| Méynard, Massachusette lilgli /a1

Programmers’ Reference Manual

PDP-15 FORTRAN IV

PDP-15

FORTRAN IV
PROGRAMMERS’
REFERENCE MANUAL

Order No. DEC-15-KFZB=~D from Program Library , Maynard, Mass. Price: $2.50

Direct comments concerning this manual to Software Information Service, Maynard.

DIGITAL EQUIPMENT CORPORATION e MAYNARD, MASSACHUSETTS

Ist Printing July 1969
2nd Printing (Rev) June 1970

Your attention is invited to the last two pages of this manual. The
Reader's Comments page, when filled in and returned, is beneficial
to both you and DEC. All comments received are considered when
documenting. subsequent manuals, and when assistance is required, a
knowledgeable DEC representative will contact you. The Software

Information page offers you a means of keeping up-to-date with
DEC's software.

Copyright © 1968, 1969, 1970 by Digital Equipment Corporation

The material in this handbook, including but not limited
to instruction times and operating speeds, is for infor-
mation purposes and is subject to change without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CONTENTS

PART 1
LANGUAGE

CHAPTER T INTRODUCTION

1.

1

1

.2

1.2.1
1.2.2

FORTRAN
Source Program Format
Card Format (IBM Model 029 Keypunch Codes)

Paper Tape Format

CHAPTER 2 ELEMENTS OF THE FORTRAN LANGUAGE

2.

1

2.1.1

2.

N
w
w

N
(S,]

N N N N NN N NDN
W NN N NN -

NN
w w

N N DN
F O U N

w

1.
1.

—

uor WwoN

A ow N

N —

Constants

Integer Constants

Real Constants (Six-decimal-digit accuracy)
Double-Precision Constants (nine-decimal-digit accuracy)
Logical Constants

Hollerith Constants

Variables

Variable Types

Integer Variables

Real Variables

Double-Precision and Logical Variables
Arrays and Subscripts

Arrangement of Arrays in Storage

Subscript Expressions

Subscripted Variables

Expressions

Arithmetic Expressions

Relational Expressions

Logical Expressions

Statements

Page

2-4
2-4
2-4

2-5
2-5
2-6
2-6
2-6
2-8
2-8
2-10

CONTENTS (Conf)

CHAPTER 3 ARITHMETIC STATEMENTS

CHAPTER 4 CONTROL STATEMENTS

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411

Unconditional GO TO Statements
ASSIGN Statement

Assigned GO TO Statement
Computed GO TO Statement
Arithmetic IF Statement
Logical IF Statement

DO Statement

CONTINUE Statement
PAUSE Statement

STOP Statement

END Statement

CHAPTER 5 INPUT/OUTPUT STATEMENTS

...
[XI S

.
—

o N oo v h w iy

(SIS, NS, TS N O N N S TS N I &, N G, B, NS, B, B S B S
W W N N N N DN DN DN NN = - -

8]
w w
w N

General 1/0O Statements

Input/Output Argument Lists

READ Statement

WRITE Statement

FORMAT Statements

Specifying FORMAT

Conversion of Numeric Data

P-Scale Factor - Field descriptor: nP or -nP
Conversion of Alphanumeric Data

Logical Fields, L Conversion - Field descriptor: Lw or nLw
Blank Fields, X Conversion - Field descriptor: nX
FORTRAN Statements Read in at Object Time
Output of a Formatted Record

Auxiliary /O Statements

BACKSPACE Statement

REWIND Statement

ENDFILE Statement

Page

4-1
4-1
4-1
4-2
4-2
4-2
4-3
4-5
4-5
4-5
4-6

5-2
5-2
5-3
5-3
5-4
54
5-6
5~9

5-10
5-10
5-10
5-11
5-12
5-12
5-12
5-12

CONTENTS (Cont)

Page
CHAPTER 6 SPECIFICATION STATEMENTS 6-1
6.1 TYPE Statements 6-1
6.1.1 Typing Double-Precision Functions 6-2
6.2 DIMENSION Statement 6-3
6.3 COMMON Statement 6-3
6.4 EQUIVALENCE Statement 6-4
6.4.1 Equivalencing COMMON Variables 6-5
6.5 EXTERNAL Statement 6-5
6.6 DATA Statement 6-6
CHAPTER 7 SUBPROGRAMS 7-1
7.1 Statement Functions ‘ 7-1
7.2 Intrinsic or Library Functions 7-2
7.3 External Functions 7-4
7.4 Subroutines 7-6
7.5 BLOCK DATA Subprogram 7-7
7.5.1 Example of BLOCK DATA Subprogram 7-8

PART 2
FORTRAN IV OBJECT - TIME SYSTEM

CHAPTER 8 OBJECT-TIME SYSTEM DESCRIPTION 8-1
8.1 OTS Binary Coded Input/Output (BCDIO) 8-2
8.2 OTS Binary Input/Output (BINIO) 8-4
8.3 OTS Auxiliary Input/Output (AUXIO) 8-6
8.4 OTS IOPS Communication (FIOPS) 8-7
8.5 OTS Calculate Array Element Address (.SS) 8-9
8.6 OTS Computed GO TO (GO TO (.GO)) 8-10
8.7 OTS STOP (STOP (.ST)) 8-11
8.8 OTS PAUSE (PAUSE (.PA)) 8-11
8.9 OTS Octal Print (SPMSG (. SP)) 8-12
8.10 OTS Errors (OTSER (.ER)) 8-12

8.11 Additions to the FORTRAN 1V Subroutine Library 8-13

CONTENTS (Cont)

Page
8.11.1 File Commands (FILE) 8-13
8.11.2 Clock Handling (TIME) 8-15
8.11.3 Clock Handling (TIME10) 8-16
8.11.4 Adjustable Dimensioning (ADJ1) 8-17
8.11.5 Adjustable Dimensioning (ADJ2) 8-18
8.11.6 Adjustable Dimensioning (ADJ3) 8-18

PART III
THE SCIENCE LIBRARY

CHAPTER 9 SCIENCE LIBRARY DESCRIPTION 9-1
9.1 Intrinsic Functions 9-1
9.2 External Functions 9-1
9.3 Sub-Functions 9-1
9.4 The Arithmetic Package 9-2
9.5 Accumulators 9-2
9.5.1 A-Register 9-2
9.5.2 Floating Accumulator 9-2
9.5.3 Held Accumulator 9-3
9.6 Calling Sequences 9-3
9.7 Science Library Algorithm Descriptions 9-9
9.7.1 Square Root (SQRT, DSQRT) 9-9
9.7.2 Exponential (EXP, DEXP, .EF, .DF) 9-9
9.7.3 Natural and Common Logarithms (ALOG, ALOG10, DLOG, DLOGI10) 9-10
9.7.4 Sine and Cosine (SIN,COS,DSIN,DCOS, .EB, .DB) 9-10
9.7.5 Arctangent (ATAN, DATAN, ATAN2, DATAN2, .ED, .DD) 9-11
9.7.6 Hyperbolic Tangent (TANH) 9-12
9.7.7 Logarithm, Base 2 (.EE, .DE) 9-13
9.7.8 Polynomial Evaluator (.EC, .DC) 9-13

APPENDICES

APPENDIX A FORTRAN IV, ADDITIONAL INFORMATION A-1

vi

APPENDICES (Cont)

APPENDIX B FORTRAN IV AND MACRO LINKAGE

B.1
B.2
B.3
B.4
B.4.1
B.4.2
B.4.3
B.4.4

Linking FORTRAN 1V Programs with MACRO Subprograms
Linking MACRO Programs with FORTRAN 1V Subprograms
Linking MACRO Programs with FORTRAN 1V Library Routines
More Illustrative Examples

A New Dimension Adjustment Routine

A Function to Read the AC Swiiches

A Routine to Read an Array in Octal

A FORTRAN Program Using the Foregoing Programs

APPENDIX C CHAINING FORTRAN IV PROGRAMS

APPENDIX D FORTRAN IV ERROR LIST

D.1
D.2
D.3
D.4

Techniques for Avoiding F Errors
Techniques for Avoiding T Errors
Techniques for Avoiding M Errors

Technique for Avoiding an E Error

APPENDIX E SYMBOL TABLE SIZES (F4 V5A)

1-1

3-1
5~1

7-2
8-1
9-1
D-1

ILLUSTRATIONS

FORTRAN Coding Form

TABLES

Assignment Rules

Physical Record Definitions
Intrinsic Functions
External Functions

OTS Error Messages

The Science Library

Compilation Errors

vii

Page
B-1

B-3
B-4
B-4
B-4
B-6
B-6
B-8

D-2
D-3
D-4
D-5

E-1

3-1
5-1
7-3
7-5
8-2
9-4
D-1

PREFACE

This manual describes the FORTRAN IV language and compiler system for either the
PDP-15 or PDP-9 Computer; it provides the user with the information needed to write,

compile and execute FORTRAN programs on either of these computers.
The manual consists of three major parts:

Part 1, Basic FORTRAN 1V Language

Part 1 is intended to familiarize the user with the FORTRAN IV coding
procedures in the PDP-15 and -9 environment .

Part 2, FORTRAN IV Object Time System

Part 2 describes the group of subprograms which process compiled FORTRAN
statements, particularly 1/O statements, at the time of execution.

Part 3, FORTRAN Science Library

Part 3 provides detailed descriptions of the intrinsic functions, external
functions, subfunctions, and arithmetic routines contained in the system

Science Library.

FORTRAN 1V (as described in this manual) is essentially the language specified by
the United States of America Standards Institute (X3.9 = 1966) with the exceptions
noted in Appendix A of this manual (located at the end of Chapter 9).

PART 1
LANGUAGE

CHAPTER 1
INTRODUCTION

1.1 FORTRAN

FORTRAN makes it unnecessary for the scientist or engineer to learn the machine language for specific com-
puters. With FORTRAN, the user can write programs in a simple language that adapts easily to scientific usage.
The FORTRAN language is composed of statements constructed in mathematical form in accordance with precise-
ly formulated rules. A FORTRAN program consists of meaningful sequences of FORTRAN statements that direct
the computer to perform specific operations and calculations; such a program is called a source program. The
source program must be translated by the FORTRAN compiler program before execution; the translated version of
the program is referred to as an object program. The object program is in binary code that the machine can

understand .

1.2 SOURCE PROGRAM FORMAT

The FORTRAN character set consists of the 26 letters (A through Z); 10 digits (0 through 10); and 11 special
characters:
Blank
Equals =
Plus +
Minus -
Asterisk *
Slash /
Left Parenthesis (
Right Parenthesis)
Comma ’
Decimal Point

Dollar Sign $

1-1

-
>
2
)
c
>
()
m

1.2.1 Card Format (IBM Model 029 Keypunch Codes)

The FORTRAN source program is written on a standard FORTRAN coding sheet (see Figure 1-1), which consists
of the following fields:

a. statement number field
b. line continuation field
c. statement field

d. identification field.

The FORTRAN statement is written in columns 7 through 72. If the statement is too long for one line, it can be
continued in the statement field of as many lines as necessary if column 6 of each continuation line contains any

numeric character other than blank or zero. There are two exceptions to this rule:

a. the DO statement must be on one line

b. the equal sign (=) of an assignment statement must appear on the first line.

For one statement to be referenced by another, a statement number must be placed in columns 1 through 5 of the
first line of the referenced statement. This number is made up of digits only, and can contain from one to five
digits. Leading zeros and all blanks in this field are ignored. Because statement numbers are used only for

identification, they can be assigned in any order.

The FORTRAN compiler ignores the last eight columns (columns 73 through 80), which can be used for program
identification, sequencing, or any other purpose desired by the user. Comments can be included in the program
by putting the letter C in column 1 of each line containing a comment (or continuation of a comment). The

compiler ignores these comments except for printing them.

Blanks can be used to aid readability of a FORTRAN statement, except where otherwise indicated in this manual.

1.2.2 Paper Tape Format

When FORTRAN source program statements are prepared on paper tape, the sequence of characters is exactly

the same as for card input, and each line is terminated with a carriage return-line feed sequence.

A statement number (all digits) can be written as the first five characters, or the letter C can appear as the first
character to indicate a comment line or a continuation of a comment line. For statement continuation lines,
any numeric character other than blank or zero is written as the sixth character or as the first character after a
TAB. The seventh character, which begins the statement, must be alphabetic. Each line is terminated with

carriage return=line feed.

The TAB key can increase the speed of writing FORTRAN statements on paper tape. A TAB followed by an

alphabetic character begins the statement in column 7. A TAB followed by a digit causes the digit to be placed

in column 6, indicating a statement continuation line. A statement number of less than five digits, followed by

a TAB, causes the next character to be placed in column 6 if it is a digit, or in column 7 if it is a letter.

If a title is desired at the beginning of the tape for a listing, it must be entered as a comment line.

Fo RT RA N CODER DATE PAGE
CODING FORM PROBLEM

C-Comment | §
S-Symbolic E
B Boolean | 2 FORTRAN STATEMENT IDENTIFICATION
STATEMENT | ¢
NUMBER |8
12345[6/78910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364065660676869707172(7374757677787980)
~+—t+—— R S B LA A B B e e LA L o e e e e e e L S T B S R
At B L B T I B LA A B B e e e LA B S S o e LA S oo o o S s e s e e
et LA o e e e B e o A e e S o e i e e e o e o o e e e e SN e e e o 0 B S S S
+——t— LA S B e S e L e o B L B o S e e LA S oo s o s e I S S N
PO I T S A P T R S P S S S S S RS S R S S S S SR SO SRR
+— ST S U S SV RS S S S S P ESEES SRS S S,
H———+ e e e e e
+—+—+ +—+—+—— et sttt
i e e S e e e T T S T B B e S S T B e L e o e e o e e o e M i e e o A S B
t—t + ettt et e et -t
———+ e e e S T A B e B B TR A B e I B o o e e e e e L e
A+ e e L B S e e e T S o A A o e e LANLALSN B vt o o o S
—+—t -ttt e e et
O U S GNP USUNI R

+—+ A ———————+——————————+ b+ L A
t—t—t—+- b e e o
—+—+ L e e B S e e e S e e e T S S o e e e o A AL AT e v e e o B B T
-+ A e
P S S S S S S AT S SV PSS ST S A S S R IO S PR W PSS A S R G A S S A U U S W S
t——t e e e e
-+ e e e e e e
——++ B T o L S B L e e T e I L L o e e A e e o o S S S B
—+—+—+ L B e e L L e S S S S S S s N R S S
14 1 A4)3 0o 4 04 4 4 4 4 4 2 & 3 .2 1 2 L .4 ¢ 4 2 4 4 3 & L L 4 4 4 L L 4 ¢ 4 4 & ¢ L 4 4 ¢ | | 4 4 4 2 + 1 1 4 4 1 4 4 4) 1 A4 4 L 4 1 L
12345[6]7891011121314151617 181920212223 24 252627282930 31 3233 34 13 3637383940 41 4243444546 474849 50 51525354 5556 57 585960 616263646366 67 686H 70 71 72\ 7374737677 787980

DIGITAL EQUIPMENT CORPORATION

Figure 1-1

MMAYNARD, MASSACHUSETTS

FORTRAN Coding Form

180 - 12764

Part 1

LANGUAGE

CHAPTER 2
ELEMENTS OF THE FORTRAN LANGUAGE

2.1 CONSTANTS

There are five types of constants allowed in the FORTRAN source program: integer, real, double-precision,

logical, and Hollerith.

2.1.1 Integer Constants

An integer constant consists of one to six decimal digits written without a decimal point. A + or - sign preced-

ing the number is optional. The magnitude of the constant must be less than or equal to 131071 (2]7-1).

Examples:

+97

0
-2176
576

If the magnii‘ude>2]7-1 , an error message will be output. Negative numbers are represented in 2's complement

notation.

2.1.2 Real Constants (Six=decimal-digit accuracy)
A real constant is an integer, fraction, or mixed format number written in the following forms:

a. A constant consisting of one to six significant decimal digits with a decimal point included within
the constant. A + or = sign can precede the co?[si'cmt; the + sign is optional.

b. A constant followed by the Igtfer E, indicating a decimal exponent, and a one or two digit expo=
nent with magnitude less than 76" indicating the appropriate power of 10. A + or - sign can precede
the exponent. The decimal point is not necessary in real constants having a decimal exponent.

Examples:

352.
+12.03
-.0054
5.E-3
+5E7

*If the adjusted magnitude exceeds 75, an error results. The constant .999999E75 is legal, but 999.999E73 is
illegal.

2-1

Real constants are stored in two words in the following format:

LOW ORDER EXPONENT
= MANTISSA (2'S COMP)

= > 0 89 17
~
> -—t

F
" :’»lﬁ?sg/x —> HIGH ORDER MANTISSA
o 1 7
NOTE

Negative mantissae are indicated with a change of sign.

2.1.3 Double-Precision Constants (nine-decimal-digit accuracy)

A double-precision constant is written as a real number with a decimal exponent, followed by the letter D and
the one- or two-digit exponent with magnitude not greater than 76. A + or = sign can precede the constant and
also the exponent. A decimal point within the constant is optional. A double-precision constant is interpreted

the same as a real constant, except that the degree of accuracy is greater.

Examples:

-3.0D0
987 .6542D15
32.123D+7

Double-precision constants are stored in three words:

~
EXPONENT (2'S COMP.)
0 17
NEGATIVE
MANTISSAE
ARE
SIGN OF __| INDICATED
MANTISSA > HIGH ORDER MANTISSA > WITH A
CHANGE
0 1 17 OF
SIGN
LOW ORDER MANTISSA
(o] 17 J

2.1.4 Logical Constants

The two logical constants are the words TRUE and FALSE, each enclosed by periods, with values as indicated

below.

TRUE. 777777
.FALSE. 0

2.1.5 Hollerith Constants

A Hollerith constant is written as an unsigned integer constant, the value of which (n) must be > 1 and < 5,
followed by the letter H, followed by exactly n characters, which are the Hollerith data. Any FORTRAN
character, including blank, is acceptable. The Hollerith constants are used only in CALL and DATA statements
and must be associated with real variable names. (For examples, refer to Paragraph 8.11.1.) The Hollerith

constants are packed in 7-bit ASCII, five per two words of storage with the rightmost bit always zero.

Examples:

THA
4HAS$CD

2.2 VARIABLES

A variable is a representation of a numeric quantity, the value of which can change by assignment or computa-
tion during the execution of a program. The representation, or name, consists of from one to six alphanumeric

characters, the first of which must be alphabetic.

Example:

X =Y +10. Both X and Y are variables; X by computation, and Y by assignment
in some previous statement.

TEST
GAMMA
X12345

NOTE
If three characters or less are used for each symbol,

considerable core space can be saved during com=
pilation.

2.2.1 Variable Types

Variables in FORTRAN can represent one of the following types of quantities: integer, real, double-precision,

or logical.

JOVNONVT

L Weg

2.2.2 Integer Variables

Variable names beginning with the letters I, J, K, L, M, or N are considered to be integer variables. If the
first letter is not one of the above letters, it is an integer variable only if it was named in a previous integer

type specification statement.

2.2.3 Real Variables

Variable names beginning with letters other than I, J, K, L, M, or N are considered real variables. If the
first character is one of the foregoing letters, it is a real variable only if it was named in a previous real type

specification statement.

Example:

REAL ITIN

C ITIN WILL BE TREATED AS A REAL VARIABLE SUM=ITIN+1

2.2.4 Double=Precision and Logical Variables

A type specification statement is the only way to assign a variable value fo one of these two types. This is

done with either a double precision statement or a logical statement.

2.3 ARRAYS AND SUBSCRIPTS

An array is an ordered set of data identified by a symbolic name. Each individual quantity in this set of data is

referred to in terms of its position within the array. This identifier is called a subscript. For example,
A Q)

represents the third element of a 1-dimension array named A. To generalize further, in an array A with n

elements, A (I) represents the Ith element of the array A where 1 =1, 2,...,n.

FORTRAN allows for 1=, 2-, and 3-dimension arrays; thus, there can be up to three subscripts for the array,

each subscript separated from the next by a comma. For example,
B(1,3)

represents the value located in the first row and the third column of a 2-dimension arrcy named B. A dimension
statement defining the size of the array (i.e., the maximum values each of its subscripts can attain) must pre=

cede the array in the source program. (A COMMON statement can also be used for dimensioning.)

FORTRAN 1V does not check constant subscripts to ascertain that they are positive and nonzero. For example,

the following statements are not flagged, although they are illegal.

N(0)=1
N(=1)=1

(These statements are illegal because the array N cannot have a 0 or =1 member.)

2.3.1 Arrangement of Arrays in Storage

Arrays are stored in column order in ascending absolute storage locations. The array is stored with the first of
its subscripts varying most rapidly and the last varying least rapidly. For example, a 3-dimension array A, de-

fined in a DIMENSION statement as A (2,2,2), is stored sequentially in this order:

A(1,1,1)
A2,1,1)
A(1,2,1)
A2,2,1) ascending absolute
A(1,1,2) storage locations
A(2,1,2)
A(1,2,2)
A2,2,2) V

2.3.2 Subscript Expressions
Subscripts can be written in any of the following forms:

\'%

C

V+k
V-~-k
CcC*V
C*V+k
C*V-k

where C and k represent unsigned integer constants and V represents an unsigned integer variable.

Example:

I

13

IMOST + 3
ILAST -1
5 * IFIRST
2*J+9
4*M1-7

-
>
2
@
c
>
7]
m

2.3.3 Subscripted Variables

A subscripted variable is a variable followed by a pair of parentheses enclosing one fo three subscripts separated

by commas.

Example:

A (1)
B (I, J-3)
BETA(5*J+9,K+7, 6 * JOB)

2.4 EXPRESSIONS

An expression is a combination of elements (constants, subscripted or nonsubscripted variables, and functions),
each of which is related to another by operators and parentheses. An expression represents one single value that
is the result of calculations specified by the values and operators that make up the expression. The FORTRAN

language provides two kinds of expressions: arithmetic and logical.

2.4.1 Arithmetic Expressions

An arithmetic expression consists of arithmetic elements joined by the arithmetic operators +, =, *, /, and **,
which denote addition, subtraction, multiplication, division, and exponentiation, respectively. An expression
may consist of a single element (meaning a constant, a variable, or a function name). An expression enclosed

in parentheses is considered a single element. Compound expressions use arithmetic operators to combine single

elements.
Examples:
2.71828 (single element: a constant)
Z(N) (single element: a variable)
TAN(THETA) (single element: a function name)
(XY)/2 (single element: because it is enclosed in parentheses)

(X+Y)=(ALPHA*BETA) (compound expression: arithmetic operators combining single elements)

2.4.1.1 Mode of an Expression - The type of quantities making up an expression determines its mode; e.g., a
simple expression consisting of an integer constant or an integer variable is said to be in the integer mode.
Similarly, real constants or variables produce a real mode of expression, and double-precision constants or
variables produce a double-precision mode. The mode of an arithmetic expression is important because it deter-

mines the accuracy of the expression.

In general, variables or constants of one mode cannot be combined with variables or constants of another mode

in the same expression. There are, however, exceptions to this rule.

a. The following examples show the modes of the valid arithmetic expressions involving the use of the
arithmetic operators (+, =, *, and /). I, R, and D indicate integer, real, and double-precision
variables or constants. A plus sign (+) is used to indicate any one of the four operators:

I+1 Integer result

R+R Real result

R+D

D+R Double-precision result
D + D]

b. When raising a value to a power, the mode of the power can be different than that of the value
being raised. The following examples show the modes of the valid arithmetic expressions using the
arithmetic operator (**). As above, I, R, and D indicate integer, real, and double=precision.

[##] Integer result
R**

R**R
R**D
D**]

D**R
D**D)

Real result

Double-precision result

The subscript of a subscripted variable, which is always an integer quantity, does not affect the mode of the

expression.,

2.4.1.2 Hierarchy of Operations - The order in which the operations of an arithmetic expression are to be

computed is based on a priority rating. The operator with the highest priority tokes precedence over other

operators in the expression. Parentheses can be used to determine the order of computation. If no parentheses

are used, the order is understood fo be as follows:

. Function reference
**(Exponentiation)

Unary minus evaluation
*(multiplication), /(division)
+(addition), =(subtraction)

D WN —

Within the same priority, operations are computed from left to right.

Example:
FUNC + A*B/C-D(1,J) + E**F*G-H
interpreted as,

FUNC + ((A*B)/C) - D(1,J) +(E" * G) - H

2.4.1.3 Construction of Arithmetic Expressions = The following rules apply to constructing arithmetic expres-

sions:

a. Any expression can be enclosed in parentheses.

-
>
=
@
=
>
)]
m

-0
o
o
-

b. Expressions can be preceded by a + or - sign.

c. Simple expressions may be connected to other simple expressions to form a compound expression,
provided that:

(1) No two operators appear together.
(2) No operator is assumed to be present.
d. Only valid mode combinations can be used in an expression (Refer to Section 2.4.1.1).

e. The expression must be constructed so that the priority scheme determines the order of operation de-
sired (Refer to Section 2.4.1.2).

Arithmetic expression examples:

3

A(T)

B+7.3

C*D

A+ (B*C) - D**2 + E/F

2.4.2 Relational Expressions

A relational expression is formed with the arithmetic expressions separated by a relational operator. The result
value is either TRUE or FALSE depending on whether the condition expressed by the relational operator is met or
not met. The arithmetic expressions can both be integer mode expressions or a combination of real/double-

precision. No other mode combinations are legal. The relational operators must be enclosed by periods. They

are:

.LT. Less than (<)

.LE. Less than or equal to (<)

.EQ. Equal to (=)

.NE. Not equal to (%)

.GT. Greater than (>)

.GE. Greater than or equal to (>)
Examples:

N .LT.5

DELTA + 7.3 .LE. B/3E7
(KAPPA + 7)/5 .NE.IOTA
1.736D-4.GT.BETA
X.GE. Y*Z%*2

2.4.3 Logical Expressions

A logical expression consists of logical elements joined by logical operators. The value is either TRUE or

FALSE. The logical operator symbols must be enclosed by periods.

2-8

The logical operator symbols are:
NOT. Logical negation. Reverses the state of the logical quantity that follows.

.AND. Logical AND generates a logical result (TRUE or FALSE) determined by two logical
elements as follows:

T .AND. T generates T
T .AND. F generates F
F .AND. T generates F
F .AND. F generates F

.OR. Logical OR generates a logical result determined by two logical elements as follows:

T .OR. T generates T
T .OR. F generates T
F .OR. T generates T
F .OR. F generates F

2.4.3.1 Construction of Logical Expression ~ The following rules apply to constructing logical expressions:

a. A logical expression can consist of a logical constant, a logical variable, a reference to a logical
function, a relational expression, or a complex logical expression enclosed in parentheses.

b. The logical operator .NOT. must be followed only by a logical expression, while the logical
operators .AND. and .OR. must both be preceded by and followed by a logical expression for more
complex logical expressions.

c. Any logical expression can be enclosed in parentheses. The logical expression following the logical
operator .NOT. must be enclosed in parentheses if it contains more than one quantity.

d. When two logical operators appear in sequence, they must be separated by a comma or parenthesis,
unless the second operator is .NOT. In addition, when two decimal points appear together, they must
be separated by a comma or parenthesis, unless one belongs to a constant and the other to a relational
operator.

2.4.3.2 Hierarchy of Operations = Parentheses can be used as in normal mathematical notation to specify the
order of operations. Within the parentheses, or where there are no parentheses, the order in which the opera-

tions are performed is as follows:

Evaluation of functions

T QO

**(Exponentiation)

c. Evaluation of unary minus quantities

d. *and/ (multiplication and division)

e. + and - (addition and subtraction)

f. .LT., .LE., .EQ., .NE., .GT., .GE.
g. .NOT.

h. .AND. and .OR.

i. =Replacement operator

2-9

JOVNONVI

L Med

Since .AND. and .OR. are of equal priority and are evaluated from left to right, the FORTRAN user must irsert
his own parentheses when necessary. The following example illustrates equivalent logical expressions according

to FORTRAN (L1, L2,... are defined as LOGICAL).

Example:
L1.AND.L2.0OR..NOT.L3.AND.L4.0R.L5
is equivalent to
(((LT.AND.L2).OR..NOT.L3) .AND.L4) .OR.L5

To present the foregoing expression as if it were meant fo be a sum of products (instead of what FORTRAN

interprets it to be) requires enclosing the product terms in parentheses.

Example:

(L1.AND.L2) .OR.(.NOT.L3.AND.L4) .OR.L5
To express the original example as if it were a product of sums requires enclosing the sum ferms in parentheses.

Example:
LT.AND.(L2.0R..NOT.L3) .AND. (L4.OR.L5)

2.5 STATEMENTS

Statements specify the computations required o carry out the processes of the FORTRAN program. There are

four categories of statements provided for by the FORTRAN language:

a. Arithmetic statements define a numerical calculation.
b. Conirol statements determine the sequence of operation in the program.

c. Input/output statements are used to transmit information between the computer and related input/
output devices.

d. Specification statements define the properties of variables, functions, and arrays appearing in the
source program. They also enable the user fo control the allocation of storage .

2-10

CHAPTER 3
ARITHMETIC STATEMENTS

An arithmetic statement is a FORTRAN mathematical equation that defines a numerical or logical calculation.

It directs the assignment of a calculated quantity to a given variable. An arithmetic statement has the form
V=E

where V is a variable (integer, real, double-precision, or logical, subscripted or nonsubscripted) or any array

element name; = means replacement rather than equivalence, as opposed to the conventional mathematical

notation; and E is an expression.

In some cases, the mode of the variable is different from that of the expression. In such cases, an automatic

conversion takes place. The fules for the assignment of an expression, E, to a variable, V, are given in

Table 3-1.

Table 3-1

Assignment Rules

V Mode E Mode Assignment Rule
Integer Integer Assign
Integer Real Fix and assign
Integer Double-precision Fix and assign
Real Integer Float and assign
Real Real Assign
Real Double=-precision Double=-precision evaluate and real assign

Double=-precision
Double=-precision
" Double-precision

Logical

Integer
Real
Double-precision

Logical

Double~precision float and assign
Double-precision evaluate and assign
Assign

Assign

Mode conversions involving logical quantities are illegal unless the mode of both V and E is logical. Examples

of an assignment statement:

ITEM = ITEM + 1
A(1) = B{I) + ASSIN (C (1))

V = .FALSE.
X =A.GT.B.AND.C .LE. G
A=B

JOVNONVYT
L Med

CHAPTER 4
CONTROL STATEMENTS

The statements of a FORTRAN program are normally executed as written. It is frequently desirable, however,
to alter the normal order of execution. Control statements give the FORTRAN user this capability . This section

discusses the reasons for control statements and their use.

4.1 UNCONDITIONAL GO TO STATEMENTS

The form of the unconditional GO TO statement is
GO TOn
where n is a statement number. On execution of this statement, control is transferred to the statement

identified by the statement number, n, which is the next statement to be executed.

Example:

GO TO 17

4.2 ASSIGN STATEMENT

The general form of an ASSIGN statement is

ASSIGN n TO i
where n is a statement number and i is a nonsubscripted integer variable name that appears in a subsequently
executed assigned GO TO statement. The statement number, n, is the statement to which control will be

transferred after the execution of the assigned GO TO statement.

Example:
ASSIGN 27 TO ITEST

4.3 ASSIGNED GO TO STATEMENT

Assigned GO TO statements have the form
GOTOIi, (n], Nor eeees nm)

where i is a nonsubscripted integer variable reference appearing in a previously executed ASSIGN statement,

and Nys Ny +eeepn are the statement numbers which the ASSIGN statement may legally assign to i.

Examples:

ASSIGN 13 TO KAPPA
GO TO KAPPA, (1, 13, 72, 100, 35)

-
>
2
G
C
>
@
m

There is no object time checking to ensure that the assignment is a legal statement number.

4.4 COMPUTED GO TO STATEMENT

The format of a computed GO TO statement is
GO TO (n], Nosveeey nm), i

where nyon ., n_ are statement numbers and i is an integer variable reference the value of which is
m

YRS
greater than or equal to 1 and less than or equal to the number of statement numbers enclosed in parentheses.
If the value of i is out of this range, the statement is effectively a CONTINUE statement, however an OTS

error statement is also generated.

Example:
GO TO (3, 17, 25, 50, 66), ITEM
If the value of ITEM is 2 at the time this GO TO statement is executed, the statement to which control is

transferred is the second statement number in the series, i.e., statement 17.

4.5 ARITHMETIC IF STATEMENT

The form of the arithmetic IF statement is
IF (e) nys nos Ng

where e is an arithmetic expression and Ny, Ny, Ngare statement numbers. The IF statement evaluates the

expression in parentheses and transfers control to one of the referenced statements. If the value of the expres=

sion (e) is less than, equal to, or greater than zero, control is transferred to Ny Ny, OF Ng, respectively.

Example:

IF (AUB (I) - B*D) 10, 7, 23

4.6 LOGICAL IF STATEMENT

The general format of a logical IF statement is

IF (e) s
where e is a logical expression and s is any executable statement other than a DO statement or another logical
IF statement. The logical expression is evaluated, and different statements are executed depending on whether

the expression is TRUE or FALSE. If the logical expression e is TRUE, statement s is executed and control is then

4-2

transferred to the statement following the IF statement (unless the statement is a GO TO statement or an arith-
metic IF statement, in which cases control is transferred as indicated; or the statement s is a CALL statement, in
which case control is transferred to the next statement after return from the subprogram). If the logical expres-

sion e is false, statement s is ignored and control is transferred to the statement following the IF statement.

Example:

IFLN)I=1+1
IF (L.LE.k) GO TO 17
IF (LOG.AND. (.NOT.LOGT1)) IF (X) 3,5,5

4.7 DO STATEMENT

The DO statement is a command to execute repeatedly a specified series of statements. The general format of
the DO statement is
DO ni =my, my, mg
or
DOni= my, m,
where n is a statement number representing the terminal statement or end of the range; i is a nonsubscripted

integer variable known as the index; and my, My, and m, are unsigned nonzero integer constants or nonsub-

scripted integer variables, which represent the initial, final and increment values of the index.

NOTE

The quantities m,, m,, and mo must be assigned only
positive values.

The range of a DO statement is the series of statements to be executed. It consists of all statements immediately
following the DO, up to and including statement n. Any number of statements can appear between the DO and
statement n. The terminal statement (statement n) cannot be a GO TO (of any form), an arithmetic IF, a

RETURN, a STOP, a PAUSE, or a DO statement, or a logical IF statement containing any of these forms.

The index of a DO is the integer variable i which is controlled by the DO statement in such a way that its
initial value is set to My, and is increased by mq each time the range of statements is executed, until a further
incrementation would cause the value of m, to be exceeded. When i is greater than My, control passes to the
statement following statement n. Throughout the range of the DO, the index is available for computation
either as an ordinary integer variable or as the variable of a subscript. The index cannot be changed by any

statement within the DO range.

The initial value is the value of the index when the range is executed for the first time.

The final value is the value which the index must not exceed. When this value is reached, the DO is completed

and control passes to the first executable statement following statement n.

The increment is the amount by which the index is to be increased after each execution of the range. If the

-
>
2
)
C
>
(]
m

increment is omitted, as in the second form of the DO statement above, its value is assumed to be 1.

Example:

DO721=1,10,2
DO15K=1,5
DO 231=1,11,4

Any FORTRAN statement can appear within the range of a DO statement, including another DO statement.
When such is the case, the range of the second DO must be contained entirely within the range of the first;
i.e., it is not permissible for the ranges of DOs to overlap. A set of DOs satisfying this rule is called a nest
of DOs. DOs can be nested to a depth of ten. It is possible for a terminal statement to be the terminal state-
ment for more than one DO statement. The following configuration, where brackets are used to represent the

range of the DOs, indicates the permissible and illegal nesting procedures.

PERMISSIBLE [o]0] ILLEGAL DO
— DO
——-— DO ——————— DO

Transfer of control from within the range of a DO statement to outside its range is permitted at any time. The
reverse is not true, however; i.e., control cannot be transferred from outside the range of a DO statement to

inside its range. The following examples show both valid and invalid transfers.

<
VALID DD INVALID DO)
<
— DD — DO ’

<
< —_

4-4

4.8 CONTINUE STATEMENT

The CONTINUE statement causes no action and generates no machine coding. It is a dummy statement used for
terminating DO loops when the last statement would otherwise be an illegal terminal statement (viz., GO TO,
arithmetic IF, RETURN, STOP, PAUSE, or DO, or d logical IF containing any of these forms). The form con-

sists of the single word

CONTINUE

Example:

DO7K START,END
IF(X(K))22,13,7

7 CONTINUE

4.9 PAUSE STATEMENT

A PAUSE statement is a temporary halt of the program during run time. The PAUSE statement is in one of two
forms:
PAUSE
or
PAUSE n
where n is an octal integer the value of which is less than 7777778. The integer n is typed out on the console
teletype for the purpose of determining which of several PAUSE statements was encountered. Program execution

is resumed, by typing control P (1P), starting with the first statement following the PAUSE statement .

4.10 STOP STATEMENT

The STOP statement is of one of two forms:
STOP
or
STOP n
where n is an octal integer whose value is less than 7777778. The STOP statement is placed at the logical end
of a program and causes the computer to type the integer n on the console teletype, and then to exit back to the

Monitor. There must be at least one STOP statement per main program, but none are allowed in subprograms.

4.11 END STATEMENT

The END statement is placed af the physical end of a program or subprogram. The form consists of the single

word

END

L Hed

The END statement is used by the compiler and generates no code. It signals the compiler that the processing

-
>
2
o
c
>
o
m

of the source program is complete. The compiler assumes the presence of an END statement if it fails to find cne.

A control transfer type statement, a STOP statement, or a RETURN statement must immediately precede END.

This will be checked by the compiler.

4-6

CHAPTER 5
INPUT/OUTPUT STATEMENTS

the logical record and the physical device used.

Table 5-1
Physical Record Definitions

The input/output (1/O) statements direct the transfer of data between the computer and 1/O devices. The
information thus transmitted is defined as a logical record, which can be formatted or unformatted. A logical

record, or records, can be written on a device as one or more physical records. This is a function of the size of

The definition of the data which comprise a physical record varies with each 1/O device (Refer to Table 5-1) .

Unformatted

. . Formatted Physical . \
Unit/Device Record Definition (Binary) Ph?/s!c.ql
Record Definition
Typewriter One line of type is terminated by a carriage Undefined
(input and output) return. Maximum of 72 printing characters
per line
Line printer One line of printing. Maximum of 120 Undefined
characters per line
Cards One card. Maximum of 80 characters 50 words
(input and output)
Paper tape One line image of 72 printing characters 50 words

(input and output)
Magnetic tape
Disc/drum/Decfape

One line image of 630 characters

One line image of 630 characters

252 words 257\
252 words 257\

statement
READ (u,f) list

requests one logical record from the device associated with slot u in the device assignment table.

5-1

Each 1/0O device is identified by an integer constant which is associated with a device assignment table in the

Monitor. This table may be modified at system generation time, or just before run time. For example, the

IOVNONVT

l yed

The statement descriptions in this section use u to identify a specific 1/O unit, f as the statement number of the

FORMAT statement describing the type of data conversion, and list as a list of arguments to be input or output.

5.1 GENERAL 1/O STATEMENTS

These statements cause the transfer of data between the computer and 1/O devices.

5.1.1 Input/Output Argument Lists

An 1/O statement which calls for the transmission of information includes a list of the quantities to be trans-
mitted. In an input statement, this list consists of the variables to which the incoming data is to be assigned; in
an output statement, the list consists of the variables the values of which are to be transmitted to the given 1/O
device. The order of the list must be that in which the data words exist (input) or are to exist (output) on the
I/O device. Any number of items can appear in a single list. The same statement can transmit integer and real
quantities. If the data fo be transmitted exceeds the items in the list, only the number of quantities equal to the
number of items in the list are transmitted. The remaining data is ignored. Conversely, if the items in the list
exceed the data to be transmitted, succeeding superfluous records are transmitted until all items specified in the

list have been transmitted.

-~

5.1.1.1 Simple Lists = The list uses the form
CirCyrvvns C

n
where each Ci is a variable, a subscripted variable, or an array identifier. Constants are not allowed as list
items. The list reads from left to right. When an array identifier appears in the list, the entire array is to be

fransmitted before the next item in the list.

Examples:
Y,Y,Z
A,B3),C,D(I+1,4)

7

5.1.1.2 DO-Implied Lists = Indexing similar to that of the DO statement can be used to control the number of
times a group of simple lists is to be repeated. The list elements, thus controlled, as well as the index contrel

itself, are enclosed in parentheses, and the entire enclosure is regarded as a single item of the 1/O list.

Example:

W, X (3)1 Y@, z I1,K), 1=1,10)

5.1.2 READ Statement

The READ statement is used to transfer data from any input device to the computer. The general READ statement
can be used to read either BCD or binary information. The form of the statement determines what kind of input

is performed.

5.1.2.1 Formatted READ - The formatted READ statement has the general form
READ (u,f) list
or
READ (u,f)
Execution of this statement causes input from device u to be converted as specified by format statement f, and

the resulting values to be assigned to the items specified by list, if any.

Examples:

READ (3, 13) A,B,C
READ (2, 10) A, (B (1), I =1,5)
READ (1,3)

5.1.2.2 Unformatted READ - An unformatted READ statement has the general form
READ (u) list
or
READ (u)
Execution of this statement causes input from device u, in binary format, to be assigned to the items specified by
list. If no list is given, one record is read, but ignored. If the record contains more information words than the
list requires, that part of the record is lost. If more elements are in the list than are in one record, additional

records are read until the list is satisfied.

Examples:

READ (5) I,J,K
READ (8)

5.1.3 WRITE Statement

The WRITE statement is used to transmit information from the computer to any 1/O device. The WRITE statement

closely parallels the READ statement in both format and operation.

5-3

L veg

5.1.3.1 Formatted WRITE - The formatted WRITE statement has the general form
WRITE (u,f) list
or
WRITE (u,f)
Execution of this statement causes the list elements, if any, to be converted according to format statement f,

and output onto device u.

5.1.3.2 Unformatted WRITE - The unformatted WRITE statement has the general form

WRITE (u) list
Execution of this statement causes output onto device u, in binary format, of all words specified by the list. If
the list elements do not fill the record, the remaining part of the record is filled with blanks. If the list elements
more than fill one record, successive records are written until all elements of the list are satisfied, and the last

record is padded, with blanks if necessary.

Examples:

WRITE (1, 10) A, (B (1), (C (1,J), J=2, 10,2), 1=1,5)
WRITE (2,7) A,B,C
WRITE (5) W, X(3), Y(I +1,4),Z

5.2 FORMAT STATEMENTS

These statements are used in conjunction with the general 1/O statements. They specify the type of conversion
which is to be performed between the internal machine language and the external notation. FORMAT statements

are not executed; their function is to supply information to the object program.

5.2.1 Specifying FORMAT

The general form of the FORMAT statement is
FORMAT (S] ’ 52, cees Sn)

where S] . .Sn are data field descriptors. Breaking this format down further, the basic data field descriptor is
written in the form

nkw.d
where n is a positive unsigned infeger indicating the number of successive fields for which the data conversion
is to be performed according to the same specification. This is also known as the repeat count. If n is equal to
1, it can be omitted. The control character, k, indicates which type of conversion is to be performed. This
character can be 1,E,F,G,D,P,L,A,H, or X. The nonzero integer constant, w, specifies the width of the

field. The integer constant, d, indicates the number of digits to the right of the decimal point.

Six of the nine control characters listed above provide for data conversion between internal machine language

and external notation.

Internal Type External
Integer variable I Decimal integer
Real variable E Floating=point, scaled
Real variable F Floating=point, mixed
Real variable G Floating=point, mixed/scaled
Double=-precision D Floating-point, scaled
variable
Logical variable L Letter T or F
Alphanumeric A Alphanumeric (BCD) characters

The other three control types are special purpose control characters:

Type Purpose
p Used to set a scale factor for use with E, F, and D conversions.
X Provides for skipping characters in input or specifying blank characters
in output.
H Designates Hollerith fields.

Although FORMAT statements generate code, they are not executed and therefore can be placed anywhere in
the source program following all specification statements. Because FORMAT statements are referenced by READ

or WRITE statements, each FORMAT statement must be given a statement number.

The comma (,) and slash (/) are used as field separators. The comma is used to separate field descriptors;
however, it need not follow a field specified by an H or X control character. The slash is used to specify the
termination of formatted records. A series of slashes is also a field separator. Multiple slashes are the equiva-
lent of blank records between output records, or records skipped for input records. If a series of n slashes occurs
at the beginning or end of the FORMAT specifications, the number of input records skipped or blank lines in-
serted in output is n. If the series of n slashes occurs in the middie of the FORMAT specifications, this number

is n=1. A comma cannot precede/follow a slash. An integer value cannot precede a slash.

For all field descriptors (with the exception of H and X), the field width must be specified. For those descriptors
of the w.d type (paragraph 5.2.2.2), the d must be specified even if it is zero. The field width must be large
enough to provide for all characters (including decimal point and sign) necessary to constitute the data value as
well as blank characters needed to separate it from other data values. The data value within a field is right

justified; thus, the most significant characters of the value are lost if the field specified is too small.

VIIONV'1
L yeg

Successive items in the 1/O list are transmitted according to successive descriptors in the FORMAT statement,
until the entire I/O list is satisfied . If the list contains more items than there are descriptors in the FORMAT
statement, a new record must be begun. Control is transferred to the preceding left parenthesis, where the same

specifications are used again until the list is complete.

Field descriptors (except H and X) are repeated by preceding the descriptor with an unsigned, nonzero integer
constant (the repeat count). A group repeat count is used to enable the repetition of a group of field descriptors
or field separators enclosed in parentheses. The group count is placed to the left of the parenthesis. Two levels

of parentheses (not including those enclosing the FORMAT specification) are permitted.

The field descriptors in the FORMAT must be the same type as the corresponding items in the 1/O list; i.e.,

integer quantities require integer (I) conversion; real quantities require real (E or F) conversion, etc.

Examples:

READ (I, 100) 1, A

FORMAT (17,F10.3)
FORMAT (I3, 17/E10.4,E10.4)
FORMAT (214, 3(15,D10.3))

5.2.2 Conversion of Numeric Data

5.2.2.1 I~Type Conversion (Field descriptor: Iw or nlw) = The number of characters specified by w is con=~

verted to a decimal integer.

On input, the number specified by w in the input field is converted to a binary integer. A minus sign indicates
a negative number. A plus sign, indicating a positive number, is optional. The decimal point is illegal . If

there are blanks, they must precede the sign or first digit. All imbedded blanks are interpreted as zero digits.

On output, the converted number is right justified. If the number is smaller than the field w allows, the left-
most spaces are filled with blanks. If an integer is too large the most significant digits are truncated and lost.
Negative numbers have a minus sign immediately preceding their most significant digit if sufficient spaces have

been reserved. No sign indicates a positive number.

Examples (b indicates blank):

Format Descriptor Input Internal Output
I5 bbbbb +00000 bbbb0
I3 -b5 -05 b-5
I8 bbb 12345 +12345 bbb12345

5.2.2.2 E-Type Conversion (Field descriptor: Ew.d or nEw.d) = The number of characters specified by w is
converted to a floating=point number with d spaces reserved for the digits to the right of the decimal point. The
w includes field d, spaces for a sign, the decimal point, plus four spaces for the exponent (written E £ XX) in

addition to space for optional sign and one digit preceding the decimal point.

The input format of an E-type number consists of an optional sign, followed by a string of digits containing an

optional decimal point, followed by an exponent. Input data can be any number of digits in length, although
+

it must fall within the range of 0 to = 10 39.

E output consists of a minus sign if negative (blank if positive), the digit 0, a decimal point, a string of digifs

rounded to d significant digits, followed by an exponent of the form E £ XX.

Examples:
Format Descriptor Input Internal Output
E10.4 00.2134E03 213.4 0.2134E+03
E?.4 0.2134E02 21.34 .2134E+02
E10.3 bb-23.0321 -23. 0321 -0.230E+02

5.2.2.3 F-Type Conversion (Field descriptor: Fw.d or nFw.d) = The number of characters specified by w is

converted to a floating=point mixed number with d spaces reserved for the digits to the right of the decimal point.
Input for F-type conversion is basically the same as that for E-type conversion, described in paragraph 5.2.2.2.

The output consists of a minus sign if the number is negative (blank if positive), the integer portion of the num-

ber, a decimal point, and the fractional part of the number rounded to d significant digits.

-
>
=
()
C
>
@
m

v
<}
~
-

Examples:

Format Descriptor Input Internal Output
F6.3 b13457 13.457 13.457
F6.3 313457 313.457 13.457
F9.2 -21367. -21367. -21367.00
F7.2 -21367. -21367. 1367 .00

5.2.2.4 G-Type Conversion (Field descriptor: Gw.d or nGw.d) - The external field occupies w positions

with d significant digits. The value of the list item appears, or is to appear, internally as a real number.
Input for G~type conversion is basically the same as that for E-type conversion, described in paragraph 5.2.2.2.

The form of the G-type output depends on the magnitude of the internal floating-point number. Comparison is
made between the exponent (e) of the internal value and the number of significant digits (d) specified by the
format descriptor. If e is greater than d, the E-type conversion is used. If e is less than or equal to d, the

F-type conversion is used, but modified by the following formula:
F (w=d).(d=e),4X

The 4X represents four blank spaces that are always appended to the value. If the value to be represented is

less than .1 , the E-type conversion is always used.

Examples:
Format Descriptor Internal Output
G14.6 . 12345678 x 106] 0.12345678E-01
G14.6 .12345678 x 10 4 bb0.123456bbbb
Gl14.6 . 12345678 x 108 bbb 1234 . 56bbbb
Gl4.6 . 12345678 x 10 bb0.123456E+08

5.2.2.5 D-Type Conversion (Field descriptor: Dw.d or nDw.d) = The number of characters specified by w is
converted to a double-precision floating=point number with the number of digits specified by d to the right of

the decimal point.

The input and output are the same as those for E-type conversion except that a D is used in place of the E in

the exponent.

Examples:

Format Descriptor Input Internal Output
D12.6 bb+21345D 03 21.345 0.213450D+02
D12.6 b+3456789012 3456.789012 0.345678D+04
D12.6 -12345.6D-02 -123.456 0.123456D+03

5.2.3 P-Scale Factor = Field descriptor: nP or =nP

This scale factor n is an integer constant. The scale factor has effect only on E-,F-~,G-, and D-type conver-
sions. Initially, a scale factor of zero is implied. When a P field descriptor has been processed, the scale
factor established by n remains in effect for all subsequent E,F, and D descriptors within the same FORMAT

statement until another scale factor is encountered.

. For E, F, G, and D input conversions (when no exponent exists in the external field), the scale factor is defined

as external quantity = internal quantity x 107.
The scale factor has no effect if there is an exponent in the external field.

The definition of scale factor for F output conversion is the same as it is for F input. For E and D output, the

fractional part is multiplied by 10" and the exponent is reduced by n.

Examples:
Format Descriptor Input Scale Factor Internal Output
-3PF6.3 123456 -3 +123456. 23.456
-3PE12.4 123456 -3 +12345.6 bb0.0001E+08
1PD10.4 12.3456 +1 +1.23456 1.2345D+00

5.2.4 Conversion of Alphanumeric Data

5.2.4.1 A-Type Conversion (7-Bit ASCII, Handled As Real Variables) (Field descriptor: Aw or nAw) - The

number of alphanumeric characters specified by w is transmitted according to list specifications.

If the field width specified for A input is greater than or equal to five (the number of characters representable in

two machine words), the rightmost five characters are stored internally. If w is less than five, 5 = w trailing

blanks are added.

For A output, if w is greater than five, w = 5 leading blanks are output followed by five alphanumeric charac=-

ters. If w-is less than or equal to five, the leftmost w characters are output.

-
>
2
()
C
>
)
m

L Yeg

5.2.4.2 H-Field Descriptor (7-Bit ASCII) (Field descriptor: nHa] aydg - .on) - The number of characters
specified by n immediately following the H descriptor are transmitted to, or from, the external device. Blanks

can be included in the alphanumeric string. The value of n must be greater than 0.
On Hollerith input, n characters read from the external device replace the n characters following the letter H.
In output mode, the n characters following the letter H, including blanks, are output.

Examples:

3HABC
17H THIS IS AN ERROR
16H JANUARY 1, 1966

(Refer to Paragraph 5.2.8 for anexception to this rule when printing a formatted record.)

5.2.5 Llogical Fields, L Conversion - Field descriptor: Lw or nLw

The external format of a logical quantity is T or F. The internal format of a logical quantity is T or F. The

internal format is 7777778 for Tor O for F.

On L input, the first nonblank character must be T or F. Leading blanks are ignored. Any other nonbiank

character is illegal.

For L output, if the internal value is 0, F is output. Otherwise, T is output. The F or T is preceded by w -~ 1
leading blanks.

5.2.6 Blank Fields, X Conversion - Field descriptor: nX

The value of n is an integer number greater than 0. On X input, n characters are read but ignored. On X

oufput, n spaces are output.

5.2.7 FORTRAN Statements Read in at Object Time

FORTRAN provides the facility of including the formatting data along with the input data. This is done by
using an array name in place of the reference to a FORMAT statement label in any of the formatted 1/0 state-
ments. For an array to be referenced in such a manner, the name of the variable FORMAT specification must

appear in a DIMENSION statement, even if the size of the array is 1. The statements have the general form:

READ (u, name)
READ (u, name) list

WRITE (u, name)
WRITE (u, name) list

5-10

The form of the FORMAT specification which is to be inserted info the array is the same as that of the source
program FORMAT statement, except that the word FORMAT is omitted and the nH field descriptor cannot be
used. The FORMAT specification can be inserted into the array by using a data initialization statement, or by

using a READ statement together with an A format.

For example, this facility can be used to specify the format of a deck of cards to be read at object time. The

first card of the deck contains the format statement,

1 10

[(1I7,F10.3)

Subsequent cards contain data in the general form,

7 17

XX XXXX

DIMENSION AA (10)
13 FORMAT (10A5)
READ (3, 13) (AA(D),I=1,10

READ (3,AA) JJ, BOB

With the card reader assigned to .DAT slot (logical device number) 3, the first READ placed the format state-
ment from the first card into the array AA, and the second READ statement causes data from the subsequent cards

to be read into JJ and BOB with format specifications 17 and F10.3, respectively.

5.2.8 OQutput of a Formatted Record

When formatted records are prepared for output, the first character of the record is replaced by a vertical form

control character to effect the following vertical spacing on hard copy devices:

Character Vertical Spacing Before Printing
Blank One line
0 Two lines
1 Skip to first line of next page
+ No advance
All others One line

This replacement takes place on all outputs. When the resulting record is input from a device, a different

FORMAT statement must be used to compensate for the vertical form control character which will be ignored.

Examples:
Output FORMAT (1X,F10.3)
Input FORMAT (F10.3)

-
>
2
@
c
>
()
m

)
Q
A
-

5.3 AUXILIARY 1/O STATEMENTS

These statements manipulate the 1/0 file oriented devices. The u is an unsigned integer constant or integer

variable specifying the device.

5.3.1 BACKSPACE Statement

The BACKSPACE statement has the general form
BACKSPACE u

Execution of this statement causes the 1/O device identified by u, to be positioned so that the record which
had been the preceding record becomes the next record. If the unit u is positioned at its initial point, execu-

tion of this statement has no effect.

5.3.2 REWIND Statement

The REWIND statement has the general form
REWIND v

Execution of this statement causes the 1/0O device identified by u to be positioned at its initial point.

5.3.3 ENDFILE Statement

The ENDFILE statement has the general form
ENDFILE u
Execution of this statement causes an endfile record to be written on the I/O device identified by vu.

5.3.3.1 Segmented Files = A modification of AUXIO allows the user to write segmented files by using the

end-of-file indicator to separate the segments. The procedure for writing segmented files is exemplified on

the following page.

WRITE 3) (list)

WRITE (3) (list)
ENDFILE 3
WRITE (3,71) (list)

WRITE 3,76) (list)
ENDFILE 3
WRITE @3) (list)

set of output
operations creating
segmented file on
logical 3

set of output
operations creating
segmented file on
logical 3

Note that segmented files cannot be input by means of a READ statement in a FORTRAN program because the

end of file will be detected as a data error. For an input operation such as this, an assembly language subrou-

tine must be used.

Part 1

LANGUAGE

CHAPTER 6
SPECIFICATION STATEMENTS

Specification statements provide the compiler with information about the nature of the constants and variables
used in the program and supply information required to allocate locations in storage for certain variables/arrays.
Specification statements are nonexecutable beacuse they do not generate instructions in the object program.

All specification statements in a FORTRAN source program must appear:

a. before any executable, code-generating statement and

b. before any FORMAT statements, which are nonexecutable but do generate code.

The order in which statements must appear in a source program is as follows:

1. BLOCK DATA; FUNCTION; SUBROUTINE.
2. INTEGER; REAL; LOGICAL; DOUBLE PRECISION.
3. DIMENSION.

4. COMMON.

5. EQUIVALENCE; EXTERNAL.
6. DATA.

7. Stotement functions.

8

. Other executable program statements and FORMAT statements.

When a statement with a legal order number is reached, any subsequent statement with a lower order number

causes an [error message. (Refer to Appendix D for an explanation of FORTRAN error codes.)

6.1 TYPE STATEMENTS

The general forms of TYPE statements are

INTEGER a,b,c

REAL a,b,c

DOUBLE PRECISION a,b,c
LOGICAL a,b,c

6-1

-
>
2
o
C
>
n)
m

where a, b, and c are variable names which can be dimension or function names. A TYPE statement informs the
compiler that the identifiers listed are varicbles or functions of a specified type, i.e., INTEGER, REAL, etc.
It overrides any implicit typing; i.e., identifiers which begin with the letters I,J,K,L,M, or N are implicitly
of the INTEGER mode; those beginning with any other letter are implicitly of the REAL mode. The TYPE
statement can be used to supply dimension information. Each variable or function name in a TYPE statement is

defined to be of that specific type throughout the program; the type cannot change.

Examples:

INTEGER ABC,1JK,XYZ

REAL A (2,4), 1,J,K

DOUBLE PRECISION ITEM, GROUP
LOGICAL TRUE, FALSE

All function references (statement functions, intrinsic functions, or external functions) that are not implicitly

REAL or INTEGER must appear in the appropriate type statement.

Example:
DOUBLE PRECISION B, X,DABS,DATAN

8 = DATAN (DABS (X))

In this example, if DABS and DATAN had not been declared DOUBLE PRECISION, improper code would have

been generated by the compiler, and no error diagnostic would have occurred.

6.1.1 Typing Double-Precision Functions

The compiler does not recognize and implicitly mode-type double-precision functions in the FORTRAN science

library. Therefore, all double-precision functions must be explicitly mode-typed as double precision.

The following program is not correct .

DOUBLE PRECISION A

A=DLOG (A)

The foregoing program should be written as follows.
DOUBLE PRECISION A, DLOG

A=DLOG (A)

6.2 DIMENSION STATEMENT

The DIMENSION statement is used to declare arrays and to provide the necessary information to allocate storage

for them in the object program.
The general form of the DIMENSION statement is
DIMENSION V (i1), Vy(ip), «+-V, (i)

where each V is the name of an array and each i is composed of one, two, or three unsigned integer constants
separated by commas. The number of constants represents the number of dimensions the array contains; the value
of each constant represents the maximum size of each dimension. The dimension information for the variable
can be given in a TYPE statement, a COMMON statement, or a DIMENSION statement; however, dimension-

ing information should be given only once.

Example:

DIMENSION ITEM (150), ARRAY (50,50)

When arrays are passed fo subprograms, they must be redeclared in the subprogram. The mode and number of
dimensions must be the same as that declared by the calling program, but the size of each dimension is ignored

because the array descriptor block is the calling program used.

6.3 COMMON STATEMENT
The COMMON statement provides a means for a program and its subprograms to share memory storage. The gen-
eral form of the COMMON statement is:

COMMON /x]/c]/x2/02/ . ./xn/cln

where each x is a variable that is a COMMON block name, or it can be blank. If Xy is blank, the first two
slashes are optional. Each quantity, designated by the letter a, represents a list of variables and arrays sepa-
rated by commas. The list of elements pertaining to a block name ends with a new block name, a blank

COMMON block designation (two slashes), or the end of the statement.

6-3

JFOVNONV

L ueg

The elements of a COMMON block, which are listed following the COMMON block name (or the blank name),
are located sequentially in order of their appearance in the COMMON statement. An entire array is assigned

in sequence. Block names can be used more than once in a COMMON statement, or can be used in more than
one COMMON statement within the program. The entries so assigned are strung together in the given COMMON
block in order of their appearance. Labeled COMMON blocks with the same name appearing in several pro-
grams or subprograms executed together must contain the same number of total words. The elements within the

blocks, however, need not agree in name, mode, or order. A blank COMMON can be any length.

Examples:

COMMON A,B,C/XX/X,Y,Z
COMMON/A/X(3,3), Y(2,5)//Z(5,10,15)

The COMMON statement is a means of transferring data between programs. If one program contains the

statements

COMMON/N/AA,BB,CC
AA=3

BB=4

CC=5

and another program which is called later contains the statement
COMMON/N/XX,YY,ZZ

the latter program finds the values 3, 4, and 5 in its variables XX, YY, and ZZ, respectively, because variables

in the same relative positions in COMMON statements share the same locations in memory .

6.4 EQUIVALENCE STATEMENT

The EQUIVALENCE statement permits two or more entities to share the same -sforqge location. The general
format of the EQUIVALENCE statement is

EQUIVALENCE (k1), (k2), cees (kn)

where each k represents a list of two or more variables or subscripted variables separated by commas. Each

element in the list is assigned the same memory storage location.

An EQUIVALENCE statement can lengthen the size of a COMMON block. The size can only be increased by
extending the COMMON block beyond the last assignment for that block made directly by a COMMON

statement. A variable cannot be made equivalent to an element of an array if it causes the array to exterd

past the beginning of the COMMON block.

6.4.1 Equivalencing COMMON Variables

The following rules apply to equivalencing COMMON variables:

a. Because COMMON varidbles occupy unique storage, two of them cannot be equivalenced together.

b. A COMMON variable that appears in an EQUIVALENCE statement cannot be the only member of
its COMMON block.

c. A COMMON variable cannot be equivalenced to a variable that already appears in a preceding
equivalence group.

d. All variables equivalenced to COMMON variables become COMMON variables themselves as far
as the succeeding equivalence groups are concerned.

The following programs fail:

a. COMMON X(10)
EQUIVALENCE (Y, X(5))

b. COMMON X(10),I
EQUIVALENCE (Y, Z),(X(5),Y)

The foregoing programs should be rewritten as follows:

a. COMMON X(10),1
EQUIVALENCE (Y, X(5))

b. COMMON X(10),I
EQUIVALENCE (X(5),Y,Z)

6.5 EXTERNAL STATEMENT

An EXTERNAL statement is used to pass a subprogram name on to another subprogram. The general form of an

EXTERNAL statement is:

EXTERNAL y,z, ...

6-5

L ueg

Example:

EXTERNAL ISUM,ISUB

CALL DEBUG (ISUM,A,B)
CALL DEBUG (ISUB,A,B)

END
SUBROUTINE DEBUG (X,Y,Z)

Y=X (2)

RETURN
END

6.6 DATA STATEMENT

The DATA statement is used to sef variables or array elements to initial values at the time the object program is

loaded. The general form of the DATA initialization statement is:

DATA k]/d]/,k2/d2/, ves .kn/dn/

where each k is a list of variables or array elements (with constant subscripts) separated by commas, and each d
is a corresponding list of constants with optional signs. The k list cannot contain dummy arguments. There must
be a one-to~one correspondence between the name list and the data list, except where the data list consists of a
sequence of identical constants. In such a case, the constant need be written only once, preceded by an
integer constant indicating the number of repeats and by an asterisk. A Hollerith constant can appear in the
data list. A double precision constant must be written explicitly in "d" format (e.g., 1.0D+01 or 1D+01, not
1.D+01),

Variable or array elements appearing in a DATA statement cannot be in blank COMMON. They can be in a
labeled COMMON block and initially defined only in a BLOCK DATA subprogram.

Examples:

DATA A,B,C/3*2.0/
DATA X(1), X(2), X(3), X(4)/0.0, 0.1, 0.2, 0.3/,Y(1), Y(2),
2Y(3), Y(4)/1.0E2, 1.0E-2, 1.0E4, 1.0E-4/

6-6

CHAPTER 7
SUBPROGRAMS

A subprogram is a series of instructions which another program uses to perform complex or frequently used
operations. Subprograms are stored only once in the computer, regardless of the number of times they are re-

ferred to by another program.
There are five categories of subprograms:

a. Statement Functions

Intrinsic or Library Functions
c¢. External Functions
d. External Subroutines

e. Block Data Subprograms

Functions and subroutines differ in the following two respects. Functions normally return a single value to the
calling program; subroutines sometimes return more than one value. Functions are called by writing the name
of the function and an argument list in a standard arithmetic expression; subroutines are called by using a CALL

statement. The last category is a special purpose subprogram used for data initialization purposes.

7.1 STATEMENT FUNCTIONS

A statement function is defined by a single statement similar in form to that of an arithmetic assignment statement.
It is defined internally to the program unit by which it is referenced. Statement functions must follow all speci-
fication statements and precede any executable statements of the program unit of which they are a part. The

general format of a statement function is:
f(q.l, Y ...,an)= e

where f is a function name; the quantities designated by the letter a are nonsubscripted variables, known as

dummy arguments, which are used to evaluate the function; and e is an expression.

The value of a function is a real quantity unless the name of the function begins with I, J, K, L, M, or N; in
which case, it is an integer quantity, or the function type can be defined by using the appropriate specification

statement.

7-1

Since the arguments are dummy variables, their use is restricted to the right side of the statement function, and
any use of the saume name outside this region of the FORTRAN IV program except in a mode statement will ref-
erence a different variable with the same name and mode. The number of dummy variables in any statement

function must never exceed 10.

The expression of a statement function, in addition to containing nonsubscripted dummy arguments, can only

contain:

a. Non=-Hollerith constants

b. Variable references
c. Intrinsic function references
d. References to previously defined statement functions

e. External function references

A statement function is called any time the name of the function appears in any FORTRAN arithmetic expression.

The actual arguments must agree in order, number, and type with the corresponding dummy arguments.

Execution of the statement function reference results in the computations indicated by the function definition.

The resulting quantity is used in the expression which contdains the function reference.

Examples:

A(X) =3.2+SQRT (5.7* X**2)
SUM (A,B,C) = A+B+C
FUNC (A,B) = 2.*A/B**2,+Z

7.2 INTRINSIC OR LIBRARY FUNCTIONS

Intrinsic or library functions are predefined subprograms that are a part of the FORTRAN system library. The

type of each intrinsic function and its arguments are predefined and cannot be changed.

An intrinsic function is referenced by using its function name with the appropriate arguments in an arithmetic
statement. The arguments can be arithmetic expressions, subscripted or simple variables, constants, or other

intrinsic functions (refer to Table 7-1).

Examples:
X = ABS (A)
I =INT (X)
J = IFIX (R)

Table 7-1

Intrinsic Functions
. . - No. of Symbolic Type of Type of
Inirinsic Functions Definition Arguments Name Argument Function
Absolute value |a | 1 ABS Real Real
IABS Integer Integer
DABS Double Double
Truncation Sign of a times largest 1 AINT Real Real
integer < |<:| I INT Real Integer
IDINT Double Integer
Remaindering® a; (mod 02) 2 AMOD Real Real
MOD Integer Integer
Choosing largest Max (o] VRS 2) 2 AMAX0 Integer Real
value AMAX1 Real Real
MAXO Integer Integer
MAX1 Real Integer
DMAXI1 Double Double
Choosing smallest Min (q] 1A .) 2 AMINO Integer Real
value AMINI1 Real Real
MINO Integer Integer
MINI1 Real Integer
DMINI1 Double Double
Float Conversion from 1 FLOAT Integer Real
integer to real
Fix Conversion from real 1 IFIX Real Integer
to infeger
Transfer of sign Sign of a, times 2 SIGN Real Real
| a, | ISIGN Integer Integer
DSIGN Double Double
Positive difference ay - Min (a] ,02) 2 DIM Real Real
IDIM Integer Integer
Obtain most signi- 1 SNGL Double Real
ficant part of double
precision argument
Express single pre- 1 DBLE Real Double
cision argument in
double precision
form

*The function MOD or AMOD (a,,a9) is defined as a = [a3/a9] a9, where [x1 is the integer the magnitude
1792 1/ag1 ag g

of which does not exceed the magnitude of x and the sign of which is the same as x.

-
D
<
©
=
>
(o)
m

7.3 EXTERNAL FUNCTIONS

An external function is an independently written program which is executed when its name appears in another

program. The basic external functions are given in Table 7-2. The general form of an external function is

t FUNCTION NAME (a] YR ,cn)
(FORTRAN statements)

NAME = i:'inql calculation
RETURN
END

where t is either INTEGER, REAL, DOUBLE PRECISION, LOGICAL, or blank; NAME is the symbolic name of
the function to be defined; and the ey etc., are dummy arguments which are nonsubscripted variable names,

array names, or other external function names.

The first letter of the function name implicitly determines the type of function. If that letter is1, J, K, L, M,
or N, the value of the function is INTEGER. If it is any other letter, the value is REAL. This determination

can be overridden by placing the specific type name before the word FUNCTION.

The symbolic name of a function is one to six alphanumeric characters, the first of which must be the alphabetic
name and must not appear in any nonexecutable statement of the function subprogram except in the FUNCTION
statement where it is named. The function name must also appear at least once as a variable name within the
subprogram. During every execution of the subprogram, the variable must be defined before leaving the function
subprogram. After the variable is defined, it may be referenced or redefined. The value of this variable at the

time any RETURN statement in the subprogram is encountered is called the value of function.

There must be af least one argument in the FUNCTION statement. These must be nonsubscripted variable names.
If a dummy argument is an array name, an appropriate DIMENSION statement is necessary. The dummy argu-
ment names cannot appear in an EQUIVALENCE, COMMON, or DATA statement in the function subprogram.

The total number of dummy arguments must not exceed 10.

The function subprogram can contain any FORTRAN statements with the exception of a BLOCK DATA,
SUBROUTINE, or another FUNCTION statement. It, of course, cannot contain any statement which references

itself, either directly or indirectly.
A function subroutine must contain at least one RETURN statement. The general form is

RETURN

7-4

This signifies the logical end of the subprogram and returns control and the computed value to the calling

program. At least one RETURN statement must appear between the last executable statement and the END

statement.

An END statement, described in Section 4.11, signals the compiler that the physical end of the subprogram

has been reached.

An external function is called by using its function name, followed by an actual argument list enclosed in pa-

rentheses, in an arithmetic or logical expression. The actual arguments must correspond in number, order, and

type to the dummy arguments. An actual argument can be one of the following:

a. A variable name

b. An array element name
c. An array name

d. Any other expression

e. The name of an external function or subroutine

Example:
DIMENSION A(100), B(100))
RSLT = SUM (A,B)**2 > Main Program
END J
FUNCTION SUM (X,Y) M
DIMENSION X (100, Y (100)
SUM = X(1) + Y(1)
DO 10 K = 2, 100 > Function Subprogram
10 SUM = SUM + X(K) + Y(K)
RETURN
END J
Table 7-2
External Functions
Basic fere No. of Symbolic Type of Type of
External Function Definition Arguments Name Argument Function
Exponential ed 1 EXP Real Real
1 DEXP Double Double
Natural logarithm log (a) 1 ALOG Real Real
© 1 DLOG Double Double

JFOVNONY

L peg

Table 7-2 (Cont)
External Functions

Basic .. No. of Symbolic Type of Type of
External Function Definition Arguments Name Argument Function
Common logarithm |og]0 (a) 1 ALOGI10 Real Real
1 DLOG10 Double Double
Trigonometric sine sin (a) 1 SIN Real Real
1 DSIN Double Double
Trigonometric cosine cos (a) 1 COS Real Real
1 DCOS Double Double
Hyperbolic tangent tanh (a) 1 TANH Real Real
Square root ()]/2 1 SQRT Real Real
@ 1 DSQRT Double Double
Arctangent arctan (a) 1 ATAN Real Real
1 DATAN Double Double
arctan (c]/a2) 2 ATAN2 Real Real
2 DATAN2 Double Double
Remaindering* a (mod 02) 2 DMOD Double Double

*The function DMOD (a1,a9) is defined as aq - [a1/ap] ag, where [x] is the integer whose magnitude does
not exceed the magnitude of x and whose sign is the same as the sign of x.

7.4 SUBROUTINES

A subroutine is defined externally to the program unit which references it. It is similar fo an external function
in that both contain the same sort of dummy arguments, and both require at least one RETURN statement and an

END statement. A subroutine, however, can have multiple outputs. The general form of a subroutine is:

SUBROUTINE NAME (a] LIV ,qn)
or

SUBROUTINE NAME

where NAME is the symbolic name of the subroutine subprogram to be defined; and the aqr Ao etc., are
dummy arguments (there need not be any) which are nonsubscripted variable names, array names, or the dummy

name of another subroutine or external function.

The name of a subroutine consists of one to six alphanumeric characters, the first of which is alphabetic. The
symbolic names of the subroutines cannot appear in any statement of the subroutine except the SUBROUTINE

statement itself.

The dummy variables represent input and output variables. Any arguments used as output variables must appear
on the left side of an arithmetic statement or an input list within the subprogram. If an argument is the name

of an array, it must appear in a DIMENSION statement within the subroutine. The dummy argument names can-
not appear in an EQUIVALENCE, COMMON, or DATA statement in the subprogram. The total number of

dummy arguments must not exceed 10.

The subroutine subprogram can contain any FORTRAN subprograms with the exception of FUNCTION, BLOCK
DATA, or another SUBROUTINE statement.

The logical termination of a subroutine is a RETURN statement. The physical end of the subroutine is an END

statement.

A subroutine is referenced by a CALL statement, which is in the general form

CALL NAME (u] YR .,un)
or

CALL NAME

where NAME is the symbolic name of the subroutine subprogram being referenced, and the ayr Ay etc., are the

2
actual arguments that are being supplied to the subroutine. The actual arguments in the CALL statement must
agree in number, order, and type with the corresponding arguments in the SUBROUTINE subprogram. The array

sizes must be the same. An actual argument in the CALL statement can be one of the following:

A Holerith constant

a.

b. A variable name

¢. An array element name
d. An array

e. Any other expression

-
.

The name of an external function or subroutine

7.5 BLOCK DATA SUBPROGRAM

The BLOCK DATA subprogram is a special subprogram used to enter data info a COMMON block during com-
pilation. A BLOCK DATA statement takes the form

BLOCK DATA

This special subprogram contains only DATA, COMMON, EQUIVALENCE, DIMENSION, and TYPE statements.
It cannot contain any executable statements. 1t can be used fo initialize data only in a labeled COMMON
block area, not in a blank COMMON block area.

-
>
2
®
c
>
o
m

All elements of a given COMMON block must be listed in the COMMON statement, even if they do not all
appear in a DATA statement. Data cannot be entered in more than one COMMON block in a single
BLOCK DATA subprogram. 4

An END statement signifies the termination of a BLOCK DATA subprogram.

FORTRAN 1V does not initialize more than one named COMMON block in any BLOCK DATA subprogram. If
more than one block is stated, only the last one can be initialized with DATA statements. The following pro-

gram will not work properly.

BLOCK DATA
COMMON /N1/1/N2/)J
DATA 1,J/1,2/

END

However, if the subprogram is divided into two BLOCK DATA programs, the problem is eliminated.

C SUBPROGRAM 1
BLOCK DATA
COMMON /N1/1
DATA 1/1/

END

C SUBPROGRAM 2
BLOCK DATA
COMMON /N2/J
DATA J/2/

END

7.5.1 Example of BLOCK DATA Subprogram

BLOCK DATA

DIMENSION X(4), Y (4)
COMMON/NAME/A,B,C,I,J,X,Y
DATA A,B,C/3%2.0/

DATA X(1, X(2), X(3), X(4)/0.0, 0.1, 0.2, 0.3/Y(1), Y(2),

2Y(@3), Y(4)/1.0E2, 1.0E-2, 1.0E4, 1.0E-4/
END

PART 2
FORTRAN 1V OBJECT - TIME SYSTEM

CHAPTER 8
OBJECT-TIME SYSTEM DESCRIPTION

This chapter describes the subprograms included in the FORTRAN IV Object-Time System (OTS). The Object-
Time System is a group of subprograms that process compiled FORTRAN 1V statements, particularly 1/O state-
ments, at execution time. The compiler outputs calls in the form of globals to various subprograms, depending
upon the content of the FORTRAN program. When the compiled program is loaded via the Linking Loader, the
Loader attempts to satisfy these globals by searching the FORTRAN library. As it finds the required object-time

subprograms, it brings them into core and sets up the necessary linkages.

Included in the package are programs for processing formatted and unformatted READ and WRITE statements;
BACKSPACE, REWIND and ENDFILE statements; the index of computed GO TO statements; STOP and PAUSE
statements; and File commands. The eight error messages output by the object-time system are described in

Table 8-1.

The following information is given for each subprogram of OTS:

a. Class

b. Purpose

c. Calling sequence
d. External calls

e. Size

f. Error conditions

8-1

Table 8-1
OTS Error Messages

Library Routines*

Error Number Error Description That May Cause Error
00-04 Not used

05 Negative REAL Square Root Argument SQRT

06 Negative DOUBLE PRECISION Square DSQRT
Root Argument

07 Itlegal Index in Computed GO TO .GO

10 Ilfegal I/O Device Number .FR, .FW, .FS, .FX,

1 Bad input data -~ IOPS Mode Incorrect .FR, .FA, .FE, .FF, .FS

12 Bad FORMAT .FA, .FE, .FF

13 Negative or Zero REAL Logarithmic .BC, .BE,ALOG
Argument

14 Negative or Zero DOUBLE PRECISION .BD, .BF, .BG, .BH,
Logarithmic Argument DLOG ,DLOGI10

15 Raise zero to a <zero power (error is .BB, .BC, .BD, .BE, .BF,
recoverable and zero result is passed) .BG, .BH

*Only those routines whose calls are generated by the compiler are listed.

8.1 OTS BINARY CODED INPUT/QUTPUT (BCDIO)

o
o]
<
m
]
o
-
=
m
%]
<
2]
-
m
=

Class: Object - Time System

Purpose: The BCD input/output object-time package is designed to process the formatted READ and WRITE
statements in FORTRAN 1V programs and subprograms. The FORTRAN IV compiler generates cll
necessary object-time subroutine calls to perform input and output operations on a character-to-
character basis under the control of a FORMAT statement. To permit FORMAT statements fo ke
altered or read at execution time, the FORMAT statements are interpreted by BCDIO at execution

time rather than at compile~time. This method has two advantages:

a. It provides a greater flexibility to the FORTRAN programmer.

b. It provides the ability to utilize fully the capabilities of BCDIO in machine-language
programs .

To demonstrate this capability, a MACRO language program is given below. The program reads
eight floating point numbers into memory with F~conversion and writes them on an output device

using the E-conversion.

ENTRY

L.LOCP1
ARG1

LOOP2
ARG2

ARRAY
FRMT1
FRMT2
COUNT

Example:

<TITLE
«GLOBL
- 10DEV
JMS *
JMS *
.DSA
.DSA

LAW
DAC
LAC
DAC
JIMS *

ISz
1Sz
ISZ.
JMP
JMS *

JMS *
«DSA
-DSA
LAW

DAC
LAC
DAC
JMP S *

ISz
1Sz
ISz
JMP
JMP S *

HLT
+«BLOCK
+ASCII
+ASCII
4]

LEND

Program

EXMPL1

eFPseFRs>eFEs «FFsoFW

354
+FP
-FR
3)
FRMT 1

-10
COUNT
(ARRAY)
ARG1
<FE

ARG1
ARGI
COUNT
LOGOP1
FF

<FW

4)
FRMT2
~-10

COUNT
(ARRAY)
ARG2
«FE

ARG2
ARG2
COUNT
LOOP2
FF

20
'(8F10.5)"
'(BE12.5)"

Comment

/lInitialize 1/O device status table.
/Initialize device 3 for input

/under control of FORMAT statement.
/FRMT1 and read first record into line

/buffer.
/Set loop counter to 8.

/Set element address to first word
/in the array.

/Convert next line buffer field from
/BCD to floating point binary and
/store in ARRAY.

/Increment ARRAY address by two.

/Check the counter and
/iif not done, repeat loop.
/Otherwise,; terminates reading.

/Initialize device 4 for output
/under control of FORMAT
/statement FRMT2.

/Set loop counter to 8.

/Set element address to first

/word in the array.

/Convert floating-point binary word
/pair to BCD and store in line-buffer.

/Increment ARRAY address by 2.
/

/Check count.

/1f not done, go to LOOP 2.
/1f done, output last line=-buffer
/and terminates writing.

o
or)
&
m
Q
>
=
=
m
n
&
-
m
=

Calling Sequences:

a.

To initialize a device for BCD input (output):

JMS* .FR (.FW)
.DSA address of slot number.
.DSA address of first word of FORMAT statement or array .

To input (output) a data element:

JMS* .FE
.DSA address of element (first word)

To input (output) an entire FORTRAN array:

JMS* .FA
.DSA address of last word in the Array Descriptor Block.

To terminate the current logical record:

JMS* .FF

All BCDIO routines utilize the FIOPS object-time package to perform all 1/O data transfers
between devices and the FIOPS line buffer. Device level communication is never employed.

e.

f.

g.

External Calls:
FIOPS, OTSER, REAL ARITHMETIC
Size: 2773 octal locations
Error Conditions:
OTS ERROR 10 - Illegal 1/O Device Number

OTS ERROR 11 - Bad Input Data (IOPS Mode Incorrect)
OTS ERROR 12 - Illegal FORMAT

8.2 OTS BINARY INPUT/OUTPUT (BINIO)

Class:

Purpose:

Object - Time System

The Binary Input/Output Object-Time package is designed to process the unformatted READ and
WRITE statements in FORTRAN IV programs and subprograms. A FORMAT statement is not required,

and data transfer is on a word-to-word basis instead of a character-to-character basis, regardiess of

data type.

The size of the physical data record is always the standard line buffer size provided by IOPS.

Logical data records comprise one or more physical records, the number of which is determined by

the length of the 1/O list associated with the WRITE statements that generate the logical records.

8-4

Each WRITE statement generates one logical record.

Each READ statement reads one logical record, regardless of the length of its 1/O list. For this
reason, it is the responsibility of the FORTRAN programmer to ensure that 1/O lists for WRITE and

READ statements are compatible.

Calling Sequences:
a. To initialize a device for binary input (output):

JMS* .FS (.FX)
.DSA DEVICE

b. To input (or output) an integer data element:

JMS* .FI
.DSA address of the element

c. To input (or output) a real data element:

JMS* .FJ
.DSA address of the element (first word)

d. To input (or output) a double-precision data element:

JMS* .FK
.DSA address of the element (first word)

e. To input (or output) a logical data element:

JMS* .FL
.DSA address of the element

f. To input (or output) an entire FORTRAN array:

JMS* .FB
.DSA address of the last word in the Array Descriptor Block.

g. To terminate the current logical record: .
JMS* .FG

The third word of each physical record contains a record of ID numbers starting with ZERO for
the first record. ID is incremented by one as each physical record is generated, until the last
record in the logical record has bit 0 set.

A typical WRITE statement can generate the following record for ID:

000000
000001
LOGICAL 000002 PHYSICAL RECORD
RECORD #1 000003 FOR ID (OCTAL)
000004

000001

000001
LOGICAL 000002
RECORD #2 000003
000004

External Calls:

FIOPS, OTSER
Size: 244 octal locations

Error Conditions:

OTS ERROR 10 - Illegal 1/O Device Number
OTS ERROR 11 - Illegal Input Data (IOPS Mode Incorrect)

8.3 OTS AUXILIARY INPUT/OUTPUT (AUXIO)

Class: Object - Time System

Purpose: Auxiliary Input/OQutput consists of the processors for the three auxiliary 1/O statements in
FORTRAN IV: BACKSPACE, REWIND, and ENDFILE. These statements are normally used to con-
trol Magnetic Tape Transports which are being used by unformatted READ and WRITE statements
(BINIO).

=}
W
<
m
O
I
=
=
m
%]
&
-
m
=

a. BACKSPACE .FT:

Repositions the tape at a point just prior to the first physical record associated with the current
logical record.

Example:

WRITE (7) A,B,C
BACKSPACE 7
READ (7) D,E,F

The three instructions in the dbove order cause the data of A, B, and C to be transferred to
D, E, and F.

b. REWIND .FU

Causes the specified device to be positioned at its initial (load) point.

c. ENDFILE .FV

Issues an IOPS command to close the current file on the specified device. In the case of
Magnetic Tape, this writes a file mark.

Calling Sequences:

a. To backspace one logical record:

JMS* FT
.DSA DEVICE

b. To position a device at its initial point:

JMS* .FU
.DSA DEVICE

c. Toend (close) a file:

JMS* .FV
.DSA DEVICE

External Calls:

Size:

FIOPS

76 octal locations

Error Conditions:

OTS ERROR 10 - Illegal I/O Device Number

8.4 OTS IOPS COMMUNICATION (FIOPS)

Class:

Purpose:

Object - Time System
FIOPS provides the necessary calls to IOPS required by all FORTRAN input and output statements.

Slot numbers are initialized by the .FC routine (Initialize I/O Device). Initialization of all slots
is maintained in the device status table. The first time that .FC is called for any device, the ap-
propriate .INIT call is made to IOPS. The buffer size and input/output flag are stored in the status
word table. All subsequent calls to .FC for the same device number suppress another .INIT unless

the input/output flag has changed, or this device number has been closed with a file command.

One line buffer is used by all FORTRAN programs. Data transfers between the line buffer and 1/0
devices are performed by the .FQ routine, which performs a .READ if the input/output (.FH) is
ZERO ora WRITE if .FH is ONE. A .WAIT is always performed.

The .FP routine is called at the beginning of all FORTRAN main programs. This routine sets all words

in the device status table to zero, indicating that all devices are uninitialized.

8-7

Calling Sequences:
a. Toilitialize the 1/O device status table:
JMS* .FP
b. To specify input:
DZM* .FH
c. To specify output:

LAC m
DAC* .FH

d. To select device:

LAC DEVICE (address of slot number)
JMS* .FC

e. To input or output the line buffer:

LAC address of .DAT slot number (bits 9-17) and IOPS mode (bits 5-8)
JMS* .FQ

NOTES

1. DEVICE is a cell containing the slot number.
The line buffer is in location .FN to .FN+377g.

3. The standard line buffer size (for the device currently
selected) is in location .FM.

4. On output, IOPS header words (.FN and .FN + 1)
must be prepared by the user.

o}
o
(=
m
0O
o
|
=
m
»
3
=
m
=

External Calls:

OTSER
Size: 540 octal locations

Error Conditions:

OTS ERROR 10 - Illegal 1/O Device Number

8.5 OTS CALCULATE ARRAY ELEMENT ADDRESS (.SS)
Class: Object-Time System
Purpose: To calculate the address of the first word of an array element.

Consider the array defined by DIMENSION ARRAY (K] P ,Ki); where i =1, 2, or 3 is the number
of dimensions in the array. The array descriptor block for this array is constructed of the following

four computer words.

09(0 ©

¢ \

wdl fooo [M T size |
0-2 3-4 5 17 | &
L
" - 3z
wd 2 N*K, Oifi=1) P_g
5
wd 3 N*K *K, Oifi=Tor2) 2
O

ARRAY wd 4 l(qddress of first word of first element of array) U

where SIZE = N*K] - *Ki and M (the mode number) and N (the number of words per element) are

specified as follows:

ARRAY TYPE M N
INTEGER 00, 1
REAL o1, 2
DOUBLE PRECISION 10, 3
LOGICAL ", 1

Consider the address A of the first word of the array element ARRAY (k] peoe ’ki)’ where
1 Skiﬁ ki for j=1to i. This address is given by the following formula.

A =WD4 + (k]-l)* N + (k2-1)*WD2 + (k3-1)*WD3

where WD2, WD3, and WD4 stand for the contents of words 2, 3, and 4 of the array descriptor
block for ARRAY as shown above.

Calling Sequence:

.GLOBL .SS

JMS* .SS

.DSA ARRAY /ADDRESS OF WD4
LAC (kg /SUBSCRIPT i

LAC (kg /SUBSCRIPT i

DAC ALOC /RETURN WITH A IN AC

External Calls:

INTEGER and REAL ARITHMETIC

Size: 57 octal locations

Error Conditions:

None.
]
jos)
m
S-I) 8.6 OTS COMPUTED GO TO (GO TO (.GO))
=
=2 Class: Object-Time System
m
w
é Purpose: To compute the index of a computed GO TO.
m
= Calling Sequence:
LAC \Y /Index value in A-register
JMS* .GO
-N * /Number of statement addresses

STMT ADDR (1)
STMT ADDR (2)

STMT ADDR (N)

External Calls:

OTSER
Size: 26 octal locations

Error Conditions:

OTS ERROR 7 if the index is illegal (equal to or less than zero).

8.7 OTS STOP (STOP (.ST))

Class: Object-Time System

Purpose: To process the STOP statement and return control to the monitor.
Calling Sequence:

LAC (Octal number to be printed)
JMS* ST

External Calls:
SPMSG (.SP)
Size: 13 octal locations

Error Conditions:

None.

8.8 OTS PAUSE (PAUSE (.PA))
Class: Object-Time System

Purpose: To process the PAUSE statement, After receiving a tP (Control P) from the keyboard, control is

returned to the program.
Calling Sequence:

LAC (Octal number to be printed)
JMS* .PA

External Calls:
SPMSG (.SP)
Size: 14 octal locations

Error Conditions:

None.

8.9 OTS OCTAL PRINT (SPMSG (.SP))
Class: Object~Time System

Purpose: To print the octal number coded with STOP and PAUSE. If no number is given, zero (0) is assumed.

Calling Sequence:

LAC (Octal integer to be printed)
JMS* .SP
.DSA (Control return) /pause only
LAC 1st Character
LAC 2nd Character
LAC 3rd Character
LAC 4th Character
LAC 5th Character
LAC 6th Character
External Calls:
None.
Size: 74 octal locations

Error Conditions:

None.

o
W
2
m
(2]
o
=
=
m
%]
<
%)
-
m
=

8.10 OTS ERRORS (OTSER (.ER))
Class: Object-Time System
Purpose:

a. To announce an error on the teletype:

JMS* .ER
.DSA Error number

b. If bit 0 of the error number is a 1, the error is recoverable and program control is returned
to the calling program ot the first location following the error number.

c. [If bit 0 of the error number is a 0, the error is unrecoverable and program control is trans-
ferred to the monitor by means of the .EXIT function.

d. In the case of recoverable errors, the AC and link are restored to their original contents
prior to returning conirol to the caller.

e. If the error is a bad format statement (unrecoverable), the current 5/7 ASCII word pair
of the erroneous format statement is printed in addition to the error number.

Calling Sequence:

JMS* .ER
.DSA Error number, octal
ERROR #12 LAC Note word 1
only LAC Note word 2

Words 1 and 2 are the current 5 characters (in 5/7 ASCII
of the bad format statement (ERROR#12)).

External Calls:

None.
Size: 117 octal locations

Error Conditions:

None.

8.11 ADDITIONS TO THE FORTRAN IV SUBROUTINE LIBRARY

8.11.1 File Commands (FILE)
Class: External Subroutine

Purpose: To provide the device-independent .IOPS commands SEEK, ENTER, CLOSE, FSTAT, RENAM, and
DLETE. These commands are used to allow the FORTRAN IV Object-Time System to communicate
with .IOPS file-oriented devices.

a. SEEK finds and opens a named input file.
b. ENTER initiates and opens a named output file.

c. CLOSE terminates an input or an output file and must be used if SEEK or ENTER has been
used.

d. FSTAT checks for the presence of a named file.
e. RENAM checks for the presence of a file and renames it if found.

f. DLETE checks for the presence of a file and deletes it if found.

NOTE
BACKSPACE, REWIND, and ENDFILE commands should
never be used with a device that is operating in the file-
oriented mode using the above subroutines.
Calling Sequence:
a. To seek a named file:

CALL SEEK (N,A)

where N = device number
A = array name containing the 9-character 5/7 ASCII file name and extension.

The file array has the following format for the named file FILNAM EXT:

DIMENSION FILEN (2)
DATA FILEN(1), FILEN(2)/5HFILNA,4HMEXT/

To use this named file for input on .DAT slot 1:
CALL SEEK (1,FILEN)

b. To enter a named file:
CALL ENTER (N,A)

where N and A are the same as for SEEK.

c. To close a named file:

CALL CLOSE (N)

where N is the same as for SEEK.
d. To check for the presence of a named file:
CALL FSTAT (N, A, 1)

where N and A are the same as for SEEK and [=0
(.FALSE.) if file not found and 1= -1 (.TRUE.) if file found and action complete.

e. Torename afile A and call it B:

CALL RENAM (N, A, B,)
where N, A(B is the same as A), and I are the same as for FSTAT.
f. To delete a named file:

CALL DLETE (N, A, 1)

where N, A, and I are the same as for FSTAT.

8-14

NOTE

In Hollerith constants when the filename or extension does
not contain the maximum number of characters, the filler
character is a space.

External Calls:
FIOPS, .DA, .SS, .SEEK, .ENTER, .CLOSE, .FSTAT, .RENAM, .DLETE

Size: 333 octal locations

Error Conditions:

.OTS Error 10 if 1/O device number is illegal
.IOPS Error 13 if file not found on SEEK
.IOPS Error 14 if directory full on ENTER

8.11.2 Clock Handling (TIME)
Class: External Subroutine
Purpose: To provide the ability to record elapsed fime in minutes and seconds on a 60-cycle machine.

Calling Sequence:
CALL TIME (IMIN, ISEC, IOFF)
This call causes the clock to be started and the elapsed time fo be recorded as minutes and seconds
in IMIN and ISEC. To stop the clock, set IOFF to non-zero.
Only one call fo TIME or TIME 10 can be active at any point in the user program.

Example:

CALL TIME (IM, IS, IOF)
A .

IOF =1

WRITE (4,100) IM, IS

This sequence causes the time taken fo execute the code at A to be output.

External Calls:

.DA, .TIMER

Size: 53 octal locations

Error Conditions:

None.

8.11.3 Clock Handling (TIMET0)
Class: External Subroutine

Purpose: To provide the ability to record elapsed time in minutes, seconds, and tenths of seconds on a

60-cycle machine.

Calling Sequence:

CALL TIMETO (IMIN, ISEC, ISEC10, IOFF)

This call causes the clock to be started and the elapsed time to be recorded as minutes, seconds,
and tenths of seconds in IMIN, ISEC, and ISEC10, respectively. To stop the clock, set IOFF to

non-zero. Only one call at TIME10 or TIME can be active at any point in the user program.
Example: See TIME.

External Calls:

o
&
m
(9]
B
=
=
m
1}
&5
-
m
=

.DA, .TIMER

Size: 66 octal locations

Error Conditions:

None.

8.11.4 Adjustable Dimensioning (ADJ1)
Class: External Subroutine
Purpose: To provide dimension adjustment on a 1-dimension array.

Calling Sequence:
DIMENSION B(1)

CALL ADJT (B,A)

where B is the array with storage beginning at A. A must be an array element (such as C(200)) with
sufficient storage beyond A to allow for all the entries of array B. The dimensions or type of array A

do not have fo agree with array B.

B cannot be a dummy argument in a subroutine, but A can be a dummy argument.

Example:
DIMENSION A(300), B(1), C(1)

CALL ADJ1 (B,A(101))
CALL ADJT (C,A(201))

After the calls to ADJ1, the arrays B and C can be referenced as if they had been dimensioned as
(100) each. It is not necessary to make further calls to ADJT.

External Calls:

.DA
Size: 17 octal locations
Error Conditions:
None.

8-17

8.11.5 Adjustable Dimensioning (ADJ2)
Class: External Subroutine
Purpose: To provide dimension adjustment for a 2~dimension array.

Calling Sequence:
DIMENSION B(1,1)
CALL ADJ2 (B,A, NR)

where NR is the number of rows to appear in array B.
Refer to ADJ1 for comments on B and A,

Example:
DIMENSION A@00), B(1,1), C(1,1)
CALL ADJ2 (B,A (1), 10)
CALL ADJ2 (C,A (101), 20)

After the calls to ADJ2, the arrays B and C can be referenced as if they had been dimensioned
(10,10) and (20,10), respectively. If is not necessary to make further calls to ADJ2.

External Calls:

DA, .AD

Size: 36 octal locations

Error Conditions:

None.

8.11.6 Adjustable Dimensioning (ADJ3)
Class: External Subroutine
Purpose: To provide dimension adjustment for the 3-dimension array .

Calling Sequence:
DIMENSION B (1,1,1)

CALL ADJ3 (B,A,NR, NC)

“where NR and NC are the number of rows and columns, respectively, to appear in array B.
Refer to ADJ1 for comments on B and A.

8-18

Example:

See ADJ1 and ADJ2

External Calls:

.DA, .AD
Size: 41 octal locations

Error Conditions:

None.

8-19

Part 2

OBJECT-TIME SYSTEM

PART 111
THE SCIENCE LIBRARY

CHAPTER 9
SCIENCE LIBRARY DESCRIPTION

This chapter describes mathematical routines in the Science Library. Most of the descriptive material is listed
in Table 9-1; in cases where detailed calculations or algorithms are involved, a reference (A) is made in
column 1 to detailed descriptions following the table. Information given in Table 9-1 for each routine includes
the routine name; mnemonic; calling sequence; function; mode; errors; accuracy and riﬁqing (where available);
storage requirements; and external calls. Routines are categorized as Intrinsic Functions, External Functions,

Sub-Functions, or part of the Arithmetic Package and are listed in the table accordingly .

9.1 INTRINSIC FUNCTIONS

Intrinsic Functions are predefined subprograms that are part of the FORTRAN library. The type of each Intrinsic
Function and its arguments are predefined and cannot be changed. Intrinsic Functions are referenced in a
FORTRAN program by writing the function name and the desired arguments in an appropriate FORTRAN statement.

Example:

X = ABS (A)

9.2 EXTERNAL FUNCTIONS

External Functions are independently written programs that are executed each time their name appears in a
FORTRAN program. Each External Function accepis one or more numerical arguments and computes a single
result. SIN, COS, and ALOG are examples of external functions. All basic External Functions supplied with
the FORTRAN system are described in Table 9-1.

9.3 SUB-FUNCTIONS

Sub-Functions are called by Intrinsic and External Functions, but are not directly accessible to the user via
FORTRAN. For example, the Sub-Function .EB is called by the External Function SIN, and performs the actual

computation of the sine.

9-1

9.4 THE ARITHMETIC PACKAGE

The Arithmetic Package contains all arithmetic routines required for integer, real, and double-precision

arithmetic. Both EAE and non-EAE versions are available, depending on the hardware,

9.5 ACCUMULATORS

There are three accumulators referred to in the CALLING SEQUENCE column of the table. These include the

A-register, the floating accumulator, and the held accumulator.

9.5.1 A-Register

The A-register is the standard hardware accumulator and is used in some of the computations that involve integer

values.

9.5.2 Floating Accumulator

The floating accumulator is a software accumulator that is included in the REAL ARITHMETIC package. If is a
3-word accumulator, .AA being the label of the first word, .AB the second, and . AC the third. Numbers are

stored in this accumulator in the following format:

AA EXPONENT (2's COMP.) |
0 17

—SIGN OF MANTISSA

A8 [¥] HiGH ORDER MANTISSA |
0 1 17
.AC [LOW ORDER MANTISSA j
0 17

NOTE

Negative mantissae are indicated with a change of sign.

Used by both the single and double-precision routines, this format is also that of double-precision numbers.

[72]
T,
m
2
O
m
=
os]
X
>
s
<

Single-precision numbers have a different format and must be converted before and aofter use in the floating cc-

cumulator. The format of single-precision numbers is show in the following illustration.

LOW ORDER EXPONENT
MANTISSA (2's COMP.)
0 89 17
SIGN OF
MANTISSA——T* HIGH ORDER MANTISSA
0 1 -

9.5.3 Held Accumulator

The held accumulator has the same format as the floating accumulator and is used as temporary storage by some
routines. The labels of the three words are CEO1, CE02, and CEO3.

9.6 CALLING SEQUENCES

The MACRO calling sequences {given in the third column of Table 9-1) assume, in some cases where there are
two arguments, that the appropriate accumulator has been loaded with the first argument. If the first argument
isan integer value, it can be loaded into the A-register with a LAC instruction. If the first argument is a real or
double-precision value, the routines .AG and .AQO, respectively, are used to load the floating accumulator.
The DAC instruction can be used to store the result of routines that return with an integer value in the A-register.
The routines .AH and . AP are used fo store the result of routines that return with real or double-precision values

in the floating accumulator.

In calling sequences that use the .DSA pseudo operation to define the symbolic address of arguments, 400000

must be added to the address field if indirect addressing is involved.

FORTRAN library routines that are used in MACRO programs must be declared with a . GLOBL pseudo operation
in the MACRO program. The number and type of arguments in the calling program and the FORTRAN library

routine must agree,
The following example shows a section of a MACRO main program that uses the FORTRAN External Function SIN.

LTITLE
.GLOBL SIN, .AH

IMS* SIN

JMP A2 /JUMP AROUND ARGUMENT
.DSA A /+400000 IF INDIRECT
JMS* .AH /STORE IN REAL FORMAT AT X
.DSA X

X .DSA 0
.DSA 0

Table 9-1
The Science Library

Accur. |Storage
Routine Name Mnemonic Calling Sequence Function Mode Errors Bits [(Octal) External Calls

INTRINSIC FUNCTIONS

Exponentiation: { LAC ARGI (base)}

Integer Base, Integer Exponent| .BB JMS* BB I**K I=1**] None N.A. 45 INTEGER
LAC ARG2 (exp)
Real Base, Integer Exponent .BC 1 W Ar*K R=R**] #13, if base <0 {26 44 .EE, .EF ,REAL
DP Base, Integer Exponent .BD ARK D=D**] #14, if base <0 |32 46 | .DE,.DF ,DOUBLE
Real Base, Real Exponent .BE A*B R=R*#R #13, if base <0 |26 20 | .EE,.EF,REAL
Real Base, DP Exponent .BF 1 Jms* susr A*p D=R**D #13, if base <0 |26 21 | .EE, .DF,DOUBLE
.DSA ADDRof ARG2 (exp)
DP Base, Real Exponent BG A®B D=D**R #14, if base <0 |32 22 | .DE,.DF,DOUBLE
DP Base, DP Exponent .BH \ < A**B D=D**D #14, if base <0 |32 21 .DE, .DF ,DOUBLE
Absolute Value: ()
Real Absolute Value ABS A R=ABS{R) None NLA. 16 DA, REAL
Integer Absolute Value IABS 11 I=1ABS(D) None N.A. 14 DA
DP Absolute Value DABS JMS* SUBR 1A D=DABS(D) None N.A. 16 .DA,DOUBLE
4 JMP 2 >
.DSA ADDRof ARG
Truncation:
Real to Real Truncation AINT Sign of A times} | R=AINT(R) None NL.A. 15 .DA,REAL
Real to Integer Truncation INT largest integer I=INT(R) None NL.A. 13 .DA,REAL
DP to Integer Truncation IDINT L J <A I=IDINT(D) None N.A 13 .DA,REAL ,DOUBLE
Remaindering: []
Real Remaindering AMOD Note 1 R=AMOD(R,R) None NL.A. 27 .DA,REAL
Integer Remaindering MOD Note 1 1I=MOD(1,1) None N.A. 24 .DA,INTEGER
DP Remaindering DMOD Note 1 D=DMOD(D,D) None N.A. 30 .DA,DOUBLE
Transfer of Sign: JMS* SUBR
Real Transfer of Sign SIGN IMP .43 Sign of Al R=SIGN(R,R) None N.A. | 26 |.DA,REAL
.DSA ADDR of ARG1
Integer Transfer of Sign ISIGN DSA ADDR of ARG2 ISSIGNQ, 1) None N.A. | 20 (.DA
) D=SIGN(D,D) None N.A 26 .DA,DOUBLE
DP Transfer of Sign DSIGN Sign of A2
Positive Difference:
Real Positive Difference DIM A1-MIN(AT,A2) | R=DIM(R, R) None N.A. | 22 |.pA,REAL
Integer Positive Difference IDIM L I1-MIN(I1,12) I=IDIM(I, 1) None N.A. 15 .DA,INTEGER
Conversion: 3
Integer to Real Conversion FLOAT A<l . R=FLOAT(D) None N.A. 1 .DA,REAL
Real to Integer Conversion IFIX JMS* SUBR I-A I=IFIX(R) None N.A. 13 .DA,REAL
DP to Real Conversion SNGL IMP 2 A-B R=SNGL(D) None N.A.| 27 |.DA.DOUBLE
.DSA ADDR of ARG
Real to DP Conversion DBLE L J| A-B D=DBLE(R) None N.A. 11 .DA,REAL

- - o . 1. - Y) A Aw famm) A Za .ot e . - ' - 3 L I} . o . Vs
£5: i. Remaindering is defined as AT - [Ai/AZIAZ, where [A1/AZ] is ihe infeger whose magniiude does not exceed the magnifude of A1/A2 and whose sign is the same as A1/A2.

Table 9-1 (Cont)

The Science Library

Accur. |Storage
Routine Name Mnemonic Calling Sequence Function Mode Errors Bits [(Octal)|{ External Calls
INTRINSIC FUNCTIONS (Cont)
Maximum/Minimum Value:
Integer Maximum/Minimum | IMNMX | [JMs* MAX0,MINO,) 107 |INTEGER, REAL
AMAXO, or AMINO
JMP 4ntl
Integer to Integer Max. MAXO0 .DSA ADDR of ARG1 Max. Value I=MAXO0(I1,...,In) |None N.A,
.DSA ADDR of ARG2 >
Integer to Inferger Min. MINO Min. Value I=MINO(I1, .. .,In) None N.A.
Integer to Real Max. AMAX0 .DSA ADDR of ARGn Max. Value R=AMAXO0(I1,...,In) |None N.A.
Integer to Real Min. AMINO . / Min. Value R=AMINO(I1,...,In) [None N.A.
Real Maximum/Minimum RMNMX [JMS* AMAXT,AMINT,) 120 INTEGER,REAL
MAX1, or MIN2
IMP L 4ntl
Real to Real Max. AMAXT .DSA ADDR of ARG Mex. Velue R=AMAXIR],...,Rn) | None NLA.
.DSA ADDR of ARG2
Real to Real Min. AMINI1 . . Min. Value R=AMINI(RI,...,Rn) | None N.A.
Real to Integer Max. MAXT1 .DSA ADDR of ARGn Max. Value I=MAX1(R1,...,Rn) |None N.A.
Real to Integer Min. MIN1 L) Min. Value I=MINT(R1,...,Rn) | None N.A.
DP Maximum/Minimum DMNMX JMS* DMAX1 or DMINT) 106 DOUBLE
IMP L nt+l
DP Maximum DMAXT1 .DSA ADDR of ARG1 Max. Value D=DMAXI1(D],...,Dn)| None N.A,
DP Minimum DMIN1 : : I Min. Valve D=DMINI(D],...,Dn) | None N.A.
.DSA ADDR of ARGn
EXTERNAL FUNCTIONS
Square Root: _ R
R A 1/2 _ #
eal Square Root SQRT X R=SQRT(R) 5,ARG<0 | 26 6 | .DA,.ER,REAL
DP Square Root /N DSQRT x1/2 D=DSQRT(D) #6,ARG <0 | 34 70 | .DA,.ER,DOUBLE
Exponential:
Real Exponential /\ EXP & R=EXP(R) #13,ARG<0 | 26 13 | .DA,.EF,.ER,REAL
DP Exponential /A DEXP JMS* SUBR & D=DEXP(D) #14,ARG <0 | 34 13 |.DA,.DF,.ER,DOUBLE
Natural Logarithm: JMP .+2
Real Natural Logurifhm& ALOG .DSA ADDR of ARG Loge X R=ALOG(R) #13,ARG<0 | 26 20 .DA, .EE,.ER,REAL
DP Natural Logarithm A\ | DLOG Log, X D=DLOG(D) #14,ARG <0 | 32 21 | .DA,.DE,.ER,DOUBLE
Common Logarithm:
Real Common Logarithm A\ | ALOG10 Log,y X R=ALOG10(R) #13,ARG <0 | 26 20 |.DA,.EE,.ER,REAL
DP Common Logarithm A\ | DLOG10 Logyg X D=DLOG10(D) #14,ARG <0 | 32 21 | .DA,.DE,.ER,DOUBLE
Sine:
Real Sine A SIN Sin (X) R=SIN(R) None 26 13 | .DA,.EB,REAL
DP Sine A DSIN Sin (X) D=SIN(D) None 34 13 |.DA,.DB,DOUBLE
Cosine:
Real Cosine A\ cos Cos (X) R=COS(R) None 26 20 | .DA,.EB,REAL
DP Cosine A DCOS L J | Cos (x) D=COS(D) None 34 21 | .DA,.DB,DOUBLE

Table 2-1 (Cont)
The Science Library

Accur. | Storage
Routine Name Mnemonic Calling Sequence Function Mode Errors Bits | (Octal) External Calls
EXTERNAL FUNCTIONS (Cont)
Arctangent: .
Real Arctangent /A ATAN IMS* ATAN or DATAN tan” (@) R-ATAN(2) None 26 13 |.DA,.ED,REAL
IMP .42
DP Arctangent A DATAN .DSA ADDR or ARG tan” (o) D=DATAN(D) None 34 13 |.DA,.DD,DOUBLE
Real Arctongent (x/y) 8\ ATAN2 IMS* ATANZ or DATANZ| | tan™! (x/y) R=ATAN2(R,R) None 26 44 | .DA,.ED,REAL
JMP .43
DP Arctangent (x/y) /8\ DATAN2 .DSA ADDR of ARG1 tan” "} (x/y) D=DATAN2(D,D) | None 34 46 | .DA,.DD,DOUBLE
.DSA ADDR of ARG2
Hyperbolic Tangent A\ TANH JMS* TANH tanh () R=TANH(R) None 26 47 |.DA,.EF,REAL
IMP 42
.DSA ADDR of ARG
SUB-FUNCTIONS X :
Sine Computation:
Real Sine A .EB Sin () R=.EB(R} None 19 102 | .EC,REAL
DP Sine A\ .DB Sin (a) D=.DB(D) None 28 120 | .DC,DOUBLE
ArctangentComputation:
Real Arctangent & .ED i'an-'l (o) R=.ED(R) None 26 67 |.EC,REAL
DP Arctangent B\ .DD JMS* SUBR tan~! (@) D=.DD(D) None 34 146 | .DC,DOUBLE
)
Logarithm (Base 2) Computation: ! NOTE
Real Log .EE Enter with argument in |og2 a R=.EE(R) #13,ARG <0| 26 71 .ER,REAL
floating accumulator. log,, a D=.DE(D) f14,ARG< 0| 32 101 .ER,DOUBLE
DP Log .DE . ! 2 =
Returns with result in
floating accumulator.
Exponential Computation:
Real Exponential A\ | .EF Ry R=.EF(R) None 26 116 |REAL
DP Exponential A .DF L IR D=.DF(D) None 34 137 | DOUBLE
Polynomial Evaluation: [JMS* .EC or .DC] n
Real Polynomial Evuluuﬁon& .EC CAL PU?T x= i§0 R='EC(R2’R]' None N.A. 44 |REAL
:) ...R)
¢ S2i+1 n
2i+17
DP Polynomial Evaluation ZA\ |.DC PLIST -N /-No. of n D=.DC(D,,,D;, None N.A.| 47 |DOUBLE
terms +1 | | x= X D)
1 Cn /last rﬁrm i=0 seePy
2%i+1
Cn-l /next to last C2i+lz
C.|. /2nd tem
g CO /st term

Table 9-1 (Cont)
The Science Library

L=6

) Accur. | Storage Y
Routine Name Mnemonic Calling Sequence Function Mode Errors Bits (Octal) | External Calls
SUB-FUNCTIONS (Cont) ‘
[Routine that calls
General Get Argument DA Calling Routine Calling Routine N.A. N.A. None N.A. 47 None
JMS* SUBR SUBR CAL O
JMP ntl o JMS* DA
{ .DSA ARGl JIMP .n+l
.DSA ARG2 (address of ARG1)
. . (address of ARG2)
DSA ARGn :
L (address of ARGn) J
ARITHMETIC PACKAGE -
Integer Arithmetic: INTEGE ARG1) Note 2
) A-Register ARG2
Muttiplication .AD Multiplicand Mulfiplier 1*) I=1*1 None
Division .AE Dividend Divisor L 1/ 1=1/1 None
Reverse Division CAF Divisor Dividend JMS* SUBR 1 1=1/1 None
Subtraction LAY Minuend Subtrahend| LAC ARG2 | I-J I=1-1 None
Reverse Subiraction AZ Subtrahend Minuend J J-1 1=1-1 None
Double Precision Arithmetic: DOUBLE ARG1 3
FL.ACC. ARG2 208 | REAL
Load .AO Address N.A. D=.A0(D) None N.A
Store AP Value Address N.A. D=.AP(D) None N.A
Add AQ Augend Addend A+B D=D-D None
Subtract AR Minuend Subtrahend f JMS* SUBR [A-B D=D-D None
.DSA ARG2
Reverse Subtract AU Subtrahend Minuend B-A D=D-D None
Multiply .AS Multiplicand Multiplier A*B D=D*D None
Divide AT Dividend Divisor A/B D=D/D None
Reverse Divide AV Divisor Dividend J B/A D=D/D None
ARG1 W
Real Arithmetic (Includes REAL FL.ACC. ARG2 Note 3
Floating):
Load AG Address N.A. R=.AG(R) None N.A.
Store .AH Value Address N.A. R=.AH(R) None N.A.
Add LAl Augend Addend 1} A+B R=R+R None
Subtract LA) Minuend Subtrahend|{ JMS* SUBR | A-B R=R-R None
. .DSA ARG2
Reverse Subtract AM Subtrahend Minuend B-A R=R-R None
Multiply .AK Multiplicand Multiplier A*B R=R*R None
Divide AL Dividend Divisor A/B R=R/R None
Reverse Divide AN Divisor Dividend J B/A R=R/R None

NOTES: 2. 114g for EAE, 160g for non EAE (PDP-15); 117g for EAE, 202g for non EAE (PDP-9).
3. 1022g for EAE, 7478 for non EAE (PDP-15); 1034g for EAE, 7578 for non EAE (PDP-9).

AHVYHEI1T 3ON3I0S

€ Heg

Table 9-1 (Cont)
The Science Library

Accur. | Storage
Routine Name Mnemonic Calling Sequence Function Mode Errors Bits (Octal) | External Calls
ARITHMETIC PACKAGE (Cont)
Floating Arithmetic A-Register FL.ACC.
Float AW Integer F.P. No. A+l R=.AW(]) None N.A.
Fix .AX F.P. No.J JMS* SUBR | I-A I=.AX(R) None N.A.
Negate .BA A«-A R=.BA(R) None N.A.
FL.ACC. HELD ACC.)

Multiply .CA Multiplicand Mul tiplier A*B R=R*R None
Divide .CI Divisor Dividend A/B R=R/R None
Add .CC Augend Addend JMS* SUBR | A+B R=R+R None
Normalize .CD Value N.A. R=.CD(R) None N.A
Hold .CF Valve N.A. R=.CF(R) None N.A
Round & Sign .CH Value N.A. R=.CH(R) None N.A
Sign Conftrol .CG Value Value J Note 4 R=.CG(R) None N.A
Short Get Argument .CB CAL 0 N.A. R=.CB(R) None N.A
Short Get Argument .CB IMS* .CB

CAL 0

.DSA 0

NOTES: 4. The sign of the result (The exclusive OR of the sign bits of .AB and (CE02) is stored in .CE). The sign of .AB is saved in CE05.

When the above MACRO program is loaded, the Linking Loader attempts to satisfy the globals by searching the
Science Library. The External Function SIN and the REAL ARITHMETIC package are loaded. The references
to these routines in the MACRO program must be indirect (as indicated in the example) because only the trans-

fer vectors are given in the main program.

9.7 SCIENCE LIBRARY ALGORITHM DESCRIPTIONS

9.7./0\ SQUARE ROOT (SQRT, DSQRT)

A first-guess approximation of the square root of the argument is obtained as follows.
If the exponent (EXP) of the argument is odd:

EXP-1 EXP-1
=) =)
P,=.5 + ARG

If the exponent (EXP) of the argument is even:

XP EXP
= = -
P0 =.5 + ARG ~©

Newton's iterative approximation is then applied three times.

_ 1
Pn=7 B

ARG)
P,

9.7./2\ EXPONENTIAL (EXP, DEXP, .EF, .DF)

. . |
The function e is calculated as 2 '°92°%, where x log,e will have an integral portion (I) and a fractional

portion (F). Then
= 2h 2h
F n \2
where 2 ={Y CF and n = 6 for EXP and .EF,
0 : or n=8 for DEXP and .DF.

The values of C are:

C0= 1.0
C] = 0.34657359

C, = 0.06005663

Cz = 0.00693801
C4= 0.00060113
C5 = 0.00004167
Cé = 0.00000241
C7 = 0.00000119
C8 = 0.000000518

9.7./A NATURAL AND COMMON LOGARITHMS (ALOG, ALOG 10, DLOG, DLOG10)

The exponent of the argument is saved as one greater than the integral portion of the result. The fractional

portion of the argument is considered to be a number between 1 and 2. Z is computed as follows.
Z_x-JE
TX+J2

1. { e 2i+ 1
Then, |og2X 2+(ZO C2i 1 z)
|=

where n = 2 for ALOG, and n =3 for DLOG. The values of C are as follows:

ALOG and ALOG10 DLOG and DLOGI10
C] = 2.8853913 C] = 2.8853%900
C3 = 0.96147063 3= 0.96180076
C 5= 0.59897865 C 5= 0.57658434
C7 = 0.43425975
Finally,

|oge X= (Iog2 X) (IogeZ), for ALOG and DLOG,
| and

Iog]O X= (Iog2 X) (log]OZ), for ALOG10 and DLOG 10.

o
o
-
(o
W

9.7. 4 SINE AND COSINE (SIN,COS, DSIN, DCOS, .EB, .DB)

(72
0
m
2
(9]
m
C
o
X
>
v}
<

The argument is converted to quarter circles by multiplying by 2/x. The low two bits of the integral portion

determine the quadrant of the argument and produce a modified value of the fractional portion (Z) as follows.

Low 2 Bits Quadrant Modified Value (Z)

00 I F

01 11 1-F
10 II1 -F

11 v -(1-F)

Z is then applied to the following polynomial expression.

n
. _ 2i + 1
sz—(EO C2i+]Z)

where n=4 for REAL routines, and n=6 for DP routines. The values of C are as follows.

REAL ROUTINES DP ROUTINES
C] = 1.570796318 C] = 1.5707932680
C3 = -0.645963711 C3 = -0.6459640975
C 5= 0.079689677928 C5 = 0.06969262601
2= -0.00467376557 C7 = =0.004681752998
9= 0.00015148419 0= 0.00016043839964

C 1" -0.000003595184353

C 13~ 0.000000054465285

The argument for COS and DCOS routines is adjusted by adding n/2. The sin subfunction is then used to com-

pute the cosine according to the following relationship:

cos x = sin (g +x)

9.7.& ARCTANGENT (ATAN, DATAN, ATAN2, DATAN2, .ED, .DD)

For X less than or equal to 1, Z = X, and:

n

arctangent X = { ¥ C.. 22i+]
=0 2i+1

where n = 7 for REAL routines and n = 3 for DP routines. For X greater than 1, Z = 1/X, and

- 9-11

M>S

2i+1
Coir1 2)

where n = 8 for REAL routines and n = 3 for DP routines. The values of C are as follows.

arctangent X = L (
2 \i=0

REAL ROUTINES DP ROUTINES

C] = 0.9992150 C] = 0.9999993329

C3 = -0.3211819 C3 = -0.3332985605

Cc 57 0.1462766 C5 = 0.1994653599

C7 = -0.0389929 C7 = -0.1390853351
C9 = 0.0964200441
C” = -0.0559098861
C]3 = 0.0218612288
C] 5= -0.0040540580

9.7./8\ HYPERBOLIC TANGENT (TANH)

A 2
i'anhl X |= (]-]—_’_;Z—IT'_)

X log2e

ex, caleulated as 2 , where x logze will have an integral portion (I) and a fractional portion (F), then

¢ = 2 29

where

»

)

E The values of C are as follows.

o

m

r C.'= 1.0 C5=0.00060H3
% C, = 0.34657359 C, = 0.00004167
3 C3 = 0.06005663 C7 = 0.00000241

C4 = 0.00693801

9-12

9.7./2\ LOGARITHM, BASE 2 (.EE, .DE)

The exponent of the argument is saved as one greater than the integer portion of the result. The fractional

portion of the argument is considered to be a number between 1 and 2. Z is computed as follows,

_X-v2
X+J2

z

Then,

1 < 2i+1
log, X= 5 (Eo Coie1 Z)

where n = 2 for .EE and n = 3 for .DE. The values of C are as follows:

LEE .DE
C] = 2.8853913 C] = 2.8853900
C3 = 0.96147063 C3 = 0.96180076
C5 = 0.59897865 C5 = 0.57658434
C7 = 0.43425975

9.7./8\ POLYNOMIAL EVALUATOR (.EC, .DC)

The polynomial is evaluated as follows:

_ 2 2 2
X—Z(CO+Z (C] R 4 (CnZ +Cn-l)))

Part 3

SCIENCE LIBRARY

APPENDIX A
FORTRAN 1V, ADDITIONAL INFORMATION

The FORTRAN language used in this manual is essentially the language of USASI Standard FORTRAN (X3.9-1966).

The following features are modified to allow the compiler to operate in 8192 words of core storage:

All references to complex arithmetic are illegal.

T Q

The size of arrays in subprograms is not adjustable to the size specified by the calling program.
Blank COMMON is treated as name COMMON.
The implied DO feature is not legal in a DATA statement.

0

o

There are two versions of the FORTRAN IV compiler: F4 and F4A, F4 is the basic compiler; F4A is an abbre-
viated version of the compiler that allows DECtape input and output in an 8K system. F4A operates under con-
trol of the Keyboard Monitor only, and is called by typing F4A rather than F4 on the teletype. The F4A version
does not provide for EQUIVALENCE, EXTERNAL, ASSIGN, and Assigned GO TO statements, or the following

options available in the F4 version:

®) Object code listing
S Symbol table printout

In paper tape systems, the FORTRAN compiler, along with necessary 1/O device handlers and an appropriate
version of the I/O Monitor, are punched on a tape in absolute format, referred to as a system tape. At the
beginning of the system tape is a Bootstrap Loader. The system tape can be loaded by setting the starting ad-
dress of the Loader (17720 for 8K systems, 37720 for 16K) on the console address switches, pressing 1/0O RESET,
and then pressing the READIN switch.

In larger systems with a bulk storage device such as DECtape, the Monitor accepts direct keyboard commands
to load the compiler in a device-independent environment. This feature enables use of READ (I,f) or READ (I)
statements where the value of I is undefined at compile and load times. If such statements are used, it is im-

portant to clear unused positive .DAT slots before loading to avoid loading device handlers that are not required.

Either the DDT or Linking Loader utility program must be used to load user object programs for execution. Refer

to the appropriate System User's Guide for operating procedures.

A-1

APPENDIX B
FORTRAN IV AND MACRO LINKAGE

B.T LINKING FORTRAN IV PROGRAMS WITH MACRO SUBPROGRAMS

There are two essential elements in a MACRO subprogram that is linked to FORTRAN IV. One is the declaration
of the name of the subprogram (as used in the F4 program) in a . GLOBL statement within the subprogram. The
second is leaving open registers in the subprogram for the transfer vectors of the arguments used in the FORTRAN
calling sequence. The number of open registers must agree with the number of arguments given in the calling

sequence.

For example, consider a FORTRAN program and a MACRO subprogram in which one positive, single-precision,
floating-point number is read by the FORTRAN program, negated in the MACRO subprogram, and written out
from the FORTRAN program.

FORTRAN IV PROGRAM:

TEST MACRO SUBPROGRAM
READ A NUMBER (A)
READ (1,100)> A
00 FORMAT (El12.4)
NEGATE THE NUMBER AND PUT IT IN B
CALL MIN (AsB)
C WRITE OUT THE NUMBER (B)
WRITE (2,100) B
STOP
END

Q= —=0Q0

MACRO-9 SUBPROGRAM:

.TITLE MIN
.GLOBL MINs.DA
MIN 0 JENTRY/EXIT
JMS * .DA /USE THE F4 GENERAL GET ARGUMENT
/SUBPROGRAM TO LOAD THE ARGUMENTS
JMP | /JUMP AROUND REGISTERS LEFT FOR
/ARGUMENT ADDRESS ESTT -

T DA uses the address .+N+1 to calculate the number of argument addresses to be passed.

B-1

MINI .DSA 4] /ARG 1

MIN2 -DSA 4] /ARG2
LAC * MINI /PICK UP FIRST WORD OF A
DAC * MIN2 /STORE IN FIRST WORD OF B
1SZ MINI /BUMP THE POINTER TO SECOND WORD
1SZ MIN2 /0F A AND B
LAC * MINI /PICK UP SECOND WORD OF A
TAD (400000 /SIGN BIT = 1
DAC * MIN2 /STORE IN SECOND WORD OF B
JMP *x MIN /EXIT
<END

Since A is a single-precision, floating-point number, two machine words are required and must be accounted
for in the subprogram. Thus, MINT and MIN2 (which contain the addresses of A and B) must be incremented to
get to the second word of each number. FORTRAN expands the CALL statement as follows:

CALL MIN (A,B)

PeB13 JMS * MIN /C(EXIT TO MACRO SUBPROGRAM)
POB14 JMP 300014 /(ENTRY FROM MACRO SUBPROGRAM)
02215 -DSA A

Poa16 «DSA B

S00014=08017

When the program is loaded, the address {plus relocation factor) of A is stored in location 00015 (plus relocation
factor) and the address of B is stored in 00016 (plus relocation factor). When .DA is called from the MACRO
subprogram, it stores the addresses in MINT and MIN2 (plus relocation factor). Thus, MINT must be referenced

indirectly to get the value of A (a direct reference gets the address of A).

The subroutine .DA allows one level of indirection. All FORTRAN arguments are referred to by the 15-bit ad-
dress of their first word. This leaves bits 0 through 2 free for flags. By convention, FORTRAN uses bit 0 to

indicate to .DA that the word specifying the argument contains the 15-bit address of a word which contains the
15-bit address of the first word of the argument. The resulting argument word in the called MACRO subroutine

always contains a direct reference to an argument (the 15-bit address of the first word of the argument).

In the case of unsubscripted array names used as arguments in a FORTRAN CALL statement or function reference,
the argument is represented by the 15-bit address of the fourth word of the array descriptor block. (Refer to
Paragraph 8.5 OTS for an explanation of the contents of an array descriptor block, as well as the calling

sequence of .SS and the algorithm for determining the array element address.)

In the foregoing example a MACRO subroutine was used instead of a FORTRAN SUBROUTINE subprogram. There
is no difference in the calling procedures used by FORTRAN to call SUBROUTINE and FUNCTION subprograms.
However, for FUNCTION subprograms FORTRAN expects a value to be returned in the A-register (LOGICAL or
INTEGER functions) or in the floating accumulator (REAL or DOUBLE-PRECISION functions).

B.2 LINKING MACRO PROGRAMS WITH FORTRAN IV SUBPROGRAMS

There are two forms of FORTRAN 1V subprograms: subroutines and external functions. The main difference
between the two is the method of returning arguments to the calling program: subroutines return the argument

directly to the calling program, while functions return arguments through accumulators.

The MACRO program setup for a FORTRAN 1V subroutine is basically that described for FORTRAN 1V Science
Library routines in Part Il of this manual. The name of the subroutine to be called must be declared as a global;
there must be a jump around the argument addresses, and the number and type (integer, real, double precision)

of arguments in the calling program, and the subroutine must agree.

An example of a calling routine:

TITLE

+GLOBL SUBROT

JMS * SUBROT

JMP «+N+1 /JMP AROUND ARGUMENTS IGNORED BY .DA
.DSA ARG1 /FIRST ARG ADDRT

.DSA ARG2 /2ND ARG ADDRY

.DSA ARGN /NTH ARG ADDRT

When the FORTRAN 1V subroutine is compiled, the compiler generates code for .DA, the General Get Argument
Routine, which transfers the arguments from the MACRO calling program to the FORTRAN 1V subroutine. .DA
expects to find the calling sequence just described for the calling program. The following is an example of an

expansion of the beginning of a FORTRAN 1V subroutine.

C TITLE SUBROT
SUBROUTINE SUBROT (A,B)
alayaguyays) CAL]
P00001 JMS * DA
PRBB02 JMP 000002
V00003 -DSA A
PODD4 -DSA B

$000002=000005

The simplest method of passing arguments between the main program and the subroutine is to use one of the call-
ing arguments as output. For example, if the value of D is to be calculated in the subroutine, use D as one of
the calling arguments. "D=" generates DAC* D, which stores the value calculated for D by the subroutine in lo-

cation D in the calling program.

1-Bi'r 0 of each address can be set to 1 to indicate indirect references.

B-3

The MACRO program setup for a FORTRAN IV External Function is identical to that for linkage with subroutines,
except that some provision must be made for storage of the values calculated and stored in the accumulator. In
the case of integers, the value is refurned in the A-register. The value is returned in the floating accumulator
for real and double-precision numbers. The simplest method of storing the values is to use the FORTRAN IV
routines furnished in the library for this purpose. .AH stores real values, and .AP stores double-precision values.

Since the A-register is the standard hardware accumulator, a DAC instruction stores integer values.

B.3 LINKING MACRO PROGRAMS WITH FORTRAN IV LIBRARY ROUTINES

Refer to Part 111 of this manual, The Science Library, for a complete description of the linkage to library rou-
tines and the conventions for representing floating-point variables in FORTRAN. (INTEGER variables are in 2's

complement notation, logical truth is 777777 and logical falsity is 000000 in unsigned octal representation.)
B.4 MORE ILLUSTRATIVE EXAMPLES

B.4.1 A New Dimension Adjustment Routine

The present versions of the OTS routines ADJ1, ADJ2, and ADJ3 do not alter the size of the array being ad-
justed (Refer to Paragraph 8.11.4 through 8.11.6). If only the array name of an adjusted array is given in a
READ or WRITE argument list, FORTRAN uses this size information; therefore, undesired results can occur. A
new routine (ADJ) can be loaded with a user program which completely handles all cases of dimension adjustment,

although it occupies 72 octal locations. (ADJ3 occupies 41 octal locations.) Consider the following programs:

C PROGRAM 1
DIMENSION A(45,3,52)

C MAKE ARRAY A ACT LIKE IT
C WAS DIMENSIONED A (25354)
CALL ADJC(ASA(15151)525354)

C PROGRAM 2
DIMENSION A(3,2)

.

C ADJUST ARRAY A TO BE A (253D
CALL ADJ (A>AC151)52-350)
C THE LAST ARGUMENT MUST BE 0@

B-4

C PROGRAM 3
DIMENSION A(2)

C ADJUST ARRAY A TO BE A(1)
CALL ADJCALAC(1)515050)
C THE LAST 2 ARGUMENTS MUST BE ZERO
C THE NO. OF SUBSCRIPTS IS NOT ADJUSTABLE

«TITLE ADJ
/
/SUBROUTINE TO PERFORM DIMENSION ADJUSTMENT
/
/MACRO-9 CALLING SEQUENCE

/ +GLOBL ADJ

/ JMS*x ADJ

/ JMP < +6

/ -DSA ARRAY /ADDRESS OF WD4

/ -DSA B /NEW WD4

/ -DSA Ki /ADDRESS OF NEW MAXIMUM 13T SUBSCRIPT
/ .DSA K2 /ADDRESS OF NEW MAXIMUM 2ND SUBSCRIPT
/ «DSA K3 /ADDRESS OF NEW MAXIMUM 3RD SUBSCRIPT
/

«GLOBL ADJ, «DAs «AD
ADJ 4]
JMS* DA /GET ARGUMENTS
JMP ++5+1 /# OF ARGUMENTS = 5

ARRAY @
B 4]
K1]
K2]
K3 4]
LAC (LACx* B /INITIALIZE SUBSCRIPT POINTER
DAC C
LAC B /SET NEW STARTING ADDRESS
DAC* ARRAY
LAW =3
DAC CTR# /MAXIMUM OF 3 SUBSCRIPTS
TAD ARRAY
DAC ARRAY /POINT TO FIRST WORD
DAC ARRAYP# /0F ARRAY DESCRIPTOR BLOCK
LAC* ARRAY /ARRAY TYPE IN BITS 3-4
AND (60000 /ZERO OUT ARRAY SIZE
DAC* ARRAY /SAVE CLEAN ARRAY TYPE
RTL
RTL
RTL
TAD (1 /ADD 1 FOR # OF WORDS
AND (3 /AND TREAT LOGICAL
SNA /AS | WORD PER ARRAY ELEMENT
LAC (1
LOOP 1Sz C /POINT TO NEXT SUBSCRIPT
JMS* «AD /MULTIPLY INTEGERS
C LAC* K1 /PROGRAM MODIFIED
SNA /1S SUBSCRIPT PRESENT
JMP D /RAN OUT OF SUBSCRIPTS

DAC SIZE# /UPDATE SIZE

ISZ CTR /ARE WE FINISHED?
SKP

JMP E /YES

B-5

I5Z ARRAYP /STORE INTO ARRAY
DAC* ARRAYP /DESCRIPTOR BLOCK
JMP LOOP /OFFSET WORDS (2,3)

D DZM* ARRAYP /ZERQ THE REST
ISZ ARRAYP /0F THE OFFSET WORDS
ISZ CTR /ARE WE FINISHED
JMP LOOP /NO

E LAC SIZE /FINISHED
AND (17777 /PACK SIZE
XOR* ARRAY /ARRAY DESCRIPTOR BLOCK
DAC* ARRAY
JMP*x ADJ /RETURN
«FEND

B.4.2 A Function to Read the AC Switches

It is very often desirable to use the AC switches to alter the sequence of instructions executed in a FORTRAN

program. The following program can be used as a function in an arithmetic IF statement to conditionally branch.

+TITLE ITOG

/
/SUBROQUTINE TO READ AC SWITCHES
/
/MACRO-9 CALLING SEQUENCE
/ «GLOBL ITOG
/ JMS* ITOG
/ JMP . +2 /JUMP OVER ARGUMENT
/ .DSA (MASK /ADDRESS OF MASK
/ /RETURN WITH MASKED ACS IN AC
«GLOBL ITOG..DA
ITOG 4] /INTEGER FUNCTION
JMS* .DA /GET ARGUMENTS
JMP «+1+1 /1 ARGUMENT
MASK] /MASK ADDRESS

LAS /L0AD AC FROM SWITCHES
AND* MASK /MASK AC
JMP* ITOG /RETURN WITH MASKED AC SWITCHES

<END

B.4.3 A Routine fo Read an Array in Octal

The present version of the Object-Time System does not read octal FORMATTED information. A MACRO sub-

routine which reads octal information (REDAR) is as follows:

+TITLE REDAR
/
/SUBROUTINE TO READ ARRAY IN OCTAL
/
/MACR0O-9 CALLING SEQUENCE

/ .GLOBL REDAR

/ JMS* REDAR

/ JMP . +5

/ .DSA SLOT /ADDRESS OF SLOT #

/ «DSA FORMAT /ADDRESS OF FORMAT STATEMENT ADDRESS
/ «.DSA DIGITS /ADDRESS # OF DIGITS

/ «DSA ARRAY /ADDRESS OF ARRAY DESCRIPTOR

/ /BLLOCK WORD 4

/

«GLOBL REDAR, «DAs +FRs «FE5 «FF
REDAR 4]

JMS* «DA /GET ARGUMENTS

JMP . +4+1 /#ARGUMENTS = 4

SLOT @
FORMAT 4]
DIGITS 4]
ARRAY 4]
LAC SLOT
DAC A
LAC* FORMAT
DAC B
JMS* «FR /FORMATED WRITE
A XX /ADDRESS DAT SLOT #
B XX /ADDRESS OF FORMAT STATEMENT
LAW -3
TAD ARRAY

DAC SLOT /ADDRESS OF ARRAY DESCRIPTOR BLOCK WORD 1
LAC* SLOT /PICK UP PACKED SIZE OF ARRAY

AND 17777 /CLEAN OFF MODE #

SNA

JMP E /NO ELEMENTS IN ARRAY

CMA

DAC SLOT

I1SZ SLOT /COUNTER FOR # WORDS IN ARRAY
LAC*x DIGITS /#DIGITS IN EACH WORD
AND (7 /CLEAN ARGUMENT

SZA

SAD (7

JMP E /% OR 7 DIGITS ILLEGAL

cwMA

TAD (1

DAC C /INITIALIZE LAW INSTRUCTION
LAC* ARRAY

DAC ARRAY /POINTER TO FIRST WORD OF ARRAY
XX /LAW -DIGITS

DAC DIGITS

CLA /INITIALIZE DIGIT PACK

DAC TEMP# /STORE DIGIT PACK

JMS* +FE /READ DIGIT

+DSA FORMAT /DIGIT READ INTO FORMAT
LAC TEMP /LOAD DIGIT PACK

B.

CLL

RTL /MULTIPLY BY 8

RAL

TAD FORMAT /ADD DIGIT

ISZ DIGITS /COUNT DIGITS

JMP D /G0 BACK FOR MORE

DAC* ARRAY /STORE VALUE IN ARRAY ELEMENT

ISZ ARRAY /POINT TO NEXT ARRAY WORD
I5Z SLOT /COUNT ARRAY WORDS

JMP C /READ ANOTHER WORD
JMS* «FF /END OF READ

JMP* REDAR /EXIT
«END

4.4 A FORTRAN Program Using the Foregoing Programs

This FORTRAN program uses the preceding three MACRO programs to read in an array from the teletype in octal

and type it in decimal. The teletype should be assigned to .DAT slot 4. Note how the arguments are specified.

Because the array J is never referenced with subscripts af object time, it can be altered at object time to have

more than one subscript, although this fact is academic. Notice that EQUIVALENCE performs the array element

calculation at compile time.

Qo

QuPpaa

Qs

QuQ

FORTRAN PROGRAM TO READ AN ARBITRARY INTEGER ARRAY IN OCTAL
AND WRITE IT IN DECIMAL
DIMENSION J(2000)
USE EQUIVALENCE TO GET JC(1)> WITHOUT USING .SS
EQUIVALENCE (JC(1)5K)
I CONTAINS ADDRESS OF FORMAT
STATEMENT + 1 TO MOVE OVER JMP INSTRUCTION
ASSIGN 1 TO I
I=1+1
FORMAT (611 51X56I151X561151X561151X561151X5611,51X561151X>
1611)
TO SIMULATE FORMAT(B651Xs0651X50651X50651X50651X508651X>
D651X506)
WRITE SOMETHING TO SHOW INFORMATION NEEDED
WRITE(453)
FORMAT(/19H READ K1 K2 K3(314))
READ IN DIMENSION INFORMATION
READ(4,4) K1,K2,K3
FORMAT (314)
ADJUST ARRAY J TO THE PROPER SIZE
CALL ADJ(Js>Ks>K1,K2,K3)
READ IN ARRAY IN OCTAL
CALL REDAR(4,1,6,J)
WRITE OUT ARRAY
WRITEC4,6) J
FORMAT(817)
WAIT FOR 1P
PAUSE
IF AgS17-0 READ IN IDENTICAL ARRAY TYPE
IF CITOGC(1)) 255,52
END

APPENDIX C
CHAINING FORTRAN IV PROGRAMS

Chaining is a method of program segmentation that allows for multiple core overlap of executable code and
certain types of data areas. FORTRAN programs can thus be divided into segments and executed separately,
with intersegment communication of data accomplished through common storage. Common areas of core are re-

served by means of the blank COMMON statement .

Transfer of control from one chain segment to another can be specified in a FORTRAN source program with the

statement
CALL CHAIN (N)

where N is the segment number to be called. The chain number (N) is established at chain-build time (refer to
the CHAIN section of the applicable System User's Guide). N can be greater than or less than (but not equal to)
the current chain number. Only variables and arrays named in blank COMMON statements are retained from

one chain segment to another. Blank common size should be the same for all chain segments.

NOTE

Use of a CALL CHAIN (N) statement rather than a STOP
statement immediately preceding the END statement
causes an I error during compilation (illegal statement pre-
ceding the END statement). The I error should be ignored;
it is a warning only. The CHAIN subroutine never returns
control to the statement following the CALL CHAIN (N)
statement (control is transferred to the beginning of the
chain which is called).

TEST CHAIN PROGRAM

Qa0

CHAIN JOB SEGMENT 1
COMMON A-B.,C

DIMENSION ARRAY (10,1@)
READ (455> ARRAY

CALL CHAIN (2O
END

Q

CHAIN JOB SEGMENT 2
COMMON A»>B.>C
DIMENSION TABLE (38)

CALL CHAIN (35
END

CHAIN JOB SEGMENT 3
COMMON A,B»C
DIMENSION A LIST (5,5)

WRITE (45,6) A LIST
FORMAT (E10.3)
STOP

END

C-2

APPENDIX D
FORTRAN IV ERROR LIST

The errors shown in Table D=1 apply to all versions of F4 and F4A (refer to Table 8-1 of this manual for a list of

object-time errors).

Toble D-1
Compilation Errorst

Error Code Meaning Explanation

X Syntax error Statement cannot be recognized as a properly
constructed FORTRAN 1V statement.

Vv Variable/constant mode error Illegal mode mixing. Missing constant, variable
or exponent, or illegal matching of constants or
variables in a DATA statement. (See Note.)

N Statement number error Phase error, number more than five digits, no
statement number where one is required, state-~
ment should not be labeled, or doubly defined
statement numbers.

S Argument/subscript error Missing argument or subscript, illegal use of
subscripts, illegal construction of subscripted
variable, more than three subscripts or stated
number of subscripts does not agree with de-
clared number.

F FORMAT statement error Illegal FORMAT specification or illegal con-
struction of FORMAT statement. (Refer to
Paragraph D.1.)

I Character/statement/term Illegal character, unrecognizable statement,
error illegal statement for program type, statement
out of order or improper statement preceding
END statement.

D DO loop error Illegal DO construction or illegal statement
terminating DO LOOP.
T Table overflow Symbol/constant/arg (I)/OP(I) table limits ex-

ceeded, (Refer to Paragraph D.2.)

L Nesting error Illegal nesting or DO nesting too deep.

TOccqsionqlly FORTRAN 1V prints out the line after the error line.

D-1

Table D=1 (Cont)

Compilation Errors

Error Code Meaning Explanation

M Magnitude error Program exceeds 8192 words, maximum number
of dummy arguments or EQUIVALENCE classes
exceeded, or constant/variable exceeds speci~
fied limits. (Refer to Paragraph D.3.)

C COMMON/EQUIVALENCE/ Hllegal construction of statement, illegal
DIMENSION/DATA statement EQUIVALENCE relationships, illegal COM-
error MON declaration or non-common storage de-

clared in BLOCK DATA subprogram.

E FUNCTION/SUBROUTINE/ Illegal use of FUNCTION/SUBROUTINE name,
EXTERNAL/CALL statement out of order, or illegal variable for EXTERNAL
error declaration. (Refer to Paragraph D.4.)

H Hollerith error Hollerith data illegal in this statement or illegal

use of Hollerith constant.

TO'ccasionclly FORTRAN 1V prints out the line after the error line.

NOTE

Hollerith constants and alphanumeric information read in
under A format are stored as REAL variables. Only nAT,
nA2, ..., nA5 is allowed in reading alphanumeric infor-
mation into REAL variables and arrays. If an integer vari-
able is used to store Hollerith constants in a DATA state-
ment, a V error occurs in compilation.

D.1 TECHNIQUES FOR AVOIDING F ERRORS

a. The following ASCII characters are ignored:

1 (041) > (076)
" (042) ? (077)
& (046) @ (100)
' (047) [(133)

(072) \ (134)
i (073) 1 (135)
< (074) t (136)

If these characters are counted in the number preceding H, an F error occurs. The following statements
fail because the FORMAT statement causes an F error.
WRITE (4,1)
1 FORMAT (5H WHO?)

The following sequence allows the user to type out the question mark:

C READ IN A QUESTIONMARK
READ (4,2) QSTMK
2 FORMAT (A1)

WRITE (4,1) QSTMK
i FORMAT (4H WHO,A1)

b. AnF error occurs if "/," or ",/" occurs in a FORMAT statement. Omitting the comma in such in-
stances prevents the F error from occurring.

D.2 TECHNIQUES FOR AVOIDING T ERRORS

a. A maximum of 14 arguments is allowed in the argument-operator table. An implied DO configura-
tion as a parenthesized element in a READ or WRITE statement is completely stored in the argument-
operator table before any code is generated. An array element is stored as 2+n arguments, where n=1,
2, or 3 is the number of subscripts for the array. A simple variable is stored as one argument. The DO
information for each loop is stored as three or four arguments, depending on whether the DO increment
is implied (1) or given explicitly. The following statement compiles:

WRITE(4,10) (10(1,K),(10(J,K),J=1,10),K=1,10)
4= 4 + 4 +3 + 3

The following statement gives a T error:

WRITE(4,10) (K,10(1,K),(10(J,K), J=1,10),K=1, 10)
15=1+4 + 4 43 +3

This statement can be rewritten as an explicit DO loop.

DO 1K=1, 10
1 WRITE (4,10) K, 10(1,K) , (10(J,K) ,J=1,10)
7=4 + 3
Each execution of the WRITE statement starts at the beginning of the FORMAT statement.

b. A maximum of 14 addresses is allowed in computed GO TO statements. The following statement
gives a T error:

16G0T10(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), 1
This statement can be rewritten as follows:

1 J=1-14

IF J.GT.0) GO TO (15,1¢),J

Go0T10(1,2,3,4,5,6,7,8,9,10,11,12,13,14), 1

c. A maximum of 14 items is allowed in a DATA statement list.

The following statement gives a T error:
DATAI,I,IL,I,1,1,1,1,1,1,1,1,1,1,1/15%1/
The foregoing statement can be rewritten as follows:

DATA1,1,1,1,1,1,1,1,1,1,1,1,1,1/14*1/,1/1/

D.3 TECHNIQUES FOR AVOIDING M ERRORS

a. No program unit may exceed one core bank (only 8192 computer words are addressable). All non-
COMMON storage in a FORTRAN program is included in the program size. To avoid M errors, break
long programs up into subroutines, and put large arrays in COMMON.

b. The size of arrays is limited to 8192 computer words (one core bank). The size of an array in com-
puter words can be determined by the DIMENSION statement in which it occurs and by its mode type.
For example, consider the following array:

DIMENSION ARRAY (5,10,15)
(SIZE=n*5*10*15)

where n is 1 for LOGICAL and INTEGER arrays, 2 for REAL arrays, and 3 for DOUBLE-PRECISION arrays.

c. FORTRAN IV does not compile dummy varidbles in excess of 10 for any function, statement function,
or subroutine. Every violation of this constraint causes an M error. In the case of statement functions,
there is no way of avoiding this without writing smaller statement functions and combining them. For
external functions and subroutines, the use of named COMMON is suggested as an alternative. For ex~
ample, compare the following alternative programs.

Standard Program

d. Main Program

CALL FOR (A,B,C)

b. Subroutine

SUBROUTINE FOR (A,B,C)

Modified Program

a. Main Program

COMMON /DARG/D, E,F

D=A
E=B8
F=C

CALL FOR

D-4

b. Subroutine

SUBROUTINE FOR

COMMON /DARG/A,B,C

COMMON is initialized to the proper values before calling the subroutine.

D.4 TECHNIQUE FOR AVOIDING AN E ERROR

a. A dummy function reference in a CALL statement causes an E error. The following program fails to
compile:

SUBROUTINE O(F)
CALLF
The foregoing situation can be avoided by the following technique:

SUBROUTINE O(F)

DUMMY=F(DUMMY)

The contents of DUMMY should be ignored at all times. This essentially calls the SUBROUTINE when-
ever the statement is reached.

APPENDIX E
SYMBOL TABLE SIZES (F4 V5A)

The following symbol table sizes are for 8K systems with the full complement of skip IOTs in the skip chain.

NOTE

Handlers listed are for DAT slots =11, =12, and -13, re-
spectively.

F4
PRB, TTA, PPC - 171 symbols (decimal)
DTC, TTA, PPC - 21 symbols (decimal)

F4A
PRB, TTA, PPC - 368 symbols (decimal)
DTC, TTA, PPC - 239 symbols (decimal)
c. DTB, TTA, DTB - 18 symbols (decimal)

E-1

INDEX

A
Accumulators 9-2 Card format 1-2
Algorithm descriptions, Science Library 9-8 Statement numbers 1-2, 5-4
See Science Library Algorithm Description Chaining FORTRAN 1V programs C-1
Alphanumeric data, conversion of 5-9 CALL CHAIN C-1
Arctangent, 9-10 Character set, FORTRAN 1-1
A-Register 9-2 Clock handling 8-15, 8-16
Argument lists, Input/OQutput 5-2 Record elapsed time 8-16
Arithmetic, expressions 2-6, 7-2 CLOSE command 8-13
Arithmetic operators 1-9, 1-10, 2-6, 2-7 Code, error D-1
Rules 2-7 COMMON block 7-7
Arithmetic IF statements 4-2 COMMON statements 6-3, 7-4, 7-5
Arithmetic statements 2-10, 3-1, 7-2 COMMON variables 6-5
E Mode 3-1 Compilation errors D-1
V Mode 3-1 Computed GO TO statement 42
Arrays, 2-4, 2-5, 8-17, 8-18, 8-19 Constants 2-1, 7-2
Arrangement of array in storage 2-5 Double-precision 2-2
DIMENSION statement 2-5 Hollerith 2-3
Subscripts expressions 2-6 Integer 2-1
Subscripted variables 2-6 Logical 2-3
Subscripts 2-5, 2-6 Real 1-5, 2-1
ASSIGN statement 4-1 CONTINUE statement 4-5
Assigned GO TO statement 4-1 Terminal statement 4-3, 4-5
A-Type conversion 5-9 Control statements 2-5
Auxiliary 1/O statements 5-12 Arithmetic IF statement 4-2
B ASSIGN statement 4-1
BACKSPACE statement 5-12, 8-6, 8-14 Assigned GO TO statement 4-1
Blank Fields, X conversion 5-10 Computed GO TO statement 4-2
BLOCK DATA subprogram 7-7 CONTINUE statement 4-5
COMMON block 7-7 DO statement 4-3
C END statement 4-6
CALL CHAIN statemeni C-1 Logical IF statement 4-2
Calling sequences 9~3 PAUSE statement 4-5

REAL ARITHMETIC package 9-2 STOP statement 4-5

INDEX (Cont)

C (Cont)

Unconditional GO TO statements 4-1
Conversion of alphanumeric data 5-9
Conversion of numeric data 5-6

D
DATA statements 6-6, 7-4, 7-7
DIMENSION statement 6-3, 7-4
DLETE command 8-13
DO-Implied lists 5-2

List elements 5-2
DO statement 4-3

Index of a DO 4-3

Nest of DO's 4-4

Range of a DO statement 4-3
Double-precision constant 2-2
Double~precision functions 6-1
Double-precision and logical variables 2-4
D-Type conversion 5-8

E
E Mode 3-1
END statement 4-6, 7-4, 7-8
ENDFILE statement 5-12, 8-6, 8-13
ENTER command 8-13
Error code D-1

Avoiding an E error D=5

Avoiding F errors D=2

Avoiding T errors D=3

Avoiding M errors D-4
EQUIVALENCE statement 6-4, 7-4
E-Type conversion 5-6
Exponential 9-8
Expressions 2-6

Arithmetic 2-6

Hierarchy of operations 2-7, 2-9

Logical 2-8
Mode of an expression 2-6
Relational 2-8
Rules for arithmetic expressions 2-7
Rules for logical expressions 2-9
Subscript expressions 2-5
External functions 7-4, 9-1
REFURN statement 7-4
EXTERNAL statement 6-5
F
File commands 8-13
Files, segmented 5-12
Floating accumulator 9-2
Formats 1-2
Card format 1-2
FORTRAN character set 1-1
Paper tape format 1-2
Source program 1-1
Format statements 5-4
Formatted READ 5-3
Formatted record, printing of 5-11
Formatted WRITE 5-4
FORTRAN IV and MACRO linkage B-1
FORTRAN 1V library routines B-3
FORTRAN 1V subprograoms B-1
MACRO programs B-1, B-3
MACRO subprograms B-1
FORTRAN IV compiler A-1
FORTRAN 1V error list
Error code D-1
Error message D=1
Programming techniques D-1
FORTRAN 1V library routines B-4
FORTRAN 1V object-time system 8-2

INDEX (Cont) H

F (Cont) Held accumulator 9-3
Adjustable dimensioning 8-17, 8-18 H-Field descriptor 5-10
Auxiliary Input/Output 8-6, 8-7 Hierarchy of operations 2-6, 2-9
Binary coded Input/Output 8-2, 8-3, 8-4 Hollerith constants 2-3
Caleulate array element address 8-9 CALL statements 2-3
Clock handling 8-15, 8-16 DATA statements 2-3
Computed GO TO 8-1, 8-10 Hyperbolic tangent (TANH) 9-11
Errors 8-2, 8-12 I
File commands 8-13 Input and output 2-6, 5-1
IOPS communication 8-7, 8-8 Argument lists 5-2
Octal point 8-12 A-Type conversion 5-9
PAUSE statement 8-11 Blank fields, X conversion 5-10
STOP statement 8-11 Conversion of alphanumeric data 5-9
FORTRAN 1V subprograms B-1 Conversion of numeric data 5-6
FORTRAN language elements 2-1 DIMENSION statement 5-11
Arrays and subscripts 2-4 D-Type conversion 5-8
Constants 2-1 DO-Implied lists 5-2
Expressions 2-6 E-Type conversion 5-7
Statements 2-10 Format specification 5-10
Variables 2-3 Control characters 5-4
FORTRAN library 9-1 DATA conversion 5-4
FORTRAN statements read in at object time 5-10 Field separators 5-4
DIMENSION statement 5-10 Statement number 5-4
Format specification 5-10 F-Type conversion 5-7
FSTAT command 8-13 G-Type conversion 5-7
F-Type conversion 5-7 H-Type descriptor 5-10
Functions ' I-Type conversion 5-6
Double-precision 6~1 Logical fields, L conversion 5-10
External 7-4 Logical record 5-1
Intrinsic 7-2 Physical record 5-1
G Scale factor 5-9
General 1/0 statements 5-2 Segmented files 5-12

G-Type conversion 5-8 Simple lists 5-2

[(Cont)
Statements
BACKSPACE 5-12
ENDFILE 5-12
READ 5-3
REWIND 5-12
WRITE 5-4
Integer constant 2-1
Integer variables 2-4
Inirinsic functions 7-2, 7-3
FORTRAN library 9-1
[-Type conversion 5-6
Format descriptor 5-6, 5-7, 5-8
L
Library, FORTRAN 9-1
Library functions 7-2, 7-3
Library routines B-3
Lists, simple 5-2
Logarithm, Base 2 9-13
Logical constant 2-3
L conversion 5-10
Logical expressions
Logical operators 2-8
Rules 2-9
Logical fields 5-10
Logical IF statement 4-2
M
MACRO and FORTRAN 1V linkage B-1

See FORTRAN IV and MACRO-9 linkage

Message, error D-1
Mode of an expression 2-6
N
Natural and common logarithms 9-9

Numeric DATA, conversion of 5-6

INDEX (Cont) o

Object program 1-1
Object-time system 8-2

See FORTRAN 1V object-time systern

Operations, hierarchy of 2-7, 2-9
p
Paper tape format 1-2
Continuation line 1-2
TAB key 1-2
PAUSE statement 4-5, 8-1, 8-12
Polynomial evaluator 9-12
Printing of formatted record 5-11
P-Scale factor 5-9
R
READ statement, 5-3, 8-1
REAL constant 2-1
REAL variables 2-4
Record elapsed time 8-16, 8-17
Relational expressions
Formation 2-8
Relational operators 2-8
RENAM command 8-13
REWIND statement, 5-12, 8-6, 8-14
S
Science library 9-1
Accumulators 9-2
A-Register 9-2
Arithmetic package 9-2
Calling sequences 9-3
Floating accumulator 9-2
Held accumulator 9-3
Sub functions 9-1
Science library algorithm deseriptions
Arctangent 9-10
Exponential 9-8

INDEX (Cont)

S (Cont) Input/OQutput 2-10
Hyperbolic tangent 9-11 Specification 2-10
Logarithm, Base 2 9-12 STOP statement, 4-5, 8-1, 8-11, 8-12
Natural and common logarithms 9-9 Sub-functions 9-1
Polynomial evaluator 9-12 Subprograms
Sine and cosine 9-9 BLOCK DATA subprogram 7-7
Square root 9-8 External functions 7-4
SEEK command 8-15 Intrinsic or library functions 7-2
Segmented files 5-12 Statement functions 7-1
Simple lists 5-2 Subroutines 7-6
Sine and cosine 9-9 Subroutines 7-6
Source program Subscript expressions 2-5
Format 1-1 Subscripts 2-5
FORTRAN character set 1-1 Subscripted variables 2-6
Specification statements 2-5, 6-2 Subscripts and arrays 2-4
COMMON 6-3 DIMENSION statement 2-5
DATA 6-6 Subscript 2-4
DIMENSION 6-3 Symbol table sizes E-1
EQUIVALENCE 6-4 T
EXTERNAL 6-5 TYPE statement 6-1
Type 6-1 U
Specifying format 5-4 Unconditional GO TO statements 4-1
Control characters 5-5 Unformatted READ 5-3
DATA conversion 5-4 Unformatted WRITE 5-4
Field descriptors 1-30, 1-31, 5-6, 5-7, USASI standard FORTRAN A-1
5-8, 5-9 \
Field separators 5-5 Value of a function 7-1
Statement number 5-5 V Mode 3-1
Square root 9-9 Variable types 2-3
Statement functions 7-1 Varidbles 2-3
Value of a function 7-1 Double-precision and logical 2-4
Statements, kinds of 2-10 Equivalencing COMMON variables 6-6
Arithmetic 2-10, 3~1 Integer 2-4

Control 2-10 REAL 2-4

INDEX (Cont)

V (Cont)
Variable types 2-3
w
WRITE formatted 5-4
WRITE statement 5-4
Formatted 5-4
Unformatted 5-4
X

X conversion, blank fields 5-10

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes, software problems, and
documentation corrections are published monthly by Software Information Service in the ‘““Digital Soft-
ware News for 18-Bit Computers”.

These newsletters contain information applicable to software available from Digital’s Program Library
(see title page for address). Software products and documents are usually shipped only after the Program
Library receives a specific request from a user.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a catalog of
programs as well as the DECUSCOPE magazine for its members and non-members who request it.

Please complete the card below to receive information on DECUS membership or to place your name on
the newsletter mailing list.

Please send
(O DECUS membership information,
or add my name to the
(O DECUSCOPE non-membership list.
And, send me
O “Digital Software News for 18-Bit Computers”

Name
Company
Address
City State Zip

.. Do Not Tear - Fold Here and S(aple festeaneeeerateeraerareeanoneasranssitantattaiitetntetratennas
FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.
BUSINESS REPLY MAIL R R
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES P ——
| []
./ |]
Post ill b id by: :
ostage will be paid by | [|
t . [|
' } L [|
.| [|
DECUS T
Digital Equipment Corporation =
146 Main Street I E——
M Mass. 01754
aynard, Mass T ——
. [|

PDP-15 FORTRAN IV
PROGRAMMERS’ REFERENCE MANUAL
DEC-15-KFZB-D

READER’S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback — your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual?

How can this manual be improved?

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the fol-
lowing periodically distributed publications are available upon request. Please check the appropriate boxes
for a current issue of the publication(s) desired.

O Software Manual Update, a quarterly collection of revisions to current software manuals.

[] User’s Bookshelf, a bibliography of current software manuals.

D Program Library Price List, a list of currently available software programs and manuals.

Please describe your position.

Name Organization

Street Department

City State Zip or Country

...... B TS TT L TYTTI T TTT TP PIT TIPS PIPOPPISOPPYPPPPIUTRURSRRUUPIE =)' I o {1 - R RLERLI

............................... teetrrecsnnsecescennsesansssensssasersessesses DO NOt Tear - Fold Here and S(ap]e feesedneseatnatanectnnronasenttsteatntactttsetcnniacsecsncnsntaet
FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.
BUSINESS REPLY MAIL R
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES S —
.| |
. . I
Postage will be paid by: S —
t I
R
Digital Equipment Corporation R —
Software Information Services N —
146 Main Street, Bldg. 3-5 N —
Maynard, Massachusetts 01754 — —
I
I

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	A-1
	A-2
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	C-1
	C-2
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	E-1
	E-2
	idx-1
	idx-2
	idx-3
	idx-4
	idx-5
	idx-6
	replyA
	replyB
	replyC
	replyD

