

DEC-15-0DFFA-B-D

DOS-15

SYSTEM MANUAL

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation · maynard. massachusetts

First Printing, January 1972
Second Printing, July 1972
Sevision, August, 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (§) 1972, 1973, 1974 Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlO QUICKPOINT
COMSYST ED GRIN LAB-8 RAD-8
COMTEX EDU SYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DEC COMM GLC-8 OS/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

PREFACE

This manual was written for customer systems programmers, DEC Software

Specialists, and internal maintenance programmers. Readers must be

familiar with the DOS User's Manual, DEC-15-0DUMA-B-D. In addition, chap­
ter 8 requires familiarity with the BOSS Reference Manual, DEC-15-0BUMA-A-D.

Technical changes reflected in this revision are indicated by a

bar (I> in the appropriate page margin.

iii

CHAPTER 1

CHAPTER 2

2.1

2.2

2.3

2.3.l
2.3.2

2.4

2.5

2.6
2.6.l
2.6.2

2.7

2.8

2.9

CHAPTER 3

3.1

3.2

3.3

3.4

CHAPTER 4

4.1

4.2

4.3

4.4

4.5

CONTENTS

DOS OPE RAT ION

THE RESIDENT MONITOR

INTRODUCTION

THE CAL HANDLER

IOPS ERROR HANDLER, AND THE EXPANDED
ERROR PROCESSOR

.MED
The Expanded Error Processor

THE SYSTEM BOOTSTRAP

SYSTEM I/O INITIALIZATION

RESIDENT MONITOR TIMING FEATURES
Clock Operation
.TIMER

THE RESIDENT MONITOR PATCH AREA

CONTROL CHARACTERS

TASK CONTROL BLOCKS (for UC15 system - RK~5
based or RF15/RP~2 based with UC15 option)

THE NONRESIDENT MONITOR

INTRODUCTION

COMMANDS TO THE NONRESIDENT MONITOR

CONSIDERATIONS FOR ADDITIONS TO THE
NONRESIDENT MONITOR

QFILE-

THE SYSTEM LOADER AND THE LINKING LOADER

MANUAL BOOTSTRAP LOADS AND RESTARTS

LOADING SYSTEM PROGRAMS

TABLES AND INFORMATION BLOCKS USED AND
BUILT BY LOADERS

.DAT SLOT MANIPULATION BY THE SYSTEM
LOADER

BUFFER ALLOCATION BY THE SYSTEM LOADER

v

1-1

2-1

2-1

2-2

2-2
2-2
2-6

2-7

2-8

2-8
2-14
2-14

2-16

2-16

2-17

3-1

3-1

3-4

3-4

3-8

4-1

4-13

4-13

4-15

4-15

4-20

CHAPTER 5

5.1

5.2

5.2.1
5.2.2
5.2.3

5.3

5.4

5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6

5.5
5.5.1
s.s.2
5.5.3

5.6

5.7

CHAPTER 6

6.1
6 .1.1
6 .1. 2

6.2
6.2.l
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.3
6.2.4

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.4.1

6.3.4.2
6.3.5
6.3.6
6.3.7

SYSTEM INFORMATION BLOCKS AND TABLES 5-1

CORE-RESIDENT NON-REFRESHED REGISTERS 5-1

DISK-RESIDENT UNCHANGING BLOCKS: SYSBLK,
COMBLK AND SGNBLK 5-1

SYSBLK 5-1
COMBLK 5-1
SGNBLK 5-8

DISK-RESIDENT CHANGING BLOCKS

TEMPORARY TABLES BUILT FROM DISK-RESIDENT
TABLES

The Overlay Table
The Device Table
The Input/Output Conununication (IOC) Table
The Device Assignment Table (.DAT)
The User File Directory Table (.UFDT)
The Skip Chain

TEMPORARY TABLES BUILT FROM SCRATCH
File Buffer Transfer Vector Table
The RCOM Table
The Mass Storage Busy Table

RESERVED WORD LOCATIONS

BOOTSTRAP NON-BOSS BATCH BITS

FILE STRUCTURES

DECTAPE FILE ORGANIZATION
Non-Directoried DECtape
Directoried DECtape

MAGNETIC TAPE
Non-directoried Data Recording (MTF)
Directoried Data Recording (MTA., MTC.)

Magnetic Tape File birectory
User-File Labels
File-Name in Labels

Continuous Operation
Storage Retrieval on File-Structur~d
Magnetic Tape

DISK FILE STRUCTURE
Introduction
User Identification Codes (UIC)
Organization of Specific Files on Disk
Buffers

Commands That Obtain and/or Return
Buffers
The Current Set

Pre-allocation
Storage Allocation Tables (SAT's)
Bad Allocation Tables (BAT's)

vi

5-9

5-9
5-9
5-12
5-12
5-13
5-13
5-13

5-13
5-13
5-14
5-14

5-14

5-16

6-1

6-1
6-1
6-1

6-4
6-5
6-5
6-7
6-9
6-10
6-10

6-11

6-12
6-12
6-12
6-14
6-14

6-14
6-16
6-16
6-17
6-18

CHAPTER 7 WRITING NEW I/O DEVICE HANDLERS

7.1
7 .1.1

7 .1. 2

7.2

7.2.1

7.2.2

7.3
7.3.1
7.3.2
7.3.3

I/O DEVICE HANDLERS, AN INTRODUCTION
Setting Up the Skip Chain and API
(Hardware) Channel Registers
Handling the Interrupt

API SOFTWARE LEVEL HANDLERS, AN
INTRODUCTION

Setting Up API Software Level Channel
Registers
Queueing

WRITING SPECIAL I/O DEVICE HANDLERS
Discussion of Example A by Parts
Example A, Skeleton I/O Device Handler
Example B, Special Device Handler for
AFOlB A/D Converter

CHAPTER 8 BOSS-15

8.1
8.1.1
8.1. 2
8 .1. 3

8.2

8.3

PROCEDURE FILES
Procedure File Format
Direct Substitution
Example of Procedure File

BOSS-15 ACCOUNTING

B.PRE

APPENDIX A DECTAPE "A" HANDLER (DTA.)

APPENDIX B DISK II A" HANDLERS

APPENDIX C PROCEDURE FILES

Index

2-1
3-1
4-1
4-2
4-3
5-1
5-2
5-3
5-4

TABLES

RF Platter-Block Number Correspondence
Effects and Exits for Nonresident Monitor Commands
Tables and Blocks Used by the Loaders
.SCOM Registers Used by the System Loader
Use of .SCOM+4 by the System Loader
.SCOM Registers
Overlay Table
Mass Storage Busy Table Entry
Reserved Address Locations

vii

Page

7-1

7-1

7-5
7-6

7-7

7-7
7-8

7-10
7-13
7-14

7-16

8-1

8-16
8-16
8-19
8-19

8-20

8-21

A-1

B-1

c-1

X-1

2-8
3-5
4-16
4-17
4-19
5-2
5-15
5-15
5-15

Number

2-1
2-2

2-3
2-4
2-5
2-6

2-7

3-1
3-2
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
5-1
5-2
5-3
6-1
6-2
6-3
6-4a
6-4b
6-5
6-6
6-7
6-8
6-9
7-l

7-2
7-3
8-1
8-2

8-3

8-4
8-5

FIGURES

Resident Monitor CAL Handler
Expanded Error Processor and Monitor Error

Diagnostic Routine .MED
Resident Monitor Subroutines
.OVRLA, .EXIT and CTRL Q
Resident Monitor Initialization
The Resident Monitor Clock Routine for non-UC15

Systems
The Resident Monitor Clock Routine for UC15

Systems (RK,el5 based or RF15/RP~2 based with
UC15 option)

Nonresident Monitor Initialization
QFILE, and Implementation of GET and PUT Logic
System Loader Initialization
The System Loader
The Linking Loader
:aoo i.:strap i.oau
SLandard Interface Load
System Program Load
Linking Loader
Execute
SYSBLK and COMBLK
SGNBLK for RP~2 and RF15 Systems
SGNBLK for RK~5 Based System
DECtape Directory
DECtape File Bit Map Blocks
Block Format, File-Structured Mode
Format of the File Directory Data Block
Format of File-Structured Tape
User File Header Label Format
Master File Directory
User File Directory
Retrieval Information Block
Disk Buffer
CAL Entry to Device Handler (for non-UNIBUS

devices only)
PI and API Entries to Device Handlers
Structure of API Software Level Handler
BOSS/DOS Intersection
Connections between DOS Resident Monitor and

BOSS Resident Monitor
Points within Resident Monitor Which Transfer

Control to Resident BOSS-15
Nonresident BOSS
B.PRE

viii

2-3

2-4
2-5
2-9
2-10

2-11

2-12
3-2
3-10
4-2
4-7
4-10
4-14
4-14
4-14
4-14
4-14
5-7
5-10
5-11
6-2
6-3
6-6
6-8
6-8
6-9
6-13
6-13
6-15
6-15

7-2
7-3
7-9
8-2

8-3

8-4
8-7
8-22

CHAPTER 1

DOS OPERATION

The system Manager must use DOSSAV in order to load DOS-15 for the

first time. The DOS System Generator manual, DEC-USGNA-A-D, describes

DOSSAV operation in its appendix. After successful DOSSAV operation,

the System Manager should load the Bootstrap into the highest bank of

core memory: the bootstrap informs the DOS-15 monitor how many banks

of core memory can be used. Before bootstrapping UC15, RK05 based

systems, PIREX must first be loaded and running in the PDP-11 local

memory (refer to UC15 Software Manual DEC-15-XUCMA-A-D) • The bootstrap

loads the Resident Monitor and the System Loader, which in turn load

the Nonresident Monitor. In order to ensure a working system, the

System Manager should place the DOS-15 Checkout Package tape (for

RFlS, DEC-15-0RFCA-A-PA; for RP02, DEC-15-0RPCA-A-PA; and for RKOS,

DEC-15-0RKCA-A-PA) into the Paper Tape Reader, and type BATCH PR).
Operating instructions for the Checkout Package, and the tape itself,

are distributed as part of the DOS-15 system.

Once the system has been checked out, the System Manager should use

DOSGEN, the DOS System Generator program, to tailor the system to

his needs. As mentioned in the System Generator manual, a complete

tailoring of the system may also involve use of PATCH, PIP and

UPDATE.

Commands to the Nonresident Monitor allow temporary modification of

the system, in order to suit the needs of a particular program. The

Nonresident Monitor modifies the system by changing information in

the .SCOM Table. The System Loader examines the .SCOM Table, along

with three disk-resident information blocks, SYSBLK, COMBLK and SGNBLK,

and carries out all operations necessary to fulfill the operator's

commands. The System Loader "builds" the Resident Monitor by relocat­

ing and linking those routines indicated by the .SCOM table as needed

by the next core load. The Resident Monitor then retains general

control over the system.

1-1

CHAPTER 2

THE RESIDENT MONITOR

2.1 INTRODUCTION

The Resident Monitor gets its name because it seems resident to the

user. Strictly speaking, however, the only part of the system that

is always resident is the Bootstrap. There are two parts of the

system that are refreshed only after manual Bootstrap loads and re-

starts; .SCOM and the Resident Monitor Patch Area. Every time an

operator or program changes certain key system parameters, the system

will build a new Resident Monitor from blocks stored on the system

device.

The Resident Monitor is the interface between the operator and the

active devices on one hand, and the program which is running (the

Nonresident Monitor), on the other. The Resident Monitor always

contains the following routines and tables:

Chapter 5

This
Chapter

{
.DAT
.UFDT
.SCOM

~ The CAL Handler, which routes all System and I/O
r Macro calls
; The Startup routine, called after using the Bootstrap
1 .MED, the Monitor's standard error routine
· The Expanded Error Processor, for more flexibility

with error messages
Handlers for the following error conditions:

Nonexistent Memory
Memory Protect
Interrupt-Memory Parity
Power-Fail
Software API not set up

The Monitor's TRAN routine (different from I/O .TRAN's}
A clock handler
A poller for UNIBUS device error messages (for

UC15 systems, RK05 based or RF15/RP02 based
with UC15 option only)

The .GTBUF and GVBUF processor
The CTRL Q processor
The .USER processor
The .OVRLA processor
TTA.
The Resident Monitor's Patch Area
Task Control Blocks (for UC15 systems, RK05 based or

RF15/RP02 based, with UC15 option)

In addition, the user can request the system to retain certain other

routines in a resident Monitor status:

The CTRL X Feature, including a driver for the VT-15
The Paper Tape or Card Reader Handler for Batch
The Resident Batch Code

BOSS-15 also has resident routines, which are covered in Chapter 8.

2-1

2.2 THE CAL HANDLER

The CAL instruction transfers control to register 21, bank~' and loads

register 2~ with the address of the next instruction after the CAL.

All DOS I/O and system macros take the form of a CAL instruction (pos­

sibly with some code in the low-order bits), and the next sequential

register contains a dispatch code. Some macros require more informa­

tion in succeeding registers. Figure 2-1, Resident Monitor CAL Handler,

illustrates the operation of that portion of the Resident Monitor. The

CAL Handler does only minimal error checking -- for a legal function

code and for a legal .DAT slot. Aside from that and ensuring the

clock is turned on, the CAL Handler is only a dis-patcher to other

routines.

2.3 IOPS ERROR HANDLER AND THE EXPANDED ERROR PROCESSOR

2.3.l .MED

There are two error processors in the Resident Monitor: .MED and the

Expanded Error Processor. Figure 2-2 illustrates those routines.

Figure 2-3 shows two subroutines used by the error routines. .MED

(location 3, bank ~) processes IOPS errors from all device handlers

except the disk handlers, CDB., MTF., TTA., and LPA. Calls to

.MED should take the following form, if not IOPS 4:

LAC INFO /ARGUMENT OF ERROR
DAC* (.MED /ADDRESS OF CAL rs ALREADY

/IF DESIRED
LAW N /N IS ERROR CODE fJ:::._N-::._777.

JMP* (.MED+l

IOPS 4 messages may take the following form:

LAC (4
JMS* (.MED

/AC MUST BE POSITIVE

IN

AC

.MED,

MUST BE NEGATIVE.

.MED+l contains a JMP to the Monitor Error Diagnostic Routine. The

above calls to .i'-ffiD will cause the following printouts:

IOPSN (contents of .MED)
IOPS4

2-2

IOPS2

Modify the
.UFDT slot

ENTER

1. Loa .ME wi r~ss

2. Turn clock on, if not on
3. Deposit minus 1 in register 7, if

= or less than minus two

IOPS ~

y >~N~~~~~~~~---.The following CAL's

Device Hand­
ler carries
out instruc­
tion

Exit to the
user

Figure 2-1
Resident Monitor CAL Handler

2-3

y

take this path:
.EXIT, .OVRLA, .TIMER
• SETUP , • GTBUF,
.GVBUF, .GET, &

.PUT

Give control to
proper portion of
the Resident Mon­
itor.

N

Do Monitor TRAN
(Figure 2-4

Bootstrap

Put

Enter from
.SCOM+37

N

.MED

Enter from
.MED

Resident Monitor
Initialization

Print the messaqe

NOTE: The Nonresident Monitor HALT and
?DUMP commands will chanqe this loop to
the appropriate action. BOS and Batch­
inq ~lode abort the $JOB.

N y

Await a c aracter
from the keyboard

y N

Echo

Resident Monitor
Initialization

y

1. Echo Command

(Wait f r a
Centro Char)

Dispatch to
appropriate

address
2. Restore API, if required
3. Restore PI

Figure 2-2
Expanded Error Processor

and
Monitor Error Diagnostic Routine

.MED

2-4

Return
via • ~-U:D

SETTLE

1. store error number
2. set up to turn nulls into

spaces, if LINK is set
3. Turn off PI
4. Wait 110 ms for the teleprinter

to die down
s. Type Carriaqe RETURN, Line Feed

RETURN

IOPS

Print "IOPS" and error number,
zero suppressed

Print a space, folYowed by the
octal contents of .MED, followed
by another space

N

Print contents of ·.SCOM+32 (disk
block number)

RETURN

Figure 2-3
Resident Monitor Subroutines

2-r:l

2.3.2 The Expanded Error Processor

The disk handlers (except the Bootstrap), CDB., MTF., TTA., and LPA.

use the Expanded Error Processor. Each error message is "potentially"

recoverable by typing CTRL R. That is, the Resident Monitor always

returns control to the caller upon a CTRL R. It is up to the caller

to respond accordingly. All handlers supplied with the system simply

repeat the error message if the error is unrecoverable.

The Expanded Error Processor aives the capability of printing addi­

tional information after the standard IOPS message. As with .MED, the

AC must contain the error number (!J~number~777) ir. bits 9-17. Control

must be passed, however, via JMS* (.SCOM+37, not JMP* (.MED+l·

The following information pertains to the messaae: LOC+2 must contain

the two's complement of the number of rnes~age words to be typed after

the standard "IOPSNN nnnnnn" message. If the number is zero or posi-

tive, no message will be printed. If the LINK is set, nulls will be

printed as spaces. If the LINK is zero, nulls will be ignored. If

the AC is positive on calling the expanded error facility, only the

special message will be printed. The "IOPS" part will be omitted.

The message itself must be packed in .SIXBT.

The following are examoles of use of the Expanded Error Processor:

Example a:

UNREC LAC STATUS
DAC* (.MED

SZL
LAW ERRNUM
JMS* (.SCOi'-1+37
J:'lP UN REC

LAW -6
.SIXBIT 'DKA'
4~
.SIXBT 'FIL'
.SIXBIT 'E'
4_0
.SIXBT 'SRC'

/STATUS REGISTER B
/CAL ADDRESS IS NOW OVERWRITTEN
/BY CONTENTS OF STATUS REGISTER
/IGNORE NULLS
/..::_ERRNUM ?l!J!J!J

/THIS IS AN UNRECOVERABLE ERROR.
/,J:!P . -1 WILL NOT DO -- EXPANDED
/ERROR PROCESSOR CHANGES THE
/CONTENTS OF .MED.
/6 DATA WORDS FOLLOW
/DEVICE NAME
/NULL, NULL, SPACE
/FILE NAME (2 WORDS)

/NULL, NULL, SPACE
/EXTENSION

The printout from that code will be as follows:

IOPS777 nnnnnn 8KA FILE SRC

where nnnnnn is the contents of .:'-!ED, and equals the Status Register

B, and ERRND>1 is 777.

2-6

Example b:

PARITY LAW
STL

61

JMS* (. SCOM+37
/TURNS NULLS INTO SPACES

JMP RETRY /THIS IS A RECOVERABLE ERROR
LAW -1
.SIXBT 1 DTA 1

The printout from that code will be as follows:

IOPS61 nnnnnn DTA

where nnnnnn is the contents of .MED, the address of the last CAL,

deposited by the CAL Handler.

2.4 THE SYSTEM BOOTSTRAP

The System Bootstrap is nothing more than a disk driver. It may load

the System Loader and Resident Monitor from Hardware Readin or manual

restart. All other Bootstrap operations result from the use of the

Monitor TRAN routine. The Monitor TRA..~ routine sets up the Bootstrap

to read or write any block or set of contiguous blocks from the disk

to or from any location in core. Before calling the Bootstrap, the

Monitor TRAN does a .WAIT to all .DAT slots in the Mass Storage Busy

Table, clears all flags, turns off the VT if it were on, and allows the

clock to tick positive, so that it will keep time but not interrupt.

After the Bootstrap has finished, it calls the Monitor Initialization

Routine, which updates the clock and turns on the VT, if necessary.

The Monitor TRAN Routine requires the followina parameter table:

PARAI;l.J LOC+~

LOC+l
LOC+.2
LOC+3

BLKNUM
FIRSTA-1
-SIZE
START

/FIRST BLOCK NUMBER
/FIRST ADDRESS OF BUFFER, MINUS ONE
/# OF WORDS TO BE TRANSFERRED IN 2'S COM
/STARTING ADDRESS AFTER DISK I/O
/COMPLETION

The following code illustrates the use of the Monitor TRAN:

. SCOM=l,0,0'

LAC (PARADD
XOR UNIT

STL
JMP* (. SCOM+55

See also paragraph 5.7.

/MONITOR TRAN WILL USE UNIT ONE 1

/MONITOR TRAN REQUIRES ADDRESS OF
/PARAMETER TABLE IN BITS 3-17 AND
/UNIT NUMBER IN BITS ~-2 OF AC
/NONZERO LINK GIVES TRAN OUT
/.SCOM+55 IS USER ENTRY POINT FOR
/MONITOR TRAN

1 DECdisk TRANs ignore unit number, use block number.

2-7

.OVRLA, .EXIT, and manual Q dumps all use the ~onitor TRAN routine.

Figure 2-4, .OVRLA, .EXIT and CTRL Q, illustrates their operation,

and also the '1oni tor TRAN.

For the RF DECdisk, the user can reference a specific platter just by

identifying the block number he wants. That is, the block numbers do

not automatically go to zero at the beginning of every platter. The

block numbers and platter relationships are shown below:

Table 2-1

RF Platter-Block Number Correspondence

Platter Nunber Block Nmnber

.0 0-1777
1 2,0.0,0-3777
2 4,0,0,0-5777
3 6J1{J,0-7777
4 1.0.0.0.0-11777
5 12,0,0.0-13 777
6 14.0.0,.0-15777
7 16){0,0-17777

(All numbers are in octal)

2.5 SYSTEM I/O INITIALIZATION

There are two routines that do DOS I/O initialization: the startup routine

after Bootstrap manual loads and restarts, and the startup routine

performed after Monitor TRAN's and after a CTRL c, P, Tor s for an

error. The startup routine after Bootstrap loads is described in

Figure 4-1, The System Loader Interface Routine. Figure 2-5, Resident

Monitor Initialization, describes the other routine.

2.6 RESIDENT MONITOR TIMING FEATURES

Figuie 2-6, The Resident Monitor Clock Routine, describes the Resident

Monitor's time functions. There are three nlaces in DOS which start

or try to update the clock -- (1) the first-time initialization after

manual Bootstrap loads and restarts, (2) the Resident ~onitor Initial­

ization, and (3) the CAL Handler. The following .SCOM registers con­

tain timing information:

2-8

y

.OVRLA
CAL Entry

Put System pro­
gram name into
.SCOM+43,44 (pro
name pointed to
by CAL+2)

Scan Overlay
Table (address in
.SCOM+3l) for a
match with the

N

.EXIT CAL
Entry

Put name of the
Nonresident Mon
itor into .SCOM

43 & 44

Set up pointer to TRAN
parameters

Set up unit number ~ and
pointer to TRAN parame­
ters for loading .SYSLD
Clear LINK for .TRAN in

Update .scoM+3:
clear AC and the

CTRL.Q

(Manual entry)

Echo +Q on
keyboard

Read in unit
number from
keyboard if
RP~2 or ~5
system

loE;<-----4(~DllMP Auto)
_ Entry _

Set LINK (.TRAN out)
and set up pointer to .TRAN
parameters for CTRL QAREA

Put contents of .SCOM+72
into .SCOM+71, and set
AC with unit number

LINK (Unit ~. & 1--~~
.TRAN in) (MONITOR TRAN ROUTINE -- Independent from

device handler .TRAN's)

Set AC 777777

Return to
user

Store Unit number and
other TRAN parameters
in the Bootstrap

CLEAR*
(.WAIT)

Put starting address into
location ~. bank ~. and
set the Bootstrap to go to
Monitor Recovery Routine
on exit

Bootstrap

Figure 2-4 .
• OVRLA, .EXIT and CTRL Q

2-9

* CLEAR does a .WAIT or a
.INIT to each entry in
the Mass Storage Busy
Table. This precludes
conflicts between disk
I/O performed by the
system disk handler, and
disk IOT's issued by the
Bootstrap, an independent
program. CLEAR also turns
off the clock and PI, and
enables BANK mode.

Entry
from

Bootstrap

Entry
from

RE SM ON

Set exit to address in ~ Arrive with exit address in AC

1.

3.
4.

s.

Set uo clock so that it
keeps runninq, but does
not interrupt (ticks
positive)
Clear all flaqs
'furn off PI and API
Restore cell 4 to transfer
to Error Diagnostic Routine
Set up proper addressing
(Bank or Page), according
to .SCOM+4, bit 7

N

Do CTRL X restart

1. Update the clock, and allow it to
interrupt

2. Clear TTY Busy Switch (Clear all
flags ensures no I/O to TTY)

3. Turn API on or off, depending on
contents of register 6 (The Sys­
tem Loader loads register 6 ac­
cording to .scoM+4, bit 0)

4. Turn on PI

Exit to
Proper

location

Figure 2-5
Resident Monitor Initialization

2-10

Increment .SCOM+56

Ent.rY from
PI or API

Allow clock to tick positive, so it
will not interrupt for an hour

N

Increment the interval once

N

Set up the exit from this routine
to go to the .TIMER address in
.SCOM+61, as if it were a JMS in­
struction. Set high-order bits
of return address with interrupt
information

1. Increment .sCOM+SO
"-"""-_..;IOI 2. Format in hhmmss

3. Increment .SCOM+34

Subtract one from register 7, the clock register

N

Restore pre-interrupt
conditions

Exit

Note; The Clock Routine will use PI if API is busy, or down.

Figure 2-6

The Resident Monitor Clock Routine for non-UC15 Systems

increment .sCOM+56 ly

l
1.
2.
3.

.EXIT

Entry from
PI or API

Allow clock to tick positive, so
it will not interrupt for an hour

-----r-c;=======~-0
N

I Increment the interval once /

N

Set up the exit from this routine
to go to the .TIMER address in
.SCOM+61, as if it were a JMS in­
struction. Set high-order bits
of return address with interrupt
information

Increment .SCOM+Sl

.SCOM+SO
hhrnmss

Increment .SCOM+34

next page

Note: The Clock Routine will use PI if API is busy, or down.

Figure 2-7

The Resident Monitor Clock Routine
for UC15 systems CRK.05 based or
RF15/RP~2 based with UClS option)

2-12

from
next
page

From previous
page

INCREMENT UC15CT

N

y

y

N GET ERROR
MESSAGE

FROM PIREX

SUBTRACT ONE FROM
REGISTER 7, THE
CLOCK REGISTER

RESTORE
PRE-INTERRUPT

CONDITIONS

EXIT

N

Note: The Clock Routine will use PI if API is busy, of down.

Figure 2-7 (Cont'd.)

The Resident Monitor Clock Routine
for UC15 systems (RK~S based or
RF15/RP¢2 with UC15 option)

2-13

PRINT ERROR
MESSAGES ON

KEYBOARD

RESET UClSCT
FOR l SEC
INTERVAL

.SCOM+5Jl

.SCOM+51

.SCOM+56

.SCOM+6,0'

.SCOM+61

.SCOM+73

.SCOM+74

2.6.l Clock Operation

Time of day, in hhmmss (six bits each)
Elapsed time, in ticks
Time limit, in seconds (zero, if no limit)
Time left for .TIMER interrupt (zero, if

.TIMER not in effect)
Address of .TIMER user interrupt routine
Number of ticks left in the next second
Line frequency, in ticks per second

The Nonresident Monitor's TIME command changes or.senses .SCOM+5,0 •

. SCOM+51 is not used by any system program. The clock handler simply

increments it upon each clock tick. User programs may deposit a known

quantity into .SCOM+51, in order to time events. The Non-resident

Monitor deposits the argument for a TIMEST command into .SCOM+56. If

.SCOM+56 is nonzero, the Resident Monitor will issue an ISZ .SCOM+56

command each second, until it reaches zero. At such a time, the Resi­

dent Monitor will perform a .EXIT. MICLOG, LOGIN, and LOGOUT clear

.SCOM+56.

2. 6. 2 . TIMER

.TIMER allows users to schedule routines for a specified time from

"now". These routines may return to the interrupted code, if the

programmer desires. .TIMER users should take care that the time­

dependent code follows certain rules:

a. When a programmer does not wish to reset the .TIMER mechan­
ism, but wishes to return to the interrupted program, his
code should look like this:

c f6
DAC

LAC
RAL
LAC

XIT JMP*

SAVEAC

c

SAVEAC
c

/C+l REACHED VIA JMS
/MUST NOT USE NON-REENTRANT CODE
/POSSIBLY USED BY THE INTERRUPTED
/PROGRAM. (INCLUDES THE CAL IN­
/STRUCTION)
/RESTORE THE LINK

/RESTORE THE AC

2-14

b. When the programmer does wish to reset the .TIMER mechanism,
and return to the interrupted code, his routine should look
like this:

c

.SCOM=l1Jf1
CLON=7!1f1f144
CLOF=71Jf1f1f14
INTRVL=-1%!1

.
~
DAC

LAC
DAC*
CLOF

LAC
DAC*
LAC
RAL
LAC
CLON

SAVEAC

ADD RES
(.SCOM+61

INTRVL
(. SCOM+6f1
c

SAVEAC

JMP* C

/THIS ROUTINE WILL RUN EVERY l~flg+
/TICKS

/RETURN TO THE NEXT ROUTINE

/TURN THE CLOCK OFF TO ENSURE NO
/REENTRANCE BEFORE .TIMER RESET AND
/RETURN
/DESIRED INTERVAL IN TWO'S COMPLEMENT

/RESTORE THE LINK

/RESTORE THE AC
/TURN THE CLOCK BACK ON (AFTER NEXT
/INSTRUCTION)

c. When a programmer does not wish to return to the interrupted
program, he need not save the AC, and he may use the CAL in­
struction. He should beware of using I/O buffers that may
still be modified by a handler's interrupt section. In many
cases, a .INIT to an active .DAT slot will terminate I/O.
Teleprinter I/O should be terminated by the following:

XCT* (. SCOM+35

The user should program a delay of at least ll~ milliseconds
after such an instruction before he attempts teleprinter I/O.

Note: The interrupt routine will run at the level of the in­
terrupted code, with the same addressing mode and memory pro­
tect status. Thus, no debreak and restore is required.

2-15

2.7 THE RESIDENT MONITOR PATCH AREA

There are two types of patch area:

1. That allocated by using PATCH

2. That allocated when answering the Patch Area
question in system generation

Patch area one is the place for permanent changes to the Resident

Monitor. It is always refreshed when the System Loader comes into

core. Patch area two is only refreshed on manual Bootstrap loads

and restarts. The second area would be appropriate for communication

between successive programs loaded by the System Loader. This area

should be used because the System Loader refreshes all of core, ex­

cept the Bootstrap, .SCOM, the CTRL X buffer, and the patch area two.

I The combined size is limited by the current assembly at 3%%%8 for

RP~2 and RFlS systems, and, for RK05 system. Both areas can be

initialized, using PATCH. The important dividing line between area

one and area two is register l~l (.SCOM+l) of RESMON. The way to

allocate more space in part one is to increase the value of register

l~l. The way to change the area in part two is to use DOSGEN. The

second part will start at the address in register l~l. The upper

bound of the second area will be the sum of the contents of register

l~l, and the number specified to DOSGEN.

2.8 CONTROL CHARACTERS

CTRL C, P, R, S, and Tare all special characters that interrupt the

current program and transfer control. The Resident ~onitor ignores

CTRL R except after IOPS 4 and any call to the Expanded Error

Processor. CTRL S always transfers control to the address in .SC0~+6.

In the case of core-image system programs and EXECUTE, a CTRL S will

transfer to register zero, and result in an IOPS 3. The Linking

Loader places the starting address of the first load module into

.sco~+6.

A .INIT macro to the teleprinter ~andler will change the address of

either CTRL C, P or T. The Resident ~onitor is always initialized to

2-16

perform a .EXIT after CTRL c, and ignore CTRL P and T. DDT uses

CTRL T, and CTRL P is ordinarily used by programs for restarts.

MACR0-15 expands .INIT to change the CTRL P address. If the progranuner

expands .INIT without the aid of the assembler, a l~ in bits zero and

one of LOC+2 will change the address of CTRL T. A ~l in those bits

will change the address of CTRL c. It should be obvious that special

care should be taken with CTRL c. In addition, modifications to the

CTRL T address should not be made when debugging with DDT. There are

cases, however, when such modifications are desirable. In particular,

all zeroes in LOC+2 (2-17) will cause the teleprinter handler to

ignore CTRL C, P, or T. This address might be used when sensitive

code is being executedr as in DOSGEN. The following .INIT expansion

will cause the Resident Monitor to ignore CTRL C:

CAL-2&777
1
2¢¢¢¢¢

2.9 TASK CONTROL BLOCKS (only for UC15 system - RK~5 based or
RF15/RP~2 based with UC15 option)

In the UNICHANNEL-15 system communication between the PDP-15 and the

PDP-11 is through blocks of information called Task Control Blocks.

These blocks are resident in the common/shared memory space (memory

that can be addressed both by the PDP-15 and the PDP-11). The TCB

contains all the information necessary (like the addressed task

code, the method of indicating the completion of a request, memory

address, word count, operation etc.) for the PIREX system to process

that request (refer to UC15 Software Manual, DEC-15-XUCMA-A-D for more

details).

Handlers for the devices on the UNIBUS communicate with the driver

tasks running under PIREX through TCB's. In order to permit these

handlers to be loaded anywhere in core (not restricting them to the

common/shared memory), these TCB's are part of the Resident Monitor •

• sCOM+l~~ points to a table in the Resident Monitor which contains

the start address of the various TCB's present in the system as

indicated below:

NAME SIZE (octal words)

RKTCB 21
LPTCBF 117

.SCOM+l~~ TCBTAB]

TCBTAB RKTCB CDTCBF 65
LPTCBF PLTCBF 117
CDTDBF SlTCB 24
PLTCBF S2TCBF 12_j_
SITCB S3TCBF 17~
S2TCBF
S3TCBF 2-17

The following are available for use when the handlers are in operation.

RKTCB - TCB for the RK~S disk cartridge handler

LPTCBF - TCB and buffer space for the LPll/LSll line printer handler

CDTCBF - TCB and buffer space for the CRll card reader handler

PLTCBF - TCB and buffer space for the XYll plotter handler

The following are available for new devices or for other purposes

as desired by the user

SlTCB - Spare TCB space

S2TCBF, S3TCBF - Spare TCB and buffer space

The TCB and buffer space starts below this table and .SCOM+l points

to the end of the TCB and buffer space. Users can add entries to

this table for TCB's or TCB and buffers by suitable updating .SCOM+l

and the table.

2-18

CHAPTER 3

THE NONRESIDENT MONITOR

3.1 INTRODUCTION

The System Loader brings the Nonresident Monitor into core after a

hardware readin, a manual restart, a CTRL C, or a .EXIT. The RCOM

Table, SGNBLK, SYSBLK and COMBLK are always coresident with the Non­

resident Monitor. This gives the Nonresident Monitor access to all

important system parameters.

The Nonresident Monitor announc~s its presence by typing DOS-15 Vnn

on the teleprinter. It remains in core until the operator requests

another system program, or until the operator's command implies a

refreshed configuration of the Resident Monitor is necessary.

The Nonresident Monitor's actions are limited to (1) decoding commands,

(2) manipulating or examining bits and registers in .SCOM, .DAT, .UFDT,

SYSBLK, COMBLK, and SGNBLK, and (3) callin~ the System Loader, when

necessary. The Nonresident Monitor has only one entry, which starts

an initialization section. Figure 3-1, Nonresident Monitor Initial­

ization, describes that logic. Every time the System Loader brings

in the Nonresident Monitor, it passes control to the initialization

section. After initialization, and after all commands that do not

require the System Loader, the Nonresident Monitor types a $ and

awaits an input line, terminated by a Carriage RETURN or an ALT MODE.
It then examines the first six characters {or those up to the first

blank) and tries to find an entry in the Nonresident Monitor's Command

Table. If a match is found, control passes to the appropriate routine,

and thence to the next command or the System Loader. If the typed

command does not correspond to an entry in the command table, the

Nonresident Monitor temporarily assumes the operator wishes a new

core-image system program and checks COMBLK for a corresponding entry.

If there is no corresponding entry in COMBLK, the Nonresident Monitor

will type an error message and await the next command. If COMBLK

contains a matching entry, the Nonresident Monitor composes a .OVRLA

and passes control to the System Loader via that .OVRLA.

3-1

START

1. Bank bit initialize pointers to SYSBLK, COMBLK and SGNBLK
2. Determine the number of positive .DAT slots
3. Save the contents of .DAT-12, in case the user desires LP ON

(restore before leaving Nonresident Monitor)
4. Save contents of .scoM+7 -- Nonresident Monitor will use

.SCOM+7 for address of LPA. or TTA.
S. Change all .UFDT entries that equal BNK or PAG to SYS
6. Compute addresses of .DAT-2,+l,+5 and +6
7. Compute address of beginning of I/O Device Table in SGNBLK

y

y

y

y

y

Restore .UFDT and
.DAT to SGEN values

Initialize .DAT-2 and
.DAT-3

Type out Nonresi­
dent Monitor's name

Request a date

{next page)
Figure 3-1

Nonresident Monitor Initialization

3-2

(from preceding page)

Clear bit 1 of .SCOM+42
(Nonresident Monitor

.EXIT flag)

Read command
string

(Continue to Command Decoder)

Figure 3-1 (Cor.t.)
Nonresident Monitor Initialization

3-3

3.2 COMMANDS TO THE NONRESIDENT MONITOR

This paragraph discusses legal commands listed in the Nonresident

Monitor's Command Table. Table 3-1, Effects and Exits for Nonresident

Monitor Commands, describes all commands that do not request a new

program.

There are five entries in the Command Table that load relocatable

system programs. They are DDT, EXECUTE, GLOAD and LOAD. The Non­

resident Monitor treats these commands separately, because SYSBLK

does not list them. All information necessary for loading these pro­

grams resides in the Nonresident Monitor itself.

3.3 CONSIDERATIONS FOR ADDITIONS TO THE NONRESIDENT MONITOR

Programmers should not attempt to add commands to the Nonresident

Monitor unless they have access to a copy of the source code. The

source code may be purchased from Digital Equipment Corporation,

146 Main Street, Maynard, Massachusetts, under one of the order num­

bers listed in the footnote. They should then use th.= EDITOR orogram

to put in the indicated changes, and reassemble.

New additions to the Nonresident Monitor require the following actions:

1. Update the Nonresident Monitor's Command Table.

The Command Table is in two parts:

a) The .SIXBT names of the commands

b) The corresponding transfer vector

2. Write the code for the command.

3. Consider the kind of exit the command will take:

a) Commands that end with a request for a new
command should end with JMP KLCOM

b) Commands that re-confiqure the Nonresident
Monitor should end with JMP NRMEXl.

DECtape, DEC-15-0DSRA-A-UAl

Magtape (7 track), DEC-15-0DS1A-A-MA7

Magtape (9 track), DEC-15-0DS1A-A-MA9

J-4

Table 3-1

Effects and Exits
for Nonresident Monitor Cornmands 1

COMMAND MODIFIER ACTION TAKEN EXIT

API ON Set bit ~ of .SCOM+4. .EXIT
OFF Clear bit fJ of .SCOM+4. .EXIT

ASSIGN handler Check whether handler is available. Next . If yes, load .DAT slot with proper Command
handler code. (The proper loader
will load the handler, and insert
its starting address into the .DAT
slot.

(and/or)

UIC Load proper slot via a .USER Next
Command

BANK ON Set bit 11 of • SCOM+4. Next
OFF Clear bit 11 of .SCOM+4. Command

BATCH PR Set bit P' and clear bit 2 in lo ca- .EXIT
tion 1777 of the Bootstrap's bank.
If bit 2 of .SCOM+33 is set (i.e. ,
if VT is ON) and bit 17 of .SCOM+33
is set (i.e., CTRL X is set for VT) ,
set bit 1 of .SCOM+33 in order to
tell the Resident Monitor Initializa-
tion to start up CTRL X.

CD Set bits P' and 2 of location 1777 of .EXIT
the Bootstrap's bank, and set bit 1
of . SCOM+33 as with BATCH PR .

BUFFS number Put number indicated into .SCOM+26, Next
and set Nonresident Monitor Initial- Command
ization to leave .SCOM+26 alone.

CHANNEL 7 Clear bit 13 of • SCOM+4. Next
9 Set bit 13 of .SCOM+4 Command

DATE date Enter date into .SCOM+47. Next
no date Print date from .SCOM+47. Command

1This tabie assumes error-free input

3-5

Table 3-1 (cont.)

Effects and Exits
for (ionresident Mani tor Conunands

COMMAND MODIFIER ACTION TAKEN EXIT

GET See Section 3.4.
GETP
GETS
GETT

HALF ON Set bit ~ of .SCOM+33. .EXIT
OFF Clear bits 13 and 1 of .SCOM+JJ. .EXIT

HALT If not in BOSS-15 mode, out a HLT Next
instruction (instead of a JMP) into Command
the exit from non-IOPS 4 errors to
.MED. If in BOSS mode, do nothing.

I INSTRUCT none Print IN SALL SRC) By loading .EXIT
ERRORS Print IN SERR SRC INSTRC BIN Command

KEEP ON Set bit 16 of .SCOM+42. Next
OFF Clear bit 16 of .SCOM+42. Initial- Command

ize to SGEN default values all en-
tries in .DAT and .UFDT, except
change SCR default values to current
UIC.

LOG Output five spaces after Carriac:re Next Com-
RETURNS. After ALT MODE, go to mand (after
next command. ALT MODE)

LOGIN uic Make specified UIC current (. SCOM+41) • .EXIT
*Then set up . UFTD entries; set .DAT
entries and system parameters (. SCOM+4,
20, 26, and 33) to SYSGEN default values:
clear .SCOM+42 and 56.

LOGOUT Set current UIC to SCR. Then same as .EXIT
LOGIN {above) from *

LOGW For BOSS-15, print message. In all Next Com-
cases, after a Carriage RETURN, out- mand (after
put five spaces. After ALT MODE, ALT MODE)
ty"9e four bells tP I and await CTRL P.
After CTRL P, go to next conunand.

3-6

Table 3-1 (cont.)

Effects and Exits
for Nonresident Monitor Commands

COMMAND MODIFIER ACTION TAKEN EXIT

LP ON Set bit 3 of .SCOM+42. .EXIT
OFF Clear bit 3 of .SCOM+42. .EXIT

MI CLOG rnic Check rnic wi th--SGNBLK. If correct set
bit ~ of • SCOM+4 2 and make 'SYS' the .EXIT
current UIC. Then same as LOGIN (above)
from* (except • SCOM+42 not cleared). If
incorrect, ignore command.

PAGE ON Clear bit 11 of .SCOM+4. Next
OFF Set bit 11 of . SCOM+4. Command

PROTECT n If n is between ~ and 7, inclusive, Next
enter it into .SCOM+54. Corrnnand

PUT See Section 3. 4.

QDUMP Enter MANSAV, the address of the Next
manual CTRL Q, into the exit from Command
non-IOPS 4 errors to .MED.

REQUEST none Print the current assignments for Next
.DAT and .UFDT. Command

USER Print the current assignments for
all positive .DAT and . UFDT slots •

prog Print required .DAT and .UFDT slots,
and the assignments and use for each.

.SCOM Print the information for the cur- Next
rent system. Command

TIME time Enter time into .SCOM+S,0. Next
none Print time from .SCOM+S~. Command

VT ON Set bit 2 0£ .SCOM+33. .EXIT
OFF Clear bits l, 2, and 17 of .SCOM+33.

Execute STDP.

X4K ON Enter 4,0(0(0(0(0 into .SCOM+2j0. Next
OFF Deposit zero into .SCOM+2JO. Command

33TTY ON Clear bit 2 of .SCOM+4. .EXIT
OFF Set bit 2 of . SCOM+4.

LA3~ ON Set bit 2 of .SCOM+2~ and clear
bit 2 in .SCOM+4.

OFF Clear bit 2 of .SCOM+2~ and set .EXIT
bit 2 in ,SCOM+4.

3-7

4. ::C.f ::.<:r asse..nLly, the programmer must call PATCH, in
order to make his relocatable binary program absolute.
Corrunands to PATCH should be as follows:

>DOS15)

>READR 16~77 DOSNRM BIN)

16.0'77 indicates the highest location the new monitor
can occupy. (SYSBLK begins at 161~~.) DOSNRM BIN
happens to be the file name used by program develop­
ment. The programmer may, of course, substitute his
own file name. More information may be found in the
PATCH manual -- DEC-15-UPATA-A-D.

3.4 QFILE

QFILE is a system program that allows users to (1) store core images

in named files, and (2) retrieve such core images for examination via

DUMP (or possibly for a slow, core-swapping capability), QFILE imple­

ments the following Resident Monitor system macros and Nonresident

Monitor commands:

.GET, GET, GETP, GETS, GETT, .PUT and PUT

Users can not obtain QFILE by typing its name to the Nonresident

Monitor. The Resident Monitor will load QFILE as oart of its response

to the cowmands and macros listed above.

PUT creates a file that contains the data in the CTRL QAREA; .PUT

creates a file from the current core image. GET, GETP, GETS, GETT
and .GET all overlay core with the contents of the QAREA or file. (The

different commands specify different startup locations.) In addition

to the above capabilities, the Resident Monitor provides the capability

of overlaying core with the contents of the CTRL Q area. The follow­

ing instructions show how to use that routine:

UNITN0=4).1).1iQ!JiQ
. SCOM=l.0'.0'

LAC

XOR
,JMP*

START

UNITNO
(. SCOM+6 4

/UNIT FOUR

/STARTING ADDRESS AFTER THE CTRL Q
/GET
/UNIT NUMBER IN HIGH-ORDER THREE BITE.:
/ADDRESS OF CTRL Q GET ROUTINE

3-8

Figure 3-2, QFILE, and Implementation of GET and PUT Logic, shows

the information flow associated with QFILE. QFILE uses the follow­

ing registers:

.SCOM+7 ,l~ & 11

.SCOM+65

• SCOM+66-71

.DAT-14

.SIXBT Filename and Extension

Command

Bits
Bit
Bit
Bits

parameters, packed as follows:

~-2 Device unit number
8 NRM PUT, when set
9 PUT logic, when set
15-17 Function Code

CTRL Q Area parameters

File must be on the device assigned
to this .DAT slot.

NOTE

All GET and .GET operations change all
of core, except registers ~ through 4
of bank zero.

3-9

.GET CAL &
NRM GET's

Store unit number and code into
.SCOM+65

.PUT CAL

l. Store unit number and
function code into
.SCOM+65

2. Set bit 9 of .SCOM+65
to indicate .PUT

N

Dump core into CTRL Q area

Bring in QFILE via a .OVRLA

GET PUT

Nonresident
Monitor PUT

l. Store unit number an
function code into
.SCOM+65

2. Set bits 8 and 9 of
.SCOM+65 to indicate
NRM PUT

1. Save .SCOM+65 from the file
2. Transfer core image file to

CTRL Q area via dump mode
.READ'S and Monitor TRAN'S.

Transfer core image from CTRL Q area
to named file via Monitor TRAN's and
dump mode .WRITE's

N

Use function code from file's .SCOM+65

l. Store correct startup address
2. Do Monitor TRAN from CTRL Q

area to core

Exit to
proper

location

Exit to
Nonresident

Monitor

Note: This chart assumes error free input.

Figure 3-2

y

N

Do Monitor TRAN from
CTRL Q area to core

Exit to
CAL+3

QFILE, and Implementation cf GET and PUT Logic

3-10

CHAPTER 4

THE SYSTEM LOADER AND THE LINKING LOADER

The System Loader is the third major oart of the DOS-15 Monitor. The

other two are the Resident and Nonresident parts. The Resident and

Nonresident Monitors communicate with the System Loader by manipulat­

ing certain .SCOM registers. When commands to either part imply a

new configuration is needed, that part sets up the appropriate .SCOM

registers, and passes control to the System Bootstrap via the Monitor

TRAN routine. The Bootstrap then loads the System Loader into high

core, and gives it control.

The System Loader examines the .SCOM registers, and loads a fresh copy

of the Resident Monitor, including any features that the user wishes

to be resident, such as the CTRL X feature. It will also load the

desired system program and all handlers required by the new configura­

tion. In addition, it will allocate all required buffers. The Non­

resident Monitor is treated like any other core-image system program.

The System Loader never loads user programs. It only loads core-image

system programs, the INSTRUCT command processing program, the Linking

Loader and Execute. The latter two load user programs.

The System Loader uses two device handlers to interface with the disk:

the System Bootstrap, and the System Loader Disk Handler (DKL./DPL./

RKL.). XXL. arrives in core along with SYSBLK, COMBLK and SGNBLK,
as well as the loader itself. The Bootstrap loads core-image programs

only. The xxL. takes care of relocatable programs and any handlers

loaded by the System Loader. Those include all handlers for core­

image system programs, the Linking Loader's own handlers, and any

needed by the Execute file. The Linking Loader loads some handlers

needed by user programs it links.

There are two parts to the System Loader: the System Loader Interface,

and the System Loader Proper (.SYSLD). Figure 4-1 describes the System

Loader Interface. Figure 4-2 describes the System Loader Proper, and

Figure 4-3 describes the Linking Loader.

4-1

Bootstrap
Loads

Turn on the clock
Initialize
.SCOM+~

.SCOM+4

.SCOM+2~

First free reg­
ister below the
Bootstrap
SGEN default
Bit zero set, i
extra 4K1 rest
zero

.scoM+33 VT & HALF, as

per SGEN J
.SCOM+74 Line frequency

-Mov to hi hest bank

1. Zero .SCOM+36, to indicate no entries in the Mass Storage
Busy Table

2. Move Resident Monitor into lower core
3. Set up: Jump to Skip Chain

CAL* error
Legal CAL jump

4. Turn API on or off, depending on bit ~ of .SCOM+4 (set=on)
s. Bank bit initialize Resident Monitor to talk to the

Bootstrap, and load .SYSLD into. the proper bank upon a
subsequent .EXIT or .OVRLA.

6. Initialize the Bootstrap with the proper IOPS 4 address for
disk not ready

7. Calculate the Skip Chain from SGNBLK
B. Set all API channel registers to point to IOPS 3 (with the

exception of the clock interrupt) and all software levels
to point to IOPS 3~

9. Put transfer vector to .DAT slots into .SCOM+23
1,0. Put number of positive .• DAT slots into .SCOM+24
ll. Put pointer to .UFDT+~ .into .sCOM+25

.TRAN image of .DAT
and .UFDT in from
block 37 of the sys­
tem device unit ~

1.
2.
3.

N

Zero .DAT-7 (i.e., not yet set up)
Set up .VAT-2 and .DAT-3 for TTA.
Update .SCOM+l and +2 to point
just above the Skip Chain, .DAT
and .UFDT

Figure 4-1
System Loader Initialization

4-2

.TRAN image.of .DAT
and .UFDT out to
block 37 of the sys­
tem device

From Preceding Page

1. Put number of system device's "JI.." J.iandler (DKA. or DPA.or RKA.)
into .SCOM+57

2. Set up tabbing for current teleprinter
3. Set .SCOM+2~ to initial state (as in first time initialization)
4. Set up for CTRL Q -- ignore Q-dumps if RF system and QAREA too

small, or nonexistent
S. Set up for IOPS errors upon the followina interrupts:

Nonexistent Memory (IOPS 31)
Memory Protect Violation (IOPS32)
Memory Parity Error (IOPS33)
Power Fail Not Set Up (IOPS34)

N

N

y

y -- Non-BOSS Batch

Set up for the
proper input
device (CD or PR)

set switc to ig­
nore input until $JOB

Next Page
Figure 4-1 (Cont.)

System Loader Initialization

4-3

From Preceding Page

l. Set up CTRL C to clear the Batch Switch (bit l of 17777
of the Bootstrap)

2. Set up CTRL T to abort current job, and start the Batch
Monitor looking for the next $JOB line

3. Relocate proper batch handler (PR or CD) to low core
4. Put handler entry point into .DAT-2
S. Set IOPS errors to abort job -- effectively a CTRL T
6. Set up all batch device .DAT slots to refer to the hand­

ler currently in core. That is, only one batch input
device is allowed at any one time

7. Clear $JOB read swltch (bit l of Bootstrap 17777)
8. Perform .INIT to .DAT-2

Clear bits 14, 15
and 17 of SCOM+42

N

N

1. Relocate Resident BOSS
and link it to the DOS
Resident Monitor

2. Patch DOS Resident Mon­
itor to accomodate BOSS

3. Set bits 14, 15 and 17
of .SCOM+42, to tell
.SYSLD to set up .DAT-7
and +6

N

N

Relocate and
link CTRL X

code, and give
proper buffer

Set up linkages between
CTRL X code and the
Resident Monitor

Next Page

Figure 4-1 (Cont.)
System Loader Initialization

4-4

From Preceding Page

J,

N

N

1. Allocate the number of buffers
indicated by .SCOM+26

2. Set up File Buffers Transfer
Vector Table pointer, in .SCOM+3.0

J
y N

1. Store one of the following
codes into .SCOM+6:

LOAD 1.0.0.0.0.0

Tell .SYSLD by setting
.SCOM+ll to XCS {avoids
two handlers in core for
same device)

Set •. SCOM+S
to 14

GLOAD 3.0.0.0.0.0
DDT 4.0.0.0.0.0

>

DDTNS 5.0.0.0.0fil

2. Zero .SCOM+S

1. Allocate number of

0 buffers indicated
by .SCOM+26

2. Set up File Buffers
Transfer Vector
Table in .SCOM+30

3. Set .SCOM+6 = fil
4. Put 13 into .SCOM+S

(Loading a Core-Image Program)
1. Find entry in SYSBLK and COMBLK
2. Build Overlay Table from information .in COMBLK, and set .SCOM+31 to

first word in the table
3. Store the number of overlays in the overlay processor of the Resident

Monitor

Next Page

Figure 4-1 (Cont.)
System Loader Initialization

4-5

From Preceding Page

1. Store the list of active .DAT slots de­
rived from COMBLK in the system Loader
command area, just below the Bootstrap,
and delimit the list with a· zero

2. If the Nonresident Monitor was not the
last program, restore .scoM+26 to default

3. Allocate! snace for, and set un .SCOM+39l
to noint to the File. '1uffers Transfer
'l'.}'Qc-::.or Tahle

Set b:it 3

of .SCOM+4

1. .,
~.

Zero .SCOM+6
Put l
into .SCOM+S

N

Clear bit 3

of .SCOM+4

1. ~ove the RCOM Table to position belo"1
the Bootstrap

2. Build the roe T~ble

~rinrr in
•. "."'·YSLD ·-'i.3
'!n:1i tor TR.i\~~

Figure 4-1 rcont.)
~ystero Loader Initialization

Entry
from init­
ializatio

1. Set up for Page or Bank Mode
2. Set up .OAT-7 for the System Loader disk handler (DKA., RKA. or DPA.)
3. Clear free core, and initialize bank bits in pointers to the Bootstrap
4. Make a Mass Storage Busy Table consisting of one entry

Set up to
read INSTRC
BIN

y

N

Set up CTRL P
address

1. Change XCS to XCT
2. Allow reading of

EXECUTE file by the
System Loader Handler

Clear memory bank pointers of banks that
do not exist

N

Load handlers into extra 4k,
if it exists

N

Put System Device's code into
.DAT+~, to allow subsequent
insertion into .DAT-7

Next Page
F_igure 4~2

The System Loader

4-7

y
I

IOPROS:all
.DAT slots

core
image

in table just
nder BootstraIJ

From Preceding Page

w
IOPROS
.DAT+0,+6

INSTRC

I OP ROS
.DAT-12

relocatable

N

N

1. Translate the handler code from radix
5~ to .SIXBT

2. Do •USER to .. UFDT-7 1 using "IOS"
3. Do .INIT and .SEEK to .DAT-7, in order

to get the handler file
4, Load handler via .DAT-7, and close .DAT-7

N -- not yet

Read EXECUTE file
for desired handlers

Note: Subroutine IOPROS accepts
IOPROS .DAT slots as input. If the in­

dicated .DAT slot contains zero,
the slot is unassigned, and IOPROS
returns~ If not zero, IOPROS checks
whether the desired handle~ has al-

,DAT slots from/
XECUTE file

ready been loaded. If the handler
is in core, IOPROS loads the .DAT
slot with the handler's starting ad­
dress and returns. If the handler has
not been loaded, the handle= cede is made
an unresolved ,GLOBL, to be satisfied
by the loop that follows immediately.

Figure 4-2 (Cent.)
The System Loader

4-8

y

1. Set up Mass Storage Busy
Table Entries for all
active .DAT slots

2, Set .SCOM+l to first free
location in core--often
becomes first location of
EXECUTE

next page

From Preceding Page

Load and relocate EXECUTE or the Linking
Loader, and place starting address into
.scoM+S

y

l. Set up Mas~ Storage Busy table with
one entry per active .DAT slot

2. Move the IOC table from the System
Loader's area (just beneath the
Bootstrap) to the Linking Loader's
re

set .scoM+2 and +3 to delimit free core

Exit to ad­
dress in

SCOM+S

l. Allocate all necessary buffers
2. If the system has an extra 4K,

put the first free address beneath
the handlers into .SCOM+2~

3. Update first free location in core
shown in .SCOM+2 -- .OVRLA updates
the first free address beneath the
Bootstrap, .SCOM+3

Exit via
.OVRLA

Note: Subroutine BOSCKl does the following, if loading a program under BOSS-15:

(1) .USER to .UFDT-7, (2) .SEEK to .DAT-7 for PRCFIL PRC.

Figure 4-2 (Cont.)
The System Loader

4-9

START

1. Clear all of core above the loader, including the extra 4K, if present, and
excluding the Bootstrap ;

2. Initialize the Load Table with the first free address in every bank or page
3. Indicate all core below the address in .SCOM+2 as not free
4. Compute transfer vectors to .DAT-1, -3, -4, -s, and -7, and a pointer to

.UFDT-1
s. save the contents of .UFDT-1

1. Check for P, G and c switches

N

Load DDT and set the
symbol flag, if not
DDTNS

Type appropriate
name, and await
command string

2. Translate all file names after left arrow into .SIXBT, pad with blanks,
and store in symbo1 tab1e

3. After ALT MODE, load to end-of-file each file on .DAT-4, and put starting
address of the first file (i.e., not DDT) into .SCOM+6

·~~~~~~~~~~·~~~~~~~~~~~~-'

N

After every end of tape, type tp
and await CTRL P -- continue
until number of tapes equals the
number of commas, plus one

Next Page

Figure 4-3
The Linking Loader

4-10

NOTE:

During the library searches
diagrammed on this page, the
Linking Loader tests for
more unresolved .GLOBL's af­
ter each resolution. When­
ever there are no more unre­
solved .GLOBL's, the Linking
Loader halts its library
searches, and goes directly
to the COMMON area allocation
code (next to the last box
on this page). Thus, the
libraries are never searched
more than is necessary.

From Preceding Page

Check Symbol Table for handlers
needed, and load them from .DAT
-1, using IOS as a UIC; exit if
ille al .DAT slots are desired

Check Symbol Table for any
unresolved .GLOBL's

y

N

1. Do .SEEK to LIBRS BIN on .DAT-5
2. Read through user's library and

load any program units that sat­
isfy any .GLOBL's

3. Read to end of library file, if
still unresolved .GLOBL's

If any unresolved .GLOBL's, try to
L-------~--------lfind program uni ts in the system

library (.LIBR BIN) on .DAT-1

Exit to the~----i Print LOAD3 error
Nonresident message
Monitor ~-----------~

Scan Symbol Table for Common Blocks,
and allocate space and set pointers,
as needed. If any unresolved .GLOBL's
seek matches in the Common Blocks

y

Next Page
Figure 4-3 (Cont.)
The Linking Loader

4-11

1.

2.

3.

From Preceding Page

y N

N

SET .SCOM+2 JUST
BELOW THE LOADER

SET .SCOM+2 ABOVE
THE LOADER'S HIGH­
EST HANDLER - NO
HANDLER IS OVER­
LAYED

SET .SCOM+2 BELOW
.ALL OF THE LOADER'S
HANDLER, AND THE
LOADER ITSELF

ALLOCATE THE MASS STORAGE BUSY TABLE,
WITH THE NUMBER OF ENTRIES EQUAL THE
SUM OF THE ACTIVE .DAT SLOTS, MINUS
ONE -- I.E., THE TWO .DAT SLOTS FOR
THE TELEPRINTER ARE OMITTED, AND ONE
FOR .DAT-7 IS ADDED

PUT LOWEST ADDRESS OF
THE SYMBOL TABLE INTO
.SCOM+ll.
PUT THE LENGTH OF THE
BUSY TABLE IN
.SCOM+l,0.
HIGHEST ADDR OF SYMBOL
TABLE GOES IN
.SCOM+2 - DDT WILL
RECALCULATE .SCOM+2

CONTROL GOES
TO ADDRESS IN
.SCOM+S (DDT)

y N

Figure 4-3 (Cont.)

The Linking Loader

4-12

CLEAR THE
BUSY TABLE

GLOAD: CONTROL
GOES TO ADDRESS

IN .SCOM+6

AWAIT
CTRL S

4.1 MANUAL BOOTSTRAP LOADS AND RESTARTS

Manual Bootstrap loads and restarts bring blocks ~-36 of the system

device into the lowest bank. These blocks contain the Resident Moni­

tor, the System Loader Interface Routine, and SYSBLK, COMBLK and SGNBLK.

Figure 4-4 illustrates the core load after manual Bootstrap loads and

restarts. The Interface sets up .SCOM+~, 4, 2~, 27, 33, 54 and 74

from SGNBLK values determined at system generation time, and then

transfers the whole core image of the Interface to the Bootstrap's

bank. (DOS requires 16K, because this bank must be different from

bank~.) At all other times, the Bootstrap loads the System Loader

into its own bank. This preserves the image of .SCOM, part two of

the Resident Monitor patch area, and the CTRL X buffer. For UC15

systems (RK05 based and RF15/RP~2 based with UC15 option) this has

no effect on the core layout in the PDP-11 local memory. PIREX is

reinitialized meaning all permanent tasks are put in a 'WAIT' state

while temporary tasks are put in a 'EXIT' state and all pending

PDP-15 requests ?re flushed (refer to UC15 Software Manual,

DEC-15-XUCMA-A-D for more information) •

4.2 LOADING SYSTEM PROGRAMS

The System Loader Interface Routine gets control in the highest bank,

either by a transfer from the lowest bank, or by load from the Boot­

strap. After setting up for the System Loader Proper (.SYSLD),

according to the program to be loaded and the settings of certain

SCOM registers, the Interface Routine brings it in as a complete

overlay. Figure 4-5 illustrates the core configuration of the

Interface when it is in the highest bank. (The addresses provided

are for a 16K system.) The System Loader loads handlers from the
lowest part of free core up, with the exception that the extra 4K is

filled first, if it exists. Core image system programs are usually

loaded just beneath the Bootstrap (always in the highest bank) . Such

core images must be wholely within the top bank of core, and above

register 17 of that bank. Figure 4-6 illustrates the core maps for

system programs.

Whenever the Linking Loader is loaded (LOAD, GLOAD, DDT, and DDTNS) I

the System Loader loads all handlers for .DAT slots -1, -4, and -5,

and then loads the Linking Loader itself. (DDT is loaded by the

Linking loader.) Wherever INSTRC ($INSTRUCT command processing

program) is loaded, the handler assigned to .DAT slot-12 is also

loaded. Figure 4-7 illustrates the core maps for the Linking Loader

and INSTRC.

4-13

BOOTSTRAP

UNUSED

3 SYSTEM BLOCKS

SYSTEM LOADER INTERFACE

RESIDENT MONITOR

16K, 24K. 32K

SCOM

17500

16100

100

15-0663

Figure 4-4

.Bootstrap Load

BOOTSTRAP

SYSTEM PROGRAM"'

(THIS AREA IS USED BY CORE
IMAGES. SOME ROOM UNDERNEATH
THE BOOTSTRAP MAY BE LEFT
FREE FOR COMMUNICATION

BETWEEN CORE IMAGES IN AN
OVERLAY STRUCTURE.
CORE IMAGES MUST BE 8K OR
LESS.)

FREE CORE

HANDLERS, BUFFCRS

BUFFER POOL
TRANSFER VECTORS

OVERLAY TABLE

DEVICE TABLE

RESIDENT MONITOR

Figure 4-6
System

Program Load
.. All system programs except MAC!!,
which is always \coded in Bonk I
regardless of the size i!6K, 241<, 32K •
of the system.

16K, 24K, 32K

.SCOM

• SCOM+3

.SCOM+2

SCOM+l

~5-066i

BOOTSTRAP

DDT, l F PRESE'NT

1
LOADED PROGRAMS

ON DDT LOADS. SYMBOLS
ARE MOVED INTO THE
LOWEST PART OF FREE CORE

SYMBOL TABLE

SYMBOLS AND PROGRAMS BUILD
TOWARD EACH OTHER

l
LiNl<ING LOADER"
OR !NSTRC

LOADER OR INSTRC
HANDLERS

BUFFER POOL

BUFFER POOL
TRANSFER VECTORS

RESIDENT MONITOR

•pl;,icement of .SCOM•2 deoer>.ds on rf;'la11ve

pos1tmns of the Link1nq Loader and its handlers .

SCOM<2 and ~3 bro1clrnt fr"" to<«

Figure 4-7

Linking Loaaer

4-14

16K. 24K. 32K

SCOM SCOM~-3.

SCOM+l"

SC0,\-1+1

15- 06 6 0

BOOTSTRAP

RCOM TABLE

SGNBLK

SYSBLK and COMBLK

SYSTEM LOADER INTERFACE
(over!ayed by .SYSLD)

RESIDENT MONITOR IMAGE

RESIDENT MONITOR

• .;, ~he lnt~•face mo~~~ tod~ dn'-''"· >I mere·
"l"fllS SC0~1•1 and ·•2.

Figure 4-5

Standard
Interface Loac

BOOTSTRAP

OVERLAY SYSTEI\~

FREE CORE

EXECUTE

All. HANDLERS REQUIRED

BUFFER POOL

BUFFER POOL
TRANSFER VECTORS

RESIOEr>ff MONITOR

?igure 4-8

Execute

16K, 24K, 32K

.SCOM

37500 116K)

37100 qsKJ

36100 !16Kl

20100 {16Kl

15-0664

16K. 24K. 32K

SCOM

.SCQM+3

SCOM<-2

SCOM-..1

For EXECUTE, the System Loader loads EXECUTE's handler, and reads the

EXECUTE file, in order to determine the active .DAT slots. The

System Loader then loads all the handlers required, and sets up the

.DAT slots. Figure 4-8 illustrates core maps for EXECUTE.

BOSS-15 Mode operation requires the system "A" handler be assigned to

.DAT-7. This requires a sleight of hand on the part of the System

Loader, which needs the "L" handler on .DAT-7. It therefore loads

the "A" handler as if it were assigned to .DAT+.0', and transfers the

set up .DAT slot .0' contents to .DAT-7 before transferring control to

the program being loaded.

status.

.DAT+.0' is then restored to its orig~nal

4.3 TABLES AND INFORMATION BLOCKS USED AND BUILT BY LOADERS

The System Loader uses SYSBLK, COMBLK, SGNBLK, block 37 of the system

device, .SCOM, the RCOM Table, the IOC Table, the Device Table, the

Mass Storage Busy Table, the File Buffers Transfer Vector Table, the

Overlay Table, .DAT, .UFDT and three bits in the Bootstrap. Tables

4-1, 4-2, and 4-3 describe how the Loaders use these blocks and tables.

4.4 .DAT SLOT MANIPULATION BY THE SYSTEM LOADER

The System Loader maintains the .DAT slot device handler assignments

as they were the last time the Nonresident Monitor was in core. The

Loader saves the .DAT and .UFDT on the system device whenever the

Nonresident Monitor was the last program in core. Thereafter, the

Loader refreshes .DAT and .UFDT from the image on the disk. If KEEP

is off, the Nonresident Monitor's initialization routine restores the

.DAT and .UFDT to default values.

When loading core-image system programs, the System Loader determines

the active .DAT slots by examining COMBLK. When loading EXECUT, the

System Loader sets up .DAT-4, and any active slots indicated by the

Execute file itself. When loading the Linking Loader, the System

Loader sets up .DAT-1, -4, and -5 and also .DAT-12, if loading INSTRc.I

The Linking Loader will set up other active .DAT slots according to

the .IODEV commands in the assembly of the program units being loaded.

Both the System Loader and the Linking Loader set up .DAT slots in

this manner:

one.)

(In the following procedure, "loader" refers to either

4-15

NAME

SYSBLK

COMBLK

SGNBLK

Block 37
of the Sys-
tern Device

.SCOM Table

RCOM Table

IOC Table

Device
Table

Mass Storage
Busy Table

File Buffers
Transfer Vee-
tor Table

Overlay
Table

.DAT
and
.UFDT

BOOTSTRAP

Table 4-1

Tables and Blocks
Used by the Loaders

USE

The System Loader obtains Monitor TRAN
parameters from SYSBLK when it builds

Indicates number of buffers required,
the active .DAT slots, and the names

Default settings for .SCOM registers,
number of words per buffer, size of
Resident Monitor's patch area (part
two), Skip Chain, .DAT and .UFDT de-
fault contents, and handler informa-
tion.

Image of .DAT and .UFDT, when last pro-
gram was loaded (excluding the Nonresi-
dent Mani tor).

See Table 4-II.

Moved for use by the Nonresident Monitor.

Built by Interface Routine for .SYSLD
itself.

Built by Interface Routine if loading
PIP I or if PIP is among the overlays
listed in COMBLK

Built by the System Loader itself.

Allocated by the Interface Routine, and
initialized by it for non-core Imaqe
programs. System Loader prooer initial-
izes for core-image programs.

Built by the Interface Routine

Image stored and restored from block 37
of the System Device. The System Loader
loads all handlers for core-image pro-
grams and EXECUTE Files, and sets up
the appropriate .DAT slots. The System
Loader also loads handlers assigned to
.DAT-1, -4, and -5 when loading the
Linking Loader, and .DAT-7 and +6 for
BOSS-15.

Bits SJ, 1, and 2 of location 17777 in
the Bootstrap's bank used for Batch (non-
BOSS) information.

4-16

LOCATION

165,0'!1 of
.SYSLD's bank

171.0'!1 down, in
.SYSLD's bank

16 lf.'.0' of
.SYSLD's bank

l.0'l1 of 1st bank

175l1l1 of the
highest bank

Just beneath
the System
Loader

Just above
.SCOM+l

Pointed to by
.SCOM+62

Pointed to by
.SCOM+3,0'

Pointed to by
.SCOM+31

Pointed to by
.SCOM+23 and
.SCOM+25

Table 4-2

.SCOM Registers used by the System Loader

.SCOM+ Description of Use by the System Loader

fl Set in first-time initialization routine. Used to locate
the System Loader Command Area, which is just below the
Bootstrap.

l System Loader Interface routine updates this indication
of the first free register above the Resident Monitor
each time it moves a piece down to low core.

2 The Interface and .SYSLD itself continually update this
indication of the first free location as they move code
and build tables.

3 Updated as with .SCOM+2. Last free location in core.

4 First Time Initialization routine sets this register ac-
cording to a SGNBLK parameter.
Refer to Table 4-III.

5 Interface Routine stores code of program to be loaded
into .SCOM+S. .SYSLD uses .SCOM+S for starting address
when loading EXECUT or LOAD. The .OVRLA routine loads
.SCOM+S with starting address of the Monitor Recovery
Routine. The Bootstrap transfers to the address in
.SCOM+S after all its operations.

6 Interface Routine stores codes for DDT, DDTNS, LOAD and
GLOAD into .SCOM+6. For other programs, the Interface
Routine zeroes .SCOM+6.

7 .SYSLD saves contents of .DAT-1 in .SCOM+7, when loading
the Linking Loader. When loading EXECUT, .SCOM+7 con-
tains the first three characters of the Execute file's
name. Contains .DAT-12 when loading Nonresident ~onitor.

ljl .SYSLD saves contents of .DAT-4 in SCOM+l,0, when loading
the Linking Loader. When loading EXECUT, .SCOM+l~ con-
tains the second three characters of the Execute file's
name.

11 .SYSLD saves contents of .DAT-5 in .SCOM+ll, when loading
the Linking Loader. When loading EXECUT, . SCOM+ll con-
ta ins the extension of the Execute file's name. (The
Interface routine sets .SCOM+ll to XCS, telling .SYSLD
that EXECUT will be using the system device. .SYSLD
then restores . SCOM+ll to XCT.)

12- The Interface routine initializes these transfer vectors
15 for API software levels to point to SERR, an error routine

that will produce an IOPS3~.

16, Unaffected.
17

4-17

.SCOM+

2fJ

21

22

23

24

25

26

27

3fJ

31

32

33

Table 4-2 (Cont.)

.SCOM Registers Used by the System Loader

Description of Use by the System Loader

Bit zero set in first time initialization, if system con­
tains an extra 4K. If the system does contain an extra
4K, the System Loader will load handlers in that page -­
from the bottom up -- when loading a core-image program.
Whenever there is an extra 4K, the System Loader will
update bits 3-17 with the address of the first free cell
in the extra 4K. If bit 2 is set, change Resident
Monitor so that it will tab for a KSR33, and send filler
characters when outputting carriage returns.

j Unaffected,

j Unaffected.

The Interface Routine refreshes this pointer to .DAT.

I The Interface Routine refreshes this indication of the
number of positive .DAT slots.

The Interface Routine refreshes this pointer to .UFDT+fJ.

When the Nonresident Monitor was the last program, the
System Loader allocates the number of buffers indicated I by the contents of .SCOM+26. If the Nonresident Monitor

I was not the last program, the System Loader restores
.SCOM+26 to the default value if program to be loaded is J core image. Otherwise, untouched.

j The first time initialization routine sets this indica­
I ti on of the number of words per file buffer.

II The Initialization Routine loads this pointer to the
File Buffer Transfer Vector Table.

I When loading a core-image program, the Interface Routine
loads .SCOM+31 with the pointer to the Overlay Table, or l with zero, if there is none.

l Unaffected.

Tl See Interface Routine tabie, to determine how that routine
reacts to the bits in .SCOM+33.

34, 35 I Unaffected.
I

36

37-42

43 t 44

45-56

57

6jl, 61

62

63-

System Loader loads with the number of active .DAT slots
assigned to the system device.

Unaffected.

Contains name of the program to be loaded.

I Unaffected.

System Loader loads with the number of entries in the
Mass Storage Busy Table.

Unaffected.

System Loader loads with the address of the first entry
in the Mass Storage Busy Table.

Unaffected.

Table 4-3

Use of .SCOM+4 by the System Loader

Bit

0 If set, place "API ON" constant into fJfJfJfJfJ6 .
If clear, place "API OFF" constant in same register.

1 Ignored.

2 If set, change the Resident Monitor so it will tab
with the KSR 35/37 tabbing mechanism.

3 Loader will set this bit, if loading the Nonresident
Monitor; clear it otherwise.

4-6 Ignored.

7 Loader sets this bit if bit 11 is cleared, and load-
ing the Linking Loader or Execute. Otherwise clear.

8 Sets or clears, after comparing current core size
(known by location of Bootstrap, and status of bit fJ,
.SCOM+2,0') with SGNBLK parameter. Also, modifies
Resident Monitor to give IOPS77 after attempts to use
CTRL Q.

9, 10 Ignored

11 Indicates whether to clear or set bit 7, when loading
Linking Loader or Execute.

12-17 Ignored

4-19

1. Each .DAT slot will contain a handler number -- either the
system default, or one inserted via an ASSIGN command to
the Nonresident Monitor. This handler number is the rela­
tive location of the handler name in the IOC Table, which
the Interface Routine builds. (The IOC Table contains
handler names in Radix 5~.)

2. For each active .DAT slot, the loader uses the handler
number in that slot to find the name in the IOC table, and
converts the name to .SIXBT.

3. If the handler is already in core, the loader simply inserts
the starting address of the handler into the .DAT slot.

4. If the handler is not yet in core, the loader does a .SEEK
to <IOS> UIC for the handler, reads it into, core, relocates
it, and places the starting address of the handler into
the .DAT slot.

The System Loader always sets up .DAT-2 and -3. (It reserves .DAT-7

for its own use.) When not in non-BOSS Batch Mode, -2 is assianed

to TTA. In non-BOSS Batch Mode, the batch input device goes to -2.

If loading the Nonresident Monitor and bit three of .SCOM+42 is set,

the System Loader will set up .DAT-12 for the LPA, if it is in the

system, or else for TTA. If in BOSS mode, the Nonresident Monitor

assigns LPA. to .DAT+6, and the System Loader assigns .DAT-7 to the

system device "A" handler. The System Loader then ensures that both

handlers are in core. The Resident BOSS set up routine subsequently

routes all .DAT slots connected to TTA. to Resident BOSS.

4.5 BUFFER ALLOCATION BY THE SYSTEM LOADER

The System Loader allocates space for buffers equal to the contents

of .SCOM+26 times the contents of .SCOM+27. The first time initial­

ization routine sets .SCOM+27 to the standard number of locations per

buffer. Before the Nonresident Monitor does an .OVRLA to a software

system program, it checks whether a BUFFS command has been issued.

If so, it leaves .SCOM+26 as is. If not, it uses the default number

of buffers for that program, as shown in SYSBLK.

4-20

CHAPTER 5

SYSTEM INFOR!Vl.ATION BLOCKS AND TABLES

5.1 CORE-RESIDENT NON-REFRESHED REGISTERS

The .SCOM table, the Bootstrap and the resident Patch Area are the

only registers not refreshed by the System Loader. Table 5-1 de­

scribes the .SCOM Table.

5.2 DISK-RESIDENT UNCHANGING BLOCKS: SYSBLK, COMBLK AND SGNBLK

SYSBLK, COMBLK and SGNBLK occupy blocks 34, 35, and 36 (octal) on the

system device (unit zero). SYSBLK and COMBLK (blocks 34 and 35) contain

the parameters for loading all core image system programs. SGNBLK con­

tains all the other information needed to run DOS. All three arrive

in core along with the Resident Monitor and the System toader Inter­

face, and start at location 161~~ of the highest bank. The Nonresident

Monitor and System Loader use them, and DOSGEN and PATCH modify them,

when necessary.

5.2.l SYSBLK

SYSBLK contains the parameters required for implementation of .OVRLA

to any system program, or any of the system program overlays.

The order of entries in SYSBLK is unimportant, except for the first
three permanent entr~es: RESMON 1 .SYSLD, and tQARBA. The first word

of SYSBLK contains the block address (the unrelocated address) of the

first free word after itself. Figure 5-1 describes SYSBLK.

5.2.2 COMBLK

COMBLK contains information the System Loader and the Nonresident

Monitor need to remember about the current core-image system programs.

The last location in COMBLK (that is, location 377 of block 35) con­

tains the block address of the first entry in COMBLK. The remainder

of COMBLK consists of variable-length entries associated with the

system programs. The Nonresident Monitor searches COMBLK when it

finds no match for a typed command in its own Command Table. Figure

5-1 illustrates the organization of COMBLK. The System Generator adds

5-1

Table 5-1

.SCOM Registers

1
REGISTER BIT MEANING

fl First register below the Bootstrap (set by the
System Loader Interface)

1 First register above the Resident Monitor (set by
the System Loader Interface)

2 Lowest free register available for storage (set
by the System Loader or the Linking Loader)

3 Highest free register available for storage (set
by the System Loader, the Linking Loader or DDT)

4 Initialized from SGNBLK values by the "first time"
section of the System Loader Interface Routine,
and by the LOGIN, LOGOUT and MICLOG logic of the
Nonresident Monitor: modified by the Nonresident
Monitor, unless otherwise indicated.

fl = 1 API is available.

1 = 1 EAE is available (always set)

2 = 1 Teleprinter is Model 35 or 37

3 = 1 Nonresident Monitor is in core

4,5 Reserved

6 = 1 9-Channel Magnetic Tape System

7 = 1 Page Mode Operation

8 = 1 QAREA inadequate for current core size (set by
the System Loader Interf'ace Routine)

9 = 1 DOS disk file structure (always set)

lfJ = 1 RB.(J9 disk is system device.

11 = 1 Bank Mode System

12,13 Line Printer Line Size:

fl.(J No Line Printer
fll Bfl Characters
lfJ 12fJ Characters
11 132 Characters

14 = 1 Background/Foreground System (always clear)

15- 17 Drum size (ignored -- DOS does not support drum)

5-2

REGIS~ER BIT

5

6 ~ = 1

1 = 1

2 = 1

3-17

7-11

12

13

14

15

16

17

29! ~ = 1

l. = l.

2 = 1

3-17

21

22

23

24
.

25

26

27

39/

Table 5-1 (Cont.}

.SCOM Registers

MEANING

Core Image System Program Starting

DDT in core.

GLOAD

DDTNS

User program starting address.

address.

When using the ~inking Loader, .SCOM+7, 10 and 11
contain the handler numbers for handlers needed by
the Linking Loader in • DAT -1, -4, and -5 respectively.

When the Linking Loader passes control to DDT;
SCOM+lO contains the size of the Busy Table (for
later clearing by DDT) and .SCOM+ll has the starting
address of the symbol table.

When using EXECUTE, 7-11 contain the .SIXBT repre-
sentation of the name and extension of the Execute
File;

When using QFILE (for implementation of .GET, .PUT
and the Nonresident Monitor GET and PUT commands),
7-11 contain the .SIXBT representation of the name
and extension of the core image file.

API Level 4 service routine entry point

AP! Level 5 II

API Level 6
II

API Level 7 11

Program Counter on Keyboard Interrupts.

AC on Keyboard Interrupts.

29iK or 28K system.

UCl.5 system - RKj15 based or RFl.5/RP,0'2 based

39! CPS LA39i console device.

First free address in top page.

Magtape Status Register.

Reserved for Magtape Handler .

Pointer to • DAT+9f.

Number of positive .DAT slots.

Pointer to .UFDT+,0.

Number of buffers.

Number of words per buffer.

Pointer to Buffer Transfer Vector Table.

5-3

I

REGIST:J:Rs BIT

31

32

33

fl = 1

1 = 1

2 = 1

17 = 1

34

35

36

37

4f4

41

42

fl = 1

l = 1

2 = 1

3 = 1

4 = 1

5 = 1

6-13

14 = l

15 = l

16 = l

17 = 1

43,44

45,46

Table 5-1 (Cont.)

.SCOM .Registers

MEANING

Pointer to first entry in the overlay Table
if none).

Bad block number on IOPS 254 and 72.

CTRL X status register.

HALF ON

Display Buffer already set up.

VT ON

If VT ON, display mode is c;m.

If in BOSS mode, elapsed time in seconds.

Instruction to clear TT Busy Switch.

Number of Entries in the Mass Storage Busy

Entry point for Expanded Error Processor.

JMP to Expanded Error Processor.

The logged-in urc.

Bit Register.

MI CLOG successful.

.EXIT from Nonresident Monitor.

.OVRLA from Nonresident Monitor.

(zero,

Table.

LP ON -- LPA to .DAT-12 when loading Nonresident
Monitor.

Dump core on calls to .MED (except !OPS 4) •

Halt on calls to .MED (except IOPS 4) .

Unused.

Set up .DAT+6 (use by Batch mode)

Load System Device Handler into .DAT-7.

KEEP ON.

Batch Mode.

.SIXBT Representation of the name of the core
image system program to be loaded (if any).

.SIXBT Representation of the name of the Non-
resident Monitor

5-4

REGISiERS BIT

47

5,0'

51

52

}! = 1

1 = 1

2 = 1

3 = 1

4 = 1

5 = 1

6 = l

7 = 1

8 = 1

9 = l

lib = 1

11 = 1

12

13

14-16

17 = 1

53

54

55

56

57

6)J

Date [mm

Table 5-1 (Cont.)

• SCOM RegistE.rs

MEANING

(bits ~-5), dd (6-11) I

1~70 df?cimallJ

Time [hh (bits ,0'-5)' mm (6-11),

Elasped time, in ticks.

BOSS Bit Register

BOSS15 Mode.

Control Card Read by user, 5/7
in first block of NRBOSS.

Resident BOSS reached "EOF" on

User exceeded time estimate.

yy (12-17, module

SS (12-17) J

ASCII image saved

run time file (RTF) .

I/O CAL to go to TTY (.DAT-3 and positive .DAT slots).

Terminal IOPS error by user.

QDUMP to be given to user on IOPS errors.

Operator abort (Control T).

Job active.

Exit from BOSS15 Mode.

User tried to do a .PUT. Core will be dumped and
a listing given on LP.

user tried to do a .GET.

Not defined.

Not defined.

. SYSLD error number .

Job abort.

Reserved for CTRL x code.

Default Protection Code.

Entry to Monitor TRAN routine.

Two's complement of time limit, in seconds (zero,
if no limit).

System Device Code, for use by the Linking Loader.

Number of ticks until clock interrupt specified
in last . TIMER (zero, if .TIMER not in use).

5-5

I

REGISTER BIT

61

62

63

64

65

66

67

7~

71

72

73

74

75

76* .0'=1

l=l

3

5-17

77* 6-17

100* 6-17

l,0'1-1,0'5

Table 5-1 (Cont.)

,scoM Registers

MEANING

. TIMER address.

Address of the first word in the Mass Storage Busy
Table.

Number of words per Mass Storage Busy Table Entry.

JMP to CTRL Q GET routine.

QFILE Communication Reg-ister.

First Block of the CTRL Q Area.

Starting Address minus one of the CTRL Q Area.

Two's complement of number qf word in Qdump

Starting Address after DUMP or GET.

Starting Address after CTRL Q.

Two's complement of the number of ticks left in the
next second.

Two's complement of the line frequency.

Number of RTF' Lines (for BOSS Mode) .

SPOOLER ENABLED

SPOOLER RUNNING

MACll Communication Bit
SPOOLER area disk start block number

SPOOLER area size (in blocks)

pointer to TCB and Buffer Table

unused

*For RK.0'5 system only. Unused for RP02 and RF15 systems.

5-6

Word # Value

fl !1!1!1nnn . .
7N+l .SIXBT
7N+2 .SIXBT

s 7N+3 nnnnnn

y
7N+4 f1f1f1ffon

s
B

7N+S add res

L 7N+6 flnnnnn

y K 7N+7 addres

.
~------~-------- -----------

~------~--~;;---1-;;;;;~;---

S,0! I . SIXBT
5112 p • SIXBT
5,03 .SIXBT
5114 r .SIXBT
5!15 o~ 11.0!1,0!12

~ c g

0 1

M
5f46 .DAT&777

B 5!17 '- .DAT&777

L
5111 r f0flf1!1f15

K p
511 ,SIXBT
512 r .SIXBT
513 O<(!1!1!1.0!11

g

514 2 .DAT&777
. '-

777 !1f1f15!1!1

Descr~tion

Pointer to first free word after SYSBLK
(There is one set of seven words/core
image program.)

Name of System Program or overlay

Number of first block on system device
occupied by this program or overlay.
Number of blocks occupied by this pro­
gram or overlay
Thirteen-bit first address for this
program or overlay
Program size
Thirteen-bit starting address for this
program or overlay

(free area)

Number of words in this entry (in this
case, l.(a')
Name of this system program (left­
justified and zero-filled)
Name of an overlay (left-justified and
zero-filled) -- overlays are optional
Number of buffers required by this sys­
tem program (Bits ,0-6 = !1 means the end
of any overlay names. This is why pro­
gram and overlay names must be left­
justified.)
Active .DAT slot
Active .DAT slot (Note: 777777 for a .DAT
slot means all positive .DAT slots.)
Number of words for this entry (in this
case, 5)
Name of this system program

Number of buffers required by this pro­
gram (Note that this program has no over­
lays.)
.DAT slot for this program

Pointer to first word in COMBLK (equals
count from first word in SYSBLK) • The
two contiguous blocks on the system de­
vice that hold SYSBLK and COMBLK are
treated by the system as one large block.
In this case, COMBLK happens to start at
location 511!1 of the two blocks combined.

Figure 5-1

SYSBLK and COMBLK

5-7

names of core-image system programs by making them the new-first entry.

In this way, SYSBLK and COMBLK build toward the center.

5.2.3 SGNBLK

SGNBLK (block 36 on the system device) contains all the system param­

eters not directly associated with core-image system programs. The

bulk of SGNBLK is concerned with I/O (.DAT slots, .UFDT slots, Skip

Chain Order, Handlers, and skip IOT codes and mnemonics). The first

few registers hold such important system information as the system de­

vice, .SCOM+4 contents, and so on. The very first word in SGNBLK

points to the block address of the first free word after SGNBLK. The

next entry is an offset word indicating the total length (including

itself) of the miscellaneous system parameter table to follow. This

table includes the size of the .DAT and the size of the skip chain.

The end of the handler and skip IOT table is the first free entry of

the block.

The .DAT slot table corresponds to the legal range of .DAT slots,

with the maximum negative set to 15 8 and the maximum positive set to

a number not to exceed 77 8 • The .DAT slots are in the form in which

they appear when the Nonresident Monitor is in core. That is, the

unit number is in bits ~-2, and the number of the handler right­

justified in bits 3-17. The handler number for the first handier in

the Device Handler-Skip IOT Table is zero, for the pseudo-handler NON,

TTA. is one, and so on. The constant l~~~~~ indicates a fixed or il­

legal .DAT slot (such as -2, -3, and~). DOSGEN will not modify such

slots.

The .UFD Table is in one-to-one correspondence with the .DAT slot Table.

An entry of .SIXBT 'UIC' indicates that the logged in UIC is to be sub­

stituted for the name UIC in the table. An entry of .SIXBT 'SYS' in­

dicates BNK or PAG is to be substituted, in accordance with the current

addressing mode. Otherwise, the contents of each location will be the

.SIXBT representation of the corresponding .UFD slot.

The Skip Chain Table lists the system skip IOT's in order. A negative

skip (one that skips on "off", not "on") is represented in one's com­

plement. Not all skips in the handler Skip IOT Table (described be­

low) need to be included in the Skip Chain Table.

5-8

The Device Handler/Skip IOT Table contains all the handler names and

skip IOT numbers and mnemonics for each I/O device identified to the

system. Every such device has an entry in the table. A handler name

must be exactly three characters in length, with the last character

not an octal digit. The device code for a device is exactly two

characters. The first two characters of each handler name for a de­

vice must be the device code. This fact is essential for understand­

ing the format of a device entry, since the device code is never

stored as such in an entry, but is inferred from the device handler

name. The typical entry for a device is the following:

l. The first words of an entry contain the handler names
for a device in .SIXBT. Each handler name is differ­
ent, and the end of the list of handlers is determined
by a word with zeros in bits ~-5 (the first character
position).

2. The word that terminated the list of handler names
contains the number of skip IOT's for the device.
For each skip IOT, there are three words in the table:
two for the skip mnemonic and one for the actual code.

The next device entry follows the last skip for the previous device.

Handlers may be entered without any skips, but no devices may be

entered without at least one handler name. Figure 5-2 illust~ates

the organization of SGNBLK. Appendix D of SGEN-DOS Utility Programs,

DEC-15-USGNA-A-D, lists SGNBLK, SYSBLK and COMBLK, as they are supplied

by Digital Equipment Corporation.

5.3 DISK-RESIDENT CHANGING BLOCKS

The system Loader uses block 37 of the system device to store an image

of .DAT and .UFDT. Other disk-resident changing blocks are the storage

Allocation Table and the Bad Allocation Table. These tables are de­

scribed in Chapter 6.

5.4 TEMPORARY TABLES BUILT FROM DISK-RESIDENT TABLES

5.4.l The Overlay Table

The System Loader builds the Overlay Table from the entries in SYSBLK

referenced by a core-image system program's entry in COMBLK. That is,

the Overlay Table contains an entry for the system program itself, and

one for each of its overlays. Figure 5-3 illustrates the format of an

entry in the Overlay Table. The first entry in the Overlay Table is

5-9

Location Value

fJ J411J4nnn
l 1114!0!415
2)1j4j4nnn

3 11!lJ4nnn

4 J4 413j4JJ
j442f,JJJJ4

5 nnnnnn
6 nnnnnn
7 nnnnnn

lfJ nnnnnn
11 .SIXBT
12 nnnnnn
13 !lfdfdfdfdn
14 fO)lnnnn
15 7777nn

16 fJJ4!fonn . .
53 !lfJfdnnn
54 .SIXBT
.
.

111 .SIXBT
112 nnnnnn

.

.
137 nnnnnn
14)1 .SIXBT

.
. . .SIXBT . .SIXBT
.

.SIXBT
. so !l !l !l !03

nnnnnn
nnnnnn

. nnnnnn

. . SIXBT

. 11J4fd)Ofdl . nnnnnn

.

. .
312

Descri£tion

Pointer to first free entry in SGNBLK
Number of miscellaneous parameters
Size of .DAT plus size of .UFDT = (number of posi­
tive .DAT slots+l6 6)*2. (Initial value is 2~ 8 posi­
tive .DAT slots.)
Number of skips in Skip Chain

System device code in .SIXBT

Original contents of .SCOM+4
Original contents of .SCOM+2f,J
Number of words per buffer (.SCOM+27)
Default number of buffers (.SCOM+26)
Monitor Identification Code
Information on VT and CTRL X (.SCOM+33)
Default files protection code (.SCOM+54)
Size of the Resident Monitor Patch Area
Minus the number of clock ticks in a second (-74
for 6fJ hz, -62 for 5)1 hz.)

Device assignments for the .DAT (made by handler
numbers). (Termination at 53 assumes 2j48 positive
slots.)

UIC assignments for the .UF'DT. (Termination at
111 assumes 2fd8 positive slots.)

Skip Chain Table (Negative skips in one's comple­
ment.) (Termination at 137 assumes 26 8 skips in
chain.)

The last part of the SGNBLK is the Device Handler­
Skip IOT Table. Each entry starts with the .SIXBT
representations of all handlers for a particular
device. (First two characters equal device code,
for all handlers.) Zeros in the first six bits
of a word indicate the end of the handler names,
and says that the rest of the word contains the
number 0£ skips for this entry's device. The skip

IOT's follow immediately. As above, one's comple­
ment skips indicate riegative skips. Note, however,
the confusing fact that a one's complement of a
skip IOT is a positive number. Thus, 7)0nnn com­
plemented is j47nnnn .

SGNBLK ends at 312, in the DOS-15 RPJl2 and RF15
system distributed by Digital Equipment Corporation.

Figure 5-2

SGNBLK for RP)02 and RF15 Systems

5-10

Location

f1
1
2

3
4
5
6
7

1{1
11
12
13
14
15

16
17
2{1

55

56

113

114

145

146

344

Value

f1ji1ji1nnn
f1f1f1JH5
f1f1f1nnn

li1fH!Hnnn
2213f1fJ'
nnnnnn
nnnnnn
nnnnnn
nnnnnn
.SIXBT
nnnnnn
li11i1f1flf1n
f1flnnnn
7777nn

flnnnnn
fa'!Hnnnn

f1f1f1nnn}

li1f1%nnn

.SIXBT}

.SIXBT

Description

Pointer to first free entry in SGNBLK
Number of miscellaneous parameters
Size of .DAT plus size of .UFDT = (number of
positive .DAT slots + 16 8)*2. (Initial value
is 2~positive .DAT slots.)
Number of skips in Skip Chain
System device code
Original contents of .SCOM+4
Original contents of .SCOM+2f1
Number of words per buffer (.SCOM+27)
Default number of buffers (.SCOM+26)
Monitor Identification Code
Information on VT and CTRL X (.SCOM+33)
Default files protection code (~SCOM+54)
Size of the Resident Monitor Patch Area
Minus the number of clock ticks in a second /
(-74 for 60 hz, -62 for S[H hz)
Spooler area last block number.
Spooler area size.

Device assignments for the .DAT (made by
handler numbers) • (Termination at 55 assumes
2!8 8 positive slots.)

UIC assignments for the .UFDT. (Termination
at 113 assumes 2!8 8 positive slots.)

Skip Chain Table (Negative skips in one's
complement.) (Termination at 145 assumes
32 8 skips in chain.)

nnnnnn}

nnnnnn
• SIXBT "'I l\ The last part of the SGNBLK is the Device

Handler-Skip IOT Table. Each entry starts
with the .SIXBT representations of all
handlers for a particular device. (First two
characters equal device code, for all
handlers.) Zeroes in the first six bits of

.SIXBT

.SIXBT

.SIXBT
fdf41ifliff03
nnnnnn
nnnnnn
nnnnnn
.SIXBT
!Hli11i1ftf01
nnnnnn

) a word indicates the end of the handler
: names, and says that the rest of the word
\ contains the number of skips for this entry's
\device. The skip IOT • s foll.ow immedia·t.el.y.
i As above, one's complement skips indicate
I negative skips. Note, however, the confusing
I fact that a one's complement of a skip IOT

) I is a positive number. Thus, 7!Hnnnn comple­
j mented is {07nnnn.

I
i

SGNBLK ends at 344, in the DOS-15 RKf15
V system distributed by Digital Equipment

Corporation.

Figure 5-3

SGNBLK for RKji15 Based System

5-11

pointed to by .SCOM+31. .SCOM+31 will contain zero, if there are no

entries in the Overlay Table. This will occur during Linking Loader

or EXECUTE loads •

. OVRLA is the only Monitor function that looks at the Overlay Table.

If the .OVRLA processor finds a match to the .OVRLA argument in the

Overlay Table, it uses the parameters listed in the table to bring

it in via a Monitor TRAN. Note that this bypasses the System Loader,

and does not change the handler load. Thus, the overlay must use only

those .DAT slots required by the original program, the one listed in

COMBLK.

If the .OVRLA processor does not find a match in the Overlay Table, it

calls in the System Loader, which searches COMBLK for the requested

program. This type of overlay request does not require that .DAT slot

assignments be the same. On the other hand, the System Loader refreshes

all of core except .SCOM, etc. Thus, communication between overlays

is more difficult. The resident patch area, however, can be used for

this purpose.

5.4.2 The Device Table

The Device Table is built by the System Loader interface whenever PIP

is being loaded, or when PIP is listed in COMBLK among the overlays

for a program. It is located just above the register pointed to by

.SCOM+l, and has an entry for each positive .DAT slot. If a slot has

an assigned device, the low-order twelve bits of the corresponding

entry in the Device Table will contain the device's code, in .SIXBT.

Bit 3 is set when the slot is busy. If no device is assigned to a

slot, the corresponding entry in the Device Table will contain zero.

5.4.3 The Input/Output Communication (IOC) Table

The System Loader Interface builds the IOC Table and locates it just

below the first register of the System Loader. It contains an entry

for each handler in the system, in the order that they appear in

SGNBLK. The entries themselves contain the handler name in Radix 5~.

The System Loader and the Linking Loader use the handler number sup­

plied by the Nonresident Monitor to index down the IOC Table. They

use the contents of the entry for a .SEEK to the IOS UIC.

5-12

5.4.4 The Device Assignment Table (.DAT)

The Device Assignment Table makes the association between logical and

physical devices. The Monitor knows its location by the contents of

.SCOM+23, which points to the entry zero in the Table. Specific slots

are found by indexing on the contents of .SCOM+23. The number of nega­

tive slots is fixed at 15 8 • The number of positive slots is specified

by .SCOM+24, and may be any positive number less than 1~~8 . It is

specified at system generation time.

The Nonresident Monitor places the handler number in the low order

bits and the unit number in the high order bits. It derives the hand­

ler number from SGNBLK. As mentioned above, the System Loader and

the Linking Loader subsequently use the IOC Table to determine the

handler name. After either loader has loaded and relocated a handler,

it places the handler's starting address in all .DAT slots that refer­

ence that handler. The unit number remains in the high-order three

bits. Slots with no handler (NON) contain zero. Active .DAT slots

are designated by COMBLK, for core-image system programs, and by .IODEV

pseudo-ops for the Linking Loader and EXECUTE.

5.4.5 The User File Directory Table (.UFDT)

.UFDT+~ is offset from .DAT+~ (pointed to by .SCOM+23) by the sum of

the positive and negative .DAT slots. Each .DAT slot has a correspond­

ing .UFDT slot. UIC's in the .UFDT are packed in .SIXBT. The address

of .UFDT+% is stored in .SCOM+25.

5.4.6 The Skip Chain

Register 1 of Bank ~ contains a jump to the beginning of the Skip

Chain. The Skip Chain is defined during System Generation, is located

in SGNBLK, and is rebuilt every time the System Loader is called in.

The System Generator Manual (DEC-15-USGNA-A-D) describes considerations

for constructing the Skip Chain.

5.5 TEMPORARY TABLES BUILT FROM SCRATCH

5.5.1 File Buffer Transfer Vector Table

The System Loader allocates space for the buffer pool, and creates the

File Buffer Transfer Vector Table. .SCOM+30 points to the first entry

5-13

in the table, and the number of entries is specified by .SCOM+26.

Each entry in the table contains the address of a buffer, or its one's

complement. Negative addresses indicate a busy buffer. Since refer­

ences to buffers must be indirect anyway, buffers are allocated with­

.out regard to bank boundaries.

5.5.2 The RCOM Table

The Nonresident Monitor requires certain information about the Resi­

dent Monitor that does not warrant reserving additional .SCOM registers.

The System Loader therefore puts this information into the RCOM table,

whenever it is loading the Nonresident Monitor. The RCOM Table starts

at register l 75fJ~ of the highest bank. QFILE uses the RCOM Table when

processing a GET command.

5.5.3 The Mass Storage Busy Table

Entries in this table are allocated by the System Loader or the Link­

ing Loader. The Mass Storage Busy Table is pointed to by .SCOM+62 .

. SCOM+63 contains the number of words per entry in the table, and

.SCOM+36 contains the current number of entries. Generally speaking,

there are as many entries in the Busy Table as there are active .DAT

slots, although the disk handlers are the only ones that currently

refer to the Busy Table.

The .INIT command to a disk handler establishes a Busy Table entry.

The .CLOSE command (or the Rewind .~TAPE command) deletes the corres-

ponding entry. Figure 5-4 illustrates a typical Busy Table Entry.

The first word of an active entry in the Busy Table contains the .DAT

slot in bits 9-17. The disk handlers save information about the UFD

current for this .DAT slot in the Mass Storage Busy Table. They save

information about the file current to the .DAT slot (if any) in the

buffer pointed to by word 1 of the Busy Table Entry. More information

on the disk handlers and file structure is contained in Chapter 6.

5.6 RESERVED WORD LOCATIONS

Word locations ~ through 77 are dedicated systems locations and can­

not be employed by the user. The contents of these locations are

described in Table 5-4.

5-14

Word #
N,N+l

N+2

N+3

N+4

N+S

Word #

N

N+l

N+2

N+3

N+4

ADDRESS

1

2

3

4

5

6

7

10-17

20

21

22-37

40-77

.SIXBT name of

Table 5-2
Overlay Table

Contents

Overlay

First block number

First address, minus 1

Size, in two's complement

Fifteen-bit starting address

Tahle 5-.1
Mass Storage Busy Table Entry

Contents

Device Type.0'_ 2 , Onit Number 3_5 , Write Check6,.DAT9-17
Buffer Address, or JJ, if none allocated

Three-character OIC

First OFD block for this OIC

OFD Entry siz-e for files in this UFD

Table 5-4
Reserved Address Locations

USE

Stores the contents of the extended PC, link, extend
mode status, and memory protect status during a pro­
gram interrupt

EEM (for PDP-9 compatibility)

JMP to Skip Chain

.MED, entry to Monitor Error Diagnostic routine

JHP to error ·handler

Stores system type (Bank or Page) indicator during
Teletype interrupts

Osed for API ON/OFF indicator

Stores real time clock count

Autoindex registers

Stores the contents of the extended PC, link, mode
status, and memory protect status on a CAL instruc­
tion.

JMP to CAL handler

Seven pairs of word counter-current address registers
for use with 3-cycle I/O device data channels.

Store unique entry instructions for each of 3210 auto­
matic priority interrupt channels

5-15

5.7 BOOTSTRAP NON-BOSS BATCH BITS.

The high-order three bits of word 17777 in the Bootstrap are reserved

for the Monitor, and have the following meanings:

Bit JO 1 In non-BOSS Batch Mode

JO Not in non-BOSS Batch

Bit 1 1 $JOB ASCII line or card just read by batch device

il Last line or card not $JOB

Bit 2 1 Batch device is card reader

2 Batch device is paper tape reader

5-16

CHAPTER 6

FILE STRUCTURES

6.1 DECTAPE FILE ORGANIZATION

DECtape can be treated either as a directoried or non-directoried

device.

6.1.1 Non-Directoried DECtape

A DECtape is said to be non-directoried when it is treated ~s magnetic

tape by issuing the .MTAPE commands: REWIND or BACKSPACE, follm·•0d by

.READ or .WRITE. No directory of identifying information of any ki~d

is recorded on the tape. A block of data (255 10 word maximum), t•:icactly

as presented by the user program, is transferred into the handler l..'f­

fer and recorded at each .WRITE command. A .CLOSE terminates record·

ing with a software- end-of-file record consisting of two words: OOlOc•,.

776773

Because braking on DECtape allows for tape roll, staggered recording

of blocks is employed in DOS to avoid constant turnaround or time­

consuming back and forth motion of physically sequential block ~ecord­

ing. When recorded as a non-directoried DECtape, block ~ is the

first block recorded in the forward direction. Thereafter, every fi! h

block is recorded until the end of the tape is reached, at which time

recording, also staggered, begins in the reverse direction. Five
passes over the tape are required to record all llOOB blocks.

6.1.2 Directoried DECtape

Just as a REWIND or BACKSPACE command declares a DECtape to be non­

directoried, a .SEEK or .ENTER implies that a DECtape is to be con­

sidered directoried. A directory listing of any such DECtape is

available via the (L)ist command in PIP. A fresh directory may be

recorded via the N or s switch in PIP.

The directory of all DECtapes except system tapes occupies all 40~ 8
words of block 1008 . It is divided into two sections: (1) a 40 8 word

Directory Bit Map and (2) a 340 8 word Directory Entry Section.

6-1

The Directory Bit Map defines block availability. One bit is allo­

cated for each DECtape block (1100 8 bits = 40 8 words),· When set to 1,

the bit indicates that the DECtape block is occupied and may not be

used to record new information.

The Directory Entry Section provides for a maximum of 56 10 files on

a DECtape. Each file on the DECtape has a four-word entry. Each

entry includes the three-word file name and extension, a pointer to

the first DECtape block of the file, and a file active or present bit.

Figure 6-1 illustrates the DECtape directory.

Word

0

l
37
40

377

Wd. 0

1

2

p"-
Block ~

Block 1~77

~~
Entry fl t-------- - - - - -~

1---------------- - ---
Entry 551~

5 6 11 12 17

File
l J
I

Name

File Name Extension

!
:

3 11 Data Link (First File Block) J
Sign Bit: 1 = File Active

A DIRECTORY ENTRY

Figure 6-1

DECtape Directory

Directory
Bit Mao

Directory
Entry
Section

Note: Nulls (0) fill
in short file names.
A file name extension
is not absolutely
necessary.

Additional file information is stored in blocks 71 through 77 of every

directoried DECtape. These are the File Bit Map Blocks. For each file

in the directory, a 40 8 -word File Bit ~ap is reserved in block 71

through 77. The bit maps are contiguous, and the Nth file uses the

6-2

Nth b' it map. Each block is divided into eight File Bit Map Blocks. A

File Bit Map specifies the blocks occupied by that particular file and

provides a rapid, convenient method to perform DECtape storage re­

trieval for deleted or replaced files. Note that a file is never de­

leted until the new one of the same name is completely recorded on

the .CLOSE of the new file. When a fresh directory is written on

DECtape, blocks 71 through 100 are always indicated in the Directory

Bit Map as occupied. Figure 6-2 illustrates DECtape file bit maps.

Block 71 8 Bit Map for Pile fJ

Bit Ma_p for File 7
Block 72 8 Bit Map for File 8

Bit Map for File 15 lj!_

. .
Block 77 8 Bit Map for File 481~

Bit Map for File s§ljO

Figure 6-2

DECtape File Bit Map Blocks

Staggered recording (at least every fifth block) is used on directoried

DECtapes, where the first block to be recorded is determined by examina­

tion of the Directory Bit Map for a free block. The first block is

always recorded in the forward direction; thereafter, free blocks are

chosen which are at least five beyond the last one recorded. The last

word of each data block recorded contains a data link or pointer to

the next block in the file. When turnaround is necessary, recording

proceeds in the same manner in the opposite direction. When reading,

turnaround is determined by examining the data link. If reading has

been in the forward direction, and the data link is smaller than the

last block read, turnaround is required. If reverse, a block number

greater than the last block read implies turnaround.

A software end-of-file record (001005, 776773) terminates every file.

The data link of the final block is 777777.

6-3

Data organization for each I/O me~ium is a function of the data modes.

On directoried DECtape there are two forms in which data is recorded:

(1) packed lines - IOPS ASCII, IOPS Binary, Image Alphanumeric, and

Image Binary, and (2) dump mode data - Dump Mode.

In IOPS or Image Modes, each line (including header) is packed into

the DECtape buffer. In IOPS Binary, a 2's complement checksum is com­

puted and stored in the second word of the header. When a .WRITE

which will exceed the remaining buffer capacity is encountered, the

buffer is output, after which the new record is placed in the empty

buffer. No record may exceed 254 10 words, including header, because

of the data link and even word requirement of the header word pair

count. An end-of-file is recorded on a .CLOSE. It is packed in the same

manner as any other line.

In Dump Mode, the word count is always taken from the I/O macro. If

a word count is specified which is greater than 255 10 (note that space

for the data link must be allowed for again) , the DECtape handler will

transfer 255 10 word increments into the DECtape buffer and from there

to DECtape. If some number of words less than 255 10 remain as the

final element of the Dump Mode .WRITE, they will be stored in the DEC~

tape buffer, which will then be filled on the next .WRITE, or with an

EOF if the next command is .CLOSE. DECtape storage is thus optimized

in Dump Mode since data is stored back-to-back. See Appendix A.

6.2 MAGNETIC TAPE

DOS provides for industry-compatible magnetic tape as either a di­

rectoried or non-directoried medium. The magnetic tape handlers com­

municate with a single TC-59D Tape Control Unit (TCU). Up to eight

magnetic tape transports may be associated with one TCU; these may

include any combination of transports TU-lOA or B and TU-30A or B.

There are a number of major differences between magnetic tape and DEC­

tape or Disk; these differences affect the operation of the device

handlers. Magnetic tape is well suited for handling data records of

variable length. Such records, however, must be treated in serial

fashion. The physical position of any record may be defined only in

relation to the preceding record. Three techniques available in I/O

operations to block-addressable devices are not honored by the magnetic

tape handlers:

6-4

a.

b.

c.

6.2.1

The user cannot specify physical block numbers for
transfer. In processing I/O requests that have block
numbers in their argument lists (i.e., .TRAN) the
handler ignores the block-number specification.

The only area open for output transfers in the direc­
toried environment is that following the logical end
of tape.

Only a single file may be open for transfers (either
input or output) at any time on a single physical unit.

Non-directoried Data Recording (MTF)

MTF is intended to satisfy the requirements of the FORTRAN programmer

while still providing the assembly language programmer maximum freedom

on the design of his tape format. MTF writes out a record to the tape

each time the main program issues a .WRITE. The length of the record

is always two times the word pair count in the header word pair. FIOPS

records are always as long as the buffer size returned on a .INIT (up

to 256 10 words). MTF returns a standard buffer size of 3778 , after a

.INIT. The FORTRAN user may dynamically change this size, however,

via the following instructions

Example:

(FORTRAN STATEMENTS) (MACRO STATEMENTS)

.TITLE SETMTB

.GLOBL .DA, MTBSIZ, SETMTB
SETMTB ~

CALL SETMTB (IBFSIZE) JMS* .DA
JMP START

IBFSIZE ~
START LAC* BUFSIZ (any buffer size)

DAC* MTBSIZ
JMP* SETMTB
.END

6. 2. 2 Directoried Data Recording (MTA., MTC.)

The programmer can make the fullest possible use of those features

peculiar to magnetic tape by using MTF. On the other hand, MTF does

not offer the powerful file-manipulation facilities available in the

system. Directoried I/O allows device independence, and extensive

use of the storage medium with a minimum of effort.

MTA. and MTC. do not support non-directoried data recording.

6-5

Every block recorded by MTA. (with the exception of end-of-file markers,

which are hardware-recorded) includes a two-word Block Control Pair

and not more than 25510 words of data. The data will contain the

records from one or more .WRITE's.

The Block Control Pair serves three functions: it specifies the char­

acter of the block (label, data, etc.), provides a word count for the

block, and gives an 18-bit block checksum. The Block Control Pair has

the following format:

Word 1:

Bits 0 through 5: Block Identifier (BI). This 6-bit byte
specifies the block type. Values of BI may range from 0
to 77R. Current legal values of BI, for all user files,
are as follows:

BI Value

00

10

20

Block Type Specified

User-File Header Label

User-File Trailer Label

User-File Data Block

Bits 6 through 17: Block Word Count (BWC). This
"byte holds the 2's complement of the total number
in the block (including the Block Control Pair) •
values of BWC range from -3 to -401 8 .

12-bit
of words
Legal

Word 2:

Bits O through 16: Block Checksum. The Block Checksum is
the full-word, unsigned, 2's complement sum of all the
data words in the block and word 1 of the Block Control
Pair.

N-2 DATA
WORDS

0 5 6

Figure 6-3

!7

N TOTAL WORDS
IN BLOC!<

Block Format, File-Structured Mode

6-6

One of the main file functions of MTA. and MTC. is that of identifying

and locating referenced files. This is carried out by two means:

first, names of files recorded are stored in a file directory at the

beginning of the tape; and second, file names are contained in the

file's header and trailer labels.

6.2.2.1 Magnetic Tape File Directory

The directory, a single-block file (and the only unlabeled file on any

file-structured tape) , consists of the first recorded data block on

the tape. It is a 257 10 word block with the following characteristics:

a. Block Control Pair (words 1 and 2)

Word 1

Block Identifier 74 8 = File Directory Data Block

Block Word Count = -401 8 = 7377 8 •

Word 2:

Block Checksum: As described above.

b. Active File Count (Word 3, Bits 9 through 17) 9-bit one's
complement count of the active file names present in the
File Name Entry Section (described below) .

c. Total File Count (Word 3, Bits 0 through 8) 9-bit one's
complement count of all files recorded on the tape, in­
cluding both active and inactive files, but not the file
directory block.

d. File Accessibility Map (Words 4 through 17): The File
Accessibility Map is an array of 252io contiguous bits
beginning at bit 0 of word 4 and ending as bit 17 of
word 17. Each of the bits in the Accessibility Map re­
fers to a single file recorded on tape. The bits are
assigned relative to the zeroth file recorded; that is,
bit 0 of word 4 refers to the first file recorded; bit
1, word 4, to the second file recorded; bit 0, word 6,
to the 3710th file recorded; and so on, for a possible
total of 252 10 files physically present.

A file is only accessible for reading if its bit in the
Accessibility Map is set to one. A file is made inac­
cessible for reading (corresponding bit = 0) by a .DLETE
of the file, by a .CLOSE (output) of another file of the
same name, or by a .CLEAR. A file is made accessible for
reading (corresponding bit = 1) by a .CLOSE (output) of
that file. Operations other than those specified above
have no effect on the File Accessibility Map.

6-7

BIT POSITION

0 3 6 9 12 15 17

W { :::: ' t---7-_.__4_B~L-O-C-7K_C HE_C_:_S_U_.M __
7
_....__

7
_-I

BEGINNING
OF TAPE

FILE COUNTS

T
FILE

ACCESSIBILITY
MAP

FILE
NAME

ENTRY
SECTION

1

WORD 3

WORD 4

WORD I 6

WORD 1 7

WORD I B

WORD 21

WORD 24

WORD 257

Figure 6-4a. Format of the
File Directory Data Block,
showing relationship of active
and inactive files to file name
entries and to Accessibility Map

6-8

Fl LE
DIRECTORY

Fl LE #I
(I NACTIVEl

Fl LE #2
(ACTIVE)

FILE #3
(INACTIVE!

FI LE #4
(ACTIVE!

Fl L.E #5
{ACTIVE)

END OF TAPE

09-0232

Figure 6-4b. Format of file­
structured tape, showing
directory block and data
files.

e. File Name Entry Section (Words 18 through 257): The File
Name Entry Section, beginning at word 18 of the direc­
tory block, includes successive 3-word file name entries
for a possible maximum of 80 entries. Each accessible
file on the tape has an entry in this section. Entries
consist of the current name and extension of the refer­
enced file in .SIXBT (left-adjusted and, if necessary,
zero-filled) .

The position of a file name entry relative to the begin­
ning of the section reflects the position of its accessi­
bility bit in the map. That bit, in turn, defines the
position of the referenced file on tape with respect to
other (active or inactive) files physically present. Only
active file names appear in the entry section, and access­
ibility bits for all inactive files on the tape are always
set to zero; accessibility bits for all active files are
set to one.

To locate a file on the tape having a name that occupies
the second entry group in the File Name Entry Section,
the handler must (a) scan the Accessibility Map for the
second appearance of a 1-bit, then (b) determine that bit's
location relative to the start of the map. That location
specifies the position of the referenced file relative to
the beginning of the tape. The interaction of the File
Name Entry Section and the Accessibility Map are shown
in Figure 6-4.

6.2.2.2 user-File Labels

Associated with each file on tape is one label, the header label. It

precedes the first data block of the file. Each label is 2710 words

in length. Label format is shown in Figure 6-5.

0 5 6 17

WORD 1 00 l 7?45

WORD 2 CHECKSUM

WORD 3 777 xxx F!LE NAME

WORD 4 000000

WORD 5

RESERVED

Figure 6-5

user File Header Label Format

6-9

6.2.2.3 File-Names in Labels

The handler will supply the contents of the file-name fields (Word 3)

in labels. These are used only for control purposes during the execu­

tion of .SEEK's. The name consists simply of the two's complement of

the position of the recorded file's bit in the Accessibility Map~ the

"name" of the first file on tape is 777777, that of the third file is

777775, and so on. A unique name is thus provided for each file physi­

cally present on the tape. Since there may be a maximum of 252 10 files

present, legal file-name values lie in the range 777777 to 777404.

6.2.3 Continuous Operation

Under certain circumstances, it is possible to perform successive I/O

transfers without incurring the shut-down delay that normally take~

place between blocks. The handler stacks transfer requests, and thus

ensures continued tape motion, under the following conditions:

a. The I/O request must be received by the CAL handler be­
fore a previously-initiated I/0 transfer has been com­
pleted.

b. The unit number must be identical to that of the pre­
viously initiated I/O transfer.

c. The I/O request must be one of those listed below to
ensure successful completion. The handler in orocess­
ing requests in continuous mode depends on receiving
control at the CAL level in order to respond to I/0
errors. The functions for which continuous operation
is attempted include only the following:

1.
2.

.MTAPE

.READ
3. · . WRITE
4. . TRAN

d. With ~TA, more than one logical record may be in a physical
block, so tape motion may stop if fewer successive .READ's
or .WRITE's are issued than there are records in a block.

e. The previously-requested transfer must be completed with­
out error. In general, successive error-free READ's
(WRITE's) to the same transport will achieve non-stop
operation. The following examples illustrate this prin­
ciple.

Example 1:

SLOT = 1
INPUT = 0
BLOKNO = 0
READl
READ2
RETURN

Successful Continued Operation

.TRAN SLOT, INPUT, BLOCKNO, BUFFl, 257

.TRAN SLOT, INPUT, BLOCKNO, BUFF2, 257
JMP READl

6-10

The program segment in Example 1 will most probably keep the refer­

enced transport (.DAT slot 1) up to speed. The probability decreases

as more time elapses between READl and READ2, and between READ2 and

RETURN. Each .TRAN request causes an implicit .WAIT until its opera­

tion is completed.

Example 2:

SLOT = 1
INPUT = 0
BLOKNO = 0
READ
STOP
RETURN

Unsuccessful Continued Operation

.TRAN SLOT, INPUT, BLOKNO, BUFF, 257

.WAIT SLOT
JMP READ

The program segment in Example 2 will not keep the tape moving because

the .WAIT at location STOP prevents control from returning to location

READ until the transfer first initiated at READ has been completed.

Example 3: Unsuccessful Continued Operation

SLOTl
SLOT2 =
INPUT
BLOKNO
READl
READ2
RETURN

1
2
0

= 0
.TRAN SLOTl, INPUT, BLOKNO, BUFFl, 257
.TRAN SLOT2, INPUT, BLOKNO, BUFF2, 257
JMP READl

This program segment will not provide non-stop operation because of

the differing unit specification at READl and READ2.

6.2.4 Storage Retrieval on File-Structured Magnetic Tape

The use of a file accessibility map as well as block identifiers in

Magtape file directories makes it almost impossible to retrieve the

area of a deleted file from a magnetic tape. The execution of the

deletion command (i.e., .DLETE) removes the name of the object file

from the file directory, and clears the corresponding bit in the File

Accessibility Map.

The only circumstance under which a file area may be easily retrieved

is when the deleted file is also the last file physically on the tape.

Under these conditions, the handler can retrieve the area occupied by

the deleted file when the next .ENTER - .WRITE - .CLOSE sequence is

executed. Users may also copy the active files to another device, re­

new the directory, and recopy the files.

6-11

6.3 DISK FILE STRUCTURE

6.3.1 Introduction

The DOS-15 disk file structure is in some ways analogous to DECtape

file structure. Ordinarily, each disk user has a directory which

points to named files, just as each DECtape has a directory. The DEC­

tape has only one directory, but the disk has as many directories as

users have cared to establish. A single user's disk directory might

correspond to a single DECtape directory. A single disk file's size

is also limited only by the available space, as is true with DECtape.

Although DECtape directories may reference a maximum of 56 10 files, the

number of files associated with any one directory on the disk is limited

only by the available disk space.

The DECtape directory is in a known location -- at block 100. Since

the disk may have a variable number of directories, the Monitor must

know how to find each user's directory. It therefore maintains a

Master File Directory (MFD) at a known location 1 , and the Master File

Directory points to each User File Directory (UFD) . DOS-15 allows

only those users who know the Master Identification Code to have ac­

cess to any protected UFD's within the MFD. Figure 6-6 illustrates

the .MFD. Appendix B is a flowchart of the Disk "A" Handlers.

6.3.2 User Identification Codes (UIC}

The Monitor finds User File Directories by seeking associated User

Identification Codes (UIC's), which are all listed in the Master File

Directory. The UIC is a three-character code that is necessary for

all non-.TRAN I/O to the disk. .TRAN macros use no directory refer­

ences. A programmer may operate under as many UIC's as he wishes, pro­

vided all are unique and none is reserved2 • He may establish a new

User File Directory by (1) logging in his new UIC to the Monitor via

the LOGIN command, (2) calling PIP, and (3) issuing an N DK corrunand.

This establishes a new User File Directory, or refreshes (wipes clean)

an old directory under that UIC. (.ENTER will also create a new MFD

entry and/or a UFD, if none exists.) Figure 6-7, User File Directory,

illustrates the organization of a UFD.

1 0n the RF and RK disk, the first block of the MFD is 1777 octal.
On the RP disk, the first block of the MFD is 47~4~ octal.

2 The following are reserved UIC's: @@, ???, PAG, BNK, SYS, IOS, CTP.

6-12

Word #

1

2

3

4N
4N+l

4N+2

4N+3

376

377

Word #

SN
BN+l
8N+2
8N+3

8N+4
8N+S

8N+6

8N+7

376
377

Contents

7777'77

nnnnnn

nnnnnn

.SIXBT

I
I. ::::nn

spare

nnnnnn

nnnnnn

Contents

.SIXBT

.SIXBT
I .SIXBT
J T0+blknum

nnnnnn
ribptr

I P~_1+ribwrd

I

I crdate

I lnnnnn
nnnnnn

Description

Dummy UIC used by system.

Bad Allocation Table's first block number,
or 777777, if there is none. '

SYSBLK's first block number, or -1, if
there is none.

MFD entry size in bits ~-2, plus the block
number of the first submap

UIC for this UFD
Block number for the first block of this
UFD or 777777, if no UFD exists (as after
PIP Is N1...1DK))
Protection code in bit ~' plU.~ the UFD
entry size for each file
Unused at this writing .

I Pointer to
if none.

I
Pointer to
none.

previous MFD block, or 777777

next MFD block, or 777777 if

Figure 6-6

Master File Directory

Name of this file
and its
extension

Description

Truncation code in bit ~, plus the number
of the first b1ock of the fi1e
Number of blocks in this file
Pointer to the first block of the Retrieval
Information Block
Protection code in bits ~-1, plus the
first word in ribptr used by the RIB-- if
the last block of the file has room for
the RIB, the handlers will put it there,
and load word 8N+6 accordingly.
Date of file's creation -mmddyy (yy modulo 7~)

Pointer to previous block, or 777777 if none
Pointer to next UFD block, or 777777 if none

Figure 6-7

User File Directory

6-13

6.3.3 Organization of Specific Files on Disk

The Disk Handlers write out files in almost the same way that a DEC­

tape handler does. Disk file blocks, however, have a forward and

backward link. (Non-dump records are therefore limited to lengths

of 25410 words.) Further, upon receipt of a .CLOSE I/O macro, the disk

handlers fill out a Retrieval Information Block (RIB) • The RIB per­

forms the same functions as the file bitmap on DECtape, and also as­

sociates the logical sequence of blocks in the file with the phys~cal

locations of the blocks on the disk. The disk handler uses the RIB to

implement .RTRAN commands and to delete files. Figure 6-8, The Retrieval

Information Block, illustrates a RIB.

After a user has created a disk file he can access logical records

sequentially via .READ commands, just as with DECtape files. He can

also access physical blocks of that file by referencing relative block

numbers in the .RTRAN command. (The .RTRAN commands require the file

be opened with the .RAND command.)

6.3.4 Buffers

The handlers break buffers from the pool into three parts: (1) File

Information (about 4~ 8 words)~ (2) the Block List -- addresses of

pre-allocated blocks (between 4 and 2531~ addresses, inclusive), and

(3) data buffer (256 1~ words). Figure 6-9, Disk Buffer, illustrates

the breakdown of disk buffers.

6.3.4.1 Commands That Obtain And/or Return Buffers

The following commands obtain buffers from the pool, and return them

immediately after execution:

.DLETE

.RENAM

.CLEAR

The following commands obtain a buffer from the pool and do not return

it until a subseauent .CLOSE is performed:

.FSTAT

.ENTER

.SEEK

.RAND

*This number is determined by assembly parameters.

6-14

Word # Contents Description

~* nnnnnn Total number of blocks described by this
physical block.

1 nnnnnn First data block pointer.
2 nnnnnn Second data block pointer.
3 nnnnnn Third data block pointer.
. .
. .

. .
376 nnnnnn Pointer to previous RIB block or -1 if no

previous RIB block.

377 nnnnnn Pointer to next RIB block or -1 if no
next RIB block.

* Zero th word of the RIB may not be th word of physical block. zero
This occurs whenever the en tire RIB will fit in the last data
block of the file.

4 08 Words*

More than
less than
words

400 8 Words

Figure 6-8

Retrieval Information Block

'
~

3 and
377 8

..

} File Information becomes
'Current Set' when file active
(see 6 • 3 • 4 • 2) •

Addresses of Preallocated
Blocks (Block List or Temp
List or TLIST)

Data Buff er

*This is not a fixed nurrber. It is
different for RP, RK and RF.

Figure 6-9

Disk Buffer

6-15

The following commands return a buffer to the pool, if any was allo­

cated.

.INIT

.CLOSE

.MTAPE (rewind)

6.3.4.2 The Current Set

The handlers retain information about the last file and .DAT slot

processed in an internal storage area. This area. is called the

"Current Set", and is swapped back to the file's buffer whenever a

command to a different file is used. Thus,

.WRITE to .DAT slot A

.WRITE to .DAT slot B

will swap the Current Set, but ...

. WRITE to .DAT slot A

.TRAN to .DAT slot A

.WRITE to .DAT slot A

will not swap the Current Set.

6.3.5 Pre-allocation

The handlers pre-allocate blocks on the disk upon all .ENTER commands,

and whenever sufficient .WRITE commands have been issued to use up the

pre-allocated blocks. The number of pre-allocated blocks will be the

minimum of the number of free blocks on the device and the number of

address slots available in the Temp List (block list) •

When the handlers pre-allocate blocks, they fill out the bit maps, and

immediately fill out the RIB and write it out in one of the pre-allocated

blocks.

Upon a .CLOSE command, the handlers give back unused blocks, and re­

write the RIB.

6-16

The number of blocks in the Block List depends on the size of the

buffer, which is determined at system generation by setting the buffer

size. The larger the Block List, the faster will be output. Smaller

Block Lists may give more efficient allocation of core and disk space.

Smaller buffers save core. Further, the number of pre-allocated blocks

may affect concurrently opened files on a disk that is tight for space.

Thus, if the Block List is sixty entries long, and there are forty

blocks left on the disk, a .ENTER to .DAT slot will pre-allocate all

forty, leaving none for any subsequent .ENTER's to different .DAT

slots.

IOPS 70 will occur when there are less than four free blocks on the

disk when a handler tries to pre-allocate blocks.

6.3.6 Storage Allocation Tables (SAT's) 1

The disk handlers use a Storage Allocation Table, in order to distin­

guish between allocated and free blocks. If more than one physical

block is required, the individual blocks are called Submaps.

Unlike DECtape, the Storage Allocation Table is never held in core.

When the handlers wish to preallocate some blocks, they read in the

required Submap, and write out the updated one.

Storage Allocation blocks use the following format:

:vORD 0
WORD 1

WORD 2

WORD 3

WORD 376

WORD 377

Total blocks on the disk
Number of blocks described
by this Submap
Number of blocks occupied
in this Submap
First word of the bit map
(eighteen blocks per word)

Pointer to previous Submap
(or 777777)
Pointer to next Submap
(or 777777)

The bit maps refer to blocks in nlL~erical order. Thus, bit 0 of word

three of a Submap will refer to block N, bit 1 will refer to block N+l,

and so on. The block is free if the corresponding bit equals g. Start­

ing and ending block numbers for all Submaps are retained in the hand­

lers. Bit 0 of word three in the first submap, refers to block zero.

1The first SAT block is located at 1776 8 for the RF and RK system and
764 8 for the RP system.

6-17

6.3.7 Bad Allocation Tables (BAT's)

Occasionally, a particular block on the disk will not record data cor­

rectly. In such instances, the handlers should be prevented from using

the bad blocks. Accordingly, PIP maintains a Bad Allocation Table.

Whenever a user updates that table, PIP will set the appropriate bit

in the Storage Allocation Table. The block is thus made unavailable.

Refer to PIP manual (DEC-15-UPIPA-A-D) for more information.

6-18

CHAPTER 7

WRITING NEW I/O DEVICE HANDLERS

This chapter contains information essential for writing new I/O de­

vice handlers to work in DOS.

7.1 I/O DEVICE HANDLERS, AN INTRODUCTION

All communications between user programs and I/O device handlers are

made via CAL instructions followed by an argument 'list. The CAL

Handler in the Monitor (Figure 2-1) performs preliminary setups,

checks the CAL calling sequence, and transfers control via a JMP*

instruction to the entry point of the device handler. When the con­

trol transfer occurs (see Figures 7-1 and 7-2), the AC contains the

address of the CAL in bits 3 through 17 and bits 0, l, and 2 indicate

the status of the Link, Bank/Page mode, and Memory Protect, respect­

ively, at the time of the CAL. Note that the contents of the AC at

the time of the CAL is not preserved when control is returned to the

user.

On machines that have an API, the execution of a CAL instruction auto­

matically raises the priority to the highest software level (level 4).

Control passes to the handler while it is still at level 4, allowing

the handler to complete its non-reentrant procedures before debreaking

(DBK) from level 4. This permits the handler to receive reentrant

calls from software levels higher than the priority of the program

that contained this call. Device handlers which do not contain re­

entrant procedures (including all handlers supplied with DOS) may avoid

system failure caused by inadvertent reentries by remaining at level

4 until control is returned to the user.

If the non-reentrant method is used, the debreak and restore (DBR)

instruction should be executed just prior to the JMP* which returns

control to the user, allowing debreak from level 4 and restoring the

conditions of the Link, Bank/Page mode, and Memory Protect. Any IOT's

issued at the CAL level (level 4 if API present, mainstream if no API)

should be executed immediately before the

DBR
JMP*

7-1

USER PROGRAM

MONITOR

DEVICE
HANDLER

.INIT

INITIALIZE HANDLER
AND RETURN BUFFER
SIZE

ISSUE • SETUP FOR
EACH PI SKIP OR
API ENTRY VECTOR

N

{
~~~:~ ~:E ARG. 

- ~+N NXT INST - - - - - - - -

SAVE CAL POINTER 
AND FETCH FUNCTION 

CODE 

Ignored 

RETU!Ul TO 
USER AT 

LOC+N 

N 

Other 

Figure 7-1 

IOPS6 

y 

SET UP TCB 
CALL PIREX 

TO INITIATE 
FUNCTION 

CAL Entry to Device Handler 

y 

N 

N 

LOOP ON CAL, OR 
RETURN TO USER 
ADDRESS, IF .WAITR 

UNPACK DATA (FROM 
5 CHARS. PER 2, 
18 BIT WORDS) AND 
REPACK DATA INTO 
2 CHARS. PER 16 
BIT WORD. 

1For non-unibus devices both these branches would be replaced by a single initiate 
function routine. 

7-2 



PI 
ENTRY via JMS ~ 

Skip Chain 
JMP* (INT) 

API 
ENTRY via JMS* API Device Address 

(i.e., JMS* (INT)) 

1. SAVE AC 
1. SAVE AC 

2 •. SAVE LOCATION~ (IN­
CLUDING P.C. LINK 
AND MEMORY PROTECT) 

2. RETAIN AT INT THE P.C., 
LINK AND MEMORY PROTECT 

3. IF FIRST TIME THROUGH, 
NOP PI COMMANDS SO IT 
WON'T ALTER PI STATE 
ON EXIT. 

3. SETUP TO TURN ON PI 
BEFORE EXIT 

N 

1. SETUP FOR 
COMPLETION OF 
CAL REQUEST. 

2. START UP I/O 

y 

RESET 
(E.G. I CLEAR I/O 

BUSY SWITCH) 

RESTORE PI IF PI 
INTERRUPT AND 
DEBREAK AND 
RESTORE 

RETURN VIA 
STORED P.C. 

N 

INDICATE ERROR 
IN HEADER WORD 
PAIR 

N 

SETUP FOR RETRY 
AND START I/O 

Figure 7-2 

PI and API Entries to Device Handlers 1 

y 

PROCESS ERROR 

IOPSnnn 

INFORM USER 
AND WAIT FOR 
HIS RESPONSE. 

1on a PI or API interrupt, the device handler is entered in Bank or Page mode, 
depending on the setting of bit 11 in .SCOM+4. If = 1, Bank mode; if = 0, Page mode. 

7-3 

I 



exit sequence in order to ensure that the exit takes place before the 

interrupt from the issued IOT occurs. 

The CAL instruction must not be used at any level (API or PIC) that 

might interrupt a CAL. A CAL at such a level will destroy the content 

of location 00020 for the previous CAL. 

Care must also be taken when executing CALS at level 4. For example, 

a routine that is CALed out of level 4 must know that if a debreak 

(DBR or DBK) is issued, control will return to the calling program 

(which had been at level 4) at a level lower than level 4. 

7.1.1 Setting Up the Skip Chain and API (Hardware) Channel Registers 

When the Monitor is loaded, the Program Interrupt (PI) Skip Chain and 

the Automatic Priority Interrupt (API) channels are set up to handle 

the TTY keyboard and printer and clock interrupts only. The Skip 

Chain contains the other skip IOT instructions, but indirect jumps to 

an error routine result if a skip occurs, as follows: 

SKPDTA 
SKP 
JMP* INTl 
SKPLPT 
SKP 
JMP* INT2 
SKPTTI 
SKP 
JMP TELINT 

/Skip if DECtape flag. 

/INTl contains error address. 
/Skip if line printer flag. 

/INT2 contains error address. 
/Skip if teleprinter flag. 

/To teleprinter interrupt handler. 

All unused API channels, memory protect, memory parity, and powerfail, 

also contain JMP's to the error address. 

When a device handler is called for the first time in a core load, it 

must call a Monitor routine (.SETUP) to set up its skip(s) in the Skip 

Chain, or its API channel, prior to performing any I/O functions. 

7-4 



The calling sequence is as follows: 

CALN /N API channel register 40 through 77 (see User's 
Handbook Vol. 1, for standard channel assign­
ments) , 

/0 if device not connected to API. 
16 /.SETUP function code. 
SKP IOT /Skip IOT for this device. 
DEVINT /Address of interrupt handler. 

(normal return) 

7.1.2 Handling the Interrupt 

DEVINT exists in the device handler in the following format to allow 

for either API or PI interrupts. The following is for UNIBUS devices 

only: 

ONLYl LAC 
DAC 
DAC 
DAC 
JMP 

DEVPIC DAC 
LAC* 
DAC 

JMP 
DEVINT JMP 

DAC 
LAC 
DAC 

IGNRPI JMP 

COMMON CAPI­
DEVION ION 

DEVIOF IOF 

(NOP 
DEVI ON 
DEVIOF 
IGNRPI 
COMMON 
DEVAC 
(~ 

DEVOUT 

COMMON 
DEVPIC 
DEVAC 
DEV INT 
DEVOUT 
ONLYl 

LAC (TCB 
SIOA 
JMP .-1 
LIOR . 

/DISMISS ROUTINE 

LAC 
DVSWCH ION 

DBR 
JMP* 

DEVAC 

DEVOUT 

/LEAVE PI ALONE. WHEN API IS RUNNING 
/THESE REGISTERS 
/ARE AVAILABLE 
/THIS IS ONCE ONLY CODE 

/SAVE AC 

/SAVE PC, LINK, ADDRESSING MODE AND 
/MEMORY PROTECT 

/PI ENTRY 
/API ENTRY; SAVE AC 

/SAVE PC, LINK, ADDRESSING MODE AND 
/API IS OPERATING, SO LEAVE PI ALONE. 
/PI IN'I'ERRUPTS ARE NOT POSSIBLE, BE­
/CAUSE .SETUP EFFECTIVELY NOP'S PI 
/SKIPS. 
/CLEAR API LEVEL r_, DONE FLAG. 
/PI ALLOWS INTERRUPTS; API DOES A NOP. 

/API DOES NOP; PI TURNS IO OFF TO ENSURE 
/NON-REENTRANCE AFTER ISSUING IOT'S. 
/GET ADDRESS OF TCB IN AC 
/PF.EVIOUS TCB ACCEPTED? 
/NO 
/YES. LOAD REGISTER IN INTERRUPT LINK 
/THIS CAUSES A BR7 (HIGHER LEVEL) 
/INTERRUPT ON THE PDP-11. 

/RESTORE AC. 
/ION OR NOP. 
/DEBREAK AND RESTORE CONDITIONS 
/OF LINK, ADDRESSING MODE AND MEMORY 
/PROTECT. 

If the Index, Autoincrement, or EAE registers are used by the I/O de­

vice handler, it is necessary to save and restore them. 

7-5 



The following is for non-UNIBUS devices: 

ONLYl LAC 
DAC 
DAC 
DAC 
JMP 

DEVPIC DAC 
LAC* 
DAC 

JMP 
DEVI NT JMP 

DAC 
LAC 
DAC 

IGNRPI JMP 

COMMON DEVCF 
DEVION ION 

DEVIOF IOF 

DEVI OT 

/DISMISS ROUTINE 

LAC 
DVSWCH ION 

DBR 
JMP* 

{NOP 
DEVI ON 
DEVI OF 
IGNRPI 
COMMON 
DEVll.C 
(~ 
DEVOUT 

COMMON 
DEVPIC 
DEVAC 
DEVINT 
DEVOUT 
ONLYl 

DEVAC 

DEVOUT 

/LEAVE PI ALONE. WHEN API IS RUNNING 
/THESE REGISTERS 
/ARE AVAILABLE 
/THIS IS ONCE ONLY CODE 

/SAVE AC 

/SAVE PC, LINK, ADDRESSING MODE AND 
/MEMORY PROTECT 

/PI EN'l'RY 
/API ENTRY; Sll.VE AC 

/SAVE PC, LINK, ADDRESSING MODE AND 
/API IS OPERATING, SO LEAVE PI ALONE. 
/PI INTERRUPTS ARE NOT POSSIBLE, BE­
/CAUSE .SETUP EFFECTIVELY NOP'S PI 
/SKIPS. 
/CLEAR DEVICE DONE FLAG. 
/PI ALLOWS INTERRUPTS; API DOES A NOP. 

/API DOES NOP; PI TURNS IO OFF TO ENSURE 
/NON-REENTRANCE AFTER ISSUING IOT'S. 

/RESTORE AC. 
/ION OR NOP. 
/DEBREAK AND RESTORE CONDITIONS 
/OF LINK, ADDRESSING MODE AND HEMORY 
/PROTECT. 

If the Index, Autoincrernent, or Ell.E registers are used by the I/O de­

vice handler, it is necessary to save and restore them. 

7-6 



.SETUP allows either API or PI, but not both for a single device. The 

System Generator Manual gives the method for incorporating new handlers 

and associated Skip Chain entries into the Monitor. 

7.2 API SOFTWARE LEVEL HANDLERS, AN INTRODUCTION 

The information presented in the following paragraphs assumes that the 

reader is familiar with the system input/output considerations described 

in the PDP-15 User's Handbook Vol. 1. 

7.2.1 Setting Up API Software Level Channel Registers 

When the Monitor is loaded, the API software-level channel registers 

(40 through 43) are initialized to 

JMS* 
JMS* 
JMS* 
JMS* 

.SCOM+l2 

.SCOM+l3 

.SCOM+l4 

.SCOM+l5 

/LEVEL 4 
/LEVEL 5 
/LEVEL 6 
/LEVEL 7 

where .SCOM is equal to absolute location 000100 and .SCOM+l2 through 

.SCOM+l5 (000112 through 000115) each contains the address of an error 

routine. 

Therefore, prior to requesting any interrupt at these software priority 

levels, the user must modify the contents of the .SCOM registers so 

that they point to the entry point of the user's software Jevel handlers. 

Example: 

.SCOM=lOO 
LAC 
DAC* 

(LVSINT 
(. SCOM+l3 

I set level 5 entry. 

LVSINT exists in the user's area in the following format: 

LVSINT 0 /PC,LINK,BANK/PAGE MODE,MEM.PROT. 
DAC SAV4AC /SAVE AC 

/SAVE INDEX, AUTOINCREMENT AND EAE REGISTERS, IF LEVEL 5 
/ROUTINES USE THEM AND LOWER LEVEL ROUTINES ALSO USE THEM. 
/SAVE MQ AND STEP COUNTER, IF SYSTEM HAS EAE AND IT IS USED 
/AT DIFFERENT LEVELS. 

/RESTORE SAVED REGISTERS. 
DBR /DEBREAK FROM LEVEL 5 AND RESTORE 
JMP* LVSINT /L, BANK/PAGE MODE, MEM. PROT. 

7-7 



7.2.2 Queueing 

High priority/high data rate/short access routines cannot perform com­

plex calculations based on unusual conditions without holding off 

further data input. To perform the calculations, the high priority 

program segment m.ust initiate a lower priority (interruptable) segment 

to perform the calculations. Since many data handling routines would 

generally be requesting calculations, there will exist a queue of cal­

culation jobs waiting to run at the software level. Each data handling 

routine must add its job request to the appropriate queue (taking care 

to raise the API priority level as high as the highest level that 

manipulates the queue before adding the request) and issue an interrupt 

request (ISA) at the corresponding software priority level. The general 

flow chart, Figure 7-3, depicts the structure of a software handler 

involved with queued requests. 

Care must be taken about which routines are called when a software 

level request is honored; that is, if a called routine is "open" 

(started but not completed) at a lower level, it must be reentrant, or 

errors will results. 

NOTE 

The DOS hardware I/O device handlers do not 
contain reentrant procedures and must not be re­
entered from higher levels. 

Resident handlers for Power Fail; Memory Parity, 
nonexistent memory violation, and Memory Protect 
violation have been incorporated into the system 
and effect an IOPS error message if the condition 
is detected. The user can, via a .SETUP, tie his 
own handler to these skip IOT or API channel regis­
ters. 

7-8 



LV5INT 

SAVE PC, UNK,AC, 
AUTO-INDEX REGS, 
MQ, STEP COUNTER 
AND CONDITIONS 
OF EXTENDED MODE 
AND MEMORY PROTECT 

NO 

RAISE TO HIGHEST 
LEVEL THAT 
MANIPULATES 
LEVEL 5 QUEUE 

REMOVE ENTRY 
FROM QUEUE 

DBK BACK TO 
LEVEL 5 

GO HONOR THIS 
JOB REQUEST 
VIA A JMS 

Figure 7-3 

15-0094 

RESTORE SAVED 
REGISTERS 

Structure of API Software Level Handler 

7-9 



7.3 WRITING SPECIAL I/O DEVICE HANDLERS 

This section contains information prepared specifically to aid those 

users who plan to write their own special I/O device handlers for DOS. 

DOS is designed to enable users to incorporate their own device hand­

lers. Precautions should be taken when writing the handler however, 

to ensure compatibility with the Monitor. 

Here is a summary of handler operation. The handler is entered via a 

JMP* from the Monitor as a result of a CAL instruction. The contents 

of the AC contain the address of the CAL in bits 3 through 17. Bit 0 

contains the Link, bit 1 contains the Bank/Page Mode status, and bit 2 

contains the Memory Protect status. The previous contents of the AC 

and Link are lost. 

In order to show the steps required in writing an I/O device handler, 

a complete handler (Example B) was developed with the aid of a skeleton 

handler (Example A). In addition, Appendices A and B are complete 

flowcharts of the DTA and the A version of the disk handlers. The 

skeleton handler is a non-reentrant type (discussed briefly at the 

beginning of this chapter) and uses the Debreak and Restore Instruction 

(DBR) to leave the handler at software priority level 4 or at a hardware 

level for interrupt servicing (if API) , and restore the status of the 

Link, Bank/Page Mode, and Memory Protect. Example A is referenced by 

part numbers to illustrate the development of Example B, a finished 

Analog-to-Digital Converter (ADC) I/O Handler. The ADC handler shown 

in Example B was written for the Type AF~lB Analog to Digital Converter. 

This handler is used to read data from the ADC and store it in the 

user's I/O buffer. 

The reader, while looking at the skeleton of a specialized handler 

as shown in Example A, should make the following decisions about his 

own handler. (The decisions made in this case are in reference to 

developing the ADC handler): 

a. Services that are required of the handler (flags, 
receiving or sending of data, etc.) - By looking 
at the ADC IOT's shown in the Reference Manual, it 
can be seen that there are three IOT instructions 
to be implemented. These instructions are: Skip 
if Converter Flag Set, Select and Convert, and Read 
Converter Buffer. 

7-lV 



The only service the ADC handler performs is that of 
receiving data and storing· it in user specified areas. 
This handler will have a standard 256-word buffer. 

b. Data Modes used (for example, IOPS ASCII, etc.) -
Since there is only one format of input from the 
Type AF01B ADC, mode specification is unnecessary in 
Example C. 

c. Which I/O macros are needed for the handler's specific 
use: that is, .INIT, .CLOSE, .READ, etc. For an ADC, 
the user would be concerned with four of the macros . 

(1) 

(2) 

(3) 

(4) 

. INIT would be used to set up the associ­
ated API channel register or-the interrupt 
skip IOT sequence in the Proqram Interrupt 
Skip Chain. This is done by a CAL .(N) as 
shown in Part III of Example A, where (N) 
is the channel address . 

. READ is used to transfer data from the ADC. 
When the .READ macro is issued, the ADC 
handler will initiate reading of the speci­
fied number of data words and then return 
control to the user. The analog input data 
received is in its raw form. It is up to 
the programmer to convert the data to a 
usable format . 

• WAIT detects the availability of the user's 
buffer area and ensures that the I/O trans­
fer is completed. It would be used to ensure 
a complete transfer before processing the re­
quested data . 

. WAITR detects the availability of the user's 
buffer area as in (3) above. If the buffer 
is not available, control is returned to a 
user specified address, which allows other 
processing to continue. 

d. Implementation of the API or PIC interrupt service routine 
Example A shows an API or PIC interrupt service routine 
that handles interrupts, processes the data and initi­
ates new data requests to fully satisfy the .READ macro 
request. Note that the routines in Example A will oper­
ate with or without API. Example B uses the routines 
exactly as they are shown in Example A. 

During the actual writing of Example B, consideration was 
given to the implementation of the I/O macros in the new 
handler in one of the following ways: 

(1) Execute the function in a manner appropriate 
to the given device as discussed in(c). .INIT, 
.READ, .WAIT, and .WAITR were implemented into 
the ADC handler (Examole B) under the subroutine 
names AD IN IT, ADREAD, ADWAIT ( . WAIT and . WAI TR) • 

Wait for completion of previous I/O. (Examole B 
shows the settinq of the ADUT:m switch in the ADREAD 
subroutine to indicate I/O underway.) 

7-11 



(2) Ignore the function if meaningless to the device. 
See Example B (.FSTAT results in JMP ADIGN2) in 
the dispatch table DSPCH. For ignored macros, 
the return address must be incremented in some 
cases, depending upon the number of arguments 
following the CAL (see Chapter 3). 

(3) Issue an error message in the case where it is 
not possible to perform the I/O function - (An 
example would be trying to execute a .ENTER on 
the paper tape read~r.) In Example B, the handler 
jumps to DVERR6 which returns to the Monitor with 
a standard error code in the AC. 

e. Special considerations for UNIBUS device handlers 
When new handlers are written for devices on the UNIBUS 
in a UC15 system (RK based or RF/RP based UC15 option) 
the following has to be considered. 

Since communication between the device handler on the 
PDP-15 and the driver task running under PIREX on the 
PDP-11 is through Task Control Blocks (TCB) , space in 
the Common Memory (memory that can be addressed by the 
PDP-15 and the PDP-11) must be provided. The system 
as supplied by DEC has space reserved in the Resident 
Monitor for 3 user defined devices/programs/tasks, 
(refer to Section 2.9 for more information). This TCB 
must be properly setup (refer to the UC15 Software 
Manual, DEC-15-XUCMA-A-D for more information) before 
the handler calls PIREX to initiate the operation. 

Driver tasks (TTT) 1 running under PIREX report errors 
by setting the appropriate code (XX) in the device 
error status table in PIREX (refer to UC15 Software Manual, 
DEC-15-XUCM.A-A-D for more information) . DOS-15 
system prints out this error message, which appears 
as follows: 

IOPSUC TTT XX 

Users have to decipher this message. An example of this is, 

IOPSUC LPU 4 

which reports that the LPll/LSll line printer is not 
ready. There is no error message type out from the 
handler. This method of error handling is incorporated 
to permit error report during operation of these 
devices/tasks etc., under PIREX when their corresponding 
handlers are not present in core on the PDP-15 (e.g., 
during Spooling) . 

1Each task running under FIREX has a 3 character code assigned to 
it which is present in the PIREX error table at assembly time. 

7-12 



After the handler has been written and assembled, the Monitor must 

then be modified to recognize the new handler. This is accomplished 

by the use of the System Generator Program (DOSGEN) described in the 

DEC-15-USGNA-A-D manual. 

When the system generation is complete, the PIP program (refer to 

DEC-15-UPIPA-A-D) must be used to add the new handler to the IOS UFD. 

At this time, the user is ready to use his specialized device handler 

in the DOS-15 system. 

7.3.1 Ciscussion of Example A by Parts 

Part 1 

Part 2 

Part 3 

Part 4 

Part 5 

Part 6 

Part i 

Stores CAL pointer and argument pointer, and 
picks up function code from argument string. 

By getting proper function code in Part 1 and 
adding a JMP DSPCH, the CAL function is dis­
patched to the proper routine. 

This is the .SETUP CAL used to set up the PI 
skip chain or the API channel register. 

Shows the API and PI handlers. It is suggested 
these be used as shown. 

This area reserved for processing interrupt and 
performing any additional I/O. 

Interrupt dismiss routine. 

Increments argument pointer in bypassing argu­
ments of ignored macro CAL's. 

7-13 



7.3.2 Example A, Skeleton I/O Device Handler 

/CAL ENTqY RnUTI\E 
,GLOi:lL DEv, 

,ME0=3 
11E V, !1AC 

11AC 
!S~ 
LAC• 
HID 
JSt 
TA 11 

~· r. 

DVCAL.P 
DVARGP 
DVA~GP 

CilARGP 
c 77777 
OVARGP 
CJMP DSPCi.. 
r)SPCr< 

J"'P r;vpJIT 
J"IP 'JVF'SA T 
JMP OVS(EK 
JMP l)\/E.fJTR 

y.ii:i 'i'lC L ER 
JMO l'Jl/CL(1S 
.Jl"I> 'Jll•n AP 
y-ii:i '1·/~EAD 

.J M P :J V " R T E 
.J MP r) V ..i A ! T 

j"1P QVTRAl\I 

/VUST AE or •O~M AAA, 
'•"'[" r~o~ITrR ERROR DIAGNOSTIC> 
ISAVf CAL POINTER 
/ANO ARGuME.NT ~nrNTE" 
/POr•.rs TO F°L;NCTy('W '"ODE 
ICE T CODE.. 
/REMOVE u~IT ~c 1r APPLJCABLE 
/~OJVTS TO CAL.•2 

F' I s p A T c .• .. ! T ~ 
1"'0'1 I~ I Er'· JUl"P 
11 = eh!T 
I? : ,fSTAT1 1 DL.rTE 1 1 R[\AM 
13 = ,SEEK 
/ 4 : , E i~ TE~ 
1r:i : , CLEAR 
16 = , C"L.JSE 
/7: .~·H,PE 

IP = ,i:cEAO 
/11 = ,,~t(!Tt. 

112 = , .. arr 
/13 = I TRAN 

I ILLEGAL. flJ~.Jr'.T I 0\1S I~· AB:>VE TAFLE Cl'llf_'." AS I 
I JMP DVER~6 

/fUMCTIO~ ~OnE [~~CR 
,VERR6 LA~ 6 

JM Po (,"[Cl+ 1 

/DATA ~0'1[ ERROR 
"VERR7 t_Alol 7 

jMP• ( 1 "1[[.J+l 

1orv1cr ~OT cEADv 
''V[RR4 1_A\, ( ~ETuR~, 

nAC• I , ~ t :_~ 

LAC ( 4 

J)'!P• (, "'EO+ 1 

1110 U"-D!;:Fh:Av L00P 
cVBUSV '"l8R 

,JMP• fJVCALP 

/NORMAL RETLJPN FR J'4 CAL 
"VC:K !")8i:i 

JM Po OVARGP 

I T ~ E D V I '1 I '!' ~OUT l 'ff "'1 US '!' I ~,CL U ~J E 
IA ,S~TUP CALLIN~ SE:UE~CE f~R 

7-14 

/EPR()R CODE 6 
I T 0 "C ~: I T 0 R 

1rRRCP CODE 7 
/T!J "0''!Tr1R 

/RE TtJRll. C AOlJk[SS J '. ·•ANnLE"' l 
/TO ~E T,Ji"'.j Tr i.i~r;\i \i' T R[AUV 
1~n~~1r1n~ HAS ArE~ PEHOVED 

1rQRr'l~ C'l~E 4 
/TO "Of\:! TOI:/ 

/EHlF:AK r:qQM LEVE 1 4 
/t,OOP "''CAL 

/8qfAK fROM LEVLr 4 
/RET::~t\ H'H.~ CA• A'.[ 
/ARG!·~·E'\T STMPG 



/EACM rLAG c~~~ECTED TO AP? 
/AND/OR Pl A(AT SGEN TI~El1 
/Tl-IE: SETlJFI CALLl~rG SEQUENCE: ySr 

OV!NIT CAL 

16 
Sl<P!l'.lT 
D •. ·.,,·i.i7 

N IN : API CMA~NEL REGISTER 
/(4~ •77l 1 N = 0 I~ ~OT CQNNfCTEn 
/TO APl 

/JOPS r11\JCTIC\I CnDE 
/SKIP IQT TO TlST TMf FLAG 
/AODRES5 QF' INTEJ.<RllpT 
/~ANQL[~ CPI OR AP?l 

ITMIS SPACE ~AV BE USED roR IIQ susqoUTl~ES 

/INTERRUPT 1-lANf'lLE>( roR 
nNLY1 LAC ( 'J Cl p 

nAC ~EV ION 
DAC DEVI OF' 
nAC OVS\..CM 
nAC IGNRPI 
JMP COMMO!\J 

.I I. v • .!. \.,.. 'J AC nEVAC 
LAl.• ( ... 
!'1AC I • ~~· \) U \) ~c 

JMP C 0 ~1 M O~J 
.I .. ~ \, .J. • "¥ l jMP DEVP!C 

'j AC l![VAC 
LAC: DEV I~. T 
OAC l")[Vrjl,JT 

IGNRPI J'1P O'll Y 1 
C0"1MON '.'JEVCF 
riEVION ! 0'l 

APt OR P I 

/SAVE AC 
/SAVEIPC 1 Ll~~, ~ANK/PAGE MDDl 
/A~D MF~ORY PROTfCT 

/Pl E\IT~y 

/API [NTRYI SAVE AC 
/SAVEi PC 1 ~INK, BA~~/PAGE MOOE 
/'-11:_:MORY PROTECT 
/l.FAVE. Pl AL[")N[ 
/ENARLE Pf O~ NOP 
/F'NAPLE PI OR ~~OP 

I T M 1 s A I 'T' M r 4 R r A D ( v 0 T ED T C'J p R 0 c E s t; P' G P.J T r H R u p T A : ; D 
/PERrORMtNG ANY ADJITIONAL 110 DESlRFO, 

')EVI'Jf" IOF" 
1EVIriT 

/INTERRUPT ~A~nLr~ DISMISS 
~vo?SM LAC OEVAC 
::vswr.:1-1 I 0•1 

18R 
JMi::>• !JEVC\;T 

RC'llJTE 

/nISABLE Pl rR N~P 
1nIM!SSAL HlrORE INT~RRUP'T' 
1rR~~ T~rs IrT OCCURS 

/RESTQ~E AC 
11 o~ r:R .;OP 
/~lRQ[A< A~U R[STO~f 
/Ll~K. JIN~IPAGE ~cnr. 

/PROTECT 

I IF" Tl-1E 1-lANDt rq USES THf A~JTO H:C~FME~ 1 T , I NlJE.X 
·10R EAE REGit:TtRS1 THEIR CO~HE~1Vi 

/SHOULD gE SAVED ANO RfSTOREn, FUNCTIONS 
/POSSIFlLV IG"CREO Sl-10ULD CONTAIN 
/PROPER rNnEY!~G TO ~YPASS 

/CAL ARGUME~T STRl~G 
I 

/CODE TO 8VPASS !G~ORED FU~CTIONS 
I 

i"lVIG~2 tS2 
JMP 

'•VA i:; t,P 

ovr:K 
/1lYPASS .- ILl Pu I~ TU~ 

7-15 



7.3.3 Example B, Special Device Handler for AFOlB A/D Converter 

l)AGE 1 R ~~? 1 

1 /ADC ~ANf)t.,Ef< 

'2 I 
,3 rn13r1 A Ar:JSF":7il13<'ll /SKIP IF COt>.iVEf~S T 0'c FLAG IS C::£T 
4 7013:14 A AfJSC:li.113"4 1S((_ECT A"JlJ CONVf MT ( A (1 C: n.AG IS CLEARE.[) 
5 IA~; C' A C!i'!VERS Io·· IS I ~' 1 T I A L I SE D > 
6 -1~1.si? A A fJ R Fl : ·1 rl' 1-H 2 /REA~: CO~Vl:.QTf~ :iUF'F"fR I r\T O AC M:D CLEAR F" L Ar. 
7 I 
8 ,GLORL. AOC, 
9 440iH'il A I DX:: I St 

p rzei'!:· 3 A , "'fn=.s I ~H. [l CMONfTQR E Rt~OR ilIAG'·JOST!C> 
11 I 
12 . , 0 ;· ~~ :~ ~< 1'4'11150 R AOC, DA C ADCALP /SAVt CAl PO!l'llHR 

-...] 1.3 ·' ~~ :'? 1 " ~4CH :)1 R 'J AC ADUlr.,P /ANO ARG 1_ MF:NT POI~TE~ 
I 14 . C' ~ ;:'.? f\ 4401?1 R !DX ADARr.P IP O I ~JT S rO ~11/\iCTTO~i CODE 

1--' 
1? ··~l't.3 ~ 220.L'.>1 R L. AC• ADARGP /GI:. T coot C'I 

t6 (' ~~ ,(~ 4 q 44::l1?1 p TD X AOARGP 1po pas TO CAL + 2 
17 ) r .'e~ R .H~1?4 R 1' AD tJMP DSPG~ 

18 . v~ .~0"' q ~~41/.l /7 R nAC :1SPCµ /OISPA'f'C~· \,j 11' 1-t 
1 Cj ::_•(JZ, 7 ..( 74r;,~'4e A ~SPCH xx /'10D!f"l[!:' J•J"'P 
2e 't~ (' 1 ."I >( 6 '/;e 'l2 7 R J '1P ADI~il1' IP:,tNIT 
21 .. M11 ;:( 6~en4 R .JMP AD I G\i2 12= 1 F'STATr,DLET£,,R(•1AM 
n ~ei ,?112 R 6M2'74 R JMP ADIG»2 13=,SEEK 
23 ;·?<"13 ~ 6~ftl~?3 R Jlo1P Al1f.Ri16 14:, [·~TE r. 
24 .,v.n4 ~ 6(l!tl023 R JMP AD£Rt<6 15=,CLEA~ 

25 ''Cl\01? R 6N!ill75 R JMP ADIG\1 16=,cLOsr 
26 .~0C'!16 R 600.1!75 R JMP AD I G~; 1 /7: 1 1-1TAPt 
27 '."N'17 [.( b~Pl0~1 R JMP A DREAD 111tJ= I REA"' 
28 ' ?l c 2 .~ ~ 62'011}23 R JMP ADERP6 /11: 1 1.R pE 
29 "M21 q 6:rne44 R J"1P AD;..A IT 112: 'WA IT 
3 ei ."?f'l22 R oe002J R ,JMP ADERG6 /1J:,TRA' 
]l I 
32 Ill.LEGAL F'UNCTIO•S I '· A8:JV~ TABU cndc AS 
33 I JMP ADERµ6 
34 , EJECT 



PAGE. 2 

35 
36 
:57 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
5 Vi 
51 
52 

-..) '53 I 
I-' 54 
-..) 

55 
56 
57 
58 
59 
150 
61 
62 
63 
f) 4 
65 
66 
67 
6B 
69 
7(/: 

71 
72 
7S 
74 
75 

.'Qi •il2 3 ~ 76011~16 A. 
,'97124 k 62l1?5 R 

• 0 ::";? "i ~ 761/irt,';. 7 A 
~l?r'2f) R 621'1~5 R 

OV'3j 
,, 

?.6~151 R ~ 

'(1,1-32 ;:; 44 01? t R 
11~?,3 s p 00tN1l~7 A 
. 2 ~, 3 4 R {'0'1il)16 A 
·'(~V.P:i M n'13?1 A 
'/)/136 " ~~?I H 11 R 
•r.:~37 '1 2e'~2J41 R 
,. 004 :1 R Z4~\,J3 R 
. 0i. 41 ~~ '>2:0{42 R 

.•f1:''42 '< 1.4k~l'.,P R 
··n;'!4;~ R 6lU 75 R 

I 
1FUNCTt(')N 
I 

CODE [r<ROR 

.e..DERR6 LAW 6 /[HROR r~DE 6 
JMP* t 1 M[D•1 /TO MONITOR 

/DATA MODE E.1-rnoR 
ADERR7 LA~ 7 /EHRnR c0Dr 7 

J~P~ f 1MEJ+1 /TO MONITOR 
/TME ADI~T HtUTl~E ~~ST INCLUOl A ,SETUP 
lfOR [AC~ FLAG Assnc1ATED ~I™ T~E o~VlcF 
I 
AD l NIT 

AOCMOC' 
ADCKS'i 
AOCRp 
Ai'.lLB~P 
ADU'JQ 

I DX 
,DEC 

1,.. AC 
,OCT 
Df!Ci< 
IJX 
C Al,. 
16 
AO Sf 
4.f")Cl~ r 
LAC 

Ai.Ji.JC ;JAG 
A[IWPrT ,_i~1P 

I 

11DARGF 

,•2 
ADCt--<·O 
t.t1ST·P 

/tUX TO PlTU~N HUFF sx?r 

/5/:APY e,HA' ·,~I. 
I • s E yt: p I 0 p s ~ I' ('TI 1' 

/AlJC S1'!P ICI 
I A LJ 11 q , 'H I · H h ;~ ! , f' T 
/SI:_ T-11P , NCE (lt·L V 

/SK[P SfTftUP CCnE Ir 
1 1 l ~. I r s r. HF ' o '. E 

/STl'lP ADC ROt·TIN~ CU At'IS jlO IJ~!fH RoiAY 
I 

A n1;~ ' 
.~l:!G 1 /R~Y 11 r<'. 

I 
/THE PR[VlOUS TAr;S I TH[ CAL hRr:A AhE ,1c::E_;1 qi-; 
/STORA(;( iJUR1~.G r1-1r ACTUAL ,F(Ar· FtJ\;f'Tlc" 
I 
/~OCKSM JS fr~ SrCR! G THE C~ErKsUM 

I ADC !H' I S TH F r U i:. RE I\ T b LJ FF E. k P 0 I 1 T t R 

I A 0 Lr.HP l S TH: L t N t. '< U Ff t: R HF A tl F ;, P 0 I ~" T ~y 
/ADUNO 15 FOR rE~!C[ u~orRWAY SwJTCH 
/ADWC Is USED AS Ti-iE cou•.rt..R 
IA D W PC T I S U S E r T f) S i 0 R F C UR R p; T W ') r:1 [1 VJ 11 '.1 T 
I 



OAGF :~ p f'\!'1 

76 '07144 " 2r~037 R ;\DWAIT LAC A ()[11\J r1 

77 ' [ •,714? R 7412'.'(,l A SNA 
78 ·v1v14ti >i 611~~~75 •• J"1P f. DIG 1 
79 1!10 l)Nr.JE R WAY ~-O"P 
B~ 0?47 ~ 7C.H44 A AORl)SY UBR 
I'll 'D 0 5,~ r. 621Z:15~ R J1'1P 11 AOCALP 
82 I 
R3 I 
84 ,, (1'?I 51 •< ?. r ;rn 0 7 R ADRE.AO LAC A ['lUNr1 /CHECK T'' '} SU p: 11 ~l IS UN'.J[FlwA Y 
85 1 '1'f'!52 k 7 41i:12 .\1 A. S11AlCMA /ff· 010 T ''I:.. r JT ., I '!' ri -1 
86 .·c05.3 " 6:'.l0047 R J~ip h f1HLIS Y 11 T WAS ~Er,r,o BACK l' 0 CAL 
87 '(;>!054 R k'4M37 ~ DAC AD l,J ,\') /SET p 
88 ''('055 R ?2k~ 150 R LAC., .~OCAL.P IL OQI« AT MOO[ 
89 "0'~56 ;.i 'J0~H57 r~ A ND tlMl,J' IB !TS 6-1< Q' I y 

9~ :Mi"'57 ·~ 7 41/! 2 ;1(1) A S2A /JOPS B1··Ar~Y? 

91 er.16\' R 6('10025 R JMP :.DUn7 /ND, F.RRnR 
92 "0r'6l R nei151 R LAC* ADARr;P /GE.T LI ~Jt RUFFE.R ~ E. A,--. l f./ P(l!NTEH 
93 0~62 l'J :•400J5 R UAC t. l"JCfW /SIDPE IT 

-.J 94 I, ~';('•63 i-1 740736 R 1JAC :;DLR"iP /ALSO STPRF rr Fr: R Lt.TC!-< hl[Af1E~ 
I 9 !J .. 01~64 :i 4401St R !OX :,[)ARGP I J r"c>;E r~f· T 11 r; l• , PrJT'.'.TfR .... 

96 ii' :16" R 2 2 kl 1 ~' l rt l AC 11 ADARr;P /Gt:. T 8' I,.. e ··~ f I.( 0 c ( 2 f s CIJ''P) 00 

97 .'l'.~66 ;i •1 4?' 040 R llAC ... [)"' c /STORE ll r "' ~ORn C J Li I~ 'f f. Lf 

98 e '.~6 7 ;i 140(::11 R [.1 lM .~OwPl'.:'T nu~r WQPO r, o u ,, r I.ff r; • 
Q9 "1Z, '.': 1 :~ ·< 14,~0J4 R rJ !! M A0CK',f1 /i'tRO c~rCKSIJ~" Rf G, 

1:;'10 ·vn1 ~ 44l'!,135 rt I'.) x ~. rJCHP IGlT PAST H[Allrn PAIR 
1VJ1 '0?72 [/ 44?!0;5~ R !DX ADC8P 1 ·~o, .. PO! 'T I .~ r.; ;. r f., Et. I r~ 'J I \! G OF 
1~2 /BUFF"ER 
1?J3 .'02173 f-1 72'131!4 A AOSC /START 'JP ':'IE v Irr 
1"-'4 1 M74 >-< 440151 ~ A'.'.l!G~;2 I ') x AC1A~c;P /JNCR 1 r r R f_X Ii 
105 ·.('.' 717 r; ~' /0,l.H4 A AO I G"1 DBR /Bf-If AK F r<Or- Lf.V(L 4 

V''6 •0 17 6 r.; 6201'}1 il JMPO 11DARt,P /Rl TURI\ ~ F 1' E >< CAL 
1 V'l '7 11 f\ITERRUP'I' HANf.JUR ~ "1 fl AP! 'J r,i p I ,. 
108 I 
1'1' 9 ;·[_~'), 77 R 2eJfl16':1 R Q\Jl,.Y1 LAC C"-'OP 
uei ·.~HJ1.' R \~ 41/J l 1 7 R rJ AC ALlC!Cf\ 
111 , :~, 01 '."? 1'41iJ142 p '.)AC A CJ c: (')~I T 
112 ? 12!2 R :4ei14r; R [1 AC t.:iswcH 
1t3 -~11-i:3 ~ ~140115 R OAC yG\JRP! 
114 '[' 10 4 -~ 6(':Vl11.6 R JMP rm·H• ~~ N 
115 , ~:H~ Q 040153 R ADCP!C IJ AC Af!CA': 1sAvr AC 
116 '0106 p ?2~161 R LAC 11 ( ii! ) /SAVF. pr: I L f ,, l f< , f. x • ~, 0 n E: 
1P 'k112l7 R 04kl152 R DAC ADC0 1:T /MEM,PRor, 
118 ,EJEcT 



PAGE 4 R 0Z1 

119 (' 011:' R 6210116 R JMF C [") ~1 M f) N 
12 ei ~Qlt11 q 6t'le:1l'5 R ADC I tliT Jr-1P ADCP!C /PIC ENTRY 
1z1 ;;' 121112 R ~401?3 R 0 AC: ADC AC /API ENr~v.sav~ .\C 
122 ('- el113 ~ 212!~111 R LAC ADC PT /SAVE Pc,l.PJK1f..X,"10JE 
123 :~ 2114 R ~40152 R OAC .ADCn'JT /Mi::M,PRor 
124 '1('1115 Q 600077 R IGt\IRPl JMP l"'\Jl,yt 
125 ,, 0116 R H'.!1312 A COMMON AD Rd nn.: AD CQ'VERTEf~ i<UF FF.. R 
126 70117 ft 7'210042 A ADC IO~ ION /ENARL£ PIC FOR OTl-lE::; OE VICES 
127 ''012?1 R 0600.35 R r:lAC* AOCEiP /STORE [IATA l t\: uSER RUF'FF R 
128 'e'.121 ~ 44~~35 R lDX ADC::Bf!> I l f'<C, Bur Ff. R Pc, t "! r r q 
129 ,1 r2'122 R 44~041 R IDX A'.1WPCT / 1 fliC, wn~o PA IR CQll~TER 
130 V?.123 K 340034 R TAD ADC:KSM /ADO G HE r. KS U •1 

131 '' (A12 4 R ;'4?i34 R fJ AC AD CK SM /STORE I 'I' 
132 .~~125 ~ 4 4k"0421 R 152 •DWC /JS T/0 r.OMPL.ETE. 

-.J 133 ~·· ("126 p 60i:"142 R JMP ADCO\T /~0 ,(([p Go x •. G 
I 134 •' 012 7 l:'l 2'110041 R LAC ADWPCT /VlS,COM~UTE WuRr CJT· 1T PAIR .... 135 . ~J13 ,' R 741Z'Z30 A IAC /~AV RE rDD \,0 

136 .,. 01 ;51 R 7420.30 A SwrlA /TO TOP .-Au· 
137 :' r 13 2 R 7400?0 A FUR /MAK( 1,.1 ri • P~S, 
138 »H 3,~ p 50el162 R AND c37U~lil /8 RlTS r1 NL V 
139 1(1134 R 06~0-36 R OAC• ADl..r~~IP ISTQRf l ~ 1-!lAllf:. R #1 
1.H'I ., ct 3 5 ~ 44"~36 R !OX ADl.B~P /I NC, Tn ST QJ<E CKSU'1 
1.41 'll136 R 34'1034 R TAD ADCKSM /ADD !"0Rr' PAIR cnu~ir 
142 ·"·0137 R ;16011.36 R :1AC• ADLr:3...iP /STORE I ,,. f.t[ADER #2 
143 , 014 ~· R 14U.37 R (}tM ADlHi\\ /Cl..EAR I)( V.! Cf u"'r~EF~..J AV 
144 ;'0141 q 6eei144 R JMP AODJ·;M !EXP 
145 ' 1014:? R 7Q!~~02 A AOC0'1T 1 0 F' ID l SABl..E PJC o~ ~.JP 
146 ;i 014 3 R 7013'14 A AOSC /8~FORE yNT[RRlJPT f'Rl'IM THIS IDT nCCURS 
147 !INTERRUPT HANDLER DISMISS RTE 
148 I 
l,49 '."0144 R 200153 R AOD!SM LAC ADC AC /Rf. S '!'ORE AC 
15i21 I EJEr.T 



PAGF. 5 R 001 

15j ,:q;'.1114 5 f~ 700042 A ADSWC/ol ION II ON OR ~,op 

152 '.1 0146 R 703 344 A OBR /DlBREAK A~· (1 Rt STORE 
3,53 ,,, 014 7 R 6212! 152 R JMP* ADCO:.IT ILINK,EX,MOOEtMEM,PROT 
l. 54 , 1 0151!' R 000~e0 A ADCALP ~ /AUD CAL Pri I "-ITE~ 
155 :0151 R C12!2!00ei A ADARGP '~ /AlJO ARGt1Mf'1' l' POINTER 

--.) 156 :·0152 R 00el0e'0 A ADCOLIT ~ /pC,L.,FM,MP 
I 

N 1'37 '.'0l 53 R 0000021 A ADCAC ·,~ /AC SAVEi' ~ERE 
0 

158 I 
159 00~0~~12! A 1 ENU 

"i?\154 R 6!iH:Hl?7 R Ill 
1e155 R 21021004 A *L 
J0156 R vH'l0 4?:Q! A * L 
• 1 0157 R 207 0f.'0 A *L 
1('1160 R 74l"0(!((1 A *L 

11 riH61 R 00\Hl~/2! A *L 
: 1 0162 R j 7 7 ~0(/J A *L 

SI?£:3lJ1o3 NO ERROR LINl:.S 



PAGF 6 q CROSS REFERENCE 

AOARGP %~151 13 14 15 16 46 5121 51 92 95 
96 104 1'116 155 .. 

ADBUSY f1Vi?O ~ J. 86 
A l'.H'!AC 00t5:~ 115 121 149 1570 
ADCALP 00151 12 81 88 1540 
AOCBP I~ 2' f" 3 ':i 'i 411 93 1e0 1flJ 1 127 128 
Ao er~, r ·1::.it11 55 120• l <' 2 
ADC!O~~ 1~117 110 126* 
ADCi<SM "111'2'34 53• 99 13(~ 131 141 
AD e ~1 C'l (1 7-\W33 'i;? II 57 
ADCO~'T .~11114 :;:> 111 133 1450 
A DGOtlT \·1 ~ 15:" 117 123 153 15611 
ADCPTC YJ1 ~r.; 1t5ll 12V'I 
ADC, :n~"' eir· 8 1211 
Af)l1JSM r~144 144 149it 
A Df.R>H:i ~'.Vi;~ 2 j 23 24 28 30 JAo 
ADER 117 1J,',2., 4 1 II 91 

-..J AOtGNl "IW·~7~ 2? 26 o3 78 tV)it 
I AD r c; ~:?. ~i;:1;174 ?1 22 10 411 l\J 

I-' ADtNTT :~h~27 (':' 460 
ADl.RHP 021;~3!-, ,,. 94 139 14 eJ 142 
AORR 70UP 6• 125 
ADREAO rr.w:i1 2 7· 8411 
ADSC n1 <04 4 It 103 146 
AD!' F 71'1S?i jo 54 
AflSTOP 1~H~4? ~Fl 62• 
A05WCH 1(:'140) 112 151• 
AOUf\l\l ~t'l137 'fl* 62 76 84 87 143 
AnWA!T 00044 ?9 76 fl 
ADWC nr.>(~ 4" r,70 97 132 
40WPrT (1 0041 ?d• 98 129 134 
r;OMMON ~~011fl 114 119 1?5• 
DSPC•~ (1~:11717 17 18 19 ft 
!DX 44:·wr,' 9• 14 16 46 ?1 95 H'!0 11t'.i 1 17'4 

11. ii l. 29 140 
!G~RPI -~~115 1tj 1.24'1 
!'PllL Y1 :;1~~!~77 1:'9• 124 
,MED n ~rn t':n 1 '."ft 39 42 



CHAPTER 8 

BOSS-15 

BOSS enables DOS users with a card reader and a line printer to run 

jobs sequentially, with a minimum of operator intervention. BOSS sup­

ports a subset of the DOS system programs, and adds a line editor, its 

own resident and nonresident routines (called Resident BOSS and Non­

resident BOSS), and the Procedure Files. Paragraph 8.1 describes Pro­

cedure Files. Figure 8-1 shows which monitor supports each system 

program. 

The DOS programs run by BOSS are identical to those run by DOS. Ex­

ceptions are the Resident and Nonresident Monitors, which are ex­

plained later. BOSS expands the information on Control Cards into 

a series of commands in the format expected by the DOS system pro­

grams. Nonresident BOSS does this command expansion, and stores the 

expanded commands in a disk file, the Run Time File (RTF). Since DOS 

programs expect to communicate with an operator at a teleprinter, BOSS 

feeds the expanded commands to the programs via .DAT slots assigned 

to TTA. In BOSS mode, therefore, BOSS attaches .DAT-2 to the Run Time 

File, and directs most teleprinter output to the Line Printer. Pro­

grams can force I/O to the teleprinter by setting bit 4 in .SCOJ\1+52, 

and preceding with macros directed to TTA. 

Whenever bit fl of .SCOM+52 is set, the System Loader Interface attaches 

the Resident BOSS code to the Resident Monitor. The main purposes 

of Resident BOSS are to (l) ensure that BOSS will retain control of 

the teleprinter, (2) feed commands to programs via the Run Time File, 

(3) properly route internal Monitor commands, such as .EXIT, .GET and 

.PUT, and (4) direct teleprinter output to the Line Printer~ Figure 

8-2 ·illustrates the connections between the DOS Resident Monitor and 

the BOSS Resident Monitor that accomplish these changes. Figure 8-3, 

the flowchart for Resident BOSS, further describes Resident BOSS. 

Resident BOSS communicates with Nonresident BOSS by TRANing informa­

tion to and from the first block of Nonresident BOSS. Nonresident 

BOSS gains control on all error conditions, such as IOPS, operator 

abort, Time Estimate exceeded, and after a BOSS15 command. Figure 8-4 

is a flowchart of Nonresident BOSS. 

8-1 



CXl 
I 

N 

DOSGEN 

FOCAL 

DDT 

EDIT 

LINKING LOADER 

TKB 

PATCH 

8TRAN 

89TRAN 

DOS 

RESIDENT 
MONITOR 

NONA ESIDENT 
MONITOR 

SYSTEM 
LOADER 

BOOTSTRAP 
PIP 

CHAIN & EXECUTE 
FORTRAN 

BOSS 

Figure 8-1, BOSS/DOS Intersection 

NONRESIDENT 
BOSS 

RESIDENT 
BOSS 

B.PRE 

PROCEDURE 
FILES 

15-0658 



RESIDENT BOSS16 INTERFACE TO RESIDENT MONITOR 

AND USER PROGRAM OR SYSTEM PROGRAM 

---- PROGRAM CONTROL 

-----INFORMATION FLOW 

©----- DISK 
HANDLER 

1 •1f ODUMP WAS SPECIFIED THEN THE DUMP 
WILL TAKE PLACE BEFORE GOING TO 
RESIDENT BOSS15 

NOTE; SEE RESIDENT BOSS FLOWCHARTS 
FOR DET Al LS. 

IOPS ERROR FROM 
110 HANDLER OR USER 

t 
. 

IOPS4 

RETURN 

t 

r---- r----- --, 
I 
I 
I 

BACK TO USER AFTER 
.READ .WAIT TO .7 OR 
IF USER "CAL" WAS 
NOT A.READ 

1 RESIDENT BOSS15 1 RESIDENT MONITOR 

DAT UFDT 

I 
I 

SWITCH USER 
READ To -2 TO -7 

.READ 

-15 I 
I 

·14 I 
I 
I 
! 

-7 

~--1--------T-+---t--3 

'------1----lf--------+-l---+·2+--lf--+----, 

EXPANDED 
ERROR 

PROCESSOR 

IOPS4 

·a 

.EXIT 
PROCESSING 

NORMAL 
IOPS 

ERROR 
PROCESSOR 

DUMP 
CORE 

!Q 

INPUT 
FROM TTY 

TELETYPE 
HANDLER 

t+-+--r--t----------t-------+-+---------tlTTYPED 
I 

A 14~U~S~E~R~W~A~NT~S~T~T~V-t--I SWITCH USER WRITE 

I 
I 
I 
I 
I 

B"-CK TO USER 
AFTER .WRITE 
.WAIT OR IF NOT 
A .WRITE CAL 
AND USER DOES 
NOT WANT TTY 

TO .3 TO 6 UNLES.o; 
i-TY IS SPEC. Bll40F 

+----11---1 .SCOM + 52 SET 

I i I . 
--t-1-----~---, 

._ ____ _J I L I 
I -r 

' "CAL'~ ENTRY TOTTY ______ - - __J HANDLER 

.-------~ : 
I ~~~1:0L I 
1~00 ~. I 
I DATA BACK FROM I 
I DATX 

CARD READER 
HANDLER 

NORMAL 
CARO 
DATA 

.READ .WRITE 

x ·• 
OR ANY OAT ASSIGN TO TTV 

•USER OR SYSTEM PROGRAM 

'"N'OT NON-RES BOSS15 

Figure 8-2 

Connections Between DOS Resident 
Monitor and BOSS Resident Monitor 

8-3 

0 
I 
I 

.READ 
-2 



IOPS Error 
Routine: 

EXITLT 

Expanded 
IOPS Error 

Routine 
BOSSj2' 

(JMS Entry) 

RETURN 

Set Rxpande Error 
flag for Nonresident 
BOSS 

Store error data in 
Resident BOSS .ERR, 
.MED, and in the ad­
dress pointed to by 
.SCOM+37 

Go to CTRL · 
Q Routine: 
MANSAV 

Monitor TRAN in the first block of 
Nonresident BOSS, starting at 
C ( .SCOM+2) 

Startinq at C(.SCOM+2) + 448 , trans­
fer IOPS error data to core image of 
block 

Set bit 5 of .SCOM+52 

Monitor TRAN block out 
to first block of Non­
resident BOSS 

Control Q 
Processing, 

via .SCOM+72 

Points within the Resident Monitor which transfer control to Resident BOSS - 15 

Figure 8-3 
Resident BOSS-15 

8-4 



DAT3.B 

COMPOSE A .WRITE 
TO .DAT+6, USING 
CALLER'S DATA 
MODE 

MOVE USER'S BUFFER 
(MINUS THE HEADER 

WORD PAIR) TO RES­
IDENT BOSS (ALWAYS 
428 WORDS) 

ISSUE .WRITE TO 
.DAT+6 (THE LINE 
PRINTER) AND WAIT 
FOR COMPLETION 

(.DAT-3 OR ANY .DAT SLOT 
ASSIGNED TO TTA.) 

y 

N 

1. CLEAR BIT 4 OF 
.SCOM+52 (ONLY 
IF - .DAT SLOT) 

2. MAKE SURE TELE­
PRINTER IS NOT 
BUSY 

TRANSFER TO 
TTA 

RETURN TO 
USE AFTER 

CAL 

N 

DAT2.B 

y 

USING CALLER'S BUFFER 
ADDRESS AND WORD COUNT, 
COMPOSE A .READ TO 
.DAT-7, THE RUN TIME 
FILE (RTF) ON THE 

SYSTEM DEVICE 

ISSUE .READ TO .DAT-7, 
AND AWAIT COMPLETION 

y 

INCREMENT THE 

LINE COUNT 
SET BIT 2 OF 

.SCOM+52 

Processing for I/O Macros addressed to .DAT slots -2 or -3, or any slot assigned to TTA. 

Points within the Resident Monitor which transfer control to Resident BOS-15. 

Figure 8-3 (Cont.) 

Resident BOSS-15 

8-5 



.EXIT 
Processing 

EXITA 

TIME OUT 
Processing 

TIMGON 

SET BIT 3 
IN .SCOM+52 

Operator 
Abort tT 

TTDDTR 

SET BIT 7 
IN .SCOM+52 

B.EXIT 

SET BIT 17 
IN .SCOM+52 

SET UP .SCOM+43 & 
44 TO BRING IN THE 
NONRESIDENT MONITOR 

N 

MONITOR TRAN FIRST 
BLOCK OF NONRESI­
DENT BOSS STARTING 
AT C ( .SCOM+2) 

MOVE CARD IMAGE FROM 
CD'S HANDLER'S BUFF­
ER TO BLOCK IMAGE, 
AND TRAN THE BLOCK 
BACK TO NONRESIDENT 
BOSS 

ISSUE .INIT'S TO 
EVERY ENTRY IN THE 
MASS STORAGE BUSY 
TABLE 

ZERO THE NUMBER OF 
BUSY TABLE ENTRIES 

RETURN TO .EXIT 
PROCESSOR AT 

EXITA + l 

.PUT AND .GET 

SET BIT 11 
IN .SCOM+52 

N 

SET BIT lfa 
IN .SCOM+52 

CHANGE CTRL Q 
ENTRY POINT 

VIA .SCOM+72 

GO TO 
CTRL Q ROUTINE 

AT MANSAV 

Points within the Resident Monitor which transfer control to Resident BOSS-15 

Figure 8-3 (Cont.) 
RESIDENT BOSS-15 

8-6 



Start Address 42~ 

Execute bank bit initialization code 

Save value of TIME OUT clock, and disable it 

Disable CTRL c and set up CTRL T address; save contents 
of .SCOM+42, set MICLOG bit and clear user bit 

Set .UFDT -15 and -14 to "CTP" and delete all files in 
the CTP UFD named PRCFIL PRC 

Perform .ENTER on .DAT-15 for PRCFIL PRC; set line count ~ 

Save current logged-in UIC in ~; force 
"CTP" to be logged-in UIC 

Save system device code in D.11 

y 

Set bit 17 in Word AC.STA 

N 

Set bit 2 in Job status word 
Print, "END OF RUN TIME FILE 
REACHED BY USER" on the LP 

Next Page 

Figure 8-4 
Nonresident BOSS 

8-7 

Set bit zero of .SCOM+52 



set bit 3 in Job Status Word 

Print on 
ESTIMATE 

"TIME 

From Preceding Page 

Neither 

Set bit 11 in 
Status word 

.PUT 

Print on Line Printer, 
"ILLEGAL .GET BY USER" 

Set bit 5 in Job 
Status Word 

Print on Line Printer, 
"TERMINAL ERROR •••••• " 

Print on Line Printer, 
"LOAD ERROR •••••••••• " 

Set bit 16 in JOB 
Status Word 

y 

Figure 8-4 (Cont.) 
Nonresident BOSS 

8-8 

Print on Line Printer, 
"USER DID A .PUT" 

set bit 10 in job 
Status Word 

Set bit 7 in Job Status Word 
Print on LP, "OPERATOR ABORT" 



$END 

8 

y 

'{ 

y 

READ NEXT CONTROL CARD 

Not a CONTROL CARD PIP CARD RETURN 

ISSUE .CLOSE 
TO .DAT-14 

CONTROL 

CLOSE OUT PIP 
COMMAND PROCESSING 

y 

'{ 

$ADD 

8 
Figure 8-4 (Cont.) 
Nonresident BOSS 

8-9 



y N 

Write line in rite "PIP" line into "RTF" 

Set up to get character from card: 
Skip over "$" and pack character in 
CARDP 

Get a character 

y 

y 

N 

Pack a Carriage RETURN 

Figure 8-4 (Cont.) 
Nonresident BOSS 

8-10 



Pack character into 

Make sure t e Time Out 
Clock will be disabled 
upon exit from NR BOSS 

Set bit 8 in .SCOM+52 
(Job Active Flag) 

Store JOB I.D. into account in­
formation buffer 

Get a character 

Pad with nulls until nine 
characters have been packed 

Enter date and start time 
into account information 
buffer 

Start elapsed time clock, by 
depositing zero into .SCOM+34 

Print 

Figure 8-4 (Cent.) 
Nonresident BOSS 

8-11 



USE DEFAULT 
FILE ·NAME "TMP" 

CR.ERR 

PRINT ON LP, "ILLEGAL 
COMMAND FOR ADD FILE" 

SET BITS 4 & 17 IN 
JOB STATUS WORD 

.CLOSE .DAT-ll 

(Create an ADD File) 

N 

SET UP TO ~ACK 
INTO CARDP 

USE DEFAULT 
EXTENSION "ADD" 

PERFORM .USER TO 
.UFDT-ll, WITH 

USER'S UIC 

PERFORM • ENTER TO 
.DAT-ll FOR FILE 

READ THE NEXT CARD 

y 

PACK FILE NAME 
AND EXTENSION, 

IF ANY 

Not a 
CTRL 
card PIP card 

Figure 8-4 (Cont.) 
Nonresident BOSS 

8-12 

N 

.CLOSE .DAT-ll 
CLEAR CRT FLAG 



zero bits .SCOM+52 

Set bit zero of ADDSTA 
set bit one of .SCOM+56 

Set up to pack into ADDFIL 

N y 

Pack file name and extension, if any 

Use 

Enter finish and 
elapsed time into 
Account Informa­
tion buffer, and 
.CLOSE .DAT-14 

Convert 
time to 

Next Page 
Figure 8-4 (Cont.) 

Nonresident BOSS 

8-13 

N 

Set End Job Flaq 
(bit zero of Job Status 

word) 



PERFORM .ENTER TO .DAT-14 
(ACCNTG !il!ill); SET UP THE 
BUFFER WITH 176!illiJ2, X, -1 

WRITE OUT A TEN-BLOCK 
FILE, AND CLOSE .DAT-14 

RESET FILE ENTRY COUNT TO 
ZERO 

N 

From Preceding Page 

N 

CALCULATE BUFFER POSI­
TION WITHIN BLOCK FROM 
ENTRY COUNT 

MOVE ENTRY INTO PROPER 
BLOCK IMAGE , VIA . RTRAN 

UPDATE ENTRY COUNT BY 1 

INCREMENT ALTERNATE 
FILE EXTENSION 
(!il!il2,!il!il3' .. 777) 

TELL OPERATOR 
ON CONSOLE TTY 

RENAME ACCOUNT FILE 
TO NEW ALTERNATE 
NAME AND EXTENSION 

PRINT END JOB MESSAGE 
AND SECOND LINE, CON-
TAINING ID, DATE, S. 
TIME, F. TIME AND RUN 
TIME 

.CLOSE .DAT+6 

CLOSE OUT PIP COM­
MAND PROCESSING 

Figure 8-4 (Cont.) 

Nonresident BOSS 

8-14 

SET BIT 9 IN .SCOM 
+52 (EXIT BOSS FLAG) 

CLOSE OUT PIP COM­
MAND PROCESSING 

N 

WRITE AND COUNT 
11 LOGOUT'1 LINE TO "RTF 11 



Issue .INIT to "RTF"i 
zero all BOSS reg­
isters and bits 

Restore .scoM+42 with 
user mode bit (bit 17) 
seti restore user's 
UIC 

Write out BOSS line in 
"RTF" (BOSS-15) and 
count it 

Store line count in bits 
9)-8 of .SCOM+75 

y 

Close "RTF" and ADD files 

Make "SCR" the login UIC 
TRAN out first 4008 words 
of Nonresident BOSS 

Clear various bits in 
.SCOM+52 

.EXIT 
(To NRM) 

Write out "DUMP" line to "RTF" 

Disable the Time Out Clock, so 
the user qets a complete dump: 
count two lines 

Write out "ALL" to "RTF" and 
ent with an ALT MODE 

Figure 8-4 (Cont,) 
Nonresident BOSS 

8-15 

Print on LP, "RUN 
FILE TOO LONG" 

Close ADD file, .INIT "RTF" 
and .ENTER a new "RTF" 

Indicate "RTF" is empty 



8.1 PROCEDURE FILES 

To each BOSS command there corresponds a disk-resident ASCII file, 

called a Procedure File. The Procedure File contains DOS commands. 

When DOS executes the commands in the Procedure File, it carries out 

the function specified by the BOSS control card. The DOS commands 

in the Procedure Files contain fields (for instance, a file name} 

that Nonresident BOSS fills in with text strings from the control 

card. These fields are called, "Variable Fields". Before executing 

the DOS commands contained in the Procedure File, all the variable 

fields have to be resolved. This process is very similar to 

a macro expansion, where (1) DOS is the assembly language, (2) the 

BOSS command name is the macro name, (3) the contents of the BOSS 

control card are the macro arguments, and (4) the Procedure File is 

the macro definition. The expanded DOS commands are put in a Disk 

File, called the "Run Time File (RTF)". The RTF can contain the ex­

pansion of one or more Procedure Files, up to 777 8 IOPS ASCII records. 

BOSS expands Procedure Files strictly on a text string, character 

basis. It has no knowledge of the intrinsic function of each BOSS 

control card, except for $JOB, $END, $CRT, and $ADD ($END, $CRT, $ADD 

have no Procedure Files) 

Procedure Files. 

Appendix c contains a listing of all standard 

8 .1.1 Procedure File Format 

In order to ensure successful expansion, all Procedure Files must fol-

low a strict format. The first record of the Procedure File must be 

a control record, with parameter information. The first record may 

also contain comments, because BOSS interprets only pertinent informa­

tion, and ignores the rest. The numbers ~' 1, 2, 3, and 4 specify 

different options. All other characters are ignored. The option 

digits can appear in any order, and anywhere on the record. 

tion specified by each number is given below: 

The op-

~ - Expanded Substitution (default, if "3" not given 
explicitly) 

This option specifies that the Procedure File is to be 
expanded according to the normal rules of substitution, 
which are aiven below. 

8-16 



1 - Open Ended File (default, if "2" not given 
explicitly) 

This option instructs the Nonresident BOSS Monitor 
to leave the RTF open after expanding the current 
Procedure File. BOSS then searches for the next 
control card. 

2 - Closed End File 

This option instructs Non-resident BOSS to close 
the RTF after expanding the current Procedure File, 
and to execute the DOS commands in the RTF. Pro­
cedure Files corresponding to commands that may 
possibly be followed by "Data Cards" should be 
of Type 2. 

3 - Direct Substitution 

This option indicates the BOSS should not expand 
the Procedure File according to normal rules. 
Refer to paragraph 8.1.2 for information on 
Direct Substitution. 

4 - Test Mode 

This option indicates that BOSS should echo the 
Procedure File expansion on the Line Printer. 
This all.ows a check on the Procedure File. 

The following combinations are illegal: 

}J and 3 

l and 2 

If BOSS finds an illegal option combination, it will print, 

ILLEGAL PROC FILE 

and search for the next control card. 

BOSS uses all other records in the Procedure File as macro definition 

records. Records after the first one are all Macro Definition Records. 

For each such record, a record will be '.vri tten in the RTF. Each !>Iacro 

Definition Record has the same format. ~NO ty9es of fields are used: 

K-fields and V-fields. K-fields specify constant character strings 

that will be written into the RTF exactly as they appear in the Pro·­

cedure File. v-fields specify variable character strings to be sub-

stituted from specified strings on t~e Control Cards. 

Definition Line of a Procedure Fi le can contain any nur.tber of K·- and 

V-fields, in any combination. v-fields are delir.~ited b:-,_' @-signs. 

K-fields are deli~ited b~ adjacent V-fields, or the end or beginning 

8-17 



of the record. Since there are only two types of fields, only one 

need have delimiters. Two adjacent V-fields, however, require two 

adjacent @-signs. 

K-fields 

K-fields may be any string of legal IOPS ASCII characters, except the 

@-sign. 

V-fields 

AV-field has the following format*: 

v U.@'n ( r(V-f~eld\])@ -00nD 
Dnn K-fiela..I 
0 

The hw @-signs delimit the field. The first part of the field (A, 

D, U or O) is a card-position identifier, and must be present. It 

identifies the position on the current Control Card of the character 

string to be substituted in the RTF. The legal combinations are: 

Al00 I A!Jl I • ••• A)J'9 
u00, u01, .... u.@'9 
DfJfJ,D)J'l, .... D0'9,Dl0, ... Dl7 
0 

With the exception of DlfJ through Dl 7, each of the above position 

identifiers corresponds to a unique character string of the Control 

Card, according to the follrnving scheme: 

$CMD;O Al00:DfJ0(U,@'fJ) ;A0l:D)J'l(Ul01); .... ;Al09:DfJ9(U09) 

The Dl0 ... Dl7 position identifiers do not correspond to character 

strings found on the Control Card, but rather to character strings 

defined by BOSS. Thus, 

Dl.@' - Unused 
Dll - .SIXBT representation of the System Device Code 

( ' DK' or -, DP ' or 'RK' ) 
Dl2 - Current Logged in UIC 
Dl3 - . SIXBT representation of Carriage RETUm~ 
Dl4 - .SIXBT representation of ALT MODE 
Dl5 - Unused 
Dl6 - Unused 
Dl7 - Unused 

* Standards for this format descriotion are identical to those soeci­
fied in Chaoter 5 of the DOS-15 User's J\lanual, DEC-15-0DUMA-B-b. 

8-18 



The parentheses in a V-field must be present. They are used to speci­

fy a default string. The default string is used in case the string 

on the Control Card specified by the position identifier is null. A 

set of parentheses must be included, even if the default string is 

null. The default string itself can be a variable, resulting in nested 

variables. Nesting has a theoretical limit of 217 variable fields. 

8.1. 2 Direct Substitution 

When processing a Direct Substitution Procedure File, BOSS places the 

fields on the Control Card into the RTF just as they stand with only 

leading spaces ignored. That is, BOSS does not necessarily expect to 

find file names, and so on, as with normal substitution. Fields on 

the Control Cards are separated by semi-colons (;), and are processed. 

in a serial manner. The ampersand (&) is used for a special purpose. 

It causes the current record being composed for the RTF to be termin­

ated with a Carriage RETURN, and written out, and a new record started. 

This is so that the limit of seventy-five characters per line will not 

be exceeded. 

There are only two legal field types within the Procedure File. They 

are as follows: 

1. A00 through A99 
2. D_l0 through Dl 7 (System Defined) 

In making up Direct Substitution Procedure Files, the following rules 

must be followed: 

1. The first line must contain a three (3). This declares 
the file to be direct substitutio·n. 

2. The ".Z\" fields must appear in sequential order, starting 
at A00. Each "A" field can be used only once within the 
Procedure File. 

3. The "D" fields can only be "DlW' through "Dl7". They 
can be used any number of times, in any order. 

4. Variable expressions must follow the standard V-field 
for~at, as in expanded substitution. 

8.1.3 Example of Procedure File 

The following example shows a ty?ical Direct Substitution Procedure 

File, the Control Cards used to call it, and the resulting lines 

produced in the Run Ti~e File. 

8-19 



Procedure File1- Map PRC 

3 PROCEDURE FILE TO RUN CHAIN WITH NO OVERLAYS 
CHAIN 
@A~~(TMPXCT)@@Dl4()@ 
@A~l(SZ)@@Dl4()@ 
@A~2(FILTMP)@@Dl4()@ 

@Dl4 ()@ 

Control Cards as They Appear 

$MAP TESTl;SZ,VTC/ABC,DEF,NAMl,&NAM2,; 
$*~1 NAM3,NAM4,NAM5/;TEST1,SUB1,SUB2,&; 
$*~2 SUB3,SUB4,SUB5 

Run Time File Lines 

CHAIN) 
TESTl (ALT MODE) 
SZ,VTC/ABC,DEF,NAMl,} 
NAM2,NAM3,NAM4,NAM5/ (ALT MODE) 
TESTl, SUBl, SUB2,) 
SUB3,SUB4,SUB5 (ALT MODE) 
(ALT MODE) 

Note: Dl4=Altmode, <ALTMODE> is an Altmode, and <CR> is a 
Carriage Return. 

8.2 BOSS-15 ACCOUNTING 

BOSS has a very simple accounting mechanism. It keeps an account 

record for each job in a random access file in the CTP UFD. Hence, 

the file is protected, and can only be accessed after successful ex­

ecution of a $MIC command. 

The name of the accounting file is ACCNTG nnn. (The first has an ex­

tension of ~~l.) Each file is ten physical blocks long, and contains 

enough information for 310 jobs, thirty-one per physical block. When 

.i305:S fills up one file, it increments the extension, and starts a new 

one. Every time a job ends, BOSS checks whether ACCNTG ~~l exists. 

If it does not, BOSS creates one. If it does, BOSS checks whether 

it is full. If not full, BOSS makes a new entry; if full, BOSS 
loirect Substitution File 

8-20 



searches for the first unused extension number. If all extension num­

bers have been used (up to 999) BOSS prints this message to the opera­

tor on the teleprinter; 

MAX NUMBER OF ACCOUNTING FILES REACHED 
PLEASE PROCESS AND DELETE THEM 

Every time the system manager processes an accounting file, he should 

delete the file.BOlO 

For each completed job, BOSS writes out an eight-word record to the 

accounting file. The records have the following format: 

Word # 

i} 
4 
5 
6 
7 
8 

Content 

{~ob I.D., 
in 
. SIXI3T 

Date, packed mmddyy 
Start Time, in hhmmss 
End Time, in hhmmss 
Run Time, in hhmmss 
Terminal Job Status Word 

A word whose contents equal 777777 8 immediately follows the last job 

accounting record in each physical block of the accounting file. 

8.3 3.PRE 

Figure 8-5 is a flowchart of B.PRE, the 30SS ~ine Editor. 

8-21 



START 

Read updated file name and exten­
sion from .DAT-2 

y 

N 

Assume updated file name equals 
the original file name 

Read file name and extension 
from .DAT-2 

Read a card from .DAT+5 

1. Set FLAG to 1 

2. Issue .ENTER to .DAT-i4 

Write card image to .DAT-14 

Read a card image from .DAT+5 

"'P-N~~~~~--.::.1.CLOSE .DAT-14 

.EXIT 

Figure 8-5 
B.PRE 

8-22 



.EXIT 

N 

Perform .SEEK to .DAT-14, and 
.ENTER to .DAT-15 

zero Ll, L2, LNCNT 

Delete 
Subst. 

Read a record from 
.DAT-14 and write 
it into .DAT-15 

Read a record from .DAT-14 

Increment LNCNT 

N 

Write card 
to .DAT-15 

Read from .DAT+S 

Figure 8-5 (Cont.) 
B.PRE 

8-23 

y 

Increment LNCNT 

Read a record from 
.DAT-14 and write 
it into .DAT-15 

.CLOSE .DAT-14 &-is 

.EXIT 
____ _./ 



APPENDIX A 

DECTAPE "A" HANDLER (DTA.) 

The following flow charts describe the operations of the DECtape 

"A" Handler. 

A-1 



ERROR 

IOPS 17 

IOPS 22 
ERROR 

Entry from 
CAL Handler 

1. Save pointer to CAL 
2. save subfunction or data mode 

y 

slots A and B 

y 

Get function code, and make up 
dispatch instruction 

y 

y 

Request a buffer 

Next Page 

A-2 

swap descriptor 
blocks for .DAT 
slots A and C 



ERROR 
IOPS 55 

From Preceding Page 

N 

Set up word pointers within the new 
buffer -- e.g., buffer+377 = link 

.INIT .OPER .SEEK .ENTER .CLEAR .CLOSE .MTAPE .READ . .WRITE .WAIT .TRAN 

666666~6660 
.INIT (Function Code ~l) 

1. Give user standard buffer size (377) 
2. Set input or output file indicator 
3. Wait for previous I/O to finish for 

DEC tape 

N 

1. Do .SETUP to API and Skip Chain 
2. Test buffer size. If not 440 

or greater, terminate with an8 

IOPS 7fl 

Return to 
user after 

CAL 

A-3 



(.OPER, Function Code #2) 

N 

Dispatch to requested sub­
function and process 

Exit to 
user after 

CAL 

ERROR 
!OPS 6 

(.SEEK, Function Code #3) 

y ERROR 
!OPS 1,0 

{ ~RROR ) 
>'"--------- _rn_Ps_1_ 

(Loop back to user CAL) 

Bring directory into core, if not al­
ready in 

N 

1. Obtain starting block number 
2. Read the first file block into core 

Return to 
user after 

CAL 

A-4 

ERROR 
IOPS 13 



(Dispatch Code 4) 

y 
(Loop back to user CAL.)~~~~~-r 

Bring Directory 
already in 

core, if not 

N 

set indicator so that file is deleted 
u on a ,CLOSE to this .DAT slot 

Search directory bit map (in core) for first free block 

(Loop back to user CAL.) 

N 

Set up to write out this block, when 
the time comes 

Exit to 
after 

.CLEAR 
(Dispatch Code 5) 

y 

1. Clear out file bit maps 
2. Clear directory block with the SYS 

block bits set in the directory map 

EX1 to 
user after 

CAL 

A-5 

ERROR 
IOPS 7 

ERROR 
IOPS 15 

ERROR 
IOPS 10 



.CLOSE 
(Dispatch Code 6) 

(Loop back to user CAL) ~~~~~~~---....._c •• 

1. Clear bit in bit maps 
2. Clear switches 

N 

1. Put End-of-File 
indicator in buffer 

2. Write out last block 
in file 

N 

The following is done on 
the in-core bit maps: 
1. Zero its bits in the 

directory bit map 
2. Overwrite its file 

bit map with the 
new one 

Clear switches 

Write out updated directory and file bit map 

Return the buffer to the 
system 

Return to 
user after 

CAL 

A-6 



(Loop back to user's CAL) 

Pass 001005, 776773 
sequence to user's 
buffer 

.READ 
(Dispatch Code 10) 

y 

l. Transfer line to user's 
buffer 

2. Set data validity bits 

Read in 

Exit to 
user after 

CAL 

A-7 

y 

file 

Set EOF indicator 



.WRITE 
(Function code 11) 

Loop back to user's CAL~~~~~~~~Y ...... a 

y 

Set "write executed" 
switch 

1. Write out block; 2. search for next block 

N 

1. Transfer user buffer to handler 
buffer 

2. Compute Checksum 

user after 
CAL· 

N 

N 

.WAIT & .WAITR 
(Function Code 12} 

Set CAL pointer to specified address 

Exit to Exit via 
user after CAL pointer 

CAL 

A-8 

ERROR 

!OPS 15 



Loop back to user CAL 

y 

set up current Address & 
word count for read or 
write 

e 

N 

1. 
2. 
3. 
4. 

.TRAN 
(Function Code 13) 

y 

Set up block to transfer in or out 
Set up core address-1 
Set up word count 
start transfer 

Exit to 
user after 

CAL 

INTERRUPT SECTION 

Entry from 
PI or API 

Save information 
to restore later 

Read status re9ister "B" 

N 

set directory in core switch 

Set up current address 
and word count for 

A-9 



ERROR 
IOPS 12 

1. 
2. 

y 

Change 
direction 

y 

Accept data as is 
Get rest of data 

N 

(ERROR Logic) 

y 

1. 

2. 
3. 
4. 

5. 

1. 
2. 

Read Status Register "A" and 
save it 
Clear Status Register "A" 
Disable interrupts 
Set return in .MED (register 
bank ,el) 
Clear I/O underway switch and 
enable CTRL P 

.MED 

Give TOPS 4 

Set I/O underway switch 
Set up Current Address and 
Word Count for search 

~ Gf 

1. 
2. 
3. 

I ERROR 
TOPS 12 

Start up DECtape 

Restore PIC interrupt entry and AC 
Turn interrupt on, if this was a PIC 
Debreak and Restore 

Exit to 
interrupted 

code 

A-10 

3, 



APPENDIX B 

DISK "A" HANDLERS 

The following flow charts describe the operation of the Disk "A" 

Handlers. 

B-1 



Entry from 
CAL Handler 

1. save the pointer to the CAL 
2. save the .DAT slot number and subfunction 

code (bits 5-8 of LOC+~) 

N 

Do .SETUP for PI and API interrupts 

Set up Stan­
dard TCB 
format in 
the RKTCB 

Determine number of platters 

N 

Calculate the maximum block number, for· use 
at .CLEAR time 

Calculate size of the TEMP list for pre-allocated 

blocks, and set the BUF.OK switch (SGEN size ok) 

y 

Branch to~~~~~~~~~~~~~~-Y-< 
user's CAL 

IOPS21 

Fall through to "IO.OFF" 

Next Page 

B-2 



From Preceding Page 

l. Calculate pointers to the arguments of the CAL 
2. Save step counter and MQ for EAE 

N 

save current set 

y 

Save the current set in its appropriate buffer 

Make new .DAT slot the "current" one 

FINDBY 
Find or set uP 
the Busy Tab1e 

entry for this 
.DAT slot 

save status of Write Check 

N 

Next Page 

B-3 

y 

(DISPCH) 



From Preceding Page 

y 

,. :Suffer'­
large enouqh"-..... 

for file ~~~~~~.....;M 

Request a buffer (.GTBUF) 

N 

1. Save pointer to buffer, and zero entire buffer 
2. Complete the Busy Table entry 

1. Get UIC from the Busy Table entry 
2. Bring in the Current Set from buffer 
3. Set up pointers to: User's Directory Entry, tem­

porary block list, Data Block words O,l,2,3,376 & 
377 

IOPS 70 

IOPS 55 

Note: .TRAN, .WAIT and .WAITR 
have already been inter­
cepted. 

B-4 



1. Wipe out entry in uFD, and 
2. Give back pre-allocated blocks 

1. Return any allocated buffer 
2. Zero any old busy table entry 
3. Make a new entry in the busy table 
4. Save Write Check bit in busy table 
s. Indicate "current" .DAT slot is 

zero 

Exit to 
LOC+4 

Next Page 

B-5 

y 
IOPS 10 

IOPS 6 



.DLETE 

Search for file 

1. Delete the file 
2. Give back all 

blocks 

1. Return aquired 
buff er 

2. Make "current" 
.DAT slot zero 

From Preceding Page 

.RENAM 

N 

63 

AC=f/l 

1. Rename the file 
2. Insert current 

date 
3. Load AC with the 

first block num-
ber 

Exit to 
LOC+3 

( 0 FSTAT) 

1. Place device type in LOC+2 of CAL 
2. Search for file 

block number 

Exit to 
LOC+3 

B-6 

IOPS 51, 
71 or 13 

IOPS 

.RAND 

Initialize RIB 
number to zero 

1. Place file size in 
LOC+3 

2. Read in first RIB 
3. Move RIB to top of 

buffer, if neces­
sary 

y 

Exit to 
EXIT AD 



(.RTRAN) 

N 

Calculate RIB block number, and the desired pointer's 
position within that RIB block 

y 

Depending on the location of the desired block, rela­
tive to the RIB block in core, read in the next or 
preceding RIB block 

N 

Save pointer to desired data block 

RF RP/RK 

IOPS 11 

IOPS 66 

store starting word number and the number 
of data words desired 

Assume transfer starting at word zero, 
through word 375, and set parameters 
accordingly 

B-7 

Use word count 
pack input 



Set up user's buffer to receive the link words for block 

Set backward link to 
adjacent pointer in 
RIB, and forward link 
to -1 

1. 

2. 

3. 

y 

N - no backward link 

Set links in data block from adjac­
ent pointers in the RIB block 

Set backward link to 1. Set forward link to 
adjacent pointer in adjacent pointer in 
RIB block RIB 
Read in next RIB· bloc 2. Read in previous RIB 
and adjust RIB number block and adjust RIB 
indicator in the cur- number indicator in 
rent set the current set 
Set forward link to 3. Set backward link to 
first pointer in the last pointer in the 
new RIB block new RIB block 

RP/RK RF 

Set up driver with the 
correct block number 

Set up driver with the 
correct word number 

Bring in or send out 
required block or data 

Exit to 
LOC+S 

B-8 

Set both link 
words to -1 

y 

Set forwar link 
to adjacent poin­
ter in RIB, and 
backward link to 
-1 



obtain file 
information 

y 

y 

Read in first block of file 

Exit to 
LOC+3 

B-9 

IOPS 10 

!OPS 13, 
51 or 71 

IOPS 10 

!OPS 64 



(No entry in MFD 
for this UIC) 

search MFD and UFD 
START = Pointer to 
SAT word 3 

y 

(Entry in MFD, but (UFD exists, but does 
not contain a file by 

~"''G the •'·ee 
1. save number of the last MFD block read 
2. Save file name 

y 

ENTSET 
Preallocate 
some blocks 

Read in last MFD block 

N 

IOPSlO 

(UFD exists, and con­
tains a file by the 
given name) e 

Set pointer to free slot 
found by FINDER 

Read it in 1----------,311 
1. Set up entry pointers 

GETNXT 
Get next 

block number 

1. Make forward link of last MFD block 
point to the next block 

2. Write out the block 

2. Insert new UIC, entry size and zero protection 
code (unprotected) into new MFD entry 

B-10 

*That is, has a .RAND, .SEEK or 
.ENTER been issued without a 
.CLOSE? 



Is directory 
protected? 

N 

ENTSET 
Preallocate 
some blocks 

y 

Read in the MFD block 
which contains proper 
entry 

GETNXT 
Obtain a block 
for the UFD 

Set up entries in the Busy Table, the 
MFD block and the Current Set 

Write out the MFD block and clear the 
buffer 

1. Set up a new UFD block in the buffer, 
with a back link of -1 

2. Set pointer to indicate location to 
receive the new entry 

B-11 

IOPS63 



Read in first UfD block 

y 

a 
# 

N 

1. set "Old file in" switch 
2. Set JX>inters to UFD block 

nUil'ber and the first word 
of the ol~ file's entry 
(to be used at .CLOSE) 

Protection 
Violation 

N y 

1. Change forward link of last UFD block 
(still in core) 

2. Write out last UFD block 
3. Clear user's buffer 

B-12 

IOPS63 

1. Read in UFO block with· 
free entry 

:z. Load "UFDl" pointer in 
Current Set with this 
block number 



l. Save pointer to new UFO entry in "UF02" of the Current Set 
2. Set up pointers to UFD entry slots 
3. Store file name and extension in the UFO entry 

RETURN 

GE 

1. Store RIB pointer in UFD entry 
2. Store protection code & date 
3, Insert data block number 
4. Write out UFO block with entry 
s. Clear buffer 

Set "WREXSW" (Write-executed switch) 

Clear the buff er to zero 

Return 
to user 

After CAL 

ENT SET 

1. Read in the first Submap 
2. Make it the "Current Map" 
3. Zero indicator of the number 

of preallocated blocks 

LSTFIL 
Preallocate 
some blocks 

B-13 

(Number of blocks pre-allo­
ca ted is the minimum of 
number available and the 
size of the "Temp List") 

IOPS15 



IOPS63 

1. Clear a buffer 
2. Set words 0, 1, 2, 376, and 377 to -1 
3. Set bits 0-2 of word 3 to MFD size 
4. Set bits 3-17 of word 3 to point to 

first submap 
5. Write out buffer to block 1777, if 

RF /RK or 4 7040 if RP 
6. Clear the buffer 

(How the handlers write out the bit maps) 

RP/RK 

1. Set up forward and backward links in buffer 
2. Set up words 0, 1 and 2 
3. Turn on bit in this submap corresponding 

to itself 
4. Write out the block 

y 

Set bit in appropriate bit map for MFD 

Return to 
user 

B-14 

RF 

1. Set backward and forward links to -1 
2. Turn on bits that correspond to MFD 

block and first submap block 

N 

1. Set bit in the first bit map that 
corresponds to second bit map 

2. Set forward link to next block 
3. Write out the buffer and clear it 
4. Set back link to first submap, and 

forward link to -1 

Write out the buffet: 



From Preceding Page 

N 

Reset RIB block pointer in 
UFD to last data block 

Set "word 

WRTUFD 

Write out current UFO block 

y 

1. Write out UFD block currently in core 
2. Reset UFDl to UFO block with old file 
3. Read in the UFD block with the old file's 

entry 

SAMUFD 

1. Reset UFD entry pointer (UFD2) 
2. Wipe out the old file's entry 

(Give back any unused blocks) 
UNUSED 

Read in first RIB block used 
Save the forward data link 

Next Page 

B-15 



N 

Set for internal looping. 
(implicit WAIT) until done 

y 

1. Write out current block 
2. Obtain another and 
3. Clear the buffer 
(Subroutine SETWRD) 

1. Write 2-word EOF line in buffer 
2. Set forward data link to -1 
3. Increment file size 

N 

TRAN RIB words into QC 

Write out last data block 

1. Read in UFO block for this file 
2. Fill in file size and turn off 

Truncated file bit 
3. Save pointer to first RIB block 

Next Page 

B-16 



From Pree ding Page 

N 

Reset RIB Block pointer in UFD to last Data Bloc 

Set 'Word-in-RIB' in UFD 

(UFO entry is now complete. UFD 
still in core.) 

N 

y 

1. Write out UFD currently in core 
2. Reset UFDl to UFO block with the 

old file's reference 
3. Read it in 

SAMUFO 

1. Set UF02 to old file's entry slot 
2, Wipe out the old entry 

(Give back unused blocks.) 

1. Get first RIB block used 
2. Rea-:! it in 
3. Save the forward data link for loop 

N 

B-17 

WRTUFD 

Write out current UFD block 



v_ 

y 

Read in next RIB blocki--~~~~--' 

THISRB 

1. Find area in this block where 
blocks should be qiven back 

2. Adjust word ~ of this block 
to reflect only those used 

3. Write out the block 
4. Fudqe subroutine LSTFIL so it 

appears UNBUSY called 

LSTFIL 
(Actual transfer 
is to LSTMOV) 

N 

Turn off RIB block's bit in SAT 
and write out the Submap block 

Set Return to LOC+21--~~~~~~ 

1. 
2. 
3. 

Perform .GVBUF 
Zero current set 
Make "current" 
0 DAT slot zero 

Return to 
LOC+2 

B-18 



Set up return address 

y 

save pointer to "next" record 

Read in previous biock 

Position recor poin er to 
top of the buffer 

Return 

B-19 

N 

N 

IOPS6 

Use this record's word pair 
count to point to the next 
record 



y 

Check Header word pair 
set up the word pair 
counters for moving data 

non-Dump 
Mode 

LINFIT 

l. Make Word Pair Count 
neqative 

2. Zero checksum word in 
record to be read 

3, Clear line error flag 

N 

PWORDS 
Pass record 

et pointer-~~or a skip over 
he next record 
et "Short Line " Flag 
et return in PWORDS to go 
o ENDINl 

- -

PWORDS 
Skip rest 
of line 

B-20 

Return 
to 

user 



set up "words left 
in data buffer" for 
PWORDS 

PW 
Read to end of 

record or to end 
of data block 

Pass EOF line: 
001005 776773 

to 
user 

Flag 

B-21 

Set appropriate 
error bits, if 
any 

Read in next data block and 
set up pointers, anticipa~~ 
in the next read 

Exit 
to 

user 



READ-WRITE Common Setup Routine 

1. Save pointer to argument data block 
2. Set up return address 
3. Set pointer to checksum word in data buffer 
4. save checksum word 

N 

1. Set up pointers to "receiver" data buffer 
2. Index SETUP return pointer past arguments 

to Dump Mode exit 
3. Save Word Count from CAL 

~~~~~~~~~~~-----' 

IndPx r~turn pointer to Non-Dump Mode

GETWPC
Extract Word Count from line
buffer header word pair

RETURN

B-22

IOPSll

Return

1. Set up return address
2. Clear "Current Slot"

number
3. Get Word Count

y

1. Set up for input or output
2. Get argument block number
3. Read it or write it

Return
to

user

B-23

Return
to

user

Move in all
that will
fit and ad­
just arqument
size count

Move record into buffer

N

y

SETUP
Set up word counter
and data buffer

PWORDS
Pass the record
to the handler's

buff er

Compute and insert Checksum

N

Exit
to

user

B-24

IOPSll

NOFITl

Set "receiver pointers
to the top of the

(Loop on CAL)

y

Go to
Argument

address

B-25

N

RETURN
to LOC+N

Set
the

set backward data

1. Store number as forward data link
2. Save current block nlllllber

y

IOPS15

1. Write out buffer an t en c ear it
2, Increment FILSIZ

y

from SETWRD

RETURN

B-26

N

IOPS15

Return

Set next block
number in TLIST to -1

1. Initialize the map count num­
ber, block count, TLIST
painters and TLIST count

2. Read in the current submap

Compute starting location for search

1. Start fillinq the Temp List
2. When find a free block, skip

the next block+DELTA (assem­
bly parameter) and continue

Start at bit ~ word 3

Read in next Submap

B-27

IOPS75

EXIT

SET FOR WRITE
CHECK

N

COMMON ROUTINE FOR READING AND
WRITING TO AND FROM THE DISK

1. SAVE THE CALLING ADDRESS
2. GET THE ARGUMENTS
3. COMPUTE DISK HARDWARE

BLOCK NUMBER
4. SET I/O UNDERWAY FLAG

START DISK I/O

EXIT TO
LOC. IN
EXITAD

INT
(INTERRUPT
HANDLER)

1. SAVE PC AT EXITAD
2. SAVE AC

y

3. TURN OFF I/O UNDERWAY
FLAG

4. LOWER PRIORITY TO
LEVEL 4

y

CLEAR DISK FLAG

y

RESET BUFFER COUNTS

RETURN
LOC. IN
EXITAD

DISK "A" HANDLERS

B-28

SETUP TCB AND
CALL PIREX
TO START DISK
DISK I/O

1. CLEAR DISK FLAG
2. PROCESS ERROR
3. IF NECESSARY,

RETRY 10 TIMES

ATTEMPT RECOVERY
ON CTRL R

N

EXIT

APPENDIX C

PROCEDURE FILE

ASG

1 ASSIGN DEVTC"° lJIC TO ,DAT
A Cil 0 0 0 (et !i 11 (l (il l @I 0 U ~'. 0 C (ii ~i 1 2 (l ~) @ > @ Ai7' l (l fo'\

ASM

~ ~AGRO ANn Ll~E EJITOR
A (il000(CilD11Cl(ilJ@I c~uczc~ri12ci~>@> -141•~z3c@r11ci@>(il <@u~J'•~12c1(ili~> ~i~

g,PRE I
@Af1Jf1J (FILTMP)@
@A~l(@A~~(FILTMP)@)@
A toio~H'l<@;;ll<l(iil)@I <:<Ju;;1ccari12<>'-l!>Cil> -11/!SID1ttct01 c11c1r;i>~ <@1p1<c;.012c>C<l>'>l'> -1.·
A @I 0 ~ 2 (i;l r'J 11 C l l&! l @ (r.1 u? 2 (ti> ~.li 2 () ta) @I> -14 /(Iii J it 5 (fll [11 () @') (il (@l) 115 ' to'[! :t 2 C l @ l '•1 > • j .3
A l9004(LP)S ((ill)r~c-~12<)a)~) •12
"ACRr'l
~0C8L)~ .. ~A?0CFILT~P)P@D14(l~

BNK

2 BA~K ~nJE ,P[RAT!O~-o~

aH1K Q~

BUF

l 1·• ""i .;.·. "-;.-r .. u r t· t4 ,-. ~ ·

CHN

1 SPFC!rv 7 ~Q Q T~AC~ MAGTA~(

!"'. ~A\110!);-

CMP

1. Sr:ltlKCE C')'1PAPE
1 •n1~c,a11c i~,~ <•u02c(il012c>~>ca> -1s1~)~l<~~11c11"ll!SI <@u01c~~12c1r.ii•> -14
qcCJ!w'
'."'f1 (l ·.;i., ti' A ';~ C l ~·/'fa A :!1 C l :iii~[) 14 C l Cil

DIR

1 LIST D1R-.rrcPY
~lP

I LP .. tzAJr(~n11Cl"'l" (!.OlU?.7(fi'012CJ\.·)CiU)'lli')14()(.\I

C-1

I

DLG

' LO:;our dir:
L. '.'li.Oll T

DMP

¢1 DUMP UTILITY - EXPANDED SUB_FILE
A '"'D~0c@o11c>~l~ c~u3~''D12(>~l{il> -14111i1(LP>• c•ur1c~n12c >~>~> -12
DUMP
•AA~IALL1a~D14C)~

DOS

113, GFr,:i:-:<.\L PQC ~ !!_l FC'< GYvI•G C'Of~MAll::J STk!NGS
"'!\?["(\o'!~14C H)I"·

FIL

2 CR~ATE A FILE F~~H CARQ~/E~ITOR

.~ r~D?0cra.•111Cl~lr..J <"lJ'~r'c~:H2CJr.1J1"'> -14
r. r.i [I'' 1 < rm "111 C l "' l '" < •;·, U? 1 c (8l D 12 C l '°' l {il > -15
:<I P;:<f-

~lA :1,z CF IL T"P l"
._,,;, l (:'11,~r>-" { r·; r r•;p l -~):ii'

FOR

? > '1 ;.; T i; A : ! V ,~ · '.) ! . l ~ •. f F '~ I T G R
,\ '•' n . ' '.' (~ ·~ 11 () r,.·) 9 < '·) / '." (~ ··: 1 2 () '"' l .'.Cl) - 1 tl I "1' ;i;' l ((il ~ 11 () @l) Coil ((<l U 0 l. ((iiH] l. 2 C) {il l '.ii) - 1 '-'
~' p R~-
@A¢~ (FILTMP)@
'j;\ A '~ l (f.i) /:. 2 .. (~ I L T ~.1 p) ~1) r"~

h '•' 'J ! ? ((<' ·11 u) (.>) ;.;, < . iJ .. .,. (~ ._ 1?. () • J {il) -111 f:"J l'1 (r~l ;_, 11 () ~) (,;) < {il u '11 ("'n 1 2 (l @l)'i > - u
'' "'" - <' c L" l "' < "'" '<'. <. c ., fJ 1 2 < l '"')':< > • 1 2
;:·4

'<OC>;!_)"' ... '"'A~v'rFILT''~);":;.l'.)14!)(.)

JOB

'.:' ~Tl,qT · [· Y"r;
l __ ()C, YF ~A:';'(l''' ,1r:_r;r ,, !Olf'l141)r.'

r '1 \, I · -,,_ A ' ? { S 1' !-') i°'

h ~'['' ?,~.-..7,1.',11.12d~ .. 14,1?.1~.17,?,~/li•Jll(l(Gl 1
;~IP

~~11Cli <(SCR)>@Dl4()@

;..(·EEP .r.?;/, ~ ~ (r~rt:·) ~ .. !

T I '''. ~: ·::; i z,;'l ,'~ "1' j_ (~) ~ : •.' '

C-2

KEP

i ~ETAl~1 DEV!U J.:.iSlGN~··[·:TS

><EEP C<ilA;~7' < l @!

LCM

13 SliPPLr:"'IJ'.:~<T TO LI 8 PRC-UPOA 'fE , LI RP
'01A;iJ0<CLOSE"'D13<)'.")·:;1 l'lA~lC(0\013(ir.iir.i C<ilfl~:?c)'ft\

LIB

1
A •DJ0<•~11(l(4\l@I <~U~0(@lQ12Cl~l@) -14
A @l0~1(r.l"\0~c~n11<)•)~)@ ((<ilU01C~U~0(•n12()(<il)@)f) -1~
A ~D?2((ol~i1C)C<il)(<il ('<IU~2(~J12(J•)(<il) •t7
A •JV3CLDI~ <'0Z3C~D12C)@l)M) •12
uPt.iAT[
'M){ LL' s) '."' .. "" .\ , .. (. L FiP) I~ (ii D 14 (l @I

LNK

1. 3 0 P-' r c T -::; ',)" r I l_F. - Ru l L 0 s L I \ K 5 F" n R [)(E c ,Jf F F l i_ r: - U'; E 1.;f TH 0 v L [' R r
'<'Al'l((Oln1·H l"'>r•"'0141)'i

LOG

? l.CC:JI, !Ir
LOGI" "'A:''.''('.:;r~l'4'

LST

'.:> I. l S T C n \ T [' T 5 ::' > V l L [0 ~1 L I ~: l PM T \IT F: R
:::>IP
T L. P ~ .-,, L' 7 :· C "''J 1 1 (l •" l .,, <Col 1.J :::" ;;" C -" 0 12 < l r~) "1 > @!A ,J ;• C V I L T ~· P l •"1 C <> l @> D 1 4 < l ,,

MAP

1.13 GTPE,-T Si_~ f ILF ~-OR CµAp ('~T!ON A'J1] RE~ ccor I !Ly
'.".~A I ·
'"'A;J;J(Tl-'PYCTJ"lo'::'.!141 lr.>
"A'l1CSrl""'ll-t~<)ii·

<.A:Jf.I c r 1 L r"P i '"''114 c > \ol
';((l 1_ 4 () (o:

~IC

? L :! .. ; ! "- '"' ! r· . ! ,.
''l r:L -G J. ,\,' • c \'?

C-3

MNT

1 MOU~T rAor~ c~ J~lvE d
LOGi~ ~ru·1T 7;'(")r,'-TAP[lt [ftll\V~0(ll.i 0 1 : DRIVE11 c;iA2Ulr.i • i,RIT[('ilAP?lt.cCnr.c

MSG

13 MrssAcl rA ~PE~AroR-QIREcr sus r1Lr
Lr:JG 'i'A~~()"1

MSW

1. ,3 ~·Ii~~ s Ar; E. T ·, r\ p ~-:<AT G q .: J w ,, ! T. i) I ::i r c T s u fl
1_J(;v., ·H,:•-()'-<

NDR

1. c R ~:Ar E ,, ::: " "'- r ~ r :"'. r 'J •iv
::i 11"'

1"Ai'(\({.;,·11u)Ci>')(<l (3ll;,?Q'("'1C~12c)l.;\)~>C"Dl4()r.i

OVL

1J DIRrcr ~Ul Fill - USE ~GR S~ll~I~G GVERLAYSIC~Al~l
C:>-H I 'J
''A '?l 1/ (H' PVC T l ., (.'" 14 () l'1

;•A 111 (St) ~$"'1·; (l ;;,
')A " 2 (F r I r :' p l ·;; P- ·~ 1 4 () .,

PAG

? P 1~ c; E V; r: :_: r .. ~ r· t i< :, r r ;J ~ ... iJ \

t'.!.Gt O'

PRT

SPECIFY PROTECTION CODE
D 'H'?(2)

QDP

1 ~L!'··P ['1~~ -·. Ti•<'' l' AL. 1, q;;ops.:.~;- ARGl1''[re;
·;·11f":P

XCT

~-, E \ ~- ~ ! Tr
I. 'ii•:~ ', ;' (r:;\'111 () •;,) 'o• (' •.' "7 (~i! .. 1 ~ () 1'') '"') - 4

i-. ':"f.. ;c(T~P'('~T)'<

C-4

INDEX

Accessibility map, 6-9
Additions to Non-resident Monitor, 3-4
Automatic Priority Interrupt (API), 7-1

hardware, 7-4
implementation, 7-11
ON/OFF, 4-19
software, 7-7

Bad Allocation Table (BAT) , 6-18
Bank/Page mode, 7-1
Batch mode .DAT slot assignments, 4-20
Block checksum, 6-7
Block control pair, 6-6, 6-7
Block list, 6-14
Block word count (BWC), 6-6
BOSS-15, 8-1

accounting, 8-20
.DAT slot assignments, 4-20
line editor (B.PRE), 8-21

Bootstrap, system, 2-1, 2-7, 4-13
Buffer allocation, 4-20, 5-13, 6-14

CAL handler, 2-2, 7-1
Characters, control, 2-16
Clock operation, 2-14
Clock routine, 2-8
COMBLK, 4-13, 5-1
Commands to Non-resident Monitor, 3-4
Control characters, 2-14
current set, 6-14

Data modes
Dump, 6-4
Image, 6-4
IOPS, 6-4

DDT loading, 4-13
DECtape file organization, 6-1
Device assignment table (.DAT), 5-13
Device table, 5-12
Disk file structure, 6-11
Disk handler, 2-6
Disk resjdent tables, 5-1, 5-9
Directoried data recording, 6-5
Directoried DECtape, 6-1
Dump mode, 6-4

Error handler, IOPS, 2-2
Error processor, 2-2, 2-6
EXECUTE, 4-13

File accessibility map, 6-7
File Bit Map, DECtape, 6-2
File buffer transfer vector table, 5-13
File identification ann location, 6-7
File information, see Current set
File locating, 6-7

X-1

File storage, 3-8
FIOPS, 6-5

Handlers, I/O device, 7-1

Image mode, 6-4
Input/Output (I/O)

communication table, 5-12
initialization, 2-8

I/O device handlers, 7-1
writing special, 7-10

IOPS mode,. 6-4
error handler, 2-2

Linking Loader, 4-13
Link status, 7-1
Loader buffer allocation, 4-20
Loader, system, 4-1, 4-13

Magnetic tape, 6-4
file directory, 6-7
handlers, 6-5
storage retrieval, 6-11

Mass Storage Busy Table, 5-14
Master File Directory (MFD), 6-12
.HED error processor, 2-2
Memory protect, 7-1
Monitor, resident, 4-13

Non-directoried DECtape, 6-1
Nonresident Monitor, 2-14, 3-1

additions, 3- 4
co:mmands , 3- 4

Operation of DOS, 1-1
Overlay Table, 5-9, 5-15

Patch area, Resident Monitor, 2-16
PATCH, commands to, 3-8
PIC interrupt service routine

impleme~tation, 7-11
"PIP, 6-18
Pre-allocation of blocks, 6-16
Prioritv, software level, 7-1
Procedure files, BOSS, 8-16
Program control characters, 2-16

")file, 3-8
Queueing, 7-8

RCO.M table, 5-14
Reserved word locations, 5-14

Resident Monitor, 2-1, 4-13
PATCH area, 2-14
timing features, 2-8

Retrieval Information Block (RIB) ,
6-14

Run time file (RTF), 8-1, 8-16

.SCOM registers, 5-1 to 5-6
used by Loaders, 4-17 to 4-19

SGNBLK, 4-13, 5-1, 5-8, 5-10
Skip chain, 5-13
Software level priority, 7-1
Spare TCB's, 2-17
Special I/O device handlers, 7-10
Startup routines, 2-8
Storage, 4-26, 6-11, 6-16
Storage allocation tables (SAT's),

6-1
Submaps, 6-17
SYSBLK, 4-13, 5-1
System

bootstrap, 2-7
initialization, 2-8
Loader, 4-1, 4-13

X-2

Tables used by Loaders, 4-16
Task Control Block, 2-17
TCBTAB, 2-17
Temp List (TLIST), see Block list
.TIMER routine, 2-14
Timing features, 2-8
TRAN routine, 2-7

User File Directory Table (.UFDT)
5-12

User file labels, 6-9, 6-10
User identification code (UIC),

6-12

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi­
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England
Paris, France
The Hague, Holland
Tel Avi.v, Israel

Milan, Italy
Solna, Sweden
Geneva, Switzerland
Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. I.n
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation
Software Distribution Center
146 Main Street
Maynard, Massachusetts 01754

Digital Equipment Corporation
Software Distribution Center
1400 Terra Bella
Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex­
change center for user-written programs and technical application in­
formation. A catalog of existing programs is available. The society
publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the
society and membership application forms, write to:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

DEC US
Digital Equipment, S.A.
Bl Route de l'Aire
1211 Geneva 26
Switzerland

READER'S COMMENTS

DOS-15 System Manual
DEC-15-0DFFA-B-D

NOTE: This form is for document corrments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page) .

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is the:re sufficient documentation on associat:ed system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

t=J Higher-level language prograrnr.ier

0 Occasion.al programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

City ______________ State _______ Zip Code _______ _

or
Country

If you do net require a written reply, please check here. []

---~--~--~---Fold flere--

-- Do Not Tear - Fold Here and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	C-01
	C-02
	C-03
	C-04
	X-01
	X-02
	Y-01
	replyA
	replyB
	xBack

