Unix/v7m Release 2.1 - Software Description

Fred Canter

Digital Equipment Corporation
- Continential Boulevard
Merrimack, New Hampshire 83854

UNIX* version seven modified, ‘Unix/v7m' 1is a £full
source distribution of Unix version seven plus the enhance-
ments developed by the Unix Systems Engineering group at
Digital. The latest Western Electric addenda tape, dated
12/2/80 is also included on the Unix/v7m distribution tape,
See */sys/addenda/README' for more details about the
addenda. The documents ‘Setting up Unix', ‘Regenerating
System Software', 'and the accompanying manual pages super-
sede the equivalent standard Unix version documents.

Digital Equipment Corporation assumes no responsibil-
ites for this software and makes no warranties or guaranties
as to its suitability or completeness.

*UNIX is a Trademark of Bell Laboratories.

Sentemhear 22. 1081

Distribution Format

The distribution tape is available at two densities,
800 BPI for use with the TU18/TEl19 and TUl6/TEl6 tape drives
and 1600 BPI for wuse with the TS1l1 and TUl6/TEl6é tape
drives. The 1688 BPI tape can be used for the TUl6/TE1l6
only if the TM@3 tape controller (WITH AUTO DENSITY SELECT
ENABLED) 1is used, the 1608 BPI tape cannot be used with the
TM@2 tape controller. .

The distribution tape consists of some preliminary
bootstrapping programs followed by a root file system image
in dump/restor format, the system sources in tar format, and
a tar formatted user file system with the remainder of the
sources.

The system as distributed contains binary images of the
system and all the user level programs, along with source
and manual sections for them—-about 210@ files altogether.
The binary images, along with other things needed to flesh
out the file system enough so UNIX will run, are to be put
on one file system called the “root file system'. The file
system size required is 9680 blocks. The second file system
contains the system sources, needed to rebuild Unix and
requires about 5888 512-byte blocks. The third file system
has the remainder of the sources and all of the documenta-
tion, it requires 20,0080 blocks of storage.

Unix/v7m Versions

The Unix/v7m tape includes three versions of the Unix
operating system; ‘unix_id', the separated Instruction and
Data space version for wuse with the PDP11/44, PDP11/45,
PDP11/55, and PDP11/78 processors; ‘unix_ov', the overlay
text kernel used with the non-separated Instruction and Data
space processors, PDPl11/23, PDP11/24, PDPl1/34, PDPl1/44,
and PDPl11/68; ‘unix_i', the preconfigured unix monitors used
only for the initial loading of Unix from the distribution
tape.

The separated I and D space version takes full advan-
tage of the features in Unix version seven and can support
up to 32 users, depending on the processor type and system
configuration. The overlay text kernel is designed to sup-
port about 18 users, more or less depending on the procéssor
and system configuration. The overlay version limits the
size of user processes to 64 kb, due to the 1lack of
separated I and D space in the processor.

The overlay unix kernel used in this distribution was

supplied by Mr. Bill Shannon, thanks to Bill for a job well
done !

September 22, 1981

Hardware Requirements

Unix/v7m, with the exceptions listed below,

can be used

on any system that is configured with a processor, one disk,

and a tape from the following equipment list:

CPU

PDP11/23
PDP11/24
PDP11/34
PDP11/40
PDP11/44
PDP11/45
PDP11/55
PDP11/66
PDP1l1/70

DISK

RLO1/2
RK@6/7
RM@2/3
RP@3
RPB4/5/6

OPTIONAL EQUIPMENT

DISKS TAPES

ML11 TS@3
RS8#3/4 TUS6
RX02
RK@5
RF11

PRINTERS

LP11

September 22,

1981

TAPE

TUlQ
TE1l®
TS1l1
TUl6

TE16

COMMUNICATIONS

DH11
DM11
DzZ11
DN1l
DUll
DL11
DC1l1

(DH modem control)

The processor must be equiped with a KWll-L line clock
or a KW1ll-P programmable clock.

The ‘practical' minimum memory size for Unix/v7m on all
processors is 256 K Dbytes. A memory size of 192 K
bytes is acceptable, however the number of users will
be 1limited. Unix/v7m 1is NOT guaranteed to work with
less than 192 K bytes of main memory. 1In fact, on a
PDP11/23 with 128 k bytes of memory it did not function
properly. For the most part it worked, but some impor-
tant things, such as the floating point simulator (cc
-f) and commands that used floation point, such as ios-
tat(l), did not work. Also, the secondary bootstrap
program “boot' will not function with less than 192 K
bytes. ‘

All of the FPll type floating point processors are sup-
ported by Unix/v7m. The PDP11/40 Float Instruction Set
is not supported by Unix. A floating point simulator
is available for processors which are not equipted with
floating point hardware. However this code is very slow
and if any serious floating point work is to be done
the floating point hardware is required.

Four RLAl disk packs are required to contain this dis-
tribution, however, Unix/v7m can be operated on as few
as two RLOl drives, three are recommended.

With the RLO2 and RKO6 disks two drives are required.

The RK@5 disk is not large enough to be the system
(root) device, it is supported as a user device only.

September 22, 1981

1@.

11,

12.

13.

The RM@3 disk can only be used with the PDP11/78, all
other processors must use the RM@2.

The RXP2 can be wused in single and double density
modes, the RX@l is not supported.

The ML1l solid state disk may be connected to the same
massbus with the system disk or on a separate RH1ll or
RH78 massbus disk controller.

The RS@#3/4 and the ML1ll are mutually exclusive.

The TS@3 tape is supported as a user device only,
because it cannot accept reels of tape that are greater
than 608 feet in length.

For the TS1ll a single drive only is supported. A TS1l
and a TMll (TUl9/TEl@) may be configured on the same
system, with certain restrictions. The TMll controller
must be at CSR address 172520 and vector 224 and the
TS1ll must be at address 172556 and vector 268. The
TS1ll can be booted as "MS6', assuming that the system
is equiped with a M9312 ROM bootstrap using the console
emulator. Unix/v7m will automatically adapt to this
configuration, the TM1l will be accessed by “mt#' and
the TS1l by "mtl'. The “Setting up Unix' document has
instructions , flaged by ‘tstm', which pertain to this
configuration. If the TS11 1is the only tape on the
system it must be at CSR address 1725280 and vector 224.

An additional RH massbus disk controller, with a combi-
nation of RM@2/3, and/or RPG4/5/6 disks attached, is
also supported. This configuration is referred to in
‘Setting up Unix' as the ‘“hm' disk. There is no
hardware boot ROM available to bootstrap from a disk on
the second RH controller, however, it can be booted by
calling into memory a copy of ‘boot' from another disk
or the distribution tape.

September 22, 1981

PDP11/23 Anomalies

There are certain unexplained error conditions which
cause the PDP1l1/23 to enter a state where it cannot be
rebooted without powering the system off and then back on
again. When the PDP11/23 1is booted it halts instead of
starting the primary bootstrap program, type '@8g' to start
the primary bootstrap.

A Word About Disk Media

Unix expects the disk media on which it 1lives to be
perfect, 1i.e., no bad blocks. The Unix file system places
things (super block, i list, free list) in fixed .positions
on the disk, there 1is no strategy for mapping around bad
blocks. The Unix device drivers for disks with error correc-
ton capability (hp & hk) implement ECC in both block and raw
I/0 modes. All other disk drivers depend on retries as
their only means of error recovery. A bad disk block is one
that contains an error which cannot be corrected via ECC,
for disks with ECC, or any error which cannot be recovered
via retry, for disks without ECC. Retry and ECC recoverable
errors are "soft"™ errors. Certain disk packs (RM@2/3 and
RKB6/7) have the bad blocks flagged in the sector header.
The disk hardware will not attempt to write or read these
blocks, but instead will report a bad sector error (BSE).

To qualify a disk pack for use with Unix, First, obtain a
list of the locations of all bad blocks and soft errors on
the disk pack. The DEC format and verify diagnostic should
provide this information when the disk pack is formatted.
Compare the error location list to the file system layout
for the type of disk to be used, the following guide lines
should be used:

1. The root file system must be free of bad blocks and
although soft errors can be corrected they should be
avoided if possible. Soft errors can not be tolerated
in any disk block that is allocated to the file "/unix"
or any other bootable file, because the standalone
bootstrap does not implement ECC.

2. The swap area must be free of bad blocks. Soft errors
should be avoided 1if possible, because the time
required to correct them will degrade system perfor-
mance.

3. The user file systems must be free of bad blocks, soft
errors are generally not a problem in the user areas.
It is sometimes possible to use a disk pack with bad
blocks in the user file systems by rearranging the disk
partitions to avoid the bad blocks.

September 22, 1981

Release notes

The following notes give a very brief description of
the differences between this distribution and Unix/v7m
release one. The release notes are attention getters only,
refer to the documentation for more detailed information
about the changes and new features.

1. The “#' prompt has been added to the block 2zero disk
bootstraps, see boot(8).

2. The overlay Unix kernel must be booted with the two
stage bootstrap, see boot(8).

3. The RK86 and RK#7 block zero disk boot programs have
been combined into “hkuboot'.

4. The block zero disk bootstraps would halt if only a
return was typed, they will now return to the “#'
prompt.

5. The old (unix_i) I space only Unix systems may still be
booted directly, without using the two stage bootstrap.

6. The “-p' option has been added to the 1s(1) command,
see 1s(l).

7. Logins may now be disabled/enabled at the console ter-
minal, see logins(lm).

8. There is now system shutdown command, see shutdown(8).

9. The iostat(lm) command has been completely rewritten,
see iostat(lm).

186. The fsck(lm) command was added, see fsck(lm).

l1l1. The ps(l) and pstat(lm) commands no longer rely on the
param.h file for system parameter information, they
read it from the unix kernel directly, using the namel-
ist and /dev/mem facilities.

12, Several other commands have been changed, see the docu-
mentation for the details.

13. The file ‘/sys/addenda/README' is must reading !

September 22, 1981

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25,

26.

New processors and disks are supported, see hardware
requirements above.

Local terminals are now supported , see ttys(5).

The init(8) program has been modified to reread the
ttys file, see init(8).

Many floating point changes have been made, see the

. .
documentation for more detail.

A TS1l and A TM1ll magtape on the same system 1is now
supported.

Several bugs in the core dump code were fixed. The new
core dump starting address is now 1008 instead of 44.

The RK@6/7 disk driver has been completely rewritten
and the R101/2 driver has been improved.

The RM@2/3, ML1ll, and RP@4/5/6 disks on the second RH11l
or RH78 are now supported, see hm(4).

The HP and HK disk drivers now have full ECC in block
and raw I/0 modes.

Memory parity error handling has been improved.
Stray vector handling has been improved.

Disk free list spacing has been optimized for disk
rotation.

The ‘mkconf' program has been extensively modified, see
mkconf (1m) .

September 22, 1981

Setting Up Unix - Seventh Edition

Charles B. Haley
Dennis M. Ritchie

Bell Laboratories

Murray Hill, New Jersey 87974

This document has been updated to include additional
processor and peripheral device support , and other enhance-
ments incorporated in UNIX* version seven by the Unix Sys-
tems Engineering group at DIGITAL. The addenda tape (dated
12/2/88) supplied with the standard Unix version seven dis-
tribution has been included on this tape in the directory
/sys/addenda. Most of the addenda has already been
installed on this distribution, for more detail about the
addenda see /sys/addenda/README.

Unix/v7m Release 2.1

Fred Canter
Bill Shannon
Jerry Brenner
Armando Stettner

Digital Equipment Corporation
Continential Boulevard
Merrimack, New Hampshire 03854

Digital Equipment Corporation assumes no responsibili-
ties for this software and makes no warranties or guaranties
as to its suitability or completeness.

*UNIX 1s a Trademark of Bell Laboratories.

September 23, 1981

If you are set up to do it, it might be a good idea
immediately to make a <copy of the tape to guard against
disaster. The tape is 9-track 868 BPI or 1688 BPI and con-
tains some 512-byte records followed by many 108248-byte
records. There are interspersed tapemarks.

The system as distributed contains binary images of the
system and all the user level programs, along with source
and manual sections for them-about 2100 files altogether.
Th binary images, along with cther things needed to flesh
out the file system enough so UNIX will run, are to be put
on one file system called the “root file system'. The file
system size required is 9608 blocks. The second file system
contains the system sources, needed to rebuild Unix and
requires about 58008 512-byte blocks. The third file system
has the remainder of the sources and all of the documenta-
tion, it requires 20,000 blocks of storage.

Making a Disk From Tape

Perform the following bootstrap procedure to obtain a
disk with a root file system on it.

1. Mount the magtape on drive @ at load point.

2. Mount a formatted disk pack on drive 4.
In some cases a disk pack must also be mounted on drive
l.

3. Use the DEC hardware boot ROM or other means to 1load
block @ or 1 at 800 or 16089 BPI into location 8 and
transfer to 8.

4, The tape should move and the CPU loop.
5. The console should type

Boot

Copy the magtape to disk by the following procedure.
The machine's printouts are shown in " ", explanatory
comments are within (). Terminate each line you type
by carriage return or line-feed. There are three
classes of tape drives: the name “tm' is used for the
TUl8 or TE18, “ts' is used for the TS1ll, and “ht' is
used for the TUl6 or TEl6. There are also four classes
of disks: ‘rp' is used for the RP@3, “hp' is used for
the RM82/3 and the RP84/5/6, “hk' 1is used £for the
RKP6/7 , and “rl' is used for the RL22.

September 23, 1981

If you should make a mistake while typing, the charac-
ter '#' erases the last character typed up to the beginning
of the line, and the character '@' erases the entire 1ine
typed. Some consoles cannot ©print lower case letters,
adjust the instructions accordingly.

(bring in the program mkfs)

"M otm(8B,3) (‘tm(8,3)' for TUlB/TE10 808 BPI)
(*ht(2,3)' for TUl6/TEl6 880 BPI)
{(*ht(4,3)" for TUl6/TE16 1688 BPI)
(‘ts(@,3)' for TS1ll 1660 BPI)
(“ts(6,3)' for TS1ll 16088 BPI “tstm')

"file system size:" 9668 (9608 for RPG3)
(9680 for RM@2/3, RP@G4/5/6)
(9600 for RK@6/7)
(7246 for RLO1)
(16489 for RL22)

(see Table 1, in Disk Layout below, for values of "m'
"interleave factor:" m

"blocks per cylinder:" n

"file system:" rp(8,8) (‘rp(8,8)' for RPE3)

(‘hp(@,2)' for RMB2/3, RPO4/5/6)
(*hm(6,8)' for hp on second RH)

("hk(@,8)' for RKE6/7)
(‘rl1(8,08)' for RLAl/2)
"isize = XX"
"m/n = XX"
(after a while)
"exit called"”
"Boot"

The above step makes an empty file system.

Sentember 23, 1981

“n')

6.

The next thing to do is to restore the
new enmpty file
:' printed in the last step with

(bring in the program restor)

B:" tm(8,4) (“tm(@,4) for
(*ht(9,4)' for

(*ht(4,4)' for

(“ts(0,4)" for

(“ts(6,4)' for

"tape?" tm(@,5) (*tm(d,5)' for
(‘ht(8,5)' for

{(*ht(4,5)' for

(‘ts(@,5)' for

(*ts(6,5)' for

*disk?" rp(6,0) (‘rp(@,8)' for
' (“hp(g,8)' for
("hm(98,06)* for

(*‘hk(8,8)"' for
(‘rl(9,8)* for
*Last chance before scribbling

data

"TU1@/TELG

TUl6/TE1l6
TUl6/TEl6
TS1l 1600
TS1l 1640

TUl8/TELlQ
TUl6/TE1l6
TUl6/TE16
TS1l 1600
TS1l 1600

RPO3)
RMP2/3,

onto
system. To do this you respond to the

the

860 BPI)
849 BPI)
1660 BPI)
BPI)

BPI ‘tstm')

860 BPI)
860 BPI)
16006 BPI)
BPI)

BPI “tstm')

RP04/5/6)

hp on second RH)

RKB6/7)
RLO1/2)
on disk."

(you type return)

(the tape moves, perhaps 5-10 minutes pass)

"end of tape" ’
"Boot" ‘

You now have a UNIX root file system.

September 23, 1981

Booting UNIX

You probably have the bootstrap running, left over from
the 1last step above; if not, repeat the boot process (step
3) again. The root file system contains 18 preconfigured
unix operating systems. These wunix systems are named
“xyunix', where ‘x' is the disk name and ‘y' 1is the tape
name. Boot the unix monitor which most closely matches your
configuration by responding to the ":" with one of the fol-

14 M e

10'?14.11\5 :

hp(8,0)hphtunix . (for RPP4/5/6 or RMB2/3,)
hp(4,9)hptmunix (on first RH controller)
hp(8,08)hptsunix’ ‘
hm(6,0)hmhtunix (for RPO4/5/6 or RM@2/3,)
hm(8,9)hmtmunix {on second RH controller)
hm(8,8)hmtsunix

rp(6,8)rphtunix (for RPG3)

rp(@,0) rptmunix
rp(8,8) rptsunix

hk(8,0)hkhtunix (for RKO6/7)
hk(8,8)hktmunix

hk(0,08)hktsunix

rl(@,0)rldlhtunix (for RLA1)

r1(8,0)rl8ltmunix
rl(d,0)rldltsunix
rl(6,0)rlf2htunix (for RLE2)
rl(0,0)rl@d2tmunix
rl(0,0)rl@2tsunix

The machine should type the following:
unix/vim 2.1

mem = XXX

#

The mem message gives the memory available to user programs
in bytes.

After booting unix, the current date and time (date
(1)) must be set as follows:

date yymmddhhmm

date 8108231300

September 23, 1981

UNIX is now running, and the ‘UNIX Programmer's manual'
applies; references below of the form X(Y) mean the subsec-
tion named X in section Y of the manual. If your processor
is one of the non-separate I & D space CPUs mentioned above,
you must use the alternate version of several system com-
mands and the C object code optimizer. If required the
alternate commands should be installed as follows:

cd /bin

cat makefile

make cmd4g (non-separate I & D CPU)
or

make cmd78 (separate I & D CPU)

cd /

sync

The system 1is distributed with the ‘emd78! commands
installed. The following commands will be replaced:

adb
dcheck
dump
dumpdir
icheck
ncheck
restor
tar

The above list represents the commands required to set up
and maintain unix version seven on the smaller processors.
Most of the remaining commands will function without being
recompiled, however there will be certain commands that will
need to be recompiled and others that are too large to
operate on non-separate I & D space CPUs.

If your system disk is the RLO1 or RLO2, you must
select alternate ‘/etc/rc' and ‘/etc/checklist' files as
follows:

cp /etc/rc_rl@l /Jetc/rc

cp /etc/cl_rlol /etc/checklist
or

cp /etc/rc_rl@2 /etc/rc

cp /etc/cl_rlB2 /etc/checklist

The “#' is the prompt from the Shell, and indicates you
are the super-user. The user name of the super-user is
‘root' if vou should find yourself in multi-user mode and
need to log in; the login is ‘root', there is no password.

September 23, 1981

To simplify your life later, copy the appropriate ver=-
sion of the system as specified above to plain ‘unix.' For
example, use cp (1) as follows if you have an RP@83 disk and
a TUl6/TE16 tape:

cp rphtunix unix
In the future, when you reboot, you can type just
hp(8,8)unix

to the “:' prompt. (Choose appropriately among ‘“hp', ‘rp',
*hk', ‘rl' , “ht', “tm', “ts' according to your configura-
tion). After selecting and copying the correct version of
unix, all of the remaining preconfigured unix systems should
be removed in order to free up space in the root file sys-
tem. The appropriate preconfigured unix system should be
retained so that in case of disaster there will always be a
bootable unix system in the root.

You now need to make some special file entries in the
dev directory. These specify what sort of disk you are run-
ning on, what sort of tape drive you have, and where the
file systems are. For simplicity, this recipe creates fixed
device names. These names will be used below, and some of
them are built into various programs, so they are most con-
venient. However, the names do not_ always represent the
actual major and minor device in the manner suggested in
section 4 of the Programmer's Manual. For example, ‘rp3’
will be wused for the name of the file system on which the
user file system is put, even though it might be on an RP@6
and is not necessarily 1logical device 3. Also, this
sequence will put the user file system on the same disk
drive as the root, which is not the best place if you have
more than one drive. Thus the prescription below should be
taken only as one example of where to put things. See also
the section on ‘Disk layout' below.

September 23, 1981

In any event, change to the dev directory (cd(l)) and,
if you 1like, examine and perhaps change the makefile there
{make (1)).

cd /dev
cat makefile

Then, use one of

make rpd3
make rp@4
make rp@5
make rp@6
make rm@2
make rm@3
make rp#4_2
make rp@d5 2
make rp@6_2
make rm@g2_2
make rm@3_2
make rk@6
make rk@7
make rlgl
make rig@2

depending on which disk you have. Then, use one of

make tm
make ht
make ts
make tstm

depending on which tape you have. The ~_2' 1lines are for
the hp disks on the second RH1ll or RH78 controller. The
“tstm' line is for the special case of having a TS1l1 and a
TM1l on the same system.

The file “rp@#' refers to the root file system; "swap'
to the swap-space file system; ‘rp2' to the system source
file system; 'rp3' to the user file system. The devices
‘rrp@', ‘'rrp2', and ‘rrp3' are the ‘raw' versions of the
disks. Also, "mt@' is tape drive 8, at 80@¢ BPI; ‘rmt@' is
the raw tape, on which large records can be read and writ-
ten; ‘nrmt@' is raw tape with the quirk that it does not
rewind on close, which is a subterfuge that permits multi-
file tapes to be handled. *mtl', ‘rmtl', and ‘“nrmtl' also
refer to tape drive 8, but at 1600 BPI.

September 23, 1981

Before anything further is done the bootstrap block on
the disk (block #) should be filled in. This is done using
one of the following commands:

(RPG3)
dd if=/mdec/rpuboot of=/dev/rp@ count=1l

(RMB2/3, RPO4/5/6)
dd if=/mdec/hpuboot of=/dev/rp# count=l

(RK86/7) :
dd if=/mdec/hkuboot of=/dev/rpd count=1

(RLOL1/2)
dd if=/mdec/rluboot of=/dev/rpd count=1

Now the DEC disk bootstraps are usable. See Boot Pro-
cedures(8) for further information.

The system sources should now be extracted £from the
distribution tape by following the procedure shown below,
again the comments are enclosed in (). The number follow-
ing the "mkfs" command is the size of the file system, which
differs for each type of disk. The numbers “m' and 'n',
following the size , are the file system interleave factors,
see ‘Disk Layout' table 1 to obtain the optimum values for
your system.

cd /
(make an empty file system)

/etc/mkfs /dev/rrp2 #4#4%4 m n (skip this if using RL#2)

(67468 on RPG3)
(08808 on RM@2/3)
(88778 on RPOG4/5/6)
(68514 on RK86/7)
(16240 on RLS1)

/etc/mount /dev/rp2 /sys (skip this if using RL@2)
cd /sys

(skip 6 files on the tape)
dd if=/dev/nrmtd of=/dev/null bs=28b files=6 (800 BPI)
dd if=/dev/nrmtl of=/dev/null bs=20b files=6 (1680 BPI)

(extract the source files)
tard4@ xbf 20 /dev/rmt® (868 BPI)
tard4@ xbf 20 /dev/rmtl (1600 BPI)
cd /
sync

/etc/umount /dev/rp2 (skip this step if using RLO2)

September 23. 1981

- 19 -

The next thing to do is to extract the rest of the data
from the tape. This wuser file system is too large for a
single RL@l disk, it must be split between two RLO1 disk
packs. There is no set procedure for accomplishing the
split, one suggestion would be to load the source files on
one pack, the documentation on the second pack and then fill
out each pack with the remainder of the files. Comments are
enclosed in (); don't type these. The number in the first
command is the size of the file system; it differs between
RP23, RM@2/3, RPO4/5, RPO6 , RKB6/7, and RLOl/2. Again see
*Disk Layout' table 1 for the values of ‘m' and “n'.

(make an empty file system)

/etc/mkfs /dev/rrp3 #####4% m n
(0550090 on RPO3)
(165120 on RM#2/3)
(1442106 on RPB4/5)
(313082 on RP@6)
(816246 on RLO1)
(820480 on RLO2)
(827068 on RK@6)
(826598 on RK@7)

(The above command takes about 2-3 minutes on an RP#3)

/etc/mount /dev/rp3 /usr

cd /usr

(skip 7 files on the tape)
dd if=/dev/nrmtd of=/dev/null bs=20b files=7 (808 BPI)
dd if=/dev/nrmtl of=/dev/null bs=20b files=7 ({1688 BPI)

(extract the files)
tard4d xbf 280 /dev/rmt@ (8608 BPI)
tard8 xbf 28 /dev/rmtl (16088 BPI)
(This takes a while, time for a break 1!)
cd / '
sync
/etc/umount /dev/rp3

All of the data on the tape has been extracted.

You may at this point mount the source file systems
(mount(l)). To do this type the following:

/etc/mount /dev/rp2 /sys (skip this step if using RL@2)
/etc/mount /dev/rp3 /usr

The source and manual pages are now available in subdirec-
tories of /usr and /sys. The above mount commands are only
needed if you intend to play around with source on a single
user system, which is not necessary. The file systems are
mounted automatically when multi-user mode is entered; by a
command in the file /etc/rc. (See “Disk Layout' below). The
system should now be placed into multi-user mode by typing
the control and d keys simultaneously (control d), some text
will be printed followed by the "login:" prompt.

September 23, 1981

- 11 -

Before UNIX is turned up completely, a few configura-
tion dependent exercises must be performed. At this point,
it would be wise to read all of the manuals (especially
*Regenerating System Software') and to augment this reading
with hand to hand combat. DO NOT !, proceed past this point
until you have read the section on regenerating UNIX in
‘Regenerating System Software'. The “Setting Up Unix' and
the “Regenerating System Software' documents are located in
/usr/doc and can be printed by using one of the following
commands: :

nroff -mf setup
nroff -mf regen

Reconfiguration

The general information given in this section is
intended to document the areas of the unix software which
require modification in order to tailor unix to the specific
system configuration. The suggested procedure is to read
this section and then follow the step by step instructions
in the “UNIX' section of ‘Regenerating system Software'.

The first step is to select the type of wunix system
most appropriate to your CPU, there are three; unix id for
the separate I & D space CPUs (PDPl11/44, PDPl11/45, PDPl1/55,
& PDP11/78); wunix_i for the non-separate I & D space CPUs
(pDP11/23, PDPl1,/24, PDP1l1/34, PDPll/40, & PDP11/60);
unix_ov the overlay text kernel for the non-separate I & D
space CPUs. The size limitations of the unix_i kernel makes
its use as an actual unix system inappropriate, its only
purpose in life is to initially load unix from the distribu-
tion tape. The overlay text unix kernel should be used as
the multi-user unix system on the non-separate I & D space
machines.

The UNIX system running is configured to run on a non-
separate I & D space CPU with the given disk and tape, a
console, and no other device. This 1is certainly not the
correct configuration. You will have to correct the confi-
guration table to reflect the true state of your machine.

September 23, 1981

- 12 -

It is wise at this point to know how to recompile the
system. Respond to the "login:" prompt with "sys" followed
by a return, there is no password. This will 1log you into
the system source account with a current directory of /sys.
Print (cat(l)) the file /sys/conf/makefile. This file |is
input to the program ‘make(l)' which if invoked with *make
all® will recompile all of the system source and install it
in the correct libraries. The libraries supplied with this
distribution tape are up to date and need not be recompiled
unless changes are made to the system source code. See
‘Regenerating System Software' for instructions on recompil-

ing individual source modules and installing them in the
correct libraries.

The file /sys/h/param.h contains the parameters which
determine the size of the various data spaces within unix.
There are two versions of this file, /sys/h/param_ov.h for
the PDP11/23, PDPll/24, PDP1l1/34, PDP11/40, and PDPl1/64,
and /sys/h/param_id.h for the PDP11/44, PDP11/45, and
PDP11/7@8. Prior to recompiling any of the system source code
the correct parameter file must be copied to /sys/h/param.h
and to /usr/include/sys/param.h. This is done automatically
by the makefiles and shell procedues which are provided for
making unix.

The program mkconf(l) prepares files that describe a
given configuration (See mkconf(l)). In the /sys/conf
directory, the 18 files xyconf were input to mkconf to pro-
duce the 18 versions of the system xyunix, "x" is the disk
type (rp, hp, hm, hk, rl@l, or rl@f2) and "y" 1is the tape
(ht, tm, or ts). Pick the appropriate one, copy it to unix-
conf, and edit unixconf to add 1lines describing your own
configuration. (Remember the console typewriter is automat-
ically included; don't count it in the k1 specification.)
Then run mkconf; it will generate the files l.s (trap vec-
tors) c.c (configuration table), and mch@.s. Take a careful
look at l.s to make sure that all the devices that you have
are assembled in the correct interrupt vectors. If vyour
configuration is non-standard, you will have to modify l.s
to fit your configuration.

September 23, 1981

- 13 -

There are «certain magic numbers and configuration
parameters imbedded 1in various device drivers that you may
want to change. The device addresses of each device are
defined in each driver. 1In case you have any non-standard
device addresses, just change the address and recompile.
(The device drivers are in the directory /sys/dev.)

The DZ1ll driver is configured for two DZ1ll (8 lines).
The DCll driver is set to run 4 1lines. This <can be
changed in dc.c.

The DH1l driver is set to handle 1 DH1l with a full
complement of 16 lines. If you have less, or more, you may
want to edit dh.c.

The DN1ll driver will handle 4 DN's. Edit dn.c.

The DUll driver can only handle a single DU. This can-
not be easily changed.

The KL/DL driver is set up to run a single DL1l1-A, -B,
or -C (the console) and no DL1ll-E's. To change this, edit
kl.c to have NKL1ll reflect the total number of DL11-ABC's
and NDL1ll to reflect the number of DL11-E's. So far as the
driver is concerned, the difference between the devices is
their address.

You should edit of the disk and tape drivers (rl.c,
rf.c, rk.c, rp.c, tm.c, ¢tc.c, ts.c, hk.c, hp.c, ht.c) to
reflect the number of disk and tape drives in your confi-
guration. The big disk drivers (hk.c, rp.c, and hp.c) have
partition tables in them which you may want to experiment
with.

After all the corrections have been made, use “make(l)'
to recompile the system (or recompile individually if you
wish: use the makefile as a guide). If you compiled indivi-
dually, say “make unix??' in the directory /sys/conf , the
?? is the CPU type, i.e., 23, 24, 34, 40, 64, 44, 45, 55,
74@. The final object file will be named unix_ov for the
PDP11,/23, PDP11/24, PDP1l1/34, PDPl11/44, and PDPl1l/60 or
unix_id for the PDP11/44, PDPl11/45, PDP11/55, and PDP11/780.
This file should be moved to the root, and then booted to
try it out. It is best to name it /nunix so as not to des-
troy the working system until you're sure it does work. See
Boot Procedures(8) for a discussion of booting. Note:
before taking the system down, always (!! perform a

f1

\ <+

sync{lm) toc force delayed ocutput to the disk.

September 23, 1981

- 14 -

Special Files

Next you must put in special files for the new devices
in the directory /dev using mknod(l). Print the configura-
tion file c.c created above. This 1is the major device
switch of each device class (block and character). There is
one line for each device configured in your system and a
null 1line for place holding for those devices not config-
ured. The essential block special files were installed
above; for any new devices, the major device number is
selected by counting the line number (from 2zero) of the
device's entry in the block configuration table. Thus the
first entry in the table bdevsw would be major device zero.
This number is also printed in the table along the right
margin.

The minor device is the drive number, unit number or
partition as described under each device in section 4 of the
manual. For tapes where the unit is dial selectable, a spe-
cial file may be made for each possible selection. You can
also add entries for other disk drives.

In reality, device names are arbitrary. It is usually
convenient to have a system for deriving names, but it
doesn't have to be the one presented above.

Some further notes on minor device numbers. The hp and
hk drivers use the 8168 bit of the minor device number to
indicate whether or not to interleave a file system across
more than one physical device. See hp(4) and hk(4) for more
detail. The tm, ts, and ht drivers use the 020886 bit to
indicate whether or not to rewind the tape when it is
closed. The 0180 bit indicates the density of the tape, set
for 80@ BPI and cleared for 16606 BPI. By convention, tape
special files with the 6200 bit on have an 'n' prepended to
their name, as in /dev/nmtd or /dev/nrmtl. Again, see
tm(4), ts(4) or ht(4).

September 23, 1981

- 15 -

The naming of character devices 1is similar to block
devices. Here the names are even more arbitrary except that
devices meant to be used for teletype access should (to
avoid confusion, no other reason) be named /dev/ttyX, where
X is some string (as in "#8' or ‘library'). The files con-
sole, mem, kmem, and null are already correctly configured.
The makefile in /dev can be used to make the special files
. for the DZ1ll and DH1ll communications multiplexers as fol-
lows:

make tty rm (removes all tty special files)
make dz# (# = dz unit number)
make dh# (# = dh unit number)

Each dz1ll unit handles 8 lines, and each dhll unit 16 lines.
Prior to making the dz or dh special files the "tty_rm" make
command should be executed in order to remove an existing
tty special files, the files "/dev/console™ and "/dev/tty"
will not be removed.

The disk and magtape drivers provide a ‘raw' interface
to the device which provides direct transmission between the
user's core and the device and allows reading or writing
large records. The raw device counts as a character device,
and should have the name of the corresponding standard block
special file with “r' prepended. (The “n' for no rewind
tapes violates this rule.) Thus the raw magtape files would
be called /dev/rmtX. These special files should be made.

When all the special files have been created, - care

should be taken to change the access modes (chmod(l)) on
these files to appropriate values (probably 680 or 644).

Sentember 23. 1981

- 16 -

Floating Point

UNIX only supports (and really expects to have) the
FPll type floating point unit. The PDP11/48 Floating
Instruction Set is NOT supported by unix. For machines
without the FPll hardware, there is a user subroutine avail-
able that will catch illegal instruction traps and interpret
floating point operations. This allows programs with float-
ing point constants to be compiled and executed, on machines
without the FPll. To compile floating point programs use
the “-f' flag to cc(l). This flag ensures that the floating
point interpreter 1is 1loaded with the program and that the
floating point version of ‘cc' is used. The system as
delivered has this code included in only the iostat (1) and
ac (1) commands and adb (1), although the operating system
adapts automatically to the presence or absence of the FPll.
If a program which has the floating point interpreter
included is executed on a CPU with the FPll, the interpreter
code is ignored and the floating point hardware is used
instead. The floating point interpreter code may be removed
by recompiling the program without the -f option. The
floating point simulator software is extremely slow, if any
serious floating point work is to be done the floating point
hardware is really required.

The changes described in the document "Unix Problems
With Floating-Point Processors™ by Bob Campbell, Ed Gould,
Vance Vaughan, and Jim Reeds of the University of California
at Berkeley, have been installed in this distribution.

September 23, 1981

-17 -

Time Conversion

If your machine is not in the Eastern time zone, you
must edit (ed(l)) the file /sys/h/param.h to reflect your
local time. The manifest "TIMEZONE' should be changed to
reflect the time difference between local time and GMT in
minutes. For EST, this is 5*60; for PST it would be 8%*68.
Finally, there 1is a ‘DSTFLAG' manifest; when it is 1 it
causes the time to shift to Daylight Savings automatically
between the 1last Sundays 1in April and October (or other
algorithms in 1974 and 1975). Normally this will not have
to be reset. When the needed changes are done, recompile
and load the system using make(l) and install it. (As a
general rule, when a system header file is changed, the
entire system should be recompiled. As it happens, the only
uses of these flags are in /sys/sys/sysd.c, so if this is
all that was changed it alone needs to be recompiled.)

You may also want to look at timezone(3)
(/usr/src/libc/gen/timezone.c) tc see if the name of your
timezone is in its internal table. If needed, edit the
changes in. After timezone.c has been edited it should be
compiled and installed in its library. (See
/usr/src/libc/{(mklib and compall)) Then you should (at your
leisure) recompile and reinstall all programs that use it
(such as date(l)).

Santamher 23. 1981

- 18 -

Disk Layout

The following table lists the file system interleave
factors (m and n) to be used with mkfs (1lm) and fsck -s (1lm)
to achieve optimum free list spacing when creating or sal-
vaging file systems. These values were derived through
experimentation, calculation and intuition, and although
they may not be optimal in all cases they are certainly
better that the default free list spacing assumed by mkfs
and fsck.

TABLE 1
File System Interleave Factors

CPU RL#1/2 RKO6/7 RPG3 RM@2 RM@3 RP04/5/6

TYPE m/n m/n m/n m/n m/n m/n
11/23 13/20 X X X X X
11/24 12/28 14/66 X 20/160 X 26/418
11/34 18/29 11/66 6/286 15/168 X 15/418
11/40 11/2¢ 12/66 6/208 16/160 X 16/418
11/44 7/20 8/66 4/200 11/1648 X 117418
11/45 9/20 18/66 5/208 14/160 X 14/418
11/45z 11/28 12/66 X 17/168 X 177418
11/55 9/20 10/66 5/208 14/168 X 14/418
11/60 9/20 18/66 5/280 14/1680 X 14/418
11/70 6/20 6/66 X 9/164 13/168 9/418

If there are to be more file systems mounted than just
the root ,/sys, and /usr, use mkfs(l) to create any new file
system and put its mounting in the file /etc/rc (see init(8)
and mount(l)). (You might 1look at /etc/rc anyway to see
what has been provided for you.)

There are two considerations in deciding how to adjust
the arrangement of things on your disks: the most important
is making sure there is adequate space for what is required;
secondarily, throughput should be maximized. Swap space is
a critical parameter. The system as distributed has 8778
(hpunix), 8778 (hkunix), 8000 (rpunix) , 3806 (rl8lunix),
4000 (rl@2unix) blocks for swap space. This should be large
enough so running out of swap space never occurs. You may
want to change these if local wisdom indicates otherwise.

September 23, 1981

- 19 -

Many common system programs (C, the editor, the assem-
bler etc.) create intermediate files in the /tmp directory,
so the file system where this is stored also should be made
large enough to accommodate most high-water marks. If you
leave the root file system as distributed (except as dis-
cussed above) there should be no problem. All the programs
that create files in /tmp take care to delete them, but most
are not immune to events like being hung up upon, and can
leave dregs. The directory should be examined every so
often and the old files deleted.

Exhaustion of user-file space is certain to occur now
and then; the only mechanisms for controlling this
phenomenon are occasional use of du(l), df(l), quot(l),
threatening messages of the day, and personal letters.

The efficiency with which UNIX is able to use the CPU
is 1largely dictated by the configuration of disk controll-
ers. For general time-sharing applications, the best stra-
tegy is to try to split wuser files, the root directory
(including the /tmp directory) and the swap area among three
controllers.

Once you have decided how to make best use of vyour
hardware, the question is how to initialize it. If you have
the equipment, the best way to move a file system is to dump
it (dump(l)) to magtape, use mkfs(l) to create the new file
system, and restore (restor(l)) the tape. If for some rea-
son vyou don't want to use magtape, dump accepts an argument
telling where to put the dump; you might use another disk.
Sometimes a file system has to be increased in logical size
without copying. The super-block of the device has a word
giving the highest address which «can be allocated. For
relatively small increases, this word can be patched using
the debugger (adb(l)) and the free list reconstructed using
icheck(l). The size should not be increased very greatly by
this technique, however, since although the allocatable
space will increase the maximum number of files will not
(that 1is, the 1i-list size <can't be changed). Read and
understand the description given in file system(5) before
playing around 1in this way. You may want to see section
rp(4) or hp(4) for some suggestions on how to 1lay out the
information on RP disks. More detailed information about
the disk partitions may be obtained from the “sizes' tables
in the disk drivers (hp.c, hk.c, rp.c). Also see
/usr/doc/hksizes and /usr/doc/hpsizes for the RK@6/7 and
RM@2/3, RPOG4/5/6 disk layouts.

September 23, 1981

- 20 -

If you have to merge a file system into another, exist-
ing one, the best bet is to use tar(l). If you must shrink
a file system, the best bet is to dump the original and res-
tor it onto the new filesystem. However, this might not
work if the i-list on the smaller filesystem is smaller than
the maximum allocated inode on the larger. If this is the
case, reconstruct the filesystem from scratch on another
filesystem (perhaps using tar(l)) and then dump it. If you
are playing with the root file system and only have one
drive the procedure is more complicated. What you do is the
following:

1. GET A SECOND PACK!!!!

2. Dump the current root filesystem (or the reconstructed
one) using dump(l).

3. Bring the system down and mount the new pack.

4. Retrieve the WECo distribution tape and perform steps 1
through 5 at the beginning of this dccument, substitut-
ing the desired file system size instead of 9688 when
asked for “file system size'.

5. Perform step 6 above up to the point where the ‘tape'
question 1is asked. At this point mount the tape you
made just a few minutes ago. Continue with step 6 above
substituting a @ (zero) for the 5.

September 23, 1981

- 21 -

New Users

Install new users by editing the password file
/etc/passwd (passwd(5)). This procedure should be done once
multi-user mode is entered (see init(8)). You'll have to
make a current directory for each new user and change its
owner to the newly installed name. Login as each wuser to

make sure the password file is correctly edited. For exam-
ple:

ed /etc/passwd
$a 7
joe::18:1::/usr/joe:

w

q

mkdir /usr/joe
chown joe /usr/jce
login joe

l1s -la

login root

This will make a new login entry for Jjoe, who should be
encouraged to use passwd(l) to give himself a password. His
default current directory 1is /Jusr/joe which has been
created. The delivered password file has the user bin in it
to be used as a prototype.

September 23, 1981

- 22 -

Multiple Users

If UNIX is to support simultaneous access from more
than just the console terminal, the file /etc/ttys (ttys(5))
has to be edited. To add a new terminal be sure the device
is configured and the special file exists, then set the
first character of the appropriate line of /etc/ttys to 1
(or add a new line). If the new terminal is to be a "local"

terminal, i.e., not a dialup line, set the first character
to 2, this will enable the terminal to operate without hav-
ing carriar asserted. Note that init.c will have to be
recompiled if there are to be more than 108 terminals. Also
note that if the special file 1is 1inaccessible when init
tries to create a process for it, the system will thrash

trying and retrying to open it.
File System Health

Periodically (say every day or so) and always after a
crash, you should check all the file systems for consistency
(fsck (1lm)). You should create the file "/etc/checklist"
containing the names of the file systems to be checked, see
fsck (1lm) for more detail. It is quite important to execute
sync (1m) before rebooting or taking the machine down. This
is done automatically every 30 seconds by the update program
(8) when a multiple-user system is running, but you should
do it anyway to make sure.

Dumping of the file system should be done regularly,
since once the system 1is going it is very easy to become
complacent. Complete and incremental dumps are easily done
with dump(l). Dumping of files by name is best done by
tar(l) but the number of files is somewhat limited. Finally
if there are enough drives entire disks can be copied using
cp(l), or preferably with d4d(l) using the raw special files
and an appropriate block size.

September 23, 1981

- 23 -

Converting Sixth Edition Filesystems

The best way to convert file systems from 6th edition

(V6) to 7th edition (V7) format is to use tar(l). However, a
special version of tar must be prepared to run on V6. The
following steps will do this:

l.

Ze

change directories to /usr/src/cmd/tar
At the shell prompt respond
make vétar or make vé6tardd

This will leave an executable binary named ‘vé6étar' or
‘vetardg'.

Mount a scratch tape.
Use tp(l) to put ‘véetar' on the scratch tape.
Bring down V7 and bring up V6.

Use tp (on V6) to read in ‘wvé6tar'. Put it in /bin or
/usr/bin (or perhaps some other preferred location).

Use vb6tar to make tapes of all that you wish to con-
vert. You may want to read the manual section on
tar(l) to see whether you want to use blocking or not.
Try to avoid wusing full pathnames when making the
tapes. This will simplify moving the hierarchy to some
other place on V7 if desired. For example

chdir /usr/ken
vetar ¢ .

is preferable to

vetar ¢ /usr/ken

After all of the desired tapes are made, bring down V6
and reboot V7. Use tar(l) to read in the tapes Jjust
made.

Cantamhar 22 . 1081

- 24 -

0dds and Ends

The programs dump, quot, ncheck, and df (source in
/usr/source/cmd) should be changed to reflect your default
mounted file system devices. Print the first few 1lines of
these programs and the changes will be obvious. Tar should
be changed to reflect your desired default tape drive.

Good Luck
Charles B. Haley

Dennis M. Ritchie
Fred Canter

September 23, 1981

Regenerating System Software

Charles B. Haley
Dennis. M. Ritchie

1 Laboratories
11, New Jersey 37974

-
=]

el
Murray Hi

This document has been updated to include the modifica-
tions to UNIX* version seven by the Unix Systems Engineering
group at DIGITAL.

Unix/v7m Release 2.1

Fred Canter

Digital Equipment Corporation
Continential Boulevard
Merrimack, New Hampshire #3054

Digital Equipment Corporation assumes no respohsibili-
ties for this software and makes no warranties or guaranties
as to its suitability or completeness.

*NIX is a Trademark of Bell Laboratories.

Santamher 2. 1981

Introduction

This document discusses how to assemble or compile
various parts of the unix system software. This may be
necessary because a command or 1library 1is accidentally
deleted or otherwise destroyed; also, it may be desirable to
install a modified version of some command or library rou-
tine. A few commands depend to some degree on the current
configuration of the system; thus in any new system modifi-
cations to some commands are advisable. Most of the likely
modifications relate to the standard disk devices contained
in the system. For example, the df(l) (disk free') command
has built into it the names of the standardly present disk
storage drives (e.g. ‘/dev/rf@9‘, */dev/rp@‘'). Df(l) takes
an argument to indicate which disk to examine, but it is
convenient 1if its default argument is adjusted to reflect
the ordinarily present devices. The companion document
“Setting up UNIX' discusses which commands are likely to
require changes. Several of the command sources " include'
the file <sys/param.h>, it may be necessary to recompile
some or all of these commands if the system tunable parame-
ters are changed, see System Tuning below.

September 23, 1981

Where Commands and Subroutines Live

The source files for commands and subroutines reside in
several subdirectories of the directory /usr/src. These
subdirectories, and a general description of their contents,
are

cmd Source files for commands.

libc/stdic Scurce files making up the “standard 1i/¢ pack-
age'.

libc/sys Source files for the C system call interfaces.

libc/gen Source files for most of the remaining routines
described in section 3 of the manual.

libc/crt Source files making up the C runtime support
package, as in call save-return and long arith-
metic.

libc/csu Source for the C startup routines.

games Source for (some of) the games. No great care

has been taken to try to make it obvious how to
compile these; treat it as a game.

1ibF77 Source for the Fortran 77 runtime 1library,
exclusive of IO.

1ibI77 Source for the Fortran 77 IO runtime routines.

1libdbm ?g?rce for the ‘data-base manager' package dbm

libfpsim Source for the floating-point simulator routine.

libm Source for the mathematical 1library.

libplot Source for plotting routines.

September 23, 1981

Commands

The regeneration of most commands 1is straightforward.
The ‘omd' directory will contain either a source file for
the command or a subdirectory containing the set of files

that make up the command. 1If it is a single file the com-
mand

-ed /usr/src/cmd

cmake cmd name

suffices. (Cmd_name is the name of the command you are play-
ing with.) The result of the cmake command will be an exe-
cutable version. If you type ‘

cmake -cp cmd_name

the result will be copied to /bin (or perhaps /etc or other
places if appropriate).

The cmake command has been modified to make the alter-
nate version of certian commands required for operation of
unix version seven on the PDP11/23, PDPl1/24, PDP1l1l/34,
PDP11/46, and PDPl1/60 processors. These commands are com-
piled by

cmake cmd_name4d
and are named as follows:

dcheck4d
dump4@
dumpdir4g
icheck4d
ncheck4g
restor4d

September 23, 1981

Prior to making a command the correct version of the
parameter file must be copied to /usr/include/sys/param.h,
use /sys/h/param_ov.h for non separate I and D space CPUs
and /sys/h/param_id.h for separate I and D space CPUs. 1In
order to simpilify this process a “makefile' has been pro-
vided, which automatically selects the correct parameter
file, recompiles all necessary commands, and installs them
in /bin or /etc as c¢md_named4fd or cmd_name78. For non
separate I and D space CPUs use:

cd /usr/src/cmd
make cmd4g

For separate I and D space CPUs use:

cd /usr/src/cmd
make cmd70

The command “make all' can be used to make both ¢md4@ and
cmd78. The ‘makefile' in /bin can then be used to copy
desired version of each command to its normal name, i.e.,
dump4@ or dump7¢ to dump, etc.

If the source files are in a subdirectory there will be
a "makefile' (see make(l)) to control the regeneration.

After changing to the proper directory (cd(l)) you type one
of the following:

make all The program is compiled and loaded; the execut-
able is left in the current directory.

make cp The program is compiled and loaded, and the exe-
cutable 1is installed. Everything is cleaned up
afterwards; for example .o files are deleted.

make cmp The program is compiled and loaded, and the exe-
cutable is compared against the one in /bin.

Some of the makefiles have other options. Print
(cat(l)) the ones you are interested in to find out.

The makefile for the tar command has been - updated to
make tar40, which is requried for non separate I & D space
processors.

There are now six versions of “adb', in order to deal
with the wvarious types of unix kernels and the absence of
floating point hardware. Refer to the “README' file in
*/usr/src/cmd/adb' for information on how to select the
appropriate version of adb and how to generate it.

Qontroamhar 272 1001

The Assembler

The assembler consists of two executable files: /bin/as
and /lib/as2. The first 1is the @-th pass: it reads the
source program, converts it to an intermediate form in a
temporary file ‘/tmp/atm@?', and estimates the final loca-
tions of symbols. It also makes two or three other tem-
porary files which contain the ordinary symbol table, a

table of temporary symbols {(like 1l:) and possibly an over-
Flow intermediate f£file The program /1ib/as2 acts as an .

du - Al T AT a R LT -~-aTe - Rt

ordinary multiple pass assembler with input taken from the
files produced by /bin/as.

The source files for /bin/as are named
*/usr/src/cmd/as/asl?.s' (there are 9 of them); /lib/as2 is
produced from the source files ‘/usr/src/cmd/as/as2?.s';
they 1likewise are 9 in number. Considerable care should be
exercised in replacing either component of the assembler.
Remember that if the assembler is lost, the only recourse is
to replace it from some backup storage; a broken assembler
cannot assemble itself.

There is now a second assembler ‘ovas', which is used
by the overlay C compiler to generate the overlay text unix
kernel. The “makefile' in "/usr/src/cmd/as' has been modi-
fied to make the overlay assembler. The file
*/usr/src/cmd/as/README' contains more information on the
overlay assembler.

The C Compiler

There is now an overlay C compiler, used to generate
the overlay text unix kernel. The overlay C compiler and
its make procedure have been integrated with the standard C
compiler. The file "/usr/src/cmd/c/README' further explains
the overlay C compiler and its generation.

The C compiler consists of seven routines: °/bin/cc',
which calls the phases of the compiler proper, the compiler
control line expander ‘/lib/cpp', the assembler (‘as'), and
the 1loader (714"). The phases of the C compiler are
*/1ib/c@' or “/lib/ovc@', which is the first phase of the
compiler; “/lib/cl', which is the second phase of the com-
piler; and ‘/lib/c2', which 1is the optional third phase
optimizer. The loss of the C compiler is as serious as that
of the assembler.

September 23, 1981

The source for /bin/cc resides in " /usr/src/cmd/cc.c'.
Its 1loss alone (or that of c2) is not fatal. If needed,
prog.c can be compiled by

/1lib/cpp prog.c >tempd
/1lib/c8 temp@ templ temp2
/1lib/cl templ temp2 temp3
as - temp3

1d -n /lib/crtf.o a.out -lc

The source for the compiler proper is in the directory
/usr/src/cmd/c. The first phase (/1lib/c@) or (/lib/ovc@) is
generated from the files c¢#0.c, ..., cB5.c, which must be
compiled by the C compiler. There is also c@.h, a header
file included by the C programs of the first phase. To make
a new /lib/c8 and /lib/ovc@ use

make -f mfnov c@
make -f mfov ovcH

Before installing the new c@s, it is prudent to save the old
ones someplace.

The second phase of C (/lib/cl) is generated from the
source files cl#.c, ..., cl3.c, the include-file cl.h, and a
set of object-code tables combined into table.o. To gen-
erate a new second phase use

make -f mfov cl

It is likewise prudent to save cl before 1installing a new
version. In fact in general it is wise to save the object
files for the C compiler so that if disaster strikes C <can
be reconstituted without a working version of the compiler.

In a similar manner, the third phase of the C compiler
(/1lib/c2) is made up from the files c28.c and c2l.c together
with c2.h, and is compiled by the command:

make -f mfov c2
Its loss is not critical since it is completely optional.

The set of tables mentioned above is generated from the
file table.s. This ‘.s' file 1is not in fact assembler
source; it must be converted by use of the cvopt program,
whose source and object are 1located in the C directory.
Normally this is taken care of by make(l). You might want to
look at the makefile to see what it does.

September 23, 1981

UNIX

The source and object programs for UNIX are kept in the
subdirectories of /sys. In the subdirectory h there are
several files ending in “.h'; these are header £files which
are picked up (via “#include ...') as required by each sys-
tem module. The file param.h contains the parameters for
unix, there are two versions of this file, param ov.h for

the PDP11/23, PDP11/24, PDP11/34, PDPll/46, and PDP11/66 and
param id.h for the ©pPDPl1/44, PDPl1/45, PDP11/55, and
PDP11/70. The subdirectory dev consists mostly of the dev-
ice drivers together with a few other things. The subdirec-
tory sys is the rest of the system. The files LIBl_id in
sys and LIB2_id 1in dev are archives (ar(l)) which contain
the object versions of the routines in the directory, for
the separate I & D space processors. The overlay text ker-
nel object modules are 1in ovdev and the overlay "system
objects and a partial archive (LIBl ov) are in ovsys.

Subdirectory conf contains the files which control dev-
ice configuration of the system. L.s specifies the contents
of the interrupt vectors; c¢.c contains the tables which
relate device numbers to handler routines. A third file,
mch ov.s or mch_id.s , contains all the machine-language
code in the system. A fourth file, mch@.s, is generated by
mkconf (1) and contains flags indicating what sort of tape
drive 1is available for taking crash dumps. It also speci-
fies the device address of the tape controller used for
crash dumps. The mch@.s file also contains a parameter for
controlling the inclusion of floating point support 1in the
machine language code.

September 23, 1981

The first step in the unix system generation process is
to select the unix kernel that is most appropriate for your
type of processor, there are three. The separate I & D
space kernel “unix_id' is used with the PDP11/44, PDP11/45,
PDP11/55, and PDPl11/78 processors. The overlay text kernel
‘unix_ov'! is used with the PDP11/23, PDP11/24, PDPll/34,
PDPl1/48, and PDPll/60 processors. The ‘unix_i' kernel is
only used for the preconfigured unix systems needed to ini-
tially load unix onto the system disk from the distribution
tape. After the type of kernel has been chosen, use the
following procedure to make unix:

1. Examine the appropriate parameter file (param_ov.h or
param id.h), you will find several “#define ...' state-
ments used to control the inclusion of various features
in the kernel. The features are ACCT, FP, SEP_ID, DH,
MX, UBUSMAP, PARITY, and LCKPHYS, their meanings are
explained by the comments 1in the parameter file.
Features are excluded by commenting out the define
statements in the parameter file. The system tuning
parameters, NBUF, NPROC and the like, are also in the
parameter file. It is not advisable to modify these for
the first system generation, the best thing to do is
make unix for your configuration and test it, then
experiment with the tuning parameters.

2. The device drivers contain statements defining the CSR
address and the number of units to be supported. Check
the drivers for the devices in your configuration to
insure that these values are correct, edit the drivers
if necessary.

Santemhar 227 . 1081

- 190 -

You must insure that the “sys' and “dev' archives are
up to date, the archives supplied with the system are
current. If no changes to the drivers or the parameter
file were made in steps 1 and 2, then no action is
required. There are two methods of updating the
archives (LIBl and LIB2). The first is to recompile all
the source files and recreate the archives as follows:

cd /sys/conf

make 2112?

where 2?2 is the CPU type, 23, 24, 34, 40, 44, 45, 55,
60, or 78. This would normally not be necessary unless
the system tuning parameters in param.h are: changed.
The second method is to recompile only the source files
that were chenged and rearchive them as follows:

cd /sys/conf

mksys_id filel file2 ... file6
or

mkdev_id filel file2 ... fileé

for unix_id or

cd /sys/conf

mksys_ov filel file2 ... file6
or

mkdev_ov filel file2 ... file6

for unix_ov. As many as six source files may be recom-
piled at once, only the filename is typed, not the'.c'.
These "mk' files automatically select the appropriate
parameter file and copy it to param.h. For example if
the hp and dz drivers were changed the commands would
be:

cd /sys/conf
mkdev_id hp dz

those drivers will be recompiled and replaced in the
LIB2_id archive. 1If the parameter file was changed in
step 1, the comments in that file indicate which 'source
files must be recompiled.

September 23, 1981

- 11 -

Prepare a configuration file, named ‘unixconf'! or some-
thing like that, which describes your system configura-
tion. Use mkconf(lm) and the many existing ‘conf'
files in /sys/conf as a guide. If the overlay text
kernel is to be used, the ‘conf' file must contain the
‘ov' declaration.

Run the mkconf program with the ‘conf' file as input:
mkconf <unixconf

mkconf will print a list of the configured devices and
their vectors.

Examine the core dump tape CSR address, in mch@.s to
verify that is matches your hardware. You may need to
edit the low core vector file “1.s' to correct the dev-
ice interrupt vectors, in any case examine “l.s' to
insure that the vectors match your configuration. It
is wise to print the configuration tables, in the file
‘c.c', and verify that the correct devices are entered
in the bdevsw and cdevsw tables. You will need a copy
of “c.c' later on anyway.

Use the “makefile', in /sys/conf to make unix as fol-
lows:

make unix??

where ?? is the CPU type, 23, 24, 34, 40, 44, 45, 55,
60, 74.

When the make is done, the new system is present in the
current directory as “unix_ov' or ‘unix_id'. It should
be tested before destroying the currently running
‘/unix', this is best done by doing something like

mv /unix /ounix
mv unix_ov /unix

or

mv unix_id /unix
You must be super-user to move unix to the root. .If
the new system doesn't work, you can still boot "ounix'

and come up (see boot(8)). When you have satisfied
yourself that the new system works, remove /ounix.

CLantamhar 272 iaq

-12 -

Installing new devices

Refer to mkconf(lm) and the “Unix/v7m Software Descrip-
tion' for information on what devices are supported by
Unix/v7im. The information in this section 1is of general
interest, however, the steps described below are only neces-
sary if you need to add a new device that is not presently
supported by mkconf (1lm).

To install a new driver, compile it and put it into it
library. The best way to put it into the library is to edit
its name into the ‘“mkdev' files 1in "/sys/conf' and the
‘mklib' files in /sys/dev, and then use “mkdev' to recompile
and archive it. There is no LIB2 device driver library for
the overlay kernel, “unix_ov'.

Next, the device's interrupt vector must be entered in
l.s. This is probably already done by the routine
mkconf (1), but if the device is esoteric or nonstandard vyou
will have to massage l.s by hand. This involves placing a
pointer to a callout routine and the device's priority level
in the vector. Use some other device (like the console) as
a guide. Notice that the entries in l.s must be in order as
the assembler does not permit moving the location counter
*.' backwards. The assembler also does not permit assigna-
tion of an absolute number to ‘.', which is the reason for
the ‘. = ZERO+1088' subterfuge. If a constant smaller than
16(18) is added to the priority level, this number will be
available as the first argument of the interrupt routine.
This stratagem 1is wused when several similar devices share
the same interrupt routine (as in dlll's).

If you have to massage l.s, be sure to add the code to
actually transfer to the interrupt routine. Again use the
console as a guide. The apparent strangeness of this code is
due to running the kernel in separate I&D space. The call
routine saves registers as required and prepares a C-style
call on the actual interrupt routine named after the ' jmp'’
instruction. When the routine returns, call restores the
registers and performs an rti instruction. As an aside,
note that external names in C programs have an underscore
(*_') prepended to them.

September 23, 1981

- 13 -

The second step which must be performed to add a device
unknown to mkconf is to add it to the confiqguration table
/sys/conf/c.c. This file contains two subtables, one for
block-type devices, and one for character-type devices.
Block devices include disks, DECtape, and magtape. All
other devices are character devices. A line in each of
these tables gives all the information the system needs to
know about the device handler; the ordinal position of the
line in the table implies its major device number, starting

-~ e
as -

There are four subentries per line in the block device
table, which give its open routine, close routine, strategy
routine, and device table. The open and close routines may
be nonexistent, 1in which case the name “nulldev' is given;
this routine merely returns. The strategy routine is called
to do any I/0, and the device table contains status informa-
tion for the device.

For character devices, each line in the table specifies
a routine for open, close, read, and write, and one which
sets and returns device-specific status (used, for example,
for stty and gtty on typewriters). If there is no open or
close routine, ‘nulldev' may be given; if there is no read,
‘write, or status routine, ‘nodev' may be given. Nodev sets
an error flag and returns.

The final step which must be taken to install a device
is to make a special file for it. This is done by mknod(l),
to which you must specify the device class (block or charac-
ter), major device number (relative line in the configura-
tion table) and minor device number (which is made available
to the driver at appropriate times).

The documents “Setting up Unix' and “The Unix IO sys-
tem' may aid in comprehending these steps.

September 23, 1981

- 14 -

The Library libc.a

The library /lib/libc.a is where most of the subrou-
tines described in sections 2 and 3 of the manual are kept.
This library can be remade using the following commands:

cd /usr/src/libc
sh compall
sh mklib

Titln~ TARE .Y
110/

ey a Bevel
my 110C.a / ol

13 Y
- & e

If single routines need to be recompiled and replaced, use

¢c¢c -¢ -0 x.C

ar vr /lib/libc.a x.o
rm X.0 ‘
The above can also be used to put new items into the
library. See ar(l), lorder(l), and tsort(l).

The routines in /usr/src/cmd/libc/csu (C start up) are
not 1in 1libc.a. These are separately assembled and put into
/1lib. The commands to do this are

cd /usr/src/libc/csu
as - X.s
mv a.out /lib/x
where x is the routine you want.
Other Libraries
Likewise, the directories containing the source for the

other 1libraries have files compall (that recompiles every-
thing) and mklib (that recreates the library).

September 23, 1981

- 15 -

System Tuning

There are several tunable parameters in the system.
These set the size of various tables and limits. They are
found in the file /sys/h/param.h as manifests (" #define's),
remember that there are two versions of this file,
param_ov. h and param_id.h. Their values are rather generous
in the system as distributed. Our typical maximum number of
users is about 28, but there are many daemon processes. The
values of the parameters in the param_ov.h file are set for
about 16 users.

When any parameter is changed, it is prudent to recom-
pile the entire system, as discussed above. A brief discus-
sion of each follows:

NBUF This sets the size of the disk buffer cache.
Each buffer is 512 bytes. This number should be
around 25 plus NMOUNT, or as big as can be |if
the above number of buffers cause the system to
not fit in memory.

NFILE This sets the maximum number of open files. An
entry is made in this table every time a file is
‘opened’ (see open(2), <creat(2)). Processes

share these table entries across forks
(fork(2)). This number should be about the same
size as NINODE below. (It can be a bit smaller.)

NMOUNT This indicates the maximum number of mounted
file systems. Make it big enough that you don t
run out at inconvenient times.

MAXMEM This sets an administrative limit on the amount
of memory a process may have. It is set
automatically if the amount of physical memory
is small, and thus should not need to be
changed.

MAXUPRC This sets the maximum number of processes that
any one user can be running at any one time.
This should be set just large enough that people
can get work done but not so large that a user
can hog all the processes available (usually by
accident!).

NPROC This sets the maximum number of processes that
can be active. It depends on the demand pattern
of the typical user; we seem to need about 8
times the number of terminals.

Sentemher 23. 1081

- 16 -

NINODE This sets the size of the inode table. There Iis
one entry in the inode table for every open dev-
ice, current working directory, sticky text seg-
ment, open file, and mounted device. Note that
if two users have a file open there is still
only one entry in the inode table. A reasonable
rule of thumb for the size of this table is

NPROC + NMOUNT + (number of terminals)

SSIZE The initial size of a process stack. This may be
made bigger if commonly run processes have large
data areas on the stack. ’

SINCR The size of the stack growth increment.

NOFILE - This sets the maximum number of files that any
one process can have open. 20 is plenty.

CANBSIZ This is the size of the typewriter canonicaliza-
tion buffer. It is in this buffer that erase and
kill processing is done. Thus this is the max-
imum size of an input typewriter line. 256 is
usually plenty.

CMAPSIZ The number of fragments that memory can be bro-
ken 1into. This should be big enough that it
never runs out. This parameter automatically
grows as NPROC is increased.

SMAPSIZ Same as CMAPSIZ except for secondary (swap)
memory.
NCALL This is the size of the callout table. Callouts

are entered in this table when some sort of
internal system timing must be done, as in car-
riage return delays for terminals. The number
must be big enough to handle all such requests.

NTEXT The maximum number of simultaneously executing:
pure programs. This should be big enough so as
to not run out of space under heavy 1load. A
reasonable rule of thumb is about

(number of terminals) + (number of sticky programs)

NCLIST The number of clist segments. A clist segment is

6 <characters. NCLIST should be big enough so
that the list doesn't become exhausted when the
machine is busy. The characters that have
arrived from a terminal and are waiting to be
given to a process live here. Thus enough space
should be left so that every terminal can have

September 23. 1981

TIMEZONE

DSTFLAG

MSGBUFS

NCARGS

HZ

- 17 -

at least one average line pending (about 30 or
40 characters).

The number of minutes westward from Greenwich.
See “Setting Up UNIX'.

See ‘Setting Up UNIX' section on time conver-
sion.

The maximum number of characters of system error
messages saved. This 1is wused as a circular
buffer.

The maximum number of characters in an exec(2)
arglist. This number controls how many arguments
can be passed into a process. 5128 is practi-
cally infinite.

Set to the frequency of the system clock (e.g.,
50 for a 58 Hz. clock).

Cantambhar 272 10Q1

- 18 -

System tuning on non separate I & D space CPUs

The overlay text unix kernel 1is used for the non
separate I & D space processors, PDP11/23, PDPl1/24,
PDP11/34, PDPl11/46, and PDPll/68. The system tuning parame-
ters are set for about 10 users, as follows:

NBUF = 14
NINODE = 104
NFILE = 80
NPROC = 70
NTEXT = 25
NCLIST = 125

The following table can be used as an aid. when tuning
unix wversion seven on the non separate I & D space CPUs. It
lists the name of the paramter, the size increase in bytes
of incrementing the parameter by one, and the source files
which must be recompiled if the parameter is changed.

PARAMETER SIZE FILES

NBUF 542 ¢.c, bic.c , main.c

NINODE 74 c.c, alloc.c, iget.c, sys3.c

NFILE 8 c.c, mx2.c, fio.c, iget.c

NMOUNT 6 c.c, alloc.c, iget.c, nami.c, sys3.c

{(one system buffer per NMOUNT)

MAXUPRC g c.c, sysl.c

NOFILE 2 c.c, fio.c, slp.c, sysl.c, sys3.c
CMAPSIZ 4 c.c, {any file that "“includes' map.h)
SMAPSIZ 4 c.c, (any file that “includes' map.h)
NCALL 6 c.c, clock.c

NPROC 28 c.c

NTEXT 12 c.c, text.c

NCLIST 8 c.c, prim.c

(clists are larger on I & D space CPUs)

The size of the overlay text kernel can be reduced by
deselecting unneeded features in the param_ov.h, rebuilding
the sys and dev archives, and remaking unix, as described in
the section on generating UNIX above.

September 23, 1981

ADB (1) UNIX Programmer's Manual ADB (1)

NAME
adb - debugger

SYNOPSIS
adb [-w] [objfil [corfil]]

DESCRIPTION

Adb is a general purpose debugging program. It may be used
to examine files and to provide a controlled environment for
the execution of UNIX programs. There are now multiple ver-
sions of adb , in order to support the three types of UNIX
systems currently available. The appropriate version of adb
is selected at sysgen time, see "Setting up Unix" for more
on this. ‘

Objfil is normally an executable program file, preferably
containing a symbol table; if not then the symbolic features
of adb cannot be used although the file can still be exam-
ined. The default for objfil is a.out. Corfil is assumed to
be a core image file produced after executing objfil ; the
default for corfil is core.

Requests to adb are read from the standard input and
responses are to the standard output. If the -w flag is
present then both objfil and corfil are created if necessary
and opened for reading and writing so that files can be
modified using adb . Adb ignores QUIT; INTERRUPT causes
return to the next adb command.

In general requests to adb are of the form
[address] [, count] [command] [;]

If address is present then dot is set to address . Initially
dot is set to #. For most commands count specifies how many
times the command will be executed. The default count is 1.
Address and count are expressions.

The interpretation of an address depends on the context it
is used in. If a subprocess is being debugged then
addresses are interpreted in the usual way in the address
space of the subprocess. For further details of address
mapping see ADDRESSES.

EXPRESSIONS
. The value of dot .

+ The value of dot incremented by the current incre-
ment.

The value of dot decremented by the current incre-
ment.

Printed 8/29/81 1

ADB(1) UNIX Programmer's Manual ADB (1)

" The last address typed.

integer
An octal number if integer begins with a 8; a hexade-
cimal number if preceded by #; otherwise a decimal
number.

integer.fraction
A 32 bit floating point number.

'ccecc' The ASCII value of up to 4 characters. \ may be used
to escape a '.

< name The value of name , which is either a variable name
or a register name. Adb maintains a number of vari-
ables (see VARIABLES) named by single letters or
digits. 1If name is a register name then the value of
the register is obtained from the system header in
corfil . The register names are rf ... r5 sp pc ps.

symbol A symbol is a sequence of upper or lower case
letters, underscores or digits, not starting with a
digit. The value of the symbol is taken from the
symbol table in objfil . An initial _ or ~ will be
prepended to symbol if needed.

_ symbol
In C, the “true name' of an external symbol begins
with _. It may be necessary to utter this name to
disinguish it from internal or hidden variables of a
program.

routine.name :
The address of the variable name in the specifiied. C
routine. Both routine and name are symbols . If name
is omitted the value is the address of the most
recently activated C stack frame corresponding to
routine .

(exp) The value of the expression exp .
Monadic operators

~*exp The contents of the location addressed by exp in cor-
£il .

@exp The contents of the location addressed by exp in
objfil .

~exp Integer negation.

ex Bitwise complement

Printed 8/29/81 2

ADB (1)

Dyadic operators are left associative and are

UNIX P:ogrammer's Manual ADB (1)

less binding

than monadic operators.

el + e2

el

el

el

el

el

el

COMMANDS

#

Integer

e2
Integer

e2
Integer

e2)
Integer

e?2
Bitwise

e2
Bitwise

e2

addition.

subtraction.

multiplication.

division.

conjunction.

disjunction.

El rounded up to the next multiple of e2 .

Most commands consist of a verb followed by a modifier or

list of modifiers.

The following verbs are available. (The

commands “?' and ‘/' may be followed by “*'; see ADDRESSES
for further details.)

2f

~
)

fl
Irh

Locations
according

Locations
according

The value
indicated

starting at address in objfil are printed
to the format £ .

starting at address in corfil are printed
to the format £ .

of address itself is printed in the styles
by the format £ . (For i format Y2 is

printed for the parts of the instruction that reference
subsequent words.)

A format consists of one or more characters that specify a

style of printing.

Each format character may be preceded by

a decimal integer that is a repeat count for the format

character.

While stepping through a format dot is incre-

mented temporarily by the amount given for each format

letter.

1f no format is given then the last format is used.

The format letters available are as follows.

o 2

Print 2 bytes in octal.

All octal numbers output

by adb are preceded by 8.
0 4 Print 4 bytes in octal.

Printed 8/29/81

ADB (1)

Qaoummco XK Do Aq
00 s DO N N N

VI

]

]
S

r @
]

L
L)

L =]

+

newline

UNIX Programmer's Manual ADB(1l)

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32 bit value as a floating point number.
Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the following
escape convention. Character values 00606 to 048
are printed as @ followed by the corresponding
character in the range #1900 to #146. The charac-
ter @ is printed as @e. '

Print the addressed characters until a zero char-
acter is reached.

Print a string using the @ escape convention. n
is the length of the string including its zero
terminator.

Print 4 bytes in date format (see ctime (3)).
Print as PDPll instructions. n is the number of
bytes occupied by the instruction. This style of
printing causes variables 1 and 2 to be set to the
offset parts of the source and destination respec-
tively.

Print the value of dot in symbolic form. Symbols
are checked to ensure that they have an appropri-
ate type as indicated below.

local or global data symbol
local or global text symbol
local or global absolute symbol

Print the addressed value in symbolic form using
the same rules for symbol lookup as a.
When preceded by an integer tabs to the next
appropriate tab stop. For example, 8t moves to
the next 8-space tab stop.

Print a space.

Print a newline.

)

Print the enclosed string.
Dot is decremented by the current increment.
Nothing is printed.

Dot is incremented by 1. Nothing is printed.
Dot is decremented by 1. Nothing is printed.

If the previcus command temporarily incremented dot ;

Printed 8/29/81

ADB (1) UNIX Programmer's Manual ADB (1)

‘make the increment permanent. Repeat the previous com-
mand with a count of 1.

(/11 value mask
Words starting at dot are masked with mask and compared
with value until a match is found. If L is used then
the match is for 4 bytes at a time instead of 2. If no
match is found then dot is unchanged; otherwise dot is
set to the matched location. If mask is omitted then
-1 is used.

[(?2/1w value ...
Write the 2-byte value into the addressed location. If
the command is W, write 4 bytes. 0dd addresses are not
allowed when writing to the subprocess address space.

[?2/]Im bl el £1[2/] _ :
New values for (bl, el, f1) are recorded. If less than
three expressions are given then the remaining map
parameters are left unchanged. If the “?' or “/' is
followed by ‘*' then the second segment (b2,e2,f2) of
the mapping is changed. If the list is terminated by
?' or ‘/' then the file (objfil or corfil respec-
tively) is used for subsequent requests. (So that, for
example, “/m?' will cause ‘/' to refer to objfil .)

>name
Dot is assigned to the variable or register named.

! A shell is called to read the rest of the line follow-
ing “1v, _

$modifier

Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.
>f Send output to the file f, which is created if it
does not exist.

r Print the general registers and the instruction
addressed by pc. Dot is set to pc.
f Print the floating registers in single or double

length. If the floating point status of pPs is set
to double (8208 bit) then double length is used
anyway.

b Print all breakpoints and their associated counts
and commands.

a ALGOL 68 stack backtrace. If address is given
then it is taken to be the address of the current
frame (instead of r4). If count is given then
only the first count frames are printed.

c C stack backtrace. If address is given then it is
taken as the address of the current frame (instead

Printed 8/29/81 5

UNIX Programmer's Manual ADB(1l)

of r5). If C is used then the names and (16 bit)
values of all automatic and static variables are
printed for each active function. If count is
given then only the first count frames are
printed. .

The names and values of external variables are
printed.

Set the page width for output to address (default
Sa *®

Se% the limit for symbol matches to address
(default 255).

All integers input are regarded as octal.

Reset integer input as described in EXPRESSIONS.
Exit from adb . ~

Print all non zero variables in octal.

Print the address map.

ADB (1)
e
W
o
d
q
v
n
:modifier

Manage a subprocess. Available modifiers are:

bc

Printed 8/29/81

. Set breakpoint at address . The breakpoint is exe-

cuted count -1 times before causing a stop. Each
time the breakpoint is encountered the command ¢
is executed. If this command sets dot to zero
then the breakpoint causes a stop.

Delete breakpoint at address .

Run objfil as a subprocess. If address is given
explicitly then the program is entered at this
point; otherwise the program is entered at its
standard entry point. count specifies how many
breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the
same line as the command. An argument starting
with < or > causes the standard input or output to
be established for the command. All signals are
turned on on entry to the subprocess.

The subprocess is continued with signal s ¢ s, see
signal (2). If address is given then the subpro-
cess is continued at this address. If no signal
is specified then the signal that caused the sub-
process to stop is sent. Breakpoint skipping is
the same as for r.

As for c except that the subprocess is single
stepped count times. If there is no current sub-
process then objfil is run as a subprccess as for
r. In this case no signal can be sent; the
remainder of the line is treated as arguments to

the subprocess.

ADB(1) UNIX Programmer's Manual ADB(1)

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set
initially by adb but are not used subsequently. Numbered
variables are reserved for communication as follows.

2 The last value printed.

1 The last offset part of an instruction source.

2 The previous value of variable 1.

On entry the following are set from the system header in the
corfil . If corfil does not appear to be a core file then
these values are set from objfil . ‘

The base address of the data segment.

The data segment size.

The entry point.

The “magic' number (8465, 0487, 0418 or 041ll).
The stack segment size.

The text segment size.

38 o QU

ADDRESSES
The address in a file associated with a written address is
determined by a mapping associated with that file. Each
mapping is represented by two triples (bl, el, fl) and (b2,
e2, £f2) and the file address corresponding to a written
address is calculated as follows.

bl < address < el => file address

erwise,

address + fl-bl, oth-

b2 < address < e2 => file address

address + f2-b2,

otherwise, the requested address is not legal. 1In some
cases (e.g. for programs with separated I and D space) the
two segments for a file may overlap. If a ? or / is fol-
lowed by an * then only the second triple is used.

The initial setting of both mappings is suitable for normal
a.out and core files. If either file is not of the kind
expected then, for that file, bl is set to 8, el is set to
the maximum file size and f£1 is set to 8; in this way the
whole file can be examined with no address translation.

So that adb may be used on large files all appropriate
values are kept as signed 32 bit integers.

FILES
/dev/mem
/dev/swap
a.out

Printed 8/29/81 7

ADB (1) UNIX Programmer's Manual ADB (1)

core

SEE ALSO

ptrace(2), a.out(5), core(5), Setting up Unix

DIAGNOSTICS

BUGS

*Adb' when there is no current command or format. Comments
about inaccessible files, syntax errors, abnormal termina-

tion of commands, etc. Exit status is 8, unless last com-
mand failed or returned nonzero status.

A breakpoint set at the entry point is not effective on ini-
tial entry to the program.

When single stepping, system calls do not count as an exe-
cuted instruction.

Local variables whose names are the same as an external
variable may foul up the accessing of the external.

The debugger is not fully able to deal with the overlay text
Unix kernel. Only symbols in the root text segment and in
the data and bss segments can be accessed by adb.

Printed 8/29/81 8

AS (1) UNIX Programmer's Manual AS (1)

NAME
as - assembler
ovas - overlay assembler

SYNOPSIS
ovas [-] [-o objfile] file ...

DESCRIPTION
As assembles the concatenation of the named files. If the
optional first argument - is used, all undefined symbols in
the assembly are treated as global.
The ocutput of the assembly is left on the file objfile; if
that is omitted, a.out is used. It is executable if no
errors occurred during the assembly, and if there were no
unresolved external references.
The overlay assembler is only used for the generation of the
overlay text unix kernel.

FILES
/lib/as?2 pass 2 of the assembler
/1lib/ovas?2 pass 2 of the overlay assembler
/tmp/atm[1-3]? temporary
a.out object

SEE ALSO
1d(1), nm(l), adb(l), a.out(5)
UNIX Assembler Manual by D. M. Ritchie

DIAGNOSTICS

When an input file cannot be read, its name followed by a
question mark is typed and assembly ceases. When syntactic
or semantic errors occur, a single-character diagnostic is
typed out together with the line number and the file name in
which it occurred. Errors in pass 1 cause cancellation of
pass 2. The possible errors are:

Parentheses error

Parentheses error

String not terminated properly
Indirection used illegally

Illegal assignment to .'

Error in address

Branch instruction is odd or too remocte
Error in expression

Error in local (*£' or ‘b') type symbol
Garbage (unknown) character

End of file inside an if

Multiply defined symbol as label

Word quantity assembled at odd address

* N\

O 8 QMoo ODDe.

Printed 8/29/81 PDP11 1

AS(1) UNIX Programmer's Manual ~ AS(1)

*.' different in pass 1 and 2
Relocation error

Undefined symbol

Syntax error

X en'g

BUGS
Syntax errors can cause incorrect line numbers in following

diagnostics.

Printed 8/29/81 PDP11

CC(1l) UNIX Programmer's Manual CC(1l)

NAME

cc, pcc - C compiler
SYNOPSIS -

cc [option] ... file ...

pcc [option] ... file ...
DESCRIPTION

Cc is the UNIX C compiler. It accepts several types of
arguments:

Arguments whose names end with “.c' are taken to be C source
programs; they are compiled, and each object program is left
on the file whose name is that of the source with ‘.o' sub-
stituted for ‘.c'. The “.o' file is normally deleted, how-
ever, if a single C program is compiled and loaded all at
one go.

In the same way, arguments whose names end with “.s' are
taken to be assembly source programs and are assembled, pro-
ducing a “.o' file.

The following options are interpreted by cc . See 1d (1) for
load-time options.

-c Suppress the loading phase of the compilation, and
force an object file to be produced even if only one
program is compiled.

-p Arrange for the compiler to produce code which
counts the number of times each routine is called;
also, if loading takes place, replace the standard
startup routine by one which automatically calls
monitor (3) at the start and arranges to write out a
mon.out file at normal termination of execution of
the object program. An execution profile can then
be generated by use of prof (1).

-f In systems without hardware floating-point, use a
version of the C compiler which handles floating-
point constants and loads the object program with
the floating-point interpreter. Do not use if the
hardware is present.

-0 Invoke an object-code optimizer.

-S Compile the named C programs, and leave the
assembler-lianguage output on corresponding files
suffixed “.s'.

~-P Run only the macro preprocessor and place the result

Printed 8/29/81 PDP11 1

CC (1)

UNIX Programmer's Manual CC(1l)

for each “.c' file in a corresponding “.i' file and
has no “#' lines in it.

-E Run only the macro preprocessor and send the result
to the standard output. The output is intended for
compiler debugging; it is unacceptable as input to
cc .

-V Invoke the overlay version of the C compiler. This
option is only used for the generation of the over-
lay text unix kernel.

-o output
Name the final output file output . If this option
is used the file ‘a.out' will be left undisturbed.

-Dname=def

-Dname Define the name to the preprocessor, as if by
‘g$define'. If no definition is given, the name is
defined as 1.

-Uname Remove any initial definition of name .

-Idir *#include' files whose names do not begin with ' /'
T are always sought first in the directory of the file
argument, then in directories named in -I options,
then in directories on a standard list.

-Bstring
Find substitute compiler passes in the files named
string with the suffixes cpp, c@, cl and c2. If

string is empty, use a standard backup version.

-t[pBl2]
Find only the designated compiler passes in the
files whose names are constructed by a -B option.
In the absence of a -B option, the string is taken
to be " /usr/c/'.

Other arguments are taken to be either loader option argu-
ments, or C-compatible object programs, typically produced
by an earlier cc run, or perhaps libraries of C-compatible
routines. These programs, together with the results of any
compilations specified, are loaded (in the order given) to
produce an executable program with name a.out.

The major purpose of the “portable C compiler', pcc, is to
serve as a model on which to base other compilers. Pcc does
not support options -£, -E, -B, and -t. It provides, in ’
addition to the language of cc, unsigned char type data and
initialized bit fields.

Printed 8/29/81 PDP11 2

CC(1) UNIX Programmer's Manual CC(1)
FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporaries for cc
/1lib/cpp preprocessor
/1lib/c[01] compiler for cc
/1lib/ovcsd overlay compiler for cc
/usr/c/oc[@812] backup compiler for cc
/usr/c/ocpp backup preprocessor
/lib/fc[@1] floating-point compiler
/1lib/c2 ocptional optimizer
/lib/crtf.o runtime startoff
/lib/mcrt@.0o startoff for profiling
/lib/fcrtd.o startoff for floating-point interpretation
/1lib/libc.a standard library, see intro (3)
/usr/include standard directory for “¢#include’
/tmp/pc* temporaries for pcc
/usr/lib/ccom compiler for pcc
SEE ALSO

B. W. Kernighan and D. M. Ritchie, The C Programming

Language, Prentice-Hall, 1978
D. M. Ritchie, C Reference Manual
menitor (3), prof(l), adb(l), 1d4(1l)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be

BUGS

self-explanatory.
the assembler or loader.

Occasional messages may be produced by
Of these, the most mystifying are

from the assembler, as (1), in particular "m', which means a
multiply-defined external symbol (function or data).

Pcc is little tried on the PDPll; specialized code generated
for that machine has not been well shaken down. The -0
optimizer was designed to work with cc ; its use with pcc is
suspect.

Printed 8/29/81 PDP11 3

FSCK (1M) UNIX Programmer's Manual FSCK(1M)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/etc/fsck [option] ... [filesystem] ...] ...

DESCRIPTION
Fsck audits and interactively repairs inconsistent condi-
tions for the named filesystems. If a file system is con-
sistent then the number of files, number of blocks used, and
number of blocks free are reported. If the file system is
inconsistent the operator is prompted for concurrence before
each correction is attempted. Most corrections lose data;
all losses are reported. The default action for each
correction is to wait for the operator to respond ‘yes' or
‘no'. Without write permission fsck defaults to -n action.

These options are recognized:
-y Assume a yes response to all questions.
-n Assume a no response to all questions.

-sX Ignore the actual free list and (unconditionally) con-
struct a new one by rewriting the super-block of the
file system. The file system should be unmounted while
this is done, or extreme care should be taken that the
system is quiescent and that it is rebooted immediately
afterwards. This precaution is necessary so that the
old, bad, in-core copy of the superblock will not con-
tinue to be used, or written on the file system.

The free list is created with optimal interleaving
according to the specification X :

-s3 optimal for RP93 on PDP1l1/45 CPU

-s4 optimal for RPO4, RPOS, RP@G6 on PDPl1l/78 CPU
~sc:s space free blocks s blocks apart in
cylinders of ¢ blocks each.

Refer to “Setting up Unix', table 1 in ‘Disk Layout',
for values of “¢' and ‘s' to be used with other disk
and CPU combinations. The value stated there as “m'
should be used for “s' and the value for ‘n' as ‘c'.

If X is not given, the values used when the filesystem
was created are used. If these values were not speci-
fied, then ¢ = 406, s = 9 is assumed.

-SX Conditionally reconstruct the free list. This option

is like =-sX except that the free list is rebuilt only
if there were no discrepancies discovered in the file

Printed 8/29/81 1

FSCK (1M) UNIX Programmer's Manual FSCK (1M)

system. It is useful for forcing free list reorganiza-
tion on uncontaminated file systems. -S forces -n.

-t If fsck cannot obtain enough memory to keep its tables,
it uses a scratch files. 1If the -t option is speci-
fied, the file named in the next argument is used as
the scratch file. Without the -t option, fsck prompts
if it needs a scratch file. The file should not be on
the file system being checked, and if it is not

cial fila or dAid nat alreadyv avict it ie roamonuvusd whon
Clal I1.le Cor JlC nNeT already eXist, 1T 1s remeveg wae

fsck completes.

If no filesystems are given to fsck then a default list of
file systems is read from the file /etc/checklist.

Inconsistencies checked are as follows:
1. Blocks claimed by more than one inode or the free list.

2. Blocks claimed by an inode or the free list outside the
range of the file system.

3. Incorrect link counts.

4. Size checks:
Incorrect number of blocks in file.
Directory size not a multiple of 16 bytes.

5. Bad inode format.
6. Blocks not accounted for anywhere.

7. Directory checks:
File pointing to unallocated inode.
Inode number out of range.

8. Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file sys-
tem.

9. Bad free block list format.
1¢. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced)
are, with the operator's concurrence, reconnected by placing
them in the "lost+found®" directory. The name assigned is
the inode number. The only restriction is that the directory
"lost+found® must preexist in the root of the filesystem
being checked and must have empty slots in which entries can
be made. This is accomplished by making "lost+found",

Printed 8/29/81 2

FSCK(1M) UNIX Programmer's Manual FSCK (1M)

copying a number of files to the directory, and then remov-
ing them (before fsck is executed).

Checking the raw device is almost always faster.

FILES
/etc/checklist contains default list of file systems to

check.

SEE ALSO
dcheck(l), icheck(l), filsys(5), crash(8), “Setting up Unix'

BUGS
Inode numbers for . and .. in each directory should be
checked for validity.
The -b option of icheck (1) should be available.

Printed 8/29/81 3

IOSTAT (1M) UNIX Programmer's Manual IOSTAT(1M)

NAME
iostat - report I/0 statistics

SYNOPSIS ’
iostat [option] ... [drive]l ... [interval [count]]

DESCRIPTION
Iostat delves into the system and reports certain statistics

2 e e = 2o 2 e

kept about input-output activity. Information is kept about
up to six different disks (HP, HM, HK, ML, RP, RL) and about
typewriters. For each disk drive, I/0 .completions and
number of words transferred are counted; for typewriters
collectively, the number of input and output characters are
counted. Also, each sixtieth of a second, the state of each
disk drive is examined and a tally is made if the disk drive
is active. The processor state is also examined, this tally
goes into one of four categories, depending on whether the
system is executing in user mode, in ‘nice' (background)
user mode, in system mode, or idle. The iostat reports are
for all types of activity, seeks as well as data transfers,
on all drives that have had any I/0 activity since the sys-
tem was booted, inactive and nonexistent drives are ignored.

The optional drive argument allows the reports to be limited
to a specified subset of the available drives. Up to six
drive names, of the form; hp#, mll, rl3, rp4, etc., may be
specified. Reports will be generated for only those drives
which exist and have been active.

The optional interval argument causes iostat to report once
each interval seconds. The first report is for all time
since a reboot and each subsequent report is for the last
interval only.

The optional count argument restricts the number of reports.

With no option argument iostat reports for each disk the
number of transfers per minute, the milliseconds per average
seek, and the milliseconds per data transfer exclusive of
seek time. It also gives the percentage of time the system
has spend in each of the four categories mentioned above.

The following options are available:

-t Report the number of characters of terminal IO per
second as well.

-i Report the percentage of time spend in each of the four
categories mentioned above, the percentage of time each
disk controller was active (seeking or transferring,
the percentage of time any diks drive was active, and
the percentage of time spent in IO wait:' idle, but

Printed 9/19/81 1

IOSTAT (1M) . UNIX Programmer's Manual IOSTAT (1M)

-a

FILES

with a disk drive active.

Report the raw timing information for each active disk
drive. The information consists of; the disk con-
troller name and drive number, the disk's transfer rate
(microseconds/word), the percentage of the total system
time that the drive had I/0 activity, the number of

. transfers on that drive, and the number of words

transferred by the drive.
Report on the usage cof I/0 buffers. The report gives;
the number of buffers in the pool, the number of buf-
fered reads, number of read-ahead blocks, number of
buffer cache hits, number of buffered writes, and the
number of I/0 operations on each buffer starting with
the first one.

Print the date and time at the head of the report.

Print the total time in minutes at the end of the
report.

/dev/mem, /unix

BUGS

The accuracy of the iostat reports is subject to the six-
tieth of a second granularity of the system clock.

Printed 9/19/81 2

LD(1) UNIX Programmer's Manual LD (1)

NAME
1a - loader
covld - overlay loader

SYNOPSIS
1d [option] file ...
covld [option] file ...

DESCRIPTION
Ld combines several object programs into one, resolves
external references, and searches libraries. 1In the sim-
Plest case several object files are given, and 1d combines
them, producing an object module which can be either exe-
cuted or become the input for a further 1 run. (In the
latter case, the -r option must be given to preserve the
relocation bits.) The output of 1d is left on a.out. This
file is made executable only if no errors occurred during
the load.

The overlay loader is used only for the generation of the
overlay text unix kernel.

The argqument routines are concatenated in the order speci-
fied. The entry point of the output is the beginning of the
first routine.

If any argument is a library, it is searched exactly once at
the point it is encountered in the argument list. Only
those routines defining an unresolved external reference are
loaded. If a routine from a library references another rou-
tine in the library, and the library has not been processed
by ranlib (1), the referenced routine must appear after the
referencing routine in the library. Thus the order of pro-
grams within libraries may be important. If the first
member of a library is named *__ .SYMDEF', then it is under-
stood to be a dictionary for the library such as produced by
ranlib ; the dictionary is searched iteratively to satisfy
as many references as possible.

The symbols °_etext', *_edata' and '_end' ("etext', ‘edata'
and ‘end' in C) are reserved, and if referred to, are set to
the first location above the program, the first location
above initialized data, and the first location above all
data respectively. It is erroneous to define these symbols.

Ld understands several options. Except for -1, they should
appear before the file names.

-s “Strip' the output, that is, remove the symbol table
and relocation bits to save space (but impair the use-
fulness of the debugger). This information can also be
removed by strip (1}.

Printed 8/29/81 1

LD(1)

-u

=X

-r

-n

=0

-e

UNIX Programmer's Manual . LD (1)

Take the following argument as a symbol and enter it as
undefined in the symbol table. This is useful for
loading wholly from a library, since initially the sym-
bol table is empty and an unresolved reference is
needed to force the loading of the first routine.

This option is an abbreviation for the library name
‘/lib/libx.a', where x is a string. If that does not
exist, 1d tries "/usr/lib/libx.a'. A library is
searched when its name is encountered, so the placement
of a -1 is significant.

Do not preserve local (non-.globl) symbols in the out-
put symbol table; only enter external symbols. This
option saves some space in the output file.

Save local symbols except for those whose names begin
with L', This option is used by cc (1) to discard
internally generated labels while retaining symbols
local to routines.

Generate relocation bits in the output file so that it
can be the subject of another 1d run. This flag also
prevents final definitions from being given to common
symbols, and suppresses the ‘undefined symbol' diagnos-
tics.

Force definition of common storage even if the -r flag
is present.

Arrange that when the output file is executed, the text
portion will be read-only and shared among all users
executing the file. This involves moving the data
areas up to the first possible 4K word boundary follow-
ing the end of the text.

When the output file is executed, the program text and
data areas will live in separate address spaces. The
only difference between this option and -n is that here
the data starts at location 8.

The name argument after -o is used as the name of the
1d output file, instead of a.out. g

The following argument is taken to be the name of the
entry point of the loaded program; location @ is the
default.

This is an overlay file, only the text segment will be
replaced by exec (2). Shared data must have the same
layout as in the program overlaid.

Printed 8/29/81 2

LD (1) UNIX Programmer's Manual LD(1)

-D The next argument is a decimal number that sets the
size of the data segment.

FILES
/lib/lib*.a libraries
/usr/lib/lib*.a more libraries
a.ocut output file
SEE ALSO

as(l), ar(l), cc(l), ranlib(1l)

BUGS

Printed 8/29/81 3

LOGINS (1) UNIX Programmer's Manual LOGINS (1)

NAME
logins - enable user logins
nologins - disable user logins

SYNOPSIS
logins
nologins

DESCRIPTION
The logins and nologins commands allow the super-user to
selectively enable and disable user logins. The super-user
may login as “root' on any terminal even when logins are
disabled.

FILES ,
/etc/loglock disables user logins
/etc/sdloglock system shutdown in progress

SEE ALSO
login(l), shutdown(8)

DIAGNOSTICS
"No Logins', a user attempted to login while logins were
disabled.

"LOGINS DISABLED', printed when the super-user logs in and
user logins are disabled.

Printed 9/28/81 1

LS(1) UNIX Programmer's Manual LS (1)

NAME

l1s - 1list contents of directory
SYNOPSIS

ls [-ltasdrucifgp] name ...
DESCRIPTION

For each directory argument, ls lists the contents of the
directory; for each file argument, 1ls repeats its name and
any other information requested. The output is sorted
alphabetically by default. When no argument is given, the
current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but
file arguments appear before directories and their contents.
There are several options:

-1 List in long format, giving mode, number of links,
owner, size in bytes, and time of last modification for
each file. (See below.) If the file is a special file
the size field will instead contain the major and minor
device numbers.

-t Sort by time modified .(latest first) instead of by
name, as is normal.

-a List all entries; usually “.' and "..' are suppressed.

-s Give size in blocks, including indirect blocks, for
each entry.

-d If argument is a directory, list only its name, not its
contents (mostly used with -1 to get status on direc-
tory).

-r Reverse the order of sort to get reverse alphabetic or
oldest first as appropriate.

-u Use time of last access instead of last modification
for sorting (-t) or printing (-1).

-C Use time of last modification to inode (mode, etc.)
instead of last modification to file for sorting (-t)
or printing (-1).

-1 Print i-number in first column of the report for each
file listed.

-f Force each argument to be interpreted as a directory
and list the name found in each slot. This option
turns off -1, -t, -s, and -r, and turns on =-a; the
order is the order in which entries appear in the
directory.

Printed 9/28/81 1

LS (1) UNIX Programmer's

-9
-P

Manual LS (1)

Give group ID instead of owner ID in long listing.

Print pathnames instead of just file names.

The mode printed under the -1 option contains 11 characters

which are

d if the entry is a directory:;
b 1if the entry is a

¢ 1if the entry is a character

-~ 1if the entry is a plain file.

block-type special file;

retuyna cnacia

interpreted as follows: the first character is

1
file;

A=A 9 -

The next 9 characters are interpreted as three sets of three

bits each. The first set refers
next to permissions to others in
the last to all others.

to owner permissions; the
the same user-group; and

Within each set the three charac-

ters indicate permission respectively to read, to write, or

to execute the file as a program.

For a directory, 'exe-

cute' permission is interpreted to mean permission to search

the directory for a specified file.

indicated as follows:

r if the file is readable;

w 1f the file is writable;

x 1if the file is executable;
- 1if the

The permissions are

indicated permission is not granted.

The group-execute permission character is given as s if the

file has set-group-ID mode;

likewise the user-execute per-

mission character is given as s if the file has set-user-ID

mode.

The last character of the mode (normally “x' or

the 1800 bit of the mode is on.
ing of this mode.

When the sizes of the files in a
total count of blocks, including

FILES

/etc/passwd to get user ID's for
/etc/group to get group ID's for

Printed 9/26/81

-ty is t if
See chmod (1) for the mean-

directory are listed, a
indirect blocks is printed.

“ls -1'.
‘15 _g'o

MKCONF (1M) UNIX Programmer's Manual MKCONF (1M)

NAME
mkconf - generate configuration tables

SYNOPSIS
mkconf

DESCRIPTION
Mkconf examines a machine configuration table on its stan-
dard input. Its output is three files l.s , c.c and mché.s.
The first is an assembler program that represents the inter-
rupt vectors located in low memory addresses; the second
contains initialized block and character device switch
tables; the third is a header file for the machine language
assist file (mch.s), which selects the tape to be used for
core dumps and specifies whether or not floating point sup-
port is included in mch.s.

Input to mkconf is a sequence of lines. The following
describe devices on the machine:

pC (PC11)

lp (LP11l)

rf (RS11)

hs (RSB3/RSG4)

ml (ML11)

tc (TU56)

rk (RK@3/RKES)

rl (RLB1/2)

tm (TUlQ)

rp (RPB3)

hp {RM@2/3, RPB4/5/6 on first RH)
hm (RM@2/3, RP24/5/6 on second RH)
hk _ (RK@6/7)

ht (TUl6)

ts (TS11l)

rx2 (RX02)

dc* (DC1l1l) '
kl#* (KL11/DL11-ABC)
dl=* (DL11-E)

dp* (DP11)

dn* (DN11)

dh* (DH11)

dhdm* (DM11-BB)

du* (DU11)

dz* (DZ11)

The devices marked with * may be preceded by a number tel-
ling how many are to be included. The console typewrite is
automatically included; don't count it as part of the KL or
DL specification. Count DN's in units of 4 (1 system unit).
The hs and ml devices are mutually exclusive.

Printed 8/29/81 1

MKCONF (1M)

UNIX Programmer's Manual MKCONF (1M)

The following lines are also accepted.

root

swap

pipe

dev minor

The specified block device (e.g. hp) is used for the
root. minor is a decimal number giving the minor dev-
ice. This line must appear exactly once.

dev minor
The specified block device is used for swapping. If
not given the root is used.

dev minor
The specified block device is used to store pipes. If
not given the root is used.

swplo number

nswap number

dump

pack

mpx

nfp

oV

nsid

Sets the origin (block number) and size of the area
used for swapping. By default, the not very useful
numbers 4808 and 872.

dev addr

Selects the tape to be used as the core dump device.
The dev specification is one of the three tapes ht, tm,
or ts, and addr is an optional tape CSR address specif-
ication. If dump is ommitted, mkconf will make the
core dump tape selection.

Include the packet driver. By default it is left out.

Include the multiplexor driver. By default it is left
out.

Do not include floating point support in the machine
language assist file, the default is to include float-
ing point.

Causes mkconf to create the file "covld"™ which is used
by the makefile in /sys/conf to link the overlay unix
kernel. Must be specified if the overlay kernel is to
be generated.

Must be specified if a non-spearate I & D space unix
system is to be generated. By default, a separate I &
D space unix system is generated. If "ov" is speci-
fied, "nsid" is ignored by mkconf.

c.c, mchB.s output files

Printed 8/29/81 2

MKCONF (1M) UNIX Programmer's Manual MKCONF (1M)

SEE ALSO
‘Setting up Unix', in Volume 2.
“Regenerating System Software', in Volume 2.

BUGS
The set of devices it knows abeout, the set of drivers

included, and the set of devices on the machine are mutually
incomparable. Some handwork is certain to be necessary.
Because of floating vectors that may have been missed, It is
mandatory to check the l.s file to make sure it corresponds
with reality.

Printed 8/29/81 3

MKFS (1M) _ UNIX Programmer's Manual MKFS (1M)

NAME

mkfs - construct a file system
SYNOPSIS

/etc/mkfs special proto/size [m n]
DESCRIPTION

Mkfs constructs a file system by writing on the special file
special according to the directions found in the prototype
file proto. The prototype file contains tokens separated by
spaces or new lines. The first token is the name of a file
to be copied onto block zero as the bootstrap program, see
bproc (8). The second token is a number specifying the size
of the created file system. Typically it will be the number
of blocks on the device, perhaps diminished by space for
swapping. The next token is the number of i-nodes in the
i~list. The next set of tokens comprise the specification
for the root file. File specifications consist of tokens
giving the mode, the user-id, the group id, and the initial
contents of the file. The syntax of the contents field
depends on the mode.

The mode token for a file is a 6 character string. The
first character specifies the type of the file. (The char-
acters -bcd specify regular, block special, hharacter spe-
cial and directory files respectively.) The second character
of the type is either u or - to specify set-user-id mode or
not. The third is g or - for the set-group-id mode. The
rest of the mode is a three digit octal number giving the
owner, group, and other read, write, execute permissions,
see chmod (1).

Two decimal number tokens come after the mode; they specify
the user and group ID's of the owner of the file.

If the file is a reqular file, the next token is a pathname
whence the contents and size are copied.

If the file is a block or character special file, two
decimal number tokens follow which give the major and minor
device numbers.

If the file is a directory, mkfs makes the entries . and ..
and then reads -a list of names and (recursively) file
specifications for the entries in the directory. The scan
is terminated with the token $. :

If the prototype file cannot be opened and its name consists
of a string of digits, mkfs builds a file system with a sin-
gle empty directory on it. The size of the file system is
the value of proto interpreted as a decimal number. The
number of i-nodes is calculated as a function of the

Printed 8/29/81 1

MKFS (1M) UNIX Programmer's Manual MKFS (1M)

filsystem size. The boot program is left uninitialized.

The optional arguments m and n are the file system inter-
leave factors , used for optimal free list spacing. If m
and n are not specified, the values m = 3 and n = 580 are
used. Refer to the "Setting up Unix"™ document , table 1 in_
‘Disk Layout', for a list of the optimum values of m and n .

A sample prototype specification follows:

/usr/mdec/uboot

4872 55

4a--777 3 1

usr =~ d--=777 31
sh -==755 3 1 /bin/sh
ken d--755 6 1

$

bd b--644 31 0 @
cd c--644 3 1 0 0@
$

$

SEE ALSO
filsys(5), dir(5), bproc(8), “Setting up Unix!'

BUGS
There should be some way to specify links.

Printed 8/29/81 2

NM({1) UNIX Programmer's Manual NM (1)

NAME
nm - print name list

SYNOPSIS
nm [-gnopru] [file ...]

DESCRIPTION
Nm prints the name list (symbol table) of each object file

in the argument list. 1If an argument is an archive, a list-
ing for each obiject file in the archive will be produced.

e - Sawas & Se. L2 LT Las T QLA VT aVaeReTs

If no file is given, the symbols in “a.out' are listed.
Each symbol name is preceded by its value (blanks if unde-
fined) and one of the letters U (undefined), A (absolute), T
(text segment symbol), D (data segment symbol), B (bss seg-
ment symbol), or C (common symbol). If the symbol is local
{non-external) the type letter is in lower case. If the
‘a.out' file is an overlay text unix kernel, all test seg-
ment symbols are followed by their overlay text segment
number. The output is sorted alphabetically.

Options are:

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output
line rather than only once.

-pP Don't sort; print in symbol-table order.
-r Sort in reverse order.
-u Print only undefined symbols.

SEE ALSO
ar(l), ar(5), a.out(5)

Printed 8/29/81 1

PS (1) UNIX Programmer's Manual PS (1)

NAME

pS - process status
SYNOPSIS

ps [aklxvti] [namelist]
DESCRIPTION

Ps prints certain indicia about active processes. The a
option asks for information about all processes with termi-
nals (ordinarily only one's own processes are displayed); x
asks even about processes with no terminal; 1 asks for a
long listing. The short listing contains the process ID,
tty letter, the cumulative execution time of the process and
an approximation to the command line. If v is given and 1
is not present, the sums of the child process's system and
user times are printed following the cumulative execution
time. The t option limits printouts to those processes
associated with tty #. Specifing ? as the tty number to the
t option will limit printouts to those processes not associ-
ated with a tty.

The long listing is columnar and contains

F Flags associated with the process. #@l: in core; 02:
system process; #4: locked in core (e.g. for physical
I1/0); 108: being swapped; 20: being traced by another
process.

S The state of the process. @: nonexistent; S: sleeping;
W: waiting; R: running; I: intermediate; Z: terminated;
T: stopped.

UID The user ID of the process owner.

PID The process ID of the process; as in certain cults it
is possible to kill a process if you know its true
name.

PPID The process ID of the parent process,

CPU Processor utilization for scheduling.

PRI The priority of the process; high numbers mean low
priority.

NICE Used in priority computation.

ADDR The core address of the process if resident, otherwise
the disk address.

¥4 The size in blocks of the core image of the process.

Printed 8/29/81 PDP11 1

PS (1) UNIX Programmer's Manual PS (1)

WCHAN

The event for which the process is waiting or sleeping;
if blank, the process is running.

TTY The controlling tty for the process.
TIME The cumulative execution time for the process.
The command and its arguments.

A process that has exited and has a parent, but has not yet
been waited for by the parent is marked <defunct>. Ps makes
an educated guess as to the file name and arguments given
when the process was created by examining core memory or the
swap area. The method is inherently somewhat unreliable and
in any event a process is entitled to destroy this informa-
tion, so the names cannot be counted on too much.

If the k option is specified, the file /usr/sys/core is used
in place of /dev/mem . This is used for postmortem system
debugging. If a second argument is given, it is taken to be
the file containing the system's namelist.

FILES

/unix system namelist

/dev/mem core memory

/usr/sys/core alternate core file

/dev searched to find swap device and tty names
SEE ALSO

kill(1)
BUGS

Things can change while ps is running; the picture it gives
is only a close approximation to reality.
Some data printed for defunct processes is irrelevant

Printed 8/29/81 » PDP11 2

PSTAT (1M) UNIX Programmer's Manual PSTAT (1M)

NAME

pstat - print system facts
SYNOPSIS

pstat [-aixptuf] [suboptions] [corefile] [namelist]
DESCRIPTION

Pstat interprets the contents of certain system tables. If

corefile is given, the tables are sought there, otherwise in
/dev/mem. The required namelist is taken from /unix , unless
the optional namelist argument is given. If the namelist is
specified then the corefile must also be specified. Options

are

-a Under -p, describe all process slots rather than just
active ones.

-i Print the inode table with the these headings:

LoC The core location of this table entry.

FLAGS Miscellaneous state variables encoded thus:

locked

update time filsys (5)) must be corrected

access time must be corrected

file system is mounted here

wanted by another process (L flag is on)

contains a text file

changed time must be corrected

CNT Number of open file table entries for this inode.

DEV Major and minor device number of file system in which
this inode resides.

INO I-number within the device.

MODE Mode bits, see chmod (2).

NLK Number of links to this inode.

UuIiD User ID of owner.

SIZ/DEV
Number of bytes in an ordinary file, or major and
minor device of special file.

nlEIPrar

-X Print the text table with these headings:

LoC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:
ptrace (2) in effect

text not yet written on swap device
loading in progress

locked

wanted (L flag is on)

EROCOES

DADDR Disk address in swap, measured in multiples of 512
bytes.

Printed 8/29/81 1

PSTAT (1M) UNIX Programmer's Manual PSTAT (1M)

CADDR Core address, measured in multiples of 64 bytes.

SIZE Size of text segment, measured in multiples of 64
bytes.

IPTR Core location of corresponding inode.

CNT - Number of processes using this text segment.

. . .
CCNT Number of processes in core using this text segment.

-p Print process table for active processes with these
headings:

LocC The core location of this table entry.
S Run state encocded thus:

B no process
1 waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped under trace
F Miscellaneous state variables, or-ed together:
a1 loaded
82 the scheduler process
84 locked
819 swapped out
220 traced

@48 wused in tracing
8100 locked in by lock (2).

PRI Scheduling priority, see nice (2).

SIGNAL
Signals received (signals 1-16 coded in bits 0-15),

uIpo Real user 1ID.

TIM Time resident in seconds; times over 127 coded as 127.

CPU Weighted integral of CPU time, for scheduler.

NI Nice level, see nice (2).

PGRP Process number of root of process group (the opener of
the controlling terminal).

PID The process ID number.

PPID The process ID of parent process.

ADDR If in core, the physical address of the ‘u-area' of
the process measured in multiples of 64 bytes. 1If
swapped out, the position in the swap area measured in
multiples of 512 bytes.

SIZE Size of process image in multiples of 64 bytes.

WCHAN Wait channel number of a waiting process.

LINK Link pointer in list of runnable processes.

TEXTP If text is pure, pointer to location of text table
entry.

CLKT Countdown for alarm (2) measured in seconds.

Printed 8/29/81 2

PSTAT

FILES

(1M)

RAW
CAN
ouT
MODE
ADDR
DEL

COL
STATE

PGRP

LocC
FLG

CNT
INO
OFFS

/unix

UNIX Programmer's Manual PSTAT (1M)

Print table for terminals (only DH1ll and DL1l handled)
with these headings:

Number of characters in raw input queue.

Number of characters in canonicalized input gqueue.
Number of characters in putput queue.

See tty (4).

Physical device address.

Number of delimiters (newlines) in canonicalized input
gueue.

Calculated column position of terminal.

Miscellaneous state variables encoded thus:

W waiting for open to complete

o open ‘

S has special (output) start routine

C carrier is on

B busy doing output

A process is awaiting output

X open for exclusive use

H hangup on close

Process group for which this is controlling terminal.

print information about a user process; the next argu-
ment is its address as given by ps (1). The process
must be in main memory, or the file used can be a core
image and the address 0.

Print the open file table with these headings:

The core location of this table entry.
Miscellaneous state variables encoded thus:

R open for reading
W open for writing
P pipe

Number of processes that know this open file.
The location of the inode table entry for this file.
The file offset, see lseek (2). '

namelist

/dev/mem default source of tables

SEE ALSO
ps(l), stat(2), filsys(5)
K. Thompson, UNIX Implementation

Printed 8/29/81

SIZE(l) UNIX Programmer's Manual SIZE (1)

NAME
size - size of an object file

SYNOPSIS
size [object ...]

DESCRIPTION

Size prints the (decimal) number of bytes required by the
text, data, and bss portions, and their sum in octal and
decimal, of each object-file argument. For overlay text
unix kernel files size prints the (decimal) number of bytes
contained in the root text segment, each overlay text seg-
ment, the data and bss segments, the sum of the root, data,
and bss segments, and the total text size. 1If no file is

specified, a.out is used.

SEE ALSO
a.cut(5s)

Printed 8/29/81 1

STRIP (1) UNIX Programmer's Manual STRIP (1)

NAME
strip - remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordi-
narily attached to the output of the assembler and loader.
This is useful to save space after a program has been
debugged.
The effect of strip is the same as use of the -s option of
ld L]
Strip automatically accommodates overlay text unix kernel
files.

FILES
/tmp/stm? temporary file

SEE ALSO
14(1)

Printed 8/29/81 1

HK(4)

NAME

DESCR

FILES

UNIX Programmer's Manual HK (4)

hk - RK611/RK86, RKB7 moving head disk

IPTION

The octal representation of the minor device number is
encoded idp , where i is an interleave flag, 4 is a physical
drive number, and p is a pseudodrive (subsection) within a
physical unit. 1If i is @, the origins and sizes of the
pseudodisks on each drive, counted in cylinders of 66 512~
byte blocks, are:

disk start length
g g 146

1 146 135

2 281 129

3 411 4903

4)]

5 2]

6) 419

7 @ 814

If 1 is 1, the minor device consists of the specified pseu-
dodisk on drives numbered @ through the designated drive
number. Successively numbered blocks are distributed across
the drives in rotation.

Systems distributed for these devices use disk @8 for the
root, disk 1 for swapping, disk 2 for the system sources,
and disk 3 (rk#7) or disk 6 (rk@6 drive 1) for a mounted
user file system. Disk 6 (RK@6) or disk 7 (RK87) may be
used to create a mounted user file system, which consists of
an entire disk pack. Pseudodisks 6 and 7 should not be used
on the system disk pack, because they cover the entire pack.

The block files access the disk via the system's normal
buffering mechanism and may be read and written without
regard to physical disk records.

A ‘raw' interface provides for direct transmission between
the disk and the user's read or write buffer. A single read
or write call results in exactly one I/0O operation and
therefore raw I/0 is considerably more efficient when many
words are transmitted. The names of the raw files conven-
tionally begin with an extra “r.' In raw I/O the buffer must
begin on a word boundary.

/dev/rp?, /dev/rrp?
/dev/hk?, /dev/rhk?

SEE ALSO

Print

/usr/doc/hksizes

ed 8/29/81 1

HK (4) UNIX Programmer's Manual HK (4)

BUGS -
In raw I/0 read and write (2) truncate file offsets to 512-

byte block boundaries, and write scribbles on the tail of
incomplete blocks. Thus, in programs that are likely to
access raw devices, read, write and lseek (2) should always

deal in 512-byte multiples.

Printed 8/29/81

HP (4) UNIX Programmer's Manual HP (4)
NAME
hp - RH-11/RM@2, RP@4, RP@5, RP@6 moving-head disk
- RH-706/RM@3, RP#4, RPO5, RPO6 moving-head disk
~ RH-11/ML11 solid state disk
- RH-76/ML11 solid state disk
DESCRIPTION

The octal representation of the minor device number is
encoded idp , where i is an interleave flag, d is a physical
drive number, and p is a pseudodrive (subsection) within a
physical unit. If i is @, the origins and sizes of the
pseudodisks on each drive, counted in cylinders of 418 512-
byte blocks, for the RPG4/5/6 are:

disk start length
/] 2 23

1 23 21

2 44 21

3 65 345

4 65 749

5 411 4¢3

6 g 4182

7 4] 814

The pseudodisks for the RM@2/3 are:

disk start length
4]) 60

1 60 55

2 115 59

3 165 657

4 g]

5 7)

6 %) g

7 g 822

If 1 is 1, the minor device consists of the specified pseu-
dodisk on drives numbered 9 through the designated drive
number. Successively numbered blocks are distributed across
the drives in rotation.

Systems distributed for these devices use disk @ for the
root, disk 1 for swapping, disk 2 for the system souces, and
disk 3 (rp04/5 & rm@2/3), or disk 4 (rp@6) for a mounted
user file system.

The ML1l solid state disk may be connected to the RH1l or
RH70 massbus disk controller in conjunction with RM and RP
disks. The ML1ll may be used for the swap device or perhaps
mounted on /tmp. The ML1ll has switch-selectable transfer
rates of #.25 mb, 6.5 mb, 1.8 mb, and 2.8 mb per second. The
following transfer rate restrictions apply:

Printed 8/29/81 ‘ 1

HP (4)

FILES

UNIX Programmer's Manual HP (4)

~

#.25 mb all CPU's

2.5 .mb all CPU's

1.9 mb PDP 11/78 with RH78 only
2.8 mb NO PDPll CPU's

The RMB2/3, RPO4/5/6, and ML1ll disks may be attached to a
second RH1ll or RH7@ massbus disk controller at the alternate
address and vector. In this case these disks are referenced
as hm? .

The block files access the disk via the system's normal
buffering mechanism and may be read and written without
regard to physical disk records.

A ‘raw' interface provides for direct transmission between
the disk and the user's read or write buffer. A single read
or write call results in exactly one I/0 operation and
therefore raw I/0 is considerably more efficient when many
words are transmitted. The names of the raw files conven-
tionally begin with an extra “r.' In raw I/0 the buffer must
begin on a word boundary, and raw I/0 to an interleaved dev-
ice is likely to have disappointing results.

/dev/rp?, /dev/rrp?
/dev/hp?, /dev/rhp?
/dev/hm?, /dev/rhm?

SEE ALSO

BUGS

Printed 8/29/81

/usr/doc/hpsizes

In raw I1/0 read and write (2) truncate file offsets to 512~
byte block boundaries, and write scribbles on the tail of
incomplete blocks. Thus, in programs that are likely to
access raw devices, read, write and lseek (2) should always
deal in 512-byte multiples.

Raw device drivers don't work on interleaved devices.

HS (4)

NAME

DESCR

FILES

BUGS

Printed 8/29/81

UNIX Programmer's Manual HS (4)

hs - RH-11/RS@3, RS04 fixed-head disk
- RH-70/RS03, RS04 fixed-head disk

IPTION

The files hs@ ... hs7 refer to RS83 disk drives 4 through 7.
The files hs8 ... hsl5 refer to RS04 disk drives @ through
7. The RSO3 drives are each 1824 blocks long and the RS@4
drives are 2048 blocks long.

The hs files access the disk via the system's normal buffer-
ing mechanism and may be read and written without regard to
physical disk records. There is also a ‘raw' interface
which provides for direct transmission between the disk and
the user's read or write buffer. A single read or write
call results in exactly one I/0 operation and therefore raw
I/0 is considerably more efficient when many words are
transmitted. The names of the raw HS files begin with rhs.
The same minor device considerations hold for the raw inter-
face as for the normal interface. 1In raw I/0 the buffer
must begin on a word boundary.

/dev/hs?, /dev/rhs?

In raw I/0 read and write (2) truncate file offsets to 512-
byte block boundaries, and write scribbles on the tail of
incomplete blocks. Thus, in programs that are likely to
access raw devices, read, write and lseek (2) should always
deal in 512-byte multiples.

ML (4) UNIX Programmer's Manual ML (4)

NAME
ml - RH-11/ML1l solid state disk
- RH-78/ML1l1 solid state disk

DESCRIPTION

ml? refers to an entire ML1l unit as a single sequentially
addressed file. The size of each ML1ll unit depends on the
number of array modules installed. There are 512 512-byte
blocks per array module, for a maximum size of 8192 blocks
per unit. The ml disk driver requires that the ML1ll be
installed on a separate RH1l or RH70 massbus disk con-
troller.

The ML1l may be used for the swap device or perhaps mounted
on /tmp. The ML1ll has switch-selectable transfer rates of
.25 mb, 8.5 mb, 1.8 mb, and 2.0 mb per second. The follow-
ing transfer rate restrictions apply:

0.25 mb all CpPU's
8.5 mb all CPU's
1.8 mb PDP 11/78 with RH78 only
2.8 mb NO PDPll CPU's

The block files access the disk via the system's normal
buffering mechanism and may be read and written without
regard to physical disk records.

A “raw' interface provides for direct transmission between
the disk and the user's read or write buffer. A single read
or write call results in exactly one I/0 operation and
therefore raw I/0 is considerably more efficient when many
words are transmitted. The names of the raw files conven-
tionally begin with an extra “r.' In raw I/0 the buffer must
begin on a word boundary, and raw I/0 to an interleaved dev-
ice is likely to have disappointing results.

FILES
/dev/ml?, /dev/rml?

BUGS
In raw I/0 read and write (2) truncate file offsets to 512-
byte block boundaries, and write scribbles on the tail of
incomplete blocks. Thus, in programs that are likely to
access raw devices, read, write and lseek (2) should always
deal in S512-byte multiples.

Printed 8/29/81 1

RL(4) UNIX Programmer's Manual RL (4)

NAME
rl - RL11/RLPA1l or RL@2 disk

DESCRIPTION
R1? refers to an entire disk as a single sequentially-
addressed file. ts 256-word blocks are numbered @ to 18239
(RLA1) or @ to 28479 (RL@2). The physical disk sector size
is 128 words, however the logical block size is 256 words.
Minor device numbers are drive numbers on one controller.

The rl files discussed above access the disk via the
system's normal buffering mechanism and may be read and
written without regard to physical disk records. There is
also a “raw' interface which provides for direct transmis-
sion between the disk and the user's read or write buffer.

A single read or write call results in exactly one I/O
operation and therefore raw I/0 is considerably more effi-
cient when many words are transmitted. The names of the raw
RL files begin with rrl and end with a number which selects
the same disk as the corresponding rl file.

In raw I/0 the buffer must begin on a word boundary, and
counts should be a multiple of 512 bytes (a disk block).
Likewise seek calls should specify a multiple of 512 bytes.

FILES
/dev/rl?, /dev/rrl?
/dev/rp?, /dev/rrp?

BUGS
In raw I/0 read and write (2) truncate file offsets to 512-
byte block boundaries, and write scribbles on the tail of
incomplete blocks. Thus, in programs that are likely to
access raw devices, read, write and lseek (2) should always
deal in 512-byte multiples.

Printed 8/29/81 1

RP(4) UNIX Programmer's Manual RP(4)

NAME
rp - RP-11/RP#3 moving-head disk
DESCRIPTION
The files rpd ... rp7 refer to sections of RP disk drive 8.
The files rp8 ... rpl5 refer to drive 1 etc. This allows a
large disk to be broken up into more manageable pieces.
The origin and size of the pseudo-disks on each drive are as
follows:
disk start length
2 g 9600
1 9600 8000
2 17600 7400
3 25200 55000
4 2 80000
5-7 unassigned
Thus rp4 covers the whole drive, while rpd, rpl, rp3 can
serve usefully as a root, swap, and mounted user file system
respectively. The disk rp2 covers a mounted file system
containing the system sources.
The rp files access the disk via the system's normal buffer-
ing mechanism and may be read and written without regard to
physical disk records. There is also a ‘raw' interface
which provides for direct transmission between the disk and
the user's read or write buffer. A single read or write
call results in exactly one I/O operation and therefore raw
I/0 is considerably more efficient when many words are
transmitted. The names of the raw RP files begin with rrp
and end with a number which selects the same disk section as
the corresponding rp file.
In raw I/0 the buffer must begin on a word boundary.
FILES
/dev/rp?, /dev/rrp?
SEE ALSO
hp(4)
BUGS

In raw I/0 read and write (2) truncate file offsets to 512-
byte block boundaries, and write scribbles on the tail of
incomplete blocks. Thus, in programs that are likely to
access raw devices, read, write and lseek (2) should always
deal in 512-byte multiples.

Printed 8/29/81 1

RX (4) UNIX Programmer's Manual RX (4)

NAME
rx - RX@2 floppy disk

DESCRIPTION
RX? refers to an entire disk as a single sequentially-
addressed file. The physical disk sector size is 128 bytes
for single density and 256 bytes for double density, the
logical block size is 512 bytes. Each diskette has 508 log-
ical blocks, single density and 18601 logical blocks, double

. - : ; s e
“I!mk » a7 "h Ff\1 1 .77 ™Mt 1M Y -
density. The minor device numbers have the following signi

ficance:

name minor device unit density

rxg 2)] single

rxl 1 i

rx2 2
3

1
2 double
rx3 1

double

The rx files discussed above access the disk via the
system's normal buffering mechanism and may be read and
written without regard to physical disk records. There is
also a ‘raw' interface which provides for direct transmis-
sion between the disk and the user's read or write buffer.

A single read or write call results in exactly one I/O
operation and therefore raw I/0 is considerably more effi-
cient when many words are transmitted. The names of the raw
RX files begin with rrx and end with a number which selects
the same disk as the corresponding rx file.

In raw I/0 the buffer must begin on a word boundary, and
counts should be a multiple of 512 bytes (a disk block).
Likewise seek calls should specify a multiple of 512 bytes.

FILES
/dev/rx?, /dev/rrx?

BUGS
In raw I/0 read and write (2) truncate file offsets to 512-
byte block boundaries, and write scribbles on the tail of
incomplete blocks. Thus, in programs that are likely to
access raw devices, read, write and lseek (2) should always
deal in 512-byte multiples.

Printed 8/29/81 1

TS (4) UNIX Programmer's Manual TS (4)
NAME

ts - TS1l magtape interface
DESCRIPTION

The file mtl refers to the DEC TS1ll magtape. When opened

for reading or writing, the tape is not rewound. When
closed, it is rewound (unless the 0288 bit is on, see
below). If the tape was open for writing, a double end-of-
file is written. 1If the tape is not to be rewound the tape

is backspaced to just between

A standard tape consists of a

terminated by a double end-of-

the system makes it possible,
tape like any other file.

the two tapemarks.

series of 512 byte records
file. To the extent possible,
if inefficient, to treat the

Seeks have their usual meaning

and it is possible to read or write a byte at a time. Writ-
ing in very small units is inadvisable, however, because it
tends to create monstrous record gaps.

The TS1l operates at 1606 BPI only and the driver does not
support multiple units. If the 0208 bit is on (initial
digit 2 or 3), the tape is not rewound on close. Note that
the minor device number has no necessary connection with the
file name, and in fact tp (1) turns the short name x into
“/dev/mtx ‘.

The mt files discussed above are useful when it is desired
to access the tape in a way compatible with ordinary files.
When foreign tapes are to be dealt with, and especially when
long records are to be read or written, the ‘raw' interface
is appropriate. The associated file may be named rmtl but
the same minor-device considerations as for the regular
files still apply.

Each read or write call reads or writes the next record on
the tape. In the write case the record has the same length
as the buffer given. During a read, the record size is
passed back as the number of bytes read, provided it is no
greater than the buffer size; if the record is long, an
error is indicated. 1In raw tape I1/0, the buffer must begin
on a word boundary and the count must be even. Seeks are

ignored. A zero count is returned when a tape mark is read;
another read will fetch the first record of the next tape
file.

FILES
/dev/mtl, /dev/rmtl, /dev/nrmtl

SEE ALSO
tp(l)

Printed 8/29/81 1

TS (4) UNIX Programmer's Manual TS (4)

BUGS
In raw 1/0, there should be a way to perform forward and
backward record and file spacing and to write an EOF mark
explicitly.

Printed 8/29/81 2

TTYS (5) UNIX Programmer's Manual TTYS (5)

NAME
ttys - terminal initialization data

DESCRIPTION
The ttys file is read by the init program and specifies
which terminal special files are to have a process created
for them which will allow people to log in. It contains one
line per special file.
The first character of a line is either “8' or "1' or “2';
zero causes the line to be ignored, one causes it to be
effective as a dialup line, and two.specifies local terminal
operation. The second character is used as an argument to
getty (8), which performs such tasks as baud-rate recogni-
tion, reading the login name, and calling login. For normal
lines, the character is ‘“8'; other characters can be used,
for example, with hard-wired terminals where speed recogni-
tion is unnecessary or which have special characteristics.
(Getty will have to be fixed in such cases.) The remainder
of the line is the terminal's entry in the device directory,
/dev.

FILES
/etc/ttys

SEE ALSO
init(8), getty(8), login(l)

Printed 8/29/81 1

BOOT (8) UNIX Programmer's Manual BOOT (8)

NAME
boot - startup procedures

DESCRIPTION
A PDP1l1l UNIX system is started by a two-stage process. The
first is a primary bootstrap which is able to read in rela-
tively small stand-alone programs; the second (called boot)
is used to read in the system itself.

" The primary bootstrap must reside in the otherwise unused
block zero of the boot device. It can be read in and
started by the standard ROM programs, or if necessary by
keying in a small startup routine. This program is capable
of loading type 407 executable files (not shared, not
separate I&D). The user types on the system console the
name of the program wished, in this case boot , followed by
a carriage return; the named program is retrieved from the
file system that starts at block 8 of drive @ of the boot
device. Successful loading of the primary bootstrap is sig-
naled by the “#' prompt on the console, no diagnostic
results if the file (/boot) cannot be found , and no provi-
sion is made for correcting typographical errors. In case
the “/boot' file does not function, the " /boot.bu' file is
provided as a backup copy of the bootstrap.

The second step, called boot, actually brings in the system.
When read into location @ and executed, boot sets up memory
management, relocates itself into high memory, and types

Boot

.
.

on the console. Then it reads from the console a device
specification (see below) followed immediately by a path-
name. Boot finds the corresponding file on the given dev-
ice, loads that file into memory location zero, sets up
memory management as required, and calls the program by exe-
cuting a “trap' instruction. Normal line editing characters
can be used.

Conventionally, the name of the secondary boot program is]
‘/boot' and the name of the current version of the system 1is
*/unix'. Then, the recipe is:

1) Load block @ of the boot device by fiddling with the
console keys as appropriate for your hardware. If you
have no appropriate ROM, some programs suitable for
manual use are given below.

2) Respond to the “#' prompt by typing ‘boot' .

Printed 8/29/81 1

BOOT (8) UNIX Programmer's Manual BOOT (8)

3) When the “boot' prompt is given, type one of the fol-
lowing:

hp(@,0)unix
hm(@,8)unix
hk{(8,8)unix
rp(f,@)unix
rl(@,0)unix

depending on the type of disk you are loading from.

The first # indicates the physical unit number; the

second indicates the block number of the beginning of

the logical file system to be searched. (See below).
When the system is running, it types

unix/vim 2.0

mem = F#$#4d
#
on the console. The ‘mem =' message gives the amount of

free memory in bytes, available to user programs. After
setting the date (date(8)) and doing any file system checks
a multi-user system is brought up by typing an EOT
(control-d) in response to the “#' prompt.

Device specifications. A device specification has the fol-
lowing form:

device(unit,offset)

where device is the type of the device to be searched, unit
is the unit number of the device, and offset is the block
offset of the file system on the device. Device is one of
the following

hp RM@2/3 or RPP4/5/6 on first RH11/70
hm RM@2/3 or RP£4/5/6 on second RH1l1l/78
hk RKB6/7

rp RP@3

rl RLB1/2

rk RK@5

For example, the specification
rp(l,70068)

indicates an RP@3 disk, unit 1, and the file system found
starting at block 7060 (cylinder 35).

Printed 8/29/81 2

BOOT (

FILES

8) UNIX Programmer's Manual BOOT (8)

The ‘hp' disks have the ability to deal with interleaved
file systems (see hp(4)). Unit numbers @ thru 3 refer to
physical drives @ thru 3 non-interleaved, and unit numbers 4
thru 7 refer to physical drives @ thru 3 with interleaved
file systems.

ROM programs. The following programs to call the primary
bootstrap may be installed in read-only memories or manually
keyed intc main memory. Each program is position-
independent but should be placed well above location 8 so it
will not be overwritten. Each reads a block from the begin-
ning of a device into core location zero. The octal words
constituting the program are listed on the left.

RK (drive @):

612700 mov $rkda,rd
177412
905040 clr -(rd) / rkda cleared by start
A16040 mov réd,-(r@)
5127490 mov $5,-(rd)
pooBas
185718 1: tstb (rd)
882376 bge 1b
2050687 clr pc

RP (drive @)
012760 mov Srpmr,rd
176726
p050640 clr -(rd)
305040 clr -(rd)
285040 clr -(r@)
210040 mov rd,~-(rd)
012749 mov $5,-(r@)
p000605
125718 1: tstb (rd)
882376 bge 1b
gasea’7 clr pc

/unix - system code

/mdec/hpuboot

/mdec/hkuboot

/mdec/rpuboot

/mdec/rluboot - copies of the prinmary bootstraps
/boot - second stage bootstrap
/boot.bu - backup copy of boot

Printed 8/29/81 3

CRASH (8) UNIX Programmer's Manual CRASH (8)

NAME
crash - what to do when the system crashes

DESCRIPTION
This section gives at least a few clues about how to proceed
if the system crashes. It can't pretend to be complete.

Bringing it back up. If the reason for the crash is not evi-
‘dent (see below for guidance on “evident') you may want to
try to dump the system if you feel up to debugging. At the
moment a dump can be taken only on magtape. With a tape
mounted and ready, stop the machine, load address 1868, and
start. This should write a copy of all of core on the tape
with an EOF mark. Caution: Any error is taken to mean the
end of core has been reached. This means that you must be
sure the ring is in, the tape is ready, and the tape is
clean and new. The system will halt after the completion of
a successful dump or hang in a tight loop if the dump fails.
If the dump fails, you can try again, by loading address
1860 and restarting. The registers are saved on the first
dump attempt only, so nothing is lost by restarting. See
below for what to do with the tape.

In restarting after a crash, always bring up the system
single-user. This is accomplished by following the direc-
tions in boot (8) as modified for your particular installa-
tion. When it is running, perform a fsck (1lm) on all file
systems which could have been in use at the time of the
crash. If any serious file system problems are found, they
should be repaired. When you are satisfied with the health
of your disks, check and set the date if necessary, then
come up multi-user. This is accomplished by typing an EOT
(control 4).

To even boot UNIX at all, three files (and the directories
leading to them) must be intact. First, the initialization
program /etc/init must be present and executable. If it is
not, the CPU will loop in user mode at location 6. For init
to work correctly, /dev/console and /bin/sh must be present.
If either does not exist, the symptom is best described as
thrashing. Init will go into a fork/exec loop trying to
create a Shell with proper standard input and output.

If you cannot get the system to boot, a runnable system must
be obtained from a backup medium. The root file system may
then be doctored as a mounted file system as described
below. If there are any problems with the root file systenm,
it is probably prudent to go to a backup system to avoid
working on a mounted file system.

Repairing disks. The first rule to keep in mind is that an
addled disk should be treated gently; it shouldn’t be

Printed 8/29/81 1

CRASH (8) UNIX Programmer's Manual CRASH (8)

mounted unless necessary, and if it is very valuable yet in
guite bad shape, perhaps it should be dumped before trying
surgery on it. This is an area where experience and
informed courage count for much.

The problems reported by icheck typically fall into two
kinds. There can be problems with the free list: duplicates
in the free list, or free blocks also in files. These can
be cured easily with an icheck -s. If the same block appears
in more than one file or if a file contains bad blocks, the
files should be deleted, and the free list reconstructed.
The best way to delete such a file is to use clri (1), then
remove its directory entries. If any of the affected files
is really precious, you can try to copy it to another device
first.

Dcheck may report files which have more directory entries
than links. Such situations are potentially dangerous; clri
discusses a special case of the problem. All the directory
entries for the file should be removed. If on the other
hand there are more links than directory entries, there is
no danger of spreading infection, but merely some disk space
that is lost for use. It is sufficient to copy the file (if
it has any entries and is useful) then use clri on its inode
and remove any directory entries that do exist.

Finally, there may be inodes reported by dcheck that have 0
links and @ entries. These occur on the root device when
the system is stopped with pipes open, and on other file
systems when the system stops with files that have been
deleted while still open. A clri will free the inode, and
an icheck -s will recover any missing blocks.

The icheck , dcheck and clri information given above is for
reference only, fsck (lm) should be used instead of icheck
and dcheck for file system repairs, see fsck (1lm) for more
detail. ‘

Why did it crash? UNIX types a message on the console type-
writer when it voluntarily crashes. Here is the current
list of such messages, with enough information to provide a
hope at least of the remedy. The message has the form
‘panic: ...', possibly accompanied by other information.
Left unstated in all cases is the possibility that hardware
or software error produced the message in some unexpected
way.

blkdev
The getblk routine was called with a nonexistent major
device as argument. Definitely hardware or software
error.

Printed 8/29/81 2

CRASH (8) UNIX Programmer's Manual CRASH(8)

devtab
Null device table entry for the major device used as
argument to getblk. Definitely hardware or software
error.

iinit
An I/0 error reading the super-block for the root file
system during initialization.

no fs
A device has disappeared from the mounted-device table.
Definitely hardware or software error.

no imt
Like "no fs', but produced elsewhere.

no clock
During initialization, neither the line nor programm-
able clock was found to exist.

I/0 err in swap
An unrecoverable I/0 error during a swap. Really
shouldn't be a panic, but it is hard to fix.

out of swap space
A program needs to be swapped out, and there is no more
Swap space. It has to be increased. This really
shouldn't be a panic, but there is no easy fix.

out of swap
No room in the swap :area to hold the argument list
while a process does an exec (2). Swap area size
should be increased.

no procs
The process table has overflowed, increase NPROC in
param.h.

timeout table overflow
The timeout table is not large enough.

zero wchan or sleeping on wchan 9
A process is waiting on an address (wchan) of zero,
which is illegal.

Running a dead proc
The system attempted to activate a "zombie" process.

parity

A memory parity error has occurred, can be accompanied
by memory error registers on certian processors.

Printed 8/29/81 3

CRASH (8) UNIX Programmer's Manual CRASH(8)

trap
An unexpected trap has occurred within the system.
This is accompanied by five numbers: a “ka6', which is
the contents of the segmentation register for the area
in which the system's stack is kept; ‘aps', which is
the location where the hardware stored the program
status word during the trap; “pc', program counter and
‘ps', processor status word at the time of the trap;
and a " trap type' which encodes which trap occurred.
The trap types are:

2 bus error

1 reserved instruction

2 BPT/trace

3 I0T

4 power fail

5 EMT

6 recursive system call (TRAP instruction)

7 Programmed interrupt request

10 floating point trap

11 segmentation violation

In some of these cases it is possible for octal 20 to be
added into the trap type; this indicates that the processor
was in user mode when the trap occurred. If you wish to
examine the stack after such a trap, either dump the system,
or use the console switches to examine core; the required
address mapping is described below.

Interpreting dumps. All file system problems should be taken
care of before attempting to look at dumps. The dump should
be read into the file /usr/sys/core; cp (1) will do. At
this point, you should execute ps -alxk and who to print the
process table and the users who were on at the time of the
crash. You should dump (od (1)) the first 30 bytes of
/usr/sys/core. Starting at location 4, the registers R#, R1,
R2, R3, R4, R5, SP and KDSA6 (KISA6 for non-separate I & D
CPU's) are stored. These are not the values of the regis-
ters at the time of the crash, those values are stored on
the kernal stack, pointed to by “aps'. Next, take the value
of KA6 (location @22(8) in the dump) multiplied by 61068 (8)
and dump #1006 (8) bytes starting from there. This is the
per-process data associated with the process running at the
time of the crash. Relabel the addresses 140008 to 141776.
R5 is C's frame or display pointer. Stored at (RS5) is the
old R5 pointing to the previous stack frame. At (R5)+2 is
the saved PC of the calling procedure. Trace this calling
chain until you obtain an R5 value of 141756, which is where
the user's RS is stored. If the chain is broken, you have
to look for a plausible R5, PC pair and continue from there.
Each PC should be looked up in the system's name list using

P L Py T | hd 3
adb (1) and its “:' command, to get a reverse calling corder.

Printed 8/29/81 4

CRASH (8) UNIX Programmer's Manual CRASH (8)

In most cases this procedure will give an idea of what is
wrong. A more complete discussion of system debugging is
impossible here.

SEE ALSO
clri(l), icheck{l), dcheck{l), boot(8), fsck(lm)

Printed 8/29/81 5

DMESG (8) UNIX Programmer's Manual DMESG(8)

NAME

dmesg - collect system diagnostic messages to form error log

SYNOPSIS

/etc/dmesg [-]

DESCRIPTION

FILES

BUGS

Printed 8/29/81

Dmesg looks in a system buffer for recently printed diagnos-
tic messages and prints them on the standard output. The
messages are those printed by the system when device
(hardware) errors occur and (occasionally) when system
tables overflow non-fatally. If the - flag is given, then
dmesg computes (incrementally) the new messages since the
last time it was run and places these on the standard out-
put. This is typically used with cron (8) to produce the
error log /usr/adm/messages by running the command

/etc/dmesg - >> /usr/adm/messages

every 18 minutes.

/usr/adm/messages error log (conventional location)
/usr/adm/msgbuf scratch file for memory of - option

The system error message buffer is of small finite size. As
dmesg is run only every few minutes, not all error messages
are guaranteed to be logged. This can be construed as a
blessing rather than a curse.

Error diagnostics generated immediately before a system
crash will never get logged.

INIT(8) UNIX Programmer's Manual INIT(8)

NAME
init, rc - process control initialization

SYNOPSIS
/etc/init
/etc/rc

DESCRIPTION
Init is invoked as the last step of the boot procedure (see
boot (8)). Generally its role is to create a process for
each typewriter on which a user may log in.

When init first is executed the console typewriter
/dev/console. is opened for reading and writing and the
shell is invoked immediately. This feature is used to bring
up a single-user system. If the shell terminates, init
comes up multi-user and the process described below is
started.

When init comes up multiuser, it invokes a shell, with input
taken from the file /etc/rc. This command file performs
housekeeping like removing temporary files, mounting file
Systems, and starting daemons.

Then init reads the file /etc/ttys and forks several times
to create a process for each typewriter specified in the
file. Each of these processes opens the appropriate type-
writer for reading and writing. These channels thus receive
file descriptors @, 1 and 2, the standard input, output and
error files. Opening the typewriter will usually involve a
delay, since the open is not completed until someone is
dialed up and carrier established on the channel. Local-
typewriters are opened immediately, see ttys(5). Then
/etc/getty is called with argument as specified by the last
character of the ttys file line. Getty reads the user's
name and invokes login (1) to log in the user and execute
the shell.

Ultimately the shell will terminate because of an end-of-
file either typed explicitly or generated as a result of
hanging up. The main path of init , which has been waiting
for such an event, wakes up and removes the appropriate
entry from the file utmp , which records current users, and
makes an entry in /usr/adm/wtmp , which maintains a history
of logins and logouts. Then the appropriate typewriter is
reopened and getty is reinvoked.

Init catches the interrupt signal SIGINT and interprets it
to mean that the system should be brought from multi user to
single user. Use ‘kill -2 1' to send the interrupt signal.
Init also catches the hangup signal SIGHUP, which causes
init to reread the /etc/ttys file. To bring new terninals

Printed 9/28/81 1l

INIT(8) UNIX Programmer's Manual INIT(8)

on-line or take existing terminals off-line, edit the
/etc/ttys file and use “kill -1 1' to send the hangup signal
to init. Only the terminals whose flag character, in the
/etc/ttys file, has been changed will be affected.

FILES
/dev/tty?, /etc/utmp, /usr/adm/wtmp, /etc/ttys, /etc/rc

SEE ALSO
login(l), kill(l), sh(l), ttys(5), getty(8)

Printed 9/20/81

SHUTDOWN (8) UNIX Programmer's Manual SHUTDOWN (8)

NAME

SYNOP

shutdown - orderly system shutdown

SIS
/etc/shutdown [time]

DESCRIPTION

FILES

BUGS

The shutdown command allows the super-user and no one else
to bring the system down in an orderly fashion. Shutdown
may only be run from the console terminal. The optional
time argument is the time delay in minutes until the shut-
down will occur. If the time is not given shutdown will ask

for the shutdown time delay.

Once invoked shutdown ; disables logins for all but the con-
sole terminal, sends a shutdown warning message to all
logged in users every minute until shutdown time arrives,
sends a final shutdown warning message, kills all processes
except process group zero, dismounts all but the root file
system, syncs the disks, and brings the system down to
single-user mode. The shutdown may be aborted by typing a
“delete' on the console terminal.

/etc/sdloglock disables user logins

/unix system namelist

/dev/mem core memory

/dev searched to find swap device and tty names

Multi-user mode cannot be reestablished by typing control D
(EOT) after the shutdown has reached single-user mode, the
system must be rebooted.

Printed 9/28/81 1

