e sease tas
0O6606666666606

£
-
e
o L
e,
= C
o 3
5 0
£ 0
Q £
o 3
=) "=
v A=
e O

O

-

5

@

£ 2
£

D8 EL

chv O

? 25k

DEC-15-0DFFA-A-D

DOS-15

SYSTEM MANUAL

FOR ADDITIONAL COPIES OF THIS MANUAL, ORDER THE NUMBER ABOVE FROM THE
PROGRAM LIBRARY, DIGITAL EQUIPMENT CORPORATIONQ MAYNARD‘, MASSACHUSETTS
01754 price $10,00

First Printing, January 1972
Second Printing, July 1972

Copyright (:) 1972 by Digital Equipment Corporation

The material in this document is for informa-
tion purposes and is subject to change without

notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

CDP Digital LAB-8/e RAD-8
Computer Lab DNC OMNIBUS RSTS
Comtex Flip Chip 0s/8 RSX

DEC IDAC PDP RTM
DECtape Indac PHA SABR
Dibol KAl0 PS/8 Typeset 8

Quickpoint Unibus

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

2

NN N
wWww
N

CONTENTS

DOS OPERATION

THE RESIDENT MONITOR
INTRODUCTION

THE CAL HANDLER

IOPS ERROR HANDLER,TAND THE EXPANDED ERROR PROCESSOR
%ﬁgDExpanded Error érocessor

THE SYSTEM BOOTSTRA%

SYSTEM 1/0 INITIALIiATION
RESIDENT MONITOR TIMING FEATURES
Clock Operation

.TIMER

THE RESIDENT MONITOR PATCH AREA

CONTROL CHARACTERS

THE NONRESIDENT MONITOR
INTRODUCTION
COMMANDS TO THE NONRESIDENT MONITOR

CONSIDERATIONS FOR ADDITIONS TO THE NONRESIDENT
MONITOR

QFILE

THE SYSTEM LOADER AND THE LINKING LOADER
MANUAL BOOTSTRAP LOADS AND RESTARTS
LOADING SYSTEM PROGRAMS

TABLES AND INFORMATﬁON BLOCKS USED AND BUILT
BY LQADERS '

.DAT SLOT MANIPULATION BY THE SYSTEM LOADER

BUFFER ALLOCATION BY THE SYSTEM LOADER

CHAPTER

CHAPTER

5
5

(S S |

ur

w

.

;o ;

[$;]

(GG, R0,) |

NN NN

. . . .
[SN S SN S N

LY

ot

Ut
~

)}

[o)Wo W e No W, W) I e N e)Y

AT AARN

oo o

e NP
=
(NI

NN DN

.

.
LWWwWwuwwuwwwww

s s e

1

> W

=)}

" e

wN -

« s e e
AU WN -

wN -

.

.

s wdh NN -

Nontbs s bdwn =

PR
w N -

N =

SYSTEM INFORMATION BLOFKS AND TABLES

CORE-RESIDENT NON—REFRFSHED REGISTERS
DISK-RESIDENT UNCHANGING BLOCKS
SYSBLK
COMBLK
SGNBLK ‘
\
DISK-RESIDENT CHANGING‘BLOCKS
TEMPORARY TABLES BUILT FROM DISK~RESIDENT
TABLES |
The Overlay Table
The Device Table
The Input/Output Communication (IOC) Table
The Device Assignment Table (.DAT)
The User File Directory Table (.UFDT)
The Skip Chain |

TEMPORARY TABLES BUILT FROM SCRATCH
File Buffer Transfer Vector Table
The RCOM Table

The Mass Storage Busy Table

RESERVED WORD LOCATION%

I
BOOTSTRAP NON-BOSS BATCH BITS

FILE STRUCTURES /‘
DECTAPE FILE ORGANIZATION
Non-Directoried DECtape
Directoried DECtape

|
MAGNETIC TAPE
Non-directoried Data Recording (MTF)
Directoried Data Recording (MTA., MTC.)
Magnetic Tape File Directory '
User-File Labels
File-Names in Labels
Continuous Operation
Storage Retrieval on File-Structured
Magnetic Tape |

DISK FILE STRUCTURE

.Introduction

User Identification Codes (UIC)
Organization of Specific Files on Disk
Buffers

Commands that Obtain and/or Return Buffers
The Current Set

Pre~allocation

Storage Allocation Tables (SAT's)

Bad Allocation Tables (FAT'S)

vi

oo o
11 11
=

o)) O\O\O’\C;\O’\O\O'\
HEHWOgOTU s

1
(]
[

CHAPTER

oo}

o 00 00 0
pag
el el e
. .
wn -

APPENDIX A

APPENDIX B

APPENDIX C

WRITING NEW I/0 DEVICE HANDLERS

I/0 DEVICE HANDLERS, AN INTRODUCTION
Setting Up the Skip Chain and API
(Hardware) Channel Registers
Handling the Interrupt

APTI SOFTWARE HANDLERS, An Introduction
Setting Up API Software Channel Registers
Queueing

WRITING SPECIAL I/O DEVICE HANDLERS
Discussion of Example A by Parts

Example A, Skeleton I/0 Device Handler

Example B. Special Device Handler for
AF01B A/D Converter

B0OSS-15

PROCEDURE FILES

Procedure File Format
Direct Substitution
Example of Procedure File

BOSS-15 ACCOUNTING

B.PRE

DECtape 'A' Handler (DTA.)

Disk "A" Handlers

PROCEDURE FILES

vii

PREFAA;E

This manual was written for customer éystems programmers, DEC Software
Specialists, and internal maintenance Tprogrammers. Readers must be
familiar with the DOS User's Manual, D:EC—15—MRDA-D. In addition, chap-
ter 8 requires familiarity with the BOSS Reference Manual, DEC-15-GUDA-D.

CHAPTER 1

DOS OPERATION

The System Manager must use DOSSAV injorder to load DdS-lS for the
first time. The DOS System Generator manual, DEC-15-YWZB-DN12, des-
cribes DOSSAV operation in its appendix. After successful DOSSAV op-
eration, the System Manager should loéd the Bootstrap into the highest
bank. (This tells DOS how many banks it can use.) The Bootstrap loads
the System Loader, which in turn loads the Nonresident Monitor. In
order to ensure a working system, the System Manager should place the
DOS~-15 Checkout Package tape (RF.CHK, DEC-15-CIDA-PA, for RF DECdisk
systems, or RP.CHK, DEC-15-CTAA-PA, for RP@2 Disk Pack systems) into
the Paper Tape Reader, and type BATCH PR). Operating instructions

for the Checkout Package, and the tape itself, are distributed as part
of the DOS-15 system.

Once the system has been checked out, the System Manager should use
DOSGEN, the DOS System Generator nrogram, to tailor the system to
his needs. As mentioned in the System Generator manual, a complete
tailoring of the system may also involve use of PATCH, PIP, and
UPDATE.

Commands to the Nonresident Monitor allow temporary modification of
the system, in order to suit the needs of a particular program. The
Nonresident Monitor modifies the system by changing information in

the .SCOM Table. The System Loader examines the .SCOM Table, along
with three disk-resident information blocks, SYSBLK, COMBLK and SGNBLK,
and carries out all operations necessary to fulfill the operator's
commands. The System Loader "builds" the Resident Monitor by relocat-
ing and linking those routines indicated by the .SCOM table as needed
by the next core load. The Resident Monitor then retains general con-

trol over the system.

CHAPTER 2

THE RESIDENT MONITOR

2.1 INTRODUCTION

The Resident Monitor gets its name because it seems resident to the user.
Strictly speaking, however, the only part of the system that is always
resident is the Bootstrap. There are two parts of the system that are
refreshed only after manual Bootstrap loads and restarts: .SCOM and the
Resident Monitor Patch Area. Every time an operator or program changes
certain key system parameters, the system will build a new Resident

Monitor from blocks stored on the system device.

The Resident Monitor is the interface between the operator, and the
active devices on one hand, and the program which is running (the
Nonresident Monitor), on the other. The Resident Monitor always contains
the following routines and tables:

.DAT
Chapter
5 {:.UFDT
.SCOM |
(- The CAL Handler, which routes all System and I/0O
Macro calls
The Startup routine after using the Bootstrap
.MED, the Monitor's standard error routine
The Expanded Error Processor, for more flexibility
with error messages
Handlers for the following error conditions:
Nonexistent Memory
Memory Protect
This Interrupt-Memory Parity
< Power-Fail
Software API not set up
The Monitor's TRAN routine (different from I/0O .TRAN's)
A clock handler
The .GTBUF and GVBUF processor
The CTRL @ processor
The .USER processor
The .OVRLA processor
TTA.
_ The Resident Monitor's Patch Area

Chapter

In addition, the user can request the system to retain certain other

routines in a resident Monitor status:

The CTRL X Feature, including:a driver for the VT-15
The Paper Tape or Card Reader Handler for Batch
The Resident Batch code

BOSS-15 also has resident routines, wnich are covered in Chapter 8.

2-1

2.2 THE CAL HANDLER

The CAL instruction transfers control to re%ister 21, bank @, and loads
register 2@ with the address of the next instruction after the CAL.

All DOS I/O and system macros take the form‘of a CAL instruction (pos-
sibly with some code in the low-order bits)L and the next sequential
register contains a dispatch code. Some maéros require more informa-
tion in succeeding registers. Figure 2-1, Resident Monitor CAL Handler,
illustrates the operation of that portion of the Resident Monitor. The
CAL Handler does only minimal error checking -- for legal function
code, and for legal .DAT slot. Aside from that, and ensuring the

clock is turned on, the CAL Handler is only a dispatcher to other

routines.

2.3 1IOPS ERROR HANDLER, AND THE EXPANDED ERROR PROCESSOR

2.3.1 .MED

There are two error processors in the Resident Monitor: .MED and the
Expanded Error Processor. Figure 2-2 illus#rates those routines.
Figure 2-3 shows two subroutines used by the error routines. .MED

(location 3, bank @) processes IOPS errors #rom all device handlers
except the disk handlers, and CDB., MTF., T?A., and LPA. Calls to
.MED should take the following form, if not IOPS 4:

\
|
LAC INFO /ARGUMENT OF ERROR
DAC* (.MED /ADDRESS OF CAL IS ALREADY IN .MED,
/IF DESIRED
LAW N /N IS ERROR CODE @>N>777. AC MUST BE NEGATIVE.

JMP* (.MED+1
IOPS 4 messages may take the following form%

LAC (4 /AC MUST BE POSITIVE
JMS* (.MED

|
.MED+1 contains a JMP to the Monitor Error Diagnostic Routine. The

above calls to .MED will cause the followin? printouts:

IOPSN (contents of .MED)
I0PS4

I0PS2

Modify the
.UFDT slot

ENTER

. Load .MED with CAL address
2, Turn clock on, if not on
3, Deposit minus 1 in register 7, if

= or less than minus two

Legal

.DAT slot

egal
function
code

Does
CAL refer-

ence a .DAT

IOPS @

The following CAL's

slot

Load AC with
CAL address

Device Hand-
ler carries
out instruc-
tion

Y
A

Exit to the
user

Resident Monitor CAL Handler

Figure 2-1

take this path:
+EXIT, .OVRLA, .TIMER
.SETUP, .GTBUF, '
.GVBUF, .GET, &

.PUT

Give control to

proper portion of
the Resident Mon-
itor.

Return
to the

Do Monitor TRAN

(Figure 2-4)

Bootstrap

Enter from
+SCOM+37

Enter from

Y
Give error
message

[Put recovery PC in .ME

Resident Monitor
Initialization Loop
LOC+2

LB NOTE: The Nonresident Monitor HALT and
QDUMP commands will change this loop to
the appropriate action. BOS and Batch-
I Print the message ing Mode abort the $JOB.

L <
7 N

Awalt a character
from the keyboard

‘\\\\ji///, (Wait fpr a
Controfl Char)

CTRL
QAREA ade-
quate

v
A

Echo Command

Resident Monitor
Initialization

Dispatch to
appropriate
address

1. Echo Command
2. Restore API, if required
3. Restore PI

Return
via MED
Expanded Error Processor
and
Monitor Error Diagnostic Routine
<MED
Figure 2-2

SETTLE

O

Store error number

Set up to turn nulls into
spaces, if LINK is set

Turn off PI

Wait 110 ms for the teleprinter
to die down

Type Carriage RETURN, Line Feed

RETURN

I0PS

0

Print "IOPS" and error number,

Zero suppress ed

I0PS .

e©e

Print a space, followed by the
octal contents of .MED, followed
by another space

I0PS N

20 or 72

Y

Print contents of .SCOM+32 (disk
block number)

RETURN

Resident Monitor Subroutines

Figure 2-3

2-5

2.3.2 The Expanded Error Processor

The disk handlers (except the Bootstrap), CDB., MTF., TTA., and LPA.
use the Expanded Error Processor. Each error message is "potentially"
recoverable by typing CTRL R. That is, the‘Resident Monitor always
returns control to the caller upon a CTRL R{ It is up to the caller

to respond accordingly. All handlers supplied with the system simply
repeat the error message if the error is un#ecoverable.

The Expanded Error Processor gives the capability of printing addi-
tional information after the standard IOPS message. As with .MED, the
AC must contain the error number (ﬂgpumberi???) in bits 9-17. Control
must be passed, however, via JMS* (.SCOM+37, notlJMP* (.MED+1-

The following information pertains to the message: LOC+2 must contain
the two's complement of the number of message words to be typed after
the standard "IOPSNN nnnnnn" message. If the number is zero or posi-
tive, no message will be printed. If the LINK is set, nulls will be
printed as spaces. If the LINK is zero, nulls will be ignored. If
the AC is positive on calling the expanded error facility, only the
special message will be printed. The "IOPS" part will be omitted.

The message itself must be packed in .SIXBT.

The following are examples of use of the Expanded Error Processor:
Example a:

UNREC LAC STATUS /STATUS
DAC* (.MED /CAL ADDRESS IS NOW OVERWRITTEN
- /BY CONTENTS OF STATUS REGISTER
STL /TURN NULLS INTO SPACES
LAW ERRNUM /<ERRNUM <L@@ g
JMS* (.SCOM+37 -
JMP UNREC /THIS IS AN UNRECOVERABLE ERROR,

/JMP .-1 WILL NOT DO -- EXPANDED
/ERROR PROCESSOR CHANGES THE
/CONTENTS OF .MED,

LAW -1
.SIXBT 'DKA'
UNITNO ¢
.SIXBT 'FIL'
.SIXBT 'E'

.SIXBT 'SRC'

The printout from that code will be as follows:

IOPS777 nnnnnn DKA FILE SRC

where nnnnnn is the contents of .MED, and equals the Status Register
B, and ERRNUM was 777.

Egample b:

PARITY LAW Gli

STL /TURNS NULLS INTO SPACES
JMS* (.SCOM+37

JMP RETRY /THIS IS A RECOVERABLE ERROR
LAW -1 ‘

.SIXBT 'DTA'

The printout from that code will be as follows:

IOPS61 nnnnnn DTA

where nnnnnn is the contents of .MED, the address of the last CAL,
deposited by the CAL Handler.

2.4 THE SYSTEM BOOTSTRAP

The System Bootstrap is nothing more than a disk driver. It may load
the System Loader and Resident Monitor from Hardware Readin, or manual
restart. All other Bootstrap operations result from the use of the
Monitor TRAN routine. The Monitor TRAN routine sets up the Bootstrap
to read or write any block or set of contiguous blocks from the disk
to or from any location in core. Before calling the Bootstrap, the
Monitor TRAN does a .WAIT to all .DAT slots in the Mass Storage Busy
Table, clears all flags, turns off the VT if it was on, and allows the
clock to tick positive, so that it will keep time but not interrupt.
After the Bootstrap has finished, it calls the Monitor Initialization
Routine, which updates the clock and turns on the VT, if necessary.

The Monitor TRAN Routine requires the following parameter table:

PARADD LOC+@ BLKNUM /FIRST BLOCK NUMBER
LOC+1 FIRSTA-1 /FIRST ADDRESS OF BUFFER, MINUS ONE
LOC+2 ~-SIZE /# OF WORDS TO BE TRANSFERRED IN 2'S COM
LOC+3 START /STARTING ADDRESS AFTER DISK I/O
/COMPLET ION

The following code illustrates the use of the Monitor TRAN:

UNIT=1@@2080 /MONITOR TRAN WILL USE UNIT ONE!

.SCOM=19@

LAC (PARADD /MONITOR TRAN REQUIRES ADDRESS OF

XOR UNIT /PARAMETER TABLE IN BITS 3-17 AND
JUNIT NUMBER IN BITS §-2 OF AC

STL /NONZERO LINK GIVES TRAN OUT

JMP* (.SCOM+55 /.SCOM+55 IS USER ENTRY POINT FOR

/MONITOR TRAN

See also paragraph 5.7.

!DECdisk TRANs ignore unit number, use block number.

2-7

|
\ . .
.OVRLA, .EXIT, and manual Q dumps all use the Monitor TRAN routine.
|
Figure 2-4, .OVRLA, .EXIT and CTRL Q, illustrates their operation,
|
and also the Monitor TRAN.

For the RF DECdisk, the user can reference?a specific platter just by
identifying the block number he wants. Thét is, the block numbers to
not automatically go to zero at the beginning of every platter. The
block numbers and platter relationships are shown below:

|
TABLE 2-1
: 1
RF Platter-Block Number Correspondence

Platter Number Block Number

g #-1777
2098-3777
4gpP-5777
6808-7777

19888-11777

12980-13777

14888-15777

168p8-17777

Noyt b Wi

(All numbers are in octal)

!

: |

2.5 SYSTEM I/O INITIALIZATION |

o |

There are two rouﬁines that do DOS I/0 iniéialization: the startup routine
after Bootstrap manual loads and restarts,‘and the startup routine
performed after Monitor TRAN's and after a:CTRL C, P, Tor S for an

error. The startup routine after Bootstrap loads is described in

Figure 441, The System Loader Interface Routine. Figure 2-5, Resident
Monitor Initialization, describes the othe£ routine.

1
|

2.6 RESIDENT MONITOR TIMING FEATURES ‘

|
Figure 2-6, The Resident Monitor Clock Rout&ne, describes the Resident
Monitor's time functions. There are three ‘laces in DOS which start
or try to update the clock -- (1) the first-time initialization after
manual Bootstrap loads and restarts, (2) thé Resident Monitor Initial-
ization, and (3) the CAL Handler. The foll%wing .SCOM registers con-

tain timing information:

2-8

+OVRLA
CAL Entry CTRL Q
(Manual entry)

.EXIT CAL
Entry

Put System pro- Echo 1Q on
gram name into keyboard
.SCOM+43,44 (prog
name pointed to
by CAL+2) QDUMP Auto

iR Put name of the | Entry
Scan Overlay Nonresident Mon-
Table (address in itor into .SCOM+H
«SCOM+31) for a 43 & 44 Y

Set LINK (.TRAN out)

match with the

program name and set up pointer to ,TRAN

parameters for CTRL QAREA

X Found N
Put contents of ,SCOM+72
into ,SCOM+71, and set
AC with unit number
Set up pointer to TRAN Set up unit number @ and
parameters pointer to TRAN parame-

ters for loading .SYSLD
Clear LINK for ,TRAN in

Update .SCOM+3;

clear AC and the

LINK (Unit @, &
.TRAN in) (MONITOR TRAN ROUTINE =-- Independent from

device handler .TRAN's)

Store Unit number and
other TRAN parameters

[7Set AC = 777777 I in the Bootstrap
* CLEAR does a .WAIT or a
Return to .INIT to each entry in
user CLEAR* the Mass S?orage Busy
(.WAIT) Table: This precludes
conflicts between disk
I1/0 performed by the
system disk handler, and
- disk IOT's issued by the
Put starting address into Bootstrap, an independent
location @, bank @, and program., CLEAR also turns
set the Bootstrap to go to off the clock and PI, and
Monitor Recovery Routine enables BANK mode.
on exit
Bootstrap

.OVRLA, .EXIT anF CTRL Q
Figure 274

2-9

Entry
from
RESMON

Set exit to address in @ Arrive with exit address in AC

L

\2

1. Set up clock so that it
keeps running, but does
not interrupt (ticks
positive)

2. Clear all flags

3. Turn off PI and API

4, Restore cell 4 to transfer
to Error Diagnostic Routine

5. Set up proper addressing
(Bank or Page), according
to .SCOM+4, bit 7

vT
ON and also

Y
| Do CTRL X restart |

J

1. Update the clock, and allow it to
interrupt

2. Clear TTY Busy Switch (Clear all
flags ensures no I/0 to TTY)

3, Turn API on or off, depending on
contents of register 6 (The Sys-
tem Loader loads register 6 ac-
cording to .SCOM+4, bit @)

4., Turn on PI

Exit to

Proper
location

Resident Monitor Initialization

Figure 2-5

Entry from
PI or API

\

Allow clock to tick positive, so it
will not interrupt for an hour

<.
~

+TIMER
in effect

[;hcrement the interval oncel

Interval
done

Set up the exit from this routine
to go to the .TIMER address in
+SCOM+61, is if it were a IJMS in-
struction., Set high-order bits
of return address with interrupt
information

Ny
7

1
second

IIncrement « SCOM+56

1. Increment .SCOM+50
A » 2. Format in hhmmss
3. Increment ,SCOM+34

+EXIT

Register

seven .nega=

Restore pre-interrupt
conditions

Exit

Note: The Clock Routine will use PI if API is busy, or down,

The Resident Monitor Clock Routine
Figure 2-6

. SCOM+5¢ Time of day, in hhmmss (six bits each)

.SCOM+51 Elapsed time, in ticks

.SCOM+56 Time limit, in seconds (zero, if no limit)

.SCOM+60@ Time left for .TIMER interrupt (zero, if
.TIMER not in effect)

.SCOM+61 Address of .TIMER user interrupt routine

.SCOM+73 Number of ticks left in the next second

. SCOM+74 Line frequency, in ticks per second

2.6.1 Clock Operation

The Nonresident Monitor's TIME command changes or senses .SCOM+5f.
.SCOM+51 is not used by any system program. The clock handlervsimply
increments it upon each clock tick. User programs may deposit a known
quantity into .SCOM+51, in order to time e&ents. The Nonresident
Monitor deposits the argument for a TIMEST:command into .SCOM+56. If
.SCOM+56 is nonzero, the Resident Monitor ?ill issue an ISZ .SCOM+56
command each second, until it reaches zero. At such a time, the Resi-
dent Monitor will perform a .EXIT. MICLOG} LOGIN, and LOGOUT clear
. SCOM+56. |
|
2.6.2 .TIMER |
{
.TIMER allows users to schedule routines fér a specified time from
"now". These routines may return to the iﬁterrupted code, if the
programmer desires. .TIMER users shouid téke care that the time-
dependent code follows certain rules: |

a. When a programmer does not wish to reset the .TIMER mechan-
ism, but wishes to return to the interrupted program, his
code should look like this:

1

o '] /C+1 REACHED VIA JMS

DAC SAVEAC /MUST NOT USE NON-REENTRANT CODE
. . /POSSIBLY USED BY THE INTERRUPTED
. . /PROGRAM. (INCLUDES THE CAL IN-
. . /STRUCTION)

LAC C /RESTORE THE LINK

RAL

LAC SAVEAC /RESTORE THE AC

XIT JMP* C

b. When the programmer does wish to reset the .TIMER mechanism,
and return to the interrupted

like this:

.SCOM=1g¢

CLON=700@44
CLOF=709004
INTRVL=-10¢

LAC
DAC*
LAC
RAL
LAC
CLON

JMP*

g
SAVEAC

ADDRES
(.SCOM+61

INTRVL
(.SCOM+6g
C

SAVEAC

code, his routine should look

/THIS ROUTINE WILL RUN EVERY 1§80+
/TICKS

/RETURN TO THE NEXT ROUTINE

/TURN THE CLOCK OFF TO ENSURE NO
/REENTRANCE BEFORE .TIMER RESET AND
/RETURN

/DESIRED INTERVAL IN TWO'S COMPLEMENT

/RESTORE THE LINK
/RESTORE THE AC

/TURN THE CLOCK BACK ON (AFTER NEXT
/INSTRUCTION)

When a programmer does not wish to return to the interrupted
program, he need not save the AC, and he may use the CAL in-
struction. He should beware of using I/O buffers that may

still be modified by a handler's interrupt section. In many

cases, a .INIT to an active

.DAT slot will terminate I/O.

Teleprinter I/0 should be terminated by the following:

XCT* (.SCOM+35

The user should program a delay of at least 11f milliseconds
after such an instruction, before he attempts teleprinter I/O.

Note: The interrupt routine will run at the level of the in-
terrupted code, with the same addressing mode and memory pro-
tect status. Thus, no debreak and restore is required.

2.7 THE RESIDENT MONITOR PATCH AREA

There are two types of patch area taken from the space allocated at
assembly time:

1. That allocated by using PATCH

2. That allocated when answering the Patch Area
question in system generation

Patch area one is the place for permanent changes to the Resident
Monitor. It is always refreshed when the System Loader comes into
core, Patch area two is only refreshed on manual Bootstrap loads

and restarts. The second area would be appropriate for communication
between successive programs loaded by the System Loader. This area
should be used because the System Loader refreshes all of core, ex-
cept the Bootstrap, .SCOM, the CTRL X buffer, and the patch area two.

The combined size is limited by the current assembly at 47ﬂ¢8. Both
areas can be initialized, using PATCH. The important dividing line
between area one and area two is register 11 (.SCOM+1) of RESMON.
The way to allocate more space in part one is to increase the value
of register 1P1. The way to change the area in part two is to use
DOSGEN. The second part will start at the address in register 1g1.
The upper bound of the second area will be the sum of the contents
of register 1g1, and the number specified to DOSGEN.

2.8 CONTROL CHARACTERS

CTRL C, P, R, S, and T are all special characters that interrupt the
current program and transfer control. The Resident Monitor ignores
CTRL R except after IOPS 4 and any call to the Expanded Errcr
Processor. CTRL S always transfers control to the address in .SCOM+6.
In the case of core-image system programs and EXECUTE, a CTRL S will
transfer to register zero, and result in an IOPS 3. The Linking
Loader places the starting address of the first load module into

. SCOM+6.

A .INIT macro to the teleprinter handler will change the address of
either CTRL C, P or T. The Resident Monitor is always initialized to

2-14

perform a .EXIT after CTRL C, and ignore CTRL P and T. DDT uses

CTRL T, and CTRL P is ordinarily used by programs for restarts.
MACRO-15 expands .INIT to change the CTRL P address. If the programmer
expands .INIT without the aid of the assembler, a 1§ in bits zero and
one of LOC+2 will change the address of CTRL T. A @1 in those bits
will change the address of CTRL C. It should be obvious that special
care should be taken with CTRL C. In addition, modifications to the
CTRL T address should not be made when debugging with DDT. There are
cases, however, when such modifications are desirable. 1In particular,
all zeroes in LOC+2 (2-17) will cause the teleprinter handler to ignore
CTRL C, P, or T. This address might be used when éensitive code is
being executed, as in DOSGEN. The following .INIT expansion will
cause the Resident Monitor to ignore CTRL C:

CAL-2&777
1

2099089

CHAPTER 3

THE NONRESIDENT MONITOR

3.1 INTRODUCTION

The System Loader brings the Nonresident Monitor into core after a
hardware readin, a manual restart, a CTRL C, or a .EXIT. The RCOM
Table, SGNBLK, SYSBLK and COMBLK are always coresident with the Non-
resident Monitor. This gives the Nonresident Monitor access to all

important system parameters.

The Nonresident Monitor announces its presence by typing DOS-15 VNA
on the teleprinter. It remains in core until the operator requests
another system program, or until the operator's command implies a

refreshed configuration of the Resident Monitor is necessary.

The Nonresident Monitor's actions are limited to (1) decoding commands,
(2) manipulating or examining bits and registers in .SCOM, .DAT, .UFDT,
SYSBLK, COMBLK, and SGNBLK, and (3) calling the System Loader, when
necessary. The Nonresident Monitor has only one entry, which starts
an initialization section. Figure 3-1, Nonresident Monitor Initial-
ization, describes that logic. Every time the System Loader brings

in the Nonresident Monitor, it passes control to the initialization
section. After initialization, and after all commands that do not
require the System Loader, the Nonresident Monitor types a $, and
awaits an input line, terminated by a Carriage RETURN or an ALT MODE.
It then examines the first six characters (or those up to the first
blank) and tries to find an entry in the Nonresident Monitor's Command
Table. If a match is found, control passes to the appropriate routine,
and thence to the next command, or the System Loader. If the typed
command does not correspond to an entry in the command table, the
Nonresident Monitor temporarily assumes the operator wishes a new
core-image system program, and checks COMBLK for a corresponding entry.
If there is NO corresponding entry in COMBLK, the Nonresident Monitor
will type an error message, and await the next command. If COMBLK
contains a matching entry, the Nonresident Monitor composes a .OVRLA,
and passes control to the System Loader via that .OVRLA.

START

1.
2.
3.

5.
6.
7.

Bank bit initialize pointers to SYSBLK, COMBLK and SGNBLK

Determine the number of positive .DAT slots

Save the contents of .DAT-12, in case the user desires LP ON
(restore before leaving Nonresident Monitor)

Save contents of ,SCOM+7 -- Nonresident Monitor will use

.SCOM+7 for address of LPA. or TTA.

Change all ,UFDT entries that equal BNK or PAG to SYS

Compute addresses of ,DAT-2,+1,+5 and +6

Compute address of beginning of I/0 Device Table in SGNBLK

Returning
rom a Nonresident
onitor .EXIT

Restore ,UFDT and
.DAT to SGEN values

Initialize .DAT=-2 and
+DAT=3

Returning
from a Nonresident
Monitor (EXIT

In

< 0SS Mode
N

Type out Nonresi-
dent Monitor's name

lRequest a datel

v
(next page)

Nonresident Monitor Initialization
Figure 3-1
3-2

(from preceding page)

Clear bit 1 of .SCOM+42
{Nonresident Monitor
LEXIT flag)

Need to
load BOSS

Read command
string

(Continue to Command Decoder)

Nonresident Monitor Initialization
(continued)

Figure 3-1 (Cont.)

3.2 COMMANDS TO THE NONRESIDENT MONITOR

This paragraph discusses legal commands listed in the Nonresident
Monitor's Command Table. Table 3-I, Effects and Exits for Nonresident
Monitor Commands, describes all commands that do not request a new
program.

There are five entries in the Command Table that load relocatable
system programs. They are DDT, EXECUTE, GLOAD and LOAD. The Non-
resident Monitor treats these commands separately, because SYSBLK
does not list them. All information necessary for loading these pro-

grams resides in the Nonresident Monitor itself.
3.3 CONSIDERATIONS FOR ADDITIONS TO THE NONRESIDENT MONITOR

Programmers should not attempt to add commands to the Nonresident
Monitor unless they have access to a copy of the source code. The
source code may be purchased from Digital Eguipment Corporation,

146 Main Street, Maynard, Massachusetts, under one of the order num-
bers listed in the footnote. They should then use the EDITOR program

to put in the indicated changes, and reassemble.

New additions to the Nonresident Monitor require the following actions:

1. Update the Nonresident Monitor's Command Table.

The Command Table is in two parts:
a) The .SIXBT names of the commands

b) The corresponding transfer vector

2. Write the code for the command.
3. Consider the kind of exit the command will take:

a) Commands that end with a request for a new
command should end with JMP KLCOM

b) Commands that re-configure the Nonresident
Monitor should end with JMP NRMEX1.

DECtape DEC-15-SRDA-ULl
Magtape Unavailable

Table 3-I

Effects and Exits

for Nonresident Monitor Commands*

COMMAND MODIFIER ACTION TAKEN EXIT
API ON Set bit @ of .SCOM+4. LEXIT
OFF Clear bit @ of .SCOM+4. .EXIT

ASSIGN handler Check whether handler is available. Next
If yes, load .DAT slot with proper Command
handler code. (The proper loader
will load the handler, and insert
its starting address into the .DAT
slot.

(and/or)
UIC Load proper slot via a .USER Next
Command
BANK ON Set bit 11 of .SCOM+4. Next
OFF Clear bit 11 of .SCOM+4. Command
BATCH PR Set bit @ and clear bit 2 in loca- LEXIT
tion 1777 of the Bootstrap's bank.
If bit 2 of .SCOM+33 is set (i.e.,
if VT is ON) and bit 17 of .SCOM+33
is set (i.e., CTRL X is set for VT),
set bit 1 of .SCOM+33 in order to
tell the Resident Monitor Initializa-
tion to start up CTRL X.
CD Set bits @ and 2 of location 1777 of .EXIT
the Bootstrap's bank, and set bit 1
of .SCOM+33 as with BATCH PR.

BUFFS number Put number indicated into .SCOM+26, Next
and set Nonresident Monitor Initial- Command
ization to leave .SCOM+26 alone.

CHANNEL 7 Clear bit 13 of .SCOM+4. Next

9 Set bit 13 of .SCOM+4 Command

DATE date Enter date into .SCOM+47. Next

no date Print date from .SCOM+47. Command

* This table assumes error-free input.

Table 3-I (cont.)

Effects and Exits
for Nonresident Monitor Commands

COMMAND MODIFIER ACTION TAKEN EXIT

GET Set Section 3.4.

GETP

GETS

GETT

HALF ON Set bit @ of .SCOM+33. -EXIT

OFF Clear bits @ and 1 of .SCOM+33. <EXIT

HALT If not in BOSS-15 mode, put a HLT Next
instruction (instead of a JMP) into Command
the exit from non-IOPS 4 errors to
.MED. If in BOSS mode, do nothing.

INSTRUCT none Print INSALL Table. Next

ERRORS Print INSERR Table. Command

KEEP ON Set bit 16 of .SCOM+42. Next

OFF Clear bit 16 of .SCOM+42. Initial- Command
ize to SGEN default values all en-
tries in .DAT and .UFDT, except
change SCR default values to current
UIC.

LOG Output five spaces after Carriage Next Com-
RETURNs. After ALT MODE, go to mand (after
next command. ALT MODE)

LOGIN uic Redefine current UIC (.SCOM+41). .EXIT
Clear bit @ of .SCOM+42, reset vari-
able system parameters to SGEN de-
fault values zero .SCOM+56.

LOGOoUT Set current UIC to SCR. Set .UFDT .EXIT
entries to SGEN default parameters.

Deposit zero into .SCOM+42 and 56.

LOGW For BOSS-15, print message. 1In all Next Com-
cases, after a Carriage RETURN, out- mand (after
put five spaces. After ALT MODE, ALT MODE)

type four bells +P, and await CTRL P.
After CTRL P, go to next command.

Table 3-I (cont.)

Effects and Exits

for Nonresident Monitor Commands

COMMAND MODIFIER ACTION TAKEN EXIT
LP ON Set bit 3 of .SCOM+42. LEXIT
OFF Clear bit 3 of .SCOM+42, <EXIT
MICLOG mic Check key with SGNBLK. If correct, Next
set bit @ of .SCOM+42, make "SYS" Command
the current UIC, and zero .SCOM+56.
If incorrect, ignore command.
PAGE ON Clear bit 11 of .SCOM+4. Next
OFF Set bit 11 of .SCOM+4. Command
PROTECT n If n is between ¢ and 7, inclusive, Next
enter it into .SCOM+54. Command
PUT See Section 3.4.
QDUMP Enter MANSAV, the address of the Next
manual CTRL Q, into the exit from
non-I0PS 4 errors to .MED.
REQUEST none Print the current assignments for Next
.DAT and .UFDT. Command
USER Print the current assignments for
all positive .DAT and .UFDT slots.
prog Print required .DAT and .UFDT slots,
and the assignments and use for each.
.SCOM Print the information for the cur- Next
rent system. Command
TIME time Enter time into .SCOM+54. Next
none Print time from .SCOM+5{. Command
vT ON Set bit 2 of .SCOM+33. LEXIT
OFF Clear bits 1, 2, and 17 of .SCOM+33.
Execute 7§3044.
X4K ON Enter 4000Q0@ into .SCOM+2§. Next
OFF Deposit zero into .SCOM+2f. Command
33TTY ON Clear bit 2 of .SCOM+4. .EXIT
OFF Set bit 2 of .SCOM+4.

4. After assembly, the programmer must call PATCH, in
order to make his relocatable binary program absolute.
Commands to PATCH should be as follows:

>DOS15)
>READR 16877 DOSNRM BIN)

16977 indicates the highest location the new monitor
can occupy. (SYSBLK begins at 161@@.) DOSNRM BIN
happens to be the file name used by program develop-
ment. The programmer may, of course, substitute his
own file name. More information may be found in the
PATCH manual -- DEC-15-YWZB-DN5.

3.4 QFILE

QFILE is a system program that allows users to (1) store core images
in named files, and (2) retrieve such core images for examination via
DUMP (or possibly for a slow, core-swapping capability). QFILE imple-
ments the following Resident Monitor system macros and Nonresident

Monitor commands:
.GET, GET, GETP, GETS, GETT, .PUT and PUT

Users can not obtain QFILE by typing its name to the Nonresident
Monitor. The Resident Monitor will load QFILE as part of its response

to the commands and macros listed above.

PUT creates a file that contains the data in the CTRL QAREA; .PUT
creates a file from the current core image. GET, GETP, GETS, GETT

and .GET all overlay core with the contents of the QAREA or file. (The
different commands specify different startup locations.) 1In addition
to the above capabilities, the Resident Monitor provides the capability
of overlaying core with the contents of the CTRL Q area. The follow-

ing instructions show how to use that routine:

UNITNO=4§90300 ' /UNIT FOUR

.SCOM=1g0

LAC START /STARTING ADDRESS AFTER THE CTRL Q
/GET

XOR UNITNO /UNIT NUMBER IN HIGH-ORDER THREE BITS

JMP* (.SCOM+64 /ADDRESS OF CTRL Q GET ROUTINE

3-8

Figure 3-2, QFILE, and Implementation of GET and PUT Logic, shows

the information flow associated with QFILE. QFILE uses the follow-
ing registers:

.SCOM+7,10 & 11 .SIXBT Filename and Extension
.SCOM+65 Command parameters, packed as follows:
Bits @-2 Device unit number
Bit 8 NRM PUT, when set
Bit 9 PUT logic, when set
Bits 15-17 Function Code
.SCOM+66-71 CTRL Q Area parameters

.DAT-14 File must be on the device assigned

to this .DAT slot.

NOTE

All GET and .GET operations change all
of core, except registers @ through 4
of bank zero.

3-9

.PUT CAL

Nonresident

Monitor PUT

1. Store unit number and l. Store unit number an
Store unit number and code into function code into function code into
+ SCOM+65 «SCOM+65 «SCOM+65
2. Set bit 9 of .SCOM+65 2. Set bits 8 and 9 of
to indicate ,PUT .SCOM+65 to indicate
NRM PUT
>——< '
N
.PUT
Y
I Dump core into CTRL Q area
L
i
Bring in QFILE via a .OVRLA|
GEmm PUT
1. Save ,SCOM+65 from the file Transfer core image from CTRL Q area
2., Transfer core image file to to named file via Monitor TRAN's and
CTRL Q area via dump mode dump mode .WRITE's
.READ's and Monitor TRAN's.,
Y NRM
GET PUT
N function Exit to
code=4 Nonresident N
Monitor
Use function code from file's ,SCOM+65 Do Monitor TRAN from
N CTRL Q area to core
1. Store correct startup address
2. Do Monitor TRAN from CTRL Q Exit to
area to core CAL+3

Exit to

proper
location

Note:

This chart assumes error free input.

QFILE, and Implementation of GET and PUT Logic

Figure 3-2

CHAPTER 4

THE SYSTEM LOADER AND THE LINKING LOADER

The System Loader is the third major vart of the DOS-15 Monitor. The
other two are the Resident and Nonresident parts. The Resident and
Nonresident Monitors communicate with the System Loader by manipulat-
ing certain .SCOM registers. When commands to either part imply a
new configuration is needed, that part sets up the appropriate .SCOM
registers, and passes control to the System Bootstrap via the Monitor
TRAN routine. The Bootstrap then loads the System Loader into high

core, and gives it control.

The System Loader examines the .SCOM registers, and loads a fresh copy
of the Resident Monitor, including any features that the user wishes
to be resident, such as the CTRL X feature. It will also load the
desired system program and all handlers required by the new configura-
tion. In addition, it will allocate all required buffers. The Non-

resident Monitor is treated like any other core-image system program.

The System Loader never loads user programs. It only loads core-image
system programs, the Linking Loader and Execute. The latter two load

user programs,

The System Loader uses two device handlers to interface with the disk:

the System Bootstrap, and the System Loader Disk Handler (DKL.). DKL.
arrives in core along with SYSBLK, COMBLK and SGNBLK, as well as the
loader itself. The Bootstrap locads core image programs only. The DKL.
takes care of relocatable programs and any handlers loaded by the

System Loader. Those include all handlers for core-image system programs,
the Linking Loader's own handlers, and any needed by the Execute file.

The Linking Loader loads scome handlers needed by user programs it links.

There are two parts to the System Loader: the System Loader Interface,
and the System Loader proper (.SYSLD). Figure 4-1 describes the System
Loader Interface. Figure 4-2 describes the System Loader Proper, and

Figure 4-3 describes the Linking Loader.

Bootstrap
Loads

Turn on the clock
Initialize
+«SCOM+P First free reg-
ister below the
Bootstrap
+SCOM+4 SGEN default
.SCOM+2@ Bit zero set, if
extra 4K; rest
zero
.SCOM+33 VT & HALF, as
per SGEN
+SCOM+74 Line frequency
| =Move to highest bank

Normal
Initializ-

ati
1, Zero .SCOM+36, to indicate no entries in the Mass Storage
Busy Table
2. Move Resident Monitor into lower core
3. Set up: Jump to Skip Chain

CAL* error
Legal CAL jump
4, Turn API on or off, depending on bit @ of .SCOM+4 (set=on)
5. Bank bit initialize Resident Monitor to talk to the
Bootstrap, and load .SYSLD into the proper bank upon a
subsequent .EXIT or ,OVRLA.
6. 1Initialize the Bootstrap with the proper IOPS 4 address for
disk not ready
7. Calculate the Skip Chain from SGNBLK
8, Set all API channel registers to point to IOPS 3 (with the
exception of the clock interrupt) and all software levels
. to point to IOPS 38
9. Put transfer vector to .DAT slots into ,SCOM+23
14. Put number of positive ,DAT slots into ,SCOM+24
11. Put pointer to .UFDT+# into ,SCOM+25

N ‘/,last.program Y
\L Nonresident \L
onitor
.TRAN image of ,DAT ‘\\\41\\\////////, .TRAN image .of .DAT
and ,UFDT in from and .UFDT out to
block 37 of the sys=- block 37 of the sys-
tem device, unit @ tem device, unit @
l Ny <
VIS

l., Zero ,DAT-7 (i.e., not yet set up)
2. Set up .DAT-2 and .DAT-3 for TTA.
3. Update .SCOM+1l and +2 to point
just above the Skip Chain, .DAT
and ,UFDT

Next Page
System Loader Initialization

Figure 4-1

4-2

From Preceding Page

Loading
Nonresident

Monitor

Set up LPA in Set up TTA.
.DAT=12 in .DAT-12
i ~ <]

e T <

Put number of system device's "A" handler (DKA. or DPA.)
into .SCOM+57
Set up tabbing for current teleprinter
Set .SCOM+2@ to initial state (as in first time initialization)
Set up for CTRL Q ~=- ignore Q-dumps if RF system and QAREA too
small, or nonexistent
Set ‘'up for IOPS errors upon the following interrupts:
Nonexistent Memory (I0PS 31)
Memory Protect Violation (I0PS32)
Memory Parity Exror (IOPS33)
Power Fail Not Set Up (IOPS34)

Bit ¢
of the

Bootstrap
=1

Y -- Non-BOSS Batch

Set up for the
proper input
device (CD or PR)

Loading
Nonresident
Monitor

Set switch to ig=-
nore input until $JOB
>
Next Page
System Loader Initialization

Figure 4-1 (Cont.)
4-3

From Preceding Page

3.
4,
5.
6.

Set up CTRL C to clear the Ba
of the Bootstrap)

tch Switch (bit 1 of 17777

Set up CTRL T to abort current job, and start the Batch

Monitor looking for the next

Relocate proper batch handler
Put handler entry point into

Set IOPS errors to abort job

Set up all batch device ,DAT

ler currently in core. That

device is allowed at any one

Clear $JOB read switch (bit 1
Perform .INIT to ,DAT=-2

$JOB line

(PR or CD) to low core
. DAT- 2
-- effectively a CTRL T
slots to refer to the hand-
is, only one batch input
time

of Bootstrap 17777)

and 17 of

lear bits 14, 15

=

2+ SCOM+42

BOSS Mode

adin
Nonresident
BOSS

1.

Patch DOS

+SYSLD to
and +6

Relocate Resident BOSS
and link it to the DOS
Resident Monitor

itor to accomodate BOSS
Set bits 14, 15 and 17
of .SCOM+42, to tell

Resident Mon-

set up .DAT=7

code,

Relocate and
link CTRL X

proper buffer

and give

Set up linkages between
CTRL X code and the
Resident Monitor

S

7

Y
Next Page

System Loader

Initialization

Figure 4-1 (Cont.)
4-4

From Preceding Page

Loading
a relocatable

program

Allocate the number of buffers
indicated by .SCOM+26

Set up File Buffers Transfer
Vector Table pointer, in .SCOM+3#
Store one of the following codes
into .SCOM+6:

Will
EXECUTE
use system
device

Y

Tell .SYSLD by setting
.SCOM+11 to XCS (avoids
two handlers in core for

1. Allocate number of
buffers indicated

2. Set up File Buffers

Table in .SCOM+38

LOAD 1990098
GLOAD 399900 same device)
DDT LYl
DDTNS 5g2089 7y
4. Zero .SCOM+5
by .SCOM+26
;> <
o~ Transfer Vecter
3. set .SCOM+6 = f§
(Loading a Core-Image Program)
l. Find entry in SYSBLK and COMBLK

Build Overlay Table from information in COMBLK, and set .SCOM+31 to

first word in the table

Store the number of overlays in the overlay processor of the Resident

Monitor

ading™_
PIP or is PIP
among the
verlays

|Build the Device Table]

N
2.

1. Store the list of active .DAT slots de=-
rived from COMBLK in the System Loader
command area, just below the Bootstrap,
and delimit the list with a zero

2. If the Nonresident Monitor was not the
last program, restore .SCOM+26 to default

3. Allocate space for, and set up .SCOM+38

to point to the File Buffers Transfer
Vector Table

NextJbage

System Loader Initialization
Figure 4-1 (Cont.)

4-5

From Preceding Page

Loading
Nonresident
Monitor

Set bit 3 Clear bit 3
of .SCOM+4 of ,SCOM+4
| ~ <]
R
l. 2Zero .SCOM+6
2, Put 1

into .SCOM+5

l. Move the RCOM Table to position below
the Bootstrap

2, Build the IOC Table

Bring in
«SYSLD via
Monitor TRAN

System Loader Initialization

Figure 4-1 (Cont.)

Entry
from init-
ializatio

1.
2,
3.
4'

Set up for Page or Bank Mode

Set up .DAT-7 for the System Loader disk handler (DKA. or DPA.)

Clear free core, and initialize bank bits in pointers to the Bootstrap
Make a Mass Storage Busy Table consisting of one entry

Loading
EXECUTE

Set up CTRL P
address

+«SCOM+11
= JSIXBT
'XCs?

l. Change XCS to XCT

2. Allow reading of
EXECUTE file by the
System Loader Handler

N
7

Clear memory bank pointers of banks that
do not exist

Load handlers into extra 4k,
if it exists

"
~

Under
BOSS~-15
control

Put System Device's code into
.DAT+@, to allow subsequent
insertion into .DAT-7

Nexgw;age
The System Loader

Figure 4-2
4-7

From Preceding Page

IOPROS
.DAT+@,+6

>
e

Which
Program

core-
image

IOPROS: all
.DAT slots in
table just under,
Bootstrap

IOPROS
.DAT-1, -5

e

EXECUTE

N

IOPROS
.DAT=-4
N
”

y

eed t
load more
andler

adin
core-image
rogr

1.

5@ to .SIXBT
2, bo ,USER to .UFDT-7, using "IOS"
3‘

to get the handler file

Translate the handler code from radix

Do .INIT and .SEEK to .DAT-7, in order

4. Load handler via ,DAT-7, and close ,DAT=-7
<
<
Loading Y
Linking
ader
N (EXECUTE)
N
N == not ye

)

Read EXECUTE file
for desired handlers

TOPROS

Note: Subroutine IOPROS accepts
.DAT slots as input. If the in-
dicated ,DAT slot contains zero,

the slot is unassigned, and IOPROS
returns. If not zero, IOPROS checks
whether the desired handler has al-
ready been loaded. If the handler

.DAT slots from
EXECUTE file

[—

Set up Mass Storage Rusy
Table Entries for all
active .DAT slots

Set ,SCOM+1 to first free
location in core--often
becomes first location of
EXECUTE

is in core, IOPROS loads the .DAT
slot with the handler's starting ad-
dress and returns. If the handler has
not been loaded, the handler code is made
an unresolved ,GLOBL, to be satisfied
by the loop that follows immediately.
The System Loader

Figure 4-2 (Cont.)
4-8

next\ L'page

From Preceding Page

Load and relocate EXECUTE or the Linking
Loader, and place starting address into
+SCOM+5

ading
Linking
acer

1. Set up Mass Storage Busy table with
one entry per active .DAT slot

2., Move the IOC table from the System
Loader's area (just beneath the
Bootstrap) to the Linking Loader's
area

N,
7

Set ,SCOM+2 and +3 to delimit free core

BOSCK1

Exit to ad-
dress in
SCOM+5

Y

1. Allocate all necessary buffers

2. If the system has an extra 4K,
put the first free address beneath
the handlers into ,SCOM+2#

3. Update first free location in core
shown in .SCOM+2 -~- ,OVRLA updates
the first free address beneath the
Bootstrap, .SCOM+3

< BOSCK1 >
Exit via
.OVRLA

Note: Subroutine BOSCKl does the following, if loading a program under BOSS-15:
(1) .USER to .UFDT-7, (2) .SEEK to .DAT-7 for PRCFIL PRC.

The System Loader
Figure 4-2 (Cont.)
4-9

START

l.
2.
3.
4.

5.

Clear all of core above the loader, including the extra 4K, if present, and
excluding the Bootstrap

Initialize the Load Table with the first free address in every bank or page
Indicate all core below the address in .SCOM+2 as not free

Compute transfer vectors to ,DAT-1, -3, -4, -5, and ~7, and a pointer to
+UFDT=1

save the contents of ,UFDT-1

Load DDT and set the
symbol flag, if not
DDTNS

Ny <
e ~

Type appropriate
name, and await
command string

CTRL P
or no back
arrow

1‘
2.

Check for P, G and C switches

Translate all file names after left arrow into .SIXBT, pad with blanks,
and store in symbol table

After ALT MODE, load to end-of-file each file on .DAT-4, and put starting
address of the first file (i.e., not DDT) into .SCOM+6

After every end of tape, type 1P
and await CTRL P -- continue
until number of tapes equals the
number of commas, plus one

~,
~

v
Next Page

The Linking Loader
Figure 4—3f
4-10

From Preceding Page

5 |

z Y
Check Symbol Table for handlers
needed, and load them from ,DAT
-1, using IOS as a UIC; exit if
illegal .DAT slots are desired

Replace old UIC
for .UFDT-1

NOTE:

During the library searches
diagrammed on this page, the
Linking Loader tests for

Any .GLOBL's

\'4

resolved on
last pass

more unresolved .GLOBL's af-
ter each resolution., When-
ever there are no more unre-
solved .GLOBL's, the Linking Y
Loader halts its library
searches, and goes directly 4
to the COMMON area allocation Check Symbol Table for any
code (next to the last box unresolved .GLOBL's

on this page). Thus, the]
libraries are never searched
more than is necessary.

NON
assigned to
.DAT=5

l. Do .SEEK to LIBR5 BIN on ,DAT-5

2. Read through user's library and
load any program units that sat-
isfy any .GLOBL's

3. Read to end of library file, if
still unresolved .GLOBL's

If any unresolved .GLOBL's, try to
find program units in the system
library (.LIBR BIN) on ,DAT-1

/N

U

Scan Symbol Table for Common Blocks,
and allocate space and set pointers,
as needed. If any unresolved .GLOBL's
seek matches in the Common Blocks

Exit to the
Nonresident
Monitor

Print LOAD3 error
message

unresolved
GLOBL's

Next Page
The Linking Loader

Figure 4-3 (Cont.)
4-11

From Preceding Page

Need any
of the Loader's

Loader
Above all of

handlers

jts handler

Set .SCOM+2 just be-
low the Loader

L

Set .SCOM+2 above the
Loader's highest hand-

Set .SCOM+2 below all
of the Loader's hand-
lers, and the Loader

ler =-- no handler is itself
overlayed

~ <

> <

Allocate the Mass Storage Busy Table,
with the number of entries equal the

sum of the active .DAT slots, minus

one -- i.e., the two .DAT slots for

the teleprinter are omitted, and one for
+DAT-7 is added

GLOAD

Which

LOAD

program

ontrol goes
to address in
+ SCOM+6

Put lowest address of
the Symbol Table into
.SCOM+11, and the high=-

est into ,SCOM+2 ==
DDT will recalculate
- SCOM+2

ontrol goe
to address in
SCOM+5 (DDT)

The Linking Loader

Figure 4-3 (Cont.)

y

Await
CTRL S

4.1 MANUAL BOOTSTRAP LOADS AND RESTARTS

Manual Bootstrap loads and restarts bring blocks @§-36 of the system
device into the lowest bank. These blocks contains the Resident Moni-
tor, the System Loader Interface Routine, and SYSBLK, COMBLK and SGNBLK.
Figure 4-4 illustrates the core load after manual Bootstrap loads and
restarts. The Interface sets up .SCOM+@, 4, 2@, 27, 33, 54 and 74
from SGNBLK values determined at system generation time, and then
transfers the whole core image of the Interface to the Bootstrap's
bank. (DOS requires 16K, because this bank must be different from
bank f£.) At all other times, the Bootstrap loads the Syétem Loader
into its own bank. This preserves the image of .SCOM, part two of

the Resident Monitor patch aea, and the CTRL X buffer.

4.2 LOADING SYSTEM PROGRAMS

The System Loader Interface Routine gets control in the highest bank,
either by a transfer from the lowest bank, or by load from the Boot-
strap. After setting up for the System Loader Proper (.SYSLD), accord-
ing to the program to be loaded and the settings of certain SCOM regis-
ters, the Interface Routine brings it in as a complete overlay. Figure
4-5 illustrates the core configuration of the Interface when it is

in the highest bank. (The addresses provided are for a 16K system.)
The System Loader loads handlers from the lowest part of free core up,
with the exception that the extra 4K is filled first, if it exists.
Core image system programs are usually loaded just beneath the Bootstrap
(always in the highest bank). Such core images must be wholely within
the top bank of core, and above register 17 of that bank. Figure 4-6

illustrates the core maps for system programs.

Whenever the Linking Loader is loaded (LOAD, GLOAD, DDT, and DDTNS),
the System Loader loads all handlers for .DAT slots -1, -4, and -5,

and then loads the Linking Loader itself. (DDT is loaded by the
Linking Loader.) Figure 4-7 illustrates the core maps for the Linking
Loader.

For EXECUTE, the System Loader loads EXECUTE's handler, and reads the
EXECUTE file, in order to determine the active .DAT slots. The System
Loader then loads all the handlers required, and sets up the .DAT
slots. Figure 4-8 illustrates core maps for EXECUTE.

16K, 24K, 32K
BOOTSTRAP
.SCOM
UNUSED
17500
3SYSTEM BLOCKS
16100
SYSTEM LOADER INTERFACE
RESIDENT MONITOR
100
15-0663

Figure 4-4
Bootstrap Load

16K, 24K, 32K
BOOTSTRAP
.SCOM
SYSTEM PROGRAM
{THIS AREA IS USED BY CORE
IMAGES, SOME ROOM UNDERNEATH
THE BOOTSTRAP MAY BE LEFT
FREE FOR COMMUNICATION
BETWEEN CORE IMAGES IN AN
OVERLAY STRUCTURE.
CORE IMAGES MUST BE 8K OR
LESS.)
SCOM+3
FREE CORE
SCOM+2
HANDLERS, BUFFERS
BUFFER POOL
TRANSFER VECTORS
OVERLAY TABLE
DEVICE TABLE
SCOM+1
RESIDENT MONITOR
15-0661

Figure 4-6

System
Program Load

BOOTSTRAP

DDT, IF PRESENT

LOADED PROGRAMS

ON DDT LOADS, SYMBOLS
ARE MOVED INTO THE
LOWEST PART OF FREE CORE.

SYMBOL TABLE

SYMBOLS AND PROGRAMS BUILD
TOWARD EACH OTHER,

LINKING LOADER*

LOADER HANDLERS

BUFFER POOL

BUFFER POOL
TRANSFER VECTORS

RESIDENT MONITOR

*Placement of .SCOM+2 depends on relative
positions of the Linking Loader and its handiers.

When control is transferrad to loaded program,
SCOM+2 and +3 bracket free core.

Figure 4-7

Linking Loader

16K, 24K, 32K

SCOM .SCOM+3 *

Scom+2+

SCOM+1

15-0660

BOOTSTRAP

.RCOM TABLE

SGNBLK

SYS3LK and COMBLK

SYSTEM LOADER INTERFACE

{overlayed by SYSLD)

RESIDENT MONITOR IMAGE

RESIDENT MONITOR

* As the Interface moves code down, it incre-
ments SCOM«1 and +2.

Figure 4-5

Standard
Interface Load
BOOTSTRAP

OVERLAY SYSTEM
BLANK COMMON

FREE CORE

EXECUTE

ALL HANDLERS REQUIRED

BUFFER POOL

BUFFER POOL
TRANSFER VECTORS

RESIDENT MONITOR

Figure 4-8

Execute

16K, 24K, 32K

scom

37500 (16K}

37100 (16K)

36100 (18K)

20100 (16K)

SCOM+1.2 "

15-0664

16K, 24K, 32K

.SCOM

.SCOM+3

.SCOM+2

.SCOM+1

15- 0662

BOSS-15 Mode operation requires the system "A" handler be assigned to
.DAT-7. This requires a sleight of hand on the part of the System
Loader, which needs the "L" handler on .DAT-7. It therefore loads
the "A" handler as if it were assigned to .DAT+f@, and transfers the
set up .DAT slot @ contents to .DAT-7 before transferring control to
the program being loaded. .DAT+# is then restored to its original
status. ‘

4.4 TABLES AND INFORMATION BLOCKS USED AND BUILT BY LOADERS

The System Loader uses SYSBLK, COMBLK, SGNBLK, block 37 of the system
device, .SCOM, the RCOM Table, the IOC Table, the Device Table, the

Mass Storage Busy Table, the File Buffers Transfer Vector Table, the
Overlay Table, .DAT, .UFDT and three bits in the Bootstrap. Tables

4-I, 4-II and 4-III describe how the Loaders use these blocks and tables.

4,5 .DAT SLOT MANIPULATION BY THE SYSTEM LOADER

The System Loader maintains the .DAT slot device handler assignments
as they were the last time the Nonresident Monitor was in core. The
Loader saves the .DAT and .UFDT on the system device whenever the
Nonresident Monitor was the last program in core. Thereafter, the
Loader refreshes .DAT and .UFDT from the image on the disk. If KEEP
is off, the Nonresident Monitor's initialization routine restores the
.DAT and .UFDT to default values.

When loading core-image system programs, the System Loader determines
the active .DAT slots by examining COMBLK. When loading EXECUT, the
System Loader sets up .DAT-4, and any active slots indicated by the
Execute file itself. When loading the Linking Loader, the System
Loader sets up .DAT-1, -4, and -5. The Linking Loader will set up other
other active .DAT slots according to the .IODEV commands in the as-
sembly of the program units being loaded.

Both the System Loader and the Linking Loader set up .DAT slots in
this manner: (In the following procedure, "loader" refers to either

one.)

4-15

Table 4-I

Tables and Block$

Used by the Loadefs

NAME USE LOCATION
SYSBLK The System Loader obtains Monitor TRAN 16509 of
parameters from SYSBLK when it builds .SYSLD's bank
COMBLK Indicates number of buffers required, 1718@ down, in
the active .DAT slots, and the names .SYSLD's bank
SGNBLK Default settings for .SCOM registers, 1619¢ of
number of words per buffer, size of .SYSLD's bank
Resident Monitor's patch area (part
two), Skip Chain, .DAT and .UFDT de-
fault contents, and handler informa-
tion.
Block 37 Image of .DAT and .UFDT, when last pro-
of the Sys- gram was loaded (excluding the Nonresi-

tem Device

dent Monitor).

.SCOM Table See Table 4-II. 199 of 1st bank
RCOM Table Moved for use by the Nonresident Monitor.|175@3 of the
highest bank
IOC Table Built by Interface Routine for .SYSLD Just beneath
itself. the System
Loader
Device Built by Interface Routine if loading Just above
Table PIP, or if PIP is among the overlays . SCOM+1
listed in COMBLK
Mass Storage Built by the System Loader itself. Pointed to by
Busy Table .SCOM+62
File Buffers Allocated by thé Interface Routine, and Pointed to by
Transfer Vec~- | initialized by it for non-core Image .SCOM+3¢
tor Table programs. System Loader proper initial-
izes for core-image programs.
Overlay Built by the Interface Routine Pointed to by
Table .SCOM+31
. DAT Image stored and restored from block 37 Pointed to by
and of the System Device. The System Loader |.SCOM+23 and
.UFDT loads all handlers for core-image pro- .SCOM+25
grams and EXECUTE Files, and sets up
the appropriate .DAT slots. The System
Loader also loads handlers assigned to
.DAT-1, -4, and -5 when loading the
Linking Loader, and .DAT-7 and +6 for
BOSS-15.
BOOTSTRAP Bits @, 1, and 2 of location 17777 in

the Bootstrap's bank used for Batch (non-
BOSS) information.

4-16

Table 4-1II

.SCOM REGISTERS USED BY THE SYSTEM LOADER

. SCOM+

Description of Use by the System Loader

Set in first-time initialization routine. Used to locate
the System Loader Command Area, which is just below the
Bootstrap.

System Loader Interface routine updates this indication
of the first free register above the Resident Monitor
each time it moves a piece down to low core.

The Interface and .SYSLD itself continually update this
indication of the first free location as they move code
and build tables.

Updated as with .SCOM+2. Last free location in core.

First Time Initialization routine sets this register ac-
cording to a SGNBLK parameter.

Refer to Table 4-I1II.

Interface Routine stores code of program to be loaded
into .SCOM+5. .SYSLD uses .SCOM+5 for starting address
when loading EXECUT or LOAD. The .OVRLA routine loads
.SCOM+5 with starting address of the Monitor Recovery
Routine. The Bootstrap transfers to the address in
.SCOM+5 after all its operations.

Interface Routine stores codes for DDT, DDTNS, LOAD and
GLOAD into .SCOM+6. For other programs, the Interface
Routine zeroes .SCOM+6.

.SYSLD saves contents of .DAT-1 in .SCOM+7, when loading
the Linking Loader. When loading EXECUT, .SCOM+7 con-
tains the first three characters of the Execute file's
name. Contains .DAT-12 when loading Nonresident Monitor.

19

.SYSLD saves contents of .DAT-4 in SCOM+1f@, when loading
the Linking Loader. When loading EXECUT, .SCOM+1@ con-
tains the second three characters of the Execute file's
name.)

11

.SYSLD saves contents of .DAT-5 in .SCOM+11, when locading
the Linking Loader. When loading EXECUT, .SCOM+ll con-
tains the extension of the Execute file's name. (The
Interface routine sets .SCOM+11 to XCS, telling .SYSLD
that EXECUT will be using the system device. .SYSLD

then restores .SCOM+1l to XCT.)

12-
15

The Interface routine initializes these transfer vectors
for API software levels to point to SERR, an error routine
that will produce an IOPS34.

16,
17

Unaffected.

4-17

Table 4-1II (Cont'd)

. SCOM+ Description of Use by the System Loader

20 Bit zero set in first time initialization, if system con-
tains an extra 4K. If the system does contain an extra
4K, the System Loader will load handlers in that page --
from the bottom up -- when loading a core-image program.
Whenever there is an extra 4K, the System Loader will
update bits 3-17 with the address of the first free cell
in the extra 4K.

21 Unaffected.

22 Unaffected.

23 The Interface Routine refreshes this pointer to .DAT.
24 The Interface Routine refreshes this indication of the

number of positive .DAT slots.

25 The Interface Routine refreshes this pointer to .UFDT+f.

26 When the Nonresident Monitor was the last program, the
System Loader allocates the number of buffers indicated
by the contents of .SCOM+26. 1If the Nonresident Monitor
was not the last program, the System Loader restores
.SCOM+26 to the default value if program to be loaded is
core image. Otherwise, untouched.

27 The first time initialization routine sets this indica-
tion of the number of words per file buffer.

39 The Initialization Routine loads this pointer to the
File Buffer Transfer Vector Table,.

31 When loading a core-image program, the Interface Routine
loads .SCOM+31 with the pointer to the Overlay Table, or
with zero, if there is none.

32 Unaffected.

33 See Interface Routine table, to determine how that routine
reacts to the bits in .SCOM+33.

34, 35| Unaffected.

36 System Loader loads with the number of active .DAT slots
assigned to the system device.

37-42 Unaffected.

43, 44| Contains name of the program to be loaded.

45-56 Unaffected.

57 System Loader loads with the number of entries in the
Mass Storage Busy Table.

6@, 61| Unaffected.

62 System Loader loads with the address of the first entry
in the Mass Storage Busy Table.

63~ Unaffected.

Table 4-I1IT

Use of .SCOM+4 by the System Loader

Bit
0 If set, place "API ON" constant into @g@@ggge .
If clear, place "API OFF" constant in same register.
1 Ignored.
2 If set, change the Resident Monitor so it will tab
with the KSR 35/37 tabbing mechanism.
3 Loader will set this bit, if loading the Nonresident
Monitor; clear it otherwise.
4-6 Ignored.
7 Loader sets this bit if bit 11 is cleared, and load-
ing the Linking Loader or Execute. Otherwise clear.
8 Sets or clears, after comparing current core size
(known by location of Bootstrap, and status of bit 4,
.SCOM+2f@) with SGNBLK parameter. Also, modifies
Resident Monitor to give IOPS77 after attempts to use
CTRL Q.
9, 10 Ignored
11 Indicates whether to clear or set bit 7, when loading
Linking Loader or Execute.
12-17 Ignored

1. Each .DAT slot will contain a handler number -- either the
system default, or one inserted via an ASSIGN command to
the Nonresident Monitor. This handler number is the rela-
tive location of the handler name in the IOC Table, which
the Interface Routine builds. (The IOC Table contains
handler names in Radix 5§.)

2. For each active .DAT slot, the loader uses the handler
number in that slot to find the name in the IOC table, and
converts the name to .SIXBT.

3. If the handler is already in core, the loader simply inserts
the starting address of the handler into the .DAT slot.

4. If the handler is not yet in core, the loader does a .SEEK
to IOS for the handler, reads it into core, relocates it,
and places the starting address of the handler into the
.DAT slot.

i

The System Loader always sets up .DAT-2 and -3. (It reserves .DAT-7
for its own use.) When not in non-BOSS B%tch Mode, -2 is assigned
to TTA. In non-BOSS Batch Mode, the batch input device goes to -2.
If loading the Nonresident Monitor and bi# three of .SCOM+42 is set,

the System Loader will set up .DAT-12 for?the LPA, if it is in the
system, or else for TTA. If in BOSS modeg the Nonresident Monitor
assigns LPA. to .DAT+6, and the System Loéder assigns .DAT-7 to the
system device "A" handler. The System Loéder then ensures that both
handlers are in core. The Resident BOSS set up routine subsequently
routes all .DAT slots connected to TTA. to Resident BOSS.

4.6 BUFFER ALLOCATION BY THE SYSTEM LOADER

The System Loader allocates space for buffers equal to the contents
of .SCOM+26 times the contents of .SCOM+27. The first time initial-
ization routine sets .SCOM+27 to the standard number of locations per
buffer. Before the Nonresident Monitor does an .OVRLA to a software
system program, it checks whether a BUFFSjcommand has been issued,

If so, it leaves .SCOM+26 as is. If not,jit uses the default number

of buffers for that program, as shown in SYSBLK.

CHAPTER 5

SYSTEM INFORMATION BLOCKS AND TABLES

5.1 CORE-RESIDENT NON-REFRESHED REGISTERS

The .SCOM table, the Bootstrap and the resident Patch Area are the
only registers not refreshed by the System Loader. Table 5-I de-
scribes the .SCOM Table.

5.2 DISK-RESIDENT UNCHANGING BLOCKS: SYSBLK, COMBLK AND SGNBLK

SYSBLK, COMBLK and SGNBLK occupy blocks;34, 35, and 36 (octal) on the
system device (unit zero). SYSBLK and COMBLK (blocks 34 and 35) contain
the parameters for loading all core image system programs. SGNBLK con-
tains all the other information needed go run DOS. All three arrive

in core along with the Resident Monitorland the System Loader Inter-
face, and start at location 161@@ of thé highest bank. The Nonresident
Monitor and System Loader use them, and bOSGEN and PATCH modify them,
when necessary. i

5.2.1 SYSBLK

SYSBLK contains the parameters required for implementation of .OVRLA

to any system program, or any of the system program overlays.

The order of entries in SYSBLK is unimportant, except for the first
three permanent entries: RESMON, .SYSLD, and 4QAREA. The first word
of SYSBLK contains the block address (the unrelocated address) of the
first free word after itself. Figure 5-1 describes SYSBLK.

5.2.2 COMBLK

COMBLK contains information the System Loader and the Nonresident
Monitor need to remember about the current core-image system programs.
The last location in COMBLK (that is, location 377 of block 35) con-
tains the block address of the first entry in COMBLK. The remainder
of COMBLK consists of variable-length entries associated with the
system programs. The Nonresident Monitor searches COMBLK when it
finds no match for a typed command in its own Command Table. Figure

5-1 illustrates the organization of COMBLK. The System Generator adds

5-1

TABLE 5-1I

.SCOM Registers

l

REGISTER BIT MEANING
@ First register below the Bootstrap (set by the
System Loader Interface)
1 First register above the Resident Monitor (set by
the System Loader Interface)
2 Lowest free register available for storage (set
by the System Loader or the Linking Loader)
3 Highest free register available for storage (set
by the System Loader, the Linking Loader or DDT)
4 Initialized from SGNBLK values by the "first time"
section of the System Loader Interface Routine,
and by the LOGIN, LOGOUT and MICLOG logic of the
Nonresident Monitor; modified by the Nonresident
Monitor, unless otherwise indicated.
@ = API is available.
1l = EAE is available (always set)
2 = Teleprinter is Model 35 or 37
3 = Nonresident Monitor is in core
4,5 Reserved
6 = 9-Channel Magnetic Tape System
7 = Page Mode Operation
8 = QAREA inadequate for current core size (set by
the System Loader Interface Routine)
9 = DOS disk file structure (always set)
19 = RBJ9 disk is system device.
11 = Bank Mode System
12,13 Line Printer Line Size:
29 No Line Printer
gL 8@ Characters
19 129 Characters
11 132 Characters
14 = Background/Foreground System (always clear)
15- 17 Drum size (ignored -- DOS does not support drum)

|
TABLE 5-1 (Co%t'd)

|
REGISTER

BIT MEANING
5 Core Image System Program starting address.
6 g =1 DDT in core.
1 =1 GLOAD
2 =1 DDTNS
3-17 User program starting address.
7-11 When using the Linking Loader, .SCOM+7, 10 and 11
contain the handler numbers for handlers needed by
@he Linking Loader in .DAT -1, -4, and -5 respect-
ively.
When using EXECUTE, 7-11 contain the .SIXBT repre-
sentation of the name and extension of the Execute
File.
When using QFILE (for implementation of .GET, .PUT
and the Nonresident Monitor GET and PUT commands),
7-11 contain the .SIXBT representation of the name
and extension of the core image file.
12 API Level 4 service routine entry point
13 API Level 5 "
14 API Level 6 "
15 API Level 7 "
16 Program Counter on Keyboard Interrupts.
17 AC on Keyboard Interrupts.
29 g =1 2@K or 28K system.
3-17 First free address in top page.
21 Magtape Status Register.
22 Reserved for Magtape Handler.
23 Pointer to .DAT+ﬂ.
24 Number of positive .DAT slots.
25 Pointer to .UFDT+{.
26 Number of buffers.
27 Number of wofds per buffer.
30 Pointer to Buffer Transfer Vector Table.

TABLE 5-I (Cont'Qd)

REGISTERS BIT MEANING
31 Pointer to first entry in the Overlay Table (zero,
if none).
32 Bad block number on IOPS 2¢ and 72.
33 CTRL X status register.
g=1 HALF ON
1 =1 Display Buffer already set up.
2 =1 VT ON
17 =1 If VT ON, display mode is on.
34 If in BOSS mode, elapsed time in seconds.
35 Instruction to clear TT Busy Switch.
36 Number of Entries in the Mass Storage Busy Table.
37 Entry point for Expanded Error Processor.
40 JMP to Expanded Error Processor.
41 The logged-in UIC.
42 Bit Register.
g=1 MICLOG successful.
1 =1 .EXIT from Nonresident Monitor.
2 =1 .OVRLA from Nonresident Monitor.
3 =1 LP ON -- LPA to .DAT-12 when loading Nonresident
Monitor.
4 =1 Dump core on calls to .MED (except IOPS 4).
5=1 Halt on calls to .MED (except IOPS 4).
6-13 Unused.
14 = 1 Set up .DAT+6 (used by BOSS Mode).
15 =1 Load System Device Handler into .DAT-7.
16 = 1 KEEP'ON.
17 = 1 BOSS Mode.
43,44 .SIXBT Representation of the name of the core
image system program to be loaded (if any).
45,46 .SIXBT Representation of the name of the Non-
resident Monitor

TABLE 5-I (Cont'd)

|
REGISTERS

BIT MEANING
47 Date (MMDDYY)
50 Time (HHMMSS)
51 Elasped time, in ticks.
52 BOSS Bit Register
g=1 BOSS15 Mode.
1=1 Control Card Read by user, 5/7 ASCII image saved
in first block of NRBOSS.
2 =1 Resident BOSS reached "EOF" on run time file (RTF).
3 =1 User exceeded time estimate.
4 =1| I/O0 CAL to go to TTY.
5=1 Terminal IOPS error by user.
6 =1 QDUMP to be given to user on IOPS errors.
7 =1 Operator abort (Control T).
8§ =1 Job active.
9 =1 Exit from BOSS15 Mode.
12 =1 User tried to do a .PUT. Core will be dumped and
a listing given on LP.
11 = 1 User tried to do a .GET.
12 Not defined.
13 Not defined.
14-16 .SYSLD error number.
17 =1 Job abort.
53 Reserved for CTRL X code.
54 Default Protection Code.
55 Entry to Monitor TRAN routine.
56 Two's complement of time limit, in seconds (zero,
if no limit).
57 System Device Code, for use by the Linking Loader.
69 Number of ticks until clock interrupt specified
in last .TIMER (zero, if .TIMER not in use).

TABLE 5-I (Cont'qd)

BIT

REGISTER MEANING
61 .TIMER address.
62 Address of the first word in the Mass Storage Busy
Table.
63 Number of words per Mass Storage Busy Table Entfy.
64 JMP to CTRL Q GET routine.
65 QFILE Communication Register.
66 First Block of the CTRL Q Area.
67 Starting Address minus one of the CTRL Q Area.
79 Two's complement of number of word in Qdump
71 Starting Address after DUMP or GET.
72 Starting Address after CTRL Q.
73 Two's complement of the number of ticks left in the
next second.
74 Two's complement of the line frequency."
75 Number of RTF Lines (for BOSS Mode).
76-185 Unused.

Word # Value Description
/] g@@Pnnn Pointer to first free word after SYSBLK
. (There is one set of seven words/core
. image program.)
;g:% :§§§g¥ Name of System Program or overlay
S TN+3 nnnnnn Number of first block on system device
v occupied by this program or overlay.
TN+4 gogggnn Number of blocks occupied by this pro-
S gram or overlay
B TN+5 addres Thirteen-bit first address for this
program or overlay
L TN+6 gnnnnn Program size
¥ x TN+7 addres Thirteen-bit starting address for this
program or overlay
_______ - e e e e e e e e = e e o = o - v]
(free area)
500 rﬁﬂﬂﬂlﬁ Number of words in this entry (in this
case, 10)
501 . SIXBT Name of this system program (left-
5¢2 p| .SIXBT justified and zero-filled)
503 . SIXBT Name of an overlay (left-justified and
504 Tl .sIxXBT zero-filled) -- overlays are optional
505 o< 999@92 Number of buffers required by this sys-
AC tem program (Bits @-6 = @ means the end
g of any overlay names. This is why pro-
o] 1 gram and overlay names must be left-
M justified.)
506 .DAT&777 Active .DAT slot
B 5087 (_-DAT&777 Active .DAT slot (Note: 777777 for a .DAT
I ~ slot means all positive .DAT slots.)
510 9980095 Number of words for this entry (in this
K o) case, 5)
gi% r :giﬁgg Name of this system program
513 ol Fegeg1 Number of buffers required by this pro-
gram (Note that his program has no over-
g lays.)
514 2| .DAT&777 .DAT slot for this program
777 goasag Pointer to first word in COMBLK (equals

count from first word
two contiguous blocks
vice that hold SYSBLK and COMBLK are

treated by the system as one large block.
In this case, COMBLK happens to start at
location 5¢@@ of the two blocks combined.

in SYSBLK). The
on the system de-

Figure 5-1

SYSBLK and COMBLK

5-7

names of core-image system programs by making them the new first entry.
In this way, SYSBLK and COMBLK build toward the center.

5.2.3 SGNBLK

SGNBLK (bldck 36 on the system device) contains all the system param-
eters not directly associated with core-image system programs. The
bulk of SGNBLK is concerned with I/O (.DAT slots, .UFDT slots, Skip
Chain Order, Handlers, and skip IOT codes and mnemonics). The first
few registers hold such important system information as the system de-
vice, .SCOM+4 contents, and so on. The very first word in SGNBLK
points to the block address of the first free word after SGNBLK. The
next entry is an offset word indicating the total length (including
itself) of the miscellaneous system parameter table to follow. This
table includes the size of the .DAT and the size of the skip chain.
The end of the handler and skip IOT table is the first free entry of
the block.

The .DAT slot table corresponds to the legal range of .DAT slots,

with the maximum negative set to -15 and the maximum positive set to
a number not to exceed 778. The .DAT slots are in the form in which
they appear when the Nonresident Monitor is in core. That is, the
unit number is in bits @-2, and the number of the handler right-
justified in bits 3-17. The handler number for the first handler in
the Device Handler-Skip iOT Table is zero, for the pséudo-handler NON.
TTA. is one, and so on. The constant 1@@@@@ indicates a fixed or il-
legal .DAT slot (such as -2, -3, and #). DOSGEN will not modify such

slots.

The .UFD Table is in one-to-one correspondence with the .DAT slot Table.
An entry of .SIXBT 'UIC' indicates that the logged in UIC is to be sub-
stituted for the name UIC in the table. An entry of .SIXBT 'SYS' in-
dicates BNK or PAG is to be substituted, in accordance with the current
addressing mode. Otherwise, the contents of each location will be the
.SIXBT representation of the corresponding .UFD slot.

The Skip Chain Table lists the system skip IOT's in order. A negative
skip (one that skips on "off", not "on") is represented in one's com-
plement. Not all skips in the handler Skip I0T Table (described be-
low) need to be included in the Skip Chain Table.

The Device Handler/Skip IOT Table contains all the handler names and
skip IOT numbers and mnemonics for each I/O device identified to the
system. Every such device has an entry in the table. A handler name
must be exactly three characters in length, with the last character
not an octal digit. The device code for a device is exactly two
characters. The first two characters of each handler name for a de-
vice must be the device code. This fact is essential for understand-
ing the format of a device entry, since the device code is never
stored as such in an entry, but is inferred from the device handler

name. The typical entry for a device is the following:

1. The first words of an entry contain the handler names
for a device in .SIXBT. Each handler name is differ-
ent, and the end of the list of handlers is determined
by a word with zeros in bits @-5 (the first character
position).

2. The word that terminated the list of handler names
contains the number of skip IOT's for the device.
For each skip IOT, there are three words in the table:
two for the skip mnemonic and one for the actual code.

The next device entry follows the last skip for the previous device.
Handlers may be entered withbut any skips, but no devices may be
entered without at least one handler name. Figure 5-2 illustrates

the organization of SGNBLK. Appendix D of SGEN-DOS Utility Programs,
DEC-15-YWZB-DN12, lists SGNBLK, SYSBLK and COMBLK, as they are supplied

by Digital Equipment Corporation.
5.3 DISK-RESIDENT CHANGING BLOCKS

The System Loader uses block 37 of the system device to store an image
of .DAT and .UFDT. Other disk-resident changing blocks are the storage
Allocation Table and the Bad Allocation Table. These tables are de-
scribed in Chapter 6. .

5.4 TEMPORARY TABLES BUILT FROM DISK-RESIDENT TABLES

5.4.1 The Overlay Table

The System Loader builds the Overlay Table from the entries in SYSBLK
referenced by a core-image system program's entry in COMBLK. That is,
the Overlay Table contains an entry for the system program itself, and
one for each of its overlays. Figure 5-3 illustrates the format of an
entry in the Overlay Table. The first entry in the Overlay Table is

wn
|
o

Location | Value Description
4 @@@nnn Pointer to first free entry in SGNBLK
1 @@aILs Number of miscellaneous parameters
2 gg@nnn Size of .DAT plus size of .UFDT = (number of posi-
tive .DAT slots+16)*2. (Initial value is 2§ posi-
tive .DAT slots.)
3 g@gnnn Number of skips in Skip Chain
g41309 \ .
4 042000 System device code in .SIXBT
5 nnnnnn Original contents of .SCOM+4
6 nnnnnn Original contents of .SCOM+2¢
7 nnnnnn Number of words per buffer (.SCOM+27)
10 nnnnnn Default number of buffers (.SCOM+26)
11 .SIXBT Monitor Identification Code
12 nnnnnn Information on VT and CTRL X (.SCOM+33)
13 [efoge] gnhel Default files protection code (.SCOM+54)
14 g@nnnn Size of the Resident Monitor Patch Area
15 7777nn Minus the number of clock ticks in a second (-74
for 6@ hz, -62 for 5@ hz.)
16 g@@nnn Device assignments for the .DAT (made by handler
: numbers). (Termination at 53 assumes 20 positive
53 gggnnn slots.)
24 - SIXBT UIC assignments for the .UFDT. (Termination at
111 assumes 2@ positive slots.)
111 . SIXBT
112 nannan Skip Chain Table (Negative skips in one's comple-
) ment.} (Termination at 137 assumes 22 skips in
137 nnnnnn chain.)
149 - SIXBT The last part of the SGNBLK is the Device Handler-
) ‘ Skip IOT Table. Each entry starts with the .SIXBT
) : representations of all handlers for a particular
: SiXBT device. (First two characters equal device code,
: .SIXBT for all handlers.) Zeros in the first six bits
* * of a word indicate the end of the handler names,
' ‘ and says that the rest of the word contains the
- SiXBT number of skips for this entry's device. The skip
* éﬂQﬂQB IOT's follow immediately. As above, cone's comple-
) ment skips indicate negative skips. Note, however,
. nnnnnn .]
the confusing fact that a one's complement of a
. nnnnnn :) o
) nnnnnn skip IOT is a positive number. Thus, 7¢nnn com-
SIXBT plemented is @7nnnn.
pgageal
. nnnnnn
312 SGNBLK ends at 312, in the DOS-15 system distrib-

uted by Digital Equipment Corporation.

Figure 5-2

SGNBLK

5-10

pointed to by .SCOM+31l. .SCOM+31l will contain zero, if there are no
entries in the Overlay Table. This will occur during Linking Loader
or EXECUTE loads.

.OVRLA is the only Monitor function that looks at the Overlay Table.
If the .OVRLA processor finds a match to the .OVRLA argument in the
Overlay Table, it uses the parameters listed in the table to bring

it in via a Monitor TRAN. Note that this bypasses the System Loader,
and does not change the handler load. Thus, the overlay must use only
those .DAT slots required by the original program, the one listed in
COMBLK.

If the .OVRLA processor does not find a match in the Overlay Table, it
calls in the System Loader, which searches COMBLK for the requested
program. This type of overlay request dces not require that .DAT slot
assignments be the same. On the other hand, the System Loader refreshes
all of core except .SCOM, etc. Thus, communication between overlays

is more difficult. The resident patch area, however, can be used for
this purpose.

5.4.2 The Device Table

The Device Table is built by the System Loader interface whenever PIP
is being loaded, or when PIP is listed in COMBLK among the overlays
for a program. It is located just above the register pointed to by
.SCOM+1, and has an entry for each positive .DAT slot. If a slot has
an assigned device, the low-order twelve bits of the corresponding
entry in the Device Table will contain the device's code, in .SIXBT.
Bit 3 is set when the slot is busy. If no device is assigned to a

slot, the corresponding entry in the Device Table will contain zero.
5.4.3 The Input/Output Communication (IOC) Table

The System Loader Interface builds the IOC Table and locates it just
below the first register of the System Loader. It contains an entry
for each handler in the system, in the order that they appear in
SGNBLK. The entries themselves contain the handler name in Radix 5¢.
The System Loader and the Linking Loader use the handler number sup-
plied by the Nonresident Monitor to index down the IOCC Table. They
use the contents of the entry for a .SEEK to the IOS UIC.

5-11

5.4.4 The Device Assignment Table (.DAT)

The Device Assignment Table makes the association between logical and
physical devices. The Monitor knows its location by the contents of
.SCOM+23, which points to the zeroth
are found by indexing on the contents of .,SCOM+23. The number of nega-

entry in the Table. Specific slots

tive slots is fixed at 158. The number of positive slots is specified
by .SCOM+24, and may be any positive number less than lgﬂs. It is

specified at system generation time.

The Nonresident Monitor places the handler number in the low order

bits and the unit number in the high order bits. It derives the hand-
ler number from SGNBLK. As mentioned above, the System Loader and

the Linking Loader subsequently use the IOC Table to determine the
handler name. After either loader has loaded and relocated a handler,
it places the handler's starting address in all .DAT slots that refer-
ence that handler. The unit number remains in the high~order three
bits. Slots with no handler (NON) contain zero, Active .DAT slots

are designated by COMBLK, for core-image system programs, and by .IODEV
pseudo-ops for the Linking Loader and EXECUTE.

5.4.5 The User File Directory Table (.UFDT)

.UFDT+# is offset from .DAT+f§ (pointed to by .SCOM+23) by the sum of
the positive and negative .DAT slots. Each .DAT slot has a correspond-
ing .UFDT slot. UIC's in the .UFDT are packed in .SIXBT. The address
of .UFDT+@ is stored in .SCOM+25.

5.4.6 The Skip Chain

Register 1 of Bank f# contains a jump to the beginning of the Skip
Chain. The Skip Chain is defined during System Generation, is located
in SGNBLK, and is rebuilt every time the System Loader is called in.
The System Generator Manual (DEC~15-YWZB-DN12) describes considerations

for constructing the Skip Chain.

5.5 TEMPORARY TABLES BUILT FROM SCRATCH

5.5.1 File Buffer Transfer Vector Table

The System Loader allocates space for the buffer pool, and creates the
File Buffer Transfer Vector Table. .SCOM+30 points to the first entry

5-12

in the table, and the number of entries is specified by .SCOM+26.

Each entry in the table contains the address of a buffer, or its one's
complement. Negative addresses indicate a busy buffer. Since refer-
ences to buffers must be indirect anyway, buffers are allocated with-

out regard to bank boundaries.
5.5.2 The RCOM Table

The Nonresident Monitor requires certain information about the Resi-
dent Monitor that does not warrant reserving additional .SCOM registers.
The System Loader therefore puts this information into the RCOM table,
whenever it is loading the Nonresident Monitor. The RCOM Table starts
at register 175@0@ of the highest bank.

5.5.3 The Mass Storage Busy Table

Entries in this table are allocated by the System Loader or the Link-
ing Loader. The Mass Storage Busy Table is pointed to by .SCOM+62.
.SCOM+63 contains the number of words per entry in the table, and
.SCOM+36 contains the current number of entries. Generally speaking,
there are as many entries in the Busy Table as there are active .DAT
slots, although the disk handlers are the only ones that currently
refer to the Busy Table.

The .INIT command to a disk handler establishes a Busy Table entry.
The .CLOSE command (or the Rewind .MTAPE command) deletes the corres-
ponding entry. Figure 5-4 illustrates a typical Busy Table Entry.

The first word of an active entry in the Busy Table contains the .DAT
slot in bits 9-17. The disk handlers save information about the UFD
current for this .DAT slot in the Mass Storage Busy Table. They save
information about the file current to the .DAT slot (if any) in the
buffer pointed to by word 1 of the Busy Table Entry. More information
on the disk handlers and file structure is contained in Chapter 6.

5.6 RESERVED WORD LOCATIONS

Word locations @ through 77 are dedicated systems locations and can-
not be employed by the user. The contents of these locations are
described in Table 5-5.

Word #

Contents

N,N+1 .SIXBT name of Overlay
N+2 First block number
N+3 First address, minus 1
N+4 Size, in two's complement
N+5 Fifteen-bit starting address
Table 5-3 Overlay Table
Word # Contents
N Device Typeg_z, Unit Number3_5, Write Check6,.DA'I‘9_17
N+1 Buffer Address, or @, if none allocated
N+2 Three-character UIC
N+3 First UFD block for this UIC
N+4 UFD Entry size for files in this UFD
Table 5-4 Mass Storage Busy Table Entry
ADDRESS USE
g Stores the contents of the extended PC, link, extend
mode status, and memory protect status during a pro-
gram interrupt
1 EEM (for PDP-9 compatibility)
2 JMP to Skip Chain
3 .MED, entry to Monitor Error Diagnostic routine
4 JMP to error handler
5 Stores system type (Bank or Page) indicator during
Teletype interrupts
6 Used for API ON/OFF indicator
7 Stores real time clock count
10-17 Autoindex registers
20 Stores the contents of the extended PC, link, mode
status, and memory protect status on a CAL instruc-
tion.
21 JMP to CAL handler
22-37 Seven pairs of word counter-current address registers
for use with 3-cycle I/O device data channels.
40-77 Store unique entry instructions for each of 3210 auto-

matic priority interrupt channels

Table 5-5 Reserved Address Locations

5-14

5.7 BOOTSTRAP NON-BOSS BATCH BITS

The high~order three bits of word 17777 in the Bootstrap are reserved

for the Monitc¢r, and have the following meanings:

Bit ¢ 1 = In non-BOSS Batch Mode
= Not in non-BOSS Batch

Bit 1 1 = $JOB ASCII line or card just read by batch device

@ = Last line or card not $JOB

Bit 2 1 = Batch device is card reader

2 = Batch device is paper tape reader

CHAPTER 6

FILE STRUCTURES

6.1 DECTAPE FILE ORGANIZATION

DECtape can be treated either as a directoried or non-directoried
device.

6.1.1 Non-Directoried DECtape

A DECtape is said to be non-directoried when it is treated as magnetic
tape by issuing the .MTAPE commands: REWIND, BACKSPACE, followed by
.READ or .WRITE. ©No directory of identifying information of any kind

is recorded on the tape. A block of data (255 word maximum), exactly

10
as presented by the user program, is transferred into the handler buf-
fer and recorded at each .WRITE command. A .CLOSE terminates record-
ing with a software end-of-file record consisting of two words: 001005,

776773

Because braking on DECtape allows for tape roll, staggered recording

of blocks is employed in DOS to avoid constant turnaround or time-
consuming back and forth motion of physically sequential block record-
ing. When recorded as a non-directoried DECtape, block @ is the

first block recorded in the forward direction. Thereafter, every fifth
block is recorded until the end of the tape is reached, at which time
recording, also staggered, begins in the reverse direction. Five

passes over the tape are required to record all 1100, blocks.

8

6.1.2 Directoried DECtape

Just as a REWIND or BACKSPACE command declares a DECtape to be non-
directoried, a .SEEK or .ENTER implies that a DECtape is to be con-
sidered directoried. A directory listing of any such DECtape is

available via the (L)ist command in PIP. A fresh directory may be

recorded via the N or S switch in PIP.

The directory of all DECtapes except system tapes occupies all 4¢Q8
words of block lﬂﬂS. It is divided into two sections: (1) a 408 word

Directory Bit Map and (2) a 3408 word Directory Entry Section.

The Directory Bit Map defines block availability.
cated for each DECtape block (11008 bits = 408
the bit indicates that the DECtape block is occupied and may not be
used to record new information,

One bit is allo-
words) .

The Directory Entry Section provides for a maximum of 5610 files on
a DECtape. Each

entry includes the three-word file name and extension, a pointer to

Each file on the DECtape has a four-word entry.

When set to 1,

the first DECtape block of the file, and a file active or present bit.
Figure 6-1 illustrates the DECtape directory.

Word
0 JK\
Block f# Directory
Block 1877 Bit Map
37 r
40 Entry ¢
F--— = e = == = == - Directory
Entry
Section
Entry 551¢
377
g 5 6 11 12 17
wd. 0 | File | Note: Nulls (0) fill
1 1 in short file names.
1 Name A file name extension
is not absolutely
2 File Name Extension necessary.
3 lI Data Link (First File Block)

Sign Bit: 1 = File Active

A DIRECTORY ENTRY

Figure 6-1

DECtape Directory

Additional file information is stored in blocks 71 through 77 of every

directoried DECtape.

These are the File Bit Map Blocks.

For each file

in the directory, a 408-word File Bit Map is reserved in block 71

through 77.

The bit maps are contiguous, and the N

th file uses the

NtR bit map.' Each block ié divided into eight File Bit Map Blocks. A
File Bit Map specifies the blocks occupied by that particular file and
provides a rapid, convenient method to perform DECtape storage re-
trieval for deleted or replaced files. Note that a file is never de-
leted until the new one of the same name is completely recorded on

the .CLOSE of the new file. When a fresh directory is written on
DECtape, blocks 71 through 100 are always indicated in the Directory
Bit Map as occupied. Figure 6-2 illustrates DECtape file bit maps.

Block 7l8 Bit Map for File ¢
Bit Map for File 7

Block 728 Bit Map for File 8
Bit Map for File 15lﬁ

Block 778 Bit Map for File 481¢

Bit Map for File 561g

Figure 6-2

DECtape File Bit Map Blocks

Staggered recording (at least every fifth block) is used on directoried
DECtapes, where the first block to be recorded is determined by examina-
tion of the Difectory Bit Map for a free block. The first block is
always recorded in the forward direction; thereafter, free blocks are
chosen which are at least five beyond the last one recorded. The last
word of each data block recorded contains a data link or pointer to

the next block in the file. When turnaround is necessary, recording
proceeds in the same manner in the opposite direction. When reading,
turnaround is determined by examining the data link. If reading has
been in the forward direction, and the data link is smaller than the
last block read, turnaround is required. If reverse, a block number
greater than the last block read implies turnaround.

A software end-of-file record (001005, 776773) terminates every file.
The data link of the final block is 777777.

Data organization for each I/0 medium is a function of the data modes.
On directoried DECtape there are two forms in which data is recorded:
(1) packed lines - IOPS ASCII, IOPS Binary, Image Alphanumeric, and
Image Binary, and (2) dump mode data - Dump Mode.

In IOPS or Image Modes, each line (including header) is packed into
the DECtape buffer. In IOPS Binary, a 2's complement checksum is com-
puted and stored in the second word of the header. When a .WRITE
which will exceed the remaining buffer capacity is encountered, the
buffer is output, after which the new record is placed in the empty

buffer. No record may exceed 254 words, including header, because

10
of the data link and even word requirement of the header word pair
count. An end-of-file is recorded on a .CLOSE. It is packed in the same

manner as any other line.

In Dump Mode, the word count is always taken from the I/O macro. If
a word count is specified which is greater than 25510 (note that space
for the data link must be allowed for again), the DECtape handler will

transfer 255 word increments into the DECtape buffer and from there

to DECtape. lgf some number of words less than 255lO remain as the

final element of the Dump Mode .WRITE, they will be stored in the DEC-
tape buffer, which will then be filled on the next .WRITE, or with an
EOF if the next command is .CLOSE. DECtape storage is thus optimized

in Dump Mode since data is stored back-to-back. See Appendix A.
6.2 MAGNETIC TAPE

DOS provides for industry-compatible magnetic tape as either a di-
rectoried or non-directoried medium. The maghetic tape handlers com-
municate with a single TC-59D Tape Control Unit (TCU). Up to eight
magnetic tape transports may be associated with one TCU; these may

include any combination of transports TU-10A or B and TU-30A or B.

There are a number of major differences between magnetic tape and DEC-
tape or Disk; these differences affect the operation of the device
handlers. Magnetic tape is well suited for handling data records of
variable length. Such records, however, must be treated in serial
fashion. The physical position of any record may be defined only in
relation to the preceding record. Three techniques available in I/O
operations to block-addressable devices are not honored by the magnetic

tape handlers:

a. The user cannot specify physical block numbers for
transfer. 1In processing I/O requests that have block
numbers in their argument lists (i.e., .TRAN) the
handler ignores the block-number specification.

b. The only area open for output transfers in the direc-
toried environment is that following the logical end
of tape.

C. Only a single file may be open for transfers (either

input or output) at any time on a single physical unit.

6.2.1 Non-directoried Data Recording (MTF)

MTF is intended to satisfy the requirements of the FORTRAN programmer
while still providing the assembly language programmer maximum freedom
on the design of his tape format. MTF writes out a record to the tape
each time the main program issues a .WRITE. The length of the record
is always two times the word pair count in the header word pair. FIOPS
records are always as long as the buffer size returned on a .INIT (up
to 25610 words). MTF returns a standard buffer size of 3778' after a
.INIT. The FORTRAN user may dynamically change this size, however,

via the following instructions.

(FORTRAN STATEMENTS) (MACRO STATEMENTS)

.TITLE SETMTB
.GLOBL .DA, MTBSIZ, SETMTB

. SETMTB '}
CALL SETMTB (ISIZE) JMS* .DA
. JMP START
. BUFSIZ g
START LAC* BUFSIZ (any buffer size)
DAC* MTBSIZ
JMP* SETMTB
.END
6.2.2 Directoried Data Recording (MTA., MTC.)

The programmer can make the fullest possible use of those features
peculiar to magnetic tape by using MTF. On the other hand, MTF does
not offer the powerful file-manipulation facilities available in the
system. Directoried I/0 allows device independence, and extensive

use of the storage medium with a minimum of effort.

Every block recorded by MTA. (with the exception of end-of-file markers,

which are hardware-recorded) includes a two-word Block Control Pair

and not more than 255

10 words of data. The data will contain the

records from one or more .WRITE's.

The Block Control Pair serves three functions: it specifies the char-

acter of the block (label, data, etc.), provides a word count for the

block, and gives an 18-bit block checksum. The Block Control Pair has

the following format:

Word 1:

Bits 0 through 5: Block Identifier (BI). This 6-bit byte
specifies the block type. Values of BI may range from O

to 77 Current legal values of BI, for all user files,

are aé follows:

BI Value Block Type Specified
00 User-File Header Label
10 User-File Trailer Label
20 User-File Data Block

Bits 6 through 17: Block Word Count (BWC). This 12-bit
byte holds the 2's complement of the total number of words
in the block (including the Block Control Pair). Legal

values of BWC range from -3 to -401

Word 2:

8"

Bits 0 through 16: Block Checksum. The Block Checksum is
the full-word, unsigned, 2's complement sum of all the
data words in the block and word 1 of the Block Control

Pair.

[¢] 5 6 7

LU T T T T T T T T 11T 1Y)
BCP WORD 1 :| BLOCK ID [@—————— —N—————»
I Y T N S 0 IO I I |
T T UL L L
8CcP WORDZIF——BLDCK CHECKSUM —————»
I T T T Y T N S T T A T A

L N TOTAL WORDS
IN BLOCK

L ————— T T — T
N-2 DATA
WORDS

Figure 6-3

Block Format, File-Structured Mode

6-6

One of the main file functions of MTA. and MTC. is that of identifying
and locating referenced files. This is carried out by two means:
first, names of files recorded are stored in a file directory at the
beginning of the tape; and second, file names are contained in the
file's header and trailer labels.

6.2.2.1 Magnetic Tape File Directory

The directory, a single-block file (and the only unlabeled file on any
file-structured tape), consists of the first recorded data block on
the tape. It is a 25710 word block with the following characteristics:

a. Block Control Pair (words 1 and 2)

Word 1
Block Identifier
Block Word Count

748 = File Directory Data Block

—4018 = 73778.

Word 2:

Block Checksum: As described above.

b. Active File Count (Word 3, Bits 9 through 17) 9-bit one's
complement count of the active file names present in the
File Name Entry Section (described below).

c. Total File Count (Word 3, Bits 0 through 8) 9-bit one's
complement count of all files recorded on the tape, in-
cluding both active and inactive files, but not the file
directory block.

d. File Accessibility Map (Words 4 through 17): The File
Accessibility Map is an array of 252l0 contiguous bits
beginning at bit 0 of word 4 and ending as bit 17 of
word 17. Each of the bits in the Accessibility Map re-
fers to a single file recorded on tape. The bits are
assigned relative to the zeroth file recorded; that is,
bit 0 of word 4 refers to the first file recorded; bit
1, word 4, to the second file recorded; bit 0, word 6,
to the 37 Oth file recorded; and so on, for a possible
total of %5210 files physically present.

A file is only accessible for reading if its bit in the
Accessibility Map is set to one. A file is made inac-
cessible for reading (corresponding bit = 0) by a .DLETE
of the file, by a .CLOSE (output) of another file of the
same name, or by a .CLEAR. A file is made accessible for
reading (corresponding bit = 1) by a .CLOSE (output) of
that file. Operations other than those specified above
have no effect on the File Accessibility Map.

BCP

FILE COUNTS

FILE
ACCESSIBILITY
MAP

1

FILE
NAME
ENTRY .
SECTION

v

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD 257

Figure 6-4a.

21

24

BIT POSITION

0 3 6 9 12 15 17
. BEGINNING
7 4 ’ 3 T 7 A OF TAPE
BLOCK CHECKSUM
7 7 2 7 7 4 FILE
DIRECTORY
oo ///7
L
FILE #1
CONTENTS (UNACTIVE)
UNSPECIFIED
FILE #2
F 1 L (ACTIVE)
E # 2
E X T
3 1 L
FILE #3
(INACTIVE)
E # 4 ‘
E X T
F I L
FILE #4
E #* 5 (ACTIVE)
E X T
//// FILE #5
(ACTIVE)
CONTENTS
UNSPECIFIED
//jj;;//////// //j; END OF TAPE

Format of the

File Directory Data Block,
showing relationship of active
and inactive files to file name
entries and to Accessibility Map

09-0232

Figure 6-4b. Format of file-
structured tape, showing
directory block and data
files.

e. File Name Entry Section (Words 18 through 257): The File
Name Entry Section, beginning at word 18 of the direc-
tory block, includes successive 3-word file name entries
for a possible maximum of 80 entries. Each accessible
file on the tape has an entry in this section. Entries
consist of the current name and extension of the refer-
enced file in .SIXBT (left-adjusted and, if necessary,
zero-filled).

The position of a file name entry relative to the begin-
ning of the section reflects the position of its accessi-
bility bit in the map. That bit, in turn, defines the
position of the referenced file on tape with respect to
other (active or inactive) files physically present. Only
active file names appear in the entry section, and access-
ibility bits for all inactive files on the tape are always
set to zero; accessibility bits for all active files are
set to one.

To locate a file on the tape having a name that occupies
the second entry group in the File Name Entry Section,

the handler must (a) scan the Accessibility Map for the
second appearance of a 1-bit, then (b) determine that bit's
location relative to the start of the map. That location
specifies the position of the referenced file relative to
the beginning of the tape. The interaction of the File
Name Entry Section and the Accessibility Map are shown

in Figure 6-4.

6.2.2.2 User-File Labels

Associated with each file on tape is one'label, the header label. It

precedes the first data block of the file. Each label is 27lO words

in length. Label format is shown in Figure 6-5.

-
WORD ! 00 o4 !

-

WORD 2 CHECKSUM J

WORD 3 777 XXX FILE NAME

WORD 4 00Qo00

WORD § w

e —————— RESERVED

WORD 26,,

WORD 27,0 ‘

Figure 6-5

User-File Header Lakel Format

6.2.2.3 File-Names in Labels

The handler will supply the contents of the file-name fields (Word 3)
in labels. These are used only for control purposes during the execu-
tion of .SEEK's. The name consists simply of the two's complement of
the position of the recorded file's bit in the Accessibility Map; the
"name" of the first file on tape is 777777, that of the third file is
777775, and so on. A unique name is thus proVided for each file physi-
cally present on the tape. Since there may be a maximum of 25210 files

present, legal file-name values lie in the range 777777 to 777404.
6.2.3 Continuous Operation

Under certain circumstances, it is possible to perform successive I/O
transfers without incurring the shut-down delay that normally takes
rlace petween blocks. The handler stacks transfer requests, and thus

ensures continued tape motion, under the following conditions:

a. The I/O reguest must be received by the CAL handler be-
fore a previously-initiated I/O transfer has been com-
pleted.

b. The unit number must be identical to that of the pre-
viously initiated I/O transfer.

c. The I/O request must be one of those listed below to
ensure successful completion. The handler in process-
ing requests in continuous mode depends on receiving
control at the CAL level in order to respond to I/O
errors. The functions for which continuous operation
is attempted include only the following:

1. .MTAPE 3. .WRITE
2. .READ 4. .TRAN
d. With MTA, more than one logical record may be in a physical

block, so tape motion may stop if fewer successive .READ's
or .WRITE's are issued than there are records in a block.

o

The previously-requested transfer must be completed with-
out error. In general, successive error-free READ's
(WRITE's) to the same transport will achieve non-stop
speration. The following examples illustrate this prin-
ciple.

Example 1: Successful Continued Operation

SLOT = 1

INPUT = 0

BLOKNO = 0

READI1 .TRAN SLOT, INPUT, BLOCKNO, BUFF1l, 257
READZ2 .TRAN SLOT, INPUT, BLOCKNO, BUFF2, 257
RETURN JMP READ1

The program segment in Example 1 will most probably keep the refer-
enced transport (.DAT slot 1) up to speed. The probability decreases
as more time elapses between READ1 and READ2, and between READ2 and
RETURN. Each .TRAN request causes an implicit .WAIT until its opera-

tion is completed.

Example 2: Unsuccessful Continued Operation

SIOT = 1

INPUT = 0

BLOKNO = 0

READ .TRAN SLOT, INPUT, BLOKNO, BUFF, 257
STOP .WATIT SLOT

RETURN JMP READ

The program segment in Example 2 will not keep the tape moving because
the .WAIT at location STOP prevents control from returnina to location
READ until the transfer first initiated at READ has been completed.

Example 3: Unsuccessful Continued Operation

SLOT1 = 1

SLOT2 = 2

INPUT = O

BLOKNO = 0

READ1 .TRAN SLOT1, INPUT, BLOKNO, BUFF1l, 257
READ2 .TRAN SLOTZ2, INPUT, BLOKNO, BUFF2, 257
RETURN JMP READI1

This program segment will not provide non-stop operation because of
the differing unit specification at READ1 and READ2.

6.2.4 Stcrage Retrieval on File-Structured Magnetic Tape

The use of a file accessibility map as well as block identifiers in
Magtape file directories makes it almost impossible to retrieve the
area of a deleted file from a magnetic tape. The execution cf the
deletion command (i.e., .DLETE) removes the name of the chject file
from the file directory, and clears the corresponding bit in the File

Accessibility Map.

The only circumstance under which a file area may be easily retrieved
is when the deleted file is also the last file physically on the tape.
Under these conditions, the handler can retrieve the area occupied by
the deleted file when the next .ENTER - .WRITE - .CLOSE secuence is

executed. Users may also copy the active files to another device, re-

new the directory, and recopy the files.

6-11

6.3 DISK FILE STRUCTURE

6.3.1 Introduction

The DOS-15 disk file structure is in some ways analogous to DECtape
file structure. Ordinarily, each disk user has a directory which
points to named files, just as each DECtape has a directory. The DEC-
tape has only one directory, but the disk has as many directories as
users have cared to establish. A single user's disk directory might
correspond to a single DECtape directory. A single disk file's size

is also limited only by the available space, as is true with DECtape.
Whereas DECtape directories may only reference a maximum of 56lO files,
however, the number of files associated with any one directory on the

disk is limited only by the available disk space.

The DECtape directory is in a known location -- at block 100. Since
the disk may have a variable number of directories, the Monitor must
know how to find each user's directory. It therefore maintains a
Master File Directory (MFD) at a known location!, and the Master File
Directory points to each User File Directory (UFD). DO0S-15 allows
only those users who know the Master Identification Code to have ac-
cess to any protected UFD's within the MFD. Figure 6-6 illustrates
the MFD. Appendix B is a flowchart of the Disk "A" Handlers.

6.3.2 User Identification Codes (UIC)

The Monitor finds User File Directories by seeking associated User
Identification Codes (UIC's), which are all listed in the Master File
Directory. The UIC is a three-character code that ié necessary for
all non-.TRAN I/O to the disk. .TRAN macros use no directory refer-
ences. A programmer may operate under as many UIC's as he wishes, pro-
vided all are unique and none is reserved?. He may establish a new
User File Directory by (1) logging in his new UIC to the Monitor via
the LOGIN command, (2) calling PIP, and (3) issuing an N DK command.
This establishes a new User File Directory, or refreshes (wipes clean)
an old directory under that UIC. (.ENTER will also create a new MFD
entry and/or a UFD, if none exists.) Figure 6-7, User File Directdry,

illustrates the organization of a UFD.

l0n the RF disk, the first block of the MFD is located at block 1777.
On the RP disk, the first block of the MFD is located at block 47@48.

2The following are reserved UIC's: @@@, ?2??, PAG, BNK, SYS, IOS,
CTP.

Word # Contents Description

a2 777777 Dummy UIC used by system.

1 nnnnnn Bad Allocation Table's first block number,
or 777777, if there is none. !

2 nnnnnn SYSBLK's first block number, or -1, if
there is none.

3 4ﬁ_2+blknum MFD entry size in bits @-2, plus the block

. - number of the first submap

ZIN .SIXBT UIC for this UFD

4N+1 nnnnnn Block number for the first block of this
UFD or 777777, if no UFD exists (as after
PIP's NuaDK))

4N+2 Pg+M Protection code in bit @, plus the UFD
entry size for each file

4N+3 spare Unused at this writing

376 nnnnnn Pointer to previous MFD block, or 777777
if none.)

377 nnnnnn Pointer to next MFD block, or 777777 if
none.
Figure 6-6

Master File Directory

Word # Contents Description

8N .SIXBT Name of this file

8N+1 .SIXBT and its

8N+2 .SIXBT extension

8N+3 Tﬁ+blknum Truncation code in bit @, plus the number
of tle first block of the file

8N+4 nnnnnn Number of blocks in this file

8N+5 ribptr Pointer to the first block of the Retrieval
Information Block

8N+6 P¢_1+ribwrd Protection code in bits @-1, plus the
first word in ribptr used by the RIB-- if
the last block of the file has room for
the RIB, the handlers will put it there,
and load word 8N+6 accordingly.

8N+7 crdate Date of file's creation -mmddyy (yy modulo 78)

376 nnnnnn Pointer to previous block, or 777777 if none

377 nnnnnn Pointer to next UFD block, or 777777 if none

Figure 6-7

User File Directory

6-13

6.3.3 Organization of Specific Files on Disk

The Disk Handlers write out files in almost the same way that a DEC-

tape handler does. Disk file blocks, however, have a forward and
backward link. (Non-dump records are therefore limited to lengths

of 254lo words.) Further, upon receipt of a .CLOSE I/0 macro, the disk
handlers fill out a Retrieval Information Block (RIB). The RIB per-
forms the same functions as the file bitmap on DECtape, and also as-
sociates the logical sequence of blocks in the file with the physical
locations of the blocks on the disk. The disk handler uses the RIB to
implement .RTRAN commands and to delete files. Figure 6-8, The Retrieval

Information Block, illustrates a RIB.

After a user has created a disk file he can access logical records
sequentially via .READ commands, just as with DECtape files. He can
also access physical blocks of that file by referencing relative block
numbers in the .RTRAN command. (The .RTRAN commands require the file
be opened with the .RAND command.)

6.3.4 Buffers

The handlers break buffers from the pool into three parts: (1) File
Information (about 4ﬂ8 words)®* (2) the Block List -- addresses of
pre-allocated blocks (between 4 and 253lg addresses, inclusive), and
(3) data buffer (2561Q words). Figure 6-9, Disk Buffer, illustrates
the breakdown of disk buffers.

6.3.4.1 Commands That Obtain And/or Return Buffers

The following commands obtain buffers from the pool, and return them

immediately after execution:

.DLETE
.RENAM
.CLEAR

The following commands obtain a buffer from the pool and do not return

it until a subsequent .CLOSE is performed:

LFSTAT
.ENTER
.SEEK
.RAND

*This number is determined by assembly parameters.

6-14

wWord # Contents Description
g* nnnnnn Total number of blocks described by this
physical block.
1 nnnnnn First data block pointer.
2 nnnnnn Second data block pointer.
3 nnnnnn Third data block pointer.
376 nnnnnn Pointer to previous RIB block or -1 if no
previous RIB block.
377 nnnnnn Pointer to next RIB block or -1 if no
next RIB block.
th th .
* Zero word of the RIB may not be zero word of physical block.

This occurs whenever the entire RIB will fit in the last data
block of the file.

Figure 6-8

Retrieval Information Block

40, Words*

More than 3 and
less than 3778
words

4008 Words

}, File Information becomes

I\

7

'Current Set' when file active
(see 6.3.4.2).

Addresses of Preallocated
Blocks (Block List or Temp
List or TLIST)

Data Buffer

*This is not a fixed number. It is
different for RP and RF.

Figure 6-9
Disk Buffer

6-15

The following commands return a buffer to the pool, if any was allo-

cated.

+INIT

.CLOSE

.MTAPE (rewind)
6.3.4.2 The Current Set
The handlers retain information about the last file and .DAT slot
processed in an internal storage area. This area is called the
"Current Set", and is swapped back to the file's buffer whenever a

command to a different file is used. Thus,

.WRITE to .DAT slot A
.WRITE to .DAT slot B

will swap the Current Set, but...
.WRITE to .DAT slot A
.TRAN to .DAT slot A
.WRITE to .DAT slot A ‘

will not swap the Current Set.

6.3.5 Pre-allocation

The handlers pre-allocate blocks on the disk upon all .ENTER commands,
and whenever sufficient .WRITE commands have been issued to use up the

pre-allocated blocks. The number of pre-allocated blocks will be the
minimum of the number of free blocks on thé device and the number of
address slots available in the Temp List (block list).

When the handlers pre-allocate blocks, they fill out the bit maps, and
immediately fill out the RIB and write it out in one of the pre-allocated
blocks.

Upon a .CLOSE command, the handlers give bﬁck unused blocks, and re-
write the RIB.

The number of blocks in the Block List depends on the size of the
buffer, which is determined at system generation by setting the buffer
size. The larger the Block List, the faster will be output. Smaller
Block Lists may give more efficient allocation of core and disk space.
Smaller buffers save core. Further, the number of pre-allocated blocks
may affect concurrently opened files on a disk that is tight for space.
Thus, if the Block List is sixty entries long, and there are forty
blocks left on the disk, a .ENTER to .DAT slot will pre-allocate all
forty, leaving none for any subsequent .ENTER's to different .DAT

slots.

IOPS 70 will occur when there are less than four free blocks on the

disk when a handler tries to pre-allocate blocks.

6.3.6 Storage Allocation Tables (SAT's)

The disk handlers use a Storage Allocation Table, in order to distin-
guish between allocated and free blocks. If more than one physical

block is required, the individual blocks are called Submaps.
Unlike DECtape, the Storage Allocation Table is never held in core.
When the handlers wish to preallocate some blocks, they read in the

required Submap, and write out the updated one.

Storage Allocation blocks use the following format:

WORD @ Total blocks on the disk

WORD 1 Number of blocks described
by this Submap

WORD 2 Number of blocks occupied
in this Submap

WORD 3 First word of the bit map

(eighteen blocks per word)

WORD 376 Pointer to previous Submap
(or 777777)

WORD 377 Pointer to next Submap
(or 777777)

The bit maps refer to blocks in numerical order. Thus, bit # of word
three of a Submap will refer to block N, bit 1 will refer to block N+1,
and so on. The block is free if the corresponding bit equals @. Start-
ing and ending block numbers for all Submaps are retained in the hand-

lers. The first Submap, however, starts with block zero.

6-17

6.3.7 Bad Allocation Tables (BAT's)

Occasionally, a particular block on the disk will not record data cor-
rectly. 1In such instances, the handlers should be prevented from using
the bad blocks. Accordingly, PIP maintains a Bad Allocation Table.
Whenever a user updates that table, PIP will set the appropriate bit

in the Storage Allocation Table. The block is thus made unavailable.
Refer to PIP manual (DEC-15-vWZB-DN13) for more information.

CHAPTER 7

WRITING NEW I/O DEVICE HANDLERS

This chapter contains information essential for writing new I/0 de-
vice handlers to work in DOS.

7.1 I/0O DEVICE HANDLERS, AN INTRODUCTION

All communications between user programs and I/O device handlers are
made via CAL instructions followed by an argument list. The CAL
Handler in the Monitor (Figure 2-1) performs preliminary setups,
checks the CAL calling sequence, and transfers control via a JMP*
instruction to the entry point of the device handler. When the con-
trol transfer occurs (see Figures 7-1 and 7-2), the AC contains the
address of the CAL in bits 3 through 17 and bits 0, 1, and 2 indicate
the status of the Link, Bank/Page mode, and Memory Protect, respect-
ively, at the time of the CAL. ©Note that the content of the AC at
the time of the CAL is not preserved when control is returned to the

user.

On machines that have an API, the execution of a CAL instruction auto-
matically raises the priority to the highest software level (level 4).
Control passes to the handler while it is still at level 4, allowing
the handler to complete its non-reentrant procedures before debreaking
(DBK) from level 4. This permits the handler to receive reentrant
calls from software levels higher than the priority of the program

that contained this call. Device handlers which do not contain re-
entrant procedures (including all handlers supplied with DOS) may avoid
system failure caused by inadvertent reentries by remaining at level

4 until control is returned to the user.

If the non-reentrant method is used, the debreak and restore (DBR)
instruction should be executed just prior to the JMP* which returns
control to the user, allowing debreak from level 4 and restoring the
conditions of the Link, Bank/Page mode, and Memory Protect. Any IOT's
issued at the CAL level ‘(level 4 if API present, mainstream if no API)
should be executed immediately before the

DBR
JMP *

USER PROGRAM

DEVICE HANDLER

Save CAL pointer and
fetch funcpion code

LOC+@
LOC+1

LOC+N

CAL ARG.
CODE

NXT INST _—— = = - -

< INIT

Initialize Handler and
return buffer size

First N

Ignored

entry

Issue .SETUP for each

PI skip or API entry
vector

Loop an CAL, or
return to user
address, if .WAITR

L |

Initiate
function

to user
at LOC+N

CAL Entry to Device Handler

Figure 7-1
7-2

PI

ENTRY -- via

API
ENTRY -- via

JMS @ JMS* API Device Address
Skip Chain (i.e., JMS* (INT)
JMP* (INT

1. Save AC

2. Save location @
(including P.C.
LINK and Memory
Protect)

3. Turn I/0 ON

1. Save AC

2. Retain at INT the
P, C., LINK and
Memory Protect

3, If first time
through, NOP all

PI commands

Process 1/0

I Continue I

Test for other errors; in-
dicate error in header pair

M

I Process errorJ

Reset
(e.g., clear I/0
Busy Switch

1

Restore PI if PI interrupt
and Debreak and Restore

IOPSnnn

Return via
stored
P, C.

PI and API Entries to Device Handlers

Figure 7-2

exit sequence in order to ensure ¥Hat the exit takes place before tﬁe
interrupt from the issued IOT occurs.

The CAL instruction must not be used at any level (API or PIC) that

might interrupt a CAL. A CAL at such a level will destroy the content
of location 00020 for the previous CAL.

Care must also be taken when executing CALs at level 4. For example,
a routine that is CALed from level 4 must know that if a debreak (DBR
or DBK) is issued, control will return to the calling program (which

had been at level 4) at a level lower than level 4.

7.1.1 Setting Up the Skip Chain and API (Hardware) Channel Registers

When the Monitor is loaded, the Program Interrupt (PI) skip chain and
the Automatic Priority Interrupt (API) channels are set up to handle
the TTY keyboard and printer and clock interrupts only. The skip
Chain contains the other skip IOT instructions, but indirect jumps to

an error routine result if a skip occurs, as follows:

SKPDTA /Skip if DECtape flag.

SKP

JMP* INT1 /INT1 contains error address.

SKP LPT /Skip if line printer flag.

SKP

JMP#* INT2 /INT2 contains error address.
SKPTTI /Skip if teleprinter flag.

SKP

JMP TELINT /To teleprinter interrupt handler

.

All unused API channels, memory protect, memory parity, and powerfail,
also contain JMP's to the error address.

When a device handler is called for the first time in a core load, it
must call a Monitor routine (.SETUP) to set up its skip(s) in the Skip
Chain, or its API channel, prior to performing any I/O functions.

The calling sequence is as follows:

CAL N

16
SKP IOT
DEVINT

/N = API channel register 40 through 77 (see User's
Handbook Vol. 1, for standard channel assign-
ments) ,

/0 if device not connected to API.

/.SETUP function code.

/Skip IOT for this device.

/Address of interrupt handler.

(normal return)

7.1.2 Handling the Interrupt

DEVINT exists

in the device handler in the following format to allow

for either API or PI interrupts.

ONLY1

DEVPIC

DEVINT

IGNRPI

COMMON
DEVION

DEVIOF

/DISMISS

DVSWCH

If the Index,

vice handler,

LAC (NOP /LEAVE PI ALONE, WHEN API IS RUNNING
DAC DEVION /THESE REGISTERS

DAC DEVIOF /ARE AVAILABLE

DAC IGNRPI /THIS IS ONCE ONLY CODE

JMP COMMON

DAC DEVAC /SAVE AC

LAC* (¢

DAC DEVOUT /SAVE PC, LINK, ADDRESSING MODE AND

/MEMORY PROTECT
JMP COMMON

JIMP DEVPIC /PI ENTRY

DAC DEVAC /API ENTRY; SAVE AC

LAC DEVINT

DAC DEVOUT /SAVE PC, LINK, ADDRESSING MODE AND
JMP ONLY1 /API IS OPERATING, SO LEAVE PI ALONE.

/PI INTERRUPTS ARE NOT POSSIBLE, BE-
/CAUSE .SETUP EFFECTIVELY NOP'S PI

/SKIPS.
DEVCF /CLEAR DEVICE DONE FLAG.
10N /PI ALLOWS INTERRUPTS; API DOES A NOP.
I0F /API DOES NOP; PI TURNS IO OFF TO ENSURE
/NON-REENTRANCE AFTER ISSUING IOT'S.
DEVIOT '
ROUTINE
LAC DEVAC /RESTORE AC.
ION : /ION OR NOP.
DBR /DEBREAK AND RESTORE CONDITIONS
JMP* DEVOUT /OF LINK, ADDRESSING MODE AND MEMORY

/PROTECT.

Autoincrement, or EAE registers are used by the I/O de-

it is necessary to save and restore them.

7-5

.SETUP allows either API or PI, but not both for a single device. The
System Generator Manual gives the method for incorporating new handlers
and associated Skip Chain entries into the Monitor.

7.2 API SOFTWARE LEVEL HANDLERS, An Introduction

The information presented in the following paragraphs assumes that the
reader is familiar with the system input/output considerations described
in the PDP-15 User's Handbook Vol. 1.

7.2.1 Setting Up API Software Level Channel Registers

When the Monitor is loaded, the API software-level channel registers
(40 through 43) are initialized to

JMS * .SCOM+12 /LEVEL 4
JMS * .SCOM+13 /LEVEL 5
JMS * . SCOM+14 /LEVEL 6
JIMS * .SCOM+15 JLEVEL 7

where .35COM is equal to absolute location 000100 and .SCOM+12 through
.SCOM+15 (000112 through 000115) each contains the address of an error

routine.

Therefore, prior to requesting any interrupt at these software priority
levels, the user must modify the contents of the .SCOM registers so
that they point to the entry point of the user's software level handlers.

Example:

. SCOM=100
LAC (LV5INT / set level 6 entry.
DAC* (.SCOM+13 '

.

LV5INT exists in the user's area in the following format:

LV5INT 0 /PC,LINK, BANK/PAGE MODE,MEM.PROT.
DAC SAV4AC /SAVE AC

/SAVE INDEX, AUTOINCREMENT AND EAE REGISTERS, IF LEVEL 5

/ROUTINES USE THEM AND LOWER LEVEL ROUTINES ALSO USE THEM.

/SAVE MQ AND STEP COUNTER, IF SYSTEM HAS EAE AND IT IS USED

/AT DIFFERENT LEVELS.

/RESTORE SAVED REGISTERS.
DBR /DEBREAK FROM LEVEL 5 AND RESTORE
JMP* LV5INT /L, BANK/PAGE MODE, MEM. PROT.

7-6

7.2.2 Queueing

High priority/high data rate/short access routines cannot perform com-
plex calculations based on unusual conditions without holding off
further data input. To perform the calculations, the high priority
program segment must initiate a lower priority (interruptable) segment
to perform the calculations. Since many data handling routines would
generally be requesting calculations, there will exist a queue of cal-
culation jobs waiting to run at the software level. Each data handling
routine must add its job request to the appropriate queue (taking care
to raise the API priority level as high as the highest level that
manipulates the queue before adding the request) and issue an interrupt
request (ISA) at the corresponding software priority level. The general
flow chart, Figure 7-4, depicts the structure of a software handler

involved with queued requests.

Care must be taken about which routines are called when a software
level request is honored; that is, if a called routine is "open"
(started but not completed) at a lower level, it must be reentrant, or

errors will results.

NOTE

The DOS hardware I/0O device handlers do not
contain reentrant procedures and must not be re-
entered from higher levels.

Resident handlers for Power Fail, Memory Parity,
nonexistent memory violation, and Memory Protect
violation have been incorporated into the system
and effect an IOPS error message if the condition
is detected. The user can, via a .SETUP, tie his
own handler to these skip IOT or API channel regis-
ters.

LVSINT

SAVE PC,LINK,AC,
AUTO-INDEX REGS,
MQ,STEP COUNTER
AND CONDITIONS

OF EXTENDED MODE
AND MEMORY PROTECT

NO

RESTORE SAVED
REGISTERS

RAISE TO HIGHEST
LEVEL THAT
MANIPULATES
LEVEL 5 QUEUE

l

REMOVE ENTRY
FROM QUEUE

l

DBK BACK TO
LEVEL 5

GO HONOR THIS
. JOB REQUEST
VIA A JMS

Figure 7-4

7-8

DEBREAK
FROM
THIS

LEVEL

Structure of API Software Level Handler

7.3 WRITING SPECIAL I/O DEVICE HANDLERS

This section contains information prepared specifically to aid those

users who plan to write their own special I/0 device handlers for DOS.

DOS is designed to enable users to incorporate their own device hand-
lers. Precautions should be taken when writing the handler however,

to ensure compatibility with the Monitor.

Here is a summary of handler operation. The handler is entered via a
JMP* from the Monitor as a result of a CAL instruction. The contents
of the AC contain the address of the CAL in bits 3 through 17. Bit 0
contains the Link, bit 1 contains the Bank/Page Mode status, and bit 2
contains the Memory Protect status. The previous contents of the AC

and Link are lost.

In order to show the steps required in writing an I/O device handler,
a complete handler (Example B) was developed with the aid of a skeleton
handler (Example A). In addition, Appendices A and B are complete
flowcharts of the DTA and DKA handlers. The skeleton handler

is a non-reentrant type (discussed briefly at the beginning of this
chapter) and uses the Debreak and Restore Instruction (DBR) to leave
the handler at software priority level 4 or at a hardware level for
interrupt servicing (if API), and restore the status of the Link,
Bank/Page Mode, and Memory Protect. Example A is referenced by part
numbers to illustrate the development of Example B, a finished Analog-
to-Digital Converter (ADC) I/O Handler. The ADC handler shown in
Example B was written for the Type AF@1B Analog to Digital Converter.
This handler is used to read data from the ADC and store it in the
user's I/0 buffer.

The reader, while looking at the skeleton of a specialized handler
as shown in Example A, should make the following decisions about his
own handler. (The decisions made in this case are in reference to
developing the ADC handler):

a. Services that are required of the handler (flags,
receiving or sending of data, etc.) - By looking
at the ADC IOT's shown in the Reference Manual, it
can be seen that there are three IOT instructions
to be implemented. These instructions are: Skip
if Converter Flag Set, Select and Convert, and Read
Converter Buffer.

The only service the ADC handler performs is that of
receiving data and storing it in user specified areas.
This handler will have a standard 256-word buffer.

b. Data Modes used (for example, IOPS ASCII, etc.) -
Since there is only one format of input from the
Type AF01B ADC, mode specification is unnecessary in
Example C. ‘

c. Which I/0 macros are needed for the handler's specific

use; that is, .INIT, .CLOSE, .READ, etc. For an ADC,
the user would be concerned with four of the macros.

(1) .INIT would be used to set up the associ-
ated API channel register or the interrupt
skip IOT sequence in the Program Interrupt
Skip Chain. This is done by a CAL (N) as
shown in Part III of Example A, where (N)
is the channel address.

(2) .READ is used to transfer data from the ADC.
When the .READ macro is issued, the ADC
handler will initiate reading of the speci-
fied number of data words and then return
control to the user. The analog input data
received is in its raw form. It is up to
the programmer to convert the data to a
usable format.

(3) .WAIT detects the availability of the user's
buffer area and ensures that the I/O trans-
fer is completed. It would be used to ensure
a complete transfer before processing the re-
quested data.

(4) .WAITR detects the availability of the user's
buffer area as in (3) above. If the buffer
is not available, control is returned to a
user specified address, which allows other
processing to continue.

d. Implementation of the API or PIC interrupt service routine -
Example A shows an API or PIC interrupt service routine

that handles interrupts, processes the data and initi-
ates new data requests to fully satisfy the .READ macro
request. Note that the routines in Example A will oper-
ate with or without API. Example B uses the routines
exactly as they are shown in Example A.

During the actual writing of Example B, consideration was
given to the implementation of the I/O macros in the new
handler in one of the following ways:

(1) Execute the function in a manner appropriate
to the given device as discussed in(c). JINIT,
.READ, .WAIT, and .WAITR were implemented into
the ADC handler (Example B) under the subroutine
names ADINIT, ADREAD, ADWAIT (.WAIT and .WAITR).

Wait for completion of previous I/O0. (Example B

shows the setting of the ADUND switch in the ADREAD
subroutine to indicate I/0 underway.)

7-10

(2) 1Ignore the function if meaningless to the device.
See Example B (.FSTAT results in JMP ADIGN2) in
the dispatch table DSPCH. For ignored macros,
the return address must be incremented in some
cases, depending upon the number of arguments
following the CAL (see Chapter 3).

(3) Issue an error message in the case where it is
not possible to perform the I/O function - (An
example would be trying to execute a .ENTER on
the paper tape reader.) In Example B, the handler
jumps to DVERR6 which returns to the Monitor with
a standard error code in the AC.

After the handler has been written and assembled, the Monitor must then
bz modified to recognize the new handler. This is accomplished by the
use of the System Generator Program (DOSGEN)described in the DEC-
15-YWZB-DN12 manual,

Wien the system generation is complete, the PIP program (refer to
DEC-15-YWZA-DN13) must be used to add the new handler to the IOS UFD.
At this time, the user is ready to use his specialized device handler
in the DOS-15 system.

7.3.1 Discussion of Example A by Parts
Part 1 Stores CAL pointer and argument pointer, and
picks up function code from argument string.
Part 2 By getting proper function code in Part 1 and
adding a JMP DSPCH, the CAL function is dis-
patched to the proper routine.

Part 3 This is the .SETUP CAL used to set up the PI
skip chain or the API channel register.

Part 4 Shows the API and PI handlers. It is suggested
these be used as shown,

Part 5 This area reserved for processing interrupt and
performing any additional I/0.

Part 6 Interrupt dismiss routine.

Part 7 Increments argument pointer in bypassing argu-
ments of ignored macro CAL's.

7.3.2 Example A, Skeleton I/O Device Handler

/CAL ENTRY ROUTINE

.GLOBL DEV, /MUSY BE OF FORM AAA,

JMEOE3 / MED (MONITOR ERROR DIAGNOSTIC)
nEv, DAC DVCALP /SAVE CAL POINTER
DAC DVARGP /AND ARGUMENT POINTER
1S2 DVARGP /POINTS T0O FUNCTION CODE
LACs DVARGP /GET CODE
AND (77777 /REMOVE UNJT NO 1F APPLICABLE
182 DVARGP /POINTS 70 Cale2
TAD (JMP DSPCH
DAC DSPCH /DISPATCH W]TH
NSPCH XX /MODIFIED JUMP
JMP DVINIY /4 = JINLY
JMP DVFSAT /2 &= ,FSTAT) DLETE, ,RENAM
JMP DVSEEK /3 = SEEK
JMP DVENTR /4 = ,ENTER
JMP DVCLER /% = CLEAR
JMP pveLOS /6 = CLOSE
NLLJ DVMTAP /7 = MTAPE
JMP DVREAD /10 = ,READ
Jmp DVWRTE /11 = LWRITE
JMP DVWALT /12 3 L uAlY
JMP DVTRAN /43 3 [TRAN

/ILLEGAL FUNCTIONS IN ABOVE TYABLE CODED ASI
/ JMP DVERRS

/FUNCTION CONE ERROR
NVERR6G - LAW 6
JMPs (+MED*Y

/ERROR CODE 6
/T0 MONITOR

/DATA MODE ERROR
NVERRY AW 7
JMPe (MED*4

/ERROR CODE 7
/70 MONITOR

/DEVICE NOY READY

DVERR4 |AC (RETURN /RETURN (ADDRESS IN WANDLER)
/70 RETURN TO WHEN NOT READY
/CONDITION HAS BEEN REMOVED
DACe { +MED
LAC (4 /JERROR CODE 4
JMP & (MED®Y /70 MQONITOR

/170 UNDERWAY LOOP
NVBYSY D0BR ‘
JMP» DVEALP

/BREAK FROM LEVE_ 4
/L00P ON CAL

/NORMAL RETURN FROM CAL
NVEK DBR
JMP» DVARGP

/BREAK FRQOM LEVLE 4
/RETURN AFTER CAL AND
/ARGUMENT STRING

/THE DVINIT ROUTINE MUST INCLUDE
/A +SETUP CALLING SEQUENCE FOR

ZEACH FLAG CANNECTED YO AP!
/AND/OR P] A(AT SGEN TIME),
/THE SETUP CaLLING SEQUENCE 1Sy

DVINIT AL N /N = APl CHANNEL REGISTER
/(4p =77), N = @ IF NOT CONNECTEN
/70 AP
16 /10Ps FUNCTION CoDE
SKPInY /SK1P 10T TO TESY THE FLAG
DBVINT /ADDRESS QF INTERRUPT

/HANDLER (P] OR API)
/THIS SPACE MAY BE USED FOR 1/0 SUBROUTINES
/INTERRUPT HANDLER FOR APl OR PI

ONL Y1 LAC (NOP
DAC DEVION
DAC DEVIQF
DAC DVSWCH
DAC IGNRP]
JMP COMMON
pvelc NAC DEVAC /SAVE AC
LAC® (2 /SAVELIPC, LINK, RANK/PAGE MODE
NAC nvouT /AND MEMORY PROTECT
JMP COMMON
NVINT JMP DEVPIC /Pl ENTRY
nA¢ DEVAC /AP ENTRYI SAVE AC
LAC DEVINT /SAVEL PC, LINK, BANK/PAGE MODE
DAC DEVOUT /MEMQRY PROTECT
IGNRPL JMP aNLY1 /LEAVE P1 ALONE
COMMON DEVCF /ENABLE Pl ORrR NOP
NEVION 10N /ENABLE P] OR NOP

/THIS Al THE AREA DEVOTED To PROCESSING INTERRUPT AND
/PERFORMING ANY ADDITIONAL [/0 DESIRED,

NEVIOF 10F /DISABLE Pl pR NoP

DEVINT /DIMISSAL BEFORE INTERRUPT

/FROM THIS 10T 0CCURS
/ZINTERRUPT MWANDLFR DISMISS RoUTE

NYDISM LAC DEVAC /RESTORE AC
DVSWCH 10N /10N QR NOP
NBR /DEBREAK AND RESTORE
JMPs neEvouT /LINK, SANK/PAGE MQDE,
/PROTECTY

/1F THE HANDLER USES THE AUTOINCREMENT , [NDEX
/0R EAE REGISTERS, TWEIR CONTENTS

/SHOULD BE SAVED AND RESTORED, FUNCTIONS
/POSSIBLY 1GNCRED SHOULD CONTAIN

/PROPER INDEXING TO BYPASS

/CAL ARGUMENT STRING

/

/CODE T0 BYPASS]GNORED FUNCTIONS

, N

NDVIGN2 1SZ DVARGP /BYPASS FILE POINTER

JMP DVECK

P1-L

7.3.3 Example B. Special Device Handler for AF01lB A/D Converter

PAGE 1 R ney
1 /ADC HMANDLER
2 /
3 781321 A ADSFs731321 /SKIP IF CONVERSION FLAG 1S SET
4 701324 A ADSC3721304 /SELECT AND CONyFRY (ADC FLAG IS CLEARED
5 /AND A CONVERSION IS INITIALISED)
[7021312 A ADRB=721312 /READ CONVERTER RUFFER INTO AC AND CLEAR FLACG
7 /
8 .GLOB|L, aDC,
S 440002 A 10X=152
12 foeep3 A JMED=3 /MED (MONITOR ERROR DJAGNOSTIC)
11 /
12 PeEe7 R 140152 R ADC, DAC ADCALP /SAVE CAL POINTER
13 APPB1 R P40151 R DAC ADARGP /AND ARGUMENT POINTER
14 nP202 R 442151 R 10X ADARGP /POINTS 10 FUNCTION COOE
15 24203 R 220151 R LAC® ADARGP /GET COpE
16 ANAB4 R 442151 R 10X ADARGP /POINYS 10 cal ¢ 2
17 v2Pe% R 340154 R TAD t JMP DSPCM
18 "@A06 R 040007 R DAC pSPCH /DISPATCH WITH
1% FOP27? R 740040 A DSPCH XX /MODIFIED JuUMP
20 20010 R 680027 R JMP ADINIT /1% INIT
21 AN211 R 6020074 R JMP ADIGN2 /2% ,FSYAT, ,DLETE, ,RENAM
22 20042 R 608274 R JMP ADIGN2 /3% ,SEEK
23 G2e13 R 604223 R JMP ADERR6 /43 ,ENTER
24 ngAle R 608023 R JMP ADERRG /53 ,CLEAR
25 f"AG1S R 62P075 R JMP ADIGNL /6%,CLOSF
26 PPM16 R 682875 R JMP ADIGNL /7% MTApg
27 fPe17 R 609051 R JMP ADREAD /419=,REaAD
28 ¢P02R R 688023 R JMP ADERRS /11s,WRITE
29 70021 R 600044 R JMP ADWALT /12=,WAlT
gﬂ gr22 R 600023 R JMP ADERRG /3193 ,TRAN
1 /
32 ZILLEGAL FUNCTIONS IN ABOVE TABLE CONED AS
33 / JMP ADERRS

34 LEJECT

S1-L

LA
A0724

QMRS
AGP26

ppa7
ree3p

N34
ran32
ARAT 3
234
ner3s
P36
N3y
7QP4q
rpedt

0042
npn4s

BB OD

O xn

760006
622155

760227
622155

440151
200156

260151
44151
geees?
70R016
721321
220111
201341
242033
600242

142837
622275

0 »

by

VDT V>»>>»>» D0

/

/FUNCTINN CODE ERROR

/

ADERRS L AW 6 /ERROR CnDE &
JMP# {MED*L /70 MONTITOR

/DATA MODE ERRQR

ADERR7 LAW 7 /ERRNR ¢cnDE 7

Jup# (MED¥1 /TO MQONITOR
/YHE ADINT RGUTINE MUST INCLUDE & ,SETUPR

/
ADINIY !DxL ADARGP /10X TO RETURN BUFF SIZF
DEC
LAG {256 /STANDAR: BUFFER S1Zr (UrCIsmap)
,0CT
DACH ADARGP /RETURN 1T Tp USER
10X ADARGP
ADCMOD CAL 57 /57zAP1 CHANNEL
ADCKSM 16 /ySETUP 10pS FuNCTINN £ONE
ADCRP ADSF /AUC SK1p 101
ADLBKP ADCINT ZADDR, NF INTERRUPT
ADUND LAC W2 /SET=UP nNCE ONLY
ADWE DAC ADCMCD /SKIP SgT=UP CONE [F MNRF
ADWRCT UMP ADSTOP /7, INITS ARF DOANE
/

/8T0P ADC ROUTINE CLEARS 170 UUNDFRWAY SwITCH
/
ADSTOP 02N ADUND |
JMP ADIGu1 /RETURN
/
sTHE PREV]OUS TAGS In THE CAl AREA ARE USED FOR
/STORAGE DURING THF ACTUAL ,READ FUNCTIO™
/
/ADCKSM 1S FPR STORILG THWE CHECKSUM
/ADCBP IS THF CURRENT BUFFER POINTER
/ADLRHP 1S THE LINE RUFFER HFEADER POINTER
/ADUND 1S FOR DEVICE UNDERWAY SwiTCH
/ADWE IS USED AS THWE COUNTER
/ADWPCT 1S USED 10O STORFE CURRENT WHRD COUNT
/
LJEJECT

9T1-L

176
17
108
129
110
111
112
113
114
115
116
117
118

R

nQo44
aG045
200246

feg47
2050

rE2s51
uans?2
2eN53
ree%54
neess
nwpeseé
did-¥4
wenen
nenéy
wep62
Cea63
roA64
2g0es
20066
w@ne?
Q373
nee7e
r@e72

LEe73
pe74
42275
nEare

nQR7?
ADL0v
"L
nple?
A2103
1p104
FE1as
nPA106
7p1e7

3

LV OVIDVDDVDTVDVVILDV0U0TT 3

DO T

VDD LXETBAOTAID

4’3 |

200037
741229
622275

723344
620150

200037
740291
600047
242037
220152
500157
740200
600025
220151
n4a0235
2400236
440151
220151
240040
142243
1400234

440035

4400235

781374
442151
783344
622151

20€167
242117
742142
740145
7240115
600116
$n4¥153
220161
pagy52

Tr»

DV VOV IDIVVDI>IVDOVDI>» >

P 2 Vil g

DV ODVDTVDVTO

ADWAIT LAC ADUND
SNA
JMP ADIGNY

/170 UNDERWAY | 0naP

ADBYSY DBR
JMP® ADCALP

/

/

ABREAD LAC ADUND
SEAICMA
JMP ADBUSY
DAC ADUND
LACH ADCALP
AND (7382
SZA
JMP ADERR7Y
LACH® ADARGP
DAC ARCRP
DAC ADLBMP
10X ADARGP
LACS ADARAGP
DAC ADWC
DEM ADWPET
DEM ADCKSM
10X A0CBP
10X ADCBR
ADSC

ADIGN2 DX ADARGP

ADIGN1 DBR
JMP @ ADARGP

/INTERRUPY HANDLER FOR

/

ONLYY LAC (NOP
NDAC ADCION
NAC ADCONT
DAC ADSWCH
DAC tGNRPI
JMP cOMMON

ADCPIC DAC ADCAC
LAC® (2}
DAC ADCONT

EJECT

/CHECK Y0 SEE IF 1/0 IS UNDERWAY
/1F NOT SET IT WITH =1

/17 WAS SET,G0 BHACK TO Cal

/8ET IT

/.00K AT MQDE

/B1TS 6=8 ONLY

/10PS BIvARY?

/NO, ERRNR

/GEY LINE BUFFER HEADER POINTER
/STORE 17

/ALSO STORE 1T FOR LATER HWEADER
/INCREMENT ARG, POINTER

/GET =L ,t,w,C(2'8 COMP)

/STQRE [T IN WORD COUNTER

/ZERO WoRD COUNT REG,

/ZERO CHFCXSUM REG,

/GET PASY HEADER PAIR

/NOW POINTING AT BEGINNING OF
/BUFFER

/STARY yp REVICE

/INCR, FnR ExIY

/BREAK FROM LEVEL 4

/RETURN AFTER Cal

APl OR Pl

/SAVE AC
/SAVE Po,LINKEX, MODE
/MEM PROT,

LT-L

PAGE

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
142
141
142
143
144
145
146
147
148
149
152

R

7pLLP
PE1L
rg1i2
70113
f2114
1ML15
Ap116
2¢117
Q127
Ag121
122
70123
24124
40125
nEL2e
10127
013
70131
"@132
“9133
134
n@13s
1p136
"g137
23140
rg141
10142
@143

np144

VLBV O0IDDOIIDVDDDTDATLDLDIDALBOLONL LG

721

620116
6801145
242153
280111
240152
6BRa77
701312
720042
262035
4402035
440041
340034
242034
442049
60P142
200041
742230
742030

740020

500162
260236
440236
340234
P6d236
142037
620144
7020¢2
7¢13¢4

202153

ADCINT

1GNRP]
COMMON
ADCION

AnCaNnT

JMP
JMP
DAC
LAC
DAC
JMP
ADRB
10N
NACe
10X
10X
TAD
DAC
152
JMP
LAC
1AC
SWHA
RAR
AND
DACS
10X
TAD
NAC®
NEM
JMP
10F
ADSC

cOMMAN
ADCPIC
ADCAC
ADCIAT
ADCOUT
rNLY1

ADCEBP
ADCRR
ADWPCT
ADCKSM
ADCKSM
ADWC
ADCONT
ADWRCT

(377¢00
ADLRBUP
ADLBHWP
ADCKSM
ADLBWP
ADUND
ADDISM

/RPIC ENTRY

/AP1 ENTRY, SAVE AC
/SAVE Pe,LINK.EX,MODE
/MEM PROT

/READ CouVERTER RUFFER
/ENARLE plC FOR OTHE®R DEVICES
/STORE DATA IN USER RUFFER
/INC, BuUrFER POINTER

/INC, WorD PAIR COUITER

/ADD CHECKSUM

/8TORE [T

/15 1/0 cOMPLETE

/NO KEEP GOING

/YES,COMPUTE WQRD CAUNT PAIR
/MAY RE DD

/70 TOP WALF

/MAKE Wn, PRS,

/8 BITS aNLY

/STORE N WEADER #1

/ZINC, To STORE CKSUM

/ADD WORN PAIR COUNT

/STORE 1n WEADER #2

/JCLEAR DEVICE UNDERWAY

/EXIT

/DISABLE PIC QR NOP

/BEFORE INTERRUPT FROM THIS 10T 0CCURS

/INTERRUPT HANDLER DISM1SS RTE

/
ADDISM

LAC
JEJECT

AbCAC

/RESTQORE AC

8T-L

PAGE

151
152
153
154
155
156
157
158
159

R pay
NP145 R 720942
70146 R 703344
nP147 R 620152
AQ152 R gOoeAce
70151 R Q02QQ0Q
rR152 R 0e@QeR
ng153 R Q02000
) peaea
ap4154 R 6002227
_12155 R 200004
@156 R 00042¢
10157 R 207020
AR4160 R 7420@0
7@161 R 0220020
ag1é2 R 377222

SIZE200163

>33 >3 0> >

>>> > P> 0r

el

sl
sl
jof 8
®L
S

ADSWCH

ADCALP
ADARGP
A0CouY
ADCAC
/

10N
DBR
JMP®

LENU

NO ERROR L[INES

ADCouT

/10N OR :0p

/OLBREAK AND RESTQRE
ZLINKGEX MODE s MEM,PROT
/ADD CAL POINTER

/4UD ARGUMEANT PQINTER
/PCDL'FM|MP

/AC SAVEN HERE

6T-L

PAGFE
ADARGP

ADBUSY
ADCAC
ADCALP
aDEBP
ADCINT
ADCI0ON
ADCKSM
ADCMOD
ADCOMT
ADCOUTY
ADCPIC
ADE,
ADDISM
AQERRG
ADERRY
ADTGNY
ADIGNR

ADSC
ADSF
ADSTOP
ADSWCH
ADUND
ADWATLTY
ADWC
ADWPCY
COMMON
DSPCH
10X

IGNRP]
ONLY1
+MED

(<] =
79151

nI247
2153
RIS LT
A72735
011
47117
12234
ANz
oRA140
eA15n
2125
age@r
PR14a
FeEAR3
ndaes
NAX7y
ANA74
n2iz27
AeAZA
771317
fRR%q
TnL304
7724301
Adaar
145
APAZy
a8R44
NnEA4
fngn41
70116
ngagy
44320

A2115
nrn7y
2702093

13
96
ATe
115
12
54w
5%
1m1°
53
S52a
111
117
115«

CROSS REFERENCE

14
104

119

129

1244

124
39

15
106

149

88
1p@
122

138

1454
153

76

132
129
125a
19a
16
149

42

16
1554

157+
1540
101

131

1564

84

134

46

46 58 51 92

127 128

141

87 143

51 95 100 161

%5

124

CHAPTER 8

BOSs-15

BOSS enables DOS users with a card reader and a line printer to run
jobs sequentially, with a minimum of operator intervention. BOSS sup-
ports a subset of the DOS system programs, and adds a line editor, its
own resident and nonresident routines (called Resident BOSS and Non-
resident BOSS), and the Procedure Files. Paragraph 8.1 describes Pro-
cedure Files. Figure 8-1 shows which monitor supports each system

program.

The DOS programs run by BOSS are identical to those run by DOS. Ex-
ceptions are the Resident and Nonresident Monitors, which are ex-
plained later. BOSS expands the information on Control Cards into

a series of commands in the format expected by the DOS system pro-
grams. Nonresident BOSS does this command expansion, and stores the
expanded commands in a disk file, the Run Time File (RTF). Since DOS
programs expect to communicate with aﬁ operator at a teleprinter, BOSS
feeds the expanded commands to the prégrams via .DAT slots assigned

to TTA. In BOSS mode, therefore, Bosé attaches .DAT-2 to the Run Time
File, and directs most teleprinter ouﬁput to the Line Printer. Pro-
grams can force I/0O to the teleprintef by setting bit 4 in .SCOM+52,

and proceding with macros directed to TTA.

Whenever bit @ of .SCOM+52 is set, thé System Loader Interface attaches
the Resident BOSS code to the Residen£ Monitor. The main purposes

of Resident BOSS are to (1) ensure that BOSS will retain control of

the teleprinter, (2) feed commands to;programs via the Run Time File,
(3) properly route internal Monitor cémmands, such as .EXIT, .GET and
.PUT, and (4) direct teleprinter output to the Line Printer. Figure
8-2 illustrates the connections between the DOS Resident Monitor and
the BOSS Resident Monitor that accomplish these changes. Figure 8-3,
the flowchart for Resident BOSS, further describes Resident BOSS.

Resident BOSS communicates with Nonresident BOSS by TRANing informa-
tion to and from the first block of Nonresident BOSS. Nonresident

BOSS gains control on all error conditions, such as IOPS, operator
abort, Time Estimate exceeded, and after a B0OSS15 command. Figure 8-4

is a flowchart of Nonresident BOSS.

DOSGEN

FOCAL

DDT

EDIT

LINKING LOADER

TKB

PATCH

8TRAN

89TRAN

RESIDENT
MONITOR

NONRESIDENT
MONITOR

SYSTEM
LOADER

BOOTSTRAP

PiP
CHAIN & EXECUTE
FORTRAN

MACRO-15
SRCCOM

- UPDATE

DUMP

Figure 8-1, BOSS/DOS Intersection

NONRESIDENT

RESIDENT
BOSS

B.PRE

PROCEDURE

15-0658

RESIDENT BOSS15 INTERFACE TO RESIDENT MONITOR
AND USER PROGRAM OR SYSTEM PROGRAM
PROGRAM CONTROL

— = —~— — INFORMATION FLW

**IF QDUMP WAS SPECIFIED THEN THE DUMP
WILL TAKE PLACE BEFORE GOING TO

RESIDENT BOSS15

DISK
HANDLER

NOTE: SEE RESIDENT BOSS FLOW CHARTS
FOR DETAILS.

TTY

DEVICE

LINE

10PS ERROR FROM
1/O HANDLER OR USER

1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

——®©

“CAL” ENTRY
TOTTY

PRINTER
HANDLER 10PS 4
RETURN
3
— — — — — — — — — —— —
I RESIDENT BOSS15 l RESIDENT MONITOR
DAT UFDT
T
I l s EXPANDED NORMAL
| 10pS
4 ERROR ERROR
I l ! PROCESSOR PROCESSOR
BACK TO USER AFTER N !
.READ .WAIT TO -7 OR SWITCH READ | 1 3 fp—
IF USER "CAL" WAS READ T 1 !
NOT A .READ | TS
I i CORE
I i e 1Q
'y &b
T I 3¢
| 1 2 I
| i
1
INFO TO & FROM DISK | I]
0}
' CHECK FOR 10PS 4 T l T
| | OR 1Q WANTED** ' []
|
i] [!
]
I l TRANSFER ERROR I I : \
I‘ DATATO 1st BLK OF T
I Lo NR BOSS15 | I i
]
| | |
| | ot
7 INPUT
’ I ' FROMTTY
)
BOOTSTRAP 1
]
‘ I | I ! EXIT OUTPUT
I N PROCESSING TOTTY
I I TRANSFER CARD I
L] —le—} —{ DA TO mtaLOCK I
OF NR BOSS I TELETYPE
| EXIT 3 | HANDLER
I PROCESS 1T i ‘ i 1T TYPED
USER WANTS TTY SWITCH USER WRITE g | l
TO -3TO 6 UNLESS
BACK TO USER TTY IS SPEC. BIT 4 OF - l
AFTER WRITE SCOM + 52 SET f¢+-—— 1T ——————F——1
WAIT OR IF NOT
A WRITE CAL ' |
AND USER DOES O — | I — — — —— ———- —] HANDLER
NOT WANT TTY |
5 |
| BOSS15
CONTROL 10 |
CARD DATX |
DATA
| BACK FROM | |
| DATX | _,l]
.READ WRITE .READ
o x a :
CARD READER DATA OR ANY DAT ASSIGN TO TTY

HANDLER

*USER OR SYSTEM PROGRAM

*NOT NON-RES BOSS15

Figure 8—2

8-3

15-0659

IOPS Error Expanded Control Q

Routine: IOPS Error Processing,
EXITLT Routine via ,SCOM+72
BOSS@

IOPS.E (JMS

et Expanded Error
flag for Nonresident
BOSS

Store error data in

Resident BOSS .ERR,

.MED, and in the ad-
dress pointed to by

«SCOM+37

+Q
wanted

Go to CTRL
Q Routine:
MANSAV

Monitor TRAN in the first block of
onresident BOSS, starting at
C(.SCOM+2)

Starting at C(.SCOM+2) + 448' trans-
fer IOPS error data to core image of
block

[set bit 5 of .sCOM+52 |

Monitor TRAN block out
to first block of Non-
resident BOSS

Points within the Resident Monitor which transfer control to Resident BOSS -~ 15

RESIDENT BOSS - 15
Figure 8-3

8-4

DAT3.B (.DAT-3 or any .DAT slot

assigned to TTA.)

1/0
to tele-
printer

Clear bit 4 or

DAT2.B

«SCOM+52
Compose a .WRITE 2. Make sure tele-
to .DAT+6, using printer is not
caller's data busy
mode
Transfer to
TTA
<WRITE N <~
Y

Move user's buffer (minus the
header word pair) to Resident
BOSS (always 428 words)

!

Issue WRITE to .DAT+6 (the
Line Printer) and wait for
completion

Using caller's buffer address and
word count, compose a .READ to
.DAT~7, the run time file (RTF)
on the system 8evice

&

Issue .READ to .DAT-7, and await
completion

we reached
the end of
file of

Increment the Set bit 2 of
line count SCOM+52

1

Return to

use after
CAL

Processing for I/O Macros addressed to ,DAT slots -2 or =3, or any slot assigned to TTA.

Points within the Resident Monitor which transfer control to Resident BOSS - 15

RESIDENT BOSS = 15

Figure 8-3 (cont.)

8-5

+EXIT TIME OUT Operator .PUT and .GET

Processing Processing Abort 4T Processing
EXITA TIMGON TTDDTR B0OSS2
3
Set bit 3 in .SCOM+52||Set bit 7 in .scom+5§] .GET
Y Set bit 1# in
+SCOM+52
|set bit 11 in .SCOM+52]
ange
entry point via
+«SCOM+72
SNl
T
Go to CTRL
B.EXIT Routine at

MANSAV

{Set bit 17 in .SCOM+52]

Set up .SCOM+43 & 44 to
bring in the Nonresident
Monitor

B.EXTo

Was
a control N
card read
by user

Y

Monitor TRAN first block of Nonresident BOSS
starting at C(.SCOM+2)

Move card image rrom CD"s handler’s buffer to
block image, and TRAN the block back to Non-
resident BOSS

<
™~

Issue .INIT's to every entry in the Mass
Storage Busy Table

lZero the number of Busy Table entries |

Return to
+EXIT pro-
cessor at
EXITA + 1

Points within the Resident Monitor which transfer control to Resident BOSS - 15

RESIDENT BOSS - 15
Figure 8-3 (cont.)

8-6

Start Address 424

IExecute bank bit initialization codq

l§ave value of TIME OUT clock, and disable itﬂ

4

Disable CTRL C and set up CTRL T address; save contents
of .SCOM+42, set MICLOG bit and clear user bit

W_
Set .UFDT -15 and -14 to "CTP" and delete all files in
the CTP UFD named PRCFIL PRC

Perform .ENTER on ,DAT-15 for PRCFIL PRC; set line count = ﬂ]

Save current logged-in UIC in D.12; force
"CTP" to be logged-in UIC

[Save system device code 1in D.ll]

time loade
after a BOSS1S
command to

[éet bit zero of .SCOM+52]

[set bit 17 in Job Status Word Ac.sng

End
of Run
time file
reached

Set bit 2 in Job status word
Print, "END OF RUN TIME FILE
REACHED BY USER" on the LP

j >l

)

Next Page

Nonresident BOSS
Figure 8-4
8-7

From Preceding Page

user issue
a JGET or
. PUT

Neither

Print on Line Printer,
,GET "USER DID A .PUT"

Set bit 11 in Job ' '

Status word

—\
Set bit 10 in job
Status Word

Print on Line Printer,
"ILLEGAL ,GET BY USER"

Set bit 5 in Job
Status Word

Print on Line Printer,
"TERMINAL ERRORessees"

GDUMP

[Set bit 6 in Job Status Word]

LOADER
error,

Print on Line Printer,
"LOAD ERROR¢ceesososs"

Set bit 16 in JOB
Status Word

Time
estimate
exceeded

lSet bit 3 in Job Status Word

4 Set bit 7 in Job Status Word

Print on Line Printer, "TIME abor Print on LP, "OPERATOR ABORT"

ESTIMATE EXCEEDED"

ABRTJH

Nonresident BOSS
Figure 8-4 (cont.)

8-8

from BOSS
Mode re-

End Job

Flag up in
Job Status
word
: N B

lRead next Control Caré]

Not a CONTROL CARD / DECARD N\ o1y capp perypy

Decode
card

Normal CONTROL
CARD Return

BOSS pro-=
cessing PIP
commands

Y
|Close out PIP command processiné]

Issue .CLOSE to ,DAT-

il

r [Qther)
O
Nonresident BOSS

Figure 8—4\(cont.)
8~-9

BOSS in
process for
PIP com-
mand

[Write line in "RTF" Evrite "PIP" line into "RTF" |

4
|Count line and set PIP switch]
- |

N, <
Ll o~

Set up to get character from card:
Skip over "$" and pack character in
CARDP

s | BIRC.L

|Get a character|

it a
Carriage

|Pack the character]

Does
character

count =

74 0

Ye
-~

[Pack a CarriagebRETURNl

Nonresident BOSS

Figure 8-4 (cont.)

8-10

Is
there

an active
job

| Clear Job Status Word |

Make sure the Time Out
Clock will be disabled
upon exit from NR BOSS

y
Set bit 8 in ,SCOM+52
(Job Active Flag)

Store JOB I.D. into account in-
formation buffer

i

N
IiGet a characté?]

Pack character into
account buffer

9
charac-

DJOB

ters reached

'/
Enter date and start time
into account information
buffer

Start elapsed time clock, by
depositing zero into ,SCOM+34

|Print Job Start Message on LP|

SUBSTT

Nonresident BOSS

Figure 8-4 (cont.)

8-11

Is
N it the v
terminator
code
Pad with nulls until nine
characters have been packed
X ~N 1 -
2T

(Create an ADD File)

Set CRT Flag

r§et up to pack into CARD?]

user sup-
ply a file

[Gse default file name "Tng kack file name and extension, if ah;]

extension
on card

| use default extension "aDD"|

lPerform .USER to .UFé%—ll, wlth user's UICJ

[Perform +ENTER to ,DAT-1l1 for fqu

CR.ERR

Print on LP, "ILLEGAL

COMMAND FOR ADD FILE"

|read the next card)

Not

& / DECARD
Ctrl

Set bits 4 & 17 in
Job Status Word

I;CLOSE .DAT- g

(ENDJOB

Decode
the card

CARD

N $$

\

|write card 1nto ADD File |

Nonresident BOSS

Figure 8-4 (cont.)

8-12

Card
Y

.CLOSE .DAT-11
Clear CRT flag

Set bit zero of ADDSTA
Set bit one of .SCOM+56

[Zéro directory entry bloEEq

ISet up to pack into ADDFILI

user sup~
ly a fil

|use default file name "TMP" | |Pack file name and extension, if any|
L < . |

extensio
n card

extension

T <
<

current
control card
$JOB

[Clear Job Active Flagl

Inhibit Card Reader
(Set bit 1 of .SCOM+52
|

Enter finish and

1\
current elapsed time into Set End Job Flag
control card Account Informa- (bit zero of Job Status
$JOB tion buffer, and word)

.CLOSE ,DAT-14

|Recpen Job Procedure file] Y
Convert elapsed
time to _hhmmss

Next Page
Nonresident BOSS
Figure 8-4 (cont.)

8-13

From Preceding Page

Account

RAFI
N
Perform .ENTER to .DAT-14
(ACCNTG P@1); Set up the)

buffer with 176g@2, X, -1

Write out a ten-block
file, and close .DAT-14

file ex-
ist

Is
file com-

Increment alternate file
extension (@pg2,003,..777)

plete

|Reset File Entry Count to zero|

Calculate buffer position
within block from entry
count

NDJIMG

Move entry into proper
block image, via .RTRAN

[Update entry count by ll

In
process
for PIP

Does
alternate
file ex-

imum #
of account
files

Tell operator
on console TTY

Rename account file
to new alternate
name and extension 124 G

Print End Job Message
and second line, con-
taining ID, Date, S.
time, F. Time and run
time

Close out PIP com-
mand processing

Set bit 9 in .SCOM
+52 (Exit Boss flag)

process
for PIP
com=
ands

Close out PIP com=-
mand processing

.
)

[write and count “LOGOUT" line to "RTF"]

Nonresident BOSS
Figure 8-4 (cont.)

8-14

Restore .SCOM+42 with
user mode bit (bit 17)
set; restore user's
UIC

Write out BOSS line in
"RTF" (BOSS-15) and
count it

Store line count in bits
#-8 of .SCOM+75

llRTFl!
longer than Y
777¢
Issue .INIT to "RTF"; lines
zero all BOSS reg-
isters and bits Print on LP, "RUN TIME
\I/ Close "RTF" and ADD files] FILE TOO LONG"
Make "SCR" the login UIC
TRAN out first 400g worfl ! B
of Nonresident BOSS
N W
Close ADD file, ,INIT "RTF"
Clear various bits in and .ENTER a new "RTF"
«SCOM+52
Indicate "RTF" is empty—l
+EXIT
(To NRM)
MPP R 1 B

IWrite out "DUMP" line to "RTF"

Disable the Time Out Clock, so
the user gets a complete dump;
count two lines

v

Write out "ALL" to "RTF" and
ent with an ALT MODE

Nonresident BOSS

Figure 8-4 (cont.)

8-15

8.1 PROCEDURE FILES

To each BOSS command there corresponds a disk-resident ASCII file,
called a Procedure File. The Procedure File contains DOS commands.
When DOS executes the commands in the Procedure File, it carries out
the function specified by the BOSS control card. The DOS commands

in the Procedure Files contain fields (for instance, a file name)

that Nonresident BO0OSS fills in with text strings from the control
card. These fields are called, "Variable Fields". Before executing
the DOS commands contained in the Procedure File, therefore, all the
variable fields have to be resolved. This process is very similar to
a macro expansion, where (1) DOS is the assembly language, (2) the
BOSS command name is the macro name, (3) the contents of the BOSS
control card are the macro arguments, and (4) the Procedure File is
the macro definition. The expanded DOS commands are put in a Disk
File, called the "Run Time File (RTF)". The RTF can contain the ex-
pansion of one or more Procedure Files, up to 7778 IOPS ASCII records.
BOSS expands Procedure Files strictly on a text string, character
basis. It has no knowledge of the intrinsic function of each BOSS
control card, except for $JOB, END, SCRT, and $ADD ($END, CRT, SADD
have no Procedure Files) Appendix C contains a listing of all standard
Procedure Files.

8.1.1 Procedure File Format

In order to ensure successful expansion, all Procedure Files must fol-
low a strict format. The first record of the Procedure File must be

a control record, with parameter information. The first record may
also contain comments, because BOSS interprets only pertinent informa-
tion, and ignores the rest. The numbers @, 1, 2, 3, and 4 specify
different options. All other characters are ignored. The option
digits can appear in any order, and anywhere on the record. The op-

tion specified by each number is given below:

@ - Expanded Substitution {(default, if "3" not given
explicitly)

This option specifies that the Procedure File is to be
expanded according to the normal rules of substitution,
which are given below.

The

If BOSS finds

Open Ended File (default, if "2" not given
explicitly)

This option instructs the Nonresident BOSS Monitor
to leave the RTF open after expanding the current
Procedure File. BOSS then searches for the next
control card.

Closed End File

This option instructs Non-resident BOSS to close
the RTF after expanding the current Procedure File,
and to execute the DOS commands in the RTF. Pro-
cedure Files corresponding to commands that may
possibly be followed by "Data Cards" should be

of Type 2.

Direct Substitution

This option indicates the BOSS should not expand
the Procedure File according to normal rules.
Refer to paragraph 8.1.2 for information on
Direct Substitution.

Test Mode

This option indicates that BOSS should echo the
Procedure File expansion on the Line Printer.
This allows a check on the Procedure File.

following combinations are illegal:

@ and 3
1 and 2

an illegal option combination, it will print,

ILLEGAL PROC FILE

and search for the next control card.

BOSS uses all

other records in the Procedure File as macro definition

records. Records after the first one are all Macro Definition Records.

For each such

record, a record will be written in the RTF. Each Macro

Definition Record has the same format. Two types of fields are used:

K-fields and V-fields. K-fields specify constant character strings

that will be written intc the RTF exactly as they appear in the Pro-

cedure File.

vV-fields specify variable character strings to be sub-

stituted from specified strings on the Control Cards. Each Macro

Definition Line of a Procedure File can contain any number of K- and

V-fields, in any combination. V-fields are delimited by @-signs.

K-fields are delimited by adjacent V-fields, or the end or beginning

of the record. Since there are only two types of fields, only one
need have delimiters. Two adjacent V-fields, however, require two

adjacent @-signs.

K=-fields

K-fields may be any string of legal IOPS ASCII characters, except the

@-sign.

-fields

A V-field has the following format*:

Afgn
v = U@n V- flelg>]
- Dnn fiel

0

The two @-signs delimit the field. The first part of the field (A,
D, U or 0) is a card-position identifier, and must be present. It
identifies the position on the current Control Card of the character

string to be substituted in the RTF. The legal combinations are:

AgQ@,AQ1,....AQ9
Ugyg,ugl,....ugo9
Dgg,DP1,....D@9,DlQE,...D17
0

With the exception of D1@ through D17, each of the above position
identifiers corresponds to a unique character string of the Control

Card, according to the following scheme:
$CMD;O AQY:D@P (UPY) ; APL:DPFL(UPL) ;.. .. ;AP :DF9 (UFI)

The D1@...D17 position identifiers do not correspond to character
strings found on the Control Card, but rather to character strings

defined by BOSS. Thus,

D1@ - Unused

D11 - .SIXBT representation of the System Device Code
('‘DK'or 'DP') :

D12 - Current Logged in UIC

D13 - .SIXBT representation of Carriage RETURN

D14 - .SIXBT representation of ALT MODE

D15 - Unused,

D16 - Unused

D17 - Unused

* Standards for this format description are identical to those speci-
fied in Chapter 5 of the DOS-15 User's Manual, DEC-15-MRDA-D.

8-18

The parentheses in a V-field must be present. They are used to speci-
fy a default string. The default string is used in case the string

on the Control Card specified by the position identifier is null. A
set of parentheses must be included, even if the default string is
null. The default string itself can be a variable, resulting in nested

17

variables. Nesting has a theoretical limit of 2 variable fields.

8.1.2 Direct Substitution

When processing a Direct Substitution Procedure File, BOSS places the
fields on the Control Card into the RTF just as they stand with only
leading spaces ignored. That is, BOSS does not necessarily expect to
find file names, and so on, as with normal substitution. Fields on
the Control Cards are separated by semi-colons (;), and are processed|
in a serial manner. The ampersand (&) is used for a special purpose.
It causes the current record being composed for the RTF to be termin-
ated with a Carriage RETURN, and written cut, and a new record started.
This is so that the limit of seventy-five characters per line will not

be exceeded.

There are only two legal field types within the Procedure File. They

are as follows:

1l. A@@ through A99
2. D1g through D17 (System Defined)

In making up Direct Substitution Procedure Files, the following rules

must be followed:

1. The first line must contain a three (3). This declares
the file to be direct substitution.

2. The "A" fields must appear in seguential order, starting
at Ag@. Each "A" field can be used only once within the
Procedure File.

3. The "D" fields can only be "D1g" through "D17". They
can be used any number of times, in any order.

4. Variable expressions must follow the standard V-field
format, as in expanded substitution.

8.1.3 Example of Procedure File
The following example shows a typical Direct Substitution Procedure

File, the Control Cards used to call it, and the resulting lines

produced in the Run Time File.

Procedure Filel— MaF PRC

3 PROCEDURE FILE TO RUN CHAINjWITH NO OVERLAYS
CHAIN .

@AgY (TMPXCT) @@D14 () @

@Ag1(Sz)@enl4() e

@A@F2 (FILTMP) @@Dl4 ()@

enl4 () e

Control Cards as TheyjAppear
|
$MAP TEST1;SZ,VTC/ABC,DEF,NAML, §NAM2, ;

$*g1 NAM3,NAM4,NAM5/;TEST1,SUBL,SUB2, &;

$*g2 SUB3,SUB4,SUBS ‘

Run Time File Lipes

CHAIN)

TEST1 (ALT MODE)
S2z,VTC/ABC,DEF,NAML,)

NAM2 ,NAM3,NAM4 ,NAM5/ (ALT MODE)
TEST1, SUB1, SUB2,)
SUB3,SUB4,SUB5 (ALT MODE)

(ALT MODE)

Note: Dl4=Altmode, <ALTMODE> is an Altmode, and <CR> is a
Carriage Return.

8.2 B0OSS-15 ACCOUNTING

' ?
BOSS has a very simple accounting mechanism. It keeps an account
record for each job in a random access.file in the CTP UFD. Hence,
the file is protected, and can only be acéessed after successful ex-
ecution of a $MIC command.

?

The name of the accounting file is ACCNTannn. (The first has an ex-
tension of @g@Fl.) Each file is ten physicél blocks long, and contains
enough information for 31§ jobs, thirty—oﬂe per physical block. When
BOSS fills up one file, it increments the:extension, and starts a new
one. Every time a job ends, BOSS checks Qhether ACCNTG @@1 exists.
If it does not, BOSS creates one. If it &oes, BOSS checks whether

it is full. If not full, BOSS makes a neﬁ entry; if full, BOSS
lpirect Substitution File

8-20

searches for the first unused extension number. If all extension num-
bers have been used (up to 999) BOSS prints this message to the opera-

tor on the teleprinter:

MAX NUMBER OF ACCOUNTING FILES REACHED

PLEASE PROCESS AND DELETE THEM
Every time the system manager processes an accounting file, therefore,
he should delete the file.

For each completed job, BOSS writes out an eight-word record to the

accounting file. The records have the following format:

Word # Content

1 Job I.D.,
2 in
3 .SIXBT

Date, packed mmddyy
Start Time, in hhmmss
End Time, in hhmmss

Run Time, in hhmmss
Terminal Job Status Word

0~ O U

A word whose contents equal 7777778 immediately follows the last job

accounting record in each physical block of the accounting file.

8.3 B.PRE

Figure 8-5 is a flowchart of B.PRE, the BOSS Line Editor.

START

LGitialize +DAT slots -~14 and -lg]

Zero FLAG

Read updated file name and exten-
sion from .DAT-2

Has
file name

been en-
tered

Assume updated file name equals
the original file name

Read file name and extension
from ,DAT=-2

'lCDREAD
L, Read a card from .DAT+5 I
EOF
EOF EDIT

or EDIT
card

neither

{

l. Set FLAG to 1
2. Issue ,ENTER to .DAT-14

[Write card image to .DAT-l?J

J

IﬁRead a card image from .DAT+SI

N

/s

o]
Q E "
o

&)
& b

5|.CLOSE .DAT-14 |

<EXIT

'\

B.PRE
Figure 8-5
§-22

D

Perform .SEEK to .DAT-14, and
.ENTER to .DAT-15

Zero L1, L2, LNCNT
E ,]

A
Delete Line Edit Insert x

Subst. \:om_
an

Y N
Print error 4
message 4 Ll Increment LNCNT
=LNC
Read a record from
LEXIT .DAT-14 and write
it into .DAT-15 |

lIncrement LNCﬁﬂ

Read a record from
.DAT-14 and write
it into .DAT=15

|Read a record from .DAT-lZ]

[Increment LNCNTI

[Read from .DAT+5|

y
Write card image
to .DAT-15

L

B.PRE

Figure 8-5 (cont.)

v

.CLOSE .DAT-14 s-15|

4

+EXIT

ERROR
I0PS 17

I0PS 22
ERROR

Entry from
CAL Handler

1.
2.

Save pointer to CAL
Save subfunction or data mode

for .DAT

slot C

slot B in-
active

+<DAT

. N slot C in- Y \
active /
swap descriptor Swap descriptor
blocks for .DAT blocks for .DAT
slots A and B slots A and C
1 N £
> & N J
Is

/there more than
Y _one output file on

the same unit

Get function code, and make up
dispatch instruction

N

| Request a buffer |

Next PageH
DECtape 'A' Handler (DTA.)

A-1

ERROR
IOPS 55

From Preceding Page

a buffer

available

Set up word pointers within the new
buffer -- e.g., buffer+377 = link

< INIT
(L)

+OPER
(2)

.SEEK
(3)

+ENTER
4)

Dispatch to function codeI

|

CLEAR .CLOSE +MTAPE «READ .WRITE

.WAIT

+«TRAN

(5) (6) (7) (8) (9 (11)
(::%f:) <:f%:> ‘GH%!!EI"<:i%::)

<INIT (Function Code #1)

1.
2.
3.

Give user standard buffer size (377)
Set input or output file indicator
Wait for previous I/0 to finish for
DEC tape

JINIT for

this core

1.
2.

Do .SETUP to API and Skip Chain
Test buffer size, If not 440
or greater, terminate with an
I0PS 78

>

Return to

user after
CAL

DECtape "A" Handler (DTA.)

(.OPER, Function Code #2)

<DLE
+ RENAM
+«FSTAT

/ ERROR

IOPS 6

Dispatch to requested sub-
function and process

Exit to

user after
caL

(.SEEK, Function Code #3)

there an
active file
on this
slot

ERROR
I0PS 18

Was
+INIT for
output

(Loop back to user CAL)

Bring directory into core, if not al-
ready in

File
in direc-
tory

N ERROR
- IOPS 13

1. Obtain starting block number
2. Read the first file block into core

Return to

user after
CAL

I
DECtape "A™ Handler (DTA.)

A-3

(Loop back to user CAL,)

Underway

Bring Directory into core, if not
already in

file in
director

Set indicator so that file is deleted
upon a .CLOSE to this .DAT slot

<

O

L§earch directory bit map (in core) for first free blocq

.ENTER (Dispatch Code 4)

a block a-

ailable

Set up to write out this block, when
the time comes

Exit to
user after

+CLEAR
(Dispatch Code 5)

(Loop back to user CAL,)

1‘
2.

Clear out file bit maps
Clear directory block with the SYS
block bits set in the directory map

Exit to
user after
CAL

DECtape "A" Handler (DTA.)
A-4

ERROR

0PSs 7

ERROR
IOPS 15

ERROR
IOPS 10

(Loop back to user CAL) _.
<

.CLOSE
(Dispatch Code 6)

a +WRITE

W

een execu-
ted

2. Clear switches

l. Clear bit in bit maps

Clear switches

1. Put End=-of-File
indicator in buffer

2. Write out last block
in file

Was
there an
old file by
this name

Y

The following is done on

the in-core bit maps:

1. 2Zero its bits in the
directory bit map

2. Overwrite its file
bit map with the
new one

.

N

Write out updated directory and file bit map

5 il <

> W <

Return the buffer to the
system

Return to
user after
CAL

DECtape "A" Hahdler (DTA.)

A-5

(Loop back to user's CAL)

«READ

l

Pass 001005,776773
sequence to user's
buffer

1L Transfer line to user's
buffer
2. Set data validity bits

Was
EOF just

{(Dispatch Code 10)

read

more data

in buf-
fer

I Read in next block of filg]

> | o
~

v

lSet EOF indicator

”

Exit to

user after
CAL

DECtape "A" Handler (DTA.)

+WRITE
(Function code 11)

1/0

X nderway

Loop back to user's CAL €

Set "write executed"
switch

any more
room in
current
block

[‘}. Write out block; 2. search for next bloc;]

ERROR
IOPS 15

1. Transfer user buffer to handler
buffer
2. Compute Checksum

<:::E§§:::>;

N
X
lTransfer the block

<
™~

Exit to
user after
CAL

+WAIT & .WAITR
(Function Code 12)
N
+WAITR
A4

lﬁgt CAL pointer to specified addressg]
— =
Y
Y
d

NX/O\
W

Exit to
user after
CAL

Exit via
CAL pointer

DECtape "A" Handler (DTA.)
|

A-7

. TRAN
(Function Code 13)

/!
Loop back to user CAL < 4 underway

N

1. Set up block to transfer in or out
2, Set up core address-1

3. Set up word count

4, Start transfer

Exit to
user after
CAL

INTERRUPT SECTION

——

1

Entry from
PI or API

Save information
to restore later

N
| Clear I/0 underway switch]

Was

block 100
ead in
direction direction
| Change direction] [Change direction]
< Set directory in core switch
Set up Current Address & Set up current address « A/
word count for read or and word count for z
write search N

DECtape "A" Handler (DTA.)

A-8

ERROR
IOPS 12

(ERROR Logic)

a
N there a Y

Y Oon N
earch
Change
direction

select er-
ror

\

Read Status Register "A" and
gave it

Clear Status Register "A"
Disable interrupts

Set return in ,MED (register 3,
bank 2)

Clear I/0 underway switch and
enable CTRL P

+MED

Give IOPS 4

Set I/0 underway switch
Set up Current Address and
Word Count for search

1.
2‘

Accept data as is
Get rest of data

ERROR
IOPS 12

Start up DECtape I

N <
e .~
W
1. Restore PIC interrupt entry and AC
2. Turn interrupt on, if this was a PIC
3, Debreak and Restore

Exit to

interrupted
code

DECtape "A" Handler (DTA.)

Entry from
- — CAL Handler

1. save the pointer to the CAL
2. Save the .DAT slot number and subfunction
code (bits 5-8 of LOC+#)

First
Call in

this core
oad

Y
Do .SETUP for PI and API interrupts

disk

Determine number of platters

At
least one
platter

I0PSs21

Calculate the maximum block number, for-use
at .CLEAR time

Calculate size of the TEMP list for pre-~allocated
blocks, and set the BUF.OK switch (SGEN size ok)

Branch to
user's CAL

.W:;;\\\\\
Y

+WAITR

or

I/0 Under-

way

-= Fall through to "IO.OFF"
Next Page

Disk "A" Handlers

B-1

WAIT

|
From Preceding Page

1.
2'

Calculate pointers to the arguments of the CAL
Save step counter and MQ for EAE

«TRAN

Y
| save current set]

"Current"
slot equal to Y B (DISPCH)
new slot

First
call after

new core load
or a .TRAN

Save the current set in its appropriate buffer

Make new .DAT slot the "current" one

y

// FINDBY \\
Find or set up
the Busy Table
entry for this

.DAT slot

LSave status of Write CheckJ

. TRAN

Next Pagg

Disk "A" Hanélers

From Preceding Page

the current
slot have a
buffer

/,Buffers\\\\\
large enough
g ~

for file
struc-
ture

Request a buffer (.GTBUF)

Buffer

I0PS 70

IOPS 55

available

2, Complete the Busy Table entry

1, sSave pointer to buffer, and zero entire buffer

l. Get UIC from the Busy Table entry

3. Set up pointers to:

377

2. Bring in the Current Set from buffer
User's Directory Entry, tem-
porary block list, Data Block Words 0,1,2,3,376 &

Note: .TRAN, .WAIT and .WAITR
have already been inter-

cepted.

]
Disk WA" Handlers

1.
2.

Wipe out entry in UFD, and
Give back pre-allocated blocks

~]

l.
2.
3.
4.
5.

Return any alizéated buffer

Zero any old busy table entry

Make a new entry in the busy table
Save Write Check bit in busy table
Indicate "current" .DAT slot is
zero

Exit to
LOC+4

sequential
or random I/O

to this .DAT slot
going

Next Page .
Disk "A" Handl?rs

B-4

A

IOPS 10

IOPS 6

From Preéeding Page

Branch

.DLETE

J

| search for file |

1. Delete the file

2. Give back all
blocks

4

1, Return aquired
buffer

2. Make "current"
.DAT slot zero

I

on subfunc-
tion l
+«RENAM FSTAT « RTRAN
D
IOPS 63 IOPS 10

1. Rename the file

2. Insert current
date

3. Load AC with the
first block num-
ber

I0PS 51,

Exit to
LOC+3
(.FSTAT)
1. Place device t?pe in LOC+2 of CAL

2.

Search for file

Y N

71 or 13

Initialize RIB
number to zero

or .ENTER
since last
.CLOSE

cessful
+FSTAT for
this file

Search for
file
Found)

Place file size in
LOC+3
Read in first RIB
Move RIB to top of
buffer, if neces-
sary

Load AC with first
block number
|

Zero the AC

IOPS

Exit to
LOC+3

Disk "Af Handlers

B-5

Exit to
EXITAD

(.RTRAN)

«RAND
executed

B 10PS 11

relative
block number

/////f* e IOPS 66
file blocks

Calculate RIB block number, and the desired pointer's
position within that RIB block

roper
RIB block
in core

&

Depending on the location of the desired block, rela-
tive to the RIB block in core, read in the next or
preceding RIB block

roper
RIB block
now in
core

Y
Fave pointer to desired data bloéi]

RF RF RP
i' or RP
Store starting word number and the number Assume transfer starting at word zero,
of data words desired . through word 375, and set parameters
accordingly

parameters
imply transfer
of link

Use word count given in CAL during disk
pack input

| set direction switch|

[Ny
N/

Disk "A" Hand%ers

[Set up user's buffer to receive the link words for bldgﬂ

File
one block
long

Current
Rib block contain
both link
pointers

Set links in data block from adjac-
ent pointers in the RIB block

¥

Set both link
words to -1

et backward link to
djacent pointer in
RIB, and forward link
to -1

1. Set backward link to
adjacent pointer in
RIB block

2. Read in next RIB bloc

and adjust RIB number
indicator in the cur-

rent set

new RIB block

3. Set forward link to
first pointer in the

1.

2.

Set forward link to

adjacent pointer in

RIB

Read in previous RIB
block and adjust RIB
number indicator in

the current set

Set backward link to
last pointer in the

new RIB block

\

Set forward link
to adjacent poin-
ter in RIB, and
backward link to
-1

ET

N

W

Set up driver with the
correct block number

correct word number

Set up driver with the

W

Bring in or send out
required block or data

Exit to

LOC+5

Disk "A" Handlers

unclosed
file on this

I0PS 10

this file
successfully
FSTATed

IOPS 13,
51 ox 71

File
truncated

IOPS 10

IOPS 64

LRead in first block of file_l

Exit to
LOC+3

|
Disk "a" Hand}ers

this slot

been opened
and not /

closed*

ENTERS

N

FINDER
Search MFD and UFD
START = Pointer to
SAT word 3

A

IOPS10

|
(No entry in MFD
for this UIC)

1
(Entry in MFD, but
UFD is empty)

(UFD exists, but does
not contain a file by
the given name)

given name)

2, Save

l. Save number of the last MFD block read

file name

Preallocate
some blocks

Read in last MFD blockA]

Did
FINDER

|

find an emp-
ty MFD slot

Set pointer to free slot
found by FINDER

block
with free

GETNXT
Get next
block number

Read it in

N\

1. Make forward link of last MFD block
L point to the next block

2. Write out the block

|
(UFD exists, and con-
tains a file by the

l. Set up

entry pointers

2. 1Insert new UIC, entry size and zero protection
code (unprotected) into new MFD entry

Disk "A andlers

B-9

*That is, has a .RAND,
.ENTER been issued without a
.CLOSE?

.SEEK or

some

CKDIRP \ Y

Is directory
protected?

ENTSET
Preallocate

blocks

entry

Read in the MFD block
which contains proper

GETNXT

Obtain

a block

for the UFD

Set up entries in
MFD block and the

the Busy Table, the
Current Set

Write out the MFD
buf fer

block and clear the

4

Set up a new UFD block in the buffer,
with a back link of -1

Set pointer to indicate location to
receive the new entry

Disk "A"

Handl%rs

10PS63

old file
truncated

WIPOUT
Remove file
entry from
the UFD

1. set "01d4 file in" switch

2., Set pointers to UFD block
number and the first word
of the old file's entry
(to be used at .CLOSE)

CKDIRP \ .
Check directory PfOteCFIOD
rotection Violation

OK
y

ENTSET
Preallocate
some block:

Dbid
FINDER

locate a
‘\\\\Eiee entry
in UFD

Read in first UFD blogEJ

Obtain a
block #

1.

2.

Change forward link of last UFD block
(still in core)

Write out last UFD block

Clear user's buffer

l

I0PS63

Read in UFD block with
free entry

Load "UFD1" pointer in
Current Set with this
block number

L)
N

Disk "A" Handlers
B-11

1. Save pointer to new UFD entry in "UFD2" of the Current Set

2, Set up pointers to UFD entry slots

3. Store file name and extension in the UFD entry

G!
Obtain a
RIB block

l.
2,
3.
4.
5.

Store RIB pointer in UFD entry
Store protection code & date
Insert data plock number

Write out UFD block with entry
Clear buffer

BLDRIB
Set up
the RIB

[set "wREXsw" (wri

te-executed switch)]

GETNXT
Obtain a
data bloc

Clear the buffer to zero

Return
to user

After CAL

ENTSET

1.
2.
3.

Read in the first Submap
Make it the "Current Map"
Zero indicator of the number
of preallocated blocks

LSTFIL
Preallocate
some blocks

At
least

(Number of blocks pre-allo-
cated is the minimum of
number available and the
size of the "Temp List")

RETURN

4 pre-
allocated

Disk "A" Handlers

B-12

Egturn any preallocated blocks

IOPS15

login I0PS63

1. Clear a buffer

2, Set words @, 1, 2, 376, and 377 to -1

3. Set bits 0-2 of word 3 to MFD size

4. Set bits 3-17 of word 3 to point to
first submap

5. Write out buffer to block 1777, if RF
or 47844 if RP

6. Clear the buffer

(How the handlers write out the bit maps) A,/’ﬁigéh\\\

1. set up forward and backward links in buffer 1. Set backward and forward links to -1
2. Set up words @, 1 and 2 2. Turn on bits that correspond to MFD
3. Turn on bit in this submap corresponding block and first submap block

to itself
4. Write out the block

ore

submaps

N
Set bit in appropriate bit map for MFD

[
.

Set bit in the first bit map that
corresponds to second bit map

Set forward link to next block
Write out the buffer and clear it
Set back link to first submap, and
forward link to -1

>
\/

Write out the buffer

> W N
. e »

V/
A

Return to
user

Disk "A" Handlers

From Preceding Page

RIB infor-
mation fit in
the last data

Reset RIB block pointer in
UFD to last data block

[Set "word in RIB" in UFTq

there an
o0ld file with
the same
name

WRTUFD

\' 2
|Write out current UFD block

Is
the UFD
block with the
old file ref-
erence in
core

1. Write out UFD block currently in core

2. Reset UFDl to UFD block with old file

3. Read in the UFD block with the old file's
entry

h SAMUFD
> 220050

1. Reset UFD entry pointer (UFD2)
2. Wipe out the old file's entry

UNUSED

(Give back any unused blocks)

Read in first RIB block used
Save the forward data link

\ 4
Next Page

Disk "A" Handlers

B-14

been executeg

Set for internal looping
(implicit WAIT) until done

Will
2~word

EOF record
fit in current
data block

1. Write out current block
2. Obtain another and

3. Clear the buffer
(Subroutine SETWRD)

W
l. Write 2-word EOF line in buffer

2. Set forward data link to -1
3. Increment file size

Will
RIB fit

|TRAN RIB words into last data block]

>4 RNOFIT

Write out last data blodﬁ1

b

1. Read in UFD block for this file

2. Fill in file size and turn off
Truncated file bit

3. Save pointer to first RIB block

Next Page

Disk "A" Handlers

From Preceding Page

Was
last data

IReset RIB Block pointer in UFD to last Data Blockl

INFPRO
e——

Set 'Word=-in-RIB' in UFD]

(UFD entry is now complete. UFD is
still in core.)

there an
old file with

the same
name

UFD block

WRTUFD

with old file's

|Write out current UFD block |

entry now
in core

1. Write out UFD currently in core

2., Reset UFD1l to UFD block with the
old file's reference

3. Read it in

SAMUED

1., Set UFD2 to old file's entry slot
2. Wipe out the old entry

(Give back unused blocks.)]f

1. Get first RIB block used
2. Read it in
3. Save the forward data link for loop

Should
any blocks
be given back from

any RIB block
used

Next¥Page

pisk "A" Handlers

B-16

From Preceding Page
&
N

Any
unused
blocks in thi
RIB bloc

[Read in next RIB block].____a

i THISRB

1. Find area in this block where
blocks should be given back

2. Adjust word @ of this block
to reflect only those used

3. Write out the block

4. Fudge subroutine LSTFIL so it
appears UNBUSY called

« INPT

LSTFIL

(Actual transfer -—————

is to LSTMOV)

last data
block used for
RIB

Turn off RIB block's bit in SAT
and write out the Submap block

W
[set Return to LOC+2 UNBUSY

T

1. Perform .GVBUF

2. Zero current set

3. Make "current"
2DAT slot zero

Return to
LOC+2

Disk "A" Handlers

B-17

I Set up return address]

Has
this .DAT

slot been opened
for out-
put

[Save pointer to "next" recoEé]

current
record point-
ing to the top of
a buffer

[Read in previous blocﬁ]

CBLOK

I0PS6

Position record polnter to
top of the buffer

the "Next
Line" pointer

point to the saved
next line
pointer

> Y

Return

Disk "A" Handlers
B-18

K 4

Use this record's word pair
count to point to the next
record

User's
buffer size
zero

P

SETUP
Check Header word pair
Set up the word pair
counters for moving data

non-Dump

LINFIT
Mode

1. Make Word Pair Count
negative

2. Zero checksum word in
record to be read

3. Clear line error flag

PWORDS
Pass record
to user

Re-
cord too

1. Set pointers for a skip over
the next record

2, Set "short Line " Flag

3, Set return in PWORDS to go
to ENDIN1

PWORDS
Skip rest
of line

... .

Disk "A" Handlers

UMP)

A

Set up "words left

in data buffer"
PWORDS

for

PWORDS
Read to end of
record or to end
of data block

Set appropriate
error bits, if
any

data blocks
left in
file

Any
data left
in this

this
the last
data block

Read in next data block and
set up pointers, anticipat-
in the next read

Pass EOF line:
001005,776773

Exit
to
user

3
7/

-~

REDREQE

ISet EOF Flagl

Exit

to

user

DISK "A" Handlers

READ-WRITE Common Setup Routine

1. Save pointer to argument data block
2. Set up return address
3. Set pointer to checksum word in data buffer
4. Save checksum word
a .SEEK
or .ENTER N
executed
1. Set up pointers to "receiver"” data buffer
2. Index SETUP return pointer past arguments
to Dump Mode exit
3. Save Word Count from CAL

Dump

I0PSll

Mode

R

[index return pointer to Non-Dump Mong

GETWPC

Return

Vo

Extract Word Count from line 2 __wnp.c
buffer header word pair Oor wW.p.C. 18
77

> 1

Disk "A" Handlers

I0PS23

J

l. Set up return address

2. Clear "Current Slot"
number

3. Get Word Count

Return
to
1. Set up for input or output user
2. Get argument block number

L3. Read it or write it

Return
to
user

Disk "A" Handlers

B-22

Has
+ENTER

been exe-

SETUP
Set up word counter
and data buffer

Will
record
fit in cur-
rent buf-

Move in all
that will

fit and ad-
just argument
size count

this line

IOPS11

fit in cur-
rent buf-

Zero
Checksum

)

PWORDS
Pass the record
to the handler's

buffer

NOFIT1

SETWRD

Set "receiver pointers
to the top of the
buffer

Compute and insert Checksum

v N
LMove record into bufferl | @

Y

[Set EOF switch |

Exit
to
user

Disk "A" Handlers

AWORDS

"(Loop on CAL)
|

RETURN
to LOC+N

Go to
Argument
address

DISK "A" HANDLERS

1. Store number as forward data link
2. Save current block number

Is
current

block num=-
er -1

1. Write out buffer and then clear it
2. Increment FILSIZ

4
BLDRIB

Set up
the RIB

was
forward
data link

IOPS15

'

just stored
= -1

[Make this number current]

Any
blocks
left in the

I0PS15

s

Temp
List

Was
LSTFIL
able to get

Return

i

some
blocks

DSKEUL

number in TLIST to =1

Set next block|

SETBAK

[set backward data link returned from SETWRD |

RETURN

Disk "A" Handlers

B-25

l. 1Initialize the map count num-
ber, block count, TLIST
pointers and TLIST count

2. Read in the current submap

Check
the sub-

I0PS75

[Compute starting location for searchl

)

1. Start filling the Temp List
2, When find a free block, skip
the next block+DELTA (assem-
bly parameter) and continue

End
of Sub-
map or end

allocated
from this
Submap

Start at bit @ word 3 |

Any
more Sub-
maps

IRead in next SubmapJ EXIT

Disk "A"™ Handlers

D R COMMON POUTINE FOR READING AND
WRITING TO AND FROM THE DISK

1. Save the calling address

2. Get the arguments

3. Compute disk hardware
address from argument
block number

4. Set I/0 Underway flag

[Start disk 1/0]

INTERRUPT PROCESSOR

START

1. Save PC at EXITAD

2. Save AC

3. Turn off I/0 underway
flag

1. Clear disk flag

2., Process error

3. If necessary,
retry 10 times

[clear aisk flag]

|

IReset buffer countsl

Set for Write
check Attempt recovery on

CTRL R

Return
loc 1in
EXITAD

Disk "A" Handlers
B-27

APPENDIX C

ASG

1 ASSIGN DEVICF UIC TO DAT
A GDRZ(ANLL1()GI® (RUEZ(ONI2()IP)IAD BARPT()P

ASM

2 MACRO AND | IME EDITOR

A @D2Z(RON11(I1@)® CRUCZIRNL2(IRIBD ~14/RNAJICL11()I@)IP <RUAS(RNIL2()IR)A> =15
3,PRE

RABE ()@

RADI(PAQALF] TMPY®) @

A @DEAIRNLL1(HIR)I® CRAUPE(ONIZ2(H)®)®> ~11/80¢1 (011 ()1@)R KQUULIRNI2()@)R> =1/
A BDD2(8N11()1R)@ C2UR2(BD12()@)@> ~14/8D023(E011()1@)@ CRUZI(RDI2()1®)@> =13
A @DRA(LPIA CRUDA(ANL2()IRIAD =12

MACRO

RO(BL)I®emAZA(FILTHP)®RDL4() 0O

BNK

2 BANK MnDE NPFRATION=ON
BAMNK O

BUF

2 NUMBER 0OF rUFFERS
RUFFS ®Ag3()n

CHN

1 SPECIFY 7 nR 9 THACK MAGTAPE
£ ARG ()2

cMmp

1 SOURCE COMPARE

A RDZ2(ONL1(H@)Y@ <AUAR2(8N12()@)8> =15/8021(8n11 ()@@ <PUAL(eDI2()1®)@> =14
SRCCOM

BO)Pe@AN(I#/2A1L)IRONDL14()S

DIR

1 LIST DIRECTQRY
pLP
L LPeRAZ7Z(3D11()™)® <AUZZ(@D12()®)E>RN14¢()e

DLG

2 LOGOUT JlIcC
LOGOUT

DMP

13 DUMP yTILITY ~ DIRECT SUB FILE

A @DAB(@N11()@)® CRUZD(BD12()1@)B> ~14/@N21(LP)E® <CAUPL(@N12()A)8Y =12
RADDLALLYPAD14 ()@

DOS

193, GENERAL PRC FILE FCR GIVING COMMAND STRINGS
eAPZ(®D14() @)@

FIL

2 CREATE A FILE FROM CARDS/EDITOR

A RPD2Q(RAN11(HI@)I® <RUPT(ONL2()R)B> ~14
A BDZL(ONL11(IRIP <AUBL(@D12()@)@> =15
R, PRE

RAAR(FILTMP) 7

BABL(RARA(FT| TUP)R)@

F®R

2 FORTRAN IV AND LINE EDITOR
A @DAZ(eNi1()I@)@ <BYRP(EN12()@)8> =14/PDA1(®N11()12)@ QU1 (@DL12¢)®)R> =15
8, PRE

PA0R() @

RABL(RABR(FIL TMP)@) @

A PDAZ(ANLL ()@@ CRUAA(RNL2()PIO> =11/8D01(P011()1@)@ CBUAL(RN12()IR)®> =13
A BNA2(LP)® CRAUE2(AD12()R)&E> =12

F4

RO(RL)CeRAZA(FILTMP)IEANI4()®

JOB

? START NEW OB

LOG JOR 2A7Q()@ BEGIN eDi14{()e@

T

LOGIN ®AZ2(SCR)G

A NON 2,3,4,7,10,11,12,13,14,15,16417,22/@D11(16 1
PIP

N ®D11()2 <ScRMRD1A()

MAD3() @

KEEP RABA(OFF)a

TIMEST @a1(1)®t22

KREP

1 RETAIN DEVICE ASSIGNMENTS
KEEP @ARZ()@

LCM

13 SUPPLEMENT TO LI8 PRC~UPDATE ,LIBR
PAPZ(CLOSE®D13()@)I® PAPL(RD13(1G)R @AD2()A

LIB

eD22(eDN11(r@)@ KRUJD(@DI2(r@)B> =14)
BN21(RNB2(RD1L(IR)A)E@ (RURL(AUAC(ANLI2(1R)®)8> 15
ARA2(eNL11(H)@)® <PUg2(eDl2()R)E> =17

RN23I(Lr)e ¢@UR3(2D12()@)I®> =12

UPDATE

BOCLUS)@e®AZ2(,LIRRIGON14()@

> > > b

LNK

13 DIRECT SUR FILE = BUILDS LINKS FOR EXECUTE FILE=USE WIlTH OVl PRe
PARA(ONL14¢)P)RRD14 ()R

LOG

2 LOGIN ylC
LOGIN AP (SCR)@

LST

2 LIST CONTENTS OF FILE ON LIMNE PRINTER
plP
T LPe®D2o(®D11¢)E@) @ (@Upzt@D12()@)@> RAPA(FILTMPY® (A)RD140) A

MAP

113 DIRERT SUR FILF FOR CHAIN QOPTION AND RES CCDE ONLY
CHAIN '

RATB(TMPXCT)R@ED14C)R

RACLI(SZE)A®D14()@®

RAD2(FILTMPYREN14 ()@

aD14()e

MIC

2 LOGIN MIC ulC
MICLOG ®AZ2()R

MNT

1 MOUNT TAPE# QN DRIVE #
LOGw MOUNT &n(N)R=-TAPE# RACQ()® ON DRIVE# @AZ1()® = WRITE ®AC2(| 0Ck)e

MSG

13 MESSAGE Tn APERATOR-DIRECT SUB FILE
LOG ®A2A()®

MSW

13 MESSAGE Tn QPERATOR W/WAIT=DIRECT SUB
LOGW RAPN()R

NDR

1 CREATE NEW DIRLCTORY
PIP
v BARPLAN11()@)@ <RUZE(AN12()R)@>@N14()e

OovL

13 DIRECT SUR FILE - USE FOR BUILDING OVERLAYS(CHAIN)
CHAIN

RAFACTHPYCT)REN14()@

PAGL(SZ)e®R14 ()@

RAGR(FIL TMP)R@N14()@

PAG

2 PAGE MODE NPERATION=ON
PAGE ON

PCD

2 SPECIFY PRATECTION CODE
P RAZG(3)yR

QDP

1 DUMP CARE AN TERMINAL ERRORS-NO ARGUMENTS
ADUMP

B "

XCT

2 EXECUTF
A BDAZI(RN11 ()@@ CAYAB(AN12()R)8> =4
E @AQD(TMPXCT)®

INDEX

Accessibility map, 6-9

Additions to Non-resident Monitor,

Automatic Priority Interrupt (API),
hardware, 7-4
implementation,
ON/OFF, 4-19
software, 7-6

3-4
7-1

7-10

Bad Allocation Table (BAT),
Bank/Page mode, 7-1
Batch mode .DAT slot assignments,
Block checksum, 6-7
Block control pair,
Block list, 6-14
Block word count
BOSS-15, 8-1
accounting, 8-20
.DAT slot assignments,
line editor (B.PRE),
Bootstrap, system, 2-1,
Buffer allocation, 4-20,

6-18
4-20

6-6, 6-7

(BWC), 6-6

4-20

g-21

2-7, 4-13
5-12, 6-14

CAL handler, 2-2, 7-1
Characters, control,
Clock operation, 2-12
Clock routine, 2-8
COMBLK, 4-13, 5-1
Commands to Non-resident Monitor,
Control characters, 2-14
Current set, 6-14

2-14

3-4

Data modes

Dump, 6-4

Image, 6-4

IOPS, 6-4
DDT loading, 4-13
DECtape file organization, 6-1
Device assignment table (.DAT),
Device table, 5-11
Disk file structure,
Disk handler, 2-6
Disk resident tables, 5-1,
Directoried data recording,
Directoried DECtape, 6-1
Dump mode, 6-4

5-12
6-11

5-9
6-5

2-2
2-6

Error handler,
Error processor,
EXECUTE, 4-13

IO0PS,
2-2,

File
File
File
File
File
File

accessibility map, 6-7

Bit Map, DECtape, 6-2

buffer transfer vector table, 5-12
identification and location, 6-7
information, see Current set
locating, 6-7

File storage, 3-8

FIOPS, 6-5

Handlers, I/0 device, 7-1

Image mode, 6-4
Input/Output (I/0)
communication table,
initialization, 2-8
I/0 device handlers,
writing special,
IOPS mode, 6-4
error handler,

5-11

7-1
7-9

2-2

Linking Loader, '4-13
Link status, 7-1

Loader buffer allocation, 4-20
Loader, system, 4-1, 4-13
Magnetic tape, 6-4
file directory, 6-7
handlers, 6-5
storage retrieval, 6-11
Mass Storage Busy Table, 5-13

Master File Directory (MFD), 6-12

.MED error processor, 2-2
Memory protect, 7-1
Monitor, resident, 4-13

Non-directoried DECtape, 6-1
Nonresident Monitor, 2-12, 3-1
additions, 3-4
commands, 3-4

Operation of DOS, 1-1
Overlay Table, 5-9, 5-14

Patch area, Resident Monitor, 2-14

PATCH, commands to, 3-8

PIC interrupt service routine
implementation, 7-10

PIP, 6-18

Pre-allocation of blocks,

Priority, software level, 7-1

Procedure files, BOSS, B8-16

Program control characters, 2-14

6-16

Qfile, 3-8
Queueing, 7-7
RCOM table, 5-13

Reserved word locations, 5-13

Resident Monitor, 2-1, 4-13
PATCH area, 2-14

timing

Retrieval Information Block (RIB),

6-14
Run time

features, 2-8

file (RTF), 8-1,

.SCOM registers, 5-1 to 5

used by Loaders,

SGNBLK,

4-13, 5-1, 5-8, 5

Skip chain, 5-12

Software

level priority,

8-16

-6
4-17 to 4-19
-10

7-1

Special I/O device handlers,
Startup routines, 2-8

Storage,

Storage allocation tables (SAT's) 6-17

Submaps,
SYSBLK,
System

4-26, 6-11, 6-16

6-17
4-13, 5-1

bootstrap, 2-7
initialization, 2-8

Loader,

4-1, 4-13

7-9

Tables used by Loaders, 4-16

Temp List (TLIST), see Block list
.TIMER routine, 2-12

Timing featuxnes, 2-8

TRAN routine, 2-7

User File Directory Table (.UFDT)
5-12

User file labels, 6-9, 6-10

User identification code (UIC),6-12

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-II
Digital Software News for the PDP-9/15 Family

These newsletters contain information applicable to software available from
Digital's Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
_Software News is sent to the appropriate software contact at your installation,
please check with the Software Specialist or Sales Engineer at your nearest
Digital office.

Questions or problems concerning Digital's Software should be reported to
the Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
46 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per-
formance Report forms, and software price lists should be directed to the
nearest Digital Field office or representative. U.S.A. customers may order
directly from the Prcoram Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS

Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

DEC-15-ODFFA-A-D
READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publication:. To do this effectively we need user feedback ~- your critical evaluation of
this manual .

Please comment on this monual's completeness, accuracy. organization, usability and read-
ability. .

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. _ Date:
Name: Organization:
Street: Department:

City: State: Zip or Country

——————————————— — FoldHere - - - - - - - - - - — — — — — — — — — —

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

dlilgliltiall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

Postage will be paid by:

	000
	001
	002
	005
	006
	007
	008
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	a-01
	a-02
	a-03
	a-04
	a-05
	a-06
	a-07
	a-08
	a-09
	b-01
	b-02
	b-03
	b-04
	b-05
	b-06
	b-07
	b-08
	b-09
	b-10
	b-11
	b-12
	b-13
	b-14
	b-15
	b-16
	b-17
	b-18
	b-19
	b-20
	b-21
	b-22
	b-23
	b-24
	b-25
	b-26
	b-27
	c-1
	c-2
	c-3
	c-4
	i-1
	i-2
	i-3
	replyA
	replyB

