dlilgliltlall

rSXIB

real time executive
reference manuadl

digital equipment corporation

0O

O

¥

O
O

¥

Q) © © Q) ©

.

@ O*O

@

Yok

O

OLOLO

OLO)LOLO

OLO)O)LOLO

| Z@ﬁ EOE EOE EOE EOE EO; EOE EO; EO; EO; EO; zOé iO; EO;

DEC-15-GRQA-D

RSX-15
REAL TIME EXECUTIVE

REFERENCE MANUAL

FOR ADDITIONAL COPIES, ORDER DEC-15-GRQA-D From
PROGRAM LIBRARY, DIGITAL EQUIPMENT CORPORATION,
146 MAIN STREET., MAYNARD, MASS. 01754

pricE $7.00

DEC-15-GRQA-D

Copyright C) 1971 by Digital Equipment Corporation

The material in this handbook, including but not
limited to instruction times and operating speeds,
is for information purposes and is subject to
change without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

PDP-15 FAMILY OF MANUALS

SYSTEMS
REFERENCE
MANUAL
HARDWARE SOFTWARE
INSTALLATION ACCEPTANCE USER'S GUIDE OPERATORS
MANUAL TEST voL.1 GUIDE
PROCEDURES PROCESSOR [B/F,15/30/40 l PDP-15/30
PER|PHERALS | | PoP-15/20 ADVANCED
PDP-15 /10 PDP-15/10
MODULE INTERFACE SYSTEM USER'S SOFTWARE
MANUAL MANUAL GUIDE SYSTEM
MAINTENANCE UTILITY
MANUAL VOL. 1 PROGRAMS
F{— PROCESSOR MANUAL
VOL.2 PROCESSOR
| OPTIONS
voL. 3 l
PERIPHERALS
MACRO -15 FORTRAN IY
MANUFACTURERS
EQUIPMENT
MANUALS 8/15
FOCAL-15 TRANSL ATOR
STATPAC -15
[scoLos
fMuLTi

ANALYZER

156-0040

SYSTEM REFERENCE MANUAL - Over-
view of PDP-15 hardware and
software systems and options;
instruction repertoire, expansion
features and descriptions of sys-
tem peripherals. (DEC-15-GRAZ-D)

USER'S GUIDE VOLUME 1, PROCESSOR -
Principal guide to system hardware
includes system and subsystem
features, functional descriptions,
machine-language programming con-
siderations, instruction reper-
toire and system expansion data.
(DEC-15~H2DA-D)

VOLUME 2, PERIPHERALS - Features
functional descriptions and pro-
gramming considerations for peri-
pheral devices. (DEC-15-H2DA-D)

OPERATOR'S GUIDE - Procedural
data; including operator main-
tenance, for using the operator's
console and the peripheral de-
vices associated with PDP-15
Systems. (DEC-15-H2CA-D)

PDP-15/10 SYSTEM USER'S GUIDE -
COMPACT and BASIC I/O Monitor
operating procedures.
(DEC-15-GG1lA~-D)

PDP-15/20 SYSTEM USER'S GUIDE -
ADVANCED Monitor system operat-
ing procedures. (DEC-15-MG2B-D)

PDP-15/20/30/40 ADVANCED MONITOR
SOFTWARE SYSTEM - ADVANCED Moni-
tor System descriptions; programs
include system monitor and
language, utility, and applica-
tion types; operation, core
organization, and input/output
operations within the monitor
environment are discussed.
(DEC-15-MR2B~-D)

PDP-15/30 and 15/40 BACKGROUND/
FOREGROUND MONITOR SOFTWARE
SYSTEM - Background/Foreground
Monitor description, including
the associated language, utility,
and application programs.
(DEC-15-MR3A-D)

PDP-15/35, RSX-15 REAL TIME
EXECUTIVE, REFERENCE MANUAL -
Reference manual for the real time,
multiprogramming RSX monitor sys-
tem. {DEC-=15~GRQA~D}

MAINTENANCE MANUAL VOLUME 1,
PROCESSOR - Block diagram and
functional theory of operation
of the processor logic. Preven-
tive and corrective maintenance
data. (DEC-15-HB2A-D)

VOLUME 2, PROCESSOR OPTIONS -

Block diagram and functional theory
of operation of the processor op-
tions. Preventive and corrective
maintenance data. (DEC-15-HB2A-D)

VOLUME 3, PERIPHERALS (Set of
Manuals - Block diagram and func-
tional theory of operation of the
peripheral devices. Preventive
and corrective maintenance data.
(DEC-15-HB2A-D)

INSTALLATION MANUAL - Power
specifications, environmental con-
siderations, cabling, and other
information pertinent to installing
PDP-15 Systems. (DEC-15-H2AA-D)

ACCEPTANCE TEST PROCEDURES - Step-
by-step procedures designed to
ensure optimum PDP-15 Systems
operation.

MODULE MANUAL - Characteristics,
specifications, timing, and
functional descriptions of modules
used in PDP-15 Systems.
(DEC-15-H2EA-D)

INTERFACE MANUAL - Information
interfacing devices to a PDP-15
System. (DEC-15-HOAA-D)

for

UTILITY PROGRAMS MANUAL - Utility
programs common to PDP-15 Monitor
Systems. (DEC-15-YWZA-D)

MACRO-15 - MACRO assembly language
for the PDP-15.
(DEC~15-AMZA~-D)

FORTRAN IV - PDP-15 version of the
FORTRAN IV compiler language.
(DEC-15-KFZB-D)

FOCAL-15 - An algebraic interactive
compiler-level language developed
by Digital Equipment Corporation.
(DEC-15-KJZB-D)

CHAPTER 1

1.1
1.2
1.3

CHAPTER 2

WWWWWWwwwwbwwiwvwwwwwwwwwwwwwww
@ & 8 & e e o e 8 6 ° 8 6 o & & 82 e 8 & 6 & & s & o @
WWWWWWWwWwWwWwWwiwWwwWwWwiwwwWwwWwwN s

e 8 0 & 4 s e T s & 0+ o s e s 8 e e e

NN = b e e b - e O 0N U W N

HFOWONOULIEWNMEO

3.3.22
CHAPTER 4

TABLE OF CONTENTS

INTRODUCTION

INTRODUCTION
HARDWARE REQUIREMENTS AND OPTIONS
SYSTEM SOFTWARE

EXECUTIVE

INTRODUCTION

EXECUTIVE ORGANIZATION

CORE AND DISK MANAGEMENT
SCHEDULING OF REAL-TIME PROGRAMS
INPUT/OUTPUT OPERATIONS

DYNAMIC SYSTEM PRIORITY CONTROL

MONITOR CONSOLE ROUTINE

INTRODUCTION

REQUESTING THE RESIDENT MCR
ERROR DETECTION AND HANDLING
COMMAND STRINGS

SUMMARY OF MCR FUNCTIONS
MCR FUNCTION DESCRIPTIONS
ENTER TIME FUNCTION

TIME FUNCTION

DATE FUNCTION

TASK LIST FUNCTION
PARTITIONS FUNCTION

COMMON BLOCKS FUNCTION
DEVICES AND ASSIGNMENTS FUNCTION
INSTALL FUNCTION

REMOVE FUNCTION

REQUEST FUNCTION

SCHEDULE FUNCTION

RUN FUNCTION

SYNCHRONIZE FUNCTION

CANCEL FUNCTION

RESUME FUNCTION

FIX IN CORE FUNCTION

UNFIX FROM CORE FUNCTION
DISABLE FUNCTION

ENABLE FUNCTION

REASSIGN FUNCTION

SAVE FUNCTION

OPEN REGISTER FUNCTION

RSX SYSTEM DIRECTIVES

INTRODUCTION

SUMMARY OF RSX DIRECTIVES AND SYSTEM

MACROS
DESCRIPTION OF DIRECTIVES
REQUEST DIRECTIVE
SCHEDULE DIRECTIVE
RUN DIRECTIVE
SYNC DIRECTIVE
CANCEL DIRECTIVE
SUSPEND DIRECTIVE

i

[}
HEOWOWOROIOAUUU & WNNNE

1
[y
OO

LI R I I

WWWLWWERROLLWLWLWEWE WL WLWWW
oy
N

3-12
3-13
3-13
3-14
3-14

A-ﬁ-oh-h-?ubnh L
WO dWN |l ol

b oBn b ok o b B b W B B B B B B B B B B B B BB B B B P

¢ 6 5 8 & & & 8 & 6 ® 6 8 e & s e 6 e & 6 o e o & e o o
WWWwWwwWwlwwwwwwwuwwwwwwwwuwwuwwwwwww
4 8 ® 8 e s 8 6 8 8 % 6 & e s e 8 8 6 8 v & 8 e 8 a2 v e
WWWWWWENNNNNNDNNNDN P = b == O 00
Vv FEOWOSNNOONMBWNEFHOWONAOAUTL WO

CHAPTER 5
5.1

5.2
5.3

CHAPTER 6
6.1

.
.
.

(<3 =)} (=) I ~)]
[-5 (VS V)

CHAPTER 7

o B b o B b e W N

~ RSN I R R RN NN
« o o o 0 o s
NV B W

.
ui

RESUME DIRECTIVE
MARK DIRECTIVE
WAITFOR DIRECTIVE
WAIT DIRECTIVE

EXIT DIRECTIVE
CONNECT DIRECTIVE
DISCONNECT DIRECTIVE
READ DIRECTIVE
WRITE DIRECTIVE
DSKAL DIRECTIVE
DSKDAL DIRECTIVE
DSKPUT DIRECTIVE
DSKGET DIRECTIVE
ATTACH DIRECTIVE
DETACH DIRECTIVE
SEEK DIRECTIVE
ENTER DIRECTIVE
DELETE DIRECTIVE
CLOSE DIRECTIVE

HINF DIRECTIVE
DISABLE DIRECTIVE
ENABLE DIRECTIVE

FIX DIRECTIVE

UNFIX DIRECTIVE
DECLAR DIRECTIVE
TIME SYSTEM MACRO
DATE SYSTEM MACRO
INTENTRY SYSTEM MACRO
INTEXIT SYSTEM MACRO

TASK BUILDER

INTRODUCTION
TASK BUILDER DESCRIPTION
EXAMPLE USING THE TASK BUILDER

SYSTEM CONFIGURATOR

INTRODUCTION

INSTALLING THE RSX SYSTEM

STEP BY STEP SYSTEM CONFIGURATION
PROCEDURE

EXAMPLE OF A SYSTEM CONFIGURATION

DESCRIPTION OF ERROR MESSAGES

SYSTEM ORGANIZATION

INTRODUCTION

RSX BOOTSTRAP OPERATION

RSX MEMORY MAP (WARM START)

SYSTEM DEQUES

POOL

THE SYSTEM TASK LIST (STL)

THE ACTIVE TASK LIST (ATL)

THE CLOCK QUEUE

THE PARTITION BLOCKS DESCRIPTION LIST

THE PHYSICAL DEVICE LIST (PDVL)

THE SYSTEM COMMON BLOCK DEFINITION
LIST (SCDL) .

INPUT/OUTPUT OPERATIONS

vi

Page

4-10
4-10
4-11
4-12
4-12
4-13
4-14
4-14
4-15
4-16
4-17
4-18
4-19
4-22

~l \lﬂ\l\l\l?\l\l\d\l\l
o0 ORIV & bW

APPENDICES

APPENDIX

APPENDIX
APPENDIX

APPENDIX
APPENDIX

H "Moo Qw oW

APPENDIX

GLOSSARY

I/0 HANDLER TASK INITIALIZATION
I/0 REQUESTS

I/0 FUNCTIONS

HANDLER TASK EXIT

DISK STRUCTURE

I/0 DATA MODES

INTERRUPT PROCESSING

TASK CONSTRUCTION

INTRODUCTION

COMPUTATIONAL TASK

MCR FUNCTION TASK

FRONT-END INTERRUPT DRIVER TASK
I/0 HANDLER TASK

ADDITIONAL INFORMATION

SYNTACTICAL DESCRIPTIONS OF MCR
FUNCTIONS

MACRO EXPANSIONS FOR SYSTEM DIRECTIVES

CAL PARAMETER BLOCKS FOR SYSTEM
DIRECTIVES

SUMMARY OF RETURNED EVENT VARIABLES
REGISTERS SAVED DURING "SAVE" AND

“RESTORE" OPERATIONS
CONVERSION TABLES

vii

Page

B-1
c-1

D-1
E-1

CHAPTER ONE
INTRODUCTION

1.1 INTRODUCTION

RSX-15 is a real-time monitor system designed for handling real-time
information in a multiprogramming environment. The modular construc-
tion of the system allows the user to configure his available hardware

and software resources to best fit his requirements.

RSX-15 controls and supervises all operations within the system in-
cluding any number of core- and disk-resident programs (called Tasks)
limited in number only by available space. This control and super-
vision allows an unlimited number of Tasks to share core and disk

memory, input/output device handlers, and other resources of the systen.

The execution of Tasks is determined by software priorities, hardware
interrupts, timing algorithms, énd requests from other Tasks. The
user can install a new Task on-line, establish its software priority
from any of 512 distinct levels, and then request its activation at
any time with an automatic reactivation at any periodic interval of

time thereafter.

Utilizing simple time-directed commands, the user can dynamically

schedule Tasks from the console terminal or from within a Task.

1-1

Device independence in RSX then allows the user to obtain results of
that Task immediately on his Teletype® or store them on a mass storage

device such as a disk or magnetic tape for future reference.

I/0 requests from Tasks are queued and processed by RSX on a priority

basis allowing high priority requests access to heavily used devices
which have pending lower priority requests. Delays are further re-
duced by having the actual transfer of data being performed by the
I/0 Processor independent of the Central Processing Unit, thus allow-

ing concurrent Task execution and I/O processing.

1.2 HARDWARE REQUIREMENTS AND OPTIONS

The minimum hardware configuration required to operate the RSX-15
system on a PDP-15/35**is as follows:

16K of core memory

API - Automatic Priority Interrupt

EAE - Extended Arithmetic Element

Real Time Clock (frequency is 16.7 msec for 60 Hz systems and 20
msec for 50 Hz systems.)
NOTE: The clock must be wired to API hardware level 3.

One (1) RS15 DECdisk (262,000 word fixed head) and one{l) RF15

controller.

One (1) TUS56 DECtape unit and controller.

One (1) KSR35 Teletype

High Speed Paper Tape Reader

High Speed Paper Tape Punch

-

The RSX-15 system supports the following additional hardware:

Addition of core memory in increments of 4K up to 32K.

Addition of one or more disk units. The disk controller is de-
signed to accommodate up to 8 disk units (2 million words).

Addition of one or more DECtape units. The controller is designed
to accommodate up to 4 TUS56 DECtape units (8 tape drives).

Addition of one or more Teletypes. Up to 16 additional Teletypes,
either model KSR33 or KSR35, may be added to the standard
system (under LT15/LT19).

One (1) VT0l storage tube display system. (Tektronix model 611
storage tube with interface).

One (1) to Eight (8) TUl0 - 7 or 9 track IBM compatible magtape
transport (7 and 9 track may not be mixed)

One (1) LP1l5 - Line Printer.

* Teletype is a trademark of the Teletype Corporation.

** A fully ECOed PDP-15 is required.

1.3 SYSTEM SOFTWARE

RSX-15 is a complete system for program preparation, compilation,
assembly, debugging, and operation in a system that has been config-

ured to the user's needs.

The RSX-15 system utilizes two separate monitors, the ADVANCED Soft-
ware Monitor and the Real-Time Monitor. The ADVANCED Software Moni-

tor is the standard monitor for the PDP-15/20 and PDP-15/35 computers.

The ADVANCED Monitor is used in the development, debugging, and build-
ing of executable Tasks for the Real-Time Monitor. The system soft-

ware inciudes the FORTRAN IV compiler, MACRO assembler, TEXT EDITOR,

TASK BUILDER, and numerous Utility programs*.

The TASK BUILDER, TKB, isAused to build user's Tasks from relocatable
binary files by linking them together along with library functions to
constitute an executable Task that runs under control of the Real-
Time Monitor. TKB is quite similar to the CHAIN program allowing
very elaborate overlay structures to be built. A resultant Task is
defined by a name (Task name), default run priority, core partition
and common block requirements, and resident code. The Task, which
resides either on paper tape or DECtape, is now ready to be incorpo-
rated into the real-time operating system under control of the Real-
Time Monitor. Chapter five discusses the TASK BUILDER in greater

detail.

The Real-Time Monitor is used to supervise and control the execution
of real-time Tasks. The real-time software includes the RSX-15
EXECUTIVE, I/0O Device Handler Tasks, Resident MCR, and the SYSTEM
CONFIGURATOR. The SYSTEM CONFIGURATOR is a Task which is

requested by the Real-Time Monitor when the system is initially loaded.

* Refer to ADVANCED Software Monitor Manual and Utility Programs Manual.

1-3

The CONFIGURATOR is an interactive program which asks the user several
questions in order to tailor the RSX-15 EXECUTIVE to suit his partic-
ular application and hardware configuration. The user is required to
supply information such as the amount of core memory available, number
of disk units and Teletypes, partition sizes and locations, common
areas, and which I/O Device-units are in the system. Chapter Six

discusses the SYSTEM CONFIGURATOR in greater detail.

CHAPTER THWO
EXECUTIVE

2.1 INTRODUCTION

The RSX EXECUTIVE is the heart of the real-time operating system.
It coordinates all activities in the system including Task scheduling,
I/0 supervision, resource allocation, and interactive operator communi-

cation.

The core memory of the RSX system is divided into partitions that are
occupied by the Real-Time Monitor, Monitor Console Routine (MCR)
Function Tasks, I/0 Handler Tasks, user written Tasks (programs), and
COMMON Blocks used for inter-Task communications. There is no limit
to the number of core partitions and COMMON Blocks that can be defined
except for the amount of core space available. All Tasks are then
executed from these partitions allowing several programs to be in core
at any given time (multiprogramming). Normally Tasks reside on

the disk, and are brought into their partition (if unoccupied) only
when requested, and release their partitions upon exit. However,

when desirable, or necessary, a Task may be fixed in core, thereby
dedicating a partition to a single Task, but assuring core availabil-
ity and rapid response. Tasks that can tolerate a response time of

100 milliseconds or more will normally be disk resident rather than

core resident. Since the Task Builder program allows a Task to con-
sist of a resident program with a simple to very elaborate overlay
structure, a Task can be both core and disk resident at the same time.
The core resident program remains in core once the Task has been acti-
vated,and overlay segments are requested when needed. Requested over-
lay segments will be executed immediately if already in core, or
brought in from disk overlaying the previous segment(s) and then
executed. When a Task is built using the Task Builder program it can
include any number of user written programs and be assigned any core
partition (providing the partition was defined at system configuration
time and is large enough to contain the Task). The Task can also be
assigned any run priority (which may be overridden at run time) from 1

to 512 where 1 is the highest priority.

Task execution occurs because of requests by the operator, requests
from a currently executing Task, or by a predefined schedule*.
Activated Tasks are defined in the system Active Task List and sched-
uled Tasks are defined in the Clock Queue to be activated at a pre-
defined time. Tasks can also be installed in the system on-line

while other Tasks are currently executing.

2,2 EXECUTIVE ORGANIZATION
2,2,1 CORE AND DISK MANAGEMENT

Core memory in the RSX system is partitioned to allow several Tasks

to be active at any given time. All core above the resident EXECUTIVE
(first 4K) can be user specified into Partitions and COMMON Blocks
during system configuration. All unspecified space above the first

8K of core will then be used to create Partition Blocks and a reservoir

* The scheduling capabilities of RSX will be described later.

2-2

of empty nodes called the “Pool”. Each node in the Pool consists of
ten contiguous memory locations with internal pointers connecting the
previous node to the next node resulting in a circular or double ended
queue called a dequé. The EXECUTIVE uses nodes t& create linked lists
containing system information. These nodes are removed from and re-

turned to the Pool as needed.

Since the Pool and Partition Blocks are needed to run, sufficient
core above the lower 8K core should be left unspecified. Unspecified

core below 8K (and above the EXECUTIVE) is unused.

Partitions and SYSTEM COMMON Blocks? are fixed at system configuration
time and cannot be altered at run time. Tasks are built to execute in
specific partitions, and, any number of Tasks may be built to execute

in the same partition.

A Partition containing an active Task cannot be used by other Tasks,
regardless of priority, until that partition becomes available. When
two or more requests for the same partition are made and the partition
is occupied, the Task with the highest priority will be serviced first
when the partition becomes available. An executing Task releases its

partition once it EXITs to the EXECUTIVE.

RSX uses the disk for storage of user written Tasks, MCR Function
Tasks and data. Disk spaceis automatically aliocated by the
EXECUTIVE when Tasks are installed in the system. The remaining
portions of the disk are available to the user. When a Task requires
disk space to store data, it must request it through the EXECUTIVE
via an ALLOCATE Directive. The actual allocation of disk space is
performed in increments of 128;, words of contiguous disk storage
providing the user with true random access capability. The EXECUTIVE
maintains a record of available disk space by using a bit map scheme.

A user can relinquish allocated disk space through the use of the

;Deque is pronounced "deck".
See Glossary: COMMON BLOCK, SYSTEM.
2-3

DEALLOCATE Directive.

2.2.2 SCHEDULING OF REAL-TIME PROGRAMS (TASKS)

The scheduling of Real-Time programs (Tasks) can result from any one
of three types of events: the request for the activation of a Task,
the request for an Input/Output transfer, or the occurrence of a
hardware interrupt. It is important that the reader have a thordugh
understanding of the meaning of "Significant Event"'and the Active

Task List in order to understand the concepts of scheduling in RSX.

The Active Task List is a priority ordered list of Active Tasks that
is used to drive the system. This list is scanned from high to low

priority by the EXECUTIVE as a result of a Significant Event to give
control to the highest priority Task that is capable of executing at

that time.

Tasks are installed in the system either at the priority given them
at Task Building time (default priority) or at the priority specified
in the INSTALL Directive. For instance, the user can install a Task
named SCAN with default priority 100 by typing:

INSTALL SCAN
If a new default priority of 78 were desired, the user could have in-
stalled SCAN by typing:

INSTALL SCAN 78
Task priorities can also be altered at run time either by the operator
or by a currently executing Task. Once a Task has been installed in

the system it can be activated by typing:

REQUEST SCAN (Task will execute at default
priority)
SCHEDULE SCAN 13:3f:44 3gM (Task will execute at default

priority at 1:3¢ P.M. and be resched-
uled every 3¢ minutes thereafter)
RUN SCAN 25M {(Task will execute at default
priority 25 minutes from now)

!7ask initiation, task completion, and I/0 completion are examples of
significant events.

2-4

SYNC SCAN H 3¢M 2H 78 (Task will be executed at priority
78, 39 minutes past the hour, and
every 2 hours thereafter)
A request to activate a Task will be executed providing that a parti-
tion is available and a Task with a higher priority is not currently
executing. Once a Task is activated it will run to completion unless
interrupted by a higher priority Task. An interrupted lower priority
Task will be resumed only when higher priority Tasks have completed
or have relinguished control. Whenever one Task is interrupted by
another, its active registers are automatically saved by the
EXECUTIVE and later restored when execution is resumed. Control will
be given to a lower priority Task if a currently executing Task is
waiting for the completion of an I/O request or by issuing any of the
following Directives: WAIT; WAITFOR; and SUSPEND. Control can
be given to a higher priority Task by requesting it to be run or by
issuing any of the following Directives: REQUEST, RUN, SYNC, and

SCHEDULE.

The following example illustrates the mechanism used by the EXECUTIVE
to scan the Active Task List. Assume that two Tasks are installed in
the system with names TASK1l and TASK2 and have priorities of 50 and
100 respectivelyﬂ The operator requests TASKl to be executed one
minute from now and TASK2 to be executed immediately. The'operator's
commands would be:

RUN TASK1 1M

REQUEST TASK2

The followin

request and activation of both Tasks.

lThe larger number indicates a lower priority.

ecution and system
is idle.
TASK2 resumes execution
at priority 100.

+ TASK2 finishes ex-

A

e

-
TASKl exits, Monitor restores TASK1 finishes
TASK2's registers and resumes execution.
execution of TASK2.

-

TASK1 executes at
priority level 50.

—>
Monitor saves TASK2's registers
and Clock routine activates TASKI1.

[
o

Process Clock Interrupt
which occurs one minute
after operator requested

TASK1.
.
TASK2 executes
at priority 100.
.
Monitor requests TASK2
MCR Function
processes request.
Monitor requests
MCR Function.
=
Operator reguests
Process Keyboard Interrupts TASKZ2 to be run

immediately.

s
)

Monitor requests MCR
Function which enters
request in Clock Queue.

Y

Operator requests
Process Keyboard Interrupts TASK1l to be run one
minute from now.

System is idle.
«<——— PRIORITY

(=4
o o
a2 n [}
] By
H] =3 = O
: 58 B E ;
-4 79 Z [) <] Q
<3 o1 oS =] Z 0
=M & B R’ K
Q> H > b 3] =11
5 g8 g & @ E
§ = =] 3] nuKr

Figure 2.1
2-6

TIME —9»

(not linear)

2.2,3 INPUT/0UTPUT OPERATIONS

The RSX EXECUTIVE allows the user device independent programming,
reassignment of devices on-line, and the ability to queue I/0 re-
quests providing him with an extremely powerful and flexible I/0O

structure.

The RSX system provides the user with device handlers for standard
I/0 devices supplied with the system. These handlers are called 1/0
Device Handler Tasks and can be installed in the system either at
system configuration time or on-line. I/O Handler Tasks are connected
tc the user's environment by means of a logical/physical device re-
lationship. This relationship allows the user to reference a Logical
Unit Number (LUN) rather than a physical device when requesting an
I/0 operation. At run time the user then may reassign the LUN to the
desired physical device. Thus, a Task which normally outputs data to
LUN 4 which is currently assigned to the teleprinter can output the
same results on a paper tape punch or line printer if the user types

the following:

REASSIGN & PP TTH (Reassign LUN 4 to the Paper Tape
(or) Punch from TT{)
REA 4 LP PP {Reassign LUN 4 to the line printer

from the Paper Tape Punch)

All requests to be serviced by I/0 Handler Tasks are entered into a
priority ordered queue even though the device may be busy. The
priority of the request will be the same as the priority of the Task
issuing the request. Once the Task has issued a request, it can
either wait for its completion or continue executing and test at any

time the current state of the I/O operation it requested.

An Event Variable (software flag) may be associated with I/O requests

and its value indicates the current status of the I/0 operationm. When

an I/0 operation completes, the user's Event Variable is set accord-
ingly and a Significant Event is declared. This causes the Active
Task List to be scanned and control to be given to the highest prior-

ity Task capable of executing.

There are two types of I/0 Device Handlers in the RSX System: The
Standard 1I/0 Device Handler Task and the System I/0 Device Handler
Task. The System I/0 Handlers are the Disk and Multi-Teletype Handler
Tasks which must be core resident and cannot be deleted from the

system. Standard I/O Device Handler Tasks are those which are not
System I/0 Handlers supplied by the manufacturer or created by the user.
When a LUN is assigned to a device, the Handler Task is requested and

remains in core as long as the LUN is assigned to the device.

A Task can obtain the exclusive use of an I/O Handler Task by issuing
an ATTACH Directive. When the ATTACH Directive is accepted by the
Handler, only requests from that Task are serviced with requests from

other Tasks queued until a DETACH request is serviced.

Example: ATTACH 2,EV Attach the device assigned to LUN
2 to the currently executing Task.
DETACH 2,EV Detach the Device. EV is the event
variable.

2.2.4 DYNAMIC SYSTEM PRIORITY CONTROL

The priority structure of the RSX System includes both hardware and
software priority levels. Hardware levels are established by the
Automatic Priority Interrupt (API) of the PDP-15 computer and soft-
ware levels are established by the user and controlled by the
EXECUTIVE. There are 8 levels of API of which four are used for hard-
ware I/0 devices and four for the EXECUTIVE. API levels 4 and 6 are
used exclusively by the EXECUTIVE and level 7 is used for Task

execution (level 5 is currently not used). From level 7, the

EXECUTIVE derives its 512 Task priority levels used for Task operations.
The following figure illustrates the hierarchy of the entire priority
system.

AUTOMATIC PRIORITY INTERRUPT SYSTEM

Task Priority Levels | Executive Priority Levels | Hardware Levels

Derived from API Exclusive use by Used by all
level 7 by the the Executive I1/0 Devices
Executive

512 ————————p= 1

API

LEVELS 7 A 6 5 4 3210

=
Increasing Priority

Figure 2.2 RSX Priority Structure

The hardware API levels 0,1,2, and 3 are used to control I/0 devices
in the system. Each level can have as many as 8 device controllers
connected to it allowing a total of 32 devices to be serviced by the
API system., Each of the 32 API lines are associated to unique core
locations which specify where program control will be transferred

when an interrupt signal occurs on that line.

CHAPTER THREE
MCR
MONITOR CONSOLE ROUTINE

3.1 INTRODUCTION

The Monitor Console Routine (MCR) allows the user to communicate on-
line with the system from the console teleprinter to dynamically
adjust and modify the operation of the system through simple commands
(functions). The operator may obtain status information about the
system, install or replace Tasks, request Task execution based upon
time driven schedules, or fix a Task in core. Other MCR commands
permit altering of logical/physical device relationships, examination
and modification of core locations, and adjustment of the System Clock

and Calendar.

The MCR consists of the Resident MCR Task, which accepts the user's
commands, and the MCR Functions, which actually carry out the indi-
cated requests. The MCR Functions are similiar to user created Tasks
in that they normally reside on the disk and are brought into a core
partition when requested. Although the MCR Functions are built (with
the Task Builder) tc execute in a predefined core partition, they

can be built to run in any partition. Execution of MCR Tasks, like

all Tasks, is based upon partition availability and Task priority.

3-1

3.1.1 REQUESTING THE RESIDENT MCR

The Resident MCR must be Active in order to receive requests for
Function Tasks from the operator at the console teleprinter. To
request the Resident MCR, type CTRL C (i.e., simultaneously depressing
the CTRL and C keys). When the MCR is ready to accept a command it
will output:

MCR>
(on LUN 2)and wait for a command to be typed immediately to the right

of the prompting character (>).

3.1.2 ERROR DETECTION AND HANDLING

Error detection is provided by the various MCR Functions and Resident
MCR where applicable. When an error is detected, an appropriate
message, prefixed by the name of the issuing MCR Function, is output

to LUN 3.

3.1.,3 COMMAND STRINGS

When typing MCR command strings the following conventions apply:

a. Command strings are terminated either by a Carriage RETURN
or by an ALT MODE. If a Carriage RETURN is typed, the
Resident MCR will be requested when the current Function is
complete, If an ALT MODE is typed, the Resident MCR will
not be requested at the termination of the current Function.

b. Each element of a command string must be separated by either
a comma (,) or a space {(_).

c. If an error is discovered while typing a command string prior
to typing a terminator, the line may be deleted as far back
as the prompting character (>) by typing CTRL U (formed by

simultaneously typing CTRL and U characters). A commercial

"at" (@) symbol is echoed informing the user that he can

retype the command string.

The RUBOUT, echoed as a

backslash (\), may be used to delete the last character

typed in.

Every time the RUBOUT is typed, a backslash is

echoed and a character is deleted.

d. Any number of characters (except a comma or space) may be

inserted between a Function name and its arguments or command

string terminator (Carriage RETURN or ALT MODE).

This is

useful if the user wishes to improve the readability of his

teleprinter copy.

3.2 SUMMARY OF MCR FUNCTIONS®

Task Name
ETI[ME]
TIM[E]

DAT[E]

TAS[K LIST]
PAR[TITIONS]

COM[MON BLOCKS]

DEV[ICES AND ASSIGNMENTS]

INS[TALL]
REM [OVE]

REQ[UEST]

Function
Enter time and date into the system.
Request current time from the system.

Request current date and time from
the system.

Request System Task List.
Request list of Partition definitions.

Request list of Common Block defini-
tions.

Request list of LUN device assign-
ments.

Install a Task in the system.
Remove a Task from the system.

Request immediate activation of a
Task.

Request scheduled Task a delta time
from now.

* Square brackets of the form ([]) specify optional characters.

SYN[C] Schedule and synchronize the activa-
tion of a Task.

CAN[CEL] Cancel the activation of a Task.
RES [UME] Resume execution of a suspended Task.
FIX Fix Task in core (Task becomes core

resident).

UNF [IX] Unfix Task in core.

DIS[ABLE] Disable Task (reject future Task
activation directives).

ENA [BLE] Enable a disabled Task.

REA [SSIGN] Change LUN assignment(s).

SAV[E] Save image of core on the disk.

OPE [N] Open register for examination or
modification.

3.3 MCR FUNCTION DESCRIPTIONS

The following paragraphs describe the form and function of the MCR
Functions. To simplify the interpretation of the various command
strings, the following symbols are used to represent the non-printing
teleprinter operations:

Carriage RETURN

LINE FEED

Terminator (either Carriage Return or ALT MODE)
Space

< -
unono

Square brackets of the form ([]) specify optional characters and/or
arguments. The ampersand sign (&) is used for concatenation of a

numeric argument to an alphabetic letter.

3.3,1 ENTER TIME

The Enter Time Function is used to set the System Clock and Calendar.
Form: ETI[ME] Hr:Min:Sec[_Mo/Day/Yr]V

Variables:Hr Hours (@-23)

Min = Minutes (@-59)
Sec = Seconds (g-59)
Mo = Month (1-12)

Day
Yr

Day of Month (1-31)
Year (last two digits @#-99)

NOTE: The European form has the month and day reversed.

Example: The time is 3f seconds past 3:45 P.M. and the date is
March 23, 1971.

MCR>FETIME 15:45:39 3/23/7!
MCR>

3.3.2 TIME

The Time Function outputs the time of day on LUN 3.
Form: TIM[E]V

Example: The time is 41 seconds past 3:45 P.M.

MCR>TIME
15:45:¢41
MCR>

3.3.3 DATE

The Date Function outputs the System Calendar and the time of day on
LUN 3.
Form: DAT[E]V

Example: The date is March 23, 1971 and time of day is 52 seconds
past 3:45 P.M.

MCR>DATE
23/23/71 15345¢52
MCR>

3.3.4 TASK LIST

The Task List Function outputs to LUN 3 a description of each Task
which has been Installed in the system. The description consists of
the following information (printed left to right, one line per Task):
Task Name, Partition Name, Priority {decimal), Disk Unit Number
(octal), Head Track Address (octal) and Task Size (octal). Output

may be prematurely terminated by typing CTRL C.

Form: TAS[K LIST]V

Example:

MCR>TASX LIST

RX Pl4.6 512 @ 102208 22538
PPesse 10,2 222 @ 19120¢ 20617
DTeses I0.1 po2 B 276620 22261
PReees I0.2 ag2 @ 215600 23736
LPeess IN.2 2@l 2 275800 02462
.«¢ DAT MCR 382 ¢ 0746329 a217¢
«ee OPE MCR 322 7 273600 30624
«eeSAV MCR 222 0 97320¢ 00214
ess REA MCR @22 7 072000 21040
ees DIS MCR 292 @ 271620 00166
«se RAR MCR 322 € 871422 283166
«es UNF MCR 2902 0 271020 02211
eee FIX MCR pg2 9 970409 28332
eee RES HMCR 222 © 2702208 00252
« oo CAN IMCR @22 ¢ 067632 00166
«seSYN TMCR 282 9 267220 203717
«esRUN MCR @22 9 266600 80361
«eeSCH MCR pg2 @ 266030 00427
e+ REQ MCR 202 2 265400 28335
ees REM MCR po2 2 965900 28395
»ee INS MCR 982 0 063200 B1516
e e« DEV MCR B2 © 062480 28533
«ee COM MCR 222 O 262230 POB263
«es PAR MCR @ap2 3 261420 a8239
+ss TAS MCR 202 0 260688 20406
eee [IM IMCR 202 0 262400 80145
«ee ETT MCR 222 2 262260 22357
iCR>

3.3.5 PARTITIONS

The Partition Function outputs to LUN 3 a description of all core
partitions defined in the system. The description consists of (printed
from left to right, one line per partition): Partition Name, Parti-
tion Base Address (octal), and Partition Size (octal). Output may

be prematurely terminated by typing CTRL C.

Form: PAR[TITIONS]V

3-6

Example:

MCR>PARTITIONS
MCR 12990 21608
I10.1 11622 03202
Pl4.,6 14620 23200
P2l.8 21029 05598
P26.5 26582 26500
10.2 352008 21000
P4d.3 40083 159008

MCR>

3.3.6 COMMON BLOCKS

The COMMON Blocks Function outputs to LUN 3 a description of all

System COMMON Blocks defined in the system. The description consists

of (printed from left to right, one line per COMMON Block): COMMON

Block Name, COMMON Block Base Address (octal), and COMMON Block Size

(octal). Output may be prematurely terminated by typing CTRL C.
Form: COM [MON_BLOCKS]V

Example:

#CR>COMMON BLOCXS
o« XX 20000 902720
FLAG 36220 22632
Mer>

3-7

3.3.7

DEVICES AND ASSIGNMENTS

The Devices and Assignments Function outputs to LUN 3 a list of phys-

ical device units and the Logical Unit Numbers assigned to them.

Output may be prematurely terminated by typing CTRL C.

Form:

Example:

DEV[ICES_AND_ASSIGNMENTS]V

MCR>DEVICES AND ASSIGNMENTS

nra
T2

TT1
DT
DT1
DT2
DTZ
DT 4
DTS5
PTE
DT7
PRZ
PP
LA
MCP>

3.5.8 INSTALL

2,3,5,19,11,12,13,14,15,16,17,18,19
20,21,22,23,24,25,26,27,28,29,30, 31
22 ,

4

€

7

9

o

The Install Function is used to input a Task into the RSX System.

The Task to be added must be a binary file (TSK extension) produced

by the Task Builder.

Form:

Variables:TSKNAM
P

Examples:

TSK files are installed from LUN 5.

=

INS[TALL] TSKNAM[_P]V

Name of Task to be Installed (1 - 6 characters)
Task priority (1 - 512)

Install Task SCAN whose default priority defined at

Task Building time is 48.

MCR>INS SCAN;

MCR>INS SCAN 14,

(or)
(SCAN is now redefined
with a priority of 14)

3-8

3.3.9 REMOVE

The Remove Function is used to delete a Task from the RSX System.
Form: REM[OVE] TSKNAMV
Variables:TSKNAM = Name of Task to be Removed (1 - 6 characters)
Example: The Task SCAN is no longer required and it is desired

to remove it from the System.
MCR>REM SCAN;,

3,3,10 REQUEST

The Request Function is used to request the execution of a Task at an
indicated software priority level. Actual Task execution depends upon
priority and partition availability.

Form: REQ[UEST] TSKNAM[P}V

Variables: TSKNAM
P

Name of Task (1 - 6 characters)
Task priority (1 - 512)

Examples: Request the execution of SCAN whose default priority
defined at Task Building or Installation time is 48,
MCR>REQ SCAN;
(or)
MCR>REQ SCAN 14, (SCAN is requested with
a priority of 14)

3,3,11 SCHEDULE

The Schedule Function is used to schedule the execution of a Task at
some time in the future, specified in time-of-day, at an indicated

software priority level, and with periodic rescheduling.

Form: SCH[EDULE] _TSKNAM Hr:Min:Sec[_RI&RU][_P]V
Variables:TSKNAM = Name of Task (1 - 6 characters)

Hr = Hours (f# - 23)

Min = Minuteg (# - 59)

Sec = Seconds (@ - 59)

RI = Reschedule Interval (up to 1 day)

RU = Reschedule Units (T=Ticks, S=Seconds, M=Minutes,

and H=Hours)
P = Task Priority (1 - 512)

Examples: Schedule the execution of SCAN at 1:3@ P.M. and resched-
ule it every 3@ minutes thereafter at its default
priority.

MCR>SCH SCAN 13:3d:¢4 3¢M,
Schedule the execution of SCAN at 8:3¢ A.M. and resched-
ule it every 2/6dth's of a second (6§ cycle clock) at
priority level 1f.

MCR>SCH SCAN 8:3f:4§ 2T 14,

3.3.12 RUN

The Run Function is used to make a Task active at some future time,
specified in delta time from now, at an indicated software priority

and with periodic rescheduling.

Form: RUN_TSKNAM_SI&SU[_RI&RU][_P]V
Variables:TSKNAM = Name of Task (1 - 6 characters)
SI = Schedule Interval (up to one day)
513) = Schedule Units (T=Ticks, S=Seconds, M=Minutes,
and H=Hours)
RI = Reschedule Interval (up to one day)
RU = Reschedule Units (T=Ticks, S=Seconds, M=
Minutes, and H=Hours)
P = Task Priority (1 - 512)

Examples: Schedule the execution of SCAN 3f minutes from now and
reschedule it every hour thereafter.

MCR>RUN SCAN 3#M 1H,
Schedule the execution of SCAN 1f minutes from now and
reschedule it every 32 seconds thereafter at priority
level 28, ' ’

MCR>RUN SCAN 1¢M 325 28,

3.3.13 SYNCHRONIZE

The Sync Function is used to activate a Task at some future time
following the occurrence of the next tick, second, minute, or hour.
The Task is executed at the indicated software priority and with
periodic rescheduling. This Function is particularly useful for
minimizing the peak loading of a system which can occur when many
Tasks are scheduled for execution at the same time.

Form: SYN[C]_TSKNAM SZ_SI&SU[_RI&RU][_P}V

Variables:TSKNAM = Name of Task (1 to 6 characters)

3-10

Sz = Synchronization Units (T=Ticks, S=Seconds, M=
Minutes, and H=Hours)

SI = Schedule Interval from Synchronization time
{(up to one day)

su = Schedule Units (T=Ticks, S=Seconds, M=Minutes,
and H=Hours)

RI = Reschedule Interval (up to one day)

RU = Reschedule Units (T=Ticks, S=Seconds, M=Minutes,
and H=Hours)

P = Task Priority (1 - 512)

Example: Schedule the execution of SCAN 3 minutes after the next
hour and reschedule it every hour thereafter at its
default priority level.

MCR>SYN SCAN H 3M 1H,
Schedule the execution of SCAN 1f seconds after the next
minute and reschedule it every hocur thereafter at prior-
ity 21.

MCR>SYN SCAN M 1fS 1H 21,

3.3,14 CANCEL

The Cancel Function is used to cancel all scheduled requests for
activation of a particular Task by removing those requests from the
Clock Queue. Cancellation does not affect the current execution of
the given Task nor does it affect schedule requests made in the
future. The latter case is covered by the DISABLE Function. However,
schedule requests which have already been made (and entered in the
Clock Queue) are discarded.

Form: CAN[CEL]_?SKNAMV

Variables:TSKNAM = Name of Task (1 - 6 characters)

Example: Cancel the activation of Task SCAN.

MCR>CAN SCAN,

3.3,15 RESUME

The Resume Function is used to resume the execution of a Task which
has been SUSPEND'ed.

Form: RES{UME]_?SKNAM[_Eesumption address]V

Variables:TSKNAM = Name of Task (1 -~ 6 characters)

Example: Task SCAN has been previously SUSPEND'ed and it is
desired to resume its execution.

MCR>RES SCAN,

3.3,16 FIX IN CORE

The Fix Function is used to fix an inactive Task into a free partition.
This dedicates a partition to a Task and provides for a faster response
to the REQUEST, SCHEDULE, RUN, and SYNC Directives as well as responses
to external interrupts.

Form: FIX TSKNAMV

Variables:TSKNAM = Name of Task (1 - 6 characters)

Example: Fix Task SCAN in core.

MCR>FIX SCAN,

3.3,17 UNFIX FROM CORE

The Unfix Function is used to nullify a FIX Directive. If a FIXed
Task is active when an UNFIX Directive is issued, the partition will
be freed when the Task EXITs.

Form: UNF [IX] _TSKNAMV

Variables:TSKNAM = Name of Task (1 - 6 characters)

Example: Unfix Task SCAN from its partition.

MCR>UNF SCAN,

3.3,18 DISABLE

The Disable Function is used to instruct the system to reject further
REQUEST, SCHEDULE, RUN, or SYNC Directives or periodic rescheduling

for an indicated Task. This Function renders the specified Task in-
capable of responding to other Directives except ENABLE. A Disabled

Task is not deleted from the system. (cf. REMOVE.)

3-12

Form: DIS[ABLE]_?SKNAMV
Variables:TSKNAM = Name of Task (1 - 6 characters)
Example: Disable the Task SCAN.

MCR>DIS SCAN,

3.3,19 ENABLE

The Enable Function is used to re-enable a DISABLEd Task.
Form: ENA[BLE]_?SKNAMV
Variables:TSKNAM = Name of Task (1 -~ 6 characters)

Example: Task SCAN has been previously DISABLEd and it is desired
to re-enable it.

MCR>ENA SCAN;

3.3,20 REASSIGN

The Reassign Function is used to alter the logical/physical device
relationships by deassigning a Logical Unit Number (LUN) from a device
and reassigning it to another device. This Function causes the
REQUESTing and EXITing of I/O Device Handler Tasks.

Form: REA[SSIGN] LUN_ND_OD[/LUN_ND_OD][/LUN_ND_OD]....V

Variables:LUN = Logical Unit Number to be Reassigned
ND = Device to which the LUN is to be assigned
OD = Device from which the LUN is to be deassigned.

Examples: Assume the following LUN assignments currently exist:
LUN 2=TT@, LUN 3=TT@g, LUN 4=DT5, and LUN 33=LP. It is
now desired to reassign those LUN's to the following
devices: LUN 23TTl, LUN 3=TT1, LUN 4=DT7, and LUN 33=TT4.

MCR>REA 3 TT1 TT4,
MCR>REA 2 TT1 TTH,
MCR>REA 4 DT7 DTS5,
MCR>REA 33 TT4 iLP)
(or)
MCR>REA 2 TT1 TT/3 TT1 TT,
MCR>REA 4 DT7 DT5/33 TT LP,

Note: The MCR Functions, including the REASSIGN Function,
use LUN's 2 and 3 for command input and output,
respectively. Therefore, it is recommended when
the user REASSIGN's these to another device, he
should do so by REASSIGNing both LUN's on the same

line as shown in the second set of examples. The
first set of examples are valid when altering
LUN's 2 and 3 because the output from the REASSIGN
Function Task was altered first and further com-
mands can still be input from LUN 2. Device names
agsociated with I/O Handler Tasks provided with
the system are:

TT[n] = Teletype (n is the unit number which, if omitted,
will be assumed zero)

DT[n] = DECtape

DK = DECdisk

PR = High Speed Paper Tape Reader

PP = High Speed Paper Tape Punch

LP = Line Printer

3.3.21 SAVE

The Save Function is used to record a core image of an RSX System
{from location 3gg to the top of core memory) at the beginning of disk
zero. The purpose of this Function is to provide a means for updating
the system after Tasks have been added or deleted. The updated system
can then be restored at any time by simply loading the RSX Bootstrap.
This Function should only be executed when the system is quiescent,
i.e., no Tasks should be active and no I/0 should be in progress.
Since the entire RSX system is recorded on the disk, when the user
reloads the systenm, the System Calendar and clock will reflect the
previous settings at the time the Save was done. Therefore the user
should reset them to the correct date and time after reloading the
system.

Form: SAVI[E]V

Example: Save a copy of the RSX system on disk zero.

MCR>SAV[E],

3.3.,22 OPEN REGISTER

The Open Register Function permits the user to access any core location
for the purpose of examination and/or modification. The user may

optionally enter a signed number in any opened location using either

!The former does not imply the latter.
3-14

octal or decimal notation. Furthermore he may open and examine the

register whose address is specified by the low order 15 bits of the

currently open register or he may continue examination either in

ascending or descending address order.

Form: OPE([N]_ADR[Dn]V

Variables:ADR

Address of 1location to be examined. If

the specified address is valid, the address and
contents of that register are output followed by
the prompting character (>).

D = The letter

"D" signifies a disk address (ADR)

rather than a core address to open.

n = Disk unit number.

Note: User's response follows the prompting character
(>). The (|) symbol denotes "EXCLUSIVE OR".

rm: ADDRESS/CONTENTS> [new contents]|[*V]|[4V]|V

Variables:new contents = A

number (1 - 6 digits) which is to re-

place the contents of the currently opened
register. The number may be optionally
signed (+ or -) and/or a radix operator

(D = decimal, O = octal).

EXAMPLES: Decimal -39

-D39 (or) -D@gFAPE39

Octal 32
032 (or) +032 (or) 32

Terminators and special characters may be any of the

following:
J -

ALT MODE

"‘J -

*J -

Close the current register and open the

next higher register.

Close the current register and terminate
the Function.

Close the current register and open the

next lower register.

Close the current register and open the

register specified by the lower 15 bits

of the current register.

Example: Comments follow the slash character and are used only to
describe the different operations.

MCR>OPE 242,

/open register 242

>fg242/9§62325, /open register 243
>PP243/893432%, /open register 3432
>P3432/4886859 BEBBLT, /change contents of

/ 3432 to 47.

>A3433/¢gdu32 -D1Y(ALT MODE) /change contents of

MCR>OPE 243,

/ 3433 to -1g decimal
/ and terminate

/ sequence.

/open register 243

>Eg243/6834324, /open register 242
>Ag2u2/4F2325 -6 CALT MODE) /change contents to -6

MCR>

CHAPTER FOUR
RSX SYSTEM DIRECTIVES

4,1 INTRODUCTION

Communication to the RSX System from the user is accomplished by the
use of system "Directives". Directives may be issued from within a

Task or indirectly by an operator via the teleprinter and the Monitor
Console Routine (MCR). The manner in which a Directive may be issued

varies according to its function and use.

Directive routines are structured to be reentrant and may be used to
direct the Executive to schedule and reschedule a Task, provide status
information for a Task, or queue I/0 Handler Tasks to perform indicat-

ed I/0 operations.

4,2 SUMMARY OF RSX DIRECTIVES & SYSTEM MACROS

RSX DIRECTIVES

CAL FUNCTION MACRO FORTRAN SYSTEM DIRECTIVE

CODE (octal) CALL CALL
21 REQUEST REQST Request Task execution
22 SCHEDULE SCHED Schedule Task execution
23 RUN RUN Run Task in delta time
14 SYNC SYNC Sync Task execution
24 CANCEL CANCEL Cancel scheduled requests
ge SUSPEND SUSPND Suspend Task execution
a7 RESUME RESUME Resume Task execution

13 MARK MARK Set Event Variable in delta

time

20 WAITFOR WAITFR Wait for an Event Variable to
be set

g5 WAIT WAIT Wait for next Significant
Event

1g EXIT EXIT Terminate execution of the Task

11 CONNECT —_—— Connect to interrupt line

12 DISCONNECT =~--- Disconnect from interrupt line

29 READ READ Read from I/0 Handler Task

2J'] WRITE WRITE Write to I/0 Handler Task

']} DSKAL DSKAL Allocate disk storage

28 DSKDAL DSKDAL Deallocate disk storage

j:J) DSKPUT DSKPUT Put data on disk

28 DSKGET DSKGET Get data from disk

28 ATTACH ATTACH Attach Device-Unit to a Task

ag DETACH DETACH Detach Device-Unit from a Task

29 SEEK SEEK Seek file

ag ENTER ENTER Enter file

a9 DELETE DELETE Delete file

2§} CLOSE CLOSE Close file

24 HINF HINF Handler information

21 DISABLE DISABL Disable Task

22 ENABLE ENABLE Enable Task

15 FIX FIX Fix Task in core

16 UNFIX UNFIX Unfix Task in core

SYSTEM MACROS

MACRO FORTRAN SYSTEM FUNCTION
CALL CALL

DECLAR DECLAR Declare a Significant Event

TIME TIME Obtain Time from Executive

DATE DATE Obtain Time and Date from
Executive :

INTENTRY e Interrupt Entry (register save
routine)

INTEXIT -———- Interrupt Exit (register restore
routine)

4,3 DESCRIPTION OF DIRECTIVES

The RSX Directives are implemented as CAL instructions* which point
to argument blocks (CAL Parameter Blocks). As a convenience to the
assembly language programmer, the Directives have been defined as
macro instructions and are commonly referred to as System Macros.
FORTRAN Tasks use Directives through standard CALL statements to a

group of FORTRAN Library Routines which themselves issue the Directives.

* See Glossary

The RSX System allows Task names of one to six characters in length,
however, not more than five characters may be used in Task names in

FORTRAN calls in order to comply with PDP-15 FORTRAN conventions.

Most Macro and FORTRAN calls to RSX Directives include the Task
priority and its Event Variable (EV). The Task priority is indicated
by a decimal number between 1 (highest priority) and 512 (lowest pri-
ority). A priority value of zero instructs the Executive that the
Task's default priority is to be used. Directives usually have EV's
associated with them which provide information concerning the results.
after the issuance of the Directive. If an EV is not specified

when issuing a Directive, the Executive does not attempt to provide
any information concerning the operation. Event Variables are set
positive upon successful completion, zero when the request is pending,
and negative to indicate rejection or failure. Appendix D provides

a complete list and explanation of the EV values returned by the

systemn.

In the following sections which describe the Directives, square brackets

of the form ([]) are used to specify optional arguments.

4,3,1 REQUEST .

This Directive instructs the Executive to initiate the execution of a
Task based on an indicated software priority. The actual execution
depends upon the priority and partition availability. The Event Var-
iable, or the Event Variable and priority, may be omitted. A Task
cannot request itself. REQUEST may be issued from an interrupt service

routine. Event Variables returned are: +1, -28g1, -2@2, -2g4, and -777.

SYSTEM MACRO: REQUEST TSKNAM[,P[,EV]]

Variables: TSKNAM = Name of Task (1 - & characters)
P = Task Priority (1 -512)
EV = Event Variable Address

4-3

Examples: Request the execution of SCAN whose default priority
is 48.

REQUEST SCAN, #,EV
(or)
REQUEST SCAN,48,EV

Request the execution of SCAN at a priority of 24.
REQUEST SCAN, 2§,EV
(or)
REQUEST SCAN, 24 */In this case the testing of the
/Event Variable is not desired.

FORTRAN CALL: CALL_REQST (nHTSKNAM,IP[,IEV])

Variables: n = Number of characters in Task Name
TSKNAM = Name of Task (1 - 5 characters)
Ip = Task Priority (1 - 512) May be either a
Variable name or a direct constant.
IEV = Event Variable

Examples: Request the execution of SCAN whose default priority is
- 48,

CALL REQST (4HSCAN,#,1EV)
(or)

I1P=48

CALL REQST (4HSCAN,IP,IEV)

Request the execution of SCAN at default priority and
no Event Variable is desired.

CALL REQST (4HSCAN, @)

4,3,2 SCHEDULE

This Directive instructs the Executive to initiate the execution of a
Task at an absolute time of day and to reactivate it continuously at

a specified interval thereafter based on the indicated priority. If
the Reschedule Interval is zero, the Task is executed only once at the
time of day specified. A Task may SCHEDULE itself, héwever, the
SCHEDULE Directive may not be issued from an interrupt service routine.

Event Variables returned are: +1, -2¢1, -2¢3, -204, and -777.

SYSTEM MACRO: SCHEDULE_TSKNAM,SH,SM,Ss[,RI,RU[,P[,EV]]]

Variables: TSKNAM = Name of Task (1 - 6 characters)
SH = Schedule Hour (f§ - 23)
SM = Schedule Minute (g - 59)

Ss
RI
RU

P
EV

Examples: Schedule

Schedule Second (@ - 59)
Reschedule Interval (up to one day)
Reschedule Units (1=Ticks, 2=Seconds,

3=Minutes, and 4=Hours)

Task Priority (1 - 512)
Event Variable Address

Task SCAN to run at 4:3¢ P.M. and every 5 min-
utes thereafter at a priority of 2@4.

SCHEDULE SCAN,16,38,8,5,3,268,EV

(or)

SCHEDULE SCAN,16,34,8,5,3 /If Task's default

/priority was 2@# and
/Event Variable was
/not desired.

Schedule Task ALPHA to run at its default priority at
7:15 A.M. with no rescheduling and no Event Variable.

SCHEDULE ALPHA,7,15

FORTRAN CALL: CALL_SCHED(nHTSKNAM,IT,IP{,IEV])

Number of characters in Task Name
Name of Task (1 - 5 characters)
Name of 5 word (integer) array to describe

the time of scheduling and rescheduling.
is described below:

Schedule Hour (@ - 23)
Schedule Minute (g - 59)
Schedule Second (@ = 59)
Reschedule Interval (up to one

Reschedule Units (1=Ticks,
2=Seconds, 3=Minutes, and
4=Hours)

Variables: n =
TSKNAM =
IT =
The array
IT(l) =
IT(2) =
IT(3) =
IT(4) =
day)

IT(5) =

Ip = Task Priority (1 - 512)

IEV = Event Variable

Examples: This example is equivalent to the first example in this
section using FORTRAN.

DIMENSION IT(5)

ITCL)
1T(2)
IT(3)
ITCH)
IT(5)
1EV
CALL

16
3¢

g

M=\ WU

SCH
(or)

D(4HSCAN, IT, IP,IEV)

CALL SCHEDCLHSCAN,IT,2##,1EV)

Schedule SCAN as above with no Event Variable and at its
default priority.

1P =

g

CALL SCHED(4HSCAN,IT,IP)

4-5

To schedule SCAN only once, set the reschedule interval
equal to zero.

ITCH) i
1P 1}
CALL SCHEDC4HSCAN,IT,IP)

4,3,5 RUN

This Directive instructs the Executive to initiate the execution of a
Task at a specified time interval from the time that the Directive is
issued and reactivate the Task continuously at a specified interval
thereafter. If the Reschedule Interval is zero, the Task is executed
only once. A Task may use this Directive to reschedule itself, but
the Directive may not be issued from an interrupt service routine.

Event Variables returned are: +1, -2¢1, -2@3, -284, and -777.

SYSTEM MACRO: RUN_TSKNAM,SD,SU[,RI,RU[,P[,EV]]]

Variables: TSKNAM = Name of Task (1 - 6 characters)

SD = Schedule Delta time from now (up to one
day)

SU = Deita Units (i1=Ticks, 2=Seconds, 3=Minutes,
and 4=Hours)

RI = Reschedule Interval (up to one day)

RU = Reschedule Units (1=Ticks, 2=Seconds,
3=Minutes, and 4=Hours)

P = Task Priority (1 - 512)

EV = Event Variable Address

Examples: Run the Task INITS 5 seconds from now and every 1§
minutes thereafter at priority of 512.

RUN INITS,5,2,18,3,512,EV

Run the same Task at its default priority with no
Event Variable specified.

RUN INITS,5,2,14,3

FORTRAN CALL: CALL_RUN (nHTSKNAM, IT,IP[,IEV])

Variables: n = Number of characters in Task Name
TSKNAM = Name of Task (1 - 5 characters)
IT = Name of 4 word (integer) array to describe

the time of scheduling and rescheduling.
The array is described below:
IT(1) = Schedule Delta time from now
(up to one day)

IT(2)

Delta Schedule Units (1l=Ticks,
2=Seconds, 3=Minutes, and

4=Hours)

IT(3) = Reschedule Interval (up to one
day)

IT(4) = Reschedule Units (1=Ticks,

2=Seconds, 3=Minutes, and
4=Hours)

Task Priority (1 - 512)

Event Variable

IP
IEV

non

Example: Run the Task INITS 5 seconds from now and every 1§
minutes thereafter at a priority of 512.

DIMENSION ITC4)

ITC1) = 5
IT(2) = 2
IT(3) = 1§
ITCH) = 3
P = 512

CALL RUN(CSHINITS,IT,IP,IEV)

4.3.4 SYNC

This Directive causes the Executive to execute a Task at a specified
interval after the next hour, minute, second, or tick and to reinitiate

the Task continuously at a specified interval.

A Schedule Delta Time value of zero causes the named Task to be start-
ed on the next occurrence of the Synchronization Unit. A Reschedule
Interval of zero causes the Task to be executed only once. This Di-
rective may not be issued from an interrupt service routine. A Task

may use SYNC to reschedule itself. Event Variables returned are: +i,

-2¢1, -2§¢3, -2¢4, and -777.

SYSTEM MACRO: SYNC_TSKNAM,SZ,SD,SU[,RI,RU[,P[,EV]]]

Variables: TSKNAM = Name of Task (1 - 6 characters)
SZ = Synchronization Units (1=Ticks, 2=Seconds,
3=Minutes, and 4=Hours)

sD = Schedule Interval from synchronization
time (up to one day)
SuU = Schedule Units (1=Ticks, 2=Seconds,

3=Minutes, and 4=Hours)

RI
RU

P
EV

Reschedule Interval (up to one day)
Reschedule Units (1=Ticks, 2=Seconds,
3=Minutes, and 4=Hours)

Task Priority (1 - 512)

Event Variable Address

Examples: Assuming the time is now 14:27:47, run Task FRED at
14:28:09 at a priority of 2@ and reschedule it every
4 minutes thereafter. :

SYNC FRED,3,9,2,4,3,28,SYNEV

Schedule the execution of SCAN 1§ seconds after the next
minute mark and reschedule it every hour thereafter at

priority 21.

SYNC SCAN,3,1¢,2,1,4,21,SYNEV

FORTRAN CALL: CALL_SYNC (nHTSKNAM,IT,IP[,IEV])

Variables: n

TSKNAM

IT

IP
IEV

Number of characters in Task Name

Name of Task (1 - 5 characters)

Name of 5 word (integer) array to describe
the time of synchronization, scheduling,
and rescheduling. The array is described

below:
IT(1l)

IT{2)

IT(3)

IT(4)

IT(5)

Synchronization Units (1=Ticks,
2=Seconds, 3=Minutes and
4=Hours)

Schedule Interval from synchro-
nization time (up to one day)
Schedule Units (1=Ticks,
2=Seconds, 3=Minutes, and
4=Hours)

Reschedule Interval (up to one
day)

Reschedule Units (1=Ticks,
2=Seconds, 3=Minutes, and
4=Hours)

Task Priority (1 - 512)
Event Variable

Examples: Schedule the execution of Tasks FRED and SCAN as
described in the examples for the System Macros.

INTEGER FREDEV,SCANEV,SCANP,FREDP
DIMENSION IT(5)

1ITC1)
1TC2)
IT(3)
ITCHD
ITC5)
FREDEV
FREDP

W ENOW

)

24

CALL SYNC(4HFRED,IT,FREDP,FREDEV)

SCANEV
SCANP
1T(2)
ITCLD

)

21

14

1

IT(5) = &

12 CALL SYNCC4HSCAN,IT,SCANP,SCANEV)

c INSURE BOTH SYNC REQUESTS WERE ACCEPTED
IF(SCANEV.OR.FREDEV.LT.§) GO TO 1§

c BOTH SYNC REQUESTS WERE ACCEPTED AT THIS POINT

C REPORT FAILURE OF SYNC REQUESTS TO BE ACCEPTED TO

CONSOLE OPERATOR.

1¢ WRITE(3,11)

11 FORMAT(32H TASKS FRED OR SCAN NOT SYNC'ED.//)
STOP
END

4,3,5 CANCEL

This Directive instructs the Executive to remove all entries which
appear in the Clock Queue for a specified Task. Cancel may not be
issued from an interrupt service routine and has no effect on an

active Task. Event Variables returned are: +1 and -201.

SYSTEM MACRO: CANCEL_TSKNAM[,EV]

Variables: TSKNAM
EV

Name of Task (1 - 6 characters)
Event Variable Address

non

Example: Cancel the activation of Task SCAN.
CANCEL SCAN,EV

FORTRAN CALL: CALL CANCEL (nHTSKNAM[,IEV])

Variables: n = Number of characters in Task Name
TSKNAM = Name of Task (1 - 5 characters)
IEV = Event Variable

Example: Cancel the activation of Task SCAN

CALL CANCEL(CHHSCAN,IEV)

4,3,6 SUSPEND

This Directive instructs the Executive to suspend execution of the
Task issuing this Directive. The Task remains active in its core
partition but execution is not permitted until the system receives a

RESUME Directive. The Executive ignores this Directive if it is

4-9

issued from an interrupt service routine.

SYSTEM MACRQ: SUSPEND

FORTRAN CALL: CALL SUSPND

4,3,7 RESUME

This Directive instructs the Executive to resume execution of a Task
which has been SUSPENDed. Task execution continues either at a spec-
ified Resumption Address or, if not specified, at the address immediate-
ly following the SUSPEND Directive. Event Variables returned are: +1,

~-282, and -285.

SYSTEM MACRO: RESUME TSKNAM[,RA[,EV]]

Variables: TSKNAM = Name of Task (1 - 6 characters)
RA = Resumption Address (octal)
EV = Event Variable Address

Example: Resume Task TSKA at location RSTRT.
RESUME TSKA,RSTRT,EVA

FORTRAN CALL: CALL_RESUME (nHTSKNAM[,IEV])

Variables: n = Number of characters in Task Name
TSKNAM = Name of Task (1 - 5 characters)
1EV = Event Variable

Example: Resume Task TSKA.
CALL RESUME(4HTSKA,IEV)
Note: The RESUME subroutine permits a SUSPENDed Task

to resume only at the location immediately
following the CALL SUSPND statement.

4,3.8 MARK

This Directive instructs the Executive to clear a specified Event
Variable and set it to a non-zero value after a specified time inter-

val has elapsed. If the regquest is accepted, the Event Variable is

cleared. After the specified interval has elapsed, the Event Varia-
ble is set to +1 and a Significant Event is declared. The user may
test the Event Variable as desired. The time interval indicates time
from the execution of the Directive. The Mark Directive is ignored

if issued from an interrupt service routine. Event Variables returned

are: +1, -2¢3, and -777.

SYSTEM MACRO: MARK MI,MU,EV

Variables: MI = Delta Interval (up to one day)
MU = Delta Units (1=Ticks, 2=Seconds, 3=Minutes,
and 4=Hours)
EV = Event Variable Address

Example: Set Event Variable TSTEV 5 minutes from now.
MARK 5,3, TSTEV

FORTRAN CALL: CALL MARK(IT,IEV)

Variables: IT = Name of 2 word (integer) array to describe
the time. The array is described below:
IT(1) = Delta Interval (up to one day)
IT(2) = Delta Units (l=Ticks, 2=Seconds,
3=Minutes, and 4=Hours)
IEV = Event Variable

Example: Same as above example except in FORTRAN.
DIMENSION IT(2)
IT(1) = 5

1IT(2) = 3
CALL MARKC(CIT,IEV)

4,3.9 WAITFOR

This Directive instructs the Executive to examine a specified Event

Variable and, if zero, suspend execution of the issuing Task until
the Event Variable is found to be non-zero.
examined at each occurrence of a Significant Event. Once a non-zero
value is detected, the suspended Task is resumed (contingent on pri-

ority) at the address immediately following the Directive (CaAL). 1If

WAITFOR is issued from an interrupt service routine, it will be ignored.

4-11

SYSTEM MACRO: WAITFOR_EV

Variables: EV = Event Variable Address

Example: In this example, the Mark Directive requests that an
Event Variable (MRKEV) be zeroed for 5 minutes and then
set non~-zero. The WAITFOR detects the fact that the
Event Variable is zero and suspends Task execution un-
til the value becomes non-zero (i.e., in 5 minutes).
The Task is then resumed at the instruction immediately
following the WAITFOR.

MARK 5,3 ,MRKEV
WAITFOR MRKEV

FORTRAN CALL: CALL WAITFR(IEV)
Variables: IEV = Event Variable
Example: Same as preceding example except in FORTRAN.

DIMENSION IT(2)

IT(1) =5
IT(2) = 3
c IEV WILL AUTOMATICALLY BE CLEARED BY MARK

CALL MARKCIT,IEV)
CALL WAITFRCIEV)

4,3,10 WAIT

This Directive instructs the Executive to suspend execution of the
issuing Task until the next Significant Event occurs. The Task is re-
sumed {contingent upon priority) at the next Significant Event and con-
tinues at the location immediately following the WAIT. It is the
responsibility of the Task issuing the WAIT to determine the meaningful-
ness of the Significant Event which caused it to be resumed. This

Directive is ignored if issued from an interrupt service routine.

SYSTEM MACRO: WAIT

FORTRAN CALL: CALL WAIT

4,3,11 EXIT

This Directive causes the Executive to terminate execution of the

issuing Task. If the issuing Task is not fixed-in-core (via FIX) the

4-12

core partition occupied by the Task becomes available to other Tasks.
This Directive should not be issued until all transfers to the par-
tition (e.g. I/OAtransfers, Task-to-Task transfers, Event Variable
settings, etc.) have been completed. This Directive is ignored if

issued from an interrupt service routine.

SYSTEM MACRO: EXIT

FORTRAN CALL: CALL_EXIT

4,3,12 CONNECT

This Directive instructs the Executive to create a linkage between a

specified API (Automatic Priority Interrupt) trap address and a spe-

cified entry point to an interrupt service routine (there is one trap
address for each of the 32 API lines in the PDP-15). Event Variables
returned are: +1, -3¢1, and -3¢2. The following is a list of APT

line assignments

LINE NUMBER DEVICE LINE NUMBER DEVICE

g4 DECtape 24 Diskpack

25 Magtape 25 Plotter

g6 (unused) 26 (unused)

g7 (unused) 27 (unused)

14 Paper Tape Reader 34 (unused)

11 *Clock 31 UDC15

12 Power Failure 32 AFC15

13 Memory Parity 33 (unused)

14 VP15 Display 34 *LT15/LT19 Printers

15 Card Reader 35 *LT15/LT19 Keyboards

16 Line Printer 36 DECtape (additional)

17 A/D Converter 37 Dataphone (additional)

29 Interprocessor Buffer 49 *Console TTY (Key-
board}

21 (unused) 41 *Console TTY (Print-
er)

22 Dataphone 42 Paper Tape Punch

23 *Disk 43 Memory Protect

*These lines are always connected to the system.

SYSTEM MACRO: CONNECT LN,CL[,EV]

Variables: LN
CL

w7
v

Interrupt line Number (octal)
Entry Address of interrupt service routine
Event Variable Address

|

Example: Connect an interrupt service routine for an A/D Converter
(entry point called ADINT) to interrupt line 31.

CONNECT 31,ADINT,ADEV
FORTRAN CALL: No subroutine is provided for this Directive since

FORTRAN is not an appropriate language for writing
interrupt handling routines.

4,3,13 DISCONNECT

This Directive instructs the Executive to remove the linkage created
between an Automatic Priority Interrupt trap address and an interrupt
service routine entry by the CONNECT Directive. Event Variables

returned are: +1, -3¢1, and -3@2.

SYSTEM MACRO: DISCONNECT_LN,CL,EV

Variables: LN = Interrupt Line Number {(octal)
CL = Entry Address of interrupt service routine
EV = Event Variable Address

Example: Disconnect the A/D Converter from interrupt line 31.
DISCONNECT 31,ADINT,ADEV
FORTRAN CALL: No subroutine is provided for this Directive since

FORTRAN is not an appropriate language for writing
interrupt handling routines.

4,3,14 READ

READ generates a form of the QUEUE I/0 Directive which causes input

of formatted ASCII or Binary to a specified buffer via the I/O Device
Handler Task assigned to the indicated Logical Unit Number. The
Event Variable specified is set to zero when the request is accepted

and subsequently is set to an appropriate value indicating the status

4-14

of the operation. Event Variables returned are: +2, +1, -5, -7, -11,

-12, -16, -23, -1g1, -1g2, -1§3, and -777.

SYSTEM MACRO: READ_LUN,MODE,BUFF,SIZE[,EV]

Variables: LUN = Logical Unit Number (decimal)
MODE = I/0 Data Mode (@=IOPS BINARY, 1=IMAGE
BINARY, 2=I0PS ASCII, and 3=IMAGE ASCII)
BUFF Starting Address of user's buffer

SIZE = Maximum number of words to transfer {octal)
= Event Variable Address

Examplé: Read 25 decimal) words in IOPS ASCII from the device
igned to I

LUN 2 and store them in a buffer called TXTBF.
READ 3,2,TXTBF, 4@2, INDEV
WAVTEog, HNOG Y
FORTRAN CALL: No subroutine is necessary to implement this Direc-
tive. The standard READ statement as described in
the PDP-15 FORTRAN IV Manual is used.
Example: DIMENSION TXTBF(256)

READ (3,1f¢) TXTBF
14 FORMAT(256A1)

4,3,15 WRITE

WRITE generates a form of the QUEUE I/0O Directive which causes output
of formatted ASCII or Binary from a specified buffer to the I/O Device
Handler Task assigned to the indicated Logical Unit Number. The Event
Variable specified is set to zero when the request is accepted and
subsequently set to an appropriate value indicating the status of the
Ooperation. Event Variables returned are: +2, +1, -6, -7, -11, -12,

-15, -16, -23, -1g1, -192, -1¢3, and -777.

UFFI[. EV]

R, s D

Variables: LUN Logical Unit Number (decimal)

MODE I/0 Data Mode (@=IOPS BINARY, 1=IMAGE
BINARY, 2=I0PS ASCII, and 3=IMAGE ASCII)

BUFF = Starting Address of user's buffer

SIZE = Maximum number of words to transfer (octal)

EV = Event Variable Address

FORTRAN CALL: No subroutine is necessary to implement this Direc-
tive. The standard WRITE statement as described in
the PDP-15 FORTRAN IV Manual is used.

Example: DIMENSION TXTBF(256)
WRITE(6,1@)TXTBF
14 FORMAT(25641)

Write out "WARNING, XFC OSCILLATING AT" followed by a
frequency on LUN 3.

WRITE(3,18)1FQ
14 FORMAT(28H WARNING, XFC OSCILLATING AT, 16//)

4,3,16 DSKAL

DSKAL generates a form of the QUEUE I/0 Directive to reserve a disk
storage area of a specified size. 1If the space is available, the
starting address, physical disk number, and actual amount of space
allocated?® (in increments of 128 decimal words) is returned to a
Control Table which is contained within the issuing Task or in a
COMMON Block. The actual allocation does not occur instantaneously;
hence; one must test the Event Variable to determine completion.

Event Variables returned are: +1, -15, -1@4, and -777.

SYSTEM MACRO: DSKAL CTB[,EV]

Variables: CTB = Address of a Control Table of the
following format:

Word 1: Desired amount of disk
storage which is replaced
by the actual amount allocated
if allocated.

Word 2: Physical disk unit number
(returned at completion of
operation).

Word 3: Absolute starting address of
the space allocated relative
to the physical disk unit
number (returned at completion
of the operation).

EV = Event Variable address

'which may exceed the amount requested.

4-16

Example: Request 7@@ decimal words of disk storage. (Since
allocation is given in increments of 128 decimal words,
the actual allocation will be 768 decimal words.)

LAC (1274) /SETUP FIRST WD OF CONT TBL.
DAC CTB+0

DSKAL CTB,EV /REQUEST ALLOCATION OF 700
WAITFOR EV /WORDS OF DISK STORAGE.

FORTRAN CALL: CALL DSKAL (ICTB,NW[,IEV])

Variables: ICTB = Control Table (integer array). The Control
Table is described below:

Word 1: Actual amount of space al-
located (returned at comple-
tion of the operation).

Word 2: Physical disk unit number
(returned at completion of
operation).

Word 3: Absolute starting address of
the space allocated relative
to the physical disk unit
number (returned at completion
of the operation).

vent Variable

IEV E
Desired storage in words

- NW

Example: Same as above except in FORTRAN.
DIMENSION ICTB(3)
CALL DSKAL (ICTB,700,IDKEV)
CALL WAITFR (IDKEV)
Note: Space will not be allocated across disk unit
bounds (i.e., from one unit to another). No

more than 130,944 words may be allocated by a
single DSKAL command.

4,3,17 DSKDAL

DSKDAL generates a form of the QUEUE I/0 Directive to release a disk
storage area, which had previously been allocated by DSKAL, from the
Disk. Event Variables returned are: +1, -15, -1§4, and

-7717.

SYSTEM MACRO: DSKDAL CTB[,EV]

Variables: CTB = Control Table Address. This address should
be the same as that used by DSKAL which
originally allocated the space.

EV = Event Variable Address

4-17

Example: Request deallocation of the disk storage allocated
in the previous section. There is no concern for
when the disk space is actually freed.

DSKDAL CTB

FORTRAN CALL: CALL_DSKDAL(ICTB[,IEV])

Variables: ICTB = Control Table (integer array). This address
should be the same as that used by DSKAL
which originally allocated the space.

IEV = Event Variable

Example: Same as above except in FORTRAN

DIMENSION ICTB(3)

CALL DSKDALCICTB,IEV)

4,5,18 DSKPUT

DSKPUT generates a form of the QUEUE I/0 Directive to output data onto
the disk from a specified area in core. This Directive is used when
total freedom in data structuring and random access capabilities are
desired. Event Variables returned are: +1 and -N, where N is the

contents of the disk status register if a disk error occurs.

SYSTEM MACRO: DSKPUT_CTB[,EV]

Variables: CTB

= Address of a Control Table of the
following format:
Word 1: Disk unit number
Word 2: Starting address on disk
Word 3: Starting address in core
Word 4: Length of transfer in words
EV = Event Variable address

FORTRAN CALL: CALL_DSKPUT(ICTA,IOA,NW,ARRAY[,IEV])

Variables: ICTA =

I0A

NW
ARRAY

IEV

Example: Allocate 128§
out 256 words

Device Control Table (integer array).

This array must be the same as that used
to allocate the space onto which the data
is being written since this uses infor-
mation in the Control Table obtained via
DSKAL

Disk offset address. The relative position

‘(in words) within an array at which the

transfer to the disk is to begin.

Number of words (decimal) to transfer.
The name of the array containing the data
to be transferred.

Event Variable

decimal words of disk storage and write
on the disk from BUF. Writing on disk

is to begin 128 words beyond the starting address of

the beginning

of the disk storage area.

DIMENSION ICTA(3),BUF(256)

CALL DSKAL(CICTA,128%,IDKEV)

CALL WAITFRCIDKEV)

CALL DSKPUT(ICTA,128,256,BUF, IDKEV)

4,5,19 DSKGET

DSKGET generates a form of the QUEUE 1I/0 Directive to read data from

the disk into a specified area in core. This Directive is used where

total freedom in data structuring and random access capabilities are

desired. Event Variables returned are: +1 and -N, where N is the

contents of the disk status register if a disk error occurs.

SYSTEM MACRO: DSKGET _CTB[,EV]

Variables: CTB = Address of a Control Table of the
following format:
Word 1: Disk unit number
Word 2: Starting address on disk
Word 3: Starting address in core
Word 4: length of transfer in words
EV = Event Variable address

FORTRAN CALL: CALL_PSKGET(ICTA,IOA,NW,ARRAY[,IEV])

Variables: ICTA = Device Control Table (integer array).
Array must be the same as that used to
allocate the space from which the data
is being read since this uses information
in the Control Table obtained via DSKAL.

I0a = Disk offset address. The relative position
(in words) within an array at which the
transfer from the disk is to begin.

NW = Number of words (decimal) to transfer.

ARRAY = The name of the array where data is to be
transferred.

1EV = Event Variable

Example: Allocate 512 decimal words of disk storage and later
read in the last 256 decimal words into BUF.

DIMENSION ICTA(3),BUF(256)
CALL DSKAL (ICTA,512,1EV)
CALL WAITFRCIEV)

CALL DSKGET(ICTA,256,256,BUF,1EV)

Example: This final FORTRAN example allocates 1024 words of disk
storage, writes 256 words from four different arrays, later reads
the last array of 256 words, and then deallocates the disk space
and EXITs.

COMMON BUF2(128) ,ICTA(3),BUF1(128) ,BUF3(128) ,BUF4(128)

C :
C ---- ALLOCATE 1§24 WORDS OF DISK STORAGE
C
CALL DSKAL (ICTA,1024,IEV)
CALL WAITFR (IEV)
C .
C ---- INSURE ALLOCATION WAS MADE
C
IF (IEV .GT. @) GO TO 2§
C
C ---- STORAGE NOT ALLOCATED, TYPE MESSAGE & EXIT
C
WRITE (3,1%)
19 FORMAT (2fH ALLOCATION NOT MADE)
CALL EXIT
C :
C ---- ALLOCATION MADE, WRITE OUT ARRAYS
C
20 CALL DSKPUT (ICTA,@,256,BUFLl,IEV)

CALL DSKCK (IEV)
CALL DSKPUT (ICTA,256,256,BUF2;IEV)
CALL DSKCK (IEV)
CALL DSKPUT (ICTA,512,512,BUF3,IEV)
CALL DSKCK (IEV)

C ==—=-

14
2¢

READ IN LAST ARRAY FROM DISK

CALL DSKGET (ICTA,768,256,BUF4,IEV)
CALL DSKCK (IEV)

RELEASE DISK SPACE & EXIT

CALL DSKDAL (ICTA)
STOP
END

SUBROUTINE DSKCK (IEV)
CALL WAITFR (IEV)

IF (IEV .LT. #) GO TO 1§
RETURN

WRITE (3,20)

FORMAT (11H DISK ERROR)
CALL EXIT

END

4,3,20 ATTACH

ATTACH generates a form of the QUEUE I/0 Directive which requests the
exclusive use of an I/O device. Once the Directive is accepted, no
other Task may use the device regardless of priority. All requests
by other Tasks, however, will be queued and processed whenever the
device becomes free (DETACHED). The REASSIGN MCR Function, however,
overrides the ATTACH. Event Variables returned are: +1, -6, -24,

-141, -1¢2, -1¢93, and -777.

SYSTEM MACRO: ATTACH_LUN[,EV]

Variables: LUN
EV

Logical Unit Number (decimal)
Event Variable Address

nu

Example: Attach device assigned to LUN 32,
ATTACH 32,ATEV
FORTRAN CALL: CALL_ATTACH(LUN[,IEV])

Variables: LUN
IEV

Logical Unit Number
Event Variable

Example: Same as above except in FORTRAN.

CALL ATTACH(32,1EV)

4,5,21 DETACH

DETACH generates a form of the QUEUE I/0O Directive which releases a
device from the eXclusive use of the issuing Task. Previous
requests which were queued by the I/0 Handler Task while ATTACHed will
now be processed. The Task issuing the DETACH Directive must be the
Task which ATTACHed the device. Event Variables returned are: +1,

-6, -1p1, -1¢2, -1@3, and -777.

SYSTEM MACRO: DETACH _LUN[,EV]

Variables: LUN
EV

Logical Unit Number (decimal)
Event Variable Address

W n

S
I

22

Example: Detach device assigned to LUN 23.
DETACH 23,DTEV
FORTRAN CALL: CALL DETACH (LUN[,IEV])

Variables: LUN = Logical Unit Number
IEV = Event Variable

Example: Same as above except in FORTRAN.

CALL DETACH(23,IEV)

4,3,22 SEEK (OPEN FILE FOR INPUT)

SEEK generates a form of the QUEUE I/0 Directive which requests the
I/0 Handler Task assigned to the indicated Logical Unit Number to
search the device's file directory for a specified file name. This
Directive is used to initiate file-oriented transfers using the READ
Directive. Once the SEEK has been accepted by the I/O device, it
effectively attaches the LUN to the issuing Task. Event Variables

returned are: +1, -6, -1¢, -12, -13, -1§1, -142, -193, and -777.

SYSTEM MACRO: SEEK_LUN,FLNAM,EXT[,EV]

Variables: LUN = Logical Unit Number
FLNAM = File name (1 - 6 characters)
EXT = File name extension (1 - 3 characters)
EV = Event Variable Address

Example: Search the directory of the file-oriented device
associated with LUN 6 for a file named DATA SRC.

SEEK 6,DATA,SRC,EV

FORTRAN CALL: CALL_SEEK (LUN,nHFLNAM,nHEXT[, IEV])

Variables: LUN = Logical Unit Number
n = Number of characters in file name or
extension.
FLNAM = File Name (1 - 5 characters)
EXT = File Name Extension (1 - 3 characters)
IEV = Event Variable

Example: Same as above except in FORTRAN.

CALL SEEK(6,4HDATA,3HSRC, IEV)
c WAIT FOR SEEK TO COMPLETE
CALL WAITFRCIEV)

4.3,23 ENTER (OPEN FILE FOR OUTPUT)

ENTER generates a form of the QUEUE I/0 Directive which requests the
I/0 Handler Task assigned to the indicated Logical Unit Number to
search the device's filé directory for a free Directory Entry Block
in which to place the file name specified. This Directive is issued
prior to issuing a WRITE Directive to a file-oriented device. The
actual recording of the file name does not occur until the CLOSE.
Once the ENTER has been accepted by the I/0 device, it effectively
attaches the LUN to the issuing Task. Event Variables returned are:
+i, -6, -1g, -12, -14, -15, -1¢1, -1@§2, -1¢3, and -777.

SYSTEM MACRO: ENTER_LUN,FLNAM,EXT[,EV]

Variables: LUN = Logical Unit Number (decimal)
FLNAM = File Name (1 - 6 characters)
EXT = File Name Extension (1 - 3 characters)
EV = Event Variable Address

Example: Enter into the directory of the file-oriented device
associated with LUN 6 the file name DATA SRC.

ENTER 6,DATA,SRC,EV

FORTRAN CALL: CALL_ENTER (LUN,nHFLNAM,nHEXT[, IEV])

Variables: LUN = Logical Unit Number
n = Number of characters in file name or
extension.
FLNAM = File Name (1 - 5 characters)
EXT = File Name Extension (1 - 3 characters)
IEV = Event Variable

Example: Same as above except in FORTRAN.

CALL ENTER(6,4HDATA, 3HSRC, IEV)

4.,3.,24 DELETE

DELETE generates a form of the QUEUE I/O Directive which requests the
I/0 Handler Task assigned to the indicated Logical Unit Number to re-
move the indicated file name from the device's file directory. Event

Variables returned are: +1, -6, -1¢, -12, -1g1, -1g2, =103, and =-777.

SYSTEM MACRO: DELETE_LUN,FLNAM,EXT[,EV]

Variables: LUN = Logical Unit Number (decimal)
FLNAM = File Name (1 - 6 characters)
EXT = File Name Extension (1 - 3 characters)
EV = Event Variable Address

Example: Delete the file DATA .SRC from the directory of the file-
oriented device associated with LUN 6.

DELETE 6,DATA,SRC,EV

FORTRAN CALL: CALL DELETE (LUN,nHFLNAM,nHEXT([,IEV])

Variables: LUN = Logical Unit Number
n = Number of characters in file name or
extension.
FLNAM = File Name (1 - 5 characters)
EXT File Name Extension (1 - 3 characters)
IEV = Event Variable

Example: Same as above except in FORTRAN.

CALL DELETE(6,4HDATA, 3HSRC,IEV)

4,3,25 CLOSE

CLOSE generates a form of the QUEUE I/O Directive which instructs the
appropriate I/O Handler Task that the issuing Task has completed an

I/0 operation to the named file which resides on the device. Once a
CLOSE is issued, subsequent transfers to or from the CLOSEd file are
not possible until an appropriate SEEK or ENTER is again issued. Event
Variables returned are: +1, -6, -11, -12, -15, -1§1, -1¢2, -1§3,

and -777.

SYSTEM MACRO: CLOSE_LUN,FLNAM,EXT[,EV]

Variables: LUN = Logical Unit Number (decimal)
FLNAM = File Name (1 - 6 characters)
EXT = File Name Extension (1 - 3 characters)
EV = Event Variable Address

Example: Close the file DATA SRC on the file-oriented device
associated with LUN 6.

CLOSE 6,DATA,SRC,EV

FORTRAN CALL: CALL_ CLOSE (LUN,nHFLNAM,nHEXT[,IEV])

Variables:

LUN = Logical Unit Number

n = Number of characters in file name or
extension.

FLNAM = File Name (1 - 5 characters)

EXT = File Name Extension (1 - 3 characters)

IEV = Event Variable

Example: Same as above except in FORTRAN.

CALL CLOSE(6,4HDATA, 3HSRC, IEV)

4,3,26 HANDLER INFORMATION

This Directive provides rudimentary information about the physical

device and the I/O handler associated with a particular Logical Unit

Number (LUN). Handler information is coded into a single word, which

is stored in the requestor's Event Variable as follows:

Bit §

Bit 1

Bit 2

Bit 3

Bits 4
thru
11

Bits 12
thru
17

UNUSED (This bit is unused to allow a handler to
return a value of -6 if this function was
not implemented.

INPUT Set to 1 if data can be input from the
device to the computer.

OUTPUT Set to 1 if data can be output from the
computer to the device.

FILE-ORIENTED Set to 1 if the I/0 handler treats
the device as being "file-oriented".

A device is "file-oriented" if SEEK and
ENTER are required prior to READ and
WRITE, respectively. "File-oriented"
implies, but does not guarantee, the
existence of a file directory or that the
device is bulk or mass storage.

UNIT Unit number,

DEVICE CODE These six bits allow up to 63 decimal
devices (zero is not a legal device
code). The codes listed below are fixed
for standard DEC devices. Users should
assign codes to their own devices starting
with 63 and working towards lower numbers.

TT -- The TTY terminals (console, LT15,
and LT19) »

DK -- The RF1l5 fixed-head DECdisk

DP -- The RP@2 disk pack

DT -- The TC@2D DECtape

MT -- The TC59 MAGtape

Ul Wi [l

6 PR -- The PCl5 Paper Tape Reader
7 CD ~- The CR@3B Card Reader

14 PP -- The PCl5 Paper Tape Punch
11 LP -- The LP15 Line Printer

12 vVp -- The VP15 Storage Scope

13 VT -- The VT15 Display

SYSTEM MACRO: HINF_LUN,EV

Logical Unit Number (decimal)
Event Variable Address

Variables: LUN
EV

FORTRAN CALL: CALL HINF (LUN,IEV)

Variables: LUN = Logical Unit Number
IEV = Event Variable

4,3.27 DISABLE

This Directive causes the Executive to render the specified Task in-
capable of responding to other Directives except ENABLE. The Task
is not deleted from the system. If the Task is active, it will con-
tinue to execﬁte, however, schedule activations for that Task will
be ignored when they come due. When the Task is subsequently ENABLEd,
previously established rescheduling for the Task will continue in
effect. Event Variables are: +1 and -201.

SYSTEM MACRO: DISABLE_ISKNAM[,EV]

Name of Task (1 - 6 characters)
Event Variable Address

Variables: TSKNAM
EV

Won

Example: Disable Task named SCAN.
DISABLE SCAN,EV

FORTRAN CALL: CALL DISABL{nHTSKNAM[,IEV])

Variables: n = Number of characters in Task Name
TSKNAM = Name of Task (1 - 5 characters)
IEV = Event Variable

Example: Same as above except in FORTRAN.

CALL DISABL(4HSCAN,IEV)

4,5,28 ENABLE

This Directive causes the Executive to restore the specified Task to

its normal state {i.e., as it was before DISABLE was issued). Event

Variables returned are: +1 and -2@1.

SYSTEM MACRO: ENABLE_TSKNAM[,EV]

Name of Task (1 - 6 characters)

Variables: TSKNAM
: Event Variable Address

EV

Example: Enable Task SCAN which is currently disabled.
ENABLE SCAN,LEV

FORTRAN CALL: CALL_ENABLE (nHTSKNAM[,IEV])

Variables: n = Number of characters in Task Name
TSKNAM = Name of Task (1 - 5 characters)
IEV = Event Variable

Example: Same as above except in FORTRAN.

CALL ENABLE(C4HSCAN, IEV)D

4.3,29 FIX

This Directive instructs the system to loéd an inactive Task into an
available partition. The Task is not executed, but is fixed-in-core
and may therefore respond rapidly to a request for execution. FIX

does not wait for a Task to be loaded before setting EV to +1. The
Directive may not be issued to an active Task. Event Variables ré-

turned are: +1, -2¢1, -2¢2, -2¢04, -2¢7, and -214.
SYSTEM MACRO: FIX_TSKNAM[,EV]

Variables: TSKNAM
EV

Name of Task (1 - 6 characters)
Event Variable Address

FORTRAN CALL: CALL_FIX(nHTSKNAM[,IEV])

Variables: n
TSKNAM
IEV

Number of characters in Task Name
Name of Task (1 - 5 characters)
Event Variable

4,3,30 UNFIX

This Directive instructs the Executive to nullify a FIX Directive
thereby freeing a partition for use by other Tasks. If UNFIX is issued
to a Task which is currently running, the Task will be allowed to run
to completion before the Directive becomes effective. Event Variables

returned are: +1, -2¢1, and -287.

SYSTEM MACRO: UNFIX TSKNAM[,EV]

Variables: TSKNAM
EV

Name of Task (1 - 6 characters)
Event Variable Address

FORTRAN CALL: CALL _UNFIX(nHTSKNAM[,IEV])

Variables: n = Number of characters in Task Name
TSKNAM = Name -of Task (1 - 5 characters)
IEV = Event Variable

4,3,31 DECLARE A SIGNIFICANT EVENT

The DECLAR Directive provides the means for declaring to the Executive
that a Significant Event has occurred. The occurrence of a Significant
Event signals the Executive to initiate a scan of the Active Task List
with control passing to the Task having the highest priority. DECLAR

is particularly useful for intertask signalling and synchronization.

SYSTEM MACRO: DECLAR

FORTRAN CALL: CALL_DECLAR

4,3,32 TIME

The TIME System Macro and FORTRAN subroutine obtain the time of day

from the Executive's internal clock and deposit these values in three

4-29

locations specified by the issuing Task.

SYSTEM MACRO:

Variables:

FORTRAN CALL:

Variables:

4,3,33 DATE

The DATE System Macro and FORTRAN subroutine obtain the current time

(hours, minutes, and seconds) and date (month, day, and year) from the

TIME Hr,Min,Sec

Hr
Min
Sec

nmuwn

CALL_TIME (ITIME)

ITIME

= Three word Integer array as follows:

(g - 23)

ITIME(l) = Hours
ITIME (2) = Minutes (g - 59)
ITIME(3) = Seconds (g - 59)

Executive's internal clock and calendar.

Hours (g - 23)
Minutes (@ - 59)
Seconds (@ - 59)

The values obtained are de-

posited in six locations specified by the issuing Task.

SYSTEM MACRO:

Variables:

FORTRAN CALL:

Variables:

4.,3.34 INTENTRY

The INTENTRY System Macro results in an entry to the Executive's Register

DATE Hr ,Min,Sec,Mon,Day,¥r

Mon
Day
Yr
Hr
Min
Sec

Note:

= Month a -
= Day {1 -
= Year (g -
= Hours g -
= Minutes (@ -
= Seconds (@ -

The month and day reversed in European

format.

CALL_DATE (IDATE)

IDATE

12)
31)
99)
23)
59)
59)

= Six word Integer array as

IDATE (1)
IDATE (2)
IDATE (3)
IDATE (4)
IDATE (5)
IDATE (6)

= Month (1
= Day (1
= Year (g
= Hours (g
= Minutes (¢
= Secnnds (@

follows:

12)
31)
99)
23)
59)
59)

Save Routine. The Save Routine obtains the current contents of all
active system registers, including the AC, Index and Limit Registers,
first four Autoincrement Registers, and deposits them in a save area
created by the Macro Assembler during expansion of the System Macro.
This Directive may only be issued from within an interrupt service
routine and must be the first instruction of the interrupt routine.

The saved registers are restored by execution of the INTEXIT Directive.

Appendix E provides a listing of all registers which are saved.

SYSTEM MACRO: INTENTRY CL
Variable: CL = Interrupt service routine entry address.
(connect location)
FORTRAN CALL: No subroutine is provided to implement this since
FORTRAN is not an appropriate language for writing
interrupt handling routines.

Example: See example in next section (4.3.35)

4,3.35 INTEXIT

The INTEXIT System Macro results in an entry into the Executive's
Register Restore Routine. This routine restores all active registers
saved by the INTENTRY Directive, Debreaks, and returns to the inter-
rupted Task. INTEXIT may only be issued from within an interrupt

service routine.

SYSTEM MACRO: INTEXIT CL

Variable: CL = Interrupt service routine entry address
(connect location)
FORTRAN CALL: No subroutine is provided to implement this since
FORTRAN is not an appropriate language for writing
interrupt handling routines.

Example: An interrupt service routine named ADINT for an A/D
Converter is to use the INTENTRY and INTEXIT System
Macros.

INTENTRY ADINT

INTEXIT ADINT

/MUST BE PLACED AT THE ENTRANCE
/ TO THE INTERRUPT ROUTINE.

/SECTION TO SERVICE INTERRUPT.
/RESTORE REGISTERS, DEBREAK,

/ AND RETURN TO INTERRUPTED
/ TASK.

CHAPTER FIVE
TASK BUILDER

5.1 INTRODUCTION

The TASK BUILDER program, TKB, is an ADVANCED Software System's pro-
gram used to build user's Tasks from relocatable binary files. TKB
is quite similar to the CHAIN program allowing very elaborate overlay

structures to be built.

The process of Task building is one where relocatable binary files are
linked together along with library functions to constitute an executable
Task that runs under the control of the Real-Time Monitor (RSX-15). A
resultant Task is defined by its name (Task name), default run priority,
core partition and common block requirements, and resident code. Once

a Task has been built it may be incorporated into the real-time operat-
ing system under control of the Real-Time Monitor from DECtape or

paper tape.

5.2 TASK BUILDER DESCRIPTION

The following description of TKB assumes the reader has a thorough

understanding of the ADVANCED Software System CHAIN* program since only

*TKB and CHAIN have identical Input/Output Device Assignments and load-
ing procedures. (See CHAIN & EXECUTE Manual DEC-15-YWZA-DN2)

5-1

minor differences exist between the two. Only areas which are not part

of the CHAIN program will be amplified in this section. Answers to all

questions, as for the CHAIN program, must end with an ALT MODE.

LIST OPTIONS

NAME

SZ to output size in load maps, GM to output Global Symbol &
File names instead of program names in load maps, NM for no
load map, and PAR & PAL for pause after outputting resident
code and pause after outputting each Link.

TASK

Identical to NAME XCT FILE in CHAIN.

SPECIFY DEFAULT PRIORITY

This is the default priority of the Task which will be assumed
at INSTALL time. Default priority is optional and can be any
number from 1 (highest priority) to 512 (lowest priority).

DESCRIBE PARTITION

This is the name of the core partition in which the Task is
to be executed. The form of the partition description is:
NAME (BASE ADDRESS,SIZE). The NAME is the name of a Partition
defined in the RSX System, BASE is the octal start address of
the partition, and SIZE is the size of the partition which
the Task is to occupy.

DESCRIBE SYSTEM COMMON BLOCKS

These are the names of the Common Blocks which are referenced
by the Task but are common to all Tasks in the RSX System.

The form of the Common Blocks is: NAME (BASE ADDRESS,SIZE).
NAME is the name of the Common Block defined in the RSX System,
BASE is the octal start address of the Common Block, and SIZE
is the maximum size of the Common Block in which data is to

be placed. Additional Common Block descriptions (maximum of
four) may be specified by separating the descriptions with
commas. Blank and Named Common declared in FORTRAN programs
will be included in the Task's partition block if not speci-
fied in a DESCRIBE SYSTEM COMMON BLOCKS description. Blank
Common assumes the default name of .XX.

DEFINE RESIDENT CODE

Identical to CHAIN program.

DESCRIBE LINKS & STRUCTURE

Identical to CHAIN program.

5.3 EXAMPLE USING THE TASK BUILDER

*C
XMo-15 VoA
$4 DKl -4/DTI -6

$TKB

TASYX BUILDER ViA

LIST OPTIONS

>57

NAUE TASX

>SUM

SPECIFY DEFAULT PRIORITY
>4

DESCRIBE PARTITION
>P42,2(42230,15008)
DESCRIDE SYSTEM COMMON BLOCKS
>FLAG(36222,620)

DEFINE RESIDENT CODE
>MAIN,F1,F2,MAC

DESCRIBE LINKS & STRUCTURE

>

MAIN 40022-42047 23930
¥l 4925¢-48117 00052
F2 42128-40255 80136
MAC 43256-402383 20026
WAFF.1 40324-42316 23013
DSGF.2 4B8317-48363 08042
ExIF.] 48361-42363 22003
. DA 43364-40432 20047
- DAA 49433-425081 030847
BCDIO 48502-43537 230836
+35S 43540-43617 20060
ST0,3 43628-43631 go@l12
FI0.3 43632-44311 208460
TS.5 44312-44440 00127
«SP.3 44441-44560 00120
INTEAE 44561-44674 22114
RELEAE 44675-45736 91842
.CB 45737-45756 08820

BLANK COMMON
o XX 45757-46266 28310

42039-4626€ 06267

¥Me-15 V5A

$

tC
XMo-15
$A DKI
$TKB

54

-4/DT1 -6

TASK BUILDER VIA

LIST OPTIONS

>SZ

NAME TASK

>STORE

SPECIFY DEFAULT PRIORITY

>35

DESCRIBE PARTITION
>P4D .0 (42900 ,15090)

DESCRIBE SYSTEM COMMON BLOCKS
>FLAG(36200,602)
DEFINE RESIDENT CODE

>STORE

DESCRIBE LINKS & STRUCTURE

>
STORE
WAFF. 1
RUNF. 2
EXIF.!
DSAF.2
DSPF.2
FTIS.2
. 3C

o BB

. EF
«EC

. DA

« DAA
3CDIO
«SS
ST0.3
F10.3
0TS.5
«SPe3
INTEAE
RELEAE
.CB

40028-40317
49320-43332
43333-43404
42405~ 40407
42418-4P433
43434-40475
40476-40543
40544-42617
40623-48710
48711-41026
41927-41072
41973-41141
41142-41210
41211-44246
44247- 44326
44327-443489
44341-45020
45021-45147
45150-45267
45273-45483
45434~ 46445
A6 446~ 46465

3LANX COMMON

e
.

46466-41008

CORE REQ'D

Kiio=15
S

42030-4T70200

V5 A

20320
20013
20252
20093
20024
BeB42
20046
2054
22871
2a116
20344
20047
20047
83836
22969
208012
220462
pai127
#2122
gelrl4
are42
voeo2n

28313

27081

CHAPTER SIX
SYSTEM CONFIGURATOR

6.1 INTRODUCTION

The RSX-15 System is supplied on DECtape (RSX COLD START MASTER TAPE)
with each PDP-15/35 computer as a very generalized softwére package.
The Master Tape of the system consists of the RSX Executive, Multi-
Teletype Handler, Disk Handler, Monitor Console Routine (MCR) Func-
tion Tasks, and one running Task called the SYSTEM CONFIGURATOR. The
SYSTEM CONFIGURATOR enables the user to tailor his software to fit his

requirements.

The SYSTEM CONFIGURATOR allows the user to specify core size, disk
size, number of Teletypes, clock frequency, Partition descriptions,
sysfem COMMON Block descriptions, and a description of peripheral 1/0
units. Partitions and COMMON Blocks may be defined anywhere between
the top of the Executive (over the SYSTEM CONFIGURATOR) thru the top
of core (as long as they do not overlap each other). Partition Blocks
and the "Pool of Empty Nodes" are constructed in core above the 8K

that has not been defined as a part of a Partition or COMMON Block.

After the Pool and Partition Blocks have been constructed, all Tasks

recorded on DT-@ that can be installed in the newly configured system,

are installed. After installation from DT-§, the number of empty

nodes in the Pool is typed out, and the system is left running.

6,2 INSTALLING THE RSX SYSTEMN

When the user receives the RSX COLD START MASTER TAPE he should per-

form the following steps to configure the RSX Software to best fit his

needs and requirements:

1)

2)

3)

4)

5)

Mount the RSX COLD START MASTER TAPE onto DECtape unit zero
(WRITE LOCK).

‘Read into location #@g@g@F the RSX DECTAPE BOOTSTRAP from the

High Speed Paper Tape Reader. This will cause the Cold Start
image to be read in from the Master Tape and the SYSTEM
CONFIGURATOR started.

Answer all questions asked by the SYSTEM CONFIGURATOR (See
section 6.3).

When the system configuration has completed* and the message
"MCR>" is printed on the console Teletype, the user should
install his own Tasks into the system and issue the "SAVE®
MCR Function command to save an image of the new system on
the disk.

To make a backup copy of the system, mount scratch tapes on
DECtape units one and two (one at a time if only a limited
number of DECtapes are available) and read into location Fg@@gg
the "DISK TO DECTAPE" from the High Speed Paper Tape Reader to
copy an image of the disk(s) onto the DECtapes. This backup
system can be restored by reading in "DECTAPE TO DISK" from
the High Speed Paper Tape Reader. NOTE: Two DECtapes are
required for each disk unit saved. Writing begins on DECtape
unit one for the first half of the first disk and automatical-
ly transfers to DECtape unit two when unit one is filled.

This process is automatically repeated (from DECtape one to
two) until all disks have been saved. (Rewinding and unload-
ing DECtapes between save/restore operations is performed by
the save and restore programs.) A similar procedure is used
to restore the system from DECtape to disk. The tapes may be
restored in any order with transfer beginning from DECtape
unit one and continuing with DECtape unit two. Each DECtape
will contain l31,ﬂ721g disk words followed by a descriptor
block.

* The SYSTEM CONFIGURATOR is a one-time Task that automatically removes
itself once the system has been confiqured.

6-2

6) Read into location @@@@gg the RSX DISK (WARM START) BOOTSTRAP
from the High Speed Paper Tape Reader. This will cause the
restored RSX System to be brought in from the disk and the
message "MCR>" to be printed on the console Teletype. The
System is now ready to accept commands from the user.

6,5 STEP BY STEP SYSTEM CONFIGURATION PROCEDURE

QUESTION ANSWER

SPECIFY CORE SIZE>

16K, 2@K, 24K, 28K, or 32K (Size of user's core memory)
SPECIFY NUMBER OF DISK UNITS>

1 to 8 (Number of physical disk units)

SPECIFY NUMBER OF TTY'S>
1 to 17 (Number of Teletypes connected to the system.)
SPECIFY NUMBER OF CLOCK TICKS PER SECOND>

1 - 1499 (This is the line frequency used to set the Real-Time
Clock frequency in the RSX Executive, and will normally be 5@
or 6#.)

DEFINE PARTITIONS "NAME (BASE,SIZE)"

These are the names (NAME) of all partitions in the System along
with their base addresses (BASE) and sizes (SIZE). A line with
only a terminator {carriage return or ALTMODE) will terminate the
response.

DEFINE SYSTEM COMMON BLOCKS "NAME (BASE,SIZE)"

These are the names of COMMONs to be used for inter-task communica-
tion or extra-task data storage. Core is permanently allocated and
these COMMONs are always available. The Names, Base Addresses, and
Sizes are specified. A line with only a terminator (carriage re-
turn or ALTMODE) terminates the response.

SPECIFY DEVICE NAMES AND UNIT NUMBERS (ONE PER LINE)

List only devices which will be used by the user. Device names
are two characters in length followed by a unit number. (The Tele-
types and Disk are specified in the system.) The following are
names of devices for which I/0 Handler Tasks are supplied with the

system:
LP = Line Printer
DTn = DECtape (n=g to 7)
PR = High Speed Paper Tape Reader
PP = High Speed Paper Tape Punch

A line with only a terminator (carriage return or ALTMODE) termi-
nates the response.

INSTALLATION OF TASKS FROM DTg@

This process requires no response from the user. All Tasks on DT
that can be installed, are installed in the System at the default
priority defined at Task Building time. When all Tasks have been
installed, the CONFIGURATOR continues with:

nnnnn NODES IN POOL
This is the number (nnnnn) of empty nodes (in decimal) in the POOL
available for queueing and scheduling. The CONFIGURATOR continues
with:) .

SYSTEM IS RUNNING
This indicates to the user that the system is running and the

Resident MCR responds by typing "MCR>". The System is now ready
to accept user's commands from the console Teletype.

6.4 EXAMPLE OF A SYSTEM CONFIGURATION PROCEDURE

RSX SYSTEM CONFIGURATION

SPECIFY CORE SIZE >24X

SPECIFY NUMBER OF DISX UNITS >1

SPECIFY NUMBER OF TIY'S >4

SPECIFY NUMBER OF CLOCX TICKS PER SECOND >60

DEFINE PARTITIONS “NAME(BASE,SIZE)"
>MCR(12972,1602)

>10,1(11632,3929)

>10.2(35200,1%68)
>P14.6(14600,3200)
>P21.0(21208,5560)
>P26,5(26509,6508)
>P4Z.7(AB200,15008)

>

DEFINE SYSTEM COMMON BLOCKS "NAME(BASE,SIZE)™
>, XX(20000,7¢0)
>FLAG(36203,608)

>
SPECIFY DEVICE NAMES & UNIT NUMBERS (ONE PER LINE)
>DT? .

>DT1

>DT2

>DT3

>PR

>PP

>
INSTALLATION OF TASXS FROM DT-90
22171 NODES IN POOL

SYSTEM IS RUNNING

MCR>SAVE

6.5 DESCRIPTION OF SYSTEM CONFIGURATOR ERROR MESSAGES

A44

+44

+44

144

+44

A44

k%

kk%

k%

k%

WOULD OVERFLOW ADJACENT AREAS -- RETYPE

A Partition and/or COMMON Block has overflowed in an adjacent
area. The user must redefine the COMMON or Partition.

SYNTAX ERR AT “X" -- RETYPE

The illegal character "X" was found in the command string, retype
the line.

INVALID SIZE -- RETYPE

Illegal core size. Must be either 16K, 20K, 24K, 28K, or 32K.
INVALID- NUMBER ~-- RETYPE

Illegal number of disk units, Teletype units, or clock frequency
setting.

NAME ALREADY USED -- RETYPE

The name of the Partition or COMMON Block is already defined in
the system. Partitions and COMMON Blocks may not have the same
name.
DEVICE NAME/UNIT ERR -- RETYPE

Device name and unit already defined.

DISK READ ERR

A disk read error has occurred. The system will halt and wait
for the user to manually depress the continue switch to retry the
disk read.
DISK WRITE ERR

A disk write error has occurred. The system will halt and wait
for the user to manually depress the continue switch to retry the
disk write.
RE-ENTRANT ECO PACKAGE NEEDED

The user's machine does not have the RE-ENTRANT ECO PACKAGE
required to run RSX. Contact your local field service office.

INSUFFICIENT FREE CORE -- RE~STRUCTURE

Insufficient free core for storage of all Partition Blocks or out
of nodes in the Pool.

TASK "XXXXXX" NOT INSTALLED, TASK ALREADY IN SYSTEM

The Task XXXXXX is already installed in the systen.

TASK "XXXXXX" NOT INSTALLED, PARTITION NOT IN SYSTEM

The Task XXXXXX was built for a partition which is not defined in
the system.

TASK

TASK

TASK

. TASK

TASK

TASK

TASK

"XXXXXX" NOT INSTALLED, TASK WOULD OVERFLOW PARTITION

The Task XXXXXX is larger than the partition defined for it in the
system.

"XXXXXX" NOT INSTALLED, OUT OF DISK STORAGE

The Task XXXXXX is larger than the amount of available Disk stor-
age required to install the Task.

"XXXXXX" NOT INSTALLED, INPUT CHECKSUM ERR

An input checksum error occurred while installing Task XXXXXX
from DECtape.

"XXXXXX" NOT INSTALLED, INPUT PARITY ERROR

An input parity error occurred while installing Task XXXXXX from
DECtape.

"XXXXXX" NOT INSTALLED, SYSTEM COMMON BLOCK ERR

COMMON Block not defined in system or COMMON Block BASE and/or
SIZE specified incorrectly (to the Task Builder).

"XXXXXX" NOT INSTALLED, READ ERROR

An illegal DECtape block number was found or a DECtape
error exists.

"XXXXXX" NOT INSTALLED, NO DEFAULT PRIORITY
The Task XXXXXX was not given a default priority at Task Building

time. The INSTALL MCR Function can be used to install the Task
once System Configuration has completed.

CHAPTER SEVEN
SYSTEM ORGANIZATION

/.1 INTRODUCTION

The RSX System is organized into several units consisting of: The
Executive, Partitions, Partition Blocks, System COMMON Blocks, several
linked lists, and a pool of empty list nodes. The Executive, or heart
of the system, lies entirely in the lower 4K memory bank and consists
of the Resident MCR Task, Teletype and Disk I/0 Handler Tasks, and
assorted routines to properly carry out the functions of a real-time
operating system. The remaining area of core memory is available for
Partitions, Partition Blocks, System COMMON Blocks, and the Pool of

Empty Nodes. The following sections describe the system in more detail.

7.2 RSX BOOTSTRAPS

The RSX DECTAPE BOOTSTRAP is read in at location g@g@g@Fd and starts a
DECtape to core transfer from tdpe block zero into core location 34.
The size of the image loaded ié the same as the image that was recorded
and is determined by the word ccunt and current address registers 3¢ &
31. This bootstrap is normally used to initiate a COLD START, but can
also be used to initiate a WARM START of a system that does not use the

disk. 1i.e., to load an image of a system where all Tasks have been

fixed-in-core. viz., an emergency system in case of disk failure.

The RSX DISK (WARM START) BOOTSTRAP is a program used to restore a
core image of the system (recorded by a SAVE MCR Function), from

disk unit zero into core memory.

The DISK bootstrap is read into location @@g@g@gg, clears the disk con-
troller, and begins transfer starting from the beginning of disk zero
and core location @@@3¢. Transfer continues until the entire core
memory has been restored. When the system has been successfully re-
stored, control is transferred to the address specified by Rl (abso-
lute location 15318 in the System Communications table) causing»the

system to be started.

7.3 RSX MEMORY MAP USAGE

16K+32K

Partitions,
Partition
Blocks, COMMON
Blocks, and the
Pool of Empty

{ Nodes.
Partitions required 8K
to install the 10.4 (l6ggg. 1998y _ _ _
pre-built MCR & T 14 2 Partitions and
I/0 Handler Task — §g~§.Liiiﬂﬂﬁgﬂﬂ)_. - - COMMON Blocks*
supplied on the - — 0.2 4 ﬂhu) — — —
Cold Start Image \ |- — IO.l (1l6df,.2680) _ _ _|

Tape. Normally, MCR (ld@dg.ledd) | 4K
the I/0 Handler
Tasks are rebuilt
to run in parti- : ,
tions that satisfy RSX EXECUTIVE
requirements of ,
particular g
applications.

Figure 7.1

* Unspecified core space between Common Blocks and Partitions which
exist between the RSX Executive and the 8K memory boundary is not used
by the system.

7.4 SYSTEM DEQUES

The RSX System uses linked lists, rather than tables, to maintain
system information. These lists are linked together as Double Ended
Queues called deques. Each dequg consists of a listhead and list
elements, or nodes, circularly linked by both forward and backward
pointers. The first word of a node or listhead is a forward pointer
containing the address of the next node (or the listhead) looking
forward. The second word of a node or listhead is a backward pointer
containing an address of the previous node. (or the listhead) looking
backward. The listhead consists of only the two pointers. All nodes
in a deque consist of the two pointers followed by eight words of data.
Some of the major deques used in the RSX System are the Active Task
List (ATL), the System Task List (STL), the Clock Queue, and the

Physical Device List (PDVL).

Deque
Listhead lst node .
£ r pntr f ontr | £ pntr
| b _pntr b _pntr pntr b_pntr
- - o — n _
e ‘U-— p— — — o
. ¥ .j I N 3
- [} — [- = o —
- o _] . T - — T -
- - - - ~ -

Figure 7.2 A three node deque

[Y|
)

Figure 7.3 An empty deque

/.4.1 POOL

During System Configuration, core which has not been specified by the
user for other purposes (viz., Partitions and COMMON Blocks), is
divided into ten-word blocks (empty tén—word nodes) and linked to-
gethef forming a deque called "The Pool of Empty Nodes" or "Pool™.
When a node is needed to expand a list, it is taken ("Taken" implies
changing the node pointers, not moving ten words of data) from the

Pool. When a node is no longer needed, it is returned to the Pool.

/.4.2 THE SYSTEM TASK LIST (STL)

The System Task List (STL) is a directory of Tasks in the system.
The STL is a deque consisting of one node for each Task currently in

the system. An STL node has the following format:

Word O -- Forward pointer

Word 1 -- Backward pointer

Word 2 =-- Task name (first half in .SIXBT)
Word 3 -- Task name (second half in .SIXBT)
Word 4 -- Flags and Default priority

Word 5 -- Partition Block Address

Word 6 =-- Disk address of Task image

Wword 7 -- Size of resident image

Word 10 -- Disk storage allocated
Word 11 -- Task entry point

Word 4, the Flags and Default priority, has the following bit designa-

tions:
Bit 0 -- set when the Task is active
Bit 1 -- Unused
Bit 2 -- set when the Task is disabled
Bit 3 -- set when the Task is "FIXed in Core"
Bit 4 -- Unused
Bit 5 -- Unused

Bits 6 - 17 -- Task's default priority

Word 6, the Disk address, contains the disk unit number in bits 15-17.

Nodes are added to the STL whenever a Task is INSTALLed into the system,

and deleted from the STL when a Task is REMOVEd from the system.

7.4.3 THE ACTIVE TASK LIST (ATL)

The Active Task List (ATL) is a priority ordered list of Active Tasks.
The ATL is a deque consisting of one node for each Active Task in the

system. An ATL node has the following format:

Word 0 -- Forward pointer

Word 1 -- Backward pointer

Word 2 -~ Task name (first half .SIXBT)
Word 3 -- Task name (second half .SIXBT)
Word 4 -- Task run priority

Word 5 -- Partition block address

Word 6 -- STL node address

Word 7 -- Task status indicator

Word 10 -- Start or resumption address
Word 11 -- Event variable address

- The ATL is ordered by the priority of the Active Tasks and is used to
drive the system. The order in which Tasks are considered is determined
by scanning the list, and the action to be taken is determined by
examining the Task status word. There are six levels of status, each
of which is described below:

Status 1l: Task image is on the disk. If its partition is available,
flag partition unavailable and proceed to status two;
otherwise, service next Task in ATL.

Status 2: Task imége is on the disk and the partition is available for
its use. Queue disk read request with Event Variable in ATL
{(Word 11) and proceed to status three.

Status 3: Waiting for an Event Variable. If the Event Variable, whose
address is in the ATL, is non-zero, proceed to status four;
otherwise service next Task in the ATL.

Status 4: Task is ready to be started or resumed. In order that its
environment will be saved if it is interrupted by the Execu-
tive, set status five, and start or continue Task execution.
(Status four may be set by the WAIT or RESUME Directives.)

Status 5: Task has been interrupted by the Executive (environment saved
in partition block). Restore environment and return control

to Task.
Status &: Task has been suspended. (Status six is set only by the
SUSPEND Directive.)

7.4.4 THE CLOCK QUEUE

The Clock Queue is a deque consisting of one node for each item to be

done at some time in the future. These items are: scheduling of Tasks
(SCHEDULE, RUN, and SYNC Directives), rescheduling of Tasks (Clock
interrupt service routine), and setting of Event Variables after
elapsaed time periods (MARK Directive). The nodes are linked in the

order in which they come due, and have the following format:

Word 0 -- Forward Pointer

Word 1 -- Backward pointer

Word 2 ~- Type indicator (TS,MT)

Word 3 -- Unused .

Word 4 -- Run priority (TS) or Event Variable address (MT)
Word 5 -~ STL node address (TS) or zero (MT)

Word 6 -- Schedule interval seconds (TS,MT)

Word 7 -- Schedule interval ticks (TS,MT)

Word 10 -- Reschedule interval seconds (TS)
Word 11 -- Reschedule interval ticks (TS)

TS -- Task Scheduling usage
MT -- Mark Time usage

Word 2, the Type indicator, is set as follows:

0 ~-- Task scheduling with no rescheduling

1 -- Task scheduling with periodic rescheduling
5 -- Mark time request

6 -- Null node (result of cancellation)

The schedule interval in all nodes, except the first node, is relative
to the previous node. The schedule interval in the first node is
relative to "now" and is decremented and examined at each clock tick.
Two. words are used to record the schedule interval: "schedule ticks"
and "schedule seconds”. The schedule ticks is only zero when a node

is to come due at the same time as the previous node and is never
greater than the number of ticks per second. When an interval of more
than one second is represented, the schedule seconds indicates the
number of additional whole seconds. The "reschedule ticks" and
"reschedule seconds" are the schedule interval reset values when

periodic Task rescheduling has been requested.

7.4.5 THE PARTITION BLOCKS DESCRIPTION LIST (PBDL)

Partition Blocks serve three functions: (1) They contain partition

description information to assure that a Task being installed into the

system hds been built for an existent partition; (2) they provide core
for an Event Variable and disk GET (DSKGET) control table necessary to
load Tasks into partitions; and (3) they provide for saving a Task's
environment when it is interrupted by the Executive. The Partition
Blocks are generated by the System Configurator and are linked together
into a deque called the Partition Blocks Description List with abnormal

nodes having the following format:

Word 0 -~ Forward pointer

Word 1 -- Backward pointer

Word 2 -- Partition name (first half .SIXBT)

Word 3 -- Partition name (second half .SIXBT)

Word 4 -- Partition base (address)

Word 5 -- Partition size

Word 6 -- Flags word (bit £ indicates partiticon is occupied)

Word 7 -- Register save routine entry point (operand address for
wd. 12)

Word 10 -- Interrupt connect location (JMS here upon interrupt)

Word 11 -- DBA instruction

Word 12 -- JMS* ,-3 instruction (transfer to save routine)
Word 13 -- AC buffer

Word 14 -- XR buffer

Word 15 -- LR buffer (Words 15 thru 21 are used by
Word 16 -- MQ buffer the Executive during status two
wWord 17 -- SC buffer . and three to store the disk read
Word 20 -- Rl buffer Event Variable and Control

Word 21 -- R2 buffer Table)

wWord 22 -- R3 buffer (R1 thru R6 are pseudo registers
Word 23 -- R4 buffer used by re-entrant system

Word 24 -- R5 buffer routines)

Word 25 -- R6 buffer

Word 26 -- X10 buffer (X10 thru X13 are autoincrement
Word 27 -- X111 buffer registers 10 thru 13)

Word 30 -- X12 buffer

Word 31 -- X13 buffer

Word 32 -- L20 buffer (CAL return parameters)

Word 33 -- SKP SKP is an indicator to the
register save routine to trans-
fer control to the Executive
(NOP indicates transfer to an
interrupt service routine).

7.4.6 THE PHYSICAL DEVICE LIST (PDVL)

wWhen a logical I/0 unit is assigned to a physical unit, the address
of a node describing the device and unit is set in a logical unit table
entry corresponding to the Logical Unit Number (LUN). These nodes are

constructed by the System Configurator and linked together into a deque

called the Physical Device List. Each PDVL node has the following

format:
Word O -- Forward pointer
Word 1 -- Backward pointer
Word 2 -- Device name (first half .SIXBT)
Word 3 -- Device name (second half/always zero)
Word 4 -- Device Attach flag
Word 5 -- Unit number :
Word 6 -- Device request queue (deque listhead) forward pointer
Word 7 -- Device request queue (deque listhead) backward pointer

Word 10 -- Trigger Event Variable address
Word 11 -- Assign inhibit flag

/.4.7 THE SYSTEM COMMON BLOCK DEFINITION LIST (SCDL)

The System COMMON Block Definition List (SCDL) is a deque built by the
System Configurator consisting of a description of each COMMON Block

in the System. An SCDL node has the following format:

Word 0 -- Forward pointer

Word 1 -- Backward pointer

Word 2 -- COMMON Block name (first half .SIXBT)
Word 3 -- COMMON Block name (second half .SIXBT)
Woréd 4 =-- Unused

Word 5 -- Base of COMMON Block (address)

Word 6 -- Size of COMMON Block

Word 7 -- Unused

Word 10 -- Unused
wWord 11 -- Unused

/7.5 INPUT/OUTPUT OPERATIONS

Input/Output operations in the RSX System are device independent, with
I/0 requests being made to Logical Device Units rather than Physical
Device Units. Logical Units are equivalenced to Physical Device Units
via a Logical Unit Table (LUT). The LUT is a block of contiguous core
with a one word entry, or slot, for each LUN. LUN slots are designated
sequentially from one and will contain a zero if unassigned (assigned

to NONE). The LUT is maintained by the REASSIGN MCR Function.

Physical Device Units are represented by nodes in a deque called the

Physical Device List (PDVL). When a LUN is assigned to a Physical

Device Unit, the corresponding LUT slot contains the address of the
appropriate Physical Device List node. Corresponding to the LUT is an
Attach-Flag-Table (AFT) with a two word entry for each LUT slot.
Whenever a LUN is attached to a Task, the Task name is set in the
corresponding AFT slot. Whenever a LUN and Device Unit are both
attached to a Task, the Device attach flag in the PDVL points to the

appropriate AFT slot.

7.5.1 1/0 HANDLER TASK INITIALIZATION

All I/0 Handlers are RSX Tasks and are called I/0 Handler Tasks
(IOHT's). They differ from most other Tasks in that they contain an

interrupt service routine and that a naming convention exists.x

When a LUN is assigned to a Physical Unit, the appropriate I/0 Handler
Task is REQUESTed (by the REASSIGN MCR Function). The Handler Task
then initializes itself and instructs the system (using the WAITFOR
Directive) to suspend its execution until its Trigger Event Variable
is set. Handler Task initialization consists of CONNECTing to an
interrupt line and setting the address of the Task's Trigger Event

Variable in the corresponding Physical Device List node(s).

A Handler Task normally services all Units of a Device.

7.5.2 1/0 REQUESTS

I/0 requests are made using the QUEUE I1/0 Directive. This Directive
expects to find a PDVL node address in the LUT slot indicated by the
LUN, and a Trigger Event Variable address in the PDVL node. If the

LUT slot contains a zero, the request is rejected because the LUN has
not been assigned to a Physical Unit. If the Trigger Event Variable
address is zero, the request ié rejected because the Handler Task has

not yet been initialized. If the LUT slot and Trigger Event Variable

* See section 8.5 7-9

address have been set, a request node is formed and inserted into a
fequest queue, and the Handler Task is "triggered” by setting the
Trigger Event Variable and declaring a Significant Event. If a
Handler Task is triggered while it is servicing a request, the trigger
is ignored; however, if a Handler Task is idle, the triggef will bring

it back into service.

There are separate I/Q request queues for each Physicai Device Unit.
These queues are deques with their listheads in the PDVL nodes for the
physical units. Requests are normally serviced in order of priority
by simply picking up the front node from the request queue. I1/0
requests are processed at API level 7 and are de-queued by priority of
the requestor (software priority 1-512) with the highest priority
request at the front of the deque. Reguests of equal priority are

inserted in the order that the requests were made.

If a Physical Device Unit is ATTACHed, only requests from the Task
that issued the ATTACH will be serviced, however, I/0 requests from
all Tasks are queued. When the DETACH reguest is serviced, pending

I/0 requests from other Tasks in the queue will then be serviced.

The QUEUE I/0 Directive allows an I/O requestor to specify an Event
Variable to be set to indicate the status of a reguest. If a request
cannot be queued, the requestor's Event Variable is set to one of the

following negative values:

-1§1 -- Illegal (out of range) LUN

-1g42 -- LUN not assigned to a physical unit

-1¢3 -- Handler not resident and initialized

-777 -- Request node not available (pool empty)
If a request is queued, the requestor's Event Variable is zeroed to
indicate that the request is pending and the Handler Task will set it
non-zero. I1f a Handler Task cannot successfully complete a request,
it will set the requestor's Event Variable to a negative value. (See

Appendix D for a complete list of returned Event Variables.

7-10

When an I/0 request is successfully completed, the requestor's Event

Variable is set positive, normally to one (+1).

7.5.3 1/0 FUNCTIONS

The following is a description of CAL Parameter Block operands for

the QUEUE I/0 Directive. The FUNCTION CODE WORD contains the CAL
Function Code for the QUEUE I/0 Directive (gg) in bits 12-17 and the
I/0 Function code in bits 3-11. An Event Variable address of zero
implies "no Event Variable specified”. ALLOCATE, DEALLOCATE, GET, and
PUT are device dependent functions, and the address of a table of con-
trol information is a part of the request, i.e., the Control Table is
not gqueued.

ALLOCATE (4 words)
FUNCTION CODE WORD (1500)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
CONTROL TABLE ADDRESS

DEALLOCATE (4 words)
FUNCTION CODE WORD (1600)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
CONTROL TABLE ADDRESS

ATTACH (3 words)
FUNCTION CODE WORD (2400)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER

DETACH (3 words)
FUNCTION CODE WORD (2500)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER

READ (6 words)
FUNCTION CODE WORD (2600)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
DATA MODE INDICATOR
CORE BUFFER ADDRESS
BUFFER SIZE {(max words transferred)

WRITE (5 words)
FUNCTION CODE WORD (2700)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
DATA MODE INDICATOR
CORE BUFFER ADDRESS

GET (4 words)
FUNCTION CODE WORD (3000)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
CONTROL TABLE ADDRESS

PUT (4 words)
FUNCTION CODE WORD (3100)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
CONTROL TABLE ADDRESS

SEEK (6 words)
FUNCTION CODE WORD (3200)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
FILE NAME (first half)
FILE NAME (second half)
FILE NAME EXTENSION

ENTER (6 words)
FUNCTION CODE WORD (3300)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
FILE NAME (first half)
FILE NAME (second half)
FILE NAME EXTENSION

CLOSE (3 words)
- FUNCTION CODE WORD (3400)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER

DELETE (6 words) :
FUNCTION CODE WORD (3500)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER
FILE NAME (first half)
FILE NAME (second half)
FILE NAME EXTENSION

HINF (3 words)
FUNCTION CODE WORD (3600)
EVENT VARIABLE ADDRESS
LOGICAL UNIT NUMBER

The following Control Table formats are expected by the Disk Driver:

ALLOCATE (3 words)
REQUIRED STORAGE (IN WORDS)
DISK UNIT*
TRACK & HEAD*

* Set by the Disk I/0 Handler, not the requestor.

DEALLOCATE (3 words)
STORAGE ALLOCATED
DISK UNIT
TRACK & HEAD

GET (4 words)
DISK UNIT
TRACK & HEAD
CORE ADDRESS
WORD COUNT

PUT (4 words)
DISK'UNIT
TRACK & HEAD

CORE ADDRESS
WORD COUNT

7.5.4 HANDLER TASK EXIT

When there are no Logical Unit Numbers assigned to a physical device,
the REASSIGN MCR Function sets the "assign inhibit flag" and clears
the Trigger Event Variable address in the Physical Device List node
for each unit of the device and inserts an EXIT request in the I/O
gueue for one of the device's units. The Handler Task services the
EXIT request by: 1) DISCONNECTing from an interrupt line, 2) clearing

the assign inhibit flag, and 3) EXITing.

7.5.5 DISK STRUCTURE

A disk unit (platter) in the RSX System contains a total of 262,144
decimal words which is divided into 2948 decimal blocks of 128 decimal
words each for purposes of storage allocation. The disk is word ad-
dressable for data transfer purposes. Recorded on each disk platter

is a bit map that indicates which areas of the disk are free (to be

maps are initialized (cleared) by the System Configurator indicating

that all blocks* are free. Bit maps consist of 128 decimal words

* Excluding one bit map block per platter and save area on platter zero.

7-13

(1 disk block) beginning at location 7776¢ﬂ8 on each platter. Each
word in the bit map represents 16 decimal consecutive blocks. Bits
16 & 17 of the PDP-15 word are unused. A f@-bit indicates a block is

free and a 1l-bit indicates it is occupied.

Since there may exist up to 8 disk platters, it is possible for an
ALLOCATE request to require 9 disk transfers (approximately 3¢9¢ milli-
seconds). To prevent holding off high priority disk requests for this
length of time, the Disk handler consists of two Tasks: "DSK", the

Disk Driver, and "DSA", a lower priority Task that handles Disk
ALLOCATE/DEALLOCATE requests. Whenever "DSK" encounters an ALLOCATE

or DEALLOCATE request in its I/O request quéue, it simply moves the
request node from its own queue to another queue belonging to "DSA".
Then it sets "DSA's" trigger event variable and declares a significant
event so that "DSA"™ will run ("DSA" runs at a priority level lower than

"DSK") .

7.5.6 1/0 DATA MODES

The following I/0 data modes are supported in the RSX System:

IOPS BINARY {mode @)
IMAGE BINARY (mode 1)
IOPS ASCII (mode 2)
IMAGE ASCII (mode 3)

The data modes, including line buffer construction, have identical
meanings to those used in the ADVANCED Software System (see PDP-15

ADVANCED Software System Monitors Manual section 2.2 and 2.3).

I/0 Handler Tasks provided by DEC are listed below along with the data
modes each is capable of handling:

DT =-- All
DK -- None*

* Data modes do not apply to the GET and Put functions.

7-14

LP -- IOPS ASCII & IMAGE ASCII

TT -- IOPS ASCII & IMAGE ASCII
PP -- All
PR -- All

7.5.7 INTERRUPT PROCESSING

Interrupt processing under the RSX System consists of hardware inter-
rupts ha#ing various levels of priorities. The hardware interrupts
normally suspend the execution of other functions in the System in-
cluding the Executive; however, the Executive delays the servicing of
hardware interrupts while it is completing internal operations which
cannot be interrupted. These operations are always short in duration
and involve the updating of the various lists of system information

maintained by the Executive. This delay is never greater than 30 usecs.

Real-Time programs connect themselves to hardware interrupt lines with
the use of System Directives; and when hardware interrupts occur on
those lines, control is transferred by the hardware (API) directly to
the interrupt service routines. Once an interrupt service routine has
been entered, it can either save its active registers or use the
Executive's Register Save and Restore routines to preserve the contents
of the active system registers. The user,.however, might or might not
decide to save the registers of an interrupted Task depending on timing
constraints. Some cases may only require the saving of the Accumu-
lator (AC) which would be done by the interrupt service routine itself.
The Executive's Save and Restore routines, however, save and restore
several system registers including the Accumulator, Link, MQ, first
four Autoincrement, Limit, and Index Registers. The decision

whether or not to use the Executive's Save and Restore routines depends
on two considerations. First, can the interrupt service routine
tolerate delays incurred by using these routines (each operation re-

quires about 7@ usecs). Second, how many of the system's active

registers are used by the interrupt service routine?

To illustrate the different methods the user can use for saving and
restoring system registers, two examples are given. Example one
illustrates an interrupt service routine which only requires saving
the Accumulator, and example two illustrates the use of the Executive's
Save and Restore routines when several registers are required in the
interrupt service routine.

Example 1: Assume the interrupt service routine requires only the

Accumulator and does not desire to use the Executive's

routines because of timing constraints. The interrupt
service routine could be structured as follows:

SERDEV @ /ENTRY POINT TO ROUTINE
DBA /ENTER PAGE ADDRESSING MODE
DAC SAVEAC /SAVE ACCUMULATOR
. . /REAL=-TIME PROGRAM EXECUTES AT HARDWARE
. . / PRIORITY LEVEL.
LAC SAVEAC /RESTORE ACCUMULATOR
BBR /DEBREAK FROM HARDWARE LEVEL
JMP# SERDEV /RETURN TO INTERRUPTED TASK
SAVEAC § / TEMPORARY STORAGE FOR ACCUMULATOR

Example 2: Assume the interrupt service routine requires several
system registers and desires the use of the Executive's
Save and Restore routines.

INTENTRY SERDEV /ENTRY POINT TO ROUTINE, INTENTRY IS A
. / SYSTEM MACRO TO CALL THE EXECUTIVE'S
. / SAVE ROUTINE.
. /BODY OF INTERRUPT SERVICE ROUTINE

7-16

INTEXIT SERDEV INTEXIT IS A SYSTEM MACRO TO CALL THE

/

/ EXECUTIVE'S RESTORE ROUTINE, DEBREAK
/ FROM HARDWARE LEVEL, AND RETURN TO

/ INTERRUPTED TASK.

Interrupt service routines are an integral part of a Task and must be
connected to and disconnected from hardware interrupt lines before use.
That is, before a Task can process hardwareiinterrupts the Task must
first connect itself to a particular API line. Likewise, when a Task
no longer requires the use of an interrupt line it should disconnect
and release it to the system. Note that even though several Tasks can
connect and disconnect themselves to the same API line, only one Task
can be connected to it at any given time. The following example
illustrates an interrupt service routine that uses the System Direc-
tives CONNECT and DISCONNECT to connect and disconnect itself from an
interrupt line.

Example 3:

/CODE TO INITIALIZE A TASK

. /CONNECT INTERRUPT SERVICE ROUTINE,
CONNECT SERDEV,26,EV/ SERDEV, TO INTERRUPT LINE 26.

. /THE VALUE OF EV, THE EVENT VARIABLE,
. / SHOULD BE TESTED TO INSURE THE
. / CONNECTION WAS MADE.
INTENTRY SERDEV /ENTRY POINT TO INTERRUPT ROUTINE, SAVE

/ ACTIVE REGISTERS.
/BODY OF INTERRUPT SERVICE ROUTINE

INTEXIT SERDEVY /RESTORE SAVED REGISTERS, DEBREAK FROM
: / HARDWARE LEVEL, AND RETURN TO IN-

/ TERRUPTED TASK.

/MAIN PORTION OF TASK WHICH OPERATES AT
/ TASK PRIORITY LEVEL.

e o o o v WNe o s

DISCONNECT SERDEV,26,EV/DISCONNECT INTERRUPT SERVICE ROUTINE
. / FROM LINE 26.

EXIT /END OF TASK

7-17

CHAPTER EIGHT
TASK CONSTRUCTION

8.1 INTRODUCTION

Task construction in the RSX environment falls into one of four dis-

tinct categories: (1) a Task which includes computation and/or re-

quests to I/O Handler Tasks; (2) an MCR Function Task; (3) a Front-

End Interrupt Driver Task; and (4) an I/0 Handler Task. All Tasks,

regardless of priority, must be built with the Task Builder before

installing into the RSX System.

When building Tasks, the following conventions must be adhered to for

successful operation of the RSX System:

(1)

(2)

(3)

(4)

All hardware registers are available to the programmer except
the last 4 Autoincrement Registers (14-17) which are used by
the system.

A naming convention exists for Tasks in categories 2 and 4
(see sections 8.2 and 8.4, respectively).

Tasks should not EXIT while 1I/0, Mark Time, or Event
Variable settings are still pending since the Task may be
overlayed by another Task before the operation has completed.
All Directives (viz., the issuing of the CAL instruction)
result in a loss of the original contents of the following
registers: AC, XR, LR, MQ, LINK, SC, Autoincrement Registers
1g-13, system registers R1-R6, and location 2§. Unexpected
interrupts which suspend normal Task execution always save
and restore active registers before use.

The following sections describe the different Task categories in

greater detail.

3.2 COMPUTATIONAL TASK

The computational Task is the more common type of user written Task
since it includes programs written in FORTRAN and assembly language
which do not have interrupt routines and I/0 drivers internal to the

Task. All necessary Input/Output is referenced through LUN slots.

Computational Tasks require no naming conventions except the name
must be 1-6 characters in length (Tasks called by FORTRAN programs

must be 1-5 characters in length).

8.3 MCR FUNCTION TASK

The Monitor Console Routine (MCR). consists of a resident Task called
the Resident MCR Task, and a set of MCR Function Tasks. The Resident
MCR Task reads a line of input from LUN Zhand REQUESTs the appropriate

N

MCR Function Task which performs the MCR function.

MCR Functions normally all share the same core partition dedicated to
MCR'Functions, hééevér, they may be "built" to run in any partition,
The name of the Resident MCR is "...MCR" and the name of an MCR
Function is three periods followed by the first three characters

of the name of the MCR Function (e.qg., thg TIME MCR Function is

named "...TIM").

The Resident MCR Task is REQUESTed either by the Teletype Handler Task

in response to a CTRL C (from LUN 2) or by an MCR Function Task.

Two subroutines, with entry points in the System Communications (SCOM)
area, are used by both Resident MCR and MCR Function Tasks. One (FAC)
is used to Fetch-A-Character from a line of command input, and the

other (IFAC) to Initialize the Fetch-A-Character subroutine by

8-2

reading a line of command and setting the appropriate pointers.
Before reading a line, "MCR>" is output (on LUN-2) to indicate that

the MCR is waiting for input.

The name of an MCR Function Task is formed by reading a line of command
input (IFAC), fetching the first three characters (FAC), and preceding
them with three periods. After forming the MCR Function Task Name,
the Resident MCR Task continues to fetch characters until either a
SPACE, COMMA, CAR RTN, or ALTMODE is found. This is done so that only
as few as the first three characters of an MCR Function need be input.
After "flushing thru the first break character", the MCR Function
Task is REQUESTed and the Resident MCR Task EXIT's. If more informa-
tion is contained in the first line of input, it will be read by the
Function Task using the FAC subroutine. ;f additional lines of input
are required by the Function Task, they are read using the IFAC and

FAC subroutines.

Also included in the SCOM area is the MCR Request Inhibit flag (MCRRI)

which is examined and set by both the Teletype Handler Task and MCR

Function Tasks. If MCRRI=F and a CTRL C is typed in, the Teletype
Handler Task will REQUEST ...MCR and set MCRRI=1l., If MCRRI#0 and a

| CTRL C is typed in, the Teletype Handler Task will set MCRRI=~1.

MCRRI is cleared by MCR Function Tasks, normally just before they exit,

or at least after they have finished fetching characters from the

input line. MCRRI is set negative whenever a CTRL C does not result

in REQUESTing ...MCR so that CTRL C may also be used to imply

"premature termination" to an MCR Function with lengthy output.

When an MCR Function has been performed, and the first line of command
input (the line read by the Resident MCR) has been terminated by a
CAR RTN, the Resident MCR Task is REQUESTed by the MCR Function Task.
When the first line of command input is terminated by an ALTMODE, the

Resident MCR Task is not REQUESTed at the completion of an MCR

8-3

Function, and a CTRL C typein is necessary to re-establish MCR

dialogue.

The MCR Function Tasks are normal Tasks that adhere to the above
conventions related to REQUESTing the Resident MCR Task. A user may
build his own MCR Function Tasks and is restricted only in naming it

(the name must start with three dots).

The following example illustrates the structure of a typical MCR
Function Task (TIME MCR Function). Note that the section between line

numbers 73-78 (cross-reference line numbers) shows the standard EXIT

procedure from an MCR Task.

S-8

PAGE

OO NOADILUNP

T e S vl oy o
COVMBAGNNHD

Ea- R ol ok
=0 O~

N RN
AV IR RVE o

AR WREABLRNBIONOR
2N PFPROVDNO

Ol
¢

1

TIM,S

SRC

A Y N Y S S Y NN

EDIT #5
COPYRIGHT 1978, DIGITAL EQUIPMENT CORP,, MAYNARD, MASS,
MCR FUNCYIONI TIME 25 MAR 71 Ry MCLEAN

TASK NAMER ", ,TINM" TO TYPE LUN=3 TIME ON THE
IN RESPONSE To THE MCR "TIME® REQUEST,

THE FIRST LINE OF COMMAND INPUT FOR ANY MCR FUNCTION IS READ
BY THE RESIDENT MCR TASK (",,,MCR™), FOR THE "TIME" FUNCTION,
THE SYNTAX OF THE FIRST LINE IS}

SYNTAX = M"TIM"SKCHARACTER> CCR>/<AM>
KCHARACTER> = SLETTERD/<DIGITY
¢GCR> = CAR RTN
CAM> = AL TMODE
§ MANY NUMBER OF, INCLUDING ZERQY

THE RESIDENT MCR READS A LINE, FETCHMES THE FIRST THREE CHARACTERS
TO FROM THE MCR FUMCTION TASK NAME (",,,TIM"), FLUSHES CHARACTERS
THRU THE FIRST BREAK OR TERMINAL CHAR, REQUESTS ",,.TIM" AND EXITS,

LINE TERMINATOR, NO DATA 1S TAKEN FROM THE COMMAND INPUT LINE,
THE TASK ",y o TIM" FLUSHES ALL CHARACTERS THRU THWE END OF THWE INPUT LINE,
AND SAVES THE LINE TERMINATOR, NO DATA IS TAKEN FROM THE INPUT LINE,

THE TIME 1S TYPED QUT tHRiMMigSw

IF TME INPUT LINE IS TERMINATEN BY A CAR RTN, THE RESIDENT MCR
1S REQUESTED, AND THE FUNCTION TASK EXITS,

IF THE INPUT LINE 1S TERMINATEn mY AN ALTMODE, THE FUNCTION
TASK ("o o TIM"y EXITS WITHOUT REQUESTING THE RESIDENT MCR,
A +C TYPEIN IS NECESSARY T0O RE-ESTABLISH MCR DIALOGUE,

9-8

2

TIM,S

peoes
gp0ey
gpee2
poeos
poeR4
gpees
20006

ggee?
ppola
2011
aae12
o013
peaL4
ggals
gpaLe

eeel7
ppR20
epa21
poge?2
pgeas

ppo24
gpees

0w P i i R) VDXVVDDBDVHID VDVVODVBDO

SRC

poR163
pee164
POOBL6S
eoe17y
opRL74

785522
785521

120113
542114
600006
540115
600006
600202
240034

705522
220116
240101
220117
p40124
705521
220129
240107

200121
240267
100044
100044
1000244

pRe271
oP0035

>3 >

» >

X0 DOVODVB O XV>»>VDVTVDO> VBBV

ses MCR FUNCTION 'TIME?

s TITLE ##% MCR FUNCTION 'TIME!'

/

588163

MM%164

HH=16%

MCRRI=174

FAC=2174

/

« INH2785522

+ENB=T25524

/

TIME JMS®
SAD
JMP
SAD
JMPR
JMP

TIM3 DAL

/
+ INH
LAC®
0AC
LAC®
DaAC
+ENB
LACH
DAC

/
LAC
DAC
JMS
JMS
JMB

/
CAL
CAL

/INHIBIT INTERRUPTS
ZENABLE INTERRUPTS

tFAC)
(215)
TIM3
(175)
TIM3
TIME
TERM

(HM)
MHH
(MM)
MMM

(SS)
MSS

(MEH)
CONX
cON
CON
¢ON

TYPCPB
WALTLP

/FLUSH INPUY THRU TERMINATOR, AND

///FETCH TIME
0/
/14
7/
/7/
‘v
/7

/CONVERT TIME TO DEGCIMAL AND
/STORE IN IMAGE ALPHA BUFFER

/TYPE TIME
/WALT FOR YTY TO FINISH

L-8

73
74
75
76
77
78
79
8e
81

83
B4

86
87
83
89
%

opARs
goae7
20030
pea31
epeaz
20033

eno34

20035
pOB36

20037
poo40
Po04y
pEa42
00043

DD n E DB D

TIM,S

20044
2R045
20046
gea4y
220%0
pBo51
poa%2
22053
Pe034
20055
poR36
pead?

DVDBODOD0DDO VD0

200034
540114
ogpea37
540115
160122
000123

poogod

poeo20
goeo76

2000804
o000
5656%6

150322

egseoo

SRC

goceoo
220067
160067
240070
723766
741100
600055
460067
6000247
2208067
240124
gepas?

> 3> > > > T > > VIV

(2.2}

DIVVDID>>V0 0>

EXLY LAC
SAD
CAL
SAD
DEMe
CAL

/

TERM]

/

WAITLP 20
TYREY

/

REQMCR 4
)
»SIXBY
«SIXBY
)

TERM /1F CAR RTN TERMINATED INPUT LINE, RFQUEST

(#15) /RESIDENT MCR TASK & EXIT, 1IF ALTMORE TERMINATED
REQMCR /INPUT L INE, CLEAR ¢C REQUEST INMIBIT FLAG

(175) /AND EXIT,

(MCRRI)

(18)

7EVYENY VARIABLE ADDRESS
/REQUEST ", MCR" CPR

Moy

"MQR"

/ CON == SUBROUTINE T0 CONVERT AN INTEGER YO ITS TWQ DIGIT

MCR FUNCTION tTIME!

/ DECIMAL EQUIVALENT (IMAGE ALPWA), 'CONX' POINTS TO THE

/ BINARY WORD,

THE BINARY WORD 15 REPLACED BY TWE TENS

/ DIGIT AND THE UNITS DIGIT IS SYORED IN THE FOLLOWING WORD,
/ 'CONX' [S INCREMENTED BY THREE,

/

CON)
LAC®
DEM®

CONL DAC
AAC
SPA
JHP
T4
JMP

CON2 LAC*®
XOR
NACH

EONX
CONX
CONB
-12

£ON2

CONX
CONY
CONX
(60)
CONX

8-8

198
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
132
131
132
133
134
135
136
137
138
139
140

ppR6Y
pgoeey
peoé2
20063
opo64
gene6s
BoR6s

pRR67
20270

20274
geev2
200873
ag074
egee7s

peare

BseR77
p@100
70101
egLo2
20103
20104
geLes
geLee
20107
20312
20111
g@112

20113
ee1l4
ep11s
g0116
2p117

BV DOV X LBV BOOD

p:]

BV DDTODNDTBODBX

DO

440067
200870
240124
pepoe7
440267
440067
620044

2ooeo0
poeoon

eee709
poee7e6
poeaR3
pooR23
peeer?

200000

o06203
geeR00
eoeQo0
gageon
poee72
oeeene
poopen
poee72
povoge
geeoon
peE2B15
goega2

peogep
2ge174
202015
2008175
000165
poRl6s

D> > 30> > > TV VOODT

>

> > PP >>r>

>>»>» >3

sl
st
oL
L
.l

/
CONX
CONB

/
TYRPCPE

/
TYPEV
MES12
MHH

MMM

MSS

152
LAC
X0OR
DAC#®
1S2
152
JUP#

2
2

2720
TYPEY
3

3
MES12
e

po6vea
pagvge
zo0
goa
072
eoa
P00
272
2ee
eop
215
212

+END

cONX
CONB
t62)
CONX
CONX
CONX
CON

/FUNCTION
/EV ADR

/LUN

/MODE
/BUFFFER ADR
/EVENT VARIABLE
/HEADER
/HOURS
/COLON
JMINUTES
/SECONDS

/CR
/LF

TIME

PAGE

PAGE

CON
CONB
CONX

CON1
cON2
EXIT
FAC
HH
MCRR1
MES12
MHH

MMM
MSS
REQMCR

TERM
TIME
TIM3
TYPCPB
TYPEY
WALTLP
ENB
« INH

poe MCR FUNCTION 'TIME!

#
L
Al
"l
#L
NO ERROR LINES

> > >0 >

CRNSS REFERENCE

4 TIM,5 SRC
pp122 R 00Q@163
poL21 R 022121
p@122 R 202171
20123 R 200040
P@124 R Q00060

S1ZeE=@9125

5 TIM,S

7ga44 66 67

20070 99 109

opa67 65 Q7

113 116
9047 99» 104
2955 102 1054
pea26 734

Pod4174 42+# 47

pael1es 40 56

2ee171 41w 77

pR277 123 127a
20101 57 64
220164 394 58
g0104 59 132«
agi97 62 1354
00237 75 85a»
200163 i:13 61
P9234 53 73

aa202 47 % 52

po0as 49 51

200714 70 119»

20076 83 129

oQa3s 71 824«

795521 450 62

705522 44w 55

68 960 114
117+«
98 183 145 127

129«

Blw
142
53@

1254

128

131

112

8.4 FRONT-END DEVICE DRIVER TASK

The Front-End Interrupt Driver Task is a Task which has both computa-
tional and interrupt processing capabilities. Unlike the Computational
Task, the Front-End Task has an internal interrupt routine; but it does
not require the QUEUE I/O Directive to control it as do I/O Handler

Tasks.

An example Front-End Task used to generate straight line vectors on
the VP15 storage scope is giﬁen at the end of this section (VP.6).
This particular Task is a subroutine with four entry points for
CONNECTing and DISCONNECTing from the interrupt line, erasing the

display, and plotting a straight line vector.

The following paragraphs describe the separate sections of the VP.6
Task.

Line Numbers* Label Description

25-31 CINT Connect display interrupt
routine, VPINT, to interrupt
line 14. Notice that if the
Event Variable (EV) is negative,
the Task EXITs since the connec-
tion could not be made. If a
successful connection is made,
the EV is cleared before return-
to the caller.

4g-47 DINT Disconnect display interrupt
routine, VPINT, from interrupt
line 14. The testing of the EV
is not required here; hence, the
address of FV in the CAL Param-
eter Block, line number 45, is
zero.

51-54 ERASE Erase the face of the storage
scope. This operation (EST)
generates an interrupt once the
display has been erased and re-
quires waiting till completion.
This is done by issuing a
WAITFOR EV from routine WDINT

*Line Numbers (decimal) along the left hand column of the VP.6 Task
listing.

8-10

58-171

173-176

181-189

VECTOR

WFINT

VPINT

8-11

{(line 175). The interrupt
routine, VPINT, clears the dis-
play flag when the erase opera-
tion has completed, sets the EV,
and declares a Significant Event
(Request API level 6). This
results in a scan of the Active
Task list and a return following
the WAITFOR (contingent upon
priority).

This is the straight line vector
plot routine which calculates
the required points to generate
the line and displays them one
point at a time. Following each
point displayed, a WAITFOR is
done to wait for the completion
of the displayed point (line 143
and 172).

Subroutine to issue a WAITFOR EV
Directive until the point or
erase operation has completed.
It then clears the EV before re-
turning. (If the EV wasn't
cleared, the next WAITFOR EV
issued would return immediately
since the EV is set.)

Display interrupt service

routine which sets the EV signi-
fying the operation is complete
and declares a Significant Event
(Request API level 6). The dis-
play flag is cleared and control
returned to the interrupted Task.

Z1-8

PAGE

[P
OO BN

s 4a 2 1At e e
OV BN

NNV
NOV LW, RO

N
O O N

G AW WG
SbUNNED

N W
N>V

(2]
0

VP 6

pe0de
paeoy
noedz
20003
poeR4
2005
epooe

eg2a7
pgaia
20211
geai12

OBV A

ol sl el o)

SRC

728504
722604
708724
708521
70@722
720564
700664

pooeen
goeaa7
200227
140227
740100
620000
2oR232

200011
aez227
208014
20@202

P> >3 > >

VD >T V>

> >

/7 EDIY #6

/

/ ERASE & VECTOR == FORTRAN CALLABLE SUBROUTINE TO ERASE
/ SCOPE, OR TO CONSTRUCT A VECTOR FROM P1(IX1,1Y1) TO P2
/

/CALLING SEQUENCESH

/ CALL CINT CCONNECT INTERRUPT]
/ CALL DINT CDISCONNECT [NTERRUPT)
/ CALL ERASE
/ CALL VECTOR (IX1s1Y1,1X2,1Y¥2)
/
/
LXB=720504
LYB=700604
EST=700724
SNDF=7020524
CDDF=72@722
LXBD=70N%64
LYBD=700664
/
«6LOBL CINT,DINT,ERASE,VvECTOR, ,DA
/
/ CINT == CONNECT INTERRUPT LINE
/
CINT o
CAL 1c
LAC EV
DEM £V
SMA
JMP# CINT
CAL (1%
/
IC 11
EV
14
VPINT
/

/ DINY ~= DISCONNECT INTERRUPT L INE
/

€T-8

20013
geala
0015

geels
20017
0oB20
peeey

BoB22
00823
00824
200825

VP 6

PP0z6
ppRz7
ORI
2eodL
pRod2
2eRd3
pePl4

pOBYS
poRYs
pEes?
20040
pE24s
poa42
BRO43
epe44
P45
22046

0D 30X

VD

VDDV VODDTLVBD BBoDDDODOW

poerae
200216
620013

peo@12
bgoeoap
P0oB14
200202

oeoR0e
728724
100174
620022

SRC

pReace
129231
6022335
peeaoR
p00R00
peoRoD
poeooe

2200314
7400231
360033
722000
7431100
740031
040213
730009
751100
777776

0T >

T > > >

0T > >

> >>>0mM>

> 0> > 0>

DINT

/

/ ERASE
/

ERASE

2

CAL !
JMP# n

12

2

14
VPINT

-= ERASE STORAGE SCOPE

2

EST

JMS WFINT
JMP® FRASE

/ VECTOR == CONSTRYCT LINE

/
VECTOR

X1
Yi
X2
Y2
/

']
JMSH DA
JMP W ¥5
]
2
]
]

/FETCH ARGUMENT ADDRESSES

LAC* xi /DETERMTNE DELTA=X & X=INCR PQLA
TCA

TAD® X2

PAL

SPA

TCA

DAC DELX

PLA

SPAICLA

LAW -2

v1-8

110

pag47
2R050

22051
epos?2
20053
2p@54
20055
apRs6
neas7
oRaey
o061
ppo62
pe063
Ag064

pRa6S
opees
poR6?
apa7g
p0671

geer2z
epe73
20074
pee7s
poe76
pee77
AN
Ap121
20102
08103
g@104
@eLes
peLos

00

DDV OOV TVDADTRDT

VBV DDDTIOL OO0 BODDODX

740030
240215

220032
740031
360034
722008
7411082
740231
pagz14
730090
754100
777776
740030
P40216

200214
740031
340213
7411400
600113

200213
240223
200214
p4g226
220831
240221
220032
240217
200233
242171
20234
240165
200219

D> >X>r»>»0>r>» >0 X >

BVDIVVDVDVDVDVVDIVIDDX B> 0P

1AC
DAC

LAG®
TCA
TAQ®
PAL
SPA
TCA
DAC
PLA
SPAICLA
LAW
1AC
DAC

LAC
TCA
TAD
SPA
JMFP

LAC
DAC
LAC
DAC
LAGH
DAC
LACH
DAC
LAC
DAC
LAC
DAC
LAGC

XINC
vl
ye

/DETERMINE DELTA=Y & Y=INCR POLA

/715 DELTA=X GREATER THAN OR EQUAL
/YES =w INITIALIZE FOR HORIZ LARGE
/NO == INITIALIZE FOR VERT LARGE
/NC=DELX

/NR=DELY

/L.CCax

/SCCsy

/|, CM=LXRD

/SCMELYR

/LCIeXING

ST-8

PAGE 3 VP SRC

111 @107 R 04R222 R DAC LC!

112 P211@ R 200216 R LAC YINC /SClsYINC
113 P9111 R 240220 R DAC g€l

114 @112 R 692133 R JMP v3

115 /

116 @e113 R 200214 R ve LAC DELY /NC=DELY
117 @114 R 242223 R DAC NG

118 #0115 R 200213 R LAC nELX /NR=DEL X
119 20116 R 240226 R DAC NR

120 gP117 R 220932 R LAC* vl /L.CC=Y
121 PP12% R 040221 R DAC Lce

122 PP121 R 222031 R LAC® x4 /5CC=X
123 #0122 R 0408217 R DAC sCC

124 PP123 R 208235 R LAC (LYBD) /LCM=LYRD
125 BP124 R 040171 R DAC LCM

126 2012% R 200236 R LAC tLXB) /SCMz) X8
127 @0126 R 240165 R DAC SCM

128 g@127 R 200216 R LAC YINC /LCI=YING
129 PP130 R 240222 R DAC LCl

130 @0131 R 208215 R LAC X INC /SCl=XING
131 20432 R 04P220 R DAC 8Cl

132 / ,

133 P@133 R 200223 R V3 LAC NG INTENC
134 PP134 R 248224 R DAC NT

135 PEL3% R 744220 A RCR /NAENC/?
136 PP136 R 24P225 R DAC NA

137 /

138 @137 R 220031 R LAC# X4 /PLOT INITIAL POINT
139 0140 R 702504 A LXB

140 20141 R 222032 R LACH vi

141 @142 R 700664 A LYBD

1:§ 2143 R 100174 R JMS WFINT

i / '

144 00144 R 200223 R PL1 LAC NG /NC=D ?
145 PP14% R 741200 A SNA

146 0146 R 628026 R JMP# VECTOR /YES == £XIT
147 20147 R 723777 A AAC »l /NO == NCENCw1
148 peLde R 0240223 R DAC NC

9T-8

149
150
154
152
153
154
155
156
157
158
159
160
164
162
163
164
165

PAGE

166
167
168
169
170
174
172
173
174
175
176
177
178
179
180
181
182
183
184

20151
20152
2p153

20154
2@155
e@156
202157
po160
20161
20162
ogL63
00164
20165

@166

VP .6

29467
2eL70
0171
n@L72

2eL73

2174
peL75
2aL7e6
peL77

ge2og
gp201

ggRe2
£p203
202024
70205

BTV o x

200225
340226
240225

200224
742031
340225
741100
600166
p40225
200217
340229
040217
740040

200221

SRC

340222
040221
740240
1028174

600144

ap0ora
peezge
140227
620174

poeo29
apw2z7

eaecae
240230
440227
200237

P >VVVOTV>DP>D0 0 0

DT> v 20 3>» TV T

x>

0>

SCM

/
PL2

L.CM

WFINT

WFCPR

VPINT

LAC
TAQ
DAC

LAC
TCA
TAD
SPA
JMP
DAC
LAC
TAD
DAC
XX

LAC

TAD
DAC
XX

JMS

JMP

CAL
DZM
JMP #

29
EV

nAC
182
LAC

NA
NA
nNTY
NA
PL2
NA
sCC

sCl
sCC

LCC

LCl
Lcc

WFINT
PL1
WFCPB

EV
WFINTY

ACBUF
EV
(421000)

/NAZNA+NR

/NADNT

/NO =« DO LARGE COUNT MOVEMENT
/YES == NARNA=NT & COMBINED MOVE
/SMALL COUNT MOVEMENT

/tLYB OR LXB)
/LARGE COUNT MOVEMENT

/(LXBD oRrR LYRD)

/70 EXIT TEST

LT-8

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
204
202
203

204.

205
eeeé

202086
pe207
ge2.e
gg2i1
pR2L2

2g213
o244
o245
2e216
gaz2L7
pe220
po2a1
ppR22
20223
@224
ppR25
@226
go227
230

20231
20232
pR233
20234
2235
28236
20237

VBV 0D OV D

VDTV DX

705504
780722
200230
703344
620202

pRoneo
peegao
o000
PR0Be0
poReeD
oeeQen
poeeRw
pageee
pRoRow
pooeoe
peopon
200000
goeeod
poeeno

poRooe
penzsy
PoR010
720564
700604
700664
7008504
Ap1000

S12E=20@240

D> 0>

P r PP rrPrPrrr>P>rr

> 3> > pM>

hE
ul
oL
ol
ol
g8
"

1S4
cDOF
LAC ACBUF
DBR
JMPH VPINT

DELX
DELY
XINC
YINC
sCC
sC!
LCC
LCI

NT
NA
NR
EV
ACBUF

m
z
o

NO ERROR L INES

/DELTAwYX

/DELTA=mY

/% INCREMENT
/Y INCREMENT
/SMALL COUNT
/SMALL CoUNT
/ILARGE COUNT
/LARGE coUNT

(+1 OR =1)
{(*1 OR »1)
COORDINATE
INCREMENT
COORDINATE
INCREMENT

8T-8

PAGE

ACBUF
CODF
CINT
DELX
DELY
DINT
ERASE
EST
Ev
I1C
10
Lcc
Le!
LCM
LXB
LXBD
LYB
LYBD
NA
NC
NR

5 VP, 6
20233 182
7080722 17 %
20080 21
20213 72
ae214 85
20243 21
pge22 21
7008724 15«
poaz27 27
peee7 26
20216 41
p@221 103
ge222 111
peL71 1a@7
700504 13
700564 18+
700604 144
720664 19%
ge22% 136
A0223 99
po226 101
pe224 134
0144 144+
pBl66 158
Q0217 125
pe222 113
pP165 109
700521 16#
gga2e6 21
@o202 36
20113 96
#0133 114
go2eg 174
pPL74 53
pg215 77
20031 61s
%233 63
po216 90
20032 624
Pe234 640
po231 21

187
186

204w

32
98
10@
42
54

34

145
166
1684
139

141
152
133
151
208w

160
161

1634

146
181a

169
130
1p2

128
124

CROSS REFERENCE

118
116

175

167
1984«

156
144
202«

162
196

189

173
193
122

1944
128

191+
1924

179 183 203¢

197w

159 201

148 1994

1958

176
138

140

8.5 1/0 HANDLER TASK

An I/0 Handler Task is a Task dedicated to the control of an I/0O Device
Unit. I/0 requests to these Tasks are made to Logical Unit Numbers
and are queued at the requestor's priority. (See section 7.5 for a

complete description of I/0 operations in an I/0 Handler Task.)

A naming convention exists for I/0 Handler Tasks (Task Building Name),
requiring the name to be two characters in length followed by four

periods, respectively (e.g., LP...., PP...., and PR....).

An example I/0 Handler Task used to drive the LP15C Line Printer is
given at the end of this section. The following paragraphs describe

the separate sections of the Line Printer Handler, LP.5.

Line Number* Label Description
78-1g4 START This is the Handler initializa-

tion section required by all I/0O
Handler Tasks. Between lines
78-84, the Physical Device List
(PDVL) is scanned for a node for
this device. 1If found (line 85),
the device Name (line 1@2) was
found in the PDVL and a node is
returned in the AC. If not
found (line 84), the Task EXITs
since no node having the name
"LP" was found in the PDVL.

Once the node address is return-
ed in the AC, the address of the
Trigger Event Variable in the
node is calculated and saved
(line 87). The interrupt line
is then CONNECTed (if no connec-
tion was made the Task EXITs)
and the address of the Trigger
Event Variable is placed in the
Physical Device node (line 92).
Lines 94 to 96 calculate an ad-
dress to be used by the Index
Register later when obtaining
arguments from the PDVL. The
Handler then clears the con-
troller and waits for the
Trigger Event Variable, TG, to
be set (WAITFOR TG).

* Line Numbers (decimal) along the left hand column of the LP.5 Task
listing.

8-19

115-146

159-173

174-293

327-338

355-38¢

PQ

ATTACH

PRINT

INT

CCPB

8-20

The Trigger Event Variable has
been Triggered. (The CAL
Service Routine in the Executive
Triggers the Event Variable
whenever the Handler has an 1/0
request.) The Trigger is clear-
ed (line 118) to prevent the
Handler from being inadvertently
called when the WAITFOR TG is
again issued. At line 12f¢ the
request is de-queued (removed
from the queue) and if the queue
is empty, the Handler issues a
WAITFOR TG which will be set at
the next I/0 request for this
device. If a node was de-queued,
the Event Variable and CAL
Function are removed and tested.
If the user's Event Variable ad-
dress (line 128) is zero, the
handler substitutes an internal
Event Variable to handle I1I/0
completion indications. The CAL
Function is then tested for
ATTACH, DETACH, etc.... When de-
queuing a request (line 122), if
the de-queue was not made (empty
queue) return from DQRQ is im-
mediately following the JMS,
otherwise the return is JMS+2
{line 125). If the de-queue was
made, the AC will contain the
address of the de-queued node.
If not, the AC contains either
zero, if the queue was empty,

or non-zero if the device has
been ATTACHed. This is useful
when device handlers are multi-
unit and the REASSIGN MCR Func-
tion removes one of its units
from the LUT.

Routines to ATTACH, DETACH, and
return Handler Information
(HINF) .

Routines to prepare information
for and handle the hardware of
the LP15C. Notice lines 243-246
declare a Significant Event in-
dicating that a line has effec-
tively been printed.

This is the interrupt service
routine which reads the status
of the Line Printer (always non-
zero) and saves it in the Hand-
ler's Event Variable. A Signif-
icant Event is then declared and
return given to the interrupted
program. '

CPB's used by the Handler.

1Z-8

PAGE

VOIORN & WM

T
HLGINEFE®

N o
@~ oW

TN NNON D
NOUVDLGNE SO

NN
O @

30

Gl Gl Gt N
BN

Gl A W
N3

[Z R
0 0

i

LP.6

SRC

N A S S A S N N Y Y S O O S

EDIT #6
COPYRIGHY 1971, DIGITAL EQUIPMENT CORP,, MAYNARD, MASS,
RSX PRINTER MWANDLER TASK 1/7APR/7Y : H, KREJCI

THIS HANDLER TASK IS TO DRIVE THE LP15C MARDWARE, IT 18 COMPATABLE
WITH NORMAL QUTPUT FROM FORTRAN & MACRO WRITTEN PROGRAMS, OQUTPUT IN
IMAGE MODE AND QUTPUT NOT BEGINNING WITH A '12', '14', 12pv, QR '21!
CHARACTER 1S PRECEDED BY AN UpSPAGE (L INEFEED) AND PRIMTED DIREGTLY
FROM THE INDICATED CORE, ASCIY OUTPUT BEGINNING WITH ONE OF THE AROVE
VERTICAL CONTRplL CMARACTERS (E,G,, OUTPUT VIA FORTRAN QTS) IS MNVED TO
A BUFFER WITHIN THIS HANBLER WHERE THE HEADER AND POSSIBLY THE LEADING
CONTROL CHARACTER (FOR QVERPRINT) 1S MODIFIED AND THE LINE (CONSIDERFD
TWO LINES BY THE HARDWARE WHICH TERMINATES LINES AT VERTICAL CONTROL
CHARACTERS) 1S PRINTED,

THERE ARE NO IMPOSED PAGE EJECTS AT PAGE BOTTOMS,

THE FOLLOWING cAL PARAMETER B NCKS ARE USED TO QUEUE REQUESTS FOR
PRINTER SERVICE}

crPB 2600 /HANDLER INFORMATION (HINF)
EY
LUN

cePB 2400 ATTACH PRINTER
EVA
[LUN

cPB 2720 PRINT LINE
FVA
L UN
MODE
LINE

CcPB 2509 DETACH PRINTER
EVA
LUN

geem,2
200013
22o101
poR102
goeia7

LP+8 SRC

Ro123
200249
pog252
gen32s
200332
202337
200010
200034
PeRP35
706541
706521
706552
706544
706561
706621
C 786641

00000 R 002002
0pP01 R 00020

» > > >

>r>PrP>rrrrrrrrr>r»rrr

> >

NN NNN™NNNNNNN

X12312
X13213
Ri=101
R2=102
NADD=107

SNAMEL23

POOL %240

PDVL=252

ALAD=325

DLLAD=332

DQRQA=3I37

D,yTG6=10

WCA=34

CAA=3%

LPRP1=706541

LPPM=786521

LPRS=2786552

LPE1=2706544

LPD1=70656%

LPCD=706621

LPCSe70664%

/

LBF gg2de2
goaveo

THE REQUESTYOR'S EVENT VARIABLE IS CLEARED (ZEROED) WHEN YHE REQUEST
IS QUEVED BY TWE "QUEUE 1/0" DIRECTIVE, |IF THE REQUEST CAN BE
PREFORMED: THE EVENT VARIABLE 1S SET TO ONE (+1) UPON COMPLETION,

IF THE REUUEST CANNOT BE PERFORMED, THE EVENT VARIABLE IS SET T0 ONE
OF THE FOLLOWING NEGATIVE VALUESH

=5 == DATA MODE (HEADER) DISAGREES WITH REQUEST MODE
=6 -~ [LLEGAL REQUEST FUNCTION
=24 == LUN HAS BEEN REASSIGNED WHILE REQUEST WAS IN OUEUE

ZAUTQ=INCREMENT REG 12
ZAUTO=INCREMENT REG 13

/RE=ENTRANT REGISTER ONE
/RE=ENTRANT REGISTER TWQ

/NODE ADDITION ROUTINE ENTRY POINT

/NAME SCAN ROUTINE ENTRY POINT

/LISTHEAD FQR Popnl OF EMPTY NODES

/LI1STHEAD FOR PHYSICAL DEVICE LIST

/ATTACH LUN & DEVICE ENTRY POINT.

/DETACH LUN & DevIGE ENTRY POINT

/DE~QUEUE REQUEST ENTRY POINT

/POSITION OF TRIGGER EVENT VARIABLE IN PDVL NODE
/WORD COUNT ADDRESS (NOT USED BY LP CONTROLLER)
/CURRENY ADDRESS REGISTER ADDRESS

/PRINT ONE LINE

/PRINT MULTIPLE LINE

/READ LP STATUS

JENABLE LP INTERRYPTS

/DISABLE P INTERRUPTS

/CLEAR P DONE FLAG

/CLEAR LP STATUS AND ERROR FLAGS

/INTERNAL LINE BUFFER HEADER
sINITIALIZATION cODE IS USED FOR TEXT BUFFER

€Z-8

106
107
108
129

poene
epen3
poed4
20005
20006

gaed?
goein
ool
poRi2
ee213
ProL4
ppeLs
0056
2047
epo2o
20021
geeae2
20023

o024
peRes
peaze

geee7
o030

90031

D0 B0 DXVDVDVDVBDVDOIIDTDUD DDV

220416
P604L7
200420
260421
120422

02423
242355
723010
240356
2008387
2p@347
741100
poe4a23
200424
262356
500425
740031
240342

706624
706641
600079

142009
ooeeo0

T » > AVDP>VO00>VDVDDPVD VDBV

> >

/

/ HANDLER INITIALIZATION

/

START LAC
DACH
LAC
DAC®
JMB#

CAL
DAC
AAC
DAC
CAL
LAC
SPA
CAL
LAC
DAC#
AND
TCA
DAC

LPCO
LRCS
JMP

tPOVL)
(R1)
(HNAM)
{R2)
(SNAM)

(1@)
PDVNA
*D4TG
pOVTA
cCPB
EV
(1)

(T6)
pDVTA

/SCAN PHYSICAL DEVICE LIST FOR FOR NODE
/FOR TH1S DEVICE,

/(R1, R2, Ré, XR, & AC ARE ALTERED)
/NODE FOUND?

/ND =» EXx]T

/SAVE PDVL NODE ADDRESS

/AND TRIGGER EVENT VARIABLE ADDRESS
/TRIGGER EVENT VARIARBLE ADDRESS ADURESS.
/CONNECT INTERRUPT LINE

/CONNECT OKkAY?

/ND == EX]T
/YES == SET TRIGGER EVENT VARIABLE ADDRESS
/IN PHYs1CAL DEVICE NODE

(P72020)/DETERMINE "XRmaADJY

XADJ

WETGR

/CLEAR LP CONTROLLER
/WALT FOR TRIGGER

HNAM «SIXBT v Poeee” /WANDLER TASK NAME

/END QF INITIALIZATION CODE

1BLOCK 66%STARTw,

/ trrererettereree THWE ABOVE CODF 1S OVERw terttttrsettrettey
/ Yeeeraerrterrese | AYED BY OTS ASCII LINES teerrtrtntecrteey

¥c-8

PAGE

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
149
141
142
143
144
145
146
147

LPs6

neeze

29@71

aparz
2ee7s
2Ra74

pee7s
a0a76
28877
geioo
goLd1
28102
20103
Pp104

20105
BBLe6
pe1e7
29119
2e111
gpiie
PeL13
2g114
po11s
a0116
og117
e@gLee
gs1ey
p@g122

VB ODVBDIDODDDIVL T[TOUIIODOID

X0 o

SRC

209373

140354

2080355
260447
120426

600870
240353
342342
721000
210026
741200
200427
g4p3s2

210005
500430
540431
600123
540432
600132
542433
600143
540434
600144
540430
600302
777772
600315

el v I o) s

P> VVVDOVDVDVD D> DT>V

/

/ WAIT FOR TASK t0 BE TRIGGERED (BY ']/0 CAL' CAL SERVICE ROUTINE)

/ T0 SIGNAL THAT A REQUEST HAS BEEN GUEUED,

/
WFTGR CAL
/

WFTCPB

/WAIT FOR TRIGGER EVENT VARIABLE TO BE SET

/ THE TASK HAS BEEN TRIGGERED =~ PICK A REQUEST FROM QUEUE (IF ANY)

/
DEM

/

PO LAG
DAC®
JMS s

JMP
DAC
TAD
PAX
LAC
SNA
LAC
DAC

LAC
AND
SAD
JMP
SAD
JMP
SAD
JMP
SAD
JMP
SAD
JMP
LAW
JMP

16

PDYNA
(R1)
(DGRO)

WFTGR
RN
XADJ

6y X

(RE)
RE

5y X
(777
(024)
ATTACH
(025)
DETACH
(@827)
PRINT
(236)
WINF
(777)
DAEX

SEV

/CLEAR TRIGGER
/DE=QUEYE A REQUEST

/(R1, R2, R4, R5, R6, ¥R, & AC ARE ALTERED)
/WAS A REGUEST FOUND?

/NO ==« walT FOR TRIGGER

/YES »» SAVE ADDRESS QF REQUEST NODE

/SETUP XR TO ACCESS NODE

/SAVE ADDRESS OF REQUESTOR'S EVENT VARIABLE

/FETCH CAL FUNCTION CODE

/ATTACH REQUEST?

/YES == ATTACH TO A TASK

/NQ =+ DETACH REQUEST?

/YES == DETACH FROM TASK

/NO «e PRINT REQUEST?

/YES == WRITE RECORD

/NO == HANDLER INFO REQUEST?

/YES =» RETURN INFO IN EVENT VARIABLE
/NO w= EXIY (DEASSIGNED) REQUEST?
/YES =w» NEATTACH & EXIT

/NO == UNJMPLIMENTED FUNCTION == SEY
/EVENT VARIABLE TO =6

148
149
152
151
132
153
154
155
156
157
158
159
160
161
162
163
164

PAGE

165
166
167
168
169
178
171
172
173
174
175
176
177
178
179
180
181
182

pegL2s
peLes
284125
20126
20127

0130
29131

ea132
00133
22134
o135

LPs6
20136

20437
20142

2e141
2@142

20143
20144
20145
28146
oe147
201%0

P sl] LD

BDOVITO

X x;

DDV D

200355
gepay7
202353
ped4a2y
120435

620315
600314

200355
260447
200353
p6@421

‘SRC

120436

602315
600314

200437
600315

210810
P40350
723002
240351
220350
500440

0 0 DDV

DIV IV

P

VD30 T> 0 >

/ ATTACH TO A TASK

/

ATTACH LAC PDVNA
DAC# (R1)
LAC RN
DACH tR2)
JMS#® (ALAD)
JMP SEV
JMP REQCMP

/
/ DETACH FROM A TASK
/

DETACH LAC PDYNA
DAC*® (R{)
LAC RN
DAC# (R2)

JMS# (0LAD)

/ATTYACH |LUN & DEVICE

/(R3, R4, RS, R6, X17, Xi1, XR, & AC ARE ALTERED)
/WAS LUN ATTACHED?

/NO == SET REQUESTOR'S EVENT VARIABLE TO =24

/YES == REQUEST COMPLETED

/DETACH |UN & DEVICE

/(R3, R4, R5, R6, X404, X111, XR, & AC ARE ALTERED)
/WAS LUN DETACHED?

/NO == ST REQUESTOR'S EVENT VARIABLE TO =24

/YES =» REQUEST CONPLETED

/ RETURN HANDLER INFORMATION IN EVENT VARIABLE

JMP SEV
JMP REQCMP

/

/

HINF LAC (1222411)
JMP SEV

/

/ PRINT LINE

/

PRINT LLAC 12X
DAC WXl
AAC .2
DAC MX2
LAC#® WX1

AND (223)

/SET MEADER ADDRESS
/SET TEXT ADDRESS
/GET MODE INDICATOR FROM HEADER

9¢-8

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

20151
88152
20453
20154
20155
PB156
20157
00160
20161
20162
00163
20164
20165
00166
80167
20170
00171
20172
00173

20174
173
28176
20177
zg20¢
o221
p@2e

#0203
ep204
po2es

T30 VD VVXXDVD

550007
600155
777773
600315
548449
600174
220351
508441
540442
60a206
542443
609226
540444
600206
543445
741080
620174
200446
60@206

200447
1908246
706541
200352
108246
7065414
620314

02203
ppeaee
gopgL2

ADDDVD>DVVIDODDVDVVIIDD>T >

T>0TVP»0

> >

SAD
JMP
LAW
JMP
SAR
JMP
LAC®
AND
SAD
JMP
SAD
JMP
SAD
JMP
SAD
SKP
JMP
LAG
JMP

z.; /DOES DATA MODE AGREE WITH REQUEST MODE?
*

-5 /NO =w SET EVENT VARIABLE 70 w5

SEV _

¢3) /YES == [MAGE MODE?

LBM /YES == UNBUFFEDED MODE

MX2 /NO ~= FETCH FIRST CHARACTER OF TEXT

(774008)/AND TEST FOR LINE TERMINATING CONTROL CHARACTEP
(252000)/LINE FgeD (12)7
gFM /YES == BUFFERED MODE WITH LF IN AC BITS feé
(D6000R)/NQ == FORM FEED (14)7
RFM /YES == GUFFERED MODE WITH FF IN AC BITS Os6
(124202)/N0 ~= DOUBLE SPACE (21)7
BFM /YES ew BUFFERED MODE WITH DS IN AC RITS 2=6
(108808)/N0 == OVERPRINT (2017

/YES == BUFFERED MODE WITH CR IN AC BITS fwé
UBM /NO == UNBUFFERED MODE
(064008)
pFM

/ .
/ UNBUFFERED OUTPUT MODE == UPSPACE FORMS, AND PRINT A SINGLE

/ LINE FROM THE
/

UBM LAC
JMS
LPPL
LAC
JMS
L.PP1
JMP

/

LFL, A22923
peoBoe
ggoevtg

REQUESTOR'S BUFFPR IN THE MONE INDICATED BY THE HEADER,

(LFL) /PRINT LINEFEED LINE
PRNT

WX /PRINY REQUESTED LINE
PRNT

REQCMP /REQUEST COMPLETED
/LINEFEED LINE

/ BUFFERED OUTPUT MODE == MOVE 5,7 PACKED LINE TO BUFFER IN HANDLER, IF
/ CONTROL GHAR 1§ '208' (OVERPRINT), CHANGE TO '15', AND PRINT THE TWO

Lz-8

PAGE

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
2513
292
253
254
2%5
256
257

LP.6

2206
ge2d7
292102
pg211
pp212
02213
gg2l4
2215
eR216
po217
ee2<0
go221
ep222
ggaay
pR224
ogeas
po2as
peec?
g@23%0
0231

20232
28233
2234
20235

BoRIS
pp2%7
ge24o
292431

pRa42
PB243
o244

0245

] D0V 32000 VDV T DVXTDDDVDDIDD VDOV IDIDIT

SRC

040344
220350
640510
500450
7400831
240346
7230266
742100
609221
777712
P4P346
200350
740030
p62451
200452
260453
220112
260013
440346
600226

200454
g6p3%2
200455
705504

200002
502456
240344
040022

200457
100246
706521

600320

>»DT VIV

> XX VD VP>2>VDVP>VD>DP>> V>V VD0

ke

7/ LINES (CONT CHAR & TEXT) IN AScl! MODE,

/
BFM

DAC
LACH
LRS
AND
TCA
DAC
AAC
SMA
JMP
LAW
DAC
LAC
1AC
DACH
LAC
DAC®
LACH
DACS
152
JMP

LAC
DAC#
LAC
ISA

LAC
AND
XOR
DAC

LAC
JMS
LPPM

JMP

CCBF /SAVE CONTROL CHAR

HX3, /MOVE TEXT TO INTERNAL BUFFER
12

(776)

CNT
«66

W *3
w66
CNT
MX1

(X12}
(LBF*+1)
(X13)
x12
%13
ENT

=3

t*1) /SET REQUESTOR'S EVENT VARIABLE TO +1 AND
RE /DECLARE A SIGNIFICANT EVENT (LINE MAS BEEN
(401000)/EFFECTIVELY PRINTED)

LBF+2 /CHANGE CONTROL CHAR TO 1150 IF 1201
(2R3777)

cCBF

ILBF#2

(LBF) /PRINT TWO LINES
PRNT

RNTP /RETURN REQUEST NODE TO POOL AND PROCESS NEXT REQUEST

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

PAGE

275
276
277
278
279
289
281
282
283
284
285
286
287
288
289
292
291
292
293

2p246
20247
o250
z7@251
#9252
20253
2p254
20255
Rasé
2e257

p0260
pe261

LPs6

@262
#0263
20264
2@265
@266
pB267
ge270
20271
gpa7r2

2273
2p274

pe275
gp27s

pe277
89300

22301

DB VBBDODBDO

T X T

P«

gocean
149301
723777
040345
p6BAGY
160461
420246
140347
706544
por375

200347
500462

SRC

741200
600277
200301
740200
600273
2ea377
2e0375
200454
240301

Po0347
200375
200345
6opes2

440246
620246

peegod

0 VP>V DVVD>0 >

DDV D 0>

DOV

» T

/
/ PRNT w= SURROUTINE TO PRINT A | INE, THE LINE BUFFER ADDRESS IS
/ IN AC, AND THE 10T TO PRINT IS IN THE LOCATION FOLLOWING THE JUMS,

/
PRNT

PRNTY,

/
PRNT2

/
PRNTXT

/
PRNTEF

7]
DZM
AAC
DAC
DAGCH
DEM#
XCT*
DEM
LPEI
CAlL

LAC
AND

SNA
JMP
LAC
SZA
JMP
CAL
CAL
LAC
DAC

CAL
CAL
LAC
JMP

152
JMP#

2

PRNTEF
-1
CABF
(CAA)Y
(WCA)
PRNT
£V

WFECRB

/CLEAR ERROR FLAG.
/DETERMINE & SAVE GURRENT ADDRESS

/SEY CURRENT ADDRESS

/PREVENT WORD COUNT OVERFLOW

/EXECUTE PRINT 10Ty CLEAR EVENT VARIABLE,
ZENABLE LP INTERRUPT, AND WAIT FOR THWE EVENT
/VARIABLE T0O BE SET NON=ZERQO BY THE INTERRUPY
/SERVICE ROUTINE,

ZINTERRYPT MAS DCCURRED == EXAMINE PRINTER STATUS,

(QQGQEQ)IALARM ERROR?

PRNTXT
PRNTEF

PRNT2
TEMCPB
WFECPB
(y)
PRNTEF

MTCPR
WFECPB
CABF
PRNTY

PRNT
PRNT

/NQ == EX]T PRNT SUBROUTINE
/NEW ERRDR?

/YES =» TYPE ERR MESSAGE

/DELAY
/RETRY

ZEXIT PRNT SUBROUTINE

6C-8

294
295
296
297
298
299
300
301
302
303
304
305
306
327
308
309
310
311
312
313
314
315
316
317
318
319
320
324
322
323
324
325
326

327

328
329

00302
00303
09304
20305
20306
80307
P0312
20311
20312
20313

P0314

22315
00316
po317

eo3Za
pe3ey
pe3z2
2323
pp324

PR32S

ap326
ep3e7
Pp3d0

BVVVBDDODBT

xx DB D T 0T el

00T

200463
D60417
288353
7608421
120464
706561
POB363
440356
160356
oRR423

200454

260352
202455
785504

200463
g60417
202353
p60421
120464

602072

gaeene
727762
P40 343

TV PTIDIVL

Py poie ol e i+ i v) > D T p vl

T > >

/
/ EX1T REQUEST (FROM TASK ",,,REA™)
/

DAEX LAC
DACH
LAGC
DAC#
JMS#
LPDI
CAL
182
DEM#
CAL

/

(POOL) /RETYRN REQUEST NODE T0 POOL
(R3)
RN
(R2)
{NADD)
/DISABLE LP INTERRUPTS
nCPB /DISCONNECT INTERRUPT L INE
PDVTA /CLEAR ASSIGN INHIBIT FLAG IN POVL NODE
PDOVTA
(12) JEXIT

/ REQUEST COMPLETED ~= SET REQUESTOR'S EVENT VARTABLE TO +1
/ AND PICK NEXYT REQUEST (IF ANY) FROM QUEUE,

(+1)

RE /SET REQUESTOR'S EVENT VARIARLE
(401000)/DECLARE A SIGNIFICANT EVENT

(PODL) /RETURN REQUESYT NODE TO POOL
tR1)

RN

(R2)

(NADD)

PQ /PICK ANDTHER REQUEST (IF ANY)

/
/ INTERRUPT SERVICE ROUTINE

/

REQCMP LAC

/

SEV DAC#®
LAC
ISA

/

RNTP LAC
DAGH
LAC
DACH
JMS#

/
JMP

/

INT @
DBA
DAC

ZINTERRUPT ENTRY POINT
ZENTER INDEX (PAGE) MODE
ACBF /SAVE Ag

0€-8

PAGE

330
331
332
333
334
335
336
337
338
339
340
J4q
342
343
344
345
346
347
348
349
352
351
352
353
354
355
356
357
358
359
36¢
361
362
363
364
365
366
367
368

LPy6

2A331
pe332
a0333
20334
2@335
20336
20337
20340
20341

Rp342
PO343
2@344
PP345
p0346
2p347
gp350
gp351
7g352
2p353
pe354

#B355
2e356

PB357
ZR360
Po361
20362

2363
20364
20365
po366

28367
22370
00371
eB372

N 00D D 0

o7 e 1 s i ¢ |

DBV

SRC

706552
P40347
706641
706621
200455
705594
200343
783344
620326

200000
paeene
2000292
222000
groage
pRCRYe
geneee
goecan
poeooe
eaegne
poeoen

poeeed
200000

poed1LL
p2R347
poeoL6
pee326

200012
poeean
2oRp16
poe326

poee13
ge@347
geegnL2
po0eRn1

V> 0>V >r» 0>

>» > > r>>r

> > > 20> 0 >

>» >» 0 >

XADJ
ACBF
ceBF
CABF
CNT
Y
HX1
HX2
RE
RN
TG

/
PODVNA
POVTA

cCcPg

nerB

MTCPB

LPRS
DAC
LPCS
LPCD
LAC
1S54
LAC
DBR
JMP#

IR EeEYTY ™S

2 S

11
EV
16
INT

12

16
INY

13
Ev
12

/READ STATUS AND SET IN EVENT VARIABLE
EV
/CLEAR STATUS, ERR FLAG, & DONE FLAG

(421202)/DECLARE A SIGNIFICANT EVENT

ACBF /RESTORE AC
/RETURN 10 INTERRUPTED PROGRAM
INT

/XR ADJUST CONSTANY TO SUBTRACT PAGE BITS
/AC BUFFER

JCONTROL CHAR BUFFER (B1TS @m6)

JINITIAL CWRRENT ADDRESS BUFFER

/COUNTER

JEVENT VARIABLE

/MEADER ADDRESS

JTEXT ADDRESS

/ADDRESS OF REQUESTOR'S EVENT VARIABLE
/ADDRESS OF REQUEST NODE PICKED FROM QUEUE
/TRIGGER EVENT VARIABLE

/PHYSICAL DEVICE NODE ADDRESS
/ADDRESS OF ADR oF TRIGGER EV IN PHY DEV NODF

/CONNECYT CPB

/DISCONNECT CPB

/MARK TIME CPB

369 /

370 20373 R 000020 A WFTCPB 20 /WAIT FOR TRIGGER CPBE
371 PO374 R 0RR354 R TG
372 /
373 pe375 R 000020 A WFECPB 20 /WALT FOR EVENY VAR]ABLE CPB
374 70376 R P0O347 R EY
375 / ,
376 2377 R 022720 A TEMCPB 2700 /IYEP ERR MESSAGE
377 PRPAOP R 2P@347 R Ev
378 P40 R 202003 A 3
379 pE4R? R BO2QR2 A 2
389 PP403 R 20Q4p4 R E£RRMES
384 /
382 PP4d4a R 004002 A ERRMES @049p2; pRoeo@; ,ASCLI vwawe | P NOT READY"C15D
Ap40% R PO0000 A
@PA06 R 251245 A
PAGE 8 LP,6& SRC
P40 R 220230 A
gp410 R 501011 A
@411 R 647650 A
@PAL12 R 202450 A
PP413 R 540610 A
gP414 R 544320 A
Pg415 R 0000020 A
383 /
384 pogRE2 R JEND START

Ze-8

AP416
pgaL7
20420
pRa21
70422
og423
722424
ZR4a25
20426
ep427
2@43g
Pp4a3y
PEa32
nga3l
0z434
#4435
70436
p@4a3d7
pa44p
7p441
pa442
20443
2p444
p@445
70446
o447
#gasg
PEAaASy
PRAaA52
ppas3
#p454
20455
AgAaSe
BRA57
rPpa6E
2p461
p@4a6?2
ZR463
LYY

pppese
gegial
ouen27
poeLa2
200123
geee1o
pRe3s4
2700008
ga0337
0aB3s2
eea777
poen24
P25
opea27
000236
222325
zZoe332
120011
poeend
774200
p56229
e6pg20
104000
102000
064208
peR2a3
eaR776
ggegi?
000RRL
poRALS
geeewl
421820
203777
peoegon
aAde 35
peee34
200008
2oe249
222107

S1ZE=00465

&L
“l
L
#L
4"
#L
sl
#|
wl
ol
wL
|
#,
L
®L
L
L
LR
*L
al
sl
wL
Bl
*L
®l
L
&L
s
#l
4
"L
L
B
L
8,
»L
*L
LN
LR

NO ERROR | INES

€€-8

PAGE 9 LP,6 CROSS REFERENCE

ACBF pB343 329 336 3414

ALAD ArP325 508 154

ATTACH @0123 136 1504 .

BFM g2206 192 194 196 201 222%
CAA PrEa3s 64 266

CABF B0345 265 287 3434

CCBF PA344 222 250 342n

cceg o357 88 3554

CNT 00346 227 232 240 3444

MAEX P0322 144 2974

nDCPB ga363 303 3604

DETACH #0132 138 1614

OLAD peR332 60% 165

DQRQ 200337 6ls 122

D.76 goaaie 62 86

ERRMES @P4p4 387 3824

EY po34y 89 269 273 334 3458 356 366 374 377
MINF PA141 142 1724

HNAM aea27 80 1424

HX1 eR3%0 178 181 2p9 223 233 3464
HX2 p2351 180 189 347w

INT pR326 327+ 338 358 363

LBF z00a0 738 236 248 251 253

LFL pR2¢3 206 214+«

LPCD 706621 708 98 333

LPCS 706641 71w 99 332

LPDI 7036561 698 302 :

LPEI 706544 68 270

LPPM 706521 668 255

LPPY 726841 658 208 211

LPRS 706552 67% 330

MTCPB nA367 285 3654

NADD goa1er 558 301 321

POVL gpo2s52 584 78

POVNA ga3Iss 85 12¢ 159 161 352#
PDVTA pO356 B? 93 304 305 3534
POOL ap2240 574 297 317

PQ pRa72 120« 323

PRINT pO143 140 177a

vE-8

PRNT pe246 207 210 254 262s 268 290 291
PRNTEF 020301 263 277 283 2934

PRNTXT 00277 276 2904

PRNT1 @252 266« 288

PRNT2 o273 279 2854

RE #e352 130 131 244 313 348

REQCMP 20314 157 168 212 31ts

RN @@353 125 152 163 299 319 349

RNTP Q0328 257 3174a

Ry 000101 53« 79 121 151 162 298 318
R2 epeie2 544 81 153 164 302 320

SEV 2315 146 156 167 173 186 3134

SNAM 2o0123 56+ az

STARY noae? 788 106 384
TEMCPB 00377 28¢ 376n

16 80354 92 118 3508 371

PAGE 40 LP,6 CROSS REFERENCE

yBM p@474 188 199 2064

WCA gpoez4 638 267

WFECPB 020378 273 281 286 373s
WFYCPB 20373 114 370a

WFTGR o007 109 114 124

XADY P0342 96 126 3400

xi2 Po0Z12 S1s 235 238

X413 2289213 S2e 237 239

8.6 ADDITIONAL INFORMATION

Tasks Written in FORTRAN:

The PAUSE statement results in the Task being SUSPENDed. The
RESUME MCR Function is used to continue after a PAUSE.

The STOP statement results in a Task EXIT.

I/0 requests to standard I/0 Handlers (through LUN's) always wait
until the I/O request has completed before continuing.

OTS messages are output on LUN 4.
OTS-24 is a FORTRAN READ or WRITE failure.
Tasks Written in MACRO:

The MACRO Assembler pseudo-op .CBD {(Common Block Definition) allows
the assembly language programmer to declare a COMMON of an indi-
cated name and size, and to specify a word to be set to its base
address.

The .CBD pseudo-op takes a COMMON name and its size as arguments,
reserves one word of core, and outputs loader codes and parameters
to direct the Task Builder to set a vector to the first element of
the indicated COMMON in the reserved word. For example, the state-
ment

BASE .CBD ABCD 6

will provide the base address of COMMON/ABCD/ in the word labeled
BASE. (This feature will become available under DOS August 71.)

Normally, 32 LUN's exist; however, this number can be changed by
reassembling the system. On a cold start image, LUN 1 is assigned
to DSK, LUN's 2, 3, and 4 are assigned to TT@, and all other LUN's
are assigned to NONE.

APPENDIX A
SYNTACTICAL DESCRIPTIONS OF MCR FUNCTIONS

The following is a description of the MCR Functions provided. The
syntax is defined in modified Backus Normal Form using the following
conventions and definitions:

NUL
<BC>
<CR>
<AM>
<NBC>
<NTC>
<DV>

ENTER TIME

SYNTAX

TIME

SYNTAX

DATE

SYNTAX

TASK LIST

SYNTAX

PARTITIONS

SYNTAX

COMMON BLOCKS

SYNTAX =

(I T I I I 1}

Angle brackets delimit metalinguistic variables
Quote marks delimit a. character string

A vertical bar indicates alternation (OR)

No operator indicates concatenation

Parens indicate factoring

Indicates any number (including zero) of the
following .

Indicates the empty set

Break character -- blank or comma

Carriage Return

ALTMODE

Non-break character

Non-terminal character

Decimal value

"ETI" $<NBC><BC><TIME> (<BC><DATE>|NUL) <CR>|<AM>

<HOURS>" : "<MINUTES>" : "<SECONDS>
<MONTH>"/"<DAY>"/"<YEAR>

<TIME>
<DATE>

"TIM" $<NTC> <CR>|<AM>

"DAT" $<NTC> <CR>|<AM>

"TAS" $<NTC> <CR>|<AM>

"PAR" $<NTC> <CR>|<AM>

"COM" $<NTC> <CR>|<AM>

[l

M.

DEVICES AND

SYNTAX

INSTALL

SYNTAX

REMOVE

SYNTAX

REQUEST

SYNTAX

SCHEDULE

RUN

SYNC

SYNTAX

SYNTAX

SYNTAX

ASSIGNMENTS

"DEV" $<NTC> <CR>|<AM>

"INS" $<NBC><BC><TASK NAME>
(<BC><DEFAULT PRIORITY>|NUL) <CR>|<AM>

<DEFAULT PRIORITY> = Decimal value of 1-512

"REM" $<NTC> <CR>|<AM>

"REQ" $<NBC><BC><TASK NAME>
(<BC><RUN PRIORITY>|NUL) <CR>|<AM>

<RUN PRIORITY> = Decimal value of 1-512

"SCH" $<NBC><BC><TASK NAME><BC><TIME>
(<BC><RESCHEDULE INTERVAL> |NUL)
(<BC><RUN PRIORITY>) <CR>|<AM>

<TIME> = <HOURS>":"<MINUTES>":"<SECONDS>
<RESCHEDULE INTERVAL> = <DV>("H" "M" "g" "")
<RUN PRIORITY> = Decimal value of 1-512

"RUN" $<NBC><BC><TASK NAME><BC><SCHEDULE DELTA>
(<BC><RESCHEDULE INTERVAL>|NULL)
(<BC><RUN PRIORITY>|NUL) <CR>|<AM>

<SCHEDULE DELTA> = <DV> ("H"|["M"|"s"|"T")
<RESCHEDULE INTERVAL> = <DV>("H"|"M"|["S"|"T")
<RUN PRIORITY> = Decimal value of 1-512

“SYN" $<NBC><BC><TASK NAME><BC><SYNC UNIT>
<SCHEDULE DELTA> (<BC><RESCHEDULE INTERVAL> |NUL)
(<BC><RUN PRIORITY>|NUL) <CR>|<AM>

<SYNC UNIT> = "H"] YU I ngn | nmo

<SCHEDULE DELTA> = <DV>("H"|"M"|"S"|"T"}
<RESCHEDULE INTERVAL> = <DV> ("H"|"M"|"s"|"T")
<RUN PRIORITY> = Decimal value of 1-512

CANCEL

SYNTAX

RESUME

SYNTAX

FIX IN CORE

SYNTAX

UNFIX

SYNTAX

ENABLE

SYNTAX

DISABLE

SYNTAX

REASSIGN

SYNTAX

SAVE

SYNTAX

OPEN REGISTER

SYNTAX

"CAN" $<NTC> <CR>|<AM>

"RES" $<NBC><BC><TASK NAME> <CR>|<AM>

"FIX" $<NBC><BC><TASK NAME> <CR>|<AM>

"UNF" $<NBC><BC><TASK NAME> <CR>|<AM>

"ENA" $<NBC><BC><TASK NAME> <CR>|<AM> |
"DIS" $<NBC><BC><TASK NAME> <CR>|<AM>

"REA" $<NBC><BC><LUN><BC><NEW ASSIGNMENT>

<BC><OLD ASSIGNMENT> <CR>|<AM>

"SAV" $<NTC> <CR>|<AM>

"OPE" $<NBC><BC><NUMBER> (<BC> "D" (<UNIT>|NUL) |NUL)
<CR> | <aM>

<NUMBER> = <SIGN><RADIX><DIGIT>$<DIGIT>

<SIGN> = "+"|"-"|NUL

<RADIX> = "O"|"D" |NUL

<DIGIT> = (#]|1]2|3|4]|5]|6|7)|(g|1]|2]|3]4]|5]6]7]8]9)

default: positive, octal.

<UNIT> = Disk unit number - default: zero.

APPENDIX B
MACRO' EXPANSIONS FOR SYSTEM DIRECTIVES

/2 EDIT #e

/
/ COPYRIGHT 1971, DIGITAL EQUIPMENT CORP,, MAYNARD, MASS,

/

/ RSX=15 MACRO DEFINITIONS 8 APR 71 H, KREJCI

/ .

/7 ABREVIATIONS == UNLESS OTHERWISE SPECIFIED, ALL PARAMETERS

/ EXCEPT ADDRESSES ARE GIVEN [N DECIMAL,
/

/ RUFF CORE BUFFER ADDRESS

/ cl. INTERRUPT CONMECT LOCATION

/ cT8 COMTROL TABLE ADDRESS

/ EY FVENT VARIABLE ADDRESS

/ FILNAM FILE NAME (1=-6 CHARACTERS)

/ LN INTERRUPT LINE NUMBER (pCcTAL)

/ LUN LOGICAL UNIT NUMBER

/ M1 MARK TIME INTERVAL (A TICK THRU A DAY)
/ MONE CATA MODE INDICATOR

/ My MARK TIME UNITS

/ RA RESUMPTION ADDRESS

/ R RESCHEDULE INTERVAL (@1 DAY, WHERE 2
/ IMPLIES No RESCHEDULING)

/ RP RUN PRIQRITY (2=512, WHERE ¥]MP|IES
/ DEFAULT PRINRITY)

/ RU RESCHEDULE UNITS (H,M,S5,T)

/ sD SCHEDULE DELTA (A TICK THRU A DAY)

/ SH SCHEDULE HOURS (2=23)

/ SI1ZE CORE BUFFER SIZE (OCTAL)

/ M SCHEDULE MINUTES (2=59)

/ SS SCHEDULE SECANDS (@x56)

/ suU SCHECULE DELTA UNITS (H,M,S:7)

/ S# SYNCHRONIZATION UNIT (H,M,5:T)

/ TASNAM TASK NAME {1-6 CHARACTERS)

/ EXT FILE NAME EXTENSION (1=3 CHARACTERS)
/

Hzd /HOURS INDICATOR
Mz3 /MINUTES INDICATOR
LT /SECONDS INDICATOR
T=1 /TICKS INDICATOR

/

JINH=725522 ZINTERRUPT INHIBIT 07
+ENB=7E5521 /INTERRUPT ENABLE 10T

/

HH=165 /HRS IN S5C0M

MM=164 /MIN IN SCOM

§5=5163 /SEC IN SCOM

MO=166 /MON IN SCOM

DA®167 /DAY IN SCOM

YR=170 /YEAR IN SCOM

SAVE=131 /SAVE ENTRY POINT (IN SCOM)
REST=134 /RESTORE ENTRY POINTY (IN SCOM)

/ #eow

s =g

/ ®aas

/ Base

115

REQUEST TASNAMI,rPL,EV)]]

DEFIN REQUEST,»TNyRE LV

CAL e *2
JMP b
a1

EVe2

'SIXBT "TQH
g3 JLOC ..*2
.DEC

RP+@

LENDM

SCHENULE TASNAM,SH,SM,SST+RIVRULSRPLIEVII]
LDEFIN SCHEDULE (TN,SH,SMiSS,RI,RURREY

CAL 1 %2
JMP »*13
22

EVeld

(SIXBT "Tn"
A3 WLOC ,4*2
.DEC

SHI SMI SS
R1ep

RU*®

RP#¢

LENDM

RUN TASNAMySD,SULIRIWRUL,RPL,EVIT]

JOEFIN RUNSTN,SDSSUNRISRUNRP,EV
CAL *2
JHP y*12
23

EV*D

+SIXBT "Tn®
?‘ ILOC .'*2
DEC

SOy sy

RI+2

RU+E

RP+p

jENDM

SYNC TASNAM,SZ,5D,SUl,RI,RUL,RPLEVI]]
DEFIN SYNC2TN,SZ»SDsSULRILRUSRPHEY

CAL o *2
JMP ' *13
14

EV+2

«SIXBY "TN"
A1 LLOC , 442
+DEC

SZ5 SDJ SU

'am 2 X3

/ #auy

/) Smasn

/ #nne

RI+p
RU+R
RR+2
CJENDM

CANCEL TASNAMI,EV)

JOEFIN CANCELSTNSEV

CAL o*2
JMP D
24

EV+E

JSIXBT "Tan
ﬁ; QLOC n!*?

LENDM

SUSPEND

LJOLFIN SUSPEND
CAL (5)
LJENDM

RESUME TASNAML,RAL,FV]]

JOEFIN RESUME,TN.RA,EV

CAL W *2
MR W *6
a7

EVed

LSIXRY "TRY
23 ,L0C .,.*2

RA+G

JENDM

MARK MlaMUPEY
JOEFIN MARK MI MUWEY
CAL V42

JMP 5

13

'

DEC MIp My
LENDM

AAITEOR EV
CJOEFIN WAITFQR,LV
CAL *2

JMP W ¥3

22

EV

JENDM

WATT

JDEFIN WALT

CAL (5)
JENOM

~N N

NN,

NN N

~

~N NN

#eas EXIT

JOEFIN
GAL
LJENDM

seas CONNEC

FV+{
LN

cl
LENDM

¥aae DISCONN

LOEFIN
CAL
JIMP

12
EV*E
LN

CcL
+ENDHM

#uaas READ

DEFIN
CAL
JMP
2609
EV+p
OEC
MONE
RUFF
S1Z2E
»ENDM
#uur WRITE

WOEFIN
CAL
JMP
27eg
EV+D
+DECS
MODE
BUFF
JENDM

#aos DSKAL

+DEFIN
CAL

EXIY
(12)

T LN CLL,EV]
CONNECT sLNaCLHEV

*2
o *3

ECT LN)CLLJEV]
NISCONNECT LN CLEV
W *2

V5

LUNsMODE BUFF»SIZEL,EV]
READ,LUN,MODE »BUFF»STZE,EV

W2
*7

LUNy ,0CTY

LUN.MODE,BUFFL,EV]
WRITELUN,MONE,BUFF,EY
W ¥2

Y

LUNY ,0CT

CTBL.EV]

DSKAL.CTB.EY
. *2

- NN

SN NN

N N

LR 22]

LE 2 2]

LR XX 4

L2 2]

JMP
1528
Y+
1

o B
LENDM

NSKDAL

JDEFIN
CAL
JMP
1620
EVe+d

1

cT8
JENDM

NSKPUT

sDEFIN
CAL
JMP
3129
EV+d

1
CTR
JENDM

NSKGET

«DEFIN

CAL
JMP
3249
EV+d
1

c7R
JENDM

ATTACH

LDEFIN
CAL
JMP
2478
Ey+d
JOECS
LENDM
DETACH
JOEFIN
CAL
JMP
2529
EV+2

LUNG

*3

CTRLLEV]

DSKDALCTB.EV
o *2
o*5

CTBLLEV]

DSKPUTCTBEV
*2
' +5

CTRL,EV]

DSKGET,CTB.EV
*2
o *5

LUNC,EV]
ATTACH,LUNJEV

V42
Y

. 0C7

LUHC il-\!ll
DETACH,LUNEY
2

4

.DECH LUNS LOCT
ENDM

/ ®woss SEEK LUNFLNAMEXTL,EV]
CJOEFIN SEEK,LUNSFLNAMEXT.EV

CAL *2
JMP 7
32¢¢
EVed

+DECH LUN3 ,0CT

v1 ¥l «SIXBT "FLNAM"
@i JLOC ,.%2
«S1XBT "EXT"
LENDM

/ weas ENTER LUNSFLNAMEXTE,EV]

DEFIN ENTER LUNIFLNAMJEXT,EV

CAL ' *2
JMP o *7
3302g
EVed

JDEC; LUN; ,0CTY

IR +SIXBT "FLNAM"
A7 LLOC ,,*2
+SIXBT “EXT®
+JENDM

/ ®wss DELETE LUN,FLNAM,EXTE,EV]
JDEFIN DELETE:LUN,FLNAM,EXT,EV

CAL %2
JHP 7
3500
EV*d

DECH LUN; ,0CT
viFel SIXBT "FLNAMP

5 JLOC o4¥2

SIXRT MEXT™

+ENDM
/
/ #ass (CLOSE LUNE,EV]
/
JOEFIN CLOSESLUNWEV
CAL ' *2
JMP Y
3420
EVe
.DEC3 LUN}3 ,0CFY
LJENDM
/
/ e&sow HINF LUNHEV
/
LDEFIN HINF,LUN,EV
CAL e
JMP té

/ sans

1e¥® i

/ nans

1%y}

/ %ans

1By}

/ wnaa

v ¥4

/ wnne

36202
EVY»D
DECH LUN3 ,OCT
+ENDM

DISABLE TASNAMC,EV]
DEFIN DISABLE.TN2EV

CAL 142
JMP «*5
23

EY*2

SIXBT "TN®

2} JLOC %2

+ENDM

ENABLE TASNAME,EV]

JOEFIN ENABLE,TNJEV

CAL ' *2
JMP .‘5
22

EVeD

_ o SIXBY "TAM

21 ,LO0C ,,*2

QENDM

FIX TASKNAME JEV)
JOEFIN FIX2TNJEV
CAL 2

JMP 45

15

EV*0

«SIXBT PTNM

21 LOC , 42

ENDM

UNFIX TASNAME EV)

+O0EFIN UNFIX TN,EV

CAL 192
JMP W' #5
16

EV*Q

$SIXBT "TNM
B LLOC ..%2
JENDM

DECLARE

«DEFIN DECLARE
LAC (401€20)
ISA

/ #wea TIME HRS,MIN,SEC

/
JOEFIN TIME,HRS,MIN,SEC
+ INH
LACs {MHH)
NAC HRS
LACa (MM)
DAC MIN
LACH (S3)
LENB
NAC SEC
tENDH

/

/ wsxs DATE HRS MIN,SEC,MON,DAY,YEAR

LOEFIN DATE,HRS,MIN,SEC,MON,DAY,YEAR

s INK
LAC# (HH)
naAcC HRS
LLAC# (MM)
DAC MIN
LAC# (55)
NAC SEC
LACH (M0)
NAC MON
LAC= (DA)
NAC nAY
LACs (YR)
JENB
DAC YEAR
:ENDM

/

/ ®ane INTENTRY (L

/
LODEFIN INTENTRY,CL

cL #
DBA
JMSe (SAVE)
JREPT 20
NQP
S ENDM

/

/ #waz INTEXIT CL

/
DOEFIN G INTEXIT, CL
LAC (CL)
JMP# (REST)
LJENDM

p v
JEND

A.

B.

C.

D.

E.

APPENDIX C

CAL PARAMETER BLOCKS FOR SYSTEM DIRECTIVES

QUEUE I/0 DIRECTIVE

Word O --

Word
Word
Word
Word
Word

U W N
[}
1

CAL Function Code (00) in bits 12-17 and

I/0 Function Code in bits 3-11

Event Variable address
Logical Unit Number (LUN)
Unique to I/O Function
Unigque to I/O Function
Unique to I/O Function

REQUEST DIRECTIVE

Word
Word
Word
Word
Word

=Wk o
|
1

CAL Function Code (01)

Event Variable address

Task name (first half)

Task name (second half)
Run priority (0-512)

SCHEDULE DIRECTIVE

Word
Word
Word
Word
Word
Word
Word
Word
Word 10 --
Word 11 --

NoOUdewhE=EO
|
|

RUN DIRECTIVE

SYNC

Word O
Word 1
Word 2
Word 3
Word 4 --
Word 5
Word 6
Word 7

0

DIRECTIVE

Word
Word
Word
Word
Word
Word

bW O
1
I

CAL Function Code (02)
Event Variable address
Task name (first half)
Task name (second-half)
Schedule hour (0-23)

Schedule minute (0-59)
Schedule second (0-59)

Reschedule interval (0-one day)
Interval units (l-tks, 2-secs,

Run priority (0-512)

CAL Function Code (03)
Event Variable address
Task name (first half)
Task name (second half)

Schedule delta (0-one day)
Delta units (l-tks, 2-secs,
Reschedule interval (0-one day)
Interval units (1l-tks, 2-secs,

Run priority (0-512)

CAL Function Code (14)
Event Variable address
Task name (first half)
Task name (second half)

3-mins, 4-hrs)

4-hrs)

3-mins, 4-hrs)

Sync units (l-tks, 2-secs, 3-mins, 4-hrs)
Schedule delta from synchronization (0-one day)

M.

Word 6 --
Word 7 =--
Word 10 --
Word 11 --

Delta units (l1-tks, 2-secs,

3-mins, 4-hrs)

Reschedule interval (0-one day)
Interval units (l-tks, 2-secs, 3-mins, 4-hrs)

Run priority (0-512)

CANCEL DIRECTIVE

Word
Word
Word
Word

wNh o
|
{

CAL Function Code (04)
Event Variable address
Task name (first half)
Task name (second half)

SUSPEND DIRECTIVE

Word 0 --

CAL Function Code (06)

RESUME DIRECTIVE

Word
Word
Word
Word
Word

B W- O
!
t

WAIT DIRECTIVE

Word ¢ --

MARK DIRECTIVE

Word
Word
Word
Word

WO
|
1

CAL Function Code (07)
Event Variable address
Task name (first half)
Task name (second half)
Resumption address

CAL Function Code (05)

CAL Function Code (13)
Event Variable address
Delta time (0-one day)
Delta units (l-tks, 2-secs,

WAITFOR DIRECTIVE

Word O --
Word 1 --

EXIT DIRECTIVE

Word 0 —-—

CAL Function Code (20)
Event Variable address

CAL Function Code (10)

CONNECT DIRECTIVE

Word
Word
Word
Word

WO
[}
1

CAL Function Code (11)
Event Variable address
Interrupt line number
Interrupt transfer address

3-mins, 4-~hrs)

DISCONNECT DIRECTIVE

Word O
Word 1
Word 2
Word 3

FIX DIRECTIVE

Word O
Word 1
Word 2
Word 3

UNFIX DIRECTIVE

Word
Word
word
Word

WO

CAL Function Code (12)
Event Variable address
Interrupt line number
Current interrupt transfer address

CAL Function Code (15)
Event Variable address
Task name (first half)
Task name (second half)

CAL Function Code (16)
Event Variable address
Task name (first half)
Task name (second half)

DISABLE DIRECTIVE

Word O
Word 1
Word 2
Word 3

CAL Function Code (21)
Event Variable address
Task name (first half)
~Task name (second half)

ENABLE DIRECTIVE

Word O
Word 1
Word 2
Word 3

CAL Function Code (22)
Event Variable address
Task name (first half) -
Task name (second half)

APPENDIX D
SUMMARY OF RETURNED EVENT VARIABLES

EVENT VARIABLE CONVENTIONS

The following conventions apply to Event Variables in Tasks by the

System.

-6

-7
-1g
-11
-12
-13
-14
-15
=16
-23
~24

-1g1
-192
-1¢3
-194
-201

-202
-293
-2p4
-205
-297
-21g
-3g1
-392
-777

Positive values signal successful completion
Zero indicates a request is still pending

Negative values indicate rejection or unsuccessful
completion.

Illegal header word read from device {data mode in-

correct or data validity bits improperly set) (DVH)

Unimplemented or illegal Function (DVH)

Illegal data mode (DVH)

File still open (DVH)

File not open (DVH)

DECtape error (DVH)

File not found (DVH)

Directory full (DVH)

Medium full (DVH)

Output word-pair-count or input-buffer-size error (DVH)

Input word-pair-count error (DVH)

LUN has been REASSIGNed while an ATTACH or DETACH

request was in an I/O request queue (DVH)

Out of range Logical Unit Number (IO.)

Un—assigned Logical Unit Number (IO.)

Non-resident Device Handler (IO.)

Control Table argument error (DVH)

Task not in system (RQ., SC., RN., SY., DA., EA., FX.,
UF., CN.)

Task is active (RQ., FX.) or not active (RS.)

CAL not Task issued (SC., RN., SY., MT.)

Task is DISABLED (RQ., SC., RN., SY., FX.)

Task not suspended (RS.)

Task already FIXed (FX.) or not FIXed (UF.)

Partition occupied (FX.)

Line number rejected (CI., DI.)

Line is CONNECTed (CI.) or not CONNECTed (DI.)

Pool is empty

DVH -- Device Handler

I0. -- ‘QUEUE I/0°' Directive
RQ. -- 'REQUEST' Directive
SC. -- 'SCHEDULE' Directive
RN. -- 'RUN' Directive

SY. =~ 'SYNC' Directive

CN. ~- 'CANCEL' Directive

RS. == 'RESUME' Directive

CI. -- 'CONNECT' Directive
DI. -~ 'DISCONNECT' Directive

FX.
UF.
DA.
EA.
MT.

'FIX IN CORE' Directive

'UNFIX'

Directive

'DISABLE' Directive
'ENABLE' Directive

'MARK'

Directive

APPENDIX E

REGISTERS SAVED DURING “SAVE” AND “RESTORE” OPERATIONS

Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Word

AC buffer
XR buffer
LR buffer
MQ buffer
SC buffer
Rl buffer
R2 buffer
R3 buffer
R4 buffer
R5 buffer
R6 buffer
X10 buffer
X1l buffer
X12 buffer
X13 buffer
L20 buffer

(accumulator)

(index register)

(limit register)

(multiplier-quotient register)
(step counter)

(absolute location 101)

(absolute location 102)

(absolute location 103)
(absolute location 104)
(absolute location 105)
(absolute location 106)
(autoincrement register 10)
(autoincrement register 11)
(autoincrement register 12)
(autoincrement register 13)
(location 20 - CAL return)

10

23

303

3 641

46 113
575 360

7 346 545

apwWN= 3

SCALES OF NOTATION

2° IN DECIMAL

APPENDIX F

CONVERSION TABLES

2 X 2" X 2
1.00069 33874 62581 0.01 1.00695 55500 56719 0.1 1.07177 34625 36293
1.00138 72557 11335 0.02 1.01395 94797 90029 0.2 1.14869 83549 97035
1.00208 16050 79633 0.03 1.02101 21257 07193 0.3 1.23114 44133 44916
1.00277 64359 01078 0.04 1.02811 38266 56067 0.4 1.31950 79107 72894
1.00347 17485 09503 0.05 1.03526 49238 41377 0.5 1.41421 35623 73095
1.00416 75432 38973 0.06 1.04246 57608 41121 0.6 1.51571 65665 10358
1.00486 38204 23785 0.07 1.04971 66836 23067 0.7 1.62450 47927 12471
1.00556 05803 98468 0.08 1.05701 80405 61380 0.8 1.74110 11265 92248
1.00625 78234 97782 0.09 1.06437 01824 53360 0.9 1.86606 59830 73615
+n
107 IN OCTAL
n 10 10 n 10"
0 1.000 000 000 000 000 000 0O 112 402 762 000 10 0.000 000 000 006 676
1 0.063 146 314 631 463 146 31 1 351 035 564 000 11 0.000 000 000 000 537
2 0.005 075 341 217 270 243 66 16 432 451 210 000. 12 0.000 000 000 000 043
3 0.000 406 111 564 570 651 77 221 411 634 520 000 13 0.000 000 000 000 003
4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 000 000
5 0.000 002 476 132 610 706 64 34 327 724 461 500.000 15 0.000 000 000 000 000
6 0.000 000 206 157 364 055 37 434 157 115 760 200 000 16 0.000 000 000 000 000
7 0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 00C 000 O
8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 000 000 000
9 0.000 000 000 104 560 276 41
n |og]O 2, n |092 10 IN DECIMAL
nlogo 2 n log, 10 n nlog o 2 n iog, 10
0.30102 99957 3.32192 80949 6 1.80617 99740 19.93156 85693
0.60205 99913 6.64385 61898 7 2.10720 99696 23.25349 66642
0.90308 99870 9.96578 42847 8 2.40823 99653 26.57542 47591
1.20411 99827 13.28771 23795 9 2.70926 99610 29.89735 28540
1.50514 99783 16.60964 04744 10 3.01029 99566 33.21928 09489

ADDITION AND MULTIPLICATION TABLES

040
0+4+1=1+40
141

[=]

01

02

Addition

03 04 06

Multiplication

Binary Scale

Octal Scale

07

02
03
04
05
06
07
10

N O AW N e

MATHEMATICAL CONSTANTS IN OCTAL SCALE

03
04
05
06
07
10
11

04
05
06
07
10
11
12

05
06
07
10
11
12
13

06
07
10
11
12
13
14

07
10
11
12
13
14
15

10
11
12
13
14
15
16

—

02

03

1l
—_—0
XXX
[l =d=]

wian

04 05

=00

06

07

04
06
10
12
14
16

N o oA wowN

06
11

17
22
25

10
14

12
17

24
30
34

31
36
43

14
22
30
36
44
52

16
25
34
43
52
61

3411037
0.24276
1.61337
1.11206
1.51544

3.12305

552421,

301556,

611067,

404435,

163223,

407267,

logio e

log2 e

log: 10

2.55760

0.27426

1.51411

0.33626

1.34252

3.24464

521305,

5306614

2307044

754251,

166245,

741136,

Y

iny

log2 v

In2

In 10

0.44742 147707,

~ 0.43127 233602,

.0.62573 030645,
1.32404 746320,
0.54271 027760,

2.23273 067355,

ot
0 W SN -

36

73
147
295
590

1 180
2 36!
4 722

294
589
179
358
717
434
869

744
488
976
953
906
813
627
254
509
018
037
075
151
303

213

427

854
709
419
838
676
352
705
411
822

740

963
927
855
711
423

693
387
775
551
103
206
412
825
651
303
606
213

488
976
952
904
808
616
232

928
856
712
424

696

QONOO_WN-O I

1.0

0.25

0.125
0.062
0.031
0.015
0.007
0.003

25

625
8iz
906
953
976
488

244

122
061
030
015

003
001

000

000
000
000
000
000
000
000

000

000
000
000

25

625
312
156
578
789
394
697
348
674
837
418
209

000
000
000
000
000
000
000
000
000

POWERS OF TWO

125
062
531
265
632
316
158
579
289

322
161
580
290
645
322
661
830
415
207
103
551
275
637
818

227
113
056
028
014
007
003
001
000

000

25
625
812
406
203
101
550
775
387
193
596
298
149
574
287

321
660
830
915
957
978
989
494
747
373
686

421
210
105
552
776
888
444
222
111
055
027
013

003
001
000
000
000
000

000
000
000
000
000
000

25

625
312
656
828
914
957
478
739
869
934
467
733
366
183

545
772
886
443
721
860
430
715
357
678
839
419

604

758

25
625
812

453
226
613
806
903
951
475
237
118
059
029
014

003
001

250
125

031
515
257
628
814
907
953
976
988
994
497
248
624
312
156
578
789
894
947
473
236

25

125
562
281
640
320

830
915
957
478
739
869
434
717
858
929
464
232
616
308
654
827
913
456
228
614
807
403
201

550
275
137
c68
034
017
508
254
627
813

711

169

25

625
812
406
703
351
675
337
668
334
667
333

583
791
395
697

924
962
981

745
372
186
093
546
273
136

534
767

25

125
562
781
890
945
472
236
618
809
404
702
851
925

481
240
120
560
280

320
160
580
290

322
161

5

625
312
656
328

082
541
270
135
567
783
391
695
347
173
086
043
021
010
005
002
001

250
625

5
25
125

031
015
5u7
253
626
813

953
976
988

497
748
874
437
718
359
679
339
169

369

342
171
085
542
271
135
567
283

820
910

125
562
281
140
570
285
142
571
785
392
696
848
924
962
981
490

625
312
156
578
289

822
411
205
102
051
025
512

5

25

125

062 5

531 25

265 625

132 812 5

566 406 25

783 203 125
391 601 562 5
695 800 781 25
847 900 390 625

0000
to
Q777
{Octol)

Octal

10000 -
20000 -
30000 -
40000 -

50000 -

60000 -
70000 -

1000 l

to
1777

(Octal)

0000
to
0511
(Decimal)

Decimal
4096
8192

12288

16384

20480

24576

28672

0512
to
1023
(Decimal)

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0000 [0000 0001 0002 0003 0004 0005 0006 0007 0400 {0256 0257 0258 0259 0260 0261 0262 0283
0010 {0008 0009 0010 00I1 0012 0013 0014 0015 0410|0264 0265 0266 0267 0268 0269 0270 0271
0020 {0016 0017 0018 0019 0020 0021 0022 0023 0420 {0272 0273 0274 0275 0276 0277 0278 0279
0030 [0024 0025 0026 0027 0028 0029 0030 0031 0430|0280 0281 0282 0283 0284 0285 0286 0287
0040 [0032 0033 0034 0035 0036 0037 0038 0039 04400288 0289 0290 0291 0292 0293 0294 0295
0050 |0040 0041 0042 0043 0044 0045 0046 0047 0450 ;0296 0297 0298 0299 0300 0301 0302 0303
0060 ;0048 0049 0050 0051 0052 0053 0054 0055 0460|0304 0305 0306 0307 0308 0309 0310 0311
0070 |0056 0057 0058 0059 0060 0061 0062 0063 0470(0312 0313 0314 0315 0316 0317 0318 0319
0100 {0064 0065 0066 0067 0068 0069 0070 0071 0500 {0320 0321 0322 0323 0324 0325 0326 0327
0110 /0072 0073 0074 0075 0076 0077 0078 0079 0510|0328 0329 0330 0331 0332 0333 0334 0335
0120 {0080 0081 0082 0083 0084 0085 0086 0087 0520 10336 0337 0338 0339 0340 0341 0342 0343
01300088 0089 0090 0091 0092 0093 0094 0095 0530 {0344 0345 0346 0347 0348 0349 0350 0351
0140 /0096 0097 0098 0099 0100 0101 0102 0103 0540 {0352 0353 0354 0355 0356 0357 0358 0359
0150 {0104 0105 0106 0107 0108 0109 0110 O11t 0550 | 0360 0361 0362 0363 0364 0365 0366 0367
0160|0112 0113 0114 0115 0116 0117 0118 0119 0560 {0368 0369 0370 0371 0372 0373 0374 0375
0170{0120 0121 0122 0123 0124 0125 0126 0127 0570|0376 0377 0378 0379 0380 0381 0382 0383
0200|0128 0129 0130 0131 0132 0133 0134 0135 0600 | 0384 0385 0386 0387 0388 0389 0330 0391
021010136 0137 0138 0139 0140 0141 0142 0143 0610|0392 0393 0394 0395 0396 0397 0398 0399
0220|0144 0145 0146 0147 0148 0149 0150 0151 0620 | 0400 0401 0402 0403 0404 0405 0406 0407
0230|0152 0153 0154 0155 0156 0157 0158 0133 0630 {0408 0409 0410 0411 0412 0413 0414 0415
0240 {0160 0161 0162 0163 0164 0165 0166 0167 0640 {0416 0417 0418 0419 0420 0421 0422 0423
0250|0168 0169 0170 0171 0172 0173. 0174 0175 0650 | 0424 0425 0426 0427 0428 0429 0430 0431
0260(0176 0177 0178 0179 0180 0181 0182 0183 0660|0432 0433 0434 0435 0436 0437 0438 0439
0270 {0184 0185 0186 0187°0188 0189 0190 0191 0670|0440 0441 0442 0443 0444 0445 0446 0447
03000192 0193 0194 0195 0196 0197 0198 0199 0700 | 0448 0449 0450 0451 0452 0453 0454 0455
03100200 0201 0202 0203 0204 0205 0206 0207 07100456 0457 0458 0459 0460 0461 0462 0463
0320 {0208 0209 0210 0211 0212 0213 0214 0215 0720 {0464 0465 0466 0467 0468 0469 0470 0471
03300216 0217 0218 0219 0220 0221 0222 0223 0730|0472 0473 0474 0475 0476 0477 0478 0479.]
0340|0224 0225 0226 0227 0228 0229 0230 0231 0740 0480 0481 0482 0483 0484 0485 0486 0487
0350|0232 0233 0234 0235 0236 0237 0238 0239 0750| 0488 0489 0490 0491 0492 0493 0494 0495
0360|0240 0241 0242 0243 0244 0245 0246 0247 0760 | 0496 0497 0498 0499 0500 0501 0502 0503
03700248 0249 0250 0251 0252 0253 0254 0255 0770|0504 0505 0506 0507 0508 0509 0510 0511
0 1 2 3 4 5 6 1 0 1 2 3 4 S 6 T
10000512 0513 0514 0515 0516 0517 0518 0519 1400 /0768 0769 077Q 0771 0772 0773 0774 0775
10100520 0521 0522 0523 0524 0525 0526 0527 141010776 0777 0778 0779 0780 0781 0782 0783
1020|0528 0529 0530 0531 0532 0533 0534 0535 14200784 0785 0786 0787 0788 0789 0790 0791
103010536 0537 0538 0539 0540 0541 0542 0543 143010792 0793 0794 0795 0796 0797 0798 0799
1040|0544 0545 0546 0547 0548 0549 0550 0551 1440|0830 0801 0802 0803 0804 0805 0808 0807
105010552 0553 0554 0555 0556 0557 0558 0559 1450 | 0808 0809 0810 0811 0812 0813 0814 0815
1060|0560 0561 0562 0563 0564 0565 0566 0567 146010816 0817 0818 0819 0820 0821 0822 0823
107010568 0569 0570 0571 0572 0573 0574 0575 1470 | 0824 0825 0826 0827 0828 0829 0830 0831
1100|0576 0577 0578 0579 0580 0581 0582 0583 1500 {0832 0833 0834 0835 0836 0837 0838 0839
1110|0584 0585 0586 0587 0588 0589 0530 0591 1510|0840 0841 0842 0843 0844 0845 0846 0847
1120|0592 0593 0594 0595 0596 0597 0598 0599 1520|0848 0849 0850 0851 0852 0853 0854 0855
1130|0600 0601 0602 0603 0604 0605 0606 0607 1530 {0856 0857 0858 0859 0860 0861 0862 0863
1140] 0608 0609 0610 0611 0612 0613 0614 0615 1540|0864 0865 0866 0867 0868 0869 0870 0871
11500616 0617 0618 0619 0620 0621 0622 0623 15500872 0873 0874 0875 0876 0877 0878 0879
1160|0624 0625 0626 0627 0628 0629 0630 0631 1560|0880 0881 0882 0883 0884 0885 0886 0887
1170|0632 0633 0634 0635 0636 0637 0638 0639 1570|0888 0889 0890 0891 0892 0893 0894 0895
1200|0640 0641 0642 0643 0644 0645 0646 0647 1600 |0896 0897 0898 0899 0900 0901 0902 0903
1210|0648 0649 0650 0651 0652 0653 0654 0655 1610|0904 0905 0906 0907 0908 0909 0910 0911
1220|0656 0657 0658 0659 0660 0661 0662 0663 1620 10912 0913 0914 0915 0916 0917 0918 0919
1230|0664 0665 0666 0667 0668 0669 0670 0671 1630 {0920 0921 0922 0923 0924 0925 0926 0927
1240{ 0672 0673 0674 0675 0676 0677 0678 0679 1640 0928 0929 0930 0931 0932 0933 0934 0935
12500680 0681 0682 0683 0684 0685 0686 0687 1650 {0936 0937 0938 0939 0940 0941 0942 0943
1260|0688 0689 0690 0691 0692 0693 0694 0695 1660 0944 0945 0946 0947 0948 0949 0950 0951
1270|0696 0697 0698 0699 0700 0701 0702 0703 1670 0952 0953 0954 0955 0956 0957 0958 0959
1300]0704 0705 0706 6707 0708 0709 0710 0711 1700 {0960 0961 0962 0963 0964 0965 0966 0967
1310|0712 0718 0714 0715 0716 0717 0718 0719 1710 0968 0969 0970 0971 0972 03973 0974 0975
13200720 0721 0722 0723 0724 0725 0726 0727 1720 /0976 0977 0978 0979 0980 0981 0982 0983
1330|0728 0729 0730 0731 0732 0733 0734 0735 1730|0984 0985 0986 0987 0988 0989 0990 0991
1340|0736 0737 0738 0739 0740 0741 0742 0743 1740 10992 0993 0994 0995 0996 0997 0998 0999
1350|0744 0745 0746 0747 0748 0749 0750 0751 1750 {1000 1001 1002 1003 1004 1005 1006 1007
1360|0752 0753 0754 0755 0756 0757 0758 0759 1760 11008 1009 1010 1011 1012 1013 1014 1015
13700760 0761 0762 0763 0764 0765 0766 0767 1770 {1016 1017 1018 1019 1020 1021 1022 1023

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
2000 {1024 1025 1026 1027 1028 1029 1030 1031 2400|1280 1281 1282 1283 1284 1285 1286 1287
20101032 1033 1034 1035 1036 1037 1038 1039 2410/ 1288 1289 1290 1291 1297 1293 1294 1295
2020 (1040 1041 1042 1043 1044 1045 1046 1047 2420] 1296 1297 1298 1299 1300 1301 1302 1303
2030 (1048 1049 1050 1051 1052 1053 1054 1055 2430{ 1304 1305 1306 1307 1308 1309 1310 1311
20401056 1057 1058 1059 1060 1061 1062 1063 2440] 1312 1313 1314 1315 1316 1317 1318 1319
2050|1064 1065 1066 1067 1068 1069 1070 1071 2450] 1320 1321 1322 1323 1324 1325 1326 1327
2060|1072 1073 1074 1075 1076 1077 1078 1079 2460§1328 1329 1330 1331 1332 1333 1334 1335
2070(1080 1081 1082 1083 1084 1085 1086 1087 2470{1336 1337 1338 1339 1340 1341 1342 1343
2100(1088 1089 1090 1091 1092 1093 1094 1095 2500 1344 1345 1346 1347 1348 1349 1350 1351
2110|1096 1097 1098 1099 1100 1101 1102 1103 2510§{1352 1353 1354 1355 1356 1357 1358 1359
2120{1104 1105 1106 1107 1108 1109 1110 1111 252011360 1361 1362 1363 1364 1365 1366 1367
2130|1112 1113 1114 1115 1116 1117 1118 1119 25301368 1369 1370 1371 1372 1373 1374 1375
214011120 1121 1122 1123 1124 1125 1126 1127 25401376 1377 1378 1379 1380 1381 1382 1383
2150(1128 1129 1130 1131 1132 1133 1134 1135 25501384 1385 1386 1387 1388 1389 1390 1391
2160{1136 1137 1138 1139 1140 1141 1142 1143 25601392 1393 1394 1395 1396 1397 1398 1399
2170|1144 1145 1146 1147 1148 1149 1150 1151 25701400 1401 1402 1403 1404 1405 1406 1407
2200{1152 1153 1154 1155 1156 1157 1158 1159 2600|1408 1409 1410 1411 1412 1413 1414 1415
22101160 1161 1162 1163 1164 1165 1166 1167 2610|1416 1417 1418 1419 1420 1421 1422 1423
222041168 1169 1170 1171 1172 1173 1174 1175 2620 1424 1425 1426 1427 1428 1429 1430 1431
2239(1176 1177 1178 1179 1180 1181 1182 1183 2630|1432 1433 1434 1435 1436 1437 1438 1439
22401184 1185 1186 1187 1188 1189 1190 1191 2640|1440 1441 1442 1443 1444 1445 1446 1447
2250{1192 1193 1194 1195 1196 1197 1198 1199 2650|1448 1449 1450 1451 1452 1453 1454 1455
2260|1200 1201 1202 1203 1204 1205 1206 1207 2660|1456 1457 1458 1459 1460 1461 1462 1463
227011208 1209 1210 1211 1212 1213 1214 1215 2670|1464 1465 1466 1467 1468 1469 1470 1471
23001216 1217 1218 1219 1220 1221 1222 1223 2700|1472 1473 1474 1475 1476 1477 1478 1479
23101224 1225 1226 1227 1228 1229 1230 1231 2710|1480 1481 1482 1483 1484 1485 1486 1487
2320{1232 1233 1234 1235.1236 1237 1238 1239 2720(1488 1489 1490 1491 1492 1493 1494 1495
2330{1240 1241 1242 1243 1244 1245 1246 1247 2730|1496 1497 1498 1499 1500 1501 1502 1503
234011248 1249 1250 1251 1252 1253 1254 1255 2740|1504 1505 1506 1507 1508 1509 1510 151!
235011256 1257 1258 1259 1260 1261 1262 1263 2750|1512 1513 1514 1515 1516 1517 1518 1519
23601264 1265 1266 1267 1268 1269 1270 1271 2760|1520 1521 1522 1523 1524 1525 1526 1527
23701272 1273 1274 1275 1276 1277 1278 1279 2770(1528 1529 1530 1531 1532 1533 1534 1535
0 1 2 3 4 5 6 7 0 1 2 3 4 H 6 7
3000|1536 1537 1538 1539 1540 1541 1542 1543 3400|1792 1793 1794 1795 1796 1797 1798 1799
3010 (1544 1545 1546 1547 1548 1549 1550 1551 3410|1800 1801 1802 1803 1804 1805 1806 1807
30201552 1553 1554 1555 1556 1557 1558 1558 342613808 1809 1810 181i 18i2 1813 1814 1815
3030|1560 1561 1562 1563 1564 1565 1566 1567 3430|1816 1817 1818 1819 1820 1821 1822 1823
3040 | 1568 1569 1570 1571 1572 1573 1574 1575 3440|1824 1825 1826 1827 1828 1829 1830 1831
3050|1576 1577 1578 1579 1580 1581 1582 1583 345Q/1832 1833 1834 1835 1836 1837 1838 1839
3060 {1584 1585 1586 1587 1588 1589 1590 1591 3460(1840 1841 1842 1843 1844 1845 1846 1847
30701592 1533 1594 1595 1596 1597 1598 1599 3470 1848 1849 1850 1851 1852 1853 1854 1855
31001600 1601 1602 1603 1604 1605 1606 1607 3500 1856 1857 1858 1859 1860 1861 1862 1883
31101608 1609 1610 1611 1612 1613 1614 1615 35101864 1865 1866 1867 1868 1869 1870 1871
3120|1616 1617 1618 '1619...1620 1621 1622 1623 35201872 1873 1874 1875 1876 1877 1878 1879
31301624 1625 1626 1627 1628 1629 1630 1631 3530|1880 1881 1882 1883 1884 1885 1886 1887
3140|1632 1633 1634 1635 1636 1637 1638 1639 35401888 1889 1890 1891 1892 1893 1894 1895
31501640 1641 1642 1643 1644 1645 1646 1647 3550{1896 1897 1898 1899 1500 1901 1902 1903
3160|1648 1649 1650 1651 1652 1653 1654 1655 35601904 1905 31906 1907 1908 1909 1910 1911
3170[1656 1657 1658 1659 1660 1661 1662 1663 357011912 1913 1914 1915 1916 1917 1918 1919
3200 {1664 1665 1666 1667 1668 1669 1670 1671 360011920 1921 1922 1923 1924 1925 1926 1927
3210|1672 1673 1674 1675 1676 1677 1678 1679 361011928 1929 1930 1931 1932 1933 1934 1935
3220 (1680 1681 1682 1683 1684 1685 1686 1687 362011936 1937 1938 1939 1940 1941 1942 1943
3230|1688 1689 1690 1691 1692 1693 1694 1695 3630 (1944 1945 1946 1947 1948 1949 1950 1951
3240 (1696 1697 1698 1699 1700 1701 1702 1703 3640|1952 1953 1954 19355 1956 1957 1958 1959
3250 {1704 1705 1706 1707 1708 1709 1710 1711 36501960 196! 1962 1963 1964 1965 1966 1967
3260|1712 1713 1714 1715 1716 1717 1718 1719 3660|1968 1969 1970 1971 1972 1973 1974 1975
3270 {1720 1721 1722 1723 1724 1725 1726 1727 3670|1976 1977 1978 1979 1980 1981 1982 1983
3300 (1728 1729 1730 1731 1732 1733 1734 1735 3700|1984 1985 1986 1987 1988 1989 1990 1991
33101736 1737 1738 1739 1740 1741 1742 1743 371011992 1993 1994 1995 1996 1997 1998 1999
3320|1744 1745 1746 1747 1748 1749 1750 1751 37202000 2001 2002 2003 2004 2005 2006 2007
33301{1752 1753 1754 1755 1756 1757 1758 1759 3730|2008 2009 2010 2011 2012 2013 2014 2015
33401760 1761 1762 1763 1764 1765 1766 1767 3740{2016 2017 2018 2019 2020 2021 2022 2023
33501768 1769 1770 1771 1772 1773 1774 1775 375012024 2025 2026 2027 2028 2029 2030 2031
33601776 1777 1778 1779 1780 1781 1782 1783 3760|2032 2033 2034 2035 2036 2037 2038 2039
337041784 1785 1786 1787 1788 1789 1790 1791 3770] 2040 2041 2042 2043 2044 2045 2046 2047

2000 1024
to to
27277 1535

(Octol) (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

3000
to
3777
(Octal)

1536
to
2047
(Decimal)

4000 2048
to fo
4777 2559

(Octald i {Decimal®

Octal Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

5000 2560
to to
5777 k[og]

(Octol) | (Decimal)

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued)

o 1 2 3 4 5 6 1 o 1 2 3 4 5 & 1
4000 2048 2049 2050 2051 2052 2053 2054 2055 4400|2304 2305 2306 2307 2308 2309 2310 2311
4010{ 2056 2057 2058 2059 2060 2061 2062 2063 4410|2312 2313 2314 2315 2316 2317 2318 2319
4020| 2064 2065 2066 2067 2068 2069 2070 2071 4420|2320 2321 2322 2323 2324 2325 2328 2327
4030| 2072 2073 2074 2075 2076 2077 2078 2079 44302328 2325 2330 2331 2332 2333 2334 2335
4040} 2080 2081 2082 2083 2084 2085 2086 2087 444012336 2337 2338 2339 2340 2341 2342 2M3
4050{ 2088 2089 2090 2091 2092 2093 2094 2095 4450|2344 2345 2346 2347 2348 2349 2350 2351
4060! 2096 2097 2098 2099 2100 2101 2102 2103 4460(2352 2353 2354 2355 2356 2357 2358 2359
4070| 2104 2105 2106 2107 2108 2109 2110 2111 44701 2360 2361 2362 2363 2364 2365 2366 2367
4100/ 2112 2113 2114 2115 2116 2117 2118 2119 4500|2368 2369 2370 2371 2372 2373 2374 2375
4110{ 2120 2121 2122 2123 2124 2125 2126 2127 4510|2376 2377 2378 2379 2380 2381 2382 2383
4120{ 2128 2129 2130 2131 2132 2133 2134 2135 45202384 2385 2386 2387 2388 2389 2390 2391
4130 2136 2137 2138 2139 2140 2141 2142 2143 4530|2392 2393 2394 2395 2396 2397 2398 2399
4140 2144 2145 2146 2147 2148 2149 2150 2151 4540|2400 2401 2402 2403 2404 2405 2406 2407
4150] 2152 2153 2154 2155 2156 2157 2158 2159 4550|2408 2409 2410 2411 2412 2413 2414 2415
4160 2160 2161 2162 2163 2164 2165 2166 2167 4560|2416 2417 2418 2419 2420 2421 2422 2423
4170 2168 2169 2170 2171 2172 2173 2174 2175 4570|2424 2425 2426 2427 2428 2429 2430 2431
4200} 2176 2177 2178 2179 2180 2181 2182 2183 4600|2432 2433 2434 2435 2436 2437 2438 2439
4210! 2184 2185 2186 2187 2188 2189 2190 2191 46102440 2441 2442 2443 3444 2445 2446 2447
42201 2192 2193 2194 2195 2196 2197 2198 2199 4620 [2448 2449 2450 2451 2452 2453 2454 2455
4230{ 2200 2201 2202 2203 2204 2205 2206 2207 4630 {2456 2457 2458 2459 2460 2461 2462 2443
4240) 2208 2209 2210 2211 2212 2213 2214 2215 464012464 2465 2466 2467 2468 2469 2470 2471
4250({ 2216 2217 2218 2219 2220 2221 2222 2223 4650|2472 2473 2474 2475 2476 2477 2478 2479
4260] 2224 2225 2226 2227 2228 2229 2230 2231 4660 2480 2481 2482 2483 2484 2485 2486 2487
4270{ 2232 2233 2234 2235 2236 2237 2238 2233 467012488 2489 2490 2491 2492 2493 2494 2495
4300|2240 2241 2242 2243 2244 2245 2246 2247 47002496 2497 2498 2499 2500 2501 2502 2503
4310|2248 2249 2250 2251 2252 2253 2254 2255 471012504 2505 2506 2507 2508 2509 2510 2511
4320|2256 2257 2258 2259 2260 2261 2262 2263 4720|2512 2513 2514 2515 2516 2517 2518 2519
43302264 2265 2266 2267 2268 2269 2270 2271 47302520 2521 2522 2523 2524 2525 2526 2527
4340 2272 2273 2274 2275 2276 2277 2278 2279 47402528 2529 2530 2531 2532 2533 2534 2535
435012280 2281 2282 2283 2284 2285 2286 2287 475012536 2537 2538 2539 2540 2541 2542 2543
4360|2288 2289 2290 2291 2292 2293 2294 2295 476012544 2545 2546 2547 2548 2549 2550 2551
4370/2296 2297 2298 2299 2300 2301 2302 2303; 4770) 2552 2553 2554 2555 2556 2557 2558 2559

’ i
! 0 1 2 3 4 S 6 71 0 1 2 3 4 5 6 7
5000|2560 2561 2562 2563 2564 2565 2566 2567 54002816 2817 2818 2819 2820 2821 2822 2823
5010{2568 2569 2570 2571 2572 2573 2574 2575 5410|2824 2825 2826 2827 2828 2829 2830 2831
5020|2576 2577 2578 2579 2580 2581 2582 2583 54202832 2833 2834 2835 2836 2837 2838 2838
5030|2584 2585 2586 2587 2588 2589 2590 2591 543012840 2841 2842 2843 2844 2845 2846 2847
5040|2592 2593 2594 2595 2596 2597 2598 2599 544012848 2849 2850 2851 2852 2853 2854 20858
5050|2600 2601 2602 2603 2504 2605 2606 2607 54502856 2857 2858 2859 2860 2861 2862 2863
5060|2608 2609 2610 2611 2612 2613 2614 2615 54602864 2865 2866 2867 2868 2869 2870 2871
50702616 2617 2818 2619 2620 2621 2622 2623 547012872 2873 2874 2875 2876 2877 2878 28TV
51002624 2625 2626 2627 2628 2629 2630 2631 5500 {2880 2881 2882 2883 2884 2885 2836 2887
51102632 2633 2634 2635 2636 2637 2638 2639 5510|2888 2889 2890 2891 2892 2893 2894 2895
5120|2640 2641 2642 2643 2644 2645 2646 2647 5520 (2896 2897 2898 2899 2900 2901 2902 2903
5130|2648 2649 2650 2651 2652 2653 2654 2655 5530 | 2904 2905 2906 2907 2908 2909 2910 2911
5140|2656 2657 2658 2659 2660 2661 2662 2663 554012912 2913 2914 2915 2916 2917 2918 2919
5150|2664 2665 2666 2667 2668 2669 2670 2671 555012920 2921 2922 2923 2924 2925 2926 2927
5160 [2672 2673 2674 2675 2676 2677 2678 2679 556012928 2929 2930 2931 2932 2933 2934 2935
5170|2680 2681 2682 2683 2684 2685 2686 2687 5570|2936 2937 2938 2933 2940 2941 2942 2943
5200 {2688 2689 2690 2691 2692 2693 2694 2695 5600 {2944 2945 2946 2947 2948 2949 2950 2951
5210|2696 2697 2698 2699 2700 2701 2702 2703 561012952 2953 2954 2955 2956 2957 2958 2959
522012704 2705 2706 2707 2708 2709 2710 2711 5620 {2960 2961 2962 2963 2964 2965 2966 2967
523012712 2713 2714 2715 2716 2717 2718 2719 563012968 2969 2970 2973 2972 2973 2974 2975
524012720 2721 2722 2723 2724 2725 2726 2727 564012976 2977 2978 2979 2980 2981 2982 2983
52502728 2729 2730 2731 2732 2733 2734 2735 5650|2534 2985 2986 2987 2988 2989 2990 2991
$26012736 2737 2738 2739 2740 2741 2742 2743 5660 {2992 2993 2594 2995 2996 2997 2998 2999
527012744 2745 2746 2747 2748 2749 2750 2751 567013000 3001 3002 3003 3004 3005 3006 3007
§300 {2752 2753 2754 2755 2756 2757 2758 2759 5700|3008 3009 3010 3011 3012 3013 3014 3015
5310 (2760 2761 2762 2763 2764 2765 2766 2767 §710|3016 3017 3018 3019 3020 3021 3022 3023
§320 (2768 2769 2770 2771 2772 2773 2774 2775 5720 {3024 3025 3026 3027 3028 3029 3030 3031
53302776 2777 2778 2773 2780 2781 2782 2783 §730,3032 3033 3034 3035 303§ 3037 2028 3039
5340|2784 2785 2786 2787 2788 2789 2790 2791 5740|3040 3041 3042 3043 3044 3045 3046 3047
$350 (2792 2793 2794 2795 2796 2797 2798 2799 5750|3048 3049 3050 3051 3052 3053 3054 3055
5360 | 2800 2801 2802 2803 2804 2805 2806 2807 57603056 3057 3058 3059 3060 3061 3062 3063
5370 (2808 2809 2810 2811 2812 2813 2814 2815 5770|3064 3065 3066 3067 3068 3069 3070 3071

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued)

o 1 2 3 4 5 6 1 o 1 2 3 4 5 6 1
6000|3072 3073 3074 3075 3076 3077 3078 3079| |6400] 3328 3329 3330 3331 3332 3333 3334 3335
6010|3080 3081 3082 3083 3084 3085 3086 3087| |6410[3336 3337 3338 3339 3340 3341 3342 3343
6020|3088 3089 3090 3091 3092 3093 3094 3095| |6420| 3344 3345 3346 3347 3348 3349 3350 3351
6030|3096 3097 3098 3099 3100 3101 3102 3103| 6430|3352 3353 3354 3355 3356 3357 3358 3359
6040 (3104 3105 3106 3107 3108 3109 3110 3111 6440|3360 3361 3362 3363 3364 3365 3366 3367
6050|3112 3113 3114 3115 3116 3117 3118 3119] |6450| 3368 3369 3370 3371 3372 3373 3374 3375
6060|3120 3121 3122 3123 3124 3125 3126 3127/ |6460] 3376 3377 3378 3379 3380 3381 3382 3383
6070|3128 3129 3130 3131 3132 3133 3134 3135| |6470| 3384 3385 3386 3387 3388 3389 3390 3391
6100 (3136 3137 3138 3139 3140 3141 3142 3143) |6500| 3392 3393 3394 3395 3396 3397 3398 3399
6110|3144 3145 3146 3147 3148 23149 3150 3151 |6510| 3400 3401 3402 3403 3404 3405 3406 3407
6120|3152 3153 3154 3155 3156 3157 3158 31590 [6520(3408 3409 3410 3411 3412 3413 3414 3415
6130|3160 3161 3162 3163 3164 3165 3166 3167 |6530| 3416 3417 3418 3419 3420 3421 3422 3423
6140|3168 3169 3170 3171 3172 3173 3174 3175| |6540| 3424 3425 3426 3427 3428 3429 3430 3431
6150|3176 3177 3178 3179 3180 3181 3182 3183| |6550| 3432 3433 3434 3435 3426 3437 3438 3439
6160|3184 3185 3186 3187 3188 3189 3190 3191 6560 3440 3441 3442 3443 3444 3445 3446 3447
617003192 3193 3194 3195 3196 3197 3198 3199| [6570| 3448 3449 3450 3451 3452 3453 3454 3455
6200 3200 3201 3202 3203 3204 3205 3206 3207| 6600|3456 3457 3458 3459 3460 3461 3462 3463
16210 (3208 3209 3210 3211 3212 3213 3214 3215 6610|3464 3465 3466 3467 3468 3469 3470 3471
6220 [3216 3817 3218 3219 3220 3221 3222 3223| (66203472 3473 3474 3475 3476 3477 3478 3479
6230|3224 3225 3226 3227 3228 3220 3230 3231 6630] 3480 3481 3482 3483 3484 3485 3486 3487
6240 (3232 3233 3234 3235 3236 3237 3238 3239| |6640) 3488 3489 3490 3491 3492 3493 3494 3495
€250 |3240 3241 3242 3243 3244 3245 3246 3247) |6650| 3496 3497 3498 3499 3500 3501 3502 3503
6260 | 3248 3249 3250 3251 23252 3253 3254 3255| |6660) 3504 3505 3506 3507 3508 3509 3510 3511
6270 {3256 3257 3258 3259 3260 3261 3262 3263| (6670{ 3512 3513 3514 3515 3516 3517 3518 3519
6300 [3264 3265 3266 3267 3268 3269 3270 3271 6700|3520 3521 3522 3523 3524 3525 3526 3527
6310 13272 3273 3274 3275 3276 3277 3278 3279 |6710]3528 3529 3530 3531 3532 3533 3534 3535
6320 {3280 3281 3282 3283 3284 3285 3286 3287 6720|3536 3537 3538 3539 3540 3541 3542 3543
63303288 3289 3290 3291 3292 3293 3294 3295 6730) 3544 3545 3546 3547 3548 3549 3550 3551
€340 | 3296 3297 3298 3299 3300 3301 3302 3303 |6740| 3552 3553 3554 3555 3556 3557 3558 3559
€350 |3304 3305 3306 3307 3308 3309 3310 3311 6750| 3560 3561 3562 3563 3564 3565 3566 3567
€360 3312 3313 3314 3315 3316 3317 3318 3319] [6760| 3568 3569 3570 3571 3572 3573 3574 3575
6370 |3320 3321 3322 3323 3324 3325 3326 3327 |6770] 3576 3577 3578 3579 3580 3581 3582 3583

o 1 2 3 4 5 6 1 o 1 2 3 4 5 6 1
7000} 3584 3585 3586 3587 3588 3589 3500 3591 7400|3840 3841 3842 3843 3844 3845 3846 3847
7010] 3592 3503 3594 3595 3596 3597 3598 3599 7410|3848 2849 3850 3851 3852 3853 3854 3855
7020| 3600 3601 3602 3603 3604 3605 3606 3607 7420| 3856 3857 3858 3859 3860 3861 3862 3863
7030 3608 3609 3610 3611 3612 3613 3614 3615 7430| 3864 3865 3866 3867 3868 3869 3870 3871
7040! 3616 3617 3618 3819 3620 3621 3622 3623 7440|3872 3873 3874 3875 3876 3877 3878 3879
7050° 3624 3525 3626 3627 3628 3629 3630 3631: 7450 3880 3881 3882 3883 3884 3885 3886 3887
7060, 3632 3633 3634 3635 3636 3637 3638 3639, .| 7460|3888 3889 3890 3891 3892 3893 3894 3895
7070 3640 3641 3642 3643 3644 3645 3646 3647 7470| 3896 3897 3898 3899 3900 3901 3902 3903
7100 3648 3649 3650 3651 3652 3653 3654 3655 75003904 3905 3906 3907 3908 3909 3910 3911
7110/ 3856 3657 3858 3659 3660 366! 3662 3663 75101 3912 3913 3914 3915 3016 3917 2918 3919
7120 3664 3665 3666 3667 3668 3665 3670 3671 752013920 3921 3522 3923 3924 3925 3926 3927
7130| 3672 3673 3674 3675 3676 3677 3678 3679 7530|3928 3929 3930 3931 3932 3933 3934 3935
7140) 3680 3681 3882 3683 3684 3685 3686 3687 7540|3036 3937 3938 3939 3940 3941 3942 3943
7150| 3688 3689 3690 3691 3692 3693 3694 3695 7550|3044 3945 3946 3947 3948 3949 3950 3951
7180 3606 3697 3698 3699 3700 3701 3702 3703 | 7560|3952 3953 3954 3955 3956 3957 3958 3959
7170] 3704 3705 3706 3707 3708 3709 3710 3711 7570|3960 3961 3962 3963 3964 3965 3966 3967
7200| 3712 3713 3714 3715 3716 3717 3718 3719 7600 | 3968 3969 3970 3971 3972 3973 3974 3975
7210|3720 3721 3722 3723 3724 3725 3726 3727 7610|3976 3977 3978 3979 3980 3981 3982 3983
7220| 3728 329 3730 3731 3732 3733 3734 3735 7620 | 3984 3985 3986 3987 3988 3983 3990 3991
7230| 3736 3737 3738 3739 3740 3741 3742 3743 7630]3992 3993 3994 3995 3996 3997 3998 3999
7240| 3744 3745 3746 3747 3748 3749 3750 3751 7640|4000 4001 4002 4003 4004 4005 4006 4007
7250| 3752 3753 3754 3755 3756 3757 3758 3750 7650|4008 4009 4010 4011 4012 4013 4014 4015
7260| 3760 3761 3782 3763 3764 3765 3766 3767 76604016 4017 4018 4019 4020 4021 1022 4023
7270| 3788 3769 3770 3771 3772 3773 3774 3115 7670|4024 4025 4026 4027 4028 4029 4030 4031
7300 3776 3777 3778 3779 3780 3781 3782 3783 7700 {4032 4033 4034 4035 4036 4037 4038 4039
7310|3784 3785 3788 3787 3788 3789 3790 3791 7710|4040 4041 4042 4043 4044 4045 4046 4047
7320] 3792 3793 3794 3795 3796 3797 3798 3799 7720 {4048 4049 4050 4051 4052 4053 4054 4055
7330|2800 3801 3802 3803 3804 3805 3808 3807 7130|4058 4057 4058 4059 4060 4061 4062 4083
7340|3808 3809 3810 3811 3812 3813 3814 3815 7740 | 4064 4065 4066 4067 4088 4069 4070 4071
7353|3816 3817 3818 3819 3820 3821 3822 3823 7750|4072 4073 4074 4075 4076 4077 4078 4079
7360|3824 3825 3826 3827 3828 3829 B0 3831 7760|4080 4081 4082 4083 4084 4085 4086 4087
7370| 3832 3833 3834 3835 3836 3837 3838 3839 7770|4088 4089 4090 4091 4092 4093 4094 4095

6000 3072
to to
6777 583

(Octal) | (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

7000 | 2584
to to
7777 4095
(Octal) | (Decimol)

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.
.000 . 000000 . 100 . 125000 .200 . 250000 .300 . 375000
.001 .001953 .101 . 126953 2201 .251953 .301 .376953
.002 . 603906 .102 . 128906 .202 . 253906 .302 .378906
.003 . 005859 .103 . 130859 .203 .255859 .303 . 380859
. 004 .007812 .104 . 132812 .204 .257812 .304 .382812
.005 . 009765 . 105 . 134765 .205 . 259765 .305 . 384765
. 006 .011718 . 108 . 136718 .206 .261718 . 306 .386718
.007 .013671 .107 . 138671 .207 . 263671 .307 .388671
.010 . 015625 .110 . 140625 .210 . 265625 .310 .390625
.011 .017578 111 . 142578 .21 .267578 .311 .392578
.012 .019531 .112 . 144531 .212 .269531 312 .394531
.013 . 021484 113 . 146484 .213 . 271484 .313 . 396484
.014 .023437 .114 . 148437 214 . 273437 .34 .398437
.015 . 025330 . 115 . 150390 .215 . 275390 315 . 400390
.016 .027343 116 . 152343 .216 . 277343 .318 .402343
.017 . 029296 117 . 154296 .217 .279296 .317 .404296
.020 .031250 .120 . 156250 .220 .281250 .320 . 406250
.021 .033203 .121 . 158203 .221 .283203 .321 . 408203
.022 .035156 122 . 160156 .222 . 285156 .322 .410156
.023 . 037109 .123 . 162109 .223 .287109 .323 .412109
.024 . 033062 124 . 164062 .224 . 289062 .324 .414062 -
.025 .041015 .125 . 166015 .225 . 291015 .325 .416015
. 026 .042968 . 126 . 167968 .226 .292968 .326 .417968
.027 . 044921 127 . 169921 .227 .294921 .327 .419921
.030 .046875 .130 . 171875, .230 . 296875 .330 .421875
.031 .048828 . 131 . 173828 .231 .298828 .331 . 423828
.032 . 050781 . 132 . 175781 .232 .300781 .332 .426781
.033 .052734 . 133 177734 .233 .302734 .333 .427734
.034 .054687 .134 . 179687 .234 . 304687 .334 .429687
.035 .056640 .135 . 181640 .235 .306640 .335 .431640
.036 . 058593 .136 . 183593 .236 .308593 .336 .433593
.037 . 060546 .137 . 185546 .237 .310546 .337 .435546
. 040 .062500 . 140 . 187500 .240 . 312500 .340 .437500
. 041 . 064453 .41 . 189453 .241 . 314453 .341 .439453
.042 . 066406 .142 . 191406 .242 .316406 .342 .441406
.043 . 068359 . 143 . 193359 .243 . 318359 .343 . 443359
. 044 .070312 . 144 . 195312 .244 . 320312 .344 . 445312
.045 . 072265 . 145 . 197265 .245 . 322265 .345 . 447265
. 046 .074218 . 146 . 199218 .246 . 324218 . 346 .449218
. 047 .076171 . 147 201171 .247 . 326171 .347 .451171
.050 .078125 . 150 .203125 .250 . 328125 . 350 .453125
.051 . 080078 L1581 .205078 .251 .330078 .351 .455078
.052 .082031 . 152 .207031 .252 .332031 .352 .457031
.053 .083984 L1583 .208984 .253 .333984 .353 . 458984
.054 . 085937 . 154 .210937 .254 .335937 .354 .460937
.055 . 087890 . 1585 .212890 .255 .337890 . 388 .462890
. 056 . 089843 . 156 .214843 .256 . 339843 .356 .464843
.057 . 091796 L1587 .216796 .257 .341796 .357 .466796
. 060 . 093750 . 160 .218750 .260 . 343750 .360 .468750
.061 . 095703 .161 .220703 . 261 . 345703 .361 .470703
.062 . 097656 . 162 . 222656 .262 . 347656 .362 . 472656
. 063 . 099609 . 163 . 224809 .263 . 349609 .363 . 474609
.064 . 101562 L1164 .226562 .264 . 351562 .364 476562
. 065 . 103515 . 165 . 228515 .265 .353515 .365 478515
.066 . 105468 . 166 .230468 .266 . 355468 . 366 .460468
. 067 . 107421 . 167 .232421 . 267 .357421 .367 . 482421
.070 . 109375 170 .234375 .27 . 359375 .370 .484375
.071 . 111328 RYA .236328 .271 .361328 .371 .486328
.072 .113281° L172 .238281 .272 .363281 .372 .488281
.073 . 115234 .173 .240234 .273 . 365234 .31 .490234
.074 . 117187 . 174 .242187 .274 .367187 .34 .492187
.075 . 119140 175 .244140 .275 .369140 .375 . 494140
.078 . 121033 178 . 246093 . 276 .371093 .37 . 496093
077 . 123046 L1177 . 248046 .277 .373046 .377 . 498046

OCTAL-DECIMAL FRACTION CONVERSION TABLE (continued)

OCTAL DEC. OCTAL DEC. OCTAL DEC, OCTAL DEC,

.000000 000000 .000100 . 000244 . 000200 . 000488 . 000300 . 000732
.000001 , 000003 .000101 . 000247 .000201 000492 . 000301 .000736
.000002 000007 .000102 ,000251 . 000202 . 000495 .000302 .000740
.000003 . 000011 .000103 . 000255 . 000203 . 000499 000303 ,000743
.000004 .000015 .000104 . 000259 .000204 000503 . 000304 .000747
. 000005 . 000019 ,000105 , 000263 .000205 . 000507 .000305 .000751
.000006 000022 .000106 , 000267 .000206 000511 .000306 000755
.000007 ,000026 .000107 000270 .000207 ,000514 .000307 000759
.000010 000030 ,000110 000274 . 000210 .000518 .000310 .000762
.000011 .000034 ,000111 .000278 .000211 . 000522 . 000311 .000766
.000012 000038 .000112 000282 .000212 , 000526 .000312 ,.000770
.000013 000041 .000113 000286 .000213 . 000530 .000313 .000774
.000014 . 000045 .000114 . 000289 .000214 000534 .000314 ,000778
.000015 ,000049 .000115 . 000293 .000215 000537 .000315 .000782
.000016 , 000053 .000116 ,000297 .000216 000541 ,000316 .000785
.000017 000057 .000117 ,000301 .000217 000545 .000317 ,000789
.000020 000061 .000120 . 000305 .000220 . 000549 .000320 ,000793
.000021 000064 ,000121 - 000308 .000221 000553 .000321 ,000797
.000022 000068 .000122 ,000312 .000222 . 000556 .000322 .000801
.000023 . 000072 .000123 .000318 .000223 000560 .000323 000805
.000024 000076 .000124 000320 . 000224 . 000564 .000324 ,000808
. 000025 . 000080 .000125 000324 .000225 .000568 .000325 .000812
. 000026 . 000083 .000126 ,000328 .000226 .000572 .000326 ,000816
.000027 . 000087 .000127 ,000331 .000227 .000576 .000327 . 000820
. 000030 . 000091 .000130 ,000338 .000230 ,000579 .000330 000823
.000031 , 000095 .000131 000339 .000231 . 000583 . 000331 . 000827
.000032 . 000099 .000132 ,000343 .000232 000587 . 000332 .000831
.000033 ,000102 .000133 000347 .000233 ,000591 . 000333 ,000835
.000034 .0001068 .00013¢ ,000350 .000234 000595 .000334 .000839
.0v0035 .000110 .000135 ,000354 .000235 ,000598 .000335 .000843
.000036 .000114 .000136 ,000358 .000236 ,000602 .000336 .000846
.000037 ,000118 .000137 .000362 .000237 000606 .000337 .000850
. 000040 . 000122 .000140 ,000366 .000240 . 000610 .000340 .000854
.000041 , 000125 .000141 .000370 . 000241 .000614 .000341 .000858
. 000042 .000129 .000142 000373 .000242 . 000617 .000342 .000862
.000043 000133 . 000143 . 000377 . 000243 .000621 . 000343 000865
.000044 000137 .000144 000381 .000244 . 000625 . 000344 . 000869
,000045 . 000141 .000145 000385 . 000245 . 000629 .000345 .000873
. 000046 . 000144 .000146 000389 .000248 . 000633 .00034¢ .000877
,C00047 ,000148 .000147 ,000392 .000247 . 000637 .000347 .000881
. 000050 . 000152 .000150 ,000396 L 000250 . 000840 . 200350 .00098S
.000051 000156 .000151 . 000400 . 000251 . 000644 .000351 ,000888
. 000052 . 000160 .000152 .000404 .000252 . 000648 .000352 .000892
. 000083 . 000164 .000153 ,000408 .000253 . 000652 .000353 .000896
.000054 ,000167 .000154 000411 .000254 . 000656 .000354 . 000900
.000055 ,000171 .000155 .0C0415 . 000255 .000859 2000358 ,000904
.000056 , 000175 .000156 . 000419 .000256 000663 .000356 000907
.000057 . 000179 .000157 .000423 .000257 .000667 . 000357 .000911
.000060 ,000183 .000160 000427 .000260 000671 .000360 .000915
. 000061 .000188 .000161 ,000431 .000261 . 000675 .000361 .000919
,000062 000190 .000162 ,000434 . 000262 . 000679 .000362 000923
.000063 000194 .000163 ,000438 .000263 ,000682 .000363 .00092¢
.000064 000198 000164 000442 . 000264 . 000686 . 000364 . 000930
.000065 000202 .000165 000446 . 000265 . 000630 .000365 .000934
. 000066 . 000205 .000166 000450 .000266 .000694 .000366 .000938
. 000067 . 000209 .000167 ,000453 .000267 . 000698 . 000367 . 000942
. 000070 . 000213 .000170 . 000457 . 000270 .000701 .000370 .000946
. 000071 . 000217 ,000171 . 000461 . 000271 . 000705 .000371 .000949
.000072 . 000221 000172 000465 .000272 . 000709 .000372 .000953
.000073 000225 .000173 .000469 . 000273 .000713 .000373 .000957
.000074 . 000228 .000174 000473 .000274 000717 .000374 ,000961
. 000075 . 000232 .000175 ,000476 .000275 .000720 . 000375 . 000965
. 000076 000236 .000176 .000480 .000276 ., 000724 .000376 000968
. 000077 . 000240 .000177 .000484 .000277 .000728 .000377 ,000972

OCTAL-DECIMAL FRACTION CONVERSION TABLE (continued)

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC,)
.000400 . 000976 . 000502 .001220 . 000600 .001464 . 000700 .001708
.000401 - .000980 .000501 .001224 . 000601 .001468 .000701 .001712
.000402 000984 . 000502 .001228 . 000602 .001472 .000702 .001716
. 000403 . 000988 .000503 .001232 . 000603 001476 .000703 .001720
. 000404 . 000991 .000504 .001235 " . 000604 .001480 .000704 .001724
. 000405 . 000995 . 000505 .001239 . 000605 . 001483 . 000705 .001728
. 000406 . 000999 . 000506 .001243 . 000606 . 001487 .000706 .001731
.000407 .001003 . 000507 .001247 . 000607 .001491 .000707 .001735
.000410 . 001007 .000510 .001251 .000610 .001495 .000710 .001739
.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743
.000412 .001014 .000512 .001258 .000612 .001502 .000712 .001747
.000413 .001018 .000513 .001262 .000613 . 001506 .000713 .001750
.000414 .001022 .000514 .001266 .000614 .001510 .000714 .001754
.000415 .001026 .000515 .001270 . 000615 .001514 .000715 .001758
.000416 .001029 .000516 .001274 .000616 .001518 .000716 .001762
.000417 .001033 .000517 .001277 .000617 . 001522 .000717 .001766
. 000420 .001037 .000520 .001281 . 000620 .001525 .000720 .001770
.000421 .001041 . 000521 .001285 .000621 .001529 .000721 .001773
.000422 .001045 . 000522 .001289 . 000622 .001533 .000722 .001777
.000423 .001049 . 000523 .001293 . 000623 .001537 .000723 .001781
. 000424 .001052 . 000524 .001296 . 000624 .001541 . 000724 .001785
.000425 .001056 . 000525 .001300 .000625 .001544 .000725 .001789
.000426 . 001060 . 000526 .001304 .000626 . 001548 .000726 .001792
.000427 .001064 .000527 .001308 .000627 .001552 . 000727 .001796
.000420 001068 .000530 .001312 .000630 . 001556 . 000730 .001800
.000431 .001071 .000531 .001316 . 000631 . 001560 .000731 .001804
. 000432 .001075 .000532 .001319 .000632 .001564 . 000732 . 001808
. 000433 .001079 .000533 .001323 .000633 .001567 .000733 .001811
. 000434 .001083 .000534 .001327 . 000634 . 001571 .000734 .001815
.000435 001087 . 000535 .001331 . 000635 .001575 .000735 .001819
.000436 ,001091 . 000536 . 001335 .000636 .001579 .000736 .001823
.000437 .001094 . 000537 .001338 .000637 .001583 .000737 .001827
. 000440 .001098 . 000540 .001342 . 000640 . 001586 . 000740 .001831
. 000441 .001102 ., 000541 .001346 .000641 .001590 .000741 .001834
.000442 .001106 . 000542 .001350 . 000642 . 001594 .000742 .001838
. 000443 .001110 . 000543 .001354 . 000643 .001598 .000743 .001842
. 000444 .001113 .000544 .001358 .000644 .001602 . 000744 .001846
.000446 ,001117 . 000545 .001361 . 000645 . 001605 .000745 .001850
. 000446 .001121 . 000546 .001365 . 000646 .001609 .000746 .001853
. 000447 .001125 . 000547 .001369 . 000647 .001613 . 000747 .001857
. 000450 .001129 . 000550 .001373 . 000650 .001617 .000750 .001861
.000451 .001132 .000551 .001377 .000651 .001621 .000751 .001865
.000452 ,001136 . 000552 . 001380 . 000652 .001625 .000752 .001869
.000453 ,001140 .000553 .001384 . 000653 .001628 .000753 .001873
.00045¢ . 001144 . 000554 .001388 . 000654 .001632 .000754 .001876
.000455 .001148 . 000555 .001392 . 000655 .001638 . 000755 .001880
.000456 .001152 000556 .00139% . 000656 .001640 .000756 .001884
.000457 ,00115% . 000557 .001399 . 000657 .001644 .000757 .001888
.000460 .001159 . 000560 .001403 . 000660 .001647 .000760 .001892
.000461 .001163 . 000561 .001407 . 000661 .001651 .000761 .001895
.000462 . 001167 .000562 .001411 . 000662 .001655 .000762 .001899
.000463 .001171 . 000563 . 001415 . 000663 . 001659 .000763 .001903
.000464 .001174 . 000564 . 001419 000664 .001663 .000764 . 001907
.000465 .001178 .000565 .001422 . 000665 .001667 .0007685 .001911
.000466 .001182 .000566 .001426 -000666 .001670 . 000766 .001914
.000467 .001186 . 000567 . 001430 . 000667 .001674 .000767 .001918
.000470 .0011%0 .000570 .001434 . 500670 .001678 .000770 .001922
.000471 .001154 . 000571 .001438 . 000671 .001682 .000771 .001926
.000472 001197 .000572 .001441 .000672 .001686 .000772 001930
.000473 .001201 .000573 . 001445 .000673 .001689 .000773 .001934
.200474 .801208 .000574 . 001449 . 000674 . 001693 . 000774 . 001937
.000475 .001209 . 000575 .001453 .000675 .001697 . 000775 . 001941
.000476 ,001213 . 000576 .001457 . 000676 .001701 .000776 .001945
.000477 ,001216 .000577 .001461 .000677 .001705 000777 001949

GLOSSARY

AFT (ATTACH FLAG TABLE)

A table corresponding to the Logical Unit Table (LUT) with 2 word
entries for each LUT slot. Whenever a Logical Unit Number (LUN)
is attached to a Task, the Task name is set in the corresponding
AFT slot. Whenever a LUN and Device-unit are both attached to a
Task, the Device attach flag in the Physical Device List points
to the appropriate AFT slot.

ATL (ACTIVE TASK LIST)

A priority ordered list of Active Tasks used to drive the system.
The ATL is a deque consisting of one node for each Active Task
in the system.

CAL INSTRUCTION

A PDP-15 Hardware Instruction used to reguest Executive routines.
All System Directives issue CAL instructions to the Executive
when making their requests.

CAL PARAMETER BLOCK

A block consisting of one or more words of contiguous core used
to store parameters when issuing System Directives. The System
Directive is implemented as a CAL Instruction with the address of
the CAL Parameter Block as its operand.

CLOCK QUEUE
The Clock Queue is a deque consisting of one node for each item
to be done at some time in the future. These items are: schedu-
ling of Tasks (SCHEDULE, RUN, and SYNC Directives), rescheduling
of Tasks (Clock interrupt service routine), and setting of Event
Variables after elapsed time periods (MARK Directive). The nodes
are linked in the order in which they come due.

COMMON BLOCK, INTERNAL

An area of contiguous core memory within a partition, available
only. to the Task in the partition during its residency.

COMMON BLOCK, SYSTEM

An area of caontigquous core memory, defined at System Configuration
time, where data can be stored and referenced by all Tasks. A
SYSTEM COMMON BLOCK is referenced by using a COMMON name matching
a SYSTEM COMMON BLOCK name and declaring that COMMON as SYSTEM
COMMON to the Task Builder.

CONSOLE TELETYPE

The control Teletype of the RSX System where MCR Function requssts.
may be issued by the operator.

CONTROL TABLE

A 3-word table used when requesting or relinquishing disk space
or when issuing disk GET and PUT Directives.

CORE RESIDENT TASK
A Task which has been fixed-in-core.
DEFAULT PRIQORITY

A priority given to a Task during Task Building or Task Installation
that is used when a priority is not specified and the Task's ex-
ecution 1is requested or scheduled.

DEQUE
A double ended queue consisting of a listhead and list elements
(nodes), circularly linked by both forward and backward pointers.
Deques, or link lists, are used, rather than tables, to store
system information.

DIRECTIVES

Instructions to the RSX Executive (implemented with the use of
CAL Instructions), to perform indicated operations.

DISK RESIDENT TASK

A Task which normally resides on the disk and is brought into a
core partition when requested.

EVENT VARIABLE
A word or variable used to determine the status of a Directive.
The Event Variable is set to indicate successful completion,
rejection, status, or a request still pending. An Event Variable
address of zero indicates that no Event Variable is specified.
EXECUTIVE

The heart of the real-time operating system. It coordinates all

activities in the system including Task scheduling, I/0O super-

vision, resource allocation, and interactive operator communication.
I/0 HANDLER TASK

A Task in the RSX System which contains an interrupt service routine.
I/0 Handler Tasks are requested whenever they are assigned to a
LUN.

LISTHEAD
A two-word core block with forward and backward pointers pointing
to the next and previous list node or to itself if empty. The
listhead is a reference point in a circularly linked list.

LINKED LIST

A deque consisting of nodes and listhead used to store system
information. An empty list consists of only a listhead.

LUN(LOGICAL UNIT NUMBER)

Logical Unit Numbers are used to represent Logical I/O Device Units

rather than Physical Units. Each Logical Unit Number is repre-
sented by an entry in the Logical Unit Table.

LUT (LOGICAL UNIT TABLE)

A block of contiguous core with a one-word entry, or slot, for

each Logical Unit Number. When a LUN is assigned to a Physical
Device Unit, the corresponding LUT slot contains the address of
the appropriate Physical Device List node.

MCR(MONITOR CONSOLE ROUTINE)

The MCR allows the user to communicate on-line with the system
from the console teleprinter. The MCR consists of the Resident
MCR Task, which accepts user's commands, and the MCR Functions,
which actually carry out the indicated requests.

NODES
The list elements of a deque. 2All nodes (of dynamic lists)
consist of the listhead followed by eight words of data (list

elements).
PARTITION

An area of contiguous core memory, defined at System Configuration
time, from which Tasks are executed.

PARTITION BLOCK

An abnormal node (34, words) generated by the System Configurator
to serve three functions. (1) It contains partition description
information to assure that a Task being installed into the system
has been built for an existing partition; (2) It provides core
for an Event Variable and disk (DSKGET) control table necessary
to load Tasks into partitions; and (3) it provides for saving

a Task's environment when it is interrupted by the Executive.

PBDL (PARTITION BLOCKS DESCRIPTION LIST)

Partition Blocks generated by the System Configurator are linked
together into a deque called the PRBDL.

PDVL (PHYSICAL DEVICE LIST)
A deque constructed by the System Configﬁratorfused to describe
the devices and units in the system. When a logical I/O unit
is assigned to a physical unit, the address of the node describing
the device and unit is set in a LUT entry corresponding to the LUN.
POOL (POOL OF EMPTY NODES)
Empty ten-word nodes for use in any deque. The Pool is generated
by the System Configurator from core area that has not been
specified for other use.
SCDL (SYSTEM COMMON BLOCK DEFINITIONS LIST)

A deque consisting of nodes which contain a record of the descrip-
tions of each System COMMON Block.

SIGNIFICANT EVENT

An event which results in the scanning of the Active Task List.
The following events are considered "Significant Events": (1)
I/0 gueuing; (2) normal I/0 request completion (dependent upon
I/0 Handler Task); (3) A Task request; (4) a scheduled SCHEDULE,
RUN, or SYNC : coming due; (5) a Mark time expiration; (6) a
Task resumption (RESUME Directive); and (7) a Task EXIT.
STL (SYSTEM TASK LIST)
A directory of all Tasks in the System.
SYSTEM CONFIGURATOR

A Task which allows the user to tailor the RSX System to best
fit his requirements.

TKB

The Task Builder progrém used to build executable Tasks from
relocatable binary files.

TRIGGER EVENT VARIABLE

An Event Variable referenced within a PDVL node. The Trigger
Event Variable is used to stimulate a dormant I/0 Handler Task.

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-I1I
Digital Software News for the PDP-9/15 Family

These newsletters contain information applicable to software available from
Digital's Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your installation,
please check with the Software Specialist or Sales Engineer at your nearest
Digital office.

Questions or problems concerning Digital's Software should be reported to
the” Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per-
formance Report forms, and software price lists should be directed to the
nearest Digital Field office or representative. U.S.A. customers may order
directly from the Prcoram Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS

Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

RSX-15
Reference Manual
DEC-15-GRQA-D

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
this manual.

Please comment on this manual's completeness, accuracy. organization, usability and read-
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. Date:
Name: Organization:
Street: Department:

City: State: Zip or Country

——————————————— — Fold Here - - - - - - - - - - - — — — — — — — —

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by.

dlilgliltiall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

e
Maynard, Massachusetts digiltall

printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	replyA
	replyB
	replyC
	xBack

