. m@ y‘,@; /

£ET

t gl s S
.« PFPgramners-reference

g INC DEFE
anug

DEC-15-LMACA-~B-D

PDP-15

MACRO-15
MACRO-ASSEMBLER PROGRAM
REFERENCE MANUAL

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation - maynard. massachusetts

lst Printing October 1969

2nd Printing (Rev) July 1970

3rd Printing October 1971

4th Printing (Rev) March 1972
5th Printing (Rev) July 1973

6th Printing (Rev) February 1974
Revised August 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1969, 1970, 1971, 1972, 1973, 1974
by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of

this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in

preparing future documentation.
»

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAl0 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET 8

UNIBUS

PREFACE
CHAPTER 1

1.1
1.2
1.3

CHAPTER 2

2.1
2.2
2.2.

2.2.1.
2.2.1.

2.2.
2.2.
2.2.
2.2.
2.2.
2.3

2.3.
2.3.
2.4

2.4.

2.4.
2.4,

2.4.
2.5

2.5.
2.5.
2.5.
2.5,
2.6

2.6,
2.6.
2.6.

o 0 A WN —_

[CR—

A W N — AW N -

w N

CONTENTS

INTRODUCTION

MACRO=-15 Language
Hardware Requirements

Assembler Processing

ASSEMBLY LANGUAGE ELEMENTS

Program Statements

Symbols

Evaluation of Symbols and Globals
Special Symbols

Memory Referencing Instruction Format
Variables

Sefting Sforage Locations to Zero
Redefining the Value of a Symbol
Forward Reference

Undefined Symbols

Numbers

Integer Values

Expressions

Address Assignments

Referencing the Location Counter
Indirect Addressing

Indexed Addressing

Literals

Statement Fields

Label Field

Operation Field

Address Field

Comments Field

Statement Evaluation

Numbers

Word Evaluation

Word Evaluation of the Special Cases

Page

vii

1-1
1-2
1-2

2-1
2-3
2-4
2-5
2-5
2-6
2-6
2-6
2-7
2-8
2-8
2-9
2-9
2-11
2-12
2-12
2-12
2-13
2-15
2-15
2-17
2-18
2-20
2-21
2-21
2-22
2-24

2.6.4

CHAPTER 3

Vo ®©®® L ® N LN NNMNOMNNN=

W W W W W W W W W W W W Wwwwwwwwwowowwowowwwww

oL L L L L L
N o oAk W N —~ O

—
O 0

[E T O R R

o A W N -

CONTENTS (Cont)

Assembler Priority List

PSEUDO OPERATIONS

Program Identification (.TITLE)

Object Program Output

.ABSP, .ABS

FULL, .FULLP

.EBREL and .DBREL

Deletion of User Symbol Table (.LOCAL, .NDLOC)
Literal Origin Pseudo-op (.LTORG)

Setting the Location Counter (.LOC)

Radix Control (.OCT and .DEC)

Reserving Blocks of Storage (.BLOCK)

Program Termination (.END)

Program Segments (.EOT)

Text Handling (.ASCII and .SIXBT)

.ASCII Pseudo=~op

.SIXBT Pseudo-op

Text Statement Format

Text Delimiter

Non~Printing Characters

Global Symbol Declaration (.GLOBL)
Requesting I/O Devices (.IODEV)

Designating a Symbolic Address (.DSA)
Repeating Object Coding (.REPT)

Conditional Assembly (.IF xxx and .ENDC)
Listing Control (.EJECT)

Program Size (.SIZE)

Defining Macros (.DEFIN, .ETC, and .ENDM)
Assembly Listing Output Control (.NOLST & .LST)

Common Block Definition (.CBD)
Common Block Definition Relative (.CBDR)

Page

2-25

3-3
3-3
3-4
3-5
3-6
3-9
3-10
3-10
3-11
3-11
3-12
3-12
3-13
3-13
3-13
3-13
3-14
3-15
3-16
3-16
3-16
3-18
3-19
3-19
3-20
3-20
3-20
3-21

CONTENTS (Cont)

CHAPTER 4 MACROS

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.5
4.6
4.7

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.5
5.6
5.7
5.7.1
5.7.2
5.8
5.9
5.9.1
5.9.2
5.9.3

Defining A Macro

Macro Body

Macro Calls

Argument Delimiters

Created Symbols

Concatenation

Nesting of Macros

Redefinition of Macros

Macro Calls within Macro Definitions

Recursive Calls
OPERATING PROCEDURES

Introduction

Calling Procedure

ADSS=-15 and DOS~15
Background/Foreground (B/F)
RSX PLUS and RSX PLUS Il
General Command Characters
Command String

Program File Name

Options

Multiple Filename Commands
Examples of Commands for Segmented Programs
Assembly Listings

Symbol Table Output

Running Insfructions

Paper Tape Input Only
Cross-Reference Output

Program Relocation

System Error Conditions and Recovery Procedures
ADSS-15, DOS-15 and BOSS~I5
BACKGROUND/FOREGROUND
RSX PLUS and RSX PLUS Il

Page

4-1
4-2
4-3
4-5
4-6
47
4-15
4-16
4-17
4-18

5-7

5-9

5-12
5=12
5-16
5-16
5-17
5-18
5-19
5-19
5-19
5-19

CONTENTS (Cont)

5.9.4 Restart Control Entries

5.10 Error Detection By the Assembler

APPENDIX A CHARACTER SET

APPENDIX B PERMANENT SYMBOL TABLE

APPENDIX C MACRO-15 CHARACTER INTERPRETATION

APPENDIX D SUMMARY OF MACRO-15 PSEUDO-OPS

APPENDIX E SUMMARY OF SYSTEM MACROS

APPENDIX F SOURCE LISTING OF THE ABSOLUTE BINARY LOADER
APPENDIX G MACROI-15 ASSEMBLER ADVANCED MONITOR SYSTEM
APPENDIX H MACROA-15 ASSEMBLER BACKGROUND/FOREGROUND

Index

SYSTEM

vi

Page

5-19 I
5-20

A-1

PREFACE

The PDP-15 MACRO-Assembler program (MACRO=15) provides the user with the
symbolic programming capabilities of an assembler plus the added compiler capa-
bilities of a many~-for-one macro instruction generator. This manual describes the

syntax, application and operations performed by the MACRO-15 program.

In the preparation of this manual it was assumed that the reader was familiar with
the basic PDP-15 symbolic instruction set as described in either the PDP-15 "System
Reference Manual DEC-15-ODFFA-B-D" or the "Users Handbook, Vol. 1, Processor
DEC-15-H2DA-D".

The MACRO-15 program may be operated in:

a. Disk Operating System (DOS);

b. Batch Operating Software System (BOSS);

c. ADVANCED Monitor Software System (ADSS);
d. Background/Foreground Software System (B/F);
e, RSX PLUS Software System

It is assumed in this manual that the reader is familiar with the manual describing

the software system under which MACRO=-15 is to be used.

The manuals involved are:

a. DOS Users Manual, DEC-15-ODUMA-B-D,

b. BOSS-15 Batch Operating Software System User's Manual,
DEC-15-OBUMA-A-D,

c. ADVANCED Monitor Software System For the PDP-15/20/30/40,
DEC-15-MR2B-D,

d. B/F Monitor Software System for PDP-15/30 and 15/40, DEC~15-MR3A-D,
e. RSX PLUS Reference Manual, DEC-15-IRSXA-A-D,

Differences in the use of MACRO=-15 in the available monitor systems are described,

where applicable, in this manual.

Technical changes made in this revision of the manual are indicated by a bar in the

appropriate page margin.

CHAPTER 1
INTRODUCTION

1.1 MACRO-15 LANGUAGE

MACRO-15 is a basic PDP-15 symbolic assembler language which makes machine language programming on the
PDP-15 easier, faster and more efficient. It permits the programmer to use mnemonic symbols to represent in-
struction operation codes, locations, and numeric quantities. By u.sing symbols to identify instructions and data
in his program, the programmer can easily refer to any point in his program, without knowing actual machine

locations.

Assembled MACRO-15 programs may be run on any PDP-15 system; however, MACRO-15 symbolic programs can

be assembled only on systems which have at least 8K of memory and a monitor-type sofiware system*,

The standard output of the Assembler is a relocatable binary object program that can be loaded for debugging or
execution by the Linking Loader. MACRO=15 prepares the object program for relocation, and the Linking

Loader provides relocation and sets up linkages to external subroutines. Optionally, the binary program may E
be output either with absolute addresses (non-relocatable) or in the full binary mode (see Chapter 3 for a

description of the binary output modes).

The programmer directs MACRO-15 processing by using a powerful set of pseudo-operation (pseudo-op) instruc-
tions. These pseudo-ops are used to set the radix for numerical interpretation by the Assembler, to reserve
blocks of storage locations, to repeat object code, to handle strings of text characters in 7-bit ASCII code or a
special 6-bit code, to assemble certain coding elements if specific conditions are met, and to perform other

functions which are explained in detail in Chapter 3.

The most advanced feature of MACRO=15 is its powerful macro instruction generator. This facility permits
easy handling of recurring instruction sequences, changing only the arguments, Programmers can use macro
instructions to create new language elements, adapting the Assembler to their specific programming appli=

cations. Macro instructions may be recursively called up to three levels, nested to n levels, and redefined

within the program, The technique of defining and calling macro instructions is discussed in Chapter 4.

*A device~dependent version of MACRO-15, called MACROI-15, is available for use with 8K DECtape
systems. Refer fo Appendix G.

1-1

An output listing, showing both the programmer's source code and the object program produced by MACRO-15,
is printed if desired. This listing may include all the symbols used by the programmer with their assigned values.
If assembly errors are detected, erroneous lines are marked with specific alphabetic error codes, which may

be interpreted by referring to the error list in Chapter 5 of this manual.

Operating procedures for MACRO assembly are described in detail in Chapter 5.* (Refer to Appendix G for
MACROI Operating Procedures.)

1.2 HARDWARE REQUIREMENTS

The MACRO-15 assembler program may be run in any configuration which meets the minimum hardware

requirements for the following PDP-15 software systems:

a. Advanced Software System (ADSS-15)

b, Background/Foreground (B/F)

c¢. Disk Operating System (DOS-15)

d. Batch Operating Software System (BOSS-15)

e. Resource Sharing eXecutive (RSX PLUS and RSX PLUS II)

1.3 ASSEMBLER PROCESSING

The MACRO=-15 assembler processes source programs in either a two-pass or three-pass operation. In the

two-pass assembly operation the source program is read twice with the object program and printed listing

(both optional) being produced during the second pass. During the first pass (PASS 1), the locations to
be assigned the program symbols are resolved and a symbol table is constructed by the assembler. The second

pass (PASS 2) uses the information computed during PASS 1 to produce the final object program.

In an optional three-pass assembly operation, PASS 2 will call in a third pass (PASS 3) portion of the assembler
program. PASS 3, when called, performs a cross referencing operation during which a listing is produced
which contains: (a) all user symbols, (b) where each symbol is defined, and (c) the number of each pro-

gram line in which a symbol is referenced. On completion of its operation, PASS 3 calls the PASS 1 and

PASS 2 portions of the assembler program back into core for further assembly operations.

*These procedures are also mentioned in the DOS-15 Keyboard Command Guide,
(DEC-15-ODKCA-A-D) and the PDP-15/20 User's Guide, (DEC-15-OUGAA-A-D).

The standard object code produced by MACRO-15 is in a relocatable format which is acceptable to the PDP-15
Linking Loader, CHAIN, PATCH and TKB Utility programs. Relocatable programs that are assembled separately
and use identical global symbols* where applicable, can be combined by the Linking Loader, CHAIN, and TKB
info an executable object program. MACRO-15 reserves one additional word in a program for every external
symbol** . This additional word is used as a pointer (called a transfer vector) to the actual data word in another
program. The Linking Loader sefs up these transfer vectors (when the programs are loaded) with the actual

address of the global symbol.
Some of the advantages of having programs in relocatable format are as follows:

a. Reassembly of one program, which at object time was linked with other programs, does not
necessifate a reassembly of the entire system.

b. Library routines (in relocatable object code) can be requested from the system device or
user library device.

c. Only global symbol definitions must be unique in a group of programs that operate together .

*Symbols which are referenced in one program and defined in another.

**Symbols which are referenced in the program currently being assembled but which are defined
in another program.

CHAPTER 2
ASSEMBLY LANGUAGE ELEMENTS

2.1 PROGRAM STATEMENTS

One or more statements may be written on a line of up to 76 characters where the last character is a carriage-

return. Since the carriage return is a non-printing character, it is graphically represented asJ in this manual,

e.g.,
STATEMENT.
Several statements may be written on a single line, separated by semicolons

STATEMENT;STATEMENT;STATEMENT.)

Only the last statement may have a comments field, since semicolons are allowed in and do not delimit
comments. Also, MACRO calls (a type of statement described in a later chapter) should not appear in a

multi-statement line since they cause subsequence statements to be ignored.

Normally, a single statement must fit on one line. The exception to this rule is a macro call whose
arguments may be continued on a subsequent line by use of the $ character. This is described in the

chapter on MACRO:s, L

A statement may contain up to four fields that are separated by a space, spaces, or a tab character. These four
fields are the label (or tag) field, the operation field, the address field, and the comments field. Because the
space and tab characters are not printed, the space is represented by _, , and the tab by — in this manual.
Tabs are set 8 spaces apart on DEC~supplied teleprinter machines, and are used to line up the fields in

columns in the source program listing.

This is the basic statement format:

LABEL -+ OPERATION - ADDRESS - /COMMENTS)

where each field is delimited by a tab or space, and each statement is terminated by a semicolon or carriage~

return. The comments field is preceded by a tab (or space) and a slash(/).

2-1

Note that a combination of a space and a tab will be interpreted by the MACRO-15 assembler as two field

delimiters.
Example:

TAG =] OP L~ ADRSY both are
TAGuu —+|OP —JADRS | incorrect

These errors will not show on the listing because the space is hidden in the tab.

A MACRO-15 statement may have an entry in each of the four fields, or three, or two, or only one field. The

following forms are acceptable (where the characters (s) indicate one or more of the preceding character):

TAG)
TAG —~{ OPJ
TAG =/ OP | ADDRJ
TAG - OP - ADDRea () / comments .
TAG - OPua(s) / comments .
TAG = -| ADDRJ
TAG - - ADDRes (5) / commentsa)
TAG -)/ comments .
- OPJ
+/OP | ADDRJ
-lop - ADDR = (s) / commentss
-loP = (s)/ comments.d
- | ADDR.)
- —| ADDR - (s) / comments.d

/comments)

- (s) / comments s

Note that when a label field is not used, its delimiting tab is written, except for lines containing only comments.
When the operation field is not used, its delimiting tab is written if an address field follows, except in label

only and comments only statements.

A label (or tag) is a symbolic address created by the programmer to identify the statement. When a label is
processed by the Assembler, it is said to be defined. A label can be defined only once. The operation code
field may contain a machine mnemonic instruction code, a MACRO-15 pseudo-op code, a macro name, a num-
ber, or a symbol. The address field may contain a symbol, number, or expression which is evaluated by the

assembler to form the address portion of a machine instruction. In some pseudo-operations, and in macro

2-2

instructions, this field is used for other purposes, as will be explained in this manual. Comments are usually
short explanatory notes which the programmer adds to o statement as an aid in analysis and debugging. Comments
do not affect the object program or assembly processing. They are merely printed in the program listing. Com-

ments must be preceded by a slash (/). The slash (/) may be the first character in a line or may be preceded by:

a. Space (i)
b. Tab(—>|)

c. Semicolon (;)

2.2 SYMBOLS

The programmer creates symbols for use in statements to represent addresses, operation codes and numeric values.

A symbol contains one to six characters from the following set:

The letters A through Z
The digits O through 9

Two special characters, period (.) and the percent sign (%).

The first character of a symbol must be a letter, a period, or percent sign. A period may not be used alone as a
symbol. The first character of a symbol must not be a digit. The letter 'X' alone may not be a symbol. (X

has a special meaning to the Assembler, as explained later.)

The following symbols are legal:

MARKT ..1234 A
A% %50.99 %
P9.3 INPUT

The following symbols are iliegal:

TAG:1 : is not a legal symbol character.
5ABC First character may not be a digit.
X Letter 'X' alone is illegal.

“." alone is illegal as a symbol.
Only the first six characters of a symbol are meaningful to the Assembler, but the programmer may use more for

his own information. [f he writes,

SYMBOLI
SYMBOL?
SYMBOL3

as the symbolic labels on three different statements in his program, the Assembler will recognize only SYMBOL
and will print "m" error flags on the lines containing SYMBOLT, SYMBOL2 and SYMBOL3. To the Assembler
they are duplicates of SYMBOL.

2.2.1 Evaluation of Symbols and Globals

When the Assembler encounters a symbol during processing of a source language statement, it evaluates the sym-
bol by referring to two tables: the user's symbol table and the permanent symbol table. The user's symbol table
contains all symbols defined by the user. The user defines symbols by using them as labels, as variables, as
macro names and globals, and by direct assignment statements. A label is defined when first used, and cannot

- be redefined. (When a label is defined by the user, it is given the current value of the location counter, as will

be explained later in this chapter.)

All permanently defined system symbols (excluding the index register symbol, X), including system macros

{except for RSX) and all Assembler pseudo-instructions use a period (.) as their first character. The Assembler
also has, in its permanent symbol table, definitions of the symbols for all of the PDP-15 memory reference in-
structions, operate instructions, the basic EAE instructions, and some inpu’r/oufpuf transfer instructions. (See

Appendix B for a complete list of these instructions.)

PDP-15 instruction mnemonic symbols may be used in the operation field of a statement without prior definition

by the user.
Example:

- LAC, ,A) LAC is a symbol whose appearance in the operation
field of a statement causes the Assembler to treat it
as an op code rather than a symbolic address. It has
a value of 200000, which is taken from the operation

8
code definition in the permanent symbol table.

The user can use instruction mnemonics or the pseudo-instruction mnemonics code as symbol labels. For example,
DZM -} DZM,_,Y)

where the label DZM is entered in the symbol table and is given the current value of the location counter, and
the op code DZM is given the value 140000 from the permanent symbol table. The user must be careful, how-
ever, in using these dual purpose (field dependent) symbols. Symbols in the operation field are interpreted as

either instruction codes or pseudo-ops, not as symbolic labels, if they are in the permanent symbol table.

System macro names cannot be duplicated by the user. In the following example, several symbols

with values have been entered in the user's symbol table and the permanent symbol table.

shows how the Assembler uses these tables to form object program storage words.

The sample coding

User Symbol Table Permanent Symbol Table
Symbol Value Symbol Value
TAG1 100 LAC 200000
TAG2 200 DAC 040000
DAC 300 JMP 600000
X 010000
If the following statements the following code is generated
are written, by the Assembler
TAG1 = DAC = TAG2 040200
TAG2 =+| LAC -} DAC 200300
DAC | JMP —{ TAGT 600100
-] DAC — TAG1,X 050100

-] TAG1 000100

2.2.1.1 Special Symbols - The symbol X is used to denote index register usage. It is defined in the permanent

symbol table as having the value of 10000. The symbol X cannot be redefined and can only be used in the ad-

dress field.

2.2.1,2 Memory Referencing Instruction Format - When operating in page mode the PDP-15 uses 12 bits for E

addressing, 1 bit to indicate index register usage, 1 bit to indicate indirect addressing, and 4 bits for the op code.

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17

Op Code Address

t1
- Index Register Bit

—ndirect Addressing

PAGE MODE MEMORY REFERENCE INSTRUCTION

When operating in bank mode on the PDP-15, the only mode that applies to the PDP-9, I3 bits are used for

addressing, there is no index register bit, | bit is for indirect addressing, and 4 bits are for the op code.

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17

Op Code Address

t

BANK MODE MEMORY REFERENCE INSTRUCTION
2-5

Indirect Addressing

2.2.2 Variables

A variable is a symbol that is defined in the user's symbol table by using it in an address field or operation field
with the number sign (). Symbols with the # may appear more than once in a program (see items 1, 3, 4, and 5
of example given below). A varicble reserves a single storage word which may be referenced by using the sym-
bol at other points in the program with or without the #. If the variable duplicates a user-defined label, it is

multiply defined and is flagged as an error during assembly.

Variables are assigned memory locations at the end of the program. The initial contents of variable locations

are unspecified. The # can appear any place within the symbol character string as in the example.

Example:
Location Generated
Sequence Counter Source Statements Code
- .LOC 4100
1 100 ~| LAC ., TA*G1 200105
2 101 -} DAC,_,TAG3 040107
3 102 - LAC ,,TAG2# 200106
4 103 - DAC _, TFAG3,X 050107
5 104 - LAC _#TAG2 200106
- .END

2.2.3 Setting Storage Locations to Zero
Storage words can be set to zero as follows:
A0 0 ~0)

In this way, three words are set to zero starting at A. Storage words can also be set to zero by statements con-

taining only labels

A;B; C;D; E)

2.2.4 Redefining the Value of a Symbol

The programmer may define a symbol directly in the user's symbol table by means of a direct assignment
statement written in the form:

SYMBOL=n)
or

SYMI=SYM2)

where n is any number or expression. There should be no spaces between the symbol and the equal sign, or be-
tween the equal sign and the assigned value, or symbol. MACRO-15 enters the symbol in the symbol table, along

with the assigned value. Symbols entered in this way may be redefined. These are legal direct assignment state-

menis: XX=28;A=1;B=2

A symbol can also be assigned a symbolic value; e.g., A=4, B=A, or

SET=1SZ,_$WITCH) -

In the previous example, the symbol B is given the valve 4, and when the symbol SET is detected during assemb'y

the object code for the instruction ISZL4SWITCH will be generated. This type of direct assignment cannot be

used in a relocatable program. Direct assignment statements do not generate storage words in the object program.

In general, it is good programming practice to define symbols before using them in statements that generate

storage words. The ASSEMBLER will interpret the following sequence without trouble:

1 .ABSP

2 000005 Z=5

3 000005 Y=2Z

4 000005 XX=Y

5 /

6 00000 200005 LAC XX /SAME AS LAC 5
7 000000 .END

SIZE=00001 NQO ERROR LINES
2.2.5 Forward Reference '

A symbol may be defined after use. For example, _ABSP

00000 200001 LACY
000001 Y=1
000000 .END
SIZE=00001 NO ERROR LINES

This is called a forward reference, and is resolved properly in PASS 2. When first encountered in PASS 1, the
LAC Y statement is incomplete because Y is not yet defined. Later in PASS 1, Y is given the value 1. In
PASS 2, the Assembler finds that Y=1 in the symbol table, and forms the complete storage word.

Since MACRO-15 basic assembly operations are performed in two passes, only one-step forward references are

allowed. The following example is illegal because the symbol Y is not defined during PASS 2.

00100 A .LOC 100
F 00100 A 200000 A LACY
000001 A Y=Z
000001 A Z=1
000000 A .END
SIZE=00101 1 ERROR LINES
Forward references to internal .GLOBL symbols (see Paragraph 3.9) are illegal because the internal globals are

output at the beginning of PASS 2 for library searching. Globals must be defined during PASS 1, otherwise
they will be flagged. The following example is illegal:

1 F .GLOBL A,B,C
2 F 00000 R 200000 A LAC A
3 000004 R =E
4 00001 R 200002 R LAC D
5 00002 R 120005 E D JMS* B
6 00003 R 120006 E E JMS* C
7 000000 A .END

00005 R 000005 E *E

00006 R 000006 E *E

SIZE=00007 2 ERROR LINES

2-7

2.2.6 Undefined Symbols

If any symbols, except global symbols, remain undefined at the end of PASS 1 of assembly, they are
automatically defined as the addresses of successive registers following the block reserved for variables at the
end of the program. All statements that referenced the undefined symbol are flagged as undefined. One

memory location is reserved for each undefined symbol with the initial contents of the reserved location being

unspecified.

Examples:

1 .ABSP

2 00100 : .LOC 100

3 U 00100 200106 LAC UNDEF1i

4 00101 200104 LAC TAGH

5 00102 200105 LAC TAG#1

6 U 00103 200107 LAC UNDEF2

7 000000 .END
SIZE=00110 2 ERROR LINES

2.3 NUMBERS

The initial radix (base) used in all number interpretation by the Assembler is octal (base 8). To allow the user
to express decimal values and then restore to octal values, two radix-setting pseudo-ops (.OCT and .DEC) are
provided. These pseudo-ops, described in Chapter 3, must be coded in the operation field of a statement. If

any other information is written in the same statement, the Assembler freats the other information as a comment
and flags it as a questionable line. All numbers are decoded in the current radix until a new radix control

pseudo-op is encountered. The programmer may change the radix at any point in the program.

Examples:
Flag Source Program Generated Value (Octal) Radix in Effect
- LAC 1100 200100 8 Y initial value is
-~ 25 000025 8 } assumed to be octal
- .DEC
= Lac 1100 200144 10
= 275 000423 10
Q -~ .ocT w79 Octal radix takes effect even
though line is flagged
- 76 000076 8
N —{ 99 000143 The non-octal digit forces a
decimal radix for this number only

2.3.1 [Integer Values

An integer is a string of digits, with or without a leading sign. Negative numbers are represented in two's

complement form. The range of integers is as follows:

Unsigned 0 ~262143, (777777g) or 218
7
Signed 0 +131071, (877777) or 2V
17
0~ -131 072] 0 (400000 8)‘ or =2

An octal integer* is a string of digits (0-7), signed or unsigned. If a non-octal digit (8 or 9) is encountered

the string of digits will be assembled as if the decimal radix were in effect and it will be flagged as a possible

error.
Example:
Flag Coded Value Generated Value (Octal) Comment
.DEC
3779 007303
.OCT
-5 777773 Two's complement
3347 003347
N 3779 007303 Possible error, decimal
assumed

A decimal integer** is a string of digits (0-9), signed or unsigned.

Examples:
Flag Coded Value Generated Value (Octal) Comment
-8 777770 Two's complement
+256 000400
N ~262144 000000 Error, less than (21 S-1)

2.3.2 Expressions

Expressions are strings of symbols and numbers separated by arithmetic or Boolean operators. Expressions repre-

. . . 18
sent unsigned numeric values ranging from 0 to 2 " =1. All arithmetic is performed in unsigned integer arithmetic

*Initiated by . OCT pseudo-op and is also the initial assumption if no radix control pseudo-op is encountered.
**Initiated by .DEC pseudo-op.

2-9

18 I . L. . . .
(two's complement), modulo 2 . Division by zero is regarded as division by one and results in the original
dividend. Fractional remainders are ignored; this condition is not regarded as an error. The value of an ex-
pression is calculated by substituting the numeric values for each element (symbol) of the expression and per-

forming the specified operations.

The following are the allowable operators to be used with expressions:

Character Function

Name Symbol
Plus + Addition (two's complement)
Minus - Subtraction (convert to two's complement and add)
Asterisk * Multiplication (unsigned)
Slash / Division (unsigned)
Ampersand & Logical AND
Exclamation point ! Inclusive OR :
Back slash \ Exclusive OR Boolean
Comma , Exclusive OR

Operations are performed from left to right (i.e., in the order in which they are encountered). For example,
the assembly language statement A+B*C+D/E-F*G is equivalent to the following algebraic expression
(((((A+B)*C)+D)/E)-F)*G.

Examples:

Assume the following symbol values:

Symbol Value (Octal) Comments
A 000002
B 000010
C 000003
D 000005
X 010000 Index Register Value

The following expressions would be evaluated.

Expression Evaluation (Octal) Comments
A+B-C, X 010007 Index Register Usage
A/B+A*C 000006 (The remainder of A/B is lost)
B/A-2*A-1+X 010003 Index Register Usage
A&B 000000
C+A&D 000005
B*D/A 000024
- B*C/A*D 000074
A, X+D X 010007 Index Register Usage Error

In the last example the expression is evaluated as follows:

Sequence of arithmetic

a. A,X=000002 XORed with 010000 = 010002
b. A,X+D = 010002 + 000005 = 010007
c. A, X+D,X = 010007 XORed with 010000 = 000007

Note that arithmetic produces 000007 yet the value given in the example is 010007. Regardless of how the in-~
dex register is used in the address field, the index register bit will always be turned on by the Assembler. In
the sequence of address arithmetic above, the line would be flagged with an X because of the illegal use of the

index register symbol (X).

Using the symbol X to denote index register usage causes the following restrictions:

X cannot appear in the TAG field X = LAC = A
X cannot be used in a .DSA statement .DSA=| A, X
c¢. X can be used only once in an expression LAC A, X+D, X

(see 2.4.3)

2.4 ADDRESS ASSIGNMENTS

As source program statements are processed, the Assembler assigns consecutive memory locations to the storage
words of the object program. This is done by reference to the location counter, which is initially set to zero
and is incremented by one each time a storage word is formed in the object program. Some statements, such as
machine instructions, cause only one storage word to be generated, incrementing the location counter by one.
Other statements, such as those used to enter data or text, or to reserve blocks of storage words, cause the

location counter to be incremented by the number of storage words generated.

2.4.1 Referencing the Location Counter

The programmer may directly reference the location counter by using the symbol period (.) in the address field.
He can write,

- IMP_,.-1

which will cause the program fo jump to the storage word whose address was previously assigned by the location

counter. The location counter may be set to another value by using the .LOC pseudo-op, described in Chapter3.

2.4.2 Indirect Addressing
To specify an indirect address, which may be used in memory reference instructions, the programmer writes an

asterisk immediately following the operation field symbol. This sets the defer bit (bit 4) of the storage word.

If an asterisk suffixes either a non-memory reference instruction, or appears with a symbol in the address field,

an error will result.

Two examples of legal indirect addressing follow.

- TAD*—| A
-| LAC*—| B

The following examples are illegal.

CLA* Indirect addressing may not be specified
LAW=* 17777 in non-memory reference instructions.

2.4.3 Indexed Addressing

To specify indexed addressing an X is used with an operator directly after the address, No spaces or tabs

may appear before the operator. The Assembler will perform whatever operation is specified with the index reg-
ister symbol, and then continue fo evaluate the expression. At completion of the expression evaluation, if the
index bit (bit 5) is not on and the location counter is pointing to page 0 of any bank, the line is flagged with

a B for bank error because the address (aside from indexing modifications) must have been greater than 77778

(i.e., it pointed to another page). The standard code used to indicate indexing is:

LAC A,X

The indexed addressing operation is illustrated in the following example.

Example:

Object
Location Code
.ABSP
000000 210000 A LAC -} X /Same as LAC 0, X
000001 050005 B DAC -} A, X+1,7-1 /
000002 210001 LAC | B+X /000001 *+ 010000
.LOC 10000 /SET to page 1

010000 210001 C LAC X,D
010001 210000 D LAC C.,X
.END

Expression evaluation where A = 000000, B = 000001, C = 010000, D=010001, X=010000
NOTE: (P = exclusive OR

Location Address Field Discussion
0 X The value of X is added to 0. Absence of
an operator always implies addition.
1 A, X+1,7-1 000000010000 = 010000

010000 + 000001 = 010001
010001000007 = 010006
010006 -~ 006001 = 010005

2 B+X 000001010000 = 010001
10000 X,D 010000010001 = 000001

The index bit has been turned off during
expression evaluation. Because the lo-
cation counter (10000) is pointing to
Page 1, this line is not flagged, and the
index register bit is turned on.

10001 C,X 010000(F)010000 = 000000

Same as example of Location 10000.

2.4.4 Literals

Symbolic data references in the operation and address fields may be replaced with direct representation of the
data enclosed in parentheses*. This inserted data is called a literal. The Assembler sets up the address link,
so one less statement is needed in the source program. The following examples show how literals may be used,
and their equivalent statements. The information contained within the parentheses, whether a number, symbol,
expression, or machine instruction, is assembled and assigned consecutive memory locations after the locations

used by the program, unless a .LTORG pseudo-instruction appears in the program. (See section 3.2.5.)

The address of the generated word will appear in the statement that referenced the literal.

*The opening parenthesis [(1 is mandatory; the closing parenthesis [)] is optional.

2-13

Duplicate literals, completely defined when scanned in the source program during PASS 1, are stored only once
so that many uses of the same literal in a given program result in the allocation of only one memory location for
that literal. Nested literals, that is, literals within literals, are illegal and will be flagged as an error. The

following is an example of a nested literal.

LACLa(ADDw4(3))
Usage of Literal Equivalent Statements

-} ADD_, (1) - ADD,__, ONE
ONE - 1

-{ LAC_, (TAG) -] LAC . TAGAD
TAGAD | TAG

-} LAC _, (DAC—| TAG) - LAC _,INST
INST —| DAC —| TAG

= LAC _, (JMP ~| .+2) HERE —| LAC,_, INST
INST = JMP _, HERE+2

The following sample program illustrates how the Assembler handles literals.

Location Counter Source Statement Generated Code

- .LOC ., 100

100 TAG1-| LAC _,(100) 200110

101 - DAC, , 100 040100

102 = LAC , (JMP __ .45 200111

103 -~ LAC _,(TAGT) 200110

104 - LAC _,(JMP_, TAGI) 200113

105 - LAC _ (JMP_,TAG2) 200112

TAG2=TAG1

106 - LAC _, (JMP _,0) 200113

107 DAC -+ LAC _,(DAC - DAC) 200114
- .END

Generated Literals

110 000100
111 600107
112 600100
113 600000
114 040107

2.5 STATEMENT FIELDS

The following paragraphs provide a detailed explanation of statement fields, including how symbols and numbers

may be used in each field.

2.5.1 Label Field

If the user wishes to assign a symbolic label to a statement in order to facilitate references to the storage word
generated by the Assembler, he may do so by beginning the source statement with any desired symbol. The
symbol must not duplicate a system or user defined macro symbol and must be terminated by a space or tab, or a

statement terminating semicolon or carriage-return.

Examples:

TAGT1;TAG2;TAG3;TAG4 A new logical line starts after each

semicolon. This line is equivalent to

TAGI-=| 0)
TAG2-| 0
TAG3— 0)
TAG4—| 0.

If there were a tab or a space after the semicolon the symbol would be evaluated as an operator instead of a

tag. The sequence
TAGI; ,TAG2TAGS;, ,TAG4
is evaluated as follows:

TAG1 - 0.
TAG2)

TAG3 = 0)
TAG4)

TAG _, any value
TAG ,_, (s) any value
TAG = - (5) any value

TAG; These examples are equivalent to coding
TAG) TAG -+ 0)
TAG _, (s) (no more data on line) in that a word of all Os is output with

the symbol TAG associated with it.

When writing numbers separated by semicolons, the first number must be preceded by a tab (=}) or a space (,).
Bl

The sequence

TABLE s 1i2;3;4;5

produces TAG errors because the first symbol of a tag cannot be numeric. The correct way to write the table

sequence is as follows:
TABLE 1, , 2,3 a4 5

Symbols used as labels are defined in the symbol table with a numerical value equal to the present value of the
location counter. A label is defined only once. If it was previously defined by the user, the current definition
of the symbol will be flagged in error as a multiple definition. All references to a multiply defined symbol will

be converted to the first value encountered by the Assembler.

Example:
Location Storage Word
Flag Counter Statement Generated Notes
M 100 A~ LAC—| B 200103
M 101 A-| LAC— C 200104 } Error, multiple definition
D 102 - LAC =] A 200100 First value of A referenced
103 B0 000000
104 c—o0 000000

Anything more than a single symbol to the left of the label-field delimiter is an error; it will be flagged and

ignored. The following statements are illegal. -

TAG+1 - LAS)
LOC*2 = RAR)

The line will be flagged with a "T" for tag error. The tag will be ignored but the rest of the line will continue
fo be processed. The only time that an error tag is not ignored is when the error occurs after the sixth character.

The statement:
TAGERROR*1 ,_, NOP
will be assembled as:
TAGERR | NOP
and the line will be printed and flagged with a "T".

Redefinition of certain symbols can be accomplished by using direct assignments; that is, the value of a symbol

can be modified. If an Assembler permanent symbol or user symbol (which was defined by a direct assignment)

is redefined, the value of the symbol can be changed without causing an error message. If a user symbol, which
was first defined as a label, is redefined by either a direct assignment or by using it again in the label field, it

will cause an error. Variables also cannot be redefined by a direct assignment.

Examples:
Coding Generated Value (Octal) Comments
A=3 Sets current value of A to 3
-] LAC —|A 200003
- DAC—+ A 040003
A=4 Redefines value of A to 4
- LAC ~|A 200004
B —~{DAC—|A 040004 *
B=A Illegal usage; a label cannot
be redefined
-|DAC =|B" 040105
PSF=700201 To redefine possibly incorrect
permanent symbol definition.

*Assume that this instruction will occupy location 105.

2.5.2 Operation Field -

Whether or not a symbol label is associated with the statement, the operation field must be delimited on its left
by a space(s) or tab. If it is not delimited on its left, it will be interpreted as the label field. The operation
field may contain any symbol, number, or expression which will be evaluated as an 18-bit quantity using un-
18

signed arithmetic modulo 2 In the operation field, machine instruction op codes and pseudo-op mnemonic
symbols take precedence over identically named user defined symbols. The operation field must be terminated

by one of the following characters:

— or, ,(s) (field delimiters)

Jor; (statement delimiters)
Examples:
TAG —| 1SZ
- A3, ()

L (sS)ICMAICML)
- TAG/5+TAG2; -+ TAG3)

The asterisk (*) character appended to a memory reference instruction symbol, in the operation field, causes

the defer bit (bit 4) of the instruction word to be set; that is, the reference will be an indirect reference. If

2-17

the asterisk (*) is appended on either a non-memory reference instruction or any symbol in the address field,
it will cause an error condition which will be flagged as a symbol error (S-flag). The asterisk will be ignored

and the assembly process will continue.

Examples:
Assembled Value Legal Assembled Value Ilegal
360001 - TAD* = A 200001 - LAC = A*
220002 -} LAC* —| B 750000 —| CLA*

where A=1and B=2

However, the asterisk (*) may be used anywhere as a multiplication operator.

Examples:
Legal Ilegal
- LAC ~} TAG*5 - LAC —| TAG*4+TAD*
- TAG*TAG] ~| A%

2.5.3 Address Field

The address field, if used in a statement, must be separated from the operation field by a tab, or space(s). The
address field may contain any symbol, number, or expression which will be evaluated as an 18-bit quantity
using unsigned arithmetic, modulo 2]8. If op code or pseudo-op code symbols are used in the address field,
they must be user defined, otherwise they will be undefined by the Assembler and will cause an error message.

The address field must be terminated by one of the following characters:

- or . (s) (field delimiters)
J or; (statement delimiters)
Examples: {aw - /Correctly assembled as 777777
LAW-1] /No separation from the operation field; assembled as 757777 since -1 is

is treated as part of the operation field,

TAG2 = DAC = .+3
- ~| TAG2/5+3 _, (s)

In the last example, the rest of the line will be automatically treated as a comment and ignored by the Assembler.

The address field may also be terminated by a semicolon or a carriage-return,

Examples:
-] JMP - BEGIN)

-/ TAD -| A; -] DAC -} B = LAC

In the last example, a tab or space(s) is required ofter the semicolon in order to have the Assembler interpret

DAC as being the operation field rather than the label field.

In the second line of the preceding example, the address field B is delimited by a tab. The LAC after the B -
is ignored and is treated as a comment; but, the line is flagged as questionable because only a comment field

may occur on a line after the address field. If the LAC had been preceded by aslash (/), the line would have

been correct.

When the address field is a relocatable expression, an error condition may occur. If the program is being assem-
bled to run in page mode, it could not execute properly if its size exceeded 4K (4996) words because it would

have to load access a memory page or bank boundary. In practice, the binary loaders restrict the size to 4K-16
(4080) to avoid loading a program into the first 16 locations in a memory page or bank. This avoids a possible
ambiguity where indirect memory references would be mistaken for autoincrement register references. Consequently,
any relocatable address field whose value exceeds 4095 (77778) is meaningless in page mode and will be flagged

by the Assembler as an error.

There is a similar size restriction for programs being assembled to operate in bank mode. The Assembler flags in

error any relocatable address field whose value exceeds 8191 (1 77778). The binary loaders restrict the size of

bank mode programs to 8K-16 (8176) words.

When the address field is an absolute expression, an error condition will exist if the extended memory and page

address bits (3, 4 and 5) do not match the corresponding bits of the address of the page currently being assembled
info. NOTE

In absolute mode, the page bits do not have to be equal
if the .ABS or .FULL pseudo-ops are used instead of the
.ABSP or .FULLP pseudo-ops.

Examples:
Locati .
Flcg (oof::allo)n lnSh’UC‘l'lon Commenfs
30000 - LAC 30100 No error message
B 30001 - DAC__,.101 Will cause a bank (B) error message
B 30002 -} JMs L, 250 because the address is on a different
B 30005 -{1SZ ,_, 40146 page and bank.

The Linking Loader will not relocate any absolute addresses; thus, absolute addresses within a relocatoble program

are relative to that page in memory in which the program is loaded.

2-19

Example:

Assume that the following source line is part of a relocatable program that was loaded into bank 1

(200008 ~ 377778) .

Source Statement Effective Address

-| LAC_,300) 20300

An exception to the above rule is the auto-index registers, which occupy location 108 -]78 in page 0 of

memory bank 0. The hardware will always ensure that indirect references to 108 - 178 in any page or bank

will access 108 - 178 of bank 0.

2.5.4 Comments Field

Comments may appear anywhere in a statement. They must begin with a slash (/) that is immediately preceded

by

a. oy (s) space(s)

b. - tab

c. carriage return/line feed (end of previous line)
d. ; semicolon

Comments are terminated only by a carriage-return or when 76. | characters have been encountered in a line.

10

Examples:

w (s)/THIS IS A COMMENT (rest of line is blank)
TAG1 - LAC _,

/THIS IS A COMMENT

- RTR _,/COMMENT)

-| RTR; - RTR; /THIS IS A COMMENT

Observe that ; | A/COMMENT,) is not a comment, but rather an operation field expression. A line that is

completely blank (containing O to 75 blanks/spaces) is treated as a comment by the Assembler,

2-20

A statement is terminated as follows:
2 or; orrest of line is completely blank.

Examples:

- LAC)
- DAC (the rest of the line is blank)

- TAG+3
-| RTR; —+| RTR; =] RTR)

In the last example, the statement-terminating character, which is a semicolon (;) enables one source line to
" represent more than one word of object code. A tab or space is required after the semicolon in order to have

the second and third RTRs interpreted as being in the operation field and not in the label field.

2.6 STATEMENT EVALUATION

When MACRO-15 evaludtes a statement, it checks for symbols or numbers in each of the three evaluated fields:

labe!, operation, and address. (Comment fields are not evaluated.)

2.6.1 Numbers

Numbers are not field dependent. When the Assembler encounters a number (or expression) in the operation or
address fields (numbers are illegal in the label field), it uses those values to form the storage word. The follow-

ing statements are equivalent:

-} 200000, _,10))
-] 10+LAC)
- LAC_,10)

All three statements cause the Assembler to generate a storage word containing 200010. A statement may con-

sist of a number or expression which generates a single 18-bit storage word; for example:
- 23;, ,45;,,357;_,62

This group of four statements generates four words interpreted under the current radix.

2-21

2.6.2 Word Evaluation

When the Assembler encounters a symbol in a statement field, it determines the value of the symbol by reference

to the user's symbol table and the permanent symbol table, according to the priority list shown in paragraph 2.6.4.

The operation value is scanned for the following special cases:

Mnemonic Operation Field Value
. LAW 760000

AAC 723000

AXR 737000

AXS 725000

EAE instructions E4xxxx

If the operation field is not one of the special cases, the object word value is computed as follows:

If assembling for page mode:

(Operation Field +(Address Field & 7777))=Word Value
If assembling for bank mode:

(Operation Field +(Address Field & 17777))=Word Value
If the index register is used anywhere in the address field, the index register bit is set to one in the word valve. If

it is not used, and you are assembling with .ABSP, .FULLP or .DBREL then the index register bit is sef to zero in
the word value regardless of the address field value.

a. If index register usage is specified, the result of XORing bit 5 of the location counter and bit 5 of
the address field value must be non-zero. (Otherwise the address without index modification was ina
different page than the location counter, and the line is flagged with a B for bank error).

Example:
. Object Page
Flag Location Value Tag Source Statement Addressing
.ABSP
00000 210001 LAC A,X /Page 0
00001 740000 A NOP
10000 .LOC 10000 /Page 1
10000 210001 LAC B,X
B 10001 210001 B LAC A, X
.END

The result of statement evaluation has produced the following results:

A,X=10001 A = 00001
B, X =00001 B = 10001

2-22

Note that when index register usage is specified, the index register bit may or may not be on. For B, X above,

the index register bit was turned off during statement evaluation. The Assembler turns this bit on after the word

is evaluated, not at statement evaluation time.

At location 10001, the result of XORing bit 5 of A, X and bit 5 of the location counter is 0. This signals the

Assembler that the address reference (A) is in a different page.

b. If index register usage is not specified and the program is not assembled in bank mode*, the result
of XORing bit 5 of the location counter and the address field value must be 0, otherwise the line is

flagged with a B for bank error.

Example:

Flag Location ?};’E:: Tag Source Statement
.ABSP
B 00000 210500 LAC A
10500 .LOC 10500
10500 740000 A NOP
.END

c. The bank bits (3,4) of the address field value in a relocatable program must never be on. The bank
bits are always lost when the address field value and the operation are combined fo form the object word

value.
Example:
. Obj

Flag Location Vbcllicer Tag Source Statement

B 00000 R 200000 R C LAC A /Bank bit lost
17777 R .LOC C+17777
17777 R 740000 A NOP
20000 R 740000 A A NOP

.END

d. The bank bits of an absolute program must equal the bank bits of the location counter.

the B fiag alerts the programmer that he is referencing another bank.

If not,

Example:
. . Object
Line Flag Location Va'ITJce Source Statement
1 . ABSP
2 20000 .LOC 20000
3 20000 200001 LAC 1
4 20001 200001 LAC 20001
5 B 20002 210001 LAC 40001
6 .END
“See pseudo-ops .ABS, .ABSP, .FULL, .FULLP, .EBREL, .DBREL.

2-23

The address value for Lines 3 and 4 are identical. The bank bits of Line 5 do not match those of the location

counter, therefore, the line is flagged.

2.6.3 Word Evaluation of the Special Cases
a. LAW - The operation field value and the address field value are combined as follows:
Operation Value + (Address Field Value & 17777) = Word Value
A validity check is then performed on the address field value as follows:
Address Field Value & 760000 = Validity Bits
If the validity bits are not equal to 760000 or 0, the line is flagged with an E to signal erroneous results.

b. AAC, AXR, AXS - The operation field value and the address field value are combined as

follows.
Operation Value + (Address Field Value & 000777) = Word Value
The validity check:

Address Field Value & 777000 = Validity Bits

If the validity bits are not equal to 777000 or 0, the line is flagged with an E to signal erroneous
results. The address field value for this type of instruction cannot be relocated. The line is flagged
with an R if the address field value is relocatable.

c. EAE class instructions - The operation field value and the address field value are combined as
follows:

Operation Value + Address Field Value = Word Value
A validity check is then performed on the word value. I[f the operation code bits (0 through 3) o- the

word value differ from those of the operation value, the line is flagged with an E error to signal
erroneous results.

2-24

Example:

. | . Object

Line Fiag Location Word Value
i 0 777777 LAW 17777 /17777
2 1 777777 LAW -1 /777777
3 E 2 777777 LAW 677777 /677777
4 3 760000 A LAW /0
5 4 723776 AAC -2 /777776
6 E 5 723000 AAC -2000 /776000

If numbers are found in the operation and address fields, they are combined in the same manner as defined

symbols. For example,

= 2 =+ 5 +| /GENERATES 000007
The value of a symbol depends on whether it is in the label field, the operation field, or the address field. The

Assembler attempts to evaluate each symbol by running down a priority list, depending on the field, as shown

below.
2.6.4 Assembler Priority List
Label Field Operation Field Address Field

Current Value of 1. Pseudo-op 1. The indexing symbol, X

Location Counter .
2. User macro in user symbol . .
table 2, User symbol table (including

direct assignments)
System macro table

4. Direct assignment in user 3. Undefined

symbol table
5. Permanent symbol table
6. User symbol table
7. Undefined

This means that if a symbol is used in the address field, it must be defined in the user's symbol table before the

word is formed during PASS 2; otherwise, it is undefined. (See section 2.2.4)

In the operation field, pseudo-ops take precedence and may not be redefined. Direct assignments allow the
user to redefine machine op codes, as shown in the example below.

Example:
DPOSIT = DAC

System macros may be redefined as user macro names, but may not be redefined as user symbols by direct assign-

ment or by use as statement labels.

The user may use machine instruction codes and MACRO-15 pseudo-op codes in the label field and refer to them

later in the address field.

2-25

CHAPTER 3
PSEUDO OPERATIONS

In the discussion of symbols in the previous chapter, it was mentioned that the Assembler has in its permanent

symbol table definitions of the symbols for all the PDP-15 memory reference instructions, operate instructions,

the basic EAE instructions, and many commonly used 10T instructions which may be used in the operation field

without prior definition by the user. Also contained in the permanent symbol table are a class of symbols called

pseudo-operations (pseudo-ops) which, instead of generating instructions, generate data or direct the Assembler

on how to proceed with the assembly.

By convention, the first character of every psuedo-op symbol is a period (.). This convention is used in an at-

tempt to prevent the programmer from inadvertently using, in the operation field, a pseudo-instruction symbol

as one of his own.

The following is a summary of MACRO-15 Pseudo-ops.

Pseudo-op

.ABS
.ABSP

LASCII

.BLOCK

.CBD
.CBDR

.DBREL
.DEC
.DEFIN
.DSA

.EBREL
LEJECT
.END

.ENDC

Section

3.2.1
3.2.1

3.8.1

.18
.19

2.3

W W W W ww
S

1

3.14

Function

Object program is output in absolute, blocked, checksummed format for
foading by the Absolute Binary Loader. (Neither supported with RSX
PLUS, RSX PLUS Il or B/F MACROA.)

Input text strings in 7=bit ASCIIl code, with the first character serving as
delimiter. Octal codes for nonprinting control characters are enclosed in
angle brackets,

Reserves a block o storage words equal to the expression. [f a label is
used, it references the first word in the block.

Common Block Definition (DOS-15, RSX PLUS and RSX PLUS 11l only).
Common Block Definition Relative (RSX PLUS and RSX PLUS I11 only).

Disable bank mode relocation.
Sets prevailing radix to decimal.

Defines macros. Not supported with B/F MACROA.

Generates a transfer vector for the specified symbol.

Enable bank mode relocation.
Skip to head of form on listing device.

Must terminate every source program. The address field contains the address
of the first instruction to be executed.

Terminates conditional coding in .IF statements,

3-1

Pseudo-op Section Function

E .ENDM 3.16 Terminates the body of a macro definition. Not supported by B/F MACROA.
.EOT 3.7 Must terminate physical program segments, except the last, which is
terminated by .END.
l LETC 3.16 Used in macro definitions fo continue the list of dummy arguments on
succeeding lines. Not supported by B/F MACROA.
.FULL 3.2.2 Produces absolute, unblocked, unchecksummed binary object programs.
.FULLP Used only for paper tape output. (Neither supported with RSX PLUS, RSX
PLUS 11l or B/F MACROA.)
.GLOSBL 3.9 Used to declare all internal and external symbols which reference other
programs.
JFxxx 3.13 If a condition is satisfied, the source coding following the .IF statement
and terminating with an .ENDC statement is assembled.
.IODEV 3.10 Specifies .DAT slots and associated 1/O handlers required by this program.
(Not supported with RSX PLUS.)
.LOC 3.3 Sets the location counter to the value of the expression.
.LOCAL 3.2.4 Allows deletion of certain symbols from the user symbol table.
.LST 3.17 Continues requested assembly listing output of source lines. Lines between
.NOLST and .LST are not listed.
.LTORG 3.2.5 Allows the user to specifically state where literals are to be stored. Not
supported by B/F MACROA.
.NDLOC 3.2.4 Terminates deletion of certain symbols from the user symbol table con-
tained between .LOCAL and .NDLOC.
.NOLST 3.17 Terminates requested assembly listing output of source lines of code con-
tained between .NOLST and .LST.
.OCT 3.4 Sets the prevailing radix to octal. Assumed at start of every program.
.REPT 3.12 Repeats the object code of the next object code generating instruction.
Not supported by B/F MACROA.
.SIXBT 3.8.2 Input text strings in 6-bit trimmed ASCI| with first character as delimiter.
SIZE 3.15 MACRO-15 outputs the address of last location plus the one occupied

by the object program.

.TITLE 3.1 Causes the assembler to accept characters to be printed at the top of each
page of assembly listing and in the Table of Contents.

3.1 PROGRAM IDENTIFICATION (.TITLE)

I The program name (or any text) may be written in a .TITLE statement as shown in the following examples. The
Assembler will accept up to 501 0 characters typed until a carriage return. A form feed is output to the
listing when TITLE is encountered in the source program. The text will appear at the top of each form
(page) until the next .TITLE pseudo-op. The .TITLE pseudo-op has no effect on the listing file name.
~{.TITLE.y NAME OF PROGRAM
-+ . TITLE s NAME OF SUBSECTION IN PROGRAM
If subsections in a program are headed by .TITLE statements, these can be used to produce a table of contents
at the head of the assembly listing by use of the T option. This feature is not available in ADSS-15 and Back-
ground/Foreground.
3-2

3.2 OBJECT PROGRAM OUTPUT

The normal object code produced by MACRO-15 is relocatable binary which is loaded at run time by the Linking
Loader or loaded to build an executable task by CHAIN or TKB. In addition to relocatable output, the user may

specify other fypes of output code to be generated by the Assembler.

3.2.1 .ABSP, .ABS (Not available in RSX PLUS, RSX PLUS Il or B/F MACROA)*

Label Field | Operation Field Address Field
Not used .ABSP NLD or,_,or not specified
Not used .ABS NLD oreuor not specifiad

Both of the absolute pseudo=-ops cause absolute, checksummed binary code to be output (ho values are relocatable).
If no value is specified in the address field and if the output device is the paper tape punch, the Assembler will
precede the output with the Absolute Binary Loader (ABL), which will load the punched output at object time.

The ABL is loaded, via hardware readin, into location 17720 of any memory bank. (The ABL loads only the

paper tape which follows it.) If the address field of the pseudo-op contains NLD, indicating "no loader", the ABL

will not precede the output.

17720)
. ABS
LOADER
USER PROGRAM > PAPER TAPE
JEND START
_/

NOTE

.ABS (P) output can be written on directoried devices.
The Assembler assumes .ABS (P) NLD far all .ABS (P)

output to file-oriented devices and appends an exten-
sion of ABS to the filename. This file can be punched

with PIP, using Dump Mode. (There will be no abso-
lute loader at the beginning of the tape.)

a. The .ABS, .ABSP, .FULL, and .FULLP pseudo-ops, specifying the type of output, must
appear before any statements generating object code, otherwise the line will be flagged
and ignored. Once one of these four pseudo-ops is specified, the user is not allowed to
change output modes.

b. The NLD option provided in the address field of .ABS and .ABSP is meaningful only if the
output device is paper tape.

“ .ABSP and .ABS, although accepted by the Assembler, will not work properly in RSX PLUS or RSX PLUS Il
systems because none of the 1/0 handlers accept dump mode data.

A description of the absolute output format follows.

Block Heading - (three binary words)
WORD 1 Starting address to load the block body which follows.
WORD 2 Number of words in the block body (two's complement).

WORD 3 Checksum of block body (two's complement). Checksum
includes Word 1 and Word 2 of the block heading.

Block Body - (n binary words)
The block body contains the binary data to be loaded under block heading control.
Starting Block - (two binary words)

WORD 1 Location to start execution of program. It is distinguished from the block
heading by having bit 0 set to 1 (hegative).

WORD 2 Dummy word.

If the user requests the absolute loader and the value of the expression of the .END statement is equal to 0, the
ABL halts after it has loaded in the object program. To start the program the user must set the starting address in
the console address switches and press START. This allows manual intervention by the user, typically to ready
I/O devices prior to starting his program. If the value of the .END expression is non-zero, it is treated as the

program start address to which the ABL will automatically transfer control after loading the object program.

The .ABSP pseudo-op causes all memory referencing instructions whose addresses are in a different page to
be flagged as bank errors. A DBA instruction is executed by the absolute loader before control is given to
the user program. Word values which have bit 5 on will signal the processor to use the index register to

compute effective addresses.

The .ABS pseudo-op does not flag memory referencing instructions whose addresses are in a different page. An
EBA instruction is executed, and control is given to the user in bank addressing mode. Complete bank addressing
of 8K is allowed. The processor will interpret bit 5 of all memory referencing instructions as the high order

address bit. A listing of the Absolute Binary Loader is given in Appendix F.

3.2.2 .FULL, .FULLP (Not available in RSX PLUS, RSX PLUS Il or B/F MACROA)*

Label Field Operation Field Address Field (Only useful
if output
Not used .FULL Not used is paper
Not used .FULLP Not used tape)

The .FULL and .FULLP pseudo-ops cause full binary mode output to be produced. The program is assembled as
unchecksummed absolute code and each physical record of output contains nothing other than 18-bit binary
storage words generated by the Assembler. This mode is used to produce paper tapes which can be loaded via

hardware readin mode. If no address is specified in the .END statement or if the address value is zero, af the

*.FULL and .FULLP, although accepted by the Assembler, will not work properly in RSX PLUS or RSX PLUS Il

systems because none of the 1/O handlers accept dump mode data.

3-4

end of tape the assembler will punch a halt instruction with channel 7 punched in the third frame. I[f the .END

address value is non-zero, the assembler will punch a JMP to thot address, also with channel 7 of the third

frame punched.

In addition, with .FULLP assembly direct memory references in page 1 to addresses in page 1 will have bit 5

set to 0 unless indexing is specified.

The only difference between the .FULL and .FULLP pseudo-ops is that memory references across page boundaries

are flagged in .FULLP mode; in .FULL mode they are-not.

The following specific restrictions apply o programs assembled in .FULL or .FULLP mode output.

.LOC Should be used only at the beginning of the program

.BLOCK May be used only if no literals appear in the program, and must
immediately precede .END.

Variables and undefined symbols may be used if no literals appear in the program.

Literals may be used only if the program has no variables and undefined symbols.

The reason for these restrictions, not alleviated by the use of .LTORG, is the fact that .FULL(P) mode output
contains no addressing information for storing binary words other than in sequence. The .LOC and .BLOCK
pseudo-ops do not generate binary output, hence there is no way to indicate skipped locations in the output.

This is also true of variables and undefined symbols.

3.2.3 .EBREL and .DBREL

Label Field Operation Field Address Field
Not used .EBREL Not used
Not used .DBREL Not used

The following two pseudo-ops (.EBREL and .DBREL) enable relocation mode switching. They can be used any-

where and as often as the programmer wishes in a relocatable program. In the absence of one of these mode
declaration pseudo-ops, the page mode assembler assumes it is assembling 12-bit (page mode) relocatable ad-

dresses for memory reference instructions and the bank mode assembler assumes 13-bit addresses (bank mode).

A typical user program may omit the use of these pseudo-ops and simply prepare his object code by using the
correct (bank or page mode) version of the assembler. For the PDP-9 there is only one correct mode, bank mode.
For PDP-15 page mode programs which contain display code to be interpreted by the VT15 graphics processor,

it is necessary to bracket the display code with .EBREL, .DBREL. Unlike the Central Processor, the VT15 proc-

essor runs only in bank mode; hence its instruction addresses must be relocated as 13-bit values.

Mnemonic Description

.EBREL Enable Bank mode RELocation

Regardless of the type of Assembler being used (bank or page mode version),
.EBREL causes all subsequent memory reference instruction addresses to be
treated as 13-bit values, i.e., bank mode. Although in this mode, the page
mode assembler will still output the "PROG>4K" warning message if the pro-
gram size exceeds 4192. The 12- or 13-bit relocation is performed by the
loaders. . EBREL signals the loaders to switch to 13=bit relocation by causing
a dummy data word (which is not loaded) to be inserted in the binary output
and having o loader code of 318.

.DBREL Disable Bank mode RELocation

.DBREL is the counterpart to EBREL. It signals the loaders, with a dummy

data word and loader code of 328 to switch to 12-bit (page mode) relocation.,

NOTE

The previous mode is not saved when an .EBREL or .DBREL
is encountered; for this reason, a .DBREL pseudo-op goes
directly to PDP-15 (page mode) relocation rather than
entering the previous mode.

3.2.4 Deletion of User Symbol Table (.LOCAL, .NDLOC)

Label Field Operation Field Address Field
Not used .LOCAL Not used
Not used .NDLOC Not used

The size of a program that can be assembled with MACRO=-15 is determined by the number of user symbols in

that program and therefore by the amount of core available at assembly time in which to store those symbols.
Each user symbol requires three words of core in the assembler's symbol table, This additional core is not
required at run-time (unless using a debugging program like DDT) because user symbols are not loaded into

core along with the object code.

The .LOCAL and .NDLOC pseudo-ops enable deletion of certain symbols from the user symbol table. In so

doing, larger programs can be assembled without increasing core size. The area between these two pseudo-ops

is defined as having a number of symbols, most of which are used only in this area and which can be deleted, once
this area has been passed by the assembler. The 8K PDP~15 user who writes modularized programs will find these

pseudo-ops to be very powerful tools.

The assembler creates a separate symbol table (local users symbol table) when the .LOCAL pseudo-op is encoun=

tered. Only tags and direct assignments may be stored in this table. Tag symbols which have the # sign as part
of the symbol are stored in the resident users symbol table (RUST). This feature is useful where a subroutine name

is part of a local area but must go into the RUST because of subroutine calls from without the local area (See

Section D of the following example). Symbols which are forward references (used before defined) are stored as

part of the resident users symbol table. When the .NDLOC pseudo-op is encountered the local table disappears

and the resident UST is left unchanged.

An example of a program which uses the .LOCAL and .NDLOC pseudo-ops follows. The symbols that are stored

in the tables are represented in the comment field in the order that they are stored during PASS 1.

100

TTYIN

/TTYIN
/C,A

/KK

/ALREADY STORED IN RUST (FROM LINE 4)

/TEMP STORAGE OF SUBR. TTYIN: XXX (LOCAL TABLE)

/ Y (LOCAL TABLE)
/ Z (LOCAL TABLE)
/ X1 (LOCAL TABLE)

/TEMP STORAGE OF SUBR. TSUBR SYM1 (LOCAL
/TABLE)

/ SYM2 (LOCAL TABLE)
/TSUBR STORED IN RUST BECAUSE OF # SIGN.

1 .ABS

2 .LOC
3 CAF

4 JMS

5 A JMP

6 LAW

7 DAC

8 KK 1SZ

9 JMP

10 LAC

1 JMP

12 .LOCAL

13 TTYIN 0

14 JMP

15 XXX 0

16 YY 0

17 z 0

18 X1 0

19 KSF

20 JMP

21 KRB

22 DAC

23 DAC

24 DAC

25 DAC

26 IMp*

27 NDLOC

28 AA LAC

29 JMP

30 .LOCAL

31 SYMI

32 SYM2

33 TSUBR# 0

34 LAC

35 DAC

36 JMPp*

37 .NDLOC

38 .END

For purposes of illustration, lines 1-11, 12-26, 27-29, and 30-36 are broken into sections A,B,C,and D

respectively. The following tables show the resident and local users symbol tables (UST) at the end of each section

(PASS 1 only).

RESIDENT UST LOCAL UST

SECTION A

(NO SYMBOLS)

onNn P>
>

SECTION B

TTYIN
SECTION C

A (NO SYMBOLS)

TTYIN
X1

SECTION D

A SYM1
AA SYM2
C

D

KK

TTYIN

X1

TSUBR

In Section A, the symbol TTYIN is used. TTYIN is in a local area yet it is put into the resident user symbol
table because it is a forward reference. The same is true of symbol X1 from Section C. Once the .NDLOC
pseudo-op is encountered, the local UST no longer exists. For that reason, the X1 reference from line 28 is a

forward reference. At the end of PASS 1, X1 would be represented as an undefined symbol. When Section B
is processed during PASS 2, the symbol X1 would not be stored in the local UST because it already has been

put into the resident table.

LIMITATIONS

A. The .LOCAL pseudo-op causes the local UST to be built just above the Macro definitions.
Consequently, the .DEFIN Macro is illegal in a local area.

B. In systems with an extra 4K of core (12K, 20K and 28K) no attempt is made to continue the
local users symbol table from low core to the extra page. The housekeeping code that would
be needed to do this would negate the utility of the .LOCAL pseudo-op. The likelihood of
such an occurrence is small. However, should the table reach the beginning of the Assembler,
assembly will terminate with the message

TABLE OVERFLOW

3.2.5 Literal Origin Pseudo-op (.LTORG) (Not available in B/F MACROA)

Label Field Operation Field Address Field

Not used .LTORG Not used

As previously stated, a literal is an item of data with its value as stated or listed. The pseudo~-op .LTORG al-
lows the user to specifically state where he wants his literal table(s) to be stored; thus enabling the user to store
literal tables in different pages or banks. As many as eight literal tables are allowed. Notice in the following

example that literals are not saved from one .LTORG to the next.

.ABS
.LOC 17700
17700 217703 LAC (1
17701 077704 DAC* (2
17702 217704 LAC €
: .LOC 20000
.LTORG
20000 000001 *L
20001 000002 *L
20002 000003 *L
.LOC 17703
17703 740000 NOP
17704 217711 LAC . (1
17705 057712 DAC (2
.LOC 20003
.LTORG
20003 000001 *L
20004 000002 *L
.END

The literals 1 and 2 are stored twice even though they appear in the same bank.

If more than eight .LTORG statements appear in a program, the excess ones will be ignored and flagged with an

| error. Subsequent literals will be assigned core locations following the endof the program in the normal manner.

3-9

3.3 SETTING THE LOCATION COUNTRR (.LOC)

Labe! Field ~ Operation Field Address Field

Not used .LOC Predefined symbolic
expression, or number

The .LOC pseudo-op sets or resets the location counter to the value of the expression contained in the address
field. The symbolic elements of the expression must have been defined previously; otherwise, phase errors will

occur in PASS 2. The .LOC pseudo-op may be used anywhere and as many times as required.

Examples:

Location Counter Instruction
100 - .LOC_,100
100 - LAC, ,TAGI
101 - DAC, ,TAG2
102 4 oc,.
102 A-| LAC,_B
103 - DAC_,C
107 - .LOC_ A+5
107 - LAC_,C
110 - DAC_,D
111 - LAC_E
112 -{DAC_F

A program headed by an absolute statement, e.g., .LOC 100 is an absolute binary program and the binary is
output in link-loadable format.
3.4 RADIX CONTROL (.OCT and .DEC)

The initial radix (base) used in all number interpretation by the Assembler is octal (base 8). In order to allow

the user to express decimal values, and then restore to octal values, two radix setting pseudo-ops are provided.

Pseudo-op Code Meaning
.OCT Interpret all succeeding numerical values in base 8 (octal)
.DEC Interpret all succeeding numerical values in base 10 (decimal)

These pseudo-instructions must be coded in the operation field of a statement. All numbers are decoded in the

current radix until a new radix control pseudo=instruction is encountered unless the pseudo-op occurs within a

MACRO expansion (see p. 4-4). The programmer may change the radix at any point in a program.

Flag Source Program Generated Value (Octal) Radix in Effect
- LAC 100 200100 8 } initial value is
- 25 000025 8 J assumed to be octal
-} .DEC
- LAC 100 200144 10

Flag Source Program Generated Value (Octal) Radix in Effect
-| 275 000423 10
- .OCT
- 76 000076 8

N -] 85 000125 error

If a number is encountered which contains a decimal digit while in octal mode, the number is evaluated as if the

Assembler were in decimal mode, and the line is flagged with an N,

3.5 RESERVING BLOCKS OF STORAGE (.BLOCK)

.BLOCK reserves a block of memory equal to the value of the expression contained in the address field. If the
address field contains a numerical value, it will be evaluated according to the radix in effect, The symbolic
elements of the expression must have been defined previously, i.e., no forward referencing is allowed; otherwise,
phase errors might occur in PASS 2, The expression is evaluated modulo 2] 5(777778). The user may reference

the first location in the block of reserved memory by defining a symbol in the label field. The initial contents of

the reserved locations are unspecified.

Examples:

3.6 PROGRAM TERMINATION (.END)

One pseudo-op must be included in every MACRO-15 source program. This is the .END statement, which must

be the last statement in the main program. This statement marks the physical end of the source program, and also

Label Field

Operation Field Address Field

User Symbol

.BLOCK Predefined Expression

BUFF - .BLOCK,_,12)

~ .BLOCK,_ ,A+B+65)

may contain the location of the first instruction in the object program to be executed at run-time.

3-11

The .END statement is written in the general form

- .END_, START)
START may be a symbol, number, or expression whose value is the address of the first program instruction to be
executed. In relocatable programs to be loaded by the Linking Loader, CHAIN or TKB, only the main

program requires a starting address; all other subprogram starting adresses, if specified, will be ignored.

A starting address must appear in absolute or self-loading programs; otherwise, the program will halt after being

loaded and the user must manually start his program.

These are legal .END statements
- .END, ,BEGIN+5)

-~ .END,_,200,)

If no .END statement is included (or no tab or space precedes the .END) the assembler will treat it as if a .EOT

was included.

3.7 PROGRAM SEGMENTS (.EOT)

If a program is physically segmented (on paper tape, DECtape or magtape), each segment except the last may
terminate with an .EOT (end-of-tape) statement or with nothing at all (neither ,EOT nor .END). Termination
with nothing is equivalent to termination with .EOT. The last segment must terminate with an .END statement.
The .EOT statement is written without label and address fields, as follows,

- .EOT2

The following are typical reasons for segmenting programs:

1. A source program is prepared on three different paper tapes because one tape alone would be
too large to fit in the reader.

2. A source program is split in two and stored on two DECtapes because it is larger than the
capacity of a single tape.

3. To simplify program preparation, a file containing commonly used macro definitions is kept
physically separate from user main programs. Thus, one does not have to include the macro
definitions in each main program. Macro definition files must terminate with .EOT or
nothing rather than .END.

4, Programs can be conditionally assembled for different machine configurations or different soft-
ware options. This is done by defining conditional assembly parameters at assembly time.
The process can be simplified if one prepares paper tapes or mass storage files defining all
parameters for a given set of options. The main program and parameter file are physically
segmented one from the other but can be assembled together. Parameter definition files
must terminate with .EOT or nothing rather than .END.

3.8 TEXT HANDLING (.ASCIl AND .SiXBT)

The two text handling pseudo~ops enable the user to represent the 7-bit ASCII or 6-bit trimmed ASCI| character

sets. The Assembler converts the desired character set to its appropriate numerical equivalent (see Appendix A).

Label Field Operation Field Address Field

.ASCII Delimiter - character string - delimiter -

SYMBOL
. SIXBT <expression>

Only the 64 printing characters (including space) may be used in the text pseudo-instructions. See nonprinting
characters, Section 3.8.5. The numerical values generated by the text pseudo-ops are left-justified in the

storage word(s) they occupy with the unused portion (bits) of a word filled with zeros.

3.8.1 .ASCIl Pseudo-op

-ASCII denotes 7-bit ASCII characters, (It is the character set used by the operating system monitor
or executive.) The characters are packed five per two words of memory with the rightmost bit of every

second word set to zero. An even number of words will always be output:

First Word Second Word
0 6 7 13 14 17]0 2 3 92 10 16 17
1st Char. 2nd Char. 3rd Char. 4th Char. 5th Char. 0

3.8.2 .SIXBT Pseudo-op

. SIXBT denotes 6-bit trimmed ASCII characters, which are formed by truncating the leftmost bit of the

corresponding 7-bit character. Characters are packed three per storage word.

0 516 11 {12 17
Ist Char. 2nd Char. 3rd Char.

3.8.3 Text Statement Format

The statement format is the same for both of the text pseudo-ops. The format is as follows.

delimiter | character string | delimiter |<expression>.

.ASCII
MYTAG _’l{.SIXBT} ~
3.8.4 Text Delimiter

Spaces or tabs prior to the first text delimiter or angle bracket (<) will be ignored; afterwards, if they are not
enclosed by delimiters or angle brackets, they will terminate the pseudo-instruction. Also,) will terminate

the pseudo-instruction.
Any printing character may be used as the text delimiter, except those listed below.

a. < asitis used to indicate the start of an expression.

b.) asit terminates the pseudo-instruction.

3-13

(The apostrophe (') is the recommended text delimiting character.) The text delimiter must be present on both

the left-hand and the right-hand sides of the text string; otherwise, the user may get more characters than de-

sired. However,) may be used to terminate the pseudo-instruction.

3.8.5 Non-Printing Characters

The octal codes for non-printing characters may be entered in . ASCII statements by enclosing them in angle

bracket delimiters. In the following statement, five characters are stored in two storage words.

—| LASCII .y "AB' <015>'CD"')

Octal numbers enclosed in angle brackets will be truncated to 7 bits (. ASCII) or 6 bits (. SIXBT).

Example:
Source Line Recognized Text Comments
TAG—| .ASC!, ,'ABC' ABC
-] .SIXBT_'ABC' ABC
-| .SIXBT, ,'ABC'#'/# ABCY/ The # is used as a delimiter in order
that (') may be interpreted as text.
—| .ASCII,_,'ABCD'EFGE ABCDFG
—| .ASCII__,'ABKIT> AB -] <11> used to represent tab.
-] LASCIT_,'ABKIT> ABLIT> There is no delimiter after B,
. therefore, (K117>)is treated as text.
~| .ASCII,_,<15><012>'ABC" JIABC
-] .ASCII, ,<15><12>ABC_,(s) 2 1BC,,(s) A is interpreted as the text delimiter.
Also, since) was not used to ter-
minate the text, the ,_,(s) are inter—
preted as text characters.

The following example shows the binary word format which MACRO-15 generates for a given line of text.

Example:

~| _ASCII =] 'ABC'<015><12>'DEF "

Generated Coding

Word Number Octal Binary
Word T 406050 | 1000001 | 1000010 | 1000
Word 2 306424 011 | 0001101 | 0001010 | 0
Word 3 422130 1000100 | 1000101 | 1000
Word 4 600000 110 [ooooooo |ooooooo | 0

3.9 GLOBAL SYMBOL DECLARATION (.GLOBL)

Label Field Operation Field Address Field

Not used .GLOBL A,B,C,D,E....

The standard output of the Assembler is a relocatable object program. The Linking Loader, CHAIN or TKB
joins relocatable programs by supplying definitions for global symbols which are referenced in one program and
defined in another, The pseudo-op .GLOBL, followed by a list of symbols, is used to define to the Assembler
those global symbols which are either

a. internal globals - defined in the current program and referenced by other programs

b. external symbols - referenced in the current program and defined in another program

The loader (Linking Loader, CHAIN or TKB) uses this information to include in the load and then link the relo-

catable programs to each other.

All references to external symbols must be indirect references since PDP-15 software systems use transfer vec—
tors for referencing external symbols. Each external symbol causes an additional word (the transfer vector
word) to be reserved in the user program. The loading program will store the actual address of the external
symbol in the transfer vector word. Thus, an indirect reference (through the transfer vector) will cause the

external symbol location to be addressed.

Example:
- .GLOBL - A,B,C
/A is an internal global
A - LAC - D
D - JMS* - B ‘These two instructions reference
- JMS* = C /External symbols indirectly
.END - D

The .GLOBL statement may appear anywhere within the program.

The example above is assembled as follows:

Flag Location Word Value .GLOBL A,B,C
000000 R 200001 R A LAC D
000001 R 120003 R D JMS* B
000002 R 120004 R JMS* C
000001 .END D
000003 R 000003 *E
000004 R 000004 *E

The real values for locations 3 and 4 will be supplied by the loading program: these two words will contain

the addresses in memory of external symbols B and C.,

3.10 REQUESTING I/O DEVICES (.IODEV) (not supported in RSX)

The .IODEV pseudo-op appears anywhere in the program (though standardly necr the beginning) and is used to
cause the Assembler to output code for the Linking Loader or CHAIN which specifies the slots in the Monitor's
device assignment table (DAT) whose associated device handlers are required by the program. This is used in

those systems where device handlers are brought into core at the time a program is loaded to run.

Label Field Operation Field Address Field

Not used .IODEV 1,2,3...

The arguments may be numeric or symbolic. If the argument is symbolic, the symbol must be defined by a direct

assignment statement.
3.11 DESIGNATING A SYMBOLIC ADDRESS (.DSA)

.DSA (designate symbol address) is used in the operation field when it is desired to create a word composed of
just a fransfer vector (15-bit address). It is useful when a user tag symbol is also a permanent instruction or

pseudo-op symbol .

Label Field Operation Field Address Field

User Symbol .DSA Any Expression

Examples:
IMP o LAC - TAG
- .DSA - JMP } Equivalent methods of designating the user symbol JMP (rather than

= -/ JMP the instruction JMP) to be in the address field.

3.12 REPEATING OBJECT CODING (.REPT) (Not available in B/F MACROA)

Label Field Operation Field Address Field
Not used .REPT Count {,lncremenf)
OF e
.or;
o

The .REPT pseudo-op causes the object code of the next sequential object code generating instruction to be
repeated "count" times. Optionally, the object code may be incremented for each time it is repeated by
specifying an increment. The count and increment may be represented by a numeric or symbolic value. If a
symbol is used, it must be defined by an absolute direct assignment statement which must occur before the sym-
bol is used. The repeated instruction may contain a label, which will be associated with the first statement

generated. Note that arithmetic expressions in the address field are illegal.

3-16

Examples:

Source Code ObGi:;erg:fa

- .REPT_,5

-~ 0 000000
000000
000000
000000
000000

~| .REPT_ 4,1

-1 000001
000002
000003
000004

- .REPT_,3,-1

- 5 000005
000004
000003

TAG=50

—| .REPT__ 4,1

- JIMP_,TAG 600050
600051
600052
600053

NOTE
If the statement to be repeated generates more than one
location of code, the .REPT will repeat only the last lo-
cation. For example,

| .REPT_,3
= .ASCIT_'A"

will generate the following:

404000 5/7 A
000000

000000 last word is
000000 repeated

3-17

3.13 CONDITIONAL ASSEMBLY (.IF xxx and .ENDC)

It is often useful to assembly some parts of the source program on an optional basis. This is done in MACRO-15

by means of conditional assembly statements, of the form:

- .IF... - expression

The pseudo-op may be any of the eight conditional pseudo-ops shown below, and the address field may contain
any number, symbol, or expression. [f there is a symbol, or an expression containing symbolic elements, such

a symbol must have been previously defined in the source program or the parameter file (except for .IFDEF and
JFUND). If not, the value of the symbol or expression is assumed to be , thereby satisfying three of the

numeric conditionals.

- |f the condition is satisfied, that part of the source program starting with the statement immediately following
the conditional statement and up to but not including an .ENDC (end conditional) pseudo-op is assembled. If

the condition is not satisfied, this coding is not assembled.

The eight conditional pseudo=-ops (sometimes called IF statements) and their meanings are shown below,

Pseudo-op Assemble IF x is:
- .IFPNZ_ x Positive and non-zero
- .IFNEG,_,x Negative
- .IFZER_ x Zero
- .IFPOZ__x Positive or zero
- .IF NOZ, x Negative or zero
-] JIFNZR_ ,x Not zero
-| .IFDEF, ,x A defined symbol
-] .IFUND__, x An undefined symbol

In the following sequence, the pseudo-op .IFZER is satisfied, and the source program coding between .IFZER
and .ENDC is assembled.

SUBTOT=48

TOTALL=48

-] .IFZER - SUBTOT-TOTALL
-} LAC_ A

- DAC,_,B

-] .ENDC

Conditional statements may be nested. For each IF statement there must be a terminating . ENDC statement.

If the outermost IF statement is not satisfied, the entire group is not assembled. If the first IF is satisfied, the

following coding is assembled. If another IF is encouniered, however, its condition is tested, and the following
coding is assembled only if the second IF statement is satisfied. Logically, nested IF statements are like AND
circuits. If the first, second, and third conditions are satisfied, then the coding that follows the third nested

IF statement is assembled.

Example:
- .IFPOZ X conditional 1 initiator
= LAC | TAG
-] .IFNZR_Y conditional 2 initiator
- pAC ~| TAG1
- .ENDC conditional 2 terminator
- .IFDEF_, Z conditional 3 initiator
—} DAC ~| TAG2
- .ENDC conditional 3 terminator
-{ .ENDC conditional 1 terminator

Conditional statements can be used in a variety of ways. One of the most useful is in terminating recursive
macro calls {described in Chapter 4). In general, a counter is changed each time through the loop, or recursive

call, until the condition is not satisfied. This process concludes assembly of the loop or recursive call.

3.14 LISTING CONTROL (.EJECT)

The following Assembler listing control is effective only when a listing is requested by Assembler control key-

board request.

Label Field Operation Field Address Field

Not used .EJECT Not used

When .EJECT is encountered anywhere in the source program, it causes the listing device that is being used to

skip to top-of-form.

3.15 PROGRAM SIZE (.SIZE)

Label Field Operation Field Address Field

User Symbol .SIZE Not used

When the Assembler encounters .SIZE, it outputs one word which contains the address of the last location plus
one occupied by the object program. This is normally the length of the object program (in octal). However,
if a given program is 121 8 words long and has a .LOC 40 statement at the head of the program, the value of

the .SIZE word will be 5218.

3.16 DEFINING MACROS (.DEFIN, .ETC, and .ENDM) (Not available in B/F MACROA)

The .DEFIN pseudo-op is used to define macros (described in Chapter 4). The address field in the .DEFIN
statement contains the macro name, followed by a list of dummy arguments. [f the list of dummy arguments will
not fit on the same line as the .DEFIN pseudo-op, it may be continued by means of the .ETC pseudo-op in the
operation field and additional arguments in the address field of the next line. The coding that is to constitute
the body of the macro follows the .DEFIN statement. The body of the macro definition is terminated by an

.ENDM pseudo-op in the operation field. (See Chapter 4 for more details on the use of macros.)

3.17 ASSEMBLY LISTING OUTPUT CONTROL (.NOLST and .LST)

Label Field Operation Field Address Field

Not used { LNS(?LST} Not used

If, while performing an assembly listing operation (L, X, or N assembly parameters), the assembler encounters
a .NOLST, the listing operation will be terminated until a .LST is found. These pseudo-ops are useful when

the user wishes to assemble all of a program, but only needs a listing of certain medules of the program (e.g.,
those which may not yet work properly). All symbols occurring between .NOLST and .LST will appear.in the

cross reference and symbol table listings when requested (A, V, X, or S assembly parameters).

3.18 COMMON BLOCK DEFINITION (.CBD) (DOS and RSX Systems Only)

The pseudo-op ,CBD enables the programmer to declare a COMMON area of an indicated name and size and

to specify the word to be set to its base address. The general format of this pseudo-op is:

Label Field Operation Field Address Field

User Symbol .CBD Name_,Size

The .CBD pseudo-op takes o COMMON name and size as arguments, reserves one word of core for the base

address, and outputs loader codes and parameters to direct the Linking Loader, CHAIN or TKB programs to set

a transfer vector to the base address (First eleménf) of the named COMMON array. For example, the statement:

BASE .CBD ABCD 6

3-20

provides location BASE with the address of the first word of the COMMON area named ABCD whose size is 6.
Blank COMMON is given a special name by the system software, .XX. To reference Blank COMMON in a

.CBD statement, .XX should be given as the block name.

3.19 COMMON BLOCK DEFINITION RELATIVE (.CBDR) (RSX Systems Only)

The pseudo-operation .CBDR (common block definition relative) takes an offset as its only argument. The

general format of this pseudo-op is:

Label Field Operation Field Address Field
User Symbol .CBDR Displacement

This pseudo-op directs the task builder to enter the starting address of the last COMMON block specified in «
.CBD plus the offset given in the .CBDR into the word corresponding to the location of the .CBDR.

For example, the statements

BASE .CBD ABCD 5
BASE3 .CBDR 3

will cause the task builder to enter the starting address of the COMMON block ABCD into the location corre=-
sponding to the tag BASE; in addition, the location corresponding to BASE3 will contain the starting address of
ABCD plus 3.

Note that .CBDR is relative to the last COMMON definition only. Any other assembler instructions or

pseudo-operations may intervene between the .CBD and .CBDR.

3-21

CHAPTER 4
MACROS

When a program is being written, it often happens that certain coding sequences are repeated several times with
only the arguments changed. It would be convenient if the entire repeated sequence could be generated by a
single statement. To accomplish this, it is first necessary to define the coding sequence with dummy arguments
as a macro instruction, and then use a single statement referring fo the macro name along with a list of real

arguments which will replace the dummy arguments and generate the desired sequence.
Consider the following coding sequence.

LAC— A
TAD - B
DAC— C

LAC | D
TAD ~ E
DAC—| F

R R

The sequence

- LAC = x
-~ TAD - y
- DACH 2

is the model upon which the repeated sequence is based. The characters x, y, and z are called dummy arguments

and are identified as such by being listed immediately after the macro name when the macro instruction is

defined.

4.1 DEFINING A MACRO

Macros must be defined before they are used. The process of defining a macro is as follows.

(Macro Name) (Dummy Arguments)

(Definition Line) - .DEFIN ~| MACNME,ARG1,ARG2,ARG3 - /comment
-} LAC -] ARG

(Body) - TAD —{ ARG2
- DAC - ARG3

(Terminating Line) -| _ENDM

The pseudo-op .DEFIN in the operation field defines the symbol following it as the name of the macro. Next,

follow the dummy arguments, as required, separated by commas and terminated by any of the following symbols.

a. space ()
tab (—~)
c. carriage return (D)

The macro name and the dummy arguments must be legal MACRO-15 symbols. Any previous definition of a
dummy argument is ignored while in a macro definition. Comments after the dummy argument list in a definition

are legal.

If the list of dummy arguments cannot fit on a single line (that is, if the .DEFIN statement requires more than
7210 characters) it may be continued on the succeeding line or lines by the usage of the .ETC pseudo-op, as

shown below.

- DEFIN | MACNME ,ARG1,ARG2,ARG3 /comment
- .ETC "|ARG4,ARG5 /argument continuation

~| .DEFIN~] MACNME
- .ETC | ARGI
- ETC ~1 ARG2
-} .eTc -l ARG3
- .ETC -~ ARG4
- .ETC -] ARG5S

4.2 MACRO BODY

The body of the macro definition follows the .DEFIN statement. Appearances of dummy arguments are marked
and the character string of the body is stored, five characters per two words in the macro definition table, until

the macro termirating pseudo—op .ENDM is encountered. Comments within the macro definition are not stored.

Dummy arguments may appear in the definition lines only as symbols or elements of an expression. They may
appear in the label field, operation field, or address field. Dummy arguments may appear within a literal or

they may be defined as variables. They will not be recognized if they appear within a comment.

4-2

The following restrictions apply to the usage of the .DEFIN, .ETC and .ENDM pseudo-ops:

a. If they appear in other than the operation field within the body of a macro definition, they will
cause erroneous results.

b. If .ENDM or .ETC appears outside the range of a macro definition, it will be flagged as undefined.

If index register usage is desirable, it should be specified in the body of the definition, not in the argument

string .

.DEFIN XUSE,A,B,C
LAC A

DAC B,X

LAC C

.ENDM

If LASCHl or .SIXBT is used in the body of a macro, a slash (/) or number sign (#) must not appear as part of the
text string or as a delimiter (use < 57 > to represent a slash and <43 > to represent a number sign). Be careful E
when using a dummy argument name as part of the text string. For example,
.DEFIN TEXT A
.SIXBT JA,

.SIXBT A
.ENDM

followed by the macro call,
TEXT XYZ

will generate the following code

SIXBT ,XYZ,
SIXBT LA,

In the first .SIXBT statement, A is recognized as a dummy argument resulting in the substitution of XYZ. In the
second statement, A is not recognized as a dummy argument because the string delimiter, period, is itself a legal

symbol constituent.

Definition Comments
- .DEFIN 4 MAC,A,B,C,D,E,F
- LAC - Af
- spa
- UJMP o B
- 1Sz - TMP | /E E is not recognized as an argument
- LAC - (e
- DAC - D+1
- F
- (ASCIl E
B=,
- .ENDM

4.3 MACRO CALLS
A macro call consists of the macro name, which must be in the operation field, followed by a list of real argu~—

ments separated by commas and terminated by one of the characters listed below.

4-3

a. space (L)
b. tab (1)
c. carriage return (J)
If the real arguments cannot fit on one line of coding, they may be continued on succeeding lines by terminating

the current line with a dollar sign ($). When they are continued on succeeding lines they must start in the tag

field.
Example:

~| MAC — REALT,REAL2,REAL3,$
REAL4 ,REAL5

If there are n dummy arguments in the macro definition, all real arguments in the macro call beyond the nth
dummy argument will be ignored. A macro call may have a label associated with it; this label will be assigned

to the current value of the location counter.

Example:
(Definition) -} .DEFIN —| UPDATE,LOC, AMOUNT
-] LAC = LOC
-/ TAD -] AMOUNT
- DAC ~fLOC
-] .ENDM
(Call) TAG—] UPDATE = CNTR, (5 /TAG ENTERED INTO SYMBOL TABLE

/WITH CURRENT VALUE OF LOCATION COUNTER
(Expansion) TAG—=| LAC -] CNTR

A TAD (5
S| DAC -/ CNTR

The prevailing radix will be saved prior to expansion and restored after expansion takes place. Default as-
sumption will be octal for the macro call. It is not necessary for the macro definition to have any dummy argu-

ments associated with it.

Example:

- .DEFIN_, TWOS
- cMA
- TAD_,(1
- _ENDM
(Call) - TWOS
(Expansion) - CMA
- TAD L (1

4-4

4.3.1 Argument Delimiters

It was stated that the list of arguments is terminated by any of the following symbols.

a. space (a)
b. tab ("i)

c. carriage return (J)

These characters may be used within real arguments only by enclosing them in angle brackets (<). Angle

brackets are not recognized if they appear within a comment.

~ Example:

(Definition) —| .DEFIN,__ ,MAC,A,B,C
-l LAC,_A
- TAD_,B
- DAC_,C
-] .ENDM
(Call) ——| MAC, ,TAGI1 ,<TAG2 /comment
- TAD_ (1)>,TAG3
(Expansion) = LAC, ,TAG1
~| TAD, ,TAG2
- TAD (1)
- DAC,_,TAG3

All characters within a matching pair of angle brackets are considered to be one argument, and the entire argu-

ment, with the delimiters (<>) removed, will be substituted for the dummy argument in the original definition.

MACRO-15 recognizes the end of an argument only on seeing a terminating character not enclosed within angle

brackets.

If brackets appear within brackets, only the outermost pair is deleted. If angle brackets are required within a

real argument, they must be enclosed by argument delimiter angle brackets.
Example:

(Definition) =] .DEFIN — ERRMSG, TEXT
- JMS —| PRINT
- .ASCII | TEXT
- .ENDM

(Call) -] ERRMSG —| </ERROR IN LINE/ <15>>
(Expansion) = JMS o PRINT
—| LASCI | /ERROR IN LINE/< 15>

4.3.2 Created Symbols

Often, it is desirable to attach a symbolic tag to a line of code within a macro definition. As this tag is de-

fined each time the macro is called, a different symbol must be supplied at each call to avoid multiply defined

fags.

This symbol can be explicitly supplied by the user or the user can implicitly request MACRO-15 to replace the

dummy argument with a created symbol which will be unique for each call of the macro. For example,
- .DEFIN ~| MAC, A, ?8

The question mark (?) prefixed to the dummy argument B indicates that it will be supplied from a created symbol

if not explicitly supplied by the user when the macro is called for.

The created symbols are of the form ..0000~..9999. Like other symbols, they are entered into the symbol table

as they are defined.

Unsupplied real arguments corresponding to dummy arguments not preceded by a question mark are substituted in
as empty strings; and supplied real arguments corresponding to dummy arguments preceded by a question mark

suppress the generation of a corresponding created symbol.

Example:
(Definition) = .DEFIN =] MAC,A,B, ?C,?D,?E
- LAC A
- szA
-} JMP 4D
- LAC B
- pac —ct
- DAC —E
D=.
- _ENDM
(Call) - MAC =Y, ,MYTAG
(Expansion) —1 LAC = v#
- sza

- JMP - ..0000
- LAC

- DAC —| ..0001
-] DAC =] MYTAG
. .0000=.

If one of the elements in a real argument string is not supplied, that element must be replaced by a comma, as

in the call above. A real argument string may be terminated in several ways as shown below:

Example:

-| MAC = A,B, .,
-] MAC -+ A,B,,)
- MAC~ A,B,
- MAC ~{ A,B)
= MAC - A,B,J

4,3.3 Concatenation

If a dummy argument in a definition line of the macro body is delimited by the concatenation operator ‘@' and
immediately preceded or followed by other characters or another dummy argument, the characters that correspond
to the value of the dummy argument (real argument) are combined (juxtaposed) in the generated statement with the
other characters or the real argument that corresponds to the other dummy argument. This process is called con-

catenation.

The following example illustrates this operation.

(Definition) - .DEFIN —| MAC, TYPE, ADDR
(Body) JM@TYPE - ADDR
.ENDM
(Call) -|CALL MAC, P,ROUTI
(Expansion) - JMP ROUTI
(Call) —{CALL MAC, S,<SUBRI
.DSA ARGMNT>
(Expansion) IMS - SUBRI
.DSA -] ARGMNT

The dummy argument TYPE is used to vary the mnemonic operation code of the generated statement. The charac-

ter P, which is the corresponding value of TYPE in the first call to the macro, will be concatenated with the

characters JM to form the mnemonic JMP. This action occurs because a dummy argument (i.e., TYPE) is delimited
by the concatenation operator (i.e., is preceded by @) and is immediately preceded or followed by other

characters or another dummy argument (i.e., preceded by other characters JM).

Of course, in the case where other characters are fo be concatenated with the value of a dummy argument, and
the first of the other characters is a MACRO~-15 delimiter, it is not necessary to delimit the dummy with the

concatenation operator. The following example illustrates this rule.

(Definition) -| .DEFIN - MOVE,FROM, TO, LVL
(Body) j JAFUND =] sv.@LVL
SKP
sv.aLvt -+ .BLOCK 1
-] .ENDC
-+ DAC -+ SV.@LVL
- LAC FROM @ LVL, X
- DAC TO @ LVL,X
-{LAC ~| SV.@LVL
-] .ENDM
(Call) ~|MOVE UST,RUST, @
(Expansion) - .IFUND svV.g
-|{SKP
SV.¢ -] BLOCK = 1
- .ENDC
- DAC E] SV.¢
~LAC usTg, X
- DAC RUSTE, X
-{LAC - sv.g

In this example concatenation is used to test the existence of a named temporary location, and output code to
define it if necessary. Then the concatenation operator = MACRO-15 delimiter rule is presented by concatenat-
ing two dummy arguments and other characters beginning with a MACRO~15 delimiter. In detail, one such
concatenation string is @ MACRO=-15 delimiter (i.e., =), a dummy argument (i.e., FROM), the concatenation
operator (i.e., ‘@), asecond dummy argument (i.e., LVL), finally followed by other characters beginning with

a MACRO-15 delimiter (i.e., ,X).

The reader may realize that the general case of real argument for dummy argument substitution performed by
MACRO-15 is the application of the "other characters beginning with a MACRO=-15 delimiter" rule presented
above. In other words, argument substitution may be thought of as concatenation when the dummy argument is

bounded by MACRO-15 delimiters, rather than a concatenation operator.

Note that one ambiguous case can arise in use of the concatenation operator when the other character string to
be concatenated with an argument value is the same as @ dummy argument name. The following example illus-

trates this problem,

(Definition) —|.DEFIN - WAIT, LUN, EV, 2 TMP
(Body) -{.DEC
~.IFUND -~ WTCP@LUN
—~JmP - .+3
WTCPALUN 16
TMP :EV+@

~|.IFZER
EV@LUN
LENDC
JIFPNZ
Vv
.ENDC
.ENDC
AL
-|.ENDM

-{ TMP

- TMP

~| WICP@LUN

This macro was written with the intention of satisfying the following flow diagram.

ENTRY

"WTICPlun"
DEFINED

s

OUTPUT A
"CAL WTCPlun"

OUTPUT THE ADDRESS
OF LABEL "EVlun"

4
OUTPUT WAITFR
CODE, 1674 WITH
LABEL "WICPlun"
EV SPEC- YES
IFIED IN MACRO
CALL
6

OUTPUT THE VALUE
OF EV HE SPECIFIED

9
EXIT

For instance, if the following call to the WAIT macro were coded (with WTCP1# undefined):

(Call) WAIT ~1g
(Expansion) .DEC M)
- .IFUND —=|WTCP1g (2)
-] JMP - .+3 @3)
WTCP1g |16 (4)
TMP=+0 (5)
-] .IFZER ~{ TMP ©)
~10 7)
-] .ENDC @)
-] .IFPNZ -} TMP 9)
~| .ENDC (10)
.ENDC an
CAL —~| WTCPIg (12)

Note that according to box 6 of the preceding flow chart, under these conditions it was desired to output:

—~EV1g

for line 7 of the above expansion rather than what was actually generated. This discrepancy occurs because the
characters EV on the appropriate line of the body of the definition are not recognized as "other characters". EV
is also a dummy argument which is bounded by a MACRO-15 delimiter (i.e.,_.‘on the left)and the concatenation
operator (i.e., {@ on the right). This will cause the concatenation of the value of dummy argument EV (i.e.,
null) and the value of the dummy argument LUN (i.e., 10), thus producing the output shown on line 7 of the

expansion .

Following is a comprehensive example of the use of the concatenation operation in defining user macros: the
definition of two macros, ERRMSG and MESSAGE. The purpose of ERRMSG is to cause a subroutine to be

called (named ER.PRO) which will print an error message.

It has as arguments the error number (from @ to 778) and an optional return address. The label of the error message
to be output is created by concatenating 'ERM.' with the error number. (ERM.d, ERM.1, etc.) If no return
address is specified, control is transferred to a label hamed ER.NOR by default. The second macro, MESSAGE,
is used to create an IOPS ASCII line buffer with the error message to be printed, presumably via the ERRMSG
macro. 1t also has two arguments: the error number, and the message text. The output of the macro is a

properly set up header word pair labeled '"ERM .xx' where 'xx' is the specified error number, and a ,ASCI| state-
ment which contains the text specified, preceded by ‘ERR#xx-=', where 'xx' once again is the error number.

The reader should examine the example noting the use of conditional assembly parameters to accomplish macro-

time error detection.

MACRD

MON N N Y N N N NN NN NN NNN NN YN NN NN NNNNSN AN NN N

CTITLE CONCATENATION EXAMPLE FNR MACRO MANUAL
"FRAMSGY GEFTNITION , FERROR MESSAGE QUPUT MACRO,
fALLING SEQUENCE:

FRA&MSC EFRNOL,RFTURN]

SHERES

FRRANQ = AN DCTAL NUMBER FROM @ T0 77 REPRESENTING
THE ERRUR CNODE,

ETURN = (QPTIOWAL) THE [LOCATION TO WHICH CONTROL
SHOULN HE RETURNED FOLLOWING QUTPUT OF
THE ERWJUR MESSAGE., IF NOT SPECIFIED,
CONTROL WILL BE GIVEN T0 LOCATIUN 'TERGNOR',

PUTPUTS

~UTPUT OF ERRMSG COASISTS OF A JMS TO THE ERROR PROCESSOR
tER,PROY, FOLLOWED RY A ,DSA ERM, XX WHERE XX = ERRNOD,

R4 XX T3 ASSUMED Th BE A STANDARD IOPS ASCIY LINE RUFFER
“HICH CONTAINS THE BESIRED MESSAGE, IT MaY RE DEFINED USING
THE TMESSAGE' MACRO (SEE BELOW),

FREOR DETICTIONS

TRF ERROR NUMAEW ('ERRNO') IS CHECKED 7O BE BETWEEN

AND 77, NTHERWISE AN ASSEMBLER ERROR LINE IS
~UTPLT RATHER THaN YHE Call TD 'ER,PRU', THF ILLEGAL
ASSEMBER LINE WILL CAUSE AN IN! ERRNOR (AMONG OTHERS) TO RE
REMERATED 83Y THE ASSEMBER, THUS INDICATING A TNUMBER!
~RROR,

JDEFIN ERRMSG,ERRNO,RTN

JIFMEG ERRNQ=1J0 JVALIDATE ERROR CQODE NUMBER
LIFPNZ ERRNQ /TQ BE B <= ERRND <= 77
ZLRINCERTN®D /SETUP RETURN ADDR. IF SPECIFIED
_IFZER ZZIRTNC -
Z2RINE=2FR,NOR /IF NO RETURN, SET T0 STH, ADDR,
JENDC
tMS ER,PRO /CALL YHE ERROR PROCESSOR
Y EPM,@ERRNO /POINT TO RYGHT MESSAGE
JMP ZZRTNC JEITHER RETURN Tn STD. EXIT, OR wHERE I SAID
JENOE
JEnDC
JIFMEG ERRNOD /PUT QUT ERROR IF NECESSARY
G **FERROR CODF I8 « @ OR > 77#%
JENDC
JIFPDZ ERRNO={An
S **ERROR CJIUE IS <« @ OR > 77w+
LENDC
LENDM
/MACRO 'YHESSAGF' CDEFINITION, BRUILD AN ERROR MESSAGE LINE BUFFER,

NN NN NN NN N

CALLING SEGUENCES
MESSAGE EPRNG,<TEXT>

WHERE S

ERRND = THE ERROR NUMBER, FRUM B TO 77 (OCTAL)

«TEXT> = THE MESSAGE TEXT (ENCLOSED IN ANGLE
REACKETS, AS SHOWN) TD BE ASSOCIATED wITH THIS
TERPNOT,

4-11

/ “UTPYT e
/
/ ¢ STANDARD T0PS ASCTT LINE AUFFER IS CREATED WITH THE NAME
/ PERMOXX! MeFRE XX = VERRNO' (SEE ABOVE) , THE ACTUAL MESSAGE
/ WILL FAVE THE FOURMAT 'ERkRE#XX=w TEXT 'e WHERE XX AND TEXT ARE AS
/ APCVE. CF COUKRSF, THE LINE BUFFER HEADER PATR WILL BE PROVIDED,
/
/ EPHOR BETECTION:
/
/ TEERNGY WILL RE CHECKED TO RE BETYEEN 4 aNp 77«
/ IF THE CHFCKk SHilwS AN FRROR, AN ASSEMBLER ERROR
/ PINE WILL BF SE4FRATED RATHER THE THE MESSAGE CODE, THE ERRQOR
Y, PINE wWILL CAUSE AT LEAST AN N1 FLAG, INDICATING 4 TNUMBER!
/ cRINR,
/

JOEFIE S MESSAGE,FRKMD, TEXT, 24

JIFMEG ERRMD=tuR

LIFPNZ ERRMD
FlM, aFRRNO A=ERM BFRRNN /2wl AGN42

I3

JASCIT 'ERRHAERRMNmwTEXT <1 5>
A=

JERDC

LERNC

JIFMELR ERRMD

S ¥XERROR CODF IS <« @ DR » 77wyw

JENPE

LIFPDZ EREMD =i

g **EPROR CODF IS < P OR > 77a4%

JEene

JEm

LEJECT

ERSMSG ¢ /0UTPLT FRROR MESSABE #4, TAKE STANDARD EXIT
* (] JIFMEG 4=193
® {3 JIFPOZ 4
. 7IRTNCE+g
w LIFZEx Z7RTKNEC
(. ZIRTNCeFR,NNR
¥ (5 JENDC
g Jms ERGPRN
* . .B:‘,‘ FQM-A
* Jer 2725TNE
w(; LJENDC
w2 JFYoc
%l JIFREG 4
e G *%*ESRIR CUOUF 1S < ? QR > 77#w
» (. JEabe
* s JIFPUZ d=tow
@ a «¥ERRUR CADF 1S ¢ W OR > 77%¢
* (5 JENEC
EFRMSG 45,RECNV /GIVE ERROR #45, ANU RETURN TO LOC 'RECOV!

s LIFREG 45=127
* 3 LJIFPNZ 4n
¢ ZLRTNCZRECCV i
¥i5 JIFZEP 727RTILC
¥ 7LRTwleFR,OR
*(; LEree
* (- R ER g PR
¥ (. fHxp £PM a8
e M 22FTNC
*G JBhne
e {3 JENPE

WHFN DONF

*5

*0

120

¥ .WNAGE,

wls JEHRE

G JENDC

%G .IFNEG

* (s 9

0 JENDC

0 JIFPOZ

wl 9 .

130 JEfDe
MESSAGE

L4 . IFNEG

*G JIFPOZ

*G FRM_45

28 @

0 JASCTI

(3

(3]

(s

¥ (3

* (3

Wi

vl

L3t

w3

W (5

W (3

124

* [y

G . IFNEG

w3 9

w5 JENDC

*(.1FPOZ

w0z °

»G LENDC
FRRMSJG

*0 . IFNEG

6 JIFPNZ

wG ZIZRTNC=RFCOV4R

v; .IFZER

*G TZRTNC=ER L MOR

*0 _ENDC

¥ (5 JmS

wiy 05a

w0 JMP

*G LEHRDC

¥ LENDE

«G L IFNEG

(5 5

0 JENDC

*0 .IFpPaz

(y -]

0 JENDC
ERRMSG

w3 JIFMNEG

*G JIFPDZ

w3 ZIZIRTNC=a4p

" .IFZER

“G ZZRTNC=ET HOR

4
**ERROR CODE IS < @ OR > 77w

4=100
**ERROR CODE IS ¢ @6 OR > 77ww

45,<AMBIGUNLS USE OF A COMPILER KEYWORD>
45=100
45

w2 AABOERM ,45/2% 12007 +2

"FRR#45==AMRIGUOUS USE NF A COMPILER KEYWORD'<{5>

45
#*ERROR CODE IS <« @& OR > 77#«

45=1¢p9

**FERROR CODE IS €« @ OR » 77#w
=34,RECOV /SHOW THAT A NEGATIVE ERROR NQ,
Y ISE-T.

=34

ZZRTNC

ER PRN
ERM,=34
ZZRTNC

=34
**ERROR CODF I8 < 2 OR » 77we

=3d={0N}
**ERROR CADE IS < @ OR » 77w#«

456
456=120
456

/SHOW THAT AN ERROR NO,

2ZRTNC

IT ILLEGAL

> 77(8) IS ILLEGAL

* (s IV o
a

e s £, PR
e EY ER4,456
wle ROk ZIRTNC
v, JEaC ’
¥ (+ .E;.ﬁC
28 JIFREG 456
S g +*ERROR CODF IS € @ OR > 77w
& (s JFoe
w(TFPOZ 45h6=1v0
wi. 9 *»*ERROR CODE IS < @ DR > 7749
* (4 JENRC
JEJECT
MESSAGE 4,<ILLEGAL NR UNRECOGNIZABLE SYNTAY IM STHMNT>
(0 JIFNEG 4=100
w s JIFPGZ 4
o[FhkM_ 4 L IPAL=ERM,4/2%1P20 42
:E aascrl "FRRUA==TLLFRAL OR UNRECOGNIZABLE SYNTAX IN STMNT'<i5>
v (.
N
*l!
wig
(2
¥ (s
L6
L 28
W
G
w i
e
@ [
W (s
e
* (5
L AL
wis
¥
* 03
*G L.z,
%3 JENDE
"8 _EfiDC
e LJFHEG 45
28 9 **ERRNOR CODE IS ¢ M COR > 77¢+
&[5 .EN(\C
i IFPOZ 45=100
wl [**ERROR CODFE IS « @ OR > 77+¢%
e, EXD
' QESSEGE =1,<THIS SHOULD GIVE A MACRO=DETECTED ERROR>
* (4 LIFNERE et=tan
* (3 LIFPQZ =}
*h FhM, ot | 3012«FRY,=]/2%1 %002
[,
*6 ?ASCII IFRPRH=1==TH]S SHOULN GIVE A MACRD=DETECTED ERKROR'<15>
N AT TN
*h LEnC
*f, JENOG
“ls JIFMEG =1
i 9 **ERRNOR COUF IS <« @ OR > 77ww
e JFuDC
*, .lFP?‘I7 =leai{dn
¥ 9 **ERRAOR CUNE IS <« v OR > 77w¢%
*h JEnre
JEJECT

4-14

4.4 NESTING OF MACROS

Macros may be nested; that is, macros may be defined within other macros. For ease of discussion, levels may
be assigned to these nested macros. The outermost macros (those defined directly) will be called first-level
macros. Macros defined within first-level macros will be called second-level macros; macros defined within
second-level macros will be called third-level macros, etc. Each nested macro requires an . ENDM pseudo op

to denote its termination.

Example:

Level 1

-] .DEFIN - LEVEL1,A,B
-] LACH A
- TAD—| B Level 2

- .DEFIN —| LEVEL2,C,D
- 152~ C
- DAC— D Level 3

-| .DEFIN - LEVEL3,E,F
- AND—| E

- XOR—| F
-| .ENDM LEVEL 3 .ENDM
- DAC—| Z
~| .ENDM ‘ LEVEL 2 .ENDM
DAC—| Y
.ENDM v LEVEL 1 .ENDM

At the beginning of processing, first-level macros are defined and may be called in the normal manner. Second
and higher level macros are not yet defined. When a first~level macro is called, all its second-level macros

are defined. Thereafter, the level of definition is irrelevant and macros may be called in the normal manner.
If the second-level macros contain third-level macros, the third-level macros are not defined until the second-

level macros containing them have been called.

Using the example above, the following would occur:

Call Expansion Comments

—~| LEVELl —| TAGI, TAG2 - LAC = TAG1 Causes LEVEL 2
| TAD ~ TAG2 to be defined
-~ DAC Y

~| LEVEL2 —| TAG3, TAG4 - 152 -|TAG3 Causes LEVEL 3
] DAC ~| TAG4 to be defined
- DAC~| Z

—| LEVEL3 —| TAG5, TAGé6 - AND—| TAGS5

- XOR | TAGS6
4-15

If LEVEL3 is called before LEVEL2 it would be an error, and the line would be flagged as undefined.

When a macro of level n contains another macro of the level n + 1, calling the level n macro results in the
generation of the body of the macro into the user's program in the normal manner until the .DEFIN statement
of the level n + 1 macro is encountered; the level n + 1 macro is then defined and does not appear in the user's
program. When the definition of the level n + 1 is completed (.ENDM encountered), the Assembler continues

to generate the level n body into the user's program until, or unless, the entire level n macro has been generated.

4.5 REDEFINITION OF MACROS

If a macro name, which has been previously defined, appears within another definition, the macro is redefined

and the original definition is eliminated. For example,

- .DEFIN | INDXSV

-] JMS =] SAVE

= JMP =] SAVXT
SAVE—| 0

- LAC 10

- DAC | T™MP/

- LACc —=n

- DAC - T™PI#

-] JMP* = SAVE

SAVXT=.

—~| .DEFIN-{NDXSV

= JMS —|SAVE

-] _ENDM

-~ _ENDM

When the macro INDXSV is called for the first time, the subroutine calling sequence is generated and followed
immediately by the subroutine itself. After the subroutine is generated, a . DEFIN that contains the name
INDXSV is encountered. This new macro is defined and takes the place of the original macro INDXSV. All
subsequent calls to INDXSV cause only the calling sequence to be generated. The original definition of INDXSV

will not be removed until after the expansion is complete.

Call Expansion

- INDXSV —| JMS =] SAVE
-] JMP =] SAVXT

4-16

SAVE-{ 0
- tac ~ 10
-] DAC -} TMP#
-] LAC {11
-~ pAC — TMPI#
- JMP* | SAVE
SAVXT=.

- INDXSV - JMS | SAVE

4.6 MACRO CALLS WITHIN MACRO DEFINITIONS

The body of a macro definition may contain calls for other macros which have not yet been defined. However,
the embedded calls must be defined before a call is issued to the macro which contains the embedded call.

Embedded calls are allowed only to three levels.

Example:
-| .DEFIN - MAC1,A,B,C,D,E
- LAC A
- 7AD —{B
- MAC2 -—{C,D /EMBEDDED CALL
- DAC
-| .ENDM
~| .DEFIN = MAC2,A,B /DEFINITION OF EMBEDDED CALL
- XOR =+ A
- AND —|B
-} _ENDM
The call

-l MAC1 =] TAG1,TAG2, (400, (777, TAG3
causes generation of

o+ LAC - TAGI

- TAD - TAG2

- MAC2 | (400, (777

| XOR] (400

- AND —f (777

- DAC —{TAG3

4-17

4.7 RECURSIVE CALLS

Although it is legal for a macro definition to contain an embedded call to itself, it must be avoided because

the expansion will cause more than three levels to occur.
Example:

-| .DEFIN —{ MAC,A,B,C

- LAC oA

- TAD —IB

- DAC —|C

- MAC | A,B,C /RECURSIVE CALL
- .ENDM

When a call for MAC is encountered by the Assembler, it searches memory for the definition and expands it.
Since there is another call for MAC contained within the definition, the Assembler goes back once again to
obtain the definition; this process would never cease if more than three levels were allowed. A conditional

assembly statement could be used, however, to limit the number of levels as in the following example.

Example:

A=0
B=3
- .DEFIN = MAC,C,D
- LAC - C
= DAC =D
A=A+ 1
-] .IFNZR - B-A
-] MAC -] SAVE, TEMP /RECURSIVE CALL
-{ _ENDC
—| .ENDM

Names and arguments of nested macros and arguments of imbedded calls may be substituted and used with perfect

generality.

Example:

—~| .DEFIN -| MAC1,A,B,C,D

- ac A
- ADD B
- DAC ~C
-| .DEFIN =/ D,E
-l AND —|A
- DAC
- _ENDM

- .ENDM

~| .DEFIN =] MAC2,M,N,O,P,Q, 2R

- 15z -1 M

- JMP R

- MAC1 —|N,0,?P,Q

R=.

-} _ENDM
The call

| MAC2 | COUNT,TAG1,TAG2,TAG3,MAC3
causes the generation of

- 1Sz -] COUNT

~{ JMP 4 ..0000

- LAC - TAGI

- ADD- = TAG2

- DAC | TAG3
. .0000=.

It also causes the definition of MAC3

CHAPTER 5
OPERATING PROCEDURES

5.1 INTRODUCTION

Detailed descriptions of the assembler calling procedure, command string format, general operating procedures,

and printouts are given in this chapter. (Refer to Appendix G for MACROI operating procedures and Appendix
H for MACROA.)

5.2 CALLING PROCEDURE
5.2.1 ADSS-15 and DOS-15

In the ADSS=15 and DOS-15 systems, the MACRO=-15 Assembler is called by typing MACRO,) after the Monitor's
$ request. When the Assembler has been loaded, it identifies itself by typing:

MACRO-15 VNN or BMACRO-15 VNN
> >

on the teleprinter. The > character indicates that the Assembler is waiting for the user to type in a command

string .

There are two differences between MACRO-15 (the Page Mode Assembler) and BMACRO-15 (the Bank Mode
Assembler). MACRO-15 starts each assembly assuming page mode relocation (.DBREL implied) and BMACRO-15
assumes bank mode relocation (.EBREL implied). When program sizes exceed 4096, MACRO-15 outputs the
warning message "PROG>4K" in the assembly listing but BMACRO-15 does not. This message will appear even
if the program is assembled under influence of .EBREL. This warning message has no other effect; the program

will be assembled and output will be produced anyway.
5.2.2 Background/Foreground (B/F)

In B/F systems MACRO-15 is called in the same manner as for ADSS-15. It identifies itself by typing:
BF MACRO=-15 VNN

for both the page and bank mode systems.

5-1

5.2.3 RSX PLUS and RSX PLUS II1

In the RSX systems, MACRO=-15 is invoked by typing in the Assembler's name and also the command string on

the same line following the prompting message "TDV>". For example:

TDV>MAC BLXR<FILE D
MACRO RSX V1A

The Assembler identifies itself, as just shown, only if the R option is designated in the command. The RSX ver-
sion of the Assembler is equivalent to BMACRO-15 in that it assumes .EBREL to begin with and does not print
"PROG>4K".

5.3 GENERAL COMMAND CHARACTERS

The following characters are frequently used in the entry and control of MACRO programs.

Character Printout

RUBOUT (Echoes\) delete single character
CTRL U (Echoes @) delete current line
CTRL P (Echoest P) a. If the input source is physically segmented so that all but the last segment end
with .EQOT or nothing, the Assembler will print out the message
EOT

when the end of a segment is reached. In RSX PLUS, the Assembler does not tyne
any such message.

b. If the source is segmented in such a way that operator intervention is required to
load another segment, Macro will print

+P

(MAC=4P in RSX PLUS) and wait for the user to key in CTRL P (CTRL P W in RSX
PLUS). Except in RSX PLUS, the user response will be printed also and the line
will appear as

+P4P

In RSX PLUS if one does not wish to load another tape, one may terminate assembly
by typing CTRL Q.

c. At the start of PASS 2 or PASS 3 if input is on paper tape or if the source is seg-
mented on DECtape or Magtape with segments being read via the same .DAT slof,
the Assembler will request a CTRL P response as above.

d. If the Assembler is not waiting for more input, or is not waiting to start the next
pass, typing CTRL P causes the Assembler to restart at PASS 1. This is true for all
systems except RSX PLUS.

CTRL D (Echoes tD) If the user specifies the Teleprinter as the input parameter device, he can delimit
the parameter code by typing CTRL D (4D) (followed by) with the RSX Monitor).
MACRO responds with EOT. MACRO immediately begins assembling the program
from the device assigned to .DAT-1T (LUN 15 with RSX).

5-2

5.4 COMMAND STRING

The command string format consists of a string of options, followed by a left arrow, followed by the program

name(s), followed by a terminator.
options e filnml, filnm2, ...

The following sections describe the rules for forming proper command strings and show typical assembly examples.
The character terminating the command line has significance. Terminating the line with a carriage return will
cause the Assembler to re=initialize itself to PASS T at completion of the assembly; the Assembler is thus ready

to accept another command string. Terminating the command with an ALT MODE will cause a return to the moni-
tor at the end of assembly. In the RSX PLUS and RSX PLUS [I{ systems these line terminators hove a different
meaning. Termination with carriage return causes TDV to be called; termination with ALT MODE does not. In
either RSX case the Assembler exits after executing the command line. If a command string error occurs, the

- entire command must be retyped.
5.4.1 Program File Name

To the right of the back arrow in the command string, one or more program file names may be required, depending
upon the options used and the type of 1/O devices. Where several names are needed, they are separated by

commas.

Program names are required for files which are to be input from or output to directoried devices. The two prooer

forms for a file name are

filnameaext

or

filnam
where

filnam =1 to 6 character name

ext = 1 to 3 character extension

These may be formed from any of the legal printing characters shown in Appendix A and may appear in any order.

If the file name extension is omitted, the Assembler assumes SRC in default. Following are examples of single

name command strings.

5-3

Examples:

User Command String Assembler Interpretation
Name Extension

« 1 ABCDEF 1000 ABCDEF 100

< ABafll) AB g

<A A SRC

« ABCDEFG. ABCDEF G

+ ABCDEFG raHs) ABCDEF H

< ABCyp, o4 VIAL ABC SRC

The last three examples illustrate how the Assembler interprets improperly formed file names. If the file name is
longer than six characters but is not followed by a space, the seventh, eigth and nineth characters are used as
the extension. If it is followed by a space, characters beyond the sixth and before the space are ignored. [f
two spaces follow the file name, the extension is assumed to be SRC. In general, if too many characters are

given the excess characters are ignored.,

In DOS-15, RSX PLUS and RSX PLUS |1 systems the extension name of the main program is output (unless the O
option is present) as a special code in the relocatable binary file. This encbles programmers to easily identify
different versions of the same program by merely assigning unique extension names. Since this special code is
not legal in ADSS-15 and Background/Foreground, one may suppress it, when assembling in DOS or RSX, by
specifying the O option.

Regardless of the source file extension, such as TEST @01, the binary file extension will be either BIN, meaning

relocatable binary, or ABS, meaning absolute binary.
5.4.2 Options

Assembler options direct the course of the assembly. They describe the types of input and output desired. Option
characters are listed to the left of the back arrow. They may be listed in any order and are typically not separated
one from the other (although commas and spaces, which are ignored, may be used as separators). Option

characters which appear more than once and invalid characters are ignored.

Examples:
Command Meaning
B«FILED Assemble FILE SRC and produce a binary
object file.
BLS «+ NAME 2 Assemble NAME SRC and produce a binary

object file and an assembly listing followed

by a symbol table listing.

5-4

Examples (Cont.):

The following table shows the action and the default of the options.

Option

A

Command

«PROG ,_,01X.0

Action

Print symbols at end of PASS2 in
alphanumeric sequence on listing
device.

Generate a binary file to DAT-13
with extension BIN or ABS, as re-
quired. (LUN 17 in RSX).

Program areas that fall between un-
satisfied conditionals are not printed.
It is not necessary to type the L op-
tion if this option is used.

Suppress binary output and output the
assembly listing onto DECtape Unit 2
with a file extension of LST (used only
by MACROI).

This option enables the user to have
any errors occurring during assembly
printed on the console printer in ad-
dition to the device assigned to .DAT
=12 (LUN 16 in RSX). The Lor N
switch should be used with the E op-
tion. This option is particularly useful
to users who assign non-printing devices
to .DAT-12. Not available with
ADSS-15 or B/F.

Read macro definition file from .DAT
=14 (LUN 18 in RSX) during PASS 1.
Terminate input with .EOT or CTRL D
if Teletype (CTRL DJ if RSX). Not
available with MACROA-15.

Print only the source line of @ macro
expansion. It is not necessary to type
the L option.

The H=option is used in conjunction
with the A, V, or S options. User
symbols are normally printed horizon-
tally at the end of PASS 2, four sym-
bols to a line. If the H-option is used
the symbols will be printed one to «
line.

Ignore .EJECT's. The .EJECT pseudo-
op is freated as a comment, Not avail=-
able with MACROI1-15 nor MACROA-15.

5-5

Meaning

Assemble PROG @1X producing no
output except a list of assembly er-
rors, if any, on the listing device
assigned to .DAT =12 (LUN 16 in RSX).

Default Action

Symbols are not printed in alphanumeric
sequence.

A binary file is not generated.

All source lines are printed.

A binary, if desired, may be output to DEC-
tape 2. The listing is output to the tele=
printer.

Assembly errors are not printed on the con=
sole printer.

No macro definition file is processed. a

Generate printouts for macro expansions and
expandable pseudo-ops (e.g., .REPT).

Print symbols four to a line.

Skip to head of form when .EJECT is encountered.

Option

Action

Generate a listing file on the re-
quested output device, DAT-12.
(LUN 16 in RSX). If the output
device is directoried, then the
listing file extension will be LST.
Number each source line (decimal).
If this option is used, it is not neces-
sary to type the L option.

Causes the assembler to omit the
source extension and the linking
loader code 33 from the binary file.
This option must be used when assem-
bling programs in the DOS or RSX
PLUS systems to be run in ADSS or
B/F.

Before assembly begins, read program
parameters from DAT-10 (LUN 20

in RSX). Terminate input with .EOT
or CTRL D (if Teletype). The parameter
file is read only once; for this reason,
only direct assignments may be used.

Identify the Assembler version number,
print END PASS 1 and END PASS 2,
and print the error count on the tele-
printer (RSX PLUS and RSX PLUS Il
only).

Same as selecting both A and V.

The T option causes a "Table of Con-
tents" table to be generated during
PASS 1. The table will contain the
page number and text of all assembled

.TITLE statements in the program. Not
available with ADSS~15 or B/F.

The assembled binary is output to
DECtape Unit 1 (Used only by
MACROI).

Print symbols at end of PASS 2 in value
sequence on listing device.

At completion of PASS 2, PASS3 is
loaded to perform the cross-referencing
operation. At completion of PASS 3 the
Assembler will call in PASS 1 and 2, to
continue assembling programs. If the
command string was terminated by an
ALT MODE, control will return to the
Monitor at the end of assembly. [f the
L and X options are entered, the user
should also enter the N option with the
ADSS or B/F Systems. Without the N
option the user would obtain a cross
reference which would be effectively
useless since the source lines of the
listing are not numbered. In the DOS

5-6

Default Action

A listing file is not generated (see options

N, C).

Source lines are not numbered.

Loader code 33 is included in the binary
output.

No parameters, begin assembly immediately
after command string termination.

These items are not printed in order to speed
up batch processing.

Symbols are not printed. (If neither option
V, S nor A is requested, symbols are not
printed.)

A table of contents is not generated at the
head of the assembly listing.

The assembled binary may be output to
DECtape Unit 2 if the B option is selected,

Symbols are not printed in value sequence.

A cross-reference is not provided and PASS 3 is

not called in.

Option Action Default Action
and RSX PLUS systems the N option is

automatically entered if you enter L and

X. Not available in MACROI-15,

z The Z option is related to the macro The F option, if specified, causes the Macro
definition file option F. Z has no definition file to be read only during PASS 1.
effect if F is not also specified. FZ
are used in combination when the main
program is segmented into two parts.

The first part, containing instructions

other than simply macro definitions,
must be read both during PASS 1 and
PASS 2. This is the function of the Z
option. (Not available with
MACROI-15 or MACROA-15).

5.4.3 Multiple Filename Commands

In the general case a command may require up to three file names, depending upon the options specified, to
produce a single binary output file. As will be illustrated later on, the Assembler in RSX PLUS and RSX PLUS Ii!
systems allows multiple assemblies to be specified in a single command, which may require more than threz file
names. For the other software systems, the limit is three. Names may be needed to specify parameter files,
macro definition files and program files. The use of these names and the manner in which they are interpreted by

the MACRO Assembler are described in the following paragraphs.

NOTE

In the following descriptions any file which is processed
by both PASS 1 and PASS 2 of the Assembler is also proc=
essed during PASS 3 if the cross-reference option (X) is
specified.

NAME 1: PARAMETER FILE

If the P option is used and the device assigned to .DAT slot =10 (LUN 20 in RSX) has a directory, the
first name is interpreted as being the parameter file name, The name of the file must be explicitly stated
if it is on a directoried device. If the device assigned to the parameter file is non=

directoried, the first name typed would follow the rules for name 2. The parameter file is passed over

only once during PASS 1.

If the P option is not used, only two names are accepted by the command string processor. The first name

then would follow the rules for name 2.

NAME 2: MACRO DEFINITION FILE

If the F option is used, the second name (or the first if the P option is not used) is interpreted as being

the macro definition file or part one of a two part program (assuming the device assigned to .DAT-14

(LUN 18 in RSX) has a directory). If the device is non-directoried, the second file name (or first if the
P-option is not used or doesn't require one) would follow the rules for name 3. The macro definition is
normally passed over only once, during PASS 1. However, unlike the main program file, macro defini-
tions on .DAT slot =14 are recorded in core during PASS 1. Hence, PASS 2 is unnecessary. If the Z
option is used with the F option this file will be passed over twice, allowing source files in two parts on

two different devices. The Z-switch has no effect if F is not specified.

If the F option is not used, the first name (second if P option is used) is interpreted as the file name of

the program to be assembled.

The macro definition file may also be used as an additional parameter file. A second parameter file is
useful where a program is conditionally assembled to produce different versions according to many

assembly parameters,

NOTE

The RSX MACRO does not contain definitions of system direc-
tives and /O calls. MACRO definitions for RSX are in a file
called RMC .V SRC, where V changes with each release.

NAME 3: PROGRAM FILE NAME

The name of the program to be assembled. This file is processed from .DAT slot =11 (LUN 15 in RSX) and
always by both PASS T and PASS 2. [f the P and F options are not used and multiple names are typed,
only the first name will be processed, If a binary output file is requested, it will be directed to .DAT

slot =13 (LUN 17 in RSX). If either of the two devices has a directory, a file name must be specified.

The binary file will assume the name of the program file and an extension of either BIN or AbS,

MULTIPLE NAME INTERPRETATION

Before processing, MACRO uses the ,FSTAT function (SEEK in RSX) to determine whether or not the

named files are on the input devices. [f not, the message 'NAME ERROR! is typed. In all but the RSX
and BOSS-15 systems the Assembler then expects the command string to be retyped. In RSX, the Assembler
exits and calls TDV so that the command string can be given to TDV. In BOSS-15 the Assembler exits to
the monitor. Assuming that enough names have been typed to satisfy the command string options,

MACRO interprets the file names as follows:

a. Current name = NAME 1.
Was the P option used? If not, go to step f.

c. Is the device assigned to .DAT slot = 10 (LUN 20 in RSX) directoried?
If not, go to step F.

d. Use the current name (NAME 1) to .SEEK the parameter file via .DAT slot =10 (LUN 20 in RSX).
e. Current name = NAME 2.

f. Was the F option used? If not, go to step j.

Is the device assigned to .DAT slot =14 (LUN 18 in RSX) directoried? If not, go to step j.

h. Use the current name (NAME 1 or NAME 2) to .SEEK the MACRO definition file via .DAT slot =l4
(LUN 18 in RSX).

i. Current name = NAME 3 (or NAME 2 if P option not used).

i. Use the current name (NAME 1 or NAME 2 or NAME 3) to .SEEK the program file via .DAT slot ~11
(LUN 15 in RSX).

RULES FOR MULTIPLE NAMES IN THE COMMAND STRING

1. Initial blanks positioned after the back arrow are ignored.

2. Files are processed sequentially, The first name after the left arrow is the first file read, the second
file is next and so on.

3. Once a string of legal name characters is started, a space has the following effect on a name,

A. The first space delimits the proper name and indicates to the command string processor thai the
extension name is next. The proper name is defined as the first six characters of a file name,
excluding the extension.

B. Two consecutive blanks delimit the name. An exfension of 'SRC' is implied if no extension was
typed.

4. A comma or line terminator delimits the name. (Same as 3B above.)

5. Any name given after the third name is ignored, except in RSX PLUS and RSX PLUS I1l. The RSX
assembler allows multiple assemblies to be specified in a single command. Where the options require
one, two or three file names, the command may contain multiples of one, two or three. Each such
group of one, two or three names represents a single assembly.

RESTRICTIONS CAUSED BY MULTIPLE FILE INPUT {(not relevant to RSX PLUS or RSX PLUS 1)

The .FSTAT system macro is used by the MACRO Assembler to determine whether or not the input device
has a directory and whether or not the argument names are on the assigned devices. For this reason, only
those I/O handlers which honor or which ignore the .FSTAT function may be used with MACRO . The "A"
handlers for directoried devices (e.g., DTA, DKA) honor .FSTAT. The paper tape punch and reader
handlers ignore .FSTAT, but the effect is as if they accept it. Device handlers which treat .FSTAT as

illegal may not be used.
5.4.4 Examples of Commands for Segmented Programs
Below are typical assembly situations which illustrate the usage of some of the assembly options and show the

resulting teleprinter output. The output for RSX PLUS differs slightly from what is shown. That is explained in

section 5.3.

1. Segmented Program on Paper Tape

A source main program is segmented onto three paper tapes to make loading in the reader easier.
Tapes one and two terminate with an .EOT statement and tape three terminates with .END. All
three segments are read from the primary input, .DAT-11 (LUN 15 in RSX). The command to Macro

to produce a binary program is:
5B ANYNAM 2

Note that tape 1 must be ready in the reader before the command string is entered. Were it not, the
reader would return an end of tape condition anyway and erroneous results would be obtained. The
resulting teleprinter output is shown below. The comments to the right are not part of the output;
these are included here as explanatory remarks. User responses are underlined.

>B « ANYNAM.

EOT /End of tape 1.

tP4P /Ready tape 2. Type CTRL P,
EOT /End of tape 2.

+P4P /Ready tape 3. Type CTRL P,
END OF PASS 1

tP+P /Ready tape 1. Type CTRL P,
EOT /End of tape 1.

t+P2P /Ready tape 2. Type CTRL P,
EOT /End of tape 2.

tptp /Ready tape 3. Type CTRL P,

SI1ZE=g1203 NO ERROR LINES

2. Segmented Program on DECtape

A source main program cannot fit onto a single DECtape. It is split in two on two different DEC-
tapes and given the same file name: MAIN SRC. The tape one file ends with .EOT; the tape two
file ends with .END. The file names must be identical if both segments are to be read via the
primary input, .DAT =11 (LUN 15 in RSX). Example 3 illustrates an alternate method. However,
example 2 must be used if one also is to include a Macro definition file, as in example 4. The
following command to Macro produces a binary program and the subsequent teleprinter output:

>B MAIN.
EOT /End of file 1. Mount second

+P4 P /DECtape on same unit. Type CTRL P,
END OF PASS 1 /End of file 2. Mount first

+P4P /DECtape on same unit. Type CTRL P.
EQT /End of file 1. Mount second

+P 4P /DECtape on same unit. Type CTRL P,

SIZE=g0703 NO ERROR LINES

3. Segmented Program on Disk

This example is a variation of number 2. A two partmain program resides on disk. It doesn't matter
whether the two files are on the same or separate disk units. Part one terminates with .EOT; part
2, with .END, PARTI SRC will be read via the secondary input, ,DAT =14 (LUN 18 in RSX); and
PART2 SRC will be read via the primary input, .DAT =11 (LUN 15 in RSX). The resultant binary
file, produced by the following command to MACRO, will assume the name of the second (primary)
file: PART2 BIN or PART2 ABS, as the case may be:)

>BFZ «PART1, PART2J)

EOT /End of PART] SRC.
END OF PASS 1 /End of PART2 SRC.,
EOT /End of PART1 SRC.
SIZE~p2003 NO ERROR LINES

5-10

Several points can be made about the differences between examples 2 and 3. First, note that
CTRL P type in is not required unless input is from a device like paper tape. Next, note that
example 2 is impractical on disk because it requires physically interchanging disks. Example 3
is not restricted to usage with disk, but can be used with other media as well.

Use of a Macro Definition File

MACDEF SRC, which terminates with .EOT, contains only Macro definitions, It is read from the
secondary input, .DAT =14 (LUN 18 in RSX). The user has a main program, USEMAC 002, which
terminates with .END and which calls some of these macros but does not itself define them. This is
just an example. It is perfectly legal for the main program to redefine macros which also appear in
the macro definition file. USEMAC @02 is read from the primary input, .DAT =11 (LUN 15 in RSX).
Below is the appropriate command string to produce a binary program. Note that the F option with=-
out the Z option (see example 3) instructs the Assembler to read the first file (the Macro definition
file) only during PASS 1.

>BF <« MACDEF ,USEMAC @g2 #

EOT /End of MACDEF SRC,
END OF PASS 1 /End of USEMAC 002,
SIZE=Q@11g4 NO ERROR LINES

Note that EOT is not printed during PASS 2 because MACDEF SRC is read only during PASS 1. The

preceding example assumes that the files are on directoried devices.

Parameter File on Paper Tape

A main program, MAIN SRC, which terminates with .END is conditionalized to produce different
binary code based on the values or existence of certain assembly parameters. It is read via the
primary input, .DAT =11 (LUN 15 in RSX), which, for this example, is assigned to DECtape.

A paper tape containing parameter definitions (direct assignments) terminates with ,EOT and is
read via the auxiliary input, .DAT =18 (LUN 20 in RSX). The following command to Macro pro-
duces a binary program:

>8P« MAIN
EOT /End of parameter tape.
END OF PASS 1 ’End of MAIN SRC.

SIZE=gp6@g2 NO ERROR LINES

Note, although input is partly from paper tape, a CTRL P response is unnecessary because the param-
eter tape is read only during PASS 1.

Multiple File Assemblies in RSX

Using the Assembler in RSX PLUS or RSX PLUS I, several assemblies, using the same set of options
for each, may be specified in a single command. Unless the R option is used, no printout on the
teleprinter will occur to signal the various stages of assembly. Below are listed two typical commands
in RSX.

>MAC BL+< P1,P2,_,0@3, P3,P4,)

This requests four assemblies. A separate binary and listing are produced for P1 SRC, P2 g@3, P3 SRC
and P4 SRC.
>MAC PB<« PARI, FIL1,PAR2,FIL2J)

This requests two assemblies. A separate binary is produced for FIL] SRC and FIL2 SRC. The param-
eter file PAR] SRC is applied to the assembly of FIL1 SRC and PAR2 SRC to that of FIL2 SRC.

5-11

5.5 ASSEMBLY LISTINGS

If the user requests a listing via the command string, the Assembler will produce an output listing on

the requested output device. The top of the first page of the listing will contain the name of the program

as given in the command string. The body of the listing will be formatted as follows:

Line Error Address | Object | Address Line
Number | Flags Location Mode | Code Type | Type | Source Statement
XXXX XXX XXXXX [RT [XXXXXX [R] *G X X
[A] "L
[E] *R
*E
where:

Line Number =

Flags =

Location =

Address Mode =

A = absolute

Each source line and comment line is numbered (decimal); generated

lines are not included.

option is specified.

Lines are not numbered unless the X or N

Errors encountered by the assembler

Relative or absolute location assigned to the object code.

Indicates the type of user address.

R =relocatable

Line Type =
Object Code =

Address Type =
A = absolute

*G = Generated *L=Literal
The contents of the location (in octal)

*R=Repeated *E=External

Indicates the classification of the object code.

R = relocatable

E = external

The object codes assigned for literals and external symbols are listed following the program.

5.6 SYMBOL TABLE OUTPUT

At the end of PASS 2, the symbol table may be output to the listing .DAT =12 (LUN 16 in RSX) device. If

the A option is used, the table will be printed in alphanumeric sequence; if the V option is used, the symbol

table will be printed in numeric value sequence; if the S option is used, the symbol table will be output in

both alphanumeric and numeric sequence. The format is as follows:

Symbol

SYMBL1
SYMBL2
DIRECT

Value

XXXXX
XXXXX
XXXXXX

T

e

P
E
R
A

The Xs represent the octal value assigned to the symbol. This is the location where the symbol is defined, ex-
cept for external symbols. For these, the value is the location of the transfer vector, whose contents are set at
program load time with the actual value of the symbol. Note that for SYMBLT and SYMBL2 there are five Xs

but that there are six Xs for the symbol DIRECT. Symbols having six octal numbers to represent their values are

the result of direct assignments.

The symbol table shows the type of symbol:

A = absolute

R = relocatable

E = external
Locations assigned to variables immediately follow the last object code producing statement in the assembled
program. Locations assigned for literals not under .LTORG influence and transfer vectors are listed immediately
following the variables; if no variables are used in the program, literals and transfer vectors immediately follow

the program output.,

PAGE { SAMPLF SRC SAMPE PROGRAM

1 +TITLE SAMPLE PROGRAM
2 /
3 / SAMPLE SUBROUTINE, NOT CLAIMED TO WGORK DR TO HAVF ANY PRACTICAL
4 / VALUE, USED v0 ILLISTRATE THE ODUTPUT ON AN ASSEMBLY LISTING,
5 / THESE LINES ARE COMMENTS,
6 /
7 / THIS LISTING WAS OBTAINED USING BMACRN=15 IN DOS=15 wWITH THE
8) FOLLOWING COMMAND NPTIONS TO MACRO: LSX
9 /
0 ARNARS A outs=s /.DAT SLOT 5,
11 - I0ODEV OUT
12 .GLOBL PRINT.SAVE,RESTOR
13 /
14 SIFUND WIDTH /JCONDITIONAL ASSEMRLY,
15 +DEC
i6 WIDYH=72 /DECIMAL NUMBER,
17 .0CT
i8 JENDC
ie apnad? A BUFSIZawIDTH®4 /54242 /DIRECT ASSIGNMENT,
20 /
21 Anppm B APREGAQ A PRINT] /SURRUUTINE ENTRY POINT,
29 fnGry B 240116 R DAC ACSAVE /VARTARLE,
23 anaae B 207123 R LAC {SAVBUF) JLITERAL,
24 apaes p 1271722 E JMS» SAVE /JEXTERNAL CALL,
25 apmp4 o 22m116 R LACw ACSAV /BUFFER ADDRESS,
26 AARRS P 741200 A SNA
27 1] AnerE o BEpmyi7 R JMP NOBUFF JUNDEFINED SYMBOL (MISSPELLEZD),
28 F AARGT? B A4ANR3 A DAC WRITE+3 /UNDEFINED SYMBOL BFCANSE CF
29 apaym R 793777 A AAC = /2 FORWARD REFERENCES,
30 ARmqq R r6m124 F DACw (10) /AUTOINDEY REGISTER,
31 ARRLn R 777740 A LAW =8UFSIZ
32 nRAIR p m4m 15 R DAC COUNT
33 ANRI4 B 735000 A CLX
34 opRIS p 22apiA A LOOP LACw 1n
35 Aan1® o 252855 R DAC BUF , X /INDEX REGISTER REFERENCF,
38 fAmR17? » 442115 R 182 COUNT
37 nnGeR B SRAMLIS R JMP LoaP
38 namoq 8 8ann2d4 R JMP CHANGE
39 fnam92 r 2ani25 R NOBUF LAC (ERRMSG)
a0 u ARAo3 P M4m123 R DAC WRIT+3 /UNDEFIMED (MISSPELLEWLY,
41 AARDA ® T40000 A CHANGE NOP
42 ¢INIT 0uUT,1,@ /SYSTEM MACFO CaALL,
ARGo5S R AniAAS A G CAL+t»1@ABG QUTA?777
nrnoR © cprpdl A ¢G 1
26627 B AnARGD A «G A+
ANAIM D NAMAREA A G o
43 #AN3y R 2am126 R LAC (JMP AROUND)
44 mAMxs B nm4mp24 R DAC CHANGE
45 /
46 LEJECT /PAGE EJECT,

PAGE

a7
48

49
50

51
Se
53
54
55
56
g7
58

2 SAMPLF SRC
Aprn3 3
AAMIX P
AMn33 2 An2and
aam34 © npmAtl
ARAIRE R 74040
ANAYE B APAAND
AaM37 R 7annMdS
AGA40 P ARRN12
M4y 8 26M123
AQR42 B 12M121
namdl B 200116
ANM44 B R2AQNR
AAM4S R P@ARAR2
ARM4R R AABPAA
ARR47 R 428452
AAMZM R 247644
ARMSy P A640R0
aARn%e R ApAPOQ
Axa52 R
ARASD R
A3MN58 R
AN11% R AAAQRO
ARRGARO
aR929 R AGBAI2Y
fA129 o ABML22
9123 & NAAAS2
AR124 p POPR10G
nA128 » ABOR4S
AN128 p RFABRAID
gI7E=0n 130

R

» B b

DDMITE> >

» > P> P> >

» »

I/ D MM p

SAMPLE PROGRAM

«G
*G
w6
*0G
%G

bl
*G

vE
E
.l
ol
oL
wl

W
A

/
/

/
E

S
B
c
/
/
/
/

/
/

RITE=AROUND
ROUND LWRITE 0OUT,2,XX,@
CAL+2+10Q® QUTR777
11
XX
«DEC
=9
JWAIY ourt
cal. Ouve777
12
LAC (SAVBUF)
JMS# RESTOR
LAC ACSAV

JMPw PRINT

/FORWARD REFERENCE,
/SYSTEM MACRN Call,

/SYSTEM MACRO CALL,

JEXTERNAL CALL,

THE NEXT LINF CONTAINS THREE STATEMENTS,

RRMSG 0638025 A§ ASCII /ERROR/<15>

. L0C o=
AVBUF ,BLOCkK 3
UF .BLOCK BUFSIZ
OUNT a

JCHANGE LOCATION COUNTER,
/M@, XR AND LR,

FOLLOWING THE oEND STATEMENT ARE THREE LOCATIONS (NNT SHOWN)
FOR ONE VARIABLE (ACSAV) AND TWO IUNDEFINED SYMBOLS (NOBUFF
AND WRITE, THE LATTER BECAUSE OF A DOUBLE FORWARD REFEREMCE),
/ FOLLOWING THAT (SHOWN)} ARE TWN EXTERNAL TRANSFER VECTORS

AND FOUR LITERALS,

o« END

3 ERROR LINES

Loy NS QarlLE PRLCGRA™

ACRAY LR R P ey AU 33 w RUF ArMS% R HUPSTZ wedngy A
CHbnGE 724 & T | AALLS K ERRMSEH 25345 R LQuP PMEp1d W
WRUF Y I Ak kR fm117 kR Ny pagnah A FRINT vepag R
RESThR >y F sayHLE 70 82 K SAVE ac122 E WIDTH RAzgill A
wRTT A4 N COTTE ae e 8T N
CweTe T N AN 3 . A8 A LOoP ApY13 R LOBUF vaAr22 K
UHAFGE an%24 9 P TR S e I WRTTE avudd R HUFSIZ 2vPvdu A
FuRnbi, 7 4a48 2 CEAES T RS K RUF a6 R wItTH Qratle A
NI s A alle = NEROFF ma1i] R wRIT yar2s R
ke S1MN EE R LIS R122 0k

Qa ik R F0AS SFRFFYELLE
AUSAN ra1l 8 e} Y "4
SOt i mead A 17 48«
P ARG L 2w
FLFEYy o7 snAn 10 i &1
CrdaGy DLV | L £] % a4
fite R 3z t¢ A2w
FEQESE macas e SN
LoD 2IALR v a 7
i F e LA
LR F R *ir117 “7
T TR 1 1 12 aRr 8
F’i:(’IrT LT] (R4 Jle 84
BESINR wetgy 0 57
-l N A Rt e 2k =1 Rivk
Save fy2n ez 24
ERA N A 14 CRw 14
wRIT LECR -] ar
PRITE a3y AL 17 %
5.7 RUNNING INSTRUCTIONS

Once the Assembler has identified itself, it is ready to perform an assembly. Proceed as follows:

a.

b.

5.7.1

Place the source program to be assembled on the appropriate input device.

Type the command string.

Paper Tape Input Only

The following steps are required when the source program is encountered in the paper tape reader:

a. At the end of a source tape segment which is not terminated with a .END statement or at the

beginning of PASS 2 or PASS 3, the Assembler types

4P

b. Place the proper source tape in the reader and, if the computer is a PDP-9, push the tape-feed
button to clear the EOT flag.

c. Inall s§sfems except RSX PLUS or RSX PLUS 11l type CTRL P to continue. For the latter, type
CTRL PJ .

5-16

5.7.2 Cross-Reference Output

At the end of PASS 2, PASS 3 will be performed by the Assembler for the cross-referencing operation if the X
option is requested. Af completion, the assembler will be restarted (except in RSX systems) to permit additional

assemblies if the command string is terminated by a CARRIAGE RETURN () entry.

When a cross reference output is requested, the symbols are listed in alphabetic sequence. The first address
after the symbol is the location where the symbol is defined or its 6-digit value if it is a direct assignment. All
subsequent locations represent the line number (decimal) where the symbol was referenced. The line number with
the asterisk is that in which the symbol is defined. Leading zeros are suppressed for the cross-reference symbol

table. Nine line numbers are printed on one [ine and subsequent line numbers are confinued on the next line.

Example:
PAGE 1 PRGA CROSS REFERENCE
A 1 XXXXX XXXXX% XXXXX
XXXXX XXXXX
B 5000 XXXXX*
SYMBOL 100 XXXXX*

Cross referencing can be a useful tool even without the aid of a line printer. [t is possible to put the
source assembly listing with line numbers onto o directoried device, such as, DECtape, and the cross

reference table (by a separate assembly) on a teleprinter. Then, desired lines in the "LST" file can be

accessed by using the EDITOR.

LIMITATIONS

A. Before cross reference output can begin, PASS3 of the Assembler must first have read the entire
source file(s) and stored the reference line numbers in core memory. Should available core be
too limited, the Assembler will output the following message to the listing:

CORE EXHAUSTED AT LINE DDDD

where D is a decimal digit. Then the Assembler outputs all the references found up to that point.

B. For programs with more than 9999 lines of source code, line numbers begin again at 3880 on line
10008. In the cross-reference listing, 19909 is represented as :000, 11800 as ;800, and so on.
These special characters are simply those which follow the numerals in the ASCII character set
(Appendix A). Below is a list of characters and their meanings.

10
11
12
13
14
15

WOVl A S

C. To conserve core space, PASS3 of the Assembler does not maintain a permanent symbol table.
Consequently, if user defined symbols are identical to permanent symbols, references to the
permanent symbols will be included in the cross reference. For example:

LAC A
TAD LAC
LAC 5

Three references to LAC will be listed.

D. Conditionals (.IFxxx through .ENDC) are treated during PASS3 as if they are always satisfied.
Consequently, although a conditional might not be satisfied during PASS1 and PASS2, references
within to defined user symbols will appear in the cross-reference output.

Note that undefined symbols which are referenced in .IFDEF and .IFUND statements remain unde-
fined; hence, these do not appear in the cross reference.

5.8 PROGRAM RELOCATION

The normal output from the MACRO=-15 Assembler is a relocatable object program, which may be loaded into
any part of memory regardless of which locations are assigned af assembly time. To accomplish this, the address
portion of some instructions must have a relocation constant added to it. This relocation constant is added at
load time by the Linking Loader, CHAIN or TKB; it is equal to the difference between the memory location that
an instruction is actually loaded into and the location that was assigned to it at assembly time. The Assembler
determines which storage words are relocatable (marking them with an R in the listing), which are absolute
{making these non-relocatable words with an A) and which are external (marking these with an E). The rules

that the Assembler follows to determine whether a storage word is absolute or relocatable are as follows.

a. If the address is a number (not a symbol), the address is absolute.

b. If the address is a symbol which is defined by a direct assignment statement (i.e., =) and the right-
hand side of the assignment is a number, all references to the symbol will be absolute.

" c. If a user symbol is defined within a block of coding that is absolute, the value of that symbol is
absolute.

d. Variables, undefined symbols, external transfer vectors, and literals get the same relocation as was
in effect when .END was encountered in PASS 1.

e. |If the location counter (.LOC pseudo-op) references a symbol which is not defined in terms of a
relocatable address, the symbol is absolute.

f. All others are relocatable.

The following table depicts the manner in which the Assembler handles expressions which contain both absolute

and relocatable elements.

(A=absolute, R=relocatable)

A+A=A A-R=R R+R=R and flagged as possible error
A-A=A R+A=R R-R=A
A+R=R R-A=R

If multiplication or division is performed on a relocatable symbol, it will be flagged as a possible relocation

error.

If a relocatable program exceeds 4K, and the assembler is a page mode version, the following warning message

will be typed at the end of PASS 2:

PROG > 4K

5.9 SYSTEM ERROR CONDITIONS AND RECOVERY PROCEDURES

'5.9.1 ADSS-15, DOS-15 and BOSS-15

Printout Recovery Procedure

IOPS 4 Device is not ready. Ready the device and,
if it is an [/O BUS device, not a UNIBUS
device, type

CTRLR (4 R)
|OPS §-3 Unrecoverable 1/O error.
IOPS 5-77 Except in BOSS-15, type CTRL P to restart

MACRO or type CTRL C to return to the Monitor.

5.9.2 BACKGROUND/FOREGROUND

Printout Recovery Procedure
YDEVICE" NOT READY Ready "DEVICE" and then type
CTRLR (+R)
.ERR @-777 Most of these errors are unrecoverable. Those

which are recoverable do not require operator

intervention. For terminal errors type CTRL P
to restart MACRO or type CTRL C to return fo

the Monitor,

5.9.3 RSX PLUS and RSX PLUS I

Printout Recovery Procedure

MAC-I/O ERROR LUN xx yyyyyy is produced on LUN 13: xx represents the Logical Unit
Number (decimal) and yyyyyy the octal Event Variable
value indicating the cause of the error. Control is
automatically returned to TDV.

5.9.4 Restart Control Entries (not relevant to RSX)

CTRL P Restart Assembler, if running
CTRLC Return to Monitor

5-19

5.10 ERROR DETECTION BY THE ASSEMBLER

MACRO-15 examines each source statement for possible errors. The statement which contains the error will be

flagged by one or several letters in the left~hand margin of the line, or, if the lines are numbered, between the

line number and the location. The following table shows the error flags and their meanings.

Flag
A
B

i~

X £ cCc »v =

Meaning
Error in direct symbol table assignment - assignment ignored

1. Memory bank error (program segment too large)
2. Page error - the location of an instruction and the address it references
are on different memory pages (error in page mode only)

Statement contains a reference to a multiply-defined symbol - the first value
is used

1. Symbol not found in user's symbol table during PASS 2
2. Operator combined with its operand may produce erroneous results

Forward reference - symbol value is not resolved by PASS 2
Line ignored:

Relocatable pseudo-op in .ABS program

Redundant pseudo-op

.ABS pseudo-op in relocatable program

+ABS pseudo-op appears after a line has been assembled

A second ,LOCAL pseudo~op appears before a matching .NDLOC pseudo-op
An .NDLOC appears without an associated .LOCAL pseudo-op

Too many .LTORG pseudo-ops (more than 8)

.IODEV pseudo-op in .ABS or .FULL program

° .

ONOUG WD —
. . .

Literal error:

1. Phase error - literal encountered in PASS 2 does not equal any
literal found in PASS 1
2. Nested literal {(a literal within a literal)

Multiple symbol definition - first value defined is used
Error in number usage (digit 8 or 9 used under .OCT influence)
Phase error:

1. PASS 1 symbol value not equal to PASS 2 symbol value (PASS 2
value ignored)

2. A tag defined in a local area (.LOCAL pseudo-op) is also defined in
a non=local area

Questionable line:

1. Line contains two or more sequential operators (e.g., LAC A+*B)

2. Bad line delimiter - address field not terminated with a semicolon,
carriage return or a comment

3. Bad argument in .REPT pseudo-op

4. Unrecognizable symbol with .ABS(P) pseudo-op

Possible relocation error

Symbol error = illegal character used in tag field
Undefined symbol

Line overflow during macro expansion

Illegal use of macro name or index register

5-20

In addition to flagged lines, there are certain conditions which will cause assembly to be terminated prematurely.

Message
SYNTAX ERR

?
NAME ERROR

TABLE OVERFLOW
CALL OVERFLOW
CORE EXHAUSTED
AT LINE nnnn

Meaning

Bad command string, control returns to
TDV (RSX only)

Bad command string, retype (not RSX)
File named in command string not found.
In all systems except BOSS-15 and RSX,
the Assembler will restart and accept
another command string. RSX MACRO
will return to TDV., BOSS=15 will re-
turn to the Monitor.

Too many symbols and/or macros

Too many embedded macro calls

PASS 3 error = too many symbol references

5-21

APPENDIX A
CHARACTER SET

6-bit 6-bit
Printing 7-bit Trimmed Printing 7-bit Trimmed
Character ASCI1 ASCII Character ASCII ASCII
@ 100 00 Form Feed 014
A 101 01 Carriage Return 015
B 102 02 ALT MODE (ESC) 175
C 103 03 Rubout 177
D 104 04 (Space) 040 40
E 105 05] 041 41
F 106 06 u 042 42
G 107 07 # 043 43
H 110 10 $ 044 44
I 111 11 % 045 45
J 112 12 Py 046 46
K 113 13 ! 047 47
L 114 14 (050 50
M 115 15) 051 51
N 116 16 * 052 52
O 117 17 + 053 53
P 120 20 , 054 54
Q 121 21 - 055 55
R 122 22 . 056 56
S 123 23 / 057 57
T 124 24 0 060 60
U 125 25 1 061 61
\% 126 26 2 062 62
w 127 27 3 063 63
X 130 30 4 064 64
Y 131 31 5 065 65
4 132 32 6 066 66
[* 133 33 7 067 67
\ 134 34 8 070 70
1* 135 35 9 071 71
t 136 36 RS 072 72
- 137 37 . 073 73
Null 000 < 074 74
Horizontal Tab 011 = 075 75
Line Feed 012 > 076 76
Vertical Tab 013 ? 077 77

*Illegal as source, except in a comment or text. Any characters not in this table are illegal to MACRO~15
and are flagged and ignored.

Om
NOP
CMA
CML
OAS
RAL
RAR
IAC
HLT
XX
SMA
SZA
SNL
SML
SKP
SPA
SNA
SZL
SPL
RTL
RTR
SWHA
CLL
STL
CCL
RCL
RCR

Operate

740000
740000
740001
740002
740004
740010
740020
740030
740040
740040
740100
740200
740400
740400
741000
741100
741200
741400
741400
742010
742020
742030
744000
744002
744002
744010
744020

CLA
TCA
CLC
LAS
LAT
GLK

LAW " EAE

EAE
LRS
LRSS
LLS
LLSS
ALS
ALSS
NORM
NORMS
MUL
MULS
DIV
DIVS
IDIV
IDIVS
FRDIV
FRDIVS
LACQ
LACS
cLQ
ABS

B-1

750000
740031
750001
750004
750004
750010
760000
640000
640500
660500
640600
660600
640700
660700
640444
660444
653122
657122
640323
644323
653323
657323
650323
654323
641002
641001
650000
644000

APPENDIX B

PERMANENT SYMBOL TABLE

GSM 664000
OsC 640001
oOMQ 640002
CMQ 640004
LMQ 652000
10T
10T 700000
TORS 700314
DBK 703304
DBR 703344
IOF 700002
ION 700042
CAF 703302
RES 707742
Memory Reference
CAL 000000
DAC 040000
JMS 100000
DZM 140000
LAC 200000
XOR 240000
ADD 300000
TAD 340000
XCT 400000
ISz 440000
AND 500000
SAD 540000
JMP 600000

l Automatic Priority*® Index and Limit Register Mode Switching
Interrupt Instructions Which do EBA 207764
not use Operands

RPL 705512 DBA 707762

SPI 705501 CLIR 736000

ISA 705504 PAL 722000 Index Register Value

Index Instructions PAX 721000 X 10000
Wi Tl ey na oo
AAC 723000 FLX 731000
AXR 737000 PXA 724000
AXS 725000 PXL 726000
CLX 735000

I *Not part of the permanent symbol table in B/F MACROA.

B-2

Character

Name

Space

Horizontal tab
Semicolon

Carriage return

Plus

Minus

Asterisk

Slash

Ampersand
Exclamation point
Back slash

Opening parenthesis
Closing parenthesis
Equals

Opening angle bracket
Closing angle bracket

Comma

Question mark
Quotation mark
Apostrophe
Number Sign
Dollar sign

Line feed

Form feed

Vertical tab

Commercial At

Symbol

* 4 I

*

@

~ ~

$
non-printing
non—-printing
non=printing
@

APPENDIX C
MACRO-15 CHARACTER INTERPRETATION

Function

Field delimiter. Designated by _, in this manual.
Field delimiter. Designated by —| in this manual.
Statement terminator

Statement terminator

Addition operafor (two's complement)

Subtraction operator (addition of two's complement)
Multiplication operator or indirect addressing indicator
Division operator or comment initiator

Logical AND operator

Inclusive OR operator

Exclusive OR operator

Initiate literal

Terminate literal

Direct Assignment

Argument delimiter

Argument delimiter

An argument delimiter in macro definitions or an
exclusive OR operator.

Created symbol designator in macros
Text string indicator

Text string indicator’

Variable indicator

Real argument continuation

not applicable

Concatenation operator in macro definitions

C-1

Character

Function
Name Symbol
Nuli Blank Character Ignored by the Assembler
Delete Blank Character . Ignored by the Assembler

Illegal Characters

Only those characters listed in the preceding table are legal in MACRO-15 source programs, all other characters
will be ignored and flagged os errors. The following characters, although illegal as source, may be used within

comment lines and in text preceded by .ASCII or .SIXBT pseudo=ops.

Character Name Symbol
Left bracket [
Right bracket]

Up arrow t
Left arrow -
Colon

Pseudo-op Section
.ABS 3.2.1
.ABSP 3.2.1
LASCII 3.8.1
.BLOCK 3.5
.CBD 3.18
.CBDR 3.19
.DBREL 3.2.3
.DEC 3.4
.DEFIN 3.16
.DSA 3.11
.EBREL 3.2.3
LEJECT 3.14
.END 3.6
.ENDC 3.13
.ENDM 3.16
L.EOT 3.7

Format

.ABS—|NLD,
j.ABS;‘-’I NLD.

label s ASCII,_, /text/ < octal >)

label *—-|.BLOCK—-[exp)

label* | .CBD,_,NAME, ,CODEJ

label*—| .CBDR wLargs

—|.DBREL

~|.DEC 2

-|.DEFIN, , macro name, args.
B

Iobei*_.l.DSAL_,exp)

-+|.EBREL #
~|.EJECT.)
—|,END _sSTART W)

—| .ENDCJ
~|.ENDM J

~| .EOTJ

* All pseudo-ops shown with a label generate binary output code.

D-1

APPENDIX D
SUMMARY OF MACRO=-15 PSEUDO-OPS

Function

Object program is output in absolute,
blocked, checksummed format for loading
by the Absolute Binary Loader. Not sup-
ported in RSX PLUS, RSX PLUS i1l or B/F
MACROA.

Input text strings in 7~bit ASCII code,
with the first character serving as de-
limiter. Octal codes for nonprinting
control characters are enclosed in angle
brackets.

Reserves a block of storage words equal to
the expression. If a label is used, it
references the first word in the block.

Sets up a COMMON area having the
name and size specified. The first ele-
ment in the COMMON area is also
given (base address). (DOS and RSX
Systems only.)

Enters the starting address of the last
common block specified in a .CBD plus
the argument into the location of the
.CBDR (RSX PLUS Systems only).

Disable bank mode relocation.
Sets prevailing radix to decimal.

Defines macros. Not supported in B/F
MACROA.

Generates a transfer vector for the speci-
fied symbol .

Enable bank mode relocation.
Skip to head of form on listing device.

Must terminate every source program,
START is the address of the first instruction
to be executed.

Terminates conditional coding in .IF
statements.,

Terminates the body of a macro definition.
Not supported in B/F MACROA.,

Must terminate physical program segments,
except the last, which is terminated by
.END.

Pseudo-op

.ETC

.FULL
.FULLP

.GLOBL

<Fxxx

.IODEV

.LOC
.LOCAL

. LLST

.LTORG

.NDLOC

NOLST

OCT

.REPT

.SIXBT

.SIZE

Section

3.9

3.3

3.2.4

3.17

3.2.5

3.2.4

3.17

3.4

3.8.2

Format

"|.ETC‘_,crgs,urgs)

JFULLY
:.I-I.FULLP)

-'I.GLOBL;_.sym,sym,sym)

- IFxxXp_sexp .2

-, IODEV .DAT numbers)

-|.LOC,_,expd
-|.LOCALJ

-|.LSTJ
~|.LTORG.?
-|.NDLOC)
-.NOLST.)

-.oCT1)

—-+|.REPT_, count, n .

|abe|_.|.SIXBTL_,/’rexf/< octal > J

label —.SIZE,)

Function

Used in macro definition to continue the
list of dummy arguments on succeeding

lines. Not supported in B/F MACROA.

Produces absolute, unblocked, uncheck=-
summed binary object programs. Used

only for paper tape output. Not supported

in RSX PLUS, RSX PLUS Il or B/F MACROA.

Used to declare all internal and external
symbols which reference other programs.

Needed by Linking Loader .

If a condition is satisfied, the source
coding following the .IF statement and
terminating with an .ENDC statement is
assembled.

Specifies .DAT slots and associated 1/O
handlers required by this program. Not
supported in RSX PLUS or RSX PLUS III,

Sets the location counter to the value of
the expression.

Allows deletion of certain symbols from
the user symbol table.

Continue l;equesfed assembly listing out-
put of source lines. Lines between
.NOLST and .LST are not listed.

Allows the user to specifically state where
literals are to be stored. Not supported in

B/F MACROA.

Terminates deletion of certain symbols from
the user symbol table contained between
.LOCAL and .NDLOC.

Terminates requested assembly listing out-
put of source lines of code contained
between .NOLST and .LST.

Sets the prevailing radix to octal,
Assumed at start of every program .

Repeats the object code of the next object
code generating instruction Count times.
Optionally, the generated word may be
incremented by n each time it is repeated.
Not supported in B/F MACROA.

Input text strings in é6-bit trimmed ASCII,
with first character as delimiter. Num-

bers enclosed in angle brackets are trun-
cated to one 6-bit octal character.

MACRO-15 outputs the address of last
location plus one occupied by the object
program.,

Pseudo~op

LTITLE

Section

3.1

Format

- . TITLELgany text string

Function

Causes the assembler to accept up to 50] 0
typed characters. During source program
assembly operations, a .TITLE causes a
form feed code to be output to place the
text starting with .TITLE at the top of o

page.

APPENDIX E
SUMMARY OF SYSTEM MACROS

System macros (Monitor commands) are defined in the Monitor manuals, and are summarized here for the conven-

ience of the PDP-15 programmers.

System macros are predefined to MACRO-15, but not in RSX, which uses a macro definition file apart from the
Assembler itself. The file's name is RMC.XX, where XX is the version number which may change over time.

To use a system macro, the programmer writes a macro call statement, consisting of the macro name and a string

of real arguments.

To initialize a device and device handler

- INIT_ ds,f,r
where ds

f

.DAT slot number in octal

I

0 for input files; 1 for output files

user restart address®

1]

r

To read a line of data from a device to a user's buffer

= .READ_, ds,m,|,w
where ds = .DAT slot number in octal
a number, 0 through 4, specifying the data mode:

0 = IOPS binary

1 = Image binary

2 = JOPS ASCII

3 = Image alphanumeric
4 = Dump mode

1]

m

line buffer address

il

w = word count of the line buffer in decimal, including
two-word header

To write a line of data from the user's buffer to a device

| .WRITE_ ds,m, |, w

where ds = .DAT slot number in octal

1l

a number, O through 4, specifying the data mode:

0 = IOPS binary
1 = Image binary

m

*
Meaningful only when device associated with .DAT slot ds is the Teleprinter. Typing CTRL P on the
keyboard will force control to location r.

2 = 10OPS ASCII
3 = Image alphanumeric
4 = Dump mode

| = line buffer address

w = word count of line buffer in decimal, including the two-
word header

To detect the availability of a line buffer

- \WAIT_,ds

where ds = .DAT slot number in octal. After the previous .READ,
.WRITE, or .TRAN command is completed, .WAIT re~
turns control to the user ot the instruction following the .WAIT

expansion .

To detect the availability of a line buffer and transfer control to ADDR if not available

- .WAITR,_,ds, ADDR
where ds = .DAT slot number (octal radix)

ADDR Address to which control is transferred if buffer is not available.

To close a file

~ .CLOSE_,ds

.DAT slot number in octal

where ds

To set the real-time clock to n and start it.

= .TIMER_,n,c

where n = number of clock increments in decimal. Each increment
is 1/60 second (in 60-cycle systems) or 1/50 second (in 50-cycle systems)
¢ = address of subroutine to handle interrupt at end of interval

To return control to the Monitor.

- LEXIT))

MASS STORAGE COMMANDS FOR DECTAPE, MAGNETIC TAPE, AND DISK

To search for a file, and position the device for subsequent .READ commands

- .SEEK_ ds,d

.DAT slot number in octal

where ds

d

address of user directory eniry block

To examine a file directory, find a free directory entry block and transfer the block to the device

—|.ENTERwds, d, p
where ds = .DAT slot number in octal
d= address of user directory entry block
protection code

el
N

The third argument, the protection code, is recognized only by the DOS-15 assemblers;
in other systems it is ignored,

To clear device directory to zero
~ .CLEAR_,ds

where ds = .DAT slot number in octal

To rewind, backspace, skip, write end-of-file, or write blank tape on nonfile-oriented magnetic tape

| .MTAPE _ ds,xx
where ds = .DAT slot number in octal

xx = anumber, 00 through 07, specifying one of the functions
shown below

00 = Rewind to load point*

02 = Backspace one record*®

03 = Backspace one file

04 = Write end-of-file

05 = Skip one record

06 = Skip forward one file

07 = Skip to logical end-of-file

or a number, 10 through 16, to describe the tape configuration

10 = Even parity, 200 bpi
11 = Even parity, 556 bpi
12 = Even parity, 800 bpi
14 = Odd parity, 200 bpi
15 = Odd parity, 556 bpi
16 = Odd parity, 800 bpi

To read from, or write to any user file-structured mass storage device

- .TRAN_,a,d,b,l,w

where a = .DAT slot number in octal
d = transfer direction:
0=Input forward
1=Output forward
2=Input reverse (DECtape only)
3=Output reverse (DECtape only)

b = device address in octal, such as block number for DECtape
I = core starting address
w = word count in decimal

*May be used with any non-directoried mass storage device.

To delete a file

~| .DLETE,_,ds,d
where ds = .DAT slot number in octal

d = starting address of the three-word block of storage in user area
containing the file name and extension of file to be deleted

from the device.

To rename a file

~| .RENAM_,ds,d
where ds = .DAT slot number in octal

d = starting address of two three-word blocks of storage in user
area containing the file names and extensions of the file to
be renamed, and the new name, respectively.

To determine whether a file is present on a device

~| .FSTAT,_,ds,d
where ds

d

.DAT slot number in octal

I

starting address of three-word block in user area containing
the file name and extension of the file whose status is desired.

1l

BACKGROUND/FOREGROUND MONITOR SYSTEM COMMANDS

To read a line of data from a device to a user's buffer in real-time

- .REALR_,ds,n,|,w,ADDR,p
where ds = ,DAT slot number in octal
Data mode specification

0 = IOPS binary

1 = Image binary

2 =10PS ASCII

3 = Image Alphanumeric
4 = Dump mode

"

m

| = Line buffer address
w = word count of line buffer in decimal, including the two-word header

ADDR 15-bit address of closed subroutine that is given control when the

request made by .REALR is completed.

1l

p = API priority level at which control is to be transferred to ADDR:

0 = mainstream

4 = |level of .REALR

5 = API software level 5
6 = API software level 6
7 = API software level 7

To write a line of data from user's buffer to a device in real time

—| .REALW__,ds,m,l,w,ADDR,p
where ds = ,DAT slot number in octal
'm = Data mode specification

0 = IOPS binary

1 = Image binary

2 = 10PS ASCII

3 = Image Alphanumeric
4 = Dump mode

| = line buffer address
w = word count of line buffer in decimal, including the two-word header

ADDR 15-bit address of closed subroutine that is given control when the

request made by .REALW is completed

1t

p = APl priority level at which control is to be transferred to ADDR

0 = mainstream

4 = level of .REALW

5 = API software level 5
6 = API software level 6
7 = API software level 7

To indicate, in a FOREGROUND job, that control is to be relinquished to a BACKGROUND job
-] .IDLE

To set the real-time clock to n and start it

~ .TIMER_n,c,p

where n = number of clock increments in decimal. Each increment is 1/60
of a second (1/50 in 50 Hz systems)
¢ = address of subroutine fo handle interrupt at end of interval
p = API priority level at which control is to be transferred to ¢

0 = mainstream

4 = level of .TIMER

5 = APl software level 5
6 = API software level 6
7 = API software level 7

To exit from all real-time subroutines which were entered via -REALR, .REALW, .TIMER, or real-time CTRL P
requests.
RLXIT addr

where addr = The 13-bit entry point address of the real-time subroutine from
which an exit is to be made.

DOS SYSTEM MACROS

The following macros are implemented in the Disk Operating System only .

To open a file for random access via .RTRAN macros.

-{ .RAND __ds,namptr)
where ds = .DAT slot number in octal

namptr = name pointer, points to the first word of a 3-word representation
(. SIXBT) of the file name and extension of the file to be opened

To enable random access to the blocks of a file previously opened by a .RAND 1/O macro.

-/ .RTRAN__ds, d, relblk,bufadd, beg, cnt,)
where ds = .DAT slot (octal radix)
d = direction:

if d=0, direction is input
if d=1, direction is output

relblk = block number (octal radix)
relative to beginning of the
file.. .first block is block 1,
etc.

bufadd = address of 1 /O buffer in user's
core space.

beg = first physical word of physical
block to be read or written. ..
ignored for disk pack...must be
octal radix, 0<beg <375.

ent = number of words, starting with
beg, to be read or written. ..

ignored for disk pack...must be
DECIMAL radix, 1< cnt <(253-beg).

To request a buffer from the buffer pool

-| .GTBUF)

To return a buffer to the buffer pool which was obtained via the .GTBUF macro.

-{.GVBUF)

To obtain access to files on the disk under UFDs other than that of the current user,

-"{.USER‘_’nn,uic)
where nn = UFDT slot number

vic = UIC

E-6

To request the system loader (.SYSLD) to load and start a specified system program from within a user program.

-] .OVRLA __namptr)

where nampir = pointer to the first address of the two-word
. SIXBT representation of the name of the program
to be loaded.

WARNING
All 1/O operations should be completed before .OVRLA

macro is issued.

E-7

APPENDIX F
SOURCE LISTING OF THE ABSOLUTE BINARY LOADER

/HFABSOLUTE BEINARY LOADER #%#*

/ «FULL
THRDG 4 CLGF=756004
700112 RRB=7680112
160144 RSB=700144
700101 RSF=7001@1
M 7720 LDSTRT=17720
703362 BINLDR CAF /CLEAK FLAGS
TORAD 4 CLOF /CLOCK QFF
MR 12 ICF+10 /INTEKRUPT OFF
705504 ISA /TURN OFF API .
T4ADRD L.ODMOD NOP /(EBA)Y> (DRBA)s (NOP)
707792 7671792 /PDP-9 CONMPATIEBILITY (EEM)
7726 LDNXEBK=17726 .
157775 DZM LDCKSM /CHECKSUMMING LOCATION
117753 JMS LDREAD
@57776 DAC LDSTAD /GET STARTING ADDRESS
741100 SPA /BLOCK HEADING OK
617747 JMP LDXFR /STAKT BLGCK
117753 JMS LDREAD
B57777 DAC LDWDCT /WORD COUNT (2'S CCMPLEMENT)
117753 JMS LDREAD
Ba17736 LDNXWD=17736
117753 JMS LDKREAD
B771776 DAC* LDSTAD /LOAD DATA INTO APPROPKRIATE
457776 1SZ LDSTAD /MEMORY LOCATIONS
4577717 1SZ LDWDCT /FINISHED LOADING
617736 JMP LDNXWD /NO
357775 TAD LDCKS3M
740200 SzA /LDCKSM SHCULD CONTAIN ©
7400 40 HLT /CHECKSUNM ERKROK HALT
617726 JMP LDNXBK /PRESS CONTINUE TO IGNCKE
017747 LDXFR=17747
257777 DAC LDWDCT
457777 ISZ LDWDCT
€17763 JMP LDWAIT /EXECUTE START ADDKESS
1400 49 HLT /NO ADDRESS ON END STATEMENT
#17753 L.LDREAD=17753 /MANUALLY STAKT USEK PROGRAMN

F-1

A2AHANM]
TA144 RSB

357775 TAD LDCKSM
A57775 DAC LDCKSWM
732101 KSF
617757 JVMP LDKEAD+4
756112 RKE
637753 JMPx LDREAD
/THE LAST FRAME OF EVERY +AB5(FP) PRGG 15 GARBAGE.
17763 LDWAIT=17763
117753 JMS LDREAD /PASS OVER LAST FKAME (PDP-9
637776 JMP# LDSTAD /COMPATIBILITY).
ANE235 FNDLDR=.
Bn3508 HRMWD @n35005 6 /HEADEK
GAGHOG
AA261 2613 277 /HRY START
G277
MIG3I20 32693 @
islalalaly)
@17775 LDCKSM=17775
B17776 LDSTAD=17776
@17777 LDWDCT=17777

/ oFND B INLDK
/¥%% FND OF LOADTK sk

APPENDIX G
MACROI-15 ASSEMBLER
ADVANCED MONITOR SYSTEM

ADSS-15 8K DECtape systems cannot utilize MACRO=-15 if a binary output on DECtape is desired, since the com-
bined size of MACRO=-15, the Resident Monifor, and the required DECtape device handler (DTB.) is greater

than 8K. DECtape (DTC.) input/paper tape output also leads to core overflow. If, however, paper-tape input/
paper-tape output is desired, MACRO-15 may be used. Device handlers PRB, PPC, or PPB (for .ABS or FULL

programs) may be used as required.

The MACROI-15 assembler, which is a device-dependent version of MACRO-15, does permit DECtape 1/0 on
an 8K machine. This is possible because MACROI, though identical to MACRO in function, uses self-contained
DECtape and Teleprinter /O routines. This results in a core load which operates in 8K and allows approximately

390, . locations for the User's Symbol Table.

10
DEVICE ASSIGNMENTS

Since MACROI is device-dependent, the user may not use the Monitor ASSIGN command. The assembler per-
forms /O in the manner described below (as modified by the D and U options):

a. The user's source program is input from DECtape Unit 1.

b. The assembled binary is output to DECtape Unit 2%,

c. The assembly listing is output to the Teletype.

d. The parameter file is input from the Teletype if the P option is used.

e. MACRO definitions are accepted from DECtape unit 1 during PASS T (F option). This file must be
named .MACRO SRC.

OPERATION
The operating features of MACROI are the same as described in Chapter 5 for MACRO, with the following
exceptions:

Calling Procedure

MACROI is called by typing MACROI) after the Monitor's $ request. When the assembler has been
loaded, it identifies itself by typing:

MACROI Vnn (in page mode systems)
BMACROI Vhn (in bank mode systems)

*If you want .ABS poper tape output, you cannot PIP this binary to paper fape because you will get 9 empty
frames every 252 words. You must use MACRO as described above.

G-1

on the Teletype and then waits for a command string.

NOTE

The command line editing function CTRL U deletes the
entire line and echoes tU and a carriage return/line
feed operation on the Teleprinter.

Additional Options

The following options may be used in the command string to MACROI along with the other normal MACRO
options (excluding [, X and Z):

Option Action ' Default Action
D Suppress binary output and output A binary, if desired, may be output
the assembly listing on DECtape to DECtape 2. The listing is output
Unit 2. (file extension: LST) to the Teleprinter.
u The assembled binary is output o The assembled binary is output to
DECtape Unit 1. DECtape Unit 2 if B option is selected.

Error Conditions

MACROI performs 1/O error checking, and outputs the following messages:

Message Meaning

IOPS 0 Illegal CAL

IOPS 1 CAL* Tllegal

IOPS 3 Illegal Interrupt

IOPS 4 DECtape unit not ready ~ type CTRL R when ready.
IOPS 12 Unrecoverable DECtape Error

IOPS 13 File Not Found

IOPS 14 Directory Full

IOPS 15 DECtape Full

IOPS 23 lliegal Word Pair Count

IOPS 61 Input Parity Error While Reading Directory or File Bit Map

All of the above error messages, except IOPS 4, are terminal. Type CTRL P to restart MACROI or type
CTRL C fo call in the Monitor. A more complete description of IOPS errors may be found in the Monitor

System Manuals or User's Guides listed in the Preface of this manual.

APPENDIX H
MACROA-15 ASSEMBLER
BACKGROUND/FOREGROUND SYSTEM

An abbreviated version of the MACRO-15 assembler is provided in addition to MACRO-15, for Background/Fore-

ground systems. MACROA is somewhat smaller than MACRO and can be used where Background core space is at

a premium.

MACROA exists because MACROI (see Appendix G) cannot be used in the Background. (It issues IOT instructions

for one.)

DEVICE ASSIGNMENTS

MACROA uses the same .DAT slots as does MACRO excluding .DAT -14, namely:

-13
-12
-11
-]g

OPERATION

Binary Output
Assembly Listing
Source Input
Parameter Input

The operating features of MACROA are the same as described in Chapter 5 for MACRO, with the following

exceptions:

Calling Procedure

MACROA is called by typing MACROA J after the Monitor's $ request. When the assembler has been

loaded, it identifies itself by typing:

BF MACROA=-15 Vnn

on the Teletype and then waits for a command string. Only one name is accepted in the command siring.

This means that the F and Z options are illegal and that parameter file input is allowed only from Teletype

or paper tape.

Unrecognized Assembly Options
The F, Z and | options are illegal to MACROA,

Unrecognized Pseudo~Operations

The following pseudo-ops are illegal to MACROA:

.ABS .ABSP FULL JFULLP
.REPT .LTORG .DEFIN .ENDM
.ETC

Unrecognized API Instructions

MACROA does not contain in its permanent symbol table the definitions of API instructions.

INDEX

Absolute binary loader, source listing, F-1 Literals, 2~13
Address assignments, 2-11 Literal origin pseudo-op (.LTORG), 3-9
Address field, 2-2 Location counter, referencing, 2-12
Addressing setting, 3-10

Indexed, 2-12

Indirect, 2-12 MACROA-15 assembler, H-1
Advanced moriifor system, G-1 MACRO calls within macro definifions, 4-17
Argument delimiters, 4-5 MACRO calls, 4-3
+ASCIl psuedo-op, 3-13 MACRO body, 4-2
Assembler processing, 1-2 MACROS, 4-1
Assembly listing 1/O control, 5-20 MACROS, defining, 3-20
Assembly listings, 5~12 nesting, 4-15

: redefining, 4~16
Background/Foreground system, 4-1 MACRO-15 language, 1-1

Multiple filename commands, 5-7
Character interpretation, C-1

Character set, A-1 Nesting of macros, 4-15
Command string, 5-3 Nonprinting characters, 3-14
Command characters, general, 5-2 Numbers, 2-8
Command block definition, 3-20
Concatenation, 4~7 to 4-14 Object program output, 3-3
Conditional assembly, 3-18 .OCT, 3-10
Created symbols, 4-6 Operation code, 2-2
Options, assembler, 5-4
.DBREL, 3-5
.DEC, 3-10 Permanent symbol table, B-1
Program filename, 5-3
JEBREL, 3-5 Program identification (,TITLE), 3-2
EJECT, 3-19 Program relocation, 5-18
.END, 3-11 Program segments (,EOT), 3-12
LEOT (end-of-tape), 3-12 Program size, 3-19
Error conditions, 5-19 Program statements, 2-1
ADSS-15, 5-19 Program termination (,END), 3-11
Assembler, 5-20 Psuedo operations, 3-1, D-1
Background/Foreground, 5-19
BOSS-15, 5-19 Radix control (.OCT and .DEC), 3-10
DOS-15, 5-19 Recursive calls, 4-18
RSX plus , 5-19 Redefinition of macros, 4-16
RSX plus 1Hl, 5-19 Repeating object code, 3-16
Expressions, 2-9 RSX plus and RSX plus 111, 5-2
Running instructions, 5-15
JFULL, .FULLP, 3-4 Segmented program commands, 5-9
.SIXBT pseudo-op, 3-13
Global symbols, 3-15 .SIZE, 3-19
Statement evaluation, 2-21 to 2-25
Hardware requirements, 1-2 assembler priority list, 2-25
numbers, 2-21
Integer values, 2-9 word evaluation, 2-22
1/O devices, requesting, 3-16 word evaluation of the special cases, 2-24
Statement fields, 2-15 to 2-21
Label, 2-2 address, 2-18
Listing contro! (.EJECT), 3-19 . comments, 2-20

Index~-1

Statement fields (Cont.,)
label, 2-15
operation, 2-17
Symbolic address, designating, 3-16
Symbols, 2-3
Redefining, 2-6
special, 2-5
undefined, 2-8
Symbol table output, 5-12

System macros, E-1

Text handling, 3-12
Text delimiter, 3-13
Text statement, 3-13

User symbol table, deletion of (LOCAL,
.NDLOC), 3-6

Variables, 2-6

Index-2

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi-
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy

Paris, France Solna, Sweden

The Hague, Holland Geneva, Switzerland
Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation
Software Distribution Center Software Distribution Center

146 Main Street 1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex-
change center for user-written programs and technical application in-
formation. A catalog of existing programs is available. The society
publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the
society and membership application forms, write to:

DECUS DECUS

Digital Equipment Corporation Digital Equipment
146 Main Street P.0. Box 340
Maynard, Massachusetts 01754 1211 Geneva 26

Switzerland

MACRO=-15 Assembler
Reference Manual

READER'S COMMENTS DEC-15-LMACA-B-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page) .

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

Uo0o00oo

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you do not %equire a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD. MASS.

BUSINESS REPLY MAIL oo R et]
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES . "

Postage will be paid by:

Software Communications
P, O. Box F
Maynard, Massachusetts 01754

printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	A-01
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	F-01
	F-02
	G-01
	G-02
	H-01
	H-02
	X-01
	X-02
	Y-01
	replyA
	replyB
	xBack

