
Page 1

IDENTIFICATION

'PRODUCT CODE: AC-F053C-MC

PRODUCT NAME: CXQUACO DEC/XII USER'S MANUAL

PRODUCT DATE: APRIL 1982

MAINTAINER: DEC/XII Support Group

AUTHOR: D. Butenhof

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE
WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT
BY DIGITAL EQUIPMENT CORPORATION. DIGITAL EQUIPMENT
CORPORATION ASSUMES NO RESPONSIBILITY FOR ANY ERRORS THAT
MAY APPEAR IN THIS MANUAL.

THE SOFTWARE DESCRIBED IN THIS DOCUMENT IS FURNISHED TO THE
PURCHASER UNDER A LICENSE FOR USE ON A SINGLE COMPUTER
SYSTEM AND CAN BE COPIED (WITH INCLUSION OF DIGITALS
COPYRIGHT NOTICE) ONLY FOR .USE IN SUCH SYSTEM, EXCEPT AS MAY
OTHERWISE BE PROVIDED IN WRITING BY DIGITAL.

DIGITAL EQUIPMENT CORPORATION ASSUMES NO RESPONSIBILITY FOR
THE USE OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT THAT IS
NOT SUPPLIED BY DIGITAL.

COPYRIGHT (C) 1973,1982 DIGITAL EQUIPMENT CORPORATION

~6 Page 2

PREFACE. . • • . • . • • • . . • • . . • • • . • . . • • • • • . • • • • . . • . • • • • . • • • . • 5
CHAPTER 1.. 6

1.1 DEC/XII SYSTEM EXERCISER MONITOR ..••••.••..•••••••• 7
1.1.1 System Exerciser Programs..................... 7
1.1.2 New DEC/XII Monitor •••.•.•••.••••.....•..••••• 7
1.1.3 New DEC/XII RTE Programs •••••••••••..••.•••••• 7

1 • 2 REFERENCE DOCUMENTS................................ 9
CHAPTER 2.. 10

2.0 DEC/XII SYSTEM OVERVIEW •••••••••••••.•••••••••••••• 12
2.1 Option/Device Modules •••••••••••••••••••••••••••••• 14

2.1.1 Background Module (BKMOD) ••••••••••••••••••••• 14
2.1.2 Special Background Module (SBKMOD) ••••••••••.• 15
2.1.3 Non-Restartable Background Module (NBKMOD) ••.• 16
2.1.4 I/O Module (IOMOD) •.••••.•••.•..•.....•••••••• 16
2.1.5 I/O Module Restricted (IOMODR)••.•••.• 16
2.1.6 I/O Module Extended (IOMODX) ..•.......•..•••.• 16
2.1.7 I/O Module Partially Restricted (IOMOD?) ..••.• 17

2.2 DEC/XII Monitors .•••.••••......•...........•.••••.• 17
2.2.1 System Initialization•................•... 18
2.2.2 Operator Interfacing•... 19
2.2.3 Option Module Control 22

2.2.3.1 Priority Scheduling 22
2.2.3.2 Module Communications 23

2.2.4 Memory Usage Control 30
2.2.4.1 Memory Options Control 30
2.2.4.2 Write Buffer Control•....... 31
2.2.4.3 Exerciser Relocation•... 34
2.2.4.4 Memory-Worst-Case-Pattern Generation 36

2.2.5 Trap Processlng ...•.......................•... 36
2.3 Configurator/Linker Program•.. 38

2.3.1 The Configuration Process 39
2.3.2 The Linking Process••... 39

2.4 DEC/XII Distribution 39
CHAPTER 3.. 40

3 . 1 GENERAL I NFORMAT I ON • • 42
3 . 2 EXERC I SER BU I LD PROCEDURES......................... 42

3.2.1 Procedural Guide ...•.......................... 42
3.2.2 Pre-Build Planning•........... 43
3.2.3 Build Requirements 46

3.2.3.1 Required Hardware ...•.................... 46
3.2.3.2 Required Software 47
3.2.3.3 Required Documentation 48

3.2.4 Configurator/Linker Programs.................. 48
3.2.4.1 Load and Start Procedures................ 52

3.2.4.1.1 Loading Via Absolute Loader 52
3.2.4.1.2 Loading Via XXDP+ Monitor 52
3.2.4.1.3 Starting Procedures 52

3.2.4.2 Operating Procedures 53
3.2.4.2.1 Configure ,Mode Commands 58
3.2.4.2.2 Linking Process Command•.... 65
3.2.4.2.3 I/O Control Commands•...•...••.. 69
3.2.4.2.4 General Utility Command•....•.. 76
3.2.4.2.5 Command Error Messages ..•.....••..•. 78

3s2.5 Generating A Run-Time Exerciser Module ••.••... 82
3.2.5.1 The Configuration Table (C-Table) •••••..• 82

76 Page 3

3.2.5.2 The Linking Process (LINK Command) ••••••• 83
3.2.3.3 The Run-Time Exerciser (RTE) ••••••••••••• 85

3.3 RUN-TIME EXERCISER PROCEDURES •.•••••••••••••••••••• 85
3.3.1 Hardware And Software Requirements •••••••••••• 85
3.3.2 Load And Start Procedures .• ·••••••••••••••••••• 86

3.3.2.1 Load/Start Via Absolute Loader ••••••••.•• 87
3.3.2.2 Loading Via XXDP+ Monitor •••••••••••••••• 87
3.3.2.3 Starting Via XXDP+ Monitor •••••.•••.••••. 89

3e3e3 Operating Procedures ••.•••••••••••••.••••••••• 89
3.3.3.1 Switch Register Options •••••••••••••••••• 90
3.3.3.2 Keyboard Commands........................ 93

3.3.3.2.1 Keyboard Character Usage •••••••••••• 93
3.3.3.2.2 Keyboard Error Messages•••••.•• 94
3.3.3.2.3 Keyboard Command Analysis ..••••••••• 96

3.3.3.3 Operator Modifications................... 131
3.3.3.3.1 Monitor Modifications ••..•.••••••••. 131
3.3.3.3.2 Option Module Modifications .••.••.•. 131

3.3.3.4 Message Print-Outs •..•••.••..•....••••••• 133
3.3.3.4.1 Normal Run-Time Messages •...•.•.•••. 133
3.3.3.4.2 RTE Run-Time -Error Messages......... 136
3.3.3.4.3 Debug Recommendations ..•.•..•...•... 142

APPEND I X A... 145

76 Page 4

PREFACE

Scope and Purpose

The 'material in this manual is arranged to initially provide the
reader with an introduction to the new DEC/XII System Exerciser. This
is followed by an overview of the system and procedural information
pertaining to both the loading and control of the software, in
relation to the generation of user-designed Run-Time Exerciser (RTE)
programs. The manual concludes with separate detailed procedures for
both loading and controlling the user-designed programs.

The information is formally arranged as follows:

Chapter 1 provides an introduction to the new DEC/XII monitor
in regard to general improvements in both design and
functionality.

Chapter 2 provides an overview of the entire DEC/XII system,
defining the various software elements.

Chapter 3 provides the user with all of the procedural
information required to load, start, and operate the DEC/XII
RTE build programs and the resultant user-designed RTE
modules.

APPENDIX A provides the user with a sample build
pre-build planning through the actual build under
Configurator/Linker program.

from
the

76 Page 5

CHAPTER 1

INTRODUCTION

1.1 DEC/XII SYSTEM EXERCISER MONITOR

1.1.1 System Exerciser Programs

1.1.2 New DEC/XII Monitor

1. 1. 3 New DEC/XII RTE Programs

1.2 REFERENCE DOCuMENTS

76 Page 6

1.1 DEC/XII SYSTEM EXERCISER MONITOR

Run-Time Exerciser (RTE) programs provide confidence and reliability
testing for PDP-II hardware by generally providing for the detection,
as opposed to the isolation, of a wide range of hardware problems.

There are three classes of exerciser program: subsystem exercisers,
unit exercisers, and system interaction exercisers. System
interaction exercisers are the most complex, and the main concern of
thlS manual, since they are both designed and generated using DEC/XII
software.

1.1.1 System Exerciser Programs

System interaction exerciser programs drive associated systems at
maXImum activity rates in order to provoke noise, timing, and logical
interaction failures. The programs exercise systems hardware at the
limits of design in order to ensure reliability. Such programs
require a high degree of parameterization and operator interaction and
are generally large in both size and scope although problem isolation
and fault resolution only occur at a subsystem level.

stress provided by this class of exerciser
to normal customer usage, makes these programs
prototype acceptance testing, (2) customer

and (3) preventive and corrective field

The system activity
program, as opposed
ideally suited for (I)
installation testing,
maintenance usage.

1.1.2 New DEC/XII Monitor

The new DEC/XII Monitor-is a modularized program which incorporates
both structured design and programming techniques. The nature of this
design enhances maintainability by providing extensive documentation,
at a modular level, as an inherent by-product of structured
programming and simplification of flow as a by-product of top-down
implementation. As a result, the new DEC/XII software lends itself
more readily to the support of future hardware options and/or
enhancements.

1.1.3 New DEC/XII RTE Programs

Run-time system exerciser programs, created
software, are a combination of user selected
and exerciser option modules. Enhancements to
the final programs improve both the operation
in the following areas.

Operator/user interface

via the new DEC/XII
DEC/XII monitor modules
the monitor portions of
and control of the RTEs

76 Page 7

System interactions

Management of memory

Error reporting and recovery

Operator/User Interface

The operator/user interface has been improved to provide:

1. Increased Console Interaction:

Many of the keyboard commands and control characters may now
be entered dynamically as well as statically, i.e., in Busy
Mode (BSY» as well as Command Mode (CMD».

2. Increased Operator Control:

An expanded set of keyboard commands and control characters
now provides increased report generation capabilities (e.g.,
summaries of module header information), access to user
specified locations, and expanded editing abilities.

System Interactions

Improved system interaction and, as a by-product, increased throughput
has been achieved as follows:

1. By asynchronous-parallel processing of:

Keyboard input and command decoding: where interrupt
servicing, and decoding, will occur as fast as the
operator can enter the input.

Message dequeuing and terminal output: where processing
and printout will occur as fast as the terminal device can
accept the data.

Job scheduling and multiprogramming: where option
and monitor module processes are serviced on a First-In
First-Out (FIFO) basis.

2. By an increased degree of mUltiprogramming:

Made possible by minimizing the amount of overhead required
to service the option modules (Control Queue) and console
device (Type Queue), thus increasing the amount of CPU time
available to run option modules.

Management of Memory

Memory management has been improved in the following areas:

1. Advanced Memory Utilization:

Through the use of optional keyboard commands, the
operator may initiate a systematic relocation of the
exerciser program through all of memory.

Page 8

Through the use of optional bit settings in the Software
Switch Register, the operator may inititate sequential
movement of the exerciser program through memory.

2. Write Buffer Control:

Rotation of the write buffer, through the l24K bank of
memory in which the exerciser currently resides, is both
continous and contiguous.

Periodically, worst-case UNIBUS data patterns are written
into all of the memory space not currently occupied by the
exerciser program.

Error Reporting and Recovery

Error reporting and recovery have been improved in the following ways:

A run summary now lists both hard and soft errors occurring
within a module.

If a system error is caused by an option module, the name of
the module is now listed along with the offset value of the
Program Counter.

1.2 REFERENCE DOCUMENTS

The following reference documents are currently available:

DEC/XII USER'S MANUAL (MD-ZZ-CXQUA)
DEC/XII CROSS REFERENCE MANUAL (MD-ZZ-CXQUB)
XXDP+ USER'S MANUAL (MD-ZZ-CHQUS)
DEC/XII REFERENCE CARD

76

CHAPTER 2

GENERAL DESCRIPTION

2. DEC/XII SYSTEM OVERVIEW

2.1 Option/Device Modules

2.1.1

2.1.2

2.1.3

2 • 1 • 4

2.1.5

2.1.6

2.1.7

2.2

2.2.1

2 . 2 . 2

2.2.3

2.2.3.1

2.2.3.2

2.2.4

2.2.4.1

2.2.4.2

2.2.4.3

2.2.4.4

2 . 2 .

2.3

2.3.1

Background Module (BKMOD)

Non-Restartable Background Module (NBKMOD)

Special Background Module (SBKMOO)

I/O Module (rOMOD)

I/O Module Restricted (IOMOOR)

I/O Module Extended (IOMOOX)

I/O Module Partially Restricted (IOMODP)

DEC/XII Monitors

System Initialization

Operator Interfacing

Option Module Control

Priority Scheduli~g

Module Communications

Memory Usage Control

Memory Options Control

Write Buffer Control

Exerciser Relocation

Memory-Worst Case Pattern Generation

Trap processing

Configurator/Linker Program

The Configuration Process

Page 9

76 Page 10

2.3.2 The Linking Process

2.4 DEC/XII Distribution

76 Page 11

2.0 DEC/XII SYSTEM OVERVIEW

DEC/XII system software 1S used to create independent Run-Time
Exerciser (RTE) programs from monitor and device/option modules that
are selected by the user from the DEC/XII CROSS REFERENCE MANUAL.

In Figure 2-1, an overview of the basic DEC/XII system is depicted,
along with a general representation of the layout of a typical RTE
program. The DEC/XII system consists of three fundamental parts:

DEC/XII Monitor Library

DEC/XII Device/Option Test Modules

DEC/XII Configurator/Linker Programs

From these the user selects a particular monitor, required test
modules, and an applicable configurator/linker program in order to
generate an RTE program for a particular hardware system. Once the
RTE program is linked, it may be independently loaded via a standard
ABS loader or an XXDP+ Monitor, depending on whether the load module
is contained on paper tape or on a non-paper tape medium,
respectively.

Whenever an RTE program is loaded into memory, an unrelocatable
portion of the monitor always resides in the lowest 4K of memory. The
area directly above may then contain a maximum of 39 test modules plus
the remaining portion of the monitor (if the standard linker is used)
or 19 test modules plus the remaining portion of the monitor (if the
short linker is used). In either case, the remaining free memory area
satisfies the need for write buffer space and monitor/test module
relocation.

76

MONITOR
LIBRARY--

/IDEC/XII !
/ !MONITORS!\

/ !-- --I \
!-- --I
!-- --I
!--

\ !-­
\ !-­
\!--

1--

--I
--I /
--II
--1
--!

! DEC/XII !
!OPTION/DEVICE !
! TEST MODULES !\
!--------------!
!-- --I 1
!-­
!-­
!--

--I ---
--I !
--II

DEC/XII !
-->! CONFIG/LINKER !-->

PROGRAM

SYSTEM OVERVIEW

WRITE
BUFFER

AREA
!-------------------!

/!-- --I
/! OPTION/DEVICE !

!-- TEST --I
*39/19----! MODULES

MAX. ,-- --I
!

-------------------!
*39 for Standard Linker MONITOR!

19 for Short Linker -------------------!\
MONITOR ! !

DEC/XII
RUN-TIME
EXERCISER

(LOAD
MODULE)

Page 12

\ (NON-RELOCATABLE)! -----Lowest 4K
\---------------------/
RTE PROGRAM

FIG. 2-1 DEC/XII SYSTEM OVERVIEW

76 Page 13

2.1 Option/Device Modules

Each option/de~ice module is a program, that is dedicated to the
testing of a single option or device-controller within the confines of
a system configuration. Thus, unlike a stand-alone diagnostic program
that is used to isolate a static problem within an individual device,
a system exerciser module is used to isolate an individual device only
as it relates to a system problem. In fact, prior to running a
collective group of exerciser modules for a given system, it is
preswued that stand-alone diagnostics have been individually, and
successfully, run for each device.

Each option/device module communicates with its resident monitor via
software hooks that are contained in both the body of each module and
a module's header-statement. In addition, there are seven basic types
into which all modules are grouped. With this arrangement
(interfacing with the monitor by type) a module may gain access to
those support and/or utility routines that the monitor provides and
the module requires.

The following subsections describe the seven basic module types
currently available and the purpose of each.

2.1.1 Background Module (BKMOD)

The BKMOD-type only runs-in a background mode (i.e.~ via non-interrupt
driven devices) and at the lowest module run-time priority. A module
of this type is used to exercise non-interrupt hardware options or
functions.

Examples of BKMon usage are:

Exercising a floating point hardware option.
(Module FPA)

Testing the basic PDP-ll Instruction Set.

In addition, all modules of this type are run separately and
consecutively. When relocation occurs, a pointer to the next module
to be run ensures that although all the modules may not be run in each
bank, they will be run consecutively.

NOTE

When the "RUN" command is entered or
after relocation' BKMODS will do a 1
iteration pass by taking on the identity
of a TMPIO (Temporary rOMOD). This is
done to insure BKMODs are run in a high
I/O activity system.

76 Page 14

2.1.2 Special Background Module (SBKMOO)

, The SBKMOD-type-module only runs in a background mode and is the first
type of module to be run (i.e., before any resident NBKMOD). Once
this module is initially run, it will, following every relocation, be
run once again. The latter allows the special function of this module
type (i.e., to set-up a special system condition) to be initially
executed when the exerciser is relocated to another memory bank.
Examples of SB~~OD usage are:

To set-up the run-time sequencing of other resident
modules or peripheral devices.

To switch the DT03 Buss Switch before the other
modules are run.

2.1.3 Non-Restartable Background Module (NBKMOO)

The NBKMOD-type-module only runs in a background mode, is the second
type of module to be run, and is non-restartable. Once this type of
module has been initially run successfully, it is never run again;
unless, of course, an exercise is both aborted and restarted.

Examples of NBKMOD usage are:

Checking system timing before other modules are run.

Checking system parity before other modules are run.

2.1.4 I/O Module (lOMOD)

The IOMOD-type-module only runs in Input/Output mode (i.e., via
interrupt-driven devices), depending on expected interrupts in order
to run continuously. These modules generally service buffer-driven
devices (i.e., devices that do not generate NPRs or contain word-count
registers). This type of module can be relocated without restriction.

Examples of IOMOD usage are:

For exercising TA-11 Cassettes, and floppy disks.
For exercising a paper tape reader/punch or a line
printer.
Exercising a floating point hardware option (module
FPB)

2.1.5 I/O Module Restricted (IOMOOR)

The IOMODR-type-module is an rOMOD that cannot be relocated, due to
hardware restrictions, and is only run in the lowest bank of memory.

76 Page 15

\n example of IOMODR usage is: the exercising of a UNIBUS Tester.

2~1.6 r/o Module Extended (IOMODX)

The rOMODX-type-module is an rOMOD with extended capabilities that
serVlces NPR devices. The capabilities of this module type include:
use of a monitor supplied write buffer, the ability to change the size
of read and write buffers, the ability to access a monitor's check
data utility routine, and the ability to convert 16-bit addresses to
18-bit addresses or IS-bit addresses to 22-bit addresses.

Examples of IOMODX usage are:

Exercising the RKll Controller and up to 8 drives
(types RK02-RK05).

Exercising the RPII high and low density disk
drives.

2.1.7 I/O Module Partially Restricted (IOMODP)

The IOMODP-type-module is an IOMODX that is partially relocatable.
rhis means that due to hardware restrictions the module is only
relocated to certain fixed boundaries' (e.g., 32K).,

2.2 DEC/XII Monitors

Since there are several DEC/XII monitor programs that are available to
the user, the selectfon of an appropriate monitor depends on the
configuration of the hardware system to be tested. However, the
monitor programs are not separate entities. A desired monitor must be
constructed, via the configurator/linker process; from pre-assembled
monitor modules that are contained in a DEC/XII Monitor Library.
Therefore, to provide for both convenient selection and adaptation to
the configurator/linker process" DEC/XII monitor programs are
classified by type and named (i.e., A,B,C, etc.) as described in the
DEC/XII CROSS REFERENCE MANUAL.

Such monitor classification in the reference manual not only allows
the user to apply an appropriate monitor program to a given hardware
configuration, but to select a monitor that most nearly meets the
needs of the hardware system in relation to (1) the functional
requirements of the resultant RTE and (2) the more efficient use of
assigned monitor space.

Moreover, in the same manner that the linking of the basic software
components of an RTE program (monitor and option modules) depends on
the total configuration of the hardware system, the linking of the
basic software components of the monitor portion of the RTE

76 Page 16

{pre-assembled monitor modules} depends on the type of processor to be
serviced and its available options.

Finally, since in all probability additional monitors will be
designed, the following material is not intended to describe monitor
concepts in terms of specific monitor differences but rather in terms
of common functionality.

Monitor Operations

Basically, the monitor portion of an RTE program is responsible for
starting the RTE (via Initialization)~ establishing operator
communications (via Command Decoding)~ establishing communications
with its resident option modules (via Trap Interpretation): providing
for option module control (via Queue Priority Servicing); and
providing for memory usage control (via RTE Relocation and Write
Buffer Rotation).

2.2.1 System Initialization

When an RTE program is loaded, the monitor portion of the program
provides for the initialization of certain software and hardware
components of the system via the execution of two routines: the
Start-Up and Initialization routines.

Start-up Routine

This routine sets-up required software components of the
determines the operating environment by performing
functions:

monitor and
the following

Set-up the Power Failure Vector.

Set-up the software and hardware trap handlers.

Set-up the Software Switch Register (SWR) and
certain Status Indicator Words (for option status).

Size and Poll the system to determine:

(a) Processor type (11/70, 11/60, etc.)

(b) Processor Options (KT, CACHE, etc.).

(c) Memory size (size of RTE is in Loc. Zero).

(d) If good parity must be written in memory

76 Page 17

(only if PARITY or ECC option).

(e) Software environment (APT, ACT/SLIDE/XXDP+)

Output RTE identity message.

Output System Size message.

Output Keyboard Prompt (CMD».

Initialization Routine

This routine Initializes certain software and hardware components (and
starts the monitor running) as follows:

Initialize both the Control and Type Queues.

Initialize error logging function (if available).

Initialize the option module servicing mechanisms
(i.e., set-up the various pointers and flags).

Enable the keyboard for operator input.

2.2.2 Operator Interfacing

Once an RTE program is Initialized, the fact that the monitor portion
of the program is running (and the keyboard enabled for command input)
is indicated by the printing of the Command Mode (CMD» prompt. Thus,
at this point the monitor is available to provide service to the more
than twenty keyboard commands available to the user. Some of the
commands (such as module start, option disable/re-enable commands, and
the module parameter modification command) are restricted to entry in
Command Mode only. The remaining commands, that are generally related
to the deselection/reselection of modules and the disposition of
printout data, may be entered in either the Command Mode or (following
a module start command) the Run Mode (BSY».

In any case, as the operator enters a command format, each character
is stored in the Keyboard Input Buffer until a Carriage Return (CR) is
both entered and recognized by the Monitor. When this occurs, the
Monitor (via its Task Scheduler) dispatches control to its Keyboard
Input Processing Routine to execute the following 5 monitor modules:

The Process Command Routine (CMDPRC)

The Copy Command Routine (CMDCPY)

The Decode Command Routine (CMDDEC)

76 Page 18

The Service Command Routine (CMDSRV)

The Reset Command Routine (CMDRST)
Process Command Routine (CMDPRC)

CMDPRC is the control module for the entire Keyboard Input Processing
Routine. As such, the module is responsible for initially clearing
all local storage locations required by the process and ultimately
calling for the execution of each of the subordinate routines as
follows:

1. CMDPRC initially calls the Copy-Command-Routine (CMDCPY) to
allow the contents of the Keyboard Input Buffer to be
transferred to the Decode Buffer. Following the transfer,
CMDCPY then returns control to CMDPRC. However, there are
two possible results of the transfer:

(a) If CMDCPY does not detect an abnormal condition in
Decode Buffer, CMDPRC is directed to call
Decode-Command-Routine (CMDDEC) to check for
validity of the command.

the
the
the

(b) If CMDCPY detects an abnormal condition in the Decode
Buffer, an Abort Flag is set and CMDPRC is directed to
call the Reset-Command-Routine (CMDRST), to allow a
correction to be made following the issuance of an
appropriate prompt (CMD> or BSY».

2. Whenever a command is checked for validity by CMDDEC, control
is always returned to CMDPRC to continue process control.
However, there_~re two possible results of the check:

(a) If the command in the Decode Buffer is valid, CMDPRC is
directed to call the Service-Command-Routine (CMDSRV) in
order to execute the function prescribed by the command.

(b) If an Invalid Command is detected in the Decode Buffer,
CMDDEC loads an error message into the Type Queues and
CMDPRC is directed to call the Reset-Command Routine
(CMDRST) in order for a correction to be made. The
message is then output, followed by the issuance of an
appropriate prompt (CMD> or BSY».

3. When the prescribed function is executed, CMDSRV always
returns control to CMDPRC which, in turn, always calls CMDRST
to enable the issuance of the appropriate prompt (CMD> or
BSY»~ Thus, keyboard interrupts and the possible entry of
another command are both re-enabled.

4. Finally, whenever the appropriate prompt has been output via
CMDRST, a return is always made to CMDPRC in order to effect

76 Page 19

a return to the Task Scheduler.

Copy Command Routine (CMDCPY)

The CMDCPY routine allows the command string that is originally
contained in the Input Buffer to be copied into the Decode Buffer, one
character at a time, up to (and including) the Carriage Return (CR) or
Line Feed (LF). Moreover, since the Input Buffer may contain both
Rubout (\) and replacement characters, the routine will delete the
unwanted characters.

Following the receipt of a command string, the routine always returns
control to the Process-Command-Routine (CMDPRC). However, prior to
the return, an Abort Flag will be set (allowing for re-direction in
Process Control) if anyone of the following abnormal conditions
occurs:

A Control U(AU) character is detected (See CMDPRC Step lb)

The first character detected is a Rubout, Carriage Return, or
Line Feed (See CMDPRC Step lb).

Decode Command Routine «(MDDEC)

The CMDDEC rouiine scans the D~cod~ Buffer and compar~s
entry with entries contained in a Valid Command Table.
possible results:

the 'command
There are two

If a match is found, the command is validated and its code is
obtained from the table as a return is made to Process Control
(See CMDPRC Step-2a).

If a match cannot be made, an Invalid Command indicator is
set, an appropriate error message is loaded into the Type
Queue, and control is returned to Process Control (See CMDPRC
Step 2b).

It may be noted that following a comparison a return to CMDPRC is
always made. However, if a match cannot be made, the setting of the
Invalid Command indicator provides for a redirection in Process
Control.

Service Command Routine (CMDSRV)

The CMDSRV Routine provides for the execution of all valid commands.
Once its function is performed, a return is made to Process Control
(See CMDPRC Step 2a and Step 3).

Reset Command Routine (CMDRST)

76 Page 20

Th·e CMDRST Routine o~Ptuts an appropriate prompt and re-enables
keyboard interrupts 1n order to accomodate additional or corrective
operator input. To output the proper prompt message, the routine
determines if the system is currently in a Command (CMD» or a Run
(BSY» Mode by examining a status indicator. However, if an error
message is in the Type Queue, it will be output prior to loading and
outputting a prompt message. Once the routine's function is
completed, a return is always made to Process Control (See CMDPRC
Steps: lb, 2b, 3 and 4).

2.2.3 Option Module Control

Monitor control of an RTE program's resident modules is basically
Priority

effective
concerned with the implementation of two tasks: (1)
scheduling for module execution and (2) establishing
communications with each module.

2.2.3.1 Priority Scheduling

As part of an RTE, each option/device module performs a unique test,
which must be properly sequenced during run-time. However, in regard
to module functionality and processing modes of operation (i.e.,
Background Mode and Input/Output Mode), many of the modules are
similar. For these reasons all modules are divided, by common
functionality and processing mode, into the following seven types:
Background Modules (SBKMOD, NBKMOD, B~~OD) which do not service
interrupt-driven devices: and Input/Output Modules (rOMOD, IOMODX,
IOMODP, rOMODR) which do service interrupt-driven devices. In
addition, each module--is defined by type via status word bits
contained in the module's header.

With this arrangement, the monitor during Initialization uses the
status word bits to construct a Priority Schedule by listing each
resident module in a pre-determined manner, thus defining the order of
execution by type.

With the system in Command Mode (CMD», the typing-in
Start Command, with or without relocation specified
RUNL), initiates the execution of the option modules (as
the Priority Schedule) and outputs a Run Mode (BSY»
module is then conditionally sequenced as follows:

1. SBKMODs

of a Module
(i.e., RUN or
prescribed in
prompt. Each

The SBKMODs are the first type to be run. Each module is
separately run once prior to relocation and once again
following each relocation (i.e., if relocation is enabled.)

76 Page 21

2. NBKMODs

The NBKMODs are the next type to be run.
separately run once, and never again.

Each module is

3 • IOMOD , X , P , R

All the I/O Modules are the next types to be run. They run
simultaneously and continuously (i.e., as long as there are
interrupts to drive them).

4. BKMODs

The BKMODs are started last and each module is run
separately. However, since these modules have the lowest
priority, they can only be run when none of the other types
are running.

2.2.3.2 Module Communications

When the option modules are running, co~munication is established with
the monitor via software hooks that are contained in the body of each".
module (i.e., Trap Calls) and also, in some cases, in the header
(i.e., parameter locations)-. These elements, therefore, comprise a
module's interface with the monitor.

Currently there are 19 calls collectively available to the option
modules. Some calls are used by all of the modules, others are only
used with certain module~types, while others are function-related and
are, therefore, only used by specific modules, regardless of type.

Basically, when a module call is trapped to the monitor, the monitor
responds with a service and/or parameters such as: buffer services
including parameters, an error reporting routine, or a message output
service.

I/O Module Buffer Service Calls:

GWBUFS
GETPA$
MAP22S
CDATAS
DATCKS

Output Message Calls:

;Get Write Buffer information call.
;Get IS-bit Physical Address call.
;Map 22-bit Physical Address call.
;Check Data call.
;Provide Check Data error count
call

Monitor-Defined Error Messages:

DATER$;Data Error message call.

76

HRDER$
SOFER$

Module-Defined Messages:

MSG$
MSGS$

MSGN$

Return Control To Monitor Calls:

EXIT$
PIRQS

BREAK$

Ending Calls:

ENDITS
ENDS

Utility Calls:

OTOA$
BTOD$
RANDS

I/O Module Buffer Service Calls

;Hard Error message call.
;Soft Error message call.

Page 22

;Output single ASCII message call.
;Output all ASCII messages in table
call.

;Output all ASCII messages in table
with header call.

;Module awaltlng interrupt call.
;Put Interrupt Request in Queue
call.

;Temporarily return to monitor
call.

;End of iteration call.
;Drop module from exercise call.

;Octal to ASCII conversion call.
;Binary to Decimal conversion call.
;Random Number request call.

To process data transfers for certain I/O modules (IOMODX and IOMODP),
the monitor, on request (GWBUF$), provides a write buffer area in free
core from which data is sent to the device. In addition, the monitor
provides the module interface <i.e., header locations} with both the
size of the write buffer (WBUFSZ) and its starting physical address
(WBUFPA) .

Since the read buffer area is contained within the module, both the
size (RBUFSZ) and starting virtual address (RBUFVA) of the read buffer
are known, but its starting physical address (RBUFPA) is not.
Therefore, the physical address of the read buffer is also requested
(GETPA$ or MAP22$) from the monitor. With the size and location of
the buffers established for both the monitor and the module, the
generation of a write and Read Command to the device will be followed
by a module request (CDATA$ or DATCK$) to the monitor to initiate a
data comparison and, if an error is detected, the monitor will output
an error message. If CDATA$ is used, the monitor will also output a
summary message containing an error count. If DATCK$ is used, a
summary will not be output and the error count will be returned to the
module for storage.

76 Page 23

1. The GWBUF$ Call:

The GWBUF$ call traps to the monitor for write buffer
information. In response, the monitor examines the value in
the Write Buffer Request (WBUFRQ) location to determine if
there is enough free core to satisfy the request. If the
requested value is smaller than the amount of available free
core, the monitor satisfies the request by merely returning
the same value to the Write Buffer Size (WBUFSZ) location.
However, if ~ne requested value is larger, the monitor can
only send a lesser value to the buffer size location
indicating what is available.

In addition, the monitor sends the starting address of the
buffer to the Write Buffer Physical Address (WBUFPA) location
including, if necessary, any extended address bits (WBUFEA).

2(a) The GETPA$ Call:

The GETPA$ call is used to convert a 16-bit virtual address
to an l8-bit physical address and, as such, the call is used
by many types of modules. Normally, however, the call is
used by IOMODX and IOMODP modules to effect the conversion of
the starting virtual address of the read buffer (RBUFVA) to a
starting physical address (RBUFPA), including any extended
address bits (RBUFEA). The module then loads the 16
low-order physical address bits into the Bus Address Register
and any extended bits into the Command Register, prior to
issuing a Read Command.

2(b) The MAP22$ Call:

The MAP22$ call_is used to convert an 18-bit virtual address
to a 22-bit physical address. As such, the call is used with
any type of module, as long as the hardware and associated
monitor are capable of handling 22-bit addressing. Normally,
however, the call is used by rOMODX and IOMODP modules as
described for the GETPA$ call.

3(a) The CDATA$ Call:

The CDATA$ call traps to the monitor, with the starting
physical address of the read buffer (RBUFPA), to request a
comparison between the module's read and write buffer data.

If the monitor detects a data error, it will output an error
message followed by a summary. The summary will include a
print-out of both the total number of errors detected and the
total number of words transfered. Following the summary
print-out, the monitor will increment an error counter within
the module by one, indicating that a single summary error
message has occurred.

3(b) The DATeKS Call:

76 Page 24

The DATCK$ call performs the same function as the CDATA$ call
with the following exceptions:

If the monitor detects a data error, only an error message
will be output. However, the total number of errors and
words transfered will be delivered to the body of the module
and the error counter will be incremented, as previously
described.

Output Message Calls

There are six output message calls: Three (DATER$, HRDER$, SOFER$)
are used to request predefined error reports from the monitor while
the remaining three (MSG$, MSGS$, MSGN$) are used to request
user-defined messages from the module defining certain normal
operating conditions and/or error statistics (e.g., TOO MANY WRITE
ERRORS).

The monitor-defined error messages are:

1. The DATER$ Call:

The DATER$ call traps to the monitor to request an error
report when a data buffer comparison error has been
internally detected within a module (e.g., IOMOD, IOMODR).
This is in contrast to the data comparison that is externally
performed by the monitor for IOMODX and IOMODP modules (refer
to the CDATA$ and DATCK$ calls under I/O Module Buffer
Service). In any case when the error message is output, the
monitor will increment the module's soft error counters by
one to indicat~_that the error message has occurred.

2. The HRDER$ Call:

The HRDER$ call traps to the monitor to request the output of
a standard error message when an unrecoverable Hard Error
(e.g., non-existent memory) is detected by a module. As
such, the call can be used by any module type. In addition,
certain modules will pass a comment (i.e., a cause of error
statement) to the monitor for outputting with the message.
Moreover, an extended form of the call can also pass the
address of a table containing statistical error information
(e.g., contents of all of a device's registers) for
outputting. The monitor will increment the module's Hard
Error Counts.

3. The SOFER$ call traps to the monitor, to request the output
of a standard error message, when a recoverable Soft Error
(e.g., data late) is detected by a module. As such, the call
can be used by any type module. With the exception of the
appearance of the word "SOFT" as a replacement for the word
"HARD", basic and extended message formatting for the call is

76 Page 25

identical to the formatting outputted for an HRDER$ call.
The monitor will increment the module's Soft Error Counts.

The module-defined messages are:

Ie The MSG$ Call

The MSG$ call traps to the monitor to request the output of a
single ASCII message. An address is also passed to the
monitor to define the location of the message.

2. The MSGS$ Call

The MSGS$ call traps to the monitor to request the output of
a table of ASCII messages. An address is included to define
the location of the table.

3. The MSGN$ Call:

monitor to request the output of
An address is included to define

In addition, however, this call
a complete header message (i.e.,

etc.).

The MSGN$ call traps to the
a table of ASCII messages.
the location of the table.
elicits the output of
modulename, PC contents,

Return Control To Monitor Calls

The three return-control-to-rnonitor calls are used to provide for a
more efficient use of exerciser run-time in regard to module
scheduling, the execution of interrupt service routines, and the
processing of module requests.

1. The EXIT$ Call:

The EXIT$ call is used to return control to the monitor when
a module is awaiting an interrupt. As such, the call is only
used with a module that is dedicated to servIcIng an
interrupt-driven device (normally, but not necessarily, an
I/O Module). In any case, by relinquishing control to the
monitor during the wait period, the monitor allows module
scheduling to continue.

2. The PIRQ$ Call:

The PIRQ call is trapped to the monitor to request that the
execution of an interrupt service routine, contained within
an I/O Module, be deferred to a lower priority. This is done
to defer the execution of a non-critical routine, such as a
routine which error-chec.ks registers that are not subject to
immediate change. This is in direct opposition to the
priority required for the execution of a critical routine,
such as a routine that must service the contents of a
communications buffer.

76 Page 26

When PIRQ$ is executed, the monitor stores the Interrupt
Request in a FIFO queue at the lowest priority (i.e., PRO)
and does an RTI to return to the processing operation that
was being performed prior to the generation of the interrupt
request. However, the latter statement should not be
misconstrued. It does not imply a direct return to the
scheduling of the Background Modules (i.e., BKMODs) since all
I/O interrupt requests in the queue, regardless of their
relative module priority, must be serviced before a BKMOD can
be run.

3. The BREAK$ Call:

The BREAK$ call is used to transfer temporary control to the
monitor while a module awaits the occurrence of an
asynchronous event (e.g., the setting of a DONE or READY bit)
before proceeding. As such, the call is normally but not
necessarily used with I/O Modules.

When the BREAKS call is executed, the monitor checks the
queues for pending I/O interrupt requests. When all previous
requests have been serviced, the monitor returns control to
the module; specifically, to the instruction directly
following the BREAKS call.

Ending Calls

There are two ending calls: one is used to indicate the successful
completion of a module's test procedure(s) prior to a restart while
the other is used by all modules.

1. The ENDITS Call:

The ENDIT$ calt-is trapped to inform the monitor that an
iteration point has been reached. The monitor responds by
incrementing an Iteration Counter in the module's header by
one and comparing the resultant count with an Iteration
Constant that is also contained in the module's header. If
the values are equal, the monitor will output an END OF PASS
message and restart the module. However, if the values are
not equal, the monitor will resume module operation by
executing the instruction that directly follows the ENDITS
call.

2. The END$ Call:

The END$ call is used to inform the monitor that a fatal
error has been detected (e.g., device is off-line). The
monitor responds by stopping the module, via the setting of
Bit 13 in the module's status word, and outputting a
module-dropped message. Thus, the setting of Bit 13 prevents
the module from running for the duration of the exercise.
However, if the error is detected in an I/O MOQule, interrupt
lines are also disabled prior to the generation of the call.

76 Page 27

Utility Calls

There are three utility calls currently available: one will convert
an octal number to ASCII characters, another will convert a binary
n~~ber to its decimal ASCII equivalent, while the third generates a
random number. The calls may be used by any type of module.

1. The OTOA$ Call:

The OTOA$ call traps to the monitor to request the conversion
of an octal number (max. 16 bits> to equivalent ASCII
characters (max. 6 characters). When the call is issued,
the module provides the monitor with both the module location
of the number to be converted and the module location of the
starting address to which the result will be directed.

As an example of usage: the call may be issued prior to the
issuance of an MSG$ call to define the ASCII message.

2. The BTOD$ Call:

The BTOD$ call traps to the monitor to request the conversion
of a binary number (max. 16 bits) to decimally equivalent
ASCII characters (max. 5 characters). When the call is
issued, the module provides the monitor with both the module
location of the number to be converted and the module
location of the starting address to which the result will be
directed.

As an example of usage: the call may be issued prior to the
issuance of an MSG$ call to define the ASCII message.

3. The RAND$ Call:

The RAND$ call traps to the monitor to request the generation
of a new random number (max. 16 bits). Once the number is
generated, it is directed to a random nlliuber location in the
module's header.

As an example of usage: a new random number may be used to
alter the sector address for a disk, thus allowing random
instead of contiguous SEEKs to occur.

2.2.4 Memory Usage Control

When the RTE is running, one of the monitor's
is to exercise an efficient control of
includes:

major
memory

responsibilities
resources. This

Control of the available memory hardware options
(i.e., KT, CACHE, PARITY, ECC, etc.)

76 Page 28

The sizing and designation of write buffer space for
requesting modules within a pre-defined write buffer
area.

Control over the relocation of the moveable portion
of both the RTE and the monitor (i.e., if the option
is enabled).

The generation of memory-worst-case patterns in free
core for a more comprehensive exercise of available
memory resources.

2e2e4el Memory Options Control

The monitor is responsible for establishing control over all memory
hardware options that may be available to the system. This includes:
(1) Memory Management (KT): (2) Parity Memory, ECC, and Cache Memory:
and (3) the 22-Bit Addressing option.
Memory Management (KT) Control

Initially, the monitor determines if a KT unit is available.
is, the following control functions will be performed:

If it

The KT may be turned On or Off via keyboard command.

All Page Address Registers (PARs) and
Descriptor Registers (PDRs) will be set up.

Page

If a CDATA$ or DATCK$ call is trapped to the
monitor, the processor will be switched from KERNEL
to USER Mode.

Parity, ECC, and Cache Memory Control

Monitor control of Parity, ECC, and Cache Memory consists of turning
these options On or Off via keyboard commands and accommodating
associated error traps. However, in regard to parity Memory and the
ECC option, common On/Off commands are currently in use. Thus,
turning Parity Memory On will also turn the ECC option On, if it is
available.

22-Bit Addressing Control

Monitor control of 22-Bit Addressing consists of turning the option On
or Off via keyboard command and loading the Mapping Registers.
Initiation of the latter provides pointers to the write buffer area.

76 Page 29

2.2.4.2 Write Buffer Control

certain DEC/XII test modules (i.e., IOMODX, rOMODP) have the ability
to request that the monitor provide write buffer space for the
transfer of output data to an associated device. In this regard,
monitor control of the write buffer area concerns (1) the designation
of such space on request and (2) the "rotation" of write buffer spaces
(via the RTON Command) during successive requests, to provide a device
with more comprehensive testing in relation to its ability to access
all of free core. Write Buffer Area

For systems having only 128K of memory or less, all of the memory
space not currently occupied by the RTE is defined as the write buffer
area from which write buffer space is assigned.

However, for system~ greater than 128K which require 22-bit
addressing, memory IS divided into contiguous segments consisting of
the 124K locations. The write buffer area is then limited to that
124K segment of memory in which the moveable portion of the RTE
currently resides. Segmentation is necessary due to hardware
addressing restrictions in which the UNIBUS Mapping Registers, fully
loaded, can only accommodate a maXImum addressing range of 124K
locations.

In Figure 2-2, three examples of segmentation depict the relationships
existent between the current location of the RTE and the location and
limits of the write buffer area:

In example 2a, the limits of the write buffer area are shown when the
moveable portion of the RTE is in the lowest 124K segment. Note that
the RTE is not relocated within the segment and, if it were, the
limits of the write buffer would remain the same.

In example 2b, the limits of the write buffer area are shown when the
moveable portion of the RTE is relocated to another 124K segment.
Note that if the RTE is again relocated but remains within the
segment, the limits of the write buffer will remain the same.

In example 2c, the limits of the write buffer area are shown when the
moveable portion of the RTE has been relocated to straddle the
boundary of a 124K segment. Note, in this instance, that the lower
limit of the write buffer area starts at the base of the moveable
portion of the RTE and ends 124K locations above the base.

Write Buffer Rotation

Briefly, write buffer rotation (if enabled) allows an initial write
~uffer assignment to be made from a pre-defined starting position:
that is, the first free location above the top of the moveable portion
of the RTE. Subsequently, assignments are advanced through the write
buffer area until the top of the area is reached, whereupon the

76 Page 30

monitor returns to the bottom of the area to continue the process.
However, if rotation is not enabled, all assignments are made from the
pre-defined starting point (i.e., top of the RTE).

SOME EXAMPLES OF WRITE BUFFER LIMITS

------------ ------------ ------------
I
1 -248K -248K -248K
1 \
I \
1 I \
1 ---------- IWRITE \
I RTE I BUFFER 1
I ---------- / IWRITE
1 / ---------- I BUFFER
1 -124K -124K RTE -/--124K
1 \ ---------- /
I \
1---------- 1
I RTE IWRITE
1---------- I BUFFER r..:----------I ----------
I RTE LOW I I RTE LOW I RTE LOW
1 4K / I 4K I 4K
------------/ ------------ ------------

2a 2b 2c

FIGURE 2-2

Write Buffer Segmentation

(For Systems Greater Than 128K)

Before describing the rotation process, recall that whenever an
Extended I/O Module requests write buffer space, the monitor will
initially determine if the area contains sufficient space to satisfy

76 Page 31

the request. Once this determination is made, the monitor either
grants the requesting module the desired buffer size or provides the
module with whatever space is available. The monitor then delivers
the start address of the assigned buffer space to the module.

To accommodate such requests, and also the requirements of both the
Exerciser Relocation option and the Write Buffer Rotation option, the
monitor uses a write buffer area as the first free location above the
moveable portion of the RTE, thus defining a start address which
equates with the base address of the write buffer area (i.e., the top
of the RTE). This is accomplished via pointer initialization which
occurs under two conditions: (1) prior to the issuance of an initial
request and (2) following any relocation of the RTE. Moreover, since
the pointer can only be advanced when Write Buffer Rotation is
enabled, all subsequent requests, made with rotation disabled, will
effectively use the base address of the area as a start address.

In any case, with the initial start address appropriately defined and
rotation enabled, the pointer will be advanced to define the first
free location above the top of the first requested buffer space. At
this point, if sufficient core is available, the pointer will assume
an address-value which equates with the requested buffer size plus
one. Otherwise, the pointer will assume an address which equates with
available space. In this manner, every subsequent request will
advance the pointer through the buffer area until the top of the area
is reached, whereupon the pointer will be returned to the bottom of
the write buffer area, where the advancement process will continue.

However, as shown in Figure 2-2, depending on relocation, the bottom
of the buffer area may again be at the top df the RTE (Examples 2a and
2c) or below the RTE (Example 2b). If the latter is true, advancement
will continue until the last free location, at the bottom of the
moveable portion of the RTE, is eventually reached. At this point,
since the RTE itself cannot ~e used as write buffer space, the address
pointer will skip to th~-top of the RTE and the rotation process will
continue.

2.2.4.3 Exerciser Relocation

Before describing the Relocation Process, recall that when an RTE
program is loaded into memory the program is effectively divided into
two sections: (1) a fixed monitor portion which must reside 1n the
lowest 4K of memory and is not relocatable and (2) a moveable portion,
consisting of the remainder of the monitor and all of the test
modules, which initially resides above the fixed portion and can be
continuously relocated through the remainder of memory (See Figure
1-1).
In addition, continuous relocatio'n is only possible if: (1) the
system contains a Memory Management (KT) unit, (2) the KT unit is
enabled via the KTON Command, and (3) the Relocation Process is not
locked out (i.e., the RTE is started by a RUN Command as opposed to a
RUNL.

76 Page 32

Relocation Process

The Relocation Process is a monitor controlled option which allows the
moveable portion of the RTE to be continuously relocated through main
memory via a series of relocation operations to provide for a complete
test of all available core (the lowest 4K excepted).

During the process, each new relocation operation is initiated by the
monitor when all of the liO type modules have completed a -single pass
or when any BKMOD (if no I/O modules exist) has completed a pass.
However, since the modules have varying run-times, some of the modules
will have completed a pass and restarted. Therefore, all of the
modules will be stopped at their next iteration point, at which point
they will be restarted when relocation is completed.

When a relocation operation is completed, a RELOCATED TO XXXXXX
message is output, indicating the new physical start address (XXXXXX)
of the RTE.

However, there are two separate types of relocation operations that
may sequence during a Relocation Process: Constant Relocation
operations or Random Relocation operations. Moreover, by setting a
bit (SW08 = 1) in the RTE's Software Switch Register, the execution of
the series of random relocation operations may be disabled. If both
types of relocation are permitted (SW08 = 0), constant relocation
operations will first cycle the RTE· completely through memory, but
only once. The Relocation Process will then be continuously effected
by random relocation operations until the program is stopped and
restarted. However, if Random Relocation is disabled (SWOB = 1),
constant relocation operations will run continuously.

Constant Relocation Ope~dtions

Starting at a base address defined by the user, or the original base
address defined by default, the moveable portion of the RTE is
advanced to a new base address via an incremental constant (normally
4K). In this manner, constant relocations occur until an upper limit
of memory is eventually reached that can accomodate the program. The
monitor then returns the RTE to its original base address and the
cycle is completed. At this point, if Random Relocation is enabled,
the process will never be re-cycled until the program is stopped.
Otherwise, it will recycle continuously.
Random Relocation Operations

Following the completion of a series of constant relocation operations
which return the RTE to its original base address, the Relocation
Process may be re-initiated by a series of random relocation
operations.

During Random Relocation, the moveable portion of the RTE is relocated

76 Page 33

to randomly selected areas of memory, via random number generation,
until a pre-defined number of relocations (determined by total memory
size) has occurred. At this point, the next relocation will return
the RTE to the lowest possible address (the original base address).
The next relocation will then direct the RTE to the highest possible
address that can accow~odate the program, which completes the cycle.
The entire process is then continuously repeated until the program is
stopped.

2.2.4.4 Memory-Worst-Case-Pattern Generation

As previously stated, all of the memory space not currently occupied
by the RTE is defined as free core and as such serves as the write
buffer area. With this consideration, when a Module Start Command
(i.ee; RUN or RUNL) is entered f a memory worst-case pattern is
automatically written into the free core area in order to intensify
UNIBUS activity during I/O data transfers.

However, if relocation of the RTE is enabled, during each successive
relocation increasing portions of the worst-case pattern are overlaid.
Therefore, whenever the RTE is eventually relocated to lowest memory,
the worst-case pattern is completely re-written.

2.2.5' Trap Processing

Trap processing by the monitor is concerned with the handling of both
software and hardware traps. Software traps are used to provide
access to special handling routines via a Trap Instruction when an
option/device module requires external services that the monitor
provides such as buffer services or error reporting services (refer to
Module Communications -2.2.3.2). Hardware traps are used to provide
access to special handling routines following the execution of an
instruction when an internal error condition is detected by the cpu.
Thus, hardware traps are caused by internal failures as opposed to
external failures occuring within a device.

Software Traps

When a module issues a trap call (e.g., GWBUF$, GETPA$, etc.), the
trap instruction is vectored via Location 34(TRAP instruction} to the
monitor's Trap Service routine. The trap code is identified and the
module's register contents and offset PC address are saved. The
monitor then dispatches to the appropriate routine(s) where, depending
on both the type of call and the complexity of the requested service,
one or more of the following operations will occur:

The request is executed and control is returned to
the requesting module (e.g., OTOA$, RANDS, etc).

The request is executed and/or an entry is provided

76 Page 34

to the Type Queue (e.g., CDATA$, DATER$, MSG$,
etc.).

An entry is provided to the Control Queue for
subsequent service (e.g., PIRQ$, BREAKS, etc.).

The request is executed and control is returned to
the monitor's Priority Scheduler routine (e.g.,
END$; EXIT$)e

Hardware Traps

Hardware trap handling concerns the· processing of internally produced
errors associated with the CPU and memory options that are classified
as follows: (1) System Errors; (2) Parity Errors (main or cache
memory) and ECC Errors; (3) Memory Management (KT) Errors.

1. System Errors:

When a Bus Error (e.g., non-existent memory, odd address,
etc.) is trapped through location 04 or a Reserved
Instruction Error (i.e., an illegal instruction) is trapped
through location 10, the monitor saves the contents of the
updated PC, PSW, and SP. The monitor then initializes the
system and outputs a System Error message. However, at this
point any or all of the following may occur:

If error logging is available to the CPU, it 1S

performed.

If an optioQ~odule is responsible for four
system errors, it is dropped.

If the entire RTE program has accumulated excessive
system errors, the run is terminated and the system
is returned to Command Mode (CMD». With the exception of

the latter possibility (i.e., return to CMD», following the
processing of a system error the RTE is restarted as follows:
All modules that have completed an End-Of-Pass will be
re-initiated from the beginning (i.e., RESTART address) while
the remaining modules will be re-initiated from a pre-defined
location (i.e., START address).

2. Parity Errors and Ece Double-Bit Errors:

If a Memory Parity Error, a Cache Parity Error, or an ECC
Memory Double-Bit Error is trapped through location 114, the
system is initialized and the contents of the appropriate
registers are output, along with an appropriate error
message. However, if ten of these errors occur, the run is
terminated and the system is returned to CMD> mode.
Otherwise, the RTE is restarted as previously described.

76 Page 35

3. Memory Management (KT) Errors:

If a KT Error is trapped through location 250, the system is
initialized and the contents of the available general
registers (SRO and SR2, SRl and SR3) are output, along with
an appropriate error message. HOwever, if a KT error occurs,
the run is terminated and the system is returned to CMD>
mode.

2.3 Configurator/Linker Program

The DEC/XII configurator/linker program is used to create Run-Time
Exerciser (RTE) programs. The initial implementation of a
configuration process (via construction of a Configuration Table) is
followed by the implementation of a linking process (via execution of
a LINK Command), which results in the creation of an individualized
RTE module. A user specified monitor and user specified test modules
are selected, entered in the Configuration Table (C-Table), and linked
by command to derive an RTE module. 2.3.1 The Configuration Process

The configuration process facilitates the execution of the linking
process, by providing an accessible area for required monitor and test
module information.

Following the loading of a configurator/linker program, the user
implements the configuration process by initiating a Configure Mode of
operation and constructing a Configuration Table (C-Table). During
construction, the name of the desired monitor is entered in the table.
The name of each desired test module is then separately entered along
with certain associated parameters, such as device and vector
addresses and priority t~vels. The C-Table will accommodate a maximum
of 40, II-word entries (i.e., 1 monitor entry and 39 test module
entries).

When the construction of the C-Table is completed, the information
required for the linking process is available and the user provides
for an exit to the Non-Configure Mode of operation to initiate the
link.

2.3.2 The Linking Process

With the construction of the C-Table completed, the user initiates the
linking process via the formatting and execution of a Link Command.

Basically, the linking process effects the building of an RTE by
examining the C-Table and selecting, or informing the user to select
(i.e., if the input medium is paper tape), the appropriate monitor
modules (from the monitor library) and the appropriate test module
input. However as each module is selected, it is individually
processed and output, a block at a time, as a portion of the RTE. In

76 Page 36

this manner, the RTE is created as a single executable binary file.

2.4 DEC/XII Distribution

DEC/XII software is packaged for usage over a wide media range.
Therefore, the elements of a software package are associated with a
narticu1a r m~diurn uia ~ MAT~~r nAsinnator (alnhanumer;~ ~nne) ~hat is ..t" ... _...- - .."." ~ '- .. ~ • • .., t:' A , '"" ""'" '" '-'A '- • ~ -

both listed and described in the DEC/XII CROSS REFERENCE MANUAL.

76

3.1

3.2

3.2.1

3.2.2

3.2.3

3.2.3.1

3.2.3.2

3.2.3.3

3.2.4

3.2.4.1

3.2.4.1.1

3.2.4.1.2

3.2.4.1.3

3.2.4.2

3.2.4.2.1

3.2.4.2.2

3.2.4.2.3

3.2.4.2.4

3.2.4.2.5

3.2.5

3.2.5.1

3.2.5.2

3.2.5.3

CHAPTER 3

USER'S SECTION

GENERAL I NFORMA T I ON

EXERCISER BUILD PROCEDURES

Procedural Guide

Pre-Build Planning

Build Requirements

Required Hardware

Required Software

Required Documentation

Configurator/Linker Programs

Load and Start Procedures

Loading Via Absolute Loader

Loading Via XXDP+ Monitor

Starting Prucedures

Operating Procedures

Configure Mode Commands

Linking Process Command

I/O Control Commands

General Utility Command

Command Error Messages

Generating a Run-Time, Exerciser Module

The Configuration Table (C-Table)

The Linking Process (LINK Command)

The Run-Time Exerciser (RTE)

Page 37

76

3.3

3.3.1

3.3.2

3.3.2.1

3.3.2.2

3.3.2.3

3.3.3

3.3.3.1

3.3.3.2

3.3.3.2.1

3.3.3.2.2

3.3.3.2.3

3.3.3.3

3.3.3.3.1

3.3.3.3.2

3.3.3.4

3.3.3.4.1

3.3.3.4.2

3.3.4

Page 38

EXERCISER RUN PROCEDURES

Hardware and Software Requirements

Load and Start Procedures

Load/Start Via ABS Loader

Loading Via XXDP+ Monitor

Starting Via XXDP+ Monitor

Operating Procedures

Switch Register Options

Keyboard Commands

Keyboard Character Usage

Keyboard Error Messages

Keyboard Command Analysis

Operator Modifications

Monitor Modifications

Option Module Modifications

Message Print~outs

Normal Run-Time Messages

Run-Time Error Messages

Debug Recommendations

76 Page 39

1.1 GENERAL INFORMATION

This chapter provides all of the reference and procedural
the user needs to (I) load, start, and run
Configurator/Linker program and (2) effectively create
exerciser (RTE) module for a specified device.

information
a DEC/XII

a run-time

To accomplish the above, the user must have an adequate knowledge of
the PDP-II system for which the RTE module ~is intended (i.e.,
processor type, core size, device and vector addresses, priority
levels, etc.). Such information is necessary prior to initiating the
configuration process in order to both determine and specify which
device/option modules and monitor program are needed to satisfy device
test requirements.

3.2 EXERCISER BUILD PROCEDURES

The following material initially provides a procedural guide (with a
ore-build check list) to the use of the build information contained in
this section. The build information first defines the hardware,
software, and reference documentation required to successfully
construct a run-time exerciser program to user specifications. This
is followed by descriptions of load, start, and run procedures as they
relate to the DEC/Xll Configurator/Linker program and those PDP-li
levices currently available. The section concludes with a description
of the keyboard commands and their procedural application to the
configuration process.

3.2.1 Procedural Guide

In order to successfuTly construct an RTE program, a carefully
evaluated pre-build planning phase must be initiated that is followed
by a systematic application of the exerciser build procedures that are
described in this section~

In this regard and as an aid to
software, the following material
the planning and building
subsection-by-subsection guide
procedures as they are contained

the inexperienced user of DEC/Xll
provides both a step-by-step guide to
of an RTE program and a

to the systematic use of the build
in this section.

Step Orie: Initiate a Pre-Build Plan

In the pre-build planning phase, major elements of the hardware
configuration to be tested are cross-referenced with appropriate
DEC/XII software elements {i.e., monitor and test modules} in order to
prepare a formal listing of build requirements. This is done prior to
selecting, loading, starting, and running the configurator/linker

76 Page 40

program.
For details: refer to PRE-BUILD PLANNING and BUILD REQUIREMENTS,
subsections 3.2.2 and 3.2.3.

Step Two: Build a Configuration Table (C-Table)

This step is entered with the configurator/linker program running and
its repetoire of run-time commands available to the user. Under these
conditions and to facilitate the next step in the build (i.e., the RTE
linking process), the name of the monitor, each test module, and
certain parameters that have all been derived from pre-build notations
are entered in the Configuration Table (C-Table).

For details: refer to OPERATING PROCEDURES, CONFIGURE MODE COMMANDS,
and THE CONFIGURATION TABLE (C-TABLE); subsections 3.2.4.2, 3.2.4.2.1
and 3.2.5.1.

Step Three: Initiate The Linking Process

In this, the last step of the build, the Link Command is formatted and
executed to create an RTE file named by the user.

For details: refer to OPERATING PROCEDURES, LINKING PROCESS COMMAND,
and THE LINKING PROCESS (LINK COMMAND), subsections 3.2.4.2, 3.2.4.2.2
and 3.2.5.2.

3.2.2 Pre-Build Planning

Pre-build planning consists of a careful determination of the elements
required to properly test a given hardware system. This involves
noting all of the major hardware components, options, and required
parameters and cross-referencing these elements (via the DEC/XII CROSS
REFERENCE MANUAL) to derive a list that will associate the appropriate
software with the hardware configuration. An example of such a list
is shown in Figure 3-1.
Notice in figure 3-1 that a particular monitor (C) has been derived
for a given processor (PDP-11/34) and its options while specific test
modules have been derived <CPA, FBB, etc.) for both the processor and
its associated devices. In addition, both default and specified
parameters (DVA, VCT, etc.) are listed. With these considerations,
the planning phase may be implemented as follows:

Step 1: Determine and note the major hardware components and options
of the system, such as:

The processor type and available options
(e.g., KT, CACHE, etc.).

76

The associated device(s) and available options
(e.g., DUAL PORTS, etc.).

Page 41

In addition, note the device addresses (OVA), vectors (VCT),
priority levels (BRI, BR2), and the counts required to define
the numbers of devices (DVC).

Step 2: Cross-referencing the DEC/XII CROSS REFERENCE MANUAL with the
information gathered in the previous step, implement the
following:

3tep

Determine the types of
modules) required to
configuration and formally
modulenarnes.

software (monitor
accommodate the

list the monitor

and test
hardware

type and

Next, formally list the parameters (default or specified)
for and associated with each modulename, as follows:

(a) DVA (Device Address)
(b) veT (Vector Address)
(c) BRI (Buss Request Level I)
(d) BR2 (Buss Request Level 2)
(e) DVC (Device Count)
(f) SR1-SR4 (Software Switch Register 1-4)

3: Implement the configurator/linker
SHEET 1 of 1

phase.

76

DEC/XII System Configuration Worksheet

Selected DEC/XII Monitor For Listed
CPU and CPU options: C

FILE: EXERRI.BIN DATE: 20 SEPT 78

DEVICE MOD R DVA VCT BRI BR2 DVC SRI

KWI1-A KWA A 177546* 100* 6* 0* 1* 4

LSll/LVOI LPA A 177514* 200* 4* 0* 1* 10000

RXll/RX01 RXA A 177170* 264* 5* 0* 2*

TMB11/TS03 TMA A 172520* 224* 5* 0* 1*

RP11E/RP02 RPA A 176710* 254* 5* 0* 2

RK11-D/RK05 RKA A 177400* 220* 5* 0* 1*

RK611/RK06 RKB A 177400* 210* 5* 0* 1*

EIS CPB A

11/34 Instr. CPA A

FPI1-A FPB A

SR2

*SOFTWARE DEFAULTS FIGURE 3 - 1
HARDWARE CONFIGURATION LISTING

Page 42

SR3 SR4

76 Page 43

3.2.3 Build Requirements

DEC/XII programs are not self-loading. Therefore, loading depends on
the medium employed (i.e., paper tape or non-paper tape). A DEC/XII
program is loaded from a paper tape device via a Paper Tape Loader
(ABS) program, and from a non-paper tape device via an associated
XXDP+ Monitor program, both of which are previously loaded by the
manual insertion of a bootstrap program or the availability of a ROM
bootstrap option. It must be noted~ however, that the
configuratorilinker program is available only on XXDP+ media, and not
on paper tape.

with these considerations, the
documentation are required to
module.

3.2.3.1 Required Hardware

following
construct

hardware, software, and
a run-time exerciser load

The following information lists hardware requirements for the DEC/XlI
Configuration Program. These requirements are related to the basic
differences encountered in the use of PDP-II systems.

:ommon Hardware Requirements

PDP-II Processor

Minimum memory capacity of 16K

Console device j~.g., ASR33,35; VT05; etc.)

ROM bootstrap Loader (e.g., BM792, MRlI, M9301, etc.)

A ROM bootstrap loader is not required. However, the availability of
this option facilitates the loading of an XXDP+ Monitor Program.

XXDP+ Requirements*

Dectape System:

~ Tell Dectape Controller and a TU56 Dual Dectape Transport.

Disk System:

*Note:
media.

An RKII Controller and an RK05 Disk Drive.

These examples offer only a partial listing of supported
For a complete listing refer to current XXDP+ documentation.

76 Page 44

Floppy Disk System:

An RXII Controller and RXOI Disk Drives.

Magtape Systems:

A TMII Magtape Controller and two (2) TUID Magtape Drives. If
2 drives are not available, the run-time exerciser must be
directed to another medium.

3.2.3.2 Required Software

The version of the DEC/XIl software package to be used will depend on
the hardware system employed. For example: if the run-time exerciser
is to be built from paper tape, there will be separate tapes for each
of the desired test modules and the monitor library. However, if an
XXDP+ medium is used, the DEC/XII software will reside on the media
employed <i.e., Dectape, Disk, etc.), with each option module and the
monitor library having a unique filename (i.e., .OBJ and .LIB
extensions, respectively). But, since the configurator/linker program
is available only on XXDP+ media, and not paper tape, the DEC/XII
software requirements for building an RTE file will be as follows:

A device-associated XXDP+ monitor program

DEC/XIII Configurator/Linker Program
on XXDP+ medium

DEC/XII Monitor Library and option modules
on paper tape or XXDP+ medium

3.2.3.3 Required Documentation

Documentation requirements are related to the reference material
required to (1) select the desired device/option and monitor modules
and (2) acquire the boot, load, and start procedures for the
applicable paper tape or non-paper tape device. These requirements
are as follows:

The DEC/XII Cross Reference Manual (MD-ZZ-CXQUB)

The PDP-II Paper Tape Software User's Manual

The XXDP+ User's Manual /

3.2.4 Configurator/Linker Program

The object of the configurator program is to link a user specified
monitor with user specified option modules, thereby creating a

76 Page 45

run-time exerciser (RTE) module having a user defined .BIN or .BIC
extension.

User selected device/option modules are relocatable-object-modules
with a .OBJ extension that cannot be run independently. Therefore,
they must be linked to a monitor that is extracted from a library
having a .LIB Extension under the direction of the Configurator/Linker
program to derive an RTE program for the testing of a specified
system.

76 Page 46

Table 3-1
Configurator/Linker Commands

and
Switch Symbols

NON-CONFIGURE MODE COMMANDS

BOOT dev1:

CHECK devl:filnam.ext

CNF

EXIT

GETC devl:filnarn.ext

LINK devO:filnam.ext<devl:filnam.ext

PRINTC

PRINTM devl:filnam.ext

SAVC devO:filnam.ext

SAVM devO:filnam.ext

TYPEC

TYPEM devl:filnam.ext

CONFIGURE MODE COMMANDS

BRI number

BR2 nUmber

PURPOSE

iLoad XXDP+ Monitor from device
ispecified.

iCheck file for correct object
:format and Checksum.

:Initiate Configure Mode.

:Return to XXDP+ monitor

iGet Configuration Table from
:device specified.

iLink exerciser from device
:specified and output load
:module on directory device
:specified.

;Output Configuration Table on
;line printer.

:Output the Load Map file
ion line printer.

:Store Configuration Table on
;device specified.

:Store the Load Map on
;device specified (following
iLINK DONE message).

;Output Configuration Table
ion console.

iOutput the Load Map file
ion console.

PURPOSE

:Enter high-order byte priority
;levele

:Enter low-order byte priority

76

CL

DVA addr

DVC number

EX

KI

MaN

MaN name

MDL

MDL modulenarne

NXT

POINT modulename

SRI number

SR2 number

SR3 number

SR4 number

veT addr

SWITCHES

/MLP

Page 47

;level.

;Clear Configuration Table.

;Enter Device-Address (base
;address for device).

;Enter Device Count (number
;of drives to select).

:Exit Configure Mode.

:Delete current Configuration
;Table entry.

:Monitor change command.

;enter the specified monitor name
;in the configuration tab~e.

;Output the header (module
;interface) contents of the
;current module entry.

;Enter the specified modulename
;in the Configuration Table.

:Output the header (module
;interface) contents of the next
;(not current) module entry.

;Output the header (module
;interface) contents of the
;specified module entry in the
;Configuration Table.

;Enter value in Software
;Switch Register 1.

;Enter value in Software
;Swtich Register 2.

;Enter value in Software
;Switch Register 3.

;Enter value in Software
;Switch Register 4.

;Enter Device-Vector-Address.

PURPOSE

:During LINK Command: print

76

IMP

INP

Page 48

:map on line printer.

:During LINK Command: print
:,map on console.

:During Configure Mode: inhibit
:operator prompts.

76 Page 49

3.2.4.1 Load and Start Procedures

Depending on the input medium employed (i.e., paper tape or a
non-paper tape medium currently supported by XXDP+) a configurator
program will.be loaded by either an absolute loader program (ABS) or
an XXDP+ monltor.

3.2.4.1.1 Loading Via Absolute Loader

When a configurator program is contained on paper tape, the program is
loaded into main memory via an absolute loader program (ABS). Once
loaded, the configurator program is self-starting (refer to PDP-II
Paper Tape Software Handbook for ABS loading procedures).

3.2.4.1.2 Loading Via XXDP+ Monitor

When the configurator program resides on an input medium that is
supported by XXDP+, it does so as a named file (see DECXll
cross-reference manual for file name). As such, the file may be
loaded under control of the associated XXDP+ monitor.

When the XXDP+ monitor program is successfully loaded, the program
identifies itself to the user, requests the date, generates a restart
address, outputs a prompt character (.), and awaits an operator
response. At this point the operator types the configurator file name
(.R <filename>no extension), allowing the selected program to load and
self-start (refer to XXDP+ User's Manual for monitor loading
procedures).

3.2.4.1.3 Starting Procedures

When the selected configurator/linker program is successfully loaded,
the program identifies itself to the user and then outputs a restart
address and a Help query. In this regard, the following provides an
example in which program requests are underlined and operator
responses are not:

.R DXCL ;load/start program DXCL

CHUXC-? XXDP+ DECXll CNF/LNK

RESTART: 006620
;program identity
;restart address

DO YOU WANT HELP? (Y<CR> OR JUST <CR»

<CR>

*

;Help query(std. only)

;do not prin~ Help list.

;prompt character for command.

Page 50

In the example, the operator has chosen to ignore the Help query (by
typing a <CR». However, if a help-list is requested (by typing a
Y<CR», all available commands and switches (See Table 3-1) will be
listed prior to the issuance of the command prompt(*).

When the asterisk is output, the configurator/linker program is ready
to receive the keyboard commands that are required to build an
exerciser program. However, if for some reason the user desires to
restart the program (e.g., keyboard is inoperative), the operator may
accomplish this by manually loading the Restart Address (in this case
006620) and depressing the START switch.

3.2.4.2 Operating Procedures

In Table 3-1, the Configurator/linker commands are listed
alphabetically and divided into Non-Configure Mode and Configure Mode
Commands. This emphasizes the fact that one group may only be used in
Configure Mode while the use of the remaining commands is
unrestricted.

In order to successfully create an RTE program, run-procedures must
involve a systematic application of the keyboard commands. To better
understand these applications, the commands are subdivided into four
operational types: The first three types initiate and satisfy
fundamental build requirements while the last consists of a single
command that may be used, with discretion, to modify a selected
location within the configurator linker program.

Under these conditions, the following material lists and generally
describes the commands by operational type, concluding with a
description of the switch options (i.e., /MLP, etc.) that may be used
to modify and/or expand the operation of certain commands (i.e., the
CNF and LINK Commands).

Type 1: Configure Mode Commands

The initiation of a Configure Mode of operation, via a CNF Command,
allows the remaining commands in the group to effect the construction
of a Configuration Table <C-Table), the contents of which is specified
by the user for use in the configuration process (See Figure 3-1).
The commands are as follows:

CNF ;Initiate Configure Mode

76

MON modnam
MDL
MDL modnam
DVA addr
veT addr
BRI, BR2 number
DVC number
SR1-SR4 number

KI
POINT modnarn
NXT
CL
EX

;Enter monitor name
;Output current module entry
;Enter module name
;Enter Device Address
;Enter Vector Address
;Enter priority levels
;Enter Device Count
;Enter values in Software
Switch Registers

;Delete current entry
;Output specified module entry
;Output next module entry
;Clear C-Table
;Exit Configure Mode

Page 51

On entering Configure Mode, the CNF Command will automatically
initiate a co~~and prompt sequence to gUloe the user through the
C-Table build procedure. However, the prompting sequence can be
disabled by issuing a No Prompt (/NP) switch with the CNF Command.

For complete details on the functions of these commands refer to
Subsection 3.2.4.2.1.

Type 2: Linking Process Command

The initiation of the linking process via a LINK Command causes the
block by block assembly of the device/option modules with the selected
monitor, as specified by the C-Table. The single command is as
follows:

LINK devo:filnam.ext<devi:filnam.ext
;link and o~~put RTE module to device specified

Modules from the input device (devi) will be linked and delivered to
the output device (devo) block by block.

For complete details on the function of the LINK Command refer to
Subsection 3.2.4.2.2.

Type 3: Required I/O Control Commands

The initiation of these commands may occur in or out of the Configure
Mode. The commands are used to control and direct the listing,
storage, and retrieval of various files, in relation to both the
construction and linking of an RTE program and the use of the I/O
devices and storage media employed.

TYPEC
PRINTC
SAve devo:filnam.ext
GETC devi:filnam.ext

;Output C-Table on console
;Output C-Table on line printer
;Store C-Table on device
;Get C-Table from device

76

SAVM devo:filnam.ext
TYPEM devi:filnam.ext

PRINTM devi:filnam.ex

CHECK devi:filnam.e~

EXIT
BOOT dev:

;Store Load Map on device
;Retrieve Load Map and output
on console

;Retrieve Load Map and output
on line printer

;Check object module format
and Checksum

;Return to XXDP+ monitor
;Reload XXDP+ Monitor

Page 52

For complete details on the function of each of these commands refer
to Subsection 3.2.4.2.2.

Type 4: General Utility Command (and Control C)

The initiation of the single utility command (MOD addr) may occur in
or out of Configure Mode. The command may be used at the user's
discretion to modify a specified configurator/linker location. It
must be used in the format shown:

MOD addr ;Open location for modification

For complete details of the function of this command, refer to
Subsection 3.2.4.2.4.

Control C{AC) is a keyboard-feature rather than a command. Execution
of this feature will abort any current operation. Command Switches

There are three command switch options: two (/MLP, /MP) are used to
expand and/or modify th~_operation of a Link Command (LINK), while one
(/NP) is used to modify the operation of a Configure Mode Command
(CNF).

Map-To-Line-Printer Switch (/MLP):

If the standard linker program is used, the IMLP switch may be
added to the LINK command format to direct the output of a map to
the line printer.

Example: *LINK DKO:TESTl.BIN<DKO:XMON??LIB/MLP<CR>

Map-To-Console Switch (IMP):

For any version of the linker program, the IMP switch may be
added to the LINK Command format to direct the output of a map to
the console device.

Example: *LINK PT:<KB:/MP<CR>

76 Page 53

No-Prompt Switch (/NP):

If the standard configurator program is used, the /NP switch may
be added to the CNF Command to disable the output of operator
~rornpts during the building of the C-Table.

Example: *CNF/NP<CR>

76

o

2

4

6

10

12

!
!<------------WORD----------->!

!
!<--HI BYTE--->!<--LO BYTE--->!

.!
!-----------------------------!

MODULENAME
!-----------------------------!

"
!-----------------------------!

" !
!-----------------------------!

DEVICE ADDRESS !
!-----------------------------!

VECTOR ADDRESS !
!-----------------------------!

BRI BR2
!-----------------------------!

14 DEVICE COUNT !
!-----------------------------!

16 SPECIAL OPTIONS REG. 1

20

22

24

!-----------------------------!
" " n 2

!-----------------------------!
n " n 3

!-----------------------------!
n " n 4

!-----------------------------!

CONFIGURATOR TABLE
ENTRY

FIGURE 3-1

Page 54

76 Page 55

3.2.4.2.1 Configure Mode Commands

using typical examples of program requests and operator responses, the
following material describes both the formatting and usage of the CNF
and Configure Mode Commands.

Notice that the command descriptions are arranged in the same order
(i.e., CNF, MON, MDL, etc.) presented in the Operating Procedures
(3.2.4.2). Also, to clarify usage, all program requests including the
prompt character (*) are underlined while user responses are not.

Finally, following operator input, if an invalid command or
inappropriate response is detected an error message will be output
(Refer to Command Error Messages. 3.2.4.2.5).

Enter Configure Mode (CNF)

The CNF Command is used to initiate a Configure Mode of operation. If
the C-Table is empty when CNF is entered the program will request a
monitor name and if the name is accepted the program will issue a
next-command prompt (*). At this point subsequent program requests
will depend on whether the CNF Command was entered with or without a
No-Prompt Switch (/NP).

If CNF is entered without the switch, a subsequent Enter Modulename
Command (MDL name) will evoke nine successive requests for header
parameters for the named module. When the prompting sequence IS

ended, the program will then output a summary. An example follows:

CNF without /NP: *CNF<CR>

*MONITOR: A<CR>

*MDL WXYZ<CR>

DVA- 177540<CR>

VCT- 203<CR>

BRl- 5<CR>

BR2- 5<CR>

DVC- 2<CR>

SRl- <CR>

SR2- 4000<CR>

SR3- <CR>

SR4- <CR>

76 Page 56

WXYZ DVA-177540 VCT-000230 BRI-000240 BR2-000240 DVC-000003

SRI-OOOOOO SR2-004000 SR3-000000 SR4-000000

Finally, if at any point the operator desires to discontinue the
prompt, a Control C(AC) may be typed and prompting for the current
module will end. However, any values already entered-will be stored.
Following this, a next-command prompt (*) will be printed and the
operator may enter the next module name.

However, if CNF is entered with a No-Prompt Switch
subsequent entry of a module name (MDL name)
prompting sequence. An example follows:

CNF with /NP: *CNF/NP<CR>

*MONITOR: B<CR>

*MDL QRST<CR>

*DVA I77530<CR>

*VCT 230<CR>

(etc.)

(/NP) added, the
will not invoke a

However, if at any time the operator desires to re-initiate a
prompting sequence, the operator can simply type a CNF without leaving
Configure Mode and prompting will begin when the next MOL Command is
entered.

Monitor Change Command (MON)

The MON Command may be used to change the monitor entry as follows:

*MON name <CR>

Output Current Module Entry (MOL)

The MDL Command (no name argument) allows a summary of the current
module entry to be output as follows:

*MDL CR

WXYZ DVA-OOOOOO VCT-OOOOOO BRI-OOOOOD BR2-000000 DVC-OOOOOO

76 Page 57

SRI-000000 SR2-oooooo SR3-000000 SR4-000000

The above indicates that Module WXYZ has been entered and its
parameters are zeros.

Enter Module Name (MDL name)

The MDL Command (with name argument) is used to enter a specified
module name in the first available slot in the C-Table, as follows:

*MDL WXYZ<CR>

The name entered must be a valid four-character modulename which
defines the following:

WX: A two-character device/option name

Y: A specific module (since others may exist for
the same device/option).

Z: The version level of the module specified.

NOTE: If the version level is unknown, a "?" may be used as the
fourth character of the module name when entering a module into
the C-table. During the execution of the "LINK" command all
?'s in the C-table will be replaced by the proper version
letters.

Since, under certain
prompting sequence
to the information
description.

conditions, the MDL name Command can invoke a
(for the entry of module-header paramters), refer
contained in the Enter Configure Mode (CNF)

Enter Device Address (DVA)

The DVA Command is used to enter a device address parameter into the
current module entry. Only an even address may be entered:

*MDL WXYZ<CR> ;WXYZ is current module entry

*DVA 177600<CR> ;Enter DVA parameter (177600)

*MDL<CR> ;Output current module entry

WXYZ DVA-177600 VCT-000200 BRI-000000 BR2-000000 DVC-OOOOOO

76 Page 58

In the example, the summary is incomplete (SRI-SR4 is omitted).
However, it shows that the DVA parameter has been filled.

In general, a DVA Command must be used whenever the DEC/XII CROSS
REFERENCE MANUAL indicates that a desired module does not provide a
device address (by default) or that the address provided is
non-standard in relation to the actual device employed (e.g., a second
RPII Disk or TMII Magtape Controller).

Enter Vector Address (VCT)

The VCT Command is used to enter a device vector address parameter
into the current module entry. Only an even octal address (774 max.)
may be entered.

*VCT 200<CR> iEnter VCT address of 200

*MDL<CR> :Output current module entry

WXYZ DVA-177600 VCT-000200 BRI-OOOOOO BR2-000000 DVC-OOOOOO

In the example, the summary is incomplete. However, it shows that a
vector address has been added to the current module entry.

In general, a VCT Command must be used whenever the DEC/XII CROSS
REFERENCE MANUAL indicates that a desired module does not provide a
vector address (by default) or that the vector provided is at a
non-standard address.

Enter Priority Levels (BRI, BR2)

The BRI and BR2 Commands are used to enter high-order byte (BRI) and
low-order byte (BR2) priority level parameters into the current module
entry. Only an octal value (7 max.) may be entered.

*BRI 6<CR> ;Enter PRTY6 parameter

*BR2 4<CR> ;Enter PRTY4 parameter

*MDL <CR> :Output current module entry

WXYZ DVA-177600 VCT-000200 BRI-000300 BR2-000200 DVC-OOOOOO

In the example, the summary is incomplete. However, it shows that the

76 Page 59

BRI and BR2 levels have been converted by the program into Processor
Status Word (PSW) equivalents.

In general, BRI and BR2 Commands must be used whenever the DEC/XII
CROSS REFERENCE MANUAL lnOlcates that a desired module does not
provide priority levels (by default) or that the levels provided are
non-standard in relation to the device employed.

Enter Device Count (DVC)

The DVC Command is used to enter a decimal number (16 max.) to define
the number of sub-devices (e.g., drives) or mUltiple devices (e.g.,
8DLlls) to be tested by the module. It should be noted that the
number entered must equal the actual number of devices to be
consecutively tested:

*DVC 5<CR> ;Enter device count of five

*MDL<CR> ;Output current module entry

WXYZ DVA-177600 VCT-000200 BRI-000300 BR2-000200 Dve-000037

In the example, the summary is not complete. However, it shows that
the decimal device count (5) has been converted to an octal number
(37) which, in turn, represents a binary-bit-map. The weight of each
consecutive One-bit contained in the map (all III binary) then
effectively represents the logical number of each device (i.e., 0-4)
consecutively arranged for testing:

0 a 0 a
a 000 000 000

3 7
all III Binary B~~ ~ ~ Map

! ! ! !
! ! ! !---O
! !
! ! !----1
! !
! ! -----2
! !
!!-------3

!--------4

\

\ 5-Devices
/

/

Moreover, consecutive testing of multiple devices is mandatory. Thus
the bit-map must have consecutive One-bits which equate with the
number of devices on a one-for-one basis. In the same vein, multiples
must be accessed by consecutive device addresses (whether ascending or
descending) following the first device-address. Thus, no addressing

76 Page 60

holes are permitted.

Software Switch Registers (SRI-SR4)

The SRI through SR4 Commands are used separately to enter individual
octal values into the Software Switch Registers for the current module
entry. Values must be entered as directed by the DEC/XII CROSS
REFERENCE MANUAL to modify the execution of a module, thus
accommodating any standard, optional, and/or special features that may
be available to a device.

*SR2 4000<CR> ;Set Bit 11 in Sft. Sw. Reg. 2.

*MDL<CR> ;Output current module entry.

WXYZ DVA-177600 VCT-000200 BRI-000300 BR2-000200 DVC-000037

SRI-OOOOOO SR2-004000 SR3-000000 SR4-000000

In the example, Bit 11 in Software Switch Register 2 has been set to
provide a flag for a device feature: the line printer to be used has
132 columns (instead of 80> and Bit 11 (set) is the indicator.

Delete Current Entry (KI)

The KI Command is used to delete the current module entry (including
all its associated parameter values) from the C-Table:

*KI<CR> ;Kill the last entry referenced

When a module entry is deleted in this manner, subsequent requests for
a summary of the C-Table (via a TYPEC or PRINTC Command) will cause
the output of an Empty Indicator «EMPTY» message for the deleted
entry. Search and Output Specified Entry (POINT)

The POINT Command is used to initiate a search through the C-Table
from the current module entry position for a specified module.

*POINT WXYZ<CR> ;Search, from last referenced entry,
;for Module WXYZ. If found, output
;content.

If the desired module name is found, the contents of the entry is

76 Page 61

output. Conversely, if the desired entry is not found, a message (?
INVALID NAME) is output.

Output Next Module Entry (NXT)

The NEXT Command is used to output the contents of the module entry
that directly follows the last referenced entry (i.e., the current
entry). If a next-entry does not exist, an asterisk (*) will be
output.

*NXT<CR>

Clear C-Table (CL)

;Output contents of next module entry
;(if existent).

The CL Command is used to initiate a clear of the entire Configuration
Table. When the C-Table is cleared, a monitor prompt request is
issued by the program (as in the CNF Command).

*CL<CR> ;Clear entire C-Table

*MONITOR: name ;Enter monitor name

Exit Configure Mode (EXr-

The EX Command is used to exit from the Configure Mode of operation
when the construction of a C-Table is completed. Re-entry is via a
CNF Command. If re-entry is made, the availability of a valid monitor
entry negates the need for a monitor request. Thus, the program
merely points to the first module entry in the C-Table and outputs a
command prompt (*).
*EX<CR> ;Exit Configure Mode

*CNF<CR> ;Re-enter Configure Mode

* ;Enter Command prompt

3.2.4.2.2 Linking Process Command

76 Page 62

Following an exit from the Configure Mode, the linking process (as
briefly described in the Operating Procedures subsection, 3.2.4.2) may
be initiated via the formatting of the LINK Command. From a general
format, the command may be applied in one of two ways: (1) for
non-directory devices (e.g., paper tape" magtape, etc.) or (2) for
directory devices (e.g., disk, dectape, etc.) as follows:

General Format: LINK devo:[filnam.ext]<devi:[filnam.ext]

(If devo or devi is omitted, the default is the system device.)

1. LINK devo:<devi:

The non-directory device format requires that only the I/O
devices <i.e., devi/devo) be specified. During execution,
the required paper tapes for the monitor and option modules
will be requested via a prompt sequence.

2. LINK devo:filnam.ext<devi:LIBNAM.LIB

The directory device format requires that, along with the I/O
devices, the file name of the monitor library input
(LIBNAM.LIB) must be specified while the RTE output must be
specified by a file name devised by the user (FILNAM.BIN or
FILNAM.BIC). For .BIC extensions refer to XXDP+ chain mode
operations. During execution, the monitor and option modules
are automatically selected.

In either case, the LINK Command allows the monitor and option modules
to be extracted from the input device (devi) for linking as defined by
the current C-Table, thus producing an executable RTE program for
delivery to the output device (devo). Once the RTE module is output,
a completion message follows (LINK DONE) and the program returns to
command mode (*). However, prior to termination, a LoaG Map may be
invoked by including in-the command a Load Map To Line Printer (/MLP)
or Load Map To Console (IMP) switch. Two typical examples of LINK
Command usage (non-directory and directory) follow, in which all
program requests for user response are underlined. However, prior to
analyzing the examples, the reader should note the following
possibility: If, during the processing of the LINK Command (also SAVM
and SAVC Commands), the output file specified in the format already
exists on the specified medium, the program will query the operator as
to whether or not the old file should be deleted with the following
message:

DELETE OLD?(Y <CR> OR JUST <CR»

If an affirmative answer is entered (y <CR», the old file will be
deleted, the LINK command will be processed, and the new file will be
output. If the operator enters a negative response «CR», the old
file will not be deleted and the LINK Command will not be processed.
Instead, a message (? USE NEW FILE NAME) will be output, and a new
prompt will be typed.

76 Page 63

Non-Directory Device Format

In the following example, the object module tapes are input from a
TTY-reader (KB), while the completed RTE module is output on paper
tape via the TTY=punch (PT).

*LINK PT:<KB: <CR> :Link Command format

SYS SIZE: 160000 <CR> :RTE memory requirement

MAKE OUTPUT READY. WRITE ENABLE ;enable output device

TYPE(CR) WHEN READY <CR> ;acknowledge enable

PASS 1 ;scan all modules

ANYMORE MONITOR PAPER TAPES, CASSETTES, ETC.? (YES,NO)

;monitor tape request
YES <CR> ;acknowledge tape
RELOAD INPUT WITH NEXT PAPER TAPE, CASSETTE, ETC.

TYPE(CR) WHEN READY <CR
;next monitor tape request
;acknowledge tape

ANYMORE MONITOR PAPER TAPES, CASSETTES, ETC.? (YES,NO)

NO <CR>
WXYZ SHOULD BE NEXT!

TYPE(CR) WHEN READY <CR>

TRANSFER ADDRESS: 0.02200

LOW LIMIT: 000000

HIGH LIMIT 045302

PASS 2

;acknowledge tape
;acknowledge tape
;Mod. WXYZ tape request

;ack. test module tape

;start address for RTE

;RTE base address

;RTE end address

:link and output RTE module

INPUT TAPES, CASSETTES, ETC. IN SAME SEQUENCE AS IN PASS 1

TYPE(CR) WHEN READY <CR>
:tape requests
:acknowlege tape

ANYMORE MONITOR PAPER TAPES, CASSETTES, ETC.? (YES,NO)

:monitor tape request
YES <CR> ;acknowlege tape
RELOAD INPUT WITH NEXT PAPER TAPE, CASSETTE, ~TC.

TYPE(CR) WHEN READY <CR>
:next monitor tape request
:acknowlege tape

76 Page 64

WXYZ SHOULD BE NEXT! :Mod. WXYZ tape request

TYPE(CR) WHEN READY <CR> :ack. test module tape

LINK DONE :link process completed

Once the LINK Command is entered, the program initially requests the
memory size of the target system (i.e., the size of the actual system
on which the resultant RTE will be run). In response, the operator
must enter one of the following octal numbers:

If size is: Enter:
----------- ------

4K 20000
8K 40000

12K 60000
16K 100000
20K 120000
24K 140000 -'
28K and greater 160000

The program then enters the first phase (PASS 1) of the linking
process In which the monitor and test module tapes are requested in
the same order defined in the C-Table. In pass 1 the program performs
a partial read of the requested tapes, to ascertain the final
structure of the RTE module. In the second phase (PASS 2) the same
tapes are again requested and read in their entirety to cause the
actual linking and output of the RTE module.

Finally, if either the Load Map To console (IMP) or Load Map To Line
Printer (/MLP) switch is used with the LINK Command, the address
limits of the RTE (i.e., TRANSFER ADDRESS, LOW LIMIT, HIGH LIMIT) will
not be printed during the first phase (PASS 1).

Directory Device Format

In the following example, the object modules are automatically
selected as input from an RK11 (Disk Drive Zero), linked as defined by
the C-Table, and output as an RTE module to the same drive.

*LINK DKO.TESTl.BIN<DKO:XMON??LIB <CR> ;Link Command entry

SYS SIZE: 160000 <CR> :RTE memory requirement

MAKE OUTPUT READY. WRITE ENABLE :enable output device

TYPE (CR) WHEN READY <CR> :acknowlege enable

PASS 1 :scan for all modules

TRANSFER ADDRESS: 002200 :start address for RTE

76 Page 65

LOW LIMIT: 000000 ;RTE base address

HIGH LIMIT: 063514 ;RTE end address

PASS 2 ;output RTE module

LINK DONE ;link process completed

As previously stated, if a Load Map To Console Switch (/MP) or Load
Map To Line Printer Switch (/MLP) is included with the LINK Command.
the address limits of the RTE will not be printed during the first
phase (PASS 1).

3.2.4.2.3 I/O Control Commands

As stated in the Oper"'ling Procedures (subsection 3.2.4.2), the I/O
Control Conunands may be used in or out of Configure Mode to allow:
(1) certain information to be listed, stored, and retrieved (e.g.,
C-Table and Load Map data); (2) control to be returned to the XXDP+
monitor (the monitor i~ not reloaded); or (3) the XXDP+ Monitor to be
reloaded. Examples of the formatting and usage of these commands
follow, with program response being underlined for clarity.

Jutput C-Table On Console (TYPEC)

The TYPEC Command is used to list the entire contents of the C-Table
on the console.

*TYPEC<CR> ;Output C-Table on console

Output C-Table On Line Printer (PRINTC)

The PRINTC Command is used to list the entire contents of the C-Table
on the line printer.

*PRINTC<CR> ;Output C-Table on line
printer.

- Save The C-Table (SAVC)

The SAVC Command is used to store a copy of the current C-Table on
either a non-directory (e.g., paper tape) or directory (e.g., disk)
medium for subsequent modification or reuse. To serve these ends, the
command utilizes a general format in which the filename argument is
only required for directory devices.

General Format: SAve devO:[filnam.ext]

(If devo is omitted, the default is the system device.)

76 Page 66

Non-directory device example: In the following example, the C-Table
will be output on paper tape via a High-Speed Punch (pp).

*SAVC PP:<CR>
paper tape.

:Store current C-Table on

Directory device example: In the following example, the C-Table will
be output on Disk Drive Zero (DKO) under a file name specified by the
user (CNFl.CNF).

. *SAVC DKO:CNFl.CNF<CR> :Store current C-Table on Disk

;Zero as file CNFl.CNF.

If, during the processing of a SAVC Command, the output file already
exists on the specified medium, the program will query the operator as
to whether or not the old file should be deleted, with the following
message:

DELETE OLD?(Y <CR> OR JUST <CR>

If an affirmative answer is entered(Y <CR>), the old file will be
deleted, the command processed, and the new file output. If the
operator enters a negative response (<CR>), the old file will not be
deleted and the command will not be processed. Instead, a message (?
USE NEW FILE NAME) will be output and a new prompt will be typed.

Get the C-Table (GETC)

The GETC Command is used to retrieve a previously stored copy of the
C-Table, from either a non-directory (e.g., paper tape) or directory
(e.g., disk) medium, for modification via the Configure Mode Commands
(refer to subsection 3.2.4.2.1) for reuse. The command utilizes a
general format in which the filename argument is only used for
directory devices. Moreover the command restores the table to the
proper memory space regardless of format.

General Format: GETC devi:[filnam.ext]

(If devi is omitted, the default is the system device.)
Non-directory device example: In the following example, the C-Table
is returned to memory from paper tape via the High-Speed Reader (PR).

*GETC PR:<CR> :Return C-Table via High-Speed
Reader

Directory device example: In the following example, the C-Table is
located on Disk Drive Zero (DKO) under the specified file name

76 Page 67

(CNFl.CNF) and returned to memory.

*GETC DKO:CNFl.CNF<CR> :Return C-Table file CNFl.CNF
to

;memory from Disk Zero.

Save The Load Map (SAVM)

The SAVM Command is used to store a copy of the Load Map, generated
during a LINK Command, on either a non-directory (e.g., paper tape) or
directory (e.g., disk) medium. If used, this command must be entered
directly following the LINK DONE message. The command utilizes a
general format in which the filename argument is only required for
directory devices.

General Format: SAVM devo:[filnam.ext]

(If devo is omitted, the default is the system device.)

Non-directory device example: In the following example, the Load Map
will be output on paper tape via a TTY-punch (PT).

SAVM PT:<CR> :Store Load Map on paper tape

Directory device example: In the following example, the Load Map will
be output on Disk Drive One (DKl) under a file name specified by the
user (LMPl.MAP).

*SAVM DKl:LMPl.MAP<CR> ;Store Load Map on Disk One

;as file LMPl.MAP.

If, during the processing of a SAVM Command, the output file already
exists on the specified medium, the program will query the operator as
to whether or not the old file should be deleted, with the following
message:

DELETE OLD?(Y <CR> OR JUST <CR>)

If an affirmative answer is entered(Y <CR>), the old file will be
deleted, the command processed, and the new file output. If the
operator enters a negative response «CR», the old file will not be
deleted and the command will not be processed. Instead, a message (?
USE NEW FILE NAME) will be output, and a new prompt will be typed.
Retrieve Map and Output On Console (TYPEM)

The TYPEM Command is used to retrieve a previously stored copy of the
Load Map, from either a non-directory (e.g., paper tape) or directory

76 Page 68

(e.g., disk) medium, for output on the console. The command utilizes
a general format in which the filename argument is only required for
directory devices.

General Format: TYPEM devi:[filnam.ext]

(If devi is omitted, the default is the system device.)

Non-directory device example:
is returned to memory from
output on the console.

In the following example, the Load Map
paper tape, via a TTY-reader (KB), and

*TYPEM KB:<CR> ;Return Load Map and output. on

;console

Directory device example: In the following example, the Load Map file
(LMPl.MAP) is returned to memory from RKll Disk Drive One (DKl) and
output on the line printer.

*TYPEM DK1:LMPl.MAP<CR> ;Return Load Map from Disk

;One and output on console.

Retrieve Map and Output On Line Printer (PRINTM)

The PRINTM Command is used to retrieve a previously stored copy of the
Load Map, from either a non-directory (e.g., paper tape) or directory
(e.g., disk) medium, for output on the line printer. The command
utilizes a general format in which the filename argument is only
required for directory devices.

General Format: PRINTM devi:[filnam.ext]

(If devi is omitted, the default is the system device.)

Non-directory device example: In the following example, the Load Map
is returned to memory from paper tape via a High-Speed Reader (PR) and
output on the line printer.

*PRINTM PR:<CR> ;Return Load Map and output on

;line printer.

Directory device example: In the following example, the Load Map file
(LMPl.MAP) is returned to memory from Floppy Disk Drive Zero (DXO) and
output on the line printer.

*PRINTM DXO:LMPl.MAP<CR> ;Return Load Map from Disk
Zero

Check Object Module (CHECK)
;and output on line printer.

76 Page 69

The CHECK Command is used to examine an object module, from either a
non-directory (e.g., paper tape) or directory (e.g., disk) device, for
proper formatting and/or a Checksum error. The command utilizes a
general format in which the filename argument is only required for
directory devices.

General Format: CHECK devi:(filnam.ext]

(if devi is omitted, the default is the system device.)

Non-directory device example: Input module for check from paper tape
High-Speed Reader (PR).

*CHECK PR:<CR> ;Check object module format
and

;Checksum

Directory device example: Input module file (XRKAGO.OBJ) for check
from RKll Disk Drive Zero (DKO).

*CHECK DKO:XRKAGO.OBJ<CR> ;Check object module file for

;proper format and checksum.

Return to XXDP+ Monitor (EXIT)

The EXIT command is used to leave the configurator/linker program and
return to the XXDP+ monitor. This command does not clear the
configurator/linker program from memory and does not reload the XXDP+
monitor.

*EXIT _. ,

Reload XXDP+ Monitor (BOOT)

;Return to the
;currently-loaded
;XXDP+ monitor

The BOOT Command is used to reload the XXDP+ Monitor associated with
the system.

*BOOT MTO:<CR> ;Load the TMDP Monitor from

:Magtape Drive Zero.

3.2.4.2.4 General Utility Command

The Modify Command (MOD addr) may be used in or out of the Configure
Mode for the examination and/or modification of a specified location
within the configurator/linker program. The format is as follows:

76

MOD addr :Output the contents of the location
;specified by the absolute address
;argument (addr).

Page 70

The following provides an example of the use of the Modify Command:

*MOD 4000<CR> ;open location 4000
- Program response:

004000/123456 ;location 4000 contains value
:123456

Operator response:

1. Close location 4000 by typing <CR>.

2. Insert new value and close location 4000 by typing <CR>.

3. Insert new value and open next word by typing <LF>.

4. Close location 4000 and open next word by typing <LF>.

3.2.4.2.5 Command Error Messages

The Configurator/Linker program will generate error messages to
indicate that an error has occurred during the RTE build procedure.
Some examples of these errors are: (1) the improper formatting and/or
use of a command; (2) improper C-Table construction; (3) possible
file errors; (4) possible device errors (5) memory range and
allocation errors; (6) programming and/or program errors. The
following provides a li~~ing of each error message and its purpose:

? INVALID COMMAND

An invalid command has been entered; correct and re-enter.

? INVALID NAME

An invalid name has been used in a command format or as a response to
a program request (e.g., special characters are not allowed); correct
and re-enter.

? NUMBER TOO BIG

76 Page 71

rhe number· typed in response to a program request is larger than is
allowed for the requested parameter. For example, the device count in
the C-Table must not exceed decimal 16; vector addresses must not
exceed octal 774, etc.; correct and re-enter.

? INVALID SWITCH

An invalid switch has been used with a command (if command will
accomodate a valid switch) or a switch has been included with a
command that does not accomodate switches.

? CHECKSL~ ERROR

A Checksum error has occurred during the reading of a binary formatted
block.

FILNAMEXT? NON-EXISTANT FILE

THE file named FILNAM.EXT, which has been specified in the command
format which does not in fact exist on the employed medium; correct
and re-enter.

? END-OF-MEDIUM

This messaqe indicates that the end of an input medlum has been
reached (e.g., EOT), and can occur as the result of an unsuccessful
block search within a file (e.g., EOF).

? PROGRAM OVERFLOW

This message indicates that the block size of the input file is
greater than the size of the input buffer.

? NOT IN CNF MODE

This message indicates that a Configure Mode Command (e.g., DVA, veT,
BRl, etc.) has been illegally entered in non-configure mode; re-enter

76 Page 72

Configure Mode (i.e., CNF<CR» and re-enter command.

? MUST BE OCTAL

The number typed in response to a program request was not octal and
should have been.

? NO ROOM FOR A DRIVER

The device driver specified in the command cannot be placed in the
driver buffer.

? CNF TABLE FULL

This message indicates that the maximum number of entries (i.e., 20 or
40) have been made in the Configuration Table.

? COR EXCD

This message indicates that during the linking process (refer to
subsection 3.2.4.2.2) the range of the RTE program exceeds the core
size of the system for which it is being generated.

? SYMBOL TABLE OVERFLOW

During pass 1 of the linking process, the symbol table has used up all
available memory space; use a system with a larger memory.

? USE NEW FILE NAME

A file name specified in the command already exists: use another name
or delete the old file.

? DEVICE FULL

76 Page 73

There is no more room available on the specified output device.

? READ ERROR

An error was encountered while attempting to read from the specified
input medium.

? WRITE ERROR

An error was encountered while attempting to write onto the specified
output medium.

(ERROl) Symbol Table Error

The program has detected an error in the Symbol Table during the
linking process.

(ERR02) Global Search Error

A global search in the Relocation Directory (RLD) has failed during
the linking process.

(ERR03) No PC Mod Command

The Relocation Directory (RLD) does not contain a Program Counter (PC)
modification command. Program error has been detected during linking
process.

(ERR04) GSD Block Missing

A Global Symbol Directory (GSD) block has not been found at the start
of the object module. This could be a program error detected during
the linking process. However, if paper tape is the input medium, the
tape could have been loaded backwards.

(ERROSf Module Name Missing From GSD
-------------------------------~----

The first entry in the Global Symbol Directory (GSD) is not an object
module name. This could be a program error detected during the
linking process. However, if paper tape is the input medium, the
wrong tape could have been loaded.

76 Page 74

(ERR06) Section Name Missing

A Section Name, specified by the Relocation Directory (RLO), cannot be
found; program error.

(ERR07) Can't Find Module Name In Symbol Table

A module name is missing from the symbol table. possible reason is an
option module's filename does not match the name in the header.
(ERR09) Jump Table Index Error

The Jump Table index value exceeds the required range (i.e., the GSO
code byte is too large); program error.

(ERRI2) Load Module Error

The program detected an error during the writing of the RTE load
module on the output medium.

3.2.5 Generating A Run-Time Exerciser Module

The following provides a brief summary of the configuration and
linking process in regard to: (1) construction and/or modification of
the C-Table, (2) execution of the Link Command, and (3) generation of
the RTE module. The text includes references to certain
configurator/linker commands but does not provide detailed
descriptions related fa formatting and usage. For such information
the reader may refer to the material available under Operating
Procedures (3.2.4.2) for the configurator/linker program.

3.2.5.1 The Configuration Table (C-Table)

The use of the C-Table facilitates the linking process, and simplifies
the formatting of the LINK Command, by providing an easily accessible
area for option module and monitor data.

The C-Table accommodates a maximum of 40 entries (i.e., 39 option
modules and one monitor entry) with each entry accommodating eleven
words (See Figure 3-1).

The construction of a C-Table may begin when the configurator/linker
program is loaded and a Configure Mode of operation is initiated via
the entry of a CNF Command.

76 Page 75

Clearing the C-Table

If the C-Table is empty when CNF is entered, the program will request
a monitor name and the user may initiate a new builde However, if the
table is not empty, the program ass~~es that the user intends to
modify existent entries and a request for a monitor name will not be
made. Therefore, if the C-Table is not empty and a new build is
desired, the table must be initially cleared by entering a CL Command.
Current Entry Pointer

As a build proceeds, the configurator program adjusts a pointer to
specify the current module entry (i.e., the entry effected by the last
MDL name Command). Thus, as each parameter entry command (e.g., DVA,
DVC, etc.) is used, it only affects the content of the module so
soecified. Under these conditions, a current entry may be deleted bv
entering a KI Command without affecting the location of the pointer ..

Finally, two additional Configure Mode commands (i.e., NXT and POINT
name Command) can be used to affect the location of the Dointer if the
modification of a filled C-Table is in progress. Respectively, the
commands will adjust the pointer to the next entry (if it exists) or
to a specified entry and output the contents of the entry.

Listing and Saving the C-Table

To obtain a console listing of the completed C-Table, the TYPEC
Command is used. A line printer listing is obtained by entering a
PRINTC Command. These commands may be entered in or out of Configure
Mode.

The completed C-Table can be saved under a file name by entering a
SAVC Command. The file may then be retrieved by entering a GETC
Co~mand. These co~mands may also be issued in or out of Configure
Mode.

3.2.5.2 The Linking Process (LINK Command)

The LINK Command pieces together a Run-Time Exerciser (RTE) program by
linking all of the required monitor modules and all of the requested
option modules to produce a single executable binary file.

Processing Phases

The linking process consists of two phases which the linker defines
for the user as PASS 1 and PASS 2. During Phase One, only a portion

76 Page 76

of each monitor module and each option module is read to memory for an
initial evaluation (e.g., global references are identified and
evaluated). During Phase TWo, the remaining portions of each module
are also read to memory, absolute addresses are assigned, and the RTE
module is produced as a single output file.
Processing Phase One (PASS 1)

When a LINK command is entered, the eventual execution of Phase One is
indicated to the user by the typing of PASS 1. During this phase, the
linker examines the C-Tab1e to determine which monitor has been
requested by the user. The program then searches the monitor library
to determine which monitor modules are required to satisfy the
request. As the appropriate modules are read, Phase One processing is
separately performed for each one.

If the monitor library resides on a directory device (non-paper tape)
the linker can automatically reference the library's modules. If the
library resides on paper tapes, the user must mount the first library
tape on the reader to start the process. When the linker has
completed processing the first tape the user will be prompted to load
the next tape and all subsequent tapes that may be required.

When Phase One processing of the mpnitor modules is completed, the
linker will again examine the C-Table to determine which option
modules have been requested by the user for processing.

If the option modules reside on a directory device, the linker
processes each module automatically. If the modules are contained on
paper tapes, the user will be specifically prompted to load each tape.

At this point it is important to note that since only a small portion
of any paper tape will be read during Phase One, the user should not
misconstrue this to be a malfun~tion, unless of course the program
fails to request a tape;-

When Phase One is completed, the address range of the RTE module is
printed. However, if either a map-to-console (IMP) or
map-to-line-printer (/MLP) switch is included with the LINK Command, a
load map will be printed instead followed by a PASS 2, the latter
indicating that Phase Two of the linking process has been initiated.

Processing Phase Two (PASS 2)

Using the information stored in the C-Table and that derived during
the Phase One module scan, the general structure of the final RTE
module has been determined when Phase Two is entered. Thus, in Phase
Two, the actual linking process will be initiated~
Phase Two begins with the block-by-block transfer to memory from the
monitor library of each of the monitor modules. As each individual
block of the monitor modules is read, it is subjected to Phase Two
Processing, and separately output as a portion of the RTE module,

76 Page 77

~ontinuing until the monitor modules are processed in their entirety.
Again, if the monitor library is contained on paper tapes, the user
must load each tape on request. Similarly, each entire test module is
read, and if contained on paper tapes, similarly requested. In this
manner the linker outputs the test module portions of the RTE to the
specified medium until the build is complete, at which time the
program generates a completion message (LINK DONE).

3.2.3.3 The Run-Time Exerciser (RTE)

The completed exerciser load module is a binary file configured in
Absolute Loader (ABS) format. As such, the configured module may be
output on paper tape or on another type of load medium as a named
file~ 'Considering the medium employed, an RTE module will either be
loaded via a paper tape ABS Loader or under the control of an
associated XXDP+ monitor.

3.3 RUN-TIME EXERCISER PROCEDURES

Run-Time Exerciser (RTE) programs are not self-loading. Therefore,
loading depends on the input medium employed (i.e., paper tape or
~on-paper tape): An RTE program is loaded from a paper tape device
via a Paper Tape Loader (ABS) program, and from a non-paper tape
device via an associated XXDP+ monitor program. The loader programs
are themselves loaded by the manual insertion of a bootstrap program
or the availability of a ROM bootstrap option.

With these considerations, the following information initially
provides a listing of the hardware and software required to
successfully load, sta~t, and operate an RTE program. This is
followed by procedural information which includes an extensive
analysis of the available keyboard commands and message print-outs.

3.3.1 Hardware And Software Requirements

Depending on the load medium employed, the following hardware and
software are required to load, start, and run an RTE program. Common
Hardware Requirements

PDP-II Processor

Minimum memory capacity'of 12K

Console device (e.g., ASR33,35; VT05; etc.)

ROM bootstrap loader (e.g., M930l, etc.)

A ROM bootstrap loader is not required. However, the availability of

76 Page 78

this option facilitates the loading of an ABS loader program for paper
tape or the loading of an XXDP+ monitor program.

Paper Tape Hardware

Either: A PCll High Speed Reader/Punch

or: A Teletype (ASR33 or ASR3S)

XXDP+ Hardware

Any type of device that is currently supported by XXDP+ (refer to
XXDP+ User's Manual).

Software Requirements

For paper tape systems:

The ABS Loader Program
The DEC/XII RTE Paper Tape

For non-paper tape systems:

The device associated XXDP+ monitor program
The DEC/XII RTE file on an associated XXDP+ medium.

3.3.2 Load And Start Procedures

Depending on the input medium employed, a configured exerciser program
(RTE) is loaded and started as follows: 3.3.2.1 Load/Start Via
Absolute Loader

When an RTE program is contained on paper tape, the module is loaded
into maln memory via an Absolute Loader (ABS) program. Once loaded,
the user starts the program at address 0200 and may restart the
program at address 1000. When the program starts it identifies itself
to the user, specifies the memory capacity of the system, and
indicates the availability of certain optional features (i.e., memory
management, parity memory, etc.). Available features are turned on
(default condition) as follows:

DEC/XII EXERCISER

(MONITOR VOO.OO> MD-XX-XXXXX-X ;Identity of RTE program

76 Page 79

MONITOR: C :Monitor Identity

SYSTEM SIZE: 00016 K

WRITE BUFFER ROTATION ON :Write Buffer Rotation is On

KT ON :Memory Management is On

LD MEDIA TSTING CLR LOC. 40 :Clear loc. 40 if load

;device is to be tested.
CMD> ;RTE keyboard command prompt

3.3.2.2 Loading Via XXDP+ Monitor

When an RTE program resides on an XXDP+ supported medium, it resides
as a named file with a .BIN or a .BIC extension. As such, the RTE
file is loaded from the device by the associated XXDP+ monitor that is
itself booted from the device (refer to XXDP+ User's Manual).

However, if the configurator/linker program used to configure the RTE
load module is still active, a BOOT Command (refer to 3.2.2.2.3, I/O
Control Commands) may be used to return the XXDP+ monitor to memory,
effectively overlaying the configurator program. An example follows:

*BOOT DKO: <CR> ;reload and start RKDP Monitor.

In any case, when the XXDP+ monitor is successfully loaded, it will
identify itself and type a Help message. which can be terminated by
entering a Control C (AC), followed by a Filler Count option and a
monitor command prompt (.), as shown in the following example:

CHMDKBO XXDP+ DK MONITOR

BOOTED VIA UNIT#: 0

28K UNIBUS SYSTEM

ENTER DATE (DD-MMM-YY):,

RESTART ADDR:152010

THIS IS XXDP+. TYPE "H" OR "H/L" FOR HELP.

76 Page 80

The RTE program may now be loaded by typing a LOAD Command (.L yyyyyy)
along with the appropriate file name which simply loads the program or
a RUN Command (.R yyyyyy) which both loads and starts the program.
For example:

• L DECXl <CR> ;load program; to start type S <CR> •

.R DECXl <CR> ;load program and start at 0200=

At this point, before describing start conditions and procedures, it
should be understood that it is always best to load the RTE via the
XXDP+ monitor as opposed to loading via an XXDP+ update program. This
is due to the fact that unlike the monitor the update program does not
reveal (to the exerciser) the type of load device employed. With the
device unidentified it would be possible for data on the load medium
to be destroyed if the exerciser tested the load device.
3.3.2.3 Starting Via XXDP+ Monitor

Following the output of the XXDP+ monitor command prompt (.), the
self-starting RUN Command (.R) may be used to load and automatically
start the RTE program at the appropriate address. However, if the
LOAD Command (.L) is used, the starting address (0200) must be
manually inserted prior to either typIng a START Command (S> or
manually depressing the START switch. In either case a restart will
necessitate both the manual insertion of the restart address (1000)
and depression of the START switch. An example of a RUN Command
load/start follows:

. R DECX70 ;Load and start RTE program .

DEC/XII EXERCISER

(MONITOR VOO.O) MD-XX-XXXXX-X ;Identity of RTE program.

MONITOR: E ;Monitor Identity

SYSTEM SIZE: 00384 K ;Memory capacity of system

"*"'"'
WRITE BUFFER ROTATION ON ;Write Buffer Rotation is

;On.
KT ON ;Memory Management Unit is

;On.
PARITY MEMORY ON ;Parity Memory Check is

CACHE ON ;Cache Memory is On.

Page 81

MAP BOX ON :UNIBUS Map Box is On.

LD MEDIA TSTING CLR LOC. 40 ;Clear loc. 40 if load

CMD>
;device is to be testede
;RTE keyboard command prompt

3.3.3 Operating Procedures

The execution of DEC/XII Exerciser Programs is externally controlled
by the use of 22 types of keyboard commands (refer to Table 3-2),
while certain run-time features, including accompanying print-outs,
may be either enabled or disabled by the optional configuration of a
Switch Register (SR).
All commands may be initiated in Command Mode (CMD». Most may also
be initiated while in Run Mode (BSY». However, some commands (e.g.,
RUN, MOD, etc.) can only be initiated in Command Mode.

3.3.3.1 Switch Register Options

The DEC/XII Monitor provides a Software Switch Register for system
usage. Therefore the use of Hardware Switch Registers (if it occurs)
will be ignored.

The Software Switch Register bits may be co~ditioned to provide the
following run-time features:

BIT

SROO = 0

SROO = 1

SRoa = 0

SRoa = 1

SR09 = 0

SR09 = 1

SRIO = 0

OPERATION

:Disable printing of the one-character "Null"
;message.

;Enable printing of the one-character "Null"
;message.

;Cycle the exerciser once, through all of memory,
;then allow random relocation.

:Cycle the exerciser through memory by the
;constant offset value, while inhibiting
:random relocation.

;Enable the "RELOCATED TO" printout.

;Inhihit the "RELOCATED TO" printout.

;Report only the first three data errors occurring
:within a transferred block.

76

SRIO = 1

SR12 = 1

SR13 = 1

SR14 = 0

SR14 = 1

SR15 = 1

COMMAND

*RUN

*RUN addr

*RUNL

*RUNL addr

*MOD

*MOD addr

*MOD modulename

*KTON

*KTOFF

*MON

*MOFF

MAP

MAP modulename

SEL

SEL modulename

addr

Page 82

;Report all data errors.

:Permit the "END OF PASS" printouts.

:Inhibit the error and module printouts.

;After the 20th error, and following a "MODULE
:DROPPED" printout, drop the module.

:After the 20th error, inhibit the dropping of the
:module.

;After one error (hard or soft), and following a
; "MODULE DROPPED" printout, drop the module.

TABLE 3-2

LIST OF KEYBOARD COMMANDS

*Command Mode (CMD) Only

OPERATION

Execute exerciser

Execute exerciser at specified address

Lock and execute exerciser

Relocate to specified address, lock and
execute exerciser

Output contents of last modified location

Output contents of address specified

Output contents of address specified in named
module

Enable Memory Management

Disable Memory Management

Enable Map Box

Disable Map Box

Output maps for all modules

Output map for named module

Select all modules

Select named module

76

DES

DES modulename

FILL

Deselect all modules

Deselect named module

Output contents of
location

Page 83

FILL CHAR/FILL CNT

FILL number number Replace contents of FC/FC location and output
same

PON Enable Parity Memory

POFF Disable Parity Memory

ROTON Enable Write Buffer Rotation

ROTOFF Disable Write Buffer Rotation

LPON Enable console output to Line Printer

LPOFF Disable console output to Line Printer

CON Enable Cache Memory

COFF Disable Cache Memory

EXAM Output last examined location

EXAM addr Output specified location for examination

EXAM rnodulename addr Output specified location in named module for
examination

SUM __ Output summary message for all module

SUM modulenarne Output summary message for the named module

SWR Output contents of Software Switch Register

SWR number Replace contents of SWR and output same

3.3.3.2 Keyboard Commands

Basically, there are only 22 different types of keyboard commands.
However, a variety of entry formats expands the listing of Table 3-2
to 34.

A command is composed, entered, and
keyboard characters. However,
described in this subsection are
invalid by the DEC/XII Monitor
interpreter.

edited by the use of certain
if characters other than those

entered they will be considered
and will be ignored by the command

76 Page 84

The following material initially describes those keyboard characters
recognized by the DEC/XII Monitor. This is followed by descriptions
of the keyboard error messages. The subsection concludes with a
detailed analysis of each of the commands, arranged alphabetically by
command name.

3.3.3.2.1 Keyboard Character Usage

Where it applies to a given command format, any standard alphabetic (A
through Z) or numeric (0 through 9) keyboard character may be used.

However, only the following special characters (i.e., SP; LF; CR;
DEL; CTRL C, U or 0) may be used to format, control, and/or edit
command entries.

SPACE Key (SP):
Depression of the Space Key generates a space code and moves the
pointer one character position to the right.

LINE FEED Key (LF):
Depression of the Line Feed Key advances the pointer to the next
print line.

CARRIAGE RETURN Key (CR):
Depression of the Carriage Return Key terminates command entry,
returns the pointer to the left margin, and advances to the next
print line.

RUBOUT or DELETE Key (DEL):
Depression of the Rubout Key deletes the last typed character.
Depressing the key n times deletes the last n characters. All
deleted characters are echoed at the terminal and bordered by
backslashes (\).

CONTROL Key (CTRL):
Holding the Control Key down in conjunction with a momentary
depression of either the C, U or 0 Key allows one of the following
three functions to be performed.

Initiation of Control C (AC) aborts the exerciser and returns
to Command Mode (CMD».

Initiation of Control U (AU) deletes the current line of
input back to the last CR/LF, while the current mode of
operation (i.e., CMD> or BSY» is not interrupted.

Initiation of Control a (AO) suppresses current message
output to the terminal.

Initiation of Control S (AS) sends XOFF to the host, suspend­
ing data transmission to the terminal. Some terminals
however, may continue printing data until their internal
character buffers or silos are empty.

76 Page 85

Initiation of Control Q (AQ) sends XON to the host, resuming
data transmission from the host to the terminal.

3.3.3.2.2 Keyboard Error Messages

There are eight general keyboard error messages related to
inappropriate entry procedures and three additional messages which
pertain to the use of the RUN RUNL Commands only.

The general error messages are as follows:

1. Invalid Address Message

The INVALID ADDRESS message is printed if a non-existent
address is entered, that is non-existent, greater than 16
bits, or otherwise not allowed by the monitor.

2. Invalid Command Message

The INVALID COMMAND message is printed if a
than those listed in Table 3-2, is used.
message includes the invalid command entry
COMMAND- - MAPP) .

3. Invalid Command In Run Mode Message

command, other
In addition, the

(e . g • , I NV AL I D

The INVALID COMMAND IN RUN MODE message is prinfed if a
command (e.g., RUN, RUNL, MOD, etc.) is entered while in Run
Mode (BSY) which is restricted to being entered in Command
Mode (CMD) only.

4. Invalid Module Name Message

The INVALID MODULE NAME message is printed if the name is not
five characters in length or is otherwise unrecognizable to
the monitor.

5. Invalid Or Missing Argument Message

The INVALID OR MISSING ARGUMENT message is printed if an
argument is either improperly included in a command format or
is missing (e.g., MOD modulename with addr missing).

6. Must Be Even Address Message

The MUST BE
odd-numbered
(addr).

EVEN ADDRESS message is printed if an
address is entered for the address argument

7. Not An Octal Number Message

The NOT AN OCTAL NUMBER message is printed if the number
argument entered is other than an octal number (i.e., 0-7) or

76

contains an alphabetic.

8. Number Too Large Message

The NUMBER TOO LARGE message
argument entered exceeds the
(i.e., 177777 octal).

Page 86

is printed if the number
allowable maximum of 16 bits

The RUN and RUNL error messages are as follows:

1. Address-OK-But-Exerciser-Won't-Fit Message

The ADDRESS OK BUT EXERCISER WON'T FIT message is printed if
there is not enough room to contain the exerciser between the
address specified, by either command, and the top of memory.

2. Must-Have-KT-On Message

The MUST HAVE KT ON message is printed if an address argument
is specified with either command and the Memory Management
Unit (KTl1) is Off.

3. No-Modules-Selected Message

The NO MODULES SELECTED message is printed if the user enters
either command with all modules deselected.

4. Map Box Must Be On Message

The MAP BOX MUST BE ON message is printed if the user
specifies an address argument greater than 96K(600000) and
22-bit mapping is disabled(MOFF Command).

3.3.3.2.3 Keyboard Command Analysis

The following material provides a detailed analysis of each of the
keyboard commands. The commands are alphabetically arranged and a
detailed description of the command is provided.

COFF Command
CON Command
DES Command
EXAM Command
FILL Command
KTOFF Command
KTON Command
LPOFF Command
LPON Command
MAP Command
MOD Command
MOFF Corrunand
MON Command
POFF Command
PON Command
ROTOFF Command

;Cache-Off Command
;Cache-On Command
;Deselect Command
;Exarnine Command
;Filler Word Command
;KT-Off Command
;KT-On Command
;Line Printer off Command
;Line Printer on Command
;Mapping Command
;Modify Command
;UNIBUS Map-Off Co~~and
;UNIBUS Map-On Command
;Parity-Off Command
;Parity-On Command
;Rotation-Off Command

76

RaTON Command
RUN Command
RUNL Command
SEL Command
SUM Command
SWR Command

! COFF Command !

Function

;Rotation-On Command
;Run Mode Command
;Run Locked Command
;Select Command
;Surnmary Command
;Switch Register Command

Page 87

The Cache Off Command (COFF) is used to disable a system's Cache
Memory.

Format

COFF ;turn off cache memory.

Characteristics

A system's Cache Memory is automatically enabled when an
exerciser program is started. However, the memory may be
disabled via the COFF Command and re-enabled by executing a Cache
On Command (CON).

Associated Messages

Refer to subsection

Example

.COFF<CR> ;disable cache memory.

76 Page 88

! CON Command !

Function

The Cache On Command (CON) is used to re-enable a system's Cache
Memory.

Format

CON ;turn on cache memory.

Characteristics

A system's Cache Memory is automatically enabled when an
exerciser program is started. However, the memory may be
disabled by executing a Cache Off Command (COFF) and re-enabled
via the CON Command.

Associated Messages

Refer to subsection

Example

.CON<CR> ;re-enable cache memory.

76 Page 89

! DES Command !

Function

The Deselect Command (DES) allows all modules or a single
specified module to be deselected.

Format

General: DES [modulename]

1. DES
Deselect all modules.

2. DES modulename
Deselect the specified (modulename) module.

Characteristics

When the exerciser is initially loaded, all modules are
automatically selected for execution; this is the default
condition. However, if the user desires to run a single module,
the remaining modules must be deselected; and if the user
desires to run all modules except one, the exception must be
deselected. Thus, the Deselect Command (DES) is generally used
in conjunction with a Select Command (SEL). The latter allows
all modules, or a specified module, to be selected.

Example: To deselect one module:

SEL
DES modulename

;select all modules
;deselect named module

Example: To deselect all but one module

DES
SEL modulename

;deselect all modules
;select named module

Restrictions

The modulename argument must be five c~aracters in length.

Associated Messages

Refer to subsection

Examples

76

Format 1:

.DES<CR>

Format 2:

.DES DCAAO<CR>

Page 90

:deselect all modules

:deselect Module DCAAO

76 Page 91

! EXAM Command !

Function

The examine Command (EXAM) is used to output the contents of the
location specified by either the last EXAM Command or the current
command.

Format

General: EXAM[[modulenarne]addr]

1. EXAM
Output the contents of the last examined location.

2. EXAM addr
Output the contents of the location specified by the address
argument (addr).

3. EXAM modulename addr
Output the contents of the location, specified by a relative
address (addr) within the named module (modulename).

Characteristics

The EXAM Command makes it possible to examine the contents of a
location while the system is operating in the Run Mode (BSY».
When Format 1 is used, the contents of the last location accessed by
an EXAM Command will be output.
When Format 2 is used,--the address argument specifies a virtual
address.
When Format 3 is used, the address argument specifies the offset value
for a word, within a named module, relative to the virtual base
address of the module. However, the Monitor response defines the word
address relative to the virtual base address of the exerciser.

Restrictions

The address argument has a maximum length of 16 bits.
The modulename argument must be five characters in length.

Associated Messages

Refer to subsection

Examples

76

Format 1:

. EXAM<CR>
Monitor response:

053772/002345

Format 2:

• EXAM 053776<CR>

Monitor response:
053776/000005

Format 3:

. EXAM LPAEO 36<CR>
Monitor response:

053774/000004

Page 92

;output contents of last EXAM location •

;002345 is the contents of location
;053772

;output contents of location 053776 •

;000005 is the contents of location
;053776.

;output word 36 from Module LPAEO .

;000004 is word 36 (in Module LPAEO)
;from location 053774.

76 Page 93

! FILL Command !

Function

The Fill Command (FILL) is used to output a combination Fill Character
and Filler Count word for examination and/or complete alteration.

Format

General: FILL[number number]

1. FILL
Output the FILL CHAR/FILL CNT word.

2. FILL number number
Replace the FILL CHAR (number)/FILL CNT (number) word and
output same.

Characteristics

In relation to a particular console device (e.g., LA30S, VT05B, etc.),
the detection of an associated Fill character (e.g., Carriage Return,
Line Feed, etc.) allows an optional number of Filler Characters (i.e.,
non-printable null characters) to be recognized in order to delay
message output while mechanical adjustments are made to the pointer.
For example: following detection of a Carriage Return Code (158), a
number of Filler Characters, defined by the Filler Count, provide an
appropriate delay while the pointer is being returned to the left
margin, thus eliminating-garbled output.
The Fill argument (number number) consists of a maximum of 16 bits (2
bytes): The low-order byte contains the Filler Count (FILL CNT),
while the high-order byt~ contains the Fill Character (FILL CHAR)
required by the console (i.e., CR, LF, etc.).

Restriction

012 014

!----------FILLER COUNT BYTE
!-----------------FILL CHARACTER BYTE

The Fill argument (number number) must consist of octal digits.
If the entire argument is replaced, a space must be inserted
between the numbers (i.e., character and count).

Associated Messages

76

Refer to subsection

Examples

Format 1:
• FILL<CR>

Monitor response:

FILL/006401

Format 2:
.FILL 15 14<CR>

Monitor response:
FILL/006414

Page 94

;output current Fill Word •

;FILL CHAR is CR with FILL COUNT of One,
;right justified (0 000 110 100 000
;001).

;rep1ace character with CR and
;count with 14, output same.

;replacement right justified.

76 Page 95

! KTOFF Command !

Function

The Memory-Management-Off Command (KTOFF) is used to disable the
Memory Management Unit (KT) and clear its status indicator (KTSTAT)0

Format

KTOFF ;Disable the Memory Management Unit

Characteristics

If a Memory Management Unit (KT) is available to a system, the unit is
automatically enabled when a DEC/XII Exerciser Program is loaded and
started. The KT Status (KTSTAT) indicator is then set and mapping
occurs as required. The user now has the option in Command Mode
(CMD» of disabling (KTOFF) the unit or re-enabling (KTON) the unit,
as the case may be.

Restrictions

The KTOFF command must be entered in Command Mode (CMD» only.

Associated Messages

Refer to subsection

Example

. KTOFF<CR> ;Disable KT Unit and clear KTSTAT flag .

76 Page 96

! KTON Command !

Function

The Memory-Management-On Command (KTON) is used to re-enable the
Memory Management Unit (KT).

Format

KTON ;Re-enable the Memory Management Unit

Characteristics

If a Memory Management Unit (KT) is available to a system, the unit is
automatically enabled when the DEC/XII Exerciser Program is loaded and
started. The KT Status (KTSTAT) indicator is then set and mapping
occurs as required. The user now has the option in Command Mode
(CMD» of disabling (KTOFF) the unit or re-enabling (KTON) the unit,
as the case may be.

Restriction

The KTON Command must be entered in Command Mode (CMD» only.

Associated Messages

Refer to subsection

Example

. KTON<CR> ;Re-enable KT Unit and setKTSTAT flag .

76

LPOFF

Function

The Line Printer Off Co~mand(LPOFF) is used to redirect
the line printer back to the console.

Format

LPOFF ;turn off line printer

Characteristics

... , 1
Q.L.L

Page 97

output for

When the LPOFF Command is entered, all subsequent output(i.e.,
prompts, messages, summaries etc.) and operator input(i.e., program
querIes and request responses) are re-directed from the line printer
back to the console.

Associated Messages

Refer to subsection

Example

.LPOFF <CR> ;disable line printer

76 Page 98

LPON Command !

Function

The Line Printer On command(LPON) is used to redirect all output for
the console to the line printer.

Format

LPON ;turn on line printer

Characteristics

When the LPON Command is entered, all subsequent output (i.e.,
prompts, messages, summaries, etc.) and operator input (i.e., program
query and request response) are re-directed from the console(default
condition) to the line printer. Thus console echoing is effectively
disabled.

Associated Messages

Refer to subsection

Example

.LPON <CR> ;enable line printer

76 Page 99

! MAP Command !

Function

The Mapping Command (MAP) is used to output a message from the monitor
concerning the identity and current status of all of the resident
modules, or single specified modulee

Format

General: MAP [modulenarne]

1. MAP
Output Map message information for all modules.

2. MAP modulename
Output Map message information for the named module.

Characteristics

Each line of a Map message 1S formatted as follows:

{modulenarne} AT VA: (address) STAT: (status word)

Modulename:

The five-character modulename indicates the following:

Address:

R K A D a

!------Copy Number (0-7)
!--------Version Letter

!-------------Identifier Letters

The virtual address defines the first word of the module (i.e., word
zero of the header).

Status Word:

With the exception of bits 11, 13 and 14, the remaining bits of the
16-bit status word (00-15) are used to define the module type (i.,e.,
Input/Output, Background, etc.); while bits 11, 13, and 14 are used
to define the current status of the module (i.e., Active, Dropped, or
Selected), as follows:

Excepting bits 11, 13 and 14: all bits cleared (000000)

76 Page 100

indicates a Special Background Module (SBKMOO).

Excepting bits 11, 13 and 14: bit 04 set (000020) indicates
a Background Module (BKMOD).

Bit 11 set indicates the module is Active.

Excepting bits 11, 13 and 14: bit 09 set (001000) indicates
a Non-Background Module (NBKMOD).

Excepting bits 11, 13 and 14: bit 15 set (100000) indicates
an I/O Module (IOMOD).

Excepting bits 11, 13 and 14: bits 10 and 15 set (102000)
indicates a Partially Restricted I/O Module (IOMODP).

Excepting bits 11, 13 and 14: bits 10, 12 and 15 set
(112000) indicates a Restricted I/O Module (IOMODR).

Excepting bits 11, 13 and 14: bits 12 and 15 set (110000)
indicates an Extended I/O Module (IOMODX).

Bit 13 set indicates that the module has been Dropped.

Bit 14 set indicates that the module has been Selected.

Restrictions

The modulename argument must be five characters in length.

Associated Messages

Refer to subsection

Examples

Format 1:

• MAP<CR> :Map all modules •

Monitor response:

RKADO AT VA: 021544 STAT: 150000 : IOMODX Module RKADO is
selected.

TCADO AT VA: 034700 STAT: 130000 : IOMODX Module TCADO is
dropped.

CPADO AT VA: 042346 STAT: 40020 :BKMOD Module CPADO is
selected.

Format 2:

.MAP TAACO <CR> :Map Module TAACO

76

Monitor response:
TAACO AT VA: 037460 STAT: 140000 : IOMOD Module TAACO

is selected.

Page 101

76 Page 102

! MOD Command !

Function

The Modifv Command (MOD) is used to examine and/or modify the contents
of selected storage locations.

Format

General: MOD [[modulenarne] addr]

1. MOD

Output the contents of the last modified location.

2. MOD addr

Output the contents of the location specified by the absolute
address argument (addr).

3. MOD modulename addr

Output the contents of the location
module name and its associated
(modulename addr).

Characteristics

specified by both the
relative address argument

The MOD Command makes it-possible to open and/or modify absolute as
well as relative addresses (i.e., relative to the starting address of
the specified module). In addition, when a relative address is
specified, the monitor will respond by printing the equivalent
absolute address.

Restrictions

The MOD Command must be entered in Command Mode (CMD» only.

All specified addresses must be less than 32k words or the largest
available address, whichever is smaller.

All specified addresses must be even.

Associated Messages

Refer to subsection

76 Page 103

Examples

Format 1:

• MOD<CR> ;open last modified location •

Format 2:

• MOD 4000<CR> ;open location 4000 .

Monitor response:

004000/123456 :location 4000 contains value 123456.

Operator response:

1. Close location 4000 by typing <CR>.

2. Insert new value and close location 4000 by typing <CR>.

3. Insert new value and open next word by typing <LF>.

4. Close location 4000 and open next word by typing <LF>.

Format 3:

.MOD DCAAO 20<CR>

Monitor response:

012020/140000

Operator response:

;open relative location 20 in Module
;DCAAO (10TH OCTAL word).

:absolute address of 10th octal word IS

:012020 and contents of location are
140000.

Operator has the same four options described for Format 2.

76 Page 104

! MOFF Command !

Function

The UNIBUS-Map-Off Cow~and (MOFF) is used to disable a system's UNIBUS
mapping logic.

Format

MOFF ;turn off the UNIBUS Map Logic.

Characteristics

The UNIBUS mapping hardware is automatically enabled when the
exerciser is started. The logic may be disabled via the MOFF Command
and re-enabled by executing, in Command Mode (CMD» only, a
UNIBUS-Map-On Command (MON).

Restrictions

The MOFF Command may be entered in Command Mode (CMD» only.

Associated Messages

Refer to subsection

Example

• MOFF<CR> ;disable the UNIBUS Map Logic .

76 Page 105

! MON Command !

Function

The UNIBUS-Map-On Command (MON) is used to re-enable the system's
UNIBUS mapping logic.

Format

MON ;turn on UNIBUS Map Logic

Characteristics

The UNIBUS mapping hardware is automatically enabled when the
exerciser is initializede The logic may be disabled by executing, in
Command Mode (CMD» only, a UNIBUS-Map-Off Command (MOFF). The logic
may then be re-enabled via the MON Command.

Restrictions

The MON Command may be entered in Command Mode (CMD» only.

Associated Messages

Refer to subsection

Example

• MON <CR> ;re-enable the UNIBUS Map Logic .

76 Page 106

! POFF Command !

Function

The Parity-Off Command (POFF) is used to disable the system's Parity
Check Logic.

Format

POFF ;disable parity checking logic.

Characteristics

The parity checking hardware is automatically enabled when the
execiser program is initialized. The logic may be disabled via the
POFF Command and re-enabled by executing a Parity-On command (PON).

Associated Messages

Refer to subsection

Example

. POFF <CR> ~disable parity checking logic .

76 Page 107

! PON Command !

The Parity-On Command (PON) is used to re-enable a system's Parity
Check Logic. The logic is used to verify the integrity of data
transfered from Main Memory or Cache Memory.

Format

PON ;turn on parity checking logic

Characteristics

The parity checking hardware is automatically enabled when the
exerciser program is initialized. The logic may be disabled by
executing a Parity-Off Command (POFF) and re-enabled via the PON
Command.

Associated Messages

Refer to subsection

Example

.PON <CR> ;re-enable parity checking logic

76 Page 108

! ROTOFF Command !

Function

The Rotation-Off Command (ROTOFF) is used to disable Write Buffer
Rotation.

Format

ROTOFF :turn off Write Buffer Rotation.

Characteristics

Write Buffer Rotation is automatically enabled when an exerciser
program is initialized. The feature may be disabled via a ROTOFF
Command and re-enabled by executing a Rotation-On Command (ROTON).

Associated Messages

Refer to subsection

Example

. ROTOFF <CR> ;disable Write Buffer Rotation .

76 Page 109

! ROTON Command !

Function

The Rotation-On Command (ROTON) is used to re-enable Write Buffer
Rotation.

Format

ROTON :turn on Write Buffer Rotation.

Characteristics

Write Buffer Rotation is automatically enabled when an exerciser
program is initialized. The feature may be disabled by executing a
Rotation Off Command (ROTOFF) and re-enabled via a ROTaN Command.

Associated Messages

Refer to subsection

Example

. ROTON <CR> ;re-enable Write Buffer Rotation .

76 Page 110

! RUN command !

Function

The Run Co~~and (Run) is used to initiate the Run Mode (BSY» and
start the option modules. Only those modules selected for execution
will be run.

The Run Command is identical to the RUNL Command with one exception:
The RUN Command allows the periodic relocation of the exerciser
program* if an adequate amount of core is available for relocation and
a Memory Management Unit (KT) is available and enabled.

Format

General: RUN [addr]

1. RUN

Initiate Run Mode (BSY» and execute option modules.

2. RUN addr

Initiate Run Mode (BSY» and, following an initial relocation
to the address specified, execute the option modules.

Characteristics

Module Execution Sequence:

When a RUN Command is entered, Run Mode (BSY» is initiated and the
Selected modules are executed as follows: First, single passes are
separately made through the Special Background Modules (SBKMOD).
Second, passes are separately made through the Non-Back-ground Modules
(NBKMOD). Third, the Background Modules (BKMOD) will execute a I
iteration pass. Fourth, the interrupt-driven I/O Modules (IOMOD,X,P,
AND R) are enabled. Finally, single passes are separately made
through the Background Modules (BKMOD).

Write nuffer Rotation:

Write Buffer Rotation will occur if the
rotation is initially enabled by default,
Command, and re-enabled by a ROTON Command.

Initial Program Relocation:

operation
disabled

is enabled:
via a ROTOFF

As stated, if both adequate core and a KT Unit are avilable and the KT

76 Page III

is enabled (i.e., by default or a KTON Command), the movable* portion
of the exerciser program will be periodically relocated; however, an
initial relocation address may be specified by the user (Format 2).

If an initial relocation address is specified by the user, care must
be taken to ensure that the address chosen satisfies the memory
requirements of the movable portion of the execiser in relation to the
availability of usable core. With this assurance, initial relocation
to the nearest 32-word boundary of the address will occur prior to the
execution of the modules.

Aborting The Exerciser:

Once started, the option modules will continue to run until aborted by
one or more of the following occurrences (at which a SUM Command may
be used to provide a run-time summary of module activity):

A Control C (AC) ii entered: causing the Monitor to cease
execution of the option modules, return the program to its
original memory space (if necessary) and return the system to
Command Mode (CMD».

All modules are dropped due to module errors: causing the
Monitor to return the program to its original memory space
(if necessary) and return the system to Command Mode (CMD».

The occurrence of a fatal error (e.g., too many system errors
occur): causing the Monitor to cease execution of the option
modules, return the program to its original memory space (if
necessary), and return the system to Command Mode (CMD».

Restrictions

The RUN Command mustJ5e entered 1n Command Mode (CMD».

The address argument (addr) has a minimum restriction of octal
20,000*

the address argument (addr) must satisfy both the core requirements
of the exerciser and the core availability of the system.

Associated Messages

Refer to subsection

Examples

*A portion of the execiser program always resides in the lowest 4K
words of memory, within a range of 0-17776(8), and is never relocated.

76

Format 1:

.RUN <CR>

Format 2:

.RUN 360000 <CR>

Monitor response:

Page 112

;start with a relocation offset of zero

;re1ocate to 360000 and start

RELOCATED TO 360000 ~response to valid address.

76 Page 113

! RUNL Command !

Function

The Run-Locked Command (RUNL) is used to initiate the Run Mode (BSY»
and start the option modules. Only those modules selected for
execution will be run.

The RUNL Command is identical to the RUN Command with one exception:
The RUNL Command inhibits periodic relocation of the movable* portion
of the execiser program by locking in the load address or the initial
relocation address that may be defined by the user.

Format

General: RUNL [addr]

1. RUNL

Initiate Run Mode (BSY», lock, and start option modules.

2. RUNL addr

Initiate Run Mode (BSY», relocate to user specified address
(addr), lock and start option modules.

Characteristics

Module Execution Sequen~~:

When a RUNL Command is entered, Run Mode (BSY» is initiated, and the
Selected modules are executed as follows: First, single passes are
separately made through the Special Background Modules (SBKMOO);
second, single passes are separately made through the Non-Background
Modules (NBKMOD); third, the Background modules (BKMOn) will execute
a 1 iteration pass; fourth, the interrupt-driven I/O Modules
(IOMOD,X,P and R) are enabled: finally, single passes are separately
made through the Background Modules (BKMOO).

Write Buffer Rotation:

Write Buffer Rotation will occur, for initial relocation, if the
operation is enabled. Rotation is initially enabled by default,
disabled via a ROTOFF Command, and re-enabled by a ROTaN Command.

Initial Program Relocation:

If both adequate core and a KT Unit are available, and the KT is
enabled <i.e., by default or a KTON Command), the movable portion of

76 Page 114

the exerciser program can be initially relocated to an address
specified by the user (Format 2); whereupon the address will be
locked and no further relocation will occur.
If an initial relocation address is specified by the user, care must
be taken to ensure that the address chosen satisfies the memory
requirements of the movable portion of the execiser in relation to the
availability of usable core; with this assurance, initial relocation
to the nearest 32-word boundary of the address will be made, the
address will be locked, and execution of the modules will occur~

Aborting the Exerciser:

Once started, the option modules will continue to run until aborted by
one or more of the following occurrences (at which time a SUM Command
may be used to provide a run-time summary of module activity):

A Control C (AC) is entered: causing the Monitor to cease
execution of the option modules, return the program to its
original memory space (if necessary), and return the system
to Command Mode (CMD».

All modules are dropped due to module errors: causing the
Monitor to return the program to its original memory space
(if necessary), and return the system to Command Mode(CMD».

The occurrence of a fatal error (e.g., too many system
errors): causing the Monitor to cease execution of the
option modules, return the program to its original memory
space (if necessary), and return the system to Command Mode
(CMD».

Restrictions

The RUNL Command must-be entered in Command Mode (CMD».

The address argument (addr) has a minimum restriction of octal
20,000*.

The address argument (addr) must satisfy both the core
requirements of the exerciser and the core availability of the
system.

Associated Messages

Refer to subsection

Examples

*A portion of the exerciser program always resides in the lowest 4K
words of memory, within a range of 0-17776(8), and is never relocated.

76

Format 1:

.RUNL <CR>

Format 2:

;start with a relocation offset of
;Zero locked.

Page 115

.RUNL 360000<CR> ;relocate to 360000, lock and start.

RELOCATED TO 360000 ;response to valid address.

76 Page 116

! SEL Command !

Function

The Select Command (SEL) allows all modules, or a single specified
module, to be selected for execution.

Format

General: SEL [modulename]

1. SEL

Select all modules for execution.

2. SEL modulename

Select the specified (modulename) module for execution.

Characteristics

When the exerciser is initially loaded, all modules are automatically
selected for execution; this is the default condition. However, if
the user desires to run a single module, the remaining modules must be
deselected and, if the user desires to run all modules except one, the
exception must be deselected. Thus, the Select Command (SEL) is
generally used in conjunction with a Deselect Command (DES). The
latter allows all modules, or a specified module, to be deselected.

Example: To select one module:

DES ;deselect all modules

SEL modulename ;select named module

Example: To select all but one module.

SEL ;select all modules

DES modulename ;deselect named module

Restrictions

The modulename argument must be five characters in length.

Associated Messages

76 Page 117

Examples

Format 1:

.SEL<CR> ;select all modules

Format 2:

.SEL DCAAO<CR> ;select Module DCAAO

76 Page 118

! SUM Command !

Function

The Summary Corr~and (SUM) is used to output a summary message for each
resident module, or a specified module, concerning: module identity;
current status; the decimal number of passes, hard errors, soft
errors, system errors and power failures. The last two items will not
be output if only a single module is specified.

Format

General: SUM [modulename]

1. SUM

Output summary message for each resident module.

2. SUM modulename

Output summary message line for the specified (modulename)
module.

Characteristics

A SUM Command may be entered in the Run Mode (BSY» providing a
summary message that is formatted as follows:

(mod name) AT VA: (addrJ STAT (stat wd) PASS (#num) HRDERRS (num)
SFTERRS (nurn)

SYSTEM ERRORS: (num) POWER FAILS: (num)

Modulename:
The five-character modulename inidcates the following:

Address:

R K ADO

!-------Copy Number <0-7)

!
!---------Version Letter

!-------------Identifier Letters

The virtual address defines the first word of the module (i.e., word
zero of the header).

76 Page 119

~tatus Word:

with the exception of bits 11, 13 and 14, the remaInlng bits of the
16-bit status word (00-15) are used to define the module type (i.e.,
Input/Output, Background, etc.). Bits 11, 13 and 14 are used to
define the current status of the module (i.e., Active, Dropped, or
Selected), as follows:

Number:

Exceotinq bits 11, 13 and 14: all bits cleared (OOOOOO)
indicates a Special Background Module (SBKMOn).

Excepting bits 11, 13 and 14: bit 04 set (000020) indicates
a Background Module (BKMOD).

Bit 11 set indicates the module is active.

Excepting bits 11, 13 and 14: bit 09 set (001000) indicates
a Non-Background Module (NBKMOD).

Excepting bits 11, 13 and 14: bits 10 and 15 set (102000)
indicates a Partially Restricted I/O Module (IOMODP).

Excepting bits 11, 13 and 14: bits 10, 12 and 15 set
(104000) indicates a Restricted I/O Module (IOMODR).

Excepting bits II, 13 and 14: bits 12 and 15 set (110000)
indicates an Extended I/O Module (IOMODX).

Bit 13 set indicates that the module has been Dropped.

Bit 14 set indicates that the module has been Selected.

All number items that are output have a maximum range of five decimal
digits.

Restrictions

The modu1ename argument must be five characters in length.

Associated Messages

Refer to subsection Examples

Format 1:

.SUM <CR> ;summarize all modules

Monitor response:

76 Page 120

SUMMARY AT RUNTIME: 000:02:52*

LPAEO AT VA: 053734 STAT 150000 PASS #00000 HRDERRS 00000
SFTERRS 00000

TCAFO AT VA: 055310 STAT 150000 PASS #00000 HRDERRS 00000
SFTERRS 00000

SYSTEM ERRORS: 00000 POWER FAILS: 00000

Format 2:

• SUM RKAFO <CR> ;summarize Module RKAFO.

Monitor response:

RKAFO AT VA: 054524 STAT 150000 PASS #00000 HRDERRS 00000
SFTERRS 00000

*Time entry will only occur if a Real-Time Clock is available to the
system.

76 Page 121

! SWR Command !

Function

The Switch-Register Command (SWR) is used to output the contents of
the Software Switch Register (SR), for analysis and/or replacement.

Format

General: SWR [number]

1. SWR

Output the current contents of the Software Switch Register.

2. SWR number

Replace (number) the contents of the Software Switch Register
and output the same.

Characteristics

The SWR Command conditions the l6-bit Software Switch Register to
provide a combination of the run-time features described in subsection
3.3.3.1.

Associated Messages

Refer to subsection

Examples

Format 1:

. SWR<CR> ;output contents of SWR .

Monitor response:

SWR/ 112000 ;refer to subsection 3.3.3.1 for decode.

Format 2:

.SWR 053401<CR> ;place 053401 in SWR and output same

Monitor response:

SWR/ 053401 ;replacement verfication.

76 Page 122

3.3.3.3 Operator Modifications

Necessary modifications to Monitor and/or Option Module locations are
initiated in Command Mode (CMD» and accomplished via the use of the
Modify Command (MOD).

3.3.3.3.1 Monitor Modifications

3.3.3.3.2 Option Module Modifications

Although a user may modify any location within an option module via
the MOD Command, the most common modifications are related to changes
desired in test criteria <i.e., device and vector address changes, bus
priority level changes, etc.). Such changes are accomplished by the
alteration of selected and specifically labelled words that are
contained in the Module Interfaces (headers). The following
information pertains to the formatting and use of these selected
words.

Word 6 (ADDR): Device/Option UNIBUS Address

Module Header Word 6 (ADDR) must specify the UNIBUS address for the
first device or option to be tested. If more than one address is
required, ADDR will specify the first of a contiguous grouping.

Header Word 6 (ADDR) Example:

CMD> MOD WXYZO 6<CR>

52346/006000 l72460<CR> ;lst device address.

CMD>

Word 10 (VECTOR): Device/Option Vector Address

Module Header Word 10 (VECTOR) must specify the vector address for the
first device or option to be tested. If more than one address is
required, VECrOR will specify the first of a contiguous grouping.

Header Word 10 (VECTOR) Example:

CMD> MOD WXYZO lO<CR>

52350/000000 230<CR> :lst device vector~

CMD>

76 Page 123

lord 12 (BR1,BR2): Bus Priority Levels

Module Header Word 12 (BRI,BR2) specifies, via the high order (BRI)
~nd low orde: (BR2) brte respectively, the priority levels required by
lnterrupt-drlven devlces. Normally, only BRl will be required.
However, BR2 must be specified if the device is capable of separate
levels of interrupt.

Header Word 12 (BRI,BR2) Example:

CMD> MOD WXYZO 12<CR>

52352/000000 300<CR> ;lst BR level is PRTY6.

CMD> ;2nd BR level is unused.

Word 14 (DVIDl): Device Indicator Count

Module HEader Word 14 (DVID1) indicates the total number of active
devices to be tested (up to 16) via the number of bits that are set
(1) in the word. The word also specifies the device(s) selected
(0-15) via the corresponding weight of the bit positions.

Header Word 14 (DVIDl) Example:

CMD> MOD WXYZO 14<CR>

52354/000000 3<CR

CMD

;Device Indicator One specifies that
;Device 0 and Device 1 (0 000 000 000
;000 011) are to be tested.

Words 16-24 (SRl-SR4): Module Switch Registers

Module Header Words 16 through 24 (SRI, SR2, SR3, SR4) locate the four
16-bit Software Switch Registers available to each module. These
registers are provided for general-purpose program switching and are
used to define unique device options and/or to point to specific
module routines.

Header Word 16 (SRI) Example:

CMD> MOD WXYZO 16<CR>

52356/000000 100000<CR> ;Software Switch Register One is open.

CMD>

Word 36 (ICONT): Iteration Constant

76 Page 124

Module Header Word 36 (ICONT) indicates the number of times that a
module will be run prior to an End-Of-Pass and may be configured at
the user's discretion.

Header Word 36 (ICONT) Example:

CMD> MOD WXYZO 36<CR>

52376/004000 100<CR> ;count provides 64 decimal passes.

CMD>

3.3.3.4 Message Print-Outs

Message print-outs may be divided into the following three categories:

Keyboard Error Messages: which indicate an inappropriate use
of the Keyboard Commands (refer to subsection 3.3.3.2.2).

Normal Run-Time Messages: which indicate the occurrence and/or
completion of normal functions of the program.

Run-Time Error Messages: which indicate abnormal occurrences
within the program and/or its associated devices.

3.3.3.4.1 Normal Run-Time Messages

There are five normal run-time messages that can be generated by any
RTE program:

End Of Pass Printout-

Module Dropped Printout

ASCII Message Printout

Relocated To Printout

Power Failure Printout

End Of Pass Printout

End Of Pass is an optional message, the generation of which when
enabled by the setting of bit twelve in the Software Switch Register
(SR12 = 1) indicates that a complete pass through a specific module
has been completed. However, due to the possibility that the
generation of the printout may significantly decrease throughput, the
message is normally inhibited (SR12 = 0). In any case, following the
generation of an End Of Pass printout, a reexecution of the specified

76 Page 125

nodule will occur except when the pass is completed for a background
module, in which case the monitor will start executing the next
background module.

The End Of Pass Printout is as follows:

CPAFO END PASS #00034. RUNTIME: 000:11:37 PSTIME: 000:00:37

Where:

CPAFO identifies the module and END PASS #NNNNN defines the decimal
number of completed passes. RUNTIME!PSTIME HRS:MINS:SECS
respectively define the total run and pass times (zeroed if a
system clock is not available).

Module Dropped Printout

A Module Dropped printout may be initiated by a module for itself via
an END Call or may be generated by the monitor as a conditioned
response (e.g., via switch reglster settings) to errors occuring
within a module. In either case, following the printout, a module
that has been dropped cannot be reexecuted until Command Mode(CMD» is
re-entered via AC and Run Mode(BSY» is reinitiated via RUN or RUNL
command. available to the program.

The Module Dropped message is conditionally generated as follows:

Via an END Call, following the occurrence of a condition that
the module defines as abnormal (e.g., no drives available).

Via the monitor, if the total number of allowable systems
errors (i.e., four) for the modules is exceeded.

Via the monitor, in conjunction with the setting of Software
Switch Register bit 15 {SR15 = l}, following the occurrence of
an error (whether acknowledged by printout or not).

Via the monitor, if Software Switch Register bit 14 is reset
(SR14 = O) and the 20th hard or 40th soft error has occurred
(whether acknowledged by printout or not). If bit 14 is set
(SR14 = 1), the message will not be printed and the module will
not be dropped.

The Module Dropped Printout is as follows:

CPAFO DROPPED AT APC XXXXXX

Where:

CPAFO identifies the dropped module and APC XXXXXX defines the
Assembled Program Counter address (as opposed to the physical
address) where the drop occurred.

76 Page 126

ASCII Message Printout

In addition to standard message generation, the monitor provides each
module with an ASCII message capability which may be used to report
conditions and/or statistics. Typical ASCII message printouts are as
follows:

LPAAO PA XXXXXXXX APe YYYYYY PASS# NNNNN

RKAAO PA XXXXXXXX APC YYYYYY PASS# NNNNN

DATA TRANSFERS: XXX XXX

SOFT ERRORS: YYYYYY

HARD ERRORS: ZZZZZZ

LP IS OFF LINE

Relocated To Printout

;defining: 22-bit
Physical Address (PA of
;module LPAAO, IS-bit
Assembled Program
;Counter (APC) address,
and decimal number
;of completed passes.

;sarne data as above
with test information:
;decimal number of I/O
transfers
;decimal number of
recoverable errors
;decimal number of
unrecoverable errors

;line printer status

When the entire exerciser program is relocated in memory, as described
in the RUN and RUNL Command analysis, a Relocated To message is
generated which includes_the physical address to which relocation has
occurred:

RELOCATED TO XXXXXXOO

Where: XXXXXXOO implies a 22-bit octal physical address to which
relocation has occured.

Power Failure Printout

Following a power failure, when a restart is initiated, the original
mode of operation is reactivated (i.e., BSY> or CMD> mode) and the
Power Failure message is output, as follows:

POWER FAILURE OCCURRED

Although this printout provides an awareness of a malfunction, it is a
normal message as opposed to an RTE error message which would indicate
an error by RTE software.

76 Page 127

3.3.3.4.2 RTE Run-Time Error Messages

There are ten RTE run-time error messages that can be generated by an
RTE program:

System Error Printout

Soft Error Printout

Hard Error Printout

Extended Soft Error Printout

Extended Hard Error Printout

Data Error Printout

Monitor Data Error Printout

Memory Management Error Printout

Memory Parity Error Printout

BAD Vector Printout

System Error Printout

A System Error message is output whenever a Bus
location four, or a Reserved Instruction Trap,
occurs. The message printout is as follows:

Error Trap, to
to location ten,

Where:

AAAAAA

BBBBBB

CCCCCC

DDDDDD
EEEEEE

FFFFFF
GGGGGG

HHHHHH

**** SYSTEM ERROR ****
VECTOR PC+ ADDR PSW SP ERCT
AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF

AT GGGGG HHHHHH

- is 000004 if Bus Error Trap and 000010 if Reserved
Instruction Trap.

- is Program Counter address pushed on stack at time
of failure.

- is actual physical address of error. If no relocation,
CCCCCC = BBBBBB.

- is Processor Status Word at time of failure.
- is contents (virtual addr.) of Stack Pointer Register

at time of failure.
- is the System Error count in decimal.
- is module name, if error occurred within an

option module.
- is Assembled Program Counter (APC) address, if error

occurred in option module.

76 Page 128

Once the system error message has been output, the monitor will cause
the following:

If, when the error occurred, tqe system was in Command Mode
(CMD», it will remain in Command Mode.

If, when the error occured, the
(BSY», or in Chain Mode, Run
Moreover, pass count and error
cleared.

system was in Run Mode
Mode will be reinitiated.

count data will not be

For additional message possibilities refer to section entitled:
Special System Error Printouts.

Soft and Hard Error Printouts

In regard to an operating system, Soft Errors are recoverable and Hard
Errors are not. In regard to an exerciser program, soft and hard
error message information is identical, with an exception only to type
(i.e., SOFT or HARD).

The following is an example of a Hard Error printout:

ABCDO PA XXXXXXXX APC YYYYYY PASS# NNNNN HARD ERR# NNNNN
CSRA AAAAAA eSRe ccecce STATe SSSSSS ERRTYP NNNNN

Where:

ABCDO
PA XXXXXXXX

APC YYYYYY
PASS # NNNNN

HARD ERR#NNNNN

CSRA AAAAAA

CSRA ceccce
STATC SSSSSS

ERRTYP NNNNN

- 1S name of failing module
- is actual 22-bit physical address of

error calls
- is Assembled PC of error call
- is decimal pass number during which

error occurred.
- is total decimal number of hard errors

encountered.
- is address of Control Status Register

for failing device (if any).
- is contents of device CSR (if any).
- is contents of Device Status Register

(if any).
- is octal code which defines the type of

error (for meaning of code refer to
DEC/Xll Cross Reference Manual).

Locating the error call that evoked the message:

Referring to the listing the user may locate the call which evoked the
error message, by referencing the address defined by the Assembled
Program Counter (APe yyyyyy) printout. To facilitate this task, all
error calls are clearly emphasized within the listing by a boundary of
asterisks(*).

Extended Soft and Hard Error Printouts

76 Page 129.

xtended Soft and Hard Error messages contain the same information
described for Soft and Hard Error Printouts. With an extended
printout, one or more additional lines of error information are
provided which may consist of up to eight octal values per line. The
meaning of this additional data, for the module specified, may be
found in the DEC/XII Cross Reference Manual.

The following is an example of an Extended Hard Error printout:

ABCDO PA XXXXXXXX APe YYYYYY PASS# NNNNNHARD ERR' NNNNN
CSRA AAAAAA CSRC CCCCCC STATe SSSSSS ERRTYP NNNNN
XXX XXX XXXXXX XXX XXX XXXXXX XXXXXX XXX XXX XXXXXX XXXXXX

Locating the error call that evoked the message is accomplished in the
manner described in Soft and Hard Error Printouts.

Data Error Printout

with the exception of Extended I/O Modules (IOMODX), all test modules
report data transfer errors via a Data Error printout, that is invoked
by a DATERS Call. The message is as follows:

DCAAO PA XXXXXXXX APC YYYYYY PASS# MMMMM ERR# NNNNN DATA ERROR
CSRA AAAAAA S/B BBBBBB WAS WWWWWW WRADR DDDDDD RDADR EEEEEE

Ihe re:

DCAAO
PA XXXXXXXX

APC YYYYYY
PASS NNNNN

ERR NNNNN

CSRA AAAAAA

SIB BBBBBB
WAS WWWWWW
WRADR DDDDDD

RDADR EEEEEE

- is name of failing module.
- is 22-bit physical address of DaterS

Call
- is Assembled PC address of DATERS Call.
- is decimal pass number during which

error occurred.
- is total decimal error count for current

test run.
- is address of Control Status Register

for failing device.
- is good expected data.
- is bad obtained data.
- is write address of good and expected

data.
- is read address of bad and obtained

data.

Locating the DATERS Call that evoked the error message:

Referring to the listing, the user may locate the call that evoked the
error message by referencing -the address defined by the Assembled
Program Counter (APC yyyyyy) printout. To facilitate this task, all
DATERS Calls are clearly emphasized within the listing by a boundary
)f asterisks(*).

76 Page 130

Monitor Data Error Printout

Data transfer errors associated with Extended I/O Modules (IOMODX) are
detected by the monitor via a Check Data Call (CDATA$) request. This
is necessary because the modules are not mapped contiguously with
their write buffers. Thus, the data cannot be checked directly~ In
any case, a Monitor Data Error message is similar to a Data Error
printout except for the following, interpretations and additions:

All errors detected within a given transfer (e.g., a 256 word
block) will be counted as a single error (i.e., ERR# 00001).
The count will not be indicated until each error has been
reported by a separate printout. The reporting of all errors
depends on the setting of SRI0 (SRI0 = 1). If the switch is
cleared (SRI0 = 0), only three such errors will be reported.
An additional summary message is provided which defines the
total "decimal number of errors that have occurred during the
transfer.

The Monitor Check Data Error Printout is as follows:

RKAFO PA XXXXXXXX APC YYYYYY PASS# NNNNN ERR# NNNNN DATA ERROR
CSRA AAAAAA SIB BBBBBB WAS WWWWWW WRADR DDDDDD RDADR EEEEEE
RKAAO HAD NNNNN ERRORS OUT OF 256 WORDS READ

Memory Management Error Printout

Aborts and traps generated by the Memory Management Unit (KT1l) are
vectored through virtual location 250. The Memory Management Status
Registers (SRO through SR3) are used to differentiate an abort from a
trap, determine why one or the other ocurred, and allow for a program
restart.

The following printout accompanies a Memory Management abort or trap:

*** KT
SRO

CCCCCC
SRI

ccccce

TRAP ***
SR2

ececcc
SR3

eccccc

Memory Parity Error Printout

iidentifies SRO and SR2
icontents Of SRO and SR2
;if SRI and SR3 are available,
icontents of SRI and SR3

Aborts and traps generated by Main or Cache Memory parity errors or
Main Memory Eee errors are vectored through virtual location 114. The
Control Status Register (CSR) will contain the failure information.

The following printout accompanies a memory parity or Eee error:

**** TRAP THROUGH VECTOR 114 ****
CSR CONTENTS ;AAAAAA = address of eSR(parity or ECe)

AAAAAA BBBBBB :BBBBBB = contents of CSR

76 Page 131

ad Vector Printout

The Bad Vector message indicates that the address pointer is invalid
since an Interrupt Service Routine cannot be located. This error will
not interfere with the operation of the RTE HOwever, the module
containing the faulty pointer will not output on End-Of-Pass and will
therefore eventually be dropped if a system clock is available. The
message is as follows:

BAD VECTOR: 200 :vector 200 is invalid for device

When the faulty module is found, Word 10 of the module header may be
corrected via hardware documentation or module abstract analysis.

Special System Error Printouts

If a system error occurs in a PDP-ll/60 or 11/70 Processor (with an
associated DEC/XII Monitor), related Error Log messages are output in
addition to the standard System Error printout previously described.

For a PDP-Il/60, the following is included with the System Error
printout:

11/60 ERROR LOG

JAM/XXXXXX SRV/XXXXXX PBA/XXXXXX CUA/XXXXXX
FLG-INT/XXXXXX WHAMI/XXXXXX CDATA/XXXXXX CTAG-CPU/XXXXXX

Where:

JAM
SRV
PBA

I'""T T J\
~Ul"\

FLG/INT

WHAM!
CDATA
CTAG/CPU

is JAM Register status
is Service Register of status
is Physical Bus Address Register
(bits 16,17)
is Microprogram Address
is Flag Request Register of status/last
interrupt vector serviced
is various Processor Option Status bits
is Cache Memory data word
is Cache memory Tag Data/Hit Register

For a PDP-11/70, the following is included with the System Errror
printout:

11/70 ERROR LOG

MEMERREG/XXXXXX CPUERREG/XXXXXX
ADDR/XXXXXXXX ;only output if parity error

Where:

MEMERREG is Memory System Error Register

76

CPUERREG
ADDR

Page 132

is CPU Error Register
is 22-bit address of parity error location

3.3.3.4.3 Debug Recommendations

The following material is intended to initially provide a
common=sense check list for analyzing and isolating faults
occur during the debugging of a newly created RTE program.
followed by several examples of both problems that can
debugging procedures that may be applied.

general,
that may
This is

occur and

If errors occur during the testing of a newly created RTE program, one
of the following may prove helpful in isolating the problem:

• Check Software parameter such as VCT, BRl, SRI, etc •..

. Eliminate the possibility of a peripheral error by changing
tapes, cleaning heads, changing disk packs, etc.

If a device failure is indicated, try running a stand-alone
diagnostic.

If hardware system failures are persistent and/or varied, try
running the program on another system (if practical).

If mUltiple module failures occur, try running the program locked
in different banks, via a Run Lock Command (RUNL).

If a specific module fails, try running it alone or with others
in varied combinations.

Two examples of possibl~ failures and suggested trouble-shooting
procedures follow:

Problem 1

A total of five modules are running when a specific module fails.
;Trouble-shoot as follows:
The goal of this procedure is to cause the failure to reoccur with the
least number of modules running, being aware that certain combinations
of hardware running at the same time can cause such failure.

With this in mind, run the failing module first by itself. This can
be done by deselecting all of the modules while the RTE is running
(BSY» and then s~lecting the failing module, as follows:

.DES <CR>

.SEL MODXO <CR>
;deselect all modules
;select failing module first

If the failure reoccurs, isolate the problem within the module or run
a device/option diagnostic. If the fault does not reoccur,
selectively add each of the remaining modules one at a time until the

76 Page 133

failure is repeated.

Problem 2

Altnough Software Switch Register Bit 12 is set (SR12 = 1) to cause an
END OF PASS printout, a module (other than a Background Module) has
not output such a message, or any message, since the run began.

Trouble-shoot as follows:

The goal of this procedure is to determine if the module in question
is indeed runnIng; and if it is not (and should be), to determine the
reason by tracing the execution of the module's code.

As stated, it is assumed that the module
Background Module (BKMOn). Therefore it
following:

· Non-Restartable Background Module (NBKMOn)

· Special Background Module (SBKMOn)

· r/o Module (IOMOD)

· I/O Module Extended (IOMODX)

· r/o Module Restricted (IOMODR)

· r/o Module Partially Restricted (rOMODP)

in
may

question
be any

is not a
one of the

The first step is to determine if the module has been selected. This
may be accomplished, -while the RTE is running (BSY», by invoking a
summary printout for the specified module (SUM modulename) and
examining the Status Word to see if the Select Bit (14) is set. If
the Select Bit is set, the Active Bit (11) must also be set for the
module to run while the Dropped Bit (13) must be clear. However,
although a cleared Active Bit (bit 11 = 0) in the summary indicates
that the associated module is not running, it does not necessarily
indicate an error condition. Whether an error exists or not depends
on which of the six module types is being analyzed. For example,
under certain relocation conditions where boundary restrictions exist,
four of the module types (NBKMOD, SBKMOD, rOMODR, rOMODP) are not
permitted to run (i.e., the Active Bit will not be set until a
favorable relocation occurs). However, if the Active Bit is clear and
the module in question is a type unaffected by such restrictions
(rOMOD and IOMODX), and should be running, a software problem exists.

If the Select Bit is set (bit 14 = 1), the Active Bit is set (bit 11 =
1), and the Dropped Bit is clear (bit 13 = 0), ~he defined module
types should be running. To make such a determination under these
conditions, the I user may dynamically examine the Iteration Count
(Location 40) for periodic increases (via an EXAM mdoulename addr

76 Page 134

~ommand). If no increase is detected, the user may then stop the
program and selectively insert (via a MOD modulename addr Command) a
Halt Instruction in the module code in order to isolate the error.
For example, in the case of the I/O modul~ types (IOMOD, X,R,P,), a
Halt is placed in the module's Interrupt Routine and, if the device
interrupt is working, a halt will occur when the program is restarted.
If a halt does not occur, it may be assumed that the device is
defective.

76 Page 135

APPENDIX A

Following is a sample build of a RTE from pre-build planning thru the
linking process.

System configuration consists of the following:
11/70
256K of Memory
Extended Instruction Set
Cache
Floating Point Hardware
1-RM03 Single Port Disk
M9312
2-TM03/TE16
l-LPll
l-RS04
I-DHl1

SHEET 1 of 1
DEC/XII System Configuration Worksheet

Selected DEC/XII Monitor For Listed
CPU and CPU options: E

FILE: ESAMCO.BIN DATE: 20 SEPT 78

DEVICE MOD R OVA VCT SRI SR2 DVC

~J-iO 3 R~D A 176700* 254* 5* 0* 'L.~

LPll LPA A 177514* 200* 4* 0* 1*

TM03/TE16 TMB A 172440* 224* 5* 0* 2

RS04 RSA A 172040* 204* 5* 0* 1*

DHll DHA A 160200 300 5* 5* 1*

EIS CPB A

11/34 Instr. CPA A

FP11-C FPB A

M9312 BMH A

SRI

77000

SR2 SR3 SR4

76 Page 136

* DENOTES SOFTWARE DEFAULTS PARAMETERS

At this time we are ready to start building the Configuration Table.
This is done by running the Configurator!Linker.

$DKO<CR> ;Boot the Load Medium

CHMDKBO XXDP+ DK MONITOR

BOOTED VIA UNIT#: 0

28K UNIBUS MEMORY

ENTER DATE (DD-MMM-YY):

RESTART ADDR:152010

THIS IS XXDP+. TYPE "H" OR "H/L" FOR HELP.

TYPE: <"C> ;Abort XXDP+ Header Message

.R DXCL ;Run the Configurator/Linker

;Program

CHUXCCO XXDP+ DEC/XII CNF/LNK

RESTART: 006472

DO YOU WANT HELP?{Y <CR> OR JUST <CR» <CR> ;Inhibit help message

*CNF<CR>

MONITOR: E<CR>

MDL RMDA<CR>
DVA-<CR>

VCT-<CR>

BRI-<CR>

BR2-<CR>

DVC-<CR>

SRl-<CR>

SR2-<CR>

;Enter CNF mode

;Enter Monitor name

;Enter Module RMDA

76

SR3-<CR>

SR4-<CR>

RMAA DVA-OOOOOO veT-OOOOOO BRl-OOOOOO BR2-000000 Dvc-oooaao
SRl-OOOOOO SR2-000000 SR3-000000 SR4-000000

MDL LPAA<CR>
DVA-<CR>

VCT-<CR>

BRl-<CR>

BR2-<CR>

DVC-<CR>

SRl-77000<CR>

SR2-<CR>

SR3-<CR>

SR4-<CR>

;Enter Module LPAA

;Change LPAA SRI value

LPAA DVA-OOOOOO VeT-OOOOOO BRl-OOOOOO BR2-000000 DVC-OOOOOO
SRI-077000 SR2-0000QO SR3-000000 SR4-000000

MDL TMBA<CR>
DVA-<CR>

VCT-<CR>

BRI-<CR>

BR2-<CR>

DVC-2<CR>

SRI-40<CR>

SR2-<CR>

SR3-<CR>

SR4-<CR>

;Enter Module TMBA

;Change TMBA Dve value

;Change TMBA SRI value

TMBA DVA-OOOOOO VeT-OOOOOO BRI-OOOOOO BR2-000000 DVC-000003
SRI-000040 SR2-000000 SR3-000000 SR4-QOOOOO

MDL RSAA<CR>
DVA-<CR>

;Enter Module RSAA

Page 137

76

VCT-<CR>

BRl-<CR>

BR2-<CR>

DVC-<CR>

SRl-<CR>

SR2-<CR>

SR3-<CR>

SR4-<CR>

RSAA DVA-OOOOOO VCT-OOOOOO BRI-OOOOOO BR2-000000 DVC-OOOOOO
SRI-OOOOOO SR2-000000 SR3-000000 SR4-000000

MDL DHAA<CR>
DVA-160200<CR>

VCT-300<CR>

BRI-<CR>

BR2-<CR>

DVC-<CR>

SRI-<CR>

SR2-<CR>

SR3-<CR>

SR4-<CR>

;Enter Module DHAA
;Change DHAA DVA value

:Change DHAA veT value

DHAA DVA-160200 VCT-000300 BRI-OOOOOO BR2-000000 DVC-OOOOOO
SRI-OOOOOO SR2-000000 SR3-000000 SR4-000000

MDL CPBA<CR>
DVA-<CR>

VCT-<CR>

BRI-<CR>

BR2-<CR>

DVC-<CR>

SRI-<CR>

SR2-<CR>

:Enter Module CPBA

Page 138

76

SR3-<CR>

SR4-<CR>

CPBA DVA-OOOaao veT-OOOOOO BRI-ooeoee BR2=OOOOOO DVC-OOOOOO
SRI-OOOOOO SR2-000000 SR3-000000 SR4-000000

MDL CPAA<CR>
DVA-<CR>

VCT-<CR>

BR1-<CR>

BR2-<CR>

DVC-<CR>

SRl-77000<CR>

SR2-<CR>

SR3-<CR>

SR4-<CR>

;Enter Module CPAA

CPAA DVA-OOOOOO VCT-OOOOOO BRI-OOOOOO BR2-000000 DVC-OOOOOO
SRI-077000 SR2-000000 SR3-000000 SR4-000000

*MDL FPBD<CR> ;Enter Module FPBD

DVA-<CR>

VCT-<CR>

BR1-<CR>

BR2-<CR>

DVC-2<CR>

SRl-40<CR>

SR2-<CR>

SR3-<CR>

SR4-<CR>

FPBA DVA-OOOOOO VCT-OOOOOO BRI-OOOOOO BR2-000000 DVC-000003
SRI-000040 SR2-000000 SR3-000000 SR4-000000

*MDL BMHA<CR> ;Enter Module BMHA

Page 139

76

DVA-<CR>

VCT-<CR>

BRI-<CR>

BR2-<CR>

DVC-<CR>

SRI-<CR>

SR2-<CR>

SR3-<CR>

SR4-<CR>

BMRA DVA-OOOOOO VCT-OOOOOO BRI-OOOOOO BR2-000000 DVC-OOOOOO
SRI-OOOOOO SR2-000000 SR3-000000 SR4-000000

*EX<CR> ;Leave CNF mode

*LINK DKO:ESAMCO.BIN~DKO:XMONDO.LIB<CR> ;Enter the LINK Command

Device not on system

SYS SIZE:160000 ;Enter System Size

MAKE OUTPUT READY. WRITE ENABLE

TYPE <CR> WHEN READY. <CR>

PASS I

TRANSFER ADDRESS: 02200

LOW LIMIT: 000000

HIGH LIMIT: 122660

PASS 2·

LINK DONE

*SAVC DKO:CSAMCO.CNF ;Save the Configuration table

DONE

Page 140

76

*SAVM DKO:MSAMCO.MAP

DONE

*EXIT

Page 141

;Save the exerciser load map

FOLLOWING IS AN EXAMPLE USING CNF/NP:

*CNF/NP

MONITOR: E

*MDL RMAA<CR>

*MDL LPAA<CR>

*SRI 77000

*MDL TMBA<CR>

*DVC 2

*SRI 40

*MDL RSAA<CR>

*MDL DHAA<CR>

*DVA 160200<CR>

*VCT 300<CR>

*MDL CPBA<CR>

*MDL CPAA<CR>

*MDL FPBA<CR>

;Enter CNF mode with prompting

; inhibited

;Enter Monitor name

;Enter module RMAA

;Enter module LPAA

;Change LPAA SRI value

;Enter module TMBA

;Change TMBA DVC value

;Change TMBA SRI value

;Enter module RSAA

;Enter module DHAA

;Change DHAA DVA value

;Change DHAA VCT value

;Enter module CPBA

;Enter module CPAA

;Enter module FPBA

Page 142

*MDL BMHA<CR> ;Enter module BMHA

*EX ;Leave CNF mode

*LINK DKO:ESAMCO.BIN<DKO:XMONAO.LIB<CR> ;Enter the LINK Command

SYS SIZE: 160000

MAKE OUTPUT READY. WRITE ENABLE

TYPE <CR> WHEN READY.<CR>

DELETE OLD? {Y<CR> OR JUST <CR»Y<CR> ;Delete old file named

;ESAMCO.BIN

PASS 1

TRANSFER ADDRESS: 002200

LOW LIMIT: 000000

HIGH LIMIT: 122660

PASS 2

LINK DONE

*SAVC DKO:CSAMCO.CNF ;Save the Configuration table

DONE

*SAVM DKO:MSAMCO.MAP ;Save the exerciser load map

DONE

*EXIT ;type EXIT not EX to exit link.

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142

