August 1978

This document describes how to write application programs and define transaction
processors that run under TRAX. The structure of a transaction step task, the avaiable TRAX
system calls, and the use of TRAX definition utilities are discussed.

This is a new manual.

TRAX

Application
Programmer’s Guide Lo
AA-D329A-TC
OPERATING SYSTEM AND VERSION: TRAX Version 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard. massachusetts

First Printing, August 1978

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in

accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by

DIGITAL or its affiliated companies.

Copyright @ 1978 by Digital Equipment Corporation

The postage-prepaid READER’S COMMENTS form on the last page of this document requests the user’s

critical evaluation to assist us in preparing future documentation.

‘The‘wfollowing are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10
DEC DECtape

PDP DIBOL

DECUS EDUSYSTEM
UNIBUS FLIP CHIP
COMPUTER LABS FOCAL
COMTEX INDAC

DDT LAB-8
DECCOMM DECSYSTEM-20
ASSIST-11 RTS-8

9/78-14

MASSBUS
OMNIBUS
0s/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10

PREFACE

CHAPTER

CHAPTER

CHAPTER

.......

3.10
3.11

CONTENTS

Page
.. xiii
MANUAL OBJECTIVES . .. e e e e et e e xiii
INTENDED AUDIENCE iiiiiiiinnnnn. e xiii
STRUCTURE OF THISDOCUMENT, Xiii
ASSOCIATED DOCUMENTS ... it e i e ie e Xiii
CONVENTIONS USED IN THIS DOCUMENT [Xiv
INTRODUCTION ittt ittt ieneaeannn. 1-1
TRAX APPLICATION PROGRAMS —TSTs 1-1
A TYPICAL TRANSACTION it 1-5
Annotated Transaction Structure Diagram — CHGCUS 1-5
CODING A TRANSACTION STEPTASK 2-1
USING TSTs IN A TRAX APPLICATION 2-1
TST IMPLEMENTATION CONSIDERATIONS 2-1
THE TST DEVELOPMENT PROCESS, 2-2
TST STRUCTURAL REQUIREMENTS 2-2
THE TSTENTRY POINT i e i ee i 2-3
COBOL — Program Name and TST Parameters 2-3
Coding the BASIC-PLUS-2 TST STatement P S 24
THE EXCHANGE MESSAGE i 2-4
Coding the Exchange Messagein COBOL 2-6
Coding the BASIC-PLUS-2 MSGMAP Statements 2-6
THE TRANSACTIONWORKSPACE i, 2-6
Coding the Transaction Workspacein COBOL 2-8
Coding the BASIC-PLUS-2 WRKMAP Statements 2-8
EXITING FROM A TST ... e e et i e e e e 29
Normal Exit froma COBOL TST 2-10
Normal Exit from a BASIC-PLUS-2 TST 2-10
TST FILE INPUT/OUTPUT OPERATIONS 31
APPLICATION DATA FILES i i 3-1
TYPESOF DATA FILES i 32
FILE ACCESS METHODS e 33
LOGICAL DATAFILENAMES 3-3
PREPARING TO USE FILESFROM ATST 34
CLOSING DATA FILES i it e e i e 3-5
RECORD LOCKING FACILITIES, 3-5
READING RECORDS FROM FILES 3-7
INSERTING RECORDSINTOFILES, 3-7
UPDATING EXISTING RECORDSTO AFILE 3-7
DELETING RECORDSFROM AFILE 3-7

iii

CONTENTS (Cont.)

CHAPTER

iv

3.12

3.13

3.14

3.14.1
3.14.2
3.14.3
3.14.4
3.14.5
3.14.6
3.14.7
3.14.8
3.149
3.15

3.15.1
3.15.2
3.15.3
3.154
3.15.5
3.15.6
3.15.7
3.15.8

4
4.1

4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.1.1
43.1.2
43.1.3
43.2
4.3.2.1
4.3.2.2
4.3.2.3
433
4.3.3.1
4.3.3.2
4.3.3.3
434
4.34.1
4.3.4.2

Page
I/O ERRORHANDLING 3-7
STAGED FILE OPERATIONS iy 3-7
EXAMPLES OF COBOL TST I/O OPERATIONS 39
Preparing for /Oina COBOL TST, 39
Using COBOL to READ RecordsfromaPFile 3-11
Using COBOL to Write RecordstoaFile 3-13
Using COBOL to Update RecordsonaFile 3-13
Using COBOL to Delete Recordsfroma File 3-14
1/O Error Handlingin COBOL TSTs 3-14
Closing Data Filesin COBOL TSTs 3-15
The UNLOCK and UNLOCK ALLverbsccvu... 3-15
Unsupported COBOL Syntax, 3-15
EXAMPLE OF BASIC-PLUS-2 TST I/O OPERATIONS 3-16
Preparing for I/O Operations in BASIC-PLUS2 TSTs 3-16
Reading Records from BASIC-PLUS-2 TSTs 3-16
Using BASIC-PLUS-2 to Put Recordsina File 3-17
Using BASIC-PLUS-2 to Update Recordsona File 3-17
Using BASIC-PLUS-2 to Delete RecordsfromaFile 3-17
1/0 Error Handling in BASIC-PLUS-2 TSTs 3-17
The UNLOCK and FREE statements 3-18
Non-supported BASIC-PLUS-2 filesyntax 3-18
CALLING THE TRAX SYSTEM LIBRARY FROM ATST 4-1
TRAX SYSTEM LIBRARY ROUTINES 4-1
THE REPORT ROUTINE e 4-2
Using The REPORT Routine from COBOL TSTs 4-2
Using the REPORT Routine from BASIC-PLUS-2 TSTs 4-4
Library Routine Status ReturnCodes 4-5
SENDING RESPONSE MESSAGES 4-5
The REPLY Routine 4-6
Using The REPLY Routine from COBOL TSTs: 4-6
Using the REPLY Routine from BASIC-PLUS-2 TSTs 4-7
Library Routine Status Return Codes 4-8
The ABORT Routine 4-8
Using the ABORT Routine from COBOL TSTs: 49
Using the ABORT Routine from BASIC-PLUS-2 TSTs 4-10
Library Routine Status Return Codes 4-11
The PRCEED Routine 4-11
Using the PRCEED Routine from COBOL TSTs 4-11
Using the PRCEED Routine from BASIC-PLUS-2 TSTs 4-12
Library Routine Status Return Codes 4-13
The STPRPT Routine iieoon. 4-12
Using the STPRPT Routine from COBOLTSTs 4-13
Using the STPRPT Routine from BASIC-PLUS-2 TSTs 4-14

CONTENTS (Cont.)

4343
4.3.5
4.3.5.1
4352
4.3.5.3
4.3.6
4.3.6.1
4.3.6.2
4.3.6.3
4.4
4.4.1
4.4.2
4.4.3
4.5
4.5.1
4.5.1.1
4.5.1.2
4.5.13
4.5.2
4.5.2.1
4.5.2.2
4.5.2.3
4.6
4.6.1
46.1.1
46.1.2
46.13
4.6.2
4.6.2.1
4.6.2.2
4.6.2.3
4.6.3
4.6.3.1
4.63.2
4.6.3.3
4.7
4.7.1
4.7.1.1
4.7.1.2
4.7.1.3
4.7.2
4.7.2.1
4.7.2.2
4.7.2.3

Page

Library Routine Status Return Codes 4-15
The CLSTRN Routine, 4-15
Using the CLSTRN Routine from COBOL TSTs 4-15
Using the CLSTRN Routine from BASIC-PLUS-2 TSTs 4-16
Library Routine Status Return Codes 4-16
The TRNSFR Routine o .. 4-17
Using the TRNSFR Routine from COBOLTSTs 4-17
Using the TRNSFR Routine from BASIC-PLUS-2 TSTs 4-18
Library Routine Status Return Codes 4-19
THE RESTRT ROUTINE — RESTARTING AN EXCHANGE 4-19
Using the RESTRT Routine from COBOLTSTs 4-19
Using the RESTRT Routine from BASIC-PLUS-2 TSTs 4-20
Library Routine Status Return Codes 4-20
THE TSPAWN ROUTINE — SPAWNING A TRANSACTION 4-20
Spawning a Transaction Instance 4-20
Using the TSPAWN Routine from COBOL TSTs 4-20
Using the TSPAWN Routine from BASIC-PLUS-2 TSTs 4-22
Library Routine Status Return Codes 4-22
The TABORT Routineo iiiiiienenenn 4-23
Using the TABORT Routine from COBOL TSTs 4-23
Using the TABORT Routine from BASIC-PLUS-2 4-24
Library Routine Status Return Codes 4-24
ROUTINE LISTCONTROL i, 4-24
The AROUTE Routine 4-25
Using the AROUTE routine from COBOL TSTs 4-25
Using the AROUTE routine from BASIC-PLUS-2 TSTs 4-25
Library Routine Status Return Codes 4-26
The DROUTE Routine0iiiiiiiinenennnn 4-26
Using the DROUTE routine from COBOL TSTs 4-26
Using the DROUTE routine from BASIC-PLUS-2 TSTs 4-27
Library Routine Status Return Codes 4-27
The DALLRT Routine i, 4-27
Using the DALLRT routine from COBOL TSTs 4-27
Using the DALLRT routine from BASIC-PLUS-2 TSTs - 4-28
Library Routine Status Return Codes 4-28
USING MAILBOX STATIONS FROM ATST 4-28
The SNDMBX Routine — Sending a Message to a Mailbox 4-29
Using the SNDMBX Routine from COBOLTSTs 4-29
Using the SNDMBX Routine from BASIC-PLUS-2 TSTs 4-30
Library Routine Status Return Codes 4-31
The GETMBX Routine0 iiieiennnnnenn.. 4-31
Using the GETMBX Routine from COBOL TSTs 4-31
Using the GETMBX Routine from BASIC-PLUS-2 TSTs 4-32
Library Routine Status ReturnCodes 4-33

CONTENTS (Cont.)

CHAPTER

CHAPTER

vi

4.7.3
4.7.3.1
4.7.3.2
4.7.3.3
4.8
4.8.1
4.8.1.1
4.8.1.2
4.8.1.3
4.8.2
4.8.2.1
4.8.2.2
4.8.2.3
4.8.3
4.83.1
4.83.2
4.83.3
484
4.84.1
4.8.4.2
4.84.3
4.8.5
4.8.5.1
4.85.2
4.8.5.3
4.9
49.1
49.1.1
49.1.2
49.1.3

5
5.1

5.2
5.3
5.4
5.5
5.6

6
6.
6.1.1
6.1.2
6.1.3

D
[T

The MBXNUM Routineciiiiiin ..
Using the MBXNUM Routine from COBOL TSTs
Using the MBXNUM Routine from BASIC-PLUS-2 TSTs
Library Routine Status Return Codes
SYSTEM INFORMATION ROUTINES
The GETIME Routine i, ..
Using the GETIME routine from COBOL TSTs
Using the GETIME routine from BASIC-PLUS-2 TSTs
Library Routine Status Return Codes
Determining the Current TST StationID
Using the GETSTN Routine from COBOL TSTs
Using the GETSTN routine from BASIC-PLUS-2 TSTs
Library Routine Status Return Codes
Determine the Initiating Station ID
Using the GETSRC Routine from COBOLTSTs
Using the GETSRC routine from BASIC-PLUS-2 TSTs
Library Routine Status Return Codes
Determine the Transaction Typec.........
Using the GETRAN Routine from COBOL TSTs
Using the GETRAN routine from BASIC-PLUS-2 TSTs
Library Routine Status Return Codes
Determine a Physical File Specification
Using the GETFIL Routine from COBOL TSTs
Using the GETFIL routine from BASIC-PLUS-2 TSTs
Library Routine Status Return Codes
LOGGING INFORMATION TO THE JOURNAL FILE
The LOGTRN Routine — Log Specified Data
Using the LOGTRN Routine from COBOL TSTs;
Using the LOGTRN Routine from BASIC-PLUS-2 TSTs
Library Routine Status Return Codes

USING BATCH FACILITIES WITH A

TRANSACTION PROCESSOR

SUBMITTING A BATCH JOB FROM

A TRANSACTION INSTANCE
INITIATING A TRANSACTION FROM A BATCHIJOB

INITIATE TRANSACTION — THE STTRAN ROUTINE|
USING THE STTRAN ROUTINE FROM COBOL PROGRAMS

USING THE STTRAN ROUTINE FROM BASIC-PLUS-2
LIBRARY ROUTINE STATUS RETURN CODES

COMMUNICATION BETWEEN TRANSACTION PROCESSORS

TRAX/TL .. e
Operations from a Master Link Stations
Preparing the Exchange Message for the Master Link
COBOL Master to Slave Message Format

Page

4-34
4-34
4-35
4-35
4-36
4-36
4-36
4-37
4-38
4-38
4-38
4-39
4-39
4-40
4-40
4-40
4-40
4-41
4-41
4-42
4-42
4-42
4-43
4-44
4-44
445
445
4-45
4-46
447

5-1

CONTENTS (Cont.)

6.1.4
6.1.5
6.1.5.1
6.2
6.2.1
6.2.2
6.2.3

CHAPTER

CHAPTER 8

CHAPTER 9

W N =

9.1

9.1.
9.1.
9.1.
9.2

9.2.1
9.2.2
9.23
9.24

9.2.5
9.2.6

CHAPTER 10
10.1
10.2
10.2.1
10.2.2
10.2.2.1

Page
BASIC-PLUS-2 Master to Slave Message Format 6-5
Slave Link Stationttt 6-6
Response messages Sent to the Slave Link Station 6-6
TRAX/3271-TL oot e e e e 69
Master Link Stations 6-10
Preparing the Exchange Message for the Master Link 6-10
COBOL Master to IBM Message Format 6-11
BASIC-PLUS-2 Master to IBM Message Format 6-12
Handling Responses from IBM Systems 6-13
TST DEBUGGING AND TESTING FACILITIES 7-1
COMPILING TSTS ..t ittt it ettt i 7-1
Compilinga COBOL TST 7-1
Compiling a BASIC-PLUS-2 TST 7-1
LINKING TSTs — THE TSTBLD UTILITY 7-2
Examplesof TSTBLD Usagecciiiiiiinennn. 7-5
TST DEBUGGING IN THE SUPPORT ENVIRONMENT 7-7
DEBUG — The TST Debugging Utility 7-7
Using the DEBUG Utility c...... 7-7
USING THE DEFINITION UTILITIESc...... 8-1
UTILITY DESCRIPTIONS i i ieeines 8-1
TRAX UTILITY DIALOG CONVENTIONS 8-2
TRANSACTION PROCESSOR DEFINITION:
THE TPDEF UTILITY ittt inininnnnnnn 9-1
TRANSACTION PROCESSOR DATA STRUCTURES 9-1
The Transaction Processor File Record 9-1
The Terminal Management Task and Common Data Area 9-1
The Definition Data Files e 9-2
THE TPDEF UTILITY e e e 9-3
Invoking the TPDEF Utility 9-3
Creating or Editing a TP Definition 9-4
Listing the INDEX of Defined TP 9-8
Printing or Showing a TP Definition 9-11
Copying or Renaming an Existing TP 9-12
Deleting A TP Definition0 ieinn.. 9-14
STATION DEFINITION iiiiiiiiiinnnnnnn 10-1
STATION CONCEPTS e e 10-1
THE STADEF UTILITY it 10-1
Invoking the STADEF Utility 10-1
Adding or Editing a Station Definition 10-2
Terminal Stationst 10-3

vii

CONTENTS (Cont.)

10.2.2.2
10.2.2.3
10.2.2.4
10.2.2.5
10.2.2.6
10.2.2.7
10.2.3
10.2.4
10.2.5

CHAPTER 11

11.1
11.1.1
11.1.2
11.1.3
11.1.3.1
11.1.3.2
11.1.4
11.1.5
11.1.6

CHAPTER 12

12.1
12.2
12.3
12.3.1
12.3.2
12.3.3
12.3.4

CHAPTER 13

viii

Page
TST Stations ittt ee e 10-7
Master Link Stations 10-11
Slave Link Stationsttt 10-13
Submit Batch Station 10-13
Slave Batch Stations i 10-13
Mailbox Stationstimmi it i, 10-13
Listing the INDEX of Defined Stations 10-15
Printing or Showing a Station Definition 10-16
Deleting a Station Definition 10-18
TRANSACTION DEFINITIONc.0 .. 11-1
TRANSACTION CONCEPTS i 11-1
The TRADEF Utility, 11-1
Invoking the TRADEF Utility 11-1
Adding or Editing a Transaction Definition 11-2
Exchange Definition Parameters 11-4
Subsequent Action Parameters 11-7
Listing the INDEX of Defined Transactions 11-11
Printing or Showing a Transaction Definition 11-11
Deleting a Transaction Definition 11-12
APPLICATION DATA FILE DEFINITION 12-1
FILE CONCEPTS i 12-1
THE FILDEF UTILITY e 12-1
INVOKING THE FILDEF UTILITY 12-2
Adding or Modifying a File Definition Record 12-3
Listing the INDEX of File Definitions 12-8
Printing or Showing a File Definition Record 12-9
Deleting a File Definition Record 12-10
APPLICATION SECURITY TOOLS 13-1
WORK CLASSES e 13-1
The WORDEF Utility, 13-1
Invoking the WORDEF Utilityo, 13-1
Adding or Modifying a Work Class Definition 13-2
Listing the INDEX of Work Class Definitions 13-4
Printing or Displaying Work Class Definitions 13-5
-Deleting a Work Class Definition 13-5
USER AUTHORIZATIONS i 13-7
The AUTDEF Utility 13-7
Invoking the AUTDEF Utility 13-7
Adding or Editing a User Authorization 13-8
Listing the INDEX of User Authorizations 13-11
Printing or Showing a User Authorization 13-11

CONTENTS (Cont.)

13-2
13-3
13-4
13-5a
13-5b
13-6
13-7
13-8
13-9
13-10a
13-10a
13-12a
13-11a
13-11b
13-12b
13-13
13-14a
13-14b
13-15
14-1
14-2
14-3
144
14-5
14-6
14-7
A-1

WORDEF Terminal Dialog Listing for INDEX Command
WORDEF Terminal Dialog Listing for SHOW Command
WORDEF Terminal Dialog Listing for DELETE Command
User Authorization Specification Sheet for “SAMPLE”
AUTDEF Terminal Dialog Listing for ADD Command
AUTDEF Utility Listing of INDEX Command Terminal Dialog

- AUTDEF Utility Listing of PRINT Command Terminal Dialog

AUTDEEF Utility Listing of DELETE Command Terminal Dialog ...
Transaction Processor Specification Sheet
Transaction Specification for “SIGNOF”
Transaction Specification for “SIGNON”
Work Class File Definition Specification
TST station Specification for “SIGNON” and “SIGNOF”
Terminal Station Specification with SIGNON Work Class
User Authorization File Definition Specification
ATL Utility Dialog to Add SIGNON and SIGNOF forms
Initial Display of SIGNON Form
SIGNON Form after ID and password are typed
Initial Display of SIGNOF Form
SERCTL Utility Dialog to Enable Error Logging
TPCTRL Terminal Dialog for the INSTALL Command
TPCTRL Terminal Dialog to START “SAMPLE”
SERLOG Output LiStingottt ennnnnnnn
TPCTRL Terminal Dialog to STOP and REMOVE “SAMPLE”
TPTRAC Dialog for SAMPLE
TPTRAC Annotated Output Listing
Parameter List for “REPLY” Library routine

Xi

CONTENTS (Cont.)

FIGURE

1-2
2-1
22
3-1
3-2
7-1a
7-1b
7-2a
7-2b
7-3a
9-la
9-1b

9-3
94

10-1a
10-1b
10-2a
10-2b
10-3a
10-3b
104a
104b
10-5
10-6
10-7
11-1
11-2a
11-2b
11-3
114
11-5
12-1a
12-2
12-1b
12-3
124
13-1a
13-1b

TSTDataFlow i
Transaction Structure Diagram for “CHGCUS>”
Exchange Message Specification Sheet
Transaction Workspace Specification Sheet
Customer File Definition Sheet
Record Layout Sheet Describing Customer Record
TST Specification Sheet for COBOL TST RECUST e
TSTBLD Dialog to Build “RDCUST” for Debugging
TST Specification Sheet for BASIC TST RDCUST
TSTBLD Dialog to Build “RDCUST” for Debugging
DEBUG Utility Output for COBOL “RDCUST” TST
Transaction Processor Specification Sheet for “SAMPLE”
Terminal Listing of CREATE Command Dialog
Terminal Listing of INDEX Command Dialog
Terminal Listing of SHOW Command Dialog
TPDEF Utility COPY Dialog Listing
Terminal Listing of DELETE Command Dialog
Terminal Station Specification Sheet — “SAMPLE™
Listing of Terminal Dialog to Add a Terminal Station
TST Station Specification Sheet — “SAMPLE”
Listing of Terminal Dialog to Add a TST Station
Master Link Station Specification Sheet — “SAMPLE”
Listing of Terminal Dialog to Add a Master Link Station
Special Purpose Station Specification Sheet — “SAMPLE™”
Listing of Terminal Dialog to Add a Mailbox Station
STADEF Utility Listing of INDEX Command Terminal Dialog
STADEF Utility Listing of PRINT Command Terminal Dialog
STADEF Utility Listing of DELETE Command Terminal Dialog .
System Workspace Worksheet for “CHGCUS”
Transaction Specification Sheet for “CHGCUS”
TRADEEF Utility Listing of Add Command Terminal Dialog
TRADEF Utility Listing of INDEX Command Terminal Dialog
TRADEF Utility Listing of Print Command Terminal Dialog
TRADEF Utility Listing of DELETE Command Terminal Dialog ...
File Definition Specification for “CUSTOM™”
FILDEF Utility Listing of INDEX Command Dialog
FILDEF Utility Listing ADD Command Terminal Dialog
FILDEF Utility Listing of SHOW Command Dialog
FILDEF Utility Listing of DELETE Command Dialog
Work Class Specification Sheet for “SAMPLE™
WORDEF Terminal Dialog Listing for ADD Command

CONTENTS (Cont.)

13.2.1.5
13.2.2

13.2.2.1
13.2.2.2

CHAPTER 14
14.1
14.2

14.3
14.4
14.5
14.6
14.7
14.8
14.9

APPENDIX A
Al
Al.l
A.1.2

APPENDIX B

APPENDIX C

Page

Deleting a User Authorization, 13-12

The SIGNON and SIGNOF Transactions 13-12

Incorporating the SIGNON/SIGNOF Transactions 13-13

Using the SIGNON and SIGNOF Transactions 13-20
TRANSACTION PROCESSOR TESTING ENVIRONMENT 14-1

INSTALLING AND TESTING A TRANSACTION PROCESSOR .. 14-1
DEBUGGING IN THE TRANSACTION

PROCESSING ENVIRONMENT, 14-1
THE SOFTWARE ERROR LOGGING TASK — SERLOG 14-1
USING THE TPCTRL UTILITY i, 14-2
TESTING THE TRANSACTION 14-4
USING THE SECONDARY ERROR LOG LISTINGS 14-5
STOPPING A TRANSACTION PROCESSOR 14-7
TRANSACTION PROCESSOR TRACE UTILITY — TPTRAC 14-7
ANNOTATED TPTRAC OUTPUT LISTING 149
MACRO PROGRAMMINGNOTESciii.... A-1
WRITING AMACRO TST ... i e et A-1

MACRO Entry Point i, A-1

Using the TRAX system library from a MACROTST A-2
COBOL TST EXAMPLE — TDCUSTciiunnnnn. B-1

BASIC TST EXAMPLE —RDCUSTo iiiiinnn C1

ix

PREFACE

0.1 MANUAL OBJECTIVES

This manual is both a tutorial and a reference document. Useful techniques for writing TRAX
application programs are described. Debugging and testing techniques for TRAX applications

are discussed, with examples. This manual also gives detailed reference information about how

to use the TRAX system library routines, and the TRAX transaction processor definition utilities.

0.2 INTENDED AUDIENCE

This document is written for use by the TRAX application programmer. It assumes prior knowledge
of either BASIC-PLUS-2 or COBOL. To use the material in this manual, you must also have an
understanding of TRAX application design considerations.

0.3 STRUCTURE OF THIS DOCUMENT

This manual is divided into chapters and appendices. The following list gives a general description
of each section:

Chapter
. Introduces key concepts and facilities.
. Describes structural requirements for TSTs.
. Discusses file I/O operations from TSTs.
. Describes how to use the TRAX system library routines.
. Describes how to use batch processing with a transaction processor.
. Describes the link facilities used for inter-processor communication.
. Describes how to compile, build, and debug a TST.
. Introduces the Transaction Processor Definition Utilities.
. Describes how to use the TPDEF utility to define a transaction processor.
10. Describes how to use the STADEF utility to define stations.
11. Describes how to use the TRADEF utility to define transaction types.
12. Describes how to use the FILDEF utility to define application data files.
13. Describes TRAX application security facilities.
14. Describes the transaction testing and debugging environment.
A. Gives you information about writing TSTs in MACRO.
B. Shows the COBOL TST RDCUST from the TRAX Sample Application.
C. Shows the BASIC TST’s RDCUST.

O 0O ~1O0N W B W -

0.4 ASSOCIATED DOCUMENTS
Before reading this document, you must read the Introduction to TRAX.

If you are not familiar with the program development facilities supported under TRAX, you should
read the TRAX Support Environment User’s Guide and the DEC Editor Reference Manual.

Xiii

Preface

If you are unfamiliar with TRAX application design techniques, you may find it helpful to read the
TRAX Application Designer’s Guide.

Several programming reference documents are supplied with the TRAX documentation set. You
will find detailed information on how to use the entire programming language in these manuals:

TRAX COBOL Language Reference Manual
TRAX COBOL User’s Guide

TRAX BASIC-PLUS-2 Language Reference Manual
TRAX BASIC-PLUS-2 User’s Guide

Finally the TRAX System Manager’s Guide has useful information concerning system backup and
maintenance, as well as an extensive listing of system error messages.

0.5 CONVENTION USED IN THIS DOCUMENT

Throughout this manual, the term TST is used to refer to a transaction step task, which is a TRAX
application program. TP is sometimes used in place of the term transaction processor. The follow-
ing conventions and used in examples:

The CTRL key and another key pressed simultaneously (e.g., CTRL/Z)

The RETURN key (carriage-return/line feed).

The ESCAPE key.

Red text Where examples contain both user input and computer output, the characters you

type are in red; the characters the computer prints are in black

Xiv

CHAPTER 1
INTRODUCTION

Application programming at a TRAX installation consists of three primary functions:

® Writing Transaction Step Tasks (TST).
® Running the transaction processor definition utilities.
® Debugging, integrating, and testing TSTs as part of the transaction processor.

This manual contains specific information to assist you in performing these tasks. This chapter con-
tains a description of what a TST can do, and introduces a transaction design to acquaint you with
the type of processing performed in a TRAX system.

Before you begin to use this manual, you should be comfortable with the following terminology
used to describe transaction processing at a TRAX installation:

Transaction processor
Transaction
Transaction instance
Exchange

Exchange message
Transaction workspace
Transaction slot
Response message
Station

If any of these terms are unfamiliar, you should refer to the Introduction to TRAX or the TRAX
Application Designer’s Guide.

1.1 TRAX APPLICATION PROGRAMS — TSTs

A Transaction Step Task (TST) is a TRAX application program. You write a TST in COBOL,
BASIC-PLUS-2, or MACRO. The TST is responsible for the application related processing in a
transaction processor. It typically performs functions such as data base inquiry and update, input
validation, and mathematical calculations.

A TST is incorporated into a transaction processor through a TST station. The TST station is the
system software module that serves as the interface between the TRAX executive and the task
image constructed from your TST source statements. Each TST task image has a defined TST
station specified through the STADEF utility dialog.

The TST closely resembles a subroutine. The transaction processor invokes the TST in the same
fashion that a mainline program calls a subroutine. During the call, the transaction processor passes
two parameters to the TST. These parameters are the exchange message, which contains the user

1-1

Introduction

input, and the transaction workspace, which provides context for TSTs in the same transaction
instance.

The order in which TSTs process an exchange message is dependent upon the transaction definition.
Each TST applies a specified set of processing steps to an arriving exchange message.

A TST can perform any or all of the following actions:

Validate user input contained in the exchange message.

Alter data in the exchange message or transaction workspace.

Add records, update records, or retrieve records in permanent data files.

Create, update, and read from work (temporary) files.

Store and retrieve messages at mailbox stations.

Perform logical and arithmetic operation on data supplied to the TST.

Send data (report messages) to be printed on a hard-copy output-only terminal.

Send data (response messages) to the initiating station at the conclusion of an exchange.

Control the processing sequence by altering the exchange routing list, or the subsequent

action of the current exchange.

Call a system routine to restart the current exchange.

Construct an exchange message and cause a batch job to be submitted.

Initiate (spawn) new transaction instances. These spawned transactions are independent

and asynchronous from the processing of the current exchange.

® Abort the current, or a spawned transaction instance.

® (all system library routines to access system information such as time and data, station, file,
and transaction ID’s.

®] og selected data to the system journalling device.

Chapter 2 describes how to set up a TST, and access the data in the exchange message and transac-
tion workspace.

Chapter 3 describes file I/O operations as they apply to TSTs.
Chapter 4 describes the set of TRAX system library routines available to TSTs.

Figure 1-1 is a graphic description of the data that is accessed, modified, and created by a TST.

Introduction

EXCHANGE TRANSACTION
MESSAGE WORKSPACE

MAILBOX % DATA

STATIONS FILES

TST
Caoo

SYSTEM CALLS
TRANSACTION ATTRIBUTES, HARD COPY
TIME OF DAY, ETC. REPORTS VIA

REPORT MESSAGES

RESPONSE EXCHANGE TRANSACTION
MESSAGE MESSAGE WORKSPACE

> g

INPUTS FROM DATA USED OR OUTPUTS USED
TRANSACTION GENERATED BY LATER IN TRANSACTION
INSTANCE TST INSTANCE

Figure 1-1 TST Data Flow

Introduction

TRANSACTION PROCESSOR

TRANSACTION NAME
EXCHANGE NAME

FORM NAME

TRANSACTION STRUCTURE DIAGRAM

[slafm[r]c]E]
[c]#]e]c]u]s]
[elnfe[elx]1]
Lelnfculs 1]

PAGE oF

START

o CLOSE
To transaction
selection form

CONVERSATION | MESSAGES | PROCESSING
INITIAL DISPLAY
Ask for
customer @
number
Display REPLY
error g .
Response message contains
message
error message text
~a+—— Error
I
© @[e
Allow user ENTER o customer To
to enter Exchange message contains record CcHGEX2 |
customer number customer number
AT END: [] — REPEAT — NEXT - WAIT
~ NOREPEAT []-FIRsT [] - nowarT
D — INITIAL

Figure 1-2 Transaction Structure Diagram for “CHGCUS”

Introduction

1.2 A TYPICAL TRANSACTION

A set of transactions have been designed to illustrate the examples in this manual. To more clearly
understand the application programming process, look first at the following transaction design used
to change customer data. Figure 1-2 is a transaction structure diagram prepared by the application
designer. It shows the sequence of processing and flow of data through this transaction. The num-
bers on the diagram correspond to the numbered notes in the following section.

1.2.1

1.

2.

Notes on the Transaction Structure Didgram for CHGCUS

The Transaction Begins. The user has selected this transaction on a transaction selection
form.

Displaying the Form for the First Exchange. The first exchange begins with the display of a
form. This form is specified in the transaction definition and is found in the form definition
file.

. First User Input. The user enters the customer ID on the form, and transmits the data to

the system by pressing the ENTER key.

. Exchange Message Constructed. When the data from the terminal arrives at the transaction

processor, it is used to construct an exchange message according to the specifications in
the form definition.

. Exchange Message Routing. The transaction definition includes a routing list for each ex-

change. This list specifies in order the TST stations where the exchange message routed.
In this example, only one TST, RDCUST, is on the routing list.

. Processing by the RDCUST TST. The exchange message is routed to the TST station

RDCUST. The RDCUST TST is invoked and the exchange message and transaction work-
space are passed to it. RDCUST reads the customer record specified by the user input con-
tained in the exchange message.

. Response Message Sent. When the record is read successfully, the TST calls a system library

routine to send a response message containing customer record data. The response message
is sent to the initiating station and is a “PRCEED”’ type directing the station to go on to the
next exchange.

. Error Reply Sent. If the TST cannot read the record, it sends a reply type response message

to the initiating station. In some cases, this reply allows the user to reenter the first ex-
change. In the case of severe errors, the reply causes the transaction to be aborted. The
application programmer is responsible for selecting the type of response message.

. The Second Exchange. When the terminal station receives the PRCEED messages from

RDCUST, it enters the second exchange of CHGCUS.

1-5

Introduction

TRANSACTION STRUCTURE DIAGRAM

TRANSACTION PROCESSOR | S[A[M][P[L]E]

TRANSACTION NAME [c[H][c]c]u]s]

EXCHANGE NAME

FORM NAME

[clv[c[ex]2]
[cln]clu]s]z]

pace [12] or [2]

CONVERSATION

I MESSAGES

I PROCESSING

INITIAL DISPLAY

Display

customer

record

From
CHGEX1

Display
error

REPLY .@

message

confirmation

Response message contains
error message text

_ REPLY

message

Response message contains
no data

ENTER @

~+— Error

@ Verify

Allow user
¢CLOSE

To transaction to edit data

selectign form
AFFIR M1 . l

" To first exchange

Exchange message contains
customer data

\V/

@ data

OK

Write new
data into

@ file

AT END: [] - REPEAT
— NOREPEAT

[] - NEXT
— FIRST
[- mimaAL

-~ WAIT
[]- nowaiT

Figure 1-2 (cont.) Transaction Structure Diagram for “CHGCUS”

1-6

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Introduction

Display Response Message Data. The response message data is displayed on the form for
the second exchange according to the specifications in the form definition. The user is
asked to edit the customer data.

Second Exchange User Input. The user reads the information on the form, and edits the
data as required. If the data is correct, the user need not enter any data.

Exchange Message Constructed. When the user presses the ENTER key, the data is for-
matted into an exchange message according to the specifications on the form definition.
All customer data is included in the form definition, not just the data changed by the user.
Exchange Message Routing. The second exchange has two TSTs on the routing list. The
first TST, VALIDC, validates the user input. The second TST, REWRIT, updates the
record on the customer file.

Processing by VALIDC TST. This TST examines the user input data, and sends error
replies if information is missing or incomplete.

Processing by REWRIT TST. If VALIDC terminates normally, the exchange message is
passed to the REWRIT TST station. REWRIT updates the record content on the customer
file. If errors are encountered, a reply response message is sent to the initiating station. If
successful, a success reply is sent to the initiating station.

Generation of Response Message. This response message contains no data. It does contain
a parameter value instructing the terminal station to display reply screen 1.

Response Message Arrives at Terminal Station. The response message causes a reply screen
containing the notation #*TRANSACTION COMPLETE#** to be displayed on the terminal
screen.

User presses AFFIRM Key. When the confirmation message is received, pressing the AF-
FIRM key ends the transaction instance and returns the terminal screen to the first form
of the CHGCUS transaction.

User return to Transaction Selection Screen. If the user wants to return to a transaction
selection menu, he presses the CLOSE key.

Error Replies. If VALIDC or RDCUST has sent an error reply, the cause of the error is
displayed on the screen. If the error is recoverable, the user can modify the customer
data as required and reenter the second exchange. Non-recoverable errors force the user
to abort the transaction instance.

In addition to a transaction structure diagram, the application programmer should normally receive
the following information from the application designer: .

[« N, TN -G FS I NS T

8.

. A copy of the transaction definition specification sheet.

. A transaction workspace specification sheet for the transaction.

. A copy of the record layout for each file accessed by the transaction.

. A file definition specification sheet for each file.

. An exchange message specification sheet for each exchange.

. Response message specification sheets for each response message and error reply sent in

the transition.

. A TST specification sheet, and TST station specification sheet for each TST used in the

transaction.
Mailbox and Report message specifications required by the transaction.

The specification sheets used to illustrate Chapters 2, 3, and 4 are drawn from the implementation
of CHGCUS used in the TRAX Sample Application. These specifications are developed in the
TRAX Application Guide.

CHAPTER 2
CODING A TRANSACTION STEP TASK

2.1 USING TSTs IN A TRAX APPLICATION

A TST is an application program that performs a single data processing operation in the execution
of a transaction instance. For programming purposes, a TST is a special type of subroutine that is
called by a transaction processor. Writing TSTs is the major procedural programming effort in-
volved in the development of a transaction processing application.

Every TST has an associated TST station. When a terminal user generates data that needs to be pro-
cessed by a specific TST, the transaction processor sends that data (called an exchange message) to
the TSTs station. The presence of the exchange message at the station causes a copy of the TST to
be brought into memory and executed. The TST then processes the exchange message and exits.
The TST is not run again until another exchange message arrives at its station.

The exchange routing list directs the processing of the exchange message. This list is defined for
each exchange in a transaction as part of the transaction definition.

Exchange messages are sent to stations in the order that the stations are specified in the exchange’s
routing list. When one TST terminates, the processor sends the exchange message to the next sta-
tion in the routing list of the current exchange. A TST may alter the contents of the exchange
message.

2.2 TST IMPLEMENTATION CONSIDERATIONS
In a transaction processing environment, many data processing functions are repeated in different
places within the overall framework of an application. Careful design allows the application pro-

grammer to use source language libraries to reduce the number of individual statements that must
be coded.

For example, a data structure for a customer record remains the same whether it is used for adding,
deleting, updating or displaying the information. Storing this data structure in a separate file will
allow you to include in the TSTs you are coding without having to retype each of the source state-
ments.

A recommended technique to improve productivity is to use skeleton source files for your TSTs. A
skeleton file contains general headings pertinent to TSTs. The skeleton source files can be used to
construct TST files by using the DEC Editor, or by using the COBOL COPY verb or the BASIC-
PLUS-2 APPEND command.

NOTE
While using the same form or TSTs for different applications may appear attractive
during the design phase, experience has shown that coding each form and TST for a
specific transaction type makes the transaction easier to debug and checkout, and
results in a more efficient custom-tailored system.

Coding TSTs

2.3 THE TST DEVELOPMENT PROCESS
The stages in the development of a TST are:

1. Analyze the TST specification received from the application designer. The specification is a
descriptive plan that you can convert into a set of source language statements.

2. Code the TST in the programming language you have selected, and create a source file using
the DEC Editor (see the DEC Editor Reference Manual).

3. Compile your source file using the appropriate language compiler. To compile a TST source
statement file, you must specify the /TST command switch at the time you invoke the com-
piler. (Compiler specific information is available in the TRAX Language Reference Manual
and Users Guide for each of the supported source languages.)

4. Using the TSTBLD utility, link the resulting object module into a task image file suitable

for use with the DEBUG utility.

. Debug the TST using the DEBUG utility in the support environment.

6. Using the TSTBLD utility, link the object module into a task image file suitable for trans-
action processing debugging. This task image should include support for a debugging
terminal.

7. Install a transaction processor that uses the TST. Debug the TST using the debugging termi-
nal, the software error log, and the transaction processor trace facility.

8. When debugging and testing is complete, run the TSTBLD utility to relink the object
module into a production version of the TST.

W

2.4 TST STRUCTURAL REQUIREMENTS
This section describes the structural elements of a TST, and suggests how you should code them in
both COBOL and BASIC-PLUS-2.

A TST closely resembles a subroutine. If you think of the transaction processor as a main program,
a TST is simply a subroutine called and executed by the transaction processor after an exchange
message has been received by the station associated with the TST.

A TST uses two arguments supplied to it by the transaction processor, the exchange message, and
the transaction workspace.

The exchange message is created by the initiator of an exchange. The exchange message contains
the external data that is processed by an exchange defined in a transaction definition. Each ex-
change has its own unique exchange message, which is routed to the TST stations in the order speci-
fied by the routing list for that exchange. An exchange message must exist in every transaction
instance.

The TST workspace is an area of storage provided by the system where a TST can store data for
processing by subsequent exchanges in the same transaction instance. The transaction workspace is
optional. If a transaction workspace is not present, the TST should not refer to a transaction
workspace argument.

Coding TSTs

2.5 THE TST ENTRY POINT

When the transaction processor sends an exchange message to a TST station, the TST associated
with that station begins execution. The transaction processor supplies the TST, as a subroutine,
with two arguments, the exchange message and the transaction workspace. The method of access-
ing these arguments is different for each language.

2.5.1 Specifying the Program Name and TST Parameters in COBOL

A COBOL TST requires that you specify TSTEP as the PROGRAM-ID in the IDENTIFICATION
DIVISION. Since a TST references two common data structures, the exchange message and trans-
action workspace, you must define these areas in a LINKAGE SECTION in the DATA DIVISION.
The TST accesses these structures through the USING clause of the PROCEDURE DIVISION
header where you specify the data names of the exchange message and transaction workspace.

The following COBOL examples are taken from the TST “RDCUST”:

In the IDENTIFICATION DIVISION:

PROGRAM-ID. TSTEP. TRAX requires that a TST always have the pro-
gram name TSTEP.

In the DATA DIVISION:

LINKAGE SECTION. The LINKAGE SECTION denotes storage that is
not physically in the program, but in a common
area that is referenced by subroutines.

01 EXCHANGE-MESSAGE. The group data item name of the data structure
describing the contents of the exchange message.
The exchange message structure must be defined
in the Linkage Section. See Section 2.6.1 for
further information on coding the exchange
message.

01 TRANSACTION-WORKSPACE. The group data item name of the data structure
describing the contents of the transaction work-
space. If a workspace has been defined for the
transaction type, you must define the workspace
data structure in the Linkage Section. If no
workspace parameter is specified in the PRO-
CEDURE DIVISION header, you do not need to
define a workspace data structure in the
LINKAGE SECTION. See Section 2.7.1 for
further information on coding the transaction
workspace.

2-3

Coding TSTs

In the PROCEDURE DIVISION, the first statement must be the following:

PROCEDURE DIVISION USING EXCHANGE-MESSAGE, TRANSACTION-WORKSPACE.
The parameters specified in the USING clause of the PROCEDURE DIVISION header are the
date names defined for the exchange message and transaction workspace in the LINKAGE
SECTION of the DATA DIVISION. The data structures following those data names reference

data stored in the system common data areas.

2.5.2 Coding the BASIC-PLUS-2 TST Statement

In BASIC-PLUS-2, the entry point must be the first statement in the TST. This statement must be
a TST statement. The suggested form of a TST statement used in the entry point is:

1 TST TSTEP (argument], argument2)

In this example:
1

TST

TSTEP

argument 1

argument?

2.6 THE EXCHANGE MESSAGE

is the statement number.

is a BASIC-PLUS-2 keyword used to identify
this program as a TST.

is the program name required for all TSTs.

is adummy parameter used by the BASIC-PLUS-
2 TST to map the data structure specified in the
MSGMAP statement onto the exchange message
supplied by the transaction processor. This data
structure may have any name you choose, but
must be a string type variable.

is a dummy parameter used by the TST to map
the data structure specified in the WRKMAP
statement on to the transaction workspace sup-
plied by the transaction processor. This data
structure may have any name you choose, but
must be a string-type variable. If a transaction
is defined without a transaction workspace, this
parameter should be omitted.

The exchange message is a TRAX data structure that allows TSTs to pass information from the
initiator of a transaction instance to other stations defined as part of the same exchange in a trans-
action instance. In your TST source statements, you must define a data structure that describes the
exchange message. The exact method of defining the exchange message varies according to the

source language that you select for your TSTs.

24

Coding TSTs

The next two sections describe language specific considerations to be followed in coding the ex-
change message data structure.

When you specify the exchange message size in the transaction definition, the value you supply is
rounded up to the next highest multiple of 64. For example, if you specify the exchange message

area as 96 bytes, the transaction definition allocates 128 bytes for the exchange message area.

The combined space allocations of the exchange message and transaction workspace cannot exceed
8064 bytes.

The form in Figure 2-1 is a specification sheet prepared by the application designer for the exchange
message in the first exchange of the Change Customer Transaction.

EXCHANGE MESSAGE SPECIFICATION SHEET

Transaction Processor mﬂB
Transaction Name

Exchange Label
Field No. Starting Byte Length (Bytes) Contents

1 1 6 Customer Number
2
3
4
5
6
7
8
9

10

11

12 L/\)

Figure 2-1

Coding TSTs

2.6.1 Coding the Exchange Message in COBOL

The exchange message is the first of the two parameters passed to the TST by the transaction
processor. It must be defined in the LINK AGE SECTION |and its group data item name must be
the first parameter in the USING clause of the PROCEDURE DIVISION header. For example:

LINKAGE SECTION.
01 EXCHANGE-MESSAGE.
03 EM-CUSTOMER-NUMBER PIC X(6).

2.6.2 Coding the BASIC-PLUS-2 MSGMAP Statements
(Exchange Message Map)

You use the BASIC-PLUS-2 MSGMAP statement to describe the exchange message data structure.
The MSGMAP statement is a TRAX extension to BASIC-PLUS-2, and is a special type of MAP
statement for use with exchange messages. The following example shows the BASIC-PLUS-2
MSGMAP statements used to describe the exchange message specified in Figure 2-1.

600 \ MSGMAP EM.CUSTOMER.NUMBERS$ - 6 &

2.7 THE TRANSACTION WORKSPACE

The transaction workspace is the second data structure the transaction processor supplies to your
TST. The transaction workspace provides context for subsequent TST processing. It should be
noted that the system does not initialize the transaction workspace when a transaction instance
begins. The transaction workspace is available to-every TST in every exchange performed by a
transaction instance.

If the transaction definition specifies a workspace, then you must specify a workspace parameter
even if your TST does not reference it. If the transaction definition specifies a workspace with a
length of zero, you must not specify a workspace parameter. The method of referencing the trans-
action workspace area differs according to the programming language you select.

When you specify the transaction workspace size in the transaction definition, the value you supply
isrounded up to the next highest multiple of 64. For example, if you specify the transaction work-
space area as 205 bytes, the transaction definition allocates 256 bytes for the transaction workspace
area.

For any transaction, the combined space allocations of the exchange message and transaction work-
space cannot exceed 8064 bytes.

Looking at the example transaction shown in Figure 1-2, you can see the transaction workspace in
use.

The transaction CHGCUS illustrated in Figure 1-2, asks the terminal operator for a customer ID
number, and then lists the corresponding customer record on the terminal.

The transaction workspace is first used to transmit the customer record from the first exchange
(the process of getting the customer ID and retrieving the corresponding customer record), to the

Transaction Processor

Transaction Name

Coding TSTs

TRANSACTION WORKSPACE SPECIFICATION SHEET

S[A[M]P]L]E]
[cH[G]cu]s]

Field No. Starting Byte Length (Bytes) Contents
1 1 6 Customer Number
2 7 30 Customer Name
3 37 30 Address Line One
4 67 30 Address Line Two
5 97 30 Address Line Three
6 127 5 Zip Code
7 132 10 Telephone Number
8 142 20 Attention — Of
9 162 12 Credit Limit (9(10)V99)
10 174 12 Current Balance (9(10)V99)
1 186 12 Purchases Y-T-D (9(10)V99)
12 198 Next Order Sequence Number
13 202 4 Next Payment Sequence Number
14
15
16
17
18
19
20
21
22
23
24
25

Figure 2-2

Coding TSTs

second exchange. The second exchange is initiated by a response message that sends the informa-
tion from the transaction workspace to the initiating terminal station where it is inserted into the
form specified for the second exchange.

Figure 2-2 shows a transaction workspace specification prepared for this transaction type.

2.7.1 Coding the Transaction Workspace in COBOL

The transaction workspace is the second of the two parameters passed to the TST by the transac-
tion processor. It must be defined in the LINKAGE SECTION and the group data item name must
be specified as the second USING clause parameter in the PROCEDURE DIVISION header. The
following example shows how the transaction workspace data structure described in Figure 2-2 is
defined in the LINKAGE SECTION.

DATA DIVISION.

LINKAGE SECTION.
°
°
]

01 TRANSACTION-WORKSPACE.
02 WS-CUSTOMER-FILE-RECORD.

03 WS-CUSTOMER-NUMBER PIC X(6).
03 WS-CUSTOMER-NAME PIC X(30).
03 WS-ADDRESS-LINE-1 PIC X(30).
03 WS-ADDRESS-LINE-2 PIC X(30).
03 WS-ADDRESS-LINE-3 PIC X(30).
03 WS-ADDRESS-ZIP-CODE PIC 9(5).
03 WS-TELEPHONE-NUMBER PIC 9(10).
03 WS-ATTENTION-LINE PIC X(20).
03 WS-CREDIT-LIMIT-AMOUNT PIC 9(12).
03 WS-CURRENT-BALANCE PIC 9(12).
03 WS-PURCHASES-YTD PIC 9 (12).
03 WS-NEXT-ORDER-DATE PIC 9(4).
03 WS-NEXT-PAYMENT-DATE PIC 9(4).

The level 01 data name describes the entire workspace. The level 02 data item describes a record
data structure. The level 03 data items describe the individual fields in that record.

2.7.2 Coding the BASIC-PLUS-2 WRKMAP Statements
(Transaction Workspace Map)

The WRKMAP statement is used to describe the structure of the transaction workspace in BASIC-
PLUS-2 TSTs. The WRKMAP statement can specify several levels of data structure mapping.
WRKMAP is a TRAX extension to the BASIC-PLUS-2 language. It has all the capabilities of the
MAP statement, however, a map name need not be specified.

Coding TSTs

The following example shows the use of the WRKMAP statement to describe the transaction work-
space data structure shown in Figure 2-2.

600 WRKMAP &
WS.CUSTOMER.FILE.RECORD$ = 205 &

\ WRKMAP &
WS.CUSTOMER.NAMES$ =6 &

, WS.CUSTOMER.NAME§ = 30 &

, WS.ADDRESS.1$ = 30 &

, WS.ADDRESS.2$ = 30 &

, WS.ADDRESS.3$ = 30 &

, WS.ZIP.CODE$ = 35 &

, WS.TELEPHONE.NUMBERS$ =10 &

, WS.ATTENTION.LINES$ = 20 &

, WS.CREDIT.LIMIT$ = 12 &

, WS.CURRENT.BALANCES$ =12 &

, WS.PURCHASES.YTD$ =12 &

, WS.NEXT.ORDER.NUMBER$ = 4 &

, WS.NEXT.PAYMENT.NUMBERS$= 4 &

In this example, the first WRKMAP statement defines a workspace of 205 characters, and
assigns it to a string variable.

The second WRKMAP statement subdivides the record into individual fields, and assigns each
field to a string variable.

2.8 EXITING FROM A TST
When writing TSTs, you must provide for an orderly exit.

In the case of a transaction instance initiated from an application terminal, an orderly exit
depends on the type and status of processing in that TST.

® If your TST has completed processing successfully, and additional TSTs remain on the
exchange routing list, then a normal exit point must be provided to allow processing to
continue at the next station on the list.

® If your TST has detected an error condition that requires user intervention or termina-
tion of the transaction instance, the TST should delete any remaining stations from the
routing list and send a response message back to the initiating terminal.

® Depending on the severity of the error, the response message may allow the user to
edit and reenter the exchange, or may cause the transaction instance to be terminated.

® If your TST is the last station in an exchange routing list, you must send a response

message back to the initiating terminal, and provide a normal exit point to release sys-
tem resources. '

In the last two cases, if the call to the response message library routine is unsuccessful, you must
provide a facility for an orderly termination of the transaction instance.

The normal exit point should be coded according to the conventions of the programming language.
The following sections describe the normal exit points for each source language.

Coding TSTs

2.8.1 Normal Exit from a COBOL TST

The EXIT-PROGRAM statement is used to perform a normal exit from a TST. This statement
marks the logical end of the TST, and causes control to be returned to the transaction processor.
An example of the EXIT-PROGRAM Statement is:

END-PROGRAM.
EXIT PROGRAM.

2.8.2 Normal Exit from a BASIC-PLUS-2 TST

The BASIC-PLUS-2 language provides a TSTEND statement. This statement must be placed as the
last statement in a TST. The TSTEND statement is the last statement processed by the BASIC-
PLUS-2 compiler, and it causes the TST to exit when it is executed. (It is suggested that the
TSTEND statement appear at line number 32767.) For example:

32000 ! PREPARE FOR EXIT !
32767 TSTEND

CHAPTER 3
TST FILE INPUT/OUTPUT OPERATIONS

TRAX operates on files using the standard file I/O syntax of COBOL and BASIC-PLUS-2. In
addition, TRAX supports several types of record locking operations designed to improve data
base integrity.

This chapter introduces important TRAX file processing concepts and explains how to perform

I/O operations from TSTs. The permitted language syntax for COBOL and BASIC-PLUS-2 is docu-
mented in the respective Language Reference Manuals. The discussion in this chapter centers on
the specific implications of file I/O operations in TSTs.

3.1 APPLICATION DATA FILES

Every transaction processor has a set of application data files associated with it. These files consist
of two types, permanent files and work files. The association between a transaction processor and
a specific data file is made by the FILDEF utility program (See Chapter 12) which matches the
physical file specification with a logical file name assigned by the application designer. Various file
attributes are made known to the transaction processor during the execution of the FILDEF utility.

When a transaction processor is started, all permanent data files defined for that transaction proc-
essor are opened by the TRAX data management routines.

Data files are organized in one of three ways:

® Sequential In the sequential file organization, records appear in physical sequence. Each
record, except the first, has another record preceding it, and each record, ex-
cept the last, has another record following it. The records appear in the physi-
cal order they were originally written to the file.

® Relative A relative file is structured as a series of fixed-size record cells. Cell size is
based on the size you specify as the maximum length permitted for a record
in the file. These cells are numbered in succession from 1 (the first) to n (the

last). The cell’s number represents its location relative to the beginning of the
file.

Each cell in a relative file can contain a single record. The file can have empty
cells interspersed with full cells.

The cell numbers in a relative file are unique. You can use them to identify

both the cell, and the record occupying that cell. When you use a cell number
to identify a record, the cell number is the relative record number.

3-1

TST File I/O Operations

® Indexed Indexed files are organized according to keys in the individual records. A key
is a character string present in every record of an indexed file. The location
and length of a key is identical in all records.

Every indexed file must have at least one key specified. This primary key must
be a unique identifier on the record. Duplicate primary key values are not
permitted. You may also specify alternate keys for indexed files.

Alternate key values can be duplicated in a file and may be changed by record
updates. As you write records into an indexed file, RMS builds a tree-struc-
tured table known as an index. Every key defined for a file has a separate
index.

3.2 TYPES OF DATA FILES
TRAX supports two classes of application data files; permanent files, and work files.

Permanent files must be created and defined before a transaction processor is started. Permanent
files make use of full RMS file sharing capabilities and permit individual record locking. The data in
permanent files can be accessed by many concurrent transaction instances. Permanent files can be
organized as sequential, relative, or indexed files.

Work files are generally temporary files. A work file is created by an executing transaction instance,
and may be subsequently modified by that same instance. Once that transaction instance is closed,
only programs in the support environment may process that data. Since work files are not shared,
record locking is not supported for work files.

Typically work files are used to:

® Hold temporary data specific to a transaction instance.
® Build command files for use by a support environment program.

Work files may be organized as sequential or relative files.

Work files are opened and connected by the OPEN statement and disconnected and closed by the
CLOSE statement in the TST.

3-2

TST File I/O Operations

3.3 FILE ACCESS METHODS

TRAX supports two file access methods; sequential and random. Sequential access means that
records are retrieved or written in the a sequence implied by the file organization. Sequential
access to sequential files implies the records are accessed one-by-one starting with the first physical
record in the file. To read the fifth record in a sequentially organized file, the first four records
must be read first.

Records preceding the current record location cannot be read unless the sequential file is first
closed, then reopened and accessed from the beginning of the file. TRAX does not support re-
winding of sequential files.

Sequential access to relative files is based on the cell numbers in the file. The records are accessed
in cell number order beginning with the first cell and continuing in ascending cell number order.
Empty record cells are ignored. Sequential write operations on relative files are permitted only

to empty cells in the file.

Sequential access to indexed files is based upon the key specified in the operation. If a file is
organized with two keys, account number, and name, a sequential read operation using the account
number key begins with the specified account number and accesses the next higher number each
time. Similarly, a sequential read on name begins with the specified name and accesses the next
alphabetically sequenced name each time.

Random Access. In random access mode, the program, rather than the file organization determines
the order in which records are processed. Each program request for a record operates independently
of the preceding record access. In random mode, the I/O operation must identify the desired record
when it issues the call to the I/O routines. Random access is not permitted on sequential files.

Random access on relative files is based on the relative record number specified in the I/O state-
ment. A program can read relative records at random by specifying cell numbers. In random access
mode, you can operate on record number 47 then record number 13 followed by record number 31.

Random access on indexed files is based on the key value specified in the I/O statement. If you
want to read the record with the alternate key value JONES, then the key ABRAMS, and then
SMITH, you use the random access mode, and specify the exact key value when you call the I/O
routine.

TRAX also supports access by both mgthods in the same program. This allows you to access a
record randomly, then access all following records in a sequential fashion. The implementation
of this feature is language dependent.

3.4 LOGICAL DATA FILE NAMES .
Any file that a TST intends to access, including work files, must be defined in the framework of

the transaction processor.

You use the FILDEF utility to assign a 1- to 6-character logical file name to each data file. After
you answer a set of questions, FILDEF creates a set of internal file definitions which the processor

utilizes each time a TST attempts to access a file.

TST File I/O Operations

The logical names assigned to permanent data and work files must be used by every TST that
references these files. The file definition record relates the file’s logical name to its correspond-
ing file specification.

3.5 PREPARING TO USE FILES FROM A TST

Each application data file that you reference in a TST must have a Input/Output channel number
assigned to it in the TST. This channel number allows the data management routines of the trans-
action processor to connect defined application data files to your TST. Selection .of I/O channel
numbers is made by the application designer at the time the TST is specified. There are two rules
governing channel assignments:

1. The same channel number cannot be used for two different files in the same transaction
instance.

2. If a file is opened on a specific channel number, in order to maintain context, subsequent
TSTs in that transaction instance must use the same channel number to reference that file.

The range of channel numbers is dependent upon the source language you are using. Before you
can perform operations on application data files, you must logically connect the files to your TST.
Preparing for file operations differs in each supported source language. The following general rules
apply to TRAX applications:

® The transaction processor opens all defined application data files at the time it is installed.

® The file open operation in the TST is actually a logical channel connection to the applica-
tion data file.

® You must properly specify the file organization, access method, and file attributes in your
TST. This data affects the type of calls your TST makes to TRAX data management services
routines.

TSTs must execute an OPEN statement to connect a stream to a file and to establish record context
between TSTs in a transaction instance. Normally OPEN performs two distinct functions; opening
a file and connecting an I/O channel from the program to the file. In a TST, the file is opened by
the transaction processor. The OPEN statement performs only the channel connect operation. The
OPEN is not performed by the OPEN statement in the TST.

The following is an example of maintaining record context. TST1 connects to a file using channel
1. Suppose TST1 sequentially reads the first five records on the file and exits. Later in the same
transaction instance, TST2 connects to the same file on channel 1. A sequential read by TST?2
retrieves the sixth record from the file. This is possible since TST1 didn’t CLOSE the file, and
record context was maintained for subsequent TSTs in the transaction instance. If TST1 issued a
CLOSE, then the sequential read by TST2 would have retrieved the first record instead of the sixth.
When the OPEN statement in a TST is executed, the channel specified in the OPEN statment is
connected to the specified data file. A channel is disconnected and all locks on the channel are
released by a CLOSE statement, or when the transaction instance terminates. Permanent files are
closed when the transaction processor is stopped.

34

TST File I/O Operations

In the case where a sequential file is opened for output, only one copy of the TST performing
the update operations should be defined in the station definition file. This allows the transac-
tion processor executive to queue the write requests to the sequential file in the order they are
issued by the TST. Only one TST in a transaction processor can access a sequential file with
WRITE access.

NOTE
Only one channel can be connected to a sequential file. Se-
equential files may not be shared among transaction instances.

3.6 CLOSING DATA FILES
Permanent data files are normally closéd when the transaction processor is stopped. Work files
are closed:

1. By the explicit action (a CLOSE statement) of some TST.
2. When a transaction instance terminates, and a work file is open, the work file is closed
by the transaction processor.

If your TST contains a close statement that acts on a permanent data files, the channel connecting
your TST to that file is disconnected. The file is not actually closed by the TST.

NOTE

You cannot rewind a sequential work file. You can rewind a se-
quential permanent file by first closing the file, then reopening it.

3.7 RECORD LOCKING FACILITIES

TRAX allows TSTs to lock records during processing. This feature provides you with a valuable
tool to insure data base integrity and proper sequencing of updates to the data base.

All updates to data files SHOULD be preceded by a READ with LOCK to the specified record.

A record is locked by either of the following actions:

1. Executing a statement that specifies the LOCK keyword explicitly locks the record.
2. Modifying a record on a staged file (ADD, UPDATE, DELETE), implicitly locks the record.

There are two different types of lock conditions, the soft lock and the hard lock. The two lock
types return different error codes to the TST when a locked record is retrieved.

3-5

TST File I/O Operations

The soft lock is any lock applied to a record in a file that allows read access to other transaction
instances. Applying a soft lock to a record permits other transactions to read the locked record but
not to modify it. Your TST can successfully read a soft locked record from a file.

The hard lock is any lock applied to a record in a file that does not permit access to locked records.
The following examples illustrate the difference between a soft and a hard lock.

If the customer file CUSTOM is defined with read access allowed to locked records, then any read
operation attempted on a record locked by another transaction instance returns the soft lock error.

If, on the other hand, CUSTOM did not permit read access to locked records, then a read operation
attempted on a record locked by another transaction instance returns the hard lock error.

If a hard lock is encountered during a read operation, the request for the records is placed on the
lock wait queue. The request remains in the lock wait queue for the number of seconds defined as
the interval between attempts to access locked records for the file that contains the record. (See the
FILDEF utility description in Chapter 12.) At the end of this time interval, if the lock for the record
is not released, an error is returned to your TST. If the lock is removed before the lock wait time
expires then the first request (for that record) is given the record. In this case, the TST is unaware
of the fact the record was locked.

NOTE
When coding your TSTs, a recommended practice is to lock all the needed records for
the requested operation in the same exchange. This technique provides you with the
greatest number of recoverable alternatives when a lock error is encountered.

If a record operation (with or without LOCK) fails because the record is locked by another task,
you may recover using three possible alternatives:

1. Have the TST perform an exchange restart. Restarting an exchange should be attempted
only if all the locks to this point are set in the current exchange and the transaction is
defined with exchange recovery enabled.

NOTE
Attempting to restart an exchange where locks have been applied to records in
preceding exchanges may result in deadly embrace. You should code your applica-
tion so that all locks in a transaction instance are applied in the same exchange.

3-6

TST File I/O Operations

2. If all locks are set in the current exchange, your TST must release all locks, notify the
initiating station of the lock condition with a REPLY response message, and request the
user to retry the exchange.

3. Send an ABORT or CLOSE response message to the initiating station, notifying the user
that a lock error has occurred. This alternative forces the initiating station to return to the
initial state.

3.8 READING RECORDS FROM FILES

Sequential files may be read using sequential access mode. Relative and indexed files can be read
using either sequential or dynamic access mode. Indexed files also support exact, approximate and
generic key matching in random access mode. In this case, your TST specifies that the key data
field of the record retrieved is equal to, equal to or greater than, or greater than the program sup-
plied key value.

3.9 INSERTING RECORDS INTO FILES

Records written to sequential files are added after the last record currently in the file. Records
written to relative and indexed files are added to the file according to the key data specified in
the record being written.

3.10 UPDATING EXISTING RECORDS TO A FILE
On indexed files, TRAX does not allow you to update the primary record key. Secondary key
values can be modified by any TST accessing the file for output.

A suggested practice is to always lock a record when you retrieve it for an update operation. You
can release the lock as part of the statement that updates the file.

3.11 DELETING RECORDS FROM A FILE

The type of deletion that is physically executed on a record depends upon the deletions parameter
specified in the application data file definition. If “fast” deletions are enabled, then TRAX marks
the intended record for deletion. Otherwise, the record is physically deleted from the file.

NOTE
You cannot delete records from a sequential file.

3.12 1/O ERROR HANDLING ;

TSTs should include error handling routines. A typical error handler consists of a routine that
checks the I/O error return, formats an error message, and calls the REPLY or ABORT routine
to send a response message to the initiating station.

I/O errors that are not trapped by a TST are trapped by the transaction processor. The transaction
instance is immediately aborted, and a error is logged to the Software Error Log.

3.13 STAGED FILE OPERATIONS

File staging implies that updates to the file are performed at the conclusion of a transaction in-
stance. The updating of the file, called unstaging, occurs asynchronously after the conclusion of
the transaction instance. If the transaction instance fails for any reason, any updates from that
transaction instance are ignored.

3-7

TST File I/O Operations

FILE DEFINITION

RMS File Specification:

Work File?

Is This an Indexed File?

Maximum Concurrent File Accesses?

Read-Only?

Fast Deletions?

Lock Interval

Read Access to Locked Records?

Journal?

r Part One
Transaction Processor Name: [IIEE
Logical Filename: [ClU[S[TIOM]

[T BI50. 22| ECISTIo M. [BIAT): [1]

[[]— Yes (Go to Part Two)

— No (Continue with next question)

[X]— Yes: No. of Keys [_[2]
Maximum Key Length [:]3@

[]— No: Sequential or Relative File
[_[4]

[[]- Yes
[X]—No

[]- Yes
[X]— No

[12] seconds

[]— Yes
[X]— No

[]— Yes (Go to Part Two)

[X]— No (Continue with next question)

Staged File Updates? []- Yes
[X]— No
[Part Two

File Channel Assignment

Description of File Contents: CUSTOMER FI/ILE RECORD

Assigned I/0 Channel Number

[3]

Figure 3-1 Customer File Definition Sheet

3-8

TST File I/O Operations

A file is defined as staged during the file definition procedure (See chapter 12).

Any updates to a staged file (adding, updating, or deleting a record) apply a lock to that record.
This lock remains in effect until unstaging takes place at the close of the transaction instance.

Adding a record to a staged file causes that record to be immediately written to the file. Should
the transaction instance fail, the added record is deleted during unstaging.

If you update a record on a staged file, the updated record is written to the staging area in the sys-
tem workspace. If the transaction instance terminates normally, the record is written to the file
from the staging area. If the transaction instance is aborted, the staged record is ignored.

If you delete a record in a staged file, the deleted record is saved in the staging area. The deletion
is performed after the transaction instance is successfully closed. If the transaction instance is
aborted, the deletion is not performed.

Since the actual update takes place after the transaction instance is closed, an I/O error can occur
during unstaging. For example, you must insure that primary key values are unique, and have not
been changed during an update. If a file does not permit duplicate alternate keys, you must check
to make sure that both the primary and alternate key values are uniques. This validation must be
performed as part of a TST if the transaction instance references a staged file.

You may not close and reopen a staged sequential file during the same transaction instance. Closing
a file disconnects the channel. This channel is required for unstaging, hence the restriction.

If you attempt to read a record from a staged file using the alternate key value, and that alternate
key has been modified during the same transaction instance, the record is retrieved as though the
update had never occurred.

3.14 EXAMPLES OF COBOL TST I/O OPERATIONS

The following sections use examples taken from a set of TSTs written for the TRAX Sample Ap-
plication. In addition, each section discusses the valid language syntax elements allowed for file
operations from TSTs. The examples are based on the customer file definition in Figure 3-1 and the
record layout in Figure 3-2.

3.14.1 Preparing for I/O in a COBOL TST .

Before you can access files from a COBOL TST, you must first set up the file access parameters and
channel. This requires a channel assignment, a file control paragraph, a file descriptor entry, a data
record definition, and an OPEN statement.

To specify a COBOL TST I/O channel, you should create a level 01 data name for each application
file. The data item must be defined within the TSTs working storage section. The value of the data
item is formed by concatenating the logical file name to the string /CH:n. (where n represents a
channel number in the range 1-64) For example, the COBOL statement creating the elementary
data item that identifies the Customer File (whose logical file name for this transaction is CUSTOM)
as the file assigned to I/O channel 3 is:

01 CUSFILNAME PIC X(11)
VALUE IS “CUSTOM/CH:3”.

TST File I/O Operations

Before you reference using a file in a COBOL TST, you must first identify (using the COBOL
SELECT verb) the file, and declare its attributes and data structure in the program. This process
begins in the ENVIRONMENT DIVISION of a COBOL TST. In the INPUT-OUTPUT SECTION,
any file that you reference in the program must be specified in a FILE-CONTROL paragraph,
using the SELECT statement. For example:

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CUSTOM ASSIGN TO “CUSTOM.DAT”

ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS CUSTOMER-NUMBER
ALTERNATE RECORD KEY IS CUSTOMER-NAME
FILE STATUS IS CUSTOMER-FILE-STATUS.

This example shows the FILE-CONTROL paragraph for the customer master file. In the SELECT
statement, you identify the application data file, assign a logical file name, and specify the organiza-
tion and access characteristics of the application data file. You also specify a data item where the
system is to return status information to the TST.

The next step in making the file known to the TST occurs in the DATA DIVISION. In a file
definition group item, you must specify the label records and the file identifier, and identify the
COBOL level 01 group name describing the data structure of the records in the file.

DATA DIVISION.
FILE SECTION.
FD CUSTOM
LABEL RECORDS ARE STANDARD
VALUE OF ID IS CUSFILNAME
DATA RECORD IS CUSTOMER-FILE-RECORD.

In this example, the logical file name, “CUSTOM” identifies the FD item. TRAX always assumes
standard labels for application data files. The data item specified in the VALUE of ID clause
contains the channel number specification that was discussed in Section 3.5.

TST File I/O Operations

The data structure of the customer record must also be described in the DATA DIVISION, follow-
ing the FD group item. The following data structure corresponds to the design specification of the
customer file shown in Figure 3-2.

01 CUSTOMER-FILE-RECORD.

03 CUSTOMER-NUMBER PIC X(6).
03 CUSTOMER-NAME PIC X(30).
03 ADDRESS-LINE-1 PIC X(30).
03 ADDRESS-LINE-2 PIC X(30).
03 ADDRESS-LINE-3 PIC X(30).
03 ADDRESS-ZIP-CODE PIC 9(5).
03 TELEPHONE-NUMBER PIC 9(10).
03 ATTENTION-LINE PIC X(20).
03 CREDIT-LIMIT-AMOUNT PIC 9(10)V99.
03 ACCOUNT-POINTER REDEFINES CREDIT-LIMIT-AMOUNT.
05 FILLER PIC 9(6).
05 NEXT-ACCOUNT-NUMBER PIC 9(6).
03 CURRENT-BALANCE PIC 9(10)V99.
03 PURCHASES-YTD PIC 9(10)V99.
03 NEXT-ORDER-DATE PIC 9(4).
03 NEXT-PAYMENT-DATE PIC 9(4).

All file operations are performed in the PROCEDURE DIVISION of a COBOL TST. Prior to per-
forming any I/O operation, you must first open the files you wish to access. You may choose to
open a file for Input, Output, or both. The OPEN statement for a data file must appear in the
Procedure Division before any I/O operations can be performed on that file.

To create a work file in COBOL, use the OPEN statement with the OUTPUT keyword.

The following example shows a file opened for both input and output in the COBOL TST “RE-
WRIT”’, which is used to insert a new customer record into the customer file.

OPEN-FILES.
OPEN I-O CUSTOM.
IF CUSTOMER-FILE-STATUS IS GREATER THAN “09”
GO TO END PROGRAM.

In this example, the file “CUSTOM?” is opened for I-O. At run-time, if the return code in the file
status word of the customer file indicates the open operation failed, then processing branches to a
routine that terminates the TST. This TST is written with a USE procedure to handle I/O errors.
Error handling is discussed in Section 3.14.6.

3.14.2 Using COBOL to READ Records from a File

TRAX conforms with standard COBOL syntax when performing read operations on a file. In addi-
tion, TRAX allows you to lock records during a read operation by specifying the WITH LOCK
clause following the READ verb.

3-11

TST File I/O Operations

RECORD LAYOUT SHEET

Transaction Processor:
File Description: Customer Master File ((350,227]Custom,DAT)
Logical Filename:
This is Record Format: DI] of I:m
Logical Record Length:
Physical Record Length: [:I:E__l:] (Tape Only)
Field No. | Starting Byte Length (Bytes) Contents Data Type
1 1 6 Customer Number
2 7 30 Clustomer Name
3 37 30 Address Line One
4 67 30 Address Line Two
5 97 30 Address Line Three
6 127 5 Zip Code
7 132 10 Telephone Number
8 142 20 Attention-Of
9 162 12 Credit Limit(9(10)V99)
10 174 12 Current Balance(9(10)V99)
11 186 12 Purchases Y-T-D(9(10}V99)
12 198 4 Next Order Sequence Number
13 202 4 Next Payment Sequence Number
14
15
16
17
18
19
20
21
22
23
. 24
25

3-12

Figure 3-2 Record Layout Sheet Describing Customer Record.

TST File I/O Operations

For example, the following statement in a COBOL TST performs a random read operation on an
indexed customer file according to the primary key value, and locks the record at the completion
of the read operation. Following the READ statement, two IF statements test for the presence of
I/0O errors, and for the “soft lock” condition.

READ WITH LOCK CUSTOM RECORD.
IF FILE-STATUS-WORD IS NOT EQUAL TO ZERO GO TO END-PROGRAM.
IF CUSTOMER-FILE-STATUS IS EQUAL TO “92” GO TO LOCKED-RECORD.

If the statement is successful, the file status word contains ““01”° after the record is returned to your
program. If the record was read successfully, but locked by another task, the file status word con-
tains “92”.

If the requested record cannot be read because of a hard lock applied by another task, an error is
trapped to the USE procedure in the COBOL TST, and the file status word contains “92”’.

A second form of read operation is performed when suing the COBOL dynamic access mode. The
START verb allows you to specify a key value and randomly position a pointer in a relative or
indexed file. Once the START verb is executed, you can execute sequential read operations on the
file from that point. The following example shows how the START verb and the READ verb are
used to set up a secondary key search of the customer file.

START CUSTOM KEY IS NOT < CUSTOMER-NAME
IF FILE-STATUS-WORD IS NOT EQUAL TO ZERO GO TO END-PROGRAM.

READ CUSTOM NEXT RECORD
IF FILE-STATUS-WORD IS NOT EQUAL TO ZERO GO TO END-PROGRAM.
IF CUSTOMER-FILE-STATUS IS EQUAL TO 92 GO TO LOCKED-RECORD.

The error handling in this example consists of a USE procedure in the DECLARATIVES section.
If the error path has been activated, FILE-STATUS-WORD is greater than zero. The second IF
statement checks for the “‘soft lock” error.

The syntax of the START verb does not recognize the WITH LOCK clause.

3.14.3 Using COBOL to Write Records to a File
TRAX conforms to standard COBOL syntax when writing records to a file. In addition, TRAX

allows you to apply a lock to a record after a write operation, by specifying the WITH LOCK
CLAUSE following the WRITE verb.

The following COBOL statement writes a customer record to the file, and retains a lock on the record
until processing is completed. Following the WRITE statement, an IF statement checks to see if an
error has been detected, and the USE procedure has altered the value of FILE-STATUS-WORD.

WRITE-CUSTOMER-FILE-RECORD.
IF FILE-STATUS-WORD IS < 0 GO TO END-PROGRAM.

3.14.4 Using COBOL to Update Records on a File

TRAX permits standard COBOL synatax for update operations. In addition, you may specify the
clauses with LOCK and WITH UNLOCK as part of the REWRITE verb syntax.

3-13

TST File 1I/O Operations

In the following example, the customer record is being rewritten to the file.

REWRITE WITH UNLOCK CUSTOMER-FILE-RECORD.
IF FILE-STATUS-WORD IS < 0 GO TO END-PROGRAM

Status information is returned to the TST in the file status word specified in the SELECT statement.

If you attempt to update a record that is locked by another transaction instance, the COBOL TST
traps to the USE procedure, and returns a file status code of “92”.

3.14.5 Using COBOL to Delete Records from a File

To delete a record from a file in COBOL, you use the DELETE verb. COBOL requires that your
transaction instance read the record, and store the primary key in the data structure referenced in
the file descriptor entry, prior to deleting it.

The following example shows how to use the COBOL DELETE verb:

DELETE CUSTOM RECORD.
IF FILE-STATUS-WORD IS < 0 GO TO END-PROGRAM.

3.14.6 1/0 Error Handling in COBOL TSTs

The COBOL USE procedure is an efficient way of trapping errors in COBOL TSTs. When an error
is detected by the system, it alters the file status word for that COBOL program and branches to a
defined USE procedure in the DECLARATIVES section of the PROCEDURE DIVISION.

The following example shows a USE procedure that formats REPLY messages for file status values
of “107, “23” and “92”. All other errors are trapped to a section that formats an ABORT message
containing the file status value.

PROCEDURE DIVISION USING EXCHANGE-MESSAGE, TRANSACTION-WORKSPACE.
DECLARATIVES.

I-O-ERROR SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON CUSTOM.

IF CUSTOMER-FILE-STATUSIS< 0
MOVE “CUSTOM” TO RMB-FILE-NAME
MOVE CUSTOMER-FILE-STATUS TO FILE-STATUS-WORD

IF FILE-STATUS-WORD IS EQUAL TO “10”
MOVE ‘“Reached End of File” TO REPLY-MESSAGE-BUFFER
GO TO SEND-REPLY-MESSAGE.

IF FILE-STATUS-WORD IS EQUAL TO “23”
MOVE “No Record for that ID” TO REPLY-MESSAGE-BUFFER
GO TO SEND-REPLY-MESSAGE

IF FILE-STATUS-WORD IS EQUAL TO ¢92”
MOVE “The Record you wanted is
- “locked by another user. You may press CLOSE to exit,
- “or you may wait and press ENTER to try again.”
TO REPLY-MESSAGE-BUFFER
GO TO SEND-REPLY-MESSAGE.

3-14

TST File I/O Operations

MOVE ““I-O ERROR. STATUS WORD IS: ” TO REPLY-MESSAGE-TEXT
MOVE FILE-STATUS-WORD TO REPLY-FILE-STATUS.

SEND-ABORT-MESSAGE.

MOVE 160 TO BUFFER-SIZE

MOVE 2 TO REPLY-NUMBER

CALL “ABORT” USING
REPLY-MESSAGE-BUFFER
BUFFER-SIZE
REPLY-NUMBER
STATUS-WORDS.

GO TO END-ERROR-SECTION.

SEND-REPLY-MESSAGE.

MOVE 160 TO BUFFER-SIZE

MOVE 2 TO REPLY-NUMBER

CALL “REPLY” USING
REPLY-MESSAGE-BUFFER,
BUFFER-SIZE,
REPLY-NUMBER,
STATUS-WORDS.

END-ERROR-SECTION.
END DECLARATIVES.

NOTE
If you wish to use record locking from COBOL TSTs, you must trap I/O errors through
a USE procedure in the DECLARATIVES section of the COBOL TST. This is the only
way you can detect the difference between a hard and a soft lock error.

3.14.7 Closing Data Files in COBOL TSTs
You are cautioned not to issue a CLOSE statement at the end of a TST. The CLOSE statement
causes the file channel to be disconnected.

3.14.8 The UNLOCK and UNLOCK ALL Verbs

The UNLOCK verb releases all record locks held by the current transaction instance for the speci-
fied logical file name. The UNLOCK ALL verb releases all record locks held by the current trans-
action instance. When a transaction instance closes, all record locks are released automatically.

3.14.9 Unsupported COBOL Syntax

In TSTs designed to run in a production version of a transaction processor, the use of the ACCEPT
and DISPLAY verbs, and calling any of the SORT subprograms causes a software error to be logged
and the transaction instance to be aborted.

ACCEPT and DISPLAY may be used in conjunction with the transaction processor debug facility
described in Chapter 14.

3-15

TST File I/O Operations

3.15 EXAMPLE OF BASIC-PLUS-2 TST I/O OPERATIONS

The following sections use examples taken from a set of TSTs written for the TRAX Sample Ap-
plication. In addition, each section discusses the valid language syntax elements allowed for file
operations from TSTs.

3.15.1 Preparing for I/O Operations in BASIC-PLUS-2 TSTs
In BASIC-PLUS-2, the channel number corresponding to each logical file name is assigned to an
integer data item. The channel number data item is used for all subsequent I/O operations on that

data file. For example, if you want to assign the Customer File to I/O Channel 3 the following
BASIC-PLUS-2 coding is needed:

300 CUSTOM.CHNL% = 3%

In BASIC-PLUS-2, a literal or variable must be used to identify files in I/O statements. In TSTs,
the file number and the channel number are the same variable. The BASIC-PLUS-2 examples in the
remainder of this chapter all use CUSTOM.CHNL% to identify the customer file.

In a BASIC-PLUS-2 TST, the OPEN statement performs much of the I/O preparation. You can
specify a set of parameters defining the file organization and characteristics as part of the OPEN
statement. TRAX imposes the following constraints on the way you specify the open statement.

® The logical file name must be specified as the file name in the open statement. This name is used
by the TRAX data management routines to connect the channel to the file. ® The file organization
and record type must agree with the attributes of the file. For example, a fixed type record cannot
be specified as variable in the OPEN statement.

2100 OPEN “CUSTOM” AS FILE CUSTOM.CHNL%, &
ORGANIZATION INDEXED, &

VARIABLE, &

ACCESS MODIFY, &

ALLOW READ, &

MAP CUSTOM, &

PRIMARY KEY CUSTOMER .NUMBERS$ &

ALTERNATE KEY CUSTOMER.NAMES$ &

DUPLICATES &

CHANGES &

To create a work file in BASIC-PLUS-2, use the OPEN statement. Specify the ACCESS WRITE
clause in the OPEN statement.

The BASIC-PLUS-2 CLOSE statement should not be used except when a TST PUTs records to a
sequential file.

3.15.2 Reading Records from BASIC-PLUS-2 TSTs

The only BASIC-PLUS-2 statements you can use for reading files from TSTs are FIND and GET.
In BASIC-PLUS-2, the GET statement reads the record from a file into a buffer. You can issue the
GET statement in both sequential and random access modes. For example:

3000 GET #CUSTOM.CHNL% KEY #1 IS GE EM.CUSTOMER .NAME$

3-16

TST File I/O Operations

The FIND statement locates a record in the file and sets the current record pointer to that location.
The found record is not returned to your program.

The ,LOCK clause specifies record locking for both the FIND and GET statements. If you attempt
to GET a hard locked record, BASIC-PLUS-2 error 154 is returned to the TST.

If you successfully read a record locked by another task, BASIC-PLUS-2 error 172 is returned to
the TST. In the case of error 172, the record is returned to the TST, and the program traps to the
line specified as the error routine.

3.15.3 Using BASIC-PLUS-2 to Put Records in a File
The only statement that can be used to write to files in a BASIC-PLUS-2 TST is the PUT statement.

The PUT statement writes a record to the file. Before executing a PUT statement, you must move
the record contents to the MAP defined for that file. An example of the PUT statement is:

3000 PUT #CUSTOM.CHNL%

In addition, you can lock the record you are writing to the file by the addition of the ,LOCK clause
to the PUT statement.

3.15.4 Using BASIC-PLUS-2 to Update Records on a File
The UPDATE statement replaces an existing record in the file with a new one. For example:

3000 UPDATE #CUSTOM.CHNL%

If you hold a lock on the record, executing the UPDATE statement unlocks it, unless you specify
the ,LOCK clause with the UPDATE statement.

3.15.5 Using BASIC-PLUS-2 to Delete Records from a File.
The DELETE statement deletes a record from a file. An example is:

5000 DELETE #CUSTOM.CHNL%

3.15.6 1/O Error Handling in BASIC-PLUS-2 TSTs
BASIC-PLUS-2 provides a means of handling I/O errors through the ON ERROR GO TO statement.
This allows you to set up a common error handling block in your TST.

In the special case of a FIND or GET statement executing a successful read operation on a record
locked by another task, BASIC-PLUS-2 returns an error code of 172. All other types of record
locking errors are returned to BASIC-PLUS-2 programs as error 154.

NOTE
You cannot use the ERTS$ function in BASIC-PLUS-2 TSTs.

3-17

TST File I/O Operations

The following example is taken from the TST “NEXT” and shows the error handling statements to
deal with record locks encountered during a GET operation.

1000

19000

19020

19900

ON ERROR GO TO 19000
°
°
[]

R e e L o e g S
! STANDARD ERROR HANDLING &
Mootttk Aok ook Aok Aok ootttk Aok &

\ IFERR=15%
AND (ERL =4110% OR ERL = 4210%)
THEN RESUME 5200

Trap for Customer ID not on file
IF ERR = 172% THEN RESUME 4800

Trap for Record 000000 Returned but locked

S e v i S i

IF ERR = 154%

THEN

REPLY.BUFS$ = “Access Denied, Record Locked by Another Task”
CALL REPLY BY REF (REPLY.BUF$,LEN(REPLY .BUF$),2%,STATUS%()) &
GO TO 19950 [IF STATUS%(0%) <> 1%
GO TO 32000

RRRRRRRRR R

~ P

REPLY.BUF$ = “ I-O Error Number ”
+NUMS(ERR)
+“at Line #
+NUMS$(ERL)

! For unexpected errors, go to
! system default error dump out.

RRRRRRR R

3.15.7 The UNLOCK and FREE statements
BASIC-PLUS-2 TSTs can use the UNLOCK and FREE statements in conjunction with record lock-

ing operations.

The UNLOCK statement removes the lock from the last record locked by this transaction instance.
The FREE statement removes all locks that currently exist on the specified channel.

3.15.8 Non-supported BASIC-PLUS-2 file syntax

BASIC-PLUS-2 TSTs cannot reference virtual array or terminal format files. The INPUT #, INPUT
LINE #, LINPUT #, and PRINT # statements are not recognized in BASIC-PLUS-2 programs com-
piled with the /TST switch.

CHAPTER 4
CALLING THE TRAX SYSTEM LIBRARY FROM A TST

4.1 TRAX SYSTEM LIBRARY ROUTINES
The TRAX system library routines allow TSTs to perform a variety of functions related to trans-
action processing. The library routines fall into several functional groups:

1.

Report Message — The REPORT routine sends data from a TST to an output-only terminal
station. The terminal station merges this data with a report form definition and prints the
resulting report on an LA-180 hard copy terminal.

. Response Messages — The REPLY, PRCEED, ABORT, STPRPT, CLSTRN, and TRNSFR

routines send response messages from a TST.

A response message carries data from a TST to the terminal station, where it is reformatted
for display on the application terminal. At the same time, response messages control the
sequence of exchange execution within the transaction.

. Transaction Control — The TSPAWN, RESTRT, and TABORT routines initiate, restart, or

abort a transaction from within a TST.

. Routing List Control — The AROUTE, DROUTE, and DALLRT library routines add or

delete stations from the current exchange routing list.

. Mailbox Storage and Retrieval — The SNDMBX, GETMBX, and MBXNUM routines allow

your TST to direct messages to or retrieve messages from a mailbox station defined in your
transaction processor. :

. System Information — The GETIME, GETSTN, GETSRC, GETRAN and GETFIL routines

obtain system information, such as date, time, station identifiers, transaction names, and file
specifications for use by your TST.

. Logging Transactions — The LOGTRN routine logs information that you specify to the

journal file.

You call these routines from a TST using the standard calling sequence of the appropriate program-
ming language. The parameters for each routine must be specified in the order shown in the library
routine descriptions.

The buffer referred to in the parameter descriptions can be a record, variable, data item, etc. It
contains information requested by the initiating station.

The buffer size should be the exact length of the message being sent.

These routines are stored in a resident shared system library. The TSTBLD utility automatically
links these routines to your TST task image.

4-1

Calling TRAX Library Routines

The following sections describe each routine in detail and includes the calling sequences from
COBOL and BASIC-PLUS-2 programs. Status return information is given for each routine.

Each functional grouping of system library routines is preceded by a paragraph explaining the
purpose and use of that group of routines.

4.2 THE REPORT ROUTINE
Sending a Report Message to an Output-Only Terminal Station

Description:

You call the REPORT routine to send preformatted reports from a TST to an
output-only terminal station. The terminal station merges this data with a
report form definition and prints the resulting report on an LA-180 hard copy
terminal. to output-only terminal stations.

The name of an existing ATL form definition must be specified in the parameter
list.

Only one form definition can be associated with the call to the REPORT
routine.

If the number of characters in the report message is greater than the number of
characters requested by print fields on the receiving form, the excess characters
are ignored. If the number of characters in the message is less than the number
requested by the form, spurious characters appear in the unspecified fields.

If you want to print a report with more than one page, the pagination must
be . specified as part of the form definition. The REPORT routine allows only
one form name. For this reason, the form must specify all of the page layouts
in a multi-page report.

4.2.1 Using the REPORT Routine from COBOL TSTs

Calling Parameters:

The REPORT routine parameters listed here must be specified in the order shown.

Parameter

buffer

buffer size

Description and Use

The name of the buffer containing data to be sent to the form. The buffer
parameter refers to a data item name in the DATA DIVISION. For example:

01 WS-CUSTOMER-FILE-RECORD.
(Record data structure items)

The length (in bytes) of the data buffer. The buffer-size parameter must be
a data item of type PIC S9(4) COMP. The data item is used to specify this
parameter in the DATA DIVISION of the example TST:

01 BUFFER-SIZE PIC S9(4) COMP.

Calling TRAX Library Routines

station name The 6-character ASCII name of the output-only terminal station where you
want the report printed. This is the station name assigned in the STADEF
utility. The station name should be defined as a character data item in the
data division. For example:

01 STATION-NAME PIC X(6).

form name The 6-character ASCII name of the form definition that is to be used to format
the report. The form name should be specified as a character data item in the
DATA DIVISION. For example:

01 FORM-NAME PIC X(6).

The form definition named by this parameter must be in the forms definition
file for your transaction processor, and defined as an OUTPUT-ONLY type of
form definition. See the TRAX ATL Language Reference Manual for a com-
plete discussion of Report Forms.

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use. Each data item is a full word.

The status data items can be defined as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage: .
In the following example, the TST is sending a report message containing a customer record to an
output-only terminal station “LA1801”, using the report form definition “PRTCUS”.

The example shows the COBOL assignment statements and calling sequence used to send a report
message.

MOVE “LA180S” TO STATION-NAME.
MOVE “PRTCUS” TO FORM-NAME.
MOVE 205 TO BUFFER-SIZE,
CALL “REPORT” USING WS-CUSTOMER-FILE-RECORD,
BUFFER-SIZE,
STATION-NAME,
FORM-NAME,
STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

Calling TRAX Library Routines

4.2.2 Using the REPORT Routine from BASIC-PLUS-2 TSTs

Calling Parameters:

The parameters you must specify in the REPORT calling sequence are listed in the order they are
referenced by the REPORT routine.

Parameter

buffer

buffer size

station name

form name

status

Description and Use

The name of the buffer containing data to be sent to the report form.
Report message data should be specified as a string variable.

The length (in bytes) of the message.

The buffer size parameter must be an integer type variable or literal, and must
contain the exact length of the message.

The 6-character ASCII name of the output-only terminal station where you
want the report printed. This is the station name assigned in the STADEF
utility. The station name should be specified as a string variable or as a quoted
literal text string.

The 6-character ASCH name of the form definition that is to be used to format
the report. The form name should be specified as a string variable or quoted
literal text string.

The form definition named by this parameter must be in the forms definition
file for your transaction processor, and defined as an OUTPUT-ONLY type of
form definition. See the TRAX ATL Language Reference Manual for a com-
plete discussion of Report Forms.

The status parameter is a two-word integer array where status information
is returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage:

In the following example, the TST is sending a report message containing a customer record to an
output-only terminal station “LA 1801, using the report form definition “‘PRTCUS”. The example
shows the BASIC-PLUS-2 calling sequen~e used to send a report message.

5000\ CALL REPORT BY REF &

(WS.CUSTOMER FILE.RECORDS$,205%,“LA1801”,“PRTCUS” ,STATUS%()) &

\ IF STATUS%(0%) IS < 1 GOTO 19500

44

Calling TRAX Library Routines

4.2.3 Library Routine Status Return Codes for BASIC and COBOL:
+1 The call to the library routine was successful

—12 The station name you specified does not exist. Check that the station is de-
fined, and spelled correctly in the call.

-30 The parameter list specified a buffer outside the TSTs address space.

—44 The station name specified in the call is not an output-only terminal station.
The report message was not sent. Specify the name of an output-only station
to receive the report.

-52 Not enough memory resources remain to call the routine.

4.3 SENDING RESPONSE MESSAGES
Response messages are way that TSTs return information to the user. The six specific types of
response messages that may be sent are:

REPLY Alters the form associated with the current exchange according to the reply-
number parameter specified in the call.

ABORT Performs the same processing as the REPLY call. In addition, the transaction
instance is aborted when the user presses any terminal function key.

PRCEED Invokes the exchange specified as the subsequent action to the current ex-
change. If the current exchange is defined as a repeating exchange, the current
exchange is reentered. Otherwise the terminal station displays the initial form,
the first form of the current transaction type, or the form of the next exchange
depending on the parameters in the current exchange definition.

STPRPT Is identical to PRCEED except that any repeat specification for the current
exchange is ignored. The message always invokes the exchange specified in
the subsequent action parameter of the transaction definition.

CLSTRN Closes the current transaction instance, and returns the terminal to its initial
state.
TRNSFR Invokes the exchange specified in the parameter list.

The following sections describe the response message library routines in the context of terminal
initiated transaction. These routines may also be used for non-terminal initiated transactions such
as link- or batch-initiated transactions.

The nature of the initiating station determines the way data sent with the response message is
formatted. In the case of terminal stations, the data is formatted according to a form definition.

In the case of other transactions, the datais forwarded to the initiating station without modification.

See Chapter 5 for a discussion of batch-initiated transactions, and Chapter 6 for a discussion of
link-initiated transactions.

4-5

Calling TRAX Library Routines

4.3.1 The REPLY Routine
Sending A Response Message to Reenter the Current Exchange

Description: The REPLY routine sends a response message to the form currently displayed
at the initiating station.

A terminal receiving a reply response message remains in the current exchange
of the same transaction instance.

The form display resulting from a reply response message is determined by the
contents of the optional data buffer, and the value of the reply number param-
eter specified in the REPLY call.

For example, if you call the REPLY routine, and specify the number 2 as the
reply-number parameter in the calling sequence, then the current form is
modified according to the clauses specified in the REPLY = 2 statement in
the current form definition.

4.3.1.1 Using the REPLY Routine from COBOL TSTs:
Calling Parameters:

The following list describes the REPLY routine parameters in the order they must appearin the call.
Parameter Description and Use

buffer The name of the buffer containing data to be sent back to the initiating station.
If no data is supplied, a buffer name must still be specified.

The buffer should be a display data item in the DATA DIVISION. For ex-
ample:

01 REPLY-MESSAGE-BUFFER PIC X(80).

buffer size The length (in bytes) of the message. If no data is supplied, a value of zero
must be specified for this parameter.

The buffer-size parameter must be a data item of type PIC S9(4) COMP. The
data item is used to specify this parameter in the DATA DIVISION of the
example TST:

01 BUFFER-SIZE PIC S9(4) COMP.
reply-number The number of the form definition reply statement that describes the modifica-
tions to be made when this message is received at the initiating station. The
reply number specified for this parameter must be in the range 1 to 64 (deci-

mal). An example of the data item used to specify this parameter is:

01 REPLY-NUMBER PIC S9(4) COMP.

4-6

Calling TRAX Library Routines

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use.

The status data items can be defined as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage:

In the following example, the TST has detected a telephone number that is missing, or has invalid
characters. The REPLY routine is called to send a reply response message, consisting of an error
line, back to the application initiating station.

The example shows the COBOL assignment statements and calling sequence used to send a reply
response message containing the error line to the initiating station.

MOVE “Incorrect Telephone Number” TO REPLY-MESSAGE-BUFFER.
MOVE 80 TO BUFFER-SIZE.
MOVE 2 TO REPLY-NUMBER.
CALL “REPLY” USING
REPLY-MESSAGE-BUFFER ,BUFFER-SIZE REPLY-NUMBER ,STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR ABORT.

4.3.1.2 Using the REPLY Routine from BASIC-PLUS-2 TSTs
Calling Parameters:

The parameters you must specify in the REPLY calling sequence are listed in the order they are
referenced by the REPLY routine.

Parameter Description and Use

buffer The name of the buffer containing data to be sent back to the initiating station.
If no data is supplied, a buffer name must still be specified.

Response message data should be specified as a string variable.

buffer size The length (in bytes) of the message. If no data is to be sent with the message,
a value of zero must be specified for this parameter.

The buffer size parameter must be an integer type variable, and must contain
the exact length of the message.

reply-number The number of the form definition reply statement *hat describes the modifica-

tions to be made when this message is received at the initiating station. The
reply number specified for this parameter must be in the range 1 to 64 (decimal).

4.7

Calling TRAX Library Routines

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage:

In the following example, the TST has detected a telephone number that is missing, or has invalid
characters. The REPLY routine is called to send a reply response message, consisting of an error
line, back to the initiating station.

The example shows the BASIC-PLUS-2 assignment statements and calling sequence used to send
a reply response message containing the error line to the initiating station.

5000 REPLY.BUFFERS = ““Incorrect Telephone Number” &
\ CALL REPLY BY REF (REPLY.BUFFERS$ LEN%(REPLY BUFFERS$),2%,STATUS%())&
\ IF STATUS%(0%) < 1% GOTO 19500

4.3.1.3 Library Routine Status Return Codes for BASIC and COBOL:
+1 The call to the library routine was successful
-30 The parameter list specified a buffer outside the TSTs address space.
-52 Not enough memory resources remain to call the routine.

4.3.2 The ABORT Routine
Sending a Response Message to Abort the Current Transaction Instance

Description: The ABORT routine sends an abort response message to the initiating station
associated with the current exchange. The following events occur when the
ABORT routine is called:

® A abort response message (which may contain user-supplied data) is
sent to the initiating station.

® The terminal station modifies the current form display using the form
definition REPLY specifications that correspond to the reply-number
parameter specified in the ABORT call.

® After the modified form is displayed on the terminal, the user presses
any enabled function key. When an enabled function key is pressed,
the transaction instance is aborted.

® The user’s terminal screen then shows the initial form defined for that
terminal station.

Calling the ABORT routine automatically deletes any remaining routes for the
current exchange message.

Calling TRAX Library Routines

4.3.2.1 Using the ABORT Routine from COBOL TSTs:
Calling Parameters:

The following list describes the ABORT routine parameters in the order they must appear in the call.
Parameter Description and Use

buffer The name of the buffer containing data to be sent back to the initiating station.
If no data is supplied, a buffer name must still be specified.

The buffer should be a display data item in the DATA DIVISION. For ex-
ample:

01 REPLY-MESSAGE-BUFFER PIC X(80).

buffer size The length (in bytes) of the message. If no data is supplied, a value of zero
must be specified for this parameter.

The buffer-size parameter must be a data item of type PIC S9(4) COMP. The
data item is used to specify this parameter in the DATA DIVISION of the
example TST:

01 BUFFER-SIZE PIC S9(4) COMP.

reply-number The number of the form definition reply statement that describes the modifica-
tions to be made when this message is received at the terminal station. The
reply number specified for this parameter must be in the range 1 to 64 (deci-
mal). An example of the data item used to specify this parameter is:

01 REPLY-NUMBER PIC S9(4) COMP.

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use.

The status data items can be defined as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage:

In the following example, the TST has detected a hard record lock and is unable to continue proc-
essing the current transaction instance. The form definition has a specific reply screen defined to
handle this error, REPLY #3. No data is sent from the TST to the initiating station, since the error
message description has been incorporated into the form definition.

49

Calling TRAX Library Routines

The ABORT routine is called to send an abort response message back to the initiating station. This
response message causes the modifications specified in REPLY #3 of the current form definition
to be made to the form display.

The example shows the COBOL assignment statements and calling sequence required to abort the
transaction instance and display REPLY #3:

MOVE 0 TO BUFFER-SIZE.
MOVE 3 TO REPLY-NUMBER.
CALL “ABORT” USING
REPLY-MESSAGE-BUFFER ,BUFFER-SIZE , REPLY-NUMBER ,STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

4.3.2.2 Using the ABORT Routine from BASIC-PLUS-2 TSTs
Calling Parameters:

Parameter Description and Use

buffer The name of the buffer containing data to be sent back to the initiating station.
If no data is supplied, a buffer name must still be specified.

Response message data should be specified as a string variable. A buffer must
be specified even when no data is to be returned to the initiating station.

buffer size The length (in bytes) of the message. If no data is to be sent with the message,
a value of zero must be specified for this parameter.

The buffer size parameter must be an integer type variable, and must contain
the exact length of the message. This value is best obtained by specifying a
MAP statement to structure the buffer, and specifying the exact value as a
literal value in the parameter list.

reply-number The number of the form definition reply statement that describes the mod-
ifications to be made when this message is received at the initiating station.
The reply number specified for this parameter must be in the range 1 to 64
(decimal).

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage:

In the following example, the TST has detected a hard record lock and is unable to continue proc-
essing the current transaction instance. The form definition has a specific reply screen defined to
handle this error, REPLY #3. No data is sent from the TST to the form, since the error message
description has been incorporated into the form definition. The ABORT routine is called to send a
reply response message back to the terminal station. This response message causes the modifications
specified in REPLY #3 of the current form definition to be made to the form display.

4-10

Calling TRAX Library Routines

The example shows the BASIC-PLUS-2 assignment statements and calling sequence required to
abort the transaction instance and display REPLY #3:

5000 CALL ABORT BY REF (* ,0%,3%,STATUS%()) &
\ IF STATUS%(0%) < 1% GOTO 19500
4.3.2.3 Library Routine Status Return Codes for BASIC and COBOL.:
+1 The call to the library routine was successful
-30 The parameter list specified a buffer outside the TSTs address space.
-52 Not enough memory resources are available to call the routine.

4.3.3 The PRCEED Routine
Sending a Response Message to Proceed to the Next Exchange

Description: The PRCEED library routine sends a response message that directs the initiating
station to proceed to the “next” exchange defined for the transaction.

If the current exchange is defined with the REPEAT exchange parameter, then
the ““next” exchange is a repeated execution of the current exchange.

If the current exchange is non-repeating, then the “next’ exchange is deter-
mined by the subsequent action parameter specified in the current exchange
definition.

o If the subsequent action is INITIAL, then the transaction instance is
closed. The next form displayed is the initial form defined for the
terminal station.

o [f the subsequent action is FIRST, then the transaction instance is
closed. The next form displayed is the form defined for the first
exchange of the current transaction.

o If the subsequent action is NEXT, processing continues with the next
exchange defined for the current transaction. The form associated with
the next exchange is displayed on the terminal.

4.3.3.1 Using the PRCEED Routine from COBOL TSTs
Calling Parameters:

The following list describes the PRCEED routine parameters in the order they must appear in the
call.

Parameter Description and Use
buffer The name of the buffer containing data to be sent to the initiating station. If

no data is supplied, a parameter must still be specified. The buffer must be a
display data item in the DATA DIVISION.

4-11

Calling TRAX Library Routines

buffer size The length (in bytes) of the message. If no data is supplied, a value of zero
must be specified for this parameter.

The buffer size parameter must be a data item of type PIC S9(4) COMP. The
following COBOL data item shows how you can define the buffer size para-
meter in the DATA DIVISIUN of a COBOL TST.

01 BUFFER-SIZE PIC S9(4) COMP.

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use.

The status data item can be defined in the DATA DIVISION as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage
The following PRCEED message serves to send the customer record data to the next exchange.

MOVE 173 TO BUFFER-SIZE
CALL “PRCEED” USING CUSTOMER-FILE-RECORD ,BUFFER-SIZE, STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

4.3.3.2 Using the PRCEED Routine from BASIC-PLUS-2 TSTs
Calling Parameters:

The following list describes the PRCEED routine parameters in the order they must appear in the
call.

Parameter Description and Use

buffer The name of the buffer containing data to be sent back to the initiating station.
If no data is supplied, a parameter must still be specified. The buffer must be a
string variable.

buffer size The length (in bytes) of the message. If no data is supplied, a value of zero
must be specified for this parameter.

In a BASIC-PLUS-2 TST, the buffer size parameter must be an integer type
variable, and must contain the exact length of the message.

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Calling TRAX Library Routines

Example of BASIC-PLUS-2 Usage
The following PRCEED message call sends a response message containing customer record data to
the next exchange.

6000 CALL PRCEED BY REF(CUSTOMER.RECORD$,173%,STATUS%()) &
\ IF STATUS%(0%) < 1% GOTO 19500
4.3.3.3 Library Routine Status Return Codes for BASIC and COBOL:
+1 The call to the library routine was successful
-30 The parameter list specified a buffer outside the TSTs address space.

—-52 Not enough memory resources are available to call the routine.

4.3.4 The STPRPT Routine
Sending a Response Message to Proceed Past a Repeated Exchange

This call directs the initiating station to disregard any existing REPEAT option for the current
exchange, and proceed to the next exchange.

Description: The STPRPT library sends a response message to the ‘“next” exchange defined
for a transaction. Any REPEAT specification for the current exchange is
disregarded.

The “next” exchange is determined by the subsequent action parameter
specified in the current exchange definition.

® If the subsequent action is INITIAL, then the transaction instance
is closed. The next form displayed is the initial form defined for the
terminal station.

o If the subsequent action is FIRST, then the transaction instance is
closed. The next form displayed is the form defined for the first ex-
change of the current transaction. ‘

® If the subsequent action is NEXT, processing continues with the next
exchange defined for the current transaction. The form associated
with the next exchange is displayed on the terminal.

4.3.4.1 Using the STPRPT Routine from COBOL TSTs
Calling Parameters:

The following list describes the STPRPT routine parameters in the order they must appear in the
call.

Parameter Description and Use
buffer The name of the buffer containing data to be sent to the initiating station. If

no data is supplied, a parameter must still be specified. The buffer must be
a display data item in the DATA DIVISION.

4-13

Calling TRAX Library Routines

buffer size The length (in bytes) of the message. If no data is supplied, a value of zero
must be specified for this parameter.

The buffer size parameter must be a data item of type PIC S9(4) COMP. The
following COBOL data item shows how you can define the buffer size param-
eter in the DATA DIVISION of a COBOL TST.

01 BUFFER-SIZE PIC S9(4) COMP.

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use.

The status data item can be defined in the DATA DIVISION as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage
The following STPRPT message serves to send the customer record data retrieved from the file to
the next exchange.

MOVE 173 TO BUFFER-SIZE
CALL “STPRPT” USING CUSTOMER-FILE-RECORD ,BUFFER-SIZE , STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

4.3.4.2 Using the STPRPT Routine from BASIC-PLUS-2 TSTs
Calling Parameters:

The following list describes the STPRPT routine parametersin the order they must appear in the call.

Parameter Description and Use

buffer The name of the buffer containing data to be sent back to the initiating station.
If no data is supplied, a buffer name must still be specified. This buffer must

be a string variable.

buffer size The length (in bytes) of the message. If no data is supplied, a value of zero
must be specified for this parameter.

In a BASIC-PLUS-2 TST, the buffer size parameter must be an integer type
variable, and must contain the exact length of the message.

status The status parameter is a two-word integer array where status information is

returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

4-14

Calling TRAX Library Routines

Example of BASIC-PLUS-2 Usage _
The following STPRPT message serves to send the customer record data retrieved from the file to
the next exchange. :

6000 CALL STPRPT BY REF(CUSTOMER.RECORDS$,173%,STATUS%()) &
\ IF STATUS%(0%) < 1% GOTO 19500
4.3.4.3 Library Routine Status Return Codes for BASIC and COBOL:
+1 The call to the library routine was successful
-30 The parameter list specified a buffer outside the TSTs address space.
-52 Not enough memory resources are available to call the routine.

4.3.5 The CLSTRN Routine
Sending a Response Message to Close the Transaction Instance

Description: The CLSTRN library routine sends a response message to the initiating station
that closes (normally terminates) the current transaction instance.

The next form displayed on the terminal is the initial form.

4.3.5.1 Using the CLSTRN Routine from COBOL TSTs
Calling Parameters:

The following list describes the CLSTRN routine parameters in the order they must appear in the
call.

Parameter Description and Use
buffer The name of the buffer containing data to be sent back to the initiating station.
If no data is supplied, a buffer name must still be specified. This buffer must

be a display data item in the DATA DIVISION.

buffer size The length (in bytes) of the message. If no data is supplied, a value of zero
must be specified for this parameter.

The buffer size parameter must be a data item of type PIC S9(4) COMP. The
following COBOL data item shows how you can define the buffer size param-
eter in the DATA DIVISION of a COBOL TST.
01 BUFFER-SIZE PIC S9(4) COMP.
status The status array consists of two full-word computational data items used to

return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use.

4-15

Calling TRAX Library Routines

The status data item can be defined in the DATA DIVISION as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage
The following CLSTRN call closes a transaction instance and returns the initiating station to its
initial state.

MOVE ZERO TO BUFFER-SIZE
CALL “CLSTRN” USING CUSTOMER-FILE-RECORD,BUFFER-SIZE ,STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

4.3.5.2 Using the CLSTRN Routine from BASIC-PLUS-2 TSTs
Calling Parameters:

The following list describes the CLSTRN routine parameters in the order they must appear in the
call.

Parameter Description and Use

buffer The name of the buffer containing data to be sent back to the initiating station.
This buffer must be a string variable or a literal. If no data is supplied, a buffer
parameter must still be specified.

buffer size The length (in bytes) of the message. If no data is supplied, a value of zero
must contain the exact length of the message.

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage
The following CLSTRN call closes the transaction instance and returns the initiating station to it’s
initial state.

6000 CALL CLSTRN BY REF(* ”,0%,STATUS%())

\ IF STATUS%(0%) < 1% GOTO 19500
43.5.3 Library Routine Status Return Codes for BASIC and COBOL:
+1 The call to the library routine was successful
-30 The parameter list specified a buffer outside the TSTs address space.
-52 Not enough memory resources are available to call the routine.

4-16

Calling TRAX Library Routines

4.3.6 The TRNSFR Routine
Sending a Response Message to Transfer to a Named Exchange

Description: The TRNSFR routine sends a response message directing the initiating station
to begin execution of the exchange specified in the call.

If the initiating station is an interactive terminal station, the form associated
with the new exchange is displayed, and data may be sent as part of the re-
sponse message

43.6.1 Using the TRNSFR Routine from COBOL TST's
Calling Parameters:

The following list describes the TRNSFR routine parameters in the order they must appear in the
call.

Parameter Description and Use

buffer The name of the buffer containing data to be sent back to the initiating station.
If no data is supplied, a buffer name must still be specified. This buffer must
be a display data item in the DATA DIVISION.

buffer size The length (in bytes) of the message. If no data is supplied, a value of zero
must be specified for this parameter.

The buffer size parameter must be a data item of type PIC S9(4) COMP. The
following COBOL data item shows how you can define the buffer size param-
eter in the DATA DIVISION of a COBOL TST.

01 BUFFER-SIZE PIC S9(4) COMP.
exchange name The 6-character ASCII name of exchange where control is being transferred
to. The following data item in DATA DIVISION can be used to define this
parameter:
01 EXCHANGE-NAME PIC X(6).
status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use.
The status data item can be defined in the DATA DIVISION as:
01 STATUS-WORDS.

03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

4-17

Calling TRAX Library Routines

Example of COBOL Usage
The following TRNSFR message serves to send the customer record data retrieved from the file to
the form defined for the EDIT exchange.

MOVE “EDIT” TO EXCHANGE-NAME.
MOVE 173 TO BUFFER-SIZE.
CALL “TRNSFR” USING CUSTOMER-FILE-RECORD,
BUFFER-SIZE,
EXCHANGE-NAME,
STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

4.3.6.2 Using the TRNSFR Routine from BASIC-PLUS-2 TSTs
Calling Parameters:

The following list describes the TRNSFR routine parameters in the order they must appear in the
call.

Parameter Description and Use

buffer The name of the buffer containing data to be sent back to the initiating station.
This buffer must be a string variable or literal. If no data is supplied, a buffer
parameter must still be specified.

buffer size The length (in bytes) of the message. If no data is supplied, a value of zero
must be specified for this parameter. '

In a BASIC-PLUS-2 TST, the buffer size parameter must be an integer type
variable, and must contain the exact length of the message.

exchange name The 6-character ASCII name of exchange where control is being transferred
to. In BASIC-PLUS-2, this parameter is specified as either a string variable or
literal. Using a variable and assigning exchange names to it may save you from
having to write several different TRNSFR calls in the same TST.

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage
The following TRNSFR message serves to send the customer record data retrieved from the file
to the form defined for the EDIT exchange.

6000 IF KEY.CAP$=“ENTER” THEN EXCHANGES$=“EDIT” &
\ GO TO 6200 &
°
o
°
6200 CALL TRNSFR BY REF(CUSTOMER.RECORDS$,173%,EXCHANGES$,STATUS%()) &
\ IF STATUS%(0%) < 1% GOTO 19500

4-18

Calling TRAX Library Routines

4.3.6.3 Library Routine Status Return Codes for BASIC ahd COBOL:

+1 The call to the library routine was successful
-30 The parameter list specified a buffer outside the TSTs address space.
—52 Not enough memory resources are available to call the routine.

4.4 THE RESTRT ROUTINE — RESTARTING AN EXCHANGE
Description: The RESTRT routine directs the transaction processor to restart the current
exchange.

If the transaction definition containing the exchange is not defined with ex-
change recovery, calling the RESTRT routine aborts the transaction instance,
and an error is written to the software error log. '

If the transaction type has been defined with exchange recovery, all resources
(connected file streams, sent messages, record locks, and staged records) held
by the current exchange are released, and the exchange message is reloaded
and sent to the first station on the exchange routing list.

Calling the RESTRT Routine bypasses the remaining statements in the TST.

In order to avoid looping through a succession of RESTRT calls until exchange
timeout, you should check for the number of restarts in your TST. You can
find the number of restarts by calling the GETSTN, GETRAN, or GETSRC
routine immediately prior to calling RESTRT. The second status word con-
tains the number of times the exchange has been restarted.

4.4.1 Using the RESTRT Routine from COBOL TSTs
The RESTRT routine requires only one parameter:

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; second item is reserved for future use.

You can define the status data items in the DATA DIVISION of a COBOL
TST as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage:
The following calling sequence restarts the current exchange if the conditions for exchange recovery
are present in the transaction definition.

CALL “RESTRT” USING STATUS-WORDS.

4-19

Calling TRAX Library Routines

4.4.2 Using the RESTRT Routine from BASIC-PLUS-2 TSTs
The RESTRT routine requires only one parameter:

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage:
The following calling sequence restarts the current exchange if the conditions for exchange recovery
are present in the transaction definition.

CALL RESTRT BY REF (STATUS%())

4.4.3 Library Routine Status Return Codes for BASIC and COBOL:

NOTE
If the RESTRT routine is called successfully, no status value
is returned to the TST. If the RESTRT routine is unsuccessful,
the transaction instance is aborted.

4.5 THE TSPAWN ROUTINE — SPAWNING A TRANSACTION FROM WITHIN A TST
TRAX allows a TST to “spawn” orinitiate another independent transaction instance. Once spawned,
the new transaction instance processes concurrently with all existing transaction instances.

To spawn another transaction, the source station TST must supply an exchange message to the first
exchange of the spawned transaction. The spawned transaction must have only one exchange.

4.5.1 Spawning a Transaction Instance — The TSPAWN Routine

Description: A TST calls the TSPAWN Routine to initiate an independent single exchange
transaction. The calling sequence specifies the exchange message to be proc-
essed by the spawned transaction.

The spawned transaction instance operates asynchronously from the current
transaction instance, and benefits from all the transaction recovery features
available in the transaction processing environment.

4.5.1.1 Using the TSPAWN Routine from COBOL TSTs
Calling Parameters:

The following list describes the TSPAWN routine parameters and the order they must be used in
the call.

Parameter Description and Use

transaction name The name of the transaction type that you want to spawn. This parameter
must be defined as a 6-character ASCII data item. For example:

01 TRANSACTION-NAME PIC X(6).

4-20

Calling TRAX Library Routines

buffer The data name of the exchange message you want processed by the spawned
transaction instance.

buffer size The size (in bytes) of the exchange message. This parameter must be defined
as a computational data item as shown here:

01 BUFFER-SIZE PIC S9(4) COMP.

instance number An internal identifier by which the transaction instance is known to the sys-
tem. If the call to TSPAWN successfully spawns a new transaction instance,
the transaction instance number is returned to the calling TST in the data item
specified for this parameter.

The transaction instance number is required when you want to use TABORT
to abort a spawned transaction instance.

This parameter should be defined as a double computational variable, for
example:

INSTANCE-NUMBER PIC S9(9) COMP.

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use.

You can define the status array in the DATA DIVISION as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage
The following example shows the calling sequence used to spawn an instance of the transaction
“UPDATE” using the customer record as an exchange message.

MOVE “UPDATE” TO TRANSACTION-NAME,
MOVE 205 TO BUFFER-SIZE.
CALL “TSPAWN” USING TRANSACTION-NAME,
CUSTOMER-FILE-RECORD,
BUFFER-SIZE,
INSTANCE-NUMBER,
STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

421

Calling TRAX Library Routines

45.1.2 Using the TSPAWN Routine from BASIC-PLUS-2 TSTs
Calling Parameters:

The following list describes the TSPAWN routine parameters and the order they must be used in
the call.

Parameter Description and Use

transaction name The 6-character name of the transaction type that you want to spawn. This
parameter should be specified as a string variable or literal. The example at
the end of this section shows a literal value being used in the calling sequence.

buffer This parameter generally consists of the data name of the exchange message
you want processed by the spawned transaction. The data name should be a
string type variable.

buffer size The size (in bytes) of the exchange message. This parameter should be specified
as an integer variable or literal.

instance number An internal identifier by which the transaction instance is known to the sys-
tem. If the call to TSPAWN successfully spawns a new transaction instance,
the transaction instance number is returned to the calling TST in the data item
specified for this parameter.

The transaction instance number is required when you want to use the TABORT
routine to abort a spawned transaction instance.

This parameter should be defined as a two-word integer array.

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage
The following example shows the calling sequence use to spawn an instance of the transaction type
“UPDATE”. Customer Record data is specified as an exchange message of length 205.

5000 CALL TSPAWN BY REF (“UPDATE",CUSTOMER.RECORD$,"205%”,1%(),STATUS%()) &

\ IF STATUS%(0%) < 1% GO TO 19500
4.5.1.3 Library Routine Status Return Codes for BASIC and COBOL:
+1 The call to the library routine was successful
—10 The transaction name specified in the call does not exist.
-30 An argument specified a buffer outside the TSTs address space.

4-22

Calling TRAX Library Routines

—36 The library routine attempted to spawn a transaction type that has been dis-
abled. (The transaction processor on your system manager can disable a trans-
action that does not function properly.)

52 Not enough memory is available to execute the routine.

-56 The library routine encountered a fatal system error in its attempt to spawn the
transaction. The transaction was not spawned.

4.5.2 The TABORT Routine
Aborting a Spawned or Current Transaction Instance

Description: The TABORT routine should be used to abort a transaction only when one of
the following circumstances exist:

® A spawned transaction must be aborted

® The ABORT routine has failed, and you must abort the current trans-
action instance.

® A response message has already been sent.

4.5.2.1 Using the TABORT Routine from COBOL TSTs — Two parameters are required when
calling TABORT:

instance number If you are aborting a spawned transaction, this parameter must be the data
item containing this value as returned by the TSPAWN call (see Section 4.3.1).

If you are aborting the current transaction instance, this parameter must con-
tain a value of zero. If you specify zero for the instance number, the TABORT
routine will abort the current transaction instance, and will not return status
to the TST that issued the call. The initiating station is returned to its initial
state by the system.

This parameter should be defined as a two-word computational data item. For
example:

INSTANCE-NUMBER PIC S9(9) COMP.
status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use. ’
As you can define the status array in the DATA DIVISION as:
01 STATUS-WORDS.

03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

4-23

Calling TRAX Library Routines

Example of COBOL Usage
The example shown here aborts a spawned transaction instance using TABORT.

CALL “TABORT” USING INSTANCE-NUMBER, STATUS-WORDS.

4.5.2.2 Using the TABORT Routine from BASIC-PLUS-2
Calling Parameters:

Two parameters are required when calling TABORT:

instance number If you are aborting a spawned transaction, this parameter must be the variable
containing this value as returned by the TSPAWN call (see Section 4.3.1).

If you are aborting the current transaction instance, this parameter must con-
tain a value of zero. If you specify zero for the instance number, the TABORT
routine will abort the current transaction instance, and will not return status
to the TST that issued the call. The initiating station is returned to its initial
state by the system.

This parameter must be defined as a two-word integer array.

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage
The example shown hete calls TABORT to abort a spawned transaction instance.

5000 CALL TABORT BY REF (1%(),STATUS%())

4.5.2.3 Library Routine Status Return Codes for BASIC and COBOL
+1 The spawned transaction instance was successfully aborted.

—-46 The library routine specified a non-existent transaction instance value, or the
transaction instance value identified a transaction that was not spawned by the
TST that called the TABORT routine.

NOTE
If the TABORT routine is called successfully to abort oneself,
the transaction instance is aborted immediately. Hence no
status value is returned.

4.6 ROUTING LIST CONTROL

Every exchange in a transaction definition|has its own routing list. The routing list consists of up
to 8 station names. The exchange message is processed by each of the stations in the routing list,
in the order that the stations appear in the transaction definition.

At the time an exchange is initiated, the TRAX executive copies the routing list (a maximum of 8
entries) from the transaction definition to a temporary area.

424

Calling TRAX Library Routines

Three TST library routines, AROUTE,DROUTE, and DALLRT are available for your use in dynam-
ically altering routing list characteristics of the current exchange. The action performed by these
routines applies only to the current transaction instance, and in no way affects the original defini-
tion of the exchange.

4.6.1 The AROUTE Routine
Adding a Station to An Exchange Routing List

Description: The AROUTE routine is used to temporarily add a station to the end of the
current exchange routing list. This allows a TST to change the normal routing
of an exchange message. The size of the route list at any time during the execu-
tion of the exchange is limited to eight (8) remaining destination entries.

4.6.1.1 Using the AROUTE routine from COBOL TSTs — AROUTE requires that you specify the
following two parameters, in order.

station name The 6-character ASCII name of the station you want to add to the end of the

current exchange routing list. The station name parameter should be defined
in the DATA DIVISION as:

01 STATION-NAME PIC X(6).

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use.

You can define the status array in the DATA DIVISION as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage

The following example shows a COBOL call of AROUTE to add the station “CLSOUT”’ to the end
of the current exchange routing list.

MOVE “CLSOUT” TO STATION-NAME.

CALL “AROUTE” USING STATION-NAME, STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1

GO TO STATUS-ERROR-ABORT.

4.6.1.2 Using the AROUTE routine from BASIC-PLUS-2 TSTs — AROUTE requires that you
specify the following two parameters, in order.

station name The 6-character ASCII name of the station you want to add to the end of the

current exchange routing list. This parameter can be specified as a string
variable, or as a literal value in the parameter list.

4-25

Calling TRAX Library Routines

status The status parameter is a two-word integer array where status information
is returned to the calling TST. The first word holds the return code; the
second word is reserved for future use.

Example of BASIC-PLUS-2 Usage
The following example shows a BASIC-PLUS-2 call of AROUTE that adds “CLSOUT” to the end
of the current exchange routing list.

5000 CALL AROUTE BY REF (“CLSOUT”,STATUS%()) &
\ IF STATUS%(0%) < 1% GO TO 19500

4.6.1.3 Library Routine Status Return Codes for BASIC and COBOL:
+1 The call to the library routine was successful

—12 The station name you specified is not defined for this transaction processor;
or you attempted to add a terminal or mailbox station to the routing list.

—14 The route list associated with this exchange already contains eight station
names.

4.6.2 The DROUTE Routine
Deleting a Station from An Exchange Routing List

Description: The DROUTE routine allows you to delete one station from the current
exchange routing list. If the station name specified in the call appears more
than once in the route list, the first remaining station by that name is deleted.

4.6.2.1 Using the DROUTE routine from COBOL TSTs — DROUTE requires that you specify
the following two parameters, in order.

station name The 6-character ASCII name of the station you want to delete from the current
exchange routing list. The station name parameter should be defined in the
DATA DIVISION as:
01 STATION-NAME PIC X(6).
status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use.
You can define the status array in the DATA DIVISION as:
01 STATUS-WORDS.

03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

4-26

Calling TRAX Library Routines

Example of COBOL Usage
The following example shows a COBOL call of DROUTE to delete the station “CLSOUT”’ from
the current exchange routing list.

MOVE “CLSOUT” TO STATION-NAME.

CALL “DROUTE” USING STATION-NAME, STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1

GO TO STATUS-ERROR-ABORT.

4.6.2.2 Using the DROUTE routine from BASIC-PLUS-2 TSTs — DROUTE requires that you
specify the following two parameters, in order.

station name The 6-character ASCII name of the station you want to delete from the current
exchange routing list. This parameter can be specified as a string variable, or
as a literal value in the parameter list.

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage
The following example shows a BASIC-PLUS-2 call of DROUTE that deletes “CLSOUT” from the
current exchange routing list.

5000 CALL DROUTE BY REF (“CLSOUT”,STATUS%()) &
\ IF STATUS?%(0%) < 1% GO TO 19500

4.6.2.3 Library Routine Status Return Codes for BASIC and COBOL:
+1 The call to the library routine was successful

-16 - The station named in the call does not appear in the routing list.

4.6.3 The DALLRT Routine
Deleting All Remaining Stations from the Exchange Routing List

Description: The DALLRT routine deletes all remaining stations from the current exchange
routing list. The exchange terminates at the conclusion of processing by the
current TST station.

4.6.3.1 Using the DALLRT routine from COBOL TSTs - DALLRT requires that you specify
one parameter:

status The status array consists of two full-word computational data items where

status information is returned to the calling TST. The first word holds the
return code; the second word is reserved for future use.

4-27

Calling TRAX Library Routines

You can define the status array in the DATA DIVISION as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage
The following example shows a COBOL call of DALLRT to delete all remaining routes from the
current exchange routing list.

CALL “DALLRT” USING STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

4.6.3.2 Using the DALLRT routine from BASIC-PLUS-2 TSTs — DALLRT requires that you
specify one parameter:

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage
The following example shows a BASIC-PLUS-2 call of DALLRT that deletes all remaining stations
from the current exchange routing list.

5000 CALL DALLRT BY REF (STATUS%()) &
\ IF STATUS%(0%) < 1% GO TO 19500

4.6.3.3 Library Routine Status Return Codes for BASIC and COBOL.:
+1 The call to the library routine was successful

4.7 USING MAILBOX STATIONS FROM A TST
Mailbox stations are used to store data that is useful to later transaction instances.

A mailbox station resides on the system disk and can be accessed only from a TST. The messages
deposited at a mailbox station are retrieved in a first-in, first-out sequence.

Three system library routines are available for accessing mailboxes: SNDMBX sends a message to

a mailbox station, GETMBX retrieves a message from a mailbox, and MBXNUM returns the number
of messages at the specified mailbox.

4-28

Calling TRAX Library Routines

4.7.1 The SNDMBX Routine
Sending a Message to a Mailbox Station

Description: The SNDMBX routine sends the message specified in the parameter list to the
specified mailbox station.

4.7.1.1 Using the SNDMBX Routine from COBOL TSTs
Calling Parameters:

The parameters you must specify in the SNDMBX calling sequence are listed in the order they are
referenced by the SNDMBX routine.

Parameter Description and Use
buffer The name of the buffer containing the message to be stored in the mailbox.

The buffer should be a character data item. For example:

01 MAILBOX-BUFFER.
03 MBX-BUF-CUST-NO PIC X(6).
03 MBX-BUF-CRED-LIM PIC S9(10)V99.
03 MBX-BUF-CURR-BAL PIC S9(10)V99.
03 MBX-BUF-TOD-DATE PIC S9(6).
03 MBX-BUF-STA-ID PIC X(6).

buffer size The size (in bytes) of the mailbox message.

The buffer size parameter must be a data item of the type PIC S9(4) COMP.
An example specification of this data item would be:

01 BUFFER-SIZE PIC S9(4) COMP.
station name The name (6 character ASCII) of the mailbox station receiving this message.

The station name must be assigned to a character data item with PIC X(6).
For example:

01 STATION-NAME PIC X(6).

status The status array consists of two full-word computational-data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use.

You can define the status data items as:
01 STATUS-WORDS.

03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

4-29

Calling TRAX Library Routines

Example of COBOL Usage:
The example shows the COBOL calling sequence used to send a mailbox message containing the
customer data to a mailbox station called OVRCRL.

MOVE STATION-ID TO MBX-BUF-STA-ID.
MOVE “OVRCRL” TO STATION-NAME.
MOVE 42 TO BUFFER-SIZE.
CALL ““SNDMBX” USING MAILBOX-BUFFER ,BUFFER-SIZE ,STATION-NAME ,STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

4.7.1.2 Using the SNDMBX Routine from BASIC-PLUS-2 TSTs
Calling Parameters:

The parameters you must specify in the SNDMBX calling sequence are listed in the order they are
referenced by the SNDMBX routine.

Parameter Description and Use
buffer The name of the buffer containing the message to be stored in the mailbox.
The buffer should be a string variable. For example:

950 \ MAP (MBXBUF)
MAILBOX.BUFFERS = 42
!
\ MAP (MBXBUF)
MBX.BUF.CUST.NOS = 6
’ MBX.BUF.CRED.LIMS = 12
’ MBX.BUF.CURR.BALS = 12
’ MBX.BUF.TOD.DATES = 6
’ MBX.BUF.STA.ID$ = 6

R

buffer size The size (in bytes) of the mailbox message.

The buffer size parameter must be an integer data item or literal. The value
you specify must exactly match the number of characters in the message.

station name The name (6 character ASCII) of the mailbox station receiving this message.

The station name must be a string variable or quoted literal. If your TST refer-
ences several mailboxes, assigning the mailbox name to a string variable allows
you to have a common calling sequence in your TST. If the station name is less
than six characters, you must insure that the padding spaces are inserted in

the same positions used to define the station name in the STADEF utility.

status The status parameter is a two-word integer array where status information is

returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

4-30

Calling TRAX Library Routines

Example of BASIC-PLUS-2 Usage:
The example shows the BASIC-PLUS-2 calling sequence used to construct and send a mailbox
message containing the customer data to a mailbox station called OVRCRL.

12000 \ STATION.NAMES$ = “OVRCRL” &
\ CALL SNDMBX BY REF (MAILBOX.BUFFERS$,42%,STATION.NAME$,STATUS%()) &
\ IF STATUS%(0%) < 1% GO TO 19500

4.7.1.3 Library Routine Status Return Codes for BASIC and COBOL.:

+1 The call to the library routine was successful

—12 The station specified in the call is not known to the system.

-30 The buffer specified in the call is outside the TSTs address space.

—-44 The station specified in the call is not a mailbox station

-52 Not enough memory resources are available to call the routine.

4.7.2 The GETMBX Routine
Retrieving a Message from a Mailbox Station

Description: The GETMBX Routine retrieves a message from a mailbox station.

4.7.2.1 Using the GETMBX Routine from COBOL TSTs
Calling Parameters:

The parameters you must specify in the GETMBX calling sequence are listed in the order they are
referenced by the GETMBX routine.

Parameter Description and Use

buffer The name of the buffer where you want the routine to store the returned
mailbox message.

The buffer should be a character data item. For example:

01 MAILBOX-BUFFER.
03 MBX-BUF-CUST-NO PIC X(6).
03 MBX-BUF-CRED-LIM PIC S9(10)V99.
03 MBX-BUF-CURR-BAL PIC S9(10)V99.
03 MBX-BUF-TOD-DATE PIC S9(6).
03 MBX-BUF-STA-ID PIC X(6).

buffer size The size (in bytes) of the buffer receiving the mailbox message.

The buffer size parameter must be a data item of the type PIC S9(4) COMP.
An example specification of this data item would be:

01 BUFFER-SIZE PIC S9(4) COMP.

4-31

Calling TRAX Library Routines

station name The name (6 character ASCII) of the mailbox station from which you are
retrieving a message.

The station name must be assigned to a character data item with PIC X(6).

If the station name is less than six characters, you must insure that the pad-
ding spaces are inserted in the same positions used to define the station name
in the STADEF utility. An example of the definition of this data item would
be:

01 STATION-NAME PIC X(6).

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; if the call is successful, the second data item contains the size (in bytes)
of the message obtained from the mailbox station.

You can define the status data items as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage:
The example shows the COBOL and calling sequence used to retrieve a mailbox message from a
mailbox station called OVRCRL.

MOVE “OVRCRL” TO STATION-NAME.
MOVE 42 TO BUFFER-SIZE.
CALL “GETMBX’’ USING MAILBOX-BUFFER BUFFER-SIZE STATION-NAME STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

4.7.2.2 Using the GETMBX Routine from BASIC-PLUS-2 TSTs.
Calling Parameters:

The parameters you must specify in the GETMBX calling sequence are listed in the order they are
referenced by the GETMBX routine.

Parameter Description and Use

buffer The name of the buffer where you want the routine to store the message it
gets from the mailbox station.

4-32

Calling TRAX Library Routines

The buffer should be a string variable. For example:

950 \ MAP (BMXBUF)
MAILBOX.BUFFERS = 42
!
\ MAP (MBXBUF)
MBX.BUF.CUST.NOS$ =6
, MBX.BUF.CRED.LIM$ = 12
, MBX.BUF.CURR.BALS = 12
, MBX.BUF.TOD.DATES =6
, MBX.BUF.STA.ID$ =6

RRRRrRRrR

buffer size The size (in bytes) of the mailbox message.

The buffer size parameter must be an integer data item or literal. The value
you specify must exactly match the number of characters in the receiving
buffer.

station name The name (6 character ASCII) of the mailbox station from which you are
retrieving a mailbox message.

The station name must be a string variable or quoted literal. If your TST
references several mailboxes, assigning the mailbox name to a string variable
allows you to have a common calling sequence in your TST. If the station
name is less than six characters, you must insure that the padding spaces are
inserted in the same positions used to define the station name in the STADEF
utility.

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage:
The example shows the BASIC-PLUS-2 calling sequence used to retrieve a mailbox message from a
mailbox station called OVRCRL.

12000 \ STATION.NAMES = “OVRCRL” &
\ CALL GETMBX BY REF (MAILBOX.BUFFERS$,42%,STATION.NAMES$ STATUS()) &
IF STATUS%(0%) < 1% GO TO 19500

4.7.2.3 Library Routine Status Return Codes for BASIC and COBOL:

+1 The call to the library routine was successful
-12 The station specified in the call is not known to the system.
-30 The buffer specified in the call is outside the TSTs address space.

4-33

Calling TRAX Library Routines

—44 The station specified in the call is not a mailbox station
—52 Not enough memory resources are available to call the routine.
—54 No message queued at specified mailbox station.

4.7.3 The MBXNUM Routine
Determine the Number of Messages Stored at a Mailbox Station

Description: The MBXNUM routine returns the number of messages that are currently
stored in the mailbox.

4.7.3.1 Using the MBXNUM Routine from COBOL TSTs
Calling Parameters:

The parameters you must specify in the MBXNUM calling sequence are listed in the order they are
referenced by the MBXNUM routine.

Parameter Description and Use

buffer The location where the routine is to return the count of the number of messages
in the mailbox. This data item must be in the form PIC S9(4) COMP. For
example:

01 MAILBOX-MSG-COUNT PIC S9(4) COMP.
station name The name (6 character ASCII) of the mailbox station you are interrogating.

The station name must be assigned to a character data item with PIC X(6). If
the station name is less than six characters, you must insure that the padding
spaces are inserted in the same positions used to define the station name in
the STADEF utility. An example of the definition of this data item would be:

01 STATION-NAME PIC X(6).

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use.

You can define the status data items as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage:

In the following example, you want to interrogate the mailbox called OVRCRL to see how many
messages are there. This information is needed to determine if enough credit limits have been ex-
ceeded to warrant calling the accounting department.

4-34

Calling TRAX Library Routines

The example shows the COBOL assignment statements and calling sequence used to ask the mailbox
OVRCRL to return the number of messages it currently has in its queue.

MOVE “OVRCRL” TO STATION-NAME.
CALL “MBXNUM” USING MAILBOX-MSG-COUNT,STATION-NAME ,STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

4.7.3.2 Using the MBXNUM Routine from BASIC-PLUS-2 TSTs.
Calling Parameters:

The parameters you must specify in the MBXNUM calling sequence are listed in the order they are
referenced by the MBXNUM routine.

Parameter Description and Use

buffer The location where the routine is to return the count of the number of messages
in the mailbox. This parameter must be an integer variable such as MAILBOX.
MSG.COUNT%.

station name The name (6 character ASCII) of the mailbox station receiving this message.

The station name must be a string variable or quoted literal.

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage:
The example shows the BASIC-PLUS-2 calling sequence used to ask the mailbox OVRCRL to
return the number of messages it currently has in its queue.

12000 \ STATION.NAMES$ = “OVRCRL” &
\ CALL MBXNUM BY REF (MAILBOX.MSG.COUNT%,STATION,NAME$,STATUS%()) &
\ IF STATUS%(0%) < 1% GO TO 19500

4.7.3.3 Library Routine Status Return Codes for BASIC and COBOL:

+1 The call to the library routine was successful

—-12 The station specified in the call is not known to the system.

-30 The buffer specified in the call is outside the TSTs address space.

—44 The station specified in the call is not a mailbox station

-52 Not enough memory resources are available to call the routine.

4-35

Calling TRAX Library Routines

4.8 SYSTEM INFORMATION ROUTINES

TRAX provides you with a set of five system information routines that allow you to obtain data
concerning stations, data files, and transactions as well as the date and time. The system informa-
tion routines return the following data to your TST.

Routine Data Returned

GETIME Time and Date

GETSTN TST Station ID

GETSRC Initiating Station ID
GETRAN Transaction ID

GETFIL Physical File Specification

4.8.1 The GETIME Routine — Determining the Current Time and Date
Description: The GETIME routine allows you to obtain date and time information from the
system.

4.8.1.1 Using the GETIME routine from COBOL TSTs
Calling Parameters:

The parameters you must specify in the GETIME calling sequence are listed in the order they are
referenced by the GETIME routine.

Parameter Description and Use

buffer The GETIME call returns eight data items to your TST. The data structure
that describes the information returned by GETIME is:

01 DATE-FIELDS.

03 YEAR-SINCE-1900 PIC S9(4) COMP.
03 MONTH-OF-YEAR PIC S9(4) COMP.
03 DAY-OF-MONTH PIC S9(4) COMP.
03 HOUR-OF-DAY PIC S9(4) COMP.
03 MINUTES-PAST-HOUR PIC S9(4) COMP.
03 SECONDS-PAST-MINUTE PIC S9(4) COMP.
03 TICKS-THIS-SECOND PIC S9(4) COMP.
03 CLOCK-TICKS-PER-SEC PIC S9(4) COMP.

where:

YEAR ... contains the number of years since 1900.

MONTH. .. contains the month as a number from 1 to 12.

DAY ... contains the day as a number from 1 to 31.

HOUR ... contains the hour as a number from 0 to 23.

4-36

Calling TRAX Library Routines

MINUTES . .. contains the minute as a number from 0 to 59.

SECONDS ... contains the second as a number from 0 to 59.

TICKS ... contains the number of ticks since the last full second.

CLOCK ... contains the number of clock ticks in a second. The number of clock ticks

depends upon your hardware configuration.

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code, the second item is reserved for future use.

The status data items can be defined as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage:
In the following example, a TST calls GETIME to determine the time and date of a transaction.

CALL “GETIME” USING DATE-FIELDS,STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

When the call is made in this manner, each individual data item can be examined if you supply a
data structure similar to that shown in the “buffer’” parameter description.

4.8.1.2 Using the GETIME routine from BASIC-PLUS-2 TSTs
Calling Parameters:

The parameters you must specify in the GETIME calling sequence are listed in the order they are
referenced by the GETIME routine.

Parameter Description and Use

buffer The GETIME call returns eight integer values to your TST. The data structure
that describes the information returned by GETIME is:

951 MAP (TIMER) YEAR%, MONTH%, DAY %, &
HOUR%, MINUTES%, SECONDS%, TICKS%, CLOCK%
where:
YEAR% contains the number of years since 1900.
MONTH% contains the month as a number from 1 to 12.

4-37

Calling TRAX Library Routines

DAY % contains the day as a number from 1 to 31.

HOUR% contains the hour as a number from 0 to 23.

MINUTES% contains the minute as a number from 0 to 59.

SECONDS% contains the second as a number from 0 to 59.

TICKS% contains the number of ticks since the last full second.

CLOCK% contains the number of clock ticks in a second. The number of clock ticks

depends upon the configuration of your hardware.

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage:
In the following example, a TST calls GETIME to determine the time and date of a transaction.

5000 CALL GETIME BY REF(YEAR%,STATUS%()) &
\ IF STATUS%(0%) < 1% GO TO 19500

When the call is made in this manner, each individual data item can be examined if you supply

a data structure similar to that shown in the map statement (TIMER). Specifying the variable
“YEAR%”’ causes the date and time to be returned in the eight contiguous variables starting with
YEAR%.

4.8.1.3 Library Routine Status Return Codes for BASIC and COBOL:
+1 The call to the library routine was successful

-30 The buffer specified in the parameter list was outside the TSTs address space.

4.8.2 The GETSTN Routine — Determining the Current TST Station Name

Description: The GETSTN routine allows you to obtain the 6-character name of the current
TST station. GETSTN returns the station name into a buffer specified in the
parameter list.

4.8.2.1 Using the GETSTN Routine from COBOL TSTs
Calling Parameters:

GETSTN requires you to specify two parameters:

Parameter Description and Use

buffer . The buffer parameter must specify a data item defined to hold a 6-character
ASCII station name. The GETSTN routine returns the station name in this

data item. For example:

01 STATION-NAME PIC X(6).

4-38

Calling TRAX Library Routines

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code, the second item is reserved for future use.

The status data items can be defined as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage:
In the following example, a TST calls GETSTN to determine the name of the TST station that is
currently processing the exchange message.

CALL “GETSTN” USING STATION-NAME, STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

4.8.2.2 Using the GETSTN routine from BASIC-PLUS-2 TSTs
Calling Parameters:

The parameters you must specify in the GETSTN calling sequence are listed in the order they are
referenced by the GETSTN routine.

Parameter Description and Use

buffer The buffer parameter must specify a data item defined to hold a 6-character
ASCII station name. The GETSTN routine returns the station name in this
variable. The variable specified as this parameter should be defined in a MAP
or COMMON statement with a length of 6 characters. For example:

951 MAP (PARMS) STATIONS=6, . . .

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage:
In the following example, a TST calls GETSTN to determine the name of the TST station that is
processing the current exchange message.

5000 CALL GETSTN BY REF(STATIONS$,STATUS%()) &
\ IF STATUS%(0%) < 1% GO TO 19500

4.8.2.3 Library Routine Status Return Codes for BASIC and COBOL:
+1 The call to the library routine was successful

-30 The buffer specified in the parameter list was outside the TSTs address space.

4-39

Calling TRAX Library Routines

4.8.3 The GETSRC Routine — Determining the Initiating Station ID

Description: The GETSRC routine allows you to determine the 6-character ASCII identifier
assigned to the station that initiated the current transaction instance (the
source station).

GETSRC returns the station name into a buffer specified in the parameter list.

4.8.3.1 Using the GETSRC Routine from COBOL TSTs
Calling Parameters:

GETSRC uses two parameters:
Parameter Description and Use

buffer The buffer parameter must specify a data item defined to hold a 6-character
ASCII station name. The GETSRC routine returns the station name in this
data item. For example:

01 STATION-NAME PIC X(6).

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code, the second item contains the number of times the current exchange
has been restarted.

The status data items can be defined as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage:
In the following example, a TST calls GETSRC to determine the name of the station that initiated

the current transaction instance.

CALL “GETSRC” USING STATION-NAME, STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

4.8.3.2 Using the GETSRC routine from BASIC-PLUS-2 TSTs
Calling Parameters:

The parameters you must specify in the GETSRC calling sequence are listed in the order they are
referenced by the GETSRC routine.

Parameter Description and Use

buffer The buffer parameter must specify a data item defined to hold a 6-character
ASCII station name. The GETSRC routine returns the station name in this

4-40

Calling TRAX Library Routines

variable. The variable specified as this parameter should be defined in a MAP
or COMMON statement with a length of 6 characters. For example:

951 MAP (PARMS) STATIONS=6, . ..

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage:
In the following example, a TST calls GETSRC to determine the name of the station that initiated
the current transaction instance.

5000 CALL GETSRC BY REF(STATION$,STATUS%()) &
\ IF STATUS?%(0%) < 1% GO TO 19500

4.8.3.3 Library Routine Status Return Codes for BASIC and COBOL:
+1 The call to the library routine was successful

-30 The buffer specified in the parameter list was outside the TSTs address space.

4.8.4 The GETRAN Routine — Determining the Transaction Type ID

Description: The GETRAN routine allows you to determine the 6-character ASCII identi-
fier assigned to the transaction type in which your TST is executing. The
transaction name is returned into a buffer specified in the parameter list.

4.8.4.1 Using the GETRAN Routine from COBOL TSTs
Calling Parameters:

GETRAN uses two parameters:

Parameter Description and Use

buffer The buffer parameter must specify a data item defined to hold a 6-character
ASCII transaction name. The GETRAN routine returns the transaction name
in this data item. For example:

01 TRANSACTION-NAME PIC X(6).

status The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code, the second item contains the number of times the current exchange has
been restarted.

The status data items can be defined as:
01 STATUS-WORDS.

03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

441

Calling TRAX Library Routines

Example of COBOL Usage:
In the following example, a TST calls GETRAN to determine the name of the transaction type
used in the current transaction instance.

CALL “GETRAN” USING TRANSACTION-NAME, STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

4.8.4.2 Using the GETRAN routine from BASIC-PLUS-2 TSTs
Calling Parameters:

The parameters you must specify in the GETRAN calling sequence are listed in the order they are
referenced by the GETRAN routine.

Parameter Description and Use

buffer The buffer parameter must specify a data item defined to hold a 6-char-
acter ASCII transaction name. The GETRAN routine returns the transac-
tion name in this variable. The variable specified as this parameter should
be defined in a MAP or COMMON statement with a length of 6 characters.
For example:

951 MAP (PARMS) TRANSACTIONS=6, . ..

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage:
In the following example, a TST calls GETRAN to determine the name of the transaction type
used in the current transaction instance.

5000 CALL GETRAN BY REF(TRANSACTIONS STATUS%()) &
\ IF STATUS%(0%) < 1% GO TO 19500

4.8.4.3 Library Routine Status Return Codes for BASIC and COBOL:
+1 The call to the library routine was successful

-30 The buffer specified in the parameter list was outside the TSTs address space.

4.8.5 The GETFIL Routine — Determining a Physical File Specification

Description: The GETFIL routine allows you to determine the physical file specification
that corresponds to a logical file name currently accessed by this transaction
instance. GETFIL returns the physical RMS file specification to a 33-character
buffer that you must specify in the parameter list.

4-42

Calling TRAX Library Routines

4.8.5.1 Using the GETFIL Routine from COBOL TSTs
Calling Parameters:

The following list describes the GETFIL parameters in the order they must be specified in the
calling sequence.

Parameter Description and Use

logical name This parameter specifies a 6-character logical file name, padded with BLANKs
if necessary. This name is the logical file name specified in the file definition
record (See Chapter 12). The data item used to specify this parameter must
be specified as shown in the following example:

01 LOGICAL-FILE-NAME PIC X(6).

buffer The buffer parameter must specify a data item defined to hold a 33-character
TRAX file specification. The GETFIL routine returns the physical file speci-
fication in this data item. For example:

01 FILE-SPEC-BUFFER PIC X(33).

status The status array consists of two full-word computational data/items used to
return status information to the calling TST. The first item holds the return
code, if the call is successful, the second item contains the number of char-
acters in the file specification returned to the TST by GETFIL.

The status data items can be defined as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage:

In the following example, a TST calls GETFIL to determine the physical file specification associated
with the logical file name “CUSTOM”’.

MOVE “CUSTOM” TO LOGICAL-NAME.
CALL “GETFIL” USING LOGICAL-FILE-NAME,
FILE-SPEC-BUFFER,
STATUS-WORDS.
IF STATUS-WORD-1 IS NOT EQUAL TO 1
GO TO STATUS-ERROR-ABORT.

443

Calling TRAX Library Routines

4.8.5.2 Using the GETFIL routine from BASIC-PLUS-2 TSTs
Calling Parameters:

The parameters you must specify in the GETFIL calling sequence are listed in the order they are
referenced by the GETFIL routine.

Parameter Description and Use

logical name This parameter specifies a 6-character logical file name, padded with BLANKSs
if necessary. This name must correspond with a file definition record in the
file [1,300] tpname.FIL. This data item is usually specified as a string variable
or literal string in the parameter list. See the example following this section for
an example of a literal string in the parameter list.

buffer The buffer parameter must specify a data item defined to hold a 33-character
TRAX file specification. The GETFIL routine returns the physical file specifi-
cation associated with the logical file name into this buffer. The variable
specified as this parameter should be defined in a MAP or COMMON statement
with a length of 33 characters. For example:

951 MAP (PARMS) PHYS.FILE.SPEC$=33

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code; the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage:
In the following example, a TST calls GETFIL to determine the physical file specification associated
with the logical file name “CUSTOM”’.

5000 CALL GETFIL BY REF(‘“CUSTOM” ,PHYS.FILE.SPEC$,STATUS%()) &
\ IF STATUS%(0%) < 1% GO TO 19500

4.8.5.3 Library Routine Status Return Codes for BASIC and COBOL:

+1 The call to the library routine was successful
—-30 The buffer specified in the parameter list is outside the TSTs address space.
—64 The logical name parameter referred to a non-existent file.

4-44

Calling TRAX Library Routines

4.9 LOGGING INFORMATION TO THE JOURNAL FILE

4.9.1 The LOGTRN Routine — Log Specified Data to the Journal

Description:

The LOGTRN routine allows you to write data to the journal file.

The log records written by this routine can be interpreted using the SHOLOG
utility. (See the TRAX System Manager’s Guide.)

The log records written to the journal file by this routine are independent and
should not be confused with the journalling of transaction slots.

NOTE
Records are written to the log in blocked form. If the system
should crash, log records may be lost during the crash.

49.1.1 Using the LOGTRN Routine from COBOL TSTs;

Calling Parameters:

The following list describes the LOGTRN routine parameters in the order they must appear in the

call.

Parameter

buffer

buffer size

log code letter

Description and Use
The name of the buffer containing data to be logged to the journal.

The buffer should be a character data item in the DATA DIVISION. For
example:

01 LOG-DATA-BUFFER
03 LOG-BUFFER-EM PIC X(36).
03 LOG-BUFFER-NOTE PIC X(80).

The length (in bytes) of the data buffer.

The buffer-size parameter must be a data item of type PIC S9(4) COMP. The
data item is used to specify this parameter in the DATA DIVISION of the
example TST:

01 BUFFER-SIZE PIC S9(4) COMP.

A 1 character (ASCII) alphabetic field which contains a user defined code. This
code identifies the specific type of log record that you are writing. It is used
by the SHOLOG utility when it processes the logged records from the journal.
You can identify up to 26 (A-Z) distinct types of logged messages using this
code.

The parameter must be defined in the DATA DIVISION as a single character
data item:

01 LOG-CODE-LETTER PIC X(1)

4-45

Calling TRAX Library Routines

status

The status array consists of two full-word computational data items used to
return status information to the calling TST. The first item holds the return
code; the second item is reserved for future use.

The status data items can be defined as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC S9(4) COMP.

Example of COBOL Usage:
The example shows the COBOL assignment statements and calling sequence used to loga 116-
character data buffer to the journal using the code letter “K”’.

MOVE EXCHANGE-MESSAGE TO LOG-BUFFER-EM.
MOVE STATION-ID-CODE TO LOG-BUFFER-NOTE.
MOVE “K” TO LOG-CODE-LETTER.

MOVE 116 TO BUFFER-SIZE.

CALL “LOGTRN” USING LOG-BUFFER,

BUFFER-SIZE,
LOG-CODE-LETTER,
STATUS-WORDS.

IF STATUS-WORD-1 IS NOT EQUAL TO 1

GO TO STATUS-ERROR-ABORT.

49.1.2 Using the LOGTRN Routine from BASIC-PLUS-2 TSTs

Calling Parameters:

The parameters you must specify in the LOGTRN calling sequence are listed in the order they are
referenced by the LOGTRN routine.

Parameter

buffer

buffer size

4-46

Description and Use
The name of the buffer containing data to be logged to the journal.

Log data should be specified as a string variable. An example of buffer usage
is given at the end of this section.

The length (in bytes) of the data buffer.

The buffer size parameter must be an integer type variable, and must con-
tain the exact length of the data buffer. This value is best obtained by speci-
fying the LEN%(buffer.name$) function in the parameter list. See the ex-
ample at the end of this section for an illustration of how the LEN% function
is used.

Calling TRAX Library Routines

log code letter a 1 character (ASCII) alphabetic field which contains a user defined code. This
code identifies the specific type of log record that you are writing. It is used
by the SHOLOG utility when it processes the logged records from the journal.
You can identify up to 26 (A-Z) distinct types of logged messages using this
code.

status The status parameter is a two-word integer array where status information is
returned to the calling TST. The first word holds the return code, the second
word is reserved for future use.

Example of BASIC-PLUS-2 Usage:
The example shows the BASIC-PLUS-2 assignment statements and calling sequence used to log the
information in a buffer called LOG.DATA .BUFFERS.

5000 CALL LOGTRN BY REF (LOG.BUFFERS$,LEN%(LOG.BUFFERS),“K” ,STATUS%()) &
\ IF STATUS%(0%) < 1% GO TO 19500

49.1.3 Library Routine Status Return Codes for BASIC and COBOL.:

+1 The library call was successful
-30 The buffer specified in the parameter list is outside the TSTs address space.
-56 A fatal system error was encountered by the routine. The message was not

written to the journal file.

CHAPTER 5

USING BATCH FACILITIES WITH A
TRANSACTION PROCESSOR

TRAX provides facilities for:

® Submitting a batch job from a transaction instance
® Initiating a Transaction Instance from a Batch Job.

TRAX Batch Facilities are documented in detail in the TRAX Support Environment Programmer’s
Guide. Before reading this chapter, it is suggested that you be familiar with the functionality of the
batch processor.

5.1 SUBMITTING A BATCH JOB FROM A TRANSACTION INSTANCE

To submit a batch job, the transaction processor definition must include a submit batch station.
The submit batch station must also be defined. (See the description of transaction processor
definition in Chapter 9, and station definition in Chapter 10.)

A transaction instance submits a batch job in the following manner.

1. The submit batch station is included in the exchange routing list.

2. The exchange message must contain a valid DCL SUBMIT command. The first two bytes
in the exchange message are defined as an integer field where you must store the number
of characters in the SUBMIT command that follows it. (The SUBMIT command is docu-
mented in the TRAX Support Environment Programmer’s Guide.)

The following examples describe how to code the exchange message, and construct the
SUBMIT command in COBOL and BASIC-PLUS-2. The SUBMIT command shown in
this example starts a batch job using the command file [300,300] CRDLTR.CMD after
5 p.m. on the current date. If this batch job fails, the job is not restarted.

COBOL Exchange Message
01 EXCHANGE MESSAGE,
03 EM-CHARACTER-COUNT PIC S9(4) COMP.
03 EM-SUBMIT-COMMAND PIC X(79).

COBOL Command Specification
MOVE “SUBMIT/AFTER:(17:00)/NORESTART [300,300] CRDLTR”
TO EM-SUBMIT-COMMAND.
MOVE 46 TO EM-CHARACTER-COUNT.

BASIC-PLUS-2 Exchange Message
1000 MSGMAP EM.CHARACTER.COUNT%,EM.SUBMIT.COMMAND$=79

5-1.

Using TRAX Batch Facilities

BASIC-PLUS-2 Command Specification
3000 EM.SUBMIT.COMMAND$=“SUBMIT/AFTER:(17:00)/NORESTART” &
+ “[300,300] CRDLTR’&
\ EM.CHARACTER.COUNT%~=46%

3. When the exchange message arrives at the submit batch station, the submit batch station
forwards the SUBMIT command to the queue manager.

4. If the queue manager accepts the DCL SUBMIT command, then the submit batch station
alters the first two characters of the exchange message to contain the characters SS. If
the batch submission was rejected, then the first two characters in the exchange message
contains SE.

NOTE
The only part of the batch submission performed by a transaction instance is
sending an exchange message in the form of a SUBMIT command to the submit
batch station. The entry into a queue and subsequent batch processing are
performed in the support environment.

5.2 INITIATING A TRANSACTION FROM A BATCH JOB
Using a slave batch station, TRAX allows you to invoke a transaction instance from a running pro-
gram in the support environment. The slave batch station can

1. Invoke a single exchange transaction and initiate the exchange, using the data received from
the batch program to create the exchange message.

2. Wait for a reply response message from a TST processing the exchange. When this message
is received at the slave batch station, the transaction instance is closed and the first 24
characters of reply message data are sent to the support environment program that initiated
the transaction.

3. If the transaction type was defined with a subsequent action parameter of NOWAIT, the
transaction instance is closed, and a blank message sent to the support environment task
that initiated the transaction instance.

5.3 INITIATE TRANSACTION — THE STTRAN ROUTINE

Description: The STTRAN Routine starts a transaction instance from any batch program. When
your program calls STTRAN, it spawns a task to perform all required I/O and
memory mapping. This task is named by replacing the first two letters of the
initiating program with the letters ZZ. For this reason, the initiating task cannot
have a task name that begins with ZZ.

The initiating task disables checkpointing until the message is accessed by the

batch manager. Using STTRAN may affect performance in the support environ-
ment.

5-2

Using TRAX Batch Facilities

5.4 USING THE STTRAN ROUTINE FROM COBOL SUPPORT ENVIRONMENT PROGRAMS

Calling Parameters:

The following list describes the STTRAN routine parameters in the order they appear in the call.

Parameter

tpname

transaction name

buffer

buffer size

return buffer

status

Description and Use

The 1- to 6-character name of the active transaction processor where the
transaction instance is to be invoked. This parameter must be defined in
a COBOL program as a 6-character data item. For example:

01 TXN-PROC-NAME PIC X(6).

The transaction type you wish to invoke. This must be a single exchange
transaction. This parameter must be defined in a COBOL program as a
6-character data item. For example:

01 TRANSACTION-NAME PIC X(6).

The location in the calling program where the exchange message data is
stored.

In COBOL programs, this parameter must identify a display data item or
group item, such as:

01 TXN-EXCHANGE-MESSAGE.

03 (Exchange Message Data Structure)
°

You must specify an integer variable where your TST can place a value repre-
senting the number of characters of data in the exchange message buffer. In
a COBOL program, this parameter must be defined as a computational data
item. For example:

01 BUFFER-SIZE PIC S9(4) COMP.

The location where the first 24 characters of the reply response message are
placed when the transaction instance terminates. This location must ac-
comodate at least 24 characters. You must define the data item describing
this parameter in the following manner:

01 RETURN-BUFFER-AREA PIC X(24).
The status array consists of two data items. The first item contains status

return information from the library routine. The second item is reserved
for future use.

Using TRAX Batch Facilities

The status data items can be defined as:

01 STATUS-WORDS.
03 STATUS-WORD-1 PIC S9(4) COMP.
03 STATUS-WORD-2 PIC (89(4) COMP.

Example of COBOL Usage:

In the following example, the transaction processor “SAMPLE” has a single exchange transaction
called “CHKMBX’; it is designed to interrogate and report the number of messages stored in each
system mailbox. The following call, placed in a COBOL batch program, causes the system to
invoke CHKMBX.

MOVE “SAMPLE” TO TXN-PROC-NAME.

MOVE “CHKMBX” TO TRANSACTION-NAME.

MOVE ““01” TO BUFFER-SIZE.

CALL “STTRAN’ USING TXN-PROC-NAME,

TRANSACTION-NAME,
ST-EXCHANGE-MESSAGE,
BUFFER-SIZE,
RETURN-BUFFER-AREA,
STATUS-WORDS.

5.5 USING THE STTRAN ROUTINE FROM BASIC-PLUS-2 SUPPORT ENVIRONMENT
PROGRAMS
Calling Parameters:

The following list describes the STTRAN routine parameters in the order they appear in the call.

Parameter Description and Use

tpname The 1- to 6-character name of the active transaction processor where the
transaction instance will be invoked. This parameter must be defined in a
BASIC-PLUS-2 program as a 6-character string variable or literal.

transaction name The transaction type you wish to invoke. This must be a single exchange trans-
action and cannot have a form associated with it. This parameter must be

defined ina BASIC-PLUS-2 program as a 6-character string variable or literal.

buffer The location in the calling program where the exchange message data is
stored.

In BASIC-PLUS-2 programs, this parameter must identify a string variable
containing exchange message data, or a literal value.

buffer size This must be defined as an integer variable corresponding to the exact length
of the data in the exchange message.

Using TRAX Batch Facilities

return buffer The location where the first 24 characters of the reply response message are
placed when the transaction intance terminates. This location must accomo-
date at least 24 characters. You must define the data name describing this
area as a string variable.

status The status array consists of two variables. The first element contains status
return information from the library routine. The second element is reserved
for future use.

The status elements can be defined as an integer array STATUS%.
STATUS%(0%) contains the first status word, and STATUS%(1%) the second.

Example of BASIC-PLUS-2 Usage:

In the following example, the transaction processor “SAMPLE’ has a single exchange transaction
called “CHKMBX’; it is designed to interrogate and report the number of messages stored in each
system mailbox. The following call, placed in a BASIC-PLUS-2 batch program, invokes “CHKMBX.”

4000 CALL STTRAN BY REF (“SAMPLE”, “CHKMBX”, “ ”°,1%,RETURN.AREAS,
STATUS%())

5.6 LIBRARY ROUTINE STATUS RETURN CODES

+1 The transaction completed successfully.
-8 Internal directive error.
-30 Parameter validation error.
-36 The transaction name you specified is disabled. See your system manager to

determine why it was disabled.

-48 The transaction processor named in the call is not running.
-56 An 1/O error encountered during execution of transaction.
-60 Invalid transaction processor name.

-62 The started transaction terminated abnormally.

CHAPTER 6
COMMUNICATION BETWEEN TRANSACTION PROCESSORS

TRAX/TL AND TRAX/3271-TL

TRAX/TL and TRAX/3271-TL are software modules that allow you to initiate a transaction in
another transaction processor or IBM system. TRAX/TL (Transaction Link) permits a TRAX sys-
tem to be connected to other TRAX systems. TRAX/TL allows an executing transaction within a
TRAX system to initiate a transaction within the same or a physically different TRAX system.

TRAX/3271-TL is a protocol emulator that permits transactions running under TRAX to communi-
cate interactively with tasks in an IBM 360 or 370 system running CICS/OS or CICS/VS.

This chapter is organized in two major sections. Section 6.1 describes the application programming
techniques required to use TRAX/TL. Section 6.2 describes the application programming consider-
ations for the TRAX side of TRAX/3271-TL.

6.1 TRAX/TL

To communicate between two TRAX transaction processors using TRAX/TL you must define a
master link station in the sending transaction processor, and one or more slave link stations in the
receiving transaction processor.

The master link station is a system provided TST which always overwrites the exchange message it
receives.

A master link station in a transaction processor with TL uses a number of sub-links, which corre-
spond to the number of slave link stations defined in the receiving transaction processor for use with
the specified link. Sub-links allow a single master station to simultaneously control several slave
transaction instances.

Processing across a link involves the following set of operations.

1. The transaction is invoked. Processing proceeds in the same manner as a normal transac-
tion. A master link station is specified in the exchange routing list for the transaction.

NOTE
When you define the master transaction, specify the exchange message size as the sum of
the 10-character header and the user data. When defining the slave transaction use the
same exchange message size as you used in the master transaction definition.

2. The exchange message arriving at the master link station must be formatted into two sec-
tions; the message header and the data buffer. The message header contains control infor-
mation for use by the master and slave link stations. The data buffer contains the data used as
an exchange message by the slave transaction instance. The exchange message formatting

Using the TRAX Link Facilities

required by the master link station is normally performed by a TST preceding the master
link station in the transaction routing list.

3. When an exchange message arrives at a master link station, the header is used to transmit the
entire exchange message to the slave transaction processor.

4. The slave link station uses the information in the header to initiate the slave transaction
named in the exchange message header. The slave link station creates an exchange message
for this transaction from the section of the link message containing the data buffer. The
transaction instance on the master side is suspended until the slave link station responds
with a message.

5. The response message generated by a TST in the slave transaction instance is sent to the
slave link station that initiated the transaction. The slave link station performs normal ex-
change control operations, and also forwards the response message to the master link sta-
tion. Message area and performs the operations directed by the response message type. The
master link station exits at this point. Exchange message processing continues at the next
station in the routing list.

6.1.1 Operations from a Master Link Station
The four basic operations that can be performed over a link are:

1. Initiate a single exchange transaction. This type of processing requires that you specify the
following data in the exchange message header:

® A message type code of “I”.
® The slave transaction name as a 6-character string.
® The number of characters of data following the header.

2. Initate the first exchange of a multiple exchange transaction. This type of processing re-
quires that you specify the following data in the exchange message header:

® A message type code of “R”.
® The slave transaction name as a 6-character string.
® The number of characters of data following the header.

3. Continue with subsequent exchanges of a multiple exchange transaction. This type of pro-
cessing requires that you specify the following data in the exchange message header.

® A message type code of “C”,
® The number of characters of data following the header.

4. Abort a previously initiated transaction instance.

® A message type code of “C”.
® A value of zero in the data length field.

The data structure and an example of formatting the message header is shown in Section 6.3.1 for
COBOL, and 6.3.2 for BASIC-PLUS-2.

Using the TRAX Link Facilities

The exchange message created by the master link station consists of either a message received from
a slave link station, or an error generated by the master link station explaining why it could not con-
tact the slave link station.

The master link station constructs the exchange message in the following manner:

1. If TRAX/TL is down, a two-character status message (SL) replaces the original exchange
message.

2. If the original master exchange message requested that the slave transaction be aborted, and
the abort actually takes place, then a 2-character status message (SA) replaces the original
message.

3. If the slave transaction sends a response message indicating that it has reached the end of
(closed) a transaction, the original exchange message is replaced with the response message
data as it was received from the slave transaction. If a sub-link was reserved by the master
link, it is released at this time.

4. If the slave transaction sends a reply with abort message, the system aborts the current slave
transaction instance and the reply with abort message (RA) is passed on to the next station
in the master transaction routing list. The master transaction is not aborted.

5. If the response message from the slave does not abort or close the transaction, the response
message data directly replaces the exchange message and the exchange message continues at
the next station on the route list.

6.1.2 Preparing the Exchange Message for the Master Link Station
In a transaction that initiates a link using a master link station, the master station appears in the
routing list of the exchange exactly as if it were a TST station.

In the TST that immediately precedes the master link station in the routing list, you must prepare
an exchange message in the format expected by the master link station.

The header consists of an area message type code, a reserved area for system use, an area that con-
tains the slave transaction name, and an area containing the number of characters of user data. The
examples in the following section show the required field sizes and data types for the message
header.

6-3

Using the TRAX Link Facilities

6.1.3 COBOL Master to Slave Message Format
In a COBOL TST, the following is an example of the format required for a message that is submit-
ted to a master link station.

LINKAGE SECTION.
01 EXCHANGE-MESSAGE.

02 LINK-HEADER.

03 MESSAGE-TYPE-CODE PIC X.

03 FILLER PIC X.

03 SLAVE-TRANSACTION-ID PIC X(6).

03 LINK-MESSAGE-LENGTH PIC S9(4) COMP.

02 LINK-EXCHANGE-MESSAGE.

03 CUSTOMER-NUMBER PIC X(6).
03 CUSTOMER-NAME PIC X(30).

If you use an exchange message similar to the one shown above, you must supply the header data in
a TST preceding the master link station in the exchange routing list.

After you define the link message header in the LINKAGE SECTION of a TST, you must perform
the following operations in that TST’s PROCEDURE DIVISION:

® Move the appropriate type code (I,R,C or A) to the exchange message.
® Move the 6-character string identifying the slave transaction to the exchange message.
® Move the length of user data to be sent across the link into the exchange message.

The following MOVE statements set up the message header to initiate a single exchange trans-
action to retrieve a customer record. The data structure of the message header is shown at the
beginning of this section. »

MOVE “I” TO MESSAGE-TYPE-CODE.
MOVE “RDCUST” TO SLAVE-TRANSACTION-NAME.
MOVE 36 TO LINK-MESSAGE-LENGTH.

6.1.4 BASIC-PLUS-2 Master to Slave Message Format
In a BASIC-PLUS-2 TST, the following is an example of the format required in the MSGMAP state-
ment immediately preceding the master link station in the exchange routing list.

600 \ MSGMAP EM.MSG.TYPE.CODE$ = 1 &
EM.FILLER$ = 1 &
’ EM.SLAVE.TRANS.ID = 6 &
’ EM.LINK.MSG.LEN% &
? EM.CUSTOMER.NUMBER = 6 &
’ EM.CUSTOMER.NAMES$ = 30

If you use an exchange message similar to the one shown above, you must supply the header data in
a TST preceding the master link station in the exchange routing list.

6-4

Using the TRAX Facilities

After you define the link message header in the MSGMARP statement, you must perform the follow-
ing operations

® Assign the appropriate message type code (I,R,C or A) to the type code field in the exchange
message header.

® Assign the 6-character string identifying the slave transaction to the slave transaction field in
the exchange message header.

@ Calculate the length of user data to be sent across the link and assign this value to the mes-
sage length field in the exchange message header.

The following BASIC-PLUS-2 statements set up the message header to initiate a single exchange
transaction to retrieve a customer record. The data structure of the message header is shown at
the beginning of this section.

1000 EM.MSG.TYPE.CODES = “I” &
\ EM.SLAVE.TRANS.ID$ = “RDCUST” &
\ EM.LINK.MSG.LEN% = 36%

6.1.5 Slave Link Station
Messages sent from a master link station over a sub-link to a slave transaction processor are directed
to a slave link station. The slave link station can:

1. Initiate a transaction instance and enter the first exchange. The data received over the sub-
link becomes the exchange message. The slave link station waits for a response message
from one of the TST stations in the exchange routing list. Once a response message is re-
ceived at the slave link station, the slave link station sends the response message header and
data back to the master link station over the sub-link. The message returned by the slave to
the master is a new message. It contains data supplied by the slave transaction. This mes-
sage is not related to the exchange message sent by the master link station when it initiated
the transaction.

If the completed exchange is the last exchange in the slave transaction (or if the response
message says to) the slave transaction instance is closed.

If the exchange is not the last exchange, then the slave link station waits for the next link
message from the master station.

2. Continue the transaction instance at the proper exchange. In this case, the slave link station
uses the link message data to generate the exchange message for the new exchange. - Then it
waits for a response message from one of the TST stations in the exchange routing list and
continues as outlined above.

3. Abort the currently open transaction.

6.1.5.1 Response Messages Sent to the Slave Link Station

A transaction initiated by a slave link station must send exactly one response message per exchange
to the originating station.

6-5

Using the TRAX Link Facilities

The following response message types can be sent from a slave link station are: The text following
the type identifier indicates the effect this routine has on both the master and slave transactions:

. ABORT — The slave transaction is aborted.

. STPRPT — Slave goes to next defined exchange. No effect on master transaction.

. CLSTRN — Slave closes transaction. Sublink is released by master link station.

. PRCEED - Slave continues according to transaction definition. No effect on master trans-
action.

. TRNSFR — Slave continues according the transaction specified in call to TRNSFR routine.
No effect on master transaction.

HWro -

w

NOTE
Do not attempt to send any response message type other than those listed above. You cannot
send a REPLY response message from a slave transaction.

When the response message is received at the slave link station, the entire response message is sent
from slave to master. If the slave transaction is closed, the master releases the sublink automati-
cally.

The message received back at the master link station contains an eight-byte header (placed there by
the library routine that sends the response message) followed by the response message data from the
slave transaction.

The 8 byte header in the response message sent by the slave is place in the first 8 bytes of the ex-
change message sent to the next TST in the exchange route list.

The received message does not contain any length indication. If variable-length data is being re-
turned, the length must be included as part of the data.

The following table shows the response messages that can be sent by a slave transaction, and the
data contained in the header:

Response Message Code Area
Message Type Code Contents
ABORT RA Reply Number in third word.
PRCEED CP ! in third word.
STPRPT CH 1 in third word.
CLSTRN CC 1 in third word.
TRNSFR FX ASCII name of next exchange.

6-6

Using the TRAX Link Facilities

The following sections define typical COBOL and BASIC-PLUS-2 data structures to receive the
header data in the master transaction.

COBOL Response Message Header Structure:

01 EXCHANGE-MESSAGE
02 RESPONSE-MESSAGE-FROM-SLAVE

03 MESSAGE-TYPE-CODE PIC XX.
03 CODE-WORDS.
05 CODE-WORD-1 PIC S9(4).
05 CODE-WORD-2 PIC S9(4).
05 CODE-WORD-3 PIC S9(4).
03 NEXT-EXCHANGE REDEFINES CODE-WORDS.
05 EXCHANGE-NAME PIC X(6).

BASIC-PLUS-2 Response Message Header Structure:

\ MSGMAP
EM.SLAVE.RESP.MSGS = 8
\ MSGMAP
EM.MSG.TYP.CODES =2
? EM.MSG.CODE.WORD1%
s EM.MSG.CODE.WORD2%
s EM.MSG.CODE.WORD3%
\ MSGMAP

RRRRrRrRrrR

EM.FILLERS =2
, EM.EXCHNG.NAMES$ = 6

Using the TRAX Link Facilities

6.2 TRAX/3271-TL
TRAX/3271-TL allows a TRAX transaction processor to initiate processing in an IBM system
running under CICS/DS or CICS/VS.

To use TRAX/3271-TL, you must define a master link station in the TRAX transaction pro-
cessor. In the master link station definition, you must specify the IBM line number connected
to this master link station.

TRAX always initiates processing across the link. Processing begins when a master transaction
is invoked on the TRAX side. Typically, processing involves the following set of operations:

1.

The master transaction is invoked. Processing proceeds in the same manner as a normal
transaction. A master link station is defined in an exchange routing list in the master
transaction.

. In the TST preceding a master link station in the routing list, you assign values to the

message header data structure. The message header must be located in the first 12
characters of the exchange message data structure.

. When an exchange message is placed at a master link station, the header is used to trans-

mit the data buffer to the IBM system.

. The IBM system sees only the message data and the control characters in character

positions 10 through 12.

. After the IBM system completes processing of that exchange data, it sends a message

across the link to the master link station.

. The master link station places this message in the exchange message area and passes it

to the next TST in the master (TRAX) exchange routing list for subsequent processing.

The application programmer must be concerned with three different message states:

1.

2.

3.

The exchange message containing a header and a data buffer that is placed at the master

link station.
The data buffer received by the IBM system. This data must be structured for the IBM

program processing the data.

The message data sent by the IBM system back to the master link station. This message
serves as the exchange message for subsequent TSTs in the current exchange of the
master transaction.

6.2.1 Master Link Stations

The IBM system receiving the link message has no exchange structure. Reserving a sub-link to
an IBM system reserves that resource so that future exchanges are processed upon receipt at the
master link station.

Using the TRAX Link Facilities

A master link station can perform several types of processing. The character preceding each de?
scription in the following list must be specified in the message type code field of the exchange
message header received by the master link station.

1.

2.

I (INITIATE-RELEASE) — The line is released upon receipt of a message back from the
IBM system.

R (INITIATE-RESERVE) — The master link station connects the line when it sends data
to the IBM system. This line is retained until a type E message is received at the master
link station. (See code E below.)

. C (CONTINUE) — The master link can continue sending exchange message data through a

previously reserved line to an IBM system. Do not specify C if you are sending data to
the last exchange in an IBM slave transaction.

. E (RELEASE) — The message for the last exchange (or the last exchange that you want

resources reserved for) must contain this code to explicitly release the line at the con-
clusion of this exchange.

The exchange message created by the master link station when TRAX/3271-TL is down consists
of a two-character status message (SL), which replaces the original exchange message.

6.2.2 Preparing the Exchange Message for the Master Link Station
In a transaction that initiates a link using a master link station, the master station appears in the
routing list of the exchange exactly as if it were a TST station.

In a TST preceding (usually the TST immediately before) the master link station in the routing
list, you must prepare an exchange message in the format expected by the master link station.

Data routed to an IBM station must be in the format expected by the IBM system. The message
must begin with an attention identifier (AID) followed by a two-character cursor address. If the
IBM terminal that TRAX is emulating requires any type of formatting support, then the TRAX
application program must be prepared to supply and receive 3277 format protocols. The master
link station does not examine or supply any such data.

Data sent by TRAX to an IBM system may consist of printable graphic ASCII characters that can
be translated into EBCDIC. All other byte values are translated to EBCDIC spaces before they are
sent to IBM. EBCDIC data received in a TRAX system that translates to non-graphic ASCII char-
acters is converted to ASCII spaces.

Using the TRAX Link Facilities

6.2.3 COBOL Master to Slave Message Format
In a COBOL TST, the following is an example of the format required for a message that is sub-
mitted to a master link station for transmission to an IBM system using TRAX/3271-TL.

LINKAGE SECTION.
01 EXCHANGE-MESSAGE.
02 LINK-HEADER.

03 MESSAGE-TYPE-CODE PIC X.
03 FILLER PIC X.
03 FILLER PIC X(6).

03 LINK-MESSAGE-LENGTH PIC S9(4) COMP.
03 ATTENTION-IDENTIFIER PIC X.

03 IBM-CURSOR-ADDRESS PIC XX.
02 LINK-EXCHANGE-MESSAGE.

03 CUSTOMER-NUMBER PIC X(6).

03 CUSTOMER-NAME PIC X(30).

If you use an exchange message similar to the one shown above, you must supply the header data
in a TST preceding the master link station in the exchange routing list. The exchange message re-
ceived from the initiating station must not place data in the header area. The exchange message
data sent by the initiating station must begin in the 13th character position.

After you define the link message header in the LINKAGE SECTION of a TST, you must perform
the following operations in that TST’s PROCEDURE DIVISION:

® Move the appropriate message type code (I,R,C or E) to the exchange message.

® Move the length of user data to be sent across the link into the exchange message.

® Move the attention identifier and cursor address into the header. In addition, any terminal
format protocols must be specified in the data buffer.

NOTE
All filler fields in the exchange message header are reserved. Any data you place here is
destroyed. These fields need not be initialized in the master transaction.

6.2.4 BASIC-PLUS-2 Master to Slave Message Format
In a BASIC-PLUS-2 TST, the following is an example of the format required in the MSGMAP state-
ment immediately preceding the master link station in the exchange routing list.

600 \ MSGMAP EM.MSG.TYPE.CODES$
, EM.FILLER$
, EM.LINK.MSG.LEN%
, EM.ATTN.ID&
, EM.CURSOR.ADDRS$
, EM.CUSTOMER.NUMBER
, EM.CUSTOMER.NAME$

1

<
PR

O O\ N =

3

If you use an exchange message similar to the one shown above, you must supply the header data
in a TST preceding the master link station in the exchange routing list. The exchange message

6-10

Using the TRAX Link Facilities

received from the initiating station must not place data in the header area. The exchange message
data sent by the initiating station must begin in the 13th character position.

After you define the link message header in the MSGMAP statement, you must perform the follow-
ing operations:

® Assign the appropriate message type code (I,R,C or A) to the type code field in the ex-
change message header.

® (Calculate the length of user data to be sent across the link and assign this value to the
message length field in the exchange message header.

® Assign the attention identifier and cursor address to the appropriate fields. If the IBM
system requires terminal formatting protocols, these must be included in the message
data beginning in the 13th character position.

The master link station takes a previously formatted exchange message, converts the data in the
message from ASCII to EBCDIC and transmits the data to the IBM system. The data in the data
buffer must conform with the structures required by the IBM system.

The flow of information through the TRAX/3271-TL interface is the following:

1. A master transaction is initiated. An exchange in this master transaction has a master link
station in its routing list.

2. The TST preceding the master link station formats an exchange message in the format re-
quired for TRAX/3271-TL.

3. The exchange message is passed to the master link station which sends it to the slave
transaction processor residing in an IBM 360 or 370 system running under CICS/0S or
CICS/VS.

4, When the IBM transaction has completed, it sends a message back to the master link
station.

5. The master link station places this response data into the exchange message and passes
it to the next TST in the routing list for subsequent processing.

6.2.4.1 Handling Responses from IBM Transactions

There are no specific requirements on the formatting of the data portion of messages built by
IBM transactions and returned to TRAX. The message as received by the line driver must begin
with STX (start text), ESC (escape), command code, and write-control-character. This, however,
is enforced by the CICS control program; the application program is only responsible for supply-
ing the user data after the write control character (WCC). ’

6-11

Using the TRAX Link Facilities

The messages received by the TRAX master link station are in the following format:

COBOL Reply Format from IBM
01 EXCHANGE-MESSAGE.

02 HEADER.

03 IBM-COMMAND-CODE PIC X.

03 IBM-WRITE-CONTROL-CHAR PIC X.

03 FILLER PIC X (6).
02 MESSAGE-DATA,

03 eoee

The command code values are:

“1” = WRITE.
“5” = ERASE/WRITE.
“?” = ERASE ALL UNPROTECTED

The command code, WCC, and data are all translated from EBCDIC to ASCII. Otherwise, they
are not inspected or altered. If the command code is “?”’ (Erase All Unprotected), the WCC and

user data are meaningless.

BASIC-PLUS-2 Reply Format from IBM

600 MSGMAP &
, EM.COMMAND.CODE$ = 1 &
., EM.WRT.CTRL.CHARS = 1 &
. EM.FILLERSS = 6 &

The command code values are:

“1” = WRITE.
«“5» = ERASE/WRITE.
«“9» = ERASE ALL UNPROTECTED

The command code, WCC, and data are all translated from EBCDIC to ASCII. Otherwise, they

are not inspected or altered. If the command code is “?”’ (Erase All Unprotected), the WCC and
user data are meaningless.

6-12

CHAPTER 7
TST DEBUGGING AND TESTING FACILITIES

7.1 COMPILING TSTs
After you write a TST, use the DEC Editor to enter the source statements into a file.

The next step in the development process is compilation. The COBOL and BASIC-PLUS-2 com-
pilers are equipped with a /TST switch. This switch must be specified in the command line when
you are compiling TST source statements.

The /TST switch causes the compiler to create object files that conform to a TST’s specialized
structural requirements.

NOTE
Stand-alone programs designed to run in the TRAX support
environment should not be compiled using the /TST switch.
Procedures for support environment program development
are outlined in the TRAX Support Environment User’s Guide.

The following examples show how the /TST switch is specified at compile time.

7.1.1 Compiling a COBOL TST

If you specify the following DCL command line, the compiler processes the source file RDCUST.CBL.
Since the /LIST command qualifier is specified, the listing file RDCUST.LST is also produced. If
no fatal errors are detected by the COBOL compiler, it produces the object file RDCUST.OBJ.

>COBOL/LIST/SWITCHES: (/TST) RDCUST.CBL

[]

(command) (command) (switch) (source statement)

keyword qualifiers file specification

7.1.2 Compiling a BASIC-PLUS-2 TST

In the following terminal sequence, typing the DCL BASIC command invokes the BASIC-PLUS-2
compiler. The BASIC environment comes up, and has its own set of commands to process the source
file. The OLD command reads the source file RDCUST.B2S. The COMPILE command causes the
compiler to process the statements in RDCUST.B2S. The /TST switch identifies the source file as a

7-1

Debugging and Testing TSTs

TST. The /DEBUG switch indicates that you want the BASIC-PLUS-2 symbolic debugger included
in the TST object module.

>BASIC
Basic2 VO01.5
OLD RDCUST
Basic2
COM/TST/DEBUG
Basic2
EXIT
>

In the example above, the TST compiled successfully. The object module RDCUST.OBJ was pro-
duced by the BASIC-PLUS-2 compiler, and included the BASIC symbolic debugger.

7.2 LINKING TSTs — THE TSTBLD UTILITY

Before a TST can run, the object module (created by the language compiler) must be linked to the
system and language libraries, including the library of TRAX routines, and merged into an execut-
able file called a task image. TRAX imposes specific structural requirements upon TST task-image
files.

The TSTBLD utility simplifies the process of constructing a task-image file from object modules
and insures that required linkages are performed to TRAX operating system resources. TSTBLD
converts your compiler output object modules into acceptable TST task image files.

TSTBLD creates command files from arguments that you supply in an interactive dialog. It then
invokes the TRAX Linker to process the input object modules into suitable TST task image files.

You invoke the TSTBLD utility from a support environment terminal by typing:
@[1,2] TSTBLD

The TSTBLD utility is invoked, and enters a dialog that begins with the question:
Object Module Names <EXIT>?

Using standard RMS file specifications, identify the object modules that comprise this TST. If more
than one object module is required, separate the specifications with a plus sign (+).

filespec[Hfilespec. . . .+filespec]
The filename of the first module becomes the name of the task image and map files.

Table 7-1 shows the defaults that TSTBLD applies to the object module specifications.

Debugging and Testing TSTs
Table 7-1
TSTBLD Specification Defaults
dev: [group,member] filename, typ;ver
Field Default
dev: Initially SYO:; however, each explicit device name becomes the

default until the next time you explicitly specify the device
in a file specification.

[group,member] Initially the current UIC; however, each explicit UIC becomes the
default UIC until the next time you specify a UIC in a file speci-
fication.

filename None, you must always specify a filename.

type .OBJ

ver The highest version number

The next question asks you the name of the language compiler that created the object modules.
COBOL is the assumed default. BASIC-PLUS-2 and MACRO can also be specified as responses.

Language <COBOL>?

If you specify a high-level language (COBOL and BASIC-PLUS-2), the next question asks if that
language is installed with a shared object time system (OTS). If an OTS is present, answer, Y, YE,
or YES, and the modules in the OTS are linked to the task image. Linking a TST to a shared OTS
greatly reduces the size of the task image.

Is there a shared OTS for this language <YES>?
When you are debugging a TST, different modules must be included in the task image. TSTBLD has
a loop of three questions to specify the kind of debugging you want to perform the task image.
This loop begins by asking:

Debug mode <NO>?
If you press the RETURN key, the dialog for this TST ends, and you are returned to the question
“Object module names <EXIT>?”. If you answer Y, YE, or YES, then debugging support is in-
cluded in the task image and TSTBLD continues by asking:

Transaction processor debug <NO>?
If you want a support environment terminal assigned to a TST for debugging purposes in the trans-
action processing environment, answer Y, YE or YES to this question. TSTBLD then asks you to

specify:

Debugging terminal ?

Debugging and Testing TSTs

You respond with the device name of the support environment terminal you want assigned to the
TST. When a TST is built with a debugging terminal, you can use language debugging facilities such
as the BASIC-PLUS-2 debugger and the COBOL ACCEPT and DISPLAY statements to examine and
modify values in the TST.

After you answer this question, the dialog returns to the question “Object module names <EXIT>?",

If you want to debug the TST in the support environment using the DEBUG utility, answer NO to
the transaction processing debug question by pressing the RETURN key. TSTBLD then asks for the:

Initializing module name <NONE>?

You specify the name of an object module used to initialize files and common data structures
before execution of the TST. This initializing module must have an entry point name of TSTINI.

In all other respects, the initializing module must conform to the structural requirements of a TST.
The debugger calls and executes this module prior to executing the TST. When attempting to debug
TSTs that depend upon prior execution in a transaction or exchange, the initializing module is
useful for positioning files. After you answer this question the utility returns to the question:
“Object Module Names <EXIT>?”

NOTE
If you include an initializing module in a BASIC-PLUS-2
TST, the Linker returns a multiply defined symbol error
for module “OTSVAS$”. This error is informational and
does not affect execution.

At this point, you can build another TST. If you press the RETURN key, accepting the default
“EXIT”, the utility terminates. The command file used to invoke TSTBLD executes a LINK com-
mand to build the TST task image. The TST task image and map files are built in your current UFD
with the filename of the first object module specified to the TSTBLD dialog.

In certain cases, you may want to retain the command file created by TSTBLD. In this case, do not
invoke TSTBLD using the command file [1,2] TSTBLD. Instead you should:

- >RUN $TSTBLD

After the utility dialog ends and you exit from TSTBLD through the question ‘‘Object module
names <EXIT>?” TSTBLD creates a command file in your current UFD. This command file is
named TSTCOM.CMD. You can rename this command file or copy it into another directory.
When you want to build a TST task image, simply type the command string:

>LINK @filename
NOTE

You should not attempt to edit the command file created by
TSTBLD. Doing so will cause unpredictable and/or fatal results.

74

Debugging and Testing TSTs

7.2.1 Examples of TSTBLD Usage
Figure 7-1 A shows the TST specification sheet describing the TSTBLD parameters to construct a
task image of the COBOL TST RDCUST to be used with the support environment DEBUG utility.

TST Name: BEE 1
,—-f‘—'\
Input Object Modules: 3[[[:13.] [RIDICTUlS[T) [FTSIKL 1T]
{0, T) O T s]
Language: — COBOL
[[] -BAsicpPLUS-2
[J —macro-11
Is there a resident OTS for the language? — YES
[] -no
Debug Mode? — No

TST SPECIFICATION SHEET

D — Transaction Processor (Device: L 1| 1)
D — Standalone (Initializing Module: E[:D:l:]:])

Figure 7-1a TST Specification Sheet for COBOL TST RDCUST.

Figure 7-1B shows the terminal dialog corresponding to the specifications of Figure 7-1A:

el

@1 23TSTRLD G
»RUN $TSTBLD
TSTBLD V1.0

Links TSTs for testindg or final use.

Obdect module names <EXIT>? RICUST D)

lLansguasge <COROL:»?(RED

Is there a shared OTS for this landusge <YES:»?P(ED
Debus mode <NO>? YES (&D

Transaction Processing Debusg <NO>?(ED
Initializing module name <NONE>7(RD)

Obdect module names <EXIT>?(RD
*LIN @TSTCOM

*DELETE TSTCOM.CHMD#x

»@ <EOF>

>

Figure 7-1b TSTBLD Dialog to Build “RDCUST” For Debugging

7-5

Debugging and Testing TSTs

Figure 7-2A shows the TST specification describing the TSTBLD parameters to construct a task
image of the BASIC-PLUS-2 TST RDCUST that can be used in transaction processor debugging
from a support environment terminal TT2:

TST Name: RID[CIU[S[T] (]
e e—
Inpyt Object Modules: Em[lslslol,[elalTl] [RID_]CIUISIT]] l l Ia[L]
mani(saninns]nenseninaninn
Language: [:I — COoBOL

— BASIC-PLUS-2
[] —maAcro-11

Is there a resident OTS for the language? E — YES
O -no
Debug Mode? D - No

[X] — Transaction Processor (Device: TiTial,
[] - Standalone (Initializing Modute: [| 1 [| [1)

Figure 7-2a TST Specification Sheet for BASIC TST RDCUST.

Figure 7-2B shows the terminal dialog corresponding to the specification in Figure 7-2A.

SBL1y 21TSTELD (ED)
»RUN $TSTELD

TSTRLD V1.0

Links TS8Ts for testing or final use.

ObJect module names <EXIT>? [350s2271R0CUST (e
l.anguadge <COROL»>? RASIC (rer)

Is there 2 shared OTS for this lansuasge <YES:»? (Rer)
Debug mode <NO>? YES (rer)

Transaction Frocessing Debudg <NO>? YES
Debudging terminasl? TT2! Cer)

ObJect module names <EXIT>? Cer)

>LIN @TSTCOM

-

>DELETE TSTCOM.CMDG X
>@ <EOF>

Figure 7-2b TSTBLD Dialog to Build “RDCUST” for Debugging

Debugging and Testing TSTs

7.3 TST DEBUGGING IN THE SUPPORT ENVIRONMENT

After you have coded a TST, created a source language statement file, compiled the source state-
ments, corrected the syntax errors, and used the TSTBLD utility to create an executable task image,
the next step in the TST development process is debugging.

Debugging TSTs begins in the support environment. A TRAX utility program, DEBUG, allows you
to debug TSTs in an interactive manner from a support environment terminal. You may also in-
clude system debugging aids such as the BASIC-PLUS-2 debugger.

7.3.1 DEBUG—The TST Debugging Utility
This utility assists you in debugging a TST by simulating its operating environment.

The DEBUG utility simulates a transaction processor, allowing your TST to execute and access
system resources in the same way as a TST installed in a transaction processor. The TST operating
under DEBUG can access:

® The TRAX system library routines
® A simulated exchange message

® A simulated transaction workspace
® Application data files

The simulated exchange message and workspace data are provided by the programmer.

All calls to the system library and I/O routines are logged in the logging file (or device) together
with the parameters specified in the call. When the TST exits, the contents of the simulated work-
space are written to the logging device.

7.3.2 Using the DEBUG Utility
You invoke the DEBUG utility from a support environment terminal by typing:

RUN $DEBUG

The program issues an identifying message, and begins an interactive dialog starting with the ques-
tion:

TST filename?

Specify a TST task image file. DEBUG assumes the current system device and your default UFD,
the highest version number, and the filetype .TSK as default values. In every case, you must specify
a TST filename. The TST task image you specify must be created by the TSTBLD utility, with
support for debug mode.

The DEBUG utility executes this task image file.

Debugging and Testing TSTs

Logical file name <DONE>?

Specify the logical filename used in the TST. If you answer this question with a 1- to 6-character
logical filename, DEBUG responds with the prompt:

File specification ’?

You respond with the RMS file specification for the logical file you named in the preceding ques-
tion. The dialog continues to prompt for logical file name until you press the RETURN key indi-
cating you are done.

You may press RETURN in response to the “Logical file name’” question, without specifying any
logical filenames. In this case, DEBUG prompts you during execution for the RMS file specifica-
tion of any logical files opened in the TST.

The logical filename and file specification are used to access physical files when the TST being
debugged attempts to access the logical file.

Logging device<TI:>?

The dialog continues by asking you to specify the file and/or device where the system and I/O calls
are logged by the DEBUG utility. The default is your terminal (T10:). If you respond with a dif-
ferent file or device specification, DEBUG writes output to that file or device.

Message file?

The message file is the simulated exchange message. It can be a file you create using the DEC
Editor, or it can be a terminal device specification such as TI:. If exchange message data is brief
such as a record key, then specifying the terminal device as the exchange message source is appro-
priate. If the exchange message data runs to any length, then a file may be more appropriate.
DEBUG assumes a filetype of .TXT for any exchange message data files.

Since exchange messages often run longer than the 80-character width of a video terminal, DEBUG
recognizes the hyphen (-) followed by a carriage return as a continuation character in exchange
message and transaction workspace data. The following example illustrates the way you can use the
DEC Editor to create a set of four exchange messages, each consisting of 36-characters.

>EDIT EMRDCUST.TXT (&)
*1 (D)

000001 Gz

000012CED)

000100 CeD)

000000CRE)

*EX Cer)

>

Debugging and Testing TSTs

Workspace file<T1:>?

The workspace file is the simulated transaction workspace. It can be a file you create using the
DEC Editor, or it can be a terminal device specification such as TI:. If the workspace data is brief
such as a record key, then specifying the terminal device as the source of workspace data is appro-
priate. If the workspace is a large area such as a record data structure, then creating a file is more
appropriate. DEBUG assumes a filetype of .TXT for any transaction workspace data files.

If the TST you are debugging does not have a defined workspace, then you must respond to this
question with the RETURN key.

Since the transaction workspace often exceeds the 80-character width of a video terminal, DEBUG
recognizes the hyphen (-) followed by a carriage return as a continuation character in exchange
message and transaction workspace data. The following example illustrates the way you can use
the DEC Editor to create a set of four empty transaction workspaces, to initialize this structure for
subsequent use by a TST. Each empty workspace is a 205-character area, initialized with zeros.

>EDIT EMPTY.TXT

*1

rtytes el Tl Te e eI TeToTo Tt e et ToTo T Tt ToTuTnToTnTo T T e T T To Lo Lo TuTo et T T R)
POOOPPPRIGIPOBABIPOGOBBAROPBGAIPGRGGAIIFGAAFARPGAIIPOGBRP—
Tl oI T T e e e e e TeToTo Tl et T oLt o Lo Lo To Lo Lo 1o To Ty R)
PPOOPPPGGAABPOBBGAPPPOGARP Crer D

*COPY 10:40 %TO %END ()

*COPY 10:40 %TO %END(rer)

*COPY 10:40 %TO %END Crer)

*EX ()

>

After you specify the workspace data, DEBUG loads the specified TST task image and begins
executing.

If you have specified TI: in response to the ‘“Message file?” or “Workspace file?” questions, DEBUG
prompts you for this data before it begins to execute the TST task image.

Input Message Data?
Input Workspace Data?

If you end a line with a hyphen (-), DEBUG reissues the same prompt, and continues to accept data
from the terminal. DEBUG stops prompting when it detects the RETURN character without a
preceding hyphen.

Debugging and Testing TSTs

As the TST starts to open application data files the DEBUG utility intercepts the file access calls.
In the case where you did not supply a logical file name or physical file specification in the dialog
that initiated DEBUG, the following prompt is issued when an open call is issued for a logical file
name:

File specification “XXXXXX?

In this case, the DEBUG utility found a logical filename “XXXXXX’’ that requires a corresponding
physical file specification. You must specify at least the filename and filetype of this application
data file. The defaults assumed by DEBUG are the system device, your default UFD, and the cur-
rent version. On subsequent accesses to the same logical filename the same physical file is read.

The TST then executes to completion and the debugging session (using the available language
debugging tools) takes place. When the TST exits, the message file is read again, and if another
message is found, then DEBUG initializes the message, TST workspace, and the logical file assign-
ments before beginning another execution of the TST.

After the last message has been processed, the debugging session ends.

When the TSTs are debugged satisfactorily, they can be integrated into a ‘system test’ environ-
ment to complete the application debugging. This technique is discussed in Chapter 14.

Figure 7-3a shows the debugging output from the COBOL version of “RDCUST.”

7-10

HRUN $TERUG
DERUG 01-01

TST Debud Utilite

TST filenamePRICUST
Logical file name<NONE>P(RED)
lLogging device<TI!>?PCrr)
Messade file?TI!GeD)
Worksrace file?EmMPTY Ger)

InFut Messadge Data 7 000004 (1)

Debugging and Testing TSTs

File srecification °"CUSTOM"?L111.7ICUSTOM.DAT

XKk Subroutine Name $0FEN

File Name CUSTOM

Comeletion Status(STS)

*KX Subroutine Name $SCONNECT

File Name CUSTOM

Comeletion Status(8TS)

*KXK Subrroutine Name $FIND

File Name CUSTOM

Comrletion Status(STS)

Srecified Keuw
000004

X¥k Subroutine Neme $GET

File Name CUSTOM

Comeletion Status(8TS)

Srecified Kew
000004
Srecified Record

000004Masa Stamr Center

Mesar AR
000000050000000000000000000000000000000
30001
XKk Subroutine Name FPRCEED

Messade Data

000004Mesa Stamr Center

Mesas AR

kian 500.00

TST File Name RICUST

-~ Status Value(STV) O

TST File Name ROCUST

- Status Value(STV) 0

TST File Name RDCUST

- Status Value(STV) 0

TST File Name ROCUST

- Status Value(STV) O

1 R Street

8520146026991347N K Nentakian

TST File Name RDCUST

1 R Street

852016026991347N K Nenta

Figure 7-3a DEBUG Utility Output for COBOL “RDCUST” TST

7-11

Debugging and Testing TSTs

XXX worksrace Ua31a
000004Mesa Stamr Center 1 R Street
Mesary AR
852016026991347N K Nentakian
00050000000000000000000000000000000
30001

oKk T8T Exit

InrFut Messadge Data 7 000100

KKK Subroutine Name $0FEN - TS8T File Name RIDCUST
File Name CUSTOM

Comrletion Status(8T8) 1 - Status Value(8TV) 0O

XKX Subroutine Name $CONNECT - T8T File Name ROCUST

File Name CUSTOM

Comeletiorns Status(8TS8)Y 1 - Stetus Value(8TV) 0

XKk Subroutine Name $FIND - TST File Name RICUST

File Name CUSTOM

Comrletion Status(8TS) ~1472 -~ Status Value(STV)
Srecified Keu
000100
b3 ¢ 4 Subroutine Name REFLY - TST File Neme RICUST

Rerlw Number 2
Messade Data

No Record Exists under that Key
File Status Word! 23

KK X Worksrace lata

0

0000

Q00

00000000000000000000000000000000000

000

00000000000000000000000000000000000
00000

KKK TST Exit

InFut Messadge Datz 7
*kXK Subroutine Name $OFPEN - TST File Name RIDCUST
File Name CUSTOM
Comrletion Status(8T8) 1 - S8Status Value(S5TV) 0O
XEXK Subroutine Name $CONNECT - TST File Name RIOCUST
File Name CUSTOM
Comeletion Status(8TS) 1 -~ Status Value(STV) 0O

XXX Subroutine Name REFLY - TST File Name RIDICUST
Figure 7-3a (cont.) DEBUG Utility Output for COBOL “RDCUST” TST

7-12

Debugging and Testing TSTs

Rerls Number 2

Messade Data
You Srecified am Invalid Customer ID #

*%k% Worksrace Data
000000000000000000000000006000000000000000000000000000000000000000
00000000000000000000000000000000000
000
Q0000000000000000000000000000000000
00000

XKk TST Exit

InrFut Messade Data 7 "Z

-,
s

Figure 7-3a (cont.) DEBUG Utility Output for COBOL “RDCUST”” TST

7-13

CHAPTER 8
USING THE DEFINITION UTILITIES

The TRAX system includes a set of utilities for defining the processing paths and components of a
transaction processor. These programs are called transaction processor definition utilities. You run
the definition utilities from an interactive terminal connected to the TRAX support environment.
Each utility leads you through a dialog, asking a set of questions. You answer these questions using
information supplied by the application designer. Chapters 9 through 13 describe each of the defi-
nition utilities.

8.1 UTILITY DESCRIPTIONS

The information required to install a transaction processor resides in a set of definition data files.
Each definition utility modifies one specific definition file. Table 8-1 provides a brief functional
description of each definition utility.

Table 8-1
Definition Utility Functions
Chapter Utility Function
9 TPDEF Sets dimensions for transaction processor components.

Defines the processor’s common data areas. Creates the
definition data files and transaction processor record.

10 STADEF Defines stations referenced by the transaction processor.

11 TRADEF Defines the transactions that can be executed by the
transaction processor. Specifies the exchanges, ex-
change routing lists, and subsequent actions taken by
the system.

12 FILDEF Specifies application data files accessed by the transac-
tion processor.

13 WORDEF Defines work classes and associates transaction names
with each work class.

13 AUTDEF - Assigns identifiers, passwords, and work classes to indi-
vidual users.

Utility Dialog Conventions

8.2 TRAX UTILITY DIALOG CONVENTIONS
TRAX Utility dialogs follow these conventions:

Help Text

RETURN Key

Responses

Defaults

YES/NO

Numeric Data

If a question does not give enough information for you to answer, type a ques-
tion mark followed by the RETURN key (?). The utility responds
with an explanation and repeats the question.

Transaction processor name? ? (RET

Enter the name of an existing transaction processor, 1- to 6-character
alphanumeric string.

Transaction processor name?
Pressing the RETURN key () terminates your response.

Station type? TERMINAL
Station name? '

Each question indicates the type of response expected by the utility. The util-
ity checks the input as you enter it. If the input is incorrect, the utility returns

an error message and repeats the question.

If the system assumes a default value as a response to a question, that value is
shown in angle brackets following the question.

Station priority <128>

You can accept the default value by pressing the RETURN key. For example,
Station priority <128>

To specify a different value, type the value followed by a carriage return.
Station priority <128> 124

If a question requires a YES or NO answer, you can respond by typing Y, YE,
YES, N, or NO followed by the RETURN key.

Stage updates <YES>? N
Repeat <NO>? YE (xer

Any question that requires a numeric reply expects decimal input, unless the
question indicates otherwise.

Exchange time limit [minutes]? 5

[text]

Abbreviation

ESCAPE Key

EXIT Command

CTRL/Z to Exit

Utility Dialog Conventions

Some questions include text within square brackets to clarify the entity or
units to be specified.

Maximum size of exchange message [bytes]?

If a question asks you to specify an item from a known set (utility commands,
for example), you need to type only the characters required to uniquely iden-
tify the selected item within the set.

Command? P

P stands for PRINT, one command from a set that includes ADD, DELETE,
EDIT. EXIT, INDEX, PRINT, and SHOW.

Utilities ask questions in a specific order. To reverse the order, that is, to re-
turn to the last question asked, press the ESCAPE key (&5¢). In aloop of
questions, pressing the ESCAPE key returns you to the first question in that
loop.

Exchange label? ACNT
Form name?

Exchange label?

The following 3 questions deal with the subsequent action of the exchange.

Wait <YES>?
Destinations command <DONE>?

If you type the keyword EXIT in response to the “Command?” question in
any utility, the utility exits normally.

You may make an orderly exit from a TRAX utility by typing (cRuz)
in response to a question.

CHAPTER 9

TRANSACTION PROCESSOR DEFINITION:
THE TPDEF UTILITY

The TPDEF utility creates the definition data files and transaction processor common areas that de-
fine the parameters of a transaction processor.

When you run TPDEF to create or modify an existing transaction processor, the following files and
data structures are created or changed.

You must run TPDEEF to create a new transaction processor. The other TRAX definition utilities
cannot be run to define components of that transaction processor until after a transaction processor
is defined.

® The transaction processor’s common data area.

® A terminal management task image file.

® Six definition data files in the UFD [1,300], which are subsequently processed by a set of
definition utilities.

® An entry for the named transaction processor in the transaction processor definition file
[1,1] TPDEF.TPF.

9.1 TRANSACTION PROCESSOR DATA STRUCTURES

When you create a transaction processor using TPDEF, it enters a dialog to gather the transaction
processor parameters. Once the dialog finishes, TPDEF generates and executes a set of DCL com-
mands to create the transaction processor. The system displays each command at your terminal as
the command executes.

When you run TPDEF using a command that modifies or recreates definition structures, the DCL
commands that miake the changes are also displayed and executed at your terminal.

9.1.1 The Transaction Processor File Record

Each defined transaction processor has a record in the system file [1,1] TPDEF.TPF. TPDEF cre-
ates this record when you run the utility to define a new transaction processor. The record contains
the name of the processor, a unique identifying label, and other data needed by the system for mon-
itor and control purposes. TPDEF sets up the record fields. Some fields are filled later by the
system each time you run a definition utility or install the transaction processor.

9.1.2 The Terminal Management Task and Common Data Area
The terminal management task contains data the contributes to the processor’s handling of applica-
tion terminals. The common data area contains data that relates to every aspect of the processor.

The TPDEF Utility

More specifically, it reflects your responses to TPDEF questions, that cover the following general
topics:

Transaction types and instances
Transaction Step Tasks (TSTs)
Network communications
Communications with batch processing
Stations

Application data files

Transaction slots

Crash recovery

When you install a transaction processor, the system loads all required tables and tasks into memo-
ry. These tables and task image areas remain memory resident until you remove the transaction
Processor.

9.1.3 The Definition Data Files

The TPDEF utility creates six definition data files that are subsequently populated by six corre-
sponding utilities. Table 9-1 gives the names of each file, a brief description of its contents, and the
utility provided to process it.

Table 9-1
The Definition Data Files
File Contents Utility
tpname.STA Records that define each statement STADEF
within the transaction processor.
tpname. TRA Records that define each transaction TRADEF
type used by the processor.
tpname.FIL 'Records that describe each applica- FILDEF
tion data file.
tpname.WOR Records that describe each work WORDEF
class (a specific set of transaction
types).
tpname. AUT Records that determine the work AUTDEF

class or classes that individual users
can transact.

tpname.FDF Records that contain compiled ATL
form definitions.

(The ATL Utility is described in the TRAX ATL Language Reference Manual.)

9-2

The TPDEF Utility

The system information files are described fully in the chapters that discuss the corresponding utili-
ties.

9.2 THE TPDEF UTILITY

The following sections describe the questions posed by the TPDEF utility dialog. The order that the
questions are asked by the utility depends on the command you specify and the answers you supply
to various questions. Several examples of TPDEF usage are shown in this section.

You should read the following paragraphs to familiarize yourself with the information required by
the TPDEF utility.

The responses you make to TPDEF dialog questions should reflect the maximum configuration re-
quired by the final system. For example, if the transaction processor will eventually use 15 TSTs to
execute the defined transactions, but only 7 are currently operational, you should specify 15 when
responding to the question:

Maximum number of TSTs?
Anticipating the configuration and requirements of the final system avoids editing the transaction
processor definition every time a new component is added to the processor. Each time you run
TPDEF, a number of components are recompiled and relinked. Planning for expansion during the
system design and definition process can save considerable programmer time during the implemen-

tation phase of an application.

9.2.1 Invoking the TPDEF Utility
You invoke the TPDEF utility by logging on to a support environment terminal and typing:

@[1,2] TPDEF
The command file you invoked issues the command:
RUN $TPDEF
The TPDEF utility responds by issuing the identifying text:
TPDEF V1.0
Transaction processor definition utility
TPDEF then begins by asking the question:
Command <EXIT>?
You answer this question by specifying one of the eight command keywords. Typing a carriage re-

turn in response to this question causes the TPDEF utility to exit. Any generated commands are
executed immediately following the utility exit.

The TPDEF Utility

The command keywords you may specify in response to the TPDEF “Command” question are list-
ed below, with a brief description of their function.

® CREATE — Creates a new transaction processor definition including the common data area,
the terminal management task, the six definition data files, and the processor record in
TPDEF.TPF.

® COPY — Creates an identical copy of an existing processor and gives the copy a new name.
The new processor includes renamed duplicates of the related processor definition files.

® DELETE — Deletes an existing processor’s related processor definition files, and the trans-
action processor record on [1,1] TPDEF.TPF.

® EDIT — TPDEF modifies the transaction processor definition record, and issues commands
to construct the related processor tables and tasks. EDIT mode does not affect the defini-
tion data files.

@ INDEX — Displays on your terminal the names of all defined transaction processors.

® PRINT — Lists the parameters of the named transaction processor on the line printer.

® RENAME — Changes the name of an existing transaction processor and its related processor
definition files.

® SHOW — Displays at your terminal (TI:), the parameters of the named transaction pro-
Cessor.

The TPDEF dialog varies according to the command keyword you specify. The TPDEF command
keywords fall into five different functional groupings:

1. The CREATE and EDIT Commands are discussed in Section 9.2.2.
2. The INDEX Command is discussed in Section 9.2.3.

3. The PRINT and SHOW Commands are discussed in Section 9.2.4.

4. The COPY and RENAME Commands are discussed in Section 9.2.5.
5. The DELETE Command is discussed in Section 9.2.6.

9.2.2 Creating or Editing a Transaction Processor Definition
The CREATE Command
The EDIT Command

You must create a transaction processor before you use any of the other TPDEF commands to
modify that transaction processor. After you answer the “Command ?”’ question with the keyword
CREATE, TPDEF enters a dialog to gather the parameters needed to create a transaction processor.

The EDIT command lets you modify the definition of an existing transaction processor. The EDIT
command asks you to review the existing transaction processor definition, changing parameter
values as required.

The CREATE and EDIT commands use the same dialog.

After you respond to each question, the utility validates your response and automatically issues the
next question.

9-4

The TPDEF Utility

The dialog begins by asking for:
New transaction processor name?

TPDEF asks you to name the processor. The name you specify must be a 1- to 6-character alpha-
numerie string.

If you are editing a transaction processor definition, TPDEF uses the name you specify to retrieve
the corresponding transaction processor definition record from the file.

If you are creating a transaction processor definition, this name also becomes the file name for the
definition datat files created by TPDEF.' For example, if you name a processor SAMPLE, TPDEF
creates the following six files in UFD [1,300] :

SAMPLE.STA (the station definition file)
SAMPLE.TRA (the transaction definition file)
SAMPLE.FIL (the application data file definition file)
SAMPLE.WOR (the work class definition file)
SAMPLE.AUT (the user authorization file)
SAMPLE.FDF (the forms definition file)

Once the transaction processor definition record is created (retrieved), the dialog continues with the
question:

Maximum number of transaction types?
You must specify the maximum number of transactions that can be defined. Each transaction type
has a corresponding transaction definition record in the file tpname.TRA. A transaction processor
can support up to 64 transaction types. The dialog continues by asking for the:

Maximum number of concurrent transaction instances?
A transaction instance is an executing transaction. The number you specify limits the number of
transaction instances that the processor can execute at one time. The number must be less than or
equal to 64. If a situation occurs where more than this number of transaction instances are attempt-
ing to execute concurrently, the requests to invoke the additional transaction are queued and are
executed when currently executing transaction instances conclude and free system resources.
The next parameter you are asked to supply is the:

Maximum number of application terminals?

TPDEF needs to know the maximum number of deviced defined as application terminals. A trans-
action processor can support up to 64 application terminals.

The next question is:

Maximum number of user TSTs?

The TPDEF Utility

TPDEF asks you to specify the maximum number of transaction step tasks (TSTs) to be included in
the transaction processor. Every TST within a processor has a unique station. Defining this unique
station makes the associated TST part of the transaction processor. A transaction processor defini-

tion can specify up to 256 TST stations.

The TRAX system allows transaction processors to communicate among themselves, and with trans-
action processors in IBM systems. The communicating transaction processors can run on the same
computer or they can run in separate computers. You must define special link stations that send
and receive data between transaction processors to support this transaction processor link facility.

There are two kinds of link stations, master and slave.

A master link station receives exchange messages from local transaction instances and forwards the
messages to a specific remote transaction processor or IBM system. The TPDEF dialog question to
define master link station is:

Maximum number of master link stations?

This value is the total number of other transaction processors that the transaction processor you are
defining expects to communicate with. A transaction processor definition can specify up to 10
master link stations. A master station in one active transaction processor communicates with a slave
link station in another active transaction processor in the same or a remote system. See the descrip-
tion of the TRAX/TL facility in Chapter 6 for more information about link stations.

After you have defined master link stations, TPDEF asks you to specify:
Maximum number of slave link stations?

A slave link station receives exchange messages from a master link station. The master link station
initiating the slave transaction resides in a remote transaction processor. Each message received
causes an exchange to be initiated, with the slave link as the source station. The number of

slave link stations you specify corresponds to the total number of concurrent transactions that
can be initiated by the other transaction processors linked to the transaction processor you are de-
fining.

You can define up to 64 slave stations in a single transaction processor. If you specify a receive link
message, the TPDEF dialog asks for the:

Maximum size of a receive link message?
A receive link message is the exchange message received by a slave link station in the local trans-
action processor. In order to manage its resources, the transaction processor needs to know the
maximum size in bytes of any such message forwarded by a remote master link station. The largest

message size you can specifylis 512 bytes.

After defining the link stations, you are asked to specify the number of interfaces to the batch pro-
cessor. These include submit and slave batch stations. The first question asks for the:

Number of submit batch stations?

The TPDEF Utility

For a transaction instance to submit a batch command file, a submit batch station must be defined
in both the transaction processor and station definitions. A transaction processor can have only one
submit batch station.

The second question asks for the:

Number of slave batch stations?
If your transaction processor permits batch jobs to initiate transactions, you must define one or
more batch slave stations. The number of batch-initiated transaction instances that can run concur-
rently is equal to the number of defined slave batch stations. A transaction processor can support
up to 16 batch slave stations.
The dialog next asks you to specify:

Maximum number of mailbox stations?
A mailbox station is used to store messages that can be retrieved by other transaction instances. A
set of system library routines have been supplied to allow TSTs to store and retrieve data at mailbox
stations.
A processor can support up to 10 mailbox stations.
The TPDEF dialog next asks you to specify:

Maximum number of application data files?
TPDEF asks you to specify the maximum number of files that can be defined in the definition data
file tpname.FIL. These application files include files that contain the application-specific data
related to transaction processing, as well as work files created, opened, closed, or erased dynamical-
ly by TSTs. See Chapter 12 for a description of the file tpname.FIL and FILDEF, its corresponding
utility. The number of application data files must be less than or equal to 64.
The next question asks you to define the:

Maximum size of transaction slot [64 byte blocks] ?

For each transaction instance, the transaction processor allocates a portion of memory called a
transaction slot. Each slot consists of three parts:

1. An area that contains the current exchange message

2. A transaction workspace used in turn by every TST that executes on behalf of the transac-
tion instance

3. A system workspace used by the transaction processor to store data for staged file updates
and exchange recovery during the life of the transaction instance.

9-7

The TPDEF Utility

The size of the trans=ction slot areas varies from one transaction type to another. The TPDEF utili-
ty asks you to spe.ify the maximum number of 64-byte blocks required for a transaction slot by
any transaction defined for the current transaction processor.

When you <re running TRADEF to define a transaction type, you can calculate the maximum slot
size using the individual space requirements of the exchange message, transaction workspace, and
system: workspace sizes.

The formula for calculating the system workspace is explained in Figure 11-1 as part of the
TRADETF description.

The TPDEF dialog concludes with the question:
Automatic crash recovery?

When a transaction processor includes this option, it can recover from a software crash and continue
execution, aborting in progress transactions and completing any unstaging operations in progress.

After you answer this question, the TPDEF utility exits and automatically spawns several DCL
command lines. The operating system processes this set of commands and creates the definition
data files and the terminal task and the transaction processor common data areas.

For illustration purposes, a transaction processor called““SAMPLE” has been designed, and is used
throughout the discussions in the manual. Figure 9-1a shows a transaction processor specification
sheet prepared for the transaction processor “SAMPLE”.

Figure 9-1b shows the terminal listing of the dialog used to CREATE a transaction processor defini-
tion for “SAMPLE”. Following the terminal dialog, the system issues a number of DCL commands
to create the definition data files required to build a transaction processor.

9.2.3 Listing the INDEX of Defined Transaction Processors
The INDEX Command

The INDEX command lists all defined transaction processors. The action is sutomatic once you
specify INDEX in response to the TPDEF in response to the TPDEF “Command ?” question.

The 3-character transaction processor identifier shown in the INDEX listing is the suffix of the var-
ious transaction processor tasks that are active when a transaction processor is installed. For ex-
ample, if the transaction processor “SAMPLE’’ has an ID of “AAG”, the terminal task for
“SAMPLE” is known to the system as the task TIMAAG.

Once the INDEX is printed on your terminal, the TPDEF utility returns with the “Command?”’

question, allowing you to invoke some other command or to exit from the utility. Figure 9-2 shows
the TPDEF terminal dialog listing for the INDEX command.

9-8

The TPDEF Utility

TRANSACTION PROCESSOR SPECIFICATION SHEET

Transaction Processor Definition: [SIAIMIPIL]E |

Transaction Processor Name: [SIAMIPILE |

Maximum number of transaction types:

Maximum number of concurrent transaction instances:
Maximum number of application terminals:

Maximum number of user TSTs

Maximum number of master link stations:

Maximum number of slave link stations:

Maximum size of receive link message:
Maximum number of submit batch stations:
Maximum number of slave batch stations:
Maximum number of mailbox stations:
Maximum number of application data files:
Maximum transaction slot size:

Automatic crash recovery:

(0—64) [14]
(0—64) | 4]
(0—64) (114l

(0—256) [_[1]0]
(0-10) [[2]
(0-64) [2]
0-512) [T 111
(0—1)
(0—16)
(0—10) | [o]

(0-64) LI IT]

(1—1022) [1 1 I8l blocks
[] —YES —NO

Figure 9-1a Transaction Processor Specification Sheet for “SAMPLE”

The TPDEF Utility

*@L1y21TFDEF
=RUN $TPDEF

TPREF V1.0
Transaction rrocessor definition utility

Command <EXIT>? CREATE

New transaction rrocessor name? SAMFLE

Maximum number of transaction tures? 4

Maximum number of concurrent tramsaction instances? 7

Srecify the maximum rnumber of transaction instances (<=64) that can be active at
ane time.

Maximum number of concurrent transaction instances? 4
Maximum number of arplication terminasls? 4

Maximum number of user TS8Ts? 10

Masximum number of master link stations? 0

Maximum number of slave link stations? 0

Maximum number of submit batch stations? 0

Maximum number of slave batch stations? 0

Maximum number of mailbox stations? 0

Maximum number of arrlication data files? |1

Maximum size of 2 transaction slot [64 bute blocksl? 8

Automatic crash recoverws <NO>? (e

-,

=RUN $FDFELD
*RENAME [1y300INONE.FIOF [1,3001SAMFLE.FIF

E?*MACRO/DBJECT:TEMF' L1y 1IRMSMAC/LI+L1y3001SAMPLE+L24,101TFSCOM

" =*MACRO/OBJECT!TEMF.CTX C1s3001SAMPLE+L245101TIMCTX

FLINK BTEMF.LNK

*8ET PROTECTION [1,3001SAMFLE.X (SYSTEMIRWEDyOWN?!RWED GROUF IRWEDyWORLD ! RWED)

DELETE TEMF. XX
@ <EOF:=

Figure 9-1b Terminal Listing of CREATE Command Dialog

9-10

*RUN $TPDEF

TPDEF V1.0

Transaction Frocessor defimition

Command <EXIT>? INDEX

NAME

ARCDEF
1
BATCH1
AFF001
TEST1
FNTOO2
RACKUF
CREDIT
AFGEXA

Command <EXIT»?

Figure 9-2 Terminal Listing of INDEX Command Dialog

9.2.4 Printing or Showing a Transaction Processor Definition

The PRINT Command
The SHOW Command

In

AAA
AAR
AAC
AAD
AAE
AAF
AAG
AAH
AAT

The TPDEF Utility

The PRINT command prints a hard copy listing of a transaction processor definition on the system
device assigned to the logical device (CLO:). This device is generally the line printer. Consult your

system manager for information regarding which device he has assigned to CLO:.

The SHOW command lists the transaction processor definition on your terminal. This command is
useful for checking your work after creating or editing a transaction processor definition.

After invoking the PRINT or SHOW command, TPDEF asks you to supply the name of the existing

transaction processor whose definition is to be printed. The question is:

Old transaction processor name?

The TPDEF Utility

Once you enter the transaction name, TPDEF reissues the “Command?” question after the defini-
tion is spooled to the printer. You can invoke another command, or enter a carriage return to exit
from TPDEF.

Figure 9-3 shows the terminal dialog listing as an example of the TPDEF utility SHOW command.
The PRINT command dialog is identical, except the listing prints on logical device (CLO).

.

SRUN $TPDEF

TPROEF V1.0
Transaction rrocessor definition utilitw

Command <EXIT>? SHOW

0ld transaction rrocessor name? SAMPLE

DNefinition of Transaction Frocessor - SAMFLE

Maximum number of transaction tures

Maximum rnumber of concurrent tramsaction instances
Maximum number of arrlication terminzls

Maximum number of user TSTs

Maximum number of master link stations

Maximum number of slave link stations

Maximum size of receive link messade

Maximum number of submit batch stations

Maximum number of slave batch stations

Maximum number of mailbox stations

Maximum number of arrlication data files

Maximum size of a8 transaction slot [é4 bute blocks]
Automatic crash recovery

[}

ZVHOOTCOCO=Dbddbd

o

Figure 9-3 Terminal Listing of SHOW Command Dialog
9.2.5 Copying or Renaming an Existing Transaction Processor
The COPY Command
The RENAME Command
The COPY RENAME commands duplicate or rename an existing transaction processor definition.
These commands are most useful when you are testing a new version of a transaction processor, but
need to retain the old version in its existing state for security and backup purposes.

The terminal dialog for the COPY and RENAME commands consists of two questions:

Old transaction processor name?

9-12

The TPDEF Utility

You must supply the name of the transaction processor that you want to copy (rename). This is
the 1- to 6-character alphanumeric name that you assigned to the transaction processor when it was
originally created, renamed, or copied.

New transaction processor name?

TPDEF asks you to specify the new name of the processor; the name must be a 1- to 6-character
alphanumeric string. This name appears in the TPDEF.TPF record that corresponds to this pro-
cessor. The name also becomes the filename for the definition data files created by TPDEF. For
example, if you copy (rename) a processor called STDAPP giving it a new name SAMPLE, TPDEF
copies (renames) the existing definition data files for STDAPP, calling the new files:

SAMPLE.STA
SAMPLE.TRA
SAMPLE.FIL
SAMPLE.WOR
SAMPLE.AUT
SAMPLE.FDF

Once you specify an old and new transaction processor name, TPDEF exits and executes a number
of DCL COPY (RENAME) commands to assign new names to the definition files.

Figure 94 shows the TPDEF terminal dialog for the COPY command. The RENAME command is
similar, except that the old transaction process no longer exists.

TRIEF V1.0
Tramzechtion rrocessor definition utility

Commard CEXTITE=? COPY
0la transaction srocessor name? SAMPLL

New transaction srocessor name? SAMPLE

SCOFY [1y30018AMPLL.MAC [1s30015AMFLE .MAC
=COPY [1s3001SAMFLLFOF [1s3001SAMFLE (FDF
COFY/CONTIGUOUS [1y3001SAMFLL.TSK [1s3001SAMFLE.TSK

COFY/CONTIGUOUS [1,30071SAMPLL.TIM [1s3001SAMFLE,TIN
SMERGE [153001SAMFLLSTA/INDEXED/KEY $NUMBER:1 [1y3001SAMFLE .STA/ INDEXED
SMERGE [1s3001SAMPLL. TRAZINDEXED/KEY $NUMBERS1 [1:3001SANFLE . TRA/ INDEXED
SMERGE [1r3001SAMPLLFIL/INDEXED/KEY $NUMBERS] [1,3001SAMFLE .FIL/INDEXED
*MERGE [1r3001SAMPLI WOR/INDEXED/KEY (NUMBER 1 [1y3001SAMFLE . WOR/ INDEXELD
SMERGE L1y 3001SAMFLL . AUT/INDEXED/KEY NUMEER 1 [1»3001SAMPLE . AUT/ INDEXED
GET FROTECTION L1s3001SAMPLE % (SYSTEMIRWED, OWN$RWED s GROUF { RWED y WORLI RWED)
SDELETE TEMP . %3 %
@ CEOF

Figure 9-4 TPDEF Utility COPY Dialog Listing

9-13

The TPDEF Utility

9.2.6 Deleting A Transaction Processor Definition
The DELETE Command

To delete an existing transaction processor definition, you use the TPDEF utility, invoking the
DELETE command. The DELETE command dialog consists of one question:

Old transaction processor name?

You must supply the name of the transaction processor that you want tc delete. This is the 1- to 6-
character alphanumeric name that you assigned to the transaction processor when it was created, re-
named, or copied.

Once you specify the name of the trnasaction processor, the utility generates a series of DCL com-
mands, and executes them, deleting the transaction processor and associated definition files. The
TPDEF utility also deletes the transaction processor record in {1,1 TPDEF.TPF].

Figure 9-5 shows the terminal dialog to delete a transaction processor definition.

=@L 1y 21TRDEF
“RUN $TFDEF

TRREF V1,0
Transaction srocessor definitiorn utility

Command <EXIT:? DELETE

0ld transaction srocessor name? SAMPLE

FRHELETE D1y 30018AMPLE . MAC X
FDELETE L1y30015AMPLE.FIF s %
FRHELETE [1,30018AMPLE. TSR X
FRELETE [1y30018AMFLE . TIMG X
E1-30018AMFLE . STAM X
L1 30005AMFLE . TRAS X
- L1-30015AMFLE . FIL#X
E D1y 300T15AMPLE . WORS X

C1sZ00NGAMFLE . AUT # %
TEMF . X2 ¥

Figure 9-5 Terminal Listing of DELETE Command Dialog

9-14

CHAPTER 10
STATION DEFINITION

10.1 STATION CONCEPTS
A station receives messages for a component of a transaction processor. Stations are supported by
system software within a transaction processor. In order to properly support the number and types

of stations used by a transaction processor, you must first define the stations using the STADEF
utility.

The TRAX operating system allows you to specify stations for seven different classes of transactior
processor components. Stations may be defined for:

. A Transaction Step Task (TST) that serves as an application program.

. A terminal station that controls execution of an application terminal.

. A master link station that sends messages to other transaction processors.

. A slave link station that initiates transactions upon receipt of link messages from other
transaction processors.

. A submit batch station that initiates a batch job from a transaction instance.

. A slave batch station that initiates a transaction instance when it receives a message from a
batch job.

7. A mailbox station that stores temporary data in a location accessible to all transaction pro-

Cessors.

A WO =

[0 WV,]

A station definition consists of a set of station parameters that make up a station definition record.
The definition data file [1,300] tpname.STA contains the set of station definitions for a trans-
action processor. For example, all station definition records for the transaction processor SAMPLE
are contained in the file [1,300] SAMPLE.STA.

10.2 THE STADEF UTILITY
The STADEF utility program adds, modifies, displays, and deletes station definition records con-
tained in [1,300] tpname.STA.

10.2.1 Invoking the STADEF Utility
The STADEEF utility is invoked from a support environment terminal by typing the command:

>RUN $STADEF

STADEF responds with a version number and an identification line, followed by the first dialog
question: }

STADEF V1.0
Station Definition Utility

Transaction Processor name?

10-1

The STADEF Utility

You must answer with a 1- to 6-character name of an existing transaction processor.

STADEF then opens the station definition file for that transaction processor, [1,300] tpname.STA.
Once the station definition file is opened, STADEF asks you to invoke one of six commands:

Command?
You can respond by typing one of the following command keywords:

® ADD — The ADD command defines the attributes of a station and creates a station definition
record.

® DELETE — The DELETE command removes an existing station definition record from the
.STA file.

® EDIT — The EDIT command examines and modifies the attributes of a previously defined
station definition record.

® INDEX — This command displays the names of all stations defined for the transaction pro-
cessor .STA file that you are using. The listing appears on your terminal (TI:).

® PRINT — The PRINT command lists the attributes of one or all station definitions on the
console listing device (CL0:). This command is useful for documenting the components of
a transaction processor for reference.

® SHOW — The SHOW command lists the attributes of one or all stations on your terminal
(TI:).

After you specify a command keyword, the STADEF dialog continues. The order of the dialog
questions depends on the command you have invoked. The remainder of this chapter is organized
by the four major STADEF functions:

1. The ADD and EDIT commands, Section 10.2.2

2. The INDEX command, Section 10.2.3

3. The PRINT and SHOW commands, Section 10.2.4

4. The DELETE command, Section 10.2.5
10.2.2 Adding or Editing a Station Definition

The ADD Command
The EDIT Command

If you respond to the command question by typing ADD or EDIT, the dialog begins by asking you
for the station name:

Station name?
You respond by typing the 1- to 6-character name of the station you are defining (editing).

With the EDIT command, STADEF shows the named station’s type. If you are ADDing a station
definition, STADEF asks you to specify:

Station type?

10-2

The STADEF Utility

You can respond to this question with one of seven station type keywords:

TST

TERMINAL
MASTER LINK
SLAVE LINK
SUBMIT BATCH
SLAVE BATCH
MAILBOX

At this point, the STADEF dialog breaks into seven different processing paths by the station type
you specify.

The remainder of this section presents the dialogue required to ADD or EDIT a station definition
according to the type of station you wish to define. To review the STADEF dialog, refer to the sec-
tion describing the station type you specified.

10.2.2.1 Terminal Stations — A terminal station holds messages sent from a TST to an application
terminal. In addition, the definition of a terminal station determines attributes of the associated
physical device in the context of the transaction processor (whether the terminal can display system
messages, for example).

Most application terminals at an installation perform identical functions in a transaction processing
environment. STADEF provides a facility to create a single station definition record for a group of
identically functioning terminals.

To define a group of similar terminal stations, you must specify a station name that has four alpha-
numeric characters and ends in two asterisks (**). For example:

Station name? TERM**

When STADEF receives a name of this type and the station type specification TERMINAL, it con-
tinues the dialog by asking:

Number of stations in group?

You respond with the number of terminals (1-64) you wish to define using the group name
TERM**. The remainder of the dialog for a group of terminal stations is the same as the dialog for
a single station.

The individual station names for a group of terminal stations are derived from the characters preced-
ing the asterisks (the group name) and a 2-character number. For example, if the group name
TERM contains 10 terminals, STADEF generates 10 stations named TERMO1, TERM02, TERMO03,
and so on up to TERM10.

If you are specifying a terminal station name other thatn a group name, the name must by 1 to 6
ASCII characters and the last character must be a letter in the range A through Z.

10-3

The STADEF Utility

After the name, type, and group number specifications are made, the ADD and EDIT dialogs con-
tinue by asking:

Name of device?
You respond with the logical terminal name of the associated application terminal. Every terminal
is assigned a logical terminal name at system generation. When you define a group of stations, this

question is repeated for every station in the group.

If you are defining a terminal station that supports a VT 62 interactive terminal, specify the logical
terminal name assigned to that terminal.

If you are defining a terminal station for an LA-180P DECPRINTER, you specify the logical ter-
minal name of the VT62 that drives the LA-180P.

When you are defining an LA-180S DECPRINTER, specify the logical terminal name assigned to
the LA-180S during the system generation process.

The logical terminal names are assigned at during system generation (See the TRAX System Gener-
ation Manual).

Once you specify the logical name (or names for a group definition), the STADEF dialog continues
by asking the question:

Input or output device <BOTH>?

TRAX supports two types of terminal stations: interactive terminals that perform both input and
output, and hard-copy terminals that can be used for output-only.

You can answer this question with the keyword BOTH, specifying that the terminal can perform in-

put and output, or the keyword OUTPUT, which tells STADEF that the terminal is an output-only
device.

Enable system massages <YES>?
If you want an interactive application terminal to display system messages, answer Y, YE, or YES.
If you don’t want system messages displayed on application terminals, answer N or NO. System
messages cannot be received by output-only terminal stations.

Work class name <NONE>?

If you wish to associate a particular work class with a terminal station (or group of stations), you
can specify that work class name in response to this question. The name must be a 1- to 6-charac-
ter name that is alsodefined using the WORDEF utility. See Chapter 13 for a complete discussion
of| work classes and application security tools.

Will the terminal run a dedicated transaction <NO>?

104

The STADEF Utility

A terminal station can be dedicated, or allowed to perform only one specific type of transaction. If
you answer YES to this question, you must end the dialog with the name of the dedicated transac-
tion in response to the question:

Transaction name?

The dialog ends, and you are returned to the “Station name?” question.

However, if you answer NO to the ““dedicated transaction” question, the STADEF dialog continues
by asking you to specify:

Form name?

This is the name of a form (the “initial form”) that is displayed when the terminal is not actively
processing. The name should identify a transaction selection form.

After you answer this question, STADEF adds or updates the station definition record to the file
and returns to the question:

Station name?
allowing you to continue ADDing or EDITing station definitions.

Figure 10-1a shows a Terminal Station Specification Sheet that specifies the parameters used to de-
fine a group of four terminal stations with identical attributes.

Figure 10-1b lists the STADEF terminal dialog that adds a group of terminal stations to the station
definition file [1,300] SAMPLE.STA.

10-5

9-01

Transaction Processor Name: [SIAIMIPILIE]

TERMINAL STATION SPECIFICATION SHEET

Device System
Station Name Device Name Type Messages Work Class Run A Dedicated Transaction?
ﬁ@mmmﬂ ﬂmnaﬂ — BOTH — YES En@mmm D Yes — Transaction Name: m
ppeve2 [] - output []-no No — Initial Form Name: [SIE[LIE]CIT]
[TIIT1] CIIII1J] [J-eom C-ves [LTTTT] [Ves— TronssctionNemes ([T T T
(] - output []-w~o [INo — nitial FormName: [[[T | | |
[(TTTT1] [IIII1] [J-som [J-ves CLLLLTTJ [ves— TransactionName: [T T T T 1]
D - OUTPUT D - NO DNo — Initial Form Name: I:IjID:l
(IITI111] CITIT1]] -BotH []-ves (I TTI] (] Yes — Transaction Name: [T T T 1 1]
I:] - OQUTPUT D - NO E] No — Initial Form Name: m
[IIIT1] CLITTI] [J-eom [J-ves [CTTTITJ [ves— Transaction Name: [T T T T T
[] - outpur []-w~o [CINo — Initial Form Name: [[[1]
[(ITITT] (T1TTT1] [] - sotH [-ves (I ITTT] [Yes — Transaction Name: [T T T T T]
D - OUTPUT - NO D No — Initial Form Name: m
[TTTTT] [IIIT1J [J-eom [J-ves [TTTLLJ [Ves— TransactionNeme: [T T T T
[] - outpuT D —NO [No — Initial Form Name: EI:[:I:D:]
(TITT11] CIIII1J] [J-som O-ves [ITTITIJ [Ves— TransactionName: [T T T
[_—_] - QUTPUT - NO l:] No — Initial Form Name: D:I:ED:]
[(IIT11] [IIIT13] [J-som [- ves [TTTTT] [ves— Transacvon Neme: [T T T T[]
D - OUTPUT [:] - NO D No — Initial Form Name: ED:EED
| [1 ! D - BOTH [__] - YES []:Dj:l:] D Yes — Transaction Name: EEI:I:D:]
[] -outpuT [J-no [JNo — Initial FormName: [[T [[]]

Figure 10-1a Terminal Station Specification Sheet — “SAMPLE”

anun AAAVIS 241

The STADEF Utility

l~.UN $STADEF

STAREF V1.0

Station Defimition Utilitw

Transaction Frocessor name? SAMPLE
Commard? AL (rer

Station rname? TERMXK

Station tumre? TERMINAL

Number of statioms in grous < 1 =% 4
Name of device? 001V42 (e

Name of device <»7? 002VAZ (rer

Name of device <x7? 003UsD (R

Name of device <x? 004V&2 (e

InFut or outrut device <ROTH:?
Enabled for swustem messades <YEG-P (R
Work class name <NONE:7 SIGNON

Will terminal run 2 dedicated transaction <NO-T
Form name? SELECT

Record (TERMX¥) Alled.

Station name? (R

Figure 10-1b Listing of Terminal Dialog to Add a Terminal Station

10.2.2.2 TST Stations — You incorporate a TST into a transaction processor by defining an associ-
ated TST station. When a message arrives at a TST station, the processor activates the TST so it can
process the message. A TST cannot be initiated in any other way.

See Chapter 1 and Chapter 11 for a description of routing lists, that tell the processor which TST
stations receive each exchange message in a given transaction.

You can define up to the maximum number of TST stations allowed by the limit specified in the
transaction processor definition.

If you specify TST is response to the “Station type?’’ question, the following dialog gathers param-
eters that describe the TST station.

10-7

The STADEF Utility

Station priority <128>?

You must specify a priority value for the station. The priority of a TST station is relevant only
when more than one TST is waiting to be brought into memory. When memory becomes available,
the processor chooses the TST with the highest priority to run first, as long as that TST can fit into
the space that has been freed. If the highest priority TST is too large, the processor selects the next
highest priority TST that will fit. The default priority for a TST is 128, but you can specify any
number between 1 and 250, with 1 being low priority and 250 being high. The dialog continues by
asking you to specify the:

Task image file specification?

You respond with the complete specification of the TST’s task-image file, which is the output file
produced by the TSTBLD utility (See Chapter7).

STADEF assumes certain default values. Unless you specify otherwise, the task image file is as-
sumed to reside on the system device in UFD [1,300], with a filetype of .TSK, and it is assumed
to be the highest existing version number. If you accept the assumed defaults, you can answer
this question by simply specifying a 1- to 9-character filename.

Maximum number of active copies?

You are asked to specify the maximum number of TST copies that can be active concurrently. Nor-
mally, if a TST is active when a message arrives at its station, the message must wait for processing
until the TST has completed. However, if you specify that multiple TST copies can be active at the
same time, the processor activates a copy of the associated TST as soon as another message arrives
at the TST’s station. The processor can activate the number of copies that you specify in response
to this question.

TST serially reusable <NO>?

If you specify a TST as serially reusable, the transaction processor can rerun a memory-resident
copy of a serially reusable TST, rather than having to retrieve a new copy from disk.

Figure 10-2a shows a TST Station Specification Sheet used by the change customer transaction that
specifies the parameters needed to define the TST stations RDCUST, VALIDC, and REWRIT.

Figure 10-2b lists the STADEF terminal dialog that adds the three TST stations in Figure 10-2a to
the station definition file [1,300] SAMPLE.STA.

10-8

The STADEF Utility

TST STATION SPECIFICATION SHEET
Transaction Processor Name: N
Station A;ive Serially

Station Name Priority Task Image File Specification Copies Reusable?
[ROCU[sT] 28] BNE:[[11],3@@)| [RpCLEr.FEK:(18 (148 X -ves
[]-n~o
(VIAILITDIC] [12[8] BYIBH [1 17],3el@] | VAL IDIC] [FISIK: (18] (11 [X] - ves
[]-n~o
[REIMRIIIT] (1128l [BYIoK{[1 171,300 [REWRIIT).FISIK:(18 (] - ves
[1-w~o
T 111 I OO0 I .01 0 0O -ves
[]1-NoO
11T OO0 O{0OOOnD) O T oIk O O-ves
—NO
0 1 O 1 7=
[]-no
OI11T1) I O 00O T ey O [O-ves
[]-nNo
1111 O OO {0000 I T sl g d-ves
[]-no
1111 I OO {00 OO I I rst1d O O-ves
[]-no
1111 O OO0 . orrscrg 11 [O-ves
—NO
(TIT1T 17 O OO0 oo o O-ves
[]-n~o
0 O A Y o o O O O R O 7=
[]-w~o
1111 I O {00000 T Orsogd I O-ves
—NO
(TT11T] (T OO0 ookl [fO-ves
[]-no
(1111 OO OO0 O] I T .IIsod g O-ves
[]-nNO

Figure 10-2a TST Station Specification Sheet — “SAMPLE”

109

The STADEF Utility

10-10

FRUN $STADEF

STADEF V1.0

Station Definition Utilitw

Transaction Frocessor name? SAMFLE (Rr)

Command? AL

Station name? ROCUST (rer)

Station ture? TS8T (rer)

Station rrioritw < 128 »>7

Task imade file srecification? L[1,3001IRNCUST.TSK
Maximum number of active cories < 96 »7 4 (Crr)

TST serialluy reusable <NO>? YES

Record (RDCUST) Alled.

Station name? VALIDC

Station ture? TGT

Station rrioprits < 128 =7

Task imade file srecification? [1,300JVALINC.TSK
Maximum number of sctive cories < 96 7 1 (re

TST serially reusable “NO>? YES

Record (VALIDC) Alled.

Station name? REWRIT

Station ture? TST

Statiorn rrioritw < 128 »? 128

Task imade file srecification? [1y300IREWRIT.TSK
Maximum number of active cories < 96 7 4 (R

TST serially reusable <NO:=? YES

Record (REWRIT) ADlled,

Statiorn name? (o)

Command? EXIT

Figure 10-2b Listing of Terminal Dialog to Add a TST Station

The STADEF Utility

10.2.2.3 Master Link Stations — A master link station forwards messages to an associate remote
transaction processor or IBM system.

Each master link station can handle up to 64 sublinks, where each sublink corresponds to a poten-
tial slave transaction instance. The master link maintains each sublink until the corresponding slave
transaction instance is completed.

The maximum number of master link stations allowed for each transaction processor is determined
by a parameter defined in the TPDEF utility (See Chapter 9).

To define a master link station, you answer the following questions:
Connected to?

The identity of the remote host connected by the master link. There are three possible types of
identity.

o If the link is to a transaction processor in another computer, you must specify the node
name of that system. The name must identify the host system rather than the transaction
processor within that system; a node name is a 1- to 6-character alphanumeric string defined
at system generation.

® If the master link connects to a transaction processor located within the same host com-
puter, you respond by typing the keyword LOCAL.

o If the master link connects to an IBM system, you must specify IBM.

Number of sublinks?

The number of sublinks that the master link can maintain simultaneously. For each sublink, there
must be an available slave link station in the remote processor or an available line number in the
remote IBM system. A master link can support up to 64 simultaneous sublinks.

Slave transaction processor name?

You must specify the name of the remote transaction processor (if applicable). The name is the 1-
to 6-character alphanumeric string assigned to the processor by the TPDEF utility (see Chapter 9.).

IBM line number?

If you are communicating with an IBM system, you must specify an IBM line number for each sub-
link (if applicable). The STADEF utility asks this question as many times as required to obtain one
line number for every sublink.

Figure 10-3a shows a Master Link Station Specification Sheet that specifies the parameters needed
to define a master link station in a local transaction processor.

Figure 10-3b lists the STADEF terminal dialog that adds a master link station to the station defini-
tion file [1,300] SAMPLE.STA.

10-11

The STADEF Utility

MASTER LINK STATION SPECIFICATION SHEET

Transaction Processor Name: @mmﬁ

Connected to Number of

Station Name Slave Link Type Sublinks

MABILINK ~ []-NodeName: [T T[] [LT] SewTeNeme [T [T 1]
— Local [B[B[1] Siave TP Name [T]E[S[TIS] €]

[]-18m [T 1] vineNumber [T]

CTTLTL] [nesetame [TTTTT] [LLJ Seetotome [TITT1]
(] - Loca [TT3J saetpname [T 1T 1]
[] -18m (LI 1] vinenumber [1]

[TITTT] [J-NedeName: [TTTTT] [I1] SawereName [[TTTT]
D — Local ED:] Slave TP Name EED:D:]
[]-18m [TI] vineNumber [T 1]

Figure 10-3a Master Link Station Specification Sheet — “SAMPLE”

=RUN $STAREF

STADEF V1.0

Station Definition Utilitw

Transaction Frocessor mame? SAMPLE
Command?® ADD (RET

Station name? MASLNK (&R

Station tere? MASTER LINK (xR

Connected to? LOCAL

Number of sublinks? 1

Slave transaction rrocessor name? TESTOL
Record (MASLNK) AlDed.

Station name?

Figure 10-3b Listing of Terminal Dialog to Add a Master Link Station

10-12

The STADEF Utility

10.2.2.4 Slave Link Stations — A slave link station receives exchange messages forwarded by a mas-
ter link station. When a slave link station receives a message it initiates a transaction instance.

Each processor supports the maximum number of slave link stations specified in the TPDEF utility
(see Chapter 9). The STADEEF dialog to define a slave link station consists of the station name and
type. No other parameters are required.

10.2.2.5 Submit Batch Station — Each transaction processor can include one submit station. The
submit batch station provides a means for your transaction processor to submit a batch job for pro-
cessing in the TRAX environment.

When defining the submit batch station, you only need to specify the station name and type. No

other parameters are required. See Chapter 5 for the procedure required to submit a batch job from
a transaction instance.

10.2.2.6 Slave Batch Stations — Slave batch stations perform the reverse function of the submit
batch station; they allow batch programs to access the transaction processor. A batch job can initi-
ate a single-exchange transaction by sending an exchange message to a batch slave station. The
transaction processor then initiates a transaction instance. The slave batch station is the source sta-
tion for that transaction instance.

A transaction processor can support up to the maximum number of batch slave stations specified
for the processor through the TPDEF utility. (See Chapter 9.)

The dialog required to define a slave batch station consists of the station name and station type. No
other parameters are required.

10.2.2.7 Mailbox Stations — To define a mailbox station, the STADEEF utility asks you to specify a
station name and station type. If you are defining a mailbox station, STADEF then asks you to
specify:

Maximum message size [bytes] ? <64>

You can press the RETURN key <RET> to accept the default value of 64 bytes per message, or
you may specify a value in the range 64 to 8192 bytes.

When defining the transaction processor, you specify the maximum number of mailbox stations used
by the transaction processor (See Chapter 9.).

Figure 10-4a shows a Special Purpose Specification Sheet that specifies the parameters to define a
mailbox station named “OVRCRL”.

Figure 10-4b lists the STADEF terminal dialog that adds a mailbox station to the station definition
file [1,300] SAMPLE.STA

10-13

The STADEF Utility

SPECIAL PURPOSE STATION SPECIFICATION SHEET

Transaction Processor Name: EHWEB

Station Name Station Type
mm[ﬂ IX] — MAILBOX — Max. Message Size: .-@E’ bytes (Must be 64—8192).
S/B OVRCRL [] —stave Link

[] —susmiT BATCH
[] —sLAVE BATCH

CTITI1T1] (] —MAILBOX — Max. Message Size: || | | | bytes (Must be 64—8192).

[] —sLAvE LINK
[] —susmiT BATCH
[[] —sLAvE BATCH

(TI1TTIT1] (] — MAILBOX — Max. Message Size:| | | | | bytes (Must be 64—8192).
[] - sLAVE Link
[] —suBmiT BATCH
[] —sLAVE BATCH

__—-———-’\/\/\—/\,//\(///\/\//\/

Figure 10-4a Special Purpose Station Specification Sheet — “SAMPLE’

SRUN $STADEF

STAREF V1.0

Station Defimition Utilitw

Tranmsaction Frocessor name? SAMPLE
Command? AL (Crer

Station name? OVRICRL (xer

Station ture? MATLEOX

Maximum messade size [bwtes] <4457 (rer
Record (OVRCRL) ADlled.

Station name? (Cso)

Command? EXIT

Figure 10-4b Listing of Terminal Dialog to Add a Mailbox Station

10-14

The STADEF Utility

10.2.3 Listing the INDEX of Defined Stations
The INDEX Command

When you specify the INDEX command keyword, the STADEF utility displays all station names
and types in the .STA file associated with the transaction processor name that you supplied when

you invoked the utility. This listing appears on the support environment terminal where you are
running the STADEF utility.

Figure 10-5 shows the STADEF terminal dialog that lists the INDEX of station definitions in the
station definition file [1,300] SAMPLE.STA.

Command? INDEX

Station 1 MASLNK Ture ¢ MASTER LINK Rereat count 3 1
Station ! OVRCRL Ture § MAILROX Rereat count 1
Station ¢ RDCUéT Ture | THT Rerest count 1 1
Station ¢ REWRIT Ture & TST Rereat cournt ¢ 1
Station ! VALIDC Ture ¢ THT Rereat count ¢ 1
Station ¢ TERMXX Ture | TERMINAL Rereat count ¢ 4

Command? EXIT

&

- Figure 10-5 STADEF Utility Listing of INDEX Command Terminal Dialog

10-15

The STADEF Utility

10.2.4 Printing or Showing a Station Definition
The PRINT Command
The SHOW Command

The SHOW and PRINT commands perform the same operations but direct their output to different
devices. SHOW lists the attributes of a station definition at your support environment terminal,
while PRINT provides a hard-copy listing on the system device assigned to logical unit CLO:. This
is usually the line printer. The terminal dialog for these commands is a single prompt:

Which station <ALL>?

If you provide a station name in response to the prompt, the SHOW and PRINT commands display
information for that station only. Pressing the RETURN key <RET> produces a listing of the sta-
tion attributes for the transaction processor name specified when you invoked the STADEF utility.

Figure 10-6 lists the STADEF terminal dialog that prints station definitions in the station definition
file [1,300] SAMPLE.STA on the system device (CLO:).

FRUN $S8TADEF

STADIEF V1,0
Station Definition Utilitw

Transaction Frocessor name? SAMPLE
Command? FRINT
Which station <ALLS>T (Rer

Command?

Figure 10-6 STADEF Utility Listing of PRINT Command Terminal Dialog

10-16

The STADEF Utility

Transaction Processor Namej SAMPLE
Stetion namet! ALL

Station 3 MASLNK Type § MASTER LINK Repeat count 3 1

Node ¢ LOCAL Transaction processor § TESTO!
Number of sublimks 3 1§

Starion 3 OVRCRL Tyce ¢ MAILBOX Repeat count ¢ 1
Max{mum message sizet 64 bytes
Statfon ¢ ROCUST Type s TST Repeat count § 1

Task image file ¢ SYt(1,30¥0)RDCUST,TSK)D
Max{mym number of active copies t 4
Station ppriority § 128

TST is serially reusable

Station 3 REWRIT Type 3 TST Repeat count ¢ |}

Tesk image file 3 SY3[1,300]REWR]IT,TSK)®
Max{mum number of active copies § 4
Station priorfty ¢t 128

TST is serially reusable

Station 1 VALIDC Type § TST Repeat count § |

Task image file ¢t SY1(1,300)VALIDC,TSK30
Maximum nymber of active cories § |
Station priority 3 128

TST is serfally reusable

Station ¢ TERM#x Type § TERMINAL Repeat count § 4
Devices § 4

Terminal ID
201ve2
odeve?
203vee
234V

Allowed operations ¢t INPUT/QUTPUT
Emabled for system messages

nork class name : SIGNON
In{tial FORM 3 SELECT

Figure 10-6 (cont.) Line Printer Output from STADEF PRINT Command.

10-17

The STADEF Utility

10.2.5 Deleting a Station Definition
The DELETE command

The DELETE command removes a station definition from the .STA file named by the transaction
p#ocessor specified when you invoked STADEF. To delete a station definition, simply type the
station name you wish to delete.

Figure 10-7 lists the STADEF terminal dialog used to delete all terminal station definitions in the
group TERM** form the station definition file [1,300] SAMPLE.STA.

SRUN $STADEF

STAREF V1.0
Station Definitior Utilitw

Transaction Frocessor name? SAMPLE
Command? DELETE

Station name? TERM¥X

Record (TERMXX) DELETED.

Station name? (o)

Command? EXIT CGED

Figure 10-7 STADEF Utility Listing of DELETE Command Terminal Dialog

10-18

CHAPTER 11
TRANSACTION DEFINITION

11.1 TRANSACTION CONCEPTS
A transaction is a pre-defined unit of data processing performed by a transaction processor. Before
you can invoke a transaction, it must be defined. A transaction definition includes:

® The names of all exchanges and associated forms presented to the user of the transaction
type

® The initial order in which exchanges are presented.

® The stations which process the information for each exchange

® Actions to be taken upon completion of a transaction instance

You define transaction types using TRADEF, a utility that adds, edits, displays and deletes trans-
action definition records in the system information file [1,300] tpname.TRA.

11.1.1 The TRADEF Utility

Before you can define a transaction, you must first run the TPDEF utility to create a transaction
processor definition. TPDEF creates the system information file [1,300] tpname.TRA, which is
read and updated by the TRADEF utility.

You run TRADEF from a support environment terminal. TRADEF uses an interactive dialog to
question you about the structure and parameters of the transactions you are defining. Your re-
sponses to these questions are used to create a transaction definition record, in the transaction
definition file.

Each transaction type you define is identified by a unique 1- to 6-character transaction name.

Once you create a set of transaction definitions, you can use TRADEF to modify individual

transaction definitions or to list information about the records in the transaction definition
file.

NOTE
This utility updates information in the file [1,2] TPDEF.TPF.
If a new version of either the TPDEF.TPF or tpname.TRA file
is created, you must run TRADEF, specify the transaction
processor name, and exit before attempting to install that
transaction processor.

11.1.2 Invoking the TRADEF Utility
You invoke the TRADEF Utility from a support environment terminal by typing:

>RUN STRADEF

The TRADEF Utility

TRADEF responds with an identifying message, and begins the interactive dialog. The first ques-
tion asks:

TRADEF V1.0
Transaction Definition Utility

Transaction processor name?

You reply by specifying the name of the transaction processor that uses the transaction you are
defining. If you have not defined the transaction processor, you must exit from TRADEF, and
run the TPDEF utility. (See Chapter 9 for a description of the TPDEF utility.)

Once you have specified the name of an existing transaction processor, TRADEF asks you to
specify one of the six command keywords:

Command?
The command keywords recognized by TRADEF are:

ADD — A transaction definition record is added to the file tpname. TRA

EDIT — An existing transaction definition record may be modified.

DELETE — An existing transaction definition record may be deleted.

INDEX — The names of all existing transaction types are displayed on your terminal (TIO:).
PRINT - The definition parameters of one or all existing transaction types are listed on the
system listing device (CLO:).

SHOW — The definition parameters of one or all existing transaction definitions are dis-
played on your terminal (TIO:).

The dialog questions asked by TRADEF differ depending on the command you specify. In the
remainder of this chapter, the TRADEF utility dialog is explained according to function in four
sections:

1. The ADD and EDIT Commands are described in Section 11.1.2

2. The INDEX command is described in Section 11.1.3

3. The PRINT and SHOW commands are described in Section 11.1.4
4. The DELETE command is described in Section 11.1.5

11.1.3 Adding or Editing a Transaction Definition
The ADD Command
The EDIT Command

If you invoke the ADD command, you enter a dialog that asks you to completely specify a new
transaction definition. TRADEF begins the ADD dialog by asking you to specify the:

Transaction name?

The transaction name is a 1- to 6-character alphanumeric string that identifies the transaction you
are defining.

11-2

The TRADEF Utility

The transaction name you specify must be unique within the structure of the transaction processor
you named in the first question of the TRADEF dialog.

Once you have specified a transaction name, the dialog starts to question you about the general
aftributes of the transaction. First, it asks you if you want this transaction to have:

Exchange Recovery?

If you specify exchange recovery, the transaction processor executive copies each exchange message
to disk before any processing takes place. If an error occurs during processing, a TST in the ex-
change can call the RESTRT library routine (See Chapter 4) and restart processing at the beginning
of the exchange using the copy of the exchange message previously saved on disk.

If you include exchange recovery in a transaction definition, you must also allocate a system work-
space for use by the transaction processor.

Log exchange messages <NO>?
Log other station messages <NO>?

TRADEEF allows you to request the logging of station messages associated with the transaction.
These include exchange messages derived from the initiator of the transaction and other station
messages (mailbox, response, and report messages,) generated by TSTs. If a transaction definition
enables message logging, the processor copies the specified message types to the journal file. (See
Chapter 3.)

The TRAX system includes a utility called SHOLOG that selectively displays logged messages.
SHOLOG is described in the TRAX System Management and Operations Guide.

For each active transaction instance, the processor allocates space in memory for a transaction slot.
The slot contains space for the current exchange message, a transaction workspace, and a system

workspace.

The TRADEF dialog has three questions that determine how much space the processor must al-
locate for each data structure in the slot.

The space allocated for the exchange message must be large enough to accommodate the largest
exchange message created by any exchange in the current transaction type. The dialog to define
the exchange message area is:

Maximum size of exchange message [bytes] < 64 >?

The sum of the largest exchange message size added to the size of the transaction workspace cannot
exceed 8064 bytes.

The smallest exchange message you can specify is 1 byte. All values you specify are rounded up
to the nearest multiple of 64 by TRADEF.

Transaction workspace size [bytes] <0>?

11-3

The TRADEF Utility

The transaction workspace allows TSTs executing as part of the same transaction instance to
process information across exchanges. The transaction workspace is optional. The sum of the
transaction workspace size added to the size of the largest exchange message in the transaction
type cannot exceed 8064 bytes.

System workspace size [64 byte blocks] <0 >?

The system workspace is used by the processor to store crash and exchange recovery information,
and information needed to stage file updates. The formula for calculating the system workspace
requirements is shown in Figure 11-1.

You must specify the system workspace size parameter as a number of 64-byte blocks. Figure 11-1
shows the worksheet used to calculate the system workspace for the change customer transaction.

Note that a question in the TPDEF utility (see Chapter 9.) asks you to specify the maximum size
of the transaction slot as a whole. This value must be at least 64 bytes, and cannot exceed 8096
bytes. The sum of the three individual sizes you specify to TRADEF cannot exceed the maximum
slot size set when the current transaction processor was defined.

11.1.3.1 Exchange Definition Parameters — After receiving appropriate answers to the questions
described above, the TRADEF utility concerns itself with the definition of individual exchanges.

A transaction type can consist of up to 32 exchanges. Each exchange must be given a name, have a
form associated with it (for terminal-initiated exchanges) have a routing list specified for it, and
have timing and subsequent action parameters declared for it.

TRADEF performs exchange definition by entering a loop of questions that begin with the prompt:
Exchange command <DONE>?
You respond with one of six commands:

® ADD — Create an exchange definition. If other exchange definitions already exist, TRADEF
adds the new definition to the end of the transaction’s list of exchanges.

® DELETE — Delete an existing exchange definition by specifying the exchange label.

® EDIT — Modify the parameters of an existing exchange.

® INSERT — Create an exchange definition and insert the definition before a named exchange
in the transaction’s exchange list.

® LIST — Display at your terminal (TIO:) a list of the exchange labels defined for the trans-
action.

® DONE — Exit from the exchange definition loop. TRADEF writes the current transaction
definition to [1,300] tpname.TRA, and returns to the question “Transaction name?.”

As you define a set of exchanges, TRADEF builds up a list of exchange definitions containing up to
32 entries.

The ADD, INSERT, and EDIT commands use the same exchange definition dialog. When you
define an exchange using ADD, TRADEF appends the resultant definition to the end of the list.

114

The TRADEF Utility

SYSTEM WORKSPACE WORKSHEET

Transaction Name: B

You must complete this worksheet when your transaction is defined with staged files and/or exchange
recovery. Use this procedure to calculate the system workspace size.

Bytes

1. If the transaction is defined with exchange recovery,enter the number of channels that will be
connected.For example if the transaction opens file A on channel 01 and channel 02 and opens

file B on channel 03 then enter 3.

J _ 34

* 34 bytes —_—

No. connected channeis

2. If the transaction uses files that are staged enter the number of times data records from these
files are added,deleted,and updated. For example if a data record is added then subsequently
updated in the same transaction instance then enter 2.

/ % 18 bytes =_18

No. staged records

3. If the record that is staged is the result of an update then enter the length of the updated record
and the total number of staged updates. For example if a 205 bytes record is updated twice
enter 2*205=410. Added and deleted record contents are not stored in the system workspace.

/ . 202 bytes 205
No. updated records Length

4. If the transaction is defined with exchange recovery then enter the number of mailbox messages
retrieved by the transaction.

* 8 bytes

No. mailbox messages
Subtotal éﬂ_

Add 16 bytes _l6

TOTAL _2_73_

5. Divided the TOTAL by 64,round the resuit up to the next whole number,then add 1 block.
result is the system workspace size in blocks.

SYSTEM WORKSPACE SIZE _2__

Figure 11-1 System Workspace Worksheet for “CHGCUS”

11-5

The TRADEF Utility

The INSERT command, on the other hand, allows you to define an exchange and insert it before
an existing exchange definition. The EDIT command allows to modify an existing exchange defini-
tion without changing its place in the exchange order. Before entering the exchange definition
dialog, INSERT asks you to locate the new exchange with the question:

INSERT before which exchange [exchange label] ?

The exchange label that you specify tells TRADEF that the new exchange is to be inserted before
the specified exchange.

The EDIT exchange command allows you to change an exchange label. For this reason, it precedes
the editing pass with the question:

EDIT which exchange [exchange label] ?

The ADD, EDIT, and INSERT commands begin their common dialog at this point with the
question:

Exchange Label ?

An exchange label is a 1- to 6-character alphanumeric string that uniquely identifies the exchange
within the transaction’s exchange list. Once the exchange name is specified, the dialog continues
by asking you to specify the name of the form associated with this exchange.

Form Name<XXXXXX>?

A form name is a 1- to 6-character alphanumeric string that identifies a form definition in the file
[1,300] tpname.FDF.

Note that TRADEF does not check for the existence of the form definition in the forms definition
file. You must ensure that a form definition has been written and processed through the ATL
utility (see the TRAX ATL Language Reference Manual). You only need to supply a form name
if the transaction being defined must be able to run from an application terminal.

TRADEEF defaults the form name to the string that defines the exchange label.

Forms provide the interface between the transaction processor and the user at the terminal. When
transactions are initiated by a batch program, by a TST, with input data on the transaction selec-
tion form, or by a remote system, such an interface is unncessary. These types of sources must
supply an exchange message already formatted for processing by an exchange routing list. For
exchanges initiated from other than terminal stations, and for the first exchange following an
exchange message created by a transaction selection form, you may specify NONE in response to
this question.

To create the routing list of station names for the exchange, the TRADEF utility uses another loop

of questions. Like the exchange definition loop, the routing list loop has its own set of commands
called:

Destinations command <DONE>?

The TRADEF Utility

The five valid destinations commands are:

ADD — Add a TST station (destination) to the end of the routing list.

DELETE — Delete a destination from the routing list.

INSERT — Insert a destination at a specific point within the routing list.

LIST - Display the list of TST station names, with corresponding sequence numbers, at
your terminal (TI:).

DONE — Exit from the loop and proceed to the first subsequent action question (see below).

As you specify or delete each destination, TRADEF creates a list of the station names and assigns
a sequence number to each entry. When you ADD an entry, TRADEF places the new destination
at the bottom of the list.

When you INSERT an entry, TRADEF places the new destination in the routing list immediately
prior to the designated sequence number. All destinations with the same or higher sequence number
have their sequence number increased by one.

When destinations have been INSERTed or DELETEd, TRADEF resequences the remaining destina-
tions accordingly.

If you invoke the DELETE or INSERT destination command, TRADEF asks you to specify a
sequence number. To verify the number that you want to specify, enter the destination command
LIST to obtain a current listing of all destinations and corresponding sequence numbers.

Destination sequence number?

When you are ADDing, or INSERTing a destination, TRADEF asks you to specify the name of the
TST station to be included in the list. TRADEF does not check that the station named, a 1-to 6-
character alphanumeric string, has been defined by the STADEF utility (see Chapter 10 for a
description of station definition.)

Destination station name?

When TRADEF has completed the ADD, INSERT, DELETE, or LIST operation, it always returns
to the question “Destinations command?”. Enter DONE to proceed to the subsequent action
questions in the exchange loop.

11.1.3.2 Subsequent Action Parameters — The processor checks the exchange definition to deter-
mine the next action to take. The exchange definition contains three subsequent action param-
eters that describe the transition from one exchange to another or the actions that take place at
the close of a transaction.

Note that a response message from a TST overrides the subsequent action parameters specified in
the exchange definition.

You are asked to answer a set of three questions regarding subsequent action.

Wait <YES>?

The TRADEF Utility

If you respond to this question by pressing only the RETURN key (which indicates YES), the
transaction processor cannot close the exchange you are defining until a response message is re-
ceived at the initiating station.

If you respond with N or NO, the transaction processor will immediately initiate the exchange
specified as subsequent action in the transaction definition.

Repeat <NO>?

If you press the RETURN key <RET> which indicates NO, the transaction goes on to the ex-
change specified by the subsequent action parameter. If you respond with Y,YE, or YES, the

current exchange is repeated until a stop repeat order is received from the terminal or from
a TST.

Subsequent action <NEXT>?
You must specify one of the following actions:

® NEXT — When the exchange terminates, proceed to the next exchange defined for this
transaction type.

® FIRST — When the exchange terminates, close the transaction instance, and start a new
instance beginning at the first exchange of the current transaction type.

® INITIAL -- When the exchange terminates, close the transaction instance, and return the
station to its initial state. In the case where the transaction is initiated by a terminal
station, this means the initial form specified in that terminal’s station definition is dis-
played on the terminal screen. ’

The final parameter in an exchange definition is a question that asks you to specify:

Exchange time limit [minutes]?
The time limit is expressed in minutes. If the exchange is not completed within the time specified
by this parameter, the transaction processor aborts the entire transaction instance. If for some
reason the exchange being defined should not be limited, you can reply O (zero) to this question.
The time limit refers to the time allowed for exchange processing in the transaction processor. The
time spent entering data at the terminal has no meaning to the system.
Once you have answered this question, the exchange definition is finished. TRADEEF reissues the
“Exchange command <DONE>?" question, allowing you to perform additional exchange proces-

sing, or to exit from the exchange loop.

Figure 11-2a is a specification sheet describing a transaction type “CHGCUS” from the transaction
processor “SAMPLE”.

Figure 11-2b is the TRADEF terminal dialog used to implement the specification in Figure 11-2a.

11-8

The TRADEF Utility

TRANSACTION SPECIFICATION SHEET

Transaction Processor Name:
Transaction Name:
Exchange Recovery? [ZI — YES D- NO
Log Exchange Messages? [J-Yes [X]-nNoO
Log Other Station Messages? []-Yes [X]-NO
Maximum Size of Exchange Message: bytes
Transaction Workspace Size: bytes

System Workspace Size
(Calculate according to formula on
worksheet — ‘‘Calculating the system

workspace”.) ...g (64-byte blocks)

Transaction Slot Size Calculation:
Divide Exchange Message Size by 64 and round up: D:I:LSJ blocks
Divide Transaction Workspace Size by 64 and round up: m blocks

Enter System Workspace Size: D:]:]E blocks

Add to find Transaction Slot Size: []:]Ilzl blocks

NOTE: A Transaction Exchange Definition should be prepared for each exchange associated with the transaction you
have just defined.

TRANSACTION EXCHANGE DEFINITIONS

Exchange Destination Subsequent Time
Label Form Name Station List Wait Repeat Action Limit

[CHIGlelx]1] [CHICIVIs[a] [RIDICIV[SIT] WAIT [_]repeat [Jwimar [2] mins
[(TT LI Onowarr NOREPEAT [| FIRST
ERREEN 5] vexr

[GlHIGIE[X]2] [C[HICu[S[2] [VIAILIXIDIC] WAIT []repear ClmmaL [Jg] mins
RIEIWIR[I [T] []~owarr NOREPEAT [X(] FIRST
(T Jwex

Figure 11-2a Transaction Specification Sheet for “CHGCUS”

11-9

The TRADEF Utility

FRIIN $TRADEF

TRADEF Y1.0

Trensazction lDefimition UWtilite
Transaction Processor name?™ SaMiLE (e
Command? ann (rer

Transaction name™ CHEOUS (e

Exchandge recoverw CNO®T v
Log exchansge messages ~NO>T

Log other station messages TNOE?

Maximum size of excharnHe masoasge
3.

Size of transaction worksrace [hwels-"7 0 0 0F 0% (Rer

@ 64 teeto Dloeka) 0 0 2% 5 (Cre

Maximum size of sustem works
Exchange command <HONE:X? aApn Ceer
Exchange label? CHGEXL

Form name <CHBEX1>? DHCUS
Destinations commarnd <DHONE>" ADD (e
Testination stetion neme? RICUST (Rex
Destinations command <ADDET DONE (rer

RET

The following 3 auestions desl with the subsesuent 2otion of Lhis exchs
Wait <YES»?

Rereat <NO=7?

Subseauent actiorn INEXT>7?

Exchande time limit [minutesl < 0 7% 2 (rer
Exchange command <ADDET (e

Exchande label® CHEGEX2 (Crer

Form name <CHGEX2:T CHOUS?
Destinations command <DONEXT AL
Testination station nesme® UALTDEC
Nestinations command <ADD=T (Rer
Destination station name? REWRIT
Nestinations commend CALDET DONE

Figure 11-2b TRADEF Utility Listing of Add Command Terminal Dialog

11-10

The TRADEF Utility

The following 3 cquestiors deal! with the subssauent acltion of this exonange.
Wait <YES:?

Rereat <NO>7? (Rer

Subseauent action <NEXT:? FIRSGT

Exchange time limit Cminutes] < 0 7 4 (R

Exchandge command <ADD:? DONE

Record (CHGCUS) AlDed.

Transaction name?

Commard?

Figure 11-2b (cont.) TRADEEF Utility Listing of Add Command Terminal Dialog

11.1.4 Listing the INDEX of Defined Transactions
The INDEX Command

The INDEX command displays an INDEX of all transactions definitions in the file [1,300] tpname.
TRA. (tpname is the transaction processor name specified when you invoked TRADEF.) The
INDEX listing is displayed on your support environment terminal. Once the listing is printed,
TRADETF reissues the “Command?” question.

Figure 11-3 lists the TRADEF terminal dialog that lists the INDEX of all transaction definitions
currently in the transaction definition file [1,300] SAMPLE.TRA.

11-11

The TRADEF Utility

PRUN $TRATEF

TRADEF V1.0
Transaction Nefimition Utilitw

Transaction Frocessor name? SAMPLE
Command? INDEX

Transaction ¢ CHGCUS Number of exchanges ¢ 2

Figure 11-3 TRADEF Utility Listing of INDEX Command Terminal Dialog

11.1.5 Printing or Showing a Transaction Definition
The PRINT Command
The SHOW Command

The SHOW and PRINT commands perform the same operation but direct thier output to differ-
ent devices. SHOW lists the attributes of a transaction definition at your support environment
terminal, while PRINT provides a hard-copy listing on the system device assigned to logical unit
CLO:. (This is usually the line printer or the LA-36 console terminal.) The terminal dialog for
these commands cosists of a single prompt:

Which Transaction <ALL>?

If you provide a transaction name in response to the prompt, the SHOW and PRINT commands

will display information for that transaction only. Responding to this prompt by pressing the
RETURN key <RET> produces a complete listing of all transaction definitions currently in the
transaction definition file [1,300] tpname. TRA. (tpname is the transaction processor name specified
when you invoke the TRADEF utility.)

Figure 114 lists the TRADEF terminal dialog that displays all transaction definitions currently
in the transaction definition file [1,300] SAMPLE.TRA on your terminal.

11.1.6 Deleting a Transaction Definition
The DELETE command

The DELETE command allows you to remove a transaction definition from the .TRA file named
by the transaction processor specified when you invoked TRADEF. To delete a transaction defini-

tion, simply type the transaction name you wish to delete.

Figure 11-5 lists the TRADEF terminal dialog used to delete the transaction definition “BROWSE”
from the transaction definition file [1,300] SAMPLE.TRA.

11-12

The TRADEF Utility

o

SRUN $TRADEF (&D

TRADEF V1.0

Transaction Definition Utility
Transaction Frocessor name? SAMFLE (Ger)
Command? SHOW (Cer)

Which tramsaction <ALL>»? CHGCUS

Transaction ¢ CHGCUS Number of excharndes § 2
Exchandge label Form name Number of destinations: 1
CHGEX1 CHCUS1 RICUST

Subsecuent action ! WAITsNOREPEATsNEXT
Exchandge time limit ¢ 2 wminutes

Exchange label Form name Number of destinations! 2
CHGEX2 CHCUS2 VALIDC
REWRIT

Subseauent action ¢ WAITyNOREFEATsFIRST
Exchande time limit ¢ 2 minutes

Maximum exchandge messade size ! 192 butes

TST worksrace ! 256 hutes
Sustem worksrace ! 0 butes

Command? EXIT

-

Figure 11-4 TRADEF Utility Listing of PRINT Command Terminal Dialog

Commaned? DELETE
Transaction name? CHECUS

Record (CHGECUS) DELETED.

Transaction rame?

Figure 11-5 TRADEF Utility Listing of DELETE Command Terminal Dialog

11-13

CHAPTER 12
APPLICATION DATA FILE DEFINITION

12.1 FILE CONCEPTS
Two different kinds of application data files can be defined for use with a transaction processor:

® Permanent data files support the transaction processors ongoing data requirements. They
form the data base that is modified by the transaction processor. Permanent data files are
created by support environment programs and/or DCL commands. These files may have
indexed, relative, or sequential organization. Permanent data files permit full record locking
support, and every permanent data file defined for a transaction processor is opened auto-
matically when that transaction processor is started, and remain open until the transaction
processor is stopped, at which time they are closed.

® Work files on the other hand, provide transient data storage. Work files are dynamically
created and populated by the current transaction processor. Work files can be dynamically
opened, closed, created, or erased while a transaction processor is active. Work files that
exist prior to the time a transaction processor is installed, are not opened until a TST
explicitly opens them. Work files can be organized as relative files, or sequential files.
Indexed work files are not allowed.

Files used by a transaction processor are created by one of three means:

® Any program (which creates the file).
® The DCL CREATE command.
® The RMSDEF utility program.

Information on how to write a support environment program is supplied in the Language Reference
Manual and Users Guide for the language (COBOL or BASIC-PLUS-2) that you have selected. The
DCL commands and RMS utilities are documented in the TRAX Support Environment User’s Guide.

12.2 THE FILDEF UTILITY
The File Definition utility program FILDEF, provides the means for you to specify the attributes
of both permanent data files, and work files that must be accessed by the transaction processor.

FILDEF allows you to add, delete, and manipulate records in the transaction processor’s File
Definition [1,300] (tpname.FIL) file.

When you define a file using FILDEF, you must specify a logical name for the file. This logical
name is used by all TSTs that reference the file, and by the transaction processor to access the file
definition record.

A transaction processor’s data management software can reference a file from a TST only by a
logical name which has a corresponding record defined in the tpname.FIL file.

12-1

The FILDEF Utility

NOTE
The FILDEF utility updates information in the file [1,2] TPDEF.TPF. If a new version
of the TPDEF or tpname.FIL file is created, you must run FILDEF, specify the transac-
tion processor name, and exit.

12.3 INVOKING THE FILDEF UTILITY
You invoke the FILDEF utility from a support environment terminal by typing:

>RUN S$FILDEF
FILDEF responds with an identifying line, followed by a question:

FILDEF V1.0
File Definition Utility

Transaction Processor name?

You respond to this first question by typing the name of the transaction processor that will access
the application data files that you are defining.

The 1- to 6-character name supplied in response to this question is used to reference a file in UFD
[1,300] known as tpname.FIL. This file is the File Definition File for the transaction processor
you have just named.

Once you have supplied a valid transaction processor name, the FILDEF utility asks you to specify
a command name which governs the subsequent utility dialog.

Command?
The following commands are valid responses to this question:

® ADD — Lets you create a definition record for an application data file and insert it in the
FIL file defined for the applicable transaction processor.

® DELETE — Allows you to delete the definition record of a previously defined application
data file.

® EDIT — Allows you to modify the attributes of an existing definition record.

® EXIT — Lets you exit from the FILDEF utility.

® INDEX — Lets you display at your terminal (TI:), the logical names of all files defined in
the file tpname.FIL.

® PRINT — Prints the attributes of one or all existing file definitions on the console listing
device (CLO:). (CLO: is usually the line printer.)

e SHOW — Displays the attributes of one or all existing file definitions at your terminal (TI:).

The order of questions in the FILDEF utility dialog depends upon the command you invoke. The
following section discusses the dialog sequence for:

1. The ADD and EDIT Commands are described in Section 12.3.1.
2. The INDEX Command is described in Section 12.3.2.

12-2

The FILDEF Utility

3. The PRINT and SHOW Commands are described in Section 12.3.3.
4. The DELETE Command is described in Section 12.3.4.

Each questionis presented in the orderit appears on the terminal when you are running the FILDEF
utility.

12.3.1 Adding or Modifying a File Definition Record
The ADD and EDIT Commands

The ADD and EDIT commands are invoked by typing the command keyword in response to the
Command? prompt. For example:

Command? ADD (RET)
or
Command? EDIT (RET)

The ADD and EDIT Commands follow the same dialog sequence. When EDITing a file definition
record, the currently specified value is displayed in angle brackets <> immediately. to the left of
the question mark. When ADDing a file definition, assumed responses are also enclosed in angle
brackets.
The ADD (or EDIT) dialog begins by asking you to specify the:

Logical file name?
The logical file name is a unique 1- to 6-character alphanumeric string that you assign to an applica-
tion data file. Your application program (TST) makes all subsequent references to a file using the
logical file name.
Because this logical name is the transaction processor’s only means of identifying a file, you must
ensure that the logical names used in TSTs and the logical names supplied to FILDEF refer to the
correct physical files.

File specification?

You are asked to supply the RMS file specification that identifies the file you want to associate
with the logical file name.

You should supply the standard RMS specification for the file. A brief description of the informa-
tion required is contained in this section. A more detailed discussion of file specifications is con-
tained in Chapter 1 of this manual.
The standard form of an RMS File Specification is the following:

device: [group,member] filename.filetype;version

where:

device: is the name of the device where the volume on which the file resides is mounted.
The device name takes the form: ddn: ; where dd is a 2-character device name

12-3

The FILDEF Utility

(DR or DB, for example), and n is the unit number. The trailing colon (:) must
always be specified (MMO:, for example).

[group member] is the User File Directory (UFD) specification that identifies the directory used
to hold the complete file specification. The required inputs for the UFD are
the owner’s group and member numbers, surrounded by brackets [] and
separated by a comma.

filename is a 1- to 9-character alphanumeric file name.

filetype is a 3-letter file type that identifies the general class describing the contents of
the file (.DAT for data, for example).

;version is the octal version number from 1 to 77777 that distinguishes different ver-
sions of the same file.

Examples:

DB2: [300,221]PAYROL.DAT;35
DM1: [222,200] CUSTOM.DAT

When FILDEF asks for a file specification, you must supply all parts of the specification except
the device and the version number. If they are omitted, the device name defaults to SYO:, while
the version defaults to the highest existing version of the specified file. When specifying a file in
the FILDEF utility, you must always supply the UFD, filename, and filetype.

Work file <NO>?
If you answer YES to this question, the definition of a work file requires no parameters other than
those described to this point in the dialog. FILDEF writes the work file definition record to the

.FIL file, then reissues, the Command? question.

If the file is not a work file, you should answer NO to the question about work files. FILDEF
will then proceed to question you about the organization of the file being defined.

TRAX uses the RMS data management system that supports three types of file organization:
® Indexed
® Sequential

® Relative

Depending on the organization of the file being defined, you must answer YES or NO to the
question:

Is the organization of the file indexed <NO>?

If you answered NO, FILDEF then proceeds to question you about concurrent file access. If you
indicate that the file is indexed, FILDEF asks you to provide the following additional information:

Number of keys defined?

124

The FILDEF Utility

You must supply the number of keys defined for a record in the current file. Once you supply this
information, the dialog continues with FILDEF asking you to specify the largest key size defined in
the file:

Maximum key length?
This parameter is the length (in bytes) of the longest record key defined for the current file.

Once you specify the file organization characteristics, FILDEF continues with a series of questions
related to multi-user file access rights.

Maximum concurrent file accesses < 1 >?

This parameter refers to the maximum number of different transaction instances you allow to
access the file at any given time. If a transaction instance attempts to access a file, and that access
exceeds the value you specified for concurrent accesses, then the transaction processor delays
execution of that transaction instance until some other transaction instance releases the file. Nor-
mally, the user is not aware that such a delay has occurred.

Read only <NO>?

Although a TRAX system can have more than one transaction processor or support environment
task active at the same time, only one such task may have write access to a particular file (given
that your system is configured with sufficient memory resources). The different tasks and proces-
sors cannot have full access rights to each other’s application data files. If one transaction processor
or support environment task has write access to records within a file, other active tasks and trans-
action processors are allowed only read access to that file.

If you want to deny write access to this file for the transaction processor, you must answer YES
to this question.

Fast deletions <YES>?

When a transaction instance requests that a record be deleted, the processor deletes the record in
one of two ways. The record can be physically deleted immediately (on line), or it can be marked
as deleted. Marking a record for deletion, called fast deletion, means that the deletion is a logical
deletion; the record remains physically in the file. Logical deletions are explicitly faster than
physical deletions.

Records marked for deletion remain in the file until you use the DCL COPY, MERGE, and/or
CREATE commands.

Interval between attempts to access locked records[SECONDS]?

When a transaction instance applies a lock to a record, the record remains locked until that instance
explicitly or implicitly releases the record lock.

12-5

The FILDEF Utility

When a subsequent transaction instance attempts to:

® Read from a file that does not permit read access,
® Read a record that has a staged lock applied,

the subsequent operation is placed in a lock wait queue. If the first lock is released before the time
limit specified in this question, the waiting transaction instance is removed from the queue and given
the record.

If the second transaction instance is still in the lock wait queue when the time limit expires, a locked
record error is returned to the TST.

The value you specify in response to this question determines the interval a transaction will spend
in the lock wait queue when attempting to access locked records in the current file. (See Chapter
3 for more information on record locking.)

Allow read access to locked records <YES>?

In some cases, denying any kind of access to a locked record is impractical. The FILDEF utility
gives you the option of allowing read-only access to a locked record. In other words, the option
allows another transaction instance to read a record that has been locked.

If you answer this question with a carriage return, read access is allowed to locked record in the
file, except when the file is staged.

The final set of questions asked by FILDEF involves the recovery procedures you want enabled
for the current file.

Journal after images <YES>?

Journalling provides a means of recovering application data files that have been corrupted in some
manner. When you enable journalling for a file, the processor copies the transaction slots (after
images) of all transaction instances that perform updates to that file. (The copies are made to a
file reserved for journalling; see Section X.X.X. — Recovery procedures.) The transaction slots in-
clude all the information needed to recreate the corresponding transaction instances. In the event
of a disk failure, for example, you can run RECOVR, a TRAX utility that uses the journal to
restore the contents of a corrupted file to their condition prior to the transaction instance that
caused the file to be incorrectly altered. (See the description of the RECOVR utility in the TRAX
System Management and Operations Guide.)

Answering YES to the journalling question automatically assumes that you have specified staged
file updates. If you answer NO, you are next asked whether or not you want staged updates to
the file.

Stage updates <YES>?

Staging file updates allows you to protect a file from updates by a transaction instance that fails
at some future point in its processing.

12-6

The FILDEF Utility

To stage updates, the processor delays the execution of file update requests until the transaction
has completed successfully. The processor holds the requests in the system workspace portion of
the transaction slot. If the transaction is successful, the processor performs the updates. If the
transaction fails, the processor simply erases the update requests.

If you have enabled journalling for the file, FILDEF automatically specifies that updates to the file
be staged. The information stored in the system workspace in order to stage file updates contains
all the information the system needs to journal the file.

A file cannot be journalled unless the processor stages its updates.

After you have completed all questions in the FILDEF dialog, the file definition record will be
added or updated to the file definition file. After the operation is complete, FILDEF stays in the
ADD (or EDIT) command, and reissues the logical file name question. If you want to continue
the current mode of operation (ADD or EDIT), simply specify the new file name. If you want to
change to another command, type ESCAPE to reissue the Command question. For example:

Logical file name? <ESC>
Command?

Figure 12-1a shows a File Definition Specification Sheet for the customer file record used by the
transaction processor “SAMPLE”. ’

Figure 12-1b shows the terminal listing of the FILDEF dialog used to implement the specification
shown in Figure 12-1a.

12.3.2 Listing the INDEX of File Definitions
The INDEX Command

Once the INDEX command is specified, its operation is automatic. After you type INDEX in
response to the Command? question, FILDEF prints an index of file definitions on your support
environment terminal. The Command prompt is then reissued, allowing you to EXIT, or to specify
another command. Figure 12-2 shows the INDEX Command dialog from FILDEF.

12.3.3 Printing or Showing a File Definition Record
The PRINT and SHOW Commands

The PRINT and SHOW commands are invoked by typing the command keyword in response to
the Command? prompt. For example:

Command? PRINT (RET)

or
Command? SHOW (RET)

Both commands ask you to specify the logical file name after they are invoked. The question
asked is:

Which file <ALL>?

12-7

The FILDEF Utility

FILE DEFINITION

f

Part One j

Transaction Processor Name:

Logical Filename:

RMS File Specification:

Work File?

Is This an Indexed File?

Maximum Concurrent File Accesses?

Read-Only?

Fast Deletions?

Lock Interval

Read Access to Locked Records?

Journal?

SIAIMPILIE

[CIUIS[TIOM]
(T[S0 CeETeM). BAT: 1]

[[]— Yes (Go to Part Two)

— No (Continue with next question)

[X]— Yes: No. of Keys [_[2]
Maximum Key Length Dz@

[]- No: Sequential or Relative File

[14]
[]- Yes
[X]— No

[]- Yes
[X]- No
[I2] seconds
[]— Yes
[X]— No

[[J- Yes (Go to Part Two)

[X]— No (Continue with next question)

Staged File Updates? []— Yes
[X]— No
r Part Two

File Channel Assignment

Description of File Contents; CUSTOMER FI/ILE RECORD

Assigned 1/0 Channel Number

(3]

Figure 12-1a File Definition Specification for “CUSTOM”

12-8

The FILDEF Utility

SRUN $FILDEF

FILDEF V1.0

File Defimition Utilitw

Transaction Frocessor name? SAMPLE (Rer

Command? ALID

Logical file name? CUSTOM

File srecification? [330:2277CUSTOM.DAT

Work file <NO>?

Is the ordanization of this file INDEXED <NO>%? Y
Number of keus defined? 2

Maximum kew length? 30

Maximum corcurrent file accesses < 1 =7 4

Read omlyg <NO>?

Fast deletions <YES:? NO

Interval between attemrts to access locked record CSECONDSI? 2 (Rer
Allow read access to locked records <YES:? NO
Journal after images <YES»? NO

Stage urdates <YES:>? NO

Record (CUSTOM) Alled.

Figure 12-1b FILDEF Utility Listing ADD Command Terminal Dialog

If you answer with a carriage return (®1), every file definition record contained in the current
tpname.FIL file is displayed. If the PRINT command has been specified, the display takes the form
of a listing sent to the console listing device (CLO:). If the SHOW command is specified, the file
information is displayed directly on your support environment terminal.

If you specify a previously defined logical file name in response to this question, only that file
definition record is displayed.

12-9

The FILDEF Utility

Command?® INDEX

lLogical name ! CUSTOM Srecification ! U3G0.227I1CUSTOM.DAT

Figure 12-2 FILDEF Utility Listing of INDEX Command Dialog

After displaying the requested file definition record, FILDEF returns you to the Command? question.
Command?
You can respond by typing EXIT, or specify the name of a FILDEF command.

Figure 12-3 shows the terminal dialog used to display a file definition on a support environment
terminal.

Commarnd? SHOW
Which file <ALL>7? CUSTOM

Lodical name ¢ CUSTOM

Maximum kew lenHth 0 30
Maximum concurrent file ac
L.ocked record retre intery
Access rights ! READ/WRITE

After imadges are not Journalled

Urdates are not ctaded

File is not & WORK FILE

Fast deletions will not be done

Read access to locked records is not allowed

Figure 12-3 FILDEF Utility Listing of SHOW Command Dialog

12.3.4 Deleting a File Definition Record
The DELETE Command

The DELETE command is invoked by typing the command keyword DELETE in response to the
Command? prompt. For example:

Command? DELETE

After you have invoked the DELETE command, a single question is asked:

Logical file name?

12-10

The FILDEF Utility

The logical file name is the unique 1- to 6-character alphanumeric string that you assigned to an
application data file. After you specify a defined logical file name in response to this question,
the FILDEF utility deletes the corresponding file definition record from [1,300] tpname.FIL.
The physical file previously assigned to this logical file name remains unaltered. Any executing
TSTs that refer to a deleted logical file name will cause a software error to be logged.

After the deletion has been performed, the logical file name question is reissued. Should you wish
to change to another command, or modify the file definitions of a different transaction processor,
simply press the ESCAPE key (ESC) until you return to the desired question.

Figure 12-4 illustrates the terminal dialog used to DELETE a file definition record.

Command? DELETE

Lodical file name? CUSTOM
Record (CUSTOM) DELETED.
Lodical file name?Cesc)
Fiommand? EXIT

Figure 124 FILDEF Utility Listing of DELETE Command Dialog

12-11

CHAPTER 13
APPLICATION SECURITY TOOLS

TRAX permits you to govern user access to a transaction processor through three major security
tools. The WORDEEF utility allows you to establish work class names that encompass a number of
transaction types. The AUTDEF utility allows you to assign user authorization identifiers and pass-
words, and to associate them with one or more work class names. The SIGNON and SIGNOF trans-
actions are supplied with TRAX. If you want to require users to sign on an application terminal
prior to accessing a transaction processor, you can specify these transactions as part of your applica-
tion. This chapter has three major sections. Each section explains one component of the TRAX
security system. The sections explain:

1. The Work Class Definition Utility, WORDEF.

2. The User Authorization Definition Utility, AUTDEF.

3. The transaction, file, and station definitions required to include the SIGNON/SIGNOF
transactions into an existing application.

13.1 WORK CLASSES

® An application terminal can be defined with a specific work class assignment. Using the
STADETF utility (see Chapter 10), you can specify a work class name as part of the terminal
station definition. The associated application terminal can then process only those trans-
-action types grouped under the assigned work class.

® Work class names can be associated with user authorization identifiers using the AUTDEF
utility. Individual users can be allowed access to one or more work classes as part of the user
authorization. This permits you to restrict the set of transaction types these users can exe-
cute after signing onto an application terminal. (Assigning work classes to individual users
applies only to installations that require users to sign on and off application terminals.)

13.1.1 The WORDEF Utility

Each work class has a corresponding definition record, keyed by the unique work class name, stored
in the system information file tpname.WOR. These records are created and manipulated by the
WORDEEF utility. '

13.1.1.1 Invoking the WORDEF Utility — To invoke the WORDEF utility, you issue the command
line:

>RUN §WORDEF

from a support environment terminal. The utility then identifies itself, and asks you to supply the
name of the transaction processor where the transactions requiring work classes are defined.

WORDEF V1.0
Work Class Definition Utility
Transaction Processor name?

13-1

Application Security Tools

After you specify the previously defined transaction processor name, the WORDEF dialog asks you
to enter one of six command modes:

ADD — Add a work class definition record to the file tpname.WOR.

DELETE — Delete an existing work class definition record.

EDIT — Change the list of transaction names in an existing work class definition record.
INDEX — List the names of all defined work classes at your terminal (TI:).

PRINT — List the transaction names included in one specific work class or in all defined
work classes on the console listing device (CLO:).

® SHOW — List the transaction names included in one specific work class or in all defined
work classes on your terminal (TI:).

Once you have selected a command mode, WORDEF continues its dialog. Since the questions vary
according to the command specification, the remainder of this discussion of the WORDEF utility
breaks into four different sections:

1. The ADD and EDIT Commands
2. The INDEX Command

3. The PRINT and SHOW Commands
4. The DELETE Command

13.1.1.2 Adding or Modifying a Work Class Definition
The ADD and EDIT Commands

If you specified ADD or EDIT in response to the Command? question, the WORDEF dialog
continues by asking the question:

Work class name?
A work class name is a 1- to 6-character alphanumeric string that uniquely identifies a work class.
If you are ADDing a new work class name, you must supply a list of one or more transaction names
to be included in that work class. To control the list of transaction names, WORDEF enters a loop
of questions, beginning with the prompt:

Subcommand?

You must enter one of two possible subcommand keywords:

® ADD — Adds a transaction name to the list of transactions for the current work class.

® DELETE — Deletes a transaction name from the list of transactions for the current work
class.

After you type the subcommand keyword ADD or DELETE, WORDEF asks you to specify the
transaction name to be added to or deleted from the list of transactions for the current work class.

Transaction name <DONE>?

13-2

Application Security Tools

WORDEF continues to prompt for transaction names until you press only the RETURN key. This
action accepts the DONE keyword, and tells WORDEF that you are finished with the current
operation on this record. WORDETF exits from the transaction name loop, and returns you to the
question “Work class name?.”” The transaction names that you supply to the WORDEF utility are
1- to 6-character names that represent transaction types defined in the TRADEF utility (See
Chapter 11). You can specify a maximum of 64 transaction names in a work class definition.

Figure 13-1a shows a Work Class Specification Sheet completed by the application designer. The
information on this sheet can be converted into work class definitions.

WORK CLASS SPECIFICATION SHEET

Transaction Processor Name: ma

Work Class Names

Transaction Name

S[1IGINJOIN] | X
[A[DID]CU]S |

[DlE[LICIU[S]
[S[1]GINIOIF]

Figure 13-1a Work Class Specification Sheet for “SAMPLE”

Figure 13-1b shows the terminal dialog listing that results when the information in Figure 13-1a is
submitted to the WORDEF utility.

13-3

Application Security Tools

FRUN $WORDEF

WORDEF U1.,0
Work Class Defimition WUtilitw
Transaction Froces:

RET

S0y @i’
Command? AL0 (Crer

Work class name? STEMON
Sub commanad? ADD (ReT
Tramsaction mame <DONE>T STGEHON
Transaction rname SDONER? (RE

Record (SIGNONY Allled. (re

Work classe name?™ ALTER (erer

Sub command? AL ‘ RET

Transaction rmame <HONE>? A000UES (Rer
Transaction nams CTHONE>? CHGOUE (RET
Tramsaction nawe <CHONE>T DPYCLE (RET
Tramsaction name <HONET STGNOF

3

Transaction name <HONE:
Kecord (ALTER)Y Alled.
Work cleass name? SHOW

Sub command® ALD Crer

Transaction name DONE>? OPYCUS
Transaction name <TONE-7 STENQF
Trensaction name <DONE:?

Record (SHOW) Alled.

Work class name® ((sc

Commarna® EXIT

Figure 13-1b WORDEF Terminal Dialog Listing for ADD Command

13.1.1.3 Listing the INDEX of Work Class Definitions
The INDEX Command

If you answer the Command? question by typing INDEX, WORDEF prints an index of defined

work class names on your terminal (TI:). Once the index listing is printed, WORDEF reissues the
Command?

13-4

Application Security Tools

Figure 13-2 shows the WORDEF terminal dialog used to obtain an index of work class definitions.

*RUN $WORDEF

WORDEF V1.0

Work Class Defimition Ubilits
Transaction Frocessor name? SAMPLE

Command? INDEX

Work class name ¢ ALTER Mumber of ciated tra P4
Work class name ¢ FULL Mumber of 2 ted tran e ¢80
Work class name ¢ SHOW Number of zssoci i tre R
Work class name 1 STGNON Number of associsted tran Y

Figure 13-2 WORDEF Terminal Dialog Listing for INDEX Command

13.1.1.4 Printing or Displaying Work Class Definitions — If you select the PRINT or SHOW
command mode, WORDEF asks you to specify the work class name that you wish to examine:

Which work class <ALL>?

If you respond to this question with a previously defined work class name, that work class is the
only record displayed by the utility. If you simply type a carriage return, all work class definition
records are displayed on the device specified by the command selection. In either case, WORDEF
outputs a listing of the work class name and its associated transaction types. Once the listing is
completed, WORDETF reissues the Command? question, allowing you to either exit, or to specify
a valid command name.

Figure 13-3 shows the WORDEEF terminal dialog used to display all work class definitions on your
support environment terminal. The PRINT command provides identical output to the system print
device CLO:. : :

13.1.1.5 Deleting a Work Class Definition
The DELETE Command

If you specify the DELETE command, the WORDEF utility continues its dialog by asking you to
specify:

Work class name?
You respond by typing the 1- to 6-character name of the work class you want deleted. After the
WORDETF utility deletes the record for that work class from the tpname.WOR file, it reissues the
Work class name? question. If you want to invoke another command from this question, simply

press the escape <ESC> key and the utility return to the Command? question. question.

Figure 13-4 shows the WORDEF terminal dialog used to delete a work class definition.

13-5

Application Security Tools

13-6

Command?® SHOW
Which work class <ALL>?
Work class name § ALTER Number of asssociated tramsactions
Associated transaction names
Anncus
CHGCUS
nrEYCus
SIGNOF
Work class name & FULL Number of associsted tramnsactions
Associated transaction names
ADNCUS
CHGCUS
nFycus
RELCUS
SIGNOF
Work class name ! SHOW Number of associasted transactions

Associated transaction names

DFYCUS
SIGNOF

Work class name ¢ SIGNON Number of associated transactions
Associated transaction names

SIGNON

Figure 13-3 WORDEF Terminal Dialog Listing for SHOW Command

Command? DELETE
Work class name? SHOW
Record (SHOW) LDELETED.

Work class name?

Figure 13-4 WORDEF Terminal Dialog Listing for DELETE Command

=
..

g%}

Application Security Tools

13.2 USER AUTHORIZATIONS

TRAX allows you to control access to certain types of transactions by specifying a set of user
authorization records that assign users access rights to certain groups of work classes. In conjunc-
tion with the SIGNON and SIGNOF transactions, user authorization provides a means to control
user access to certain transaction types that might process confidential or controlled information.
(See Section 13.3 for a description of how the SIGNON and SIGNOF transactions supplied with
the TRAX system can be incorporated into your application.)

In many cases, the display at an application terminal will indicate that a user sign on before execut-
ing certain transactions. In order to successfully sign on as instructed, a user must have a corre-
sponding user authorization record in the system information file tpname.AUT. A user authoriza-
tion record contains a user identifier, a password, and one or more assigned work classes.

To sign onto an application terminal, a user selects the SIGNON transaction, then enters his or her

unique identifer and the correct password for that identifier. The transaction types that are named
in that user’s assigned work classes then determine which transactions the user can execute. (When
a user signs onto a terminal, his or her assigned work classes override any work class assigned to the
terminal’s station.)

13.2.1 The AUTDEF Utility
The AUTDEEF utility creates and manipulates the records in tpname.AUT that define each user’s
authorization.

13.2.1.1 Invoking the AUTDEF Utility — After invoking the utility from a support environment
terminal, you must supply the name of the transaction processor that will be accessed by the user
or users whose authorization records are being added, deleted, or edited. The transaction processor
whose name is supplied in response to the prompt:

Transaction Processor name?

must have been previously defined by running the TPDEF utility. (See Chapter 4 for further in-
formation on TPDEF.) The AUTDEF utility then asks you to select one of seven command modes
by issuing the prompt:

Command?

ADD — Add user authorization records to the file tpname. AUT.

DELETE — Delete an existing user authorization record.

EDIT — Modify the information in an existing user authorization record.

INDEX — List at your terminal (TI:) the user identifiers and passwords of all authorized
users.

PRINT — List the information in one or all existing user authorization records on the sys-
tem console listing device (CL:). ‘
® SHOW — List at your terminal (TI:) the information in one or all existing user authorization
records.

13-7

Application Security Tools
13.2.1.2 Adding or Editing a User Authorization Definition

The ADD and EDIT Commands

To ADD or EDIT a user authorization record, you must supply a unique user identifier, a pass-
word, and one or more work class names.

User identifer?

A User identifier is a unique 1- to 20-character alphanumeric string. This identifier cannot be dupli-
cated in any other record within the file tpname. AUT; the identifier is the key to the record.

Password?

The password is a 1- to 6-character alphanumeric string. Each user must enter the password associ-
ated with his or her identifier in order to sign on successfully.

After you have supplied or examined the user identifier and password, the AUTDEF utility asks
you to supply the one or more work classes that the user can access. The names you specify should
correspond to work class names that have been defined by the WORDEF Utility.

Unless you specify one or more work class names, the user cannot execute any transactions after
signing on.

To control the list of work class names, AUTDEEF enters aloop of questions, starting with the prompt:
Subcommand?
You then reply with one of two subcommands:

® ADD — Assign a work class to the user’s authorization record.
® DELETE — Delete a work class from the user’s authorization record.

When you have specified either ADD or DELETE, AUTDEF asks you to name a work class. You
respond by typing a 1- to 6-character work class name. (The default answer is DONE;i.e. you have
defined all work classes for this application.) AUTDEF continues to prompt you for work class
names until you respond by pressing the RETURN key.

Work class name <DONE>?

When you are DONE with the list of work class names, AUTDEF then returns to the question “User
identifier?”’

If you are EDITing a user authorization record, you must specify either ADD or DELETE in re-
sponse to the “Subcommand?” prompt. (If you are not changing any work classes, simply enter
ADD, and then hit a carriage return in response to the ‘“Work Class <DONE>? prompt.) If you
wish to change work classes, you must DELETE incorrect names, and then ADD the desired work
class names.

13-8

Application Security Tools

Figure 13-5a shows a user authorization specification sheet that is implemented by the AUTDEF
utility.

Figure 13-5b shows the AUTDEF terminal dialog required to implement the specifications shown in
Figure 13-5a.

USER AUTHORIZATION SPECIFICATION SHEET

Transaction Processor Name: E

Work Class Names

,@Q—v S

OAAY
User ldentifier Password Q\ ‘()
[SIMI[THT] [O[ORIN] [| X
IMAINIAIGE R[S]YIS[TIEIM] X

[BIRIOWINT] [ETHIVICIKT] |X
WHIITIE] | [SINIOW] [| |X
LTI OITTTT]
(0 O A I
LTI IT I
LTI LT TTT T
I O O
0 I O O O
O]

LTI I IT 1]

11T O1T1113
T TTIOTTTT]
(T T1] [T

Figure 13-5a User Authorization Specification Sheet for “SAMPLE”

139

Application Security Tools

SRUN $AUTDEF

AUTDEF V1.0

User Authorization Definmition titilite
Transaction Frocessor name? GamMPLE (rex
Command? AID

User identifier? SMITH
Password? JOHN

Sub command? ALD

Work class name <DONE:>? SHOUW
Work class name <DONEZT
Record (SMITH) AlDed.

User identifier? MANAGEER
Fassword? SYSTEM

Sub command? AN

Work class name <DONE:? FULL
Work class name <DONE-T
Record (MANABER) AlDed.

User identifier? BROWN
Fassword? CHUCK

Sub command? ALL

Work class rame <DONE:=? ALTER
Work class name <DONE:T

Record (RROWN) AlDed.

Figure 13-5b AUTDEF Terminal Dialog Listing for ADD Command

13-10

Application Security Tools

13.2.1.3 Listing the INDEX of User Authorizations
The INDEX Command

This command requires no further terminal dialog. It displays the identifiers and passwords of all
user authorizations defined in the .AUT file associated with the transaction processor name that
you supplied when you invoked the utility. This listing appears on the support environment ter-
minal where you are currently running the AUTDEF utility.

Figure 13-6 lists the AUTDEF terminal dialog that lists the INDEX of all user authorization defini-
tions currently in the user authorization definition file [1,300] SAMPLE.AUT.

Command? INDEX

User identifier ! RROWN Password ¢ CHUCK
User identifier ! MANAGER Password ¢ SYSTEM
User identifier ! SMITH Password ¢ JOHN
User identifier ! WHITE Fassword ¢ SNOW

Figure 13-6 AUTDEF Utility Listing of INDEX Command Terminal Dialog

13.2.1.4 Printing or Showing a User Authorization Definition
The PRINT Command
The SHOW Command

The SHOW and PRINT commands perform the same operation but direct their output to different
devices. SHOW lists the attributes of a user authorization definition at your support environment
terminal, while PRINT provides a hard-copy listing on the system device assigned to logical unit
CLO:. (This is usually the line printer or the LA-36 console terminal.) The terminal dialog for
these commands consists of a single prompt:

Which user authorization <ALL>?

If you provide a user authorization name in response to the prompt, the SHOW and PRINT Com-
mands will display information for the user authorization only. Responding to this prompt by pres-
sing the RETURN key <RET> produces a complete listing of the user authorization attributes for
the transaction processor name that you specified when you invoked the AUTDEF utility.

Figure 13-7 lists the AUTDEF terminal dialog that lists all user authorization definitions currently
in the user authorization definition file [1,300] SAMPLE.AUT on your terminal.

13-11

Application Security Tools

Commarid? SHOW
Which user identifier <ALL>7? RROWN

*

User identifier ¢ BROWN Fassword ¢ CHUCK

*

Number of associated work classes ¢ 1
Associated work class names

ALTER

Figure 13-7 AUTDEF Utility Listing of PRINT Command Terminal Dialog

13.2.1.5 Deleting a User Authorization Definition
The DELETE Command

The Delete command allows you to remove a user authorization definition from the .AUT file
named by the transaction processor specified when you invoked AUTDEF. To delete a user au-
thorization definition, simply type the identifier you wish to delete.

Figure 13-8 lists the AUTDEF terminal dialog used to delete the user authorization “SMITH” from
the authorization definition file [1,300] SAMPLE.AUT.

Command? LELETE
User identifier? RROWN
Record (BROWN) DELETED,

User identifier?

Figure 13-8 AUTDEF Uetility Listing of DELETE Command Terminal Dialog

13.2.2 The SIGNON and SIGNOF Transactions

The SIGNON and SIGNOF transactions consist of forms and TSTs supplied as TRAX system soft-
ware. ‘When the forms and TSTs are incorporated into a transaction processor using the definition
utilities, the SIGNON and SIGNOF transactions are created. These transactions allow you to
establish authorization procedures for application terminal users.

13-12

Application Security Tools

13.2.2.1 Incorporating the SIGNON/SIGNOF Transaction Into Your Application — If the applica-
tion designer selects SIGNON/SIGNOF control for a transaction processor, the transaction proces-
sor definition utilities must first be run to incorporate the definitions, TSTs, forms and files of the
SIGNON and SIGNOF transaction. The steps in this process are:

1. Run the TPDEF utility to EDIT the transaction processor definition. The EDIT should
add the following resources to the existing definition:

a. Two transaction types
b. Two user TSTs
¢. Two application data files

Figure 13-9 shows the modifications needed to include the SIGNON facility in a transaction
processor definition.

TRANSACTION PROCESSOR SPECIFICATION SHEET

Transaction Processor Definition: EdiT
Transaction Processor Name:
Maximum number of transaction types: (0—64) T2
Maximum number of concurrent transaction instances: {0—96) ED
Maximum number of application terminals: {0—256) EED(SAME)
Maximum number of user TSTs {0—256) [IT]+e
Maximum number of master link stations: 10-10) T XsAME)
Maximum number of slave link stations: (0-64) [T6AME)

Maximum size of receive link message: (0-4096) [T 1T
Maximum number of submit batch stations: (0—1) (JGAME)
Maximum number of slave batch stations: (0-186) EED(SAME)
Maximum number of mailbox stations: (0—10) REE (SAME)
Maximum number of application data files: (0-64) [:l:l___l te
Maximum transaction slot size: (1-8192) [T 1T blocks
Automatic crash recovery: [J - ves [J-nNo

SAME

Figure 13-9 Transaction Processor Specification Sheet

13-13

Application Security Tools

2. Run the TRADETF utility to ADD the SIGNON and SIGNOF transactions. Figure 13-10a
and 13-10b list the transaction definitions for SIGNON and SIGNOF respectively.

Transaction Processor Name:
Transaction Name:

Exchange Recovery?

Log Exchange Messages?

Log Other Station Messages?
Maximum Size of Exchange Message*
Transaction Workspace Size:

System Workspace Size
(Calculate according to formula on
worksheet — ““Calculating the system
workspace”’.}

Transaction Slot Size Calculation:

Enter System Workspace Size:

Add to find Transaction Slot Size:

have just defined.

Divide Exchange Message Size by 64 and round up:
Divide Transaction Workspace Size by 64 and round up: ..- blocks

TRANSACTION SPECIFICATION SHEET

[]-vYEes X]-NoO
[]-ves [X]- no
[J-Yes X]-nNo
bytes

E e

T 64-byte blocks)
D:]:m blocks

... blocks
D:DI’ blocks

TRANSACTION EXCHANGE DEFINITIONS

NOTE: A Transaction Exchange Definition should be prepared for each exchange associated with the transaction you

Exchange Destination Subsequent Time

Label Form Name Station List Wait Repeat Action Limit

[SI'I[GIN[OIF] [SHIGINICIF] [S[IIGIN[O[F] [X]waiT []repear X} nimae 2] mins
CT T LTI OJvowarr NOREPEAT [] FIRST
EENEEN [Jvext

Figure 13-10a Transaction Specification for “SIGNON”

13-14

Application Security Tools

TRANSACTION SPECIFICATION SHEET

Transaction Processor Name:
Transaction Name:
Exchange Recovery? D~ YES [X]—- NO
Log Exchange Messages? D~ YES —- NO
Log Other Station Messages? []-Yes » NO
Maximum Size of Exchange Message: DE@ bytes

Transaction Workspace Size: +F—F—F—Fbytes

System Workspace Size
(Calculate according to formula on
worksheet — ‘“Calculating the system

workspace”’.) @(64—byte blocks)

Transaction Siot Size Calculation:
Divide Exchange Message Size by 64 and round up: D:]:m blocks
Divide Transaction Workspace Size by 64 and round up: I..[’Z blocks

Enter System Workspace Size: blocks

Add to find Transaction Slot Size: D:DI] blocks

NOTE: A Transaction Exchange Definition should be prepared for each exchange associated with the transaction you
have just defined.

TRANSACTION EXCHANGE DEFINITIONS

Exchange Destination Subsequent Time
Label Form Name Station List Wait Repeat Action Limit

[S[TTGIN[GIN] [S[1]GINICIN] [S[1[6INIOIN] [X]warr [_]repear X] AL 7] wins
(TTT1TT] [Cnowarr NOREPEAT [] FIRST
(TTTTT] et

CITTT T COTTTT CITTTT] Cdwar [reeear [Juwmar [T Jwins
(TTTTT] Cnowarr []norereat [] FiRST
ERRENN Dvext

Figure 13-10b Transaction Specification tor “SIGNOF”

13-15

Application Security Tools

3. Run the STADEF utility to:

a. Add the SIGNON and SIGNOF TSTs. The TST task images reside in UFD [1,300].
The station definitions for these TSTs are shown in Figure 13-11a.

TST STATION SPECIFICATION SHEET
Transaction Processor Name: [SIAIMIPIL]E
No.
Station Active Serially
Station Name Priority Task Image File Specification Copies Reusable?
BlilcNoN] [1[2l8] BB 11,5818]|hIeNCN.FISK:(18 [11 X -ves
[]-no
ShleNo[F] [12@ [Elylel:[(1 11],Beel]BlIeNoIF]. FISK;:[(18 [X]-ves
[]-nNo

— T — T~ — T T —— T — T N e T T —
Figure 13-11a TST station Specification for “SIGNON”’ and “SIGNOF”’.

b. Edit all interactive terminal station definitions to specify an initial a work class of
“SIGNON”. These changes are shown in Figure 13-11b.

TERMINAL STATION SPECIFICATION SHEET
Transaction Processor Name: m
Device System
Station Name Device Name Type Messages Work Class Run A Dedicated Transaction?
[rIEIRMI%]%] X] - sotH X1 - ves BENESN [Yes — Transaction Name: [] 1 [1 1]
D — QUTPUT [:] —~ NO E No — Initial Form Name: [SIEILIE[C[T]
CITTTTT] CLCITT1] D—BOTH D—YES m DYes—TransactionName: Dm
’:] - QUTPUT D —NO [:] No — Initial Form Name: ED]IE]
D ~ BOTH D — YES m [:] Yes — Transaction Name: ED:[]I]
D - OUTPUT D - NO D No — Initial Form Name: Djm
IT111] I T1T1] (1 -somH - ves (IITT1] [Yes — Transaction Name: [T T [1 1]
[- output []-no [INo - initial Form Name: [1T 1 1T 1 |]
| [:] - BOTH D - YES ED::[D D Yes — Transaction Name: m
1 - outpur 1 -no [No — tnitial FormName: [T 1 []]

\/\/\//\/\/\/\/\//\/\/
Figure 13-11b Terminal Station Specification with SIGNON Work Class

4. Run the FILDEF utility to ADD the logical files AUTFIL and WORFIL. These file defini-
tions are described in Figures 13-12a and 13-12b respectively. These files are the user
authorization and work class definition files, that are accessed by the SIGNON and SIGNOF
transactions.

13-16

Application Security Tools

FILE DEFINITION

L Part One j
Transaction Processor Name: [SIAIMPIL]E]
Logical Filename: WOIR[F]1 JL]

RMS File Specification:

Work File?

Is This an Indexed File?

[Maximum Concurrent File Accesses?

Read-Only?

Fast Deletions?

Lock Interval

Read Access to Locked Records?

Journal?

Staged File Updates?

BYIE:[[(117).3188] | SIAIMPILE]. WoR): (18]

|:] — Yes (Go to Part Two)

— No (Continue with next question)

[X]— Yes: *No. of Keys [_[1]
Maximum Key Length D:IEI

[(]— No: Sequential or Relative File

L]

[X]— Yes
.D— No
X]— Yes
[]-No

[T1] seconds

[X]— Yes

[]—No

[J— Yes {Go to Part Two)

— No (Continue with next question)
[(]— Yes

[X]— No

Part Two

File Channel Assignment

Description of File Contents: _A/ORK CLASS DATA

Assigned /O Channel Number

X1 A4

Figure 13-12a Work Class File Definition Specification.

13-17

Application Security Tools

FILE DEFINITION

RMS File Specification:

‘Work File?

Is This an Indexed File?

Maximum Concurrent File Accesses?

Read-Only?

Fast Deletions?

Lock Interval

Read Access to Locked Records?

Journal?

L Part One
Transaction Processor Name: B!E][i
Logical Filename: [AV[TIFI L]

iY@l (1 17).30l0)] SIAIMPILIE]. [AUTT): (12

[[]- Yes (Go to Part Two)

— No (Continue with next question)

[X]— Yes: No. of Keys [_[1]
Maximum Key Length

(- No: Sequential or Relative File

(10

— Yes
[J-No

X]— Yes
[]-No
[I1] seconds
[X]— Yes
[]-No

[J— Yes (Go to Part Two)

[X]— No (Continue with next question)

Staged File Updates? []- Yes
X]-No
r Part Two

Description of File Contents:

File Channel Assignment

VSER AUTHORIZAT/ION DATA

Assigned 1/0 Channel Number

3 A

Figure 13-12b User Authorization File Definition Specification.

13-18

Application Security Tools

5. Run the WORDEF utility to ADD a work class called SIGNON, and to EDIT all other work
class definitions to ADD the SIGNOF transaction. The SIGNON work class must contain
the SIGNON transaction. All other work classes must contain the SIGNOF transac-
tion. These transactions are already included in the description of WORDEF in Sec-
tion 13.1.

6. Run the AUTDEEF utility'to establish the user identification, passwords, and permitted
work classes for each authorized user. The User Authorization description in Section 13.2
shows this procedure.

The next three steps include the SIGNON/SIGNOF facility in the forms defintion file. Details on
how to code forms and the ATL Utility program are given in the TRAX ATL Language Reference
Manual

1. Edit the transaction selection form to include the SIGNON and SIGNOF transactions in the
menu or screen display.

2. Run the ATL utility to REPLACE the transaction selection form.

3. Run the ATL utility to ADD the form defnitions for SIGNON and SIGNOF. The source
statement files for these forms are [1,300] SIGNON.ATL, and [1,300] SIGNOF.ATL. Figure
13-13 shows the ATL utility dialog required to ADD the SIGNON and SIGNOF forms.

FRUN $ATIL

ATL MO
TRAX Forms Definition File Utalitw

Tramsaction srocessor name 00

FroganpLE Ge
Command <COMPTLE>? AQD

Form rame? S1GMNON

ATL source File <SIGNON.ATL T [XG0 TRTEMON
levice twre <UTERH?

List <ALLZ? NONE

Command <COMPTLE>T &0 (Rer

Form name? SIGNOF

ATL source file <HIGNOF ATLH? 130015 1GNOE
Device ture <UTLR:T

List <ALL>T NONE

Command <COMPILERT EX

Figure 13-13 ATL Utility Dialog to Add SIGNON and SIGNOF forms

13-19

Application Security Tools

13.2.2.2 Using the SIGNON and SIGNOF transactions — The user interface for signing on an ap-
plication terminal consists of the following steps.

1. When the transaction processor is started, the user selects SSIGNON from the menu of trans-
action types and presses the ENTER key.
2. The SIGNON form is displayed on the application terminal (See Figure 13-14a).

NAME : e |
PASSWORD:

Figure 13-14a Initial Display of SIGNON Form

3. The user types in his user identification and password, and presses ENTER. (See Figure
13-14b.)

13-20

Application Security Tools

NAME :
PASSWORD:

Figure 13-14b SIGNON Form after ID and password are typed.

4. The SIGNON TST executes. If the user ID or password is incorrect, a message is sent to
the SIGNON form, and the user is allowed to reenter the user ID and password.

5. If the User ID and password are valid, the transaction selection form is redisplayed, with the
work classes in the user authorization record now enabled for that terminal.

13-21

Application Security Tools

To sign off from an application terminal, the user must:

1. Return the terminal to the transaction selection form.

2. Select the SIGNOF transaction from the menu, and press ENTER.

3. Press ENTER is response to the SIGNOF form. (See Figure 13-15.)

4. The SIGNOF transaction disables all work classes except SIGNON, and redisplays the trans-
action selection form.

Press Key ENTER to Sidgn OFff

Figure 13-15 Initial Display of SIGNOF Form

13-22

CHAPTER 14
TRANSACTION PROCESSOR TESTING ENVIRONMENT

14.1 INSTALLING AND TESTING A TRANSACTION PROCESSOR

TRAX provides you with a sophisticated transaction testing capability that assists you during the
process of debugging and testing the components of a transaction processor. The three major
facilities available to you for debugging purposes are:

® A transaction processor trace facility, that records data from each transaction instance.
This data can be submitted to the TPTRAC utility program, and a detailed trace of each
transaction instance is produced in listing form.

® A support environment terminal that you can include in the TST task image. Using system
debugging aids such as the BASIC-PLUS-2 debugger, and language terminal I/O facilities
such as the COBOL DISPLAY statement, you can control the execution of the TST from
the debugging terminal. (Building TSTs in DEBUG mode and including debugging termi-
nals in a TST task image is discussed in the TSTBLD utility description in Section 7.
TSTBLD.)

® A software error logger (SERLOG) that records all system and user software errors as they
occur. Two utility programs, SERANL and SERDAY interpret the errors and provide
valuable information that can be used to debug and correct these errors. (SERANL and
SERDAY are dicusssed in the TRAX System Manager’s Guide.)

The following sections discuss how to

Debug transactions in the transaction processing environment.

Enable the software error logging facility for your transaction processor.
Control the execution of a transaction processor using the TPCTRL utility.
Interpret the secondary error log listing.

Run the TPTRAC utility to generate trace listings of your transaction processor.

14.2 DEBUGGING IN THE TRANSACTION PROCESSING ENVIRONMENT
Before you attempt to debug a transaction operating under a transaction processor, you should
have performed the following actions:

1. Debugged all TSTs using the DEBUG utility. (See Section 7.3.)
2. Rebuilt all TST task images using TSTBLD. If you want a transaction processing debug
terminal linked to the TST, specify this support in the TSTBLD dialog. (See Section 7.2.)

The remainder of this Chapter describes the steps you should follow when you debug in the trans-
action processing environment.

14.3 THE SOFTWARE ERROR LOGGING TASK - SERLOG
Trax provides a software error logging program that runs concurrently with transaction processors.
When you are debugging in the transaction processing environment, you should always enable

14-1

Transaction Processor Test Environment

the error logger. Software errors detected in TRAX system and application software modules

are sent to SERLOG. SERLOG logs errors from selected transaction processors to the system error
log, [1,300] SERLOG.LOG. As an option, you can also direct SERLOG to format and display error
messages on a support environment terminal.

The error logging process is controlled through the SERCTL utility. If you are testing a new trans-
action processor for the first time, you must run SERCTL to enable error logging for the transaction
processor.

The SERCTL utility is described in the TRAX System Marnager’s Guide. Figure 14-1 shows a termi-
nal listing of the SERCTL utility dialog that enables SERLOG and directs the output to a support
environment terminal TT5:.

*RUN $SERCTL (D)

SERCTL V1.0
Software error loddger control wtility

Command <EXIT:>? TERMINAL ()
Device name <C0O03>? TT1: (D)

The new secondary logding device will be in effect the next time the error
loddger is run.

Command <EXIT>? SELECT

Transaction erocessor name <ALL>? SAMPLE Cer)
Select error monitoring <YES:? ()
Transaction rrocessor name <DONE>? Cer)

The new selections will be arrlied.

Commang <EXIT>T

-

Figure 14-1 SERCTL Utility Dialog to Enable Error Logging

14.4 USING THE TPCTRL UTILITY

You use the TPCTRL utility to install, start, stop, and remove a transaction processor. The ex-
amples shown here are designed to assist the application programmer who is integrating and testing
a transaction processor. A complete description of the TPCTRL utility is given in the TRAX
System Manager’s Guide.

Before you install a transaction processor, you must insure that a TRAX system capable of support-
ing a transaction processor is installed on the computer you are using. The system manager can do
this for you, or can give you instructions on how to do this. For further information refer to the
SETUP and BOOT utility descriptions in the TRAX System Manager’s Guide.

TPCTRL is run under a privileged UIC from a support environment terminal. Figure 14-2 shows

the terminal dialog required to install the transaction processor “SAMPLE’’ and enable the trace
facility.

14-2

Transaction Processor Test Environment

*RUN $TFCTRL

TFCTRL V1.0
Transaction Frocessor Control Utilitw

Command <BRIEF>? INSTALL Ge&D)

Transaction rrocessor name ? SAMFLE Ge)
Fartition <TF1FAR:>? CED)

Trace transaction rrocessor <NO>? YES Ca)
Write srotect data base =NO:? (R
High-rerformance RMS <NO:7

Forms definition file version =LATEST:? Ger)

Figure 14-2 TPCTRL Terminal Dialog for the INSTALL Command
After the INSTALL command dialog is completed, TPCTRL
® Allocates the resources required by the transaction processor
® Accesses or creates the files needed for the transaction processor to run

® Builds system tables based on the data in the transaction processor definition files
® Performs consistency checks

After a transaction processor is installed, it must be started. When you issue the START command
to TPCTRL, it starts an installed transaction processor and sets the start status in the transaction
processor record of the TPDEF.TPF file.

If the INSTALL command was successful, you enter the START command dialog by pressing the
RETURN key in response to the ‘“Command?” question.

Figure 14-3 shows the START command dialog for “SAMPLE”.

14-3

Transaction Processor Test Environment

Command <START>?

Transaction srocessor name <SAMFLE>? Cer)
Enable dournalling <NO>7? Cer)

Enable logging <NO>? (D)

Command <EXIT>? (rer)

.

Figure 14-3 TPCTRL Terminal Dialog to START “SAMPLE”

14.5 TESTING THE TRANSACTION
Once the transaction processor is installed and started, you can begin testing. Three facilities are
available to record the results of testing.

1. The transaction trace facility.
2. A debugging terminal linked to a TST.
3. The software error log.

The three facilities are independent of each other.
When the transaction processor is started, all application terminals have the initial screen displayed.

You begin by invoking a transaction from an application terminal. If you have included COBOL
ACCEPT statements or the BASIC-PLUS-2 debugger in a TST, and have linked that TST to a de-
bugging terminal, the transaction execution stops when these statements are reached. You then
examine the debugging terminal (which is a support terminal, not a VT62), and interact with the
executing TST. Any software errors that occur during your transaction execution written to the
secondary error log.

If you are tracing a transaction processor, remember that the trace facility generates large volumes

of data. Limiting debugging sessions to short periods keeps individual TPTRAC output to a
manageable size.

144

Transaction Processor Test Environment

14.6 USING THE SECONDARY ERROR LOG LISTINGS

The secondary error log is very useful for programmers during the application debugging process.
When a software error is detected, SERLOG prints a message in the following form on the enable
secondary logging device:

1. The date and time the error was logged.
2. The transaction name, transaction instance number, and source station ID.
3. The error message.

Figure 14-4 shows typical SERLOG output to a support environment terminal. If you want more
detailed information, error log analysis is performed by two utility programs: SERDAY and
SERANL.

Xk¥ Software error recorded at 22-AUG-78 16136103
Processor SAMFLE Source Station TERMI11 Tramsaction ENTORD In 305
Abnormal tst termination

Xx¥X Software error recorded at 22-AUG-78 16136135
Processor SAMFLE Source Station TERM10 Transaction ENTORD ID 49
No modifier flag in messade

X*%¥ Software error recorded at 22-AUG-78 1631346159
Frocessor SAMPLE Source Station XXkXkX Transaction ENTORD ID 306
Unstade error

%% Software error recorded at 22-AUG-78 16145156

‘rocessor SAMFLE Source Statiorn TERM14 Transaction CHNSTK I 1513
dehange timeoutl

*¥kk Software error recorded at 22-AUG-78 17:37:04
FProcessor SAMFLE Source Station TERMS8 Transaction ENTORD In 112
Rerly messadge after transaction closed

Figure 144 SERLOG Output Listing

The TRAX System Manager’s Guide gives detailed information about how to use SERANL, and
SERDAY.

14.7 STOPPING A TRANSACTION PROCESSOR

When you want to stop a transaction processor, you must invoke the TPCTRL utility from a
privileged UIC. The STOP command stops a transaction processor.

14-5

Transaction Processor Test Environment

Figure 14-5 shows the STOP and REMOVE command dialog for “SAMPLE”.

*RUN $TRCTRL

TRFCTRL V1.0
Tramsaction Frocessor Control Utilitw

Command <BRIEF>7? &TOF ()

Tranmsaction srocessor name <ALL>7 G

Mirutes until tramssction initistion is dissbled <0x7 (&)
Minutes urtil incomslete srocessing is aborted <1057 0 GeD)
Command <BRIEF:=? pEMOVE (D)

Transaction srocessor name <ALL>T (D)

Command <EXIT:=? (D)

Figure 14-5 TPCTRL Terminal Dialog to STOP and REMOVE “SAMPLE”

After you stop a transaction processor, the REMOVE command releases the system resources used
by the stopped transaction processor. The REMOVE command also resets the install status in the
transaction processor record of the TPDEF.TPF file.

14.8 TRANSACTION PROCESSOR TRACE UTILITY - TPTRAC

The Transaction Processor Trace Utility, TPTRAC, allows you to decode the trace file created by
an active transaction processor. When a TP is installed and the parameter TRACE is specified as
part of the TPCTRL utility dialog, that TP’s actions are recorded in a trace file [1,10] tpname.TRC.

When a TP is stopped, the trace file is closed. In order to interpret the data in this trace file, you
must process the file through the TPTRAC utility. TPTRAC creates a detailed listing of events
that occurred when the TP was active.

TPTRAC follows the standard TRAX utility dialog conventions described in Chapter 8.

In the dialog that controls the operation of TPTRAC, you may select listings of specific transaction
types, TSTs, and exchange labels.

The listings may include any combination of input messages, output messages and other system
calls.

After a TP has been stopped, the trace file closed, and a full support environment system installed,
you can invoke TPTRAC from a support environment terminal by typing:

RUN $TPTRAC

14-6

Transaction Processor Test Environment

TPTRAC identifies itself, and begins a dialog to determine the types of trace listings you require..
The first question asks:

Input file?

You respond with the file specification of the trace file. Unless you specify these elements speci-
fically, TPTRAC assumes that the file resides on the system device under UFD [1,10], with a file
type of .TRC, and the current version number. You must always specify the file name in response
to this question. In general, this will be the transaction processor name.

Listing device <CL:>

The next question asks you to specify the device and/or file where the listing files produced by
TPTRAC should be sent. If you answer this question by pressing RETURN <RET>, the default
output device is the system console listing device (CL0:). This is usually equated to the line printer
when your system is generated.

If you wish to specify another device or file, simply specify a valid output device or file specifica-
tion. TPTRAC assumes your UFD and a file type of .LST.

Once the input and output files have been specified, TPTRAC begins a series of questions to deter-
mine the types of operations to examine. The first of these questions asks you to specify:

Transaction name <ALL>?

If you press the RETURN key, all transaction types are listed. If you respond with a 1- to 6-charac-
ter transaction name, then only instances of that transaction are examined. This question is
repeated until only the RETURN Kkey is pressed. The first time, the default will be ALL. Other-
wise, the default is DONE.

TST station name <ALL>?

This question asks you to specify which TSTs are to be listed. If you press the RETURN key, I/O
operations and system calls are listed for every TST invoked by the transaction processor.

If you respond with a 1- to 6-character TST station name,.then only operations for that TST are
listed. This question is to be repeated until only the RETURN key is pressed. The first time, the
default will be ALL. Otherwise, the default is DONE. -

TPTRAC enters a second set of four questions that ask you to specify the types of system calls and
station messages that you want to include in the listing. The first of these asks:

Exchange messages <YES>?

14-7

Transaction Processor Test Environment

If you want the listing to include exchange message data, respond by pressing the RETURN key.
If you don’t want to see the exchange message data, type N or NO followed by the RETURN key.

Other station messages <YES>

If you want the listing to include response messages, report messages, and mailbox messages, re-
spond by pressing the RETURN key. If you don’t want the listing to include these messages, type
N or NO followed by the RETURN key.

Transaction workspace <YES>?

If you want the listing to include the transaction workspace data, respond by pressing the RETURN
key. If you don’t want the listings to include the workspace data, type N or NO followed by the
RETURN key.

System calls <YES>

If you want the listing to include data concerning calls (other than message calls) to the TRAX
system library, respond by pressing the RETURN key. If you don’t want the listing to include call
information, type N or NO followed by the RETURN key.

After this response is accepted TPTRAC produces the requested listing and exits.

Figure 14-6 illustrates the dialog used to produce the listings in Figure 14-7.

*RUN $TPTRAC (R0

TPTRAC V1,0
Transaction rrocessor trace utility

InFut file? SAMFLE.TRC (D
Listing device <CL1>? LF!(CED
Transaction <ALL>7? CGe)

TST station <ALL>? (D)

Exchange messades <YES:»? (&)
Other station messades iYES}?C::)
Transaction workseace «YES:x? (D)

Sustem calls <YES»? (D

Figure 14-6 TPTRAC Dialog for SAMPLE

14-8

Transaction Processor Test Environment

14.9 ANNOTATED TPTRAC OUTPUT LISTING

Figure 14-7 consists of a set of annotated TPTRAC listings of an instance of the DPYCUS trans-
action. The numbers on the computer output listing refer to the numbered paragraphs in the anno-
tation section.

Transaction Trace Listina #7-aug=78 12321 @

Input files [1,12]1SaMPLE,THC @

Transactions all ©
TST stations aALL O
Trace will include: txchange messages

Lther station messages @,
fransaction workscace
System calls

Figure 14-7 TPTRAC Annotated Output Listing

1. This line identifies the listing, and the time and date it was produced.

2. [1,10] SAMPLE.TRC is the trace input file produced by the transaction processor SAMPLE.
3. The trace listing includes all transaction types.

4. The trace listing includes all TST stations.

5. The trace listings include these data structures and system calls.

14-9

Transaction Processor Test Environment

Transactior trace trom file [1,10iSaMrLE,TRC @

Arakauknataknse Start of 15T @)

Tramgaction 18T Seauence Status »ds Name
DPYCUS © FING © 1 0
Messagey
(6]
P RN P PN T PN S TT AT NP N RE TR aEEE R I RRASRETREw)
'] PyuRURYN K Janmtakianm mk[bme[bmk(bmk
5@ [emc[ome[6mk (b

YT I P R P R LY P R AR LR R AR R LD A LR L Rl ikl

workspace:

(7]

L L L LT T R R R L L e
0] mik[omk[omk [emk [omk[omk [omk [omk [omc[bmk[bmx [6mklEmk
Se [emk [omk[omk [omkc[emk[omk [omk [omk[omk{omi [6mk[6mk [6
100 me{bmelomc[omcieme[omk [(6mc[6mk [omk[omk[omk[bm[bmik
1592 [emk[omclemk [6mrik[bmk [omik[om [emu[omklomik [emklomk [6
2ee mklomk[omk [emklemk{omk[emc{omk[omk[omk[or(bmk[omk
ese [emk (o mic[emk[omk [emk [emk [emk [omk [emk [erx[6mk (6
300 me [omc [omk [omk [omk [6mk [6mk [omrk [ork{oTk[emk[omk [6mKk
350 (emc[omx[emk[6mk[omk [omk [6mk [emk (b

X I Y R Y RN R RN R A R L R L A A A R L R L L LR

Figure 14-7 (cont.) TPTRAC Annotated Output Listing

. Identifying line for trace output.

. The first TST in the first exchange starts here.

. The name of the transaction type being run.

. The TST station name.

. The transaction instance number defined by the system.

. The contents of the exchange message at the start of the transaction instance. The area dis-
played is the maximum number of bytes defined for this transaction instance.

7. The contents of the transaction workspace at the start of the transaction instance. The area

displayed is the maximum number of bytes defined for this transaction type.

WA WN

14-10

Transaction Processor Test Environment

(1]

'} =5267 =18725 =5267 =18725 =5267 ={8725 =5267 =18725 =5267 =1K8725
10 =5267 =1872S5 =5267 «18725 =5267 =148725 <=5267 =18725 =52&67 =187¢25
20 =5267 =18725 =5267 =18725 5267 =187¢5 -526J7\ = 18725 =Sz67 =18725
170 w5267 =18725 =5267 =18725 =5267 =148725 =567 «18725 =S¢67 =137¢5%
18¢ w5267 =18725 =5267 =18725 «=5267 =18725 «5267 =18725 eBz67 «1AR725%
199 5267 =16725

KAkARRRNRARRRAN (pen file @

Transaction IsT Seaquence Status w»as hame

DPYCUS tIND 1 1 1750 CuSTCMm

File organfzation is incexea @
Record format
Max{mym recorc size = 2S5

Bucket size = |

Block size = 51¢

AR AR AR R R A AR

Transectionr

DPYCUS

Channel

W N =

nurber

is variable

Connect stream @

TS§1

FIND

=310

Sequence
1

Status

! @

. An Integer dump of the transaction workspace data.
. The name of the operation performed by the TST.
. The status words returned from the open file operation. The value ““1” indicates success.

wds Nare
%]

Figure 14-7 (cont.) TPTRAC Annotated Output Listing

The value ‘1750 is additional information provided by RMS.

0. OV A

. The logical file name being opened.

. Information about the file just opened.
. The next operation is a connect to an I/O channel.
. The status is success.
. Channel #3 was connected.

14-11

Transaction Processor Test Environment

LAV AW -

14-12

khkkkhkkhkakktxk Fing a reccrdﬂ

Trangaction 181 Sequence Status wos Name
DPYCULS FIND 1 1 ¢

(2]
Charmnel nyumper = 3

Access mode is randgom
Refererce key (if acplicable) = { ©
Record number (if applicaple) = ¢

Key 8 N kK Jartaxian @

*kERkXRRANAEARE (et a record @

Transaction 18T Seauence Status was Mare
DPYCUS FIND 1 1 0 ¢
Channe) rumper = 3

Access moaoe §s sequenrtial

Recora:

5@

129
159
2Q¢

(LI IR EER R P AR R R XA R EE L R AR R RS KL L 2 24 22

VUuBAeBIN K Jamtakiam Rare Coim Shop ULept YTu

n79 B Avenmye Flag
staff, AR Bovu16028937408N r Janta @
k{an CRER A0 AeTTTeed2¢2aenl Tl

gl

(AR I AL RS R AR LR LA LA R R A A KA A LA R LA L AL X R

Figure 14-7 (cont.) TPTRAC Annotated Output Listing

. Trying to find a record.

. Status indicates success.

. Channel and Find operation information.
. The key value used in the find operation.
. Reading the next record.

. Status and I/O information still OK.

. Trace listing of record buffer contents.

Transaction Processor Test Environment

o
"] 12330 12336 12592 827 8267 249326 29%veo 27489 249y nluae
10 24914 2597¢ 17184 26991 8322 <Eo7us7 28783 B2ed 25924 29Rue
9@ 12336 14135 12343 12336 12336 12336 12336 {4139 12343 12567
iee 12330 12336 49

khkakkkkwkxkntrr Seno ressace @

Trarnsactionr ISt Seauence Status wds vare
DPYCUS FIND 1 1 4
(3]
Proceed O
Message:
XX 2 AT R PR R R P R R PR L R R R AR R R RS R R R L LA A 22
"] 2eRP3LIN ¥ Jantakiam Rare Coin Shop Dept YT4
Se 679 B Avenye Flag
100 staff, aR Ber16%289374u8N K Jamta
159 k{an Sy, e 7.717 TelTu?l
2ee Rieeal

[TT T YT R A LR RSN R RS R PR L AL LA Z A R A R R A LA LA X2

kzxkxxkkaxwrrxt Eng 0f TST @

Transaction [T Seauence Status nds tare
DPYCUS FIND 1

Message: @

—..----..*--.-.----¢-.-------*---.---.-Q------.--#

"] A2R3oN K Janmtakian mk(arclome[bmi
S@ [amk[omKk(bmk (6

LT PR P RN LR L R R L PRI L A R AL L AL R Al b bl g

Figure 14-7 (cont.) TPTRAC Annotated Output Listing

. Integer dump of record buffer contents.

. TST sends a response message.

. Status successful.

. This is a “PROCEED” message.

. Contents of message buffer.

. TST exits here.

. Show exchange message at conclusion of TST.

N oW A W

14-13

Transaction

Processor Test Environment

rorkspace: @

(AL T LR EE RSP RY LR SR AR R R R LN 2 X3

[’ veREIN K Janmtakian Rare (0in Shoo Dert YTd
5@ 679 B Avemye Flag
100 staff, AR 8631602893 74udN K Janta
150 ki{ian S, e T.77 Tel700}
200 euldiclomelbmuiemclomc(omk[omk [omk[6mk{omk [6mk lomKk
258 [ermk (o d " Cromherg Stamg Gallery
320 " H K Samvakiam Coin ¢ Stamp
3S¢ " H L Sehgalian Coins Co
(I L ARSI A AR RS AL LSRR IR RS R A X 23
(2]
2 12336 12336 12592 827w 8267 249c6 29b26 27486 24937 3342
12 24914 2597¢ 17184 26991 83¢2 267¢v7 24783 Bz24 25924 29848
17¢ 2128y 24948 2878} o224 Be2d 51¢ 18 2561 1 [
18¢ 34 8264 R2ed 25939 ¢S574d 27745 24937 B3y2 28483 28265
19¢ B3G7 28483
Kxnhkrrankakanse Start of TST ©
Transactior T8T Seguence Status vwas Nare
DPYCUS NEXT 1
Message:
LEA A L AL A AR AL AT EI AR LA RS ER E R R AL ISR R R 2 s
"] KYDPOGT N K Jamtakiam rk[omk [6mik [6mx
5@ [emc [omklemk (6

A A A A A A R L L I A L L A L AL PR LR R R R L R LR R 2 X 2

Workspace:

50

100
1se
2ae
2s5¢
oo
3se

(A AL LA I AL AL L L AT A LRI AR LRl AR AR XYL AR LY B

BeRraIN K Jartakiam Rare Coim Shop Dept YT4

6719 B Avenue Flag
staff, ar 862¢10A2R9374u8BN K Janta
kian Sen, g2 7,717 T.77221
Pagsiklomclomk{omk[emk [omc[bmik[omc[omk[omk [b6mklomik
[emk (b o] " Cromrberg Stamp Gallery

" W K Sahgakfamn Coin & Stamp
" M L Sehgaliarn Coins Co

[P P R L R R R R R R R R L PRI R AL R I R R R LR X X2

Figure 14-7 (cont.) TPTRAC Annotated Output Listing

1. Transaction workspace at end of TST.

2. Integer dump of transaction workspace area.
3. Second TST of DPYCUS starts here.

4. Exchange Message at start of TST.

5. Workspace at start of TST.

14-14

Transaction Processor Test Environment

(1)

"] 12336 123356 {2592 B27e 8267 249v6 2986 27489 24937 83a2
10 24914 25970 17184 26991 8422 267vT7 2AR783 Be2ld 25924 2984k
29 228l 13396 8224 8224 Be2d B2el 8224 dged A224 Red
3¢ 8224 8224 822d {d13d Bgu9 8258 32273 28261 25974 8224
ae 8224 8eed g224d 5224 82pu 8224 o2+ B224 27718 26465
Y 29811 26249 41366 {6672 8274 A224 822u LY-F R224 B224
6 8224 8224 8224 13RA2 12336 14873 1284n {abUB 14131 13364
T2 20924 19232 1R9T76 2B2S57 24948 2b9BT 28257 Be2k B224 Heou
8@ 8224 8224 Rg2d 136¢e 12336 1334 R24iy noed A¢g24d 5224
9p 1d11e 14126 Beu7 6224 6224 B2g4 1411e 14126 12343 12592
100 12330 12336 =5327 «18725 =567 =18725 =5¢267 «1&725 =5¢6/ =1872%
110 w5267 w18725 =5267 ={8728 =%5267 =18725 =5267 =18725 «5267 =18725
129 =5267 =1872% w5267 =18725 =5¢67 =18725% =5267 =1872% 9 14
130 484 244 7 A 256 217 1 w 34 29251
140 2BA1S 295954 PouB2 21282 c4Yu48 2aT7A1 1B24B 27745 ¢59hk4 31@9¢p
156 B22u4 8224 8224 8224 2Se e 23ns 1 o 3d
16 8264 8267 24915 257vd 27489 24937 B3¢ 28483 2B265 976
172 2128y 2494& zgnTRy A4 B224 51 18 2561 1 @
18¢ LY B20d R2hE 25939 25724 27745% 24937 83v2 2BU4RY 25265
19¢ 8327 28483

[232X TSR E Semd message

Transaction 1871 Seauence Status w~ds Nare

DPYCUS NEXT i 1 & nuTsTA

Send a rerort using form FRICUS @

Message:
[Z 2 I A A2 XX ARSI ER A L R A RA SR AR L RS L LR XX X1
e Pec@d2IN K Jsmntakiam Rare Coinm Snoo Dect Y74
5¢ 679 B Avenye Flag
1ve stetft, ak 864 16028937448 v K Janta
150 kian Y T.77 777921

2¢e boeel

LI AL R R TR AL AL AR R A AL AL LR A A A LR R R L LR X2

Figure 14-7 (cont.) TPTRAC Annotated Output Listing

1. Integer dump of transaction workspace.
2. NEXT sends a Report Message to form “PRTCUS”. Message contents shown here.

14-15

Transaction Processor Test Environment

L EEXEIESEEER SRR 2] S5emd message

Transactiom 18T Seayence S5tatus wds “ame
DPYCUS NEXT 1 1 3

Send reply number 2 0
Messages

(A A LI E L L AN L AL A I AL L L AL AL AR R LN L AR LY R
¢ Hara Copy Listima of this Custonmer sent to LAl
5@
10¢
15¢

AL R A A A LA R R R AR AR AR R RER R R 2 2 Y

Akhkkrhkkkhwkrkt Emg Of TS7T eg

Transaction ist Seouence Status was Nare
DPYCUS ~NEXT 1

Message!

(A A A A A Y L R R R AR R R R R AR R R R R AR R L L2 2 1 Y
¢ KYPOT N K Jamtakianm mk[omk{omic[6mK
Se {emciomclemkie

LR AR E R R R PR AR RS E LR AR AR SR 2 1 B

workspace?

LA AL L A X EE L A R AL ER R R R A AR A A AR R L 2 X3

] PuPVEIN K Jamntakiam Rare ({ofm Shoo Nept YT4

53 n19 B Avenuye Flag
lee statf, awr BodiloneBI3T448iv K Janta
15¢ kian S¢d.3 74177 TalTo}
P41 dAe¢ik(omk [orklomk [omi[omk[omk [omk [6mc[ome [6m [6mk
25% [emi (o d " Crombery Stamc Gallery
3ae " H K Sahagakianm Coin 1 3tamp

35 " M L Sercaliam Coirs Co

[Y R ARSI R R PR PR A SRR LR R L R R R R R L X X2

Figure 14-7 (cont.) TPTRAC Annotated Qutput Listing

1. This describes reply message sent to screen.
2. TST exits here. Message and Workspace contents are printed.

14-16

APPENDIX A
MACRO PROGRAMMING NOTES

A.1 WRITING A MACRO TST

A.1.1 MACRO Entry Point

Defining a MACRO Entry Point for a TST is done in exactly the same way that a MACRO Sub-
routine Entry Point is coded. The TST Entry Point conforms to the standard PDP-11 Linkage
conventions outlined in the PDP-11 Processor Handbook.

The general form for defining the entry point in a MACRO TST required the following statements:

TSTEP: ;Standard TST name
MOV 2(R5),R4 ;R4 now points to exchange message.
MOV 4(R5),R3 ;R3 now points to TST workspace
Where:
TSTEP Is the standard name which the TRAX operating system

uses for all TSTs.

MOV 2(R5),R4 Takes the address of the exchange message from the TRAX-
supplied argument list and stores it in R4.

MOV 4(R5),R3 Takes the address of the transaction workspace from the
TRAX-supplied argument list and stores it in R3.
If R3 contains a value of zero, then a workspace has not been
defined for this transaction. Accessing address location 0
will cause unpredictable and possibly fatal results.

A.1.2 Calling a System Library Routine from a MACRO TST

You call a TRAX system library routine according to standard MACRO linkage conventions. In
your TST, you must first prepare a parameter list containing the number of parameters and the
addresses of each of the parameter fields. After depositing the appropriate values in these parameter
fields, you call the library routine by the instructions:

MOV #ARGLST,RS
JSR RC,name

In this example, ARGLST is the symbol assigned to the first word of argument list containing the
addresses of the argument fields required for the call. The “name” area of the JSR instruction

should contain the mnemonic for the library routine you want to invoke.

Figure A-1 is an example of the argument list for the REPLY library routine.

MACRO Programming Notes

ARGLST:

Number of arguments

Pointer to buffer

Pointer to buffer size field

Pointer to reply number field

Pointer to STATUS doubleword

Figure A-1 Parameter List for “REPLY” Library Routine

APPENDIX B
COBOL TST EXAMPLE — RDCUST

The example in this Appendix shows the COBOL TST RDCUST. This TST is part of the CHGCUS
transaction shown in Figure 1-2.

MACRO Programming Notes

COROL 3,05 SRCIRDCUST,.CBLSL 28=AUG=78 14320122 PAGE 001

CMDtRDCUST,RDCUSTERDCUST/TST
IDENT: 240140

grRa1l IDENTIFICATION DIVISION,

Qongoe

290023 PRCGRAM=ID, TSTEP,

22004 DATE=COMPILED, TODAY,

P7ees

en0dé

gva?7 28=AUG=78 ,

o208 ENVIRONMENT DIVISION,

ane29

onrp1ie CONFIGURATION SECTION,

Brol1l SOURCE=COMPUTER, PDPe1y,

eep12 OBJECT=COMPUTER, POP=t},

ero13

PPR14 INPUT=QUTPUT SECTION,

2221S

14124) FILE=CONTROL,

arat1?

grp18 SELECT CUSTOM ASSIGN TO "CUSTOM,DAT"

p7219 ORGANTZATION IS INDEXED

epe@az2Q ACCESS MODE IS DYNAMIC

anp21 RECORD KEY IS CUSTOMEReNUMBER _
ore22 ALTERNATE RECORD KEY IS CUSTOMER=NAME WITH DUPLICATES
e7@23 FILE STATUS IS CUSTOMER=FILE=STATUS,

gve’4

pn22s

ArB26 OATA DIVISION,

pree7

oma28 FILE SECTION,

Ar@29

anel3p FO CusTO~

273y LABEL RECORDS ARE STANDARD

el VALUE GF ID 1S CUSTOM=CHANNEL=NUMBER

arp33 DATA RECCRD IS CUSTOMER=FILE=RECORD,

pral3d

22235 41 CUSTOMER=FILE=-RECORD,

27236

27037 ?»3 CUSTUMER=NUMBER PIC X(6),
Arz38 23 CUSTOMEReNAME PIC x(30),
arpa39 Py ADURESS=LINE=1 PIC x(32),
ArR4n v3 ADDRESS=LINE=2 PIC x(32),
27@41 #3 ADDRESS=|INE=3 PIC X(30),
preYe 23 ADDRESS=ZIP=CODE PIC 9(S),
Ane43 #3 TELEPHONE=NUMBER PIC 9(19),
27044 23 ATTENTICON=LINE PIC X(20),
ara4s W3 CREDIT=LIMIT=AMOUNT PIC 9(1@)VI9,
P46 23 CURRENT=RALANCE PIC 9(10)V99,
P47 V3 PURCHASES=YTD PIC 9(10)Vv99,
ACE4B w3 HEXT=0ORDER-SEQUENCE=NUMBER PIC 9(4),

2R 49 %3 EXT=PAYMENT-SEQUENCE=NUMBER PIC 9(4),

MACRO Programming Notes

LoeoL 3,05 SRCIRDCUST, CRLy1Y 28=AUG=78 14300822 PAGE 002
enes2
2vesS1 »ORKING=STORAGE SECTION,
Pnes2
a7gsS3 ?1 CUSTOMeCHANNEL=NUMBER PIC X(11)
p2psSYy VALUE IS "CUSTOM/CH23™,
9“@55
A2pSh ¥1 FILE=STATUS=WORD PIC XX,
24257
eS8 ¢1 CUSTOMER=FILE=STATUS PIC XX,
AR59
21360 %1 BUFFEReSIZE PIC 89999 COMP,
2™iiA1
27n62 vl STATUS=WORDS,
21063
9r26d ?3 STATUS=#0RD=~1 PIC 59(4) COMP,
A7 265 23 STATUS=AQRD=?2 PIC S9(4) COMP,
Ar266
Npe7 #1 REPLY=NUMBER PIC S9(4) COMP,
AP LR
ArLe9 "y PROCEED=MESSAGE=BUFFER,
gma7w
Bugry v2 RMeCUSTCMERFILE=RECORD,
arare
20e73 #3 R4=CUSTOMER«NUMBER PIC X(6),
ArATY 23 RMeCUSTOMER=NAME PIC Xx(38),
AnRTS "3 RMeADDRESS=LINEm=1 PIC Xx(38]7,
76 43 RM=ADDRESSeLINE=2 PIC x(38),
2rel? 23 RMe=ADDRESS=LINE=3 PIC X(38),
22278 23 RM=ADDRESS=2ZIP=CODE PIC 9(S),
Az 79 23 RMeTELEPHONE=NUMBER PIC 9(10),
A4J6A %3 RMwATTENTIONeINE PIC Xx(2@),
A8y #3 RM=CREDIT=_IMIT=AMOUNT PIC Z,22Z,222,.99,
AARP
2oes3 %] REPLY=NESSAGE=BUFFER,
2AVRY 3 REPLY=MESSAGE=TEXT PIC X(8@),
296,85 ¢3 REPLY=FILLER PIC X(18)
AT VALUE IS "File Status word: ",
Avr87 ¢3 REPLY=FSw PIC X(2),
rrza8 3 REPLY=FILE=NAME PIC Xx(60),
307 e9

B-3

MACRO Programming Notes

COROL

LI LT
29091
Pe@92
7293
no9u
Pep9s
29096
2ne97
one98
[1Jd: L L)
w100
grial
gripe
o103
griod
ge19s
an106
pe1e7
pr128
en1d9
eri10
pa1il
gmite
onil3
enitd
eni1s
LB Y]
27117
enii8

B-4

3,05 SRCIRDCUST,.CBLy11 28=AUG=78 14312032

LINKAGE SECTION,

81

81

EXCHANGE=MESSAGE,

02 EM=INPUT=FORM=CHCUSI,

23

EMe«CUSTOMER=NUMBER

TRANSACTION=WORKSPACE,

@2 WS=CUSTOMER=FILE=RECORD,

@23
23
23
23
¢3
23
@3
a3
23
a3
63
23
a3

WS=CUSTOMER=NUMBER
wS=CUSTOMER=NAME
WSwADDRESS=LINE=]
WSwADDRESS«LINE=2
WS=ADDRESS<LINE=3
WS=ADDRESS=ZIP=CODE
WS=TELEPHONE=NUMBER
WS=ATTENTION®LINE
#wSeCREQITwLIMIT=AMOUNT
WSeCURRENT=BALANCE
uS=PURCHASES=YTD
WS=NEXT=ORDER=SEQUENCE=NUM
WSeNEXT=PAYMENT=SEGUENCE=NUM

2 PAGE 293

PIC X(6),

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X(6),
x(3@),
x(3e),
x(39),
x(32),
9(S),
9(19),
X(2o),
9(12)ve9,
9(1@)v99,
9(10)Vv99,
S¢4),
9¢4),

LorOL 3,05

emi19
ori2e
pr12t
ami22
omnic3
o124
eni2s
Pm126
eni127
ani28
pm129
o”132
an13y
er132
27133
27134
@m135
nn13s
an137
g»138
2139
2n142
pr141
priue
97143
27144
97145
A”146
an147
2”148
27149
ArisSa
3m1S1
pry52
153
gulsa
pm15S
27156
Ra»1s7
gm158
2r1S9
erien
27101
grte2
37163
pm164
Ar165
Ar166
prie7
puies
27169
ar171a
anr17y
9n172
er173
7174
22178

MACRO Programming Notes

SRC:RDCUST,CBLLY 28=AUG=T78 14100122 PAGE 004

PROCEOURE DIVISION USING EXCHANGE=MESSAGE, TRANSACTION=WORKSPACE,
DECLARATIVES,
I-C-ERROR SECTION,

USE AFTER STANDARD ERROR PROCEDURE ON CUSTOM,
CHECK=FILE=STATUS=CODE,

MOVE CUSTOMER=FILE=STATUS TG FILE=STATUS=WORD,REPLY=FSW,

IF FILE=STATUS=W(ORD IS EQUAL TO "ig®
“UVE "Reached Endm=of=F{le"
TC REPLY=MESSAGE=TEXT
GO TO SEND=REPLY=MESSAGE,

IF FILE«3TATUS=wORD IS EQUAL TO n23"
“OVE "No Record Exists under that Key"
1O REPLY-MESSAGE=TEXT
GO TO SEND=REPLY=MESSAGE,

IF FILE=STATUS=WORD IS EQUAL TO "gpn
COVE "The Recora vyou wanted is
' Yocked by another user, You may press CLOSE to exit,
" or you may wait and press ENTER to try again,"
TO REPLY=MESSAGE-BUFFER,
GO TO SEND=REPLY-MESSAGE,

QVE "Transaction Abortec = 1/0 Error"™ TO REPLY=MESSAGE~TEXT,
mCvE " Logical File Namet: CUSTOM =CH3" TO REPLY*FILE=NAME,

SEND=2R0RT=MESSAGE,

»OVE 16v TO BUFFER=S]IZE

»CVE 2 TO REPLY=NUMBER

CaLL "a3CRT" USING
REPLY=MESSAGE~BUFFER
BUFFER=SIZE
REPLY=NUMBER
STATUS=UORDS,

60 TU EnD=ERROR=SEETION,
SEND=REPLY=MESSAGE,

“OVE few TGO BEUFFER=S]IZE
AOVE 2 TO REPLYeNUMBER
call "REPLY" USING
REPLY=MESSAGE=BUFFER,
BUFFER=31ZE,
NEPLY=NUMBER,
STaATUS=~JRDS,
ENDeERRORSECTION,
END DECLARATIVES,

MACRO Programming Notes

cosOL 3,05

goi7e6
ee177
em178
29179
em180
eeisl
gm182
9183
oe184
on185
er186
ee187
an188
Pr189
en190
90191
gn192
9@193
en194
2n18s
9n196
on197
er198
2199
ge2ao
ee2el
ge2ee
ge203
gr2ed
ge2es
en2pe
omen?
ge2oe
pe209%
geain
ge21y
en212
gn213
3]
ge215s
om216
gn217
em218
ge219
gwez2e
ee221
gm222
ge223
gm224

SRCIRDCUST,CBLs 1Y 28=AUG=T8 14300122 PAGE @05

MAIN=TST=ROUTINE SECTION,
READ=CUSTOMER=RECORD,

MOVE "p@" YO FILE=STATUS=WQORD,

OPEN INPUT CUSTOM, ‘
IF CUSTOMER=FILE=STATUS IS GREATER THAN "a9"
GO TO END=PROGRAM,

IF EMeCUSTOMER=NUMBER IS > "poocas"
GO TO KEY=0K,
MOVE 160 TO BUFFER=~SIZE,
MOVE "You Specified an Invalid Customer ID #"
TO REPLY=MESSAGE=BUFFER,
MOVE 2 TO REPLY=NUMBER,
CALL "REPLY" USING REPLY=MESSAGE=BUFFER,
BUFFER=SIZE,
REPLY=NUMBER,
STATUS=WCORDS,
GO TO END=PROGRAM,

KEY=0K,

MOVE EM=CUSTOMER=NUMBER TO CUSTOMER=NUMBER,

READ WITH LOCK CUSTOM RECORD,
IF FILE=STATUS=WORD IS NOT EQUAL TO "gk" GU TO ENDePROGRAM,
IF CUSTOMER=FILE=STATUS IS EGUAL TQ "g2% GO TO LOCKED=RECORD,

MCGVE CUSTOMER=FILE=RECORD 7O wS=CUSTOMER«FILE=RECORD,

MOVE CUSTOMER=NUMBER TO RM=CUSTOMER=NUMBER,

MOVE CUSTOMER=NAME TO RM=CUSTOMER=NAME,

MOVE ADDRESS=LINE={ TO RM=ADDRESS=LINE~1,

mOVE ADDRESSeLINE=2 TO RM=ADDRESS=LINE=2,

MOVE ADDRESS=LINE=3 TO RM=ADDRESS=LINE=3,

MCVE ADDRESS=ZIP=CODE TO RM=ADDRESS=ZIP=CODE,

MOVE TELEPHONE=NUMBER TO RMeTELEPHONE=NUMBER,

“OVE ATTENTIONLINE TO RM=ATTENTION=LINE,

MOVE CREDIT=_LIMIT=#AMOUNT TO RMew(CREDIT=LIMIT=AMOUNT,

MOVE 173 TO BUFFER=SIZE,

CALL "PRCEED" USING PROCEED=MESSAGE=BUFFER,
BUFFER=SIZE,
STATUS=~0RDS,

GC TO END=PROGRAM,

MACRO Programming Notes

COROL 3,05 SRCsRDCUST,CBLY1L 28=AUG=T78 1431003122 PAGE Q06
97225 /

gm226 LOCKED=RECORD,

en227

gre28 nOVE "The Fecord you wanted {s

pm229 - " locked by another user, You may press CLOSE to exit,
gr23e - " or you may wait and press ENTER to try again,"
gr231

pm232 Ti: REPLY=MESSAGE=BUFFER,

23l rOVF 169 TO AUFFER-SIZE,

gr234 +CVE 2 TO WEPLY=MUMBER,

gm23s CaLl. "REFLY"™ USING

pPn2le KEPLY=MESSAGE=BUFFER,

an237 BUFFER=-SIZE,

@r23R REPLY=NUMBER,

m239 STATUS=%wDRDS,

pm24¢

ar2a1 EN[=FRGGRAS,

an242

@an2uld EXIT PROGRAN,

APPENDIX C
BASIC TST EXAMPLE — RDCUST

The example in this Appendix shows the BASIC-PLUS-2 TST RDCUST. This TST is part of the
CHGCUS transaction shown in Figure 1-2.

MACRO Programming Notes

620

7e0

775

AR AR AN RN AN RN RRNR AR NN RRANAARANARRRARRAANRRRARRARANRARRRNANNANAR

{ RDCUST &
! &
T8T TSTEP(MSG,SPACES,WRK,SPACES) | Start TST here &
{ &
{]
!]
i &
! VARIABLES AND ARRAYS UsSED &
i 8
! &
! 8
i NAME DESCRIPTION &
l L L 41] L L L B L L L L L L B L L L A L B L R 2 L 2 2 R 2 1 J &
i EDIT,STRGS DESCRIBES FORMAT OF PACKED FIELDR
! g
LR R RA RN R RN RN R AR AN AR R R AANRRRR R AR RN R R AR R RRN AR RRARRRRARRARNNE
\ EDIT.STRGS = "2,22Z,22Z,99" g

t*i*ttttti*t***t*t**t*******i*i****t**i*it*******t*!*tt**tt&
Exchange Message for Form CHCUS!

!
!
i
!
\ MSGMAP ICHCUS 1! i Level = 23 i
!

Q0 Q0 O @0 go o

EM;CUSTOMER ,NUMBERS = 6

LR RN AR R AR AR AR AR R AR R R AR IR NN R NN RRRAARNRRANRRARRR KRN RRNRANRRE

! &
] WwORKSPACE DEFINITTION 8
! g
!t*t*tt**t***t**tt**iitttttit*****tt**i**tittttt*******ttt*t****&
! 8
! Transaction Workspace &
! &
! for TST RDCUST &
! g
\ WHRKMAP ICUSTOM| { Level = 42 i &
1 &

wS,CUSTOMER,FILE,RECORDS = 2@5 &
! &
\ WRKMAP JCUSTOM] ! Level = 23 H &
! &

WS,CUSTOMER ,NUMRERS H é -3
’ wS,CUSTOMER,NAMES s 32 &
’ WS,ADDRESS, 1% = 3¢ &
’ WS,ADDRESS, 28 = 30 %
' wS,ADDRESS, 3% = 3¢ 8
v wS,2IP,CODES = S &
’ WS, TELEPHONE { NUMBERS s 1@ R
' WSATTENTION,LINES s 2@ 8
) WS,CREDIT,LIMITS = 12 &
’ WS, CURRENT ,BALANCES = 12 &
P WS, PURCHASES,YTDS$ s 12 &
’ WSy NEXT,ORDER,NUMBERS = 4 &
’ WS NEXT ,PAYMENT ,NUMBERS = 4 &
!ttitttt*ti**ttittit*t**t**t***ttt*t***l****t*i***i********t****&

50

f1e0e

2189

MACRO Programming Notes

R R AR AR R RN AR RN R AR R RN AR R AR R AR RN RN AR RN ARR AR AN AN RANNNRRRNRE

! &
i Customer File Record 8
&

\ MAP (CUSTOM) ! Level = 01 ! &
! &
CUSTOMER,FILE,RECORDS s 205 &

! : &
\ MAP - (CUSTOM) } Level = 03 ! %
} &
CUSTOMER ,NUMBERS = 6 &

’ CUSTOMER,NAMES s 30 &
] ADDRESS,18 = 30 &
’ ADDRESS, 28 s 30 1)
P) ADDRESS,3$ s 30 &
' ZIP,CODES € 5 3
] TELEPHONE NUMBERS s 19 &
F ATTENTION,LINES s 20 &
’ CREDIT,LIMITS s 12 &
’ CURRENT.BALANCES = 12 &
’ YTD,PURCHASESS = 12 &
’ NEXT,ORDER,NUMBERS = 4 3
' NEXT (PAYMENT ,NUMBERS C' &
! 2

LR R kAR AR N AR A AR AR AR R AR AN R R R AR RN AR ARk kAR R AR AN AR R AN RN RN AR

i M ATN TS8T LoeGc1ICcC i
:i**ttt**ﬁtti*it*t*i*i***t**t*t*********t****tt***tt*****tt*t***:
{ ON ERROR GO TO 19eage :
: Set up stancarg cgefault error trap :
RN AR R AR R AR AR R AR AR R AR A AR AR R AR AR RN AR R R A AR A AR RAN AR ARRNRRNE
E OPEN DATA FILES E

IR R AR AR AR AR AR N AR AR R AR AR AR R AN AR A AR I AR RN AR AR AN SRR A AR AR AR Ak

R AR R AR PR A AR R AR R AR AR AR R A AR AR RAR IR KRR AR AR AR AR R R AR ARk AR

i CHANNEHL A SSIGNMENTS :
i CHANNEL # ASSIGNMENT :
: YT Customer File . cusTom.oaT 8
{ CUSTOM,CHNLX = 3% :

R AR AN AR R R R KRR A AR AR AR AR AR RN AR R KRR R AR AR AR KRR A AN RS AR AR AR AR NRRAS

MACRO Programming Notes

C4

242e

k1 3%

4100

4112

4e09

42n

IS AA AR 222 AR R AR R R R R 2 R s 2 a0 2822238222323 327

= o= t= o=

\

i
i

AR A R AR R RN R AR AR AR KRN NN RN RNRR AN R A RNR R AR R AN REARR AR A ARARRR

i
i
{

\
\

= o 0= B=

0P EN FILE CUSTOM,DAT
Assign the channe! number,

OPEN "CUSTOM® AS FILE CUSTOM,CHNLX,

ORGANIZATION INDEXED
VARIABLE,

ACCESS MODIFY,

ALLOW READ,

MAP CUSTOM,

PRIMARY KEY CUSTOMER,NUMBERS,

ALTERNATE KEY CUSTOMER,NAMES
DUPLICATES
CHANGES '

Open the Customer File,

Test to see {f exchange message is a legal value

GO TO 4i0¢ IF EM,CUSTOMER,NUMBERS > "QZ00P0"
G0 YO 4200

Two cases possibletl
Customer number entered,
I1legal number entered (operator error)

20 @0 Qo Qo go o @0 2o go go @ 90 20 90 0O PO £O @O QO gO PO PO @ go g go

X 132238222 e e R I A R R R RS T 2 T)

!
|
{

CUSTOMMER NUMBER ENTERETD

GET #CUSTOM,CHNLX, KEY #0 EQG EM,CUSTOMER,NUMBERS,LOCK

\ W§,CUSTOMER,FILE,RECORDS = CUSTOMER,FILE,RECORDS
\ GO TO 4800

!
!
4
!

Read and lock the customer file, ("Record not found"

i{s trapped at statement 19620,)
Move the record fnto workspace,

3
8
8

@ Q0 9 0 20 @° W

LR AN RN R R R A A RN AR AR AR AR AR R AR R A AR AR AR R RN AR N AR RN AR AR AN NRE,

!
i
l

\ CALL REPLY BY REF (REPLY,BUF$,LEN(REPLY.BUF3),2%,STATUSZ())

NO D AT A FROM OPERATOR

REPLY,BUFS = "COperator Error = Invalid Key Supplied

\ GO TO 1995¢ IF STATUSX(uX) <> 1%
\ 6O 7O 32082

o= 2= o= o=

Restart Transaction with Reply Message
Abort transaction if bad status,
Ex{t TST,

&
&
R

@° @ Qo o @0 Qo g¢ RO

4ooe

Segae

Se2n

Sete

15¢na

1>0n1
1ve12

{>pz2

15930
15040
15250

MACRO Programming Notes

ED,RESULTS = FN,FORMATS(EDIT,STRGS,WS,CREDIT,LIMITS)
wS,CREDIT,LIMITS = ED,RESULTS

EC,RESULTE =3 FN,FORMATS(EDIT,STRGS,*S,CURRENT,BALANCES)
¥S,CURRENT,BALANCES = ED,RESULTS

ED,RESULTS = FN FORMATS(ERIT,STRGS,wS,PURCHASES,YTDS)
»S,PURCHASES,YTDS = ED,RESULTS

PP AR A A

CALL PRCEED BY REF (WS,CUSTOMER,FILE,RECORDS,2@5X.STATUSX())
GO TO 19950 IF STATUSX(YX) <> 1%
GO TO 320e2

7 7

R AR R AR kAR R AR KRR R AR AR KRR RN KRR AR NN R AR R AR RAR KRR AR AR R RN AR
!
! CuUsSTO®~ER 10 NOT 0N FI1LE

-

REPLY,BUFS = "No Record under that ID"

@® @0 Qo Qo (0 o o Qo go @0 g0 ® Qo 2° g go Q0 QO QO Qo oo ge

\ CALL REPLY BY REF (REPLY,BUFS,LENC(REPLY,BUFS),2%,STATUSX())
N G0 TO 19958 IF STATUSZ(?7%) <> 1%

\ GO TO 32622

i

$ Seng Rerly if Reecord nNot Found

! Abort Transaction if Bagd Status Retupn

H Exit TST,

t

]

KRR KRR AN R AR RN AR NRRI AR AR R R A AR R A AAN AR A AR R kA ARk kAR Ak RN AR ANk R

AR R AR AT AN TR AR AR R AR R R RR AR R AR RRAKRRRA AR RRANARRNRRNRR AR NE,

H

H &
H FUNCTTIONS L OC AL TO &
H &
! THIS TST &
! &
AR AR R AR RN RN AR AR AR AR RN R A RN R RN RRRAR A RN AR R AR AR AN AR RRNRRARARARARE

CeF FN,FORMATS(FIELULS, INPUTS)
NUMBER,FORMATS = TR“$(INPUTS)
\ NUMBER,FORMATS = STRINGS(LEN(FIELDS)=LEN(NUMBER,FORMATS),48%)
+ NUMBER,FORMATS
\ FUR I,Fn% = LEN(FIELDS) TO 1% STEP ={x
\ CHAR,FORMATS = WHID(FIELCS, I.FNX, 1%)
\ GO TO 1Sve» IF (CHAR,FORMATS = 9°7)
OR (CHAR,FORMATY = °2°)
\ CHAR,FORMATS = SPACES(1%) IF CHAR,FORMATS = ’8°
\ NUMBER,FORMATS = #ID(NUMBER,FORMATS, 2%, I.FNX=iX)
+ CHARGFORMATS
+ RIGHT(~U*BERFORYATS, I.FNX+1iX)
MEXT T4FN%
\ FUR I,Fn% = 1% 70 LEN(FIELDS)
\ CHAR,FOR~#ATY = ~Iu(FIELDS®, I.FNX, 1%)
\ CrAR1,FORMATS = +ID(NJUMHEK, FORMATS, I FNX, 1%)

\ GC TO 1523w IF CHAR,FOR™ATSE = *3’
OR CHAR,FOR*ATS = *,°*
OR CHARL.FOR1ATS = “8’
\ GC TO 15342 °IF CHAR,FORMATS = *9°

\ IF CHAR1,FORMATS <> @
AYUD CHAR],FURMATS <>
THEN GO 10O iSedw
ELSE NUMBER,FGRMATS =
SPACES(1%)
4+ LEFT(MUMBER,FORMATS, I,FNX=1%)
+ RIGHT(WUMBER,FORMATS, I.FNX+1%)

20 Q0 00 0% Qo QO @O £ QO QU 9° QO @O @O 2° 0 §° g 20 g0 QO ° @0 o

NEXT I,FnX
FN FURMATS = NUMBER,FORMATS
FRERD &

MACRQO Programming Notes

C-6

19072

1va29

1vgue

19974

19953

19960

3edmy

32707

L R AN N R R AN AR AR RN R R AR AR R AR A RRA IR AR RN RAANANRRRARNRARNRNS

! 3
! S TANDARD ERROR HANDLING 1]
! &
!*******ﬁ*ti*t**tt****k******it**ttt*it*t**t*****ﬁ**ti*i********&
\ IF ERR = 155% 3
THEN &
RESUME S220 &
! &
i Trep for customer {0 not on file, 8
H &
! Trap for Record Lock Fajlure &
H 1
\ IF (ERR = {72X NR ERR = 154%) &
THEN &
REPLY,BUF$ = "Access Cenfed, Record Locked by Another Task" &
N\ CALL REPLY BY REF (REPLY.BUF3)LEN(REPLY BUFS$),2%,STATUSX()) &
\ GU TO 32uv4e 3
\ REPLY,BUFE 3 " J«0 Erpopr WNumber " &
+NUMB (ERR) [}
+"at Line & ¥ &
+NUMS (ERL) 3
! &
H For unexpected errors, go to &
! system default error dump out, &
AR AR A AR R R R AR RN R RN AR R R R AR AR AN AN AR AR AR R AR ARANANRAANRRRRRARRRNARNAR
! &
! ABCRT T HE TRANSACTTION 3
H 3
AR AR R AR AR AR AR RS R R AR AR KRR A AR AR AN AR R ANRNKRRRRR KRR RRRNARRANARRNANREY
CALL ABORT BY REF (REPLY.BUF%,LENC(REPLY,BUFS),2%,STATUSX()) &
\ GO TO 322¢2 &
! 8
! Standarc ABORT handling: &
! Send Repoly with Aport to Terminal Station &
! Call TSTLIR routine to abort-transaction, 8
! No return {s expected but nevertheless provide &
! an orcerly exit from TST, &
!)t*t***t**t*****tt*****iit***it*t******ti*tt**tttt*t*****i**ﬁ**&
! &
! ENTD 0F PROCESSING)
! 8
!t***tt*tt****i*'itt*t**i*tt****i*******tt****tt**t*t**********ﬁ&
I R AR KRR R A AR AR RN AR RN TR AR AR KRN RN AN AR RRR AR A RN RIRRRRRRRAARRN AR AR AAR
$ ()
! END g F TS8T g
! &
!**i***k*ttttt**ttiitiit***t**t*tt*t*******t*t'k***k*t******ﬁ****&
! 8
\

TSTEMD

ABORT,
BASIC parameters, 4-10
COBOL parameters, 4-9
description, 4-8
examples of usage, 3-15, 4-9,
4-10, 4-11
library routine, 4-1, 4-8,
6-6
response message, 3-7, 4-8
status return codes, 4-11
Aborting a transaction,
across a link, 6-3, 6-6
with ABORT, 4-8
with TABORT, 4-23
Application programmer,
debugging TSTs, 7-1 to 7-13
implement application design,
1-7
integrating and testing
application, 14-1 to 14-16
primary function, 1-1
AROUTE library routine, 4-1
BASIC parameters, 4-25, 4-26
COBOL parameters, 4-25
description, 4-25
examples of use, 4-25, 4-26
status return codes, 4-26
ATL utility, 1-2
used in application security,
13-19
AUTDEF utility,
adding a user authorization,
13-8
commands, 13-6
deleting a user authorization,
13-13
editing a user authorization,
13-8
function, 8-1, 13-6
invoking, 13-6
listing a user authorization,
13-11
listing the index of user
authorizations, 13-11
role in application security,
13-17, 13-19

BASIC-PLUS~-2, 1-1, 3-1

APPEND command, 2-1

coding MSGMAP statement, 2-6

coding WRKMAP statement, 2-8,
2-9

compiling TSTs in, 7-1

data structure for TRAX/TL,
6-5, 6-8

INDEX

BASIC-PLUS-2 (Cont.),

data structure for TRAX/
3271-TL, 6-12, 6-13

debugger, 14-1, 14-4

DELETE statement, 3-17

FREE statement, 3-18

GET statement, 3-16

OPEN statement, 3-16

PUT statement, 3-16

/TST compiler switch, 7-1

TST statement, 2-4

TSTEND statement, 2-10

UNLOCK statement, 3-18

unsupported I/O statements,
3-18

UPDATE statement, 3-17

Batch job,

initiating a transaction, 5-1,
5-2

STTRAN library routine, 5-2,
5-5

submitted by a TST, 1-2, 5-1,
5-2

CHGCUS transaction,
annotated design example, 1-4,
1-5, 1-6
CLOSE statement, 3-4
disconnects permanent files,
3-5
from BASIC TST, 3-17
from COBOL TST, 3-14
CLSTRN,
BASIC parameters, 4-16
COBOL parameters, 4-15, 4-16
description, 4-15
examples of usage, 4-16, 6-6
library routine, 4-1, 4-15,
6-6
response message, 3-7, 4-15
status return codes, 4-16
COBOL, 1-1, 3-1
ACCEPT statements, 3-15, 14-4
channel assignment, 3-9
coding exchange message, 2-6
coding transaction workspace,
2-8, 2-9
compiling TSTs in, 7-1
copy verb, 2-1
DATA DIVISION, 3-10
data structures for TRAX/TL,
6-4, 6-7
data structures for TRAX/
3271-TL, 6-11, 6-13
DECLARATIVES section, 3-14
DELETE verb, 3-14

INDEX-1

INDEX (Con't)

COBOL (Cont.),
ENVIRONMENT DIVISION, 3-10
EXIT PROGRAM statement, 2-10
FD group item, 3-10
LINKAGE SECTION, 2-3, 2-6
OPEN STATEMENT, 3-11
PROCEDURE DIVISION header,
2-3, 2-4
READ verb, 3-12
REWRITE verb, 3-14
SELECT verb, 3-10
/TST compiler switch, 7-1
TST entry point, 2-3
UNLOCK ALL verb, 3-15
UNLOCK verb, 3-15
unsupported syntax, 3-15
USE procedure, 3-14
WRITE verb, 3-13
Compiling TSTs,
in BASIC, 7-1, 7-2
in COBOL, 7-1
TST switch, 2-1, 7-1
Crash recovery, 9-2
enabling, 9-8

DALLRT library routine, 4-1
BASIC parameters, 4-28
COBOL parameters, 4-27, 4-28
descriptions, 4-27
examples of usage, 4-28
status return codes, 4-28
Data,
available to a TST, 1-2
flow across a link, 6-1, 6-3,
6-9
flow through a transaction,
1-2
Data files,
adding records to, 3-7
closing, 3-5
deleting records from, 3-7
indexed, 3-2
maximum number, 9-7
opening, 3-4
permanent, 1-2, 3-2
reading records on, 3-7
relative, 3-1
sequential, 3-1
staged, 3-7
TST operations on, 3-1, 3-4
updating records on, 3-7
work, 1-2, 3-2
Date,
using GETIME library routine,
4-36
DEBUG utility, 2-2, 7-5, 7-7
dialog described, 7-7, 7-8
7-9

DEBUG Utility (Con‘'t)
examples, 7-11 to 7-13
input data, 7-9
message files, 7-8
using, 7-7, 7-8, 7-9, 7-10,

14-1
workspace files, 7-9
Debugging,
TSTs in support environment,
7-7

TSTs in TP environment, 7-6,
14-1 to 1l4-16
DEC editor, 2-1, 2-2, 7-1
Definition Data Files, 8-1, 9-1
descriptions, 9-2
station definitions, 10-1
Deleting records, 3-7
in BASIC TSTs, 3-17
in COBOL TSTs, 3-14
methods, 12-5
on staged files, 3-9
Dialog conventions,
TRAX utilities, 8-2, 8-3
DROUTE library routine, 4-1
BASIC parameters, 4-27
COBOL parameters, 4-26
description, 4-26
examples of use, 4-27
status return codes, 4-27

Entry point,
TST, 2-3
Error recovery,
automatic exchange recovery,

11-3

BASIC TST ON ERROR routine,
3-18

COBOL USE procedure, 3-13,
3-14, 3-15

from locked record, 3-6
on I/0 error, 3-71
Exchange, 1-1
definition dialog, 11-4
examples, 1-5, 1-7, 2-6, 2-8
label, 11-6
recovery, 11-3
restarting, 1-2, 2-1, 4-1,
4-19
subsequent action, 11-2, 11-7,
11-8
Exchange message, 1-1, 2-4, 2-5
and TST processing, 1-2, 2-1
as TST argument, 2-2, 2-4
data name, 2-3
defined in LINKAGE SECTION,
2-3
example, 1-5, 1-7

INDEX-2

INDEX (Con't)

EXCHANGE message (Con't)
for SUBMIT command, 5-1
format for TRAX/TL, 6-2
format for TRAX/3271-TL, 6-9
from STTRAN library routine,
5-2, 5-3
logging, 11-3
maximum size, 2-5, 11-3
shown as TPTRAC output,
simulation in debug utility,
7-8
specification, 2-5
Exchange routing list, 1-2, 1-5,
-7, 2-2, 4-1, 4-24 to 4-28,
6-1, 11-7
Exchange time limit,
defining, 11-6

FILDEF utility, 3-1, 3-3

adding a file definition,
12-3

and application security,
13-16, 13-18

and staging, 3-7

commands, 12-2

deleting a file definition,
12-11

described, 12-1, 12-2

editing a file definition,
12-3

function, 8-1, 12-1

invoking, 12-2
listing a file definition,
12-10
listing the index, 12-8
File Access Methods,

sequential, 3-3
File name,
logical, 3-1, 3-3
File sharing, 3-2, 12-5
maximum concurrent access,
12-5
read only files, 12-5
File specification format, 12-3,
12-4
Form definition file, 1-5
Form name,
define for an exchange, 11-6

GETFIL library routine, 4-1
BASIC parameters, 4-44
COBOL parameters, 4-43
description, 4-42
examples of usage, 4-43, 4-44
status return codes, 4-44

GETIME library routine, 4-1
BASIC parameters, 4-37, 4-38
COBOL parameters, 4-36, 4-37
description, 4-36
examples of usage, 4-37, 4-38
status return codes, 4-38

GETMBX library routine, 4-1
BASIC parameters, 4-33
COBOL parameters, 4-31, 4-32
description, 4-31
examples of usage, 4-32, 4-33
status return codes, 4-33,

4-34

GETRAN library routine, 4-1
BASIC parameters, 4-42
COBOL parameters, 4-41, 4-42
description, 4-41
examples of usage, 4-42
status return codes, 4-42

GETSRC library routine, 4-1
BASIC parameters, 4-40, 4-41
COBOL parameters, 4-40
description, 4-40
examples of usage, 4-40, 4-41
status return codes, 4-41

GETSTN library routine, 4-1
BASIC parameters, 4-39
COBOL parameters, 4-38, 4-39
description, 4-38
examples of use, 4-39
status return codes, 4-39

Hard record lock, 3-5, 3-6
error codes,
examples, 3-6

Indexed files, 3-2
and file definition, 12-4
keys defined for, 12-4
maximum key length, 12-5
I/0 channel,
assigning, 3-4
connecting, 3-4
disconnecting, 3-4

Journaling,
enabling with TPCTRL, 14-3
in file definition, 12-6

Linking TSTs,
the TSTBLD utility, 7-2, 7-6,
14-1

INDEX-3

INDEX (Con't)

Logging,
enabling with TPCTRL, 14-3
user data from TSTs, 1-2,

4-1, 4-45 to 4-47

Logical file name, 12-3

LOGTRN library routine, 4-1
BASIC parameters, 4-46, 4-47
COBOL parameters, 4-45, 4-46
description, 4-45
examples of usage, 4-46, 4-47
status return codes, 4-47

MACRO, 1-1
usage notes, A-1
Mailbox stations,
TST operations on, 1-2, 4-1,
4-28 to 4-35
Master link station,

defined in TPDEF, 9-6
used in TRAX/TL, 6-1 to 6-8
used in TRAX/3271-TL, 6-9 to
6-13
MBXNUM library routine, 4-1

BASIC parameters, 4-35
COBOL parameters, 4-34
description, 4-34
examples of usage, 4-34, 4-35
status return codes, 4-35
Messages,
see
Exchange message
Mailbox message
Receive link message
Report message
Response message

OPEN statement, 3-4
in BASIC TST, 3-16
in COBOL TST, 3-11

Passwords,
for user authorization, 13-8
Permanent data files, 3-1
access shown by TPTRAC, 14-8
to 14-16
defined using FILDEF, 12-1
to 12-11
disconnected by CLOSE state-
ments, 3-5
opened by transaction
processor, 3-2
used by a transaction
processor, 12-1
TST record operations on, 1-2
PRCEED library routine, 4-1
BASIC parameters, 4-12
COBOL parameters, 4-11, 4-12

PRCEED library routine (Con't)
description, 4-11
examples of use, 4-12, 4-13
in slave transaction, 6-6
status return codes, 4-13

Random access to files, 3-3
RDCUST TST, 1-5
compiled, 7-1
linked, 7-5, 7-6
Reading records, 3-7
in BASIC TSTs, 3-16
in COBOL TSTs, 3-13
trace output from, 14-11
Receive link message, 9-6
size in slave transaction,
6-1
Record layout, 3-10
specification sheet, 3-12
Record locking, 3-5
actions that cause, 3-5
and work files, 3-2
hard lock, 3-5, 3-6, 3-13,
12-6
in COBOL TSTs, 3-12, 3-13,
3-14
in permanent data files, 3-2
lock wait interval, 12-5
procedure, 3-5
read access to locked
records, 1l2-6
soft lock, 3-5, 3-6, 3-13,
12-6
Relative files, 3-1
Repeat,
exchange parameter, 11-8
REPLY,
BASIC parameters, 4-7, 4-8
COBOL parameters, 4-~6, 4-7
examples of usage, 3-15,
3-18, 4-7, 4-8
library routine, 4-1, 4-5, 4-6
response message, 3-7, 4-5
shown with TPTRAC, 14-16
status return codes, 4-8
used in TRAX/TL, 6-6, 6-7
REPORT library routine, 4-1
BASIC parameters, 4-4
COBOL parameters, 4-2, 4-3
description, 4-2
example of use, 4-3, 4-4
status returns, 4-5
Report messages,
in TRACE output, 14-15
sent by a TST, 1-2, 4-1, 4-2,
14-15
Response message, 1l-1
ABORT, 3-7, 4-1, 4-5, 4-8,
4-9, 4-10, 4-11

INDEX-4

RESPONSE message (Con't)
CLSTRN, 3-7, 4-1, 4-5, 4-15,
4-16
example, 1-5, 1-7
in terminal initiated
transaction, 4-5
PRCEED, 4-5, 4-11, 4-12, 4-13,
14-14
REPLY, 3-7, 4-1, 4-5, 4-6,
4-7, 4-8
sent by a TST, 1-2, 4-1, 4-5
sent to slave batch station,
5-2
sent to slave link station,
6-6
STPRPT, 4-1, 4-5, 4-13, 4-14,
4-15
TRNSFR, 4-1, 4-5, 4-17, 4-18,
4-19
RESTRT library routine, 4-1
BASIC parameters, 4-20
COBOL parameters, 4-19
description, 4-19
examples of usage, 4-19, 4-20
status return codes, 4-20
unsuccessful, 4-20
REWRIT TST, 1-7

Sequential access to files, 3-3
Sequential files, 3-1
deletions not allowed, 3-7
only one TST has write
access, 3-5
rewinding, 3-5
SERCTL utility, 14-2
SIGNOF,
form, 13-19, 13-22
incorporating into applica-
tion, 13-13, 13-15
transaction, 13-12, 13-13,
13-14, 13-15, 13-19
TST, 13-17, 13-22
work classes, 13-13
SIGNON,
form, 13-19, 13-20, 13-21
incorporating into applica-
tion, 13-13, 13-15
transaction, 13-12, 13-13,
13-14, 13-15, 13-20
TST, 13-17, 13-21
work class, 13-17, 13-22
Skeleton source files, 2-1
Slave batch station, 5-2
Slave link station, 6-6 to
6-8
defined in STADEF, 10-13
defined in TPDEF, 9-6

SNDMBX library routine, 4-1
BASIC parameters, 4-30
COBOL parameters, 4-29
description, 4-29
examples of usage, 4-30, 4-31
status return codes, 4-31
Soft record lock, 3-5, 3-6
error codes,
example, 3-6
Software Error Log, 2-2, 14-1
SERANL, 14-2
SERDAY, 14-2
SERLOG, 14-1
Source language libraries, 2-1
Spawning a transaction instance,
aborting a spawned transac-
tion, 4-23
with TSPAWN, 4-20
STADEF utility,
and application security,
13-17
commands, 10-2
defining mailbox stations,
10-13, 10-14
defining master link stations,
10-11 to 10-13
defining slave batch stations,
10-13
defining slave link stations,
10-13
defining submit batch
stations, 10-13
defining terminal stations,
10-3 to 10-7
defining TST stations, 10-8

to 10-10
deleting station definitions,
10-8

function, 8-1

invoking, 10-1

listing station definitions,
10-15, 10-17

listing station index, 10-15,
10-16

station types, 10-3

Staging files, 3-7, 12-6

Stations, 1-1, 9-2, 10-1 to

10-18

and routing lists, 4-25 to
4-28

defining using STADEF, 10-1
to 10-18

mailbox, 1-2, 4-1, 9-7, 10-1,
10-13, 10-14

master link, 6-1 to 6-13, 9-6,
10-1, 10-11, 10-12

slave batch, 5-2, 9-7, 10-1,
10-13

INDEX-5

INDEX (Con't)

STATIONS (Con't)
slave link, 6-6 to 6-9, 9-6,
10-1, 10-13
submit batch, 5-1, 9-6, 10-1,
10-13
terminal, 4-1, 9-5, 10-1,
10-3 to 10-5, 13-17
Tst, 1-1, 1-5, 1-7, 2-1, 9-6,
10-1, 10-5 to 10-8, 14-10
STPRPT library routine, 4-1
BASIC parameters, 4-14, 4-15
COBOL parameters, 4-13, 4-14
description, 4-13
examples of usage, 4-14, 4-15
status return codes, 4-15
used with TRAX/TL, 6-6, 6-7
STTRAN library routine,
BASIC parameters, 5-4, 5-5
COBOL parameters, 5-3
description, 5-2
examples of use, 5-4, 5-5
status return codes, 5-5
Submit batch station, 5-1
SUBMIT command,
sent from TST to batch
processor, 5-1
Subsequent action,
definition, 11-7, 11-8
System library routines, 1-2
calling from TSTs, 4-1
listed, 4-1
tracing calls to, 14-8
System workspace,
calculating, 11~5
size, 11-4

TABORT library routine, 4-1
BASIC parameters, 4-24
COBOL parameters, 4-23
description, 4-23
examples of use, 4-24
status return codes, 4-24

Terminal stations, 4-1, 9-5
associated work class, 10-4,

13-17
defining, 10-3

Time,

using GETIME library routine,
4-36

TPCTRL utility,
commands, 14-3
installing a TP, 14-3
removing a TP, 14-6
starting a TP, 14-3, 14-4
stopping a TP, 14-6
using, 14-2

TPDEF utility, 9-1 to 9-14

and application security,
13-13

commands, 9-4

copying a TP definition, 9-13

creating a TP definition,
9~-4, 9-8, 9-10

deleting a TP definition,
9-14

dialog description, 9-3

editing a TP definition, 9-4,
9-8

function, 8-1

printing a TP definition,

9-11, 9-12
renaming a TP definition,
9-13

TP INDEX, 9-8, 9-9, 9-11
TPTRAC utility,
annotated output, 14-9 to
14-16
example of dialog, 14-8
using, 14-4, 14-6
TRADEF utility,
adding a transaction
definition, 11-2 to 11-10
and application security,
13-14, 13-15
commands, 11-2
deleting a transaction
definition, 11-12
editing a transaction
definition, 11-2 to 11-10
function, 8-1
invoking, 11-1, 11-2
listing the index of
transaction definitions,
11-11
listing a transaction
definition, 11-11, 11-12
Transaction, 1l-1
CHGCUS, 1-2 to 1-4
control, 4-1
debugging in TP environment,
14-1
definition, 1-2, 1-5, 1-7,
2-1, 2-5, 2-6, 1l1-1 to
11-13
design of, 1-1
design using TRAX/TL, 6-1 to

6-8
design using TRAX/3271-TL,
6-9 to 6-13

example of, 1-2, 1-3, 1-4
names in work class

definitions, 13-2, 13-5
SIGNOF, 13-15 to 13-24
SIGNON, 13-15 to 13-24
types, 9-2

INDEX-6

INDEX (Con't)

Transaction Step Tasks (TSTs)
(Cont.),
structural requirements, 2-2
submitting batch jobs, 5-1
using, 2-1
using system library

Transaction instance, 1-1, 2-1
aborting from a TST, 1-2, 4-1,
4-23, 4-24
initiated by batch job, 5-2
instances, 9-2
maximum concurrent, 9-5
record context, 3-4 routines, 4-1
spawned from a TST, 1-2, 4-1, writing for TRAX/TL, 6-1 to
4-20, 4-21 6-8
traced output, 14-9 to 14-16 writing for TRAX/3271-TL,
Transaction processor, 1-1 6-9 to 6-13
calls TST, 2-1 Transaction workspace, 1-1, 1-2,
controlled by TPCTRL, 14-2 2-6
to 14-6 as TST argument, 2-2, 2-4, 2-6

data structures, 9-1, 9-2

debugging, 2-2

definition file, 9-1

definition process, 8-1, 9-1
to 9-14

installing and testing, 14-1
to 14-16

opens data files, 3-1, 3-4

passes parameters to TST, 1-1,
2-3

specification sheet, 9-9

tracing operations of, 14-7
to 14-17

Transaction processor definition

utilities, 1-1
AUTDEF, 8-1, 9-2
dialog conventions, 8-
FILDEF, 3-1, 3-3, 8-1,
STADEF, 1-1, 8-1, 9-2,

to 10-18
TPDEF, 8-1, 9-1 to 9-14
TRADEF, 8-1, 9-2, 1l1-1 to

11-13
WORDEF, 8-1, 9-2

2, 8-3
9-2
10-1

Transaction processor trace

facility, 2-2, 14-1, 14-4,
14-9 to 14-16

Transaction slot, 1-1

maximum size, 9-7, 9-8
traced output, 14-10 to 14-16

Transaction Step Tasks (TSTs),

1-1
actions performed by, 1-2
calling parameters, 1-1
coding, 2-1, 2-2
compiling, 2-2, 7-1
debugging, 1-1, 7-6 to 7-13,
14-1
developing, 2-2
exiting from, 2-9
integrating into a transac-
tion processor, 1-1
linking, 2-2
preparing for I1I/0, 5-4
station, 1-1, 1-5, 1-7, 2-1

coding in COBOL, 2-8
data name, 2-3
defined in LINKAGE SECTION,
2-3
logging, 11-3
maximum size, 2-6
simulated in debug utility,
7-9
size, 11-3
specification, 2-7, 2-8
trace output showing, 14-10
to 14-16
transmits data across
exchanges, 2-6
WKMAP statement, 2-8, 2-9
TRAX/TL, 6-1 to 6-8
TRAX/3271-TL, 6-9 to 6-13
TRNSFR library routine, 4-1
BASIC parameters, 4-18
COBOL parameters, 4-17
description, 4-17
examples of usage, 4-18
status return codes, 4-19
used in TRAX/TL, 6-6, 6-7
TSPAWN library routine, 4-1
BASIC parameters, 4-22
COBOL parameters, 4-20, 4-21
description, 4-20
examples of usage, 4-21, 4-22
status return codes, 4-22
TSTBLD utility, 4-1
and TP debug, 14-1, 14-4
dialog described, 7-2 to 7-4
examples of use, 7-5, 7-6,
14-1
specification defaults, 7-3
using, 2-2, 7-2, 14-1
TSTEP,
required as TST program ID,
2-3
required in TST statement,
2-4

Updating records, 3-7
in BASIC TSTs, 3-17

INDEX-7

INDEX

UPDATING records (Con't)
in COBOL TSTs, 3-13, 3-14
on staged files, 3-9
User authorizations,
and work classes, 13-8, 13-21
defined, 13-7
names, 13-8, 13-20
passwords, 13-8, 13-20
role in application security,
13-7, 13-17, 13-19, 13-21

VALIDC TST, 1-7

WAIT,
exchange parameter, 11-7, 11-8
WORDEF utility,
adding a work class
definition, 13-2
commands, 13-2
deleting a work class
definition, 13-5
editing a work class
definition, 13-2
function, 8-1, 13-1

(Con't)

WORDEF utility (Con't)
invoking, 13-1
listing the index of work
classes, 13-4
listing a work class
definition, 13-5
role in application security,
13-17, 13-19
Work classes, 13-1 to 13-6
defined, 13-1
for terminal station, 10-4
in user authorization, 13-8,
13-21
names, 13-2, 13-3, 13-8
role in application security,
13-1, 13-17, 13-19
Work files, 3-2, 12-4
defined using FILDEF, 12-1
to 12-11
opened and closed, 3-2
TST operations on, 1-2
used by a transaction
processor, 12-1
Writing records, 3-7
in BASIC TSTs, 3-17
in COBOL TSTs, 3-13
to staged files, 3-9

INDEX-8

TRAX Application
Programmer’s Guide
AA-D329A-TC

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

0O Assembly language programmer
O Higher-level language programmer
O Occasional programmer (experienced)
O User with little programming experience
O Student programmer
O Other (please specify)
Name Date
Organization
Street
City. State Zip Code

or
Country

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltiall

Software Documentation
146 Main Street ML 5-5/E39
Maynard, Massachusetts 01754

