rfing language ...

£ c

____t_ Wil ine o o 0 @ o

i, 3
e
5 gy

H“’

[

DEC=15=LMCMA-A-D

MAC1ll Programming Language

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation - maynard. massachusetts

S

" !’”’\g,\

First Printing, August 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright <:) 1974 by Digital Equipmeht Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in

preparing future documentation.
>

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAl0 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET 8

UNIBUS

Ty

CONTENTS

PART I
INTRODUCTION TO MACI11l
Page

CHAPTER FUNDAMENTALS OF PROGRAMMING THE PDP=11l

MODULAR PROGRAMMING

Commenting PDP=11 Assembly Language Programs
Localized Register Usage
Conditional Assemblies
REENTRANT CODE

PREFERRED ADDRESSING MODES
PARAMETER ASSIGNMENTS

SPACE VS. TIMING TRADEQOFFS
Trap Handler

Register Increment

CONDITIONAL BRANCH INSTRUCTIONS

e o @
W N ot
[

e o
N

CVUIUT UT s W NS Bt |
B e e b
O WI NN~ O > >

CHAPTER 2 SOURCE PROGRAM FORMAT

STATEMENT FORMAT 2-1
1 Label Field 2=2
2 Operator Field 2=3
3 Operand Field 2=3
4 Comment Field 2=3
FORMAT CONTROL 2-4

PART II

DETAILS ON PROGRAMMING IN MACL1

CHAPTER SYMBOLS AND EXPRESSIONS

w

§
HEHERPRHODOAUTUIO &N

N O

CHARACTER SET
1 Separating and Delimiting Characters
2 Illegal Characters
3 Operator Characters
1
2

MACll SYMBOLS

Permanent Symbols
User=Defined and MACRO Symbols
DIRECT ASSIGNMENTS

REGISTER SYMBOLS

LOCAL SYMBOLS

ASSEMBLY LOCATION COUNTER
NUMBERS

TERMS

EXPRESSIONS

WWWWWwWwWwwwwwwww
e e @ e @ @ 8 o ® 9 ® e o L]
WO UTE WA RN =t bt et
wwuwwww«fuwwwww

iii

Page

CHAPTER 4 ADDRESSING MODES
4.1 REGISTER MODE G2
4,2 REGISTER DEFERRED MODE 4=2
4.3 AUTOINCREMENT MODE 43
4,4 AUTQINCREMENT DEFERRED MCDE 43
4.5 AUTODECREMENT MODE o=}
4,6 AUTODECREMENT DEFERRED MODE 43
4,7 INDEX MODE de=b
4,8 INDEX DEFERRED MODE de=b
4,9 IMMEDIATE MODE 44
4,10 ABSOLUTE MODE 4=5
4,11 RELATIVE MODE 45
4,12 RELATIVE DEFERRED MODE 45
4,13 TABLE OF MODE FORMS AND- CODES 4“5
4,14 BRANCH INSTRUCTION ADDRESSING 47

PART III
MACL1L ASSEMBLER DIRECTIVES

CHAPTER 5 GENERAL ASSEMBLER DIRECTIVES
5.1 LISTING CONTROL DIRECTIVES B=1
5.,1.1 +LIST and NLIST 51
5.1.2 Page Headings 55
5,13 + TITLE 5=5
5& ls 4 GSBTTL f}mﬁ
5.1.5 Page Ejection He]
5,2 FUNCTIONS: JENABL AND .DSABL DIRECTIVES 5=7
5.3 DATA STORAGE DIRECTIVES 5«8
5.3.1 «BYTE 58
5,3.2 +»WORD e
5.3.3 ASCII Conversion of One or Two Characters 510
5.3.4 <ASCII el
50305 «ASCIZ 512
50 3@6 eRADSD 5“1(}
5.4 RADIX CONTROL B=14
5.4,1 +RADIX 514
5.4.2 Temporary Radix Control: 1D, 10, and 1B 5=-14
5.5 LOCATION COUNTER CONTROL 5=15
5@5«11 oEVEN 5"”15
5.5.2 -ODD 516
505@3 @BLKB and eBLKW Sml?
5.6 TERMINATING DIRECTIVES 5137
50601 QEND . 5”}\\,7
5.7 CONDITIONAL ASSEMBLY DIRECTIVES 5«1
5.7-1 Subconditionals S=19
5.7.2 Immediate Conditionals 521
5.7.3 PAL-11R Conditional Assembly Directives S22

CHAPTER 6 MACRO DIRECTIVES
6.1 MACRO DEFINITION G=1
6@ lnl eMACRO 6"’}.

Page

o~ 6.1.2 - ENDM 6=2
6.1.3 «MEXIT 6=2
6.1.4 MACRO Definition Formatting 6=3
6.2 MACRO CALLS 6=3
6.3 ARGUMENTS TO MACRO CALLS AND DEFINITIONS 6=4
6.3,1 Macro Nesting : 6-4
6.3.2 Special Characters 6=5
6.3.3 Numeric Arguments Passed as Symbols 6=6
6.3.4 Number of Arguments 6=7
6.3.5 Automatically Created Symbols 6=7
6.3.6 Concatenation 6=-8
6.4 ONARG' QNCHR’ AND QNTYPE 6"9
6.5 +ERROR AND .PRINT 6=10
6.6 INDEFINITE REPEAT BLOCK: LIRP AND IRPC 6=11
6.7 REPEAT BLOCK: oREPT 6=14
LN
PART IV
OPERATING PROCEDURES
-
CHAPTER 7 OPERATING PROCEDURES
7.1 LOADING MACLll) 7-1
7.2 COMMAND INPUT STRING 7-1
,«‘"—%,%
; APPENDICES
APPENDIX A MACl1l CHARACTER SETS A=-1
Al ASCII CHARACTER SET A=1
A.2 RADIX-50 CHARACTER SET A=4
™ APPENDIX B MACll ASSEMBLY LANGUAGE AND ASSEMBLER B=1
B.1 SPECIAL CHARACTERS B~-1
B.,2 ADDRESS MODE SYNTAX B=2
B.3 INSTRUCTIONS B-3
B.3.1 Double-Operand Instructions B-4
R B.3.2 Single-Operand Instructions B-4
‘ B.3.3 Operate Instructions B=6
B.3.4 Trap Instructions B=7
B.3.5 Branch Instructions B=-8
Be.3.6 Register Destination B-9
B.3.7 Subroutine Return B-9
B,4 ASSEMBLER DIRECTIVES B=10
APPENDIX C PERMANENT SYMBOL TABLE Cc-1

APPENDIX D

INDEX

D.1

ERROR MESSAGE SUMMARY

MAC1ll ERROR CODES

vi

Page

D-1
D=1

N

“
Ll

PREFACE

This manual describes the PDP-11 MACRO-11 Assembler (MACll) and
Assembly* Language and discusses briefly how to program the PDP=11
computer. It is recommended that the reader have with him copies of
the PDP=11l Processor Handbook and, optionally, the PDP=l11l Peripherals
and Interfacing Handbook. References are made to these documents
throughout this manual (although this document is complete, the
additional material provides further details)., The user is also
advised to obtain a PDP=11 pocket Instruction List card for easy
reference. (These items can be obtained from the Digital Software
Distribution Center.)

This MACRO-1l1l Assembler operates under the PDP-15 DOS (Disk Operating
System) Monitox in conjunction with PIREX, a multiprogramming
executive running on a PDP=11l in the Unichannel 15 system.
Some notable features of MACll ares

1. Device and filename specifications for input

2, Error listing on command output device

3. Alphabetized, formatted symbol table listing

4. Conditional assembly directives

5. User defined macros

6. Extensive listing control

Associated Documents:

PDP~11/20 Processor Handbook 112,01071.1855

PDP-11 Peripherals and Interfacing Handbook 112,01071.1854
DOS-=15 Users Manual, DEC=15=ODUMA=A=D

EDIT Utility Program, DEC=-15-YWZB-DN6

PIP DOS Monitor Utility Program, DEC=15<UPIPA=B=D

The MACll assembler, a subset of the standard MACRO=-1l1l assembler for
the PDP=1ll, 1is specifically written for the Unichannel-l5 system,
Programs written for the MACRO-1l1l assembler will not necessarily
assemble correctly with MACll, and programs written for MAC1ll will not
necessarily assemble correctly with MACRO-=11l.

The MACll assembler generates only absolute binary output.

vii

it

.Y

R

PART I

INTRODUCTION TO MAC1ll

R

Ty

S

CHAPTER 1

FUNDAMENTALS OF PROGRAMMING THE PDP=11

This Chapter presents some fundamental software concepts essential +to
efficient assembly language programming of the PDP=11 computer. A
description of the hardware components of the PDP=11 family can be
found in the two DEC paperback handbooks:

PDP-=11 Proceésor Handbook (11/20 oxr 11/45 edition)
PDP-11 Peripherals and Interfacing Handbook

No attempt is made in this document to describe the PDP-11 hardware or
the function of the wvarious PDP=11 instructions. However, it is
recommended that the reader become familiar with this material before
proceeding.

The new PDP=-11 programmer is advised to read this Chapter before
reading further in this manual, The concepts in this Chapter will
create a conceptual matrix within which explanations of the language
fit. Since the techniques described herein work best with the PDP-11l
and are used in PDP=-11 system programs, they should be considered from
the very start of your PDP~11l programming experience.

1.1 MODULAR PROGRAMMING

The PDP-11 family of computers 1lend themselves most easily to a
modular system of programming. In such a system the programmer must
envision the entire program and break it down into constituent
subroutines., Modular development forces an awareness of the final
system. Ideally, this should cause all components of the system to be
considered from the very beginning of the development effort rather
than patched into a partially-developed system. This provides for the
best wuse of the PDP-11l hardware (as discussed later in this Chapter),
and results in programs which are more easily modified than those
coded with straight-line coding techniques,

To this end, flowcharting of the entire system is best performed prior
to coding rather than during or after the coding effort. The
programmer is then able to work on small portions of the program at a
time, Subroutines of approximately one or two pages are considered
desirable,

Modular programming practices maximize the usefulness of an
installation®s resources. Programmed modules can be used in other
programs or systems having similar or identical functions without the
expense of redundant development. Also software modules developed as
functional entities are more likely to be free of serious logical
errors as a result of the original programming effort. The use of
such modules will simplify the development of later systems by
incorporating proven pieces,

Modular development provides for ease of use and modification rather
than simplifying the original development. While care must be taken
in the beginning to ensure correct modular system development, the
benefits of standardization to the generation of maintenance
programmers which deal with a given assembly are many. (See also the
notes under Commenting Assembly Language Programs.)

PDP=11 assembly language programming best follows a tree-=like
structure with the top of the tree being the final results and the
base being the smallest component function. (The Assembler itself is
a tree structure and is briefly described in Figure l=1.)

S

S e,

.

e

ASSEMBLER

N

SOURCE LISTING
14
P?ggﬁéM PROCESSING SYMBOL TABLE
‘ OUTPUT
LINE
LABEL OPERATOR OPERAND | TERMINATOR
INSTRUCTION ASSEMBLER MACRO
MNEMONIC DIRECTIVES PROCESSOR
mov| ... |Bcs| |risT|... |IF

Figure 1=1
Problem Oriented Tree=Structure

l1.1.1 Commenting PDP=11 Assembly Language Programs

When programming in a modulaxr fashion, it is desirable to heavily
comment the beginning of each subroutine, telling what that routine
does: its inputs, outputs, and register usage.

Since subroutines are short and encompass only one operation it is not
necessary to tell how the subroutine functions, but only what it does.
An explanation of how a subroutine functions should be documented only
when the procedure is not obvious to the reader. This enables any
later inspection of an unclear subroutine to disclose the maximum
amount of useful information to the reader.

l,1.2 Localized Register Usage

A useful technique in writing subroutines is to save all registers
upon entering a subroutine and restore them prior to leaving the
subroutine. This allows the programmer unrestricted use of the PDP=11
registers, including the program stack, during a subroutine.

Use of registers avoids 2- and 3-word addressing instructions. The
code in Figure 1-2 compares the use of registers with symbolic
addressing. Register use is faster and requires less storage space
than symbolic addressing.

1 » TFT
2 002060 10$: CALL 20$:MOVE A CHARACTER
3 002064 003375 BGT 10$ sLOOP IF GT ZERO
4 002066 001432 BFQ 19$;END IF ZERO
5 002070 114200 MOVB =(R2),R0 : TERMINATOR, BACK UP
s POINTER
6 002072 020027 CMP RO, #MT,MAX sEND OF TYPE?
177603
7 002076 101453 BLOS 22¢$ s YES
8 002100 010146 MOV Rl,=(SP) : REMEMBER READ POINTER
9 002102 016701 MOV MSBARG,R1
002034°
10 02106 005721 TST (R1)+
11 02110 010203 MOV R2,R3 : AND WRITE POINTER
12 02112 005400 NFG RO $ASSUME MACRO
13 02114 026727 CMP MSBTYP, #MT,MAC ;TRUE?
002026°
177603
14 02122 001402 BFQ 128 ;s YES, USE IT
15 02124 016700 MOV MSBCNT, RO sGET ARG NUMBER
002036°
16 02130 010302 12$: MOV R3,R2 s RESET WRITE POINTER
17 02132 13$: CALI 20% ;MOVE A BYTE
18 02136 003375 BGT 13$. s LOOP IF PNZ
19 02140 002402 BLT 14% ;END IF LESS THAN ZERO
20 02142 005300 DFC RO ;ARE WE THERE YET?
21 02144 003371 BGT 128 : NO
22 02146 105742 14$: TSTB =(R2) ;YES, BACK UP POINTER
23 02150 012601 MOV (SP)+,RL sRESET READ POINTER
24 02152 000742 BR 108 ;END OF ARGUMENT
) A ; SUBSTITUTION
26 02154 010167 19$: MOV RL,MSBMRP fEND OF LINE, SAVE

38
39
40
41
42
43

45

02160

02166
02170

02174
02176

02202
02204
02210
02212
02220

02222
02224

02226
02232

002042°
052767
000400
000010°
000726

032701 20s:
000017
001003
016101
177760
005721
020227 21%:
101404

105742
112122 23$:

228
000167 .
177326

BIS #LC,ME,LCFLAG

BR 98

BTT #PPMB=1,Rl

BNE 218§

MOV =PPMB(RL),Rl

8T (R1)+

cMp R2 , # LINBUF+SRCLFN

BLOS 23%
ERROR L

TSTB = {(R2)

MOVB (RL)+, (R2)+

RETURN

CALL ENDMAC

JMP 1s

+«ENDC

Figure 1-2

s POINTER
s FLAG AS MACRO
; EXPANSION

§MACRO, END OF BLOCK?

¢ NO

sYES, POINT TO NEXT
¢ BLOCK

s MOVE FAST LINK

s OVERFLOW?

¢ NO

s YES, FLAG ERROR

s AND MOVE POINTER
s BACK

s MOVE CHAR INTO LINE
s BUFFER

;s CLOSE MACRO

Segment of PDP-1l1 Code
Showing 1, 2, and 3=Word Instructions

1.1.3 Conditional Assemblies

Conditional assemblies are valuable in macro definitions. The
expansion of a macro c¢an be altered during assembly as a result of
specific arguments passed and their use in conditionals. Foxr example,
a macro can be written to handle a given data item differently,
depending upon the value of the item. Only a single algorithm need be
expanded with each macro call, (Conditionals are described in detail
in Section 5.7.)

Conditional assemblies can also be used to generate different versions
of a program from a single source, This is usually done as a result
of one or more symbols being either defined or undefined. Conditional
assemblies are preferred to the creation of a multiplicity of sources.
This principle is followed in the creation of PDP=11 system programs
for the following reasons:

1. Maintenance of a single source program is easier, and
guarantees that a change in one version of the program, which
may affect other versions, is reflected automatically in all
possible wversions,

2. Distribution of a single source program allows a customer or
individual user to tailor a system to his configuration and
needs., and continue to update the system as the hardware
environment or programming requirements change.

3. As in the case of maintenance, the debugging and checkout
phase of a single program (even one containing many separate
modules) is easier than testing several distinct versions of
the same basic program,

1.2 REENTRANT CODE

Both the dinterrupt handling hardware and the subroutine call
instructions (JSR, RTS, EMT, and TRAP) facilitate writing reentrant
code for the PDP-11. Reentrant code allows a single copy of a given
subroutine or program to be shared by more than one process or task.
This reduces the amount of core needed for multi-task applications
such as the concurrent servicing of peripheral devices.

On the PDP-ll, reentrant code depends upon the stack for storage of
temporary data values and the current processing status. Presence of
information in the stack is not affected by the changing of
operational control from one task to another. Control is always able

to return to complete an operation which was begun earlier but not
completed.

1.3 PREFERRED ADDRESSING MODES

Addressing modes are described in detail in Chapter 4. Basically, the
PDP=11 programmer has eight types of register addressing and four
types of addressing through the PC register, Those operations
involving general register addressing take one word of core storage,

ot

——

while symbolic addressing can use up to three words. For examples

MOV A,B : THREE WORDS OF STORAGE
MOV RO,Rl :ONE WORD OF STORAGE

The user is advised to perform as many = operations as possible with
register addressing modes, and to use the remaining addressing modes
to preset the registers for an operation. This technique saves space
and time over the course of a program.

1.4 PARAMETER ASSIGNMENTS

Parameter assignments should be used to enable a program to be easily
followed through the use of a symbolic cross reference (CREF listing).
For example:

SYM=42

MOV #SYM,RO

Another standard PDP-1l convention is to name the general registers as
follows:

RO = %0

Rl = 81

R2 = %2

R3 = %3

R4 = %4

R5 = %5

SP = %6 (processor stack pointer)
PC = %7 (program countex)

1.5 SPACE V8, TIMING TRADEOFFS

Oon the PDP-11 as on all computers, some techniques lead to savings in

storage space and others lead to decreaged execution time. Only the
individual user can determine which is the best combination of the two

for his application, Tt is the purpose of this section to describe
several means of conserving core storage and/or saving time.

1.5.1 Trap Handler
The use of the trap handler and a dispatch table conserves core
requirements in subroutine calling, but can lead to a decrease in
execution speed due to indirect transfer of control, To illustrate, a
subroutine call can be made in either of the following ways:
1. A JSR instruction which generally requires two PDP-1l wordss
JSR R5,SUBA

but is direct and fast.

2, A TRAP instruction which requires one in-line PDP=1l word:
TRAP N
but is indirect and slower. The TRAP handler must use N to

index through a dispatch table of subroutine addresses and
then JMP to the Nth subroutine in the table.

1.5.2 Register Increment
The operation:

CMPB (RO)+, (RO)+
is preferable to:

TST (RO)+

to increment RO by 2, especially where the initial contents of RO may
be odd, but slower.

1.6 CONDITIONAL BRANCH INSTRUCTIONS

When using the PDP=-11 conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

SIGNED UNSIGNED
BGE BHIS (BCC)
BLT BLO

BGT BHI

BLE BLOS (BCS)

A common error is to use a signed branch (e.g., BGT) when comparing
two memory addresses. A problem occurs when the two addresses have
opposite signs; that is, one address goes across the 16K (100000(8))
boundary. This type of coding error usually appears as a result of
relinking at different addresses and/or a change in the size of the
program,

CHAPTER 2

SOURCE PROGRAM FORMAT

A source program is composed of a sequence of source lines, where each
line contains a single assembly language statement. Each line is
terminated by either a line feed or a vertical-tab character (which
increments the line count by 1) or a form—=feed character (which
increments both the line count and page count by 1).

Since the MACll Interface automatically appends a line feed at the end
of every logical input line, the user need not concern himself with
the statement terminator. However, a carriage vreturn character not
followed by a statement terminator generates an error flag. A legal
statement terminator not immediately preceded by a carriage return
causes the Assembler to insert a carriage return character for listing
purposes,

An assembly language 1line can contain up to 80(10) characters
(exclusive of the statement terminator). Beyond this limit, excess
characters are ignored and generate an error flag.

2.1 STATEMENT FORMAT

A statement can contain up to four fields which are identified by
order of appearance and by specified terminating characters. The
general format of a MACll assembly language statement iss

labels operator operand jcomments
The label and comment f£ields are optional. The operator and operand
fields are interdependent; either may be omitted depending upon the
contents of the other,
The Assembler interprets and processes these statements one by one,
generating one or more binary instructions or data words or performing
an assembly process, A statement must contain one of these fields and
may contain all four types. (Blank lines are legal.)
Some statements have one operand, for example:s

CLR RO

while others have two,
MOV #ERR,R2

An assembly language statement must be complete on one source line,
No continuation lines are allowed. ’

MACll source statements are formatted with +the DO0S=15 EDIT program
such that use of the TAB character causes the statement fields to be
aligned. For example:

Label Operator Operand Comment
Frield Field Field Field
MASK==10
REGEXPs ;s REGISTER EXPRESSION
ABSEXP s MUST BE ABSOLUTE
REGTST: BIT #MASK ,VALUE :3 BITS?
BEQ REGERX s YES, OK
REGERRS ERROR R sNO, ERROR
REGERX: MOV #DEFFLG : REGFLG , MODE
BIC #MASK , VALUE
BR ABSERX

2.1.1 Label Field

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user-defined symbol
table, The value of the label is absolute,

A label is a symbolic means of referring to a specific location within
a program. If present, a label always occurs first in a statement and
must be terminated by a colon. For example, if the current location
is absolute 100(8), the statement:

ABCD: MOV A,B

assigns the value 100(8) to the label ABCD. Subsequent reference to
ABCD references location 100(8).,

More than one label may appear within a single label field; each
label within the field has the same value. For example, if the
current location counter is 100(8), the multiple labels in the
statement:

ABC: SDDs A7.7: MOV A,B

cause each of the three labels ABC, $DD, and A7.7 to be equated to the
value 100(8).

The first six characters of a label are significant. An error code is
generated if more than one label share the same first six characters.

A symbol used as a label may not be redefined within the user program.

An attempt to redefine a label results in an error flag in the
assembly listing.

S

L

2.1.2 Operator Field

An operator field follows the label field in a statement, and may
contain a macro call, an instruction mnemonic, or an assembler
directive, The operator may be preceded by none, one or more labels
and may be followed by one or more operands and/or a comment, Leading
and trailing spaces and tabs are ignored,

When the operator is a macro call, the Assembler inserts the
appropriate code to expand the macro. When the operator is an
instruction mnemonic, it specifies the instruction to be generated and
the action to be performed on any operand(s) which follow, When the
operator is an Assembler directive, it specifies a certain function or
action to be performed during assembly.

An operator is legally terminated by a space, tab, or any
non-alphanumeric character (symbol component).

Consider the following examples:
MOV A4,B {space terminates the operator MOV)
MOV@A,B (@ terminates the operator MOV)

When the statement line does not contain an operand or comment, the
operator is terminated by a carriage return followed by a line feed,
vertical tab or form feed character.

A blank operator field is interpreted as a ,WORD assembler directive
(see Section 5.3.2).

2,1.3 Operand Field

An operand is that part of a statement which is manipulated by the
operator. Operands may be expressions, numbers, or symbolic or macro
arguments (within the context of the operation), When multiple
operands appear within a statement, each is separated from the next by
one of the following characters: comma, tab, space or paired angle
brackets around one or more operands (see Section 3.1.l). An operand

may be preceded by an operator, label or other operand and followed by
a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a statement terminator when the operand completes the
statement. For example:

LABEL: MOV A,B s COMMENT
The space between MOV and A terminates the operator field and begins

the operand field; a comma gseparates the operands A and B: a
semicolon terminates the operand field and begins the comment field.

2.1.4 Comment Field

The comment field is optional and may contain any ASCII characters
except null, rubout, carriage return, line feed, vertical tab or form
feed. All other characters, even special characters with a defined

usage, are ignored by the Assembler when appearing in the comment
field.

The comment field may be preceded by one, any, none or all of the
other three field types. Comments must begin with the semicolon
character and end with a statement terminator.

Comments do not affect assembly processing or program execution, but
are useful in source listings for later analysis, debugging, or
documentation purposes.

2.2 FORMAT CONTROL

Horizontal or line formatting of the source program is controlled by
the space and tab characters, These characters have no effect on the
assembly process unless they are embedded within a symbol, number, oxr
ASCITI text; or unless they are used as the operator field terminator.
Thus, these characters can be used to provide an orderly source
program. A statement can be written:

LABEL:MOV (SP) +,TAG; POP VALUE OFF STACK
or, using formatting characters, it can be writtens

LABEL: MOV (SP)+,TAG s POP VALUE OFF STACK
which is easier to read in the context of a source program listing,
Vertical formatting, i.e., page size, is controlled by the form feed

character. A page of n lines is created by inserting a form feed
(type the CTRL/FORM keys on the keyboard) after the nth line.

RN

o

"

o

PART II

DETAILS ON PROGRAMMING IN MACI1

A

p—

Lo

.

-~ S

,

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This Chapter describes the various components of legal MAC11
expressions: the Assembler character set, symbol construction,
numbers, operators, terms and expressions.

3,1 CHARACTER SET
The following characters are legal in MACll souxce programs:

1. The letters A through Z. Both upper and lower case letters
are acceptable although, upon input, lower case letters are
converted to upper case letters., Lower case letters can only
be output by sending their ASCII values to the output device.
This conversion is not true for .ASCII, JASCIZ, ' (single
quote) or " (double quote) statements if .ENABL LC is in
effect,

2. The digits 0 through 9,
3. The characters . (period or dot) and $ (dollar sign),

The special characters are as followss

Character Designation Function
carriage return formatting character
line feed
form feed source statement terminators

vertical tab

8 colon label terminator

= equal sign direct assignment indicator
% percent sign register term indicator

tab item or field terminator

space item or field terminator

number sign ~ immediate expression indicator
@ at sign deferred addressing indicator
{ left parenthesis initial register indicator

) right parenthesis terminal register indicator

¢ comma operand field separator

; semi-colon comment field indiecator

< left angle bracket initial argument or expression
indicator

> right angle bracket terminal argument or expression
indicator

+ plus sign arithmetic addition operator or
autoincrement indicator

- minus sign arithmetic subtraction operator
or autodecrement indicator

* asterisk arithmetic multiplication operatoxr

/ . slash arithmetic division operator

& ampersand logical AND operator

{ exclamation logical inclusive ok operator

" double quote double ASCII character indicator

v single quote single ASCII character indicator

t up arxow universal operator,

argument indicator

\ backslash macro numeric argument indicator

3.1.1 Separating and Delimiting Characters

Reference is made in the remainder of the manual to legal separating
characters and legal argument delimiters. These terms are defined in
Tables 3=1 and 3=2,

Table 3=1
Legal Separating Characters

Character

Definition

Usage

space

one or more spaces
and/oxr tabs

comma

A space is a legal separator only
for argument operands. Spaces
within expressions are ignored (see
Section 3.8).

A comma is a legal separator for
both expressions and the argument
operands.,

Table 3=2
Legal Delimiting Characters

Character

Definition

Usage

{ooa?

1\- ° o\

paired angle brackets

Up arrow construction
where the up arrow
character is followed
by an argument
bracketed by any
paired printing
characters.

Paired angle brackets are used to
enclose an argument, particularly
when that argument contains
separating characters. Paired
angle brackets may be used anywhere
in a program to enclose an
expression for treatment as a term.

This construction is equivalent in
function to the paired angle
-brackets and is generally used only
where the argument contains angle
brackets.

Where argument delimiting characters are used, they must bracket the
first (and, optionally, any following) argument(s). The character ¢

and the characters 1\, where \

is

any printing character, can be

considered unary operators which cannot be immediately preceded by
another argument. For example:

+MACRO TEM <AB>C

indicates a macro definition with two arguments, while

has only one argument.
up arrow construction is used,

+MACRO TEL C<{AB>

The closing », or matching character where the

acts as a separator. The opening

argument delimiter does not act as an argument separator.

Angle brackets can be nested as follows:

{ALB>C>

which reduces to:

AC

and is considered to be one argument in both forms.

3.1.2

Illegal Characters

A character can be illegal in one of two wayss

1.

A character which is not recognized as an element of the
MAC1ll character set is always an illegal character and causes
immediate termination of the current line at that point, plus
the output of an error flag in the assembly listing. For
example:

LABEL+%®A: MOV A,B

Since the backarrow is not a recognized character, the entire
line is treated as a:

-WORD LABEL
statement and is flagged in the listing.

A legal MACll character may be illegal in context. Such a
character generates a Q error on the assembly listing,

3.1.3 Operator Characters

Legal unary operators under MACll are as follows:

Unary
Operator Explanation Example
+ plus sign +A {(positive value of A,
equivalent to A)
- minus gign =A {negative, 2%'g complement,
value of A)
t up arrow, 1C24(8) (interprets the 1's complement
universal unary value of 24(8))
operator (this
usage is described 1D127 (interprets 127 as a decimal
in greater detail number)
in Sections 5.4.2
and 5.6.2), 1034 (interprets 34 as an octal
number)

tBl1000111 (intexrprets 11000111 as a
binary value)

The unary operators as described above can be used adjacent to each
other in a term., For example:

-%5
$Cctol2

Legal binary operators under MACll are as follows:

3=4

R —_—

£

iy,

,ﬂ&\

Binary

Operator Explanation Example
+ addition A+B
- subtraction A=B
multiplication B*B (l6~bit product returned)
/ division A/B (l6=bit guotient returned)
& logical AND A&B
1 logical inclusive OR AlB

All binary operators have the same priority. Items can be grouped for
evaluation within an expression by enclosure in angle brackets. Terms
in angle brackets are evaluated first, and remaining operations are
performed left to right., For example:

.WORD 1+2%3 ;IS 11 OCTAL
<WORD 1+4<2%3> IS 7 OCTAL

3.2 MACll SYMBOLS

There are three types of symbols: permanent, user-=defined and macro.
MAC1ll maintains three types of symbol tables: the Permanent Symbol
Table (PST), the User Symbol Table (UST) and the Macroc Symbol Table
(MST), The PST contains all the permanent symbols. The UST and MST
are constructed as the source program is assembled; user=defined
symbols are added to the table as they are encountered.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (Appendix B.3)
and assembler directives (Chapters 5 and 6, Appendix B). These symbols
are a permanent part of the Assembler and need not be defined before
being used in the source program,

3.2.2 User-Defined and MACRO Symbols

User-defined symbols are those used as labels (Section 2.1.1) oxr
defined by direct assignment (Section 3.3}, These symbols are added to
the User Symbol Table as they are encountered during the first pass of
the assembly. Macro symbols are those symbols used as macro names
(Section 6.1l). These symbols are added to the Macro Symbol Table as
they are encountered during the assembly.

User-defined and macro symbols can be composed of alphanumeric
c?iracters, dollar signs, and periods only; any other character is
illegal.

The following rules apply to the creation of user~-defined and macro
symbols:

1, The first character must not be a number.
2, Each symbol must be unique within the first six characters.

3. A symbol can be written with more than six legal characters,
but the seventh and subsequent characters are only checked

for legality, and are not otherwise recognized by the
Assembler,

4, Spaces, tabs, and illegal characters must not be embedded
within a symbol,

The value of a symbol depends upon its use in the program, A symbol
in the operator field may be any one of the three symbol types. To
determine the wvalue of the symbol, the Assembler searches the three
symbol tables in the following order:

1. Macro Symbol Table
2. Permanent Symbol Table
3. User-defined Symbol Table

A symbol found in the operand field is sought in the

1. User-=defined Symbol Table
2. Permanent Symbol Table

in that order. The Assembler never expects to find a macro name in an
operand field.

These search oxrders allow redefinition of Permanent Symbol Table
entries as user-defined or macro symbols. The same name can also be
assigned to both a macro and a label.

All user-defined symbols are internal and must be defined within the
current assembly.

3.3 DIRECT ASSIGNMENTS

A direct assignment statement associates a symbol with a value, When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the user symbol table and the specified
value is associated with it. A symbol may be redefined by assigning a
new value to a previously defined symbol. The latest assigned value
replaces any previous value assigned to a symbol.

The general format for a direct assignment statement is:
symbol = expression

Symbols take on the absolute attribute of their defining expression.
For example:

A=1 3THE SYMBOL A IS EQUATED TO THE
s VALUE 1.
=f A=1&MASKLOW sTHE SYMBOL B IS EQUATED TO THE
;s VALUE OF THE EXPRESSION.
Ce: D=3 ;THE SYMBOL D IS EQUATED TO 3,
E: MOV #1,ABLE s LABELS C AND E ARE EQUATED TO THE

3 LOCATION OF THE MOV COMMAND,

The following conventions apply to direct assignment statements:

-

Y

l. An equal sign (=) must separate the symbol f£from the
expression defining the symbol wvalue,

2, A direct assignment statement is usually placed in the
operator field and may be preceded by a label and followed by
a comment.

3. Only one symbol can be defined by any one direct assignment
statement.

4, Only one level of forward referencing is allowed,

Example of two levels of forward referencing (illegal):

X Y
¥ Z
Z 1
X and Y are both undefined throughout pass 1. X is undefined
throughout pass 2 and causes a U error flag in the assembly listing.

3.4 REGISTER SYMBOLS

The eight general registers of the PDP=11 are numbered 0 through 7 and
can be expressed in the source program as:

80
3l

%7

where the digit indicating the specific register can be replaced by
any legal term which can be evaluated during the first assembly pass,

It is recommended that the programmer create and use symbolic names
for all register references. A register symbol is defined in a direct
assignment statement, among the first statements in the program. The
defining expression of a register symbol must be absolute, For
example:

8

9 000000 RO=%0 $ REGISTER DEFINITION
10 000001 Rl=%1
11 000002 R2=%2
12 000003 R3=%3
13 060004 Ré=%4
14 000005 R5=%5
15 000006 R6=%6
16 0600006 SP=%6
17 000007 PC=%7
%8 000007 R7=%7

9

The symbolic names assigned to the registers in the example above are
the conventional names used in all PDP=-11 system programs, Since
these names are falrly mnemonic, it is suggested the user follew +hise
convention, Registers 6 and 7 are given special names because of
their special functions, while registers 0 through 5 are given similar
names to denote their status as general purpose registers.

All register symbols must be defined before they are referenced., A
forward reference to a register symbol is flagged as an error.

The % character can be used with any term or expression to specify a
register. (A register expression less than 0 or greater than 7 is
flagged with an R error code.) For examples

CLR %3+1

is equivalent to
CLR %4

and clears the contents of register 4, whilse
CLR 4

clears the contents of memory address 4,

In certain cases a register can be referenced without the use of a
register symbol or register expression; these cases are recognized
through the context of the statement., An example is shown belows

JSR 5,8UBR $ FIRST OPERAND FIELD MUST ALWAYS BE A REGISTER

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
given range. Use of local symbols can achieve considerable gsavings in
core space within the user symbol table, Core cost is one word for
each local symbol in each local symbol block, as compared with four
words of storage for each label stored in the user symbol table,

Local symbols provide a convenient means of generating labels for
branch instructions, atC, Use of local symbols reduces the
possibility of multiply-defined symbols within a user program and
separates entry point symbols from local references. Local gymbols
are not referenced from outside their local symbol block.

Local symbols are of the form n$ where n is a decimal integer from 1
to 127, inclusive, and can only be used on word boundaries. Loeal
symbols includes

13
27%
59¢

1048

Within a local symbol block, local symbols can be defined and
raferenced, However, a local symbol cannot be referenced outside the
block in which it is defined. There is no conflict with labels of the
same name in other local symbol blocks.

o

Local symbols 64§ through 127§ can be generated automatically as a
feature of the macro processor (see Section 6.3.5 for further
details). When using local symbols, the user is advised to . first use
the range from 1$ to 63§,

A local symbol block is delimited in one of the following wayss

i

The range of a single local symbol block can consist of those
statements between two normally constructed symbol labels.
(Note that a statement of the form

LABEL=,

is a direct assignment, dces not create a label in the strict
sense, and does not delimit a local range.)

The range of a single local symbol block can be delimited
with the LENABL LSB and the first symbolic label, The
default for LSB is off,

For examples of local symbols and local symbol blocks, see Figure 3=3,

In.
No.

Octal
Expansion Source Code Comments

«SBTTL SECTOR INITIALIZATION

000000
00000 XCTPRGs
00000 012700 MOV #IMPURE, RO
000000
00004 005020 1S$: CLR (RO} + sCLEAR IMPURE AREA
00006 022700 CMP #IMPTOP, RO
000040
00012 101374 BHI is
000000 s PASS INITIALIZATION
2 CODE
000060 XCOTPAS 2
00000 012700 MOV $IMPPAS , RO
000000
00004 005020 1s:s CLR {RO) + 3 CLEAR IMPURE PART
00006 022700 CMP #IMPTOP, RO
000040
00012 101374 BHI 1s
000000 s LINE INITIALIZATION
:CODE
00000 XCTLIN:
00020 012700 MOV #IMPLIN,RO
000000
00004 005020 1S: CLR (RO) +
00006 022700 CMP #IMPTOP, RO
000040
00012 101374 BHI 1s

31 000000 s MIXED MODE SECTOR

Figure 3=3
Assembly Source Listing of MACLl Code
Showing Local Symbol Blocks

The maximum offset of a local symbol from the base of its local symbol
blocks 1is 128 decimal words., Symbols beyond this range are flagged
with an A error code,

3.6 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. When
used in the operand field of an instruction, it represents the address
of the first word of the instruction. When used in the operand field
of an assembler directive, it represents the address of the current
byte or word. For examples
As MOV #.,R0 » REFERS T0 LOCATION A,
I.E., THE ADDRESS OF THE
MOV INSTRUCTION,

a
£
©
g
®
4

(# is explained in Section 5.9.)

At the beginning of each assembly pass, the Assembler c¢lears the
location counter. Normally, consecutive memory locations are assigned
to each byte of binary data generated. However, the location of the
stored binary data may be changed by a direct assignment altering the
location counter,

Fexpression

The expression defining the location counter must not contain forward
references or symbols that vary from one pass to another.,

Examples:

.=500 s SET LOCATION CCUNTER TO ABRSOLUTE
:500

FIRST: MOV .+10 ,COUNT ; THE LABEL FIRST HAS THE VALUE 500 (8)
$.+l0 EQUALS 510(8). THE CONTENTS OF
;THE LOCATION 510(8) WILL BE DEPOSITED
s IN LOCATION COUNT,

=520 ;THE ASSEMBLY LOCATION COUNTER NOW
sHAS A VALUE OF ABSOLUTE 520(8).

SECOND MOV , ;INDEX sTHE LABEL SECOND HAS THE VALUE 520(8)
s THE CONTENTS OF LOCATION 520(8), THAT
1S, THE BINARY CODE FOR THE INSTRUCTION
s ITSELF, WILL BE DEPOSITED IN LOCATION
; INDEX,

o=, 420 $ SET LOCATION COUNTER TO ABSOLUTE 540 OF
3 THE PROGRAM SECTION.,

LN

ey

e

THIRD: ~WORD 0 ¢THE LABEL THIRD HAS THE VALUE OF
s ABSOLUTE 540,

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the
direct assignment statement

«=o+100

reserves 100(8) bytes of storage space in the program. The next
instruction is stored at 1100,

3.7 NUMBERS

The MACll Assembler assumes all numbers in the source program are to
be interpreted in octal radix unless othexwise specified. The assumed
radix can be altered with the ,RADIX directive (see Section 5.4.l1l) or
individual numbers can be treated as being of decimal, binary, oxr
octal radix (see Section 5.4.2),

Octal numbers consist of the digits 0 through 7 only. A number not
specified as a decimal number and containing an 8 or 9 is flagged with
an N error code and treated as a decimal number,

Negative numbers are preceded by a minus sign (the Assembler
translates them into 2's complement form). Positive numbers may be
preceded by a plus sign, although this is not required.

A number which is too large to £it dinto 16 bits (177777<n) is
truncated from the left and flagged with a T error code in the
assembly listing.

3.8 TERMS

A term is a component of an expression. A term may be one of the
following:

1. A number, as defined in Section 3.7, whose 16=bit wvalue is
used.

2. A symbol, as defined earlier in the chapter, Symbols are
interpreted according to the following hierarchy:

a. a period causes the value of the current location counter
to be used.

b. a permanent symbol whose basic value is wused and whose
arguments (if any) are ignored.

c. an undefined symbol is assigned a value of zero and
inserted in the user—-defined symbol table,

3. An ASCII conversion using either an apostrophe followed by a
single ASCII character or a double guote followed by two
ASCII characters which results in a word containing the 7-=bit

ASCII value of the character(s), (This_ construction is
explained in greater detail in Section 5.3.3.)

3-11

4. A term may also be an expression or term enclosed in angle
brackets. Any quantity enclosed in angle brackets is
evaluated before the remainder of the expression in which it
is found. Angle brackets are used to alter the left to right
evaluation of expressions (to differentiate between A*B+C and
A*<{B+C>) or to apply a unary operator to an entire expression
(=<A+B>, for example),

3.9 EXPRESSIONS

Expressions are combinations of terms Jjoined together by binary
operators and which reduce to a 16=bit value. The operands of a ,BYTE
directive (see Section 5.3.1) are evaluated as word expressions before
truncation to the low-order eight bits. Prior to truncation, the
high-order byte must be zero or all ones (when byte value is negative,
the sign bit is propagated).

Expressions are evaluatec left to right with no operator hierarchy
rules except that wunary operators take precedence over binary
operators. A term preceded by a unary operator can be considered as
- containing that unary operator., {Texrms are evaluated, where
necessary, before their use in expressions.) Multiple unary operators
are valid and are treated as follows:

-+=A
is equivalent to

={+{=A>
A missing term, expression, or external symbol is interpreted as a

Zero, A missing operator is interpreted as +. A Q error flag is
generated for each missing term or operator. For examples

TAG 1 LA 177777
is evaluated as
TAG ! LA+177777
with a Q error flag on the assembly listing line.

The value of an expression is the value of the absolute part of the

expression; e.g.,
A 5

. 20

TAG ¢ MOV TAG+A,R0 ;SET RO TO 25 (8).

o

3=12

N .
e

A

PR

s,

CHAPTER 4

ADDRESSING MODES

The program counter (PC, register 7 of the eight general registers)
always contains the address of the next word to be fetched; i.e., the
address of the next instruction to be executed, or the second or third
word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the action of the program counter must be understood. The
key rule is:

Whenever the processor implicitly uses
the program counter to fetch a word from

memoxry, the program counter is
automatically incremented by two after
the fetch.

That is, when an instruction is fetched, the PC is incremented by two,
so that it is pointing to the next woxd in memory; and, if an
ingtruction uses indexing (Sections 4.7, 4.8 and 4.,11) the processor
uses the program counter to fetch the base from memory. Hence, using
the rule above, the PC increments by two, and now points to the next
word.

The following conventions are used in this Sections
1., Let E be any expression as defined in Chapter 3,
2, Let R be a register expression. This is any expression
containing a term preceded by a & character or a symbol

previously equated to such a term.

Examples s

RO = %0 ; GENERAL REGISTER 0
Rl = RO+l ;GENERAL REGISTER 1
R2 = 1+%1 ;GENERAL REGISTER 2

3. Let ER be a register expression or an expression in the range
0 to 7 inclusive,

4, Let A be a general address specification which produces a
6=bit mode address field as described in Sections 3.1 and 3.2
of the PDP=1l Processor Handbook (both 11/20 and 11/45
versions).

The addressing specifications, A, can be explained in terms of E, R,

and ER as defined above,

instruction CLR or double operand instruction MOV,

The

The

4.3

The

REGISTER MODE

register contains the operand,

Format for A: R
Examples ¢ R0O=%0 sDEFINE RO AS REGISTER O
CLR RO s CLEAR REGISTER 0

REGISTER DEFERRED MODE
register contains the address of the operand.
Format for A:s @R or (ER)
Examples: CLR @R1 s BOTH INSTRUCTIONS CLEAR

CLR (1} 7 THE WORD AT THE ADDRESS
s CONTAINED IN REGISTER 1

AUTOINCREMENT MODE

contents of the register are incremented immediately after being

used as the address of the operand, (See note below.)}

Format for Acs {(ER) +

Examples: CLR (RO)+ 3 EACH INSTRUCTION CLEARS
CLR (RO+3)+ s THE WORD AT THE ADDRESS
CLR (2)+ s CONTAINED IN THE

s SPECIFIED REGISTER AND

f INCREMENTS THAT

; REGISTER'S CONTENTS BY
7 THWO.

NOTE

Both JMP and ISR instructions using
non-deferred autoincrement mode ,
autoincrement the register before its
use on the PDP=11/20 (but not on the
PDP=11/45 or 11/05)., In double operand
instructions of the addressing form
%R, (R)+ or %R,=(R) where the source and
destination registers are the same, the
source operand is evaluated as the
autoincremented ox auvtodecremented
value; but the destination register, at
the time it is used, still contains the
originally intended effective address,

Each is illustrated with the single operand

s

S

In the following two examples, as
executed on the PDP=-11/20, RO originally
contains 100,

e~

MOV RO, (0)+ s THE QUANTITY 102 IS
s MOVED TO LOCATION 100

MOV RO,=-(0) s THE QUANTITY 76 IS MOVED
s TO LOCATION 76

The use of these forms should be avoided
as they are not compatible with the
PDP=11/05 and 11/45.

A %2 exror code is printed with each dinstruction which is not
compatible among all members of the PDP=11 family. This is merely a
warning code.

7
4.4 AUTOINCREMENT DEFERRED MODE
o, The register contains the pointer to the address of the operand. The
’ contents of the register are incremented after being used,
Format for A: @(ER) +
Example: CLR @(3)+ s CONTENTS OF REGISTER 3
s POINT TO ADDRESS OF WORD
sTO BE CLEARED BEFORE
2 BEING INCREMENTED BY TWO
4,5 AUTODECREMENT MODE
The contents of the register are decremented before being used as the
address of the operand (see note under autoincrement mode).
Format for A = (ER})
Examples: CLR =(R0) 3 DECREMENT CONTENTS OF
~, CLR =(R0+3) s REGISTERS 0, 3, AND 2 BY
‘ CLR =(2) $TWO BEFORE USING AS
s ADDRESSES OF WORDS TO BE
¢ CLEARED.

4,6 AUTODECREMENT DEFERRED MODE

The contents of the register are decremented before being used as the
pointer to the address of the operand.

Format for A: @= (ER)

Example: CLR @-(2) ; DECREMENT CONTENTS OF
s REGISTER 2 BY TWO BEFORE
;USING AS POINTER TO
: ADDRESS OF WORD TO BE
s CLEARED,

—
N

4.7 INDEX MODE

The value of an expression E is stored as the second or third word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER, The value E is called the base.
Format for A: E(ER)
Examples: CLR X+2(R1) s EFFECTIVE ADDRESS IS X+2
$PLUS THE CONTENTS OF
3 REGISTER 1.,
CLR =2(3) s EFFECTIVE
s ADDRESS IS =2 PLUS THE
s CONTENTS OF REGISTER 3,
4.8 INDEX DEFERRED MODE
An expression plus the contents of a register gives the pointer to the
address of the operand.,
Format for A: @E (ER) i
Example: CLR @14 (4) s IF REGISTER 4 HOLDS 100
$AND LOCATION 114 HOLDS
52000, LOCATION 2000 IS
s CLEARED,
4.9 IMMEDIATE MODE e
The immediate mode allows the operand itself +to be stored as the
second or third word of +the instruction. It is assembled as an
autoincrement of register 7, the PpC.
Format for A: $#E
Examples: MOV #100, RO $MOVE AN OCTAIL 100 T0O
MOV #X, RO $REGISTER 0, MOVE THE .
sVALUE OF SYMBOL X TO e

s REGISTER 0,
The operation of this mode is explained as follows,
The statement MOV #100,R3 assembles as two words. These ares

612703
0001100

Just before this instruction is fetched and executed, the PC points to
the £first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus the PC is used as a pointer to fetch the
operand (the second word of the instruction) before being incremented
by two, to point to the next instruction.,

o

o,

4,10 ABSOLUTE MODE

Absolute mode is the equivalent of immediate mode deferred. @#E
specifies an absolute address which is stored in the second or third
word of the instruction. Absolute mode is assembled as an

autoincrement deferred of register 7, the PC.

Format for A: @#E

Exampless MOV @#100,R0 sMOVE THE VALUE OF THE
3 CONTENTS OF LOCATION 100
CLR @#X 3§ TO REGISTER (. CLEAR

§ THE CONTENTS OF THE
;s LOCATION WHOSE ADDRESS
IS X.

4,11 RELATIVE MODE

Relative mode is the normal mode for memory references.

Format for A: E

Examples: CLR 100 sCLEAR LOCATION 100,
MOV X,¥ s MOVE CONTENTS OF
s LOCATION X TO LOCATION
8 Y.

Relative mode is assembled as index mode, using register 7, the PC, as
the index register. The base of the address calculation, which is
stored in the second or third word of the instruction, is not the
address of the operand (as in index mode), but the number which, when
added to the PC, becomes the address of the operand. Thus, the base
is X=PC, which 4is called an offset. The operation is explained as
follows:

If the statement MOV 100,R3 is assembled at absolute location 20, the
assembled code is:

Location 20: 016703
Location 22: 000O0©S5 4

The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22, The socurce operand mode is 67; that is,
indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC, The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the designated register. That is, BASE+PC=54+24=100,
the operand address.

Since the Assembler considers "." as the address of the first word of
the instruction, an equivalent index mode statement would be:

MOV 100"'0"‘4 (PC) pR3

This mode is called relative because the operand address is calculated
relative to the current PC. The base is the distance or offset (in
bytes) between the operand and the current PC., If the operator and
its operand are moved in memory so that the distance between the
operator and data remains constant, the instruction will operate
correctly anywhere in core.

4,12 RELATIVE DEFERRED MODE

Relative deferred mode is similar to relative mode, except that the
expression, E, is used as the pointer to the address of the operand.

Format for A: @E

Examples MOV @X,R0O

sMOVE THE CONTENTS OF THE
s LOCATION WHOSE ADDRESS IS
$IN X INTO REGISTER 0.

4,13 TABLE OF MODE FORMS AND CODES

Each instruction takes at least one word. Operands of the first six
forms listed below do not increase the length of an instruection. Each
operand in one of the other modes, however, increases the instruction

length by one word.

Form Mode
R On
@R oxr (ER) in
{ER) + 2n
@ (ER) + 3n
= (ER) 4n
@=(ER) 5n

where n is the register number,

Meaning

Register mode

Register deferred mode
Autoincrement mode
Autoincrement deferred mode
Autodecrement mode
Autodecrement deferred mode

Any of the following forms adds one word to the instruction length:

Form Mode
E(ER} 6n
@E {(ER) 7n
#E 27
G#E 37
E 67
GE 77

where n is the register number,

Meaning

Index mode

Index deferred mode

Immediate mode

Absolute memory reference mode
Relative mode

Relative deferred reference mode

Note that in the last four forms,

register 7 (the PC) is referenced.

l. An alternate

NOTE

form for @R is {ER)

However, the form @(ER) is eguivalent to

@0 (ER)

2. The form @#E differs from the form E in
that the second or third word of the

instruction

contains the absolute

address of +the operand rather than the
relative distance between the operand

o,

and the PC, Thus, the instruction
CLR @#100 clears absolute location 100
even 1f the instruction is moved from
the point at which it was assembled. -

4,14 BRANCH INSTRUCTION ADDRESSING

The branch instructions are Il-word instructions. The high byte
contains the op code and the low byte contains an 8-bit signed offset
(7 bits plus sign) which specifies the branch address relative to the
PC. The hardware calculates the branch address as follows:

1., Extend the sign of the offset through bits 8-15,

2, Multiply the result by 2. This creates a word offset rather
than a byte offset,

3. Add the result to the PC to form the final branch address.

The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to
the PC, the PC is pointing to the word following the branch
instruction; hence the factor -2 in the calculation.

Byte offset = (E=BC)/2 truncated to eight bits.

Since PC = .+2, we have
Byte offset = (E-=,-2)/2 truncated to eight bits.

The EMT and TRAP instructions do not use the low=-order byte of the
word. This allows information to be transferred to the trap handlers
in the low order byte. If EMT or TRAP is followed by an expression,
the value is put into the low-order byte of the word., However, if the
expression is too big (»377(8)) it is truncated to eight bits and a T
exror flag is generated.

,/W‘-'«;,%

ey

o,

PART Iix

MACll ASSEMBLER DIRECTIVES

Chapters 5 and 6 describe all MACl11l directives, Directives are
statements which cause the Assembler to perform certain processing
operations. Chapter 5 describes several types of directives including
those to control symbol interpretation, 1listing header material,
program sections, data storage format, assembly listings, and
floating-point formats. Chapter 6 describes those directives having
to do with macros, macro arguments, and repetitive coding situations.

Assembler directives can be preceded by a label, subject to
restrictions associated with specific directives, and followed by a
comment.,. An assembler directive occupies the operator field of a
MACll source line. Only one directive can be placed on any one line.
Zero, one, or more operands can occupy the operand field; legal
operands differ with each directive and may be symbols, expressions,
or arguments.

p—

g

CHAPTER 5

GENERAL ASSEMBLER DIRECTIVES

5.1 LISTING CONTROL DIRECTIVES .

5.1.1 JLIST and .NLIST

Listing options can be specified in the text of a MACll program
through the .LIST and .NLIST directives. These are of the forms

+LIST arg
+NLIST arg

wheres
arg represents one or more optional arguments.

When used without arguments, the listing directives alter the listing
level count. The listing level count causes the listing to be
suppressed when it is negative. The count is initialized to zero,
incremented for each LLIST and decremented f£or each ,NLIST. For
example:s

-MACRO LTEST s LIST TEST
sA=-THIS LINE SHOULD LIST
«NLIST
:B=THIS LINE SHOULD NOT LIST
o NLIST
3C=THIS LINE SHOULD NOT LIST
+LIST
;D=-THIS LINE SHOULD NOT LIST (LEVEL NOT BACK TO ZERO)
+LIST
3E=THIS LINE SHOULD LIST (LEVEL BACK TO ZERO)
« ENDM
s LTEST s CALL THE MACRO
sA=THIS LINE SHOULD LIST
+NLIST
+LIST

;E=THIS LINE SHOULD LIST (LEVEL BACK TO ZERO)

The primary purpose of the level count is to allow macxo
expansions to be selectively listed and yet exit with the level
returned to the status current during the macro call,

The use of arguments with the listing directives does not affect
the lgvel count; however, use of .LIST and .NLIST can be used to
override the current listing control. For example:

Allowable argquments for
(these arguments can be

Argument

SEQ

LocC

BIN

BEX

SRC

COM

«MACRO XX

+LIST

«NLIST

°

« ENDM
o NLIST ME

XX
- LIST
X=,

Default

list

list

list

list

list

list

list

list

no list

no list

s LIST NEXT LINE

;DO NOT LIST REMAINDER
s OF MACRO EXPANSION

:DO NOT LIST MACRO EXPANSIONS

s LIST NEXT LINE

use with the listlng directives are as fcllows
used singly or in combination):

Function

Controls the listing of source line sequence
numbers. Error flags are normally printed on
the line preceding the gquestionable source
statement.

Controls the listing of the location counter
{this field would not normally be
suppressed) .

Controls the 1listing of generated binary
code,

Controls listing of binary extensions; that
is, those locations and binary contents
beyond the first binary word (per source
statement). This is a subset of the BIN
argument.

Controls the listing of the source code.

Controls the listing of comments. This is a
subset of the SRC argument and can be used to
reduce listing time and/or space where
comments are unnecessary.

Controls listing of macro definitions and
repeat range expansions.

Controls listing of macro calls and repeat
range expressions.

Controls listing of macro expansions,

Controls listing of macro expansion binary
code. A LIST MEB causes only those macro
expansion statements producing binary code to
be listed. This is a subset of the ME
argument,

,»w»«%z

CND list Controls the listing of unsatisfied
conditions and all .IF and .ENDC statements.
This argument permits conditional assemblies
to be listed without including unsatisfied
code.

LD no list Control listing of all 1listing directives
having no arguments (those used to alter the
listing level count).

TOC list Control listing of tables of contents on pass
1 of the assembly (see Section 5.1l.4
describing the .SBTTL directive)., The full
assembly listing is printed during pass 1 of
the assembly.

TTM Teletype Controls listing output format. The TTM

mode argument (the default case) causes output
lines to be truncated to 72 characters.
Binary code is printed with the binary
extensions below the first binary word. The
alternative (.NLIST TTM) to Teletype mode is
line printer mode, which is shown in Figure
6-1,

SYM list Controls the listing of the symbol table for
the assembly.

An example of an assembly listing as sent to a 132=column line printer
is shown in Figure 5-1., Notice that binary extensions for statements
generating more than one word are spread horizontally on the source
line.

ON
{403
‘834
ON
LUVE ONTHLIANY!
3LA8 3000 L1399

HOuH3

en sw om s

US 41 MOhvue!

SSIHI0Ud NI CUMAYW FUNSsY!
Y1034 "S3A ¢

LOHOYMW WILSAS Wl

SUIMNMYA INIT 40 ON3I Quy ¢
GNINNIOZE dn ivast

03038 43IHT M3In LIwnld

HIHWAN 39Vd 31YUdN 'S34¢
N f
[

£8 /44 GAANASAH AnY

ANTT LNdghND wy 1394

g

-

(z93uTad SUTT UWNTOD=ZET)

BUT3STT IVIUTIJ SUTT TTOWH 3O o1dwexdy
T=¢ 2Inbtg

§p¢
9740N3TAVEIS0
¥4

nY

.

LA

B Ly0H
pUECEHANHONE
WANNET
UNJoYS#

T ANADHEH
spT

T duBgh
Py

LNDTHE
TONIOTaNINTE
193689172y
eyl ANENT e
ANDddT

318

$Svd

(aN3038

IND 44
WANNT T
Ixaova!Teg
KIANOYE ' oY
318
PWTIND A4S

aNg
sig
148
890y
HOYH3
038
418
BAOK
INI
Livme
ADK
ang
ADH
3Ng
484
ADK
AOW
ADK
89
038
L84
¥
¥
¥0
AOH
aay
034
AW
9IHAYS

Rl
{528

sy IAGRY
$1¢

1 92BavE

187

INITL39

T YeasA oudvu

sSRBNEE

Lelig e
186L00D
sOTREBY

1964000
1pTE206

L
911200
121008
1ETL508
s ATPEE

gl
1910R0Q
Aty
12 TEDRE
LLdLLy
AL

iBenpde

Sy

N[R1:17
494960
pT6eAT
gatent

£EpTIED
Balegb
BBLOTT
Lvegpe

A1
20T TR
TBLoTE
evIT00
L9Lem8
L8LETY
L9207k
EA TR
Lo@gnE
2UPTOG
L9L6RE
L9Bepy
L9Bary
L90eny
L9LETE
L9BuoL
BerIue
BRLOTY

evTelu
ye1egy
peTeen
petepy
z22telp
geiene
»11800
Birefe
L2 AT
9LBCHY
2iBE0Y
G080
bOBELD
gegene
R kAT
fepehu
pyBeBY
gepede
pe@erD
gepéty
Q2Beny
b A XAl
bipcee
AV AT
PRBZED
powEery
9LLI06
ZLLTED
99/ 100
99LT0G

be
£s
28
38
28
68
82
42
92

62

be
ée
e
gt
47
gt
14
£T
A
It

H3d0o¥d u3TGn3S8Y

TTYRRRA

CYIVH

G, .

5,1.2 Page Headings

The MACll Assembler outputs each page in the format shown in Figure
5=1, Line Printer Listing. On the first line of each listing page the
Assembler prints (from right to left):

l. title taken from .TITLE directive.
2. assembler version identification
3. page number,

The second line of each listing page contains the subtitle text
specified in the last encountered .SBTTL directive,

5.1‘3 .TITLE

The .TITLE directive is used to assign a name to the listing output.
The name is the first symbol following the directive and must be six
Radix=50 characters or less (any characters beyond the first six are
ignored) , Non—Radix 50 characters are not acceptable. For examples

« TITLE PROG TO PERFORM DAILY ACCOUNTING

causes the listing output of the assembled program to be named PROG
(this name is distinguished £rom the filename of the binary output
specified in the command string to the Assembler}.

If there is no .TITLE statement, the default name assigned to the
first listing output is

+MAIN,

The first tab or space following the LTITLE directive is not
congidered part of the listing output name or header text, although
subsequent tabs and spaces are significant.

If there is more than one .TITLE directive, the last .TITLE directive
in the program conveys the name of the listing output.

5.1.4 SBTTL
The .SBTTL directive is used to provide the elements for a printed
table of contents of the assembly listing. The text following the
directive is printed as the second 1line of each of the following
assembly listing pages wuntil the next occurrence of a .SBTTL
directive. For example:

«SBTTL CONDITIONAL ASSEMBLIES
The text

CONDITIONAL ASSEMBLIES

is printed as the second 1line of each of the following assembly
listing pages.

During pass 1 of the assembly process, MACLlL automatically prints a
table of contents for the listing containing the line sequence number
and text of each .SBTTL directive in the program.

An example of the table of contents is shown in Figure 5=2. Note that
the first word of the subtitle heading is not 1limited to six
characters since it is not a module name.

MACRO VlA

[

y .-
12=-
1l4-
16-=
26=
36=
40~
41~
48~
50=
51=-
59
68=
72=
74=
75=
78=
79~
80=
88~
92-
93-
99=
103~
109~
114~
116-
135=

et B e et et et et B et et e et e et et e et (et et e et et e et et e e

MACRO V1A
TABLE OF CONTENTS

SECTOR INITIALIZATION
SUBROUTINE CALL DEFINITIONS
PARAMETERS

ROLL DEFINITIONS

PROGRAM INITIALIZATION
ASSEMBLER PROPER
STATEMENT PROCESSOR
ASSIGNMENT PROCESSOR

OP CODE PROCESSOR
EXPRESSION TO CODE=ROLL CONVERSIONS
CODE ROLL STORAGE
DIRECTIVES

DATA-GENERATING DIRECTIVES
CONDITIONALS

LISTING CONTROL
ENABL/DSABL FUNCTIONS
CROSS REFERENCE HANDLERS
LISTING STUFF

KEPBOARD HANDLERS

OBJECT CODE HANDLERS
LISTING OUTPUT

I/0 BUFFERS

EXPRESSION EVALUATOR

TERM EVALUATOR
SYMBOL/CHARACTER HANDLERS
ROLL HANDLERS

REGISTER STORAGE

MACRO HANDLERS

FIN

Table of Contents text is taken from the text of

directive,

numbers of the .SBTTL directive.

Figure 5-2
Assembly Listing Table of Contents

each

«SBTTL

The associated numbers are the page and line sequence

QS

e,

5.1.5 Page Ejection

There are several means of cbtalning a page eject in a MACll assembly
listing: '

1. After a line count of 58 lines, MACll automatically performs
a page eject to skip over page perforations on line printer
paper and to formulate terminal output into pages.

2. A form feed character used as a line terminator (or as the
only character on a line) causes a page eject. Used within a
macro definition a form feed character causes a page eject.
A page eject is not performed when the macro is invoked,.

3. More commonly, the .PAGE directive is used within the source
code to perform a page eject at that point. The format of
this directive is

« PAGE

This directive takes no arguments and causes a skip to the
top of the next page.

Used within é macro definition, the .PAGE is ignored, but the
page eject is performed at each invocation of that macroc.

5.2 FUNCTIONS: .ENABL AND .DSABL DIRECTIVES

several functions are provided by MACLl through the .ENABL and .DSABL
directives. These directives use 3=character symbolic arguments to
designate the desired function, and are of the formss

.ENABIL arg
+DSABL arg

where:
arg is one of the legal symbolic arguments defined below.

The following table describes the symbolic arguments and their
associated functions in the MACLL languages

Symbolic
Argument Function

CDR The statement .ENABL CDR causes source columns 73 and
greater to be treated as comment. This accommodates
sequence numbers in card columns 72-80.

LC Enabling of this function causes the Assembler to
accept lower case ASCII input instead of converting it
to upper case.,

LSB Enable or disable a local symbol block. While a local

symbol block is normally entered by encountering a new
symbolic label, .ENABL LSB forces a local symbol block
which is not terminated until a label following the

.DSABL LSB statement is encountered. The default case
is ,DSABL LSB,

PNC The statement .DSABL PNC inhibits binary output until
an LENABL PNC is encountered, The default case is
- ENABL PNC. :

An incorrect argument causes the directive containing it to be flagged
as an erxor.

5.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
following directives and assembly characterss

«BYTE

«WORD
9

W

«ASCII
«ASCIZ
« RAD50
+B
D
e

These facilities are explained in the following Sections,

50301 OBYTE

The .BYTE directive 1s used to generate successive bytes of data. The
directive is of the form:

«BYTE exp sWHICH STORES THE OCTAL EQUIVALENT
;OF THE EXPRESSION exp IN THE NEXT
2 BYTE .,

«BYTE expl,exp2;... sWHICH STORES THE OCTAL EQUIVALENTS

sOF THE LIST OF EXPRESSIONS IN
s SUCCESSIVE BYTES.

where a legal expression must have an absolute value (or contain a
reference to an external symbol) and must result in eight bits or less
of data. The 1l6-bit value of the expregsion must have a high-order
byte (which is truncated) that is either all zeros or all ones. Each
operand expression is stored in a byte of the object program.
Multiple operands are separated by commas and stored in successive
bytes. For example:

SAM=5

.=410

«BYTE {D48,SAM :060 (OCTAL EQUIVALENT OF 48 DECIMAL)
IS STORED IN LOCATION 410, 005 IS
s STORED IN LOCATION 411.

If the high order byte of the expression equates to a value other than

0 or =1, it is truncated to the low-order eight bits and flagged with
a T erxror code,

(

f&_%\

o ey

If an operand following the .BYTE directive is null, it is interpreted
as a zero, For example:

.=420

.BYTE ,, ;ZEROES ARE STORED IN BYTES 420,
421, AND 422,

5.3.2 .WORD

The WORD directive is used to generate successive words of data. The
directive is of the form:

JHORD exp sWHICH STORES THE OCTAL EQUIVALENT
;OF THE EXPRESSION exp IN THE NEXT
s WORD

.WORD expl,exp2,... ;WHICH STORES THE OCTAL EQUIVALENTS

sOF THE LIST OF EXPRESSIONS IN
s SUCCESSIVE WORDS.

where a legal expression must result in sixteen bits or less of data.
Each operand expression is stored in a word of the object program.
Multiple operands are separated by commag and stored in successive
words, For example:

SAL=0

»=500

.WORD 177535,.+4,SAL s STORES 177535, 506, AND 0 IN
sWORDS 500, 502, AND 504,

I1f an expression equates to a value of more than sixteen bits, it is
truncated and flagged with a T error code.

If an operand following the .WORD directive is null, it is interpreted
as zero, For example:

=500
Woxrd ,5, ¢§STORES 0, 5, AND 0 IN LOCATIONS 500
§502, AND 504,

A blank operator field (any operator not recognized as a macro call,
op—-code, directive or semicolon) is interpreted as an implicit .WORD
directive. Use of this convention ig discouraged. The first term of
the first expression in the operand field must not be an instruction
mnemonic or assembler directive unless preceded by a + or - operator,
For example:

«=440 s THE OP=CODE FOR MOV, WHICH IS 010000,
LABEL: +MOV,LABEL 3IS STORED ON LOCATION 440,
440 IS STORED IN LOCATION 442,

Note that the default .,WORD directive occurs whenever there is a
leading arithmetic or logical operator, or whenever a leading symbol
is encountered which is not recognized as a macro call, an instruction
mnemonic or assembler directive, Therefore, if an instruction

mnemonic, macro call or assembler directive is misspelled, the QWOBD
directive 1is assumed and errors will result. Assume that MOV is
spelled incorrectly as MOR:

MOR A,B

Two erxrror codes result: Q occurs because an expression operator is
missing between MOR and A, and a U occurs if MOR is undefined., Two
words are then generated: one for MOR A and one for B,

5.3.3 ASCII Conversion of One or Two Characters

The ' and " characters are used to generate text characters within the
source text. A single apostrophe followed by a character results in a
word in which the 7=bit ASCII representation of the character is
placed in the low-order byte and zero is placed in the high-order
byte., For example:

MOV #°'A,RO

results in the following sixteen bits being moved into RO:

15 g8 7 g
7] 1g1

octal ASCII value of A

The *! character is never followed by a carriage return, null, rubout,
line feed or foxrm feed, (For another use of the ' character, see

Section 5.3.6.)

STMNT 3
GETSYM
BEQ 48
CMPB QCHRPNT , %' ¢ :COLON DELIMITS LABEL FIELD.
BREO LAREL
CMPR @CHRPNT , #°= s EQUAL DELIMITS
BEQ ASGMT s ASSIGNMENT PARAMETER,

A double quote followed by two characters results in a word in which
the 7-bit ASCII representations of the two characters are placed, For
example:

MOV #"AB,RO

results in the following word being moved into RO:

15 8 7]
192 181 }

octal ASCII value of B octal ASCII value of A

——
s,

The " character is never followed by a carriage return, null, rubout,
line feed or form feed., For example:

¢DEVICE NAME TABLE

DEVNAMs «WORD "DF ‘3 RF DISK
« WORD "DK ¢RK DISK
«WORD pp s RP DISK

DEVNKB g «WORD KB s TTY KEYBOARD
«WORD - DT ;s DECTAPE
«WORD "LP s LINE PRINTER
« WORD "PR s PAPER TAPE READER
«WORD PP ¢ PAPER TAPE PUNCH
- WORD “CR ¢ CARD READER
«WORD "MT s MAGTAPE
« WORD 0 ¢ TABLE'S END

5.3.4 .ASCII

The .ASCII directive translates character strings into their 7-bit
.ASCIT equivalents for use in the source program. The format of the
«ASCII directive is as follows:

«ASCII /character string/

wheres

character is a string of any acceptable printing ASCII

string characters. The string may not include null
(plank) characters, rubout, carriage return,
line feed, wvertical tab, or form feed.
Nonprinting characters can be expressed in
digits of the current radix and delimited by
angle brackets. {(Any legal, defined
expression is alliowed between angle
brackets,)}

/ / these are delimiting characters and may be
any printing characters other than ; <
and = characters and any character within the

string.
As an example:
A «ASCII /HELLG/ s STORES ASCII REPRESENTATION OF THE
s LETTERS H,E,L,L,0 IN CONSECUTIVE
s BYTES.
.ASCII BC/<15><12>/DEF/ ¢ STORES A,B,C,15,12,D,E,F IN
¢ CONSECUTIVE BYTES.
«ASCII /<{AB>/ sSTORES <£,;A,B,> IN CONSECUTIVE

s BYTES.

The ; and = characters are not illegal delimiting characters, but are
pre-empted by their significance as a comment indicator and assignment
operator, respectively. For other than the first group, semicolons
are treated as beginning a comment field, For examples

5=11

ASCII string
Example Generated Notes

.ASCII :ABC;/DEF/ ABCDEF Acceptable, but not a recommended

procedure,.
.ASCII /ABC/;DEF; ABC :DEF; 1is treated as a comment and
ignored,
+ASCII /ABC/=DEF= ABCDETF Acceptable, but not recommended
procedura.
«ASCII =DEF= The assignment
+ASCII=DEF

is performed and a Q-error is
generated upon encountering the
second =,

5.3.5 .ASCIZ

The ASCIZ directive is equivalent to the ,ASCII directive with a zero
byte automatically inserted as the final character of the string. For
examples

When a list or text string has been created with a LASCIZ
directive, a search for the null character can determine the end
of the list. For example:

@

MOV #HELLO,R1
MOV $LINBUF,R2

X: MOVB (R1)+,(R2)+
BNE X

HELLO: .ASCIZ <CRMXKLF>/MACll V1A/{CR>»{LF> ;INTRO MESSAGE

e

@

5,3.6 -RADS50

The .RAD50 directive allows the user the capability to handle symbols
in Radix=50 coded form (this form is sometimes referred to as MOD40
and is used in PDP=11 system programs). Radix-50 form allows three
characters to be packed into sixteen bits; therefore, any 6~character
symbol can be held in two words. The form of the directive is:

+RAD50 /string/

5=12

e

where:

,»‘Amﬁ%ﬂ / /

string

¥‘ kY

The trailing delimiter
matching delimiter. For

delimiters can be any printing characters
other than the =, {, and ; characters.

is a list of the characters to be converted
(three characters per word) and which may
congist of the characters A thxrough 2%, O
through 9, dollar ($), dot (.) and space ().
If there are fewer than three characters (or
if the last get is fewer than three
characters) they are considered to be
left-lustified and trailing spaces are
assumed, Illegal nonprinting characters are
replaced with a ? character and cause an I
error flag to be set. Illegal printing
characters set the Q error flag.

may be a carriage return, semicolon, or
examples

«RAD50 /ABC s PACK ABC INTO ONE WORD.

-RADS50 /AB/ sPACK AB (SPACE) INTO ONE WORD.
T «RAD50 /7 s PACK 3 SPACES INTO ONE WORD,

« RAD50 /ABCD/ 3PACK ABC INTO FIRST WORD AND

;D SPACE SPACE INTO SECOND WORD,

Each character is translated into its Radix-50 eguivalent as indicated

in the following table:
Character
SN (space)
i A=7
$

0-9

Radix=50 Equivalent (octal)

Note that another character could be defined for code 35, which is

currently unused,

The Radix=50 equivalents
- combined as follows:

Radix 50 wvalue
For example:

oy Radix=50 value

for characters 1 through 3 (Cl, C2, C3) are

= ((Cl*®*50)+C2)*50+C3

of ABC is ((1%®350)+2)*50+3 or 3223

See Appendix A for a table to quickly determine Radix~30 equivalents.

Use of angle brackets is

encouraged in the .ASCII, ,ASCIZ, and LRADS’0

statements whenever leaving the text string to insert special codes.

For example:
+ASCITI <101l>
«RAD50 /AB/<35>

™

: EQUIVALENT TO .ASCII/A/

;STORES 3255 IN NEXT WORD

CHR1=1
CHR2=2
CHR3=3

.RABSO(CHRI)(CHRZ)(CHR3> s EQUIVALENT TO .RADS50/ABC/
5.4 RADIX CONTROL

55491 .RADIX

Numbers used in a MACll source program are initially considered to be
octal numbers. However, the programmer has the option of declaring
the following radices:

2, 4, 8, 10

This is done via the .RADIX directive, of the form:
«RADIX n

where:
n is one of the acceptable radices.

The argument to the ,RADIX directive is always interpreted in decimal
radix. Following any radix directive, that radix is the assumed base
for any number specified until the following .RADIX directive.

The default radix at the start of each program, and the argument
assumed if none is specified, is 8 (octal). For example:

«RADIX 10 sBEGINS SECTION OF CODE WITH DECIMAL RADIX

« RADIX s REVERTS TO OCTAL RADIX

In general, it is recommended that macro definitions not contain nor
rely on radix settings from the ,RADIX directive. The temporary radix
control characters should be used within a macro definition. (tD, 410,
and 1B are described in the following Section.) A given radix is wvalid
throughout a program until changed. Where a possible conflict exists
within a macro definition or in possible future uses of that code
module, it is suggested that the user specify wvalues using the
temporary radix controls.

5.4.2 Temporary Radix Control: +¢D, %0, and 1B

Once the user has specified a radix for a section of code, or has
determined +to use the default octal radix he may discover a number of
cases where an alternate radix is more convenient (particularly within
macro definitions). For example, the creation of a mask word might
best be done in the binary radix,

ey

MAC1l has three unary operators to provide a single interpretation in
a given radix within another radix as follows:

Dx (x is treated as being in decimal radix)
t0x {x ig treated as being in octal radix)
+Bx (x iz treated &s being in binary radix)

For example:

tDl23

tc 47

+B 00001101
+0<A+3>

Notice that while the up arrow and radix specification characters may
not be separated, the radix operator can be physically separated from
the number by spaces or tabs for formatting purposes. Whers a term or
expression is to be interpreted in another radix, it should be
enclosed in angle brackets.

These numeric quantities may be used any place where a numeric value
is legal.

PAL-11R contains a feature, which is maintained for compatibility in
MAC1ll, allowing a temporary radix change from octal to decimal by
specifying a decimal radix number with a "decimal point". For example:

100, (144(8))
1376, (2540 (8))
128, (200(8))

5.5 LOCATION COUNTER CONTROL
The four directives which control movement of the location counter are
+EVEN and .ODD which move the counter a maximum of one byte, and .BLKB

and .BLKW which allow the user to specify blocks of a given number of
bytes or words to be skipped in the assembly.

5.5.1 LEVEN
The LEVEN directive ensures that the assembly location counter
containg an even memory address by adding one if the current address
is odd., If the assembly location counter is even, no action is taken.
Any operands following a .EVEN directive are ignored.
The .EVEN directive is used as follows:

.ASCIZ /THIS IS A TEST/

«EVEN s ASSURES NEXT STATEMENT

¢BEGINS ON A WORD BOUNDARY,

«WORD X¥2Z

5,5.2 .0DD

The .ODD directive ensures that the assembly location counter is odd
by adding one if it is even. For example:

sCODE TO MOVE DATA FROM AN INPUT LINE
3 TO A BUFFER

N=5 3 BUFFER HAS 5 WORDS
-ODD
«BYTE N#*2 ;s COUNT=2ZN BYTES
BUFFg « BLKW N ; RESERVE BUFFER OF N WORDS
MOV #BUFF ,R2 s ADDRESS OF EMPTY BUFFER IN R2
MOV #LINE ,R1 sADDRESS OF INPUT LINE IS IN R1
MOVB 1(R2),R0 3GET COUNT STORED IN BUFF-1 IN RO
AGAIN: MOVB (R1)+, (R2) + s MOVE BYTE FROM LINE INTO BUFFER
BEQ DONE sWAS NULL CHARACTER SEEN?
DEC RO s DECREMENT COUNT
BNE AGAIN sNOT = 0, GET NEXT CHARACTER
CLRB =(R2) ;OUT OF ROOM IN BUFFER, CLEAR LAST
DONE 3 WORD
LINE: «ASCIZ /TEXT/

In this case, .ODD is used to place the buffer byte count in the byte
preceding the buffer, as follows:

COUNT BUFF=2

BUFF

—

sy

o

el

L

5,5.,3 o.BLKB and .BLEKW

Blocks of storage can be reserved using the (BLKB and o BLEKW
directives, .BLKB is used to reserve byte blocks and .BLKW reserves
word blocks. The two directives are of the form:

-.BLKB exp
-BLKW exp
where:
| exp is the number of bytes or words to reserve. If no
argument is present, 1 is the assumed default value,

Any legal expression which is completely defined at
assembly time and produces an absolute number is legal.

For example:

1 000000 PASS: o BLEKW

2 s NEXT GROUP MUST STAY TOGETHER
3 000002 SYMBOL: .BLKW 2 s SYMBOIL ACCUMULATOR

4 000006 MODE ¢

5 000006 FLAGS: LBLKB 1 s FLAG BITS

6 000007 SECTOR: .BLKB 1 s SYMBOL/EXPRESSIONS TYPE

7 000010 VALUE: LBLKW 1 :EXPRESSION VALUE

8 00012 RELLVL: .BLKW 1

9 «BLKW 2 ;END OF GROUPED DATA

10

11 00020 CLCNAM: .BLKW 2 s CURRENT LOCATION COUNTER SYMBOL
12 00024 CLCFGS: .BLKB 1

13 00025 CLCSEC: BLKB 1

14 060026 CLCLOC: .BLKW 1

15 00030 CLCMAX: ,BLKW 1

The .BLKB directive has the game effect as
o= +BXD

but is easier to interpret in the context of source code,

5.6 TERMINATING DIRECTIVES

5.6.1 LEND

The ,END directive indicates the physical end of the source program.
The .END directiwve is of the forms

+END exp
where:

exp is an optional argument which, if present, indicates
the program entry point, i.e., the transfer address.

At the conclusion of the first assembly pass, upon encountering the
END statement, MACll prints:

END OF PASS 1

and attempts to reread the source file(s) to perform pass 2., If the
source file is on a disk, DECtape, or magtape device no further
operator action is necessary. If the source file is on paper tape an
IOPS 4 message 1is printed; the user is expected to reposition the
tape in the reader and type 1R (for CONTINUE},

5.7 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives provide the programmer with the
capability to conditionally include or ignore blocks of source code in
the assembly process., This technique is used extensively to allow
several variations of a program to be generated from the source
program,

The general form of a conditional block iz as follows:

- IF cond,argument(s) ¢ START CONDITIONAIL BLOCK
o s RANGE OF CONDITIONAL
.) s BLOCK
« ENDC s END CONDITIONAL BLOCK
where:
cond is a condition which must be met if the block

is to be included in the assembly. These
conditions are defined below.

argument (s) are a function of the condition to be tested,
range is the body of code which is included in the
assembly or ignored depending upon whether

the condition was met.

The following are the allowable conditions:s

Conditions

POSITIVE COMPLEMENT ARGUMENTS ASSEMBLE BLOCK IF

EQ NE expression expression=0 (or =0)

GT LE expression expression>0 (or <0)

LT GE expression expression<0 (or >0)

DF NDF symbolic argument symbol is defined (or
undefined)

B NB macro-type argument argument is a blank (or
not blank)

5-=18

e

IDN DIF two macro=type arguments identical
arguments separated (or different)
by a comma
7 NZ expression same as EQ/NE
G ; L expression same as GT/LE
NOTE

A macro-type argument is enclosed in
angle brackets or within an up-arrow
construction (as described in Section
6.3.1), For example:s

<a,B,C>
t/124/

For example:

«IF EQ ALPHA+1 ;ASSEMBLE IF ALPHA+1=0

®

®

«ENDC

Within the conditions DF and NDF the following two operators are
allowed to group symbolic arguments:

& logical AND operator
! logical inclusive OR operator

For example:

.IF DF SYM1l & SYM2

+ ENDC

assembles if both SY¥M1 and SYM2 are defined.

5.7.1 Subconditionals
Subconditionals may be placed within conditional blocks to indicate:

1. assembly of an alternate body of code when the condition of
the block indicates that the code within the block is not to
be assembled.

2, assembly of a non-contiguous body of code within the
conditional block depending upon the result of the
conditional test to enter the block.

3. wunconditional assembly of a body of code within a conditional
block.

There are three subconditional directives, as follows:

Subconditional Function

- IFF The code following thi s statement up to the next
subconditional or end of the conditional block is
included in the program providing the value of the
condition tested upon entering the conditional
block was false.

< IFT The code following this statement up to the next
subconditional or end of the conditional block is
included in the program providing the value of the
condition tested upon entering the conditiocnal
block was true.

« IFTF The code following this statement up tc the next
subconditional or the end of the conditional block
is included in the program regardless of the wvalue
of the condition tested upon entering the
conditional block.

The implied argument of the subconditionals is the value of the
condition upon entering the conditional block. Subconditionals are
used within outer 1level conditional blocks. Subconditionals are
ignored within nested, unsatisfied condition blocks. For example:

o IF DF SYM s ASSEMBLE BLOCK IF S¥YM IS DEFINED
« IFF
e s ASSEMBLE THE FOLLOWING CODE ONLY IF
o sSYM IS UNDEFINED,
« IFT ;ASSEMBLE THE FOLLOWING CODE ONLY IF
e s SYM I8 DEFINED,
- IFTF s ASSEMBLE THE FOLLOWING CODE
o s UNCONDITIONALLY .
« ENDC
o IF DF X s ASSEMBLY TESTS FALSE
+IF DF Y s TESTS FALSE
o IFF s NESTED CONDITIONAL
° s IGNORED
. IFT ;s NOT SEEN
N EI:IDC

5=20

s

However,

JIF DF X ;TESTS TRUE
IF DF Y s TESTS FALSE
.IFF IS ASSEMBLED
JIFT ;NOT ASSEMBLED
.ENDC

5.7.2 Immediate Conditionals
An immediate conditional directive is a means of writing a 1l-line
conditional block, 'In this form, no .ENDC statement is reguired and
the condition is completely expressed on the 1line containing the
conditional directive., Immediate conditions are of the forms

+IIF cond, arg, statement

where:

cond is one of the legal conditions defined for
conditional blocks in Section 5.7.

arg is the argument associated with the condition
specified; that is, either an expression,
gymbol, or macro-type argument, as described
in Section 5.7.

statement is the statement to be executed i1f the
condition is met,

For example:
«IIF DF FOO ,BEQ ALPHA
this statement generates the code
BEQ ALPHA
if the symbol FOO is defined.

A label must not be placed in the label field of the JIIF statement.
Any necessary labels may be placed on the prewvious line:

LABEL:
.IIF DF FPP,BEQ,ALPHA

or included as part of the conditional statement:

«IIF DF FOO,LABEL: BEQ ALPHA

5-21

5.7.3 PAL=11R Conditional Assembly Directives

In order to maintain compatibility with programs developed under e
PAL-11R, the following conditionals remain permissible under MACRO-11,

It is advisable that further programs be developed using the format

for MACRO=11l conditional assembly directives,

Directive Arguments Assemble Block if

«IFZ or .IFEQ expression expression=0

.IFNZ or ,IFNE expression expression=0

«IFL or ,IFLT axpression expression<0

+IFG or ,IFGT expression expression>0

. IFLE expression expressiond or =0

» IFGE expression expression> or =0 ;

« IFDF logical expression expression is true (defined) A

- IFNDF logical expression expression is false e
{(undefined)

The rules governing the usage of these directives are now the same as

for the MACRO-=11l conditional assembly directives previocusly e
described., Conditional assembly blocks must end with the LENDC

directive and are limited to a nesting depth of 16(10) levels

(instead of the 127(10) levels allowed under PAL=-11lRj.

e

5=22

i,

CHAPTER 6

MACRO DIRECTIVES

6.1 MACRO DEFINITION

It is often convenient in assembly language programming to generate a
recurring coding sequence with a single statement. In order to do
this, the desired coding sequence is first defined with dummy
o arguments as a macro. Once a macro has been defined, a single
\ statement calling the macro by name with a 1list of real argumnents
(replacing the corresponding dummy arguments in the definition)

generates the correct sequence or expansion.

6.1.1 .MACRO

o The first statement of a macro definition must be a MACRO directive.

s,

3 The MACRO directive is of the forms
»MACRO name, dummy argument list
wheres
name is the name of the macro., This name is any legal

gymbol. The name chosen may be used as & label
elsewhere in the program.

™ s represents any legal separator (generally, a comma
oxr space).
dummy Zero, one, or more legal symbols which may appear
argument anywhere in the body of the macro definition, even
— list as a label. These symbols can be used elsewhere
! in the user program with no conflicts of
definition. Where more than one dummy argument is
used, they are separated by any legal separator
{(generally a comma).
A comment may follow the dummy argument list in a statement containing
a .MACRO directive. For example:
+MACRO ABS A,B 3DEFINE MACRO ABS WITH TWO ARGUMENTS
A label must not appear on a .MACRO statement. Labels are sometimes
used on macro calls, but serve no function when attached to ,MACRO
statements.

6.1.2 LENDM

The final statement of every macro definition must be an ENDM
directive of the forms

-ENDM name
where:

name is an optional argument, being the name of the macro
terminated by the statement,

For example:
» ENDM (terminates the current macro definition)
+ENDM ABS (terminates the definition of the macro ABS)

If specified, the symbolic name in the .ENDM statement must correspond
to that in the matching .MACRO statement., Otherwise, the statement is
flagged and processing continues. Specification of the macro name in
the .ENDM statement permits the Assembler to detect missing .ENDM
statements or improperly nested macro definitions.

The .ENDM statement may contain a comment field, but must not contain
a label.

An example of a macro definition is shown below:

«MACRO TYPMSG MESSGE ;TYPE A MESSAGE
JSR R5,TYPMSG ’

«WORD MESSGE

« ENDM

6,13 LMEXIT

In order to implement alternate exit points from a macro (particularly
nested macros), the .MEXIT directive is provided. .MEXIT terminates
the current macro as though an .ENDM directive were encountered. Use
of LMEXIT bypasses the complications of conditional nesting and
alternate paths. For example:

«-MACRO ALTR N,A,B

o IF EQ,N $START CONDITIONAIL BLOCK
@
«MEXIT ¢ EXIT FROM MACRO DURING CONDITIONAL BLOCK
« ENDC §END CONDITIONAL BLOCK
« ENDM s NORMAL END OF MACRO

In an assembly where N=0, the MEXIT directive terminates +the macro
expansirn.

Where macros are nested, a .MEXIT causes an exit to the next higher
level. A J.MEXIT encountered outside a macro definition is flagged as
an errox.

6.1l.4 MACRO Definition Formatting

A form feed character used as a line terminator on a MACll source
statement (or as the only character on a line) causes a page eject.
Used within a macro definition, a form feed character causes a page
eject. A page eject is not performed when the macro is invoked.

Used within a macro definition, the .PAGE directive is ignored, but a
page eject is performed at invocation of that macro.

6.2 MACRO CALLS

A macro must be defined prioxr to its first reference. Macro calls are
of the general forms

label: name, real arguments

wheres:s

label represents an optional statement label.

name represents the name of the macro specified in
the .MACRO directive preceding the macro
definition,

real are those symbols, expressions, and values

arguments which replace the dummy arguments in the
«MACRO statement. Where more than one

argument 1s used, they are separated by any
legal separator.

Where a macro name is the same as a user label, the appearance of the
symbol in the operation f£field designates a macro ecall, and the
occurrence of the symbol in the operand £ield designates a label
reference, For example:

ABS s MOV @RO,R1 sABS IS USED AS A LABEL
BR ABS $ABS IS CONSIDERED A LABEL
ABS #4,ENT,LAR g CALL MACRO ABS WITH 3 ARGUMENTS

Arguments to the macro call are treated as character strings whose
usage is determined by the macro definition.

6.3 ARGUMENTS TO MACRO CALLS AND DEFINITIONS

Arguments within a macro definition or macro call are separated £rom
other arguments by any of the separating characters described in
Section 3.l.l. For examples

.MACRO REN A,B,C

®
@

REN ALPHA ,BETA,{C1,C2>

Arguments which contain separating characters are enclogsed in paired
angle brackets, An up-arrow construction is provided to allow angle
brackets to be passed as arguments., Bracketed arguments are seldom
used in a macro definition, but are more likely in a macro call. For
example:

REN <MOV X,¥>#44 ,WEV
This call would cause the entire statements
MOV X,¥

to replace all occurrences of the symbol A in the macro definition.
Real arguments within a macro call are considered to be character
strings and are treated as a single entity until their wuse in the
macro expansion.

The up-axrow construction could have been used in the above macro call
as follows:

REN +/MOV X,¥%/,$44,WEV
which is equivalent to
REN <MOV X,¥>,#44 ,WEV

Since spaces are ignored preceding an argument, they can be ugsed to
increase legibility of bracketed constructions. The foxm:

REN $#44 ,WEV4$/MOV X,¥%/

however, contains only two arguments: #44 and WEV {/MOV X,Y/ (see
Section 3.l.1l) because ¢ is a unary opexrator.

6,3.1 Macro Nesting

Macro nesting (nested macro calls), where the expansion of one macro
includes a call to another macro, causes one set of angle brackets to
be removed from an argument with each nesting level. The depth of
nesting allowed is dependent upon the amount of core space used by the
program. To pass an argument containing legal argument delimiters to
nested macros, the argument should be enclosed in one set of angle
brackets for each level of nesting, as shown below.

+MACRO LEVEL1 DUMl,DUM2
LEVEL2 DUM1l

LEVEL2 DUM2
« ENDM

ot

.

3

L,

,ﬁf—"-v%

+MACRO LEVEL2 DUM3
DUM3

ADD #10,R0

MOV RO, (R1)+

« ENDM

‘A call to the LEVELl macro:

LEVELL <<MOV X,R0>>,<<{CLR RO>>
causes the following expansion:

MOV X,RO

ADD $10,R0
MOV RO, (RL)+
CLR RO

ADD #10,R0
MOV RO, (R1)+

where macro definitions are nested (that is, a macro definition is
entirely contained within the definition of another macro) the inner
definition is not defined as a callable macro until the outer macro
has been called and expanded. For example:

«MACRO LV1 A,B

«MACRO LV2 A

« ENDM
« ENDM
The LV2 macro cannot be called by name until after the first call to

the LV1 macro. Likewise, any macro defined within the LV2 macro
definition cannot be referenced directly until LV2 has been called.

6.3.2 8Special Characters

Arguments may dinclude special characters without enclosing the
argument in a bracket construction if that argument does not contain
spaces, tabs, semi-colons, or commas. For example:

+MACRO PUSH ARG
MOV ARG ,=(SP)
~ENDM

PUSH X+3(82)
generates the following code:s

MOV X+3(%2) ,~(SP)

6.3.3 Numeric Arguments Passed as Symbols

When passing macro arguments, a useful capability is to pass a symbol
which can be treated by the macro as a numeric string. An argument
preceded by the unary operator backslash (\) is treated as a number in
the current radix. The ASCII characters representing the number are
inserted in the macro expansion; their functions are defined in
context. For example:

B=0
+MACRO INC A,B
CNT A,\B
=B+1
~ENDM
JMACRO CNT A,B
A'B: .WORD /SEE SEC.6,3.,6 FOR EXPLANATION OF ‘B,
«ENDM

INC X,C
The macro call would expand to:
X0s JWORD ‘
A subsequent identical call to the same macro would generate:
Xl:s LWORD

and so on for later calls. The two macros are necessary because the
dummy value of B cannot be updated in the CNT macro. In the CNT
macxro, the number passed ls treated as a string argument. (Where the
value of the real argument is 0, a single 0 character is passed to the
macro expansion.)

The number being passed can also be used +o make source listings
somewhat clearer, For example, versions of programs created through
conditional assembly of a single source can identify themselves as
follows:

«MACRO IDT &SYM s ASSUME THAT THE SYMBOL ID TAKES
JASCII /sS¥M/ sON A UNIQUE TWO DIGIT VALUE FOR
« ENDM s BACH POSSIBLE CONDITIONAL ASSEMBLY
«MACRO OUT ARG ;OF THE PROGRAM
IDT O05A°ARG ®
« ENDM B
a ;WHERE 005A IS THE UPDATE
o s VERSION OF THE PROGRAM
ouT \ID s AND ARG INDICATES THE

;CONDITIONAL ASSEMBLY VERSION,
The above macro call expands to:
«ASCITI /O0O5RXX/
where XX is the conditional value of ID,
Two macros are necessary since the text delimiting characters in the

-ASCII statement would inhibit the concatenation of a dummy argument.

6=6

6.3.4 Number of Arguments

If more arguments appear in the macro call than in the macro
definition, the excess arguments are ignored. If fewer arguments
appear in the macro call than in the definition, missing arguments are
assumed to be null (consist of no characters). The conditional
directives .IFB and .IFNB can be used within the macro to detect

unnecessary arguments,

A macro can be defined with no arguments.

6.3.5 Automatically Created Symbols

MAC1l can be made to create symbols of the form n$ where n is a
decimal integer number such that 64<{n<l27. Created symbols are always
local symbols between 648 and 127§, (For a description of local
symbols, see Section 3.5.) Such local symbols are created by the
Assembler in numerical ordexr; d.e.3

648
65%

o

1263
127¢

Created symbols are particularly useful where a label is required in
the expanded macro. Such a label must otherwise be explicitly stated
as an argument with each macro call or the same label 1is generated
with each expansion (resulting in a multiply-defined label). Unless a
label is referenced from outside the macro, there is no reason for the
programmer to be concerned with that label.

The range of these local symbols extends between two explicit labels.
Each new explicit label causes a new local symbol block to be
initialized.

The macro processor creates a local symbol on each call of a macro
whose definition contains a dusmmy argument preceded by
the ? character. For example:

«MACRO ALPHA A,?B

TST A

BEQ B

ADD #5,A
B

« ENDM

Local symbols are generated only where the real argument of the macro
call is either null or missing. If a real argument is specified in
the macro call, the generation of a local symbol 1s inhibited and
normal replacement is performed. Consider the following expansions of
the macro ALPHA above.

GENERATE A LOCAIL SYMBOL FOR MISSING ARGUMENT:

ALPHA %1
TST gl
BEQ 64$

ADD #5,%1
645

DO NOT CREATE A LOCAL SYMBOL:

ALPHA %2,XY2

TST %2
BEQ XYZ
ADD #5,%2

X¥Z:s

These Assembler-generated symbols are restricted to the first sixteen
{decimal) arguments of a macro definition.

6.3.6 Concatenation

The apostrophe or single guote character (') operates as a legal
separating character in macro definitions. An Y character which
precedes and/or follows a dummy argument in a macro definition is
removed and the substitution of the real argument occurs at that
point. For example:

.MACRO DEF A,B,C
A'B: .ASCIZ /C/

JHORD PA'I®R

- ENDM

When this macro is called:s
DEF X,¥,<{MAC11l>
it expands as follows:

XY: .ASCIZ /MAC11/
JHORD 'X'Y

In the macro definition, the scan terminates upon £inding the
first ° character. Since A is a dummy argument, the ° is remocved.
The scan resumes with B, notes B as another dummy argument and
concatenates the two dummy arguments., The third dummy argument is
noted as going into the operand of the .ASCIZ directive. On the next
line (this example is purely for illustrative purposes) the argument
to .WORD is seen as follows: The scan begins with a ' character,
Since it 1is neither preceded nor followed by a dummy argument,
the ' character remains in the macro definition. The scan then
encounters the second ! character which is followed by a dummy
argument and is discarded. The scan of the argument A terminated upon
encountering the second ° which is also discarded since it follows a
dummy argument. The next ° character is neither preceded nor followed
by a dumny argument and remains in the macro expansion, The

e

-

S —

Ty

last ' character is followed by another dummy argument and is
discarded. (Note that the five ' characters were necessary to
generate two ' characters in the macro expansion.)

Within nested macro definitions, multiple single quotes can be used,
with one quote removed at each level of macro nesting.

6.4 o.NARG, .NCHR, AND ,NTYPE

These three directives allow the user ¢o obtain the number of
arguments in a macro call (.NARG), the number of characters in an
argument (.NCHR), or the addressing mode of an argument (.NTYPE). Use
of these directives permits selective modifications of a macro
depending upon the nature of the arguments passed.

The ,NARG directive enables the macro being expanded to determine the
number of arguments supplied in the macro call, and is of the form:

labels LNARG symbol
wheres
label is an optional statement label
symbol is any legal symbol whose value is egquated to the
number of arguments in the macro call currently
being expanded. The symbol can be used by itself ox
in expressions,

This directive can occur only within a macro definition.

The .NCHR directive enables a program +to determine the number of
characters in a character string, and is of the form:

labels NCHR symbol, <character string’
where:
labed is an optional statement label.
symbol is any legal symbol which 1is equated to the
number of characters in the specified character
string. The symbol 4is separated from the
character string argument by any legal
separator.
{character is a string of printing characters which should
string> only be enclosed in angle brackets 4if it
contains a legal separator. A semi-colon also
terminates the character string,
This directive can occur anywhere in a MACll program,

The .NTYPE directive enables the macro being expanded to determine the
addressing mode of any argument, and is of the forms

label: .NTYPE symbol , arg

wheres

label
symbol

arg

is an optional statement label.

is any legal symbol, the low~order 6-bits of which
are equated to the 6-bit addressing mode of the
argument. The symbol is separated from the argument
by a legal separator. This symbol can be used by
itself or in expressions,

is any legal macro argument (dummy argument) as
defined in Section 6.3,

Thi & directive can occur only within a macro definition. An example
of .NTYPE usage in a macro definition is shown below:

«MACRO SAVE ARG

+NTYPE S¥M,ARG

« LF BQ,S¥Me70

MOV ARG, TEMP ¢ REGISTER MODE

o IFF

MOV #ARG , TEMP s NON=REGISTER MODE
« ENDC :

« ENDM

6.5 .ERROR and .PRINT

The .ERROR directive is used to output messages to the command output
device during assembly pass 2. A common use is to provide diagnostic
announcements of a rejected or erroneous macro call. The form of the
-ERROR directive is as follows:

wherxes

label:

label

expr

@o

text

Upon encountexing
Assembler outputs a single line containings

1.
2'
3.
4.

+ERROR expr:text

is an optional statement label,

is an optional legal expression whose vwvalue is
output to the command device when the .ERROR
directive iz encountered. Where expr is not
specified, the text only is output to the command
device.

denotes the beginning of the text string to be
output,

is the string to be output ¢o the command device,
The text string is terminated by a 1line
terminator.

a oERROR directive anywhere in a MACll program, the

the sequence number of the ,ERROR directive line,
the current value of the location counter,
the value of the expression if one is specified, and

the text

string specified.

N

o

For examples
+ERROR A;UNACCEPTABLE MACRO ARGUMENT
causes a line similar to the following tc be outputs
512 5642 (000076 s UNACCEPTABLE MACRO ARGUMENT

This message is being used to indicate an inability of the subject
macxro to cope with the argument A which is detected as being indexed
deferred addressing mode (mode 70) with the stack pointer (%6) used as
the index register,

The line is flagged on the assembly listing with a P error code,

The PRINT directive is identical to ERROR except that it is not
flagged with a P error code.

6.6 INDEFINITE REPEAT BLOCK: LIRP AND ,IRPC

An indefinite repeat block is a structure very similar o a macro
definition. An indefinite repeat is essentlally a macro definition
which has only one dummy argument and is expanded once for every real
argument supplied. An indefinite repeat block is coded in-line with
its expansion rather than being referenced by name as a macro is
referenced., An indefinite repeat block is of the forms

label: LIRP arg,{real arguments)

®

@

{range of the indefinite repeat)

-

@

@
« ENDM
where:

label is an optional statement label. A label may
not appear on any L,IRP statement within
another macro definlition, repeat range or
indefinite repeat range, or on any .ENDM
statement.,

arg is a dummy argument which 1is successively
replaced with the real arguments in the ,IRP
statement,

{real argument) is a list of arguments to be used in the
expansion of the indefinite repeat range and
enclosed in angle brackets., Each real
argument is a string of zero or more
characters or a list of real arguments
{enclosed in angle brackets). The real
arguments are geparated by commas,

range is the block of code to be repeated once for
each real argument in the list., The range

6=11

may contain macro definitions, repeat ranges,
or other indefinite repeat ranges. Note that
only created symbols should be used as labels
within an indefinite repeat range.

An indefinite repeat block can occur either within or outside macro
definitions, repeat ranges, or indefinite repeat ranges. The rules
for creating an indefinite repeat block are the same as for the
creation of a macro definition (for example, the .MEXIT statement is
allowed in an indefinite repeat block). Indefinite repeat arquments
follow the same rules as macro arguments.

i

-
k)

O oo ~3O L1 > Ly

12
13
14
15
16
17

000000

00004

00010

00014

00020

00024

00030

00034
00035
00036
00037

000000
000001
000002
000003
000004
000005
000006
000007
000006
000007
177776
177570
012/00
000050

016720
000032

016720
000030

016720
000026

016720
000024

016720
000022

016720
000020

101
102
103
104

RO=%
Rl=%
R2=

R3=%
R4=%
R5=%
R6=%

SP=%
PC=%
PSW=
SWR=

00
0l
02
03
04
05
06
07
06
07

o TITLE
+LIST

0177776
0177570

MOV

« IRP
MOV
« ENDM

MOV

MOV

MOV

MOV

MOV

MOV

+« IRPC
«ASCII
« ENDM

«ASCIT

+ASCII

«ASCII

«ASCII

IRPTST
MD ,MC ,ME

#TABLE , RO

Xe<B;B,C;D,E,F>

X,(RO)+
A, (RO)+
B, (RO) +
C,(RO)+
D;(RO)+
E,(RO)+

F, (RO} +

X , ABCDEF
/x/

/a/
/B/
/c/
/n/

00040 105 +ASCII /E/

00041 106 +ASCII /F/
18
19
20 00042 041101 A: « WORD "AB
21 00044 041502 Bs « WORD "BC
22 00046 042103 C: - WORD “CD
23 00050 042504 D: «WORD "DE
24 00052 043105 E: . WORD "EF
25 00054 043506 F: +«WORD PG
26 00056 TABLE: LBLKW 6
27
28 0600001 - END

Figure 6-=1

«IRP and ,IRPC Example

A second type of indefinite repeat block is available which handles
character substitution rather than argument substitution. The .IRPC
directive is used as follows:

label: .IRPC arg,string

{(range of indefinite repeat)

-]

» ENDM

On each iteration of the indefinite repeat range, the dummy argument
{(axg) assumes the value of each successive character in the gtring,
Terminators for the string are: space, comma, tab, carriage return,
line feed, and semi-colon.

6.7 REPEAT BLOCK: ,REPT

Occasionally it is useful to duplicate a block of code a number of
times in-line with other source code. This is performed by creating a
repeat block of the form:

label: .REPT expr

®

(range of repeat block)

-« ENDM ;OR « ENDR

"\YW

oo,

wheres

label

expr

range

is an optional statement label. The -,ENDR or .ENDM
directive may not have a label., A REPT statement

. occurring within another repeat block, indefinite

repeat block, or macro definition may not have a
label assoclated with it.

is any legal expression controlling the number of
times the block of code is assembled. Where expx<0,
the range of the repeat block is not assembled.

is the block of code to be repeated expr number of
times. The range may contain macro definitions,
indefinite repeat ranges, or other repeat ranges.
Note that no statements within a repeat range can
have a label.

The last statement in a repeat block can be an LENDM or .ENDR

statement.

The

,ENDR statement is provided for compatibility with

previous assemblers.

The .MEXIT statement is also legal within the range of a repeat block.

oy
kY

PART Iv

OPERATING PROCEDURES

This part of the manual describes the
operation of the MAC1ll Assembler, its
input files and their formats, and the
variations of the command string to the
Assembler,

sy

-

i

CHAPTER 7

OPERATING PROCEDURES

This MACll Assembler assembles one ASCII source file containing MACLL
statements at a time into a single absolute binary output file., The
output of the Assembler consists of an absolute binary file on a paper
tape, and an assembly listing followed by the symbol table listing on
the device assigned to .DAT=12,

7.1 LOADING MACll
MACll is loaded under DOS=15 by typing:

$MAC11 {(followed by a carriage return or altmode)

(Characters printed by the system are underlined to differentiate them
from characters printed by the user, The Assembler responds by
identifying itself and its version numbexr, followed by a > character
to indicate readiness to accept a command input string:

MACRO V1A
>

7.2 COMMAND INPUT STRING

In response to the > printed by the Assembler, the user types the
switch options followed by the input filename; the switch options and
the filename are separated by a "«', Command input can be terminated
by a carriage return to restart MACll, or by an altmode to return to
DOS=15 at the end of assembly:

>SW«FILNAM
where:s
SwW is the switch option(s); can be null (for plain
assembly,) oxr °'B? {for binary output) or ‘L' (for
listing) or both,
FILNAM is the input filename extension or filename from

«DAT=11. Default extension 1is "SRC’., The filename
can consist of up to six characters followed by a

space(s) and not more than a 3-character extension
{(additional characters cause the message ! NAME
ERROR/TOO LONG' to be printed on the command inp3t
device). All of the legal printing characters can be
used in any order. The first non-space character to
be typed after the first left-arrow {+) is
recognized as the first character of the filename.
similarly, the first non-space character after the
filename (other than carriage return or altmode) is
recognized as the first character of the extension.

Examples:
>+FILNAM plain assembly of a file called
"filnam SRC*, and restart MACIL1
>«FiLNAM EXT plain assembly of a file called 'FILNAM EXT',

and restart MACLll,

SB«FILNAM EXT (ALT) assemble °FILNAM EXT' to obtain an absolute
binary output on a paper tape and return to
DOS=15 monitor.

SI+FILNAM EXT (ALT) assemble °‘FILNAM EXT' +o obtain a listing
output on ,DAT=12 and return to DOS=15
monitor.

>LB+X1¥2 EO assemble 'X1¥2 E0 to obtain an absolute
binary output on a paper tape and a listing
output on ,DAT-12 and restaxrt MACll.

If an error is made in typing the command string, typing the RUBOUT
key erases the immediately-preceding character. Repeated typing of
the RUBOUT key erases one character for each RUBOUT up to the
beginning of the line. Typing CTRL/U erases the entire line.

A syntactical error detected in the command string causes the
Assembler to print a ? character. The Assembler then reprints
the > character and waits for a new command string to be entered. if

the 4input file iz not found or name and/or extension is illegal, the
message:

NAME ERROR/TO0 LONG

is printed.

MACRO Vidgl MACRO VE@BAL
0BJECT CODE HANDLERS

) ,SBYTL, OBJECT CODE HANDLERS
2
3 @12026 ENDP} JEND OF PASS HANDLER
4 012026 CALL SETMAX
812026 4n4767 JSR PCoSETMAC
‘ 174240
5 912062 495767 ST PASS JPASS ONE?
LELILE
6 §12036 491142 BNE ENDP2 JBRANCH IF PASS 2
7 812040 ENTOVR 4
8 @12047 405767 ST 0BJLNK © jPASS ONE, ANY OBJECT?
An1416"
9 912044 301517 BEQ 305 3 NO
10 12046 312767 MOV #BLKLPL,BLKTYP JSET BLOCK TYPEL 1
PETLIEY
4AR542"
11 12054 CALL O0BJINI JINIT THE POJNTERS
12054 294767 JSR PCy0BJIN]
491542 '
12 12060 412791 MOV #RRGTTL,R1 JSET "FROM® [NDEX
208050°
13 12064 916702 MOV RLOPNT,R2 3 AND "To" [NDEX
0o8549"
14 12070 CALL GSDOMP JOUTPUT GSD BLOCK
12070 204767 JSR PC,GSDOMP
000660
15 12074 285046 CLR @ (SP) JINIT FOR SECTOR SCAN
16 12076 212667 1@S1 MOV (SP+,ROLUPD JSET SCAN MARKER
990006"
17 12102 NEXT SECROL JGET THE NEXT SECTOR
12102 942700 MOV #SECROL , RO
0208010
12106 304767 JSR PGoNEXT
005400
18 12112 201450 BEQ 205% JBRANGH IF THROUGH
19 12114 016746 MOV ROLUPD, = (SP) JSAVE MARKER
dE0006"
21 12124 211105 MOV (R1),RS ISAVE SECTOR
22 12126 242785 BIC #377,R5 $1SOLATE 1T
408377
23 12132 doU385 SWAB RS 5 AND PLACE IN RIGHT
24 12134 42714 BIC #al=CRELFLG>, (R1) JCLEAR ALL BUT REL RIT
177737
25 1214 355221 Bls #<GSDTHL>HDEFFLG, (R1)#+ $SET TO TYPE 1, NEFIVED
400410 '
26 12144 910524 MOV RS, (RL)# ASSUME ABS
27 12146 491401 BEQ 118 } 00RS)
28 12150 211144 MOy (R1);=(R1) i RELy SET MAX

Figure 7-1
Assembly Listing

29
30

32

33
34

35
36
37
38
39

49

12152
12156

12162
12162

12166
12166

12172
iz

12208
12226
12212
12214
12216
12224

12232

425067
A08086°
412734
angpge’

474767
182566

21272
CEPLLY.
404767
45314
401737
432767
408100
QPaN36 !
201767
126735
ARBBYT ¢
271364
742767
177627
ABange
452767
An2090
PLPLEEL
223751

1183
12%

1383

CLR
MOV

CALL
JSR

NEXT
MOV

JSR
BEQ
BIT
BEQ
CMPB
BNE
BIC
BIS

BR

ROLUPD
#5YMBOL ,RA

GSDDMP
PC,GSDDMP

SYMBOL,
#SYMBOL RO

PCNEXT

19%

#GLBFLG,MODE

13%

SECTOR,RS

133% :
#=21=<DEFFLGIRELF
#G80TH4, MODE

12%

Figure 7-1 (Cont.)
Assembly Listing

JSET FOR INNER SCAN

FOUTRUT THIS BLOCK

SFETCH THE NEXT SYMROL

g
3
9
8

@ ww

§
LGIGL

Fi
GL08

NG
YES,

ND

o

NISHED WITH THIS Guy

AL?

PROPER SECTUR?

BFLG»,MODE ;CLEAR

§SET TYPE 4

FOUTPUT g7

e

oy
o
n
—

K

APPENDIX A

MACl1ll CHARACTER SETS

A.,1 ASCII CHARACTER SET

sy

R

EVEN 7=BIT

PARITY OCTAL

BIT CODE CHARACTER REMARKS

0 000 NUL NULL, TAPE FEED, CONTROL/SHIFT/P,

1 001 SOH START OF HEADING: ALSO SOM, START
OF MESSAGE, CONTROL/A.

1 002 STX START OF TEXT; ALSO EOA, END OF
ADDRESS, CONTROL/B.

0 003 ETX END OF TEXT; ALSO EOM, END OF

, MESSAGE, CONTROL/C.

i 004 EOT END OF TRANSMISSION (END); SHUTS
OFF TWX MACHINES, CONTROL/D.

0 005 ENQ ENQUIRY (ENQRY); ALSO WRU,
CONTROL/E.

0 006 ACK ACKNOWLEDGE; ALSO RU, CONTROL/F

1 007 BEL RINGS THE BELL, CONTROL/G,

1 010 BS BACKSPACE; ALSO FEO, FORMAT
EFFECTOR, BACKSPACES SOME
MACHINES, CONTROL/H,.

0 011 HT HORIZONTAL TAB, CONTROL/I.

0 012 LF LINE FEED OR LINE SPACE (NEW LINE):
ADVANCES PAPER TO NEXT LINE,
DUPLICATED BY CONTROL/J.

1 013 vT VERTICAL TABR (VTAB), CONTROL/K.,

0 014 FF FORM FEED TO TOP OF NEXT PAGE
{(PAGE) » CONTROL/L.

1 015 CR CARRIAGE RETURN TO BEGINNING OF
LINE, DUPLICATED BY CONTROL/M,

1 016 S0 SHIFT OUT; CHANGES RIBBON COLOR TO
RED, CONTROL/N,

0 017 sI SHIFT IN; CHANGES RIBBON COLOR TO
BLACK, CONTROL/ Oe

1 020 DLE DATA LINK ESCAPE., CONTROL/B (DCO).

] 021 DCl DEVICE CONTROL 1, TURNS TRANSMITTER
(READER) ON, CONTROL/Q (¥ ON).

0 022 DC2 DEVICE CONTROL 2, TURNS PUNCH OR
AUXILIARY ON, CONTROL/R (TAPE,
AUX ON) .

1 023 DC3 DEVICE CONTROL 3, TURNS TRANSMITTER
(READER) OFF, CONTROL/S (X OFF),

0 024 DC4 DEVICE CONTROL 4, TURNS PUNCH OR
AUXILIARY OFF, CONTROL/T (AUX OFF).

1 025 NAK NEGATIVE ACKNOWLEDGE; ALSO ERR,

i ERROR, CONTROL/U,
1 026 SYN SYNCHRONOUS FILE (SYNC)., CONTROL/V.
0 027 ETB END OF TRANSMISSION BLOCK:; ALSO

LEM, LOGICAL END OF MEDIUM,
CONTROL/W,

EVEN
PARITY
BIT

HEOOMMOMMOOHRO M HNOHNOOHMHOO OO IHNOOHMONHOOHO IO OMM O O i O

7=-BIT
OCTAL
CODE

030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112

CHARACTER

CAN

EM
SUB
ESC
FS
GS
RS
Us
sP

o 4 B~ o @A 3 o

UHIQHEHEHOOUEWIE IV I Awe OONAUT & WK HON®

REMARKS

CANCEL (CANCL)., CONTROL/X.

END OF MEDIUM, CONTROL/Y,
SUBSTITUTE. CONTROL/Z.

ESCAPE. CONTROL/SHIFT/K.

FILE SEPARATOR, CONTROL/SHIFT/L.
GROUP SEPARATOR, CONTROL/SHIFT/M,
RECORD SEPARATOR, CONTROL/SHIFT/N.,
UNIT SEPARATOR., CONTROL/SHIFT/O.
SPACE.

ACCENT ACUTE OR APOSTROPHE,

P

me%’t»ﬁ

o

EVEN
PARITY
BIT

= OO HHROOMFHROHFHOOMHOMEOFROONHMHOOR O = COMHMHOFROOHMFOOMHOHMROMO OO

7-BIT
OCTAL
CODE

113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157

160
161

162
163
164
165
166
167
170
171
172

173
174
175
176

177

CHARACTER

Sl S N K E<SCHNTOWOZE 2P R

N XIS RAY OB H AU ITQ MO AQ T

DEL

REMARKS

SHIFT/K.
SHIFT/L.
SHIFT/M.

ACCENT GRAVE.

THIS CODE GENERATED BY ALTMODE.
THIS CODE GENERATED BY PREFIX KEY
(IF PRESENT).

DELETE, RUBOUT,

A-3

A.,2 RADIX-50 CHARACTER SET

Character

space
A=7
$

unused
0 =9

ASCII Octal
Equivalent

40
101 - 132

44

56

60 = 71

The maximum Radix-=50 value is, thus,

47%50(2) + 47%50 + 47 = 174777

Radix=50
Equivalent

1= 32
33
34
35

36 = 47

e, b

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,

given the ASCII string X2B;, the Radix=50

performed in octal):

X = 113000
2 = 002400
B = 000002
X2B = 115402

equivalent is (arithmetic e

—_—

sy

Single Char.

or Second Third
First Char. Character Character
A 003100 A 000050 A 000001
B 006200 B 0600120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
BE 017500 E 000310 E 06006005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
(o] 056700 0 001130 (0] 000017
P 062000 P 001200 r 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
s 073300 s 001370 s 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
v 104600 v 001560 v 000026
W 107700 W 001630 12 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
b4 121200 Z 002020 b7 000032
$ 124300 S 002070 $ 000033
° 127400 ° 002140 ° 000034
unused 132500 unused 002210 unused 000035
v} 135600 o] 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 0602570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

P

"

B.1 SPECIAL CHARACTERS

Character

form feed
line feed
carriage return

vertical tab

%

tab

space

;, (comma)

APPENDIX B

MACll ASSEMBLY LANGUAGE AND ASSEMBLER

Function

Source line terminator
Source line terminator
Formatting character

Source line terminator
Label terminator

Direct assignment indicator
Register term indicator

Item terminatox
Field terminator

Item terminator
Field terminatorxr

Immediate expression indicator
Deferred addressing indicator
Initial register indicator
Terminal register indicator
Operand field geparator
Comment field indicator

Arithmetic addition operator or
autoincrement indicator

Arithmetic subtraction operator oxr
autodecrement indicator

Arithmetic multiplication operator
Arithmetic division operator
Logical AND operator

Logical OR operator

Double ASCII character indicator

' (apostrophe)

B.2 ADDRESS MODE SYNTAX

n is an integer between 0 and 7 representing a register.
register expression,

E is

Single ASCII line indicator

Assembly location counter

Initial argument indicator

Terminal argument indicator

Universal unary operator
Argument indicator

MACRO numeric argument indicator

expression,

R is a
ER is either a register

expression or an expression in the range 0 to 7.

Format

@R or (ER)

(ER) +

@ (ER) +

= (ER)

@-(ER)

E(ER)

@E (ER)

Address
Mode Name

Register

Deferred
Register

Autoincrement

Deferred
Autoincrement

Autodecrement

Deferred
Autodecrement

Index

Deferred Index

Address

Mode Number

On

in

2n

3n

an

5n

én

7n

B=2

Meaning
Register R ‘contains the
operand, R is a register
expression.

Register R contains the
operand address,

The contents of the register
specified by ER are
incremented after being used
as the address of the operand.

ER contains the pointer to the
address of the operand, ER is
incremented after use.

The contents o©f register ER
are decremented before being
used as the address of the
operand.

The contents of register ER
are decremented before being
used as the pointer +to the
address of the operand.

E plus the contents of the
register specified, ER, is the
address of the operand.

E added to ER gives the
pointer +to the address of the
operand.

o,

'

#E Immediate 27 E is the operand,

Q#E Absolute 37 E is the address of the
operand.
E Relative 67 E is the address of the
operand,
@E Deferred 77 E is the pointer to the add~-
Relative ress of the operand.

B.3 INSTRUCTIONS

The instructions which follow are grouped according to the operands
they take and the bit patterns of their op-codes.

In the instruction-type format specification, the following symbols
are used:

opP Instruction mnemonic

R Register expression

E Expression

ER Register expression or expression 0<{ER(7
A General address specification

In the representation of op=codes, the following symbols are used:

1] Source operand specified by a 6-=bit address mode.

DD Destination operand specified by a 6<bit address
mode,

XX 8-bit offset to a location (branch instructions).

R Integer between 0 and 7 representing a general
register,

Symbols used in the description of instruction operands are:

SE Source Effective Address
DE Destination Effective address
I Absolute value of
() Contentg of
Becomes

The condition codes in the processor status word (PS) are affected by
the instructions. These condition codes are represented as followss

N Negative bits set if the result is negative

Z Zero bits "set if the result is zero

V oVerflow bit: set if the operation caused an overflow
Carry bits set if the operation caused a carry.

In the representation of the instruction's effect on the condition
codes, the following symbols are used:

hd Conditionally set

- Not affected

0 Cleared ;

1 Set e

To set conditionally means to use the instruction®s result %o
determine the state of the code (see the PDP-1l Processor Handbook).

Logical operations are represented by the following symbols:

i Inclusive OR
® Exclusive OR
& AND

- {used over a symbol) NOT (i.e., l1°s complement)

B.3.1 Double-Operand Instructions -
Instruction type formats Op A,A
Status Word ’
Condition Codes S
Op=Code Mnemonic Stands for Operation N 2 VvV C
01s8SDD MOV MOVe {SE) (DE} % 0 =
118SDD MOVB MOVe Byte
02SSDD CMP CoMPare {SE)-(DE) ® k& %
128SDD CMPB CoMPare Byte
038sDD BIT BIt Test (SE) & (DE} % = o
138s8DD BITB BIt Test Byte
0488SDD BIC BIt Clear (SE) & (DE)~ DE # % 0 =
1488DD BICB BIt Clear Byte
058SDD BI" BIt Set {SE} | (DE)~DE % % 0 =
1588DD BISB BI+ Set Byte
06SSDD ADD ADD (SE)+(DE)->DE £ & % % —
1688DD SUB SUBtract {DE)=(SE) - E * R % &
B.3.2 Single-Operand Instructions
Instruction=-type format: Op A e

Status Word
Condition Codes

Op=Code Mnemonic Stands for Operation N Z vV ¢
0050DD CLR CLear 0 DE 0 1 6 o0
1050DD CLRB CLear Byte

0051DD CcoM COMplement (DE) DE ¥ % 0 1
1051DD COMB COMplement Byte

0052DD INC INCrement (DE)+1 DE ® Ok B o
1052DD INCB INCrement Byte

0053DD DEC . DECrement (DE)=1 DE ® ® #® o
1053DD DECB DECrement Byte
0054DD NEG NEGate {DE}+1 DE £ % &* %
1054DD NEGB NEGate Byte
0055DD ADC ADd Carxy (DE)+(C) DE ® & R &
1055DD ADCB ADd Carry Byte
0056DD SBC SuBtract Carry (DE}={(C) DE LA A
1056DD SBCB SuBtract Carry Byte
0057DD TST TeST (DE)=0 DE ® % 0 0
1057DD TSTB TeST Byte
T 5 Q
0060DD ROR ROtate Right [l | e A A
1060DD RORB ROtate Right even or odd byte ® % k&
Byte b)
0061DD ROL ROtate Left |———D <] o
dd byte
1061DD ROLB ROtate Left e ® % 0w &
' Byte | |
¢ B 14 [}
0062DD ASR Arithmetic O 1 1] # & % %
Shift Right - AN AL

1062DD ASRB Arithmetic O 1 1] * % & %
shift Right AR N
Byte ;] |]
0063DD ASL Arithmetic [R u L. * & % %
Shift Left o o £
1063 even or odd byte
063DD ASLB Arithmetic (| [T11 T 0 5 & & %
Shift Left Ef///y 2/
Byte [T1 17
0001DD JMP JuMP DE PC - = = =
0003DD SWAB SWAp Bytes % 0 0
0067DD SXT Sign eXTend 0 DE if N bit = ® e e
clear
=1 DE if N bit
is set
FN FZ FV FC
0707DD NEGD NEGate Double = {FDE) FDE # & 0 0

1704DD CLRD CLeaR Double

1705DD TSTD TeST Doubel

1706DD ABSD make ABSolute

B.3.3 Operate Instructions

Instruction=Type formats Op

Op=Code Mnemonic Stands for

000000 HALT HALT

000001 WAIT WAIT

000002 RTI ReTurn from
Interrupt

000005 RESET RESET

000241 CLC CLear Carry bit

000261 SEC SEt Carry bit

000242 CLV CLear oVerflow bit

000262 SEV SEt oVerflow bit

000244 CLZ CLear %ero bit

000264 SEZ SEt Zero bit

000250 CLN CLear Negative bit

000270 SEN SEt Negative bit

000243 cve Clear oVerflow and
Carry bits

000254 CNZ Clear Negative and

Zero bits

0 FDE
(FDE)=0 FDE
FDE FDE

Operation

The computer stops
all functions.

The computer stops
and waits for an
interrupt.

The PC and PS are
poppad off the SP
stacks

{(8P))>PC

(SP} +2-8P
((sp))-»PS
(Sp)+2+8SP

RTI is also used
to return from a
trap.

Returns all I/0
devices to power-on
gtatus.

[\ ¥

1-C

0>V

1-v

0+7Z

1-7Z

0N

1N

0>V

0~+N
0>z

i

. 000257 cCccC Clear all 0-N 0 0 0 O

Condition Codes 0%
0~V
0-C
000277 sCC Set all 1N 1 1 1 1
Condition Codes 1-Z
1-v
1-C
000240 NOP No OPeration - wm w

B.3.4 Trap Instructions

Instruction-type formats Op or Op E where 0 ¢ E < 377(8)

#0P (only)
Status Woxrd
Condition Codes
— Op-Code Mnemonic Stands for Operation N 2 vV C
000003 BPT BreakPoint Trap Trap to location ® & & %
14. This is used
to call ODT.
#*000004 IOT Input/Output Trap Trap to location * & ® %
20, This is used
_y o call IOX.
w 104000- EMT EMulator Trap Trap to location ® & & &
104377 - 30, This is used
to call system
Programs.,
104400~ TRAP TRAP Trap to location ® & * 0%
104777 34, This is used

to call any routine
desired by the
programmer.

B,3.5 Branch Instructions

Instruction-type format: Op E where =128(10) < (B=.~2)/2 < 127(10)

Op~Code

0004XX

0010xXxX

0014XX

0020XX

0024XX

0030XX

0034XxX

1000XX
1004xx

1010xx

1014xx

1020XxX

1024xx

1030xX

1034xx¥

Mnemonic

BR

BNE

BEQ

BGE

BLT

BGT

BLE

BPL
BMI

BHI

BLOS

BVC

BVS

BCC
(or BHIS)

BCS
{or BLOS)

Stands for

BRanch always

Branch if Not
Equal (to zexo)

Branch if EQual
{(to zero)

Branch 1f
Greater than or
Equal (to zero)

Branch if Less
than (zero)

Branch i€
Greater than
{zero)

Branch if Less
than or equal
(to zero)

Branch if PLus
Branch if MInus

Branch if
HIgher

Branch if LOwerxr
ox Same

Branch if
oVerflow Clear

Branch if
oVerflow Set

Branch if Carry
Clear (or
Branch if
Higher or Same)

Branch if Carry
Set {(or Branch
if Lower

Condition to be
met 1f branch
is to occur

N @ v=0

N @ v=1
1 (N V) =0

Zi+ (N V)=1

V=1

Ce=

C=1

B.3.6 Register Destination

Instruction type format: Op ER,A

Op=Code Mnemonic Stands for

004RDD JSR Jump to SubRoutine

Status Word
Condition Codes
N Z2 VvV C

Operation

Push register on
the 8P stack, put
the PC in the
register,

DE TEMP (TEMP=
temporary storage
register internal
to processor.)

(sp)=2 sp
(REG) (SP)
(PC) REG

(TEMP) PC

The following instruction is available only on the PDP=11/45¢

074RDD XOR eXclusive OR

B.3.7 Subroutine Return

Instruction type format: Op ER

Op=Code Mnemonic Stands for
00020R RTS ReTurn from
Subroutine

{R) { DE DE

&

Status Word
Condition Codes

Operation

Put register in

PC and pop old
contents from SP
stack into register

N

Z Vv C

B.4 ASSEMBLER DIRECTIVES

Form

tBn

+Cn

1Dn

10n

+ASCITI string

«ASCIZ string

.BLKB exp

Operation

A single-gquote character
(apostrophe) followed by one
ASCII character generates a
word containing the 7-bit
ASCII representation of the
character in the low-order
byte and zerxo in the high
ordexr byte.

A double~quote character
followed by two ASCII
characters generates a word
containing the 7-bit ASCII
representation of the two
characters.

Temporary radix control;
causes the number n to be
treated as a binary number.

Creates a word containing the
one’s complement of n.

Temporary radix control;
causes the number n to be
treated as a decimal number,

Temporary radix controls;
causes the number n to be
treated as an octal number,

Generates a block of data
containing the ASCII
equivalent of the character
string (enclosed in
delimiting characters) one
character per byte.

Generates a block of data
containing the ASCII
equivalent of the character
string {(enclosed in
delimiting characters) one
character per byte with a
zero byte following the
specified string.

Reserves a block of storage
space exp bytes long.

B-10

Described
in Manual
Section

5,3,3

503‘3

5.6.2

5.4‘2

5.4.2

s

FORM

«BLKW exp

«BYTE expl,exp2;.o.

-DSABL axrg

.ENABL arg

.END
.END exp

« ENDC

- ENDM
-ENDM symbol

-ERROR exp,string

«EVEN

«IF cond,argl,arg2,...

o LFF

Described

in Manual
Operation Section
Reserves a block of storage 5.5.3
space exp words long.
Genexates successive bytes of 5.3.1

data containing the octal
equivalent of the expression(s)
specified.

Disables the assembler 5.2
function specified by the
argument.

Provides the assembler 5.2
function specified by the
argument.

Indicates the physical end 5.7.1
of source program. An

optional argument specifies

the transfer address.

Indicates the end of a 5,11
conditional block.

Indicates the end of the 6.1.2
current repeat block,

indefinite repeat block, or

macro, The optional symbol,

if used, must be identical to

the macro name.,

Causes a text string to be 6.5
output to the command device
containing the optional

expression specified and the
indicated text string.

Ensures that the assembly 5.5.1
location counter contains an
even address by adding 1 if

it is odd,

Begins a conditional block of 5.11
source code which is included

in the assembly only if the

stated condition is met

with respect to the

argument (s) specified.

Appears only within a 5011.1
conditional block and

indicates the beginning of a

section of code to be

assembled if the condition

tested false,

B-11

Form

« IFT

« IFTF

+IIF cond,arg,statement

« LRP Sym,<argl,arg2,.a.>

+IRPC sym,string

+LIST
+LIST arg

+MACRO sym,argl,arg2,...

« MEXIT

.NARG symbol

Operation

Appears only within a
conditional block and
indicates the beginning of
a section of code to be
assembled if the condition
tested true.

Appears only within a
conditional block and
indicates the beginning of
a section of code to be
unconditionally assembled,

Acts as a l-line conditional
block where the condition is
tested for the argument
specified., The statement

is assembled only if the
condition tests true.

Indicates the beginning of

an indefinite repeat block

in which the symbol specified
is replaced with successive
elements of the real argument
list (which is enclosed in
angle brackets).

Indicates the beginning of an
indefinite repsat block in
which the symbol specified
takes on the wvalue of
successive characters in the
character string.

Without an argument, -LIST
increments the listing level
count by one. With an
argument .LIST does not alter
the listing level count but
formats the assembly listing
according to the argument
specified,

Indicates the start of a
macro named sym containing
the dummy arguments specified.

Causes an exit from the
current macro or indefinite
repeat block.

Appears only within a macro
definition and equates the

specified symbol to the
number of characters in the

string (enclosed in
deliniting characters).

B=12

Described
in Manual
Section

5.,11.1

5,11.1

5,11.2

6.1.3

6.4

g

—

R !

Form

«NCHR sym,string

+NLIST
+«NLIST arg

«NTYPE sym,arg

- ODD

» PAGE

«PRINT exp,string

+RADIX n

+RAD30 string

+REPT exp

.SBTTL string

Described
in Manual
Operation Section

Can appear anywhere in a 6.4
source program; equates the

symbol specified to the

number of characters in the

string (enclosed in

delimiting characters).

Without an argument, oNLIST S5elol
decrements the listing lewvel

count by 1. With an argument,

+NLIST deletes the portion of

the listing indicated by the

argument.

Appears only in a macro 6.4
definition and equates the

low=oxder six bits of the

symbol specified to the

six=bit addressing mode of

the argument.

Ensures that the assembly 5.5.1
location counter contains an

odd address by adding 1 if it

is even.

Causes the assembly listing 5.1.6
to skip to the top of the
next page.

Causes a text string to be 6.5
output toc the command device
containing the optional

expression specified and the
indicated text string.

Alters the current program 5.4.,1
radix to n, where n can be 2,
4, 8, or 10,

Generates a block of data 50,306
containing the Radix-50

equivalent of the character

string (enclosed in

delimiting characters).

Begins a repeat block, 6.7
Causes the section of code

up to the next .ENDM ox

or .ENDR to be repeated

exp times,

Causes the string to be 5.1.4
printed as part of the

assembly listing page header.

The string part of each .SBTTL
directive is collected into

B=13

Form

+TITLE string

+WORD expl,exp2;c..

Operation

a table of contents at the
beginning of the assembly
listing.

Assigns the first symbolic
name in the string to the
object module and causes the
string to appear on each page
of the assembly listing.

One ,TITLE directive should
be issued per program.

Generates successive words
of data containing the octal
equivalent of the
expression(s} specified.

B=-14

Described

in Manual
Section L
5.1.3
5.3.2 —
~—_

™

PST

LCOINhUWNE

00000

0006020
000100

000020
000010
000004
000002

APPENDIX C

PERMANENT SYMBOL TABLE

DR1=
DR2=

DFLGEV=
DFLGBM=
DFLCND=
DFLMAC=

PSTBAS:

« TITLE

COPYRIGHT 1972 DIGITAL EQUIPMENT CORPORATION

200
100

020
010
004
002

« IIF DF
«IIF DF

« MACRO
«IF NB
+IF DF
«MEXIT
« ENDC
« ENDC
« RAD50
«BYTE
- GLOBL
-BYTE
« WORD
« ENDM

« MACRO
«IF NB
« IF DF
+MEXIT
« ENDC
« ENDC
« GLOBL
«RADS0
«BYTE
«BYTE
-« WORD
« ENDM

PERMANENT SYMBOL TABLE MACRO VO04A PAGE 1

BPST PERMANENT SYMBOL TABLE

;DESTRUCTIVE REFERENCE IN FIRST
:DESTRUCTIVE REFERENCE IN SECOND

¢DIRECTIVE REQUIRES EVEN LOCATION
s DIRECTIVE USES BYTE MODE

;s CONDITIONAL DIRECTIVE
s MACRO DIRECTIVE

X45, XFLTG= 0

XMACRO, XSMCaAL= 0

OPCDEF NAME, CLASS, VALUE, FLAGS, COND
{COND>

COND

/NAME/

FLAGS+0

OPCL'CLASS

20040OPCL°CLASS

VALUE

DIRDEF NAME, FLAGS, COND
{COND?>
COND

NAME

/o "NAME/
FLAGS+0
0

NAME

¢ BASE

BPST

LCOLIRAUTI B WN

PERMANENT SYMBOL TABLE MACRO V004A PAGE 2

000020
000030
000040
000110
000120
000130
000140
000150
000160
000170
000200
000210
000220
000230
000240
000250
000260
000270
000300
000310
000320
000330
000340
000350
000360
000370
000400
000420
000430
000440
000450
000470
000500
000510
000520
000550
000560

OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF

<ADC
{ADCB
<ADD
{ASL
{ASLB
{ASR
{ASRB
<{BCC
<BCS
<BEQ
{BGE
{BGT
<BHI
{BHIS
<{BIC
{BICB
{BIS
{BISB
<BIT
<BITB
{BLE
<BLO
{BLOS
{BLT
<BMI
<BNE
{BPL
{BR
<{BVC
<BVS
{CCC
<CLC
{CLN
{CLR
{CLRB
<CLV
{CLZ

005500,
105500,
060000,
006300,
106300,
006200,
106200,
103000,
103400,
001400,
002000,
003000,
101000,
103000,
040000,
140000,
050000,
150000,
030000,
130000,
003400,
103400,
101400,
002400,
100400,
001000,
100000,
000400,
102000,
102400,
000257,
000241,
000250,
005000,
105000,

000242,
000244,

DR1
DR1
DR2
DR1
DR1
DR1
DR1

DR2
DR2
DR2
DR2

DR1
DR1

s

PST PERMANENT SYMBOL TABLE MACRO V004A PAGE 3

&

1 000570 OPCDEF KCMP >, 02, 020000,
2 000600 OPCDEF {CMPB >, 02, 120000,
cMZ 00 000254,
3 000630 OPCDEF coM >, 01, 005100, DR1
4 000640 OPCDEF {COMB 5, 01, 105100, DRI
5 000650 OPCDEF (DEC Y, 01, 005300, DRL
6 000660 OPCDEF ¢DECB >, 01, 105300, DR1
7 000670 OPCDEF CEMT >, 06, 104000,
8 000730 OPCDEF CHALT 3, 00, 000000,
9 000740 OPCDEF ¢INC 3, 01, 005200, DR1
10 000750 OPCDEF <INCB 3, 01, 105200, DRL
11 000760 OPCDEF <IOT D, 00, 000004,
L 12 000770 OPCDEF CIMP >, 01, 000100,
- 13 001000 OPCDEF ¢ISR), 05, 004000, DRL
14 001010 OPCDEF MOV), 02, 010000, DR2
15 001230 OPCDEF <MOVB >, 02, 110000, DR2
16 001240 OPCDEF (NEG >, 01, 005400, DRL
17 001320 OPCDEF <NEGB 5, 01, 105400, DR1
= 18 001330 OPCDEF <NOP 3, 00, 000240,
: 19 001360 . OPCDEF <RESET?, 00, 000005,

20 001370 , OPCDEF

"“‘%‘

PST

Pt et o et ot 8 ot 8 [0 0 00 G0] O UT o W0) B
CONO UM BWNRO

PERMANENT SYMBOL TABLE MACRO V004A PAGE 4

001400
001410
001420
001430
001440
001450
001470
001500
001510
001520
001530
001600
001610
002020
002050
002070
002100
002110
002140

OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF

<ROL
<ROLB
{ROR
{RORB
{RTI
{RTS
{SBC
{SBCB
{S8CC
{SEC
{SEN
{8EV
{SEZ
<SUB
{SWAB
{TRAP
{TST
{TSTB
{WAIT

006100,
106100,
006000,
106000,
000002,
000200,
005600,
105600,
000277,
000261,
000270,
000262,
000264,
160000,
000300,
104400,
005700,
105700,
000001,

DR1
DR1
DR1
DR1

DR1

DR1
DRL

DRL

.

g

&

s

PST

et el et =t WO €0 =] OY T B W DO =
WO

PERMANENT SYMBOL TABLE MACRO V004A PAGE 5

002160
002170
002210
002220
002230
002250
002260
002270
002300
002310
002320
002340
002350
002420
002430
002440
002450
002460
002470
002500
002510
002520
002530
002540
002550
002560
002570
002600
002610
002620
002630
002640
002660

DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF

{ASCII>,
{ASCIZ>,

‘{BLKB

{BLKW
{BYTE

>4
>p
2¢

{DSABLY,
{ENABL>,

<END
<ENDC

29
2s

<ENDM 5,
<ENDR >,
{ERRORY,

{EVEN
{IF
{IFDF
<IFEQ
{IFF
{IFG
{IFGE
<IFGT
<IFL
<IFLE
<IFLT

>0

{IFNDF»>,

<IFNE
<IFNZ
{IFT
<IFTF
<IFZ
{IIF
<IRP
<IRPC
{LIST

Id)
7
>
7o
75
20
>
b)
20

DFLGBM
DFLGBM

DFLGEV
DFLGBM

DFLCND
DFLMAC, XMACRO
DFLMAC, XMACRO

DFLCND
DFLCND
DFLCND
DFLCND
DFLCND
DFLCND
DFLCND
DFLCND
DFLCND
DFLCND
DFLCND
DFLCND
DFLCND
DFLCND
DFLCND
DFLCND

DFLMAC, XMACRO
DFLMAC, XMACRO

PST

O ~d 0 Ut ds W N
o

e g e e
O =JN U

PERMANENT SYMBOL TABLE MACRO V00O4A PAGE 6

002670
002700
002720
002730
002740
002750
002760
002770
003000
003010
003020
003030
003040
003050
003060
003070
003100
003100

003110

000001

WRDSYM:

PSTTOP:

DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF

DIRDEF

+ END

<{MACR >,
{MACRO?,
<MEXIT>,
{NARG >,
{NCHR >,
{NLIST >
{NTYPE>,
{0DD >,
{PAGE »,
{PRINT>,
{RADIX>,
{RAD50>,
<REM >,
{REPT >,
<SBITL >,
<TITLE >,

{WORD >,

DFLMAC, XMACRO
DFLMAC, XMACRO

, XMACRO
. XMACRO
’ XMACRO
’ XMACRO
DFLGEV

DFLMAC, XMACRO

DFLGEV

,TOP LIMIT

N

Y

oy

,‘M"’m%%

APPENDIX D

ERROR MESSAGE SUMMARY

D.1 MACll ERROR CODES

MACll error codes are printed following a field of six asterisk

characters and on
error, For examples

CETTTTIN
26 00236

The addition of two

Error Code

A

the line preceding the source line containing the

000002° «WORD RELI+REL2

relocatable symbols is flagged as an A erxor.

Meaning
Addressing error, An address within the
instruction is dincorrect. Also may indicate a
relocation error. This message does not

necessarily reflect a coding errox,

Bounding erroxr. Instructions or word data are
being assembled at an odd address in memory. The
location counter is updated by +1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive not found, (A listing is
generated.)

Illegal character detected. Illegal characters
which are also non-printing are replaced by a ? on
the listing. The character is then ignored.

Line buffer overflow; i.e., input 1line greater
than 132 characters. Extra characters on a line

{(more than 72(10)) are ignored.

Multiple definition of a label, A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing 8 or 9 has decimal point
missing,

Op=-code error, Directive out of context.

Phase error. A label’s definition of value wvaries
from one pass to another,

Questionable syntax., There are missing arguments
or the instruction scan was not completed or a
carriage return was not immediately followed by a
line feed or form feed.,

Register-type error. An invalid use of or
reference to a register has been made.

Truncation error. A number generated more than 16
bits of significance or an expression generated
more than 8 bits of significance during the use of
the BYTE directive,

Undefined symbol, An undefined symbol was
encountered during the evaluation of an
expression. Relative +to the expression, the
undefined symbol is assigned a value of zero.

Instruction which is not compatible among all
meybers of the PDP=11l family (11/15, 11/20, and
11/45) .

gy

Vi

INDEX

Absolute mode, 4-5 Concatenation, 6-8

Addressing modes, 4-1 Conditional assemblies, 1-6
branch instruction, 4-7 directives, 5-18
preferred, 1-6 Conversion (ASCII) of one or
syntax, B-2 two characters, 5-10

.ASCII directive, 5-11
.ASCIZ directive, 5-12

Assembler directives, 5-1, B-10 Delimiters, 3-2
Assembly language and assembler,B-1 Direct assignment statements, 3-6
Assembly instructions, B-3 .DSABL directive, 5-7

branch, B-8
double-operand, B-4

operator, B-6 .ENABL directive, 5-7

single-operand, B-4 - .END directive, 5-17

subroutine return, B-9 JENDM directive, 6-2

trap, B-7 Error codes, D-1
Assembly location counter, 3-10 .ERROR and .PRINT directives, 6-10
Assembly listing, example, 7-3 -EVEN directive, 5-15
Autodecrement deferred mode, 4-3 Expressions, 3-12

Autodecrement mode, 4-3
Autoincrement deferred mode, 4-3
Autoincrement mode, 4-2 Format control, 2-4

Automatically created symbols, 6-7

Immediate conditional directives,
-.BLKB and .BLKW directives, 5-17 5-21

Branch instruction addressing, 4-7 Immediate mode, 4-4
Indefinate repeat block (.IRP and

.IRPC) directives, 6-11

Index deferred mode, 4-4

Branch instructions, conditional,l-§

.BYTE directive, 5-8

Index mode, 4-4

Character set, 3-1
illegal characters, 3-4
MAC1l, A-1
operator characters, 3-4
RADIX-50, A-4

Command input string, 7-1

Label field, 2-2

Listing control directives, 5-1
Listing, MACll example, 5-4
Loading MACll, 7-1

Comments within programs, 1-4 Location counter, 5-15

field, 2-3

MACRO calls, 6-3

MACRO definition, 6-1
arguments, 6-4
formatting, 6-3

MACRO directives, 6-1

MACRO nesting, 6-4

.MACRO directive, 6-1

MEXIT directive, 6-2

Mode forms and codes, table,

Modular programming, 1-1

.NARG, .NCHR and .NTYPE directives,

6-9

4-6

Number of MACRO arguments, 6-7

Numbers, 3-11
Numeric arguments passed as
symbols, 6-6

.0ODD directive, 5-16
Operand field, 2-3
Operator field, 2-3

Page ejection, 5-7

Page headings, 5-5

PAL-11R conditional assembly
directives, 5-22

Parameter assignments, 1-7

Permanent symbol table, C-1

.PRINT and .ERROR directives,

.RAD50 directive, 5-12

6-10

.RADIX control directive, 5-14

temporary, 5-14

Reentrant code, 1~-6

Registers
increment, 1-B
localized usage, 1-4

register deferred mode, 4-2

register mode, 4-2

register symbols, 3-7
Relative deferred mode, 4-5
Relative mode, 4-5

Repeat block (.REPT) directive,

.SBTTL directive, 5-5
Source program format, 2-1

Special characters, 6-5, B-1
Statement format, 2-1
direct assignment, 3-6

Subconditional directives, 5-19

Symbols
MAC11l, 3-5
local, 3-8
permanent, 3~5
register, 3-7
user-defined & MACRO, 3-5

Terminating directives, 5-17

Terms, 3-11
.TITLE directive, 5-5

Trap handler, 1-7

.WORD directive, 5-9

6-14

v

P

Y

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi-
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy

Paris, France Solna, Sweden

The Hague, Holland Geneva, Switzerland
Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation
software Distribution Center Software Distribution Center

146 Main Street 1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex-

change center for user=-written programs and technical application in-

formation. A catalog of existing programs is available. The society

publishes a pericdical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the

society and membership application forms, write to:

DECUS DECUS EUROPE .

Digital Equipment Corporation Digital Equipment Corporation
146 Main Street International (Europe)
Maynard, Massachusetts 01754 P.0O. Box 340

1211 Geneva 26
Switzerland

T

MAC11 Programming Language
(MAC11)
DEC=-15-LMCMA~-A=D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page) .

H

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If 'you do not require a written reply, please check here. Ej

Fold Here

Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilalilt/all

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

g’

printed in U.S.A.

