: /
L d@g
f ¥ IS
~ system rfigrfGal
\ , s S - e ChiteCtur‘e: ,—Jﬁg ‘ﬂtt’t

: -~ ‘ AR — 5 o
1 wolew 11 o staechy W
| emnaintegance /!

=L OHItise N 0 8 w ¥

"U, -
iy SRR

o~ DEC~-15=-0DFFA=B-D

DOS=-15

SYSTEM MANUAL

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation - maynard. massachusetts

First Printing, January 1972
Second Printing, July 1972 .
Revision, August, 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such

system, except as may otherwise be provided in writing by DIGITAL. -

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1972, 1973, 1974 Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CcDp DIGITAL INDAC Ps/8
COMPUTER LAB DNC KALO QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SARBR
DIBOL IDACS PHA TYPESET 8

UNIBUS

A

PREFACE

This manual was written for customer systems programmers, DEC Software
Specialists, and internal maintenance programmers. Readers must be
familiar with the DOS User's Manual, DEC=15-0ODUMA=-B=D, In addition, chap-
ter 8 requires familiarity with the BOSS Reference Manual, DEC-15-0OBUMA-A-D.

Technical changes reflected in this revision are indicated by a

bar (}) in the appropriate page margin.

iii

R

o

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

2

CONTENTS

DOS OPERATION
THE RESIDENT MONITOR
INTRODUCTION
THE CAL HANDLER
IOPS ERROR HANDLER, AND THE EXPANDED
ERROR PROCESSOR
.MED
The Expanded Error Processor
THE SYSTEM BOOTSTRAP
SYSTEM I/0 INITIALIZATION
RESIDENT MONITOR TIMING FEATURES
Clock Operation
. TIMER
THE RESIDENT MONITOR PATCH AREA

CONTROL CHARACTERS

TASK CONTROL BLOCKS (for UCl5 system = RKf@5
based or RF15/RP@2 based with UCl5 option)

THE NONRESIDENT MONITOR
INTRODUCTION
COMMANDS TO THE NONRESIDENT MONITOR

CONSIDERATIONS FOR ADDITIONS TO THE
NONRESIDENT MONITOR

QFILE’

THE SYSTEM LOADER AND THE LINKING LOADER
MANUAL BOOTSTRAP LOADS AND RESTARTS
LOADING SYSTEM PROGRAMS

TABLES AND INFORMATION BLOCKS USED AND
BUILT BY LOADERS

.DAT SLOT MANIPULATION BY THE SYSTEM
LOADER

BUFFER ALLOCATION BY THE SYSTEM LOADER

v

CHAPTER

CHAPTER

5

5.1

o Oy O)
e e @
b b
e o
R

lo) e WerWe) We 2 s 2 WerNo)
® o o

NNDNDNDNDNND

AN AN
o » o o e e
WWwwwww

AR

s o @ e

SYSTEM INFORMATION BLOCKS AND TABLES
CORE~RESIDENT NON~REFRESHED REGISTERS

DISK-RESIDENT UNCHANGING BLOCKS: SYSBLK,
COMBLK AND SGNBLK

SYSBLK

COMBLK

SGNBLK

DISK=RESIDENT CHANGING BLOCKS

TEMPORARY TABLES BUILT FROM DISK-RESIDENT
TABLES

The Overlay Table

The Device Table

The Input/Output Communication (IOC) Table

The Device Assignment Table (.DAT)

The User File Directory Table (,UFDT)

The Skip Chain

TEMPORARY TABLES BUILT FROM SCRATCH
File Buffer Transfer Vector Table
The RCOM Table
The Mass Storage Busy Table

RESERVED WORD LOCATIONS
BOOTSTRAP NON-BOSS BATCH BITS
FILE STRUCTURES

DECTAPE FILE ORGANIZATION
Non=Directoried DECtape
Directoried DECtape

MAGNETIC TAPE

Non-directoried Data Recording (MTF)

Directoried Data Recording (MTA., MTC.)
Magnetic Tape File Directory
User-File Labels
File-Name in Labels

Continuous Operation

Storage Retrieval on File-Structured

Magnetic Tape

DISK FILE STRUCTURE
Introduction
User Identification Codes (UIC)
Organization of Specific Files on Disk
Buffers
Commands That Obtain and/or Return
Buffers
The Current Set
Pre-allocation
Storage Allocation Tables (SAT's)
Bad Allocation Tables (BAT's)

2

. Page

CHAPTER 7 WRITING NEW I/O DEVICE HANDLERS 7=1
7.1 I/0 DEVICE HANDLERS, AN INTRODUCTION 7=1
7.1.1 Setting Up the Skip Chain and API
(Hardware) Channel Registers 7=5
7.1.2 Handling the Interrupt 7=6
7.2 API SOFTWARE LEVEL HANDLERS, AN
INTRODUCTION T=7
y 7.2.1 Setting Up API Software Level Channel
Registers 7=7
7.2.2 Queueing 7=8
b 7.3 WRITING SPECIAL I/0 DEVICE HANDLERS 7=10
7.3.1 Discussion of Example A by Parts 713
7:3.2 Example A, Skeleton I/0 Device Handler 714
7.3.3 Example B, Special Device Handler for
AF01B A/D Converter 7=16
CHAPTER 8 BOSS-15 8=1
8.1 PROCEDURE FILES 8=16
8.1.1 Procedure File Format 8-16
8.1.2 Direct Substitution 8-19
8.1.3 Example of Procedure File 8=19
8,2 BOSS~15 ACCOUNTING 8-20
f 8.3 B.PRE 8-21
APPENDIX A DECTAPE "A" HANDLER (DTA.) A=1
APPENDIX B DISK "A" HANDLERS B=1
APPENDIX C PROCEDURE FILES C=1
Index X=1
TABLES

i
i

RF Platter-Block Number Correspondence

Effects and Exits for Nonresident Monitor Commands
Tables and Blocks Used by the Loaders

.SCOM Registers Used by the System Loader

Use of .SCOM+4 by the System Loader

.SCOM Registers

Overlay Table

Mass Storage Busy Table Entry

Reserved Address Locations

{

i
&

U’lU‘IU’IU'l»!E:-b»bbJK\J
s wWwhHFRWNDEHRFF

!
[
(e IR N 02

{
§

i

ULUT LU & s W D
i
b b B B e b U1 GO

Ut Ut i

!

vii

BB R DWW
N S T R T I T A |
HONOUd WM N

|
HOONOUIEDWNEHWN
oo

NOOA OO OO U U Ul b
i

TN

i
N WN

FIGURES

Resident Monitor CAL Handler

Expanded Error Processor and Monitor Error
Diagnostic Routine .MED

Resident Monitor Subroutines

+.OVRLA, .EXIT and CTRL Q

Resident Monitor Initialization

The Resident Monitor Clock Routine for non-UCl5

Systems

The Resident Monitor Clock Routine for UC15
Systems (RKP5 based or RF15/RP@2 based with
UClS5 option)

Nonresident Monitor Initialization

QFILE, and Implementation of GET and PUT Logic

System Loader Initialization

The System Loader

The Linking Loader

Booustrap Load

Standard Interface Load

System Program Load

Linking Loader

Execute

SYSBLK and COMBLK

SGNBLK for RP@2 and RF1l5 Systems

SGNBLK for RK@5 Based System

DECtape Directory

DECtape File Bit Map Blocks

Block Format, File-Structured Mode

Format of the File Directory Data Block

Format of File-Structured Tape

User File Header Label Format

Master File Directory

User File Directory

Retrieval Information Block

Disk Buffer

CAL Entry to Device Handler (for non-UNIBUS
devices only)

PI and API Entries to Device Handlers

Structure of API Software Level Handler

BOSS/D0OS Intersection

Connections between DOS Resident Monitor and
BOSS Resident Monitor

Points within Resident Monitor Which Transfer
Control to Resident BOSS-15

Nonresident BOSS

B.PRE

s 0 G B
N 2

5-10

oo ou;m
[|

}
N W HEHRWOo0ooowN

[!
Ut ww

cON N9 [s)Ne)We)We el o)

@
!
w

e

5 W A 4
CHAPTER 1 ~{_ MV -
DOS OPERATION

The System Manager must use DOSSAV in order to load DOS=15 for the
first time. The DOS System Generator manual, DEC=USGNA-A-D, describes
DOSSAV operation in its appendix. After successful DOSSAV operation,
the System Manager should load the Bootstrap into the highest bank of
core memory: the bootstrap informs the DOS~15 monitor how many banks
of core memory can be used. Before bootstrapping UCl5, RK05 based
systems, PIREX must first be loaded and running in the PDP-11l local
memory (refer to UCl5 Software Manual DEC=15=XUCMA-A-D). The bootstrap
loads the Resident Monitor and the System Loader, which in turn load
the Nonresident Monitor. In order to ensure a working system, the
System Manager should place the DOS=15 Checkout Package tape (for
RF15, DEC-15=ORFCA-A~-PA; for RP02, DEC-15-ORPCA-A-~PA; and for RKO5,
DEC=15=0ORKCA=A~PA) into the Paper Tape Reader, and type BATCH PRJ.
Operating instructions for the Checkout Package, and the tape itself,
are distributed as part of the DOS-=15 system.

Once the system has been checked out, the System Manager should use
DOSGEN, the DOS System Generator program, to tailor the system to
his needs. As mentioned in the System Generator manual, a complete
tailoring of the system may also involve use of PATCH, PIP and
UPDATE.

Commands to the Nonresident Monitor allow temporary modification of
the system, in order to suit the needs of a particular program. The
Nonresident Monitor modifies the system by changing information in

the .SCOM Table. The System Loader examines the .5COM Table, along
with three disk-resident information blocks, SYSBLK, COMBLK and SGNBLK,
and carries out all operations necessary to fulfill the operator's
commands. The System Loader "builds”™ the Resident Monitor by relocat-
ing and linking those routines indicated by the .SCOM table as needed
by the next core load. The Resident Monitor then retains general

control over the system.

’ ““‘mwmf

o

™

CHAPTER 2

THE RESIDENT MONITOR

2.1 INTRODUCTION

The Resident Monitor gets its name because it seems resident to the
user. Strictly speaking, however, the only part of the system that
is always resident is the Bootstrap. There are two parts of the
system that are refreshed only after manual Bootstrap loads and re-
starts: .SCOM and the Resident Monitor Patch Area, Every time an

B

operator or program changes certain key system parameters, the system
will build a new Resident Monitor from blocks stored on the system

device.

The Resident Monitor is the interface between the operator and the
active devices on one hand, and the program which is running (the
Nonresident Monitor), on the other. The Resident Monitor always

contains the following routines and tables:

- UFDT
. SCOM
i, - The CAL Handler, which routes all System and I/O
Macro calls
The Startup routine, called after using the Bootstrap
.MED, the Monitor's standard error routine
The Expanded Error Processor, for more flexibility
with error messages
Handlers for the following error conditions:
Nonexistent Memory
Memory Protect
Interrupt=Memory Parity
Power=-Fail

Software API not set up
The Monitor's TRAN routine (different from I/0 .TRAN's)

A clecck handler
A poller for UNIBUS device error messages (for
UC15 systems, RKO5 based or RF15/RP02 based
N [with UCl5 option only)
o The .GTBUF and GVBUF processor
The CTRL Q processor
The ,USER processor
a5 | The .OVRLA processor
TTA.
The Resident Monitor's Patch Area
Task Control Blocks (for UCl5 systems, RK05 based or
RF15/RP02 based, with UCL5 option)

Chapter 5 {I,DAT

o
o e b s,

This
Chapter

e

In addition, the user can request the system to retain certain other

routines in a resident Monitor status:
The CTRL X Feature, including a driver for the VT-15
The Paper Tape or Card Reader Handler for Batch
The Resident Batch Code

BOSS~15 also has resident routines, which are covered in Chapter 8.

2=-1

2.2 THE CAL HANDLER

The CAL instruction transfers control to register 21, bank @, and loads
register 2¢ with the address of the next instruction after the CAL.

All DOS I/0O and system macros take the form of a CAL instruction (pos-
sibly with some code in the low-order bits), and the next sequential
register contains a dispatch code. Some macros require more informa-
tion in succeeding registers. Figure 2-1, Resident Monitor CAL Handler,
illustrates the operation of that portion of the Resident Monitor. The
CAL Handler does only minimal error checking -~ for a legal function
code and for a legal .DAT slot. Aside from that and ensuring the

clock is turned on, the CAL Handler is only a dispatcher to other

routines.

2.3 1IOPS ERROR HANDLER AND THE EXPANDED ERROR PROCESSOR

2.3.1 .MED

There are two error processors in the Resident Monitor: .MED and the
Expanded Error Processor. Figure 2-2 illustrates those routines.
Figure 2-3 shows two subroutines used by the error routines. .MED
(location 3, bank @) processes IOPS errors from all device handlers
except the disk handlers, CDB., MTF., TTA., and LPA. Calls to

-MED should take the following form, if not IOPS 4:

LAC INFO /ARGUMENT OF ERROR
DAC* (.MED /ADDRESS OF CAL IS ALREADY IN -MED,

/IF DESIRED
LAW N /N IS ERROR CODE @<N<777. AC MUST BE NEGATIVE.

JMP* (.MED+1
IOPS 4 messages may take the following form:

LAC (4 ' /AC MUST BE POSITIVE
JMS* (.MED

+MED+1 contains a JMP to the Monitor Error Diagnostic Routine. The
above calls to .MED will cause the following printouts:

IOPSN (contents of .MED)
IOPS4

N

ENTER
Y

1. Load .MED with CAL address

2. Turn clock on, if not on

3, Deposit minus 1 in register 7, if
= or less than minus two

Legal
function
code ~

I0PS #

ot

Cﬁzerefe;;T ~N N The following CAL's
° a - take this path:
slot

+EXIT, .OVRLA, -,TIMER
-SETUP, .GTBUF,
.GVBUF, .GET, &

- PUT

Legal
-DAT slot

IOPS2

Give control to

proper portion of
the Resident Mon-
itor,

Load AC with
CAL address

Modify the
.UFDT slot

Return
to the

Device Hand=-
ler carries
out instruc-
tion

A4
A

Do Monitor TRAN
(Figure 2-4)

Exit to the
user

Bootstrap

Figure 2-1
Resident Monitor CAL Handler

Enter from "Enter from
«SCOM+37

- MED

g
/ SETTLE \ _ L
| Wait for) (Wait for
TTY
Give error
message
S

(Give error)
message

Lfyt recover;‘ﬁc in nMEIS]

Resident Monitor
Initialization Loop
LOC+2 N

. NOTE: The Nonresident Monitor HALT and
ODUMP commands will change this loop to
v the appropriate action. BOS and Batch-
: <4
[Print the messaqe] ing Mode abort the $JOB.
W <

Await a character
from the keyboard

4
Y,//éizr\\gL o
‘“\\\\\2////' (Wait fpr a

Controll Char)

.
=R

Echo Command

Resident Monitor
Initialization

W
DiSPatcb to 1. Echo Command
appropriate 2. Restore API, if required
address 3. Restore PI

Return
via .MED

Figure 2-2
Expanded Error Processor
and
Monitor Error Diagnostic Routine
+MED

[\
|
i

SETTLE

Store error number

Set up to turn nulls into
spaces, if LINK is set

Turn off PI

Wait 110 ms for the teleprinter
to die down

Type Carriage RETURN, Line Feed

< RETURN ,

I0PS

Print "IOPS" and erroxr number,

zero suppressed

I0PS

4

Print a space, followed by the
octal contents of .MED, followed
by another space

é}f&w

20 or 72

Print contents of .SCOM+32 (disk
block number)

RETURN

Figure 2-3
Resident Monitor Subroutines

2.3.2 The Expanded Error Processor

The disk handlers (except the Bootstrap), CDE., MTF., TTA., and LPA. T
use the Expanded Error Processor. Each error message 1s "potentially"

recoverable by typing CTRL R. That is, the Resident Monitor always

returns control to the caller upon a CTRL R. It is up to the caller

to respond accordingly. All handlers supplied with the system simply

repeat the error message if the error is unrecoverable.

The Expanded Error Processor gives the capability of printing addi-
tional information after the standard IOPS message. As with .MED, the
-
AC must contain the error number (#<number<777) ir bits 9-17. Control ’
must be passed, however, via JMS* (.SCOM+37, not JMP* (.MED+1.
The following information pertains to the message: LOC+2 must contain
the two's complement of the number of message words to be typed after
the standard "IOPSNN nnnnnn" message. If the number is zero or posi-
tive, no message will be printed. If the LINK is set, nulls will be
printed as spaces. If the LINK is zero, nulls will be ignored. If
the AC is positive on calling the expanded error facility, only the
special message will be printed. The "IOPS" part will be omitted.
The message itself must be packed in .SIXBT. S
The following are examoles of use of the Expanded Error Processor:
Example a:
UNREC LAC STATUS /STATUS REGISTER B
DAC* (.MED /CAL ADDRESS IS NOW OVERWRITTEN
/BY CONTENTS OF STATUS REGISTER
SZL /IGNORE NULLS
LAW ERRNUM /~ERRNUM 1800
JMS* (.SCOM+37
JM UNREC /THIS IS AN UNRECOVERABLE ERROR,
/JHMP .~1 WILL NOT DO -- EXPANDED
/ERROR PROCESSOR CHANGES THE
/CONTENTS OF .MED. t
LAW -6 /6 DATA WORDS FOLLOW
.SIXBIT 'DKA" /DEVICE NAME
49 /NULL, NULL, SPACE L
.SIXBT 'FIL' /FILE NAME (2 WORDS)
.SIXBIT 'E'
49 /NULL, NULL, SPACE
.STIXBT 'SRC' /EXTENSION

The printout from that code will be as follows:

IOPS777 nnnnnn DKA FILE SRC
where nnnnnn is the contents cf .MED, and equals the Status Register
B, and ERRNUM is 777.

Example b:

PARITY LAW 6l

STL /TURNS NULLS INTO SPACES
N JMS* (.SCOM+37

JMP RETRY /THIS IS A RECOVERABLE ERROR

LAW -1

.SIXBT 'DTA’

The printout from that code will be as follows:

IOPS61 nnnnnn DTA

where nnnnnn 1is the contents of .MED, the address of the last CAL,

deposited by the CAL Handler.

2.4 THE SYSTEM BOOTSTRAP

The System Bootstrap is nothing more than a disk driver. It may load
the System Loader and Resident Monitor from Hardware Readin or manual
restart. All other Bootstrap operations result from the use of the
Monitor TRAN routine. The Monitor TRAN routine sets up the Bootstrap
to read or write any block or set of contiguous blocks from the disk
to or from any location in core. Before calling the Bootstrap, the
Monitor TRAN does a .WAIT to all .DAT slots in the Mass Storage Busy
Table, clears all flags, turns off the VT if it were on, and allows the
clock to tick positive, so that it will keep time but not intefrupt.
SN After the Bootstrap has finished, it calls the Monitor Initialization

Routine, which updates the clock and turns on the VT, if necessary.

The Monitor TRAN Routine requires the followinag parameter table:

PARALL LOC+J BLKNUM /FIRST BLOCK NUMBER
LOC+1 FIRSTA-1 /FIRST ADDRESS OF BUFFER, MINUS ONE
LOC+2 -SIZE /# OF WORDS TO BE TRANSFERRED IN 2'S COM
LOC+3 START /STARTING ADDRESS AFTER DISK I/O
/COMPLETION

The following code illustrates the use of the Monitor TRAN:

UNIT=1g0009% /MONITOR TRAN WILL USE UNIT ONE!
.SCOM=100

E N
LAC (PARADD /MONITOR TRAN REQUIRES ADDRESS OF
XOR UNIT /PARAMETER TABLE IN BITS 3-17 AND

/UNIT NUMBER IN BITS @g-2 OF AC

STL /NONZERO LINK GIVES TRAN OUT
JMP * (.SCOM+55 /.SCOM+55 IS USER ENTRY POINT FOR

/MONITOR TRAN

See also paragraph 5.7.

'DECdisk TRANs ignore unit number, use block number.

2-7

-OVRLA, .EXIT, and manual Q dumps all use the Monitor TRAN routine.
Figure 2-~4, .OVRLA, .EXIT and CTRL Q, illustrates their operation,
and also the Monitor TRAN.

For the RF DECdisk, the user can reference a specific platter just by
identifying the block number he wants. That is, the block numbers do
not automatically go to zero at the beginning of every platter. The
block numbers and platter relationships are shown below:
Table 2-1 vﬁ
RF Platter-Block Number Correspondence
@
Platter Number Block Number
a g-1777
1 20888-3777
2 4089-5777
3 688p-7777
4 198088-11777
5 128p@-13777
6 140808-15777
7 16p0808-17777
(All numbers are in octal)

2.5 SYSTEM I/0 INITIALIZATION

There are two routines that do DOS I/0 initialization: the startup routine
after Bootstrap manual loads and restarts, and the startup routine
performed after Monitor TRAN's and after a CTRL C, P, T or S for an

error. The startup routine after Bootstrap loads is described in

Figure 4-1, The System Loader Interface Routine. Figure 2-5, Resident

Monitor Initialization, describes the other routine.

2.6 RESIDENT MONITOR TIMING FEATURES

Figure 2-6, The Resident Monitor Clock Routine, describes the Resident

Monitor's time functions. There are three vlaces in DOS which start »
Oor try to update the clock -- (1) the first-time initialization after

manual Bootstrap loads and restarts, (2} the Resident Monitor Initial-

ization, and (3) the CAL Handler. The following .SCOM registers con-

tain timing information:

+EXIT CAL

Put System pro=
gram name into
.SCOM+43,44 (pr
name pointed to
by CAL+2)

Entry

CLEAR?*
- INIT

og|

&

Put name of the

Scan Overlay
Table (address
«SCOM+31) for a
match with the
program name

Nonresident Mon-
in itor into .SCOMH
43 & 44

Found

Set up pointer to TRAN
parameters

Py

CTRL .Q

(Manual entry)

Echo 1Q on
keyboard

R

Read in unit
number from

keyboard if

RP@2 or RK@S5
system

!

QDUMP Auto
Entry

Set LINK (.TRAN out)
and set up pointer to .TRAN
parameters for CTRL QAREA

Set up unit number @ and
pointer to TRAN parame-
ters for loading .SYSLD
€lear LINK for .TRAN in

v

Put contents of .SCOM+72
into .SCOM+71, and set
AC with unit number

Update

clear A
LINK (U
+TRAN i

«SCOM+3;
C and the
nit @, &

n) (MONITOR TRAN ROUTINE -- Independent from

rSet AC = 777777]

Return to

user

Store Unit number and
other TRAN parameters
in the Bootstrap

CLEAR¥*
(.WAIT)

Put starting address into
location @, bank @, and
set the Bootstrap to go to
Monitor Recovery Routine
on exit

Bootstrap

. Figure 2-4
.OVRLA, .EXIT and CTRL Q

2-9

device handler ,TRAN's)

* CLEAR does a .WAIT or a
.INIT to each entry in
the Mass Storage Busy
Table. This precludes
conflicts between disk
I/0 performed by the
system disk handler, and
disk IOT's issued by the
Bootstrap, an independent
program. CLEAR also turns
off the clock and PI, and
enables BANK mode.

" Entry
from
Bootstrap
e s

Set exit to address in #

A

Arrive with exit address in AC

v

1. Set up clock so that it
keeps running, but does
not interrupt (ticks
positive)

2, Clear all flags

3. Turn off PI and API

4, Restore cell 4 to transfer
to Error Diagnostic Routine

5. Set up proper addressing
(Bank or Page), according
to .SCOM+4, bit 7

vT
ON and also

Y
{ Do CTRL X restart]
N

RV

Update the clock, and allow it to
interrupt

Clear TTY Busy Switch (Clear all
flags ensures no I/O0 to TTY)

Turn API on or off, depending on
contents of register 6 (The Sys-
tem Loader loads register 6 ac-
cording to .SCOM+4, bit @)

Turn on PI

Exit to

Proper
location

Figure 2-5

Resident Monitor Initialization

A

&

-

Entry from
PI or API

4

M Allow clock to tick positive, so it
will not interrupt for an hour
| <
N « TIMER
in effect
Increment the interwval oncé]
i
N Interval
- done
Set up the exit from this routine
to go to the ,TIMER address in
.SCOM+61, as if it were a JMS in-
struction., Set high-order bits
of return address with interrupt
information
>
. y
dnerement SCOM+51]
Ean TIMEOUT, N
[;ncrement « SCOM+56 & in effect < secondr
, \up_-

1. Increment .SCOM#50
% 2. Format in hhmmss
3. Increment ,SCOM+34

l, Subtract one from register 7, the clock register4]

Register

seven nega=

Restore pre-interrupt
conditions

Note: The Clock Routine will use PI if API is busy, or down.,

Figure 2-6

i

The Resident Monitor Clock Routine for non~UCl5 Systems

Entry from
PI or API

Allow clock to tick positive, so
it will not interrupt for an hour

from
next

page

« TIMER
in effect

Increment the interval once
\L e

Interval
done

N

Set up the exit from this routine
to go to the ,TIMER address in
-SCOM+61, as if it were a JMS in-
struction. Set high~order bits
of return address with interrupt

information
~a,
\VJ
Increment ,SCOM+51

v 1

increment .SCOM+56 ,TIMEOUT < second
in effect up

l N

&

l. Increment .SCOM+50
2. Format in hhmmss —>
3. Increment ,SCOM+34

\

next page
+EXIT

Note: The Clock Routine will use PI if API is busy, or down.

Figure 2-7

The Resident Monitor Clock Routine ot
for UC1l5 systems (RK@5 based or
RF15/RP@2 based with UCL5 option)

2=12

From previous
page

ey
. %
wl f,

INCREMENT UCLl5CT

1

GET ERROR PRINT ERROR
N
SECOND KE;II?SO;RD MESSAGE > MESSAGES ON
uP?) FROM PIREX KEYBOARD

RESET UC15CT
FOR 1 SEC
INTERVAL

{

SUBTRACT ONE FROM
REGISTER 7, THE
CLOCK REGISTER

REGISTER
SEVEN NEGATIVE,
5 -

g

RESTORE
PRE-INTERRUPT
CONDITIONS

Note: The Clock Routine will use PI if API is busy, of down.

Figure 2-7 (Cont‘d.)

T The Resident Monitor Clock Routine
for UCL5 systems (RK@5 based ox

RF15/RP@2 with UCLl5 option)

2-13

. SCOM+50 Time of day, in hhmmss (six bits each)

.SCOM+51 Elapsed time, in ticks

.SCOM+56 Time limit, in seconds (zero, if no limit)

. SCOM+6 @ Time left for .TIMER interrupt (zero, if
.TIMER not in effect)

.SCOM+61 Address of .TIMER user interrupt routine

.SCOM+73 Number of ticks left in the next second

. SCOM+74 Line frequency, in ticks per second

2.6.1 Clock Operation

The Nonresident Monitor's TIME command changes or .senses .SCOM+58.
.SCOM+51 is not used by any system program. The clock handler simply
increments i1t upon each clock tick. User programs may deposit a known
guantity into .SCOM+51, in order to time events. The Non-resident
Monitor deposits the argument for a TIMEST command into .SCOM+56. If
.SCOM+56 is nonzero, the Resident Monitor will issue an ISZ .SCOM+56
command each second, until it reaches zero. At such a time, the Resi-
dent Monitor will perform a .EXIT. MICLOG, LOGIN, and LOGOUT clear

. SCOM+56.

2.6.2 .TIMER

.TIMER allows users to schedule routines for a specified time from
"now". These routines may return to the interrupted code, if the
programmer desires. .TIMER users should take care that the time-

dependent code follows certain rules:

a. When a programmer does not wish to reset the .TIMER mechan-
ism, but wishes to return to the interrupted program, his
code should look like this:

C I} /C+1 REACHED VIA JMS
DAC SAVEAC /MUST NOT USE NON-REENTRANT CODE
. . /POSSIBLY USED BY THE INTERRUPTED
. . /PROGRAM. (INCLUDES THE CAL IN-

. . /STRUCTION)

LAC C /RESTORE THE LINK
RAL

LAC SAVEAC /RESTORE THE AC

XIT JMP¥* C

R —

b. When the programmer does wish to reset the .TIMER mechanism,
and return to the interrupted code, his routine should look

Sy

like this:
.SCOM=100
CLON=7gg@g44
CLOF=7000@4
INTRVL=-100 /THIS ROUTINE WILL RUN EVERY 199 g+
. /TICKS
c /]
DAC SAVEAC
& .
- LAC ADDRES /RETURN TO THE NEXT ROUTINE
DAC* (.SCOM+61
CLOF /TURN THE CLOCK OFF TO ENSURE NO
/REENTRANCE BEFORE .TIMER RESET AND
/RETURN
LAC INTRVL /DESIRED INTERVAL IN TWO'S COMPLEMENT
DAC* (.SCOM+60
LAC C /RESTORE THE LINK
RAL
LAC SAVEAC /RESTORE THE AC
CLON /TURN THE CLOCK BACK ON (AFTER NEXT
/INSTRUCTION)
JMP* C
s c. When a programmer does not wish to return to the interrupted

program, he need not save the AC, and he may use the CAL in-
struction. He should beware of using I/O buffers that may
still be modified by a handler's interrupt section. 1In many
cases, a .INIT to an active .DAT slot will terminate I/0.
Teleprinter I/O should be terminated by the following:

XCT* (.S5COM+35

The user should program a delay of at least 110 milliseconds
after such an instruction before he attempts teleprinter I/0.

+~ Note: The interrupt routine will run at the level of the in-
terrupted code, with the same addressing mode and memory pro-
tect status. Thus, no debreak and restore is required.

2.7 THE RESIDENT MONITOR PATCH AREA

There are two types of patch area:

1. That allocated by using PATCH
2. That allocated when answering the Patch Area
question in system generation
Patch area one is the place for permanent changes to the Resident
Monitor. It is always refreshed when the System Loader comes into ®
core., Patch area two is only refreshed on manual Bootstrap loads
and restarts. The second area would be appropriate for communication N

between successive programs loaded by the System Loader. This area
should be used because the System Loader refreshes all of core, ex-
cept the Bootstrap, .SCOM, the CTRL X buffer, and the patch area two.

The combined size is limited by the current assembly at 3ﬂﬂﬂ8 for

RP@2 and RF15 systems, and, for RK@5 system. Both areas can be

initialized, using PATCH., The important dividing line between area

one and area two is register 11 (.SCOM+1l) of RESMON. The way to

allocate more space in part one is to increase the value of register

1¢1. The way to change the area in part two is to use DOSGEN. The)
second part will start at the address in register 1fl. The upper S
bound of the second area will be the sum of the contents of register

1791, and the number specified to DOSGEN.

2.8 CONTROL CHARACTERS

CTRL C, P, R, S, and T are all special characters that interrupt the
current program and transfer control. The Resident Monitor ignores
CTRL R except after IOPS 4 and any call to the Expanded Error
Processor. CTRL S always transfers control to the address in .SCOM+6.

In the case of core-image system programs and EXECUTE, a CTRL S will

transfer to register zero, and result in an IOPS 3. The Linking

Loader places the starting address of the first load module into
. SCOM+6.

A .INIT macro to the teleprinter handler will change the address of

either CTRL C, P or T. The Resident Monitor is always initialized to

[y}
]

le

&

i,

perform a .EXIT after CTRL C, and ignore CTRL P and T. DDT uses

CTRL T, and CTRL P is ordinarily used by programs for restarts.,
MACRO-15 expands .INIT to change the CTRL P address. If the programmer
expands .INIT without the aid of the assembler, a 1ff in bits zero and
one of LOC+2 will change the address of CTRL T. A @1 in those bits
will change the address of CTRL C. It should be obvious that special
care should be taken with CTRL C. In addition, modifications to the
CTRL T address should not be made when debugging with DDT. There are
cases, however, when such modifications are desirable. In particular,
all zeroes in LOC+2 (2=-17) will cause the teleprinter handler to
ignore CTRL C, P, or T. This address might be used when sensitive
code is being executed; as in DOSGEN. The following .INIT expansion

will cause the Resident Monitor to ignore CTRL C:

CAL=2&777

1
200008

2.9 TASK CONTROL BLOCKS (only for UCl5 system - RK@5 based or
RF15/RP@2 based with UC1l5 option)

In the UNICHANNEL-15 system communication between the PDP-15 and the
PDP-11 is through blocks of information called Task Control Blocks.
These blocks are resident in the common/shared memory space (memory
that can be addressed both by the PDP-15 and the PDP-11). The TCB
contains all the information necessary (like the addressed task

code, the method of indicating the completion of a request, memory
address, word count, operation etc.) for the PIREX system to process
that request (refer to UCl5 Software Manual, DEC-15-XUCMA-A-D for more
details) .

Handlers for the devices on the UNIBUS communicate with the driver
tasks running under PIREX through TCB's. In order to permit these
handlers to be loaded anywhere in core (not restricting them to the
common/shared memory) , these TCB's are part of the Resident Monitor,
.SCOM+18¢ points to a table in the Resident Monitor which contains
the start address of the various TCB's present in the system as
indicated below:

NAME SIZE (octal words)

.SCOM+18¢ [TCBTAB] RKTCB 21
LPTCBF 117

TCBTAB RKTCB CDTCBF 65
IL.PTCBF PLTCBF 117
CDTDBF S1TCB 24
PLTCBF S2TCBF 129 |
SITCB S3TCRF 178
S2TCBF
S3TCBF 2-17

The following are available for use when the handlers are in operation,

RKTCB - TCB for the RK@5 disk cartridge handler
LPTCBF - TCB and buffer space for the LP11/LS11l line printer handler
CDTCBF - TCB and buffer space for the CR11l card reader handler
PLTCBF - TCB and buffer space for the XY1ll plotter handler
The following are available for new devices or for other purposes &

as desired by the user

S1TCB - Spare TCB space
S2TCBF, S3TCBF = Spare TCB and buffer space

The TCB and buffer space starts below this table and .SCOM+1 points
to the end of the TCB and buffer space. Users can add entries to
this table for TCB's or TCB and buffers by suitable updating .SCOM+1
and the table.

f -

CHAPTER 3

THE NONRESIDENT MONITOR

3.1 INTRODUCTION

The System Loader brings the Nonresident Monitor into core after a
hardware readin, a manual restart, a CTRL C, or a .EXIT. The RCOM
Table, SGNBLK, SYSBLK and COMBLK are always coresident with the Non-
resident Monitor. This gives the Nonresident Monitor access to all

important system parameters.

The Nonresident Monitor announces its presence by typing DOS-15 Vnn
on the teleprinter. It remains in core until the operator requests
another system program, or until the operator's command implies a

refreshed configuration of the Resident Monitor is necessary.

The Nonresident Monitor's actions are limited to (1) decoding commands,
(2) manipulating or examining bits and registers in .SCOM, .DAT, .UFDT,
SYSBLK, COMBLK, and SGNBLK, and (3) calling the System Loader, when
necessary. The Nonresident Monitor has only one entry, which starts
an initialization section. Figure 3-1, Nonresident Monitor Initial-
ization, describes that logic. Every time the System Loader brings

in the Nonresident Monitor, it passes control to the initialization
section. After initialization, and after all commands that do not
require the System Loader, the Nonresident Monitor types a $ and
awaits an input line, terminated by a Carriage RETURN or an ALT MODE.
It then examines the first six characters (or those up to the first
blank) and tries to find an entry in the Nonresident Monitor's Command
Table. If a match is found, control passes to the appropriate routine,
and thence to the next command or the System Loader. If the typed
command does not correspond to an entry in the command table, the
Nonresident Monitor temporarily assumes the operator wishes a new
core-image system program and checks COMBLK for a corresponding entry.
If there is no corresponding entry in COMBLK, the Nonresident Monitor
will type an error message and await the next command. If COMBLK
contains a matching entry, the Nonresident Monitor composes a .OVRLA

and passes control to the System Loader via that .OVRLA.

5,
6.
70

Bank bit initialize pointers to SYSBLK, COMBLK and SGNBLK

Detexmine the number of positive .DAT slots

Save the contents of ,DAT-12, in case the user desires LP ON
(restore before leaving Nonresident Monitor)

Save contents of ,SCOM+7 ~-= Nonresident Monitor will use

.SCOM+7 for address of LPA. or TTA.

Change all .UFDT entries that equal BNK or PAG to SYS

Compute addresses of ,DAT-2,+1,+5 and +6

Compute address of beginning of I/O Device Table in SGNBLK

" Returning
rom a Nonresident®
“~Monitor EXIT

Restoret.UFDT and
.DAT to SGEN values

4

Initialize .DAT=2 and
+DAT=3

Returning
from a Nonresident
Monitor L,EXIT

A 0SS Mode
N

Type out Nonresi-
dent Monitor's name

lBequest a date]
|

v

(next page)
Figure 3-1
Nonresident Monitor Initializaticn

3-2

i,

(from preceding page)

Clear bit 1 of .SCOM+42
(Nonresident Monitor
LEXIT flag)

b4 BOSS Mod

N

Type "w $ "

E ‘

Need to
load BOSS

Y
lLoad BOS%

4

Read command
string

(Continue to Command Decoder)

=

Figure 3-1 {(Cont.)
Nonresident Monitor Initialization

E

)
|
V8]

3.2 COMMANDS TO THE NONRESIDENT MONITOR

This paragraph discusses legal commands listed in the Nonresident
Monitor's Command Table. Table 3-1, Effects and Exits for Nonresident R
Monitor Commands, describes all commands that do not request a new

program.,

There are five entries in the Command Table that load relocatable
system programs. They are DDT, EXECUTE, GLOAD and LOAD. The Non-

resident Monitor treats these commands separately, because SYSBLK

&

&

does not list them. All information necessary for loading these pro-

grams resides in the Nonresident Monitor itself.

3.3 CONSIDERATIONS FOR ADDITIONS TO THE NONRESIDENT MONITOR

Programmers should not attempt to add commands to the Nonresident
Monitor unless they have access to a copy of the source code. The
source code may be purchased from Digital Equipment Corporation,

146 Main Street, Maynard, Massachusetts, under one of the order num-
bers listed in the footnote. They should then use thz EDITOR brogram

to put in the indicated changes, and reassemble.

New additions to the Nonresident Monitor require the following actions:

1. TUpdate the Nonresident Monitor's Command Table.

The Command Table is in two parts:

a) The .SIXBT names of the commands
b) The corresponding transfer vector
2. Write the code for the command.

3. Consider the kind of exit the command will take:

a) Commands that end with a request for a new
command should end with JMP KLCOM

b) Commands that re-configure the Nonresident
Monitor should end with JMP NRMEXI1.

DECtape, DEC-15-0ODSRA-A-UA]
Magtape (7 track), DEC-=15-0DS12A=-A-MAT7
Magtape (9 track), DEC-15-ODS1A-A-MAO

L

o iy,

Table 3-1

Effects and Exits
for Nonresident Monitor Commands’®

COMMAND MODIFIER ACTION TAKEN EXIT
APT ON Set bit @ of .SCOM+4. < EXIT
OFF Clear bit @ of .SCOM+4. JEXIT
ASSIGN handler Check whether handler is available. Next
- If yes, load .DAT slot with proper Command
handler code. (The proper loader
will load the handler, and insert
its starting address into the .DAT
slot.
(and/or)
ulic Load proper slot via a .USER Next
Command
BANK ON Set bit 11 of .SCOM+4. Next
OFF Clear bit 11 of .SCOM+4. Command
BATCH PR Set bit @ and clear bit 2 in loca- LEXIT
tion 1777 of the Bootstrap's bank.
If bit 2 of .SCOM+33 is set (i.e.,
if VT is ON) and bit 17 of .SCOM+33
is set (i.e., CTRL X is set for VT),
set bit 1 of .SCOM+33 in order to
tell the Resident Monitor Initializa-
tion to start up CTRL X.
CD Set bits @ and 2 of location 1777 of LEXIT
the Bootstrap's bank, and set bit 1
of .SCOM+33 as with BATCH PR.

BUFFS number Put number indicated into .SCOM+26, Next
and set Nonresident Monitor Initial- Command
ization to leave .SCOM+26 alone.,

CHANNEL 7 Clear bit 13 of .SCOM+4. Next

9 Set bit 13 of .SCOM+4 Command

DATE date Enter date into .SCOM+47. Next

no date Print date from .SCOM+47. Command

IThis table assumes error-free input

3-5

Table 3=1 (cont.)

Effects and Exits
for Honresident Monitor Commands

COMMAND MODIFIER ACTION TAKEN EXIT
GET See Section 3.4,
GETP
GETS
GETT &
HALF ON Set bit @ of .SCOM+33. LEXIT
OFF Clear bits @ and 1 of .SCOM+33. .EXIT &
HALT If not in BOSS-15 mode, put a HELT Next
instruction (instead of a JMP) into Command
the exit from non-IOPS 4 errors to
-MED. If in BOSS mode, do nothing.
INSTRUCT none Print INSALL SRC By loading JEXIT
ERRORS Print INSERR SRC INSTRC BIN Command
KEEP ON Set bit 16 of .SCOM+42. Next
OFF Clear bit 16 of .SCOM+42. Initial- Command
ize to SGEN default values all en-
tries in .DAT and .UFDT, except
change SCR default values to current
uIC. —
LOG Output five spaces after Carriage Next Com~-
RETURNs. After ALT MODE, go to mand (after
next command. ALT MODE)
. Make specified UIC current (.SCOM+41).
. . I
LocIn uLe *Then set up .UFTD entries; set .DAT BXIT
entries and system parameters (.SCOM+4,
20, 26, and 33) to SYSGEN default values:
clear .SCOM+42 and 56.
LOGOUT Set current UIC to SCR. Then same as LEXIT
LOGIN (above) from *.
LOGW For BOSS~15, print message. In all Next Com- @
cases, after a Carriace RETURN, out- mand (after
put five spaces. After ALT MODE, ALT MODE)
tyre four bells 4P, and await CTRL P.
After CTRL P, go to next command.

Table 3=1 (cont.)

Effects and Exits

s, for Nonresident Monitor Commands
COMMAND MODIFIER ACTION TAKEN EXIT
LP ON Set bit 3 of .SCOM+42. LEXIT
OFF Clear bit 3 of .SCOM+42. LEXIT
. Checkmic with SGNBLK. If correct set
MICLOG mic bit ff of .SCOM+42 and make 'SYS' the EXIT

current UIC. Then same as LOGIN (above)

& from * (except .SCOM+42 not cleared). If
incorrect, ignore command.
® PAGE ON © Clear bit 11 of .SCOM+4. Next
OFF Set bit 11 of .SCOM+4. Command

PROTECT n If n is between @ and 7, inclusive, Next
enter it into .SCOM+54, Command

PUT See Section 3.4.

QDUMP Enter MANSAV, the address of the Next
manual CTRL Q, into the exit from Command
non-I0PS 4 errors to .MED.

REQUEST none Print the current assignments for Next
.DAT and .UFDT. Command

USER Print the current assignments for
all positive .DAT and .UFDT slots.
prog Print required .DAT and .UFDT slots,

and the assignments and use for each.

. SCOM Print the information for the cur- Next
rent system. Command
TIME time Enter time intoc .SCOM+5f. Next
none Print time from .SCOM+58. Command
vT ON Set bit 2 of .SCOM+33. .EXIT
OFF lear bits 1, 2, and 17 of .SCOM+33.
Execute STDP,
X4K ON Enter 4@0@00 into .SCOM+2f. Next
- OFF Deposit zero into .SCOM+2§. Command
33TTY ON Clear bit 2 of .SCOM+4. LEXIT
OFF Set bit 2 of .SCOM+4.
LA3Y ON Set bit 2 of .SCOM+2¢ and clear
bit 2 in .SCOM+4.
OFF Clear bit 2 of .SCCOM+28 and set LEXIT

bit 2 in .SCOM+4.

4. Rfter assewbly, the programmer must call PATCH, in
order to make his relocatable binary program absolute.
Commands to PATCH should be as follows:

>DOS15)
>READR 16077 DOSNRM BIN)

16877 indicates the highest location the new monitor
can occupy. (SYSBLK begins at 161¢¢.) DOSNRM BIN
happens to be the file name used by program develop-
ment. The programmer may, of course, substitute his
own file name. More information may be found in the
PATCH manual -- DEC=15-UPATA=-A-D.

3.4 QFILE

QFILE is a system program that allows users to (1) store core images
in named files, and (2) retrieve such core imaces for examination via
DUMP (or possibly for a slow, core-swapping capability). OFILE imple-
ments the following Resident Monitor system macros and Nonresident

Monitor commands:
.GET, GET, GETP, GETS, GETT, .PUT and PUT

Users can not obtain QFILE by typing its name to the Nonresident
Monitor. The Resident Monitor will load QFILE as vart of its response

to the commands and macros listed above.

PUT creates a file that contains the data in the CTRL QAREA; .PUT

creates a file from the current core image. GET, GETP, GETS, GETT
and .GET all overlay core with the contents of the QAREA or file. (The

different commands specify different startup locations.) In addition
to the above capabilities, the Resident Monitor provides the capability
of overlaying core with the contents of the CTRL Q area. The follow-

ing instructions show how to use that routine:

UNITNO=4F000¢Q /UNIT FOUR

.SCOM=1g¢

LAC START /STARTING ADDRESS AFTER THE CTRL Q
/GET

XOR UNITNO /UNIT NUMBER IN HIGH-ORDER THREE BITS

JMPp * {.SCOM+64 /ADDRESS OF CTRL () GET ROUTINE

&

-
s 4“‘«

e

Figure 3-2, QFILE, and Implementation of GET and PUT Logic, shows
the information flow associated with QFILE. QFILE uses the follow-

ing registers:

.SCOM+7,10 & 11
. SCOM+65

.SCOM+66=71
.DAT-14

.SIXBT Filename and Extension

Command parameters, packed as follows:

Bits g-2 Device unit number
Bit 8 NRM PUT, when set
Bit 9 PUT logic, when set

Bits 15-17 Function Code
CTRL Q Area parameters

File must be on the device assigned
to this .DAT slot.

NOTE

All GET and .GET operations change all
of core, except registers @ through 4

of bank zero.

-GET CAL &
NRM GET's

Store unit number and code into
o SCOM+65

1. Store unit number and
function code into
« SCOM+65

2. Set bit 9 of .,SCOM+65
to indicate .PUT

Nonresident
Monitor PUT

l. Store unit number an
function code into
« SCOM+65

2, Set bits 8 and 9 of
-SCOM+65 to indicate
NRM PUT

=,
I

[7 Dump core into CTRL Q areal
le

[Bring in QFILE via a ,OVRL@]

GET Command PUT

W

e
°

Save .SCOM+65 from the file
Transfer core image file to
CTRL Q area via dump mode

Transfer core image from CTRL Q area
to named file via Monitor TRAN's and
dump mode .WRITE's

+READ's and Monitor TRAN's.

GET
function

ode=4

v"Exiﬁ'to
Nonresident
Monitor

[Use function code from file's .SCOM+65

PUT

|

A

l. Store correct startup address
2. Do Monitor TRAN from CTRL 0
_area to core

Exit to
proper
location

Note: Thisg chart

Do Monitor TRAN from
CTRL O area to core

assumes error free input.

Figure 3-2

Exit to
CAL+3

QFILE, and Implementation cf GET and PUT Logic

w

-10

2

B

S

o
%

CHAPTER 4

THE SYSTEM LOADER AND THE LINKING LOADER

The System Loader is the third major part of the D0S-15 Monitor. The
other two are the Resident and Nonresident parts. The Resident and
Nonresident Monitors communicate with the System Loader by manipulat-
ing certain .SCOM registers. When commands to either part imply a
new configuration is needed, that part sets up the appropriate .SCOM
registers, and passes control to the System Bootstrap via the Monitor
TRAN routine. The Bootstrap then loads the System Loader into high
core, and gives it control.

The System Loader examines the .SCOM registers, and loads a fresh copy
of the Resident Monitor, including any features that the user wishes
to be resident, such as the CTRL X feature. It will also load the
desired system program and all handlers required by the new configura-
tion. 1In addition, it will allocate all reguired buffers. The Non-
resident Monitor is treated like any other core-image system program.

The System Loader never loads user programs. It only loads core-image
system programs, the INSTRUCT command processing program, the Linking

Loader and Execute., The latter two load user programs,

The System Loader uses two device handlers to interface with the disk:
the System Bootstrap, and the System Loader Disk Handler (DKL./DPL./ k
RKL.). xxXL. arrives in core along with SYSBLK, COMBLK and SGNBLK,

as well as the loader itself. The Beootstrap loads core-~image programs
only. The xxL. takes care of relocatable programs and any handlers l
loaded by the System Loader. Those include all handlers for core-
image system programs, the Linking Loader's own handlers, and any
needed by the Execute file. The Linking lLoader loads some handlers

needed by user programs it links.

There are two parts to the System Loader: the System Loader Interface,
and the System Loader Proper (,SYSLD). Figure 4=1 describes the System
Loader Interface. Figure 4=2 describes the System Loader Proper, and
Figure 4-3 describes the Linking Loader.

Bootstrap

Loads /

Turn on the clock
Initialize
«SCOM+ First free reg-
ister below the
Bootstrap
«SCOM+4 SGEN default
.SCOM+2@ Bit zero set, if

extra 4K; rest o
zZero

.SCOM+33 VT & HALF, as
pexr SGEN -

+SCOM+74 Line frequency
| =Move to highest bank |

Normal
Initialize=

atio
l. Zero .SCOM+36, to indicate no,entries in the Mass Storage
Busy Table
2. Move Resident Monitor into lower core
3. Set up: Jump to Skip Chain

CAL* erxor
Legal CAL jump
4., Turn API on or off, depending on bit # of .SCOM+4 (set=on)
5. Bank bit initialize Resident Monitor to talk to the
Bootstrap, and lecad .SYSLD into the proper bank upon a
subsequent EXIT or .OVRLA.
6. 1Initialize the Bootstrap with the proper IOPS 4 address for St
disk not ready
7. Calculate the Skip Chain from SGNBLK
8. Set all API channel registers to point to IOPS 3 (with the
exception of the clock interrupt) and all software levels
to point to IOPS 3%
9. Put transfer vector to .DAT slots into .SCOM+23

1g. Put number of positive .DAT slots into .SCOM+24
1l., Put pointer to UFDT+@ into ,SCOM+25

N last program Y
Nonresident

\L onitor ;L)
.TRAN image of ,DAT ~TRAN image of ,DAT =
and UFDT in from and ,UFDT out to
block 37 of the sys= block 37 of the sys=
tem device, unit @ tem device, unit g

\;d/‘\

l. Zero .DAT-7 (i.e., not yet set up)

2, Set up DAT-=2 and .DAT=3 for TTA.

3. Update .SCOM+l1 and +2 to point
just above the Skip Chain, .DAT
and ,UFDT -

Next Page

Figure 4-1
System Loader Initialization
4-2

From Preceding Page

Loading

Nonresident >
_ Monitor .~

Set up LPA in Set up TTA.
+DAT=12 in .DAT=12

& ~ < l

- & ™~

Put number of system device’s "A" handler (DKA. or DPA.or RKA,)
into .SCOM+57
Set up tabbing for current teleprinter
Set .SCOM+2@ to initial state (as in first time initialization)
Set up for CTRL Q == ignore Q-dumps if RF system and QAREA too
small, or nonexistent
Set up for IOPS errors upon the followinag interrupts:
Nonexistent Memory (I0PS 31)
Memory Protect Violation (I0PS32)
Memory Parity Error (IOPS33)
Power Fail Not Set Up (I0PS34)

Bit @
of the

Bootstrap
=1

Y == Non=BOSS Batch

Set up for the
proper input
device (CD or PR)

Loading

N Nonresident
_Monitor
Y

a $JOB caxd
~Jbeen seen,

Set switch to ig-
nore input until $JOB
} T
Next Page s
Figure 4=1 (Cont.)
System Loader Initialization

4-3

From Preceding Page

1, Set up CTRL C to clear the Batch Switch (bit 1 of 17777
of the Bootstrap)
2. Set up CTRL T to abort current job, and start the Bakch ;
Monitor looking for the next $JOB line o
3. Relocate proper batch handler (PR or CD) to low core
4, Put handler entry point into .DAT=2
5. Set IOPS errors to abort job == effectively a CTRL T
6. Set up all batch device ,DAT slots to refer to the hand-
ler currently in core. That is, only one batch input
device is allowed at any one time
7. Clear $JOB read switch (bit 1 of Bootstrap 17777)
8, Perform .INIT to ,DAT=2
.|
-
In | &
BOSS Mode

(Bit § of .SCOM+52=1)

adin
Nonresident
BOSS

Clear bits 14, 15
and 17 of ,SCOM+42

1. Relocate Resident BOSS
and link it to the DOS
Resident Monitor

2, Patch DOS Resident Mon-
itor to accomodate BOSS

3, Set bits 14, 15 and 17
of .SCOM+42, to tell
+SYSLD to set up ,DAT=7
and +6

o

Y

Relocate and
link CTRL X

code, and give
proper buffer

Set up linkages between
CTRL X code and the
Resident Monitor

ik 4
Next Page
Figure 4-1 (Cont.) S

System Loader Initialization
4-4

From Preceding Page

N
- %

Loading
a relocatable
program

N loading Y

d EXECUTE

l, Allocate the number of buffers
indicated by .SCOM+26

2, Set up File Buffers Transfer
Vector Table pointer, in .SCOM+3@

=

“Will u
EXECUTE
use system
device

Tell .SYSLD by setting

' .SCOM+11 to XCS (avoids
two handlers in core for
same device)

1. Store cne of the following
codes into .SCOM+6:

e

LOAD 190089
Set .SCOM+5 GLOAD kY1l fo)}
to 14 DDT APPEEP >
DDTNS S@apad

2. Zero .SCOM+5

- i
v o~ 1., Allocate number of

buffers indicated
by .SCOM+26
2. Set up File Buffers

Transfer Vector
Table in ,SCOM+3d
3., Set .SCOMt6 = @
4, Put 13 into .SCOM+5

o

(Loading a Core-Image Program)
1. Find entry in SYSBLK and COMBLK
2. Build Overlay Table from information in COMBLK, and set .SCOM+31l to

> first word in the table
3. Store the number of overlays in the overlay processor of the Resident
Monitor

Next Page

Figure 4-1 (Cont.)
System Loader Initialization

4-5

From Preceding Page

oading
PIP or is PIP
among the
verlays

[Build the Device Table]

-~

1. Store the list of active ,DAT slots de-
rived from COMBLK in the System Loader
command area, just below the Bootstrap,
and delimit the list with a' zero

2. If the Nonresident Monitor was not the
last program, restore ,SCOM+26 to default

3. Allocate snace for, and set un .S5COM+3f

to roint to the File Buffers Transfer
voctor Tahle

Loading ™
Nonresident
Moaitor

7
Set bit 3 Clear bit 3
of ,SCOM+4 of ,SCOM+4
l <]
%
1. Zero .SCOM+6
2, Put 1
into .SCOM+5
1. Move the RCOM

Table to position below
the Bootstrap

Build the IOC Tible

Aring in
LOYSLD wia

‘lonltor TRAN

igure 4-1 (Cont.)
o

Zyster Loader Initialization

4-6

S

Entry

from init=-
ializatio

Set up for Page or Bank Mode

Set up .DAT=7 for the System Loader disk handler (DKA., RKA., or DPA.)
Clear free core, and initialize bank bits in pointers to the Bootstrap
Make a Mass Storage Busy Table consisting of one entry

Loading
EXECUTE

Loading
INSTRC

Set up CTRL P
address

Set up to
read INSTRC
BIN

l. Change XCS to XCT

2. Allow reading of
EXECUTE file by the
System Loader Handler

>

V

-~

Clear memory bank pointers of banks that
do not exist

Load handlers into extra 4k,
if it exists

Put System Device's code into
.DAT+@, to allow subsequent
insertion into .DAT-7

Next Page
Figure 4-2
The System Loader

4-~7

From Preceding Page

IOPROS
«DAT+0,+6

Which
Program

relocatable

EXECUTE

INSTRC

TIOPROS:all

-DAT slots

in table just Linking ®
nder Bootstrap loader ’

ICPROS \ IOPROS
.DAT-12 // .DAT-1,-5

ICPROS
.DAT-4

Need to N
load more
handlers
1. Translate the handler code from radix . RN
50 to .SIXBT
2. Do ,USER to ,UFDT=7, using "IOS"
3. Do .INIT and .SEEK to .DAT-7, in order
to get the handler file
4, Load handler via .DAT-7, and close ,DAT-7
L <
Linking
cader
N (EXECUTE)
N -- not yet Loaded
¢ handlers
Read EXECUTE file
for desired handlers
@

Note: Subroutine IOPROS accepts
.DAT slots as input. If the in-
dicated ,DAT slot contains zero,

the slot is unassigned, and IOPROS
returns, If not zero, IOPROS checks
whether the desired handlef has al-
ready been loaded. If the handler becomes first location of
is in core, IOPROS loads the .DAT EXECUTE B
slot with the handler's starting ad-

dress and returns. If the handler has &‘5'"“""—"““““"

not been loaded, the handler code is made

IOPROS

l. Set up Mass Storage Busy
Table Entries for all
active .DAT slots

2., Set .SCOM+1l to first free
location in core--often

an unresolved .GLOBL, to be satisfied next page
by the loop that follows immediately.
Figure 4-2 (Cont.)
The System Loader L

4-3

From Preceding Page

Load and relocate EXECUTE or the Linking
Loader, and place starting address into
« SCOM+5

Loading
EXECUTE

1. Set up Mass Storage Busy table with
one entry per active .DAT slot

2, Move the IOC table from the System
Loader's area (just beneath the
Bootstrap) to the Linking Loader's
area

®

i

~
~

Set ,SCOM+2 and +3 to delimit free core
T

BOSCK1l

Exit to ad—
dress in
. SCOM+5

1. Allocate all necessary buffers
2e If the system has an extra 4K,
put the first free address beneath
the handlers into .SCOM+2f
3. Update first free location in core
shown in ,SCOM+2 == ,OVRLA updates
- the first free address beneath the
Bootstrap, .SCOM+3

BOSCK1

Exit via
~-OVRLA

Note: Subroutine BOSCKl does the following, if loading a program under BOSS=15:
(1) .USER to UFDT=7, (2) .SEEK to .DAT=7 for PRCFIL PRC.

Figure 4-2 (Cont.)
The System Loader

4-9

START

1, Clear all of core above the loader, including the extra 4K, if present, and
excluding the Bootstrap '
2. Initialize the Load Table with the first free address in every bank or page
3. Indicate all core below the address in ,SCOM+2 as not free
4, Compute transfer vectors to ,DAT-1, -3, -4, -5, and =7, and a pcinter to
«UFDT=1
5. Save the contents of ,UFDT=1
Load DDT and set the
symbol flag, if not
DDTNS
e
~ ~
%
Type appropriate
name,Aand await
command string
CTRL P Y
or no back
arrow
1. Check for P, G and C switches
2.

w
£l

Translate all file names after left arrow into .SIXBT, pad with blanks,
and store in symbol table

After ALT MODE, load to end~of-file each file on .DAT-4, and put starting
address of the first file (i.e., not DDT) into ,SCOM+6

After every end of tape, type 4P
and await CTRL P -= continue
until number of tapes equals the
number of commas, plus one

Next Page

Figure 4-3
The Linking Loader

4-10

i

From Preceding Page
>
Check Symbol Table for handlers
needed, and load them from ,DAT
-1, using IOS as a UIC; exit if
illegal .DAT slots are desirxed

Ea

Replace old UIC
for .UFDT=1

NOTE ¢

. During the library searches
diagrammed on this page, the

Any oGLOBL'S

A\ 4

resolved on
last pass

Linking Loader tests for
more unresolved .GLOBL's af-
ter each resolution. When=

ever there are no more unre-

solved ,GLOBL's, the Linking Y

Loader halts its library

searches, and goes directly 4

to the COMMON area allocation Check Symbol Table for any
code (next to the last box unresolved .GLOBL's

on this page). Thus, the
libraries are never searched
more than is necessary.

NON
M assigned to
-DAT=5
l. Do .SEEK to LIBR5 BIN on .DAT=5
2. Read through user's library and
load any program units that sat-
isfy any .GLOBL's
3. Read to end of library file, if
still unresolved .GLOBL's
If any unresolved .GLOBL's, try to
< find program units in the t
< prog system
5 library (.LIBR BIN) on ,DAT=1

v

! Scan Symbol Table for Common Blocks,
and allocate space and set pointers,
as needed. If any unresolved .GLOBL's
seek matches in the Common Blocks

Exit to the®
Nonresident
Monitor

unresolved
GLOBL's

Print LOAD3 error
message

Next Page
Figure 4-3 (Cont,)
The Linking Loader

4-11

From Preceding Page

NEED
Y ANY OF THE N
LOADERS HAN-

ER ABOVE ALL
OF ITS HANDLERS

/

]

SET .SCOM+2 ABOVE
THE LOADER'S HIGH-
EST HANDLER - NO
HANDLER IS OVER-
LAYED

SET .SCOM+2 BELOW
ALL OF THE LOADER'S
HANDLER, AND THE
LOADER ITSELF

SET .SCOM+2 JUST
BELOW THE LOADER

[

ALLOCATE THE MASS STORAGE BUSY TABLE,
WITH THE NUMBER OF ENTRIES EQUAL THE
SUM OF THE ACTIVE .DAT SLOTS, MINUS
ONE -- I.E., THE TWO .DAT SLOTS FOR
THE TELEPRINTER ARE OMITTED, AND ONE
FOR .DAT-7 IS ADDED

1. PUT LOWEST ADDRESS OF
THE SYMROL TABLE INTO
.SCOM+11.

2. PUT THE LENGTH OF THE
BUSY TABLE IN Y DDT N | CLEAR THE

"1 BUSY TABLE

.SCOM+1d.

3. HIGHEST ADDR OF SYMBOL
TABLE GOES IN
.SCOM+2 - DDT WILL
RECALCULATE .SCOM+2

V]

/

CONTROL GOES
TO ADDRESS IN
.SCOM+5 (DDT)

GLOAD: CONTROL
GOES TO ADDRESS
IN .SCOM+6

Figure 4-3 (Cont.)

The Linking Loader

4.1 MANUAL BOOTSTRAP LOADS AND RESTARTS

Manual Bootstrap loads and restarts bring blocks @-36 of the system
device into the lowest bank. These blocks contain the Resident Moni-
tor, the System Loader Interface Routine, and SYSBLK, COMBLK and SGNBLK.
Figure 4-4 illustrates the core load after manual Bootstrap loads and
restarts. The Interface sets up .SCOM+@, 4, 2@, 27, 33, 54 and 74
from SGNBLK values determined at system generation time, and then
transfers the whole core image of the Interface to the Bootstrap's
bank. (DOS requires 16K, because this bank must be different from
bank #.) At all other times, the Bootstrap loads the System Loader
into its own bank. This preserves the image of .SCOM, part two of
the Resident Monitor patch area, and the CTRL X buffer. For UC15
systems (RKO5 based and RF15/RP@2 based with UC15 option) this has

no effect on the core layout in the PDP-11 local memory. PIREX is

&

sy

reinitialized meaning all permanent tasks are put in a 'WAIT' state
while temporary tasks are put in a 'EXIT' state and all pending
PDP-15 requests are flushed (refer to UCl5 Software Manual,
DEC-15-XUCMA~-A~D for more information).

4.2 LOADING SYSTEM PROGRAMS

The System Loader Interface Routine gets control in the highest bank,
either by a transfer from the lowest bank, or by load from the Boot-
strap. After setting up for the System Loader Proper (.SYSLD),
according to the program to be loaded and the settings of certain
SCOM registers, the Interface Routine brings it in as a complete
overlay. Figure 4-5 illustrates the core configuration of the
Interface when it is in the highest bank. (The addresses provided
are for a 16K system.) The System Loader loads handlers from the
lowest part of free core up, with the exception that the extra 4K is
filled first, if it exists. Core image system programs are usually
loaded just beneath the Bootstrap (always in the highest bank). Such
core images must be wholely within the top bank of core, and above

register 17 of that bank. Figure 4-6 illustrates the core maps for

system programs.

Whenever the Linking Loader is loaded (LOAD, GLOAD, DDT, and DDTNS),
the System Loader loads all handlers for .DAT slots -1, -4, and -5,
and then loads the Linking Loader itself. (DDT is loaded by the
Linking loader.) Wherever INSTRC (SINSTRUCT command processing
program) is loaded, the handler assigned to .DAT slot-12 is also

! loaded. Figure 4-7 illustrates the core maps for the Linking Loader
and INSTRC.

16K, 24K, 32K
BOOTSTRAP
SCOM
UNUSED
17500
3SYSTEM BLOCKS
16100
SYSTEM LOADER INTERFACE
RESIDENT MONITOR
100
15-0863

Figure 4-4
Bootstrap Load

16K, 24K, 32K
BOOTSTRAP

.Scom

SYSTEM PROGRAM *
(THIS AREA IS USED BY CORE
IMAGES. SOME ROOM UNDERNEATH
THE BOOTSTRAP MAY BE LEFT
FREE FOR COMMUNICATION
BETWEEN CORE IMAGES IN AN
OVERLAY STRUCTURE.
CORE IMAGES MUST BE 8K OR
LESS.)

.SCom+3
FREE CORE

SCOmM+2

HANDLERS, BUFFERS

BUFFER POOL
TRANSFER VECTORS

OVERLAY TABLE

DEVICE TABLE

SCOM+1
RESIDENT MONITOR

15-0661

Figure 4-6

System
Program Load

* All system programs except MACH,
which is always loaded in Bonk |
regordless of the size (16K, 24K, 32K
of the system.

BOOTSTRAP

DOT, IF PRESENT

LOADED PROGRAMS

ON DDT LOADS, SYMBOLS
ARE MOVED INTO THE
LOWEST PART OF FREE CORE.

SYMBOL TABLE

SYMBOLS AND PROGRAMS BUILD
TOWARD EACH OTHER.

LINKING LOADER*
OR INSTRC

LOADER OR INSIRC
HANDLERS

BUFFER POOL

BUFFER POOL
TRANSFER VECTORS

RESIDENT MONITOR

“Placement of SCOM+2 depends on relative
positions of the Linking Loader and its handlers,

When control is transferred to baded program,
SCOM+2 and +3 brickat fres core,

Figure 4-7

Linking Loader

BOOTSTRAP

RCOM TABLE

SGNBLK

SYSBLK and COMBLK

SYSTEM LOADER INTERFACE
foverlayed by .SYSLD]

RESIDENT MONITOR IMAGE

16K. 28K, 32K

SCONM .SCOM+3 ™

RESIDENT MONITOR

* As the Interface moves sode down, it incre
ssnts SCOM+T and 2

Figure 4-5

Standard
Interface TILoad

SCom+2*

Scom+1

BOOTSTRAP

DOVERLAY SYSTEM

BLANK COMMORN

FREE CORE

15~0660

EXECUTE

ALt HANDLERS REQUIRED

BUFFER POOL

BUFFER POOL
TRANSFER VECTORS

RESIDENT MONITOR

16K, 24K, 32K

SCOM

37500 116K}

37100 {16K}

36100 {16K1i

20100 {16K)

&

SCOM=+1.2

15-0664

16K, 24K, 32K

SCOM

SCOM+3

SCOM+2

SCOM+1

15-0662

7

For EXECUTE, the System Loader loads EXECUTE's handler, and reads the
EXECUTE file, in order to determine the active .DAT slots. The
System Loader then loads all the handlers required, and sets up the
.DAT slots. Figure 4-8 illustrates core maps for EXECUTE.

BOSS-15 Mode operation requires the system "A" handler be assigned to
.DAT-7. This requires a sleight of hand on the part of the System
Loader, which needs the "L" handler on .DAT-7. It therefore loads
the "A" handler as if it were assigned to .DAT+f@, and transfers the
set up .DAT slot @ contents to .DAT-7 before transferring control to
the program being loaded. .DAT+§ is then restored to its original

status.
4.3 TABLES AND INFORMATION BLOCKS USED AND BUILT BY LOADERS

The System Loader uses SYSBLK, COMBLK, SGNBLK, block 37 of the system
device, .SCOM, the RCOM Table, the IOC Table, the Device Table, the
Mass Storage Busy Table, the File Buffers Transfer Vector Table, the
Overlay Table, .DAT, .UFDT and three bits in the Bootstrap. Tables
4~1, 4=-2, and 4-3 describe how the Loaders use these blocks and tables.

4,4 .DAT SLOT MANIPULATION BY THE SYSTEM LOADER

The System Loader maintains the .DAT slot device handler assignments
as they were the last time the Nonresident Monitor was in core. The
Loader saves the .DAT and .UFDT on the system device whenever the
Nonresident Monitor was the last program in core. Thereafter, the
Loader refreshes .DAT and .UFDT from the image on the disk. If KEEP
is off, the Nonresident Monitor's initialization routine restores the
.DAT and .UFDT to default values.

When loading core—-image system programs, the System Loader determines
the active .DAT slots by examining COMBLK. When loading EXECUT, the
System Loader sets up .DAT-4, and any active slots indicated by the
Execute file itself. When loading the Linking Loader, the System
Loader sets up .DAT-1, -4, and -5 and also .DAT-12, if loading INSTRC.
The Linking Loader will set up other active .DAT slots according to

the .IODEV commands in the assembly of the program units being loaded.

Both the System Loader and the Linking Loader set up .DAT slots in
this manner: (In the following procedure, "loader" refers to either

one.)

Table 4-1

Tables and Blocks
Used by the Loaders

NAME USE LOCATION
SYSBLK The System Loader obtains Monitor TRAN 1650@ of
parameters from SYSBLK when it builds .SYSLD's bank
COMBLXK Indicates number of buffers required, 17189 down, in
the active .DAT slots, and the names .SYSLD's bank
SGNBLK Default settings for .SCOM registers, 161092 of
number of words per buffer, size of .SYSLD's bank
Resident Monitor's patch area (part
two), Skip Chain, .DAT and .UFDT de-
fault contents, and handler informa-
tion.
Block 37 Image of .DAT and .UFDT, when last pro-
of the Sys- gram was loaded (excluding the Nonresi=-

tem Device

dent Monitor).

.SCOM Table

See Table 4-TII.

10% of 1lst bank

RCOM Table

Moved for use by the Nonresident Monitor.

1759@ of the
highest bank

I0C Table Built by Interface Routine for .SYSLD Just beneath
itself. the System
Loader
Device Built by Interface Routine if loading Just above
Table PIP, or if PIP is among the overlays .SCOM+1

listed in COMBLK

Mass Storage
Busy Table

Built by the System Loader itself.

Pointed to by
.SCOM+62

File Buffers
Transfer Vec-

Allocated by the Interface Routine, and
initialized by it for non-core Image

Pointed to by
. SCOM+3¢

tor Table programs. System Loader proper initial-
izes for core-image programs.
Overlay Built by the Interface Routine Pointed to by
Table . SCOM+31
. DAT Image stored and restored from block 37 Pointed to by
and of the System Device. The System Loader | .SCOM+23 and
.UFDT loads all handlers for core-image pro- . SCOM+25
grams and EXECUTE Files, and sets up
the appropriate .DAT slots. The System
Loader also loads handlers assigned to
.DAT-1, -4, and -5 when loading the
Linking Loader, and .DAT-7 and +6 for
BOSS-15.
BOOTSTRAP Bits @, 1, and 2 of location 17777 in

the Bootstrap's bank used for Batch (non-
BOSS) information.

4-16

o

L

.
5

Table 4-2

.SCOM Registers Used by the System Loader

. SCOM+

Description of Use by the System Loader

Set in first-time initialization routine. Used to locate
the System Loader Command Area, which is just below the
Bootstrap.

System Loader Interface routine updates this indication
of the first free register above the Resident Monitor
each time it moves a piece down to low core.

The Interface and .SYSLD itself continually update this
indication of the first free location as they move code
and build tables.

Updated as with .SCOM+2. Last free location in core.

First Time Initialization routine sets this register ac-
cording to a SGNBLK parameter.

Refer to Table 4-TII.

Interface Routine stores code of program to be loaded
into .SCOM+5. .SYSLD uses .SCOM+5 for starting address
when loading EXECUT or LOAD. The .OVRLA routine loads
.SCOM+5 with starting address of the Monitor Recovery
Routine. The Bootstrap transfers to the address in
.SCOM+5 after all its operations.

Interface Routine stores codes for DDT, DDTNS, LOAD and
GLOAD into .SCOM+6. For other programs, the Interface
Routine zeroes .SCOM+6.

.SYSLD saves contents of .DAT-1 in .SCOM+7, when loading
the Linking Loader. When loading EXECUT, .SCOM+7 con-
tains the first three characters of the Execute file's
name. Contains .DAT-12 when loading Nonresident Monitor.

10

.SYSLD saves contents of .DAT-4 in SCOM+1f@, when loading
the Linking Loader. When loading EXECUT, .SCOM+1# con-
tains the second three characters of the Execute file's
name. i

11

.SYSLD saves contents of .DAT-5 in .SCOM+11, when loading
the Linking Loader. When loading EXECUT, .SCOM+1l con-
tains the extension of the Execute file's name. (The
Interface routine sets .SCOM+11l to XCS, telling .SYSLD
that EXECUT will be using the system device. .SYSLD

then restores .SCOM+1ll1 to XCT.)

12-
15

The Interface routine initializes these transfer vectors
for API software levels to point to SERR, an error routine
that will produce an IOPS3f.

16,
17

Unaffected.

Table 4-2‘(Cont.)

.SCOM Registers Used by the System Loader

. SCOM+ Description of Use by the System Loader

29 Bit zero set in first time initialization, if system con-
tains an extra 4K. If the system does contain an extra
4X, the System Loader will load handlers in that page -—-
from the bottom up -- when loading a core-image program.
Whenever there is an extra 4K, the System Loader will
update bits 3-17 with the address of the first free cell
in the extra 4K. If bit 2 is set, change Resident
Monitor so that it will tab for a KSR33, and send filler
characters when outputting carriage returns.

21 Unaffected.

22 Unaffected.

23 The Interface Routine refreshes this pointer to .DAT.

24 The Interface Routine refreshes this indication of the
number of positive .DAT slots.

25 The Interface Routine refreshes this pointer to .UFDT+{.

26 When the Nonresident Monitor was the last program, the
System Loader allocates the number of buffers indicated
by the contents of .SCOM+26. If the Nonresident Monitor
was not the last program, the System Loader restores
.SCOM+26 to the default value if program to be loaded is
core image. Otherwise, untouched.

27 The first time initializaticn routine sets this indica-
tion of the number of words per file buffer.

38 The Initialization Routine loads this pointer to the
File Buffer Transfer Vector Table.

31 When loading a core-image program, the Interface Routine
loads .SCCM+31 with the pointer to the Overlay Table, or
with zerc,; if there is none.

32 Unaffected.

33 See Interface Routine table, to determine how that routine
reacts to the bits in .SCOM+33.

34, 35! Unaffected.

36 System Loader loads with the number of active .DAT slots
assigned to the system device.

37-42 Unaffected.

43, 44| Contains name of the program tc be loaded.

45-56 Unaffected.

57 System Loader loads with the number of entries in the
Mass Storage Busy Table.

6@, 61| Unaffected.

62 System Loader loads with the address of the first entry

in the Mass Storage Busy Table.

63~ Unatffected.

L
i
-
fo el

R

e

e,

Table 4-3

Use of .SCOM+4 by the System Loader

Bit
0 If set, place "API ON" constant into 200906 .
If clear, place "API OFF" constant in same register.
1 Ignored.
2 If set, change the Resident Monitor so it will +tab
with the KSR 35/37 tabbing mechanism.
3 Loader will set this bit, if loading the Nonresident
Monitor; clear it otherwise.
4-6 Ignored.
7 Loader sets this bit if bit 11 is cleared, and load-
ing the Linking Loader or Execute., Otherwise clear.
8 Sets or clears, after comparing current core size
(known by location of Bootstrap, and status of bit g,
.SCOM+2f) with SGNBLK parameter. Also, modifies
Resident Monitor to give IOPS77 after attempts to use
CTRL Q.
9, 10 Ignored
11 Indicates whether to clear or set bit 7, when loading
Linking Loader or Execute.
12-17 Ignored

1. Each .DAT slot will contain a.handler number —-- either the
system default, or one inserted via an ASSIGN command to
the Nonresident Monitor. This handler number is the rela-
tive location of the handler name in the IOC Table, which
the Interface Routine builds. (The IOC Table contains
handler names in Radix 5@.)

2. For each active .DAT slot, the loader uses the handler
number in that slot to find the name in the IOC table, and
converts the name to .SIXBT.

3. If the handler is already in core, the loader simply inserts
the starting address of the handler into the .DAT slot.

4. If the handler is not yet in core, the loader does a .SEEK
to <IOS> UIC for the handler, reads it into core, relocates
it, and places the starting address of the handler into
the .DAT slot.

The System Loader always sets up .DAT-2 and -3. (It reserves .DAT-7
for its own use.) When not in non-BOSS Batch Mode, -2 is assianed
to TTA. In non-BOSS Batch Mode, the batch input device goes to -2.
If loading the Nonresident Monitor and bit three of .SCOM+42 is set,

the System Loader will set up .DAT-12 for the LPA, if it is in the
system, or else for TTA. If in BOSS mode, the Nonresident Monitor
assigns LPA. to .DAT+6, and the System Loader assigns .DAT-7 to the
system device "A" handler. The System Loader then ensures that both
handlers are in core. The Resident BOSS set up routine subsequently
routes all .DAT slots connected to TTA. to Resident BOSS.

4.5 BUFFER ALLOCATION BY THE SYSTEM LOADER

The System Loader allocates space for buffers equal to the contents
of .SCOM+26 times the contents of - SCOM+27. The first time initial-
ization routine sets .SCOM+27 to the standard number of locations per
buffer. Before the Nonresident Monitor does an .OVRLA to a software
System program, it checks whether a BUFFS command has been issued.

If so, it leaves .SCOM+26 as is. TIf not, it uses the default number
of buffers for that program, as shown in SYSBLK.

o

CHAPTER 5

SYSTEM INFORMATION BLOCKS AND TABLES

5.1 CORE~RESIDENT NON-REFRESHED REGISTERS

The .SCOM table, the Bootstrap and the resident Patch Area are the
only registers not refreshed by the System Loader. Table 5=1 de-
scribes the .SCOM Table.

5.2 DISK-RESIDENT UNCHANGING BLOCKS: SYSBLK, COMBLK AND SGNBLK

SYSBLK, COMBLK and SGNBLK occupy blocks 34, 35, and 36 (octal) on the
system device (unit zero). SYSBLK and COMBLK (blocks 34 and 35) contain
the parameters for loading all core image system programs. SGNBLK con-
tains all the other information needed to run DOS. All three arrive

in core along with the Resident Monitor and the System Loader Inter-
face, and start at location 161@# of the highest bank. The Nonresident

Monitor and System Loader use them, and DOSGEN and PATCH modify them,
s when necessary.

5.2.1 SYSBLK

SYSBLK contains the parameters required for implementation of .OVRLA
to any system program, or any of the system program overlays.

The order of entries in SYSBLK is unimportant, except for the first
three permanent entries: RESMON, .SYSLD, and tQAREA. The first word
of SYSBLK contains the block address (the unrelocated address) of the
first free word after itself. Figure 5-1 describes SYSBLK.

5.2.2 COMBLK

COMBLK contains information the System Loader and the Nonresident
Monitor need to remember about the current core-image system programs.
The last location in COMBLK (that is, location 377 of block 35) con-
tains the block address of the first entry in COMBLK. The remainder
of COMBLK consists of variable-length entries associated with the
system programs. The Nonresident Monitor searches COMBLK when it

T ‘ finds no match for a typed command in its own Command Table. Figure

’ | 5-1 illustrates the organization of COMBLK. The System Generator adds

5-1

Table 5-1

.SCOM Registers

REGISTER BIT MEANING
@ First register below the Bootstrap (set by the
System Loader Interface)
1 First register above the Resident Monitor (set by
the System Loader Interface)
2 Lowest free register available for storage (set
by the System Loader or the Linking Loader)
3 Highest free register available for storage (set
by the System Loader, the Linking Loader or DDT)
4 Initialized from SGNBLK values by the "first time"
section of the System Loader Interface Routine,
and by the LOGIN, LOGOUT and MICLOG logic of the
Nonresident Monitor; modified by the Nonresident
Monitor, unless otherwise indicated.
g = API is available.
1= EAE is available (always set)
2 = Teleprinter is Model 35 or 37
3 = Nonresident Monitor is in core
4,5 Reserved
6 = 9-Channel Magnetic Tape System
7 = Page Mode Operation
8 = QAREA inadequate for current core size (set by
the System Loader Interface Routine)
9 = DOS disk file structure (always set)
18 = RBZ9 disk is system device.
11 = Bank Mode System
12,13 Line Printer Line Size:
4] No Line Printer
gL 8@ Characters
12 128 Characters
11 132 Characters
14 = Background/Foreground System (always clear)
15- 17 Drum size (ignored ~- DOS does not support drum)

S

T e

Table 5=1 (Cont.}
.SCOM Registers

1
REGISTER BIT MEANING
Core Image System Program Starting address.
g = DDT in core.
1= GLOAD
2 = DDTNS
3-17 User program starting address.

7-11 When using the Linking Loader, .SCOM+7, 10 and 11
contain the handler numbers for handlers needed by
the Linking Loader in .DAT -1, =4, and -5 respectively.
When the Linking Loader passes control to DDT,
SCOM+10 contains the size of the Busy Table (for
later clearing by DDT) and .SCOM+11l has the starting
address of the symbol table.

When using EXECUTE, 7-11 contain the .SIXBT repre-
sentation of the name and extension of the Execute
File,
When using QFILE (for implementation of .GET, .PUT
and the Nonresident Monitor GET and PUT commands),
7-11 contain the .SIXBT representation of the name
and extension of the core image file.

12 API Level 4 service routine entry point

13 API Level 5 n

14 API Level 6 "

15 API Level 7 "

16 Program Counter on Keyboard Interrupts.

17 AC on Keyboard Interrupts.

20 g =1 20K or 28K system.,

1 =1 UCl5 system — RK@5 based or RF15/RP@2 based
2 =1 3@ CPS LA3@ console device.
3-17 First free address in top page.

21 Magtape Status Register.

22 Reserved for Magtape Handler.

23 Pointer to .DAT+f.

24 Number of positive .DAT slots.

25 Pointer to .UFDT+J.

26 Number of buffers.

27 Number of words per buffer.

3¢ Pointer to Buffer Transfer Vector Table.

5-3

Table 5=1 (Cont.)
.SCOM Registers

!
REGISTERS

MEANING
31 Pointer to first entry in the Overlay Table (zero,
if none).
32 Bad block number on IOPS 2¢ and 72.
33 CTRL X status register.
2] HALF ON
1 Display Buffer already set up.
2 VT ON
17 If VT ON, display mode is on..
34 If in BOSS mode, elapsed time in seconds.
35 Instruction to clear TT Busy Switch.
36 Number of Entries in the Mass Storage Busy Table.
37 Entry point for Expanded Error Processor.
49 JMP to Expanded Error Processor.
41 The logged-in UIC.
42 Bit Register.
") MICLOG successful.
1 .EXIT from Nonresident Monitor.
2 -OVRLA from Nonresident Monitor.
3 LP ON -- LPA to .DAT-12 when loading Nonresident
Monitor.
4 Dump core on calls to .MED (except IOPS 4).
5 Halt on calls to .MED (except IOPS 4).
6-13 Unused.
14 Set up ,DAT+6 (use by Batch mode)
15 Load System Device Handler into .DAT-7.
16 KEEP ON.
17 Batch Mode.
43,44 .SIXBT Representatiocn of the name of the core
image system program to be loaded (if any).
45,46 .SIXBT Representation of the name of the Non-
resident Monitor

.

Table 5-1 (Cont,)

e .SCOM Registers
REGISJERS BIT MEANING
47 Date [mm (bits g-5), dad {(6-11), yy (12=17, module
1970 decimal)]
59 Time [hh (bits #=5), mm (6-11), ss (12-17)]
51 Elasped time, in ticks.

52 BOSS Bit Register

g =1 | BOSS15 Mode.

1 =1 Control Card Read by user, 5/7 ASCII image saved
e in first block of NRBOSS.

2 =1 Resident BOSS reached "EOF" on run time file (RTF).

3 =1 User exceeded time estimate.

4 =1 I/0 CAL to go to TTY (.DAT=3andpositive,DATslots),

5 =1 Terminal IOPS error by user.

6 =1 QDUMP to be given to user on IOPS errors.

7 =1 Operator abort (Control T).

- 8 =1 Job active.

9 =1 Exit from BOSS15 Mode.

19 = 1 User tried to do a .PUT. Core will be dumped and
a listing given on LP.
11 = 1 'User tried to do a .GET.
12 Not defined.
13 Not defined.
14~16 | -SYSLD error number.

17 =1 Job abort.

= 53 Reserved for CTRL X code.
54 Default Protection Code.
55 Entry to Monitor TRAN routine.
56 Two's complement of time limit, in seconds (zero,

if no limit).

57 System Device Code, for use by the Linking Loader.

60 Number of ticks until clock interrupt specified
in last .TIMER (zero, if .TIMER not in use).

Table 5-1 (Cont.)
+SCOM Registers

REGISTER BIT MEANING
61 .TIMER address.
62 Address of the first word in the Mass Storage Busy
Table.
63 Number of words per Mass Storage Busy Table Entry.
64 JMP to CTRL Q GET routine.
65 QFILE Communication Register.
66 First Block of the CTRL Q Area.
67 Starting Address minus one of the CTRL Q Area.
79 Two's complement of number qf word in Qdump
71 Starting Address after DUMP or GET.
72 Starting Address after CTRL Q.
73 Two's complement of the number of ticks left in the
next second.
74 Two's complement of the line frequency.
75 Number of RTF Lines (for BOSS Mode).
76% g=1 SPOOLER ENABLED
1=1 SPOCLER RUNNING
3 MACll Communication Bit
5-17 | SPOOLER area disk start block number
77% 6-17 | SPOOLER area size (in blocks)
100* 6-17 | pointer to TCB and Buffer Table
181-195 unused

*For RK@5 system only. Unused for RP@2 and RF15 systems.

i

g

T

e
S

Word # Value Description
g g@0nnn Pointer to first free word after SYSBLK
. (There is one set of seven words/core
. image program.)
;ii% igiigg Name of System Program or overlay
S TN+3 nnnnnn Number of first block on system device
v occupied by this program or overlay.
IN+4 @ag@nn Number of blocks occupied by this pro-
S gram or overlay
B TN+5 addres Thirteen-bit first address for this
program or overlay
L TN+6 Fnnnnn Program size
v x TN+7 addres Thirteen-bit starting address for this
program or overlay
(free area)
590 [(90919 Number of words in this entry (in this
case, 1f)
501 .SIXBT Name of this system program (left-
502 p| .SIXBT justified and zero-filled)
583 . SIXBT Name of an overlay (left-=justified and
504 Tl .sIxBT zero-filled) -- overlays are optional
505 o< 949gg2 Number of buffers required by this sys-
A C g tem program (Bits @-6 = Q‘means the end
of any overlay names. This is why pro-
o 1 gram and overlay names must be left-
M justified.)
5¢6 .DAT&777 Active .DAT slot
B 507 _-DAT&777 Active .DAT slot (Note: 777777 for a .DAT
L P slot means all positive .DAT slots.)
519 5137050 53) Number of words for this entry (in this
K P case, 5)
gi% r ig%?gg Name of this system program
513 04 2001 Number of buffers required by this pro-
gram (Note that this program has no over-
g lays.)
514 2| .DAT&777 .DAT slot for this program
. ~ .
777 200500 Pointer to first word in COMBLK (equals

count from first word in SYSBLK). The
two contiguous blocks on the system de-
vice that hold SYSBLK and COMBLK are
treated by the system as one large block.
In this case, COMBLK happens to start at
location 5¢@ of the two blocks combined.

Figure 5-1

SYSBLK and COMBLK

5-7

names of core-image system programs by making them the new first entry.
In this way, SYSBLK and COMBLK build toward the center.

5.2.3 SGNBLK

SGNBLK (block 36 on the system device) contains all the system param-
eters not directly associated with core-image system programs. The
bulk of SGNBLK is concerned with I/0 (.DAT slots, .UFDT slots, Skip
Chain Order, Handlers, and skip IOT codes and mnemonics). The first

few registers hold such important system information as the system de-

vice, .SCOM+4 contents, and so on. The very first word in SGNBLK =
points to the block address of the first free word after SGNBLK. The

next entry is an offset word indicating the total length (including

itself) of the miscellaneous system parameter table to follow. This

table includes the size of the .DAT and the size of the skip chain.

The end of the handler and skip IOT table is the first free entry of

the block.

The .DAT slot table corresponds to the legal range of .DAT slots,

with the maximum negative set to 15, and the maximum positive set to

a number not to exceed 773- The .DAT slots are in the form in which

they appear when the Nonresident Monitor is in core. That is, the e
unit number is in bits @-2, and the number of the handler right-

justified in bits 3-17. The handler number for the first handler in

the Device Handler-Skip IOT Table is zero, for the pseudo-handler NON,

TTA. is one, and so on. The constant 1P@PPF indicates a fixed or il-

legal .DAT slot (such as -2, -3, and @). DOSGEN will not modify such

slots.

The .UFD Table is in one-to-one correspondence with the .DAT slot Table.
An entry of .SIXBT 'UIC' indicates that the logged in UIC is to be sub-
stituted for the name UIC in the table. An entry of .SIXBT 'SYS' in-

dicates BNK or PAG is to be substituted, in accordance with the current

addressing mode. Otherwise, the contents of each location will be the

.SIXBT representation of the corresponding .UFD slot.

The Skip Chain Table lists the system skip IOT's in order. A negative
skip (one that skips on "off", not "on") is represented in one's com-
plement. Not all skips in the handler Skip IOT Table (described be-
low) need to be included in the Skip Chain Table.

The Device Handler/Skip IOT Table contains all the handler names and
A skip IOT numbers and mnemonics for each I/O device identified to the
system. Every such device has an entry in the table. A handler name
must be exactly three characters in length, with the last character
not an octal digit. The device code for a device is exactly two
characters. The first two characters of each handler name for a de-
vVice must be the device code. This fact is essential for understand-
ing the format of a device entry, since the device code is never
Stored as such in an entry, but is inferred from the device handler

name. The typical entry for a device is the following:

1. The first words of an entry contain the handler names
for a device in .SIXBT. Each handler name is differ-
ent, and the end of the list of handlers is determined
by a word with zeros in bits -5 (the first character
position).

2. The word that terminated the list of handler names
contains the number of skip IOT's for the device.
For each skip IOT, there are three words in the table:
two for the skip mnemonic and one for the actual code.

The next device entry follows the last skip for the previous device.
oy Handlers may be entered without any skips, but no devices may be
) entered without at least one handler name. Figure 5-2 illustrates
the organization of SGNBLK. Appendix D of SGEN-DOS Utility Programs,
DEC-15-USGNA-A-D, lists SGNBLK, SYSBLK and COMBLK, as they are supplied
by Digital Equipment Corporation.

5.3 DISK-RESIDENT CHANGING BLOCKS

The System Loader uses block 37 of the system device to store an image
of .DAT and .UFDT. Other disk~resident changing blocks are the storage
Allocation Table and the Bad Allocation Table. These tables are de~
scribed in Chapter 6.

5.4 TEMPORARY TABLES BUILT FROM DISK-RESIDENT TABLES

5.4.1 The Overlay Table

The System Loader builds the Overlay Table from the entries in SYSBLK

referenced by a core-~image system program's entry in COMBLK. That is,
the Overlay Table contains an entry for the system program itself, and
one for each of its overlays. Figure 5-3 illustrates the format of an

=

entry in the Overlay Table, The first entry in the Overlay Table is

Location Value Description

1 g@@nnn Pointer to first free entry in SGNBLK ,
1 gEEELs Number of miscellaneous parameters o
2 g@@nnn Size of .DAT plus size of .UFDT = (number of posi-

tive .DAT slots+16,)*%2. (Initial value is 2§, posi-
tive .DAT slots.)

3 g@@nnn Number of skips in Skip Chain

4 gg%;gg System device code in .SIXBT

5 nnnnnn Original contents of .SCOM+4

6 nnnnnn Original contents of .SCOM+2§

7 nnnnnn Number of words per buffer (.SCOM+27)
19 nnnnnn Default number of buffers (.SCOM+26)
11 .SIXBT Monitor Identification Code
12 nnnnnn Information on VT and CTRL X (.SCOM+33)
13 d@3FFIn Default files protection code (.SCOM+54) ®
14 gdnnnn Size of the Resident Monitor Patch Area
15 777 Inn Minus the number of clock ticks in a second (-74

for 6@ hz, -62 for 5@ hz.)

16 g@fnnn Device assignments for the .DAT (made by handler
: numbers) . (Termination at 53 assumes 20, positive
53 ggonnn slots.)
54 -SIXBT UIC assignments for the .UFDT. (Termination at
: 111 assumes Zﬁspositive slots.)
111 . SIXBT
112 pnnnnn Skip Chain Table (Negative skips in one's comple-
: ment.) (Termination at 137 assumes 269 skips in
137 nnnnnn chain.)
140 -SIXBT The last part of the SGNBLK is the Device Handler- -
: : Skip IOT Table. Each entry starts with the .SIXBT
: : representations of all handlers for a particular
’ SiXBT device. (First two characters equal device code,
. .SIXBT for all handlers.) Zeros in the first six bits
° ‘ of a word indicate the end of the handler names,
‘ and says that the rest of the word contains the
° S:.[XBT number of skips for this entry's device. The skip
* égg¢g3 IOT's follow immediately. As above, one's comple-
: Annnnn ment skips indicate negative skips. Note, however,
) Annnnn the confusing fact that a one's complement of a
- Annnnn skip IOT is a positive number. Thus, 7¢nnn com-
) STIXBT plemented is @7nnnn.
, paggRL X
. nnnnnn =
312 SGNBLK ends at 312, in the DOS-15 RP@2 and RF15

system distributed by Digital Equipment Corporation.

Figure 5-2

SGNBLK for RP@2 and RF15 Systems

R

&

e

Location Value Description
") #@@gnnn Pointer to first free entry in SGNBLK
1 dEeE1LS Number of miscellaneous parameters
2 F@gnnn Size of .DAT plus size of .UFDT = (number of
positive .DAT slots + 16,)*2. (Initial value
is 2f, positive .DAT slots.)
3 goggnnn Number of skips in Skip Chain
4 221380¢ System device code
5 nnnnnn Original contents of .SCOM+4
6 nnnnnn Original contents of .SCOM+2Q
7 nnnnnn Number of words per buffer (.SCOM+27)
19 nnnnnn Default number of buffers (.SCOM+26)
11 .SIXBT Monitor Identification Code
12 nnnnnn Information on VT and CTRL X (.SCOM+33)
13 goagan Default files protection code (.SCOM+54)
14 g@nnnn - Size of the Resident Monitor Patch Area
15 7777nn Minus the number of clock ticks in a second
(=74 for 60 hz, -62 for 5f¢ hz)
16 gnnnnn Spooler area last block number.
17 #@nnnn Spooler area size.
20 #g@nnn
. Device assignments for the .DAT (made by
. j} handler numbers). (Termination at 55 assumes
55 gF@nnn 2@, positive slots.)
56 . SIXBT
. UIC assignments for the .UFDT. (Termination
. at 113 assumes Zﬂs positive slots.)
113 . SIXBT
114 nonnnn Skip Chain Table (Negative skips in one's
‘ complement.) (Termination at 145 assumes
145 nnnnnn) | 32, skips in chain.)
146 .SIXBTW W The last part of the SGNBLK is the Device
. . Handler=-Skip IOT Table. Each entry starts
. with the .SIXBT representations of all
o . handlers for a particular device. (First two
. . SIXBT characters egqual device code, for all
. .SIXBT handlers.) 2Zeroes in the first six bits of
. . a word indicates the end of the handler
. . . names, and says that the rest of the word
. .SIXBT | contains the number of skips for this entry's
. geaPI3 \device. The skip IOT's follow immediately.
R nnnnnn /{ As above, one's complement skips indicate
. nnnnnn negative skips. Note, however, the confusing
. nnnnnn) fact that a one's complement of a skip IOT
. «SIXBT is a positive number. Thus, 7@nnnn comple-
. goooel } mented is @7nnnn.
. nnnnnn
344 . SGNBLK ends at 344, in the D0OS-15 RK@5
Y system distributed by Digital Equipment
Corporation.
Figure 5-3

SGNBLK for RK@5 Based System

pointed to by .SCOM+31l. .SCOM+31l will contain zero, 1f there are no
entries in the Overlay Table. This will occur during Linking Loader
or EXECUTE loads.

e

-OVRLA is the only Monitor function that looks at the Overlay Table.
If the .OVRLA processor finds a match to the .OVRLA argument in the
Overlay Table, it uses the parameters listed in the table to bring
it in via a Monitor TRAN. Note that this bypasses the System Loader,

and does not change the handler load. Thus, the overlay must use only
those .DAT slots reguired by the original program, the one listed in
COMBLK. o

If the .OVRLA processor does not find a match in the Overlay Table, it
calls in the System Loader, which searches COMBLK for the requested
program. This type of overlay request does not require that .DAT slot
assignments be the same. On the other hand, the System Loader refreshes
all of core except .SCOM, etc. Thus, communication between overlays

is more difficult. The resident patch area, however, can be used for

this purpose.
5.4.2 The Device Table

The Device Table is built by the System Loader interface whenever PIP
is being loaded, or when PIP is listed in COMBLK among the overlays
for a program. It is located just above the register pointed to by
-SCOM+1, and has an entry for each positive .DAT slot. If a slot has
an assigned device, the low-order twelve bits of the corresponding
entry in the Device Table will contain the device's code, in .SIXBT.
Bit 3 is set when the slot is busy. If no>device is assigned to a

slot, the corresponding entry in the Device Table will contain Zero.

5.4.3 The Input/Output Communication (IOC) Table -

The System Loader Interface builds the IOC Table and locates it just
below the first register of the System Loader. It contains an entry
for each handler in the system, in the order that they appear in
SGNBLK. The entries themselves contain the handler name in Radix 50.
The System Loader and the Linking Loader use the handler number sup=-
plied by the Nonresident Monitor to index down the IOC Table. They
use the contents of the entry for a .SEEK to the IOS UIC.

o

&

5.4.4 The Device Assignment Table (.DAT)

The Device Assignment Table makes the association between logical and
physical devices. The Monitor knows its location by the contents of
-SCOM+23, which points to the entry zero in the Table. Specific slots
are found by indexing on the contents of .SCOM+23. The number of nega-
tive slots is fixed at 158° The number of positive slots is specified
by .SCOM+24, and may be any positive number less than lﬂﬂa. It is
specified at system generation time.

The Nonresident Monitor places the handler number in the low order

bits and the unit number in the high order bits. It derives the hand-
ler number from SGNBLK. As mentioned above, the System Loader and

the Linking Loader subsequently use the IOC Table to determine the
handler name. After either loader has loaded and relocated a handler,
it places the handler's starting address in all .DAT slots that refer-
ence that handler. The unit number remains in the high-order three
bits. Slots with no handler (NON) contain zero. Active .DAT slots

are designated by COMBLK, for core-image system programs, and by .IODEV
pseudo-ops for the Linking Loader and EXECUTE.

5.4.5 The User File Directory Table (.UFDT)

-UFDT+# is offset from .DAT+f (pointed to by .SCOM+23) by the sum of
the positive and negative .DAT slots. Each .DAT slot has a correspond-
ing .UFDT slot. UIC's in the .UFDT are packed in .SIXBT. The address
of .UFDT+f is stored in .SCOM+25.

5.4.6 The Skip Chain

Register 1 of Bank @ contains a jump to the beginning of the Skip
Chain. The Skip Chain is defined during System Generation, is located
in SGNBLK, and is rebuilt every time the System Loader is called in.
The System Generator Manual (DEC-15~USGNA~A-D) describes considerations
for constructing the Skip Chain.

5.5 TEMPORARY TABLES RBUILT FROM SCRATCH

5.5.1 File Buffer Transfer Vector Table

The System Loader allocates space for the buffer poocl, and creates the
File Buffer Transfer Vector Table. .SCOM+30 points to the first entry

in the table, and the number of entries is specified by .SCOM+26.

Each entry in the table contains the address of a buffer, or its one's
complement. Negative addresses indicate a busy buffer. Since refer-
ences to buffers must be indirect anyway, buffers are allocated with-
out regard to bank boundaries.

5.5.2 The RCOM Table

The Nonresident Monitor requires certain information about the Resi-
dent Monitor that does not warrant reserving additional .SCOM registers.
The System Loader therefore puts this information into the RCOM table, -
whenever it is loading the Nonresident Monitor. 'The RCOM Table starts

at register 175@¢@ of the highest bank. QFILE uses the RCOM Table when

processing a GET command.

5.5.3 The Mass Storage Busy Table

Entries in this table are allocated by the System Loader or the Link-

ing Loader. The Mass Storage Busy Table is pointed to by .SCOM+62.

«SCOM+63 contains the number of words per entry in the table, and

-SCOM+36 contains the current number of entries. Generally speaking,

there are as many entries in the Busy Table as there are active .DAT

slots, although the disk handlers are the only ones that currently e
refer to the Busy Table.

The .INIT command to a disk handler establishes a Busy Table entry.
The .CLOSE command (or the Rewind .MTAPE command) deletes the corres-

ponding entry. Figure 5-4 illustrates a typical Busy Table Entry.

The first word of an active entry in the Busy Table contains the ,DAT
slot in bits 9-17. The disk handlers save information about the UFD

current for this .DAT slot in the Mass Storage Busy Table. They save

£

information about the file current to the .DAT slot (if any) in the
buffer pointed to by word 1 of the Busy Table Entry. More information

on the disk handlers and file structure is contained in Chapter 6. w

5.6 RESERVED WORD LOCATTIONS

Word locations @ through 77 are dedicated systems locations and can-
not be employed by the user. The contents of these locations are
described in Table 5=4, .

o

o

e

s

Table 5=2
Overlay Table

Word # Contents
N,N+1 .SIXBT name of Overlay
N+2 First block number
N+3 First address, minus 1
N+4 Size, in two's complement
N+5 Fifteen-bit starting address
Tahle 5=3
Mass Storage Busy Table Entry
Word # Contents
N i i i R
Device Typeg_z, Unit Number3_5, Write Checkﬁ, DAT9_17
N+1 Buffer Address, or @, if none allocated
N+2 Three-character UIC
N+3 First UFD block for this UIC
N+4 UFD Entry size for files in this UFD
Table 5=4
Reserved Address Locations
ADDRESS USE
o] Stores the contents of the extended PC, link, extend
mode status, and memory protect status during a pro-
gram interrupt
1 EEM (for PDP-9 compatibility)
2 JMP to Skip Chain
3 -MED, entry to Monitor Error Diagnostic routine
4 JMP to error ‘handler
5 Stores system type (Bank or Page) indicator during
Teletype interrupts
6 Used for API ON/OFF indicator
7 Stores real time clock count
10=17 Autoindex registers
20 Stores the contents of the extended PC, link, mode
status, and memory protect status on a CAL instruc-
tion.
21 JMP to CAL handler
22-37 Seven pairs of word counter—current address registers
for use with 3-cycle I/0 device data channels.
40-77 Store unique entry instructions for each of 32lo auto-

matic priority interrupt channels

5-15

5.7 BOOTSTRAP NON-BOSS BATCH BITS.

The high-order three bits of word 17777 in the Bootstrap are reserved

for the Monitor, and have the following meanings:

Bit @ 1 = In non-B0OSS Batch Mode
= Not in non-BOSS Batch
Bit 1 1 = $JOB ASCII line or card just read by batch device
= Last line or card not $JOB
Bit 2 1 = Batch device is card reader ’

Batch device is paper tape reader

o

CHAPTER 6

FILE STRUCTURES

6.1 DECTAPE FILE ORGANIZATION

DECtape can be treated either as a directoried or non-directoried
device.

6.1.1 Non-Directoried DECtape

A DECtape is said to be non-directoried when it is treated -~s magnetic
tape by issuing the .MTAPE commands: REWIND or BACKSPACE, follcwod by
-READ or .WRITE. ©No directory of identifying information of any kird
is recorded on the tape. A block of data (255lO word maximum), exactly
as presented by the user program, is transferred into the handler Luof-
fer and recorded at each .WRITE command. A .CLOSE terminates record-
ing with a software end-of-file record consisting of two words: 0010t .
776773

Because braking on DECtape allows for tape roll, staggered recording
of blocks is employed in DOS to avoid constant turnaround or time-
consuming back and forth motion of physically sequential block record-
ing. When recorded as a non-directoried DECtape, block @ is the

first block recorded in the forward direction. Thereafter, every £ir+h
block is recorded until the end of the tape is reached, at which time

recording, also staggered, begins in the reverse direction. Five

passes over the tape are required to record all 1100, blocks.

8

6.1.2 Directoried DECtape

Just as a REWIND or BACKSPACE command declares a DECtape to be non-
directoried, a .SEEK or .ENTER implies that a DECtape is to be con-
sidered directoried. A directory listing of any such DECtape is

available via the (L)ist command in PIP. A fresh directory may be

recorded via the N or S switch in PIP.

The directory of all DECtapes except system tapes occupies all 49%8
words of block lﬂ¢8_ It is divided into two sections: (1) a 40, word

8
Directory Bit Map and (2) a 340, word Directory Entrv Section.

8

The Directory Bit Map defines block availability. One bit is allo-
cated for each DECtape block (1100, bits = 404 words). TWhen set to 1,
the bit indicates that the DECtape block is occupied and may not be
used to record new information.

The Directory Entry Section provides for a maximum of 5610 files on
a DECtape. Each file on the DECtape has a four-word entry. Each
entry includes the three-word file name and extension, a pointer to

the first DECtape block of the file, and a file active or present bit.
Figure 6-1 illustrates the DECtape directory.

&
Word
0
~
Block g .
Directory
Block 1877 Bit Map
-
Entry @
e = @ = e e em e e o o e e o Directory
Entry
Section
A\ Entry 551ﬂ .-
377
} 5 6 11 12 17
Wd. 0 File Note: Nulls (0) fill
] | . :
1] ! in short file names.
1 Name | A file name extension
: is not absolutely
2 File Name Extension . necessary.
3 1] Data Link (First File Block) |
Sign Bit: 1 = File Active
A DIRECTORY ENTRY
&
Figure 6-1
DECtape Directory
Additional file information is stored in blocks 71 through 77 of everv
directoried DECtape. These are the File Bit Map Blocks. For each file
in the directory, a 408—word File Bit Map is reserved in block 71
through 77. The bit maps are contiguous, and the Nth file uses the S

th . C e I o o . '
N™ bit map. Each block is divided into eight File Bit Map Blocks. A

File Bit Map specifies the blocks occupied by that particular file and
provides a rapid, convenient method to perform DECtape storage re-
trieval for deleted or replaced files. Note that a file is never de-

leted until the new one of the same name is completely recorded on
the .CLOSE of the new file. When a fresh directory is written on
DECtape, blocks 71 through 100 are always indicated in the Directory
Bit Map as occupied. Figure 6-2 illustrates DECtape file bit maps.

® Block 718 Bit Map for File ¢
Bit Map for File 7
Block 728 Bit Map for File 8

Bit Map for File 1515,J

Block 778 Bit Map for File 481¢

Bit Map for File 5§l¢

Figure 6-2

DECtape File Bit Map Blocks

Staggered recording (at least every fifth block) is used on directoried
DECtapes, where the first block to be recorded is determined by examina-
tion of the Directory Bit Map for a free block. The first block is
always recorded in the forward direction; thereafter, free blocks are
chosen which are at least five beyond the last one recorded. The last
word of each data block recorded contains a data link or pointer to

the next block in the file. When turnaround is necessary, recording
proceeds in the same manner in the opposite direction. When reading,
turnaround is determined by examining the data link. If reading has
been in the forward direction, and the data link is smaller than the
last block read, turnaround is required. If reverse, a block number

greater than the last block read implies turnaround.

A software end-of-file record (001005, 776773) terminates every file.
e The data link of the final block is 777777.

Data crganization for each I/0 medium is a function of the data modes.
On directoried DECtape there are two forms in which data is recorded:
(1) packed lines - IOPS ASCII, IOPS Binary, Image Alphanumeric, and
Image Binary, and (2) dump mode data - Dump Mode.

In IOPS or Image Modes, each line (including header) is packed into
the DECtape buffer. In IOPS Binary, a 2's complement checksum is com-
puted and stored in the second word of the header. When a .WRITE

which will exceed the remaining buffer capacity is encountered, the

buffer is output, after which the new record is placed in the empty
buffer. ©No record may exceed 254lo words, including header, because

of the data link and even word requirement of theé header word pair

count. An end-of-file is recorded on a .CLOSE. It is packed in the same

manner as any other line.

In Dump Mode, the word count is always taken from the I/O macro. If

a word count is specified which is greater than 255 (note that space

10
for the data link must be allowed for again), the DECtape handler will
transfer 255lO word increments into the DECtape buffer and from there

to DECtape. If some number of words less than 255 remain as the

10
final element of the Dump Mode .WRITE, they will be stored in the DEC- R
tape buffer, which will then be filled on the next .WRITE, or with an
EOF if the next command is .CLOSE. DECtape storage is thus optimized

in Dump Mode since data is stored back-to-back. See Appendix A.
6.2 MAGNETIC TAPE

DOS provides for industry-compatible magnétic tape as either a di-

rectoried or non-directoried medium. The magnetic tape handlers com-

municate with a single TC-59D Tape Control Unit (TCU). Up to eight

magnetic tape transports may be associated with one TCU; these may i
inciude any combination of transports TU-10A or B and TU-30A or B.

There are a number of major differences between magnetic tape and DEC-

tape or Disk; these differences affect the operation of the device

handlers. Magnetic tape is well suited for handling data records of

variable length. Such records, however, must be treated in serial

fashion. The physical position of any record may be defined only in

relation to the preceding record. Three technigues available in. I/O

operations to block-addressable devices are not honored by the magnetic

tape handlers: e

it
K

a. The user cannot specify physical block numbers for
transfer. 1In processing I/0 requests that have block
numbers in their argument lists (i.e., .TRAN) the
handler ignores the block-number specification.

b. The only area open for output transfers in the direc-
toried environment is that following the logical end
of tape.

c. Only a single file may be open for transfers (either
input or output) at any time on a single physical unit.

6.2.1 Non-directoried Data Recording (MTF)

MTF is intended to satisfy the requirements of the FORTRAN programmer
while still providing the assembly language programmer maximum freedom
on the design of his tape format. MTF writes out a record to the tape
each time the main program issues a .WRITE. The length of the record
is always two times the word pair count in the header word pair. FIOPS
records are always as long as the buffer size returned on a .INIT (up
to 256lo words) . MIF returns a standard buffer size of 3778, after a
-INIT. The FORTRAN user may dynamically change this size, however,

via the following instructions

Example:
(FORTRAN STATEMENTS) (MACRO STATEMENTS)
. .TITLE SETMTB
. .GLOBL .DA, MTBSIZ, SETMTB
. SETMTB a
CALL SETMTB (IBFSIZE) JMS* .DA
. JMP START
IBFSIZE jof
START LAC* BUFSIZ (any buffer size)
DAC* MTBSIZ
JMP* SETMTB
« END
6.2.2 Directoried Data Recording (MTA., MTC.)

The programmer can make the fullest possible use of those features
peculiar to magnetic tape by using MTF. On the other hand, MTF does
not offer the powerful file~-manipulation facilities available in the
system. Directoried I/0 allows device independence, and extensive

use of the storage medium with a minimum of effort.

MTA. and MTC. do not support non-directoried data recording.

Every block recorded by MTA. (with the exception of end-of-file markers,

which are hardware-recorded) includes a two-word Block Control Pair

and not more than 255lO words of data. The data will contain the e
records from one or more .WRITE's.

The Block Control Pair serves three functions: it specifies the char-

acter of the block (label, data, etc.), provides a word count for the

block, and gives an 18-bit block checksum. The Block Control Pair has

the following format:

Word 1:

Bits 0 through 5: Block Identifier (BI). This 6-bit byte @
specifies the block type. Values of BI may range from 0

to 77,. Current legal values of BI, for all user files,
are a§ follows:
BI Value Block Type Specified
00 User-File Header Label
10 User~-File Trailer Label
20 User-File Data Block

Bits 6 through 17: Block Word Count (BWC). This 12-bit
‘byte holds the 2's complement of the total number of words
in the block (including the Block Control Pair). Legal
values of BWC range from -3 to —4018.

Word 2:

Bits 0 through 16: Block Checksum. The Block Checksum is
the full-word, unsigned, 2's complement sum of all the
data words in the block and word 1 of the Block Control
Pair.

o} 5 8 17

1T rvrTrT
-N
I
T

T
BCP WORD 1 BLOCK
N U S |
L

P
Lod

T T

| S O | I I
UL T TT

BCP WORD 2 | }@—————BLOCK CHECKSUM ———8>|

| S T T N T Y N Y IO O Y SN O U o |

N TOTAL WORDS
IN BLOCK

N-2 DATA L —— —— T T —— N
WORDS

Figure 6-3

Block Format, File-Structured Mode

i

One of the main file functions of MTA. and MTC. is that of identifying
and locating referenced files. This is carried out by two means:
first, names of files recorded are stored in a file directory at the
beginning of the tape; and second, file names are contained in the

file's header and trailer labels.

6.2.2.1 Magnetic Tape File Directory

The directory, a single-block file (and the only unlabeled file on any
file-structured tape), consists of the first recorded data block on
the tape. It is g 257lO word block with the following characteristics:

a. Block Control Pair (words 1 and 2)

Word 1
Block Identifier = 748 = File Directory Data Block
Block Word Count ~4018 = 73778’

il

Word 2:

. Block Checksum: As described above.

b. Active File Count (Word 3, Bits 9 through 17) 9-bit one's
complement count of the active file names present in the
File Name Entry Section (described below).

c. Total File Count (Word 3, Bits 0 through 8) 9-bit one's
complement count of all files recorded on the tape, in-
cluding both active and inactive files, but not the file
directory block.

d. File Accessibility Map (Words 4 through 17): The File
Accessibility Map is an array of 252 contiguous bits
beginning at bit 0 of word 4 and ending as bit 17 of
word 17. Each of the bits in the Accessibility Map re-
fers to a single file recorded on tape. The bits are
assigned relative to the zeroth file recorded; that is,
& bit 0 of word 4 refers to the first file recorded; bit
1, word 4, to the second file recorded; bit 0, word 6,
to the 371, file recorded; and so on, for a possible
2 total of 252lo files physically present.

A file is only accessible for reading if its bit in the
Accessibility Map is set to one. A file is made inac-
cessible for reading (corresponding bit = 0) by a .DLETE
of the file, by a .CLOSE (output) of another file of the
Same name, or by a .CLEAR. A file is made accessible for
reading (corresponding bit = 1) by a .CLOSE (output) of
that file. Operations other than those specified above
have no effect on the File Accessibility Map.

BIT POSITION

0 3 6) 12 15 17
WORD 1 7 4 7 3 7 7
BCP
WORD 2 BLOCK CHECKSUM
FILE COUNTS WORD 3 7 7 2 7 7 4
WORD 4 oton
FILE //
ACCESSIBILITY ///
MAP CONTENTS
WORD 16 UNSPECIFIED
g IIIAs
_%! WORD 17 // ////
B WORD 18 F 1 L
2
E # 2
E X T
WORD 21 F I L
E # 4
E X T
FILE
NAME
ENTRY WORD 24 F I L
SECTION
E # 5
E X T
CONTENTS
UNSPECIFIED
WORD 257
v /]

Figure 6-4a. Format of the

File Directory Data Block,
showing relationship of active
and inactive files to file name
entries and to Accessibility Map

Figure 6-4b.

"BEGINNING
OF TAPE

FiLE
DIRECTORY

FILE #1
(INACTIVE)

FILE #2
(ACTIVE)

FILE #3
(INACTIVE)

FILE #4
(ACTIVE)

END OF TAPE

09-0232

Format of file-

structured tape, showing
directory block and data

files.

e. File Name Entry Section (Words 18 through 257): The File
Name Entry Section, beginning at word 18 of the direc-
tory block, includes successive 3-word file name entries
for a possible maximum of 80 entries. FEach accessible
file on the tape has an entry in this section. Entries
consist of the current name and extension of the refer-
enced file in .SIXBT (left-adjusted and, if necessary,
zero~filled).

e

%,
5,

The position of a file name entry relative to the begin-
ning of the section reflects the position of its accessi-
bility bit in the map. That bit, in turn, defines the
position of the referenced file on tape with respect to
other (active or inactive) files physically present. Only
active file names appear in the entry section, and access-
ibility bits for all inactive files on the tape are always
Set to zero; accessibility bits for all active files are
set to one.

To locate a file on the tape having a name that occupies
the second entry group in the File Name Entry Section,

the handler must (a) scan the Accessibility Map for the
second appearance of a l-bit, then (b) determine that bit's
location relative to the start of the map. That location
specifies the position of the referenced file relative to
the beginning of the tape. The interaction of the File
Name Entry Section and the Accessibility Map are shown

in Figure 6-4.

6.2.2.2 User~File Labels

Associated with each file on tape is one label, the header label. It

precedes the first data block of the file. FEach label is 27lO words

in length. Label format is shown in Figure 6-5.

WORD 1 o0 7745
BCP
WORD 2 CHECKSUM

WORD 3 777 XXX FILE NAME

WORD 4 000000

WORD 5 w

RESERVED

WORD 26,4

WORD 27,4

Figure 6-5

User File Header Label Format

e

6.2.2.3 File-Names in Labels

The handler will supply the contents of the file-name fields (Word 3)
in labels. These are used only for control purposes during the execu-
tion of .SEEK's. The name consists simply of the two's complement of
the position of the recorded file's bit in the Accessibility Map; the
"name" of the first file on tape is 777777, that of the third file is
777775, and so on. A unique name 1is thus provided for each file physi-
cally present on the tape. Since there may be a maximum of 2524, files

present, legal file-name values lie in the range 777777 to 777404.

g

6.2.3 Continuous Operation

Under certain circumstances, it is possible to perform successive I/O
transfers without incurring the shut-down delay that normally takes
place between blocks. The handler stacks transfer requests, and thus

ensures continued tape motion, under the following conditions:

a. The I/O0 request must be received by the CAL handler be-
fore a previously-initiated I/O transfer has been com-
pleted.

b. The unit number must be identical to that of the pre-
viously initiated I/0 transfer.

c. The I/0 request must be one of those listed below to
ensure successful completion. The handler in process-
ing requests in continuous mode depends on receiving
control at the CAL level in order to respond to I/O

errors. The functions for which continuous operation
is attempted include only the following:

1. .MTAPE 3. .WRITE
2. .READ 4. . TRAN

d. With MTA, more than one logical record may be in a physical
block, so tape motion may stop if fewer successive .READ's
or .WRITE's are issued than there are records in a block.

- e. The previously-requested transfer must be completed with-
out error. In general, successive error-free READ's

(WRITE's) to the same transport will achieve non-stop e
operation. The following examples illustrate this prin-

ciple.

Example 1l: Successful Continued Operation

SLOT = 1

INPUT = O

BLOKNO = 0

READ1 .TRAN SLOT, INPUT, BLOCKNO, BUFF1l, 257

READ2 .TRAN SLOT, INPUT, BLOCKNO, BUFF2, 257

RETURN JMP READ1

S

The program segment in Example 1 will most probably keep the refer-
enced transport (.DAT slot 1) up to speed. The probability decreases
as more time elapses between READ1 and READ2, and between READ2 and
RETURN. Each .TRAN request causes an implicit .WAIT until its opera-
tion is completed.

Example 2: Unsuccessful Continued Operation

SIOT = 1

INPUT = 0

BLOXNO = 0 ,

READ .TRAN SLOT, INPUT, BLOKNO, BUFF, 257
STOP WAIT SLOT

RETURN JMP READ

The program segment in Example 2 will not keep the tape moving because
the .WAIT at location STOP prevents control from returning to location
READ until the transfer first initiated at READ has been completed.

Example 3: Unsuccessful Continued Operation

SLOT1
SLOT2
INPUT
BLOKNO = 0

READ1 .TRAN SLOT1l, INPUT, BLOKNO, BUFF1l, 257
READ2 .TRAN SLOT2, INPUT, BLOKNO, BUFF2, 257
RETURN JMP READ1

o
O N

This program segment will not provide non-stop operation because of
the differing unit specification at READ1 and READ2.

6.2.4 Storage Retrieval on File-Structured Magnetic Tape

The use of a file accessibility map as well as block identifiers in
Magtape file directories makes it almost impossible to retrieve the
area of a deleted file from a magnetic tape. The execution of the
deletion command (i.e., .DLETE) removes the name of the object file
from the file directory, and clears the corresponding bit in the File

Accessibility Map.

The only circumstance under which a file area may be easily retrieved
is when the deleted file is also the last file physically on the tape.
Under these conditions, the handler can retrieve the area occupied by
the deleted file when the next .ENTER - .WRITE -~ .CLOSE sequence is

executed. Users may also copy the active files to another device, re-

new the directory, and recopy the files.

6-11

6.3 DISK FILE STRUCTURE

6.3.1 Introduction

The DOS-15 disk file structure is in some ways analogbus to DECtape
file structure. Ordinarily, each disk user has a directory which
points to named files, just as each DECtape has a directory. The DEC-
tape has only one directory, but the disk has as many directories as
users have cared to establish. A single user's disk directory might
correspond to a single DECtape directory. A single disk file's size
is also limited only by the available space, as is true with DECtape.

Although DECtape directories may reference a maximum of 5610 files, the
number of files associated with any one directory on the disk is limited %
only by the available disk space. '

The DECtape directory is in a known location -- at block 100. Since
the disk may have a variable number of directories, the Monitor must
know how to find each user's directory. It therefore maintains a
Master File Directory (MFD) at a known location?, and the Master File
Directory points to each User File Directory (UFD). DOS-15 allows
only those users who know the Master Identification Code to have ac-
cess to any protected UFD's within the MFD. Figure 6-6 illustrates
the MFD. Appendix B is a flowchart of the Disk "A" Handlers.

6.3.2 User Identification Codes (uzC)

The Monitor finds User File Directories by seeking associated User
Identification Codes (UIC's), which are all listed in the Master File
Directory. The UIC is a three-character code that is necessary for

all non-.TRAN I/O to the disk. .TRAN macros use no directory refer-
eénces. A programmer may operate under as”many UIC's as he wishes, pro-
vided all are unique and none is reserved?. He may establish a new

User File Directory by (1) logging in his new UIC to the Monitor via

the LOGIN command, (2) calling PIP, and (3) issuing an N DK command. "
This establishes a new User File Directory, or refreshes (wipes clean)
an old directory under that UIC. (.ENTER will also create a new MFD &
entry and/or a UFD, if none exists.) Figure 6-7, User File Directory,

illustrates the organization of a UFD.

!On the RF and RK disk, the first block of the MFD is 1777 octal,
On the RP disk, the first block of the MFD is 4704¢ octal.
2The following are reserved UIC's: @e, 22?2, PAG, BNK, SYS, I0s, cCTP.

e,

2

Ry,

Word # Contents Description
a 7777717 Dummy UIC used by system.
1 nnnnnn Bad Allocation Table's first block number,
or 777777, if there is none. !
2 nnnnnn SYSBLK's first block number, or =1, if
there is none.
3 4 é+b1knum MFD entry size in bits #-2, plus the block
. .ﬂ— number of the first submap
&N :SIXBT UIC for this UFD . ‘
4N+1 nnnnnn Block number for the first block of this
{ UFD or 777777, if no UFD exists (as after
| PIP's NewDK)
4N+2 P +M - Protection code in bit #, plus the UFD
2 entry size for each file -~ o
4N+3 spare Unused at this writing
376 Annnnn Pointer to previous MFD block, or 777777
: if none. .
377 nnnnnn Pointer to next MFD block, or 777777 if
none.
Figure 6-6
Master File Directory
Word # Contents Description
8N . SIXBT Name of this file
8N+1 .SIXBT and its
8N+2 .SIXBT extension
8N+3 Tﬂ+blknum Truncation code in bit @, plus the number
of the first block of the file
8N+4 nnnnnn Number of blocks in this file
8N+5 ribptr Pointer to the first block of the Retrieval
Information Block
8N+6 Pg_l+ribwrd Protection code in bits @-1, plus the
first word in ribptr used by the RIB—- if
the last block of the file has room for
the RIB, the handlers will put it there,
and load word 8N+6 accordingly.
8N+7 crdate Date of file's creation -mmddyy (yy modulo 7%)
376 nnnnnn Pointer to previous block, or 777777 if none
377 nnnnnn Pointer to next UFD block, or 777777 if none

Figure 6-7

User File Directory

6-13

6.3.3 Organization of Specific Files on Disk

The Disk Handlers write out files in almost the same way that a DEC-
tape handler does. Disk file blocks, however, have a forward and
backward link. (Non-dump records are therefore limited to lengths

of 254lO words.) Further, upon receipt of a .CLOSE I/O macro, the disk
handlers £fill out a Retrieval Information Block (RIB). The RIB per-
forms the same functions as the file bitmap on DECtape, and also as-
sociates the logical sequence of blocks in the file with the physical
locations of the blocks on the disk. The disk handler uses the RIB to

implement .RTRAN commands and to delete files. Figure 6-8, The Retrieval
Information Block, illustrates a RIB.

After a user has created a disk file he can access logical records
sequentially via .READ commands, just as with DECtape files. He can
also access physical blocks of that file by referencing relative block
numbers in the .RTRAN command. (The .RTRAN commands require the file
be opened with the .RAND command.)

6.3.4 Buffers

The handlers break buffers from the pool into three parts: (1) File S
Information (about 4ﬂ8 words)* (2) the Block List -- addresses of

pre-allocated blocks (between 4 and 253lﬂ addresses, inclusive), and

(3) data buffer (2561Q
the breakdown of disk buffers.

words). Figure 6-9, Disk Buffer, illustrates

6.3.4.1 Commands That Obtain And/or Return Buffers

The following commands obtain buffers from the pool, and return them

immediately after execution:

.DLETE
. RENAM

The following commands obtain a buffer from the pool and do not return

it until a subsecuent .CLOSE is performed:

LEFSTAT
+ENTER
.SEEK
.RAND

*This number is determined by assembly parameters.

6-14

Word # Contents Description

»““”"sz«ﬁ R "
' g% nnnnnn Total number of blocks described by this
physical block.
1 nnnnnn First data block pointer.
2 nnnnnn Second data block pointer.
3 nnnnnn Third data block pointer.
376 nnnnnn Pointer to previous RIB block or -1 if no
previous RIB block.
377 nnnnnn Pointer to next RIB block or -1 if no
= next RIB block.

* Zeroth word of the RIB may not be zeroth word of physical block.
This occurs whenever the entire RIB will fit in the last data
block of the file.

Figure 6-8

Retrieval Information Block

408 Words* }= File Information becomes
'Current Set' when file active
(see 6.3.4.2).

More than 3 and (Addresses of Preallocated
less than 3778 Blocks (Block List or Temp
words List or TLIST)
) ? J
o 3 3
4008 Words Data Buffer

J

*This is not a fixed number. It is
different for RP, RK and RF.

Figure 6-9
Disk Buffer

6-15

The following commands return a buffer to the pool, if any was allo-
cated. ' e

. INIT
.CLOSE
+MTAPE (rewind)

6.3.4.2 The Current Set

The handlers retain information about the last file and .DAT slot
processed in an internal storage area. This area is called £he
"Current Set", and is swapped back to the file's buffer whenever a

command to a different file is used. Thus,

.WRITE to .DAT slot A
-WRITE to .DAT slot B

will swap the Current Set, but...

.WRITE to .DAT slot A
.TRAN to .DAT slot A
JWRITE to .DAT slot A

will not swap the Current Set.

6.3.5 Pre-allocation

The handlers pre-allocate blocks on the disk upon all .ENTER commands,
and whenever sufficient .WRITE commands have been issued to use up the

pre-allocated blocks. The number of pre-allocated blocks will be the
minimum of the number of free blocks on the device and the number of <
address slots available in the Temp List (block list).

When the handlers pre-allocate blocks, they £ill out the bit maps, and
immediately fill out the RIB and write it out in one of the pre~allocated

blocks.

Upon a .CLOSE command, the handlers give back unused blocks, and re-
write the RIB.

6-16

oA

&

e

™

The number of blocks in the Block List depends on the size of the
buffer, which is determined at system generation by setting the buffer
size. The larger the Block List, the faster will be output. Smaller
Block Lists may give more efficient allocation of core and disk space.
Smaller buffers save core. Further, the number of pre-allocated blocks
may affect concurrently opened files on a disk that is tight for space.
Thus, if the Block List is sixty entries long, and there are forty
blocks left on the disk, a .ENTER to .DAT slot will pre-allocate all
forty, leaving none for any subsequent .ENTER's to different .DAT

slots.

IOPS 70 will occur when there are less than four free blocks on the

disk when a handler tries to pre-allocate blocks.

6.3.6 Storage Allocation Tables (SAT's)!

The disk handlers use a Storage Allocation Table, in order to distin-
guish between allocated and free blocks. If more than one physical
block is required, the individual blocks are called Submaps.

Unlike DECtape, the Storage Allocation Table is never held in core.
When the handlers wish to preallocate some blocks, they read in the

required Submap, and write out the updated one.

Storage Allocation blocks use the following format:

WORD § Total blocks on the disk

WORD 1 Number of blocks described
by this Submap

WORD 2 Number of blocks occupied
in this Submap

WORD 3 First word of the bit map
(eighteen blocks per word)

WORD 376 Pointer to previous Submap
(ox 777777)

WORD 377 Pointer to next Submap
(or 777777)

The bit maps refer to blocks in numerical order. Thus, bit @ of word
three of a Submap will refer to block N, bit 1 will refer to block N+1,
and so on. The block is free if the corresponding bit equals @. Start-
ing and ending block numbers for all Submaps are retained in the hand-

lers. Bit ¢ of word three in the first submap, refers to block zero.

!The first SAT block is located at 17768 for the RF and RK system and
7648 for the RP system,

6-17

6.3.7 Bad Allocation Tables (BAT's)

Occasionally, a particular block on the disk will not fecord data cor-
rectly. In such instances, the handlers should be prevented from using
the bad blocks. Accordingly, PIP maintains a Bad Allocation Table.
Whenever a user updates that table, PIP will set the appropriate bit
in the Storage Allocation Table. The block is thus made unavailable.
Refer to PIP manual (DEC-15-UPIPA-A-D) for more information.

e

A

s,

CHAPTER 7

WRITING NEW I/0 DEVICE HANDLERS

This chapter contains information essential for writing new I/O de-

vice handlers to work in DOS.
7.1 I/O DEVICE HANDLERS, AN INTRODUCTION

All communications between user programs and I/O device handlers are
made via CAL instructions followed by an argument ‘list. The CAL
Handler in the Monitor (Figure 2-1) performs preliminary setups,
checks the CAL calling sequence, and transfers control via a JMP¥
instruction to the entry point of the device handler. When the con-
trol transfer occurs (see Figures 7-1 and 7-2), the AC contains the
address of the CAL in bits 3 through 17 and bits 0, 1, and 2 indicate
the status of the Link, Bank/Page mode, and Memory Protect, respect-
ively, at the time of the CAL. Note that the contents of the AC at
the time of the CAL is not preserved when control is returned to the

user.

On machines that have an API, the execution of a CAL instruction auto-
matically raises the priority to the highest software level (level 4).
Control passes to the handler while it is still at level 4, allowing
the handler to complete its non-reentrant procedures before debreaking
(DBK) from level 4. This permits the handler to receive reentrant
calls from software levels higher than the priority of the program

that contained this call. Device handlers‘which do not contain re-
entrant procedures (including all handlers supplied with DOS) may avoid
system failure caused by inadvertent reentries by remaining at level

4 until control is returned to the user.

If the non-reentrant method is used, the debreak and restore (DBR)
instruction should be executed just prior to the JMP* which returns
control to the user, allowing debreak from level 4 and restoring the
conditions of the Link, Bank/Page mode, and Memory Protect. Any IOT's
issued at the CAL level (level 4 if API present, mainstream if no API)

should be executed immediately before the

DBR
JMP *

¥ LOC+# CAL ARG.
1OC+l CODE
CAL .
USER PROGRAM) Q
—————— — — —|— — — |_LOC+N NXT INST — — — — — — — — et
y
MONITOR CAL HANDLER
\
DEVICE SAVE CAL POINTER
HANDLER AND FETCH FUNCTION
CODE

5

I0PS6

|

INITIALIZE HANDLER
AND RETURN BUFFER
SIZE

1/0
UNDERWAY

Ignored

LOOP ON CAL, OR
RETURN TC USER
ADDRESS, IF .WAITR

— — 1

10PS7

DATA MODE
?

ISSUE .SETUP FOR
EACH PI SKIP CR
API ENTRY VECTOR

UNPACK DATA (FROM
5 CHARS. PER 2,
18 BIT WORDS) AND
REPACK DATA INTO
2 CHARS. PER 16
BIT WORD.

SET UP TCB
CALL PIREX

TO INITIATE
FUNCTION

RETURN TO

USER AT
LOC+N

Figure 7-1
CAL Entry to Device Handler

lFor non-unibus devices both these branches would be replaced by a single initiate
function routine.

7-2

PI API

ENTRY ~-- via JMS @ ENTRY -- via JMS* API Device Address
Skip Chain (i.e., JMS* (INT))
l JMP* (INT) l
s 1. SAVE AC
o 1. SAVE aC 2. RETAIN AT INT THE P.C.,
2.. SAVE LOCATION § (IN- LINK AND MEMORY PROTECT
CLUDING P.C. LINK 3. IF FIRST TIME THROUGH,
AND MEMORY PROTECT) NOP PI COMMANDS SO IT
3. :gggiETgxigRN ON PI WON'T ALTER PI STATE
ON EXIT.

ERROR

CONDITION
?

PROCESS ERROR

carL
REQUEST

COMPLETLY
ROCESSED

CAN
BE
RETRIED

v

1

Y
1. SETUP FOR Y INDICATE ERROR i
COMPLETION OF IN HEADER WORD
CAL REQUEST. PAIR IOPSnnn

2. START UP I/O]

<

¥

RESET
(E.G., CLEAR I/0
BUSY SWITCH)

USER
RESPONSE
REQUIRED

- SETUP FOR RETRY INFORM USER
h AND START I/0 | AND WAIT FOR
HIS RESPONSE.

/

RESTORE PI IF PI
INTERRUPT AND
DEBREAK AND
RESTORE

RETURN VIA
STORED P.C.

Figure 7-2

PI and API Entries to Device Handlers'

'on a PI or API interrupt, the device handler is entered in Bank or Page mode,

depending on the setting of bit 11 in .SCOM+4. If = 1, Bank mode; if = @, Page mode.

o

exit sequence in order to ensure that the exit takes place before the
interrupt from the issued IOT occurs.

The CAL instruction must not be used at any level (API or PIC) that
might interrupt a CAL. A CAL at such a level will destroy the content
of location 00020 for the previous CAL.

Care must also be taken when executing CALS at level 4. For example,
a routine that is CALed out of level 4 must know that if a debreak
(DBR or DBK) is issued, control will return to the calling program
(which had been at level 4) at a level lower than level 4.

7.1.1 sSetting Up the Skip Chain and API (Hardware) Channel Registers

When the Monitor is loaded, the Program Interrupt (PI) Skip Chain and
the Automatic Priority Interrupt (API) channels are set up to handle
the TTY keyboard and printer and clock interrupts only. The Skip
Chain contains the other skip IOT instructions, but indirect Jjumps to

an error routine result if a skip occurs, as follows:

SKPDTA /Skip if DECtape flag.

SKP

JMP* INT1 /INT1l contains error address.
SKPLPT /Skip if line printer flag.

SKP

JMP* INT2 /INT2 contains error address.
SKPTTI /Skip if teleprinter flag.

SKP

JMP TELINT /To teleprinter interrupt handler.

°
°

All unused API channels, memory protect, memory parity, and powerfail,
alsp contain JMP's to the error address.

When a device handler is called for the first time in a core load, it
must call a Monitor routine (.SETUP) to set up its skip(s) in the Skip

Chain, or its API channel, prior to performing any I/0 functions.

et

The calling sequence 1s as follows:

g

CAL N /N = API channel register 40 through 77 (see User's
Handbook Vol. 1, for standard channel assign-
ments),

/0 if device not connected to API.

16 /.SETUP function code.

SKP IOT /8Skip IOT for this device.

DEVINT /Address of interrupt handler.

(normal return)

7.1.2 Handling the Interrupt

DEVINT exists in the device handler in the following format to allow
for either API or PI interrupts. The following is for UNIBUS devices

only:
ONLY1 LAC (NoP /LEAVE PI ALONE. WHEN API IS RUNNING
DAC DEVION /THESE REGISTERS
DAC DEVIOF /ARE AVAILABLE
DAC IGNRPI /THIS IS ONCE ONLY CODE
JMP COMMON
DEVPIC DAC DEVAC /SAVE AC
LAC* (7
DAC DEVOUT /SAVE PC, LINK, ADDRESSING MODE AND
/MEMORY PROTECT
e JMP COMMON
B DEVINT JMP DEVPIC /PI ENTRY
DAC DEVAC /API ENTRY; SAVE AC
LAC DEVINT
DAC DEVOUT /SAVE PC, LINK, ADDRESSING MODE AND
IGNRPI JMP ONLY1 /API IS OPERATING, SO LEAVE PI ALONE.
/PI INTERRUPTS ARE NOT POSSIELE, BE-
/CAUSE .SETUP EFFECTIVELY NOP'S PI
/SKIPS.
COMMON CAPI- /CLEAR API LEVEL "-! DONE FLAG.
DEVION ION /PI ALLOWS INTERRUPTS; API DOES A NOP.
DEVIOF IOF /API DOES NOP; PI TURNS IO OFF TO ENSURE
/NON-REENTRANCE AFTER ISSUING IOT'S.
LAC (TCB /GET ADDRESS OF TCB IN AC
- SIOA /PREVIOUS TCB ACCEPTED?
JMP .—-1 /NO
LIOR /YES. LOAD REGISTER IN INTERRUPT LINK
° /THIS CAUSES A BR7 (HIGHER LEVEL)
/DISMISS ROUTINE /INTERRUPT ON THE PDP-11.
LAC DEVAC /RESTORE AC.
DVSWCH ION /ION OR NOP.
DBR /DEBREAK AND RESTORE CONDITIONS
JMP* DEVOUT /CF LINK, ADDRESSING MODE AND MEMORY
/PROTECT.

If the Index, Autoincrement, or EAE registers are used by the I/0 de-

.

s,

vice handler, it is necessary to save and restore them.

The following is for non-UNIBUS devices:

ONLY1

DEVPIC

DEVINT

IGNRPI

COMMON
DEVION

DEVIOF

/DISMISS ROUTINE

DVSWCH

LAC
DAC
DAC
DAC
JMP
DAC
LAC*
DAC

JMP
JMP
DAC
LAC
DAC
JMP

DEVCF
Ion

IOF

DEVIOT

°

LAC
ION

DBR
JMP*

(NOP
DEVION
DEVIOF
IGNRPI
COMMON
DEVAC
(@
DEVOUT

COMMON
DEVPIC
DEVAC
DEVINT
DEVOUT
ONLY1

DEVAC

DEVOUT

/LEAVE PI ALONE. WHEN API IS RUNNING
/THESE REGISTERS

/ARE AVAILABLE

/THIS IS ONCE ONLY CODE

/SAVE AC

/SAVE PC, LINK, ADDRESSING MODE AND
/MEMORY PROTECT

/PI ENTRY
/API ENTRY; SAVE AC

/SAVE PC, LINK, ADDRESSING MODE AND
/API IS OPERATING, SO LEAVE PT ALONE.
/PI INTERRUPTS ARE NOT POSSIBLE, BE-
/CAUSE .SETUP EFFECTIVELY NOP'S PT
/SKIPS.

/CLEAR DEVICE DONE FLAG.

/PI ALLOWS INTERRUPTS; API DOES A NOP.

/API DOES NOP; PI TURNS IO OFF TO ENSURE
/NON-REENTRANCE AFTER ISSUING IOT'S.

/RESTORE AC.

/ION OR NOP.

/DEBREAK AND RESTORE COMNDITIONS

/OF LINK, ADDRESSING MODE AND MEMORY
/PROTECT.

If the Index, Autoincrement, or EAE registers are used by the I/0 de-

vice handler, it is necessary to save and restore them.

o

s
8 ‘&A‘ 3

.SETUP allows either API or PI, but not both for a single device. The
System Generator Manual gives the method for incorporating new handlers

and associated Skip Chain entries into the Monitor.

7.2 API SOFTWARE LEVEL HANDLERS, AN INTRODUCTION

The information presented in the following paragraphs assumes that the
reader is familiar with the system input/output considerations described
in the PDP-15 User's Handbook Vol. 1.

7.2.1 Setting Up API Software Level Channel Registers

When the Monitor is loaded, the API software-level channel registers
(40 through 43) are initialized to

JMS * .SCOM+12 /LEVEL 4
JMS* .SCOM+13 /LEVEL 5
JMS * .SCOM+14 /LEVEL 6
JMS* .SCOM+15 /LEVEL 7

where .SCOM is equal to absolute location 000100 and .SCOM+12 through
.SCOM+15 (000112 through 000115) each contains the address of an error

routine.

Therefore, prior to requesting any interrupt at these software priority
levels, the user must modify the contents of the .SCOM registers so
that they point to the entry point of the user's software level handlers.

Example:

. SCOM=100
LAC (LV5INT / set level 5 entry.
DAC* (.SCOM+13 ‘

°
e

LV5INT exists in the user's area in the following format:

LV5INT 0 /PC,;LINK,BANK/PAGE MODE,MEM.PROT.
DAC SAV4AC /SAVE AC

/SAVE INDEX, AUTOINCREMENT AND EAE REGISTERS, IF LEVEL 5

/ROUTINES USE THEM AND LOWER LEVEL ROUTINES ALSO USE THEM.

/SAVE MQ AND STEP COUNTER, IF SYSTEM HAS EAE AND IT IS USED

/AT DIFFERENT LEVELS.

/RESTORE SAVED REGISTERS.
DBR /DEBREAK FROM LEVEL 5 AND RESTORE
JMP* LV5INT /L, BANK/PAGE MODE, MEM. PROT.

7=7

7.2.2 Queueing

High priority/high data rate/short access routines cannot perform com- S
plex calculations based on unusual conditions without holding off

further data input. To perform the calculations, the high priority

program segment must initiate a lower priority (interruptable) segment

to perform the calculations. Since many data handling routines would

generally be requesting calculations, there will exist a queue of cal-

culation jobs waiting to run at the software level. Each data handling

routine must add its job request to the appropriate queue (taking care
to raise the API priority level as high as the highest level that
manipulates the gqueue before adding the request) and issue an interrupt
request (ISA) at the corresponding software priority level. The general
flow chart, Figure 7-~3, depicts the structure of a software handler

involved with queued requests.

Care must be taken about which routines are called when a software
level request is honored; that is, if a called routine is "open"
(started but not completed) at a lower level, it must be reentrant, or

errors will results.

NOTE

The DOS hardware I/0 device handlers do not
contain reentrant procedures and must not be re-
entered from higher levels.

Resident handlers for Power Fail, Memory Parity,
nonexistent memory violation, and Memory Protect
violation have been incorporated into the system
and effect an IOPS error message if the condition
is detected. The user can, via a .3ETUP, tie his
own handler to these skip IOT or API channel regis-
ters.

s,

LVSINT

SAVE PC,LINK,AC,
AUTO-INDEX REGS,
MQ,STEP COUNTER
AND CONDITIONS

OF EXTENDED MODE
= AND MEMORY PROTECT

RESTORE SAVED
REGISTERS

/ DEBREAK

RAISE TO HIGHEST
LEVEL THAT FROM
e MANIPULATES THIS

LEVEL 5 QUEUE \LEVEL /

REMOVE ENTRY
FROM QUEUE

DBK BACK TO
LEVEL 5

/GO HONOR THIS\
{ JOB REQUEST
\VIA A JMS /

15-0094

Figure 7-3

Structure of API Software Level Handler

7.3 WRITING SPECIAL I/0 DEVICE HANDLERS

This section contains information prepared specifically to aid those o

users who plan to write their own special I/0 device handlers for DOS.

DOS is designed to enable users to incorporate their own device hand-
lers. Precautions should be taken when writing the handler however,

to ensure compatibility with the Monitor.

Here is a summary of handler operation. The handler is entered via a
JMP* from the Monitor as a result of a CAL instruction. The contents
of the AC contain the address of the CAL in bits 3 through 17. Bit 0
contains the Link, bit 1 contains the Bank/Page Mode status, and bit 2
contains the Memory Protect status. The previous contents of the AC
and Link are lost.

In order to show the steps required in writing an I/0 device handler,

a complete handler (Example B) was developed with the aid of a skeleton
handler (Example A). 1In addition, Appendices A and B are complete
flowcharts of the DTA and the A version of the disk handlers. The
skeleton handler is a non-reentrant type (discussed briefly at the
beginning of this chapter) and uses the Debreak and Restore Instruction -
(DBR) to leave the handler at software priority level 4 or at a hardware

level for interrupt servicing (if API), and restore the status of the

Link, Bank/Page Mode, and Memory Protect. Example A is referenced by

part numbers to illustrate the development of Example B, a finished
Analog-to-Digital Converter (ADC) I/0 Handler. The ADC handler shown

in Example B was written for the Type AF@1B Analog to Digital Converter.

This handler is used to read data from the ADC and store it in the

user's I/0 buffer.

The reader, while looking at the skeleton of a specialized handler e
as shown in Example A, should make the following decisions about his

own handler. (The decisions made in this case are in reference to &
developing the ADC handler):

a. Services that are required of the handler (flags,
receiving or sending oOFf data, etc.y = By looking
at the ADC IOT's shown in the Reference Manual, it
can be seen that there are three IOT instructions
to be implemented. These instructions are: Skip
if Converter Flag Set, Select and Convert, and Read
Converter Buffer.

oot

The only service the ADC handler performs is that of
k receiving data and storing it in user specified areas.
This handler will have a standard 256-word buffer.

b. Data Modes used (for example, IOPS ASCII, etc.) -
Since there 1s only one format of input from the
Type AF01B ADC, mode specification is unnecessary in
Example C.

¢. Which I/0 macros are needed for the handler's specific
use; that is, .INIT, .CLOSE, .READ, etc. For an ADC,
the user would be concerned with four of the macros.

(1) JINIT would be used to set up the associ-

ated API channel register or the interrupt
& skip IOT sequence in the Program Interrupt
Skip Chain. This is done by a CAL -(N) as
shown in Part III of Example A, where (N)
is the channel address.

(2) .READ is used to transfer data from the ADC.
When the .READ macro is issued, the ADC
handler will initiate reading of the speci-
fied number of data words and then return
control to the user. The analog input data
received is in its raw form. It is up to
the programmer to convert the data to a
usable format.

N (3) .WAIT detects the availability of the user's
buffer area and ensures that the I/0 trans-
fer is completed. It would be used to ensure
a complete transfer before processing the re-
quested data.

(4) .WAITR detects the availability of the user's
buffer area as in (3) above. If the buffer
is not available, control is returned to a
user specified address, which allows other
processing to continue.

d. Implementation of the API or PIC interrupt service routine -
Example A shows an API or PIC interrupt service routine
that handles interrupts, processes the data and initi-
ates new data requests to fully satisfy the .READ macro
o request. Note that the routines in Example A will oper-
ate with or without API. Example B uses the routines
exactly as they are shown in Example A,

During the actual writing of Example B, consideration was
given to the implementation of the I/O macros in the new
handler in one of the following ways:

(1) Execute the function in a manner appropriate
to the given device as discussed in(c). .INIT,
.READ, .WAIT, and .WAITR were implemented into
the ADC handler (Example B) under the subroutine
names ADINIT, ADREAD, ADWAIT (.WAIT and JWAITR).

Wait for completion of previous I1/0. (Example B

shows the setting of the ADUND switch in the ADREAD
subroutine to indicate I/0 underway.)

7-11

(2) 1Ignore the function if meaningless to the device.
See Example B (.FSTAT results in JMP ADIGN2) in
the dispatch table DSPCH. For ignored macros,
the return address must be incremented in some
cases, depending upon the number of arguments
following the CAL (see Chapter 3).

(3) 1Issue an error message in the case where it is
not possible to perform the I/0 function - (An
example would be trying to execute a .ENTER on
the paper tape reader.) In Example B, the handler
jumps to DVERR6 which returns to the Monitor with
a standard error code in the AC.

e. Special considerations for UNIBUS device handlers
When new handlers are written for devices on the UNIBUS
in a UCLS system (RK based or RF/RP based UCl5 option)
the following has to be considered.

Since communication between the device handler on the
PDP-15 and the driver task running under PIREX on the
PDP-11 is through Task Control Blocks (TCB), space in
the Common Memory (memory that can be addressed by the
PDP-15 and the PDP-11) must be provided. The system
as supplied by DEC has space reserved in the Resident
Monitor for 3 user defined devices/programs/tasks,
(refer to Section 2.9 for more information). This TCRB
must be properly setup (refer to the UCL5 Software
Manual, DEC-15=XUCMA~A-D for more information) berore
the handler calls PIREX to initiate the operation.

Driver tasks (TTT)! running under PIREX report errors

by setting the appropriate code (XX) in the device

error status table in PIREX (refer to UCl5 Software Manual,
DEC~15-XUCMA~-A-D for more information). DOS-15

system prints out this error message, which appears

as follows:

IOPSUC TTT XX
Users have to decipher this message. An example of this is,
IOPSUC LPU 4

which reports that the LP11/LS11 line printer is not
ready. There is no error message type out from the
handler. This method of error handling is incorporated
to permit error report during operation of these
devices/tasks etc., under PIREX when their corresponding
handlers are not present in core on the PDP-15 (e.g.,
during Spcoling).

!Each task running under PIREX has a 3 character code assigned to
it which is present in the PIREX error table at assembly time.

-

-

Seen

o,

After the handler has been written and assembled, the Monitor must

" then be modified to recognize the new handler. This is accomplished

by the use of the System Generator Program (DOSGEN) described in the
DEC-15~USGNA-A-D manual.

When the system generation is complete, the PIP program (refer to
DEC-15-UPIPA-A-D) must be used to add the new handler to the I0S UFD.
At this time, the user is ready to use his specialized device handler
in the DOS-15 system.

7.3.1 TCiscussion of Example A by Parts
Part 1 Stores CAL pointer and argument pointer, and
picks up function code from argument string.
Part 2 By getting proper function code in Part 1 and
adding a JMP DSPCH, the CAL function is dis-
patched to the proper routine.

Part 3 This is the .SETUP CAL used to set up the PI
skip chain or the API channel register.

Part 4 Shows the API and PI handlers. It is suggested
these be used as shown.

Part 5 This area reserved for processing interrupt and
performing any additional I/O.

Part 6 Interrupt dismiss routine.

Part 7 Increments argument pointer in bypassing argu-
ments of ignored macro CAL's.

7.3.2 Example A, Skeleton I/0 Device Handler

/CAL ENTRY RAUTIANE e
JGLORL DEV, /¥UST BE OF FORM AAa,
JMED=3 /yMED (MONTTOR ERROR DIAGNOSTIC)
nEV, nAg DVCALP /SAVF CaL POINTER
NAC - OVARGP ZAND ARGUMENT POINTEW
1S7 DVARGP /POI~TS 10 FUNCTION ~0ODE
LAGS CVARGPR /CET CODE
AND (77777 /REMOVE UNIT N §1F APPLICABLE
182 DVARGP /PQINTS 70 Cale?
TAR {JMP DSPCH
nNAC nsPCH INISPAYEH WlTH
nSPOH X X /MONTFIED JUMP
JMP OVINIT A1 s G IvpT ,
JYP JVFSAT /2 3 (FSTAT: (DLETE, ,RENAM -
JMp DVSEEK /3 = SEEK
JMR NVEMNTR /4 = (ENTER
JMP NYECLER /5 = CLEAR
Jme IVELOS /6 = CLOSE
JME nYUTAP /7 s (MTAPE
JMP YWREAD /1% 8 (READ
JMB DVHRTE /11 = (WRITE
JMP NVAATT 7312 = 41T
JMP DVTRAN /13 =, TRAN
ZILLEGAL FUNCTIONS M ABOVE TARLE CANE™ ASH
/ CoJMp DVERKG
/FUNETION FONE ERROR
TVERRS LAa) /ERROR CQDE 6 L
JMP & (o MED®] /70 MONITOR e
/DATA MONE EGROR
“VERR7 AW 7) /FRRORP CONDE 7
JMP & (o MED®] /%0 ;,;D;sz\rng

/OEVICE ~AT =sEADY

“VERR4 | Af (RETURY /RETURN (ADURESS 1 ANDLEH)
/70 RETJRN TC WHEN 0T READY
JCONCITIAN HAS BrEN REMAVED

nAC# (o MED

LAC (4 /PARAR CANE 4

JMP & {MEDeq /70 “ONITOR
/170 UNDERWAY L 0nP #
nVBUYSY nBe /BREAK FraM (EvE, 4

BLES NYCALP /L0090 O CAL

/NORMAL RETUUN FROM CAL
"VCK NBR JHREAK FROM LEVLF 4
UMP & OVARGR /RETURN AFTER CAY AND
ZARGUMEANT STRING

/THE DVINIT 20UTINE MUST INCLUNDE
/A GSETUP CALLING SEQUENCE FDR

s

JEACH FLAG CANNECTED TO AP!
/AND/OR Pl A(AT SGEN TIME), .
/THE SETUP CaLLING SEQUENCE 1St

DVINIT AL N /N = AP CHANNE| REGISTER
B /(47 =77y, N = g IF ~0T CONNFCTER
/70 ARY
16 /10P8 FUNETIoN CnDE
SKPRINnT /SKIP 19T 70 TEST THF FLAG
LoviaT /ADDRESS 0OF INTERRUPT

JHANDLER (P OR aP1)

/THIS SPACE waAY RE USED FOR 1/0 SUBROUTINES

/INTERRUPT HANDLER FOR AP OR PI

ANL YL LAE (NQP
NAG DEVION
DAC DEVICF
NAC DVSWCH
NAC 1GNRP]
JMP COMMON
Cove 1L MAC DEVAC /SAVE AC
LAC® (> /SAVEIPC, LINK, RANK/PAGE MADE
nAC ORVIVIVEY /AND MEMQRY PROTFCT
JMP COMMON
paoviad MP DEVPIC /Pl ENTRY
NAC NEVAC /APT ENTRY) SAVE AC
LAC DEVIANT /SAVES PC, LINK, BAN</PAGE MONE
DAC nEVAUT /MEMQRY PROTECT
IGNRP] jup LYY /LFAVE P1 ALONE
A COMMON nEVCF /ENARLE P! QOr NOP
‘ NEVION 10N /FNARLE P OR MOP

/THIS Al THE AREFA DEVOTED To PROCESSING INTERKRUBT 4D
/PERFORMING aNY ADOITIONAL 1/0 DESIRED,

NEVIOF 10F /NDISABLE PI pR Npp
NEVINnT /NIMISSAL BEFORE INTERRUPT
/FRAM TW1S 10T 0eCURS

/INTERRUPTY MANDLFR BISMISS RntiTE

nYDISM AC DEVAC /RESTORE AC
NYSWCH 10N /10N 2R yoP
N8R /OERREAC ANU RESTORF
JMP s NEVOLT /LINK G 3ANK/PAGE MoN[r, MEMORY
/PROTECT
@ /1F THE HANDI ER USES THE AUTQINGREMENT , [NDEX

"/OR EAE REGISTERS, THEIR CONTEMTS
/SHOULD 3E SavED AND RESTOREN, FUNCTIONS
/POSSIRLY I1GMCREN SHOULD CONTAN

/PROPER INNEYING TO RYPASS

/CAL ARGUMENT STRING

/
/CODE Y0 BYPASS [GNORED FUNCTIONS

/

NVIGNZ2 182 VARG /BYPASS FILE POITES

ey

AMPp nyex

0 a , ‘
)) J

L03r3’ b

9d430V duWr / eg

Sy Q3400 iTevi 3ACEY NI SHQIAINNS Tve31/ 2¢

/ Tg

Wylt=elys enu3qV dnf 4 £20039 ¥ 28dd. 25

Llymt=zT/s Llvwmgy dii" ¥ prdBL9 b Tedv. 62

Jalym®=1T/7 948730V dwl H ECRPLY ¥ eS¢’ Be

Lv3yt=pls QvINCY dwl 4 TGRLE9 » (TIav. L2

Tdyiwt=ds INOLQV dWr H GLeB09 w 9Tude G2

507029/ INOIQY dwl Y GLRB49 B GT2U. G¢

AV30° =67 9uu3Qv dnl ¥ £208¢9 8 vTeay v 2

#3pNA0 by 9EYIOT dwl ¥ §CdRBy & ET2<0 £e

¥338°s8/ 2~91QV dnl ¥ opLCARg o 2Tedy 2é

AYL Iyt 3100 LY 840227 2NOIQY dwih ¥ YL2069 2 TT49- 1¢é

LINI®=T/7 LInICY dinl ¥ L28249 v UTad. 2z

drlf J314100n/ X X M2dSC V 2vZeve v Lesd 51

HAIM M0 vasSi0r/ MldSu avd ¥ L429pd w Y30 Y

HOdSO dwl)? av.i ¥ paTars 8 wdvd’ L3

2 ¢ V3 0L sinlpds d2dvCyV xJl 4 16T8py & Youw 91

1000 1397 d9avQv 22% ¥ 14T¢2s & 270, S

3000 NOLLONTY 04 Sinlods d98vQV XQ1 4 16Ty ¥ C374° A

S3LNI0d IN3W 94V ONY/ dTHY(QY ave ¥ TeTape o« Taldav IS

di1iNICd 190 3AyS/ d47V2QV ava etel 4 gsTups n S206n A

/ Tt

(O1LSORDYVIU Youa3 vl INOW) OIn/ $=U3n’ v £22282 A

281=xq! V caédvy 6

a0v THeN9* &

/ L

UV ¥v3ITD GV Y GANTD H344ne 2 3LugANUD LuvIn/ I ASRF AR L-IIR] v ¢Ie8tos 9

(Q3aSITe LI~y ST OISu3aANGD v JNv/ ' g

038V3ATD ST 9VI4 Jav) Ly iANUD ghvy 123738/ paelas=080y V pieTdL 12

L35 s 9v74 nOESHIANDD 41 dIxs/ T2V L2450V v TRl &

/ [4

MITUNYH JQv/ T

Tov Y 1 39va

I93I2AUO0D /Y dT04Y I0J IsTpuerH 90TaSQ TeIoads ‘g stdwexdm €°¢€°L

7-16

4333
/
LG 280G dn3u¥nl 4M01S UL a3Sp ST 1ddmgv/
4345000 T4 Sy 038N S IMQv/
HOLIMG AvmyaONn 331730 4064 ST gnNavs
Halnl0d 240wy 8344, InlT 34 el gwuidvs
3L 10d M344N9 INIFHHNG dud ST dHIQy/
HNS»0340 3Mhk 9. 18048 ¥4 ST wsH2Qgys
/
CITLINOS Gy TvNLoY At INTHNC 39vH04S/
¥4 Gdsr 399 vddy Iva AWt D S9vE SpOIAdNdg ML/

/
Neinkgdys T 910w dwi
LNy WA. 40183V
/
Fallvs AvMgaUnn Opf0 Sy 10 INTLO0Y DUV dULS/
/
30U 4A¥Y sAINTY/ dulsuv di! 13dMQv
MW A1 3UGD df=idg 41wsS/ QLApov R AC Imoy
AT 30N dii=L138/ 24" v annay
Ldaxwirel 90 Txugvs 1120y dHETOY
LJ1 dlvs apv/ 450V CERIR
JLOD U TLIue g Sdpl aniigty 81 wSHIOVv
TI4 VHY [dvesGa/ Fas 192 JOWagY
dUHyQY O 1
5380 WL Ll owAnL3Es 498y 20vU
100°
(Trwioiny 4719 ni14408 HyONv LS/ 962} %0
530’
4¢1% 440" NENL3g 01 xl/ dU¥vav xR0 LINIQY
/

A0TAI0 INL Milwm U3LVIDDSSY 9994 HIvE H047
dNL3AST ¥ F0NTTANT LSOW INIANIM ANIQY 3WAs

HOLINOwWw g4/ TeCdw?) sdh(
L3000 wuMyds L AYTT LuE3gY
HOMHE 300w vivl/

HOLINOW gd/ TeGAw®! adhl
9 3gUD HOwmnI/s Y Ry edE3Ov
/
HOHH3 3000 NUTLONA 4/
/

& Oy € <X € ¥ X 00

<<

§L2829
Lyaayt

P A
IN YRR
lvLaoe
Tty
Tegtas
LAY LR
IR
16Téhy
161894

0410

TaTivey

641029
L2094

661229
9eP094L

GELE
Prug.s
IRNAT,
ANV
Tevu!

vgaRy

Levid

Y&
ERAN A

o
§2uis

89

7-17

_ VLOHd WIns
JUUW X IIANIT DY JAYS/
Jv 3AySs

«ld uG 1dv

TV u3L4v NHNL9Y/

v 13497 Wpud Myis8s

LIX3 yud *uonls

CANTATL ol Luv sy

¥y344n8/

40 ONIRNTOa8 Ly 9vipe Ind Ny
lvd ¥30v3H LSyd 139/

008 WNSAD MY 0834/

POAM ANNOD gdOM oy32/

BILNNCD guow N1 1 34015/

delig Sez)0%mte e [49y

HALN10a *9uY | duandwly

¥3UY3IR 430vT MU Ll dyuls ¢sHv/
L1 3408y

MIAINIOd HIuvan 43 440d INTT [99/
Hudy3d fgh/

LAMY. I Sdol/

AlD w=9 GL18/

30w Ly w07/

Ll L3Sy

TYT 04 MOVH 099L35 gvp IR Y4

T= ril" LI L9% 10w 4l

AVMYIAONN ST Gyl 41 3798 Gl HI AW/

)
Laar3e
La0oqv sl 4¢!
() adV¥7
Svauy avad aldogy
NIAWD D AR
Tdengl avd
HIMSCOVY avd
AN0agY avi
NGlaav ok 2¢
dON) 2v7 TAING
/
Hod 470NV Ldliyd3in]/
daHy v adwWl
Hgd Inglay
dadygy XG0l en9lgv
280V
dHI0V xql)
dHIGV XG1
WEMDIQV WZ 0
Ladm@v W2
LIvES avu
dludygy 2071
douvQy X0
dHEI0Y oy
dyyv avil
quHyQy 23V
L¥HI0Y dWr
V25
vzl Ny
d47vHQ0v el A
Lngw avd
ASIHUY duWr
YWIIYZS
UNGIQY 2V Gv3yav
/
/
dvagy adnl
HEO ASTigov
dw01 AvmyIGND 071/
T-910¢ dixl®
VNS
UNIG T avl Llwvmgy

& X X X orx XX oxr o

fad

TIXXXEAX X XX e o <d Y <€

<t x

o]

2atavy
19142¢
tatipy
91T3u9
GITave
svTdpe
evtavey
L1Tope
i9lage

TaTyes
I A2NN"N]
TSlgpe
124N ¥

CReYY Y
Seddyy
1281 A"
Tvaeey
AN
1qtaege
Talavey
9Ly
STy
Talgee
GQZyaay
BEEavL
L41286
gvataee
LE20P D
LYBACY
Trenee
LS eBae

061329
YOS eaL
QLA2LY
BuldlbL
LEQQDe

Tas

Y xox

ooy

[a 3

oo

XX Y X Ywixo X

@

T owr

Squd
QGad..
rGRa.
LGud.t
6D
Taede

G,
Lyeg.
Iyl
AT
PoLdx

o

g

7-18

Jy 3404538/

AVaQv

403r3°

3iy SSIWSIT ¥3NONVH LdNyu3iND/

SYNA20 101 slvy Wodd Ldngy3int JFu0438/

d4CH B0 Jld 398vsidy

Lix3s

AVPEIUNT 3DTAI0 ¥V3ID/

2# =3Qv3H I 340185/

InwN0D ylvd G¥oM 0nvs

WASHS 34Clg Oy °*Onl/

T# ¥30VIH NI 34018/

ATINY sily 8/

PSHd UM 3MyH/

dly= 401 ol/

age 346 Avk/

Hiva [nfiln J80OM. 34AAW0IIS3A/
9109 433 gh/

3430aW0d 071 glv/

L1 3u0)85/

WNSHIIWMD UaVy

434000 H1vd Qalm °*Onl/
¥ilinI0d ¥i440g *onl/
¥344N8 H38N Nyl vLVd 34018/
SIDIAIC =3WL0 M0d 19 FTuvn3/
M3d4ndg »3L¥IA0D (Qvad/

L0yd P Hk/

ACOn X34 19°0d 3AyS/
OV IAVSPANINDG T4V/
AdLNT D1d/

e

wslaav
aNngy
dreav
WS®IQV
drgQv
gtugy
PAALLE)

LodrQgyv
1500QY
ImQy
WSMDQY
WENM2QY
Lodmgy
¢do0yv
4950V

TAANY
Lruogy
Lelaay

avoayv
aldogv
NUWWO Y

Ay wWSIqQQy 4 6102 ¥ teTdo
/
350V v 2810 ¥ §£ptou
401 LNGoUV ¥y 22¢28L ¥ <Hlov
dwl 4 ppTP29 v Ppias
WZ U M LE2APT ¥ ApTO«
aJVC ¥ 9%2@9¢ ¥ L£TQ.
avi ¥ bvEOAPE M 9¢ T
x01 ¥ 98eRdry ¥ <£10.
2dV 3 ¥ 9898 & pETaV
anNy ¥ 291pEg 4 vgles
AA: ¥V 020@vL H 22T
yHMS vV pgfpees ¥ 1eta
avi V 022pL ¥ 28T0
91 ¥ Tv0@de w Letdw
dnr 8 2vT209 o 9210
261 4 gyvadpy v G213y
ava ¥ pvidve M p2Tae
Gvi ¥ pedgpe ¥ £2Td¢
Xgl ¥ Trigpy ¥ 221404
xQal ¥ «Cdby & T2T3¢
adV0 ¥ 0092 4 ¢2ldx
NOT NOIDQgY ¥ evhdal 4 LT1ds
ayddv NOWWQD v 21818l ¥ 911dv
dWlr Tduangl 4 L0009 ¥ STTI
a0 ¥ 26Tape v vITES
ov7 ¥ TTTgge & €110
ava ¥ 0algve ¥ 21104
dWl INIAQVY ¥ 6iitap9 v Ti1ed
4Rl 4 911029 ¥ <TI0d

132%))

W @

26T
6v T
gy 1
Lv¥
97
1A
by
A
AR
Th1
091
687
85t
(et
3¢9
a9l
2%
£EtT
2T
187
281
6271
g2t
L2s
921
T4
$21
¢zt
229
121
et
6171

39vd

s

7-19

- V
SAINIT »0Hu3 ON C9TRE=s341S

Te V QuBLLS ¥ 29Tew

Te v 0000w ¥ T91Gu

Te ¥V QRB26L ¥ GOTaV

Te v BIOLOZ H LeTa

Yo v PAvOQe H 96100

Tv ¥V vogere d 6610y

Te M O LEDREY ¥ PGTUe
and’ vV 298030 661
/ 8g%
Ad3IH J3AVS v/ ¢ avaayv V 200d¢0 ¥ £6TOu leT
dW W4 N7 qds ¢ L00pav V 2206090 o 2614 9¢1
ILNICH LNAWN9yY Oav/ B do48vay VY 290280 ¥ T¢Tuy g6t
Y¥3IN10g 9D dqvy 2 d1voQv V g20003 ¥ agtav bel
LO0Ud WIWOIA0W X3nNTTy LIUQQY edWl ¥ 26lg29 ¥ Lpi0u 06T
380483y UV My3Iug4Q/ HEa V bPESBL B Yplou 26T
do’s y0 Nplv/ NOT HOMSQY vV 2vEaRL M Gpldw Te1

T80 |] 49vd

RS
g

7-20

p?7

G6

Tat

)

827

T4

66 T4
¢vT (9
evl

#G21

#ge

152}

8eT XA
] 124

94

vet

ve

2y

2g

®9g7

18T

a3
pQl
#Lgt

#G61
91

IONIYI A3y

2y

3eT
wel

LA
621
F A

9L

91

6% T

“pIT
£9

8¢

£67T
#gvl

Bey
2ct
pat
ge

6v 1

907
¢l

6%
vl
p21

617

vt
$5042

ayl
#6uT
1T
#eT
&6
A
y1T
#EG
LA
6
#%4
2T
¥
#§
#p
L7
&y
@gh
ol
Té
1/
L
&l
12"
g
LT a0
(13
111
#ey
®PG
1T
11
L2]
él
617
LI
96
g1

rpare
LLuyi
T Ty

CIWEr Y
Ldidu
YT 1pe
Lyams
Thaew
Yo
{Rddk
Gy Taw

¢Tgtee
AT

Ley2u
Pl
SLvgy
LA
L AN
by T Ao
dddaw
QUTow
CeTey
120~
PR IR
PEZAL
IARTA
Tigu
1AL
AN
Yolai
Ly

lalpl

4 9

Q3w*
TAINY
14UNg !

xQi
Hld80
NUWWOJ
Lodmay
ImQv
LIvymuy
uNnay
HaIMSAV
dUL8Uv
isQv
asay
Gv3yQyv
HyQy
anrg 10y
LINIQY
eNuIay
TNOTQY
LhH3qy
9uuady
Wslggy
Yagv
Jldadyv
Andaayv
Livoacgy
Qunaayv
WSMIOV
NOTDQV
ANtoay
G820V
dIvoQyv
Jvaav
AsNEay

- douvay

39vd

7-21

g

CHAPTER 8

B0OSS5-15

BOSS enables DOS users with a card reader and a line printer to run
jobs sequentially, with a minimum of operator intervention. BOSS sup-
ports a subset of the DOS system programs, and adds a line editor, its
own resident and nonresident routines (called Resident BOSS and Non-
resident BOSS), and the Procedure Files. Paragraph 8.1 describes Pro-

cedure Files. Figure 8-1 shows which monitor supports each system

program.

The DOS programs run by BOSS are identical to those run by DOS. Ex-~
ceptions are the Resident and Nonresident Monitors, which are ex-
plained later. BOSS expands the information on Control Cards into

a series of commands in the format expected by the DOS system pro-
grams. Nonresident BOSS does this command expansion, and stores the
expanded commands in a disk file, the Run Time File (RTF). Since DOS
programs expect to communicate with an operator at a teleprinter, BOSS
feeds the expanded commands to the programs via .DAT slots assigned

to TTA. In BOSS mode, therefore, BOSS attaches .DAT-2 to the Run Time
File, and directs most teleprinter output to the Line Printer. Pro-
grams can force I/0 to the teleprinter by setting bit 4 in .SCOM+52,

and proceding with macros directed to TTA.

Whenever bit @ of .SCOM+52 is set, the System Loader Interface attaches
the Resident BOSS code to the Resident Monitor. The main purposes

of Resident BOSS are to (1) ensure that Bbss will retain control of

the teleprinter, (2) feed commands to programs via the Run Time File,
(3) properly route internal Monitor commands, such as .EXIT, .GET and
.PUT, and (4) direct teleprinter output to the Line Printer. Figure
8-2 ‘illustrates the connections between the DOS Resident Monitor and
the BOSS Resident Monitor that accomplish these changes. Figure 8-3,
the flowchart for Resident B0OSS, further describes Resident BOSS.

Resident BOSS communicates with Nonresident BOSS by TRANing informa-
tion to and from the first block of Nonresident BOSS. Nonresident

BOSS gains control on all error conditions, such as IOPS, operator
abort, Time Estimate exceeded, and after a BOSS15 command. Figure 8-4

is a flowchart of Nonresident BOSS.

UOT3ID®SISIUI S0AQ/SS0d ‘T-8 2anbrg

8690-6G1I

/ dwna

31vadn Nve.168
WOJ34S NYHLS
SL-OHOVIN

H31vd

S31i4 NVHLHOS
3HNA3J0YHd J1N23IX3 B NIVHD
did aML
34d'g dvd1S1009

d43av07T ONDINIT

43avoT
W3 1SAS

Ssog
IN3aIs3y

1id3

$S0g
1IN3IJISTIHUNON

dOLINOW
AINIAISTIYNON

1ad

1v304

\ HOLINOW
\ LN3aIs3d 4

N3IDS0a

g

RESIDENT BOSS15 INTERFACE TO RESIDENT MONITOR
AND USER PROGRAM OR SYSTEM PROGRAM

PROGRAM CONTROL

== = = — — INFORMATION FLOW

DISK

**IF QDUMP WAS SPECIFIED THEN THE DUMP
WILL TAKE PLACE BEFORE GOING TO

RESIDENT BOSS15

HANDLER

l RESIDENT BOSS15

NOTE: SEE RESIDENT BOSS FLOW CHARTS

FOR DETAILS.

TTY
DEVICE

LINE
PRINTER
HANDLER

RESIDENT MONITOR

10PS ERROR FROM
1/0 HANDLER OR USER

10PS 4
RETURN

T

DAT UFDT
! - NORMAL
I EXPANDED 1oPS
. ERROR ERROR
H i PROCESSOR PROCESSOR
BACK TO USER AFTER)
JREAD WAIT TO .7 OR SWITCH USER .READ i i 1oPs 4
IF USER “CAL" WAS * READTO 2707 '
NOT A.READ it
- CORE
i Q 1Q
i 8
INFO TO & FROM DISK E H i
? CHECK FOR 10PS 4] R
i 3 OR tQ WANTED** N : 1
¢ | '
| ! !
E TRANSFER ERROR l i
ko — —fa— - & DATA TO 15t BLK OF T
| | | nRBOSSIS I i 1
i 1
v
| | I ID,
! v 1
74 iNPUT
é i B FROM TTY
i ;
BOOTSTRAP
; 1] —
i B ! I ; psype ouTPUT
] l N PROCESSING ToTTY
| ! TRANSFER CARD i
[_{_ __| DATATO 15t BLOCK
OF NR BOSS e | ___E__ TELETVPE
I EXIT 3 E HANDLER
E PROGESS 1T i‘ : i ITTYPED
USER WANTS TTY SWITCH USER WRITE feg—! i | .
TO-3TO 6 UNLESS 1

BACK TO USER
AFTER WRITE

JWAIT OR IF NOT i

A WRITE CAL
AND USER DOES
NOT WANT TTY

TTY 18 SPEC. BIT 4 OF
SCOM + 52 SET

P —_———
! BOSS15
CONTROL
| caro
DATA
| BACK FROM
| DATX
| !
NORMAL
CARD
CARD READER DATA

HANDLER

T
|
_.1

-
|

-
u

+

|
I
|
!
I
|
I

TO

DATX

.READ WRITE READ
X -2

*USER OR SYSTEM PROGRAM

3
OR ANY DAT ASSIGN TO TTY

*NOT NON-RES BOSS15

Figure 8=2

Connections Between DOS Resident
Monitor and BOSS Resident Monitor

8-3

e
T0

~——®

AL™ ENTRY

TTY

N —— L

15-0659

IOPS Error

Expanded Control Q
Routine: IOPS Error Processing,
EXITLT Routine via .SCOM+72 S
BOSS@

(JMS Entry)

Set Expanded Error
flag for Nonresident
BOSS

Store error data in

Resident BOSS .ERR,

.MED, and in the ad-
dress pointed to by

+ SCOM+37

Go to CTRL®
0 Routine:
MANSAV

wanted_

N
A

Monitor TRAN in the first block of
Nonresident BOSS, starting at
C(.SCOM+2)

Starting at C(.SCOM+2) #% 445, trans-—
fer IOPS error data to core image of
block

| set bit 5 of .SCOM+52 |

Monitor TRAN block out hd
to first block of Non-
resident BOSS

Points within the Resident Monitor which transfer control to Resident BOSS - 15

Figure 8-3
Resident BOSS-15

8-4

DAT3.B

(.DAT-3 OR ANY .DAT SLOT
ASSIGNED TO TTA.)

L

COMPOSE A .WRITE
TO .DAT+6, USING
CALLER'S DATA
MODE

1. CLEAR BIT 4 OF
.SCOM+52 (ONLY
IF - .DAT SLOT)

2. MAKE SURE TELE-
PRINTER IS NOT
BUSY

DAT2.B

USING CALLER'S BUFFER
ADDRESS AND WORD COUNT,
COMPOSE A .READ TO
.DAT-7, THE RUN TIME
FILE (RTF) ON THE
SYSTEM DEVICE

¥

ISSUE .READ TO .DAT-7,

AND AWAIT COMPLETION

READ
THIS LINE
BEFORE

WE REACHED
THE END OF FILE
OF "RTF"

/

SET BIT 2 OF
.SCOM+52

INCREMENT THE
LINE COUNT

TRANSFER TO
TTA
.WRITE N
? iy iy
Y
MOVE USER'S BUFFER
(MINUS THE HEADER
WORD PAIR) TO RES-
IDENT BOSS (ALWAYS
428 WORDS)
¥
ISSUE .WRITE TO
.DAT+6 (THE LINE
PRINTER) AND WAIT
FOR COMPLETION
. -]
¥
RETURN TO
USE AFTER
CAL

Processing for I/0 Macros addressed to .DAT slots -2 or -3, or any slot assigned to TTA.

Points within the Resident Monitor which transfer control to Resident BOS-15.

Figure 8-3 (Cont.)

Resident BOSS-15

LEXIT TIME OUT Operator .PUT AND .GET

Processing Processing Abort 4T Processing
EXITA TIMGON TTDDTR BOSS2
§
SET BIT 3 SET BIT 7 e
IN .SCOM+52 IN .SCOM+52
SET BIT 11 SET BIT 1@
IN .SCOM+52 IN .SCOM+52
B.EXIT CHANGE CTRL Q
ENTRY POINT
SET BIT 17 VIA .SCOM+72

IN .SCOM+52

i

SET UP .SCOM+43 &
44 TO BRING IN THE
NONRESIDENT MONITOR

GO TO
CTRL Q ROUTINE
AT MANSAV

B.EXTf
i

CLEAR BIT 4
OF .SCOM+52

MONITOR TRAN FIRST
BLOCK OF NONRESI-

DENT BOSS STARTING
AT C(.SCOM+2)

!

MOVE CARD IMAGE FROM
CD'S HANDLER'S BUFF=-
ER TO BLOCK IMAGE,
AND TRAN THE BLOCK
BACK TO NONRESIDENT
BOSS

ISSUE .INIT'S TO
EVERY ENTRY IN THE
MASS STORAGE BUSY
TABLE

1

ZERO THE NUMBER OF
BUSY TABLE ENTRIES

f

RETURN TO .EXIT
PROCESSOR AT
EXITA + 1

Points within the Resident Monitor which transfer control to Resident BOSS~-15

Figure 8-3 (Cont.)
RESIDENT BOSS-15

8-6

Start Address 420

AP

[Execute bank bit initialization codel

[save value of TIME OUT clock, and disable it |

/
Disable CTRL C and set up CTRL T address; save contents

of .SCOM+42, set MICLOG bit and clear user bit

A4
Set UFDT =15 and =14 to "CTP" and delete all files in
the CTP UFD named PRCFIL PRC

-

I Perform .ENTER on .DAT-=15 for PRCFIL PRC; set line count = ﬂ]

Save current logged~-in UIC in D.12; force
"CTP" to be logged-in UIC

.
]Save system device code in D.ll]

AFirst
~ time loaded™
after a BOSS15 >
command to "

lSet bit zero of .SCOM+5ﬂ

an abort

taken
wJlace,

End
of Run
time file
reached

Set bit 2 in Job status word
Print, "END OF RUN TIME FILE
REACHED BY USER" on the LP

T 3

TRy
Nexgvfaqe
Figure 8=4
Nonresident BOSS

8-7

From Preceding Page

user issue

Neither . PUT

Print on Line Printer,
"USER DID A .PUT"

Set bit 11 in Job
Status word

Set bit 10 in job
Status Word

Print on Line Printer,
"ILLEGAL .GET BY USER"

N|

there an
IOPS er=

Set bit 5 in Job
Status Word

Print on Line Printer,
"TERMINAL ERRORcoocso”

GDUMP

[set bit 6 in Job Status Word|

4

Print on Line Printer,
"LOAD ERROR..ccoocces"

Set bit 16 in JOB
Status Word

Time
estimate
exceeded

W
Set bit 3 in Job Status Woz%ﬂ

Set bit 7 in Job Status Word
Print on LP, "OPERATOR ABORT"

Print on Line Printer, "TIME
ESTIMATE EXCEEDED"

Figure 8-4 (Cont.)
Nonresident BOSS

8-8

FROM BOSS
MODE REQUIRED

THERE BEEN
A JOB ABORT

NXTCRD [N
1 ENDJOB

Not a CONTROL CARD

DECODE

Normal CONTROL
CARD Return

CESSING PIP
COMMANDS

CLOSE OUT PIP
COMMAND PROCESSING

NEXT.

)

ISSUE .CLOSE
TO .DAT-14

]

(Other)
$END $CRT $ADD

ENDJOB

Figure 8-4 (Cont.)
Nonresident ROSS

8~9

BOSS in
process forf\\\\AN
PIP com=
~urand

7
Write line in "RTFF[Mite “PIP" line into "RTF" |

y
[Count Iine and set PI1P switch| &

>, - J
L N

Set up to get character from card:
Skip over "$" and pack character in
CARDP

o | BIRC.1

|Get a charactéﬂ

Is
it a
Carriage

|Pack the character]

Does
character

count =

74 0

Ye
K

|Pack a Carriage RETURN]

Figure 8-4 (Cont.)
Nonresident BCSS

oS

IS
there
an active
job .~

| Clear Job Status word |

Make sure the Time Out
Clock will be disabled
s upon exit from NR BCSS

Set bit 8 in .SCOM+52
(Job Active Flag)

Store JOB I.D. into account in=
formation buffer

|

72
[Get a character‘

1 Is
N it the v

terminator
code

Pack character into
account buffer

Pad with nulls until nine
characters have been packed

9
charac=
ters reached

Y ~ 1 7
S

i\
Enter date and start time
into account information
buffer

Start elapsed time clock, by
depositing zero into .SCOM+34

[print Job sStart Message on LP|

“SUBSTT

Figure 8-4 (Cont.)
Nonresident BOSS

8-11

(Create an ADD File)

SET CRT FLAG

1

SET UP TO PACK
INTO CARDP

i

PACK FILE NAME
AND EXTENSION,
IF ANY

USE DEFAULT
FILE NAME "TMP"

!
L

USE DEFAULT
EXTENSION "ADD"

#q_______.____ﬁ_

PERFORM .USER TO
.UFDT-11, WITH
USER'S UIC

!

PERFORM .ENTER TO
.DAT-11 FOR FILE

READ THE NEXT CARD

CR.ERR

PRINT ON LP, "ILLEGAL PIP card

COMMAND FOR ADD FILE"

o

!

Normal’
return

SET BITS 4 & 17 IN
JOB STATUS WORD

i

.CLOSE .DAT-11

-CLOSE .DAT-11

CLEAR CRT FLAG

WRITE CARD INTO
ADD FILE

Figure 8-4 (Cont.)
Nonresident ROSS

8-12

e

&

set bit zero of ADDSTA
Set bit one of SCOM+56

|Zero directory entry blockl

[5et up to pack into ADDFIL'

|Pack file name and extension, if any|

2

Il

extens

card

|Use default extension "ADD™|

[Zero bits 2-15 of ,SCOM+52) |Clear Job Active Flag]

Enter finish and
elapsed time into

nforma-

tion buffer, and

FETRN
current .
~gcontrol card,” Account I
N STOB
o .CILOSE .DAT=14

) Is X
current .
control card e

SJOB

Inhibit éérd Reader
(Set bit 1 of ,SCOM+52
L

w\

Set End Job Flag
(bit zero of Job Status
word)

Q‘éNJ OB

{Reopen Job Procedure file]

4

time to h

Convert elapsed

hmmss

4

Next Page

Figure 8-4

(Cont.)

Nonresident BOSS

8-13

From Preceding Page

N
FILE EXIST q
INCREMENT ALTERNATE
FILE EXTENSION
(962,003,..777)
PERFORM .ENTER TO .DAT-14
(ACCNTG @¢1); SET UP THE Y
BUFFER WITH 176@@2, X, -1
WRITE OUT A TEN-BLOCK CALCULATE BUFFER POSI- N FiigEggigi ¥
FILE, AND CLOSE .DAT-14 TION WITHIN BLOCK FROM . &
é ENTRY COUNT !
RESET FILE ENTRY COUNT TO MOVE ENTRY INTO PROPER
ZERO . BLOCK IMAGE, VIA .RTRAN
I\UPDATE ENTRY COUNT BY 1—,
TELL OPERATOR
ON CONSOLE TTY
ENDJMG RENAME ACCOUNT FILE
TO NEW ALTERNATE
NAME AND EXTENSION
PRINT END JOB MESSAGE —_—

AND SECOND LINE, CON-
TAINING ID, DATE, S.
TIME, F. TIME AND RUN
TIME

-CLOSE .DAT+6

SET BIT 9 IN .SCOM
+52 (EXIT BOSS FLAG)

CLOSE QUT PIP COM~-
MAND PROCESSING
T

CLOSE OUT PIP COM~-
MAND PROCESSING

T

¥
WRITE AND COUNT -
"LOGOQUT" LINE TO "RTF"

S
S

Figure 8~4 (Cont.)
Nonresident BOSS

8-14

Restore .SCOM+42 with
user mode bit (bit 17)
set; restore user's

UIC .

Write out BOSS line in
"RTF" (BOSS~15) and
count it

Store line count in bits
- P=8 of .SCOM+75

“RTE" .
~ longer than
777g
lines

Tssue .INIT to "RIF";
zero all BOSS reg- . /
isters and bits iy N Print on LP, "RUN TIME

i, [close "RTF" and ADD files FILE TOO LONG" j]

Make "SCR" the login UIC

TRAN out first 4008 words
of Nonresident BOSS

%t Close ADD file, .INIT "RTF"
Clear various bits in and .ENTER a new “RTF"

. SCOM+52

Indicate "RTF" is empty

+EXIT
(To NRM)
DMPP R

I Write out "DUMP"™ line to "RTF"

Disable the Time Out Clock, so
% the user gets a complete dump;
count two lines

J

Write out "ALL" to "RTF" and
ent with an ALT MODE

Figure 8-4 (Cont.)
Nonresident BOSS

8-15

8.1 PROCEDURE FILES

To each BOSS command there corresponds a disk-resident ASCII file,
called a Procedure File. The Procedure File contains DOS commands.
When DOS executes the commands in the Procedure File, it carries out
the function specified by the BOSS control card. The DOS commands
in the Procedure Files contain fields (for instance, a file name)
that Nonresident BOSS fills in with text strings from the control
card. These fields are called, "Variable Fields". Before executing

the DOS commands contained in the Procedure File, all the variable

fields have to be resolved. This process is very similar to =
& macro expansion, where (1) DOS is the assembly language, (2) the

BOSS command name is the macro name, (3) the contents of the BOSS

control card are the macro arguments, and (4) the Procedure File is

the macro definition. The expanded DOS commands are put in a Disk

File, called the "Run Time File (RTF)". The RTF can contain the ex-

pansion of one or more Procedure Files, up to 7778 IOPS ASCII records.

BOSS expands Procedure Files strictly on a text string, character
basis. It has no knowledge of the intrinsic function of each BOSS
control card, except for JOB, SEND, $CRT, and $SADD (S$SEND, CRT, SADD
have no Procedure Files) Appendix C contains a listing of all standard

Procedure Files.
8.1.1 Procedure File Format

In order to ensure successful expansion, all Procedure Files must fol-
low a strict format. The first record of the Procedure File must be

a control record, with parameter information. The first record may
also contain comments, because BOSS interprets only pertinent informa-—

tion, and ignores the rest. The numbers g, 1, 2, 3, and 4 specify

ke

different options. Aall other characters are ignored. The option

digits can appear in any order, and anywhere on the record. The op-~

tion specified by each number is given below:

@ - Expanded Substitution (default, if "3" not given
explicitly)

This option specifies that the Procedure File is to be
expanded according to the normal rules of substitution,
which are given below.

1 - Open Ended File (default, if "2" not given
o explicitly) :

This option instructs the Nonresident BOSS Monitor
to leave the RTF open after expanding the current
Procedure File. BOSS then searches for the next
control card.

2 = Closed End File

This option instructs Non-resident BOSS to close
the RTF after expanding the current Procedure File,
and to execute the DOS commands in the RTF. Pro-
cedure Files corresponding to commands that may
possibly be followed by "Data Cards" should be

of Type 2.

3 - Direct Substitution

This option indicates the BOSS should not expand
the Procedure File according to normal rules.
Refer to paragraph 8.1.2 for information on
Direct Substitution.

4 - Test Mode

This option indicates that BOSS should echo the
Procedure File expansion on the Line Printer.
This allows a check on the Procedure File.

i, The following combinations are illegal:
g and 3
1 and 2

If BOSS finds an illegal option combination, it will print,
ILLEGAL PROC FILE
and search for the next control card.
BOSS uses all other records in the Procedure File as macro definition
A records. Records after the first one are all Macro Definition Records.

For each such record, a record will be written in the RTF. Each Macro

Definition Record has the same format. Two types of fields are used:

K-fields and V-fields. K-fields specify constant character strings
that will be written into the RTF exactly as they appear in the Pro-
cedure File. V-fields specify variable character strings to be sub-
stituted from specified strings on the Control Cards. Each Macro
Definition Line of a Procedure File can contain anv number of K- and

V-fields, in any combination. V-fields are delimited b 8-sicns.

P

K-fields are delimited by adjacent V-fields. or the end or beginning

of the record. Since there are only two types of fields, only one

need have delimiters. Two adjacent V-fields, however, reguire two

~—.
adjacent @-signs.
K-fields
K-fields may be any string of legal IOPS ASCII characters, except the
@-sign.
&
V-fields
A V-field has the following format*: -
AQn
_ U@n v-field
v = Dnn (r K-fiel he
(@)
The two @-signs delimit the field. The first part of the field (a,
D, U or 0) is a card-position identifier, and must be present. It
identifies the position on the current Control Card of the character
string to be substituted in the RTF. The legal combinations are:
AQ@,AQL,....AQ9 e
Uugg,ugl,....ug9
D@@,DPL,....DY9,D1Y,...D17
o]

With the exception of D1g through D17, each of the above vosition
identifiers corresponds to a unigque character string of the Control

Card, according to the following scheme:
$CMD; 0 AQ@:D@F (UFP) ; APL:DPL(UGL) ;. ... ;A9 :DP9 (UGI)

The D1f...D17 position identifiers do not correspond to character
strings found on the Control Card, but rather to character strings
defined by BOSS. Thus,

D1@ - Unused

D11 -SIXBT representation of the System Device Code
('"DK' or 'DP' or 'RK')

D12 - Current Logged in UIC

D13 - .SIXBT representation of Carriage RETURN

D14 - .SIXBT representation of ALT MODE

D15 - Unused

D16 - Unused

D17 - Unused

!

* Standards for this format description are identical to those speci-
fied in Chavter 5 of the DOS-15 User's Manual, DEC=15=0ODUMA=B=D,

8-18

The parentheses in a V-field must be present. They are used to speci=
fy a default string. The default string is used in case the string

on the Control Card specified by the position identifier is null. A
set of parentheses must be included, even if the default string is
null. The default string itself can be a variable, resulting in nested

17

variables. Nesting has a theoretical limit of 2 variable fields.

8.1.2 Direct Substitution

When processing a Direct Substitution Procedure File, BOSS places the
fields on the Control Card into the RTF just as they stand with only
leading spaces ignored. That is, BOSS does not necessarily expect to
find file names, and so on, as with normal substifution. Fields on
the Control Cards are separated by semi-colons (;), and are processed .
in a serial manner. The ampersand (&) is used for a special purpose.
It causes the current record being composed for the RTF to be termin-
ated with a Carriage RETURN, and written out, and a new record started.
This is so that the limit of seventy-five characters per line will not

be exceeded.

There are only two legal field types within the Procedure File. They

are as follows:

1. A@@ through A99
2. DI1g through D17 (System Defined)

In making up Direct Substitution Procedure Files, the following rules
must be followed:

1. The first line must contain a three (3). This declares
the file to be direct substitution.

2. The "A" fields must appear in sequential order, starting
at Ag@P. Each "A" field can be used only once within the
Procedure File.

3. The "D" fields can only be "D1g" through "D17". They
can be used any number of times, in any oxrder.

4. Variable expressions must follow the standard V-field
format, as in expanded substitution.

8.1.3 Example of Procedure File

The following example shows a tvpical Direct Substitution Procedure
File, the Control Cards used to call it, and the resulting lines

produced in the Run Time File.

Procedure File'- Map PRC

3 PROCEDURE FILE TO RUN CHAIN WITH NO OVERLAYS
CHAIN

@AgP (TMPXCT) @@D14 () @

@agl(sz)eepl4()e

GAQ2 (FILTMP) @Q@D14 ()@

epl4()e

Control Cards as They Appear

$MAP TEST1;SZ,VIC/ABC,DEF,NAML, &NAM2, ;
$*@1l NAM3,NAM4 ,NAMS5/;TEST1,SUBl,SUB2,&;
$*@2 SUB3,SUB4,SUB5

Run Time File Lines

CHAIN)

TEST1 (ALT MODE)
S%,VTC/ABC,DEF,NAM1,)

NAM2 ,NAM3,NAM4 ,NAM5/ (ALT MODE)
TEST1, SUBl, SUB2,)
SUB3,SUB4,SUB5 (ALT MODE)

(ALT MODE)

Note: Dl4=Altmode, <ALTMODE> is an Altmode, and <CR> is a
Carriage Return.

8.2 BOSS-15 ACCOUNTING

BOSS has a very simple accounting mechanism. It keeps an account
record for each job in a random access file in the CTP UFD. Hence,
the file is protected, and can only be accessed after successful ex-

ecution of a $MIC command.

The name of the accounting file is ACCNTG nnn. (The first has an ex-—
tension of @F1l.) Each file is ten physical blocks long, and contains
enough information for 31@ jobs, thirtv-one per physical block. When
BOES f£ills up one file, it increments the extension, and starts a new
one. Every time a job ends, BOSS checks whether ACCNTG @@l exists.
If it does not, BOSS creates one. If it does, BOSS checks whether

it is full. TIf not full, BOSS makes a new entry; if full, BOSS
lpirect Substitution File

8-20

searches for the first unused extension number. If all extension num-
T, bers have been used (up to 999) BOSS prints this message to the opera-

tor on the teleprinter:

MAX NUMBER OF ACCOUNTING FILES REACHED
PLEASE PROCESS AND DELETE THEM

Every time the system manager processes an accounting file, he should
delete the file.B01O

For each completed job, BOSS writes out an eight-word record to the

accounting file. The records have the following format:

Word # Content

1 Job I.D.,
2 in
3 .SIXBT

Date, packed mmddyy
Start Time, in hhmmss
End Time, in hhmmss

Run Time, in hhmmss
Terminal Job Status Word

o ~J Oy U >

A word whose contents equal 7777778 immediately follows the last job

gy ¢

accounting record in each physical block of the accounting file.
8.3 B3.PRE

Figure 8-5 is a flowchart of B.PRE, the 30SS Line Editor.

e

LInitialize +DAT slots =14 and -ig1

Zero FLAG

Read updated file name and exten-
sion from ,DAT=-2

Has
file name

been en-
tered

Assume updated file name equals
the original file name

N

Read file name and extension
from .DAT=2

CDREAD

L, Read a card from ,DAT+5

or EDIT EDIT

card
neither

l

2.

Set FLAG to 1
Issue LENTER to ,DAT=-14

—

L

Write card image to .DAT-14I

[Read a card image from .DAT+S!

Y

.CLOSE .DAT-14 |

|

(+EXIT)

Figure 8-5
B.PRE

8-22

P

e

Porform .SEEK to .DAT-14, and
JENTER to .DAT-15

IZero Ll, L2, LNCNTJ

Which
geie:e Line Edit Insert
ubst.,
an
Print error
message {Increment LNCNT
Read a record from
LEXIT .DAT-14 and write
|tncrement LNcNT] it into .DAT-15
Read a record from
.DAT-14 and write
T it into ,DAT=15

[Read a record from .DAT—14]

iIncrement LNCNTJ

|Read froh .DAT+5]

v

| .cLose .paT-14 s-19|

N

(LEXIT
X

Write card image
to ,DAT-15

]

-~ ¢ o e

Figure 8-5 (Cont.)

Cpom R
=

APPENDIX A

DECTAPE "A" HANDLER (DTA.)

The following flow charts describe the operations of the DECtape
"A" Handler.

Entry from

CAL Handler

1. Save pointer to CAL
2. Save subfunction or data mode

Call
for

Call
for .DAT
slot A

",DAT }
slot A in-

slot B in-
active

«DAT
slot C in-
Y active /
Swap descriptor Swap descriptor A
blocks for ,DAT blocks for .DAT -
slots A and B slots A and C

L J

-~ ~N

Is

there more than
I0PS 22 Y orle output file on
ERROR the same unit

ERROR N
IOPS 17 ’T

Get function code, and make up
dispatch instruction

there a
buffer for
this slo

Request a buffer '

J

Next Page

-

A-2

From Preceding Page

ERROR N a buffer
IOPS 55 available
Set up word pointers within the new
buffer == e.g., buffer+377 = link
A
e Dispatch to function codel

.INIT .OPER .SEEK .ENTER .CLEAR .CLOSE «MTAPE .READ JWRITE <WAIT « TRAN
(1) (2) 3 (4) (3) (6) (7) (8) (?) (10) (11)

LINIT (Function Code #1)

1. Give user standard buffer size (377)

2. Set input or output file indicator

3, Wait for previous I/O to finish for
DEC tape

+INIT for
this core

1. Do .SETUP to API and Skip Chain

2. Test buffer size. If not 440
or greater, terminate with an

I0PS 78

Return to
user after

CAL

g

(.OPER, Function Code #2)

o

N ERROR
I0PS 6

Dispatch to requested sub-
function and process

Exit to

user after
CAL

(.SEEK, Function Code #3)

there an
active file
on this
slot

ERROR
IOPS 18

Was

‘T for ERROR_
~output 1
(Loop back to user CAL)
Bring directory into core, if not al-
ready in
&
File N ERROR

in direc=
tory

\ IOPS 13

1. Obtain starting block number
2, Read the first file block into core

Return to
user after
CAL

g

iy,

LENTER (Dispatch Code 4)

ERROR
0opPs 7
(Loop back to user CAL.) Underway
Bring Directory into core, if not
already in
file in
directory,
Set indicator so that file is deleted
upon a ,CLOSE to this .DAT slot
L
lSearch directory bit map (in core) for first free blocﬂ
was N ERROR
a block a= 10PS 15
ailable
Set up to write out this block, when
the time comes
Exit to
user after
.CLEAR
(Dispatch Code 5)
{(Loop back to user CAL,)
ERROR
I0PS 10

1. Clear out file bit maps
2., Clear directory block with the S¥YS
block bits set in the directory map

Exit to
user after
CAL

(Loop back

to user CAL) _-
<

-CLOSE
(Dispatch Code 6)

Clear switches
Has

+WRITE

1.
20

Clear bit in bit maps
Clear switches

been execu=
ted -

1l. Put End=of=File
indicator in buffer

2. Write out last block
in file

Was
there an
old file by
this name

The followi;é is done on

the in-core bit maps:

1. Zero its bits in the
directory bit map

2. Overwrite its file
bit map with the

new_one

~

Write out updated directory and file bit map

L <

Cd \ R

Return the buffer to the
system

Return to

user after

-

« READ
(Dispatch Code 10)

(Loop back to user's CAL)

|

Pass 001005,776773
sequence to user's !
buffer 1, Transfer line to user's
' buffer

2. Set data validity bits

Was
EOF just

read

g

Set EOF indicator

Any
more data
in buf-
fer

I Read in next block of file]

N
<

Exit to

| user after

Sy
- %

+WRITE
(Function code 11)
Loop back to user's CAL €- nderway S

Set "wrlte executed"”
switch

any more
room in
current
block

L,l' Write out block; 2, search for next block]

as
a block ~ ERROR

avall- I0PS 15
ble

~y
/Y

1. Transfer user buffer to handler
buffer
2. Compute Checksum

LTransfer the block

\

"Exit to

usexr after

+WAIT & ,WAITR
(Function Code 12)

+WAITR

A\'4
Set CAL pointer to specified address]

derway

Exi% to
user after
CAL

Exit via
CAL pointer

it

- TRAN
(Function Code 13)

o
o %,

‘ /
Loop back to user CAL <« b4 underway

N
1. Set up block to transfer in or out
2. Set up core address-=1
3, Set up word count
4, Start transfer

T Exit to
user after
CAL

INTERRUPT SECTION

Entry from
PI or API

Save information
to restore later

e,

Was

block 100
v 8 _Aight ead in
direction direction®” Y
N
[Change direction] [Change direction]
& Set directory in core switch
Set up Current Address & Set up current address - Al
word count for read or and word count for -z
write search N

IOPS 12

(ERROR Logic)

as
N there a Y

Y Oon

Search

Change
direction

Accept data as is
Get rest of data

N

select er-
ror

Read Status Register "A" and
save it

Clear Status Register "A"
Disable interrupts

Set return in .MED (register 3,
bank @)

Clear I/0 underway switch and
enable CTRL P

+MED

Give IOPS 4

1.
2,

Set I/O underway switch
Set up Current Address and
Word Count for search

ERROR
I0PS 12

l Start up DECtape]

el
Cd

1. Restore PIC interrupt entry and AC
2. Turn interrupt on, if this was a PIC
3. Debreak and Restore

Exit to

interrupted
code

A=-10

R

o

i s

gy

APPENDIX B
DISK "A" HANDLERS

The following flow charts describe the operation of the Disk "A"

Handlers.

5

—— =~ CAL Handler

Entry from

l. save the pointer to the:CAL
2. Save the .DAT slot number and subfunction
code (bits 5-8 of LOC+@)

First
Call in

this core
oad

b4

Do .SETUP for PI and API interrupts

Determine number of plattersg]

.

Set up Stan-
dard TCB
format in
the RKTCB

At
least one
platter,

IOPS21

Calculate the maximum block number, for- use
at .CLEAR time

—
Calculate size of the TEMP list for pre-allocated
blocks, and set the BUF.OK switch (SGEN size ok)
.W;;;\\\\\¥
or .WAITR X WAIT
N
|
i v isk
Branch to I/0 Under-
user's CAL way

== Fall through to "IO.OFF"

Next Page

f e

g

S

From Preceding Page

10
2.

Calculate pointers to the arguments of the CAL
Save step counter and MO for EAE

N . TRAN

b4
[save current set]

"Current"
slot equal to
new slot

b4

First
call after
new coxe load

or a .TRAN

Save the current set in its appropriate bufferl

Make new .DAT slot the "current" one

// FINDBY \\

Find or set up

the Busy Table

entry for this
.DAT slot

Save status of Write Checkl

- TRAN

Next Page

B

(DISPCH)

From Preceding Page

the current
slot have a
buffer

W

b

- Buffer
large enough

for file 3 I0PS 70
struc=
ture
Request a buffer (.GTBUF)
Buffer N I0PS 55 o

available

1. save pointer to buffer, and zero entire buffer
2. Complete the Busy Table entry

1. Get UIC from the Busy Table entry

2. Bring in the Current Set from buffer

3. Set up pointers to; User's Directory Entry, tem=-
porary block list, Data Block Words 0,1,2,3,376 &
377

k=

Note: .TRAN, ,WAIT and .WAITR
have already been inter-
cepted,

E

s

i

Gpen

output files
~. on this

Wipe out entry in UFD, and

10
2. Give back pre-allocated blocks
~
l. Return any allocated buffer
2. Zero any old busy table entry
3. Make a new entry in the busy table
4, Save Write Check bit in busy table
5. Indicate "current® ,DAT slot is

Zexro

Exit to

LOC+4

Any N\,
sequential
or random I/0
to this .DAT slot
going '

IOPS 10

IOPS 6

From Preceding Page

Branch

on subfunc—

-DLETE « RENAM +FSTAT - RTRAN « RAND

Lgearch for file] Initialize RIB

number to zero

~<SEEK~
or ENTER
since last
-CLOSE

IOPS 63 I0OPS 10

Delete fhe file 1. Rename the file

2. Give back all 2. Insert current
blocks date cessful

3. Load AC with the
first block num-

/ ber

1. Return aquired
buffer

2. Make "current"
.DAT slot zero

[

+FSTAT for
this file

Search for
file
Found)

I0PS 51,
71 or 13

Exit to
LOC+3

1. Place file size in
(. FSTAT) LOC+3

2. Read in first RIB

3. Move RIB to top of
Y buffer, if neces-

1. Place device type in LOC+2 of CAL sary

2, Search for file

ile™
protec-

Load AC with first Zero the AC TOPS

block number
L T

e

EXITAD

st

s

{.RTRAN)

JRAND N
executed 2 s I0PS 11

‘relative ™~
block number
/ number of
“file blocks

5
te I0PS 66

B ¥

Calculate RIB block number, and the desired pointer’s
position within that RIB block

roper
RIB block
in core

Depending on the location of the desired block, rela=
tive to the RIB block in core, read in the next or
preceding RIB block

iy

ropexr
RIB block

now in
core

Y

N

Fave pointer to desired data blocgJ

I

RF RF or RP/RK

RP/RK
Store starting word number and the number Assume transfer starting at word zero,
- of data words desired through word 375, and set parameters
accordingly

Word ™~
parameters
imply transfer

~0of link

IOPS 67 K

Use word count given in CAL during disk
pack input

lSet direction switcﬁ1

i

.

Set up user's buffer to receive the link words for bloéﬁ]

File N\
one block
long

N

Set both link
words to =1

Current

W/ ¥
Set links in data block from adjac-
ent pointers in the RIB block

“this the

first
block
Set backward link to 1. Set backward link to || [1. Set forward link to Set forward Iink
adjacent pointer in adjacent pointer in adjacent pointer in to adjacent poin-
RIB, and forward link RIB block RIB ter in RIB, and
to =1 2. Read in next RIB- block 2. Read in previous RIB backward link to
and adjust RIB number block and adjust RIB =1
indicator in the cur- number indicator in
rent set the current set S
3. Set forward link to 3. Set backward link to
first pointer in the last pointer in the
new RIB block new RIB block
Vil N P v
SETRE > Y

Set up driver with the Set up driver with the
correct block number correct word number
L]

Bring in or send out
required block or data

Exit to
LOC+5

-

Ly,

kL

e

unclosed ™S
file on this

IOPS 10

this file™_
successfully
FSTATed

N

FINDER \

TOPS 13,
51 or 71

obtain file \ERROR
infornation /

Found File

File

truncated IOPS 10
Sprotected” IOPS 64
N

[7Read in first block of file]

Exit to
LOC+3

) ~Has ~
this slot ™

» Y
been opened JOPS10
and not//////
" closed®
ENTE ﬁh;:
FINDER
Search MFD and UFD
START = Pointer to
SAT word 3
T A] 7 ®
(No entry in MFD {(Entry in MFD, but (UFD exists, but does (UFD exists, and con=-
for this UIC) UFD is empty) not contain a file by tains a file by the

the given name) given name)

1. Save number of the last MFD block read
2. Save file name

ENTSET
Preallocate
some blocks

™

=

Read in last MFD block
|

Did
FINDER
find an emp-
ty MFD slot

|

Set pointer to free slot
found by FINDER

GETNXT
Get next
block number

block
with free

1. Make forward 1ink of last MFD block
¢ point to the next block

2. Write out the block

13. _Cleax the buffer

1. Set up entry pointers
2. Insert new UIC, entry size and zero protection
code {unprotected) into new MFD entry

*That is, has a .RAND, .SEEK or .
+ENTER been issued without a Rt
-CLOSE?

™

MFDSE

{ Is directory

~ CKDIRP

protected?

ENTSET
Preallocate
some blocks /

Read
which
entry

in the MFD block
contains proper

4

Ob
fo

GETNXT
tain a block
r the UFD

W

Set up entrie
MFD block and

s in the Busy Table, the
the Current Set

Write out the
buffer

MFD block and clear the

4

Set up a new
with a back 1
Set pointer t
receive the n

UFD block in the buffer,
ink of -1

o indicate location to
ew entry

I0PS63

/ WIPOUT \
Remove file \
entry from /
\the UFD /

OTOL:

l. sSet "01d file in" switch
2. Set pointers to UFD block
nurber and the first word
of the olAd file's entry
(to be used at .CLOSE)
CKDIRP L .
Check directory)2rotection 10PS63
rotection Violation
OK
“ENTSET
Preallocate
some blocky
“bid
. FINDER
N 1 Y

lRead in first UFD blockl

/ SEARCH
Look for

a free

entry

ocate a
Aﬁ\\\\\zfee entry
in UFD

28

Read in UFD block with{’
free entry

Load "UFD1" pointer in
Current Set with this

block number

/N
GETNXT
Obtain a
block #

1. Change forward link of last UFD block
(still in core)

2. Write out last UFD block

3. Clear user's buffer

Loy
o)

B-12

5k

S

e

1.

3.

Save pointer to new UFD entry in "UFD2" of the Current Set

Set up pointers to UFD entry slots

Store file name and extension in the UFD entry

GE
Obtain a
RIB bleock,

1.
2.

4.
5.

Store RIB pointer in UFD entry
Store protection code & date
Insert data bleck number

Write out UFD block with entry
Clear buffer

BLDRIB
set up
the RIB

Set "WREXSW"

(Write-executed switch)]

Clear the buffer to zero

“Return
to usex
After CAL

ENTSET

1.
2.
3.

Read in the first Submap
Make it the "Current Map"
Zero indicator of the number
of preallocated blocks

RETURN

(Number of blocks pre=allo-
cated is the minimum of
number available and the
size of the "Temp List")

B-13

[Return any preallocated blocks|

(How the handlers write out the bit maps) ,//?#iigf\\

I0PS63

1. Clear a buffer

2, Set words @, 1, 2, 376, and 377 to =1

3. Set bits 0-2 of word 3 to MFD size

4. . Set bits 3«17 of word 3 to point to
first submap

5. Write out buffer to block 1777, if
RF/RK or 47@4g if RP

6. Clear the buffer

-~ RP/RK WRF
\/

Set up forward and backward links in buffer 1. Set backward and forward links to -1
Set up words F, 1 and 2 2, Turn on bits that correspond to MFD
Turn on bit in this submap corresponding block and first submap block

to itself

Write out the block

v More
submaps
N)
Set bit in appropriate bit map for MFD] 1. sSet bit in the first bit map that

corresponds to second bit map
2. Set forward link to next block
3, Write out the buffer and clear it
4. Set back link to first submap, and
forward link to =1

>,
—>

Write out the buffer

Return to
user

2

k! From Preceding Page

7 pid ™\
"RIB infor=
mation fit in
_the last data
’ block '

Y

Reset RIB block pointer in
UFD to last data block

lSet "word in RIB" 1in UFDl

~" there an
old file with
the same
« name

WRTUFD

W
]Write out current UFD blockl

Is
. the UFD
block with the
old file ref-~
erence in
~core

1. wWrite out UFD block currently in core

2. Reset UFD1l to UFD block with old file

3. Read in the UFD block with the old file's
entry

S SAMUFD

=

1. Reset UFD entry pointer (UFD2)
2. Wipe out the old file's entry

UNUSED

(Give back any unused blocks) .
o

Read in first RIB block used
Save the forward data link

e

A
Next Page

B=15

\been executed-

Set for internal looping
(implicit WAIT) until done

EOF record
fit in current
data block

1. Write out current block
2. Obtain another and
3. Clear the buffer

(Subroutine SETWRD)

3. Increment file size

l. Write 2-word EOF line in buffer
2. Set forward data link to -1

Will
RIB fit

in last data
block

|TRAN RIB words into last data block

= RNOFIT

- AV
lerte out last data blodE]

v

1. Read in UFD block for this file

2. Fill in file size and turn off
Truncated file bhit

3. Save pointer to first RIB block

Next Page

e

g

From Preceding Page

Was
last data

block used for<
RIB

] Reset RIB Block pointer in UFD to last Data Block l

INFPRO
e

Set ‘Word=in=RIB' in UFD

(UFD entry is now complete. UFD is
still in core.)

there an
old file with

the same
name

UFD block

WRTUFD

with old file's

[Write out current UFD block |

entry now
in core

1. Write out UFD currently in core

2. Reset UFDl to UFD block with the
o0ld file's reference

3. Read it in

#t SAMUFD

1. Set UFD2 to old file's entry slot
2, Wipe out the old entry

. (Give back unused blocks.)

N4
1. Get first RIB block used

2. Read it in

3. Save the forward data link for loop

Should
any blocks
be given back from

any RIB block

Mext¥Page

From PrecEi%ng Page

~Any™
unused N
blocks in this,”
RIB block~

I Read in next RIB blo&i}_______m___

AIL THISRB

1. Find area in this block where
blocks should be given back

2. Adjust word @ of this block
to reflect only those used

3. Write out the block

4, Fudge subroutine LSTFIL so it
appears UNBUSY called

LSTFIL
v (Actual transfer e ————
is to LSTMOV)

last data
~Jblock used for -~
RIB

Turn off RIB block's bit in SAT
and write out the Submap block

[Fet Return to LOCF2}— UNBUSY

“!\ .
1. Perform ,GVBUF
2. Zero current set
3. Make "current®
+DAT slot zero

Return to
LOC+2

e

e

ey,

Hasb .
this ,DAT

" slot been opened
) for out=
put

current -

p record point-

“~.ing to the top o
~._a buffer

Is A
this the

first .~
lock~

N

N
[Read in previous block

CBLOK

IOPS6

Position record pointer to
top of the buffer

the "Next
Line" pointer

point to the saved
next line
pointer

L4

Use this record's word pair
count to point to the next
record

T Is
User's

buffer size
zero

SETUP
Check Header word pair
Set up the word pair

counters for moving data

non=Dump | ¢ rypy
Mode =

1. Make Word Pair Count
negative

2. Zero checksum word in
record to be read

3. Clear line error flag

PWORDS
Pass record
to user

Re=-
cord too

N

long for

buffe

Set pointers for a skip over
the next record

Set "Short Line " Flag

Set return in PWORDS to go
to ENDINL

PWORDS
Skip rest
of line

ENDIN

Return
to

R

B

e

UMP1

P

Set up "words left
in data buffer" for
PWORDS

PWORDS
Read to end of
record or to end
of data block

Set appropriate
error bits, if
any

data blocké‘
left in
file

" BAny ™~
" data left
.. in this
~>plock

Is
this
the last
data block

Read in next data block and
set up pointers, anticipat-
in the next read

Pass EOF line:
001005,776773

Exit
to
uger

e
- %

i

<

REDEOF

*
Set EOF Flagi

Exit
to
user

B W N
o

Save pointer to argument data block

Set up return address

Set pointer to checksum word in data buffer
Save checksum word

a .SEEK
or .ENTER

READ-WRITE Common Setup Routine

executed

Set up pointers to "receiver" data buffer
Index SETUP return pointer past arguments
to Dump Mode exit

Save Word Count from CAL

Dump

IOPS1l

Mode
N

Index return pointer to Non-Dump Mode

Return

GETWPC
Extract Word Count from line So-Po
buffer header word pair O WePoCo
> 1m
‘ RETURN ’

is

IOPS23

oampme

Ry

Set up return address

Return

to

1.

2. Clear "Current Slot"
number

3. Get Word Count

1. Set up for input or output

2. Get argument block number

3, Read it or write it

Return
to
user

user

R

IOPS11
SETUP
Set up word counter
and data buffer
&
Will
record
fit in cur=
rent buf- this line
H . . N
: fit in cur-
rent buf-
Move in all
that will NOFIT1
?it and ad- Zero
just arqument Checksum SETWRD e
size count \J/
PWORDS
SETWRD Pass the record Set "receiver pointers
to the handler's to the top of the
buffer buffer

V'

lCompute and insert Checksu%]

Move record into bufferl

[set EOF switch]

Hetsoen™

B-24

Ecd

(Loop on CAL)
1

|
|

Go to
Argument

address .

RETURN
to LOC+N

SETW

GETNXT

1. Store numbexr as forward data link
2. Save current block number

Is
current

block num=-
ey «1

1. Write out buffer and then clear it
2: Increment FILSIZ

Was
forward
data link

I0PS15

just stored
= -1

[Make this number carrent]

Any
blocks
left in the

I0PS15

Temp
List

LSTFIL
able to get
some
blocks

Return

DSKEUL,

e

A
BLDRIB

Set

next block

Set up ') number in TLIST to =1

the RIB

SETBAK

|_Set backward data link returned from SETWRD |

RETURN

p—

&

1. Initialize the map count num-
ber, block count, TLIST
pointers and TLIST count

2., Read in the current submap

(,f‘Check SN
Fulls” the sub-

[Compute starting location for search]

1. Start filling the Temp List
2, When find a free block, skip
the next block+DELTA (assem=-
bly parameter) and continue

. End
of Sub-

map or end ;;Temn List

blocks
allocated
from this
Submap

y
Start at bit # word 3|

1 ANy

,o
more Sub- N

maps

w

A2
Read in next Submé;1

EXIT

COMMON ROUTINE FOR READING AND
WRITING TO AND FROM THE DISK

1. SAVE THE CALLING ADDRESS

2. GET THE ARGUMENTS

3. COMPUTE DISK HARDWARE
BLOCK NUMBER

4. SET I/O UNDERWAY FLAG

RETRY : SETUP TCB AND
CALL PIREX

START DISK I/0 TO START DISK
DISK I/0

INT
(INTERRUPT
HANDLER)

1. SAVE PC AT EXITAD
2. SAVE AC
3. TURN OFF I/O UNDERWAY
FLAG
4. LOWER PRIORITY TO
LEVEL 4
1. CLEAR DISK FLAG
2. PROCESS ERROR
3. IF NECESSARY,
RETRY 10 TIMES -
N
ATTEMPT RECOVERY
ON CTRL R
SET FOR WRITE
CHECK
) R

DISK "A" HANDLERS

B-28

APPENDIX C

PROCEDURE FILE

ASG

1 ASSIGN DEVICFE UIC TO DAY
A BDUZ(BNLI()E)I® CRUCZ(RNIZ(IR)®> RAFZ()®

ASM

2 MACRD AN LINE EZITOR

A @D2T(EN11()@)® (AULZLAnL2()@)@> =1 4/8N23(C011(YR)IRE CEUAZ(ANI2(1R) 2> =15
N,PRE

@AgY (FILTMP) @

@A L (@AY (FILTMP) @)@ :

A PDUZLANL1()@)® <BUPZ(ANLZ2¢)M)Ie> =11/P0¢1(8011(18)e KRUAL(ANI2()P)YRY> =4
A BNT2(EN11(IRIR <ALUT2(RD12()®)@> =14/RDE5(O11(1R)e C@UPS'aD12(y@)ad> =13
A BOR4(LR)IA CRUDALENL2()B)R> =12

HACRN

AN(BLIP«RATP(FILTYPIPAD14()®

5

BNK

2 BANK MNDE PERATION=0ON
RAMK O

. BUF

S R I NV R L PN SRS

RUFFS AT ()

CHN

1 SPECIFY 7 ~8 9 THACK MAGTAPE
o RAPR()R

CMP

1 SOURCE CHPaARE

A BNZA(ANLL(IR)® (AN A(e12()R)8> =15/2021(®n11 (1810 L@UAL(RNL12(y®)=> =14
QRCCOM

ANE)Ae@AAALYIS/PAILOIPRN14()0

DIR

1 LI1ST DIRECTORY
~y{P
| LPe®AZF(2NL1()A)F KBUZZ(AD12()A)6>2D14 ()@

s

DLG

2 LOsOUT JIc
LOGouT

DMP

#1 DUMP UTILITY - EXPANDED SUB _FILE

A epAgtenit(ye) @ CeUZ(@D12(1PIR> =14/8921(LP)e <AURLten12()P)@y =47
DuMP

RAAP (AL YRR 140)

DOS

1035 GFNFEAL PRC FILE FCR GIVING COMMAND STRINGS
PAPC(ENLIA0)R) R

FIL
2 CREATE A FILD FROM CARDS/ER]TOR
A BOIALANILI()@)® C2UTP(RNL12()B)A> =14
A ERTIANIL O RY@ <AUTL(en12()P)e> =15
5},9??
"}Aﬂg(FILT“p)’R
SAZLLRACr TR) B
FOR
2 LInE FOITOR

FARTRA G Ty AD

ARITEANLL)EY T CFIT(RTN12() M) 8> =14/R071 (8N (1 A) e @UP1(en12(y®)ay =15

8, PRE

@AQP (FILTMP) @

PATL(BAZ (F I TR) o) @

A AINTUENLLO)PIR A R (RI12(¢)P)@Y =LA/FN L1 ()BYA AU (ANI2 (1@ 2> =12
FUTZLP)T LRI (PN12(1@)ED =12

£a

ANIRLIFe AT/ (FILTYO)PRN14 ()@

3 -

JOB

7 START ‘B gng
NG UNE 2a72(y# oEGTYy @R14()e

BONCY T 4,7, 10 110 12,18,14,15,14,17,24/801] (e 1
o
A311()2 <(SCR)>@nl4()a@
FALEL) B
“EER ®RAA4(rEEym
TIMESY wma1 ()=,

“L"‘kw"

KEP

1 RETAIN DEVICK ASSTGNMENTS
KEEP eagn(ye

LCM

13 SUPFLFMENT TO L18 PRC=UPDATE ,LIRR
AAZA(CLOSERD1IIIP)® RARL(RD13(IR)I® RAD2()A

LIB
= 1
A BDEAtenll (Ya)e <AUAZ(RNL20)R)A> =14 '
A BRALIRNAT(sNLL()BR)M)@ CPUBLLAUAB(ANLZ2 (1@ @> =15
A Bpr2tenitiee {AUz2(edi2()yRyed> =17
L @NPIILDID <¢pUZI(aD12()R)8> =12
UPDATE
RO(LUS)IPe®Ay < (,LIARIE@NL4 (D&
LNK
13 DIRFET Sy« FILF = BUILDS LINKS FNR FxECJTE FILFE=USE wITH Oyl oRe
PAPALBNLAC)AYE20N14() %
* LOG
2 LOGIN I
LOGIY =ATD(RMR)@
LsT
2 LIST CANTE-TS OF FILE ON LIME PRINTER
a1p ‘
T LPeRUP (N1 1()E) & KAUZZ(ANL2()IE)IAD> @AA(FIL_TMPY® (ad)@D14¢) A
MAP
133 CIRE~T SUR FILF FOR QHATr ¢BRTION AN RES CLOF oY
CRAT
s RAI(TrRYCT)14 008
RAZLA(SF)RR~ 14 ()&
FAT2(FILT™O Y2014 ()0
ANL4()E
MIC
2 LG IN uIr; ye

. MIOLAG @Al ()

MNT

1 MOUKNT TAPE 2 ON JRIVE o
LOGw MOUST sa(n)e=TAlE R PAGD()® 0% DRIVEZ ®AZ1()p « WRITE BAPD(| rCrya

a

MSG

13 MESSAGL Tn APLRATOR-DIRECT SUB FILF
LOG ®APA()?

MsSwW

13 MLSQSAGE T»

120w RAZC ()R

OFERATOR W/ /wAIT=3IRECT SUK

i
NDR

1 CREATE wow DIRFETORY

DyP

RAZR(PNL1 (YR @ <3U29(@512()®)@>@D14()@

OVL

18 DIRECT SU% FILL = USE FOR BUILDING OUERLAYS(CHALN) ~—
CHATY

TARILTMPYCT YR 14 ()@

PARL(SZ) 2812 ()@
NATZUE T THPYeen a0

PAG

2 PAGE wManr
DAGE Ot

CRERHATION =By

PRT

i SPECIFY PROTECTION CODE
PoBATE(2)

1AL LRADPSSND ARGL“E Ty

XCT

“

ENE 0l Tr

WORDATLANLI(YE)E Cr T (@, 12()R) 8> =4
POAAT(TaRY Ty e

C-4

INDEX

Accessibility map, 6-9
Additions to Non-resident Monitor, 3~
Automatic Priority Interrupt (API), 7-
hardware, 7-4
implementation, 7-11
ON/OFF, 4-19
software, 7=7

4
1

Bad Allocation Table (BAT), 6-18
Bank/Page mode, 7-1
Batch mode .DAT slot assignments, 4-20
Block checksum, 6-7
Block control pair, 6-6, 6-7
Block list, 6-14
Block word count (BWC), 6-6
BOSS-15, 8-1

accounting, 8-20

.DAT slot assignments, 4-20

line editor (B.PRE), 8-21
Bootstrap, system, 2-1, 2-7, 4-13
Buffer allocation, 4-20, 5=13, 6-14
CAL handler, 2-2, 7-1
Characters, control, 2=16
Clock operation, 2=14
Clock routine, 2-8
COMBLK, 4-13, 5-1
Commands to Non-resident Monitor, 3-4
Control characters, 2-14
Current set, 6-14

Data modes

Dump, 6-4
Image, 6-4
Iops, 6-4
DDT loading, 4-13
DECtape file organization, 6—-1

Device assignment table (.DAT), 5-=13
Device table, 5=12

Disk file structure, 6-11

Disk handler, 2-6

Disk resident tables, 5-1, 5-9
Directoried data recording, 6-5
Directoried DECtape, 6-1

Dump mode, 6-4

Error handler, IOPS, 2-2
Error processor, 2-2, 2-6
EXECUTE, 4-13

File accessibility map, 6-7

File Bit Map, DECtape, 6-2

File buffer transfer vector table, 5-13
File identification and location, 6-7
File information, see Current set
File locating, 6-7

File storage, 3-8
FIOPS, 6-5

Handlers, I/0 device, 7-1

Image mode, 6-4
Input/Output (I/0)
communication table, 5-12
initialigzation, 2-8
I/0 device handlers, 7-1
writing special, 7-10
IOPS mode,. 6-4
error handler, 2-2

ILinking Loader, 4-13

Link status, 7-1

Loader buffer allccation, 4-20
Loader, system, 4-1, 4-13

Magnetic tape, 6-4

file directory, 6-7

handlers, 6-5

storage retrieval, 6-11
Mass Storage Busy Table, 5-14
Master File Directory (MFD), 6-12
.MED error processor, 2-2
Memory protect, 7-1

- Monitor, resident, 4-13

Non-directoried DECtape, 6-1
Nonresident Monitor, 2=14, 3-1
additions, 3-4
commands, 3-4

Operation of DOS, 1-1
15—

Overlay Table, 5=9 15

Patch area, Resident Monitor, 2-=16

PATCH, commands to, 3-8

PIC interrupt service routine
implementation, 7-11

PIP, 6-18

Pre-allocation of blocks, 6-16

Prioritv, software level, 7-1

Procedure files, BOSS, 8-16

Program control characters, 2-16

Nfile, 3-8
Queueing, 7=8

RCOM table, 5-14
Reserved word locations, 5-=14

Resident Monitor, 2-1, 4-13 Tables used by Loaders, 4-16

PATCH area, 2-14 Task Control Block, 2=17
timing features, 2-8 TCBTAB, 2-17 L
Retrieval Information Block (RIB), Temp List (TLIST), see Block list e
6-14 -TIMER routine, 2-14
Run time file (RTF), 8-1, 8-16 Timing features, 2-8

TRAN routine, 2=7

.SCOM registers, 5-1 to 5-6

used by Loaders, 4-17 to 4-19 User File Directory Table (.UFDT)
SGNBLK, 4-13, 5-1, 5-8, 5-10 5=12
Skip chain, 5-13 User file labels, 6-9, 6~10
Software level priority, 7-1 User identification code (UIC),
Spare TCB's, 2-17 6=12

Special I/0 device handlers, 7-10
Startup routines, 2-8
Storage, 4-26, 6-11, 6-16
Storage allocation tables (SAT's),
6-1
Submaps, 6=17
SYSBLK, 4=13, 5-=1
System
bootstrap, 2=7
initialization, 2-8
Loader, 4-1, 4«13

2

o

e

HOW TOC OBTAIN SOFTWARE INFORMATION

SOFPTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi-
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy

Paris, France Solna, Sweden

The Hague, Holland Geneva, Switzerland
Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Eqguipment Corporation Digital Eguipment Corporation

Software Distribution Center
146 Main Street

Maynard, Massachusetts 01754

Software Distribution Center
1400 Terra Bella
Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex-

change center for user-written programs and technical application in-

formation., A catalog of existing programs is available. The society

publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the

society and membership application forms, write to:

DECUS

Digital Eguipment Corporation

146 Main Street

Maynard, Massachusetts 01754

DECUS

Digital Eguipment, S.A.
81 Route de l'Aire
1211 Geneva 26
Switzerland

g

@

o

DOS=15 System Manual
DEC=15-ODFFA-B=D
READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggesticons for improvement.

Is there sufficient documentation on associated system programs
required fcor use of the software described in this manual? If not,
what material is missing and where shculd it be placed?

Please indicate the type of user/reader that vyou most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non—-programmer interested in computer concepts and capabilities

Name Date
Organization
Street-
City State Zip Code
: or
Country

If you do nct require a written reply, please check here. E]

Fold Here

Do Net Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
- MAYNARD. MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P, O. Box F

Maynard, Massachusetts 01754

et

printed in U.S.A.

=

