SWAP BYTES

SWAp Bytes DeSTination P2Z3DD
1s 14 13 12 11 1 9 8 7 6 5 4 3 2 l [}
l | T T T | | 1 1 | 1
, g ﬂ,ﬂdlﬂ.ﬂ.ﬂ g 1 1 ., ast

Figure 3-35 Swap Bytes Instruction

Description: Exchanges the high order byte and low order byte
of the destination word

Condition Codes:

Set if MSB of low order byte (bit 7) of the

result is set; Cleared otherwise
Set if low order byte of the result is equal
to zero; Cleared otherwise

N

: z
@Wh V Cleared
‘ C Cleared

Example: Swap the high order and low order bytes of R4

Location 2¢@% contains the code

for SWAB R4

pgo2008 gEP3g4

Before Execution:

. R4 123456

1514131211199

After Execution:

8,7 6 54 3 2 1¢g

R4 @27247

. Il gzl |1

FAVARI VAR RS RS L4

3.3.5.7 ROTATE RIGHT

ROtate Right DeSTination - Bg62DD

15 14 . 13 12 ' 8 7 6 5 4 .3 2 1 g
] | N | T 3 T
MF’ ¢|¢|1|1¢ gg,g . g 98t

Figure 3-36 Rotate Right Instruction

Description: Rotates all bits of the destination word one
place to the right. The content of the C bit
of the Processor Status Word is rotated into
the bit 15 position, and the content of bit @&
is.rotated into the C bit position

o 15 g

__'>
4 |

A "17 bit connected serial shift" one position
to the right which facilitates sequential bit
testing and detailed bit manipulation.

Condition Codes: N Set if the high order bit of the result is
set (result less than zero); Cleared otherwise
Z Set if all bits of the result are zeroes;
Cleared otherwise
V Loaded with the Exclusive OR of the N bit and
C bit (as set by the completion of the
Rotate instruction)

C Loaded with the low order bit of the destination

Example: Rotate Right the content of Register &

Location 1g¢@ contains the code

for ROR Rf
ppLEgy | 2pegPd
Before Execution: After Execution:
RP 123456 R@ |#51627

Cbit ¢ C bit @

™

@”“ 3.3.5.8 ROTATE LEFT

Rotate Left DeSTination BgelpD

11

15 14 13 12
V T 1
AR NAR

1g 9 8 7 6 5 4 3 2 1 g
| |

y 14, 7 g,9,1 \ p 95t I

FPigure 3-37 Rotate Left Instruction

Description:

Condition Codes:

Examples

€’\ Before Execution:

RP 123456

C bit @

Rotates all bits of the destination word one
place to the left. The content of the C bit
of the Processor Status Word is rotated into
the bit @ position, and the content of bit 15
is rotated into the C bit position

c 15 ']
44—
l A

A "17 bit connected serial shift" one position
to the left which facilitates sequential bit
testing and detailed bit manipulation.

N Set if the high order bit of the result is
set (result less than zero); Cleared otherwise
Set if all bits of the result are zeroes;
Cleared otherwise
v Loaded with the Exclusive OR of the N bit and
C bit (as set by the completion of the
Rotate instruction)

& Loaded with the high order bit of the destination
Rotate Left the content of Register &

Location 1g@g@ contains the code

for ROL Rg
gplEpe {\pgeled

After Execution:

RE | §47134

C bit 1

3.3.5.9 ARITHMETIC SHIFT RIGHT ﬂﬁ%

.Arithmetic Shift Right DeSTination @262DD

15 14 13 12 1 1 9 8 7 6 5 4 3 2 1 & ,
I 0 T _
!!:1 2, g,2 I 1 1,79 g, 1,7 I 23 i

Figure 3-38 Arithmetic Shift Right Instruction

Description: Shifts all bits of the destination location one
place to the right. The present content of the
C bit is lost as the content of the bit @
position is shifted in and bit 15 is replicated
(to maintain the sign)

?—DX‘-LII‘S | I

The ASR instruction performs signed division by
two on the content of the destination location.

2

Set if the high order bit of the result is set
(result less than zero); Cleared otherwise

Z Set if all bits of the destination are zeroes;
Cleared otherwise

v Loaded with the Exclusive OR of the N bit and
.C bit (as set by the completion of the Shift
instruction))

C Loaded with the low order bit of the destination

Condition Codes:

Example: Arithmetic Shift Right the content of Register @

Location 1@@@ contains the code

for ASR RZ
- PPLIpPp | pP62p8
Before Execution: After Execution:’
RP [123456 , , . Rg | 151627 ™

C bit 2 - C bit £

3,3.5,13 ARITHMETIC SHIFT LEFT

Arithmetic Shift Left DeSTination @263DD
15 14 13 12 11 1¢ 9 8 7 6 5 4 3 2
V 1 1 | !]] I ¥ | E— T T
ﬂ g, P11, 218,141 ¢ g 98t n_I

- Figure 3-39 Arithmetic Shift Left Instruction

Description: Shifts all bits of the destination location one
place to the left. The present content of the
C bit is lost as the content of the bit 15
position is shifted in and the bit @ position
is (always) loaded with a zero

C 15 -
x¢[Je[1TT] |l
fm“ The ASL instruction performs signed multiplication

by two (with overflow indication) on the content
of the destination location.

Condition Codes: N Set if the high order bit of the result is set

(result less than zero); Cleared otherwise

Z Set if all bits of the result are zeroes;
Cleared otherwise

v Loaded with the Exclusive OR of the N bit and
C bit (as set by the completion of the Shift
instruction)

C Loaded with the high order bit of the destination

Example: Arithmetic Shift Left the content of Register &

4 Location 1¢@@ contains the code

for ASL Rg
poronp [2ge3od]
Before Execution: After Execution:
Rf §123456] RE |@p47134

C bit ¢ C bit 1

3.3.5.11 ADD ™

ADD SouRCe,DeSTination ‘ #6SSDD

l)
|¢|1L1.ﬂ

15 14 13 12 11 1§ 9 8 7 6 5 4 3 2 1 g
! | | I ¥] J v ﬁ;l ¥ T “] .
| { 53¢ 4 S S AU T ®

Figure 3-4¢ Add Instruction

Description: Adds the source operand to the destination operand
and stores the result in the destination location.

The source operand is unaffected; the destination
operand is lost (replaced by the result)

Condition Codes: N Set if the result is less than zero; ,ﬁ%

Cleared otherwise
Set if the result is equal to zero;
Cleared otherwise

v Set if there was arithmetic overflow
(operands of same sign; result of opposite
sign); Cleared otherwise

C Set if there was a carry from the MSB of the
result; Cleared otherwise

Example: Add the content of Register 3 to the content
of location Sggg

Locations 7¢@ and 782 contain the code
for ADD R3,6#5000

2297998 | ge@337 s
gopig2 5
Before Execution: After Execution:
R3 | gg@123 R3 | gg@123
paspps [Fgpase | 95009 [gggegi

@mm 3.3.5.12 SUBTRACT

SUBtract SouRCe,DeSTination 16SSDD

15 14 13 12 11 1g 9 8 7 6 s 4 3 2 1 g
: | T | T 1 | N S | N
| d I
* 1 1 L] 1 |"¢ {] ch [1 : | | ?t |

Figure 3-41 Subtract Instruction

Description: Subtracts the source operand from the destination
operand (destination - source) and stores the
‘result in the destination location

The source operand is unaffected; the destination
operand is lost (replaced by the result)

@M“ Condition Codes: N Set if the result is less than zero;
Cleared otherwise
Set if the result is equal to zero;
Cleared otherwise
\'4 Set if there was arithmetic overflow
(operands of opposite signs; sign of result
same as sign of source); Cleared otherwise
C Set if there was no carry from the MSB

position of the result; Cleared otherwise

Example: Subtract the content of Register 3 from the
content of location 5gg@

Locations 7¢¢ and 702 contain the code
for SUB R3,8#57@2

* 23798 (168337
#o97192 %

Before Execution: After Execution:

R3 | #@@123 ‘ : R3 | 2@@123
~ pospes | gggeal | e

3.3.5.13 INCREMENT

INCrement DeSTination | 8252DD

15 14 13 12 11 18 o 8 7 6 5 4 3 2 1 g

Figure 3-42 Increment Instruction

Description: Adds one to the content of the destination
location

Condition Codes: N Set if the result is less than zero;
Cleared otherwise
2 Set if the result equal to zero;
Cleared otherwise
v Set if the destination operand was @77777;
Cleared otherwise
C Not affected

Example: Increment the content of Register 5

Location 3¢g@ contains the code
for INC RS

—————————]

pp3ppp [pg5205)

Before Execution: After Execution:

R5 }J123456 R5 123457

e

3.3.5.14 DECREMENT

DECrement DeSTination | ®753DD

1§ 14 13 12 11 1 9 8 7 6 5 4 3 2 l g

Figure 3-43 Decrement Instruction

Description: Subtracts one from the content of the destination
location

Condition Codess N Set if the result is less than zero;
@M“ Cleared otherwise
A Set if the result is equal to zero;
Cleared otherwise
V Set if the destination operand was lggggd;
Cleared otherwise
(o Not affected

Example: Decrement the content of Register 5

Location 3g@F contains the code
for DEC R5

. 283908 | g@5385

Before Execution: After Executions

R5 J123457 RS 123456

343.5.15 COMPLEMENT

COMplement DeSTination

15 14

13

11 1 9 8 7 6 5 4 3

#gZs51pD

m¢ﬂﬂr

llﬂ:”‘:II' V' ast

Description:

Figure 3-44 Complement Instruction

with its one's complement

Condition Codes:s N Set if the MSB of the result is set;

Before Execution:

R5

123456

Cleared otherwise

Set if the result is equal to zero;

4

Cleared otherwise
v Cleared
C Set

Example:s Complement the content of Register 5

Location 3g@¢7 contains the code
for COM RS

po3p9p [Bg51p5

RS

After Execution:

p54321] .

Replaces the content of the destination location

€MM 3.3.5.16 NEGATE

NEGate DeSTination 8354DD
15 14
|
. g 2 |1 | I : : : l
1I.w |

Figure 3-45 Negate Instruction

Descriptions Replaces the content of the destination location
with its two's complenment

g Condition Codes: N Set if the result is less than zero;
gmm Cleared otherwise
Z Set if the result is equal to zero;
Cleared otherwise
V Set if the result is 1ggggg;
Cleared otherwise

Example:s Two's complement the content of Register 5

Location 3g@@ contains the code
for NEG R5

Po3gP8 | 885495
Before Execution: After Execution:

R5]123456 RS | #54322

3,3.6 Logical

3.3.6.1 Introduction

The group of double operand instructions which follows
has been termed Logical because the instructions are based on

the logic operations discussed earlier (Section 2.5).

These instructions permit operations on data at the

bit level.

-

3.3.6.2 BIT TEST

BIt Test SouRCe,DeSTination | @3SSDD

15 14 13 12 11 1g 9 8 7 6) 4 3 2 1l g
|IIII::::I] N L] i | | | l::::::::::::]
p] l l | src 1 dst

' | S 1 | |] |

Figure 3-46 Bit Test Instruction

Description: Performs a Logical AND operation between the
source and destination operands

Neither operand is affected

This instruction is commonly used for status
checking; to determine whether or not certain
bit(s) are set (cleared) in a specified word

Condition Codes: N Set if the MSB of the result is set;
Cleared otherwise

Z Set if the result is equal to zero;
Cleared otherwise

v Cleared

(o

Not affected

Example:s Location 177564 contains the status word for an
Input Device; bit 7 is set when a transfer of
information is complete. Check this “done bit,*

Locations 5@@@, 5232, and 5874 contain the code
for BIT #2 17756

2050988 12327371
2e5pp2 2
2@5p@84 17756

Before Execution: After Execution:
gpsgp2 | pRe2ee : go50p2 | gP@2PLE
177568 17756¢ [B28g09)
N 2 V C N 2 V ¢

119 9 | g1 9 2

3.3.6.3 BIT CLEAR

BIt Clear SouRCe,DeSTination’ ‘ B®4SSDD

1s 14 13 12 11 1 o 8 7 6 S 4 3 2 1 g
T § r T) T T]
% 1 g [src I dst :
_ i] [1 i 1 { : : I d

Figure 3-47 Bit Clear Instruction

Description: Clears each bit in the destination operand which
corresponds to a set bit in the source operand

The source operand is unaffected. The original
destination operand is lost (receives the action
of the instruction); replaced by the result

This instruction is commonly used for a function /ﬁ%
called Masking (getting rid of unwanted bits)
or Extracting (saving wanted bits)

N Set if the MSB of the result is set;
Cleared otherwise

2 Set if the result is equal to zero;
Cleared otherwise

v Cleared

c Not affected

Condition Codes:

Example: Extract the two Least Significant Digits of the 3
content of location 1@@@ for future action

Locations 6gg@, 6892, and 6g@4 contain the code

for BIC #1777¢¢,641000 s
pPeaps %
gopegg2 11777291
pgpegpa 1
Before Executions: _ After Executions
ppepp2 117122 ppepp2 -
go1099 3y 291000

N zZ VvV C | N 2 V C
11 9 ¢ 2 8 8 8

3.3.6.4 BIT SET

BIt Set SouRCe,DeSTination WS5ssDD

Figure 3-48 Bit Set Instruction

Description: Performs an Inclusive OR operation between the
source and destination operands

The source operand is unaffected. The original
destination operand is lost (receives the action
of the instruction); replaced by the result

\ This instruction is commonly used when it is
@' desired to set certain bit(s) within a given
word without affecting the other bits

Condition Codes: N Set if the MSB of the result is set;
Cleared otherwise

Z Set if the result is equal to zero;
Cleared otherwise

v Cleared

C

Not affected

Example: Location 177568 contains the status word for an
. Input Device; setting bit 6 enables the Program
Interrupt Facility. Do this.

Locations 7898, 7982, and 7974 contain the code

* for BIS #1g7,6#17756¢
p87008 [F52731
297992 187)
po794@4 177568
Before Execution: After Execution:
ﬁ gB1882 2891 9% 207992 |223198
177568 | 2208299 177s6g [22p1 27
N 2 VvV C

1194 5559

3.3.7 Program Control

3,3.7.1 Introduction

The group of instructions which follows has been termed

Program Control because these instructions contro;,ﬁhe flow of

the program, Typically, such instructions cause a change from

one sequence of instructions to another.

3.3.7.2 JUMP

JuMP DeSTination 22#1DD

1 14 13 12 11 1 9 8 7 6 S - 4 3 ' 2 l g

Figure 3-49 Jump Instruction

Description: Transfers program control to any location in.
memory (destination address calculated and
loaded into the Program Counter)

N Not affected
2 Not affected
v Not affected
C Not affected

Condition Codes:

Example: Transfer program control to location LOOP
(arbitrarily defined as location l1ggg)

Locations 5¢@ and 582 contain the code
for JMP LOOP

pogsge (gagie
pegsg2 [gggaa)

Before Execution: After Execution:

PC | 2pP592 PC | 2210022

BRANCH INSTRUCTIONS

15 14 13 12 11 1 9 8 7 6 S5 ¢4 3 2 1 g

_] § | | | ! s) L | LN 1

SB M A G N I T U D E
[1 |] :] | | 1 1 1

OPERATION CODE | " OFFSET

OPERATION

Unconditional Branch
Transfer program control to the location defined by the offset

Conditional Branches
Check the appropriate Condition Code bit(s)
-If the condition(s) met, transfer program control to the.
location defined by the offset
-If the condition(s) not met, pass control to the next
sequential location

OFFSET

The offset is a signed (two's complement) displacement to the PC
within the low order 8 bits of every branch instruction

It specifies the number of words from the updated PC to the
desired location

CALCULATION
The PC expresses a byte address. Because the offset is expressed

in words, it is first converted to bytes and then added to the
PC to effect the transfer

The algorithms used are:
LOC=(OFFSET x 2) + UPDATED PC OFFSET=(LOC - UPDATED PC)/2

RANGE

The range of any branch instruction is limited by the offset
(forward 177, words; backward 2@@_ words), but advantages are
that: (1) AIl branch instructiong (except for BRANCH) are
conditional, and (2) The instruction itself will always require
only one word (versus the usual two for the Jump instruction)

RANGE OFFSET
(WORDS) (LOW 8 BITS)
-209 209
22 376
-1 377
g pog
+1 271
+2 292

4157 177

@Wﬂ 3.3.7.3 BRANCH

BRanch (to) 16@ | pPgaxxx

15 14 13 12 11 1g 9 8 7 6 5 4 3 2 1 g

| L]
| [I] g | '] I] L g "ﬁ 1l 0 F F S E T

Pigure 3-5¢ Branch Instruction

Description: Transfers program control unconditionally to
the location defined by the offset

(See next page for general operational information)

Condition Codes: Not affected

Example: Transfer program control to location LOOP
@Wh (arbitrarily defined as location 1ggg)

Location 5¢¢ contains the code fo
for BR LOQP

RP50p .
Before Execution: After Execution:

pc [Zog502 rc [gglgpg

*l 0S=(LOC~UPC) /2
) 0S=(12g@g-502g)/2
0S=276g/2

3.3.7.4 BRANCH IF EQUAL ZERO ﬁw%

Branch if EQual zero (to)lloc PPlaxxx

14 13 -

Figure 3-51 Branch if Equal Instruction

Description: Transfers program control to the location defined
by the offset IF the condition (2 bit set) is met.

If the condition is not met, control passes to the
next sequential location

Condition Codess Not affected

'Examples Compare the contents of Register 1 and Register 2,
Branch to location SAME (arbitrarily 1¢58) if the
contents are equal ’ﬁ§

Locations 1£@47 and 18@2 contain the code
for CMP R]l,R2

BEQ SAME
2p100p (725152
go1902 [gF1azz] *
Before Execution: After Execution:
Rl |g2@528 - Rl | @P@sSg@
rR2 [ggasgg | | r2 [F7g507) .
. | rc [#21057

+[os=(Loc-urc) /2
0S(1#505-100845) /2
0S=44 8/

0S=224

@M“ 3.3.7.5 BRANCH IF NOT EQUAL ZERO

Branch if Not Equal zero (to) loc PELFxxx

Figure 3-52 Branch if Not Equal Instruction

Description: Transfers program control to the location defined
- by the offset IF the condition (2 bit clear) is
met., If the condition is not met, control passes
to the next sequential location

Condition Codess Not affected

Example: Compare the contents of Register 1 and Register 2.
Branch to location DIFF (arbitrarily l1¢5¢) if the
@w“ contents are not equal

Locations 1g@@ and 1g@2 contain the code
for CMP R1,R2

BNE DIFF
pRLIPAE | B2P122
gorgp2 |gpglg22] +
Before Execution: After Execution:
- r2 [777507] r2 [FFF557
PC | gp12g8 PC | 91424

*] 0S=(LOC-UPC) /2
0S=(1g5gg~1@@4g)/2
0S=44g/2
08=22g

3.3.7.6 BRANCH IF PLUS | m%)

Branch if PLus (to) loc 12@gxxx
15 14 13 12 11 1 9 8 7 6 S 4 3 2 l .} ”
| 1 | | 1 1 | T | 1 T
I 112,20 ,9812,08,81°7° ©4Ff , F ,,S ,E T,

Figure 3-53 Branch if Plus Instruction

Description: Transfers program control to the location defined
by the offset IF the condition (N bit clear) is
met. If the condition is not met, control passes
to the next sequential location

Condition Codes: Not affected

Examples Test the content of Register 4; branch to location
POS (arbitrarily 2@2@) if the content is positive pa%

Locations 2¢¢7 and 22¢4 contain the code

for TST R4
BPL _POS
go20p9 [2g57p4|
gp2pp2 - 6] *
Before Execution: ‘ After Execution:
R4]111111 R4 1111111
pc_[gg2ceg pc [282774

% 0S=(LOC~UPC)/2
0S=(20205-20945)/2
0S=14g/2 '
0S=6g

m 3.3.7.7 BRANCH IF MINUS

Branch if MInus (to) loc 127430

- 15 14 13 12 11 1 9 8 7 6 S 4 3 2 l J
f | | T | f T p | | 1 1 |
ll £ 9 4,2 1 2, 8,98]1) 4 F 4 F S, BT

Figure 3-54 Branch if Minus Instruction

Description: Transfers program control to the location defined
by the offset IF the condition (N bit set) is met.
If the condition is not met, control passes to
the next sequential location

Condition Codes: Not affected

Example: Test the content of Register 4; branch to location
@mn NEG (arbitrarily 2@2¢) if the content is negative

Locations 2g@¢@ and 2¢@4 contain the code
for TST R4

BMI_NEG
s (B -
Before Execution: | After Execution:
. Re (111111 re [112113]
’ pc |gg220p PC

*] 0S=(LOC-UPC)/2
0S=(2@202g-2p@4g)/2
03:148/2

08368

3.3.7.8 BRANCH IF CARRY CLEAR

Branch if Carry Clear (to) loc 173 gxxx

14 13 12 11 1g 9 8 7 6 5 4 3 2 1]
I—'l 11|1 |] T |sf | T
? g gl 1 P lo'lFlFl' IE‘Tvl {1 &

Figure 3-55 Branch if Carry Clear Instruction

Description: Tranafers program control to the location defined
: by the offset IF the condition (C bit clear) is
met., If the condition is not met, control passes
to the next sequential location

Condition Codes: Not affected

then check to see if a carry resulted. If there
was no carry, branch to CNO (arbitrarily S5gg)

Example: Add the conténts of Register 3 and Register 4, ﬁa%

Locations 548 and 542 contain the code
for ADD R3,R4

BCC CNO
paps4g %sg3g4
pgpgsa2 [1g3356]*
Before Executions ' After Execution:
R3 [#76543] , ‘R3 [#76543]

re [12345¢] - R4 [g22221
v [5G e [

#] 0S=(LOC=-DUPC)/2
| 0s=(52p5-544g)/2
0S=-445/2
0S=-224
OS-3568

@WN 3.3.7.9 BRANCH IF CARRY SET

Branch if Carry Set (to) loc 1434xxx

15 14 13 12 11 18 9

8 7
' ! 1 ! !] R i 1 L}
L |

1
{1 l g g g g ye 2.1

Figure 3-56 Branch if Carry Set Instruction

Descripﬁions Transfers program control to the location defined

by the offset IF the condition (C bit set) is met.
If the condition is not met, control passes to
the next sequential location

Condition Codes: Not affected

Before
R3
¢ R4

PC

Example: Add the contents of Register 3 and Register 4,
then check to see if a carry resulted, If there
was a carry, branch to CYES (arbitrarily 52¢)

Locations 547 and 542 contain the code
for ADD R3,R4

BCS CYES
pegssg [Feg3pa)
pEps542 |19355€k
Execution: After Execution:

r3 [F7esa3]
re [F22221]
rc (Z27527)

*1 0S=(1.0C-UPC)/2
0S=(5¢@g-544g)/2
0S=-44g/2
03:-228

0S=356¢g

-3.3.7.1¢ BRANCH IF OVERFLOW CLEAR

Branch if Overflow Clear (to) loc

1§ 14 13 12 1 1 9o

1g2dhexx

-

8 7 6 S5 4 3 2 1 g
) ! 1]] [}]
| 1 g | g] g g) 1 t 2 g i o 1 F | F] S } E] T 1 I s

Figure 3-57 Branch if Overflow Clear Instruction

Descriptions Transfers program control to the location defined
by the offset IF the condition (V bit clear) is
met, If the condition is not met, control passes
to the next sequential location

Condition Codes: Not affected

Example:s Rotate right the content of Register 3, and branch
to location OK (arbitrarily 5¢3@) if there was no ™

arithmetic overflow

Locations 5¢@¢@ and 5@@2 contain the code

for ROR R3
BVC OK

pespes (226783
gaSgE2 | 182012] *
Before Executions

‘C bit #

x [E5E
PC 1225848

*] 0S=(LOC-UPC)/2
0S=(5@37g-50P4g)/2
OS=248/2

0S=12g

After Execution:

C bit 1

rs [ETE]
re [FEEA

¢

@W“ 3.3.7.11 BRANCH IF OVERFLOW SET

Branch if oVerflow Set (to) loc 1024 xxx

q

15 14 13 12 11 1g 9 8 7 6 5 4 3 2 l]
Y I 1 T | S ENESY BN R SN S E— |

Figure 3-58 Branch if Overflow Set Instruction

Description: Transfers program control to the location defined
by the offset’ IF the condition (V bit set) is met,
If the condition is not met, control passes to
the next sequential location

Condition Codes: Not affected

Example; Rotate right the content of Register 3, and branch
f"' ‘ location RESTOR (arbitrarily 583¢) if there was
arithmetic overflow

Locations 5g¢7 and S5¢@2'contain the code
for ROR R3

BVS RESTOR
pEsPep | 28623
Pg5g@2 |182412]+*
Before Execution: After Execution:
Cbhit g C bit 1
’ r3 [F12345 r3 [Z75163]

PC { ¢ niuih PC 1 @@35¢3¢
. i

*] 0S=(LOC-UPC) /2
OS=(5¢3@g-5¢P4g)/2
0S=24g/2

OS=128

APPENDIX A
Answers to selected exercises
Chapter 2
2.6.1
1. 271 199 199 2. @211 121 g1

l, 1¢42 2. 54

l, 1194 2., 1759

1. 482 2., 512

1, gpl234 2. Pp@EsTe

1. p2¢p 2909 29¢ 111 g1l 119 2. pp@ #gp 141 21p §18 13p

1. g9g 221 §11 121 219 111 2, g@g g7 218 191 1gg g1

1. pop gop pep 219 119 P11 2. @Pp pog peg 288 pig 119

1. 237773 2. @15552
2.6.12

l. 2P1345 2. £Pg445
2.6.11

1. ggg gpp 218 gop 198 189

2.6.12
1., 211 gl11 111 141 111 111

2.6,13

1. 291 111 gzl @11 gl 111

14
~~r

APPENDIX B

Ansvers to selected exercises

3.2.4.]1 General Register Addressing Modes

Pl

SYMBOLIC _ |OCTAL | SOURCE DESTINATION (R2)
'CODE CODE | EFFECTIVE ADDRESS|EFFECTIVE ADDRESS
MOV R1,R2 R1 R2 1980
MOV R1,(R2) 21 2000 2009
MOV R1,(R2)+ R1 2008 2002
MOV R1,-(R2) 1. 1776 476
MOV R1,1g@(R2) R1 - 2100 2009
MOV R1,818¢(R2) 21 4e0p - 209
MOV. R1,@-(R2) R1 Seed 1¥¥6
MOV R1,@(R2)+]m¢132 R1 cooPp 2002
3.2.4.2 Program Counter Register Addressing Modes
SYMBOLIC OCTAL SOURCE DESTINATION (RY)
CODE CODE | EFFECTIVE ADDRESS |EFFECTIVE ADDRESS
MOV #123456 ,R8 502 R 223456
MOV @#123456,Rg 123456 R 39¢¢
MOV 123456 ,R@ - 223456 RO Spde
Mov @123456,88 [5377 - 3¢ee P 20

DIGITAL EQUIPMENT CORPORATION, Maynard, Massachusetts, Telephone: (617) 897-5111 « ARIZONA. Phoenix ® CALIFORNIA,
Sunnyvale, Santa Ana. Los Angeles, San Diego and San Francisco (Mountain View) « COLORADO, Engelwood e CONNECTICUT,
Meriden ¢ DISTRICT OF COLUMBIA, Washington (Riverdale, Md.) » FLORIDA, Orlando » GEORGIA, Atlanta ILLINOIS, Northbrook
e INDIANA. Indianapolis ® LOUISIANA. Metairie » MARYLAND, Riverdale « MASSACHUSETTS, Cambridge and Waltham » MICHIGAN,
Ann Arbor and Detroit (Southfield) » MINNESOTA, Minneapolis » MISSOURI, Kansas City and Maryland Heights ® NEW JERSEY,
Fairfield. Metuchen and Princeton « NEW MEXICO, Albuguerque « NEW YORK, Huntington Station, Manhattan, New York, Syracuse
and Rochester #« NORTH CAROLINA, Durham/Chapel Hill ® OHIO, Cleveland, Dayton and Euclid ® OKLAHOMA, Tulsa * OREGON,
Portland « PENNSYLVANIA, Bluebell, Paoli and Pittsburgh * TENNESSEE. Knoxville TEXAS, Dallas and Houston ¢ UTAH. Salt Lake
City » WASHINGTON, Bellevue o WISCONSIN, Milwaukee ¢ ARGENTINA, Buenos Aires ® AUSTRALIA, Adelaide, Brisbane, Crows
Nest. Melbourne, Norwood. Perth and Sydney e AUSTRIA, Vienna ¢ BELGIUM, Brussels » BRAZIL, Rio de Janeiro, Sao Paulo
and Porto Alegre e CANADA. Alberta, Vancouver, British Columbia; Hamilton, Mississauga and Ottawa, Ontario; and
Quebec o CHILE. Santiago e DENMARK, Copenhagen and Hellerup e FINLAND, Helsinki * FRANCE, Grenoble and Rungis ®
GEBMANY Cologne. Hannover. Frankfurt, Munich and Stuttgart e INDIA, Bombay e ISRAEL, Tel Aviv ¢ ITALY, Milano e JAPAN,
Osaka and Tokyo o MEXICO. Mexico City « NETHERLANDS. The Hague e NEW ZEALAND, Auckland « NORWAY, Oslo e
PHILIPPINES. Manila e PUERTO RICO, Miramar and Santurce e REPUBLIC OF CHINA, Taiwan e SCOTLAND, West Lothian e
SPAIN Barcelona and Madrid e SWEDEN, Solna and Stockholm e SWITZERLAND, Geneva and Zurich ¢ UNITED
“INGDOM_ Birmingham. Bristol, Edinburgh, London, Manchester, Reading and Warwickshire e VENEZUELA, Caracas

PRINTED IN USA 0302 00174 3534/E 14 1.2

	Preface
	Table of Contents
	Chapter 1 Introduction to Computers
	Chapter 2 Numbers and Other Stuff
	Chapter 3 The PDP-11
	Appendix A Answers to selected exercises
	Appendix B Answers to selected exercises

