TSX-PLUS
.‘ Refereénce Manual

TSX-PLUS
Reference Manual

First printing —-- December, 1980

Copyright (c) 1980

S&H Conmputer Systems, Inc.
1027 17th Avenue South
Nashville, Tennessee 37212
USA

(615)=327-3670

The information in this document 1s subject to change without
notice and should mnot be construed as a commitment by S & H
Computer Systems Inc. S & H assumes no responsibility for any
errors that may appear in this document.

NOTE: TSX-Plus, COBOL-Plus, TSX and RTSORT are proprietary
products owned and developed by S&H Computer Systems, Ince.,
Nashville, Tennessee, USA. The use of these products 1is governed
by a licensing agreement that prohibits the licensing or
distribution of these products except by authorized dealers.
Unless otherwise mnoted in the licensing agreement, each copy of
these products may be used only with a single computer at a single
site. gl will seek 1legal redress for any unauthorized use of

these productse.

Questions regarding the licensing arrangements for these products
should be addressed to S&H Computer Systems, Inc., 1027 17th Ave.
South, Nashville, Tennessee 37212, (6155-327-3670.

Contents

1. Introduction

2. Basic Operation
2.1 Logging On
2.2 Control Characters
2.3 Keyboard Commands
2.3.1 ACCESS Command

2.3.2 ASSIGN Command
2.3.3 BOOT Command
2.3.4 COBOL Command
2.3, COMMENT Command
2.3. COMPILE Command
2.3, COPY Comnand
2.3, DATE Command
2.3.9 DEASSIGN Command

DELETE Command
DETACH Command
DIBOL Command
DIFFERENCES Command
DIRECTORY Command
DISMOUNT Command
DISPLAY Command
DUMP Command
EDIT Command
EXECUTE Command
FORM Command
FORTRAN Command
HELP Command
INITIALIZE Command
KILL Command
LIBRARY Comnand
LINK Command
MACRO Command
MEMORY Command
MONITOR Command
MOUNT Command
OFF Command
OPERATOR Command
PAUSE Command
PRINT Command
R Command
RENAME Command
RESET Comnmand
RUN Command
SEND Command
SET Comnnand
2.3.40.1 SET TT
2.3.40.2 SET CCL
2.3.41 SHOW Conmand
2.3.41.1 SHOW ASSIGNS
2.3.41.2 SHOW DEVICES
2.3.41.3 SHOW JOBS
2.3.41.4 SHOW MEMORY

e« o o
WwWwWww WL
PO

e o o & o ® & o e ® o e o e o o s o o
e ®» ® @ @ & & & = e o © e = o o & o @

* o o
e o &

°
bwwwwwuuwuuwwwmwwwwwmr—-v—-r--s--r—-n--n—-r-—r—-l—-‘xooo\loxw
O\OOO\JO\U\J-\WNHO\OO’)\JONU\J-\L»NP—'O\Om\lo\kﬂbul\)i—‘o

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
.

uuwuuuuuuuuuuuuwuuwuuuwwuuuu

OCWOVOVWVVWOVWRSNYIUENDN —

RN PNDNON NN - b bt b b b b b b b e b e b e e e
2P LOCOWOVDOVCONIDR O\O\LnU‘J-\J-\bwuwuwwMNNNrdo—‘HHHOO

(3]
.
Fa

3. Virtua
3.1
3.2

4., Device
4.1

EIP S R
L .
wm &SN

gra

.
>

.

.

.
= = O 0~

(SRS I RV, RV, BV, R, R RV, IV RV, IV) N e
.

v
.

—
o

2.3.41.5 SHOW QUEUE

2.3.41.6 SHOW USE

SQUEEZE Command

SYSTAT Command

SPOOL Command

TIME Command

TYPE Command

§STOP Command

8 S$SHUTDOWN Comnand

Commands Not Supported by TSX-Plus

[NV

(O8]

. o
.
o

~N o

-
—_— W W W wwWw
— .
E R S B O SR - S e
w

FIRD NN NN N
[o

e

1 Time-sharing Lines and Detached Jobs

Virtual Lines

Detached Jobs

3,2.1 The DETACH Commnand
3.2.1.1 Starting a Detached Jobh
3.2.1.2 Checking Detached Job Status
3.2.1.3 Aborting a Detached Job

3.2.2 Detached Job Control Emt’s
3.2.2.1 Starting a Detached Job
3.2.2.2 Aborting a Detached Job
3.2.2.3 Checking Detached Job Status

Spooling

The Concept of Device Spooling

Directing Output to Spooled Devices

Use of Special Forms with Spooled Devices

Form Alignment Procedure

The SPOOL Conmand

The FORM and LOCK Functions

The ALIGN Function

The DEL Function

The SKIP Function

The BACK Function

The STAT Function

The SING and MULT Functions

The HOLD and HNOHOLD Functions

.
—

. e o o
. * o

B e O T Sl L S
*

.

(S, I, B, W, IV BT,) I]
.

O~ OV & Wi

3

m Controlled Terminal Options
Set Rubout Filler Character
Set VT100 & VT52 Escape Sequence Activation
Define Activation Character
Control Character Echoing
Disable Virtual Line use
Control Lower—-case Input
Control Character Echoing
Set Transparency lfode of Output
Control Command File Input
Reset Activation Character
Set Field Width Activation
Turn on High-efficiency mode
Turn on Single-character Activation
Turn off Single-character Activation
Fnable non-wait TT input testing
Set Field Width Limit

24
25
25
25
26
27
27
27
27
27

29
2

30
31
31
31
32
32
32
33
33

34
34
34
35
36
37
37
37
38
38
38
38
38
39

40
41
41
41
42
42
42
42
42
42
42
43
43
43
44
44
4e

6. TSX-Plus EMT’s
6.1 Determine 1f Job 1is Running Under TSX-Plus 45

6.2 Determine TSX-Plus Line Number 45

6.3 Determine TSX-Plus License Number 45

6.4 Determine Terminal Type 46

6.5 Send A Message To Another Line 46

6.6 fount A File Structure 47

6.7 Dismount A File Structure 47

6.8 Set Terminal Read Time-out Value 47

6.9 Establish Break Sentinal Control 48

6.10 Check For Terminal Input Errors 49

6.11 Check For Activation Character Reception 49

6.12 Sending A Block Of Characters 50

6.13 Accepting A Block Of Characters 50

6.14 Turning High-efficiency Mode On/Off 51

6.15 Determine Number Of Free Spool Blocks 51

.16 Set/Reset ODT Activation lMode 52

7. Shared File Record Locking 53
7.1 Opening A Shared File 53

7.2 Saving the Status Of A Shared File 55

7.3 Waiting for a Locked Block 55

7.4 Trying to Lock a Block 56

7.5 Unlocking a Specific Block 56

7.6 Unlocking A1l Blocks 57

7.7 Checking For Writes to a Shared File 57

8. 'lessage Communication Facility 59
8.1 tessage Channels 59

8.2 Sending A Message 59

8.3 Checking for Pending llessages 60

8.4 Valting for a ilessage 61

9. Command Files 62
10, Performance !Yonitor Feature 66
10.1 Starting a Performance Analysis 66

10.2 Displaying the Results of an Analysis 67

10.3 Performance !fonitor Control EMT’s 68
10.3.1 Initializing A Performance Analysis 68

10.3.2 Starting A Performance Analysis 69

10.3.3 Stopping A Performance Analysis 70

10.3.4 Terminating A Performance Analysis 70

11, TSX-Plus Restrictions 72

Appendix A - DIBOL TSX-Plus Support Subroutines 73

1l. INTRODUCTION

TSX-Plus is a high-performance, general purpose, time-sharing
operating system for Digital Equipment Corporation PDP-11 and
LSI-11 conputers. TSX-Plus provides the functionality of the DEC
RT-11 operating system to up to 20 concurrent time-sharing users.

TSX-Plus overlaps terminal dinteraction time, I/0 wait time
and CPU execution time for all jobs on the system. The result is
a tremendous increase in the productivity of the computer systemn.

TSX-Plus was designed from the ground wup to efficiently
support a wide variety of RT-1l prograns. TSX~Plus contains no
RT-11l enulator as some other time—-sharing systems doj rather,
TSX~-Plus supports RT-11 system service calls as 1its basic mode of
operation. The result is lower systemn overhead and substantially
improved performance over systens that nust enulate RT-11
services. 'lost RT-11 programs can be used with TSX-Plus without
change or even having to be relinked. TSX-Plus interfaces with
standard RT-11 device handlers and supports RT-11 utility prograns
such as PIP, DIR, and DUP. The TSX-Plus keyboard commands are an
extended set of those provided by RT-11. TSX=-Plus fully supports
CCL commands such as COMPILE and EXECUTE.

TSX-Plus is a general purpose time-sharing systen. It can
simultaneously support a wide variety of jobs and progranming
languages including COBOL-Plus, FORTRAN, BASIC, DIBOL, PASCAL,
APL, MACRO, TECO and KED. TSX=-Plus is in use in educational,
business, scientific and industrial environnents. It can
concurrently support conmercial users doing transaction
processing, engineering users performing scientific processing,

and system programmers doing progran developnent.

In addition to the basic RT-11 functionality, TSX-Plus
provides extended features such as a transparent line-printer
spooling systen; a shared file record locking facility; an
inter-job message comnunication facility; a program performance
nonitor system; comnand files with parameters; and a logon and
usage accounting systemn.

TSX-Plus will run on any PDP-11 or LSI-1ll computer that has
menmory management facilities and at least 96Kb of memory. The
system nmust also have a disk suitable for progran swapping (the
swapping disk can also be used for regular file storage as well).
Time-sharing lines can be connected to the systenm through DL-11 or
DZ-11 comnunication devices. Both hard-wired and dial—-up lines

are supported by TSX-Plus.

*DEC, RT-11, CTS-300, DIBOL and PDP-11l are trademarks of Digital

Equipment Corporation.
**Unless otherwise indicated, all information applies to RT-11 and

CTS-300.

2. BASIC OPERATION

2.1 Logging On

When TSX-Plus is generated, lines can be set up so that they
are automatically initiated when TSX-Plus 1s started. If this 1is
done, the grreting message "TSX-Plus version x.y" will be printed
at each terninal when TSX-Plus is started. Lines which are not
gencrated with the automatic start feature must be 1initiated by
pressing carriage return at the terminal.

If TSX-Plus was generated requiring log on authorization, the

message "Logon please:" will be printed. The user should respond
by typing a project number, a comnna, and a programmer number
followed by carriage return. TSX~Plus will then request the

password. For security reasons the password is not printed at the
terminal as it is typed in. After the project-programmer numbers
and password are entered, TSX-Plus checks them for wvalidity and,
if wvalid, types the nessage "Welcome to the systen'". TSX-Plus
then either types a period indicating it is waiting for a ‘command
nr axacutes a start—-up command file that was specified by the
system administrator.

A start-up command file contains initialization commands for
a line. It can end by either leaving the Iline waiting for a
gveten comnand (a period is printed) or by starting execution of
sane programne It is possible for a command file to lock a program
s a line so that if execution of the program is terminated the
line is automatically logged off. Any characters typed at the
terminal during the execution of a start-up command file are
ignored. Typing control-C will not abort a start-up command file.

The following example illustrates a typical log-on sequence.
The information tvped by the user is underlined.

(cavrriage return pressed)
TS¥-Plus version 1.5
26-Sep~80 11:45:27
Logon please:413,2107
Password:MYPASS(password entered but not printed)
Yelcome o the svsten
.(TSX-Plus is now waiting for a system command)

A user may adopt a new password while logging on. To do
this, enter a slash and the new password immediately after typing
the old password. The new password nust then be used for future
logons. Passwords may be from 1 to 7 characters in length and
must be composed only of letters and digits. The following
exanple shows the password being changed from "OLDP" to "NEWP".
Note that neither the old nor the new password 1is echoed.

(carriage return pressed)
TSX-Plus version l.5

26-5ep-80 4:17:43
107,24

Logon please:
Password:OLDP/NEWP

Welcome to the system

is generated S0 that logon account
authorization 1is not required, then 1instead of saying '"Logon

please:" it will either start executing a start—up command file or
will simply print a period and wait for a system command to be

entered.

If the TSX-Plus systen

The OFF systen command (described below) is used to log off a

timesharing line.

2.2 Control Characters

The following characters may be used to <control terminal

operations.

Thev are entered by holding down the "CTRL" key while

pressing the selected character.

CTRL-U

CTRL-0

CTRL-C

CTRL-T

CTRL-W

Deletes the current input line.

Causes suppression of oprogram output to the
taerminal until one of the following conditions
occurs:

1) A second CTIRL-0 {is typed
2) A return to ronitoer occurs
3) The running progranm issues a ~RCTRLO EMT.

Temporarily suspends output to the terminal until
CTRL-Q {is tvped. CTRL-S has no special effect if
SET TT NOPAGE has been used.

Resunes printing on the terminal from the point at
which printing was previouslv suspended by CTRL-S
or end of page (see SET TT LENGTU comnand) . CTRL-Q
has no special effect if SET TT NOPAGE has been
used.

Causes the current characters 1n the TTY input
buffer to be typed out. This can be used to check
the actual status of an d1input 1line when Trubout

editing has been done on the line.

Interrupts the current program and returns control
to the keyboard monitor. If the running progranm 1s
not waiting for input, two successive CTRL-C’s are
required to interrupt its execution.

Indicates end-of-file when input is being read from
"

1"m

device TT" .

7.

Equivalent to TA

Used to switch to a TSX-Plus virtual line. (See
chapter on virtual lines.)

2.3 Keyboard Commands

The TSX-Plus command interpreter 1s somewhat more powerful
and flexible than the standard RT-11 command interpreter. When a
system command line is typed in, TSX-Plus performs the following

steps while trying to interpret it:

1.

If the command 1line begins with an at sign ("@"),
TSX-Plus interprets the command as a command file
execution. If no device is specified with the command
file name, device DK: 1s assumed. See the chapter on

command files for further information on them.

TSX-Plus next attempts to 1identify the command as a
standard system command such as COPY, RUN, EXECUTE, etc.
Commands may be abbreviated to the minimum number of
characters that uniquely specify the name. Thus "COP"
would be an acceptable abbreviation for COPY, but '"CO"
would not because it could mean COPY or COMPILE. "COPX"
also would not be 1identified as a s8ystem command.

If the command cannot be identified as a standard system
command, TSX-Plus tries to find a command file on device
"DK:" that has the same name as the command keyword. If
no such command file is found on "DK:", TSX-Plus looks
for the command file on device "SY:". If such a command
file is8 found, its execution 1s started. When a command
file is started in this fashion (rather than explicitly
specifying an at-sign before its name), the command file
listing is suppressed as if an implied "SET TT QUIET"
command was executed during command startup. This
implied listing suppression is temporary in effect and
applies only to the command file started 1in thisg
fashion. See example 5 below.

If a system command file cannot be found, TSX-Plus looks
for an executable program (SAV file) on device "SY:"
that has the same name as the command keyword. If such
a program is found its execution is started as if there
were an "R" command in front of the program name. Note
that RT-11 and TSX-Plus allow a line of text input to be
passed to a program by specifying it on the RUN command
after the program name. TSX-Plus also allows this to be
done with the "R" command as well as with an implied "R"
command line when the program name 1is specified as the
command keyword. See example 6 below.

Examples:

1.

Run a progran named '"DUMP" on device "SY:".
«R DUMP
Run a program named "PAYROL" on device "DX1l:".

.RUN DX1:PAYROL

Execute

« @PURGE

List all files on

«.DIR RKI1:

Start a command file named
the parameter string

a

command

.LOADIT PROG2

file named

"RKL:"

"PROG2",

"PURGE"

"LOADIT" on

Execute the program "PIP" on "SY:" and

line "A.TMP=B.TMP".
.PIP A.TMP=B.TMP

on device "DK:".

"SY:" and pass it

pass 1t the input

2.3.1 The "ACCESS" Command. The ACCESS command is used to restrict
user flle access to a particular set of files or devices. Refer
to the TSX-Plus System I!lanager’s Guide for further information
about this command.

2.3.2 The '"ASSIGN" Command. The RT-11 ASSIGN command is used to
associate a logical I/0 device name with a physical device. A
frequent use 1Is to assign FORTRAN I/0 unit numbers to selected
devices. The TSX-Plus ASSIGN command provides this facility in an
identical fashion and also offers a useful extension. In addition
to being able to specify a physical device nanme, the user nay
specify a file name, extension, and size.

To simply assign a logical device name to a physical device,
the form of the ASSIGN command is the same as that under RT-11.
For exanple, to assign the logilcal device name "BIN" to physical
device "DX1" the command would be:

ASSIGN DX1 BIN

To assign FORTRAN I/0 unit number 1l to the teletype, the command
would be: ASSIGN TT 1

If a file name and optional size 1s to be specified in addition to
the physical device name, the file name and size follow the device
nane. For example, to assign FORTRAN I/0 unit number 1 to a file
named "PAYROL" on device "DX0"™ with a size of 43 blocks, the
following command could be used:

ASSIGN DXO:PAYROL[43]=1

The following command would assign logical device "BIN" to a file
named "PROG1l" on the system device:

ASSIGN SY:PROG1=BIN

It is also possible under TSX-Plus to assign a new logical
name to a previously assigned logical name. The effect 1s to
assign the new logical name to the same physical device that the

previous assign was directed to. For wexanple, the following
sequence of ASSIGNs result in both logical devices "AA" and "BB"
being assigned to "DLIL".

ASSIGN DL1 AA
ASSIGN AA BB

A maximum of fifteen assignments may be 1in effect at any
given time for each user. ‘

2.3.3 The "BOOT" Command. The BOOT command causes TSX-Plus to
abort all currently running jobs and to rebhoot RT-11. Unlike the
R7T-11 BOOT command no device or file name mav he specified with
the TSX-Plus boot command == it alwavs reboots from the systen
(SY) device. Operator command privilege 1is required to use this
conmand. The BOOT conmmand is functionally equivalent to the §STOP
comnand.

2.1.4 The "COBOL" Command. The COBOL command is used to cause the
COBOL-Plus compiler to compile a COBOL source programe. The
default extension for COBOL source programs is "CBL", the default
extension for COBOL object files is "CBJ". The COMPILE, LINK and
EXECUTE commands may also be used to compile and/or execute COBOL
prograns as TSX-Plus will invoke the COBOL-Plus conpiler and
CBLINK link program 1f the source progran specified to compile has
the extension "CBL" or the object progranm specified to link has
the extension '"CBJ". Switches that can be used with the COBOL
conmand are listed below.

Switch Meaning

/CROSS Produce a cross-reference of the source progran.

/ CREF (Equivalent to /CROSS).

/ONDEBUG Compile the procvan for use with the interactive debuggpger.
/PRODUCTION Omit line numher tracinz and subscript checking code.
/ANST Produce warning nessages for any non—AdSI standard feature
/LIST Produce a source progranm listing.

/ VARROW Format the cross-reference for 80 column display.

/ IUFORMATION Print additional information at end of compilation.

/ CARD Source program 1s in card sequence format.

/ SEQUENCE (Equivalent to /CARD).

/ SUMMARY Print only error messages on listing device.

/OBJECT:name Specify name of object file.
/ALLOCATE:size Specify size of object file.

See the COBOL-Plus reference nmanual fer fuvther infornmation about
this command.

2.3.5 The "COMMENT" Command. This command may be used to place
comments inside command files. The form of the COMMENT command

is:

COMMENT comments

where "comments" may be any string of characters.

2.3.6 The "COMPILE" Command. The COMPILE command invokes the
appropriate language processor to compile the specified source
file. The TSX-Plus COMPILE command is the same as the RT-11
COMPILE command except that it also recognizes programs with the
extension "CBL" as COBOL source programs and calls the COBOL-Plus
compiler. When ‘compiling a COBOL program, the switches that are
legal with the COBOL command may also be wused with the COMPILE
command. It 4s also possible to explicitly specify that the
COBOL-Plus compiler is to be called by using the '"/COBOL" switch
with the COMPILE command.

2.3.7 The "COPY" Command. The TSX-Plus COPY command has the same
form and options as the RT-11 COPY command.

2.3.8 The "DATE" Command. The TSX-Plus DATE command has the same
form and options as the RT-11 DATE command. Operator command
privilege is required to set the date.

2.3.9 The "DEASSIGN" Command. The TSX-Plus DEASSIGN command 1is
identical to the RT-11 DEASSIGN command. It 1is used to
disassociate a logical unit number assignment.

2.3.10 The "DELETE" Command. The TSX-Plus DELETE command has the
came form and options as the RT-11 DELETE command.

2.3.11 The "DETACH" Command. The DETACH command 1s wused to
initiate execution of a command file as a "detached" job, to abort
a detached job or to check the status of a detached job. The |wuse
of this command requires the user to be authorized to use detached
jobs. 4J&9 ravd tMasT e deuice cgpesi iy
’ ({42 does aol vwmdeactend device C\,.)*"&ulf"')
The form of the comnand used to start a detached job is:

.DETACH file t -

where "file" is the name of a command file which is to be started
as a detached job. I1f a free detached-—job line is available the

file will be started and a message will be printed indicating on
which line the detached job was started. Detached-job lines must
be declared when TSX-Plus is generated.

In the following example a command file named "CRUNCH" is
started as a detached job.

.DETACH CRUNCH
Job started on line #5

The form of the DETACH command used to abort a detached job

.DETACH/KILL line-number

where "line-number" is the number of the detached-job line where
the job 1is executing.

The form of the DETACH command used to check the status of a
detached job line is:

+.DETACH/CHECK line-number

In response to this command TSX~-Plus will indicate 1if a job s
still executing on the line.

See the chapter on virtual 1lines and detached Jjobs for
further information.

-10-

2.3.12 The "DIBOL" Command. The DIBOL command is used to compile a
DIBOL source program. The TSX-Plus DIBOL command has the same

form and options as the RT-11 DIBOL command.

".17.13 The "DIFFERENCES" Conmand. The DIFFIRENCES command is used
to compare two source or object files. The TSX-Plus DIFFERENCES
command has the same form and options as the RT-11 command.

2.3.14 The "DIRECTORY'" Command. The TSX-Plus DIRECTORY command has
the same form and options as the TT-11 DIRECTORY command.

2.3.15 The "DISMOUNT" Command. The DISMOUNT command 1is used to
tell TSX-Plus that it should stop doing directory caching on a
particular device. The form of the DISMOUNT command is:

DISMOUNT ddu

where "ddu" is the name of the device. The only effect of the
DISMOUNT command 1is to cause TSX-Plus to stop doing directory
caching for the device. Files on the device may still be accessed
after the DISMOUNT command 1is issued. When one user issues a
DISIOUNT command, the device is dismounted for all users. An
Automatic dismount is done when an INIT or SQUEEZE command is done
on a device.

2.3.16 The "DISPLAY" Conmmand. This conmand can he used within a
command file to cause a line of text to be displaved on the
terminal when the command is executed. This is useful in command
files that are not being listed to keep track of the progress
through the command file. The form of the DISPLAY command is:

.DISPLAY ccnmments

where "conmments'" —can be anyv text string to be displayed on the
terminal.

-11~

2.3.17 The "DUMP" Command. The TSX-Plus DUMP command has the sane
form and options as the RT-11 DUMP comnand.

27.3.18 The "EDIT" Comnand. The TSX=Plus EDIT command has the sane
form and options as the RT-11 EDIT command.

2.3.19 The "EXECUTE" Command. The TSX-Plus EXECUTE command has the
same form and options as the RT-11 EXECUTE command. It will also

recognize programs with the extension "CBL" as COBOL source
prograns and will invoke the COBOL-Plus compiler and linker.

2.3.20 The "FORM" Command. The FORM command is used to specify the
default form name to be used bv subsequent spool files generated
hv the user. The form of the FORI command is:

FOR! nanme

where 'nane" is the one to six character default form nane to be
used for all spool files generated by the user until another FORI
command is issued. See section 4.3 for further information. The
initial default form name for each user 1is "STD".

In the following exanple a FORTRAN listing will be generated

LN et be} n o
L

for printing on a form called "Z2-PARL .
.FOR}l 2-PART

+.COMPILE/LIST TEST

.FORM STD

2.3.21 The "FORTRAN" Command. The TSX=Plus FORTRAN command has the
same form and options as the RT-11 FORTRAN command.

2.3.22 The "HELP" Command. The TSX-Plus HELP command has the sane
form and options as the RT-11 HELP command.

2.3.23 The "INITIALIZE" Command. The TSX-Plus INITIALIZE command
“as the same form and options as the RT-11 INITIALIZE command. If
the MOUNT command was used to mount the device being initialized,
the device 1is automatically dismounted before the initialization

takes place.

2.3.24 The "KILL" Command. The KILL command can be used to kill a
tinmesharing job. This has the effect of aborting the execution of
the job and forcing the 1logoff of the line. Operator command
privilege is required to use the KILL command. The form of this

comnmand is:

+KILL line—-number

where line-number is the number of the job to be killed.

2.3.25 The "LIBRARY" Command. The TSX-Plus LIBRARY command has the
sane form and options as the RT-11 LIBRARY command. It also can
e used to build COBOL-Plus object program libraries; see the
COBOL-Plus reference for further information.

2.3.26 The "LINK" Command. The TSX=Plus LINK command has the samne
form and options as the RT-11 LINK command. It will also
recognize object files with the extension "CBJ" as COBOL-Plus
object files and will invoke the COBOL-Plus link program (CBLINK).

-]13-

2.3.27 The '"MACRO" Command. The TSX-Plus MACRO command has the
same form and options as the RT-11 MACRO command.

2.3.28 The "MEMORY" Command. The HMEMORY command is used to control
the amount of memory made available to a job. When a job
initially logs on it receives a default memory size allocation
that was set by the system manager. The HEIORY command can be
used to change the allocation for the job. The form of the !ME!ORY
connand is:

MEMORY nn

Where "nn" is the number of k-bytes of memory to be allocated for
the job. The maximum memory size that a job may expand to is set
by the system manager but 1s never greater than 56. UWhen a
running progran performs a SETTOP emt the top of menmory address
corresponds to the size last specified by a ME!NMORY command. Note
that .SETTOP emt’s do not actually affect the amount of memory
allocated to a job =-- only the MEMORY command does that.

If the MEMORY command is entered without specifying a size,
the current memory allocation for the job 1s displayed. See also
the description of the SHOW MEMORY command.

2.3.29 The "MONITOR" Command. The MONITOR command is used to cause
TSX-Plus to begin doing a performance analysis. See chapter 9 for
complete information about the TSX-Plus performance analysis
feature. The form of the MONITOR command 1is

MONITOR base-address,top—address|[,cell-size]/switches

where '"base—address'" 1s the lowest address in the program region
being monitored, "top-address" 1is the Thighest address in the
region, "cell-size" is the number of bytes to group per histogram
cell. The only available switch 1is "/I" which, if specified,
causes I/0 wait time to be included in the analysis.

-14=

5.1.30 The '"MOUNT" Command. The MOUNT command is used to tell
TSX—-Flus that a file-structured device is to have its directory
cached. Directory caching is a technique that speeds up (ile
laokups by keeping information about files In menory so0 that it is
not necescary to access the directory on the device cach time a
file i1s opened. The form of the MOUNT command 1is:

HOUNT ddu

where "ddu" is a device name such as '"DL1". The only eifect of
the OUNT command is to tell TSX-Plus that it should do directory
caching for the device being mounted. TIf directory caching is not
wanted it is quite possible to mount a device and access filers on
it without using the MOUNT command. Once a MOUNT command S
issued, directory caching 1is enabled for all users who access
files on the device. If the MOUNT command 1is used to cause
TSX-Plus to do directory caching for a device, it 1is crucially
important that the DISMOUNT command (see below) be used to
dismount the device before a new disk is mounted on the sane
drive. If a new pack is mounted without telling TSX-Plus, it
would try to access files on the new pack according to their
positions on the old pack whose directory information is in its

directory cache.

Directory caching has a dramatic speed effect on file lookups
but does not speed up file enters, deletes or renanes. This 1is
because TSX-Plus always updates the directory on the device when
it is altered. The maximum number of devices whose directories
may be cached and the number of file entries that are kept in the
directory cache are specified when TSX-Plus is generated.{he
svsten disk is always cached and need not be mounted.

Exanple:

fouNT DL2

2.3.31 The "OFF" Command. The OFF conmand is used to log off a
terminal. It is also used to release a virtual line (sec the
discussion of wvirtual lines on page 17). On dial-up lines, an
autonatic log off is performed by TSX-Plus {f the telephone
connection 1s broken. The accunulated connect tine and CPU tinme
used during the session are printed during the logoff processing.

Exanple:

.OFF
Connect time=01:43:00 CPU=00:12:03.7

2.3.32 The "OPERATOR" Command. The OPERATOR command 1is used to
send a message to the terminal which was specified to be the
operator’s console when TSX-Plus was generated. The OPERATOR
command works like the SEND command, but it is not necessary to
know the line number of the operator’s terminal. The form of the
OPERATOR comnand is:

OPERATOR message
Exanple:
Send a disk mount message to the operator:

OPERATOR PLEASE MOUNT PAYROLL MASTER DISK ON RK1

2.3.33 The "PAUSE" Conmmand. The PAUSE comnand 1s wused within

command files (see chapter 9) to cause a pause in processing the
file. The form of the PAUSE conmand is:

PAUSE comments

where "comments" may be any string of characters. When a PAUSE
command is encountered within a command file, the PAUSE command 1is
printed on the terminal followed by ">>". Execution of the
command file 1is then suspended until carriage return is pressed.
This gives the operator an opportunity to perform manual
operations such as mounting disks or tapes.

2.3.34 The "PRINT" Command. The TSX-Plus PRINT command has the
same form and options as the RT-11 PRINT command.

16

2.3.35 The "R" Command. The "R" command is used to start execution
of a prograne. The default device which 1is searched for the
progran is "SY:"; a different device name may be specified with
the nanme of the programnm. A line of input may be passed to the
progran by specifying it as part of the "R" conmmand following the
prosran nanee. If this 1s done the program will receive the text
string as its first line of input and will receive control-C as
its second line of input.

The /LOCK switch may be specified following the "R'" command
kevword. Tf specified, this switch causes the program that is
being started to be "locked" to the timesharing line so that when
the progran exits the line is automatically logged off. If the
"R/LOCK" command occurs within a command file the command file is
terminated as the program 1is started and any additional
infornation in the conmand file is ignored. The nost frequent
use of this feature is in start—-up command files where a line is
to be restricted to accessing a particular progran. If a locked
progran chains to another program, the program that was chained
to then becomnes the locked programn. See exanple 4 Dbelow.

The /DEBUG switch may be used with the "R" or "RUN" commands
to cause the progran being started to be executed under control of
the TSODT debugging program. If the /DEBUG switch is specified, a
relocatable copy of the TSODT progranm ("SY:TSODT.REL") is loaded
into the wupper most portion of the available menory space
(reducing the memory space available to the running progran by
ahout 4Kbh). The programn being started is then loaded into the low
menory space below TSODT and control is passed to TSODT. TSODT
respnonds by printing a greeting nmessage and waiting for a command
from the terminal. At this point register O ("$0") contains the
address of the starting point of the program. TSODT may be used
to displav or exanine locations in the progran being started or
set breakpoints. The program being run is then started by using
the TSODT "xxxxx;G" conmand (where "xxxxx'" is the starting address
of the progran). The /DEBUG switch allows TSODT to be used to
debug a progran without having to link the progran with TSODT.

The /SINGLECHAR switch mnay be used with the "R" and "RUN"

commands to cause the program being run to execute 1in ‘'single
character activation'" node. Normally when programs are run under
TSX-Plus they do not receive terminal input until an ‘"activation"

character such as carriage-return has been entered. This is
normallv true even in the case where the progran sets bit 12 in
the Job Status Word. Also, TSX-Plus does not normally allow a
progran to test for terminal input without stalling on the +TTYIN
ENT. However, if the /SINGLECHAR switch is used with the R or RUN
command, TSX-Plus honors bits 6 and 12 of the Job Status Word and
allows the progran to activate on each character and test for
terminal input without stalling. A program can also achieve this
effect bv wusing the "S" and "U" terminal control commands -- see
chapter 5. KED and K52 are automatically run in single character
activation mode.

Exanples:

-17~-

l. Run the program named "DUHP" on device "SY:".

+R DUMP

2. lun the procran naned "PIP" on "SY:" and pass to it the
line "A.THP=B.T!P.
R PIP A.TMP=B.T!P
3. Run the progran naned "SAIPLE"™ on "RK2:".
«.R RK2:35AUPLE
4. Start the execution of BASIC and lock it to the line.
LR/ALOCK BASTC
B Start a program naned PLANYE and allow it to
use single character activation node.
CRUN/STAGLY PLANL
O, Start a4 progran naned TRIAL in debug node so that
it will be run under TS0IT.

SRUN/DEBUG TRIAL
FTHX=0DT=-V3%

*

2.3.%5 The "RENAME" Command. The TS¥-Plus RENANME command has the
same fornm and options as the RT-11 RENAUE conmmand.

2.3.37 The "RESET" Comnand. The RESET conmmand can he used to resct
the svstea usage statistics that are displaved with the SYSTAT
conmand. This 1is useful when you want to mnonitor systen
performance during a particular part of the day. Operator command
privilege is required to use the RESET conmand.

-18-

input

2.3.38 The "RUN" Command. The RUN command is identical to the "R"
command except that the default device is "DK:" instead of "Ssy:".
See the description of the "R" command for information about

available switches.

2.3.39 The "SEND" Comnmand. The SEND command 1is used to send
messages between timesharing terminals. The form of the command
is:

SEuD,Line# nmessage
where line# is the number of the line to which the message 1is to

be sent. If no line number is specified, the message is broadcast
to all logged-on lines.

Exanples:

1. Send a nmessage to all logged-on users:
SEND BOB-ARE YOU LOGGED ON?

2. Send a nessape to line number 2:
SEND,2 WILL YOU BE ON TONIGHT?

When a SEND nessage 1is printed at a terminal, the message is
preceded hy the number of the line that originated the message.

For exanple, a messace from line 1 might be printed as follows:

O01l BOB-ARE YOU LOGGED ON?

2.3.40 The "SET'" Command. The SET command is used to set various
options controlling svstem operation. The general form of the SET

comnand is:
.SET device option

As with standard RT-11, the TSX-Plus SET command is used to
specifyv options for devices such as line-printers, card-readers as
well as setting certain systen parameters such as terminal control
characteristics. When used to set device options, the SET command
has the sane farm as under RT-11 and may set the same options
(thev are specified in the handler). The SET command causes the
copv of the device handler on the disk to be altered so that the
effect of the command becomes '"permanent" (until another SET
changes the parameter Dback). The SET command also attempts to
make the change to the copy of the handler that is in. memory with

-19-

TSX-plus. If the handler is 1dle when the SET is done, the change
will be made; otherwise, a warning message will be printed and the
running copy of the handler 1s not altered. Operator command
privilege is required to set an option 1in a device handler.

2.3.40.1 Options for the "SET TT" command

The form of this SET command is "SET TT option" to turn an
option on and "SET TT 0 option" to turn the option off. A few
options require a numeric parameter, in which «case they are
specified as "SET TT option=value'.

OPTION MEANING WHEN SET ON

SCOPL The terminal 1s a CRT device. Setting this option on
has two effects: 1) Pressing the rubout key causes a
backspace-space~backspace sequence to be echoed, erasing
the previously typed character. 2) TSX-Plus counts the
nunber of lines of output sent to the terminal. When as
many lines have been sent as the screen size, TSX-Plus
suspends output to the terminal (just as if CTRL-S had
been pressed). Nutput may be continued by pressing
CTRL-Q. This feature may be disabled by setting the

page length to zero lines. See the "LENGTH" option
below.

ECHO Causes characters to be echoed to the terminal.

LC Allows lower case characters to be passed to a program.

If LC is set and bit 14 of the job status word is set to
1, input of lower case characters from the terminal will
be passed to the running program. Otherwlise, lower case

characters are translated to upper case.

FORM Causes form feed (FF) characters not to be converted to
line feeds. FORM should be set on with terminals whose
hardware can respond to form feed <characters. If set

off, form feed characters are replaced by an appropriate
nunber of line feed characters.

TAB Causes TAB characters not to be converted to nultiple
spaces. TAB should be set on with terminals whose
hardware can respond to TAB characters. If set off, TAB
characters are replaced by an appropriate number of
spaces when being sent to the terminal.

PAGE Allows CTRL-S and CTRL-Q <characters to suspend and
restart terminal output. If set off, CTRL-S and CTRL-=-Q
have no special effect and are passed directly to the
running progran.

-20=-

HOLD

DEFER

QUIET

FORMO

LENGTH

May be used with VT50 and VT52 terminals to set '"hold
screen" mode on. This allows the SCROLL key to control
output. Generally, the normal TSX-Plus end of page halt
for scopes 1is more convenient than hold screen mode.
The HOLD option may also be used with terminals other
than VT50s. In this case, when a form-feed character 1is

sent the terminal’s ©bell 1s rung and output is
suspended. Output 1s restarted when CTRL-Q is typed.
TSX-Plus offers two modes of character echoing--

"deferred" and "inmmnediate" (NODEFER). If the user only
types input to programs while they are waiting for
input, the two modes function identically. However, 1if

the wuser types 1nput before the progran finishes
processing the previous line of input, the two modes are
different. In immediate (NODEFER) mode the input

characters are echoed immediately and may be printed
even before the program prints the response to the
previous line. In deferred echo mode, the characters
that are typed ahead are accepted and held for the
progran, but are not printed until the program is ready
to accept thenmn. Under standard RT-11, EDIT, BASIC, and
DIBOL programs run in deferred mode. Most other
prograns use immediate echoing. Deferred echoing is the
preferred mode under TSX-Plus.

Setting the QUIET option on suppresses the 1listing of
connand files as they are being executed. See the
chapter on command files for additional information on
controlling their listing.

Setting the FORMO option on causes TSX-Plus to advance
to the top of the page on the terminal when a write is
done to the terminal with a block number of zero. This
is <convenient when producing multiple program listings
to cause each listing to begin at the top of a new page.

The LENGTH option is used to set the number of lines on
a page. The form of this option is:

"SET TT LENGTH=value"

TSX-Plus uses this line count for two purposes. When a
form feed (FF) character is output, TSX-Plus replaces
the form feed by as many line—-feeds as required to
upspace the paper to the top of the next page. This
operation can be prevented by setting the "FORM" flag on
(see the SET command), or by setting the page size to
zero lines. The initial top of the page is defined each
tine the user types carriage return. Thus, when
starting a program that will be doing paging, position
the paper to the top of a page before pressing the
carriage return.

-21-

FILLER

WAIT

VT100

VT52

The second use of the page size i8 to determine when to
suspend output when printing on a CRT (SCOPE) terminale.
When TSX~Plus prints the last line of the page on a CRT
terminal, it suspends output and waits for the user to
press CRTL-Q. This automatic suspension can Dbe
suppressed by setting the page size to zero lines.

The FILLER option 1is wused to set the number of delay
(filler) characters that are to be transmitted after
carriage-return/line feed. The form of this option is
"SET TT FILLER=valuel,value2,valuel".

where

valuel = Number of delay characters to send. (Specify
in decimal).

value? = Character after which delay characters are
required. (Specify in octal). Carriage-—return =
15, line feed = 12,

value3 = Character to use as a filler. (Specify in

octals.)

Value 2 and value 3 may be omitted from the command if
only value 1 needs to be changed. The appropriate sets
of wvalues for wvarious terminals are listed below.

Terminal DELAY Parameters
LA36 = 0
LA30 € 300 Baud = 10,15,0
LA3O 2@ 150 Baud = 4,15,0
LA30O @ 110 Baud = 2,15,0
VI0S5 @ 2400 Baud = 2,12,0
VTO0S5 @ 1200 Baud = 4,12,0
VTS50 = 0
VT52 = 0

Normally TSX-Plus blocks the execution of a program that
does a +TTYIN EMT if no activation character has been
received even 1f the program sets bit 6 in the Job
Status Word which is supposed to mean that the program
can do non-blocking .TTYIN character tests. This was
done to prevent progranms from burning up CPU time by
constantly 1looping back to test for terminal input. If
the NOWAIT option is specified with the SET TT command,
TSX-Plus will honor bit 6 in the Job Status Word and
allow the program to do non-blocking .TTYIN s.

Tells TSX-Plus that the terminal being used is a VTI100
(which nust be operated in VTI00 mnode =-- mnot VT52
compatible mode) and also has the effect of SET TT
SCOPE, TAB, PAGE, NOFORM, LENGTH=24.

Tells TSX-Plus that the terminal being used 1s a VT52

and also has the effect of SET TT SCOPE, TAB, PAGE,
NOFORM, LENGTH=24.

-20-

"LA36 Tells TSX-Plus that the terminal being used is an LA36
and also has the effect of SET TT NOSCOPE, NOTAB,

NOFORM, NOHOLD, LENGTH=66.

LAL120 Tells TSX-Plus that the terminal being used is an LA120
and also has the effect of SET TT PAGE, TAB, FORM,
NOSCOPE, NOHOLD, LENGTH=66.

ADM3A Tells TSX-Plus that the terminal being used 1s a Lear
"Siegler ADM3A and also has the effect of SET TT SCOPE,
NOTAB, NOFOR!, NOHOLD, LENGTH=24.

HAZELTINE Tells TSX-=-Plus that the terminal being wused 1is a
Hareltine brand terminal and has the effect of SET TT
SCOPE, NOTAB, NOFORil, NOHOLD, LENGTH=24.

DIARLO Tells TSX~Plus that the terminal being used is a Xerox
Diablo terminal and has the effect of SET TT NOSCOPE,
NOTAR, FOR!t, NOHOLD, LENGTH=66. If you are doing
plotting or proportional spacing printing, you should do
a SET TT TAB command.

QUL Tells TSX=-Plus that the terminal being used 1s a Qume
brand terminal and has the effect of SET TT NOSCOPE,
NOTAB, FORM, NOHOLD, LENGTH=66. If you are doing
plotting or proportional spacing printing, you should do
a SET TT TAB command for the terminal.

All of these options can be given initlial settings for each
line when the TSX~-Plus system 1s generated. ©Each time a user logs
onto a line, the initial option settings are used. The options
may be altered by using the SET command, but when the user logs
off, the options revert to their initial (sysgen) setting. When a
user initiates a virtual line, the initial flag settings for the
virtual line are copied from the current flag settings for the
user. Subsequent flag changes for a virtual line do not affect
flag settings for the user’s other lines.

2.3.40.2 Options for the "SET CCL" command

There are two types of system commands, low level commands
such as RUN, SET, ASSIGN and high level commands such as EXECUTE,
COPY, DELETE, and DIRECTORY. Low 1level commands are executed
directly by TSX-Plus. High level commands are first translated
into the appropriate low level commands and then these commands
are executed. The set of high level commands 1is known as the
Concise Command Language (CCL). The "SET CCL" command can be used
to observe the low level commands that are produced by translating
CCL commandss There are two options to the SET CCL command: "SET
CClL. TEST" and "SET CCL NOTEST". When TSX-Plus 1s in CCL TEST
mode, it will print at the terminal the low level commands that

-23 -

are generated when a CCL command 1is entered. In this mode the low
level commands are only printed and not executed. The "SET CCL
NOTEST" command turns this off and TSX-Plus goes back to executing
CCL commands. Test mode is very useful if you are having trouble:
getting some complex CCL command to work and want to examine the
low level commands that are being generated.

2.3.41 The "SHOW" Command. The SHOW command is used to display
Information about the state of the system. Each form of the SHOW
command is described below.

2.3.41.1 SHOW ASSIGNS. The SHOW ASSIGNS command displays
information about all logical device assignments that are

currently in effect.

2.,3.41,.2 SHOW DEVICES. The SHOW DEVICES command displays
information about which devices were specified as being available
when TSX-Plus was generated.

2.3.41.3 SHOW JOBS. The SHOW JOBS command displays information
about jobs that are currently logged onto the system. The

information displayed by this command 1is identical to that
displayed by the SYSTAT command.

2.3.41.4 SHOW MEMORY. The SHOW MEMORY command displays information
about memory wusage including the total installed memory on the
machine, the size of TSX-Plus and handlers, the memory space
available to wuser jobs and the current job memory allocation and
maximum authorized size. It also lists the size of the swappable
job context area which is a system table associated with each job.

2.3.41.5 SHOW QUEUE. The SHOW QUEUE command displays information
about print files in the spool queue. The following information
is displayed for each print file in the queue: name of the device
the file is queued for; an asterisk if the file is currently being
printed; the name of the file 1if a file name was specified with
the enter =-- otherwise the name of the program that created the
file; the name of the form on which the file is to be printed; the
number of blocks in the file remaining to be printed -- this will
decrease as the file is printed.

-4 -

2.3.41.6 SHOW USE. The SHOW USE command causes display of the
usage statistics for the current job since the logon. The
statistics displayed include the connect time and CPU time.

2.3.42 The "SQUEEZE" Command. The TSX-Plus SQUEEZE command has the
same form and options as the RT-11 SQUEEZE comnand. If the MOUNT
command has been used to mount the device being squeezed, it is
automatically dismounted before the squeeze takes place.

2.3.43 The "SYSTAT" Comnmand. The SYSTAT (SYstem STATus) command
displays information about the performance of the system and
information about each logged on job. The first line of the
system performance information shows a break down of the percent
of total time spent running wuser Jjobs, waiting for user 1/0,
waiting for swapping I/0 and waiting for something to do (idle
time). These percentages should add wup to approximately 100%
(less rounding errors). The second line of system performance
information shows the percent of the total time that some user I/0
and swapping I/0 was being performed. The percentages on this
line are not expected to sum to 100 because they simply indicate
how much of the time some I/0 was taking place without considering
whether jobs were running while - the 1I/0 was going on. The
difference between the I/0 percentages on the second line and the
1/0 wait percentages on the first line is a measure of the amount
of overlap of job execution with I/0 that took place. A "RESET"
keyboard command (see above) may be used to reset these statistics
so that the statistics may be gathered over a desired interval of

system execution.

The information displayed for running jobs consists of one
line per job. The line number 1is printed first, followed by an
asterisk if the line is the one you are logged onto. A letter "V"
is printed next if the line is a wvirtual 1line; a letter "D"
indicates the line is a detached job line. A two-character state
code is printed next indicating the current state of the job. The
state codes and their meanings are as follows:

-25-

code: meaning:

TI Waiting for input from the terminal.

TO Waiting for the terminal to print output.

RN Program is running.

SL Job is doing a timed wait (.TWAIT).

SF Job is waiting for access to a shared file.

MS Job is waiting for a message.

10 Job is waiting for I/0 to finish.

us Job is waiting for access to USR file management module.
SP Job is waiting for free spool block or file entry.

The characters "-SWP" are printed following the state code if the
job is currently swapped out of memory.

The number of K-bytes of memory space used by the job is shown
next, followed by the connect time and CPU time used so far by the
job. The name of the program being run by the line is shown next.
If the job logged on the Project,Programmer number is listed last.

Exanmple:

«.SYSTAT

Uptime: 04:27:32

System use: Run=61%, I/0-wait=12%, Swap-wait=5%, Idle=22%
1/0 activity: User 1/0=28%, Swapping 1/0=11Z%

1% IO 11KB Connect=00:31:00 CPU=00:01:14 TECO PPN=3,4
2 RN 36KB Connect=01:12:00 CPU=00:17:03 COBOL PPN=5,9
6 V RN 20KB Connect=00:04:00 CPU=00:02:17 KED PPN=5,9
7 D MS-SWP 20KB Connect=01:00:00 CPU=00:23:13 RTSORT

2.3.44 The "SPOOL" Command. The SPOOL Command is used to control

the operation of the spooling system. It may only be wused if
spooling 1s specified when the systenm is generated. The form of
the SPOOL command is:

.SPOOL device, function, parameter

Where "device" is the name of a device that was specified to be

spooled when the system was generated. "Function" denotes what
function is to be performed and 'parameter'" provides additional
information for some functions. See Chapter 4 for further

information on the SPOOL conmmand. Operator privilege is required
to be able to use this command.

-26-

2.3.45 The "TIME" Command. The TSX-Plus TIME command has the same
form and options as the RT-11 TIME command. Operator command

privilege i1s required to set the time.

2.3.46 The "TYPE" Command. The TSX-Plus TYPE command has the sane
form and options as the RT-11 TYPE command.

2.3.47 The $STOP" Command. The $STOP command is used to halt the
execution of TSX-Plus and to reboot RT-11.

$STOP

The $STOP command forces an inmediate logoff of all wusers before
stopping TSX-Plus. Operator privilege is required to be able to

use this command.

2.3.48 The "SSHUTDOWN" Command. The $SUUTDOWN command is similar
to the $STOP command in that it is used to stop TSX-Plus and
return control to RT-11. However, it differs from $STOP in the
manner in which it stops TSX-Plus. SSTOP forces the immediate
logoff of all users; S$SSHUTDOWN does not. Rather, it sets a flag
which prevents any new users from logging on and then waits for
all logged on wusers to log off. When the last user logs off,
TSX-Plus is stopped and control returns to RT-11. The form of

this command is:

SSHUTDOWH

Operator privilege is required ¢to be able to use this command.

-27-

2.4 RT-11 Commands Not Supported by TSX-Plus

The following keyboard commands are not supported by
TSX-Plus: REENTER, CLOSE, START, SAVE, DEPOSIT, EXAMINE, BASE,

GET, LOAD, UNLOAD, GT ON/OFF.

-28~

3. VIRTUAL TIMESHARING LINES AND DETACHED JOBS

3.1 Virtual Lines

TSX-Plus provides a facility known as "virtual 1lines" that
allows one timesharing user to control several simultaneously
running programs from a single terminal. When a wuser initially
logs onto TSX-Plus, that person is said to be connected to the
primary line that is also called virtual line number 0 (zero) for
that user. At anyv time the user may switch to a different virtual
line. This has the effect of logically disconnecting the
timesharing terminal from the current virtual line and
reconnecting it with a different logical line.

If a program is running at the time the switch is made, 1its
execution is not affected (but it is given a lower CPU priority).
When a running program that is not currently connected to a
terminal writes output to the terminal, the output is stored in a
terminal output buffer. When this buffer is filled, the progranm’s
execution is suspended (and the program is swapped out of core)
until the terminal is reconnected to the virtual line. When any
virtual line belonging to a user, but not currently connected to
the user’s terminal, enters an input or output wait state the bhell
is rung on the uscer’s terminal to signify that a wvirtual line
needs service.

A request to switch to a virtual line is indicated by typing
control=-Ww (hold down CIRL key and press W) followed by a single
digit (do not hold down CTRL while typing the digit). The digit
identifies which wvirtual line the user wishes to access. This
line number represents the relative virtual line for that users.
Other users may be using virtual lines of the same number without
conflict. The CTRL-W digit sequence may be entered at any time -
even in the middle of a line of input. The comnand takes effect
immediately and leaves the old 1line in an undisturbed state.
TSX-Plus responds to CTRL-W, digit by printing "n>" on the
terminal, where "n" is the number of the wvirtual line that has

just been accessed.

If a start—-up command file was associated with the primary
line, the same command file will be executed when the virtual line.
is initiated. If the LOGON program is run as part of the start-up
command file for a virtual line, it will automatically log the
uscr on with the same project-programmer number as was specified
when logging onto the primary lines.

The user logs off a virtual line by typing the "OFF'" comnand
while connected to the virtual line. When a user logs off a
virtual line other than the primary line, that wvirtual 1line is
returned to the pool of free lines and the user is automatically
connected to the primary line. When a user logs off the primary
line, not only is the primary line released, but any virtual lines
the wuser may lhave been using are freed, and the user 1is
disconnected from the system. Note that it is possible (and .

-29-

frequently desirable) to switch back and forth between the primary
line and several virtual lines without logging off any.

The total number of virtual lines and the maximum number of
virtual lines which any wuser may utilize at a given time are
specified when the TSX-Plus system 1is generated. If a user
attempts to log onto a virtual line and all the virtual lines are
busy or the user is already connected to the maximum number of
virtual lines, TSX-Plus will not respond to the CTRL-W.

Virtual lines are quite useful in situations where the |user
wishes to start a long "number crunching'" job without tying up a
line. Once the long job is started, the user can switch to
another 1line. Programs that are running on a line that 1s not
connected to a terminal are riven a lower CPU priority than
prograns that are on lines connected to terminals. This means
that the low priority programs will run only when no high priority
prograns are running.

3.2 Detached Jobs

The TSX-Plus Detached job facility is very similar to the
virtual line facility; they both allow a timesharing wuser to
initiate execution of several simultaneously executing jobs. The
major difference between detached jobs and virtual lines 1s that
virtual lines allow a user to switch terminal communication

between several running tasks, whereas detached jobs do not.
Detached jobs operate more like a "batch" facility. ALL terminal
input for a detached job must comne from a command file. Any

terminal output generated by a detached job is discarded.

The differences between virtual lines and detached jobs are
sunmnarized below.

1. Using virtual 1lines, terminal communication may be
switched between several running jobs. A detached job
must receive all its terminal input from a command file
and any terminal output it generates is discarded.

2. Virtual lines are '"owned" by a physical line. When the
phvsical line logs off, the virtual lines also log off.
Detached jobs are not associated with any physical line.
Once started, any or all timesharing users may log off
without affecting detached jobs.‘

3. Detached jobs may be started automatically when TSX-Plus
is initiated. Virtual line jobs mnust be started by
timesharing users after TSX-Plus is running.

4. When a detached job reaches the end of its command file
and asks for more terminal input, the job is aborted and
the detached job slot is freed. Virtual lines wait for

more input.

-30-

3.2.1 The DETACH command

The DETACH command is used to start a detached job, check its
status and abort the job. The system manager may restrict the use
of the DETACH command to selected users.

3.2,1.1 Starting a Detached Job The form of the DETACH command
used to start a detached job is:

DETACH file-spec

where '"file—-spec" is the name of a command file that is to be
executed as a detached job. The default device is "DK:" and the
default extension is ".COM". When a request is made to start a
detached job TSX-Plus searches for a free detached job slot. The

total number of such job slots is established when TSX-Plus 1is
generated. If a free slot is found the job 1is started and a
message 1is printed saying which job slot was used. This number
may be used later to reference the detached job.

Exanmples:

1. Start a command file naned "PURGE'" as a detached job.

.DETACH PURGE
Job started on line #4

2. Start a command file named "RK1:STATS.NEW".

«DETACH RK1:STATS.NEW
Job started on line #5

3.2.1.2 Checking the status of a detached job.

The form of the DETACH command used to check the status of a
detached job is:

+.DETACH/CHECK line-nunber

where "line-number" is the job slot number listed when the job was
started.

Examples:
1. Check the status of the job on line #4.

«.DETACH/CHECK i
Line is active

2. Check the status of the job on line #5.

.DETACH/CHECK 5
Line is free

-31-

3.2.1.3 Aborting a detached job

The form of the DETACH command used to abort a running
detached job is:

DETACH/KILL line-nunber

where "line-number" is the job slot number listed when the job was
started.

Exanple:
l. Kill the job on line #4.

+DETACH/KILL i
Job aborted

3.2.2 Detached Job Control Emt’s

TSX-Plus provides a set of emt’s that can be used to control
the operation of detached jobs. Using these emt’s it is possible to
start a detached job, kill a detached job and check the status of a

detached job.

3.2.2.1 Starting A Detached Job

This ent can be used to start the execution of a detached job.
The form of the emt is:

EMT 375

with RO pointing to the following argument block:

«BYTE 0,132

.WORD .name—address
where ".name-address'" is the address of an area containing the
narme of the command file to be started as a detached job. The
command file name nust bhe stored in ASCIZ form and may contain an
extension. If a free detached job line 1is available, the

specified command file is initiated as a detached job and the
aunber of the detached job line is returned in RO.

errors: Code !leaning
1 No free detached job lines

-32-~

3.2.2.2 Killing A Detached Job

This ent may be used to abort a detached job. The form of
the ent is:

EMT 375
with RO pointing to the following argument block:

+BYTE 2,132
.WORD «job-number

where ".job-number" is the job number of the detached job to be
killed.

errors: Code eaning
1 Invalid job number

3.2.2.3 Checking The Status Of A Detached Job

This emt mnay be used to check the status of a detached job.
The form of the emt is:

EMT 375

with RO pointing to the following argument block:

.BYTE 1,132

+WORD «job-nunber
where ".job-number" is the number of the detached job to Dbe
checked. If the detached job is still active the emt returns with
the carry-flag cleared. If the detached job has terminated and

the detached job line is free, the emt returns with the carry~flag
set.

-33-

4. DEVICE SPOOLING

4.1 The Concept of Device Spooling

Device spooling is a technique that provides nore efficient
use of slow peripheral devices by buffering data directed to the
slow devices to a high speed disk file where it is stored; later
it 1is processed by the slow speed device without holding up the
operation of the progran that is generating the data. TSX-Plus
optionally provides autonatic spooling to output devices such as
printers, card punches and plotters. Output may also be spooled
to a timesharing terminal if an appropriate device handler is
provided. Several devices may be spooled on a system.

When a running oprogran directs output to a spooled device,
the output {s diverted by TS5X-Plus to a spool disk file. An entry
is mnade in a spool control table indicating a spool file is ready
for the spooled device. When the spooled device becomes free, the
spool file 1is <copied by TSX-Plus to the device. All of the
processing is autonatic and the user does not have to be concerned
with its operation. In fact a user can run programns without
waiting for them to be printed. Devices that are to be spooled
must be declared when the system is generated.

Spooled device handlers such as LP nust be set to the '"HANG"
node of operation for them to work properly with the TSX-Plus
spoaler. This can be done with the SET command. For exanple:

SET LP:HANG

The SET command need only be issued once as it sets flags in the
copy of the handler on the disk.

4.2 Directing Output to Spooled Devices

Output 1is directed to a spooled device in exactly the same

way it would be directed to the sane device {1f it were not
spooled. For exanmple, if the line printer (LP) were spooled, the
following commands would send a FORTRAN listing to the printer:

3]
]
=il O

p]

RTRA
P

*TEST,LP:=TEST

The nanme of a spooled device may be used in a MACRO .ENTER
command the same as a non-spooled device would be.

Any number of users may be writing output to a spooled device
sinultaneously without conflict. TSX-Plus stores the output from
cach user in a separate spool file and prints them in an orderly
fashion. A user may direct output through several I/0 channels to
the same or different spooled devices. Output records directed
through separate channels to the same device are separated into
different spool files.

-34 -

All output directed to spooled devices is stored in a common
disk file. This total file space is allocated dynamically on a
block by block basis as needed. The space is returned when output
is processed by the spooled devices. For each logical output file
generated by a user, a table is created in TSX-Plus called the
Spocl File Control Block. This table retains information about
the spool file and reserves an entry in the ordered list of files
waiting to be processed by a spooled device. The total file space
that is available for spool files is specified when a TSX-Plus
system is generated. If the file space is totally filled, running
prograns will be suspended when they attempt to write to the spool
file. The programs are allowed to continue as file space is
freed.

The total number of spool files that may be in existence is
also specified when TSX-Plus is generated. A spool file is
created when an I/0 channel is opened to a spooled device; the
file remains in existence until all of the output is finished
being processed by the spooled device. If a channel is opened to
a spooled device and the maximum number of files 1s already in
existence, the execution of the program is suspended until a spool
file is printed and deleted.

4.3 Use of Special Forms with Spooled Devices

Output files directed to spooled devices are queued and held
until the spooled device becomes free. Because of this, a special
procedure is required to synchronize the mounting of special forns
with the printing of a file that requires the form.

If the first character of the first line in a file directed
to a spooled device is a right square bracket ("]"), TSX-Plus will
interpret the following one to six characters in the file as the
nanme of the form that must be mounted when the file is printed.
Form names may be from one to six characters in length and must be
specified immediately following the initial square Dbracket
character. The form name nust be terminated with a carriage
return, line feed. Square bracket characters are not significant
to TSX-Plus in other than the first character position of the
file.

If a spooled file does not begin with a right square Dbracket
character, TSX-Plus uses the form name that was last specified by
the user with a FORM command (Section 2.3.20). If no FORM
command has been igsued by the user, TSX-Plus uses the form name
"STD" for the file.

Each time TSX-Plus attempts to select a file to be printed on
a spooled device, it first looks for a waiting file that requires
the same form that is currently mounted on the spooled device. If
several such files are available, the oldest one is selected and
started. If no file can he found that requires the currently
mounted form, TSX-Plus selects the oldest file requiring a
different form and issues a form mount request to the operator’s
terminal. The message appears as:

-35-

"Mount ‘XXXXXX‘ form on ZZ"

The terminal to which the message 1s directed is the one that was
declared to be the operator’s console when the TSX-Plus system was
generated.

Once the form mount request message 1s printed, the spooler
for the device requiring the form mount is suspended. In order to
restart the spooler the operator must enter a SPOOL-FORM or
SPOOL-LOCK command. These commands tell the spooler that a
particular form has been mounted and 1is ready for use. The
operator does not have to mount the form that was called for 1in
the form nount request message. He may mount any form he desires,
in which case TSX-Plus will search for a file that needs the

nounted form.

The SPOOL-FOR! and SPOOL-LOCK commands are both used by the
operator to indicate which form has been mounted; however, there
is a difference in the effect of the two commands. When TSX-Plus
has processed all files that need the currently mounted form, it
checks to see if there are files requiring a different form. If
there are any, it checks to see if the current form was mounted
using a SPOOL-FORM or SPOOL-LOCK connand. If a SPOOL-FORM connand
was used, TSX-Plus 1issues a form mount request message. If a
SPOOL~LOCK command was used, TSX-Plus considers the current form
to be locked on the printer and does not issue a form mount
nessage; rather, it waits for new files to be created that need
the currently mounted form.

4.4 Form Alignment Procedure

When mounting a new form it is necessary to have a way to

verify the —correct positioning of the form before starting
production printing on the form. The SPOOL-ALIGN command provides
thig facility.

The SPOOL-ALIGN command allows the TSX-Plus operator to
specify a form alignment file to be printed on the indicated
spooled device. Form alignmnent files are printed immediately
without regard to the name of the currently mnounted form. The
SPOOL-ALIGN command may be issued repeatedly if several attenmpts

are required to mount a form.

Alignment files are created by the user and may contain any
desired information. Typically they contain a short sanple output
file that mnatches a particular form. Alignnment files should not
contaln a form name specification. The normal sequence of
operations involving a form mount is as follows:

1) TSX-Plus issues a form-mount request message and suspends
the spooler.
2) The operator mounts the desired form and issues one
or more SPOOL-ALIGHN commands to verify its positioning.
3) Once the form is correctly mounted, the operator issues
a SPOOL-FORM or SPOOL-LOCK command to tell TSX-Plus which

-36-

form has been mounted.
4) TSX-Plus begins printing the oldest file that needs the

currently mounted form.

The SPOOL-ALIGN command may be issued at any time, but it is
typlically used between the time a form-mount message 1is issued and
the SPOOL-FORM or SPOOL-LOCK command is entered.

4.5 The SPOOL Command

The SPOOL command is wused to control the operation of the
spooliny system. The form of the SPOOL command is:

«.SPOOL device,function,parameter

where "device" is the name of a spooled device, '"function"
indicates the operation to be performed and "parameter'" is an
optional item of information used by some functions. Each of the
available functions is described below.

4.5.,! The FORM and LOCK Functions. The FORM and LOCK functions are
used to specify the name of the currently nounted form. The formnm
name is specified in the "parameter" field of the conmand. The
FORM function allows TSX-Plus to request a form mount when a
different form is needed. The LOCK function specifies that the
form is to be locked on the printer and form mount request
messages are not to be generated. See Section 4.3 for further

information.

Examples:
.SPOOL LP,FORM,BILLS
.SPOOL LP,LOCK,BILLS
.SPOOL LP,FORM,STD

Note the difference between the FORM command (Section 2.3.20)
and the SPOOL command with the FORM or LOCK functions. The FORMUM
command is used by the TSX-Plus user to specify the default form
nane to be used with subsequently generated spool files. The
SPOOL FORM/LOCK commands are used by the TSX-Plus operator to tell
the spooling system which form is currently mounted.

4.5.2 The ALIGN Function. The ALIGN function is used to cause a
form alignment file to be printed on a spooled device. The name
of the file to be printed is specified in the "parameter'" field of
the command. The default file extension for form alignment files
is "ALHN". See Section 4.4 for further information.

Exanples:

.SPOOL LP,ALIGN,BILLS
.SPOOL LP,ALIGN,RK1:PAYROL.DAT
.SPOOL LP,ALIGN,DX:RPORT2

-37 =

4.5.3 The DEL Function. The DEL function causes the file currently
being printed on the indicated spooled device to be deleted. The
DEL function has no effect 1f no file is currently being printed.

Examples:

.SPOOL LP,DEL
.SPOOL LX,DEL

4.5.4 The SKIP Function. The SKIP function causes the spooler to
skip over the next n blocks in the spool file that is currently
being printed, where n is specified in the parameter field of the
instruction. Each block in the spool file contains 508
characters. Printing of the file continues after the indicated
nunber of blocks have been skipped.

Examples:

.SPOOL LP,SKIP,10
.SPOOL LP,SKIP,100

4.5.5 The BACK Function. The BACK function causes the spooler to
skip backward in the spool file a number of blocks and then resume
printing at that point. The number of blocks 1involved 1is
specified when TSX-Plus is generated. This function is
particularly useful for recovering from paper tears or remountse.
The spooler will finish printing the current block before doing

the backup.

Examples:
.SPOOL LP,BACK
.SPOOL LX,BACK

4.5.6 The STAT Function. The STAT function is wused to determine
the status of a spooled device. Information returned includes the
condition of the spooler—--active, idle, waiting for a form mount;
the name of the currently mounted form; and information about
files waiting to be printed on the device. The SHOW QUEUE command
may also be used to display information about files in the spooler

queue.

Examples:

.SPOOL LP,STAT
.SPOOL LX,STAT

4.5.7 The SING and MULT Functions. The SING and MULT functions
control how the spooler will handle nmultiple files queued for the
sane form. 1In "MULT" mode (the initial setting) no form mount
request mnessage 1is generated if a spool file is found that needs
the currently mounted form. Processing of the file begins

automatically.

-38-

In "SING" mode a form mount request is generated for every
file even 1if the file needs the currently mounted form. This 1is

useful where equipment setup or form alignment is needed for every
file.

Examples:

.SPOOL LP,SING
.SPOOL LP,MULT

4,5.8 The HOLD and NOHOLD Functions. A spooled device that is in
the HOLD mode will not begin to process a spool file until the
file is completely created and the I/0 channel associated with the
file is closed. A spooled device that is in NOUOLD node will
begin to process a spool file as the file is being created.

In ¥OHOLD mode, the spooler will begin to process a file
sooner; however, if the file is being created slowly, the spooled
device will remain busy (and unavailable to other users) for as
long as it takes to finish generating the file. If the spool
storage file is completely filled, the spooler will attempt to
free space by beginning to process open spool files even if HOLD
is in effect.

The default HOLD/NOHOLD mode is established when the TSX-Plus
system is generated. A HOLD/NOHOLD command remains in effect
until another HOLD/NOHOLD command is 1issued or the system is
restarted.

Exanples:

.SPOOL LP,NOHOLD
.SPOOL LP,HOLD

-39~

5. Program Controller Terminal Options

TSX-Plus provides a facility whereby a running program can
dynamically alter some parameter settings relating to the user’s
timesharing 1line. This facility is invoked by having the running
prograrn output a special lead-in character followed by one or more
function characters. The lead-in character alerts TSX-Plus to the
fact that the following one or two characters are not to be sent
to the wuser’s terminal, but rather are to be interpreted as a
conmmand to TSX-Plus. The character that is to be wused as the
lead-in character may be specified when TSX-Plus is generated; its
normal value 1s octal 35(decimal 29, CTRL-SHIET-M). The character
that 1immediately follows the lead-in character specifies the
function to be performed. The available functions are 1listed

belowe.

function
character meaning

Set rubout filler character.

Define new activation character.
Turn on character echoing.

Turn off character echoing.

Disable virtual lines.

Enable lower case input.

Disable lower case input.

Enable deferred character echo mode.
Disable deferred character echo mode.
Set transparency mode for output.
Suspend comnand file input.

Restart command file input.

Reset activation character.

Set activation on field width.

Turn on high-efficiency TTY mode.

- Turn on single-character activation mode.
Turn off single-character activation mode.
Enable non-wait TT input test.

Set field width limit.

THEO OW >

—
—_—

<CHVWEWOYWO=Z DR G H

These functions have a temporary effect in that they are
automatically reset to their normal values when a program exits to
KMON. They are not reset if a .CHAIN is performed.

~40~

Enable VT52 & VT1I00 escape-letter activation.
Disable VT52 & VT100 escape—-letter activation.

5.1 "A"-function--Set rubout filler character

When a scope type terminal is being used, the normal response
of TSX-Plus to a rubout character 1is to echo Dbackspace-
space~backspace which replaces the last character typed with
a space. TSX-Plus responds to a CTRL-U character in a
similar fashion, echoing a series of backspaces and spaces.
Some programs that display forms use underscores or periods
to indicate the fields where the user may enter values. In
this case it is desirable for TSX-Plus to echo Dbackspace-
character—-backspace for rubout and CTRL-U where '"character"
is either period or underscore as used in the form. The
character to use as a rubout filler is specified by sending
the character to TSX-Plus following the lead-in and A, that
is, a three character sequence is sent to TSX~-Plus: lead-in,
"A", filler character.

5.2 "B" and "C" functions--Set VT52 & VT100 escape-letter activation

VT50 and VT52 terminals are equipped with a set of special
function keys marked with arrows and other symbols. When
pressed they transmit escape (octal 33) followed by a letter.
The "B" function tells TSX-Plus to consider escape-letter to
be an activation sequence. The escape character and the
letter are not echoed to the terminal, but are passed to the
user. The "C" function disables this processing and causes
escape to be treated as a normal character (initial setting).

5.3 "D" - function--Define new activation character

Under normal circumstances TSX-Plus only schedules a job for
execution and passes it a line of input when an '"activation"
character such as carriage return 1is received. The "D"
function provides the user with the ability to define a set
of activation characters that are wused 1in addition to

carriage returne.

To define a new activation character the running progranm
sends to TSX-Plus a lead-in character followed by the letter
D, followed by the new activation character. The maximum
number of activation characters that a program may define is
specified when the TSX-Plus system is generated.

Using this technique, any character may be defined as an
activation character, including such characters as letters,
rubout, CTRL-U, and CTRL-C. When a user defined activation
character 1is received, it is not echoed but is placed in the
user’s input buffer which 1is then passed to the running
progran. '

By specifying CTRL-C as an activation character, a progran
may lock itself to a terminal in such a fashion that the user
may not break out of the program in an uncontrolled manner.
ILf carriage return 1s specified as a wuser activation

-41-

character, neither it nor a following 1line feed will be
echoed to the terminal. TSX-Plus will also not add a line

feed to the input passed to the program.

"E" and "F" functions--Control character echoing. The "E" and

b

2= TFY Functions are used to turn on and off character echoing.
The "E" function turns it on, and the "F" function turns it
off. An example of a possible"use is to turn off echoing
momentarily while a password is being entered.

5.5 "H" function--Disable wvirtual 1line use. The "H" function
disables the virtual line facility for the timesharing line.

5.6 "I" and "J" functions--Control 1lower case input. The "I"

™ T function sets TSX-Plus to allow lower case characters to be
passed to the running progran. The "J" function causes
TSX-Plus to translate 1lower case letters to upper case
letters.

5.7 "K" and "L" functions--Control character echoing. The "K"
function causes TSX~-Plus to enter '"deferred" character echo
mode. The "L" function causes TSX-Plus to enter immediate

character echo mode. See description of the DEFER option of
the SET command for an explanation of deferred echo mode.

5.8 "M" function—--Set transparency mode of output. If transparency

mode 1s set on, TSX-Plus will pass through each transmitted
character without performing any special checking or
processing. Transparency mode allows the user’s program to
send any 7-bit character to the ‘terminal. Note that once
transparency mode 1is set on, TSX-Plus will no 1longer
recognize the leading character (octal 35) which means a
progran control function follows. The only way to turn off
transparency mode is to exit to KMON.

"N" and "0" Functions--Control input from command files. When

a command file is being used to run programs (see Chapter 9),
all input which would normally come from the user’s terminal
is instead drawn from the command file. Occasionally, it 1is
desirable to allow a program running from a command file to
accept input from the user‘s terminal rather than the command
file. The "N" function suspends input from the command file
so that subsequent input operations will be diverted to the
terminal. The "O0" function redirects input to the command
file. These functions are ignored by TSX-Plus if the program
is not being run from a command file. See also the
description of the PAUSE keyboard command which can also be
used to control command files.

"P"-function--Reset activation character. The "P" function

performs the complement operation to the "D" function. The
"P" function is used to remove an activation character that
was previously defined by the "D" function. To reset an
activation character the running program sends to TSX-Plus a

-4

lead-in character followed by the letter "P" followed by the
character that is to be removed from the activation list.
Only activation characters that were previously defined by
the "D" function may be removed by the "P" function.

"Q"-function--Set activation on field width. The "Q" function

5.12

allows the user to define the width of an input field so that
activation will occur if the user types in as many characters
as the field width, even 1if no activation character was
entered. The field width is specified by sending to TSX-Plus
a lead-in character followed by the letter "Q" followed by a
character whose binary value is the width of the field. ILf
an activation character 1s entered before the field 1is
filled, the program will be activated as usual. Each tine
activation occurs the field width is reset and nmnust be set
again for the next field by reissuing the "Q" function. For
example, the following sequence of characters would be sent
to TSX-Plus to establish a field width of 43 characters:
"¢lead-in>Q+". Note that the character nyn (plus) has the
ASCII code of 053 (octal) which is 43 decimal.

"R"-function--Turn on high-efficiency TTY mode. The "R"

function causes TSX-Plus to place the line in ‘'high
efficiency" tty mode. The effect of this is to disable most
of the character testing overhead that is done by TSX-Plus as
characters are transmitted and received by the line. Once a

program has entered high-efficiency mode characters sent to

the terminal are processed with minimum systemn overhead: tab
characters are not expanded to spaces and form-feed
characters are not treated specially. Also, TSX-Plus does
not check to see if the character being sent is the TSX~Plus
terminal control "leadin" character. This means that no
further program controlled terminal commands may be issued
until the program exits. Characters received from the

terminal are passed to the program with minimum processing:
they are not echoed, and control characters such as rubout,
control-U, control-C, control-W and carriage-return are all
treated as ordinary characters and passed directly to the
prograne. Before entering high-efficiency mode the program
nust declare a user defined activation character that will
signal the end of an input record. High-efficiency mode of
TTY I/0 is designed to facility machine-to-machine
communication; it 1is also useful for dealing with buffered
terminals that transmit a page of information at a time.

"SY_fuynction--Turn on single-character activation mode. The

"S" function causes TSX~Plus to allow a program to do
single-character activation by setting Dbit 12 in the Job
Status Word. Normally TSX-Plus stores characters received
from the terminal and only activates the program and passes
the characters to it when an activation character such as
carriage-return 1is received. It does this even if bit 12 in
the Job Status Word is set, which wunder RT-11 causes the
program to be passed characters one-by-one as they are
received from the terminal. The "S" function can be used to

-43=

cause TSX-Plus to honor bit 12 in the Job Status Word. If
bit 12 is set and the program is single-character activation
mode, TSX-Plus passes characters one—by—-one to the program as
they are received and does not echo the characters to the
terminal. The /SINGLECHAR switch for the RUN command can

-also be used to do this.

"T"-function=~Turn off single-character activation mode. The

"T" function 1s the complement of the "S" function. It turns
off single-character activation mode.

"U"-function--Enable non-wait TT input testing. The "U"

function causes 1TOX-Plus to allow a program to do a TTYIN
EMT that will return with the carry bit set if no terminal
input is pending. Normally TSX-Plus suspends the execution
of a program if it attempts to obtain a terminal character by
doing a .TTYIN EMT and no input characters are available. It
does this even if bit 6 of the Job Status Word is set which
under RT-11 would enable non-blocking .TTYIN’s. This 1s done
to prevent programs from burning up CPU time by constantly
looping back to see 1f TT input is available. The "U"
function causes TSX-Plus to honor bit 6 1in the Job Status
Word and allows a program to do a .TTYIN to check for pending
TT input without blocking if none is available. The SET TT
NOWAIT command and the /SINGLECHAR option to the RUN command
can also be used to perform this function.

"y"efynction--Set field width limit. The "V" function is used

to set a limit on the number of characters that can be
entered in the next terminal 1input field. Once the "V"
function is used to set a field limit, the .TTYIN or .GTLIN
EMT’s may be wused to accept an input field. If the user
types in more characters to the field than the specified
limit, the excess characters are discarded and the bell is
rung rather than echoing the characters. The field width s
specified by sending to TSX-Plus a lead-in character followed
by the letter "V" followed by a character whose binary value
equals the desired field width. The field size limit is
automatically reset after each field is accepted and must Dbe
respecified for each field to which a iimit is to be applied.
Note the difference between the "Q" and "V" functions. The
"Q" function sets a field size which —causes automatic
activation when the field 1s filled; the "V" function sets a
field size which causes characters to be discarded if they

exceed the field size.

~44~

6. TSX-Plus ENT’'S

The following EMT service calls are available to jobs running
under TSX-Plus.

6.1 Determining if a job is running under TSX-Plus. The proper way
to determine if a job is running under TSX-Plus is to do a .SERR
ENT (to suppress error aborts) and then to do the EMT to determine
the TSX-Plus line number (see below). If the job is running under
TSX-Plus the EMT will return without error; if not under TSX—~Plus
the cavrry Dbit (indicating an error) will be set on completion of

the EMT.

6.2 Determining the TSX-Plus line number. The following EMT will

* L
return in RO the number of the line to which the job is attached.
Real lines are numbered consecutively starting at 1 in the same
order they are specified when TSX-Plus is generated. Detached job
lines occur next and virtual lines are numbered last.

The form of the EMT is:
EXMT 375
with RO pointing to the following argument area:

.BYTE 0,110

6.3 Determining the TSX-Plus license number. The following EMT
will return 1in RO as a l6-bit binary value the license number of
the TSX-Plus system. The form of the ENT is:

EMT 375
with RO pointing to the following argument block:

.BYTE 0,124

—- 5=

6.4 Determining the terminal type. The following EMT will return
in RO a value that indicates what type of time—-sharing terminal 1is
being used with the line. The form of the EMT 1s:

EMT 375
with RO pointing to the following argument block:
«BYTE 0,137
The terminal type is specified either when the TSX-Plus system {is

generated or by use of the SET TT command (e.g., SET TT VT100).
The currently returned terminal type codes are listed below.

Terminal~-type Code
(Unknown) 0
VT100 2
llazeltine 3
ADM3A 4
LA36 5
LAL20 6
Diablo 7
Qune 8

A type code of O (zero) 1is returned {if the terminal type s
unknown.

6.5 Sending a message to another line. The following EMT can be
used to cause a message to display on another line’s terminal.
The form of the emt is:

EMT 375

with RO pointing to the following argument block:

+BYTE 0,127
«WORD Line-number
«WORD Message—address

where "line-number" is the number of the line to which the message
is to be sent and "message-address" is the address of the start of
the message text that must be in ASCIZ form.

AT

6.6 Mount a file structure. This EMT is used to tell TSX-Plus that
a file structure is being mounted and that TSX-Plus should begin
doing file directory caching for the device. The effect of this
EMT is the same as doing a system MOUNT keyboard command. The
form of the EMT is:

EMT 1375

with RO pointing to the following argument block:

.BYTE 0,134
LWOR Device-spec-address
«.WORD 0

where '"'device-spec—address'" is the address of a word containing

the RADSO form of the nane of the device on which the file
structure is being nounted. If there is no room left in the table
of mounted devices, the carry bit is set on return and the error
code returned is 1.

6.7 Dismounting a file structure. This emt can be wused to tell
TSX-Plus to stop doing file directory caching for a file structure
nmounted on a particular drive. The effect of this emt is the same
as doing a DISNOUNT keyboard command. The form of the emt is:

EMT 375

with RO pointing to an argument block of the following form:

.BYTE 0,135
«.WORD Device~spec—~address
«WORD 0
where '"device-spec—-address'" is the address of a word containg the

RADS0 wvalue of the name of the device on which the file structure
is nmounted.

6.8 Set Terminal Read Time-out Value. This ent can be used to
specify a time-out value that is to be applied to the next
terminal input operation. This emt allows you to specify the
maxinun time that will be allowed to pass between the time that
you issue a command to get input from the terminal (+TTYIN) and
the time that an activation character 1is received to terminate the

-47 -

input field. Tou also specify with this emt a special activation
character that is returned as the terminating character for the
field if the i-nnu neraticn times out without receiving an
activation rcharactor fron the termninal. The form of the ent is:

with RO pointing to the following argument block:

.BYTE 0,117
«WORD time-value
«WORD activation-character
where '"time-value" is the time—-out value specified in 0.5 second

units and "activatinn-character" is a single character value that
is to be returned as the last character of the field if a time-out
occurss 1The time value specified with this emt only applies to
the next terninal input field. The time value 1s reset when the
next field is reccived from the terminal or the time—-out oCCurse.
A new time-out value nust be specified for each input field that

is to be time controlled.

6.9 Establishing Break Sentinal Control.

The following ENT can bhe used to declare a completion routine
that will be trigesevred when the "Break'" key is pressed. The form

of the EXNT is
EMT 375

with RO pointing to the following argument block:

«BYTE 0,133
.WORD .brkchr
LWORD .cplrtn

where .brkchr is a user defined character that is to be declared
the "Breax" character and .cnlrtn is the address of the completion
routine that is to he called when the break character is recelved

from the terninal. The specified completion routine will be
called if the user presses cither the kev labeled '"BREAK" (which
transnmitts a lan~ space) or types the character that is declared
as the wuser=-specified break character (+brkchr). If no

user—-specified break character 1is wanted, specify the value O
(zero) for .brkchr in the argunent block and only the real "BREAK"
key will be activated. liote that on some systems the console
terminal "BREAK'" key causes entry to the hardware ODT module and
for this reason cannot be used with this TSX~Plus function. Only
one break routine mav be snecified at a time for each user. If a
break routine was previnusly specified, it is cancelled when a new

-l 8-

routine is declared. If an address of 0 (zero) 1is specified as
the address of the completion routine (.cplrtn), any previously
specified break routine is cancelled and the break key connection
is cancelled. A break routine <can be used to signal an
asynchronous request for service to a running progran. A good
exanple of its wuse would be to trigger entry to an interactive

debugging prograne.

6.10 Checking for Terminal Input Errors

The following EMT can be used to determine if any terminal
input errors have occured. The form of the emt is

EMT 375
with RO pointing to the following argument block:

.BYTE 0,116

On return from the ent, the carry-flag is set if an input error
has occured since the line logged on or since the last time a
check was nade for input errors. The two types of errors that are
monitored by this emt are hardware reported errors (parity,
silo-overflow, etc.) and characters lost due to TSX-Plus input

buffer overflow.

6,11 Checking for Activation Characters

The following emt can be used to determine if any activation
characters have been received by the line but not yet accepted by
the program. The form of the EMT is

EMT 375

with RO pointing to the following argument block:

.BYTE 0,123

If there are pending activation characters, the carry-flag is set
on return from the ent; otherwise the carry-flag is cleared.

-49-

6.12 Sending a Block of Characters to the Terminal

The following emt can be used to efficiently send a block of
characters to the terminal. The form of the emt is

EMT 375

with RO pointing to the following argument block

«.BYTE 0,114
. WORD .buffer
+.WORD .count

Where ".buffer" is the address of the buffer <containing the
characters to be sent and ".count" is a count of the number of
characters to be sent. This emt is much mnore efficient to use
than a series of .TTYOUT emt’s =- it has the same efficiency as a
.PRINT emt but it uses a count of the number of characters to send
rather than having the character string in ASCIZ form.

6.13 Accepting a Block of Characters From the Terminal

The following emt can be used to accept all characters from
the terminal input buffer up to and including the last activation
character entered. The form of the enmt is

EMT 275

with RO pointing to the following argument block

.BYTE 0,115

.WORD .buffer

«WORD .size
where ".buffer" is the address of the buffer where the characters
are to be stored and ".size'" is the size of the buffer (number of
bytes). This emt causes a program wait until an activation

character is entered and then returns all characters received up
to and including the last activation character. On return RO
contains a count of the number of characters vreceived. If the
specified buffer overflows, the carry-flag is set on return. This
emt is substantially more efficient than doing a series of LTTYIN
ent ' s; it is particularly well suited for accepting input from
page buffered terminals.

-50-

6.14 Turning Hisgh-efficiency Terminal Mode On and Off

TSX-Plus offers a '"high-efficiency" node of terminal
operation that eliminates a substantial amount of system overhead
for terminal character processing by reducing the amount of
processing that is done on each character., When in
high-efficiency mode, characters are sent directly to the terminal
with mninimum handling by TSX-Plus; operations such as expanding
tabs to spaces and form-feeds to line-feeds are omitted as well as
input processing such as echoing characters and recognizing

control characters such as rubout, control-U and control-C. The
only characters treated specially on 1input are user defined
activation characters and the user specified break character. At

least one user specified activation character must be declared if
high-~efficiency mode is to be used. This form of terminal I/0 1is
designed to facilitate high-speed machine-to-machine

communication. It can be used effectively to communicate with
buffered mode terminals. The form of the emt used to control

high—-efficiency mode 1s:
EMT 375

with RO pointing to the following argument block:
«BYTE .code, 120

where ".code" is 1 to turn high-efficiency mode on and 0 to turn
it off.

6.15 Determing number of free blocks in spool file

The following EMT will return in RO the number of free blocks
in the spool file. The form of the EMT is:

EMT 375
with RO pointing to the following argument area:

.BYTE 0,107

-51]=-

6.16 Set/Reset ODT activation mode

The following EMT can be used to set TSX-Plus to activate on

characters that are appropriate to ODT. In this mode TSX-Plus
considers all <characters to be activation characters except
digits, *,’, “$’, and “;’. The form of the EMNT is:

EMT 375

with RO pointing to the following argument area:

+BYTE .code, 111

where .code is 1 (one) to turn on ODT activation mode and 0 (zero)
to reset to normal mode.

-50—

7. SHARED FILE RECORD LOCKING

TSX=Plus provides a record locking facility that is useful in
situations where programs being run from several terminals wish to
update a conmnon data file. Through the record locking facility a
progran may gain exclusive access to one or more blocks in a file
by locking those blocks. Other users attempting to lock the same
blocks will be denied access until the first wuser releases the

locked blocks.

The usual protocol for updating a shared file being accessed
by several users is as follows.

1) Open file.

2) Tell TSX-Plus that file is "shared".

3) Lock all blocks in file which contain desired record.
4) Read locked blocks into core.

5) Make update to record.

6) Urite updated blocks to file.

7) Unlock bLlocks.

8) Repeat steps 3-7 as necded.

9) Close file.

DIBOL record locking procedures

See Appendix A for information on performing record locking
from DIBOL prograns.

Assenbly language record locking EMT’'s

At the assenbly language level TSX-Plus provides 4 EMT’s to
control record locking.

7.1 Opening a shared file

Before a file can be used with shared access it must be
opened by wusing a standard LLOOKUP emt. After the lookup has
completed successfully the following ent may be used to declare
the file to be opened for shared access. The form of this emt is:

EMT 375
with RO pointing to the following argument area:

«BYTE .chan,125
« WORD .access—-code

where .chan is the number of an I1/0 channel that has previously
been opened to the desired file and .access—-code is a value that
indicates the type of access protection desired for the file.

The following access codes are recognized:

Code Protection Access
0 Exclusive Input
1 Exclusive Update
2 Protected Input
3 Protected Update
4 Shared Input
5 Shared Update

The access—code specifies two things: The type of access that you
intend to make to the file (input only or update) and the type of
access that vyou are willing to grant to other users of the file.
There are three protection <classes that you nay specify:
Exclusive, Protected and Shared. Exclusive access means that you
demand exclusive access to the file and will allow no other users
to access the file in any fashion (input or update). Protected
access means that you will allow other users to open the file for
input but wish to prohibit any other users from opening the file
for update. Shared access means that you are willing ¢to allow
other wusers to open the file for both input and update type
access. The access code you specify also indicates your intended
access to the file: input only or update.

When this emt is executed, TSX-Plus checks your specified
protection mode and access type with that previously declared for
the file by other users. If an access conflict arises because of
your specified access characteristics an error code of 4 is
returned for the emt. If no access conflict 1s detected, your
specified access code is saved with the file and will be used to
check for conflicts with future access requests issued by other
users.

It is possible to have several channels simultaneously open
to different shared files. The exact number of channels that can
be open to shared files and the total number of shared files that
may be opened are specified when the TSX-Plus system is generated.

Once all access to the file is completed, the I/0 channel
should be closed using the standard .CLOSE or .PURGE emt’s. See
below for information about saving the status of a channel that
has bheen opened to a shared file.

The error codes that can be returned by this emt are listed below:

errors: code meaning
1 Channel has not been opened to a file.

2 Too many channels opened to shared files.
3 Too nany shared files open.
4 File protection—access conflict

-54~

7.2 Saving the Status of a Shared File Channel

A standard .SAVESTATUS emt may be used to save the status of
a shared file channel. If this is done, all blocks that are being
held 1locked 1In the file remain 1locked until the channel is

reopened and an unlock emt (see below) is done.

When wusing a single channel number to access several shared
files it is convenient to initially do a .LOOKUP on each file then
declare the file to be shared (emt above) and then do a
«SAVESTATUS., The channel being used to access the set of files
can then be switched from one file to another by doing a .PURGE
followed by a .REOPEN. However, before doing the .PURGE, TSX~-Plus
must be told that you wish to save the shared-file status of the
file (otherwise all locked blocks will be unlocked and the file
will be removed from the shared-file list). The form of the emt
used to perform this function is

EMT 375
with RO pointing to the following argument block:
«BYTE schan, 122

where .chan is the I/0 channel number. The effect of this emt 1is
to suspend the connection between the shared file information
table and the I/0 channel. Any blocks that are currently 1locked
in the file remain 1locked until the channel 1is reopened to the
file (by using a standard .REOPEN emt). After doing this emt the

channel may be freed by using a .PURGE emt.

7.3 Waiting for a Locked Block

The following emt can be used to lock a specific block in a
file. If the requested block is 1locked by another job, the
requesting wuser’s job will be suspended until the desired block
becomes available. The form of the emt is

EMT 375
with RO pointing to the following area:

«BYTE .chan, 102
.WORD «block

where .chan 1s the number of an I/0 channel that has previously
been declared to be open to a shared file; .block is the number of
the ©block 1n the file to be locked. Other blocks in the file
which were previously locked remain locked. The maximum number of

55~

blocks which may be simultaneously held locked is specified when
TSX-Plus is generated. A block number of -1 (octal 177777) can be
used to request that all blocks in the file be locked. If several
users request the same block, access will be granted sequentially
in the order that the requests are received.

errors: code meaning
1 Channel is not open to a shared file

Request to lock too many blocks in file

7.4 Trying to Lock A Block

This emt is similar in operation to the previous emt. It too 1is
used to request that file blocks be locked. The difference is
that if the requested block is already locked by another user the
previous EMT suspends the requesting program whereas this EMT does
not suspend the program but rather returns an error code. If the
"block 1is available it 1is locked for the requesting user and no

error is reported. The form of this EMT is:
EMT 375

with RO pointing to the following argument area:

» BYTE .chan,103
«WORD .block
errors: code meaning
1 Channel is not open to a shared file.

Request to lock too many blocks in file.
Requested block is locked by another user.

W

7.5 Unlocking A Specific Block

This emt is used to unlock a specific block in a file. The
form of the emt 1is

-~56-

EMT 375
with RO pointing to the following argument block:

.BYTE .chan, 113
«WORD .block-number

where ".chan" is the number of the I/0 channel opened to the
shared file and ".block-number" is the number of the block to be
unlocked.

errors: code meaning
1 Specified channel not opened to a shared file

7.6 Unlocking All Locked Blocks In A File

This ent is used to unlock all blocks held locked for a file.
The form of the emt 1is

EMT 375
with RO pointing to the following argument area:

«BYTE .chan,101

where .chan 1is an I/0 channel number that is open to a shared
file. When this EMT is executed all blocks previously locked by
the wuser on the shared file are unlocked. Blocks locked by the
user on other files are not released nor are blocks of the same
file that are locked by other users.

error: code meaning
1 Channel is not open to a shared file.

7.7 Checking For Writes To A Shared File

The following emt can be used to determine if any other user
has written to a shared file. The form of the emt 1is

-57-

EMT 375
with RO pointing to the following argument block
«BYTE .chan,121

where ".chan'" is the I/0 channel number opened to the shared file.
If no other user has written to the file since the file was opened
by the user issuing this emt or since that last time this emt was
issued for the file, the carry=-flag is cleared on return from the
ent. If the file has been written to by some other user since the
last check was made, the carry-flag is set on return and an error
code of 2 is returned.

This emt can be used to advantage in a situation where data
from some block in the file is being held in a buffer and it 1is
desired to determine if the data is valid or if it may be invalid
because some other user night have altered it by writing to the
file. The wusual sequence of operations in this situation is to
first lock the block whose data is in the in-memory buffer, then
do the emt to see if the file has been written to; if the file has
not been modified the data in memory is valid and <can be |used,
otherwise the block must be reread from the file.

-58=

8. MESSAGE COMMUNICATIONS FACILITIES

TSX-Plus provides an optional facility that allows running
programs to send messages to each other. This message
comnunication facility allows programs to send messages through
named channels, check to see if messages are pending, and suspend
execution until a message is received.

8.1 Message Channels

llessages are transferred to and from programs by using
TSX-Plus "Message Channels". A message channel accepts a message
from a sending program, stores the messsage in a queue associated
with the channel and delivers the message to a receiving progran
that requests a message from the channel. Message channels are
totally separate from I/0 channels.

Each active message channel has associated with it a one to
six character name that is used by the sending and the receiving
programs to identify the channel. The total number of message
channels 1is defined when TSX-Plus is generated. The names
associated with the channels are defined dynamically by the
running prograns. A message channel is said to be "active" if any
messages are being held in the queue associated with the channel
or if any program is waiting for a nessage from the channel. When
message channels become inactive they are returned to a free pool
and may be reused by another progran.

Once a mnessage 1is queued on a channel, that message will
remain in the queue until some program receives it or the TSX-=Plus
system 1is restarted. A program’s exiting to the keyboard monitor
does not remove any pending messages that it queued. This allows
one progran to leave a message for another progranm that will run
later.

8.2 3ending a lMessage

An EMT is provided for the assembly language programmner to
use to queue a message on a naned channel. If other messages are
already pending on the channel, the new message is added to the
end of the 1list of waiting mnessages. The sending progran
continues execution after the EMT and does not wait for the
message to be accepted by a receiving program. During processing
of the EMT the message is copied to an internal buffer, and the
sending program 1is free to destroy its message on completion of

the EMT. The form of the EMT is:

-59-

EMT 375

with RO pointing to the following argument area:

«BYTE 0,104

«.WORD .chadr
«WORD .msadr
«.WORD .mssiz

where .CHADR 1is the address of a six byte field containing the
nane of the message channel in ASCII with trailing blanks 1f the
name 1s 1less than six characters. .MSADR is the address of the
beginning of the message text. L,MSSIZ is the message length in
bytes.

errors code meaning
1 All message channels are busy.

(Re-gen TSX-Plus and increase the
value of the MAXMC parameter.)

2 Maximum allowed number of messages
are being held in message queues.
(Re-gen TSX=-Plus and increase the value
of the MAXMSG parameter.)

4 The transmitted message is too long.
(Message is truncated to maxinmum
length.)

Note that the maximum message length is defined during systen
generation by the MSCHRS parameter. If a message longer than this
is sent, only the first part of the message will be delivered and
error code 4 will be returned.

8.3 Checking for Pending Messages

The second EMT is used to receive a message from a naned
channel 1if a message is pending on the channel. If no message 1is
pending, an error code (3) is returned, and the program is allowed
to continue execution. The form of the EMT 1is:

EMT 375

with RO pointing to the following argument area:

«.BYTE 0,105
«.WORD »chadr
«WORD ~.msadr
«WORD .mssiz

-60-

where .CHADR points to a field with a six character channel name ;
.MSADR points to the buffer to which the message is to be placed
and .MSSIZ is the size of the message buffer (bytes).

If a message is received, its length (bytes) is placed in RO
on return from the EMT. If the received message 1is longer than
the message Dbuffer (.MSSI1Z), only the first part of the message
will be received.

errors code meaning
0 No error. A message was received.
3 No message was queued on the

naned channel.
4 Message was longer than the
receiving buffer.

8.4 Waiting for a lessage

The third EMT is used to suspend execution of a program until
a nmnessage becomes available on a naned channel. The form of the
EMT is:

EMT 375

with RO pointing to the following argument area:

«BYTE 0,106
« WORD .chadr
«WORD .msadr
. WORD .mssiz

where .CHADR points to a field with a six character channel nane;
.MSADR points to the buffer where the message 1s to be placed; and
.MSSIZ is the size of the message buffer (bytes).

The length of the received message (bytes) is placed in RO on
return from the ENT.

errors code meaning
0 No error. A message was recelved.
1 All message channels are busy.

(Re-gen TSX-Plus and increase the
value of the MAXMC parameter.)

4 Message was longer than the
receiving buffer.

-61-

9. COMMAND FILES

The TSX-Plus command file facility 1is significantly more
powerful than that provided by standard RT-11. Parameter strings
may be specified when a command file is started; the parameters
are stored by TSX-Plus and inserted in the text of the command

file at selected points as the command file is processed. Unlike
RT-11 command files, TSX-Plus command files allow program data as
well as system commands to be placed in a command file. Under

TSX-Plus it 1is possible to set wup a command file so that any

request for data from device "TT" comes from the conmand file.

This allows EDIT and TECO commands to be placed in a command file.
A command file is invoked by typing:

@filenane paraml param2 ... paramb

where "filename" is the name of the command file and '"paraml",
"param2", etc. are paraneter string arguments to the command
file. The default extension for a conmand file 1is m,coM".

When the name of a command file does not conflict with a
system command, the command file may be 1invoked by typing:

filename paraml,param2, ... param5

that is, the @~sign may be left out. There are two differences
between starting a command file with and without the @G-sign. With
the @G-sign the default device searched for the command file 1is
"DK". Without the @-sign the default device is "SY". With the
A-sign the command file listing is initially set according to the
last executed SET TT QUIET or SET TT NOQUIET command. Without the
@-sign the command file listing 1is initially suppressed but may be
turned on by putting a listing control <command in the file.

Parameter strings are normally delimited by spaces. Thus in
the command:

ATSTRUN ABC 123.45 2/3

the string "ABC" is parameter 1, "123.45" is parameter 2 and "2/3"
is parameter 3. It some cases it may be desirable to include
spaces as part of a parameter string. If this is to be done, the
first parameter must begin with the character "\'" (left 1leaning
slash), and the left-slash must be used as the parameter delimiter
rather than spaces. For example, in the command line:

@TSTRUN \A STRING\OF PEARLS
parameter 1 is "A STRING" and parameter 2 is "OF PEARLS".
Up to five parameter strings may be specified when the

command file is started. The total number of characters in the
paranmeter string may not exceed 60.

-62-

To insert a parameter string 1in a command file put au
up-arrow (""") character followed by a digit in the range of 1l to
5 at the desired point of insertion. The digit 1indicates which
parameter string is to be 1nserted at that ©point. The
up-arrow-digit sequence is replaced by the appropriate parameter
string as the command file 1is being executed. If a parameter
string is called for that was not specified when the command file
was Invoked, the up-arrow-digit will be deleted and no characters
will be inserted 1in their place. For example, consider the
following command file:

R "1
“3="2

If it is executed by use of the following command:
@GTEST FORTRAN PROG
The result will be:

R FORTRAN
=PROG

Command files may be nested, that is, one command file may
call another command file. When such a call occurs, the parameter
strings for the outer level (calling) command file are stored on a
stack in TSX-Plus and then the parameter strings for the called
command file are set up. When the called command file finishes,

the parameters for the calling command files are restored. The
maximum depth of nesting i1s governed by the slize of the parameter
string stack and the length of the actual parameter strings. A

nesting depth of 3 can be reached even with very long parameter
strings. If no parameters are specified, the nesting depth may go
to about 7 levels. :

The command file 1listing status (SET TT QUIET) 1is also
stacked as command files are nested. This means that an inner
nested command file may have its listing turned on or off; when it
exits the 1listing control will be reset to the state it was in
when the command file was called. This 1s not done for the
outer-most command file, however, so if the outer level command
file contains a SET TT QUIET command, it will have a permanent
effect.,

Several combinations of characters take on special meaning
when they are found within a command file. The up—-arrow character
(""") followed by a letter is replaced by the <control character
corresponding to the letter specified. Thus "*C" Dbecomes
control-C. The escape character (alt mode) may be represented by
up~arrow, dollar sign (""$").

Several combinations of <characters within a command file
perform special functions when they are encountered. These
controel character functions are carried out immediately by
TSX-Plus as the characters are found. These control characters

are ncot passed to the program.

-63-

control character function

~(Stop listing command file. This has the same effect as
SET TT QUIET, except 1t only applies to the current
command file.

) Start listing command file. This has the same effect as
SET TT NOQUIET except that 1t only applies to the
current command file.

~1 Suppresses all TT output. Both the command file listing
and any program output to TT are suppressed. The we
and "*)" conmands restart program generated output.
> Accept all TT input from the command file. Initially

command file data is only passed to programs when they
do .GTLIN, .CSISPC or .CSIGEN EMT’s. This is the way
RT-11 handles all command files. Requests for data such
as .TTYIN or .READ bypass the command file and go to the
terminal. The "~>" command causes all subsequent
requests for data from the terminal to come from the
command file regardless of which EMT 1is used. This
allows data for application programs to be placed in a
command file. It also allows commands for TECO and EDIT
to be placed in a command file. This command only
affects input requests that occur after TSX-Plus reads
the "*>" sequence.

< Return to standard data mode. The following command
file data will only be passed to programs which do
.GTLIN, .CSISPC or .CSIGEN EMT’s (standard RT-11 mode).

A PAUSE command is provided to allow the execution of a

command file to be suspended while the operator performs some
manual operation. The form of the PAUSE command 1is:

PAUSE comments

where "comments" may be any string of characters. When a PAUSE
command is encountered within a command file, the PAUSE command is
printed on the terminal followed by "M, Execution of the
command file is then suspended until carriage return 1is pressed.
See also the description of the "N" and "O" program controlled
terminal options that affect command file input.

-64—

i

A DISPLAY command may be placed in a command file to cause
line of text to be displayed at the terminal when the DISPLAY
comnand 1is executed. The form of the DISPLAY command is:

DISPLAY comments

any line of text to be printed at the

where '"conments" may be
"quiet"

terminal. This is useful when running command files in
mode so that they are not being listed.

-65-

10. TSX=Plus Performance Monitor Feature

TSX-Plus includes a performance analysis facility that can be
used to monitor the execution of a program and determine what
percentage of the run time is spent at various locations within
the program. When the performance analysis facility 1s being used
TSX-Plus examines the program being monitored when each clock tick
occurs (50 or 60 times per second) and notes at what location in
the progran execution 1s taking place. Once the analysis 1is
conpleted the TSX-Plus performance reporting program (TSXPM) can
be wused to produce a histogram showing the percentage of time
spent at various locations during the monitored run.

There are three steps involved in performing a performance
analysis on a program:

1) Use the MONITOR command to begin the analysis.

2) Run the program to be monitored.
3) Run the TSXPM program to print a histogram of the result.

10,1 Starting a Performance Analysis

The first step in doing a performance analysis is to use the
MONITOR keyboard command to tell TSX-Plus that a performance
analysis 1s to be done on the program that will be run next. The

form of the MONITOR command is
MONITOR base-address,top—address[,cell-size]/switches

where "base-address" is the lowest address in the region to be
monitored, '"top-address" is the highest address in the region to
be nmnonitored and ‘"cell-size"™ is an optional parameter that
specifies the number of ©bytes of address in the region being
monitored to group together into each histogram cell. If the
cell-size parameter is not specified, TSX-Plus calculates the cell
size by dividing the number of bytes in the region being monitored
(base-address to top-address) by the total number of histogram
cells available (specified when TSX-Plus 1s generated). This
gives the finest resolution possible. The only avalilable switch
is "/I" which, if specified, causes I/0 wait time to be 1included
in the analysis. If this switech 1is not specified, only CPU
execution time is included in the analysis. .

Exanples:
MONITOR 1000,13000/1
MONITOR 20000,40000,10
MONITOR 2000,6000

The effect of the MONITOR command is to set up parameters
within TSX-Plus which will be used to monitor the next program run
-- It does not actually begin the analysis so there 1s no rush in
running the program to be monitored.

-66-

Only one user may be dolng a performance analysis at a time.
This is because the performance analysis histogram buffer 1is a
common menory area that may not be in use by more than one user at
a time. An analysis is in effect for a user between the time the
MONITOR command is issued and the TSXPM program is run to display
the results of the analysis. Running the TSXPM program terminates
the performance analysis and allows other users to perforn
analyses. Note also that space for the performance analysis data
buffer must be reserved when TSX-Plus 1is generated.

Once the MONITOR command has been issued, the program to be
monitored 1s run by using the standard "RUN" or "R" commands. A
link map of the program should be available to determine the
addresses in the program that are appropriate to monitor. If the
program is overlayed and the region to be monitored 1is 1In the
overlay area, the analysis technique {s more complex. It is
necessary to use the performance monitor emt’s (described below)
to control when the analysis is turned on and off to monitor a
particular overlay segment running in the region being monitored.
If a program being monitored does a .CHAIN to another program, the
analysis continues and the times reported will be the composite of
the programs run.

10.2 Displaying The Results Of The Analysis

After the program being monitored has been run and it has
exited and returned control to the keyboard monitor, the TSXPM
performance reporting progran is used to generate a histogram of
the time spent in the region being monitored. The TSXPM progran
is started by typing "R TSXPM"; it responds by printing an
asterisk ("*#"). 1In response to the asterisk, enter the file
specification for the device/file where the histogram is to be
written. Optionally a switch of the form "/M:nnn" may be
specified following the file specification. This switch is used
to specify the minimum percentage of the total run—-time that a
histogram cell must contained 1in order to be included in the
display. If this switch is not specified, the default cut-off
percentage is lZ.

After receiving the file specification TSXPM prompts for a
title line. Enter a line of text which will be printed as a page
title i1n the histogram file. Press return 1if you wish no title.

The next 1item of information requested by TSXPM is a set of
base offset values. The base offset values are optional. Base
offsets are useful in the situation where you have several modules
making up a program being monitored and you want the addresses
displayed on the performance analysis histogram to be relative to
the base of each module. You may specify up to 10 offset values.
Each offset value is specified as an offset module number (in the
range O to 9) followed by a comma and the base address of the
module (see exanple below). If offset values are specified, TSXPit

-67~

determines in which module each cell of the histogram falls and
displays the address as a module number and offset within the

module. After you enter all desired module offsets, enter return
without a value.

After the base offset values are entered the histogram will be
produced and written to the specified device and file. After the
histogram is generated TSXPM prints the asterisk prompt again at
which point you may enter the name of another device/file and
produce the histogram again if desired or you may type control-C
to return to the keyboard monitor.

Example use of TSXPN

.R TSXP!

*T,P: /M:5

Title:PERFORMANCE ANALYSIS OF EIGENVALUE CALCULATION
Base offsets:

>1,1000

>?,2134

>3,5212

S

[Histogram is produced at this point]

*control-C

The histogram produced by TSXPM consists of one line per
histogram cell. FEach line contains the following information: 1)
the base module offset number (if offsets were specified); 2) The
address range covered by the histogram cell (relative to the
module base 1f base offsets were used); 3) The percentage of the
total execution time spent at the address range covered by the
histogran cell; 4) A 1line of stars presenting a graphic

representation of the histogram.

10.3 Performance Monitor Control EMT’s

For most applications the method described above can be wused
to do a performance analysis. However, in special cases (such as
analizing the performance of an overlayed program) it is necessary
to have more explicit control over the performance analysis

feature as a program is running. The following set of ent’s may
be used to control a performance analysis.

10.3.1 Initializing A Performance Analysis

This emt 1s used to set up parameters that will control a
performance analysis. It does not actually begin the analysis.
The form of the emt is

-68-

EMT 375

with RO pointing to the following argument block:

«BYTE 0,137

« WORD «.base—-address
«WORD .top—address
«WORD .cell-size
«WORD .flags

where .base-address is the address of the base of the region to be
nonitored, .top—address is the address of the top of the region to
be mnonitored and .cell-size 1s the number of bytes to group in
each histogram cell. If O (zero) is specified as the cell size,
T5X-Plus calculates the cell size to use by dividing the number of
bytes in the region being monitored («.top—address minus
.base-address) by the number of cells available in the histogram
data area (specified when TSX-Plus is generated). The .flags
parameter 1s used to control whether I/0 wailt time 1is to be
included in the analysis or not. If a value of 1 is specified as
the .flags parameter I/0 wait time is included in the analysis; if
a value of 0 (zero) is specified I/0 wait time is not included in
the analysis.

errors: Code Meaning
0 Performance analysis being done by some other user.
1 Performance analysis feature not genned into TSX-Plus.

10.3.2 Starting a Performance Analysis

This emt 1s wused to begin the actual collection of
performance analysis data. The previous emt must have been
executed to set up parameters about the performance analysis
before this emt is done. The form of the emt is

EMT 375

with RO pointing to the following argument block:

«BYTE 1,136
Errors: Code Meaning
0 Performance analysis has not been Initialized yet.

-69-

10.3.3 Stopping A Performance Analysis

The following emt can be used to suspend the data collection
for a performance analysis. The data collection can be restarted
by using the start-analysis emt described above. This emt could,
for example, be used to suspend the analysis when an overlay
module is loaded that is not to be monitored. The start—-analysis
emt would then be used to reenable the data collection when the
overlay of interest 1s Treloaded. The form of this emt is

EMT 375

with RO pointing to the following argument block:

«BYTE 2,136
Errors: Code Meaning
0 Performance analysis has not been previously initialized.

10.3.4 Terminating A Performance Analysis

This emt is used to conclude a performance analysis. It has
the effect of returning into a user supplied buffer the results of

the analysis and freeing the performance analysis feature for use
by other users. The form of this emt is:
EMT 375

with RO pointing to the following argument block:

«BYTE 3,136

«WORD .parameter—buffer
«WORD .histogram-buffer
«WORD .buffer—-size

where .parameter-buffer 1is the address of a 4 word buffer into
which will be stored some parameter values describing the analysis
that was being performed; .histogram-buffer is the address of the
buffer that will receive the histogram count values; .buffer-size
is the size (in bytes) of the histogram buffer area.

Errors: Code Meaning
0 This job is not doing a performance analysis.
1 Area provided for histogram count vector is too small.

The parameter values returned consist of the following 4
words: 1) Base address of monitored region; 2) Top address of the
monitored region; 3) Humber of bytes per histogram cell; 4)
Control and status flags. The control and status flags are a set
of bits that provide the following information:

-70-

Flag ° Meanin
T Iso wait time was included in the analysis.

100000 Some histogram cell overflowed during the analysis.

The histogram data returned consists of a vector of 16-bit
binary values —=- one value for each cell in the histogram. The
first value corresponds to the histogram cell that starts with the
base address of the region that was being monitored.

-71-

11. TSX-Plus RESTRICTIONS

l1.1 EMT’s Not Supported by TSX-Plus

The following EMT’s (monitor service requests) are not
supported by TSX-Plus and are treated as NOP’s: .FETCH, .RELEAS,
.QSET, .CDFN, .INTEN and .SYNCH (.INTEN and .SYNCH may be used
within device handlers). Since the CDFN EMT 1is not allowed,
programs must use only channels 0-17. Both version 1 and version
2 type EMT’s are supported by TSX-Plus. TSX-Plus provides full
timer support including month and year date roll-over and the
.TWAIT and .MRKT emt’s. TSX~Plus does not provide the RT-1l1 style
multi-terminal support emt’s.

11.2 Programs Not Supported by TSX-Plus

Most programs which run under RT-11 will run under TSX~Plus
without change. However, a modified version of ODT
("TSODT"--supplied with TSX-Plus) must be used to debug programs
under TSX-Plus. The BATCH RT-11 facility 1is mnot supported by
TSX-Plus.

-72-

APPENDIX A

DIBOL TSX~Plus SUPPORT SUBROUTINES

A set of subroutines is provided with TSX-Plus to perform DIBOL
record locking and mnessage transmission functions. Note that 1f
these TSX-Plus features are to be used, they must be enabled when
the TSX-Plus system is generated.

1. Record Locking Subroutines

The record locking subroutines coordinate access to a common
file being shared and updated by several TSX-Plus users. The five
subroutines parallel the operation of the DIBOL statements: OPEN,
CLOSE, READ, WRITE and UNLOCK. The normal DIBOL 1I/0O statements
cannot be used to perform record locking under TSX-Plus.

1.1 Opening the file

The first subroutine 1s used to open a shared file in update
~ode. The form of the call is:

XCALL FOPEN(chan,devlbl,errflg)

where

chan = A decimal expression that evaluates to a number in
the range 1-15. This 1s the channel number used in
associated calls to FREAD, FWRIT, FUNLK and FCLOS

subroutines.

devlbl = The name of an alphanumeric literal, field or record
that contains the file specification in the general
form: dev:filnam.ext

The file size must not be specified with the file
name. An optional "/W" switch may be appended to the
file name to cause the "WAITING FOR dev:file'" message
to be printed.

errflg = A numeric variable capable of holding at least two
digits into which 1s stored an indication of the
result of the FOPEN call. The following values are

returned:

-73-

value meaning

0 No error. File is open and ready for access.

17 File name specification is invalid.

18 File does not exist or channel is already
open.

72 Too many channels are open to shared files.

(Re-gen TSX-Plus and increase the value of
MAXSFC parameter).

73 Too many shared files are open. (Re-gen
TSX-Plus and increase the value of MAXSF

parameter).

The FOPEN subroutine should only be used to open files that
will be updated by several users. The normal DIBOL OPEN READ/WRITE
sequence should be wused for other files. Several files may be
opened for update by calling FOPEN with different channel numbers.
The ONERROR DIBOL statement does not apply to these record locking
subroutines. Instead the "errflg" argument is used to indicate the
outcome of the operation.

1.2 Locking and reading a record

The FREAD subroutine is used to lock and read a record. The
form of the call 1is:

XCALL FREAD(chan,record,rec #,’T’ or ‘W’ ,errflg)

where

chan = Decimal expression in the range 1-15 that identifies
a channel previously opened by FOPEN.

record = Name of the record or alphanumeric field in which the
record read is to be placed.

rec # = Decimal expression that specifies the sequence number

of the record to be read. This value must be between
1 and the total number of records 1n the file.

‘T’/‘W’ = If ‘T’ is specifed as the fourth parameter, FREAD
will return a value of 40 in errflg if the requested
record is locked by some other user. If ‘W’ 1is
specified, FREAD will wait until the record 1is
unlocked by all other users and will never return the
record-locked error code.

errflg = Decimal variable into which 1is stored one of the
following values:

value meaning
0 No errore. Record has been locked and read.
1 End-of-file record has been read.

-74-

22 I/0 error occurred on read or channel 1is not

open.

28 Invalid record number (possibly beyond end of
file).

40 Record locked by another user. (Only
returned 1if ‘T’ 1s specified as fourth
argument.)

71 Channel was not opened by calling FOPEN.

72 Request to lock too many blocks in file.

(Re-gen TSX-Plus and increase value of MXLBLK
parameter.)

The FREAD subroutine functions like the DIBOL READ statement.
However, whereas the DIBOL READ statement always returns an error
code (40) if the requested record is locked, FREAD offers the user a
choice: If ‘T’ is specified as the fourth argument to FREAD, a code
of 40 will be returned in errflg if the record 1is already locked.
If ‘W’ 1s specified as the fourth argument and the record is locked,
FREAD does not return an error code, but rather waits until the
requested record is unlocked. It is much more efficient to wait for
a locked record by using the ‘W’ option rather than re-executing the
FREAD with the ‘T’ option. It may be desirable to perform the first
FREAD using the ‘T’ option. If the record is locked a "WAITING FOR
RECORD..." message can be displayed on the wuser’s console and
another FREAD can be issued with the ‘W’ option to wait for the
record. On return from this FREAD the "WAITING" message can be

erased.

Note that although record locking 1s requested on a
ecord-by-record basis, the actual locking is done on a
block-within-file Dbasis. (A block contains 512 characters). The
result of this is that a record is locked if any record contained in
the same block(s) as the desired record is locked.

Once a record is 1locked and read wusing FREAD, the record
remains locked wuntil the program performs one of the following
operations:

1. Issues an FWRIT to the channel from which the record was

read.
2. Issues another FREAD to the channel.

3. Issues an FUNLK to the channel.
4, Issues an FCLOS to the channel.
5. Terminates execution by use of the STOP statement or because

of an error.

The same set of rules that applies to the DIBOL READ statement
apply to FREAD.

-75-

1.3 Writing a record

The FWRIT subroutine 18 called to write a record to a shared
ile. The form of the call is:

XCALL FWRIT(chan,record,rec #,errflg)

where

chan = Channel number associated with the file.

record = Name of the record or alphanumeric field that
contains the record to be written.

rec # = Decimal expression that specifies the sequence number
of the record to be written.

errflg = Decimal variable into which 1is stored one of the

following values.

value meaning

0 No error.

22 I1/0 error occurred during write or channel is
not open.

28 Bad record number specified.

The FWRIT subroutine writes the indicated record to the file
then unlocks any blocks that were locked by the program. FWRIT
appends a <CR>XLF> to the end of the written record as does the
)IBOL WRITE statement. The rules for the DIBOL WRITE statement also
apply to FWRIT.

1.4 Unlocking records

The FUNLK subroutine is used to unlock records that were locked
by calling FREAD. The form of the call is:

XCALL FUNLK(chan)

chan = Channel number.

1.5 Closing a shared file

The FCLOS subroutine 1s called to close a channel that was
previously opened to a shared file by calling FOPEN. The form of

the call is:

XCALL FCLOS(chan)

chan = Channel number.

-76-

FCLOS wunlocks any locked records and closes the file. Other
users accessing the file are unaffected. After calling FCLOS, the

channel may be reopened to some other file.

1.6 Record Locking Example

In the following example a program performs the following
functions:

l. Opens a shared file named "INV.DAT" on channel 2.

2. Reads a record whose record number is stored in RECN into
the field named ITEM and waits if the record is locked by
another user.

3. Updates the information in the record.
4, Rewrites the record to the same ©position i1in the file.

5. Closes the shared file.

XCALL FOPEN(2,'INV.DAT',ERRFL)
"XCALL FREAD(2,ITEM,RECN, W’ ,ERRFL)
;{update record>

XCALL FWRIT(2,ITEM,RECN,ERRFL)
XCALL FCLOS(2)

1.7 Modifying programs for TSX-Plus

It is a straightforward process to modify DIBOL programs to use
the TSX-Plus record locking subroutines. OPEN, CLOSE, READ, WRITE,
and UNLOCK statements that apply to shared files must be replaced by
the appropriate subroutine calls. Error conditions must be tested
by IF statements following the subroutine calls rather than by using
the ONERROR statement.

2. Message Transmission Subroutines

Three subroutines are included in the DIBOL support package to
allow programs to transfer messages to each other. When running
under TSX-Plus these subroutines must be used instead of the DIBOL

SEND and RECV statements.

2.1 Message Channels

Messages are transferred to and from programs by using TSX-Plus
"Message Channels". A message channel accepts a message from a

-77-~

sending progran, stores the message in a queue associated with the
channel and delivers the message to a receiving progranm that
requests a message from the channel. Message channels are totally
separate from I/0 channels.

Each active message channel has associated with it a one to six
character name that is used by the sending and receiving programs to
identify the channel. The total number of message channels 1is
defined when TSX-Plus is generated. The names associated with the
channels are defined dynamically by the running programs. A message
channel is said to be "active" if any messages are being held in the
queue associated with the channel or if any program is waiting for a
message from the channel. When message channels become inactive
they are returned to a free pool and may be reused by another
progran.

The D1iBOL SEND command directs a message to a program by using
the name of the receiving program. Under TSX-Plus, a sending
program transmits a message using an arbitrary channel name. Any
program may receive the message by using the same channel name when

it requests a message.

2.2 Sending a Message

The MSEND subroutine is called to queue a message on a naned
channel. If other messages are already pending on the channel the
new message 1s added to the end of the 1list of waiting messages.
'he form of the call is:

XCALL MSEND(chan,message,errflg)

where

chan = alphanumeric 1literal or variable that
contains the channel nane (1 to 6 characters).

message = alphanumeric or decimal literal, field or record that
contains the message to be sent.

errflg = Decimal variable into which will be stored one of the
following values:

value meaning

0 No error. Message has been sent.

1 All message channels are busy. (Re—gen TSX~Plus and
increase the value of MAXMC parameter).

2 Maximum allowed number of messages are being held 1in
message queues. (Re—~gen TSX-Plus and increase the

value of MAXMSG parameter).

Note that the maximum message length that may be transferred is
defined during system generation by the MSCHRS ©parameter. If a
'essage longer than this is sent, only the first part of the message
111 be delivered.

-78-

+3 Checking for Pending Messages

The MSGCK subroutine may be called to determine if any messages
are pending on a named channel. The form of the call 1s:

XCALL MSGCK(chan,message,errflg)

where

chan = alphanumeric literal or variable that contains the nane
of the channel (l to 6 characters).

message = alphanumeric or decimal field or record where the
received message is to be placed.

errflg = decimal variable into which will be stored one of the
following values:

value meaning

0 No error. A message has been received.

3 o message was queued on the named channel.

If a received message 1is shorter than the receiving message
field the remainder of the field is filled with ©blanks. If the
message is longer than the field, only the first part of the message
is received.

2.4 Waiting for a Message

The !5GWT subroutine is used by a receiving program to suspend
its execution until a message is available on a named channel. It
is much more efficient for a program to wait for a message by
calling HMSGWT rather than repeatedly calling MSGCK. The form of the

call is:
XCALL MSGWT(chan,message,errflg)

where the arguments have the same meaning as for MSGCK, and the
following values may be returned in errflg.

value meaning
0 No error. A nmessage has been received.
1 All nessage channels are busy.

-79~

+ 5 Message Examples

In the following example a program sends a message to another
progran by using a message channel named "SORT" and then waits for a
reply to come back through a message channel named "REPLY".

XCALL MSEND(’SORT’, 'DK:PAYROL.DAT’,ERRFL)
IF(ERRFL.,NE.0)GO TO ERROR

XCALL MSGWT(’'REPLY’,MSGBF,ERRFL)
IF(ERRFL.NE.O)GO TO ERROR

2; Using the subroutines

The subroutines described above are part of the MACRO program
called '"DTSUB.MAC". Once assembled, the object file for DTSUB
(DTSUB.OBJ) may be linked with DIBOL programs that use the record
locking or message facilities. An example of a LINK command is
shown below.

.R LINK
*PROG=PROG,DTSUB,DIBOL

4, Miscellaneous Functions

4.1 Determining the TSX-Plus line number

The TSLIN subroutine can be called to determine the number of
the TSX-Plus timesharing line from which the program is being run.
Real lines are numbered consecutively starting at 1l in the same
order they are specified when TSX-Plus is generated. Detached job
lines occur next and virtual lines are numbered last.

The form of the call of TSLIN is:
XCALL TSLIN(lnum)

where "lnum" is a numeric variable capable of holding at least two
digits into which 1is stored the TSX-Plus line number value.

-80-

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080

