
PDP-15
MACR0-15 ASSEMBLER
PROGRAMMER'S REFERENCE MANUAL

To obtain additional copies of this manual, order number DEC-15-AMZA-D from the Program

Library Digital Equipment Corporation, Maynard, Mass. 01754 Price $ 2.50

DIGITAL EQUIPMENT CORPORATION o MAYNARD, MASSACHUSETTS

1st Printing October 1969

Copyright© 1969 by Digital Equipment Corporation

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

CHAPTER l INTRODUCTION

1. 1

1.2

1.3

Macro-15 Language

Hardware Requirements and Options

Assembler Processing

CONTENTS

CHAPTER 2 ASSEMBLY LANGUAGE ELEMENTS

2. 1 Program Statements

2.2 Symbols

2.2. 1 Evaluation of Symbols

2.2.2 Variables

2.2.3 Setting Storage Locations to Zero

2.2.4 Direct Assignment Statements

2.2.5 Undefined Symbols

2.3 Numbers

2.3.1 Integer Values

2.3.2 Expressions

2.4 Address Assignments

2.4.1 Referencing the Location Counter

2.4.2 Indirect Addressing

2.4.3 Indexed Addressing

2.4.4 Literals

2.5 Statement Fields

2.5. 1 Label Field

2.5.2 Operation Field

2.5.3 Address Field

2 5.4 Comments Fie Id

2.6 Statement Evaluation

2.6. 1 Numbers

2.6.2 Word Evaluation

2.6.3 Word Evaluation of the Special Cases

2.6.4 Assembler Priority List

CHAPTER 3 PSEUDO OPERATIONS

3. 1 Program Identification (.TITLE)

iii

Page

1-1

1-2

1-2

2-1

2-3

2-4

2-6

2-6

2-6

2-8

2-8

2-9

2-9

2-11

2-12

2-12

2-12

2-13

2-15

2-15

2-17

2-18

2-20

2-21

2-21

2-22

2-24

2-25

3-1

3.2

3.2. 1

3.2.2

3.3

3.4

3.5

3.6

3.7

3.8

3.8. 1

3.8.2

3.8.3

3.8.4

3.8.5

3.9

3. 10

3. 11

3. 12

3. 13

3. 14

3. 15

3. 16

Object Program Output

.ABSP, .ABS

.FULL, .FULLP Pseudo-ops

CONTENTS (Cont)

Setting the Location Counter (.. LOC)

Radix Control (.OCT and .DEC)

Reserving Blocks of Storage (.BLOCK)

Program Termination (.END)

Program Segments (. EOT)

Text Handling (.ASCII and .SIXBT)

. ASCII Pseudo-op

. SIXBT Pseudo-op

Text Statement Format

Text Delimiter

Non-Printing Characters

Loader Control (. G LOBL)

Requesting 1/0 Devices (.IODEV)

Defining a Symbolic Address (.DSA)

Repeating Object Coding (. REPT)

Conditional Assembly (.IF xxx and .ENDC)

Listing Control (.EJECT)

Program Size (.SIZE)

Defining Macros (.DEFIN, .ETC, and .ENDM)

CHAPTER 4 MACROS

4. 1 Defining a Macro

4.2 Macro Body

4.3 Macro Calls

4.3. 1 Argument Delimiters

4.3.2 Created Symbols

4.4 Nesting of Macros

4.5 Redefinition of Macros

4.6 Macro Calls Within Macro Definitions

4.7 Recursive Calls

iv

Page

3-1

3-2

3-3

3-4

3-5

3-6

3-6

3-7

3-7

3-7

3-8

3-8

3-8

3-8

3-9

3-10

3-10

3-11

3-12

3-14

3-14

3-14

4-1

4-2

4-3

4-5

4-6

4-7

4-8

4-9

4-10

CONTENTS (Cont)

CHAPTER 5 OPERATING PROCEDURES

5. 1

5.2

5.3

5.4

5.4. 1

5.4.2

5.5

5.6

5.7

5.7. 1

5.7.2

5.8

5.9

5.9. 1

5. 10

Introduction

Calling Procedure

General Command Characters

Command String

Program Name

Options

Assembly Listings

Symbol Table Output

Running Instructions

Paper Tape Input Only

Cross-Reference Output

Program Relocation

Error Conditions and Recovery Procedures

Restart Control Entries

Error Detection

APPENDIX A CHARACTER SET

APPENDIX B PERMANENT SYMBOL TABLE

APPENDIX C MACR0-15 CHARACTER INTERPRETATION

APPENDIX D SUMMARY OF MACR0-9 PSEUDO-OPS

APPENDIX E SUMMARY OF SYSTEM MACROS

APPENDIX F SOURCE LISTING OF THE ABSOLUTE BINARY LOADER

APPENDIX G SYMBOL TABLE SIZES

v

Page

5-1

5-1

5-1

5-2

5-2

5-3

5-4

5-4

5-5

5-5

5-5

5-6

5-7

5-7

5-7

PREFACE

OVERALL POP-15 DOCUMENTATION STRUCTURE

A tree-type block diagram of the overall 11PDP-15 Family of Manuals" is illustrated

on page viii. A brief description of the contents and the order number of each manual

shown in the diagram are presented on page ix.

ORGANIZATION OF PDP-15 SOFTWARE MANUALS

There are two basic catagories of PDP-15 software manuals:

a. Unique, single-system, manuals which contain information concerning
only one of the four available PDP-15 systems. This category consists of
detailed software system descriptive manuals, each with an associated op­
erational command summary. An example of this class of manual would be
the 11PDP-15/10 Software System" manual and its associated 11PDP-15/10
Users' Guide".

b. Common, multi-system, manuals that describe utility, language, appli­
cation and other PDP-15 programs which may be employed in one or more of
the four available PDP-15 systems. Some examples of this type of manual are
the PDP-15 11Utility 11, 11MACR0-15 Assembler" and 11STATPAC 11 manuals.

vii

~.

HARDWARE

INSTALLATION
MANUAL

ACCEPTANCE
TEST

PROCEDURES

MODULE
MANUAL

INTERFACE
MANUAL

MAINTENANCE
MANUAL VOL. 1

PROCESSOR

VOL.2 PROCESSOR
OPTIONS
VOL. 3

PERIPHERALS

MANUFACTURERS
EQUIPMENT

MANUALS

PDP-15 FAMILY OF MANUALS

SYSTEMS
REFERENCE

MANUAL

USER1S GUIDE
VOL. 1

PROCESSOR

PERIPH.ERALS

OPERATORS
GUIDE

SOFTWARE

PDP-15/30

PDP-15/20

PDP-15 I 1 0
SYSTEM USER'S ..,... _ _._--I

GUIDE

MACRO -15

FOCAL-15

UTILITY
PROGRAMS

MANUAL

PDP-15/40

PDP-15/30

PDP-15120

PDP-15/10
SOFTWARE

SYSTEM

FORTRAN nz:

8115
TRANSLATOR

STATPAC -15

15-0040

SYSTEM REFERENCE MANUAL - Overview of
PDP-15 hardware and software systems and options;
instruction repertoire, expansion features and de­
scriptions of system peripherals.

DEC-15-GRZA-D

USERS GUIDE VOLUME 1, PROCESSOR - Principal
guide to system hardware includes system and subsys­
tem features, functional descriptions, machine­
language programming considerations, instruction
repertoire and system expansion data.

DEC-15-H2DA-D

VOLUME 2 PERIPHERALS - Features functional de­
scriptions and programming considerations for periph­
eral devices.

DEC-15-H2DA-D

OPERATOR'S GUIDE - Procedural data, including
operator maintenance, for using the operator's con­
sole and the peripheral devices associated with
PDP-15 Systems.

DEC-15-H2CA-D

PDP-15/10 SYSTEM USER'S GUIDE - COMPACT
and BASIC r/O Monitor operating procedures.

DEC-15-GGIA-D

PDP-15/20 SYSTEM USER'S GUIDE - Advanced
monitor system operating procedures.

DEC-15-MG2A-D

PDP-15/30 SYSTEM USER'S GUIDE - Background/
Foreground monitor system operating procedures.

DEC-15-MG3A-D

PDP-15/40 SYSTEM USER'S GUIDE - Disk-oriented
background/foreground monitor system operating
procedures .

DEC-15-MG4A-D

PDP-15/10 SOFTWARE SYSTEM - COMPACT soft­
ware system and BASIC 1/0 Monitor system descrip­
tions.

DEC-15-GRlA-D

PDP-15/20 ADVANCED Monitor Software System -
ADVANCED Monitor System descriptions; programs
include system monitor and language, utility and
application types; operation, core organization and
input/output operations within the monitor environ­
ment are discussed.

DEC-15-MR2A-D

PDP-15/30 BACKGROUND/FOREGROUND Monitor
Software System - Background/Foreground Monitor
description including the associated language, util­
ity and applications programs.

DEC-15-MR3A-D

PDP-15/40 Disk-Oriented BACKGROUND/ FORE­
GROUND Monitor Software System - Background/
Foreground Mc·•<',x in a disk-oriented environment
is described; programs include language, utility,
and application types.

DEC-l5-MR4A-D

MAINTENANCE MANUAL VOLUME 1, PROCES­
SOR - Block diagram and functional theory of op­
eration of the processor logic. Preventive and cor­
rective maintenance data.

DEC-15-HB2A-D

VOLUME 2, PROCESSOR OPTIONS - Block dia­
gram and functional theory of operation of the
processor options. Preventive and corrective main­
tenance data.

DEC-l5-HB2A-D

VOLUME 3 PERIPHERALS {Set of Manuals) - Block
diagram and functional theory of operation of the
peripheral devices. Preventive and corrective
maintenance data.

DEC-15-HB2A-D

INSTALLATION MANUAL - Power specifications,
environmental considerations, cabling and other
information pertinent to installing PDP-15 Systems.

DEC-15-H2AA-D

ACCEPTANCE TEST PROCEDURES - Step-by-step
procedures designed to insure optimum PDP-15 Sys­
tems operation.

MODULE MANUAL - Characteristics, specifica­
tions, timing and functional descriptions of mod­
ules used in PDP-15 Systems.

INTERFACE MANUAL - Information for interfacing
devices to a PDP-15 System.

DEC-15-HOAA-D

UTILITY PROGRAMS MANUAL - Utility programs
common to PDP-15 Monitor systems.

DEC-15-YWZA-D

MACR0-15 - Mi ·:o assembly language for the
PDP-15.

DEC-15-AMZA-D

FORTRAN IV - PDP-15 version of the FORTRAN IV
compiler language.

DEC-15-KFZA-D

FOCAL-15 - An algebraic interactive compiler-level
language developed by Digital Equipment Corporation.

DEC-15-KJZA-D

ix

l. 1 MACR0-15 LANGUAGE

CHAPTER 1

INTRODUCTION

MACR0-15 is a basic PDP-15 symbalic assembler language which makes machine language programming on the

PDP-15 easier, faster and more efficient. It permits the programmer to use mnemonic symbols to represent in­

struction operation codes, locations, and numeric quantities. By using symbols to identify instructions and data

in his program, the programmer can easily refer to any point in his program, without knowing actual machine

locations.

Assembled MACR0-15 programs may be run on any PDP-15 system; however, MACR0-15 symbolic programs can

be assembled only on systems which have at least SK of memory and a monitor-type software system.

The standard output of the Assembler is a relocatable binary object program that can be loaded for debugging or

execution by the Linking Loader. MACR0-15 prepares the object program for relocation, and the Linking

loader sets up linkages to external subroutines. Optionally, the binary program may be output either with ab­

solute addresses (non-relocatable) or in the full binary mode (see Chapter 3 for a description of the binary out­

put modes).

The programmer directs MACR0-15 processing by using a powerful set of pseudo-operation (pseudo-op) instruc­

tions. These pseudo-ops are used to set the radix for numerical interpretation by the Assembler, to reserve

blocks of storage locations, to repeat obiect code, to handle strings of text characters in 7-bit ASCII code or a

special 6-bit code, to assemble certain coding elements if specific conditions are met, and to perform other

functions which are explained in detail in Chapter 3.

The most advanced features of MACR0-15 is its powerful macro instruction generator. This generator permits

easy handling of recursive instruction sequences, changing only the arguments. Programmers can use macro in­

structions to create new language elements, adapting the Assembler to their specific programming applications.

Macro instructions may be called up to three levels, nested to~ levels, and redefined within the program. The

technique of defining and calling macro instructions is discussed in Chapter 4.

1-1

An output listing, showing both the programmer's source coding end the object program produced by MACR0-15,

is printed if desired. This listing includes all the symbols used by the programmer with their assigned values. If

assembly errors are detected, erroneous lines are marked with specific letter error codes, which may be inter­

preted by referring to the error list in Chapter 5 of this manual.

Operating procedures for MACRO assembly are described in detail in Chapter 5. These procedures are also

summarized in the "Users' Guide" for each Monitor Software system.

1.2 HARDWARE REQUIREMENTS AND OPTIONS

The MACR0-15 assembler program may be run on any of the following PDP-15 systems:

a. 15/10 system which has a minimum of BK of core end optional high-speed paper tape reader and
punch units.

b. basic 15/20 system

c. basic 15/30 system

d. basic 15/40 system

1.3 ASSEMBLER PROCESSING

The MACR0-15 assembler processes source programs in either o two-pass or three-pass operation. In the two­

pass assembly operation the source program is read twice with the object program (and printed listing when re­

quested) being produced during the second pass. During the first pass (PASS 1), the locations to be assigned

the program symbols are resolved and a symbol table is constructed by the assembler. The second pass (PASS 2)

uses the information computed during PASS 1 to produce the final object program.

In an optional three-pass assembly operation, PASS 2 will call in a third pass (PASS 3) portion of the assembler

program. PASS 3, when called, performs a cross referencing operation during which o listing is produced which

contains: (o) all user symbols, (b) where each symbol is defined, and (c) the number of each program line in

which a symbol is referenced. On completion of its operation, PASS 3 calls the PASS 1 end PASS 2 portions of

the assembler program back into core for further assembly operations.

The standard object code produced by MACR0-15 is in o relocatable format which is acceptable to the PDP-15

Linking Loader Utility program. Relocotoble programs that ore assembled separately and use identical global

symbols* where applicable, can be combined by the linking Loader into an executable object program.

MACR0-15 reserves one additional word in a program for every external** symbol. This additional word is used

as a pointer to the actual data word in another program. The linking Loader sets up these pointers when the

programs are loaded.

*Symbols which are referenced in one program and defined in another.
**Symbols which are referenced in the program currently being assembled but which are defined in another program.

1-2

Some of the advantages of having programs in relocatable format are as fol lows:

a. Reassembly of one program, which at object time was combined with other programs, does not
necessitate a reassembly of the entire system.

b. Library routines (in relocatable object cade) can be requested from the system device or user library
device.

c. Only global symbol definitions must be unique in a group of programs that operate together.

1-3

2.1 PROGRAM STATEMENTS

CHAPTER 2

ASSEMBLY LANGUAGE ELEMENTS

A single statement may be written on a 72-character Teletype line, in which case the carriage-return line-feed

sequence characte~ delimit the statement. Such a statement actually begins with a line-feed character and is

terminated by a carriage-return character. Since these form-control characters are not printed, they are repre­

sented as) (carriage return) and l (line feed). In the examples of statements in this manual, only the carriage

return is shown:

STATEMENT)

Several statements may be written on a single line, separated by semicolons:

STATEMENT;STATEMENT;STATEMENT)

In this case, the statement line begins with a line-feed character and ends with a carriage-return character, but

semicolons are used as internal statement delimiters. Thus, if a statement is followed by another statement on

the same line, it ends with a semicolon.

A statement may contain up to four fields that are separated by a space, spaces, or a tab character. These four

fields are the label (or tag) field, the operation field, the address field, and the comments field. Because the

space and tab characters are not printed, the space is represented by....., , and the tab by -I in th is manual .

Tabs are set 10 spaces apart on most Teletype machines, and are used to line up the fields in columns in the

source program listing.

This is the basic statement format:

LABEL -I OPERA no N -I ADDRESS -I/COMMENTS)

where each field is delimited by a tab or spac.e, and each statement is terminated by a semicolon or carriage­

return. The comments field is preceded by a tab (or space) and a slash(/).

2-1

Note that a combination of a space and a tab will be interpreted by the MACR0-15 assembler as two field

delimiters.

Example:

TAG -! OP L...1 -I ADR) } both are
TAG L...I -j OP -j ADR) incorrect

These errors will not show 011 the listing because the space is hidden in the tab.

A MACR0-15 statement may have an entry in each of the four fields, or three, or two, or only one field. The

following forms are acceptable:

TAG)

TAG -j OP)

TAG -j OP -j ADDR)

TAG -j OP -I ADDRL...I (s) /comments)

TAG -I OP L...I (s) /comments)

TAG -j -j ADDR)

TAG -I -I ADDR L...I (s) /comments)

TAG -I (s) /comments)

-I OP)

-I OP -I ADGR)

-I OP -I ADDR -I (s) /comments)

-I OP -,l (s) /comments)

-l -.j ADDR)

-I -I ADDR -I (s) /comments)

/comments)

-I (s) /comments)

Note that when a label field is not used, its delimiting tab is written, except for lines containing only comments.

When the operation field is not used, its delimiting tab is written if an address field follows, except in label

only and comments only statements.

A label (or tag) is a symbolic address created by the programmer to identify the statement. When a label is

processed by the Assembler, it is said to be defined. A label can be defined only once. The operation code

field may contain a machine mnemonic instruction code, a MACR0-15 pseudo-op code, a macro name, a num­

ber, or a symbol. The address field may contain a symbol, number, or expression which is evaluated by the

assembler to form the address p1,rtic of a machine instruction. In some pseudo-operations, and in macro

2-2

instructions, this field is used for other purposes, as will be explained in this manual. Comments are usually

short explanatory notes which the programmer adds to a statement as an aid in analysis and debugging. Comments

do not affect the object program or assembly processing. They are merely printed in the program listing. Com­

ments must be preceded by a slash(/). The slash (/)may be the first character in a line or may be preceded by:

a . Space (1-1)

b. Tab (-j)

c. Semicolon (;)

2.2 SYMBOLS

The programmer creates symbols for use in statements, to represent addresses, operation codes and numeric values.

A symbol contains one to six characters from the following set:

The letters A through Z

The digits 0 through 9

Two special characters, period (.)and the percent sign(%).

The first character of a symbol must be a letter, a period, or percent sign. A period may not be used alone as

a symbol. The first character of a symbol must not be a digit.

The following symbols are legal:

MARKl

A%

P9.3

The following symbols are illegal:

TAG:l

5ABC

.. 1234

%50.99

INPUT

L@Bl

.A

.%

: and @are illegal characters.

First character may not be a digit.

Only the first six characters of a symbol are meaningful to the Assembler, but the programmer may use more for

his own information. If he writes,

SYMBOL l

SYMBOL2

SYMBOL3

2-3

as the symbolic labels on three different statements in his program, the Assembler will recognize only SYMBOL

and may type error flags on the I ines containing SYMBOL 1, SYMBOL2 and SYMBOL 3. To the Assembler they

are duplicates of SYMBOL.

2.2. 1 Evaluation of Symbols

When the Assembler encounters a symbol during processing of a source language statement, it evaluates the sym­

bol by reference to two tables: the user's symbol table and the permanent symbol table. The user's symbol table

contains all symbols defined by the user. The user defines symbols by using them as labels, as variables, as

macro names, and by direct assignment statements. A label is defined when first used, and cannot be redefined.

(When a label is defined by the user, it is given the current value of the location counter, as wil I be explained

later in this chapter.)

All permanently defined system symbols, including Monitor commands and all Assembler pseudo-instructions use

a period (.) as their first character. (In some cases the "." may be used as the last character of a Monitor 1/0
symbol). The Assembler has, in its p(~rmanent symbol table, definitions of the symbols for all of the PDP-15

memory reference instructions, operate instructions, EAE instructions, and some input/output transfer instructions.

(See Appendix B for a complete list of these instructions.)

PDP-15 instruction mnemonic symbols may be used in the operation field of a statement without prior definition

by the user.

Example:

LAC is a symbol whose appearance in the operation

field of a statement causes the Assembler to treat it

as an op code rather than a symbolic address. It has

a value of 2000008 which is taken from the operation

code definition in the permanent symbol table.

The user can use instruction mnemonics or the pseudo-instruction mnemonics code as symbol labels. For example,

DZM -! DZM..._., Y)

where the label DZM is entered in the symbol table and is given the current value of the location counter, and

the op code DZM is given fhe value 140000 from the permanent symbol table. The user must be careful, how­

ever, in using these dual purpose (field dependent) symbols. Symbols in the operation field are interpreted as

either instruction codes or pseudo-ops, not as symbolic labels, if they are in the permanent symbol table.

Monitor command op-code symbols cannot be duplicated by the user. In the following example, several symbol;

2-4

with values· have been entered in the user's symbol table and the permane.nt symbol table. The sample coding

shows how the Assembler uses these tables to form object program storage words.

User Symbol Table

Symbol Value

TAGl 100

TAG2 200

DAC 300

If the following statements
are written,

TAGl --1 DAC --1 TAG2

.
TAG2 -.j LAC -.j DAC

DAC -.j JMP -! TAGl
DAC -.j TAGl,X

-.j TAGl

Permanent Symbol Table

Symbol Value

LAC 200000

DAC 040000

JMP 600000

x 010000

the following code is generated
by the Assembler

040200

200300

600100
050100
000100

2.2.1.1 Special Symbols - The symbol Xis used to denote index register usage. It is defined in the permanent

symbol table as having the value of 10000. The symbol X cannot be redefined and can only be used in the ad­

dress field.

2.2. 1.2 Memory Referencing Instruction Format - The PDP-15 uses 12 bits for addressing, 1 bit to indicate

index register usage, 1 bit to indicate indirect addressing, and 4 bits for the op code.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Op Code I Address

[Lndex Reg;..,, BH

Indirect Addressing

2-5

2. 2. 2 Variables

A variable is a symbol that is defined in the symbol table by using it in an address field or operation field with

the number sign (II). Symbols with the II may appear more than once in a program (see items 1, 3, 4, and 5 of

example given below). A variable reserves a single storage word which may be referenced by using the symbol

at other points in the program with or without the#. If the variable duplicates a user-defined label, it is mul­

tiply defined and is flagged as an error during assembly.

Variables are assigned memory locations at the end of the program. The initial contents of variable locations

are unspecified.

Example:

Sequence
Location

Source Statements
Generated

Counter Code

-I .LOC &....1 100

1 100 -I LAC &....1TAllG1 200105

2 101 -I DAC &....1 TAG3 040107

3 102 -I LAC &....1 T AG2' 200106

4 103 -I DAC...., TllAG3,X 050107

5 104 -I LAC '-,#TAG2 200106

-I .END

2.2.3 Setting Storage Locations to Zero

Storage words can be set to zero as follows:

-! A -! O; -! O;j 0)

In this way, three words are set to zero starting at Z. Storage words can also be set to zero by statements con­

taining only labels

A; B; C; D; E)

2.2.4 Direct Assignment Statements

The programmer may define a symbol directly in the symbol table by means of a direct assignment statement,

written in the form:

SYMBOL=n
or

SYM1=SYM2

2-6

where n is any number or expression. There should be no spaces between the symbol and the equal sign, or

between the equal sign and the assigned value, or symbol. MACR0-15 enters the symbol in the symbol table,

along with the assigned value. Symbols entered in this way may be redefined. These are legal direct assignment

statements:

X=28; A=I: 8'=2)

A symbol can also be assigned a symbolic value; e.g., A=4, 8'=A, or

SET=ISZL...ISWITCH

In the above example, the symbol B is given the value 4, and when the symbol SET is detected during assembly

the object code for the instruction ISZL-ISWITCH will be generated. This type of direct assignment cannot be

used in a relocatable program. Direct assignment statements do not generate storage words in the object program.

In general, it is good programming practice to define symbols before using them in statements which generate

storage words. The Assembler will interpret the Following sequence without trouble.

Z=5

Y=Z

X=Y

-j LACL-IXL...l/SAME AS LAC 5)

A symbol may be defined after use. For example,

LACY)

Y=l)

Th is is cal led a forward reference, and is resolved properly in PASS 2. When first encountered in PASS I, the

LAC Y statement is incomplete because Y is not yet defined. Later in PASS I, Y is given the value 1. In

PASS 2, the Assembler finds that Y = 1 in the symbol table, and forms the complete storage word.

Since MACR0-15 basic assembly operations are performed in two passes, only one-step forward references are

al lowed. The fol lowing is ii legal:

LACY)

Y=Z)

Z=I)

In the listing, during PASS 1, the line which contains Y = Z will be printed as a warning.

2-7

2.2 .5 Undefined Symbols

If any symbols, except global symbols, remain undefined at the end of PASS 1 of assembly, they are automatically

defined as the addresses of successive registers following the block reserved for variables at the end of the pro­

gram. All statements that referenced the undefined symbol are flagged as undefined. One memory location is

reserved for each undefined symbol with the initial contents of the reserved location being unspecified.

Examples:

Flag
Location

Source Statements
Generated

Comments
Counter Code

-I . LOC ._. 100)

u 100 -I LAC '-' UNDEFl) 200106 Undefined Symbol

101 -I LAC..._, TAGll) 200104

102 -I LAC L-1TAGll1) 200105

u 103 -+\ LAC'-' UNDEF2) 200107 Undefined Symbol

-+\ . END)

2.3 NUMBERS

The initial radix (base) used in all number interpretation by the Assembler is octal (base 8). To allow the user

to express decimal values and then restore to octal values, two radix-setting pseudo-ops (.OCT and .DEC) are

provided. These pseudo-ops, described in Chapter 3, must be coded in the operation field of a statement. If

any other information is written in the same statement, the Assembler treats the other information as a comment

and flags it as a questionable line. All numbers are decoded in the current radix until a new radix control

pseudo-op is encountered. The programmer may change the rad ix at any point in the program.

Examples:

Flag Source Program Generated Value (Octal) Radix in Effect

-I LAC -I 100 200100 8 } initial value is

-I 25 000025 8 assumed to be octal

-I .DEC

-I LAC -I 100 200144 10

-I 275 000423 10

Q -I .OCT L-1 99 Octal radix takes effect even
though line is flagged

-I 76 000076 8

N -I 99 000143 The non-octal digit forces a
decimal radix for this number only

2-8

2.3. 1 Integer Values

An integer is a string of digits, with or without a leading sign. Negative numbers are represented in two's

complement form. The range of integers is as follows:

Unsigned

Signed

0 -26214310

:I:() - 13107110

18 (m777 p) or 2 -1

(377777 8) or ::1:2 17-1

An octal integer* is a string of digits (0-7), signed or unsigned. If a non-octal digit (8 or 9) is encountered

the string of digits will be assembled as if the decimal radix was in effect and it will be flagged as a possible

error.

Example:

Flag Coded Value Generated Value (Octal) Comment

.DEC

3779 007303

.OCT

-5 77m3 Two's complement

3347 003347

N 3779 007303 Possible error, decimal
assumed

A decimal integer** is a string of digits (0-9), signed or unsigned.

Examples:

Flag Coded Value Generated Value (Octal) Comment

-8 nmo Two's complement

+256 000400

N -136098 000000 17
&ror, greater than -2 -1

2. 3. 2 Expressions

Expressions are strings of symbols and numbers separated by arithmetic or Boolean operators. Expressions repre­

sent unsigned numeric values ranging from 0 to 2 18 -1. Al I arithmetic is performed in unsigned integer arithmetic

*Initiated by • OCT pseudo-op and is also the initial assumption if no radix control pseudo-op was encountered.
**Initiated by .DEC pseudo-op.

2-9

(two's complement), modulo 2 18 . Division by zero is regarded as division by one and results in the original

dividend. Fractional remainders are ignored; this condition is not regarded as an error. The value of an ex­

pression is calculated by substituting the numeric values for each element (symbol) of the expression and per­

forming the specified operations.

The fol lowing are the allowable operators to be used with expressions:

Character Function

Name Symbol

Plus + Addition (two's complement)

Minus - Subtraction (convert to two's complement and add)

Asterisk * Multiplication (unsigned)

Slash I Division (unsigned)

Ampersand & Logical AND

Exclamation point I Inclusive OR } Boolean
Back slash \ Exel us ive OR

Comma , Exclusive OR

Operations are performed from left to right (i.e., in the order in which they are encountered). For example,

the assembly language statement A+B*C+D/E-F*G is equivalent to the fol lowing algebraic expression

(((((A+B)*C)+D)/E)-F)*G.

Examples:

Assume the following symbol values:

Symbol Value (Octal) Comments

A 000002

B 000010

c 000003

D 000005

x 010000 Index Register Value

The following expressions would be evaluated.

2-10

Expression Evaluation (Octal) Comments

A+B-C,X 010007 Index Register Usage

A/B+A*C 000006 (The remainder of A/B is lost)

B/A-2*A- l+X 010003 Index Register Usage

A&B 000000

C+A&D 000005

B*D/A 000024

B*C/A*D 000074

A,X+D,X 010007 Index Register Usage &ror

In the last example the expression is evaluated as follows:

Sequence of arithmetic

a. A,X = 000002 XORed with 010000 = 010002

b. A,X+D = 010002 + 000005 = 010007

c. A,X+D,X = 010007 XORed with 010000 = 000007

Note that arithmetic produces 000007 yet the value given in the example is 010007. Regardless of how the in­

dex register is used in the address fie Id, the index register bit wi II always be turned on by the Assembler. In

the sequence of address arithmetic above, the line would be flagged with an X because of the illegal use of the

index register symbol (X).

Using the symbol X to denote index register usage causes the following restrictions:

a. X cannot appear in the TAG field

b. X cannot be used in a .DSA statement

c. X can only be used once in an expression

2.4 ADDRESS ASSIGNMENTS

X -j LAC -j A

.DSA A,X

LAC A,X+D,X

As source program statements are processed, the Assembler assigns consecutive memory locations to the storage

words of the object program. This is done by reference to the location counter, which is initially set to zero

and is incremented by one each time a storage word is formed in the object program. Some statements, such as

machine instructions, cause only one storage word to be generated, incrementing the location counter by one.

Other statements, such as those used to enter data or text, or to reserve blocks of storage words, cause the

location counter to be incremented by the number of storage words generated.

2-11

2.4.1 Referencing the Location Counter

The programmer may directly reference the location counter by using the symbol period (.) in the address field.

He can write,

--! JMP..._..-1

which will cause the program to jump to the storage word whose address was previously assigned by the location

counter. The location counter may be set to another value by using the .LOC pseudo-op, described in Chapter3.

2.4.2 Indirect Addressing

To specify an indirect address, which may be used in memory reference instructions, the programmer writes an

asterisk immediately following the operation field symbol. This sets the defer bit (bit 4) of the storage word.

If an asterisk suffixes either a non-memory reference instruction, or appears with a symbol in the address field,

an error will result.

Two examples of legal indirect addressing follow.

-.j TAD* -.j A

--! LAC* --! B

The following examples are illegal.

CLA*
LAW* 1m7

2.4.3 Indexed Addressing

Indirect addressing may not be specified
in non-memory reference instructions.

To specify indexed addressing an Xis used with an operator directly after the address. No spaces or tabs may

appear before the operator. The Assembler will perform whatever operation is specified with the index register

symbol, and then continue to evaluate the expression. At completion of the expression evaluation, if the index

bit is not on and the location counter is pointing to page 0 of any bank, the line is flagged with a 8 for bank

error. The standard code used to indicate indexing is:

LAC A,X.

2-12

Example:

Object
Location Code

.ABSP
000000 210000 A LAC -.t X /Same as LAC 0, X
000001 210005 B DAC~ A,X+l,7-1 I
000002 210001 LAC B+X /000001 010000

.LOC 10000 /SET to page 1
010000 210001 c LAC X,D
010001 210000 D LAC c,x

.END

expression evaluation where A= 000000, B = 000001, C = 010000, X = 010000

2 .4.4 Literals

Location

0

2

10000

10001

Address Field

x

A,X+l,7-1

B+X

X,D

c,x

Discussion

The value of X is added to 0. Absence of
an operator always implies addition.

000000 + 010000 = 010000
010000 + 000001 = 010001
010001+000007 = 010006
010006 - 000001 = 010005

000001 + 010000 = 010001

010000 + 010001=000001

The index bit has been turned off during
expression evaluation. Because the lo­
cation counter (10000) is pointing to
page 1, this line is not flagged and the
index register bit is turned on.

010000 + 010000 = 000000

Same as example at location 10000.

NOTE: + = exclusive OR

Symbolic data references in the operation and address fields may be replaced with direct representation of the

data enclosed in parentheses*. This inserted data is called a literal. The Assembler sets up the address link,

so one less statement is needed in the source program. The following examples show how literals may be used,

and their equivalent statements. The information contained within the parentheses, whether a number, symbol,

expression, or machine instruction, is assembled and assigned consecutive memory locations after the locations

used by the program. The address of the generated word will appear in the statement that referenced the literal.

*The opening parenthesis [(l is mandatory; the closing parenthesis [)] is optional.

2-13

Duplicate literals, completely defined when scanned in the source program during PASS 1, are stored only once

so that many uses of the same literal in a given program result in the allocation of only one memory location for

that literal.

Usage of Literal Equivalent Statements

-I ADD L-J,(1) -.j ADD L-J ONE
ONE -I l

--! LAC L-J (TAG) --! LAC T AGAD
TAGAD-\ TAG

-I LAC..._. (DAC-\ TAG) --! LAC INST
INST -I DAC-\ TAG

-I LAC L...I (JMP -I . +2) HERE --j LAC L-J INST
INST -\ JMP L-J HERE+2

The following sample program illustrates how the Assembler handles literals.

Location Counter Source Statement Generated Code

-I . LOC L-1 100

JOO TAGl-j LAC L-1(100) 200110

101 -I DACL-1 100 040100

102 -I LAC .._. (JMP.....,. . +5 20011 l

103 -I LAC .._.(TAG l) 2001 TO

104 -I LAC .._. (JMP L-1TAG1) 200112

105 -I LAC .._. (JMP L...I T AG2) 200113

TAG2==TAG1

106 -\ LAC .._. (JMP O) 200114

107 DAC -\ LAC .._..(DAC -I DAC) 200115

-\ .END

Generated Literals

110 000100

111 600107

112 600100

113 600100

114 600000

115 040107

2-14

2.5 STATEMENT FIELDS

The following paragraphs provide a detailed explanation of statement fields, including how symbols and numbers

may be used in each field.

2.5. 1 Label Field

If the user wishes to assign a symbolic label to a statement in order to facilitate references to the storage word

generated by the Assembler, he may do so by beginning the source statement with any desired symbol. The

symbol must not duplicate.a system or user defined macro symbol and must be terminated by a space or tab, or a

statement terminating semicolon, or carriage-return/line-feed sequence.

Examples:

TAG l;TAG2;TAG3;TAG4 A new logical line starts after each
semicolon. This line is equivalent to

TAGl-1 0)
TAG2-! 0)
TAG3-I 0)
IAG4-I o)

If there was a tab or a space after the semicolon the symbol would be evaluated as an operator instead of a

tag. The sequence

TAGl;L....I TAG2;TAG3;&....1 TAG4

is evaluated as fo I lows:

TAGl -IO)
TAG2)

TAG3-.\ 0)
TAG4)

TAG L....I any value

TAG L....I (s) any value

TAG -I &....c (s) any value

TAG; }
TAG)

TAG"-' (s) (no more data on line)

These examples are equivalent to coding

TAG -IO)

in that a word of all Os is output with
the symbol TAG associated with it.

When writing numbers separated by semicolons, the first number must be preceded by a tab(-..\) or a space (L....I).

The sequence

TABLE L..J 1;2;3;4;5

2-15

produces TAG errors because the first symbol of a tag cannot be numeric. The correct way to write the table

sequence is as fol lows:

TABLE L...I 1; &...1 2; L...a 3; &...I 4; L...I 5

Symbols used as labels are defined in the symbol table with a numerical value equal to the present value of the

location. counter. A label is defined only once. If it was previously defined by the user, the current definition

of the symbol will be flagged in error as a multiple definition. All references to a multiply defined symbol will

be converted to the first value encountered by the Assembler.

Example:

Flag Location Statement Storage Word
Notes Counter Generated

M 100 A-I LAC-I B 200103

M 101 A -+j LAC -+j C 200104 } Error, multiple definition

D 102 -I LAC -+j A 200100 First value of A referenced

103 B -+j 0 000000

104 C-10 000000

Anything more than a single symbol to the left of the label-field delimiter is_ an error; it will be flagged and

ignored. The following statements are i llega I.

TAG+l -+j LAS)

LOC*2 -I RAR)

The line will be flagged with a "T" for tag error. The tag will be ignored but the rest of the line will continue

to be processed. The only time that an error tag is not ignored is when the error occurs after the sixth character.

The statement:

TAGERROR*l L-1 NOP

wi II be assembled as:

TAGERR -+j NOP

and the line will be printed and flagged with a "T".

Redefinition of certain symbols can be accomplished by using direct assignments; that is, the value of a symbol

can be modified. If an Assembler permanent symbol or user symbol (which was defined by a direct assignment)

2-16

is redefined, the value of the symbol can be changed without causing an error message. If a user symbol, which

was first defined as a lobe I, is redefined by either a direct assignment or by using it again in the label field, it

will cause an error. Variables also cannot be redefined by a direct assignment.

Examples:

Coding Generated Value (Octal) Comments

A=3 Sets current value of A to 3

-j LAC -j A 200003

-j DAC -j A 040003

A=4 Redefines value of A to 4

-j LAC -j A 200004

B-! DAC -j A 040004 *

B=A Illegal usage; a label cannot
be redefined

-j DAC -j B 040105

PSF=700201 To redefine possibly incorrect
permanent symbol definition.

*Assume that th is instruction wil I occupy location 105.

2.5.2 Operation Field

Whether or not a symbol label is associated with the statement, the operation field must be delimited on its left

by a space(s) or tab. If it is not delimited on its left, it will be interpreted as the label field. The operation

field may contain any symbol, number, or expression which wil I be evaluated as an 18-bit quantity using un­

signed arithmetic modulo 2 18 • In the operation field, machine instruction op codes and pseudo-op mnemonic

symbols take precedence over identically named user defined symbols. The operation field must be terminated

by one of the following characters:

Examples:

-! or'--' (s)

) or ;

TAG -j ISZ

(fie Id delimiters)

(statement delimiters)

-! . +3 '--' (s)

'--' (s)CMA ICML)

-j TAG/5+TAG2;-! TAG3)

The asterisk (*) character appended to a memory reference instruction symbol, in the operation field, causes

the defer bit (bit 4) of the instruction word to be set; that is, the reference will be an indirect reference. If

2-17

the asterisk (*) is appended on either a non-memory reference instruction or any symbol in the address field,

it wi 11 cause an error condition which wil I be flagged as a symbol error (S-flag). The asterisk wi 11 be ignored

and the assembly process will continue.

Examples:

Assembled Value Legal Assembled Value Illegal

360001 -I TAD* -I A 360001 -I LAC -I A*

220002 -I LAC* -I B 740000 -I CLA*

where A = I and B = 2

However, the asterisk (*) may be used anwhere as a multiplication operator.

Examples:

Legal Illegal

-I LAC -\ TAG*S -I LAC -I TAG *4+ TAD*

-I TAG*TAGI -IA*

2.5.3 Address Field

The address field, if used in a statement, must be separated from the operation field by a tab, or space(s). The

address field may contain any symbol, number, or expression which wi II be evaluated as an 18-bit quantity

using unsigned arithmetic, modulo 218 . If op code or pseudo-op code symbols are used in the address field,

they must be user defined, otherwise they will be undefined by the Assembler and will cause an error message.

The address field must be terminated by one of the following characters:

Examples:

-I or L...I (s)

) or;

(field delimiters)

(statement delimiters)

TAG2-\ DAC -I .+3

-I -I TAG2/5+3 L-1 (s)

In the last example, the rest of the line will be automatically treated as a comment and ignored by the Assembler.

The address field may also be terminated by a semocolon, or a carriage-return/line-feed sequence.

2-18

Examples:

--j JMP--j BEGIN)

--j TAD --j A; --j DAC --j B --j LAC

In the last example, a tab or space(s) is required after the semicolon in order to have the Assembler interpret

DAC as being the operation field rather than the label field.

In the second line of the preceding example, the address field B is delimited by a tab. The LAC after the B --l 1

is ignored and is treated as a comment; but, the line is questionable because only a comment field occurs on a

I ine after the address field. If the LAC had been preceded by a slash (/), the line would have been correct.

When the address field is a relocatable expression, on error condition may occur. The size of the relocatable

program is restricted to 4K (4096 10) words and cannot be loaded across pages or memory banks. Therefore, any

relocatable address field whose value exceeds 77778 is meaningless and will be flagged in error. This does not

apply if the user specifies bank addressing (refer to description of . EBREL).

When the address field is an absolute expression, an error condition will exist if the extended memory and page

address bits (3, 4 and 5) do not match the corresponding bits of the address of the bank currently being assembled

into and these address bi ts are not 0.

Examples:

NOTE

In absolute mode, the page bits do not have to be equal
if the . ABS or . FULL pseudo-ops are used instead of the
.ABSP or .FULLP pseudo-ops.

Location Instruction Comments
(octa I)

30000 --j LAC 30100 } 30001 --jDAC 101 Wi 11 not cause error messages

30002 --! JMS .._. 250

30005 --j ISZ ._. 40146 Will cause a bank (B) error message
because the address is on a different
page.

The linking loader will not relocate any absolute addresses; thus, absolute addresses within a relocatable program

are relative to that bank in memory in which the program is loaded.

2-19

Example:

Assume that the following source line is part of a relocatable program that was loaded into bank 1

(200008 - 37777 8).

Source Statement Effective Address

-I LAC L..I 300) 20300

An exception to the above rule is the auto-index registers, which occupy location 108 - 17 8 in page 0 of

memory bank 0. The hardware will always ensure that indirect references to 108 - 178 in any page or bank

wi II access 108 - 17 8 of bank 0.

2.5.4 Comments Field

Comments may appear anywhere in a statement. They must begin with a slash (/) that is immediately preceded

by

a. "-' (s) space(s)

tab b. -I
c.)

d.

carriage return/line feed (end of previous line)

semicolon

Comments are terminated only by a carriage-return/line-feed sequence or when n 10 characters have been

encountered.

Examples:

"-' (s)/THIS IS A COMMENT (rest of line is blank)

TAG 1 -I LAC L..I /after the ; is sti II a comment

/THIS IS A COMMENT

-I RTR "-' /COM ME NT)

-I RTR; -I RTR;/THIS IS A COMMENT

Observe that; -I A/COMMENT) is not a comment, but rather an operation field expression. A line that is

completely blank; that is, between two sets of) l (s) is treated as a comment by the Assembler.

Example:

"-' (72 blanks)

2-20

A statement is terminated as follows:

)i or; or rest of line is completely blank.

Examples:

-I LAC)

-I DAC {the rest of the line is blank)

-I TAG+3

-I RTR; -I RTR; -I RTR)

In the last example, the statement-terminating character, which is a semicolon (;)enables one source line to

represent more than one word of object code. A tab or space is required after the semicolon in order to hove

the second and third RTRs interpreted as being in the operation field and not in the label field.

2.6 STATEMENT EVALUATION

When MACR0-15 evaluates a statement, it checks for symbols or numbers in each of the three evaluated fields:

label, operation, and address. (Comment fields are not evaluated.)

2.6. I Numbers

Numbers are not field dependent. When the Assembler encounters a number {or expression) in the operation or

address fields (numbers are illegal in the label field), it uses those values to form the storage word. The follow­

ing statements are equivalent:

-I 200000._.10)

-I lO+LAC)

-I LAC._.10)

All three statements cause the Assembler to generate a storage word containing 200010. A statement may con­

sist of a number or expression which generates a single 18-bit storage word; for example:

This group of four statements generates four words interpreted under the current radix.

2-21

2.6.2 Word Evaluation

When the Assembler encounters a symbol in a statement field, it determines the value of the symbol by reference

to the user's symbol table and the permanent symbol table, according to the priority list shown in paragraph 2.6.4.

The operation value is scanned for the following special cases:

Mnemonic Operation Field Value

LAW 760000

AAC 723000

AAS 720000

AXR 737000

AXS 725000

If the operation field is not one of the special cases, the object word value is computed as follows:

(Operation Field + (Address Field and 17777)) =Word Value

If the index register is used anywhere in the address field, the index register bit is set to one in the word value.

Extensive error checking is then performed on the address field value. The following are the rules used to ensure

correct results:

a. If index register usage is specified, the result of XORing bit 5 of the location counter and bit 5 of
the address field value must be non-zero.

Example:

Flag Location
Word

.ABSP
Value

00000 210001 LAC
00001 740000 A NOP
10000 .LOC
10000 210001 LAC

B 10001 210001 B LAC
.END

The result of statement evaluation has produced the fol lowing results:

A,X = 10001

B,X = 00001

A= 00001

B = 10001

2-22

/Page
Addressing

A,X /Page 0

10000 /Page 1
B,X
A,X

Note that when index register usage is specified, the index register bit may or may not be on. For B,X above,

the index register bit was turned off. The Assembler turns this bit on when the word is evaluated, not at state­

ment evaluation time.

At location 10001, the result of XORing bit 5 of A,X and bit 5 of the location counter is 0. This signals the

Assembler that the address reference (A) is in a different page.

b. If index register usage is not specified and the program is not assembled in bank mode*, the result
of XORing bits of tne location counter and the address field value must be O, otherwise the line is
flagged with a B for bank error.

Example:

Flag Location
Object .ABSP
Word

B 00000 210500 LAC A
10500 .LOC 10500
10500 740000 A NOP

.END

c. The bank bits (3,4) of the address field value in a relocatable program must never be on. The bank
bits are always lost when the address field value and the operation are combined to form the object word
value.

Example:

Flag Location
Object

Word Value

B 00000 R 200000 R c LAC A /Bank bit lost
17777 R .LOC C+17777
17777 R 740000 A NOP
20000 R 740000 A A NOP

.END

d. If the bank bits of an absolute program are not zero, they must equal the bank bits of the location
counter.

Example:

Line Flag Location
Object Word

Value

1
2 20000
3 20000 200001
4 20001 200001
5 B 20002 210001
6 B 20003 217777
7

*See pseudo-ops .ABS, .ABSP, .FULL, .FULLP, .EBREL, .DBREL

2-23

. ABSP

.LOC 20000
LAC 1
LAC 20001
LAC 30001
LAC 17777
.END

The address value for lines 3 and 4 are identical. The bank bits of ine 5 do not match those of the location

counter, and indexed addressing was not specified, therefore, the line is flagged.

2.6.3 Word Evaluation of the Special Cases

a. LAW -The operation field value and the address field value are combined as follows:

(Operation Value+ (Address Field Value and 17m)) =Word Value

A validity check is then performed on the address field value as follows:

(Address Field Value and 760000) =Validity Bits

If the validity bits are not equal to 777000 or 0, the line is flagged with an E to signal erroneous results.

b. AAC, AAS, AXR, AXS - The operation field value and the address field value are combined as
follows.

(Operation Value+ (Address Field Value and 000777)) =Word Value

The validity check:

(Address Field Value and 777000) =Validity Bits

If If the validity bits are not equal to 777000 or 0, the line is flagged with an E to signal erroneous
The address field value for this type of instruction cannot be relocated. The line is flagged with an R
if the address field value is relocatable.

Example:

Line Flag Location Obiect
Word Value

1 0 777777 LAW 1m7 /17777
2 1 m777 LAW -1 /777777
3 E 2 m777 LAW 677777 /677777
4 3 760000 A LAW /0
5 4 720776 AAS -2 /777776
6 E 5 720000 AAS -2000 /776000

If numbers are found in the operation and address fields, they are combined in the same manner as defined

symbols. For example,

-I 2 -I 5 -I /GENERA TES 000007

2-24

The value of a symbol depends on whether it is in the label field, the operation field, or the address field. The

Assembler attempts to evaluate each symbol by running down a priority list, depending on the field, as shown

below.

2.6.4 Assembler Priority List

Label Field

Current Value of
Location Counter

Operation Field

1 • Pseudo-op

2. User macro in user symbol
table

3. System macro table

4. Direct assignment in user
symbol table

5. Permanent symbol table

6. User symbol table

7. Undefined

Address Field

1. User symbol table (including
direct assignments)

2. Undefined

This means that if a symbol is used in the address fields, it must be defined in the user's symbol table before the

word is formed during PASS 1; otherwise, it is undefined.

Jn the operation field, pseudo-ops take precedence and may not be redefined. Direct assignments al low the

user to redefine machine op codes, as shown in the example below.

Example:

DAC = DPOSIT

System macros may be redefined as user macro names, but may not be redefined as user symbols by direct assign­

ment or by use as statement labels.

The user may use machine instruction codes and MACR0-15 pseudo-op codes in the label field and refer to them

later in the address field.

2-25

CHAPTER 3

PSEUDO OPERATIONS

In the discussion of symbols in the previous chapter, it was mentioned that the Assembler has in its permanent

symbol table definitions of the symbols for all the PDP-15 memory reference instructions, operate instructions,

EAE instructions, and many IOT instructions which may be used in the operation field without prior definition

by the user. Also contained in the permanent symbol table are a class of symbols called pseudo-operations

{pseudo-ops) which, instead of generating instructions or data, direct the Assembler on how to proceed with the

assembly.

By convention, the first character of every pseudo-op symbol is a period (.) . This convention is used in an

attempt to prevent the programmer from inadvertently using, in the operation field, a pseudo-instruction symbol

as one of his own. Pseudo-ops may be used only in the operation field.

3. 1 PROGRAM IDENTIFICATION(. TITLE)

The program name may be written in a . TITLE statement as shown below. The Assembler will take the first six

characters of the symbol in the address field as the new name of the program to appear in the header on the

listing device. The listing device will be advanced to the top of form after which the line will be printed as

a comment. The name wil I appear as the program name until the next . TITLE pseudo-op. The • TITLE pseudo-op

has no effect on the binary or listing file name.

-j . TITLE1-1 NAME OF PROGRAM

-j . TITLE -j TESTl

3. 2 OBJECT PROGRAM OUTPUT

(.ABS, .ABSP, .FULL, .FULLP, .DBREL, .EBREL)

/(NAME) Name on listing
delimited by space;

/{TESTl) Name on listing

The normal object code produced by MACR0-15 is relocatable binary which is loaded at run time by the Linking

Loader. In addition to relocatable output, the user may specify two other types of output code to be generated

by the Assembler.

3-1

a. The .ABS, .ABSP, .FULL, and .FULLP pseudo-ops, specifying the type of output, must appear
before any object code generating statements (excluding . TITLE and COMMENTS), otherwise the line
wi 11 be flagged and ignored. Once one of these four pseudo-ops is specified, the user is not allowed
to change output modes.

b. Any options provided for in the address field of the .ABS and .ABSP are useful only if the output
device is paper tape.

3.2. 1 .ABSP, .ABS

Label Field Operation Field Address Field

Not used .ABSP NLD or L-1

Not used .ABS NLD or L...I'

Both of the absolute pseudo-ops cause absolute, checksummed binary code to be output (no values are relocat­

able). If no value is specified in the address field, the Assembler will precede the output with the Absolute

Binary Loader which will load the punched output at object time. The loader is loaded, via hardware readin,

into location 17720 of any memory bank. (This loader loads only paper tape.) If the address field contains

NLD, no loader will precede the output.

NOTE

.ABS output can be written on file-oriented devices.
The Assembler assumes .ABS NLD for all .ABS output to
file-oriented devices and appends an extension of .ABS
to the filename. This file can be punched with PIP,
using dump mode. (There will be no absolute loader at
the beginning of the tape.)

A description of the absolute output format follows.

Block Heading - (three binary words)

WORD 1 Starting address to load the block body which follows.

WORD 2 Number of words in the block body (two's complement).

WORD 3 Checksum of block body (two's complement). Checksum
includes Word 1 and Word 2 of the block heading.

Block Body - (n binary words)

The block body contains the binary data to be loaded under block heading control.

3-2

Starting Block - (two binary words)

WORD 1 Location to start execution of program. It is distinguished from the
block heading by having bit 0 set to 1 (negative).

WORD 2 Dummy word.

If the user requests the absolute loader and the value of the expression of the • END statement is equal to 0, the

provided loader halts before transferring control to the object program, thereby al lowing manual intervention by

the user.

The .ABSP pseudo-op causes all memory referencing instructions whose addresses are in a different page to be

flagged as bank errors. A OBA instruction is executed by the absolute loader before control is given to the user

program. Addresses which have bit 5 on will signal the processor to use the index register to compute effective

addresses.

The .ABS pseudo-op does not flag memory referencing instructions whose addresses are in a different page. An

EE7 instruction is executed, and control is given to the user in bank addressing mode. All indexing instructions

(see Appendix B) are disabled and executed as 1/0 transfer instructions and complete bank addressing of SK is

allowed. The processor will interp-et bit 5 of all memory referencing instructions as the high order address bit.

A listing of the Absolute Binary Loader is given in Appendix F.

3.2.2 .FULL, .FULLP Pseudo-ops

Label Field Operation Field Address Field (Only useful

Not used .FULL Not used
if output
is paper

Not used .FULLP Not used tape)

The . FULL and • FULLP pseudo-ops cause full binary mode output to be produced. The program is assembled as

uncheckedsumrned absolute code and each physical record of output contains nothing other than 18-bit binary

storage words generated by the Assembler. The Assembler will cause the address of the .END statement to con­

tain a punch in channel 7, thereby allowing the output to be loaded via hardware readin mode. If no address

is specified in the • END statement, a halt (rather than a jump) wi II be output as the last word.

Regardless of which pseudo-op (.FULL or .FULLP) the user specifies, he must always execute a OBA instruction

if he wishes to use indexing in his program because depressing 1/0 reset before the user program is loaded causes

the PDP-15 processor to enter bank addressing mode.

The only difference between the .FULL and .FULLP pseudo-ops is that memory references across page boundaries

are flagged in .FULLP mode; in . FULL mode they are not.

3-3

The following specific restrictions apply to programs assembled in . FULL mode output.

. LOC

.BLOCK

Should be used only at the beginning of the program .

May be used only if no literals appear in the program, and
must immediately precede .END.

Variables and undefined symbols may be used if no literals appear in the
program.

Literals may be used only if the program has no variables and undefined
symbols.

The following two pseudo-ops enable relocation mode switching. They can be used anywhere and as often as

the programmer wishes in a relocatable program. If these pseudo-ops are used in an absolute (.ABS, .ABSP,

.FULL, .FULLP) program, they will be flagged (I-ignored). These pseudo-ops will be most useful for the user

who has a VT15 display. The VT15 has its own processor and uses 13-bit addresses.

Mnemonic

.EBREL

.DBREL

Description

Enable bank mode relocation

Relocatable programs are normally in PDP-15 mode (12-bit re­
location). This pseudo-op will cause a data word to be output
to the Linking Loader having an octal code of 3 ls. This octal
code will signal the Linking Loader to treat all 03 loader codes
as 13-bit relocatable. The data word will be ignored by the
Linking Loader. Addresses having 13-b its wi II not be flagged
while in this mode.

Disable bank mode relocation

A data word is output having a Linking Loader code of 32a.
This code will signal the loader to treat all 03 codes as 12-bit
relocation (normal PDP-15 mode); the data word wi II be ignored.

NOTE

The previous mode is not saved when an . EBREL is
encountered; for this reason, a • DBREL pseudo-op
goes directly to PDP-15 relocation regardless of
previous mode.

3.3 SEITING THE LOCATION COUNTER (.LOC)

Label Field Operation Field Address Field

Not used .LOC Predefined symbolic
expression, or number

3-4

The . LOC pseudo-op sets or resets the location counter to the value of the expression contained in the address

field. The symbolic elements of the expression must have been defined previously; otherwise, phase errors might

occur in PASS 2. The . LOC pseudo-op may be used anywhere and as many times as required.

Examples:

Location Counter Instruction

100 -l .LOCL.-1100

100 -l LACL..J TAGl

101 -l DACL-ITAG2

102 -l . LOCL...I.

102 A-j LAC.....,B

103 -j DACL...IC

107 -l . LOCL..JA+5

107 -l LACL..JC

110 -j DACL..JD

111 -l LACL...IE

112 -j DACL..JF

3.4 RADIX CONTROL {.OCT and .DEC)

The initial radix {base) used in all number interpretation by the Assembler is octal {base 8). In order to allow

the user to express decimal values, and then restore to octal values, two radix setting pseudo-ops are provided.

Pseudo-op Code Meaning

.OCT Interpret all succeeding numerical values in base 8 (octal)

.DEC Interpret all succeeding numerical values in base 10 (decimal)

These pseudo-instructions must be coded in the operation field of a statement. Al I numbers are decoded in the

current radix until a new radix control pseudo-instruction is encountered. The programmer may change the

radix at any point in a program.

Flag Source Program Generated Value {Octal) Radix in Effect

.., LAC 100 200100 8 } initial value is .., 25 000025 8 assumed to be octal

-j .DEC

-\ LAC 100 200144 10

3-5

Flag Source Program Generated Value (Octal) Radix in Effect

-I 275 000423 10

-I .OCT

-I 76 000076 8

N -I 85 000125 error

3.5 RESERVING BLOCKS OF STORAGE (.BLOCK)

.BLOCK reserves a block of memory equal to the value of the expression contained in the address field. If the

address field contains a numerical value, it will be evaluated according to the radix in effect. The symbolic

elements of the expression must have been defined previously; otherwise, phase errors might occur in PASS 2.

The expression is evaluated modulo 215 (7m7 8). The user may reference the first location in the block of

reserved memory by defining a symbol in the label field. The initial contents of the reserved locations are

unspecified.

Label Field Operation Field Address Fie Id

Used Symbol .BLOCK Predefined Expression

Examples:

BUFF -I .BLOCKL..112)

-I . BLOCKL..IA+ 8+65)

3.6 PROGRAM TERMINATION (.END}

One pseudo-op must be included in every MACR0-15 source program. This is the . END statement, which must

be the last statement in the main program. This statement marks the physical end of the source program, and also

contains the location of the first instruction in the object program to be executed at run-time.

The . END statement is written in the general form

-I . ENDL...I ST ART)

ST ART may be a symbol, number, or expression whose value is the address of the first program instruction to be

executed. In relocatable programs, to be loaded by the Linking Loader, only the main program requires a

starting address; all other subprogram starting addresses will be ignored.

A starting address must appear in absolute or self-loading programs; otherwise, the program will halt after being

loaded and the user must manually start his program.

3-6

These ore legal . END statements

-l . ENDL.....I BEGIN+ 5)

-I . ENDL.....1200)

3.7 PROGRAM SEGMENTS (.EOT)

If the input source program is physically segmented, each segment except the last must terminate with an . EOT

(end-of-tape) statement. The last segment must terminate with an .END statement. For example, if the input

source program is prepared on three different tapes, the first two are terminated by .EOT statements, and the

last by an .END statement. The .EOT statement is written without label and address fields, as follows.

-l .EOT)

3.8 TEXT HANDLING (.ASCII and .SIXBT)

The two text handling pseudo-ops enable the user to represent the 7-bit ASCII or 6-bit trimmed ASCII character

sets. The Assembler converts the desired character set to its appropriate numerical equivalents. (See Appendix A

Label Field Operation Field Address Field

SYMBOL {'A~II} Delimiter - character string - delimiter -

. SIXBT <expression>

Only the 64 printing characters (including space) may be used in the text pseudo-instructions. See nonprinting

characters, Section 2 .4. 5. The numerical values generated by the text pseudo-ops are left-justified in the

storage word(s) they occupy with the unused portion (bits) of a word fi lied with zeros.

3.8. 1 .ASCII Pseudo-op

.ASCII denotes 7-bit ASCII characters. (It is the character set that is the input to and output from Monitor.)

The characters are packed five per two words of memory with the rightmost bit of every second word set to zero.

An even number of words will always be output.

Basic Form:

First Word Second Word

0 6 7 13 14 17 0 2 3 9 10 16 17

1st Chor. 1 2nd Chor. ! 3rd Chor. 1 4th Char. l 5th Char.

3-7

3.8.2 .SIXBT Pseudo-op
/

. SIXBT denotes 6-bit trimmed ASCII characters, which are formed by truncating the leftmost bit of the

corresponding 7-bit character. Characters are packed three per storage word.

Basic Form:

0 5 6 11 12 17

1st Char. 2nd Char. 3rd Char.

3. 8. 3 Text Statement Format

The statement format is the same for both of the text pseudo-ops. The format is as follows.

MYTAGi(:~I~Ci~}j I delimiter I character string I delimiter I <expression>

3.8.4 Text Delimiter

Spaces or tabs prior to the first text delimiter or angle bracket (<) wi II be ignored; afterwards, if they are not

enclosed by delimiters or angle brackets, they will terminate the pseudo-instruction. Also,) will terminate

the pseudo-instruction.

Any printing character may be used as the text delimiter, except those listed below.

a. < as it is used to indicate the start of an expression.

b.) as it terminates the pseudo-instruction.

(The apostrophe (') is the recommended text delimiting character.) The text delimiter must be present on both

the left-hand and the right-hand sides of the text string; otherwise, the user may get more characters than de­

sired. However,) may be used to terminate the pseudo-instruction.

3.8.5 Non-Printing Characters

The octal codes for non-printing characters may be entered in .ASCII statements by enclosing them in angle

bracket delimiters. In the following statement, five characters are stored in two storage words.

-I .ASCII I AB '<015> I CD')

Octal numbers enclosed in angle brackets will be truncated to 7 bits (.ASCII) or 6 bits (. SIXBT).

3-8

Example:

Source Line Recognized Text Comments

TAG--! .ASCI.....,~ABC' ABC
--1 .SIXBT ._,'ABC' ABC
--1 .SIXBT ._,'ABC'#•j# ABC'/ The# is used as a delimiter in order

that (') may be interpreted as text.

--1 .ASCII....., 'ABCD'EFGE ABCDFG
-I .ASCII....., 'AB'<ll> AB -I < 11> used to represent tab.
--1 .ASCII....., 'AB<l 1> AB<11> There is no delimiter after B,

therefore, (< 11>) is treated as text.

--1 . ASCII.....,< 15><012 >I ABC I)iABC
-I .ASCII.....,~15X12>ABC....., (s)) me (s) A is interpreted as the text delimiter.

Also, since) was not used to ter-
minate the text, the,(s) are inter-
preted as text characters.

The following example shows the binary word format which MACR0-15 generates for a given line of text.

Example:

--1 .ASCII -I 'ABC'<015X12>'DEF

G d Cd" enerate 0 1'!9._

Word Number Octal Binary

Word 1 406050 1000001 l 10000010 l 1000

Word 2 306424 0111000110110001010 Io
Word 3 422130 1000100 I 1000101 l 1000
Word 4 600000 110 l 0000000 l 0000000 l 0

3.9 LOADER CONTROL (.GLOBL)

Label Field Operation Field Address Field

Not used GLOBL A,B, C,D ,E •...

The standard output of the Assembler is a relocatable object program. The Linking Loader joins relocatable

programs by supplying definitions for global symbols which are referenced in one program and defined in another.

The pseudo-op .GLOBL, followed by a list of symbols, is used to define to the Assembler those global symbols

which are either

a. internal globals - defined in the current program and referenced by other programs

b. external symbols - referenced in the current program and defined in another program

3-9

The loader uses th is information to load and then link the relocatable programs to each other.

Al I references to external symbols should be indirect references as memory banks may have to be crossed,

Examples:

-I .GLOBL -I A,B,C

A-I LAC -ID

D -I JMS* -I B

-I JMS1' -I C

.END

/A is an internal global

/These two instructions reference

/External symbols indirectly

The . GLOBL statement may appear anywhere within the program.

Each external symbol causes an additional word to be reserved in the user program. This word will be used by

the Linking Loader to store the actual address at load time.

The example above is assembled as fol lows:

Flag Location Word Value .GLOBL B,C

000000 R 200001 R A LAC D
000001 R 120003 R D JMS* B
000002 R 120004 R JMS* c

000001 .END D
000003 R 000003 *E
000004 R 000004 *E

The values for locations 3 and 4 will be put in by the Linking Loader.

3.10 REQUESTING I/O DEVICES (.IODEV)

The . IODEV pseudo-op appears anywhere in the program and is used to cause the Assembler to output code for

the Linking Loader which specifies the slots in the Monitor's device assignment table (DAT) whose associated

device handlers are required by the program (see Monitors manual, DEC-9A-MADO-D).

Label Field Operation Field Address Field

Not used . IODEV 1 ,2 ,3 ...

3. 11 DEFINING A SYMBOLIC ADDRESS (.DSA)

.DSA (define symbol address) is used in the operation field when it is desired to create a word composed of just

an address field. It is especially useful when a user symbol is also an instruction or pseudo-op symbol.

3-10

Examples:

Label Field

User Symbol

JMP --I LAC --!TAG

-l .DSA-l JMP

--I --I JMP

Operation Field Address Field

.DSA Any Expression

Equivalent methods of defining the user symbol JMP

to be in the address field.

3. 12 REPEATING OBJECT CODING (.REPT)

Label Field Operation Field Address Fie Id

Not used .REPT Count, (Increment
or L...1

The . REPT pseudo-op causes the object code of the next sequential object code generating instruction to be

repeated count times. Optionally, the object code may be incremented for each time it is repeated by speci­

fying an increment. The count and increment are numerical values (signed or unsigned) which wil I be evaluated

according to the radix in effect. The repeated instruction may contain a label, which will be associated with

the first statement generated.

Examples:

Source Code Generated
Object Code

-l .REPT L...15

--I 0 000000

000000

000000

000000

000000

--I . REPT ._,4, l

-l 1 000001

000002

000003

000004

-l . REPT L...13,-1

3-11

Source Code Generated
Object Code

-I 5 000005

000004

000003

TAG=50

-I . REPT ._,.4, 1

-I JMP L.-1 TAG 600050

600051

600052

600053

NOTE

If the statement to be repeated generates more than one
location of code, the . REPT will repeat only the last lo­
cation. For example,

-I . REPT L.-13
-I . ASCII L.-1 'A'

wi II generate the following:

404000
000000
000000
000000

5/7 A

last word is
repeated

3.13 CONDITIONAL ASSEMBLY (.IF xxx and .ENDC)

It is often useful to assemble some parts of the source program on an optional basis. This is done in MACR0-15

by means of conditional assembly statements, of the form:

-I . IF ... -I expression

The pseudo-op may be any of the eight conditional pseudo-ops shown below, and the address field may contain

any number, symbol, or expression. If there is a symbol, or an expression containing symbolic elements, such

a symbol must have been previously defined in the source program.

If the condition is satisfied, that part of the source program starting with the statement immediately following

the conditional statement and up to but not including an • ENDC (end conditional) pseudo-op is assembled. If

the condition is not satisfied, this coding is not assembled.

The eight conditional pseudo-ops (sometimes called IF statements) and their meanings are shown below.

3-12

Pseudo-op Assemble IF x is:

.., . IFPNZL...lx Positive and non-zero .., .IFNEGL....lx Negative .., .IFZERL-Jx Zero

-+! .IFPOZL....lx Positive or zero

-+! .IFNOZL...lx Negative or zero .., . IF NZRL...lx Not zero

-+! . IFDEF L-Jx A defined symbol .., .IFUNDL....lx An undefined symbol

In the following sequence, the pseudo-op . IFZER is satisfied, and the source program coding between . IFZER

and . ENDC is assembled.

SUBTOT=48

TOTALL=48

-j .IFZER -j SUBTOT-TOTALL

-+j LACL....IA

-+j DACL....IB

-j . ENDC

Conditional statements may be nested. For each IF statement there must be a terminating . ENDC statement.

If the outermost IF statement is not satisfied, the entire group is not assembled. If the first IF is satisfied, the

following coding is assembled. If another IF is encountered, however, its condition is tested, and the following

coding is assembled only if the second IF statement is satisfied. Logically, nested IF statements are like AND

circuits. If the first, second and third conditions, are satisfied, then the coding that follows the third nested

IF statement is assembled.

Example:

-J . IFPOS L-JX

-+j LAC -J TAG

-+j . IFNZRL...I Y

-+j DAC -J TAGl

-J . ENDC

-J . IFDEFL.....1£

-+j DAC -j TAG2

-+j . ENDC

-l . ENDC

conditional 1 initiator

conditional 2 initiator

conditional 2 terminator

conditional 3 initiator

conditional 3 terminator

conditional l terminator

3-13

Conditional statements can be used in a variety of ways. One of the most useful is in terminating recursive

macro calls (described in Chapter 4). In general, a counter is changed each time through the loop, or recursive

call, until the condition is not satisfied. This process concludes assembly of the loop or recursive call.

3.14 LISTING CONTROL (.EJECT)

The following Assembler listing controls are effective only when a listing is requested by Assembler control key­

board request.

Label Field Operation Field Address Field

Not used .EJECT Not used

When . EJECT is encountered anywhere in the source program, it causes the listing device that is being used to

skip to head-of-form.

3. 15 PROGRAM SIZE (.SIZE)

Label Field Operation Field Address Field

User Symbol .SIZE Not used

When the Assembler encounters . SIZE, it outputs, at that point, the address of the last location plus one occu­

pied by the object program. This is normally the length of the object program (in octal).

3.16 DEFINING MACROS (.DEFIN, .ETC, and .ENDM)

The .DEFIN pseudo-op is used to define macros (described in Chapter 4). The address field in the .DEFIN

statement contains the macro name, followed by a list of dummy arguments. If the list of dummy arguments will

not fit on the some line as the .DEFIN pseudo-op, it may be continued by means of the • ETC pseudo-op in the

operation field and additional arguments in the address field of the next line. The coding that is to constitute

the body of the macro follows the .DEFIN statement. The body of the macro definition is terminated by an

. ENDM pseudo-op in the operation field. (See Chapter 4 for more detai Is on the use of macros.)

3-14

CHAPTER 4

MACROS

When a program is being written, it often happens that certain coding sequences are repeated several times with

only the arguments changed. It would be convenient if the entire repeated sequence could be generated by a

single statement. To 11ccomplish this, it is first necessary to define the coding sequence with dummy arguments

as a macro instruction, and then use a single statement referring to the macro name along with a list of real

arguments which wil I replace the dummy arguments and generate the desired sequence.

Consider the following coding sequence.

-I LAC -I A

-I TAD -I B

-I DAC-1 C

-I LAC-j D

-I TAD -I E

-I DAC-1 F

The sequence

-I LAC -Ix

-I TAD -I y

-I DAC-1 z

is the model upon which the repeated sequence is based. The characters x, y, and z are called dummy arguments

and are identified as such by being listed immediately after the macro name when the macro instruction is

defined.

4. 1 DEFINING A MACRO

Macros must be defined before they are used. The process of defining a macro is as follows.

4-1

(Definition Line)

(Body)

(Macr°\Name) (Dummy Arguments)

-I .DEFIN-1 MACNME,ARGl~ARGi,AR~ /comment

{
-1-1 LAC -I ARG 1

TAD -I ARG2,X

-I DAC -I ARG3

(Terminating Line) -I .ENDM

The pseudo-op .DEFIN in the operation field defines the symbol following it as the name of the macro. Next,

follow the dummy arguments, as required, separated by commas and terminated by any of the following symbols.

a. space

b. tab

c. carriage return

(L-1)
(...,)

())

The macro name and the dummy arguments must be legal MACR0-15 symbols. Any previous definition of a

dummy argument is ignored while in a macro definition. Comments after the dummy argument list in a definition

are legal.

If the list of dummy arguments cannot fit on a single line (that is, if the .DEFIN statement requires more than

72 10 characters) it may be continued on the succeeding line or lines by the usage of the .ETC pseudo-op, as

shown be low.

-1,DEFIN --! MACNME,ARGl ,ARG2,ARG3 /comment

-I . ETC -IARG4,ARG5 /argument continuation

-I .DEFIN-1 MACNME

-I .ETC -I ARGl

-I .ETC -I ARG2

-I .ETC -I ARG4

-I . ETC -I ARG5

4. 2 MACRO BODY

The body of the macro definition follows the .DEFIN statement. Appearances of dummy arguments are marked

and the character string of the body is stored, five characters per two words in the macro definition table, until

the macro terminating pseudo-op . ENDM is encountered. Comments within the macro definition are not stored.

Dummy arguments may appear in the definition lines only as symbols or elements of an expression. They may

appear in the label field, operation field, or address field. Dummy arguments may appear within a literal or

they may be defined as variables. They will not be recognized if they appear within a comment.

4-2

The following restrictions apply to the usage of the .DEFIN, .ETC and .ENDM pseudo-ops:

a. If they appear in other than the operation field within the body of a macro definition, they will
cause erroneous results.

b. If .ENDM or .ETC appears outside the range of a macro definition, it will be flagged as undefined.

If index register usage is desirable, it should be specified in the body of the definition, not in the argument

string.

.DEFIN XUSE,A,B,C
LAC A
DAC B,X
LAC C
.ENDM

If .ASCII or . SIXBT is used in the body of a macro, a slash (/) or number sign (fl) must not appear as part of

the text string or as a delimiter {use <57> to represent a slash and <43> to represent a number sign). A dummy

argument name should not inadvertently be used as part of the text string.

Definition

-I .DEFIN -I MAC,A,B,C,D,E,F

-I LAC -I Afl

-I SPA

-I JMP-1 B

-I ISZ -I TMP -f /E

-I LAC -I (C

-I DAC-1 D + 1

-IF

-I . ASCII -I E

B==

-1.ENDM

4.3 MACRO CALLS

Comments

E is not recognized as an argument

A macro call consists of the macro name, which must be in the operation field, followed by a list of real argu­

ments separated by commas and terminated by one of the characters listed below.

a. space (L..I)

b. tab (-..j)

c • carriage return ())

4-3

If the real arguments cannot fit on one line of c:oding, they may be continued on succeeding lines by terminating

the current line with a dollar sign ($). When they are continued on succeeding lines they must start in the tag

field.

Example:

-I MAC-I REALl ,REAL2,REAL3,$

REAL4,REAL5

If there are n dummy arguments in the macro definition, all real arguments in the macro call beyond the nth

durmny argument will be ignored. A macro call may have a label associated with it; this label will be assigned

to the current value of the location counter.

Example:

(Definition) -I .DEFIN -I UPDATE,LOC,AMOUNT

-I LAC-I LOC

-I TAD -I AMOUNT

-I DAC-1 LOC

-I .ENDM

(Call TAG-I UPDATE-I CNTR,(5

(Expansion) TAG-I LAC -I CNTR

-I TAD -I (5

-I DAC -I CNTR

/TAG ENTERED INTO SYMBOL TABLE
/WITH CURRENT VALUE OF LOCATION COUNTER

The prevailing radix will be saved prior to expansion and restored after expansion takes place. Default as­

sumption will be octal for the macro call. It is not necessary for the macro definition to have any dummy argu­

ments associated with it.

Example:

(Call)

(Expansion)

-I .DEFIN.__.TWOS

-I CMA

-I TAD.__.(1

-I .ENDM

-I TWOS

-I CMA

-I TAD-I (1

4-4

4.3. 1 Argument Delimiters

It was stated that the list of arguments is terminated by any of the following symbols.

a. comma (,}

b. space (L...I}

c. tab (-I }
d. carriage return ()}

These characters may be used within real arguments only by enclosing them in angle brackets. Angle brackets

will not be recognized if they appear within a comment.

Example:

(Definition} -I . DEFIN MAC,A,B,C

-I LAC'--'A

-I TADL...IB

-I DAC'--'C

-I .ENDM

(Call} -I MACL...I TAGl ,<TAG2 /comment

-I TAD L...I (1) >IT AG3

(Expansion} -I LAC TAGl

-I TAD'--'TAG2

-I TAD 1-1 (l}

-I DAC1-1 T AG3

All characters within a matching pair of angle brackets are considered to be one argument, and the entire argu­

ment, with the delimiters{<>} removed, will be substituted for the dummy argument in the original definition.

MACR0-15 recognizes the end of an argument only on seeing a terminating character not enclosed within angle

brackets.

If brackets appear within brackets, only the outermost pair is deleted. If angle brackets are required within a

real argument, they must be enclosed by argument delimiter angle brackets.

Example:

(Definition} -I . D EFI N -I ERRMSG, TEXT

-I JMS -I PRINT

-I .ASCII -I TEXT

-I .ENDM

4-5

(Call) -i ERRMSG -i </ERROR IN LINE/ < 15»

(Expansion) -i JMS -I PRINT

-I .ASCII -i /ERROR IN LINE/ < 15>

4.3.2 Created Symbols

Often, it is desirable to attach a symbolic tag to a line of code within a macro definition. As this tag is de­

fined each time the macro is called, a different symbol must be supplied at each call to avoid multiply defined

tags.

This symbol can be explicitly supplied by the user or the user can implicitly request MACR0-15 to replace the

dummy argument with a created symbol which will be unique for each call of the macro. For example,

-i . DEFIN -I MAC,A, ?B

The question mark (?) prefixed to the dummy argument B indicates that it will be supplied from a created symbol

if not explicitly supplied by the user when the macro is called for.

The created symbols are of the form .. 0000-.. 9999. Like other symbols, they are entered into the symbol table

as they are required.

Unsupplied real arguments corresponding to dummy arguments not preceded by a question mark are substituted in

as empty strings; and supplied real arguments corresponding to dummy arguments preceded by a question mark

suppress the generation of a corresponding created symbol.

Example:

(Definition) -I .DEFIN -I MAC,A,B, ?C, ?D, ?E

-I LAC ...j A

-I SZA

-I JMP -ID

-I LAC -I B

-i DAC-1 c#
-I DAC-1 E

D=.

-I .ENDM

(Call) -I MAC-I x# ,,,,MYTAG

(Expansion) -I LAC -I xH
-i SZA

4-6

-I JMP -I .. 0000

-I LAC

-I DAC -I .. 0001

-I DAC -I MYTAG

.. 0000=.

If one of the elements in a real argument string is not supplied, that element must be replaced by a comma, as

in the call above. A real argument string may be terminated in several weys as shown below:

Example:

-I MAC -I A,B,....,

-I MAC -I A,B,,)

-I MAC -I A,B .._.

-I MAC -I A,B)

-I MAC -I A,B,)

4.4 NESTING OF MACROS

Macros may be nested; that is, macros may be defined within other macros. For ease of discussion, levels mey

be assigned to these nested macros. The outermost macros (those defined directly) will be called first-level

macros. Macros defined within first-level macros will be called second-level macros; macros defined within

second-level macros will be called third-level macros, etc. Each nested macro requires an .ENDM pseudo op

to denote its termination.

Example:

Level 1

-I .DEFIN -I LEVEll,A,B
-I LAC-I A
-I TAD-I B Level 2

-I .DEFIN -I LEVEL2,C,D
-I ISZ-1 C
-I DAC-1 D Level 3

-I :DEFIN -I LEVEL3,E,F
-I AND-I E
-I XOR-I F
-I .ENDM • LEVEL 3 .ENDM

-I DAC-1 X
-I .ENDM •• LEVEL 2 .ENDM

~ DAC-1 Y
.ENDM , LEVEL 1 .ENDM

4-7

At the beginning of processing, first-level macros are defined and may be called in the normal manner. Second

and higher level macros are not yet defined. When a first-level macro is called, all its second-level macros

are defined. Thereafter, the level of definition is irrelevant and macros may be called in the normal manner.

If the second-level macros contain third-level macros, the third-level macros are not defined until the second­

level macros containing them have been called.

Using the example above, the fol lowing would occur:

Call

-\ LEVEL 1 -\ TAGl, TAG2

-I LEVEL 2 -I TAG3, T AG4

-\ LEVEL 3-\ TAGS, T AG6

Expansion

-\ LAC-\ TAGl

-j TAD -I TAG2

-\ DAC-\ Y

-I ISZ -\TAG3

-I DAC -\ T AG4

-\ DAC-\ X

-I AND-\ TAGS

-I XOR -I T AG6

Comments

Causes LEVEL 2
to be defined

Causes LEVEL 3
to be defined

If LEVEL 3 is cal led before LEVEL 2 it would be an error, and the line would be flagged as undefined.

When a macro of level n contains another macro of the level n + 1, calling the level n macro results in the

generation of the body of the macro into the user's program in the normal manner until the .DEFIN statement

of the level n + 1 macro is encountered; the level n + 1 macro is then defined and does not appear in the user's

program. When the definition of the I eve I n + 1 is completed (. ENDM encountered), the Assembler continues

to generate the level n body into the user's program until, or unless, the entire level n macro has been generated.

4.S REDEFINITION OF MACROS

If a macro name, which has been previously defined, appears within another definition, the macro is redefined

and the original definition is eliminated. For example,

-I . DEFIN -I INDXSV

-I JMS -I SAVE

-I JMP -l SAVXT

SAVE-I 0

-I LAC -j 10

-I DAC-1 TMp#

-\ LAC -I 11

-\ DAC -I TMPJ#

4-8

-! JMP* -! SAVE

SAVXT=.

-! .DEFIN-!INDXSV

-I JMS -I SAVE

-1 .ENDM

-! .ENDM

When the macro INDXSV is called for the first time, the subroutine calling sequence is generated and followed

immediately by the subroutine itself. After the subroutine is generated, a . DEFIN that contains the name

INDXSV is encountered. This new macro is defined and takes the place of the original macro INDXSV. All

subsequent calls to INDXSV cause only the calling sequence to be generated. The original definition of INDXSV

will not be removed until a~er the expansion is complete.

Call Expansion

-f INDXSV -f JMS -! SA VE

-f JMP -! SAVXT

SAVE-! 0

-! LAC -I 10

-f DAC-j TMf>N
-! LAC -I 11

-f DAC -l TMPl#

-f JMP* -l SAVE

SAVXT=.

-I INDXSV -! JMS -f SAVE

4.6 MACRO CALLS WITHIN MACRO DEFINITIONS

The body of a macro definition may contain calls for other macros which have not yet been defined, However,

the embedded calls must be defined before a call is issued to the macro which contains the embedded call.

Embedded calls are allowed only to three levels.

Example:

-I . DEFIN -l MACl ,A,B ,C,D IE

-f LAC -f A

-I TAD-! B

-! MAC2-! C ,D /EMBEDDED CALL

-! DAC-! E

4-9

-I .ENDM

-..j . DEFIN -I MAC2,A,B /DEFINITION OF EMBEDDED CALL

-I XOR -I A

-I AND -I B

-I .ENDM

The call

-I MACl -I TAG1,TAG2, (400, (777, TAG3

causes generation of

-j LAC -I TAG l

-I TAD -I TAG2

-I MAC2 -I (400, (777

-\ XOR -I (400

-I AND -I (777

-I DAC -I T AG3

4.7 RECURSIVE CALLS

Although it is legal for a macro definition to contain an embedded call to itself, it must be avoided because

the expansion wi II cause more than three I eve Is to occur.

Example:

-I .DEFIN -I MAC,A,B,C

-I LAC -I A

-ITAD-IB

-I DAC -IC

-I MAC -I A,B,C /RECURSIVE CALL

-I .ENDM

When a call for MAC is encountered by the Assembler, it searches memory for the definition and expands it.

Since there is another call for MAC contained within the definition, the Assembler goes back once again to

obtain the definition; this process would never cease, if more than three levels were allowed. A conditional

assembly statement could be used, however, to I imit the number of levels as in the fol lowing example.

Example:

A=O
8=3

-I .DEFIN -I MAC,C,D

4-10

-I LAC -IC

-I DAC-j D

A= A+ l

-I . IFNZR -j B-A

-I MAC -I SAVE,TEMP /RECURSIVE CALL

-I . ENDC

-I .ENDM

Names and arguments of nested macros and arguments of imbedded cal Is may be substituted and used with perfect

generality.

Example:

The call

-j .DEFIN -j MACl ,A,B,C,D

-I LAC-\ A

-I ADD-\ B

-j DAC-\ C

-j .DEFIN -j D,E

-I AND-I A

-\ DAC-\ E

-\ . ENDM

-I .ENDM

-I .DEFIN -I MAC2,M,N,0,P,Q, ?R

ISZ -I M

-I JMP-j R

-I MAC I -I N, 0 Ip, Q

R=.

-I .ENDM

-I MAC2-I COUNT,TAG1,TAG2,TAG3,MAC3

causes the generation of

-j ISZ -j COUNT

-I JMP -j .. 0000

-I LAC-\ TAG 1

-\ ADD -I TAG2

-I DAC -I T AG3
.. 0000=.

It also causes the definition of MAC3

4-11

5. 1 INTRODUCTION

CHAPTER 5

OPERATING PROCEDURES

Detai_led descriptions of the assembler calling procedure, command string format, general operating procedures

and printouts are given in this chapter.

5.2 CALLING PROCEDURE

The MACR0-15 Assembler is called by typing MACRO) after the Monitor's $ request. When the Assembler

has been loaded, it identifies itself by typing:

MACR0-15 VNN)

on the Teletype and waiting for command string lines from the user.

5.3 GENERAL COMMAND CHARACTERS

The following characters are frequently used in the entry and control of MACRO programs.

Character Printout

RUBOUT (Echoes \) delete single character

CTRL U (Echoes@) delete current line

CTRL P (Echoes tP) a. If the input file is sectioned into separate units ending with a . EOT, ready the
input device with the next section and type CTRL P.

b. If paper tape input, or sectional input, ready the input device with the next pass
and type tP.

c. If the Assembler is not waiting for more input, or is not waiting to start the next
pass, typing tP will cause the Assembler to restart at PASS 1.

CTRL D (Echoes tD) If the user specifies the Teletype as the input parameter device, he can delimit the
parameter code by typing control D(tD). MACRO will respond with EOT1P. The user
should then ready the input device assigned to .DAT-11 and type t P. MACRO will
immediately begin assembling programs.

5-1

5.4 COMMAND STRING

The command string format consists of a string of options, fol lowed by a left arrow, fol lowed by the program

name, followed by a terminator.

OPTIONS ... ALE NAME

The format for the option string is flexible; that for the program name after the left arrow is fixed. Some ex­

amples of the command string are given below. Terminating the command string with a carriage return will

cause MACRO to re-initialize itself to PASS 1 at the completion of assembly. Terminating the command string

with ALT MODE will cause a return to the MONITOR at the end of assembly.

Example 1:

P,L,S,B ... FILE

Example 2:

CA 8 L,S, N,P VP ,P,P HELLO G E ... FILE1

The option designators may be typed in any sequence so long as they appear on the same line. A file name

must be typed. All characters to the left of the left arrow which do not represent valid options are ignored.

Example 3:

No options are required in the command string. If no options are specified, it is assumed that the programmer

is assembling for erron, therefore, all assembly errors are printed on the Teletype. If a command string error

occurs, the whole line must be retyped, starting with the command string options.

5.4. 1 Program Name

A name can be any of the valid symbol characters and can appear in any order.

Examples:

PROPER NAME

123456
ABCDEF
J

. % .•••

EXTENSION

789
GHI
K

5-2

5.4.2 Options

As illustrated in the examples, the options may be used in any combination or not at all. If no options are

desired, • is sufficient and the sole output will be assembly error messages on the Teletype. The following

table shows the action and the default of the options.

Option

B

L

p

N

A

v

s
c

G

x

Action

Generate a binary file

Ger.erate a listing file on the requested
output device.

Before assembly begins read program
parameters from DAT SLOT-10. The
device assigned to DAT-10 must be non­
file-oriented. The code read from DAT
SLOT-10 is read only once; for this
reason only direct assignments should be
used.

Number each source line (decimal). If
this option is used, it is not necessary to
type the L option.

Print symbols at end of PASS 2 in alpha­
numeric sequence

Print symbols at end of PASS 2 in value
sequence.

Same as selecting both A and V above.

Program areas that fall between unsatis­
fied conditionals are not printed. It is
not necessary to type the L option if
this option is used.

Print only the source line of a macro
expansion. It is not necessary to type
L option.

At completion of PASS 2, PASS 3 is
loaded to perform the cross-referencing
operation, it is not necessary to type
the Lor N option if this option is used.
At completion of PASS 3 the Assembler
wil I ca II in PASS 1 and 2, to continue
assemb I ing programs. If the command
string was terminated by an ALT MODE,
control wi II return to the Monitor at the
end of assembly.

5-3

Default Action

A binary file is not generated,

A listing file is not generated
(see options N,C).

No parameters, begin assmebly
immediately after command string
termination.

Source Ii nes are not numbered.

Symbols are not printed in alpha­
numeric sequence.

Symbols are not printed in value
sequence. (If neither option V nor
A is requested, symbols are not
printed.)

Symbols ere not printed.

A II source I ines are printed .

Generate printouts for macro expan­
sions and expandable pseudo-ops
(e.g. , REPT)

A cross-reference is not provided
and PASS 3 is not called in.

5.5 ASSEMBLY LISTINGS

If the user requests a listing via the command string, the Assembler will produce an output listing on the

requested output device. The top of the first page of the listing will contain the name of the program as given

in the monitor command string. The body of the listing will be formatted as follows.

where:

Line Error
Number Flags

xxxx xxx

Line Number=

Flags=

Location=

Address Mode =
A= absolute
R = relocatable

Object Code =

Address Type=

A= absolute
R = relocatable
E =external

Location
Address Object Address

Source Statement
Mode Code Type

xxxxx [R] xxxxxx [Rl x x
[Al [A]

[El

Each source line is numbered (decimal), comments lines and generated
lines are not included. Lines are not numbered unless the X, or N
option is specified.

Errors encountered by the assembler

Relative or absolute location assigned to the object code.

Indicates the type of user address.

The contents of the location (in octal)

Indicates the classification of the object code.

Variable locations, and object codes assigned for literals and external symbols are listed following the program.

5.6 SYMBOL TABLE OUTPUT

At the end of PASS 2, the symbol table may be output. If the A option is used, the table will be printed in

alphanumeric sequence; if the V option is used, the symbol table will be printed in numeric value sequence;

if the S option is used, the symbol table will be output in both alphanumeric and numeric sequence. The format

is as follows:

Symbol

SYMBLl
SYMBL2
DIRECT

Value

xxxxx
xxxxx

xx xx xx

5-4

Type

E
R
A

The Xs represent the value assigned to the symbol. This is usually the location where the value is defined.

Note that for SYMBL 1 and SYMBL2 there are five Xs but that there are six Xs for the symbol DIRECT. Symbols

having six octal numbers to represent their values are directed assignments.

The symbol table shows the type of symbol:

A= absolute

R = relocatable

E = externai

Locations assigned to variables immediately precede the last object code producing statement in the assembled

program. Locations and object codes assigned for literals and external symbols are listed immediately following

the variables; if no variables are used in the program, they immediately follow the program.

5.7 RUNNING INSTRUCTIONS

When the Assembler is ready,

a. Place the source program to be assembled on the appropriate input device. (If paper tape, push
the tape-feed button to clear the end-of-tape flag.)

b. Type the command string.

5.7. 1 Paper Tape Input Only

The following steps are required when the source program is encountered in the paper tape reader:

a. At the end of PASS 1, MACRO types

END PASS 1
tP

b. Replace the source tape in the reoder, pushing the tape-feed button to clear the end-of-tape flog.

c. Type CTRL P to start PASS 2.

At the end of PASS 2, PASS 3 will be loaded by the Assembler to perform the cross-referencing operation. At

completion, PASS 1 and 2 will be reloaded to assemble additional programs.

5. 7. 2 Cross-Reference Output

When a cross reference output is requested, the symbols are I isted in alphabetic sequence. The first address

after the symbol is the location where the symbol is defined. All subsequent locations represent the line number

{dee i ma I) where the symbo I was referenced • Leading zeros are suppressed for the cross-reference symbol tab le •

Ten locations are printed on one line and subsequent locations are continued on the next line.

5-5

Example:

PAGE

A 1
xxxxx
5000
100

xxxxx xxxxx. xxxxx
xxxxx

B
SYMBOL

5.8 PROGRAM RELOCATION

xxxxx
xxxxx

The normal output from the MACR0-15 Assembler is a relocatable object program, which may be loaded into

any part of memory regardless of which locations are assigned at assembly time. To accomplish this, the address

portion of some instructions must have a relocation constant added to it. This relocation constant, is added to

it. This relocation constant, is added at load time by linking the loader; it is equal to the difference between

the memory location that an instruction is actually loaded into and the location that was assigned to it at

assembly time. The Assembler determines which storage words are relocatable (marking them with an R in the

listing), which are absolute (marking these non-relocatable words with an A) and which are external (marking

these with an E). The rules that the Assembler follows to determine whether a storage word is absolute or relo­

catable are as follows.

a. If the address is a number (not a symbol), the address is absolute.

b. If an address is a symbol which is defined by a direct assignment statement (i.e.,=) and the right­
hand side of the assignment is a number, all references to the symbol will be absolute.

c. If a user label occurs within a block of coding that is absolute, the label is absolute.

d. Variables, undefined symbols, external transfer vectors, and literals get the same relocation as was
in effect when . END was encountered in PASS J.

e. . LOCATION counter reference) . GET current re locatabil ity.

f. All others are relocatable.

The following table depicts the manner in which the Assembler handles expressions which contain both absolute

and relocatable elements:

(A=absolute, R=relocatable)

A+A=A
A-A=A
A+R=R
A - R= R
R+ A= R
R-A=R
R + R = R and flagged as possible error
R-R=A

5-6

If multiplication or division is performed on a relocatable symbol, it will be flagged as a possible relocation

error.

If a relocatable program exceeds 4K, the following warning message will be typed at the end of PASS 2:

*WARNING*PROG> 4K

5.9 ERROR CONDITIONS AND RECOVERY PROCEDURES

Printout Recovery Procedure

IOPS 4 Device is not ready. Ready device and type

CTRL R (tR)

5. 9. 1 Restart Control Entries

CTRL P

CTRL C

5. JO ERROR DETECTION

IOPS 0-43 unrecoverable 1/0 error. Control re­
turns to Monitor (see Monitors manual).

Restart Assembler, if running

Return to Monitor

MACR0-15 examines each source statement for possible errors. The statement which contains the error will be

flagged by one or several letters in the left-hand margin of the line, or, if the lines are numbered, between

the line number and the location. The following table shows the error flags and their meanings.

Flag

A

B

D

E

Meaning

Error in direct symbol table assignment; assignment ignored.

a. Memory bonk error (program segment too large)

b. Page error - the location of an instruction and the address it refer-
ences are on different pages.

The statement contains a reference to a multiply defined symbol. It is
assembled with the first value defined.

Erroneous results may have been produced; will also occur on undefined
.END value.

Line ignored.

a. Relocatable pseudo-op in absolute program .. relocatable

b. Redundant pseudo-op

c. Absolute pseudo-op in relocatable program

5-7

Flag

L

M

N

0

p

Q

R

s
T

u
w
x

Meaning

a. Literal phasing error. Literal encountered in PASS 2 does not equal
any literal encountered in PASS 1.

b. Nested I iterals are illegal.

An attempt is made to define a symbol which has already been defined.
The symbol retains its original value.

Error in number usage.

Operand error, instruction cannot have an operand.

Phase error. PASS 1 value does not equal PASS 2 value of a symbol.
PASS 1 value will be used.

Questionable line. If the address field has been delimited by a space or
tab and is followed by another symbol.

Possible relocation error.

Symbol error. An illegal character was encountered and ignored.

Tag error a. X used in tag field.
b. An illegal character was encountered in tag field.

Undefined symba I .

Line overflow during macro expansion.

a. Illegal usage of macro name.

b. Illegal use of index register.

In addition ta flagged lines, there are certain conditions which will cause assembly to be terminated prematurely.

Message

Table overflow

Call overflow

WARNING*PROG<4K

Pass

1or2

Cause

Too many symbols and/or macros.

Too many embedded macro calls.

Relocatable program exceeds page boundary
(it is greater than 4K in length).

5-8

6-bit
Printing 7-bit Trimmed

Character ASCII ASCII

@ 100 00
A 101 01
B 102 02
c 103 03
D 104 04
E 105 05
F 106 06
G 107 07
H 110 10
I 111 11
J 112 12
K 113 13
L 114 14
M 115 15
N 116 16
0 117 17
p 120 20
Q 121 21
R 122 22
s 123 23
T 124 24
u 125 25
v 126 26
w 127 27
x 130 30
y 131 31
z 132 32
[* 133 33
\ 134 34
]* 135 35
t* 136 36
.... * 137 37

Null 000
Horizontal Tab 011
Line Feed 012
Vertical Tab 013

Printing
Character

Form Feed
Carriage Return
Rubout

(Space)
I
II

II

$
%
&
I

(
)
*
+

' -

I
0
1
2
3
4
5
6
7
8
9
·*
i
<
=
>
?

7-bit
ASCII

014
015
177
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
063
063
064
065
066
067
070
071
072
073
074
075
076
077

APPENDIX A

CHARACTER SET

6-bit
Trimmed

ASCII

40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

*Illegal as source, except in a comment or text. All other characters are illegal to MACR0-15 and are flagged
and ignored.

A-1

Operate RCR 744020

OPR 740000 CLA 750000

NOP 740000 CLC 750001

CMA 740001 LAS 750004

CML 740002 LAT 750004

OAS 740004 GLK 750010

RAL 740010 LAW 760000

RAR 740020 EAE Type KE09A
IAC 740030

HLT 740040 EAE 640000

xx 740040 osc 640001

SMA 740100 OMQ 640002

SZA 740200 CMQ 640004

SNL 740400 DIV 640323

SML 740400 NORM 640444

SKP 741000 LRS 640500

SPA 741100. LLS 640600

SNA 741200 ALS 640700

SZL 741400 LACS 641001

SPL 741400 LACQ 641002

RTL 742010 ABS 644000

RTR 742020 DIVS 644323

SWHA 742030 CLQ 640000

CLL 744000 FRDIV 650323

STL 744002 LMQ 652000

CCL 744002 MUL 653122

RCL 744010 IDIV 653323

FRDIVS 654323
•. 'O' '~

B-1

APPENDIX B

PERMANENT SYMBOL TABLE

MULS 657122

ID IVS 657323

NORMS 640444

LRSS 660500

LLSS 660600

ALSS 660700

GSM 664000

IOTs

IOT 700000

IORS 700314

DBK 703304

DBR 703344

IOF 700002

ION 700042

CAF 703302

RES 707721

Memory Reference

CAL 000000

DAC 040000

JMS 100000

DZM 140000

LAC 200000

XOR 240000

ADD 300000

TAD 340000

XCT 400000

Memory Reference Index Instructions Mode Switching
{Cont) Which Take an Immediate

Nine-bit Operand EBA 707724
ISZ 440000 OBA 707722
AND 400000 AAC 723000

SAD 540000
AAS 720000 Index Register

JMP 600000
AXR 737000 Value

AXS 725000 x 10000
Automatic Priority

Interrupt Type KF09A Index and Limit Register
Instructions Which do

SPI 705501 not use Operands

ISA 705504 CLLR 736000

Memory Extension PAL 722000

Control Type KE09B PAX 721000

SEM 707701 PLA 730000

EEM 707702 PLX 731000

LEM 707704 PXA 724000

PXL 726000

B-2

Name

Space

Horizontal tab

Semicolon

Carri age return

Plus

Minus

Asterisk

Slash

Character

Ampersand

Exclamation point

Back slash

Opening parenthesis

Closing parenthesis

Equals

Opening angle bracket

Closing angle bracket

Comma

Question mark

Quotation marks

Apostrophe

Number Sign

Dollar sign

Line feed

Form feed

Vertical tab

Symbol

-I

)

+

*

I
&

\

<
>

?
II

$

APPENDIX C

MACR0-15 CHARACTER INTERPRETATION

Function

Field delimiter. Designated by L...I in this manual.

Field delimiter. Designated by -J in this manual.

Statement terminator

Statement terminator

Addition operator (two's complement)

Subtraction operator (addition of two's complement)

Multiplication operator or indirect addressing indicator

Division operator or comment initiator

Logical AND operator

Inclusive OR operator

Exclusive OR operator

Initiate literal

Terminate literal

Direct Assignment

Argument delimiter

Argument delimiter

An argument delimiter in MACRO definitions or an
exclusive OR operator.

Create symbol designator in macros

Text string indicators

Text string indicator

Variable indicator

Real argument continuation

C-1

Null

Delete

Character

I I lega I Characters

Function

Blank Character. Ignored by the Assembler

Rubout character. Ignored by the Assembler

Only those characters listed on the preceding table are legal in MACR0-15 source programs, all other characters

will be ignored and flagged as errors. The following characters, although they are illegal as source, may be

used within comments or 'in .ASCII and .SIXBT pseudo-ops.

Character Name

Commercial at

Opening square bracket

Closing square bracket

Up arrow

Left arrow

Colon

C-2

Symbol

@

[

]

Pseudo-op Section Format

.ABS 3.2.1 -I .ABS -! "ILD)

.ABSP 3 .2. 1 -I .ABSP-1 NLD)

.ASCII 3.8. 1 label -I .ASCII1-1/text/<octal>)

.BLOCK 3.5 label -! . BLOCK -! exp)

.DBREL 3.2 -I .DBREL)

.DEC 3.4 -I .DEC)

. DEFIN 3.16 -I . D EFI N 1-1 macro name, args)

.DSA 3.11 label-! .DSA1-1exp)

. EBREL 3.2 -I .EBREL)

. EJECT 3 .14
_,

. EJECT)

.END 3.6
_,

. END1-1 START)

.ENDC 3. 13 -.j .ENDC)

.ENDM 3. 16 -I .ENDM)

.EOT 3.7 -I .EOT)

.ETC 3.16 -I . ETC 1-1args ,args)

D-1

APPENDIX D

SUMMARY OF MACR0-9 PSEUDO-OPS

Function

Object program is output in absolute,
blocked, checksummed format for
loading by the Absolute Binary Loader

Input text strings in 7-bit ASCII code,
with the first character serving as de-
limiter. Octal codes for nonprinting
control characters are enclosed in
angle brackets.

Reserves a block of storage words equa I
to the express ion. If a label is used,
it references the first word in the block.

Enable bank mode relocation.

Sets prevailing radix to decimal.

Defines macros .

Defines a user symbol which is to be
used only in the address field.

Disable bank mode relocation.

Skip to head of form on listing device .

Must terminate every source program.
START is the address of the first in-
struction to be executed.

Terminates conditional coding in . IF
statements.

Terminates the body of a macro
definition.

Must terminate physical program seg-
men ts, except the I ast, which is ter-
minated by . END.

Used in macro definitions to continue
the list of dummy arguments on sue-
ceeding lines.

Pseudo-op Section Format Function

.FULL 3.2.2
..,

.FULL) Produces absolute, unblocked, un-
. FULLP 3.2.2

..,
. FULLP) checksummed binary object programs.

Used only for paper tape output .

.GLOBL 3.9 .., . GLOBL1-1sym ,sym,sym) Used to declare all internal and ex-
ternal symbols which reference other
programs . Needed by Linking Loader.

. IFxxx 3. 13 ..., . IFxxx1-1exp) If a condition is satisfied, the source
coding following the . IF statement and
terminating with an . ENDC statement
is assembled .

.IODEV 3. 10 .., . IOD EV'--'. DAT numbers) Specifies . DAT slots and associated
I/O handlers required by this program .

.LOC 3.3
..,

.LOC'--'exp) Sets the location counter to the value
of the expression.

.OCT 3 .4 --\ . OCT) Sets the prevailing radix to octal.
Assumed at start of every program.

. REPT 3. 12 --1 . REPT L...J count, n) Repeats the object code of the next
object code generating instruction
Count times. Optionally, the gener-
ated word may be incremented by n
each time it is repeated.

. SIXBT 3.8.2 label --1.SIXBT '--'/text/<octol >) Input text strings in 6-bit trimmed
ASCII, with first character as de-
limiter. Numbers enclosed in angle
brackets are truncated to one 6-bit
octal character.

. SIZE 3. 15 -.j . SIZE) MACR0-15 outputs the address of last
location plus one occupied by the
object program .

. TITLE 3. 1
..,

. TITLE'--'name and/or) The first six legal symbol characters
any commenls are printed as header of the program

listing. A space, tab, or a carriage
return will delimit the name.

D-2

APPENDIX E

SUMMARY OF SYSTEM MACROS

System macros (Monitor commands) are defined in the Monitor manual, and are summarized here for the

convenience of the PDP-15 programmers.

System macros are predefined to MACR0-15. To use a system macro, the programmer writes a macro call state­

ment, consisting of the macro name and a string of rea I arguments.

To initialize a device and device handler

-I .INIT1.-.1a,f,r

where a .DAT slot number in octal

f 0 for input files; l for output files

r = user restart address*

To read a line of data from a device to a user's buffer

-I .READ~a,m,l ,w

where a .DAT slot number in octal

m a number, 0 through 4, specifying the data mode:

0 = !OPS binary
l = Image binary
2 = !OPS ASCII
3 = Image alphanumeric
4 =Dump mode

line buffer address

w word count of the line buffer in decimal, including
two-word header

To write a I ine of data from the user's buffer to a device

-I . WRITE1.-.1 a ,m, I, w

where a .DAT slot number in octal

m = a number, 0 through 4, specifying the data mode:

0 = IOPS binary
l = Image binary

*Meaningful only when device associated with . DAT slot a is the Teletype. Typing CTRLP on the keyboard will
force control to location r.

E-1

2 = IOPS ASCII
3 = Image alphanumeric
4 =Dump mode

= I ine buffer address

w =word count of line buffer in decimal, including the two­
word header

To detect the availability of a line buffer

-I .WAIT&....1a

where a , DAT slot number in octal. After the previous . READ,
.WRITE, or . TRAN command is completed, .WAIT re­
turns control to the user at LOC+2

To detect the availability of a line buffer and transfer control to ADDR if not available

-I .WAITRL....la, ADDR

where a DAT slot number (octal radix)

ADDR = Address to which control is transferred if buffer is not available.

To close a file

-I . c LOSE L ,O

where a = .DAT slot number in octal

To set the real-time clock ton and start it.

where n = number of clock increments in decimal. Each increment
is 1/60 second (in 60-cycle systems) or 1/50-cycle systems)

c = address of subroutine to handle interrupt at end of interval

To return control to Keyboard Monitor, or halt in I/O Monitor environment

-I .EXIT)

MASS STORAGE COMMANDS FOR DECTAPE, MAGNETIC TAPE,
DISK AND DRUM 0 NL Y

To search for a file, and position the device for subsequent . READ commands

where a . DAT slot number in octal

d address of user directory entry block

E-2

To examine a file directory, find a free directory entry block and transfer the block to the device

-I . ENTER&....1a,d

where a . DAT slot number in octa I

d address of user directory entry block

To clear a file directory to zero

where a = .DAT slot number in octal

To rewind, backspace, skip, write end-of-file, or write blank tape on nonfile-oriented magnetic tape

-I .MTAPf L.-la,xx

where a = .DAT slot number in octal

xx = a number, 00 through 07, specifying one of the functions
shown below

00 = Rewind to load point*
02 = Backspace one record*
03 = Backspace one file
04 =Write end-of-file
05 = Skip one record
06 = Skip forward one file
07 = Skip to logical end-of-file

or a number, 10 through 16, to describe the tape configuration

10 = Even parity, 200 bpi
11 = Even parity, 556 bpi
12 = Even parity, 800 bpi
14 = Odd parity, 200 bpi
15 = Odd parity, 556 bpi
16 = Odd parity, 800 bpi

To read from, or write to any user file-structured mass storage device

-I . TRANL.-la,d,b,I ,w

where a = .DAT slot number in octal

GI. ft. "= transfer direction:

o = Inrrut forward
1 = Input reverse
2 = Output forward
3 == Output reverse

b = device address in octal, such as block number for DECtape

= core starting address

w = word count in decimal

*Moy be used with any non-file-structured mass storage device.

E-3

To delete a file

where a .DAT slot number in octal

d starting address of the three-word block of storage in user area
containing the file name and extension of file to be deleted
from the device.

To rename a file

-\ . RE NAM._, a ,d

where a .DAT slot number in octal

d starting address of two three-word blocks of storage in user
area containing the file names and extensions of the file to
be renamed, and the new name, respectively.

To determine whether a file is present on a device

-\ .FSTAT._,a,d

where a .DAT slot number

d starting address of three-word block in user area containing
the file name and extension of the file whose status is desired.

BACKGROUND/FOREGROUND MONITOR SYSTEM COMMANDS

To read a line of data from a device to a user's buffer in real-time

-1.REALR._,a,n,l,w,ADDR,p

where a = DAT slot number in octal

m = Data mode specification

0 = IOPS binary
1 = Image binary
2 = IOPS ASCII
3 =Image Alphanumeric
4= Dump mode

I = Line buffer address

w = word count of line buffer in decimal, including the two-word leader

ADDR = 15-bit address of closed subroutine that is given control when the
request made by • REA LR is completed.

p = APJ priority level at which control is to be transferred to ADDR:

0 =mainstream
4 = level of . REALR
5 = API software level 5
6 = API software level 6
7 = API software level 7

E-4

To write a line of data from user's buffer to a device in real time

_, . REALW L...la,m ,I ,w ,ADDR,p

where a = DAT slot number in octal

m Data mode specification

0 = IOPS binary
1 = Image binary
2 = IOPS ASCII
3 =Image Alphanumeric
4 =Dump mode

I = line buffer address

w = word count of line buffer in decimal, including the two-word leader

ADDR = 15-bit address of closed subroutine that is given control when the
request mode by . REALW is completed

p = API priority level at which control is to be transferred to ADDR

0 = mainstream
4 = level of • REALR
5 = API software level 5
6 = API software level 6
7 = API software level 7

To indicate, in a FOREGROUND job, that control is to be relinquished to a BACKGROUND job

_, .IDLE

To set the real-time clock ton and start it

_, .TIMERL-ln,c,p

where n = number of clock increments in decimal. Each increment is 1/60
of a second (1/50 in 50 Hz systems)

c = address of subroutine to handle interrupt at end of interval

p API priority level at which control is to be transferred to c

0 = mainstream
4 = level of . TIMER
5 = API software level 5
6 = A PI software I eve I 6
7 = API software level 7

E-5

CLO AO

l

17121/J

17720
17721
177?2
17723
17724
177?5
17726
177'27
17730
17731
17132

PAGE 1

70!3302
7l"0101
700144
70!0112
711Jlt!301
700312
71'!1t1322

70!0101
701d144
70!16112

703302
1o;7756
117746
057757
741100!
6t774L'
117746
057760
117741)
117746
077757

APPENDIX F

SOURCE LISTING OF THE ABSOLUTE BINARY LOADER

/COPYRIGHT 1969, OIGliAL EOUtPHERT CORP,, HAYNIRO: MA$S~
I
/PDP-15/li HARDWARE REAOIN LOADERS
I
/QEPINING ~LOW PRODUCES THE ~ow SPEED VERSION
/OTHERWISE, THE HIG~ seEEO VERSION IS PROOOCED~
I
/LON SPEED READER VERSfONC
/HARDWARE REAOIN TO 7700 <17708 ff 8Kl, WHEN IT HA~TS;
/PLACE BINARY PROGRAM !APE IN LOW SPE,9 REIDER
IANB PRESS START, WITH BANK/PAGE HOOE SWITCH IN P6CE POSITION~
I
/fIGH SPEED READER VERSION:
/HARDWARE REAOIN TO 7721/J <17720 ff 8Kl, WHEN If HALTS;
/PLACE BINARY PROGRAM TAPE IN RICH SP,ED R£AOER
IANB PRESS START, WIT" BANK/PAGE HOOE SWITCH IN PAGE POSfTJON~
I
/LOADER HALTS;
I
IAC=7?7777 - PROGRAM LOADED,
/AC=NONtE~O - CHFCKSUH ERROR ON LAST ilOCK LOADED,
I REPOSITION TAPE AT BLANK FRAM£ PAID~ TD
I ~EGJNNING Of LAST BLOCK IND PRtSS START
I TO REREAD,
I TO IGNORE EHROR, PRESS CONTINUE.
I
CAF=703302
RSf!!:700101
R SEU 70111144
RR8"7iH1112
KSn7I003D!1
KR8:!:710lll.Sl.2
l<RS=701ll322

,FULL
SKPF"LG:RSF
ROSLCUKSB
ROBFR:RKR

,LOC 17720
,IfOEF XLOW

SKPfLG=KSf
ROSLCT=KRS
ROBf R:KAfl

• LOC 1771llB
,ENOC
CAf

LONXBK DiH
JMS
D•C
SP•

LOCK SH
LORE AO
LOS HO

JMP LOXfR
JMS LDREAD
IJAC LOWOCT
JMS LDREAO

LONX~O JHS LOREAO
o~c· "'OSTAD

F-1

l.CLEA8 fLACS
l.C~EC~SUHHlNG lOCATION
l.GFT A MORD

I.BLOC~ HEADING:LOAOING ABBRESi
l.STARl BLOCK

ALOAO 9ATA INTO

CLOA!J

17733
17734
17735
17736
17737
1774111
17741
17742
17743
17744
17745
17746

17747
177'50
17751
l 77"i2
17753
177'54

17755

17756
17757
1776flJ

PAGE 2

457757
4'5776lll
617731
3'57756
7 4 !020111
7401114111
617721
0'57761-1
4';7761'1
637757
7'511111141
lo'!Pllllll01i1

3'H756
lll57756
70!111144
7111111101
617752
7Clllll112

637746

l:j{llftlOl0f11
IO.Af/J!ll0A
00llllll!0A
0111111111011'

LOXFR

I.ORE AO

LO RB A

LOCTR
LOT HP
LOMSI(

LOCK SM
LUST AD
LOWDCT

IS~ LUSTAO
1;;2 LOWDC"1"
JHP LONXWI>
TAO LOCKSM
SH
HLT
JMP LUNXRK
OAC LUWDCT
IS2 LUWOCT
JMP• LDSTAD
CLC!HLT
A
, lFOff XLOW
LAW -3
OAC LUCTR
Oi!M LUTMP
,ENDr.
TAO LDCKSM
DAC LOCKSM
RO SL CT
SK PF LG
JMP , -1
RURFR
,lf"OEF XLUW
TAn LOMSK
SPA!CL:L
JMP LOROA
TAn LUTMP
ISi' LOCTR
SKP ! RTL
,t.NDr:
JMP• LDRF.:AO
, lFUEF "LOW
RTL
RTI.
DAC LOTMP
JMP LOROA

"' A
777600
,ENUC

9J

(II

,ENU
Nu EflR'lR LINES

F-2

l.HEHOR'f
/.fINliHEO LOADING
I.NO
I.ADD INTO CHF.C~SUH

/,CHECISSUM ERROR

I.EXECUTE SYARl ADDRESS
/,HANU4LLY START USER PROGRIH

/WA IT FOR lilt.ADER
l.RFAD BUFHH

l.BlNARV FRJM[
/YES
/,NO

l.ACCUHULAT£ 3 (H4MES
I.INTO 1 Bl~ARY WORO

/PACK E:OUNTt:R
ISINABV WOlilO
l.BINARV FRJHE MASK

l.CHECIS$UM
I.LOADING/STARTING ADDHESS
I.WORD COUNT

APPENDIX G

SYMBOL TABLE SIZES

The following symbol table sizes are for SK systems with the full complement of skip IOTs in the skip chain.

MACRO

NOTE

Handlers listed are for DAT slots -11, -12, - 13, and - 10,
respectively.

a. PRB, TTA, PPC, TTA - 317 symbols (decimal)

b. DTC, TTA, PPC, TTA - 189 symbols (decimal)

For .ABS or .FULL output PPB must be used - delete 60 symbols (decimal) from above counts.

MACRO A

a. PRB, TTA, PPC, TTA - 610 symbols (decimal)

b. DTC, TTA, PPC, TIA - 482 symbols (decimal)

c. DTB, TTA, DTB, TTA - 261 symbols (decimal)

G-1

AAC, AAS, AXR, AXS, 2-24

.ABSP, 2-19, 3-2, 3-4

.ABS, 2-19, 3-2, 3-4

. ABS address error, 3-3

absolute {A), 5-5

Absolute addresses (non-relocatable), 1-1

absolute binary loader, 3-2, -3

Absolute Binary Loader Source Listing, F-1

absolute pseudo ops {.ABS, .ABSP), 3-2

absolute storage word, 5-6

Address Assignments, 2-11

Indexed Addressing, 2-12

Indirect Addressing, 2-12

Literals, 2-13

Referencing the Location Counter, 2-12

location counter, 2-11

machine instructions, 2-11

storage words, 2-11

Address Field, 2-18

bank addressing, 2-19

carriage return/line feed, 2-18

delimiters, 2-16, 2-17, 2-18

error condition, 2-19

op code, 2-18

pseudo op code, 2-18

semicolon, 2-18

slash, 2-19

space, 2-18

tab, 2-18

terminator, 2-18

address field, 2-1, 2-2, 2-6, 2- 13

address link, 2-13

address mode, 5-4

address type, 5-4

ALT MODE, 5-2

MACR0-15 INDEX

angle bracket { <), 3-8, 4-5

apostrophe ('), 3-8

Argument Delimiters and Terminators, 4-5

angle brackets(<), 4-5

carriage return ()) , 4-5

comma (,), 4-5

space (...._.) , 4-5

tab (-I), 4-5

arithmetic operator, 2-9

.ASCII, 4-3

ASCII characters 6-bit trimmed, 3-8

. ASCII pseudo op, 3-7

.ASCII statements, 3-8

Assembler operations, 2-7

Assembler Priority List, 2-25

machine ops, 2-25

PASSl, 2-25

pseudo ops, 2-25

system macros, 2-25

Assembler Processing, 1-2

executable object program, 1-2

external symbol, 1-2

standard object code, 1-2

three pass operation, 1-2

two pass operation, 1-2

Assembly Listings, 5-4

address mode, 5-4

address type, 5-4

flags, 5-4

line number, 5-4

location, 5-4

object code, 5-4

asterisk, 2-12, 2-17, 2-18

at sign{@), 2-3

auto index registers, 2-20

MACR0-15 INDEX (Cont)

bank addressing, 2-19, 3-3

bank bits, 2-23

bank error, 2-12

bank mode, 2-23

base 8, 2-8, 3-5

base 10, 3-5

bit 4, 2-17

blank line, 2-20, 2-21

. BLOCK I 3-4, 3-6

block body, 3-2

block heading, 3-2

Boolean operator, 2-9

bracket, see angle bracket

Calling Procedure, 5-1

carriage return ()), 2-1, 3-8, 4-3, 4-5

carriage return/line feed, 2-15, 2-18, 2-20

Character Interpretation, C-1, C-2

chcracters, 2-3

Character Set table, A-1

6-bit trimmed ASCII, A-1

7-bit ASCII, A-1

codes (octal), 3-8

colon (:), 2-3

comma (,), 4-5

Command String, 5-2

Options, 5-3

Program Names, 5-2

ALT MODE I 5-2

command string error, 5-2

left arrow, 5-2

option string format, 5-2

program name format, 5-2

command string error, 5-2

.COMMENTS, 3-2

comments, 2-2, 2-3, 2-8, 4-2

Comments Field, 2-20

blank line, 2-20, 2-21

carriage return/line feed, 2-20

semicolon (;), 2-20, 2-21

space (.....,), 2-20, 2-21

tab (-.f) , 2-20, 2-21

comments field, 2-1, 2-3

Conditional Assembly (.IF xxx and .ENDC), 3-12

conditional statements, 3-13

IF statements, 3-13

nested conditional statements, 3-13

nested IF statements, 3-13

recursive macro calls, 3-14

conditional assembly statement, 4-10

conditional statements, 3-12, 3-13, 3-14

continuation lines, 4-4

Created Symbols, 4-6

dummy argument, 4-6

question mark (?) , 4-6

symbolic tag, 4-6

count, 3-11

Cross Reference Output, 5-5

CTRL D (tD), 5-1

CTRL P (tP), 5-1

CTRL U (@), 5-1

DAT (Device Assignment Table), 3-10

OBA instruction, 3-3

• DBREL (disable bank mode relocation), 3-1, 3-4

.DEC (Decimal), 2-8, 3-5

. DEC pseudo op, 2-9

decimal integer, 2-9

decimal radix, 2-9

decimal values, 2-8

MACR0-15 INDEX (Cont)

defer bit, 2-12, 2-17

.DEFIN, 3-14, 4-2

. D EFI N statement, 4-2, 4-8

Defining a Macro, 4-1

Defining Macros (.DEFIN, .ETC., and .ENDM),
3-14

Defining a Symbolic Address (.DSA), 3-10

definition, level of, 4-7, 4-8

delimiter, 2-1, 2-15, 2-16, 2-17, 2-18

also see Argument Delimiters

also see Text Delimiters

direct assignments, 2-16, 5-5

Direct Assignment Statements, 2-4, 2-6, 2-7

assembler operations, 2-7

assigning a symbolic value, 2-7

format, 2-7

forward reference, 2-7

disable bank mode relocation (.DBREL), 3-4

division, 5-7

division by zero, 2-10

dollar sign ($), 4-4

.DSA (define symbol address), 3-10

dummy arguments, 4-1, 4-2, 4-6

dummy argument name, 4-3

duplicate literals, 2-14

DZM (example), 2-5

E, 2-24

EAE instructions, 2-4

. EBREL (enable bank mode re location), 3-1, 3-4

SK systems, G-1

. EJECT (listing control), 3-14

embedded calls, 4-9, 4-10

enable bank made relocation (.EBREL), 3-4

.END, 3-3, 3-6, 3-7

.ENDM, 3-14, 4-2

. EOT (end-of-tape statement), 3-7

error condition, 2-19

Error Conditions and Recovery Procedures, 5-7

IOPS 4, 5-7

IOPS 0-43, 5-7

Error Detection, 5-7

error flags, 5-7, 5-8

equal sign(=), 2-7

equivalent statements, 2-13

.ETC, 3-14, 4-2

Evaluation of Symbols, 2-4

Memory Referencing Instruction Format, 2-5

Special Symbols, 2-5

DZM (example), 2-5

object program storage words, 2-5

period (.), 2-4

permanent symbol. table, 2-4

user's symbol table, 2-4

User definitions: direct assignment statements,
2-4

Forming:

labels, 2-4

macro names, 2-4

variables, 2-4

LAC (example), 2-5

mnemonic symbols, 2-4

symbol labels, 2-5

executable object program, 1-2

Expressions, 2-9

definition of, 2-9

division by zero, 2-10

fractional remainders, 2-10

list of operators, 2-10

external (E), 5-5

external subroutines, 1-1

external symbol, 1-2, 5-5

external transfer vectors, 5-6

flags, 5-4

also see Error Detection

forward reference, 2-7

fractional remainders, 2-10

.FULL, .FULLP, 2-19, 3-3

full binary mode, 1-1

General Command Characters, 5-1

CTRL D (tD), 5-1

CTRL p (t P) I 5-1

CTRL u (@)I 5-1

RUBOUT(\), 5-1

global symbols, 1-3, 2-8, 3-10

. GLOBL (loader control), 3-9

Hardware Requirements and Options, 1-2

PDP-15 systems, 1-2

IF statements, 3-13

illegal characters, 2-3, C-2

increment, 3-11

index bit, 2-12

Indexed Addressing, 2-12

bank error, 2-12

index bit, 2-12

index register symbol, 2-12

location counter, 2-12

page 0, 2-12

spaces, 2-12

tabs, 2-12

Index Instructions, B-2

index register, 2-22, 2-23, 3-3, 4-3

MACR0-15 INDEX (Cont)

index register symbol, 2-12

index register usage, 2-5

indirect addressing, 2-5

Indirect Addressing, 2-12

asterisk, 2-12

defer bit, 2-12

ii legal indirect addressing, 2-12

legal indirect addressing, 2-12

non-memory reference instruction, 2-12

INDXSV I 4-9

input-output transfer instructions, 2-4

Integer Values, 2-9

decimal integer, 2-9

decimal radix, 2-9

negative numbers, 2-9

non-octal digit, 2-9

octa I integer, 2-9

two's complement, 2-9, 2-10

. I OD EV (requesting I/L devices), 3-10

IOPS 0-43, 5-7

1/0 symbol, 2-4

Label Field, 2-15, 2-16

delimiters and terminators, 2-15, 2-16

direct assignments, 2-16

multiply-defined symbol, 2-16

redefinition, 2-16

storage word, 2-14

symbolic label, 2-15

TAG errors (T), 2-16

variables, 2-17

label (or tog) field, 2-1, 2-2, 2-17

label (or tog), 2-1, 2-4

LAC (example), 2-5

LAW, 2-24

MACR0-15 INDEX (Cont}

leading zeroes, 5-5

left arrow, 5-2

left justified, 3-7

level of definition, 4-7, 4-8

line feed ('}, 2-1

line number, 5-4

Linking Loader, 1-1, 1-2

Listings, Assembly, see Assembly Listings

Listing Control (.EJECT}, 3-14

list of operators, 2-10

Literals, 2-13

address fie Id, 2-13

address link, 2-13

duplicate literals, 2-14

equivalent statements, 2-13

operation field, 2-13

parentheses, 2-13

literals, 3-4, 5-5, 5-6

Loader Control (. GLOBL), 3-9

global symbols, 3-10

. LOC, 3-4, 3-5

location, 5-4

location counter, 2-11, 2-12, 2-23, 3-7

Location Counter, Referencing, see Referencing
the Location Counter

. LOC pseudo op, 2-12

Macro Body, 4-2

.ASCII, 4-3

. DEFIN statement, 4-2

dummy arguments, 4-2

dummy argument name, 4-3

. ENDM pseudo op, 4-2

index register usage, 4-3

prohibited symbols, 4-3

. SJXBT I 4-3

Macro Calls, 4-3

Argument Delimiters and Terminators, 4-5

Created Symbo Is, 4-6

continuation lines, 4-4

dollar sign ($}, 4-4

octal (default radix}, 4-4

tag field , 4-4

Macro Calls within Macro Definitions, 4-9

embedded cal Is, 4-9

macro definition, 4-1

macro instruction, 4-1

macro names, 2-4, 4-2

machine instruction op codes, 2-17

machine instructions, 2-11

machine ops, 2-25

Memory Referencing Instruction Format, 2-5

index register usage, 2-5

indirect addressing, 2-5

op code, 2-5

12-bits, 2-5

memory reference instructions, 2-4

mnemonic instruction code, 2-2

mnemonic symbols, 2-4

Monitor commands summary, E-1

Monitor's Device Assignment Table, 3-10

multiplication, 5-7

multiplication operator, 2-18

multiply defined symbol, 2-16

negative numbers, 2-9

nested conditional statements, 3-13

nested IF statements, 3-13

nested macros, 4-7

Nesting of Macros, 4-7

MACR0-15 INDEX (Cont)

. ENDM pseudo-op, 4-7

DEFIN statement, 4-8

level of definition, 4-7, 4-8

NLD, 3-2

non-memory reference instruction, 2-12

non-octal digit, 2-9

Non-Printing Characters, 3-8

angle brackets, 3-8

. ASCII statements, 3-8

character octal codes, 3-8

truncati ng octa I numbers, 3-8

numbers {in operation and address fields), 2-24

numbers (octal), 3-8

Numbers, 2-8

Expressions, 2-9

Integer Values, 2-9

. DEC (decimal), 2-8

. OCT (octal), 2-8

pseudo ops, 2-8

radix, 2-8

Numbers, 2-21

current radix, 2-21

storage word, 2-21

number sign (*) , 2-6, 4-3

object code, 5-4

object program, 1-1

object program storage words, 2-5

Object Program Output, 3-1

. ABS address error, 3-3

absolute binary loader, 3-2, 3-3

absolute pseudo-ops {.ABSP, .ABS), 3-2

block heading, 3-2

OBA instruction, 3-3

. DBREL (disable bank mode relocation), 3-4

. EBREL (Enable bank mode relocation), 3-4

.END, 3-3

. FULL, • FULLP, 3-3

.FULL mode restrictions: .BLOCK, 3-4

literals, 3-4

index register, 3-3

NLD, 3-2

PIP, 3-2

. LOC, 3-4

undefined symbols, 3-4

variables, 3-4

relocation mode switching, 3-4

specification of pseudo-ops, 3-2

starting block, 3-3

.OCT (octal), 2-8, 3-5

octal (default radix), 4-4

octal integer, 2-9

octal numbers, 3-8

• OCT pseudo op, 2-9

op code, 2-5, 2-18

operate instructions, 2-4

Operating Procedures, 5-1

operation code field, 2-2

operation field, 2-1, 2-2, 2-4, 2-6, 2-13

Operation Field, 2-17

asterisk(*), 2-17

defer bit (bit 4), 2-17

delimiters, 2-17

labe I field, 2-17

machine instruction op codes, 2-17

multiplication operator, 2-18

pseudo-op mnemonic symbols, 2-17

S flag, 2-18

space, 2-17

symbol error, 2-18

MACR0-15 INDEX (Cont)

tab, 2-17

user defined symbols, 2-17

operators to use with expressions, list of, 2-10

Options, list of, 5-3

option string fonnat, 5-2

output listing, 1-2

page 0 (zero), 2-12

Paper Tape Input Only, 5-5

parentheses, 2-13

PASSl, 1-2, 2-7, 2-14, 2-25

PASS2, 1-2, 2-7, 3-6, 3-7, 5-4

PDP-15 systems, 1-2

percent sign (%) , 2-3

period (.), 2-4, 3-1

permanent symbol table, 2-4, 2-5, B-1

PIP, 3-2

Program ldenti fication, 3-1

• TITLE, 3-1

program name format, 5-2

Program Names, 5-2

Program Relocation, 5-6

absolute storage words, 5-6

division, 5-7

external transfer vectors, 5-6

literals, 5-6

multiplication, 5-7

relocatable object program, 5-6

relocatable storage words, 6-6

relocation constant, 5-6

undefined symbols, 5-6

variables, 5-6

Program Segments (. EOT), 3-7

END, 3-7

end of tape statement, 3-7

Program size (.SIZE), 3-14

Program Statements, 2-1

address field, 2-1, 2-2

convnents, 2-3

comments field, 2-1

delimiters and terminators, 2-1

fields, 2-1

format, 2-1

label, 2-2

label field, 2-1, 2-2

mnemonic instruction code, 2-2

operation field, 2-1, 2-2

slash(/), 2-1,2-2

statement fonnat, 2-1

space, 2-1

symbolic address, 2-2

tab, 2-1

tag, 2-2

tag field, 2-1

Program Termination (.END), 3-6

starting address, 3-6

prohibited symbols, 4-3

pseudo-op cade, 2-18

pseudo-operation instructions, 1-1, 2-8

Pseudo Operations, 3-1

period (.) , 3-1

pseudo~ps, 2-8, 2-25

pseudo-op mnemonic symbols, 2-17

Pseudo-Ops, S1m1mary of, D-1, D-2

question mark (?) , 4-6

R, 2-24

radix, 2-8, 2-21, 3-6, 4-4

Radix Control (.OCT and .DEC), 3-5

MACR0-15 INPEX (Cont)

base 8 (octal), 3-5

base 10 (decimal), 3-5

Recursive Calls, 4-10

conditional assembly statement, 4-10

imbedded calls, 4-11

nested macros, 4-11

recursive macro calls, 3-14

redefinition, 2-16

Redefinition of Macros, 4-8

.DEFIN, 4-9

INDXSV, 4-9

Referencing the Location Counter, 2-12

.LOC pseudo-op, 2-12

period(.), 2-12

relocatable (R), 5-5

relocatable bincry object program, 1-1, 1-3

relocatable format, 1-2, 1-3

relocatable object program, 5-6

relocatable storage words, 5-6

relocation constant, 5-6

relocation mode switching, 3-4

repeated sequence, 4-1

Repeating Object Coding (. REPT), 3-11

count, 3-11

increment, 3-11

REPT, 3-11

Requesting 1/0 Devices (.IODEV), 3-10

DAT, 3-10

Monitor's Device Assignment Table, 3-10

Reserving Blocks of Storage (.BLOCK), 3-6

PASS2, 3-6

radix, 3-6

RUBOUT (\), 5-1

Running InstNctions, 5-5

Cross Reference Output, 5-5

:·-·

Paper Tape Input Only, 5-5

leading zeroes, 5•5

semicolons, 2-1, 2-15, 2-18, 2-20, 2-21

SET, 2-7

Setting Storage Locations to Zero, 2-6

Setting the Location Counter (.LOC), 3-4

location counter, 3-7

PASS2, 3-7

7-bit .ASCII, 3-7, 3-8

character set table, A-1

S flag, 2-18

6-bit .ASCII, 3-7 I 3-8

character set tab I e, A-1

.SIXBT, 4-3

• SIXBT Pseudo-op, 3-8, C-2

ASCII characters, 6-bit trimmed, 3-8

.SIZE, 3-14

slash(/), 2-1, 2-3, 2-19,

slash not used , 4-3

spaces (.._.), 2-12, 2-15, 2-17, 2-18, 2-20, 2-21,
3-8, 4-3, 4-5

Special Symbols, 2-5

address field, 2-6

index register usage, 2-5

permanent symbol table, 2-5

x, 2-5

specification of pseudo-ops, 3-2

standard object code, 1-2

starting address, 3-6

starting block, 3-3

Statement Evaluation, 2-21

Assembler Priority List, 2-25

Numbers, 2-21

Word Evaluation, 2-22

MACR0-15 INDEX (Cont)

Word Evaluation of the Special Cases, 2-24

Statement Fields, 2-15

Address Fie Id, 2-18

Comments Field, 2-20

Label Field, 2-15

Operation Field, 2-17

statement format, 2-1

storage locations, 2-6

storage words, 2-6, 2-11, 2-15, 2-21

storage words, absolute, 5-6

storage words, relocatable, 5-6

Summary of System Macros, E-1

symbol error, 2-18

symbolic address, 2-2, 2-4

also see Defining a Symbolic Address (.DSA)

symbolic labels, 2-4, 2-5, 2-15

symbolic tag, 4-6

symbolic value, 2-7

Symbols, 2-3

Direct Assignment Statements, 2-6

Evaluation of Symbols, 2-4

Setting Storage Locations to Zero, 2-6

Undefined Symbols, 2-8

Variables, 2-6

characters, 2-3

symbol table, 2-5

Symbol Table Output, 5-4

absolute (A), 5-5

direct assignments, 5-5

external (E), 5-5

literals, 5-5

PASS2, 5-4

relocatable (R), 5-5

variables, 5-5

Symbol Table Sizes, G-1

tabs (-of), 2-1, 2-12, 2-15, 2-17, 2-18, 2-20, 2-21,
3-8, 4-3, 4-5

TAG errors, 2-16

tag field, 4-4
also see label field

terminator, 2-15, 2-17

Text Delimiters, 3-8

angle bracket (<), 3-8

apostrophe (1), 3-8

carriage return ()) , 3-8

spaces (......,.) , 3-8

tabs (-of) , 3-8

Text Handling (.ASCII and .SIXBT), 3-7

.ASCII Pseudo-op, 3-7

Non-Printing Characters, 3-8

. SIXBT pseudo-op, 3-8

Text Delimiters, 3-10

Text Statement Format, 3-8

left justified, 3-7

Text Statement Format, 3-8

Three-pass operation, 1-2

. TITLE, 3-1, 3-2

truncating octal numbers, 3-8

12-bits, 2-5

Two-pass operation, 1-2

two's complement, 2-9, 2-10

Undefined Symbols, 2-8

global symbols, 2-8

undefined symbols, 3-4, 5-6

user defined symbols, 2-17

user definitions, 2-4

direct assignment statements, 2-4

labels, 2-4

macro names, 2-4

period (.) , 2-4

variables, 2-4

user's symbol table, 2-4

variable locations, 5-4

Variables, 2-5, 2-6

address field, 2-6

number sign (I) , 2-6

operation field, 2-6

storage word, 2-6

symbol table, 2-6

variables, 2-4, 2-17, 3-4, 5-5, 5-6

Word Evaluation, 2-22

bank bits, 2-23

bank mode, 2-23

index register, 2-22, 2-23

location counter, 2-23

word value, 2-22

MACR0-15 INDEX (Cont)

Word Evaluation of the Special Cases, 2-24

AAC, AAS, AXR, AXS, 2-24

E, 2-24

LAW, 2-24

R, 2-24

numbers, 2-24

X (index register usage), 2-5

zero, division by, 2-10

zeroes, leading, 5-5

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes, software problems, and documenta­
tion corrections are published by Software Information Service in the following newsletters.

Digital Software News for the PDP-8 Family
Digital Software News for the PDP-9/15 Family
PDP-6/PDP-10 Software Bulletin

These newsletters contain information applicable to software available from Digital's Program Library.

Please complete the card below to place your name on the newsletter mailing list.

Questions or problems concerning DEC Software should be reported to the Software Specialist at your nearest DEC
regional or district sales office. In cases where no Software Specialist is available, please send a Software Trouble
Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 017 54

These forms, which are available without charge from the Program Library, should be fully filled out and accompa­
nied by teletype output as well as listings or tapes of the user program to facilitate a complete investigation. An
answer will be sent to the individual and appropriate topics of general interest will be printed in the newsletter.

New and revised software and manuals, Software Trouble Report forms, and cumulative Software Manual Updates
are available from the Program Library. When ordering, include the document number and a brief description of
the program or manual requested. Revisions of programs and documents will be announced in the newsletters and
a price list will be included twice yearly. Direct all inquiries and requests to:

Program Library
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 017 54

Digital Equipment Computer Users Society (DECUS) maintains a user Library and publishes a catalog of programs
as well as the DECUSCOPE magazine for its members and non-members who request it. For further information
please write to:

DEC US
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

Send Digital's software newsletters to:

My computer is a

Name _________________ _

Company Name _____________ _
Address ________________ ~

PDP-8/I 0
LINC-8 0
PDP-9 0
PDP-10 0

PDP-8/L 0
PDP-12 0
PDP-15 0
OTHER 0

(zip code)

Please specify

-------My system serial number is ___________ (if known)

READER'S COMMENTS

MACR0-15 ASSEMBLER
PROGRAMMERS REFERENCE MANUAL
DEC-15-AMZA-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback - your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual?---------------------------

How can this manual be improved? __________________________ _

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the following period­
ically distributed publications are available upon request. Please check the appropriate boxes for a current issue of the
publication(s) desired.

0 Software Manual Update, a quarterly collection of revisions to current software manuals.

0 User's Bookshelf, a bibliography of current software manuals.

0 Program Library Price List, a list of currently available software programs and manuals.

Please describe your position. -----------------------------

Name --------------- Organization

Street-------------- Department ----------------~
City ___________ State--------------Zip or Country ____ _

