
Digital Equipment Corporation
Maynard, Massachusetts

PDP-15 Systems

User's Handbook
Vol.1 Processor

PDP-15 SYSTEMS
USER'S HANDBOOK
VOLUME 1 PROCESSOR

DEC-lS-H2DC-B

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

1st Edition, September 1970
2nd Printing {Rev} November 1970
3rd Printing {Rev} April 1971
4th Printing, June 1973

Copyright © 1970, 1971, 1973 by Digital Equipment Corporation

The material in this manual is for informa­
tion purposes and is subject to change with­
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

HARDWARE

* Separate maintenance manuals are
available for peripheral equipment.

PDP-15 FAMILY OF MANUALS

SOFTWARE

iii

SYSTEMS REFERENCE MANUAL - Provides overview
of PDP-IS hardware and software systems and options,
instruction repertoire, expansion features, and descriptions
of system peripherals. (DEC-IS-BRZC-D)

USER'S HANDBOOK VOLUME 1, PROCESSOR - Princi­
pal guide to system hardware includes system and sub­
system features, functional descriptions, machine-language
programming considerations, instruction repertoire, and
system expansion data. (DEC-IS-H2DC-D)

VOLUME 2, PERIPHERALS -Features functional de­
scriptions and programming considerations of peripheral
devices. (DEC-IS-H2DC-D)

OPERATOR'S GUIDE - Lists procedural data, including
operator maintenance, for using the operator's console and
the peripheral devices associated with PDP-IS Systems.
(DEC-IS-H2CB-D)

PDP-IS/IO SYSTEM USER'S GUIDE - Features
COMPACT and Basic I/O Monitor operating procedures.
(DEC-IS-GG lA-D)

PDP-IS/20 SYSTEM USER'S GUIDE - Lists Advanced
Monitor System operating procedures. (DEC-IS-MG2B-D)

BACKGROUND/FOREGROUND MONITOR SYSTEM
USER'S GUIDE - Lists operating procedures for the DEC­
tape and disk-oriented Background/Foreground monitors.
(DEC-IS-MG3A-D)

PDP-IS/IO SOFTWARE SYSTEM - Describes COM­
PACT software system and Basic I/O Monitor System.
(DEC-IS-GRIA-D)

PDP-IS/20/30/40 ADVANCED MONITOR SOFTWARE
SYSTEM - Describes Advanced Monitor System; programs
include system monitor language, utility, and application
types; operation, core organization, and input/output op­
erations within the monitor environment are discussed.
(DEC-IS-MR2B-D)

iv

PDP-IS/30/40 BACKGROUND/FOREGROUND MONI­
TOR SOFTWARE SYSTEM - Describes Background/Fore­
ground Software System including the associated language,
utility, and applications program. (DEC-IS-MR3A-D)

RSX USER'S MANUAL - Describes the disk-oriented
real time system executive language and applications.

MAINTENANCE MANUAL VOLUME 1, PROCESSOR­
Provides block diagram and functional theory of operation
of the processor logic; lists preventive and corrective main­
tenance data. (DEC-IS-H2BB-D)

VOLUME 2, ENGINEERING DRAWINGS -Provides engi­
neering drawings and signal glossary for the basic processor
and options. (DEC-lS-H2BB-D)

INSTALLATION MANUAL - Provides power specifi­
cations, environmental considerations, cabling, and other
information pertinent to installing PDP-IS Systems.
(DEC-IS-H2AB-D)

ACCEPTANCE TEST PROCEDURES - Lists step-by-step
procedures designed to insure optimum PDP-IS Systems
operation.

PDP-IS MODULE MANUAL - Provides characteristics,
specifications, timing and functional descriptions of mod­
ules used in PDP-IS Systems. (DEC-lS-H2EA-D)

INTERFACE MANUAL - Provides information for inter­
facing devices to a PDP-IS System. (DEC-IS-HOAB-D)

UTILITY PROGRAMS MANUAL - Provides util­
ity programs common to PDP-IS Monitor systems.
(DEC-IS-YWZA-D)

MACRO-IS - Provides MACRO assembly language for the
PDP-IS. (DEC-IS-AMZA-D)

FORTRAN IV - Describes PDP-IS version of the
FORTRAN IV compiler language. (DEC-IS-KFZB-D)

FOCAL-IS - D~scribes an algebraic interactive compiler
level language developed by Digital Equipment Corpora­
tion. (DEC-IS-KJZB-D)

CONTENTS

CHAPTER 1 SYSTEM DESCRIPTION

1.1 System Software

1. 1. 1 Introducti on

1 • 1 .2 PDP-15/20 Advanced Monitor System

1 .1.3 PDP-15/30 Background/Foreground Monitor

1 . 1 .4 PDP-15/40 Disk-Oriented Background/Foreground System

1 .1.5 PDP-15/10 COMPACT Software System

1 . 1 .6 PDP-15/10E Basic I/O Monitor

1 • 1 .7 PDP-15/20 Advanced Monitor System

1. 1.8 PDP-15/30 Background/Foreground Monitor System

1 • 1 .9 PDP-15/35 Real-Time System Executive

1.1.10 PDP-15/40 Disk-Oriented Background/Foreground Monitor
System

1.1.11 Additional Systems Software

1.2 PDP-15 System Configurations

1 .2. 1 PDP-15/10 Basi c System

1.2.2 PDP-15/20 Advanced Monitor System

1.2.3 PDP-15/30 Background/Foreground System

1.2.4 PDP-15/35 Real-Time System Executive Disk-Oriented
System

1 .2.5 PDP-15/40 Disk-Oriented Background/Foreground System

1.3 System Organization

1 .3. 1 Central Processor (CPU)

1.3.2 Memory

1.3.3 I/O Processor (IPU)

1.3.4 Console

1.3.5 System Peripherals

CHAPTER 2 PROCESSOR ORGANIZATION

2. 1

2. 1 . 1

2.1.2

2.2

2.3

2.3. 1

Central Processor Description

Internal Registers

Control Console

Central Processor Expansion Options

I/O Processor Organizati on

Data Transfer Facilities

v

Page

1-1

1-1

1-2

1-3

1-4

1-4

1-5

1-5

1-9

1-10

1-10

1-10

1-11

1-11

1-12

1-13

1-13

1-13

1-13

1-14

1-14

1-15

1-15

1-15

2-1

2-1

2-4

2-4

2-6

2-9

2.3.2

2.3.3

2.4

2.4.1

2.4.2

2.4.3

2.4.4

2.4.5

2.4.6

CONTENTS (Cont)

I/O Processor Activities

I/O Processor Organizati on

Core Memory

Memory Data Transfer

Parity

Memory Modularity

Memory Addressi ng

Memory Port Switch

MX15-A Memory Bus Multiplexer

CHAPTER 3 INSTRUCTION FORMATS

3. 1 General

3.2 Memory Reference Instructi on Format

3.3 Augmented Instructi on Format

3.4 Timing

3.5 Memory Reference Instructi ons

3.6 Augmented Instructi ons

3.6. 1 Operate Instructi ons

3.7 Input/Output Transfer Instructi ons

3.7.1 PDP-15 lOTs

3.7.2 Teletype Keyboard

3.7.3 Teletype Teleprinter

3.8 Index Instructi ons

CHAPTER 4 ADDRESSING FEATURES

4. 1

4.2

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

Introduction to Memory Addressing

Types of Add ress i ng

Description of the Types of Addressing

Di rect Addressi ng - Bank or Page Mode

Indirect Addressing - Bank or Page Mode

Auto-Increment Addressing - Bank or Page Mode

Indexed Addressing - Page Mode Only

Indirect Indexed Addressing - Page Mode Only

Auto-Increment Indexed Addressing - Page Mode Only

vi

Page

2-11

2-12

2-14

2-15

2-15

2-16

2-16

2-16

2-17

3-1

3-1

3-2

3-2

3-3

3-12

3-12

3-28

3-30

3-32

3-32

3-33

4-1

4-1

4-3

4-4

4-4

4-5

4-6

4-8

4-9

CO NTE NTS (Cont)

Page

4.4 Special Addressing Cases 4-10

4.5 Processor Addressing 4-11

CHAPTER 5 I/O PROCESSOR SYSTEM

5.1 Genera I Descri pti on 5-1

5.2 I/O Processor Priority Structure 5-3

5.3 The Data Channel Controller 5-3

5.4 Multicycle Channel Block Transfer 5-3

5.5 Single-Cycle Block Transfers 5-8

5.6 Increment Memory 5-9

5.7 Add -To-Memory 5-9

5.8 Program-Controlled Transfer 5-9

5.9 Program Interrupt Faci I ity 5-11

CHAPTER 6 OPTIONS

6.1 KE15 Extended Arithmetic Element 6-1

6.1.1 EAE M i croi nstructi ons 6-2

6.1.2 EAE Shifti ng Instructi ons 6-13

6.1.3 EAE Arithmeti c Instructi ons 6-20

6.2 KM 15 Memory Protect 6-33

6.3 K T15 Memory Protect and Relocate 6-37

6.4 MP15 Memory Parity 6-41

6.5 KF15 Power Fail Option 6-42

6.6 KW15 Real-Time Clock Option 6-42

6.7 KA 15 Automatic Priority Interrupt 6-46

6.7.1 API Hardware 6-47

6.7.2 API Instructi ons 6-48

6.7.3 Programming Considerations 6-49

6.7.4 Programming Examples 6-53

6.8 FP15 Floating-Point Processor 6-55

APPENDIX A INSTRUCTION SUMMARY A-l

vii

ILLUSTRA TIO NS

Figure No. Title Art No. Page

1-1 PDP-15 System Organization 15-0174 1-14

1-2 System Organization 15-0017 1-16

2-1 Central Processor I Simplified Block Diagram 15-0002 2-2

2-2 PDP-15 System with Memory Protect Option 15-0175 2-6

2-3 Memory Protect Block Diagram 15-0179 2-7

2-4 Memory Protect and Relocate Block Diagram 15-0178 2-8

2-5 Data Transfer Facilities 15-0180 2-9

2-6 I/O Processor Block Diagram 15-0181 2-13

2-7 Memory Organization 15-0182 2-14

2-8 Physical Memory Organization 15-0183 2-16

2-9 Memory Addressing 15-0184 2-17

3-1 Memory Reference Instructi on Word 15-0188 3-1

3-2 Augmented Instructi on Format 15-0204 3-2

3-3 Instruction Bit Configuration 3-13

3-4 Allowable Microinstruction Combinations 3-14

3-5 lOT Instructi on Format 15-0203 3-28

3-6 lOT Instruction Timing 15-0176 3-29

5-1 Multicycle Out Block Transfer I Flowchart 15-0004 5-5

5-2 Multicycle In Block Transfer I Flowchart 15-0004 5-6

5-3 Multicycle Transfer Implementation 15-0005 5-7

5-4 Single-Cycle Block Transfer Flowchart 15-0006 5-8

5-5 lOT Instruction Timing 15-0176 5-11

6-1 EAE Setup Mi croi nstructi ons 15-0189 6-2

6-2 EAE Shift Microinstructions 15-0190 6-2

6-3 EAE Normalize Microinstructions 15-0191 6-3

6-4 EAE Multiplication Microinstructions 15-0192 6-3

6-5 EAE Division Microinstructions 15-0193 6-3

6-6 EAE Simplified Block Diagram 15-0177 6-4

6-7 Power Fai I Up/Down Sequence 15-0185 6-43

6-8 Power Fai I Up/Down Sequence 15-0186 6-44

6-9 Power Fai I Up/Down Sequence 15-0187 6-45

6-10 API System Simplified Block Diagram 15-0054 6-47

viii

TABLES

Table No. Title Page

2-1 PDP-15 I/O Capabi lities 2-10

3-1 PDP-15 Central Processor Cycle Times for Basic and 3-3
Expanded Configurati ons

4-1 Types of Addressing 4-1

5-1 I/O Capabilities 5-1

5-2 Total Execution Times for lOPs 5-10

6-1 EAE Microinstructions 6-5

6-2 EAE Microinstructions 6-6

6-3 KM15 Instruction Set 6-36

6-4 KT 15 Instructi on Set 6-39

6-5 MP15 Instruction Set 6-41

6-6 lOT Instructions for Real-Time Clock 6-43

6-7 API lOT Instructi ons 6-49

6-8 SPI Control Word Format 6-50

6-9 ISA Control Word Format 6-51

6-10 Mai ntenance Instructi on Status Word 6-52

A-1 Memory Reference Instructi ons A-1

A-2 Operate Instructi ons A-2

A-3 Index Register Transfer Instructi ons A-4

A-4 Register Control Instructi ons A-4

A-5 EAE Instructions A-5

A-6 Standard API Channel/Priority Assignments A-6

A-7 PDP-15 lOT Device Selection Codes A-7

A-8 Input/Output Transfer Instructions A-8

ix

PREFACE

The PDP-15 Users Handbook is the principal guide to the PDP-15 hardware.

This manual is presented in two volumes: Volume 1 PROCESSOR and Vol­

ume 2 PERIPHERALS. The PDP-15 Users Handbook includes system features

and specifications, functional descriptions, machine language programming

considerations, and a detailed description of the instruction repertoire. The

chari' and table on pages iii and iv show the relationships of the other

PDP-15 system documentation and give abstracts of their contents.

xi

Chapter 1
System Description

1.1 SYSTEM SOFTvVARE

1 • 1 • 1 Introduction

The PDP-15 System is divided into a number of configurations; each configuration having a powerful

software package available. These software packages are designed to service the needs of a particular

system configuration.

The PDP-15/10 configuration software is governed by the COMPACT Software System, a complete

package including Assembler, Editor, Octal Debugging Technique, and mathematical and utility

routines, all designed to function in 4K or 8K systems.

COMPACT Software System

Assembler

Editor

ODT (Octal Debugging Technique)

Math Package

Utility routines:

Hardware Read-in Mode (HRM) punch routine

Paper tape handling routines

Teletype I/O routines

Octal dump routine

Memory scan routine

For PDP-15/10 Systems equipped with DECtape, the FAST (Fast Acquistion of System Tape) System is

provided to retrieve frequently-used programs from DECtape.

Installations with a minimum of 8K words of core memory and a high-speed paper tape reader/punch

can use the Basic I/O Monitor to extend system capabilities. The PDP-15/20 Advanced Monitor

1-1

System operates from mass storage devices (DECtape or DECdisk) and is device independent;

consequently programs need not be limited to the use of certain specified I/O devices.

Simple I/O statements control data handling; selection of physical devices is determined at load time

on the actual machine, not when the program is written. Real-time I/O level subroutines can easily

be integrated into the system as new devices are added.

1 .1.2 PDP-15/20 Advanced Monitor System

The PDP-15/20 Advanced Monitor is used for batch processing. In the primary (keyboard) mode, the

user has interactive access to a large set of system programs to facilitate program development and

testing.

All Advanced Monitor functions, as well as the many avai lable system software routines, are specially

designed to make the system as accessible as possible to users who want II hands-on II interaction; at

the same time, routine elements of programming can be handled simply and easily.

PDP-15/20 Advanced Monitor System

Keyboard Monitor

Teletype handler

Command decoder

Input/Output Programming System (lOPS) data handling, device handling,
and interrupt routi nes

Real-time clock handler

Error detector program

Device assignment tables

Batch processor (paper tape or card control)

FORTRAN IV

SYS TEM LOADER

FOCAL

MACRO-15 Macro Assembler

DDT-15 Dynamic Debugging Technique

Text Editor

PIP-15 Peripheral Interchange Program

Linking Loader

Chain and Execute

Patch

1-2

SGEN System Generator

Octal Dump (DUMP)

Library Update (UPDATE)

DECtape Copy (DTCOP)

1.1.3 PDP-15/30 Background/Foreground Monitor

Under control of the PDP-15/30 Background/Foreground Monitor, real-time tasks are executed in the

computer foreground and have immediate ca lion the system's resources. Unused background time,

avai lable between service calls for the real-time tasks, is useful in program development, testing, or

other lower-priority computation.

PDP-15/30 software encompasses all Advanced Monitor functions and capabilities (see list above).

In addition, the PDP-15/30 Background/Foreground Monitor contains all the supervisory controls

necessary for concurrent processing of background and foreground tasks.

PDP-15 System users can draw on the resources of the program library and the applications knowledge

of DECUS, the Digital Equipment Computer Users Society, in addition to the Advanced Monitor pro­

grams and routines. DECUS members share in the exchange of programs and technical papers at regu­

larly scheduled meetings throughout the year; the proceedings of all DECUS society meetings are pub­

I ished under DEC sponsorship.

PDP-15/30 Background/Foreground Monitor System

Background/Foreground Monitor controls the use of the PDP-15 by two co-resident programs.

System loader

Command decoder

lOPS data~handl ing, device-handl ing, and interrupt routines

Real-time clock handler

Error dete~tor program

Device assignment tables

In addition to the above programs, the programs of the PDP-15/20 Advanced Monitor System are in­

cluded in the 15/30 System.

1-3

1 .1.4 PDP-1S/40 Disk-Oriented Background/Foreground System

PDP-1S/40 Disk-oriented Background/Foreground Systems are responsive to the high demands of industrial

and engineering environments, where the need for a background/foreground mode of operation is com­

pounded by the necessity of large random-access files. PDP-1S/40 Systems with 24,S76 words of core

memory, high-speed paper tape facilities, and DECtape storage, also incorporate a DECdisk control

and two random-access disk files. The disks, whose storage capacity is S24,288 18-bit words, can be

expanded to 2,097, lS2 wo~ds, permit high-speed overlays, chaining, and system and user loading.

The disk-oriented background/foreground monitor system handles all the functions of the PDP-1S/30

Background/Foreground Monitor in a high-speed disk environment.

PDP-1S/40 Disk-Oriented Background/Foreground Monitor System

Disk-oriented Background/Foreground Monitor

Systems loader

Command decoder

lOPS data-handl ing, devi ce-handling, and interrupt routines

Real-time clock handler

Error detector program

Device assignment tables

The programs in the PDP-1S/20 Advanced Monitor are included in this section.

1.1.S PDP-1S/10 COMPACT Software System

The PDP-1S/10 COMPACT Software System is a concise programming system that includes a symbolic

assembler, a text editor for creating programs on-I ine, debugg ing routines, util ity routines, and

mathematical routines. The COMPACT Software System is designed to operate in the 4K or 8K paper­

tape input/output environment of the basic PDP-1S/10. PDP-1S/10 Systems with more than 8K of

core are not supported by the COMPACT Software System. Installations with a minimum of 8K of core

and a high-speed paper tape reader/punch can use the Basic I/o Monitor Software to extend system

capabi I ities.

Utility routines in the COMPACT Software System include a Hardware Read-in Mode (HRM), punch

routines, paper tape hand I ing routines, Teletype I/o routines, an octal dump routine, and a memory

scan routine used for scanning areas of memory for a parti cular bit configuration. For systems with

DECtape, the FAST system can retrieve frequently used programs from DECtape.

1-4

COMPACT Assembler - The two-pass COMPACT Assembler has a useful set of selected pseudo-ops

for functions; such as table formations, symbol table and variable control, and text handling.

COMPACT Debugging Routines - Debugging routines are included in the COMPACT Software System.

ODT (Octal Debugging Technique) is an aid to the user conducting interactive, on-I ine debugging

sessions using octal numbers and Teletype commands.

COMPACT Editor - The COMPACT Editor takes advantage of the powerful character string, search,

and modification commands developed for the larger systems. It provides for the creation and/or

identifi cation of source programs, other than ASCII text material, using keyboard commands. The

Compact Editor also offers an efficient method for on-line processing of paper tapes.

1.1.6 PDP-15/10E Basic I/O Monitor

The Basic I/O Monitor, for 8K configurations, provides a link between the call for I/O, by either

user or system programs, and the actual I/O execution. All I/O calls to system devices are serviced

by DEC-suppl ied device handlers which reside in the Input/Output Programming System (lOPS). The

device handlers actually move data between the program and the I/O devices. Device handlers

initialize the devi ces and perform all other functions pecul iar to a given I/O device, such as servic ing

interrupts in a real-time environment. User-suppl ied de vi ce handlers can be incorporated into the

system to perform the functions described above for special I/O devices.

1 .1.7 PDP-15/20 Advanced Monitor System

The PDP-15/20 Advanced Monitor combines the functions of the Basic Monitor with the executive

control of bulk storage devices (to provide automatic operation), which includes batch processing,

keyboard interaction f and real-time queuing. The Advanced Monitor has a large set of commands

that direct the operation of the system. These commands perform three major functions:

a. Provide information about the system such as commands avai lab Ie and their functions;
error diagnostics; the standard logical-physical I/O device associations; I/O level
programs available (device handlers); special memory registers and their functions.

b. Permit the standard physical-logical device associations to be modified, thereby
enabling the dynamic allocation of devices at load-time. This is a natural extension
of device independence provided by the Basic I/O Monitor.

c. Supervise the loading and execution of all system and user programs, their associated
I/O device handlers, and library subroutines, in addition to generating error messages
and recovery procedures.

1-5

C.oupled with keyboard control of system programs, the Advanced Monitor enables the user to deal

with his entire problem (editing, assembl ing, compi ling, loading, debugging and running) in a

straightforward manner. The Advanced Monitor consists of command decoder, lOPS routines, real­

time c lock hand ler, error detector routine, and device assignment table (DA T).

The system loader always resides in upper memory and is responsible for loading the Monitor into lower

memory. Return calls from system or user programs cause restoration of control to the Monitor.

The Monitor command decoder detects requests for system programs and loads the system loader, which

brings in the requested program. In response to control cards or keyboard commands, it also manipu­

lates the device assignment table to provide device independence. The Monitor Input/Output Pro­

gramming System (lOPS) routines include data handling subroutines, device handlers, and interrupt

service routines for the priority interrupt system, as well as the Teletype keyboard and printer. All

other lOPS device handlers are stored on the system device until required by object programs.

The Monitor contains a device assignment for each table entry; because the contents of the table can

be altered by commands to the Advanced Monitor, actual I/O devices can be changed without alter­

ing the program references to these devices. The following system software is suppl ied with all

PDP-15/20 Advanced Monitor System.

FORTRAN IV - The PDP-15 FORTRAN IV compiler is a two-pass system which accepts statements

written in the FORTRAN language and produces a relocatable object code capable of being loaded

by the Linking Loader program. The PDP-15 FORTRAN IV compiler is compatible with USA FORTRAN

IV, as defined in the USA Standard X3.9-1966, modified to allow the compiler to operate in 8,192

words of core storage. The FORTRAN IV compi ler generates programs whi ch operate with the program

interrupt enabled and works with assembly language programs that recognize and service real-time

devices. Subroutines written in either FORTRAN IV or the MACRO Assembler language can be loaded

with and called by FORTRAN IV main programs. Source language diagnostics are produced during

compi lation, and a symbol table is generated for use in on-I ine debugging.

FOCAL - An on-line, interactive (conversational) algebraic language designed to aid scientists,

engineers, and students in solving numerical problems. The language consists of short, easy-to-Iearn

English imperative statements. Mathematical expressions are usually typed in standard notation.

FOCAL puts the full calculating power and speed of the PDP-15 under easy conversational control.

For example, FOCAL can be used to simulate mathematical models, to plot curves, to handle sets of

simultaneous equations in n-dimensional arrays, and to solve many other kinds of problems. FOCAL

runs in the Advanced Software Environment.

1-6

MACRO-15 Assembler - MACRO-15 Assembler enables the programmer to use mnemoni c symbols to

represent operation codes, locations, and numeri c data. The programmer can direct the MACRO

Assemblerls processing through use of a full set of pseudo-operations. An output listing can be ob­

tained to illustrate the programmer IS source coding, as well as the binary object code produced by

the MACRO Assembler. An optional third pass by the MACRO Assembler provides a cross reference

listing. PDP-15 users can also make use of highly sophisticated macro generating and call ing fac iI ities

within the context of a symbolic assembler. Some features of MACRO-15 are as follows:

a. The abi I ity to define and call nested macros

b. Conditional assembly based on the computational results of symbols or expressions

c. Repeat functions

d. Boolean manipulation

e. Optional symbolic listing cross reference

f. Two forms of radix control (octal and decimal) and two text modes (7-bit ASCII
and 6-bit trimmed ASCII)

g. Global symbols for easy linking of separately assembled programs

h. Choice of output format: relocatable, absolute binary (checksummed), or full binary
(unchecksummed), capable of being loaded via the hardware READ-IN switch.

i. The abi I ity to call I/o system macros that expand into lOPS call ing sequences.

Dynami c Debugging Technique DDT -15 - A versati Ie tool for dynami c program checkout and modifi­

cation. An operator can load a program and run all or selected portions of it in a real-time interrupt

environment under ini'eractive supervision of DDT -15. The Teletype keyboard controls DDT and pro­

gram examination and modification. The operator can insert a breakpoint, specify the number of

programiteration5 before interrupting the program, and start the program at any point using a simple

set of commands. The operator can examine or alter any location symbolically and then rerun the

program using other commands.

Text Editor - Using the PDP-15 Advanced Software System, an operator can create or edit symbolic

text utilizing any input or output device. A IIcontext ll method is employed throughout to identify the

block of data which the user wishes to modify; that is, the block is specified by its ASCII text rather

than by a numbering scheme imposed externally upon the text. The Text Editor operates on these lines

of ASCII text. Commands are available which facilitate insertion, deletion, and modification of data

in the object file.

1-7

PIP-15 Periphera I Interchange Program - PIP-15 faci I itates the manipulation and transfer

of data files from any input device to any output device. It can be used to update file descriptions,

verify, delete, segment, or combine files, perform code conversions, and copy tape.

Linking Loader - The Linking Loader loads any PDP-15 FORTRAN IV or MACRO-15 object

program , in either relocatable or absolute format. Its tasks are loading and relocation of programs,

loading of called subroutines, retrieval and loading and relocation of the necessary symbol tables.

CHAIN and EXECUTE - The programs CHAIN and EXECUTE facilitate a user-generated system

of core overlays in the PDP-15 Advanced Monitor environment. This system of overlays consists of a

resident main program, other indicated resident routines, a resident blank COMMON storage area,

and a set of subroutines whi ch overlay each other, as directed by the user. These subroutines are

grouped into units caUed LINKS. Many, or all, LINKS can overlay each other, and several LINKS

can overlay a larger LINK without overlaying each other. Cascading of suboverlays is not limited.

A LINK is loaded into core when a subroutine within the LINK is called and remains resident until

overlayed. A LINK's core image is not recorded or "swapped out" when it is overlayed. The same

image is brought into core each time a LINK is loaded.

Subroutines are called and return control to the calling routine in the normal fashion. There is no

imposed order in which routines must be called, nor is there restriction of the routines callable by

any routine.

The program CHAIN is used to build an XCT file, and the program EXECUTE supervises core residency

during the execution of a CHAIN-bui It Overlay System.

PATCH - The user can conveniently examine and modify system program parameters and

system programs stored on mass storage devices (DECtape or DECdisk) using the uti Iity program PATC H.

UPDATE - The contents of binary library files on mass storage devices can be listed and

updated, by insertion, deletion, or replacement operations using the library update uti I ity program

UPDATE. A binary library file is defined as any set of relocatable programs stored together as one

unit in a single file. The PDP-15/20 Advanced Monitor System library file (.LIBR BIN) is a typical

example.

1-8

DUMP - The user has the capability to output, on any listing device, specified core locations

stored on the SAVE or QAREA of a mass storage device using the DUMP utility program. The listing

output of any block of mass storage (DECtape or DECdisk) is obtained through the DUMP program.

SRCCOM - The source compare (SRCCOM) uti I ity program compares any two symbol i c pro­

grams and I ists the differences between them. SRCCOM is useful in proofing an edited program and in

keeping track of symbolic changes.

SGEN - The system generator (SGEN) utility program is used to build resident mass storage

systems tailored to the customer IS installation. Operating in conversational mode, SGEN uses the

query/response technique to build the operating system to the customer's needs.

1.1.8 PDP-15/30 Background/Foreground Monitor System

The PDP-15/30 Background/Foreground Monitor system is an extension of the Advanced Monitor system

which enables the concurrent, time-shared use of the PDP-15/30 through protected, foreground user

programs with a background of batch processing, through program development, or through low-priority

user programs. The system handl es a vari ety of tasks, frorn high-speed data gathering appl ications such

als those in physics to thousand-channel input/output applications such as warehouse inventory control.

With the Background/Foreground Monitor the user can:

a. Effectively have two computers: one for on-line data acquisition and control, one
for off-line program development, and data reduction at the price of one system;

b. Achieve 100% use of his system, independent of data rates.

The foreground programs are assumed to be checked out and to operate from requests to the program in­

terrupt or priority interrupt facilities. At LOAD TIME, foreground programs have first priority over

core memory and I/O devices, and at EXECUTION TIME they have priority (according to their as­

signed priority levels) over processing time and shared I/O devices.

The background program (or sequential series of programs) is essentially the same as the single-user

program under the Advanced Monitor system; that is, it can be an assembly, a compilation, a debugging

run, a production run, an editing task, or batch processing. The background program can use whatever

facilities (core, I/O, processing time, etc.) are available and not required by the foreground programs.

The Background/Foreground Monitor can be used to direct the time-shared use of the PDP-15/30 by

the two coresidential programs and to perform the following functions:

a. Schedules processing time

b. Protects the foreground job's core

1-9

c. Protects the foreground job1s I/O devices

d. Allows the sharing of multi-unit device handlers, such as DECtape, by both
foregr~und and background jobs

e. Directs the shared use of the system real-time clock to time specified intervals

f. Directs communication between background and foreground jobs via core-to-core
transfers.

1 .1 .9 PDP-15/35 Real- Time System Executive

The PDP-15/35 Real-Time System Executive (RSX) is a disk-based system designed for multi task , mul ti­

programming environments, where real-time interrupts, time interval task activation, and a priority

job queue must all be coordinated under a priority structure.

1.1.10 PDP-15/40 Disk-Oriented Background/Foreground Monitor System

The PDP-15/40 system uses a disk-oriented version of the Background/Foreground Monitor; it contains

all of the features described above in the PDP-15/30 Background/Foreground Monitor section. The

disk system enables high-speed overlays, chaining, and system and user program loading to occur. The

number of records that can be opened on the disk is limited only by available word space. The

PDP-15/40 system contains 524,288 words of disk storage, expandable to 2,097,152 words.

1 .1 • 11 Additional Systems Software

8TRAN - The 8TRAN translator is used to translate programs written for PDP-8 in PAL III,

PAL-D, or MACRO-8 assembly language to MACRO-15 assembly language. The purpose of the trans­

lator is not to produce a program which runs on the PDP-15 by simulating the PDP-8, but rather to do

the straight-forward portion of the translation and clearly indicate to the programmer those parts of

the code which require review in the I ight of the PDP-15 I s greater word length and more powerfu I in-

struction set.

STATPAC - STATPAC is a comprehensive and open-ended package of modular statistical

programs designed to operate under the PDP-15 Advanced Monitor. The user with I imited computer

knowledge can use STATPAC to obtain statistically meaningful results from data. STATPAC includes

modules for CONTROL, INPUT, DESCRIPTIVE STATISTICS, STEPWISE LINEAR REGRESSION, and

MUL TIPLE LINEAR REGRESSION functions.

1-10

1.2 PDP-15 SYSTEM CONFIGURATIONS

PDP-15 Systems offer comprehensive solutions to real-time data problems by combining new design

concepts with a wide variety of traditional DEC features. Through DEC's experience in the medium­

scale scientific computer field, the PDP-15 System simplifies the user's tasks in a demanding real-time

environment.

Because certain data-handl ing tasks require specific hardware and software configurations, DEC has

developed four standard PDP-15 Systems, ranging in power from the modestly priced basic PDP-15/10

to the PDP-15/40 Background/Foreground Disk Monitor System. At every level, the capabilities of

the hardware are under the control of a monitor designed specifically for them.

The softWare systems are designed around the hardware with the user environment in mind. The princi­

pal design objectives are to provide (a) a system that is convenient for the user to implement and that

affords the user access to the full power of the hardware, (b) a system that allows the user to easily

integrate his appl ications program and special peripheral device handlers, and (c) a system that can

expand naturally. PDP-15 Systems software enables the user to move from a very basic machine to a

sophisticated system without the cost and complication of reprogramming at each upward step.

The hardware systems were designed with complete autonomy between central processor, input/output

processor, and memory, so that processing and I/o operations can occur concurrently in overlapping

cycles; TTL integrated-circuit construction for high reliability; fast internal speeds, including an 800-ns

memory cycle time, to meet the demands of real-time data processing; core memory expansion to

131,072 words for future growth; and a sophisticated memory protect system for multi-user integrity.

Peripheral device handling and interfacing to other instruments are easily accompl ished, and system

growth potential is virtually unl imited with the modular structure of PDP-15 Systems.

1.2.1 PDP-15/10 Basic System

The PDP-15/10 is the first level PDP-15 System. The system's design provides I imited budget users ac­

cess to the power, speed, and 18-bit word I ength of PDP-15 hardware, in the expectation that the

system can later be expanded to take full advantage of the advanced software capabilities inherent in

the system's design.

Hardware includes 4,096 l8-bit words of core memory and a Model 33 ASR Teletype console teleprinter.

The system has the rapid PDP-15 800-ns memory cycle time which provides 1.6-jJS add capability.

Facilities for later expansion are prewired into the system; additional memory and peripherals can be

plugged in as required.

1-11

Software is governed by the COMPACT Programming System, a complete package including Assembler,

Editor, Octal Debugging Technique, and mathematical and utility routines. All are designed to func­

tion in a 4096 word system. The software offers complete upward compatibi lity at the source level and

field-proven rei iabi I ity. Programs written for execution under COMPACT can also run, with little

modification, within all PDP-15 System levels up through PDP-15/30 and PDP-15/40 Background/

Foreground Systems.

1.2.2 PDP-15/20 Advanced Monitor System

PDP-15/20 is an 8, 192-word mass storage-oriented system designed for research and engineering en­

vironments where real-time data acquisition and control tasks are combined with program development

and testing.

Program development, debugging 1 and modification are all handled under monitor control, virtually

ending intermediate operations. Unique real-time input/output routines can also be integrated into

the system monitor to accelerate set-up and recovery.

Users are spared the task of writing system software to handle input/outputs to all standard system

peripherals, since appropriate routines are suppl ied with the monitor. The net result is that even in­

experienced computer users can get their applications programs lion the air" in a minimum amount of

time.

PDP-15/20 hardware facilities include not only, 8, 192-words of core memory and high-speed paper­

tape facilities but also, a DECtape control unit and two tape transports for convenient mass-memory

storage. The extra-heavy duty 35 KSR Teletype unit is included in the PDP-15/20 configuration to

guarantee a high degree of rei iabi I ity under the strain of continued heavy use. Also incl uded is the

extended arithmeti c element described in Chapter 6. This unit fac il itates high-speed multipl ication,

division, shifting, normal ization, and register manipulation.

The 15/20 Advanced Monitor System permits two types of user interaction. These are (1) batch

processing for routine production jobs, and (2) keyboard interaction which enables the user to

operate the system with simple commands typed at the keyboard.

Other PDP-15/20 Advanced Monitor features that make use of processor options are: a real-time

clock control and a priority interrupt control.

1-12

1 .2.3 PDP-15/30 Background/Foreground System

The PDP-15/30 System is designed to meet the demands of research, engineering, and industrial

environments, where one or more real-time tasks typically require continuous responsiveness from the

computer, but do not use 100% of its capacity.

The PDP-15/30 Background/Foreground System requires a minimum of 16,384 words of core memory

and all the devices standard for the PDP-15/20. In addition, PDP-15/30 Systems are equipped with

a memory protect system, a real-time clock, automatic priority interrupt, two DECtape transports,

and a second on-I ine Tel etype for background use.

1 .2.4 PDP-15/35 Rea 1- Time System Executive Disk-Oriented System

The PDP-15/35 System contains 16,384 words of core memory, high-speed paper-tap~ facilities, two

DECtape transports, the automatic priority interrupt option, real-time clock, and a DECdisk file with

262,144 words of storage.

1 .2.5 PDP-15/40 Disk-Oriented Background/Foreground System

PDP-15/40 Disk-Oriented Background/Foreground System fulfills the demands of industrial and en­

gineering environments where the need for a Background/Foreground mode of operation is compounded

by the necess ity for I arge random-access fi I es •

The PDP-15/40 System with 24, 576 words of core memory I high-speed paper-tape facilities, and

DECtape storage, also incorporates a DECdisk control and two random-access DECdisk fi les. The two

disks, whose storage capacity of 524,288 18-bit words can be expanded to 2,097,152 words, permit

high-speed overlays chaining and system and user loading.

Other hardware feaf'ures of the PDP-15/40 include a memory protect system, background Teletype,

and a real-time clock.

The PDP-15/40 Disk-Oriented Background/Foreground Monitor System handles all the functions of

the 15/30 Background/Foreground Monitor in a high-speed disk environment.

1.3 SYSTEM ORGANIZATION

The basic PDP-15 hardware is shown in Figure 1-1. Three autonomous subsystems, central processor,

memory, and I/O processor, operating together under console control define the PDP-15 System.

1-13

I
I
I
I
I I

~PERIPzHERAl

P~~~~~:~~4r---------~·l ___ C_O_N_S_O_LE __ ~ (CPU)~ "

15-0174

Figure 1-1 PDP-15 System Organization

An extensive line of peripherals including mass storage displays, data communication, and data ac­

quisition equipment is coupled to the PDP-15 I/o processor and serviced under the supervision of the

monitor systems.

1 .3. 1 Central Processor (CPU)

The central processor functions as the main componenl" of the computer by carrying on bidirectional

communication with both the memory and the I/o processor. Provided with the capabil ity to perform

all required arithmetic and logical operations, the central processor controls and executes stored pro­

grams. It accompl ishes this with an extensive complement of registers, control I ines and logic gates.

1 .3.2 Memory

The memory, second of three autonomous subsystems, is the primary storage area for computer insJruc­

tions and system data. The memory is organized into pages which are paired into memory banks. Each

page has 4096, 18-bit binary words of high-speed, random-access magnetic core storage. Each bank

is an asynchronous unit of 8192 words. The central processor has provisions to address up to 131,072

words of core memory. Any word in memory can be addressed by either the central processor or the

I/O processor.

1-14

1 .3.3 I/o Processor (IPU)

The third autonomous subsystem handles peripheral data transfer. A diverse line of system peripherals

available to the PDP-15 require this processor to interface three modes of input/output:

a. Sing le-cycl e block data transfer; blocks of data transfer at rates up to one mill ion
words per second.

b. Multicycle block data transfer; blocks of data transfer at rates up to 250,000 words
per second for input and 188,000 words per second for output.

c. Program-controlled data transfers; single-word transfers to/from the accumulator in
the centra I processor.

The I/O processor provides timing, control, and data lines for information transfers between memory

or the central processor and the peripheral devices; it also includes provision for such options as the

automatic priority interrupt system and the real-time clock.

1 .3.4 Console

The PDP-15 control console provides facilities for operator initiation of programs, monitoring of im­

portant CPU and IPU registers during program execution, and manual examination and modification of

memory contents.

1 .3.5 System Peripherals

The PDP-15 System peripherals range from simple input/output Teletypes to sophisticated interactive

display processors. These peripherals communicate with the PDP-15 I/o processor via one 72-wire

bidirectional cable called the common I/o bus.

Figure 1-2 depicts a large system showing the CPU and IPU options and some of the PDP-15 Systems.

1-15

REAL TIME
CLOCK

AUTOMATIC
PRIORITY

INTERRUPT

INPUT/OUTPUT PROCESSOR

POWER
FAIL EXTENDED

ARITHMETIC
ELEMENT

DATA CHANNELS AND
ADDRESSABLE I/O BUS CENTRAL PROCESSOR

TU20 OR TU30

UP TO 8 DATA CHANNEL
CONTROL FOR SINGLE­
OR MULT 1- CYC LE BLOCK
TRANSFERS

B=J
PAPER TAPE STATION

TU20 OR TU30

P ...
L - - - ...--___ -'

NEG.

RP15
DISK PACK
CONTROL

RF15
DECDISK
CONTROL

VP15CRT
DISPLAY a

CONTROL

TC15
DECTAPE
CONTROL

TO OTHER DEVICES

CR03B
CARD READER \4----1
AND CONTROL

TO LIN E UN ITS

TO
OTHER

DEVICES

XY15
PLOTTER

a CONTROL

S
Q.

I
______ --1

. r0~
I ______ --1

rU56 rU56

o •••••• Q
1--__ -' - _ - __ --.J

15-0017

Figure 1-2 System Organization

1-16

Chapter 2

Processor Organization

2.1 CENTRAL PROCESSOR DESCRIPTION

The central processor (CPU) is the main component for control and execution of stored programs. By

coordinating its operation with other subsystems, it provides supervisory control over the entire PDP-15

System.

The central processor contains arithmetic and control logic hardware for a wide range of operations.

These include: high-speed, fixed-point arithmetic with a hardware multiply and divide option; exten­

sive test and branch operations implemented with special hardware registers; high-speed input/output

instructions; and other arithmetic and control operations.

The PDP-15 central processor contains several major registers for processor-memory communications,

a program counter, an instruction register, an accumulator, an index register, and a I imit register.

The CPU performs calculations and data processing in a parallel binary mode through step-by-step

execution of individual instructions. Both the instructions and the data on which the instructions

operate are stored in the core memory of the PDP-15. The arithmeti c and logical operations necessary

for the execution of all instructions are performed by the arithmetic unit operating in conjunction with

central processor registers. Figure 2-1 shows a simplified block diagram of the central processor.

2.1.1 Internal Registers

Arithmetic Unit

The PDP-15 arithmetic unit handles all Boolean functions and contains an l8-bit, 85-ns adder. The

arithmetic unit acts as the transfer path for inter-register transfers and shift operations.

Instruction Register (IR)

The instruction register accepts the six most-significant bits of each instruction word fetched from

memory. Of these bits, the four most-significant constitute the operation code, the fifth signals when

the instruction indicates indirect addressing, and the sixth indicates indexing.

2-1

FROM
I/O BUS

MEMORY
OUTPUT

REGISTER

PROGRAM
COUNTER

OPERAND
ADDRESS
REG I STER

TO MEMORY

INPUT GATING

MEMORY
INPUT

REGISTER

DATA SWITCH
REGI STER

INDEX
REG I STER

LIMIT
REGISTER

FROM MEMORY

14----FROM CONSOLE

ARITHMETIC UNIT

,----------1
I
I STEP

COUNTER

I
I
I
I EXTENDED I
I ARITHMETIC I
l_i~~~T ______ -I

15-0002

Figure 2-1 Central Processor, Simpl ified Block Diagram

2-2

Accumulator (AC)

This 18-bit ~egister retains (accumulates) the result of arithmetic or logical operations for storage

between instructions.

For all program-controlled input-output transfers, information is transferred between core memory and

an external device through the AC. The AC can be cleared and complemented. Its contents can be

rotated right or left with the link (see below). The contents of the memory, buffered through the mem­

ory input register, can be added to the contents of the AC with the result left in the AC. The contents

of both registers can be combined by the logical operations AND and exclusive OR, the result remain­

ing in the AC. The inclusive OR can be performed between the AC and the DATA switches on the

operator console (through the data switch register) and the result left in the AC.

Data Switch RegistE~r (DSW)

The data switch register receives and buffers an 18-bit word through the console.

Li nk (L)

This 1-bit register is used to extend the arithmetic capability of the accumulator. In lis complement

arithmeti c, the Link is an overflow indi cator; in 2 1s complement arithmeti c, it logically extends the

accumulator to 19 bits and functions as a carry register. The program can check carry into the Link

to simplify and speed up single- and multi-precision arithmetic routines. The Link can be cleared and

complemented and its state sensed independent of the accumulator. It is included with the accumu­

lator in rotate operations and in logical shifts.

Program Counter (PC)

The program counter determines the program sequence (the order in whi ch instructions are performed).

This 18-bit register contains the address of the memory location from which the next instruction is to

be taken. The least-significant 15 bits are used for addressing 32,768 words of core memory. Two

remaining bits provide the capability to address memory systems greater than 32,768 words.

Operand Address Register (OA)

The operand address register is a temporary holding register (not available to the programmer) which

contains the effective address of the last (or current) memory reference operand.

Memory Input and Output Buffer Registers (MI and MO)

Information is read from a memory location into the memory input register and is interpreted as either

an instruction, address, or a data word. Information is recld from the central processor into memory

through the memory output register and is interpreted as either an address or a data word. The use

2-3

of two lS-bit registers for memory buffer functions allows the processor to overlap with memory cycle

time to decrease execution time and to allow autonomous operation of the CPU and memory.

Index Register (XR)

This lS-bit register is used to perform indexing operations with no increase in instruction execution

time. An indexed operation adds the contents of the index register to the address field of the instruc­

tion operand producing an effective address for the data fetch cycle. The index value is a signed

l7-bit integer 131,072).

Limit Register (LR)

The .Iimit register enables a program to detect loop completion. The base address of a data array is

loaded into the index register and the ending address is loaded into the limit register. Within an in­

dexing loop, add to index and skip (AXS) instruction, adds a signed value C±2S6) to the index register

and compares the sum in the index to the contents of the limit register. If the contents of the index

register are equal to or greater than those of the I imit register, the next instruction is skipped.

2.1.2 Control Console

The PDP-1S control console contains the keys, switches, and indicators required for operator initiation,

control, and monitoring of the system. Up to twenty-four lS-bit registers can be displayed to provide

the user with visual indication of most registers and buses.

Some of the features of the console are:

a. A READ-IN switch to initiate the reading of binary paper tapes.

b. REGISTER indicators and REGISTER DISPLAY switches for continuous monitoring of
key points in the system such as the accumulator, index register, I imit register,
multipl ier-quotient register, program counter, memory address, interrupt status,
input/output bus, input output address, and I/O status.

c. DATA switches to establ ish an lS-bit data or instruction word to be read into memory
by the DEPOSIT switch, to be entered into the accumulator by a program instruction,
or to be executed as an instruction by pressing the EXECUTE key.

d. EXAMINE switch initiates the manual examination of the contents of any memory
location specified by the ADDRESS switches.

2.2 CENTRAL PROCESSOR EXPANSION OPTIONS

The following additional expansions extend the processing capabi I ities of PDP-1S Systems.

2-4

Extended Arithmetic Element (EAE)

The extended arithmetic element (standard on PDP-15/20/30/40 Systems) facilitates high-speed

arithmetic operations and register manipulations. Installation of the EAE adds an 1 a-bit multipl ier­

quotient register (MQ) to the system as well as a 6-bit step counter register (SC). EAE instructions

can be microcoded so that several operations are performed by one instruction to simplify arithmetic

programming and reduce execution time. Worst case multiplication time is 7.42 fJS; division time is

7.68 fJS. The EAE is optionally available for the PDP-15/10.

Multiplier-Quotient Register (MQ)

The multiplier-quotient register and accumulator perform as a 36-bit register during shifting, normal­

izing, multiplication, and division operations. The contents of the multiplier-quotient register are

displayed by the REGISTER indicators on the operator's console when the REGISTER DISPLAY control

is in the MQ position.

During the multiply instruction, the MQ receives the 18 least-significant bits of the double word prod­

uct formed in the AC and MQ. During the divide instruction, the MQ is the least-significant 18 bits

of the double word DIVIDEND formed by the AC and MQ.

Step Counter (SC)

The step counter is used to count the number of steps in an EAE instruction. The step counter is pre­

loaded, except during normal ize operations, with the numbers of steps specified by an instruction and

is counted down as the instruction is executed. When the SC reaches zero, the EAE operation is

terminated.

Memory Protection

The memory protection feature, standard on PDP-15/30 and 15/40 Systems, establishes a background/

foreground environment for PDP-15 processing activity by specifying the boundary between protected

(lower) and unprotected (upper) regions of system core memory. Allocation of memory locations (in

increments of 256 words) to the protected region is dynamic and program-controlled under the

Background/Foreground Mon itor. Figure 2-2 shows a PDP-15 System with the memory protect option.

The protect feature increases all memory cycle times by 30 ns and write cycles in user mode by an

additional 175 ns. Memory cycle times are specified in Table 3-1.

The protection option also provides a user/monitor mode of operation. When;'n user mode, attempted

execution of any privileged instructions results in a trap to the monitor and a corresponding error

message. These illegal instructions include lOT instructions, halts, chained executes, any references

to the memory protect option itself, or protected memory. In monitor mode, all instructions are

executable.

2-5

MEMORY

MEMORY BUS

I
I
I
I
I

PERIPHERAL
A

;=tJ PERIPz"ERAL

(OR MEMORY RELOCATE
AND

PROTECT OPTION)

15-0175

CONSOLE

Figure 2-2 PDP-15 System With Memory Protect Option

The option is activated (set to user mode) with an I/o instruction, and when active, it monitors all

CPU/memory instructions and addresses for illegal conditions and provides ~n interrupt if such con­

diti ons occur. Figure 2-3 gives more detail on the contents of the memory protect option.

Memory Relocate and Protect

Memory relocation is optional on all PDP-15 Systems. This feature is installed with the memory pro­

tect option on the memory bus (see Figure 2-2) and provides a relocation register and an upper bound­

ary register to permit hardware relocation of user programs. It allows the relocated program to execute

only within its specified boundaries, thereby providing protection for other programs resident in mem­

ory. Figure 2-4 shows a block diagram of the memory relocate and protect option. Note that it func­

tions essentially the same as the basic protect hardware and gives the added capability to relocate

programs in increments of 256 locations.

2.3 I/O PROCESSOR ORGANIZATION

The I/o processor is an autonomous subsystem of the PDP-15 which supervises and synchronizes all

data and control transfers between the devi ces and the PDP-15 centra I processor and memory.

2-6

N
I

""'-J

SUBTRACTOR

PROTECT -2:
V I OLATION ' 1

+

IF SIGN
NEGATIVE
AND IN
USER MODE

BOUNDARY
REGISTER

I
INTERRUPT DATA LOAD
AND SKIP J

1/0 BUS
FROM

PERIPHERALS

V

I
I/O BUS

lIO BU S
FROM
IPU

ADDRESS TO MEMORY

ADDRESS FROM CPU

MEMORY BUS

t

MEMORY BUS
FROM CpU

Figure 2-3 Memory Protect Block Diagram

---.
INSTRUCTIONS FROM MEMORY

ILLEGAL INSTRUCTIONS
\ /

V

INTERRUPT AND SKIP IF
DECODED WHILE IN USER
MODE.

IN STRUCTIONS TO CPU

15-0179

'" I
ex>

SUBTRACTOR

PROTECT I -~
VIOLATION ---=---.,........
IF SIGN
POSITIVE
AND IN
USER MODE

INTERRUPT DATA LOAD
AND SKIP

110 BUS
FROM

PERIPHERALS

V

I
I/O BUS

110 BUS
FROM
IPU

MEMORY BUS

t
+

ADDRESS TO MEMORY INSTRUCTIONS FROM MEMORY

ADDER

~

MEMORY BUS
FROM CPU

Figure 2-4 Memory Protect and Relocate Block Diagram

I LLEGAL INSTRUCT IONS
\ I

V

I NTERRUPTS IF DECODE D
WHILE IN USER MODE.

IN STRUCTIONS TO CPU

15-0178

The I/o processor contains sufficient arithmetic and control logic hardware to supervise all I/o device

activity. The IPU is, however, a passive subsystem: it responds to requests for activity from the de­

vices or the CPU rather than initiating activity.

2.3.1 Data Transfer Facilities

The PDP-15 I/o processor contains a number of different facilities for handling I/o activity. Each

facil ity has been designed to serve a basic requirement of the I/O devices. All I/o device transfers

can be placed into one of the following catagories. (See Figure 2-5.)

Command Transfers - Command transfers from the CPU to a device initiate or stop all device

activity, and establ ish device operating modes, transfer directions, and other control parameters.

Status Transfers - Status transfers from a device to the CPU are usually initiated by the CPU

for the purpose of monitoring the progress (or status) of a previously initiated activity.

~

~

IPU

4!1o

DATA ~~

COMM

\

AND-

STATUS-

INTERRUPT
---y-

TO I/O DE V ICE S

I MEMORY I
1

I MEMORY I PORT SWITCH

t r
1

... DATA ...
.... ..

COMMAND

STATUS CPU -
INTERRUPT ~ I ACCUMULATORI

-
15-0180

Figure 2-5 Data Transfer Facilities

2-9

Data Transfers - Data transfers take place between a device and memory or a device and

the CPU under program control, and information may be transferred in either direction. Transfers of

data from a device to the CPU are initiated by the CPU. Transfers of blocks of information from a

device to memory or from memory to a device are initiated by the CPU. However, the transfer of

individual words in a block is usually signaled by the I/o devices.

Interrupt Requests - Interrupt requests, from the I/o device to the IPU, signal the IPU that

the device needs service. The interrupt system rei ieves the processor of the task of continuously

polling each device's status to determine its need for service.

Several capabilities in each transfer category are available from the PDP-15 I/O processor: 1) maxi­

mum flexibility is afforded the user who wishes to interface special equipment to the PDP-15 and to

the programmer who writes the device handler; 2) simple, inexpensive devices such as the Teletype

can be easily interfaced to the PDP-15, and require total CPU supervision; 3) complex devices (such

as the LP15 line printer) that need only one instruction to initiate a complete block transfer are built

to minimize the amount of CPU supervision required. The trade offs between these extremes are de­

vice cost, transfer rates, and percentage of CPU time.

Table 2-1 shows the I/o capabilities of the PDP-15 under each transfer category.

Table 2-1
PDP-15 I/o Capabilities

Category Capability

Command lOT command instructions

lOT AC transfer instructions

Status 10RS system read status instruction

lOT skip instructions

lOT AC transfer instructions

Data Transfers lOT AC transfer instructions

Multicycle data channel transfers

Single-cycle data channel transfers

Special Transfers Add to memory and increment memory

2-10

2.3.2 I/o Processor Activities

The following paragraphs describe the uses of each of the I/O processor activities. Note that some

facilities have multiple uses.

lOT Commands - lOT command instructions from the CPU initiate, stop, or set the mode of

the I/o device.

lOT AC Transfers - lOT AC transfer instructions from the CPU transfer up to 18 bits of data

or command information from the CPU accumulator to the device's data or command registers, or com­

mand up to 18 bits of data or status information from the device's data or status registers to the CPU

accumulator.

10RS Instruction - The 10RS (input/output read status) instruction transfers up to 18 bits of

status information (typically one bit from each device) to the CPU accumulator.

lOT Skip Instructions - lOT skip-instructions initiated by the CPU interrogate a specific flag

or status bit in one of the 256 allowable devices and increments the CPU's PC (skips the next instruc­

tion) if the bit interrogated is asserted.

Multicycle Data Channel Transfer - Multicycle data channel transfers are IPU supervised

transfers of data between the I/o device and sequential memory locations (in either direction). The

word count and current address are kept in a pair of preassigned memory locations, and the counting

and overflow detection is accompl ished by the I/O processor.

Single-cycle Data Channel Transfers - Single-cycle (Direct Memory Access) transfers are

device supervised transfers of information (up to 18 bits/word) between the I/o device and memory.

The I/o device must contain word count and current address registers and provide overflow (job done)

detection.

Program Interrupt - Program interrupt (PI) requests from the I/O devices cause the running

program (at the completion of the current instruction) to transfer to a common subroutine that polls

the devices to determine which device needs service. The program then transfers to the device service

subroutine, and when finished handling the device, returns to the program which was interrupted by

the request.

2-11

Automatic Priority In'~errupt - Automatic priority interrupt (API) provide the same faci Iity

as the program interrupt except eight levels of priority' are provided (4 software levels and 4 hardware

levels). Instead of interrupting to a common devi ce poll ing subroutine, the interrupting device pro­

vides a unique address of the subroutine call to its device handler. This eliminates the need for a de­

vice poll ing seguence and improves the interrupt response latency. Interrupts from different priority

levels are fully nested and a debreak and restore instruction provides for orderly priority level dismissal.

Add- To-Memory - Multicycle data channel, add-to~memory facil ities function in the same

manner as other multicycle data channel transfers except a data word provided by the device is added

to memory and the results are left in memory and transferred back to the device. Typical uses for this

facility are high-speed averaging and in-core up-down counting.

Increment Memory - Data channel increment memory transfers cause the contents of a de­

vice-specified memory location to be incremented by one. A typical use for this facility is an in­

core histogram updated by nuclear pulse height analyzer information.

2.3.3 I/o Processor Organization

The I/o processor has fully parallel arithmetic capabilities which provide autonomous I/o device

supervision without interruption of central processor activities. In this manner, the I/O processor

can perform an add-to-memory calculation initiated by an I/O device at the same time the CPU per­

forms multiply or index instructions. To implement this capabi I ity, the I/o processor contains inde­

pendent registers, adder, and control circuitry. Figure 2-6 is a block diagram of the I/o processor.

I/o Buffer

The I/O buffer is an l8-bit register which buffers input data from the I/o device.

I/O Adder

The I/o adder is an l8-bit adder which contain the basic arithmetic capabilities of the IPU.

DSR

The data storage register receives all output calculations from the I/O adder. It holds addresses or

data destined for use by the memory I and it also holds data for presentation to the I/O bus lines.

The mixer logic, at the input to the I/O adder switches I appropriates data to the inputs of the adder,

in order to perform the proper arithmetic operation. An example of the operation is as follows: during

the data cycle of the add-to-memory data channel transfer, the contents of the memory location are

2-12

TO MEMORY

~-~---
MEMORY PORT SWITCH

TO CPU

REQUEST GRANT

-- --I
I
I
I
I
I
I
I

110 ADDER
L ___

GRANT CONTROL

}TO CPU L -- ------- AND
PRIOR ITIES REQUEST

MIXER LOGIC -- ------- LOG IC

REQUEST GRANT

~~------------------~---------+------~TO CPU

I/O BU S
TO

I/O DEVICES

Figure 2-6 I/O Processor Block Diagram

2-13

15- 0181

presented to one input of the adder and the contents of the I/o buffer {which contains the device­

specified word} are placed on the other input to the adder. The 18-bit sum is strobed into the DSR

which presents the data to the memory and to the I/o bus.

Control and priority logic in the IPU synchronizes the requests from CPU or devices for IPU activity,

grants action to the activities in appropriate order of priority, and controls the process of the transfer.

Chapter 6 contains a more detailed description of the I/O processor and its faci! ities.

2.4 CORE MEMORY

The magnetic core memory is the primary storage facility of the PDP-15. It provides random-access

data and instruction storage for both the central processor and the I/o processor. The basic PDP-15/10

memory contains 4096 18-bit word locations. The contents of each location are avai lable for processing

in 400 ns. A parity bit can be added as an option to each word for parity checking during transfer of

information into or out of core memory. If the parity option is incorporated into a PDP-15 System, all

memory banks must contain that option and memory cycle time becomes 1. 1 tJs. The basic subsystem

of memory is the memory bank; it is organized into pages, and each bank has two pages of 4096 words

each for a total of 8192 words of 3D 3-wire cores. Further, every bank contains a data buffer, an ad­

dress buffer, and all the necessary read/write and control circuitry to make it an autonomous unit

operating on a request/grant basis with either the central processor or I/O processor. Figure 2-7 illus­

trates the organization of a memory bank.

8K BANK MEMORY MODULE

4K/18 BITS
STACK

ELECTRON ICS

MEMORY BUS

4K/18 BITS
STACK

ELECTRONICS

Figure 2-7 Memory Organization

2-14

15-0182

2.4. 1 Memory Data Transfer

The PDP-15 memory interacts directly with the central processor and the I/O processor through the

memory bus. Data and instruction words of each bank are read from and written into individual mem­

ory locations through a buffered register, referred to as the memory buffer.

Words in a memory bank are selected according to the address in the memory address buffer. The

capaci ty of the memory address buffer enabl es 8192 words to be referenced in each bank.

The memory address buffer receives the memory address from the central processor or I/o processor.

The address provides the coordinates for locating a word in a memory bank.

Decoding of the memory address to select a particular word location containing 18 bits is performed by

the memory selection logic. Bit 5 of the memory cell address selects the page of the location, and

the remaining bits select the X and Y coordinates of the location.

Bits 1 to 4 of the memory bus select I ines are used to select which bank of memory the word is in. Up

to four banks can normally be added to the PDP-15, but a special provision to expand memory up to

16 banks can be accommodated by the 18-bit address register in the cPU.

2.4.2 Parity

The memory parity option provides cor,e planes that have 19 bits for each word and parity checking/

generating control logic. When the parity option is present, the accuracy of transfers to and from

memory is verifi ed through parity checking. A parity bit is added to each word stored in memory, so

that the total number of 1 bits in the word, including the parity bit, is odd. For example, if the

18-bit word to be stored in memory contains an even number of 1s, the parity bi t is automatically made

a 1, and is stored with the word. When the word is later read from memory, the computed parity bit

is calculated on the basis of the content of the 18-bit word. The calculated and actual parity bits are

then compared, if they do not agree, the memory parity error alarm is initiated, causing a program

interrupt or automatic priority interrupt request, or a half'.

All 18 bits and the accompanying parity-check bit {when present} are transferred in parallel {simul­

taneously} between the core array and the memory buffer. The memory buffer is connected to the

memory bus, and therefore, to the rest of the PDP-15 System. This is also an 18-bit parallel transfer.

2-15

2.4.3 Memory Modularity

The PDP-15/10 System contains one page of 4096 memory words; however, additional, modules (pages)

can be added to the system. The basic system can accommodate up to 32,768 core memory words

(eight 4K pages) in the basic 19-in. cabinet. Expansion beyond 32,768 words requires the addition of

another cabinet to the system configuration. Memory communicates with the central processor and

the I/o processor on the bidirectional memory bus (see Figure 2-8).

MEMORY
BUS

8K BANK

~~ PAGE PAGE

II

I I

UP TO FOUR BLOCKS PER PDP- 15 SYSTE M

32K WORD BLOCK

8K BANK 8K BANK

~~ PAGE PAGE ~~ PAGE PAGE

II J"::]

I I I I

Figure 2-8 Physical Memory Organization

2.4.4 Memory Addressing

8K BAN K

~~ PAGE PAGE

II

I

15-0183

The PDP-15 memory system is broken down into four basic memory entities. The maximum configura­

tion system contains 131,072 words of 18 or 19 bits and is subdivided into four blocks of 32K words.

Each block contains up to four banks of 8K words, which contain two pages of 4K words. Figure 2-9

shows breakdown of locations, pages, banks, and blocks within the PDP-15 System.

Note that all valid addresses are positive addresses, i.e., negative addresses with bit 0 set

(400000-777777) are illegal and cause the machine to wait indefinitely for memory response. Such

addresses can be generated by the CPU or IPU under certain circumstances, but are trapped if the

memory protect option is present.

2.4.5 Memory Port Switch

The memory port switch allows both the central processor and I/O processor to share core memory. In

the event that both request a memory cycle simultaneously, the I/O processor is serviced first and the

central processor must wait. However, if only one processor is using memory, both can process at the

same time. For example, the central processor can be executing an EAE instruction, while the I/O

processor transfers data out of memory to a DECdisk.

2-16

LOCATION PAGE

0
PAGE 0

7777
r--"

10000
PAGE 1

17777
20000

PAGE 2
27777
30000

PAGE 3
37777
40000

PAGE 4
47777
50000

PAGE 5
57777
60000

PAGE 6
67777
70000

PAGE 7
77777

100000

177777
200000

-
277777
300000

-

377777

BANK BLOCK

BANK 0

BANK 1

BLOCK
0

BANK 2

BANK 3

----- BLOCK
1

BLOCK
2

~~ BLOCK
3

MEMORY ADDRESSING

PAGE = 4K LOCATIONS
BANK = 8K LOCATIONS
BLOCK = 32K LOCATIONS

4 BLOCKS = MAX. CONFIGURATION

15-0184

Figure 2-9 Memory Addressing

2.4.6 MX15-A Memory Bus Multiplexer

The MX15-A Memory Bus Multiplexer is a multiport memory option. It provides three ports for multi­

processor configurations, direct memory access (DMA) faci Ii ti es, and the K P15-A Dual Bus Processor

option. The MX15-A is a prerequisite for systems with greater than 32K of core memory. A PDP-15

System can accommodate up to four MX15-A Memory Bus Multiplexers. Each port has its own set of

address switches that can be preset in any 8K increment. This feature enables one processor to address

an 8K bank of core memory as its lowest bank (bank 0). A second processor can access the same bank

of core memory through the MX15-A as its highest bank. The MX 15-A introduces a delay for each

memory cycle. Refer to the MX15-A Maintenance Manual for specific delay times introduced by the

MX15-A.

2-17

Chapter 3
Instruction Formats

3.1 GENERAL

The PDP-15 instruction set is divided into "memory reference instructions ," which address core memory,

and "augmented inst'ructions," which do not address core memory. Memory reference instructions ad­

dress, either directly or indirectly, core memory locations for the purpose of retrieving, entering, or

modifying the contents. The augmented instructions are used to execute a certain action or actions.

This type of instruction is subdivided into four groups: operate instructions (I ink and accumulator

operations including rotates, skips, clears, and complements); lOT instructions (input/output transfer

of data , command and status between the central processor, and peripheral devices); EAE (extended

arithmetic element, optional hardware mul tiply, divide, shift, and normal ize); and index instructions

(accumulator, limit regisJer, and index register transfers, clears, additions, and skips).

3.2 MfMORY REFERENCE INSTRUCTION FORMAT

The memory reference insh:uction word consists of an operation code, an indirect address bit, an index

bit, and an operand address (see Figure 3-1). The operation code, bits 0 through 3, specifies one of

the 13 PDP-15 memory reference instructions. When the PDP-15 is in "page mode ," the indirect bit

indicates whether the 12-bit (bits 6-17) operand address is to be directly or indirectly (bit 4=1) ad­

dressed and the index bit determines whether or not the index register should be added to the operand

address. In "bank mode ," the indirect bit indicates whether the 13-bit (bits 5-17) operand address is

OPERATION CODE
00a- 6O a

A

0 2

INDEX BIT *
(I=INDEXED)

~

3 14 1
'---y--J

IND I RECT
ADDRESS

5

(1 INDIRECT)

1
6 7 8 9 10 11 12 13 14 15 16 17

y
OPE RAN D ADD RES S

*USED AS A THIRTEENTH ADDRESS BIT IN BANK MODE
15-0166

Figure 3-1 Memory Reference Instruction Word

3-1

to be used as the direct address or the indirect address (bit 4=1). The operand address is used in

generating the effective address or the address in memory which will be referenced. Chapter 4 is a

detailed description of addressing.

3.3 AUGMENTED INSTRUCTION FORMAT

The augmented instruction word (see Figure 3-2) consists of an operation code and an instruction code.

The operation code designates whether the instruction is an extended arithmetic element instruction,

648 (bits 0-3), an Input/Output transfer instruction, 70
8

(bits 0-5), an Index instruction, 728 (bits 0-5)

or an operate instruction 748 (bits 0-3). The instruction code designates which action is to be taken

by the augmented instruction. An important and useful feature of the PDP-15 augmented instruction is

its microprogramming capability. Multiple instruction codes having the same operation code can be

combined to form one instruction word. Execution of all microprogrammed functions occurs during the

time allocated to the type of instruction (operate instructions require one machine cycle, lOTs require

two, three, or four cycles, EAE requires one or three, plus a variable time interval to complete their

function, and index instructions require two cycles). Thus, microprogramming decreases program run­

ning time, lessens the number of instruction words required, and simplifies programming efforts.

OPE RAT ION CODE

64s =EAE

70S = rOT

728 = INDEX

74S = OPERATE

r~----~A~--------------~\

o 2 3 7 8 9 10 " 12 13 114115 16 17

'---____________ -----y~----------------------------J
INSTRUCTION CODE

*THESE BITS USED AS PART OF THE INSTRUCTION CODE IN EAE AND
OPERATE INSTRUCTIONS

Figure 3-2 Augmented Instruction Format

3.4 TIMING

15-0204

The amount of time required to perform each instruction is expressed in the number of machine cycles.

The length of each mach ine cycle for various configurations is given in Table 3-1 •

Instructions which indirectly address memory require one extra machine cycle in order to fetch and

compute the indirect address. Only one level of indirect addressing is possible on the PDP-15.

Instructions which use the auto increment locations indirectly require two extra machine cycles; one

for the increment of the location, and one for the indirect address.

3-2

Table 3-1
PDP-15 Central Processor Cycle Times, Basic and Expanded Configurations*

Not In User Mode In User Mode

Configuration Read Write Read Write

Max Typical Max Typical Max Typical Max Typical

Basic 800 800 800 800 800 800 800 800

KM15 Memory Protect 830 800 830 800 830 800 975 920

KM15 Memory Protect and 965 880 965 880 1165 1080 1165 1080
K Tl5 Memory Protect/Relocate

MP15 Memory Parity 1100 1050 1100 1050 1100 1050 1100 1050

MP15 Memory Parity and 1130 1130 1130 1255
KM15 Memory Protect

MP15 Memory Parity, 1155 1155 1355 1355
KM 15 Memory Protect and
KTl5 Memory Protect/Relocate

*AII times indicated in nanoseconds. Refer to MX15-A Maintenance Manual or KP15-A Supplement
for cycle times for MX15-A and KP15-A options.

3.5 MEMORY REFERENCE INSTRUCTIONS

In the memory reference instruction descriptions, and in succeeding paragraphs that describe other

types of instructions I the following symbols are used:

Symbol

Y

V

+

Definition

The effective address of the memory location

Logic inclusive-OR'

Indicates contents transferred from reg ister or
location preceding arrow to register or location
following arrow.

Logic AND

Logic exclusive-OR

Overscore indicates complemented contents
of register or location

Addition

3-3

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

LOAD THE ACCUMULATOR

LAC

20

2 cycl es

The contents of the effectively addressed memory location, Y,
are read into the AC. The contents of Yare unchanged, the
previous contents of the AC are lost.

Y -AC

DEPOSIT THE ACCUMULATOR

DAC

04

2 cycles

The contents of the AC are deposited in the effectively ad­
dressed memory location Y. The contents of the AC are
unchanged; the previous contents of Yare lost.

AC -Y

3-4

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

34 I : <
Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

DEPOSIT ZERO IN MEMORY

DZM

14

2 cycles

An all-zeros data word is deposited in the effectively ad­
dressed memory location Y. The previous contents of Yare
lost; the contents of the AC are unchanged.

o ~Y

ADD (2 1s Complement)

TAD

34

2 cycles

The contents of the effectively addressed memory location Y I
are added to the contents of the AC f following the rules of
2 1s complement arithmetic. The result is left in the AC. An
arithmetic carry from ACO complements the link. The con­
tents of Yare unchanged; the previous contents of the AC are
lost.

Y + (L ,AC) ~ (L ,AC)

3-5

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

ADD (lIs Complement)

ADD

30

2.3 cycles

The contents of the effectively addressed location I Y I are added
to the contents of the AC I following the rules of lis comple­
ment arithmetic. The result is left in the AC. An arithmetic
overflow sets the I ink to the binary 1 state. The contents of the
AC is lost. The previous content of the I ink is lost. Overflow
occurs if the magnitude (absolute) of the algebraic sum of the
operands exceeds 2 17_1; if the operands were of like sign and
the result is signed differently I overflow has occurred to set the
I ink. Overflow cannot occur if the operands are of different
sign.

NOTE

The I ink should be cleared prior to the ADD instruction I
if an arithmetic overflow check is desired.

Y + AC ... AC
L V Overflow -+ L

3-6

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

INCREMENT AND SKIP IF ZERO

ISZ

44

3 cycles

The contents of the effectively addressed memory location, Y,
are incremented by one (in 2 1

5 complement arithmetic) and
tested. If Y now contains an all-zero word, the PC is incre­
mented by one to skip the next instrucHon. If the contents of
Y, after being incremented, are other than zero, the next in­
struction is executed. The previous contents of Yare lost; the
contents of the AC are unchanged.

If Y + 1 = 0, PC + 1 PC

Y+l Y

SK IP IF AC DIFFERS

SAD

54

2 cycles

The contents of the effectively addressed memory location, Y,
are compared with the contents of the AC. If they differ, the
PC is incremented by one to skip the next instruction. If they
are the same binary quantity, the next instruction is executed.
The contents of Y and the contents of the AC are unchanged.

If Y t- AC, PC + 1 PC

3-7

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

BOOLEAN AND

AND

50

2 cycles

The contents of the effectively addressed memory location, Y,
are logically ANDed with the contents of the AC on a bit-by­
bit basis. The result is left in the AC. If corresponding, Y
and AC bits are in the 1 state, the AC bit remains a 1; other­
wise, the AC bit is cleared to the 0 state. The contents of Y
are unchanged; the previous contents of the AC are lost.

Y /\ AC -AC

AC
AND

0 1

0 0 0
y

1 0 1

3-8

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

EXECUTE THE INSTRUCTION AT Y

XCT

40

1 cycle plus time of instruction at Y

The computer executes the instruction located at the effectively
addressed memory location, Y. The contents of the PC are un­
changed unless Y contains a JMS, CAL, JMP, or skip instruction,
each of which changes the contents of the PC to alter the pro­
gram sequence. XCT could be thought of as a single- instruction
subroutine causing a quasi-jump to Y, execution of the instruc­
tion specified there, and return to the program sequence (i.e.,
execution of the instruction following XCT) if the instruction
has not changed the PC.

With the Memory Protect option installed, the XCT of an XCT
instruction is not allowed when in USER mode.

3-9

Mnemon i c Name:

Octal Code:

Time:

Operation:

Symbolic:

BOOLEAN EXCLUSIVE OR

XOR

24

2 cycles

The contents of the effectively addressed memory location, Y,
are exclusively-ORed with the contents of the AC, on a bit­
by-bit basis. The result is left in the AC. If corresponding Y
and AC bits are in the same binary state (i.e., 1 or 0), the
AC bit is cleared to the 0 state. If the corresponding bits differ
in state, the AC bit is set to the 1 state. The contents of Y
are unchanged. The previous contents of the AC are lost.

NOTE

The XOR instruction causes the operand to complement
its original content only in those bits that have lis in
the accumulator mask.

Y ¥ AC -AC

AC
XOR

0 1

0 0 1
Y

1 1 0

3-10

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

UNCONDITIONAL JUMP

JMP

60

1 cycle

A new address is computed from the operand address of the jump
instruction and transferred to the PC. The next instruction
fetched will be from the memory location specified by the new
address. The contents of the AC are unchanged.

JUMP TO SUBROUTIN E

JMS

10

2 cycles

The contents of the PC and the I ink, and the status {on or off}
of bank mode and user mode are deposited in the effectively ad­
dressed memory location, Y. The next instruction is read from
the contents of memory location Y + 1, breaking the previous
program sequence and starting a new sequence from Y + 1. The
contents of the PC are changed, and the contents of the AC are
unchanged. '

When not in the user mode, or when the memory protect option is
not installed, a free instruction follows the JMS. Therefore, a
PI or API break cannot occur after the execution of the JMS in­
struction, but may occur after the execution of the next instruction.

L -Yo
BM Y1
UM -Y2
PC Y3-17
YS-17 + 1 PC

3-11

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

CALL (JUMP TO) SUBROUTINE

CAL

00

2 cycles

The CAL instruction is the equivalent of a JMS 20 instruction.
The contents of the PC and the I ink, and the status (on or off)
of bank mode and user mode are deposited in memory location
20. The next instruction is read from memory location 21,
breaking the previous program sequence and starting a new
sequence from 21. The contents of the AC are unchanged. If
the API option is present and enabled, priority level 4 will be
activated after the execution of a CAL instruction if no higher
priority I evel is set.

When not in user mode, or when the memory protect option is not
installed, a free instruction follows the CAL. Therefore, a PI or
API break cannot occur after the execution of the JMS instructi on,
but may occur after the execution of the next instruction.

L -+200

BM -20
1

UM -+20
2

PC 20
3

_
17

"21" -PC

3.6 AUGMENTED INSTRUCTIONS

3.6.1 Operate Instructions

Operate instructions (operation code of 74
8

) are used to sense and/or alter the contents of the AC and

I ink. Typical functions are: conditional or unconditional skips, complementing, setting, clearing,

or rotating the contents of the two registers jointly or independently and incrementing the AC. A

Halt (HL T) instruction is included. Operates are performed in one machine cycle, the actions being

specified by the microprogramming of the instruction code. Each bit of the 14-bit instruction code

can effect a unique response; hence, they are "microinstructions" to the computer. The important

feature of the operate class is its microprogramming capabi Iity, where two or three microinstructions

3-12

can be combined to form one instruction word and, therefore, be executed in one cycl~. Those

microinstructions that logically conflict and occur at the same time should not be microprogrammed.

Figure 3-3 illustrates the bit configuration of the instrudion code. Figure 3-4 shows the allowable

combinations of microinstructions.

When non inverted skip actions are microprogrammed (bit 8 is 0), the conditions to be met are

inclusively ORed. For example, if SZA (740200) and SNL (740400) are combined (740600), the skip

takes place if either or both conditions are present (contents of the AC are 0 or the content of the

link is not 0).

When inverted skip actions are microprogrammed (bit 8 is 1), the skip occurs only if the AND of the

conditions is met. For example, when SNA (741200) and SZL (741400) are specified in a micropro­

grammed instruction (741600), the skip occurs only if both conditions are present (the contents of the

AC are other than 0 and the content of the I ink is 0).

CLA CLL

5 6

Programming Note

The PDP-15 Symbolic Assembler accepts either HLT or XX
(see Figure 3-4) as a val id mnemoni c for the operate class
instruction to stop program execution •. The latter faci! itates
visual scanning of a program listing to determine the occur­
rence of program halts.

Bit 7=0

Additional O=OR of SNL SZA SMA
HLT

RAR I RAL
OAS

Rotate l=AND of SZL SNA SPA RTR I RTL
Bit 7=1

7 8 9 10 11 12 13 p4 15

NOTE: Bits 7, 13, and 14 set: SWHA
Bits 13 and 14 set: lAC

Figure 3-3 Instruction Bii' Configuration

3-13

CML CMA

16 17

Order of
Column 1 Column 2 Column 3 Column 4

Events

Levell SNL SZA SMA OAS CMA
I CML
I lAC

Level 2 SZL SNA SPA CLA CLL RAR or RAL HLT

Level 3 SKP RTR or RTL or SWHA

1. Combine instructions from left to right.

2. Any instructions in a box can be combined, except the rotate instructions.

3. Instructions on different levels cannot be combined if they are in the same column.
Instructions on any level can be combined if they are in different columns. (e.g.,
SZAISMAICLAIOASIHLT! is legal- SZAISPA is not legal.)

4. CML and lAC cannot be combined. Either one can be combined with OAS and/or
CMA (e.g., OASICMAICML or OASICMA!IAC).

5. Instructions occur in order from column 1 to column 4.

740000 I

NOTE

Levell skips (SNL, SZA, SMA) will occur if anyone of the
combined tests is satisfied (an OR condition).

Level 2 skips (SZL, SNA, SPA) will occur only if all the com­
bined tests occur (an AND condtion).

Combined rotates become a SWHA or an lAC, depending on
bit 7.

Figure 3-4 Allowable Microinstruction Combinations

NO OPERATION

Mnemon i c Name: NOP

Octal Code:

Time:

Operation:

Symbolic:

740000

1 cycle

The program delays for one cycle before the next instruction is
fetched.

Not applicable.

3-14

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

COMPLEMENT ACCUMULATOR

CMA

740001

1 cycl e

Each bit of the AC is set or cleared to the inverse of its cur­
rent state. The previous contents of the AC are lost.

AC "*AC

COMPLEMENT LINK

CML

740002

1 cycle

The link is setor cleared to the inverse of its current state.
It previous content is lost.

r L

3-15

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

INCLUSIVE OR ACCUMULATOR SWITC HES

OAS

740004

1 cycle

The word set up by manual positioning of the DATA switches is
inclusively ORed with the contents of the AC on a bit-by-bit
basis. The resul t is left in ,the AC. If corresponding, AC and
DATA switch bits are in the binary 0 state, the AC bit remains O.
If either or both of the corresponding bits are in the binary 1
state, the AC bit is set to 1. The previous contents of the AC
are lost. The switch settings are not affected.

AC V DATA switch -+ AC

INCREMENT THE ACCUMULATOR

lAC

740030

1 cycl e

The contents of the accumulator are incremented by one and
the resul'~s placed in the accumulator. The previous contents
of the accumulator are lost. When overflow occurs bit zero
complements the I ink.

3-16

CLEAR THE LINK

Mnemonic Name: Cll

Octal Code: 744000

Time: 1 cycle

Operation: The content of the link is cleared to the binary 0 state.

Sym bo I i c : 0 -+ l

CLEAR THE ACCUMULATOR

750000 I >: : : < : : 0; : : < : : < : : 0; I CLA

Mnemonic Name: ClA

Octal Code: 750000

Time: 1 cycle

Operation: Each bit of the AC is cleared to the binary 0 state. The pre­
vious contents are lost.

Symbolic: 0 -AC

3-17

HAL T PROGRAM

740040 I : 7: : : 4: : : 0: : : 0: : : 4: : : 0: I Hl T

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

HLT

740040

1 cycle

Program execution stops at completion of the current machine ~
cycle. The run indicator is turned off.

o - RUN flip-flop

SWAP HALVES OF THE ACCUMULATOR

742030 I : < : >: : >: : : 0; : >: : : 0; I SWHA

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

SWHA

742030

1 cycle

This instruction places the contents of AC bits O-S into AC
bits 9-17 and at the same time places AC bits 9-17 into AC
bits O-S. The previous contents of the AC are lost.

AC
O

_
S

.... AC
9

_
17

AC
9

_
17

-ACo-
S

3-1S

740100 I

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

SKIP ON MINUS ACCUMULATOR

SMA

740100

1 cycle

Test the contents of the sign bit, ACO, of the data word in the
AC. If the bit is in the binary 1 state, the contents of the PC
are incremented by one to skip the next instruction. If ACO is
found to be in the 0 state, the next instruction is executed.
The contents of the AC are unchanged.

If AC
O

= 1, PC + 1 ->- PC

SKIP ON ZERO ACCUMULATOR

SZA

740200

1 cycle

Test the contents of the word in the AC. If all bits are binary
Os, the quantity is taken to be zero (2 1s complement notation),
and the contents of the PC are incremented by one to skip the
next instruction. If any bit is in the binary 1 state, the next
instruction is executed. The contents of the AC are' unchanged.

I f A C=O, PC + 1 ->- PC

3-19

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

SKIP ON NON-ZERO LINK

SNL

740400

1 cycle

Test the content of the link. If the link is in the binary 1 state,
the contents of the PC are incremented by one to skip the next
instruction. If the link has a binary 0, the next instruction is
executed. The content of the I ink is unchanged.

If L = 1, PC + 1 PC

UNCONDITIONAL SKIP

SKP

741000

1 cycle

The contents of the PC are incremented by one to cause an
unconditional skip of the next instruction.

PC + 1 PC

3-20

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

SKIP ON POSITIVE ACCUMULATOR

SPA

741100

1 cycle

Test the contents of the sign bit, ACO, of the data word in the
AC. If the bit is in the binary 0 state, the quantity in the AC
is taken to be positive. Therefore, the contents of the PC are
incremented by one to skip the next instruction. If the bit is
found to be in the binary 1 state, the next instruction is ex­
ecuted. The contents of the AC are unchanged.

If ACO = 0, PC + 1 ->- PC

SKIP ON NON-ZERO ACCUMULATOR

741200 I >: : : < : : < : >: : ;0: : >: I SNA

Mnemon i c Name:

Octal Code:

Time:

Operation:

Symbolic:

SNA

741200

1 cycle

Test the contents of the data word in the AC. If any bit is in
the binary 1 state, the quantity is taken to be unequal to zero
(2 1s complement notation only), and the contents of the PC are
incremented by one to skip the next instruction. If all bits are
found to be in the 0 state, the quantity is considered to be
zero and the next instruction is executed. The contents of the
AC are unchanged.

If AC t- 0, PC + 1 ->- PC

3-21

741400 I

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

740010 I

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

SKIP ON ZERO LINK

SZL

741400

1 cycle

Test the contents of the I ink ° If the I ink is in the binary 0
state, the contents of the PC are incremented by one to ski p
the next instruction ° If the I ink has a binary 1, the next in­
struction is executed ° The contents of the I ink is unchanged.

If L = 0, PC + 1 - PC

ROTATE AC AND LINK LEFT

RAL

740010

1 cycle

The contents of the AC and the I ink are rotated one bit posi­
tion to the left with ACO entering the I ink and the I ink entering
AC 17 0

AC. -AC. 1 ·-1 17 1 1- ; 1- ,

ACO -L

L -AC
17

3-22

ROTATE AC AND LINK RIGHT

740020 I >: : : < : >: : ;0: : >: : ;0:
Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

RAR

740020

1 cycle

The contents of the AC and the link are rotated one bit position
to the right with AC 17 entering the I ink and the I ink entering
ACO·

AC i AC i+1; i=O,16

AC 17 L

L ACO

ROTATE AC AND LINK TWO LEFT

RTL

742010

1 cycle

The contents of the AC and the I ink are rotated two bit posi­
tions to the left with ACO entering AC17, AC1 entering the
I ink, and the I ink entering AC 16.

AC i AC i_2; 1=2,17

L AC
16

AC
O

-AC
17

AC L
1

3-23

742020 I

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

ROTATE AC AND LINK TWO RIGHT

RTR

742020

1 cycle

The contents of the AC and the I ink are rotated two bit posi­
tions to the right with the'link entering AC1, AC17 entering
ACO, and AC16 entering the link.

AC. -AC. 2 ·-0 15 1 1+ i 1- ,

L -AC
1

AC
17

-AC
O

AC
16

-L

2'S COMPLEMENT ACCUMULATOR

740031 I >: : : < : >: : : < : : < : : : I TeA

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

TCA

740031

1 cycle

A microcoded instruction combines the complement of the AC
and increments the AC, thereby, performing a 2's Complement
Operation on the contents of the AC and placing the result in
the AC. The previous contents of the AC are lost.

AC + 1 -AC

3-24

SET THE LINK

744002 I >: : : < : : < : : < : : 0; : >: I STL

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

STL

744002

1 cycle

A microcoded instruction equivalent to CLL-tCML. The link
is first cleared to contain a binary 0; it is then complemented
to contain a binary 1.

1 -+ L

CLEAR LINK, THEN ROTATE AC AND L LEFT

RCL

744010

1 cycle

A microcoded instruction equivalent to CLL+RAL. The link is
first cleared to the binary 0 state: then the contents of the AC
and the I ink are rotated one bit position to the left.

AC. -AC. 1 ·-1 17 1 1- ;1- ,

AC -L o
o -AC 17

3-25

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

CLEAR LINK, THEN ROTATE AC AND L RIGHT

RCR

744020

1 cycl e

A microcoded instruction equivalent to CLL+RAR. The link is
first cleared to the binary 0 state; then the contents of the AC
and the I ink are rotated one bit position to the right.

AC. -AC. 1 '=0 16 I 1+ ; I ,

AC 17 -L

o -AC o

CLEAR AND COMPLEMENT ACCUMULATOR

750001 I >: : : < : ;0: : : < : ;0: : : : I CLC

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

CLC

750001

1 cycle

A microcoded instruction equivalent to CLA + CMA. Each bit
of the AC is cleared to the binary 0 state. Then each bit is
set to the binary 1 state. The previous contents of the AC are
lost.

777777 AC

3-26

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

LOAD AC FROM ACCUMULATOR SWITCHES

LAS

750004

1 cycle

A microcoded instruction equivalent to CLA + OAS. Each bit
of the AC is cleared to the binary 0 state. Then the word set
up by manual positioning of the DATA switches is entered in the
AC. The previous contents of the AC are lost. The switch set­
tings are not affected.

DSW -+AC

GET THE LINK

GLK

750010

1 cycle

A microcoded instruction equivalent to CLA + RAL. Each bit
of the AC is cleared to the binary 0 state. Then the contents
of the AC and the link are rotated one bit position left with
the link contents entering AC17. The previous contents of the
AC are lost.

L -AC 17
o -AC

O
_

16
o -L

3-27

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

LOAD AC WITH "n"

LAW

760000 + n {n = 13-bit number}

1 cycle

A single-cycle instruction that loads itself into the AC for the
purpose of generating a negative number, n, of the range of
o ~ n :$177778. Following the fetch, the computer enters the
contents of the MI (the LAW instruction word) in the AC. The
previous conten.ts of the AC are lost. The first five AC bits
will always be loaded with ls.

MI -.AC

3.7 INPUT/OUTPUT TRANSFER INSTRUCTIONS

Input/Output transfer (lOT) instructions initiate transmission of signals via the I/o bus to control

peripheral devices, sense their status, and effect information transfers between them and the central

processor. PDP-15 lOT instructions contain the following information {see Figure 3-5}:

a. An operation code of 70
8

•

b. An 8-bit device selection code to differentiate between up to 256 peripheral devices
{selection logic in a device's I/O bus interface responds only to its preassigned code}.
In normal practice, bits 6 through 11 perform the primary device differentiation be­
tween up to 64 devices with bits 12 and 13 coded to select an operational mode or
subdevice. A number of these device codes are hardwired into the processor and can­
not be used to control peripheral devices.

GENERATE

OPERAT ION CODE DEV I CE CLEAR AN lOP 2
70S SELECTION AC PULSE

~ __________ AA __________ ~,(~ __________ ~A~ __________ ~ ,-A---, ~

o 2 3 4 5 6 7 8 9 10 11 12 13114115116117
'---y------J
SUB-DEVICE
SELECTION

'----y-l
GENERATE
AN rop 4

PULSE

"--y-J
GEN ERATE
AN rOP1

PULSE

15-0203

Figure 3-5 lOT Instruction Format

3-28

CP RUN

FETCH

EXECUTE

..J 1+- 60 NS

1II111111~

O-SONS MAX.-+! ~

11111111

11111111

~ 1+-160NS MAX.

) 800N!~\ ~
~Ij~----------------------~I lOT REQ. __ ~- L... ___ :..-

__ --1--1~&Y.I.IlllltJ0 T01~SEC \
lOT

lOT SYNC

lOP 1

lOP 2

lOP 4

lOT DONE

AC ON BUS

I
---1

I
1+-250 NS

I I I -+\ 1--1~SEC
____ ~I~~I --~k ________________ ~

I -9) I-1 ~ SEC /
I I¥' I,

1 -9) I --SOONS)
_____ ~I ___________ FTl~ ______ ~ ____ __

____ i __ ~r_-'~, __ r-~:~~~~ ________ __

: :- I L- ____ .L __________ ..L.. ____ _

15-0176

Figure 3-6 lOT Instruction Timing

3-29

c. A command code (bits 14 through 17) capable of being microprogrammed to clear
the AC and issue up to three pulses via the I/O bus.

The four machine cycles required to execute an lOT instruction consists of decoding of the lOT from

the central processor1s memory input buffer synchronization of the central and I/o processors, issuing

three sequential cycles of 1 ~ each to ensure lOP pulses at event times 1, 2, and 4, and finally the

fetch of the next instruction to be executed (see Figure 3-6). Bit 14 can be programmed to clear the

accumulator at the start of an lOT instruction. Bits 15-17 can be microprogrammed in any manner to

produce a pulse on the I/o bus for each bit set. Bit 17 causes an lOP 1 pulse, or the first pulse gen­

erated, and is normally used for testing the device status flags. Bit 16 generates an lOP 2 pulse, the

second pulse, and can be used in transmitting to or from a device to the processors. On "In ll transfers,

data is ORed from the I/O bus into the accumulator; therefore, bit 14, clear the accumulator, is typ­

ically used when a load the accumulator from a device is needed. Bit 15 produces lOP 4 pulse, the

third pulse, and is used for control and transfer of data from the accumulator to the device. A sum­

mary of lOP pulses is as follows:

a. IOP1 is normally used in an I/O skip instruction to test a device flag; however,
it can be used as a command pulse or a load of a device. It cannot be used to
initiate a IIread from" a device.

b. IOP2 is usually used to transfer data from the device to the computer, or to clear
a devi ce information register; it cannot be used to determine a "skipll condition.

c. IOP4 is usually used to transfer data from the computer to the devi ce; it cannot be
used to determine a IIskipli condition or to initiate a read from a device.

3.7.1 PDP-15 lOTs

Programming Note

Execution of an lOT instruction and the next instruction
in sequence cannot be interrupted; i.e., PDP-15 does
not grant an interrupt request unti I the instruction fol­
lowing an lOT (and which is not an lOT itself) has com­
pleted its function.

The following are internal PDP-15 lOTs:

lOT

10F

Basic lOT Command 700000

This instruction performs an lOT nop, i.e., it is an lOT which sets no device

select or subdevice select bits nor produces any lOP pulses.

Execution Time: 2-3 ~

Turn Interrupt Off 700002

Disables the Program Interrupt system of the PDP-15.

Execution Time: 3-4 ~

3-30

ION

10RS

PROGRAM TAPE
INTERRUPT PUNCH

ON FLAG*

,.--A--., ,---A--...

a 2

Turn Interrupt On 700042

Enables the Program Interrupt system of the PDP-15.

Execution Time: 3-4 fJS

I/O Read Status 700314

This lOT reads the status of various device flags into the AC. Figure

shows the device and the bit to which each device flag is assigned.

TELETYPE
PRINTER
FLAG*

~

3 14 I 5

REAL -
TIME

CLOCK
OVERFLOW

FLAG*

~

6 7

TAPE
READER

NO TAPE**

~

DEC
TAPE

FLAG *t

~

8 I 9 110 111

DISK
PACK*

,.-"--...

112 I

LI NE
PRINTER*

~

13 1 14 15 16 17

'--y--J '--y--J '--y--l '--y--l
TAPE TELETYPE LIGHT

READER KEYBOARD PEN
FLAG!! FLAG" OR

DISPLAY
FLAG*

REAL­
TIME
CLOCK

ENABLED

TAPE MAG TA PE*tt DEC
PUNCH DISK*

NO PUNCH

RESERVED FOR
SPECIAL USERS

DEV ICES

* WILL CAUSE A PROGRAM INTERRUPT

*t INCLUSIVE OR OF TRANSFER COMPLETION AND ERROR FLAGS

*tt INCLUSIVE OR OF MTF AND EF

** CAUSES A PROGRAM INTERRUPT THROUGH THE READER FLAG

CAF

SPCO

SK15

SBA

Clear All Flags 703302

CAF causes a power clear to be sent out on the I/O bus which will clear

all device flags which call for I/o interrupt service, and stop I/O bus

activity •

Execution Time: 3-4 fJS

Skip if PC-15 703341

This instruction tests to determine whether a PC15 paper-tape reader unit

is connected to the PDP-15. If it is, a skip wi II occur; if not, the next

sequential instruction in the program will be executed.

Execution Time: 2-3 fJS

Skip if PDP-15 707741

This is an unconditional skip in the PDP-15 but not in a PDP-4, 7, or 9.

Execution Time: 2-3 fJS

Ski P if Bank Addressi ng 707761

15-0202

This instruction wi II cause the next insi'ruction to be skipped if the PDP-15 is

in Bank Mode.

Execution Time: 2-3 fJS

3-31

DBA

EBA

Disable Bank Addressing 707762

Causes the PDP-15 to turn off Bank Mode and enter Page Mode. In Page Mode,

the index register may be added to operand addresses in forming effective

addresses.

Execution Time: 3-4 IJS

Enable Bank Addressing 707764

Causes the PDP-15 to enter Bank Mode and disables the index register from

being used in the calculation of effective addresses.

Execution Time: 4-5 IJS

3.7.2 Teletype Keyboard

KSF

KRB

KRS

Skip on Keyboard Flag 700301

Tests the Teletype keyboard flag and causes the next instruction to be skipped

if the flag is set, indicating that the keyboard control has assembled a char­

acter from the Tel etype.

Execution Time: 2-3 IJS

Read Keyboard Buffer 700312

This lOT clears the AC and then reads the contents of the keyboard buffer

into AC bits 10-17, and clears the keyboard flag.

Execution Time: 3-4 IJS

Keyboard Reader Sel ect 700332

This lOT clears the AC, reads the contents of the keyboard buffer into AC

bits 10-17 and enables the keyboard reader to advance another character.

Reading from the keyboard reader is done in full duplex mode {no character

echo}. This lOT can also be used to read, full duplex, from Teletype

keyboard.

Execution Time: 3-4 IJS

3.7.3 Teletype Teleprinter

TSF Skip on Teleprinter Flag 700401

Tests the status of the teleprinter flag to determine if the last character has

been printed. If the flag is set the next instruction wi II be skipped.

Execution Time: 2-3 IJS

3-32

TCF Clear Teleprinter Flag 700402

Clears the teleprinter flag which had been set at the completion of the

previous character.

Execution Time: 3-4 fJS

TLS Load and Select Teleprinter 700406

Clears the teleprinter flag, loads the teleprinter buffer from AC bits 10-17

and initiates printing of the character. The flag is set when printing is

completed.

Execution Time: 4-5 fJS

3.8 INDEX INSTRUCTIONS

The index instructions enable the programmer to transfer information between the accumulator, limit

register, and index register, clear the I imit register and index register, add a number contained in

the instruction itself (±256) to the accumulator, limit register, or index register and test to determine

if the index register is greater than or equal to the limit register.

All index instructions require two central processor cycles, but only one memory cycle, thus, allowing

the central processor to perform operations a! the same time as the I/O processor.

PLACE ACCUMULATOR IN INDEX REGISTER

721000 I >: : : < : ;,: : >: : : 0; : ;0: I PAX

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

PAX

721000

2 cycles (l memory cycle)

The contents of the accumulator are transferred to the index
register. The contents of the accumulator remain unchanged.

AC -+XR

3-33

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

PLACE ACCUMULATOR IN LIMIT REGISTER

PAL

722000

2 cycles (1 memory cycle)

The contents of the accumulator is transferred to the limit
register. The contents of the accumulator remain unchanged.

AC -.LR

PLACE INDEX REGIS TER IN ACCUMULATOR

PXA

724000

2 cycles (l memory cycle)

The contents of the index register are transferred to the accumu­
lator. The contents of the index register remain unchanged.

XR -.AC

3-34

PLACE INDEX REGISTER IN LIMIT REGISTER

726000 I : < : : < : >: : : < : >: : ;0: PXL

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

PXL

726000

2 cycles (1 memory cycle)

The contents of the index register are transferred to the limit
register. The contents of the index register remain unchanged.

XR -LR

PLACE LIMIT REGISTER IN ACCUMULATOR

PLA

730000

2 cycles (1 memory cycle)

The contents of the limit register are transferred to the accu­
mulator. The contents of the I imit register remain unchanged.

LR -AC

3-35

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

PLACE LIMIT REGISTER IN INDEX REGISTER

PLX

731000

2 cycles (l memory cycle)

The contents of the I imit register are transferred to the index
register. The contents of the limit register remain unchanged.

LR XR

ADD n TO INDEX REGISTER AND SKIP IF EQUAL TO OR GREATER
THAN THE LIMIT REGISTER

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

AXS n

725000 + n (n=9 bits)

2 cycles (l memory cycle)

n, a signed 9-bit (8 bits plus sign) 2 1s complement integer is
added to the contents of the index register, and the result is
placed in the index register. If the sum is greater than or
equal to the contents of the limit register I then the program
counter is incremented by 1 and thus the next instruction is
skipped.

XR + N XR
I f X R ~ L R I PC + 1 PC

3-36

ADO TO INDEX REGISTER

737 + n I : < : >: : >: : >: : : : : : : I AXR + n

Mnemonic I'~ame:

Octal Code:

Time:

Operation:

Symbolic:

AXR+n

737000 + n (n=9 bits)

2 cycles (l memory cycle)

n, a signed 9-bit (8 bits plus sign) 2 1s complement integer is
added to the content of the index register, and the result is
placed in the index register.

XR+N ~XR

ADD n TO ACCUMULATOR

723+ n I : < : >: : : < : : < : : : : : : I AAC + n

Mnemoni c Name:

Octal Code:

Time:

Operation:

Symbolic:

AAC+n

723000 +n (n=9 bits)

2 cycles (l memory cycle)

n, a signed 9-bit (8 bits plus sign) 2 1s complement binary num­
ber, is added to the content of the accumulator, and the result
is placed into the accumulator.

AC + N ~AC

3-37

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

CLEAR THE INDEX REGISTER

CLX

735000

2 cycles (1 memory cycle)

The content of the index register is replaced with all Os.
Former content is lost.

o -XR

CLEAR THE LIMIT REGISTER

736000 I : < : >: : : < : : 0; : : 0; : ;0: I CLLR

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

CLLR

736000

2 cycles (l memory cycle)

The content of the I imit register is replaced with all Os. The
former content is lost.

o -lR

3-38

Chapter 4
Addressing Features

4.1 INTRODUCTION TO MEMORY ADDRESSING

The PDP-15 Memory Reference instructi ons are used to operate on data that is stored in memory

locations. A memory reference instruction consists of an operation code and an address (see

Figure 4-1). The operation code determines how data is to be modified, and the address portion is

used to refer to a memory location. The contents of the referenced location are operated on accord­

ing to the operation code of the memory reference instruction. The address of a specifi c memory

location always remains the same, however, the contents of the location are subject to change de­

pending on the type of memory reference instruction executed.

4.2 TYPES OF ADDRESSING

The PDP-15 enables six types of addressing (refer to Table 4-1). Indexed addressing is allowed only

when the PDP-15 is in Page mode.

Address
Type

Direct

Indirect

Auto-Increment

Indexed

Indirect - Indexed

Au to- Increment Indexed

Table 4-1
Types of Addressing

Addressable Memory locations
Page Mode Bank Mode

4,096 8,192

32,768 32,768

131,072 131,072

131,072 Not used

131,072 Not used

131,072 Not used

4-1

The table indicates the two modes of addressing available, i.e., Page and Bank mode. Either

mode can be enabled or disabled through program control, or with a console switch at program start

time.

Page mode addressing causes the PDP-15 to use 12 bits (bits 6 through 17) of the memory reference

instruction as the operand address. The PDP-15 is, therefore, capable of directly addressing a max­

imum of 4096 memory locations. Indirect, Indexed, or Auto-increment addressing must be used to

reference an address not within the addressing range of the 12 bits.

Bank mode addressing causes the PDP-15 to use 13 bits (bits 5 through 17) of the memory reference

instruction as the operand address. The PDP-15 is, therefore, capable of directly addressing a max­

imum of 8192 memory locations in Bank mode. Indirect or Auto-increment addressing must be used

to reference an address not within the addressing range of the 13 bits.

PAGE MODE ADDRESS FORMAT

The memory reference instruction word format for Page mode operation is as follows.

o 3 4 5 6 17

I : : : : : : : : : : : : : : : : : I
I~[OPERATION

CODE INDICATES

INDICATES INDEXED
INDIRECT ADDRESSING ADDRESSING
WHE N SET WHE N SET

12 BITS SPECIFY
AN OPERAND ADDRESS

4-2

BANK MODE ADDRESS FORMAT

The memory reference instruction word format for Bank mode operation is as follows.

o 3 4 5 17

I : : : : : : : : : : : : : : : : : I
OPERAJION ;
CODE 13 BITS SPECIFY

INDICATES
INDIRECT ADDRESSING
WHEN SET

AN OPERAND ADDRESS

4.3 DESCRIPTION OF THE TYPES OF ADDRESSING

The following discussion is simplified by using mnemonics for the memory reference instructions. The

brief programming examples use octal memory addresses. Also, the absolute address of a specific

memory location is referred to as the Effective Address (EFA).

The mnemonics for the memory reference instructions are repeated below for easy reference.

CAL
DAC
JMS
DZM
LAC
XOR
ADD
TAD
XCT
ISZ
AND
SAD
JMP

Call subroutine
Deposit accumulator
Jump to subroutine
Deposit zero in memory
Load accumulator
Logical Exclusive OR
Add, lis complement
Add, 2 1s complement
Execute
Increment and skip if zero
Logical AND
Skip if AC different from memory
Jump

The program counter (PC) always points to the next instruction to be executed. Thus, in Bank mode

the PC is able to increment 20000 (octal) locations from memory address 00000 through 17777 of the

8K bank which con'tains the program. Refer to Figure 2-9 which illustrates memory organization in

terms of 4K pages, 8K banks, and 32K blocks.

4-3

4.3.1 Direct Addressing - Bank or Page Mode

The PDP-15 uses bits 5 through 17 in Bank mode, or bits 6 through 17 in Page mode, as the EFA for

direct addressing.

The following example illustrates direct addressing.

PC

000100

Instruction

202222 (LAC 02222)

In the example, the instruction fetched from location 000100 (located in page 0 of bank 0) specifies

II load the AC with the contents of location 222211 (located in page 0 of bank 0). Direct addressing is

indicated, and the EFA is 002222.

4.3.2 Indirect Addressing - Bank or Page Mode

Indirect addressing is specified when bit 4 of a memory reference instruction is set. Some of the fre­

quent uses of indirect addressing include building or retrieving blocks of data in core memory and

referencing memory locations outside of the page or bank containing the program.

The following examples illustrate indirect addressing (* specifies indirect addressing).

PC

000200

Instruction

221111 (LAC * 01111)

The instruction fetched from location 000200 specifies IIload the AC with the contents of the memory

location specified by the contents of 01111 (located in page 0 of bank 0). II If location 01111 con­

tained 000300, the EFA would be 000300, and the contents of 000300 would be loaded into the

accumulator.

Indirect addressing enables the user to reference memory locations within a 32K memory bank (000000

through 077777 octal). In the above example, memory location 300 can be referenced in any memory

page by specifying the page in address bits 3, 4, and 5:

PC

000200

Instruction

221111

4-4

(LAC * 01111)

If location 01111 contains 070300, the contents of location 300 in page 1 of bank 3 are loaded into

the accumulator.

4.3.3 Auto-Increment Addressing - Bank or Page Mode

The PDP-15 has eight special registers located in page 0, bank 0, block O. The eight registers are

memory locations 000010 through 000017. Whenever these registers are indirectly referenced by a

memory reference instruction, the content of the register is incremented by one before it is used as

the operand. The registers are called auto-inc!ement registers. The auto- increment feature is per­

formed only when the register is referenced indirectly. The registers act as any other memory location

when referenced directly.

An auto-increment operation can be initiated from any page, bank, or block of memory. The PDP-15

auto-increments whenever a memory reference instruction specifies indirect addressing, and the address

points to any location from 000010 through 000017.

Programming examples:

NOTE

The auto-increment register is incremented before the
content is used as the operand address.

Auto-increment from page 0, bank 0, block 0, and read the data word stored in location 001000 into

the accumulator.

Step 1

Step 2

Step 3

Set the auto-increment register to the operand address value -1.
In this case, 000777.

Reference the auto-increment register with indirect addressing
specified.

The auto-increment register increments by one, and the EFA
is now the new value (001000) in the register.

Steps 1, 2 and 3 are represented in assembly language form as:

Step 1 r LAC K777
lDAC 10

/Auto-increment register 10

Steps 2,3 {L~C * 10 /C(001000) loaded into AC

K777 000777 /Constant for initial ization

4-5

When operating from a memory bank other than bank 0, the initial contents of the auto-increment

register must be set up using indirect addressing. If direct addressing is used, locations 10 through 17

of the bank containing the program are referenced. For example, if operating in bank 2, Step 1 in

the previous example must be modified as:

Step 1

Step 2,3

K777
Kl0

LAC K777
DAC* K10

LAC* 10

000777
000010

4.3.4 Indexed Addressing - Page Mode Only

IDeposit in location 10 of page 0,
Ibank O.
Ic (001000) loaded into AC

IThese constants are located
lin the same memory bank
las the main program.

The PDP-15 central processor has an 18-bit index register (17 bits + sign) and a 17-bit program counter

(no sign) with appropriate data path and adder circuitry to compute 17-bit effective addresses.

Indexed addressing can only be used in Page mode operation and is indicated when bit 5 of a memory

reference instruction is set. With this "type of addressing, the user gains access to 131,072 memory

locations (000000 through 377777 octal) without adding an additional memory cycle to compute the

effective address (as does indirect addressing).

When indexed addressing is indicated, the effective address is calculated by 2's complement addition

of the 18-bit index register to the current block, bank, and page address, and bits 6 through 17

(address bits) of the memory reference instruction. The block, bank, and page address is indicated

by the program counter bits 1 through 5.

For example:

(XR) + (PC
l
-

5
) + (ADDR) = the effective address

Where XR is the index register; PC
l
-

5
is program counter bits 1 through 5; ADDR is the address portion

(bits 6 through 17) of the memory reference instruction.

The following example illustrates indexed addressing:

PC = 003000 LAC 100,X 1(210100 octa I)

XR = 000100

4-6

The instruction fetched from location 3000 specifies II load the AC with the content of the effective

address calculated by adding PC
l
-

5
(00), the XR (l00) and the address field of the instruction (l00)."

This results in an effective address of 000200, because:

000100
+000100

000200

(XR)
(PCl-5) + (ADDR)
(EFA)

If operating in an extended memory bank or block, indexed addressing can be used to reference other

pages, banks, or blocks above or below the operating area.

Programming example:

The program is operating in block 2, bank 0, page 1 and must reference location 1000 in block 3,

bank 3, page 1 (location 371000):

PC = 213000 LAC 1000, X /(211000 octal)

XR = 160000

The EFA is cakulat'ed in the following manner:

160000
+211000

EFA= 371000

(XR)
(PCl-5) + (ADDR)
(block 3, bank3, page 1, location 1 000)

The program is operating in block 2, bank 0, page 1, and must reference location 1000 in block 0,

bank 0, page 0 (location 001000).

PC = 213000

XR = 570000

The EFA is calculated by:

570000
+211000

EFA= 001000

LAC 1000, X /(213000 octal)

(negative val ue)

(XR)
(PCl-5) + (ADDR)

(block 0, bank 0, page 0, location 1000)

4-7

NOTE

The XR contains a negative value. In this case, it is the 2 1s
complement value of the current block, bank, and page.

All 18 bits (17 bits + sign) of the XR are involved when using
indexed addressing.

The EFA of the last example can also be calculated in the
following manner.

PC = 213000

XR = 570600

570600
+ 210200

001000

LAC 200, X

(XR)
(PC 1-5) + (ADDR)
EFA

/(210200 octal}

4.3.5 Indirect Indexed Addressing - Page Mode Only

Indirect indexed addressing is implemented only in Page mode and is indicated when both the indirect

addressing indicator (bit 4) and the indexed address indicator (bit 5) of the memory reference instruc­

tion are set.

When indirect indexed addressing is indicated, the PDP-15 central processor first calculates the

address indirectly referenced. This calculation is done in exactly the same manner as described in

the Indirect Addressing section. The PDP-15 carries the address calculation one step further, when

indirect indexing is specified. The contents of the index register are added to bits 3 through 17 of

the data word which was retrieved indirectly.

The addition (2 1s complement) of the XR is always the last step to occur (post indexing).

The following example illustrates indirect indexed addressing:

PC = 203000 DAC* 100, X /(070100 octal}

XR = 000100

location 200100 = 007000

The EFA is calculated as:

007000
+ 2

207000
+ 000100

207100

(Contents of location 200100)
(PC l-2)

(XR)
EFA

4-8

The instruction fetched from memory location 203000 specifies "deposit the contents of the accumulator

into the memory location calculated by retrieving the contents of memory location 200100 (location

100 of the current block, bank, and page) and add the contents of the index register to the contents

of memory location 200100. II

The indirect address pointer is calculated by appending bits 1 through 5 of the PC to the 12-bit address

(6 through 17) of the instruction word resulting in a 200100 address pointer. An additional memory

cycle is required to retrieve the contents (007000) of memory location 200100. Bits 1 and 2 of the PC

(current block) are then appended resulting in 207000. The contents of the XR are then added, result­

i ng ina fi na I E FA of 207100.

4.3.6 Auto-Increment Indexed Addressing - Page Mode Only

Auto-increment indexed addressing can be implemented only when operating in Page mode. This type

of addressing is specified when the indirect address indicator (bit 4) and the indexed address indicator

(bit 5) of the memory reference instruction are both set and address bits 6 through 17 equal a value of

10 through 17 octal.

When this type of addressing is specified, the PDP-15 central processor performs the following steps

to calculate the EFA:

Step

2

3

4

Procedure

The contents of the auto-increment register are retrieved, in­
cremented by one, and then restored in the register.

The new contents of the auto-increment register are used as an
address pointer.

The contents of the XR bits 0 through 17 are added (2 1s comple­
ment) to the address pointer.

The sum is used as the final, or effective address (EFA).

The following example illustrates this type of addressing: '

PC = 170245 DAC * 15, X /(070015 octal)
000015 = 000777
XR = 001000

4-9

Following the procedure given above, the EFA is calculated as:

000777 contents of location 15 } + 1 increment
Step 1

001000 new contents of location 15
used as address pointer

+001000 contents of XR Step 3

002000 EFA Step 4

4.4 SPECIAL ADDRESSING CASES

Certain instructions in the PDP-15 cross bank, page, and block boundaries ina special case, and other

instructions have limitations when crossing blocks.

JMS and JMP * Instructions

The JMS instructi on saves a 15-bit address at the subroutine entry point. This means that JMS,X

across block boundaries saves the return location address within a block, but not the block number.

A JMP * exit from a subroutine entered from a different block is not possible. A computed JMP,X

must be used.

CAL Instruction

The CAL instruction always falls to location 20 of block 0, bank 0, page 0, regardless of which block,

bank, or page it is issued from. This instruction has the same I imitations as the JMS instruction.

Au to- Increment Ins tructi ons

All auto-increment instructions (indirect memory references to locations 10-17 of any page, bank, or

block) increment the auto-increment registers in locations 10-17 of page 0, bank 0, block O. The

content of location 10-17 can point to any page, bank, or block.

All 18 bits are used as address bits. If the 18-bit address in the auto-increment register points to a non­

existent memory location and the memory protect option is installed, a nonexistent memory (NEXM)

error occurs. If the memory protect option is not available, the machine will hang, waiting for mem­

ory to respond to the request.

If a skip instruction (0 PERA TE, ISZ, SAD, or lOT) is located in the next to last memory location of a

bank, in Bank mode, or a page, in Page mode, and a skip is affected, the program will not wrap

around within the bank or page. Instead, the PC will be incremented over the bank or page boundary

to the first location of the next bank or page of memory.

4-10

4.5 PROCESSOR ADDRESSING

Program Interrupts

Program interrupts always go to location 0, page 0, of block 0 and save a 15-bit address {most­

significant address bits truncated} in the same fashion as CAL.

Automatic Priority Interrupts

Automatic priority interrupts can be directed through the I/O device to any location within block 0

using 15 bits of I/o address lines. The JMS or JMS * in the vector location is always to a location

within block 0 and the JMS ,X is relative to block o.

Three-Cycle Data Transfers

Three-cycle data transfers can transfer data anywhere within memory because the word count and cur­

rent address registers are 18 bits in length, however, the WC,CA register pair must be located within

block 0 and are specified by a 15-bit I/O address from the I/O device.

Single-Cycle Data Transfers

Single-cycle data transfers can be made to a" of memory. The I/O device must specify a 15-bit ad­

dress on the I/O address I ines and a 2-bit block number on the Program Interrupt Request and Skip

Request lines. These lines are dual purpose lines which act as the most significant address bits during

single-cycle transfers, only the increment Skip Request acts as address bit 1 and the Program Interrupt

Request as bit 2, bits 3-17 are represented by the I/O address lines. All single-cycle devices should

have provisions for generating 17-bit addresses.

4-11

Chapter 5
1/0 Processor System

5.1 GENERAL DESCRIPTION

The I/o processor is the communication link between a diverse line of peripherals and the PDP-15

main memory and CPU. The I/o processor system provides a number of facilities for data transmission.

These I/O facilities enable the I/o processor system to provide data transfers to/from memory, data

transfers to/from the CPU, command status transfers, and interrupts. The architecture design of the

I/o processor provides a number of benefits for the user:

a. Special purpose equipment can be easily and inexpensively interfaced to the system.

b. Synchronous and asynchronous devices can be handled with equal ease.

c. Real-time appl ications are easily implemented because of the speed and efficiency
of the I/O processor.

The capabil ities of the I/o faci I ities are described in Table 5-1 •

Facility

Table 5-1
I/O Capabilities

Remarks

Data Transfers To/From Memory

Multicycle Data Channel Input

Multicycle Data Channel Output

Add-to-Memory

Increment Memory

Used to transfer data to core memory in up to 18-bit
bytes at high speed (250 kHz) •

Used to transfer data directly from memory in up to
18-bit bytes. Maximum speed is 188 kHz.

Used to add the contents of a device register to the con­
tents of a specified core location in 18-bit bytes. Good
for signal averaging. Maximum speed is 188 kHz.

This faci I ity allows an external device to increment the
content of a core location by 1. Useful for generating
histograms. Maximum speed is 333 kHz.

5-1

Facility

Table 5-1 (Cont)
I/o Capabilities

Remarks

Data Transfers To/From Memory (Cont)

Single-Cycle Data Channel Output With this DMA faci I ity a device can transfer a burst of
data from core memory at 1 mHz in la-bit bytes.

Single-Cycle Data Channel Input

Addressable I/O Bus

Addressable I/O Bus

Read Status

Skip

Program Interrupt

Automatic Priority Interrupt

Used to 'transfer a burst of data from a devi ce to core
memory at 1 mHz per la-bit word.

Data Transfers To/From CPU

With this facility, up to 40 devices can transfer data in
la-bit bytes to or from the central processor. Cost of
interfacing is minimal. A typical transfer is one trans­
fer every 200 f.IS.

Command and Status Transfers

Command and status information can be transferred to or
from the CPU in the same manner as ordinary data.

This is a special facility designed to aid the user in
monitoring vital flags in the system. Each device is as­
signed a bit for its flag (s), which is read onto the ad­
dressable I/O bus into the CPU when the Read Status
command is given. No two devices should use the same
bit.

The addressable I/o bus allows the computer to test the
status of a flag (typica"y) by issuing a pulse which will
echo if the addressed flag is up. Every flag that posts
a program interrupt should be identifiable by the skip
facil ity.

Interrupts

A" devices share a common program interrupt line.
When a device posts an interrupt the computer is forced
to JMS to location 0, bank 0, and then on to a service
routine designed to identify the requesting device using
the skip facility. The process requires CPU and memory
overhead and takes time.

The automatic priority interrupt (API) fac il ity provides
priority servicing of many I/o devices with minimum
programming and maximum efficiency. Its priority
structure permits high data rate devices to interrupt the
service routines of slower devices, with a minimum of
system overhead.

5-2

5.2 I/o PROCESSOR PRIORITY STRUCTURE

All I/O related transfers function within the precedence of the following priority structure:

a. Data Channel (DCH) requests (highest priority)

b. Real-Time Clock (RTC) (optional)

c. Automatic Priority Interrupts (API), 8 Levels (optional)

d. Program Interrupts (PI)

e. Main Program in Progress {lowest priority)

The data channel requests are the highest priority and will be serviced first, even if all other requests

are raised simul taneously. If a lower priority request is being serviced and a DC H request is generated,

the DC H request must wait until the end of the current I/o activity execution to be serviced.

5.3 THE DATA CHANNEL CONTROLLER

The data channel confToller provides the system user with one channel for high-speed data transmission.

This channel has the capacity for eight I/O devices, which are chained linked. Devices using either

single-cycle block transfer or multicycle block transfer can easily be intermixed on this data channel

in any configuration desired.

5.4 MUL TICYCLE CHANNEL BLOCK TRANSFER

The data channel controll er supervises the multi cycle channel block transfer function. When the

multicycle block transfer has been initiated, the data transfer becomes completely automatic and re­

quires no access to the CPU. The CPU is free to do computation whi Ie the data channel is active.

The on Iy limitation on simultaneity I ies in sharing the main memory. Because the I/O processor has

first priority on memory requests, the CPU is effectively locked out for three cycles. As data channel

block transfers approach the maximum rate, (back-to-back breaks), the CPU can be completely locked

out.

To transfer data using the multicycle block transfer mode, the user must initialize two sequential core

locations. The contents of these core locations contain the word count and current address.

The word count represents the number of words to be transferred in the block. The current address

represents the location to which the data is to be transferred. The I/o processor contains the control

logic and I/o adder to automatically fetch the contents of these locations and increment the contents

of each.

5-3

The multicycle channel block transfer is a three-cycle sequence. Data is written into and read from

memory in three I/o processor cycles. The output cycle occurs during the third I/O processor cycle.

The I/o processor is stopped to allow settling of the I/O bus and control gates, prior to strobing

the data word into the device buffer register.

The multicycle block transfer is flowcharted in Figures 5-1 and 5-2. The data transfer is initiated by

an input/output instruction to the device after the two core locations have been initialized to minus

the word count and current address minus one. During the first cycle, the contents of the word count

location are incremented by one and restored. Dudng the second cycle, the current address is incre­

mented by one and restored. The I/o processor continues to transfer data sequentiany unti I the word

count register reaches zero, at which time an interrupt is generated to notify the monitor that the block

transfer is complete.

Assuming initial ization of the two core locations has taken place, the data transfer from device to

memory (see Figure 5-2) occurs as follows:

a. An instruction from the service routine enables the device controller. This allows
the device controller to request a data transfer from the I/O processor.

b. When the device controller's data buffer registers are full, the device issues a IIdata
channel request. II

c. The I/o processor acknowledges the request by returning a IIdata channel grant. II

d. The device controller then generates a fixed code pointing to the initial ized word
count core memory location. This fixed address is transmitted over the common I/O
bus address lines and is stored in the data storage register of the data channel con­
troller.

The I/o processor then generates a "memory cycle request. II The address data, in the data storage

register, is then stored in the memory address register of the memory bank; the data (word count),

from the first word of the two locations that the MA is now pointing to, is transmitted out of memory

and into the data channel controller's adder. The word count data is incremented by one and stored

back in memory.

When the word count data register overflows, a signal 0/Vord Count Overflow) is sent to the device to

terminate all future block transfers. The monitor is also notified that this condition exists.

During the second I/O processor cycl e, the fixed code from the device controller is gated through

the I/o adder and is incremented by one. The memory address register then receives th is address.

The contents of this address are read out of memory, incremented by one, then restored in, memory.

The new contents, known as the current address, will be the location where the next data transfer

occurs.

5-4

CENTRAL PROCESSOR

PROGRAM INITIALIZES
WORD COUNT AND
CURRENT ADDRESS
LOCATION

l
PROGRAM INITIALIZES DEVICE a STARTS DEVICE
WITH INSTRUCTIONS WHEN DEVICE HAS

I DATA READY OR
NEEDS DATA A RE-

I/O PROCESSOR QUEST IS PLACED

WHEN THE I/O PRO-
ON THE I/O BUS

CESSOR IS READY A I GRANT IS ISSUED
TO REQUESTI NG
DEVICE

I
THE DEVICE
SUPPLIES THE ADD-
RESS OF THE WORD
COUNT,CURRENT
ADDRESS PAIR

J

! DEVICE CLEARS ITS
THE I/O PROCESSOR IF WORD COUNT ENABLE AFTER
FETCHES, INCRE- ~ OVERFLOW, THEN A'N CURRENT WORD
MENTS, a REPLACES OVERFLOW IS SENT HAS BEEN
THE WORD COUNT TO DEVICE TRANSFERRED

~
THE I/O PROCESSOR
FETCHES,INCREMENTS,
a RESTORES THE
CURRENT ADDRESS

~
THE I/O PROCESSOR
FETCHES DATA
SPECIFIED BY THE CA,
PLACES IT ON THE
BUS

I
~

THE DEVICE STROBES
THE DATA INTO ITS
REGISTER

IS

NO DEVICE

1
STILL ENABLED

?
SET A PROGRAM YES
INTERRUPT TO
INDICATE DONE

CPU 1
PROGRAM I NTER-
RUPTED a NOTIFIED
THAT DEVICE IS
DONE

15-0004

Figure 5-1 Multicycle Out Block Transfer I Flowchart

5-5

CENTRAL PROCESSOR

PROGRAM INITIALIZES
WORD COUNT AND
CURRENT ADDRESS
LOCATION

• PROGRAM INITIALIZES DEVICE a STARTS DEVICE ---
WITH INSTRUCTIONS WHEN DEVICE HAS

I DATA READY OR
NEEDS DATA A RE- r-

110 PROCESSOR QUEST IS PLACED

WHEN THE 1/0 PRO-
ON THE I/O BUS

CESSOR IS READY A
GRANT IS ISSUED
TO REQUESTI NG
DEVICE .

I
THE DEVICE
SUPPLIES THE ADD-
RESS OF THE WORD
COUNT,CURRENT
ADDRESS PAIR

C DEVICE CLEARS ITS
THE 1/0 PROCESSOR IF WORD COUNT ENABLE AFTER
FETCHES,INCRE- __ OVERFLOW, THEN AN -"'" CURRENT WORD
MENTS, a REPLACES OVERFLOW IS SENT HAS BEEN
THE WORD COUNT TO DEVICE TRANSFERRED

1
THE I/O PROCESSOR
FETCHES, INCREMENTS,
a RESTORES THE
CURRENT ADDRESS

!
THE I/O PROCESSOR
TAKES DATA FROM
DEVICE AND
STORES IT IN
MEMORY LOCATION
SPECIFIED BY CA

I

IS

NO DEVICE

•
STILL ENABLED

?
SET A PROGRAM YES
INTERRUPT TO
INDICATE DONE

CPU t
PROGRAM I NTER-
RUPTED a NOTIFIED
THAT DEVICE IS
DONE

15-0004

Figure 5-2 Multicycle In Block Transfer, Flowchart

5-6

TO MEMORY BANKS

1
I MEMORY PORT SWITCH I

t I
~ r--- ------ --------------- --- - - -- - ------,

I

DATA
MEMORY MEMORY STORAGE - -,

REGI STER GRANT REQUEST

I
L __

I/O ADDER REQUEST/

L -- ----~ GRANT
LOGIC

MIXER LOGIC -- -----

I i
I
I
I I
I I
I I
I BUS BUFFER I
I I
I 110 I
I PROCESSOR I
L_ -- ------ - - ----- - - -- - - --- --- ___ ~~S!S2~-.J

l/OOFLO FROM TO/FROM BIDIRECTIONAL
I/O BUS I/O BUS DATA LINES

ADDRESS

DATA
CHANNEL

GRANT

DATA
CHANNEL
REQUEST

LI NES ~--------~----------~

TO
110 BUS

Figure 5-3 Multicycle Transfer Implementation

.----

'--

+

CENT RAL

SSOR PROCE

15 -000 5

During the third I/o processor cycle, the current address is read into the memory address register.

This address then points to the location where the I/O data word wi \I be transferred.

A memory request/grant synchronization again occurs, and the data in the storage register is strobed

into the memory location ending the cycle. Data output follows the same sequence, with the ex­

ception that one additional I/O processor cycle is required in order for the I/O bus to have sufficient

time to settle down before data from the bus is strobed into the device register.

5-7

5.5 SINGLE-CYCLE BLOCK TRANSFERS

Single-cycle block transfers (see Figure 5-4L are used by high-speed peripherals that normally

transfer complete records (blocks) of information, such as disks. A single cycle of the I/O processor

takes 1 fJS, a IIowing a maximum transfer rate.

Hardware reg isters, designed into the device controllers of the high-speed peripherals, store the

IIcurrent address II (the memory location where data is currently being transferred), and the IIword

count ll (the number of words remaining to be transferred in a block). These registers are loaded by

input/output transfer (lOT instructions issued by the CPU).

Device testing and initialization are handled by the CPU via lOTs to provide supervisory control. A

subsequent JOT initiates the data transfer. The I/o processor uses the current address information to

address core memory, then strobes the data between memory and the device controller buffer register.

PROGRAM INITIATE
WORD COUNT(WC) a
CURRENT ADDRESS
(CA)THEN ENABLES
THE DEVICE

DEVICE

DEVICE POSTS A
SINGLE CYCLE RE­

L---------I"QUEST WHEN
I/O PROCESSOR READY

DATA CHANNEL
GRANT IS ISSUED
WHEN I/O PRO­
CESSOR IS READY

DEVICE SUPPLIES
CURRENT ADDRESS

'---______ ~AND DATA TO 1/0

DATA CHANNEL
CONTROLLER RE­
QUESTS MEMORY
AND SUPPLIES
CURRENT ADDRESS
AND DATA IN
SEQUENCE

BUS, THEN INCRE­
MENTs ITS WORD
COUNTS

15-0006

Figure 5-4 Single-Cycle Block Transfer
Flowchart

5-8

Logic within the device controller then incre­

ments the current address register and the word

count register to provide sequential block

transfer.

When the word count register overflows at the

end of a block transfer, an interrupt is gener­

ated to allow the monitor system to take further

action. This action includes disconnecting the

devi ce from the I/O bus, or reloading the de­

vice controller registers for another block

transfer. The maximum number of transferrable

words in a single block is 131,072.

Figure 5-4 illustrates the method the data con­

troller uses to handle a single-cycle transfer.

Assuming that the program has initiated the

word count and address of the device controller

and has then enabl ed it, the following occurs:

a. The device controller sets a single­
cycle data channel request to the
J/O processor.

b • The I/o proc essor, as soon as it
becomes available, acknowledges
the request by returning a "data
channel grant. II The device then

b.
(Cont)

strobes both its current address and its data onto the I/o bus and to the processor. The
data channel controller feeds the current address through its adder to the data storage
register. A memory cycle is requested, and this address is strobed into the memory ad­
dress buffers. The data is then strobed off the 18 I/O data lines and into the memory lo­
cation specifi ed by the current address. During this operation, the device increments its
own word count and disables itself on overflow. It then sends an interrupt to the monitor
to indicate that its operation has been completed.

5.6 INCREMENT MEMORY

The increment memory mode enables an external device to add to the contents of any memory location

in a single-cycle operation. The device controller suppl ies the core address and the I/o processor

simply goes through the word-count cycle of a multicycle channel transfer. This effectively adds 1

to the specified location. This feature is particularly useful for in-core scaling and counting in pulse­

height analysis.

5.7 ADD-TO-MEMORY

Add-to-memory is a standard feature of the PDP-15 that adds unique capabilities to the already power­

ful I/o facilities. In add-to-memory mode, the contents of an external register can be added to the

contents of a memory location in four cycles. This feature is extremely valuable in signal averaging

and other processes requiring successive sweeps for signal enhancement.

The add-to-memory operation is a combination of multicycle data channel input and output operations.

The data transmitted by the device is added to a word read out of memory as specified by the current

address, and the resul t is rewritten into the same location. It is simultaneously transmitted to the de­

vice via the I/O bus.

5.8 PROGRAM-CONTROLLED TRANSFER

Program-controlled transfers, implemented by input/output transfer (lOT) instructions, can move up to

18 bits of data between a selected device and the accumulator (AC) in the CPU. The devices involved

are connected to the addressable I/o bus portion of the I/o processor. A total of up to 42 device

controllers can be attached to 'this bus. lOT instructions are microcoded to effect response only for a

particular device. The microcoding includes the issuing of both a unique device selection code and

the appropriate processor-generated input/output pulses to initiate a specific operation. For an "out"

transfer, the program reads a data word from memory into the AC. A subsequent lOT instruction places

the data on the bus, selects the device, and transfers the data to the device. For an "in" transfer, the

process is reversed: an lOT instruction selects the device and transfers data into the AC. A subsequent

instruction in the program transfers the word from the AC f'o memory.

5-9

As previously mentioned, lOT instructions are also used to initialize the single- and multicycle

channels and the transfer word count and current address information to the single-cycle controllers.

In addition, these instructions are used to test or clear device flags, select modes of device operation,

and control a number of processor operations.

The lOT instruction consists of the lOT fetch from core memory and three sequential cycles. The 10Pl

and IOP2 are 1 ~ intervals; the IOP4 is 500 fJS interval. The positive assertion of the lOT signal is

variable from 0 to 1 fJS. Thi,s variation is caused by I/o processor synchronizing. Refer to Chapter 3

for lOT instruction formats.

The total time required to fetch and execute an lOT instruction is a maximum of 5.02 fJS and a minimum

of 3.96 fJS. The I/O processor allows the generation of an 10Pl only or an IOP1 and IOP2 only as re­

quired. When an out transfer is used generating the IOP4, the full sequence of 10Pl and IOP2 are

also generated. Refer to Table 5-2 for total execution times of lOPs.

Table 5-2
Total Execution Times for lOPs

Total Time for lOT

Issue Instruction
Fetch and Execute

Min Max

10Pl (only) SKIP 2.21 fJS 3.27 fJS

IOP2 (only) In Transfer 3.21 fJS 4.27 fJS

10Pl and IOP2 In Transfer 3.21 fJS 4.27 fJS

IOP4 Out Transfer 3.96 fJS 5.02 fJS

The 10Pl is normally used in an I/O SKIP instruction to test a device flag. The 10Pl can be used as

a command pulse, but cannot be used to initiate a IIread from ll a device. Because the CPU accumu­

lator register is used for both data lIin ll and 1I0ut ll transfers, a lIc1ear AC II microinstruction (Bit 14)

can be used during the 1 ~ interval of the IOP1 •

The IOP2 is usually used to transfer data to and from the device to the computer, or to clear the de­

vice's information register. It cannot be used to determine a "skipll condition.

The IOP4 is normally used to effect programmed transfers of information from the AC to a selected

device.

5-10

CP RUN

FETCH

EXECUTE

lOT REQ.

lOT

lOT SYNC

lOP 1

lOP 2

lOP 4

lOT DONE

AC ON BUS

0- 60 NS MAX.~ l+-
11111111

ImlllM

--I \+-f60 NS MAX.

--I \+-60 NS

111111111\

) 800 N!I~"" ~
____ ~I¥~----------------------------~I------~~_

__ ~-I~~lIIjjOT01~SEC \

I
.....J \+-250 NS

I

....., j+- 1 Il- SEC /
----~~I~ ---~,,~ ________________ ~

-..J) 1-1 ~SEC /
__ ----II~ ~, __ ~

-I) I· 500NS /

--------~--------------~~~----------~------

______________ ~r~-_~~I __ ~r_-~~: __ ~r__l~
L ____ 1 __________ ~I ________ __

15-0176

Figure 5-5 lOT InstrucHon Timing

5.9 PROGRAM INTERRUPT FACILITY

The program interrupt (PI) system is standard on all PDP-15 Systems. The program interrupt (PI)

facility, when enabled, relieves the main program of the need for repeated flag searching byallow­

ing the ready status of I/o device flags, to automatically cause a program interrupt. The CPU can

continue with execution of a program until a previously selected device signals that it is ready to

transfer data. At that time, the program in process is interrupted and the contents of the program

counter (15 bits), user mode (l bit), link (l bit), and bank mode are stored in location zero. The

instruction, in location 000001, is then executed, transferring control to an I/O service routine.

When completed, the routine restores the system to the status prior to the interrupt, enabl ing the

5-11

interrupted program segment to continue. Where multiple peripherals are connected to the PI line,

a search routine containing device - status testing {skipping} instructions must be added to determine

which device initiated the interrupt request. The program interrupt {PI} control is enabled or dis­

abled by lOT instructions. When disabled, the PI ignores all service requests, but each request re­

mains on line and is answered when the PI is enabled. The program interrupt is automatically disabled

when an interrupt is granted or when the I/O Reset Key {on the console} is depressed. The program

interrupt is temporarily inhibited while the automatic priority interrupt system is processing a priority

interrupt request. The PIE indi cator {on the console} is I ighted while the PI is enabled.

A free instruction follows the program interrupt and therefore, the instruction in location 1 will always

be executed immediately after the program interrupt.

5-12

Chapter 6
Options

6.1 KE15 EXTENDED ARITHMETIC ELEMENT

The extended arithmetic element (EAE) option adds the hardware necessary to implement the EAE

instructions. This c lass of instructions, identified by an operation code of 64
8

, performs high-speed

data manipulation and multiply-divide operations as specified by microprogramming of individual

instructions. Figures 6-1 through 6-5 illustrate the microinstruction capabilities for register setup,

data shift, normal ize, multiply, and divide.

The time required to execute a~ EAE instruction is a function of the operation and/or the shift, or

step count specified by programming. In general, the following considerations apply to the different

types of EAE operati ons.

1. All set-up instructions require 1 .324 I-IS.

2. Long register shift instructions require a time e.qual to 2.915 IJS plus 0.133 IJS per
I n-1" bit-position shifts. This count is specified by the addition of n(octal) to the in­
struction code. For example, the input of the symbol ic instruction LLS+ 14 to the PDP-15
assembler would result in an instruction code that specified a long left shift of the AC
and MQ (taken as a 36-bit register) 12

10
bit positions to the left. This instruction would

require 4.378 I-IS.

3. The ASL and ALSS instructions, respectively, AC left shift and AC left shift signed, also
require the specification of lin. II

4. The normalizing instructions, NORM and NORMS, require an execution time equal to
2.9 jJS plus 0.133 jJS per number of bit positions shifted to normalize (ACO =I AC1)
quantity. These instructions are microprogrammed to set the 6-bit step count to 448
(3610). Hence, -44+n8 (the step count is entered in 2 1s complement notation at ex­
ecution) equals the biased scale factor of a normal ized quanti ty.

5. Multiply instructions require a time equal to 2.915 I-IS plus 0.265 I-IS per -1 lin II bit position
shifts. Multiply instructions are microprogrammed to set the step count to 228 (1810),
representing the multiplication of one 18-bit quantity (sign bit and 17 magnitude bits for
signed quantities) by another to produce a 36-bit product. The execution time is 7.420 jJS.

Where such precision is not required, the microprogrammed step count can be decreased
by subtracting the appropriate number lin II (octal) from the instruction code. The product
is always left justified in the AC, MQ. If II-nil is appended to a multiply instruction,
the IIn" low-order bits in the long register are meaningless.

6-1

6. Divide instructions require a time equal to 2.915 f..IS plus 0.265 f..IS per "n" bit position
shifts. Divide instructions are microprogrammed to set count to 238 (1910), representing
division of 9 36-bit dividend (actual or imp I ied) by an l8-bit divisor. The execution
time is 7.685 f..IS. Where such precision is not required, the microprogrammed step count
can be decreased by subtracting the appropriate number "n ll {octal from the instruction
code}. For example, the symbol ic instruction DIV-12 would result in a right-justified
quotient with the most significant bit in MQ9' The execution time is decreased in cor­
respondence to the decrease in the step count.

6. 1. 1 EAE Mi croinstructions

Figure 6-6 and Tables 6-1 and 6-2 describe the EAE instructions and illustrate the microinstructions

of the EAE instructions. If an existing instruction is not satisfactory, the programmer can combine

the appropriate microinstructions to achieve the required result.

0

o

OPERATION
CODE 64

SPECIFYING EAE

2

OPERATION
CODE 64

SPECIFYING EAE
1

2

3

3

CLEARS MQ
AT TIME
STATE B

,-A---"

4

'-y---J
S HI F TS

ACOO INTO
L AT TIME
STATE A

5 [6 [7

LOADS THE AC
WITH THE OR

CLEARS AC OF AC AND
AT TIME UNUSED IN THE MQ AT
STATE C SETUP TI ME STATE C

~ A ~

[8 [9 [10 11 12 13 [14 [15 [16 [17 [

"-...... --~yr---- '-y---J '-y-'
EAE COMM AND Os

FOR SETUP
COMPLEMENTS

THE MQ
LOADS

THE AC
WITH THE
OROFTHE

CONTENT OF

AT TI ME
STATE B

OR OF THE CONTENT OF WHEN BIT 6 IS
THE AC AND THE MQ AT A 1 AND BIT 7 IS
TIME STATE B A O,THE NUMBER IN

THE AC AND
THE SC Ar

TIME STATE B
LOADS THE MQ WITH THE}

SHIFTS ACOO INTO EAE AC THE AC IS CHANGED TO
SIGN FLIP-FLOP AT ITS ABSOLUTE VALUE

TIME STATE A

15 -0189

Note: Setup Instructions cannot be microprogrammed with
Normalize Multiplication or Division Instructions.

Figure 6-1 EAE Setup Microinstructions

CAN BE USED IN
IN MICROPROGRAMMING

SAME FUNCTIONS AS FOR
SETUP INSTRUCTIONS

STEP COUNTER PRE-SETTING
(SET TO THE NUMBER OF

BINARY POSITIONS TO BE SHIFTED)
A

4

"----y--J
SHIFTS

ACOO INTO
LATTIME
STATE A
SIGNED

5

A

6 7 8 9 10 11

'-_-----..y,.---_--J

EAE COMMAND
5S= LONG RIGHT SH I FT
6S=LONG LEFT SHIFT

7S=AC LEFT SHIFT

12 13 14 15 16 17

OPERATIONS

15-0190

Figure 6-2 EAE Shift Microinstructions

6-2

OPERATION
CODE 64

SPECIFYING EAE

UNUSED WITH
NORMALIZE
COMMANDS

~ ______ ~A~ ______ ~ r-------~A~--------~

STEP COUNTER PRE -SETTING
(USUALLY 448~NORMALlZE)

o

o

2

OPERATION
CODE 64

SPECIFYING EAE

2

OPERATION
CODE 64

SPECIFYING EAE

3 4 5 6 7 8 9 to t t t2 t3 t4 t5 t6 t7

3

'-----y----J
SHI FTS

ACOO INTO
L AT TI ME

STATE A FOR
SIGNED

OPERATIONS

EAE COMMAND
48 FOR NORMALIZE

15-0191

Figure 6-3 EAE Normalize Microinstructions

4 5

~
BIT41SA
o AND BIT 5

IS A , SO
THAT LINK IS

NOT DISTURBED
AND MQ IS CLEARED
AT TIME STATE B

6 7

SHIFTS ACOO INTO E A E AC
SIGN FLIP-FLOP AT TIME
STATE A

LOADS THEl MQ WITH THE OR
OF THE CONTENT OF THE AC
AND THE MQ AT TI M E
STATE B

8

EAE COMMAND
'8 FOR MULTIPLY

r------A--------.,

9 to tt t2 t3 t4 t5 t6 t7

'---y----I
CLEARS AC
AT TI ME
STATE C

~--------------"yr-------------~

STEP COUNTER PRE-SETTING
(USUALLY 228 FOR MULTI PLY)

15-0192

Figure 6-4 EAE Multiplication Microinstructions

USED WITH
INTEGER

DIVIDE TO
CLEAR THE

MQ AT TI ME
STATE B

USED WITH
INTEGER

DIVIDE TO
LOAD THE

MQ WITH THE
CONTENT OF

THE AC AT
TIME STATE B

EAE COMMAND
38 FOR DIVIDE

r-______ ~A~ ________ --., ,.---A--, r-___ ---'A~ ____ ----,

o 2 3 4 5

'-y---J
UNUSED

IN DIVIDE
SO THAT
LINK IS

~
USED WITH

SIGNED
DIVISION

TO SET
THE SIGN NOT DISTURBED

EXCEPT FOR
OVERFLOW

OF THE
DIVIDEND

ACOO INTO
THE EAE

SIGN FLIP-FLOP

'--y---J
USED WITH
INTEGER

DIVIDE TO
CLEAR THE

AC AT
TI ME

STATE C

to tt t2 t3 t4 t5 t6 t7

~ ____________ ~y~ ____________ -J

STEP COUNTER PRE - SETTING
(USUALLY 238 FOR DIVIDE)

15-0193

Figure 6-5 EAE Division Microinstructions

6-3

0-
I
~ I c;] MEMORY I INPUT

MEM IN

"I l L
: C BUS--A BUS: I

C BUS A BUS

~ C BUS- A BUS .r---
1------------------
I
I I ACCUMULATOR I I I STEP I ~ I MULTIPLIER I QUOT lENT

I COUNTER SIGN REGISTER

I
I
I
I I NO SHIFT t-
o

SHIF,9RLOGIC I I
L ___ ~X~~~~HMET~ ELEMEN2- ______

4 NO SHIFT I
OR

SHIFT LOGIC I

I

--,
I
I
I
I
I
I
I
I
I
I

-.J

15-0177

Figure 6-6 EAE Simplified Block Diagram

Table 6-1
EAE Microinstructions

EAE TIME I 0 l' I 2 ~j~ STATES 'J'1 ~~ V5~ ILl
6 7 8 /o/t'~~ /1 I "J '21'31'4)~~~~~

I \.) 1> •• r Q::;; \.)
y 0 • 0 5.1D EAE V

EAE OP CODE 0 ~I~ 1>=t
COMMAND EAE COMMAND" 000 I (64) ~ OC/) 000 Setup

, 0 II 000 Multiply LOAD STEP COUNT COMMON EVENTS r 1> II ...

A I (UNLESS o -0 010

OTHERWISE 011 Divide

I NOTED) rrl1> 100 Normalize
J>O 10 1 LonO Rioht

AC -+ C BUS
11'10 1 1 0 Lono Left

I C BUS -+ A BUS
~, 111 AC Left
z

I

I 0 :.~
".

•• 01

I MQ -+ C BUS (i) ~I~ J> ~,
C BUS -.. A BUS ID DC/)

I LD MQ
r ~O ~ ~ rrl

• MQ-.MQ 3:
DID

3:J>

B I •• 0 ~~ rrl DID

+ 3: 1> C
rrl C/)

0

I
0 0
ID 0
c 3:
C/) 3:

1 1>
Z --- 0<

I 0 II :.~ :.~ (i)
AC - .. C BUS 1> 0

~ ~ ~, 0

I C BUS -.. A BUS ID 0 r
LD AC rrl en 3:0 C/)o

C I :. AC -..AC 1> rrl DID OlD
(") -i , ~ ~~
~

c

I
~ 1> 1>

0 0
0
ID

I c
C/)

I

D I NO OPERATION
I

I (EAE COMMAND I ¢ 000)
E,F ALL SHIFT,MULTI-I PLY AND DIVIDE

OPERATIONS

15-0422

6-5

Bit
Positions

4

5

6

6,7

7

8

9,10,11

9,10,11

9,10,11

9,10,11

9,10,11

9,10,11

Binary
Code

1

1

1

10

1

1

000

001

010

011

101

110

Table 6-2
EAE Microinstructions

Function

Enter the content of ACO in the link for signed operations.

Clear the MQ.

Read the content of ACO into the EAE AC sign register
prior to-carrying out a signed multiply and divide opera­
tion.

Take the absolute value of the AC. Takes place after the
content of ACO is read into the EAE AC sign register.

Indusive OR the AC with the MQ and read into MQ.

Clear the AC.

Setup. Accompanies code in bits 15, 16, and 17.

Multiply. Causes the number in the MQ to be multipl ied
by the number in the memory location following this in­
struction. If the EAE AC sign register is 1, the MQ is
complemented prior to multiplication. The exclusive OR
of the EAE AC sign and the I ink is entered in the EAE sign
register.

The product is in the AC and MQ, with the lowest order
bit in MQ bit 17. At completion, the I ink is cleared and
if the EAE sign is a 1, the AC and MQ are complemented.

Unused operation code.

Divide. Causes the 36-bit number in the AC and MQ to
be divided by the 18-bit number in the memory register
following the instruction. If the EAE AC sign is 1, the
MQ is complemented prior to starting the division. The
exclusive OR of ACO and the link is placed in the EAE
sign register. The AC portion of the dividend must be
less than the divisor or divide overflow occurs. In such
cases, the I ink is set and divide does not occur. Other­
wise, the link is cleared. At completion of this instruc­
tion, if the EAE sign was a -1, the MQ is complemented.
Thus, the remainder has the sign of the dividend.

Long right shift. Causes the AC and MQ to be shifted right
together as a 36-bit register the number of times specified
in the instruction. On each step, the link fills AC bit 0,
AC bit 17 fills MQ bit 0, and MQ bit 17 is lost. The
I ink remains unchanged.

Long left shift. Causes the AC and MQ to be shifted left
together the number of times specifi ed in the instruction.
On each step, MQ bit 17 is fi lied by the I ink; the I ink re­
mains unchanged. MQ bit ° fills AC bit 17, and AC bit ° is lost.

6-6

Bit
Positions

9,10,11

9,10,11

12-17

15

16

17

Binary
Code

100

111

Mnemon i c Name:

Octal Code:

Time:

Operation:

Symbolic:

Table 6-2 (Cont)
EAE Microinstructions

Function

Normalize. Causes the AC and MQ to be shifted left to­
gether unti I the step count is equaled or AC bit 0 I- AC
bit 1. MQ bit 17 is filled by the I ink; the I ink is not
changed. The step count of this instruction is normally
44 (octal). When the step counter is read into the AC, it
contains the number of shifts minus the initia I shift count
as a 2 1s complement 6-bit number.

Accumulator left shift. Causes the AC to be shifted I eft
the number of times spec ified in the shift count. AC bit
17 is filled by the link, but the link is unchanged.

Spec ify the step count for a II EAE commands (9-11) except
the setup command.

The setup command only, causes the MQ to be comple­
mented.

The setup command only, causes the MQ to be inclusively
ORed with the AC and the result placed in AC.

The setup command only, causes the AC to be inclusively
ORed with the SC and the results placed in AC bits 12-17.

BASIC EAE INSTRUCTION

EAE+n

640000

Depen ds on instruction

The addition of "n" (octal) to the mnemonic converts the basic
instruction into a microcoded instruction to accompl ish a setup,
shift, or arithmetic operation not already in the instruction re­
pertoire. Refer to Table 6-1 for descripti ons of the functional
use of the individual bits of an EAE instruction. The sole re­
striction for the development of "n" is that the microcoded op­
erations must not occur during the same time state 1 if they log­
ically confl i ct.

No operation.

6-7

EAE SETUP

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

6400021

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

INCLUSIVE OR SC WITH AC

OSC

640001

1 .325 fJS

The contents of the AC are inclusively ORed with the 6-bit
contents of the step counter (SC) on a bit-by-bit basis. The
result is left in AC12-17. If corresponding SC and AC bits
are in the binary 1 state, the AC bit is set to 1. The previous
contents of the AC are lost. The contents of the SC are un­
changed.

SC V AC -+AC

INCLUSIVE OR MQ WITH AC

OMQ

640002

1 .325 fJS

The contents of the MQ are inclusively ORed with the con­
tents of the AC on a bit-by-bit basis. The result is left in the
AC. If corresponding MQ and AC bits are in the binary 0
state, the AC bit is cleared to o. If either of the correspond­
ing bits is in the binary 1 state, the AC bit is set to 1. The
previous contents of the AC are lost. The contents of the MQ
are unchanged.

MQ V AC -AC

6-8

6400041

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

COMPLEMENT MQ

CMQ

640004

1 .325 jJS

Each bit of the MQ is set or cleared to the inverse of its cur­
rent state. The previous contents of the MQ are lost.

MQ MQ

LOAD AC FROM SC

LACS

641001

1 .325 jJS

This microcoded instruction clears each bit of the AC to 0 and
then enters the contents of the SC in AC 12-17' The previous
contents of the AC are lost. The contents of the SC are un­
changed.

SC AC

6-9

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

LOAD AC FROM MQ

LACQ

641002

1 .325 !JS

This microcoded instruction clears each bit of the AC to 0 and
then enters the contents of the MQ in the AC. The previous
contents of the AC are lost. The contents of the MQ are un­
changed.

MQ -AC

LOAD AC WITH ABSOLUTE VALUE TO AC

6440001 :< : :< : :< : :< : :< : :<
Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

ABS

644000

1 .325 !JS

A microcoded instruction which complements the contents of
the AC (lis complement notation), if the content of ACO is 1.

If AC
O

= 1, AC -AC

6-10

ILACQ

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

CLEAR MQ

CLQ

650000

1 .325 jJS

Each bit of the MQ is cleared to O. The previous contents
of the MQ are lost.

o -MQ

LOAD MQ

LMQ

652000

1 .325 jJS

A microcoded instruction which clears each bit of the MQ to 0
and then enters the contents of the AC in the MQ. The previous
contents of the MQ are lost. The contents of the AC are un­
changed.

AC -MQ

6-11

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

GET SIGN AND MAGNITUDE OF AC

GSM

664000

1 .325 jJS

A micrododed instruction which enters the contents of the ACO
in the I ink and then complements the contents of the AC (lIs
complement notation), if ACO is a 1. The previous content of
th eli n k is los t.

ACo -L
If ACO = 1 , AC - AC

6-12

6.1.2 EAE Shifting Instructions

Mnemonic Name:

Octal Code:

Time:

Operation:

Graphic:

NORMALIZE

NORM

640444

2 .915 + O. 133 (n-l) * ~

The contents of the AC and the MQ are shifted left (i .e.,
leading zeros are shifted out) with the AC and MQ function­
ing as a serial 36-bit register until the content of the ACO
does not agree with the con'tent of AC 1, i. e., the bits
differ in their binary states, or the contents of the step
counter reaches zero.

This 6-bit counter is initial ized to the 2's complement of
448 (3610 steps). The contents of the six low order bits of
the NORM instruction word specify the step count. For
each sh ift step, the contents of MQO enter AC 17 and the
contents shifted out of ACO are lost. The content of the
link, usually initialized to zero, enters MQ17 to replace
the contents of vacated bits. If shifting halts because
ACO does not equal AC1, the contents of the step counter
reflect the number of steps executed to reach the condition.
The counter's contents (2's complement of the step count
plus the steps executed) are accessible through use of the
OSC or LACS instruction.

When not in user mode, or when the memory protect option is not
installed, two free instructions follow the execution of the NORM
instruction. A PI or API break cannot occur until the second in­
struction following the NORM instruction is compl eted.

o 17

ACCUMULATOR

o 17

MUL TIPLIER
QUOTIENT REGISTER

SC=O L
~I~

}- STOP SH I FTS

15-0194

*This quantity is also 0 for n=O.

6-13

Mnemonic Name:

Octal Code:

Time:

Operation:

Graphic:

Setup

Execution

*This quantity is 0 for n=O.

NORMALIZE, SIGNED

NORMS

660444

2 .915 + O. 133 (n-l) * fJS

The contents of ACO enter the I ink. Then, the contents of the
AC and the MQ are shifted left (i .e., leading zeros are shifted
out) with the AC and MQ functioning as a serial 36-bit register
unti I the contents of the AC O do not agree with the contents of
AC 1, i. e., the bits differ in their binary states, or the contents
of the step counter reaches zero.

This counter is initialized to the 2 1s complement of 448 (3610
steps). The contents of the six low order bits of the NORMS
instruction word specify the step count. For each shift step,
the content of MQO enters AC17 and the contents shifted out
of ACO are lost. The content of the link enters MQ17 to re­
place the contents of vacated bits. If shifting halts because
ACO does not equa I AC 1, the contents of the step counter re­
flect the number of steps executed to reach the condition.
The counter's contents (2 1s complement of the step count plus
the steps executed) are accessible through use of the OSC or
LACS instruction.

When not in user mode, or when the memory protect option is not
installed, two free instructions follow the execution of the NORMS
instruction. A PI or API break cannot occur unti I the second in­
struction following the NORMS instruction is completed.

AC O H LINK I
0 17

ACCUMULATOR MULTIPLIER
QUOTIENT REGISTER

~STOP SHIFTS

SC=O ~
15-0195

6-14

Programming Note

The EAE instruction set does not provide a convenient way
to restore the contents of the step counter. To obviate the
need to do so, the PDP-15 is designed to inhibit program
or automatic priority interrupts occurring for two instruc­
tions following the NORM or NORMS (normal ize, signed)
instruction. These two instructions are norma Ily a DAC fol­
lowed by a LACS which saves the contents of the AC, then
puts the contents of the step counter in the AC. Thus, if
interrupt-accessed subroutines make use of the EAE, the AC
and MQ are the only registers which must be preserved dur­
ing the interrupt, then restored in the EAE at the comple-
t i on of the interrupt serv ice.

LONG RIGHT S'HIFT

Mnemonic Name: LRS n

Octal Code:

Time:

Operation:

Graphic:

6405XX +n

t 2 .915 + O. 133 (n-l) !JS

The AC and MQ function as a 36-bit register to permit serial
shifting of their contents "n" bit positions to the right, "n"
being specified by the contents of the six low order bits of the
instruction word. Shifting halts when the contents of the step
counter, init~alized to the 2 1s complement of lin II , reach zero.
For each shift step, the contents of AC17 enter MQO and the
con tents sh i fted out of MQ 17 are lost. The contents of the Ii nk,
usually initial ized to zero, remains unchanged and enters ACO
at each step to replace the contents of vacated bits.

o 17 o

ACCUMULATOR

17

MUL TIPLIER

QUOTIENT REG ISTER
LOST

15-0196

tThis quantity is also 0 for n = O.

6-15

6605XX

Mnemonic Name:

Octal Code:

Time:

Operation:

Graphic:
Setup

Execution

LONG RIGHT SHIFT, SIGNED

LRSS n

6605XX +n

2.915 + O. 133 (n-l) t f.IS

The content of ACO is entered in the link. Then, the AC and
the MQ function as a 36-bit register to permit serial shifting
of their contents lin II bit positions to the right, lin II being
specified by the contents of the six low order bits of the in­
struction. Shifting halts when the contents of the step counter,
initialized to the 2 1s complement of IInll, reach zero. For each
shift step, the contents of AC 17 enter MQO and the contents
shifted out of MQ17 are lost. The content of the link remain
unchanged and enters ACO at each step to replace the contents
of vacated bits.

ACO H LINK

o

ACCUMULATOR

17

MULTIPLIER
QUOTIENT REGISTER

17

tThis quantity is also 0 for n = O.

6-16

LOST

15 -0197

Mnemonic Name:

Octal Code:

Time:

Operation:

Graphic:

LOST

LONG LEFT SHIFT

LLS n

6406XX +n

2 .915 + O. 133 (n-l) t iJS

The AC and the MQ function as a 36-bit register to permit serial
shifting of their contents "n" bit positions to the left, "n" being
specified by the contents of the six low order bits of the instruc­
tion word. Shifting halts when the contents of the step counter
initial ized to the 2's complement of lin II , reach zero. For each
shift step, the contents of MQO enter AC17 and the contents
shifted out of ACO are lost. The content of the link, usually in­
itialized to zero, remains unchanged and enters MQ17 at each
step to replace the contents of vacated bits.

o 17 o

ACCUMULATOR

17

MULTIPLIER
QUOTIENT REGISTER

15-0198

t This quantity is also 0 for n = O.

6-17

LLS n

6606XX I

Mnemonic Name:

Octal Code:

Time:

Operation:

Graphic:

Setup

Execution

LOST

LONG LEFT SHIFT, SIGNED

LLSS n

6606XX +n

2 .915 + O. 133 (n-l) t fJS

The content of AC is entered in the I ink. The AC and MQ
function as a serial 36-bit register to permit serial shifting to
their contents lin II bit positions to the left, IIn" being specified
by the contents of the six low order bits of the instruction word.
Shifting halts when the contents of the step counter, initial ized
to the 21s complement of "n", reach zero. For each shift step,
the contents of MQO enter AC17 and the contents shifted out
of ACO are lost. The content of the link remains unchanged
and enters MQ17 at each step to replace the contents of va­
cated bits.

ACo H LINK I
o 17

ACCUMULATOR

o 17

MUL TIPLIER
QUOTIENT REGISTER

15-0199

t This quantity is also 0 for n = O.

6-18

Mnemonic Name:

Octal Code:

Time:

Operation:

ACCUMULATOR LEFT SHIFT

ALS n

6407XX +n

2 .915 + O. 133 (n-l) t jJS

The contents of the AC are shifted IIn ll bit positions to the left,
IIn ll being specified by the contents of the six low order bits of
the instruction word. Shifting halts when the contents of the
step counter, initial ized to the 2 1s complement of lin II, reach
zero. For each shift step, "the content of the I ink, usually ini­
tialized to zero, enters AC 17 to replace the contents of vacated
bits. The contents shifted out of ACO are lost.

Graphic:

LOST ...-1 __ A_CC_U_M_U_L_A_TO_R_---Ir-f LIN K I
15-0200

ACCUMULATOR LEFT SHIFT, SIGNED

6607XX I : < : : < : : < : : < : >: : : < I AlSSn

Mnemonic Name:

Octal Code:

Time:

Operation:

Graphic

Setup

ALSS n

6607XX +n

2.915 + O. 133 (n-l) t jJS

The content of ACO enters the link. Then, the contents of the
AC are shifted IIn ll bit positions to the left, IIn ll being specified
by the contents of the six low order bits of the instruction word.
Shifting halts when the contents of the step counter, initial ized
to the 2 1s complement of IInlf, reach zero. For each shift step,
the content of the link remains unchanged and enters AC17 to re­
place the contents of vacated bits. The contents sh if ted out of
ACO are lost.

ACo Hr--L- , N-K----

Ex ec uti on LOST .-jL... __ A_CC_U_M_U_L_A_T_O_R_ K LI N K

15-0201

tThis quantity is also 0 for n = O.

6-19

6. 1.3 EAE Arithmeti c Instructions

6531221

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Data Structure:

Pre-execution:

Post execution:

MUL TIPLY, UNSIGNED

MUL

653122

7.420 I..IS

Multiply the contents of memory register Y (the multiplicand)
by the contents of the MQ (the multipl ier), and place the re­
sulting 36-bit product in the AC and the MQ with the more sig­
nificant half appearing in the AC. The address of Y is taken to
be sequential to the address of the MUL instruction word. Prior
to this instruction, the contents of the link must be zero and the
multiplier must be entered in the AC. During the set-up phase
of MUL I the multipl ier is transferred to the MQ, the AC is
cleared to zero, and the step counter is initialized to the 2 1s
complement of 228 (1810 steps); the six low order bits of the
instruction word specify the step count. The arithmetic phase,
executed as multiplication of one unsigned quantity by another
(18 bits, binary point of no consequence), halts when the step
counter counts up to zero. The content of the I ink remains zero.
The contents of Yare unchanged. The program resumes as the
next instruction (memory register Y + 1).

o -SC
Y • MQ -(AC, MQ)
o -L
PC+2 - PC

C=A·B

L AC MQ Y

0 A xxxx B

0 17 0 17 0 17

L AC,MQ Y

[QJ I C I I B I
0 35 0 17

6-20

INSTRUCTION SEQUENCE:

Register

Y-2
Y-l
Y
Y+l

Contents

LAC Multipl ier
MUL
Multipl icand
Next Instruction

MULTIPLY, SIGNED

6571221 >: : >: : : < : ;,: : : < : >: I MULS

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Data Strucf'ure:

MULS

657122

7. 420 l-'s

Multiply the contents of memory register Y (the multiplicand)
by the contents of the MQ (the multiplier), and place the signed
product in the AC and MQ with the sign notation and more sig­
nificant portion in the AC. Bits ACO and AC1 each receive the
sign of the product; the remaining AC and MQ bits represent the
magnitude of the product in lis complement form. The address of
Y is taken to be sequential to the address of the MULS instruction
word. The contents of the Yare taken to be the absolute value
of the mul tipl icand; the contents of the I ink are taken to be the
original sign of the multipl icand (MULS assume previous execu­
tion of an EAE GSM instruction, q.v.). Just prior to this MULS
instruction, the multipl ier must be entered in the AC. During the
setup phase of the MULS instruction, the multiplier is transferred
to the MQ and lis complemented if negative, the AC is cleared
to zero, and the step counter is initialized to the 2 1s complement
of 228 (1810 steps); the six low order bits of the MULS instruction
word specify the step count. The arithmetic phase, executed as
multiplication of one signed quantity by another (sign bit plus 17
magnitude bits, binary point position of no consequence), halts
when the step counter counts up to zero. The I ink is cleared to
zero. The contents of Yare unchanged. The program resumes at
the next instruction (memory register Y + 1).

o SC
Y • MQ (AC,MQ)
o L
PC+2 PC

C=A·B

6-21

Pre-execution:

L AC MQ

D I S I A xxxx 0

0 17 0 17 0

*Original sign of B.

Post execution:

L AC,MQ Y

0 I S I S C 0 B

0 2 35 0 17

S = L ¥- Sign A :

INSTRUCTION SEQUENCE:

Register Contents

Y-5
Y-4

Y-3
Y-2
Y-1
Y

Y+1

LAC Multiplicand
GSM (take absolute
value and save sign in
link)
DAC Y
LAC Multiplier
MULS
Multiplicand (absolute
value)
Next Instruction

6-22

Y
B

17

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Data Structure:

Pre-execution:

Post execution:

DIVIDE, UNSIGNED

DIV

640323

7.685 ~

Divide the contents of the AC and the MQ (an unsigned 36-bit
dividend) by the contents of memory register Y (the divisor).

DIV

The resulting quotient appears in the MQ; the remainder is in the
AC. The address of Y is taken to be sequential to the address of
the DIV instruction word. Prior to this, the contents of the I ink
must be zero, and the dividend must be entered in the AC and MQ
(LAC least significant half). If the divisor is not greater than the
AC portion of the dividend, divide overflow occurs (magnitude of
quotient exceeds the 18-bit capacity of the MQ), and the link is
set to one to signal the overflow condition; data in the AC and
the MQ are of no value. A val id division halts when the step
counter, initialized to the 2 1s complement of 238 (1910 steps),
counts up to zero (the six low order bits of the DIV instruction
word specify the step count). The contents of the Yare un­
changed. The program resumes at the next instruction (memory
reg ister Y + 1).

If Y ::;, AC, 1 -L (divide overflow)

If Y >AC,
o -SC
(AC,MQ)/Y -MQ (quotient), AC (remainder)

o -L
PC+2 -+ PC

A = BQ + r

L AC,MQ Y

0 A B

0 35 0 17

(no overflow)

L AC MQ Y

0 c=J ~ B

0 17 0 17 0 17

6-23

(overflow)

L AC,MQ Y

~ meaningless B

a 35 a 17

INSTRUCTION SEQUENCE:

Register Contents

Y-4 LAC Dividend (least
significant half)

Y-3 LMQ
Y-2 LAC Dividend (most

significant half)
Y-1 DIV
Y Divisor
Y+1 Next instruction

6-24

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Data Structure:

DIVIDE, SIGNED

DIVS

644323

7.685 I-lS

Divide the contents of the AC and MQ (a 36-bit signed dividend
with the sign in bits ACO and AC1 and the remaining 34 bits de­
voted to magnitude) by the contents of memory register Y (the
divisor). The resulting quotient appears in the MQ with the al­
gebraically determined sign in bit MQl-17. The remainder is in
the AC with bit ACO containing the sign of the dividend and bits
ACl-17 containing the magnitude (l's complement). The address
of Y is taken to be sequential to the address of the DIVS instruc­
tion word. The contents of Yare taken to be the absolute value
of the divisor; the contents of the link are taken to be the original
sign of the divisor (DIVS assumes previous execution of an EAE
GSM instruction, q.v.). Prior to this DIVS instruction, the div­
idend must be entered in the AC and MQ (LAC of lease significant
half, LMQ, and LAC of most significant half). The MQ portion
of a negative dividend is 1s complement prior to the division. If
the divisor is not greater than the AC porti on of the dividend,
divide overflow occurs (magnitude of the quotient exceeds the
17-bit pi us sign capacity of the MQ), and the I ink is set to one
to signal the overflow condition; data in the AC and the MQ are
of no value. A val id division halts when the step counter, in­
itialized to the 2's complement of 238 (1910 steps), counts up to
zero (the six low order bits of the DIVS instruction word specify
the step count). The content of the link is cleared to zero. The
contents of Yare unchanged. The program resumes at the next
instruction (memory register Y + 1).

If Y S I AC I , 1 -+L (divide overflow)
If Y > I AC I,
o .. SC
(AC ,MQ)/Y .. MA (quotient) f AC (remainder)
o .. L
PC+2 .. PC

I AI = B Q+r

6-25

Pre-execution:

L

~
Post execution:

(no overflow)
L

~
(overflow)

L

[Q

AC,MQ Y

I sl S I A I 10 I I B I I *Original sign of B
o 1 2 35 o 1 17

AC MQ

I S I r lJ I S I Q I! j 0 I 0 1 0 1

(S=Sign A) (S=Sign A ¥ L)

AC,MQ Y

Mean i ng less I 0 I I B I
0 35 0 17

INSTRUCTION SEQUENCE:

Register

Y-7
Y-6
Y-5
Y-4

Y-3
Y-2

Y-1
Y
Y+1

Contents

LAC Divisor
GSM
DAC Divisor in Y
LAC Dividend (least
significant half)
LMQ
LAC Dividend (most
significant half)
DIVS
Divisor (absolute value)
Next Instruction

6-26

Y

I B I J

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Data Structure:

Pre-execution:

L

~
o

INTEGER DIVIDE, SIGNED

IIDIVS

IDIVS

657323

7.685 ~

Divide the contents of the AC and the MQ (AC is zero, MQ
contains a signed integer dividend) by the contents of memory
register Y (the divisor). The resulting quotient appears in the'
MQ with the algebraically determined sign in bit MQO and the
magnitude (lis complement) in bitsMQl_17' The remainder is
in the AC with bit ACO containing the sign of the dividend and
bits AC l - 17 containing the magnitude (lIs complement). The
address of Y is taken to be sequential to the address of the IDIVS
instruction word. The contents of Yare taken to be the abso­
lute value of the divisor; the contents of the link are taken to be
the original sign of the divisor (IDIVS assumes previous execu­
tion of an EAE GSM instruction, q.v.). Prior to this IDIVS in­
struction, the dividend must be entered in the AC (the setup
phase of IDIVS transfers the dividend to the MQ, clears the AC,
and lis complements the MQ if the dividend is negative).
Divide overflow occurs only if division by zero is attempted;
i.e., the quotientls magnitude will not exceed the 17-bit plus sign
capacity of the MQ. The division halts when the step counter,
initialized to the 2 1s complement of 238 (l910 steps), counts up
to zero (the six low order bits of the IDIVS instruction word
specify the step count). The contents of the I ink are cleared to
zero. The contents of Yare unchanged. The program resumes
at the next instruction (memory register Y + 1).

o ---SC
MQjY -MQ (quotient), AC (remainder)
o -L
PC+2 --- PC

A = B Q+r

AC, MQ Y

A I xxx [0 I I B I
17 1 35 o 17

*Original sign of B

6-27

Post execution:

AC MQ

(s=Sign A) (s=L ¥ Sign A)

If Y=O (overflow)

L AC,MQ Y

QJ meaningless a

INSTRUCTION SEQUENCE:

Register

Y-5
Y-4
Y-3

Y-2
Y-l
Y
Y-l

Contents

LAC Divisor
GSM
DAC Divisor {absolute
value} in Y
LAC Dividend
IDIVS
Divisor (absolute value)
Next Instructi on

6-28

Y

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Data Structure:

Pre-execution:

Post execution:

If Y=O (overflow)

INTEGER DIVIDE, UNSIGNED

IDIV

653323

7.685 fJS

Divide the contents of the AC and the MQ (AC is zero, MQ con­
tains a 18-bit integer dividend) by the contents of memory regis-
ter Y (divisor). The resulting quotient appears in the MQ; the
remainder is in the AC. The address of Y is taken to be sequential
to the address of the IDIV instruction word. Prior to this instruc­
tion, the contents of the I ink must be zero, and the dividend must
be entered in the AC (the setup phase of IDIV transfers the dividend
to the MQ and clears the AC). Division overflow occurs only if
division by zero is attempted, i.e., the quotient's magnitude will
not exceed the 17-bit plus sign capacity of the MQ. The division
halts when the step counter, initialized to the 2's complement of
230 (1910 steps), counts up to zero (the six low order bits of the
IDIV instruction word specify the step count). The content of the
I ink is cleared to zero. The contents of Yare unchanged. The
program resumes at the next instruction (memory register Y+1).

o -SC
MQjY - MQ (quotient), AC (remainder)
o -L
PC+2 - PC

A = BQ+r

L AC MQ Y

GJ A XXX B

0 17 35 0 17

L AC MQ Y

0 [Q B

0 17 0 17 0 17

L AC,MQ Y

~ meaningless o

6-29

6503231

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Data Structure:

INSTRUCTION SEQUENCE:

Register

Y-2
Y-l
Y
Y+l

Contents

LAC Dividend
IDIV
Divisor
Next Instruction

FRACTION DIVIDE, UNSIGNED

FRDIV

650323

7.685 !..IS

Divide the contents of the AC and the MQ (AC contains an
18-bit fractional dividend, MQ is zeroed at stepup) by the
contents of memory register Y (the divisor). The binary point
is assumed at the left of ACO. The quotient appears in the MQ;
the remainder is in the AC. The address of Y is taken to be
sequential to the address of the FRDIV instruction word. Prior
to this instruction, the contents of the I ink must be zero, and
the dividend must be entered in the AC (the set-up phase of
FRDIV clears the MQ). If the divisor is not greater than the
dividend, divide overflow occurs (magnitude of quotient exceeds
the 18-bit capacity of the MQ), and the link is set to one to
signal the overflow condition; data in the AC and the MQ are
of no value. A valid division halts when the step counter,
initialized to 238 (1910 steps), counts up to zero (the six low
order bits of the FRDIV instruction word specify the step count).
The contents of the link remain zero. The contents of Yare
unchanged. The program assumes at the next instruction (memory
register Y + 1).

If Y .::; I AC I, 1 L {divide overflow}
If Y >AC ,
o SC
AC/Y -MQ (quotient), AC {remainder}
o -L
PC+2 -PC

A = BQ+r

6-30

Pre-execution:

L AC MQ Y

OJ A xxx B

0 17 35 0 17

Post execution: (no overflow)

L AC MQ Y

G I I Q l I B I
0 17 0 17 0 17

(overflow)

L AC,MQ Y

[i] I mean i ng less I I B I
0 35 0 17

INSTRUCTION SEQUENCE:

Register Contents

Y-2 LAC Dividend
Y-1 FRDIV
Y Divisor
Y+1 Next Instruction

6-31

Mnemonic Name:

Octal Code:

Time:

Operation:

Symbolic:

Data Structure:

FRACTION DIVIDE, SIGNED

FRDIVS

654323

7.685 fJS

Divide the contents of the AC and the MQ (AC contains a 18-bit
signed dividend with the sign in bits ACO and ACl and the remain­
ing 16 bits devoted to magnitude, MQ is zeroed at setup) by the
contents of memory register Y (the divisor). The binary point is
assumed between ACO and AC1. The resulting quotient appears
in the MQ with the algebraically determined sign in bit MQO and
the magnitude (lIs complement) in bits MQl-17. The remainder
is in the AC with bit ACO containing the original sign of the divi­
dend and bits ACl-17 containing the magnitude (lIs complement).
The address of Y is taken to be sequential to the address of the
FRDIVS instruction word. The contents of Yare taken to be the
absolute value of the divisor; the contents of the link are taken to
be the origi nal sign of the divisor (FRDIVS assumes previous exe­
cution of an EAE GSM instruction, q.v.). Prior to this FRDIVS
instruction, the dividend must be entered in the AC (the setup
phase of FRDIVS clears the MQ and lis complements the dividend,
if negative, prior to the division). If the divisor is not greater
than the dividend, divide overflow occurs (magnitude of the quo­
tient exceeds the 18-bit capacity of the MQ) and the link is set
to one to signal the overflow condition. Data in the AC and the
MQ are of no val ue. A val id division halts when the step counter,
initial ized to the 2 1s complement of 238 (1910 steps), counts up to
zero (the six low order bits of the FRDIVS instruction word specify
the step count). The contents of the link are cleared to zero.
The contents of Yare unchanged. The program resumes at the
next instruction (memory register Y + 1).

If Y S: AC, 1 - L (divide overflow)
If Y >AC,
o -SC
AC/Y -MQ (quotient), AC (remainder)
o -L
PC+2 - PC

A = BQ+r

6-32

Pre~execution:

AC MQ

sis I A XOX

o 2 17 35

*original sign of B

Post Execution:

L

OJ

(no overflow)

AC

I s I 1 o 17
(s=Sign A)

(overflow)

AC,MQ

mean i ng less

Y

o B

o 17

Y

B

o 35 o 1 17

INSTRUCTION SEQUENCE:

Register

Y-5
Y-4
Y-3

Y-2
Y-l
Y
Y+l

6.2 KM15 MEMORY PROTECT

Contents

LAC Divisor
GSM
DAC Divisor (absolute
value) in Y
LAC Dividend
FRDIVS
Divisor (absolute value)
Next Instruction

The KM15 provides the PDP-15 with the capability of running in a background/foreground environment.

This capability is accomplished through a programmable boundary register, which establishes the bound­

ary between protected and unprotected areas of core memory. There is also a specifi c set of instruc­

tions termed illegal, because they would interfere with background/foreground operation.

A PDP-15, equipped with a KM15 Memory Protect option, has two modes of operation: User Mode

(KM 15 enabled) and Monitor Mode (KM 15 disabled).

When operating in User Mode, the KM15 monitors addresses and instructions to determine their legality

and prevent execution of anything illegal. When operating in Monitor Mode, operation is identical

to normal PDP'" 15 operation. When in User Mode, upon detection of a violation, a flag is raised,

User Mode is turned off, and a pseudo program interrupt is caused.

6-33

When enabled, the option traps the following:

OAS
lOT
HLT
XCT of XCT
References be low the boundary
References to nonexistent memory

User Mode is enabled by either placing the Protect switch on the console in the 11111 position and

depressing the Start key, or by issuing the lOT, MPEU.

User Mode is disabled in the following ways:

I/o Reset Key
Detection of ,a violation
CAL Instruction
Program Interrupt
API Interrupt

The state of the Protect Mode (a 11111 for User Mode) is stored in bit 2 of the storage word by those

operations that save the state of the machine (CAL, JMS, PI, and TRAP). For a violation, the Stored

Address is one more than the location containing the violation instruction, except for a JMP to a pro­

tected area. In this case, the stored PC equals the Protected Address.

Not all memory reference instructions are prevented from addressing below the boundary; any IIread ll

instruction with the exception of JMP and ISZ is permitted to address below the boundary, because a

read instruction cannot modify core. All write instructions and JMP and ISZ are prevented from ad­

dressing below the boundary.

A nonexistent memory violation is one in which a reference is made to a memory location which does

not exist in that particular system. When running in User Mode, such a violation causes the Protect

violati on flag and the nonexistent memory flag to get set and the computer proceeds through the trap.

When running in Monitor Mode, a reference to a nonexistent memory causes the nonexistent memory

flag to get set and the computer hangs up waiting for memory to respond. Because a memory with that

address is not present, the computer remains hung until manually reset by depressing Stop and Reset at

the same time.

All violations trap to address 20 where the state of the machine is saved. The instruction in 21 is then

executed. However, if the program interrupt faci! ity is enabled prior to the trap, the trap goes to ad­

dress 0 where the state of the machine is saved and location 11111 is executed. The program interrupt

faci lity is disabled as when servicing any program interrupt. The API, if present, is raised to Level 3.

Some special cases of importance are explained as follows.

6-34

CAL Instruction

When in User Mode and the CAL is executed, User Mode is disabled (Monitor Mode envoked). The

CAL goes to location 20 as usual and saves the state of the machine. No violation occurs.

Program Interrupt

When a program interrupt occurs, User Mode is disabled. The interrupt goes to location 0 and saves

the state of the machine. No violation occurs.

Automatic Priority Interrupt

An API break causes Monitor Mode to be entered. The instruction in the address specified by the I/o
device is executed. No violation occurs. The instruction in this address is usually a JMS, JMS I, or

a CAL to the device handler. The device handler entry receives the state of the machine.

Data Channel

Data channel operations do not cause violations, even though they can reference addresses below the

boundary. They do, however, produce a nonexistent memory violation, if nonexistent memory is

referenced.

Real-Time Clock

The real-time clock increments address 7, which is below the boundary. No violation occurs. How­

ever, attempts to reinitialize address 7 must be done in Monitor Mode.

Auto Increment Register

The auto increment register can be used while in User Mode. No violation occurs, unless the address

to which the register points is below the boundary., Reinitialization of these registers must be done in

Monitor Mode.

DBR and RES Instructions

The DBR and RES instructions can be used to return to User Mode from Monitor Mode. This is accom­

plished by issuing DBR or RES and then a JMP I to the subroutine entry. If bit 2 is a "1" in the indirect

location, User Mode is restored. The instruction set for the KM15 option is listed in Table 6-3.

NORM Instruction

In User Mode, the execution of a NORM instruction wi II not cause two free instructions following the

NORM.

6-35

Table 6-3
KM 15 Instruction Set

Mnemonic Octal Code Operation Executed

MPSNE 701741 Skip on Nonexistent Memory flag

MPSK 701701 Skip on Protect Violation flag

MPEU 701742 Enter User Mode. Actual entry
occurs after the start of the next
instruction.

MPCV 701702 Clear Protect Violation flag

MPCNE 701744 Clear Nonexistent Memory flag

MPLD 701704 Load the boundary register with
the contents of AC 01-09.

The following are sample programs which demonstrate how to program the KM 15 option:

1 • How to enter User Mode.

.LOC 100
LAC X
MPLD
MPEU
JMP * Y

/x=value to be set into boundary reg.
/Ioad boundary reg.
/ enter User Mode
/Y contains starting address of User's
/program. Should be greater than
/value in X.

2. What happens when violating instruction occurs in program •

• LOC

.LOC

.LOC

500
LAC Z
lAC
DAC 200

20
100503

21
MPSNE
SKP
JMP NEXMER
MPSK
SKP
JMP PVER

/Z is above the boundary

/200 is below the boundary
/DAC does not get executed

/User Mode and address + 1 saved

/Check NEXM flag
/No
/Yes, Handle it
/Check PV flag
/No
/Yes, Handle it

6-36

3. How to get back into program after interrupt •

• LOC

.LOC

o
100510
JMP PISERV

150
DBR or RES
JMP * 0

/Bit 2=11111 User Mode was on.

/End of PI service routine
/User Mode wi II be restored.

6.3 KTl5 MEMORY PROTECT AND RELOCATE

With the K Tl5, the PDP-15 has the capabil ities of a programmable core allocation register or upper

boundary register for specifying protected areas of core, a programmable relocation register for speci­

fying a base address to which all addresses from the CPU are added producing a relocated address and

an illegal instruction set. The KTl5 also provides a detection network for detecting addressing of

nonexistent memory.

A PDP-15, equipped with a KTl5 Memory Protect and Relocate option, has two modes of operation:

User Mode (KTl5 enabled) and Monitor Mode (KTl5 disabled). In Monitor Mode, the relocation and

protect hardware are disabled and the machine functions as it' would without a KTl5. A program run­

ning in Monitor Mode addresses real locations within the system. In User Mode, the relocation and

protect hardware is enabled. The machine is programmed as though the user had the machine all to

himself. His memory begins from location 0 and goes up to and includes the last 256
10

word page

specified by the core allocation register (upper boundary register). In the real machine, the program

is located from the contents of the relocation register up. In User Mode, addresses and instructions

are checked for their legal ity. Anything illegal is trapped (hardware activated JMS).

Trap is a condition where the execution of an illegal instruction is inhibited and the systems monitor

takes control.

The definition of a real machinc: in reference to the memory and relocate option is a machine having

an absolute addressable bank 0 memory. While a virtual machine is defined as having a relative bank 0

addressing capacity.

The following instructions are trapped in User Mode.

OAS
lOT
HLT
XCT of XCT
References above the boundary
References to nonexistent memory

6-37

User Mode is enabled by either placing the Protect switch on the console in the 11111 position and

depressing the Start key, or by issuing the lOT MPEU.

User Mode is disabled in the following ways:

I/O Reset Key
Detection of a violation
CAL instruction
Program Interrupt
API Interrupt

The state of User Mode is stored in bit 2 of the storage word (a 11111 for User Mode, a 110 11 for Monitor

Mode) by those operations that save the state of the machine (CAL, JMS, PI, and TRAP).

A nonexistent memory violation is one in which a reference is made to a memory location which does

not exist in that particular system. When running in User Mode, such a violation causes the protect

violation flag and the nonexistent memory flag to get set; the computer proceeds through the trap.

When running in Monitor Mode, a reference to a nonexistent memory causes a nonexistent memory

flag to set, and the computer hangs up waiting for memory to respond. Because a memory with that

address is not present, the computer remains hung until manua lIy reset by depressing Stop and Reset

at the same time.

All violations trap to address 20 in the real machine where the state of the machine is saved. The

instruction in real 21 is then executed. However, if the program interrupt facility is enabled prior to

the trap, the trap goes to real address 0 where the state of the machine is saved and real location 11111

is executed. The program interrupt facility is disabled, as it is when servicing any program interrupt.

The API, if present, is raised to Level 3.

Some special cases are defined below.

CAL Instructi on

When in User Mode with the CAL instruction given, the User Mode is disabled (Monitor Mode envoked).

The CAL goes to location 20 in the real machine (not the relocated machine) and saves the state of the

machine. The PC saved is the virtual PC. The virtual PC is equivalent to the PC, if the program were

operating from location 0 up.

Program Interrupt

When a program interrupt occurs, the User Mode is disabled and the interrupt goes to real location O.

The state of the machine is saved in real 0 and real 1 is executed.

6-38

Automatic Priority Interrupt

When in User Mode, an API break causes Monitor Mode to be entered, and an instruction in the real

machine address, specified by the I/o device, is executed. This instruction is usually a JMS, JMS I,

or a CAL to the device handler. The device handler runs in Monitor Mode. The device handler entry

receives the state of the machine.

Data Channel

Data channel operations are never relocated.

Real-Time Clock

The real-time clock always increments real location 7. Attempts to reference the contents of location

7 in the real machine must be done in Monitor Mode.

Auto Increment Register

Each user has a complete set of auto increment registers located in locations 10 to 17 of the user's vir­

tual machine. In addition, 10 to 17 in the real machine may be used in Monitor Mode •

. DBR and RES Instructions

The DBR and RES instructions may be used when returning from Monitor Mode. The protect bit in the

indirect location causes relocation if it is a 11111. Since CAL, PI, API, JMS, and TRAP save the vir­

tual PC, returns are sent to the correct location in memory. The virtual PC is restored and User Mode

is envoked.

The instruction set for the KTl5 is listed in Table 6-4.

Table 6-4
KTl5 Instruction Set

Mnemonic Octal Code Operati on Executed

MPSK 701701 Skip on Protect Violation flag

MPCV 701702 Clear Protect Violation flag

MPLD 701704 Load core allocation register
(boundary register) with contents of
AC or 01-09.

MPSNE 701741 Skip on Nonexistent Memory flag

MPEU 701742 Enter User Mode

6-39

Table 6-4 (Cont)
KTl5 Instruction Set

Mnemonic Octal Code Operation Executed

MPCNE 701744 Clear Nonexistent Memory flag

MPLR 701724 Load relocation register with contents
of AC 01-09.

The core allocation register of boundary register specifies the amount of core available to the user.

An example of how to set the BR (boundary register) follows.

If the User is allotted 4K of core", the AC is loaded with bits 6, 7, 8, and 9. The lOT MPLD then

loads the BR with those bits. Because bits 10-17 are not included in the BR and therefore not checked,

addresses up to and including 7777 are legal. Address 10000, however causes a violation. Thus, the

user was allotted 4K of core. The user can be allotted as little as 256
10

locations by setting the BR

to all zeros. Then, addresses 0 to 377 are legal; address 400 is illegal.

A few simple programming examples are given below.

1. Sequence for entering User Mode.

.LOC 100
LAC X
MPLD
LAC Y
MPLR

MPEU
JMP 0

/X= 017400
/Set BR for 8K
/Y = 010000
/Set relocation register for base
/of 10000.
/Enter User Mode
/0 gets relocated to 10000

Example 1 The user was alloted 8K of core and his storage area started
in real address 10000. If the actual starting address of the
user's program was an address other than 0, the JMP instruc­
tion should be modified to refl ect this.

2. What happens when violating instruction occurs in a program? (Operating under
Example 1 conditions.)

Relocated 200/ LAC * Z

Rea I 20/ 100201

Real 21/ MPSNE
SKP
JMP NEXMER

/Z=020000

/User Mode and virtual
/address +1.

/Check NEXM flag
/No
/Yes, Handle it

6-40

MPSK
SKP
JMP PVER

/Check PV flag
/No
/Yes, Handle it

3. How to return after interrupt. (Operating under Example 1 conditions.)

Real 0/
1/

100300
JMP PI SERV

Real 150/ End of PI service
DBR or RES
JMP * 0

6.4 MP15 MEMORY PARITY

/User Mode was on
/Go service interrupt

/User Mode will be restored.
/Return will go to 300 relocated.

The MP15 enables the PDP-15 to continuously check information being read from core memory, and to

determine whether information has been erroneously picked up or dropped. It does this by first moni­

toring all information as it is being sent to the memory for storage. If there are an even number of bits

in the data word, the MP15 control causes memory to write the parity bit, thus making the total num­

ber of bits odd. If there are an odd nu.mber of bits in the da'ta word, the MP15 control inhibits the

memory from writing the parity bit. Again, the word is stored with an odd number of bits. When in­

formation is read from core, the parity control checks to see that an odd number of bits are read. If

it finds an even number, then a parity error has occurred. The parity error flag can be used to cause

an API interrupt, a program interrupt, a skip request, or an immediate stop of the processor.

Table 6-5 contains the instruction set for the MP15.

The MP15 uses API channel address 53 and is on priority level O.

When using the read-in feature, the last instruction on the paper tape (which is executed by the

processor) will not be written into the next sequential memory location. That location, however, will

be loaded with data that may contain wrong parity. This location should be restored by the program

before an attempt is made to read from it. Otherwise, a parity error will occur.

Mnemonic

SPE

ePE

FWP

Table 6-5
MP15 Instruction Set

Octal Code Operati on Executed

702701 Skip on Parity Error flag

702702 C I ear Par i ty Error fl ag

702704 Force wrong parity (maintenance only)

6-41

Mounted in the BB15 Peripheral Expander (slot A19) is a W714 switch card containing two microswitches.

The top switch is used in conjunction with the MP15. When the switch is placed in the "up" position,

a parity error causes an API interrupt, a program interrupt, or a skip request. With the switch in the

"down" position, a parity error causes the processor to halt.

When using the program interrupt facility, the SPE instruction must be included in the skip chain used

to determine the flag that causes the interrupt. When using the API facility, address 53 must contain

a JMS to a parity error service routine. In all cases, before returning to the main program, the parity

error flag must be cleared through use of CPE or CAF.

6.5 KF15 POWER FAIL OPTION

The Power Fail Option is designed to offer maximum protection to programs during power failure turn

off, and recovery of power after failure. The option enables the PDP-15 System to store active regis­

ters in memory before power diminishes to a point beyond which data will be lost. The computer can

be in one of three conditions when a power fai lure occurs: (l) the console lock has not been turned

on (manual function), (2) the console lock is on and the program interrupt facility (PI) is also enabled,

or (3) the console lock is on and the automatic priority interrupt fac iI ity is enabl ed •

Figures 6-7, 6-8, and 6-9 illustrate the power fail sequence.

6.6 KW15 REAL-TIME CLOCK OPTION

The real-time clock option gives the user a time reference capabil ity to use in control processing. The

real-time clock produces clock pulses at the rate of one every 16.7 ms for 60 Hz systems. When the

real-time clock is enabled by an lOT instruction (CLaN); the occurrence of each pulse initiates a

request for a break at the compl etion of the current instruction.

At the grant of the break, the contents of the clock counter register (memory location 00007) are

incremented by one. This memory location is program initialized to contain the 2's complement of the

desired number of clock pulses. Clock breaks continue to be requested until the memory location

00007 overflows (reaches the all zeros condition).

At this time, the CLOCK flag is set to initiate interruption of the program in progress. The CLOCK

flag is interfaced to the program interrupt control and to the API system. The real-time clock has

priority over the API and PI requests.

6-42

The following lOT instructions are, provided for use with the real-time clock.

Table 6-6
lOT Instructions for Real-Time Clock

Mnemonic Octal Code Function

CLON 700044 Clock on. This lOT instruction enables the real-
time clock; the clock increments location 00007,
and the CLOCK flag is cleared.

CLOF 700004 Clock off. This lOT instruction disables the
real-time clock; the clock does not increment
location 00007, and the CLOCK flag is cleared.

CLSF 700001 Skip on CLOCK flag. The next instruction is
skipped if the CLOCK flag is set.

A number of sources can be used as the clock time source.

a. PDP-15 real-time clock (standard with option)

b. DEC positive logic clocks, both RC and crystal type.

r--_P_O_W_E_R_U_P_--1 CON SOLE LOC K
NOT ON

POWER DOWN

PROGRAM CONT.
UNTIL POWER
FAILURE
DETECTED

Figure 6-7 Power Fail Up/Down Sequence

6-43

15-0185

POWER UP CONSOLE LOCK
r-----------t ON -

EXECUTE
LOCATION

ZERO
(JMS SUBROUTINE)

PI ENABLED

TIME

SX~E 2 MS
REGISTERS

POWER DOWN

PROGRAM CONT.
UNTIL POWER
FAILURE
DETECTED

WHEN PWR LOW
IS DETECTED
A PI REQUEST
IS ISSUED

POWER OFF

Figure 6-8 Power Fai I Up/Down Sequence

6-44

SUBROUTINE
STORES ACTIVE
REG. IN CORE AND
PLACES JMP RESTART
ROUTINE IN LOC 0

15-0186

POWER UP CONSOLE LOCK
~----------~ON-

API ENABLED

2 MS

POWER DOWN

PROGRAM CONT.
UNTIL POWER
FAILURE
DETECTED

WHEN PWR LOW
IS DETECTED AN
API REQUEST
I S ISSUED

POWER OFF

Figure 6-9 Power Fail Up/Down Sequence

6-45

POWER FAIL IS
ON THE HIGHEST
LEVELOFAPI
(LEVEL ZERO)

15-0187

6.7 KA 15 AUTOMATIC PRIORITY INTERRUPT (API)

The API option extends the PDP-15 capabilities by providing priority servicing for as many as 28 I/o
devices, with minimum programming and maximum efficiency. The API priority structure enables high

data rate devices to interrupt the service routines of slower devices with a minimum of system "over-

head. II With the API option, the device service routines can enter directly from hardware-generated

entry points, eliminating the need for time-consuming flag searches to identify the device that is

causing the interrupt.

The API option gives the PDP-15 System 32 unique channels, or entry points, for the device service

routines, and 8 levels of priority. The four higher levels are for fast access to service routines in

response to device-initiated service requests. Each of these levels can be multiplexed to handle up

to eight devices, assigned an equal priority level. The four lower levels are assigned to program­

initiated software routines for transferring control to programs or subroutines on a priority basis. Four

of the 32 channels are reserved for these software levels.

Each device interfaced to the API option specifies (sends) its unique service routine entry point to the

processor when granted an API break by the processor. Core memory locations 408 through 778 are

assigned as these entry points I in PDP-15 System Software. JMS or JMS * instructions contained in

these locations provide linkage to the actual service routines.

Of the 28 hardware channels, three are assigned internally to the optional real-time clock, optional

power failure detection system, and optional memory parity. The API interface logic for these de­

vices is contained in the BB15 option panel.

Each software level services one interrupt and .uses a single address (locations 408 to 43
8
). The soft­

ware requests are initiated by a program issuing an ISA instruction with the appropriate AC bits set

(refer to Table 6-9).

The I/O interrupts permit the asynchronous operation of many devices, each at its proper priority level.

The software priority levels are used to establ ish a priority queue for the processing of real-time data

without inhibiting the hardware interrupts to service devices.

Each hardware API priority takes precedence over lower API priorities, program interrupts, and the

main program. The program segment of highest priority interrupts lower priority program segments

when activated. The DCH and RTC are above all these in priority.

6-46

6.7. 1 API Hardware

Figure 6-10 relates the activity of the automatic priority interrupt system from the initiation and

acceptance of the request, to the servic ing of the accepted request, and the debreak from the ser­

viced priority level.

PRIORITY LEVEL ACCEPTANCE
.... 1------ DEBREAK API ---.....

PRIORITY STATE

5
.....

~--------------------~ ,

HARDWARE
REQUEST

SOFTWARE
REQUEST

PRIORITY LEVEL 6

PRIORITY LEVEL 7

REQUEST REGISTER

,
9

15-0054

Figure 6-10 API System S impl ifi ed Block Diagram

The request register contains eight levels; four levels are activated by the devices (hardware) on the

I/O bus, and four are activated under software supervision. The hardware requests are assigned the

highest priority and are demonstrated as requests 0, 1, 2, and 3. The software requests are initialed

by requests 4, 5, 6, and 7.

The priority level (PL) bars depict the priority level selected by the ISA instruction, or raised by the

API control when it has granted a request on that specific level. The PL bars indicate that any re­

quest equal to, or less than (in priority) the priority level selected, wi II not be accepted. At the end

of the subroutine currently being performed by an active request, a debreak and restore instruction is

6-47

issued to lower the priority to the next selected priority level. The ball, representing the priority

debreaking, wi II fall as long as there is no bar present (i .e., no priority level set). If a lower

priority level is set, the debreaking ceases at that level.

The API request register (RR) buffers inputs from the hardware interrupt on levels 0 through 3 and the

inputs from the monitors on levels 4 through 7. Up to eight interrupts can be attached to a single

level. If two or more of these make simultaneous interrupt requests, the interrupt closest to the pro­

cessor on the I/O bus is given priority. An interrupt request sets a bit in the RR according to its pre­

assigned priority level. When the scanner detects that bit, the API system signals the CPU to stop

execution at the completion of its current instruction. The API system then gates the I/O processor's

15 address lines, which contain the address of the interrupt's unique core location, into the CPU

memory output register. The CPU then requests a memory cycle and executes the instruction it fetched

from that location. During this operation, the program counter remains unchanged. The API system

also sets a bit in the PL corresponding to the level of the interrupt. This prevents interrupts on the

same level or lower levels from interrupting the current interrupt. The scanner continues to sample

the higher levels so that higher priority devices can interrupt lower priority devices. At the comple­

tion of the interrupt subroutine, a debreak and restore (DBR) instruction must be issued to reset the bH

in the PL and in .the RR.

The API hardware ensures that simultaneous requests by multiple devices are handled in the proper

priority sequence. If interrupt requests occur at different priority levels, the highest priority requests

are serviced first. Higher priority devices can interrupt lower priority devices. The entire API system

can be enabled or disabled with a single instruction; however, most devices provide facilities to con­

nect and disconnect their flags from the interrupt separately. If the API system is disabled, the de­

vice automatically signals the program interrupt to obtain a response at that priority level.

6.7.2 API Instructions

The API logic adds six lOT instructions to the basic PDP-15 repertoire. Table 6-7 briefly describes

these instructions, and programming considerations for their use follow.

6-48

Mnemonic

DBK

DBR

RES

SPI

RPL

ISA

Octal Code

703304

703344

707742

705501

705512

705504

6.7.3 Programming Considerations

DBK Instruction (703304)

Table 6-7
API lOT Instructions

Description

Debreak. Releases the highest currently active
priority level.

Debreak and restore. Releases the highest cur­
rently active priority level and provides for res­
toration of the LINK, Bank Mode, and User Mode
status to the interrupt program at the next indirect
reference (typically JMP *).

Restore. Provides for restoration of the LIN K,
Bank Mode, and User Mode status to the interrupted
program.

Skip on priorities inactive. Tests for the success­
ful raising of' a ISA-initiated priority level.

Reads API status bits from API logi c into the AC.

Initiate selected activity. Requests service at a
software priority level or raises the currently active
priority to a higher level. Also, enables or dis­
abl es the API system.

The DBK instruction is used in a currently active API service routine to return the routine to its nor­

mally assigned priority level, after the need for its temporary raising (by ISA or CAL) has been satis­

fied. DBK is not normally used to terminate an API or Program Interrupt service routine because it

does not enable the PDP-15 to restore LINK, Bank Mode, and User Mode status to the interrupted

program.

DBR)nstruction (703344)

The DBR instruction also returns the currently active API routine to its normally assigned priority level.

Additionally, it enables the PDP-15 System to restore the LINK, Bank Mode, and User Mode to the

status they occupied at the time of interrupt. The status of these modes is stored in core memory by

JMS; the interrupt program count is also stored in core memory when the API service routine is entered.

Normally the next to the last instruction in the service routine, DBR is followed by a JMP * to the

interrupted program, which performs the actual restoration of the -program count and the status

6-49

information. As for all lOT instructions, another interrupt cannot occur until execution of the

subsequent instruction, i.e., JMP * , is completed. Restoration actually occurs at the first indirect

instruction after the DBR.

RES Instruction (707742)

The RES instruction restores the status of the LINK, Bank Mode, and User Mode, at the first indirect

instruction after it is executed. It does not, however, affect the API priority levels.

SPI Instruction (705501)

The SPI instruction tests for the successful ISA- initiated raising of a priority and uses a control word

previously placed in the AC (by LAC) to test the priority I evel of the currently active API service

routine. In the API logic, the control bits are compared with corresponding API status conditions.

The program skips the next instruction if any corresponding API conditions for the set control bit are

true (refer to Table 6-8).

AC Bit

00

01-09

10

11

12

13

14

15

16

17

ISA Instruction (705504)

Table 6-8
SPI Control Word Format

API Condition Tested

API ENABLE (1)

Not Used

Priority level 0 inactive (highest)

Priority levelland higher inactive

Priority level 2 and higher inactive

Priority level 3 and higher inactive

Priority level 4 and higher inactive (software)

Priority level 5 and higher inactive (software)

Priority level 6 and higher inactive (software)

Priority level 7 and higher inactive (software)

The ISA instruction controls the status of API priorities. It initiates the activity specified by a con­

trol word placed in the AC by a previous LAC instruction. Table 6-9 shows the control word format.

Within lower priority service routines, it may be necessary to raise the service routine's priority level

in order for it to continue without interruption by any higher priority API request; for example, this

6-50

may be necessary because of some calculation within the service routine. By issuing the ISA

instruction (w ith the proper bit set in the AC), the priority of the servi ce routine is raised, and no

'instruction in a channel address is executed. The service routine continues at the higher priority

level. Thus, the two priority levels are currently active to restore the routine to its original priority

level; a DBK releases the highest currently active priority level. ISA instructions cannot be used to

lower the priority of a currently active service routine because the logic does not recognize the

request.

Table 6-9
ISA Control Word Format

AC Bit Activ.ity Specified

00 Enable API (disable if 0)

01 Not Used

02 Test Request level 0 (Maintenance Only)

03 Test Request level 1 (Ma intenance On Iy)

04 Test Request level 2 (Maintenance Only)

05 Test Request level 3 (Maintenance Only)

06 Request servi ce at priority level 4 (software)

07 Request service at priority level 5 (software)

08 Request service at priority level 6 (software)

09 Request service at priority level 7 (software)

10 Raise priority to level 0

11 Raise priority to level 1

12 Raise priority to level 2

13 Raise priority to level 3

14 Raise priority to level 4

15 Raise priority to level 5

16 Raise priority to level 6

17 Raise priority to level 7

In addition to its normal function, the ISA instruction is also used to test API hardware levels in the

API test program.

Because a PDP-15 and API option can be obtained with no hardware devices on levels 0 through 3, bits

2 through 5 of the AC, when executing a ISA, are used to set test requests which check out the

6-51

operation of the API. Therefore, under normal program operations, if any of these bits are set, a

break occurs from one of the test requests and results in an error.

RPL Instruction (705512)

The RPL instruction is used to read API status bits (refer to Table 6-10) from the API logic into the AC

through the Input Mixer.

Status Bit

00

01

02

03

04

05

06

07

08

CAL Instruction with API

Table 6-10
Maintenance Instruction Status Word

Status Of Status Bit

API ENABLE 09

Not used 10

APIO RQ 11

API 1 RQ 12

API2 RQ 13

API3 RQ 14

API4 RQ 15

API5 RQ 16

API6 RQ 17

Status Of

API7 RQ

PLO

PL1

PL2

PL3

PL4

PL5

PL6

PL7

The CAL instruction can be used in conjunction with the software API levels and, when executed,

raises priority level 4, provided no hardware levels are set. This function can be used to prevent

other software levels from interrupting the level currently active. No break, other than the actual

CAL instruction, occurs at this time. CAL must not be used when servicing hardware level interrupts.

Program Interrupt with API

Whenever a program interrupt occurs in the PDP-15, priority level 3 is raised, giving the program

interrupt a priority between the hardware levels and the software levels. Program interrupts can

occur whi Ie software priority levels are set, but do not occur when hardware levels or requests are

enabled. A DBR instruction in the interrupt service routine is used to release the system from priority

level 3.

6-52

Dynamic Priority Re-allocation

Three distinct methods for dynamic priority re-allocation are described below.

a. Device-Dependent - Because channel number and priority level are independent,
a device can be designed to interrupt at anyone of several priority levels with­
out grossly affecting programming. In a control appli cation, the device raises
its priority under program control when the data rate increases.

b. Program-Generated Service Requests - The program can generate interrupt requests on
any of four software priority levels. If the level is below the currently active priority,
the request is honored when the higher priority levels are released. If the level is
higher than the currently active level, the request is honored immediately. The JMS
instruction in the software priority channel is executed, storing the current program
count and entering the new program segment.

c. Programmed Priority Changes - For an interruptable program to change parameters in
an interrupt service subroutine, the priority interrupt system is turned off while the
changes are effected. Unfortunately, al t interrupts are shut out during this time,
including those that indicate machine errors or are vital in controlling real-time
processes. Thus, the API has been designed to enable a program segment to raise its
priority only high enough to shut out those devices whose service routines require
changes. This method of raising and lowering priority requires the least amount of
time. By issuing the ISA instruction with the proper bits set in the accumulator, the
priority of the currently active program segment is raised. No instruction in a chan­
nel is executed, and the program continues on at its higher priority level. To restore
the program segment to its original priority level, a DBK instruction is issued.

For example, a priority 2 routi.ne is entering data in memory locations A through A + 10;
however, based on a calculation made by a priority 6 routine, it becomes necessary to
move the data to memory locations B through B + 20. The changes in the routine at
level 2 must be completed, without interruption, once begun. It is possible to com­
plete the changes having the level 6 program raise itself to level 2 (devices on the
same or lower priority may not interrupt), complete the changes, and debreak back
to level 6.

6.7.4 Programming Examples

Input Ten Words from A/D Converter - A service routine INAD inputs 10 words to a

FORTRAN array for later processing. The core location of the A/D channel contains a JMS INAD.

The basic components of INAD are:

INAD o
DAC SAVAC
lOT

lOT
LAC SAVAC

/ENTRY POINT
/SAVE AC
/READ A/D BUFFER
/STORE IN ARRAY
/TEST FOR LAST WORD-IF YES, INITIATE
/SOFlWARE INTERRUPT TO ACCESS DATA
/FORMATTING ROUTINE
/ELSE, START NEXT CONVERSION
/RESTORE AC

6-53

lOT
DBR
JMP * INAD

/CLEAR DEVICE FLAG
/DEBREAK AND RESTORE
/RETURN

The program segment to start the conversion is as follows:

lOT
/INITIALIZE INAD
/SELECT CONVERTER FOR FIRST CONVERSION
/CONTINUE WITH PROGRAM

If INAD were active, it could be instructed to input an additional 10 words with the following

segment:

follows:

LAC ()
ISA

DBK

/CONTROL WORD
/RAISE PRIORITY TO
/LOCK OUT INAD
/CHANGE INAD PARAMETERS
,/RESTORE PRIORITY TO ORIGINAL LEVEL

Simulation of Hardware Interrupt - A hardware interrupt can be simulated by:

LAC ()
ISA
JMSINAD

/CONTROL WORD
,/RAISE TO HARDWARE PRIORITY
/ENTER INAD

Use of Software Levels - An organizational example of a program using five levels is as

Interrupt level 0

Interrupt level 1

Interrupt level 2

Interrupt level 3

Main Program

Highest priority alarm conditions,
computer or processor malfunctions.

Control process A/D-D/A, sense and
control input/output routines.

Teletype I/O routines for operator
interface, operator can query or de­
mand changes as required. Program
interrupt.

FORTRAN subroutines to calculate pro­
cess control input/output data. Direct
digital control routines.

Lowest Priority, operator interface pro­
gramming, requested readout, etc.

Queueing - High priority,./11igh data rate/short access routines cannot perform complex calcu­

lations based on unusual conditions without holding off further data inputs. To perform the calculations,

the high priority program segment must initiate a lower priority {interruptable} segment to perform the

calculation. Because in general, many data handling routines are requesting calculations, there is a

queue of calculation jobs waiting to be performed at the software level. Each data handling routine

must add its job to the appropriate queue and issue an interrupt request (ISA instruction) at the cor­

responding software priority level.

6-54

6.8 FP15 FLOATING-POINT PROCESSOR

The FP15 Floating-Point Processor performs single- and double-precision floating-point arithmetic,

and integer arithmetic operations. The FP15 is a hardware option for PDP-15/20, -15/30, -15/35,

and -15/40 systems that can perform arithmetic operations ten times faster than existing software rou-

. I f 9 d· : . . . h· b· h· h 1 0-131 , 072 1 0131 , 071 tmes. t eatures - Iglt precIsion ant metlc on num ers Wit In t e to range.

The FP15 is a complete processor, with its unique instruction set, that interfaces directly with up to

128K of core memory. It monitors every instruction fetched by the KP15 central processor. When it

recognizes a floating-point instruction, the FP 15 inhibits the K P15 and begins the specified function.

Basically, FP15 operations consist of memory transfers to obtain and store data and arithmetic opera­

tions within the FP15. Memory cycle time and I/O processor operations, as well as data channel la­

tency, are not affected by the FP15 option. Thus, block transfers to and from memory via the I/O

processor may occur simultaneously with FP15 operations. However, program and priority interrupts

are inhibited.

Because the FP15 Floating-Point Processor executes a set of more than 100 instructions, the complete

description of the purpose and use of this option is provided in a separate manual--FP15 Floating­

Point Processor Programmers Reference Manual, DEC-15-HQEB-D.

6-55

Appendix A
Instruction Summary

Table A-l
Memory Reference Instructions

Mnemonic
Symbol

CAL Y

DAC Y

JMS Y

DZM Y

LAC Y

XORY

ADD Y

TAD Y

XCT Y

Octal
Code

00

04

10

14

20

24

30

34

40

Machine
Cycles

2

2

2

2

2

2

2.3

2

1+

A-l

Operation
Executed

Call subroutine. The address portion of
this instruction is ignored. The action is
identical to JMS 20.

Deposit AC. The content of the AC is de­
posited in the memory cell of location Y.

Jump to subroutine. The content of the
PC and the content of the L are deposited
in memory cell Y. The next instruction is
taken from cell Y + 1 •

Deposit zero in memory. Zero is deposited
in memory cell Y.

Load AC. The content of Y is loaded into
the AC.

Exclusive OR. The exclusive OR is per­
formed between the content of Y and the
content of the AC, with the result left in
the AC.

Add (l's complement). The content of Y is
added to the content of the AC in l's com­
plement arithmetic and the result is left in
the AC.

2's complement add. The content of Y is
added to the content of the AC in 2's com­
plement arithmetic and the result is left in
the AC.

Execute. The instruction in memory cell Y
is executed.

Mnemonic
Symbol

ISZ Y

AND Y

SAD Y

JMP Y

Mnemonic
Symbol

OPR
or
NOP

CMA

CML

OAS

RAL

RAR

lAC

TCA

Table A-1 (Cont)
Memory Reference Instructions

Octal
Code

44

50

54

60

Octal
Code

740000

740001

740002

740004

740010

740020

740030

740031

Machine
Cycles

3

2

2

Operation
Executed

Increment and skip if zero. The content of
Y is incremented by one in 2 1s complement
ari thmeti c • If the resu I tis zero, the next
instruction is skipped.

AND. The logical operation AND is per­
formed between the content of Y and the
content of the AC with the result left in
the AC.

Skip if AC is different from Y. The content
of Y is compared with the content of the AC.
If the numbers are different, the next in­
struction is skipped.

Jump to Y. The next instruction to be ex­
ecuted is taken from memory cell Y.

Table A-2
Operate Ins'tructions

Operation
Executed

Operate group or no operation. Causes a single­
cycle program delay.

Complement accumulator. Each bit of the AC is
complemented.

Complement link.

Incl usive OR ACCUMULATOR switches. The word
set into the ACCUMULATOR switches is OR com­
bined with the content of the AC, the result re­
mains in the AC.

Rotate accumulator left. The content of the AC
and L are rotated one pos i ti on to the I eft.

Rotate accumulator right. The content of the AC
and L are rotated one position to the right.

Increment the accumulator.

2 1s complement AC.

A-2

Mnemonic
Symbol

HLT

SMA

SZA

SNL

SKP

SPA

SNA

SZL

RTL

RTR

SWHA

CLL

STL

RCL

RCR

CLA

CLC

LAS

Octal
Code

740040

740100

740200

740400

741000

741100

741200

741400

742010

742020

742030

744000

744002

744010

744020

750000

750001

750004

Table A-2 (Cont)
Operate Instructions

Operation
Executed

Halt. The program is stopped at the conclusion of
the cycle.

Skip on minus accumulator ~ If the content of the
AC is negative (2's complement) number the next
instruction is skipped.

Sk ip on zero accumulator. If the content of the
AC equals zero (2's complement), the next in­
struction is skipped.

Skip on nonzero I ink. If the L contains a 1, the
next instrucf'ion is skipped.

Skip. The next instruction is unconditionally
skipped.

Skip on positive accumulator. If the content of
the AC is zero (2's complement) or a positive
number, the next instruction is skipped.

Skip on nonzero accumulator. If the content of
the AC is not zero (2's complement), the next
instruction is skipped.

Skip on zero link. If the L contains a 0, the
next instruction is skipped.

Rotate two I eft. The content of the AC and L
are rotated two positions to the left.

Rotate two right. The content of the AC and L
are rotated two positions to the right.

Swap halves of the AC.

Clear I ink. The L is cleared.

Set link. The L is set to 1.

CI ear I ink, then rotate I eft. The L is cleared,
then the Land AC are rotated one position left.

Clear link, then rotate right. The L is cleared,
then the Land AC are rotated one position right.

Clear accumulator. Each bit of the AC is cleared.

Clear and complement accumulator. Each bit of
the AC is set to contain a 1.

Load accumulator from switches. The word set
into the ACCUMULATOR switches is loaded in to
the AC.

A-3

Mnemonic
Symbol

GLK

LAW N

Mnemonic
Symbol

PAX

PAL

PXA

PXL

PLA

PLX

Mnemonic
Symbol

AXS n

AXRn

AAC n

CLX

CLLR

Octal
Code

750010

Table A-2 (Cont)
Operate Instructions

Operation
Executed

Get link. The content of L is set into AC 17 •

76XXXX Load the AC with 76XXXX.

Table A-3
Index Register Transfer Instructions

Octal Memory Operation
Code Cycle Executed

721000 1 Place accumulator in index register.

722000 1 Place accumulator in limit register.

724000 1 (1) Place index register in accumulator.

726000 1 PI ace index register in I imit register.

730000 1 Place limit register in accumulator.

731000 1 Place I imit register in index register.

Table A-4
Register Control Instructions

Octal Memory Operation
Code Cycle Executed

725 + n 1 * Add n to index register and sk ip if ~
limit register.

737 + n 1 Add n to index register.

723 + n 1 Add n to accumulator.

735000 1 Clear index register.

736000 1 C I ear I imit register.

*For these twelve instructions, although only one memory cycle is required, the CPU
requires another cycle to compl ete the operation.

A-4

Mnemonic Octal
Symbol Code

EAE 640000

LRS 640500

LRSS 660500

LLS 640600

LLSS 660600

ALS 640700

ALSS 660700

NORM 640444

NORMS 660444

MUL 653122

MULS 657122

DIV 640323

DIVS 644323

IDIV 653323

IDIVS 657323

FRDIV 650323

FRDIVS 654323

LACQ 641002

LACS 641001

CLQ 650000

ABS 644000

GSM 664000

OSC 640001

OMQ 640002

CMQ 640004

LMQ 652000

Table A-5
EAE Instructions

Execute
Time (jJS)

1.325

2.915 + .13h*

2.915 + .13h*

2.915+.13h*

2.915 + .13h*

2.915 + .13h*

2.915 + .13h*

2.915 + .13h*

2.915 + .13h*

2.915 + .26L ***

2.915 + .26L***

2.915 + .26m**

2.915 + .26m**

2.915 + .26m**

2.915 + .26m**

2.915 + .26m**

2.915 + .26m**

1.325

1.325

1.325

1.325

1.325

1.325

1.325

1.325

1.325

Operation
Executed

Basic EAE Command

Long right shift

Long right shift, signed

Long left shift

Long left shift, signed

Accumulator left shift

Accumulator left shift, signed

Normal ize, unsigned

Normal ize, signed

Multiply, unsigned

Multiply, signed

Divide, unsigned

Divide, signed

Integer divide, unsigned

Integer divide, signed

Fraction divide, unsigned

Fraction divide, signed

Load AC with MQ

Load AC with SC

Clear MQ

Load AC with AC

Get sign and magnitude

OR SC to AC

ORMQ to AC

Complement MQ

Load MQ from AC

*Where "h" is the number of steps, the instruction must carry out 0::;,n::;,36

**Where "m" is the number of steps, a divide instruction carries out O:s,m::;, 19

***Where ilL II is the number of steps, a multiply instruction carries out 0::;. L~ 18

A-5

Table A-6
Standard API Channel/Priority Assignments

Channel Device Option Number Priori ty Address

0 Software Priority ------ 4 40

1 Software Priority ------ 5 41

2 Software Priority ------ 6 42

3 Software Priority ------ 7 43

4 DECtape TC02 or TC15 1 44

5 Magtape TC59 1 45

6 Not assigned 1 46

7 Not assigned 1 47

8 Paper Tape Reader PC15 2 50

9 Clock Overflow KW15 3 51

10 Power Fail KF15 0 52

11 Parity MP15 0 53

12 Display (Lightpen Flag) VP15 2 54

13 Card Readers CR03B 2 55

14 Line Printer LP15 C/F 2 56

15 A/D AD15 0 57

16 DB99 A/DB98A DB09A 3 60

17 Not assigned 3 61

18 Dataphone DP09A 2 62

19 Disk RF15 1 63

20 Disk RP15 1 64

21 Plof'ter XY15 2 65

24 Not assigned 70

25 Not assigned 71

26 Not assigned 72

27 Not assigned 3 73

28 Teletype Keyboard L Tl9/LTl5A 3 74

29 Teletype Printer LTl9/LTl5A 3 75

30 DECtape (DCH TC02 or TC15* 1 76
Channel 36)

31 Dataphone DP09* 2 77

*Channel allocated for systems with more than one of the above options.

A-6

»
I

.......

00

01

02

03

04

05

06

07

1 RT Clock 10
2 Prog Interrupt
4 RT Clock

PC15 11
High Speed
Paper Tape
Reader

PC15 12
High Speed
Paper Tape
Punch

1 Keyboard 13
2 Keyboard
4 laRS

Tel eprinter 14

VP15A, B, BL 15
C, CL

VP15A B 16
BL CL

VP15A, B, 17
BL, CL

AFC-15 20 AFC-15
UDC-15 UDC-15

Analog-to- Dig ital 21 Rei ay Buffer
or DR09A
Digital-to-Analog
Converter

AID or 22 IPB
DI A Converter DB09A

AID 23
Converter

AM03 & AM09 24 Incrementai
SDO,l SYS I Plotter Control
SD2,3 SYS II XY15

25 DP09A
Data
Communication

,

26 DP09A
Data
Communi cation

Memory 27 Memory
Protect and Parity
Relocate MP15
KM15
KT15

Table A-7
PDP-15 lOT Device Selection Codes

I
30 VT15 40 LT19 50 60 70 DECdisk

I
Graphic line 1, 2, 3, 4 RF15
Processor Teleprinter or

I

LT15A

31 VTl5 41 Line 1,2,3,4 51 AAOl 61 71
Graphic Keyboard or
Processor LTl5A

32 SDO - KF15 42 Line 5,6,7,8 52 62 72 DECdisk
I

SDl-3 - VT09 Teleprinter RF15
Display Option

33 1 33 KSR Skip 43 Line 5,6,7,8 53 63 Disk Pack 73 Magnetic Tape
2 Clear All Flags Keyboard RP09/RP15 Control
4 DBR, DBK TC59

34 44 Line 9,10,11;12 54 64 Disk 74 ,1V\agnetic Tape I

Teleprinter RP09/RP15 Control
DC01EB #102 TC59

35 45 Line9,10,l1,12 55 Automatic 65 Line Printer 75 DECtape
Keyboard Priority LP15 C/F Control
DC01EB #304 Interrupt TC02/TC15

KA15

36 46 Line 13,14,15,16 56 66 Line Printer 76 DECtape
Tel eprinter LP15 C/F Control

TC02/TC15

37 47 Line 13,14,15,16 57 67 Card Reader 77 61 Skip on Bank Mode
Keyboard Type CR03B 62 Disable Bank Mode

64 Enable Bank Mode

Mnemonic
Symbol

IOF

ION

CLSF

CLOF

CLON

RSF

ReF

RRB

RSA

RSB

PSF

PCF

PSA or
PLS

PSB

10RS

TTS

CAF

SPCO

SK15

Octal
Code

700002

700042

700001

700004

700044

700101

700102

700112

700104

700144

700201

700202

700204
700206

700244

700314

703301

703302

703341

707741

Table A-8
Input/Output Transfer Instructions

Program Interrupt

Operation
Executed

Interrupt off. Disable the PIC.

Interrupt on. Enable the PIC.

KW15 Real-Time Clock

Skip the next instruction, if the CLOCK flag is set to 1.

Clear the CLOCK flag and disable the clock.

Clear the CLOCK flag and enable the clock.

PC15 High Speed ,Paper Tape Reader

Skip, if READER flag is a 1.

Clear READER flag, then inclusively OR the contents of
the reader buffer into the AC.

Read reader buffer. Clear READER flag and AC, and then
transfer content of reader buffer into AC.

Select reader in alphanumeric mode. One 8-bit character
is read into the reader buffer.

Select reader in binary mode. Three 6-bit characters are
read into the reader buffer.

PC15 High Speed Paper Tape Punch

Skip, if the PUNCH flag is set to 1.

Clear the PUNCH flag.

Punch a line of tape in alphanumeric mode.

Punch a line of tape in binary mode.

I/O Equipment

Input/output read status. The content of given flags re­
places the content of the assigned AC bits.

Test Teletype, and skip if 33 KSR Teletype is connected
to computer.

Clear all flags.

Skip, if a PC15 is connected to the system.

Skip, if processor is a PDP-15.

A-8

Mnemonic
Symbol

SBA

DBA

EBA

KSF

KRB

KRS

TSF

TCF

TLS

CXB

CYB

LXB

LYB

EST

SDDF

CDDF

LXBD

LYBD

LXDNS

Octal
Code

707761

707762

707764

700301

700312

700332

700401

700402

700406

700502

700602

700504

700604

700724

700521

700722

700564

700664

700544

Table A-8 {Cont}
Input/Output Transfer Instructions

Operation
Executed

I/O Equipment {Cont}

Skip, if processor is in Bank Mode.

Disable Bank Addressing {enter Page Mode}.

Enable Bank Addressing

Teletype Keyboard

Skip, if the KEYBOARD flag is set to 1.

Read the keyboard buffer. The content of the buffer is
placed in AC 10-17 and the KEYBOARD flag is cleared
{half-duplex operation}.

Read keyboard buffer and select keyboard reader {full-
duplex operation}.

Teletype Teleprinter

Skip, if the TELEPRINTER flag is set.

Clear the TELEPRI NTER flag.

Load te lepri nter buffer. The content of AC 1 0-17 is placed
in the buffer and printed. The flag is cleared before trans-
mission takes place and is set when the character has been
printed.

VP15A Storage Tube Display

Clear X-coordinate buffer

Clear V-coordinate buffer

Load X-coordinate buffer from AC8-17

Load V-coordinate buffer from AC8-17

Erase storage tube

Skip on DISPLAY DONE flag.

Clear DISPLAY DONE flag.

Load X-coordinate buffer and display the point specified
by XB and YB {store mode}.

Load Y -coordinate buffer and display the point specified
by X Band Y B (store mode).

Load the X-coordinate buffer and display the point speci-
fied by X Band YB (nonstore mode).

A-9

Mnemonic
Symbol

LYONS

DXL

DXS

DYL

DYS

DXC

DYC

DLB

DSF

DCF

LUDU

MPSK

MPCV

MPLD

MPLR

MPSNE

MPEU

MPCNE

MPSK

MPCV

Octal
Code

700644

Table A-8 (Cont)
Input/Output Transfer Instructions

Operation
Executed

VP15A Storage Tube Display (Cont)

Load' the V-coordinate buffer and display the point speci-
fied by XB and YB (nonstore mode).

VP15B (RM503), BL (RM503 and Lieht Pen), C (VR12)
and CL (VR12 and Light Pen)

700504 Load the X-coordinate buffer from AC8-17

700544 Load the X-coordinate buffer and display the point speci-
fied by the XB and YB.

700604 Load the V-coordinate buffer from AC8-17.

700644 Load the V-coordinate buffer and display the point speci-
fied by the XB and YB.

700502 Clear the X-coordinate buffer.

700602 Clear the V-coordinate buffer.

700704 Load the brightness register from bits 16-17 of the AC.
This instruction clears the display flag associated with
the light pen.

700501 Skip, if DISPLAY (light pen) flag is a 1 •

700702 Clear DISPLAY (light pen) flag.

VP15M Storage Tube Display Multiplexer

700764 Load unit designation register from AC 10-17.

KM15 Memory Protect

701701 Skip on PROTECT VIOLATION flag.

701702 Clear PROTECT VIOLATION flag.

701704 Load core allocation register.

701724 Load relocation register.

701741 Skip on nonexistent MEMORY flag.

701742 Enter User Mode.

701744 Clear nonexistent MEMORY flag.

KTl5 Memory Relocate

701701 Skip on PROTECT VIOLATION flaa.

701702 Clear PROTECT VIOLATION flag.

A-10

Mnemonic Octal
Symbol Code

MPLD 701704

MPSNE 701741

MPEU 701742

MPCNE 701744

SPE 702701

CPE 702702

PNP 702704

RS1 703002

RS2 703022

RS3 703142

RYP 703042

RPC 703062

RXP 703102

SSA 703122

SPSF 703001

SPLP 703021

SPPB 703041

SPEF 703061

SPDF 703101

SPDI 703121

SSLP 703141

SPES 703161

LSD 703004

SIC 703024

STPD 703044

RES 703064

Table A-8 (Cont)
Input/Output Transfer Instructions

Operation
Executed

KT15 Memory Relocate (Cont)

Load the boundary register with the contents of AC 01-09.

Skip on nonexistent MEMORY flag.

Enter user mode.

Clear nonexistent MEMO RY flag.

MP15 Memory Parity

Skip on PARITY ERROR flag.

Clear parity error.

Force wrong parity.

VT15 Graphic Processor

Read status 1

Read status 2

Read status 3

Read Y register

Read program counter

Read X register

Single-step advance (Debugging)

Skip on STOP flag.

Skip on LIGHT PEN flag.

Skip on PUSHBUTTON flag.

Skip on EDGE flag.

Skip on any flag.

Skip on any interrupting flag.

Skip on SLAVE LIGHT PEN flag (Multiplexer with more
than one VT04-374).

Skip on external stop (Check STPD accompl ished).

Load and start display (Initial izes VT15)

Set initial conditions.

External stop display (PDP-15 stops displ ay).

Resume display after flag.

A-ll

Mnemonic Octal
Symbol Code

SPFAL 703201-

DBK 703304

DBR 703344

SPI 705501

RPL 705512

ISA 705504

ENB 705521

INH 705522

RES 707742

DPSF 706301

DPOSA 706302

DPRSA 706312

DPOU 706402

DPRU 706412

DPSA 706321

DPOSB 706322

DPRSB 706332

DPLZ 706424

DPLO 706444

DPeN 706454

DPLF 706464

DPLA 706304

DPCA 706344

DPWC 706364

Table A-8 (Cont)
Input/Output Transfer Instructions

Operation
Executed

K F15 Power Fail Option

Skip, if POWER-LOW flag is set.

KA 15 Automatic Priority Interrupt

Debreak

Debreak and restore.

Skip on priorities inactive.

Read API status

Initiate selected activity

Enab I e breaks

Disabl e breaks

Restore

RP15 Disk Pack Control

Skip on DISK flag.

OR the status register A into AC.

Read the status register A into AC.

OR the unit cylinder address register into the AC.

Read the unit cylinder address register into the AC.

Skip on Attention flag.

OR status register B into the AC.

Read status register B into the AC.

Load the accumulator zeros into status register A bits 0
through 7 and execute.

Load the accumulator ones into status register A bits 0
through 7 and execute.

Execute the function register.

Load the status reg ister A and execute.

Load the cy Ii nder, head, and sector address reg i sters from
the accumulator.

Load the current address register.

Load the word count register.

A-12

Mnemonic
Symbol

DPOA

DPRA

DPOC

DPRC

DPOW

DPRW

DPCS

DPCF

DPSJ

DPSE

DPOM

DPRM

DPEM

DPLM

LPSF

LPPM

LPP1

LPRS

LPEI

LPDI

LPCD

LPCF

MRVFU

MCVFU

Octal
Code

706422

706432

706442

706452

706462

706472

706324

706404

706341

706361

706342

706352

706401

706411

706501

706521

706541

706542

706544

706561

706621

706641

706502

706504

Table A-8 (Cont)
Input/Output Transfer Instructions

Operation
Executed

RP15 Disk Pack Control (Cont)

OR the cyl inder, head, and sector address register into the
AC. AC bits 13 through 17 are ORed with the sector.

Read the cyl inder, head, and sector address into the AC.

OR the current address register into the AC.

Read the current address register into the AC.

OR the word count register into the AC.

Read the word count register into the AC.

Clear status.

Clear function register.

RP15 Maintenance lOTs

Skip, if the JOB DONE flag is set.

Skip, if an error condition is present.

OR the six-bit maintenance register into AC.

Read the six-bit maintenance register into AC.

Execute maintenance instruction.

Leave maintenance mode. The AC is left cl eared.

LP15C/F Line Printer Controls

Causes a skip request, if done or error is set.

Initializes the control, sets header; sets multiline.

Initial izes the control, sets header; does not set multi line.

Read status.

Sets the ENABLE INTERRUPT flop.

Clears the ENABLE INTERRUPT flop.

Clears DONE flag.

Clears STATUS and ERROR flag.

Line Printer Maintenance lOTs

Read VFU register.

Clear VFU register.

A-13

Mnemonic
Symbol

MSM

MRDB1

MCDB

MCM

MRDB2

MLDB1

MRM1

MLDB2

MRM2

MLS

CRCS

CRSI

CROR

CRSC

CRLA

DSSF

DRBR

DLBR

DSCC

DRAL

DRAH

Octal
Code

706524

706562

706564

706601

706602

706604

706622

706624

706642

706644

706704

706721

706712

706722

706724

707001

707002

707004

707021

707022

707062

Table A-8 (Cont)
Input/Output Transfer Instructions

Operation
Executed

Line Printer Maintenance lOTs (Cont)

Set maintenance control.

Read data buffer 00-17 •

C I ear data buffer.

Clear maintenance control.

Read data buffer 18-35.

Load data buffer 0-17 from AC.

Read maintenance word 1 •

Load data buffer 18-35 from AC.

Read maintenance word 2.

Load status.

CR03B Card Reader

Clear status register and data buffer.

Skip on CARD READER flag.

Load data buffer and machine status into AC.

CI ear the status reg ister and data buffer; sel ect a card.

Load status and data register from AC.

RF15 DECdisk Control

Skip on DISK flag.

OR the contents of the buffer register with the AC.

Load the contents of the AC into the buffer register.

Clear the disk control and disable the "freeze" status of
the control.

OR the contents of the address pointer 0 (APO) into the
AC. Bits 0 through 6 contain the track address 1 and bits
7 through 17 contain the word address of the next word to
be transferred.

OR the contents of the disk number (APl) into the AC.
Bits 15, 16, and 17 contain the disk number. Bit 14 is
read back if a data transfer exceeded the capacity of the
disk control. (Causes a NED error status.)

A-14

Mnemonic
Symbol

DLAL

DLAH

DSCF

DSFX

DSCN

DLOK

DGHS

DGSS

DSCD

DSRS

MTTR

MTCR

MTSF

MTAF

LCM

MTLC

. MTCC

MTRS

MTRC

MTGO

DTCA

DTRA

DTXA

Octal
Code

707024

707064

707041

707042

707044

707202

707204

707224

707242

707262

Table A-8 (Cont)
Input/Output Transfer Instructions

Operation
Executed

RF15 DECdisk Control (Cont)

Load the contents of the AC into the APO.

Load the contents of the AC (15, 16, 17) into the disk
number (AP1).

Clear the function register, interrupt mode.

XOR the contents of AC bits 15-17 into the function
register (FR).

Execute the condition held in the FR.

OR the contents of the 11-bit disk segment address (ADS)
into the AC.

Generate simulated head signals.

Generate simulated disk signals.

Clear the status register and DISK flag.

OR the contents of the disk status register wi th the AC.

Type TC59 Magnetic Tape Control lOT Instructions

707301 Skip on tape transport ready (TTR).

707321 Skip on tape control ready (TCR).

707341 Skip on ERROR flog or MAGNETIC TAPE flag (EF and MTF).

707322 Clear status and command registers and EF and MTF.

707324 Inclusively OR content of AC
O

_
ll

into command register.

707326 Load content of ACo-11 into command register.

707356 Terminate write continuous mode.

707342 Inclusively OR content of status register into AC
O

_
11

•

707352 Read content of status register into ACo-11 •

707312 Read command register into AC
O

_
11

•

707304 Set "go II bit to execute command in command register.

TC15 DECtape Control

707541 Clear status register A.

707552 Read status register A.

707544 XOR status register A.

A-15

Mnemonic Octal
Symbol Code

DTlA 707545

DTEF 707561

DTRB 707572

DTDF 707601

ADCV 701304

ADRB 701302

ADRS 701342

ADCF 701362

ADSF 701301

WCSF 701341

MSSF 701321

UMOD 701001

USINT* 702002

ULA* 702024

URA* 702012

URD* 702032

USCAN* 702021

USNB* 702041

URCG 701072

UlD 701064

UlPS 701044

USI 701041

USD 701061

URAA 701052

Table A-8 (Cont)
Input/Output Transfer Instructions

Operation
Executed

TC15 DECtape Control (Cont)

load status register A.

Skip on ERROR flag.

Read status B.

Skip on DECtape flag.

AD 15 Analog Subsystem

load status register from accumulator, clear A/D done
flag, and initiate conversion.

Read data buffer into accumulator and clear A/D done
flag.

Read status register into accumulator.

Clear all AD15 flags.

Skip on A/D flag.

Skip on word count overflow flag.

Skip on memory overflow flag.

UDC-15 Universal Digital Control

Set UDC mode

Interrupt Select

load address.

Read deferred address.

Read data in.

Start interrupt scan.

Skip if not busy.

Clear AC, read COS gates.

load data out.

load previous status.

Skip on immediate flag.

Skip on deferred flag.

Read immediate address.

*The UMOD lOT must be issued before these lOTs will be decoded as UDC-15 lOT instructions.

A-16

Mnemonic Octal
Symbol Code

FCMOD 701021

FCEI* 702004

FCDI* 702001

FCLAG* 702024

FCRB* 702032

FCSD* 702041

FCRA* 702012

MCLK 702044

MSM 701004

MCM 701022

MLS 701024

MRS 701012

FCCV 702021

Table A-8 (Cont)
Input/Output Transfer Instructions

Operation
Executed

AFC-15 Automatic Flying Capacitor

Set AFC mode.

Enable AFC interrupt.

Disable AFC interrupt.

Load address.

Read A/D buffer.

Skip on A/D done flag.

Read AFC address register.

BD-15 Maintenance

Maintenance clock.

Set maintenance mode.

Clear maintenance mode.

Load status register.

Read status register.

A/D convert.

*The FCMOD lOT must be issued before these lOTs will be decoded as AFC-15 lOT instructions.

A-17

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	a-01
	a-02
	a-03
	a-04
	a-05
	a-06
	a-07
	a-08
	a-09
	a-10
	a-11
	a-12
	a-13
	a-14
	a-15
	a-16
	a-17
	a-18

