

DOS-IS

SYSTE~1 MAN UAL

DEC-lS-ODFFA-A-D

FOR ADDITIONAL COPIES OF THIS MANUAL J ORDER THE NUMBER ABOVE FROM THE

PROGRAM LIBRARY J DIGITAL EQUIPMENT CORPORATION J MAYNARD J MASSACHUSETTS

01754 PRICE $10.00

First Printing, January 1972
Second Printing, July 1972

Copyright (S) 1972 by Digital Equipment Corporation

The material in this document is for informa­
tion purposes and is subject to change without
notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

COP
Computer Lab
Comtex
DEC
OECtape
Dibol

Digital
DNC
Flip Chip
IOAC
Indac
KAlO

LAB-8/e
OMNIBUS
OS/8
PDP
PHA
PS/8
Quickpoint

RAO-8
RSTS
RSX
RTM
SABR
Typeset 8
Unibus

PREFACE

CHAPTER 1

CHAPTER 2

2.1

2.2

2.3
2.3.1
2.3.2

2-4

2-5

2.6
2.6.1
2.6.2

2.7

2.8

CHAPTER 3

3.1

3.2

3.3

3.4

CHAPTER 4

4.1

4.2

4.4

4.5

4.6

CON~ENTS

DOS OPERATION

THE RESIDENT MONITO~

INTRODUCTION

THE CAL HANDLER
I

2-1

2-2

lOPS ERROR HANDLER, AND THE EXPANDED ERROR PROCESSOR 2-2
.MED I 2-2
The Expanded Error ~rocessor 2-6

THE SYSTEM BOOTST~

SYSTEM I/O INITIALIZATION

RESIDENT MONITOR TIMING FEATURES
Clock Operation
.TIMER

THE RESIDENT MONITOR PATCH AREA

CONTROL CHARACTERS

THE NONRESIDENT MONITOR

INTRODUCTION

COMMANDS TO THE NONRESIDENT MONITOR

CONSIDERATIONS FOR ADDITIONS TO THE NONRESIDENT
MONITOR

QFILE

THE SYSTEM LOADER AND THE LINKING LOADER

MANUAL BOOTSTRAP LO~DS AND RESTARTS
I

LOADING SYSTEM PROG~S
I

TABLES AND INFORMATION BLOCKS USED AND BUILT
I

BY LOADERS
I

.DAT SLOT MANIPULATION BY THE SYSTEM LOADER

BUFFER ALLOCATION BY THE SYSTEM LOADER

v

2-7

2-8

2-8
2-12
2-12

2-14

2-14

3-1

3-7

3-7

3- 8

4-13

4-13

4-15

4-15

4-20

CHAPTER 5

5.1

5.2
5.2.1
5.2.2
5.2.3

5.3

5.4

5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6

5.5
5.5.1
5.5.2
5.5.3

5.6

5.7

CHAPTER 6

6.1
6.1.1
6.1.2

6.2
6.2.1
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.3
6.2.4

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.4.1
6.3.4.2
6.3.5
6.3.6
6.3.7

SYSTEM INFORMATION BLOCKS AND TABLES
II

I

CORE-RESIDENT NON-REFRESHED REGISTERS
I

DISK-RESIDENT UNCHANGING BLOCKS
SYSBLK
COMBLK
SGNBLK

I

DISK-RESIDENT CHANGING BLOCKS
I

TEMPORARY TABLES BUILT FROM DISK-RESIDENT
TABLES
The Overlay Table
The Device Table
The Input/Output Communication (IOC) Table
The Device Assignment Table (.DAT)
The User File Directory Table (.UFDT)
The Skip Chain

TEMPORARY TABLES BUILT FROM SCRATCH
File Buffer Transfer Vector Table
The RCOM Table
The Mass Storage Busy Table

I

RESERVED WORD LOCATIONS
II

BOOTSTRAP NON-BOSS BATCH BITS

I

FILE STRUCTURES

DECTAPE FILE ORGANIZATION
Non-Directoried DECtape
Directoried DECtape

MAGNETIC TAPE
Non-directoried Data Recording (MTF)
Directoried Data Recording (MTA., MTC.)
Magnetic Tape File Directory
User-File Labels
File-Names in Labels
Continuous Operation
Storage Retrieval on File-Structured
Magnetic Tape

DISK FILE STRUCTURE
. Introduction
User Identification Codes (UIC)
Organization of Specific Files on Disk
Buffers
Commands that Obtain and/or Return BuffE~rs
The Current Set
Pre-allocation
Storage Allocation Tables (SAT's)
Bad Allocation Tables (BAT's)

I

vi

5-1

5-1
5-1
5-1
5-8

5-9

5-9

5-9
5-11
5-11
5-12
5-12
5-12

5-12
5-12
5-13
5-13

5-13

5-15

6-1
6-1
6-1

6-4
6-5
6-5
6-7
6-9
6-10
6-10

6-11

6-12
6-12
6 ... 12
6-14
6-14
6-14
6-16
6-16
6-17
6-18

CHAPTER 7

7.1
7.1.1

7.2
7.2.1
7.2.2

7.3
7.3.1
7.3.2
7.3.3

CHAPTER 8

8.1
B.l.l
B.l.2
B.l.3

B.2

8.3

APPENDIX A

APPENDIX B

APPENDIX C

WRITING NEW I/O DEVICE HANDLERS

I/O DEVICE HANDLERS, AN INTRODUCTION
Setting Up the Skip Chain and API
(Hardware) Channel Registers
Handling the Interrupt

API SOFTWARE HANDLERS, An Introduction
Setting Up API Software Channel Registers
Queueing

WRITING SPECIAL I/O DEVICE HANDLERS
Discussion of Example A by Parts
Example A, Skeleton I/O Device Handler
Example B. Special Device Handler for
AFOIB A/D Converter

BOSS-IS

PROCEDURE FILES
Procedure File Format
Direct Substitution
Example of Procedure File

BOSS-15 ACCOUNTING

B.PRE

DECtape 'A' Handler (DTA.)

Disk "A" Handlers

PROCEDURE FILES

vii

7-1

7-4

7-5

7-6
7-6
7-7

7-9
7-11
7-12

7-14

8-16
8-16
8-19
8-19

B-20

8-21

This manual was written for customer ~ystems programmers, DEC Software
I

Specialists, and internal maintenance programmers. Readers must be
I

familiar with the DOS User's Manual, DEC-15-MRDA-D. In addition, chap­
I

ter 8 requires familiarity with the BOSS Reference Manual, DEC-15-GUDA-D.

CHAPTER 1

DOS OPERATION

The System Manager must use DOSSAV in order to load DOS-IS for the

first time. The DOS System Generator manual, DEC-15-YWZB-DN12, des­

cribes DOSSAV operation in its appendix. After successful DOSSAV op­

eration, the System Manager should load the Bootstrap into the highest

bank. (This tells DOS how many banks it can use.) The Bootstrap loads

the System Loader, which in turn loads the Nonresident Monitor. In

order to ensure a working system, the System Manager should place the

DOS-IS Checkout Package tape (RF.CHK, DEC-lS-CIDA-PA, for RF DECdisk

systems, or RP.CHK, DEC-lS-CTAA-PA, for RP~2 Disk Pack systems) into

the Paper Tape Reader, and type BATCH PR~. Operating instructions

for the Checkout Package, and the tape itself, are distributed as part

of the DOS-IS system.

Once the system has been checked out, the System Manager should use

DOSGEN, the DOS System Generator orogram, to tailor the system to

his needs. As mentioned in the System Generator manual, a complete

tailoring of the system may also involve use of PATCH, PIP, and

UPDATE.

Commands to the Nonresident Monitor allow temporary modification of

the system, in order to suit the needs of a particular program. The

Nonresident Monitor modifies the system by changing information in

the .SCOM Table. The System Loader examines the .SCOM Table, along

with three disk-resident information blocks, SYSBLK, COMBLK and SGNBLK,

and carries out all operations necessary to fulfill the operator's

commands. The System Loader "builds" the Resident Monitor by relocat­

ing and linking those routines indicated by the .SCOM table as needed

by the next core load. The Resident Monitor then retains general con­

trol over the system.

1-1

CHAPTER 2

THE RESIDENT '10NITOR

. 2.1 INTRODUCTION

The Resident Monitor gets its name because it seems resident to the user.

Strictly speaking, however, the only part of the system that is always

resident is the Bootstrap. There are two parts of the system that are

refreshed only after manual Bootstrap lo&ds and restarts: .SCOM and the

Resident :-1onitor Patch Area. Every time an operator or program changes

certain key system parameters, the system will build a new Resident

Monitor from blocks stored on the system device.

The Resident Monitor is the interface between the operator, and the

active devices on one hand, and the program which is running (the

Nonresident Monitor), on the other. The Resident Monitor always contains

the following routines and tables:

Chapter
S

This
Chapter

(

.DAT

.UFDT

.SCOM
The CAL Handler, which routes all System and I/O

Macro calls
The Startup routine after usinq the Bootstrap
.MED, the Monitor's standard error routine
The Expanded Error Processor, for more flexibility

with error messages
Handlers for the following error conditions:

Nonexistent Memory
Memory Protect
Interrupt-Memory Parity
Power-Fail
Software API not set up

The Monitor's TRAN routine (different from I/O .TRAN's)
A clock handler
The .GTBUF and GVBUF processor
The CTRL Q processor
The .USER processor
The .OVRLA processor
TTA.
The Resident Monitor's Patch A1ea

In addition, the user can request the system to retain certain other

routines in a resident Monitor status:

The CTRL X Feature, including a driver for the VT-IS

The paper Tape or Card Reader Handler for Batch

The Resident Batch code

BOSS-IS also has resident routines, wnich are covered in Chanter 8.

2-1

2.2 THE CAL HANDLER

The CAL instruction transfers control to re~ister 21, bank ~, and loads

register 251 with the address of the next instruction after t:he CAL.
I

All DOS I/O and system macros take the form of a CAL instruction (pos­
I

sibly with some code in the low-order bits), and the next sequential

register contains a dispatch code. Some mabros require more informa­
I

tion in succeeding registers. Figure 2-1, Resident Monitor CAL Handler,
I

illustrates the operation of that portion of the Resident Monitor. The
I

CAL Handler does only minimal error checkinr -- for legal function

code, and for legal .DAT slot. Aside from that, and ensuring the
I

clock is turned on, the CAL Handler is only a dispatcher to other

I routines.

2.3 lOPS ERROR HANDLER, AND THE EXPANDED ERROR PROCESSOR
I

2.3.1 .MED

There are two error processors in the Resident Monitor: .MED and the
!

Expanded Error Processor. Figure 2-2 illustrates those routines.
!

Figure 2-3 shows two subroutines used by th7 error routines. .MED
I

(location 3, bank ~) processes lOPS errors from all device handlers
I

except the disk handlers, and COB., MTF., TTA., and LPA. Calls to
I

.MED should take the following form, if not lOPS 4:
I

LAC INFO /ARGUMENT OF ERROR
DAC* (. MED /ADDRESS OF CAL IS ALREADY IN . MED,

/IF DESIRED
LAW N IN IS ERROR CODE ~~N~777. AC MUST BE NEGATIVE.
JMP* (. MED+I

lOPS 4 messages may take the following form:

LAC (4
JMS* (.MED

lAC MUST BE POSITIVE

.MED+I contains a JMP to the Monitor Error Diagnostic Routine. The
I

above calls to .MED will cause the follOwin? printouts:

IOPSN (contents of .MED)
IOPS4

2-2

IOPS2

Loa ress
2. Turn clock on, if on
3. Deposit minus 1 in register 7, if

= or less than minus two

N
lOPS ~

y ~_N ________________ ~The following CAL's

y

Resident Monitor CAL Handler

Figure 2-1

2-3

take this path:
.EXIT, .OVRLA, .TlMER
• SETUP, • GTBUF ,
.GVBUF, .GET, &
• PUT

Give control to
proper portion of
the Resident Mon­
itor.

Enter from
.SCOM+37

y

Enter from
.MED

Put recovery PC 1n .MED

N y

Initialization

NOTE: The Nonresident Monitor HALT and
QDUMP commands will change this loop to
the appropriate action. BOS and Batch­
ing Mode abort the $JOB.

Expanded Error Processor
and

y

1. Echo Command

(Wait f r a
Contro Char)

2. Restore API, if required
3. Restore PI

Return
via .MED

Monitor Error Diagnostic Routine
.MED

Figure 2-2

2-4

SETTLE

1. Store error number
2. Set up to turn nulls into

spaces, if LINK is set
3. Turn off PI
4. wait 110 ms for the teleprinter

to die down
5. Type Carriage RBTURN, Line Feed

Print "IOPS" and error number,
zero suppressed

Print a space, fol~owed by the
octal contents of .MED, followed
by another space

N

Print contents of .SCOM+32 (disk
block number)

Resident Monitor Subroutines

Figure 2-3

2-5

2.3.2 The Expanded Error Processor

The disk handlers (except the Bootstrap), CDB., MTF., TTA., and LPA.

use the Expanded Error Processor. Each error message is "potentially"
I

recoverable by typing CTRL R. That is, the Resident Monitor always

returns control to the caller upon a CTRL R. It is up to the caller

to respond accordingly. All handlers supplied with the system simply

repeat the error message if the error is unrecoverable.
I

The Expanded Error Processor gives the capability of printing addi­

tional information after the standard lOPS message. As with .MED, the

AC must contain the error number (~<number<777) in bits 9-17. Control - - .
must be passed, however, via JMS* (.SCOM+37, not JMP* (.MED+l.

The following information pertains to the message: LOC+2 must contain

the two's complement of the number of message words to be typed after

the standard "IOPSNN nnnnnn" message. If the number is zero or posi­

tive, no message will be printed. If the LINK is set, nulls will be

printed as spaces. If the LINK is zero, nulls will be ignored. If

the AC is positive on calling the expanded error facility, only the

special message will be printed. The "lOPS" part will be omitted.

The message itself must be packed in .SIXBT.

The following are examples of use of the Expanded Error Processor:

Example a:
UNREC LAC STATUS

DAC* (.MED

STL
LAW ERRNUM
JMS* (. SCOM+37
JMP UNREC

LAW -1
.SIXBT IDKAI

UNITNO fI
.SIXBT IFILl
.SIXBT IE'
.SIXBT 'SRC I

/STATUS
/CAL ADDRESS IS NOW OVERWRITTEN
/BY CONTENTS OF STATUS REGISTER
/TURN NULLS INTO SPACES
~ERRNUM <l~~ ~

/THIS IS AN UNRECOVERABLE ERROR.
/JMP .-1 WILL NOT DO -- EXPANDED
/ERROR PROCESSOR CHANGES THE
/CONTENTS OF .MED.

The printout from that code will be as follows:

IOPS777 nnnnnn DKA FILE SRC

where nnnnnn is the contents of .MED, and equals the Status Register

B, and ERRNUM was 777.

2-6

PARITY LAW 61
STL /TURNS NULLS INTO SPACES
JMS* (.SCOM+37
JMP RETRY /THIS IS A RECOVERABLE ERROR
LAW -1
.SIXBT 'DTA'

The printout from that code will be as follows:

IOPS61 nnnnnn DTA

where nnnnnn is the contents of .MED, the address of the last CAL,

deposited by the CAL Handler.

2.4 THE SYSTEM BOOTSTRAP

The System Bootstrap is nothing more than a disk driver. It may load

the System Loader and Resident Monitor from Hardware Readin, or manual

restart. All other Bootstrap operations result from the use of the

Monitor TRAN routine. The Monitor TRAN routine sets up the Bootstrap

to read or write any block or set of contiguous blocks from the disk

to or from any location in core. Before calling the Bootstrap, the

Monitor TRAN does a .WAIT to all .DAT slots in the Mass Storage Busy

Table, clears all flags, turns off the VT if it was on, and allows the

clock to tick positive, so that it will keep time but not interrupt.

After the Bootstrap has finished, it calls the Monitor Initialization

Routine, which updates the clock and turns on the VT, if necessary.

The Monitor TRAN Routine requires the followinq parameter table:

P ARADU LOC+ fJ
LOC+l
LOC+.2
LOC+3

BLKNUM
FIRSTA-I
-SIZE
START

/FIRST BLOCK NUMBER
/FIRST ADDRESS OF BUFFER, MINUS ONE
/# OF WORDS TO BE TRANSFERRED IN 2'S COM
/STARTING ADDRESS AFTER DISK I/O
/COMPLETION

The following code illustrates the use of the Monitor TRAN:

UNIT=lfJ~fJfJfJ

.SCOM=l~fJ

LAC (PARADD
XOR UNIT

STL
JMP* (. SCOM+55

See also paragraph 5.7.

/MONITOR TRAN WILL USE UNIT ONEl

/MONITOR TRAN REQUIRES ADDRESS OF
/PARAMETER TABLE IN BITS 3-17 AND
/UNIT NUMBER IN BITS ~-2 OF AC
/NONZERO LINK GIVES TRAN OUT
/.SCOM+55 IS USER ENTRY POINT FOR
/MONITOR TRAN

IDECdisk TRANs ignore unit number, use block number.

2-7

I

.OVRLA, .EXIT, and manual Q dumps all use the Monitor TRAN routine.
I

Figure 2-4, .OVRLA, .EXIT and CTRL Q, illustrates their operation,
i

and also the Monitor TRAN.

For the RF DECdisk, the user can reference, a specific platter just by
I

identifying the block number he wants. That is, the block numbers to
I

not automatically go to zero at the beginning of every platter. The
I

block numbers and platter relationships are shown below:

I

2.5

TABLE 2-1

RF Platter-Block Number Correspondence
I

Platter Number

~
1
2
3
4
5
6
7

(All numbers

SYSTEM I/O INITIALIZATION

Block Number

~-1777
2~{i1j1-3777
4{i1j1{i1-S777
6j1{i1j1-7777

l{i1j1{i1.0-1l777
l2~.0{i1-l3777
l4j1~.0-1S777
l6{i1j1{i1-l7777

are in
I

i

I

I

octal)

There are two routines that do DOS I/O initialization: the startup routine
1

after Bootstrap manual loads and restarts, and the startup routine
I

performed after Monitor TRAN's and after a CTRL C, P, T or S for an
I

error. The startup routine after Bootstrap loads is described in
.- _. - --- I

Figure 4-1, The System Loader Interface Routine. Figure 2-5, Resident
1

Monitor Initialization, describes the other routine.

I

2.6 RESIDENT MONITOR TIMING FEATURES

I

Figure 2-6, The Resident Monitor Clock Routine, describes the Resident
i

Monitor'S time functions. There are three places in DOS which start

or try to update the clock -- (1) the first-time initialization after
i

manual Bootstrap loads and restarts, (2) the Resident Monitor Initial­
'I

ization, and (3) the CAL Handler. The following .SCOM registers con­
I

tain timing information:

2-8

Y

.OVP..LA

CAL Entry

Put System pro­
gram name into
.SCOM+43,44 (pro
name pointed to
by CAL+2)

Scan Overlay
Table (address in
.SCOM+31) for a
match with the

N

.EXIT CAL
Entry

Put name of the
Nonresident Mon
itor into .SCOM

43 & 44

Set up pointer to TRAN
parameters

Set up unit number ~ and
pointer to TRAN parame­
ters for loading .SYSLD
Clear LINK for .TRAN in

Update .SCOM+31
clear AC and the
LINK (Unit ~, & ~--~

Entry

Set LINK (.TRAN out)
and set up pointer to .TRAN
parameters for CTRL QAREA

Put contents of .SCOM+72
into .SCOM+7l, and set
AC with unit number

.TRAN in) (MONITOR TRAN ROUTINE -- Independent from
device handler .TRAN's)

Return to
user

Store Unit number and
other TRAN parameters
in the Bootstrap

Put starting address into
location ~, bank ~, and
set the Bootstrap to go to
Monitor Recovery Routine
on exit

Bootstrap

I

.OVRLA, .EXIT and CTRL Q
I ..

Figure 2-4
I

2-9

* CLEAR does a .WAIT or a
.INIT to each entry in
the Mass Storage Busy
Table. This precludes
conflicts between disk
I/O performed by the
system disk handler, and
disk lOT's issued by the
Bootstrap, an independent
program. CLEAR also turns
off the clock and PI, and
enables BANK mode.

Entry
from

Bootstrap

Entry
from

RESMON

set exit to address in ~ Arrive with exit address in AC

1.

2.
3.
4.

5.

Set up clock so that it
keeps running, but does
not interrupt (ticks
positive)
Clear all flags
Turn off PI and API
Restore cell 4 to transfer
to Error Diagnostic Routine
Set up proper addressing
(Bank or Page), according
to .SCOM+4, bit 7

1. Update the clock, and allow it to
interrupt

2. Clear TTY Busy Switch (Clear all
flags ensures no I/O to TTY)

3. Turn API on or off, depending on
contents of register 6 (The Sys­
tem Loader loads register 6 ac­
cording to .SCOM+4, bit ~)

4. Turn on PI

proper
location

Resident Monitor Initialization

Figure 2-5

2-10

Ent.rY frolll
PI or API

Allow clock to tick positive, so it
will not interrupt for an hour

set up the exit from this routine
to go to the .TIMER address in
.SCOM+61, is if it were a JMS in­
struction. Set high-order bits
of return address with interrupt
information

.SCOM+50
hhmmss

Increment .SCOM+34

Subtract one from

N

Restore pre-interrupt
conditions

I

Note: The Clock Routine will use PI if API i~ busy, or down.

I

The Resident Monitor Clock Routine
• I

Fl..gure 2-6

2-11

.SCOM+5~

.SCOM+51

.SCOM+56

.SCOM+6~

.SCOM+6l

.SCOM+73

.SCOM+74

2.6.1 Clock Operation

Time of day, in hhmmss (six bits each)
Elapsed time, in ticks
Time limit, in seconds (zero, if no limit)
Time left for .TIMER interrupt (zero, if

.TIMER not in effect)
Address of .TIMER user interrupt routine
Number of ticks left in the next second
Line frequency, in ticks per second

The Nonresident Monitor's TIME command changes or senses .SCOM+5~ •

. SCOM+51 is not used by any system program. The clock handler simply

increments it upon each clock tick. User programs may deposit a known
I

quantity into .SCOM+51, in order to time events. The Nonresident
I

Monitor deposits the argument for a TIMEST command into .SCOM+56. If
i

.SCOM+56 is nonzero, the Resident Monitor will issue an ISZ .SCOM+56
I

command each second, until it reaches zero. At such a time, the Resi­
I

dent Monitor will perform a .EXIT. MICLOG, LOGIN, and LOGOUT clear
I

.SCOM+56.

I

2 • 6 • 2 . TIME R

.TIMER allows users to schedule routines for a specified time from

"now". These routines may return to the interrupted code, if the
I

programmer desires. .TIMER users should take care that the time­
I

dependent code follows certain rules:

a. When a programmer does not wish to reset the .TIMER mechan­
ism, but wishes to return to the interrupted program, his
code should look like this:

C
DAC

LAC
RAL
LAC

XIT JMP*

~
SAVEAC

C

SAVEAC
C

/C+l REACHED VIA JMS
/MUST NOT USE NON-REENTRANT CODE
/POSSIBLY USED BY THE INTERRUPTED
/PROGRAM. (INCLUDES THE CAL IN­
/STRUCTION)
/RESTORE THE LINK

/RESTORE THE AC

2-12

h. When the programmer does wish to reset the .TIMER mechanism,
and return to the interrupted code, his routine should look
like this:

C

.SCOM=I,0~
CLON=7,0~~44
CLOF=7~fJ~fJ4
INTRVL=-lfJ~

DAC

LAC
DAC*
CLOF

LAC
DAC*
LAC
RAL
LAC
CLON

fJ
SAVEAC

ADDRES
(.SCOM+61

INTRVL
(. SCOM+6fJ

C

SAVEAC

JMP* C

/THIS ROUTINE WILL RUN EVERY 1,0~8+
/TICKS

/RETURN TO THE NEXT ROUTINE

/TURN THE CLOCK OFF TO ENSURE NO
/REENTRANCE BEFORE .TlMER RESET AND
/RETURN
/DESIRED INTERVAL IN TWO'S COMPLEMENT

/RESTORE THE LINK

/RESTORE THE AC
/TURN THE CLOCK BACK ON (AFTER NEXT
/INSTRUCTION)

c. When a programmer does not wish to return to the interrupted
program, he need not save the AC, and he may use the CAL in­
struction. He should beware of using I/O buffers that may
still be modified by a handler's interrupt section. In many
cases, a .INIT to an active .DAT slot will terminate I/O.
Teleprinter I/O should be terminated by the following:

XCT* (.SCOM+35

The user should program a delay of at least llfJ milliseconds
after such an instruction, before he attempts teleprinter I/O.

Note: The interrupt routine will run at the level of the in­
terrupted code, with the same addressing mode and memory pro­
tect status. Thus, no debreak and restore is required.

2-13

2.7 THE RESIDENT MONITOR PATCH AREA

There are two types of patch area taken from the space allocated at

assembly time:

1. That allocated by using PATCH

2. That allocated when answering the Patch Area
question in system generation

Patch area one is the place for permanent changes to the Resident

Monitor. It is always refreshed when the System Loader comes into

core. Patch area two is only refreshed on manual Bootstrap loads

and restarts. The second area would be appropriate for communication

between successive programs loaded by the System Loader. This area

should be used because the System Loader refreshes all of core, ex­

cept the Bootstrap, .SCOM, the CTRL X buffer, and the patch area two.

The combined size is limited by the current assembly at 47~~8. Both

areas can be initialized, using PATCH. The important dividing line

between area one and area two is register l~l (.SCOM+l) of RESMON.

The way to allocate more space in part one is to increase the value

of register l~l. The way to change the area in part two is to use

DOSGEN. The second part will start at the address in register l~l.

The upper bound of the second area will be the sum of the contents

of register l~l, and the number specified to DOSGEN.

2.8 CONTROL CHARACTERS

CTRL C, P, R, S, and T are all special characters that interrupt the

current program and transfer control. The Resident Monitor ignores

CTRL R except after lOPS 4 and any call to the Expanded Error

Processor. CTRL S always transfers control to the address in .SCO~+6.

In the case of core-image system programs and EXECUTE, a CTRL Swill

transfer to register zero, and result in an lOPS 3. The Linking

Loader places the starting address of the first load module into

.SCOM+6.

A .INlT macro to the teleprinter handler will change the address of

either CTRL C, P or T. The Resident Monitor is always initialized to

2-14

perform a .EXIT after CTRL C, and ignore CTRL P and T. DDT uses

CTRL T, and CTRL P is ordinarily used by programs for restarts.

MACRO-IS expands .INIT to change the CTRL P address. If the programmer

expands .INIT without the aid of the assembler, a l~ in bits zero and

one of LOC+2 will change the address of CTRL T. A ~l in those bits

will change the address of CTRL C. It should be obvious that special

care should be taken with CTRL C. In addition, modifications to the

CTRL T address should not be made when debugging with DDT. There are

cases, however, when such modifications are desirable. In particular,

all zeroes in LOC+2 (2-17) will cause the teleprinter handler to ignore

CTRL C, P, or T. This address might be used when sensitive code is

being executed, as in DOSGEN. The following .INIT expansion will

cause the Resident Monitor to ignore CTRL C:

CAL-2&777
1
2~~~~~

2-15

CHAPTER 3

THE NONRESIDENT MONITOR

3.1 INTRODUCTION

The System Loader brings the Nonresident Monitor into core after a

hardware readin, a manual restart, a CTRL C, or a .EXIT. The RCOM

Table, SGNBLK, SYSBLK and COMBLK are always coresident with the Non­

resident Monitor. This gives the Nonresident Monitor access to all

important system parameters.

The Nonresident Monitor announces its presence by typing DOS-15 VN.A

on the teleprinter. It remains in core until the operator requests

another system program, or until the operator's command implies a

refreshed configuration of the Resident Monitor is necessary.

The Nonresident Monitor's actions are limited to (1) decoding commands,

(2) manipulating or examining bits and registers in .SCOM, .DAT, .UFDT,

SYSBLK, COMBLK, and SGNBLK, and (3) calling the System Loader, when

necessary. The Nonresident Monitor has only one entry, which starts

an initialization section. Figure 3-1, Nonresident Monitor Initial­

ization, describes that logic. Every time the System Loader brings

in the Nonresident Monitor, it passes control to the initialization

section. After initialization, and after all commands that do not

require the System Loader, the Nonresident Monitor types a $, and

awaits an input line, terminated by a Carriage RETURN or an ALT MODE.

It then examines the first six characters (or those up to the first

blank) and tries to find an entry in the Nonresident Monitor's Command

Table. If a match is found, control passes to the appropriate routine,

and thence to the next command, or the System Loader. If the typed

command does not correspond to an entry in the command table, the

Nonresident Monitor temporarily assumes the operator wishes a new

core-image system program, and checks COMBLK for a corresponding entry.

If there is no corresponding entry in COMBLK, the Nonresident Monitor

will type an error message, and await the next command. If COMBLK

contains a matching entry, the Nonresident Monitor composes a .OVRLA,

and passes control to the System Loader via that .OVRLA.

3-1

ST~RT

1. Bank bit initialize pointers to SYSBLK, COMBLK and SGNBLK
2. Determine the number of positive .OAT slots
3. Save the contents of .OAT-12, in case the user desires LP ON

(restore before leaving Nonresident Monitor)
4. Save contents of .SCOM+7 -- Nonresident Monitor will use

.SCOM+7 for address of LPA. or TTA.
5. Change all .UFDT entries that equal BNK or PAG to SYS
6. Compute addresses of .OAT-2,+I,+5 and +6
7. Compute address of beginning of I/O Device Table in SGNBLK

y

Y

Y

Y

y

Initialize .DAT-2 and
.DAT-3

(next page)
Nonresident Monitor Initialization

Figure 3-1

3-2

(from preceding page)

Clear bit 1 of .SCOM+42
(Nonresident Monitor

.EXIT flag)

(Continue to Command Decoder)

Nonresident Monitor Initialization
(continued)

Figure 3-1 (Cant.)

3-3

3.2 COMMANDS TO THE NONRESIDENT MONITOR

This paragraph discusses legal commands listed in the Nonresident

Monitor's Command Table. Table 3-1, Effects and Exits for Nonresident

Monitor Commands, describes all commands that do not request a new

program.

There are five entries in the Command Table that load relocatable

system programs. They are DDT, EXECUTE, GLOAD and LOAD. The Non­

resident Monitor treats these commands separately, because SYSBLK

does not list them. All information necessary for loading these pro­

grams resides in the Nonresident Monitor itself.

3.3 CONSIDERATIONS FOR ADDITIONS TO THE NONRESIDENT MONITOR

Programmers should not attempt to add commands to the Nonresident

Monitor unless they have access to a copy of the source code. The

source code may be purchased from Digital Equipment Corporation,

146 Main Street, Maynard, Massachusetts, under one of the order num­

bers listed in the footnote. They should then use the EDITO~ program

to put in the indicated changes, and reassemble.

New additions to the Nonresident Monitor require the following actions:

1. Update the Nonresident Monitor's Command Table.

The Command Table is in two parts:

a) The .SIXBT names of the commands

b) The corresponding transfer vector

2. Write the code for the command.

3. Consider the kind of exit the command will take:

DECtape

Magtape

a) Commands that end with a request for a new
command should end with JMP KLCOM

b} Commands that re-configure the Nonresident
Monitor should end with JMP NRMEX1.

DEC-15-SRDA-Ul

Unavail1.ble

3-4

COMMAND

API

ASSIGN

BANK

BATCH

BUFFS

CHANNEL

DATE

MODIFIER

ON
OFF

handler

(and/or)

DIC

ON
OFF

PR

CD

number

7
9

date
no date

Table 3-1

Effects and Exits
for Nonresident Monitor Commands*

ACTION TAKEN

Set bit ~ of .SCOM+4.
Clear bit ~ of .SCOM+4.

Check whether handler is available.
If yes, load .DAT slot with proper
handler code. (The proper loader
will load the handler, and insert
its starting address into the .DAT
slot.

Load proper slot via a .USER

Set bit 11 of .SCOM+4.
Clear bit 11 of .SCOM+4.

Set bit ~ and clear bit 2 in loca­
tion 1777 of the Bootstrap's bank.
If bit 2 of .SCOM+33 is set (i.e.,
if VT is ON) and bit 17 of .SCOM+33
is set (i.e., CTRL X is set for VT),
set bit 1 of .SCOM+33 in order to
tell the Resident Monitor Initializa­
tion to start up CTRL X.

Set bits ~ and 2 of location 1777 of
the Bootstrap's bank, and set bit 1
of .SCOM+33 as with BATCH PRo

Put number indicated into .SCOM+26,
and set Nonresident Monitor Initial­
ization to leave .SCOM+26 alone.

Clear bit 13 of .SCOM+4.
Set bit 13 of .SCOM+4

Enter date into .SCOM+47.
Print date from .SCOM+47.

* This table assumes error-free input.

3-5

EXIT

.EXIT

.EXIT

Next
Command

Next
Command

Next
Command

.EXIT

.EXIT

Next
Command

Next
Command

Next
Command

Table 3-1 (cont.)

Effects and Exits
for Nonresident Monitor Commands

COMMAND MODIFIER ACTION TAKEN EXIT

GET Set Section 3.4.
GETP
GETS
GETT

HALF ON Set bit ~ of .SCOM+33. .EXIT
OFF Clear bits f1 and 1 of .SCOM+33. .EXIT

HALT If not in BOSS-IS mode, put a HLT Next
instruction (instead of a JMP) into Command
the exit from non-IOPS 4 errors to
.MED. If in BOSS mode, do nothing.

INSTRUCT none Print INSALL Table. Next
ERRORS Print INSERR Table. Command

KEEP ON Set bit 16 of .SCOM+42. Next
OFF Clear bit 16 of .SCOM+42. Initial- Command

ize to SGEN default values all en-
tries in .DAT and .UFDT, except
change SCR default values to current
UIC.

LOG Output five spaces after Carriage Next Com-
RETURNs. After ALT MODE, go to mand (after
next command. ALT MODE)

LOGIN uic Redefine current UIC (. SCOM+4l) . .EXIT
Clear bit ~ of .SCOM+42, reset vari-
able system parameters to SGEN de-
fault values zero .SCOM+S6.

LOGOUT Set current UIC to SCR. Set .UFDT .EXIT
entries to SGEN default parameters.
Deposit zero into .SCOM+42 and S 6.

LOGW For BOSS-IS, print message. In all Next Com-
cases, after a Carriage RETURN, out- mand (after
put five spaces. After ALT MODE, ALT MODE)
type four bells tp, and await CTRL P.
After CTRL P, go to next command.

3-6

Table 3-1 (cant.)

Effects and Exits
for Nonresident Monitor Commands

COMMAND MODIFIER ACTION TAKEN EXIT

LP ON Set bit 3 of .SCOM+42. .EXIT
OFF Clear bit 3 of .SCOM+42. .EXIT

MICLOG mic Check key with SGNBLK. If correct, Next
set bit % of . SC0"1+42 , make "SYS" Command
the current UIC, and zero . SCO"1+5 6.
If incorrect, ignore command.

PAGE ON Clear bit 11 of .SCOM+4. Next
OFF Set bit 11 of . SCOM+4. Command

PROTECT n If n is between fJ and 7, inclusive, Next
enter it into . SCOM+54. C orrun and

PUT See Section 3.4.

QDUMP Enter MANSAV, the address of the Next
manual CTRL Q, into the exit from
non-lOPS 4 errors to .MED.

REQUEST none Print the current assignments for Next
.DAT and .UFDT. Command

USER Print the current assignments for
all positive .DAT and .UFDT slots.

prog Print required .DAT and .UFDT slots,
and the assignments and use for each.

.SCOM Print the information for the cur- Next
rent system. Command

TIME time Enter time into .SCOM+5,0. Next
none Print time from .SCOM+5.0. Command

VT ON Set bit 2 of .SCOM+33. .EXIT
OFF Clear bits 1, 2, and 17 of .SCOM+33.

Execute 7%3.044.

X4K ON Enter 4.f5~~~fJ into .SCOM+2~. Next
OFF Deposit zero into .SCOM+2.0. Command

33TTY ON Clear bit 2 of .SCOM+4. .EXIT
OFF Set bit 2 of . SCOM+4.

3-7

4. After assembly, the programmer must call PATCH, in
order to make his relocatable binary program absolute.
Commands to PATCH should be as follows:

>DOS15)

>READR 16~77 DOSNRM BIN)

16~77 indicates the highest location the new monitor
can occupy. (SYSBLK begins at 161~~.) DOSNRM BIN
happens to be the file name used by program develop­
ment. The progranuner may, of course, substitute his
own file name. More information may be found in the
PATCH manual -- DEC-15-YWZB-DN5.

3.4 QFILE

QFILE is a system program that allows users to (1) store core images

in named files, and (2) retrieve such core images for examination via

DUMP (or possibly for a slow, core-swapping capability). QFILE imple­

ments the following Resident Monitor system macros and Nonresident

Monitor commands:

.GET, GET, GETP, GETS, GETT, .PUT and PUT

Users can not obtain QFILE by typing its name to the Nonresident

Monitor. The Resident Monitor will load QFILE as part of its response

to the commands and macros listed above.

PUT creates a file that contains the data in the CTRL QAREA; .PUT

creates a file from the current core image. GET, GETP, GETS, GETT

and .GET all overlay core with the contents of the QAREA or file. (The

different commands specify different startup locations.) In addition

to the above capabilities, the Resident Monitor provides the capability

of overlaying core with the contents of the CTRL Q area. The follow­

ing instructions show how to use that routine:

UNITNO=4~~~f1~
.SCOM=l~~

LAC

XOR
JMP*

START

UNITNO
(. SCOM+6 4

/UNIT FOUR

/STARTING ADDRESS AFTER THE CTRL Q
/GET
/UNIT NUMBER IN HIGH-ORDER THREE BITS
/ADDRESS OF CTRL Q GET ROUTINE

3-8

Figure 3-2, QFILE, and Implementation of GET and PUT Logic, shows

the information flow associated with QFILE. QFILE uses the follow­

ing registers:

. SCOM+7 , l~ & 11

.SCOM+65

.SCOM+66-71

.DAT-14

.SIXBT Filename and Extension

Command parameters, packed as follows:

Bits ~-2 Device unit number
Bit 8 NRM PUT, when set
Bit 9 PUT logic, when set
Bits 15-17 Function Code

CTRL Q Area parameters

File must be on the device assigned
to this .DAT slot.

NOTE

All GET and .GET operations change all
of core, except registers ~ through 4
of bank zero.

3-9

Store unit number and code into
.SCOM+65

1.

2.

.PUT CAL

store unit number and
function code into
.SCOM+65
Set bit 9 of .SCOM+65
to indicate .PUT

N

Dump core into CTRL Q area

Bring in QFILE via a .OVRLA

GET PUT

1. Store unit number an
function code into
• 5 COM+ 65

2. Set bits 8 and 9 of
.SCOM+65 to indicate
NRM PUT

1. Save .SCOM+65 from the file
2. Transfer core image file to

crRL Q area via dump mode
.READ's and Monitor TRAN's.

Transfer core image from CTRL Q area
to named file via Monitor TRAN's and
dump mode .WRITE's

N

Use function code from file's .SCOM+65

1. Store correct startup address
2. Do Monitor TRAM from CTRL Q

Note: This chart assumes error free input.

QFILE, and Implementation of GET and PUT Logic

Figure 3-2

3-10

CHAPTER 4

THE SYSTEM LOADER AND THE LINKING LOADER

The System Loader is the third major part of the 00S-15 Monitor. The

other two are the Resident and Nonresident parts. The Resident and

Nonresident Monitors communicate with the System Loader by manipulat­

ing certain .SCOM registers. When comm&nds to either part imply a

new configuration is needed, that part sets up the appropriate .SCOM

registers, and passes control to the System Bootstrap via the Monitor

TRAN routine. The Bootstrap then loads the System Loader into high

core, and gives it control.

The System Loader examines the .SCOM registers, and loads a fresh copy

of the Resident Monitor, including any features that the user wishes

to be resident, such as the CTRL X feature. It will also load the

desired system program and a~l handlers required by the new configura­

tion. In addition, it will allocate all required buffers. The Non­

resident Monitor is treated like any other core-image system program.

The System Loader never loads user programs. It only loads core-image

system programs, the Linking Loader and Execute. The latter two load

user programs~

The System Loader uses two device handlers to interface with the disk:

the System Bootstrap, and the System Loader Disk Handler (DKL.). OKL.

arrives in core along with SYSBLK, COMBLK and SGNBLK, as well as the

loader itself. The Bootstrap loads core image programs only. The OKL.

takes care of relocatable programs and any handlers loaded by the

System Loader. Those include all handlers for core-image system programs,

the Linking Loader's own handlers, and any needed by the Execute file.

The Linking Loader loads some handlers needed by user programs it links.

There are two parts to the System Loader: the System Loader Interface,

and the System Loader proper (.SYSLD). Figure 4-1 describes the System

Loader Interface. Figure 4-2 describes the System Loader Proper, and

Figure 4-3 describes the Linking Loader.

4-1

Turn on the clock
Initialize
.SCOM+~

.SCOM+4

.SCOM+2~

First free reg­
ister below the
Bootstrap
SGEN default
Bit zero set, i
extra 4K: rest
zero

.SCOM+33 VT & HALF, as
per SGEN

.SCOM+74 Line frequency
-Mov to hi hest bank

Zero .SCOM+36, to indicate no entries in
Busy Table

2. Move Resident Monitor into lower core
3. Set up: Jump to Skip Chain

CAL* error
Legal CAL jump

4. Turn API on or off, depending on bit ~ of .SCOM+4 (set=on)
5. Bank bit initialize Resident Monitor to talk to the

Bootstrap, and load .SYSLD into the proper bank upon a
subsequent .EXIT or .OVRLA.

6. Initialize the Bootstrap with the proper lOPS 4 address for
disk not ready

7. Calculate the Skip Chain from SGNBLK
8. Set all API channel registers to point to lOPS 3 (with the

exception of the clock interrupt) and all software levels
to point to lOPS 3~

9. Put transfer vector to .DAT slots into .SCOM+23
l~. Put number of positive ~DAT slots into .SCOM+24
11. Put pointer to .UFDT+~ .into .SCOM+25

.TRAN image of .OAT
and • UFDT in from
block 37 of the sys­
tem device unit ~

1.
2.
3.

N

Zero .OAT-7 (i.e., not yet set up)
set up .DAT-2 and .DAT-3 for TTA.
Update .SCOM+l and +2 to point
just-above the Skip Chain, .DAT
and .UFDT

Next Page
System Loader Initialization

Figure 4-1

4-2

.TRAN image _of .OAT
and • UFDT out to
block 37 of the sys­
tem device unit

From Preceding Page

1. Put number of system device's "A" handler (DKA. or DPA.)
into .SCOM+57

2. Set up tabbing for current teleprinter
3. Set .SCOM+2~ to initial state (as in first t~e initialization)
4. Set up for CTRL Q -- ignore Q-dumps if RF system and QAREA too

small, or nonexistent
5. Setup for lOPS errors upon the followinG interrupts:

Nonexistent Memory (lOPS 31)
Memory Protect Violation (lOPS32)
Memory Parity Error (lOPS33)
Power Fail Not Set Up (lOPS34)

N

N

Y

Y -- Non-BOSS Batch

Set up for the
proper input
device (CD or PR)

19-
nore input until $JOB

N~tP~e

System Loader Initialization
Figure 4-1 (Cont.)

4-3

From Preceding Page

1. Set up CTRL C to clear the Batch Switch (bit 1 of 17777
of the Bootstrap)

2. set up CTRL T to abort current job, and start the Batch
Monitor looking for the next $JOB line

3. Relocate proper batch handler (PR or CD) to low core
4. Put handler entry point into .DAT-2
5. Set lOPS errors to abort job -- effectively a CTRL T
6. Set up all batch device .DAT slots to refer to the hand­

ler currently in core. That is, only one batch input
device is allowed at anyone time

7. Clear $JOB read switch (bit 1 of Bootstrap 17777)
8. Perform .INIT to .DAT-2

N

1. Relocate Resident BOSS
and link it to the DOS
Resident Monitor

2. Patch DOS Resident Mon­
itor to accomodate BOSS

3. Set bits 14, 15 and 17
of .SCOM+42, to tell
.SYSLD to set up .DAT-7
and +6

N

N

Relocate and
link CTRL X
code, and give
proper buffer

Set up linkages between
CTRL X code and the
Resident Monitor

Next Page
System Loader Initialization

Figure 4-1 (Cont.)

4-4

From Preceding Page

1. Allocate the number of buffers
indicated by .SCOM+26

2. Set up File Buffers Transfer
Vector Table pointer, in .sCOM+3~

N

3. Store one of the following codes
into .SCOM+6:

LOAD l~~~~~
GLOAD 3~~~~~

Tell .SYSLD by setting
.SCOM+ll to XCS (avoids
two handlers in core for
same device)

DDT 4~~~~~
DDTNS 5~~~~~

4. Zero .SCOM+5 1. Allocate number of
buffers indicated
by .SCOM+26

~ __________________ ~ __ ~ __ ~ ____________ ~2. Set up File Buffers

Transfer Vecter
Table in .SCOM+3~

3. Set .SCOM+6 = m

(Loading a Core-Image Program)
1. Find entry in SYSBLK and COMBLK
2. Build Overlay Table from information in COMBLK, and set .SCOM+31 to

first word in the table
3. Store the number of overlays in the overlay processor of the Resident

Monitor

1. Store the list of active .DAT slots de­
rived from COMBLK in the System Loader
command area, just below the ~ootstrap,
and delimit the list with a zero

2. If the Nonresident Monitor was not the
last program, restore .SCOM+26 ~default

3. Allocate space for, and set up .SCOM+3~
to point to the File Buffers Transfer
Vector Table

Next age
System Loader Initialization

Figure 4-1 (Cont.)

4-5

From Preceding Page

1. Zero .SCOM+6
2. Put 1

into .SCOM+5

1. Move the RCOM Table to position below
the Bootstrap

2. Build the IOC Table

System Loader Initialization

Figure 4-1 (Cont.)

4-6

1. set up for Page or Bank Mode
2. Set up .DAT-7 for the System Loader disk handler COXA. or OPA.)
3. Clear free core, and initialize bank bits in pointers to the Bootstrap
4. Make a Mass Storage Busy Table consisting of one entry

1. Change XCS to XCT
2. Allow reading of

EXECUTE file by the
System Loader Handler

Clear memory bank pointers of banks that
do not exist

N

Load handlers into extra 4k,

N

Put System Device's code into
.DAT+~, to allow subsequent
insertion into .DAT-7

Next Page
The System Loader

Figure 4-2

4-7

From Preceding Page

core- EXECUTE
image

N

1. Translate the handler code from radix
5~ to .SIXBT

N

2. Do .USER to .UFOT-7, using "lOS"
3. Do .INIT and .SEEK to .OAT-7, in order

to get the handler file
4. Load handler via .OAT-7, and close .OAT-7

N -- not

Note: Subroutine IOPROS accepts
.OAT slots as input. If the in­
dicated .OAT slot contains zero,
the slot is unassigned, and IOPROS
returns. If not zero, IOPROS checks----------~
whether the desired handler has al-
ready been loaded. If the handler
is in core, IOPROS loads the .OAT
slot with the handler's starting ad-
dress and returns. If the handler has
not been loaded, the handler code is made
an unresolved .GLOBL, to be satisfied
by the loop that follows immediately.

The System Loader
Figure 4-2 (Cant.)

4-8

1. Set up Mass storage Rusy
Table Entries for all
active .OAT slots

2. Set .SCOM+l to first free
location in core--often
becomes first location of
EXECUTE

next page

From Preceding Page

Load and relocate EXECUTE or the Linking
Loader, and place starting address into
.SCOM+5

N

1. set up Mass Storage Busy table with
one entry per active .DAT slot

2. Move the IOC table from the System
Loader's area (just beneath the
Bootstrap) to the Linking Loader's
area

set .SCOM+2 and +3 to delimit free core

dress in
SCOM+5

1. Allocate all necessary buffers
2. If the system has an extra 4K,

put the first free address beneath
the handlers into .SCOM+2~

3. Update first free location in core
shown in .SCOM+2 -- .OVRLA updates
the first free address beneath the
Bootstrap, .SCOM+3

Exit via
.OVRLA

Note: Subroutine BaseKl does the following, if loading a program under BOSS-15:

(1) .USER to .UFDT-7, (2) .SEEK to .DAT-7 for PRCFIL PRC.

The System Loader

Figure 4-2 (Cont.)

4-9

STARr

1. Clear all of core above the loader, including the extra 4K, if present, and
excluding the Bootstrap ,

2. Initialize the Load Table with the first free address in every bank or page
3. Indicate all core below the address in .SCOM+2 as not free
4. Compute transfer vectors to .OAT-l, -3, -4, -5, and -7, and a pointer to

.UFDT-l
5. Save the contents of .UFDT-l

1. Check for P, G and C switc es

N

Load DDT and set the
symbol flag, if not
ODTNS

Type appropriate
name, and await
command string

2. Translate all file names after left arrow into .SIXBT, pad with blanks,
and store in symbol table

3. After ALT MODE, load to end-of-file each file on .DAT-4, and put starting
address of the first file (i.e., not DDT) into .SCOM+6

N

After every end of tape, type tp
and await CTRL P -- continue
until number of tapes equals the
number of commas, plus one

Next Page

The Linking Loader

Figure 4-3

4-10

NOTE:

During the library searches
diagrammed on this page, the
Linking Loader tests for
more unresolved .GLOBL's af­
ter each resolution. When­
ever there are no more unre­
solved .GLOBL's, the Linking
Loader halts its library
searches, and goes directly
to the COMMON area allocation
code (next to the last box
on this page). Thus, the
libraries are never searched
more than is necessary.

From Preceding Page

Check Symbol Table for handlers
needed, and load them from .DAT
-1, using lOS as a UIC; exit if
ille al .DAT desired

y

Check Symbol Table for any
unresolved .GLOBL's

y

1. Do .SEEK to LIBRS BIN on .DAT-S
2. Read through user's library and

load any program units that sat­
isfy any .GLOBL's

3. Read to end of library file, if
still unresolved .GLOBL's

If any unresolved .GLOBL's, try to
~----------~~------------~find program units in the system

library (.LIBR BIN) on .DAT-l

Exit to the~ ______ -1 Print LOAD3 error
Nonresident message
Monitor ~------------------

Scan Symbol Table for Common Blocks,
and allocate space and set pointers,
as needed. If any unresolved .GLOBL's
seek matches in the Common Blocks

y

Next Page
The Linking Loader

Figure 4-3 (Cont.)

4-11

y

From Preceding Page

set .SCOM+2 above the
Loader's highest hand­
ler -- no handler is
overlayed

Allocate the Mass Storage Busy Table,
with the number of entries equal the
sum of the active .DAT slots, minus
one -- i.e., the two .DAT slots for
the teleprinter are omitted, and one for
.DAT-7 is added

GLOAD

Put lowest address of
the Symbol Table into
.SCOM+II, and the high­
est into .SCOM+2 --
DDT will recalculate
.SCOM+2

The Linking Loader

Figure 4-3 (Cont.)

4-12

LOAD

Set .SCOM+2 below all
of the Loader's hand­
lers, and the Loader
itself

4.1 MANUAL BOOTSTRAP LOADS AND RESTARTS

Manual Bootstrap loads and restarts bring blocks ~-36 of the system

device into the lowest bank. These blocks contains the Resident Moni­

tor, the System Loader Interface Routine, and SYSBLK, COMBLK and SGNBLK.

Figure 4-4 illustrates the core load after manual Bootstrap loads and

restarts. The Interface sets up .SCOM+~, 4, 2~, 27, 33, 54 and 74

from SGNBLK values determined at system generation time, and then

transfers the whole core image of the Interface to the Bootstrap's

bank. (DOS requires 16K, because this bank must be different from

bank ~.) At all other times, the Bootstrap loads the System Loader

into its own bank. This preserves the image of .SCOM, part two of

the Resident Monitor patch ~ea, and the CTRL X buffer.

4.2 LOADING SYSTEM PROGRAMS

The System Loader Interface Routine gets control in the highest bank,

either by a transfer from the lowest bank, or by load from the Boot­

strap. After setting up for the System Loader Proper (.SYSLD), accord­

ing to the program to be loaded and the settings of certain SCOM regis­

ters, the Interface Routine brings it in as a complete overlay. Figure

4-5 illustrates the core configuration of the Interface when it is

in the highest bank. (The addresses provided are for a 16K system.)

The System Loader loads handlers from the lowest part of free core up,

with the exception that the extra 4K is filled first, if it exists.

Core image system programs are usually loaded just beneath the Bootstrap

(always in the highest bank). Such core images must be wholely within

the top bank of core, and above register 17 of that bank. Figure 4-6

illustrates the core maps for system programs.

Whenever the Linking Loader is loaded (LOAD, GLOAD, DDT, and DDTNS) ,

the System Loader loads all handlers for .DAT slots -1, -4, and -5,

and then loads the Linking Loader itself. (DDT is loaded by the

Linking Loader.) Figure 4-7 illustrates the core maps for the Linking

Loader.

For EXECUTE, the System Loader loads EXECUTE's handler, and reads the

EXECUTE file, in order to determine the active .DAT slots. The System

Loader then loads all the handlers required, and sets up the .DAT

slots. Figure 4-8 illustrates core maps for EXECUTE.

4-13

BOOTSTRAP

UNUSED

3 SYSTEM BLOCKS

SYSTEM LOADER INTERFACE

RESIDENT MONITOR

16K. 24K. 32K

.SCOM

17500

16100

100

15-0663

Figure 4-4

Bootstrap Load

BOOTSTRAP

SYSTEM PROGRAM

(THIS AREA IS USED BY CORE
IMAGES. SOME ROOM UNDERNEATH
THE BOOTSTRAI' MAY BE LEFT
FREE FOR COMMUNICATION
BETWEEN CORE IMAGES IN AN
OVERLAY STRUCTURE.
CORE IMAGES MUST BE BK OR
LESS.)

FREE CORE

HANDLERS, BUFFERS

BUFFER POOL
TRANSFER VECTORS

OVERLAY TABLE

DEVICE TABLE

RESIDENT MONITOR

Figure 4-6

System
Program Load

16K, 24K, 32K

.SCOM

. SCOM+3

.SCOM+2

.SCOM+l

15-0661

BOOTSTRAP

DDT, IF PR ESENT

1
LOADED PROGRAMS

ON DDT LOADS. SYMBOLS
ARE MOVED INTO THE
LOWEST PART OF FREE CORE.

SYMBOL TABL E

SYMBOLS AND PROGRAMS BUILD
TOWARD EACH OTHER.

i
LINKING LOADER"

LOADER HANDLERS

BUFFER POOL

BUFFER POOL
TRANSFER VECTORS

RESIDENT MONITOR

·Placement of .SCOM+2 depends on relative
positions of the Linking Loader and its handlers .

When control is nansfertad to loaded program,
SCOM.2 and +3 bracket 1ree core

Figure 4-7

Linking Loader

4-14

16K, 24K. 32K

.SCOM .SCOM+3·

.SCOM+2·

.SCOM+l

15-0660

BOOTSTRAP

.ReOM TABLE

SGNBLK

SYS3LK and COMBLK

SYSTEM LOADER INTERFACE
(overlayed by .SYSLD)

RESIDENT MONITOR IMAGE

RESIDENT MONITOR

• A s the I n1erhce moves code down, It Inere

ments .SCOM+l and +2.

Figure 4-5

Standard
Interface Load

BOOTSTRAP

OVERLAY SYSTEM

BLANK COMMON

FREE CORE

EXECUTE

All HANDLERS REQUIRED

BUFFER POOL

BUFFER POOL
TRA'IISFE R VECTORS

RESIDENT MONITOR

Figure 4-8

Execute

16K, 24K. 32K

.sCOM

37500 (16K)

37100 (16K)

36100 (16K)

20100 (16K)

.SCOM+l.2 •

15-0664

16K. 24K, 32K

.SCOM

.SCOM+3

.SCOM+2

.SCOM+l

15- 0662

BOSS-IS Mode operation requires the system "A" handler be assigned to

.DAT-7. This requires a sleight of hand on the part of the System

Loader, which needs the "L" handler on .DAT-7. It therefore loads

the "A" handler as if it were assigned to .DAT+P', and transfers the

set up .DAT slot ~ contents to .DAT-7 before transferring control to

the program being loaded. .DAT+~ is then restored to its original

status.

4.4 TABLES AND INFORMATION BLOCKS USED AND BUILT BY LOADERS

The System Loader uses SYSBLK, COMBLK, SGNBLK, block 37 of the system

device, .SCOM, the RCOM Table, the IOC Table, the Device Table, the

Mass Storage Busy Table, the File Buffers Transfer Vector Table, the

Overlay Table, .DAT, .UFDT and three bits in the Bootstrap. Tables

4-I, 4-I1 and 4-II1 describe how the Loaders use these blocks and tables.

4.5 .DAT SLOT MANIPULATION BY THE SYSTEM LOADER

The System Loader maintains the .DAT slot device handler assignments

as they were the last time the Nonresident Monitor was in core. The

Loader saves the .DAT and .UFDT on the system device whenever the

Nonresident Monitor was the last program. in core. Thereafter, the

Loader refreshes .DAT and .UFDT from the image on the disk. If KEEP

is off, the Nonresident Monitor's initialization routine restores the

.DAT and .UFDT to default values.

When loading core-image system programs, the System Loader determines

the active .DAT slots by examining COMBLK. When loading EXECUT, the

System Loader sets up .DAT-4, and any active slots indicated by the

Execute file itself. wnen loading the Linking Loader, the System

Loader sets up .DAT-l, -4, and -5. The Linking Loader will set up other

other active .DAT slots according to the .IODEV commands in the as­

sembly of the program units being loaded.

Both the System Loader and the Linking Loader set up .DAT slots in

this manner:

one.)

(In the following procedure, "loader" refers to either

4-15

NAME

SYSBLK

COMBLK

SGNBLK

Block 37
of the Sys­
tem Device

. SCOM Table

RCOM Table

laC Table

Device
Table

Mass Storage
Busy Table

File Buffers
Transfer Vec­
tor Table

Overlay
Table

.DAT
and
.UFDT

BOOTSTRAP

Table 4-1

Tables and
Used by the

USE

I

Block?
Loaders

I

The System Loader obtains Monitor TRAN
parameters from SYSBLK when it builds

Indicates number of buffers required,
the active .DAT slots, and the names

Default settings for .SCOM registers,
number of words per buffer, size of
Resident Monitor's patch area (part
two), Skip Chain, .DAT and .UFDT de­
fault contents, and handler informa­
tion.

Image of .DAT and .UFDT, when last pro­
gram was loaded (excluding the Nonresi­
dent Monitor).

See Table 4-11 .

LOCATION

16S99 of
.SYSLD's bank

171~f1 down, in
.SYSLD's bank

16199 of
.SYSLD's bank

l.0f1 of 1st bank

Moved for use by the Nonresident Monitor. 175f1f1 of the
highest bank

Built by Interface Routine for .SYSLD
itself.

Built by Interface Routine if loading
PIP, or if PIP is among the overlays
listed in COMBLK

Built by the System Loader itself.

Allocated by the Interface Routine, and
initialized by it for non-core Image
programs. System Loader proper initial­
izes for core-image programs.

Built by the Interface Routine

Image stored and restored from block 37
of the System Device. The System Loader
loads all handlers for core-image pro­
grams and EXECUTE Files, and sets up
the appropriate .DAT slots. The System
Loader also loads handlers assigned to
.DAT-l, -4, and -5 when loading the
Linking Loader, and .DAT-7 and +6 for
BOSS-IS.

Bits fI, I, and 2 of location 17777 in
the Bootstrap's bank used for Batch (non­
BOSS) information.

4-16

Just beneath
the System
Loader

Just above
.SCOM+l

Pointed to by
.SCOM+62

Pointed to by
.SCOM+39

Pointed to by
.SCOM+31

Pointed to by
.SCOM+23 and
.SCOM+2S

Table 4-11

.SCOM REGISTERS USED BY THE SYSTEM LOADER

.SCOM+ Description of Use by the System Loader

f! Set in first-time initialization routine. Used to locate
the System Loader Conunand Area, which is just below the
Bootstrap.

I System Loader Interface routine updates this indication
of the first free register above the Resident Monitor
each time it moves a piece down to low core.

2 The Interface and .SYSLD itself continually update this
indication of the first free location as they move code
and build tables.

3 Updated as with .SCOM+2. Last free location in core.

4 First Time Initialization routine sets this register ac-
cording to a SGNBLK parameter.
Refer to Table 4-III.

5 Interface Routine stores code of program to be loaded
into .SCOM+S. .SYSLD uses .SCOM+S for starting address
when loading EXECUT or LOAD. The .OVRLA routine loads
.SCOM+S with starting address of the Monitor Recovery
Routine. The Bootstrap transfers to the address in
.SCOM+S after all its operations.

6 Interface Routine stores codes for DDT, DDTNS, LOAD and
GLOAD into . SCOM+6. For other programs, the Interface
Routine zeroes . SCOM+6.

7 .SYSLD saves contents of .DAT-I in .SCOM+7, when loading
the Linking Loader. When loading EXECUT, .SCOM+7 con-
tains the first three characters of the Execute file's
name. Contains .DAT-12 when loading Nonresident Monitor.

If! .SYSLD saves contents of .DAT-4 in SCOM+l,0, when loading
the Linking Loader. When loading EXECUT, .SCOM+l,0 con-
tains the second three characters of the Execute file's
name.

11 .SYSLD saves contents of .DAT-5 in .SCOM+ll, when loading
the Linking Loader. When loading EXECUT, .SCOM+ll con-
tains the extension of the Execute file's name. (The
Interface routine sets .SCOM+ll to XCS, telling .SYSLD
that EXECUT will be using the system device. .SYSLD
then restores .SCOM+ll to XCT.)

12- The Interface routine initializes these transfer vectors
15 for API software levels to point to SERR, an error routine

that will produce an IOPS3,0.

16, Unaffected.
17

4-17

Table 4-II (Cont'd)

.SCOM+ Description of Use by the System Loader

2)1 Bit zero set in first time initialization, if system con-
tains an extra 4K. If the system does contain an extra
4K, the System Loader will load handlers in that page --
from the bottom up -- when loading a core-image program.
Whenever there is an extra 4K, the System Loader will
update bits 3-17 with the address of the first free cell
in the extra 4K.

21 Unaffected.

22 Unaffected.

23 The Interface Routine refreshes this pointer to .DAT.

24 The Interface Routine refreshes this indication of the
number of positive .DAT slots.

25 The Interface Routine refreshes this pointer to .UFOT+.0'.

26 When the Nonresident Monitor was the last program, the
System Loader allocates the number of buffers indicated
by the contents of .SCOM+26. If the Nonresident Monitor
was not the last program, the System Loader restores
.SCOM+26 to the default value if program to be loaded is
core image. Otherwise, untouched.

27 The first time initialization routine sets this indica-
tion of the number of words per file buffer.

3~ The Initialization Routine loads this pointer to the
File Buffer Transfer Vector Table.

31 When loading a core-image program, the Interface Routine
loads .SCOM+31 with the pointer to the Overlay Table, or
with zero, if there is none.

32 Unaffected.

33 See Interface Routine table, to determine how that routine
reacts to the bits in . SCOM+33.

34, 35 Unaffected.

36 System Loader loads wi th the number of active . OAT slots
assigned to the system device.

37-42 Unaffected.

43, 44 Contains name of the program to be loaded.

45-56 Unaffected.

57 System Loader loads with the number of entries in the
Mass Storage Busy Table.

6)1, 61 Unaffected.

62 System Loader loads with the address of the first entry
in the r.~ass Storage Busy Table.

63- Unaffected.

4-18

Table 4-II1

Use of .SCOM+4 by the System Loader

Bit

0 If set, place "API ON n constant into ~~~~~6.
If clear, place "API OFF n constant in same register.

1 Ignored.

2 If set, change the Resident Monitor so it will tab
with the KSR 35/37 tabbing mechanism.

3 Loader will set this bit, if loading the Nonresident
Monitor; clear it otherwise.

4-6 Ignored.

7 Loader sets this bit if bit 11 is cleared, and load-
ing the Linking Loader or Execute. Otherwise clear.

8 Sets or clears, after comparing current core size
(known by location of Bootstrap, and status of bit ~,
.SCOM+2,0) with SGNBLK parameter. Also, modifies
Resident Monitor to give IOPS77 after attempts to use
CTRL Q.

9, 10 Ignored

11 Indicates whether to clear or set bit 7 , when loading
Linking Loader or Execute.

12-17 Ignored

4-19

1. Each .OAT slot will contain a handler number -- either the
system default, or one inserted via an ASSIGN command to
the Nonresident Monitor. This handler number is the rela­
tive location of the handler name in the IOC Table, which
the Interface Routine builds. (The IOC Table contains
handler names in Radix 5~.) .

2. For each active .OAT slot, the loader uses the handler
number in that slot to find the name in the IOC table, and
converts the name to .SIXBT.

3. If the handler is already in core, the loader simply inserts
the starting address of the handler into the .OAT slot.

4. If the handler is not yet in core, the loader does a .SEEK
to lOS for the handler, reads it into core, relocates it,
and places the starting address of the handler into the
.DAT slot.

The System Loader always sets up .OAT-2 and -3. (It reserves .OAT-7
i

for its own use.) When not in non-BOSS Batch Mode, -2 is assiqned
I -

to TTA. In non-BOSS Batch Mode, the batch input device goes to -2.

If loading the Nonresident Monitor and bit three of .SCOM+42 is set,
I

the System Loader will set up .DAT-12 for I the LPA, if it is in the

system, or else for TTA. If in BOSS mode ,I the Nonresident Moni tor

assigns LPA. to .OAT+6, and the System Loader assigns .DAT-7 to the

system device "A" handler. The System Lo~der then ensures that both

handlers are in core. The Resident BOSS set up routine subsequently

routes all .DAT slots connected to TTA. to Resident BOSS.
I

4.6 BUFFER ALLOCATION BY THE SYSTEM LOAD~R

The System Loader allocates space for buffers equal to the contents

of .SCOM+26 times the contents of .SCOM+27. The first time initial­

ization routine sets .SCOM+27 to the standard number of locations per

buffer. Before the Nonresident Monitor does an .OVRLA to a software

system program, it checks whether a BUFFS command has been issued.

If so, it leaves .SCOM+26 as is. If not, it uses the default number

of buffers for that program, as shown in SYSBLK.

4-20

CHAPTER 5

SYSTEM INFORMATION BLOCKS AND TABLES

5.1 CORE-RESIDENT NON-REFRESHED REGISTERS

The .SCOM table, the Bootstrap and the resident Patch Area are the

only registers not refreshed by the System Loader. Table 5-I de­

scribes the .SCOM Table.

5.2 DISK-RESIDENT UNCHANGING BLOCKS: SYSBLK, COMBLK AND SGNBLK

I

I

SYSBLK, COMBLK and SGNBLK occupy blocks 34, 35, and 36 (octal) on the
I

system device (unit zero). SYSBLK and COMBLK (blocks 34 and 35) contain

the parameters for loading all core image system programs. SGNBLK con-
I

tains all the other information needed to run DOS. All three arrive
I

in core along with the Resident Monitor and the System Loader Inter­
I

face, and start at location l61~~ of the highest bank. The Nonresident
I

Monitor and System Loader use them, and DOSGEN and PATCH modify them,

when necessary.

5.2.1 SYSBLK

SYSBLK contains the parameters required for implementation of .OVRLA

to any system program, or any of the system program overlays.

The order of entries in SYSBLK is unimportant, except for the first

three permanent entries: RESMON, .SYSLD, and fQAREA. The first word

of SYSBLK contains the block address (the unrelocated address) of the

first free word after itself. Figure 5-1 describes SYSBLK.

5.2.2 COMBLK

COMBLK contains information the System Loader and the Nonresident

Monitor need to remember about the current core-image system programs.

The last location in COMBLK (that is, location 377 of block 35) con­

tains the block address of the first entry in COMBLK. The remainder

of COMBLK consists of variable-length entries associated with the

system programs. The Nonresident Monitor searches COMBLK when it

finds no match for a typed command in its own Command Table. Figure

5-1 illustrates the organization of COMBLK. The System Generator adds

5-1

TABLE 5-1

.SCOM Registers

I
REGISTER BIT MEANING

~ First register below the Bootstrap (set by the
System Loader Interface)

1 First register above the Resident Monitor (set by
the System Loader Interface)

2 Lowest free register available for storage (set
by the System Loader or the Linking Loader)

3 Highest free register available for storage (set
by the System Loader, the Linking Loader or DDT)

4 Initialized from SGNBLK values by the IIfirst time ll

section of the System Loader Interface Routine,
and by the LOGIN, LOGOUT and MICLOG logic of the
Nonresident Monitor; modified by the Nonresident
Monitor, unless otherwise indicated.

~ = 1 API is available.

1 = 1 EAE is available (always set)

2 = 1 Teleprinter is Model 35 or 37

3 = 1 Nonresident Monitor is in core

4,5 Reserved

6 = 1 9-Channel Magnetic Tape System

7 = 1 Page Mode Operation

8 = 1 QAREA inadequate for current core size (set by
the System Loader Interface Routine)

9 = 1 DOS disk file structure (always set)

1.0 = 1 RB~9 disk is system device.

11 = 1 Bank Mode System

12,13 Line Printer Line Size:

~9 No Line Printer
)11 8~ Characters
1.0 12.0 Characters
11 132 Characters

14 = 1 Background/Foreground System (always clear)

15- 17 Drum size (ignored -- DOS does not support drum)

5-2

TABLE 5-1 (Cont'd)
I

REGIS~ER BIT MEANING

5 Core Image System Program starting address.

6 fJ = 1 DDT in core.

1 = 1 GLOAD

2 = 1 DDTNS

3-17 User program starting address.

7-11 When using the Linking Loader, . SCOM+7 , 10 and 11
contain the handler numbers for handlers needed by
the Linking Loader in . DAT -1, -4, and -5 respect-
ively.

When using EXECUTE, 7-11 contain the .SIXBT repre-
sentation of the name and extension of the Execute
File.

When using QFILE (for implementation of .GET, .PUT
and the Nonresident Monitor GET and PUT commands),
7-11 contain the .SIXBT representation of the name
and extension of the core image file.

12 API Level 4 service routine entry point

13 API Level 5 "

14 API Level 6 "

15 API Level 7 "

16 Program Counter on Keyboard Interrupts.

17 AC on Keyboard Interrupts.

2fJ fJ = 1 2fJK or 28K system.

3-17 First free address in top page.

21 Magtape Status Register.

22 Reserved for Magtape Handler.

23 Pointer to .DAT+,0.

24 Number of positive .DAT slots.

25 Pointer to .UFDT+fJ.

26 Number of buffers.

27 Number of words per buffer.

3fJ Pointer to Buffer Transfer Vector Table.

5-3

TABLE 5-1 (Cont'd)

I
REGISTERS BIT MEANING

31 Pointer to first entry in the Overlay Table (zero,
if none).

32 Bad block number on lOPS 2~ and 72.

33 CTRL X status register.

Y1 = 1 HALF ON

1 = 1 Display Buffer already set up.

2 = 1 VT ON

17 = 1 If VT ON, display mode is on.

34 If in BOSS mode, elapsed time in seconds.

35 Instruction to clear TT Busy Switch.

36 Number of Entries in the Mass Storage Busy Table.

37 Entry point for Expanded Error Processor.

4~ JMP to Expanded Error Processor.

41 The logged-in UIC.

42 Bit Register.

~ = 1 MICLOG successful.

1 = 1 .EXIT from Nonresident Monitor.

2 = 1 .OVRLA from Nonresident Monitor.

3 _. 1 LP ON -- LPA to .DAT-12 when loading Nonresident
Monitor.

4 = 1 Dump core on calls to .MED (except lOPS 4) .

5 = 1 Halt on calls to .MED (except lOPS 4) .

6-13 Unused.

14 = 1 Set up .DAT+6 (used by BOSS Mode).

15 = 1 Load System Device Handler into .DAT-7.

16 = 1 KEEP-ON.

17 = 1 BOSS Mode.

43,44 .SIXBT Representation of the name of the core
image system program to be loaded (if any).

45,46 .SIXBT Representation of the name of the Non-
resident Monitor

5-4

TABLE 5-1 (Cont'd)

I
REGISTERS BIT MEANING

47 Date (MMDDYY)

5f1 Time (HHMMSS)

51 Elasped time, in ticks.

52 BOSS Bit Register

fl = 1 BOSSl5 Mode.

1 = I Control Card Read by user, 5/7 ASCII image saved
in first block of NRBOSS.

2 = 1 Resident BOSS reached "EOF" on run time file (RTF) .

3 = I User exceeded time estimate.

4 = I I/O CAL to go to TTY.

5 = I Terminal lOPS error by user.

6 = 1 QDUMP to be given to user on lOPS errors.

7 = 1 Operator abort (Control T) .

8 = 1 Job active.

9 = 1 Exit from BOSSl5 Mode.

1.0' = 1 User tried to do a .PUT. Core will be dumped and
a listing given on LP.

11 = 1 User tried to do a .GET.

12 Not defined.

13 Not defined.

14-16 . SYSLD error number .

17 = 1 Job abort.

53 Reserved for CTRL X code.

54 Default Protection Code.

55 Entry to Monitor TRAN routine.

56 Two's complement of time limit, in seconds (zero,
if no limit) .

57 System Device Code, for use by the Linking Loader.

6fl Number of ticks until clock interrupt specified
in last . TIMER (zero, if .TlMER not in use).

5-5

TABLE 5-1 (Cont'd)

REGISTER BIT MEANING

61 . TIMER address.

62 Address of the first word in the Mass Storage Busy
Table.

63 Numl;>er of words per Mass Storage Busy Table Entry.

64 JMP to CTRL Q GET routine.

65 QFILE Communication Register.

66 First Block of the CTRL Q Area.

67 Starting Address minus one of the CTRL Q Area.

7" Two's complement of number of word in Qdump

71 Starting Address after DUMP or GET.

72 Starting Address after CTRL Q.

73 TWo's cOIrlplement of the number of ticks left in the
next second.

74 TWo's complement of the line frequency ..

75 Number of RTF Lines (for BOSS Mode).

76-1~5 Unused.

5-6

Word # Value Description

~ flfJf1nnn Pointer to first free word after SYSBLK

· (There is one set of seven words/core
image program.)

7N+l .SIXBT
Name of System Program or overlay 7N+2 .SIXBT

S 7N+3 nnnnnn Number of first block on system device

Y occupied by this program or overlay.
7N+4 flfIf1fJnn Number of blocks occupied by this pro-

S gram or overlay

B
7N+5 addres Thirteen-bit first address for this

program or overlay
L 7N+6 ~nnnnn Program size

•• K
7N+7 addres Thirteen-bit starting address for this

program or overlay

· · ·
· · · · · ·

~---------------. --
(free area)

~---------~;;---l-;:;;;;~;-----~::::-:~-:::~:-::-~~::-::::~-~~:-:~::---
case, Ifl)

5fJl .SIXBT Name of this system program (left-

.. C

o
M

B

L

K

592 p .SIXBT justified and zero-filled)
5fJ3 .SIXBT Name of an overlay (left-justified and
5f14 r .SIXBT zero-filled) -- overlays are optional
595 o~ ~f1fJfJ~2 Number of buffers required by this sys­

596
5fJ7

51fl

511
512
513

514

777

g

1

p

.OAT&777
'-..OAT&777
r
f1f1~fl95

r
.SIXBT
.SIXBT

0-< 9f19fJfJl

g

2 .OAT&777
'- .

tem program (Bits fJ-6 = f1 means the end
of any overlay names. This is why pro­
gram and overlay names must be left­
justified.)
Active .OAT slot
Active .OAT slot (Note: 777777 for a .DAT
slot means all positive .OAT slots.)
Number of words for this entry (in this
case, 5)

Name of this system program

Number of buffers required by this pro­
gram (Note that his program has no over­
lays.)
.OAT slot for this program

Pointer to first word in COMBLK (equals
count from first word in SYSBLK). The
two contiguous blocks on the system de­
vice that hold SYSBLK and COMBLK are
treated by the system as one large block.
In this case, COMBLK happens to start at
location 5f1f1 of the two blocks combined.

Figure 5-1

SYSBLK and COMBLK

5-7

names of core-image system programs by making them the new first entry.

In this way, SYSBLK and COMBLK build toward the center.

5.2.3 SGNBLK

SGNBLK (block 36 on the system device) contains all the system param­

eters not directly associated with core-image system programs. The

bulk of SGNBLK is concerned with r/o (.OAT slots, .UFDT slots, Skip

Chain Order, Handlers, and skip rOT codes and mnemonics). The first

few registers hold such important system information as the system de­

vice, .SCOM+4 contents, and so on. The very first word in SGNBLK

points to the block address of the first free word after SGNBLK. The

next entry is an offset word indicating the total length (including

itself) of the miscellaneous system parameter table to follow. This

table includes the size of the .DAT and the size of the skip chain.

The end of the handler and skip rOT table is the first free entry of

the block.

The .DAT slot table corresponds to the legal range of .DAT slots,

with the maximum negative set to -15 and the maximum positive set to

a number not to exceed 77
8

• The .DAT slots are in the form in which

they appear when the Nonresident Monitor is in core. That is, the

unit number is in bits ~-2, and the number of the handler right­

justified in bits 3-17. The handler number for the first handler in

the Device Handler-Skip rOT Table is zero, for the pseudo-handler NON.

TTA. is one, and so on. The constant l~~~~~ indicates a fixed or il­

legal .DAT slot (such as -2, -3, and ~). DOSGEN will not modify such

slots.

The .UFD Table is m one-to-one correspondence with the .DAT slot Table.

An entry of .SIXBT 'UIC' indicates that the logged in UIC is to be sub­

stituted for the name urc in the table. An entry of .srXBT 'SYS' in­

dicates BNK or PAG is to be substituted, in accordance with the current

addressing mode. Otherwise, the contents of each location will be the

.srXBT representation of the corresponding .UFD slot.

The Skip Chain Table lists the system skip lOT's in order. A negative

skip (one that skips on "off", not "on") is represented in one's com­

plement. Not all skips in the handler Skip lOT Table (described be­

low) need to be included in the Skip Chain Table.

5-8

The Device Handler/Skip lOT Table contains all the handler nameS and

skip lOT numbers and mnemonics for each I/O device identified to the

system. Every such device has an entry in the table. A handler name

must be exactly three characters in length, with the last character

not an octal digit. The device code for a device is exactly two

characters. The first two characters of each handler name for a de­

vice must be the device code. This fact is essential for understand­

ing the format of a device entry, since the device code is never

stored as such in an entry, but is inferred from the device handler

name. The typical entry for a device is the following:

1. The first words of an entry contain the handler names
for a device in .SIXBT. Each handler name is differ­
ent, and the end of the list of handlers is determined
by a word with zeros in bits ~-5 (the first character
position).

2. The word that terminated the list of handler names
contains the number of skip lOT's for the device.
For each skip lOT, there are three words in the table:
two for the skip mnemonic and one for the actual code.

The next device entry follows the last skip for the previous device.

Handlers may be entered without any skips, but no devices may be

entered without at least one handler name. Figure 5-2 illustrates

the organization of SGNBLK. Appendix D of SGEN-DOS Utility Programs,

DEC-lS-YWZB-DNI2, lists SGNBLK, SYSBLK and COMBLK, as they are supplied

by Digital Equipment Corporation.

5.3 DISK-RESIDENT CHANGING BLOCKS

The System Loader uses block 37 of the system device to store an image

of .DAT and .UFDT. Other disk-resident changing blocks are the storage

Allocation Table and the Bad Allocation Table. These tables are de­

scribed in Chapter 6.

5.4 TEMPORARY TABLES BUILT FROM DISK-RESIDENT TABLES

5.4.1 The Overlay Table

The System Loader builds the Overlay Table from the entries in SYSBLK

referenced by a core-image system program's entry in COMBLK. That is,

the Overlay Table contains an entry for the system program itself, and

one for each of its overlays. Figure 5-3 illustrates the format of an

entry in the Overlay Table. The first entry in the Overlay Table is

5-9

Location Value

yr flIlflnnn
1 flflflf1l5
2 flIlflnnn

3 IlIlJ1nnn
4 f14l3f1f1

f142Ilflfl
5 nnnnnn
6 nnnnnn
7 nnnnnn

lfl nnnnnn
11 .SIXBT
12 nnnnnn
13 flIlJ1Ilfln
14 flJ1nnnn
15 7777nn

16 flIlflnnn

·
53 flJ1f1nnn
54 .SIXBT

III .SIXBT
112 nnnnnn

·
· 137 nnnnnn

l4f1 .SIXBT

· ·
· · · · · .SIXBT

· .SIXBT

· · ·
· .SIXBT

· J1Jlflflfl3
· nnnnnn

· nnnnnn

· nnnnnn

· . SIXBT

· flfIfIJlfll
· nnnnnn

· ·
· ·
· · 312

Description

Pointer to first free entry in SGNBLK
Number of miscellaneous parameters
Size of .DAT plus size of .UFDT = (number of posi­
tive .DAT slots+l6) *2. (Initial value is 2~ posi­
tive .DAT slots.)
Number of skips in Skip Chain

System device code in .SIXBT

Original contents of .SCOM+4
Original contents of .SCOM+29
Number of words per buffer (.SCOM+27)
Default number of buffers (.SCOM+26)
Monitor Identification Code
Information on VT and CTRL X (.SCOM+33)
Default files protection code (.SCOM+54)
Size of the Resident Monitor Patch Area
Minus the number of clock ticks in a second (-74
for 69 hz, -62 for 59 hz.)

Device assignments for the .DAT (made by handler
numbers). (Termination at 53 assumes 29 positive
slots.)

UIC assignments for the .UFDT. (Termination at
III assumes 2J1 positive slots.)

Skip Chain Table (Negative skips in one's comple­
ment.) (Termination at 137 assumes 22 skips in
chain.)

The last part of the SGNBLK is the Device Handler­
Skip lOT Table. Each entry starts with the .SIXBT
representations of all handlers for a particular
device. (First two characters equal device code,
for all handlers.) Zeros in the first six bits
of a word indicate the end of the handler names,
and says that the rest of the word contains the
number of skips for this entry's device. The skip
lOT's follow immediately. As above, one's comple­
ment skips indicate negative skips. Note, however,
the confusing fact that a one's complement of a
skip rOT is a positive number. Thus, 7yrnnn com­
plemented is 97nnnn .

SGNBLK ends at 312, in the DOS-15 system distrib­
uted by Digital Equipment Corporation.

Figure 5-2

SGNBLK

5-10

pointed to by .SCOM+31. .SCOM+31 will contain zero, if there are no

entries in the Overlay Table. This will occur during Linking Loader

or EXECUTE loads •

. OVRLA is the only Monitor function that looks at the Overlay Table.

If the .OVRLA processor finds a match to the .OVRLA argument in the

Overlay Table, it uses the parameters listed in the table to bring

it in via a Monitor TRAN. Note that this bypasses the System Loader,

and does not change the handler load. Thus, the overlay must use only

those .DAT slots required by the original program, the one listed in

COMBLK.

If the .OVRLA processor does not find a match in the Overlay Table, it

calls in the System Loader, which searches COMBLK for the requested

program. This type of overlay request does not require that .DAT slot

assignments be the same. On the other hand, the System Loader refreshes

all of core except .SCOM, etc. Thus, communication between overlays

is more difficult. The resident patch area, however, can be used for

this purpose.

5.4.2 The Device Table

The Device Table is built by the System Loader interface whenever PIP

is being loaded, or when PIP is listed in COMBLK among the overlays

for a program. It is located just above the register pointed to by

• SCOM+I , and has an entry for each positive .DAT slot. If a slot has

an assigned device, the low-order twelve bits of the corresponding

entry in the Device Table will contain the device's code, in .SIXBT.

Bit 3 is set when the slot is busy. If no device is assigned to a

slot, the corresponding entry in the Device Table will contain zero.

5.4.3 The Input/Output Communication (IOC) Table

The System Loader Interface builds the IOC Table and locates it just

below the first register of the System Loader. It contains an entry

for each handler in the system, in the order that they appear in

SGNBLK. The entries themselves contain the handler name in Radix 5~.

The System Loader and the Linking Loader use the handler number sup­

plied by the Nonresident Monitor to index down the IOC Table. They

use the contents of the entry for a .SEEK to the lOS UIC.

5-11

5.4.4 The Oevice Assignment Table (.DAT)

The Device Assignment Table makes the association between logical and

physical devices. The Monitor knows its location by the contents of

.SCOM+23, which points to the zeroth entry in the Table. Specific slots

are found by indexing on the contents of .SCOM+23. The number of nega­

tive slots is fixed at 15
S

' The number of positive slots is specified

by .SCOM+24, and may be any positive number less than 1~~8. It is

specified at system generation time.

The Nonresident Monitor places the handler number in the low order

bits and the unit number in the high order bits. It derives the hand­

ler number from SGNBLK. As mentioned above, the System Loader and

the Linking Loader subsequently use the IOC Table to determine the

handler name. After either loader has loaded and relocated a handler,

it places the handler's starting address in all .OAT slots that refer­

ence that handler. The unit number remains in the high-order three

bits. Slots with no handler (NON) contain zero~ Active .OAT slots

are designated by COMBLK, for core-image system programs, and by .IODEV

pseudo-ops for the Linking Loader and EXECUTE.

5.4.5 The User File Directory Table (.UFDT)

.UFDT+~ is offset from .DAT+~ (pointed to by .SCOM+23) by the sum of

the positive and negative .OAT slots. Each .DAT slot has a correspond­

ing .UFOT slot. UIC's in the .UFDT are packed in .SIXBT. The address

of .UFDT+~ is stored in .SCOM+25.

5.4.6 The Skip Chain

Register 1 of Bank ~ contains a jump to the beginning of the Skip

Chain. The Skip Chain is defined during System Generation, is located

in SGNBLK, and is rebuilt every time the System Loader is called in.

The System Generator Manual (DEC-15-YWZB-DN12) describes considerations

for constructing the Skip Chain.

5.5 TEMPORARY TABLES BUILT FROM SCRATCH

5.5.1 File Buffer Transfe+ Vector Table

The System Loader allocates space for the buffer pool, and creates the

File Buffer Transfer Vector Table. .SCOM+30 points to the first entry

5-l2

in the table, and the number of entries is specified by .SCOM+26.

Each entry in the table contains the address of a buffer, or its one's

complement. Negative addresses indicate a busy buffer. Since refer­

ences to buffers must be indirect anyway, buffers are allocated with­

out regard to bank boundaries.

5.5.2 The RCOM Table

The Nonresident Monitor requires certain information about the Resi­

dent Monitor that does not warrant reserving additional .SCOM registers.

The System Loader therefore puts this information into the RCOM table,

whenever it is loading the Nonresident Monitor. The RCOM Table starts

at register 175~~ of the highest bank.

5.5.3 The Mass Storage Busy Table

Entries in this table are allocated by the System Loader or the Link­

ing Loader. The Mass Storage Busy Table is pointed to by .SCOM+62 .

• SCOM+63 contains the number of words per entry in the table, and

.SCOM+36 contains the current number of entries. Generally speaking,

there are as many entries in the Busy Table as there are active .OAT

slots, although the disk handlers are the only ones that currently

refer to the Busy Table.

The .INIT command to a disk handler establishes a Busy Table entry.

The .CLOSE command (or the Rewind .~TAPE command) deletes the corres­

ponding entry. Figure 5-4 illustrates a typical Busy Table Entry_

The first word of an active entry in the Busy Table contains the .OAT

slot in bits 9-17. The disk handlers save information about the UFO

current for this .OAT slot in the Mass Storage Busy Table. They save

information about the file current to the .OAT slot (if any) in the

buffer pointed to by word 1 of the Busy Table Entry. More information

on the disk handlers and file structure is contained in Chapter 6.

5.6 RESERVED WORD LOCATIONS

Word locations ~ through 77 are dedicated systems locations and can­

not be employed by the user. The contents of these locations are

described in Table 5-5.

5-13

Word i Contents

N,N+l .SIXBT name of Overlay

N+2 First block number

N+3 First address, minus 1

N+4 Size, in two's complement

N+5 Fifteen-bit starting address

Table 5-3 Overlay Table

Word # Contents

N Device Type~_2' Unit Number
3

_
5

, Write Check 6 ,.DAT 9_
l7

N+l Buffer Address, or {O, if none allocated

N+2 Three-character UIC

N+3 First UFD block for this UIC

N+4 UFD Entry size for files in this UFD

Table 5-4 Mass Storage Busy Table Entry

ADDRESS USE

1

2

3

4

5

6

7

10-17

20

21

22-37

40-77

Stores the contents of the extended PC, link, extend
mode status, and memory protect status during a pro­
gram interrupt

EEM (for PDP-9 compatibility)

JMP to Skip Chain

.MED, entry to Monitor Error Diagnostic routine

JMP to error handler

Stores system type (Bank or Page) indicator during
Teletype interrupts

Used for API ON/OFF indicator

Stores real time clock count

Autoindex registers

Stores the contents of the extended PC, link, mode
status, and memory protect status on a CAL instruc­
tion.

JMP to CAL handler

Seven pairs of word counter-current address registers
for use with 3-cycle I/O device data channels.

Store unique entry instructions for each of 32 10 auto­
matic priority interrupt channels

Table 5-5 Reserved Address Locations

5-14

5.7 BOOTSTRAP NON-BOSS BATCH BITS

The high-order three bits of word 17777 in the Bootstrap are reserved

for the Moniter, and have the following meanings:

Bit ~ 1 In non-BOSS Batch Mode

~ Not in non-BOSS Batch

Bit 1 1 $JOB ASCII line or card just read by batch device

~ Last line or card not $JOB

Bit 2 1 Batch device is card reader

2 Batch device is paper tape reader

5-15

CHAPTER 6

FILE STRUCTURES

6.1 DECTAPE FILE ORGANIZATION

DECtape can be treated either as a directoried or non-directoried

device.

6.1.1 Non-Directoried DECtape

A DECtape is said to be non-directoried when it is treated as magnetic

tape by issuing the .MTAPE commands: REWIND, BACKSPACE, followed by

.READ or .WRITE. No directory of identifying information of any kind

is recorded on the tape. A block of data (255
10

word maximum), exactly

as presented by the user program, is transferred into the handler buf­

fer and recorded at each .WRITE command. A .CLOSE terminates record­

ing with a software end-of-file record consisting of two words: 001005,

776773

Because braking on DECtape allows for tape roll, staggered recording

of blocks is employed in DOS to avoid constant turnaround or time­

consuming back and forth motion of physically sequential block record­

ing. When recorded as a non-directoried DECtape, block ~ is the

first block recorded in the forward direction. Thereafter, every fifth

block is recorded until the end of the tape is reached, at which time

recording, also staggered, begins in the reverse direction. Five

passes over the tape are required to record all 1100
8

blocks.

6.1.2 Directoried DECtape

Just as a REWIND or BACKSPACE command declares a DECtape to be non­

directoried, a .SEEK or .ENTER implies that a DEC tape is to be con­

sidered directoried. A directory listing of any such DECtape is

available via the (L)ist command in PIP. A fresh directory may be

recorded via the N or S switch in PIP.

The directory of all DECtapes except system tapes occupies all 4~~8

words of block 1~~8. It is divided into two sections: (1) a 40 8 word

Directory Bit Map and (2) a 340
8

word Directory Entry Section.

6-1

The Directory Bit Map defines block availability. One bit is allo­

cated for each DECtape block (llOOS bits = 408 words). When set to 1,

the bit indicates that the DECtape block is occupied and may not be

used to record new information.

The Directory Entry Section provides for a maximum of 5610 files on

a DECtape. Each file on the DECtape has a four-word entry. Each

entry includes the three-word file name and extension, a pointer to

the first DECtape block of the file, and a file active or present bit.

Figure 6-1 illustrates the DECtape directory.

Word

°
l
37
40

377

Wd. a

1

2

3

U-'" Block ~
Block 1~77

~
Entry r; 1----------- - - --

f--------------- - ---
Entry 55l~

r; 5 6 11 12 17

I
File I

I I
Name

File Name Extension

11 Data Link (First File Block)

Sign Bit: 1 = File Active

A DIRECTORY ENTRY

Figure 6-1

DECtape Directory

Directory
Bit Map

Directory
Entry
Section

Note: Nulls (0) fill
in short file names.
A file name extension
is not absolutely
necessary.

Additional file information is stored in blocks 71 through 77 of every

directoried DECtape. These are the File Bit Map Blocks. For each file

in the directory, a 40S-word File Bit Map is reserved in block 71

through 77. The bit maps are contiguous, and the Nth file uses the

6-2

th .
N bit map. Each block is divided into eight File Bit Map Blocks. A

File Bit Map specifies the blocks occupied by that particular file and

provides a rapid, convenient method to perform DECtape storage re­

trieval for deleted or replaced files. Note that a file is never de­

leted until the new one of the same name is completely recorded on

the .CLOSE of the new file. When a fresh directory is written on

DECtape, blocks 71 through 100 are always indicated in the Directory

Bit Map as occupied. Figure 6-2 illustrates DEC tape file bit maps.

Block 718 Bit Map for File ~

Bit Map for File 7
Block 728 B1t Map for File 8

Bit Map for File 15l~

Block 778 Bit Map for File 48l~

Bit Map for File 56l~

Figure 6-2

DECtape File Bit Map Blocks

Staggered recording (at least every fifth block) is used on directoried

DECtapes, where the first block to be recorded is determined by examina­

tion of the Directory Bit Map for a free block. The first block is

always recorded in the forward direction; thereafter, free blocks are

chosen which are at least five beyond the last one recorded. The last

word of each data block recorded contains a data link or pointer to

the next block in the file. When turnaround is necessary, recording

proceeds in the same manner in the opposite direction. When reading,

turnaround is determined by examining the data link. If reading has

been in the forward airection, and the data link is smaller than the

last block read, turnaround is required. If reverse, a block number

greater than the last block read implies turnaround.

A software end-of-file record (001005, 776773) terminates every file.

The data link of the final block is 777777.

6-3

Data organization for each I/O medium is a function of the data modes.

On directoried DECtape there are two forms in which data is recorded:

(1) packed lines - lOPS ASCII, lOPS Binary, Image Alphanumeric, and

Image Binary, and (2) dump mode data - Dump Mode.

In rops or Image Modes, each line (including header) is packed into

the DECtape buffer. In lOPS Binary, a 2's complement checksum is com­

puted and stored in the second word of the header. When a .WRITE

which will exceed the remaining buffer capacity is encountered, the

buffer is output, after which the new record is placed in the empty

buffer. No record may exceed 254
10

words, including header, because

of the data link and even word requirement of the header word pair

count. An end-of-file is recorded on a .CLOSE. It is packed in the same

manner as any other line.

In Dump Mode, the word count is always taken from the I/O macro. If

a word count is specified which is greater than 25510 (note that space

for the data link must be allowed for again), the DECtape handler will

transfer 255 10 word increments into the DECtape buffer and from there

to DECtape. If some number of words less than 25510 remain as the

final element of the Dump Mode .WRITE, they will be stored in the DEC­

tape buffer, which will then be filled on the next .WRITE, or with an

EOF if the next command is .CLOSE. DECtape storage is thus optimized

in Dump Mode since data is stored back-to-back. See Appendix A.

6.2 MAGNETIC TAPE

DOS provides for industry-compatible magnetic tape as either a di­

rectoried or non-directoried medium. The magnetic tape handlers com­

municate with a single TC-59D Tape Control unit (TCU). Up to eight

magnetic tape transports may be associated with one TCU; these may

include any combination of transports TU-IOA or Band TU-30A or B.

There are a number of major differences between magnetic tape and DEC­

tape or Disk; these differences affect the operation of the device

handlers. Magnetic tape is well suited for handling data records of

variable length. Such records, however, must be treated in serial

fashion. The physical position of any record may be defined only in

relation to the preceding record. Three techniques available in I/O

operations to block-addressable devices are not honored by the magnetic

tape handlers:

6-4

a. The user cannot specify physical block numbers for
transfer. In processing I/O requests that have block
numbers in their argument lists (i.e., .TRAN) the
handler ignores the block-number specification.

b. The only area open for output transfers in the direc­
toried environment is that following the logical end
of tape.

c. Only a single file may be open for transfers (either
input or output) at any time on a single physical unit.

6.2.1 Non-directoried Data Recording (MTF)

MTF is intended to satisfy the requirements of the FORTRAN programmer

while still providing the assembly language programmer maximum freedom

on the design of his tape format. MTF writes out a record to the tape

each time the main program issues a .WRITE. The length of the record

is always two times the word pair count in the header word pair. FlOPS

records are always as long as the buffer size returned on a .INIT (up

to 256 10 words). MTF returns a standard buffer size of 377
8

, after a

.INIT. The FORTRAN user may dynamically change this size, however,

via the following instructions.

(FORTRAN STATEMENTS)

CALL SETMTB (ISIZE)
SETMTB

BUFSIZ
START

(MACRO STATEMENTS)

.TITLE SETMTB

.GLOBL .DA, MTBSIZ, SETMTB
$I
JMS*
JMP
$I
LAC*
DAC*
JMP*
.END

.DA
START

BUFSIZ
MTBSIZ
SETMTB

(any buffer size)

6.2. 2 Directoried Data Recording (MTA., MTC.)

The programmer can make the fullest possible use of those features

peculiar to magnetic tape by using MTF. On the other hand, MTF does

not offer the powerful file-manipulation facilities available in the

system. Directoried I/O allows device independence, and extensive

use of the storage medium with a minimum of effort.

6-5

Every block recorded by MTA. (with the exception of end-of-file markers,

which are hardware-recorded) includes a two-word Block Control Pair

and not more than 255
10

words of data. The data will contain the

records from one or more .WRITE's.

The Block Control Pair serves three functions: it specifies the char­

acter of the block (label, data, etc.), provides a word count for the

block, and gives an IS-bit block checksum. The Block Control Pair has

the following format:

Word 1:

Bits 0 through 5: Block Identifier (BI). This 6-bit byte
specifies the block type. Values of BI may range from 0
to 77 R• Current legal values of BI, for all user files,
are as follows:

BI Value Block Type SEecified

00 User-File Header Label

10 User-File Trailer Label

20 User-File Data Block

Bits 6 through 17: Block Word Count (BWC). This
byte holds the 2's complement of the total number
in the block (including the Block Control pair).
values of BWC range from -3 to -401

S
.

12-bit
of words
Legal

Word 2:

Bits 0 through 16: Block Checksum. The Block Checksum is
the full-word, unsigned, 2's complement sum of all the
data words in the block and word 1 of the Block Control
Pair.

BCP WORD I

N- 2 DATA
WORDS

o 5 6

Figure 6-3

17

N TOTAL WORDS
IN BLOCK

Block Format, File-Structured Mode

6-6

One of the main file functions of MTA. and MTC. is that of identifying

and locating referenced files. This is carried out by two means:

first, names of files recorded are stored in a file directory at the

beginning of the tape; and second, file names are contained in the

file's header and trailer labels.

6.2.2.1 Magnetic Tape File Directory

The directory, a single-block file (and the only unlabeled file on any

file-structured tape), consists of the first recorded data block on

the tape. It is a 257 10 word block with the following characteristics:

a. Block Control Pair (words I and 2)

Word 1

Block Identifier 74 8 = File Directory Data Block

Block Word Count -401 8 = 7377 8 •

Word 2:

Block Checksum: As described above.

b. Active File Count (Word 3, Bits 9 through 17) 9-bit one's
complement count of the active file names present in the
File Name Entry Section {described below} •

c. Total File Count (Word 3, Bits 0 through 8) 9-bit one's
complement count of all files recorded on the tape, in­
cluding both active and inactive files, but not the file
directory block.

d. File Accessibility Map (Words 4 through 17): The File
Accessibility Map is an array of 252~0 contiguous bits
beginning at bit 0 of word 4 and end~ng as bit 17 of
word 17. Each of the bits in the Accessibility Map re­
fers to a single file recorded on tape. The bits are
assigned relative to the zeroth file recorded; that is,
bit 0 of word 4 refers to the first file recorded; bit
1, word 4, to the second file recorded; bit 0, word 6,
to the 3710

th file recorded; and so on, for a possible
total of 25210 files physically present.

A file is only accessible for reading if its bit in the
Accessibility Map is set to one. A file is made inac­
cessible for reading (corresponding bit = 0) by a .DLETE
of the file, by a .CLOSE (output) of another file of the
same name, or by a . CLEAR. A file is made accessible for
reading (corresponding bit = 1) by a .CLOSE (output) of
that file. Operations other than those specified above
have no effect on the File Accessibility Map.

6-7

BIT POSITION

a ·3 6 9 12

Bep { :::: :

FILE COUNTS

T
FILE

ACCESSIBILITY
MAP

F I L E
NAME

ENTRY,
SECTION

WORD 3

WORD 4

WORD 16

WORD 17

WORD 18

WORD 21

WORD 24

WORD 257

Figure 6-4a. Format of the
File Directory Data Block,
showing relationship of active
and inactive files to file name
entries and to Accessibility Map

6-8

15 17

BEGINNING
OF' TAPE

FILE
DIRECTORY

FILE # 1
(INACTIVE)

FI LE #2
(ACTIVE)

FILE #3
(INACTIVE)

FILE #4
(ACTIVE)

FI LE #5
(ACTIVE)

END OF TAPE

09-0232

Figure 6-4b. Format of file­
structured tape, showing
directory block and data
files.

e. File Name Entry Section (Words 18 through 257): The File
Name Entry Section, beginning at word 18 of the direc­
tory block, includes successive 3-word file name entries
for a possible maximum of 80 entries. Each accessible
file on the tape has an entry in this section. Entries
consist of the current name and extension of the refer­
enced file in .SIXBT (left-adjusted and, if necessary,
zero-filled) .

The position of a file name entry relative to the begin­
ning of the section reflects the position of its accessi­
bility bit in the map. That bit, in turn, defines the
position of the referenced file on tape with respect to
other (active or inactive) files physically present. Only
active file names appear in the entry section, and access­
ibility bits for all inactive files on the tape are always
set to zero; accessibility bits for all active files are
set to one.

To locate a file on the tape having a name that occupies
the second entry group in the File Name Entry Section,
the handler must (a) scan the Accessibility Map for the
second appearance of a I-bit, then (b) determine that bit's
location relative to the start of the map. That location
specifies the position of the referenced file relative to
the beginning of the tape. The interaction of the File
Name Entry Section and the Accessibility Map are shown
in Figure 6-4.

6.2.2.2 User-File Labels

Associated with each file on tape is one label, the header label. It

precedes the first data block of the file. Each label is 27 10 words

in length. Label format is shown in Figure 6-5.

o 5 6

WORD I 00 I "'7"'745

BCP
WORD 2 CHECKSUM

WORD 3 777 XXX FILE NAME

WORD 4 000000

WORD 5

- - -
WORD 26,aC=t----___ :J
WORD 27 , 0 t=]

RESERVED

Figure 6-5

User-File Header Label For~at

6-9

6.2.2.3 File-Names in Labels

The handler will supply the contents of the file-name fields (Word 3)

in labels. These are used only for control purposes during the execu­

tion of .SEEK's. The name consists simply of the two's complement of

the position of the recorded file's bit in the Accessibility Map; the

"name" of the first file on tape is 777777, that of the third file is

777775, and so on. A unique name is thus provided for each file physi­

cally present on the tape. Since there may be a maximum of 252
10

files

present, legal file-name values lie in the range 777777 to 777404.

6.2.3 Continuous Operation

Under certain circumstances, it is possible to perform successive I/O

transfers without incurring the shut-down delay that normally takes

place bet 'een blocks. The handler stacks transfer requests, and thus

ensures continued tape motion, under the following conditions:

a. The I/O request must be received by the CAL handler be­
fore a previously-initiated I/O transfer has been com­
pleted.

b. The unit number must be identical to that of the pre­
viously initiated I/O transfer.

c. The I/O request must be one of those listed below to
ensure successful comoletion. The handler in process­
ing requests in conti~uous mode depends on receiving
control at the CAL level in order to respond to I/O
errors. The functions for which continuous operation
lS attempted include only the following:

1.
2.

. Jv1TAPE

. READ
3 •
4 .

. WRITE

.TRAN

d. With ~TA, more than one logical record may be in a physical
block, so tape motion may stop if fewer successive .READ's
or .WRITE's are issued than there are records in a block.

e. The previously-requested transfer must be completed with­
out error. In general, successive error-free READ's
(WRITE's) to the same transport will achieve non-stop
operation. The following examples illustrate this prin­
ciple.

Example 1:

SLOT = 1
INPUT = 0
BLOKNO = 0
READl
READ2
RETURN

Successful Continued Operation

.TRAN SLOT, INPUT, BLOCKNO, BUFF1, 257

.TRAN SLOT, INPUT, BLOCKNO, BUFF2, 257
JMP READl

6-10

The program segment in Example 1 will most probably keep the refer­

enced transport (.DAT slot 1) up to speed. The probability decreases

as more time elapses between READl and READ2, and between READ2 and

RETURN. Each .TRAN request causes an implicit .WAIT until its opera­

tion is completed.

Example 2:

SLOT = 1
INPUT = 0
BLOKNO = 0
READ
STOP
RETURN

Unsuccessful Continued Operation

.TRAN SLOT, INPUT, BLOKNO, BUFF, 257

.WAIT SLOT
JMP READ

The program segment in Example 2 will not keep the tape moving because

the .WAIT at location STOP prevents control from returnina to location

READ until the transfer first initiated at READ has bee~ completed.

Example 3: Unsuccessful Continued Operation

SLOTl
SLOT2
INPUT
BLOKNO
READI
READ2
RETURN

I
2
o

= 0
.TRAN SLOTI, INPUT, BLOKNO, BUFFI, 257
.TRAN SLOT2, INPUT, BLOKNO, BUFF2, 257
JMP READI

This program segment will not provide non-stop operation because of

the differing unit specificatio~ at READl and READ2.

6.2.4 Storage Retrieval on File-Structured Magnetic Tape

The use of a file accessibility ~ap as well as block identifiers in

Magtape file directories makes it almost impossible to retrieve the

area of a deleted file from a magnetic tape. The execution of the

deletion command (i.e., .DLETE) removes the name of the object file

from the file directory, and clears tli'2 corresponding bi t in tl"'.e File

Accessibility ~ap.

The only circumstance under which a file area may be easily retrieved

is when the deleted file is also the last file physically on the tape.

Under these conditions, the handler can retrieve the area occupied by

the deleted file when the next .ENTER - .WRI~E - .CLOSE sequence is

executed. Users may also copy the active files to another device, re­

new the directory, and recopy the files.

6-11

6.3 DISK FILE STRUCTURE

6.3.1 Introduction

The DOS-IS disk file structure is in some ways analogous to DECtape

file structure. Ordinarily, each disk user has a directory which

points to named files, just as each DECtape has a directory. The DEC­

tape has only one directory, but the disk has as many directories as

users have cared to establish. A single user's disk directory might

correspond to a single DECtape directory. A single disk file's size

is also limited only by the available space, as is true with DECtape.

Whereas DECtape directories may only reference a maximum of 56 10 files,

however, the number of files associated with anyone directory on the

disk is limited only by the available disk space.

The DECtape directory is in a known location -- at block 100. Since

the disk may have a variable number ,of directories, the Monitor must

know how to find each user's directory. It therefore maintains a

Haster File Directory (MFD) at a known location l
, and the Master File

Directory points to each User File Directory (UFD). DOS-IS allows

only those users who know the Master Identification Code to have ac­

cess to any protected UFD's within the MFD. Figure 6-6 illustrates

the I-'fFD. Appendix B is a flowchart of the Disk "A" Handlers.

6.3.2 User Identification Codes (UIC)

The Monitor finds User File Directories by seeking associated User

Identification Codes (UIC's), which are all listed in the Master File

Directory. The UIC is a three-character code that is necessary for

all non-.TRAN I/O to the disk. .TRAN macros use no directory refer­

ences. A programmer may operate under as many UIC's as he wishes, pro­

vided all are unique and none is reserved 2 . He may establish a new

User File Directory by (1) logging in his new UIC to the Monitor via

the LOGIN command, (2) calling PIP, and (3) issuing an N DK command.

This establishes a new User File Directory, or refreshes (wipes clean)

an old directory under that UIC. (.ENTER will also create a new MFD

entry and/or a UFD, if none exists.) Figure 6-7, User File Directory,

illustrates the organization of a UFD.

10n the RF disk, the first block of the MFD is located at block 1777.
On the RP disk, the first block of the MFD is located at block 47~4~.

2The following are reserved UIC's: @@@, ???, PAG, BNK, SYS, lOS,
CTP.

6-12

Word

%

I

2

3

·
· ·
4N
4N+I

4N+2

4N+3

376

377

Word

· · · 8N
8N+l
8N+2
8N+3

8N+4
8N+5

8N+6

8N+7

376
377

Contents

777777

nnnnnn

nnnnnn

40- 2 + b I kn lL'1l

· · · · .SIXBT
nnnnnn

P.0+M

spare

· · nnnnnn

nnnnnn

Contents

· · · .SIXBT
· SIXBT
.SIXBT
T.04-blknum

nnnnnn
ribptr

P~_l+ribwrd

crdate

nnnnnn
nnnnnn

Description

Dummy UIC used by system.

Bad Allocation Table's first block number,
or 777777, if there is none. \

SYSBLK's first block number, or -1, if
there is none.

MFD entry size in bits ~-2, plus the block
number of the first submap

UIC for this UED
Block number for the first block of this
UFD or 777777, if no UFD exists (as after
PIP's NL...IDK)}
Protection code in bit .0, plus the UFD
entry size for each file
Unused at this writing

I Pointer to previous MFD block, or 777777
if none.
Pointer to next MFD block, or 777777 if
none.

Figure 6-6

Master File Directory

Name of this file
and its
extension

Description

Truncation code in bit .0, plus the number
of tre first. block of the file
Number of blocks in this file
Pointer to the first block of the Retrieval
Information Block
Protection code in bits .0-1, plus the
first word in ribptr used by the RIB-- if
the last block of the file has room for
the RIB, the handlers will put it there,
and load word 8N+6 accordingly.
~ate of file's creation -mmddyy (yy modulo 7.0)
. .
Pointer to previous block, or 777777 if none
Pointer to next UFD block, or 777777 if none

Figure 6-7

User File Directory

6-13

6.3.3 Organization of Specific Files on Disk

The Disk Handlers write out files in almost the same way that a DEC­

tape handler does. Disk file blocks, however, have a forward and

backward link. (Non-dump records are therefore limited to lengths

of 25410 words.) Further, upon receipt of a .CLOSE I/O macro, the disk

handlers fill out a Retrieval Information Block (RIB). The RIB per­

forms the same functions as the file bitmap on DECtape, and also as­

sociates the logical sequence of blocks in the file with the physical

locations of the blocks on the disk. The disk handler uses the RIB to

implement .RTRAN commands and to delete files. Figure 6-8, The Retrieval

Information Block, illustrates a RIB.

After a user has created a disk file he can access logical records

sequentially via .READ commands, just as with DECtape files. He can

also access physical blocks of that file by referencing relative block

numbers in the .RTRAN command. (The .RTRAN commands require the file

be opened with the .RAND command.)

6.3.4 Buffers

The handlers break buffers from the pool into three parts: (1) File

Information (about 4~8 words)~

pre-allocated blocks (between 4

(3) data buffer (2561~ words) .

the breakdown of disk buffers.

(2) the Block List -- addresses of

and 253l~ addresses, inclusive), and

Figure 6-9, Disk Buffer, illustrates

6.3.4.1 Commands That Obtain And/or Return Buffers

The following commands obtain buffers from the pool, and return them

immediately after execution:

.DLETE

.RENAM

. CLEAR

The following commands obtain a buffer from the pool and do not return

it until a subsequent .CLOSE is performed:

• FSTAT

.ENTER

.SEEK

• RAND

*This number is determined by assembly parameters.

6-14

Word #

~*

1
2
3

.
376

377

Contents

nnnnnn

nnnnnn
nnnnnn
nnnnnn

·
·
· nnnnnn

nnnnnn

Description

Total number of blocks described by this
physical block.

First data block pointer.
Second data block pointer.
Third data block pointer.

Pointer to previous RIB block or -1 if no
previous RIB block.

Pointer to next RIB block or -1 if no
next RIB block.

th th. * Zero word of the RIB may not be zero word of physlcal block.
This occurs whenever the entire RIB will fit in the last data
block of the file.

4° 8 Words*

More than
less than
words

4008 Words

Figure 6-8

Retrieval Information Block

~

~

3 and
377 8

•

} File Information becomes
'Current Set' when file active
(see 6.3.4.2).

Addresses of Preallocated
Blocks (Block List or Temp
List or TLIST)

Data Buffer

*This is not a fixed number. It is
different for RP and RF.

Figure 6-9

Disk Buffer

6-15

The following commands return a buffer to the pool, if any was allo­

cated.

.INIT

.CLOSE

.MTAPE (rewind)

6.3.4.2 The Current Set

The handlers retain information about the last file and .OAT slot

processed in an internal storage area. This area is called the

"Current Set", and is swapped back to the file's buffer whenever a

command to a different file is used. Thus,

.WRITE to .OAT slot A

.WRITE to .OAT slot B

will swap the Current Set, but •••

• WRITE to .OAT slot A

.TRAN to .OAT slot A

.WRITE to .OAT slot A

will not swap the Current Set.

6.3.5 Pre-allocation

The handlers pre-allocate blocks on the disk upon all .ENTER commands,
I

and whenever sufficient .WRITE commands have been issued to use up the

pre-allocated blocks. The number of pre-allocated blocks will be the

minimum of the number of free blocks on the device and the number of

address slots available in the Temp List (block list).

When the handlers pre-allocate blocks, they fill out the bit maps, and

immediately fill out the RIB and write it out in one of the pre-allocated

blocks.

Upon a .CLOSE command, the handlers give back unused blocks, and re­
I

write the RIB.

6-16

The number of blocks in the Block List depends on the size of the

buffer, which is determined at system generation by setting the buffer

size. The larger the Block List, the faster will be output. Smaller

Block Lists may give more efficient allocation of core and disk space.

Smaller buffers save core. Further, the number of pre-allocated blocks

may affect concurrently opened files on a disk that is tight for space.

Thus, if the Block List is sixty entries long, and there are forty

blocks left on the disk, a .ENTER to .OAT slot will pre-allocate all

forty, leaving none for any subsequent .ENTER's to different .OAT

slots.

lOPS 70 will occur when there are less than four free blocks on the

disk when a handler tries to pre-allocate blocks.

6.3.6 Storage Allocation Tables (SAT's)

The disk handlers use a Storage Allocation Table, in order to distin­

guish between allocated and free blocks. If more than one physical

block is required, the individual blocks are called Submaps.

Unlike OECtape, the Storage Allocation Table is never held in core.

When the handlers wish to preallocate some blocks, they read in the

required Submap, and write out the updated one.

Storage Allocation blocks use the following format:

WORD ~
WORD I

WORD 2

WORD 3

WORD 376

WORD 377

Total blocks on the disk
Number of blocks described
by this Submap
Number of blocks occupied
in this Submap
First word of the bit map
(eighteen blocks per word)

Pointer to previous Submap
(or 777777)
Pointer to next Submap
(or 777777)

The bit maps refer to blocks in numerical order. Thus, bit ~ of word

three of a Submap will refer to block N, bit I will refer to block N+I,

and so on. The block is free if the corresponding bit equals~. Start­

ing and ending block numbers for all Submaps are retained in the hand­

lers. The first Submap, however, starts with block zero.

6-17

6.3.7 Bad Allocation Tables (BAT's)

Occasionally, a particular block on the disk will not record data cor­

rectly. In such instances, the handlers should be prevented from using

the bad blocks. Accordingly, PIP maintains a Bad Allocation Table.

Whenever a user updates that table, PIP will set the appropriate bit

in the Storage Allocation Table. The block is thus made unavailable.

Refer to PIP manual (DEC-lS-VWZB-DN13) for more information.

6-18

CHAPTER 7

WRITING NEW I/O DEVICE HANDLERS

This chapter contains information essential for writing new I/O de­

vice handlers to work in DOS.

7.1 I/O DEVICE HANDLERS, AN INTRODUCTION

All communications between user programs and I/O device handlers are

made via CAL instructions followed by an argument list. The CAL

Handler in the Monitor (Figure 2-1) performs preliminary setups,

checks the CAL calling sequence, and transfers control via a JMP*

instruction to the entry point of the device handler. When the con­

trol transfer occurs (see Figures 7-1 and 7-2), the AC contains the

address of the CAL in bits 3 through 17 and bits 0, 1, and 2 indicate

the status of the Link, Bank/Page mode, and Memory Protect, respect­

ively, at the time of the CAL. Note that the content of the AC at

the time of the CAL is not preserved when control is returned to the

user.

On machines that have an API, the execution of a CAL instruction auto­

matically raises the priority to the highest software level (level 4).

Control passes to the handler while it is still at level 4, allowing

the handler to complete its non-reentrant procedures before debreaking

(DBK) from level 4. This permits the handler to receive reentrant

calls from software levels higher than the priority of the program

that contained this call. Device handlers which do not contain re­

entrant procedures (including all handlers supplied with DOS) may avoid

system failure caused by inadvertent reentries by remaining at level

4 until control is returned to the user.

If the non-reentrant method is used, the debreak and restore (DBR)

instruction should be executed just prior to the JMP* which returns

control to the user, allowing debreak from level 4 and restoring the

conditions of the Link, Bank/Page mode, and Memory Protect. Any lOT's

issued at the CAL level ·(level 4 if API present, mainstream if no API)

should be executed immediately before the

DBR
JMP*

7-1

USER PROGRAM

MONITOR

DEVICE HANDLER

Initialize Handler and
return buffer size

N

Issue .SETUP for each
PI skip or API entry
vector

Ignored

RETURN
to user

at LOC+N

{

LOC+.0
LOC+I . .
LOC+N

CAL Entry to Device Handler

Figure 7-1

7-2

CAL ARG.
CODE

NXT INST

IOPS6

1.
2.

3.

Save AC

PI
ENTRY

Save location f6
(including P.C.
LINK and Memory
Protect)
Turn I/O ON

via
JMS f6
Skip Chain
JMP* {INT

y

Reset
{e.q., clear I/O
Busy Switch

API
ENTRY

1. Save AC

via
JMS* API Device Address
(Le., JMS* (INT)

2. Retain at INT the
P. C., LINK and
Memory Protect

3. If first time
through, Nap all
PI commands

Test for other errors~ in-
dicate error in header pair

Restore PI if PI interrupt
and Debreak and Restore

Return via
stored

P. C.

PI and API Entries to Device Handlers

Figure 7-2

7-3

exit sequence in oreer to ensure tEat the exit takes place-before the

interrupt from the issued lOT occurs.

The CAL instruction must not be used at any level (API or PIC) that

might interrupt a CAL. A CAL at such a level will destroy the content

of location 00020 for the previous CAL.

Care must also be taken when executing CALs at level 4. For example,

a routine that is CALed from level 4 must know that if a debreak (DBR

or DBK) is issued, control will return to the calling program (which

had been at level 4) at a level lower than level 4.

7.1.1 Setting Up the Skip Chain and API (Hardware) Channel Registers

When the Monitor is loaded, the Program Interrupt (PI) Skip chain and

the Automatic Priority Interrupt (API) channels are set up to handle

the TTY keyboard and printer and clock interrupts only. The Skip

Chain contains the other skip lOT instructions, but indirect jumps to

an error routine result if a skip occurs, as follows:

SKPDrA
SKP
JMP* INTI
SKP LPT
SKP
JMP* INT2
SKPTTI
SKP
JMP TELINT

/Skip if DECtape flag.

/INTI contains error address.
/Skip if line printer flag.

/INT2 contains error address.
/Skip if teleprinter flag.

/TO teleprinter interrupt handler

All unused API channels, memory protect, memory parity, and powerfail,

also contain JMPrs to the error address.

When a device handler is called for the first time in a core load, it

must call a Monitor routine (.SETUP) to set up its skip(s) in the Skip

Chain, or its API channel, prior to performing any I/O functions.

7-4

The calling sequence is as follows:

CAL N

16
SKP lOT
DEVINT

(normal return)

/N API channel register 40 through 77 (see User's
Handbook Vol. 1, for standard channel assign­
ments) ,

/0 if device not connected to API.
/.SETUP function code.
/Skip lOT for this device.
/Address of interrupt handler.

7.1.2 Handling the Interrupt

DE'TINT exists in the device handler in the following format to allow

for either API or PI interrupts.

ONLYI

DEVPIC

DEVINT

IGNRPI

COMMON
DEVION

DEVIOF

LAC
DAC
DAC
DAC
JMP
DAC
LAC*
DAC

JMP
JMP
DAC
LAC
DAC
JMP

DEVCF
ION

IOF

DEVIOT

/DISMISS ROUTINE

DVSWCH
LAC
ION
DBR
JMP*

(NOP
DEVION
DEVIOF
IGNRPI
COMMON
DEVAC
(fJ
DEVOUT

COMMON
DEVPIC
DEVAC
DEVINT
DEVOUT
ONLYI

DEVAC

DEVOUT

/LEAVE PI ALONE, WHEN API IS RUNNING
/THESE REGISTERS
/ARE AVAILABLE
/THIS IS ONCE ONLY CODE

/SAVE AC

/SAVE PC, LINK, ADDRESSING MODE AND
/MEMORY PROTECT

/PI ENTRY
/API ENTRY; SAVE AC

/SAVE PC, LINK, ADDRESSING MODE AND
/API IS OPERATING, SO LEAVE PI ALONE.
/PI INTERRUPTS ARE NOT POSSIBLE, BE­
/CAUSE .SETUP EFFECTIVELY NOP'S PI
/SKIPS.
/CLEAR DEVICE DONE FLAG.
IPI ALLOWS INTERRUPTS; API DOES A NOP.

/API DOES NOP; PI TURNS 10 OFF TO ENSURE
/NON-REENTRANCE AFTER ISSUING lOT'S.

/RESTORE AC.
/ION OR NOP.
/DEBREAK AND RESTORE CONDITIONS
/OP LINK, ADDRESSING MODE AND MEMORY
/PROTECT.

If the Index, Autoincrement, or EAE registers are used by the I/O de­

vice handler, it is necessary to save and restore them.

7-5

.SETUP allows either API or PI, but not both for a single device. The

System Generator Manual gives the method for incorporating nE~W handlers

and associated Skip Chain entries into the Monitor.

7.2 API SOFTWARE LEVEL HANDLERS, An Introduction

The information presented in the following paragraphs assumes that the

reader is familiar with the system input/output considerations described

in the PDP-IS User's Handbook Vol. 1.

7.2.1 Setting Up API Software Level Channel Registers

When th.3 Monitor is loaded, the API software-level channel registers

(40 through 43) are initialized to

JMS*
JMS*
JMS*
JMS*

.SCOM+12

.SCOM+13

.SCOM+14

.SCOM+1S

/LEVEL 4
/LEVEL 5
/LEVEL 6
/LEVEL 7

where .SCOM is equal to absolute location 000100 and .SCOM+12 through

.SCOM+15 (000112 through 000115) each contains the address of an error

routine.

Therefore, prior to requesting any interrupt at these software priority

levels, the user must modify the contents of the .SCOM registers so

that they point to the entry point of the user's software level handlers.

Example:

.SCOM=lOO
LAC
DAC*

(LV5INT
(. SCOM+ 13

/ set level 5 entry.

LVSINT exists in the user's area in the following format:

LV5INT 0 /PC,LINK,BANK/PAGE MODE,MEM.PROT.
DAC SAV4AC /SAVE AC

/SAVE INDEX, AUTO INCREMENT AND EAE REGISTERS, IF LEVEL 5
/ROUTINES USE THEM AND LOWER LEVEL ROUTINES ALSO USE THEM.
/SAVE MQ AND STEP COUNTER, IF SYSTEM HAS EAE AND IT IS USED
/AT DIFFERENT LEVELS.

/RESTORE SAVED REGISTERS.
DBR /DEBREAK FROM LEVEL 5 AND RESTORE
JMP* LVSINT /L, BANK/PAGE MODE, MEM. PROT.

7-6

7.2.2 Queueing

High priority/high data rate/short access routines cannot perform com­

plex calculations based on unusual conditions without holding off

further data input. To perform the calculations, the high priority

program segment must initiate a lower priority (interruptable) segment

to perform the calculations. Since many data handl~ng routines would

generally be requesting calculations, there will exist a queue of cal­

culation jobs waiting to run at the software level. Each data handling

routine must add its job request to the appropriate queue (taking care

to raise the API priority level as high as the highest level that

manipulates the queue before adding the request) and issue an interrupt

request (ISA) at the corresponding software priority level. The general

flow chart, Figure 7-4, depicts the structure of a software handler

involved with queued requests.

Care must be taken about which routines are called when a software

level request is honored; that is, if a called routine is "open"

(started but not completed) at a lower level, it must be reentrant, or

errors will results.

NOTE

The DOS hardware I/O device handlers do not
~ontain reentrant procedures and must not be re­
entered from higher levels.

Resident handlers for Power Fail, Memory Parity,
nonexistent memory violation, and Memory Protect
violation have been incorporated into the system
and effect an lOPS error message if the condition
is detected. The user can, via a .SETUP, tie his
own handler to these skip lOT or API channel regis­
ters.

7-7

LV5INT

SAVE PC, LINK, AC,
AUTO-INDEX REGS,
MQ, STEP COUNTER
AND CONDITIONS
OF EXTENDED MODE
AND MEMORY PROTECT

>-'1--~---1 RESTORE SAVED
REGISTERS

RAISE TO HIGHEST
LEVEL THAT
MANIPULATES
LEVEL 5 QUEUE

Figure 7-4

15-0094

Structure of API Software Level Handler

7-8

7.3 WRITING SPECIAL I/O DEVICE HANDLERS

This section contains information prepared specifically to aid those

users who plan to write their own special I/O device handlers for DOS.

DOS is designed to enable users to incorporate their own device hand­

lers. Precautions should be taken when writing the handler however,

to ensure compatibility with the Monitor.

Here is a summary of handler operation. The handler is entered via a

JMP* from the Monitor as a result of a CAL instruction. The contents

of the AC contain the address of the CAL in bits 3 through 17. Bit 0

contains the Link, bit 1 contains the Bank/Page Mode status, and bit 2

contains the Memory Protect status. The previous contents of the AC

and Link are lost.

In order to show the steps required in writing an I/O device handler,

a complete handler (Example B) was developed with the aid of a skeleton

handler (Example A). In addition, Appendices A and B are complete

flowcharts of the DTA and DKA handlers. The skeleton handler

is a non-reentrant type (discussed briefly at the beginning of this

chapter) and uses the Debreak and Restore Instruction (DBR) to leave

the handler at software priority level 4 or at a hardware level for

interrupt servicing (if API), and restore the status of the Link,

Bank/page Mode, and Memory Protect. Example A is referenced by part

numbers to illustrate the development of Example B, a finished Analog­

to-Digital Converter (ADC) I/O Handler. The ADC handler shown in

Example B was written for the Type AF~lB Analog to Digital Converter.

This handler is used to read data from the ADC and store it in the

user's I/O buffer.

The reader, while looking at the skeleton of a specialized handler

as shown in Example A, should make the following decisions about his

own handler. (The decisions made in this case are in reference to

developing the ADC handler):

a. Services that are required of the handler (flags,
rece~v~ng or s~nd~ng of data, etc.) - By looking
at the ADC lOT's shown in the Reference Manual, it
can be seen that there are three lOT instructions
to be implemented. These instructions are: Skip
if Converter Flag Set, Select and Convert, and Read
Converter Buffer.

7-9

The only service the ADC handler performs is that of
receiving data and storing it in user specified areas.
This handler will have a standard 256-word buffer.

b. Data Modes used (for example, lOPS ASCII, etc.) -
Since there is only one format of input from the
Type AFOIB ADC, mode specification is unnecessary in
Example C.

c. Which I/O macros are needed for the handler's specific
use; that is, .INIT, .CLOSE, .READ, etc. For an ADC,
the user would be concerned with four of the macros.

(1) .INIT would be used to set up the associ­
ated API channel register or the interrupt
skip lOT sequence in the Program Interrupt
Skip Chain. This is done by a CAL (N) as
shown in Part III of Example A, where (N)
is the channel address.

(2) .READ is used to transfer data from the ADC.
When the .READ macro is issued, the ADC
handler will initiate reading of the speci­
fied number of data words and then return
control to the user. The analog input data
received is in its raw form. It is up to
the programmer to convert the data to a
usable format.

(3) .WAIT detects the availability of the user's
buffer area and ensures that the I/O trans­
fer is completed. It would be used to ensure
a complete transfer before processing the re­
quested data.

(4) .WAITR detects the availability of the user's
buffer area as in (3) above. If the buffer
is not available, control is returned to a
user specified address, which allows other
processing to continue.

d. Implementation of the API or PIC interrupt serViCE! routine
Example A shows an API or PIC interrupt service routine
that handles interrupts, processes the data and initi­
ates new data requests to fully satisfy the .READ macro
request. Note that the routin~s in Example A will oper­
ate with or without API. Example B uses the routi.nes
exactly as they are shown in Example A.

During the actual writing of Example B, considerat:ion was
given to the implementation of the I/O macros in t:he new
handler in one of the following ways:

(1) Execute the function in a manner appropriate
to the given device as discussed in(c). .INIT,
• READ, .WAIT, and .WAITR were implemented into
the ADC handler (Example B) under the subroutine
names ADINIT, ADREAD,· ADWAIT (.WAIT and .WAITR).

Wait for completion of previous I/O. (Example B
shows the setting of the ADUND switch in the ADREAD
subroutine to indicate I/O underway.)

7-10

(2) Ignore the function if meaningless to the device.
See Example B (.FSTAT results in JMP ADIGN2) in
the dispatch table DSPCH. For ignored macros,
the return address must be incremented in some
cases, depending upon the number of arguments
following the CAL (see Chapter 3).

(3) Issue an error message in the case wher~ it is
not possible to perform the I/O function - (An
example would be trying to execute a .ENTER on
the paper tape reader.) In Example B, the handler
jumps to DVERR6 which returns to the Monitor with
a standard error code in the AC.

After the handler has been written and assembled, the Monitor must then

be modified to recognize the new handler. This is accomplished by the

use of the System Generator Program (DOSGEN)described in the DEC­

l5-YWZB-DN12 manual.

W~en the system generation is complete, the PIP program (refer to

DEC-15-YWZA-DN13) must be used to add the new handler to the lOS UFD.

At this time, the user is ready to use his specialized device handler

in the DOS-IS system.

7.3.1 Discussion of Example A by Parts

Part 1

Part 2

Part 3

Part 4

Part 5

Part 6

Part 7

Stores CAL pointer and argument pointer, and
picks up function code from argument string.

By getting proper function code in Part 1 and
adding a JMP DSPCH, the CAL function is dis­
patched to the proper routine.

This is the .SETUP CAL used to set up the PI
skip chain or the API channel register.

Shows the API and PI handlers. It is suggested
these be used as shown.

This area reserved for processing interrupt and
performing any additional I/O.

Interrupt dismiss routine.

Increments argument pointer in bypassing argu­
ments of ignored macro CAL's.

7-11

7.3.2 Example A, Skeleton I/O Device Handler

ICAL ENTRY RnUTINE
.'CLOBL DEV.

.MfO-3
DEV. OAC

OAe
iS~
L.Ae*
AND
is!
,.AO
Ole

IjSI'C~ xX
JM'­
JMP
JMP
JMP
JMP
JMFI
JMII
JMIt
JMIt
JMP
JM~

OVCALP
DV4RGP
OVARGP
OV1RGP
(1'1711
DVARGP
(JMP 05PCH
OSIDCH

OVINIT
OVF'SAT
DV5EEK
DV[NTR
OVCLER
DVCLOS
DVM TAP
DVREAO
DVI.IRTE
OVWAIT
OV'RAN

IMUST BE or rORM A.A,
I,MEO (MONITOR ERROR OIAGNOSTIC)
ISAVE eAL POINTER
IANO ARGUMENT POfNTER
IPOINTS TO rUNCTtON CODE
IGET CODE
IRE MOVE U~IT NO t' APPLICABLE
IPOINTS TO C'~.2

IOISPATCH WIT'"'
IMODIF'IEO JUMP
11 •• !NIT
12 • IF'STAT, .OL.[T[, fRENAM
13 • • SEEK
II. = ,ENTER I' :I ,CLEAR
16 • ,CL.OSE
17 :; .MTAP[
11~ •• REAO
111 = ,wRITE
112 :I ,WAIT
113 • ,TRAN

IILLEGAL 'UNCTIONS IN ABovE ,.APLE COOED AS.
I JMP OV£RR6

IrUNCT!ON ~onE ERROR
~V£RR6 LA~ 6

JMFJ* (,MEO.1

IOATA MoaE ERROR
nVERR1 LAW ,

Jf!H'* (,MED.!

IOEVICE NOT REAOY
DVERR4 LAC (RETURN

(I MED
(4
(.MEO"1

11/0 UNO£RWAY LOOP
nVBUSV IJB~

JMp'. DVCAL.F"

INORMAL RETURN rROM CA~
DVCI< DBR

JM"* DVARGF'

IT~E OVINST ROUT)~[MUST INCLUDE
IA .SETUP CALLINr, SEQUENCE roR

7-12

IERROR CODE 6
ITO MON!TO~

IERROR eOOE. 7
ITO ~ON!TOR

IRETURN (AODRESS IN ~ANO~ER)
ITO RETURN To ~~£N NOT READY
ICONDITION HAS B[EN REMOVED

IERROR CODE •
ITO MONITOR

IBREAK ~ROM LEVEL 4
II-OOP o~ CAL.

IBREAK FROM LEVLr 4
IRE TURN APT;R CAL AND
IARGUMENT STRING

IE'C~ rLAG CnNNECTEO TO API
I'NO/O~ PI ACAT SGEN TIME).
ITHE SETUP CALLING SEQUENCE IS.

DVINIT CAL

16
SI<PloT
08 V I r-I T

N IN = API C~ANNE~ REGISTER
1(4~ ~77), N m 0lr ~OT CONNECTE~
ITO API

IIOPS rUNCTION CODE
ISKIP lOT TO TEST THE FLAG
IADD~ESS 0' INTERRUPT
I~AND~rR (PI O~ A~I)

IT~lS SPACE MAY BE USED roR 1/0 SUBROUTINES

IINTERRUpT HANOLER rOR
nN~Y1 LAC (NOP

DAC DEvION
OAC DEVIor
DAC OVSWCH
DAe I GNRP I
JMP COMMON

DVPIC DAC DEVAC
LAC. (3
nAC DVOUT
JMP COMMON

~vrNT JMP DEVPIC
nAe OEVAC
LAC DEVINT
OAe DEVOUT

IGNRPI JMP ONlYl
COMMON DEvcr
IjEvION yON

API OR "'1

ISAVE AC
ISAVE'PC. ~lNK, ~ANK/PAGE MODE
lAND MEMORY PROT[eT

IPl ENTRY
IAPI ENTRY. SAVE AC
ISAVEI PC, ~INK. BANK/PAGE HOOE
l"1EMORY PROTECT
IL,EAVE PI ,CONE
IENABlE PI OR NOP
IENAR~E PI OR NOP

ITHIS AI THE AREA DEVOTED TO PROCESSING INTERRUpT AND
IPERFORMtNG ANV ADDITIONAL 1/0 DES!RED,

fJEVIOf rOF"
DEVIoT

IINTERRUpT ~ANOLrR DISMISS
~VOJSM LAC OEVAC
DVSWCIoI t O~I

DBR
JMI'. OEVOUT

RoUTE

IDISABLE ~l DR NnP
IOIMISS~L BErORE INTF-RRUPT
IrROM T~IS lOT OCCURS

IRESTORE AC
ItON OP NOP
InE8REAK AND RESTORE
I~!~K. BANK/PAGE MODE, MEMORY
IPROTECT

IIr TH[HANDLER USES THE AUTaINCREMENT • INDEX
lOR EAE REGl~T[RS. THEIR CONTENTS
ISIolOU~O BE SAVED AND RESTORED, FUNCTIONS
IPOSSIBLV IGNORED SHOULD CONTAIN
IPROPER tNOEXING TO BYPASS
ICAl ARGu~ENT STRING
I
ICODE '0 BYPASS IG~ORED FUNCTIONS
I

!)VIGN2 rS2
JMP

OVARGP
DVCK

7-13

7.3.3 Example B. Special Device Handler for AFOIB AID Converter

PACE 1 R ~"'1

1 IAOC HANO~E~
2 I
:3 701301 A ADSF'-?013f2l1 ISKIP IF CONVERSJO~ FLAG IS SET
4 701304 A AOSC:a7013f2l4 ISELECT AND CONvrHT CAOC ~L4G IS CLEARED
5 ,. N D A CON V E R S I 0 ~1 I 5 Hoil T I • LIS ED)
6 701.312 A ~DRB-101312 IREAD CONV£RTE~ RUfF"ER INTO AC ANO CLEAR F'LAC
7 I
8 ,GL.OBI. ADC,
9 4400210 A IOX-tSl

121 ~HHH!'03 A .MED=J IHEO (MONITOR ERROR DIAGNOSTIC)
'1 I
12 01{1~0~ R 0401521 R AOC. OAe AOCALP IsAvr CAL POINTER
13 0e10"1 ~ 0421151 R DAe AOARGP lAND ARGUMENT POINTER

....J 14 (1 '" ~ 0 2 R 4 4 0151 R lOX ADARGP IPOINTS TO 'UNCTION COOE I
t-' 15 ~'0003 R 220151 R LAC- AOARC;P lelT CODE ~

16 D0~el4 R 440151 R tOlC AOARGP IPOINTS TO CAL. 2
17 (:; e 0 0 5 .R .3 4 2115 4 R TAD fJMP DSPCM
18 vi 0t"06 q 040001 R OAC OSPCIo! IOlsPATC~ IIIIITH

- 19 ~HH"el?-R 740040 A OSPCH XX IMOOIF"JED JU~p
20 :110010 R 600021 R JMP AOINIT 11-,tNIT
21 ~1~011 R 600074 R JMP AOIGN2 12-.rSTAT,.DLETE"RE~AM
22 ;~L?l012 R 600074 R JMP AOIGN2 13-.SEEI(
23 e,e~13 R 6('121023 R JMP ADERR6 14:,ENTER
24 1-'10014 R 6210023 R JMP AOERR6 IS-,CLEAR
25 ~0015 ~ 600075 R JMP AOlGN1 16-,Cl.OSF:
26 0e1C'116 ~ 600075 R JMP AOICN1 11-,MTAPE
27 r'~017 R 600051 R JMP ADREAD 11 lch .READ
28 ~~002~ ~ 600023 R JMP AOER~6 111=.WRITE
29 '70021 R 600rlJ44 R JMP AOWAIT 11 2=,W AIT
30 00"'22 R 600023 R JMP AD£RR6 11 J :, TRAto.J
31 I
32 IILLEGAL rUNCTIO~S IN ABOVE TAaLE COOED AS
33 I JMP .OERR6
34 .EJECT

PAGE 2 R ?Ie'1

35 I
36 IFUNCTtON COoE ERROR
37 I
38 ;'~023 ~ 76kj0~6 A ADERR6 lAltJ ~ IEr<QOR Ct'JDE 6
39 .~0~24 k 62k?1':>S R J"1P* t,MED.l ITO MONYTOR
40 IDATA HODE ERROR
41 '0~2~ R 76V"e:Z7 A ADERR7 LAW 7 IERRnR cnDE 7
42 :~ e ~ 2 6 R 6 2 0 1 ? 5 R J""P* (,MEw.l ITO MONITOR
43 ITHE ADINT RtUTl~E HUST INCLUDE A .SETUP
44 If OR EACH fL~G ASSOCtAT[O ~IT~ T~E orVlcr
45 I
46 "0027 ~ 440151 R AOINIl' lOX A[)ARGP IIUX TO ptTURN Rurr SI7[
47 .DEC
48 i,'ete.30 R 2\?112l1?6 R L.AC (256 1ST AND A R r, H U~· F ~ ~ 5 I t f-~ (LJrCI~'AL)
49 ,OCT
5V" ; l~ ~ 3 1 ~ 0 6 ell 5 1 R OA.C* ADARGP IRLTlJRN t T TO USER
51 ("r?!C'!32 ~ 44~151 R IDX ADARGP
52 ~~03J R 0~0057 A AOCMOO CAL 57 I 5 1 : A P J c Ii A 1\i ~.~ l L,

-...J 53 ~~20J4 R 00"'016 A ADCKS'~ 16 I • SET uP I 0 P S r II 'H; T I ') \. (: 0 n F: I
~ 54 '~0035 R 7~1301 A AOCBP ADsf lADe SKIP lOT
U1

55 ~0?l36 ~ el210111 R .nL,B~p 40 C l~! i IAPOR. i') F I ~JT [R ~ U p T
56 ,~ 0 0 3 7 R 2 " ~ 0 41 R AOUND LAC .+2 ISlT~UP ONCE O~LV
57 0~04~ ~ 040033 R ADWC DAC AOC~CD IsKIP SET.UP CODE IF ~0R~
58 ~. 21 0 4 1 R 6 ~ ~ 12! 4 2 R AOWI'CT JMP AOSTUP I.I~ITS AH[DO~.E
59 I
60 ISTO~ AOC ROUTINE CLEARS 1'0 UNorR~AV SwtTC~
61 I
62 .1~H'!42 R 1400.S] R ADS TOP OiM AOUNfJ
63 (~0"'4~ R 600015 R JMP ADIG'.l IR[TURN
64 I
65 IT~E PRE v ,OUS T Ac;5 Pl THE CAL ARE A Aq(USED J:OR
66 ISTORAGE DURING THE' ACTUAL ,REAo F'UNCTID~'
67 I
68 IADCKSM IS FrR STORI'~GT~E CHECKSUM
69 IAOCBP IS THr CURRENT BurFER POI~TER
70 I.OLRHP IS THE LINE RUFfER HfAD[Q POINTER
'1 IAOUND IS POR PEvlCE UNDERwAV SwrTCH
72 IAOWC Is USEO AS T~E COUNTlR
13 IAOWPC' IS USEO TO STORE CU~RENT WORD COUNT
74 I
'5 .EJECT

PAGE 3 R 'H~1

16 ~0044 R 2~0el37 R ADWAIT LAC .OUND
'7 00et45 ~ 7412~0 A SNA
78 :'-0046 R 60kl!075 R Jt.1P AOIGN1
19 11/0 UNOERWAY ~OaP
80 rele47 R 703344 A A081JSY OBR
61 [.,,/21050 R 620150 R JfIo1P· ADeAlP
82 I
8J I
84 00051 ~ 2~003' R AOREAO LAC AOLJNf') IcHECK TO SEE lr 1/0 IS UNDERWAY
8!5 l~0e152 R 740201 A SlAfCMA Ilf NOT SET IT wITH .. 1
86 ~0Q!53 R 600047 R JMP ADBUSV lIT WAS ~ET,GO BACK TO CAL
87 00054 R k'l40el37 R DAC ADUND IsE TIT
!8 0012155 R 220150 R LAC* ADCAU' ILOOK AT MODE
89 [-10056 R 500157 R AND t70e0 IslTS 6~8 Or\lY
90 001'157 R 7402"0 A SlA 11 0 P S Bp.I A R y?
91 ~e~60 R 6021025 R JMP AOERf17 INO. ERROR
92 ,)0"'61 R 220151 R LAC· ADARGP IGEr ~lNE BurrER HEADER POINTER
93 v.HH'l62 R "40035 R OAe AOCAP ISTORE IT
94 ~'0C'163 R 040036 R OAC ADI.BIo4P IA~SO 5TnRE IT rOR LATER 4EAOER

--.J 95 (7:0~64 R 440151 R lOX ADARGP IINcREMr\T ARG. POINTER J
I-" 96 ~;'0065 R 220151 R LAC· ;.DARr';P IGET ~L.R.W.C(2'S CO~P) 0"1

97 \?0et66 R 0~0040 R DAC AOWC ISTORE IT IN WORD COUNTER
98 ~1006' R 140~41 R O~M AowPCT IlERn WOPO COUNT REG.
99 ~/0~70 R 14",e~~4 R DiM ADCKSM IlERO C~rCK5u~ REG.

100 r~((I~71 R 440035 R lOX ADC8p IGET PAST HEADER PAIR
1~1 (~0"'72 R 440035 R lOX AOCBP INOW POI~TING AT 8EGINNING or
1"'2 IBUrPER
1~3 o~073 R 70131'4 ;. ADSC ISTA~T UP ~EVICE
1~4 ~~ 0 0 7 4 ~ 4 4 01 5 1 R AOIGN2 IDx ADARGP lINeR. rnR ExIT
105 ',HH"75 R703344 A ADIGN1 D8R 18~EAK F~OM LEVEL 4
1~6 r10(~76 R 620151 R JMP* ADARr,P IR£TURN AFT[~ CAL
1"'7 IINTERRUPT HANDL[R FOR API OR PIr
108 I
1f(!9 (~0~77 R 20e160 R O\ll..Y1 LAC (NOP
110 .~0100 R 040117 R DAC ADCION
111 c'0101 R ~40142 R QAC AOCO~.!T
112 [~ ~ 1 0 2 R e 4 et 1 4 5 R DAC ADSWCH
113 \.~ 01 0 :3 R 0 4 011 5 R DAe T G ~~ R PI
114 :~ ~a 2' 4 ~ 6 C'J 011 6 R JMP cOMMON
115 d~)105 R 04~153 R ADCPIC DAC A ['lCAC ISAVE .AC
116 ':'0106 R 22~161 R LAC· r el) ISAVE PC,~INK,fx. ManE
117 C"(('107 R ~40152 R DAC ADCOIIT IMEM.PROT,
118 .EJECT

PAGE 4 R 0~1.

119 0~110 ~ 600116 R JMP cor-HH1N

1221 00111 ~ 6C'1eJ105 R 4DCINT JM~ ADCPIC IplC ENTPY
1~1 021112 ~ 04~153 R DAC ADCAC IAPI ENTRY.SAVl he
122 021113 ~ 2~0111 R LAC ADCII\T ISAVE Pc,~t~K.lx.~ODE
123 02'114 R 040152 R DAC ADcnUT IMl~l. pROT
124 10115 R 6210077 R IGNRPI JMP rNLY1
125 1~0116 R 101312 A COMMON AORt3 I R El\ D Co'.: V E R T E R P U f F'" E R
126 00117 R 7et0042 A ADCION ION IENARLE ~Ic rOR OT~E~ OEVICES
127 ~012~ R 060035 R !jAC- AOCBP 1ST ORE QATA t~ USER ~UfrER
'128 00121 R 44~035 R lOX ADCBP IIt'vC. BUfF'[R POPHfR
129 iJe122 R 440041 R lOX An~PCT lINe. !,.JapO PAIR COLJJTER
130 V'~123 R 340034 R TAD AOI:KSM I A U D C H E C K S U ~1
131 ~~ 012 4 R 0 4 ~ 0 3 4 R r)AC ADCKSM ISTORE IT
132 /0125 R 44eet40 R 1S2 AOWC II~ 110 COMPLETE
133 00126 R 60el142 P JMI' ADCO',j T INO KEEp Go P,lG

---l 134 \/1 ~H 2 7 '1 2 0 0 0 4 1 R LAC AD\.roIPCT lyES, COMPUTE WORO C'JUNT PA! R I
r--' 1:55 (\~'1~h~ R 7402'30 A lAC IMAy BE rDD
---l 136 ?~131 R 1420,3121 A S~~A ITO TOP ~ALF'

1:57 00132 R 740020 A ~AR IMAKE Wr'J. PRS.
1:58 :' 0 1 33 R 500 1 6 2 R ANO (377e00 18 8ITS ONLY
139 ,"~134 ~ 0600.36 R OAC· .DI.,8HP ISTORE I~ ~EAOER #1
140 ~01.35 R 440036 R 10)(ADLBHP lINe, To STORE CKSUt.1
141 :HH 36 R 3 4 ~ " 3 4 R TAO ADCKSM IADO WORn PAIR COUNT
142 ~~0137 R 060036 R DAC· AOL.8~P ISTORE I~ ~EAOER #2
143 ~014e R 140(('37 R DiM ADUNO ICLEAR OEVICF UNnERwAV
144 ~. 01 4 1 R 6 e: 0 14 4 R JMP ADOIC:;M l£xIT
145 ;1014:? R 7"HH'H~2 A An Co 'J T lOP' IOlSA81..E PIC O~ ~~OP
146 /10143 R 7013e4 A AOSC 18lrORE rNTERRupr fR~M THIS lOT OCCURS
147 IINTERRUPT HANDLr R DISMISS RTE
148 I
3,49 r0144 R 200153 R AODISM LA.C ADeAC IRISTORE AC
150 ,EJECT

PAGE 5 p 01211

15j 0e'145 R 7~0~42 A ADSWCH ION lION OR ~,OP
152 r"146 R 1213344 A D8R IOlBREAK A~O RESTORE
1~3 f~0141 R 620152 R JMP* ADCOUT ILINK,EX.MOO[,MEM,PROT
154 ;10150 R 000t'H?0 A AOCALP 0 lAUD CAL P~II\jTE~

-...,J
155 'lC'l151 R 0~00012' A AOARGP 0 lAUD ARGUMr~T PJINTER

I 156 00152 R "00000 A AOCOUT ~ IPC,l.,rM,MP
I--' 157 00153 R 0~02100 A ADCAC 0 lAC SAVEr ~E~E 00

158 I
159 00e1'HH~ A .ENU

~0154 R 600007 R *L
-~~-0-155 R0-0Ql-0~4 J. *l
~H3156 R 0004fllel A *L
00151 R e010e0 A *L
10160 R 140000 A *L
~0161 R 00000~ A *L
00162 R J77000 A *L

SIlE:t001b3 NO tRROR LINES

PAGf 6 (;(CROSS REF"ERENCE

ADARGP :10151 13 14 15 16 46 ~0 ?1 9-;. 95
96 104 106 155*

AD8LJSY rH'l47 fl?l* 86
AOeAC ~015:~ 115 121 149 157.
ADCALP G1015'1 12 81 88 154.
A.Or.:SP \1?73~ t;4* 93 1eeJ 101 127 128
AOCtNT :10 t 11 55 120* 122
ADCION "!~117 l1r 126*
AD C t< S ~I ?l0e34 53 .. 99 LH~ 131 141
ADe~l(1[1 ~0Vl3~ S20 57
ADC(HH 0014;:> 111 133 145.
ADCOIIT ,A2!15;" 117 123 153 156.
ADCPIC 0017.1'; 11S- 12i1
ADe, :1 el ~ 0 (' 8 12 G

ADl"JISM r?1 44 144 149-
AOER~6 00~23 2-3 24 28 30 38*
A[)rRr~7 0J"'2~ 41 II- 91

.....J A(11GNl "1[i1(7,7~ 25 26 63 78 t05* I
AOIGN2 ~~~~74 21 22 1~4 .. I-'

\.0 AOtNJT r"2'k~2? 20 46.
ADLB~P 00i13A 55- 94f 139 140 142
AOR8 7C"131? 6- 125
AOREAD 00~51 27 84.
ADSC 101,Hl4 4_ 103 146
AD!'f 7~1 .. ~01 3· 54
ADSTOP ,~004? 58 62-
ADSWC~ r!~145 112 151-
ADUNrl ~~031 5~* 62 16 84 87 143
AOWAJT 0,0044 29 76-
ADWC ~004i~ 57. 97 132
AOItIPr.r 0iZ1041 58- 98 129 134
COMMON ?l0116 114 119 125.
DSPCI.4 00007 17 18 19.
TO)(44000''1 9- 14 16 46 51 95 100 lk'l 1~4

128 129 140
IGNRPI 00115 113 12A ..
C'lNl.Yl r,H"9I71 109 ... 124
,MEO [l!000~3 19.1· 39 42

CHAPTER 8

BOSS-IS

BOSS enables DOS users with a card reader and a line printer to run

jobs sequentially, with a minimum of operator intervention. BOSS sup­

ports a subset of the DOS system programs, and adds a line editor, its

own resident and nonresident routines (called Resident BOSS and Non­

resident BOSS), and the Procedure Files. Paragraph 8.1 describes Pro­

cedure Files. Figure 8-1 shows which monitor supports each system

program.

The DOS programs run by BOSS are identical to those run by DOS. Ex­

ceptions are the Resident and Nonresident Monitors, which are ex­

plained later. BOSS expands the information on Control Cards into

a series of commar.ds in the format expected by the DOS system pro­

grams. Nonresident BOSS does this command expansion, and stores the

expanded commands in a disk file, the Run Time File (RTF). Since DOS

programs expect to communicate with a~ operator at a teleprinter, BOSS

feeds the expanded commands to the programs via .DAT slots assigned
i •

to TTA. In BOSS mode, therefore, BOSS attaches .DAT-2 to the Run Tlme

File, and directs most teleprinter output to the Line Printer. Pro­

grams can force I/O to the teleprinter by setting bit 4 in .SCOM+S2,

and proceding with macros directed to TTA.

Wher.ever bit ~ of .SCOM+S2 is set, the System Loader Interface attaches

the Resident BOSS code to the Resident Monitor. The main purposes

of Resident BOSS are to (1) ensure that BOSS will retain control of

the teleprinter, (2) feed commands to programs via the Run Time File,

(3) properly route internal Monitor commands, such as .EXIT, .GET and

.PUT, and (4) direct teleprinter output to the Line Printer~ Figure

8-2 illustrates the connections between the DOS Resident Monitor and

the BOSS Resident Monitor that accomplish these changes. Figure 8-3,

the flowchart for Resident BOSS, further describes Resident BOSS.

Resident BOSS communicates with Nonresident BOSS by TRANing informa­

tion to and from the first block of Nonresident BOSS. Nonresident

BOSS gains control on all error conditions, such as IOPS, operator

abort, Time Estimate exceeded, and after a BOSS15 command. Figure 8-4

is a flowchart of Nonresident BOSS.

8-1

co
I

N

DOSGEN

FOCAL

DDT

EDIT

LINKING LOADER

TKB

PATCH

8TRAN

89TRAN

DOS

RESIDENT
MONITOR

NONRESIDENT
MONITOR

SYSTEM
LOADER

BOOTSTRAP
PIP

CHAIN & EXECUTE
FORTRAN

BOSS

Figure 8-1, BOSS/DOS Intersection

NONRESIDENT
BOSS

RESIDENT
BOSS

B.PRE

PROCEDURE
FILES

15-0658

RESIDENT BOSS15 INTERFACE TO RESIDENT MONITOR

AND USER PROGRAM OR SYSTEM PROGRAM

---- PROGRAM CONTROL

- --- - INFORMATION FU7W

&--

IF USER "CAL" WAS
NOT A.READ

INFO TO & FROM DISK

r----I RESIDENT BOSS15

I
I

""IF aDUMP WAS SPECIFIED THEN THE Dl!MP
WILL TAKE PLACE BEFORE GOING TO
RESIDENT BOSS15

--1-1

NOTE: SEE RESIDENT BOSS FLOW CHARTS
FOR DET AI LS.

lOPS ERROR FROM
1/0 HANDLER OR USER

~
lOPS 4
RETURN

--1
EXPANDED

ERROR
PROCESSOR

lOPS 4

NORMAL
lOPS

ERROR
PROCESSOR

INPUT
FROM TTY

TELETYPE
HANDLER

I
I
I
I
1

I
I
I

I :
~~~-~-~------~------~-+-------------~lTTYPED 

I 

I : I 
~--t~-----~--l 

I L I L.. _____ --.J I -, 

.-------~ : 
I ~~~~1:0L I 
I~~ :~ I 
I DATA BACK FROM I 

DATX 

CARD READER 
HANDLER 

NORMAL 
CARD 
DATA 

.READ .WRITE 
3 

OR ANY OAT ASSIGN TO TTY 

"USER OR SYSTEM PROGRAM 

'NOT NON·RES BOSS15 

Figure 8-2 

8-3 

A 

1"cAL" ENTRY 
TOTTY _________ ......J HANDLER 

o 
I 
I 

.READ 
·2 

15-0659 



lOPS Error 
Routine: 

EXITLT 

Expanded 
lOPS Error 

Routine 
BOSS~ 

(JMS Entry) 

Store error data in 
Resident BOSS .ERR, 
.MED, and in the ad­
dress pointed to by 
.SCOM+37 

Go to CTRL 
Q Routine: 
MANSAV 

Monitor TRAN in the first block of 
onresident BOSS, starting at 

C (.SCOM+2) 

Startinq at C(.SCOM+2) + 448 , trans­
fer lOPS error data to core image of 
block 

Monitor TRAN"block out 
to first block of Non­
resident BOSS 

Control Q 
Processing, 

via .SCOM+72 

Points within the Resident Monitor which transfer control to Resident BOSS - 15 

RESIDENT BOSS - 15 

Figure 8-3 

8-4 



DAT3.B 

Compose a .WRITE 
to .DAT+6, using 
caller's data 
m~e 

(.DAT-3 or any .DAT slot 
assigned to TTA.) 

N 

1. Clear bit 4 or 
.SCOM+52 

2. Make sure tele­
printer is not 
busy 

Move user's buffer (minus the 
header word pair) to Resident 
BOSS (always 428 words) 

Issue .WRITE to .DAT+6 (the 
Line printer) and wait for 
completion 

DAT2.B 

Using caller's buffer address and 
word count, compose a .READ to 
.DAT-7, the run time file (RTF) 
on the system 4evice 

Issue .READ to .DAT-7, and await 
completion 

Processing for I/O Macros addressed to .DAT slots -2 or -3, or any slot assigned to TTA. 

Points within the Resident Monitor which transfer control to Resident BOSS - 15 

RESIDENT BOSS - 15 

Figure 8-3 (cont.~. 

8-5 



.EXIT 
processing 
EXITA 

TIME OUT 
processing 
TIMGON 

Operator 
Abort tT 
TTDDTR 

.SCOM+52 

.PUT and .GET 
Processing 
BOSS2 

Set bit 11 in .SCOM+52 

Set bit 17 in .SCOM+52 

Set up .SCOM+43 & 44 to 
bring in the Nonresident 
Monitor 

B.EXT¢ 

N 

Monitor TRAN first block of Nonresident BOSS 
starting at C(.SCOM+2), 

in the Mass 

Busy Table entries 

cessor at 
EXITA + 1 

Points within the Resident Monitor which transfer control to Resident BOSS - 15 

RESIDENT BOSS - 15 
~igure 8-3 (cont.) 

8-6 



start Address 42~ 

Execute bank bit initializat10n code 

Save value of TIME OUT clock, and disable it 

Disable CTRL C and set up CTRL T address; save contents 
of .SCOM+42, set MICLOG bit and clear user bit 

Set .UFDT -15 and -14 to and delete all files in 
the CTP UFD named PRCFIL PRC 

Perform .ENTER on .DAT-IS for PRCFIL PRC; set line count ~ 

Save current logged-in UIC in~: force 
"CTP" to be logged-in UIC 

Save system device code 1n 0.11 

Y 

Set bit 17 in word AC.STA 

N 

Set bit 2 in Job status word 
Print, "END OF RUN TIME FILE 
REACHED BY USER" on the LP 

Next Page 

Nonresident I BOSS 

Figure 8-4 

8-7 

Set bit zero of .SCOM+S2 



Set bit 3 in Job Status Word 

Print on 
ESTIMATE 

"TIME 

From Preceding Page 

Neither 

Set bit 11 in 
Status word 

• PUT 

Print on Line Printer, 
"ILLEGAL .GET BY USER" 

Print on 
"LOAD ERROR •••••••••• " 

y 

Nonresident BOSS 
Figure 8-4 (cont.) 

8-8 

Print on Line Printer, 
"USER DID A .PUT" 

set bit 6 Status Word 

Set bit 7 in Job status Word 
Print on LP, "OPERATOR ABORT" 



y 

y 

y 

Read next Control Card 

Not a CONTROL CARD RETU;RN 

CONTROL 

N 

Close out PIP command processing 

y 

f:J e 
Nonresident BOSS 

I 

Figure 8-4 (cont.) 
I 

8-9 



N 

rite "PIP" line into "RTF" 

Set up to get character from card: 
Skip over "$" and pack character in 
CARDP 

~ ______________________________ ~~. pJpC,' 

y 

y 

N 

RETURN 

I 

Nonresident BOS$ 
I 

Figure 8-4 (cont.) 

I 

8-10 

set PIP sW1tc 



Make sure the T1me Out 
Clock will be disabled 
upon exit from NR BOSS 

Set bit 8 in .SCOM+S2 
(Job Active Flag) 

store JOB I.D. into account in­
formation buffer 

Pad with nulls until nine 
characters have been packed 

Enter date and start time 
into account information 
buffer 

start elapsed time clock, by 
depositing zero into .SCOM+34 

Print 

Nonresident BOSS 

Figure 8-4 (cant.) 

8-11 



(Create an ADD File) 

set up to pack ~nto CARDP 

Use default file name "TMP' ack file name and extension, if any 

CR.ERR 

y 

Use default extension "ADD" 

Write card into ADD File 

Nonresident BOSS 

Figure 8-4 (cont.) 

8-12 



set bit zero of ADDSTA 
Set bit one of .SCOM+56 

Zero directory entry bloc 

Set up to pack into ADDFIL 

N y 

Use default file name "TMP" Pack file name and extension, if any 
~-----,======~~~========~ 

Zero bits .SCOM+52 

elapsed time into 
Account Informa­
tion buffer, and 
.CLOSE .DAT-14 

Next Page 
Nonresident BOSS 

Figure 8-4 (cont.) 

8-13 

Set End Job Flag 
(bit zero of Job Status 
word) 



Perform .ENTER to .DAT-14 
(ACCNTG ~~l); Set up the 
buffer with l76~~2, X, -1 

write out a ten-block 
file, and close .DAT-14 

Reset File Entry Count to zero 

From Preceding Page 

Increment alternate file 
extension (~~2,~~3, •• 777) 

Rename account file 
to new alternate 
name and extension 

Print End Job Message 
and second line, con­
taining ID, Date, S. 
time, F. Time and run 
time 

Nonresident BOSS 

Figure 8-4 (cont.) 

8-14 

write and count "LOGOUT" line to "RTF" 



Restore .SCOM+42 with 
user mode bit (bit 17) 
set; restore user's 
UIC 

write out BOSS line in 
"RTF" (BOSS-15) and 
count it 

Store line count in bits 
~-8 of .SCOM+75 

y 

Close "RTF" and ADD files 

TRAN out first 4008 
of Nonresident BOSS 

write out "DUMP" line to "RTF" 

Disable the Time Out Clock, so 
the user gets a complete dump; 
count two lines 

write out "ALL" to "RTF" and 
ent with an ALT MODE 

Nonresident BOSS 

Figure 8-4 (cont.) 

8-15 

Print on LP, "RUN 
FILE TOO 

Close ADD file, .INIT "RTF" 
and .ENTER a new "RTF" 

Indicate "RTF" is empty 



8.1 PROCEDURE FILES 

To each BOSS command there corresponds a disk-resident ASCII file, 

called a Procedure File. The Procedure File contains DOS commands. 

When DOS executes the commands in the Procedure File , it carries out 

the function specified by the BOSS control card. The DOS commands 

in the Procedure Files contain fields (for instance, a file name) 

that Nonresident BOSS fills in with text strings from the control 

card. These fields are called, "Variable Fields". Before executing 

the DOS commands contained in the Procedure File, therefore, all the 

variable fields have to be resolved. This process is very similar to 

a macro expansion, where (1) DOS is the assembly language, (2) the 

BOSS command name is the macro name, (3) the contents of the BOSS 

control card are the macro arguments, and (4) the Procedure File is 

the macro definition. The expanded DOS commands are put in a Disk 

File, called the "Run Time File (RTF)". The RTF can contain the ex­

pansion of one or more Procedure Files, up to 7778 lOPS ASCII records. 

BOSS expands Procedure Files strictly on a text string, character 

basis. It has no knowledge of the intrinsic function of each BOSS 

control card, except for $JOB, $END, $CRT, and $ADD ($END, $CRT, $ADD 

have no Procedure Files) Appendix C contains a listing of all standard 

Procedure Files. 

8.1.1 Procedure File Format 

In order to ensure successful expansion, all Procedure Files must fol­

Iowa strict format. The first record of the Procedure File must be 

a control record, with parameter information. The first record may 

also contain comments, because BOSS interprets only pertinent informa­

tion, and ignores the rest. The numbers ~, 1, 2, 3, and 4 specify 

different options. All other characters are ignored. The option 

digits can appear in any order, and anywhere on the record. The op­

tion specified by each number is given below: 

~ - Expanded Substitution (default, if "3" not given 
explicitly) 

This option specifies that the Procedure File is to be 
expanded according to the normal rules of substitution, 
which are given below. 

8-16 



1 - Open Ended File (default, if "2" not given 
explicitly) 

This option instructs the Nonresident BOSS Moni tor 
to leave the RTF open after expanding the current 
Procedure File. BOSS then searches for the next 
control card. 

2 - Closed End File 

This option instructs Non-resident BOSS to close 
the RTF after expanding the current Procedure File, 
and to execute the DOS commands in the RTF. Pro­
cedure Files corresponding to commands that may 
possibly be followed by "Data Cards" should be 
of Type 2. 

3 - Direct Substitution 

This option indicates the BOSS should not expand 
the Procedure File according to normal rules. 
Refer to paragraph 8.1.2 for information on 
Direct Substitution. 

4 - Test Mode 

This option indicates that BOSS should echo the 
Procedure File expansion on the Line Printer. 
This allows a check on the Procedure File. 

The following combinations are illegal: 

~ and 3 

1 and 2 

If BOSS finds an illegal option combination, it will print, 

ILLEGAL PROC FILE 

and search for the next control card. 

BOSS uses all other records in the Procedure File as macro definition 

records. Records after the first one are all Macro Definition Records. 

For each such record, a record will be written in the RTF. Each Macro 

Definition Record has the same format. Two types of fields are used: 

K-fields and V-fields. K-fields specify constant character strings 

that will be written into the RTF exactly as they appear in the Pro­

cedure File. V-fields specify variable character strings to be sub­

stituted from specified strings on the Control Cards. Each Macro 

Definition Line of a Procedure File can contain any number of K- and 

V-fields, in any combination. V-fields are delimited by @-signs. 

K-fields are delimited by adjacent V-fields, or the end or beginning 

8-17 



of the record. Since there are only two types of fields, only one 

need have delimiters. Two adjacent V-fields, however, require two 

adjacent @-signs. 

K-fields 

K-fields may be any string of legal lOPS ASCII characters, except the 

@-sigp. 

V-fields 

A V-field has the following format*: 

v U~n ([(V-f~eld\]) @ ~~D Dnn K-f~eld.l 
a 

The two @-signs delimit the field. The first part of the field (A, 

D, U or 0) is a card-position identifier, and must be present. It 

identifies the position on the current Control Card of the character 

string to be substituted in the RTF. The legal combinations are: 

AfiJfiJ,AfiJl, .... A~9 
UfiJ~,UfiJl, .... UfiJ9 
D~~,D~1, .... DfiJ9,DlfiJ, ... D17 
a 

With the exception of DlfiJ through D17, each of the above position 

identifiers corresponds to a unique character string of the Control 

Card, according to the following scheme: 

$CMD;O AfijfiJ:D~fiJ(UfiJfiJ) ;AfiJl:Dfijl(Ufijl); .... ;Afij9:Dfij9(U,0'9) 

The Dl~ ... D17 position identifiers do not correspond to character 

strings found on the Control Card, but rather to character strings 

defined by BOSS. Thus, 

Dl~ - Unused 
Dll - .SIXBT representation of the System Device Code 

( I DK I or I DP , ) 
D12 - Current Logged in UIC 
D13 - .SIXBT representation of Carriage RETURN 
D14 - .SIXBT representation of ALT MODE 
DIS - Unused. 
D16 - Unused 
D17 - Unused 

* Standards for this format description are identical to those speci­
fied in Chapter 5 of the DOS-IS User's Manual, DEC-15-MRDA-D. 

8-18 



The parentheses in a V-field must be present. They are used to speci­

fy a default string. The default string is used in case the string 

on the Control Card specified by the position identifier is null. A 

set of parentheses must be included, even if the default string is 

null. The default string itself can be a variable, resulting in nested 

variables. Nesting has a theoretical limit of 217 variable fields. 

8.1.2 Direct Substitution 

When processing a Direct Substitution Procedure File, BOSS places the 

fields on the Control Card into the RTF just as they stand with only 

leading spaces ignored. That is, BOSS does not necessarily expect to 

find file names, and so on, as with normal substitution. Fields on 

the Control Cards are separated by semi-colons (;), and are processedl 

in a serial manner. The ampersand (&) is used for a special purpose. 

It causes the current record being composed for the RTF to be termin­

ated with a Carriage RETURN, and written out, and a new record started. 

This is so that the limit of seventy-five characters per line will not 

be exceeded. 

There are only two legal field types within the Procedure File. They 

are as follows: 

1. A~~ through A99 
2. Dl~ through D17 (System Defined) 

In making up Direct Substitution Procedure Files, the following rules 

must be followed: 

1. The first line must contain a three (3). This declares 
the file to be direct substitution. 

2. The IIAII fields must appear in sequential order, starting 
at AfJ~. Each "A" field can be used only once within the 
Procedure File. 

3. The liD" fields can only be "DIY''' through IID17". They 
can be used any number of times, in any order. 

4. Variable expressions must follow the standard V-field 
format, as in expanded substitution. 

8.1.3 Example of Procedure File 

The following example shows a typical Direct Substitution Procedure 

File, the Control Cards used to call it, and the resulting lines 

produced in the Run Time File. 

8-19 



Procedure File l - Map PRC 

I 

3 PROCEDURE FILE TO RUN CHAIN WITH NO OVERLAYS 
CHAIN 
@A~~(TMPXCT)@@D14()@ 
@A.01 (SZ) @@DI4 () @ 

@A~2(FILTMP)@@D14()@ 
@D14 () @ 

Control Cards as They Appear 

$MAP TESTliSZ,VTC/ABC,DEF,NAMl,&NAM2,; 
$*~l NAM3,NAM4,NAMS/;TESTl,SUB1,SUB2,&; 
$*.02 SUB3,SUB4,SUBS 

Run Time File Li~es 

CHAIN) 
TESTI (ALT MODE) 
SZ,VTC/ABC,DEF,NAMl,) 
NAM2,NAM3,NAM4,NAMS/ (ALT MODE) 
TESTI, SUBI, SUB2,) 
SUB3,SUB4,SUBS (ALT MODE) 
(ALT MODE) 

Note: D14=Altmode, <ALTMODE> is an Altmode, and <CR> is a 
Carriage Return. 

8.2 BOSS-1S ACCOUNTING 

I 

BOSS has a very simple accounting mechanism. It keeps an account 

record for each job in a random access.file in the CTP UFD. Hence, 

the file is protected, and can only be accessed after successful ex­

ecution of a $MIC command. 

I 

The name of the accounting file is ACCNTG ,nnn. (The first has an ex-

tension of ~~l.) Each file is ten physical blocks long, and contains 

enough information for 31~ jobs, thirty-o~e per physical block. When 

BOSS fills up one file, it increments the extension, and starts a new 
I 

one. Every time a job ends, BOSS checks whether ACCNTG .0.01 exists. 
I 

If it does not, BOSS creates one. If it qoes, BOSS checks whether 

it is full. If not full, BOSS makes a ne~ entry; if full, BOSS 
lDirect Substitution File 

8-20 



searches for the first unused extension number. If all extension num­

bers have been used (up to 999) BOSS prints this message to the opera­

tor on the teleprinter: 

MAX NUMBER OF ACCOUNTING FILES REACHED 
PLEASE PROCESS AND DELETE THEM 

Every time the system manager processes an accounting file, therefore, 

he should delete the file. 

For each completed job, BOSS writes out an eight-word record to the 

accounting file. The records have the following format: 

Word # 

4 
5 
6 
7 
8 

Content 

{
~Ob I.D., 
ln 
.SIXBT 

Date, packed mmddyy 
Start Time, in hhmrnss 
End Time, in hhmmss 
Run Time, in hhmmss 
Terminal Job Status Word 

A word whose contents equal 7777778 immediately follows the last job 

accounting record in each physical block of the accounting file. 

8.3 B.PRE 

Figure 8-5 is a flowchart of B.PRE, the BOSS Line Editor. 

8-21 



Initialize .OAT slots -14 and -15 

Read updated file name and exten­
sion from .OAT-2 

y 

Assume updated file name equals 
the original file name 

Read file name and extension 
from .OAT-2 

COREAD 

Read a card from .DAT+s 

r-____________________ ~E~O~F_< ~E-D-I-T--------------~ 

1. Set FLAG to 1 
2. Issue .ENTER to .DAT-14 

Write card image to .DAT-14 

Read a card image from .DAT+s 

B.PRE 

Figure 8-5 

8-22 



.EXIT 

Perform .SEEK to .DAT-14, and 
.ENTER to .DAT-IS 

Delete 
Subst. 

Read a record from 
.OAT-14 and write 
it into .DAT-IS 

Read a record from .OAT-14 

B. Pro;: 

Figure 8-5 (cont.) 

8-23 

Read a record from 
.OAT-14 and write 
it into .OAT-IS 

.EXIT 



ERROR 

lOPS 17 

lOPS 22 
ERROR 

1. Save pointer to CAL 
2. Save sub function or data mode 

Swap descriptor 
blocks for .DAT 
slots A and B 

there more than 
y orie output file on 

~----------------~ the same unit 

y 

y 

Get function code, and make up 
dispatch instruction 

Next: Page 
DECtape 'A' Handler:: (DTA.) 

A-l 

Swap descriptor 
blocks for .DAT 
slots A and C 



ERROR 
lOPS 55 

From Preceding Page 

N 

Set up word pointers within the new 
buffer -- e.g., buffer+377 = link 

• INIT .OPER • SEEK • ENTER • CLEAR • CLOSE • MTAPE • READ • WRITE • WAIT • TRAN 

6d)6666 @~0Cb O()G 
.INIT (Function Code #1) 

1. Give user standard buffer size (377) 
2. Set input or output file indicator 
3. wait for previous I/O to finish for 

DEC tape 

N 

1. Do .SETUP to API and Skip Chain 
2. Test buffer size. If not 4408 

or greater, terminate with an 
lOPS 7f' 

Return to 
user after 

CAL 

DECtape "A" Handler (DTA.) 

A-2 



(.OPER, Function Code #2) 

N 

Dispatch to requested sub­
function and process 

ERROR 
IOPS 6 

(.SEEK, Function Code #3) 

y 

(Loop back to user CAL) 

Bring directory 
ready in 

core, if not al-

N 

1. Obtain starting block number 
2. Read the first file block into core 

user after 
CAL 

i 
DECtape "A" Handler (DTA.) 

A-3 

ERROR 
IOPS Ul 

ERROR 
IOPS 7 

ERROR 
IOPS 13 



(Dispatch Code 4) 

Y 
(Loop back to user CAL.)E----------< 

Bring Directory into core, if not 
already in 

N 

so that file is deleted 
to this .DAT slot 

Search directory bit map (in core) for first free bloc 

(Loop back to user CAL.) 

N 

Set up to write out this block, when 
the time comes 

• CLEAR 
(Dispatch Code 5) 

1. Clear out file bit maps 
2. Clear directory block with the SYS 

block bits set in the directory map 

DECtape "A" Handler (DTA.) 

A-4 

ERROR 
lOPS 7 

ERROR 
lOPS 15 

ERROR 
lOPS 10 



• CLOSE 
(Dispatch Code 6) 

(Loop back to user CAL)~ ______________ ~< 

1. Clear bit in bit maps 
2. Clear switches 

indicator in buffer 
2. Write out last block 

in file 

N 

The following is done on 
the in-core bit maps: 
1. Zero its bits in the 

directory bit map 
2. Overwrite its file 

bit map with the 

Write out updated directory and file bit map 

Return the buffer to the 
system 

Return to 
user after 

CAL 

DECtape "A" Ha~dler (DTA.) 

A-5 



(Loop back to user's CAL) 

Pass 001005,776773 
sequence to user's 
buffer 

• READ 
(Dispatch Code 10) 

y 

1. Transfer line to user's 
buffer 

2. Set data validity bits 

y 

Read 

DECtape "A" Handler (DTA.) 

A-6 



• WRITE 
(Function code 11) 

Loop back to user's CAL ...------.....:::y-<."Tt 

Exit to 
user after 

CAL 

y 

1. write out block; 2. search for next block 

N 

1. Transfer user buffer to handler 
buffer 

2. Compute Checksum 

N 

.WAIT & .WAITR 
(Function Code 12) 

Set ~AL pointer to specified address 

N 

I 

DECtape "A" Handler (DTA.) 

A-7 

via 
pointer 

ERROR 
lOPS 15 



Loop back to use-r CAL 

y 

Set up Current Address & 
word count for read or 
write 

.TRAN 
(Function Code 13) 

y 

1. 
2. 
3. 
4. 

Set up block to transfer in or out 
Set up core address-l 
Set up word count 
Start transfer 

INTERRUPT SEctION 

Read status "B" 

Clear I/O underway switch 

N 

Set directory in core switch 

Set up current 
and word count for 

~~------~DECtape "An Handler (DTA.) 

A-8 



N 

y 

1. Accept data as is 
2. Get rest of data 

N 

ERROR 
lOPS 12 

(ERROR Logic) 

y 

1. Read ~tatus Register "A" and 
save it 

2. Clear status Register "A" 
3. Disable interrupts 
4. Set return in .MED (register 

bank ~) 
5. Clear I/O underway switch and 

enable CTRL P 

1. Set I/O underway switch 
2. Set up Current Address and 

Word Count for search 

1. Restore PIC interrupt entry and AC 
2. Turn interrupt on, if this was a PIC 
3 Debreak and Restore 

Exit to 
interrupted 

code 

DECtape "A" Handler (DTA.) 

A-9 

3, 



Entry from 
CAL Handler 

1. Save the pointer to the CAL 
2. Save the .DAT slot number and subfunction 

code (bits 5-8 of LOC+~) 

N 

Do • SETUP for PI and API interrupts 

Determine number of platters 

N 

Calculate the maximum block number, for-use 
at .CLEAR time 

Calculate size of the TEMP list for pre-allocated 
blocks, and set the BUF.OK switch (SGEN size ok) 

y 

Branch to~ _________________________ Y--< 

user.'s CAL 

IOPS2l 

Fall through to "IO.OFF" 

Next Page 

Disk itA" Handlers 

B-1 



i 

From Preceding Page 

1. Calculate pointers to the arguments of the CAL 
2. Save step counter and MQ for EAE 

Save the current set in its appropriate buffer 

Make new .DAT slot the "current" one 

Save status of write Check 

Next pagET 

Disk "A" Han11ers 

B-2 

y 

(DISPCH) 



y 

I 

From Preceding Page 

y 

." Buffer, 
large enouqh~ 

for file ~------------~ 

Request a buffer (.GTBUF) 

N 

1. Save pointer to buffer, and zero entire buffer 
2. Complete the Busy Table entry 

1. Get Ule from the Busy Table entry 
2. Bring in the Current Set from buffer 
3. Set up pointers to: User's Directory Entry, tem­

porary block list, Data Block Words 0,1,2,3,376 & 
377 

lOPS 70 

lOPS 55 

Note: .TRAN, .WAIT and .WAITR 
have already been inter­
cepted. 

I 
Disk "A" Handlers 

I 

I 
B-3 
I 



1. Wipe out entry in UFD, and 
2. Give back pre-allocated blocks 

1. Return any allocated buffer 
2. Zero any old busy table entry 
3. Make a new entry in the busy table 
4. Save Write Check bit in busy table 
5. Indicate "current" .DAT slot is 

zero 

Exit to 
LOC+4 

Page 
Disk "A" Handl+rs 

B-4 

y 
lOPS 10 

lOPS 6 



.DLETE 

1. Delete the file 
2. Give back all 

blocks 

1. Return aquired 
buffer 

2. Make "current" 
.DAT slot zero 

N 

I 

From Preceding Page 

1. Rename the file 
2. Insert current 

date 
3. Load AC with the 

first block num­
ber 

(.FSTAT) 

lOPS 51, 
71 or 13 

• RAND 

1. Place file size in 
LOC+3 

2. Read in first RIB 
3. Move RIB to top of 

buffer, if neces-
Place device type in LOC+2 of CAL sary 
Search for file ~------~----~------~ 

Disk "A,l Handlers 
I 

B";'5 
I 

y 

Exit to 
EXITAD 



(.RTRAN) 

N 

Calculate RIB block number, and the desired pointer's 
position within that RIB block 

y 

Depending on the location of the desired block, rela­
tive to the RIB block in core, read in the next or 
preceding RIB block 

Save pointer to desired data block 

RF RP 

lOPS 11 

lOPS 66 

Store starting word number and the number 
of data words desired 

Assume transfer starting at word zero, 
through word 375, and set parameters 
accordingly 

I 

Use word count 
pack input 

Disk "A" Handters 

B-6 



Set up user's buffer to receive the link words for block 

djacent pointer in 
RIB, and forward link 
to -1 

- no backw 

Set links in data from adjac-
ent pointers in the RIB block 

1. Set backward link to 1. 
adjacent pointer in adjacent pointer in 
RIB block RIB 

2. Read in next RIB- bloc 2. Read in previous RIB 
and adjust RIB number block and adjust RIB 
indicator in the cur- number indicator in 
rent set the current set 

3. Set forward link to 3. Set backward link to 
first pointer in 
new RIB block 

RP 

Set up driver with the 
correct block number 

the last pointer in 
new RIB block 

Bring in or send out 
required block or data 

Disk "A" Handlers 

B-7 
I 

the 

y 

to adjacent poin­
ter in RIB, and 
backward link to 
-1 



y 

Read in first block of file 

I 
Disk "A" Hand1lers 

B-8 

lOPS 10 

lOPS 13, 
Sl or 71 

lOPS 10 

lOPS 64 



(No entry in MFD 
for this UIC) 

(Entry in MFD, but 

WDiS~ 
(UFD exists, but does 
not contain a file by 
the give

e 
1. Save number of the last MFD block read 
2. Save file name 

Read in last MFD block 

y N 

IOPSlO 

I 
(UFD exists, and con-
tains a file by the 
given name) e 

Set pointer to free slot 
found by FINDER 

1. Set up entry pointers 

1. Make forward link of last MFD block 
point to the next block 

2. Write out the block 

2. Insert new UIC, entry size and zero protection 
code (unprotected) into new MFD entry 

Disk 

B-9, 

*That is, has a • RAND, .SEEK or 
.ENTER been issued without a 
.CLOSE? 



y 

N 

Read in the MFD block 
which contains proper 
entry 

Set up entries in the Busy Table, the 
MFD block and the Current S.~ 

write out the MFD block and clear the 
buffer 

1. Set up a new UFD block in the buffer, 
with a back link of -1 

2. Set pointer to indicate location to 
receive the new entry 

Disk "Atl Handlirs 

B-IO 

IOPS63 



y 

1. set "Old file in" switch 
2. set pointers to UFD block 

nuwber and the first word 
of the olii file's entry 
(to be used at .CLOSE) 

Protection 
Violation 

N y 

1. Change forward link of last UFD block 
(still in core) 
Write out last UFD block 
Clear user's buffer 

Disk "A" Handlers 

B- 1 

1. 

2. 

IOPS63 

Read in UFD block with 
free entry 
Load "UFOl" pointer in 
Current Set with this 
block number 



1. Save pointer to new UFD entry in "UFD2" of the Current Set 
2. Set up pointers to UFD entry slots 
3. Store file name and extension in the UFD entry 

1. Store RIB pointer in UFO entry 
2. Store protection code & date 
3. Insert data block number 
4. Write out UFD block with entry 
5. Clear buffer 

Set "WREXSW" (Write-executed switch) 

Clear the buffer to zero 

ENTSET 

I". Read in the first Submap 
2. Make it the "Current Map" 
3. Zero indicator of the number 

of preallocated blocks 

Disk "A" Handlers 

B-12 

(Number of blocks pre-allo­
cated is the minimum of 
number available and the 
size of the "Temp List") 

eturn any preallocated blocks 



1. Clear a buffer 
2. Set words ~, 1, 2, 376, and 377 to -1 
3. Set bits 0-2 of word 3 to MFD size 
4. Set bits 3-17 of word 3 to point to 

first submap 
5. write out buffer to block 1777, if RF 

or 47~4~ if RP 
6. Clear the buffer 

maps) 

RP RF 

IOPS63 

1. Set up forward and backward links in buffer 1. Set backward and forward links to -1 
2. Set up words ~, 1 and 2 
3. Turn on bit in this submap corresponding 

to itself 
4. Write out the block 

y 

Set bit in appropriate bit map for MFD 

2. Turn on bits that correspond to MFD 
block and first suhmap block 

N 

1. Set bit in the first bit map that 
corresponds to second bit map 

2. Set forward link to next block 
3. Write out the buffer and clear it 
4. Set back link to first submap, and 

forward link to -1 

Disk "A" Handlers 

B-13 



From preceding Page 

N 

Reset RIB pointer in 
UFO to last data block 

Set "word RIB" ~n UFO 

WRTUFD 

Write out current UFO block 

y 

1. Write out UFO block currently in core 
2. Reset UFOI to UFO block with old file 
3. Read in the UFO block with the old file's 

entry 

SAMUFO 

1. Reset UFO entry pointer (UF02) 
2. Wipe out the old file's entry 

(Give back any unused blocks) 

Read in first RIB block used 
Save the forward data link 

Next Page 

Disk "A" Handlers 

B-14 



N 

set for internal looping 
(implicit WAIT) until done 

y 

1. write out current block 
2. Obtain another and 
3. Clear the buffer 
(Subroutine SETWRD) 

1. write 2-word EOF line in buffer 
2. Set forward data link to -1 
3. Increment file size 

N 

TRAN RIB words 1nto 

write out last data block 

1. Read in UFO block for this file 
2. Fill in file size and turn off 

Truncated file hit 
3. Save pointer to first RIB block 

Next Page 

Disk "A" Handlers 

B-lS 



N 

Reset RIB Block pointer in to last Oata Bloc 

Set 'word-in-RIB' in UFO 

(UFO entry is now complete. UFO 
still in core.) 

(Give back unused blocks.) 

N 

y 

1. write out UFO currently in core 
2. Reset UFOl to UFO block with the 

old file's reference 
3. Read it in 

SAMUFO 

1." Set UFD2 to old file's entry slot 
2. Wipe out the old entry 

1. Get first RIB block used 
2. Read it in 
3. Save the forward data link for loop 

N 

Disk "A" Handlers 

B-16 

WRTUFO 

Write out current UFO block 



THISRB 

1. Find area in this block where 
blocks should be given back 

2. Adjust word ~ of this block 
to reflect only those used 

3. write out the block 
4. Fudge subroutine LSTFIL so it 

appears UNBUSY called 

-- - ------- -- - - --I 

N 

Turn off RIB block's bit in SAT 
and write out the Submap block 

LOC+2 
I-oi!'~----------I - - - - - -

1. Perform .GVBUF 
2. Zero current set 
3. Make "current" 

DAT slot zero 

Return to 
LOC+2 

Disk "A" Handlers 

B-17 

I 
I 
I 
I 
I 
l 



y 

Save pointer to "next" record 

N 

Disk "A" Handlers 

B-18 

IOPS6 

Use this record's word pair 
count to point to the next 
record 



y 

Check Header word pair 
Set up the word pair 
counters for moving data 

non-Dump 
Mode 

LINFIT 

1. Hake Word Pair Count 
negative 

2. Zero checksum word in 
record to be read 

3. Clear line error flag 

N 

1. Set pointers for a skip over 
the next record 

2. Set "Short Line " Flag 
3. Set return in PWORDS to go 

to ENDINl 

Disk "A" Handlers 

B-19 



set up "words left 
in data buffer" for 
PWORDS 

DISK "A" Handlers 

B-20 

Set appropriate 
error bits, if 
any 

Read in next data block and 
set up pointers, anticipa~~ 
in the next read 

user 



READ-WRITE Common setup Routine 

1. Save pointer to argument data block 
2. Set up return address 
3. Set pointer to checksum word in data buffer 
4. Save checksum word 

N 

1. Set up pointers to "receiver" data buffer 
2. Index SETUP return pointer past arguments 

to Dump Mode exit 
3. Save Word Count from CAL 

Indp.x return pointer to Non-Dump Mode 

GETWPC 
Extract Word Count from line 
buffer header word pair 

RETURN 

Disk "A" Handlers 

B-21 

IOPSll 



1. Set up return address 
2. Clear "Current Slot" 

number 
3. Get Word Count 

y 

1. Set up for input or output 
2. Get argument block number 
3 Read it or write it 

Disk "A" Handlers 

B-22 



Move 
that 

all 

fit and ad­
just arqument 
size count 

Move record into buffer 

compute and insert Checksum 

Disk itA" Handlers 

B-23 

lOPSll 

NOFlTI 

Set "receiver pointers 
to the top of the 



I 
I 

. (Loop on CAL) 

I 

N 

DISK "A" HANDLERS 

B-24 

RETURN 
to LOC+N 



1. store number as forward data link 
2. Save current block number 

1. write out 
2. Increment 

y N 

set backward data from SETWRD 

RETURN 

Disk "A" Handlers 

B-25 

IOPS15 

IOPS15 

DSKFUL 
Set next block 

number in TLIST to -1 



1. Initialize the map count num­
ber, block count, TLIST 
pointers and TLIST count 

2. Read in the current submap 

1. Start filling the Temp List 
2. When find a free block, skip 

the next block+DELTA (assem­
bly parameter) and continue 

Disk "Aft Handlers 

B-26 

EXIT 



1. Save the calling address 
2. Get the arguments 
3. Compute disk hardware 

address from argument 
block number 

4. Set I/O Unde 

Start disk 

Exit to 
loc. in 

EX I TAD 

INTERRUPT PROCESSOR 

1. Save PC at EXITAD 
2. Save AC 
3. Turn off I/O underway 

flag 

Disk "An Handlers 

COMMON ROUTINE FOR READING AND 
WRITING TO AND FROM THE DISK 

1. Clear disk flag 
2. Process error 
3. If necessary, 

retry 10 times 

Attempt recovery on 
CTRL R 



APPENDIX C 

ASG 

1 ASSIGN DEVTCE lJIe TO .DAT 
A (ilOr.0(~"'11( )@)@ <~ue~(@D12( )G~)@) @Api~()t,;I 

ASM 

? ~ A C R 0 A N r} L I ~I E E D 1 TOR 
A ~D0~(~~11()~)~ <~UC~(~D12()~)~> ~14/@o~3(@r11()@)@ <(ilU~3(~012()(iI)~> ·15 
g.PRE 
f.ilA~eI()@l 

~A~3('Ae~(rIl T~P)~'~ 
A @D0e(@~11()~)@ <~U~~(~012()~)~> -11/@D01(@Cl1()@)@ <@U~lC@012C)@)~) -10 
A (il002(@~11()@)@ <~U~2(@D12()~)@) -14/~D03(~Q11()@)~ <@u~3(~012C)@)~> ·13 
A (ilD04(LP)~ <~U04(~D12()~)@) -12 
MACRn 
~O(8L)~~·Al0(rrLT~p)~@D14(). 

BNK 

2 BANK ~nJE ~prRAT[O~-O~ 

8 A ~!K o~ 

BUF 

2 NUMBER O~ FurFE~S 

PUrrs ~A~~()~ 

CHN 

1 SPEC!~y 7 0R 9 T~ACK MAGTAPE 
r, ~A~0()~ 

CMP 

1 SOUr.<t:E C'~1PA~E 
A (iloe2(~Dll()@)~ <~uO~(@012()@)@) -15/~001«(il011()@)~ <@u01(@D12()@)~> -14 
SRCCOM 
~O( )1l~t'lAc"0( '",\I@AJ1( )~(iD14()@ 

DIR 

1 LIST DIRECTORY 
rtP 
L LP~tiDAQJ(i' (~011 ( ) '"') ~ (@uee, (@D12( ) ~) ti)(olD14 ( ) (lil 

C-l 



DLG 

? l.OGOUT ute 
LOGOUT 

DMP 

13 DUt-1P uTILTTv .., DIRECT SUB rILE 
A ~D~0(~~11()~)~ ('U20(9012()@)-> ·14/~D~1(~P)' (~U01(~D12()~)@> ~12 
~A3~(ALL)·-D14()~ 

DOS 

1.3, GENERAL PRe FILE ~CR GIvING COMMANO ST~lNGS 
"A0~('D14( )_)(la 

FIL 

2 CREATE A ~TLE ~ROM CARDS/EDITOR 
A ~O~~(~Dl1()~)~ <~U~~(.012()a)@> -14 
A ~D01(~Dl1()~)~ <@.uel(~012()@)@) ·15 
R.PRE 
~A"'0(rILTMP)~ 
(t)A~l(lIA""C~II P"'P)~)@ 

F<R 

2 rORTRA~ IV AND LINE EDITOR \ 
A @D0eC~~11()@)@ <~U0~(@D12()~)@) -14/~D~1(~nl1()')@ <@U~1(~D12()@)~> -15 
a,PRE 
aA00()' 
~A~l(~AeC(rIlTMP)@)' 
A ~D0~C~nl1()~)~ (~U0~(@D12()~)@) ~11/@D~1(@Dl1()~)@ (~U01(~D12()@)~> -13 
A .n02(LP)~ <~U~2(~D12()~'~> -12 
F"4 
'O(8L)@~.A00(~ILTMP)@@014()~ 

JOB 

? S TAR T "l E \.: J 0 8 
LOG JOB .A?0()~ BEGIN ~D14()~ ,. 
LOCIN IIAJ!2(SCR)@ 
A NON 2,3,4,7,10.11,12,13.14,15,16.17,20/@Dll()@ 1 
PIP 
~ ~D11()~ <SCR>~D14()­
(lA03()' 
KEEP 6IA04(OF'F)~ 
TIMEST 'A~1(1)~:00 

C-2 



LCM 

KEP 

1 RETAIN DEVICE ASSIGNMENTS 
KEEP flA~0()fI 

13 SUPPLEMENT TO LIB PRC~UPOATE ,LIAR 
~A~0(CLOSE@D13()~)~ @A01(~D13C)~)~ ~A~2()~ 

LIB 

1 
A ~000(~Dl1()@)~ <@U00(@D12()~)_> -14 
A ~D~1(@O~~(~Dl1()~)@)@ <~U01(~U0e,(@D12()@)@)@> ~15 
A ~D~2(~dl1()~)~ <~U02(~D12()~)@> ~1~ 
A ~D03(LP)~ <@U~3(~D12()~)@> -12 
UPDATE 
~Q(LUs)@~@-e~(.LI8R)~@D14()@ 

LNK 

13 DIRfCT !;;Uq rILE - BUILDS LI~KS fOR tXEcuTE F'ILE"U~E WITH OVL ~RC 
~A?0(~014( )~)@~D14()(2 

LOG 

:2 LOGIN ule 
LOGI1\1 ttACl0(SrR)@ 

LST 

2 LIST CONTE~TS of rILE ON LINE PR!NTER 
PIP 
T LP·~Oeo(~011()~)~ <@U00('012()~)~> ~A0~(fILTMP'@ (A)~D14()~ 

MAP 

1,3 DIREcT SUB FILF fOR C~AI~ OPTION A~U RES ceDE ONLY 
CMAIN 
~A~0(TMPXCT)~@014()~ 
IiIA01 (Sit) Ci~014 ( )' 
~A~2(rILT~p)~@D14()~ 
.... 014()t!t 

MIC 

2 LOGI' MIC ,,tIC 
~lCLOG ~A00()@ 

C-3 



MNT 

1 HOU~T TAPEH O~ 8RIVE ~ 

LOG~ MCU~T ~rcn)~-TAP(# @A00()~ O~ DRIV[# @AZ1C)~ • ~RITE @A~?(L~CK)~ 

MSG 

13 MESSAGE Tn ~PE~ATOR-DIRECT SUB FILE 
LOG (IlA00():I 

MSW 

13 MESSAGE Tn OPE~ATOR w/WAIT-OIR£CT SUB 
lOr,w ~A~r()~ 

NDR 

1 CREATE NEW nrR(CTQRV 
Pill 
~ ~A00(~'11()@)~ <~ue~(~D12()~)~>~014()~ 

OVL 

13 DIRECT SU~ FILE - USE rOR 8UILOI~G OVERLAYS(C~AIN) 
CHAP~ 
~A~0CT~PXCT)~~D14('@ 

CiA"'l C S~) ~lID14 ( ) GU 
~A~2(rJLTMP)~@D14()~ 

PAG 

2 PAGE MoDE OPERAT!ON-ON 
PAGE ON 

peD 

2 SPECJ~Y PR~T~CTI0~ CODE 
p ~A~0(3)(t) 

QDP 

1 nUMP C~RE 1N TE~~I~AL ER~ORS;~O ARGUMENTS 
QDU~P 

XCT 

2 EXECUT~ 
A ~D~~t~~11()@)@ <~U00(~012()~)~> ~4 

E @AOQ'JeTMPXCr)fll 

C-4 



INDEX 

Accessibility map, 6-9 
Additions to Non-resident Monitor, 3-4 
Automatic Priority Interrupt (API), 7-1 

hardware, 7-4 
implementation, 7-10 
ON/OFF, 4-19 
software, 7-6 

Bad Allocation Table (BAT), 6-18 
Bank/Page mode, 7-1 
Batch mode .DAT slot assignments, 4-20 
Block checksum, 6-7 
Block control pair, 6-6, 6-7 
Block list, 6-14 
Block word count (BWC) , 6-6 
BOSS-IS, 8-1 

accounting, 8-20 
.DAT slot assignments, 4-20 
line editor (B.PRE), 8-21 

Bootstrap, system, 2-1, 2-7, 4-13 
Buffer allocation, 4-20, 5-12, 6-14 

CAL handler, 2-2, 7-1 
Characters, control, 2-14 
Clock operation, 2-12 
Clock routine, 2-8 
COMBLK, 4-13, 5-1 
Commands to Non-resident Monitor, 3-4 
Control characters, 2-14 
Current set, 6-14 

Data modes 
Dump, 6-4 
Image, 6-4 
IOPS, 6-4 

DDT loading, 4-13 
DECtape file organization, 6-1 
Device assignment table (.DAT), 5-12 
Device table, 5-11 
Disk file structure, 6-11 
Disk handler, 2-6 
Disk resident tables, 5-1, 5-9 
Directoried data recording, 6-5 
Directoried DECtape, 6-1 
Dump mode, 6-4 

Error handler, lOPS, 2-2 
Error processor, 2-2, 2-6 
EXECUTE, 4-13 

File accessibility map, 6-7 
File Bit Map, DECtape, 6-2 
File buffer transfer vector table, 5-12 
File identification and location, 6-7 
File information, see Current set 
File locating, 6-7 

X-I 

File storage, 3-8 
FlOPS, 6-5 

Handlers, I/O device, 7-1 

Image mode, 6-4 
Input/Output (I/O) 

communication table, 5-11 
initialization, 2-8 

I/O device handlers, 7-1 
writing special, 7-9 

lOPS mode, 6-4 
error handler, 2-2 

Linking Loader, 4-13 
Link status, 7-1 
Loader buffer allocation, 4-20 
Loader, system, 4-1, 4-13 

Magnetic tape, 6-4 
file directory, 6-7 
handlers, 6-5 
storage retrieval, 6-11 

Mass Storage Busy Table, 5-13 
Master File Directory (MFD), 6-12 
.MED error processor, 2-2 
Memory protect, 7-1 
Monitor, resident, 4-13 

Non-directoried DECtape, 6-1 
Nonresident Monitor, 2-12, 3-1 

additions, 3-4 
commands, 3-4 

Operation of DOS, 1-1 
Overlay Table, 5-9, 5-14 

Patch area, Resident Monitor, 2-14 
PATCH, commands to, 3-8 
PIC interrupt service routine 

implementation, 7-10 
PIP, 6-18 
Pre-allocation of blocks, 6-16 
Priority, software level, 7-1 
Procedure files, BOSS, 8-16 
Program control characters, 2-14 

Qfile, 3-8 
Queueing, 7-7 

RCOM table, 5-13 
Reserved word locations, 5-13 



Resident Monitor, 2-1, 4-13 
PATCH area, 2-14 
timing features, 2-8 

Retrieval Information Block (RIB), 
6-14 

Run time file (RTF), 8-1, 8-16 

.SCOM registers, 5-1 to 5-6 
used by Loaders, 4-17 to 4-19 

SGNBLK, . 4-13, 5-1, 5-8, 5-10 
Skip chain, 5-12 
Software level priority, 7-1 
Special I/O device handlers, 7-9 
Startup routines, 2-8 
Storage, 4-26, 6-11, 6-16 
Storage allocation tables (SAT's) 
Submaps, 6-17 
SYSBLK, 4-13, 5-1 
System 

bootstrap, 2-7 
initiali~ation, 2-8 
Loader, 4-1, 4-13 

6-17 

X-2 

Tables used by Loaders, 4-16 
Temp List (TLIST), see Block list 
.TIMER routine, 2-12 
Timing featu~es, 2-8 
TRAN routine, 2-7 

User File Directory Table (.UFDT) 
5-12 

User file labelS, 6-9, 6-10 
User identification code (UIC),6-12 



HOW TO OBTAIN SOFTWARE INFORMATION 

Announcements for new and revised software, as well as programming notes, 
software problems, and documentation corrections are published by Software 
Information Servi ce in the follow ing newsletters. 

Digital Software News for the PDP-8 & PDP-12 
Digital Software News for the PDP-II 
Digital Software News for the PDP-9/15 Family 

These newsletters contain information applicable to software available from 
Digital's Program Library, Articles in Digital Software News update the 
cumulative Software Performance Summary which is contained in each basic 
kit of system software for new computers. To assure that the monthly Digital 

. Software News is sent to the appropriate software contact at your installation, 
please check with the Software Specialist or Sales Engineer at your nearest 
Digital office. 

Questions or problems concerning Digital's Software should be reported to 
the Software Specialist. In cases where no Software Specialist is available, 
please send a Software Performance Report form with details of the problem to: 

Software Information Service 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

These forms which are provided in the software kit should be fully filled out 
and accompanied by teletype output as well as listings or tapes of the user 
program to faci I itate a complete investigation. An answer wi II be sent to the 
individual and appropriate topics of general. interest will be printed in the 
newsletter. 

Orders for new and revised software and manuals, additional Software Per­
formance Report forms, and software price lists should be directed to the 
nearest Digital Field office or representative. U.S.A. customers may order 
directly from the Prc2rnm Library in Maynard. When ordering, include the 
code number and a brief description of the software requested. 

Digita I Equipment Computer Users Society (DECUS) maintains a user library 
and publishes a catalog of programs as well as the DECUSCOPE magazine 
for its members and non-members who request it. For further information 
please write to: 

DECUS 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 



DEC-15-0DFFA-A-D 

READER'S COMMENTS 

Digita I Equipment Corporation ma inta ins a continuous effort to improve the qual ity and usefu Iness 
of its publication!;. To do this effectively we need user feedback -- your critical evaluation of 
th is manua I . 

Please comment on this manual's completeness, accuracy. organization, usability and read­
ability .. 

Did you find errors in this manual? If so, specify by page. 

How can th is manua I be improved? 

Other comments? 

Please state your position. Date: 
-------------~------------------------- -------------

Name: Organization: ------------------------------------ ---------------------------
Street: Department: ------------------------------------ -----------------------------

. City: State: Zip or Country 
---------------------~~ --------------------- ------------



- - - - - - - - - - - - - - - - Fold Here - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - -" - - -

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATI-S 

Postage will be paid by: 

mumuama 
Digital Equipment Corporation 
Software Information Services 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD. MASS. 


	000
	001
	002
	005
	006
	007
	008
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	a-01
	a-02
	a-03
	a-04
	a-05
	a-06
	a-07
	a-08
	a-09
	b-01
	b-02
	b-03
	b-04
	b-05
	b-06
	b-07
	b-08
	b-09
	b-10
	b-11
	b-12
	b-13
	b-14
	b-15
	b-16
	b-17
	b-18
	b-19
	b-20
	b-21
	b-22
	b-23
	b-24
	b-25
	b-26
	b-27
	c-1
	c-2
	c-3
	c-4
	i-1
	i-2
	i-3
	replyA
	replyB

