

DEC-15-LMACA-B-D

PDP-15
MACR0-15
MACRO-ASSEMBLER PROGRAM
REFERENCE MANUAL

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation · maynard. massachusetts

1st Printing October 1969
2nd Printing (Rev) July 1970
3rd Printing October 1971
4th Printing (Rev) March 1972
5th Printing (Rev) July 1973
6th Printing (Rev) February 1974
Revised August 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (£) 1969, 1970, 1971, 1972, 1973, 1974
by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlO QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COM'l'EX EDU SYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DEC COMM GLC-8 OS/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

CONTENTS

Page

PREFACE vii

CHAPTER 1 INTRODUCTION

l. l

1.2

1.3

MACR0-15 Language

Hardware Requirements

Assembler Processing

CHAPTER 2 ASSEMBLY LANGUAGE ELEMENTS

2. 1 Program Statements

2.2 Symbols

2 .2. 1 Evaluation of Symbols and Globals

2.2.1.1 Special Symbols

2 .2. 1 .2 Memory Referencing Instruction Format

2.2.2 Variables

2.2.3 Setting Storage Locations to Zero

2.2.4 Redefining the Value of a Symbol

2.2.5 Forward Reference

2.2.6 Undefined Symbols

2.3 Numbers

2.3. l Integer Values

2.3.2 Expressions

2.4 Address Assignments

2 .4. l Referencing the Location Counter

2.4.2 lndi rect Addressing

2 .4.3 Indexed Addressing

2.4.4 Literals

2.5 Statement Fields

2 .5. 1 Label Field

2.5.2 Operation Field

2.5.3 Address Field

2.5.4 Comments Field

2.6 Statement Eva! uation

2 .6. 1 Numbers

2.6.2 Word Eva I uation

2.6.3 Word Evaluation of the Special Cases

iii

1-1

1-2

l-2

2-1

2-3

2-4

2-5

2-5

2-6

2-6

2-6

2-7

2-8

2-8

2-9

2-9

2-1 l

2-12

2-12

2-12

2-13

2-15

2-15

2-17

2-18

2-20

2-21

2-21

2-22

2-24

CONTENTS (Cont)

Page

2.6.4 Assembler Priority List 2-25

CHAPTER 3 PSEUDO OPERA TIO NS

3. 1 Program Identification (.TITLE) 3-2

3.2 Object Program Output 3-3

3 .2 .1 .ABSP, .ABS 3-3

3.2.2 .FULL, .FULLP 3-4

3.2.3 . EB REL and . DBREL 3-5

3.2.4 Deletion of User Symbol Table (.LOCAL, .NDLOC) 3-6

3.2.5 Literal Origin Pseudo-op (.LTORG) 3-9

3.3 Setting the Location Counter (. LOC) 3-10

3.4 Radix Control (.OCT and .DEC) 3-10

3.5 Reserving Blocks of Storage (.BLOCK) 3-11

3.6 Program Termination (.END) 3-11

3.7 Program Segments (. EOT) 3-12

3.8 Text Handling (.ASCII and .SIX BT) 3-12

3 .8. 1 .ASCII Pseudo-op 3-13

3.8.2 . SIX BT Pseudo-op 3-13

3 .8 .3 Text Statement Format 3-13

3.8.4 Text Delimiter 3-13

3.8.5 Non-Printing Characters 3-14

3.9 Global Symbol Declaration (.GLOBL) 3-15 I
3.10 Requesting I/O Devices (.IODEV) 3-16

3. 11 Designating a Symbolic Address (.DSA) 3-16 I
3. 12 Repeating Object Coding (.REPT) 3-16

3. 13 Conditional Assembly (.IF xxx and .ENDC) 3-18

3. 14 Listing Control (.EJECT) 3-19

3. 15 Program Size (.SIZE) 3-19

3. 16 Defining Macros (.DE FIN, • ETC, and • ENDM) 3-20

3. 17 Assembly Listing Output Control (. NOLST & .LST) 3-20

3. 18 Common Block Definition (.CBD) 3-20
3.19 Common Block Definition Relative (.CBDR) 3-21

iv

CONTENTS (Cont)

Page

CHAPTER 4 MACROS

4.1 Defining A Macro 4-1

4.2 Macro Body 4-2

4.3 Macro Cal Is 4-3

4.3 .l Argument Delimiters 4-5

4.3.2 Created Symbols 4-6

I 4.3.3 Concatenation 4-7

4.4 Nesting of Macros 4-15

4.5 Redefinition of Macros 4-16

4.6 Macro Calls within Macro Definitions 4-17

4.7 Recursive Calls 4-18

CHAPTER 5 OPERATING PROCEDURES

5. l Introduction 5-1

5.2 Calling Procedure 5-1

5.2. l ADSS-15 and DOS-15 5-l

5.2.2 Background/Foreground (B/F) 5-1

5.2.3 RSX PLUS and RSX PLUS 111 5-2

5.3 General Command Characters 5-2

5.4 Command String 5-3

5 .4.1 Program File Name 5-3

5.4.2 Options 5-4

5.4.3 Multiple Filename Commands 5-7

I 5.4.4 Examples of Commands for Segmented Programs 5-9

5.5 Assembly Listings 5-12

5.6 Symbo I Table Output 5-12

5.7 Running Instructions 5-16

5 ,7 .1 Paper Tape Input Only 5-16

5.7.2 Cross-Reference Output 5-17

5.8 Program Relocation 5-18

5.9 System Error Conditions and Recovery Procedures 5-19

I
5. 9 .1 ADSS-15, DOS-15 and BOSS-15 5-19

5.9.2 BACKGROUND/FOREGROUND 5-19

5.9.3 RSX PLUS and RSX PLUS Ill 5-19

v

CONTENTS (Cont)

Page

5.9.4 Restart Control Entries 5-19 I
5.10 Error Detection By the Assembler 5-20

APPENDIX A CHARACTER SET A-1

APPENDIX B PERMANENT SYMBOL TABLE B-1

APPENDIX C MACR0-15 CHARACTER INTERPRETATION C-1

APPENDIX D SUMMARY OF MACR0-15 PSEUDO-OPS D-1

APPENDIX E SUMMARY OF SYSTEM MACROS E-1

APPENDIX F SOURCE LISTING OF THE ABSOLUTE BINARY LOADER F-1

APPENDIX G MACROl-15 ASSEMBLER ADVANCED MONITOR SYSTEM G-1

APPENDIX H MACROA-15 ASSEMBLER BACKGROUND/FOREGROUND H-1 I SYSTEM

Index 1-1

vi

PREFACE

The PDP-15 MACRO-Assembler program (MACR0-15) provides the user with the

symbolic programming capabilities of an assembler plus the added compiler capa­

b i Ii ti es of a many-for-one macro instruction generator. Th is manua I describes the

syntax, application and operations performed by the MACR0-15 program.

In the preparation of this manual it was assumed that the reader was familiar with

the basic PDP-15 symbolic instruction set as described in either the PDP-15 "System

Reference Manual DEC-15-0DFFA-B-D" or the "Users Handbook, Vol. l, Processor I
DEC-l 5-H2DA-D".

The MACR0-15 program may be operated in:

a. Disk Operating System (DOS);

b. Batch Operating Software System (BOSS);

c. ADVANCED Monitor Software System (ADSS);

d. Background/Foreground Software System (B/F);

e. RSX PLUS Software System

It is assumed in this manual that the reader is familiar with the manual describing

the software system under which MACR0-15 is to be used.

The manuals involved are:

a. DOS Users Manual, DEC-15-0DUMA-B-D,

b. BOSS-15 Batch Operating Software System User's Manual,
DEC-15-0BUMA-A-D,

c. ADVANCED Monitor Software System For the PDP-15/20/30/40,
DEC-15-MR2B-D,

d. B/F Monitor Software System for PDP-15/30 and 15/40, DEC-15-MR3A-D,

e. RSX PLUS Reference Manual, DEC-15-IRSXA-A-D,

Differences in the use of MACR0-15 in the available monitor systems are described,

where applicable, in this manual.

Technical changes made in this revision of the manual are indicated by a bar in the

appropriate page margin.

VII

I

I
I

1. 1 MACR0-15 LANGUAGE

CHAPTER 1

INTRODUCTION

MACR0-15 is a basic PDP-15 symbolic assembler language which makes machine language programming on the

PDP-15 easier, faster and more efficient. It permits the programmer to use mnemonic symbols to represent in­

struction operation codes, locations, and numeric quantities. By using symbols to identify instructions and data

in his program, the programmer can easily refer to any point in his program, without knowing actual machine

locations.

Assembled MACR0-15 programs may be run on any PD P-15 system; however, MACR0-15 symbolic programs can

be assembled only on systems which have at least BK of memory and a monitor-type software system*.

The standard output of the Assembler is a relocatable binary object program that can be loaded for debugging or

execution by the Linking Loader. MACR0-15 prepares the object program for relocation, and the Linking

Loader provides relocation and sets up linkages to external subroutines. Optionally, the binary program may I
be output either with absolute addresses (non-relocatable) or in the full binary mode (see Chapter 3 for a

description of the binary output modes).

The programmer directs MACR0-15 processing by using a powerful set of pseudo-operation (pseudo-op) instruc­

tions. These pseudo-ops are used to set the radix for numerical interpretation by the Assembler, to reserve

blocks of storage locations, to repeat object code, to handle strings of text characters in 7-bit ASCII code or a

special 6-bit code, to assemble certain coding elements if specific conditions are met, and to perform other

functions which are explained in detai I in Chapter 3.

The most advanced feature of MACR0-15 is its powerful macro instruction generator. This facility permits

easy handling of recurring instruction sequences, changing only the arguments, Programmers can use macro

instructions to create new language elements, adapting the Assembler to their specific programming appli­

cations. Macro instructions may be recursively cal led up to three levels, nested to~ levels, and redefined

within the program, The technique of defining and calling macro instructions is discussed in Chapter 4,

*A device-dependent version of MACR0-15, called MACROI-15, is available for use with BK DECtape
systems. Refer to Appendix G.

1-1

I
An output listing, showing both the programmer's source code and the object program produced by MACR0-15,

is printed if desired. This listing may include all the symbols used by the programmer with their assigned values.

If assembly errors are detected, erroneous lines are marked with specific alphabetic error codes, which may

be interpreted by referring to the error list in Chapter 5 of this manual.

Operating procedures for MACRO assembly are described in detai I in Chapter 5. * (Refer to Appendix G for

MACRO I Operating Procedures.)

1.2 HARDWARE REQUIREMENTS

The MACR0-15 assembler program may be run in any configuration which meets the minimum hardware

requirements for the fol lowing PDP-15 software systems:

a. Advanced Software System (ADSS-15)

b, Background/Foreground (B/F)

c, Disk Operating System (DOS-15)

d. Batch Operating Software System (BOSS-15)

e. Resource Sharing eXecutive (RSX PLUS and RSX PLUS 111)

l .3 ASSEMBLER PROCESSING

The MACR0-15 assembler processes source programs in either a two-pass or three-pass operation, In the

two-pass assembly operation the source program is read twice with the object program and printed listing

(both optiona I) being produced during the second pass. During the first pass (PASS l) , the locati ans to

be assigned the program symbols are resolved and a symbol table is constructed by the assembler. The second

pass (PASS 2) uses the information computed during PASS 1 to produce the final object program.

In an optional three-pass assembly operation, PASS 2 will call in a third pass (PASS 3) portion of the assembler

program. PASS 3, when called, performs a cross referencing operation during which a listing is produced

which contains: (a) all user symbols, (b) where each symbol is defined, and (c) the number of each pro-

gram line in which a symbol is referenced. On completion of its operation, PASS 3 calls the PASS 1 and

PASS 2 portions of the assembler program back into core for further assembly operations.

*These procedures are also mentioned in the DOS-15 Keyboard Command Guide,
(DEC-15-0DKCA-A-D) and the PDP-15/20 User's Guide, (DEC-15-0UGAA-A-D).

1-2

The standard object code produced by MACR0-15 is in a relocatable format which is acceptable to the PDP-15

Linking Loader, CHAIN, PATCH and TKB Utility programs. Relocatable programs that are assembled separately

and use identical global symbols* where applicable, can be combined by the Linking Loader, CHAIN, and TKB

into an executable object program. MACR0-15 reserves one additional word in a program for every external

symbol**. This additional word is used as a pointer (called a transfer vector) to the actual data word in another

program, The Linking Loader sets up these transfer vectors (when the programs are loaded) with the actual

address of the global symbol.

Some of the advantages of having programs in relocatable format are as fol lows:

a. Reassembly of one program, which at object time was linked with other programs, does not
necessitate a reassembly of the entire system,

b. Library routines (in relocatable object code) can be requested from the system device or
user library device,

c. Only g loba I symbol definitions must be unique in a group of programs that operate together.

*Symbols which are referenced in one program and defined in another.
**Symbols which are referenced in the program currently being assembled but which are defined

in another program.

1-3

I

CHAPTER 2

ASSEMBLY LANGUAGE ELEMENTS

2.1 PROGRAM STATEMENTS

One or more statements may be written on a I ine of up to 76 characters where the last character is a carriage­

return. Since the carriage return is a non-printing character, it is graphically represented as)in this manual,

e .g •'

STATEMENT)

Several statements may be written on a single line, separated by semicolons

STATEMENT;STATEMENT;STATEMENT)

Only the last statement may have a comments field, since semicolons are allowed in and do not delimit

comments. Also, MACRO calls (a type of statement described in a later chapter) should not appear in a

multi-statement I ine since they cause subsequence statements to be ignored.

Normally, a single statement must fit on one line. The exception to this rule is a macro call whose

arguments may be continued on a subsequent I ine by use of the $ character. Th is is described in the

chapter on MACROs.

A statement may contain up to four fields that are separated by a space, spaces, or a tab character. These four

fields are the label (or tag) field, the operation field, the address field, and the comments field. Because the

space and tab characters are not printed, the space is represented by_. , and the tab by -I in this manual.

Tabs are set 8 spaces apart on DEC-supplied teleprinter machines, and are used to line up the fields in

columns in the source program listing.

This is the basic statement format:

LABEL -j OPERATION -j ADDRESS -I /COMMENTS)

where each field is delimited by a tab or space, and each statement is terminated by a semicolon or carriage­

return. The comments field is preceded by a tab (or space) and a slash(/).

2-1

I

I

Note that a combination of a space and a tab wi II be interpreted by the MACR0-15 assembler as two field

delimiters.

Example:

TAG -....j OP L-1 -j ADR)} both are
TAG&.....1 -JOP -IADR) incorrect

These errors will not show on the listing because the space is hidden in the tab.

A MACR0-15 statement may have an entry in each of the four fields, or three, or two, or only one field. The

following forms are acceptable (where the characters (s) indicate one or more of the preceding character):

TAG)

TAG -!OP)

TAG -I OP -....j ADDR)

TAG -j OP -j ADDR'°"""' (s) /comments)

TAG -j OP L-1 (s) / comments)

TAG -I -....jADDR)

TAG -I -....jADDR'°"""' (s) / comments)

TAG -I (s) / comme~ts~

-....jOP)

-....jOP -....j ADDR)

-loP -I ADDR -I (s) / comments)

-!OP -I (s) / comments)

-I -J ADDR)

-I -I ADDR -I (s) / comments)

/comments)

-....j (s) /comments)

Note that when a label field is not used, its delimiting tab is written, except for lines containing only comments.

When the operation field is not used, its delimiting tab is written if an address field follows, except in label

only and comments only statements.

A label (or tag) is a symbolic address created by the programmer to identify the statement. When a label is

processed by the Assembler, it is said to be defined. A label can be defined only once. The operation code

field may contain a machine mnemonic instruction code, a MACR0-15 pseudo-op code, a macro name, a num­

ber, or a symbol. The address field may contain a symbol, number, or expression which is evaluated by the

assembler to form the address portion of a machine instruction. In some pseudo-operations, and in macro

2-2

instructions, this field is used for other purposes, as will be explained in this manual. Comments are usually

short explanatory notes which the programmer adds to a statement as an aid in analysis and debugging. Comments

do not affect the object program or assembly processing. They are merely printed in the program listing. Com­

ments must be preceded by a slash(/). The slash(/) may be the first character in a line or may be preceded by:

a. Space (L-1)

b. Tab (-..j)

c. Semicolon (;)

2.2 SYMBOLS

The programmer creates symbols for use in statements to represent addresses, operation codes and numeric values.

A symbol contains one to six characters from the following set:

The letters A through Z

The digits 0 through 9

Two spec ia I characters, period (.) and the percent sign (%) .

The first character of a symbol must be a letter, a period, or percent sign. A period may not be used alone as a

symbol. The first character of a symbol must not be a digit. The letter 'X' alone may not be a symbol. ('X'

has a special meaning to the Assembler, as explained later.)

The following symbols are legal:

MAR Kl

A%

P9.3

The following symbols are illegal:

TAG:l

5ABC

x

.. 1234 .A

%50.99 .%

INPUT

: is not a legal symbol character.

First character moy not be a dig;t.

Letter 'X' alone is illegal.

'.'alone is illegal as a symbol.

Only the first six characters of a symbol are meaningful to the Assembler, but the programmer may use more for

his own information. If he writes,

SVMBOLl

SYMBOL2

SYMBOL3

2-3

I

I

as the symbolic labels on three different statements in his program, the Assembler will recognize only SYMBOL

and will print "m" error flags on the lines containing SYMBOLl, SYMBOL2 and SYMBOL3. To the Assembler

they are duplicates of SYMBOL.

2 .2, l Evaluation of Symbols and Globals

When the Assembler encounters a symbol during processing of a source language statement, it evaluates the sym­

bol by referring to two tables: the user's symbol table end the permanent symbol table. The user's symbol table

contains all symbols defined by the user. The user defines symbols by using them as labels, as variables, as

macro names and globals, and by direct assignment statements. A label is defined when first used, and cannot

be redefined. ('Nhen a label is defined by the user, it is given the current value of the location counter, as wil I

be explained later in this chapter.)

All permanently defined system symbols (excluding the index register symbol, X), including system macros

(except for RSX) and all Assembler pseudo-instructions use a period(.) as their first character, The Assembler

also has, in its permanent symbol table, definitions of the symbols for all of the PDP-15 memory reference in­

structions, operate instructions, the basic EAE instructions, and some input/output transfer instructions. (See

Appendix B for a complete list of these instructions.)

PDP-15 instruction mnemonic symbols may be used in the operation field of a statement without prior definition

by the user.

Example:

, LAC..A) LAC is a symbol whose appearance in the operation

field of a statement causes the Assembler to treat it

as an op code rather than a symbo Ii c address. It has

a value of 2000008 which is token from the operation

code definition in the permanent symbol table.

The user con use instruction mnemonics or the pseudo-instruction mnemonics code as symbol labels. For example,

where the label DZM is entered in the symbol table and is given the current value of the location counter, end

the op code DZM is given the value 140000 from the permanent symbol table. The user must be careful, how­

ever, in using these dual purpose (field dependent) symbols. Symbols in the operation field are interpreted as

either instruction codes or pseudo-ops, not cs symbolic labels, if they are in the permanent symbol table.

System macro names cannot be duplicated by the user. In the following exi:!mple, several symbols

2-4

with values have been entered in the user's symbol table and the permanent symbol table. The sample coding

shows how the Assembler uses these tables to form object program storage words.

User Symbol Table

Symbol Value

TAGl 100

TAG2 200

DAC 300

If the following statements
are written,

TAGl -I DAC -I TAG2

TAG2 -I LAC -I DAC

DAC -J JMP -I TAG l
-I DAC -I TAG 1,X
-j TAGl

Permanent Symbol Tab le

Symbol Value

LAC 200000

DAC 040000

JMP 600000

x 010000

the fol I owing code is generated
by the Assembler

040200

200300

600100
050100
000100

2.2. l. l Special Symbols -The symbol Xis used to denote index register usage. It is defined in the permanent

symbol table as having the value of 10000. The symbol X cannot be redefined and can only be used in the ad­

dress field.

2 .2 .1.2 Memory Referencing Instruction Format - When operating in page mode the PDP-15 uses 12 bits for I
addressing, l bit to indicate index 1·egister usage, 1 bit to indicate indirect addressing, and 4 bits for the op code.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

I Op Code I Add1·ess

...
t Index Register Bit

I
...._ '.ndirect Addressing

PAGE MODE MEMORY REFERENCE INSTRUCTION

When operating in bank mode on the PDP-15, the only mode that applies to the PDP-9, 13 bits are used for

addressing, there is no index register bit, I bit is for indirect addressing, and 4 bits are for the op code.

0 2 3

[Op Code

4 5 6 7 8 9 10 11 12 13

I Address

L Indirect Addressing

BANK MODE MEMORY REFERENCE INSTRUCTION

2-5

14 15 16 17

I

2.2.2 Variables

A variable is a symbol that is defined in the user's symbol table by using it in an address field or operation field

with the number sign (#). Symbols with the # may appear more than once in a program (see items 1, 3, 4, and 5

of example given below). A variable reserves a single storage word which may be referenced by using the sym­

bol at other points in the program with or without the #. If the variable duplicates a user-defined label, it is

multiply defined and is flagged as an error during assembly.

Variables are assigned memory locations at the end of the program. The initial contents of variable locations

are unspecified. The# can appear any place within the symbol character string as in the example.

Example:

Sequence
Location

Source Statements
Generated

Counter Code

-I . L OC 1-.J 100

1 100 -I LACL-.JTAHG1 200105

2 101 -I DAC 1-.J· T AG3 040107

3 102 -I LAC L-1.T AG2# 200106

4 103 -I DAC L....I TH AG3 ,X 050107

5 104 -I LAC L....l#TAG2 200106

-I .END

2 .2 .3 SP.tting Storage Locations to Zero

Storage words can be set to zero as f9llows:

A -J O; -j O; -I 0)

In this way, three words are set to zero starting at A. Storage words can also be set to zero by statements con­

taining only labels

A· B· C· D· E) 1 I I f

2 .2 .4 Redefining the Value of a Symbol

The programmer may define a symbol directly in the user's symbol table by means of a direct assignment

statement written in the form:

SYMBOL-=n)
or

SYMl=SYM2)

where n is any number or expression. There should be no spaces between the symbol and the equal sign, or be­

tween the equal sign and the assigned value, or symbol. MACR0-15 enters the symbol in the symbol table, along

with the assigned value. Symbols entered in this way may be redefined, These are legal direct assignment state-

XX=28;A=l ;B=2)

A symbol can also be assigned a symbolic value; e.g., A=4, B=A, or

SET=ISUWITCH,)
2-6

In the previous example, the symbol B is given the value 4, and when the symbol SET is detected during assemb 1y

the object code for the instruction ISZ.__.SWITCH will be generated. This type of direct assignment cannot be

used in a relocatable program. Direct assignment statements do not generate storage words in the object program.

In general, it is good programming practice to define symbols before using them in statements that generate

storage words. The ASSEMBLER will interpret the following sequence without trouble:

l
2
3
4
5
6
7

000005
000005
000005

00000 200005
000000

SIZE=OOOOl

2 .2 .5 Forward Reference

Z=5
Y=Z
XX=Y

I

,;.

.ABSP

LAC XX /SAME AS LAC 5
.END

NO ERROR LINES

A symbol may be defined after use. For example,
.ABSP
LACY 00000 200001

000001
000000

SIZE=OOOOl

Y=l
.END

NO ERROR LINES

This is called a forward reference, and is resolved properly in PASS 2. When first encountered in PASS 1, the

LACY statement is incomplete because Y is not yet defined. Later in PASS l, Y is given the value l. In

PASS 2, the Assembler finds that Y=l in the symbol table, and forms the complete storage word.

Since MACR0-15 basic assembly operations are performed in two passes, only one-step forward references are

allowed. The Following example is illegal because the symbol Y is not defined during PASS 2.

F
00100 A
00100 A 200000 A

000001 A
000001 A
000000 A

SIZE=OOl 01

Y=Z
Z=l

• LOC 100
LACY

.END

1 ERROR LIN ES

Forward references to internal .GLOBL symbols (see Paragraph 3.9) are illegal because the internal globals are

output at the beginning of PASS 2 for library searching. Globals must be defined during PASS 1, otherwise

they will be flagged. The following example is illegal:

l F .GLOBL A,B,C
2 F 00000 R 200000 A LAC A
3 000004 R A=E
4 00001 R 200002 R LAC D
5 00002 R 120005 E D JMS* B
6 00003 R 120006 E E JMS* c
7 000000 A .END

00005 R 000005 E *E
00006 R 000006 E *E

SIZE=DDDD7 2 ERROR LINES

2-7

2.2.6 Undefined Symbols

If any symbols, except global symbols, remain undefined at the end of PASS l of assembly, they are

automatically defined as the addresses of successive registers following the block reserved for variables at the

end of the program. All statements that referenced the undefined symbol are flagged as undefined. One

memory location is reserved for each undefined symbol with the initial contents of the reserved location being

unspecified.

Examples:

l
2 00100
3 u 00100
4 00101
5 00102
6 u 00103
7

2.3 NUMBERS

200106
200104
200105
200107
000000

SIZE=00110

.ABSP

. LOC 100
LAC UNDEFl
LAC TAG#
LAC TAG#l
LAC UNDEF2
.END

2 ERROR LINES

The initial radix (base) used in all number interpretation by the Assembler is octal (base 8). To allow the user

to express decimal values and then restore to octal values, two radix-setting pseudo-ops (.OCT and . DEC) are

provided. These pseudo-ops, described in Chapter 3, must be coded in the operation field of a statement. If

any other information is written in the same statement, the Assembler treats the other information as a comment

and flags it as a questionable line. All numbers are decoded in the current radix until a new radix control

pseudo-op is encountered. The programmer may change the radix at any point in the program.

Examples:

Flag Source Program Generated Value {Octal) Radix in Effect

-! LAC -I 100 200100 8 } initial value is _,
25 000025 8 assumed to be octal _,
.DEC

-! LAC -I 100 200144 10

-I 275 000423 10

Q
_,

.OCT L...J 99 Octal radix takes effect even
though line is flagged _,

76 000076 8

N
_,

99 000143 The non-octal digit forces a
decimal radix for this number only

2-8

2.3. 1 Integer Values

An integer is a string of digits, with or without a leading sign. Negative numbers are represented in two's

complement form. The range of integers is as follows:

Unsigned

Signed

0 -26214310

0 13107110

0-+ -1 3107210

18
(777777 8) or 2 -1

17
(377777 8) or 2 -1

17
(400000 8) · or -2

An octal integer* is a string of digits (0-7), signed or unsigned. If a non-octal digit (8 or 9) is encountered

the string of digits will be assembled as if the decimal radix were in effect and it will be flagged as a possible

error.

Example:

Flag Coded Value Generated Value (Octal) Comment

.DEC

3779 007303

.OCT

-5 777773 Two's complement

3347 003347

N 3779 007303 Possible error, decimal
assumed

A decimal integer** is a string of digits (0-9), signed or unsigned.

Examples:

Flag Coded Value Generated Value (Octal) Comment

-8 777770 Two's complement

+256 000400

N -262144 000000 18 Error, less than -(2 -1)

2. 3. 2 Expressions

Expressions are strings of symbols and numbers separated by arithmetic or Boolean operators. Expressions repre­

sent unsigned numeric values ranging from 0 to 2 18 -1. All arithmetic is performed in unsigned integer arithmetic

*Initiated by . OCT pseudo-op and is also the initial assumption if no radix control pseudo-op is encountered,
**Initiated by .DEC pseudo-op.

2-9

(two's complement), modulo 2 18 . Division by zero is regarded as division by one and results in the original

dividend. Fractional remainders are ignored; this condition is not regarded as an error. The value of an ex­

pression is calculated by substituting the numeric values for each element (symbol) of the expression and per­

forming the specified operations.

The following are the allowable operators to be used with expressions:

Character Function

Name Symbol

Plus + Addition (two's complement)

Minus - Subtraction (convert to two's complement and add)

Asterisk * Multiplication (unsigned)

Slash I Division (unsigned)

Ampersand & Logical AND ' Exclamation point ! Inclusive OR

Back slash \ Exclusive OR > Boolean

Comma I Exclusive OR
..)

Operations are performed from left to right (i.e., in the order in which they are encountered). For example,

the assembly language statement A+B*C+D/E-F*G is equivalent to the following algebraic expression

(((((A+B)*C)+D)/E)-F)*G.

Examples:

Assume the following symbol values:

Symbol Value (Octal) Comments

A 000002

B 000010

c 000003

D 000005

x 010000 Index Register Value

The following expressions would be evaluated.

2-10

Expression Evaluation (Octal) Comments

A+B-C,X 010007

A/B+A*C 000006

B/A-2*A- l+X 010003

A&B 000000

C+A&D 000005

B*D/A 000024

B*C/A*D 000074

A,X+D,X 010007

In the last example the expression is evaluated as fol lows:

Sequence of arithmetic

a. A,X = 000002 XORed with 010000 = 010002

b . A, X+D = o 10002 + ooooos = o 10007

Index Register Usage

(The remainder of A/B is lost)

Index Register Usage

Index Register Usage Error

c. A,X+D ,X = 010007 XORed with 010000 = 000007

Note that arithmetic produces 000007 yet the value given in the example is 010007. Regardless of how the in­

dex register is used in the address field, the index register bit wi II always be turned on by the Assembler. In

the sequence of address arithmetic above, the line would be flagged with an X because of the illegal use of the

index register symbol (X).

Using the symbol X to denote index register usage causes the following restrictions:

a. X cannot appear in the TAG field

b. X cannot be used in a . D SA statement

c. X can be used only once in an expression
(see 2.4.3)

2.4 ADDRESS ASSIGNMENTS

X -I LAC -I A

.DSA-IA,X

LAC -.jA,X+D,X

As source program statements are processed, the Assembler assigns consecutive memory locations to the storage

words of the object program. This is done by reference to the location counter, which is initially set to zero

and is incremented by one each time a storage word is formed in the object program. Some statements, such as

machine instructions, cause only one storage word to be generated, incrementing the location counter by one.

Other statements, such as those used to enter data or text / or to reserve blocks of storage words, cause the

location counter to be incremented by the number of storage words generated.

2-11

I

I

2. 4. l Referencing the Location Counter

The programmer may directly reference the location counter by using the symbal period (.) in the address field.

He can write,

-I JMP1..-1.-l

which wi 11 cause the program to jump to the storage word whose address was previously assigned by the location

counter. The location counter may be set to another value by using the .LOC pseudo-op, described in Chapter3.

2.4.2 Indirect Addressing

To specify an indirect address, which may be used in memory reference instructions, the programmer writes an

asterisk immediately fol lowing the operation field symbol. This sets the defer bit (bit 4) of the storage word.

If an asterisk suffixes either a non-memory reference instruction, or appears with a symbol in the address field,

an error will result.

Two examples of legal indirect addressing fol low.

-I TAD*-1 A

-I LAC*-! B

The following examples are illegal.

CLA*
LAW* 17777

2. 4. 3 Indexed Addressing

Indirect addressing may not be specified
in non-memory reference instructions.

To specify indexed addressing an X is used with an operator directly after the address. No spaces or tabs

may appear before the operator. The Assembler will perform whatever operation is specified with the index reg­

ister symbol, and then continue to evaluate the expression. At completion of the expression evaluation, if the

index bit (bit 5) is not on and the location counter is pointing to page 0 of any bank, the line is flagged with

a B for bank error because the address (aside from indexing modifications) must have been greater than 7777 8

(i.e., it pointed to another page). The standard code used to indicate indexing is:

LAC A,X

The indexed addressing operation is illustrated in the following example.

2-12

Example:

Object
Location Code

.ABSP
000000 210000 A LAC -4 X /Same as LAC 0, X
000001 050005 B DAC -4 A,X+l ,7-1 I
000002 210001 LAC -I B+X /000001 + 010000

.LOC 10000 /SET to page 1
010000 210001 c LAC X,D
010001 210000 D LAC c,x

.END

Expression evaluation where A= 000000, B = 000001, C = 010000, D=Ol 0001, X=Ol 0000

NOTE: (!) = exclusive OR

Location Address Field Discussion

0 x The value of X is added to 0. Absence of
an operator always implies addition.

A,X+l ,7-1 000000@ 010000 = 010000
010000 + 000001 = 010001
010001 (±)000007 :.:: 010006
010006 - 000001 = 010005

2 B+X 000001(±.)O10000 = 01000 l

10000 X,D 0 l 0000©O1000 l = 000001

The index bit has been turned off during
expression evaluation. Because the lo-
cation counter (10000) is pointing to
Page 1, this line is not flagged, and the
index register bit is turned on.

10001 c,x o 1oooo(£)o10000 = 000000

Same as example at Loe a ti on 10000.

2.4.4 Literals

Symbolic data references in the operation and address fields may be replaced with direct representation of the

data enclosed in parentheses*. This inserted data is called a literal. The Assembler sets up the address link,

so one less statement is needed in the source program. The following examples show how literals may be used,

and their equivalent statements. The information contained within the parentheses, whether a number, symbol,

expression, or machine instruction, is assembled and assigned consecutive memory locations after the locations

used by the program, unless a .LTORG pseudo-instruction appears in the program. (See section 3.2.5.)

The address of the generated word wil I appeor in the statement that referenced the I iteral.

*The opening parenthesis [(l is mandatory; the closing parenthesis [)] is optional.

2-13

I

I

Duplicate literals, completely defined when scanned in the source program during PASS 1, are stored only once

so ti.at many uses of the same literal in a given program result in the allocation of only one memory location for

that literal. Nested literals, that is, literals within literals, are illegal and will be flagged as an error. The

following is an example of a nested literal.

LACL-1(ADD&-J(3))

Usage of Literal Equivalent Statements

-I ADD L-1 (1) -I ADD 1-1 ONE
ONE -l 1

-I LAC._, (TAG) --! LAC .._. T AGAD
TAGAD-\ TAG

-I LAC '-' (DAC-1 TAG) --! LAC.__. INST
INST -I DAC -I TAG

-I LAC.__. (JMP -I . +2) HERE --! LAC 1-1 INST
INST -j JMP .__. HERE+2

The following sample program illustrates how the Assembler handles literals.

Location Counter Source Statement Generated Code

-I . LOC 1-1 100

100 TAGl-1 LAC.__. (100) 200110

101 -I DACL..J 100 040100

102 -I LAC L-1 (JMP L...I' .+5 200111

103 -I LAC,(TAG]) 200110

104 -I LAC '--' (JMP L...I TAG 1) 200113

105 -I LAC 1....1 (JMP L...t T AG2) 200112

TAG2=TAG1

106 -I LAC 1-1 (JMP L-1 O) 200113

107 DAC -I LAC 1-.1.(DAC -I DAC) 200114

-I . END

Generated Literals

110 000100

111 600107

112 600100

113 600000

114 040107

2-14

2 .5 STATEMENT FIELDS

The fol lowing paragraphs provide a detailed explanation of statement fields, including how symbols and numbers

may be used in each fie Id.

2.5. l Label Field

If the user wishes to assign a symbolic label to a statement in order to facilitate references to the storage word

generated by the Assembler, he may do so by beginning the source statement with any desired symbol. The

symbol must not duplicate a system or user defined macro symbol and must be terminated by a space or tab, or a

statement terminating semicolon or carriage-return.

Examples:

TAG l;TAG2;TAG3;TAG4 A new logical line starts after each
semicolon. This line is equivalent to

TAG14 0)
TAG24 0)
TAG3_, 0)
TAG4_, o)

If there were a tab or a space after the semicolon the symbol would be evaluated as an operator instead of a

tag. The sequence

TAG 1; 1-1 T AG2; T AG3; 1-1 T AG4

is evaluated as follows:

TAG140)
TAG2)

TAG3-+! 0)
TAG4)

TAG 1-1 any value

TAG 11..-1 (s) any value

TAG -+J &....1· (s) any value

TAG; }
TAG)

TAG 1-1 (s) (no more data on line)

These examples are equivalent to coding

TAG 4 0)

in that a word of all Os is output with
the symbol TAG associated with it.

When writing numbers separated by semicolons, the first number must be preceded by a tab (-+j) or a space (1-1).

The sequence

TABLE L....J 1 ;2;3;4;5

2-15

produces TAG errors because the first symbol of a tag cannot be numeric. The correct way to write the table

sequence is as fol lows:

TABLE L.....I l;L.....I 2;L.....I 3; L.....14; L.....I 5

Symbols used as labels are defined in the symbol table with a numerical value equal to the present value of the

location counter. A label is defined only once. If it was previously defined by the user, the current definition

of the symbol will be flagged in error as a multiple definition. All references to a multiply defined symbol will

be converted to the first value encountered by the Assembler.

Example:

Flag
Location

Statement
Storage Word

Notes Counter Generated

M 100 A --+j LAC --+j B 200103

M 101 A-+j LAC -+j C 200104 } Error, multiple definition

D 102 -J LAC --+j A 200100 First value of A referenced

103 B --+j 0 000000

104 c -I 0 000000

Anything more than a single symbol to the left of the label-field delimiter is an error; it will be flagged and

ignored. The following statements are i I lega I.

TAG+ 1 --+j LAS)

LOC*2 --+j RAR)

The line will be flagged with a ''T" for tag error. The tag will be ignored but the rest of the line will continue

to be processed. The only time that an error tag is not ignored is when the error occurs after the sixth character.

The statement:

TAGERROR*l L.....I NOP

will be assembled as:

TAGERR -+j NOP

and the I ine will be printed and flagged with a "T".

Redefinition of certain symbols can be accomplished by using direct assignments; that is, the value of a symbol

can be modified. If an Assembler permanent symbol or user symbol (which was defined by a direct assignment)

2-16

is redefined, the value of the symbol can be changed without causing an error message. If a user symbol, which

was first defined as a label, is redefined by either a direct assignment or by using it again in the label field, it

will cause an error. Variables a Isa cannot be redefined by a direct assignment.

Examples:

Coding Generated Value (Octal) Comments

A=3 Sets current value of A to 3

-1 LAC -jA 200003

-IDAC-1 A 040003

A=4 Redefines value of A to 4

-I LAC -IA 200004

B -I DAC-IA 040004 *

B=A Illegal usage; a label cannot
be redefined

-jbAC-j B. 040105

PSF=700201 To redefine possibly incorrect
permanent symbol definition. J

*Assume that this instruction will occupy location 105.

2.5.2 Operation Field ·

Whether or not a symbol label is associated with the statement, the operation field must be delimited on its left

by a space(s} or tab. If it is not delimited on ifs left, it will be interpreted as the label field. The operation

field may contain any symbol, number, or expres.sion which wi 11 be evaluated as an 18-bit quantity using un­

signed arithmetic modulo 2 18 . In the operation field, machine instruction op codes and pseudo-op mnemonic

symbols take precedence over identically named user defined symbols. The operation field must be terminated

by one of the fol lowing characters:

Examples:

-I or L-1 {s}

) or;

TAG -I ISZ

(field delimiters)

(statement delimiters)

-I .+3L...J (s}

L-1 (s)CMA !CML)

-I TAG/5+TAG2; -I TAG3)

The asterisk (*) character appended to a memory reference instruction symbol, in the operation field, causes

the defer bit (bit 4) of the instruction word to be set; that is, the reference will be an indirect reference. If

2-17

the asterisk (*) is appended on either a non-memory reference instruction or any symbol in the address field,

it wi 11 cause an error condition which will be flagged as a symbol error (S-flag). The asterisk wi II be ignored

and the assembly process wi II continue.

Examples:

Assembled Value Legal Assembled Value Illegal

360001 -I TAD* -l A 200001 -\LAC -j A*

220002 -I LAC* -I B 750000 -I CLA*

where A = 1 and B = 2

However, the asterisk (*) may be used anywhere as a multiplication operator.

Examples:

Legal Illegal

-I LAC -I TAG*S -I LAC -j TAG*4+TAD*

-I TAG*TAGl -I A*

2.5.3 Address Field

The address field, if used in a statement, must be separated from the operation fie Id by a tab, or space(s). The

address field may contain any symbol, number, or expression which will be evaluated as an 18-bit quantity

using unsigned arithmetic, modulo 218 . Ifop code or pseudo-op code symbols are used in the address field,

they must be user defined, otherwise they will be undefined by the Assembler and will cause an error message.

The address field must be terminated by one of the following characters:

Examples:

-I or L-1 (s)

) or;

tAW -l
LAW-1

(field delimiters)

(statement delimiters)

/Correctly assembled as 777777
/No separation from the operation field; assembled as 757777 since -1 is
is treated as part of the operation field.

TAG2 -I DAC -I .+3

-I -I TAG2/5+3 L-1 (s)

In the last example, the rest of the line will be automatically treated as a comment and ignored by the Assembler.

I The address field may also be terminated by a semicolon or a carriage-return.

2-18

Examples:
-...j JMP -...j BEGIN)

-+j TAD -+j A; -...j DAC -+j B -+j LAC

In the last example, a tab or space(s) is required after the semicolon in order to have the Assembler interpret

DAC as being the operation field rather than the label field.

In the second line of the preceding example, the address field Bis delimited by a tab. The LAC after the B -I
is ignored and is treated as a comment; but, the line is flagged as questionable because only a comment field I
may occur on a line after the address field. If the LAC had been preceded by a slash (/), the line would have

been correct.

When the address field is a relocatable expression, an error condition may occur. If the program is being assem­

bled to run in page mode, it could not execute properly if its size exceeded 4K (4,096) words because it would

have to load access a memory page or bank boundary. In practice, the binary loaders restrict the size to 4K-16

(4080) to avoid loading a program into the first 16 locations in a memory page or bank. This avoids a possible

ambiguity where indirect memory references would be mistaken for autoincrement register references. Consequently,

any relocatable address field whose value exceeds 4095 (17778) is meaningless in page mode and will be flagged

by the Assembler as an error.

There is a similar size restriction for programs being assembled to operate in bank mode. The Assembler flags in

error any relocatable address field whose value exceeds 8191 (17777 8). The binary loaders restrict the size of

bank mode programs to 8K-16 (8176) words.

When the address field is an absolute expression, an error condition will exist if the extended memory and page

address bits (3, 4 and 5) do not match the corresponding bits of the address of the page currently being assembled

into.

Examples:

Flag

B

B

B

NOTE

In absolute mode, the page bits do not have to be equal
if the .ABS or .FULL pseudo-ops are used instead of the
. ABSP or . FULLP pseudo-ops.

Location Instruction Comments
(octal)

30000 -I LAC L.....I' 30100 No error message

30001 -+j DAC.__..101 }
Will cause a bank (B) error message

30002 -\ JMS .__. 250 because the address is on a different

30005 -J ISZ L.....IA0146 page and bank.

The Ljnking Loader will not relocate any absolute addresses; thus, absolute addresses within a relocatable program

are relative to that page in memory in which the program is loaded.

2-19

Example:

Assume that the following source line is part of a relocatable program that was loaded into bank 1

(200008 -+ 37777 8).

Source Statement Effective Address

-+j LAC L-1 300) 20300

An exceptio.n to the above rule is the auto-index registers, which occupy location 108 - 17 8 in page 0 of

memory bank 0. The hardware wi II always ensure that indirect references to 108 - 17 8 in any page or bank

wi II access 108 - 17 8 of bank 0.

2.5.4 Comments Field

Comments may appear anywhere in a statement. They must begin with a slash (/)that is immediately preceded

by

a. 1.....1 (s)

b. -I
c.)

d.

space(s)

tab

carriage return/line feed {end of previous line)

semicolon

I Comments are terminated only by a carriage-return or when 761 O characters have been encountered in a line.

I

Examples:

1.....1 (s)/THIS IS A COMMENT (rest of line is blank)

TAG 1 --I LAC 1.....1

/THIS IS A COMMENT

-I RTR 1.....1 /COMMENT)

-+j RTR; -+j RTR;/THIS IS A COMMENT

Observe that; -I A/COMMENT) is not a comment, but rather an operation field expression. A line that is

completely blank (containing 0 to 75 blanks/spaces) is treated as a comment by the Assembler.

2-20

A statement is terminated as follows:

) or; or rest of line is completely blank.

Examples:

--.\LAC)

-+j DAC (the rest of the I ine is blank)

-+j TAG+3

-+j RTR; -J RTR; -J RTR)

In the last example, the statement-terminating character, which is a semicolon (;)enables one source line to

represent more than one word of object code. A tab or space is required after the semicolon in order to have

the second and third RTRs interpreted as being in the operation field and not in the label field.

2. 6 STATEMENT EVALUATION

When MACR0-15 evaluates a statement, it checks for symbols or numbers in each of the three evaluated fields:

label, operation, and address. (Comment fields are not evaluated.)

2.6. 1 Numbers

Numbers are not field dependent. When the Assembler encounters a number (or expression) in the operation or

address fields (numbers are illegal in the label field), it uses those values to form the storage word. The follow­

ing statements are equivalent:

_, 2000001-1 10)

--.\ 10+ LAC)

-"I LAC 1..-110)

All three statements cause the Assembler to generate a storage word containing 200010. A statement may con­

sist of a number or expression which generates a single 18-bit storage word; for example:

, 23;..45;1-1357;._.62

This group of four statements generates four words interpreted under the current radix.

2-21

I

2.6.2 Word Evaluation

When the Assembler encounters a symbol in a statement field, it determines the value of the symbol by reference

to the user's symbol table and the permanent symbol table, according to the priority list shown in paragraph 2.6.4.

The operation value is scanned for the fol lowing special cases:

Mnemonic Operation Field Value

LAW 760000

AAC 723000

AXR 737000

AXS 725000

EAE instructions 64xxxx

If the operation field is not one of the special cases, the object word value is computed as follows:

If assembling for page mode:
(Operation Field +(Address Field & 7777))"Word Value

If assembling for bank mode:
(Operation Field +(Address Field & 17777))c:Word Value

If the index register is used anywhere in the address field,. the index register bit is set to one in the word value. If
it is not used, and you are assembling with .ABSP, .FULLP or .DBREL then the index register bit is set to zero in
the word value regardless of the address field value.

a. If index reg.ister usage is specified, the result of XORing bit 5 of the location counter and bit 5 of
the address field value must be non-zero. (Otherwise the address without index modification was in a
different page than the location counter, and the line is flagged with a B For bank error\.

Example:

Flag Location
Object

Tag Source Statement Value

.ABSP
00000 210001 LAC A,X
00001 740000 A NOP
10000 .LOC 10000
10000 210001 LAC B,X

B 10001 210001 B LAC A,X
.END

The result of statement evaluation has produced the following results:

A,X = 10001

B,X = 00001

A= 00001

B = 10001

2-22

Page
Addressing

/Page 0

/Page l

Note that when index register usage is specified, the index register bit may or may not be on. For B,X above,

the index register bit was turned off during statement evaluation. The Assembler turns this bit on after the word I
is evaluated, not at statement evaluation time.

At location 10001, the result of XORing bit 5 of A,X and bit 5 of the location counter is 0. This signals the

Assembler that the address reference (A) is in a different page.

b. If index register usage is not specified and the program is not assembled in bank mode*, the result
of XORing bit 5 of the location counter and the address field value must be 0, otherwise the line is

flagged with a B for bank error.

Example:

Flag Location
Object Tag Source Statement Value

.ABSP
B 00000 210500 LAC A

10500 .LOC 10500
10500 740000 A NOP

.END

c. The bank bits (3, 4) of the address field value in a relocatable program must never be on. The bank
bits are always lost when the address field value and the operation are combined to form the object word

value.

Example:

Flag Location
Object

Tag Source Statement
Value

B 00000 R 200000 R c LAC A /Bonk bit lost
17777 R .LOC (+17777
17777 R 740000 A NOP
20000 R 740000 A A NOP

.END

d. The bank bits of an absolute program must equal the bank bits of the location counter. If not,
the B flag alerts the programmer that he is referencing another bank.

Example:

Line Flag Location
Object
Value

1
2 20000
3 20000 200001
4 20001 200001
5 B 20002 210001

6

'See pseudo-ops .ABS, .ABSP, .FULL, .FULLP, ,EBREL, .DBREL.
2-23

Source Statement

. ABSP

. LOC 20000
LAC 1
LAC 20001
LAC 40001

.END

The address value for Lines 3 and 4 are identical. The bank bits of Line 5 do not match those of the location

counter, therefore, the line is flagged.

2.6.3 Word Evaluation of the Special Cases

a. LAW - The operation field value and the address field value are combined as follows:

I Operation Value + (Address Field Value & 17777) -=Word Value

I

I

I

A validity check is then performed on the address field value as follows:

Address Field Value & 760000 =Validity Bits

If the validity bits are not equal to 760000 or 0, the line is flagged with an E to signal erroneous results.

b. AAC, AXR, AXS - The operation field value and the address field value are combined as
follows.

Operation Value + (Address Field Value & 000777) =Word Value

The validity check:

Address Field Value & 777000 =Validity Bits

If the validity bits are not equal to 777000 or 0, the line is flagged with an E to signal erroneous
results. The address field value for this type of instruction cannot be relocated, The line is flagged
with an R if the address field value is relocatable.

c. EAE class instructions - The operation field value and the address field value are combined as
follows:

Operation Value + Address Field Value =Word Value

A validity check is then performed on the word value. If the operation code bits (0 through 3) o; the
word value differ from those of the operation value, the line is flagged with an E error to signal
erroneous resu I ts.

2-24

Example:

Line Fiag Location
Object

Word Value

1 0 777777 LAW 17777 /17777
2 1 777777 LAW -1 /777777
3 E 2 777777 LAW 677777 /677777
4 3 760000 A LAW /0
5 4 723776 AAC -2 /777776
6 E 5 723000 AAC -2000 /776000

If numbers are found in the operation and address fields, they are combined in the same manner as defined

symbols. For example,

-I 2 -1 s -I /GENERA TES 000007
The value of a symbol depends on whether it is in the label field, the operation field, or the address field. The

Assembler attempts to evaluate each symbol by running down a priority list, depending on the field, as shown

below.

2.6.4 Assembler Priority List

Label Field

Current Value of
Location Counter

Operation Field

1. Pseudo-op

2. User macro in user symbol
table

3. System macro table

4. Direct assignment in user
symbol tab le

5. Permanent symbo I table

6. User symbol table

7. Undefined

Address Field

1. The indexing symbol, X

2. User symbol table (including
direct assignments)

3. Undefined

This means that if a symbol is used in the address field, it must be defined in the user's symbol table before the

word is formed during PASS 2; otherwise, it is undefined. (See section 2 .2 .4)

In the operation field, pseudo-ops take precedence and may not be redefined. Direct assignments allow the

user to redefine machine op codes, as shown in the example below.

Example:

DPOSIT = DAC

System macros may be redefined as user macro names, but may not be redefined as user symbols by direct assign­

ment or by use as statement labe Is.

The user may use machine instruction codes and MACR0-15 pseudo-op codes in the label field and refer to them

later in the address field.

2-25

I

CHAPTER 3

PSEUDO OPERATIONS

In the discussion of symbols in the previous chapter, it was mentioned that the Assembler has in its permanent

symbol table definitions of the symbols for al I the PDP-15 memory reference instructions, operate instructions,

the basic EAE instructions, and many commonly used IOT instructions which may be used in the operation field

without prior definition by the user. Also contained in the permanent symbol table are a class of symbols called

pseudo-operations (pseudo-ops) which, instead of generating instructions, generate data or direct the Assembler

on how to proceed with the assembly.

By convention, the first character of every psuedo-op symbol is a period (.). This convention is used in an at­

tempt to prevent the programmer from inadvertently using, in the operation field, a pseudo-instruction symbol

as one of his own.

The following is a summary of MACR0-15 Pseudo-ops.

Pseudo-op

.ABS

.ABSP

.ASCII

.BLOCK

. CBD

.CBDR

. DBREL

.DEC

.DEFIN

.DSA

• EBREL

. EJECT

.END

. ENDC

Section

3 .2. l
3 .2. l

3.8. l

3.5

3.18
3.19

3.2.3

3.4

3.16

3. 11

3.2.3

3.14

3.6

3 .13

Function

Object program is output in absolute, blocked, checksummed format for
loading by the Absolute Binary Loader. (Neither supported with RSX
PLUS, RSX PLUS Ill or B/F MACROA.)

Input text strings in 7-bit ASCII code, with the first character serving as
delimiter. Octal codes for nonprinting control characters are enclosed in
ang I e brackets,

Reserves a block o; storage words equal to the expression. If a label is
used, it references the first word in the block,

Common Block Definition (DOS-15, RSX PLUS and RSX PLUS Ill only\ .
Common Block Definition Relative (RSX PLUS and RSX PLUS Ill only).

Disable bank mode relocation.

Sets prevailing radix to decimal.

Defines macros. Not supported with ~IF MAC ROA.

Generates a transfer vector for the specified symbol •

Enable bank mode relocation.

Skip to head of form on listing device .

Must terminate every source program. The address field contains the address
of the first instruction to be executed .

Terminates conditional coding in .IF statements.

3-1

I

I

I

I

I

I

I

I
I

Pseudo-op

.ENDM

.EOT

.ETC

.FULL

. FULLP

.GLOBL

.IFxxx

.IODEV

.LOC

.LOCAL

.LST

.LTORG

.NDLOC

.NOLST

.OCT

.REPT

.SIXBT

.SIZE

. TITLE

Section

3 .16

3.7

3.16

3.2.2

3.9

3. l 3

3.10

3.3

3.2.4

3.17

3.2.5

3.2.4

3.17

3.4

3. l 2

3.8.2

3.15

3. l

Function

Terminates the body of a macro definition. Not supported by B/F MACROA.

Must terminate physical program segments, except the last, which is
terminated by • END.

Used in macro definitions to continue the list of dummy arguments on
succeeding I ines. Not supported by B/F MAC ROA.

Produces absolute, unblocked, unchecksummed binary object programs.
Used only for paper tape output. (Neither supported with RSX PLUS, RSX
PLUS 111 or B/F MAC ROA.)

Used to declare all internal and external symbols which reference other
programs.

If a condition is satisfied, the source coding following the .IF statement
and terminating with an .ENDC statement is assembled.

Specifies • DAT slots and associated 1/0 handlers required by this program.
(Not supported with RSX PLUS.)

Sets the location counter to the value of the expression.

Al lows deletion of certain symbols from the user symbol table.

Continues requested assembly I is ting output of source I in es. Lines between
.NOLST and .LST are not listed.

Allows the user to specifically state where literals are to be stored. Not
supported by B/F MACROA.

Terminates deletion of certain symbols from the user symbol table con­
tained between • LOCAL and , N DLOC.

Terminates requested assembly listing output of source lines of code con­
tained between .NOLST and .LST.

Sets the prevailing radix to octal. Assumed at start of every program.

Repeats the object code of the next object code generating instruction.
Not supported by B/F MAC ROA.

Input text strings in 6-bit trimmed ASCII with first character as delimiter.

MACR0-15 outputs the address of last location plus the one occupied
by the object program.

Causes the assembler to accept characters to be printed at the top of each
page of assembly listing and in the Table of Contents.

3.1 PROGRAM IDENTIFICATION (.TITLE)

The program name (or any text) may be written in a • TITLE statement as shown in the following examples. The

Assembler wi 11 accept up to 501 O characters typed unti I a carriage return, A form feed is output to the

I isting when • TIT LE is encountered in the source program. The text wi II appear at the top of each form

(page) until the next .TITLE pseudo-op. The .TITLE pseudo-op has no effect on the listing file name.

_,. TITLEL-1 NAME OF PROGRAM
-j. TITLE L....I NAME OF SUBSECTION IN PROGRAM

If subsections in a program are headed by . TITLE statements, these can be used to produce a table of contents

at the head of the assembly listing by use of the T option. This feature is not available in ADSS-15 and Back­

ground/Foreground.

3-2

3.2 OBJECT PROGRAM OUTPUT

The normal object code produced by MACR0-15 is relocatable binary which is loaded at run time by the Linking

Loader or loaded to build an executable task by CHAIN or TKB. In addition to relocatable output, the user may I
specify other types of output code to be generated by the Assembler.

3.2.1 .ABSP, .ABS (Not available in RSX PLUS, RSX PLUS Ill or BIF MACROA)*

Label Field Operation Field Address Field

Not used .ABSP NLD or1-1or not specified

Not used .ABS NLD or1....1or not specifi,o;d

Both of the absolute pseudo-ops cause absolute, checksummed binary code to be output (no values are relocatable\.

If no value is specified in the address field and if the output device is the paper tape punch, the Assembler will

precede the output with the Absolute Binary Loader (ABL), which will load the punched output at object time.

The ABL is loaded, via hardware readin, into location 17720 of any memory bank. (The ABL loads only the

paper tape which fol lows it.) If the address field of the pseudo-op contains NLD, indicating "no loader", the ABL

wi 11 not precede the output.

17720
.ABS
LOADER

USER PROGRAM

.END START

NOTE

PAPER TAPE

.ABS (P) output can be written on directoried devices.
The Assembler assumes .ABS (P) NLD fnr all .ABS (P)
output to file-oriented devices and appends an exten­
sion of ABS to the filename. This file can be punched

with PIP, using Dump Mode. (There will be no abso­
lute loader at the beginning of the tape.)

a. The .ABS, .ABSP, .FULL, and .FULLP pseudo-ops, specifying the type of output, must
appear before any statements generating object code, otherwise the I ine wi 11 be flagged
and ignored. Once one of these four pseudo-ops is specified, the user is not al lowed to
change output modes.

b. The NLD option provided in the address field of .ABS and .ABSP is meaningful only if the
output device is paper tape. I

* .ABSP and .ABS, although accepted by the Assembler, will not work properly in RSX PLUS or RSX PLUS Ill I
systems because none of the 1/0 hand I ers accept dump mode data.

3-3

I
I

I

A description of the absolute output format fol lows.

Block Heading - (three binary words)

WORD l

WORD 2

WORD 3

Starting address to load the block body which fol lows.

Number of words in the block body (two's complement).

Checksum of block body (two's complement). Checksum
includes Word l and Word 2 of the block heading.

Block Body - (n binary words)

The block body contains the binary data to be loaded under block heading control.

Starting Block - (two binary words)

WORD l Location to start execution of program. It is distinguished from the block
heading by having bit 0 set to 1 (negative).

WORD 2 Dummy word.

If the user requests the absolute loader and the value of the expression of the .END statement is equal to 0, the

ABL halts after it has loaded in the object program. To start the program the user must set the starting address in

the console address switches and press START. This allows manual intervention by the user, typically to ready

1/0 devices prior to starting his program. If the value of the .END expression is non-zero, it is treated as the

program start address to which the ABL will automatically transfer control after loading the object program.

The .ABSP pseudo-op causes all memory referencing instructions whose addresses are in a different page to

be flagged as bank errors. A DBA instruction is executed by the absolute loader before control is given to

the user program, Word values which have bit 5 on will signal the processor to use the index register to

compute effective addresses.

The .ABS pseudo-op does not flag memory referencing instructions whose addresses are in a different page. An

EBA instruction is executed, and control is given to the user in bank addressing mode. Complete bank addressing

of SK is allowed. The processor will interpret bit 5 of all memory referencing instructions as the high order

address bit. A listing of the Absolute Binary Loader is given in Appendix F.

3.2.2 .FULL, .FULLP (Not available in RSX PLUS, RSX PLUS Ill or B/F MACROA)*

Label Field Operation Field Address Field (Only useful
if output

Not used . FULL Not used is paper

Not used .FULLP Not used
tape)

The .FULL and .FULLP pseudo-ops cause full binary mode output to be produced. The program is assembled as

unchecksummed absolute code and each physical record of output contains nothing other than 18-bit binary

storage words generated by the Assembler. This mode is used to produce paper tapes which can be loaded via

hardware readin mode, If no address is specified in the .END statement or if the address value is zero, at the

*.FULL and .FULLP, although accepted by the Assembler, will not work properly in RSX PLUS or RSX PLUS Ill
systems because none of the 1/0 handlers accept dump mode data.

3-4

end of tape the assembler will punch a halt instruction with channel 7 punched in the third frame. If the .END

address value is non-zero, the assembler will punch a JMP to that address, also with channel 7 of the third

frame punched.

In addition, with .FULLP assembly direct memory references in page l to addresses in page l will have bit 5

set to 0 unless indexing is specified.

I
The only difference between the .FULL and .FULLP pseudo-ops is that memory references across page boundaries I
are flagged in .FULLP mode; in .FULL mode they are·not.

The following specific restrictions apply to programs assembled in .FULL or .FULLP mode output.

.LOC

.BLOCK

Should be used only at the beginning of the program

May be used only if no literals appear in the program, and must
immediately precede .END.

Variables and undefined symbols may be used if no I iterals appear in the program.

Literals may be used only if the program has no variables and undefined symbols.

The reason for these restrictions, not alleviated by the use of • LTORG, is the fact that .FULL(P) mode output

contains no addressing information for storing binary words other than in sequence. The • LOC and . BLOCK

pseudo-ops do not generate binary output, hence there is no way to indicate skipped locations in the output.

This is also true of variables and undefined symbols.

3.2.3 .EBREL and .DBREL

Label Field Operation Field Address Field

Not used • EBREL Not used

Not used . DBREL Not used

The following two pseudo-ops (.EBREL and .DBREL) enable relocation mode switching. They can be used any­

where and as often as the programmer wishes in a relocatable program. In the absence of one of these mod~

declaration pseudo-ops, the page mode assembler assumes it is assembling 12-bit (page mode) relocatable ad­

dresses for memory reference instructions and the bank mode assembler assumes l 3-bit addresses (bank mode).

A typical user program may omit the use of these pseudo-ops and simply prepare his object code by using the

correct (bank or page mode) version of the assembler. For the PDP-9 there is only one correct mode, bank mode.

For PDP-15 page mode programs which contain display code to be interpreted by the VTl 5 graphics processor,

it is necessary to bracket the display code with .EBREL, .DBREL. Unlike the Central Processor, the VT15 proc­

essor runs only in bank mode; hence its instruction addresses must be relocated as 13-bit values.

3-5

Mnemonic

. EBREL

• DBREL

Description

Enable Bank mode RELocation

Regardless of the type of Assembler being used (bank or page mode version),
.EBREL causes all subsequent memory reference instruction addresses to be
treated as 13-bit values, i.e., bank mode. Although in this mode, the page
mode assembler will still output the "PROG>4K" warning message if the pro­
gram size exceeds 4192. The 12- or 13-bit relocation is performed by the
loaders. ,EBREL signals the loaders to switch to 13-bit relocation by causing
a dummy data word (which is not loaded) to be inserted in the binary output
and having a loader code of 31 8 •

Disable Bank mode RELocation

.DBREL is the counterpart to .EBREL. It signals the loaders, with a dummy
data word and loader code of 328 to switch to 12-bit (page mode) relocation.

NOTE

The previous mode is not saved when an • EBREL or • DBREL
is encountered; for this reason, a • DBREL pseudo-op goes
directly to PDP-15 (page mode) relocation rather than
entering the previous mode.

3.2.4 Deletion of User Symbol Table (.LOCAL, .NDLOC)

Label Field Operation Fie Id Address Field

Not used .LOCAL Not used

Not used .NDLOC Not used

The size of a program that can be assembled with MACR0-15 is determined by the number of user symbols in

that program and therefore by the amount of core available at assembly time in which to store those symbols.

Each user symbol requires three words of core in the assembler's symbol table. This additional core is not

required at run-time (unless using a debugging program like DDT) because user symbols are not loaded into

core along with the object code.

The . LOCAL and .NDLOC pseudo-ops enable deletion of certain symbols from the user symbol table. In so

doing, larger programs can be assembled without increasing core size. The area between these two pseudo-ops

is defined os having a number of symbols, most of which are used only in this area and which can be deleted, once

this area has been passed by the assembler. The SK PDP-15 user who writes modularized programs will find these

pseudo-ops to be very powerful tools,

The assembler creates a separate symbol table (local users symbol table) when the . LOCAL pseudo-op is encoun­

tered. Only tags and direct assignments may be stored in this table, Tag symbols which have the# sign as part

of the symbol are stored in the resident users symbol table (RUST). This feature is useful where a subroutine name

is part of a local area but must go into the RUST because of subroutine calls from without the local area (See

3-6

Section D of the following example). Symbols which are forward references (used before defined) are stored as

part of the resident users symbol table. When the • N DLOC pseudo-op is encountered the local table disappears

and the resident UST is left unchanged.

An example of a program which uses the • LOCAL and • NDLOC pseudo-ops fol lows. The symbols that are stored

in the tables are represented in the comment field in the order that they are stored during PASS 1.

l
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29

30
31

32
33
34
35
36

37
38

A

KK

TTYIN

xxx
yy
z
Xl

AA

SYMl

SYM2
TSU BR#

.ABS
.LOC
CAF
JMS
JMP
LAW
DAC
ISZ
JMP
LAC
JMP

. LOCAL
0
JMP
0
0
0
0
KSF
JMP
KRB
DAC
DAC
DAC
DAC
JMP*

.NDLOC
LAC
JMP

.LOCAL

0
LAC
DAC
JMP*

.NDLOC

.END

100

TT YIN
c
-10
D
D
A
KK
AA

.+5

. -1

xxx
YY
z
Xl
TTYIN

Xl
KK

SYMl
SYM2
TSU BR

/fTYIN
/C,A

/D
/KK

/AA

/ALREADY STORED IN RUST (FROM LINE 4)

/fEMP STORAGE OF SUBR. TTYIN: XXX(LOCAL TABLE)
I y (LOCAL TABLE)
I z (LOCAL TABLE)
I Xl (LOCAL TABLE)

/Xl,(FORWARD REF. LOCAL TABLE DISAPPEARED).

/TEMP STORAGE OF SUBR. TSUBR SYMl (LOCAL
/TABLE)
/ SYM2 (LOCAL TABLE)
/fSUBR STORED IN RUST BECAUSE OF# SIGN.

3-7

For purposes of illustration, lines 1-11, 12-26, 27-29, and 30-36 are broken into sections A, B, C, and D

respectively. The following tables show the resident and local users symbol tables (UST) at the end of each section

(PASS l only).

RESIDENT UST

SECTION A

A
AA
c
D
KK
TTYIN

SECTION B

A
AA
c
D
KK
TTYIN

SECTION C

A
AA
c
D
KK
TTYIN
Xl

SECTION D

A
AA
c
D
KK
TT YIN
Xl
TSUBR

LOCAL UST

(NO SYMBOLS)

x
Xl
y
z

(NO SYMBOLS)

SYMl
SYM2

In Section A, the symbol TTYIN is used. TTYIN is in a local area yet it is put into the resident user symbol

table because it is a forward reference. The same is true of symbol Xl from Section C. Once the .NDLOC

pseudo-op is encountered, the loca I UST no longer exists. For that reason, the Xl reference from Ii ne 28 is a

forward reference. At the end of PASS l, X 1 would be represented as an undefined symbol. When Section B

is processed during PASS 2, the symbol X1 would not be stored in the local UST because it already has been

put into the resident table.

3-8

LIMITATIONS

A. The .LOCAL pseudo-op causes the local UST to be built just above the Macro definitions.
Consequently, the .DEFIN Macro is illegal in a local area.

B. In systems with an extra 4K of core (12K, 20K and 28K) no attempt is made to continue the
local users symbol table from low core to the extra page. The housekeeping code that would
be needed to do this v.ould negate the utility of the .LOCAL pseudo-op. The likelihood of
such an occurrence is small. However, should the table reach the beginning of the Assembler,
assembly will terminate with the message

TABLE OVERFLOW

3.2.5 Literal Origin Pseudo-op (. LTORG) (Not available in B/F MACROA)

Label Field Operation Field Address Field

Not used .LTORG Not used

As previously stated, a literal is an item of data with its value as stated or listed. The pseudo-op .LTORG al­

lows the user to specifically state where he wants his literal table(s) to be stored; thus enabling the user to store

literal tables in different pages or banks. As many as eight literal tables are allowed. Notice in the following

example that literals are not saved from one .LTORG to the next •

• ABS
.LOC 17700

17700 217703 LAC (1

17701 077704 DAC* (2

17702 217704 LAC (3

.LOC 20000

.LTORG

20000 000001 *L

20001 000002 *L

20002 000003 *L
.LOC 17703

17703 740000 NOP

17704 217711 LAC (1

17705 057712 DAC (2

.LOC 20003

.LTORG

20003 000001 *L

20004 000002 *L
.END

The literals 1 and 2 are stored twice even though they appear in the same bank.

If more than eight .LTORG statements appear in a program, the excess ones will be ignored and flagged with an I
I error. Subsequent literals will be assigned core locations following the end of the program in the normal manner.

3-9

3.3 SETTING THE LOCATION COUNTER (.LOC)

Label Field Operation Field Address Field

Not used .LOC Predefined symbolic
expression, or number

The . LOC pseudo-op sets or resets the location counter to the value of the expression contained in the address

field. The symbolic elements of the expression must have been defined previously; otherwise, phase errors will

occur in PASS 2. The . LOC pseudo-op may be used anywhere and as many times as required.

Examples:

Location Counter Instruction

100 --I .LOC.__.100

100 --I LAC.__.TAGl

101 ~ DAC.__.TAG2

102 --I .LOC.__..

102 A--! LAC.__.B

103 --I DAC.__.C

107 --I . LOC A+S

107 --I LAC C

110 ---! DACL....ID

111 -\ LAC E

112 ---! DACL....IF

A program headed by an absolute statement, e.g., • LOC l 00 is an absolute binary program and the binary is

output in link-loadable format.

3.4 RADIX CONTROL (.OCT and .DEC)

The initial radix (base) used in al I number interpretation by the Assembler is octal (base 8). In order to al low

the user to express decimal values, and then restore to octal values, two radix setting pseudo-ops are provided.

Pseudo-op Code Meaning

.OCT Interpret all succeeding numerical values in base 8 (octal)

.DEC Interpret all succeeding numerical values in base 10 {decimal)

3-10

These pseudo-instructions must be coded in the operation field of a statement. Al I numbers are decoded in the

current radix until a new radix control pseudo-instruction is encountered unless the pseudo-op occurs within a

MACRO expansion (seep. 4-4). The programmer may change the radix at any point in a program.

Flag Source Program Generated Value (Octal) Radix in Effect

-I LAC 100 200100 8 } initial value is

-I 25 000025 8 assumed to be octal

-I .DEC

-I LAC 100 200144 10

Flag Source Program Generated Value (Octal) Radix in Effect

-I 275 000423 10

-I .OCT

-I 76 000076 8

N -I 85 000125 error

If a number is encountered which contains a decimal digit while in octal mode, the number is evaluated as if the I
Assembler were in decimal mode, and the line is flagged with an N.

3.5 RESERVING BLOCKS OF STORAGE (.BLOCK)

.BLOCK reserves a block of memory equal to the value of the expression contained in the address field. If the

address field contains a numerical value, it will be evaluated according to the radix in effect, The symbolic

elements of the expression must have been defined previously, i.e., no forward referencing is allowed; otherwise,

phase errors might occur in PASS 2. The expression is evaluated modulo 215 (777778). The user may reference

the first location in the block of reserved memory by defining a symbol in the label field. The initial contents of

the reserved locations are unspecified.

Label Field Operation Field Address Field

User Symbol .BLOCK Predefined Expression

Examples:

BUFF -I .BLOCK.._.12)

-I .BLOCK.._.A+B+65)

3.6 PROGRAM TERMINATION (.END)

One pseudo-op must be included in every MACR0-15 source program. This is the . END statement, which must

be the last statement in the main program. This statement marks the physical end of the source program, and also

may contain the location of the first instruction in the object program to be executed at run-time.

3-11

The . END statement is written in the general form

~ .ENDL..ISTART)

ST ART may be a symbol, number, or expression whose value is the address of the first program instruction to be

executed. In relocatable programs to be loaded by the Linking loader, CHAIN or TKB, only the main

program requires a starting address; all other subprogram starting adresses, if specified, will be ignored.

A starting address must appear in absolute or self-loading programs; otherwise, the program will halt after being

loaded and the user must manually start his program.

These are legal . END statements

-+j .ENDL..l.BEGIN+S)

-+j . END L..I 200)

If no .END statement is included (or no tab or space precedes the .END) the assembler will treat it as if a .EOT

was included.

3.7 PROGRAM SEGMENTS (.EOT)

If a program is physically segmented (on paper tape, DECtape or magtape), each segment except the last may

terminate with an .EOT (end-of-tape) statement or with nothing at all (neither .EOT nor .END). Termination

with nothing is equivalent to termination with .EOT. The last segment must terminate with an .END statement.

The • EQT statement is written without label and address fields, as fol lows,

-j .EOT)

The fol lowing are typical reasons for segmenting programs:

l. A source program is prepared on three different paper tapes because one tape alone would be
too large to fit in the reader.

2. A source program is split in two and stored on two DEC tapes because it is larger than the
capacity of a single tape.

3. To simplify program preparation, a file containing commonly used macro definitions is kept
physically separate from user main programs. Thus, one does not have to include the macro
definitions in each main program. Macro definition files must terminate with .EOT or
nothing rather than • END.

4. Programs can be conditionally assembled for different machine configurations or different soft­
ware options. This is done by defining conditional assembly parameters at assembly time.
The process can be simplified if one prepares paper tapes or mass storage files defining all
parameters for a given set of options. The main program and parameter file are physically
segmented one from the other but can be assembled together. Parameter definition files
must terminate with .EOT or nothing rather than .END.

3.8 TEXT HANDLING (.ASCII AND .SIXBT)

The two text handling pseudo-ops enable the user to represent the 7-bit ASCII or 6-bit trimmed ASCII character

sets. The Assembler converts the desired character set to its appropriate numerical equivalent (see Appendix A).

3-12

Label Field Operation Field Address Field

SYMBOL {"ASCII} Delimiter - character string - delimiter -

. SIXBT <expression>

Only the 64 printing characters (including space) may be used in the text pseudo-instructions. See nonprinting

characters, Section 3.8.5. The numerical values generated by the text pseudo-ops are left-justified in the

storage word(s) they occupy with the unused portion (bits) of a word filled with zeros.

3,8. l .ASCII Pseudo-op

.ASCII denotes 7-bit ASCII characters. (It is the character set used by the operating system monitor

or executive.) The characters are packed five per two words of memory with the rightmost bit of every

second word set to zero. An even number of words will always be output:

First Word Second Word

0 6 7 13 14 17 0 2 3 9 10 16 17

1st Char. 1 2nd Char. I 3rd Char. I 4th Char. l 5th Char. lo
3. 8. 2 • SIXBT Pseudo-op

. SIXBT denotes 6-bit trimmed ASCII characters, which are formed by truncating the leftmost bit of the

corresponding 7-bit character. Characters are packed three per storage word.

0 5 6 11 12 17

lst Char. 2nd Char. 3rd Char.

3. 8. 3 Text Statement Format

The statement format is the same for both of the text pseudo-ops. The format is as follows.

MYTAG -{ :~I~~~}-1 ldelimiter I character string I delimiter I <expression>

3 .8.4 Text Delimiter

Spaces or tabs prior to the first text delimiter or angle bracket(<) will be ignored; afterwards, if they are not

enclosed by delimiters or angle brackets, they will terminate the pseudo-instruction. Also,) will terminate

the pseudo-instruction.

Any printing character may be used as the text delimiter, except those I isted below.

a. < as it is used to indicate the start of an expression.

b.) as it terminates the pseudo-instruction.

3-13

(The apostrophe (') is the recommended text delimiting character.) The text delimiter must be present on both

the left-hand and the right-hand sides of the text string; otherwise, the user may get more characters than de­

sired. However,) may be used to ter~inate the pseudo-instruction.

3. 8.5 Non-Printing Characters

The octal codes for non-printing characters may be entered in .ASCII statements by enclosing them in angle

bracket delimiters. In the following statement, five characters are stored in two storage words.

-I .ASCII L...1 1 AB I <015 >I CD')

Octal numbers enclosed in angle brackets wil I be truncated to 7 bits (.ASCII) or 6 bits (. SIXBT).

Example:

Source Line Recognized Text Comments

TAG-I .ASCH L-l'ABC' ABC
-I . SIXBT L-1,'ABC I ABC
-I . SIXBT L-1'ABC'# 1/# ABC'/ The# is used as a delimiter in order

that (') may be interpreted as text.

-I .ASCIIL-1 'ABCD'EFGE ABCDFG
-.j .ASCIIL-1 'AB'<l l> AB -I < 11> used to represent ta~.
-I .ASCII._, 'AB<l 1> AB<ll> There is no delimiter after B,

therefore, (<11>) is treated as text.

-I . ASCII L-1< 15><012 >I ABC I)iABC

-I .ASCIIL-l'.(15><12>ABC 1-.1(s)) iBC'--'(s) A is interpreted as the text delimiter.
Also, since) was not used to ter-
minate the text, the (s) are inter-
preted as text characters.

The following example shows the binary word format which MACR0-15 generates for a given line of text.

Example:

-I .ASCII -I 'ABC'<015><12>'DEF I

G d Cd" enerate o mg

Word Number Octal Binary

Word 1 406050 1000001 J 1000010 T 1000

Word 2 306424 011I0001101 l 0001010 lo
Word 3 422130 1000100] 1000101 11000
Word 4 600000 110 l 0000000 l 0000000 J 0

3-14

3.9 GLOBAL SYMBOL DECLARATION (.GLOBL)

Label Field Operation Field Address Field

Not used . GLOBL A,B, C,D,E

The standard output of the Assembler is a relocatable object program. The Linking Loader, CHAIN or TKB

joins relocatable programs by supplying definitions for global symbols which are referenced in one program and

defined in another. The pseudo-op .GLOBL, followed by a list of symbols, is used to define to the Assembler

those global symbols which are either

a. internal globals - defined in the current program and referenced by other programs

b. external symbols - referenced in the current program and defined in another program

The loader (Linking Loader, CHAIN or TKB) uses this Information to include in the load and then link the relo­

catable programs to each other.

Al I references to external symbols must be indirect references since PDP-15 software systems use transfer vec­

tors for referencing external symbols. Each external symbol causes an additiona I word (the transfer vector

word) to be reserved in the user program. The loading program wil I store the actual address of the external

symbol in the transfer vector word. Thus, an indirect reference (through the transfer vector) wi II cause the

external symbol location to be addressed.

Example:

-1.GLOBL -1 A,B,C

A -I LAC -I D
/A is an internal global

D -I JMS* -I B 1These two instructions reference

-I JMS* -I c /External symbols indirectly

.END -I D

The .GLOBL statement may appear anywhere within the program.

The example above is assembled as fol lows:

Flag Location Word Value .GLOBL A,B,C

000000 R 200001 R A LAC D
000001 R 120003 R D JMS* B
000002 R 120004 R JMS* c

000001 .END D
000003 R 000003 *E
000004 R 000004 *E

The real values for locations 3 and 4 will be supplied by the loading program: these two words will contain

the addresses in memory of external symbols B and C.

3-15

I

I

3, l 0 REQUESTING 1/0 DEVICES (. IODEV) (not supported in RSX)

The . IODEV pseudo-op appears anywhere in the program (though standardly near the beginning) and is used to

cause the Assembler to output code for the Linking Loader or CHAIN which specifies the slots in the Monitor's

device assignment table (DAT) whose associated device handlers are required by the program, This is used in

those systems where device handlers are brought into core at the time a program is loaded to run.

Label Field Operation Field Address Field

Not used . IODEV 1 ,2 ,3 ...

The arguments may be numeric or symbolic. If the argument is symbolic, the symbol must be defined by a direct

assignment statement.

3.11 DESIGNATING A SYMBOLIC ADDRESS (.DSA)

.DSA (designate symbol address) is used in the operation field when it is desired to create a word composed of

just a transfer vector (15-bit address). It is useful when a user tag symbol is also a permanent instruction or

pseudo-op symbol.

Label Field

User Symbol

Examples:

JMP -.j LAC --! TAG

-.j .DSA -.j JMP}

-I -.j JMP

Operation Field Address Field

.DSA Any Expression

Equivalent methods of designating the user symbol JMP (rather than

the instruction JMP) to be in the address field.

3 .12 REPEAT I NG OBJECT CODING (.REPT) (Not avai I able in B/F MAC ROA)

Label Field Operation Field Address Field

Not used .REPT Count (Increment)

.~~1)
or

The .REPT pseu'.lo-op causes the object code of the next sequential object code generating instruction to be

repeated "count" times. Optionally, the object code may be incremented for each time it is repeated by

specifying an increment. The count and increment may be represented by a numeric or symbolic value. If a

symbol is used, it must be defined by an absolute direct assignment statement which must occur before the sym­

bol is used. The repeated instruction may contain a label, which wi 11 be associated with the first statement

generated. Note that arithmetic expressions in the address field are ii legal.

3-16

Examples:

Source Code

-I . REPT 1-..15

_, 0

-I . REPT L...14, 1

_, 1

-I . REPT 11-13,-1
_, 5

TAG=50

_, . REPT L...1.4 I 1

-I JMP 1-1 TAG

NOTE

Generated
Object Code

000000

000000

000000

000000

000000

000001

000002

000003

000004

000005

000004

000003

600050

600051

600052

600053

If the statement to be repeated generates more than one
location of code, the . REPT will repeat only the last lo­
cation. For example,

-4 . REPT 1-..13
-4 .ASCI11-..1'A'

wi II generate the fo II owing:

404000 5/7 A
000000
000000 last word is
000000 repeated

3-17

I

3.13 CONDITIONAL ASSEMBLY (.IF xxx and .ENDC)

It is often useful to assembly some parts of the source program on an optional basis. This is dane in MACR0-15

by means of conditional assembly statements, of the form:

-I . IF ... -j expression

The pseudo-op may be any of the eight conditional pseudo-ops shown below, and the address field may contain

any number, symbol, or expression. If there is a symbol, or an expression containing symbolic elements, such

a symbol must have been previously defined in the source program or the parameter file (except for • IFDEF and

,!FUND), If not, the value of the symbol or expression is assumed to be JI, thereby satisfying three of the

numeric conditionals.

If the condition is satisfied, that part of the source program starting with the statement immediately fol lowing

the conditional statement and up to but not including an .ENDC (end conditional) pseudo-op is assembled. If

the condition is not satisfied, this coding is not assembled.

The eight conditional pseudo-ops (sometimes called IF statements) and their meanings are shown below.

Pseudo-op Assemble IF x is:

-I . IFPNZL...lx Positive and non-zero

-I .IFNEGL...lx Negative

-I . IFZERL...lx Zero

-I . IFPOZL...lx Positive or zero
...,

.IFNOZL...lx Negative or zero

-I . IFNZRL...lx Not zero

-I . IFDEF L...lx A defined symbol

-l .IFUNDL...lx An undefined symbol

In the following sequence, the pseudo-op . IFZER is satisfied, and the source program coding between . IFZER

and . ENDC is assembled.

SUBTOT=48

TOTALL=48

-+j . IFZER--+\ SUBTOT-TOTALL

-\ LACL...IA

--+\ DACL...I B

--+\ . ENDC

Conditional statements may be nested. For each IF statement there must he a terminating • ENDC statement.

If the outermost IF statement is not satisfied, the entire group is not assembled. If the first IF is satisfied, the

3-lR

fol lowing coding is assembled. If another IF is encountered, however, its condition is tested, and the following

coding is assembled only if the second IF statement is satisfied. Logically, nested IF statements are like AND

circuits. If the first, second, and third conditions are satisfied, then the coding that fol lows the third nested

IF statement is assembled.

Example:

~ .IFPOZL-IX conditional 1 initiator

-.j LAC -.j TAG

--1 .IFNZRL-1 Y conditional 2 initiator

--1 DAC --1 TAG 1

--1 .ENDC conditional 2 terminator

--1 . IFDEFL-1 Z conditional 3 initiator

-+!. DAC -I TAG2

-I .ENDC conditional 3 terminator

-I .ENDC conditional 1 terminator

Conditional statements can be used.in a variety of ways. One of the most useful is in terminating recursive

macro calls (described in Chapter 4). In general, a counter is changed each time through the loop, or recursive

call, until the condition is not satisfied. This process concludes assembly of the loop or recursive call.

3.14 LISTING CONTROL (.EJECT)

The following Assembler I isting control is effective only when a I isting is requested by Assembler control key­

board request.

Label Field Operation Field Address Fie Id

Not used .EJECT Not used

When . EJECT is encountered anywhere in the source program, it causes the listing device that is being used to

skip to top-of-form.

3. 15 PROGRAM SIZE (.SIZE)

Label Field Operation Field Address Field

User Symbol .SIZE Not used

3-19

I

I

When the Assembler encounters .SIZE, it outputs one word which contains the address of the last location plus

one occupied by the object program. This is normally the length of the object program (in octal), However,

if a given program is 121 8 words long and has a • LOC 40.¢ statement at the head of the program, the value of

the .SIZE word will be 521 8 •

3.16 DEFINING MACROS (.DEFIN, .ETC, and .ENDM) (Not available in B/F MACROA)

The .DEF!N pseudo-op is used to define macros (described in Chapter 4). The address field in the .DEFIN

statement contains the macro name, followed by a list of dummy arguments. If the list of dummy arguments will

not fit on the same line as the .DEFIN pseudo-op, it may be continued by means of the .ETC pseudo-op in the

operation field and additional arguments in the address field of the next line. The coding that is to constitute

the body of the macro follows the .DEFIN statement. The body of the macro definition is terminated by an

.ENDM pseudo-op in the operation field. (See Chapter 4 for more details on the use of macros.)

3.17 ASSEMBLY LISTING OUTPUT CONTROL (.NOLST and .LST)

Label Field Operation Field Address Field

Not used {" NOLST}
.LST

Not used

If, while performing an assembly listing operation (L, X, or N assembly parameters}, the assembler encounters

a • NOLST, the I isting operation wi 11 be terminated unti I a . LST is found. These pseudo-ops are useful when

the user wishes to assemble all of a program, but only needs a listing of certain modules of the program (e.g.,

those which may not yet work properly). All symbols occurring between .NOLST and .LST will appear,in the

cross reference and symbol table listings when requested (A, V, X, or S assembly parameters).

3.18 COMMON BLOCK DEFINITION (.CBD) (DOS and RSX Systems Only)

The pseudo-op ,CBD enables the programmer to declare a COMMON area of an indicated name and size and

to specify the word to be set to its base address. The general format of th is pseudo-op is:

Label Field Operation Field Address Field

User Symbol .CBD NameL-ISize

The .CBD pseudo-op takes a COMMON name and size as arguments, reserves one word of core for the base

address, and outputs loader codes and parameters to direct the Linking Loader, CHAIN or TKB programs to set

a transfer vector to the base address (first elem~nt) of the named COMMON array, For example, the statement:

BASE .CBD ABCD 6

3-20

provides location BASE with the address of the first word of the COMMON area named ABCD whose size is 6.

Blank COMMON is given a special name by the system software, .XX. To reference Blank COMMON in a

.CBD statement, .XX should be given as the block name.

3.19 COMMON BLOCK DEFINITION RELATIVE (.CBDR) (RSX Systems Only)

The pseudo-operation .CBDR (common block definition relative) takes an offset as its only argument, The

general format of this pseudo-op is:

Label Field Operation Field Address Field

User Symbol .CBDR Displacement

This pseudo-op directs the task builder to enter the starting address of the last COMMON block specified in a

.CBD plus the offset given in the .CBDR into the word corresponding to the location of the .CBDR.

For example, the statements

BASE

BASE3

.CBD

.CBDR

ABCD 5

3

will cause the task builder to enter the starting address of the COMMON block ABCD into the location corre­

sponding to the tag BASE; in addition, the location corresponding to BASE3 will contain the starting address of

ABCD plus 3.

Note that .CBDR is relative to the last COMMON definition only. Any other assembler instructions or

pseudo-operations may intervene between the .CBD and .CBDR.

3-21

CHAPTER 4

MACROS

When a program is being written, it often happens that certain coding sequences are repeated several times with

only the arguments changed. It would be convenient if the entire repeated sequence could be generated by a

single statement. To accomplish this, it is first necessary to define the coding sequence with dummy arguments

as a macro instruction, and then use a single statement referring to the macro name along with a list of real

arguments which will replace the dummy arguments and generat~ the desired sequence.

Consider the following coding sequence.

-I LAC -I A

-I TAD -I B

-I DAC-1 C

-I LAC -I D

-I TAD -I E

-I DAC-1 F

The sequence

-I LAC -Ix
-j TAD -j y

-I DAC-1 z

is the model upon which the repeated sequence is based. The characters x, y, and z are called dummy arguments

and are identified as such by being listed immediately after the macro name when the macro instruction is

defined.

4. l DEFINING A MACRO

Macros must be defined before they are used. The process of defining a macro is as follows.

4-1

(Definition Line)

(Body)

(Terminating Line)

(Macro\Name) (Dummy Arguments)

--J .DEFIN -<>j MACNME,ARGl~ARGi,ARG\ -<>j /comment

{

-<>j LAC -j ARGl

-J TAD -I ARG2

-j DAC -I ARG3

4 . ENDM

The pseudo-op .DEFIN in the operation field defines the symbol following it as the name of the macro. Next,

fol low the dummy arguments, as required, separated by commas and terminated by any of the following symbols.

a. space

b. tab

c. carriage return

(L....J)

(_,)

())

The macro name and the dummy arguments must be legal MACR0-15 symbols. Any previous definition of a

dummy argument is ignored while in a macro definition. Comments after the dummy argument list in a definition

are legal.

If the list of dummy arguments cannot fit on a single line (that is, if the .DEFIN statement requires more than

72 10 characters) it may be continued on the succeeding I ine or I ines by the usage of the . ETC pseudo-op, as

shown be low.

-I DEFIN 4 MACNME,ARG1,ARG2,ARG3 /comment

4 . ETC -.JARG4,ARG5 /argument continuation

--1 . DEFIN--J MACNME _,
.ETC _,

ARGl

-j .ETC -I ARG2

-I .ETC
_,

ARG3

-1 .ETC -I ARG4

-I .ETC -j ARG5

4.2 MACRO BODY

The body of the macro definition follows the . D EFI N statement. Appearances of dummy arguments are marked

and the character string of the body is stored, five characters per two words in the macro definition table, until

the macro termir.ating pseudo-op . E NDM is encountered. Comments with in the macro definition are not stored.

Dummy arguments may appear in the definition lines only os symbols or elements of an expression. They may

appear in the label field, operation field, or address field. Dummy arguments may appear within a literal or

they may be defined as variables. They will not be recognized if they appear within a comment.

4-2

The following restrictions apply to the usage of the .DEFIN, .ETC and .ENDM pseudo-ops:

a. If they appear in other than the operation field within the body of a macro definition, they will
cause erroneous resu I ts.

b. If .ENDM or .ETC appears outside the range of a macro definition, it will be flagged as undefined.

If index register usage is desirable, it should be specified in the body of the definition, not in the argument

string.

.DEFIN
LAC A
DAC B,X
LAC C
.ENDM

XUSE,A, B,C

If .ASCII or .SIXBT is used in the body of a macro, a slash (/)or number sign (#)must not appear as part of the

text string or as a delimiter (use< 57 >to represent a slash and < 43 >to represent a number sign). Be careful

when using a dummy argument name as part of the text string. For example,

.DEFIN

.SIXBT
• SIXBT
.ENDM

TEXT A
,A,
.A .

followed by the macro call,

TEXT XYZ

will generate the following code

.SIXBT

.SIXBT
,XYZ,
.A.

In the first .SIXBT statement, A is recognized as a dummy argument resulting in the substitution of XYZ. In the

second statement, A is not recognized as a dummy argument because the string delimiter, period, is itself a legal

symbol constituent.

Definition Comments

-I .DEFIN -I MAC,A, B, C, D, E, F

-I LAC -I Afl

-I SPA

-I JMP -I B

-I ISZ -I TMP --.j /E E is not recognized as an argument

-I LAC -I (C

-I DAC -I D + l

-I F

-I .ASCII -I E

B= •

-I • ENDM

4.3 MACRO CALLS

A macro call consists of the macro name, which must be in the operation field, followed by a list of real or9u­

ments separated by commas and terminated by one of the characters I isted below.

4-3

a. space (L....I)

b. tab (--+j)

c. carriage return ())

If the real arguments cannot fit on one line of coding, they may be continued on succeeding lines by terminating

the current line with a dollar sign ($). When they are continued on succeeding lines they must start in the tag

field.

Example:

-I MAC -I REALT ,REAL2,REAL3 ,$

REAL4 I REALS

If there are n dummy arguments in the macro definition, all real arguments in the macro call beyond the nth

dummy argument will be ignored. A macro call may have a label associated with it; this label will be assigned

to the current value of the location counter.

Example:

(Definition) -I . DEFIN -I UPDATE, LOC,AMOUNT

-I LAC -I LOC

-I TAD -I AMOUNT

-I DAC -I LOC

-I . ENDM

(Call) TAG-I UPDATE -I CN TR, (5

(Expansion) TAG-\ LAC

-.\TAD

-I CNTR

-I (5

-I DAC -I CNTR

/TAG ENTERED INTO SYMBOL TABLE
/WITH CURRENT VALUE OF LOCATION COUNTER

The prevailing radix will be saved prior to expansion and restored after expansion takes place. Default as­

sumption will be octal for the macro call. It is not necessary for the macro definition to have any dummy argu­

ments associated with it.

Example:

(Call)

(Expansion)

-I .DEFINL....ITWOS

-I CMA

-I TAD1.-1(l

-I . ENDM

-I TWOS

-I CMA

--1 TAD.._. (1

4-4

4.3. 1 Argument Delimiters

It was stated that the list of arguments is terminated by any of the following symbols.

a. space

b. tab

c. carriage return

(L-.1)

(-I)
())

These characters may be used within real arguments only by enclosing them in angle brackets(<>). Angle

brackets are not recognized if they appear within a comment.

Example:

(Definition) -I . D EFINL-IMAC I A, B ,c
-I LACL....JA

-I TADL...IB _,
DACL...IC _, .ENDM

(Call) _, MAC...._. TAGl ,<TAG2 /comment _,
TAD 1_)1)>,TAG3

(Expansion)
_,

LACL...ITAG l _,
TAD 1.....1 T AG2

-1 TAD1.....1(1)

-I DAC1.....1 T AG3

A II characters within a matching pair of angle brackets are considered to be one argument, and the entire argu­

ment, with the delimiters(<>) removed, will be substituted for the dummy argument in the original definition.

MACR0-15 recognizes the end of an argument only on seeing a terminating character not enclosed within angle

brackets.

If brackets appear within brackets, only the outermost pair is deleted. If angle brackets are required within a

real argument, they must be enclosed by argument delimiter angle brackets.

Example:

(Definition) --l . DEFT N -I ERRMSG I TEXT

-I JMS -1 PRINT

--oJ .ASCII -1 TEXT

--oJ . ENDM

4-5

(Call)

(Expansion)

-+\ ERRMSG-+\ </ERROR IN LINE/ < 15»

-+\ JMS -+\ PRINT

-J .ASCII -j /ERROR IN LINE/< 15>

4. 3. 2 Created Symbols

Often, it is desirable to attach a symbolic tag to a line of code within a macro definition. As this tag is de­

fined each time the macro is called, a different symbol must be supplied at each call to avoid multiply defined

tags.

This symbol can be explicitly supplied by the user or the user can implicitly request MACR0-15 to replace the

dummy argument with a created symbol which will be unique for each call of the macro. For example,

-J .DEFIN -j MAC,A, ?B

The question mark (?)prefixed to the dummy argument B indicates that it will be supplied from a created symbol

if not explicitly supplied by the user when the macro is called for.

The created symbols are of the form .. 0000-.. 9999. Like other symbols, they are entered into the symbol table

as they are defined.

Unsupplied real arguments corresponding to dummy arguments not preceded by a question mark are substituted in

as empty strings; and supplied real arguments corresponding to dummy arguments preceded by a question mark

suppress the generation of a corresponding created symbol.

Example:

(Definition) --1 .DEFIN -j MAC,A,B, ?C, ?D, ?E

-+\ LACj A

--1 SZA

--1 JMPj D

-+\ LAC -+\B

-+\ DAC -+\ c#

-I DAC -j E

D= .

..., .ENDM

(Cal I) -I MAC -l y#,, I ,MYTAG

(Expansion) -+\ LAC -I y#

-+\ SZA

4-6

-I JMP -j .. 0000

-I LAC -I
-I DAC -I .. 0001

-+j DAC -I MYTAG

.. 0000=.

If one of the elements in a real argument string is not supplied, that element must be replaced by a comma, as

in the call above. A real argument string may be terminated in several ways as shown below:

Example:

-I MAC -+j A, B, ._.

-I MAC -I A,B,,)

-I MAC -I A,B ._.

-j MAC -I A,B)

-J MAC -I A,B,)

4.3.3 Concatenation

If a dummy argument in o definition line of the macro body is delimited by the concatenation operator '(Ql' and

immediately preceded or fol lowed by other characters or another dummy argument, the characters that correspond

to the value of the dummy argument (real argument) ore combined (juxtaposed) in the generated statement with the

other characters or the real argument that corresponds to the other dummy argument. This process is col led con­

catenation.

The following example i llustrotes this operation.

(Definition)

(Body)

(Coll)
(Expansion)
(Call)

(Expansion)

-..j .DEFIN --! MAC, TYPE, ADDR
-jJM@TYPE -I ADDR
-j .ENDM
-jCALL -j M_AC, P,ROUTl
-jJMP -I ROUTl
-jCALL ~ MAC, S,<SUBRl

~ .DSA ARGMNT>
JMS SUBRl
.DSA -I ARGMNT

The dummy argument TYPE is used to vary the mnemonic operation code of the generated statement. The charac­

ter P, which is the corresponding value of TYPE in the first call to the macro, will be concatenated with the

characters JM to form the mnemonic JMP. This action occurs because a dummy argument (i ,e,, TYPE) is delimited

by the concatenation operator (i.e., is preceded by@) and is immediately preceded or fol lowed by other

characters or another dummy argument (i.e., preceded by other characters JM).

4-7

Of course, in the case where other characters are to be concatenated with the value of a dummy argument, and

the first of the other characters is a MACR0-15 delimiter, it is not necessary to delimit the dummy with the

concatenation operator. The following example illustrates this rule.

(Definition)
(Body)

SV /{t'LVL

(Call)
(Expansion)

SV.,0'

-j .DEFIN

~ .IFUND
SKP

-I .BLOCK
-j .ENDC
-jDAC

~LAC
DAC

-!LAC
~ .ENDM

MOVE
-1.IFUND
-jSKP
-j .BLOCK
-j ,ENDC
-f DAC
-!LAC
-J DAC
-I LAC

-f MOVE, FROM, TO, LVL
-f SV.@LVL

-I
-I SV.@LVL
~FROM@ LVL,X

TO@ LVL,X
-j SV .@LVL

~ UST,RUST,,0'
sv .,0'

--1

~
SV.0
UST,0,X
RUST.0,X

-I sv .0'

In this example concatenation is used to test the existence of a named temporary location, and output code to

define it if necessary. Then the concatenation operator - MACR0-15 delimiter rule is presented by concatenat-

ing two dummy arguments and other characters beginning with a MACR0-15 delimiter, In detail, one such

concatenation string is a MACR0-15 delimiter (i ,e,, -f), a dummy argument (i.e., FROM), the concatenation

operator (i ,e,, (Ql), a second dummy argument (i.e., LVL), finally follONed by other characters beginning with

aMACR0-15delimiter (i.e., ,X).

The reader may realize that the general case of real argument for dummy argument substitution performed by

MACR0-15 is the application of the "other characters beginning with a MACR0-15 delimiter" rule presented

above. In other words, argument substitution may be thought of as concatenation when the dummy argument is

bounded by MACR0-15 delimiters, rather than a concatenation operator.

Note that one ambiguous case can arise in use of the concatenation operator when the other character string to

be concatenated with an argument value is the same as a dummy argument name. The following example illus­

trates this problem,

(Definition)
(Body)

WTCP-r}. LUN
TMP =EV+~

-j.DEFIN
-j.DEC
...j,IFUND
-/JMP
-ll 6

-j WAIT, LUN, EV, ?TMP

--j WTCP:fi:'LUN
-I .+3

4-8

-j. IFZER -I TMP

~EV@LUN .ENDC
.IFPNZ -I TMP

:r.~NDC
-1.ENDC
-k:AL -JWTCP@LUN
-J.ENDM

This macro was written with the intention of satisfying the fol lowing flow diagram.

MACRO
WAIT

LUN,EV

ENTRY

NO

OUTPUT WAITFR
CODE, 1610 WITH
LABEL "WTCPlun"

1

2

OUTPUT THE ADDRESS
OF LABEL "EVlun"

YES

6
OUTPUT THE VALUE
OF EV HE SPECIFIED

4-9

OUTPUT A
"CAL WTCPlun"

EXIT

7

8

9

For instance, if the fol lowing call to the WAIT macro were coded (with WTCPl,0 undefined):

(Cal I) ~WAIT -j 1,0
(Expansion) .DEC (l)

-I .IFUND -jWTCP10 (2)

-I JMP -I .+3 (3)
WTCPl,0 -I 16 (4)
TMP=+,0 (5)

-I .IFZER -..j TMP (6)

-I 1,0 (7)
-4 .ENDC (8)
-..j .IFPNZ -..j TMP (9)
-j .ENDC (l 0)

~ .ENDC (l l)
CAL -I WTCPl,0 (1 2)

Note that according to box 6 of the preceding flow chart, under these conditions it was desired to output:

-I EVl ,0

for line 7 of the above expansion rather than what was actually generated. This discrepancy occurs because the

characters EV on the appropriate line of the body of the definition are not recognized as "other characters". EV

is also a dummy argument which is bounded by a MACR0-15 delimiter (i ,e.,-..jon the left) and the concatenation

operator (i.e., @on the right). This will cause the concatenation of the value of dummy argument EV (i.e.,

null) and the value of the dummy argument LUN (i.e., 1,0), thus producing the output shown on line 7 of the

expansion.

Following is a comprehensive example of the use of the concatenation operation in defining user macros: the

definition of two macros, ERRMSG and MESSAGE. The purpose of ERRMSG is to cause a subroutine to be

called (named ER.PRO) which will print an error message,

It has as arguments the error number (from ,0 to 778) and an optional return address, The label of the error message

to be output is created by concatenating 'ERM.' with the error number. (ERM.,0, ERM.l, etc.) If no return

address is specified, control is transferred to a label named ER.NOR by default. The second macro, MESSAGE,

is used to create an !OPS ASCII line buffer with the error message to be printed, presumably via the ERRMSG

macro. It also has two arguments: the error number, and the message text. The output of the macro is a

properly set up header word pair labeled 'ERM.xx' where 'xx' is the specified error number, and a .ASCII state­

ment which contains the text specified, preceded by 'ERR#xx--', where 'xx' once again is the error number.

The reader should examine the example noting the use of conditional assembly parameters to accomplish macro­

time error detection,

4-10

.TITLE rnNrATE~ATlQN EXAMPLE FOR MACRO MANUAL
I
1 ~-A r>H' 'FR;:; ti 5{; 1 OE F rn IT IO ill , ERROR MESS AGE OUP UT MACRO•
I
I ~ALLI~G SEQUE~CE:

I
I
I
I
I
I
I

I
I
I
I

I

I
I

I
I
I
I

I
I
I

·;f.JERE:
~RRNQ z A~ OCTAL NU~8ER FRO~ 0 TO 77 REPRESENTING

THE ERROR cnoE.
~ETURN = (OPTIO~AL) THE LOCITID~ TO WHICH CONTROL

SHOUL fl tlE RfTIJRNEO FOLLnW I NG OUTPUT Of

1·L'TPUT:

THE EQklJR MESSAGE. IF NOT SPECIFIED,
CONTROL WILL ~E GIVEN TO LOCATION 'ER 0 NOR 1 •

." IJ T PU T n F ERR~· Sr; C 0 f\. SI 5 TS 0 F A JM S iO THE ERR ('IR PR 0 CE SS 0 R
rE~ 0 PRn 1 , FnLLO~EO PV A ,DSA ERM.XX wHERE XX = ~RRN0 0
~R~.xx rs A$5UM~D Tn HE I STANOARD IOPS ASCII LIN~ RUFFER
;H!CH CONTAINS THE nESIREO MESS~GE. IT MAV RE OEFINEn USING
THE I MESSAGE.' "1AC~O (SEE. BELOWJ.

I T 1s ERR rir~ IJU t>i E !'\' (1 f: RR N 0 I) IS CHECK ED T 0 8 E BETWEEN
I • ANO 77. nTHER-lSE AN ASSEMBLER ERROR LINt IS
I ,~1_,iPUl RATHER T+-<AN THE CAL.I.. TO 1 ER 0 F'RU 1 0 THF, ILL.EGA!..
I 6S5EMBER LINE WILL CAUSE. AN INt ERROR [AMONG OTHERS' TO RE
I ~E~ERATEn 9V THE ASSEMRER, THUS JNnICATING A INLJMSER'
I '.""RROR •

I
• DEFH•
• IF1·lEG
• IFPnZ

ZZR'f~J(':RTN+©

.IFZF.R
ZZ~l NI": :FR. :,nR

.E\JDC
Ti" S
• l1 SA
J'4P
.E\OC
• E •',r:•c
.lF~1EG

9
.E:·<!)C
• IF'POZ
g
• E;.OC
• E:lnM

ERRMSG,ERRNC'l,RTN
ERR~0-1~~ /VALIDATE ERROR CODE NUMBER
E~R~O /TO dE ~ <= ERRNO <= 77

/SETUP RETUQN AODR. IF SPECIFIED

/IF NO RETURN, SET TO sro. AnDR.

[R 0 PRIJ
EPM • ~ER"1NO
zzt:tnic

/CALL THE EQROR PROCESSOR
/PO!NT TO RIGHT MESSAG~
/EITHER RETURN Tn STn. EMIT. OR wME~E I SAID

ERRNO /PUT OUT ERROR IF NECESSARY
••ERROR CUOF IR < ~ OR > 77**

Ef'!Ri'J0• 1•11!71
••E~RnR coo~ IS < 0 OR > 77••

/MACRO 'MES5AGF' DEFINITJON 0 BUILD AN ERROR MESSAGE LINE BUFFER.
I
I C fl. L Pi G S fQ U E •JC E :
I
I MlSSAGE E"~~O,<TEXT>
I
I WHfRE:
I ER~NO : THE E~RDR NUMBER, F~UM ~ TO 77 (OCTAL]
I cTE~T> = THE MESSAGE TEXT (ENCLOSED I~ ANGLE
I aPACKETS, AS SMO~Nl TO BE ASSOCIATED wITH THIS
I lfRPNO'.

4-l l

I :l)TPl)l:
I

I l iTA~DAR~ !OPS A5CJt Ll~E BUFFER !S CREATED WITH THE NAME
I I F -; 11. ~ x I 'ni Fr:; E ;(, X' = ' t: R ~Na ' (s EE AB 0 v E) • THE. Ac Tu AL "'Es s AGE
I ~ILL ~AVE T~E F~R1AT 1 Ef<R#XX•• TEXT '• WHERE XX AND TEXT A~E AS
I A i~ •: VE • C• F C 0 1 1 fol $ E: , T H r:: L Pl E !3 U F F E R 11 E A 0 !:. R P A I R W I L L El E PR () V I 0 E 0

0 I
I E I' 't C1 I\ !": f: TF~ C T I '1 :,1 :

I

I •r4RNnr ~ILL RE CHErKtn TO BE BETWEfN 0 ANO 77.
I IF THE Cf-H'[K SH!1"4S AN HIRQR, MJ ASSEM8L.ER t~ROR
I I I~E ~ILL B~ SE~F~ATEO RATHER THE THE MESSAGE CODE. THE ERROR
I J l \: f. >i XL l C A Li :; E A T I_ E t. S T A N 1 N ' F L A r; , I N 0 I C A T I N G A I NU M B E R I
I .r-k· '"tnR.,
I

J,~-f-'p,

• tf'iFG
.TFF'riZ

f-f·M."'F"'>INO
(7,

• "'SC!I
A::•

• r.. '" r-c
• E 'i 11 c
• IF •i F; G

~~SSAGE,f~MNO,TEXT,7A
EQR••o-100
E ~ R "·1 fJ
A•[q~.f~RMNn/2+1~0~+2

EPfiYI")

9 '*'*c;.;R 11f.I crJDr IS < '1 OR > 77•11
. c~·rr
• JFPuZ E'"''~'·o-1:~~
9 ••EPRO~ CUDF IS < 0 OR > 77••
• F :i;r;
• F \ :_: r1

.FJECl

Er.:::;<' '1 Sc;
+ r; • I F'![G
+G .IFPOZ
+ f- Z Z i:.t T :.,, r "+ 13
•t: • !FZEf<
.. r. ZlRT'Jr:El:).\if'IR
+G .ENnc
• (, j I< ~

"'l' o;:; r,
J'' i'
• E: ::De
• F ': :)C
• l F"riEG

. r 1-.r: r::

• l FP!JZ
+ c;
,.. r, • r: :.cc

EYR"!lC.
·~ .TF~EG
•G .IFP0Z
,..C ?li<i••r:RECCV+!I
+~ .IF7EP
* f~ l l i~ T '' r:: FR. 'r ri ;.i

.. ,_

• r;

.i ~.•

.f:,nr.
• E \Ir· C

4 /OUTPUT FRROR Mf-:SSAr;E #4 1 THE STANDARD l::XIT
4-1~0
'1

ER• PRt)
FRM.4
ZZ F: Tc!C

4
**fr.:::nR

4 .. 1~IV'i
t *ER F< •J !-<

45,~u:nv

4s-1e.~
4'.i

E ;~·.Pk· i

E P ''. 11 !':>

ZZ~TNr

c ll [) f IS

CtllJr lS

< If\ OR > 77•w

< .., l1 f(> 77.,,.

/Givt ERROR #45, ANU RETURN TO LDC 'Rtcnv• -MFN D0NF

4-12

•G
• r;
•G
• (; •• VJ 1111;1 fl = •
•(, .E~OC
•G .fi•lOC
•G .IF~EG 4
•G 9 ••E~ROR coo~ 15 c ~ OR > 77••
•G .ENDC
•G .tFPOZ 4·1~0
•6 g ••ERROR CODE IS c ~ OR > 77ww
•G • E'rnc

MESSAGE 45,<AMB!GUrJus USE OF A COMPILER KEVWORO>
•r, .IFNEG 45•10~

•G .IFPOZ 45
•G F~M.45 •• ~0109-ER~.45/2•1~00+2
•G 0
•G .ASCII 'FRR#45--AMAIGUOUS ust nF A COMPILEH KEYWDR0'<15> . {;

•G
• c; . ,,
* (;
*G
•G
.-G
•G
•G
*G
+(.;

* r;
•G .I~NEG
•G g
•G .ENDC
•G .IFPOZ
•G 9
•G • PJDC

FRI< MSG
..-c; • IF'NEG
•G .IFPOZ
•G ZZRT~C~RfCOV+0

•G .IFZER
•r; z .zR·r"1c .. i;c:<. ~JOR

"'ENOC
JMS
.D$A
JMP
• (~JDC

• E '• ri C
• IFNEG
9
• E ~J Cl C
.IFPiJZ
9

·~ .ENCC
C:f.IRMSG

wr; • !F'lcG
•G .IFPOZ
• G Z Z R h' r: : + :'i
•G .IFZF.R
• G z z R T ~I r " E '-• • ;,; o P.

45
••ERROR CDOF. IS < iil OR > 77••

45• 1(001
••ERROR CODE IS < 0 OR > 77••

-34,RECOV
-34 .. 1iil0
.34

ZZRTNr.

Ei;/ 0 PRO
EPM,•34
ZZRTNC

... 34

/SHOW THAT A NEGATIVE ERROR NO. IT ILLEGAL

••ERROR CODF IS < ~ OR > 77••

-34·1~~
••ERROR CODE IS < 0 OR > 77••

456 /SHOW THAT AN ERROR NO, > 77(8) IS ILLEGAL
455 .. p171
456

ZZRT'\JC

4-13

• r;
"'(-,

•r Ff•M.4
.. c;
• t;
v(.

• r~

vr;_; •• 91,.11r;10::: 0

• !;: ""Li r:
.!'' s
• ~)SA

• t :;JC
• E;1f1C
0 lFIJf:b
9
• ~ '. fJ r.:
.fif'iJZ
9
• E'-inc
.EJECT

re;. »Rr'J
Er: ~·i. 4 56
ZZRHJC

4 ') 6
**E""i-iilR CODF IS < vl OR > 77••

4 ~, 5-1\~0
••ERROR CODf JS < ~ OR > 77••

~E55AGE 4 1 <ILLEGAL nR UNRECOGNIZABLE SYNTAX IN ST~NT>
.IF~~Ft. 4•H'0
.lf"P07 4
•• e~~~-ERM.4/2*10~~+?
e
.t5CI1 1 FRR#4••lLLFr.A.L OR LINRECOGNIZABLE SY~TAX IN STMNT 1 <15>

•G .ENDC
•!; • E 'IOC
,.r; • JFrJEG 45
•G 9 **Ef;Hil)~ COOt IS < Ol OR > 77••

•r;
~.r_;

•C• l"kM.-1
• r~
•r;
+(.., •• vr..-12:.:: •

.... ,

4"1•1C'I&~

• ;: ·~fl c
.!FPOZ
~ ,...-[t?RfiQ Ctll1F rs < ~ OR > 77.,,.
• E ··;oc
Mf:'3SAGE -1,<TH!S SHCIJLO f.lVE A. MACRO·ClETECTf:(l EM'ROR>
.lr'<FG -1-101'.1
.!FPOZ •l
•• 00t2-ERY.•1/2•1A~~+2
'21

.ASCII 1 FRPH·l·-ThJS SHOULO G!VE A MACRD·D~TECTE~ FkMOR'<15>

• E:~i')C
.~:;:)C

• T F ~! E G
9
. r '• D c
.lFf-''17

9
.. E '· t'"" C.
.EJ!:CT

-1
••(QRnR roof IS < 0 OR > 77••

-1-10•~

••ERR~R [UO~ IS < w OR > 77••

4-14

4.4 NESTING OF MACROS

Macros may be nested; that is, macros may be defined within other macros. For ease of discussion, levels may

be assigned to these nested macros. The outermost macros (those defined directly) will be called first-level

macros. Macros defined within first-level macros will be called second-level macros; macros defined within

second-level macros will be cal led third-level macros, etc. Each nested macro requires an . ENDM pseudo op

to denote its termination.

Example:

Level 1

-I .DEFIN -I LEVELl,A,B
-I LAC-I A
-I TAD--.j B Level 2

-I .DEFIN -I LEVEL2,C,D
-I ISZ -I C
-I DAC-+j D Level 3

-I . DEFIN -+j LEVEL3, E,F
-..J AND-I E
-I. XOR -I F
-I . ENDM LEVEL 3 .ENDM

-I DAC-1 Z
-I .ENDM

"
LEVEL 2 .ENDM

~ DAC-j Y
.ENDM • LEVEL 1 .ENDM

At the beginning of processing, first-level macros are defined and may be called in the normal manner. Second

and higher level macros are not yet defined. When a first-level macro is called, all its second-level macros

are defined. Thereafter, the level of definition is irrelevant and macros may be called in the normal manner.

If the second-level macros contain third-level macros, the third-level macros are not defined until the second­

level macros containing them have been called.

Using the example above, the following would occur:

Call

-j LEVELl -I TAG l, TAG2

-I LEVEL2 -j TAG3, TAG4

-I LEVEL3 -I TAGS, T AG6

Expansion

-I LAC -1 TAGl

-1 TAD-!TAG2

-j DAC-1 Y

-I ISZ -jTAG3

-;.j DAC -I T AG4

-I DAC -I Z

-I AND -I T AG5

-J XOR -J T AG6

4-15

Comments

Causes LEVEL 2
to be defined

Causes LEVEL 3
to be -defined

If LEVEL3 is called before LEVEL2 it would be an error, and the line would be flagged as undefined.

When a macro of level n contains another macro of the level n + 1, calling the level n macro results in the

generation of the body of the macro into the user's program in the normal manner until the .DEFIN statement

of the level n + 1 macro is encountered; the level n + 1 macro is then defined and does not appear in the user's

program. When the definition of the level n + 1 is completed(. ENDM encountered), the Assembler continues

to generate the level n body into the user's program until, or unless, the entire level n macro has been generated.

4.5 REDEFINITION OF MACROS

If a macro name, which has been previously defined, appears within another definition, the macro is redefined

and the original definition is eliminated. For example,

-I . DEFIN -I INDXSV

-I JMS -I SA VE

-I JMP -I SA VXT

SAVE-I 0

-I LAC -I 10

-I DAC -I TMP#

-I LAC -I 11

-I DAC -I TMPl #

-I JMP* -I SAVE

SAVXT=.

-I . DEFIN--!INDXSV

-I JMS -..jSAVE

-I .ENDM

-I .ENDM

When the macro INDXSV is called for the first time, the subroutine calling sequence is generated and followed

immediately by the subroutine itself. After the subroutine is generated, a . DEFIN that contains the name

INDXSV is encountered. This new macro is defined and takes the place of the original macro INDXSV. All

subsequent calls to INDXSV cause only the calling sequence to be generated. The original definition of INDXSV

wi II not be removed unti I after the expansion is complete.

Call Expansion

-I INDXSV -I JMS -I SA VE

-I JMP -I SA VXT

4-16

SAVE-I 0

-I LAC -I 10

-I DAC -I TMp#

-I LAC _, 11

-I DAC -I TMPl#

-I JMP* -I SAVE

SAVXT=.

-I INDXSV -I JMS -I SAVE

4.6 MACRO CALLS WITHIN MACRO DEFINITIONS

The body of a macro definition may contain calls for other macros which have not yet been defined. However,

the embedded calls must be defined before a call is issued to the macro which contains the embedded call.

Embedded calls are allowed only to three levels.

Example:

-I .DEFIN -I MACl,A,B,C,D,E

-I LAC -I A

-I TAD -I B

-I MAC2 -IC, D /EMBEDDED CALL

-I DAC -j E

-I .ENDM

-I . DEFIN -I MAC2,A,B /DEFINITION OF EMBEDDED CALL

-I XOR -I A

-I AND -I B

-I .ENDM

The call

-I MACl -ITAG1,TAG2, (400, (777, TAG3

causes generation of

-1 LAC -I TAGl

-I TAD -I TAG2

-I MAC2 -I (400, (777

-I XOR -I (400

-I AND -I (777

-I DAC -I TAG3

4-17

4. 7 RECURSIVE CALLS

Although it is legal for a macro definition to contain an embedded call to itself, it must be avoided because

the expansion will cause more than three levels to occur.

Example:

-...J .DEFIN -I MAC,A,B,C

-...j LAC -...JA

-...j TAD -...J B

-...j DAC -.j C

-I MAC -...j A, B,C /RECURSIVE CALL

-...J .ENDM

When a call for MAC is encountered by the Assembler, it searches memory for the definition and expands it.

Since there is another call for MAC contained within the definition, the Assembler goes back once again to

obtain the definition; this process would never cease if more than three levels were allowed. A conditional

assembly statement could be used, however, to limit the number of levels as in the following example.

Example:

A=O

B=3

-I . DEFIN -.j MAC,C,D

--1 LAC -IC

-:+J DAC -.j D

A= A+ l

-I . IFNZR -...j B-A

-I MAC -j SA VE, TEMP

-I .ENDC

-I . ENDM

/RECURSIVE CALL

Names and arguments of nested macros and arguments of imbedded cal Is may be substituted and used with perfect

generality.

4-18

Example:

-\ . DEFIN-\ MACl ,A, B,C,D

-\ LAC -I A

--1 ADD -I B

-\ DAC -IC

-\ .DEFIN -I D,E

-\ AND -\A

-\ DAC -IE
-\ .ENDM

-\ .ENDM

-\ .DEFIN -I MAC2,M,N,O,P,Q, ?R

-\ ISZ -\M
-\ JMP

_, MAC 1 -I NI 0 I p I Q

R=.

-I .ENDM

The call

-I MAC2 -I COUNT, TAGl, TAG2, TAG3,MAC3

causes the generation of

-I ISZ -I COUNT

-\ JMP -I .. 0000

-I LAC -I TAGl

--1 ADD· -I TAG2

-\ DAC -I TAG3
.. 0000=.

It also causes the definition of MAC3

4-19

5.1 INTRODUCTION

CHAPTER 5

OPERA TING PROCEDURES

Detailed descriptions of the assembler cal I ing procedure, command string format, general operating procedures,

and printouts are given in this chapter. (Refer to Appendix G for MACRO I operating procedures and Appendix

H for MACROA.)

5.2 CALLING PROCEDURE

5.2.l ADSS-15 and DOS-15

In the ADSS-15 and DOS-15 systems, the MACR0-15 Assembler is called by typing MACRO) after the Monitor's

$request. When the Assembler has been loaded, it identifies itself by typing:

MACR0-15 VNN or BMACR0-15 VNN
> >

on the teleprinter. The > character indicates that the Assembler is waiting for the user to type in a command

string.

There are two differences between MACR0-15 (the Page Mode Assembler) and BMACR0-15 (the Bank Mode

Assembler). MACR0-15 starts each assembly assuming page mode relocation (.DBREL implied) and BMACR0-15

assumes bank mode relocation (.EBREL implied). When program sizes exceed 4~96, MACR0-15 outputs the

warning message "PROG>4K" in the assembly listing but BMACR0-15 does not. This message will appear even

if the program is assembled under influence of .EBREL. This warning message has no other effect; the program

will be assembled and output will be produced anyway.

5 .2 .2 Background/Foreground (B/F)

In B/F systems MACR0-15 is called in the same manner as for ADSS-15. It identifies itself by typing:

BF MACR0-15 VNN

for both the page and bank mode systems.

5-1

5.2 .3 RSX PLUS and RSX PLUS 111

In the RSX systems, MACR0-15 is invoked by typing in the Assembler's name and also the command string on

the same line following the prompting message "TDV>". For example:

TDV>MAC BLXR FILf)
MACRO RSX Vl A

The Assembler identifies itself, as just shown, only if the R option is designated in the command. The RSX ver­

sion of the Assembler is equivalent to BMACR0-15 in that it assumes .EBREL to begin with and does not print

"PROG>4K".

5.3 GENERAL COMMAND CHARACTERS

The fol lowing characters are frequently used in the entry and control of MACRO programs.

Character Printout

RUBOUT {Echoes'\)
CTRL U (Echoes @)
CTRL P (Echoest P)

CTRL D (Echoes tD)

delete single character
delete current I ine
a. If the input source is physically segmented so that all but the last segment end
with .EOT or nothing, the Assembler will print out the message

EQT

when the end of a segment is reached. In RSX PLUS, the Assembler does not type
any such message.
b. If the source is segmented in such a way that operator intervention is required to
load another segment, Macro will print

tP

(MAC-tP in RSX PLUS) and wait for the user to key in CTRL P (CTRL P) in RSX
PLUS). Except in RSX PLUS, the user response will be printed also and the line
wi 11 appear as

t PtP

In RSX PLUS if one does not wish to load another tape, one may terminate assembly
by typing CTRL Q).
c. At the start of PASS 2 or PASS 3 if input is on paper tape or if the source is seg­
mented on DECtape or Magtape with segments being read via the same .DAT slot,
the Assembler will request a CTRL P response as above.
d. If the Assembler is not waiting for more input, or is not waiting to start the next
pass, typing CTRL P causes the Assembler to restart at PASS l • This is true for al I
systems except RSX PLUS.
If the user specifies the Teleprinter as the input parameter device, he can delimit
the parameter code by typing CTRL D (t D) (followed by) with the RSX Monitor),
MACRO responds with EQT. MACRO immediately begins assembling the program
from the device assigned to . DAT-11 (LUN 15 with RSX).

5-2

5.4 COMMAND STRING

The command string format consists of a string of options, followed by a left arrow, followed by the program

name(s), followed by a terminator.

options - filnml ,filnm2, •• ,

The following sections describe the rules for forming proper command strings and show typical assembly examples.

The character terminating the command line has significance. Terminating the line with a carriage return will

cause the Assembler to re-initialize itself to PASS l at completion of the assembly; the Assembler is thus ready

to accept another command string. Terminating the command with an ALT MODE will cause a return to the moni­

tor at the end of assembly. In the RSX PLUS and RSX PLUS 111 systems these I ine terminators ht've a different

meaning. Termination with carriage return causes TDV to be called; termination with ALT MODE does not. In

either RSX case the Assembler exits after executing the command line, If a command string error occurs, the

entire command must be retyped.

5.4. l Program File Name

To the right of the back arrow in the command string, one or more program file names may be required, depending

upon the options used and the type of 1/0 devices. Where several names are needed, they are separated by

commas.

Program names are required for files which are to be input from or output to directoried devices. The two prooer

forms for a file name are

where

filnamL-lext

or

filnam

filnam -= l to 6 character name

ext = l to 3 character extension

These may be formed from any of the legal. printing characters shown in Appendix A and may appear in any order.

If the file name extension is omitted, the Assembler assumes SRC in default. Following are examples of single

name command strings.

5-3

Examples:

User Command String

+ 1.....1ABCDEF1.....1l.0',0)
+ AB 1.....1.011) .
-<-A)
+ ABCDEFG)
+ ABCDEFGL-JH)
+ ABC1.....1 1.....1 VIA)

Assembler Interpretation
Name Extension

ABC DEF
AB
A
ABC DEF
ABC DEF
ABC

1C1.0'
.0'11
SRC
G
H
SRC

The last three examples illustrate how the Assembler interprets improperly formed file names. If the file name is

longer than six characters but is not fol lowed by a space, the seventh, eigth and nineth characters are used as

the extension. If it is followed by a space, characters beyond the sixth and before the space are ignored. If

two spaces follow the file name, the extension is assumed to be SRC. In general, if too many characters are

given the excess characters are ignored.

In DOS-15, RSX PLUS and RSX PLUS 111 systems the extension name of the main program is output (unless the 0

option is present) as a special code in the relocatable binary file. This enables programmers to easily identify

different versions of the same program by merely assigning unique exten~ion names. Since this special code is

not legal in ADSS-15 and Background/Foreground, one may suppress it, when msembling in DOS or RSX, by

specifying the 0 option.

Regardless of the source file extension, such as TEST .0'.0'1, the binary file extension will be either BIN, meaning

relocatable binary, or ABS, meaning absolute binary.

5.4.2 Options

Assembler options direct the course of the assembly. They describe the types of input and output desired. Option

characters are listed to the left of the back arrow. They may be listed in any order and are typically not separated

one from the other (although commas and spaces, which are ignored, may be used as separators). Option

characters which appear more than once and in val id characters are ignored.

Examples:

Command

B+FILE)

BLS +NAME)

5-4

Meaning

Assemble FILE SRC and produce a binary
object file.

Assemble NAME SRC and produce a binary
object file and an assembly listing followed
by a symbol table listing.

Examples (Cont.):

Command

+PROG....,.01X)

Meaning

Assemble PROG 01X producing no
output except a list of assembly er­
rors, if any, on the I isting device
assigned to .DAT -12 (LUN 16 in RSX).

The following table shows the action and the default of the options.

Option

A

B

c

D

E

F

G

H

Action

Print symbols at end of PASS 2 in
alphanumeric sequence on listing
device.
Generate a binary file to DAT-13
with extension BIN or ABS, as re­
quired. (LUN 17 in RSX).
Program areas that fol I between un­
satisfied conditionals are not printed.
It is not necessary to type the L op­
tion if this option is used.
Suppress binary output and output the
assembly listing onto DECtape Unit 2
with a file extension of LST (used only
by MACROI).
This option enables the user to have
any errors occurring during assembly
printed on the console printer in ad­
dition to the device assigned to .DAT
-12 (LUN 16 in RSX). The Lor N
switch should be used with the E op­
tion. This option is particularly useful
to users who assign non-printing devices
to .DAT-12, Not available with
ADSS-15 or B/F.
Read macro definition file from .DAT
-14 (LUN 18 in RSX) during PASS l .
Terminate input with .EOT or CTRL D
if Teletype (CTRL D) if RSX). Not
available with MACROA-15.
Print only the source line of a macro
expansion. It is not necessary to type
the L option.
The H-option is used in conjunction
with the A, V, or S options. User
symbols are normally printed horizon­
tally at the end of PASS 2, four sym­
bols to a line. If the H-option is used
the symbols will be printed one to a
line,
Ignore .EJECT's. The .EJECT pseudo­
op is treated as a comment, Not avai 1-
able with MACROl-15 nor MACROA-15.

5-5

Default Action

Symbols are not printed in alphanumeric
sequence.

A binary file is not generated.

All source lines are printed.

A binary, if desired, may be output to DEC­
tape 2. The I isting is output to the tele­
printer.

Assembly errors are not printed on the con­
sole printer.

No macro definition file is processed,

Generate printouts for macro expansions and
expandable pseudo-ops (e.g., .REPT).

Print symbols four to a line.

I

I
I

Skip to head of form when , EJECT ; • encounternd • 1

I

I

Option

L

N

0

p

R

s

T

u

v

x

Action

Generate a I isting file on the re­
quested output device, DAT-12.
(LUN 16 in RSX). If the output
device is directoried, then the
listing file extension will be LST.
Number each source line (decimal).
If this option is used, it is not neces­
sary to type the L option.
Causes the assembler to omit the
source extension and the linking
loader code 33 from the binary file.
This option must be used when assem­
bling programs in the DOS or RSX
PLUS systems to be run in ADSS or
B/F.
Before assembly begins, read program
parameters from DAT-10 (LUN 20
in RSX). Terminate input with .EOT
or CTRL D (if Teletype). The parameter
file is read only once; for this reason,
only direct assignments may be used.

Identify the Assembler version number,
print END PASS 1 and END PASS 2,
and print the error count on the tele­
printer (RSX PLUS and RSX PLUS Ill
only).
Same as selecting both A and V.

The T option causes a "Table of Con­
tents" table to be generated during
PASS 1. The table will contain the
page number and text of al I assembled
. TITLE statemenl"s in the program. Not
avai I able with ADSS-15 or B/F.

The assembled binary is output to
DECtape Unit l (Used only by
MACRO I).
Print symbols at end of PASS 2 in value
sequence on listing device.
At completion of PASS 2, PASS3 is
loaded to perform the cross-referencing
operation. At completion of PASS 3 the
Assembler will call in PASS 1 and 2, to
continue assembling programs. If the
command string was terminated by an
ALT MODE, control will return to the
Monitor at the end of assembly. If the
L and X options are entered, the user
should also enter the N option with the
ADSS or B/F Systems. Without the N
option the user would obtain a cross
reference which would be effectively
useless since the source lines of the
I isting are not numbered. In the DOS

5-6

Default Action

A listing file is not generated (see options
N, C).

Source I in es are not numbered.

Loader code 33 is included in the binary
output.

No parameters, begin assembly immediately
after command string termination.

These items are not printed in order to speed
up batch processing.

Symbols are not printed. (If neither option
V, S nor A is requested, symbols are not
printed.)
A table of contents is not generated at the
head of the assembly listing.

The assembled binary may be output to
DECtape Unit 2 if the B option is selected.

Symbols are not printed in value sequence.

A cross-reference is not provided and PASS 3 is
not called in.

Option

z

Action

and RSX PLUS systems the N option is
automatically entered if you enter Land
X. Not available in MACROl-15,

The Z option is related to the macro
definition file option F. Z has no
effect if F is not also specified. FZ
are used in combination when the main
program is segmented into two parts.
The first part, containing instructions
other than simply macro definitions,
must be read both during PASS 1 and
PASS 2. This is the function of the Z
option. (Not available with
MACROl-15 or MACROA-15).

Default Action

The F option, if specified, causes the Macro
definition file to be read only during PASS 1.

5.4.3 Multiple Filename Commands

In the general case o command may require up to three file names, depending upon the options specified, to

produce o single binary output file, As will be illustrated later on, the Assembler in RSX PLUS and RSX PLUS Ill

systems allows multiple assemblies to be specified in a single command, which may require more than three file

names. For the other software systems, the limit is three. Names may be needed to specify parameter files,

macro definition files and program files, The use of these names and the manner in which they are interpreted by

the MACRO Assembler are described in the fol lowing paragraphs.

NOTE

.In the following descriptions any file which is processed
by both PASS 1 and PASS 2 of the Assembler is also proc­
essed during PASS 3 if the cross-reference option (X) is
specified.

NAME l: PARAMETER FILE

If the P option is used and the device assigned to .DAT slot -1 0 (LUN 20 in RSX) has a directory, the

first name is interpreted as being 1·he parameter file name. The name of the file must be explicitly stated

if it is on a directoried device, If the device assigned to the parameter file is non-

directaried, the first name typed would follow 1·he rules for name 2. The parameter file is passed over

only once during PASS 1.

If the P option is not used, only two names are accepted by the command string processor. The first name

then would follow the rules for name 2.

NAME 2: MACRO DEFINITION FILE

If the F option is used, the second name (or the first if the P option is not used) is interpreted as being

the macro definition file or port one of o two part program (assuming the device assigned to • DAT-14 I

5-7

I
(LUN 18 in RSX) has a directory). If the device is non-directoried, the second file name (or first if the

P-option is not used or doesn't require one) would follow the rules for name 3. The macro definition is

normally passed over only once, during PASS l. However, unlike the main program file, macro defini­

tions on .DAT slot -14 are recorded in core during PASS l. Hence, PASS 2 is unnecessary. If the Z

option is used with the F option this file will be passed over twice, allowing source files in two parts on

two different devices. The Z-switch has no effect if F is not specified.

If the F option is not used, the first name (second if P option is used) is interpreted as the file name of

the program to be assembled.

The macro definition file may also be used as an additional parameter file. A second parameter file is

useful where a program is conditionally assembled to produce different versions according to many

assembly parameters.

NOTE

The RSX MACRO does not contain definitions of system direc­
tives and 1/0 calls. MACRO definitions for RSX are in a file
called RMC.V SRC, where V changes with each release.

NAME 3: PROGRAM FILE NAME

The name of the program to be assembled. This file is processed from , DAT slot -11 (LUN 15 in RSX) and

always by both PASS l and PASS 2. If the P and F options are not used and multiple names are typed,

only the first name will be processed. If a binary output file is requested, it will be directed to .DAT

slot -13 (LUN 17 in RSX). If either of the two devices has a directory, a file name must be specified.

The binary file will assume the name of the program file and an extension of either BIN or AbS.

MULTIPLE NAME INTERPRETATION

Before processing, MACRO uses the .FSTAT function (SEEK in RSX) to determine whether or not the

named files are on the input devices. If not, the message 'NAME ERROR' is typed, In all but the RSX

and BOSS-15 systems the Assembler then expects the command string to be retyped. In RSX, the Assembler

exits and calls TDV so that the command string can be given to TDV. In BOSS-15 the Assembler exits to

the monitor. Assuming that enough names have been typed to satisfy the command string options,

MACRO interprets the file names as follows:

a. Current name = NAME l •

b. Was the P option used? If not, go to step f.

c. Is the device assigned to • DAT slot - l 0 (LUN 20 in RSX) directoried?
If not, go to step F.

5-8

5.4.4

d. Use the current name (NAME 1) to .SEEK the parameter file via .DAT slot -10 (LUN 20 in RSX).

e. Current name= NAME 2.

f. Was the F option used? If not, go to step i.
g. Is the device assigned to .DAT slot -14 (LUN 18 in RSX) directoried? If not, go to step j.

h. Use the current name (NAME l or NAME 2) to .SEEK the MACRO definition file via .DAT slot -14
(LUN 18 in RSX).

i. Current name= NAME 3 (or NAME 2 if P option not used).

j. Use the ·current name (NAME 1 or NAME 2 or NAME 3) to .SEEK the program file via .DAT slot -11
(LUN 15 in RSX).

RULES FOR MULTIPLE NAMES IN THE COMMAND STRING

1 • Initial blanks positioned after the back arrow are ignored.

2. Files ore processed sequentially. The first name ofter the left arrow is the first file read, the second
file is next and so on.

3. Once a string of legal name characters is started, a space has the following effect on a name.

A, The first space delimits the proper name and indicates to the command string processor that the
extension name is next. The proper name is defined as the first six characters of a file name,
excluding the extension.

B. Two consecutive blanks delimit the name. An extension of 'SRC' is implied if no extension was
typed.

4. A comma or line terminator delimits the name. {Same as 3B above.)

5. Any name given after the third name is ignored, except in RSX PLUS and RSX PLUS 111. The RSX
assembler allows multiple assemblies to be specified in a single command. Where the options require
one, two or three file names, the command may contain multiples of one, two or three. Each such
group of one, two or three names represents o single assembly.

RESTRICTIONS CAUSED BY MULTIPLE FILE INPUT (not relevant to RSX PLUS or RSX PLUS Ill)

The .FSTAT system macro is used by the MACRO Assembler to determine whether or not the input device

has a directory and whether or not the argument names are on the assigned devices. For this reason, only

those 1/0 handlers which honor or which ignore the .FSTAT function may be used with MACRO, The "A"

handlers for directoried devices (e.g., DTA, DKA) honor .FSTAT. The paper tape punch and reader

handlers ignore .FSTAT, but the effect is as if they accept it. Device handlers which treat .FSTAT as

i !legal may not be used.

Examples of Commands for Segmented Programs

Below are typical assembly situations which illustrate the usage of some of the assembly options and show the

resulting teleprinter output. The output for RSX PLUS differs slightly from what is shown. That is explained in

section 5.3.

5-9

1 • Segmented Program on Paper Tape

A source main program is segmented onto three paper tapes to make loading in the reader easier.
Tapes one and two terminate with an . EQT statement and tape three terminates with . END. All
three segments are read from the primary input, .DAT-11 (LUN 15 in RSX). The command to Macro
to produce a binary program is:

> B +- ANYNAM)

Note that tape l must be ready in the reader before the command string is entered. Were it not, the
reader would return an end of tape condition anyway and erroneous results would be obtained. The
resulting teleprinter output is shown below. The comments to the right are not part of the output;
these are included here as explanatory remarks. User responses are underlined.

> B + ANYNAM.)
EOT

tPJ..£.
EOT

t pt p
END OF PASS l

+PU
EOT

t p .t..E
EOT

f·pt_p

SIZE=,012,03 NO ERROR LINES

2. Segmented Program on DECtape

/End of tape l •
/Ready tape 2. Type CTRL P.
/End of tape 2.
/Ready tape 3. Type CTRL P.

/Ready tape 1 • Type CTRL P.
/End of tape l •
/Ready tape 2. Type CTRL P.
/End of tape 2.
/Ready tape 3. Type CTRL P.

A source main program cannot fit onto a single DECtape. It is split in two on two different DEC­
tapes and given the same file name: MAIN SRC. The tape one file ends with .EOT; the tape two
file ends with .END. The file names must be identical if both segments are to be read via the
primary input, .DAT ,...11 (LUN 15 in RSX). Example 3 illustrates an alternate method. However,
example 2 must be used if one also is to include a Macro definition file, as in example 4. The
following command to Macro produces a binary program and the subsequent teleprinter output:

>B+MAIN)
EOT

+Ptl
END OF PASS l

tP J_P
EQT

tP iJ
SIZE=,0,07,03 NO ERROR LIN ES

3. Segmented Program on Disk

/End of file 1 • Mount second
ID EC tape on same unit. Type CTRL P.

/End of file 2. Mount first
/DECtape on same unit. Type CTRL P.
/End of file 1. Mount second
/DECtape on same unit. Type CTRL P.

This example is a variation of number 2. A two partmain program resides an disk. It doesn't matter
whether the two files are on the same or separate disk units. Part one terminates with .EOT; part
2, with .END. PARTl SRC will be read via the seconder>" input, .DAT -14 (LUN 18 in RSX); and
PART2 SRC will be read via the primary input, .DAT -11 (LUN 15 in RSX). The resultant binary
file, produced by the following command to MACRO, will assume the name of the second (primary)
file: PART2 BIN or PART2 ABS, as the case may be: .

> BFZ + PARTl, PARTV
EOT
END OF PASS l
EOT

SIZE""'.020',03 NO ERROR LINES

/End of PAR Tl SRC.
/End of PART2 SRC.
/End of PARTl SRC.

5-10

Several points can be made about the differences between examples 2 and 3. First, note that
CTRL P type in is not required unless input is from a device like paper tape. Next, note that
example 2 is impractical on disk because it requires physically interchanging disks. Example 3
is not restricted to usage with disk, but can be used with other media as wel I.

4. Use of a Macro Definition File

MACDEF SRC, which terminates with .EOT, contains only Macro definitions. It is read from the
secondary input, .DAT -14 (LUN 18 in RSX). The user has a main program, USEMAC 002, which
terminates with .END and which calls some of these macros but does not itself define them. This is
just an example. It is perfectly legal for the main program to redefine macros which also appear in
the macro definition file. USEMAC %%2 is read from the primary input, .DAT -11 (LUN 15 in RSX).
Below is the appropriate command string to produce a binary program. Note that the F option with­
out the Z option (see example 3) instructs the Assembler to read the first file (the Macro definition
file) only during PASS l.

>BF+- MACDEF,USEMAC ¢¢.2)
EOT
END OF PASS l

SIZE=~l 1,04 NO ERROR LINES

/End of MAC DEF SRC.
/End of USEMAC 9f02.

Note that EOT is not printed during PASS 2 because MACDEF SRC is read only during PASS 1. The
preceding example assumes that the files are on directoried devices.

5. Parameter File on Paper Tope

A main program, MAIN SRC, which terminates with .END is conditionalized to produce different
binary code based on the values or existence of certain assembly parameters. It is read via the
primary input, • DAT -1 l (LUN 15 in RSX), which, for th is example, is assigned to DECtape.
A paper tape containing parameter definitions (direct assignments) terminates with .EOT and is
read via the auxiliary input, .DAT -1,0 (LUN 20 in RSX). The following command to Macro pro­
duces a binary program:

>BP+- M .. ~dN)
EQT
END OF PASS 1

SIZE=J'J'6,02 NO ERROR LINES

/End of parameter tape.
1End of MAIN SRC.

Note, although input is partly from paper tape, a CTRL P response is unnecessary because the param­
eter tape is read only during PASS l.

6. Multiple File Assemblies in RSX

Using the Assembler in RSX PLUS or RSX PLUS II I, several assemblies, using the same set of options
for each, may be specified in a single command. Unless the R option is used, no printout on the
teleprinter will occur to signal the various stages of assembly. Below are listed two typical commands
in RSX.

>MAC BL+- Pl I P21-10%3, P3, P4)

This requests four assemblies, A separate binary and listing are produced for Pl SRC, P2 ,003, P3 SRC
and P4 SRC.

>MAC PB+- PARl ,Fill ,PAR2,FIL2)

This requests two assemblies. A separate binary is produced for Fill SRC and FIL2 SRC. The param­
eter file PARl SRC is applied to the assembly of Fill SRC and PAR2 SRC to that of FIL2 SRC.

5-11

5.5 ASSEMBLY LISTINGS

If the user requests a listing via the command string, the Assembler will produce an output listing on

the requested output device. The top of the first page of the listing will contain the name of the program

as given in the command string. The body of the listing will be formatted as follows:

Line Error Address Object Address Line
Number Flags Location Mode Code Type Type Source Statement

xx xx xxx xxxxx [R] xxxxxx [R] *G x

where:

Line Number =

Flags=

Location=

Address Mode =

A= absolute
R =relocatable

Line Type=
Object Code =

Address Type =

A= absoluta
R = relocatable
E =external

[A] *L
[E] *R

*E

Each source line and comment line is numbered (decimal); generated
I in es are not included. Lines are not numbered unless the X or N
option is specified.

Errors encountered by the assembler

Relative or absolute location assigned to the object code.

Indicates the type of user address.

*G =Generated *L=Literal *R=Repeated *E=External
The contents of the location (in octal)

Indicates the classification of the object code.

The object codes assigned for literals and external symbols are listed following the program.

5.6 SYMBOL TABLE OUTPUT

x

At the end of PASS 2, the symbol table may be output to the listing .DAT -12 (LUN 16 in RSX) device. If

the A option is used, the table will be printed in alphanumeric seguence; if the V option is used, the symbol

table will be printed in numeric value seguence; if the S option is used, the symbol table will be output in

both alphanumeric and numeric seguence, The format is as follows:

Symbol

SYMBL l
SYMBL2
DIRECT

Value

xxxxx
xxxxx

xxxxxx

5-12

Type

E
R
A

The Xs represent the octal value assigned to the symbol. This is the location where the symbol is defined, ex­

cept for external symbols. For these, the value is the location of the transfer vector, whose contents are set at

program load time with the actual value of the symbol. Note that for SYMBLl and SYMBL2 there are five Xs

but that there are six Xs for the symbol DIRECT. Symbols having six octal numbers to represent their values are

the result of direct assignments.

The symbol table shows the type of symbol:

A= absolute
R = relocatable
E =external

Locations assigned to variables immediately fol low the last object code producing statement in the assembled

program. Locations assigned for literals not under • LTORG influence and transfer vectors are I isted immediately

following the variables; if no variables are used in the program, literals and transfer vectors immediately follow

the program output.

5-13

PAGE

43
44
4!5
46

IJ
F

IJ

SAMPLF" $RC SAMPLE PROGRAM

.TITLE SAMPLE PROGRAM
I
I SAMPLE SUBROUTINE, NOT CLAIMED TO WORK OR TO ~AVF A~V PRACTICAL
I VALUE, USED TO ILLllSTRATE THE Ot.1TPUT ON Afl, ASSE:Mfh.Y LISTI:>i..;.
I THESE LINES ARE COMMENTS.
I
I THIS LISTING WAS OBTAINED USING BMACR0-15 IN DOS-15 W11~ TH~
I FOLLOWING COMMAND OPTI~NS TO ~ACRO: LSX
I

~"'~01'15 A OUT=5 I.DAT SLOT 5 0

fJl~fJl"'fJI R ~~m~Ol0 A
Olfllfll~I P ~4flli!6 R
fJIQlfJIQl? P '"'~123 R
fllOlfJIOI~ R 12~1?2 E
fJIQlfJl~4 P ?2~tt6 R
fJIOIOlfJl!I P 74j2flle A
OlfJlmm~ R ~mrn117 R
rnoimm1 ~ fll4mmm3 A
fJIPfll!fJI R 72~]77 A
~mm11 R ~sm124 R.
~fJll'li? R 777740 A
fllfJlfJl1~ P ~4fll11!5 R
fllOlfJl14 P 73~m~0 A
fJIQlfJlj!I R ?2fllQ!il'I A
fJIOlfllt~ p fll!5flllll55 R
fllfllfll17 P 44fllt15 R
fJl0fJl20I P 1'iPfJIOli5 R
fllOl"l~l1 p 1'!QlO!Ql24 R
fJlfJlfJl2? p 200!125 ~
OIOlfJl2~ R ~4flli23 R
fllfllfll,4 o 74Pmm0 A

~mm2~ R ~~1005 A •G
~m~?~ c P0Pm01 A •G
~~fll27 ~ ~~~mP0 A *G
~mfJl~fJI p ~mPfJl~0 A •G
mtllm~1 o ,0~126 R
mmrn~, o m4m024 R

0 ICJDEV OUT
0 GLOBL PRlNT,SAVE,RESTOR

I

WHJTH=72

.IFUMD WIDTH
1 0EC

.OCT
0 ENOC

BUFSlZ•WIDTH+4/!5*2+2
I
PRINT

LOOP

N06UF

CHANGE

I

lij

DAC
LAC
JMS•
LAC*
SNA
JMP
OAC
.UC
OAC:•
L.AW
OAC
c L.)(
LAC+
DAC
ISZ
JMP
JMP
LAC
DAC
NOP

ACSAV#
CSAVBUF)
SAVE
ACSAV

NO BUFF
lllRIH+3
~1

et 0 l
•BUFS IZ
COUNT

t tll
BUF, X
COUNT
LOOP
CHANGE
CERRMSG)
WRIT+3

.INIT our,1.,0
CAL+t•t~00 OUT&777
1
0+111
111

LAC CJMP AROUND)
OAC CHANGE

.EJECT

5-14

/CONnlTIONAL ASSEM~LY.

/DECIMAL NUMAEP 0

/DIRECT ASSIGNMENT,

/SU~ROUTINE ENTRY POINT.
/VARIAALE.
/LITERAL.
/EXTERNAL CALL.
/BUFFER ADDRESS.

/UNDEFl~EO SYHBOL (MlSSPELLEUJ.
/UNDEFINED SYMBOL RF:CAllSE Cr
/2 FORWARD REFERENCES.
/AUTOINDE~ AEGI5TtA 0

/INOEX REGISTER REFtR~NCF 0

/IJNDEFPiED (M!SSPELLEl1i •

/SYSTEM MACPO CALL.

/PAr.E t=:JECT •

PAGE

47
48

!HI
t'l111
l'H
62
63
64
85
86
1!17
158
69
70

2

"'O!"' 3 :\ II

"1111!'11~~ 0 "'"''(lltll5

OI ''"" :5 4
0 "'Qll'l!til I 1

lll\')lfll~!'! RI 74ii!l1!41!1

"'"'"':.'HI 0 1'1\')llll(llt'l0

"'"'1'137 ri "'QI l'IOI rll 5
!'111110!.dOI 0 t:'!111!1111112

"'"'"' 41
0 '"'"' 123

"11110!4, II UM! 1l?1
ill1111U~ II ,Qlf.'!116
!i!l1I0144 II 1'12"'111"'rll

!l!OllU!'l Iii IJ!111i\ti10l2

"'"'"'"'ill !::! !111,1\fll(l\l,l\{ll

"'°'"''°' !::! 421114!'!2

"'°'"' !5"'
II ,47544

"'"'"' !51 II "'(500!0

"'"'"'!'!' II "'°'"' °' Ol 111

"'"'"'!5' RI

1110!111 !'l' II
ill111!11!'l!'! II

Ill Ill I I !'! Ii? "'1111J!111t'lllJ

"'11Jiil111l'l0
'.110! ! 21 11:1 !11121(11121
1'1012' 11:1 f1!121til i 22
rittlJ ! 2:§ D f1!1JHll0!52
0!11!124 11:1 9JQ!lll0!! 0
111~ I 25 11 OIP.111!fl!45
"It'! i 2,. Iii' l't'lt'l(ll 33

1!l7E•l1llll1311l

A
A
A

A

A
A
R
E
R
R

A
A
A
A
A
A

A
A
A

A

E
E
R
A
R
R

SAMPl.E PROGRAM

•G
•G
•G
•G
•G

•G
•G

•E
wE
•I.
•L
•I.
* L.

WRITE•AROUND
AROUND ,WRITE our.2.xx,111

CAL•2•t0!111111 OUT&777
11

I

I

xx
.DEC

0 WAIT OUT
CAL. CIUT&777
12
I. AC
JMSw
LAC:
JMP•

(SAVF.!UF)
REST OR
ACS AV
PRINT

/FORNARO REFEA~NCE.
/SYSTEM MACRn CALL.

/SYSTEM MACRO CALL.

/EXTERNAL CALL.

I THE NEXT LIN~ CONTAINS THREE JTITE~ENTS.
I
ERRMSG 00J~1112f 1111 .ASCII /ERROR/<1~>

5AVBUF
BUF
COUNT
I

.LDC

.BLOCI<
0 BLOC1<
0

• • 1
3
BUFS IZ

/CHA~GE LOCATION cnUNTER •
/MG!, XR AND LR.

I
I

FOLLOWING THE .ENO STATEMENT ARE THREE LOCATIONS (NnT SHn~N)
FOR ONE VARIABLE (ACSAV) ANO TWO UNDEFINED SYMBOLS (NQBUF~

I ANO WRITE, THE LATTER BECAUSE OF A DOUBLE FORWARD REFERE~CE).
I FOi.LOWING THAT (SHOWN) ARE TWO EXTERNAL TRANSFER VECTORS
I AND FOUR LlTF.RAl.S.
I

1 ENO

3 ERROR LINES

5-15

11 ,, 't ! !"'I ·"":", l·o' , .. ~<.:HJL!:. PkCGfrA'~

ACS" 'v ·';." t t :; ,.) I 'li •r· .. ; ... •;l~ 1 .3S ,.. t-111F l'llV'~55 ~ 11Uf'SIZ viii vr;, 4\ll

Ct• llr.1C·L ' : .. , I'~" r ,,, T ,-.~ 1. '5 " F.~i:i.;c;r. (!\~,:~45 ~ 1..0llP 1?V1015 ..
,, ();;. \.. F ~~:-'Ill~~? ·~ ~ "'"! ~:. I P· r"' 1 17 ... f'JUT li'~(}.r~:;,5 A. !o'R INT V'Ql(lri'l(il

~t51 t•!'t ;;,.,-.1 ', ~- ~ \Vt-• t:F ,,-,•I 52 I'; SA\l't: r~n22 E I>; l[.JT!'f "''lrtlllt
~:Q IT -. ;* 1 ~ ., ,., .. <' T '!' c .. ~ .: 'ii 'Ii .. q ""

l"><T'.l 11:,. 't1.1fl. ·~
,., ·1 -~ ~ "·115 .II. l,. [10 fol ('lvVil5 ~ ~-0oUF I~ !il (:" 2 <!

\:l·•ilr Gt ··~· ' 1 24 '../ ...) ~·,I ' ,,,~.; '3 "' 1~w ll E i?,f}lr•11JJ3 ~ ~UrSIZ il'li'li' v 4.1

F\..t'P~~I: ·1y.11.0~ :;; ~ .. v >:_;1- ·.·'' ·. S? ~ lo! \.iF DIV. ':1155 IC r<ll.Hf"i (1)?"'110

r.c:u• l -, ,, t 1 .. ~' ;.. 1"' :; ~. '..; <~1 le> "'· Nt•l:ldFfo 1'\'t'l 17 q •·RI T i11A12V:

I-< c Sl r:" :• t. 1 '11 ;::- ... \' ~- " • t 2? t:

..... a •r.;1 ;. ,. ~ ,~. <.,. ~ ,.; ~f f '"E 1- r:f..

llC ""'' .. , 1 1 .. ~' ~; r; !) ~\" ,, .. , .. n,,;' ,, fl ~. ', ,! "l . -,, '• 7 IJ~•

''·i•F ·~ ,, :• '5, ~- '· 1 ...
ri_ F"'!1.. i:'., .. ~~"A" I c • ;. • I " 1
ft1Ad;r ';' ,, ~ .1 "1. t ...

,; l 44
r;;111 .. -, ;. .,, 1 " .t;: ' (<":;,>• ,. F~1.-$l: /'",&.,,.-~ 4 ~ ·.~ ... : " ; ..
L,:ni- ,, :'J;"X 1 ~ ~ <I ,_ '7
"'Lf-" •F ;-~. ;'!>) ~~ ~

f • r~ i.' F ... ~:· 1 1 7 ._, 7

'"'l:T ·:•. ""':: '~ :-.. '·~ 1 .- t I ! 1~ .in• r;"'
F;.< Ir T ·.;,- ~-. :;; 1 '· /1. .. '; '.l

~

':it ~ 1 r.~ v o• 1 ;! 1 , " " ,;z
~A 1/1-'l'I" ,. ;·"'~? ~ '°'! 1

.:;;,._,..

SA\it' ... ', ~? ' 2 :·'4

~'111) 1 "' r;. ''"' 1 1 ,, , 4 . ,.,._
1 d

.':f>t! r 'll ·'• 1 ;J ri t1r·
i• RIH ~,, .. :;~ "'fi ~ 7 •

5.7 RUNNING INSTRUCTIONS

Once the Assembler has identified itself, it is ready to perform an assembly. Proceed as follo.vs:

a. Place the source program to be assembled on the appropriate input device,

b, Type the command string.

5 .7 .1 Paper Tape Input Only

The following steps are required when the source program is encountered in the paper tape reader:

A
j)

R
A.

R
A
A

R

a. At the end of a source tape segment which is not terminated with a .END statement or at the
heginning of PASS 2 or PASS 3, the Assembler types

tP

b. Place the proper source tape in the reader and, if the computer is a PDP-9, push the tape-feed
button to clear the EOT flag.

c. In all systems except RSX PLUS or RSX PLUS 111 type CTRL P to continue. For the lotter, type
CTRL P) •

5-16

5.7 .2 Cross-Reference Output

At the end of PASS 2, PASS 3 will be performed by the Assembler for the cross-referencing operation if the X

option is requested. At completion, the assembler will be restarted (except in RSX systems) to permit additional

assemblies if the command string is terminated by a CARRIAGE RETURN ().)entry.

When a cross reference output is requested / the symbols are I isted in a I phabetic sequence. The first address

after the symbol is the location where the symbol is defined or its 6-digit value if it is a direct assignment. All

subsequent locations represent the I ine number (dee ima I) where the symbol was referenced. The I ine number with

the asterisk is that in which the symbol is defined. Leading zeros are suppressed for the cross-reference symbol

table. Nine I ine numbers are printed an one I ine and subsequent I ine numbers are continued on the next I ine. I

Example:

PAGE

A

B
SYMBOL

5000
100

PRGA

xxxxx
xxxxx
XXXXX*
XXXXX*

CROSS REFERENCE

xxxxx: xxxxx
xxxxx

Cross referencing can be a useful tool even without the aid of a line printer. It is possible to put the

source assembly listing with line numbers onto a directoried device, such as, DECtape, and the cross

reference table (by a separate assembly) on a teleprinter. Then, desired lines in the "LST" file can be

accessed by using the EDITOR.

LIMITATIONS

A. Before cross reference output can begin, PASS3 of the Assembler must first have read the entire
source file(s) and stored the reference line numbers in core memory. Should available core be
too limited, the Assembler will output the following message to the listing:

CORE EXHAUSTED AT LINE DODD

where Dis a decimal digit. Then the Assembler outputs all the references found up to that point.

B. For programs with more than 9999 lines of source code, line numbers begin again at 0000 on line
10%0%. In the cross-reference listing, 1%%0% is represented as :000, 11000 as ;00%, and so on.
These special characters are simply those which follow the numerals in the ASCII character set
(Appendix A). Below is a list of characters and their meanings.

10
11

< 12
13

> 14

? 15

5-17

C, To conserve core space, PASS3 of the Assembler does not maintain a permanent symbol table.
Consequently, if user defined symbols are identical to permanent symbols, references to the
permanent symbols will be included in the cross reference. For example:

LAC A
TAD LAC

LAC 5

Three references to LAC will be listed.

D. Conditionals (.IFxxx through .ENDC) are treated during PASS3 as if they are always satisfied.
Consequently, although a conditional might not be satisfied during PASSl and PASS2, references
within to defined user symbols will appear in the cross-reference output.

Note that undefined symbols which are referenced in .IFDEF and .IFUND statements remain unde­
fined; hence, these do not appear in the cross reference.

5.8 PROGRAM RELOCATION

The normal output from the MACR0-15 Assembler is a relocatable object program, which may be loaded into

ony part of memory regardless of which locations are assigned at assembly time. To accomplish th is, the address

portion of some instructions must have a relocation constant added to it. This relocation constant is added at

load time by the Linking Loader, CHAIN or TKB; it is equal to the difference between the memory location that

an instruction is actually loaded into and the location that was assigned to it at assembly time. The Assembler

determines which storage words are relocatable (marking them with an R in the listing), which are absolute

(making these non-relocatable words with an A) and which are external (marking these with an E). The rules

that the Assembler fol lows to determine whether a storage word is absolute or relocatable are as follows.

a. If the address is a number (not a symbol), the address is absolute.

b. If the address is a symbol which is defined by a direct assignment statement (i.e., -=)and the right­
hand side of the assignment is a number, a II references to the symbol wi 11 be absolute.

c. If a user symbol is defined within a block of coding that is absolute, the value of that symbol is
absolute.

d. Variables, undefined symbols, external transfer vectors, and literals get the same relocation as was
in effect when .END was encountered in PASS l.

e. If the location counter (. LOC pseudo-op) references a symbol which is not defined in terms of a
relocatable address, the symbol is absolute.

f. All others are relocatable.

The following table depicts the manner in which the Assembler handles expressions which contain both absolute

and relocatable elements.

(A=absol ute, R=relocatab le)

A+A=A
A-A=A
A+R=R

A-R=R
R+A=R
R-A=R

R+R=R and flagged as possible error
R-R=A

5-18

If multiplication or division is performed on a relocatable symbol, it will be flagged as a possible relocation

error.

If a relocatable program exceeds 4K, and the assembler is a page mode version, the following warning message

wil I be typed at the end of PASS 2:

PROG > 4K

5.9 SYSTEM ERROR CONDITIONS AND RECOVERY PROCEDURES

5.9.I ADSS-15, DOS-15 and BOSS-15

Printout

IOPS 4

IOPS ,0-3
IOPS 5-77

5.9.2 BACKGROUND/FOREGROUND

Printout

"DEVICE" NOT READY

.ERR ,0-777

5.9.3 RSX PLUS and RSX PLUS Ill

Recovery Procedure

Device is not ready. Ready the device and,
if it is an 1/0 BUS device, not a UNIBUS
device, type

CTRL R (t R)

Unrecoverable 1/0 error.
Except in BOSS-15, type CTRL P to restart
MACRO or type CTRL C to return to the Monitor.

Recovery Procedure

Ready "DEVICE" and then type

CTRL R (t R)

Most of these errors are unrecoverable. Those
which are recoverable do not require operator
intervention. For terminal errors type CTRL P
to restart MACRO or type CTR LC to return to
the Monitor.

Printout Recovery Procedure

MAC-1/0 ERROR LUN xx yyyyyy is produced on LUN 13: xx represents the Logical Unit
Number {decimal) and yyyyyy the octal Event Variable
value indicating the cause of the error. Control is
automatically returned to TDV.

5.9.4 Restart Control Entries (not relevant to RSX)

CTRL P
CTRL C

Restart Assembler, if running
Return to Monitor

5-19

I

I

5.10 ERROR DETECTION BY THE ASSEMBLER

MACR0-15 examines each source statement for possible errors. The statement which contains the error will be

flagged by one or several letters in the left-hand margin of the I ine, or, if the lines are numbered, between the

line number and the location. The following table shows the error flags and their meanings.

Flag

A

B

D

E

F

L

M

N

p

Q

R

s
u
w
x

Meaning

Error in direct symbol table assignment - assignment ignored

1 • Memory bank error (program segment too large)
2. Page error - the location of an instruction and the address it references

are on different memory pages (error in page mode only)

Statement contains a reference to a multiply-defined symbol - the first value
is used

1 • Symbol not found in user's symbol table during PASS 2
2. Operator combined with its operand may -produce erroneous results

Forward reference - symbol value is not resolved by PASS 2

Line ignored:

l • Relocatable pseudo-op in .ABS program
2. Redundant pseudo-op
3. .ABS pseudo-op in relocatable program
4. .ABS pseudo-op appears after a line has been assembled
5. A second .LOCAL pseudo-op appears before a matching .NDLOC pseudo-op
6. An .NDLOC appears without an associated .LOCAL pseudo-op
7. Too many • L TO RG pseudo-ops (more than 8)
8 •• IODEV pseudo-op in .ABS or .FULL program

Literal error:

l. Phase error - literal encountered in PASS 2 does not equal any
literal found in PASS 1

2. Nested literal (a literal within a literal)

Multiple symbol definition - first value defined is used

Error in number usage (digit B or 9 used under .OCT influence)

Phase error:

1 • PASS 1 symbol value not equal to PASS 2 symbol value (PASS 2
value ignored)

2. A tag defined in a local area (.LOCAL pseudo-op) is also defined in
a non-local area

Questionable I ine:

l • Line contains two or more sequential operators (e.g., LAC A+*B)
2. Bad line delimiter - address field not terminated with a semicolon,

carriage return or a comment
3. Bad argument in .REPT pseudo-op
4. Unrecognizable symbol with .ABS(P) pseudo-op

Possible relocation error

Symbol error - illegal character used in tag field

Undefined symbol

Line overflow during macro expansion

I I legal use of macro name or index register

5-20

In addition to flagged lines, there are certain conditions which will cause assembly to be terminated prematurely.

Message

SYNTAX ERR

?
NAME ERROR

TABLE OVERFLOW
CALL OVERFLOW
CORE EXHAUSTED
AT LINE nnnn

Meaning

Bad command string, control returns to
TDV (RSX only)
Bad command string, retype (not RSX)
Fi le named in command string not found.
In all systems except BOSS-15 and RSX,
the Assembler wi 11 restart and accept
another command string. RSX MACRO
will return to TDV. BOSS-15 will re­
turn to the Monitor,
Too many symbols and/or macros
Too many embedded macro calls
PASS 3 error - too many symbol references

5-21

I

6-bit
Printing 7-bit Trimmed

Character ASCII ASCII

@ 100 00
A 101 01
B 102 02
c 103 03
D 104 04
E 105 05
F 106 06
G 107 07
H 110 10
I 111 11
J 112 12
K 113 13
L 114 14
M 115 15
N 116 16
0 117 17
p 120 20
Q 121 21
R 122 22
s 123 23
T 124 24
u 125 25
v 126 26
w 127 27

x 130 30
y 131 31
z 132 32
[* 133 33
\ 134 34
]* 135 35
t* 136 36
+-* 137 37

Null 000
Horizontal Tab 011
Line Feed 012
Vertical Tab 013

Printing
Character

Form Feed
Carriage Return
ALT MO DE (ESC)
Rubout

(Space)
!
II

$
%
&
I

(
)
*

+
I

-.
I
0
1
2
3
4
5
6
7
8
9
·*
;

<
=

>
?

., .

7-bit
ASCII

014
015
175
177
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

APPENDIX A

CHARACTER SET

6-bit
Trimmed

ASCII

40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

*Illegal as source, except in a comment or text, Any characters not in this table are illegal to MACR0-15
and are flagged and ignored.

A-1

Operate CLA

OPR 740000 TCA

NOP 740000 CLC

CMA 740001 LAS

CML 740002 LAT

OAS 740004 GLK

RAL 740010 LAW

RAR 740020 EAE

IAC 740030 LRS

HLT 740040 LRSS

xx 740040 LLS

SMA 740100 LLSS

SZA 740200 ALS

SNL 740400 ALSS

SML 740400 NORM

SKP 741000 NORMS

SPA 741100 MUL

SNA 741200 MULS

SZL 741400 DIV

SPL 741400 DIVS

RTL 742010 IDIV

RTR 742020 IDIVS

SWHA 742030 FR DIV

CLL 744000 FR DIVS

STL 744002 LACQ

CCL 744002 LACS

RCL 744010 CLQ

RCR 744020 ABS

750000

740031

750001

750004

750004

750010

EAE 760000

640000

640500

660500

640600

660600

640700

660700

640444

660444

653122

657122

640323

644323

653323

657323

650323

654323

641002

641001

650000

644000

B-1

APPENDIX B

PERMANENT SYMBOL TABLE

GSM 664000

osc 640001

OMQ 640002

CMQ 640004

LMQ 652000

IOT

IOT 700000

IORS 700314

DBK 703304

DBR 703344

IOF 700002

ION 700042

CAF 703302

RES 707742

Memory Reference

CAL 000000

DAC 040000

JMS 100000

DZM 140000

LAC 200000

XOR 240000

ADD 300000

TAD 340000

XCT 400000

ISZ 440000

AND 500000

SAD 540000

JMP 600000

I Automatic Priority* Index and Limit Register Mode Switching
Interrupt Instructions Which do

EBA 707764
RPL 705512 not use Operands

DBA 707762
SPI 705501 CLLR 736000

ISA 705504 PAL 722000 Index Register Value

Index Instructions PAX 721000 x 10000
Which Take an Immediate

PLA 730000
Nine-bit Operand

AAC 723000
PLX 731000

AXR 737000 PXA 724000

AXS 725000 PXL 726000

CLX 735000

I *Not part of the permanent symbol table in B/F MACROA.

B-2

Name

Space

Horizontal tab

Semicolon

Carri age return

Plus

Minus

Asterisk

Slash

Character

Ampersand

Exclamation point

Back slash

Opening parenthesis

Closing parenthesis

Equals

Opening angle bracket

Closing angle bracket

Comma

Question mark

Quotation mark

Apostrophe

Number Sign

Dollar sign

Line feed

Form feed

Vertical tab

Commercial At

Symbol

+

*

I
&

\

=

<

>

?
II

$

non-printing

non-printing

non-printing

@

}

APPENDIX C

MACR0-15 CHARACTER INTERPRETATION

Function

Field delimiter. Designated by 11......1 in this manual.

Field delimiter. Designated by -j in this manual.

Statement terminator

Statement terminator

Addition operator (two's complement)

Subtraction operator (addition of two's complement)

Multiplication operator or indirect addressing indicator

Division operator or comment initiator

Logical AND operator

Inclusive OR operator

Exclusive OR operator

Initiate literal

Terminate literal

Direct Assignment

Argument delimiter

Argument delimiter

An argument delimiter in macro definitions or an
exclusive OR operator.

Created symbol designator in macros

Text string indicator

Text string indicator

Variable indicator

Real argument continuation

not applicable

Concatenation operator in macro definitions

C-1

I

Null

Delete

Name

Character

I II ega I Characters

Symbol
Blank Character

Blank Character

Function

Ignored by the Assembler

Ignored by the Assembler

Only those characters listed in the preceding table are legal in MACR0-15 source programs, all other characters

will be ignored and flagged as errors. The following characters, although illegal as source, may be used within

comment lines and in text preceded by .ASCII or .SIXBT pseudo-ops.

Character Name

Left bracket

Right bracket

Up arrow

Left arrow

Colon

C-2

Symbol

[

]

Pseudo-op

.ABS

.ABSP

,ASCII

.BLOCK

.CBD

.CBDR

• DBREL

.DEC

.DEFIN

.DSA

.EBREL

,EJECT

• END

.ENDC

.ENDM

.EOT

Section

3 .2. l
3.2. l

3.8. l

3.5

3.18

3.19

3.2.3

3.4

3.16

3 .11

3.2.3

3.14

3.6

3.13

3.16

3.7

...j.ABS-j N LD)
-1.ABSP-I N LD)

Formot

label*-j.ASCll.._./text/ <octal>)

label *-j.BLOCK-jexp)

label*-j.CBD.._.NAME.._.CODE)

lobel*-1 ·CBDR.._.arg)

-j.DBREL)

-I.DEC)

-1.DEflN.._. macro name, args)

label'~-+DSA.._.exp)

-j.EBREL)

-j.EJECT)

-j.END.._.START)

-! .ENDC)

-j.ENDM)

-! .EOT)

*All pseudo-ops shown with a lobel generate binary output code.

D-1

APPENDIX D

SUMMARY OF MACR0-15 PSEUDO-OPS

Function

Object program is output in absolute,
blocked, checksummed format for loading
by the Absolute Binary Loader. Not sup- 1·
ported in RSX PLUS, RSX PLUS Ill or B/F
MACROA.

Input text strings in 7-bit ASCII code,
with the first character serving as de-
1 imiter. Octal codes for nonprinting
control characters are enclosed in angle
brackets.

Reserves a block of storage words equal to
the expression. If a label is used, it
references the first word in the block.

Sets up a COMMON area having the
name and size specified. The first ele­
ment in the COMMON area is also
given (base address). (DOS and RSX
Systems only.)

Enters the starting address of the last
common block specified in a .CBD plus
the argument into the location of the
.CBDR (RSX PLUS Systems only).

Disable bank mode relocation •

Sets prevailing radix to decimal.

Defines macros. Not supported in B/F
MAC ROA.

Generates a transfer vector for the speci­
fied symbo I .

Enable bank mode relocation.

Skip to heed of form on listing device.

Must terminate every source program •
START is the address of the first instruction
to be executed.

Terminates conditional coding in .IF
statements.

I

Terminates the body of o mocro definition.
Not supported in B/F MAC ROA. I
Must terminate physical program segments,
except the last, which is terminated by
.END.

I

I

I

I
I

I

I

Pseudo-op

.ETC

.FULL

.FULLP

.GLOBL

• IFxxx

.IODEV

.LOC

.LOCAL

.LST

.LTORG

.NDLOC

.NOLST

.OCT

.REPT

.SIXBT

.SIZE

Section

3 .16

3.2.2
3.2.2

3.9

3 .13

3.10

3.3

3.2.4

3 .17

3.2.5

3.2.4

3 .17

3.4

3.12

3.8.2

3.15

Format

-1.ETC..._.args, ergs)

-j.FULL..J
-.j.FULLP.J

....j.G LOBL..._.sym, sym, sym)

-.j. IFxxx exp.)

-.J.IODEV1.....1 .DAT numbers.)

-1.Loc exp)

-.j.LOCAL)

-.j, LST)

-j.LTORG)

-.j,NDLOC)

-j.NOLST)

-j.OCT)

-J.REPT count, n)

label-.j.SIXBT 1.....1/text/ <octal>)

label -j.SIZE)

D-2

Function

Used in macro definition to continue the
list of dummy arguments on succeeding
I ines. Not supported in B/F MAC ROA.

Produces absolute, unblocked, uncheck­
summed binary object programs. Used
only for paper tape output. Not supported
in RSX PLUS, RSX PLUS Ill or B/F MACROA •

Used to declare all internal and external
symbols which reference other programs.
Needed by Linking Loader •

If a condition is satisfied, the source
coding following the .IF statement and
terminating with an .ENDC statement is
assembled.

Specifies • DAT s I ots and associated I/ 0
handlers required by this program. Not
supported in RSX PLUS or RSX PLUS 111.

Sets the location counter to the value of
the expression.

Allows deletion of certain symbols from
the user symbol table.

Continue requested assembly I is ting out­
put of source lines. Lines between
.NOLST and .LST are not listed.

Allows the user to specifically state where
I iterals are to be stored. Not supported in
B/F MACROA.

Terminates deletion of certain symbols from
the user symbol table contained between
• LOCAL and • N DLOC.

Term in ates requested assembly I is ting out­
put of source lines of code contained
between • NO LST and • LST.

Sets the prevailing radix to octal,
Assumed at start of every progrcrn •

Repeats the object code of the next object
code generating instruction Count times.
Optionally, the generated word may be
incremented by n each time it is repeated.
Not supported in B/F MACROA.

Input text strings in 6-bit trimmed ASCII,
with first character as delimiter. Num­
bers enclosed in angle brackets are trun­
cated to one 6-bit octal character.

MACR0-15 outputs the address of last
location plus one occupied by the object
program.

Pseudo-op Section

.TITLE 3. l

Format

-j. TITLEa....11any text string)

D-3

Function

Causes the assembler to accept up to 501 O
typed characters. During source program
assembly operations, a • TITLE causes a
form feed code to be output to place the
text starting with • TITLE at the top of a
page.

*

APPENDIX E

SUMMARY OF SYSTEM MACROS

System macros (Monitor commands) are defined in the Monitor manuals, and are summarized here for the conven­

ience of the PDP-15 programmers.

System macros a.re predefined to MACR0-15, but not in RSX, which uses a macro definition file apart from the

Assembler itself. The file's name is RMC .XX, where XX is the version number which may change over time.

To use a system macro, the programmer writes a macro call statement, consisting of the macro name and a string

of real arguments.

To initialize a device and device handler

-! .INIT.__.ds,f,r

where ds .DAT slot number in octal

f 0 for input files; 1 for output files

r = user restart address*

To read a line of data from a device to a user's buffer

-I . READL...-1 ds,m, l,w

where ds .DAT slot number in octal

m a number, 0 through 4, specifying the data mode:

0 = IOPS binary
l = Image binary
2 = IOPS ASCII
3 = Image alphanumeric
4 =Dump mode

= lfoe buffer address

w word count of the line buffer in decimal, including
two-word header

To write a line of data from the user's buffer to a device

-I . WRITEL...-lds,m, l,w

where ds . DAT slot number in octa I

m = a number, 0 through 4, specifying the data mode:

0 = IOPS binary
1 = Image binary

Meaningful only when device associated with .DAT slot ds is the Teleprinter. Typing CTRL Pon the
keyboard will force control to location r.

E-1

I

2 = IOPS ASCII
3 = Image alphanumeric
4 =Dump mode

=line buffer address

w =word count of line buffer in decimal, including the two­
word header

To detect the availability of a line buffer

-! . WAIT 1--1 ds

where ds . DAT slot number in octa I. After the previous . READ,
.WRITE, or .TRAN command is completed, .WAIT re-
turns control to the user at the instruction following the .WAIT
expansion.

To detect the availability of a line buffer and transfer control to ADDR if not available

-! . WAITRL-lds, ADDR

where ds =.DAT slot number (octal radix)

ADDR = Address to which control is transferred if buffer is not available.

To close a file

where ds = .DAT slot number in octal

To set the real-time clock ton and start it.

where n number of clock increments in decimal. Each increment
is 1/60 second (in 60-cycle systems) or 1/50 second (in 50-cycle systems)

c = address of subroutine to handle interrupt at end of interval

To return control to the Monitor.

-! . EXIT)

MASS STORAGE COMMANDS FOR DECTAPE, MAGNETIC TAPE, AND DISK

To search for a file, and position the device for subsequent . READ commands

where ds . DAT slot number in octal

d address of user directory entry block

E-2

To examine a file directory, find a free directory entry block and transfer the block to the device

-! . ENTER1-1ds, d, p
where ds = , DAT slot number in octa I

d= address of user directory entry block
p= protection code

The third argument, the protection code, is recognized only by the DOS-15 assemblers;
in other systems it is ignored,

To clear device directory to zero

-J .CLEAR'-'ds

where ds .DAT slot number in octal

To rewind, backspace, skip, write end-of-file, or write blank tape on nonfile-oriented magnetic tape

-! .MTAPF ds,xx 1-1
where ds .DAT slot number in octal

xx a number, 00 through 07, specifying one of the functions
shown below

00 = Rewind to load point*
02 = Backspace one record*
03 = Backspace one file
04 =Write end-of-file
05 = Skip one record
06 = Skip forward one file
07 = Skip to logical end-of-file

or a number, lO through 16, to describe the tape configuration

10 = Even parity, 200 bpi
11 = Even parity, 556 bpi
12 = Even parity, 800 bpi
14 = Odd parity, 200 bpi
15 = Odd parity, 556 bpi
16 =Odd parity, 800 bpi

To read from, or ~ to any user file-structured mass storage device

-J . TRAN1-1a ,d,b,l ,w

where a • DAT slot number in octal
d = transfer direction:

O=Input forward
1 =Output forward
2=Input reverse (DECtape only)
3=0utput reverse (DECtape only)

b device address in octal, such as block number for DECtape
I core starting address
w word count in decimal

*May be used with any non-directoried mass storage device.

E-3

I

To delete a file

--+! . DLETE._.ds,d

where ds .DAT slot number in octal

d = starting address of the three-word block of storage in user area
containing the file name and extension of file to be deleted
from the device.

To rename a file

-l . RE NAM._. ds,d

where ds = .DATslotnumberinoctal

d starting address of two three-word blocks of storage in user
area containing the file names and extensions of the file to
be renamed, and the new name·, respectively.

To determine whether a file is present on a device

-l .FSTAT._.ds,d

where ds .DAT slot number in octal

d starting address of three-word block in user area containing
the file name and extension of the file whose status is desired.

BACKGROUND/FOREGROUND MONITOR SYSTEM COMMANDS

To read a line of data from a device to a user's buffer in real-time

-l . REALR._,ds,n, 1, w, ADDR, p

where ds =.DAT slot number in octal

m Data mode specification

0 = IOPS binary

w

ADDR

p

1 = Image binary
2 = !OPS ASCII
3 =Image Alphanumeric
4 =Dump mode

= Line buffer address

word count of line buffer in decimal, including the two-word header

15-bit address of closed subroutine that is given control when the
request made by . REALR is completed.

API priority level at which control is to be transferred to ADDR:

0 =mainstream
4 = level of . REALR
5 = API software level 5
6 = API software level 6
7 = API software level 7

E-4

To write a line of data from user's buffer to a device in real time

-...\ . REALW L-1 ds,m, l,w,ADDR,p

where ds =.DAT slot number in octal

m Data mode specification

0 = IOPS binary
l = Image binary
2 = IOPS ASCII
3 =Image Alphanumeric
4 =Dump mode

line buffer address

w word count of I ine buffer in decimal, including the two-word header

ADDR = 15-bit address of closed subroutine that is given control when the
request made by . REALW is completed

p API priority level at which control is to be transferred to ADDR

0 = mainstream
4 = level of . REAL W
5 = API software level 5
6 = API software level 6
7 = API software level 7

To indicate, in a FOREGROUND job, that control is to be relinquished to a BACKGROUND job

-...\ . IDLE

To set the real-time clock ton and start it

-...\ . TIMERL...ln,c,p

where n = number of clock increments in decimal. Each increment is l/60
of a second (l/50 in 50 Hz systems)

c address of subroutine to handle interrupt at end of interval

p API priority level at which control is to be transferred to c

0 = mainstream
4 = level of . TIMER
5 = API software level 5
6 = API software level 6
7 = API software level 7

To exit from all real-time subroutines which were entered via .REALR, .REALW, , TIMER, or real-time CTRL P

requests.

.RLXIT addr

where addr =The 13-bit entry point address of the real-time subroutine from
which an exit is to be made.

E-5

DOS SYSTEM MACROS

The following macros are implemented in the Disk Operating System only.

To open a file for random access via .RTRAN macros.

-.j .RAND L.....Jds,namptr)

where ds = • DAT slot number in octal

namptr = name pointer, points to the first word of a 3-word representation
(. SIXBT) of the file name and extension of the file to be opened

To enable random access to the blocks of a file previously opened by a .RAND I/O macro.

-.j . RTRAN L.....Jds, d, relblk, bufadd, beg, cnt)

where ds . DAT slot (octal radix)

d direction:

if d=O, direction is input
if d=l, direction is output

relblk = block number (octal radix)
relative to beginning of the
file ..• first block is block 1,
etc.

bufadd address of I/O buffer in user's
core space,

beg first physical word of physical
block to be read or written ..•
ignored for disk pack ..• must be
octal radix, O<beg <375.

cnt number of words, starting with
beg, to be read or written •••
ignored for disk pack •.• must be
DEOMAL radix, l < cnt <(253-beg).

To request a buffer from the buffer pool

-.j .GTBUF)

To return a buffer to the buffer pool which was obtained via the .GTBUF macro.

-1.GVBUF)

To obtain access to files on the disk under UFDs other than that of the current user,

-.j .USERL-Jnn,uic;

where nn = . UFDT slot number

uic = UIC

E-6

To request the system loader (. SYSLD) to load and start a specified system program from within a user program.

-j .OVRLA1-1namptr)

where namptr "" pointer to the first address of the two-word
• SIX BT representation of the name of the program
to be loaded.

WARNING

All I/O operations should be completed before .OVRLA
macro is issued.

E-7

7!i10Vi04
7f0!<'11 I 2
700144
1vw110 1
017720
7033v12
700004
700012
705504
7L!0000
707702
017726
157775
117753
057776
741100
617747
117753
057777
117753
li'll 7736

1177 53
077776
457776
457777
617736
357775
740200
740040
617726
017747
057777
457777
(,)·7763
740040
017753

APPENDIX F

SOURCE LISTING OF THE ABSOLUTE BINARY LOADER

'***ABSOLUTE 8INAHY LOADER ***
I .FULL
C LOF::: 7 !i'iliH1fl Li

kRB=7U0112.
RSB=7(Jvi 144
RSF=7vlVl 101
LDSTRT=l 7721/J
BTNLDR CAF

CLOF
IOF+ll/J
ISA

LODMOD NOP
707702

LDNXBK=l 7726
DZ~\ LDC KS t'-'1

JMS LDREAD
DAC LDSTAD
SPA
JMP LDXFR
JMS LDREAD
DAC LDl.JDCT
JMS LDREAD

LDNXl·Jfl=l 7736

JMS LDREAD
DAC* LDSTAD
ISZ LDSTAD
ISZ LD\.JDCT
JMP LDNXWD
TAD LDCKSM
SZA
HLT
JMP LDNXBK

LDXFR: 17747
DAC LDl.JDCT
ISZ LDWDCT
JMP LD!tJA IT
HLT

LDREAD=17753

F-1

IC LEAR FLAGS
/CLOCK OF!'
I I NTERIWPT OFF
/TURN OFF AP l
/CEBA), CDBA), (!\!OP>
/PDP-9 CO~PATIBILITY C~E~l

/CHECKSU~~ING LOCATION

/GET STARTING ADDRESS
/BLOCK HEADING OR
/STAkT BLOCK

/WORD COUNT C2'S COMPLEMENT>

/LOAD DATA INTO APPROPkIATE
/MEMORY LOCATIONS
/FINISHED LOADING
/NO

/LDCKSM SHOULD CONTAIN 0
/CHECKSUM EkkOR HALT
/PRESS CONTINUE TO IGNORE

/EXECUTE START ADDRESS
/NO ADDRESS ON .END STATEMENT
/~ANUALLY START USER PROGRAM

0:-ic o er;J n
7\'J(~ 1 LJL1

357775
0S7775
71)0101
617757
73Vl 1 I 2
637753

('1J 77 63
1177 53
637776
r/l('Jf235
01,13 500
[7i0(/'.•vlf'lV:

0f'i(1261
()(llV12 7 7
'?ff·~ fi.i 3 2 Vr
~:J0(i)(,l01?,

~lj 7775
l'.>17776
017777

RSB
TAD LDCKSM
OAC LDCKSfv'.
RSF
Jtv:p LDhEAD +4
RHB
JMP* LD1·<EAD

/THE LAST FRAME OF EVEhY .A85CPl PkOG IS GAH8AGE.
LDvJA IT= I 77 63

JMS LDRFAD
JMP* LDSTAD

FNDLDf~ = •
Hf~M!lif) 01-'13500; V"J

LDCK!)t~=l 7775
LDSTAD=17776
UJ'.-1DCT=l 7777

277

I .;;-ND 8!NLD~
I*** ""Jf'' CF Lc.:i,n".:'~..; ***

F-2

/PASS OVER LAST FRAME CPDP-9
/COi":PATIHILITy).

/HEACEk

/Hhr< START

APPENDIX G

MACROl-15 ASSEMBLER

ADVANCED MONITOR SYSTEM

ADSS-15 BK DECtape systems cannot utilize MACR0-15 if a binary output on DECtape is desired, since the com­

bined size of MACR0-15, the Resident Monitor, and the required DECtape device handler (DTB.) is greater

than BK. DECtape (OTC.) input/paper tape output also leads to core overflow. If, however, paper-tape input/

paper-tape output is desired, MACR0-15 may be used. Device handlers PRB, PPC, or PPB (for .ABS or .FULL

programs) may be used as required.

The MACROl-15 assembler, which is a device-dependent version of MACR0-15, does permit DECtape 1/0 on

an BK machine. This is possible because MACRO!, though identical to MACRO in function, uses self-contained

DECtape and Teleprinter 1/0 routines. This results in a core load which operates In BK and allows approximately

39010 locations for the User's Symbol Table.

DEVICE ASSIGNMENTS

Since MACROI is device.-dependent, the user may not use the Monitor ASSIGN command. The assembler per­

forms 1/0 in the manner described below (as modified by the D and U options):

a. The user's source program is input from DECtape Unit l.

b. The assembled binary is output to DECtape Unit 2*.

c, The assembly listing is output to the Teletype.

d. The parameter file is input from the Teletype if the P option is used.

e. MACRO definitions are accepted from DECtape unit 1 during PASS 1 (F option), This file must be
named • MAC RO SRC •

OPERATION

The operating features of MACRO! are the same as described in Chapter 5 for MACRO, with the following

exceptions:

Cal I ing Procedure

MACRO! is called by typing MACRO!) after the Monitor's$ request. When the assembler has been

loaded, it identifies itself by typing:

MACRO I
BMACROI

Vnn
Vnn

(in page mode systems)
(in bank mode systems)

*If you want .ABS paper tape output, you cannot PIP this binary to paper tape because you wi II get 9 empty
frames every 252 words, You must use MACRO as described above.

G-1

I

on the Teletype and then waits for a command string.

NOTE

The command line editing function CTRL U deletes the
entire line and echoes tU and a carriage return/line
feed opera ti on on the Teleprinter.

Additional Options

The following options may be used in the command string to MACROI along with the other normal MACRO
I options (excluding I, X and Z):

Option

D

Action

Suppress binary output and output
the assembly listing on DECtape
Unit 2. (file extension: LST)

Default Action

A binary / if desired, may be output
to DECtape 2. The listing is output
to the Teleprinter.

u The assembled binary is output to
DECtape Unit 1 •

The assembled binary is output to
DECtape Unit 2 if B option is selected.

Error Conditions

MACRO! performs I/O error checking, and outputs the following messages:

Message

IOPS 0

IOPS l

IOPS 3

IOPS 4

IOPS 12

IOPS 13

IOPS 14

IOPS 15

IOPS 23

IOPS 61

Illegal CAL

CAL* Illegal

Illegal Interrupt

Meaning

DECtape unit not ready - type CTRL R when ready.

Unrecoverable DECtape Error

File Not Found

Directory Fu(I

DECtape Full

Illegal Word Pair Count

Input Parity Error While Reading Directory or File Bit Map

All of the above error messages, except IOPS 4, are terminal. Type CTRL P to restart MACROI or type

CTRL C to call in the Monitor, A more complete description of IOPS errors may be found in the Monitor

System Manuals or User's Guides listed in the Preface of this manual.

G-2

APPENDIX H

MACROA-15 ASSEMBLER

BACKGROUND/FOREGROUND SYSTEM

An abbreviated version of the MACR0-15 assembler is provided in addition to MACR0-15, for Background/Fore­

ground systems. MACROA is somewhat smaller than MACRO and can be used where Background core space is at

a premium.

MACROA exists because MACROI {see Appendix G) cannot be used in the Background. (It issues IOT instructions

for one.)

DEVICE ASSIGNMENTS

MACROA uses the same .DAT slots as does MACRO excluding .DAT -14, namely:

-13 Binary Output
-12 Assembly Listing
-1 l Source Input
-1.¢ Parameter Input

OPERATION

The operating features of MAC ROA are the same as described in Chapter 5 for MACRO, with the fol lowing

exceptio.ns:

Cal I ing Procedure

MACROA is called by typing MACROA) after the Monitor's$ request. When the assembler has been

loaded, it identifies itself by typing:

BF MACROA-15 Vnn

on the Teletype and then waits for a command string. Only one name is accepted in the command string.

This means that the F and Z options are illegal and that parameter file input is allowed only from Teletype

or paper tape.

Unrecognized Assembly Options

The F, Zand I options are illegal to MACROA.

Unrecognized Pseudo-Operations

The following pseudo-ops are illegal to MACROA:

.ABS

.REPT

.ETC

.ABSP

.LTORG
.FULL
.DEFIN

H-1

.FULLP

.ENDM

I Unrecognized API Instructions

MAC ROA does not contain in its permanent symbol table the definitions of API instructions.

H-2

Absolute binary loader, source listing, F-1
Address assignments, 2-11
Address field, 2-2
Addressing

Indexed, 2-12
Indirect, 2-12

Advanced monitor system, G-1
Argument delimiters, 4-5
.ASCII psuedo-op, 3-13
Assembler processing, 1-2
Assembly listing 1/0 control, 5-20
Assembly listings, 5-12

Background/Foreground system, 4-1

Character interpretation, C-1
Character set, A-1
Command string, 5-3
Command characters, general, 5-2
Command block definition, 3-20
Concatenation, 4-7 to 4-14
Condi ti on al assembly, 3-18
Created symbols, 4-6

.DBREL, 3-5
.DEC, 3-10

.EBREL, 3-5

.EJECT, 3-19

.END, 3-11

.EOT (end-of-tape), 3-12
Error conditions, 5-19

ADSS-15, 5-19
Assembler, 5-20
Background/Foreground, 5-19
BOSS-15, 5-19
DOS-15, 5-19
RSX plus , 5-19
RSX plus Ill, 5-19

Expressions, 2-9

.FULL, .FULLP, 3-4

Global symbols, 3-15

Hardw'.lre requirements, 1-2

Integer values, 2-9
1/0 devices, requesting, 3-16

Label, 2-2
Listing control (.EJECT), 3-19

INDEX

Literals, 2-13
Literal origin pseudo-op (.LTORG), 3-9
Location counter, referencing, 2-12

setting, 3-10

MACROA-15 assembler, H-1
MACRO calls within macro definitions, 4-17
MACRO calls, 4-3
MACRO body, 4-2
MACROS, 4-1
MACROS, defining, 3-20

nesting, 4-15
redefining, 4-16

MACR0-15 language, 1-1
Multiple filename commands, 5-7

Nesting of macros, 4-15
Nonprinting characters, 3-14
Numbers, 2-8

Object program output, 3-3
.OCT, 3-10
Operation code, 2-2
Options, assembler, 5-4

Permanent symbol table, B-1
Program filename, 5-3
Program identification (.TITLE), 3-2
Program relocation, 5-18
Program segments (.EOT), 3-12
Program size, 3-1 9
Program statements, 2-1
Program termination (.END), 3-11
Psuedo operations, 3-1, D-1

Radix control (.OCT and .DEC), 3-10
Recursive calls, 4-18
Redefinition of macros, 4-16
Repeating object code, 3-16
RSX plus and RSX plus Ill, 5-2
Running instructions, 5-15
Segmented program commands, 5-9
.SIXBT pseudo-op, 3-13
.SIZE, 3-19
Statement evaluation, 2-21 to 2-25

assembler priority list, 2-25
numbers, 2-21
word evaluation, 2-22
word evaluation of the special cases, 2-24

Statement fields, 2-15 to 2-21
address, 2-18

. comments, 2-20

lndex-1

Statement fields (Cont.)
label, 2-15
operation, 2-17

Symbolic address, designating, 3-16
Symbols, 2-3

Redefining, 2-6
special, 2-5
undefined, 2-8

Symbol table output, 5-12
System macros, E-1

Text handling, 3-12
Text delimiter, 3-13
Text statement, 3-13

User symbol table, deletion of (.LOCAL,
.NDLOC), 3-6

Variables, 2-6

lndex-2

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi­
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Conununications
P. 0. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England
Paris, France
The Hague, Holland
Tel Aviv, Israel

Milan, Italy
Solna, Sweden
Geneva, Switzerland
Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digitai Equipment Corporation
Software Distribution Center
146 Main Street
Maynard, Massachusetts 01754

Digitai Equipment Corporation
Software Distribution Center
1400 Terra Bella
Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex­
change center for user-written programs and technical application in­
formation. A catalog of existing programs is available. The society
publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the
society and membership application forms, write to:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

DEC US
Digital Equipment
P.O. Box 340
1211 Geneva 26
Switzerland

READER'S COMMENTS

MACR0-15 Assembler
Reference Manua I
DEC-15-LMACA-B-D

NOTE: This form is for document corr.ments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORl'<lATION page) •

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

0 Higher-level language programmer

0 Occasional programmer (experienced)

0 User with little programming experience

0 Student programmer

0 Non-programmer interested in computer concepts and capabilities

City ______________ State _______ Zip Code _______ _

or
Country

If you do not require a written reply, please check here.. 11

---Fold IIere~---

·--- Do Not Tear - Fold IIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	A-01
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	F-01
	F-02
	G-01
	G-02
	H-01
	H-02
	X-01
	X-02
	Y-01
	replyA
	replyB
	xBack

