ULTRIX-11™
System Management Guide

Order No. AA-X343B-TC

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a Digital Equip-
ment Corporation license and may be used or copied only in accordance with
the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

The following are trademarks of Digital Equipment Corporation:

DEC Edusystem ULTRIX
DEC/CMS IAS ULTRIX-11
DEC/MMS MASSBUS ULTRIX-32
DECnet MICRO/PDP-11 ULTRIX-32m
DECsystem-10 Micro/RSX UNIBUS
DECsystem-20 PDP VAX

DECUS PDT VMS
DECwriter RSTS

VT
DIBOL RSX mngﬂau ™

Copyright © 1984 by Digital Equipment Corporation
All Rights Reserved.
Printed in U.S.A.

The following command descriptions as set forth in this document are copy-
righted material of Digital Equipment Corporation:

bufstat(1m) osload(1m)
cda(lm) rasize(lm)
cde(1) rx2fmt(1m)
chog(1) sysgen(1m)
chroot(1) ted(1)
csf(1m) tss(1m)
lpset(1m) usat(1)

memstat(lm) zaptty(1m)

In accordance with the licenses granted to Digital Equipment Corporation by
AT&T Bell Laboratories and the University of California at Berkeley pertain-
ing to the software described herein, the following should be understood by the
licensee, and any related documentation provided by the licensee to third par-
ties, whether pursuant to an agreement with Digital Equipment Corporation
permitting sublicensing of the software described herein or otherwise, must
contain the provisions of this section as set forth below:

a Information herein is derived from copyrighted material as permitted
under a license agreement with AT&T Bell Laboratories.
Copyrighted © 1979 AT&T Bell Laboratories.

“Make — A Program for Maintaining Computer Programs” acknowledge-
ments: S.C. Johnson, and H. Gajewska, for their ideas and assistance.

“Screen Updating and Cursor Movement Optimization: A Library Package”
acknowledgements: For their help and support, Bill Joy, Doug Merritt,
Kurt Shoens, Ken Abrams, Alan Char, Mark Horton, and Joe Kalash.

“YACC: Yet Another Compiler-Compiler” acknowledgements: B.W.
Kernighan, P.J. Plauger, S.I. Feldman, C. Imagna, M.E. Lesk, A. Snyder,
C.B. Haley, D.M. Ritchie, M.D. Harris and Al Aho, for their ideas and
assistance.

“Lex — A Lexical Analyzer Generator” acknowledgements: S.C. Johnson,
A.V. Aho, and Eric Schmidt, for their help as originators of much of Lex,
as well as debuggers of it.

The document “RATFOR — A Preprocessor for a Rational Fortran” is a
revised and expanded version of the one published in Software — Practice
and Experience, October 1975. The Ratfor described here is the one in use
on UNIX and GCOS at AT&T Bell Laboratories. Acknowledgements:
Dennis Ritchie, and Stuart Feldman, for their ideas and assistance.

“The M4 Macro Processor” acknowledgements: Rick Becker, John
Chambers, Doug Mcllroy, and Jim Weythman, for their help and support.

“BC — An Arbitrary Precision Desk-Calculator Language” acknowledge-
ment: The compiler is written in YACC; its original version was written by
S.C. Johnson.

“A Dial-Up Network of UNIX TM Systems” acknowledgements: G.L.
Chesson, A.S. Cohen, J. Lions, and P.F. Long, for their suggestions and
assistance.

The document “Berkeley Pascal User’s Manual” is copyrighted © 1977,
1979, 1980, 1983 by W.N. Joy, S.L. Graham, C.B. Haley, M.K. McKusick,
P.B. Kessler. The financial support of the first and second authors’ work by
the National Science Foundation under grants MCS74-07644-A04, MCS78-
07291, and MCS80-05144, and the first author’s work by an IBM Graduate
Fellowship are gratefully acknowledged.

The Fourth Berkeley Software Distribution is provided by the Regents of
the University of California and the Other Contributors on an “as is” basis.
Neither the Regents of the University of California nor the Other Contrib-
utors warrant that the functions contained in the Fourth Berkeley Soft-
ware Distribution will meet the licensee’s requirements or will operate in
the combinations which may be selected for use by the licensee, or that the
operation of the Fourth Berkeley Software Distribution will be uninter-
rupted or error free. Neither the Regents of the University of California
nor the Other Contributors make any warranties, either express or
implied, as to any matter whatsoever, including without limitation, the
condition of the Fourth Berkeley Software Distribution, its merchantability
or its fitness for any particular purpose.

The licensee understands and agrees that the Regents of the University of
California and the Other Contributors are under no obligations to provide
either maintenance services, update services, notices of latent defects, or
corrections of defects for Fourth Berkeley Software Distribution.

b UNIX is a trademark of AT&T Bell Laboratories.
The UNIX trademark may not be used in the name of any licensee’s prod-
uct. Any use of the trademark in advertising, publicity, packaging,
labelling or otherwise must state that UNIX is a trademark of AT&T Bell
Laboratories.

¢ This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. We acknowledge the following individuals and institutions for
their role in its development:

The Electrical Engineering and Computer Sciences Department at the
Berkeley Campus of the University of California. Ken Arnold, Earl T.
Cohen, John Foderaro, Charles Haley, Mark Horton, William Joy, Jim
Kleckner, Geoffrey Peck, Cliff Matthews, University of New Mexico; Eric
Shienbrood.

“The UNIX Time-Sharing System”: Copyright © 1974, Association for
Computing Machinery, Inc. reprinted by permission. This is a revised ver-
sion of an article that appeared in Communications of the ACM, 17, No. 7
(July 1974), pp.365-375. That article was a revised version of a paper pre-
sented at the Fourth ACM Symposium on Operating Systems Principles,
IBM Thomas J. Watson Research Center, Yorktown Heights, New York,
October 15-17, 1973. Acknowledgements: for their help and support, R.H.
Canaday, R. Morris, M.D. Mcllroy, and J.F. Ossanna.

“Advanced Editing on UNIX” acknowledgement: Ted Dolotta for his ideas
and assistance.

“Ex Reference Manual” acknowledgements: Chuck Haley contributed
greatly to the early development of ex. Bruce Englar encouraged the re-
design which led to ex version 1. Bill Joy wrote versions 1 and 2.0 through
2.7, and created the framework that users see in the present editor. Mark
Horton added macros and other features and made the editor work on a
large number of terminals and UNIX systems.

“An Introduction to the UNIX Shell” acknowledgements: Dennis Ritchie,
John Mashey and Joe Maranzano for their help and support.

“An Introduction to the C Shell” acknowledgements: Michael Ubell, Eric
Allman, Mike O’Brien, and Jim Kulp.

“LEARN — Computer-Aided Instruction on UNIX” acknowledgements: for
their help and support, M.E. Bittrich, J.L. Blue, S.I. Feldman, P.A. Fox,
M.J. McAlpin, E.Z. Rothkopf, Don Jackowski, and Tom Plum.

“A System for Typesetting Mathematics” acknowledgements: J.F. Ossanna,
A.V. Aho, and S.C. Johnson, for their ideas and assistance.

“A TROFF Tutorial” acknowledgements: J.F. Ossanna, Jim Blinn, Ted
Dolotta, Doug Mcllroy, Mike Lesk and Joel Sturman, for their help and
support.

The document “The C Programming Language — Reference Manual” is
reprinted, with minor changes, from “The C Programming Language”, by
Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall, Inc., 1978.

Introduction v

Table of Contents

Introduction: ULTRIX-11 Documentationeeeeceeecscessccsssss Xiil

-
|
—

e o 0 0 0 00

Chapter1 ULTRIX_11 I/o System ® 8 & 0 & 0 9 0 0 0 5 0O S OSSN SS e N 0o

I/0 System CallsS .tieeeeecenceocecsaccsscsssocsncnannasncs
ULTRIX-11 TermiNOlOgy ccesecscoscacesccsscscacnns ceeon
ULTRIX-11 Kernel ..ccceeeccconcsccs ceecessseresesaanse
File System ..cecececeees Cesecsesscescsssesscasssns e
Single-User Mode sesesessrassasnraaanes ceecsces
Multiuser MOdE ...ceeecesecsassosccsosscscssnasosanss
Mounting File SysStemsS ...cceeeeecccsocccccscnnas oo
File (iiieeenancnns cescscsessesnsaans
Special File ..iieceeesesoncccnccanees ceseas
DIirectory .eeeeecscscsceees e
Inumberccec0cee cassescseccssas
0 Inode ...cceeee cessssscccssssrsee
1 File Mode Settings ...ceeeceeesces cecscsaaassenenns .
2 Directory Mode Settings ..eeeecececcacccecsnanns ceaes
3 UserID iieevene casssssessss e
4 GroupID .iieeevrsoccsccssccns ceeessecsasesssesees e
5 Block I/0 MOAE .ieeveesccccsscssossscssosnccssssnssnsns
6
7
L
L

NN -
[T T R B A

]
D VVOONNNOAONONOONE R WWWN

© 8 000 0 s 0000000 o o 0

.
.
]
.
.
.
3
.
.
.
.
.
.
.

[N S N W N W U QP G . IR e e

[I |

1
1
Character I/oMode ® © & & 9 0 & 0 8 ¢ 0 0" 00 8 00 0 s 20 * o o 0 0 00 9 0 0 0 1
Major/Minor Device NUMDErScceeeecesccncccccccas |
1
1

- e e e ad e = WO NIONNNEWN -

e ® 8 e & 8 o & e o & s o ¢ o o o

NN NONNDNODNND

ogical Partitioning of DisksS ...eeeeececececccncans .o
ogical Device Names and Special Files cesane
Creating Special FileS .cceveecccccsssscccnssnnccess 1-13
Partitioned DiSKS c.eeeeccssocsscsssssosssosssssesnses 1-14
Nonpartitioned DiSkS ceeeececeenececcesnccccnns
Magnetic TAPeS ceeecececccsscssscscsssossssscsscssnas 1715
Terminals ...eeeececeees S 1-16
Miscellaneous DeviCes .ceeeesessescsccccns
Disk Unit Numbers ...cccecceccccccccs
.1 RD51/RD52/RX50 Unit Numbers ceetccessascscsess 1-18

T U G QU QU G G QU QU QU G RE ST A A
NN WN -

e © e e o o o o o o o o o & o o o o

QIO P Ww

Chapter 2 ULTRIX-11 System Generation

1
-

Preparing for System Generationcceeeeeececcccns
.1 Running the sysgen Program ...cccceececccsscs .o
.2 Gathering System Informationceeeeeeees

Creating the System Configuration Filecceeveeene

Verifying Your RESPONSES .ceceececcccsccssoscssccsasans

Making the ULTRIX-11 Kernel cveans

1
1
1
2
3
4
5 Installing the ULTRIX-11 Kernelceceecccescccccss
6 Updating the Device Support Filesieeeeeens
6
6
6
6
6

Support Files for DiSkS ..cceveeccenecensn

o1

.2 Support Files for Magnetic Tapeeceeeee ceeeees
.3 Support Files for TTY Interfacesccceeeeecececns
.4
.5

1
— —
B WN -

Support Files for Miscellaneous Devicescceveen.
The /deV/swap File ® 8 6 6 8 ¢ 0 0 0 0 0 0 Q0 O S OSSP T OO S NS e T SO

NONNDNDNODNNDNDNDNDNDN N
I
LD VWO NOTWNN

2
2
2
2
2
2
2
2
2
2
2
2
2

e o e e o e o o & o o o

vi Introduction

7 Error MeSSAgES .vveeesseceecececeoseenssccccnnessenans 2-15
7.1 sysgen: Can't execC fresh COPY +eeeeeveveeceeeeenness 2-15
7.2 Can't make unix from configuration filen...... 2-15
.7.3 Fatal size error xxxx.os should not be installed! .. 2-15
7.4 MAPPED BUFFERS - forbidden zone violation! 2-16
7.5 UNIBUS MAP - forbidden zone violation!e.... 2-17
8 Sysgen of User-Written Device Driverseeeeee.... 2—-14

Chapter 3 ULTRIX-11 BOOt ProCeAUIES .«...eeeeeeeeooceeennnnnenn.

3
The BOOt SEQUENCE +iiuveeeeeeeenseenenceonsocennnnneees 3-2
Specifying the BoOt FIile tuevveeeeeeeeseerenonenennenes 3-4
Autobooting from the System DiSKovevevveeeeneees. 3-6
Manually Booting from the System Diskocceeeeee.. 3-9
Manually Booting from TAQPe ..eeeeeeeeeneeeocnonneess oo 3-1
Manually Booting from RX50 Disketteeeeeeeeeees. 3-1
Boot Program Options Cesteeeretesescesnctenenne ee. 3-19
.1 Automatic Unit Select Optioneeeeeeeeeeeeesss. 3-20
.2 Automatic CSR SeleCt OPLtion .uuveeeeeeeeeecennneenns. 3-20
+3 CSR Address OPtiON .tuivveeeeeeeeeeeeeensceeceneneneas 3-20
Boot Error Messages et certessaccctcessssescseseess 3-23
.1 File Specification ErrorsS ...eeeeeeeeseeeeeeeneeses. 3-23
.2 Operating System Parameter Errorseeecececesee. 3-23
e3 DevViCe EIrOrS ..viesscesscoeesennscacnssossennnnnees 3-25
«4 HArdware TrapsS ..ieseescescececoseescessoncenennnens 3-26

WWWWwWwWwWwLwwwwwwww
e e o & e o & o o ¢ o o s e @
WOV NNNNOD > WN -

Chapter 4 ULTRIX-11 Maintenance and Administrative Functions ..

|
e

1
S VWO NE B WNN

.1 Checking File System CONSiSteNCY ..vveeeeeneeennnnn.
.2 Correcting File System Inconsistencies ...eeeee.....
«3 Reporting DiSk Free SPACE ..uvveereeeeceeeeeseeennnn
.4
.5

File System Maintenance cecestsescanans

RepOorting DiSK USBGE .vveeruereeenneeeoonennnnneenn.
Checking Disk QUOLAS tuveerennensreenenooceennennens
Backing Up and Restoring File SYStemseeee.....
1 Restoring the ROOt File SYStemM ..uvuieeeeeeeeooeennn..
2 Backing Up File Systems tO TK25 TaQPE ¢vvveeeencnnn..
3 Restoring Files from TK25 BaCKUDS +vveveeeoeennnnnn.
4 Preparing for RC25 File System BackupsSeoeeee...
5 Backing Up RC25 File Systems ceesececcassass 4-12
6
7
8

ol Sl A T Y >
|

Restoring Individual Files from RC25 Backups 4-15

Restoring the System Disk from RC25 Backups 4-16

Restoring the User Disk from RC25 BackupS 4-18
Dynamic Bad BlockS ON MSCP DiSKS vuivveveenonneeenennns 4-22
.1 Correcting Bad Blocks on RX50 DiSKS seveeeeveennnns. 4-23
.2 Correcting Bad Blocks on RD51/RD52 DiSKS «..oov..... 4-24
.3 Correcting Bad Blocks on RC25/RA60/RA80/RA81 Disks . 4-25
onitoring General System ACtivVity .vveeeeeeeeeseeve.. 4-28
reating USer ACCOUNES tuiiveeeenennencseescneannnenees &=29
.1 Editing the /etc/passwd Fileeeeeeeveeneeneens. 4-29
«2 Creating a User HOme DireCtOry ...eeeeeeeeeeeensens. 4-30
«3 Assigning a User PasSWOrdeeeeseescecenoennenne. 4-31

Lol ol el ol S -
Ox

e o o o o o o o
O~NONEWN -

L] L] . . L] L] L] L] L] L] L] L] * L] L] . L]
—5\DKD\D\DLDmmmCDm\J\l\I\I\J\IO\O\O\O\O\O\O\O\O\U’I

Plhohohoh»PP#PPPPP!PPP.D#&PP)P-PPPP»P

. e o o o e o e

0

1
2
3
4

1
2
3
4

L] L]] L L]
N> WN -

Introduction vii

.4 Creating Shell Startup FileS ..ieeeeereecsncncesosnons

Setting Up User File SYStEMS tieecevsoncecoecacecncnass
Sysgen Of User DiSKS .tiveeeseeceevsnscocscscoccsnscns
Qualifying Disk Media@ .e.eeveeseeeccecccececnancncns
Determining the Number of User File Systems
Determining the Size of User File Systems
Determining the Location of User File Systems
Making File SYStemMS ..ieeieeeecncsoesccosscascansnes
Mounting and Unmounting File SYStemMSceeeeeonens
Editing the /etc/fstab File .veeeviecenccnens Ceseaes

Enabling User TerminalsS .ceeeeeseesesssocccsncocasnces
Configuring Communications Device Drivers
Creating Communications Interface Special Files
Verifying TTY StruUCLtUIES tiveveeeseocsocacsccnsnnnns
Editing the /etc/ttytype File .uiiieeeeeeeeccncceennn
Editing the /etc/ttys File ..cieeerececcenne ceteaeas

Setting Up the CU FACIlty teveeeecoccooccccoancncocnsse
Setting Up the cu Software ...eceeeeeees cesessassans
Selecting the cu Hardwareceeeeese cecreccesnanas
Connecting the cu Hardwarecececececcceccccscess
Verifying cu Operationsceeeceeeces cesecssccsnan

Setting Up tip CONNECLIiONS tivieeeeseseeeneroasennnsns
Setting Up the tip Softwareccceeeeeens cesssaas
Selecting the tip Hardwarececeeeeee cesseaassens
Connecting the tip Hardare ...ecececececccscoccccces
Verifying tip Connections ...eeeeeeececceseoscsnanns

Installing the UUCD FACility tvececeseeccconnnone ceene

Chapter 5 ULTRIX-11 Operator ServicCeseeeeee. cestessescnans

. e e o o * o L]
PRI U G e s S e e)
] * o o L] o e

oo ol

NOAOTExWN -

Running the opser Program treessssscssansan oo
Determining Who is Currently Logged IN teveeeenvooes
Shutting Down Multiuser MOAEeeceeeececccccaconca
Checking File System CONSiSteNCY ...eeeeeeeees cesees
Backing Up File SYStemMS .uicvececsccsccncscncacssonas
Escaping to the Shellceieecenceoscrocsocscsosncs
Restarting Multiuser Modecceeeeeecsse cessesses
Halting the ProCeSSOr ...iveresecscsnscscassassssesnes

Chapter 6 ULTRIX-11 Text Overlay Schemecieeececccceccaccns

6.1

Why Program OverlaYS? oooooooooo ® 8 00 0000000000000 0000

6.2 What Should Go into an Overlay? cecsessesessesns
6.3 How DO You Create OVEerlayS? .eeeeeeecceccceccnncs ceeae

6.3
6.4
6.5

.1

Creating an Overlaid Version of yacC ...eevee.. ceeens
TheCStack Frame ® 9 0 & 0 2 0 0 0 0 O 08 S PO SN T O OSSO OO eSO N
Overlaid Programs and ThUNKS cueeeceesceccccccaceaconns

Chapter 7 ULTRIX-11 User-Mode System Exerciser Package

7.1

Running the System Exerciser Control Program

4-34
4-35
4-36
4-37
4-39
4-39
4-39
4-39
4-40
4-40
4-43
4-43
4-44
4-45
4-45
4-47
4-47
4-47
4-48
4-49
4-50

|
-

[[
NI WWN

oo, n
!

viii Introduction

Creating Exerciser RUN SCriptS vui.eeeeeceeesceeceeeenss
Running Exerciser SCriptsS c.ieeeeeceeeeeececeenoeeees
Monitoring Operationseeeeeeeeeececeoccennsneees
Stopping EXercisSer SCripPtsS vieieeeeesseeeecocceonees
Interpreting the Results of an Exerciser RUN
EXerciser MOAULeS .t.iuieivererteeeeeeeeeeneennnnannoeeens
Communications Device EXerCiSereeeeceecccoceeses
CPU EX@ICLSEI teeeeeenososesssocecasseenosansnsoesas
DiSK EXErCiSerS tiveieeeeeseeeeeeeeeessnsoennsnnennes
Floating Point EXerCiSer ..uvieeeeeeeeesccocenncennes
Line Printer EXerCiSer ..iuiieeeeeeeesocsssoonceennns
MemOry EXeIrCiSer ..iuiiiirieeoeeeeeeaoeanoenaonannness
TAPE EXerCiSerS tuueiuiuiieeeeeessoonncnnnneenoannsnnas
Exerciser OptionSeviieieereeeeeennnosssnnaneeeees 71-26
“D OPLiON Lt ittt iiitttetttecetttttecanannnnnees T1-26
~C OPLION tiuitereeesosssssessosaeeneessosacsansneees 1-26
~Q OPLION tiiierreesessosoosccencenasansocossssnneee 7-27
—€ OPLION tiiiieirenneesooeooanennnessosnnasscnneees 727
e) <) o) P ¥
“h Option ...ttt et ettt nenea.. T-28
o S <3 e) P a0
=1 OPLION tiiiiitttretittecocecannennnsnccanenaeeees 7-29
e 1T < 3 ¥) ¢ B 2 2
"N OPtiON ..iiuuueieererseseccannscccsssennnsonnseenee 730
P OPLION L.ttiiiieitiiiienseeenenceneescneenneanenss 7-30
=S OPLION tiiiieererennnenoeonsesnenssocsssanneneess T=31
U OPtiON t.iiiiiiiiiitttetteeeitittensoeccccnncceess 731
=W OPtION tiiiiiiiiitt ittt nsencnncnccnnnes T-31
=X OPLiON ..tiitiiiiiitineeooocneeenenaeossaneaneees 7T-32
NA-0f-PasSS MESSAGES .uuteeeeeeenereensssssassssceenss 7-33

(] . . L]
B WN
1

[}
NN @ aaa VO JdO

N2 ODWNOO

e o o o o
NN WA -
|

NN NNNNNNNNNNS
I

e o o e o o e o o e o o e o
. o

N BB R PR PR ERRERRRRPRPLWWWWWWWWN D
L) L] . . . L] L] o o
A A A A VOO WN -

HOSWND-20

NNNSNSNSNSNSNNSNSNNSNNNNNNNNNNNNN NN

Chapter 8 ULTRIX-11 Error LOGQEer . eeveeeeeooeeasoeoeensnesess

1
-_

OpPerating ProCedUIeS .uuieeeeeeeeeoneeensenenoenseeess
.1 Enabling and Disabling Error LOGging ...eeeeeeeeon..
.2 Saving the Error LOG CONteNtS veseeeeeeeeeceoossesnss
.3 Initializing the Error LOG File .t.iueeeeeeeeoeennnnn.
.4 Printing the Size Of the Error LOG ...eeeeeececceeess

ErrOr MESSAQ0ES vt eeoeeoanosoesnaneasscesecssssssss
«1 Error Log File - BloCKS USEA ..vviveereoceoooonsenss
¢2 MISSED ERRORS 4t tttveuoeeaneneesoneoeancnssonnenssens
.3 ERROR LOG DEVICE B T T T T T
4 elc: bad error record t.ieeiieeeeeeececcececceceeees
.5
.6
.7

€lc: error 1og full ...iieieeineeneeneeeeoceanonnenns
= o of -2 Lo B - o o)
BlC: Write EIrOr t.iiiiiieeeeeneneneneeennnnoononnens
Printing Error LOG ReEPOIELS vt eeueeeesoeeenoeesenennn
Summary and Full Error Reports

® 8 0 0 00000000 000000 s e

1

2 Error Reports from Saved Error Log File ...eeeeee...
3 Error RepOIrtS DY ErrOr TYDPEe ueeseeceecocoeesennenss
4 Error Reports for Hard and Soft Errorsceeoeeo...
5
6

Error Reports by Date and TiMeveeeeeecoceceesss
Multiple options0..‘.'....l....'..l......'

00 0 00 0o 00 00 OO OO O 00 CO0 00 0O 0O 00 OO0 OO0 OO 0O OO

L) L] L] L3 L] L[] . L] L] L] . L] L] L3 . .

00 00 00 00 CO 00 OO 00 00 OO0 00 OO 0O 0O 00 00 0O OO O O (o]
|

S 2 WSO E R RWNDWNOND

oo

Sa

00 00 0O 00 0 00 OO OO B
L[] L) L[] L] [] . L] . L[] .
P N N N N Y Y
L) L] . . L] L] L] . .
WONAU P WN -

Chapter 9 ULTRIX-11 Crash Dump Analysis Facilityccec....

mple Error Reports ...cecesese
Error Records —- Common Header
Block I/0 Device Error Record .
Memory Parity Recordc..

RX50/RD51/RD52/RA60/RA80/RA81/RC25 Disk Error Record

Shutdown Record ..c.cececeoceses
Startup Recordeceeecenscss

Introduction ix

@ @ 9 0 00 0600 00500 0060000000

006 0000 00 000008000000

® 8 6 060 0066060600050 008000000

© 8 0 0 00 00 e 9 0 000008

® 00 0 0 9 0 000 0000000000 0

Stray Interrupt Recordcceeeeececees cessssssaess
Stray Vector Record ® @ @ 9 0 &6 6 ¢ & 0 0 06 0 0 0 ® 6 6 0 06 & 5 0 & 0 8 8 0 0 0
Time Change Recordcececeees Cesessesesccssesoens

9.1 Checking the Console Switch Display Register
9.2 Gathering System Status Information cesecscvses

Ma

Co

Us

a2WoOo~NoOVO P WN -

VOWVWVWVWVLWOVWVOLOVWVWOLWWOWWOWWOWOW

0
Us

king an ULTRIX-11 Crash Dump ..
Writing a Crash Dump to Tape ..

e o o 00 00 € e 00 008 00008000

© 060 8 ¢ 0 00 0000000000 o o0

Writing a Crash Dump to the System Disk
Writing a Crash Dump to RX50 Diskettesccc0cenn

pying the Crash Dump to a Core Filecc0cccnnnn .

Using the ccd Programe..
Saving Core FileS ...cveeeeccns
ing the cda Programceceee0
Common Header MeSSage .cceeeeee

_boption ooooo e e s e s 0000000 * o e e

@ OptioN .iieeeeesecccocnnence
-g Option ...ieveeeecrencananns
-m Option cesaaees ceesne
-p Option ...ceeeeeecne ceesaees
-q Option ...ieeeeceocns ceesans
-r Option cessesassesacccse

_t Option s 060 0606000000000 000000000

_uoption ® © & 9 6 0 0 & 0 0 0 s 20 e 0 ¢ & 0 o o
ing the adb Programcecees

Chapter 10 ULTRIX-11 Error Messages

10.1 System Message LOG c.eeeecsaans

10.1.1

10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8
10.2.9
10.2.10
10.2.11

ooooo ® e e e 00 00 000000 0

® 8 56 0 0 08 050 0 00000000000 000

Printing the System Message Log File

10.2 PanicC MeSSagesS .c.ecececceccsscns D ceenn
panic: alloC ...cieeeeecrtnnanas ceseescesannan cees
panic: blkdev seesscesssesssnse cerececasenan
panic: buffers coasnssas cecorncsnessesenas
panic: bunhash cesesssascsassnse cesscace
panic: devtab ceesesssessssnnsse ceeescesoee
panic: iinit crcesnaeans cssscasssssassoans .o
panic: init diedcc0000 cesesenes cecessesesee
panic: IO err in SWAp ..cceeeeccorscassssssscsccnns
panic: MSCP cntrl # fatal error: cesecencns
panic: no clockcceevencncnns Ceserecscanoenne .
PANic: NO IMt .vveveeeeencncenonnnnnns csesrecsetsase
PanicC: NO ProCS ..eececcsosonsns Ceecseseseesessesas

10.2.12

8-12
8-12
8-12
8-13
8-14
8-14
8-14
8-15
8-16
8-16

|
—

kaDkD\IO\D\D 0
|
A WoOoOoONNULEN

10-6
10-6
10-7
10-8
10-8

X Introduct

10.2.13
10.2.14
10.2.15
10.2.16
10.2.17
10.2.18
10.2.19
10.2.20
10.2.21
10.2.22
10.2.23
10.2.24
10.2.25
10.2.26

ion

panic: Out of Swap
panic: out of swap
panic: parity
panic: psiqg
panic: psig action
panic: remque ...,
panic: setrun
panic: sleep

space

® 5 0 0 008

® 0 000 00

® e 0 000 0

® 0000000 0000000000000 00

® 000 s er0 0000t s0cee0000s00

00 2000000000000 000000e0s00

panic: Timeout table OVerfloweeeeevennn...

panic: trap

panic: ttyrub
panic: update
panic: wakeup
panic: xfer size .

0 00 00

® e 000 0 0

® o 0 00 00

® o 000 00

10.3 Warning Messagese...

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
10.3.10
10.3.11
10.3.12
10.3.13
10.3.14
10.3.15
10.3.16

® ® 8 0000000000000 0000000000

¢ 0 0000000008000 0000000080

®© 00 000009000000 0000000000

® 0 00000000000 se0ss 000

0 0 000000000000 00000000000

bad block on dev MAJOR/MINOR "......‘......O......
bad count On devMAJOR/MINORQ......“..'...

Bad free count ...

core mapsize exceeded

A R 2K 25 R I I I S N YA A Y S U O

® 0 0000000000000 0000000000

err On dev MAJOR/MINOR'.......'........’..‘..'
iaddress[#] > 2724(#), i number = #, i dev = #

iSSig ® 5 00 00000000

® ® 0 % 0000000000008

Inode table overflow St et e et s e st e e st eneescecee e e

no file0uve.
NO fS teveeeeenne

no space on dev MAJO

out of text

® 0 8 0 0 0

® 0000000 s 0000000000000

® ® e 0000000000000 0000000s80

R/MINOR © 0000000000000 000000000

@ 00000 r 0000 e0 0000 0s00000 00

Out of inodes on dev MAJOR/MINOR ceeetes st etesecces

proc on qo

® e 0 00 00

swap mapsize exceeded ...

?? unit#write Locked ® ¢ 2000000000000 00000000

10.4 Miscellaneous Errors

10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
10.4.7

TABLES

e 0 0 0

® e e s 00 s 0000000000000 00000

® 602000000000 eP L0000 e

M N N N RN

Boot and Stand-alone Program EIrors «..eeeeeeee....
Character I/0 DevicCe EITOIS vueueeeeeeeenonnennnnn..
Jump to Zero and Vector through Location Zero cerae
Looping in Locore in USer MOdeeeeeevevenennn..
Red Zone Stack Violation ..uieeeeiieeeoenoeennnnnnn.
Stray Vector and Stray Interrupt teseseeasssectnnans
Yellow Zone Stack Violation vuieeeeeeeveeeeeennnnn..
10.5 User-Mode Errors

e 0 00 00

® ¢ o0 0000000000000 0ese000000

Table 3-1 ULTRIX-11 Device Mnemonics e eeeceseeessertacccesnsnes
Table 10-1 Registers Printed per Device et ceeeeartaertcecsenenens

FIGURES

Figure 1-1
Figure 6-1

File System Layout

Overlaid Process

® o 00000

® & 2 0046500000000 00000000000

® % 0000000000000 0000000

Figure 10-1 Panic Trap Error Stack Frame Cetsereecccrtscanrtaann

Figure 10-2

Sample adb Session

® 8 00 0000000000000 00000000s

10-8

10-8

10-8

10-9

10-9

10-9

10-9

10-9

10-10
10-10
10-12
10-12
10-13
10-13
10-14
10-14
10-14
10-14
10-15
10-15
10-16
10-16
10-17
10-17
10-17
10-17
10-18
10-18
10-18
10-18
10-19
10-20
10-20
10-20
10-21
10-21
10-22
10-22
10-23
10-24

3-5
10-19

1-4
6-3
10-12
10-25

Appendixes

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

mQammEonw»>

Introduction xi

Sysgen Program Exampleccccecenncccccccccccnns
Sysx Program EXamplecceecceccccescscnccsccccns
ULTRIX-11 Device Names and Major Device Numbers
Disk Logical Partition Sizesceeevocecccccacanns
Opser Program EXample ...ccecececcceccnccccscsccccces
UDAS0/KLESI/RUX1/RQDX1 - MSCP Error Codes ...ccceceee
Rabads Program EXample ...ccceccsocsscccccccccccancs
ULTRIX-11 User Device Driver Commentary cccececesses

:EC)"]EI?OCUIP

xii Introduction

Introduction: ULTRIX-11 Documentation

The documentation for the ULTRIX-11 operating system is
divided into two sets. The first set, user-level documenta-
~tion, consists of:

ULTRIX-11 Programmer's Manual, Volume 1
ULTRIX-11 Programmer's Manual, Volume 2A
ULTRIX-11 Programmer's Manual, Volume 2B

00O

The second set, system-level documentation, consists of:
o ULTRIX-11 Software Technical Description

o ULTRIX-11 Installation Guide

o ULTRIX-11 System Management Guide

ULTRIX-11 System Management Guide

This document assumes the reader has a basic understanding
both of the UNIX operating system and of the differences
between the UNIX Time-Sharing System, Seventh Edition and
the ULTRIX-11 software. If you do not have such understand-
ings, you should read the ULTRIX-11 Software Technical

Description and the following documents from the ULTRIX-11
Programmer's Manuals:

UNIX for Beginners - Second Edition
The UNIX Time-Sharing System

An Introduction to the UNIX Shell
The UNIX I/O System

UNIX Implementation

0O00O0O

*UNIX 1s a trademark of AT&T Bell Laboratories

Chapter 1

ULTRIX-11 I/0 System

To administer an ULTRIX-11 system, the system manager should
have an understanding of how the ULTRIX-11 I/0 system works
and how the operating system communicates with devices. As
system manager, you should read this chapter first and then
read the remaining chapters as the need arises.

The remaining sections of this chapter discuss:

I/0 system calls

ULTRIX-11 terminology

Logical partitioning of disks

Logical device names and special files
Disk unit numbers

1-2 System Overview

1.1 I/0 System Calls

The ULTRIX-11 operating system uses devices for:

° Loading programs
° Swapping process images
e Manipulating files

In addition, the ULTRIX-11 operating system lets user-level
programs use devices for accessing files. In performing
I/0, a user-level program uses system calls:

e close() - Close files

° creat() - Create and open files for writing

e lseek() - Position file access pointer

e open() - Open existing file for reading/writing
) read() - Read data from an open file

e write() - Write data to an open file

System Overview 1-3

1.2 ULTRIX-11 Terminology

The following terms relate to ULTRIX-11 I/O operations and
are used throughout this manual.

1.2.1 ULTRIX-11 Kernel

The ULTRIX-11 kernel is the memory-resident portion of the
system that schedules processes, services system calls,
maintains the file systems, and interacts directly with the
system hardware.

1.2.2 File System

To the ULTRIX-11 kernel, a file system is a 512-byte block
structure that is imposed on a disk or disk partition. This
disk-resident structure lets the ULTRIX-11 kernel store and
access files. Essentially, a file system can be divided into
four regions:

° Block 0 is the boot block. On the root file system, the
boot block contains the primary boot program. On non-
bootable file systems, the boot block usually is unused.

For further information, read Section 3.1, The Boot Se-
quence.

° Block 1 is the superblock. On each file system, the su-
perblock contains the parameters that define the physi-
cal structure of that file system. For example, the su-
perblock defines the size of the file system as well as
the starting and ending block addresses of the file sys-
tem, the 1inode 1list (ilist), the free inode list, and
the free block list.

e Block 2 through block n is the ilist. On each file sys-
tem, the ilist is a series of 64-byte structures called
inodes. Both the number of blocks allocated to and the
number of 1inodes contained in the ilist varies by the
size of the file system. Each allocated inode contains
the parameters that define a directory, a special file,
or a data file in that file system.

° Block n+1 through the last block in the file system are
the free data blocks. On each file system, blocks are
allocated as needed to directories and data files from
the chained free list, a series of blocks that each con-
tain the addresses of 100 free blocks.

Figure 1-1 illustrates the 4-region file system layout.

1-4 System Overview

Start | End

Ilist |

Free | Free | |
Block | Block | | Block
[~

block
Figure 1-1 File System Layout

For further information, read filsys(5) in the ULTRIX-11
Programmer's Manual , Volume 1.

1.2.3 Single-User Mode

During single-user mode, the ULTRIX-11 system runs with only
the root file system mounted and with the superuser account
active (running /bin/sh) at the console. No other terminals
are enabled, and no other login accounts are active.

Because the login command was not invoked, however, the nor-
mal user environment was not fully created for the superuser
account., Specifically, the HOME, TERM, SHELL, and USER
variables have not been set. Under certain circumstances,
this can cause unexpected errors. For example, errors occur
when using either the cd command without specifying a direc-
tory or the vi command at the console terminal.

1.2.4 Multiuser Mode

When multiuser mode is invoked, the ULTRIX-11 system
automatically reads the multiuser start-up file, /etc/rc.
This file is a shell script that lists those commands that,
when executed, prepare the system for time sharing. The
following provides a line-by-line explanation of the /etc/rc
file:

Sets default system-level PATH shell variable
Removes the /etc/mtab file (mount table)
Initializes the /etc/utmp file

Mounts all file systems listed in /etc/fstab
Removes the login lock file

Enables system accounting (optional)

Cleans up /usr/tmp

Preserves ex and vi temporary files (if any)
Cleans up /tmp

Removes all tip and uucp lock files

Invokes the update command

Invokes the cron command

Enables system error logging

Displays the size of the error log file (optional)
Enables terminals

Restarts the line printer spooler (if interrupted)

When multiuser mode is restarted using the opser command,
the ULTRIX-11 system automatically invokes the multiuser

System Overview 1-5

restart file, /opr/restart. This file also is a shell
script that 1lists those commands that, when executed,
prepare the system for time-sharing. The following provides
a line-by-line explanation of the /opr/restart file:

Removes the /etc/mtab file (mount table)

Mounts all file systems listed in /etc/fstab
Enables system accounting (optional)

Cleans up /usr/tmp

Cleans up /tmp

Removes all tip and uucp lock files

Enables system error logging

Displays the size of the error log file (optional)
Invokes the cron command

Invokes the update command

Removes the login lock file

Restarts the line printer spooler (if interrupted)
Enables terminals

For further information, read Chapter 3, ULTRIX-11 Boot Pro-
cedures, Section 5.1.6, Restarting Multiuser Mode, as well
as cron(8) and update(8) in the ULTRIX-11 Programmer's
Manual, Volume 1.

1.2.5 Mounting File Systems

Mounting a file system creates a logical association (link)
between that file system and the directory on which it is
mounted. Without this logical link, the system and users
could not access data from the file system.

You can mount a file system either on an empty directory or
on one that contains existing entries for files. When you
mount a file system on a directory that contains existing
entries, however, you make the corresponding files inacces-
sible. While the files in the mounted file system become
accessible, the previously existing files logically disap-
pear. When you unmount the file system, the previously
existing files again become accessible.

When you create files in a directory on which a file system
is mounted, those files logically exist in the root direc-
tory of the mounted file system. They do not exist in the
directory on which the file system is mounted.

1.2.6 File

To the average user, a file 1is a collection of related
information. To the user-level program that manipulates
this information, a file is a contiguous stream of Dytes.

To the ULTRIX-11 kernel, a file is a series of 512-byte
blocks.

The user-level program that creates a file determines how

1-6 System Overview

its data is organized. The ULTRIX-11 system simply stores
this data as a contiguous string of bytes, which it accesses
in 512-byte blocks. A user-level program accesses a file
with an access pointer set to the byte address by using the
lseek() system call. For further information, read lseek(2)
in the ULTRIX-11 Programmer's Manual, Volume 1.

1.2.7 Special File

A special file is an entry in the /dev directory that the
ULTRIX-11 system uses to access a confiqured I/0 device.
Each configured device has at least one associated special
file. When a wuser-level process accesses a special file,
the system activates the associated device. For example,
when a wuser-level process writes data to /dev/lp (line
printer spooler), this data is printed on the system line
printer.

1.2.8 Directory

A directory is a file that contains a 16-byte entry for
every file, special file, and directory assigned to it.
Essentially, the directories in a file system logically
organize it into groups of related files and give it its
tree structure. Each directory entry contains:

e Inumber (2 bytes)
e File name (14-byte maximum)

The first two entries in every directory (. and ..) are spe-
cial names. The entry for . lists the inumber of the direc-
tory itself. The entry for .. lists the inumber of the
dire?tory in which its own entry is contained (parent direc-
tory).

1.2.9 Inumber

An inumber is an inode index number. Although a user speci-
fies a file name when accessing a file, the system automati-
cally translates that name to the corresponding inumber and
uses it to access the appropriate inode.

1.2.10 Inode
An inode is a 64-byte data structure that contains the

parameters that define a file, special file, or directory.
Each inode lists:

System Overview 1-7

Type (reqular file, special file, or directory)
Mode (access permissions)

Owner (userlID)

Group (groupID)

Size (in bytes)

Block addresses (directory and regular file)
Major/minor numbers (special file)

Last time accessed

Last time modified

For further information, read filsys(5) in the ULTRIX-11
Programmer's Manual , Volume 1.

1.2.11 File Mode Settings

Regardless of the type, each inode (file) has nine permis-
sion bits (three sets) which the ULTRIX-11 operating system
uses in determining what access permissions (mode) apply for
a given user. The first set determines read, write, and
execute permission for the file's owner. The second set
determines read, write, and execute permission for all group
members. The last set determines read, write, and execute
permission for all other users.

When a user attempts to access a directory, special file, or
data file, the ULTRIX-11 system first opens the appropriate
inode and compares the user's ID number with the wuserID
listed in the 1inode. If these userIDs match, the system
uses the first set of permission bits and grants "owner"
access. If they do not match, the system then compares the
user's grouplID with the groupID listed in the 1inode. If
these groupIDs match, the system uses the second set of bits
and grants "group" access. If neither userIDs nor grouplDs
match, the system defaults to the third set of bits and
grants "other" access.

1.2.1

Directory Mode Settings

Although each directory inode has the standard nine permis-
sion bits, the ULTRIX-11 system uses them differently than
those for special files or data files. Each read bit speci-
fies permission to list the contents (entries) of the direc-
tory. Each write bit specifies permission to <create an
entry in the directory. Each execute bit specifies permis-
sion to search for or access an inumber from an entry in the
directory.

1.2.13 UserlID

A userID is the unique number by which the ULTRIX-11 kernel
identifies a user's processes and determines owner access
permission to files. Although a user specifies a login name
when logging 1in, the system automatically translates this

1-8 System Overview

name to the appropriate userID.

1.2.14 GrouplD

A grouplID is the identification number by which the ULTRIX-
11 kernel determines group access permission to files. In
addition to translating the login name to a wuserID during
the login process, the system establishes the user's
grouplD,

1.2.1

Block 1/0 Mode

In block (buffered) I/0 mode, the ULTRIX-11 kernel uses the
I/0 buffer cache to transfer data between a user process and
a device. Normally, the ULTRIX-11 kernel wuses block 1I/0
mode whenever it accesses files.

In block I/0 mode, the user-level process opens the desired
file and specifies the byte offset from the start of the
file and the number of bytes that are to be transferred.
The system then converts the byte offset into a block number
and attempts to locate that block in the buffer cache. If
that block is not already in the buffer cache, the system
loads it in from disk.

On a read operation, the system passes the requested number
of bytes from the buffer cache to the user-level process's
buffer. Anticipating that this process will read the next
block, the system automatically initiates a read on the next
block. This feature is called read ahead.

On a write operation, the system passes the desired number
of Dbytes from the user-level process's buffer to the buffer
cache. In anticipation of further writes to the same block,
the system does not write that block out to the file system
immediately. Instead, the block remains in the buffer cache
until the ULTRIX-11 kernel performs a sync or flushes that
buffer. This is known as delayed write or write behind.

NOTE
To prevent file system inconsistencies,

the system writes out immediately all
blocks that contain inode information.

During normal operations, the ULTRIX-11 system flushes the
buffer cache whenever one of the following occurs:

System Overview 1-9

° The update program invokes the sync system call--
normally every 30 seconds.

° The system requires that buffer for another 1/0
transfer.

™ A user executes the sync command.

For further information, read sync(1M), sync(2), and
update(8) in the ULTRIX-11 Programmer's Manual, Volume 1.

Although it improves throughput, block (buffered) I/0 can
result in file system inconsistencies. For example, when
the system halts unexpectedly (crashes), the blocks that
remain in the buffer cache may not be completely written out
to disk. When this occurs, the information the system uses
to define and access the file system may not be consistent
with the file system's current status on disk.

For further information, read Section 4.1.1, Checking File
System Consistency, and Section 4.1.2, Correcting File Sys-
tem Inconsistencies.

1.2.16 Character I/0 Mode

In character (raw) I/0 mode, the ULTRIX-11 kernel transfers
data directly from the device to the user-level process's
buffer. Character I/0 transfers begin on a block boundary
and have a length that is a multiple of 512 bytes. Nor-
mally, the ULTRIX-11 kernel uses character I1/0 mode to
transfer large amounts of data directly to or from devices
without concern for any file structure. For example, charac-
ter I/0 mode 1is wused for swapping and for file system
maintenance.

1.2.1

Major/Minor Device Numbers

When accessing a configured device, the ULTRIX-11 system
determines the 1initial mapping information in the same way
that it does for a file or directory. In this case, the
system searches the /dev directory for an entry with the
designated name and uses the listed inumber to access the
appropriate inode.

Once reading the appropriate inode, the ULTRIX-11 kernel
uses the major and minor device numbers that are listed in
place of block addresses to activate that device. The major
number specifies the device controller and associates the
controller with the appropriate software device driver.
Within the ULTRIX-11 system, devices are classified either
as block-mode devices (disks or tapes) or as character-mode
devices (line printers and communications multiplexers).

1-10 System Overview

Block-mode devices (disks and tapes) also are configured as
character-mode devices. They, therefore, have two entries
in the /dev directory: one for block-mode access and one for
character-mode access. By contrast, character-mode devices
have only one entry in the /dev directory.

For disks, the minor number indicates the device unit number
and specifies other device-dependent information. For small
disks, the minor number indicates the physical unit number.
For large disks, the minor number indicates the disk parti-
tion, unit number, and, in the case of MSCP disks, the con-
troller number:

° Bits 0-2 indicate the partition
° Bits 3-5 indicate the unit number
° Bits 6-7 indicate the MSCP controller number (0-2)

NOTE

The ULTRIX-11 software divides the
large disks into eight partitions
and accesses each partition as a
pseudodisk. The size and location
of the pseudodisks are determined by
a sizes table in the device driver.
For further information, read Sec-
tion 1.3, Logical Partitioning of
Disks, and Appendix D, Disk Logical
Partition Sizes.

For tapes, how the minor number is used is device dependent.

TE16, TU16, and TU77 are dual density tapes and use the
minor number as follows:

o Bits 0-5 indicate the unit number

® Bit 6 indicates the density: 0 (1600 bpi) or 1 (800 bpi)
™ Bit 7 indicates no rewind on close

TE10, TS03, and TU10 are single density tapes (800 bpi) and
use the minor number as follows:

° Bits 0-2 indicate the unit number
™ Bits 3-6 are unused
° Bit 7 indicates no rewind on close

TK25, TS11, TSV05, and TU80 are single density tapes (1600
bpi) and use the minor number as follows:

® Bits 0-6 are unused (unit 0 only)
° Bit 7 indicates no rewind

The no-rewind feature lets files be appended to the end of a

System Overview 1-11

previously written tape.

For a list of ULTRIX-11 devices and their major device

numbers, read Appendix C, ULTRIX-11 Device Names and Major
Device Numbers.

1-12 System Overview

1.3 Logical Partitioning of Disks

The ULTRIX-11 system accesses partitioned or nonpartitioned
disks:

Partitioned Nonpartitioned
RK06/7 RX50
RP02/3 RX02
RM02/3 RK05
RMO5 ML 11
RP04/5/6
RA60
RA80/RA81
RC25
RLO1/2
RD51/RD52

For nonpartitioned disks, the system accesses each unit as a
single file system. For the larger disks, each physical
unit is partitioned into eight logical subunits called pseu-
dodisks. The ULTRIX-11 kernel accesses each pseudodisk as a
separate logical file system. For larger disks, therefore,
each physical wunit can contain multiple file systems. The
sizes table in each disk driver determines the size and
location of each disk partition.

A typical partition scheme allocates three small partitions
for system use, one or more large partitions for user file
systems, and one partition to let the entire disk be
accessed as a single logical file system. For further
information about disk partitions, read Appendix D, Disk
Logical Partition Sizes.

NOTE

Logical disk partitions may overlap. As
system manager, you must be sure not to
place file systems on overlapping parti-
tions. For further information on
RA60/RA80/RA81, RC25, and RD51/RD52 disk
partitions, read rasize(1M) in the
ULTRIX-11 Programmer's Manual, Volume 1.

System Overview 1-13

1.4 Logical Device Names and Special Files

Although a user accesses a device by its special file name,
the ULTRIX-11 kernel activates that device by its major and
minor device numbers. The special file maps a logical name
to an inumber which the system uses to access the appropri-
ate inode and determine the major/minor device numbers and
the I/0 mode.

The ULTRIX-11 kernel uses either block (buffered) or charac-
ter (raw) mode special files. Because all block-mode dev-
ices usually are also confiqured as character-mode devices,

you can access disks and tapes with either block I/0 mode or
character 1/0 mode. By contrast, since they are configured
as character-mode special files, you can access line

printers and communications devices only with character 1I/0
mode.

To summarize, each special file has these attributes:

° A logical device name
° Major and minor device numbers
) Block or character I/0 mode

NOTE
To list the attributes of the configured
special files, use the ls command with

the -1 option specified on the /dev
directory.

1.4.1 Creating Special Files

To create a special file, use one of the following commands:

/etc/csf Use this command to create or remove all spe-
cial files for a physical unit on a device.
For further information, read csf(1M) in the
ULTRIX-11 Programmer's Manual, Volume 1.

/etc/mknod Use this command to create a single special

file. For further information, read mknod(1M)
in the ULTRIX-11 Programmer's Manual, Volume 1.

/dev/msf Use this shell script to create or remove spe-
cial files when specifying a generic device
name and unit number. DIGITAL recommends that
you use this script to create special files.
For further information, read Section 2.6,
Updating the Device Support Files.

When creating special files, you can assign arbitrary

1-14 System Overview

logical device names. To provide a consistent I/0 inter-
face, however, you should use the ULTRIX-11 device naming
convention. When you use the msf script and specify a gen-
eric device name, the system automatically assigns the
appropriate ULTRIX-11 mnemonic to the device special file.
For a list of ULTRIX-11 device mnemonics, read Appendix C,
ULTRIX-11 Device Names and Major Device Numbers.

The next five sections discuss the ULTRIX-11 special file
names assigned for:

Partitioned disks
Nonpartitioned disks
Magnetic tape
Terminals
Miscellaneous devices

1.4.2 Partitioned Disks

For the large disks, each physical unit is partitioned into
a maximum eight logical subunits. For partitioned disks,
special file names are assigned in the format:

/dev/xxnp (block 1/0)
/dev/rxxnp (character 1/0)

XX Indicates the ULTRIX-11 device mnemonic.

r Indicates a character (raw) mode special file.
n Indicates the device unit number.
P Indicates the partition number (0-7).

For further information, read Section 2.6.1, Support Files
for Disks.

The following are examples of a block and character special
file that both access an RP02/3, unit 1, partition O:

/dev/rp10
/dev/rrp10

System Overview

NOTE

You can access RA60, RA80, RA81, RX50,
RC25, RD51, and RD52 disks with the same
software driver. The RA, RC, and RD
disks follow the partitioned disk naming
convention for special files. The RX50
disk uses the nonpartitioned disk spe-
cial file names. The msf command accom-
modates this inconsistency.

1.4.3 Nonpartitioned Disks

For smaller disks, each physical unit 1is accessed as

file

1-15

one

system. For nonpartitioned disks, special file names
are assigned in the format:

/dev/xxn (block 1/0)

/dev/rxxn (character 1/0)
Indicates the ULTRIX-11 device mnemonic.
Indicates a character (raw) mode special file.

Indicates the device unit number.

The following are examples of a block and character
special file that both access an RK05, unit 0:

1.4.4

/dev/rk0
/dev/rrk0

Magnetic Tapes

For tape, special file names are assigned by density
unit number in the format:

mt

ht

800 bpi 1600 bpi

/dev/mt# /dev/ht# (block 1/0)
/dev/rmt# /dev/rht# (character 1/0)
/dev/nrmt# /dev/nrht# (character 1/0)

Indicates 800 bpi.
Indicates 1600 bpi.

Indicates the device unit number.

mode

and

1-16 System Overview

r Indicates character (raw) I/0 mode.
n Indicates no rewind when the special file is closed.
NOTE

The TM11 operates at 800 bpi and
uses the mt mnemonic only. The
TS11, TSV05, TU80, and TK25 are
1600 bpi and use the ht mnemonic
only. The TM02/3 is dual density
and uses both the mt and ht mnemon-
ic. For example, /dev/rmt0
accesses TM02/3, unit 0 at 800 bpi,
while /dev/rht0 accesses TM02/3,
unit 0 at 1600 bpi.

1.4.5 Terminals

For terminals, special file names are assigned for each com-
munication interface in the format:

/dev/tty##

tty Indicates the terminal mnemonic.
4 Indicates the 2-digit terminal number.

Once created, this special file associates a terminal with a
port on either a multiline interface (for example, DH11) or
a single line interface (for example, DL11). A user-level
process then can access the special file /dev/tty## to
access the control terminal. The file /dev/console refers
to the console terminal.

For further information about general terminal interfaces,
read tty(4) in the ULTRIX-11 Programmer's Manual, Volume 1.
For a description of how tty special files are created, read
Section 2.6.3, Support Files for TTY Interfaces.

1.4.6 Miscellaneous Devices

To create special files for the miscellaneous devices, use
the csf or msf command. The following lists the miscellane-
ous special files:

/dev/errlog

/dev/kmem
/dev/1lp
/dev/mem

/dev/null

/dev/swap

System Overview 1-17

Refers to the error log area on the system
disk. The ULTRIX-11 error logger creates and
uses this special file. For further informa-
tion, read Chapter 8, ULTRIX-11 Error Logger.

Refers to kernel mapped memory. You can use
this special file to access kernel memory.

Refers to the main 1line printer. The lpr
command uses this special file.

Refers to physical memory. You can use this
special file to access physical memory.

Refers to the system null file. When you
write to this special file, your data is dis-
carded. When you read this special file, you
immediately receive an end-of-file.

Refers to the swap area on the system disk.
This file lets system commands (for example,
ps) access the swap area without having to
know where it is.

For further information about these special files, read Sec-
tion 4, Special Files, in the ULTRIX-11 Programmer's Manual,

‘Volume 1.

1-18 System Overview

1.5 Disk Unit Numbers

For most disks, the wunit number 1logical assignment plug
(LAP) specifies the device unit number. The following are
guidelines for dealing with disk wunit number assignment
plugs.

e Before booting the operating system, determine the
desired unit number for each disk and insert the correct
LAP into the disk unit.

® Before changing a disk unit number, make sure all file
systems on that disk are unmounted.

° For the RL0O1 and RL02 disks, the first access of the
RL11 controller determines the status of each unit.
Subsequent changes cannot be detected. 1If you turn off
the power from a unit or remove the LAP once the status
of a unit is determined, that unit is considered nonex-
istent. Interchanging unit numbers between an RLO1 and
RLO2 disk causes the driver to miscalculate the size of
each disk. When using RL01/02 disks, follow the first
guideline carefully.

e Disk unit number assignments do not have to be contigu-
ous. The number of wunits that you specify at sysgen
time must be one greater than the highest wunit number
assigned. For example, if you assign unit numbers 0, 2,
and 3, you then should configure the system for four
disk units.

° Do not duplicate unit numbers for dual access disks.
For example, four disks connected to one controller
through port A and to another controller through port B
must each have a unique unit number.

NOTE
DIGITAL recommends that you not

change a disk's unit number while
the operating system is running.

1.5.1 RD51/RD52/RX50 Unit Numbers

The RD51 and RD52 Winchester disks and the RX50 diskettes do
not use unit number select plugs. The RQDX1 controller
determines the unit number of each disk during initializa-
tion. The ULTRIX-11 system supports two Micro/PDP-11 disk
confiqurations. The basic configuration uses a single Win-
chester disk as unit 0 and the RX50 disks as units 1 and 2,
respectively. The alternate configuration uses a second
Winchester disk as unit 1 and changes the RX50 unit numbers

System Overview 1-19

to 2 and 3.

Because unit number plugs are not used, the physical loca-
tion of each wunit determines the Winchester and RX50 unit
numbers. A Winchester disk (unit 0) is always mounted in
the basic Micro/PDP-11 package. A second Winchester disk
(unit 1) is mounted external to the basic package.

The Micro/PDP-11 may be either rack mounted or packaged as a
free-standing unit. When rack mounted, the Micro/PDP-11 is
horizontal, and the lower numbered RX50 unit 1is the top
drive. when free standing, the Micro/PDP-11 is vertical,
and the lower numbered RX50 unit is on the left.

Chapter 2

ULTRIX-11 System Generation

During an ULTRIX-11 system generation, you tailor the
ULTRIX-11 kernel to your:

Processor type

System disk

Peripheral devices

Amount and type of work to be done

You may generate either a split I and D kernel, for those
processors that have separate Instruction and Data space, or
a nonsplit I and D kernel, for those that do not. For a
detailed description of the kernel and processor types that
have split Instruction and Data space, read the ULTRIX-11
Software Technical Description.

You also tailor the ULTRIX-11 kernel for the type of system
disk and peripheral devices used. Then, by adjusting the
values of the system parameters, you tailor the ULTRIX-11
kernel to the number of users it is to support. These sys-
tem parameters determine the process table sizes and various
other internal data structures.

The remaining sections of this chapter discuss the genera-
tion process and the fatal sysgen error messages. An
ULTRIX-11 system generation consists of:

Preparing for system generation
Creating the system configuration file
Making the ULTRIX-11 kernel

Installing the ULTRIX-11 kernel
Updating the device support files

For a sample system generation, read Appendix A, Sysgen Pro-
gram Example.

2-2 System Generation

2.1 Preparing for System Generation

As preparation for an ULTRIX-11 system generation, you
should familiarize yourself with the sysgen program. In
addition, you should gather all the pertinent system
hardware information.

2.1.1 Running the sysgen Program

To run the sysgen program, you first must log in to the sys
account., Once you have logged in, the system prints the
following message and the /bin/sh prompt:

Welcome to the ULTRIX-11 System

$

Then, use the cd command to change directories to /sys/conf.
In response to the shell prompt, type this command sequence:

$ cd conf

Once in the /sys/conf directory, you are ready to run the
sysgen program.

To start the sysgen program running, type:
§ sysgen

Once loaded and running, the sysgen program prints the fol-
lowing messages and a sysgen> prompt:

ULTRIX-11 System Generation Program
For help, type h then press <RETURN>
sysgen>

The sysgen> prompt indicates that the program is ready to
accept your commands.

The sysgen program has an extensive on-line help facility.

The help information is the main source of documentation for

the system generation process. For help information, type:
sysgen> h

The sysgen program then prints:

System Generation 2-3

The "sysgen>" prompt indicates the sysgen program is ready to
accept commands. To execute a command you type the first letter
of the command, then press <RETURN>. Some of the commands will
ask you for additional information, such as a file name. For
more help with a command, type h followed by the command letter
then press <RETURN>. For example, "h c" for the create command.

Command Description

<CTRL/D> Exit from sysgen (backup one question in "c" command).
<CTRL/C> Cancel current command, return to "sysgen>" prompt.
!command Escape to the shell and execute "command".

[c]reate Create an ULTRIX-11 kernel confiquration file.
[r]emove Remove an existing configuration file.

[l]list List names of all existing configuration files.
[plrint Print a configuration file.
[m]ake Make the ULTRIX-11 kernel.

[ilnstall Print instructions for installing the new kernel.
[dlevice List configqurable processors and peripherals.
[slource Compile and archive a source code module (ul.c, etc.).

The sysgen sequence is: use "c" to create the configuration file,
"m" to make the new kernel, and "i" for installation instructions.

2.1.2 Gathering System Information

You also should have all the relevant documentation readily
available., DIGITAL recommends that you have this documenta-
tion available for use:

° System hardware documentation
e ULTRIX-11 Installation Guide
e ULTRIX-11 Software Technical Description

Then, you should gather the system information that 1is
needed to generate your ULTRIX-11 kernel. While doing so,
consider the following and write the information on the sys-
tem configuration worksheet, Appendix G in the ULTRIX-11
Installation Guide:

° Determine your processor type. The most significant
consideration is whether the processor has separate
Instruction and Data space. The ULTRIX-11 software sup-
ports all memory-managed PDP-11 processors from the
PDP-11/23 through the PDP-11/73. The ULTRIX-11
software, however, does not support the LSI-11/03 and
the Personal Computer series. The Micro/PDP-11 uses the
PDP-11/23 or PDP-11/73 processor. If the processor is
not listed as supported by the ULTRIX-11 software techn-
ical description, use the processor type with features
that most closely match those of the processor you are
using. For example, the PDP-11/35 uses processor type
40, the PDP-11/50 uses processor type 45 or 55.

2-4

System Generation

Because the sysgen program assigns disks by controller
type, determine the type of each disk controller present
and the drives that are connected to it. To display a

list of ULTRIX-11 supported controllers and drives, use
the sysgen device command.

Determine the type of each tape controller and tape
drive connected to it.

Determine the type of each communications interface and
the number of units for each interface type.

Determine what peripherals are to be configured into the
system.

If the system is to support any user-written device
drivers, read Section 2,8, Sysgen of User-Written Device
Drivers.

Determine the hardware CSR address and interrupt vector
address of all devices that are to be configured into
the system. Most devices, except communication inter-
faces, have a standard address and vector. The sysgen
program knows the standard address and vector for all
supported devices.

Determine the disk controller and drive where the
ULTRIX-11 root and swap file systems and error log file
are to reside. The sysgen program has standard loca-
tions for these files. The program can also display a
help message to give gquidelines for changing their
placements.

According to the number of users the ULTRIX-11 system is
to support, determine the values of the system parame-
ters. The sysgen program has a standard value for each
parameter. Each standard value is based on an estimated
number of users for each processor type. For guidelines
for changing parameter values, read the help message
text in Appendix A, Sysgen Program Example.

System Generation 2-5

2.2 Creating the System Configuration File

To create the system configuration file, use the sysgen pro-
gram and specify the create command. In response to the
sysgen> prompt, type:

sysgen> ¢

Once the create command begins executing, the sysgen program
first prompts you for a confiqguration file name. To use the
default name (unix), press the <RETURN> key. Then, it
prompts you for information about your system and writes
your responses to this configuration file. You later wuse
this configuration file to make your ULTRIX-11 kernel.

You should respond to each sysgen prompt with the appropri-
ate information gathered earlier (Section 2.1.2). For each
prompt, the sysgen program prints either a default response
or a 1list of possible responses. - To use the default
response to any given prompt, press the <RETURN> key. If
you need further help with any given prompt, type ? and
press the <RETURN> key.

If you have made a mistake when entering information to a
given prompt, press <CTRL/D>. The <CTRL/D> erases all the
information entered for that prompt and backs up to the pre-
vious prompt. You can press <CTRL/D> repeatedly to back up
more than one prompt. As you do so, however, you erase the
information for each prompt.

2-6 System Generation

2.3 Verifying Your Responses

When you have answered all sysgen prompts, you should verify
your responses. To verify the newly created configuration
file, use the sysgen program and specify the print command.
In response to the sysgen> prompt, type:

sysgen> p

This configuration file contains the specifications that
define the necessary information about the system hardware
configuration and parameter values.

The /sys/conf directory contains several prototype confi-
guration files. You can use the sysgen program to:

° List their file names
° Print their contents
° Remove an unwanted file

System Generation 2-7

2.4 Making the ULTRIX-11 Kernel

To make the ULTRIX-11 kernel, use the sysgen program and
specify the make command. In response to the sysgen>
prompt, type:

sysgen> m

Once the make command begins executing, the sysgen program
prompts you for the configquration file name. If you used
the default confiquration file name (unix), you should press
the <RETURN> key. If you used a different configuration
file name, however, you should type that name.

The ULTRIX-11 kernel is produced 1in two phases from ten
files or archives:

c.c Configuration tables

dds.c MSCP data structures

dds.h Disk driver headers

dump.s Crash dump code

ec.c Additional configuration tables
l.s Locore vectors

mch0.s Machine and dump header file
mch.o Machine language assist

LIB1 System library

LIB2 Device driver library

First, the sysgen program calls the mkconf program. The
mkconf program reads the specified configuration file and
creates the c.c, dds.h, 1l.s, and mchO.s files. In addition,
it prints a description of the system configuration. For
further information, read mkconf(1M) in the ULTRIX-11
Programmer's Manual, Volume 1.

Second, the sysgen program executes the makefile 1in the
/sys/conf directory. This makefile first assembles the 1l.s
and dump.s files and compiles the <c¢.c, dds.c, and ec.c
files. Then, to 1link the object files and libraries, the
makefile calls the link editor (1d). For further informa-
tion, read make(1) in the ULTRIX-11 Programmer's Manual,
Volume 1.

As indicated, the sysgen program itself does not make the
kernel. Rather, it calls other programs that do the actual
work. When making the ULTRIX-11 kernel, these programs
display a series of informational messages. The final mes-
sage indicates whether the sysgen was successful. For sam-
ple messages, read Appendix A, Sysgen Program Example.

2-8 System Generation

2.5 Installing the ULTRIX-11 Kernel

To install the ULTRIX-11 kernel, use the sysgen program and
specify the install command. In response to the sysgen>
prompt, type:

sysgen> i

Once the install command begins running, the sysgen program

prints the procedure for installing the new ULTRIX-11 ker-
nel:

Use the following procedure to install the new kernel:

® Type <CTRL/D> to exit from the sysgen program.

e Become superuser (type "su", then enter the root password).
® Move the new kernel to the root (mv unix.os /nunix).

e Type <CTRL/D> twice (to logout), then login to the operator
account. Use the operator services "s" command to shutdown
the system and "halt" command to halt the processor.

® Use the manual boot procedure, described in section 3.4 of
the ULTRIX-11 System Management Guide, to boot the new kernel.
For example, "Boot: rl(0,0)nunix" from an RL0O2 disk.

e Save the o0ld kernel then rename the new kernel "unix".
(mv unix ounix; mv nunix unix; chmod 644 unix)

e Set the date (date command), check the file systems (fsck),
then type <CTRL/D> to enter multi-user mode.

When an ULTRIX-11 kernel is made, the system creates an exe-
cutable file in the /sys/conf directory. This file usually
is given the name of the confiquration file that was used
when making the kernel plus the .os suffix. For example, if
you used the default configuration file name earlier, the
ULTRIX-11 kernel is named unix.os. Because, during normal
operations, several system-level commands look for the file
/unix, your current, running kernel should always be named
unix.

The specific details of a kernel installation are hardware
dependent. For further information, read Section 1.6 in the
ULTRIX-11 Installation Guide.

System Generation 2-9

2.6 Updating the Device Support Files

As the final step in the system generation process, you may
have to update the device support files. The device support
files let the operating system and users access devices.

During your ULTRIX-11 software installation, you created the
device support files for all the devices on your system.
Unless you have installed new devices or changed existing
ones, these files do not need to be updated. 1If you have
installed additional disks or tapes, however, you must
create the device support files for those devices only. If
you have reassigned the terminal numbers (tty##), you should
update the TTY support files for those devices only.

The next five sections discuss the support files that you
must update for each device type. For information about
device support files and their relation to the various
classes of devices, read Chapter 1, ULTRIX-11 I/0O Systenm,

and Chapter 4, ULTRIX-11 Maintenance and Administrative
Functions.

2.6.1 Support Files for Disks

A set of special files must exist in the /dev directory for
each confiqured disk wunit. For further information, read
Section 1.4, Logical Device Names and Special Files.

To create special files for disks, become the superuser (su
command) and change your directory to /dev. Once in the
/dev directory, use the msf script. For disks that are not
connected to a MASSBUS or MSCP disk controller, type this
command sequence:

msf xx n

xx Specifies the generic disk name.
n Specifies the unit number.

For example, to create the special files for an RKO07, unit
3, type:

msf rk07 3
MASSBUS disks (RM02, RM03, RM0S5, RP04, RP05, RP06, and ML11)
can be connected to any one of three RH11/RH70 disk con-
trollers. For disks that are connected to a MASSBUS disk
controller, type this command sequence:

msf xx_cn

2-10 System Generation

xx_c Specifies the generic disk name (xx) and the RH11/RH70
controller number that it 1is ~connected to. The
RH11/RH70 controller numbers are determined by the
order in which they are entered in the sysgen confi-
guration file. Specifically, the first entered is
numbered 0, the second 1, and the third 2. 1If the
disk is connected to the first RH11/RH70 controller,
the controller number (_c) may be omitted.

=

Specifies the unit number.

For example, this command sequence creates the special files
for an RP06, unit 0 on the first RH11/RH70 controller:

msf rp06 0

For example, this command sequence creates the special files
for an RM03, unit 2 on the second RH11/RH70 controller:

msf rm03_1 2

If the system disk is connected to a MASSBUS controller, you
must assign it to the first RH11/RH70 controller. Other-
wise, you can assign MASSBUS disks arbitrarily.

During a sysgen, you also can change the CSR and vector
addresses of each MASSBUS controller. By convention, the
default CSR and vector addresses for the RH11/RH70 controll-
ers are:

RH # Name CSR Vector

first HP 176700 254

second HM 176300 150

third HJ 176400 204
NOTE

When you use the msf command to create
the special files for ML11 disks, four
special files are created for each disk.
Specifically, a block and raw (charac-
ter) special file is created for each
controller type (hp## and rhp##, hm##
and rhm##, or hj## and rhj##). In addi-
tion, a block and character special file
with the names ml# and rml# are created.
These files are links to the appropriate
controller special files.

You can configure your ULTRIX-11 kernel with up to three
MSCP disk controllers, but you must configure only one of

System Generation 2-11

each type. The supported MSCP controllers and disks are:

UDAS0 - RA60/RA80/RA81
KLESI - RC25
RQDX1 - RXS50/RD51/RD52
RUX1 - RX50

For disks that are connected to a MSCP disk controller, type
this command sequence:

msf xx ¢ n

xx ¢ Specifies the generic disk name (xx) and the MSCP con-
troller number that it is connected to. The MSCP con-
troller numbers are determined by the order 1in which
they are entered in the sysgen configuration file.
Specifically, the first entered is numbered 0, the
second 1, and the third 2. If the disk is connected
to the first RH11/RH70 controller, the controller
number (_c) may be omitted.

=

Specifies the unit number.

For example, this command sequence creates the special files
for an RA60D, unit 1 on the first MSCP controller:

#$ msf ra60 1

For example, this command sequence creates the special files
for an RC25, unit 0 on the second MSCP controller:

msf rc25_1 0

The MSCP disk controllers are assigned the same default CSR
and vector address. During a sysgen, you must assign alter-
nate CSR and vector addresses to the second and third con-
troller (if present).

Because several system commands access /etc/fstab for their
default argument lists, you also must update /etc/fstab
after creating special files for disks. The /etc/fstab file
associates each mountable file system with the directory on
which you mount it. The system commands that access
/etc/fstab include the df, fsck, mount, quot, and umount
commands. For further information, read fstab(5) 1in the

ULTRIX-11 Programmer's Manual, Volume 1 and Section 4.6.7,
Mounting and Unmounting File Systems.

2.6.2 Support Files for Magnetic Tape

Like disks, each tape unit requires a set of special files
in the /dev directory. Although some commands (for example,
dump and restor) have default special file names built in,

2-12 System Generation

tape wunits have no other support files. For further infor-

mation, read Section 1.4, Logical Device Names and Special
Files.

To create special files for tapes, become the superuser (su
command) and change directory to /dev. Once in the /dev
directory, use the msf script. In response to the superuser
prompt, type this command sequence:

msf xx n

XX Specifies the generic tape unit name.

n Specifies the unit number.

For example, to create a special file for a TE16, unit zero,
type this command sequence:

msf te16 0

2.6.3 Support Files for TTY Interfaces

Unlike disks and tapes, each terminal requires only one spe-
cial file in the /dev directory. For further information,
read Section 1.4, Logical Device Names and Special Files.

To create a special file for terminals, become the superuser
(su command) and change directory to /dev. Once in the /dev
directory, use the msf script. In response to the superuser
prompt, type this command sequence:

msf xx n tty##

Specifies the generic device name.

o

For KL11 and DL11 interfaces, specifies the number
of wunits. For all other communications interfaces,
specifies the unit number.

tty## For the KL11 and DL11, associates the unit with the
name of the special file for its terminal. For the
multiline interfaces, specifies the terminal special
file name associated with the first line on the
unit. The remaining lines in the multiline inter-
face are assigned sequentially (for example,
tty##+1, tty##+2).

For example, the following sequence of commands creates a
series of TTY special files. The make command with the tty-
clean argument specified removes all existing TTY special
files:

System Generation 2-13

cd /dev

make ttyclean
msf dz11 0 tty00
msf dz11 1 tty08
msf dh11 0 tty16
msf dl11 3 tty32

S Y T

When making KL11 or DL11 special files, count the total
number of KL11 devices (excluding the console) and DL11 dev-
ices. Then, create that number of special files with the
msf command. For example, if you have a single KL11 and two
DL11 devices, the following command sequence assigns the
KL11 to tty32 and the DL11s to tty33 and tty34:

msf dl11 3 tty32

Having created a TTY special file for each terminal, you
also must create the initialization data for each. More
specifically, you must set the local/remote and terminal
characteristics that the system accesses from the /etc/ttys
file. For further information, read Section 4.7.2, Creating
Communications Interface Special Files, and tty(5) in the
ULTRIX-11 Programmer's Manual, Volume 1.

2.6.4 Support Files for Miscellaneous Devices

Like terminals, miscellaneous devices normally require only
one special file in the /dev directory. For further infor-

mation, read Section 1.4, Logical Device Names and Special
Files.

To create a special file for miscellaneous devices, become
the superuser (su command) and change directory to /dev.
Once in the /dev directory, use the msf script. 1In response
to the superuser prompt, type this command sequence:

msf xx n

xx Specifies the generic device name.
n Specifies the unit number.

When ULTRIX-11 does not support multiple units for a speci-
fied device, the unit number is ignored:

msf 1p11 0
msf dn11 1
msf du11 O

For a detailed description of the miscellaneous special
files, read Section 1.4.6, Miscellaneous Devices, and

2-14 System Generation

Section 4, Special Files, of the ULTRIX-11 Programmer's
Manual, Volume 1.

2.6.5 The /dev/swap File

The /dev/swap special file refers to the file system or disk
partition on which the swap area resides. By accessing
/dev/swap, some programs (for example, ps) can access the
swap area without having to know the name of the swap dev-
ice.

If you generate the system with the swap area in the stan-
dard place, you do not need to create or modify the
/dev/swap file. 1If you use a nonstandard placement of the
swap area, however, the sysgen program automatically prints
a warning message to indicate that you must modify the
/dev/swap file.

To modify the /dev/swap file, become the superuser (su com-
mand) and change to the /dev directory. Once in the /dev
directory, use the msf script to create the special file for
the disk partition where the new swap area is to reside.
Then, remove the current swap file and link the special file
for the swap partition to /dev/swap. Finally, change to the
root directory (/) and use the sync command.

The following example lists the sequence of commands for

placing the /dev/swap file on a file system on an ML11, unit
0:

cd /dev

msf ml11 0
rm swap

In ml0 swap
cd /

sync

3 NI

The /dev/swap file is always linked to the block mode spe-
cial file for the swap file system. Do not use the raw spe-
cial file. In this example, ml0 is used instead of rml0.

NOTE

You must modify the /dev/swap file when
the system is in single-user mode only.

System Generation 2-15

2.7 Error Messages

The sysgen program has extensive error checking and can gen-
erate a large number of messages. Usually, the majority of
these messages are self-explanatory and cover basic errors.
The sysgen program checks for and reports when you have:

Entered too many characters on a line
Entered an invalid device or file name
Omitted a required value

No access permission to a file

In addition, the sysgen program prints messages that indi-
cate that a fatal error has occurred. The next five sec-
tions discuss the fatal sysgen error messages.

2.7.1 sysgen: Can't exec fresh copy

After creating a configuration file, the sysgen program uses
the exec() system call to overlay itself. This action is
necessary to reset its internal tables to a known state.
This error message indicates that the exec() system call
failed. When the system prints this error message, it also
indicates the specific hardware or software problem
involved.

2.7.2 Can't make unix from configuration xxxx.o0s!

The sysgen program actually calls other programs to make the
ULTRIX-11 kernel. This error message indicates that one of
these programs encountered an error. When creating the
ULTRIX-11 kernel, the called programs print progress mes-
sages and error messages. These messages normally provide
information that 1is helpful in determining the exact cause
of this error.

2.7.3 FATAL size error xxxx.os should not be installed!

During the last phase of a kernel generation, the sysgen
program checks the size of the newly generated kernel to
ensure that it is within acceptable limits. This message
indicates that the named kernel is too large to run in the
processor's available address space.

This error can occur when you have attempted to configure
too many devices into the system. However, this situation
is unlikely for any reasonable hardware configuration. A
more likely cause is when you run out of kernel data space
due to an inordinate increase in the value of a system
parameter. The sysgen program prints the actual kernel size
and the size limit. Use these values to determine by how
much the kernel size must be decreased. When you reduce a
parameter value by one, the help message for the sysgen "Use
standard system parameters" prompt prints the number of

2-16 System Generation
bytes you save. For further information, read Appendix A,
Sysgen Program Example.

2.7.4 MAPPED BUFFERS - forbidden zone violation!

To increase the amount of available data space, the kernel
uses a mapped buffer scheme. This mapped buffer scheme
involves moving the I/0 buffer cache outside the kernel data
space and dynamically remapping between the buffers and the
8K-byte data segment at virtual address 0120000. This
imposes the restriction that you cannot access data space
symbols in the 0120000 - 0140000 address range (forbidden
zone) while memory management segmentation register 5 is
mapped to the I/0 buffers.

This error message occurs when the value of the mb end sym-
bol exceeds address 0120000. Usually, the data space
arrangement used by the kernel prevents this error from
occurring. When this error does occur, you must decrease
the size of the data structures with addresses less than the
mb_end symbol wuntil the value mb_end is less than address
0120000.

In most cases, you can recover from this error by reducing
the number of buffers (NBUF) configured into your system.
Each NBUF structure uses 30 bytes of data space. To reduce
the number of configured buffers, subtract 120000 (octal)
from the value of mb_end and convert the result to decimal.
Then, divide the result by 30 and add one. Finally, you must
reconfigure your system and reduce the number of buffers to
this calculated value.

For example, the following illustrates using the dc command
to calculate a new NBUF value when mb _end is 121234:

$ dc
81
121234
120000
-p

668

q

$ dc .
668
30
/P
22
1
Y
23
q

$

Having calculated a new NBUF value, you then must use the

System Generation 2-17

sysgen program with the c command specified to create a new
configuration file. Finally, you must remake and install
this kernel.

If this procedure does not reduce the _mb_end sufficiently,
you must determine which additional data structure to
decrease. To do so, use the sysgen "standard parameters"
help text. Not all standard parameters, however, affect the
value of the mb_end symbol. The ULTRIX-11 software allows
the data symbols which are not accessed while the I/0
buffers are mapped in (NCALL, NFREE, NPROC, and NTEXT) to be
assigned beyond the mb _end symbol.

2.7.5 UNIBUS MAP - forbidden zone violation!

On PDP-11/24s with KT24 memory expansion, PDP-11/44s, and
PDP-11/70s, the UNIBUS map uses 31 registers to map the 18-
bit UNIBUS addresses to the 22-bit addresses needed to
access memory. Each register maps 8K-bytes of memory. On
these processors, all Direct Memory Access (DMA) transfers
must go through the UNIBUS map.

DMA access to data structures in the ULTRIX-11 kernel is
required by several hardware devices to pass control infor-
mation between the device driver and the device. These ker-
nel data structures are:

Disk bad block buffers

MSCP disk packet buffers

TS11 tape packet buffers

DH11 clists

User-written device driver buffers

The first UNIBUS register is permanently allocated to map-
ping DMA transfers to and from these kernel data structures.
Assigning only one register limits the size of these struc-
tures to 8K-bytes.

During the last phase of making a new kernel, the system
checks the total size of these data structures. If this
size exceeds 8K-bytes, it prints the UNIBUS MAP warning mes-
sage.

Usually, this size limit is large enough to accommodate most
reasonable configurations. If this error does occur, how-
ever, you must reduce the size of these data structures.
More specifically, you must decrease the number of devices,
the size of the clists, or the size of the data structures
in any user-written drivers.

2-18 System Generation

2.8 Sysgen of User-Written Device Drivers

For special purpose user devices, the ULTRIX-11 operating
system lets you incorporate user-written software drivers
into the kernel. This section describes the procedure that
you should follow when generating a kernel that is to
include user-written device drivers. It is assumed that you
are a system programmer and are familiar not only with writ-
ing device drivers but also with interfacing them to the
UNIX operating system.

The ULTRIX-11 system is shipped with four user-modifiable
device driver source code modules in the /sys/dev directory:
ul.c, u2.c, u3d.c, and ué.c. Correspondingly, the ULTRIX-11
device mnemonics for the user-written devices are u1, u2,
u3, and u4. Each prototype user device driver contains null
functions and dummy data structure definitions to satisfy
all possible interface requirements to the ULTRIX-11 1/0
system (block or character mode). For information about
writing a device driver and interfacing it into the ULTRIX-
11 kernel, read Appendix H, ULTRIX-11 User Device Driver
Commentary.

To create a user-written device driver, edit one of the pro-
totype source modules. Specifically, edit the driver source
code into the null functions as needed. You should not
delete the wunused null functions. Then, replace the dummy
definitions with actual data structures (for example, device
register definitions). Finally, to configure a user-written
device, use this procedure:

1. Study one of the prototype user device drivers to deter-
mine which functions and data structure definitions you
need to replace.

2. Copy the unmodified prototype driver to a backup file.

3. Edit the prototype source module and enter the user-
written device driver source code.

4. Run the sysgen program and use the s command to compile
and archive the user device driver.

5. Use the sysgen program to create a new confiquration
file that 1includes the user-written driver. At the
appropriate prompt, type the names of the user-written
device drivers (u1, u2, u3, or u4).

6. Use the sysgen program to make a new ULTRIX-11 kernel.
7. Install and boot the new kernel.

8. Use the mknod command to create the user device special
files. The file /usr/include/sys/devmaj.h contains the

System Generation 2-19

major device numbers reserved for user devices.
NOTE

DIGITAL has verified the above pro-
cedure by editing the code from the
TS11 tape driver and the DZ11 com-
munications 1interface driver into
prototype modules ul.c and u2.c. DI-
GITAL also generated an ULTRIX-11
kernel with ul and u2 configured and
verified that user devices ut and u2
function as expected.

When writing device drivers for user devices, you should
consider:

The system configuration file specifies the device's
hardware device register address and interrupt vector
address in the same manner as standard devices. The
uistart() function in the ul.c prototype module contains
an example of the procedure for obtaining the device's
hardware register address. The driver does not need to
know the device's interrupt vector address. If the dev-
ice 1interrupts at a bus request level other than BR 5,
however, you must edit the /sys/conf/l.s file to change
the bus request level. If you change the l.s file, you
cannot use the sysgen make command. In response to the
superuser prompt, type this sequence of commands:

cd /sys/conf
mkconf <unix.cf
make unixnn

nn Specifies the processor type (for example, 23, 44,
45).

You cannot interface user devices with the ULTRIX-11
error logging system. To report errors, you should use
the deverror() and printf() routines.

When the processor has a UNIBUS map, the strategy func-
tion must call the UNIBUS map allocation function
mapalloc(bp). The mapalloc(bp) function requires as an
argument a pointer to an I/O buffer header. The system
releases the UNIBUS map registers after completing the
physical I/0 transfer.

When the device uses a bus address extension register
for 22-bit addressing, the driver must load the full bus

address into the BAE register and not wuse the UNIBUS
map.

Chapter 3

ULTRIX-11 Boot Procedures

The ULTRIX-11 operating system usually resides on the system
disk in the /unix file. Booting the ULTRIX-11 system
involves a primary and a secondary boot program. These boot
programs load the /unix file into memory, initialize it, and
start it running in single-user mode.

When you use the autoboot procedure, the boot programs load
the operating system and start it running without interven-
tion. When circumstances require you to boot the system
from an alternate device or to boot one of the stand-alone
programs, however, you can use a manual boot procedure.

The remaining sections of this chapter discuss:

Boot sequence

Boot file specifications

System disk autoboot procedure
System disk manual boot procedure
Magnetic tape manual boot procedure
RX50 manual boot procedure

Boot options

Boot error messages

3-2 Boot Procedures

3.1 The Boot Sequence

This section describes the ULTRIX-11 boot sequence. This
information 1is intended for reference only and is not
required for booting the ULTRIX-11 operating system.

The hardware boot ROM loads the primary boot program from
block 0 of the boot device into memory (physical location’
0). Once the primary boot program is loaded, the hardware
boot ROM starts it by jumping to location 0.

If it could not load the primary boot program, the hardware
boot ROM prints an error message or loops endlessly. (The
newer boot ROMs have error recovery, while most of the older
boot ROMs do not.)

If loaded from disk, the primary boot program relocates
itself to address 0157000 in high memory and begins execu-
tion. If loaded from tape, however, it relocates itself to
address 137000 and begins execution.

Once the primary boot program begins execution, it loads the
secondary boot program from the boot device. If the boot
device is a disk, the secondary boot 1is 1loaded from the
/boot file (root file system). When the secondary boot pro-

gram is loaded, the primary boot starts it running by a jump
to location 0.

If the /boot file could not be loaded, the secondary boot is
loaded from the /boot.bu file (root file system). If nei-
ther file can be loaded, the primary boot program loops end-
lessly.

The secondary boot program first sizes memory, then relo-
cates itself to high memory at address 0400000 (128 KB), and
starts executing in user mode. If the boot device 1is the
system disk, the secondary boot program automatically loads
the operating system, prints this message, and starts the
autoboot procedure:

Sizing Memory...

Boot: xx(0,0)unix (<CTRL/C> will abort auto-boot)

xx Specifies the ULTRIX-11 device mnemonic for the system
~ disk.

If the boot device is an alternate device, or if you abort
the autoboot procedure, the secondary boot program prints
this message and a boot prompt:

Boot Procedures 3-3

To list options, type help then press <RETURN>

Boot:

The boot prompt lets you manually boot the operating system
from a file other than /unix or load one of the distributed
stand-alone programs. You should respond with the boot file
specification. This information tells the secondary boot
program the location of the ULTRIX-11 kernel or the stand-
alone program. For a description of the boot file specifi-
cation, read Section 3.2, Specifying the Boot File. For
further information about the distributed stand-alone pro-

grams, read Appendices B, D, and F in the ULTRIX-11 Instal-
lation Guide.

If the system cannot load the designated file, it prints an
error message and another boot prompt. If no errors occur,
the system loads the file at physical memory location 0 and
starts it with a trap instruction. The trap instruction
vectors through location 034. The secondary boot program
starts the operating system and all stand-alone programs by
vectoring through location 034. The system uses this
start-up method because the secondary boot program executes

in user mode and can not execute a jump to physical location
0.

Before starting the operating system, the secondary boot
program performs most of the operations required to initial-
ize the ULTRIX-11 operating system. When the ULTRIX-11 sys-
tem starts running, it comes up in single-user mode with the
superuser account active at the console.

3-4 Boot Procedures

3.2 Specifying the Boot File

To boot a stand-alone program or the ULTRIX-11 system manu-
ally, you must specify the file that is to be loaded. 1In
response to the boot prompt, you must specify:

device(unit,offset)file

device Specifies the 2-character mnemonic of the device on
which the file 1is to be found. For a list of the
ULTRIX-11 device mnemonics, read Table 3-1, ULTRIX-
11 Device Mnemonics.

unit Specifies the unit number of the device on which the
file 1is to be found. For ht tape, unit numbers 0-3
specify physical units 0-3 at 800 bpi, while unit
numbers 4-7 specify physical units 0-3 at 1600 bpi.

offset Specifies where, from the beginning of that device,
the file 1is to be found. For disks, the offset is
the number of blocks from the beginning of the disk
where the appropriate file system starts. For exam-
ple, on disks, an offset 0 specifies the root file
system. For tapes, the offset is the number of
files from the beginning of the tape. For example,
on tapes, an offset 0 specifies the first file on
the tape.

file Specifies the name of the file that is to be loaded.
This name can be either an absolute pathname or a
single file name. If file is a file name, the boot
program searches the root directory of the file sys-
tem for that file. You should specify a single file
name when booting from tape.

For example, this sequence boots the /unix file from an
RLO2, unit O:

Boot: rl(0,0)unix

The following sequence loads the stand-alone bads program
(/sas/bads) from an RKO7, unit O:

Boot: hk(0,0)/sas/bads

The following sequence loads the stand-alone Copy program
(/copy) from TM11 tape:

Boot: tm(0,0)copy
To correct typing mistakes while entering the boot file

specifications, press the <DELETE> key to erase a single
character and <CTRL/U> to erase the entire line.

Boot Procedures 3-5

Table 3-1 ULTRIX-11 Device Mnemonics

Name

hk
hp
hm
hj
ra
rc
rd
rx
rk
rl
rp
ht
tm
ts

Device Type

RK06/7

RM02/3/5, RP04/5/6, ML11 (first RH11/RH70)
RM02/3/5, RP04/5/6, ML11 (second RH11/RH70)
RM02/3/5, RP04/5/6, ML11 (third RH11/RH70)
RA60/RA80/RA81

RC25

RD51/RD52

RX50

RKOS

RL01/2

RP02/3

TU16/TE16/TU77

TU10/TE10/TS03

TS11/TU80/TSV05/TK25

3-6 Boot Procedures

3.3 Autobooting from the System Disk

You normally awtoboot the ULTRIX-11 kernel from the root
file system on the system disk, unit 0 (for RC25 disks, unit
1). During an autoboot, both the boot programs and the
ULTRIX-11 kernel are automatically loaded from the system

disk. To autoboot and initialize the ULTRIX-11 kernel, use
the following 4-step procedure:

1. Ensure that the processor's HALT switch is released.
Then, execute the hardware boot ROM for the system
disk. For further information about the boot ROM, read
your system's hardware documentation.

Once loaded and running, the secondary boot program

boots the ULTRIX-11 operating system and prints the
following messages:

Sizing Memory...
Boot: xx(0,0)unix (<CTRL/C> will abort auto-boot)

xx(0,0)unix: sizel+size2+size3...sizen

XX Specifies the two character ULTRIX-11 mnemonic
for the system disk (for example, hk, hp, ra,
rc, rd, rl, or rp).

size1 Specifies the size of either the ROOT TEXT seg-
ment (nonsplit I and D processor) or the
DATA+BSS segment (split I and D processor).

size2 Specifies the size of either the DATA+BSS seg-
ment (nonsplit I and D processor) or the ROOT
TEXT segment (split I and D processor).

size3 Specifies the size of the first overlay.
sizen Specifies the size of the last overlay. A max-

imum of seven overlays may be used and their
sizes reported.

Once loaded and initialized, the ULTRIX-11 operating
system starts running in single-user mode and prints
the following start-up banner:

ULTRIX-11 Kernel V#

realmem = ######
buffers = #####4#
usermem = #####H

erase = delete, kill = ~U, intr = ~C
#

V#

realmem

buffers

usermem

erase

kill

intr

Once running and ready to accept commands, the

Boot Procedures 3-7

Specifies the version of the ULTRIX-11 system
that was booted. ‘

Specifies

Specifies

the size of all of memory in bytes.

the amount memory used by the 1I/0

buffer cache.

Specifies

the amount of free user memory in

bytes. This is the amount of memory available

after the ULTRIX-11 operating system and the
buffer cache.
Specifies that you can use the <DELETE> key
to delete by character.
Specifies that you can press <CTRL/U> to
delete an entire line of input.
Specifies that you can press <CTRL/C> to
interrupt a program.

NOTE
The system prints the last message

to remind you that it has changed

these control characters

from the

standard UNIX V7 characters (where

erase =
delete).

#, kill = @, intr =

ULTRIX-

11 operating system issues a # prompt, indicating that

the

Use

the date command to set the system date

superuser account is active.

and time.

In response to the superuser prompt, enter the follow-

command sequence:

date yymmddhhmm.ss

ing

yy Specifies
mm Specifies
dd Specifies
hh Specifies
mm Specifies

the
the
the
the

the

last two digits of the year (00-99).
month number (01-12).

day of the month number (01-31).
hour of the day (00-23).

minutes of the hour (00-59).

3-8

Boot Procedures

ss Specifies the seconds of the minute (00-59). This
field is optional.

For example, to set the time and date to 6:30 PM on
August 28, 1984, type this command sequence:

date 8408281830

DIGITAL recommends that you check the consistency of
your file systems as well as the size and a summary of
the error log file after each system boot.

To check the consistency of your file systems, use the
fsck command. In response to the superuser prompt,
type this command sequence:

fsck -t /tmp/fsck.temp

The -t option specifies the name of a temporary file
that is to be used when checking the file systems. For
further information, read Section 4.1, File System
Maintenance.

To display the size of the error log file as well as a
summary report, wuse the elp command. In response to
the superuser prompt, type this command sequence:

elp -s

If the command sequence fails, you may have to initial-
ize the error log file. For further information, read
Section 8.1, Operating Procedures.

Finally, to make the system available for time-sharing,
press <CTRL/D>. This command automatically causes the
operating system to change from single-user mode to
multiuser mode. The operating system prints a series
of messages and a login prompt. For further informa-
tion, read Section 1.2.4, Multiuser Mode.

Boot Procedures 3-9

3.4 Manually Booting from the System Disk

You normally autoboot the ULTRIX-11 kernel from the root
file system on the system disk, unit 0 (for RC25 disks, unit
1). In addition, you can manually boot from the system
disk. Specifically, you can load the boot programs from the
system disk and then manually boot an ULTRIX-11 kernel or a
stand-alone program. For instructions for booting stand-
alone programs, read Appendixes B, D, and F in the ULTRIX-11
Installation Guide.

To load the boot programs from the system disk and manually

boot the ULTRIX-11 kernel, use the following 3-step pro-
cedure:

1. Ensure that the processor's HALT switch 1is released.
Then, execute the hardware boot ROM for the system
disk. For further information about the boot ROM, read
your system's hardware documentation.

Once loaded and running, the secondary boot program
autoboots the ULTRIX-11 operating system and prints the
following messages:
Sizing Memory...
Boot: xx(0,0)unix (<CTRL/C> will abort auto-boot)
xx Specifies the two character ULTRIX-11 mnemonic for
the system disk (for example, hk, hp, ra, rc, rd,
rl, or rp).
As soon as the boot prompt appears, however, interrupt
the autoboot by pressing <CTRL/C>. When you interrupt
the autoboot procedure, the secondary boot program
prints this message and a boot prompt:

To list options, type help then press <RETURN>

Boot:

3-10

Boot Procedures

NOTE

There may be a delay of several
seconds between the time that you
press <CTRL/C> and the time that
the boot prompt reappears. If you
wait too long to press <CTRL/C>,
the ULTRIX-11 operating system will
be loaded into memory and will be-
gin printing several messages. If
this happens, you must halt the
processor and restart this step.

Enter one of the appropriate boot file specifications.
For example, the following command sequence boots a
test ULTRIX-11 kernel (/unix.test):

Boot: rp(0,0)unix.test

As it loads the system, the secondary boot program
sizes memory and prints this message:

rp(0,0)unix.test: sizel+size2+size3...sizen

size1 Specifies the size of either the ROOT TEXT
segment (nonsplit I and D processor) or the
DATA+BSS segment (split I and D processor).

size2 Specifies the size of either the DATA+BSS
segment (nonsplit I and D processor) or the
ROOT TEXT segment (split I and D processor).

size3 Specifies the size of the first overlay.

sizen Specifies the size of the last overlay. A
maximum of seven overlays may be used and
their sizes reported.

You also can boot other files from other disks by
entering the appropriate file specification. For
further information, read Section 3.2, Specifying the
Boot File.

Boot Procedures 3-11

NOTE

If the operating system that you
wish to boot 1is not named /unix,
DIGITAL recommends that you rename
it /unix. Several user-level com-
mands and system-level programs use
the /unix file for the name list of
the operating system that currently
is running.

If you manually booted the ULTRIX-11 operating system,

it starts

running in single-user mode and prints this

start-up banner:

V£

realmem

buffers

usermem

erase

kill

intr

ULTRIX-11 Kernel V#

realmem = ######
buffers = #####44#
usermem = ######
erase = delete, kill = ~U, intr = ~C

#

Specifies the version of the ULTRIX-11 system
that was booted.

Specifies the size -of all of memory in bytes.

Specifies the amount of memory used by the
I/0 buffer cache.

Specifies the amount of free user memory in
bytes. This is the amount of memory available

after the ULTRIX-11 operating system and the
buffer cache.

Specifies that you can use the <DELETE> key
to delete by character.

Specifies that you can press <CTRL/U> to
delete an entire line of input.

Specifies that you can press <CTRL/C> to
interrupt a program.

3-12

Boot Procedures

NOTE

The system prints the last message
to remind you that it has changed
these control characters from the
standard UNIX V7 characters (where
erase = #, kill = @, intr =
delete).

Once running and ready to accept commands, the ULTRIX-
11 operating system issues a # prompt, indicating that
the superuser account is active.

If you booted an ULTRIX-11 kernel, you need to set the
date, check your file systems and the error log file,
and then make the system available for time-sharing.
For specific information, read Steps 2-4 of Section
3.3, Autobooting from the System Disk.

Boot Procedures 3-13

3.5 Manually Booting from Tape

You normally autoboot the ULTRIX-11 kernel from the root
file system on the system disk, unit 0 (for RC25 disks, unit
1). In addition, you can boot from alternate media. Specif-
ically, you can 1load the boot programs from tape and then
manually boot an ULTRIX-11 kernel or a stand-alone program.
This procedure lets you boot from a different media. For
instructions for booting stand-alone programs, read Appen-
dixes B, D, and F in the ULTRIX-11 Installation Guide.

To load the boot programs from tape and manually boot the
ULTRIX-11 kernel, use the following 4-step procedure:

1. Mount the ULTRIX-11 distribution tape on drive 0.
Ensure that the tape drive is on-line and ready and
that the tape is rewound to load point (BOT).

2. Next, to boot from tape, use either your hardware
bootstrap ROM or one of the tape boot programs
explained in Appendix A of the ULTRIX-11 Installation
Guide.

Once loaded and running, the secondary boot program
prints the following messages:

Sizing Memory...
To list options, type help then press <RETURN>
Boot:

3. Enter one of the appropriate boot file specifications.
For example, the following command sequence boots the
ULTRIX-11 kernel (/unix) from an RM02, unit 0, on the
third RH11/RH70 controller:

Boot: hj(0,0)unix
As it loads the system, the secondary boot program

sizes memory and prints this message:

hj(0,0)unix: sizel+size2+size3...sizen

sizei Specifies the size of either the ROOT TEXT
segment (nonsplit I and D processor) or the
DATA+BSS segment (split I and D processor).

size?2 Specifies the size of either the DATA+BSS
segment (nonsplit I and D processor) or the
ROOT TEXT segment (split I and D processor).

3-14 Boot Procedures

size3 Specifies the size of the first overlay.

sizen Specifies the size of the last overlay. A
maximum of seven overlays may be used and
their sizes reported.

You also can boot other files from other disks by
entering the appropriate file specification. For
further information, read Section 3.2, Specifying the
Boot File.

NOTE

If the operating system that you
wish to boot 1is not named /unix,
DIGITAL recommends that you rename
it /unix. Several user-level com-
mands and system-level programs use
the /unix file for the name list of
the operating system that currently
is running.

If you manually booted the ULTRIX-11 operating system,
it starts running in single-user mode and prints this
start-up banner:

ULTRIX-11 Kernel V#

realmem = ######
buffers = ######
usermem = #####Y
erase = delete, kill = ~U, intr = ~C
#
V# Specifies the version of the ULTRIX-11 system

that was booted.
realmem Specifies the size of all of memory in bytes.

buffers Specifies the amount of memory used by the
I1/0 buffer cache.

usermem Specifies the amount of free user memory in
bytes. This is the amount of memory available
after the ULTRIX-11 operating system and the
buffer cache.

erase Specifies that you can use the <DELETE> key
to delete by character.

kill Specifies that you can press <CTRL/U> to

Boot Procedures 3-15

delete an entire line of input.

intr Specifies that you can press <CTRL/C> to
interrupt a program.

NOTE

The system prints the last message
to remind you that it has changed
these control characters from the
standard UNIX V7 characters (where
erase = #, kill = @, intr =
delete).

Once running and ready to accept commands, the ULTRIX-
11 operating system issues a # prompt, indicating that
the superuser account is active.

If you booted an ULTRIX-11 kernel, you need to set the
date, check your file systems and the error log file,
and then make the system available for time-sharing.
For specific information, read Steps 2-4 of Section
3.3, Autobooting from the System Disk.

3-16 Boot Procedures

3.6 Manually Booting from RX50 Diskette

On the Micro/PDP-11, you also can boot from different media.
Specifically, you can load the boot programs from the boot
diskette and then manually boot an ULTRIX-11 kernel or a
stand-alone program. For further information, read Appen-
dixes B, D, and F in the ULTRIX-11 Installation Guide.

To load the boot programs from the boot diskette and manu-
ally boot the ULTRIX-11 kernel, use the following 4-step
procedure:

1. First, insert the boot diskette into the RX50 drive,
unit 2.

2. Next, to boot RX50, unit 2, use your hardware bootstrap
ROM.

Once loaded and running, the secondary boot program
prints the following messages:

Sizing Memory...
To list options, type help then press <RETURN>
Boot:

3. Enter one of the appropriate boot file specifications.
For example, the following command sequence boots the
ULTRIX-11 kernel (/unix) from an RD51, unit O:

Boot: rd(0,0)unix
As it loads the system, the secondary boot program

sizes memory and prints this message:

rd(0,0)unix: sizel+size2+size3...sizen

size1 Specifies the size of either the ROOT TEXT
segment (nonsplit I and D processor) or the
DATA+BSS segment (split I and D processor).

size2 Specifies the size of either the DATA+BSS
segment (nonsplit I and D processor) or the
ROOT TEXT segment (split I and D processor).

size3 Specifies the size of the first overlay.
sizen Specifies the size of the last overlay. A

maximum of seven overlays may be used and
their sizes reported.

Boot Procedures 3-17

You also can boot other files from other disks by
entering the appropriate file specification. For
further information, read Section 3.2, Specifying the
Boot File.

NOTE

If the operating system that you
wish to boot 1is not named /unix,
DIGITAL recommends that you rename
it /unix. Several user-level com-
mands and system-level programs use
the /unix file for the name list of
the operating system that currently
is running.

If you manually booted the ULTRIX-11 operating system,
it starts running in single-user mode and prints this
start-up banner:

ULTRIX-11 Kernel V§#

realmem = ######
buffers = ######
usermem = ####4#
erase = delete, kill = ~U, intr = ~C
#
V# Specifies the version of the ULTRIX-11 system

that was booted.
realmem Specifies the size of all of memory in bytes.

buffers Specifies the amount of memory used by the
I/0 buffer cache.

usermem Specifies the amount of free user memory in
bytes. This is the amount of memory available
after the ULTRIX-11 operating system and the
buffer cache.

erase Specifies that you can use the <DELETE> key
to delete by character.

kill Specifies that you can press <CTRL/U> to
delete an entire line of input.

intr Specifies that you can press <CTRL/C> to
interrupt a program.

3-18 Boot Procedures

NOTE

The system prints the last message
to remind you that it has changed
these control characters from the
standard UNIX V7 characters (where
erase = #, kill = @, intr =
delete).

Once running and ready to accept commands, the ULTRIX-
11 operating system issues a # prompt, indicating that
the superuser account is active.

If you booted an ULTRIX-11 kernel, you need to set the
date, check your file systems and the error log file,
and then make the system available for time-sharing.
For specific information, read Steps 2-4 of Section
3.3, Autobooting from the System Disk.

Boot Procedures 3-19

3.7 Boot Program Options

If you abort the autoboot procedure or use a manual boot
procedure to load from alternate media, the secondary boot
program prints this message and a boot prompt:

To list options, type help then press <RETURN>
Boot:

Once you receive this prompt, you can obtain information
about these boot program options:

° Automatic unit select option
e Automatic CSR select option
@ CSR address option

To obtain on-line help, type:
Boot: help
The secondary boot program then prints the following 1infor-
mation and a boot prompt:
ULTRIX-11 boot program options,
Enter the desired option using lowercase characters,
then press <RETURN>., Refer to the ULTRIX-11 System
Management Guide for more detailed information about

each option. The section number is listed after the
option name.

Option Section Description

help 3.7 Print this list of boot options.
aus 3.7.1 Enable/disable auto unit select.
acs 3.7.2 Enable/disable auto CSR select.
csr 3.7.3 List/change device CSR address.

Auto unit select changes the unit number in the ROOT,
PIPE, SWAP, and ERROR LOG specifications in the booted
kernel. This allows booting from disks other than unit

Auto CSR select changes the CSR address for the system
disk to match the CSR in the BOOT program.

The csr command lists and/or changes a device's CSR
address in the BOOT program.

The next three sections provide detailed discussions of
these options.

3-20 Boot Procedures

3.7.1 Automatic Unit Select Option

During a boot, the secondary boot program passes the unit
number of the system disk to the booted ULTRIX-11 kernel and
appropriately changes its ROOT, PIPE, SWAP, and ERROR LOG
specifications. The automatic unit select option (aus) lets
you disable this feature and leave these specifications as
originally configured.
To use the aus option, type:

Boot: aus
The secondary boot program then prints:

Auto unit select <y or n> ?

To disable automatic wunit select, type n. To enable
automatic unit select (default), type y.

The aus option lets you boot from a unit other than wunit 0
and, for RC25 disks, from a unit other than unit 1.

3.7.2 Automatic CSR Select Option

During a boot, the secondary boot program passes the CSR
address listed in its internal table for the system disk to
the booted kernel. When booting a stand-alone program, the
secondary boot program passes all CSR addresses listed in
its internal table to the booted program. The automatic CSR
select option (acs) lets you disable this feature and leave
each CSR address as originally configured.

To use the acs option, type:
Boot: acs

The secondary boot program then prints:
Auto CSR select <y or n> ?

To disable automatic CSR select, type n. To enable
automatic CSR select (default), type y.

The acs option lets you boot from a disk that is at a non-
standard CSR address.

3.7.3 CSR Address Option

During a boot, the secondary boot program passes the CSR
address listed in its internal table for the system disk to
the booted kernel. When booting a stand-alone program, the
secondary boot program passes all CSR addresses listed in
its internal table to the booted program. If any device is

Boot Procedures 3-21

at a nonstandard CSR address, you can use the csr option to
change its CSR address in the boot program's internal table.

To use the csr option, type:
Boot: csr

When this option is specified, the secondary boot program
first prints:

List all current CSR addresses <y or n> ?
To list all current CSR address assignments, type vy. The
secondary boot program then prints a table of all devices
and their corresponding CSR addresses.

Regardless of your response to the previous prompt, the
secondary boot program then prints:

Enter device name or press <RETURN> for no change.

Device <list of ULTRIX-11 device mnemonics>:
To change a device's CSR address in the boot table, type the
appropriate ULTRIX-11 mnemonic. The secondary boot program
then prints:

Enter new CSR address or press <RETURN> for no change.

CSR <o0ld address>:

When you enter the new CSR address, the secondary boot pro-
gram prompts you for verification:

New (mnemonic) CSR address is nnnnn <y or n> ?

When you respond yes, the secondary boot program changes its
CSR table accordingly and prints a boot prompt. If you
respond no, the secondary boot program disregards the
request.

For example, the following uses the csr option to change the
current CSR address for an RC25 disk:

3-22 Boot Procedures

Boot: csr

List all current CSR addresses <y or n> ? n

Enter device name or press <RETURN> for no change.
Device <hk hp hm hj ra rc rd rx rk rl rp ht tm ts>: rc
Enter new CSR address or press return for no change.
CSR <172150>: 172160

New (rc) CSR address is 172160 <y or n> ? y

Boot Procedures 3-23

3.8 Boot Error Messages

Although the primary boot program does not display error
messages, the secondary boot program prints four types of
error messages:

File specification errors
Operating system parameter errors
Device errors

Hardware traps

3.8.1 File Specification Errors

The following error messages indicate an invalid file
specification:

Bad device

Unknown device

Bad unit specifier

Missing offset specification
Bad magtape file name

The following error messages indicate that the secondary
boot program could not find the file, that you specified an
invalid pathname, or that the file system is corrupted:

null path

(filename) not found
not a directory

zero length directory

The following error messages indicate either that the secon-
dary boot program could not read the file system on the dev-
ice or that the file system is corrupted:

bn negative

bn ovf # (# = block number)
bn void # (# = block number)

3.8.2 Operating System Parameter Errors

When it detects a parameter error while loading the operat-
ing system file (normally /unix), the secondary boot program
prints one of more of the following error messages. These
messages usually indicate that the operating system could
not be booted. Because the sysgen program checks all of the
system parameters during system generation, these errors are
not likely to occur.

The following messages indicate either that the processor
has insufficient memory or that the system was generated
with too few buffers:

3-24 Boot Procedures

less than 192K bytes of memory!
less than 16 buffers!

The following messages indicate that the system's name 1list
(symbol table) either is missing or could not be accessed:

Unix symbol table missing
Can't access namelist in xxxx

The following error messages indicate either that the system
file could not be opened for reading or that it is not the
correct file type. The system must be a 0431 (split I & D)
or 0430 (text overlay) file. The # indicates the actual
type of the file being loaded:

Can't load (#) unix files
Can't load # files
Can't open xxxx file

The following message indicates that the secondary boot pro-
gram attempted to load a split I & D kernel on a nonseparate
I & D processor: The # indicates the file type.

Can't load sep I&D (#) files

The following messages indicate that the size of one of the
system's segments is invalid. The # indicates the size of
the segment in octal:

text segment too small (#)

text segment too big (#)

data segment too large (#)

data segment too big (#)

max overlay too big (#)

Root text segment too small (#)
Root text segment too large (#)

The following message indicates a problem with the mapped
I/0 buffer system in the overlay kernel. For further infor-
mation, read Section 2.7.4, MAPPED BUFFERS - forbidden zone
violation! The # indicates the value of the symbol mb end
in octal. This value is used to correct the error condi-
tion.

MAPPED BUFFERS - forbidden zone violation
_mb end = #

The following message indicates a problem with the UNIBUS
mapping. For further information, read Section 2.7.5,
UNIBUS MAP - forbidden zone violation! The # indicates the
value of the symbol _ub_end in octal. This value is used to
correct the error condition.

Boot Procedures 3-25

UNIBUS MAP - forbidden zone violation!
_ub _end = #

The following message indicates that the TTY structures
could not be assigned to the communications interface ports
because one of the parameters needed to make the assignment
either is out of range or could not be found:
Can't assign TTY structures in xxxx

The following messages indicate that the system has been
generated with too many buffers. The # indicates the amount
of memory available:

TOO MANY BUFFERS for #K bytes of memory!
UNIBUS MAP REGISTER LIMIT EXCEEDED: too many buffers!

When these messages are printed, the secondary boot program
makes the appropriate adjustments and then prints this mes-
sage:

Reducing number of buffers to #

The # indicates the current number of buffers.

3.8.3 Device Errors

All ULTRIX-11 stand-alone device drivers report errors in
the following format:

® Header -- device name and unit number

° Address -- block number or disk address

o Hardware registers -- control, status, and error
[} Error type -- fatal or recoverable

For UDAS50, KLESI, RUX1, and RQDX1 disk errors, an MSCP error
code prints instead of the hardware registers. For further

information, read Appendix F, UDAS50/KLESI/RUX1/RQDX1 - MSCP
Error Codes.

For example, the following message indicates that a fatal
error occurred on an RK06/7, unit 2:

HK unit 2 disk error:

€cs1=100220 ¢s2=202 ds=100301 err=200 hkdc=293 track=1 sect=12
(FATAL ERROR)

The stand-alone drivers for disks with hardware Error
Correction Capability print a message in the following for-
mat when the driver uses ECC to recover data from a disk
block:

HP # ECC bn = ##

3-26 Boot Procedures

The # indicates the unit number and ## indicates the logical
block number.

3.8.4 Hardware Traps

When hardware-detected errors occur, the PDP-11 processors
trap through fixed addresses in low memory. The possible
processor trap locations are:

Location Error type

4 bus error

10 illegal instruction

14 break point trace

20 IOT instruction

24 power fail

30 EMT instruction

34 TRAP instruction
240 Programmed interrupt request
244 floating point exception
250 memory management segmentation
114 memory parity
7?2 stray vector

The stand-alone ULTRIX-11 device drivers do not operate in
interrupt mode. The stray vector error message indicates the
processor vectored through an unexpected location (other
than one of the above trap addresses). Any device interrupt
causes the stray vector message.

The following indicates that a UNIBUS timeout trap occurred.
This probably was caused by attempting to boot from a nonex-
istent device. The value in R2 (172150) 1is the device
address for the UDAS0 disk controller:

Boot: ra(0,0)unix

Trap - bus error

ps = 140344
pc = 14672
r0 = 14604
r1 =0

r2 = 172150
r3 = 52070
ré = 52070
r5 = 63642
sp = 157750

Chapter 4

ULTRIX-11 Maintenance and Administrative Functions

To operate and maintain an ULTRIX-11 system, either the sys-
tem manager or operator reqularly should:

Check file system consistency

Correct reported file system inconsistencies
Back up file systems

Check for dynamic bad blocks on MSCP disks
Monitor general system performance

Then, as the need arises, the system manager should:

Add new user accounts

Set up additional user file systems
Enable user terminals

Set up the cu facility

Set up tip connections

Install the uucp facility

The remaining sections of this chapter provide discussions
of these tasks.

NOTE

DIGITAL recommends that the system
operator use the opser program for nor-
mal system maintenance. For further in-
formation, read Chapter 5, ULTRIX-11
Operator Services.

4-2 System Maintenance

4.1 File System Maintenance

As system manager, you should monitor the status of vyour
file systems on a regular basis. Specifically, you requ-
larly should:

Check file system consistency

Correct all reported file system inconsistencies
Report disk free space

Report disk usage

Check disk quotas

4.1.1 Checking File System Consistency

As system manager, you should ensure that all file systems
are checked regularly. To check the consistency of your
file systems, use the fsck command. Before doing so, how-
ever, you should unmount all file systems and shut down mul-
tiuser mode.

Once the system is in single-user mode, use the fsck command
to check the consistency of your file systems. In response
to the superuser prompt, type this command sequence:

fsck special

special Specifies the logical special file name of the
file system that you want to check. If you do
not specify a file system, the fsck command
automatically checks all file systems that are
listed in /etc/fstab.

When executed on a given file system, the fsck command:

Checks the file system

Reports all inconsistencies

Reports the current number of files
Reports the number of blocks used

Reports the current number of free blocks

NOTE

When checking the root file system
(/), you should use the block mode
special file name. When checking
any other file systems, you should
use only a character mode special
file name.

The following command sequence checks both the root and /usr
file system on an RL02 system disk:

System Maintenance 4-3

$ fsck /dev/rl00 /dev/rrl01

When checking large file systems, the fsck command may
prompt you for the name of a scratch file. You should
respond with the name of the file that you want to use (for
example, /tmp/fsck.scratch) and press the <RETURN> key.
When checking multiple file systems, you should specify the
scratch file name with the -t option. For example, the fol-
lowing command sequence checks and reports on all file sys-
tems listed in /etc/fstab and uses /tmp/fsck.scratch as the
scratch file:

fsck -t /tmp/fsck.scratch

For further information, read fsck(1M) in the ULTRIX-11
Programmer's Manual, Volume 1.

NOTE

DIGITAL recommends the system operator
use the opser program to check file sys-
tems. For further information, read
Chapter 5, ULTRIX-11 Operator Services.

4.1.2 Correcting File System Inconsistencies

When it detects an inconsistency, the fsck command prints a
message that describes the type of inconsistency and a

prompt (?) for your response to the suggested course of
action.

When you respond yes, the fsck command attempts to correct
the inconsistency. When you respond no (or anything else),
the fsck command leaves the inconsistency uncorrected. In
either <case, the fsck command continues to check and report
on the designated file systems. When you respond yes to a
prompt about an orphaned file (no directory entry or link),
the fsck command relinks the file to the lost+found direc-
tory in that file system.

The ULTRIX-11 system has several other commands that you can
also use to check for and correct file system inconsisten-
cies:

dcheck Checks the consistency of the directory hierarchy
on the specified file system.

fsdb Provides a means of correcting those file system
inconsistencies that fsck cannot.

icheck When the -b option is specified, reports

4-4 System Maintenance

information on the named block. This command is
useful for gathering information about the inode
to which the block is allocated.

ipatch Prints the contents of an inode. This command can
also be used to change this information.

ncheck When the -i option is specified, traces the named
inode back to a file name.

NOTE

DIGITAL recommends that you
use the 1ipatch command to
change the contents of an
inode only if you have a
thorough understanding of the
ULTRIX-11 file system.

For further information, read dcheck (1M), fsck(1M),
fsdb(1M), icheck(1M), 1ipatch(1M), and ncheck(1M) 1in the
ULTRIX-11 Programmer's Manual, Volume 1.

4.1.3 Reporting Disk Free Space

To report the current number of free blocks available on a
file system, type this command sequence:

§ df special

special Specifies the logical special file name that
contains the file system. You can type more than
one name. If you do not specify a special file
name, the df command reports the free space on
all mounted file systems listed in /etc/fstab.

The following command sequence reports the current amount of
free space on both file systems on an RL02 disk, unit 0:

$ df /dev/rrl00 /dev/rrl01

For further information, read df(1M) in the ULTRIX-11
Programmer's Manual, Volume 1.

4.1.4 Reporting Disk Usage

To report user disk (directory) wusage, type this command
sequence:

$ du directory

System Maintenance 4-5

directory Specifies the directory for which the disk usage
summary is to be generated. You can type more
than one name. If you do not specify a direc-
tory name, the du command reports the disk usage
for the current directory.

The following command sequence reports the disk usage for
all main subdirectories in the /usr/staff file system:

$ du /usr/staff

For further information, read du(1) in the ULTRIX-11
Programmer's Manual, Volume 1.

4.1.5 Checking Disk Quotas

To report the number of blocks owned by each user of a file
system, type this command sequence:

$ quot special

special Specifies the logical special file name that
contains the file system.

The following command sequence reports the number of blocks
owned by each user on the /usr file system:

$ quot /dev/rrl01

For further information, read quot(1M) in the ULTRIX-11
Programmer's Manual, Volume 1.

4-6 System Maintenance

4.2 Backing Up and Restoring File Systems

DIGITAL recommends that you use the opser program for normal
file system backups and for shutting down multiuser mode
prior to restoring file systems. For further information,
read Chapter 5, ULTRIX-11 Operator Services.

The ULTRIX-11 system is distributed with prototype shell
command files that are to be used with the opser backup com-
mand. These shell command files are:

daily.bak Contains the prompts and commands that are to
be wused to perform daily file system backups
on ULTRIX-11 PDP/11 systems.

monthly.bak Contains the prompts and commands that are to
be used to perform monthly file system back-
ups on ULTRIX-11 PDP/11 systems.

m11_day.bak Contains the prompts and commands that are to
be wused to perform daily file system backups
on ULTRIX-11 Micro/PDP-11 systems.

m11_week.bak Contains the prompts and commands that are to
be used to perform weekly file system backups
on ULTRIX-11 Micro/PDP-11 systems.

As system manager, you must tailor the appropriate command
files to your system confiquration. To tailor the files
that are to used for your system, use one of the ULTRIX-11
editors and make the necessary changes. Specifically, ver-
ify or, as needed, change and add the device special file
names for your file systems. Once tailored to your site,
instruct the system operator of the schedule and file names
that are to be used with the opser backup command.

As distributed, these shell command files use the dump com-
mand to perform incremental backups on a monthly, weekly, or
daily basis. Once a month or once a week on the Micro/PDP-
11, a shell file backs up all files on all file systems.,
Once a day, a shell file only backs up those files that have
been modified from the time of the monthly or weekly backup.
The number of files that are backed up daily depends both on
the size of your user community and on the amount of file
system activity.

System Maintenance 4-7

NOTE

When the number of files that are backed
up daily becomes unmanageable, DIGITAL
recommends using either the monthly or
weekly command file ahead of schedule.
These command files back up all files
and, therefore, reduce the number of
files that are dumped on subsequent dai-
ly backups.

To restore individual files or entire file systems that have
been dumped to tape, you must use the restor command. When
restoring individual files, you may use the restor commands
while the system is in multiuser mode. When restoring
entire file systems, however, DIGITAL recommends first using
the opser command to shut down multiuser mode and then using
the restor command to restore the file system.

The ULTRIX-11 system has several other commands that you can
use for special purpose backups or restores:

cp Copies user-specified files to or from a backup
file. This command is useful for copying a minimal
number of files to another directory or file sys-
tem.

cpio Copies user-specified files or entire file systems
to or from backup media. This command is useful
for creating file archives.

tar Copies user-specified files to or from a backup
tape. This command is useful for creating a tape
archive or for copying a minimal number of files to
tape.

volcopy Copies an entire disk image to or from a backup
disk. This command is useful for making an exact
image copy of a file system.

4-8 System Maintenance

NOTE

When using RX50 diskettes, the
number and size of the files
copied is limited to the size
of the diskette (800 blocks
minus file system overhead).
Because both commands support
multivolumes, dump and restor
overcome this size limitation.
When using a diskette with ei-
ther the dump or restor com-
mands, you should specify the m
key. This key specifies that
RX50 diskettes are being used
in place of tape.

For further information, read cp(1), cpio(1), dump(1M),
dumpdir(1M), restor(1M), tar(1), and volcopy(1M) in the
ULTRIX-11 Programmer's Manual, Volume 1.

4.2.1 Restoring the Root File System

To restore an individual file to the root file system, you
should wuse the restor command. To restore the entire root
file system, however, you should use this procedure:

1. Use the stand-alone mkfs program and make a new file
system. This program creates an empty file system on
the root partition of the system disk. It is important
to remember that the mkfs program overwrites any exist-
ing data as it makes the new file system.

2. Use the stand-alone restor program to restore the root
file system from backup media. Restore the full (level
0) dump onto the root partition of the system disk.

3. If there is a later level 9 (incremental) dump of the
root file system, use the stand-alone restor program to
restore those files.

4. Use the stand-alone icheck program to check the restored
root file system for inconsistencies.

5. Boot the restored root file system.
For further information, read Appendix D, Disk Logical Par-

tition Sizes, and Appendix F, Stand-alone Programs, in the
ULTRIX-11 Installation Guide.

System Maintenance 4-9

4.2.2 Backing Up File Systems to TK25 Tape

On a Micro/PDP-11 system, you normally use the opser backup
command with the appropriate command file specified to dump
your file systems to an RX50 diskette. On a Micro/PDP-11
system, however, you also may dump file systems to TK25 tape
units. The ULTRIX-11 system, therefore, is distributed with
a prototype shell command file that may be used with the
opser command for this purpose:

tk_daily.bak Contains the prompts and commands that are to
be wused to perform daily file system backups
to TK25 tape.

When using TK25 tape in place of RX50 diskettes, you must
consider:

° The TK25 unit first moves through to the end and rewinds
the cartridge every time that it is loaded to ensure
that the cartridge is at the proper tension. This may
take up to five minutes.

@ This shell command file dumps multiple file systems on
one TK25 cartridge to take advantage of its large capa-
city. Specifically, it dumps each file system as a
separate tape file. To do so, it dumps each file system
(except the last) to the specified special file with no
rewind enabled. For further information, read Section
1.4.4, Magnetic Tapes.

NOTE

To create a TK25 shell command file
that may be used to perform weekly
backups, copy the tk daily.bak file.
Then, use one of the ULTRIX-11 edi-
tors to change the dump levels to
level 0. Finally, use the mv com-
mand to rename the file
tk_weekly.bak.

4.2.3 Restoring Files from TK25 Backups

To restore a file system from TK25 tape, you first must
position the cartridge at the beginning of the appropriate
tape file. To do so, use the dd command and specify the
following keywords:

if= Indicate the TK25 special file name with no rewind
enabled (for example, /dev/nrht0).

of= Indicate /dev/null. The input is discarded.

4-10 System Maintenance

bs= Indicate 20b for an input and output blocking factor
of 20 blocks.

files= Indicate the number of tape files that are to be
skipped.

For example, the following command sequence positions the
cartridge at the beginning of the second tape file:

dd if=/dev/nrht0 of=/dev/null bs=20b files=1

To position the cartridge at the beglnnlng of the third tape
file, substitute files=2 in the previous command sequence.

NOTE

When using the dumpdir command to list
the contents of a tape file, the TK25
unit automatically rewinds the car-
tridge. Before wusing the restor com-
mand, therefore, you must reposition the
cartridge at that tape file.

For further information, read dd{(1) 1in the ULTRIX-11
Programmer's Manual, Volume 1.

4.2.4 Preparing for RC25 File System Backups

If you are using magnetic tape or TK25 cartridge as your
backup media, use the appropriate opser backup file to back
up your RC25 file systems. If you are using RC25 cartrldges
as your backup media, use the backup procedure explained in
Section 4.2.5, Backing Up RC25 File Systems.

Before you can back up your RC25 file systems, however, you
must initialize the backup disk cartridges. If you initial-
ize a sufficient number of cartridges once, you do not have
to repeat this step prior to every backup. DIGITAL recom-
mends that you initialize a minimum of four backup RC25 car-
tridges and label them:

System disk backup A
User disk backup A
System disk backup B
User disk backup B

If you initialize at least four disk cartridges, you can
rotate each set daily.

To initialize the backup cartridges, use this procedure:

1. Shut down multiuser mode by using the opser program and

System Maintenance 4-11

specifying the s command. Once the system 1is 1in
single-user mode, check all file systems on the system
and user disks by specifying the f command. Then, halt
the processor by specifying the opser halt command. For
further information, read Chapter 5, ULTRIX-11 Operator
Services.

Execute the system's hardware boot ROM and wait for the
message:

(<CTRL/C> aborts the auto-boot)

Quickly, abort the autoboot procedure by pressing
<CTRL/C>. Once you receive a boot prompt, type:

Boot: rc(1,0)/sas/rabads

This command boots the stand-alone rabads program from
the system disk (unit 1).

Once running, the rabads program prints this program
banner and command prompt:

ULTRIX-11 MSCP Disk Initialization Program

rabads <help exit drives status table init replace>:
Once you receive this command prompt, 1initialize each
backup cartridges by specifying the init command. When
you specify the init command, the rabads program issues
the following prompts to which you respond:

disk type <ra60 ra80 ra81 rx50 rd51 rd52 rc25>: rc25
unit number <0-7>: 0

Starting block number <0>: 0

Number of blocks to check <50902>: 50902

Rewrite blocks written with "forced error" <y or n> ? y
As it initializes each <cartridge, the rabads program
prints the number of blocks checked, bad blocks found,
and bad blocks replaced. After you have initialized all
cartridges, exit the rabads program by specifying the

exit command. For further information, read Appendix B,

Disk Media Qualification, in the ULTRIX-11 Installation
Guide. o

If you want to back up your RC25 file systems immedi-
ately, proceed to Step 2 in Section 4.2.5, Backing Up
RC25 File Systems, and boot the stand-alone copy program
as explained. If you do not want to back up your RC25

4-12 System Maintenance

file systems immediately, reboot your ULTRIX-11 system
by executing the system's hardware boot ROM. For
further information, read Section 3.3, Autobooting from
the System Disk.

Once you have initialized a sufficient number of RC25 car-
tridges, you are ready to back up your RC25 file systems.

4.2.5 Backing Up RC25 File Systems

To back up your RC25 file systems, you use the stand-alone
copy program to create an image copy of your system and user
disks. DIGITAL recommends that you back up your RC25 file
systems daily and that you also alternate the backup car-
tridges (sets A and B). Depending on your processor type,
this procedure may take up to 45 minutes to complete.

Throughout this procedure, you are repeatedly told to load
and remove RC25 cartridges. When told to load a cartridge,
you should:

Insert the cartridge in the drive

Close the door

Press the RUN switch

Wait for the RUN light to stop flashing

* o o o

B W N -

When you are told to remove a cartridge, you should:

Release the RUN switch

Wait for the RUN light to stop flashing
Press the eject switch

Remove the cartridge

L] . . .

FRY PN

To back up your RC25 file systems, use this procedure:

1. Shut down multiuser mode by using the opser program and
specifying the s command. Once the system 1is in
single-user mode, check all file systems on the system
and user disks by specifying the f command. Then, halt
the processor by specifying the opser halt command.

For further information, read Chapter 5, ULTRIX-11
Operator Services.

2. Execute the system's hardware boot ROM and wait for the
message:

(<CTRL/C> aborts the auto-boot)

Quickly, abort the autoboot procedure by pressing
<CTRL/C>. Once you receive a boot prompt, type:

Boot: rc(1,0)/sas/copy

This command sequence boots the stand-alone copy

System Maintenance 4-13

program from the system disk (unit 1). Once running,
the stand-alone copy program prints the following mes-
sage and prompts for all required information:
ULTRIX-11 Standalone Copy Program
It first prompts for the input and output file specifi-
cations, the record size, and the number of records.
Then, it prompts for verification before beginning to
copy the specified file.
Prepare to copy the system disk to a backup cartridge
by removing the wuser disk from unit 0, loading the
backup system disk cartridge into wunit 0, write-
protecting unit 1, and write-enabling unit 0.

Copy the system disk (unit 1) to the backup system disk
cartridge (unit 0) by answering each prompt:

Input File: rc(1,0)

Output File: rc(0,0)

Record Size <16384 MAX>: 10240

Number of Records: 2540

Ready to copy from rc(1,0) to rc(0,0) <y or n> ? y
The stand-alone copy program takes about five minutes
to copy the system disk to the backup cartridge. When
it is done, the stand-alone copy program prints a com-
pletion message and a continuation prompt:

Copy complete

More files to copy <y or n> ?

Answer yes.

Prepare for the next copy by removing the backup system
disk cartridge from unit 0, loading the user disk into
unit 0, write-protecting wunit 0, and write-enabling
unit 1.

Copy the user disk (unit 0) to unit 1 by answering each
prompt:

Input File: rc(0,0)
Output File: rc(1,0)

Record Size <16384 MAX>: 10240

4-14

10.

System Maintenance

Number of Records: 2540

Ready to copy from rc(0,0) to rc(1,0) <y or n> ? y
The stand-alone copy program takes about five minutes
to copy the the user disk to unit 1. When it is done,
the stand-alone copy program prints a completion mes-
sage and a continuation prompt:

Copy complete

More files to copy <y or n> ?
Answer yes,
Prepare for the next copy by removing the user disk
from wunit 0, loading the backup user disk cartridge
into wunit 0, write-protecting wunit 1, and write-
enabling unit 0.

Copy unit 1 to the backup user disk cartridge (unit 0)
by answering each prompt:

Input File: rc(1,0)

Qutput File: rc(0,0)

Record Size <16384 MAX>: 10240

Number of Records: 2540

Ready to copy from rc(1,0) to rc(0,0) <y or n> ? y
The stand-alone copy program takes about five minutes
to copy unit 1 to the backup user disk cartridge. When
it is done, the stand-alone copy program prints a com-
pletion message and a continuation prompt:

Copy complete

More files to copy <y or n> ?
Answer yes.
Prepare for the next copy by removing the backup user
disk cartridge from unit 0, loading the backup system
disk cartridge into unit 0, write-protecting unit 0,

and write-enabling unit 1.

Copy the backup system disk cartridge (unit 0) to wunit
1 by answering each prompt:

Input File: rc(0,0)

1.

12.

System Maintenance 4-15

Output File: rc(1,0)

Record Size <16384 MAX>: 10240

Number of Records: 2540

Ready to copy from rc(0,0) to rc(1,0) <y or n> ? y
The stand-alone copy program takes about five minutes
to copy the backup system disk to unit 1. When it is
done, the stand-alone copy program prints a completion
message and a continuation prompt:

Copy complete

More files to copy <y or n> ?

Answer no.

Having recopied the system disk prepare to reboot by
removing the backup system disk cartridge from unit 0,
loading the user disk into unit 0, write-enabling unit
1 and unit 0.

Reboot your ULTRIX-11 system by executing your system's
hardware boot ROM. For further information, read Sec-
tion 3.3, Autobooting from the System Disk.

4.2.6 Restoring Individual Files from RC25 Backups

To restore individual files from an RC25 system or user disk

backup, you use the cp command to copy the files from the
RC25 backup to a temporary directory.

To restore individual files from an RC25 backup, use this
procedure:

1.

Shut down multiuser mode by using the opser program and
specifying the s command. Once the system 1is 1in
single-user mode, check all file systems on the system
and user disks by specifying the f command. Escape the
opser program by specifying the !sh command. For

further information, read Chapter 5, ULTRIX-11 Operator
Services.

Prepare to restore the files by removing the user disk
from unit 0, loading the backup disk cartridge into unit
0, write-protecting unit 0, and write-enabling unit 1.

Because an RC25 backup is a disk image copy, you must
mount each file system containing files that are to be
restored, one at a time, onto the /mnt directory. You
do so Dby using the mount command with the -r option
specified. Once a file system is accessible, copy the

4-16 System Maintenance

files by using the c¢p command. After the files are
copied from each file system, unmount that file system
by wusing the umount command. Repeat this step until you
have copied all the files that are to be restored. For
further information, read cp(1) and mount(1M) in the
ULTRIX-11 Programmer's Manual, Volume 1.

4, Prepare to restart multiuser mode by removing the backup
cartridge from wunit 0, loading the user disk into unit
0, and write-enabling unit 0 and unit 1.

5. Return to the opser program by pressing <CTRL/D>. Once

you receive an opr> prompt, restart multiuser mode by
specifying the r command.

6. Once the system is in multiuser mode, copy the restored
files to the directories that they belong in by using
the cp command. '

4.2.7 Restoring the System Disk from RC25 Backups

To restore the system disk from an RC25 system disk backup,
you use the stand-alone copy program to copy the backup
image to the system disk. Throughout this procedure, you
are repeatedly told to load and remove RC25 cartridges.

When told to load a cartridge, you should:

1. Insert the cartridge in the drive

2. Close the door

3. Press the RUN switch

4. Wait for the RUN light to stop flashing

When you are told to remove a cartridge, you should:

Release the RUN switch

Wait for the RUN light to stop flashing
Press the eject switch

Remove the cartridge

e o o o

D wWN -

To restore your system disk, use this procedure:

1. Shut down multiuser mode by using the opser program and
specifying the s command. Once the system 1is in
single-user mode, halt the processor by specifying the
opser halt command. For further information, read
Chapter 5, ULTRIX-11 Operator Services.

2. Prepare to restore the system disk by removing the user
disk from wunit 0, loading the backup system disk car-
tridge into unit 0, write-protecting unit 0, and write-
enabling unit 1.

3. Execute the system's hardware boot ROM and wait for the

System Maintenance 4-17

message:
(<CTRL/C> aborts the auto-boot)

Quickly, abort the autoboot procedure by pressing
<CTRL/C>. Once you receive a boot prompt, type:

Boot: rc(0,0)/sas/copy
This command sequence boots the stand-alone copy program
from the system disk (unit 0). Once running, the
stand-alone copy program prints the following message
and prompts for all required information:

ULTRIX-11 Standalone Copy Program
It first prompts for the input and output file specifi-
cations, the record size, and the number of records.
Then, it prompts for verification before beginning to
copy the specified file.

Copy the backup system disk cartridge (unit 0) to unit 1
by answering each prompt:

Input File: rc(0,0)

Output File: rc(1,0)

Record Size <16384 MAX>: 10240

Number of Records: 2540

Ready to copy from rc(0,0) to rc(1,0) <y or n> 2 y
The stand-alone copy program takes about five minutes to
copy the backup system disk to unit 1. When it is done,
the stand-alone copy program prints a completion message
and a continuation prompt:

Copy complete

More files to copy <y or n> ?

Answer no.

Having restored the system disk prepare to reboot by
removing the backup system disk cartridge from unit 0,

loading the user disk into unit 0, write-enabling unit 1
and unit 0.

Reboot your ULTRIX-11 system by executing your system's
hardware boot ROM. For further information, read Sec-

tion 3.3, Autobooting from the System Disk.

4-18 System Maintenance

4.2.8 Restoring the User Disk from RC25 Backups

To restore the user disk from an RC25 user disk backup, you
use the stand-alone copy program. Throughout this pro-
cedure, you are repeatedly told to load and remove RC25 car-
tridges.

When told to load a cartridge, you should:

1. Insert the cartridge in the drive

2. Close the door

3. Press the RUN switch

4, Wait for the RUN light to stop flashing

When you are told to remove a cartridge, you should:

Release the RUN switch

Wait for the RUN light to stop flashing
Press the eject switch

Remove the cartridge

B wWN
L] L] . .

To restore the user disk from an RC25 backup, use this pro-
cedure:

1. Shut down multiuser mode by using the opser program and
specifying the s command. Once the system 1is in
single-user mode, check all file systems on the system
and user disks by specifying the f command. Then, halt
the processor by specifying the opser halt command.
For further information, read Chapter 5, ULTRIX-11
Operator Services.

2. Execute the system's hardware boot ROM and wait for the
message:

(<CTRL/C> aborts the auto-boot)

Quickly, abort the autoboot procedure by pressing
<CTRL/C>. Once you receive a boot prompt, type:

Boot: rc(1,0)/sas/copy

This command sequence boots the stand-alone copy pro-
gram from the system disk (unit 1). Once running, the
stand-alone copy program prints the following message
and prompts for all required information:

ULTRIX-11 Standalone Copy Program

It first prompts for the input and output file specifi-
cations, the record size, and the number of records.
Then, it prompts for verification before beginning to
copy the specified file.

System Maintenance 4-19

Prepare to copy the system disk to a backup cartridge
by removing the wuser disk from unit 0, loading the
backup system disk cartridge into wunit 0, write-
protecting unit 1, and write-enabling unit 0.

Copy the system disk (unit 1) to the backup system disk
cartridge (unit 0) by answering each prompt:

Input File: rc(1,0)

Output File: rc(0,0)

Record Size <16384 MAX>: 10240

Number of Records: 2540

Ready to copy from rc(1,0) to rc(0,0) <y or n> ? y
The stand-alone copy program takes about five minutes
to copy the system disk to the backup cartrldge When
it is done, the stand-alone copy program prints a com-
pletion message and a continuation prompt:

Copy complete

More files to copy <y or n> ?
Answer yes.
Prepare for the next copy by removing the backup system
disk cartrldge from wunit 0, loading the backup user
disk into unit 0, write-protecting unit 0, and write-

enabling unit 1.

Copy the backup user disk (unit 0) to unit 1 by answer-
ing each prompt:

Input File: rc(0,0)

Output File: rc(1,0)

Record Size <16384 MAX>: 10240

Number of Records: 2540

Ready to copy from rc(0,0) to rc(1,0) <y or n> ? y
The stand-alone copy program takes about five minutes
to copy the the backup user disk to unit 1. When it is
done, the stand-alone copy program prints a completion

message and a continuation prompt:

Copy complete

4-20

10.

System Maintenance

More files to copy <y or n> ?
Answer yes.
Prepare for the next copy by removing the backup wuser
disk cartridge from unit 0, loading the user disk car-
tridge into wunit 0, write-protecting wunit 1, and
write-enabling unit 0.

Copy unit 1 to the user disk cartridge (unit 0) by
answering each prompt:

Input File: rc(1,0)

Output File: rc(0,0)

Record Size <16384 MAX>: 10240

Number of Records: 2540

Ready to copy from rc(1,0) to rc(0,0) <y or n> ? y
The stand-alone copy program takes about five minutes
to copy unit 1 to the user disk cartridge. When it 1is
done, the stand-alone copy program prints a completion
message and a continuation prompt:

Copy complete

More files to copy <y or n> ?
Answer yes.
Prepare for the next copy by removing the user disk
cartridge from wunit 0, loading the backup system disk
cartridge into unit 0, write-protecting wunit 0, and

write-enabling unit 1.

Copy the backup system disk cartridge (unit 0) to wunit
1 by answering each prompt:

Input File: rc(0,0)

Output File: rc(1,0)

Record Size <16384 MAX>: 10240

Number of Records: 2540

Ready to copy from rc(0,0) to rc(1,0) <y or n> ? y
The stand-alone copy program takes about five minutes

to copy the backup system disk to unit 1. When it is
done, the stand-alone copy program prints a completion

1.

12.

System Maintenance 4-21

message and a continuation prompt:
Copy complete
More files to copy <y or n> ?

Answer no.

Having recopied the system disk prepare to reboot by
removing the backup system disk cartridge from unit 0,
loading the user disk into unit 0, write-enabling wunit
1 and unit 0.

Reboot your ULTRIX-11 system by executing your system's
hardware boot ROM. For further information, read Sec-
tion 3.3, Autobooting from the System Disk.

4-22 System Maintenance

4.3 Dynamic Bad Blocks on MSCP Disks

During an ULTRIX-11 installation, you qualify your disk
media to ensure that all bad blocks are replaced before each
disk unit is used by the ULTRIX-11 system. In addition,
during normal operations, the MSCP disks (RX50, RD51, RD52,
RC25, RA60, RA80, RA81) report dynamic bad blocks.

After initialization, the MSCP disks report new bad blocks
by entering an error record in the system error log file.
These error records can be identified by the following
flags:

Bad Block Reported Indicates that the reported 1logical
block either has gone bad or is in the
process of going bad. This flag
occurs when a read operation on that
block results either in an unrecover-
able error or in a recoverable error
that warrants attention. The reported
block number is relative to the start
of the physical disk unit.

Bad Block Unreported Indicates that more than one bad block
was encountered. This flag occurs
when a read operation was performed on
multiple Dblocks. The reported block
number is relative to the start of the
physical disk unit and is that of the
first bad block. A second read,
beginning at the block after the
reported block, is required to find
the unreported block numbers.

Force Error Modifier Indicates that, during a replacement
operation, the data from the reported
block could not be successfully
transferred. During a bad block
replacement operation, the data is
first read from the bad block and then
written to the replacement block.
This flag occurs when valid data could
not be read from the bad block and
warns that the data written to the
replacement block may be corrupted.

To check for dynamic bad blocks, use the elp command and
specify the -s option to print a summary of the error log
file. For further information, read Section 8.3.1, Summary
and Full Error Reports.

When this report is printed, look for errors on MSCP disks.
If there are any, print a full report for the errors on each
MSCP disk. Specifically, use the elp program and specify

System Maintenance 4-23

the -d and -et options to limit the report to the appropri-
ate time range and MSCP disk. For further information, read
Section 8.3.3, Error Reports by Error Type, and Section
8.3.5, Error Reports by Date and Time.

For example, this command sequence prints a full report for
the any errors that occurred on RA60/RA80/RA81 disks between
12:00 am, January 1, 1984 and 11:59 pm, January 2, 1984:

elp -ra -d 840101000000 840102115959

NOTE

You can check the error log file for oc-
currences of dynamic bad blocks on MSCP
disks at any time. DIGITAL recommends
that you or the system operator check
the error log file each time that mul-
tiuser mode is shut down to back up your
file systems.

Although the exact procedure that you use to correct bad
blocks is disk dependent, most involve using the stand-alone
rabads program. You can use the rabads program to replace
one block, to scan the disk and replace all bad blocks, or
to rewrite a replacement block. The rabads program provides
on-line help information. For further information, read
Appendix G, Rabads Program Example.

NOTE

After the ULTRIX-11 system has been in-
stalled, you can use the rabads init
command to replace bad blocks on your
system disk. When scanning either the
entire disk or a specified section, the
rabads program reads the existing data
from the disk. It does not write a test
pattern.

4.3.1 Correcting Bad Blocks on RX50 Disks

Because the RX50 has no means of replacing bad blocks, the
diskette must be replaced if a dynamic bad block is
reported. If the diskette contains data, therefore, you
must copy the data on to another diskette.

Depending on the amount of data, you either can make an
image copy of the diskette or can copy individual files from

4-24 System Maintenance

it. If the image copy fails, try it again. If it still
fails after several tries, then you must copy each file
individually. By doing so, you will minimize the amount of
data that will be lost.

4.3.2 Correcting Bad Blocks on RD51/RD52 Disks

The RQDX1 disk controller provides controller initiated bad
block replacement. It automatically detects and replaces
dynamic bad blocks. When it does so, the RQDX1 controller
logs an error record containing the "Bad Block Reported"”
flag. If the read of the bad block could not be success-
fully completed, the controller sets the "Force Error Modif-
ier" in the replacement block. This flag warns that the
data written to the replacement block may be corrupted.

To clear the "Force Error Modifier,"” you must rewrite the
replacement block. To do so, use this procedure:

1. Shut down multiuser mode by using the opser program and
specifying the s command. Once the system 1is in
single-user mode, check all filke systems on the system
and user disks by specifying the f command. Escape the
opser program by specifying the !sh command. For
further information, read Chapter 5, ULTRIX-11 Operator
Services.

2. Once you receive a shell prompt, determine the bad
block's inode number by using the icheck command with
the -b option specified. Then, determine the
corresponding file name by using the ncheck command with
the -i option specified. For further information, read
icheck(1M) and ncheck(1M) in the ULTRIX-11 Programmer's
Manual, Volume 1.

3. Mount the file system that contains the file by using
the mount command. Once the file system is mounted,
determine the amount of corruption by attempting to read
through the file. If possible, correct corrupted data
by restoring the file from backup media. For further
information, read mount(1M) and restor(1M) 1in the
ULTRIX-11 Programmer's Manual, Volume 1.

4. Once the data has been sufficiently restored, quit the
shell and return to the opser program by pressing
<CTRL/D>. Once receiving an opr> prompt, halt the pro-
cessor the processor by specifying the halt command.

5. Execute the system's hardware boot ROM and wait for the
message:

(<CTRL/C> aborts the auto-boot)

Quickly, abort the autoboot procedure by pressing

System Maintenance 4-25

<CTRL/C>. Once you receive a boot prompt, type:
Boot: rd(0,0)/sas/rabads

This command boots the stand-alone rabads program from
the system disk (unit 0). Once running, the rabads pro-
gram prints this program banner and command prompt:

ULTRIX-11 MSCP Disk Initialization Program
rabads <help exit drives status table init replace>:

Once you receive this command prompt, force the replace-
ment block to be rewritten by specifying the replace
command. This clears the "Force Error Modifier" in the
replacement block. The rabads program provides on-line
help information. Once the bad blocks have been
replaced, exit the rabads program by specifying the exit
command. For further information, read Appendix G,
Rabads Program Example.

6. Reboot your ULTRIX-11 system by executing your system's
hardware boot ROM. For further information, read Sec-
tion 3.3, Autobooting from the System Disk.

4.3.3 Correcting Bads Blocks on RC25/RA60/RA80/RA81 Disks

When the controllers for RC25, RA60, RA80, and RA81 disks
detect dynamic bad blocks, they log an error record with the
"Bad Block Reported" flag set. By checking the system error
log file regularly, you then can determine not only when bad
blocks occur but also the bad block number. On learning of
a dynamic bad block on these MSCP disks, you must replace
it.

To replace a dynamic bad block on a RC25, RA60, RA80, and
RA81 disk, use this procedure:

1. Shut down multiuser mode by using the opser program and
specifying the s command. Once the system 1is in
single-user mode, halt the processor by specifying the
halt command. For further information, read Chapter 5,
ULTRIX-11 Operator Services.

2. Execute the system's hardware boot ROM and wait for the
message:,

(<CTRL/C> aborts the auto-boot)

Quickly, abort the autoboot procedure by pressing
<CTRL/C>. Once you receive a boot prompt, type one of
these commands:

Boot: rc(1,0)/sas/rabads (RC25)

4-26 System Maintenance

Boot: ra(0,0)/sas/rabads (RA60/RA80/RA81)

This command boots the stand-alone rabads program from
the system disk. Once running, the rabads program
prints this program banner and command prompt:

ULTRIX-11 MSCP Disk Initialization Program
rabads <help exit drives status table init replace>:

Once you receive this command prompt, replace the
reported bad block by specifying the replace command.
The rabads program provides on-line help information.
You may wuse the rabads replace command to replace one
bad block. You also may use the rabads init command to
scan either the entire disk or a specified area and
replace any bad blocks found. Once the bad blocks have
been replaced, exit the rabads program by specifying the
exit command. For further information, read Appendix G,
Rabads Program Example.

3. Reboot your ULTRIX-11 system by executing your system's
hardware boot ROM. For further information, read Sec-
tion 3.3, Autobooting from the system disk.

NOTE

If a rabads replacement operation is
interrupted (system crash or power
failure), the disk may be left in an
unusable state. When this occurs,
you must reboot the rabads program
and reissue the replacement command.
The rabads program automatically
provides instructions for restarting
the interrupted replacement opera-
tion.

If the "Force Error Modifier" flag is set during a replace-
ment operation, the bad block was replaced, but the rabads
program could not verify that the data written was uncor-
rupted. Consequently, you must verify the data and clear
the "Force Error Modifier" flag by rewriting the replacement
block. To do so, use this procedure:

1. Shut down multiuser mode by using the opser program and
specifying the s command. Once the system 1is 1in
single-user mode, check all file systems on the system
and user disks by specifying the f command. Escape the
opser program by specifying the 1!sh command. For
further information, read Chapter 5, ULTRIX-11 Operator
Services.

System Maintenance 4-27

Once you receive a shell prompt, determine the bad
block's 1inode number by using the icheck command with
the -b option specified. Then, determine the
corresponding file name by using the ncheck command with
the -i option specified. For further information, read
icheck(1M) and ncheck(1M) in the ULTRIX-11 Programmer's
Manual, Volume 1.

Mount the file system that contains the file by using
the mount command. Once the file system is mounted,
determine the amount of corruption by attempting to read
through the file. If possible, correct corrupted data
by restoring the file from backup media. For further
information, read mount(1M) and restor(1M) in the
ULTRIX-11 Programmer's Manual, Volume 1.

Once the data has been sufficiently restored, quit the
shell and return to the opser program by pressing
<CTRL/D>. Once receiving an opr> prompt, halt the pro-
cessor by specifying the halt command.

Execute the system's hardware boot ROM and wait for the
message:

(<CTRL/C> aborts the auto-boot)

Quickly, abort the autoboot procedure by pressing
<CTRL/C>. Once you receive a boot prompt, type one of
these commands:

Boot: rc(1,0)/sas/rabads (RC25)
Boot: ra(0,0)/sas/rabads (RA60/RA80/RA81)

This command boots the stand-alone rabads program from
the system disk. Once running, the rabads program
prints this program banner and command prompt:~

ULTRIX-11 MSCP Disk Initialization Program
rabads <help exit drives status table init replace>:

Once you receive this command prompt, force the replace-
ment block to be rewritten by specifying the replace
command. This clears the "Force Error Modifier"” in the
replacement block. The rabads program provides on-line
help information. Once the bad blocks have been
replaced, exit the rabads program by specifying the exit
command. For further information, read Appendix G,
Rabads Program Example.

Reboot your ULTRIX-11 system by executing your system's

hardware boot ROM. For further information, read Sec-
tion 3.3, Autobooting from the System Disk.

4-28 System Maintenance

4.4 Monitoring General System Activity

As system manager, you should monitor general system perfor-

mance on a regular basis. You can use these ULTRIX-11 com-
mands to monitor system performance:

ac Reports login accounting information.

badstat Reports disk bad block information.

bufstat Reports I/0 buffer cache usage.

iostat Reports I1/0 transfer information.

memstat Reports system memory usage.

ps Reports active process information.

pstat Reports system table information.

sa Reports system accounting information.

who Reports either the names of those wusers that
currently are logged in or a login history.

In addition, the ULTRIX-11 error logging system captures

information about device errors and saves it in the error

log file. When a fatal error occurs, a message is printed

on the console terminal, and the user process is notified

with a fatal error return.
is entered
process is not notified.
often

da message

rate

When a recoverable error occurs,
in the error log file, but the user
Because an increased soft error

precedes a hardware failure, you should examine

the error log file on a regular basis.

For further information, read Chapter 8, ULTRIX-11 Error
Logger as well as ac(1M), badstat(1M), bufstat(1M),
iostat(1M), memstat(1M), ps(1), pstat(1M), sa(1M), and

who(1) in the ULTRIX-11 Programmer's Manual, Volume 1.

System Maintenance 4-29

4.5 Creating User Accounts

As system manager, you should use this procedure to create a
new user account:

Edit /etc/passwd file and create a login entry
Create user's home directory

Assign user's login password

Create required shell start-up files

4.5.1 Editing the /etc/passwd File

For each new user, you must create a new entry in the
/etc/passwd file. Each entry in /etc/passwd contains infor-
mation that the system uses in verifying 1login permission
and in establishing both the user's environment and initial
process. Each entry has this format:

name:password:userID:groupID:finger:directory:shell

name Contains the user's login name (maximum eight
lowercase characters). The system uses this
name when verifying login permission.

password Contains the user's encrypted password, if used.
The system uses this password in verifying login
permission. When creating a new entry, leave
this field blank. Later, you can assign the
user's login password with the passwd command.

userID Contains the user's unique wuser identification
number. Although the user specifies a name when
logging in, the system translates this name to
this ID number and uses it both in identifying
the user's processes and in determining owner
access permission to files.

grouplID Contains the user's group identification number.
The system wuses this ID number in determining
group access permission to files. To form user
groups, use the newgrp command and /etc/group
file. For further information, read newgrp(1)
and group(5) in the ULTRIX-11 Programmer's
Manual, Volume 1. -

finger Contains information that is used by the finger
command. When creating a new entry, enter the
user's full name. By using the chfn command,

the wuser later may supply additional informa-
tion.

directory Contains the pathname to the wuser's home or
login directory. The system uses this pathname

4-30 System Maintenance

in placing the user in that directory during the
login process. If you do not specify a direc-
tory pathname, the system automatically places
that user at the root directory of the file sys-
tem, /.

shell Contains the pathname of the user's initial pro-
cess. The system uses this pathname in invoking
the designated program at the end of the login
process. Although the pathname of any program
may be specified, the initial process normally
is a 1login shell (/bin/sh or /bin/csh). If a
pathname is not specified, the system automati-
cally invokes the Bourne shell (/bin/sh).

The following sample entries from /etc/passwd are for a
demonstration account and two user accounts:

demo::10:20:Demo Account:/usr/demo:/usr/local/demo.program
smith::20:30:Jim Smith:/user/smith:

jones::21:30:Ed Jones:/user/jones:/bin/csh

The login name for the first entry is demo. A login pass-
word is not assigned. The assigned user and group IDs are
10 and 20, respectively. The assigned finger information is
Demo Account. The assigned home directory is /usr/demo
(/usr file system), and the assigned initial process 1is a
demo program in /usr/local.

The login name for the second entry is smith. Again, a
login password is not assigned. The assigned user and group
IDs are 20 and 30, respectively. The assigned finger infor-
mation 1is Jim Smith. The assigned home directory is
/user/smith (/user file system), and the assigned initial
process is the Bourne shell (default).

The login name for the third entry is jones. Again, a login
password is not assigned. The assigned user and group IDs
are 21 and 30, respectively. (Both Smith and Jones belong
to the same group and, therefore, have group access permis-
sion to the same files.) The assigned finger information is
Ed Jones. The assigned home directory is /user/jones (/user
file system), and the assigned initial process 1is the C
shell.

4.5.2 Creating a User Home Directory

Having created a new entry in /etc/passwd, create a direc-
tory in the specified file system and then change its owner
to the appropriate user.

First, ensure that the file system where the wuser's home
directory 1is to be located is mounted. If the system is in
single-user mode, type this command sequence:

System Maintenance 4-31

/etc/mount -a

This command mounts all the file systems listed in the
/etc/fstab file. If the system is in multiuser mode
already, these file systems should have been mounted during
the transition from single-user to multiuser mode.

Then, create the user's home directory and change its
assigned userID and groupID to that user. The following
example lists the sequence of commands that would be entered
for the three wusers cited above in the sample /etc/passwd
file.

cd /usr

mkdir demo

chog demo demo

cd /user

mkdir smith jones
chog smith smith
chog jones jones
cd /

3 I TN

If you created user home directories while the system was in
single-user mode, you should unmount all file systems before
invoking multiuser mode. To do so, type this command
sequence before pressing <CTRL/D>:

/etc/umount -a

For further information, read chog(1) and mkdir(1) in the
ULTRIX-11 Programmer's Manual, Volume 1.

4.5.3 Assigning a User Password

Having created the user's home directory, next assign a
login password to each new account. For each new account,
log in as that user (type the appropriate login name).

Once logged in as that wuser, wuse the passwd command to
assign a login passwd (6 character minimum). The passwd
command prompts for the password twice for verification. If
your responses match, the passwd command assigns the new
encrypted password to the /etc/passwd entry. If your
responses do not match, the passwd command does not assign
the password.

Before new users attempt to log in, you should tell them
their assigned login password. Once logged in, they can
change their login password by using the passwd command.
For further information, read passwd(1) in the ULTRIX-11
Programmer's Manual, Volume 1.

4-32 System Maintenance

4.5.4 Creating Shell Startup Files

Having assigned a password for each new account, next create
the required shell start-up files. Upon executing, the
login shell looks in the wuser's home directory for its
appropriate start-up files and uses this information to set
up the user's shell environment.

If the user is using the Bourne shell (/bin/sh), you should
create a .profile in the user's home directory. If the user
is using the C shell (/bin/csh), you should create a .cshrc
and .login in the user's home directory. For further infor-
mation, read csh(1) and sh(1) in the ULTRIX-11 Programmer's
Manual, Volume 1. 1In addition, read An Introduction to the
C Shell and An Introduction to the UNIX Shell in the
ULTRIX-11 Programmer's Manual, Volume 2A.

System Maintenance 4-33

4.6 Setting Up User File Systems

As system manager, you determine the quantity, size, and
location of your user file systems. The user file system
layout is based primarily on the number and type of disks
available as well as the needs of your user community.

During a system generation, you configure user file systems
on logical disk units. For nonpartitioned disks, a logical
unit is a physical disk unit. For partitioned disks, a log-
ical unit is one of the subunits (pseudodisks) on the physi-
cal disk unit. For further information, read Section 1.3,
Logical Partitioning of Disks.

The following sections discuss the issues that you should
consider when setting up user file systems.

4.6.1 Sysgen of User Disks

During a system generation, you should ensure that all disk
units that are to contain file systems are configured into
the ULTRIX-11 kernel. In addition, you have to create the
special files for each disk unit.

Normally, these tasks are done during an ULTRIX-11 installa-
tion. If the disk units have not been configured into the
kernel, however, read Chapter 2, ULTRIX-11 System Genera-

tion, and follow the procedure discussed in Section 2.6.1,
Support Files for Disks.

4.6.2 Qualifying Disk Media

Before locating a user file system on any disk, you should
ensure that the disk media is acceptable for ULTRIX-11 sys-
tem use. Specifically, you have to determine the bad blocks
on each disk. For a description of the disk media qualifi-
cation procedure, read Appendix B, Disk Media Qualification
Procedures, in the ULTRIX-11 Installation Guide.

4.6.3 Determining the Number of User File Systems

You should create a file system for each group of users that
either works on a common project or must share files. If
you use nonpartitioned disks, each physical unit can hold
exactly one file system. Therefore, the number of file Sys-
tems that you set up is limited to the number of disk units
that you have available. If you use partitioned disks, how-
ever, each physical unit can hold more than one file system,

4-34 System Maintenance

NOTE

For partitioned disks, DIGITAL recom-
mends that you set up several smaller
user file systems instead of one large,
comprehensive user file system.

4.6.4 Determining the Size of User File Systems

For nonpartitioned disks, you should set the size of each
user file system to that of the physical unit (disk size).
If you set the size of a user file system smaller than that
of 1its physical unit, you waste the remaining space on that
physical disk unit.

For partitioned disks, you should set the size of each user
file system to the size of the logical unit (partition
size). If you set the size of a user file system smaller
than that of 1its logical wunit, you waste the remaining
space.

For further information, read Appendix D, Disk Logical Par-
tition Sizes.

NOTE

When setting the size of file systems on
RC25, RD51/RD52, and RA60/RA80/RA81
disks, pay special attention to the
number of blocks that are reserved for a
maintenance area. To avoid overstepping
this area when setting the sizes of your
user file system on these disks, use the
rasize command to determine the location
and sizes available. For further infor-
mation, read rasize(1M) in the ULTRIX-11
Programmer's Manual, Volume 1.

4.6.5 Determining the Location of User File Systems

For nonpartitioned disks, you can place the user file sys-
tems on any disk but the system disk. For systems on RLO1s,
units 0 and 1 are reserved for the system disk. For systems
on RC25s, unit 1 normally is the system disk. For all other
systems, unit 0 normally is the system disk.

For partitioned disks, the system normally resides on the
first three logical partitions:

System Maintenance 4-35

° Partition 0 for the root file system
° Partition 1 for the swap area
° Partition 2 for the /usr file system

Therefore, for partitioned disks, you should locate the user
file systems either on a remaining system disk partition or
on any desired partition of a nonsystem disk wunit. For
further information on locating your user file systems, read
Appendix D, Disk Logical Partition Sizes.

NOTE
Partitioned disks have several different
configurations, some of which overlap.

Do create separate file systems on over-
lapping partitions.

4.6.6 Making File Systems

As system manager, you should create the ULTRIX-11 file sys-
tem structure on each logical disk unit that holds a file
system. To make a file system on an unused disk partition,
use the mkfs command. In response to the superuser prompt,
type this command sequence:

/etc/mkfs /dev/rxxnp size disk cpu fsname volname

XX Specifies the ULTRIX-11 logical disk name. For a

T list of logical names, read Appendix C, ULTRIX-11
Device Names and Major Device Numbers.

n Specifies the disk unit number.

P Specifies the disk partition number.

size Specifies the size of the partition in blocks. For
further information, read Appendix D, Disk Logical
Partition Sizes.

disk Specifies the generic disk name.

cpu Specifies the last two digits of the processor

type.

fsname Specifies the name (6-character maximum) that is to
be recorded in the file system's superblock.

volname Specifies the volume 1label (6-character maximum)
that 1is to be recorded in the file system's super-
block.

4-36 System Maintenance

The following command sequence creates a file system on an
RLO2 disk, unit 1, and a PDP-11/24:

/etc/mkfs /dev/rrl17 20480 rl02 24 user usrdsk

The mkfs command uses the generic disk name and proccessor
type in determining the proper file system interleave fac-
tors to optimize I/0 throughput. For further information,
read mkfs(1M) in the ULTRIX-11 Programmer's Manual, Volume
1.

CAUTION

When you use the mkfs command to make a
new file system on a disk partition that
already contains a file system, you des-
troy all the existing data on that file
system. Therefore, when making a new
file system, either verify that the disk
partition is unused or dump the existing
data to tape before running the mkfs
command. To verify that a disk parti-
tion does not already contain a file
system, use the fsck command.

4.6.7 Mounting and Unmounting File Systems

To mount a file system, use the mount command. In response
to the superuser prompt, type this command sequence:

/etc/mount special directory

special Specifies the block-mode special file name for
the logical unit that contains the file system.

directory Specifies the directory name on which the file
system is to be mounted.

When you run the mount command without any arguments, the
system 1lists those file systems that currently are mounted.
The following example mounts a file system contained on an
RL0O2, unit one, on the /user directory.

/etc/mount /dev/rl17 /user

To unmount a file system, use the umount command. In

response to the superuser prompt, type this command
sequence:

/etc/umount special

System Maintenance 4-37
special Specifies the block-mode special file name for
the logical unit that contains the file system.

The following example unmount a file system contained on an
RL0O2, unit one:

/etc/umount /dev/rl17

For further information, read mount(1M) and mtab(5) 1in the
ULTRIX-11 Programmer's Manual, Volume 1.

4.6.8 Editing the /etc/fstab File

The /etc/fstab file contains information that is required by
all system programs and commands that access file systems by
name. Each entry in /etc/fstab contains information in the
following format that describes a file system:

special:directory:mode

special Specifies the block-mode special file name for
the logical unit that contains the file system.

directory Specifies the directory name on which the file
system is to be mounted.

mode Specifies how to mount the file system. For
example, rw 1indicates read/write access; ro
indicates read only status; and xx indicates
ignore this entry.

The following are sample /etc/fstab entries for four file
systems:

/dev/hp00:/:rw
/dev/ml0:/tmp:rw
/dev/hp03:/usr:rw
/dev/hp22:/archive:ro

This file system table includes the root file system (hp00)
mounted read/write, the /tmp file system (ml0) mounted
read/write, the /usr file system (hp03) mounted read/write,
and the /archive file system (hp22) mounted read only.

When you use the mount and umount commands with the -a
option, they read /etc/fstab and either mount or unmount all
listed file systems. When the -a option is specified, the
mount command reads and processes the entries in /etc/fstab
in the order that they appear (first to last). Conversely,
when the -a option is specified, the umount command reads
and processes the entries in the reverse order (last to
first). Therefore, the order in which you specify the
/etc/fstab entries is important. For the mount and umount

4-38 System Maintenance

programs to nest properly, the entries must appear in a log-
ically correct sequence.

The following sample /etc/fstab table 1indicates that the
/usr file system is to be mounted before the /usr/staff file
system is mounted on it and that the /usr/staff file system
is to be unmounted before the /usr file system is unmounted:

/dev/hp00:/:rw

.

/dev/hp13:/usr:rw
/dev/hp12:/usr/staff:rw

This sample is in the logically correct sequence. If the
"order of the last two entries were reversed, however, both
the mount and umount commands would fail.

NOTE

Normally, the multiuser start-up file,
/etc/rc, automatically mounts all file
systems listed in the /etc/fstab file
during the transition from single-user
mode to multiuser mode. For further in-
formation, read Section 1.2.4, Multiuser
Mode.

System Maintenance 4-39

4.7 Enabling User Terminals

To make a terminal line available for interactive use, you
should:

Configure the device driver into the kernel
Create the required special file

Verify the TTY structure assignment

Enter terminal type in the /etc/ttytype file
Enable terminal line in the /etc/ttys file

4.7.1 Configuring Communications Device Drivers

The device driver for the terminal 1line's communications
interface (for example, KL11, DL11, DH11, DHU11, Dz11,
DHV11, DZQ11, DZV11) must be configured into the ULTRIX-11

kernel. If the driver is not already configured into the
kernel, you should:

Run the sysgen program

Create a new configuration file
Make a new kernel

Install and boot the new kernel

For more specific information, read Chapter 2, ULTRIX-11
System Generation.

4.7.2 Creating Communications Interface Special Files

Using both a port on the communications interface and the
device driver, the communications device special files let
the operating system access terminal lines. In turn, each
terminal line uses both a port on the communications inter-
face and the device driver. If the required special files
do not already exist, you must create them.

For detailed information about communications special files,
read Section 2.6.3, Support Files for TTY Interfaces, and
Section 1.4 in the ULTRIX-11 Installation Guide.

4.7.3 Verifying TTY Structures

The ULTRIX-11 kernel contains a pool of TTY data structures.
Each TTY structure provides information that the operating
system requires to support any communications interface port
that uses a general terminal interface.

Since the boot program automatically assigns a TTY structure
to each port during system initialization, you do not need
to assign TTY structures. To list the assigned TTY struc-
tures, wuse the tss command. In response to the shell
prompt, type:

S /etc/tss

4-40 System Maintenance

The output from this command can be helpful when debugging a
user-written device driver that uses the general terminal
interface.

4.7.4 Editing the /etc/ttytype File

The /etc/ttytype file identifies the terminal type that is
connected to a communications interface port. Specifically,
this file associates the generic name of the terminal with
its logical, special file name for the communications inter-
face port.

The /etc/ttytype file has this format:

type tty##

type Specifies the terminal type.

tty## Specifies the special file name for the communica-
tions interface port.

For example, the following are sample entries from the
/etc/ttytype file:

1a120 console
vt100 tty00
vt52 tty01
dialup ttyd0

When a wuser logs in, the 1login program reads the
/etc/ttytype file and sets the user's TERM environmental
variable to the designated terminal type. For example,
using the entry for tty01 above, the login program sets:

TERM = vt100

If the terminal type is not defined 1in /etc/ttytype, the
login program sets the TERM variable to type "unknown."

To operate properly, some programs (for example, the vi edi-
tor) require that the TERM variable be set. Therefore, you
should edit /etc/ttytype and add an entry that identifies
the type of each newly configured terminal. For further
information about environmental variables, read environ(5)
in the ULTRIX-11 Programmer's Manual, Volume 1.

4.7.5 Editing the /etc/ttys File

The operating system uses the /etc/ttys file both to enable
and disable terminal 1lines as well as to set terminal
characteristics. Each entry in /etc/ttys lists 1information
for one terminal line and has this format:

System Maintenance 4-41

nctty##

n Specifies whether the terminal is to be enabled
(remote, local, or no login) or disabled.

[of Specifies the terminal's characteristics.

tty## Specifies the special file name for the communica-
tions interface port.

The possible values for n are:

Disabled (ignored during initialization)
Remote (enabled for dialup access)
Local (enabled for local access)

No Login (enabled for tip/uucp access)

0
1
2
3

Some of th

o

possible values for c are:

cycles thru 300-1200-150-110 bits/sec
9600 bits/sec

1200 cycles back to 300 bits/sec

2400 bits/sec

4800 bits/sec

1200 bits/sec

Hh~JO WN O
Wow non uou

For further information, read gettytab(5) and getty(8) in
the ULTRIX-11 Programmer's Manual, Volume 1.

The following are five sample entries from the /etc/ttys
file:

24console

00tty00 (disabled)

22tty01 (9600 bits/sec local)
30tty02 (tip/uucp access only)
13ttydo (1200/300 bits/sec dialup)

NOTE

The first line of the /etc/ttys file al-
ways enables the console terminal. You
should never change this line.

To enable or disable terminals or to change terminal charac-
teristics, wuse one of the ULTRIX-11 editors or the ted pro-
gram. To modify the /etc/ttys file with the ted program,
type:

4-42 System Maintenance

ted
The ted program has on-line help messages that are intended
to assist you. Once the ted program is running, type this
command sequence to obtain help:

help ted

For further information, read ted(1) 1in the ULTRIX-11
Programmer's Manual, Volume 1.

'You can modify entries in /etc/ttys while the system is in
single-user mode or multiuser mode. However) the procedures
that you use differ.

When the system is in single-user mode, use either one of
the ULTRIX-11 editors or the ted program to modify
/etc/ttys. Then, during the transition from single-user
mode to multiuser mode, the system automatically implements
the changes.

When the system is in multiuser mode, DIGITAL recommends
that you use the ted program to modify /etc/ttys. The ted
program does not allow you to change the entry for either
the system console or your own terminal. Then, when you
write back the contents of /etc/ttys, ted automatically
implements the changes.

If you do use one of the ULTRIX-11 editors while in mul-
tiuser mode, you first should verify the change and then
write back the contents of /etc/ttys. Then, send a HANGUP
signal to the system's initialization process, /etc/init.
To send a HANGUP signal to the init process, type this com-
mand sequence:

kill -1 1

This command causes the init process to reread /etc/ttys and
implement the changes.

For further information about the general terminal interface
and the /etc/ttys file, read tty(4), gettytab(5), tty(S),
ttytype(5), getty(8), and init(8) in the ULTRIX-11
Programmer's Manual, Volume 1. ——

System Maintenance 4-43

4.8 Setting Up the cu Facility

Although the cu facility is obsolete and DIGITAL recommends
that you use the tip facility in its place, the following
section discusses the procedure for setting up the cu facil-
ity.

To set up the cu facility, you should first read cu v7m(1C)
in the ULTRIX-11 Programmer's Manual, Volume 1 and then use
this procedure:

1. Set up the cu software
2. Select the cu hardware
3. Connect the cu hardware
4, Verify cu operations

4.8.1 Setting Up the cu Software

For the Micro/PDP-11, the cu programs are optional software.
To load the cu software, use the distributed osload program.

In response to the superuser prompt, type this command
sequence:

osload load orphan

This command loads not only the cu software but also some
extra, unrelated files. To remove these extra files, type
this command sequence:

rm -f /bin/bas /bin/*.v7 NS

Next, with the system in single-user mode, 1install the cu

programs. In response to the superuser prompts, type this
sequence of commands:

cd /

/etc/mount -a

rm -f /usr/bin/cu
cd /bin

mv cu v/m cu

mv custat_v7m custat
chmod 755 cu custat
chog bin cu custat
cd /

/etc/umount -a

sync

S e o o SR SE R 3R 3 36 3

You also should ensure that the device driver for the cu
communications interface ports 1is configured into the
ULTRIX-11 kernel. For further information, read Chapter 2,
ULTRIX-11 System Generation.

With the system still in single-user mode, create the spe-
cial files for the cu ports (cua# for ACUs or cul# for

4-44 System Maintenance

direct lines). 1In response to the superuser prompt, type
this sequence of commands:

cd /dev

1In tty## cua#
1In tty## cul#
chmod 666 cu??
cd /

sync

tty## Specifies the name of the special file for the com-
munications line assigned to the cu port.

Specifies the number of the cu port (for example, 0,

1, 2). The cu special files should have mode 0666
(rw-rw-rw-).

Finally, edit the /etc/ttys file and enable each of the cu
ports for NO LOGIN (for example, 30tty##). To edit the
/etc/ttys file, DIGITAL recommends that you use the ted com-
mand. For further information, read Section 4.7, Enabling
User Terminals.

4.8.2 Selecting the cu Hardware

The cu facility supports three types of connections:

e Hardwired direct connection
[Direct connection by modem
° Phone access by autocall modem

The hardwired direct connection requires a null modem cable
(for example, BC03-M). As system manager, you should choose
the hardware type for modem direct connection. For direct
connection by modem, the modems are connected to the cu
ports with a straight-through cable (for example, BC05-D).
For phone access by autocall modem, the cu facility supports
two autocall units:

° DF02-AC (300 bits/sec)
e DFO03-AC (300/1200 bit/sec)

Although the DF03-AC operates at 300 or 1200 bits/sec, it
cannot switch speeds automatically. Therefore, you should
select the speed with the HS switch on the DF03-AC front
panel. Then, the communications device that you use to
drive the cu ports must have modem control. DIGITAL recom-
mends that you use one of the following:

DL11-E or DLV11-E

DZ11 or DZV11 or DZQ11

DHU11 or DHV11

DH11 (with DM11-BB modem control option)

System Maintenance 4-45

4.8.3 Connecting the cu Hardware

To install a hardwired direct connection, connect (with a
null modem cable) the cu port on the local system to an
available port on the remote system.

To install a direct connection with a modem, connect (with a
straight-through cable) the cu port on the local system to
an available port on the remote system. Follow the modem
installation instructions to set up a direct modem link.

To install a phone connection with an autocall modem, - con-
nect (with a straight-through cable) the DF02-AC or DF03-AC
unit to the cu port on the local system. Then, connect the
ACU to the phone line by following the instructions in the
DF02-AC or DF03-AC User's Guide. Finally, set the ACU com-
munications bit rate. For more specific information, refer
to the "switch options on the DF02-AC or DF03-AC automatic
call wunit" 1in the appropriate user's guide. 1If the ACU is
connected to a DL11/DLV11 interface, the ACU communications
bit rate must match the DL11 speed. For interfaces with
programmable speeds (DH11/DHU11/DHV11 or DZ11/DZV11/DZQ11),
set the ACU communications bit rate to 300 bits/sec.

4.8.4 Verifying cu Operations

To test a hardwired direct connection, type this command
sequence:

cu -t -s

Specifies the speed (for example, 9600 bits/sec).

When the connection is established, log in to the remote
system.

To test a direct connection by modem, type this command
sequence:

$# cu -t -m -s #

Specifies the speed (for example, 1200 bits/sec).

When the connection is established, log 1in to the remote
system.

To test phone access by autocall modem, type this command
sequence:

cu telno -s

4-46 System Maintenance

telno Specifies the remote system's telephone number.
Specifies the speed (for example, 1200 bits/sec).

If the speed is incorrect, type ~# and press the <RETURN>
key to step to the next speed. Once the connection is esta-
blished, log in to the remote system. To break the connec-
tion after logging out, type ~. and press the <RETURN> key.

NOTE

To select an available ACU or line, wuse
the custat command. For further infor-
mation, read cu_v7m(1C) in the ULTRIX-11
Programmer's Manual, Volume 1.

System Maintenance 4-47

4.9 Setting Up tip Connections

To set up the tip facility, you should first read tip(1C),
remote(5), and phones(5) in the ULTRIX-11 Programmer's
Manual, Volume 1 and then use this procedure:

1. Set up the tip software
2. Select the tip hardware
3. Connect the tip hardware
4. Verify tip operations

4.9.1 Setting Up the tip Software

For the Micro/PDP-11, the tip programs are optional
software. To load the tip software, use the distributed
osload program. In response to the superuser prompt, type
this command sequence:

osload load tip

You also should ensure that the device driver for the tip
communications interface ports 1is configured into the
ULTRIX-11 kernel. For further information, read Chapter 2,
ULTRIX-11 System Generation.

Next, to ensure that the special files for the tip ports
exist and that their mode is 0666, type this sequence of
commands :

cd /dev

ls

chmod 666 tty## tty## tty##
cd /

sync

3 W

tty## Specifies the name of the special file for the com-
munications line assigned to the tip port.

Next, edit the /etc/ttys file and enable each tip port for
NO LOGIN (for example, 30tty##). To edit the /etc/ttys
file, DIGITAL recommends that you use the ted command.

Finally, edit the /etc/remote file and type the required
information for each remote system connection. The proto-
type remote file, /etc/remote, contains examples of how to
format this information. For further information, read
remote(5) in the ULTRIX-11 Programmer's Manual, Volume 1.

4.9.2 Selecting the tip Hardware

The tip facility supports three type of connections:

4-48 System Maintenance

° Hardwired direct connection
° Direct connection by modem
° Phone access by autocall modem

The hardwired direct connection requires a null modem cable
(for example, BC03-M). As system manager, you should choose
the hardware type for modem direct connection. For direct
connection by modem, the modems are connected to the tip
ports with a straight-through cable (for example, BC05-D).
For phone access by autocall modem, the tip facility sup-
ports two autocall units:

° DF02-AC (300 bits/sec)
° DF03-AC (300/1200 bits/sec)

For a list of known but unsupported devices, read through
the /etc/remote file.

Although the DF03-AC operates at 300 or 1200 bits/sec, it
cannot switch speeds automatically. Therefore, you should
select the speed with the HS switch on the DF03-AC front
panel. Then, the communications device that you use to
drive the tip ports must have modem control. DIGITAL recom-
mends that you use one of the following:

DL11-E or DLV11-E

DZ11 or DZV11 or DZQ11

DHU11 or DHV11

DH11 (with DM11-BB modem control option)

4.9.3 Connecting the tip Hardware

To install a hardwired direct connection, use a null modem
cable and connect the tip port on the local system to an
available port on the remote system.

To 1install a direct connection with a modem, use a
straight-through cable and connect the tip port on the local
system to an available port on the remote system. Follow the

modem installation instructions to set up a direct modem
link.

To install a phone connection with an autocall modem, use a
straight-through cable and connect the DF02-AC or DF03-AC
unit to the tip port on the local system. Then, connect the
ACU to the phone line by following the instructions in the
DF02-AC or DF03-AC User's Guide. Finally, set the ACU com-
munications bit rate. For more specific information, refer
to the "switch options on the DF02-AC or DF03-AC automatic
call wunit" 1in the appropriate User's Guide. If the ACU is
connected to a DL11/DLV11 interface, the ACU communications
bit rate must match the DL11 speed. For interfaces with
programmable speeds (DH11/DHU11/DHV11 or DZ11/DZV11/DZQ11),

System Maintenance 4-49

set the ACU communications bit rate to 300 bits/sec.

4.9.4 Verifying tip Operations

To test either a hardwired or a modem direct connection,
type this command sequence:

tip -# system

Specifies the speed (for example, 9600 bits/sec).

system Specifies the name of the remote system (from
/etc/remote file).

Once the connection is established, log in to the remote
system. To break the connection after logging out, type ~.
and press the <RETURN> key.

To test phone access by an autocall modem, type this command
sequence:

tip -# phone

Specifies the speed (for example, 1200 bits/sec).
phone Specifies the remote system's telephone number.

If the speed is incorrect, type ~# and press the <RETURN>
key to step to the next speed. Once the connection is esta-
blished, log in to the remote system. To break the connec-
tion after logging out, type ~. and press the <RETURN> key.

NOTE

The tip facility supports the cu user
interface and, therefore, accepts cu
commands. You also may test these cu
commands under the tip interface.

4-50 System Maintenance

4.10 Installing the uucp Facility

For a detailed description of the wuucp installation pro-
cedure, read UUCP Installation and Administration in the
ULTRIX-11 Programmer's Manual, Volume 2B.

Chapter 5

ULTRIX-11 Operator Services

The opser program provides a simple and concise interface to
ULTRIX-11 system maintenance. Specifically, the opser pro-
gram enables a system operator who has only a basic under-
standing of the ULTRIX-11 system to:

Obtain on-line help

Determine who is currently logged in

Shut down multiuser mode

Check file system consistency

Back up file systems

Escape to shell and execute an ULTRIX-11 command
Restart multiuser mode

Halt the processor

The remaining sections of this chapter provide discussions
of these tasks.

5-2 Operator Services

5.1 Running the opser Program

To run the opser program, the system operator should log in
to the operator account (operator 1login name). For the
operator account, the system automatically invokes the opser
program (/opr/opser) in place of a shell.

Once running, the opser program prints a program header, two
informational messages, and a command prompt:

ULTRIX-11 Operator Services
To correct typing mistakes:

<DELETE> erases the last character,
<CTRL/U> erases the entire line.

For help, type h then press <RETURN>

opr>
The opr> prompt is to remind the operator both that the
opser program is running in place of the shell and that it
is ready to accept opser commands.
To use an opser command, type the appropriate command letter
or name and press the <RETURN> key. For example, to receive
on-line help about all opser commands, type:

opr> h
The opser program then displays the following information:

() - may use first letter in place of full name
Valid commands are:

!sh - shell escape (execute ULTRIX-11 commands)
(Type <CTRL/D> to return from shell)

(u)sers - show logged in users

(s)hutdown - stop time-sharing

(f)sck - file system checks

(r)estart - restart time-sharing

(h)elp - print this help message

backup cfn - file system backup
(cfn = command file name)

halt - halt processor

~D (<CTRL/D>) - exit from opser

To end an opser session and return to a login prompt, the
operator should press <CTRL/D>.

Operator Services 5-3

NOTE

The operator can run the opser program
from either the system console or a ter-
minal. If the opser program is run from
the console, the operator can use the
full set of opser commands. If it 1is
run from a terminal, the operator can
use the h (help) and u (users) commands
only.

The next seven sections provide more detailed discussions of
the opser commands. For further information, read Appendix
E, Opser Program Example.

5.1.1 Determining Who Is Currently Logged In

To determine how many users currently are logged in, use the
opser program and specify the u command. In response to the
opr> prompt, type:

opr> u
When the users command is specified, the opser program first

displays a list of users who currently are logged in. On

receiving the opr> prompt, the operator can use other opser
commands.

5.1.2 Shutting Down Multiuser Mode

To shut down multiuser mode and leave the system in single-
user mode, use the opser program and specify the s (shut-
down) command. In response to the opr> prompt, type:

opr> s

When the shutdown command starts executing, the opser pro-
gram first displays the names of those users that currently
are logged on the system. Then, it prompts for the number
of minutes to delay Dbefore shutting down multiuser mode.
This delay is to give users enough time to finish their work
and log out. During this delay period, the opser program
broadcasts warnings of the impending shutdown at 1-minute
intervals and disables further logins. Finally, at the
designated time, it broadcasts a final message and then
shuts down multiuser mode.

During the transition back to single-user mode from mul-
tiuser mode, the opser program kills all running processes
and unmounts all mounted file systems. On receiving the
opr> prompt, the operator is automatically in a single-user

5-4 Operator Services

environment. Then, the operator can use other opser com-
mands and continue with system maintenance.

The operator can cancel the shutdown command at any time
before the final shutdown message. To cancel a scheduled

shutdown, press <CTRL/C>.

5.1.3 Checking File System Consistency

To check the consistency of your file systems when running
the opser program in single-user mode, specify the f (file
system check) command. In response to the opr> prompt,
type:

opr> f

When the f command is specified, the opser program invokes
the fsck program to check the file systems that are named in
/etc/fstab. For further information, read Section 4.1.2,
Check File System Consistency, and Section 4.1.3, Correct
File System Inconsistencies.

NOTE

DIGITAL recommends that you check all
file systems before backing up file sys-
tems. To shut down multiuser mode prior
to checking file systems, specify the s
(shutdown) command. For further infor-
mation, read Section 5.1.2, Shutting
Down Multiuser Mode.

5.1.4 Backing Up File Systems

To back up file systems when running the opser program in
single-user mode, specify the backup command. 1In response
to the opr> prompt, type this command sequence:

opr> backup cfn

The cfn argument specifies the command file name (daily,
weekly, or monthly) that contains the ULTRIX-11 commands
that are required for that backup. The system manager is
responsible for setting up the backup command files and for
notifying the operator of their names and schedule. For
further information, read Section 4.2, Backing Up and Res-
toring File Systems.

Operator Services 5-5

NOTE

DIGITAL recommends that you check all
file systems before backing up file sys-
tems. To shut down multiuser mode prior
to checking file systems, specify the s
(shutdown) command. For further infor-
mation, read Section 5.1.2, Shutting
Down Multiuser Mode.

5.1.5 Escaping to the Shell

To escape to the shell at any time when running the opser
program, specify the !sh (escape shell) command. In
response to the opr> prompt, type:

opr> !sh

After receiving a shell prompt, the operator can execute any
ULTRIX-11 command. This command is useful for using the
wall or write commands to notify users of an impending shut-
down. Having finished with the desired ULTRIX-11 commands,
press <CTRL/D> to return to the opser program. On receiving
an opr> prompt, the operator can use other opser commands.

NOTE

When the operator escapes from the opser
program, the shell comes up with su-
peruser privilege. As system manager,
therefore, you should permit the opera-
tor to use only a limited set of
ULTRIX-11 commands.

5.1.6 Restarting Multiuser Mode

To restart multiuser mode when running the opser program 1in
single-user mode, specify the r (restart) command. 1In
response to the opr> prompt, type:

opr> r

Essentially, this command causes the system to read the
/opr/restart file (roughly equivalent to /etc/rc) and res-
tarts multiuser mode without having to reboot. For further
information, read Section 1.2.4, Multiuser Mode.

5-6 Operator Services

5.1.7 Halting the Processor

To halt the processor when running the

opser program in

single-user mode, specify the halt command. In response to

the opr> prompt, type this command:

opr> halt

This command prompts the operator for confirmation, delays
for one second, and then halts the processor.

NOTE

To shut down multiuser mode prior to
halting the processor, specify the s

(shutdown) command. For further

mation, read Section 5.1.2,
Down Multiuser Mode.

infor-
Shutting

Chapter 6

ULTRIX-11 Text Overlay Scheme

To run large programs on your ULTRIX-11 system, you must use
this text overlay scheme. Although the 1d loader automati-
cally does much of the work for creating program overlays,
you must decide which module is to go into what overlay.
This chapter provides information that is intended to help
you in making this decision.

The remaining sections of this chapter discuss:

Why program overlays are needed

What should go into an overlay

What is the proper command sequence

How the 1d loader creates overlaid programs
How the C stack frame is used

6-2 Program Overlays

6.1 Why Program Overlays?

On split I and D processors, programs must use overlays when
their instructions cannot fit into 64K. Overlays on split I
and D programs do not affect the size of a program's data
segment. All split I and. D programs have 56K of usable data
space: 64K minus 8K required for the stack.

On nonsplit I and D processors, programs must use overlays
when their instructions and data cannot fit into 56K. Over-
lays on nonsplit I and D programs, however, do affect the
size of a program's data segment. All overlaid nonsplit I
and D programs have 40K of usable data space: 64K minus 8K
each for the stack, the base text segment, and the overlay
segment. The text space saved by using overlays can then be
used as additional data space.

For example, consider a program with 48K of text. If over-
lays were not wused, this program would only have 8K for
data: 64K minus 8K for the stack and another 48K for the
text. If overlays were used, however, the saved text space
then could be used to expand the data space. If an 8K base
text segment and five 8K overlays were created, the remain-
ing 32K of text space could then be used to increase the
data space to 40K.

Program Overlays 6-3

6.2 What Should Go into an Overlay?

When deciding what goes into an overlay, you should con-
sider:

° Each module's size
o What other modules each calls

If possible, functions that repetitively call each other
should be placed into the same overlay. Because no overlay
switching is required to call functions in the base text
segment, functions called frequently from other overlays
should be put into the base text segment.

Figure 6-1 illustrates the logical layout of an overlaid
nonsplit I and D program:

|base text | overlay 1 | data/bss | stack |

| overlay 2 |

| overlay 3 I

I . |

| L '

| . I

| overlay x |

| I I

8K boundary 8K boundary 8K boundary

Figure 6-1 -- Overlaid Process

The starting address of the base text segment is 0. Because
of hardware constraints, the starting address of the overlay
segment is the size of the base text segment rounded up to
the nearest 8K. The starting address of the data/bss seg-
ment is the starting address of the overlay segment plus the
size of the largest overlay rounded up to the nearest 8K
boundary. These boundaries are set automatically by the 1d
loader when either the -i or -n flag is specified.

For example, consider a program whose base text segment 1is
10K. Because it is rounded up to the nearest 8K, you can
put more functions into it to fill it to 16K and not
increase the base text segment. Similarly, consider a pro-
gram that has three overlays (14K, 7K, and B8K) and whose
first overlay must be at least 14K. You could combine the
second and third overlays (7K + 8K). This would leave you
with two overlays (14K and 15K) but would not increase your
usable data space. If the first overlay could be split in
two, however, you then could create four overlays (7K, 7K,
8K, and 7K) and increase your usable data space by 8K.

6-4 Program Overlays

6.3 How Do You Create Overlays?

To specify overlays in the cc or £77 command line, precede
the appropriate module with the -Z flag. Each successive -Z
flag in the command tells the loader that, beginning with
the next module, switch to the next overlay. To end over-
lays, specify the -L flag in the command line. The remain-
ing modules specified on the command line then are to go
into the base segment.

For example, consider a C program consisting of the follow-
ing seven modules: a.c, b.c, c.c, d.c, e.c, f.c, and g.c.
To compile them into object format, type:

cc -c¢ a.c b.c c.c d.c e.c f.c g.c
Then, to determine the size of each object file, type:
size a.o b.o c.o0 d.o e.o f.o g.o

Based on this information, you decide to put a.c in the
base, b.c and c.c in the first overlay, d.c in the second
overlay, e.c and f.c in the third overlay, and g.c 1in the
base segment. Then, to link the object files together,
type:

€Cc -n a.0 -Z b.o c.o -Z d.o0 -Z e.o f.o -L g.o

The -n flag indicates that the overlaid programs are to be
shared text. If the -i flag is specified for a split I and D
process, then the -n flag is redundant. You must, however,
specify at least one of these flags. The -Z and -L flags
are passed from cc to 1d with their position relative to
objects intact.

If a library should be referenced within an overlay on the
cc command line, everything removed from that library goes
into that overlay. For example, the following command

sequence causes everything in the -ltermlib to be placed in
an overlay:

cc a.0 -Z b.o -Z -ltermlib -L

NOTE

Because they contain assembly routines
that do not use csv/cret routines, you
should not include the -1lfpsim, -1lc, or
-ljobs libraries within overlays.

Program Overlays 6-5

6.3.1 Creating an Overlaid Version of yacc

The source for the yacc program consists of: yla.c, ylb.c,
y2.c, y3.c, and y4.c. To create an overlaid version of the
yacc program, first compile the source into object format.
To do so, type:

cc -¢ -0 yla.c ylb.c y2.c y3.c y4.c

After creating the object files, use the size command to
determine their sizes. To do so, type:

size yla.o ylb.o y2.0 y3.0 y4.0
The size command then prints the sizes of each object file:

yla.o: 3932+878+1000 = 5810b = 013262b
ylb.o: 834+134+0 = 968b = 01710b

y2.0: 6922+1974+2 = 8898b = 021302b
y3.0: 3012+536+0 3548b 06734b
y4.0: 2142+636+0 2778b 05332b

nou
([

By reviewing the first number for each module (text size),
you can determine that y2.0 has a text size of 6922, which
is close to the first 8K boundary. You also can determine
that, when added together, ylb.o, y3.0, and y4.0 have a text
size of 5988, which is well within the first 8K boundary.
In addition to these reported sizes, you also should con-
sider that yla.c contains functions that are called repeat-
edly.

Based on this information, you determine that yla.o should
go into the base text segment; that y2.o should go into the
first overlay; and that ylb.o, y3.0, and y4.o should go into
the second overlay. To link them together, therefore, type:

cc -o yacc40 -n yla.o -Z y2.0 -Z ylb.o y3.0 y4.0 -L

If you use the size command to determine the sizes of this
output, it prints:

7488+(6976,6016)+4566+36106 = 48160b = 0136040b (20480 total

Because library functions were brought in and thunks were
created, the base text segment is much larger than the size
originally reported for yla.o alone (3932). For information
about thunks, read Section 6.5, Overlaid Programs and
Thunks. All overlays are within the first 8K boundary, but
their reported sizes show increases. Because of hardware
constraints, the size of each was rounded up to the nearest
64 byte boundary: 6922 to 6976 and 5988 to 6016.

text)

6-6 Program Overlays

6.4 The C Stack Frame

Because the f77 and cc compliers use the same back end, the
underlylng function-calling procedure for code produced by
both is the same.

The first assembly instruction upon entering a function is:
jsr r5,csv
Calling csv creates this stack frame:
(high mem)
l

return pc
r5-> saved rb5

saved ovno

saved r4

saved r3

saved r2
sp->

The next assembly instruction usually is:
sub XX, sp

This instruction allocates space for local variables. These
variables then are referenced as offsets from r5: -10.(r5)
is the first, -12.(r5) the second, and so on.

Because they are later used to return values, the initial
values of r0 and r1 are not saved. Short int values are
stored in r0, while long int values are stored in r0-r1. The
most 51gn1f1cant is r0, while the least significant is r1.

This assembly instruction is used to return from a function:
jmp cret

The cret code compares the saved overlay number with the

global variable _ovno (in assembly, __ovno). If they

differ, it puts the saved overlay number Into ovno and r0.
To sw1tch the overlays, it then executes an EMT trap.

Program Overlays 6-7

NOTE

If a program accidentally modifies ei-
ther the _ovno variable or the saved
overlay number, problems can result. On
a nonoverlaid program, an EMT trap can
occur. On an -overlaid program, the
wrong overlay may be switched.

Once the correct overlay is switched, the cret code restores
the saved values of r2, r3, and r4. Then, it puts the
current value of r5 into the stack pointer and pops a new r5
value off the stack.

The next assembly instruction, which finishes up the return,
is:

ret pc

The functions csv and cret, which can be found 1in object
format in the archive /lib/libc.a, determine exactly what
the stack frame looks like.

- This stack frame is not compatible with the standard forms
of csv and cret found in other PDP-11 versions of UNIX (most
notably V7). To allow for V7 compatibility, both the f77 and
cc compilers provide a -V7 switch. This switch serves two
purposes:

° When compiling object modules, local variables start at
8.(r5) instead of 10.(r5). All offsets in assembly
code, therefore, must be adjusted accordingly.

° When calling the loader, /lib/v7csv.o is included before
/lib/libc.a is searched. The earlier versions of
csv/cret found in /lib/libc.a are not used.

These modified versions of csv/cret create this stack frame:
(high mem)
|

save pcC

r5 -> saved r5
saved ré
saved r3
saved r2
blank word

sp —>

6-8 Program Overlays

The blank word allows this version of csv/cret to work with
both modules that have been compiled with and without the
-V7 option. Even when the -V7 option 1is specified, func-
tions, which start their 1local variables at 10.(r5), are
also included from the standard libraries.

NOTE

Because the overlay number is not saved,
the -V7 switch cannot be used on over-
laid programs. The only time that the
-V7 switch would be needed is when you
need to link in modules that were com-
piled with compilers that start their
local variables at 8.(r5).

Program Overlays 6-9

6.5 Overlaid Programs and Thunks

The 1d loader actually places a module 1into an overlay.
When it does so, it renames the _foo global text labels
~foo. For each text label, it then creates these 1lines of
assembly code, called a thunk, to become the interface to
~foo:

_foo: mov $~foo+04,r1
jmp ovhndlrX

The X indicates the overlay number into which ~foo has been
placed. All thunks are eight bytes long and are placed into

the base text segment. The following is sample ovhndlrX
code:

ovhndlrX: mov $X,r0
jmp ovhndlr

The ovhndlr is the general overlay handling routine. It
first compares the current overlay number with that saved in
r0. If they are different, it changes the overlay to point
to the new one. A jsr r5,csv instruction is simulated.
Then, it jumps to the location specified in r1. For this
reason, all functions that go into overlays must have as
their first instruction:

jsr r5,csv
In addition, they must return by:

jmp cret
This ensures that all overlay switching 1is done properly.
Although this 1is done automatically by both the C compiler

and the F77 compiler, you should follow these conventions in

those assembly language routines that you place into over-
lays.

Chapter 7

ULTRIX-11 User-Mode System Exerciser Package

By using the system exerciser control program (sysx) and one
or more exerciser modules, the ULTRIX-11 system exerciser

package exercises your system hardware. Specifically,
exerciser modules exist for:

Processor

Main memory

Floating point

Disk drives

Tape drives
Communications interfaces
Line printers

Normally, exerciser modules run under the control of the

Sysx program, The system manager or DIGITAL field service
representative uses the sysx program to:

Create an exerciser script
Start and stop the modules
Monitor operations

Print the error log files

The remaining sections of this chapter provide discussions

of these sysx program functions, of each exerciser module,
and of the exerciser options.

7-2 System Exercisers

7.1 Running the System Exerciser Control Program

To start an exerciser session, you first must log in as the
superuser (root account). The system then prints these mes-
sages and the superuser prompt:

Welcome to the ULTRIX-11 System

erase = delete, kill = ~U, intr = ~C
#

Once logged in, use the cd command to change directories to
/sysxr. In response to the superuser prompt, type this com- -
mand sequence:

cd /sysxr

Once in the /sysxr directory, you are ready to use the sysx
program.

You can run an exerciser module either individually or in
conjunction with the sysx program. DIGITAL recommends that
you should run all exerciser modules under the control of
the sysx program. When run individually, exerciser modules
ignore interrupts and cannot be stopped by pressing
<CTRL/C>.

To use the sysx program, type:
sysx

Once running, the sysx program prints the following banner
and prompt:

System exerciser control program
Type h for help

>

The > is the command-mode prompt and indicates that the sysx
program is ready to accept commands. Essentially, the sysx
program has two modes of operation: command mode and run
mode. To indicate modes, it issues a > prompt during com-
mand mode and a run> prompt during run mode.

System Exercisers 7-3

Commands available in command mode are:

<CTRL/D> Exit from the sysx program.

<CTRL/C> Cancel current command and return to the prompt.
! command Execute an ULTRIX-11 command.

Backup, save an existing log file.

Create an exerciser run script.

Delete an exerciser run script.

Print log files on the terminal or line printer,
Name the exerciser to run on each device.

Print the contents of a script.

Run an exerciser script.

Stop all exercisers.

Print a list of the exerciser run scripts.

X0HTD QD

Commands available in run mode are:

<CTRL/D> Exit from the sysx program.

<CTRL/C> Cancel current command and return to the prompt.
! command Execute an ULTRIX-11 command.

Print log files on the terminal or line printer.
Print the status of the currently running script.
Restart system exercisers.

Stop system exercisers.

n o+

For further information, either use the sysx help command or
read Appendix B, Sysx Program Example,

The next four sections discuss creating an exerciser run
script, running an exerciser script, monitoring operations,
and stopping an exerciser script.

7-4 System Exercisers

NOTE

If you are running exerciser modules
without the aid of the sysx program, you
can stop them in one of two ways.
First, you must be the superuser (root
login) and must be in the /sysxr direc-

. tory. Then, you can use either the
sysxstop command alone or the sysx pro-
gram and specify the s command. 1In ei-
ther case, the system stops all running
exerciser modules, even those that were
invoked by other users. In addition,
you should redirect all exerciser output
to separate log files. Otherwise, if
you are running more than one module,
the output may become intermixed and,
therefore, unreadable.

7.1.1 Creating Exerciser Run Scripts

To tailor a run script to your system configuration, use the
sysx program and specify the ¢ command. Each exerciser run
script is a shell command file that contains the required
commands to start the exerciser modules for:

A single device

A group of devices

A CPU cluster (processor, memory, and floating point)
The entire system

Each line in this script contains:

° Exerciser module name
e Options list
° Log file name

To obtain a list of currently existing run scripts, use the
Ssysx x command.

To create a run script, use the sysx program and specify the
¢ command. For example, the following sysx session creates
an exerciser run script with the name "test",

System Exercisers 7-5

System exerciser control program
Type h for help

> c
Script name <sysxr> ? test
Script exists, overwrite it <no> ? y

To cancel a script entry, type <CTRL/D> !
Answer any question with a ?' for help !

Exerciser name ?

Once running, the ¢ command prompts first for the script
name and then for the exerciser name. The default answer
for each prompt is enclosed in angle brackets < >. To use a
given default answer, press the <RETURN> key. For on-line
help, type ? and press the <RETURN> key. To cancel a
current entry and return to the module name prompt, press
<CTRL/D>. To stop the c command, press the <RETURN> key in
response to a module name prompt.

For further information, read Appendix B, Sysx Program Exam-
ple.

When creating an exerciser run script, consider:

° Although you should run one disk exerciser for each
drive, you should not run a disk exerciser on the system
disk unless it is the only drive on the system.

° The magnetic tape exerciser handles various types of
devices or drives. Because the tape modules exercise
all drives on a controller, you should run a tape

exerciser for each controller that is present on the
system.

e The communications exerciser handles various types of
communications devices. You should run a communications
exerciser for each communications device that is present
on the system. For the DL11 communications device, how-
ever, you should run one copy of the communications dev-
ice exerciser for every 16 units., For example, when two
copies are run, the first exercises the first 16 wunits,
while the second exercises the second 16 units.

° To exercise all of memory, you should run only one copy
of the memory exerciser.

° DIGITAL recommends that you run only two floating point

7-6 System Exercisers

exerciser modules at the same time. Running more than
two floating point exercisers simultaneously loads down
the CPU and does not actually work the floating point
unit as hard as the recommended two copies.

° You can run up to 50 copies of the CPU exerciser simul-
taneously. If you exercise only the CPU, you can run
the maximum number of copies allowed. If you exercise
only the CPU cluster, DIGITAL recommends that you run no
more than six copies. If you exercise the entire sys-
tem, however, DIGITAL recommends that you run only one
CPU exercise module.

To exercise the line printer, you should run the line
printer exerciser.

7.1.2 Running Exerciser Scripts

To obtain information about how to run exerciser scripts,
use the sysx program and specify the help command. 1In
response to the > prompt, type:

>hr

If you are exercising disk or tape units, you should mount
the appropriate scratch media before starting an exerciser
run script. Then, to start an exerciser script, specify the
r command. In response to the > prompt, type:

> r

Once running, the r command first prompts for the script
name. To use the default script name (sysxr), press the
<RETURN> key . To use a different script, type the
appropriate name and press the <RETURN> key.

During the time that the sysx program is waiting for start-
up confirmation, you may cancel the wait loop by pressing
<CTRL/C>. When all modules are running, the sysx program
returns this prompt:

run>

As it starts each exerciser module, the sysx program prints
the module name and the start date and time. If a module
fails to start, it also prints an error message. For
further information about a reported start failure, examine
the log file.

System Exercisers

NOTE

When using the sysx program to

Example.

The following is a sample sysx session that uses

run script:

sysx

System exerciser control program
Type h for help

>r

Script name <sysxr> ?

Disconnect any customer equipment that may be affected

by test data transmitted on DH, DHU, DHV,
DZ, DzZv, DZQ, DL output lines !

Confirm <no> ? y

Log files will be overwritten !

The b' command may be used to save log files.

Proceed <no> ? y

Waiting for startup confirmation from exercisers.

Typing <CTRL/C> will cancel wait loop !

cpx_01 started - Fri Jul 27 14:05:23 1984
cmx_dh2 started - Fri Jul 27 14:05:30 1984

run>

\

7.1.3 Monitoring Operations

When you specify that exerciser messages and output

control
exerciser run scripts, you also can use
the r command to restart modules
previously had been stopped. For furth-
er information, either use the help com-
mand to obtain information about the r
command or read Appendix B, Sysx Program

7-17

default

to

be redirected to log files, the sysx program monitors each

log file and periodically reports any

changes.

7-8 System Exercisers

Normally, a change in the size of a log file indicates that
an error has occurred.

The sysx program also provides two commands that 1let you
monitor the script run directly. Once a script is running,
specify the p command to print each module name and its
corresponding run status. In response to the run> prompt,
type:

run> p
Once a script is running, specify the 1 command to print the
contents of one or more log files either at your terminal or
at the line printer. In response to the run> prompt, type:

run> 1

7.1.4 Stopping Exerciser Scripts

To stop one module, all copies of a module, or the entire
exerciser run script, use the sysx program and specify the s
command. In response to the run> prompt, type:

run> s

If you stop a specific module, you can restart it without
affecting any other exercisers that were started by that
script. During the time that the sysx program waits for an
exerciser to stop, you may interrupt this wait loop by
pressing <CTRL/C>. If you stop all the exercisers in the
run script, the sysx program prints a command-mode prompt:

>

As it stops each exerciser module, the sysx program prints
the module name and the stop date and time. If a module
fails to stop, it also prints an error message. For further
information about a reported stop failure, examine the log
file.

To exit the sysx program once all modules have stopped and
return to the ULTRIX-11 command interpreter, press <CTRL/D>.

NOTE

Normally, it can take several minutes
for every exerciser to stop. But the
RX02 exerciser can take even longer, be-
cause of the noninterruptible diskette
format operation which occurs at the be-
ginning of each pass.

System Exercisers 7-9

7.2 Interpreting the Results of an Exerciser Run

The system places the results of the exerciser script run in
both the exerciser log files and the system error log.
Specifically, the exerciser modules report wunrecoverable
errors to the log files, while the ULTRIX-11 operating sys-
tem logs recoverable errors in the system error log file.

Each exerciser log file contains this information about each
exerciser run:

Date and time started
Date and time stopped
End-of-Pass messages
Periodic I/0 statistics

When you stop an exerciser, the system also writes an error
log summary report into the exerciser log file. This report
gives a summary of the errors logged while that exerciser
was running. To obtain detailed information about indivi-
dual errors, use the ULTRIX-11 error logger and specify the
full error report command. For further information, read
Chapter 8, ULTRIX-11 Error Logger.

7-10 System Exercisers

7.3 Exerciser Modules

When you use the sysx program to create a run script, you
enter the required information to the appropriate prompt.
Then, the sysx program automatically formats this informa-
tion and creates the exerciser run script. You neither need
to specify nor even need to know the exact command syntax.
The information presented in the remainder of this chapter
is for reference only.

The next seven sections describe an exerciser module:

° Options used
) Tests performed
® Messages displayed

Many of the exerciser modules share options. Some of the
options, however, affect these modules differently. For
ease of presentation, Section 7.4, Exerciser Options,
discusses the format of each option and its applicable func-
tion for each module. :

7.3.1 Communications Device Exerciser

The communication device module (cmx) has the -b, -4, -e,
-h, -i, -1, -m, -n, and -u options. For further informa-
tion, read Section 7.4, Exerciser Options.

This module exercises one or more lines on the
DH11/DHU11/DHV11, DZ11/DZV11/DZQ11, and DL11 communication
devices. This module treats the first 16 DL11 devices as
unit 0 and the next 16 DL11 devices as unit 1. It, however,
never exercises DL11 unit 0, line 0 (system console). The
communications device module exercises a device in either
maintenance loopback mode or line turnaround mode.

In maintenance loopback mode, the cmx module exercises each
device by looping transmitter output back to receiver input
and by transmitting data message packets on the selected
lines. It compares the received message packet with the
transmitted packet.

For the DH11 and DZ11/DZV11/DZQ11 devices, maintenance loop-
back mode loops back all 1lines on the multiplexer. This
requires that no lines on the multiplexer be in wuse. The
DHU11/DHV 11 and DL11 communications controllers allow
maintenance loopback on individual lines. This allows the
use of maintenance loopback mode to test lines while other
lines on the mux are used.

In line turnaround mode, place a line turnaround connector
on the lines to be tested and specify the -m option. Then,
the cmx module exercises the device by comparing the
received data with the transmitted data. This mode 1is

System Exercisers 7-11

useful for testing individual lines on DH11 and
DZ11/DZV11/DZQ11 multiplexers. You also can exercise .the
second SLU supplied with the PDP-11/24 processor as a DL11.

You can set the transmission bit rate on the selected 1lines
to either a fixed rate or a randomly varying bit rate.

The transmitted data message packet consists of:

Device unit number (byte)
Line number

Data characters (incrementing pattern and random number)
Checksum packet

The transmission sequence consists of:

1. The exerciser transmits the data message packet on the
selected line.

2. The selected line receives the packet.

3. The exerciser uses the checksum and character counts to
validate the received packet.

4, The exerciser checks the unit and line numbers to ensure
the selected line received the packet.

5. The exerciser compares the data portion of the received
packet with the data in the transmitted packet.

The error messages for the communications device module have
this format:

7-12 System Exercisers

Read data timeout on DH11 unit 0 line 14
Complete data packet not received within 2 minutes

kkkkkkkkkk**k READ DATA ERROR ***Xxkkkkkkkkx
Fri Aug 20 23:05:24 1982

Data transmitted on DH11 unit 0 line 14
Data received on DH11 unit 0 line 14
Data transmitted at 9600 bits/second

Data packet checksum was BAD

129 characters transmitted

125 characters received

CHAR # GOOD BAD

99 012 016
100 013 017
101 014 020
102 015 021
103 016 022

[data error print limit exceeded]

**************************************'****

The first two lines are the read data timeout message. This
message indicates that the selected line did not receive the
data message packet within two minutes after the start of
transmission. Printing only the timeout message indicates
that the selected line received none of the message packet.

The data mismatch error message may follow the timeout mes-
sage. This indicates that the selected line received an
incomplete message packet. Printing only this message indi-
cates that the selected line received the entire message
packet, but either the data does not match or the checksum
is 1incorrect. The data mismatch error message provides

information about the message packet and prints the actual
mismatched data in the packet.

NOTE
In the example above, the printed

mismatched data was limited to five
lines by using the -n option.

7.3.2 CPU Exerciser

The CPU module (cpx) has no options.

System Exercisers 7-13

This module runs a compute-bound process that exercises the
processor by repeatedly reproducing the activity normally
associated with creating and executing user processes in the

ULTRIX-11 operating system environment. The CPU exerciser
test four main areas:

Thirteen C programming functions
Dynamic memory reallocation
Dynamic growth of the user stack
The fork() and exec() system calls

The dynamic memory test uses the calloc() function to obtain
additional memory from the operating system. The user stack
test expands the stack size beyond the twenty 64-byte seg-
ments initially allocated by the system. The fork and exec

test relocates the cpx process throughout memory.

Because it is unlikely to encounter problems while
any of

ing

thes

ably will crash.

perform-

these tests, the CPU module does minimal error
checking and generates cryptic error messages.
e tests does fail,

If one of
the ULTRIX-11 operating system prob-

The error messages for the CPU exerciser have this format:

*k*kkx%* CPU EXERCISER ERROR ***k*x
*kxk**x TEST ## SUBTEST ### **x**%x

The test numbers and functions are:

TEST FUNCTION
1 C language if and goto statements
2 C language while, break, and continue statements
3 C language - do-while, break, continue statements
4 C language for, break, and continue statements
5 C language switch and break statements
6 C language shift operators
7 C language relational/equality operators
8 C language bitwise AND, OR, XOR operators
9 C language logical AND, OR conditional operators
10 C language assignment operators
11 C language function calling and argument passing
12 C language function argument return
13 C language string move function
14 Crunch integers in data space
15 Sort integers in data space (uses calloc() function)
16 Crunch data structures on the user stack
and force dynamic stack growth
17 Crunch a union on the user stack

7.3.3 Disk Exercisers

There are six disk exerciser modules:

7-14 System Exercisers

Module Disks

hpx RM02/3/5, RP04/5/6, ML11

hkx RK06/7

hxx RX02

rpx RP02/3

rlx RL0O1/2

rkx RKO0S

rax RA60/RAB0/RA81, RX50/RD51/RD52, RC25

The disk exercisers differ only where required by the
characteristics of the disk being exercised. You can use
the hpx module with any combination of the listed disks on
the first, second, or third RH11/RH70 MASSBUS disk con-
troller. You can mix the ML11 solid state disk with the RM
and/or RP disks either on the same or on a separate RH con-
troller.

The disk exerciser modules have these options:

hpx hkx rpx rlx rkx rax hxx
-C
-d -d -d -d -d -d -d
-e -e -e -e -e -e -e
-f -f -f -f -f
-h -h -h -h -h -h -h
-i -i -i -i -i -i -1i
-m -m -m -m -m
-n -n -n -n -n -n -n
-s -s -s -s -s -s -s
-w
-X
For further information, read Section 7.4, Exerciser
Options.

Each module begins by printing the selected disk drive's
status (on-line or off-line). The module also prints a list
of any read-only file systems. For further information
about file systems and disk partitioning, read Section
1.2.2, File System, and Section 1.3, Logical Partitioning of
Disks.

The module treats a file system as read-only if it:

Is mounted

Contains root file system (system disk)
Contains the error log

Contains the swap area

Overlaps any of the above areas

A mounted file system is one that the system 1is currently
using. If a disk that contains either user files or other

System Exercisers 7-15

volatile data is on-line, ready, but not mounted, the disk
exercisers write on that disk and destroy its data. There-
fore, you should remove all disk packs that contain valuable
data before running any disk exercisers. The rax module
protects customer data on fixed-media disks by allowing
writes to the maintenance area only.

The hxx exerciser (RX02) formats the diskette for single

(RX01) or double (RX02) density at the beginning of each
pass.

The ULTRIX-11 device drivers for the partitioned disks
(except RL01/2) contain a size table which specifies the
sizes and locations of the logical file systems on the disk.
The exercisers for these disks (hkx, hpx, rax, and rpx) con-
tain a copy of the disk driver size table to ensure they do
not write on any of the read-only file systems.

In the unlikely event that the size table in the exerciser
does not match the size table in the disk driver, the
exerciser prints this error message:

hpx: unit 2 sizes mismatch !

The disk exercisers write test data patterns to the disk at
random addresses, read the data back, and compare the data
in the write buffer with the data in the read buffer.

The disk exercisers attempt to simulate ULTRIX-11 file 1I/0
by wusing random 1length transfers in block I/0 mode. They
also simulate swapping and other physical I1/0 by doing 1long
transfers in raw I/0 mode.

The basic test sequence consists of:

1. For large disks only, the exerciser randomly selects the
file system and starting block number of the transfer.
The exerciser also selects the transfer size (512 bytes,
a multiple of 512 bytes, or a random number of bytes).

2. For all disks, the exerciser selects the test data pat-
tern to be wused for the transfer. This is either the
worst-case data pattern or a random data pattern.

3. For all disks, the exerciser loads the test data 1into
the write buffer. Then, starting at the specified block
number, it writes this data out to the disk.

4. For all disks, the exerciser reads from disk a randomly
selected block, one that was not part of the previous
transfer. The exerciser does not test the data read
from this block.

5. For all disks, the exerciser first clears the read

7-16 System Exercisers

buffer and then reads in the data that was previously
written out to disk.

6. For all disks, the exerciser compares the data in the
read buffer to the data in the write buffer and reports
any mismatches.

Each disk exerciser repeats this sequence until you stop it
manually.

System Exercisers 7-17

The error messages for the disk exercisers have this format:

kkkkkk

HARD DISK ERROR - Sat
Returned byte count

Error type: I/0 error
unit filesys block
1 7 43836
*kkkkk
* k k% k%

HARD DISK ERROR - Sat
Returned byte count

Error type: I/0 error
unit filesys block
1 7 43836

Sep 11 10:20:34 1982
-1 (-1 error)

xfer size
3072 bytes

xfer type
RAW I/0 WRITE

Sep 11 10:20:35 1982
-1 (-1 error)

xfer size
3072 bytes

xfer type
RAW I/0 READ

Write was from word 1848 of write buffer

Read was to
DATA COMPARE ERROR -

Write buffer address
Read buffer address

WORD = 0

GOOD = 165555
BAD = (000000
WORD = 1

GOOD = 133333
BAD = 000000
WORD = 2
.GOOD = 165555
BAD = 000000
WORD = 3

GOOD = 133333
BAD = 000000
WORD = 4

GOOD = 165555
BAD = 000000
[error

kkkkkk

word 6526 of read buffer

BLOCK 43837

2104
6782

printout limit exceeded]

7-18 System Exercisers

In this example, the message shows an unrecoverable write
error on block 43836 followed by a fatal read error on the
same block. The following information also is printed:

byte count Indicates the actual number of bytes transferred
(-1 indicates a fatal error).

Error type Indicates the error type returned to the exer-
ciser. For further information about error codes,
read intro(2) in the ULTRIX-11 Programmer's
Manual, Volume 1.

unit Indicates the physical unit number of the failing
disk drive.

filesys Indicates the 1logical subunit of the disk drive
where the I/O operation occurred. (This number is
always 0 for the nonpartitioned RK05 disks.) For
the hxx exerciser (RX02), the word "density"
replaces "filesys" and indicates either single or
double density access mode.

block - Indicates a 1logical block number relative to the
start of the logical subunit specified by the
filesys column. This is not the start of the disk.
For the 1logical partition 1layout of each disk,
read Appendix D, Disk Logical Partition Sizes.

xfer size Indicates the size of the transfer in bytes.

xfer type Indicates the type of I/0 operation (read/write
and block/raw I/0 mode).

The write and read buffer addresses are relative to the
start of the buffers and are not physical memory addresses.

In the above example, the amount of information was severely
limited because the ULTRIX-11 operating system did not pass
any error information back to the disk exerciser. The system
only informs the exerciser of the occurrence of hard (unre-
coverable) errors. It does not report soft (recoverable)
errors to the disk exercisers.

The ULTRIX-11 operating system saves detailed error informa-
tion for hard and soft errors in the system error log file.
To obtain a detailed report about the disk errors, use the
error log print command, elp. Stopping the disk exerciser
produces an error log summary report. The report summarizes
all the errors occurring on the disk being exercised.

7.3.4 Floating Point Exerciser

The floating point exerciser (fpx) has the -e and -n
options. For further information, read Section 7.4,

System Exercisers 7-19

Exerciser Options.

This module exercises either the FP11-type floating hardware
or the kernel-resident floating point simulator by testing
various arrays of floating point numbers. If FP11 hardware
is not on the processor or if the kernel-resident floating
point simulator either is not configured or is turned off,
the module simply exits. The floating point module also
exercises the exception mechanism by running two copies of
itself to produce floating point exceptions (traps through
location 244). Because the ULTRIX-11 system does not sup-
port the PDP-11/40 Floating Instruction Set (FIS), you can-
not use the floating point exerciser on a PDP-11/40 with the
FIS option.

The floating point tests are:
TEST 1 - Increment/Decrement

Starting at 0.0 and incrementing by 0.1, the exerciser
increments two floating point numbers 99,999 times.
After each increment, the exerciser compares the two
numbers. Then, starting with the resulting numbers and
decrementing by 0.1, the exerciser decrements the two
floating point numbers 99,999 times. After each decre-
ment, the exerciser compares the numbers. Finally,
after completing this operation, the exerciser tests
both numbers for 0.0 values.

TEST 2 - Floating Point Exceptions

The exerciser produces a floating-divide-by-zero excep-
tion by dividing 1.0 by 0.0. Using the ULTRIX-11
floating point exception mechanism, the exerciser veri-
fies that the FP11 hardware status registers contain
the correct values for the floating point divide by
zero exception,

TEST 3 - Sort Floating Numbers
The exerciser copies an array of 16 presorted floating
numbers to a scratch array in random order. The
exerciser sorts these numbers and compares the result
to the original presorted array.

TEST 4 - Floating Point Addition
The exerciser first adds two arrays of 16 floating
point numbers. Then, it compares the result with a
third array that contains the expected answers.

TEST 5 - Floating Point Subtraction

The exerciser first subtracts two arrays of 16 floating

7-20 System Exercisers

point numbers. Then, it compares the results with a
third array that contains the expected results.

TEST 6 - Floating Point Multiplication

The exerciser first multiplies two arrays of 16 float-
ing point numbers. Then, it compares the result with a
third array that contains the expected answers.

TEST 7 - Floating Point Division

The exerciser first divides two arrays of 16 floating
point numbers. Then, it compares the results with a
third array that contains the expected answers.

The error messages for the floating point exerciser have
this format:

¥**x%%x FPP EXERCISER ERROR ****x%
*k***x* TEST NUMBER ## de ok kK kK

This message banner is followed by descriptive text that
varies according to error type. Normally, the text
describes the expected data, actual data, and information
concerning the operation attempted.

7.3.5 Line Printer Exerciser

The line printer module (lpx) has the -h and -p options.
For further information, read Section 7.4, Exerciser
Options.

This module exercises the LP11 line printer controller and
the 1line printer. It prints one test pattern that alter-
nates ones and zeros and another pattern that increments
through every printing character. The 1line printer
exerciser prints 12 pages of test patterns and then pauses
for 15 minutes.

When the system is using the line printer, the line printer
module prints this message:

lpx: Printer in use by spooler,
waiting for print job to finish !

The line printer module then waits for the system to release
the printer. When this occurs, it begins printing the test
patterns. When it cannot open the line printer module, the
line printer module prints this message:

lpx: Can't open LP, check for LP off-line.
Will retry at one minute intervals.

If the printer is off-line, you should place it back on-

System Exercisers 7-21

line. The line printer module automatically retries at 1-
minute intervals.

7.3.6 Memory Exerciser

The memory module (memx) has no options.

This module exercises all memory, except that occupied by
the ULTRIX-11 operating system, by dividing memory into
several equal sections. The actual number depends on the
amount of available memory, but the normal range is between
5 and 50. Then, it creates a subprocess (copy of itself)
for each remaining section of memory.

The master memx exerciser starts one of the subprocesses,
waits for it to complete exercising its section of memory,
and then starts the next subprocess. When all of the sub-
processes are completed, the exerciser creates a new set of
subprocesses. The exerciser repeats this procedure wuntil
you stop it manually.

In byte-access mode, each subprocess exercises 1its section
of memory with a checkerboard pattern and its complement.
In word-access mode, each subprocess exercises 1its section
of memory with a walking one pattern and, its complement, a
walking zero pattern.

When you use the memory module in conjunction with other
exerciser modules, it forces swapping activity. Swapping
occurs because the exerciser attempts to use all the memory
on the system, some of which 1is occupied by other
exercisers. When the ULTRIX-11 operating system has more
processes to run than free memory in which to run them, it
must swap out processes.

If your system configuration has nonparity memory, or if a
data error without a memory parity error occurs, the memx
error messages are in the format:

Memory data error [byte access]
Memory exerciser process I.D. = #

Virtual address = ######
Expected data = ######
Actual data = HH###44

The data error indicates the memory access mode (word or
byte). The process ID indicates the subprocess that experi-
enced the error. The address indicates where the data
mismatch occurred. The expected and actual data also are
indicated. Because the subprocess has a short lifespan,
determining the physical address is very difficult.

When your system configuration has parity memory, any memory
data error is usually accompanied by a memory parity error

7-22 System Exercisers

(trap through location 114). When a memory parity error
occurs in the section of memory that a subprocess is
exercising, the system immediately suspends running that
subprocess. This occurs before the system can print the
data mismatch error message cited above. For further infor-
mation about parity memory errors, read Section 8.4.3,
Memory Parity Record, and Section 10.2.15, panic: parity.

When a memory parity error occurs, the master memx exerciser
is notified of the subprocess's abnormal termination. 1In
turn, it also prints this message:

Memory exerciser (pid # status ###) terminated abnormally !
Check error log for error at about - Sat Mar 28 11:10:10 1982

The pid number indicates the process ID of the subprocess
that terminated abnormally. The status indicates the reason
(exit status) for termination. For further information
about exit codes, read signal(2) and wait(2) in the ULTRIX-
11 Programmer's Manual, Volume 1.

The date and time indicated is the most important informa-
tion in this message. When a memory parity error terminates
a subprocess, the system makes an entry in the error log
that describes the memory parity error.

When a subprocess does not complete exercising its section
of memory within the 15-minute time limit, the master memx
exerciser terminates the subprocess, prints this message,
and continues exercising memory:

memx: memxr (pid #) timed out !

The # indicates the process 1identification number of the
subprocess.

7.3.7 Tape Exercisers

The magnetic tape module (mtx) has the -4, -e, -f, -h, -i,
-n, and -s options. For further information, read Section
7.4, Exerciser Options. In addition, this module exercises
all available tape units connected to any of these controll-
ers:

Mnemonic Controller/Unit

ht TM02/3 with TU16/TE16/TU77
tm TM11 with TU10/TE10/TS03
ts TS11/TSV05/TU80/TK25

This module first writes a number of records that contain
test data patterns onto the tape. Then, it reads each
record and matches the data against the test pattern.

System Exercisers 7-23

The mtx exerciser performs the following tests at either 800
or 1600 bpi and in either block or character (raw) I/0 mode:

TEST 1 - Short File Test

The short file test writes a number of 512-byte records
from the write buffer to the tape, reads the same
number of records back from the tape into the read
buffer, and matches the data. The number of records
starts at 1, increments to 16, and then decrements back
to 1. Then, it verifies that the correct number of
records were written to tape. It attempts to read one
extra record and checks for an end-of-file error. The
write and read buffer addresses are rotated throughout
the exerciser's in-memory data buffer.

TEST 2 - Variable Length Record Test

The variable length record test writes a single tape
record that starts at 512 bytes and increments by 512
bytes to a maximum 10240 bytes. The exerciser reads
the tape record and matches the data against the test
data pattern.

TEST 3 - Large File Test

The large file test simulates very large files by writ-
ing enough records to fill the length of tape specified
by the -f option. The default length 1is 500 feet.
Then, it wverifies that the correct number of records
were written to tape. It attempts to read one extra
record and checks for an end-of-file error. The tape
record size is 512 bytes in block I/0 mode and 10240
bytes 1in raw I/0 mode. For the 512-byte records only,
the exerciser rotates the write/read buffer addresses
through its in-memory buffer area.

Depending on the condition, the error messages for the mag-
netic tape module have differing formats. When the module
could not open the tape drive, it prints these messages:

mtx: can't open /dev/mt0 [off-line]

mtx: [will retry for at least 15 minutes, then quit !]
The drive may be off-line, write locked, or already open.
The module periodically attempts to reopen it for 15
minutes. If an attempt is successful, it continues exercis-
ing the tape. If the attempts still fail after the 15-minute
time limit, the exerciser prints this message and then ter-
minates:

mtx: FATAL TAPE ERROR - can't open /dev/mt0 after 15 minutes

7-24 System Exercisers

When read or write errors occur, the exerciser prints this
message:

kkkkkk

TEST 3 - HARD TAPE READ ERROR - Fri Sep 10 16:08:42 1982
Returned byte count = -1 (-1 = error)

Error type: Fatal error - tape position lost

unit density I/0 record # of record

number BPI mode number records length

0 1600 raw 327 513 10240 bytes
Write buffer address = 0

Read buffer address = 0

DATA COMPARE ERROR - RECORD 327

WORD = 3584
GOOD = 137500
BAD = 137400
WORD = 3585
GOOD = 137500
BAD = 137400
WORD = 3586
GOOD = 137500
BAD = 137400
WORD = 3587
GOOD = 137500
BAD = 137400
WORD = 3588
GOOD = 137500
BAD = 137400

[error printout limit exceeded]

In this example, the error occurred during TEST 3 (large
file test) and was an unrecoverable read data error at 1600
bpi in raw I/0 mode on unit 0. The error occurred on record
number 327 of 513 records, and the record length was 10240
bytes. The write and read buffer addresses given are not
physical memory addresses. They are the offset from the
start of the buffer where the actual write or read operation
begins.

The data mismatch printout shows the address where the
mismatch occurred and is expressed as a word offset from the
start of the transfer (buffer address). The message also

System Exercisers 7-25

shows the good and bad data. Because the ULTRIX-11 operat-
ing system indicates only that a fatal error has occurred to
the tape exerciser, it 1is not possible for the module to
produce a detailed error printout. The ULTRIX-11 operating
system does save the detailed error information in the error
log file. To obtain a detailed error report, use the error
log printout command, elp. When an error stops the
exerciser, the module produces an error log summary report
of all errors for the current module run.

Some of the tests verify that the system writes the correct
number of records to tape. If these verification tests
fail, the exerciser prints the same error message as in the
previous example but omits the data mismatch printout.
Then, it prints this message:

[missing EOF or extra record(s) at end of file]

7-26 System Exercisers

7.4 Exerciser Options

Although many of the exerciser modules share options, the
options may designate different functions for each. This
section is in alphabetical order by option mnemonic. The
accompanying text describes the format and effect that are
applicable for each module.

7.4.1 -b Option

The -b option is used with the cmx communications device
exerciser only. It specifies the speed (bps) for all lines
on that device and has this format:

-b #

The # indicates the speed (bps). For example, the following
command sequence indicates that cmx is to exercise all lines
on DZ11, unit 0 at 9600 bps:

cmx -dz0 -b 9600

7.4.2 -c Option

The -c option is used with the hpx and rax disk exercisers.
When used with either exerciser, it specifies the disk con-
troller and has this format:

-c#

The hpx exerciser supports various combinations of RM02/3/5,
RP04/5/6, and ML11 disks connected to as many as three RH11
or RH70 controllers. The ULTRIX-11 RH controller number is
not specified by the physical or electrical position of the
RH controller on the bus. The following numbers are used as
controller indicators:

0 - First RH controller with RM02/3/5, RP04/5/6 and/or
ML11 disks. The disks are referred to as "hp".

1 - Second RH controller with RM02/3/5, RP04/5/6 and/or
ML11 disks. The disks are referred to as "hm".

2 - Third RH controller with RM02/3/5, RP04/5/6 and/or
ML11 disks. The disks are referred to as "hj".

The rax exerciser supports the following MSCP controllers:

UDA50/UDA5S0A - for RA60/80/81 disks
RQDX1 - for RD51/RD52/RX50 disks
KLESI - for RC25 disks

RUX1 - for RX50 disks

System Exercisers 7-27

Controllers are assigned numbers based on the order that
they were specified during the system generation. To deter-
mine the controller number for the device you wish to exer-
cise, use the sysx help information to obtain a list for
your configuration. In addition, you also may use the
rasize command. For further information, read rasize(1M) in
the ULTRIX-11 Programmer's Manual, Volume 1,

7.4.3 -d Option

The -d option is used with the cmx communications device
exerciser; the mtx magnetic tape exerciser; and the hkx,
hpx, hxx, rax, rkx, rlx, and rpx disk exercisers.

When used with the cmx exerciser, it specifies the device
type and unit number and has this format:

-az#

The ? indicates the device type, and the # 1indicates the
unit number.

When used with the mtx exerciser, it specifies the drive
number and has this format:

-d#

For example, the following command sequence indicates that
mtx is to exercise drives 0 and 1 on the TM02/3 controller:

mtx -ht -d0 -d1

If you are using the mtx exerciser and do not specify the -d
option, the module exercises all available drives on the
designated controller (default).

When used with the hkx, hpx, hxx, rax, rhx, rlx, and rpx

exercisers, it specifies the desired disk unit number and
has this format:

-d#
The # indicates the disk unit number.
7.4.4 -e Option
The -e option is used with the c<cmx communications device
exerciser; the fpx floating point exerciser; the mtx mag-

netic tape exerciser; and the hkx, hpx, hxx, rax, rkx, rlx,
and rpx disk exercisers.

When used with any of these exercisers, it specifies the
number of errors that can occur on the designated device
before the exerciser stops. This option 1is wuseful for

7-28 System Exercisers

preventing a faulty device from producing an excessive
number of errors and extremely large log files. It has this
format:

-e #

The # indicates the error limit. If you use any of these
exercisers and do not specify the -e option, the error limit
is set to 100 (default).

7.4.5 -f Option

The -f option is used with the mtx magnetic tape exerciser;
and the hkx, hpx, rax, rlx, and rpx disk exercisers.

When used with the mtx exerciser, it specifies the tape
length and has this format:

-f4

The # indicates the length of the tape in feet. 1If you use
the mtx exerciser and do not specify the -f option, the
module uses 500 feet (default).

When used with the hkx, hpx, rax, rlx, and rpx exercisers,

it specifies the disk partition (file system) that is to be
exercised and has this format:

-f#

The # indicates the partition number (file system). If you
use the hkx, hpx, rax, rlx, and rpx exercisers and do not
specify the -f option, the module exercises all partitions
(default). For further information about disk partitioning,
read Section 1.3, Logical Partitioning of Disks.

7.4.6 -h Option
The -h option is used with the cmx communications device
exerciser; the lpx line printer exerciser; and the hkx, hpx,

hxx, rax, rkx, rlx, and rpx disk exercisers.

When used with any of these exercisers, it provides help
text about the other exerciser options and has this format:

-h

For example, the following command sequence provides help
text on the cmx option.

cmx -h

System Exercisers 7-29

7.4.7 -i Option

The -i option is used with the cmx communications device
exerciser; the mtx magnetic tape exerciser; and the hkx,
hpx, hxx, rax, rkx, rlx, and rpx disk exercisers.

When used with any of these exercisers, it suppresses all
start-up or status messages and has this format:

-1

Before starting data transmission on a line, the cmx
exerciser prints a warning message, delays for one minute,
and prompts for verification before starting. This ensures
that there 1is no sensitive customer equipment connected to
the line that you want to exercise.

Before starting, the mtx exerciser prints out the status of
the designated drives.

Before starting, the disk exercisers print out the status of
all read-only file systems on the designated drives. If any
of the file systems contain data, the exercisers treat it as
read only and do not overwrite data.

7.4.8 -1 Option

The -1 option is used with the cmx communications device

exerciser only. It specifies the line that is to be exer-
cised and has this format:
-1 # #

The first # indicates the desired line, while the second #
(optional) indicates speed (bps). In addition, multiple
uses of the -1 option can appear in one command sequence.
For example, the following command sequence specifies a

DH11, unit zero with line 1 (9600 bps) and line 2 (300 bps)
exercised:

cmx -dh0 -1 1 9600 -1 2 300
If you use the cmx exerciser and do not specify the -1

option, all lines not disabled with the -u option are exer-
cised (default).

Z‘é‘_g_ —IB OQtiOD.

The -m option is used with the cmx communications device
exerclser; and the hkx, hpx, hxx, rax, and rpx disk
exercisers.

When used with the cmx exerciser, it suppresses maintenance
loopback mode on all devices and has this format:

7-30 System Exercisers

-m

For further information about cmx test modes, read Section
7.3.1, Communications Device Exerciser.

When used with the hkx, hpx, rax and rpx disk exercisers, it
simply 1lists the partition layout of the selected drive and
has this format:

~-m

Then, after displaying the partition layout, the exerciser
exits.

When used with the hxx disk exerciser, it specifies the
exercise mode that is to be used on the RX02 drive and has
this format:

-m#

The # indicates the desired exercise mode. The RX02 disk
can be exercised in either RX01-compatibility mode or in
RX02 mode. To use RX01 mode, enter a 1 as the mode indica-
tor (for example, -m1). To use RX02 mode, enter a 2 as the
mode indicator (for example, -m2). If you use the hxx
exerciser and do not specify the -m option, the RX02 drive
is exercised in both modes (default).

7.4.10 -n Option

The -n option is used with the cmx communications device
exerciser; the fpx floating point exerciser; the mtx mag-
netic tape exerciser; and the hkx, hpx, hxx, rax, rkx, rlx,
and rpx disk exercisers.

When used with any of these exercisers, it specifies the
number of data mismatch errors to print for each error
occurrence. For example, a disk exerciser may generate as
many as 256 data mismatch errors for a single disk sector
transfer. This option lets you limit the output to a reason-
able number and has this format:

-n#

The # indicates the desired number of data mismatches. By
limiting the number of errors, you not only save space in
the log file but also, when printing error reports, save
paper.

7.4.11 -p Option

The -p option is used with the lpx 1line printer exerciser
only. It specifies the pause time before resuming printing

System Exercisers 7-31

and has this format:
-p#

The # indicates the desired number of minutes. To save
paper, the lpx exerciser generates about 12 pages of actual
printout and then goes into pause state. During this pause
state, it continues to exercise the line printer controller
by sending nonprinting characters (NULLS) to the printer.
For continuous printing (no pause), enter 0 as the minute
indicator. If you use the lpx exerciser and do not specify

the -p option, the pause time 1is set to 15 minutes
(default).

7.4.12 -s Option

The -s option is used with the cmx communications device
exerciser; the mtx magnetic tape exerciser; and the hkx,
hpx, hxx, rax, rkx, rlx, and rpx disk exercisers.

When used with any of these exercisers, it specifies that

I/0 statistics are to be printed at the designated time
interval and has this format:

-s#

The # indicates the desired time interval 1in minutes. If
you wuse any of these exercisers and do not specify the -s

option, I/0 statistics are printed out every 30 minutes
(default).

7.4.13 -u Option

The -u option is used with the cmx communications device
exerciser only. It specifies that the designated line is to
be omitted and has this format:

-u #

The # indicates the designated line. For example, the fol-
lowing command sequence specifies that cmx 1s to exercise
all lines on the DH11, unit zero, except line 1:

cmx -dh0 -u 1

The -w option is used with the rax disk exerciser only. It
specifies that the exerciser is to use the entire disk but
with the normal write protections (no writes to root, swap,
and mounted file systems or to error log). It has this for-
mat:

7-32 System Exercisers

-w

The RA80, RA81, RD51, and RD52 disks contain fixed Winches-
ter disks. The RC25 contains both a fixed and removable
Winchester disk. The RA60 is a removable disk that operates
on the same controller as the RA80 and RA81. To protect
data, the ULTRIX-11 operating system reserves a small
maintenance area at the end of the disk as a free-fire zone.
This maintenance area lets the rax exerciser have write and
read access to the disk without overwriting data in the cus-
tomer area. If you use the rax exerciser and do not specify
the -w option, the exerciser reads the entire disk but per-
forms write operations to the maintenance area only
(default).

7.4.15 -x Option

The -x option is used with the rax disk exerciser only. It
specifies that the drive to be tested is an RX50 and that
writing to any area of the disk is allowed as long as the
normal file system protection mechanisms are satisfied. It
has this format:

-X

Because it does not have a maintenance area, the RX50
diskette drive differs from the other drives exercised by
the rax exerciser. When this option is specified, the
exerciser first verifies that the drive to be tested is
indeed an RX50. If the drive is not an RX50, the exerciser
stops. This prevents accidentally writing to a nonmainte-
nance area on drives other than an RX50. When you use the
sysx program to generate a run script, it automatically
specifies the -x option when the designated drive 1is an
RX50.

System Exercisers 7-33

7.5 End-of-Pass Messages

Every exerciser, except the communications exerciser (cmx),
prints periodic end-of-pass messages. These messages give a
general indication of exerciser progress.

The amount of time an exerciser requires to make a pass
varies depending on the type of processor and the number of
exercisers running. For example, when running alone, the
CPU exerciser makes a pass in less than five minutes. But,
when you are exercising the whole system, it can take over
30 minutes.

Chapter 8

ULTRIX-11 Error Logger

The ULTRIX-11 kernel monitors system performance and records
error data 1in an in-memory error message buffer. In addi-
tion, the ULTRIX-11 error logger collects information about
system and device errors as they occur and stores this
information in the system error 1log file. The ULTRIX-11
error logger consists of:

elc Runs in background and periodically copies error data
from the in-memory message buffer to the system error
log file.

eli Enables or disables error logging, saves the contents
of the error log file, initializes the error log file,
and prints the sizes of the error log file.

elp Formats and prints error reports.

The remaining sections of this chapter discuss:
Operating procedures

Error messages

Report formats
Sample reports

8-2 Error Logger

8.1 Operating Procedures

Normally, the ULTRIX-11 error logger operates automatically.
The multiuser start-up and restart files, /etc/rc and
/opr/restart, automatically enable system error logging and
print the sizes of the error log file. 1In addition, during
multiuser shutdown, the opser shutdown command automatically
disables system error 1logging. During most daily opera-
tions, you will not need to attend to the ULTRIX-11 error
logger.

When the error log file requires maintenance, however, you
may have to operate the ULTRIX-11 error logger manually.
The next four sections discuss the procedures for using the
eli program to:

e Disable and enable error logging

° Save the contents of the error log file
° Initialize the error log file

e Print the size of the error log file
8.1.1 Disabling and Enabling Error Logging

On occasion, you may have to disable or enable error logging
manually. For example, you may have to disable error log-
ging to perform routine maintenance on the error log file.
Or, you may want to enable error logging while the system is
in single-user mode.

To disable error logging manually, use the eli program and
specify the -d option. In response to the superuser prompt,
type this command sequence:

/etc/eli -d

Once error logging is disabled, you then can proceed with
the planned maintenance.

To enable error logging manually, use the eli program and

specify the -e option. In response to the superuser prompt,
type this command sequence:

/etc/eli -e

If error logging already 1is enabled, the system simply
ignores this command. Once enabled, the error logger writes
data to the error log file.

8.1.2 Saving the Error Log Contents

When maintenance requires you to initialize the error 1log
file, you should save the current data before doing so.

To copy the contents of the error log file, use the eli

Error Logger 8-3
program and specify the -c option. In response to the
superuser prompt, type this command sequence:

/etc/eli -c file
file Specifies the file to which the error log data is to
be copied.

Once the data contained in the error log file has been
saved, you then can initialize the file.

8.1.3 1Initializing the Error Log File

When the error log file is full and requires your attention,
you should first save the contents of and then initialize
the error log file.

To initialize the error log file, use the eli program and

specify the -i option. In response to the superuser prompt,
type this command sequence:

/etc/eli -i

The eli program then prompts for confirmation. When you
respond yes, the eli program zeroes out the error log file
and initializes all the system's error logging pointers and
buffers.

Although you can initialize the log file at any time, the
system automatically disables error logging when you ini-
tialize the error log file when in multiuser mode. If you
do so, therefore, you later must enable error logging manu-
ally. DIGITAL recommends that you initialize the error log
file only when in single-user mode.

8.1.4 Printing the Sizes of the Error Log File

Although the system automatically prints the sizes of the
error log file during a multiuser startup or restart, you
also can print them at any other time.

To print the current size (bytes) and block usage of the
error log file, use the eli program and specify the -u
option. In response to the superuser prompt, type this com-
mand sequence:

/etc/eli -u
The eli program then prints the current sizes of the error

log file. For further information, read Section 8.2.1,
Error Log File -- Blocks Used.

8-4 Error Logger

8.2 Error Messages

This section discusses those messages that may occur when
running the ULTRIX-11 error logger.

8.2.1 ERROR LOG has - # of # blocks used

The eli program prints this message in response to queries
about the size of the error log file (Section 8.1.4). Each
time the system makes the transition from single-user mode
to multiuser mode, the eli program prints this message.
When the number of blocks used 1increases to within three
blocks of the maximum error log file size, the eli program
also prints this message each time an error is logged. This
repetition warns that the error log file is nearly full and
corrective action is needed. For further information, read
Section 8.1.2, Saving the Error Log Contents, and Section
8.1.3, Initializing the Error Log File.

8.2.2 1logger: MISSED ERROR

This message indicates that the in-memory error message
buffer overflowed. As a result, one or more error messages
may have been lost. After printing this message, the system
disables error logging. Usually, the system prints this
message when it writes data to the in-memory error message
buffer faster than the elc program can remove and write it
out to the error log file. This usually occurs when the elc
program stops running for some reason.

8.2.3 1logger: ERROR LOG DEVICE

This message indicates that a disk error occurred on a block
within the error log file. After printing this message, the
system disables error logging.

8.2.4 elc: bad error record, error logging disabled

This message indicates that the format of an error record
was invalid. Normally, the elc program checks the format of
each error record before it copies it from the in-memory
buffer to the error log file. After printing this message,
the system disables error logging. This can occur 1if the
in-memory buffer is corrupted.

8.2.5 elc: error log full, logging disabled

When the error log file is full, the elc program can no
longer copy data from the in-memory buffer to the error log
file. When this occurs, the elc program prints this mes-
sage, and the system then disables error logging. This mes-
sage indicates that the error log file requires immediate
attention. For further information, read Section 8.1.2,
Saving the Error Log Contents, and Section 8.1.3,

Error Logger 8-5

Initializing the Error Log File.

8.2.6 elc: read error bn = §#

This message indicates that an error occurred as the elc
program attempted to read from the error log file. The #
specifies the block number relative to the start of the
error log file. After printing this message, the system
disables error logging.

8.2.7 elc: write error bn = #

This message indicates that an error occurred as the elc
program attempted to write to the error log file. The #
specifies the block number relative to the start of the
error log file. After printing this message, the system
disables error logging.

8-6 Error Logger

8.3 Printing Error Log Reports

To produce readable reports from the data in the error log
file, use the elp program. You can use this program to pro-
duce either summary or full reports. A summary report lists
the number and types of errors for the system as well as for
each device. In addition to this information, a full report
provides a detailed description of each error. The elp pro-
gram also has several options which can be used to limit the
error reports to only the information desired. Many of
these options can be used in combination.

To obtain on-line help information, use the elp program and
specify the -h option. In response to the shell prompt,
type this command sequence:

$ elp -h

The elp program then prints the following help information:

Error Logger 8-7

(elp) - ULTRIX-11 error log report generator.

This command formats and prints error reports based
on the error data captured by the error logger.

Usage:
elp [-h] [-s] [-f] [-b] [-r] [-ul (-4 sd ed] [-et([#]] [filel
elp With no arguments,

a summary of all errors is printed followed
by a detailed report on each error.

-h Print this help message.

-s Print only the error summary report.

-f Print only the detailed error report.

-b Print only brief descriptions of each error.

-r For block device errors, print only recovered errors.
-u For block device errors, print only unrecovered errors.
-d Print only the errors within the specified

date/time range.

(sd) - Starting date/time (yymmddhhmmss).
(ed) - Ending date/time (yymmddhhmmss).

note - All digits must be present in date/time.

-et[#] Print only the error for the specified error type.
Only one error type may be specified.
#' - optional unit number for block device errors only.

file Take the input from the specified file
instead of the current error log.

The next five sections discuss:

Summary and full error reports

Error reports from saved error log contents
Error reports by error type

Error reports for hard and soft errors
Error reports by date and time

8.3.1 Summary and Full Error Reports

When you do not specify options, the elp program first
prints a summary report of all error data and then prints a
full report that describes each error.

8-8 Error Logger

To print a summary report only, use the elp program and

specify the -s option. In response to a shell prompt, type
this command sequence:

$ elp -s
To print a full report only, use the elp program and specify
the -f option. In response to a shell prompt, type this
command sequence:

$ elp -f
In addition, to print a full report but limit the descrip-
tion of each error to a brief statement only, use the elp
program and specify the -b option. In response to a shell
prompt, type this command sequence:

$ elp -b

8.3.2 Error Reports from a Saved Error Log File

The elp program normally produces error reports with the
data from the error log file. To produce either a summary
or full report from data previously saved using the eli pro-
gram, use the elp program and specify the appropriate option
and alternate file name. For example, this command sequence
produces a summary report from the data contained in the

olderrors file:

$ elp -s olderrors
To save the contents of the current error log file, use the
eli program. For further information, read Section 8.1.2,
Saving the Error Log Contents.

8.3.3 Error Reports by Error Type

The elp program normally produces error reports for all
errors that have been recorded. You can limit an error
report, however, to errors of a single specified type.

To limit the report to a single error type, use the elp pro-

gram and specify the appropriate error type mnemonic. 1In

response to a shell prompt, type a command sequence in the
format:

S elp -et[#]

et Specifies the appropriate error type mnemonic.

Specifies the wunit number for block devices only
(optional).

Error Logger 8-S

The following is a list of the error type mnemonics:

Mnemonic Device/Type

hk RK06/7

hj RM02/3/5, RP04/5/6, ML11 (3rd RH Controller)
hm RM02/3/5, RP04/5/6, ML11 (2nd RH Controller)
hp RM02/3/5, RP04/5/6, ML11 (1st RH Controller)
hs RS03/4

ht T™M02/3

hx RX02

mp Memory Parity

ra RA60/RA80/RA81

rc RC25

rd RD51/RD52

rk RKOS

rl RL0O1/2

rp RP02/3

rx RX50

sd Shutdown

si Stray Interrupt

su Startup

sv Stray Vector

tc Time Change

tm ™11

ts TS11/TSV05/TU80/TK25

For example, the following command sequence limits the error
report to those for an RK06/7, unit O:

$ elp -hkO

8.3.4 Error Reports for Hard and Soft Errors

The elp program normally produces error reports for all
errors that have been recorded. You also can limit the con-
tents of the error report to either soft (recoverable)
errors or hard (unrecoverable) errors.

To limit the report to soft errors only, use the elp program
and specify the -r option. In response to a shell prompt,
type this command sequence:

$ elp -r
To limit the report to hard errors only, use the elp program
and specify the -u option. In response to a shell prompt,
type this command sequence:

$ elp -u

8-10 Error Logger

8.3.5 Error Reports by Date and Time

The elp program normally produces error reports for all
errors that have been recorded. You also can limit the
report to those errors that occurred during a specified date
and time range.

To limit the report to those errors that occurred during a
designated period, use the elp program and specify the -d
option and appropriate time range. In response to a shell
prompt, type a command sequence in the format:

$ elp -d sd ed

sd Specifies the starting date and time.
ed Specifies the ending date and time.
Both the starting and ending times have the format:

yymmddhhmmss

yy Indicates the year (00-99).

mm Indicates the month (01-12).

dd Indicates the day (01-31)

hh Indicates the hour (00-23).

mmn Indicates the minute (00-59).

ss Indicates the seconds (00-59).

Because there are no default values, you must type all
digits when specifying either a starting or ending time.
For example, the following command sequence 1limits the
report to those errors that occurred between 12:00 am, Janu-

ary 1, 1984 and 11:59 pm, January 2, 1984.
$ elp -d 840101000000 840102115959

8.3.6 Multiple Options

You can specify several elp options on a single command
line. When multiple options are specified, the elp program
produces a report that contains only those errors which
match the defined set of conditions. For example, the fol-
lowing command sequence combines five options:

$ elp -b -u -hk2 -d 840902120000 840902130000 el sep.2

Error Logger 8-11

This command produces a report that provides only brief
descriptions of each error and that used the data contained
in the named file (el_sep.2) for wunrecoverable errors on

RK06/7, drive 2 occurring between 1200 and 1300 hours on
September 2, 1984.

8-12 Error Logger

8.4 Sample Error Reports

The next nine sections provide descriptions of a particular
error record, a corresponding sample error report, and an
explanation of the reported data.

8.4.1 Error Records -- Common Header

The common header for each error log record has the format:
Sequence # ERROR TYPE Date and Time

In addition to this header, each error record may also print
additional information.

8.4.2 Block I/0 Device Error Record

The system logs a block I/0 device error record every time
that a disk or tape encounters either a hard or soft error.
Block I/0 device errors usually are the most common type of
errors found in the error log file.

In addition to the common header, each block 1I/0 device
error record lists:

Major/minor device number

Generic device name

Unit number

Controller's CSR address

Number of entries attempted

Error type (recoverable or unrecoverable)
Names of other active devices (if any)

This information is followed by the contents of the device's
hardware registers and six lines of data:

I/0 buffer's physical address

Transfer required the UNIBUS map (yes or no)
Transfer size

Type of I/0 operation (read or write)

Logical block number where the transfer started
Type of operation (buffered or physical)

The logical block number is relative to the start of the
file system. On partitioned disks, the start of a file sys-
tem may or may not be the start of the disk. When a buf-
fered 1/0 operation is indicated, the I/O error most likely
occurred with a buffer in the ULTRIX-11 buffer pool. When a
physical I/0 operation 1is indicated, the I/O error most
likely occurred directly between a buffer in the wuser pro-
cess and the device. For further information, read Chapter
1, ULTRIX-11 I/0 System.

The following is a sample block I/0 error record:

Error Logger 8-13

Sequence 68 BLOCK I/0 DEVICE ERROR - Tue Aug 3 10:50:39 1982
Major/Minor Device 23/15
Device Type (first RH11/RH70) RP04/5/6, RM02/3/5, ML11
Unit Number 1
Device CSR Address 176700
Retry Count 1
Error Diagnosis RECOVERED via RETRY

Block Device Activity:
(first RH11/RH70) RP04/5/6, RM02/3/5, ML11

Device Register Contents at time of First Error

RMCS1 144670 SC TRE DVA A16 RDY <READ DATA>
RMWC 177000 word count -512

RMBA 136154

RMDA 001401 track 3 sector 1
RMCS?2 000101 IR UO

RMDS 150700 ATA ERR MOL DPR DRY VV
RMER1 010000 DTE

RMAS 000002 ATA1

RMLA 000000

RMDB 000000

RMMR1 000010

RMDT 024024 MOH dual ported RM03
RMSN 114002 serial number 9802
RMOF 010000 FMT16

RMCA 000174 cylinder 124

RMHR 000174 cylinder 124

RMMR?2 011777

RMER2 000000

RMPOS 004066

RMPAT 000000

RMBAE 000005 A18 A16

RMCS3 000000

Physical Buffer Start Address 1236154
UNIBUS Map used for transfer? NO

Transfer size in bytes 1024
Transfer Type READ
Block in logical file system 0

I/0 Operation type PHYSICAL
8.4.3 Memory Parity Record

The system logs a memory parity record every time that a
memory parity error occurs while executing a user process.
When the ULTRIX-11 system is in kernel mode, a memory parity
error usually causes the system to crash. For further infor-
mation, read Section 10.2.15, panic: parity

8-14 Error Logger

In addition to the common header, each memory parity error

record lists the contents of the available memory hardware
registers.

The following is a sample memory parity record:

Sequence 8 MEMORY PARITY ERROR - Sun Mar 28 11:10:10 1982

Memory System Register contents

MLEA 33034
MHEA 40036
MSER 104014
MSCR 3

8.4.4 RX50/RD51/RD52/RA60/RA80/RA81/RC25 Disk Error Record

The ULTRIX-11 operating system communicates with
RX50/RD51/RD52/RA60/RA80/RA81/RC25 disks wusing the Mass
Storage Control Protocol (MSCP). The MSCP disks can produce
multiple error log entries for a single error. The end mes-
sage always reports the final status of the error and indi-
cates an MSCP command has completed. Asynchronous messages
(datagrams) report status information about error retry

attempts. These datagrams can arrive before and/or after
the command end message.

The only method for associating these datagrams with the
proper MSCP command is to scan the error log report manually
for an MSCP end message that has the same command reference
number and error log reference number as the datagram. The
command end message and any associated datagrams should be
grouped reasonably close together in the error log report.

8.4.5 Shutdown Record

The system logs a shutdown record each time that error log-

ging is manually disabled and every time that multiuser mode
is shut down.

Each shutdown record simply lists the common header informa-
tion: the date and time of the shutdown.

The following is a sample shutdown record:

Sequence 2 ERROR LOGGING SHUTDOWN - Thu Feb 6 10:04:24
8.4.6 Startup Record

The system logs a start-up record each time it enables error
logging. Normally, this occurs during multiuser startup
(transition between single-user mode and multiuser mode).
Each start-up record, therefore, provides information about

1982

Error Logger 8-15

a system startup.

In addition to the common header, each start-up record pro-
vides a brief system profile:

Version of ULTRIX-11 software

Type of processor used

Processor features that are enabled

Devices configured into that ULTRIX-11 kernel

The following is a sample start-up record:

Sequence 0 ERROR LOGGING STARTUP - Fri Jul 16 15:30:26 1982

System Profile:

ULTRIX-11 (V2.0) Operating System
11/70 Processor

UNIBUS Map Enabled

22 Bit Mapping Enabled

Kernel D Space Enabled

User D Space Enabled

Configured with:

(UDA50) - RA60/RA80/RAS81

(RUX1) - RX50

(RL11) - RL01/2

(RH11/RH70 - TM02/3) - TU16/TE16

(first - RH11/RH70) - RP04/5/6, RM02/3/5, ML11

(second - RH11/RH70) - RP04/5/6, RM02/3/5, ML11
CONSOLE

LP11
DH11
DZ11/DZV11/DZQ11

8.4.7 Stray Interrupt Record

The system logs a stray interrupt record every time that an

interrupt occurs from an 1inactive configqured device (the
interrupt was not expected).

In addition to the common header, each stray vector record
lists the device's UNIBUS CSR address and the names of the
other devices that were active at that time. The following
is a sample stray interrupt record:

Sequence 67 STRAY INTERRUPT - Sun Dec 7 14:56:08 1982

From Controller at 177440
Block Device Activity: NONE

8-16 Error Logger

NOTE

If the reported address 1is 1less than
1000 (octal), the stray interrupt really
is a stray vector from the unused vector
address in a user-written device driver.

8.4.8 Stray Vector Record

The system logs a stray vector record every time that a vec-
tor through an unused vector location occurs. This indicates
either an interrupt from an unconfigured device or a device
that interrupted through the wrong vector address.

In addition to the common header, each stray vector record
lists the stray vector address and the names of the other
active devices at that time. This is a sample stray vector
record:

Sequence 45 STRAY VECTOR - Mon Dec 8 16:40:08 1982

From Vector Address 0340
Block Device Activity:
(RP11) - RPO3

8.4.9 Time Change Record

The system logs a time change record every time that you use
the date command to change the system's date and time. The
purpose of the time change record is to prevent possible
confusion caused by this change.

Instead of the normal date and time in the common header,
each time change record lists two times: changed from and
changed to. The following is a sample time change record:

Sequence 353 TIME CHANGE ***** FROM Sat Sep 4 15:54:24 1984
TO Sat Sep 4 15:54:00 1984

Chapter 9

ULTRIX-11 Crash Dump Analysis Facility

When an unscheduled event interrupts normal operations, the
ULTRIX-11 system voluntarily crashes. Normally, the first
indication of a system crash is the 1loss of terminal
response. Another indication of a system crash is the sys-
tem panic message that was written to the console. Before
it crashes, the system prints a panic message at the con-
sole. For further information, read Chapter 10, ULTRIX-11
Error Messages.

The remaining sections of this chapter discuss the procedure
that you should use to determine the cause of your system
crash., Specifically, these sections discuss:

Checking the console switch display register
Gathering system status information

Making a crash dump

Copying the dump to a core file

Using the cda program to analyze the core file
Using the adb program to print kernel structures

9-2 Crash Dump Analyzer

9.1 Checking the Console Switch Display Register

The PDP-11/45, PDP-11/55, and PDP-11/70 processors are
equipped with a console display register. The ULTRIX-11
operating system uses this register to display system status
information. While the system is running, you can use this
register to display the contents of a specified address
(real time).

Because it remains active even when a system crash occurs,
the console display function 1is very useful for initial
crash analysis. You can use it to display this information
dynamically without halting the processor:

Contents of memory
Processor error registers
Processor status registers
Device error registers
Device status registers

To examine an address, first load the desired address into
the console switches. Then, set the console DATA display
select switch to the "display register" position.

The system displays the contents of the specified address in
the display register. It uses bit zero of the specified
address to determine how the address is mapped. The system
maps odd addresses to user data space and even addresses to
kernel data space. If you select a nonexistent address, the
system displays a series of ones (1s).

As long as the system clock is enabled, the console display
function remains active. On each clock interrupt (50/60 per
second), the ULTRIX-11 system examines the address contained
in the console switches and writes 1its contents to the
display register. If you select a nonexistent address, the
scanning rate slows to once every two seconds. This change
prevents the performance degradation that would result if

the bus time-out traps were allowed to occur on each clock
interrupt.

Crash Dump Analyzer

NOTE

If the contents of the hardware device
registers are subsequently altered, you
should not use the console display func-
tion to examine them. This most often
occurs with disk and communications dev-
ice silo data buffer registers. Access-
ing these registers with the display
function diverts silo data from its in-
tended destination to the display regis-
ter.

9-3

9-4 Crash Dump Analyzer

9.2 Gathering System Status Information

When your ULTRIX-11 system crashes, you should examine and
record the status of your hardware:

Console display lights
Processor error registers
Memory error registers
Device error registers
Device status registers

After examining your hardware, you should read any messages
that were written to the system console. For further infor-
mation about interpreting system messages, read Chapter 10,
ULTRIX-11 Error Messages.

Crash Dump Analyzer 9-5

9.3 Making an ULTRIX-11 Crash Dump

To make an ULTRIX-11 crash dump, write an image of physical
memory to the crash dump device. For most configurations,
the crash dump device is tape. However, the crash dump dev-
ice can also be the swap area of the system disk or RX50
diskettes. You determine the crash dump device during a
system generation.

9.3.1 Writing a Crash Dump to Tape

To write a crash dump to tape, you first should ready the
tape unit., Specifically, mount a write-enabled tape on unit
0. Then, make sure that the tape is at load point (BOT) and
that the unit is on-line.

Once the tape unit is ready, you should:

° Halt the processor
e Load address 1000 (octal)
° Start the processor

When loaded and running, the crash dump code automatically
writes out physical memory to tape. The crash dump code
proceeds until it either has written all memory out to the
tape or has encountered an error.

To indicate the completion of a successful dump, the proces-
sor halts once the tape stops. To indicate an unsuccessful
dump, however, the processor hangs in a tight loop once the
tape stops. Any error can stop the crash dump code. To
determine what error occurred, examine the tape status and
error registers.

To restart the dump, you should:

e Manually rewind the tape
e Reload address 1000 (octal)
e Restart the processor

NOTE

Even if the dump does not complete
successfully, you should attempt a
crash dump analysis with the par-
tially written dump tape. Enough
memory may have been written out to
allow for at least a partial crash
analysis.

9-6 Crash Dump Analyzer

9.3.2 Writing a Crash Dump to the System Disk

To write a crash dump to the system disk, you first should
ready the disk wunit. Once the system disk is ready, you
should:

° Halt the processor
e Load address 1000 (octal)
° Start the processor

When loaded and running, the crash dump code writes out
memory to the swap area on the system disk (starts at block
300). The crash dump proceeds until either all of memory is
dumped or the swap area is full.

To indicate the completion of a successful dump, the proces-
sor halts. To indicate an unsuccessful dump, the processor
hangs in a tight loop when an error occurs.

To restart the dump, you should:

° Halt the processor
e Reload address 1000 (octal)
° Restart the processor

NOTE

Even if the dump does not complete
successfully, you should attempt a
crash dump analysis with the par-
tially written dump. Enough memory
may have been written out to allow
for at least a partial crash
analysis.

9.3.3 Writing a Crash Dump to RX50 diskettes

To write a crash dump to RX50 diskettes, you first should
load a write-enabled diskette in RX50 unit 2. Once the
diskette is ready, you should:

® Halt the processor
e Load address 1000 (octal)
e Start the processor

When loaded and running, the crash dump code writes out
memory to the diskette. The crash dump proceeds until
either all of memory is dumped or another diskette is needed
to continue the dump.

When a diskette is full, the crash dump code will print an
asterisk on the console and halt. You then should remove the

Crash Dump Analyzer 9-7

current dump diskette and load another diskette into RXS50
unit 2. Once the diskette is loaded, restart the processor.
Continue until the crash dump code halts without printing an
asterisk on the console.

To indicate the completion of a successful dump, the proces-
sor halts. To indicate an unsuccessful dump, the processor
hangs in a tight loop when an error occurs.

To restart the dump, you should:

° Halt the processor

° Reload address 1000 (octal)
e Restart the processor

NOTE

Even if the dump does not complete
successfully, you should attempt a
crash dump analysis with the par-
tially written dump. Enough memory
may have been written out to allow
for at least a partial crash
analysis.

9-8 Crash Dump Analyzer

9.4 Copying the Crash Dump to a Core File

Before you can analyze the crash dump, you must copy it into
a file (normally, /usr/crash/core).

To copy the crash dump to /usr/crash/core, first reboot the
system to single-user mode. For more specific information,

read Steps 1-3 of Section 3.3, Autobooting from the System
Disk.

NOTE

To assure that the crash dump 1is not
inadvertently destroyed, you should not
invoke multiuser mode until after you
have copied the crash dump to a core
file.

Next, determine if there is enough space in /usr for the
crash dump. To determine the core file size, calculate two
disk blocks for every 1K bytes of memory that were dumped to
the crash dump device. For example, if 256K bytes of memory
were dumped to the crash dump device, the core file size
would be 512 disk blocks. Then, determine if there is suf-
ficient space on the /usr file system for a file of this
size.

To determine if there is sufficient space on the /usr file
system, print the /etc/fstab file to locate the logical disk
name on which the /usr file system 1is mounted. Having
determined the 1logical disk name, use the df command to
display the amount of disk free space that is available.

The following sequence of commands 1is for displaying the
amount of free space on a RL02-based /usr file system:

cat /etc/fstab
/dev/rl00:/:rw
/dev/rl01:/usr:rw

df /dev/rl01
/dev/rl01 3550

The next sequence of commands is for determining the amount
of free space on a RD51-based /usr file system:

cat /etc/fstab
/dev/rd00:/:rw
/dev/rd01:/usr:rw

df /dev/rdo1
/dev/rl01 6725

Crash Dump Analyzer 9-9

If the /usr file system has enough free space available,
then copy the dump to the /usr/crash/core file. 1If the /usr
file system does not have sufficient space available, copy
as much of the crash dump to the core file as the /usr file
system allows. ’

9.4.1 Using the ccd Program

To copy the crash dump from the <c¢rash dump device to
/usr/crash/core, you first should mount the /usr file system

and change to the crash directory. In response to the
superuser prompt, type this sequence of commands:
cd /

/etc/mount -a
cd /usr/crash

To copy the core file from the crash dump device to
/usr/crash/core, wuse the ccd program. In response to the
superuser prompt, type:

ccd

The ccd program is interactive and automatically prompts you
for all the required information. If you need help with any
prompt, type ? and press the <RETURN> key. To wuse the
default response for any prompt, press the <RETURN> key.

To access the name list and determine current system infor-
mation, the ccd program prompts for the name of the file
that contains the current running kernel. The ccd program
uses the name list in this file to determine the crash dump
device. Then, it prompts for the name of the file that con-
tains the kernel that was running at the time of the crash.
By default, these files both are normally named /unix.

The ccd program also prompts for information about the crash
dump device. If no responses are given, it uses the informa-
tion from the name list as the default answers. The ccd pro-
gram then prompts for the name of the core file. If no
response is given, it uses /usr/crash/core (default).

The ccd program also prompts for the number of blocks to
copy to the core dump file. If no response is given, it
copies the entire dump (default). To copy other amounts of
the core file, first calculate two blocks for every 1K bytes
of dumped memory and then type the proper number to the ccd
prompt. The first 256K bytes of memory may be enough to
allow you to analyze the crash dump.

After the ccd program has copied the crash dump to the core
file, unmount all file systems. In response to the
superuser prompt, type this sequence of commands:

9-10 Crash Dump Analyzer

#$ cd /
/etc/umount -a

For further information, read mount(1M) in the ULTRIX-11
Programmer's Manual, Volume 1.

9.4.2 Saving Core Files

Because a system core file can consume a large amount of
disk space, the /usr file system usually has space for only
one core file. You can keep more than one core file by
copying it back either to tape or to another file system and
by removing it from the /usr/crash directory.

Once you have analyzed the core file, you may want to keep
an archive copy of it. When you keep a copy of a core file,
you also must save a copy of the ULTRIX-11 kernel that was
running at the time of the crash. The kernel file (normally
named /unix) contains the system name list that is needed by
the cda program to analyze the crash dump.

To copy core files back to tape, use this procedure:

Mount the /usr file system

Change to the crash directory

Make a copy of the kernel file

Rename the core file

Copy these files with the tar command
Remove both the core and kernel files

For example, the following sequence of commands prepares and
copies both the core file and a copy of the kernel to tape:

cd /usr/crash

cp /unix unix.may1

mv core core.may1

tar cvb 20 ./unix.may1 ./core.may1
rm unix.may1 core.may1

To copy core files back to another file system, use this
procedure:

Mount the target file system

Make a copy of the core and kernel files
Remove both the core and kernel files
Unmount the target file system

For example, the following sequence of commands prepares and
copies both the core file and a copy of the kernel to the
/mnt file system:

T T

Crash Dump Analyzer 9-11

/etc/mount /dev/rl17 /mnt

cp /unix /mnt/unix.may1

cp /usr/crash/core /mnt/core.may!
rm /usr/crash/core

/etc/umount /dev/rl17

NOTE

DIGITAL recommends that, when selecting
names for the core and kernel files, you
should use either the date of the crash,
as 1in the example above, or some other
mnemonic to identify them.

9-12 Crash Dump Analyzer

9.5 Using the cda Program

The cda program may be used either in single-user or in mul-
tiuser mode to extract, format, and display information from
a core file.

When in single-user mode, mount the /usr file system and
change to the crash directory. Then, use the cda program to
analyze the core file. In response to the superuser prompt,
type this sequence of commands:

/etc/mount -a
cd crash
cda [-options namelist corefilel]

When in multiuser mode, 1log in to the root (superuser)
account. Then, change to the /usr/crash directory and use
the cda command to analyze the core file. In response to
the superuser prompt, type the following sequence of com-
mands:

cd crash
cda [-options namelist corefile]

To analyze a crash dump, specify the desired options and, as
input, the ULTRIX-11 name list and the core file.

The cda program provides on-line help information. To
obtain help, use the cda program and specify the -h option.
In response to the superuser prompt, type this command
sequence:

cda -h

The next 10 sections discuss the common cda header message
and the 9 cda options. Although the cda command can be run
without specifying the kernel name list or the core file,
the examples provided in these sections do specify these
optional command arguments.

9.5.1 Common Header Message

As a common header for all output, the cda program prints:

ULTRIX-11 software version number

Whether kernel is split I and D

Processor type

Last 128 characters printed at the console

The ULTRIX-11 kernel saves the last 128 characters printed
at the console in an internal message buffer. In the event
of a system crash, this buffer contains the panic and system
error messages that pertain to the crash.

Crash Dump Analyzer 9-13

To display the state of the ULTRIX-11 I/O buffer pool at the
time of the crash, use the cda command and specify the -b
option.

The generated display indicates the following information:

Physical memory address

Number of I/O operations

Byte count of the last I/0 operation

Logical block number of the last I/0 operation
Header error status byte

Name of the device owning the buffer

Header status byte flags

For example, this command sequence produces the following
buffer pool status report:

cda -b /unix /usr/crash/core
Crash Dump Analysis of ULTRIX-11 V2.0 Kernel
Split I & D overlay version on a PDP11/70
x*kkxx* T,ast 128 characters of console messages ****x*x
ULTRIX-11 Kernel V2.0
1048576

14848
937792

realmem
buffers
usermem

SV 324

ka6 6001

aps 140700

pc = 41604 ps = 30340
trap type 1

panic: trap

xxx* 1/0 buffer pool usage *x*x*

Buffer Pool Status

Buffer I/0 ops Byte Logic

Address per buf count blkno err device flags
015232 4147 01000 0630 0 hp00 RD | DN
016232 2489 00 00 0 system WRT | BSY
017232 1385 01000 020 0 hp00 WRT | DN
020232 562 01000 023 0 hp00 WRT | DN
021232 750 01000 021200 O system WRT | BSY
022232 379 01000 0310 0 system WRT | BSY

9-14 Crash Dump Analyzer

023232 250 01000 043 0 hp00 WRT | DN
024232 70 01000 0606 0 hp00 RD| DN

025232 95 01000 052 0 system WRT | BSY
026232 35 01000 017 0 hp00 WRT | DN
027232 239 01000 073 0 hp00 WRT | DN
030232 250 01000 011132 0 hp00 RD|DN

031232 419 01000 064 0 hp00 WRT | DN
032232 286 01000 060 0 hpO00 WRT | DN
033232 222 01000 013532 0 hp00 RD|DN

034232 212 01000 072 0 hp00 WRT | DN
035232 206 01000 014144 O hp00 RD|DN

036232 204 01000 01 0 hp03 WRT | DN
037232 216 01000 016 0 hp03 WRT | DN
040232 202 01000 024 0 hp00 WRT | DN
041232 220 01000 063 0 hp00 WRT | DN
042232 37 01000 036 0 hp00 WRT | DN
043232 393 01000 021736 0 system WRT | BSY
044232 216 01000 054 0 hp00 WRT | DN
045232 0 01000 067 0 hp00 WRT | DN

046232 1 01000 055 0 hp00 WRT | DN
047232 4 01000 037 0 hp00 WRT | DN
050232 1 01000 035 0 hp00 WRT | DN
051232 0 01000 062 0 hp00 WRT | DN

9.5.3 -e Option

To scan the kernel's internal buffers for error messages
that were not logged at the time of the system crash, use
the cda command and specify the -e option.

If the system crashes while logging an error, it is possible
that normal system operation could stop before that error is
written to the error log file. When this occurs, the error
information wusually is stored in the internal error message
buffer. In many cases, this error information is the only
indicator of the cause of the system crash.

When the -e option is specified, the cda program locates
unlogged errors and passes them to the error log print pro-
gram, elp. In addition, the cda program examines the inter-
nal error buffer for each block I/0 device and reports on
the last error logged by that device. For further informa-
tion about elp error reports, read Section 8.4, Sample Error
Reports.

For example, this command sequence produces the following
report of unlogged errors.

cda -e /unix /usr/crash/core

Crash Dump Analysis of ULTRIX-11 V2.0 Kernel
Split I & D overlay version on a PDP11/70

Crash Dump Analyzer 9-15

*kk*k** [,ast 128 characters of console messages *¥****%

ULTRIX-11 Kernel V2.0

realmem = 2097152
buffers = 73728
usermem = 1929024

panic: IO err in swap

*kk**x* Analysis of unlogged errors ***Xx*x*

Error log buffer at 007102
Buffer size in words = 000512
Buffer input pointer = 007630
Buffer output pointer = 007630

xx* No unlogged errors in kernel buffer **x*xx*

kkk*x%* [ast error on each Block I/0 device ***x*%

ULTRIX-11 SYSTEM ERROR REPORT, taken on - Tue Sep 7 15:32:42 1982
Error type limitations: [NONE]

Input taken from /tmp/cda_el.18639

REPORTED DATE/TIME RANGE: [first error thru last error]

Wed Dec 31 19:00:00 1969 thru Thu Apr 22 13:55:16 1982

TOTAL startup =0
TOTAL shutdown =0
TOTAL time change =0
TOTAL stray interrupts = 0
TOTAL stray vectors =0
TOTAL memory parity =0
TOTAL block 1/0 errors = 1

(first - RH11/RH70) - RP04/5/6, RM02/3/5, ML11
UNIT O

Hard errors
Soft errors
(ECC recovered)
(RETRY recovered)

[T | I N |
OO O -

Sequence 0 BLOCK I/0 DEVICE ERROR - Thu Apr 22 13:55:16 1982

9-16 Crash Dump Analyzer

Major/Minor Device 9/1

Device Type (first RH11/RH70) RP04/5/6, RM02/3/5, ML11
Unit Number 0

Device CSR Address 176700

Retry Count 29

Error Diagnosis NOT RECOVERED

Block Device Activity:
(first RH11/RH70) RP04/5/6, RM02/3/5, ML11

Device Register Contents at time of First Error

RPCS1 145660 SC TRE DVA A17 A16 RDY <WRT DATA>
RPWC 161450 word count -7384
RPBA 140220

RPDA 001006 track 2 sector 6
RPCS2 020300 UPE OR IR

RPDS 010700 MOL DPR DRY VV
RPER1 000000

RPAS 000000

RPLA 000640

RPDB 000000

RPMR 000400

RPDT 020022 MOH RPO6

RPSN 003471 serial number 0739
RPOF 110000 SGCH FMT22

RPCA 000030 cylinder 24

RPCC 000030 cylinder 24

RPER2 000000

RPER3 000000

RLPOS 000000

RLPAT 000000

RPBAE 000037 A20 A19 A18 A17 A16
RPCS3 062000 DBEOW DPEEW DBL

Physical Buffer Start Address 7627600
Unibus Map used for transfer ? NO

Transfer size in bytes 51904
Transfer Type WRITE
Block in logical file system 0

I1/0 Operation type PHYSICAL

In this report, the common header also includes the follow-
ing panic message:

panic: IO err in swap

This error message indicates an unrecoverable 1/0 error
occurred during a swap operation.

The next item in the report is an analysis of unlogged

errors that identifies the following information about the
error log buffer:

Crash Dump Analyzer 9-17

° Address in memory
° Size
° I1/0 pointer values

In the report, there were no unlogged errors 1in the error
log Dbuffer. The report, however, does print out an error
report for the last error on each block I/0 device.

By examining this sample report, you can determine that
there was a UNIBUS parity error (UPE) in the control and
status two (hpcs2) register of the system disk. This report
further indicates that a memory parity error occurred in the
process image that the system was swapping. The contents of
the bus address and bus-address-extension registers point to
the address of the faulty memory location. The system

crashed before writing any of this information to the error
log file.

9.5.4 -g# Option

To display the Ublock information either for all processes
or for an individual process, use the c¢da command and
specify the -g option.

If the address (octal) of the desired process is specified,
the cda command displays the Ublock information for that
process only. If no address is specified, however, the cda
command displays the Ublock information for all processes.

For example, this command sequence produces the following
Ublock report for the specified process.

cda -g4040 /unix /usr/crash/core
Crash Dump Analysis of ULTRIX-11 V2.0 Kernel
Split I & D overlay version on a PDP11/70
k*xx*** J,ast 128 characters of console messages *****x
ULTRIX~-11 Kernel V2.0
realmem

buffers
usermem

524288
73728
343232

kab6 16253

aps 140712

pc = 27106 ps = 30000
trap type O

panic: trap

9-18 Crash Dump Analyzer

k*k*kkx* Ublock information **x%*

/unix /usr/crash/core

at 404000

136344 105346 140746 140732 22570

0

Thu Jul 26 10:43:35 EDT 1984

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

u_comm = sh

u_base = 43357
u_count = 0

u offset = 0

u_rsav

30010

u_inemt = 0
u_fpsaved = 1
u_fps.u_fpsr = 200
u fps.u fpregs
u_segflg = 0
u_error = 0

u uid = 0

u_gid = 1

u_ruid = 0

u_rgid = 1

u_procp = 105346
u_ap = 141456

u r.r_vall = 23024
u_r.r_val2 = 150

u cdir = 60004
u_rdir = 0

u_dbuf = sysxr

u dirp = 0
u_dent.d_name = sysxr
u_pdir = 0

u_uisa

0 200 20
u_udsa

0 200 20
u_uisd

77422 72022 31006
u_udsd

77422 72022 31006
u _pofile

0 0 0

1 1 0

u ofile

53470 53470 53470
0 53470 ©
u_arg

0 43356 1
u_tsize = 365
u_dsize = 63
u_ssize = 26

u_gsav

6042 35270 O
u_ssav

131 105346 105742

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
2 0

141034 141004 6122
140764 140746 23602

0

177731
177731
65016
65016

[e> N ew) o O
o [N

o O (>N

Crash Dump Analyzer 9-19

u signal
0 0 34742 1 0 0 0 0 0
0 35006 O 0 35022 1 0 0 1
0 0 0 0 0 0 0 0 0
0 0
u_utime = 12
u_stime = 176

6

u_cstime = 54

u ar0 = 141050

u_prof.pr_base
u_prof.pr_size
u_prof.pr off =0
u_prof.pr_scale =
u_intflg = 0

0
0

0

u_sep = 0
u_ttyp = 13550
u ttyd = 0

u_exdata.ux_mag = 410

u_exdata.ux_tsize = 36500
u_exdata.ux _dsize = 3116
u_exdata.ux bsize = 512
u_exdata.ux_ssize = 0
u_exdata.ux_entloc 0
u_exdata.ux_unused = 0

u_exdata.ux relflg = 1
u_start = 3317344430
u_acflag =

u_fpflag =
u_cmask = 2
u_fperr.f _fec = 0

u_fperr.f fea = 0

u_ovdata.uo_curov = 0

u_ovdata.uo_ovbase = 0

u_ovdata.uo_dbase = 0

u_ovdata.uo_ov_offst

0 0 0 0 0 0 0 0
u_ovdata.uo_nseg = 0

u_eosys = 0

2
0

To display a map of memory usage at the time of the crash,
use the cda command and specify the -m option.

The generated memory map indicates the areas of memory that
were occupied by each process in the system and that are not
in use. In addition to the common header, the generated
report displays the contents of memory starting at address 0
and ending at the end of physical memory.

For example, this command sequence produces the following
memory usage report:

[N oNo]

9-20 Crash Dump Analyzer

cda -m /unix /usr/crash/core
Crash Dump Analysis of ULTRIX-11 V2.0 Kernel
Non-split I & D overlay version on a PDP11/40
xkkk [.35t 128 characters of console messages *****%

ULTRIX-11 Kernel V2.0

realmem = 196608
buffers = 12800
usermem = 103296

x%x*x* Map of memory usage ¥***¥

Total Memory = 179 Kbytes Tue Aug 28 10:26:20 EDT 1984
Addr Command Pid Size Ublock Text Data Stack
0 ULTRIX-11 79488
v
0233200 swapper 0 1024 0233200
v
0235200 *BUFFERS* 12800
v
0266200 *FREE MEMORY* 2112
v
0272300 1init 1 3968 0272300 *0302100* 0274300 0277400
v 1024 3264 1600 1344
0302100 *TEXT SEGMENT* 3264
| init
v
0310400 sh 3 5632 0310400 *0350500* 0312400 0320700
v 1024 15680 3264 1344
0323400 *FREE MEMORY* 2304
v
0330000 elc 2 8512 0330000 0332000 -~------ > 0346000
v 1024 6144 1344
0350500 *TEXT SEGMENT¥* 15680
| sh
v
0407200 sh 119 6208 0407200 *0350500* 0411200 0420500
v 1024 15680 3776 1408
0423300 *FREE MEMORY* 6208
v
0437400 memstat 120 22144 0437400 0441400 ------ > 0510000
v 1024 19712 1408
0512600 *FREE MEMORY* 27264

v
0547000

Crash Dump Analyzer 9-21

9.5.6 -px Option

To display the status of each process that was active as
well as the contents of the system's internal tables that
were in use at the time of the crash, use the cda command
and specify the -p option.

The x indicates the additional option modifiers that the cda
program is to use 1in generating the desired output. The
following option modifiers (and their corresponding ps and
pstat command sequence) may be used:

Option Command Meaning

s ps -alx (process status)

p pstat -p (process table active slots)

pa pstat -pa (process table all slots)

1 pstat -1 (inode table)

£ pstat -f (open files)

x pstat -x (text table)

t pstat -t (terminal status)

u# pstat -u addr (dump U block of process at addr)
paifxtu# (all of the above)

For further information, read ps(1) and pstat(1M) in the
ULTRIX-11 Programmer's Manual, Volume 1.

For example, this command sequence produces the following
process and table status report:

cda -ps /unix /usr/crash/core
Crash Dump Analysis of ULTRIX-11 V2.0 Kernel
Split I & D overlay version on a PDP11/70

*¥*k%k%*** Last 128 characters of console messages ***xxx

ULTRIX-11 Kernel V2.0

1048576
73728
855808

realmem
buffers
usermem

SV 324
SV 324
SV 324
SV 324

ka6 = 6001

9-22 Crash Dump Analyzer

aps = 140700

pc = 41604 ps = 30340
trap type 1

panic: trap

kkx% Status of active processes *****xx

CAUTION , if the process is swapped (F = 0), being swapped (F = 11)
, then TTY, TIME and CMD could be erroneous !

F S UID PID LPID CPU PRI NICE ADDR SZ WCHAN TTY TIME CMD

3 S 0 0 0 0 0 20 2713 2 6662 ? 1:26 swapper

18 0 1 0 0 30 20 2774 8 112034 2 0:01 /etc/init
101 S 0 2 1 0 5 0 3337 17 7106 co 0:00 /etc/elc

1 R 0 49 37 20 55 24 5475 25 co 53:55 cmxr dhoO

18 0 37 1 0 28 20 4255 11 11350 co 0:02 -sh

1R 0 24 1 0 40 20 3214 5 ? 0:10 /etc/update

1R 1 28 1 0 40 20 4744 10 ? 0:04 /etc/cron

1R 0 50 37 225 67 24 6001 17 co 79:52 cmxr dz0
9.5.7 -q Option

To display the contents of the block I/0 header queues
(including forward and backward pointers) at the time of the
system crash, use the cda command and specify the -q option.

Those buffers that are used for superblocks are listed. The
generated report also includes all device queues. To verify
that all listed forward and backward pointers for the free
list and device queues are correct, a consistency check is
done, and the status is reported.

For example, this command sequence produces the following
block I/0 header queue report:

cda -q /unix /usr/crash/core

This sample header queue report presents only the first por-
tions (superblock and free list) of the printout:

Crash Dump Analysis of ULTRIX-11 V2.0 Kernel
Non-split I & D overlay version on a PDP11/40

*kkx** [ast 128 characters of console messages **x*xx

ULTRIX-11 Kernel V2.0

realmem = 196608
buffers = 12800
usermem = 103296

khkhkkkkkhkkhkhkhkkhkhkkhkkhkkk Buffer Headers ***xkxkkkkkkkhkkhkkkkkkhkkkk

25 buffers in system

Crash Dump Analyzer 9-23

Buffer # 0: Super Block for rp unit 0 partition 0
Buffer # 24: Super Block for rp unit 0 partition 2

khkkkkkhkkkkhkkkkkkkikkxkx Freoee [L1st Queue khkkkkkkkkkkkhkkkkhkkkkkk

22 buffer headers in Freelist queue
Freelist consistency check: OK

bfreeli: address = 106414

b forw 00106414 bfreeli
b back 00106414 bfreeli
av_forw 00071064 buf # 18
av_back 00071150 buf # 20

b forw 00067742 rktab
b back 00070544 buf # 10

av_forw 00070544 buf # 10
av_back 00071064 buf # 18

b _forw 00071320 buf # 24
b back 00070224 buf # 2
av_forw 00070224 buf # 2
av_back 00070544 buf # 10

b forw 00070224 buf # 2
b back 00071032 buf # 17
av_forw 00071032 buf # 17
av_back 00070224 buf # 2

b_forw 00071032 buf # 17
b back 00071266 buf # 23
av_forw 00070172 buf # 1
av_back 00071032 buf # 17

buf # 18: address = 71064

b _forw 00071150 buf # 20
b _back 00067774 rptab
av_forw 00070576 buf # 11
av_back 00106414 bfreeli

b_forw 00070576 buf # 11
b back 00070172 buf # 1
av_forw 00070630 buf # 12
av_back 00070576 buf # 11

b forw 00070630 buf # 12
b back 00070310 buf # 4
av_forw 00070310 buf # 4
av_back 00070630 buf # 12

b _forw 00070310 buf # 4
b back 00071234 buf # 22
av_forw 00071234 buf # 22
av_back 00070310 buf # 4

b forw 00070544 buf # 10
b back 00070714 buf # 14
av_forw 00071266 buf # 23
av_back 00071234 buf # 22

9-24 Crash Dump Analyzer

buf # 23: address = 71266

b forw 00071234 buf # 22
b_back 00071202 buf # 21
av_forw 00071202 buf # 21
av_back 00070172 buf # 1

b_forw 00070172 buf # 1
b_back 00070460 buf # 8
av_forw 00070426 buf # 7
av_back 00071202 buf # 21

b forw 00070426 buf # 7
b back 00070342 buf # 5
av forw 00070746 buf # 15
av_back 00070426 buf # 7

b_forw 00070714 buf # 14
b _back 00070746 buf # 15
av_forw 00071000 buf # 16
av_back 00070746 buf # 15

b forw 00071000 buf # 16
b_back 00067742 rktab

av_forw 00070512 buf # 9
av_back 00071000 buf # 16

b_forw 00070374 buf # 6
b back 00070512 buf # 9
av_forw 00071116 buf # 19
av_back 00070512 buf # 9

buf # 21: address = 71202

b forw 00071266 buf # 23
b _back 00070426 buf # 7
av_forw 00070714 buf # 14
av_back 00071266 buf # 2

b forw 00071202 buf # 21
b_back 00070374 buf # 6
av_forw 00070374 buf # 6
av_back 00070714 buf # 14

b forw 00070460 buf # 8
b_back 00071000 buf # 16
av_forw 00070460 buf # 8
av_back 00070374 buf # 6

b _forw 00070746 buf # 15
b back 00070662 buf # 13
av_forw 00070662 buf # 13
av_back 00070460 buf # 8

b _forw 00070342 buf # 5
b _back 00071116 buf # 19
av_forw 00070342 buf ¢ 5
av_back 00070662 buf # 13

b _forw 00070512 buf # 9
b back 00071150 buf # 20
av_forw 00071150 buf # 20
av_back 00070342 buf # 5

Crash Dump Analyzer 9-25

buf # 20: address = 71150

b forw 00071116 buf # 19
b back 00071064 buf # 18
av_forw 00106414 bfreeli >
av_back 00071116 buf # 19

kkkkkkkkkkkkkkkkkkx End of Free LlSt Queue khkkkhkkkkkkkhkkkkkk

9.5.8 -r Option

To display the contents of the resource maps (core and swap
maps) at the time of the system crash, use the cda command
and specify the -r option.

To verify that all reported values are valid, a consistency
check 1is performed, and the status is reported. If either
map proves inconsistent, then all locations of both maps
(including zero entries) are reported. If both maps prove
consistent, however, all trailing zero entries are trun-
cated.

For example, this command sequence produces the following
resource map report:

cda -r /unix /usr/crash/core

Crash Dump Analysis of ULTRIX-11 V2.0 Kernel
Split I & D overlay version on a PDP11/70

*k%x*x*%* [.ast 128 characters of console messages ******

=101,10000

err on dev 29/15
bn=97184 er=101,10000
err on dev 29/15
bn=97376 er=101,10000
err on dev 29/15
bn=97504 er=101,10000

xk%k Resource map contents ****x*

Mapsize = 105

Core Map Swap Map
Size Address Size Address
33 003155 10 000001

122 003367 5984 000021

9-26 Crash Dump Analyzer

14141 004303 0 000000

0 000000 102 more zero entries
101 more zero entries

9.5.9 -t Option

To display all hardware trap error messages that occurred at
the time of the system crash, use the cda command and
specify the -t option.

When a hardware-detected trap error occurs while it 1is in
kernel mode, the system crashes and prints:

panic: trap
When a panic trap occurs, the system saves the relevant

information (such as, the contents of the hardware regis-
ters) in an internal buffer.

For example, this command sequence produces the following
panic: trap analysis.

cda -t /unix /usr/crash/core
Crash Dump Analysis of ULTRIX-11 V2.0 Kernel
Non-split I & D overlay version on a PDP11/24
******x Last 128 characters of console messages ***k%x*
almem = 253952

buffers 12800
usermem 162752

kaé6 4135

aps 140656

pc = 45626 ps = 30000
ovno = 4

trap type 1

panic: trap

****** Dump of panic trap error stack frame ***xxx

General Registers at error time:

RO 000010
R1 045624
R2 072164
R3 113050
R4 072164
R5 140674
SP 140646 (from previous space)

SP 140470 (after panic trap)

Crash Dump Analyzer 9-27

Memory Management Status Registers:
MMRO 000017
MMR2 002240
MMR3 000000

kaé = 4135 aps = 140656

Updated program counter = 045626
Processor status word = 030000
Current kernel overlay = 4
Overlay at error time = 4

PC Physical

offset address Contents

-6 170420 004567

-4 170422 140434

-2 170424 000010

0 170426 000004

+2 170430 004737

+4 170432 036144

CPU was in KERNEL mode at the time of the trap
The error type was (trap thru location 10 - Reserved instruction)

The saved console error messages indicate a panic trap, type

one. The report contains the contents of the following
resisters:

® Processor general registers
® Memory management status registers
® Processor error register (if it exists)

Then, it displays the updated program counter, the processor
status word at the time of the error, and the values of ka6
and aps. For a description of these values, read Section
10.1.14, panic: trap. Finally, it displays the instructions
preceding, at, and following the updated program counter.
As the last 1item, it indicates the type of trap. In the
example above, it indicates a trap through location 10.

NOTE

The instruction immediately preceding
the location pointed to by the updated
PC contains a value of 10. This 1is a
reserved instruction.

9.5.10 -u Option

To display information about disk devices that wuse MSCP
architecture, use the cda command and specify the -u option.

The following devices use MSCP architecture:

9-28 Crash Dump Analyzer

Controller Drive
UDASO0 RA60/RA80/RA81
RQODX1 RD51/RD52/RX50
RKLES1 RC25
RUX1 RX50

For example, this command sequence the

MSCP disk report:

produces
cda -u /unix /usr/crash/core

Crash Dump Analysis of ULTRIX-11 V2.0 Kernel
Split I & D overlay version on a PDP11/70

%*x* Last 128 characters of console messages **x*

100000, 100

err on dev 26/1
bn=71740 er=100200,200
err on dev 26/1
bn=76740 er=100000,100
err on dev 26/1
bn=18300 er=100200,200

xx* Mscp disk information #*****x

following

Controller number O0:

state =

5 credits
command queue transition interrupt flag

type = UDAS0OA

21 tcmax =

21 lastcmd

0

response queue transition interrupt flag =

*kxkkkk%** command descriptors:

UDA_INT UDA_OWN

virtual
address

physical
address

6 lastrsp = 1

_—) e)) d) e

COO0OOOOOO

00000007054
00000007154
00000007254
00000007354
00000007454
00000007554
00000007654
00000007754

kkkxk%xk*x* response descriptors:

UDA_INT UDA_OWN

virtual
address

00000020770
00000021070
00000021170
00000021270
00000021370
00000021470
00000021570
00000021670

physical
address

-— d b e el eed D

[T U G QT QY

00000006054
00000006154
00000006254
00000006354
00000006454
00000006554
00000006654
00000006754

*kkkkkkk*k* Command packets:

Packet
000074
000000
000000
000000

Packet
000074
000000
000000
000000

Packet
000074
000000
000000
000000

Packet
000074
000000
000000
000000

Packet
000074
000000
000000
000000

Packet
000074
000000
000000
000000

Packet
000074
000000
000000
000000

Packet

#1:

000000
000000
000000
000000

#2:

000000
000000
000000
000000

#3:

000000
000000
000000
000000

#4:

000000
000000
000000
000000

#5:

000000
000000
000000
000000

#6:

000000
000000
000000
000000

#7:

000000
000000
000000
000000

#8:

101614
000000
000000
000000

101614
000000
000000
000000

101614
000000
000000
000000

101614
000000
000000
000000

101614
000000
000000
000000

101614
000000
000000
000000

101614
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

Crash Dump Analyzer

00000017770
00000020070
00000020170
00000020270
00000020370
00000020470
00000020570
00000020670

000000
000000
017724
000000

000000
000000
017730
000000

000000
000000
017734
000000

000000
000000
017740
000000

000000
000000
017744
000000

000000
000000
017750
000000

000000
000000
017754
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000011
000000
000000
000000

000011
000000
000000
000000

000011
000000
000000
000000

000011
000000
000000
000000

000011
000000
000000
000000

000011
000000
000000
000000

000011
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

9-29

9-30 Crash Dump Analyzer

000074 000000 101614 000000 000000
000000 000000 000000 000000 000000
000000 000000 000000 000000 017760
000000 000000 000000 000000 000000

*kkxxx*x*x** Response packets:

Packet #1:

000074 000001
000000 000000
000000 000000
000000 000000

Packet #2:

000074 000001
000000 000000
000000 000000
000000 000000

Packet #3:

000074 000001
000000 000000
000000 000O0O0O
000000 0000O0O0

Packet #4:

000074 000001
000000 000000
000000 000000
000000 000000

Packet #5:

000074 000001
000000 000000
000000 000000
000000 000000

Packet #6:

000074 000001
000000 000000
000000 000000
000000 000000

Packet #7:

000074 000001
000000 000000
000000 000000
000000 000000

Packet #8:

000074 000001
000000 000000
000000 000000
000000 000O0OCGO

101614
000000
000000
017000

101614
000000
000000
017000

101614
000000
000000
017000

101614
000000
000000
017000

101614
000000
000000
017000

101614
000000
000000
017000

101614
000000
000000
017000

101614
000000
000000
017000

000000 000000
000000 000000
000000 017750
000400 000037

000000 000000
000000 000000
000000 017754
000400 000037

000000 000000
000000 000000
000000 017760
000400 000037

000000 000000
000000 000000
000000 017724
000400 000037

000000 000000
000000 000000
000000 017730
000400 000037

000000 000000
000000 000000
000000 017734
000400 000037

000000 000000
000000 000000
000000 017740
000400 000037

000000 000000
000000 000000
000000 017744
000400 000037

000000
000000
000000
000000

000000
000000
000000
000001

000000
000000
000000
000001

000000
000000
000000
000001

000000
000000
000000
000001

000000
000000
000000
000001

000000
000000
000000
000001

000000
000000
000000
000001

000000
000000
000000
000001

000011
000000
000000
000000

000211
000000
000000
000000

000211
000000
000000
000000

000211
000000
000000
000000

000211
000000
000000
000000

000211
000000
000000
000000

000211
000000
000000
000000

000211
000000
000000
000000

000211
000000
000000
000000

000000
000000
000000
000000

000003
000000
000000
000000

000003
000000
000000
000000

000003
000000
000000
000000

000003
000000
000000
000000

000003
000000
000000
000000

000003
000000
000000
000000

000003
000000
000000
000000

000003
000000
000000
000000

Crash Dump Analyzer 9-31

Controller number 1: RUX1

type =
state = 5 credits = 13 tcmax = 13 lastcmd =
command queue transition interrupt flag = 0
response queue transition interrupt flag = 0

7 lastrsp = 0

*kxkkk**k* command descriptors:

physical

virtual

UDA_INT UDA_OWN address address

1 0 00000011164 00000023100

1 0 00000011264 00000023200

1 0 00000011364 00000023300

1 0 00000011464 00000023400

1 0 00000011564 00000023500

1 0 00000011664 00000023600

1 0 00000011764 00000023700

1 0 00000012064 00000024000
kkxkkxk*x*x* regponse descriptors:

virtual physical

UDA_INT UDA_OWN address address

1 1 00000010164 00000022100

1 1 00000010264 00000022200

1 1 00000010364 00000022300

1 1 00000010464 00000022400

1 1 00000010564 00000022500

1 1 00000010664 00000022600

1 1 00000010764 00000022700

1 1 00000011064 00000023000
kkxxkxx%** Command packets:
Packet #1:
000074 000000 034474 002471 000000 000000 000041 000000
001000 000000 062000 000000 000000 000000 000000 000000
000713 000000 000000 000000 022034 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000 000000
Packet #2:
000074 000000 034122 002472 000000 000000 000041 000000
001000 000000 051000 000000 000000 000000 000000 000O0O0O
000714 000000 000000 000000 022040 000000 000000 000O0O0O
000000 000000 000000 000000 000000 000000 000000 00OO0OO
Packet #3:
000074 000000 101630 000000 000000 000000 000011 00OCOQO
000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 022044 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000 000000

9-32 Crash Dump Analyzer

Packet
000074
012000
000000
000000

Packet
000074
012000
000012
000000

Packet
000074
012000
000024
000000

Packet
000074
012000
000036
000000

Packet
000074
001000
000712
000000

#4:

000000
000000
000000
000000

#5:

000000
000000
000000
000000

#6:

000000
000000
000000
000000

#7:

000000
000000
000000
000000

#8:

000000
000000
000000
000000

102510
040000
000000
000000

102510
040000
000000
000000

102510
040000
000000
000000

102510
040000
000000
000000

034122
051000
000000
000000

002473 000000
000001 000000
000000 022050
000000 000000

002474 000000
000001 000000
000000 022054
000000 000000

002475 000000
000001 000000
000000 022060
000000 000000

002476 000000
000001 000000
000000 022064
000000 000000

002470 000000
000000 000000
000000 022070
000000 000000

*kkkkkxkk** Response packets:

Packet
000074
000400
100062
000000

Packet
000074
000400
100062
000056

Packet
000074
012000
000000
000001

Packet
000074
012000
000012

#1:

000000
100200
022545
000000

#2:

000001
100200
022545
000012

#3:

000001
000000
000000
000011

#4:

000001
000000
000000

000000
000000
000000
000000

101630
000000
000000
177420

102510
040000
000000
177420

102510
040000
000000

000000 000000
000000 000000
000000 001440
000000 000000

000000 000000
000000 000000
000000 001440
006200 000000

002473 000000
000001 000000
000000 001440
000200 000000

002474 000000
000001 000000
000000 001440

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000

000042
000000
000000
000000

000042
000000
000000
000000

000042
000000
000000
000000

000042
000000
000000
000000

000041
000000
000000
000000

000100
000001
000000
000000

000211
000001
000000
000000

000242
000000
000000
000000

000242
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
000000
000000
000000

000000
001007
000000
000000

000000
001007
000000
000000

000000
000000
000000
000000

000000
000000
000000

Crash Dump Analyzer 9-33

000057 000011 177406 000200 000000 000000 000000 000000

Packet #5:

000074 000001 102510 002475 000000 0000600 000242 000000
012000 000000 040000 000001 000000 000000 000000 0000OOO
000024 000000 000000 010000 000000 000000 000004 0000OO
000001 000011 177420 000200 000000 000000 000000 000000

Packet #6:

000074 000001 102510 002476 000000 000000 000242 000000
012000 000000 040000 000001 000000 000000 000000 000000
000036 000000 000000 000000 001440 000000 000000 000OCOO
000000 000000 000000 000000 000000 000000 000000 000OOO

Packet #7:

000074 000000 000000 0COOO0 000000 000000 000100 0O0OCOOO
000400 100200 000000 000000 000000 000000 000001 001007
100062 022545 000000 000000 001440 000000 000000 000O0O0O
000001 000011 177420 000200 000000 000000 000000 000000

Packet #8:

000074 000000 000000 000000 000000 000000 000100 000000
000400 120200 000000 000000 000000 000000 000001 001007
100062 022545 000000 000000 001440 000000 000000 0000OO
000000 000000 000000 000000 000000 000000 000000 0OOOOO

Xkkxkkkkx*k* drive information

Controller 0, Drive 0

drive type = RA60 status = offline unit size = 0
Controller 0, Drive 1

drive type = RA81 status = online unit size = 891072
Controller 1, Drive 0

drive type = RX50 status = offline unit size = 0
Controller 1, Drive 1

drive type = RX50 status = online unit size = 800

9-34 Crash Dump Analyzer

9.6 Using the adb Program

You also may use the adb program and one of the scripts dis-
tributed in the /usr/crash directory to print the kernel
data structures from the crash dump. To use the adb pro-
gram, type:

§$ adb /unix /usr/crash/core
To use one of the scripts once adb is running, type:

addressS$S<script

The distributed script names are:

Script Kernel Structure
buff buffer structures
dent directory entry
dinode indirect block structure
filsysf superblock structure
inodef in-memory inode structure
procf process structure
regf stack print registers (relative to *u_ar0)
s stack backtrace for kernel core dumps
sregf same as regf, but assigns the values to the
adb internal variables
textf text structure
ttyf tty structure
userf user structure
NOTE

DIGITAL recommends that you use the adb
program and the distributed scripts to
print out the kernel data structures
only if you have a detailed knowledge of
kernel internals.

Chapter 10

ULTRIX-11 Error Messages

The ULTRIX-11 system prints two types of error messages:
kernel-mode messages and user-mode messages. The ULTRIX-11
system prints kernel-mode messages at the console when
errors occur while the kernel is running. The ULTRIX-11 sys-
tem prints user-mode messages at the wuser's terminal when
errors occur while a user process is running.

The kernel-mode messages can be further classified: system
panics and system warnings. When it detects an internal
error that it cannot recover from, the kernel prints a panic
message at the console and voluntarily crashes. When it
detects an internal error that is not serious enough to stop
the system from functioning, the kernel prints a warning
message at the console. In addition, the kernel prints

various miscellaneous messages to indicate other error con-
ditions.

During daily operations, you can disallow printing error
messages at the console. To disallow messages at the con-
sole, press <CTRL/K>. To allow messages at the console,
press <CTRL/A>,

The remaining sections of this chapter discuss:

System message log
System panic messages
System warning messages
Miscellaneous messages
User-mode messages

10-2 Error Messages

10.1 System Message Log

When an error occurs while the ULTRIX-11 kernel is runnlng,
the kernel's own internal printf() routine normally prints
a panic, warning, or miscellaneous message at the system
console. Regardless of whether it is allowed to print to
the console, the printf() function writes the same message
in the system's in-memory message buffer. To save this
information, the system executes the dmesg program every ten
minutes. The dmesg program collects the information from
the message buffer and appends it to the end of the system
message log, /usr/adm/messages.

The /usr/adm/messages file contains a log of all system mes-
sages printed at the system console. DIGITAL recommends
that you should review the message log regularly.

NOTE

The size of the in-memory message buffer
is limited to 128 bytes. If it writes
more than 128 characters (bytes) to this
buffer, the system simply overwrites
data. When this occurs, some messages
are lost.

10.1.1 Printing the System Message Log File

To review the messages that have been 1logged, you should
reqularly wuse one of the following command sequences to
print the /usr/adm/messages file.

To print the entire message log at your terminal, type this
command sequence:

cat /usr/adm/messages

To print the entire message log at the 1line printer, type
this command sequence:

lpr /usr/adm/messages

To print just the last 100 lines of the message log at your
terminal, type this command sequence:

tail -100 /usr/adm/messages

To print the last 100 lines of the message log at the 1line
printer, type this command pipeline:

tail -100 /usr/adm/messages | lpr

Error Messages

NOTE

Because the system usually crashes after
a panic, the dmesg program is not run-
ning. Although the system writes panic
messages to the message buffer, they are
not copied to the system message log.
To print the panic messages that were
written to the message log just before a
system crash, use the cda program. For
further information, read Section 9.5,
Using the cda Program.

10-3

10-4 Error Messages

10.2 Panic Messages

When it detects an internal error that it can neither
correct nor ignore, the ULTRIX-11 kernel enters panic state.
During a panic state, the kernel calls its panic() routine
to perform these housekeeping tasks:

1. Calls the update() function. This system function writes.
out to disk (flushes) all file system changes that
currently are in memory and cleans up all buffered 1/0.
This is equivalent to executing a sync command.

2. Calls the kernel printf() function. This system func-

tion prints an error message at the system console in
the format:

panic: message

This message is a cryptic indicator of what caused the
crash.

3. Calls the idle() function. This system function lowers
the processor priority to zero and loops on a wait
instruction. This lets the system service interrupts
from any in-progress I/0 and lets the system clock con-
tinue operating. The latter makes the switch register
print function available for troubleshooting purposes.

For further information, read Section 9.1, Console
Switch Register Display Function.

A panic state can occur during either system startup or sys-
tem operation. The most common causes are:

I/0 errors

Overloaded file systems

Improperly specified root and swap devices
Corrupted kernel memory

Bad memory location (nonparity memory)
Improperly modified software

Hardware problems

Because user processes cannot write to the ULTRIX-11 kernel,
a bad memory location indicates that the corrupted kernel
memory could only have been caused by a write from within

the ULTRIX-11 kernel itself, by a stray NPR, or by a memory
management fault.

The next 26 sections discuss the kernel panic messages.

10.2.1 panic: alloc

This message indicates that the system encountered a buffer
that contained the superblock information for a mounted file
system but did not have the B MOUNT flag set. When it

Error Messages 10-5

allocates a buffer to contain superblock information, the
system sets the B_MOUNT flag and treats the buffer dif-
ferently than it does those allocated for ordinary files.
This panic normally is preceded by this message:

SUPERB not B_MOUNT! on dev MAJOR/MINOR

10.2.2 panic: blkdev

This message indicates that the system attempted to assign
an I/0 buffer to a bad logical device. This panic occurs
when the major device number is not that of a block mode
device. That is, it is not in the bdevsw table in the sys-
tem configuration file, /sys/conf/c.c.

10.2.3 panic: buffers

This message indicates that the system has insufficient
memory for the buffer pool. During initialization, the
ULTRIX-11 kernel first sets up a map of free memory and then
allocates the buffer pool from it.

10.2.4 panic: bunhash

This message indicates that the system could not find an
entry in the hash table for a buffer. The system maintains
an entry in its internal hash table for each buffer that
currently 1is being used. This panic occurs when the
system's internal bunhash() function attempts to free a
buffer and cannot find its hash table entry.

10.2.5 panic: devtab

This message indicates that the system attempted to assign
an I/0 buffer to a bad logical device. This panic occurs
when the device table entry in the bdevsw table for the
major device is null. This usually indicates that the device
is not configured into the system.

10.2.6 panic: iinit

This message indicates that the system could not mount the
root file system because it encountered an unrecoverable I/0
error while attempting to read the superblock. The most
likely causes are:

[) Logical block one of the root file system either has
developed a bad spot or has been otherwise corrupted.

° The system disk hardware has malfunctioned. Because the
ULTRIX-11 operating system is running and was booted
from the root file system on the system disk, the fault
most likely is intermittent.

10-6 Error Messages

e The ULTRIX-11 operating system is configured for the
wrong system disk. For example, if an ULTRIX-11 kernel
configured for RP02/3 disks is booted from an RKO7 disk,
this panic results.

Immediately after booting, the ULTRIX-11 operating system
initializes 1itself. Mounting the root file system is one
step in the system initialization process. When the system
mounts a file system, it reads a copy of that file system's
superblock into memory. The system then uses the informa-
tion in this in-memory superblock every time it accesses
that file system. A file system's superblock 1is always
located 1in 1logical block number 1 of that file system.
Since the ULTRIX-11 operating system places the root file
system at the beginning of the system disk, the superblock
for the root file system is located in physical block 1 of
that disk.

10.2.7 panic: init died

This message indicates that the system's control initializa-
tion process, /etc/init, no longer is running. Because the
ULTRIX-11 system requires this process during operations,
the system crashes whenever /etc/init is unavailable. For
further information, read init(8) in the ULTRIX-11
Programmer's Manual, Volume 1.

10.2.8 panic: IO err in swap

This message indicates that the system encountered an unre-
coverable error while either writing a process image out to
or reading a process image in from the swap area. This
panic can be caused by a bad block in the swap area, by
fault¥ disk hardware, or by a memory parity error (swapped
image).

10.2.9 panic: MSCP cntlr # fatal error:

This message indicates that, during normal operations, the
system encountered an unrecoverable error on the specified

controller (0, 1, or 2). In addition, the kernel prints
this information:

CSR=# SA=# state=#

The CSR number indicates the controller's CSR address. The
SA number indicates the contents of the controller's SA
register. To indicate a fatal error, bit 15 equals 1 and

bits 0 through 10 are the fatal error code. The fatal error
codes are:

01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27

* %

The state
troller:

A WN -0

10.2.1

Error Messages 10-7

- Envelope/Packet Read (parity or timeout)

- Envelope/Packet Write (parity or timeout)

- Controller ROM and RAM parity

- Controller RAM parity

- Controller ROM parity

- Ring Read (parity or timeout)

- Ring Write (parity or timeout)

- Interrupt Master

- Host Access Timeout (higher-level protocol-dependent)

- Credit Limit Exceeded

- Unibus Master Error

- Diagnostic Controller Fatal Error

- Instruction Loop Timeout

- Invalid Connection Identifier

- Interrupt Write Error

- MAINTENANCE READ/WRITE Invalid Region Identifier

- MAINTENANCE WRITE Load to non-loadable controller

- Controller RAM error (non-parity)

- INIT sequence error

- High-level protocol incompatibility error

- Purge/poll hardware failure

- Mapping Register read error (parity or timeout)

- Attempt to set port data transfer mapping when
option not present

- Remaining values are unassigned

number indicates the current state of the con-

- Controller not yet initialized (IDLE)

- Initialization Step 1 (in progress)

- Initialization Step 2 (in progress)

- Initialization Step 3 (in progress)

- Set controller characteristics (in progress)
- Controller RUN state

NOTE

During a boot, the system can also print
this as a warning message if a fatal er-
ror occurred while trying to initialize
a nonsystem disk controller.

panic: no clock

This message indicates that the system could not determine
which clock device 1is used. During initialization, the

ULTRIX-11
able for

kernel normally determines which clock 1is avail-
use. The system first tests for the presence of

the KW11-L line clock at address 0777546. If it responds,

10-8 Error Messages

the KW11-L is used. If the KW11-L does not respond, the sys-
tem tests for the KW11-P programmable clock at address
0772540. 1If it responds, the KW11-P clock is used. If nei-
ther clock responds, this panic occurs.

10.2.11 panic: no imt
This message indicates that the system could not find an
entry in the system mount table for a file system. This
message is very similar to the no fs warning message. In
this case, however, the system was attempting to establish
the logical connection between the inode for the root direc-
tory of the mounted file system and the inode of the direc-
tory on which that file system is mounted.

10.2.12 panic: no procs

This message indicates that the system attempted to create a
new process and could not locate an empty slot in the system
process table. The ULTRIX-11 kernel manages processes using
a corresponding entry for each in the system process table.
The most likely time for this condition to occur 1is during
system initialization. When it does occur at this time, it
indicates that the ULTRIX-11 kernel could not create the
init process. Because the ULTRIX-11 kernel checks for an
empty process table slot before creating a process, this
panic should not happen after system initialization.

10.2.1

panic: OQut of swap

This message indicates either that there was no swap space
available for the process's argument list or that the swap
map was exhausted when the system attempted to swap out a
process. When it uses the exec() system call to overlay a
process, the kernel requires allocating a maximum of 10
blocks in the swap area as temporary storage for the argu-
ment list. The kernel also uses the swap map in allocating
blocks in the swap area.

10.2.14 panic: out of swap space

This message indicates that, when the system attempted to
swap out a process, either the disk swap area was full or
there was not enough contiguous space available. This panic
also 1indicates that the system generation is incorrect for
the number of processes running on the system. When the
system 1is generated correctly, the ULTRIX-11 kernel allo-

cates sufficient swap space to prevent this situation from
occurring.

10.2.15 panic: parity

This message indicates that, while in kernel mode, the sys-
tem encountered either a memory parity error, a UNIBUS

Error Messages 10-9

parity error, or a double bit error in ECC MOS memory. If
the parity error (trap through location 114) occurs while
the ULTRIX-11 operating system is in user mode, the system
terminates the user process, and no panic occurs. When this
panic does occur, however, the system also prints the con-
tents of all available memory error and status registers.
For the PDP-11/44, PDP-11/60, and PDP-11/70, the system
prints the contents of the memory system error registers.
For all processors, the system prints the memory parity con-
trol and status registers.

10.2.16 panic: psig

This message indicates that, when attempting to send a sig-
nal, the system encountered an invalid signal number. The
kernel uses its internal psig() function to send a signal to
a process. This panic occurs when the psig() function
enco?nters a signal that has been set to 0 (invalid refer-
ence).

10.2.17 panic: psig action

This message indicates that, when attempting to send a sig-
nal, the system encountered a reference for a signal that is
either being held or ignored. The kernel uses its internal
psig() function to send a signal to a process.

10.2.18 panic: remque

This message indicates that, when attempting to swap a pro-
cess out, the system could not find an entry for it in the
run queue. The kernel maintains an entry in the run queue
for each process that 1is to be run. When a process is

swapped out, the kernel normally removes its entry from the
run queue.

1 .201

panic: setrun

This message indicates that, when attempting to start a pro-
cess, the system encountered a process that was not sleep-
ing, idle, or stopped. The kernel's internal setrun() func-
tion is used to restart sleeping, idle, or stopped
processes. This error occurs when the system attempts to

restart a process and encounters a process that is not in
one of these states.

10.2.2

panic: sleep

This message indicates that the system either encountered an
invalid address on the wait channel or attempted to put to
sleep a process the currently is not running. The kernel
uses its internal sleep() function to let other functions
sleep (give up the processor) until a specified event
occurs. When a kernel function sleeps, an entry on the wait

10~-10 Error Messages

channel (wchan) specifies the address of the event on which
it waits.

10.2.21 panic: Timeout table overflow

This message indicates that the system attempted to store
information in the timeout table when it was full. The
timeout() function arranges for other functions to be exe-
cuted after a specified time delay. The timeout table stores
the function to be executed and the time delay.

10.2.22 panic: trap

This message indicates that the system encountered either a
hardware trap while in kernel mode (other than through loca-
tion 114), a power failure, or programmed interrupt request
(PIRQ) while in user mode. A memory parity error while in
user mode causes the system to terminate the user process
and enter a parity error record in the system error log
file. All other traps that occur while in user mode cause
the system to terminate the user process and write the pro-
cess image out (core dump) to a core file. The panic: trap
message has this format:

ka6 #

aps #

pc = # ps = #
ovno = #

trap type #
panic: trap

The cda program uses the ka6 and aps numbers to locate the
error information which 1is saved on the kernel stack by a
panic trap. The pc and ps 1indicate the wupdated program
counter and the processor status word, respectively. The
ovno number specifies which text overlay segment was active
when the trap occurred. The trap type indicates the nature
of the error. The trap types are:

TRAP TYPE TRAP VECTOR CAUSE
0 4 Bus error
1 10 Reserved/illegal instruction
2 14 Breakpoint trace instruction
3 20 Input/output trap instruction
4 24 Power fail
5 30 Unexpected emulator trap (EMT)
6 34 System call from kernel mode

(trap instruction)

7 240 Programmed interrupt request
10 244 Floating point exception
11 250 Memory management trap

Error Messages 10-11

NOTE

If the trap occurred while the processor
was in wuser mode, octal 20 is added to
the trap type. Trap type 24 indicates a
power fail trap while in user mode.

When a panic trap occurs, use the cda program to extract the
error information saved on the kernel stack by the trap
handler. For further information on how to retrieve this
information, read Chapter 9, ULTRIX-11 Crash Dump Analysis
Facility. You also can manually access the panic-trap-error
stack frame using one of three methods:

) The aps number is a kernel data space virtual address
pointing to the top of the panic-trap-error stack frame.
If the processor has a display register (PDP-11/45,
PDP-11/55 or PDP-11/70), you can access the stack frame
using the switch register display function. For further
information, read Section 9.1, Checking the Console
Switch Display Register. Load the aps value into the
console switches and set the display select switch to
the "display register” position. The system displays
the old ps value in the display lights. For further
information, see Figure 10-1, Panic Trap Error Stack
Frame,.

° For processors allowing virtual address access from the
console (PDP-11/45, PDP-11/55, and PDP-11/70), you can
access the stack frame with the console switches. Set
the address select switch to "kernel D" and the display
select switch to "data paths". Then, set the aps value
in the switches and press load address followed by exam-
ine. Again, the system displays the old ps value in the
display lights. The stack frame expands downward, so you
must examine the stack in reverse order.

° You can access the stack frame in console physical mode.
This 1is necessary on processors other than the PDP-
11/45, PDP-11/55, or PDP-11/70. The ka6 number 1is the
contents of memory management, active page register six
and is used to map to the kernel stack. To determine
the physical address of the top of the panic trap error
stack frame, shift the ka6 number 1left by six places
(multiply it by octal 100). Then, subtract 140000 from
the aps number, and add the result to the left-shifted
kaé6. Finally, load the resulting physical address into
the switches, and load address/examine to display the
old ps value.

To prevent multiple panic traps, the system cannot reenter

10-12 Error Messages

the ULTRIX-11 trap handler. If a panic trap occurs while
another panic trap is being serviced, the system enters a
tight loop and ignores subsequent traps. This prevents mul-
tiple traps from masking the actual cause of the first.

- +
| ovno | text overlay number at error time
t—m————— +
aps-—->| old ps | processor status word from trap
t—m————— +
| old pc | wupdated program counter from trap
o —————— +
| ro | saved r0
t——————— +
| new ps | new PSW from trap vector
o —————— +
| r1 | saved r1
t——————— +
| sp | stack pointer from previous space
Fmm————— +
| dev | trap type, masked from new PSW
——————— +
| tpc | trap handler return address
—————— +
| r5 | saved r5
tm—————— +
| ovno | current text overlay number
e ——— +
| ra | saved r4
tomm—————— +
| r3 | saved r3
o ——_—— +
| r2 | saved r2
- ————— +
Figure 10-1 -- Panic Trap Error Stack Frame
10.2.23 panic: ttyrub

This message indicates that, when processing a terminal line
editing function, the system encountered an invalid charac-
ter class. During line editing, the kernel uses the charac-
ter set table 1in determining the category of each ASCII
character: ordinary, vertical tab, backspace, control,
return, or tab. This panic occurs when the system
encounters an entry in the character set table that does not
belong to one of these categories.

10.2.24 panic: update

This message indicates that the system encountered an

Error Messages 10-13

invalid reference in the mount table. When a file system is
mounted, the kernel allocates a buffer to contain its super-
block information. Then, it creates an entry in the mount
table that points to that buffer. This panic occurs when
the pointer and the assigned buffer do not correspond.

10.2.25 panic: wakeup

This message indicates that the system encountered an entry
in the sleep queue for a process that is neither sleeping
nor stopped. The kernel maintains an entry in the sleep
queue for each process that is sleeping or stopped. The
kernel uses its wakeup() function to remove entries from the
sleep Queue. This panic occurs when the wakeup() function
finds an entry whose process 1is not in the appropriate
state.

10.2.26 panic: xfer size

This message 1indicates that, when attempting a UNIBUS
transfer, the system encountered an invalid size. The
UNIBUS map allocation routine normally limits the size of a
data transfer to 57344 bytes. This panic occurs when the
system attempts a transfer in excess of the 57344 bytes.

10-14 Error Messages

10.3 Warning Messages

System warning messages indicate that a nonfatal error has
occurred. Although an error has occurred, it was not serious
enough to warrant halting system operations. Because a warn-
ing message indicates that something is wrong and often pre-
cedes a fatal error, DIGITAL recommends that you investigate
all warning messages.

The next sixteen sections discuss the system warning mes-
sages.

10.3.1 bad block on dev MAJOR/MINOR

This message indicates that the system encountered a bad
block number when allocating or deallocating a data block in
the file system located on the specified logical device
(MAJOR/MINOR) . The block 1is outside the defined range of
the file system. The block either is part of the ILIST or
is beyond the end of the file system. The system determines
bad block numbers by comparing the block number to the isize
and fsize values in the file system's superblock.

When this condition occurs, you should dismount the file
system, check it with the fsck command, and repair it as
necessary. For further information, read Section 1.2.17,
Major/Minor Device Numbers, Section 4.1, File System Mainte-
nance, and filsys(5) in the ULTRIX-11 Programmer's Manual,
Volume 1.

10.3.2 bad count on dev MAJOR/MINOR

This message indicates that the system encountered an error
when performing an internal consistency check of the in-
memory free blocks and inodes. It also indicates that the
file system located on the specified device (MAJOR/MINOR)
has been corrupted. When a device number is mapped to the
in-memory superblock, the system checks both the nfree and
ninode counts. If they are greater than 100, the error
results and both the nfree and ninode counts are zeroed.
(Thi? can also cause the system to print the no space warn-
ing.

When this condition occurs, you should dismount the file
system, check it with the fsck command, and repair it as
necessary. For further information, read Section 1.2.17,

Major/Minor Device Numbers, and Section 4.1, File System
Maintenance.

10.3.3 Bad free count

This message indicates the same error condition as explained

in Section 10.3.2, bad count on dev MAJOR/MINOR, except that
it was detected at a different point in the operating

Error Messages 10-15

system.

When this condition occurs, you should dismount the file
system, check it with the fsck command, and repair it as
necessary. For further information, read Section 4.1, File
System Maintenance.

10.3.4 core mapsize exceeded

This message indicates that the system has encountered a
core (memory) map size overflow. The kernel maintains a map
of the available free memory. When memory becomes too frag-
mented, the kernel may overflow this core map. When this
occurs, you should shut down multiuser mode and halt the
processor. Then, you should reboot your ULTRIX-11 system.
If this condition persist, you should reconfigure your sys-
tem and increase the map size.

10.3.5 err on dev MAJOR/MINOR

This message indicates that an error occurred on a block
mode device. Because error logging was disabled, however,
the system could not write the error information to the
error log file. In multiuser mode, the ULTRIX-11 kernel
captures information about block device 1I/0 errors and
writes the information 1in the error log. In single-user
mode, error logging normally is disabled. In addition, the
system prints this information:

bn=###### er=#4#4##, HH##HH

MAJOR/MINOR Indicates the device on which the error
occurred. For further information, read Sec-
tion 1.2.17, Major/Minor Device Numbers, and

Appendix C, ULTRIX-11 Device Names and Major
Device Numbers.

bn Indicates the logical block number relative to
the start of the 1logical device. For block
mode I/0, it is the block being transferred.
For raw I/0, it is the block number where the
transfer began. For further information about
block and raw devices, read Section 1.2.15,
Block I/0 Mode, and Section 1.2.16, Character
I1/0 Mode.

er Indicates the octal contents of two of the
device's hardware registers. For a list of the
registers printed for each device, see Table
10-1, Registers Printed per Device. Because
the driver issues a controller clear and does
not log the error before initiating the retry,
the system loses the contents of the remaining

10-16 Error Messages

device registers. The UDAS50/KLESI/RUX1/RQDX1
driver prints MSCP error codes instead of
hardware register contents. For further infor-

mation, read Appendix F, UDA50/KLESI/RUX1/RQDX1
- MSCP Error Codes.

10.3.6 iaddress(#] > 2724(#), i number = #, i dev = #

This message 1indicates that the system encountered an
invalid address when it attempted to update a disk-resident
inode with the information contained in the in-memory inode
table.

The ULTRIX-11 operating system stores the 1information that
defines a file in a disk-resident structure called an inode.
A portion of the inode contains the disk addresses which the
system uses, either directly or indirectly, to allocate disk
blocks to the file. The inode also holds the times of the
last file access and the last update. For further informa-
tion, read Section 1.2.10, 1Inode, and filsys(5) in the
ULTRIX-11 Programmer's Manual, Volume 1.

When a file is opened, the system loads a copy of its 1inode
into the in-memory inode table. At various times, the sys-
tem examines all in-memory inodes. If an inode's access or
update flags are set, indicating changes were made to the
file, the system writes that in-memory inode out to the
disk. Whenever it updates an inode, the system also checks
the listed disk addresses to ensure it contains only wvalid
disk addresses. The iaddress > 2724 warning message occurs
if any disk addresses are found to be greater than 2724
(16777216). That is, the disk addresses are greater than the
24-bit length allotted to the disk address entry 1in an
inode. The values are:

iaddress(#] Indicates the element number in the inode's
address array that contains the bad address.

2724 (#) Indicates the actual disk address contained
in the address array element.

i_number = # Indicates the inumber of the corrupted inode.
i dev = # Indicates the octal major/minor number of the
device that contains the corrupted inode.

10.3.7 issig

This message indicates that the system attempted to take
action on a signal that was to be held or ignored. The
kernel's issig() function checks the state of signals that
are to be processed. Unless a process is being traced, the

kernel normally does not act on signals that are to be held
or ignored.

Error Messages 10-17

10.3.8 1Inode table overflow

This message indicates that the system inode table 1is tem-

porarily full. The system, therefore, cannot open any more
files.

For each open file, the system maintains a copy of the inode
that describes it in the in-memory inode table. Although a
full inode table is not a fatal system error, the user pro-
cess attempting to open the file receives a fatal error
return. It is not unusual for this message to occur occa-
sionally on an extremely busy system.

The user process recovers from this error by retrying the
open after system activity has subsided. If this message
occurs frequently, the system may not be properly configured
to support the current number of users.

10.3.9

no file

This message indicates that the system file table 1is tem-

porarily full. The system, therefore, cannot open any more
files.

For each open file, the system maintains an entry in the
in-memory file table. Although this is not a fatal system
error, the user process attempting to open the file receives
a fatal error return. It is not unusual for this message to
occur occasionally on an extremely busy system.

The user process recovers from this error by retrying the
file open after system activity has subsided. If the no
file message occurs frequently, the system may not be prop-
erly configured to support the current number of users.

10.3.10 no fs

This message indicates that the system could not find an
in-memory pointer to a file system. This occurs either when
the ULTRIX-11 kernel searches the system mount table but
cannot locate the in-memory copy of the file system's super-
block or when the PIPE device is not mounted. (This normally
indicates that the file system is not mounted). When the
file system is mounted, the mount table should contain a
pointer to the buffer in the internal buffer pool where a
copy of the file system's superblock is located.

10.3.11 no space on dev MAJOR/MINOR

This message indicates that the file system located on the
specified 1logical device (MAJOR/MINOR) has no free blocks
remaining. The file system either is full or has been cor-
rupted.

10-18 Error Messages

In either case, you should dismount the file system, check
it with the fsck command, and repair it as necessary. For
further information, read Section 1.2.17, Major/Mincr Device
Numbers, and Section 4.1, File System Maintenance.

10.3.12 out of text

This message indicates that there were no text table entries
available when the system attempted to create a sharable
process.

The system uses the text table to manage the shared text
segment (pure code) and the proc table to manage the data
segment. If a process has a shared text segment, the entry
p_textp in the proc table points to the process's entry in
the text table. This message also indicates that the system
is heavily 1loaded and 1is not properly configured for the
current number of users.

10.3.13 Out of inodes on dev MAJOR/MINOR

This message indicates that the system encountered an error
when attempting to allocate an inode (create a file) on a
file system that has no free inodes available.

This message also indicates that the file system is full.
Even though a file system has free blocks, it can still be
full. The number of files is limited not by the number of
blocks that are available but by the number of inodes in the
ilist.

When this condition occurs, you should dismount the file
system, check it with the fsck command, and repair it as
necessary. You also can make additional inodes available by
removing excess files or enlarging the file system. For
further information, read Section 1.2.17, Major/Minor Device
Numbers, and Section 4.1, File System Maintenance.

10.3.14 proc on g

This message indicates that the system found an existing
entry on the run queue (runqg) when it attempted to create
one for that process.

10.3.15 swap mapsize exceeded

This message indicates that the system encountered a swap
map overflow. The kernel maintains a map of the available
swap space. When the swap space becomes fragmented, the
kernel may overflow the swap map. When this occurs, you
should shut down multiuser mode and halt the processor.
Then, you should reboot your ULTRIX-11 system. If this con-
dition persists, you should reconfigure your system and
increase the map size.

Error Messages 10-19

10.3.16 ?? unit # Write Locked

This message indicates that the system attempted a write

operation on a disk that is write protected.
?? unit # Write Locked

The
the
the
For

?? is the ULTRIX-11 operating system mnemonic indicating
type of disk. For a list of device name mnemonics, see
first field in Table 10-1, Registers Printed per Device.
MSCP disks (RA60/RA80/RA81, RD51/RD52/RX50, and RC25),

?? is

number.

replaced by
(UDAS0/KLESI/RUX1/RQDX1).

the

disk
The # indicates the physical unit

controller type

ULTRIX-11 Generic First Second
Name Name Register Register
hk RK06/7 RK control & status RK error
hj RM02/3/5, RP control & status RP error 1
RP04/5/6,
ML11 (on third RH)
hm RM02/3/5, RP control & status RP error 1
RP04/5/6,
ML11 (on second RH)
hp RM02/3/5, RP control & status RP error 1
RP04/5/6,
ML11 (on first RH)
hs RS03/4 RS control & status RS error
ht T™O02/3 TM error TM control & status 2
hx RX02 RX command & status RX error & status
ra RA60, MSCP opcode + flags MSCP returned status
RA80/RA81 (see Appendix F) (see Appendix F)
rc RC25, MSCP opcode + flags MSCP returned status
(see Appendix F) (see Appendix F)
rd RD51/RD52 MSCP opcode + flags MSCP returned status
(see Appendix F) (see Appendix F)
rk RKO5 RK error RK drive status
rl RL01/2 RL control & status RL disk address
or
RL multipurpose RL disk address
rp RP02/3 RP error RP drive status
rx RX50 MSCP opcode + flags MSCP returned status
(see Appendix F) (see Appendix F)
tm T™11 T error TM command & status
ts TS11, TS subsystem status XSTATO->XSTAT3
TU80,TSV05,TK25 & retry count

or
TS subsystem status

XSTATO

Table 10-1 -- Registers Printed per Device

10-20 Error Messages

10.4 Miscellaneous Errors

This section discusses errors that fall into neither the
panic nor warning category. The next seven sections discuss
the miscellaneous error conditions.

10.4.1 Boot and Stand-alone Program Errors

This condition indicates that either the boot or stand-alone
program encountered an error during a system installation.

In addition to the secondary boot program (/boot), the sys-
tem is distributed with a number of stand-alone programs
that you use during an ULTRIX-11 system installation. The
boot and stand-alone programs operate in conjunction with a
modified, stand-alone, single-user version of the ULTRIX-11
kernel.

When they encounter errors, the stand-alone ULTRIX-11 kernel
and the stand-alone programs print error messages. These
error messages are intended to be self-explanatory and usu-
ally result from improper file specifications or typing
errors. For further information, read Section 3.8, Boot
Error Messages.

10.4.2 Character I/0 Device Errors

This condition indicates that one of the following errors
occurred on a communication line:

° Parity errors
[Data overrun errors
° Framing errors

The ULTRIX-11 device drivers for the DH11/DHU11/DHV11,
DzZ11/DZV11/DZQ11, and DL11 communications devices log errors
on terminal lines both by maintaining a count of the errors
on each 1line and by saving the last faulty character along
with the accompanying error bits.

Because of line noise and other causes, these driver errors
can occur frequently and 1in large numbers. This makes
printing an error message or writing to the error 1log file
impractical. You can print the error counts and last error
characters saved by the device drivers by wusing the pstat
command with the -t option specified.

The system prints the error count under the heading ERRCNT
and the last error character under the heading LASTEC. The
LASTEC entry contains a copy of the received character
buffer register from the device and includes the error char-
acter as well as the accompanying error bits.

For a description of received character buffer register bit

Error Messages 10-21

assignments, read the user's guide for your communications
device. To print the error count and last error character
from a crash dump file, use the cda command. For example,
type this command sequence:

$ cda -pt /unix /usr/crash/core

10.4.3 Jump to Zero and Vector Through Location Zero

This condition indicates that the system encountered a panic
trap. The ULTRIX-11 operating system defines a jump to
location zero as setting the program counter to zero (for

example, by a jump instruction with a destination address of
zero).

The occurrence of this error is very unlikely. For both the
separate I and D space and text overlay versions of the
ULTRIX-11 operating system, a jump to =zero results in a
break point trace. The break point trace causes a panic
trap (type two) with a PC of two. The cda program recognizes
this special case of the panic trap error and flags it as a
jump to zero.

The vector through location zero message indicates that the
system encountered either a trap or an interrupt with a vec-
tor address of zero. The processor takes its new PC from
location =zero and 1its new PS from location two. This is a
more common error than the jump to zero and can be caused
either by a device which interrupts without asserting its
vector address or by other UNIBUS related problems.

For the separate I and D space version of the ULTRIX-11 ker-
nel, a vector through zero is logged as a stray vector. For
the overlay text version of the ULTRIX-11 operating system,
a vector through =zero results in a panic trap (type zero)
with a PC of five. The cda program flags this special type
of panic trap as a vector through location zero.

10.4.4 Looping in Locore in User Mode

This condition indicates that the system could not create
the 1init process. This can be caused by an I/0 error while
attempting to read the /etc/init file.

During the final step of the ULTRIX-11 operating system
startup, the kernel creates the init process. The start-up
code creates the init process by copying a small boot pro-
gram into location zero in user space and transferring con-
trol to it.

This boot program consists of an exec() system call which is
followed by a branch self instruction. When successful, the
exec() system call then is overlaid by the init process.

10-22 Error Messages

The 1init process begins executing at location zero in user
space and creates a process for each enabled terminal. 1If
the exec() system call fails, a return occurs and the CPU
hangs at the branch self instruction.

Because the clock interrupts and switches the processor to
kernel mode periodically, it may not be apparent that the
processor is looping in user mode at location six. If the
processor is looping for at least some percentage of the
time, halt the processor and disable the clock by resetting
its interrupt enable bit to =zero. If you are using the
KW11-L clock, deposit a 0 in clock CSR 777546. If you are
using the KW11-P clock, deposit a 0 in clock CSR 712540.
Then press continue. If this error causes the looping condi-
tion, the address should be constantly at location six.

10.4.5 Red Zone Stack Violation

This condition indicates that the kernel stack has gone

below the 16-word yellow zone. When a red zone fatal stack
violation occurs, the CPU:

Aborts current instruction

Sets kernel stack pointer to 4

Pushes PS and PC onto stack (locations 2 and 0)
Traps through location 4

As a result of this red zone trap, the kernel stack pointer
is zero. Like a yellow zone error, this error cannot result
from an actual stack overflow. Instead it can be caused by
modification of the kernel stack pointer or a detection
logic fault. Unlike the yellow =zone error, the red zone
stack violation can be caused by the occurrence of one of
the following hardware errors:

Memory management aborts
Nonexistent memory

0dd address error
UNIBUS parity error
UNIBUS timeout

Because the stack pointer is set to zero on a red zone
error, the ULTRIX-11 panic mechanism cannot handle this

error. When this error occurs, the ULTRIX-11 kernel also
prints this message and then halts:

RED ZONE

10.4.6 Stray Vector and Stray Interrupt

This condition indicates that the system encountered unex-
pected vectors through locations in the locore vector area.
When this occurs, this information is printed:

Error Messages 10-23

SI # or SV #

The # indicates either the controller CSR address for a
stray interrupt (SI) or the vector address for a stray vec-
tor (SV). When these errors occur, the system either
crashes or, 1if it loses an interrupt, hangs. For further
information about stray interrupts or vectors, read Section
8.4.7, Stray Interrupt Record, and Section 8.4.8, Stray Vec-
tor Record.

10.4.7 Yellow Zone Stack Violation

This condition indicates that the kernel stack has gone
below the 1limit specified by the programmable stack limit
register. That is, the kernel stack has fallen into the
16-word yellow zone (grace area) of the protected area below
the stack. The ULTRIX-11 kernel always ensures that the
memory management segment located immediately below the ker-
nel stack is mapped for no access. This prevents the stack
from overwriting system memory if a stack overflow occurs.
Because the ULTRIX-11 kernel does not use the stack limit
feature, the stack 1limit register will be zero (default
limit octal 400). Before the detection of a yellow zone vio-
lation, a memory management access violation usually occurs.

10-24 Error Messages

10.5 User-Mode Errors

When an error occurs while a user process is running, the

system prints a user-mode error message directly to the
user's terminal.

If a hardware error occurs while the ULTRIX-11 operating
system is executing a user process (processor is in user
mode), the result normally is nonfatal. Because the effect
of the error is usually confined to the user process only,
it does not affect the operating system. If a power failure
or programmed interrupt request occurs while the ULTRIX-11
operating system is in user mode, the results usually cause
a system crash.

If a memory parity error occurs in user mode, the system
enters a parity error record into the error log and ter-
minates the user process that was running at that time. The
user process is terminated without a core dump because writ-
ing the process's image out to disk would cause another par-
ity error.

All other hardware traps cause the user process to be core
dumped. A core dump involves printing an error message on
the user's terminal and writing an image of the user
process's memory out to a core file in the user's current
directory.

To examine the core file and determine the cause of the core
dump, use the adb program. For example, Figure 10.2 pro-
vides a sample adb session. In this example, a bus error
occurred while executing the who command and adb was used to
extract the error information. You can rename the core
file, as shown, to prevent another core dump from overwrit-
ing it. The $C adb command prints a C stack backtrace. The
Sr prints the trap pc, ps, and general register contents.
You can use the $f command to obtain the floating point
status and error registers. The $q command exits the
debugger. For further information, read adb(1) in the
ULTRIX-11 Programmer's Manual, Volume 1.

Error Messages 10-25

$ who

Bus error - Core dumped
$ mv core who.core

$ adb /bin/who who.core

sc
~main(03,0177714)
argc: 03
argv: 0177714
Sr
dev 020 (4) - Bus error
ps 0170000
pcC 0210 ~main+0114
sp 0177672
r5 0177702
r4 0
r3 013254
r2 0
r1 061
r0 017302 passwd
~main+0114: beq ~main+0124
$q
$

Figure 10.2 -- Sample adb(1) Session

Appendix A

Sysgen Program Example

This sample sysgen session illustrates:

Logging in to the sys account

Running the sysgen program

Obtaining on-line help information

Listing configurable processors and peripherals
Creating a configuration file

Making a new kernel

Obtaining the kernel installation procedure
Exiting the sysgen program

When creating the configuration file and making the new ker-
nel, a sample response follows each prompt. If no response
is given, the default is assumed. The help text for each
prompt also is printed.

A-2 Sysgen Example

This example is of logging in to the sys account and running
the sysgen program:

ULTRIX-11 System V2.0 (sysname)

login: sys
Password:

Welcome to the ULTRIX-11 System

$ cd conf
$ sysgen

ULTRIX-11 System Generation Program
For help, type h then press <RETURN>

sysgen>

Sysgen Example A-3

This example is of obtaining on-line sysgen help informa-
tion:

sysgen> h

The "sysgen>" prompt indicates the sysgen program is ready to
accept commands. To execute a command you type the first letter
of the command, then press <RETURN>. Some of the commands will
ask you for additional information, such as a file name. For
more help with a command, type h followed by the command letter
then press <RETURN>., For example, "h c" for the create command.

Command Description

<CTRL/D> Exit from sysgen (backup one question in "c" command).
<CTRL/C> Cancel current command, return to "sysgen>" prompt.

! command Escape to the shell and execute "command".

[clreate Create an ULTRIX-11 kernel configuration file.
[rlemove Remove an existing configuration file.

[1]ist List names of all existing configuration files.
[plrint Print a configuration file.
[m]ake Make the ULTRIX-11 kernel.

[ilnstall Print instructions for installing the new kernel.
[(dlevice List configurable processors and peripherals.
[slource Compile and archive a source code module (ul.c, etc.).

The sysgen sequence is: use "c" to create the configuration file,
"m" to make the new kernel, and "i" for installation instructions.

A-4 Sysgen Example

This example is of listing the processors and peripherals
that may be configured into the ULTRIX-11 kernel:

sysgen> d

Memory managed PDP-11 processors:
(23, 23+, 24, 34, 40, 44, 45, 55, 60, 70, 73)

Disk Controllers:

Number Name Description

1 hp (first) RH11/RH70 - 8 RM02/3/5, RP04/5/6, ML11
1 hm (second) RH11/RH70 - 8 RM02/3/5, RP04/5/6, ML11
1 hj (third) RH11/RH70 - 8 RM02/3/5, RP04/5/6, ML11
1 hs RJS04 (RH11/RH70) with up to 8 RS03/4

1 hk RK611/RK711 with up to 8 RK06/7

1 ra UDA50 with up to 4 RA80/RA81/RA60

1 rc KLESI with up to 2 RC25 (4 units)

1 rd/rx RQDX1 with up to 4 RD51/RD52/RX50

1 rx RUX1 with up to 4 RX50

1 rp RP11 with up to 8 RP02/3

1 rl RL11 with up to 4 RL01/2

1 rk RK11 with up to 8 RKO05

1 hx RX211 with one dual RX02 drive

Press <RETURN> for more:

Magtape Controllers:

Number Name Description

1 ht TM02/3 with up to 64 TU16/TE16/TU77
1 tm TM11 with up to 8 TU10/TE10/TS03

1 ts TS11/TSV05/TU80/TK25

Miscellaneous Devices:

Number Name Description
1 1p LP11 controller with 1 LP11 type printer
1 ct C/A/T phototypesetter interface via DR11-C

Sysgen Example A-5

Press <RETURN> for more:

Communications Devices:

Number Name
dh
dhdm
dhu
dhv
dz
dzv
dzq
kl
dl
du
dn

[¢)}

W00 > 000
N Oy

Description

DH11 16 line asynchronous multiplexer
DM11-BB modem control option for DH11
DHU11 16 line asynchronous multiplexer
DHV11 8 line asynchronous multiplexer
DZ11 8 line asynchronous multiplexer
DZV11 4 line asynchronous multiplexer
DZQ11 4 line asynchronous multiplexer
DL11/DLV11 single line unit (CSR 776500)
DL11/DLV11 single line unit (CSR 775610)
DU11 single line synchronous interface
DN11 4 line auto call unit interface

A-6 Sysgen Example

This example is of creating a sysgen configuration file:

sysgen> c

For help, answer the question with ?<RETURN>
To backup to the previous question, type <CTRL/D>

Configuration name <unix> ? ?

To use the default configuration name of "unix", press <RETURN>.

To use an alternate configuration name, enter the name and press
<RETURN>. The configuration name is limited to a maximum length
of eight characters. Digital recommends you use only alphanumeric
characters in the configuration name.

Configuration name <unix> ?

Configuration file exists, overwrite it <no> ? y

Processor type:

(23 23+ 24 34 40 44 45 55 60 70 73) < 70 > 2 ?

If the new kernel is being generated for the current CPU, press
<RETURN>. The number enclosed in < >, which is the current CPU
type, will be used. If the new kernel is for another system
enter the numeric portion of the processor type name, then press

<RETURN>. The numbers enclosed in () list the supported CPU types.

For example, you would enter 70 for the PDP11/70 or 23+ for a
PDP11/23 plus processor.

The Micro/PDP-11 may be any of the following processor types:
23+ - KDF11-B (F11)
73 - KDJ11-A (J11)
83 - KDJ11-B (J11)
If the target processor is not listed, select the processor type
that most closely resembles your processor. Remember, separate I
and D space is the most important processor feature.
Processor type:
(23 23+ 24 34 40 44 45 55 60 70 73) < 70 > ?

Memory size in K bytes (K = 1024) < 1024 > ? ?

Sysgen Example A-7

Sysgen is requesting the amount of memory on the target processor.
The memory size is specified in K bytes, where, K is 1024 bytes.
If the new kernel is being generated for the current CPU, press
<RETURN> to use the value enclosed in < >, which is the current
processor's memory size. If the new kernel is for another system,
enter the memory size then press <RETURN>,

For example, if the processor has 256 K bytes of memory, you would
enter 256, if the processor has one megabyte of memory you would
enter 1024.

The minimum memory size is 192K bytes. The maximum memory size is
3840K bytes. 3840K bytes is four megabytes of memory minus the
256K bytes of address space reserved for the I/0 page.

Memory size in K bytes (K = 1024) < 1024 > ?

1/0 buffer cache size (NBUF: min = 16, max = 144) < 144 > ? ?

NBUF sets the size of the I/0 buffer cache in the ULTRIX-11
kernel. Increasing the number of buffers should improve system
performance. However, increasing NBUF also increases the amount

of memory consumed by the operating system. Digital recommends you
use the default NBUF for the initial system generation and delay
experimenting with the size of the buffer cache until reliable
system operation has been established.

To use the default value for NBUF, press <RETURN>. To change the
size of the I/0 buffer cache, enter the number of buffers then
press <RETURN>,

Each NBUF costs 30 bytes of kernel data space for the buffer

header and 512 bytes of memory (outside of kernel data space)
for the actual buffer.

I/0 buffer cache size (NBUF: min = 16, max = 144) < 144 > ?
Please enter the system (ROOT) disk controller first.
Disk controller type:

< rh11 rh70 rp11 rk611 rk711,
rl11 rx211 rk11 uda50 rqdx1 klesi rjs04 rux1 > ? ?

Sysgen is requesting a list of all the disk controllers to be
configured into the kernel. Enter the name of the system disk
controller first, then enter the names of the other controllers
on your system. When you have entered all your disk controllers,
terminate the list by pressing <RETURN>. Consult the list below
for the names and usage each type of disk controller.

When you enter a disk controller name, sysgen will ask a series

A-8 Sysgen Example

of questions about the controller and the drives connected to it.
Type the answer to each question then press <RETURN>. Remember,
you can just press <RETURN> to use the default answer or ?<RETURN>
for help.

Note - all of the Q22 bus controllers may be used on processors
with the 18 bit Q bus (jumper selectable). CAUTION, if a
Q bus controller (rxv21, rlvi1) is used on a processor
with the Q22 bus, the disk may be accessed in buffered I1/0
mode only. Attempting RAW I/0 transfers will cause errors.
The PDP11/23 has an 18 bit Q bus, PDP11/23+ has a Q22 bus.

Press <RETURN> for more:

Name Usage Disk Drives Supported
rh11 Unibus RM02, RP04/5/6, ML11
rh70 11/70 Massbus RM02/3/5, RP04/5/6, ML11
rp11 Unibus RP02/3

rk611 Unibus RK06/7

rk711 Unibus RK06/7

rl11 Unibus RL0O1/2

riv11 Q bus RL0O1/2 (* specify rl11)
rlvi2 Q22 bus RLO1/2 (* specify rl11)
rx211 Unibus RX02

rxv21 Q bus RX02 (* specify rx211)
rk11 Unibus RKO5

uda50 Unibus RA60, RA80, RA81

rqdx1 Q22 bus RX50, RD51, RD52

ruxi Unibus RX50

klesi Unibus/Q22 bus RC25

rjs04 Unibus RS03/4

Disk controller type:

< rh11 rh70 rp11 rk611 rk711,
r111 rx211 rk11 uda50 rqdx1 klesi rjs04 rux1 > ? rh70

First MASSBUS disk controller:

Drive 0 type < rm02 rm03 rm05 rp04 rp05 rp06 mli1 > ? ?

Sysgen is requesting a list of the drives connected to the
disk controller. The names enclosed in < > are the drive
types that may be attached to the specified disk controller.
Enter the type of each drive, in order, starting with unit
zero. To terminate the 1list of drive types, just press
<RETURN>,

Sysgen assumes the disk units are numbered sequentially,
starting with wunit =zero. To allow for non-sequential unit
numbering, a drive type may be entered even if the disk
drive is not physically present. The operating system will

Sysgen Example A-S

ignore any non-existent units. For example, if three RP06
disks are to be numbered 0, 1, and 4, you would also specify
drives two and three as RP06 disks. Drives two and three
would be ignored by the system. Non-sequential unit number-
ing is not recommended, because it wastes kernel data space
by allocating slots 1in the disk driver information tables
for non- existent drives.

Drive 0 type < rm02 rm03 rm05 rp04 rp05 rp06 ml11 > ? rp06
Drive 1 type < rm02 rm03 rm05 rp04 rp05 rp06 ml11 > ? rm03
Drive 2 type < rm02 rm03 rm05 rp04 rp05 rp06 ml11 > ? rp06

Drive 3 type < rm02 rm03 rm05 rp04 rp05 rp06 ml11 > ?

CSR address <176700> ? ?

The number enclosed in < > is the default CSR address for
the device. To use the default CSR address, press <RETURN>,
If the device is not confiqured at the default CSR address,
enter the actual address, then press <RETURN>, CSR addresses
are always entered as octal numbers.

A device's CSR address specifies the I/0 page address used
by the operating system to access the device. The term CSR
actually denotes the Control and Status Register, which is

normally the first in a group of I/O page registers for the
device.

CSR address <176700> ?

Vector address <254> ? ?

The number enclosed in < > is the default interrupt vector
address for the device. To use the default vector, press
<RETURN>, If the device is not configqured at the default
vector address, enter the actual vector address followed by
<RETURN>. The vector address is always entered as an octal
number.

A device's vector address is the address the processor will
use to vector to the interrupt service routine for the dev-
ice. The vector area is in low memory (locations 0 - 0776).

Vector address <254> ?

Is the system disk on this controller <yes> ? ?

Sysgen is asking if the system disk is connected to the
current disk controller. The system disk 1is where the

A-10 Sysgen Example

ULTRIX-11 ROOT file system is located. Sysgen will ask this
question only if the system disk has not already been speci-
fied.

If the system disk is on this controller, enter yes<RETURN>
or just <RETURN>. If not, enter no<RETURN>,

Is the system disk on this controller <yes> ?

System disk unit number <0> ? ?

Sysgen is asking for the unit number of the system disk. The
default wunit number is <1> for the RC25 and <0> for all
other disks. To use the default unit number, press <RETURN>,
You can specify a different wunit number by entering the
number followed by <RETURN>. If you do not use the default

unit number, the following items must be considered:

® Not all hardware bootstraps can boot from units other than
zero. You can load the boot from the distribution tape.

e The boot file specification will change. For example, unit
two would be ??(2,0)unix, where ?? is the disk mnemonic.

e The /etc/fstab must be modified, see fstab(5) in the
ULTRIX-11 Programmer's Manual, Volume 1.

e You must remake the file /dev/swap so that commands can
access the swap area, see /dev/makefile.

System disk unit number <0> ?
Disk controller type:

< rh11 rh70 rp11 rk611 rk711,
rl11 rx211 rk11 uda50 rqgdx1 klesi rjs04 rux1 > ? rh70

Second MASSBUS disk controller:

Drive 0 type < rm02 rm03 rm05 rp04 rp05 rp06 ml11 > ? ml11
Drive 1 type < rm02 rm03 rm05 rp04 rp05 rp06 ml11 > ? rm03
Drive 2 type < rm02 rm03 rm05 rp04 rp05 rp06 ml11 > ?

CSR address <176400> ?

Vector address <204> ?

Disk controller type:

< rh11 rh70 rp11 rk611 rk711,

Sysgen Example A-11

rl11 rx211 rk11 uda50 rgdx1 klesi rjs04 rux1 > ? rl11
Drive 0 type < rl01 rl02 > ? rl02
Drive 1 type < rl01 rl02 > ? rl02
Drive 2 type < rl01 rl02 > ?
CSR address <174400> ?
Vector address <160> ?
Disk controller type:

< rh11 rh70 rp11 rk611 rk711,
rl11 rx211 rk11 uda50 rqdx1 klesi rjs04 rux1 > ? uda50

First MSCP disk controller:

Drive 0 type < ra60 ra80 ra81 > ? ra60
Drive 1 type < ra60 ra80 ra81 > ? ra81
Drive 2 type < ra60 ra80 ra81 > ?

CSR address <172150> ?

Vector address <154> ?

Disk controller type:

< rh11 rh70 rp11 rk611 rk711,
rl11 rx211 rk11 uda50 rqgdx1 klesi rjs04 rux1 > ? rux1

Second MSCP disk controller:
Drive 0 type < rx50 > ? rx50
Drive 1 type < rx50 > ? rx50
Drive 2 type < rx50 > ?

CSR address <172150> ? 172144
Vector address <154> ? iSO
Disk controller type:

< rh11 rh70 rp11 rk611 rk711,
rl11 rx211 rk11 uda50 rqdx1 klesi rjs04 ruxi > ?

Use standard placement of root, swap, and error log <yes> ? ?

A-12 Sysgen Example

Sysgen contains tables that define the standard location of the
ULTRIX-11 ROOT, PIPE, SWAP, and ERROR LOG file systems on each
type of disk. Digital strongly recommends you use the standard
placements for these file systems. Type yes<RETURN> or just
<RETURN> to use the standard placements.

If you intend to experiment with the placement of these file
systems, wait until the initial system installation has been
completed and reliable system operation is established before
generating a system with nonstandard placements. Also, backup
you disks before booting a kernel with nonstandard placements!

To use nonstandard placements, answer no<RETURN>. Sysgen will ask
a series of questions about the placement of the ROOT, SWAP, PIPE,
and ERROR LOG file systems. Along with each question sysgen will
print a default value, enclosed in < >, which is the standard
placement for the item in question. You may use the default value
or enter a new value. WARNING, sysgen accepts your answers without
checking them for errors!

Press <RETURN> for more:

The following hints may be helpful:

e Placing the ROOT and SWAP on separate disk controllers will
improve system performance. Placing them on different drives
on the same controller is of little benefit.

e If the system make heavy use of pipes, placing the PIPE
device on a separate disk controller should improve system
performance. Otherwise PIPE and ROOT should be the same.

e All four file systems may exist within the same partition.
Care must be taken to prevent file system overlap.

e The mkconf program (called by sysgen to make the kernel)
does some checking of file system placements.

e Some of the auto-boot features may not function with non-
standard placements of the ROOT, PIPE, SWAP, and ERROR LOG.
Refer to Section 3 of the ULTRIX-11 System Management Guide.

e If the standard placements are not used, the only available
crash dump devices will be magtape and RQDX1/RX50 (unit 2).

Use standard placement of root, swap, and error log <yes> ?
Magtape controller:
< tm02 tm03 tm11 ts11 tsv05 tu80 tk25 > 2 ?

Sysgen is requesting a list of the magtape controllers to be
configured into the new kernel. Most systems will have only a

Sysgen Example A-13

single magtape controller, however, multiple controllers may be
included. Only one of each type controller may be configured,
that is, one T™02/3, one TM11, one TS11/TU80/TSV05/TK25.

Enter a magtape controller name, from the list below, then press
<RETURN>. Sysgen will ask several questions about the controller
and the drives connected to it. Answer each question then press
<RETURN>., After you have entered the last magtape controller,
terminate the list of controllers by pressing <RETURN>.

Name Usage Tape Drives Supported
tm02/3 Unibus TU16, TE16, TU77

tm11 Unibus TU10, TE10, TSO03

ts11 Unibus TS11

tsv05 Qbus/Q22bus TSV05

tu80 Unibus TU80

tk25 Qbus/Q22bus TK25

Magtape controller:

< tm02 tm03 tm11 ts11 tsv05 tu80 tk25 > ? tm03

Number of magtape units <1> ? ?

Sysgen is requesting the number of tape drives connected to the
magtape controller. Enter the number of magtape units then press
<RETURN>. To use the default response of one unit, press <RETURN>.

Sysgen asks for the number of magtape units instead of the type
of each unit, because the software drivers for magtapes adapt to
the drive type automatically.

Sysgen expects magtape units to be numbered sequentially. However,
non-sequential numbering may be used by setting the number of units
to one more than the highest numbered unit. For example, if three
tape units were to be numbered 0, 1, and 4, you would specify 5
magtape units. The system will ignore the nonexistent units. Non-
sequential unit numbering is not recommended because the system
must allocate space in the magtape driver information tables for
nonexistent units.

Number of magtape units <1> ? 2

CSR address <172440> ?

Vector address <224> ?

Magtape controller:

< tm02 tm03 tm11 ts11 tsv05 tu80 tk25 > ?

Crash dump device < tm03 rp06 > ? ?

A-14 Sysgen Example

Sysgen is requesting the name of the crash dump device. Select
the crash dump device from the list of names enclosed in < >.

Enter the name then press <RETURN>, There is no default crash

dump device, you must enter one of the names from the list.

The ULTRIX-11 system takes a crash dump by writing an image of
memory to the crash dump device. The "memory image" is copied

to a file on the system disk for analysis by the CDA (Crash Dump
Analysis) program.

Digital recommends you select a magtape for the crash dump device
if one is available. This will ensure that all of the system's
memory will be saved in the crash dump.

If a magtape is not available, the crash dump can be written to
the swap area of the system disk. If the system disk controller

is an RQDX1, you may select the RX50 floppy disk drive as the
crash dump device.

Depending on the type of disk and the amount of memory, the swap
area may not be large enough to hold the entire "memory image".
In this case, some crash dump data may be lost.

Crash dump device < tm03 rp06 > ? tm03

LP11 line printer present <no> ? y

CSR address <177514> ?

vector address <200> ?

Communications devices:

< dz dzv dzq dh dhu dhv dhdm du dn k1l d1 > ? ?

Enter the name of one of the communications devices listed below,
then press <RETURN>. Sysgen will ask questions about the device.
Answer these questions, then enter the name of the next device to
be configured. If there are no more communications devices, press
<RETURN> to terminate the list of devices.

Sysgen Example A-15

Name Device Description

dz DZ11 8 line multiplexer

dzv DZV11 4 line DZ11 for Q bus

dzqg DZQ11 4 line multiplexer (DZV11 replacement)
dh DH11 16 line multiplexer

dhdm DM11-BB DH11 modem control

dhu DHU11 16 line multiplexer

dhv DHV 11 8 line DHU11 for Q bus

du DU11 synchronous line interface

dn DN11 auto-call unit interface

kl DL11/DLV11 (CSR 776500) single line unit
dl DL11/DLV11 (CSR 775610) single line unit

Press <RETURN> for more:

The first "kl" is reserved for the console terminal. The console
terminal is automatically configured, do not count it the "kl"
specification. Use the "kl1" and "dl" names for the equivalent
DLV11 Q bus devices.

Communications devices:

< dz dzv dzq dh dhu dhv dhdm du dn k1l dl > ? dz

Number of units <1> ? 3

CSR address <160100> ? 160110

Vector address <300> ? 330

Communications devices:

< dz dzv dzq dh dhu dhv dhdm du dn k1l 41 > ? dh

Number of units <1> ?

CSR address <160020> ?

Vector address <300> ? 310

Communications devices:

< dz dzv dzq dh dhu dhv dhdm du dn k1l 41 > ? dhdm

Number of units <1> ?

CSR address <170500> ?

Vector address <300> ?

Communications devices:

< dz dzv dzq dh dhu dhv dhdm du dn kl 41 > ?

A-16 Sysgen Example

Include C/A/T phototypesetter driver <no> ?

User devices:

< ul u2 ul3 ud > ? ?

Sysgen allows you to configure up to four user written device
drivers into the ULTRIX-11 kernel. If there are no user devices,
press <RETURN>, Otherwise, enter the name of the first user

device (u1, u2, u3, u4). Sysgen will ask a series of questions
about the user dev1ce. Answer these questions, then enter the name
of the next user device. If there are no more user devices, press
<RETURN> to terminate the list.

To create a user written device driver, examine one of the user
device driver prototype files (ul.c u2.c u3.c u4.c) in the
/sys/dev directory. These files contain empty functions that
define the interface to the ULTRIX-11 kernel. Edit your driver
source code into these empty functions. Use the "s" command to
compile and archive the new driver. Use the "m" command to make
and install a new kernel.

For additional information, refer to Section 2.8 of the ULTRIX-11
System Management Guide.

User devices:
< ul u2 uld ud > ?

Include Kernel floating point simulator <no> ? ?

If your processor is equipped with floating point hardware, type
no<RETURN> or just <RETURN>. If your processor does not have the
floatlng point hardware, type yes<RETURN>. Including the floatlng
point simulation code will allow programs to execute floating point
instructions on a processor without floating point hardware.

If the processor does not have floating point hardware and the
floating point simulation code is not included in the kernel, any
program that executes floating point instructions will be core
dumped with an illegal instruction trap.

Include Kernel floating point simulator <no> ?
Use standard system parameters <yes> ? ?

The ULTRIX-11 system parameters specify the size of the kernel's
internal data structures, such as the process table. The values
of these parameters are used to adjust the sizes of the internal
data structures to match the expected system load, that is, the
number of users and job mix.

Sysgen Example A-17

Sysgen contains a table of standard values for these parameters.
Digital recommends that the standard parameters be used for the
initial system generation, and that experimentation with the
parameter values be delayed until reliable system operation is
established. To use the standard parameters, answer yes<RETURN>
or just <RETURN>,

To change the parameters, answer no<RETURN>. Sysgen will ask for
the value of each parameter. Sysgen will also print the standard
value of each parameter, enclosed in < >,

Press <RETURN> for more:

The system parameters are:

Param OV_VAL ID VAL COST Description

NINODE 90 200 74 In-core inode table size

NFILE 80 175 8 Number of open files

NMOUNT 5 8 6 Number of mounted file systems
MAXUPRC 15 25 0 Maximum processes per user
NCALL 20 20 6 Number of callouts

NPROC 75 150 42 Number of processes allowed
NTEXT 25 40 12 Number of shared text segments
NCLIST 85 115 16 Number of cblocks in clist
CANBSIZ 256 256 1 TTY canon buffer size

NCARGS 5120 5120 0 Exec() argument list size
MSGBUFS 128 128 1 Error message buffer size
MAXSEG 61440 61440 0 Memory size limit

MAPSIZE 67 105 4 Core/swap map size

Use standard system parameters <yes> ? n

CHANGING SYSTEM PARAMETERS!

Press <RETURN> to use the default value!
Type ?<RETURN> for help!

ninode <200> ? ?

NINODE sets the size of the "in core inode" table in the ULTRIX-11
kernel. There will be an entry in this table for every open file,
that is, device special file, current working directory, sticky
text segment, open file, or mounted file system.

NINODE should be approximately NPROC+NMOUNT+(number of terminals).
You can use the default value by pressing <RETURN>, or enter the
value of NINODE followed by <RETURN>,

The cost of each NINODE is 74 bytes of kernel data space.

ninode <200> ?

A-18 Sysgen Example
nfile <175> 2 ?

NFILE sets the size of the "open file" table in the ULTRIX-11
kernel. The size of this table limits the number of simultaneous
open files the system may have.

NFILE should be about the same size as NINODE. To use the default
value, press <RETURN>, To change NFILE, enter the new value then
press <RETURN>.

The cost of each NFILE is 8 bytes of kernel data space.
nfile <175> ?

nmount <8> ? ?

NMOUNT sets the size of the mount table in the ULTRIX-11 kernel.
The size of this table limits the number of mounted file systems
to NMOUNT. Each mounted file system requires en entry in the
mount table and a buffer, from the I/0 buffer cache, to hold its
superblock.

NMOUNT should be set to the number of permanently mounted file
systems plus a number of temporary mounts. The permanent mounts
can be determined by counting the active entries in the file
system table (/etc/fstab). An active entry is one marked "rw" or
"ro", not "xx". The number of temporary mounts depends on the
system configuration and work load, two is generally enough.

Press <RETURN> to use the default NMOUNT, or enter the number of
mounts followed by <RETURN>,

The cost of each NMOUNT is 6 bytes of kernel data space and the
dynamic allocation of a buffer from the I/0 buffer cache.

nmount <8> ?

maxuprc <25> ? ?

MAXUPRC sets the maximum number of processes that a user can have
running simultaneously. MAXUPRC should be set just large enough
that users can get work done but not so large that a user can
consume all available processes, in the event of a programming

error.

Press <RETURN> to use the default value, or enter an alternate
value then press <RETURN>,

There is no data space cost associated with MAXUPRC.

maxuprc <25> ?

Sysgen Example A-19

ncall <20> ? ?

NCALL sets the size of the callout table in the ULTRIX-11 kernel.
Callouts are entered in this table when internal system timing
must be done, such as carriage return delays for terminals.

The default NCALL size should be sufficient for most systems. To
use the default value, press <RETURN>. To change the size of the
callout table, enter the new value then press <RETURN>,

The cost of each NCALL is six bytes of kernel data space.

ncall <20> ?

nproc <150> ? ?

NPROC sets the size of the process table in the ULTRIX-11 kernel.
The size of this table limits the number of processes that can

be active in the system. Each active process requires an entry in
the process table.

There is no set rule for the size of NPROC, it depends on how the
system is being used. The default value should be sufficient for

most systems, press <RETURN> to use the default NPROC. To change

NPROC, enter the new value then press <RETURN>.

The cost of each NPROC is 42 bytes of kernel data space.
nproc <150> ?

ntext <40> ? ?

NTEXT sets the size of the "text" table in the ULTRIX-11 kernel.
The size of the text table limits the number of shared text (pure
code) segments that may be active in the system.

The default value for NTEXT should be sufficient for most systems,
press <RETURN> to use the default value. NTEXT should be increased
for systems with a large number of shared text processes. The

NTEXT value can be changed by entering the new value followed by
<RETURN>,

The cost of each NTEXT is 12 bytes of kernel data space.

ntext <40> ?

nclist <115> 2 ?

NCLIST sets the number of 14 character clist segments (cblocks)
allocated to the clist in the ULTRIX-11 kernel. Clists are used

A-20 Sysgen Example

to buffer characters for devices like terminals.

NCLIST should be large enough that the clists does not become
exhausted at times of high terminal I/0 activity. Enough clists
should be allocated so that every terminal can have one average
length line pending (about 30 or 40 characters).

The default NCLIST value should be adequate for most systems. To
use the default value, press <RETURN>. To change the clist size,
enter the new value then press <RETURN>. Use the following rule

to calculate the number of Clists:

NCLIST = 55 + (3 times average number of active terminals)

The cost of each NCLIST is 16 bytes of kernel data space.
nclist <115> ?

canbsiz <256> ? ?

CANBSIZ specifies the size of the terminal canonicalization buffer
in the kernel. This buffer is used for erase and kill processing
when the system is accepting input from a terminal. That is, when
you type <DELETE> to erase a character or <CTRL/U> to kill an
entire line of input.

CANBSIZ limits the length of a terminal input line. The default
of 256 should be large enough for most applications. The cost of
each CANBSIZ is one byte.

canbsiz <256> ?

ncargs <5120> ? ?

NCARGS is the maximum number of characters allocated for the
argument list when a process is created via the "exec" system
call. NCARGS limits the number of arguments that can be passed
to a process. Each "exec" system call requires (NCARGS+511)/512
contiguous blocks in the swap area, to hold the argument list.
The default NCARGS value should be large enough for most systems.

To use the default value press <RETURN> or enter an alternate
value followed by <RETURN>.

NCARGS use no kernel data space. However, setting NCARGS too high
may cause swap space exhaustion or fragmentation.

ncargs <5120> ?

maxseg <61440> ? ?

Sysgen Example A-21

MAXSEG limits the maximum amount of memory that the operating
sysgen will use. To ensure that the system uses all available
memory, use the default MAXSEG value by pressing <RETURN>,
There is no harm is setting MAXSEG larger than the physical
memory size.

MAXSEG is only changed for maintenance purposes, that is, to
force swapping or avoid a known faulty section of memory. The
values of MAXSEG is the number of 64 bytes memory segments to
be used. The system will use all available memory up to and
including the limit set by MAXSEG. For example, the default
MAXSEG of 61440 allows the system to use up to 3.75 megabytes
of memory (4Mb - I/0 page). Setting MAXSEG to 16384 would limit
the memory size to 1 megabyte.

maxseg <61440> ? 16384

msgbufs <128> 2 ?

MSGBUFS specifies the size of the system error message buffer in
the ULTRIX-11 kernel. All system error messages, printed on the
console terminal, are also saved in this buffer for collection at

a later time by the DMESG program. DMESG runs every 10 minutes and
transfers the error messages from the kernel buffer to a file
(/usr/adm/messages). If more than MSGBUFS characters of error
message text are printed in a 10 minute period, some previous error
messages will be overwritten. This is due to circular buffering.

Use the default MSGBUFS value by pressing <RETURN>, or enter an
alternate value then press <RETURN>. The cost of each MSGBUFS is
one byte of kernel data space.

msgbufs <128> ?

mapsize <105> ? ?

MAPSIZE sets the size of the core and swap maps in the ULTRIX-11
kernel. These maps are used for keeping track of free segments of
memory and swap space. The default value is a function of the
number of processes (NPROC); 30+(NPROC/2). The worst case value
for MAPSIZE would be (2*NPROC)+2, though the maps rarely get to
that size. MAPSIZE should only be changed if you get "mapsize
exceeded" messages on the system console terminal; this is most
likely on processors that have large memory sizes and do not

have separate Instruction and Data space.

Press <RETURN> to use the default MAPSIZE or enter an alternate
value then press <RETURN>,

The cost of each MAPSIZE is 4 bytes of kernel data space.

mapsize <105> ?

A-22 Sysgen Example
Line frequency in hertz <60> ? ?

Enter the AC power line frequency then press <RETURN>., The default
value is 60 hertz. The line frequency should be 60 hertz for the
United States or 50 hertz for Europe. If you insist, sysgen will
accept any value for the power line frequency. This allows for the
one hertz variation is AC line frequency that occurs in some areas.

Line frequency in hertz <60> ?

Timezone (hours ahead of GMT) <5=EST 6=CST 7=MST 8=PST> ? ?
Sysgen is requesting the timezone for your local area. Specify
the timezone as the number of hours ahead of GMT (Greenwich Mean
Time). Do not include daylight savings time in the timezone
specification. For example, Eastern Standard Time is five hours
ahead of GMT.

Timezone (hours ahead of GMT) <5=EST 6=CST 7=MST 8=PST> ? 5
Does your area use daylight savings time <yes> ? ?

The operating system automatically compensates for the presence
or absence of daylight savings time. If your local area uses
daylight savings time, answer yes<RETURN> or just <RETURN>, If

not, answer nO<RETURN>.

Does your area use daylight savings time <yes> ?

Sysgen Example A-23

This example is of making an ULTRIX-11 kernel:

sysgen> m

Configuration name <unix> ?

¥%%*%*%* CREATING ULTRIX-11 CONFIGURATION AND VECTOR TABLES ***%%%

Device

Address Vector units

console 177560 60

kw11-1 177456 100

kwi11-p 172540 104

hm 176400 204 2

ra 172150 154 2

rq 172144 150 2

rl 174400 160 2

1p 177514 200 1

ht 172440 224 2 (crash dump device)
hp 176700 254 3

dhdm 170500 300 1

dh 160020 310 1

dz 160110 330 3

Filsys Device maj/min start length
root hp 9/0

pipe hp 9/0

swap hp 9/1 200 6000
errlog hp 27/1 0 200

*¥**** MAKING KERNEL FOR SEPARATE I & D SPACE PROCESSORS ***%%%

as - -o l.o 1l.s

as -o dump id.o mchO.s dump.s

as -o mch_id.o mch0.s mch.s

cc -c -0 -DSEP_ID -DKERNEL c.c
cc -c¢ -0 -DSEP_ID -DKERNEL dds.c
cc -S -DKERNEL ec.c

ed - ec.s < :comm-to-bss

as - -0 ec.0 ec.s

rm ec.s

ooooo

ovload

The unix_id sizes must be within the following limits:

root text segment > 49152 but <= 57344

overlay text segments <= 8192, 7 overlays maximum
bss + data segments <= 49088 total

A-24 Sysgen Example

root+(overlay 1, overlay 2,...overlay n)+data+bss=root+data=(total)
size unix_id

50688+(7808,7360,4608)+5080+39784=95552b=0272500b (70464 total text)
rm *,0

New kernel is now named 'unix.os'!

k*%x** CHECKING SIZE OF NEW ULTRIX-11 OPERATING SYSTEM ***%*%

'unix.os' within limits, SYSGEN successful!

Sysgen Example A-25

This example is of obtaining the kernel installation pro-
cedure and exiting the sysgen program:

sysgen> i

Use the following procedure to install the new kernel:

e Type <CTRL/D> to exit from the sysgen program.

® Become superuser (type "su", then enter the root password).

® Move the new kernel to the root (mv unix.os /nunix).

e Type <CTRL/D> twice (to logout), then login to the operator
account. Use the operator services "s" command to shutdown
the system and "halt" command to halt the processor.

e Use the manual boot procedure, described in section 3.4 of
the ULTRIX-11 System Management Guide, to boot the new kernel.

(For example, "Boot: rl(0,0)nunix" from an RLO2 disk.

e Save the old kernel then rename the new kernel "unix".
(mv unix ounix; mv nunix unix; chmod 644 unix)

® Set the date (date command), check the file systems (fsck),
then type <CTRL/D> to enter multi-user mode.

sysgen> ~D (Exit sysgen program)

$

Appendix B

Sysx Program Example

This sample sysx session illustrates:

Running the sysx program

Obtaining on-line help information

Obtaining the exerciser module names
Obtaining on-line help for the create command
Creating an exerciser run script

Printing the status of each exerciser module
Exiting the sysx program

When creating an exerciser run script, a sample response
follows each prompt. If no response is given, the default
is assumed. The help text for each prompt also is printed.

B-2 Sysx Example

This example is of running the sysx program and
help information:

sysx

System exerciser control program
Type h for help

> h

obtaining

The SYSX program has two modes of operation: "command mode"
and "run mode". SYSX is in run mode whenever exercisers
are running and in command mode when no exercisers are running.

The '>' prompt indicates that SYSX is in command mode while the
The following list of SYSX commands is broken down into two

groups; commands available in "command mode", and
available in "run mode”.

Except for <CTRL/D> and <CTRL/C>, commands are
executed by typing the command letter followed by
The commands will ask for additional information,
script name, if required. For more help type 'h'
by the command, 'h r' for help run.

Press <RETURN> for more:

Commands available in command mode:

<CTRL/D> Exit from the sysx program.
<CTRL/C> Cancel current command and return
! command Execute an ULTRIX-11 command.

b Backup, save an existing log file.
c Create an exerciser run script.

d Delete an exerciser run script.

1

printer.

Print the contents of a script.
Run an exerciser script.
Stop all exerciser(s).

XKoo

scripts.

Press <RETURN> for more:

Commands available in run mode:

commands

a <RETURN>,
such as
followed

to the prompt.

Print log files on the terminal or line

Name the exerciser to run on each device.

Print a list of the existing exerciser run

Sysx Example B-3

<CTRL/D> Exit from the sysx program.

<CTRL/C> Cancel current command and return to the prompt.

! command Execute an ULTRIX-11 command.

1 Print log files on the terminal or line
printer.

o} Print the status of the currently running
script.

r Restart system exerciser(s).

s Stop system exerciser(s).

B-4 Sysx Example

This example is of obtaining the names of the sysx exerciser

modules:

EXERCISER

cpx
fpx

memx
lpx
cmx

mtx

hpx

Press <RETURN> for more:
hkx

rpx
rlx
rkx
rax
rax
rax
hxx

DEVICES

CPU
FP11-A/B/C/E/F
FPF11

MEMORY

LP11

DH11,
DHU11,DHV11,

DZ11,DZV11,DZQ11

DL11
T™M02/3,
™11,
TS11
RM02/3/5,
RP04/5/6,
ML 11

RKO06/7

RP02/3

RLO1/2

RK03/5
RA60/80/81
RD51/RD52/RX50
RC25

RX02

COMMENTS

All PDP11 processors
PDP11/40 FIS not supported
PDP11/23 & PDP11/24 Floating
Point

All types of memory

All LP11 type line printers
Communications devices

TU16/TE16/TU77 magtapes
TU10/TE10/TS03 magtapes
TS11/TSV05/TU80/TK25 magtapes
All disks on RH11/RH70
controllers

Disks on RK611/RK711
controller

Disks on RP11 controller
Disks on RL11 controller
Disks on RK11 controller
Disks on UDA50 controller
Disks on RQDX1 controller
Disks on KLESI controller
Disks on RX211 controller

Sysx Example B-5

This example is of obtaining on-line help information about
the sysx c command:

> h ¢

The 'c' command is used to create exerciser run scripts.
This may NOT be done while exercisers are running. The 'c'
command asks for the script name, which may be a combination
of letters and numbers up to 11 characters in length. If a
script by that name already exists, the 'c' command will ask
whether or not to overwrite the existing script. A script
may consist of one or more exerciser names including, in
some cases, multiple copies of the same exerciser.

Next, 'c' prompts for an exerciser name. Respond with the

name of the exerciser to be entered into the script followed
by a <RETURN>. After the name is entered, 'c' will ask several
questions about the options for that exerciser. After each
question, the default answer <default> is printed, to use

the default answer type a <RETURN>. Answering the question
with a '?' will produce an expanded explanation of the
question. Typing <CTRL/D> will cause SYSX to cancel the
current entry and return to the exerciser name question.

Press <RETURN> for more:

After all of the option questions have been answered, 'c'
again prompts for an exerciser name. To enter another
exerciser into the script, type the name followed by a
<RETURN>. To end the script, respond to the exerciser name
question with just a <RETURN>. Refer to the 'p', 'r', and 's'
commands for information about printing, running, and
stopping the exerciser run script. Exercisers should be
entered into the script in the same order as they are

listed by the 'n' command.

B-6 Sysx Example

This example is of creating an exerciser run script:
> c

Script name <sysxr> ? test

Script exists, overwrite it <no> ? y

To cancel a script entry, type <CTRL/D> !
Answer any question with a '?' for help !

Exerciser name ? ?

Type the name of the exerciser for the device to be
exercised followed by a <RETURN>. An exerciser name may
be used more than once in the same script. Use the 'n'
command to obtain the exerciser name for each device.

Exerciser name ? cpx

Output errors to log file <yes> ? ?

The error messages and other output from the exercisers may
be printed on the terminal or written out to a log file.
Either method is acceptable, however, if multiple exercisers
or multiple copies of the same exerciser are running, error
message output to the terminal could become scrambled.
Output should be to log files when multiple exercisers are
running ! The log file name is automatically generated by
the sysx program, use the 'p' command to obtain the log file

names. The 'l' command is used to print the contents of log
files.

Output errors to log file <yes> ?

Number of copies to run <1> ? ?

Some of the exercisers, such as CPX and FPX, allow multiple
copies of the same exerciser to be running concurrently.
This options allows the number of copies to be specified.
The number enclosed in < > is the recommended number of
copies, type a <RETURN> to use this default number. Otherwise,
type the number of copies to be run followed by a <RETURN>.
The maximum number of copies is 50. If the entire system is
to be exercised, i.e., all devices, memory, the CPU, and
floating point are running concurrently, it is strongly
recommended that only the default number of copies of CPX
and FPX be run. If CPX or FPX is the only exerciser running,
then up to 50 copies may be running concurrently.

Number of copies to run <1> ?

Sysx Example B-7

Exerciser name ? fpx
Output errors to log file <yes> ?

Data error printout limit <5> ? ?

For some devices, such as disks, a data mismatch error could
result in several hundred lines of error printout. This
parameter limits the number of data mismatch errors printed
for each occurrence of a data error. For example: if an
entire disk sector failed, 256 data mismatch error printouts,
consisting of three lines each, would be generated. The
default number of data mismatch errors to print is five and
the maximum is 256.

Data error printout limit <5> ?

Drop device after how many errors <100> ? ?

If a device becomes completely inoperative or has a very
high error rate, an inordinately large log file could
result. In order to limit the size of the log file and to
prevent choking the system with errors from a broken device,
this parameter limits the number of errors on any given
device. If this limit is exceeded, the exerciser for that
device will be terminated. The default error limit is 100
and the maximum is 1000.

Drop device after how many errors <100> ?
Number of copies to run <2> ?

Exerciser name ? memx

Output errors to log file <yes> ?
Exerciser name ? lpx

Output errors to log file <yes> ?

LP continuous printing <no> ? ?

In order to save paper, the line printer exerciser (LPX)
prints about 12 pages of actual printout then goes into a
pause state. In the pause state lpx sends characters to the
line printer but cancels the printout before it begins. This
exercises the line printer controller and the system without
wasting large amounts of paper. Answering yes to this
question will cause the line printer to print continuously.

LP continuous printing <no> ?

B-8 Sysx Example
LP (NO PRINT) exercise controller only <no> ? ?

In order to save paper, the line printer exerciser (LPX)
prints about 12 pages of actual printout then goes into a
pause state. In the pause state lpx sends characters to the
line printer but cancels the printout before it begins. This
exercises the line printer controller and the system without
wasting large amounts of paper. Answering yes to this
question will cause lpx to enter a constant pause state and
never generate any actual printouts. This mode exercises the
line printer controller and the system, but not the line
printer itself.

LP (NO PRINT) exercise controller only <no> ?

LP pause (NO PRINT) time in minutes <15> ? ?

In order to save paper, the line printer exerciser (LPX)
prints about 12 pages of actual printout then goes into a
pause state. In the pause state lpx sends characters to the
line printer but cancels the printout before it begins. This
exercises the line printer controller and the system without
wasting large amounts of paper. This parameter is used to
specify the length of the pause time. To use the default

time of 15 minutes type a <RETURN>, otherwise type the desired
pause time followed by a <RETURN>. The maximum pause time is
480 minutes or 8 hours.

LP pause (NO PRINT) time in minutes <15> ?
Exerciser name ? cmx

Output errors to log file <yes> ?

Data error printout limit <5> ?

Drop device after how many errors <100> ?

For DL11, # is NOT unit number, type ? for help !
Device type & unit number
(dh#, dhu#, dhv#, dz#, dzv#, dzq#, dl#) 2 ?

Each copy of the communications multiplexer exerciser (CMX)
exercises one DH11, DHU11, DHV11, DZ11, DZV11, DZQ11 unit or
from one to 16 DL11 units. Type the device type and the unit
number in the following format; dh#, dhu#, dhv#, dz#, dzv#,
dzg# or dl#, where # is the unit number except for the DL11.
For the DL11 # is 0 for the first 16 DL11 units and 1 for
the second 16 units. The actual DL11 unit or units to be
exercised will be selected via the line select question
asked later. DL11 unit 0 line 0, i.e., the first DL11 is

Sysx Example B-9

always the system console and cannot be exercised !

For example:

dho exercise the first DH11 unit

dhu1 exercise the second DHU11 unit

dzv0 exercise the first DZV11 unit

dlo exercise some or all of the first 16 DL11
units

For DL11, # is NOT unit number, type ? for help !
Device type & unit number
(dh#, dhu#, dhv#, dz#, dzv#, dzq#, dl#) ? dho

Use maintenance loopback mode <yes> ? ?

The DL11, DH11, DzZ11, DZV11 and DZQ11 multiplexers have a
maintenance loopback mode of operation, which loops the
transmit leads of each port back to the input leads. When
maintenance loopback mode is invoked, all lines on that unit
are looped back. This is the normal method of exercising
communications multiplexer lines. An alternate method is to
connect a turnaround connector to each port to be exercised.
This method is normally used if onliy a single line is to be
exercised.

The DHU11 and DHV11 multiplexers also have maintenance
loopback mode. However maintenance loopback mode is chosen
for individual ports, allowing single lines to be tested
using maintenance loopback mode without disturbing the other
ports on the multiplexer.

NOTE: The second serial line unit, on the PDP11/24
processor, does not support maintenance loopback
mode. The second SLU may be exercised as a DL11,
however a turnaround connector must be used to loop
the outputs back to the inputs.

Use maintenance loopback mode <yes> ?

Select line(s) <no> ? ?

The normal mode of operation for the communications
multiplexer exerciser (CMX) is to exercise all lines on the
selected DH11, DHU11, DHV11, DZ11, DZV11 or DZQ11 unit.
However, one or more individual lines may be selected. This
is done by typing the number of the line to be selected
followed by a <RETURN>, The sysx program will continue to ask
for line numbers until only a <RETURN> is typed.

The DL11 is a special case for line selection. The first 16
DL11 units are exercised as lines 0 through 15 of DL unit

B-10 Sysx Example

zero, and the second 16 DL11 units are exercised as lines 0
through 15 on DL unit one. Line zero of the first DL11, i.e.,
the first physical DL11, is the system console and is never
exercised. CMX will not allowed line zero of DL unit zero to
be selected. For example, to exercise the second and third
physical DL11 units select lines one and two of DL unit zero.
To exercise physical DL11 unit 16, select line 0 of DL unit
one.

Select line(s) <no> ?

Disable line(s) <no> ? ?

The normal mode of operation for the communications
multiplexer exerciser (CMX) is to exercise all lines on the
selected DL11, DH11, DHU11, DHV11, DZ11, DZV11 or DZQ11 unit.
However, one or more individual lines may be disabled. This
is done by typing the number of the line to be disabled
followed by a <RETURN>. The sysx program will continue to ask
for line numbers until only a <RETURN> is typed.

Disable line(s) <no> ? yes

Line ? ?

Type the number of the line to be deselected followed by a
<RETURN>. If another line is to be deselected, type that line
number followed by a <RETURN>. To terminate the line deselect
process type just a <RETURN>. The number of lines per unit
are:

DH11 16
DHU 11 16
DHV 11 8
DZ11 8
DZV11 4
DZQ11 4

Line ? 1

Line ?

Select bit rate for all lines <no> ? ?

The communications multiplexer exerciser (CMX) varies the
bit rate between lines in a random fashion. It also varies
the bit rate on each line periodically. Answering yes to
this question will cause all lines to be exercised at the
same constant bit rate. The sysx program will ask for the
bit rate.

Sysx Example B-11

Select bit rate for all lines <no> ? yes
Bit rate <9600> ? ?
This parameter is used to set the transmit and receive speed

on a line or group of lines. Type the desired speed followed
by a <RETURN>. Available speeds are:

110 BPS
300 BPS
1200 BPS
2400 BPS
4800 BPS
9600 BPS

The bit rate need not be specified, to omit the bit rate
specification type only a <RETURN>, In this case a random bit
rate pattern will be used, unless a fixed bit rate has been
specified for ALL lines.

NOTE: The DL11 does not support programmable bit rates.
A fixed bit rate must be specified for each DL11 line.

Bit rate <9600> ?

How many minutes between I/O statistics printouts <30> ? ?

All of the disk exercisers and the communications exerciser
generate periodic printouts containing the number of read

and write operations, and the number of errors. This

parameter may be used to specify the time in minutes between
these printouts. The default time is 30 minutes. To use the
default time type a <RETURN>, otherwise type the time interval
in minutes followed by a <RETURN>., The maximum time is 720
minutes or 12 hours.

How many minutes between I/O statistics printouts <30> ?
Exerciser name ? mtx

Output errors to log file <yes> ?

Data error printout limit <5> ?

Drop device after how many errors <100> ?

Magtape controller type < ht, tm or ts - type ? for help ! > ? ?
Unlike the other exercisers, which run one copy of the

exerciser for each unit to be exercised, the magtape
exerciser (MTX) runs one copy for the controller and that

B-12 Sysx Example

copy exercises all drives on the controller. This option
specifies the type of magtape controller to be exercised.
There is no default controller type. Type one of the
following controller types followed by a <RETURN>:

ht for ™02/3 with TU16/TE16/TU77
tm for ™11 with TU10/TE10/TS03
ts for TS11/TSV05/TU80/TK25

Magtape controller type < ht, tm or ts - type ? for help ! > ?

Magtape unit number <all> ? ?

This option is used to select the magtape unit or units to

be exercised. Type <RETURN> to exercise all available drives
on the specified magtape controller. Otherwise, type the
number of the unit to be exercised. The sysx program will
continue to ask for magtape unit numbers until just a <RETURN>
is typed. The maximum number of drives per controller are:

ht T™M02/3 64
tm ™11 8
ts TS11/TSV05/TU8B0/TK25 1

Magtape unit number <all> ? 0

Magtape unit number <all> ?

Inhibit magtape unit status message <no> ? ?

The magtape exerciser (MTX) prints the type and status of
each tape unit on the specified controller. Answering yes to
this question will inhibit the unit status printout.
Inhibit magtape unit status message <no> ?

Suppress end of pass I/0 statistics <no> ? ?

At the end of each pass, the magtape exerciser (MTX) prints
the number of read and write operations, and the number of
hard errors for each drive. Answering yes to this question
will inhibit the end of pass printout.

Suppress end of pass I/0 statistics <no> ?

Length of tape <500 feet> ? ?

This option specifies the length in feet of tape that will
be used by the magtape exerciser (MTX). Typing just a <RETURN>

ht

Sysx Example B-13

invokes the default length of 500 feet, otherwise type the
number of feet to be used followed by a <RETURN>. The maximum
length is 2400 feet and the minimum is 10 feet.

Length of tape <500 feet> ?

Exerciser name ? hpx

Output errors to log file <yes> ?

Data error printout limit <5> ?

Drop device after how many errors <100> ?

RH11/RH70 controller number < Type ? for help ! > ? ?

The (HPX) disk exerciser supports various combinations of
RM02/3/5, RP04/5/6, and ML11 disks connected to up to three
RH11 or RH70 controllers. The ULTRIX-11 RH controller number
is not specified by the physical or electrical position of
the RH controller on the bus. Respond to the question with
one of the following controller numbers:

0 - The first RH controller with RM02/3/5, RP04/5/6 and/or
ML11 disks connected to it. Disks referred to as "hp".

1 - The second RH controller with RM02/3/5, RP04/5/6 and/or
ML11 disks connected to it. Disks referred to as "hm".

2 - The third RH controller with RM02/3/5, RP04/5/6 and/or
ML11 disks connected to it. Disks referred to as "hj".

RH11/RH70 controller number < Type ? for help ! > ? 0

Unit number ? ?

Type the unit number of the disk to be exercised followed by
a <RETURN>. There is no default unit number and only one unit
number should be entered. Valid unit numbers are '0' through

Unit number ? 1

File system(s) <all> ? ?

Most disks are partitioned into 8 pseudo disks called

file systems, refer to the "ULTRIX-11 System Management

Guide" for an explanation of disk partitions. The default
mode of operation is to exercise all file systems on the disk.
To invoke the default mode type 'a', 'all', or <RETURN>. To
exercise only one file system type the number of that file
system followed by a <RETURN>, valid numbers are '0O' through

B-14 Sysx Example

File system(s) <all> ?
How many minutes between I/0 statistics printouts <30> ?

Inhibit disk file system status printout <no> ? ?

The disk exercisers will not write on certain areas of the
disk if those file systems are being used by the system
software. A file system will be treated as read only if; it
is the ROOT file system, i.e., where the ULTRIX-11 kernel
resides, the swap area, the error log area, or if the file
system is mounted. If there are read only file systems, the
disk exerciser will print a list of these file systems and
the reason that each file system was declared read only.
Answering yes to this questlon will inhibit the printing of
this list. In most cases it is wise NOT to inhibit the read
only file system printout.

Inhibit disk file system status printout <no> ?
Exerciser name ? rax
Output errors to log file <yes> ?
Data error printout limit <5> ?
Drop device after how many errors <100> ?
MSCP disk controller number < Type ? for help ! > ? ?
The (RAX) disk exerciser supports multiple MSCP controllers
on the same system. The MSCP controllers are:
UDAS50/UDA5S0A - for RA60/80/81 disks
RQDX1 - for RD51/RD52/RX50 disks
KLESI - for RC25 disks
RUX1 - for RX50 disks
Controllers are assigned numbers based upon the order that

they are specified during the system generation. Below is
a listing of the MSCP controllers in the current confiquration.

There are 2 MSCP controllers in the current system configuration.
Controller #0 is a UDA50A
Controller #1 is a RUX1

MSCP disk controller number < Type ? for help ! > ? 0

Unit number ? 0

Allow writes on customer data area <no> ? ?

Sysx Example B-15

The UDAS50/RQDX1/KLESI disk exerciser (RAX) must be able to
exercise fixed media disks without destroying data in the
customer area. The fixed media disks are:

UDA50-RA60/RA80/RA81, RQDX1-RD51/RD52
and KLESI-RC25

Customer data is protected by allocating the last 32 blocks
for RQDX1, the last 102 blocks for KLESI or the last 1000
blocks for UDA50 disks as a maintenance area.

Normally, the RAX program will read the entire disk

but only write on the maintenance area. Answering yes to
this question will cause the RAX program to enable writes
to the customer area as well as the maintenance area of the
disk.

Press <RETURN> for more:

CAUTION!, do not answer yes unless you are absolutely
certain that it is safe to write on the customer area of
the disk. Verify that the customer either has no data on
the disk, or has preserved the data on another disk or on
magtape.

Answering yes does not override the normal read only file
system rules, that is, RAX will not write on the ULTRIX-11
ROOT, SWAP, ERROR LOG file systems or on any logically
mounted USER file systems.

Allow writes on customer data area <no> ?

xx% Writes will be to maintenance area only ***xxx
File system(s) <all> ?

How many minutes between I/0 statistics printouts <30> ?
Inhibit disk file system status printout <no> ?

Exerciser name ?

Confirm script complete <no> ? yes

B-16 Sysx Example

This example is of printing
module and exiting the sysx

> P

Script name <sysxr> ? test

EXER
cpx
fpx
fpx

memx
lpx
cmx
mtx
hpx
rax

WO O WN

STATE

stop
stop
stop
stop
stop
stop
stop
stop
stop

LOGFILE

cpx_01
fpx 01

memx_ 1
lpx 1

.log
~01.1og
fpx 02.

log

.log
_1.log
cmx_dh0.
mtx_ht.
hpx 0 _1.
rax_0 0.

log
log
log
log

the status of each exerciser

program:

OPTIONS
-n 5 -e
-n 5 -e
-p15

-i -n 5
-n 5 -e
-n 5 -e
-n 5 -e

100
100

-e 100 -dh0 -u 1 -b 9600
100 -ht -d0 -£500

100 -c0 -d1

100 -c0 -40

(Exits sysx program)

Appendix C

ULTRIX-11 Device Names and Major Device Numbers

The ULTRIX-11 software does not support all devices listed
below. For a list of supported devices, read the ULTRIX-11
Software Product Description. The UDA50, KLESI, RUX1 and
RQDX1 disk controllers share a common device driver and,
therefore, the same major device number., Raw major device
numbers 12 - 17 are dummy entries that ensure no block mode
device has a raw major device number that falls within the
range of valid block major device numbers.

C-2 ULTRIX-11 Devices

Block Raw

Major Major Name Controller/Devices
0 18 rk RK11 - RKO05
1 19 rp RP11 - RP02/3
2 20 ra UDA50 - RA60/RA80/RA81
rc KLESI - RC25
rd RQDX1 - RD51/RD52
rx RQDX1/RUX1 - RX50
3 21 rl RL11 - RL01/2
4 22 hx RX211 - RX02
5 23 tm TM11 - TU10/TE10/TS03
6 24 ‘ RESERVED (future use)
7 25 ts TS11/TSV05/TU80/TK25
8 26 ht RH11/RH70 - T™M02/3 - TU16/TE16/TU77
9 27 hp 1st RH11/RH70 - RM02/3/5, RP04/5/6, ML11
10 28 hm 2nd RH11/RH70 - RM02/3/5, RP04/5/6, ML11
11 29 hj 3rd RH11/RH70 - RM02/3/5, RP04/5/6, ML11
12 30 hs RH11/RH70 - RS03/4
13 31 hk RK611 - RKO6/7
14 32 u1 User Device 1
15 33 u2 User Device 2
16 34 u3 User Device 3
17 35 u4é User Device 4
0 kl DL11 (console terminal)
1 ct CAT (phototypesetter interface)
2 lp LP11
3 dc DC11
4 dh DH11
5 dp DP11
6 uh DHU11/DHV 11
7 dn DN11
8 dz DZ11/DZV11/DZQ11
9 du DU11
10 tty (general tty interface)
11 mem (memory driver)
12-17 DUMMIES (prevent overlap)
36 dhdm DM11-BB (DH11 modem control)
37 kl (CSR 776500) DL11/DLV11-A/B, DLV11-F/J

38 dl (CSR 775610) DL11-C/D/E, DLV11-E

Appendix D

Disk Logical Partition Sizes

Each diagram presented in this appendix 1illustrates the
sizes of a nonpartitioned or partitioned disk unit. The
size and uses of each partition are listed in this format:

n ###4## usage

n Specifies the disk partition number.
Specifies the partition size.

usage Specifies how the partition can be used (for exam-
usage :
ple, root, swap, or user file system).

The sizes table in the disk driver defines the size of the
logical partitions in each disk unit.

D-2 Disk Partitions

Nonpartitioned Disks - RX50/RX02/RK05/ML11

RX50/RX02/RK05/ML11 disks use a single partition to cover
the entire unit. The RX50, RX02, and RK05 disks usually are
used for user file storage. The ML11 solid state disk, how-
ever, 1is used as either a swap device or a /tmp file system
(system temporary files).

RX02 (double density)

e T T +
| 1001 user }
it T T —— +
RKO05
e +

: 0 8192 user |

Disk Partitions D-3

Partitioned Disks

For partitioned disks, read the diagrams top-to-bottom and
left-to-right. Partitioned disks may have one or more over-
lapping configurations, which use the same areas on disk.
When you read the diagrams left-to-right, the overlapping
partitions are mutually exclusive.

For example, in this diagram, partition 7 overlaps and
excludes all others, while partions 4-6 overlap and exclude
partition 3 only.

b +
[O | 7 |
I I |
e + |
|1 I |
I I I
e e + |
| 2 | I
I I I
e + |
| 3 | 4 | I
I | I |
[e ————————— + |
| | 5 I I
| | I |
| e ————— + |
| | 6 I I
I | I I
e ———————— Ty, +

D-4 Disk Partitions

Partitioned Disks - RLO1/RL02

If the RLO1/2 is the system disk, all of RLO2 unit 0 or RLO1
units 0 and 1 are reserved for the ULTRIX-11 operating sys-
tem. The remaining wunits are available for user file
storage. If the system has only a single RL02 or two RLO1
disks, user files can be stored in the root and /usr file
systems. Space, however, will be limited.

If the RLO1/2 is not the system disk, you can create user
file systems on any unit. For the RL0O2 disk, you can use
either partition 7 to create a single user file system or
partitions 0 and 1 to create two smaller file systems. For
the RLO1 disk, you use either partition 0 or partition 7 to
create a single user file system.

RLO1 (unit 0)

o Fmm +
| 0 8000 root | 7 10240 user |
| 40 error log l |
l 2200 swap area | I
T TP —— Fmm e +
RLO1 (unit 1)
et e +
} 0 10240 /usr I 7 10240 wuser :
| I I
e T TR —— et T —— +
RLO2
e it +
| 0 8000 root | 7 20480 wuser |
| 40 error log | |
| 2200 swap area l |
ittt + |
} 1 10240 /usr } I
| | |
e T T ——— i T T P +

Disk Partitions D-5

Partitioned Disks - RP02/3

If the RP02/3 is the system disk, unit 0 partitions 0, 1,
and 2 are reserved for the ULTRIX-11 operating system. Par-
tition 4 (RP02) and partition 3 (RP03) of unit 0 are avail-
able for user file storage. If the RP02/3 is not the system
disk, you can create either a single or multiple user file
systems on unit 0.

For RP02/3 units 1-7, you can use either the large partition
to create a single user file system or the smaller parti-
tions to create multiple user file systems. If you use par-
tition 6 or 7, however, you cannot use partitions 0-4.

RP02
e e T Fmm e +
| 0 9600 root | 6 40000 wuser |
e + |
| 1 200 error log | |
I 5200 swap area I I
o e + |
{ 2 10600 /usr { :
- + |
{ 4 14400 user | l

| I

o Fo e +

RPO3
it L ——— T TR +
| 0 9600 root | 7 80000 wuser
R T +

| 1 200 error log I
| 5200 swap area |

D-6 Disk Partitions

Partitioned Disks - RKO06

If the RK06 is the system disk, all of unit 0 1is reserved
for the ULTRIX-11 operating system. If the system has only
a single RK06 disk, user files can be stored in the root and
/usr file systems. Space, however, will be limited. 1If the
RK06 is not the system disk, you can create either a single
or multiple user file systems on unit 0.

For RKO6 units 1-7, you can use either the large partition
to create a single user file system or the smaller parti-
tions to create multiple user file systems.

A bad block file, which can only be accessed by the operat-
ing system, resides at the end of the disk.

RKO6
e e fmm e — +
| 0 9600 root | 6 27060 wuser |
| 36 unused | |
ettt + |
| 1 200 error log I |
| 6000 swap area I |
| 4 unused I |
R e e + |
} 2 11220 /usr ! !
l.‘..'.........'........l'.........‘..‘.l
| 22 unused | 22 unused |
e e +

Disk Partitions D-7

Partitioned Disks - RK07

If the RKO7 is the system disk, unit O partltlons 0, 1, and
2 are reserved for the ULTRIX 11 operating system. Parti-
tion 3 on RK07 unit 0 is available for user file storage.
If the RKO7 is not the system disk, you can create either a
single or multiple user file systems on unit 0.

For RKO7 units 1-7, you can use either the large partition
to create a 51ngle user file system or the smaller parti-
tions to create multiple user file systems. The RK07 parti-
tion 6 overlaps partitions 0-2 but not partition 3.

A bad block file, which can only be accessed by the operat-
ing system, resides at the end of the disk.

RKO7

R e i e e +
| 0 9600 root | 7 53746 user | 6 27060 wuser |
| 36 unused I I I
B T T — + | |
| 1 200 error log | I I
I 6000 swap area I I I
| 4 unused I I I
B b e + | |
: 2 11220 /usr : I I
[eeeeeeeeeeneananeannnasl S |
| 66 unused | | 66 unused |
o + Fomm - +
: 3 26598 user | |

I I
S | |
| 22 unused I |
e Fm e +

D-8 Disk Partitions

Partitioned Disks - RP04/5

If the RP04/5 is the system disk, unit 0 partitions 0, 1,
and 2 are reserved for the ULTRIX-11 operating system. Par-
tition 3 is available for user file storage. If the RP04/5
is not the system disk, you can create either a single or
multiple user file systems on unit 0.

For RP04/5 units 1-7, you can use either the large partition
to create a single user file system or the smaller parti-
tions to create multiple user file systems.

A bad block file, which can only be accessed by the operat-
ing system, resides at the end of the disk.

RP04/5
Fomm Fmmm e +
| 0 9600 root | 6 171754 user |
| 14 unused I f
e + |
| 1 200 error log | |
| 6000 swap area | |
I 70 unused l -
ettt e + |
} 2 11286 /usr : I
e ————————— - + |
} 3 144210 user I {
[eeeeeeeeeeneneeenonanaal |
| 374 unused | l
g Fmmm e +

Disk Partitions D-9

Partitioned Disks - RPO06

If the RP06 is the system disk, unit 0 partitions 0, 1, and
2 are reserved for the ULTRIX-11 operating system. You can
create user file systems either on partitions 3 and 5, or
partition 4. If the RP06 is not the system disk, you can
create either a single or multiple user file systems on unit
0.

For RP06 units 1-7, you can use either the large partition
to create a single user file system or the smaller parti-
tions to create multiple user file systems. DIGITAL recom-
mends you do not use partition 6 of the RP06 disk.

A bad block file, which can only be accessed by the operat-
ing system, resides at the end of the disk.

'Cl....tl0+.....l‘....‘

374 unused

+
|
|
|
|
|
|
|
|
|
1

+
1
|
|
|
|
|
|
|
!
!
|
!

I 44 bad block file

RPO6

e o e Fm e +
| 0 9600 root | 7 340626 user | 6 171754 user |
| 14 unused I | |
e + | |
| 1 200 error log l I |
| 6000 swap area [| I
| 70 unused | | |
o e + | |
l 2 11286 /usr ‘ I I
o o + | |
| 3 144210 | 4 313082 | | |
| user | user | | |
I | I I I
[eeeeeenenal | [eeeeeeneenennaal
|418 unused| I | 44 unused |
b ——————— + | et +

5 168454 | | I

user | | |

I | I

| I

| |

+ +

I

+

D-10 Disk Partitions

Partitioned Disks - RM02/3

If the RM02/3 is the system disk, unit 0 partitions 0, 1,
and 2 are reserved for the ULTRIX-11 operating system. Par-
tition 3 is available for user file storage. If the RM02/3
is not the system disk, you can create either a single or
multiple user file systems on unit 0.

For RM02/3 units 1-7, you can use either the large partition
to create a single user file system or the smaller parti-
tions to create multiple user file systems.

A bad block file, which can only be accessed by the operat-
ing system, resides at the end of the disk.

RM02/3
e Fm e +
: 0 9600 root : 7 131616 user t
e + |
| 1 200 error log I I
| 6000 swap area | |
| 40 unused | I
N il + |
I 2 10560 /usr I l
e ———— mm + |
| 3 105120 | 4 52640 | |
I user I user | I
| e + |
| | 5 52480 | I
| | user I I
P eeeeeeennns Foreonnannns | |
I 96 unused | |
o Fomm e~ +

Disk Partitions D-11

Partitioned Disks - RM0S

If the RM05 is the system disk, unit 0 partitions 0, 1, and
2 are reserved for the ULTRIX-11 operating system. You can
create user file systems on either partitions 5 and 6 or
partition 4. Partition 3 is also available for user file
storage. If the RM0O5 is not the system disk, you can create
either a single or multiple user file systems on unit 0.

For RMO5 units 1-7, you can use either the 1large partition
to create a single user file system or the smaller parti-
tions to create multiple user file systems.

A bad block file, which can only be accessed by the operat-
ing system, resides at the end of the disk.

RMO5

T —— O bt T +
| 0 9600 root | 7 500320 user |
| 128 unused | |
o ———— + |
| 1 200 error log | |
| 6000 swap area I |
| 488 unused | |
e T TS, + |
} 2 11552 /usr : |

|
B i T + |
} 3 105184 user : |

|
e ettt Tt + |
| 5 183616 | 4 366624 [|
| user I user I |
I | | I
Fm————————— + | |
| 6 183008 | | |
| user I | l
| I | |
'...I......+..........l.| |
| 544 unused [|
Fmm Fomm e el +

[64 bad block file I

o e +

D-12 Disk Partitions

Partitioned Disks - RD51

If the RD51 is the system disk, unit 0 partitions 0 and 1
are reserved for the ULTRIX-11 operating system. If the
RD51 is not the system disk, you can create either a single
or multiple user file systems on unit 0. If the system has
only a single RD51 disk, user files can be stored 1in the
/usr file system.

If the system has multiple RD51 units, you can use either
the 1large partition to create a single user file system or
the smaller partitions to create multiple user file systems.

The RD51 disk has space at the end of the disk allocated for
a maintenance area. This lets the USEP disk exerciser write
on the fixed-media Winchester disks without destroying cus-
tomer data. The area marked XXXXXXXXXXXXXXX indicates the
overlap of partition 7 and the maintenance area. The number
(21568) indicates the maximum size file system that you can
create without overlapping the maintenance area on RD51 par-
tition 7.

| 32 maintenance area |XXXXXXXXXXXXXXX
T e

RD51

e Fm +
0 5800 root	7 21600 wuser
68 error log	(21568)
2600 swap area	
o +	
I 1 13100 /usr : I	
l	
e e + |

|

+

Disk Partitions D-13

Partitioned Disks - RD52

If the RD52 is the system disk, unit 0 partitions 0 and 1
are reserved for the ULTRIX-11 operating system. Partition
2 is available for user file storage. If the RD52 1is not
the system disk, you can create either a single or multiple
user file systems on unit 0.

For systems with multiple RD52 units, you can use either the
large partition to create a single user file system or the
smaller partitions to create multiple user file systems.

The RD52 disk has space at the end of the disk allocated for
a maintenance area. This lets the USEP disk exerciser write
on the fixed-media Winchester disks without destroying cus-
tomer data. The area marked XXXXXXXXXXXXXXX indicates the
overlap of partition 7 and the maintenance area. The number
(60448) 1indicates the maximum size file system you can
create without overlapping the maintenance area on RD52 par-
tition 7.

RD52
ettt fmm e +
0 5800 root	7 60480 user
68 error log	(60448)
2600 swap area	
e - +	
} 1 13100 /usr = I	
o — e +	
2 38880 wuser I	
I	
l	
I	I
e +	
32 maintenance area	XXXXXXXXXXXXXXX
e o +

D-14 Disk Partitions

Partitioned Disks - RA60

If the RA60 is the system disk, unit 0 partitions 0, 1, and
2 are reserved for the ULTRIX-11 operating system. You can
create user file systems on either partitions 4 and 5, or
partition 3. If the RA60 is not the system disk, you can
create either a single or multiple user file systems on unit
0.

For RA60 units 1-7, you can use either the large partition
to create a single user file system or the smaller parti-
tions to create multiple user file systems.

The RA60 disk has space at the end of the disk allocated for
a maintenance area. This lets the USEP disk exerciser write
on the disk without destroying customer data. The area
marked XXXXXXXXXXXXXXX indicates the overlap of partition 7
and the maintenance area. The number (399176) indicates the
maximum size file system you can create without overlapping
the maintenance area on RA60 partition 7.

T Fmm e +
| 7 400176 user
|

(39%176)

| 1 200 error log |
| 6000 swap area
| 70 unused |

T T +
| 3 372020 | 4 186000 |
| user I

| I |
| o ———————— +
[| 5 186000 [
| | user |
| | |
T e +

| 1000 maintenance area |XXXXXXXXXXXXXXX
e o

I
I
|
I
I
I
|
|
|
|
I
user | :
|
I
|
I
|
l
+

Disk Partitions D-15

Partitioned Disks - RA80

If the RA80 is the system disk, unit 0 partitions 0, 1, and
2 are reserved for the ULTRIX-11 operating system. On unit
0, partition 3 is available for user file storage. If the
RAB0 1is not the system disk, you can create either a single
or multiple user file systems on unit 0.

For RA80 units 1-7, you can use either the large partition
to create a single user file system or the smaller parti-
tions to create multiple user file systems.

The RA80 disk has space at the end of the disk allocated for
a maintenance area. This lets the USEP disk exerciser write
on the fixed media Winchester disks without destroying cus-
tomer data. The area marked XXXXXXXXXXXXXXX indicates the
overlap of partition 7 and the maintenance area. The number
(236212) indicates the maximum size file system you can
create without overlapping the maintenance area on RA80 par-
tition 7.

RAS8O
e Fomm e +
| 0 9600 root | 7 237212 user |
I | (236212) |
o + |
| 1 200 error log I |
I 6000 swap area I I
I 70 unused | |
e + |
: 2 11286 /usr : :
o + |
: 3 209056 user : {
o + |
| 1000 maintenance area |XXXXXXXXXXXXXXX |
o o m e +

D-16 Disk Partitions

Partitioned Disks - RA81

If the RA81 is the system disk, unit 0 partitions 0, 1, and
2 are reserved for the ULTRIX-11 operating system. You can
create user file systems on either partitions 4-6, or parti-
tion 3. If the RA81 is not the system disk, you can create
either a single or multiple user file systems on unit 0.

For RA81 units 1-7, you can use the large partition to
create a single user file system or the smaller partitions
to create multiple user file systems.

The RA81 disk has space at the end of the disk allocated for
a maintenance area. This lets the USEP disk exerciser write
on the fixed media Winchester disks without destroying cus-
tomer data. The area marked XXXXXXXXXXXXXXX indicates the
overlap of partition 7 and the maintenance area. The number
(890072) 1indicates the maximum size file system you can

create without overlapping the maintenance area on RA81 par-
tition 7.

RA81
o e fmmmmmmm—m e +
| 0 9600 root | 7 891072 user |
| | (890072) |
R R ittt B + |
| 1 200 error log | |
| 6000 swap area I |
| 70 unused | |
o + |
| 2 11286 /usr = {
e + |
| 3 862916 | 4 186000 | |
I user [user I |
I | | |
| o e + |
	5 186000	
	user	
i		
Fmm +		
	6 490916	[
	user	
e ettt ot +		
1000 maintenance area	XXXXXXXXXXXXXXX	
e B L T T T ——— +

Disk Partitions D-17

Partitioned Disks - RC25

If the RC25 is the system disk, unit 1 partitions 0, 1, and
2 are reserved for the ULTRIX-11 operating system. On unit
1, partition 3 is available for user file storage. If the
RC25 1is not the system disk, you can create either a single
or multiple user file systems on unit one.

For RC25 units 0, 2, and 3, you can use either the large
partition to create a single user file system or the smaller
partitions to create multiple user file systems.

The RC25 disk has space at the end of the disk allocated for
a maintenance area. This lets the USEP disk exerciser write
on the fixed media Winchester disks without destroying cus-
tomer data. The area marked XXXXXXXXXXXXXXX indicates the
overlap of partition 7 and the maintenance area. The number
(50800) indicates the maximum size file system you can
create without overlapping the maintenance area on RC25 par-
tition 7.

i e +
| 0 9600 root - | 7 50902 user
|

(50800)

| 1 200 error log |
I 6000 swap area I
I 70 unused |

| 102 maintenance area |XXXXXXXXXXXXXXX
e Fom e ————

I
|
|
|
|
|
|
I
I | |
|
|
|
|
I
+

Appendix E

Opser Program Example

This sample opser session illustrates:

Logging in to the operator account
Obtaining on-line help information
Shutting down multiuser mode

Checking for file system inconsistencies
Restarting multiuser mode

Exiting the opser program

E-2 Opser Example

This example is of logging in to the operator account and
obtaining on-line opser help information:
login: operator
Password:
Welcome to the ULTRIX-11 System
ULTRIX-11 Operator Services
To correct typing mistakes:

<DELETE> erases the last character,

<CTRL/U> erases the entire line.
For help, type h followed by a return
opr> h
() - may use first letter in place of full name
Valid commands are:
!sh - shell escape (execute ULTRIX-11 commands)

(Type <CTRL/D> to return from shell)
(u)sers - show logged in users
(s)hutdown - stop time-sharing
(f)sck - file system checks
(r)estart - restart time-sharing
(h)elp - print this help message
backup cfn - file system backup
(cfn = command file name)

halt - halt processor
~D (<CTRL/D>) - exit from opser

opr>

Opser Example

This example is of shutting down multiuser mode:
opr> s

ULTRIX-11 Shutdown
The following users are logged into the system

operator console Apr 6 10:05
How many minutes until shutdown [1-99] ? 2

"Warning Phase

1 minute warning sent
2 minute warning sent
FINAL WARNING SENT

Kill Process Phase

Killing User Processes

Killing System Processes

Disabling Error Logging
Dismounting Mounted File Systems
Dismounting /dev/ml0 from /tmp
Dismounting /dev/hp02 from /sys
Dismounting /dev/hp03 from /usr
Dismounting /dev/hp05 from /staff
System Time-sharing Stopped

opr>

E-4 Opser Example

This example is of checking the root file system for
sistencies:

opr> f

/dev/hp00
File System: Volume:

** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames

** phase 3 - Check Connectivity

** Phase 4 - Check Reference Counts

** Phase 5 - Check Free List
636 files 7554 blocks 1660 free

~C (file system check terminated <CTRL/C>)

opr>

incon-

Opser Example

E-5

This example is of restarting multiuser mode and exiting the

opser program:

opr > r

Restarting ULTRIX-11 Time-sharing
Mounted /dev/ml0 on /tmp

Mounted /dev/hp02 on /sys

Mounted /dev/hp03 on /usr

Mounted /dev/hp05 on /staff

Enabling Error Logging

ERROR LOG has - 7 of 200 blocks used

Enabling terminals

Time-sharing Restarted

opr> ~D (Exits opser program)

Opser terminating

login:

Appendix F

UDA50/KLESI/RUX1/RQDX1 - MSCP Error Codes

The UDAS50, KLESI, RUX1, and RQDX1 disk controllers report
errors in the form of a Mass Storage Control Protocol (MSCP)
error code. During normal system operation, the MSCP error
code is entered into the system error log file. To decode
and print the MSCP error code, use the error log print pro-
gram, elp.

If for any reason the system cannot 1log errors, the MSCP
error code 1is printed at the console terminal. When this
occurs, you must manually decode it. Because system error
logging is not enabled when the system is in single-user
mode, this situation is most likely to occur during this
time. In addition, the boot program and all of the stand-

alone programs print the MSCP error code on the console ter-
minal.

The MSCP error codes consist of up to three information
fields: opcode/endcode, flags, status/event code.

The opcode identifies the type of command and the endcode
indicates the response to it. The opcode and endcode usually
are identical, except that bit 7 is set in the endcode. For

example, the opcode for a read is 041 and its endcode is
0241.

The flags are contained in the high byte of an endcode. They

report various side effects of an error (for example, bad
block reporting).

The status code reports the completion status of an opera-
tion and the event code indicates the type of error. The
status/event codes consist of a 5-bit code combined with an
11-bit sub-code.

F-2 MSCP Error Codes

OPCODE ENDCODE OPERATION TYPE

0201 ABORT Command

0220 ACCESS Command

0210 AVAILABLE Command

0221 COMPARE CONTROLLER DATA Command
0240 COMPARE HOST DATA Command

0213 DETERMINE ACCESS PATHS Command
0222 ERASE Command

0223 FLUSH Command

0202 GET COMMAND STATUS Command

0203 GET UNIT STATUS Command

0211 ONLINE Command

0241 READ Command

0224 REPLACE Command

0204 SET CONTROLLER CHARACTERISTICS Command
0212 SET UNIT CHARACTERISTICS Command

0242 WRITE Command

DESCRIPTION

Bad Block Reported
Bad Block Unreported
Error Log Generated
Serious Exception

STATUS/EVENT CODE DESCRIPTION

"Success"

Normal

Spin-down Ignored
Still Connected
Duplicate Unit Number
Already Online

Still Online

"Invalid Command"
Invalid Message Length
Any other code points to command message field in error

"Command Aborted"
Sub-codes are not used.

(005)
0005

0105
0145
0245
0305
0345
0405
(006)
020006
010006

(007)

MSCP Error Codes F-3

STATUS/EVENT CODE DESCRIPTION

"Unit-0Offline"

Unit unknown or online to another controller

No volume mounted or drive disabled via RUN/STOP switch
Unit is inoperative

Duplicate unit number

Unit disabled by field service or internal diagnostic

"Unit-Available"
Sub-codes are not used.

"Media Format Error"
"Data Error" accessing RCT or FCT
Sector was written with "Force Error" modifier
"Data Error" accessing RCT or FCT
Invalid header
"Data Error" accessing RCT or FCT
Data Sync not found (Data Sync timeout)
Disk is not formatted with 512 byte sectors
Disk is not formatted or FCT corrupted
"Data Error" accessing RCT or FCT
Uncorrectable ECC Error
RCT corrupted

"Write Protected"
Unit is Hardware Write Protected
Unit is Software Write Protected

"Compare Error"
Sub-codes are not used.

F-4 MSCP Error Codes

STATUS/EVENT CODE DESCRIPTION

"Data Error"

Sector was written with "Force Error"” modifier
Invalid header

Data Sync not found (Data Sync timeout)
Correctable error in ECC field
Uncorrectable ECC Error

One Symbol ECC Error

Two Symbol ECC Error

Three Symbol ECC Error

Four Symbol ECC Error

Five Symbol ECC Error

Six Symbol ECC Error

Seven Symbol ECC Error

Eight Symbol ECC Error

"Host Buffer Access Error”

Host buffer access error, cause not available
0dd transfer address

0dd byte count

Non-existent memory error

Host memory parity error

"Controller Error"

SERDES overrun or underrun error

EDC Error

Inconsistent internal data structure
Internal EDC error

Controller overrun or underrun
Controller memory error

"Drive Error"

Drive command time out

Controller detected transmission error
Positioner error (mis-seek)

Lost read/write ready during or between transfers
Drive clock dropout

Lost receiver ready for transfer

Drive detected error

Controller detected pulse or state parity error
Controller detected protocol error

Drive failed initialization

Drive ignored initialization

Receiver Ready collision

Appendix G

Rabads Program Example

This sample rabads session illustrates:

° Booting the rabads program

e Obtaining on-line help information
° Replacing a dynamic bad block

° Exiting the rabads program

A sample response follows each prompt. If no response
given, the default is assumed.

is

G-2 Rabads Example

This example is of booting the stand-alone rabads program
and obtaining on-line rabads help information:

Boot: ra(0,0)/sas/rabads
ULTRIX-11 MSCP Disk Initialization Program
rabads <help exit drives status table init replace>: h

To correct typing mistakes, press <DELETE> to erase one character
or <CTRL/U> to erase the entire line. -

To execute a command, type the first letter of the command then
press <RETURN>. The program may prompt for additional information.

The valid RABADS commands are:

help - Print this help message.

exit - Exit from the RABADS program.

drives - List the disks that can be initialized with RABADS.
status - Print the status and geometry of the specified disk.
table - Print the RCT (Revector Control Table) for a disk.
init - Do a read scan of the disk and replace any bad blocks.
replace - Force replacement of a disk block.

Rabads Example G-3

This example is of replacing a reported bad block on a RA81
disk and exiting the rabads program:

rabads <help exit drives status table init replace>: r

Disk type < ra60 ra80 ra81 rx50 rd51 rd52 rc25 >: ra81

Unit number < 0-7 >: 1

Block number: 40000

Block 40000 read check: SUCCEEDED - bad block reported

Block: 40000 - replacement 4 56 7 8 9 10 11 12 13 SUCCEEDED!

rabads <help exit drives status table init replace>: e
Exit called

Boot:

Appendix H

ULTRIX-11 User Device Driver Commentary

This appendix contains a printout of the ULTRIX-11 User Dev-
ice Driver Code. This is intended both as the main source
of documentation as well as the prototype code that you are
to modify when writing your own device driver.

H-2 User Device Drivers

/**
*

Copyright (c) 1984 by
Digital Equipment Corporation, Maynard, MA
All rights reserved.

This software is furnished under a license and may be used and
copied only 1in accordance with the terms of such license and
with the inclusion of the above copyright notice. This
software or any other copies thereof may not be provided or
otherwise made available to any other person. No title to and
ownership of the software is hereby transferred.

University of California, Berkeley, and from Bell
Laboratories. Use, duplication, or disclosure is subject to
restrictions under license agreements with University of
California and with AT&T.

The information in this software is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation.

Digital assumes no responsibility for the use or reliability
of its software on equipment which is not supplied by Digital.

¥ % % % % % % X ¥ H X X % X X F X X ¥ ¥ H F F ¥

*
*
*
*
*
*
*
*
*
*
*
*
This software is derived from software received from the *
*
*
*
*
*
*
*
*
*
*
*
*
*

LR E R R RS R R RS RS R RS R Y Y Y Y R R R R R R R R

/

ULTRIX-11 V2.0 - Prototype User Device Driver Commentary
0.0 ABOUT THIS DOCUMENT

This document is intended to act as the documentation for the prototype
ULTRIX-11 user-written device driver. The various sections of the text
below serve to familiarize the writer of a device driver with the
environment, interface, and requirements of a device driver. This is
in no way complete -- no such claim is made.

*

*

*

*

*

*

*

*

*

*

* The format of the documentation is (hopefully) such that the time

* required to write a driver should not be great, with the majority of
* the necessary information available within this file.
. .
*
*
*
*
*
*
*
*
*
*
*

The following sections from the ULTRIX-11 Documentation are recommended
reading and contain information concerning the ULTRIX-11 I/0 system.

System Management Guide, Volume 1
Chapter 1: ULTRIX-11 I/0 SYSTEM

Programmer's Manual, Volume 2A
Section on "The UNIX Time-Sharing System"
Section on "UNIX implementation"
Section on "UNIX I/O System"

User Device Drivers H-3

The following information is available within this document:
0.0 ABOUT THIS DOCUMENT

1.0 OVERVIEW OF THE DRIVER ENVIRONMENT
1.1 User information passed to the device driver
1.2 Notes about driver code running at interrupt level

2.0 DEVICE DRIVER OPERATIONS

1 Character device processing specifics
2 Block device processing specifics
2.1 Block driver interface

2.2 Kernel buffers

2.3 Use of the Unibus Map in 22-bit systems
2.3 Interfacing a communications device to the
terminal driver

2
2

NN e o

o

KERNEL ROUTINES AVAILABLE TO DRIVERS
Moving data to/from a user's buffer
Scheduling time based calls from the kernel
Process control
Suspending the execution of the current process
Activating a process which has been suspended
Dynamically altering the processor priority
Moving data between processor modes (word, byte)
Fetch previous data space word
Fetch previous data space byte
Fetch previous instruction space word
Fetch previous instruction space byte
Store previous data space word
Store previous data space byte
Store previous instruction space word
Store previous instruction space byte
Manipulation of "CLISTS" for character devices
1 Placing a character into a CLIST
2 Removing a character from a CLIST
Buffered I/0 support routines
Buffered read, synchronous
Buffered read, asynchronous
Find, lock, and return buffered block (if present)
Allocating and initializing an empty buffer
Releasing a locked buffer
Buffered write, synchronous
Buffered write, asynchronous
Buffered write, deferred
Buffered I/0 completion
Propagation of I/0 status to the requestor
Physical 1/0
Reading/writing the requestor's buffer
(byte oriented)
Reading a byte from the requestor's buffer
Writing a byte (appending) to the requestor's
buffer
Sharing the Unibus Map

ww WWwwe
W N -

w w

- L]

N —

e o o o o o o o
OO N WN -

e WWWWWWWWe ¢ WWe o o
OVe o o o o o o o N> o
oo,

w

w
e o

2 WVWONOANNPWN -

o

e s WWWWWWWWWW:r WWw
PNNNNNNNNNN

w w
QO ~Je

w W
o o
@
e o
N —

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

w
L]
0

H-4 User Device Drivers

* % % O ¥ % N % N ¥ N A H N ¥ X K %X H F X X % F X ¥ X N X X ¥ F F F *

*

~N
*

% % O K X A X X X H X X F * * *

3.9.1 Allocating Unibus Map Registers
3.9.2 Deallocating Unibus Map Registers
3.10 Saving and restoring floating point context
3.10.1 Saving floating point context
3.10.2 Restoring floating point context
3.1 Logging device errors
3.12 Printing messages on the console
4.0 RANDOM CAUTIONS
4.1 Use of the floating point processor
4,2 Never attempt to suspend processing at interrupt
level
4.3 Provide for sleep()/wakeup() symmetry
4.4 Use of elevated priorities
4.5 Use of the Unibus Map
5.0 DATA STRUCTURES
5.1 Device CSR assignments
5.2 Unibus address extension register
5.3 Device CSR structure definitions
5.4 Structures for drivers requiring terminal structures
5.5 Local buffers requiring static Unibus Map assignment
5.6 Cells identifying available hardware

oo PROTOTYPE DEVICE DRIVER CODE SEGMENTS

This prototype file can be used to produce a device driver; note that
definitions beginning with XX should be changed to the appropriate
two character prefix for the specific device. The ULTRIX-11 system
allows for the inclusion of up to four user-written device drivers
with the system, named u1, u2, u3, and u4. Within this file, all

XX references should be changed to u1, u2, u3, or u4. This is YOUR
choice, but under no circumstances could there be two drivers for

the same uX device.

1.0 OVERVIEW OF THE DRIVER ENVIRONMENT

There are two categories of drivers in the ULTRIX-11 system,
character oriented (i.e. terminals and printers), and block
oriented (i.e. disks and tapes). The kernel interface to these
drivers differs inte device characteristics and capabilities.
The following documentation serves to familiarize the first
time driver coder with a summary of the interface, and the
provided support within the kernel.

1.1 USER INFORMATION PASSED TO THE DEVICE DRIVER
When a user's request is passed to a device driver, certain

fields within the user structure have been initialized by the
kernel for use by the driver to process the request.

User Device Drivers H-5

Basically, the following information is available:

u.u_base - base virtual address of the buffer
u.u_count - size of the buffer

u.u_offset - byte file address of the data to read
u.u_segflg - indicates whether u base is in user

or kernel mode (0=user)
three words of user arguments (passed
by ioctl())

u.u_argl]

NOTE: Kernel support for types of devices varies. For
example, terminal device drivers are under the
control of the higher level terminal driver. This
makes it unnecessary for the terminal device driver
to use the user structure cells.

Disk devices also behave in a special manner. Most
I/0 to/from disks occur using system buffers. As a
result, it is also unnecessary for disk drivers to
use the user structure cells.

The descriptions of the cells are included here for
those drivers which do not fall into either the
terminal or disk/magnetic tape categories.

1.2 NOTES ABOUT DRIVER CODE RUNNING AT INTERRUPT LEVEL

INTERRUPT LEVEL is defined as the state whereby a device has
interrupted the operations of a user or kernel-mode process

with a request for service by the driver code. Interrupts can
occur at any time, so long as the current processor priority is
less than that of the interrupting hardware device. When in this
state, it is possible (and quite probable) that the user who

may have issued the currently active request against the device
is not the currently mapped user (interrupts normally occur as
part of device processing, typically signaling a change in
device status, or the completion of an operation).

As a result, the parameters contained in the user structure may
not those of the requestor. It is therefore imperative that the
device driver do not access the currently mapped user structure.

* % * WARNING * * *
Do not, UNDER ANY CIRCUMSTANCES, issue a
sleep() while at INTERRUPT LEVEL! To do so
would certainly invite a system crash!

2.0 DEVICE DRIVER OPERATIONS

The functions supported by device drivers differ between character
and block oriented devices. The following sections describe the

various entry points, parameters, and system routines available to
drivers.

2.1 CHARACTER DEVICE PROCESSING SPECIFICS

H-6 User Device Drivers

¥ % N O N K K % X N N X ¥ N O ¥ ¥ N N O ¥ ¥ K N ¥ ¥ R H ¥ ¥ N K N K F ¥ X H H F ¥ ¥ H H H ¥ ¥ X H X X * *

Devices which are character oriented are interfaced to from the
kernel via a data structure "cdevsw". Also, block devices will
be called at some of these entry points if access to the device
is in "raw" mode (physical access to the device). The "cdevsw"
structure defines the addresses of the various driver action
routines:

.d_open - address of driver's open(2) routine
open(dev, flag)
dev = device major/minor number
flag = 0 for read, non-zero for write (-1 indicates
that the kernel is calling as part of system
initialization/startup)

.d_close - address of driver's close(*) routine
" close(dev,flag)
dev = device major/minor number
flag = 0 indicates device open read-only; non-zero
indicates device was open read/write
NOTE: Only the last process to close(2) will result
in driver notification.

.d read - address of driver's read(2) routine
~ read(dev)

dev = device major/minor number

also uses fields described above:
u.u_segflag
u.u_base
u.u_count (for read, this will never be zero)
u.u_offset

.d write - address of driver's write(2) routine
" write(dev)

dev = device major/minor number

also uses fields described above:
u.u_seqgflg
u.u_base
u.u _count (for write, this may be zero)
u.u_offset

.d ioctl - address of driver's ioctl(2) routine
~ ioctl(dev,v)
dev = device major/minor number
v = vector for arguments;
for gtty(), v is vector to return 3 words,
for stty(), v = 0, and u_arg[0..2] contain
up to 3 argument words

.d_stop - address of driver's "stop" routine
stop(dev)
dev = device major/minor number

NOTE: The stop() routine is specifically for terminal
devices. It is used to perform the ~S function,

31-************%**************************************X—*

User Device Drivers H-7

which stops the output going to the terminal.

.d_ttys - address of first tty structure for this driver
struct tty **d _ttys

2.2 BLOCK DEVICE PROCESSING SPECIFICS

Block oriented devices require more support within the system.

Since block devices contain file systems, several useful routines
are available to the block device driver to aid in the maintenance
of the file system, and to enhance performance. Terminal devices
are controlled by a single terminal driver which in turn requests
the actual I/0 operations from the various "controller" drivers,
such as the DH11 or DZ11 multiplexer. In much the same way, the
file system support routines, swapper, and others, may issue a
request against a block driver which is written for a specific
controller. This request is received by a driver using a structure
known as a "buffer header". This structure contains all information
necessary for the driver to perform the actual disk (or tape)
operation. The buffer header is described later. Since the

buffer contains the operation code, only one entry point is required
for a block device driver: the strategy routine. The driver may
include separate read() and write() routines. However, these
routines will only be called by the kernel to perform physical device
access independent of the file structure. In general, file structured
device access will be accomplished by the kernel calling the device
strategy routine. Drivers providing physical device access should
create buffer headers whose target buffer address is within the
caller's address space. The buffer headers can then be passed to
physio(), which in turn will call the strategy routine.

2.2.1 BLOCK DRIVER INTERFACE

Devices which are block oriented are interfaced to from the
kernel via a data structure "bdevsw". This structure defines
the addresses of the various driver action routines:

.d_open - address of driver's open(2) routine
(see .d open for CHARACTER devices)

.d_close - address of driver's close(*) routine
(see .d _close for CHARACTER devices)

.d_strategy - address of driver's strategy (I/0) routine
This routine is unlike the CHARACTER device I/0 routines.
It is called by the kernel, with the address of a kernel
buffer header. The header contains sufficient information
for the disk driver to be able to complete the request.
The format of the buffer header is described below.

2.2.2 KERNEL BUFFERS

Kernel buffers are portions of kernel-controlled memory set aside

H-8 User Device Drivers

¥ % K Ok Ok K X X % % K O % N R ¥ % ¥ ¥ N ¥ % ¥ ¥ ¥ ¥ % % % ¥ ¥ A X K F X X N H X % ¥ K H F ¥ ¥ X ¥ ¥ F ¥ ¥ ¥

for disk data buffering. They are used by block-oriented drivers
in order to provide the user with byte-oriented I/0 similar to
that provided by character-oriented devices. This is limited to
only that data which is contained within a file (direct device
access is device specific, and generally block-oriented devices
must perform I/0 in block units, with transfers occurring on word
boundaries). The user (requestor) can either be a user process,
or even be the kernel itself. For example, the kernel

requires disk I/0 in order to maintain the disk file structures,
and to provide support for process swapping (note that the kernel
does not use buffered I/0 for process swapping; this note serves
to indicate that the kernel does perform I/0O internally).

Each kernel buffer has an associated buffer header. The header
contains a full set of context concerning the buffer, and the
device which the buffer contains a copy of data from. The vast
majority of requests for disk data will come in the form of
kernel buffers. Since the buffer itself specifies the actual
operation code (read vs. write), there is no need to supply two
different disk I/O action routines. Also, since much of the
processing is the same in either case, there is one single entry
point into a disk driver to perform I/0. This routine is called
a strategy routine. It may call separate read() or write()

routines, but in general, the kernel calls the single strategy
routine,

The following is a list of fields from the buffer header which
may be useful to the BLOCK device driver:

.b_flags - flags describing the status (and I/0 function code)

B_WRITE - buffer should be written to disk (= ~B_READ)
B_READ - disk block should be read into buffer

B DONE - operation complete, buffer is intact

B:ERROR - error on operation, buffer may be bogus
B_BUSY - buffer is inuse, and not available

B_PHYS - physical I/0

B_MAP - Unibus Map allocated for this buffer
B_WANTED - someone waiting for this buffer, use wakeup()
B_AGE - upon release, place at end of free list
B_ASYNC - don't stall caller for I/0 completion
B_DELWRI - write block only when necessary (retirement)
B_TAPE - magnetic tape block, don't delay writes
B_MOUNT - buffer is superblock from a mounted device

.b_dev - major/minor number of the device which this buffer is from
.b_bcount - count of bytes to transfer

.b_addr - low order core address

.b_blkno - block number within the partition

.b_xmem - high order core address

3(-3(-%*****************3(-*’(-’(-3('3(-’(-***************************

User Device Drivers H-9

.b_error - 1/0 status code returned on I/0
.b _resid - words not transferred on error

The following fields are used when performing DMA I/0 to/from
a device when on a 22-bit system with a Unibus Map:

.b_raddr - low order core address
.b_rxmem - high order core address

(When the Unibus Map is allocated, the I/O operation is bound
to an 18-bit address range which may or may not be the same
as the "real" memory address. This address is used by the
Unibus Map for translation into the "real" 22-bit address.
Therefore, the original values of .b_addr and .b_xmem have
been saved in .b raddr and .b_rxmem accordingly.)

2.2.3 USE OF THE UNIBUS MAP IN 22-BIT SYSTEMS (WITH UBM)

On 22-bit systems with a Unibus Map, the kernel requires the
use of specific UMR (Unibus Map Register) allocation and
deallocation routines in order to allow multiple UBM users
to "share" the UMRs. The 32 UMRs are assigned as follow:i:

UMRs Usage by kernel and drivers

0 Statically assigned to the bottom of BSS
space, where device control buffers (MSCP, such
as the TS11, DH11, and the RA class of disks)
are allocated (see section 5.5 for details
on how to allocate space within this UMR).

1..9 Permanently mapped to I/0 buffers used by the
kernel (see section 2.2.2 for details on kernel
buffers)

10..30 Dynamically allocated in groups of 7 UMRs in
order to perform raw I/0 operations directly
to the location specified by the requestor.
The three groups span UMRs 10..16, 17..24,
and 25..30.

31 Not available (as defined by the architecture
of the PDP-11).

Special routines exist for sharing the Unibus Map. They are
described in section 3.9.

2.3 INTERFACING A COMMUNICATIONS DEVICE TO THE
TERMINAL DRIVER

The environment of the terminal oriented device varies slightly
from those which are obviously not terminals. Normally, a
device driver's action routine is dealt with directly by the
kernel. In the case of terminals, there is more that must be

H-10 User Device Drivers

%O % N % % % M O % % N ¥ % % K N % O N N % F N N N ¥ N ¥ K N F N ¥ ¥ ¥ ¥ N N N ¥ X H ¥ X ¥ X X X ¥ ¥ X ¥ F

done. Each terminal has associated with it a set of characteristics
and a "line discipline". The characteristics are accessible via
the stty(1) command, or the ioctl(2) or gtty(2)/stty(2) system
calls. They are used to control the application of certain types
of processing which has been selected (or defaulted) by the user.
The line discipline is a set of common processing that terminal
devices share. It is a set of extensions to the device specific
action routines. The line discipline is implemented in software
called the "terminal driver". It consists of a set of I/0 routines
which are device independent, and which interface in some common
way (via the cdevsw and linesw structures/tables) to the actual
device driver routines.

When a process requests that a character be transmitted to the
terminal, the terminal driver preprocesses that character based
upon the characteristics defined in the tty structure for the
device. The resulting character(s) are placed in an output queue
and the device driver is called at the XXstart() routine to
initiate that actual transmission. In this situation, the terminal
driver is acting as master, with the device driver acting as a
slave. The terminal driver uses the cdevsw structure to call

the device driver at the XXstart() entry point.

When a device driver receives a character from the device, it must
likewise pass off the character to the terminal driver to be
preprocessed according to the tty characteristics, and finally
placed in a queue for the process accessing the terminal. The
process can obtain the characters in the queue by a read(2) system
call. This call enters the device driver at the XXread() entry
point. In order for the terminal driver to return the characters,
the device driver must call into the terminal driver's read()
routine. This is done through the linesw structure. In this
situation, the device driver acts as the master and the terminal
driver acts as the slave.

There is an entry in the linesw structure for each possible
interaction between the device and terminal driver.

Also, there is an entry in the cdevsw structure for each possible
interaction between the terminal and device driver.

A description of the calling convention through the linesw structure
is show below. In each case, the device driver has been called

at one of the action routines, and it in turn is passing control to
the equivalent device independent terminal driver routine.

File /usr/include/sys/conf.h contains the description of the linesw
structure, and performs an "extern struct linesw” inline.

In all of the following, argument 'tp' is the address of the tty
structure which is to be acted upon. Other arguments are routine
specific.

When the device driver is called at XXopen(), it should call the
terminal driver as follows:

8-*’(-3(-3(-3(-%***%****************%***********************ﬁ-*%

User Device Drivers H-11

(*linesw[tp->t_line].1l_open)(tp)
struct tty *tp;

When the device driver is called at XXclose(), it should call the
terminal driver as follows:

(*linesw[tp->t _linel.l close)(tp)

struct tty *tp;

When the device driver is called at XXioctl(), it should call the
terminal driver as follows:

(*linesw[tp->t_linel.l_ioctl)(tp, com, addr, flag)

struct tty *tp;
int com;
caddr_t addr;
int flag;

When the device driver is called at XXread(), it should call the
terminal driver as follows:

(*lineswltp->t_linel.1l_read) (tp)
struct tty *tp;

When the device driver is called at XXwrite(), it should call the
terminal driver as follows:

(*linesw[tp->t _linel.l write)(tp)
struct tty *tp;

When the device driver is called via an interrupt at XXrint(), it
should call the terminal driver as follows, to pass the character:

(*lineswltp->t_linel.l rint)(c, tp)

char c;
struct tty *tp;

3.0 KERNEL ROUTINES AVAILABLE TO DRIVERS

The ULTRIX-11 kernel contains some useful routines which can
by used by the device driver during normal operations.

Some routines are specific to either a character or block
oriented device, and are typically used by the device drivers
provided by DIGITAL.

A description of the actual routine, its parameters, and the
guidelines governing their use is provided.

H-12 User Device Drivers

M O Ok % R % % % % % ok ok % % N % % % ¥ % % N ¥ ¥ % % N K ¥ ¥ N ¥ K % H % R ¥ % H X ¥ % X X ¥ F X ¥ X ¥ X * ¥

The type definitions can be found in /usr/include/sys/types.h.

3.1

3.2

MOVING DATA TO/FROM A USER'S BUFFER

Routine iomove() is used to transfer byte aligned

data into or out of the requestor's buffer area.

The requestor's buffer is described by the various

fields in the currently mapped user context area.
iomove(cp, n, flag)

caddr_t cp;

int n:

int flag;

cp: address of buffer in requestor's mode to move

n: number of bytes to transfer

flag: B_READ to read (copy) from the requestor's buffer

B_WRITE to write (copy) to the requestor's buffer

The following fields are used as input:

u_segflg: 1indicates whether the requestor is kernel or user

u_base: base address of requestor's buffer in the mode
specified by u_segflg

u_count: number of bytes to transfer

The following fields are returned as output:

u_error: not initialized, but may return EFAULT if the
requestor's buffer is not mappable

u_base: updated to point past the data moved

u offset: wupdated to point past the data moved

u_count: updated to reflect the bytes moved

SCHEDULING TIME BASED CALLS FROM THE KERNEL

Routine timeout() is used to schedule periodic calls from
the kernel. Note that the issuer of timeout() is called
at the clock's priority (PR6) by the code processing the
clock's interrupts. Time is specified in "ticks", i.e.
clock interruptions (this is the line frequency, typlcally
either 50 or 60 HZ, therefore, 50 or 60 ticks per second).

timeout(fun, arg, tim)

int (*fun)();
caddr t argqg;

int tim;
fun: address of the routine to be called
arg: the argument to be passed to the routine

time the number of ticks to wait for prior to

****ﬁ-*******3(-’('*3(-3(-’(-************************************

3.3

3.3.1

User Device Drivers H-13

calling the specified routine (interval
MUST be in the range of 0 to 32767)

The user structure is NOT used for input or output.

PROCESS CONTROL

Routines exist to perform two basic scheduling operations:
sleep() to suspend a process, and wakeup() to resume a
suspended process.

SUSPENDING THE EXECUTION OF THE CURRENT PROCESS

Routine sleep() is used to place the currently mapped
user into sleep (i.e. not runnable) state. This causes
the scheduler to select another process for execution.
THIS ROUTINE SHOULD NOT BE CALLED FROM INTERRUPT LEVEL.
Processes which are sleeping on an event have a status

of "SWAIT". Also, it is important that the caller check
to see if conditions are favorable for continuation after
the sleep() has returned.

sleep(chan, pri)

caddr_t chan;
int pri;

chan: value which serves to identify the reason
as to why a process is waiting - there must
be a corresponding routine which is expected
to issue a wakeup(event) in order to bring
the process out of sleep state, and make it
runnable once again

pri: is the priority to be given to the process
when the eventual wakeup() is issued (this
priority is the scheduling priority)
"pri" is significant in that values greater
than PZERO will allow signals to be delivered
to the process

The user structure is NOT used for input or output.

NOTE: Calling sleep() with a wchan of zero will cause
the system to "panic".

NOTE: A general 4-second timeout routine is available.
The caller need only call sleep(&lbolt,pri).
(&1bolt is the identifier of an event which
occurs every 4 seconds.)

3.3.2 ACTIVATING A PROCESS WHICH HAS BEEN SUSPENDED

Routine wakeup() is used to activate any process waiting
for a specific resource. Generally, the argument to the

User Device Drivers

wakeup() call is the identifier which connects the waiting
process to the event that it is waiting for. The actual
routine will search the process list for all processes which
are waiting for the specified event. If any matches occur,
the process status is set to "SRUN", and the wait mask is
cleared. The process is then eligible for scheduling based
upon the priority specified in the sleep() request which
placed it into the suspended state in the first place.

wakeup(chan)
caddr_t chan;
chan: identifier of the event which has come to
pass (this event identifier should match

that specified by a previous sleep()

The user structure is NOT used for input or output.

3.4 DYNAMICALLY ALTERING PROCESSOR PRIORITY

¥ % X % X O X X ¥ ¥ X F % Ok X ¥ N ¥ X N ¥ ¥ ¥ ¥ K F ¥ ¥ ¥ K X ¥ ¥ ¥ N ¥ H N ¥ N ¥ ¥ X F N X X ¥ F ¥ ¥ ¥ ¥ ¥

Several routines are available to change the current
priority of the processor. All routines except splx()
do not accept arguments, and return the processor
status word (PS, which includes a field indicating the
processor's priority). Routine splx() sets the current
processor priority, but does not return a PS.

The normal procedure to use an elevated priority is to
use one of the explicit priority routines, saving the
PS which they return, and to use the saved PS later

as the argument to splx() to return the processor to
the original priority.

splo() {set processor to priority 0}
spl1() {set processor to priority 1}
spla() {set processor to priority 4}
spl5() {set processor to priority 5}
spl6() {set processor to priority 6}
spl7() {set processor to priority 7}

splx(ps)
int ps;

ps: processor status word returned by one of the
explicit splN() routines

The user structure is NOT used for input or output.

NOTE: Care must be taken when using changing the priority
of the processor! The purpose of these routines is
to prevent the execution of event-driven kernel code
SO as to gquarantee serialized access to sensitive
kernel data in a controlled manner. Execution of

3(-3(-3(-*’(-3(-***********************3‘-’('***********************

User Device Drivers H-15

large amounts of code at an elevated priority will
decrease the performance of the system overall, and

if not used properly, can place the processor into
an undetermined state.

MOVING DATA BETWEEN PROCESSOR MODES (WORD, BYTE)

Several routines are available which can be used to read or
write data between the current processor mode, and the
previous processor mode. The current processor mode is
almost always KERNEL, and the previous is typically USER.
There are eight routines available. Four are used to read
from previous mode, and four to write. Two of the four

are used to select byte or word alignment, and the remaining
two are used to specify whether the previous mode's
instruction or data space is to be used.

The user structure is NOT used for input or output.

NOTE: All of these routines return a value of -1 if the
address specified is nonexistent. Therefore, care
should be taken when using these routines to
differentiate between a successfully read data item
of -1, and a non-existent memory trap return of -1.

FETCH PREVIOUS DATA SPACE WORD

Routine fuword() is used to read a word from the previous
mode's data space.

fuword(address)

int *address;

address: address of the word to be fetched from the
the previous mode's data space

Since this routine uses the MFPD instruction, and is quite
slow, it is NOT recommended that large amounts of data be
moved using this routine.

FETCH PREVIOUS DATA SPACE BYTE

Routine fubyte() is used to read a byte from the previous
mode's data space.

fubyte(address)
char *address;

address: address of the byte to be fetched from the
the previous mode's data space

Since this routine uses the MFPD instruction, and is quite

H-16 User Device Drivers

slow, it is NOT recommended that large amounts of data be
moved using this routine.

3.5.3 FETCH PREVIOUS INSTRUCTION SPACE WORD

Routine fuiword() is used to read a word from the previous
mode's instruction space.

fuiword(address)
int *address;

address: address of the word to be fetched from the
the previous mode's instruction space

Since this routine uses the MFPI instruction, and is quite

slow, it is NOT recommended that large amounts of data be
moved using this routine.

3.5.4 FETCH PREVIOUS INSTRUCTION SPACE BYTE

Routine fuibyte() is used to read a byte from the previous
mode's instruction space.

fuibyte(address)
char *address:

address: address of the byte to be fetched from the
the previous mode's instruction space

Since this routine uses the MFPI instruction, and is quite
slow, it is NOT recommended that large amounts of data be
moved using this routine.

3.5.5 STORE PREVIOUS DATA SPACE WORD

Routine suword() is used to write a word into the previous
mode's data space.

suword(address, data)

int *address;
int data;

address: address where the word 'data' is to be stored in
the previous mode's data space

data: word to be stored at 'address' in the previous
mode's data space

Since this routine uses the MTPD instruction, and is quite
slow, it is NOT recommended that large amounts of data be
moved using this routine.

% ¥ % % % O ¥ O ¥ % % F % H Ok K % K % ¥ ¥ % F H % ¥ ¥ K % X N % ¥ ¥ % F ¥ ¥ H % ¥ F ¥ ¥ ¥ X ¥ ¥ X F ¥ F * F

User Device Drivers H-17

3.5.6 STORE PREVIOUS DATA SPACE BYTE

Routine subyte() is used to write a byte into the previous
mode's data space.

subyte(address, data)

char *address:
char data:

address: address where the byte 'data' is to be stored in
the previous mode's data space

data: byte to be stored at 'address' in the previous
mode's data space

Since this routine uses the MTPD instruction, and is quite
slow, it is NOT recommended that large amounts of data be
moved using this routine.

3.5.7 STORE PREVIOUS INSTRUCTION SPACE WORD

Routine suiword() is used to write a word into the previous
mode's instruction space.

suiword(address, data)

int *address;
int data;

address: address where the word 'data' is to be stored in
the previous mode's instruction space

data: word to be stored at 'address' in the previous
mode's instruction space

Since this routine uses the MTPI instruction, and is quite
slow, it is NOT recommended that large amounts of data be
moved using this routine.

3.5.8 STORE PREVIOUS INSTRUCTION SPACE BYTE

Routine suibyte() is used to write a byte into the previous
mode's instruction space.

suibyte(address, data)

char *address;
char data;

address: address where the byte 'data' is to be stored in
the previous mode's instruction space

data: byte to be stored at 'address' in the previous
mode's instruction space

Since this routine uses the MTPI instruction, and is quite

H-18 User Device Drivers

slow, it is NOT recommended that large amounts of data be
moved using this routine.

3.6 MANIPULATION OF "CLISTS" FOR CHARACTER DEVICES

Character oriented devices store spans of characters in
structures called CLISTS. Two special routines are
used to retrieve and to store a character from and into
a CLIST. Both require an argument which specifies the
address of the device's CLIST list pointers.

CLISTS are described in /usr/include/sys/clist.h.
3.6.1 PLACING A CHARACTER INTO A CLIST

Routine putc() is used to append a character onto a
clist. If there is insufficient space in the clist for
the character, the routine returns a -1.

putc(c, p)

int c;
struct clist *p;

c: character to be placed into the clist
p: address of the clist list pointers for
the device whose clist is to be used

The user structure is NOT used for input or output.
3.6.2 REMOVING A CHARACTER FROM A CLIST

Routine getc() is used to obtain the first character
from a clist. If there are no more characters in the
clist, the routine returns a -1.

getc(p)
struct clist *p;

p: address of the clist list pointers for
the device whose clist is to be used

The user structure is NOT used for input or output.
3.7 BUFFERED I/0 SUPPORT ROUTINES

Several routines within the kernel are available for
buffer management. While their use by the typical
driver will be minimal (save for brelse()), their
description is aimed at increasing the understanding
of the ULTRIX-11 block I/0 subsystem.

Note that the routines requesting a read of data will
stall (i.e. not return) until the request has been

*****************%**********************************X—*

W ON N Ok Ok ¥ % % O % % % % % % K O N O %k N K % K K N F N K F % F O H O ¥ % ¥ ¥ % ¥ X F ¥ % N ¥ H ¥ H ¥ F X *

User Device Drivers H-19

completed. It is important that the caller check the
status (which is eventually) returned by the driver
after issuing the request.

The various read routines (bread(), breada(), and
getblk()) return pointers to the buffer headers which
describe the requested data.

When buffers are returned by bread(), breada(), and
getblk(), the buffer headers are "locked down", in
order to prevent the simultaneous access by others
(B_BUSY is turned on).

BUFFERED READ, SYNCHRONOUS

Routine bread() is used to allocate, read, and return
a block of disk data. The presence of the block (or
an error indication in the event of a failure) is
guaranteed.

bread(dev, blkno)

dev_t dev;
daddr_t block;

dev: device major/minor number
blkno: 1logical block number to be read

The user structure is NOT used for input or output.

BUFFERED READ, ASYNCHRONOUS

Routine breada() is used to allocate, read, and return

a block of disk data. In addition, a read-ahead operation
will be performed on another disk block after the initial
request has been made available.

Note that only the first block will be "locked". The second
block (rablkno) will be locked by one of the subsequent calls
by either bread(), getblk(), or another breada(), specifying
‘rablkno' as the synchronous block to read.

breada(dev, blkno, rablkno)

dev_t dev;
daddr_t blkno;
daddr_t rablkno;

dev: device major/minor number

blkno: logical block number to be read

rablkno:logical block number to be read, after
'blkno' has been read.

The user structure is NOT used for input or output.

Note that only the first block will be read and returned
by the breada() call. A subsequent call using bread()

H-20 User Device Drivers

X % % % % % % % K % X % % K % ¥ % K Ok ¥ % % % % ¥ % ¥ % % % % & % O ¥ N % N N ¥ K ¥ H H F ¥ H X ¥ F ¥ * % ¥

3.7.5

specifying 'rablkno' as the logical block can return the
address of the buffer header for the asynchronous read.
In that case, the caller would suspend execution pending
the completion of the asynchronous read operation if it
is still in progress (B DONE is not set).

FIND, LOCK, AND RETURN BUFFERED BLOCK (IF PRESENT)

Routine getblk() is used to obtain the address of the
buffer header associated with a block of data providing
the block is resident within the system's buffers. An
address of -1 indicates that the buffer is not present
in memory. What differentiates this call from a bread()
call is that bread() guarantees that the data will be
read if it is not already resident, whereas getblk() may
return an error if the block is either not resident or
in the process of being read in.

getblk(dev, blkno)

dev_t dev;
daddr_t blkno;

dev: device major/minor number
blkno: 1logical block number to be read

The user structure is NOT used for input or output.
ALLOCATING AND INITIALIZING AN EMPTY BUFFER
Routine geteblk() is used to allocate a buffer and to
initialize it to NULLs. The address of the buffer header
is returned by the call.

geteblk()
The user structure is NOT used for input or output.
RELEASING A LOCKED BUFFER
Routine brelse() is used to unlock a buffer which was
locked by a previous bread(), breada(), or getblk()
request.

brelse(dev, blkno)

dev_t dev;
daddr_t blkno;

dev: device major/minor number
blkno: 1logical block number to unlock

The user structure is NOT used for input or output.

oMk Ok X F Ok R X N O Ok % N H K N ¥ X K N N N R ¥ ¥ R K X X K K K ¥ K ¥ % ¥ ¥ ¥ ¥ ¥ ¥ O % ¥ % ¥ ¥ * X % * *

User Device Drivers H-21

In addition, routine brelse() performs the following:

- if B_WANTED is set (indicating that a process is
sleeping elsewhere waiting for this buffer), then
a wakeup() is issued

- the buffer is placed onto the free list- normally
it is placed at the beginning, but if B _AGE is set
then it is placed onto the end (this will arrange
for the buffer to NOT be reused immediately)

- bits B_WANTED, B_BUSY, B_ASYNC, and B AGE are
cleared

3.7.6 BUFFERED WRITE, SYNCHRONOUS

r

Routine bwrite() is used to write a block of buffered
data to a device. The caller is suspended pending the
completion of the write operation. When the operation
completes, the status is returned to the user.

bwrite(bp)
struct buf *bp;

bp: address of the buffer header of the block
to be written

The user structure is NOT used as input.

The u_error cell is set to the I/0O status code of the
write operation.

3.7.7 BUFFERED WRITE, ASYNCHRONOUS

Routine bawrite() is used to write a block of buffered
data to a device in an asynchronous manner. The caller
is not suspended (return from bawrite() is immediate),
and the user is not notified of the completion code.

It is the responsibility of the caller to check the code
and insure its propagation to the user if necessary.

bawrite(bp)
struct buf *bp;

bp: address of the buffer header of the block
to be written

The user structure is NOT used for input or output.

3.7.8 BUFFERED WRITE, DEFERRED

Routine bdwrite() is used to write a block of buffered
data to a device in an asynchronous manner, but deferred
until such time as it becomes necessary to write the ‘
block. The caller is not suspended (return from bdwrite()

0
N
[\§)

3(-3(-’(-3(-3(-3(-3(-******%**************%************************%

User Device Drivers

3.7.9

is immediate), and the user is not notified of the
completion code. It is the responsibility of the caller
to check the code and insure its propagation to the

user if necessary.

bdwrite(bp)
struct buf *bp;

bp: address of the buffer header of the block
to be written

The user structure is NOT used for input or output.
BUFFERED I/0 COMPLETION

Routine iodone() is used to complete a buffered I/0
operation and to insure the necessary release of the
buffer or the awakening (via wakeup()) of the process
suspended for an 1/0 operation. The routine can be
called whether the operation has completed with success
or not, and it is expected that the B_DONE and B_ERROR
flags have been maintained correctly.

iodone(bp)
struct buf *bp;

bp: address of the buffer header whose I/0
operation has completed

The user structure is NOT used for input or output.
Routine iodone() will perform several functions:

- if the buffer has an associated UBM allocation
(indicated by B _MAP), then mapfree() will be
called to unlock the allocated Unibus Map

- B_DONE is set, to indicate transaction complete

- if B_ASYNC is set, brelse() is called to release
the lock on the buffer

-~ [else] if B WANTED is set, then a process is
sleeping waiting for the I/0 to complete --
wakeup() is called

SEE THE DESCRIPTION OF BRELSE() IN SECTION 3.7.4.

3.7.10 PROPAGATION OF I/0 STATUS TO THE REQUESTOR

Routine geterror() is used to return the I/0 status
of an operation to the requestor.

The buffer header context is used to return the
status code to the user structure for completion

of an I/0 operation.

**********************%*X—******3&**********************

3.7A

User Device Drivers H-23

geterror (bp)
struct buf *bp;

bp: address of the buffer header whose status
is to be propagated

The user structure is used to determine the mode of the

requestor, in order to return the status in the appropriate
place.

PHYSICAL I/O

Block oriented devices can perform I/O in two manners.
Normally, I/0 against a device is done in "file structured”
mode. This means that the data being accessed on the disk
is coming from a disk partition, and specifically from an
opened file. The file that has been opened is a block
special file from a specific disk and partition, and it
defines the areas of the disk which contain the file's data.
It is possible to access the disk (or partition) in "raw"
mode. This would give the user access to the data within
the disk or partition independent of the file structure.

In this mode, it is required that the user read and write
data in disk block units, with the position always being

on a block boundary (512 byte boundary).

When performing physical I/0, the user is accessing the disk
via a character special file. As a result, the cdevsw table
is being used instead of the bdevsw table to perform the
dispatching from the kernel to the driver. Therefore, a
read(2) system call would cause the driver to be called at
the XXread() routine, and a write(2) system call would

cause the driver to be called at the XXwrite() routine.

A special routine is available to change the character based
operation into a buffered block operation. The caller
(driver) should specify the address of a buffer header which
it owns (is part of the driver's space), and the address of
the strategy routine. Physio() is used to accept these and
the device major/minor number and read/write (B_READ/B_WRITE)
flag, and to calculate and validate the caller's buffer
addresses. It then calls the strategy routine to perform

a buffered read or write operation.

physio(strat, bp, dev, rw)
int (*strat)();
struct buf *bp;

int dev;
int rw;

strat: address of the XXstrategy() routine

H-24 User Device Drivers

¥ Ok % ¥ X % X X % X K O X ¥ K H R X K N X X N X X X ¥ N % X N KT X K ¥ K X % O ¥ ¥ F ¥ ¥ N N ¥ ¥ ¥ ¥ * ¥ *

3.8

3.8.1

3.8.2

bp: address of buffer header in the driver's space
dev: device major/minor number
rw: flag indicating the operation: B READ to read

from the disk, and B _WRITE to write to disk
READING/WRITING THE REQUESTOR'S BUFFER (BYTE ORIENTED)

Routine passc() is used to read or write the requestor's
buffer in a byte-by-byte fashion. Only one routine

is used, the differentiation being whether an argument is
supplied or not.

READING A BYTE FROM THE REQUESTOR'S BUFFER

Routine passc() is used to read a byte from the requestor's
buffer. The character is returned from the call, with a
value of -1 to indicate that the buffer is empty (i.e.
there is no more data to be read).

passc()
The following fields are used as input:

u_segflg: indicates whether the requestor is kernel or user
u_base: address of the next byte in requestor's buffer

in the mode specified by u segflg
u_count: number of bytes remaining in requestor's buffer

The following fields are returned as output:

u_base: updated to point to the next byte in buffer
u_count: decremented to reflect number of bytes remaining

WRITING A BYTE (APPENDING) TO THE REQUESTOR'S BUFFER

Routine passc() is used to write (append) a byte to the
requestor's buffer. The character is passed as the one
argument to the call, with a return value of -1 indicating
that the requestor's buffer is full (u_count has become zero
which indicates that no more data can be placed into the
buffer).

passc(c)
char c¢;
The following fields are used as input:
u_segflg: indicates whether the requestor is kernel or user
u_base: address of the next byte in requestor's buffer
in the mode specified by u segflg

u_count: number of bytes available beginning at u base to
accept data

*********X—***X‘***************************************X-

3.9.1

3.9.2

User Device Drivers H-25

The following fields are used as output:

u_base: updated to point to next available (free) byte
in the requestor's buffer

u_count: decremented to reflect the number of available
bytes remaining in the requestor's buffer

SHARING THE UNIBUS MAP

For devices which accept buffer addresses in order to perform
DMA (Direct Memory Access) I/0, there are two classes. The
first are those devices which accept a full 22-bit address

for the data transfers. These devices do not need to use the
UBM routines. The second class are those devices which accept
a 16-bit address, and two bits of "address extension”
(referred to as bits A16 and A17 of the address). Under
normal situations I/0 to/from these devices would be limited
to the lowest 18-bits of address space. With the UBM, it is
possible to relocate 18-bit addresses into 22-bit addresses.
There are a fixed number of UMRs available. 1In order to allow
drivers to "share" these dynamically, several routines are
available to the driver to allocate and deallocate them.

ALLOCATING UNIBUS MAP REGISTERS
Routine mapalloc() is used to allocate UMRs. If the necessary
UMRs are not available, mapalloc() will sleep() and return
when they are available.
mapalloc(bp)
struct buf *bp;
bp: address of the buffer header to allocate UMRs for
The user structure is NOT used as input or output.
NOTE: mapalloc() allocates and maps the UMRs to the
requestor's buffers, and fields b _addr and
b_xmem are used to describe the UMR allocation
(b_addr is moved to b raddr, and b_xmem is
moved to b_rxmem)

DEALLOCATING UNIBUS MAP REGISTERS

Unibus Map Register deallocation is performed automatically

by the routine iodone(), if B MAP is set when it is called.

Should the driver wish to deallocate the map itself, routine
mapfree() can be used.

mapfree(bp)

struct buf *bp;

H-26 User Device Drivers

N O N N O O N O O N N % % % O O % Ok % % % O F N O ¥ ¥ O %% Ok O O % F ¥ H O ¥ ¥ %k ¥ F ¥ X F % K ¥ ¥ ¥ H F* F* X

bp: address of the buffer header whose UMR allocation
should be released

The user structure is NOT used for input or output.
3.10 SAVING AND RESTORING FLOATING POINT CONTEXT

Section 4.1 contains a note concerning the use of the
floating point processor.

Two routines are available to save and restore the context

of the floating point unit for drivers which wish to use

‘the FPP. The save area should be allocated from the driver's
address space and have a particular format. The structure
definition of "fpsave" (below) shows the format of the save
area.

struct fpsave

int XX fps; <-- FPP status register
double XX fpr([6]; <-- FPP registers
};

3.10.1 SAVING FLOATING POINT CONTEXT

Routine savfp() can be used to save the current context of
the floating point processor.

savip(savearea)

struct fpsave *savearea;
See the format of structure fpsave in section 3.10 above.
The user structure is NOT used for input or output.

3.10.2 RESTORING FLOATING POINT CONTEXT

Routine restfp() can be used to restore the previously saved
(savfp()) context of the floating point processor. The
current context of the FPP is lost.

restfp(savearea)

struct fpsave *savearea;
See the format of structure fpsave in section 3.10 above.
The user structure is NOT used for input or output.

3.11 LOGGING DEVICE ERRORS

Currently there is no mechanism available to the user to

% o % O ¥ % Ok Ok OF % b Ok % OF % % ¥ O ¥ X % % K % % O % H ¥ M Ok % F ¥ ¥ ¥ ¥ ¥ O % % ¥ X ¥ F Ok ¥ ¥ ¥ K H X F *

User Device Drivers H-27

log device errors using the ULTRIX-11 error logging system.
Instead, the user-written driver should call routine
deverror() to display the error on the console.

deverror(bp, o1, 02)

struct buf *bp;
int o1;
int 02;

A call to deverror() will cause the following to appear on
the console:

err <device>
blk=<blkno>, er=<o01>,<02>

NOTE: deverror() uses printf(). See section 3.12 for
information (and note) concerning the use of
printf().

The user structure is NOT used for input or output.
PRINTING MESSAGES ON THE CONSOLE

Routine printf() can be used to print messages onto the
ULTRIX-11 console terminal. This version of printf() is
different from that available to user programs. The
following format conversions are available:

%s %$u $d %0 %X %D

NOTE: Operation of printf() in kernel mode occurs with
elevated priority. All interrupts (even the clock)
will be locked out. The system will basically be
stalled until printf() completes.

The user structure is NOT used for input or output.

RANDOM CAUTIONS

This section covers various topics of interest to the
writer of device drivers. Some of the information may

be of interest, and some may pertain to your particular
application.

USE OF THE FLOATING POINT PROCESSOR

Typically, drivers do not use the floating point processor.

However, there may be an application where it is essential
to use the FPP.

The ULTRIX-11 kernel does not use FPP for its own purposes.
It does, however, save and restore the floating point

H-28 User Device Drivers

XN O W % N K o o M K % Ok R o Ok N O O N OF % ¥ K % ¥ K % K K N ¥ K H Ok X X ¥ F X ¥ X ¥ K ¥ % X ¥ K ¥ * X X

context as part of the process context switching procedure.
Therefore, it is important for the driver using the FPP to
save the context prior to, and restore the context after
using the FPP for its own arithmetic. On systems without
a floating point processor which have software floating
point emulation within the kernel, the use of the floating
point instructions within kernel mode is not supported.

The driver should never attempt to suspend (sleep()) while
using the FPP. To do so could cause the driver's floating
point context to be saved as the current user's context.

NEVER ATTEMPT TO SUSPEND PROCESSING AT INTERRUPT LEVEL

This warning has been stated earlier. When an interrupt

is received, and the driver is called, all context has

been established on the current user's stack. This user
could be anyone, including the ULTRIX-11 kernel itself, in
the form of the null process/scheduler. The interrupt

must be processed in its entirety in order to leave the
context of the interrupted process intact, and to leave

the processor in the state it was in prior to the interrupt.
Therefore, the driver should NEVER attempt to sleep()

while at interrupt level.

PROVIDE FOR SLEEP()/WAKEUP() SYMMETRY

For each process which is suspended for an event, there is
a corresponding event identifier. The identifier is
specified as the argument to both sleep() and wakeup().

It is important to bear in mind that, once the process

is suspended via a sleep(EVENT ID), the only way for the
process to resume execution is for "someone" to provide
for an equivalent wakeup(EVENT ID) at a later time.
Failure to provide for this symmetry could leave processes
suspended pending an event which will never occur.

USE OF ELEVATED PRIORITIES

Priorities greater than zero should be used only when
necessary. The priority scheme is used to protect
context sensitive code and data from changes during
its use. Misuse of processor priorities can lead to
severe performance problems, and strange interactions
between devices.

USE OF THE UNIBUS MAP

There is a clearly defined interface for use of the Unibus
Map for those devices which perform 18-bit I/0 operations

on systems with 22-bit addressing. Failure to use these
routines can (will) cause conflicts with other drivers in the
system, with data being transferred to or from the wrong
addresses.

>(->(-*************************************3(-3(-’('*’(-**********

5.0

5.2

User Device Drivers H-29

Also, once a UMR or set of UMRs is allocated, it is important
that it/they be deallocated when no longer necessary for use.
This will allow other devices to use them, since a shortage
of available UMRs can cause the DMA device drivers to all
enter a sleep state pending the availability of UMRs.

DATA STRUCTURES

This section describes the data structures which are
related to devices on the ULTRIX-11 system. Most of
these are defined in the configuration file, c.c
(/usr/conf/c.c), are allocated as part of sysgen,
and initialized as part of system startup.

DEVICE CSR (CONTROL AND STATUS REGISTER) ASSIGNMENTS

Table io csr[] contains the CSR assignments for all
controllers on the system (those which are supported
by the software). This table is indexed by the
constant XX RMAJ (XX is the device name), which is
defined in /usr/lnclude/sys/devmaj c. Typically, the
CSR address is the first address of a set of registers
used to control a particular device.

extern io_csr(];
UNIBUS ADDRESS EXTENSION REGISTER

Table io_bae[] contains a value which is the offset
from the base CSR of the 22-bit address register.
This table is indexed by the constant XX BMAJ (XX is
the device name), which is also defined in file
/usr/include/sys/devmaj.c.

Certain devices (e.g. RL02) allow DMA transfers
using a 22-bit address register, as opposed to a
18-bit address register. For those devices, the
io_bae[XX BMAJ] entry contains the offset from the
base CSR address (io csr[XX RMAJ]) of the 22-bit
address extension register. Those devices which

do not have 22-bit address capabilities have an
io_bae[XX_BMAJ] entry of zero. By default, sysgen
initializes this entry to zero. It is the driver's
responsibility to set the appropriate value in this
table.

extern char io bae[];

Within the open() routine, code can be provided to
initialize the io_bael[] entry. When the system is
first initialized as part of startup, all user-
written drivers are called via the open() entry
point, with a 'flag' value of -1. At this time,
the driver should initialize the io_bael] entry.

H-30 User Device Drivers

5.3 DEVICE CSR STRUCTURE DEFINITIONS

Within the driver, the format of the CSR register set
should be defined. Typically, devices have several
different registers (contiguously on the I/0O page)
which each serve a specific purpose. An example of
this is shown below:

struct device

{

int XXcs; <- control and status register
int XXwc; <- word count register

caddr_t XXba; <- bus address register

int XXda; <- disk address register

int XXerr; <- error register

int XXbae:; <- bus address extension register

};
5.4 STRUCTURES FOR DRIVERS REQUIRING TERMINAL (TTY) STRUCTURES

Terminal device drivers which require tty data structures
should make provisions for their allocation.

extern struct tty tty ts[];

struct tty *XX_tty[NUMBER OF TTYS] = {
stty ts(1],

&tty ts[NUMBER OF TTYS] };
5.5 LOCAL BUFFERS REQUIRING STATIC UNIBUS MAP ASSIGNMENT

Certain devices (such as the TS11 magnetic tape unit, or
the MSCP class of disks) require special buffers for their
control. On processors where a UNIBUS MAP is provided to
translate the 18-bit buffer addresses setup in the CSRs
into real 22-bit addresses, these buffers must be placed
into a central area where they can be permanently assigned
a UNIBUS MAP register. The sysgen program handles these
buffers specially, to insure that they are placed into the
common statically mapped area. It is important that the
name follow the pattern! The current limitation on the
amount of space allocated to the statically mapped area

is one UMR (8KB), or 8192 bytes. Should the sum of all
contributions by all configured drivers exceed this limit,
the sysgen procedure will produce a diagnostic message,
then abort the sysgen. Also, the boot program will not
allow the kernel to be loaded if the processor has a
Unibus Map, and the static area is larger than 8K-bytes.

% % N N N N % % ¥ % O % % F N % % % % N R O % O ¥ ¥ O O % % % % % ¥ % ¥ K ¥ ¥ ¥ ¥ N ¥ ¥ H ¥ X X N X X ¥ ¥ ¥

#define XX BUFSIZ n <- total size of all buffers combined

%%****’(-3(-****************************%**

~N
*

* % H F X ¥ F X X F* ¥

User Device Drivers H-31

union {
char XX mbs[XX BUFSIZ]; <-- total size of buffers
int XX _mb1; <-- REAL driver definitions
} XX _mbuf; <-- use the standard name!

5.6.1 CELLS IDENTIFYING AVAILABLE HARDWARE

There are several kernel variables which can be used to
determine the presence of certain hardware. Here is a list
of the current cells available:

sepid - if set, the CPU supports separate
instruction and data spaces (this
also identifies the system as one
which supports all three modes:
user, supervisor, and kernel).

ubmaps - if set, the CPU has a Unibus Map.

rn_ssr3 - software copy of the MMR3 status
register (this can be used to check
the activation of separate I/D space
for the various modes), with the
current software release level in
the high byte.

cputype - integer representing the model of
the PDP-11 central processor which
the system is currently running on
(i.e. 70 for PDP-11/70)

NOTE: To access these cells from assembler code, be sure
to prefix the appropriate symbol with an underscore
(such as _sepid, _ubmaps, _rn_ssr3, _cputype). This
is a convention of c.

Prefix (header) files.

It may be necessary for drivers to include the definitions of the
various data cells and data structures which exist within the
kernel. Some of these data structures were described above, with
a reference made to the actual files which contain the definitions.
Here are some others which should be useful.

/usr/include/sys/param.h

This file contains the definitions of the ULTRIX-11 system.

H-32 User Device Drivers

It also contains the "macros" which are used extensively within
the kernel code to perform conversions from one unit to another.
See the file for more details.

/usr/include/sys/systm.h

This file contains the descriptions and definitions of many of
the cells used by the kernel code, such as the current time of
day as maintained by the clock handling routines. See the file
for more details.

/usr/include/sys/devmaj.h

This file contains the device major number assignments for the
current system. It is necessary to use this file in order to

obtain the major values used to index various data structures

within the kernel.

* % % % X % % % ¥ X F ¥ O H ¥ ¥ * ¥

*
~N

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/devmaj.h>

/*

*

Include the additional prefix (header) files as needed. These are
driver dependent. The following included files are being used as an
example, and may or may not be required by your specific driver.
Other files should be included as needed.

* ¥ *

*/

#include <sys/buf.h>
#include <sys/tty.h>
#include <sys/dir.h>
#include <sys/user.h>

/*
* Define a structure similar to the following to access the device's

* hardware controller registers. This is described in section 5.3.
*/

/*#define XX_BAEOFF 012 /* Offset from base CSR of Bus Addr Extension */
/* register if the device has one, otherwise */
/* define as ZERO. */

#define XX BAEOFF 0

struct device

{ /**********************************/
int XXcs; /* Control and status register */
int XXwc; /* Word count register */
caddr_t XXba; /* Bus address register x/
int XXda; /* Disk address register */
int XXerr; /* Error register */

int XXbae; /* Bus address extension register */

User Device Drivers H-33

}; /**********************************/

/*

*

This is where the driver obtains the base CSR address for the
device. The actual CSR assignment is made by the sysgen procedure,
and the value assigned can be obtained from cell io csr[XX RMAJ].

* This is described in detail in section 5.1 (see file /sys/conf/c.c).
*/

* *

extern int io csrl];

/*

For devices which support 22-bits of direct memory addressing,

the symbol XX BAEOFF should be non-zero. The value of _BAEOFF
should be stored in the appropriate cell of the io_bae array,

as described by section 5.2. If the device has 22-bit addressing,
the driver should set the value in io _bae[XX BMAJ] when called

to perform the first open() operation. By default, this cell

has been initialized to zero by the sysgen procedure.

* % ¥ % % ¥ X

*/
extern char io bael];
/*

* Define the number of units/lines the device has.
*x/

#define XX_NUNIT 0
/*
* For devices which require terminal (tty) structures, the following

* definitions should be made. See section 5.4 for details.
x/

/*
* f#define NUM_OF_TTYS n
*
*
* extern struct tty tty ts[];
* struct tty *XX_tty[NUM OF TTYS] = {
* stty ts[1],
*
* -
* L]
* &tty ts[NUM_OF TTYS]
* .
* r
*x/
/*

* If the device is a block device which supports raw access, then
* the following buffer header can be used to pass to physio() to

* convert the raw operation into a buffered operation.
*

H-34 User Device Drivers

*/
struct buf XXrawbuf;

struct Dbuf XXtab; /* DO NOT REMOVE */

~N
*

XX LOCAL UNIBUS MAPPED BUFFERS

If the processor does not have a Unibus Map or the device
is not a DMA (Direct Memory Access) device, ignore but DO
NOT remove the following data structure (union).

The XX _mbuf union is used if the device does DMA transfers
to/from a local buffer. This is most common for packet protocol
devices like the TS11 magnetic tape or MSCP disks. These DMA
transfers are not usually I1/0 data transfers, but transfers
involving device control information instead.

See section 5.5 for details, and especially note the limitations
imposed upon the summed total of all device static areas.

This particular example DOES NOT use this static area. Therefore,
since a length of zero is not allowed, the area here is defined as

containing a buffer equivalent in length to one 16-bit word.
/

* ¥ % % %X ¥ ¥ X X ¥ F X ¥ ¥ ¥ X ¥ * X

#define XX BUFSIZ 2 /* TOTAL size of all buffers combined */
/* for this particular driver (2=min) */

union f{
char XX_mbs[XX_BUFSIZ]; /* TOTAL size of buffers */

int XX_mb1; /* Driver's real definitions */
} XX_mbuf;

~N
*

SAVE/RESTORE FLOATING POINT REGISTERS

Floating point calculations may be performed within the
driver ONLY if the following rules are followed:

The processor must have floating point hardware.
The floating point simulator cannot be used to do
floating point instructions within the kernel.

The driver must save and restore the floating point
hardware registers, see sample code in XXstrategy().

The floating point portion of the code must not call
sleep() or be interruptable!

Floating point numbers cannot be printed, the in-kernel

version of printf does not support floating point number
formats.

* N % F K % ¥ OF X ¥ N ¥ ¥ ¥ X F X X

User Device Drivers H-35

*

* For additional details, see section 4.1.
*/

/*#define XX FPUSED 1 /* Define if driver has floating point support */
#ifdef XX_FPUSED

struct {
int XX fps; /* FP status register */
double XX fpr[6]; /* FP registers */
} XX _fpsav;

#endif XX_FPUSED

~N
*

DEVICE OPEN ROUTINE

The device open() routine is called from the kernel in order
for the driver to initialize the device prior to its use.

There are two circumstances under which the kernel calls the
open() routine.

1. open(dev, -1)

This call is made by kernel to explicitly allow the
driver to initialize the various fields necessary

to maintain the device. The driver is called as part
of system startup. For certain devices, this is aimed
at initializing the io_bae[XX BMAJ] cell, and verifying
that the device hardware (controller) is present, and
operational. The driver may also malloc() user memory,
or preallocate blocks from the buffer cache if necessary.
Device initialization occurs after the clists, buffer
cache and inodes have been initialized, and the system
clock has been started and root file system opened and
mounted.

2. open(dev, flag)

This call is made by the kernel as part of an open(2)
system call. Return values (status) can be returned
to the requestor via cell u.u error.

Under both circumstances, the argument 'dev' contains the device's
major/minor number ((XX BMAJ << 8)|minor), but for the open(,-1),

the minor number will always be zero. (For open(,flag), the device's
major/minor number could also be ((XX_RMAJ << 8)|minor).)

Argument 'flag' is used to indicate whether the device should be
opened for read-only, write-only, or read/write access.

X % % ¥ X N X N N % ¥ N ¥ ¥ ¥ X ¥ ¥ ¥ N ¥ ¥ ¥ ¥ X ¥ ¥ ¥ X X F ¥ H F

*
~N

/*

* This cell is used locally by the driver to determine if the

H-36 User Device Drivers

* controller is present and/or operational. Initialized to zero,
* a value of 1 is indicative of the device not being usable.

*/

int XX dead;

N
*

NOTE: A stray interrupt
circumstances:

request

¥ % N % X F F X H X X ¥ X X ¥ *

*

/
int XX _active;

XXopen(dev, flag)
{

controller for the device is
Initialized to zero, a value

This cell is used locally by the driver to determine if the
active (processing a request) or not.
of 1 is indicative of the device being
busy (as far as the software is concerned). This is particularly
useful for handling stray interrupts, since a device should not
interrupt unless it is the completion of an operation.

can occur under the following two

1. Multiport disk and tape controllers will interrupt
if the requested unit becomes available after having
returned an error when the driver attempted to

the drive.

2. The RK07 disk controller will interrupt when the
device is physically spun down.

register struct device *XXaddr;

/***/

/* flag value of -1 indicates that controller initialization */

/* is to be performed (this call is part of kernel startup)
/**

if (flag == -1) {

if(fuiword((caddr_t) io_csr[XX RMAJ]) == -1) {

/***/

/*
/*
/*
/*
/*
/*

The driver is configured, but the CSR is
not present at the address specified in
io_csr[XX_RMAJ]. This is indicated by -1
being returned by fuiword() (see section
3.5 for the note concerning the return
value -1).

*/
*/
*/
*/
*/
*/

/***/

XX dead = 1;
return;

}

/***/
/* Otherwise, the CSR is present on the I/0 page.

*/

User Device Drivers H-37

/* In this case, boot leaves the value originally *x/
/* defined in io_csr[XX RMAJ] as it was. */
/* Now, the driver is responsible to initialize the */

/* bus address extension offset in table io bae[]. */
/**;**********/

io_bae[XX BMAJ] = XX BAEOFF;

return;

}

if (XX_dead) {
/**/
/* If the device is non-operational (or just not */
/* present, return an error to the caller. This *x/
/* particular error indicates that the device or *x/
/* CSR is not present in the current system. */
/**/

bad:
u.u_error = ENXIO;
return;

}

/**/

/*
/*
/*
/*
/*
/*
/*
/*
/*

Obtain a local copy of the device's CSR base address. */
If the device has multiple units, it may be necessary to */
modify the CSR address in the case where multiple CSRs x/
are involved. Note that a requirement of ULTRIX-11 with */
respect to multiple controllers of a particular type is */
that all controllers of the same type must be physically */
contiquous on the I/0 page. The io csr[] table contains */
the address of the first such CSR of the series. */
Note that XXaddr is a structure pointer. *x/

/**/

XXaddr = io_csr[XX RMAJ];

/**/

/*
/*
/*
/*
/*

Here the driver validates the unit number. The minor x/
number is the unit of the particular device on the */
system. The symbol XX NUNIT has been defined as the */
number of units for this device. Note that unit number */
validation is device specific. */

/**/

if (minor(dev) >= XX NUNIT)
goto bad:
}
/*
* DEVICE CLOSE ROUTINE
*

* The device close() routine is called from the kernel in order for

H-3

W % % % % ¥ ¥ ¥ % ¥ X X ¥ X X F ¥ X #

*
~

XXc

{
}

~
*

% % % % % % N % ¥ % O X X N X X F ¥ X F

/

XXs
reg

/*
*
*

8 User Device Drivers

the driver to "close off" access to a particular device. This
routine is called as part of the close(2) system call processing,
however, it is NOT called for each close() issued by all processes.
Rather, it is called when the LAST accessor of the device issues
the close(2) system call.

close(dev, flaqg)

Argument 'dev' is device major/minor number ((XX_RMAJ << 8)|minor).
Argument 'flag' is similar to argument 'flag' used for the open(2)
system call/routine, as discussed previously, and pertains to the
'flag' specified by the last accessor of the device.

The close() routine may have several uses: close() processing

is device specific. For terminal devices, close() can be used to set
the terminal device to a predefined set of characteristics. For
disks, the device could be spun down (for example, the MSCP/RA

class of disks allow the drive to be spun down or up on command).

lose(dev, flag)

DEVICE STRATEGY ROUTINE

The device strategy() routine is called by the kernel to perform I/O
operations for block-oriented devices (only devices such as disks or
tapes use the strategy routine (see section 2.2 for details)). The
argument passed to the routine is the address of a control block
which basically acts as an argument list for the block device driver.
It contains fields necessary to relay information pertaining to the
block number to be read or written, the buffer address and length,
the operation code to be performed, and a field reserved to return
the status of the I/0 operation (see section 2.2.2 for details).

strategy(bp)

See section 2.2.2 for a description of the buffer pointer (bp) and
the contents of the buffer descriptor. Section 2.2.3 (and the
associated information in section 3.9) contains information about
the use of the Unibus Map, for the use of DMA (NPR) devices on
22-bit systems.

trategy(bp)
ister struct buf *bp;

Throughout this routine are sample sections of code which demonstrate
the use of the floating point processor within a device driver.

User Device Drivers H-39

* While the code is conditionalized on the symbol XX FPUSED, it can be
* removed in its entirety if desired.

*

* See section 4.1 for a warning concerning the use of the floating

* point processor.

*/

#ifdef XX FPUSED

int XX pri;
double XX f1, XX f2;

#endif XX _FPUSED

if (!tio_bae[XX_BMAJ])

/***/

/* 1If the device does not have direct 22-bit address */
/* capability, the io bael[] entry will contain a *x/
/* zero, since open(,-1) did not place an offset for */
/* a 22-bit address extension register in the set of */
/* CSRs for this device. *x/
/***/

mapalloc(bp);
#ifdef XX FPUSED

/**/

/* This sample floating point code demonstrates how device */
/* drivers could use the FPP. Note that the code executes */
/* at elevated priority and that while non-interruptable */
/* it saves the current FPP context, uses the FPP for its *x/
/* own purposes, then restores the saved context. Finally, */
/* it returns the processor to the priority it was at prior */

/* to using the floating point processor. */
,/**/

XX pri = spl7();
savip(&XX_fpsav);

XX_£1 = 1743;

XX £2 = XX_f1 * 345.567;
restfp(&XX fpsav);
splx(XX pri);

#endif XX FPUSED

}

/*
* DEVICE START ROUTINE
*

* The device start() routine is NOT called from the kernel. It is

H-40 User Device Drivers

* an internally used routine (internal to the driver) which typically
* initiates an I/0 transfer. This particular routine is setup for

* yse with a terminal device, which has tty (terminal) data structures.
*x/

XXstart(tp)

register struct tty *tp;
{

register struct device *XXaddr;

XXaddr = io_csr[XX_RMAJ];
/* may need to add the unit number depending on device type */

}
/*
* If the device has only one vector, use
* XXrint and leave XXxint as it is.
* If the device interrupts at a br level other
* than 5 edit l.s to change the br level.
*x/
/*
* DEVICE INTERRUPT ROUTINES
*
* The device interrupt routines are used as part of driver processing.
* (See section 1.3 for a discussion of interrupt processing.) If the
* device is a character device, in MOST cases, it will have two
* interrupt vectors, one for input (reader) interrupts, and one for
* output (transmitter) interrupts. On the other hand, block devices
* typically have only one interrupt vector. These two routines are
* called XXrintr (reader interrupts) and XXxintr (transmitter
* interrupts). Devices which have a single interrupt vector should
* use only the XXrintr routine. (See sections 1.3 and 4.2 for notes
* and warnings concerning device processing while at interrupt level.)
*/
/*
* DEVICE READER INTERRUPT ROUTINE
*/
XXrint(dev)
{

if (XX_active == 0) {

/***/

/* If an interrupt occurs and the device currently x/
/* is not performing an operation we requested, then */
/* the situation can be logged as a stray interrupt */
/* as follows. */
/***/

logsi(io_csr[XX_RMAJ]);
return;

N
*

* X H H X F ¥ %

*/

}
/*

*

*/

XXx
{

N
*

¥ X * ¥ * F X X

User Device Drivers H-41

If the vector is not currently being used for a particular
controller, then the interrupt should be logged in the following

fashion:

logsi(vector);

return;

Where (vector) is the device's interrupt vector address.

/**/

/* Typically the I/0 operation completion will be signaled */
/* by the hardware as an interrupt. If this is the case, *x/
/* then for block devices the operation should be completed */
/* using the iodone() routine (see section 3.7.8 for the x/

/* details of buffered I/0 completion). x/
/**/

iodone(bp);

DEVICE TRANSMITTER INTERRUPT ROUTINE

int(dev)

if (XX_active == 0) {
/***/
/* If an interrupt occurs and the device currently *x/
/* is not performing an operation we requested, then */
/* the situation can be logged as a stray interrupt */
/* as follows. */
/***/
logsi(io_csr[XX_RMAJ]);
return;

}

If the vector is not currently being used for a particular
controller, then the interrupt should be logged in the following

fashion:

logsi(vector+04);

return;

Where (vector) is the device's interrupt vector address.

H-42 User Device Drivers

}

*

~N
*

/

% % % X X ¥ * N X X X ¥

*

% % % % % Ok X X X X F *

*

~N

/

DEVICE READ AND WRITE ROUTINES

Devices which are character oriented are often capable of full
duplex operation. This means that the device can have both
input and output requests active at the same time. This is
evident by the fact that these devices also have two separate
interrupt routines -- one for input and one for output.

This is unlike the block oriented devices which can have

only one operation in progress per controller (seek operations
for multi-unit disk controllers are overlappable, but the data
transfers are not).

/

DEVICE READ ROUTINE

The read routine is called from the kernel as part of the read(2)
system call for character devices. The interface is discussed in

section 2.1, with the routines discussed in section 3.6 and 3.8
being extremely helpful.

If the driver supports raw mode access, then the driver will be
called here, instead of the strategy routine. Physio is used to
convert the raw transfer into a buffered transfer. See section
3.7A for details.

XXread(dev)

{
}

~N
*

* ¥ N ¥ N F ¥ X X ¥ X

*

~N

physio(&XXstrategy, &XXrawbuf, dev, B_READ);

DEVICE WRITE ROUTINE

The write routine is called from the kernel as part of the write(2)
sytem call for character devices. The interface is discussed in

section 2.1, with the routines discussed in section 3.6 and 3.8
being extremely helpful.

If the driver supports raw mode access, then the driver will be

called here, instead of the strategy routine. Physio is used to
convert the raw transfer into a buffered transfer. See section

3.7A for details.

XXwrite(dev)

{

User Device Drivers H-43

physio(&XXstrategy, &XXrawbuf, dev, B WRITE);

~N
*

DEVICE CONTROL ROUTINE

Many devices require a special mechanism to be able to perform
operations which are not data transfers. These "functions" enhance
the useful of the device, and often enable the user to alter the
behavior of the device or its processing by the kernel.

The device ioctl() routine is called from the kernel as part of the
ioctl(2) system call.

ioctl(dev, cmd, addr, flaq)

Argument 'dev' contains device major/minor number. Argument 'cmd'
contains the function code of the operation to be performed (see file
/usr/include/sys/ioctl.h for the function codes). Argument 'addr’

is function specific. Typically, it contains the address of a
parameter list. This list can be used for either input or output,
depending upon the function code. Argument 'flag' is the third
parameter of ioctl(), and is device specific.

/

¥ % N % % % ¥ N ¥ O H X % X ¥ X X ¥ * F

*

XXioctl(dev, cmd, addr, flag)
caddr_t addr;

{

}

~N
*

DEVICE STOP ROUTINE

The device stop() routine is called from the kernel (terminal
driver) to stop output when an XOFF (control/S) is received.
Typically, this involves the clearing of the "transmitter
interrupt enable" bit. This would cause the device to stop
interrupting when it is ready to transmit another character
to the terminal. As a result, output will stop until the
transmitter interrupt is again enabled.

In some cases, the stop routine may not be necessary. For
example, the DZ[V]11 driver uses a status bit in the terminal
(tty) structures which indicates that output should be stopped.
When the transmitter interrupts to receive another character,
the driver will not load another character, and it will clear
the "transmitter interrupt" bit, thereby stopping output.

When XON is received by the terminal driver, it will clear the

status bit and call the device start() routine. As a result,
output will resume on the device.

/

% M ¥ % ¥ K K K K F K F F X X H F H X * ¥ ¥

H-44 User Device Drivers

XXstop(tp, flag)

register struct tty *tp;
{

}

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	H-23
	H-24
	H-25
	H-26
	H-27
	H-28
	H-29
	H-30
	H-31
	H-32
	H-33
	H-34
	H-35
	H-36
	H-37
	H-38
	H-39
	H-40
	H-41
	H-42
	H-43
	H-44

