

DEC-15-YWZB-DNB

LINKING LOADER

UTILITY PROGRAM

For additional copies, order DEC-15-YWZB-DNB from the
Program Library, Digital Equipment Corporation, Maynard,
Massachusetts, 01754 Price $2.00

Copyright

Revised February, 1972

© 1972 by Digital Equipment Corporation

The material in this manual is
for information purposes and is
subject to change without notice.

Registered trademarks of Digital Equipment Corporation

Digital (logo)
DEC

DECtape
PDP

PREFACE

This manual describes the operation and use of the Linking Loader

Utility Program. The Linking Loader program may be operated in

either the ADVANCED Software System (ADSS) or the Disk Operating

System (DOS) environment.

It was assumed in the preparation of this manual that the reader

was familiar with the operation of the PDP-15 equipment and the

contents of the software manual describing the features of the

particular monitor system in which he was operating, that is:

a) for ADSS users, PDP-15/20/30/40 ADVANCED Monitor
Software System Manual, DEC-15-MR2B-D;

b) for DOS users, DOS Software System User's Manual,
DEC-15-MRDA-D.

PDP-15 UTILITY PROGRAMS MANUAL, DEC-15-YWZB-D

The PDP-15 Utility Programs manual is comprised of a set of indi­

vidual manuals, each of which describes the operation and use of a

PDP-15 Utility Program. The manuals which make up the Utility

Programs set are listed in the following Application Guide. In

addition, the Application Guide also indicates the order number

of each manual and the specific PDP-15 Monitor Software Systems in

which the program described may be used.

The Utility Manuals may be ordered either individually, by using

the title and order number given with each manual, or as a set,

by referencing "PDP-15 Utility Programs Manual, DEC-15-YWZB-D".

v

APPLICATION GUIDE

PDP-15 UTILITY PROGRAM MANUALS

PDP-15 Utility Program Manuals and the Application of Each

Manual Applies to Monitor:

Title Order Number DOS ADV B/F
(DEC-15-YWZB) -

DDT DNl ./ ./ ./
Utility Program

CHAIN & EXECUTE DN2 ./ ./ I
Utility Program

SGEN DN3 I
ADVANCED Monitor

MT DUMP DN4 I I
Utility Program

PATCH DNS I I I
Utility Program

EDIT DN6 I I I
Utility Program

UPDATE DN7 I I I
Utility Program

LINKING LOADER DNB I j /

PIP DN9 I I
ADVANCED Monitor

SRCCOM DNll I ..; ..;
Utility Program

SGEN DN12 j

DOS Monitor

PIP DN13 I
DOS Monitor

vi

CHAPTER 1

1.1

1.2

1. 3

1. 4

CHAPTER 2

2.1

2.2

2.3

2.4

CHAPTER 3

3.1

3.2

3.3

3.3.l

3.3.2

3.3.3

3.3.4

3.4

3.5

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

CONTENTS

INTRODUCTION

GENERAL DESCRIPTION

FORTRAN CCMMON STATEMENTS

RELATED REFERENCE MATERIAL

SPECIAL SYMBOLS

LOADER CODE DESCRIPTIONS

INFORMATION UNITS

PROGRAM UNIT ORGANIZATION

LIBRARY FILE ORGANIZATION

IDENTIFICATION CODES

OPERATING PROCEDURES

.DAT SLOT ASSIGNMENTS

CALLING THE LOADER

COMMAND STRING

Option Switches

Program Names

ALT MODE

Command String Errors

OPERATION

ERROR CONDITIONS

PROGRAMMING NOTES

TERMS AND DEFINITIONS

SYMBOL CONCATENATION - RADIX 50 8 FORMAT

LOADER SYMBOL TABLE

vii

1-1

1-2

1-4

1-4

2-1

2-2

2-3

2-3

3-1

3-1

3-2

3-2

3-3

3-3

3-3

3-4

3-5

A-1

B-1

C-1

D-1

CHAPTER l

INTRODUCTION

1.1 GENERAL DESCRIPTION

The Linking Loader is a program which operates under the DOS-15,

ADVANCED and Background/Foreground Monitor Systems of the PDP-15. The

Linking Loader loads and links both relocatable and absolute 1 binary

program units as output from either the FORTRAN IV Compiler or MACR0-15

Assembler. These program units consist of machine language instruction

codes and special "loader codes" which tell the loader how to load the

program. These program units can reside on the input device not only

as separate files, but also as library files. The structure of the data

input and description of the loader codes are provided in Chapter 2.

Figure 1-1 illustrates the I/O functions of the Loader.

Initially, the Loader loads all the program units named in the command

string (see Operating Procedures, Chapter 2). The Loader then auto­

matically loads and links all requested I/O handlers and library sub­

programs which have been globally linked 2 • The requested library sub­

programs are loaded from the external (user) library (if one exists) and

the system library (in that order) . After both libraries have been ex­

amined for requested subprograms, the Loader prints the names of all sub­

programs which have not been found. I/O handlers that are already in

core for the Loader's use will be retained if required for the user's

program. The Loader also assigns COMMON data storage areas for FORTRAN

IV program units. Individual program units cannot be executed if the

program flows across a 4K page, or BK bank. The Loader prevents this
type of loading, but will load (and link) the unit into the next memory

bank. No overlap checking of any kind is made with absolute binary

program units.

Optionally, symbols and their absolute definitions are loaded into a

program dictionary (symbol table) for use by the DDT (dynamic debugging

1 A MACRO assembled program headed by a .LOC statement, e.g., .LOC 100, is
an absolute binary program and the binary is output in link loadable
format. A program headed by an .ABS, .ABSP, .FULL, or .FULLP statement
is output as absolute block binary and cannot be loaded by the Linking
Loader.
2 Global or symbolic linkages are established through the use of .GLOBL
pseudo-ops in MACR0-15 and the external function references and CALL
statements in FORTRAN.

1-1

System
Library

(.LIBR BIN)

Main and
Subprogram

Files

.DAT -4

LINKING
LOADER

.DAT -5

User
Library

(.LIBRS BIN

.--------. 16K,24K,32K
Bootstrap

Free
Core

Console teleprint­
er (command input
and response)

{

.SCOM+3 -

.SCOM+2 t--~~~~--1

Linking

.SCOM+l

Figure 1-1

Linking Loader I/O Function

Loader

Loader's
Handlers

Buffer
Pool

Resident
Monitor

technique) Utility Program. The Loader also sets up, for use by DDT,

the start execution address of the main program (in the System

Communication Table) and the initial relocation value of all the

program units (in the symbol table). Refer to DEC-15-YWZB-DNl for

further information about DDT.

1.2 FORTRAN COMMON STATEMENTS

The Linking Loader permits FORTRAN COMMON blocks and block-data sub­

programs to overlap memory pages and banks. When operating in either

Bank or Page Mode, the Loader allows COMMON block sizes greater than

1-2

8192 10 , provided that each element in CO~~ON does not exceed 8192 10 .

For example, the statement

COMMON /I/L(l00,100)

is illegal because the size of array L is 10000 10 .

However, the statement:

COMMON /I/Ll(l00,50) ,L2(100,50)

is acceptable. Each array size is 5000 10 and the size of the COMMON

block is 10000 10 .

Non-COMMON arrays and variables are initialized to zero by the Loader.

MACRO programs can be linked to COMMON areas defined by FORTRAN IV.

If any unresolved globals remain after the Loader has searched the

user and system libraries and has defined COMMON blocks, the Loader

tries to match those global names to COMMON block names. If a match

is made, the global becomes defined as the COMMON block. For example:

FORTRAN IV PROGRAM
INTEGER A,B,C
COMMON/NAME/C
COMMON A,B

MACRO PROGRAM
.GLOBL NAME, .XX

DZM* .XX
IS Z .XX
DZM* .XX
DZM* NAME

/.XX IS NAME GIVEN TO BLANK COMMON
/BY THE F4 COMPILER
/CLEAR A - NOTE INDIRECT REFERENCE

/BUMP COUNTER
/CLEAR B
/CLEAR C

Note that if the values are REAL (2 words) or DOUBLE PRECISION (3 words)

the MACRO program must account for the number of words when accessing

specific variables.

l-3

1.3 RELATED REFERENCE MATERIAL

The manuals listed below contain information which is necessary in

understanding and using the Linking Loader.

a. DOS-15 System Manual - DEC-15-NRDA-D

DOS-15 User's Manual - DEC-15-MRDA-D

DOS-15 Keyboard Command Guide - DEC-15-NGKA-D

b. ADVANCED Monitor Systems

.ADVANCED Monitor Software System for

PDP-15/20/30/40 - DEC-15-MR2B-D

PDP-15/20 User's Guide - DEC-15-MG2B-D

UPDATE Utility Program Manual - DEC-15-YW2B-DN7

MACR0-15 Assembler Manual - DEC-15-AM2C-D

FORTRAN IV Language Manual - DEC-15-GFWA-D

1.4 SPECIAL SYMBOLS

The following symbols, when used, are defined as follows:

Symbol

)

--I

[]

{ }

Meaning

Carriage RETURN

CTRL TAB

Space

Optional Command Element

One of the enclosed command
elements must be chosen.

1-4

CHAPTER 2

LOADER CODE DESCRIPTIONS

As mentioned in Chapter 1, the relocatable and absolute binary program

units output by the FORTRAN IV Compiler and the MACR0-15 Assembler

contain both machine language instructions and loader codes. These

codes are assigned by FORTRAN and MACRO to identify the various ele­

ments of the binary program. The loader, in turn, interprets these

codes to properly relocate, link, assign COMMON areas, preserve con­

stants, etc. The paragraphs which follow provide descriptions of

the physical organization of relocatable program units and library

files and definitions of the loader codes.

2.1 INFORMATION UNITS

The binary output from the FORTRAN compiler and the MACRO Assembler

consists of named files containing blocks of information units. Each

information unit consists of loader code (6 bits) and a data word

(18 bits). The form of the object program at run time is determined

by the content and the ordering of the information units. Several

information units may be grouped to convey a single run-time instruc­

tion to the Loader.

Information units are grouped in blocks of four 18-bit machine words

as shown in Figure 3-1.

Word 1

Word 2

Word 3

Word 4

0 5 6 ll 12

Code l l Code 2 I
Data Word 1

Data Word 2

Data Word 3

Figure 2-1

Information Unit Block Structure

17

Code 3

IOPS binary records of 48 information words and a 2-word header are

accepted by the loader.

2-1

2. 2 PROGRAM UNIT ORGANIZATION

A program unit consists of as many information units as are required

to contain the binary program. The two basic types of program units

are diagrammed in Figures 2-2 and 2-3.

PROGRAM SIZE (code 01) for absolute or relocatable
program, does not include COMMON size

INTERNAL GLOBAL DEFINITIONS (code 12)

PROGRAM NAME (code 23)

PROGRAM LOAD ADDRESS (code 02) absolute or relative

COMMON STORAGE (codes 14, 15 I and 16)

NON-COMMON STORAGE (code 06)

Array Declaration Information

Equivalenced Arrays and Variables

Non-Equivalenced Arrays

PROGRAM BODY

Codes Codes

03

}
Instructions 07 } Symbol

04 and 10

05 Literals

Non-COMMON Variables and Arrays (06)
Transfer Vectors (05)

EXTERNAL GLOBAL SYMBOL DEFINITIONS (code 11)

END (code 27)

Figure 2-2

Main Program and Subprogram Organization

2-2

BLOCK DATA INDICATOR (code 13)

PROGRAM NAME (code 23)

COMMON STORAGE (codes 14, 15, and 16)

DATA INITIALIZATION CONSTANTS (codes 17, 20, 21, and 22)

END (code 27)

Figure 2-3

Block Data Subprogram. Organization

2.3 LIBRARY FILE ORGANIZATION

Both system and user library files are structurally identical and

are created and maintained by the UPDATE Utility Program (described

in DEC-15-YWZA-DN7). A library file, unlike other files, consists

of a number of program units (rather than just one) in which all

end-of-file codes,except the last, have been removed. Figure 2-4

shows the complete structure of a library file.

2.4 IDENTIFICATION CODES

The identification code contained in each information unit tells the

Loader how to interpret the associated data word. As mentioned

earlier, there is- an implied order in which codes appear within a

binary file.

Code Loader Action

01 Program Unit Size

The data word specifies the number of machine words required

by this program unit. This number does not include the re­

quired number of machine words· for COMMON storage. The

program size is used by the Loader to determine whether or

not the program will fit within the unused locations of any

available page or bank. This information unit appears only

once per program unit and is the first information unit of

the binary output. In absolute loads, no checking is made

to prevent overlay of other program units; this is left to

the user. The program size is also used to determine where

2-3

PROGRAM
UNIT

PROGRAM SIZE
DESCRIPTOR

INTERNAL
GLOBALS

LOAD ADDRESS
DESCRIPTOR

PROGRAM
UNIT

LIBRARY FILE

PPOGRAM
UNIT

ONE !OPS
BINARY

PROGRAM
UNIT

PROGRAM UNIT

-----BINARY

END-OF- FILE
UNIT

PROGRAM
UNIT

RECORD

J
I ONE !OPS]

RECORD

DATA

VIRTUAL
GLOBALS

END CODE

C 0 ~2310 TERMINATES
A PROGRAM UNIT. THE
NEXT UNIT MUST BEGIN
A NEW !OPS BINARY
RECORD.

H1
} TWO-WORD

H2 HEADER

C1!Cz!C3

} """"'°"'' D1
IN FORMATION

Oz UNIT

D3

C4/C5/C5 - DESCRIPTOR

05 > 4810
05 WORD

I

I

I

C34IC35/C35

D34

035

D36 _.;

0-89-17

}
END-OF-FILE

WORD l ,_C_H_E_C_K~--S-U_M_, UN IT ----~
----~

WORDO IOI

END-OF-FILE UNIT ONLY PRESENT
AT END OF LIBR FILE.

Figure 2-4

Library File Organization

2-4

Code Loader Action

to begin loading as loading proceeds from the top of core

down.

0 1 2 3 17

Data Word 0 Program Size

1 if absolute load
0 if relocatable load

02 Program Load Address

The data word is an unrelocated memory address. This

address specifies either an absolute or a relative storage

address for program data words and is incremented by one

for each data word stored (codes 03, 04, and 05). If the

address is relative, it is initially incremented by the

current relocation factor (modulo 15 bits). Bit 0 of the

data word is used to indicate an absolute address (bit 0 = 1)

or a relative address (bit 0 = 0).

Data Word

03 Relocatable Instruction

1 2 3

0 Load Address

0 relative load address
l = absolute load address

17

The data word is a memory referencing instruction. The

address portion of the instruction is incremented by the

current relocation factor (modulo 12 bits for page mode

and 13 bits for bank mode). The instruction is stored in

the location specified by the load address which is incre­

mented by one after the word is stored.

0

Data Word Op Code

4 5 Bank Mode
5 6 Page Mode

Unrelocated
Memory Address

04 Absolute Instruction/Constant/Address

17

The data word is either a non-memory referencing instruction,

a non-relocatable memory referencing instruction, an absolute

address, or a constant. The word is stored in the' location

specified by the load address which is incremented by one

after the word is stored.

2-5

Code Loader Action

0 17

Data Word I Non-Relocatable Word

05 Relocatable Vector

The data word contains a relocatable program address

(vector) . The word is incremented by the current reloca­

tion factor (modulo 15 bits). The data word is stored in the

the location specified by the load address which is incre­

mented by one after the word is stored.

0 17

Data Word Vector

06 Non-COMMON Storage Allocation

The data word specifies the number of machine words re­

quired for non-COMMON variable and array storage. Storage

allocation begins at the address specified by the load

address. The load address is incremented by this number.

This block of memory is cleared.

4 5 Bank Mode
0 5 6 Paqe Mode 17

Data Word 0 I Storage Size

07 Symbol - First Three Characters

The data word contains the first three characters of a

symbol in radix 50 8 format (see Appendix C). The data

word is saved by the Loader for future reference.

0 1 2 17

Data Word

10 Symbol - Last Three Characters

0
1

Symbol

1 to 3 character symbol
4 to 6 character symbol

The data word contains the last three characters of a

symbol in radix 50 8 format. The data word is saved by the

Loader for future reference. This word is used only if

in the code 07 data word bit 0 = 1.

0 1 2 17

Data word I a symbol

2-6

Code Loader Action

11 External Symbol Definition

The data word contains the unrelocated address of the

transfer vector for the subprogram named by the last symbol

loaded (codes 07 and 10) . If the external subprogram has

already been loaded, the address (definition) of the symbol

is stored into the specified vector address (relocated

modulo 15 bits). If the subprogram has not been loaded and

this is the initial request, the symbol and the relocated

(modulo 15 bits) transfer vector address are entered into

the Loader symbol dictionary as a request for subprogram

loading. This action automatically forces the Loader into

a Library Search Mode when the end of the command string is

encountered. If the Loader is already in the Library Search

Mode, it remains there until all unresolved globals have

been resolved. If the subprogram has been previously re­

quested (symbol in dictionary) but not loaded, the Loader

chains the reference locations. This chain, generated

exclusively by the Loader, is followed when the external

definition is encountered. (Unchained transfer vector

locations must initially contain a reference address (code

04 or 05) to themselves.) For example, .GLOBL SUB where

SUB is virtual causes the output of the following:

0 2 3 17

Data Word 07 0 SUB (radix 50 8)

11 0 TVA DD

17

0 2 3 17

05 I 0 TVADD TVADD

SUB is defined internally as TVADD. Subroutine calls are

made via JMS* SUB.

0 2 3 17

Data Word 0 Transfer Vector
Address

2-7

Code Loader Action

12 Internal Global Symbol Definition

The data word contains the unrelocated or absolute address

(definition) of the last symbol loaded (codes 07 and 10).

The last symbol loaded is a global symbol internal to the

program unit which follows. In the Library Search Mode,

if a request for subprogram loading exists (code 11) in the

Loader dictionary, the relocatable (modulo 15 bits) or

absolute definition is stored in the specified transfer

vectors and the program unit is loaded. The definition

also replaces the transfer vector address in the Loader

dictionary. If no request for loading exists, the program

unit is not loaded and the Loader continues to examine

information units until the next internal global symbol

definition is found (Library Search Mode). If the program

unit is to be loaded, all internal global symbols following

the one causing loading are automatically entered into the

Loader dictionary as defined global symbols. If the symbol

already exists in the dictionary and is defined (indicating

that a program unit with the same name is already loaded)

the Loader does not try to load the program unit again.

0 2 3 17

Data Word 0 Symbol Definition

13 Block Data Declaration

This information unit instructs the Loader that the COMMON
blocks and data constants following are part of a block

data subprogram.

0 2 3 17

Data Word 0 Block Size

14 COMMON Block Definition

The data word specifies the number of storage words re­

quired for the COMMON block named by the last symbol loaded

(codes 07 and 10). In general, the assignment of memory

space for the COMMON block is deferred until all requested

library subprograms have been loaded. The exception to

this rule occurs when the block data declaration (code 13)

has been encountered. In this case, the COM-IV!ON block name

is treated as an internal global symbol, and the block is

2-8

Code Loader Action

assigned to memory. After the block is assigned to memory,

the starting address is entered into the Loader dictionary,

and the starting address is saved by the Loader for future

use (code 15). All symbols in the dictionary associated

with the block are assigned addresses with respect to this

starting address. All symbols which are yet to be loaded

(via code 15 and 16) will also be assigned as they are

encountered. When the block data flag is not set, the

Loader enters the name and the size into the dictionary (if

it is not already there) and also enters the word containing

the next available dictionary entry address. This entry

will contain the first symbol in this COMMON block and will

be used as the head of the chain of all symbols in this com­

mon block. The address of the head of chain is saved by the

Loader so that the new set of symbols in the COMMON block

may be added to the chain. The larger of the two block

sizes is retained as the block size.

When the COMMON block has already been assianed memory loca­

tions, the respective lengths are compared. Loading termin­

ates, with an appropriate error message, if the assigned

block is smaller. When the assigned block is larger or both

are equal, loading continues.

0 2 3 17

Data Word O Block Size -i
~---__J

15 COMMON Symbol Definition

The data word specifies the relative location of the last

symbol loaded (codes 07 and 10) in the last COMMON block

(code 14). If the associated COMMON block has been defined

(block data) , the absolute address of the symbol is

calculated (block address plus relative position) and

placed in TV location (code 16). When the COMMON block has

not been assigned, the relative address is entered into

the Loader dictionary and chained to the symbols associated

with the COMMON block.

0 2 3 17

Data Word I 0 I Relative Address

2-9

Code Loader Action

16 COMMON Symbol Reference Definition

The data word contains the unrelocated address of the

transfer vector for references to the COMMON symbol named

by the last symbol loaded (codes 07 and 10). The symbol

definition (code 15) is stored in the relocated (modulo

15 bits) address specified when the associated COMMON block

has been assigned (code 14). When the block has not been

assigned, the relocated (modulo 15 bits) address is entered

into the Loader dictionary along with the relative address

(code 15) of the symbol.

5 Bank Mode
0 6 Page Mode 17

Data word 0 Address of Vector

17 Data Initialization Constant - First Word

The data word contains the first machine word of a data

initialization constant. It is saved by the Loader for

future use (code 22).

0 17

Data Word Data Constant

20 Data Initialization Constant - Second Word

The data word contains the second machine word of a data

initialization constant.

future use (code 22).

Data Word

It is saved by the Loader for

0 17
~[~~~~~~~-D-a~t-a~C-o~n-s_t_a_n~t~~,

21 Data Initialization Constant - Third Word

The data word contains the third machine word of a data

initialization constant. It is saved by the Loader ior

future use (code 22).

0 17

Data Word Data Constant

2-10

Code Loader Action

22 Data Initialization Constant Definition

The data word contains the relative load address of the

last data initialization constant loaded (codes 17, 20,

and 21) and a mode code identifying the constant (real,

integer, double, logical). The load address is incremented

by the current relocation factor (modulo 15 bits) if the

constant initializes a non-COMMON storage element. When

the constant initializes a COMMON storage element (indicated

by the presence of the block data flag (code 13) , the load

address is incremented by the address of the last COMMON

block loaded (code 14). The constant is stored according

to mode and the relocated load address.

0 1 2 3 17

Data Word xx Load Address

00, mode integer (1 word)
01, mode real (2 words)
10, mode :;:: double (3 words)
11, mode logical (1 word)

23 Program Name or Internal Symbol Definition

The data word contains the unrelocated or absolute address

(definition) of the last symbol loaded (codes 07 and 10).

The symbol is strictly internal to the program being loaded

and is entered conditionally (if a DDT Load) along with its

relocated (modulo 15 bits) or absolute address into the

DDT symbol dictionary. The program unit name is indicated

by bit O=l of the data word.

0 1 2 3 17

Data Word X 0 Symbol Definition

Internal symbol

Program name -- from
FORTRAN IV or MACR0-15
command String

All symbols fall into this category.

2-11

Code Loader Action

24 String Code - First Half

The data word contains the unrelocated address of a data

word whose address portion is to be replaced by another

value. The relocated (modulo 15 bits) address is saved

by the Loader for future use (code 25)

5 Bank Mode
0 6 Paqe Mode 17

Data Word 0 String Address

25 String Code - Second Half

The data word contains an unrelocated address. The address

portion of the data word specified by the first half-string

code (code 24) is replaced with this address (relocated

modulo 12 bits (page) or 13 bits (bank)).

5 Bank Mode
0 6 Page Mode 17

Data Word 0 Reolacement Address

26 Input/Output Device Routine Request

The data word specifies the unit number (.DAT slot number)

associated with a device level I/O routine. The Loader

defers loading of any I/O routines until all other sub­

program loading has been completed; when subprogram loading

is complete, the system library is searched f'or all requested

I/O device routines not already residing in memory (see

Operating Procedures) .

Data Word

The I/O routines are then loaded.

0 l

2--12

8 9 17

0 Unit Number

sinqle 2's complement
units when negative

1 all units
(. IODEV ALL)
all positive .DAT
slots with non-zero
contents

Code Loader Action

27 End of Program Unit

This information unit is the last unit of a program unit.

The data word contains the unrelocated or absolute start

execution address of the program. The relocated (modulo

15 bits) or absolute start address is entered into the system

communication tables to be used when control is given to the

user. Only the first start address encountered is entered

into the communication tables. (It is assumed that the

first program unit specified in the command string is the

main program.) The first address of the main program is

used if the .END pseudo-op did not have a start address.

When loading from either the system or external libraries,

the end unit causes the Loader to examine the next line buffer

for the end-of-file (EOF) condition. When the EOF for the

external library is obtained, the Loader automatically begins

searching the system library to resolve any remaining globals.

Upon encountering ~he EOF of the system library, the Loader

announces any unresolved global names. When loading is com­

plete, controi goes to the user program, DDT, or to the

teleprinter handler in the Monitor as a function of the load

command (GLOAD, LOAD, DDT, or DDTNS) (see Operating Pro­

cedures).

4 5 Bank Mode
0 5 6 Page Mode 17

I Sta~t Address Data Word

31 Enable Bank Relocation

This code is output by the MACR0-15 Assembler in response to
the .EBREL pseudo-op. The Loader will relocate all ~3 coded

data words using 13 bit addressing. The associated data word

is unused.

32 Disable Bank Relocation

This code is output by the MACR0-15 Assembler in response to

the .DBREL pseudo-op. The Loader will relocate all ~3 coded

data words using 12 bit addressing. The associated data

word is unused.

NOTE

Loader codes 31 and 32 do not affect the
execution of the relocated code but merely
the size of the address field. Also, these

2-13

codes are recognized only when the Loader
is operating in Page Mode (PAGE ON or
BANK OFF Keyboard Commands). Proqram units
which use these codes are not allowed to
overlap memory page bounds or be larger
than 4K. These codes are intended for use
with VT-15 Display programs and should be
used with caution. The instructions EBA
(enter bank addressing) and DBA (disable
bank addressing) should be with code
relocated via the .EBREL and .DBREL pseudo­
ops.

33 Source File Extension

This code is output by the MACR0-15 Assembler when operating

under the DOS-15 Monitor. The data word contains the exten­

sion (in radix 50 format) of the source file which produced

this binary. This information is output at load time by

selecting the P option in the loader's command string (see

paragraph 3.3.1).

0 1 2 17

Data Word Extension I

2-14

CHAPTER 3

OPERATING PROCEDURES

3.1 .DAT SLOT ASSIGNMENTS

Prior to calling the Loader, the user should perform all required

device and UIC (in the case of DOS-15 systems) assignments for both

the Loader and the program to be loaded. Space can be saved during

loading if the same version of a handler is used both for the Loader

and for the program to be loaded.

All programs named in the command string must reside on the device

(and UIC for DOS-15 systems) associated with .DAT slot -4. At least

one program must be loaded from this device. The system library

(.LIBR BIN) must be assigned to .DAT slot -1. If a user-created

library is to be used, it must be assigned to DAT slot -5, and be

named .LIBR5 BIN. If no user library is required, .DAT Slot -5 must

be assigned to NON; otherwise IOPS 13 (file not found) errors will

occur.

3.2 CALLING THE LOADER

The Loader may be called using any of four commands, depending on the

user's requirements, as shown:

Command

L~)

GLOAD)

Meaning

Load and Halt. Program execution is
initiated by typing CTRL P.

Load and Go. Program execution
begins automatically.

Load user programs along with
DDT. When loading is complete,
control is given to DDT.

Load user programs with DDT
not build DDT symbol table.
provides more free core but
debugging to octal numbers.

but do
This

limits

1 Refer to the DDT Utility Program Manual (DEC-15-YW2A-DN1).

3-1

Type the desired command immediately to the right of the Monitor's $

as follows:

$LOAD)

or

$GLOAD)

or

$DDT .)

or

$DDTNS)

When loaded, the Loader identifies itself with one of the following

messages, depending upon the addressing mode (Bank or Page).

Page Mode Bank Mode

LOADER Vnn BLOADER Vnn

> >

3.3 COMMAND STRING

The Command String must be typed immediately to the right of the

Loader's prompting symbol (>) in the format shown below:

{options:i----[namel] t())name2] •.• ALT MODE

3.3.l Option Switches

Three option switches may be selected to obtain loader map output on

the teleprinter. If no options are selected, no map is output and

loading time is decreased. The switches are as follows:

p - Type program names and addresses

G - Type GLOBL symbols and addresses

c - Type COMMON block names and first address (.xx is the
name for BLANK COMMON) .

The option switches may be typed in any order and can optionally be

separated by commas. In typing out the memory map, the Loader first

types the option switch character, followed by the name or symbol

and source file extension, followed by the address.

3-2

For example:

p NAMEl 023 37602

p NAME2 002 31547

G .DA 036 27632

G BCD IO 001 27203

G FI OPS 022 26477

c .xx 007 26000

3.3.2 Program Names

Program names are standard six character (maximum) file names of the

programs to be loaded. The Loader assumes that all programs have a

BIN extension. The name of the main program (i.e., the program

which is to obtain control first after loading) must be typed first.

Alternatively, all programs to be named in a command string could

be combined into a library file under the name of the main program.

The name of the main program is followed by the names of all required

subprograms which are not to be loaded from the system or user library.

Subprogram names should be typed in order of program size, largest

first and smallest last, to obtain optimum core utilization. The

program names must be separated either by commas or by Carriage

RETURNS. If program input is from a non-directoried device, program

names are ignored and need not be typed.

Carriage RETURNS to lo.ad n programs.

3.3.3 ALT MODE

Simply type n-1 commas or

An ALT MODE is the only legal command string terminator for the Loader.

Once typed, program loading begins.

3.3.4 Command String Errors

Syntactical errors in command strings (e.g., omitting the back arrow

(4-)) cause the Loader to restart. Typing errors which occur prior

to typing a Carriage RETURN or ALT MODE can be deleted through the

use of the RUBOUT (delete character) and CTRL U (delete line) tele­

printer editing features. The Loader can be restarted at any time

prior to typing the ALT MODE terminator by means of the CTRL P command.

Command string errors observed after an ALT MODE has been typed are

unrecoverable and the user must return to the Monitor (via CTRL C)

and reload the Loader.

3-3

3.4 OPERATION

Upon receipt of the command string, the Loader consecutively loads

all explicitly named programs and builds a symbol table consisting of

external (global) symbols, COMMON block names and COMMON blocks.

Once all named programs have been loaded, a search is begun to resolve

unsatisfied subroutine requests contained in the synbol table. This

is accomplished by searching for the various subroutines and device

handlers in the ros; user library (if present), and the system

library, in that order, as many times as required to resolve the

reference. If a complete pass is made with no new resolution, the

Loader then tries first to match the references to COMMON blocks and

then to COMMON names. Any remaining unresolved references cause a

.LOAD 3 error and loading terminates.

at the end of a loader map (when a map

Unresolved symbols are typed

is requested) and have a load

address of ~- The Loader's search normally terminates as soon as all

global references are resolved. Programs are loaded from the top of

core down, starting with the extra 4K page, when available 2 , and con­

tinuing into the next bank (just below the system bootstrap), as shown

in Figure 3-1. The first 20 8 locations in each page (Page Mode ON)

or in each bank (Page Mode OFF) are not loaded. When there is no

extra 4K page, loading begins at the top highest bank just below the

system bootstrap.

When loading is complete, the Loader resets the free core pointers

.SCOM+3 and .SCOM+2 (absolute locations 103 and 102) to indicate that

the area occupied by the Loader and its handlers, if they are not

used by the loaded program, is now free core. The Loader then

passes control either to the user's main program or to DDT in one of

several ways as follows:

a. If the Loader was called using the LOAD command, the
Loader types ts and waits for the user to type
CTRL S to start his program.

b. If GLOAD was used to call the Loader, the user's main
program is automatically started.

c. If either DDT or DDTNS was used to call the Loader,
control is given to DDT (refer to the DDT Utility
Program manual (DEC-15-YWZA-DNl) for further information) •

1 IOS is the I/O Service UIC in which I/O handlers reside in DOS-15
systems.
2 The setting of the Monitor's X4K ON OFF Keyboard Command controls the
Loader's ability to utilize an extra memory page.

3-4

3.5 ERROR CONDITIONS

BOOTSTRAP

DDT (if present)

t
LOADED PROGRAMS
(on DDT loads,
symbols reside
in the lowest
part of free
core)

SYMBOL TABLE
(Symbols and
programs built
toward each
other) 1
LINKING LOADER

LOADER'S HANDLERS

BUFFER POOL

RESIDENT MONITOR

Figure 3-1

_l6K, 24K, 32K

~. SCOM+3 (without DDT)

-:SCOM+3 (with DDT}

~. SCOM+2

.SCOM+l

-0

Linking Loader Core Map

The following error codes are output by both the Linking Loader and

the System Loader. When output by the Linking Loader, the errors are

identified as shown below. When output by the System Loader, the

errors are identified as ".SYSLD n" instead of ".LOAD n".

3-5

Error

.LOAD 1

.LOAD 2

.LOAD 3

.LOAD 4

. LOAD 5

Explanation

Memory overflow - the Loader's symbol table and the
user's program have overlapped. At this point the
Loader memory map will show the addresses of all
programs loaded successfully before the overflow.
Increased use of COMMON storage may allow the program
to be loaded as COMMON can overlay the Loader and
its symbol table, since it is not loaded into until
run time.

Input data error - parity error, checksum error,
illegal data code, or buffer overflow (input line
bigger than Loader's buffer).

Unresolved Globals - any programs or subroutines
required but not found, whether called explicitly or
implicitly, are indicated in the memory map with an
address of 00000. If any of the entries in the
memory map has a 00000 address, loading was not
successful; the cause of trouble should be remedied
and the procedure repeated.

Illegal .DAT slot request - the .DAT slot requested
was:

a. Out of range of legal .DAT slot numbers;

b. Zero;

c. Unassigned; that is, was not set up at System
Generation Time or was not set up by an
ASSIGN command .

Program segment greater than 4K - the program
segment being loaded in Page Mode exceeds a Page
Bound.

3-6

APPENDIX A

PROGRAMMING NOTES

1. Reconunended practice for memory overflow (.LOAD 1) errors -­

Apart from the obvious techniques of segmenting large programs

and linking them via .GLOBL's, use of the CHAIN and EXECUTE

programs will often allow loading of programs which overflow

when using the Linking Loader. Since CHAIN creates XCT files

on storage external to memory, space which would have been

used by the Linking Loader is made available to the user during

the chaining process.

2. Block data subprograms must be explicitly added after the main

user program; that is, the name of the block data subprogram

must be typed after that of the main program in the Loader

command string if it is a separate file.

3. For ADVANCED Monitor and Background/Foreground Users, the

recorrunended assignment for .DAT slot -1 (System Library:

.LIBR BIN) in an SK system is DTC. for DECtape systems and

DKC. for disk systems. Note that care must be taken to

assign the same handler to both .DAT slots -1 and -4 (user

program input) to avoid possible incorrect linkage to one

handler interrupt service when the initial I/0 call was made

to another handler.

The assignment of the same handler to both the Linking Loader

and user .DAT slots prevents the unnecessary loading of extra
handlers which only take up more core. For example, if the

program being loaded uses .DAT slots 1 and 2 for its I/O, a

core-saving technique is to assign a common DECtape handler to

.DAT slots 1, 2, -4, -1 and -5 if a user library .LIBR5 BIN

exists.

4. .INIT's to negative .DAT slots --

An .INIT cannot be done to .DAT slots -4, -5, -1 and -7 since

the Linking Loader uses these slots and clears them after loading.

A-1

APPENDIX B

TERMS AND DEFINITIONS

Term

Loadable Program Unit

Transfer Vector

Internal Global Symbol

External Global Symbol

Unresolved Global Symbol

Relocation Factor

Radix 50 8 Format

li.e., linking together

Definition

A main program, subprogram, or block data
subprogram.

A core location containing the address of
a subprogram or an entity in COMMON. All
references to subprograms and entities in
COMMON are indirect.

A symbol defined in the current program
unit and accessible to all programs.

A symbol which is referenced in the current
program unit and defined in another.

An external global symbol reference which
has not yet been resolved by replacement
with an internal global symbol definition.

The amount added to relative addresses to
form absolute addresses; initially, the
first loadable core location. The reloca­
tion factor for programs following the
first program unit is the next available
load address.

A method of symbol concatenation1 utilizing
50 8 characters as a "number set", each

with a unique value between and including
0 to 47 8 . The symbol (number) is converted

using standard base conversion methods (see
Appendix C) .

B-1

APPENDIX C

SYMBOL CONCATENATION 1 - RADIX 50 8 FORMAT

Radix 50 8 is a technique used by the MACRO Assembler and the FORTRAN IV

Compiler to condense the binary representation of symbolic names in

symbol tables. Three characters, plus two symbol classification bits,

are contained in each 18-bit word. A symbol is defined as a string of

one to six characters, i.e.,

where any of the possible six characters (c1 through c 6) can be defined

as:

Character 6-bit octal code

Space 00

A 01

+ + z 32

% 33

34

0 35

t • 9 46

47

The characters which make up a symbol are linked together in the

following manner:

Word 1

Word 2

((C1 *50 8)+C2)S0 8+c3

ccc4 *50 8)+c5)so 8+c6

For example, the symbol SYMNAM would be entered in the Loader's

symbol table as:

Word 1

Word 2

1 i.e., linking together

((238 * 508)+318)508+158 475265 2

((168 * 508)+1)508+158 = 053665

2 The sign bit of WORDl is set to l to indicate that this symbol consists
of more than 3 characters and that the WORD 2 is necessary.

C-1

APPENDIX D

LOADER SYMBOL TABLE

COMMON BLOCK NAME

1

2

3

4

0 2 3

ID I Block Size

Name (2A)

Symtab address of last entry in

Block definition

"Name" may require 2 words

17

~ ID = 7 when not defined
ID 3 when defined

chain ~-- 0 if no entries

0 if not defined ...

COMMON NAME

1

2

3

0

lJ

2 3
ID l Symtab Chain Address

TV Address

Relative Address in Block

17

~

~ I

ID 4 Address = 0 if
last entry in chain
BO = 1 for easy entry

update

If associated COMMON block was defined when code 14 is encountered, no

entry is needed in the symbol table.

UNRESOLVED OR INTERNAL GLOBAL

1

2

0

ID

3

Definition

Name (2A)

17

Definition (Unresolved) = Abs.olute Address of last TV in chain

Definition (Internal) = Absolute address of Symbol

"Name" may require 2 words.

INTERNAL NAMES

12 ~O~I_D~3~'L--~~~~-D_e_f_i_n_i_t_io_n~~~~~~1~71
_ Name (2A) _

"Name" may require 2 words

D-1

Unresolved ID 1
Internal ID 5

ID=O
(If Pro­

gram Name
ID = 7

Only entered
into the sym­
bol table
during DDT
loads

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-II
Digital Software News for the PDP-9/15 Family

These newsletters contain information applicable to software available from
Digital 1s Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your installation,
please check with the Software Specialist or Sales Engineer at your nearest
Digital office.

Questions or problems concerning Digital 's Software should be reported to
the Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Ma in Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which ore provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per­
formance Report forms, and software price lists should be directed to the
nearest Digital Field- office or representative. U.S.A. customers may order
directly from the Prc:'rnm Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to: .

DECUS
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynord, Massachusetts 01754

READER'S COMMENTS

Linking Loader
DEC-15-YWZB-DN8

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
this manual.

Please comment on this manual's completeness, accuracy. organization, usability and read­
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. Date: -------------------- ------~

Street: ------------------ Department: ---------------

City: State: Zip or Country ------------ ----------~ -----~

- - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATl-S

Postage will be paid by:

mamaamn
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, MaMachusetts OJ 754

FIRST CLASS

PERMIT NO. 33
MAYNARD, MASS.

	000
	001
	002
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	A-01
	B-01
	C-01
	D-01
	Y-01
	replyA
	replyB

