dlilgliltlall

PDP-15

SYSTEM SOFTWARE

HANDOUTS

digital equipment corporation - maynard. massachusetts

i

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright @ 1975 by Digital Equipment Corporaticn

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8

COMPUTER LAB DNC KAl0 QUICKPOINT

COMSYST EDGRIN LAB-8 RAD~-8

COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB~-K RSX

DEC FOCAL OMNIBUS RTM

DECCOMM GLC-8 0s/8 RT-11

DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET 8
UNIBUS

PDP-15 SYSTEM SOFTWARE
COURSE ABSTRACT

This course is intended for programmers who wish to
acquire a working familiarity with PDP-15 Assembly
Language programming and the Disk or Advanced Monitor
Operating Systems and the services provided by their
monitors and associated system software. A portion of
course time is devoted to supervised laboratory sessions.

PREREQUISITES

A working knowledge of the material presentéd in the
Introduction to Minicomputers course,

COURSE OBJECTIVES

Upon successful completion of this course, the student will
be able to:

® Write, run and modify assembly language pro-
grams using the PDP-15 instruction set and the
MACRO assembler syntax.

® Interface programs to the Advanced or DOS
1/0 Monitor.

@ Interact with the system by means of keyboard
commands, system program command strings
and programmed monitor requests.

COURSE OUTLINE

I Memory Organization; Memory and Addressih'g"
Modes

i1, PDP-15 Instruction Set
A. Memory Reference Instructions
B. Augmented Instruction Set

v,

VI,

Vil.

VI,

MACRO Assembler Syntax
Tape and File Formats

Interrupt Systems
A. Program Interrupt Control {Pl)
B. Automatic Priority Interrupt (API)

System Programs

A. EDIT, MACRO, LINKING LOADER, DDT

B. PIP, PATCH, SGEN, UPDATE, CHAIN and
EXECUTE

1/0

A. 1/0 Monitor

B. System Macros

FORTRAN and MACRO Interface

Handler Format

Interaction with the system via keyboard commands
and programmed monitor requests,

COURSE LENGTH

iii

10 days

WEEK I

MONDAY A.M,
A,
B.
C.
D.
E.
F.

MONDAY P,M,
G.
H.
L.
Je

TUESDAY A.M,

A.
B,
C.
D.
E.

TUESDAY P.M,

F,
G.
H.

WEDNESDAY A.M,

COURSE OUTLINE

Description of Course

Block Diagram of PDP-15

Software Overview

Memory Organization

1, Addressing on the PDP-15

2. Arithmetic on the PDP-15
Central Processor Organization
Introduction to the Instruction Set

Memory Reference Instructions
Operate Instructions

EAE Instructions

Introduction to MACRO-15

Review

Subroutines

Sum Group of Examples

Indexed Instructions

Absolute vs, Relocatable Programs

I/0 Overview
IOT Instructions and Dedicated I/0O
Paper Tape Formats

A,
Be
cC.

WEDNESDAY P.M,

Console Description and Operation
Operation of Disk Operating System
Use of the Editor

D.

LAB

iv

THURSDAY A.M,

A,
B.
C.

THURSDAY P.M,

D,
E,
F.

FRIDAY A.M,

A.O
B.
C.
DO

FRIDAY P M,

E.
WEEK Il

MONDAY A.M,

A,

MONDAY P.M,

B,

TUESDAY A.M,

A-O
B.
C.
D.

TUESDAY P.M,

E,

MACRO-15 (again)
Program Interrupt Facility (PI)
Automatic Priority Interrupt (API)

LAB '
Program and Homework Review
Quiz 1

Quiz 1 Review

Overview of DOS Monitor

File Formats and Directory Structure
Overview of Monitor Supervised I/0

Programmed I/0 Commands
l. Basic Operation

2, System Macros
3. DAT useage and Linking Loader
4, User's Buffer Structure

Linking Loader
Libraries and UPDATE
CHAIN and EXECUTE
PIP

WEDNESDAY A.M,

A, Fortran and Macro Interface

B. DDT
C. AQ
D, DUMP

WEDNESDAY P.M,

E, LAB
F., Program and Homework Review
G. Quiz 2

THURSDAY A, M,

A. 1I/0 Handler Format
B. Sample Handler

THURSDAY P.M,

Ce LAB
D. Final Exam

FRIDAY A.M,

A. Monitor and System Modification
1. PATCH
2, SGEN

B. Unichannel Discussion

C. Final Exam Review

FRIDAY P M,

D, Optional Lab

vi

BLOCK DIAGRAM OF THE PDP-15 SYSTEM

Computer:

a machine which inputs data from the outside world,

processes the data, perhaps puts it in temporary
storage and finally outputs the data and/or results in
the form of hard copy,displays or commands to other
devices it may be controlling.

Program:

a sequence of instructions to a computer,

specifying the necessary steps to solve a problem
(sometimes it includes the data it is to work on).,

-main component
~handles bidirectional
communication with
memory and I/0
processor

~-performs arithmetic
and logical operations
-controls and executes
programs stored in
memory

UNIBUS

-main storage area
within computer from
which instructions
are fetched and exe-
cuted (data may also
be stored here)

-various types of
memory available

CORE
MEMORY

~handles peripheral

data transfers

-coordinates trans-

fer between:

CP & peripherals

memory &
peripherals

PROCESSOR

I/0 I/0 BUS

CENTRAL

PROCESSOR

UNIBUS
PERIPHERALS

PERIPHERAL
PROCESSOR

FLOATING
POINT
PROCESSOR

CONSOLE__

I/0BUS
PERIPHERALS

-second general purpose
processor
-second I/0 bus allowing

use of PDP-11 peripherals

-allows use of floating

point arithmetic via

over 100 instructions
without use of complex

software routines

-allows operator
communication in
systems

-starting & halting
of programs

-monitoring of
registers

-modification of
memory

SOFTWARE

To utilize the powerful PDP-15 hardware a number of operating
systems have been developed (special applications packages are also
available). See chapter 10 of the System Reference Manual for
descriptions of each of these systems.

DOS-15, DISK OPERATING SYSTEM
Disk Operating System (DOS-15) is an integrated set
of software designed to meet the demands of research,
engineering, and industrial environments. It includes
the software necessary for simplified programming
and efficient operations. DOS-15 brings to the user the
advantage of disk resident storage via rapid access
to the system’s resources.

The DOS Monitor, the heart of the system, incorporates
all the functions of the “‘Advanced Software System”
plus the added power of fully automatic random
access file operation. The user controls the operating
system by instructions to the Monitor. The Monitor

runs the jobs, supervises data and file manipulation,
and interacts with the operator/user in a simple
conversational manner.

Noteworthy features of DOS-15 are:

Disk Resident System Software
All DOS-15 System Software resides on either DECdisk,
or RP15 Disk Pack, or RK15 disk cartridge.

Interactive Operation

An interactive keyboard/program Monitor permits
device-independent programming, and automatic call-
ing and loading of system and user programs.

Conversational Mode

§yste_m Utility Programs interact with the operator/user
in a simple, cpn\(grsational manner. i -

Programmed Monitor Commands

Input/Output programming is simplified by the use
of a set of system commands which are standardized
for system-supported 1/0 devices.

I/0 Device Handiers

Data and file manipulating I/O device handlers are

supplied for standard system peripherals, allowing

device independence and overlapped computation,
and 1/0, Sl Rt sompiilation

User-Created System Files

The user may easily incorporate his own software

into the operating system, thereby tailoring the system
to his hardware and software needs. -~~~

Programming Languages

FORTRAN 1V, FOCAL, and MACRO-15 programming
languages are offered.

Bank and Page Modes

Choice of 8K (Bank Mode) or 4K (Page Mode) direct
addressability. Page Mode operation permits modifica-
tion via the index register. '

Disk File Structure .
The disk file structure allows the most efficient use of
disk capacity and data retrieval for processing via:

System supported DECdisk, Disk Packs, and Disk
Cartridge Devices, providing both economy and stor-
age capacity. —

Virtually unlimited data capacity (Disk Pack = 83.7
million words, DECdisk = 2.09 million words, Disk
Cartridge = 9.6 million words). Random/Sequential
File Access furnishes file protection through unique
user directories and associated user identification
codes. Files can be made invisible to other users, but
with privileged access via a supervisory code.
User/user file independence—identically named unfor
matted Input/Output (FORTRAN 1V).

Random Access-formatted as well as unformatted
Input/Output (FORTRAN IV). .~~~

Dynamic Storage Allocation -
The available disk storage is automatically allocated
for optimum storage utilization.

Dynamic Buffer Allocation

Input/Output core is automatically optimized by the
Monitor. It allocates only that space which is required
for the system and the user.

Batching Operation

An alternative to interactive operation is a batching
mode which permits the sequencing of console com-
mands to come from paper tape or cards.

input/Output Spooling

DOS-15 systems using the RK15/RK05 Unichannel Disk
System, provides spooling of card reader, line printer,
and XY plotter data.

Spooling is a method of storing (queueing) data to
and from slow speed devices on the high speed RK05
disk. This dramatically improves system performance.

Spooling is only provided for devices interfaced to
the UNIBUS of the RK15 Disk System (i.e., the CR11,
LP11,LS11, and XY11). Spooling requires 8K of local
PDP-11 memory, —

The following software is available as part of DOS-15:

Monitors

Resident Monitor

Keyboard Command Decoder

Batch Processor

System Loader

PIREX (Peripheral Processor RK15 Only)

l.anguages

FORTRAN |V {(F4X, FPPF4X)
FOCAL

MACRO-11 {Assembler RK15 Only)
MACRO-15 (Assembler)

ALGOL (optional)

Text Editors

EDIT

EDITVP (Storage Scope Editor)
EDITVT (Graphic Display Editor)

Loaders ’
Linking Loader

CHAIN & EXECUTE (Overlay Loaders)
ABS 11 (RK15 Only)

Debuggers

DDT (Dynamic Debugging Technique)
DUMP (Core Dump Lister)

QFILE (Store/Retrieve Core Dumps)

Utilities {General)

DTCOPY (DECtape Copier)

MTDUMP (Magtape Utility)

PIP (Peripheral interchange Program) -
SRCCOM (Source Compare)

UPDATE (Library File Manager)

8TRAN (PDP-8 to PDP-15 Translator)
89TRAN (PDP-8 to PDP-9 Translator)
TKB (RSX-15 Task Builder)

Utilities (System))
DOSSAYV (Disk Save/Restore)

RFBOOT (DECdisk Bootstrap)
RPBOOT (Disk Pack Bootstrap)
RKBOOT (Disk Cartridge Boqi(fs_’_nfap_)

/0 Handiers

CDB (Card Reader for CR03B, CR15 or (:R11)
DOSBCD (Batch Card Reader)

DKA, DKB, DKC, DKL, (RF15/RS09 DECisk)
DPA, DPB, DPC, DPL (RP15/RP02 Disk P’ack)
RKA, RKB, RKC, RKL (RK15/RK05 Disk Jartridge)
DTA, DTC, DTD, DTE, DTF, (DECtape)

LKA (LK35 Graphics Keyboard)

LPA (Line Printer for LP15, LS11 or LP1")
LVA (Line Printer/Plotter)

MTA, MTC, MTF (Magtape)

PPA, PPB, PPC (Paper Tape Punch)

PRA, PRB (Paper Tape Reader)

TTA (Teletype)

VPA (Storage Scope)

VTA (VT15 Graphic Display)

VWA (VW01 Writing Tablet)

XYA (XY11 Plotter, RK DOS only)

Checkout-Package

RF.CHK (DECdisk Checkout)
RP.CHK (Disk Pack Checkout)
RK.CHK (Disk Cartridge Checkout)

Minimum Hardware

KP15 Central Processor

16,384 18-bit Core Memory

Console Terminal

PC15 High Speed Paper Tape Reader and Punch
KE15 Extended Arithmetic Element

TC15 DECtape Control'—or TC59 Magtape Control
1 TU56 Dual DECtape Transport—or 1 T1J10, TU20,
or TU30 (7 or 9 track) Magtape Transpo:t

RK15 DECdisk Control or RP15 Disk Pack Control or
RK15 System

1 RS09 Disk Drive or 1 RP02 Disk Pack Drive or

1 RKO05 Drive

MEMORY

Memorys the main storage area for computer instructions
and system data.

In order for a program to be executed, it must
be placed ("loaded") into memory.

Memory is storage space--a place to kéep things for a
vhile, It can hold either data or instructions,

Memory, often referred to as main storage, is much
like a large chest of drawers. .

MEMORY

a. You can store something in each drawer.

b. You must examine a basic storage unit when
looking for something -- in the chest this
unit is a drawer; in a computer this unit
is a location (word).

¢. You refer to these basic units by numbers -
you tell someone to look for something in the
3rd drawer from the bottom; you tell the
processor to look for something in location 3.

In a computer, the numbers of the locations are called
addresses., Address numbers begin with zero as shown above.

4

Each location or word in a_AEE?éISH is partitioned into
smaller subdivisions called bits, Bits are subdivisions which
have binary values, either 1 or 0.

Locations subdivided into bits are like drawers partitioned
into small slots, To examine a bit, you must first look at the
entire location; to look into a slot you must first pull out the
entire drawer.

012 34 567 89 10111218141 1617

g sl r . b ity
A

LOCATION

The bits in a location are also numbered beginning with
zero, but these numbers are not generally referred to as
addresses., So you may imagine memory as a chest of numbered
drawers, each containing numbered slotss; or you may simplify
your model and imagine a matrix of m numbered locations, each
containing 18 numbered bits as shown below.

m=2 E _ E
!B-.-3 E) L
E L 5 i S e
‘ia’ T |
12 !
11
10 »
7 &
6 2
5
; =
2 L
1
' Eman

0123456789 01112131415 1617

5

" WORD LENGTH The PDP=-15 has an 18 bit word.

The bits are labelled from left to right,
starting with 0 and ending with 17:

Ve

most significant bit least significant bit
(1} me" L le"

Because one octal digit is the equivalent of
three binary digits, the contents of an 18 bit
word is often given as a string of 6 octal digits:

L oo 111 o0 o0 1 1 1 0 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 7 1 6 2 5
Binary value: 000111001110010101
Octal value: 071625
SIGNED NUMBERS Words may be looked at as instructions or

as data (numerical values).,

when viewed as numerical values, numbers
are usually looked at as being SIGNED.

The sign of a number is determined by
the most significant bit:

MSB=0, the number is POSITIVE.
If
MSB=1, the number is NEGATIVE.

EXAMPLES

Positive numbers =-

010 111 001 011 101 000
000 001 101 110 010 100
000 000 000 000 000 001
000 000 000 000 000 000

Note that "0" (zero) is considered a positive
because bit 0, its most significant bit,

Negative numbers --

101 111 001 100 010 001
111 000 000 010 110 011
111 111 111 111 111 111
100 000 000 000 000 000

Range =-

POSITIVE

000000
000001
000002

100000

200000

L]
o
o

300000

()
-]
@

377776
377777

CR
OR
OR
OR

OR
OR
OR
OR

NEGATIVE

777777
777776

L]
®
L]

700000

600000

(]
°
®

500000

L]
®
®

400002
400001
400000

271350
015624
000001
000000

number
is 0,

571421
700263
777777
400000

- COMPLEMENT NUMBERS

All negative numbers on the PDP-15 are expressed in
COMPLEMENT FORM rather than sign-magnitude form.
sign magnitude

+5 000 000 000 000 000 101 OR 000005
-5 100 000 000 000 000 101 OR 400005

There are two forms of complement numbers used on the
PDP-15:

1's COMPLEMENT -- the 1's complement of a binary number is
the result of inverting each bit position.

ex.

number 010 101 001 000 100 011 OR 251043
1's complement 101 010 110 111 011 100 - OR 526734

Note that when you add a number to its 1°'s complement, the sum is:
111 111 111 111 111 111 OR 777777,

Hence, an easy way to compute the 1's complement of an octal
number is to subtract it from 777777. 277777

- 251043
526734

2's COMPLEMENT -~ the 2°'s complement of a binary number is
the result of adding "1” to the 1l's complement,

i.e. (the 2's complement) = (the 1's complement) + 1,

exX.
number 010 101 001 000 100 011 OR 251043
l1*s complement 101 010 110 111 011 100 OR 526734
2°'s complement 101 010 110 111 011 101 OR 526735

Note that an easy way to compute the 2°'s complement of an octal
number is to subtract it from 777778 or a similar value
value where the 8 is in the rightmost non-zero position of
the number being complemented,

251043 777778 BUT 251040 777780
-251043 -239040
526735 526740

Note that when you add a number to its 2's complement, the sum is:

000000,
251043 251040
+526735 ' +526740
000000 000000

SOME CONSEQUENCES --

1) There is no difference between the 1'2 and 2's complement
representation of positive numbers.

2) There is a difference between the 1's and 2's complement
representation of negative numbers.,

Positive Number l1*s Complement 2's Complement
000000 777777 ceee—-
000001 777776 (-1) 777777
000002 777775 (=2) 777776
077777 700000 700001
100000 677777 700000
100001 677776 677777
377776 400001 400002
377777 400000 (=-131,071) 400001
------ \ 400000 \

Note that the 2'§ complement of 400000 is 400000,
400000 (--21) is E o negative a number to have
its complement (2*’) represented in 18 bits,
The largest positive number which may be represented
in 18 bits is 217-1 or 3777774 or 131,071,,.

Zero

1) There are two forms of zero in 1°'s.complement:

000000
and 455597,

2) There is only one form of zero in 2°'s complement:

000000 (999777 is a -1).

128K

96K oy

64K

32K}

MEMORY ORGANIZATION

F—m_ 1

BLOCK
3
BLOCK
2

BLOCK

NOTE: There are 10000 (octal) locations in each page.

32

8K

24K

20K

12K

\aK

7 |
T e
70000
o= — —
677 /
T paces
60000
ST e s
50000 |
777
" PacE4
| 6K JROX _
PAGE 3
30000 ~
g
: PAGE 2
10Q00 B
07777

J

[BANK 3

| BANK 2

[BANK |

|[BANK O

Each page starts with an address that is a multiple

of 10000,
There are 20000 (octal) locations in each bank,

Each bank starts with an address that is an even,
multiple of 20000,

12

AN NS

NN N N NN ~ NN NN

7
&

.;‘-f'\ AN

NN

AN N

Program to illustrate the use of two's complement addition in performing
~a double precision add.

DOUBLE PRECISION ADDITION

Two words are used for each DP number. The

first word of the pair contains the sign and the most significant part.

The second word contains the low order part.

It is important to note

that all bits of the low order part are numeric bits, i.e., the sign

bit is considered as a numeric bit, not as a sign.
purposes, assume that the word size is only six bits.

follow:

NUMBER

0025
0063
0377
-1
-100
=40

For illustration .
Some DP numbers

HIGH LOW
000 000 010 101
000 000 110 011
000 011 111 111
111 111 111 111
111 111 000 000
111 111 100 000

The program to perform DP addition follows:

18

CLA!CLL /Clear AC and 1link
TAD AL /Get low half of A
TAD BL /Add low half:<of B
DAC CL /Save low half of result
CLA /Clear AC, but link remains
GLK /If addition of AL and BH caused a carry, link=1
/and the one is placed in AC (17) so that it can
/be added to the high half. If no carry, AC 17=0
TAD AH /Add in high order parts of the two numbers
TAD BH
DAC CH
EXAMPLE 1. DP ADD 127+ 306 = 735
HIGH LOW
127= 000 001 010 111
306= 000 011 000 110
Add low order 011 101 Link = 0
Add high order 000 100
Add in LINK 0
Result 000 100 100 101 = 435
EXAMPLE 2. DP ADD 1254 + 2362 = 3636
HIGH LOW
1254= 001 010 101 100
2362= 010 011 110 010
Add low order 011 110 Link = 1
Add high arder 011 101
Add in LINK 1
RESULT 011 110 011 110 = 3636

CENTRAL PROCESSOR: -

both the memory and I/0 Processor,

CPU

the Central Processor Unit (CPU) functions
as the main component of the computer by
carrying on bidirectional communication with

Provided

with the capability to perform all required
arithmetic and logical operations, the central
processor controls and executes stored programs,.
It accomplishes this with an extensive complement
of registers, control lines, and logic,

m. _
Contains all
information going
from CPU to memory
data lines

PC—
Contains address

in memory of next
instruction to be

eer
OA:

IR
6 bits long
Holds Bits 0-~3 OP Code

aEM
INPLT
REGISTER

ORY

COUNTER

o | OPERAND
ADDRESS
| REGISTER

) IMDEX o
REGISTER

Temporary iR

storage of the

Ly
REGISTER

{ DATA SWITCH l SOLE
REGISTER FROM CON

‘4 Indirect bit
5 Index bit

FROS CZNGRY

All words read from
memory into CPU enter
MI first (data and
instructions)

CONSOLE

=Data Switches
~Address Switches
~Lights

=Operate Keys

Index Register used
in indexed addressing

operand address
for all MRIs

AC—

Retains results o
arithmetic/logical .
operations

Program controlled
I1/0 transfers go

| - ﬁﬁU?J

GATING

{ amrumeric umit

TTTTTTTTTTA

STEP
 CORNTE|

1

ACCUMULATOR

MULTIPLIER
QUOTIENT

through the AC

|

. operations, as a
\counter or for storage

LR
Used to set a limit
on operations with the

Index Register or for

Extends capability

[N T

o Lk fo of processor to do
hardware multiply,
TR divide,normalize
i Rt and shift
1 bit extension -
of the AC
CPU Options

-Memory Protect & Relecate

19

§ -Memory Protect
i

~-Powerfail

INSTRUCTION SET

MEMORY REFERENCE UGMENTED

00 retrieve
enter contents of
60 modify memory locations

OPERATE 74 IOT 70 EAE 64 INDEX 72
~operate on -input/ -multiply -operations
link and AC: output -divide involving

-Clear transfers -shift the XR
-complement -normalize the LR
~rotate
-8Kip

OPERATION CODE INDEX BIT &

00g-60g (1= I{NDEXED)
r A NS I—H

0 1 2 3 | 4 5 6 7 18[9 |10] 1112 13 |14]|15|16 |17

INDIRECT
ADDRESS
{{ INDIRECT)

_®USED AS A THIRTEENTH ADDRESS BIT IN BANK MODE

Y
OPERAND ADDRESS

Memory Reference Instruction Word

OPERATION CODE
S4e= EAE
70g =I0T
72g = INDEX
74g = OPERATE
—A

o f 2 3 /4% 5% 6|7 |8 |9 |10 1 |12 13]|14]|15]16 |17

~
Y .
INSTRUCTION CODE)

®THESE BITS USED AS PART OF THE INSTRUCTION CODE IN EAE AND
OPERATE INSTRUCTIONS

Augmented Instruction Format

20

PAGE 1 MCROEX SRC MAGRO ASSEMBLY LANGUAGE EXAMPLE
JTITLE MACRD ASSEMBLY LANGUAGE EXAMPLE

/
¢
/
<ABS
/
1B R L] «LOC 1089
/
RBL0@ gaaian 8TART JMR
pBiaY gaaiae JHP 8TART
RELB2 038100 START
/
pniay 140103 DZM DIM DZM
ABEL®4E 200183 LAC DZM
BBL08 {40000 DZM
naLne an0103 DZM
anLn7 267403 «D8A DIM
é
/VARIABLES
nBLia 2nin2s LAC CNT#®
aBL1s 341728 NAC CNT#®
P02 201026 LAC CNTQW
BB113 B41026 DAC CNTR
/
/LITERALS
CLERY 201031 A LAG 3¢
AniLs RBLU24 LAC TABLE
P2146 ga1032 LAG (TABLE
pa11? 201433 LAC (A
aRL2a 2ni934 LAC (C
aALes AALB34 (c
pEa20R Bagoo
nei22 204738 LAC (8
/
/INDIRECT
A0LRY FELRET] LAC 120
29124 228190 LAC% @@
2125 2281082 LACw STARTe2
PALRE 821005 JMPe Al
BOLR7 épniog JMP (0@
6891306 Spaien JMP BTARY
PBL34 621036 : JMPw (10@
/
<EJECT

26

PAGE

e

2inas
210025

21008
ateo?
aloin
aia1y
ai012
RY/RR
pini 4

2108148
plaie

ala1?
gia2e
aiaey

niae2
2in23

aie24

atladl
pLAdQ
21033
a1n34
URYRL
21@36
81237
21340
aiadl
aloaa

MCROEX SRC

2088114
ae0ioee
230004
gavion
o00p04
202100
gon114
200220
201037
201240

eainae6
onioeda
peotiio
neeite
eusiip
201044

aegoin
anin42

epAgen
pag1ee
2a00al
eei024
2pa144
onoRe4
e20200
aagiew
ano2ge
e01027
agaiie
777874

vl
vi,
wi,
vl
vl
vl
vl
wi,
*l
wl,

MACRO ASSEMBLY LANGUAGE EXAMPLE

Al
Briga
Ce4

Beiio

/
TABLE 0

812Eap1044

«LOC 10258
A

B

€

LAC B

LAC A
LAC BaCeA
LAC (BeCeA
LAC (Ew#

b} /MULTI=DEFINED SYMBOL
h]o) JUNDEFINED SYMBOL

8

LAC B

LAC (B

A=Bs(

A= (B+C)

«END 8TARY

4 ERROR LINES

27

PAGE

i

noL0B

ARioe

paiey
po102
ARLOI
a0104

aeiad
LRyl
aeia7
a2116
LR S

an11@
#8857

aeizo

B0426
aeies

neLe7

PSEUDO 8RE
enpion
742010
742010 R
742018 *R
742040 *R
140112
140413 wR
140114 «R
1404148 wR
1491486 wR
LR L
aeanne
AR0A0Q
peanne
341123

RPSEUDD 0P8 EXAMPLES
+TITLE PSEUDD OPS EXAMPLES
/
o ABS
/
oLOC 108
/
LAC 1am@
¢
fRNE D IRV RGO E ARG OGO N R G AN RO RPN
/. REPT
I T T AR A T T L R AR Al]
/
JREPT 4
RTL
+REPY B,1
2ERD DZM BUFF
/
A1 I IR YT ZLIYT AT ISR I X L
/REBERVING BTORAGE
X 2 2212 X2 X X1 2T)
/
BUFPE «BLOCK &
BUFFE 0]
/
TABLE @ ,
Ian .*s
TABLEE o
/
AT Y i X T I 2 L A Tt Tall;
/CONDITIONALS
;&tt&tttﬁtﬁttttttttittitttwttﬂttt
OI'DE? A
LAC Aéd
oENDE
Bag
«1FPOZ B
TAD (B
<ENDE
/

X111 Y2 AR RS2 XTI IT2]]
/PAGING THE LISTING
/AR AR RO R R PR RGN R ROV NN RS RO

/
EJECT

28

PAGE 2 PSEUDO SRC PSEUDD 0P8 EXAMPLES

/
A A A I I I R R Y S Y YT T
/CHANGING THE LOCATION COUNTER
AR X YT T T T T T T T T T Y Y T Y
/

nia80 «LOC 1089
/
A2 21 IR Y Y T T T T T XY T Y
/. A8CIT AND ,SIXBY
Y Y I I T R XXX 2222221212121 T)
/

niasa 408210 MESS oASCII /A BROKEN/«iBrail>»

A19814 - 3% 11

Bi9s82 4856134

21283 806424

210854 202832 +ASCIY /7 UP MESBAGE]/

21058 220232

21088 42684792

#1487 340616

2in60Q 425020

B106¢ 200000

/
piaba 426050 MESS| «ASCIT '"ABC123!
21863 330844
LY 314000
piass ageec0e

/ ‘
81068 9102083 NAME L «8IXBT YABCLAN?Y
pias? 618263

/ .
aia7e 406080 MESSS «ABCII 'ABGYL!Y
aiery 330400

/ .‘
61972 240203 NAME®R «SIXBT VABCY!
21073 610000

/ } .
1874 48608e MESSY 2ABCIY 'AB'/G423/
@1878 3303544
81376 314000
@aia77 000000

/ "
aiing pi0203 NAMEJ «SIXBT TABY,C123/
ALioy 616283

/

/tutttntqt*ttu**aw-witwatcaywwadt

/PAGE EJECT ALSO CAUSED BY ,TITLE
A A T L R T T R R A Y]
/

29

RAGE

3

nii102
gi1@3
61104
B11ad

21106
ai407?
1149
URRES!

ai112
mii4d
Bii1é
21118

311486
pL14?
P1igo
a1121

ni123
nii24
#1128
niigs

PSEUDO SRC

RPSEUDD OP EXAMPLES==THMI8 PAGE? MACROS

JTITLE PSEUDO OP EXAMPLEBwwTHIS PAGED MACROS

/

/
PETIIT RIS TR 23X RAL R R AL A A0 A0

/DEFINING A MACRO
AT YRR I ARSI SRR AL S
/
+OEFIN 8SUB A,8,C
LAG B
TCA
TAD A
DAGC €
<ENDM
/
Ahbb b dddRd b e W adeeReaRdRvbeRYeY
/CALLING A MACRO
FEX1X22 22222222 X221z ITL]

/
8UB BUFFE,BUFF,TABLE
gepiie eG LAC BUFF
7408314 «G TCA
346147 1] TAD BUFFE
240120 «B6 DAC TABLE
/
S8UB BUFFE, (8, TABLE!
291124 w6 LAC (8
746831 wG TCA
340117 i TAD BUFFE
240121 v DAC TABLEw»4
/ ,
S$UB (MEBSL, (MESS,TABLE+R
281128 *G LAC (MESS
740034 G TCA
341426 8 TAD (MESS&Y
740122 ¢ DAC TABLE#*2
/
SUB BUFFE,TABLE, TEMPH
2agi20 «G LAE TABLE
748034 L]] TCA
240447 G TAD BUFFE
Bd1122 G DAC TEMP#
/
posaoe +END
2n00eeR wl,
eeaond #l,
ae1080 ol
gaiae2 el
8I1Z2EnB1127 NO ERROR LINES

30

RERRW PV LAYV R REYS
o W
SUM GROUP
' W
NEDERGE TR BT L ILY

THERE ARE 4 PROGRAMS IN THI® SERIES, THEY DFFER
SOLUTIONS (EACH USING A DIFFERENT ADORESSING MODE) TO THE
SAME PROBLEM: o
TABLES A, B AND C EACH CONTAIN B«0ONE WORD
ENTRIES, ARD CORRESPONDING ENTRIES FROM
TABLES A AND B AND STORE THE RESULT IN THE
CORRESPONDING ENTRY IN TABLE C,
I.E, C(I) ® ACI) +» B(1),

DO THIS WITHOUT CHANGING ANY OF THE VALUES
I TABLES A AND 8,

THESE PROGRAMS WERE WRITTEN Tﬂ ILLHSTRATE THE VARIOUS
TYPES OF ADDRESSING AVAILABLE ON THME PDP=i8 AND YO DEMONSTRATE
CERTAIN MACRO LANGUAGE ELEMENTS AND ASSEMBLER DIRECTIVESH

(2mi:2m15) #STATEMENT FORMAT
(3=3) #TYPE OF BINARY OUTPUT TO BE GENERATED
.ABS
S ABSP
(3109 #SETTING THE LOCATION COUNTER
Loc
(3n2) wBETTING HEADINGS ON ASSEMBLY LISTINGS
JTITLE
(3m10) " wBRECIFYING WHETHER NUMBERS ARE DCTAL OR
DECIMAL
,DEC
L0eT |
(3=11) «RESERVING BLOCKS OF MEMORY FOR STORARBE
. BLOBK
(2n6) $VARIABLES
USING. #
{2=13) +LITERALS |
USING ()
(2=3) «DEFINING THE VALUE OF SYMBOLS
(215) USING THE SYMBOL AS A LABEL
(2=8) USING DIREQT ASSIGNMENTS
(2m18) «STORING VALUES IN SUCCESBIVE LOCATIONS
(3=11) «SPECTFYING THE PHYSICAL END OF PROGRAM
JEND

THE ABOVE I8 JUST A SELECTED LIST OF ABSEMBLY LANGUABGE ELEMENTS
AND ASSEMBLER DIRECTIVES (ALSO CALLED PSEUDD OPERATIONS),

MAKE SURE YDU ARE FAMILIAR WITH THEM, EACLH TORIC I3 DISCUSSED

IN THE MALRD MANUAL, STARTING ON THE QAQE GIVEN IN PARENTHESES.

3l

PABE 1§ SUM SRC COMMENTARY ON SUM
JTITLE COMMENTARY ON SUM

/

/ I T TR TR LR s YA Ty YY)

/ » . w

/ * POINTS TO BE NOTED «

/ ¥ ¢

/ T Yy T T IR T I T I Y Y

/

/ei, NOTE THE ,TITLE STATEMENT AND WHAT I8 PRINTED AS
/A HEADER, '
/

/%2, THE FIRST COLUMN GIVES LOCATIONS, NOTE THAT THE
/LOCATION COUNTER BEGINS AT ir@. (BECAUSE OF ",L0E 100)
/

/#3, THE YDAC COUNT" INSTRUCTION REFERENCES LOCATION {!
/"COUNT#Y I8 USED IN AN 18Z INSTRUCTION IN LOCATION 110,
/THIS INSTRUCTS THE ASSEMBLER TO S8ET UP A LODCATION WWIPH
/MAY BE REFERRED TO AS "COUNT", THE ASSEMBLER SET UP
/LOCATION {33, (COUNT I8 A VARTIABLE)

A

/%4, VALUES ARE SET UP IN SEGUENTIAL LOCATIONS FOR
/TABLES A AND B, 1IN EACH CASE THERE ARE ACTUALLY 8
/8TATEMENTS ON ONE LINE (STATEMENTS ARE TERMINATED BY
/SEMI=CO0LONS AND CARRIAGE Ravunns:, NOTE THE SPACE
/REFORE EACH VALUE,

/

/#5, NO NEED TO ACTUALLY PLACE ANY VALUES IN

/TABLE CamJUST TO RESERVE STORAGE SPACE, THE v, BLOCK
JHAS THE EFFECT OF ADDING 8 TO THE LOCATION cuuufen
/NOTE THE ADDRESS OF LOCATION MENDLOCW,

/ , ')

/v, THE " _END" STATEMENT INDICATES THE PHYSICAL END
JOF THE PROGRAM AND MUST BE THE VERY LAST STATEMENT ,
/IN A PROGRAM, NOTE THAT IT 1S BELOW COMMENTS,

ZUHAT DO YOU THINK WOULD HAPPEN ON THE LISTING IF THE
/" ENDY STATEMENT APPEARED BEFORE THOSE COMMENTS?

/ o .
/%7, NOTE THE USE OF THE ", EJECTY STATEMENT (SO THAT
/THE LISTING WILL CONTINUE ON A FRESH PAGE) I8 NOT
/NECESSARY BECAUSE A ", TITLE" STATEMENT ALSD
/GENERATES A FORM FEED WMICH CAUSES THE LISTING

/TO CONTINUE ON A FRESH PAGE,

/ .

32

PAGE

2

LR Y

L YIET
AnyRy

AL A2
ARL03

'EEEY

nries
AB1n6
aAnyAy

any1a

neyid

pu112

RrAL13
A1 4
An115
nEI16
ARg17
poi29
Amy2d
nni22
ne12d
Ar124

nE125

72332

SOLUTION USES AN ADDRESS MODIFICATION TECHNIAUE

«TITLE SOLUTION USES AN ADDRESS MORIFICATINN TE

« ABS

+L0OC 100

LAW
DAC

LAC
TAD

DAC
182
182
182
182

JMP

HLT

=l
COUNT

A
B

c

AA

BB
cc

COUNTH

AA

TABLES

17 27 391 43 8

21 23 21 29 2

/ABBOLUTE PROGRAM? LOADED BY THE
/ABOLUTE LOADER) TO RUN IN BANK MODE
/8ET LOCATION COUNTER TO (89

/SET UP NEGATIVE COUNTER OF =3
/AS EACH TABLE HAS 5 ENTRIES,

/PERFORM ADDITION
/OF ENTRIES

/8TORE RESULT IN C,

/MODIFY LOCATIONS AA,BB AND CC
/80 THAT THEY REFERENCE THE
/NEXT LOCATION IN THE TARLE,

/ARE WE DONE?

/NO|wwBECAUSE WE DIDN'T SKIP
/GO BACK FOR MORE, °

/YES| DONE,

/INOTE] IF THIS PROGRAM I8 TO BE
/RUN AGAIN AA,BB AND CC SHOULD
/BE REINITIALIZED (CAN YOU THINK
/DF WAYS THIS COULD BE DONE?)

/JUST RESERVE S8PACE FOR TABLE C

" «BLOCK B

@

/THIS 18 THE END OF THE PROGRAM,
/THEREFQORE, THI& 1§ WHERE WE WANT TO PUT

/THE W END" STATEMENT,
/

SLiM SRC
/
/
777773 START
240133
/
202113 AA
340128 BB
/
249125 ce
/
4491092
442103
4408104
/
440133
/
607102
/
740040
/8ET UP
/
a0nmRAl A
BAAAR2
AGORRI
Anaeed
AAA0MY
AR@NA2 B
araen2
NABRAG2
ANA0AR
paANQe
/
G
/
ARADGP ENDLOC
/
apaLae
SIZE=PQ134

JEND START

NO ERROR L INES

PAGE

{

SUMy

8RC

COMMENTARY ON 8UMY

o TITLE COMMENTARY ON 8UMY
CRNGRANDIEPACEDANAOTONOR
« PROINTS TO BE NOTED e
LTI T T I LY T LY T O

/vl, THI8 PROGRAM UBEE INDIRECT ADDRESSING THROUGH
/LOCATIONS AA,BB AND €C, LOCATION AA CONTAINS THE
/ADDRESS® OF TABLE A, NOTE THAT THI® I8 ACCOMPLISWED
/8IMPLY BY PLACING THE BYMBOL “A" IN THE OPERATOR
/FIELD, WHEN THWE ASSEMBLER BVALUATES THIS 8TATEMENY,
/1T LOOKS THROUGH ITS SYMBOL TABLES FOR THE VALUE OF
/8YMBOL "AY, #weNOTE THAY THE VALUE OF THE 8YMBOL "av
/18 113, THE ADDRESS OF THE LOCATION I7 NAMES=wew

/NOT THE CONTENTS OF THE LOCATION I7 NAMES, THIS IS8

/A VERY IMPDRTANY DIBTINCTION]!

/ SIMILARLY, LGCATION BB CONTAING THE ADDRESS OF
/TABLE B BECAUSBE THE SYMBOL "8% I8 GIVEN AS THE CONTENTSE
/0F LOCATION BB, THE VALUE OF THE 8YMBOL B I8 THE
/AODRESS OF THE |OCATION IT NAMES, (28, NOT THE CONTENT
/OF THAT LOCATION, SIMILARLY FPOR LOCATION €C. THE
/CONTENT OF LOCATION ©C 38 GIVEN A8 WCY, THE VALUE OF
/THE SYMBOL ®g¥ I8 ¢3m, THE ADDRESS QF THE LOCATION

5!T NAMES, HENCE, THE CONTENT OF LOGCATION CC 18 ¢3e,

/w2, NOTE THWAT DATA 18 SEPARATED FROM THE INSTRUETIONS

/WHICH OPERATE ON THE DATA, WE DO NOT WANT TOUFALL INTO
/THE DATA AND 8TART EXECUTING IT, WHAT INSTRUCTION WOULD
/WE HWAVE IF WE "FELL INTO"™ AND TRIED TO EXECUTE LOC 113~

A S NN

/

/#3, NOTE THE USE OF "COUNT® A8 A VARIABLE, (WMAT 18 IT
/IN THE UBE QF THE 8YMBOL. "COUNTH THAT MAKES Y7 A

/b VARTIABLE?), WHAT LOCATION I8 8ET UP BY THE ASSEMBLER
/80 THAT IT MAY BE REFERENCED UBSING WCOUNTW®

/

/e4, NOTE THAT WE RESERVE 3PACE FOR TABLE C EVEN THOUGH
/1T 18 AT THE VERY END OF THE WRITTEN PROGRAM. WHAY

/PROBLEM WOULD WE RUN INTO IF WE DID NOT REBERVE THIS
/SPACE? (HINT: B8EE NOTE »8)

/

/eB, THINK ABOUT THE ",,aGe AA¥ INBTRUCTION IN LOC 192,
/THIS SAYS81 LOAD THE ACCUMULATOR WEITH THE CONTENY OF
/THE LOCATION POINTED TO BY LOGATION AA, THE FIRST TIMF
/THRU, LOCATION AA CONTAINS 113,THE ADDRESS OF THF FIRS.
/LOCATION IN TABLE A, 1IN LOCATION 1085, THERE I8 AN
/Y182 AAM,I.E, INGREMENT THE CONTENT OF LOCATION AA BY 1
/(80 THAT AA NOW POINTS TO THE NEXT ENTRY IN TABLE),
/THUB, THE NEXT TIME "LACead" I8 EXECUTED, THE Af I8
/LOADED WITM THE NEXT ENTRY FROM TABLE A, THIS METHOD
/18 VERY NICE FOR SBTEPPING THROLGM TABLES, NOTE,HOWEVER,
/THAT WE HAVE 7O URDATE LOCATION AA QURSELVES WITH THE
/NI8Z" INSTRUCTION, BY UBING AUTO=-INCREMENT REGISTERS
;NE CAN GET AROUND THIZ, wwe SEE SOLUTION 8uMe,

PAGE 2

BALAD

paioe
neLay

0102

peLa3
22104

eei0d
ani06
48107

peiie
20414
ani14@
aR113
aeisd
48118
22116
28417
aeiee
aei2}
ne122
20323
oRyed
ne1es
239126
eaie?

An136

UMY 8RC SOLUTION UBES INDIRECT ADDRESSING
«TITLE 8OLUTION USES INDIRECT ADDRESSING

/
/
/
777773 START
p4@y3s
/
gamies NEXT
360126
géaie7
/
4431285
440126
440127
/
440138
gaaia2
740040
eeeeny A
800002
gaoees3
A0Q004
200808
gaggaz B
egenald
2a0a04
egoeas
2000E6
200113 AA
geai2n 88
080130 €C
/
¢
/
geaien
SI2Ee00138

2ABS
«LOC 400

LAW w
DAC COUNT#

LACw AA
TADe BB
DACe CC
I82 AA
182 BB
182 ¢C
182 COUNT
JMP NEXT

HLT
17 27 31 49 8

21 39 49 5) 6

A
B
Y

«BLOCK 8

«END STARY
NO ERROR LINES

35

/8ET UP A COUNTER OF =8

/LOC AA CONTAINS THE ADD,
/OF A, LACe AA GETS THE
JCONTENTS OF A IN AC,
/ETC, FOR BB

JETC, FOR CC

/INCREMENT THE INDIRECT
/ADDRESSES OF AA,BB
/AND €E,

/8EE TP ALL DONE,

/NOT DONE, GET NEXT DATA,
/ALL DONE 80 HALT.

/REBERVE 8PACE FOR TABLE C,

'AGE

i

8UM2

SRC

T T T e T a a

COMMENTARY ON 8UM2
«TITLE COMMENTARY ON 8UME
GEHEHO ARG IRI IR DRI BRG
: POINTS TO BE NGTED :
:aﬁwww@wc@aaﬁcqaagwwawa:

/e, NOTE THAT IN THIS PROGRAM, DATA APPEARE BREFORE THE
/INBTRUECTIONS IN THE PROBRAM, THWE IMPORTANT THING IS TO

~ /8EPARATE THE DATA PROM THE INSTRUCTIONS, BLT IT DOESNYY

/MATTER WHICH APPEARS FIRSEYT,

/

/%2, NOTE THAY THE PIRST EXECUTABLE LOCATION IN A PROe
/GRAM I8 NOT ALWAYS IN THE FIRST LOCATION UBED 8Y THE
/PROGRAM, THAT 18, THERE CAM BE A DIFFERENCE BETWEEN THR
/PRUGRAM START ADDRESS AND THE PROGRAM LOAD ADDRESS,

/IN THI8 CABE, THE PROGRAM 8TARY ADDRESS I8 147, NHERFA
/THE PROGRAM LLOAD ADDRESS I8 18@,

1*3. THIS PROGRAM MAKES UBE OF AUTQ=INCREMENTY ADDRESSING-
JEWITH LOCATIONS 16, 11, AND 123, 70 ACCESE SEQUENTIAL
ALOCATIONS IN TABLES A,B AND C REBPELTIVELY (lL.ACei®,
/TAD® $4,DAC®1 123,

/ THI® MEANS THAT WE WANT 70 LOAD LOCATION 1@ WITH A
/VALUE & LESS THAN THE 8TARY ADDRERS OF TABLE a,
/LOCATION §9 WITH A VALUE ¢ LESS® THAN THE 8TARY ADDRESS
/TABLE B AND LOCATION 42 WITH A VALUE { LESS THAN THE
/8TART ADDRESS DF TABLE €. NOTE THAT THE "LAC (AetV
/AND "DAC §o" INSTRUGSTIONS ARE USED C(LOCATIONS (21 AND
/122) TO DD THIS,

/ THE UBE OF "fA=1% REQUESTS THE AZSEMBLER T0O 8ET UF
/A LOCATION CONTAINING THE VALUE WAe{(W, THE ASSEMBLER
/CAN EVALUATE EXPRESSIONS AMD DOES 80 MOVING FROM LEFT
/T0 RIGHT 0,48 @ {80=1 @ 2%, LOCATION (36 18 SET UP TO
/CONTAIN THE 77, THE INSTRUCTION "LAC (A=i® IS ASSEMBLED
/A8 200136 (L.OAD THE ACBUMULATOR WITH THE CONTENT OF
/LOCATION 136.1.E.p THE 77),

/ SIMILARLY "LAC (RB=mi" LOADS THE ACCUMULATOR WITH
AU304% AND WLAC (Ce(® |LDADS THE ACQUMULATOR WITH wygen,

/

/x4, TO STORE THE wF7® IN ABSOLUYE LOCATION 12 A —
/"DAC 1@Y% INSTRUGCTION I8 USED, WOULD HE BE LDADING THE
/%778 INTO ABSOLUTE LOCATION 18 IF THE #,L0C" BTATEMENT
/READ W, L0C 26000% RATHER THAN ",L0C t1g@%?

/

36

2

aR120@

aeiea
aaia4
eeim2
22103
adie4
geied
a0106
26197
a0ii0@
AB1Ly
guile

aB147
22120

a2y
o122

29123
20124

20123
824126

aeia?
22130
AR
pesde

90133
204134

aB136
82137
nRL40

SOLUTION USES AUTB=INCREMENT ADDRESSING
«TITLE SOLUTION USES AUTA=INCREMENT ADDREABSING

8UM2 8RC
¢
/
/
/
a6oaal A
2agan2
8080803
aponre4
eee2es
gagneoe 8
aepe04
gaaend
aEeees
ananay
c
/
777773 8TART
349438
/
200136
B4naLe
/
eRaLs?
0400311
/
f0oi14a
248042
/
220010 NXT
déoo1y
géoni2
440135
/
6eoir?
748040
aeeLL7
aneae7? wl
neoio4 LR
aeeLil wl,
SIZEw@141

2ABS
oLOC

100

19 29 39 49 8

2) 47 19 By 3

«BLOCK B

LAW
DAC

LAC
DAC

LAC
DAC

LAC
DAC

LAGCe
TADw
DACe
182

JHP
HLT

« END

w
COUNT#®

(Am§
18

(Bei
i1

(C=y
12

ia

il

ie
COUNT

NXT

8TART

NO ERROR LINES

37

/PUT «8 INTOD COUNY

/THI8 METHOD MAKES USBE OF
/AUTO=INCREMENY REGISTERS

/10,41 AND (2. SINCE
/AUTO=INCREMENT I8 A PRE=

/INCREMENT, EACH OF THE
/REGIBTERS MUST BE LOADED WITH

/ONE LESS THAN THE S8TARTING ADD
/

/
/70 ASSURE THAT THE LOADING OF

/AN AUTO=INCREMENT REGISTER WIL

/WORK IN ANY PAGE OR BANK. THE
/INSTRUCTION TOD LOAD LOCS 17,14

/AND 12 SHWOULD BE OF THE FORM
/ LAC (A=t
¢ DAC» (18 —

i v L e
DALES oy foakt Pren

W o nd

3
i
i

RPAGE

|

8UM3

SRC

COMMENTARY ON SUMS
o TITLE COMMENTARY ON 8UM3

FRPGDOGOGIEVRIR PRI R RO N

/

; PHAY NG LOAG IS DRSS GI R
» ®

/ « POINTS TO BE NOTED ¢

/ & &

/

/

/i, NOTE THE UBE OF ", ABSP", THIS PROGRAM MAKES usg or
/INDEXED ADDRESSBING AND,THEREFORE, |MUST] BE IN PABE MODE

/
/92, NOTE THE USE DF THE 4“pBA® INSTRUEBTION, ALTHOUGH
/h VYDBA® INSTRUCTION I8 CONTAINED IN THE PAGE MODE V
/VERSION OF THE ARSOLUTE LOADER (WHMICH I8 OUTPUT ON THE
/PAPER TAPE IN FRONT OF YDUR ASSEMBLED PROGRAM), IV I8
/8T7ILL A GOOD IDEA TO INCLUDE A WDBA" IN YOUR PROGRAM
/IN CASE THE PROGRAM 18 RESTARTED FROM THE CONSOLE
JWITHOUT RELOADING IT, DOON!T RELY ON THE CONSOLE
/BANK=PAGE MODE SWITCH,

/

/e3; NOTE THE USE OF THE V", DEE" AND ",0CT" ASSEMBLER
/DIRECTIVES, COMPARE THE VALUES BGENERATED FOR THF
/NUMBERS STATED WHILE UNDER DECIMAL RADIX (BASE q4),
/WITH THOSE GENERATED FODR THE MUMBERS STATED WHILE
/UNDER OCTAL RADIX (BASE 8),

/

/w4, NOTE THE Y _END BEGINei" STATEMENT, A ",END®
/8TATEMENT 18 USED TO SPECIFY THE PHYSICAL END OF

/h PROGRAM, A V"START ADDRESS" OR "TRANSFER ADDRESS"
/(THE LOCATION AT WHMICH WE WANT THE LDADER TO B8TART THE
/PROGRAM) MAY ALSO BE SPECIFIED IN THE END STATEMENT,
/THIS I8 DONE BY POLLOWING THE ", END® WITH A SPACE OR
/TAB AND THEN GIVING AN EXPRESSION WHICH MAY BE EVALUA=
/TED BY THE ASSEMBLER., 1IN THE PREVIOUS EXAMPLES,

/WHEN A TRANBFER ADDRESS WAS BIVEN IT WAS A VERY
/8IMPLE EXPRESSION=wTHE LABEL USBED ON THE FIRST
/EXECUTABLE LOCATION, BUY THE ASSEMBLER CAN HANDLE
/LONBER EXPRESSIONB, IN THIS CASE, THE SYMBOL BEBIN
/THE VALUE 108031, THEREFORE, BEGINeinigaeo,

/THUS, IN THIS8 CASE, ", END BEGIN=(" HAS THE SAME
/EFFECT A8 " END igagaav,

/

/8, NOTE THE ERROR DIAGNOSTIC BGIVEN ON THE STATEMEN—
/70 BE ASSEMBLED INTO LDCATION 12m26, THE "N" INDICATES
/AN ERROR IN NUMBER UBABE, WHAT I8 THE ERROR?

/HOW WAS IT HANDLED BY THE ASSEMBLER (COMPARE L,OCATIONS
/10020 AND 106g28)7

/

38

PAGE 2

12000
{eaea

1890}
160482

12003

12904
10008
12006

jean?7
10816
i2ail

{eei2
18713

16914
10018
18046
18017
180208

180214
1e4@2
180823
18024
10825
102026

10033

SUM3 SRC ROUTINE USES INDEXED ADDRESSING (& LIMIT REGISTER)

/
/
/
707762
/
2000833 BEGIN
722m00
/
738000
/
210014 AA
35am214
o5pm2s
/
7258914
606074
740040
apesaee
Pe0018
/
fpaee?2 A
2e00as
poogi4
280033
gepa7e
eB0e02 8
200008
gapaie
agone’?
geee7e
¢
4
gieene
poemas wl,
§I1ZEn{0R34

LTITLE ROUTINE USES INDEXED ADDRESSING fa LIMIT

«ABSP
oLOC 1B6AGN
DBA JENTER PAGE MODE
LAC (8 ‘
PAL /PUT B IN LIMIT REG,
eLX /%R80
LAC A,X /ADDRESS OF A & C(XR).
TAD B,X JETE,
DAC C,X /ETE,
AXS 1§ JINCREMENT AND TEST XR
JMP AA JXR € LR
HLT JXRalLR, WEVRE DONE!
/CHERK REBULTS VIA CONSOLE,
CAL /RETURN TO MONITOR
i8 /BY HITTING CONSOLE CONTINUE,
JDEE

27 8y 129 277 88

«0CY
2} 8y 127 @79 S8

«BLOCK 8
«END BEGIN={
{ ERROR LINES

39

/PROGRAM TO ADD TWO NUMBERS, USING TAD, AND TEST
/THE RESULT FOR ARITHMETIC OVER FLOW.

START CLA!CLL

TAD
AND
TAD
SZL
JMP

RAL
SZL
JMP
JMP
POSNEG LAC
TAD
DAC
HLT
POSPOS LAC
TAD
SPA
JMP
DAC
HLT
NEGNEG LAC
TAD
SMA
JMP
DAC
HLT

A
MASK
B

NEGNEG

POSNEG
POSPOS
A

B

SUM

A
B

POSERR
SUM

A
BQ

NEGERR
SUM

MASK 400000

/CLEAR THE LINK AND THE AC.

/GET THE FIRST # IN THE AC.

/GET RID OF ALL BITS EXCEPT THE SIGN.

/ADD THE 2ND NO. TO BIT § QF A.

/SKIP IF ZERO LINK

/NON ZERO LINK INDICATES BOTH A AND B NEG.
/BECAUSE ONES IN BOTH SIGN POSITIONS IS

/THE ONLY WAY THE LINK CAN BE SET SINCE ONLY
/THE SIGN BIT OF THE 2ND # IS ADDED

/GET RESULT SIGN INTO LINK.

/SKIP IF ZERO LINK

/LINK=1, MUST BE +-.

/LINK=@, MUST BE ++.

/SINCE ONE VALUE IS + ADD

/THE OTHER IS -. CORRECT ADDITION IS ASSURED.
/NO TEST IS NECESSARY, SO STORE THE SUM
/AND HALT.

/IF THE SUM OF TWO POSITIVE NUMBERS GIVES
/A NEGATIVE RESULT, ARITHMETIC OVERFLOW HAS
/OCCURED, TEST THE AC FOR POSITIVE VALUE.
/IF NEGATIVE, GO TO ERROR ROUTINE.
/POSITIVE RESULT SO SUM OK, STORE RESULT
/AND HALT.

/IF THE SUM OF TWO NEGATIVE NUMBERS GIVES
/A POSITIVE RESULT, ARITHMETIC OVERFLOW HAS
/OCCURED, TEST THE AC FOR NEGATIVE VALUE.
/IF POSITIVE, GO TO ERROR ROUTINE.

/NEGATIVE RESULT SO SUM OK, STORE RESULT
/AND HALT.

/ANOTHER, SHORTER SOLUTION FOLLOWS:

LAC
XOR
SMA
JMP
LAC
TAD
DAC
HLT
LIKE LAC
TAD
DAC
AND
XOR

SPA
JMP
HLT

A
B

LIKE
A

B
SUM

A

B

SUM
(400000
B

ERROR

/IF THE OR'ED SUM OF THE SIGN

/BITS IS A 1, THE SIGNS WERE
/DIFFERENT AND THE SUM MUST BE CORRECT
/SIGNS WERE THE SAME

/PERFORM THE ADDITION, AND THEN

;CHECK THE SUM FOR A CORRECT SIGN

/GET SIGN OF RESULT. IF OR'ED SUM

/GIVES A SIGN OF 0, THE SIGN OF THE
/RESULT IS THE SAME AS THE SIGN OF B.
/SINCE A & B WERE SAME SIGN, RESULT IS OK
/SIGN CHANGED, OVERFLOW OCCURED

/A THIRD SOLUTION MAKING USE OF ADD IS MUCH SIMPLER.

CLL

LAC A

ADD
SZL
JMP
DAC
HLT

B

ERROR
SUM

/CLEAR LINK

/ADD THE TWO NUMBERS

/IF EITHER NO. IS NEG., IT MUST BE 1's COMP.
/IF LINK IS SET, OVERFLOW

/OCCURRED, GO TO ERROR

/ADDITION OK IF LINK=0

40

ADDRESSING

References: Volume 1 Processor Handbook Y=
System Reference Manual 8

Memory Reference Instructions specify locations to be operated
on by the Central Processing Unit. The CPU computes the actual
(effective) address of the location referred to by combining bits
from the instruction itself and also from the PC at the time the
instruction is being executed. Various addressing modes require
further computations with pointer words and the index register.

In the following illustrations:

PC: refers to the contents of the Program Counter at
the time the MRI is being executed.

Instruction: refers to the contents of the location being
executed.
XR: refers to the contents of the Index Register.

Pointer Word: refers to the contents of the location designated
as a pointer word in an indirect reference.

41

DIRECT ADDRESSING

PAGE MODE
PC
+ : 14 15 17
Instruction L_! BikiEd ;% T FE ST
. Bffective Address
NOTE that the effective address is in the same page as
the instruction,
EANK_MODE ‘block bank
f’c ‘ /7 7 // {é/i E
+ - 0 1234 567 8 910112131415 1617
Instruction ?!3 4 EiEAE

Effective Address

NOTE that the effective address is in the same bank as

the instruction,

42

PAGE MODE

PC
.
Instruction

PC
4
Pointer Word

INDIRECT ADDRESSING

blo€¥ page

ACA Y

N

%1%

o
=2

N

Q0

9 D1
3[9[3]

12

13

2

F

Ed

- Address_of Pbiﬁtgf”ﬁﬁfd

block

01

7

% 1

2

6 7

3 4 5
FEERFE

8 9

10

11

13

14 15 16

2=

ki

3

Wl &

S[E[Z[E]

 Effective. Address

NOTE that the pointer word is in the same page as the instruction.
NOTE that the effective address is in the same block (32K)

the instruction,

43

as

INDIRECT ADDRESSING

BANK MODE

block Bank ‘
e DA 1 L1
+ 01 234567 8 91011R13K 151617
Instruction pikiEHHE 3’!? Ei1k; %Ii 2 31

. Mddress of Pointer Word

block | -
PC . LAk A
+ 012 3456 78 91011121314151617
Pointer Word ng EiEIEiEIERIEIEIEIEEIE

Effective Address

NOTE that the poiwx"'x—f:rer word is in the same bank as the instruction.

NOTE that the effective address is in the same block (32K) as
t;.he instrugtio_n.

44

INDEXED ADDRESSING

PAGE MODE ONLY

block page
pC NAA A
+ 012345678 91011 12134 151617
Instruction EHiEIEElHIEIR] g;;a
+ 0 1 23 45 6 7 89 101121 1415 16 17
XR EEEEEEEEEEEEEEEEEE

EFFECTIVE ADDRESS

NOTE that the effective address may be anywhere in 128K,
Care must be taken not to address non-existent memory
(this includes negative addresses),

45

INDIRECT INDEXED ADDRESSING

PAGE MODE ONLY

block page
Pc GAGAY
+ : 01234 5 6 789 101 1213 141516 17
Instruction l E1E1E] E1E1E]

-Address of Pointer Word

PC % Vi,

+ 01‘23456789

1011213 ¥ 151617

Pointer Word JEEILIE IR
") 1 2 13 14 1516 17
X HEEEEE

EFFECTIVE ADDRESS

NOTE that the effective address may be anywhere in 128K,
Care must be taken not to address non-existent memory
(this includes negative addresses).

46

AUTOINCREMENT ADDRESSING

PAGE MODE and BANK MODE

. address
set 10-17
Instruction 1 v;[1
§
Auto- , 0123456 738 9 10 11 12 13 1415 16 17
LegaefeR10-1 BEEEEEEEEEEREE R)
000001

O OO0 OO OO O©O©OOOOOOOOO0 1
EFFECTIVE ADDRESS

NOTE that the effective address may be anywhere in 128K.

Care must be taken not to address non-existent memory
(this includes negative addresses).

47

INDEXED AUTOINCREMENT ADDRESSING

PAGE MODE ONLY

address
both set 10-17

’ A
? 1
Instruction 111

uto-~
ne en
goc’éte:mnho—m)
)
xR T
*

000001 ' 0

EFFECTIVE ADDRESYS

NOTE that the effective address may be anywhere in 128K.

Care must be taken not to address non-existent memory
(this includes negative addresses).

48

SUBROUTINES

What: A section of code, usually performing one task, that may
be called from various points of the main program,

How: The JMS instruction is used to enter subroutines,
Recall that upon a JMS
a) The updated PC is stored at the address specified in
the JMS,
b) The (specified address) +1 is now placed in the PC
so that execution is picked up at the second location
of the subroutine,

Before _JMS After JMS
ex, 100 JMS MOVE 100 JMS MOVE
/71 101 ._ 101 .

PC . :
200 MOVE @ 200 MOVE 101
201
PC2

c) Return to the calling program is effected via a
"JMP*" on the first location of the subroutine,

MOVE ¢
JMP* MOVE
Passing Arguments - very often a subroutine has to process data

contained in the calling routine. In order to
do this the calling routine must pass this data
or the address(es) of the data to the subroutine.
This is called '"passing arguments,"

There are a number of ways this can be done, Among them are:

1) AC passing arguments in CPU
2) MQ,XR,LR registers
3) trailing arguments: JMS SUB

Arg 1

Arg 2

Arg 3

49

4) Setting up a list of arguments and passing the
address via (1), (2), or (3).

LAC (LIST ADDRESS or JMS SUB etec,

JMC - SUB LIST ADDRESS

LIST ADDRESS ARGl
ARG2

ARGN

50

PC15 High-Speed
Paper-Tape Reader Punch

1.1 INTRODUCTION

The PC15 High-Speed Paper Tape Reader/Punch is used to input perforated paper-tape programs into
core memory , or to punch core memory programs or data on paper tape. Information is punched on
8-channel fanfolded paper tape in the form of 6~ or 8-bit characters at @ maximum rate of 50 char-
acters/second. Information is read at a maximum rate of 300 characters/second. The PC15 consists
of a PCO5 Paper Tape Reader/Punch with interface and control logic for using the reader/punch with
a PDP-15.

1.2 PAPER-TAPE READER
1.2.1 Choracteristics and Capabilities

Data can be read from tape and transferred to the PDP=15, using the computer hardware readin logic
or using program=-controlled transfers. For hardware readin operafion, the hardware readin logic
supplies inputs for selecting the operating mode, starting tape motion, and implementing transfers.
For program-controlled transfers, the computer issues input/output transfer (IOT) instructions that
select the operating mode, advance the tape, and implement the transfer. To maintain a maximum
rate of 300 characters/second, a new select IOT must be issued within 1.67 ms of the last reader flag.
If not, the reader operates start=stop and reads characters at a 25 character/second rate. The re-
quirements for maximum character rate are described in detail in Programming Considerations,

Paragraph 1.4.1.

The reader inferfaces with the automatic priority interrupt (API) facility, the program interrupt facility,
and the input/output skip chain. For API operation, the reader is assigned API level 2; a unique entry

address of 508 is assigned fo its service routine.

The reader contains a no~tape sensor and flag (character ready for transfer) circuits. If a no-tape
condition is detected, the reader fleg is set, and a program interrupt is initiated whenever a reader

select 10T is given. The states of the reader flag, the reader API 2 level, Pl request and skip request

Sl

devices are displayed on an indicator panel af the top of Cabinet H?63E (Bay 1R). In addition, this
panel displays the reader buffer contents and the 1/O address (API unique entry address). These items

and the reader controls are described in Controls and Indicators, Paragraph 1.2.3.

Reader mechanical facilities include a right~hand bin for supply for tape being read, a left=hand bin
for receiving the tape, and a feed~through mechanism to control passage of the tape into the receiving

bin. A snap-action retainer on the feed-through mechanism facilitates simple loading of the tape.

1.2.2 Operating Modes

The PC15 reader operates in either an alphanumeric or binary mode. For program-controlled transfers,
the operating mode is selected by 10T instructions. For hardware readin operation, control logic in

the reader automatically selects the binary mode.

When alphanumeric mode is selected, one 8-bit character (in ASCII code) is read and transferred to
the PDP~15 accumulator. In the binary mode, the reader reads three 6=bit characters (three frames
with channels 7 and 8 ignored) from tape and assembles them into an 18-bit word for transfer to the

accumulator.

1.2.3 Controls and Indicators

Two front panel controls are provided for the PC15 Paper-Tape Reader: ON LINE/OFF LINE and
FEED. The ON LINE position places the reader under computer control. The OFF LINE position,
which is used for loading paper tape, raises an out-of-tape flag and places the reader under local
control. The indicators associated with reader operation are located on an indicator panel at the top

of cabinet H963E (Bay 1R). Table 1=1 lists the indicators and their functions.

Table 1-1
Indicators Associated with Paper-Tape Reader

Indicotor Function
READER BUFFER 00~17 Indicates the contents of the paper-tape reader buffer.
API 2 RDR Denotes API level 2 is active as the result of a reader
interrupt.
1/O ADDRESS Indicates the unique trap address associated with /O

devices; address 50g for paper-tape reader.

RDR FLG Denotes information has been read from tape and is
available for transfer from reader buffer.

S2

Table 1=1 (Cont)
Indicators Associated with Paper-Tape Reader

Indicator Function

PI RQ Denotes one of the 1/O devices (including paper-tape
reader) handled by the BA15 Peripheral Expander has
generated an interrupt request.

SKIP RQ Denotes one of the I/O devices (including paper-tape
reader) handled by BA15 has responded to a skip 10T

instruction.

1.2.4 Tape Formats

The format of the perforated paper tapes for the alphanumeric (ASCII usage) mode is shown in Figure 1-1.
In addition, tape channels are related to the PDP-15 accumulator stages. The leader and trailer por-
tions of the tape are used to introduce or conclude a paper-tape program. Only the feed hole is

punched for the leader/trailer portions. Note that each character is read by one IOT instruction.

UNUSED CHANNEL
TAPE CHANNEL
87654 321
eet——— FEED HOLE
LEADER N
(FEED HOLE ONLY) .
.
eececscese _3378 <s— READ BY ONE IOT
eceeceson o | — 2778 INSTRUCTION
eoscoo0o0es0ee |— 303g
.
DOIRFrCTION ? * TRAILER
F TAPE .
MOVEMENT . (FEED HOLE ONLY)

©=HOLE POSITION
*zHOLE PUNCHED

16-0232

Figure 1-1 Tape Format and Accumulator Bits (Alphanumeric Mode)

53

The paper-tape format for binary mode using hardware readin (HRI) is shown in Figure 1-2 as well as

the relationship of accumulator stages for the 18-bit word. Note that only the feed hole is perforated
for the leader/trailer portion and that channel 8 is always punched in the program portion of the tape.
Any character without hole 8 punched will be ignored. Channel 7 punched in the last character in-
dicates the last 18-bit instruction is to be executed by the computer. This instruction con halt ma=
chine operation or can transfer machine control to another part of the program. When using this format,

channel 7 must be punched using the alphanumeric mode.

1.2.5 Instructions

The PDP=15 1OT instructions used for program=controlled loading of paper~tape data are listed below.

Refer to Volume 1 of this handbook for IOT instruction format.

Mnemonic Octal Code Operation Performed
RSF 700101 Skip next instruction if reader flag is a 1.
RCF 700102 Clear reader flag. Read reader buffer, inclu-

sively OR contents of reader buffer with AC,
and deposit result in AC.

RRB 700112 Read reader buffer and clear reader flag. Cleor
AC and transfer contents of reader buffer to AC.

RSA 700104 Select alphanumeric mode and place one 8-bit
character in reader buffer. Clear flag before
character is read from tape. Set reader flag to
1 when transfer to reader buffer is complete.

RSB 700144 Select binary modes. Assemble three 6=bit

characters in reader buffer. Clear reader flag
during assembly and set flag when assembly is

complete.

The paper-tape reader responds to an input/output read status (IORS) instruction by supplying the status
of its device flags and no=tape flags to the accumulator. The reader device flag (reader interrupt)
interfaces with bit 01 of the accumulator. The reader no-tape flag interfaces with bits 08 of the

accumulator.

1.2.6 Functional Description

The PC15 reader consists of an electromechanical tape feed system, a light source and photo cells for
sensing tape perforations, a buffer register for storing and assembling data, and control logic for com-
puter interface, tape advance, and transfer operations. These circuits can be used with the PDP-15
hardware readin logic, or can be used for program=controlled transfers, as described in the following

paragraphs .

54

CHANNEL 5

FIRST CHAR READ SECOND CHAR READ THIRD CHAR READ
A

CHANNEL 6 4

n¥a

A
6 4 2

A
N N

6 4 2

e S e N o S e NN axtn N antm SO sxtun NENHE cxtun S st

[O]l[L3J4I5l l7[8[9JIOII1]12|13II4115[16J_I ACCUMULATOR

—~
3

LEADER
(FEED HOLE ONLY)

8 CHANNEL PUNCH- 4

ED FOR EACH CHA-

RACTER

DIRECTION
OF TAPE
MOVEMENT

v
1 5 3

TAPE CHANNEL
87654 321

et —~
1 5 3 1

° <t
.

.

.

l,6 0 00 0900 0O
00008000
@e0000e000
©0000e00 0
@e0o0co0o0e0o0 0
9 060008000
0000800 O
® 000 O0Ce0O0O0
@eo0000e00 0

CHANNEL 7 PUNCH/J" eeeoceoe

ED CAUSES LAST

INSTRUCTION TO
BE EXECUTED

TRAILER
(FEED HOLE ONLY)

— FEED HOLE

— FIRST CHARACTER READ
— SECOND CHARACTER READ
— THIRD CHARACTER READ

FIRST INSTRUCTION
READ BY ONE 10T OR

INITIATED BY READIN
} NEXT INSTRUCTION

J

LAST THREE FRAMES MUST BE
PUNCHED USING ALPHANUMERIC
CODE TO EFFECT THE CHANNEL
7 PUNCH.

o= HOLE POSITION
e = HOLE PUNCHED

156-0233

Figure 1-2 HRI Tape Format and Accumulator Bits (Binary Mode)

Slo)

1.2.6.1 Hardware Readin Operation = The PC15 reader can be used with PDP-15 hardware readin
logic to load programs from paper tape at a rate of 300 characters/second. For this operation, the
desired tape is installed in the high-speed reader, and the program loading address is selected, using
the console ADDRESS switches. The console RESET key is then pressed to initialize the computer and
paper-tape reader. A readin operation is started by pressing the READIN key on the console.

With this key action, a Readin (RI) condition is stored in the reader, and the binary mode is selected.
The reader then advances the tape, reads three characters from tape, assembles them into an 18=bit
word in the reader buffer, and signals the hardware readin logic with a program interrupt. The hard-
ware readin logic, in turn, transfers the 18=bit word to the accumulator under 1/O processor and com=
puter timing. The word is subsequently loaded into core memory by forcing a DAC instruction. The
first 18~bit word is stored at the address specified by the console ADDRESS switches. Subsequent 18-

bit words are stored in sequential memory locations.

The readin operation continues until a perforated hole 7 is detected. This condition is inserted in the
last character of the last 18-bit instruction. When this condition is detected, the reader supplies the
hardware readin logic with a skip request. As a result, the hardware readin logic causes the last in-
struction to be loaded into the Memory Input register for execution. This instruction can halt machine
operation (HALT) or can transfer program control to another part of the program (JMP). When using
the readin feature with the MP15 Memory Parity option, the last instruction on the paper tape (which
will be executed by the processor) will not be written into the next sequential memory location. That
location, however, will be loaded with data that may contain wrong parity. Therefore, that location
should be re~stored by the program before an attempt is made to read from it. Otherwise, a parity er-

ror will occur.

1.2.6.2 Program=Controlled Operation = The PC15 reader operates in the binary or alphanumeric

mode depending on the select IOT instructions issued by the computer. On decoding a reader select
alphanumeric (RSA) mode 10T (700]048), the reader advances the tape one character, loads this char—

acter into the reader buffer, and sets the reader device flag. The reader then signals the computer
that data are available by providing a reader interrupt to the API or PI, or by responding to an RSF IOT
instruction. If the API facility is being used, program control is transferred to the reader service rou-
tine where the computer services the request, and an RCF (700102g) or RRB (700112g) instruction is
issued. If the API facility is not being used, the computer issues an RSF instruction, and the reader
returns a skip request whenever its flag is set. The skip request causes the next instruction (normally

a JMP .-1 in wait loops) to be skipped so that the character can be transferred to the accumulator by
issuing an RCF or RRB instruction. The RCF or RRB instruction transfers the reader buffer character to
the 1/O bus and loads it into the least significant bits (10 through 17 for 8-bit alphanumeric character)
of the accumulator. The character is subsequently stored in a core memory location designated by the
program. The read reader buffer (RRB) instruction also clears the reader flag for the next read opera-

tion.

For binary mode operation, the computer issues a reader select binary (RSB) mode instruction (octal

700144). On decoding this instruction, the reader clears its device flag, advances the tape three

56

characters, reads these characters from tape, and assembles them into an 18-bit word in'the reader
buffer. The reader also counts the number of characters with hole 8 punched read from tape and, when
a count of three is reached, generates an interrupt request. The control functions for transfer of the

18-bit word to the accumulator is the same as that described for the alphanumeric mode.

1.3 PAPER-TAPE PUNCH
1.3.1 Characteristics and Capabilities

The PC15 paper~tape punch consists of a tape feed system, a mechanical punch assembly, a buffer
register, and control logic for mode selection and activation of the fape feed and punch mechanism.
Tape advance, mode selection, and transfer of information to the punch are controlled by IOT in-
structions. Tape is perforated at a rate of 50 characters/second. When the punch is selected by an
IOT instruction, data from the PDP=15 accumulator (AC10~AC17) are transferred to the punch buffer.

Then, without further inputs, a character is perforated on tape.

The punch contains a device flag that denotes punch status for transfers. This device flag interfaces
with the PI facility and 1/O skip chain. The status of the punch flag is displayed on an indicator
panel at the top of Cabinet H963E (Bay 1R). An out-of=tape switch is located on the punch mecha-
nism. This switch initiates action that stops punch operations when approximately one inch of un-

punched tape remains.

Power for the punch-operation is available whenever the PDP-15 power is on. The punch runs when

selected by an IOT instruction or when the FEED switch is pressed.

Punch mechanical features include a magazine for unpunched tape and a container for tape chad.

Both are accessible when the reader—punch drawer is extended from the cabinet.

1.3.2 Operating Modes

The PC15 Punch operates in the alphanumeric or binary mode as designated by 10T select instructions.
One of these instructions is required for each character punched for mode change. In the alpha=
numeric mode, an 8=bit character (in ASCII or modified ASCII code) is punched for each accumulator
transfer to the punch. For the binary mode, one 6=bit data character is perforated for each accumu~-
lator transfer. Hole 8 is always punched, and hole 7 is never punched. Three of these characters,

however, form one computer word for readin operations.

o7

1.3.3 Controls and Indicators

The PC15 Punch has a front panel FEED control. This control is used to advance the tape from the
punch as required for leader or trailer. The punch also has one indicator (PUN FLG) directly asso-
ciated with its operation. This indicator, located on an indicator panel at the top of Cabinet HP63E
(Bay 1R), indicates the status of the device flag and, shows that the punch is available for a punch
operation when lit. The punch also shares the PI RQ and SKIP RQ indicators on this panel with other
/0 devices.

1.3.4 Tape Formats

Tape formats are shown in Figures 1=1 and 1-2.

1.3.5 Instructions

The PDP-15 10T instructions used for punching of paper tape under program control are listed below.

Refer to Volume 1 of this handbook for IOT instruction format.

Mnemonic Octal Code Operation Performed
PSF 700201 Skip next instruction if punch flag is a 1.
PCF 700202 Clear punch flag and punch buffer.
PSA 700204 Select alphanumeric mode and punch one char=
acter. Set punch flag when punch is complete.
PSB 700244 Select binary mode and punch one 6=bit char-

acter. Set punch flag when punch is complete.

The punch responds to the IORS instruction (Volume 1, Paragraph 3.7.1) by supplying the status of its
device flag and no~tape flag to the accumulator. The device flag interfaces with bit 02 of the accu~

mulator, and the no-tape flag interfaces with bit 09.

1.3.6 Functional Description

The PC15 Punch operates in the alphanumeric or binary mode, depending on whether a PSA or PSB
instruction is issued. When one of these instructions is decoded, information is loaded into the punch
buffer from bits 10 through 17 of the accumulator and is punched onto tape. During the interval the
punch operation is in progress, the punch flag is cleared to indicate the punch is busy. When the
punch operation is complete, the punch flag is set to 1 to indicate it can accept another input

character.

58

The operating sequence for punch operations normally begins with a PSF instruction to test the device
flag. If the device flag is 1, a skip request is returned to the computer, and the computer issues a
PCF instruction. This instruction clears the device flag and the punch buffer. The computer then
issues a PSA or PSB instruction. On decoding a PSA instruction, the reader loads the accumulator
input into its buffer, advances the tape, and punches one character. For the alphanumeric mode
channel 8 is punched as a function of bit AC10. For the alphanumeric mode channel 7 is perforated
as a function of bit AC11. After the character is punched, the reader sets its device flag, and the
process is repeated. This operation, performed by the PCF and PSA instructions, can be combined

by microprogramming the two instructions to form octal 700206.

The same principles are used for punching a binary character; however, a PSB instruction is used in
place of the PSA instruction. On decoding a PSB, the punch perforates channel 8 and inhibits the
punching of channel 7. The remaining six channels are punched as a function of AC12 through AC17,

and represent one 6~bit character of a computer word.

1.4 PROGRAMMING CONSIDERATIONS
1.4.1 High-Speed Paper-Tape Reader

To use the reader at the transfer rate of 300 cps, a select IOT (RSA or RSB) must be issued within

1.67 ms after each flag. This action is required because a 40 ms reader stop delay is present. When
this delay is activated, it overrides the select IOT input and subsequently stops the tape. Thus, if a
new select IOT is not received within 1.67 ms of the setting of the flag, the reader operates start=stop

and reads characters at 25 cps rate. No data is lost.

The RSA (octal 700104) and RCF (octal 700102) can be microprogrammed to form an octal 700106 in-
struction. This instruction reads the character, transfers the character to the accumulator, and ad-

vances the tape in one operation. An RSF (octal 700101) and RRB (700112) cannot be microprogrammed.

1.4.2 High~Speed Paper-Tape Punch

Channel 7 can be punched using only the alphanumeric mode. Therefore, when punching the last
character of a tape for hardware readin operation, the last character must be punched in the alpha-

numeric mode.

The PCF instruction can be microprogrammed with a PSA or PSB instruction to form octal 700206 or
700246 . This instruction clears the punch flag and buffer, selects the applicable mode, loads the

39

punch buffer, advances the tape, and perforates the character on tape. After completing the punching,
the punch flag is set to denote the punch can accept another character. Microprogramming the PCF

and PSF instructions is not allowed,

1.5 PROGRAMMING EXAMPLES
1.5.1 Paper~Tape Reader/Punch Handlers

All PDP-15 Systems are supplied with standard 1/O device handler subroutines for the paper-tape
reader/punch hardware, For PDP-15/10 Systems with 4K core, the COMPACT software includes
paper-tape handler routines such as PTLIST and PTDUP. The Basic I/O Monitor, supplied with
PDP~15/10E Systems with 8K core or greater, include standard I/O device handlers for the high-sﬁeed
paper=tape reader and punch. These standard device handlers operate in systems with or without API
and are upward compatible with all other monitors on the PDP~15/20 Software System. Complete in-
structions on use of standard paper-tape reader and punch handlers and their modification for special

applications are provided in the PDP-15/10 Software System Manual, DEC-15-GR1A-D.

1.5.2 Paper-Tape Reader Programming Example

The following subroutine illustrates the use of programmed IOT instructions to read a group of binary

words from paper tape. Twenty-five 18-bit words are read and stored in a table starting at ADDRESS.

NOTE

This example is for instructional purposes only and is not
to be considered a complete, fully tested software system

segment.
SUBRTE 0
LAW =31 /25 DECIMAL WORDS
DAC WDCNT
LAC (ADRESS
PAX
READLP IORS
AND (1000 - /1S THE PAPER TAPE READER EMPTY ?
SZA /YES IF NON-ZERO.
JMP* SUBRTE JEXIT....ITS EMPTY .
RSB /NO, START READIN‘S /., WWORD,
RSF
JMP -] /WAIT FOR IT.
RRB /GET IT FROM HARDWARE BUFFER.
DAC 0,X
AXR 1 /POINT TO NEXT LOC AT ADDR,

1SZ WDCNT /HAVE 25 WORDS BEEN READ?
JMP READLP /NO...CONTINUE LOOPING.
JMP* SUBRTE /YES. EXIT.

60

1.3.3 Paper=Tape Punch Programming Example

The following subroutines illustrate some paper-tape punch programming considerations. Their purpose
is to unpack successive 6-bit ASCII characters from a table, convert them to 7-bit ASCII, and punch
them on paper tape. The starting address of the table is placed in a location named ADDRESS. The
number of words in the table is placed in WORDCNT. After these parameters have been deposited,
the subroutines are entered by a JMS to PNCHOUT.

NOTE

segment .
PNCHOUT 0
LAC WORDCNT /THIS INITIALIZATION
TCA /ROUTINE STORES 2'S
DAC WORDCNT /COMPLEMENT WORDCNT
CLX /AND CLEARS XR.
NXTWORD LAW -3 /SET UP A COUNTER FOR
DAC COUNT /3 CHARACTERS.
LAC ADDRESS,X /USE XR TO GET EACH WORD.
RAL /AC HOLDS 3 6-BIT ASCII
/CHARS. ROTATE INTO LINK.
NXTCHAR RTL /ROTATE WORD 6 PLACES
RTL /THRU LINK. THE NEXT
RTL /6-BIT CHAR. IS IN AC12-17.
DAC SAVEAC /SAVE REMAINING CHARS.
AND (77) /THIS ROUTINE CONVERTS
TAD (40) /THE 6-BIT ASCII IN AC12-17
AND (77) /TO 7-BIT ASCII IN
TAD (40) /AC11-17.
JMS PPCHAR /READY TO PUNCH CHAR.
LAC SAVEAC /RESTORE SHIFTED AC.
ISZ COUNT /LAST CHARACTER?
JMP NXTCHAR /NO. DO NEXT CHARACTER.
AXR 1 /POINT TO NEXT WORD.
ISZ WORDCNT /LAST WORD ?
JMP* PPASCII /NO. DO NEXT WORD.
JMP* PNCHOUT /YES. RETURN TO PROGRAM.
PPCHAR 0
DAC STORE /SAVE CHAR. FOR '"NO TAPE'
/TEST.
IORS /LOAD PUNCH STATUS INTO AC.
AND (400) /TEST NO PUNCH TAPE BIT.
SZA /SKIP IF TAPE OK.
JMP EOT /GO TO END OF TAPE RTE.

This example is for instructional purposes only and is not
to be considered a complete, fully tested software system

6l

LAC STORE /LOAD AC WITH CHARACTERS
PSA /SELECT ALPHA MODE & PUNCH
PSF /WAIT FOR FLAG.

JMP -1

PCF

JMP* PPCHAR /RETURN TO SUBPROGRAM.

1.5.4 Programming With API or PI

The standard device handlers for the high-speed paper-tape reader and punch include complete inter-
rupt subroutines for both API and PI service. Details on how the Program Interrupt Conirol (PIC) skip
chain and the Automatic Priority Interrupt (API) channels are set up and provided in Part 111 of the

PDP-15/10 Software System Manual. The following example of a hypothetical interrupt service sub-

routine is provided for general understanding of interrupt servicing.

NOTE

This example is not a complete, fully-tested interrupt
service handler.

1.5.4.1 Program Interrupt Example

RSB /1SSUE READER SELECT ‘
. /BINARY IOT WITH PI ENABLE.
/REST OF USER PROGRAM.

.LOC 0
P 0 /SAVE PC, LINK, EXTEND MODE
/& MEM. PROT. BITS AT LOCO.

JMP SKPCHN /GO TO SKIP CHAIN.

SKPCHN SPFAL /POWER FAIL FLAG TEST.
SKP /GO TO NEXT TEST.
JMP* INT6 /GO TO POWER FAIL SUBRTE.
RSF /PAPER-TAPE READER DONE?
SKP /GO TO NEXT TEST.
JMP* INT2 /GO TO PTR INTERRUPT.
PSF /PAPER-TAPE PUNCH DONE ?
SKP /GO TO NEXT TEST.
JMP* INT3 /GO TO PTP INTERRUPT.

/OTHER» TESTS

/INT6, INT2, AND INT3 ARE PART OF A TABLE
/OF INTERRUPT SERVICE ROUTINE STARTING ADDRESSES.

/AN EXAMPLE OF INT2 FOLLOWS:

62

INT2 PTRPIC
PTRPIC DAC PTRAC

LAC* (0

1.5.4.2 API Example |

RSB

LOC 50
JMS PTRINT

PTRINT 0
DAC PTRAC
LAC PTRINT

DAC PTROUT

/15-BIT ADDRESS OF PAPER
/TAPE READER SERVICE
/ROUTINE.

/OTHER 1/O SERVICE ROUTINE

~ /POINTERS

/SAVE AC. ‘
/SAVE PC, LINK, BANK MODE

* /AND USER MODE IN PTROUT.

/REST OF INTERRUPT HANDLED.

/SELECT READER IN
/BINARY MODE

/REST OF INTERRUPT
/HANDLED.

/PAPER TAPE READER
/API ENTRY LOCATION

/API ENTRY. SAVE AC.
/SAVE PC, LINK, BANK
/MODE & USER MODE BITS.

63

PAPER TAPE 10TS

READER
INPUT

PUNCH
OUTPUT

ALPHA- LAC
NUMERTC Memory

ABPHA—; , LAC '
NUMERIC Memory |——P{ 0

ALPHA-
NUMERIC

BINARY

“ Channel 8=1
Channel 7=0

64

PAPER TAPE FORMATS

Assembled Programs May Appear In Two Formats

Hardware Absolute

Readin Binaxy

Format Format

1, Loaded using Hardware 1. Loaded using
control logic Absolute Loader

2, Output from assembler 2, Output from assembler
when use (FULL when use ,ABS

3. Load address supplied 3. Load address for each
by DATA SWITCHES block supplied as first
on CONSOLE word in data block

4, All words loaded 4, All words loaded
sequentially - no way sequentially until
to change where _ new load address
loaded supplied by data block

5. Read continues until 5. Read continues until
a frame with CHANNEL 7 START BLOCK.,

punched is detected.

65

PAPER TAPE FORMATS

Programming tapes are supplied in one of two formats:
1. HRI - Hardware read-in mode (.FULL assembly parameter)
2. BINARY OR ABS - (.ABS assembly parameter)

HRI tapes consist of 18 bit data and instructions punched in binary
mode (PSB), which are loaded in sequential memory locations via the
Hardware Read-In feature. The last word is an instruction which 1is
to be executed when read (d.e. HLT or JMP). The last word is in-

dicated by channel #7 being punched in the last frame of that word.

The load address is supplied by the address switch register{

ABS or Binary paper tapes consists of 3 basic parts:
1. ABS lLoader Program punched in Hardware Read-In Format
2. Data Blocks (there may be more than one)
3. Start Block (there is only one)

The ABS Loader (Absolute Loader) is a program in HRI format.

When read via the Console "Read-In" Key, it is loaded and started
automatically. While executing, the Absolute Loader reads and -
loads the remainder of the tape. The Absolute Loader expects the
tape it is reading to have a particular format containing Data
and Start Blocks. : .

DATA BLOCK - Consists of 3 control words (Data Block Header) fol-
lowed by the data to be loaded:
1. Load Address
2. Word count (not exceeding 25 and stored as a 2's complement
negative number)
3. Checksum

DATA

START BLOCK - A two word block at the end of the tape. It is
distinguished from a Data Block because bit 8 of
the first word is a cne (i.e. channel #6 in the
first of 3 frames is punched).

1. Starting address (777777 means "HLT" rather than "JMP"
to some lecation)
2. Dummy word (not used)

66

PAGE |

ep100
8ol oa
28101
20102
0103
PO124
e21dB5
pB1o6
8e187
@110
gellt

ge112

FLTST SRC

140040 ‘BEG

150004
348112
B4d111
740848
758084
548111
150040
150041

200220

PoBo31 ONE

P0G 00
8IZE=08113

TEMP

FULL
.LOC 120
HLT

LAS

TAD ONE
BAC TEMP
HLT

LAS

SAD TEMP
CLAIHLT
CMAICLA!HLT
2

.

.END BEG

NO ERROR LINES

67

) 89

200060028 86006 00 e

[(X X.

= See

© ® ofo e 2fe @ @io © e © oo © 0§56 © Ol &

.0 09 00 0 0 O &6 O 30 €

eeoo

pAGE !

20100
20100
22101
2102
02103
20104
00105
20186
221087
20110

goLil
pol1l2

FLTEST SRC

740840 ' BEG
750004

340112

paglll

740040

150004

540111

750040

758041

000008 TEMP
820001 ONE

ge0000
SIZE=808113

wFULL
.LOC 100
HLT
LAS
TAD ONE

PAC TEMP
HLT »
’ {0 _©06006°6 @
LAS ° co
. 6 ©® @c© |
SAD TEMP— |8 _e: 8.
. @ e 5.
CLAMHLT | Szt
® °
cmmcmmu/_—i—‘—:%
'/ H .
’) ' [] .
® ®
/ L 5 2
1 ' .
® 9669 :
«ENB T 'g.’ :
NO ERROR LINES (sumssmmsmmmes

68

PAGE

!

08100
02108
ge101
pol1o2
0183
ge104
20185
801086
o187
gal1le

8111

FULTST SRC

740040
750004
348111
848112
740040
150004
549112
750848
750041

geeesl
pee0eo

BEG

ONE

SIZE=88113

«FULL
.LOC 108
HLT
LAS
TABR ONE-
BAC TEMP#

HLT

i 8

LAS —

SAD TEMP
CLAIHLT
CMAICLA!IHLT

!

+ENB
NO ERROR LINES

69

| cacancas)
@ B0eeec6
kI .

[T T RN]
°
‘K. D80 @®
® °
Y 1
e
| & . [} ™
o @ Y XX :
K © B
4 @ L]
6 CXX)
| ® ®
5 e @
i ® ©& @e
A . @
1 ® ®
®
3 e
K-IX KX]
®
B [
e
L
- @
%
' °
1o es0ce
K] ‘e
§ese- o
i e

PAGE

!

80100
80100
gol1al
28102
88183
20184
001085
go1086
82187
ool1le

o112

TRY SRC

740040 BEG
750004
340112

248111

748048

- 150004

548111
758840
758041

000000
poB0D1 *L

«FULL

.LOC 128
HLT
LAS

- |DO
1YOU
SISEE
<WHAT
ITHE

TAD (1
BAC TEMP#

HLT

LAS
SAB TEMP
CLAIHLT
CMAICLAIHLT
oEND

SIZE=808113

NO ERROR LINES

“CHECK
LOCATIONS

70

PAGE

!

00100
eol100
gelol

po1a2
PB1083
00104
20185
80186
BaLvd7
00110

B 12RYA

 ABSVER SRC

7400409 BEG
150084

340112

g4B111

748040

750004

540111

158040
750041

oop100
200081 *L

SIZE=88113

«ABS

.LOC 188

HLT

LAS

TAR (1
DAC TEMP#

©HLT

LAS
SAB TEMP
CLAIHLT

CMAICLAIHLT

.END BEG

NO ERROR LINES{s . . &

tesS i >END OF
: ABS LOADEK

DATA
BLOCK
HEADER

g
HEN |

" 1rDATA

BLOCK

'“:*gﬁﬁwwgi\/ESLJhA P{Ei/\[)EiF?
° ’ DATA

§}START

]DATA

BLOCK

4

DOS-15 COOKBOOK

The format generator tape is read in under HRI mode

1. Set the address switches to 17720 (some tapes may call for
177Q0) .
2. Depress STOP, RESET, READIN.

Conversation program begins. Place Dectape on a unit other
than unit #. Don't take up more than 2 wraps. Follow directions.

Note: Before you can use the tape, you must go to PIP to clear
out the directory.

SPIP

DOSPIP VXX

>LuTT € DT1
N DT2

Loading DOS Into a Cold Machine

1. Mount DOS restore tape #1 on Dectape transport
Set rotary switch to 1
Set remote switch
Set write lock

2. ~Load DOS save-restore paper tape thru high-speed reader
Place tape in reader
Set address switches to 17720
Depress STOP, RESET and then READIN

The paper tape is read in and a conversational mode program begins.

INPUT: D'l“,
UNIT:
OUTPUT ¢ DK,

The program will tell you when to mount the second tape.
At the completion of loading, DOS has been placed on the disk.

3. To bring the resident Monitor into core:
Set address switches to X7637 where X = 1 for 8K
3 for 16K
5 for 24K
7 for 32K

Place the DOS bootstrap tape in the reader (usually on the
same tape as the DOS SAVE & STORE paper tape)
Depress STOP, RESET, then READIN,

DOS announces itself.

(2

s Note: The BOOTSTRAP stays in high core unless you cleverly
' manage to destroy it.

To get the monitor:

(a) Control C (echoed as 4C)

(b) Set address switches to X7646 where X is same value as
before: ST0P, RESET, START

(c) Set address switches to X7637 and read in bootstrap again

(d) The whole DOS restore procedure again

(e) Call a maintenance person

PIP
To call PIP SPIP
DOSPIP VXX
7
To list the directory from the disk on the teletype:
=L TT 4 DKy
To list the directory from the Dectape on unit 2 on the line
printer:
> LulP &« DTZ‘J
To transfer a file from the disk to dectape:
>TuDT1 € DK TESTFL SRCY
>TuDT 2, FILEA BIN & DKuFILluBIIp
MACRO
To call MACRO SMACRO
MACRO VXX

>BN < FILENM)
OR ALTMODE

To load a program generated under .ABSAor .ABSP:

l. Place tape in reader

2. Set address switches to 17720

3. Depress STOP, RESET then READIN.

This causes the absolute loader to be loaded. It starts

automatically and in turn reads in the rest of the tape--that
is, your program.

73

DOS~-15 V3A0028
L

*******************************#***********************************

EXAMPLE OF WRITING,ASSEMBLING AND LOADING A RELOCATABLE PRGGRAIN

ke ke 3K 5k K 3K 3K 3K 3K 5K 5K 5K K K 3K KK 3K 3K 3K 3k 3 K ok oK Sk 3K Kk Kk 3k ok sk e 3k 3K ok ok ok 3k 3 3K 3k 3k 55K K ok K 3 Kok Kok ok koK KK K

$EDIT

EDITOR V3A000
>0PEN SAMPLE

FILE SAMPLE SRC NOT FOUND.

TNPUT
LAC (7@7027¢
HLT
+END

EDIT

>CLOSE

EDITOR V3A280
>0PEN SAMPLE

EDIT
>N .
>C //START/
START LAC (727070
s LEND
+END
>A START
>P
.END START
SEXIT

DOS-15 V3AB00Q

‘A LP =12
$A DK =13
6K ON
$MACRO

3MACRO=-15 V3A0200
>BL«~SAMPLE

END OF PASS |
S1ZE=-D2203
BMACRO-15 V3AQ00
>1C

NO ERROR

LINES PAGE

p0OS~-15 V3A000
"LOAD

BLOADER V3A202
>P«SAMPLE

P SAMPLE SRC 77634
+S51S

i SAMPLE SRC

ARRAA R 2220202 R

30921 R 740040 A
2aanoema R

NBAN2 R 7070872 A el

START

SIZEmOAPB3

4

LAC (727272
HLT
«END START

NO ERROR |LINFS

REAL TIME CLOCK

References: Volume 1 Processor Handbook 6-42
System Reference Manual B=-14

The Real Time Clock option provides a user with time reference
capability for accounting purposes, periodic interrupts and interval
timing. The clock produces clock pulses at the rate of:

a) 60 times a second (every 16,7 ms) for 60 Hz systems
b) 50 times a second (every 20 ms) for 50 Hz systems
(the standard clock works off the line frequency--other clocks are
available to produce clock pulses at user defined rates),

or

When the clock is enabled (CLON), every clock pulse generates
a request for a break at the completion of the current instruction.
When the break is granted by the CPU, the content of memory location
000007 is incremented by 1. Location 000007 is the clock counter
register, As long as the clock is enabled, the process of location 7
being incremented at each clock tick continues.,

When the content of location 7 overflows (i.e, is incremented
from 777777 to 000000), the clock flag is set to 1., This condition
may be checked for by the use of a Skip IOT (CLSF). Note also that
the clock flag is interfaced to the PI and API systems so that if
interrupts are enabled when the clock fiag is set, an interrupt
request will be made,

Three IOT instructions are associated with the clock:

CLON 700004 =Clock On
-Enable the clock...increment
location 000007 every clock tick
-Clear the clock's flag

CLSF 700001 -Skip on Clock Flag Set,..the next
instruction is skipped if the
clock's flag is set

CLOF 700044 -Clock Off
-Disable the clock...do not increment
location 000007
=Clear the clock®s flag.

Since the clock counter register is memory location 000007,
its contents may be modified by a program. A standard technique for
using the clock is to preset the contents of location 7 to the
complement of the desired time count (in ticks) and then to enable
the clock (and the interrupt system if interrupts are to be used),
The clock flag will be raised (and an interrupt occur) at the end of
the specified time period., For instance, to raise the flag after:

1 second, set location 000007 to 777704 (-60,,==74)

5 secondsset location 000007 to 777324 (-300,,=-454g).

Notice that it is the 2's complement that is used. This example and
the following ones assume 60 ticks per second for the clock,

75

REAL TIME CLOCK

To check for an interval of 1 second by checking the clock's
flag, the following sequence can be used:

LAW =74 /74 ticks = 1 second

DAC 7 /or DAC* (7 if program is not in page O
. / or bank 0O

CLON /enable clock--start incrementing

CLSF /check for clock overflow

JMP .-1 /not yet

next mstruction /get here after 1 second

To check for an interval of 1 second via interrupts under the
PI system, the following sequence may be used:

/Main Routine

TIMERT

.LOC O

0

JMP* ,+1

TIMERT

.LOC 10200

LAW =74 /set clock for

DACx (7 /6010 ticks

CLON /enable clock;clear flag
ION /enable PI interrupts

continue with 1 second's worth of program

[A XN X XN J

.LOC 20500

DAC ACSAVE /save AC as it was at time of interrupt
. process clock interrupt--this may involve resetting
. location 7 or even disabling
. the clock

LACx (O -/pick up the return address from location 0O

DAC RETURN#

other instructions are necessary here so that when we
leave TIMERT the system looks as it did before the
1nterrupt occurred,

JMP+ RETURN /go back to where we were interrupted

76

REAL TIME CLOCK

To check for an interval of 1 second via interruptsunder the
API system, the following sequence may be used:

.LOC 2
TIMER /address of clock routine
.LOC 51
JMS% 2
,LOC 10200
LAW ~74 /set clock counter to =60 ticks
DAC« (7
CLON /enable clock,clear clock flag
LAC (400000 /enable interrupts
Isa /from the API system
. continue with 1 second®'s worth of program
.LOC 20500
TIMER O .
DAC ACSAVE# /save AC as it was at time of interrupt

2090000600000 RRBLBB QO

JMP+ TI

process clock interrupt

other instructions are necessary here so that when we
return to the interrupted routine, the system looks as
it did before the interrupt occurred.

MER /go back to where we were interrupted

77

REAL TIME CLOCK

The clock continues to count up from zero after overflow
At overflow detection, however, the clock counter is
usually reinitialized or the clock is disabled,

2. To enable the clock:

Use the CLON instruction (make sure the console clock
clock switch is OFF--front down; if the console is locked,

then CLON will enable the clock no matter what position
the console clock switeh is in),

3. To disable the clock:

or a) Use the CLOF instruction

b) Turn the console CLOCK switch ON (rear half

depressed; this will have an effect only if
the console is not locked),

4, Depressing the RESET switch on the console clears the
clock's flag and disables the clock,

78

PAGE 1 OUTIN SRC PROGRAM TO MOVE AC LIGHTS CENTER,OUT,BACK ETE
»TITLE PROGRAM TO MOVE AC LIGHTS CENTER,OUT,BACK

/
/
/
/
/
{6122 A «LOC 101060
12100 A 730002 A STARY I0F /TURN RT OFF
12401 A 754000 A CLALCLL
12122 A 7058a4 A 184 /TURN APY OFF (I18A WITH AC@=Q)
/
184063 A 18143 A B8ETUP LAC (npenng /8T BIT 7 BECAUSE ROTATE RIGHY
19104 A 880141 A DAC LH® /BEFORE: DISPLAYING
10109 A 210144 A LAC (200300 /8ET BIT 10 BECAUSE ROTATE LEFT
17106 A 080142 A , DAC RH® /BEFORE DISPLAYING
/
/MANUFACTURE THE DISPLAYED ACCUMULATOR VALUE
/BY TAKING EACH HWALF AND ROTATING IT IN THE APPROPRIATE
/OIRECTION, THEN ®XOR® THE HALVES FOR THE PULL VALUE,
/ _
. 10187 A 210144 A FORM LAC LM
1R110 A 740020 A MOVEL RAR
10414 A 250144 A DAC LH
10112 A 212142 A LAC RH
10443 A 740040 A MOVER RAL
18114 A 080142 A DAC RH
12418 A 280141 A XOR LM
18118 A 050140 A DAC DIBPLY#
/
/8ET UP THE REAL TIME CLOCK COUNTER==LOCATION 7
/ , , :
19117 A 777704 & TIMER LAW e74 /8ET UR COUNTER FOR
12120 A 072148 A , DACe (7 /ONE SECOND INTERVAL
/
/
EJECT

79

RPAGE

2

{91e4
{niea
10123
1@124

12428
18126
10127
o130
12131
12132
18433
12134
12138
1@136
12437

13443
19144
10148
102146
12147
10180

> > P >

b b b 2 b b b g _Jb B b 4

P P> > P

OUTIN BRC PROGRAM TO MOVE AC LIGHTS CGENTER,DUT,BACK ETC
/
/
/
/TURN CLOCK DN (FIRST TIME THRU) AND CLEAR cLocx PLAG,
/SUBSEQUENT USES OF H“CLON" ARE T0 CLEAR THE FLAG nNLv.
/THE CLOCK XKEEPS ON GOUNTING AFTER 1T OVERPLOWS T0 o,
/

210140 A LAE DISPLY

780044 A eLON

700001 A CLBF

618123 A JMP e
/
/KEEP ROTATING UNTIL THE ACm4000081 OR ACs@Q1440,
/WHEN AC EQUALS THESE VALUES CHANGE THE DIRECTION
/OF ROTATION, THIS I8 DONE BY ACTUALLY CHANGING
/THE INBTRUCTION "RAL"™ YO "RAR® AND VICE VERSA, IT
/18 ACCOMPLISHED USING THE "XOR®™ INSTRUCTION A8
/RAL®742018 AND RARN740020, . SWITCHING BACK AND
JFORTH I8 JUST A MATTER OF XORING WITH 0psa3e.
/(THERE ARE OF COURSE OTHER WAYS 70 SWITCHM})
/

5831468 A SAD (4nPE0Y

810132 A JMP CHANGE

§50147 A 8AD (@Q1400

745000 A sKkp

818187 A JMP FORM

2108110 A CHANGE LAC MOVEL

250480 A XOR (0@ea3e

888112 A DAC MOVEL

280150 A XOR (29@03p

458143 A DAC MOVER

618107 A JMP PORM
/

700044 A CLONRTORGA4

720008 A CLSFuPaRAB1
/

aiaLae A +END STARYT

202000 A w|,

000200 A w|,

080087 A wl

400001 A w|

PRL400 A wl

000032 A e

SIZEmi10154 NO ERROR L INES

80

PAGE 1 NOGLOB 8RC NON GLOBAL SUBROUTINE CALLS
«TITLE NON . GLOBAL SUBROUTINE CALLS

/
70041 A T8F87R2401
700486 A TLIR720406
/
ana@@ R 700@22 A START 10F
a0ani R 795514 A 18A+10
a00@2 R 708416 A TL8+10
/
AANY R 208743 R LAE (TABLE
aPAN4 R 343742 R DAC PTR#
au@a8 R 777772 4 LAW 8
BEAAE R B4AR4L R DAC COUNT#
20887 R 180233 R JMS CRLF
/
A9@18 R 220242 R MORE LACw PTR
BAALL R 10A226 R JMS PRINT
28812 R 1AAG33 P JMS CRLF
/ :
00913 R 440042 R 187 PTR
POAL4 R 440043 R 182 COUNT
20915 R 808010 R IMP MORE
JEXIT
/ |
aAR20 R OWANEM A TABLE 60
20821 R B0AREL A 8¢
aRAZ2 R 00@A62 A 82
A0023 R BAAA63 A 63
paA24 R 80AP64 A 64
20928 R 200ASS A 85
/
/
nee26 R 202020 A PRINT @
nB327 R 700401 A TSF
33638 R 608027 R JMR =i
2AA3L R 700428 A LS
89932 R 628726 R IMPw PRINT
/
70933 R 0008@2 A CRLF @
26034 R 762015 A LAW 18
A2A35 R 100026 R JMS PRINT
88936 R 768012 A LAW 12
28337 R 100026 R JMS PRINT
au@4p R 620733 R JMP« ERLF
/
adgaae R +END STARY
02P43 R 00AP28 R wl
S12Em0B044 NG ERROR LINES

81

PAGE 1 GLOBAL SRC GLOBAL SUBROUTINE CALLS
oTITLE GLOBAL SUBROUTINE CALLS
/

700484 A T8Fu700401
700406 A TL8=700406

/
«BLOBL ERLF,PRINT
/
/
09888 R 788002 A START lOF
a®an1 R 788514 A 184+10
99892 R 700416 A TL8+ 10
/
AR0a3 R 208232 R LAC (TABLE
30RR4 R 040027 R DAC PTR#
a®@a5 R 777772 A LAW o8
8A206 R 040026 R DAC COUNTH
22307 R 120030 E | IMSa CRLF
/
22810 R 220027 R MORE LACw PTR
89811 R 120031 € JMSy PRINT
APP12 R 120030 € IM8e CRLF
/
au@13 R 440027 R 182 PTR
P0@14 R 440226 R ISZ COUNT
22915 R 6a@ain R JMR MORE
JEXTT
/
PAO20 R 200068 A TABLE 6@
2@A21 R 0A@D8L A 61
#9922 R 0G@R62 A 62
30423 R 200063 A 83
92024 R 200064 A 64
aM@25 R 208066 A 85
/
300000 R .END START
22032 R 820230 E +«E
PAR31 R 308031 E wE
a0a32 R ABAR2R R i
8126220033 NO ERROR LINES

82

PAGE 1 ERLF SRC S8UBROUTINE TO PRINT OUT CR AND LF
JTITLE SUBROUTINE TO PRINT OUT CR AND LF

/
, .GLOBL ERLE,PRINT
APARE R AGAAAG A CRLE @
30801 R 760215 A LAW 218
3A0A2 R 120006 E JH8y PRINT
penny R 788212 A LAW 242
PRAB4 R (20086 E JM8e PRINY
20025 R 628800 R JMPe CRLF
‘ /
ABRORG A < END
PABEE R BAGVGE E »E
SI2Eu00007 NO ERROR LINES
PAGE o PRINT 8RC SUBROUTINE TO PRINT CHAR ON TT
.TITLE SUBROUTINE TO PRINT CHAR ON TT
, . .
, +GLOBL PRINT
700401 A TSFR70040¢
700406 A T.887084R6
/ .
/
/CHARACTER 18 EXPECTED IN THE AC
¢
70008 R A0BRGBA A PRINT 8
2301 R 760401 A ' TS8F
32092 R 60022 R JMP et
BAAB3 R 7204066 A TLS
20004 R 620700 R JHPw PRINT
/
ABaABR A s END
S1Z2EmB00858 NO ERROR LINES

83

DOS=-15 V3AR00
$A LP =-12

$K ON
$MACRO

3MACRO-15 V3A0020
>BL.G-~NOGLOB
END OF PASS 1
SIZE=-008044 NO ERROR LINE
tC

DOS=15 V3A020
SLOAD

3LOADER V3A000
>P«NOGLOB

P NOGLOB SRC 77573
12518

NN e—

DOS-15 V3A000
$MACRO

BMACRO=-15 V3A000
>B LG<~GLOBAL
END OF PASS 1
SIZE=820833 NO ERROR LINES
BMACRO-15 V3A009
>B L«CRLF
END OF PASS |
SIZE=-002007 NO ERROR LINES
BMACRO-15 V3A200
>BL«PRINT
END OF PASS 1
SIZE=020885 NO ERROR LINES

DOS=15 V3A000
$LOAD

BLOADER V3A0Q0
>P«GLOBAL ,CRLF ,PRINT
P GLOBAL SRC 77684

P CRLF SRC 77575

P PRINT SRC 77579

tS1S

84

DN

PAGE 1 AVGLOB SRC PROGRAM TO AVERAGE DECIMAL VALUES
.TITLE PROGRAM TO AVERAGE DECIMAL VALUES
QUQQQQQQQOQQOQUOQHOQQQ@@QOU00099900‘99009999959009OQQQOG

PROGRAM ACCERPTS DECIMAL VALUES PROM THE KEYBOARD,.
SUMS THEM AND PRINTS OUT THE DECIMAL AVERAGE (GIVEN
TO THE TENTHS PLACE) ON THE TELEPRINTER,

USER SHOULD FOLLOW EACH VALUE WITH A COMMA) TERMINATE.
THE LINE WITH CR, FOR EXAMPLES 3,18,29,4,(CR).

A S S . . N

/oooeoeeoooeeeeeaeoeeoooenueeeeeeeooooooeeoeoaeeooaoeeoe
/
700321 A K8Fa7m@301
700312 A KRBr7020312
700476 A TL8m7004026
: /

«6LOBL CRLF,PRINT

/
A0R0A R 707762 A BEGIN DBA JRUN IN PAGE MODE
aeany R 700002 A 10F JTURN OFF P
AMQR2 R 785514 A 184440 /AND AP INTERRUPT SYSTEMS
/
a0an3 R 780416 A TL8+12 l!NITIATE PRINTweGEY FLAG
A00n4 R 148317 R INIT DZM COUNTH /COUNTS % OF VALUES
aUAAS R 148120 R OZM FINALW JFINALS 8SUM OF VALUES
APaM6 R 120125 E JMSe ERLF JI8SUE CR AND LF
A20A7 R 148121 R NXT DZM NUMBH /TEMPORARY LOCATION
/
20410 R 708321 A NEXT KSF
20011 R 602RLP R IMP =1
20012 R 708312 A KRB
20213 R 542127 R SAD (215
29014 R 608035 R JMP ALLDUN JCR MEANS LAST VALUE
AEALS R 5401308 R SAD (284 /%, SEPARATES VALUES
20816 R 820038 R JMP DUN
ABB17 R 3M@3131 R AND (17 /GEY OCTAL NUMBER
39020 R 248124 R DAC TEMPH
/
a0824 R 208121 R LAC NUMB
ae022 R 653122 A MUL, '
30023 R 200012 A 12 ‘
AOA24 R 841002 A LACO /RESULT SMALL.,IN MO
22025 R 342124 R TAD TEMP /ADD ON LASY DIGIY
P00326 R @4P121 R DAC NUMB /8AVE IN NUMB
nea27 R 6pEBLP R JMP NEXT ‘
/
peade R 209121 R DUN LAC NUMB /GET THIS VALUE
pea3y R 348127 R TAD FINAL /ADD IT TO THE SUM
27032 R 240120 R DAC FINAL
/ -
AVP33 R 448117 R I8Z COUNT /KEEP TRACK OF WOW MANY VALUES
A8n34 R 620PA7 R JMP NXT

85

aRa33
ABB36
aend7y
ABA4Q
n2p4ay
pEg42
A0R43
BeA44

aen4s
20848
anadz
neaso
20981
22952
88083
a0a54
PAASS
AED56

aaas7

22060
nAn61
pEns2
ABE6I

2A064
prRaes
AAAGE

a0na67
weare

aun7i
ana72
nae7d
aAra7 4
20478
RAAT7 6
R2Q77
BALARQ
afiet
aa102
anLes
6104
28108
A21a6
BALAT

ani12

e0128
pai2s
eaiay
aeid0e
AB1314
aB132
Ba133

BT XLIB OOV D

P o) DDV DV DT DOD

DO DLTBDDDDD DD D B D B o

> 1]

D DDDDD

2eniy7
p4apai
200120
653323
pagaen
040123
64ing?
24m122

735000
28Q3122
653323
naaeie
a%e112
841042
741200
6p8a87
737004
600047

120125

219112
340132
120126
737777

724000
740100
éooase

200133
120126

areiL?
Qéaion
209123
633122
aeanie
641002
853323
200000
641002
3481382
120128
128428
780004
740200
600004

a0pR00
popies
penigs
00248
200284
oena1?
BRR260
Ba@256

De V>0 > 0 P> T e 3e 0O N0

> MO ™

VMMM O>P>P 2> UTD ™ B T

PP MWME >

vE
vE
vl
wl,
ol
",
vl

ALLDUN LAC COUNT

NEXXT

DUNN
DUNNN

REM

DIGIT
/

81IFe00134

DAC ,#3

LAC FINAL
IDIV

e

DAC REMAINM
LACQ

DAC QUOTH

cLX

LAC QuoT
101V

12

DAC DIGIT,X
LACG

SNA

JMP DUNN
AXR {

JMP NEXXT

JM8e CRLF

LAC DIGIT,X
TAD (260
JM8e PRINT
AXR w g

PXA
SMA
JMP DUNNN
LAC (256

JM8w PRINT

LAC COUNT
DAC REM
LAC REMAIN
MUL

1e

LACG

01V

@

LACG

TAD (268
JMSw PRINT
JM8e CRLF
LAS

SZA

JMP INIT
EXIT

«BLOCK &
+END BEGIN

/GET & OF VALUES

/8TORE FOR DIVISION

/GET 8UM

/REMAINDER RETURNED IN AC
/GET GUOTIENT IN MQ

/S8TORE IN TABLE

/PICK UP GUOTIENT

/CONTINUE IF NOT @

/8TOP WHEN QUOTIENT = @ ’
/PUT IN TABLE FOR LATER OUTPUY

/1SSUE CR AND LF

/T0 MAKE ASCII

/GET NEXT CHARACTER==WORK
JWAY BACK UP TALBE
/ARE WE DONE=wWMEN ¥RsQ, YES

/18SUE DECIMAL POINT W, ®

JWANT TO CONTINUE OR EXIT?
/1P SWITCHMES ARE @, THEN EXIT
/NON=ZERO=wCONTINUE WITH ANOTHER

NQ ERROR LINES EBES

PROGRAM INTERRUPT FACILITY (PI)

References: Volume 1 Processor Handbook 5-11
System Reference Manual 3-8

Preface: The Program Interrupt Facility increases the
efficiency of input/output operations by freeing a
program from the necessity of constantly monitoring
device flags. When PI is enabled and a peripheral
device becomes available or completes a transfer, the
PI automatically interrupts the program seguence and
causes a *JMS 000000" to occur, A subroutine at location
000000 may then sense the device flags to determine which
of the devices caused the interrupt, serv1ce the device,
and return to the main program.

The running time of programs using input and output routines
is primarily made up of the time spent waiting for an I/0 device
to accept or transmit information. Specifically, this time is
" spent in loops such as:

TSF /SKIP ON FLAG

J}IP 0-1

Waiting loops waste a large amount of computer time., In those

cases where the computer can be doing something else while wait-

ing, these loops may be removed and useful routines included to

use the waiting time. This sharing of a computer between two tasks
is often accomplished through the program interrupt facility, which
is standard on all PDP-15 computers, The program interrupt facility
allows certain external condltlons to interrupt the computer program,

It is used to speed the proce351ng of I/0 devices or to allow certain
alarms to halt program execution and initiate another routlne.

Each of the input/output devices has associated with it a device
flag which is set to 1 whenever the device has completed a transfer
and is ready for another. When the Program Interrupt Facility is
enabled, the setting of the device flag (connected to PI) causes a
program interrupt request. When PI is disabled, program interrupts
do not occur, although device flags may be set,

When the interrupt is granted, PI is disabled automatically,
the main instruction sequence is suspended and the hardware executes
a “"JMS 000000". This causes the contents of the Program Counter (the
address of the next instruction that was to be executed) to be stored
in location 000000 and the instruction in location 000001 to be
executed, '

The routine entered due to the interrupt is responsible for
finding and servicing the device that caused the interrupt. Usually,
the instruction in location 000001 is a JMP to a sequence of code
called a SKIP CHAIN which determines which device's flag caused the
interrupt and then jumps into a serv1ce routine for that specific

device,
- 87

SO 7

PROGRAM INTERRUPT FACILITY

The individual service routine then handles the condition
causing the interrupt, reenables the Program Interrupt system and
resumes mainline program execution by JMPing to the location
pointed to by location 000000.

The IOT instructions used to program the PDP-15 for
program interrupts are:

ION 700042 -Interrupt ON
~ ~BEnable PI interrupts
IOF 700002 -Interrupt OFF

-Disable PI interrupts

set 4-49 RES 707742 ~-Restore...i.e. set up for
the restoration of the
Link,Page/Bank mode,
Memory Protect bit from
the pointer word given
in the next indirectly
referenced instruction.

Use of the interrupt system allows a mainline routine,
referred to as the BACKGROUND PROGRAM, to execute without
wasting a large amount of time in waiting locops while I/0 devices
devices are assembling and transmitting information. The
interrupt service routine, called a FOREGROUND PROGRAM, is
entered automatically whenever an I1/0 device requires
servicing under program control,

e s cwmm cmem GuE eewe amee owen cmw owwn

88

REQUESTING AN INTERRUPT

Device
Flag
Raised

o Attached»”

n 0 PI? request

fInterrupt \
quuest /
CRANTING AN INTERRUPT

Anterrupt \
\Bequest

no interrupts;
keep reguest
on line

Execute
Another

PI Interrupt Granted*

89

no interrupt

-- requests for program interrupts

are made when flags are ralsed
for dev1ces tied to PI.

-= when the CPU receives a -

request for an interrupt, it
must decide if that interrupt
can be granted. :

PI interrupts will be granted
only
1)if PI is on
2)between instructions
3)after a non-privileged
instructions (privileged
instructions: IOTs, JMS,
CAL ,XCT , NORM)

*NOTE: The follewing have priority

over Pl
1) Data Channel Transfers
2) Clock breaks for updating

location 000007
3) API hardware interrupts

CPU PROCESS OF AN INTERRUPT -- an interrupt consists of1

N : -1)disabling PI
{Interrupt
Granted

2)executing a JMS 000000
Disable

PI

Y

Hardware

Recall that information is also stored in bits O 1, and 2

on a JMS. Location 000000 Bit O =~L1nk at time of 1nterrupt
1 = Page/Bank Mode Indicator
2 = Memory Protect Indicator

The word in location 000000 has fi{ewf@)—i—idwi'ri_gd—f_o“fr"@at:i

e 1 2 3 A o . 17

Ligk|Page [Memory | 15 bit address of the instruction that was
Bank {Protect| to be executed at time of interrupt

S0

PROGRAM INTERRUPT FACILITY

Single Device Interrupt Programming

When programming a system with only one possible source of
1nterrupts, say the paper tape reader, the handling of an inter-
rupt is very straight forward and simple.

0 000000
1 JMP PTREAD

PTREAD DAC ACSAVE /save registers used by the servie routine

code to handle the reader
-was it the completion of a read or an .
error condition that caused the interrupt
-store away the character read from the tape
-check to see if there is more to read
if s0...initiate the next read

.
A

EXIT LAC ACSAVE /restore registers
.ION /reenable PI

RES /set up to restore the Link, Page/Bank
/mode, Memory Protect bit on the next
/indirectly referenced instruction from
/bits 0,1 and 2 of the pointer word

JMP« 000000 /go back to where we left off

Multiple Device Interrupt Programming

Many programming applications use the interrupt system to
service several devices, For example, a PDP-15 may use the
interrupt facility to control the operation of paper tape (reader
and punch) through a teletype. Systems of this type require a
service routine that determines the source of an interrupt request
(i.e. which device flag is set). The following instruction sequence
uses dummy IOT Skip instructions to determine which device requested
an interrupt:

D1SF /is it Device 1?

SKP /no

JMP D1SRV /yes-=go to Device 1 service routine
D2SF /is it Device 27

SKP /no

JMP D2SRV /yes--go to Device 2 service routine

DnSF /is it Device n?
JMP ERR /no--not device 1-n, go to error routine
JMP DnSRV /yes--go to Device n service routine

Sl

PROGRAM INTERRUPT FACILITY

For example, suppose we have a PDP-15 system with high speed
paper tape reader and punch, teletype and clock and that is all.
The following gives a skip chain that could be used.

™)

000000
JMP SKPCHN

oo e o0

MAINLINE ROUTINE

SKPCHN

/

CLOCK

KYBD

7

TPRINT

PTREAD

PUNCH

CLSF

SKP

JMP CLOCK
KSF

SKP

JMP KYBD
TSF

SKP

JMP TPRINT
RSF

SKP

JMP PTREAD
PSF

JMP ERROR
JMP PUNCH
DAC ACSAVE
LA& ACSAVE
ION

RES

JMPs 000000
DAC ACSAVE

JIMPx 000000

DAC ACSAVE

JdMF% 000000
DAC ACSAVE

JMP% 000000
DAC ACSAVE

JMP* 000000

/did the
/no
/yes==go

/did the
/no
/yes==go

/did the
/no

/yes--go

/did the
/no
/yes=--go

/did the

clock cause the interrupt?

to clock service foutine

keyboard cause it?

to keyboard service routine
teleprinter?

to the teleprinter service routine
paper tape reader?

to reader service routine

paper tape punch?

/no--illegal interrupt occured-go to error routine

/yeg=——-go

to paper tape punch service routine

92

PROGRAM INTERRUPT FACILITY

An interrupt grant will cause the computer to perform the
following operations automatically:

1. The PI system is disabled. .
2. The contents of the PC is stored at memory location 000000.
3., The "JMP SKPCHN" in location 000001 is executed.,

(note that steps 2 and 3 are the equivalent of executing *“JMS 000000")

The SKPCHN routine then determines the source of the interrupt
and passes control to the appropriate device handler.

The device handler (interrupt service routine) then performs
the following operations:

1. The contents of the Accumulator (and any other registers
which will be used) is saved.

2. The interrupt is processed =-

-determine whether flag was raised due to completion
of transfer or an error condition

-store data transferred in and clear flag

input ~determine if more is to be input (if so, initiate it)

-determine if more data is to be output (if so,initiate it)

output -clear flag

3. Restore the Accumulator(and any other registers used
and therefore saved).

4, Turn the interrupt system back on (if further interrupts
are to be allowed).

5. Set up for the restoration of the Link, Page/Bank mode,
Memory Protect mode. The *“RESY instruction primes the system
for this restoration, although it does not actually occur
until the next indirectly referenced instruction is executed
(and then it is done using the contents of bits 0,1 and 2
of the pointer word).

6. Return to the mainline program via a "JMPx 000000"
instruction (recall that the updated PC was stored in
location 000000},

93

PROGRAM INTERRUPT FACILITY

NOTES

1. Instructions like CLSF,KSF and PSF are skip-on-flag
instructions, There are Skip I0Ts for every device in the
interrupt system. Because of the predominance of skip
instructions in the instruction sequence which determines
the source of an interrupt request, it is often called a
SKIP CHAIN, '

A skip chain may be enlarged to test for almost any
number of device flags, provided that high-speed devices which
retain information for a relatively short period of time are
tested near the top of the skip chain, so that the chain may be
traversed and the high-speed devices serviced before the infor-
mation is lost. High-speed devices should never be required to
wait for service while a long skip chain is traversed,

Notice that the order in which the Skip IOTs are placed
in the skip chain actually determines the priority of a device.
If two devices have their flags raised simultaneously, the device
whose Skip IOT appears closest to the top of the skip chain will
be serviced first,

2, It is possible that the SKIP CHAIN will not be in page O
or bank 0, in which case a "JMP SKPCHN" instruction in location 1
won't allow you to get there., Instead:

0 000000
1 JMP« 2
2 SKPCHN

will allow you to get to SKPCHN because a 15 bit address is picked
up from location 2.

3. Similarly, it may be that the individual device service
routines will not be located in the same page or bank as the
SKIP CHAIN, and therefore will have to be entered indirectly:

SKPCHN KSF
SKP
JMP» VKB
TSF
SKP
JMPx VTP
JMP ERROR

VKB KYBD
VTP TPRINT

4, With some devices, error condition flags set to 1 will also
generate interrupts. It is therefore the service routine's
responsibility to determine if the interrupt was caused by the
completion of a transfer or by the existence of an error condition,
For example, an interrupt may be caused by the paper tape reader

when: a) it has read a character and has assembled it in its buffer
b) it has attempted to read the tape but finds a no tape
condition,

Some error conditions may be checked using the IORS instruction,

In other cases, devices have their own status registers indicating
errors (e.g. MI',DK,DP,DT). 59‘4

AUTOMATIC PRIORITY INTERRUPT (API)

References: Volume 1 Processor Handbook 646
System Reference Manual 3-10
Overview: The Automatic Priority Interrupt system option in-

creases the capability of the PDP-15 to handle trans-
fers of information to and from input-output devices.
API identifies an interrupt device directly, without
the need of a SKIP CHAIN routine for flag checking.
Multi-level interrupts are permissable where a device
of higher priority supersedes an interrupt already in
progress. These functions increase the speed of the
input-output system and simplify the programming. In
this way devices (especially high speed devices) can
be serviced efficiently.

The API option increases the I/0 handling capabilities of the
PDP-15 by adding eight levels of priority servicing (0 - 7) and
associating 32 channels with these eight levels. The highest
four levels of priority, i.e. 0, 1, 2, 3 are assigned to hardware
devices. The lower four levels, i.e. 4, 5, 6, 7 are for software
purposes. ' '

Of the 32 API channels, 4 are assigned to the software levels 4 - 7.
The remaining 28 channels are available for use by the hardware
levels 0 - 3. Each of the four hardware levels may have eight
devices (channels) tied to it, up to the total of 28 for the
four levels. This is strictly a hardware limitation imposed
by cable lengths and circuit delays, and attempts to circumvent
this restriction will create needless problems.

Each of the 32 channels is assigned to a specific memory loca-
tion called the Break Address. The break addresses are locations
40 - 77 in page @, bank #. Each device tied to API is associlated
wiﬁh a specific channel (and therefore break address) and a specific
priority level. The table below gives the standard assignments.
The channel assignments should remain fixed for software compat-
ibility, but the suggested priority level may be changed (re-
wiring needed) at the discretion of the user.

95

API
Channel

APTI ADDRESS

Suggested
Break Priority
Address Standard Device Level
40 Software channel 0 4
y1 Software channel 1 5
42 Software channel 2 6
43 Software channel 3 7
uy DECtape (TC15) 1
45 MagTape (TC59) 1
NS
L7
50 Paper Tape Reader (PC15) 2
51 Clock Overflow (KW15) 3
52 Power Fail (KF15) 0
53 0
54 Graphics (VT15/VP15) 2
55 Card Readers (CR15/CRO3B) 2
56 Line Printer (LP15) 3
57 A/D (AD15/AF01) 0
60 DB9SA/DB98A 3
61
62 Data Phone (DP0SA) 2
63 DECdisk (RF15) 1
B4 Diskpack (RP15) 1
65 Plotter (XY15) 1
66
67
70 Scanners (DC01-ED) as needed 3
use 70-=77
71 UDC15
72 ADC15
73
74 LT19 & LT15 Teleprinter 3
75 LT19 & LT15 Keyboard 3
76
77

96

Each device, when granted service via the API facility, sends its
specific break address to the computer. This address, which will
normally contain a JMS instruction to the device service routine,
will then be executed by the computer. This type of interrupt
service eliminates the need for time consuming flag search routines,
and extensive core use for interrupt handling routines, by automat-
ically determining which device requested service and providing
immediate entry to the proper service routine.

Higher priority devices will be able to interrupt lower priority
routines upon sending and having a request granted. The priority
of devices multiplexed on the same priority level is determined by
the relative position of the devices on the I/0 bus. The first
device on the bus having highest priority at that level, the
second having second highest priority, etc.

The entire API facility can be enabled or disabled by a single
IOT instruction. There is no way to enable or disable specific
priority levels. However, for seme devices there are instructions
to disconnect itself from the API facility.

In addition *o the above, there are two special features in the
API facility. These are:

a. The CAL Instruction - Execution of a CAL instruction with the
API facility enabled automatically sets priority level 4
thereby shutting out software requests of a lower priority
until this level is released.

b. Program Interrupt - A program interrupt, from any I/0 device
connected to the computer, sets priority level 3. This occurs
whether or not the API facility is enabled. This causes
all devices on priority level 3, all software requests and
program interrupts to be shut out until the level is released.

Special care must be taken in the programming of the API option
to take account of these two features.

Q7

REQUESTING AN API INTERRUPT - requests for API interrupts are
made when device flags, which are
tied to the API system, are raised.

Device
Flag
Raised

Flag N
_ Attached tgs”
%, API?

/ Interrupt “
\Reguest

GRANTING AN INTERRUPT - when-the CPU-receives a request for an ir

mco—— interrupt, the CPU must decide if that
G

interrupt can be granted under API.

If PI is on,
request will be
processed for PI

av e |
, &~ we completed

NO |n instructiop

#NQTE: The CPU decides if it can

Execute grant an API interrupt in
Another ’ response to the API request.
YES Instruction The following have priority
over API: :

1) Data €Channel Transfers
2) Clack breaks for updating
location 000007.

Was
, it
‘ nprivilegedy

NO

ﬁighest

) Hang
Priority? On
S B ti l
highest

o8

API interrupt request granted *

The

DBK

RES

DBR

ISA

PROCESSING AN API INTERRUPT -~in proce581ng an API
_interrupt, the CPU
1) sets a priority level
bit to inhibit interrupts *
from channels of the same

Tnterrupt R or lower level of prlorlty
Granted |

2) pleS up the break
address sent by the device

Pick up
break

by device

3) does a hardware forced
XCT of the contents of the
break address

address sen

Set priorit
level bit
locking out
same and
lower level

y

]

‘Execute
.contents of
Break

I0T instruct

703304

707742

703344

705504

ions used to program the API system are:

-Debreak
-Reset the highest prlorlty level bit so that
operations may be carried out on same or lower ilevel.

-Restore
-Set up to restore the 1link, page/bank mode and memory
protect mode on next indirect 1nstructlon

-Debreak and Restore
-Initiate Selected Activity

-Used to initiate software level interrupts and to
raise the priority level of an operating program.

99

SINGLE DEVICE INTERRUPT PROGRAMMING

When programming a system with only one possible source of in-
terrupts, say the paper tape reader, the handling of an interrupt
is straight forward and simple.

MAIN LINE 50 JMS PTREAD
M1, PTREAD M2 Stored here after JMS PTREAD
M2 DAC ACSAVE

LAC ACSAVE

DBR

JMP*PTREAD

When an API interrupt is granted to the Paper Tape Reader, it
sends to the CPU its break address (50). The contents of location
50 is "XCT"ed. Since an XCT instruction does not change the PC,
the PC that gets stored in location PTREAD is the updated PC from
the mainline program (location M2). The interrupt is processed
by PTREAD and it does a debreak to release level 2 (its priority
level) and then JMPs back to the mainline program using location
PTREAD as a pointer. ‘

100

MULTIPLE DEVICE PROGRAMMING

When there is more than one device attached to API, handling -
an interrupt simply requires setting up the associated break
address with a JMS to the interrupt service routine.

50 JMS PTREAD
51 JMS CLOCK
52 JMS PWRFL

PTREAD g
DAC ACSAV1

LAC ACSAV1
DBR
JMP# PTREAD

CLOCK ?
DAC ACSAV?2

LAC ACSAV?2
DBR
JMpP* CLOCK

PWRFL g
DAC ACSAV3

LAC ACSAV3
DBR

JMP#* PWRFL

With this system there is no need for polling because when a
device is granted an interrupt, it sends to the CPU its associated
break address, which can then contain a JMS to a routine to
handle that device.

While in the service routine for one device, a higher priority

interrupt may be granted. This presents no problem because of
the manner in which return addresses are stored.

o]

Break.Addrésses
N p=-JMS " LEV2RT
M -JMS LEV1RT

Mainline program

LEV2RT | mB2 LEVIRT BLV2B

? e
[)
B1 LV2A INSTR ,)
interrupt here interrupt here. .
LV2B INSTR '
B2 .
-.“5‘ ° Q..'~‘-‘\---
. — JMP#* LEV2RT JMP%* LEVwRT

In this example, a level 2 device has break address N while a
level 1 device has break address M. The routine to service the
level 2 interrupt is LEV2RT and the routine to service the level 1
interrupt is LEV1RT.

When the mainline routine is jnterrupted by the level 2 device
between instructions in Bl and B2, the PC is pointing to:B2. The
level 2 device sends its break address of N to the CPU so that the
JMS LEV2RT instruction may be "XCT"ed. This causes the address
B2 (the contents of the PC) to be stored in location LEV2RT and
control passed to location LEV2RT + 1. If while we are at priority
2 in routine LEV2RT an interrupt is _Trequested by a device at level 1
that 1nterrupt can be granted because of its higher priority.
Suppose it is granted between instructions at LV2A and LV2B. Then
the PC contains the address LV2B. The level 1 device sends its
break address of M to the CPU so that the JMS LEV1RT instruction
may be executed. This causes the address LV2B to be stored at
location LEV1RT and control passed to location LEVIRT + 1. The
level 1 routine processes the level 1 interrupt. When it executes
the JMP* LEV1RT instruction control is passed back to the level 2
routine at the p01nt we left off, LV2B. The LEV2RT routine may now
resume its operation. When the JMP* LEV2RT instruction is executed,
we go back to the mainline routine at location M2 where we left
off and continue from there.

|02

RELOCATION RULES - -
A, IF-ADDRESS 18 A NUMBER (NOT.A SYMROL). . THE ADDRESS IS ABSOLUTE,
B, -IF THE ADDRESS IS A SYMBOL WWICH TS DEEINED BY A DIRECT

ASSIGNMENT STATEMENT (I.E. a) AND THE RIGHT=HAND SIDE OF THE
_ASSIGNMENT TS A NUMBER, ALL REFERENCES TO THE SYMROL WILL. BE
ABSOLUTE, _

IF A USER LABEL OCCURS quHih A éLotx‘ar chiﬁé THAT 18 AﬁSULUTE.
THE LABEL 1S ABSOLUTE, . . .

VARIABLES, UNDEEINED 8SYMBOLS, EXTERNAL TRANSEER VECTORS, AND. .
LITERALS GET THE SAME RELOCATION AS NAS IN EFFECT HHEN .END MS
_EMCOUNTERED -IN PASS 1, - :

C.

Dy -

 E. -1F_THE LOCATION COUNTER (,LOC PSEUDD OP) REFERENCES A SYMBOL -
WHICH IS NOT DEFINED IN TERMS OF AN ABSOLUTE ADDRFS%, THE SYMBOL
18 . RELOCATABLE, . . — , e i

F, -ALL.OTHERS ARE RELOCATABLE, . . —

PAGE _{ .. RULES _EXA = __ S
e e o ... JEXAMPLE OF RE{NCATION RULES FOR LINKING. LOADER .
e e o GLOBL. SURB e

20@a0a5 A ARS '
. Q22023 R BESTART. e
A%a%2 R 200005 A START LAC A
. 32333 R 205810 A e LAC 1@ S
B9322 R 204MAR R LAC B
22083 R 20@227M R . .. ___|LAC STARY _ e
0004 R 220010 E LAC+ SUB
30325 R 20Am3] A . MA@l
223968 R 204012 4 LAC (START
29205 R LLOC START+S
20335 R 208010 .4 STARTY LAC g8 T,
@%a08 R 20AM35 B LAC START1
.@3nQ37 R aeneam R _START o
@M@88 A _l0C.@ , R
29000 A 200080 F LAC START
p0pay A 200288 R ~LAC.STARTY. I
PAA2 A 200002 A START2 LAC START2
a%e23 A 2RRAAL R 8TARY
... pe@@@® A JEND . ____ . e
ARA10 A P0AALN E #E
. @2AA11 A 220122 A el e
20012 A Q0AAEN R w|
N SIZEe@P@13. = NO ERROR LINES . .

103

.+C
nosS~-15 V3AB80

$A LP -12
$K ON
$PAGE ON
$LOAD

LOADER V3ARG0
>P«RELOC

P RELOC SRC 77614
+S1Q

DOS~15 V3ABB0
$DUMP

DUMP V3AB880
>77614-776317

DUMP V3AB08

>1C

POS-15 V3A@88
SBANK ON
$LOAD

BLOADER V3A088
>P«RELOC

P RELOC SRC 77614 °

- +51Q

DOS-15 V3AD@8
$BUMP

~ BUMP V3A080
>77614=-77637

DOS~-15 V3AD08
$

104

PAGE 1 RELDE SRC PROGRAM SHOWING RELDCATION ELEMENTS
JTITLE PROGRAM SHOWING RELOCATION ELEMENTS

/
240 R 20600013 R LAC SYMBOL
ANARY R 2008017 R LAC B#
ANAr2 R PAPPIL R DAC SYMBOL#
AR2Av3 R Q48847 R DAC B
ARNAr4 R 220013 P LACY SYMBOL
AeANS R 16@011 A DZMe 11
ARARE R 220030 A LACs 14
ARARAT7 R 2088217 A LAC 12
aanle R 2068021 R LAC (END
AnALy R 208022 R LAC (END=SYMBOL
32G12 R 249222 R DAC €
AUAL3 R A05069n A SYMBOl, Seue
A2Q14 R BBBRAR A B
NeA1LB R Aaorad A 4
APP16 R ANQRRS A END 5

AR@ARR A <END
PRA21 R PARAQI6E R wi
BAA22 R AOACAS A el

STZE=QD023 i ERROR LINES

PAGE LOAD

77681 4=77837
77617 QRAAAD Q@PARGR APQNA0 208ARR 207827 207833 047630 047833

¢ 77620 2276827 1608014 220017 2007in 2947838 207636 Q47634 onSpan
77632 A0ArAR Qeaned 400205 AG3AAR AGRAAAR Q77632 @AA2AY OQRO76?

BANK LOAD

77814=77637

77612 QAAB00 QMARAG0 AGANGE 02008M 217827 217633 Q87637 @5763%
77622 237627 160211 2208174 20021B 217635 217636 @57634 0ae5000
77632 Qrepar APGONd 9NAR0NS QRAAGE AANAAD B77832 270023 02PA762

10}3)

~05-15 V3AD00
>IP

DOSPIP V3AZEO
s TT COPIA BIN « DTI

B6=MAR =15
DIRECTORY LISTING
346 FREE BLKS
66 USER FILES
118 SYSTEM BLKS
COPIA BIN 455 1

R

>L TT COPIA BIN « BK (P)

D6-MAR =75
~DIRECTORY LISTING (PES)
2282 FREE BLKS
32 USER FILES
34 USER BLKS

COPIA BIN 1567¢2) | B6-MAR-T5
40S-15 V3AEBO

$A DT1 -14

$a TT -12

SDUMP

_BUMP V3AD20

4554

4554

@ 015008 646531 262601 000004
10 034150 074623 230204 400000
20 000020 0PORC0D 0©C4D4B4 001885

38 002004 000012 015800 317540
40 040404 000012 0202005 00OO11
5¢ 040302 000012 6008180 Be9067
60 232718 0800825 420564 952833
70 474741 071640 232798 0200618

200085
002080
280001
950404
@50484
248710
2085000
002210

1008 T0 367 CONTAINS 200800

370 000080 OPOGPE OPO0BE 000080

pe0000

106

2e0078
000024
00coeD

200025
200025
000000
520247
20201 |

PopoeD

8710833
P40 404
B4 404

177736
777736
4071716
230718
2@1g05

goo0B0

412450
eBorel
goRRod
QoBRo4
280005
0226002
20008617
1767173

777777

PAGE

l

2080080
Peo8l
PBAB2
20883

pep04
20085
P86
BeosT

goole
goolo
geell
pBBi2
eeB13

22014
eoo15

goels
20oo17
32020

Bo0o2 1

popa2
PBo23

29824
Boe25
28867

b e ol -

o BB W VWO

=i

<l - s

x W ™ =X

COPIA

cooen4
2800801
2000080
200000

> D P>

p01885
200001
022000
Pe2eee

> D>

BP2004
p08010
2080825

> x>

177736

200004
gogela

D >

pO20B5
200011
Be2025

T >

177136

>

8000085
voeol12

600010

b~ > [P>

Pooo08

ggoele R

SRC .

*G
*G
*G
*G

*G
*G
*G
*G

*G
*G
*G
*G
*G

* G
*G

*G
*G
*G
*G
*G

* G
*G

NN N

START

. IOBEV 4,5

«INIT 4,08,8
+Px1800 4&7717

2+0
4

~INIT 5,1,0
CAL+1x1008 5&777
!
0+@

e

«REAB 4,2

/

/
BUFF

CAL+2%1088 4&7717
19 |
BUFF
.BEC
-34

JWAIT 4
CAL 4&777
12

JWRITE 5,2,BUFF,34
CAL+2*1800 5&7717

Il
BUFF
-BEC

-34
SWAIT 5
CAL S5&777
12

JMP START

.BLOCK 42

/
ENBMRK

/

SIZE=-90078

2

«ENB START
NO ERROR LINES

|07

- 1C

BOS-15 V3A080
$A BX ~-14

$bumMP

DUMP V3A000

>1567#
156 T#

2
19
20
38
40
50
68
78

1289
110
318

215500
834150
Bo00B0
202004
P40404
048302
2321710
474741

2000801
- TO
208000

646031
B74623
gCcoeoe
900010
poei2
geoali2
022025
871648

Bo1567
367

pooB20

262601
230204
B40404
215500
202805
cgeol1e
420564
2321708

Aeooa0

200084
400000
021205
317848
poRal1l
poBvBeT
852033
200010

200020

BeB0a5
Peoroo
poo0al
@50484
B58404
248710
885500
200012

002000

CONTAINS 200200

220000

200000

108

200000

200070
0000204
P00o02
288825

- 80025

000000

517547

geoall

goo0en

200008

271233
240404
P40 40 4
7717136
7717136
467716
230710
201205

2o0020

777777

412458
822001

B0Lo20

200004
220085
822600
002067
176773

PB20oe

717771

RADIX 508 VALUES
X-- —-X- -=X
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 c 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
o 056700 0 001130 0] 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300] 001370 S 000023
T 076400 T 001440 T 000024
8) 101500 9) 001510 U - 000025
A% 104600 \Y 001560 v 000026
w 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
Z 121200 Z 002020 Z 000032
% 124300 % 002070 % 000033
. 127400 . 002140 . 000034
0 132500 0 002210 0 000035
1 135600 1 002260 1 000036
2 140700 2 002330 2 000037
3 144000 3 002400 3 000040
4 147100 4 002450 4 000041
5 152200 5 002520 5 000042
6 155300 6 002570 6 000043
7 160400 7 002640 7 000044
8 163500 8 002710 8 000045
9 166600 9 002760 9 000046
171700 # 003030 # 000047

109

Ol

JGE PROG 1l SR(
g0208 R) «BLOCK 20080
00000 A +END
SIZE=020062 NO ERROR LINES
PAGE 1 PROG2¢ SRC
20208 R A «3LOCK 7580
2000808 A +END
SIZE=87500 NO ERROR LINES
PAGE | PROG3s SRC
i 200088 R A «BLOCK 500
' 00008 A +END
. SIZE=0@500 NO ERROR LINES
T O e M T TS e e e
PAGE 1 PROG44, SRC
00008 R) .BLOCK 7740
003008 A +END
S1ZE=BT7740 NO ERROR LINES
PAGE 1 PROG54¢ SRC
70868 R A «BLOCK 508088
p00080 A +END
SIZE:Qﬁ@ﬁﬁ NO ERROR LINES
R R
PAGE 1 PROG6s SRC
70008 R A «BLOCK 182
200800 A +END

S1ZE=002818 NO ERROR LINES

 481C

$PAGE ON
. $LOAB

P PROG5 SRC 78137
. P PROG6 SRC 78127

$L0AD 77637
BLOADER V3AB00 75637

>P«PROG!,PROG2,PROG3,PROG4,PROG5,PROGS
P PROG1 SRC 75637
P PROG2 SRC 66137
p PROG3 SRC 65437
P PROG4 SRC 58040

P PROG5 SRC 68437 _
p PROGE SRC 68427 | P‘ROGZ 7500

BOS~-15 V3A020

LOABER V3A080

>P«PROGI ,PROG2 ,PROG3 ,PROG4,PROG5 ,PROGSE
P PROG 657

P PROG2 SRC 68309

P PROG3 SRC 75137

P PROG4 SRC 58840

+5+C

p0S-15 V3AD0D
$

77637

75637
75137

70137
70127

70000 -
0 b
60000 —Kminiin

X0 A

IPF\’OG 2 7500

PROG4 7740

FORTRAN-IV AND MACRO

In previous chapters, MACRO calling sequences have been given for OTS and Science Library Sub-
programs. This general form is used in a MACRO program to call any FORTRAN external subroutine
or function. A FORTRAN program may also invoke MACRO subprograms. The method for each type

of linkage is given below. : . '

s INVOKING MACRO SUBPROGRAMS FROM FORTRAN

A FORTRAN program may invoke any MACRO program whose name is declared in a MACRO ,GLOBL
statement. The MACRO subprogram must also include the same number of open registers as there are
arguments. These will serve as transfer vectors for arguments supplied in the FORTRAN CALL statement
or function reference, A FORTRAN-IV program and the MACRO subprogram it invokes are shown

below.
FORTRAN MACRO
LTITLE MIN , ’
Cc TEST MACRO SUBR .GLOBL MIN, .DA
MIN 0 -/ entry/exit
C READ A NUMBER(A) JMS* DA / general get
' / argument
1 READ(1, 100)A / (OTS)
JMP +2+1 / jump around
100 FORMAT(E12.4) argument
registers
C NEGATE THE NUMBER
C ANDPUTITINB MINT .DSA 0 / ARG1
MIN2 .DSAO / ARG2
CALL MIN(A,B) LAC* MINI / First word of A
DAC* MIN2 / store at B
C WRITE OUT NUMBER(B) ISZ MINI1 / point to second word
ISZ MIN2 / of Aand B
WRITE(2,100)B LAC* MINI / second word of A
RAL / sign bit=1
CML /
RAR /
STOP DAC* MIN2 / store in second
word of B
END JMP* MIN exit
.END

118

The FORTRAN statement CALL MIN(A ,B) is expanded by the compiler to:

00013 JMS* MIN / to MACRO subprog
00014 JMP $00014
00015 .DSA A
00016 .DSA B
$00014 = 00017

When the FORTRAN-IV program is loaded, the addresses (plus relocation factor) of A and B are stored
in registers 15 and 16, respectively. When the MACRO program invokes .DA, these addresses are

stored in MINT and MIN2 and the values themselves are accessed by indirect reference.

Arguments are, as described above, transmitted by .DA using a single word. Bits 3-17 contain the
15-bit address of the first word. Bits 0-2 serve as flag. FORTRAN uses bit 0 to indicate that the word
specifying the argument contains the address of a word containing the address §F the first word of the
argument. The MACRO argument word always contains the address of the first word of the argument.
For array name arguments (unsubscripted), the address of the fifth word of the array descriptor

block is given with bit @ on.

For external functions, the MACRO subprogram must return with a value in the AC (LOGICAL,
INTEGER), AC-MQ (DOUBLE INTEGER) or in the floating accumulator (REAL or DOUBLE PRECISION).

s INVOKING FORTRAN SUBPROGRAMS FROM MACRO

The MACRO calling conventions for FORTRAN subprograms are: the name of the subprogram must be
declared as global; there must be a jump around the argument address; and the number and mode of

arguments in the call must agree with those of the subprogram. This form is shown below.

TITLE MACPRG

.GLOBL SUBR

JMS* SUBR

JMP AN+ / jump around arguments ignored by .DA
.DSA ARGI / address of first argument - bit 0 set to 1
.DSA ARG2 / indicates indirect reference

.DSA ARGN

When the subprogram is compiled, a call is generated to .DA which performs the transmission of

arguments from MACRO. The beginning of a subroutine might be expanded as follows.

119

BN

C TITLE SUBR
SUBROUTINE SUBR(A,B)
000000 CALO
000001 ' JMS* DA
000002 JMP $000002
000003 " .DSA A
000004 . .DSAB

$ 000002 = 000005

If a value is to be returned by the subroutine, it is most convenient to have this be one of the calling
arguments. An external function is called in the same manner as a subroutine but returns a vqlt;e in

the AC (single infegel:s), AC-MQ (double integers), or floating accumulator (real and double-precision).
To store the AC, the MACRO program uses a DAC instruction. Values from the floating accumulator
may be stored via the OTS routines .AH (real) and . AP (double-precision). For FPP systems, volue;

are returned in a hardware accumulator and stored with an FST instruction.

@ COMMON BLOCKS

FORTRAN COMMON blocks (and block-data subprograms) may be linked to MACRO programs. When
the MACRO program is loaded, global symbols are first sought in the user and system libraries. Any
remaining are matched, where possible, to COMMON block names. This cannot be done if

programs are loaded via CHAIN and EXECUTE. For example:

FORTRAN MACRO
INTEGER A,B,C .GLOBL NAME, .XX / .XX is name given to blank COMMON
COMMON/NAME/C / by the FORTRAN Compiler
COMMON A,B DZM* (XX / CLEAR A - NOTE INDIRECT REFERENCE
* ISZ . XX / BUMP COUNTER
DZM* XX / CLEAR B
DZM* NAME / CLEAR C

Note that if the values are REAL (two words) or DOUBLE PRECISION (three words), the MACRO program

must account for the number of words when accessing specific variables.

DOS-15 and RSX-PLUS MACRO programs may also use the .CBD pseudo-op. For instance
BASEl .CBD NAME 1

will provide the base address of the common block NAME in the word that is created and labeled BASE!;

the size of the common block is 1. For blank common, use for example:

BASE2 .CBD XX 2

120

PAGE 1 MACCAL SRC MACRO ROUTSNE CALLING FORTRAN PRQGRAM N
«TITLE MACRO RDUTINE CALLING FORTRAN PRQ&RAM

«GLOBL FORT
/ ' o
/0008000000000000000000000000D000000000000000BO000000D00

/ PROGRAM REQUESTS USER TO INPUT THE & OF ELEMENTS TO
/ BE SUMMED IN ARRAY A(4 TO i@ ELEMENTS MAY BE SUMMED),
/ THE USBER INPUTS A VALUE THAYT I8 ONE LESS THAN THE
/ ACTUAL NUMBER DESIRED, THE INPUT RANGE I8 0a8,
/ MACCAL CALLS FORT TO ADD 4 TO THE NUMBER TYPRED,
"~/ FORT IN TURN CALLS MACEX TO DO THE SUMMING,
/
/9699000069@009@@0099399990090969@9900009099990@&0969000=
¢
aneaae A INgR
200084 A QUTe
l A
nBANA R START o INIT =2, IN,R8T
.IﬁlT ~3.0UT.RST
/
pREBLO R REY sHRITE «3,2,MES1,34
sHWAIT =3
/ .
n2ni6 R CHECK «READ «2,3,BUFF,3 /READS ¢ CHARACTER
lwAIT af)
/
BER24 R 200148 R CKy LAC BUFFe2
2028 R 340184 R TAD (=60
A0A26 R B4B1486 R DAC BUPFFe2
B2a27 R 7411060 A CK2 SPA /X»808, OR Xaén
pRA3a R 622048 R JMP ERRMES /X460 80 ENTRY NOTV w8
AEQ31 R 3401562 R TAD (=ip /¥=B80=4228 MEANS Xa72
nenRl3e R 7401028 A CK3 $MA /%473 MEANS ENTRY <0ORe §
A0Aa33 R B0pR46 R JMP ERRMES A¥X2DRe72 MEANS NOT fw@
ARA34 R 2008146 R CK4 LAC BUFF#2
ABA3S R 840088 R DAC COUNT
/
APQ36 R 120188 E JM8e FORT
2037 R 600041 R JMR %2
AA@A40 R 2460585 R «D8A COUNT
/
AeA4y R 780004 A LAS
PRB42 R 740200 A 824
ne@43 R 60g@ip R JMP RST
/
<EXIT
/
AEE4es R ERRMES LWRITE «3,2,MESERR,34
2HALIT =3
A0284 R 800016 R JMP CHECK
/

BeA5SS R QA00GB A COUNT a

|21

PAGE

2

prab6
89057
aeaen
P0061
BAp62
80n63
aees84
200865
hO06s
peasd7
R2B70
poars
aea72
a8n73
20074
a0a78
aea76
aeay7
neLRo
gaLag
agia2
peL@d
aeLa4
40105
PeLNeG
gaLn7
gaila
aBL1d
an112
aR11d
ani14
80118
ARL16
A8147
2631249
ag124
283122
aE123
A6124
a0128
aL126
aaia7
an4139
P43y
Bni3e
32133
2B134
20135
AB136
aeid7
AR140

DD DD DDA DI TD IO TN DD DD DD IR DBDDODD

MACCAL SRC

e210600¢
ARaERe
§2283¢2
B42800
448344
B47834
4280114
442646
§i6gi2
444202
474840
444212
202362
546604
4268444
#4764 4
2BR131
442832
426382
451500
546372
520288
476834
442100
462234
342890
516631
4546612
421008
B3AL32
348228
éaanan
pBanae
Y- LT
a12P00
enenae
532@31
482642
202232
320236
826804
parsi 4
202480
147216
428344
30200
$226832
P42680
238408
5348416
202374

MACRO ROUTINE CALLING FORTRAN PROGRAM

/
MESS

MESERR

MESERR=MESL/2¢1000
@
«ABCII /TYPE IN ONE LESS THAN THE NUMBER OF ELgM

«ASCIT /YOU WOULD LIKE BUMMED (B=5),/

JASCIY «18»

BUFF=MEBERR/2¢10a7

2

+ASETY /VALUE 18 OUT OF RANGE, /

2ASCII /TYPE "@=907 ONLY/aiB8»

122

PAGE

3

228141
PRy A2
A0§43

20144
BR145
nBi46

an16a
80184
80132

D/ D 0 I D

n W

MACCAL 8RC MACRO ROUTINE CALLING FORTRAN PROGRAM

646262 A
A84000 A
ROAGAR A

/ |
RE2080 A BUFF ENDLOC-BUFF/2w1000
pRAGARE A]

A «BLOCK 2

/
B62188 R ENDLOCE,
pAgee R «END START
A9318p E «E
7777208 A |,
F77766 A w|,

8§12ER00183 NO ERROR LINES

123

ey
Ba2
nea
R4
fQs
npe
ag7
ng8
2@e
ni|
niy
nye
ALl
Aid
Mg
nLé
ALy
nie
nie
nga
nai
nae
a2
ne4
"2y
n26
naz
n28
nee
A3A
n31

3 IO LIDLI LD

FORTRAN CALLING MACRO EXAMPLE

THI® ROUTINE 18 CALLED BY THE MAGRO ROUTINE "MACCAL"Y,
"MACCAL" PASSES ONE ARGUMENT, N , TO VQRT
FORT ADDS § TO IT AND THEN,.,

THI8 FORTRAN ROUTINE CALLS MACRO PROGRAM 8SUM
TO PERFORM SUMMATION OF ARRAY A,
THEN THE SUM I8 PRINTED OUT AFTER TOTe,

SUBROUTINE FORT(N)

INTEGER AC18),TOY
AftieB
A(2)m6
A(3)a?
ACd)mB
A(S)m9
A(BImiaQ
Af731mi1
A(B8)ai2
AL93i=id
A(ip)mid

NENe i
CALL SUMCA,N,TOT)
WRITE(B,1) YOF

FORMATC4H ,'TO0T=?,140)

RETURN
END

| 24

"@
age
nasd
AB4
"Bs
ngs
ne7
"e8
89
Aia
ni
arBRa
paRal
Po0aR
paead
$A0@02
nie
LR
A14
BOAG4
LEEL)
paEas
paoa’?
pRR10
$R@aB7
paByl
a15
pReL2
pO@LS
ARy 4
@015
poeeLé
806048
naayy
LR Y.
Ane2e
paGel
poepeR
#0e23
PnD2 4
BRAGARS
PRG28
ny7
2np26
papa’
R R T
B3l
pPA@32
800831
20833
"8
nagE34
paB3s
PAB3IE
arp3?
eAN40
50pa37
pagdl
wie
PAGA2

FORTRAN CALLING MACRO EXAMPLE

THIS ROUTINE I8 CALLED BY THE MACRO ROUTINE ”HAﬁCAL"
BMACCAL® PASSES ONE ARGUMENT, N , TO FQRT
FORT ADDS { TO IT AND THEN,..

THI8 FORTRAN ROUTINE BALL& MACRD PROGRAM SUM
T0 PERFORM SUMMATION OF ARRAY A,
THEN THE SUM I8 PRINTED OUT AFTER TOTs,

DO

. SUBROUTINE FORT(N)
.D8A FORY
JMSe DA
JUP 3000082
LD8A N

" 00004

o
INTEGER ACL1Q),TOT
Af1)sB

CMALCLA

Tap (o0a@84

TAD A

DAC scoen?

LAaC (2oeoes

8 NA153

DAC# ¥1A
A(2)=6

CHMAICLA

TAD (o@@o@e

TAD A

DAC $00048

LAC (0P@RB6

® p2153

DACe XIA
Af3)ay

CMALICLA

TAD (p8@003

TAD A

DAC s$00223

LAC (@eoee?

8 AB183

DACe %IA
A(4)m8

CMAICLA

TAD (ocomné

TAD A

DAC Senedy

LAE (po@ABin

" ANLB3

DACe %IA
A(8)s®

CMALICLA

TaD (200005

TAD A

DAC s20037

LAC (oammit

2 AR153

DAC» %1A
A(B)m1@

CMALCLA

125

@A043 TAD (Roenes
2BB44 TAD A
20G45 DAC 800048
2@@4€ |LAC (2opBie
$ABAAS = Q0183
0EB47 DACe %IA
nead Al7)e1
RRASE CMALICLA
ARASL TAD (B0eea?
BRAB2 TAD A
PBP53 DAC 200883
280384 LAC (920213
8PRabY s GRL53
PBEABSE DACe %IA
-3 AfB)mi2
20086 CMALCLA
AeAS7 TAD (ven0iQ
PRAGA TAD A
G2R81 DAC 360861
pARB2 LAC (Goapid
830061 = @R183
annE3 DACs %IA
ngae AfR)Im13
BOE64 CMAICLA
0B85 TAD (dagmiy
RABEE TAD A
G067 DAC S306E7
gea7e LAC (260B4S8
500067 » BR183
PRE74 DACe %IA
n2a A(iB)mid
28272 CMALICLA
BAG?S TAD (soa@i?
pea74 TAD A
ane?78 DAC 830078
h24 G
aa@7?78 LAC (BRBBLE
8000786 = @3R193
BRAB77 DACw %IA _
n2s MEN+{
Paiae LACe N
eai0L TAD (200@881%
pR1B2 DAC# N
n2e6 CALL SUM(CA,N,TOT)
pALA3 JMSw SUM
aAind JMP Bai1D
eeiab L,08A 430000 <A
20196 ,DSA 422@8@ &N
anL187 ,08A TOT
ag7 WRITE(B,1) TOT
EALL? JM8e FW
22114 L.DS8SA (Q00RA6
6B1128 L0084 .1
n28 €
pai4d ,D8A 777777
‘ARL14 JHM8e FE
eai18 ,D8A TOY
PALLE JMS8e ,FPF
n29 i FORMAT(IM ,'TOT®!,118)

PALL7 JMF K@@L17
126

28128
AiRl
ppize2
RV L
gaiz4
pALes
8126
pnLe7
80BL47
n3a
aaL3e
A3
pRiSL
pBL3IR
20133
pR146
neL48
BemL47
gaiga
PAL8
paiga
gni83
PR184
i8S
pnniBeé
28557
pALEY
paLGe
pEL162
pPRL63
eRi64
2B168
gai18é
Pe187
paizae
ABLT L
paL7e
8aL73
BRL74
eBL78
FORT
¢ DA

o EX
TOT

2IA
« BUM

,D8A
D84
208
.D8A
LD8A
D84
2D8A
D84

2414314
n2a13a
236511
7824172
235311
130840
245004
p20108

® AGL34

JHMP

JMP e
o BLK
sD8A
084
s DBA
:D8A
.D8A
‘BLK
o BLK
084
o084
«B8A
2 DSA
sD8A
.D8A
D8A
JD8A
sD8A
«D8A
«D8A
«D8A
sD8A
2D8A
.D8A
D84

W 08A
=D8A

RETURN

nEX
END
ROBEG
« DA
paea1e
paasan
ganai2
peeo6e
naease
A
eaERe1
npaeal
SUM
oF W
oFE
oFF
naeael
naogald
gageag
paaeed
naaned
raesgea?
poAeR4d
eae0i0
12113 8
pevair
206043
nogelé

Paeeis

nRBBLEe

L7777
apL32
BeaB3
PR134
ne133
poise
aBL83
BaL54
paiiL?
pn158
808166
pa187

127

PAGE

{

neaae
aaany
a%a02
ABgad
BRan4
vldo)

A3aae
aepaz
neein

ARG
angie
n8aiL3
neAL 4
AeBL5
pAALE
peayy

nenea

BDDBD VDB o mBD DWW DD

MACRO FROM FORTRAN EXAMPLE

MACEX 8RC

/

/

/

/

/

/
2aonae A 8uUM
jeanzn E
6enené R
apooan A ARGY
aganme A ARG2
223000 A ARGS

/
220204 R
748031 A
240004 R

/
780n0a A
463983 R ADDER
440003 R
440084 R
Gaoei? R
peéoans R
620020 R

/
aeepae A
2nan2e E «E

SiZeangeal

«TITLE MACRO FROM FPORTRAN EXAMPLE

PROGRAM I8 CALLED BY FORTRAN ROUTINE T0
SUM ELEMENTS OF AN ARRAYewIT RETURNS THE
8UM IN A LOCATION WHOSE ADDRESS IS PASSED,

«CLOBL 8UM,.DA

@
JMS8e DA

JHP L e4

@ /ADDRESS OF ARRAY A

@ /ADDRESS OF LOCATION CONTAINING VALUE N
@ /ADDRESS OF LOCATION WHERE 8UM 18 RETUR

LACw ARG2
TCA
DAC ARGE

CLA

TAD® ARGY
182 ARG

187 ARGSE

JMP ADDER
DACw ARG3
JMPw 8SUM

«END
NQ ERROR LINES

128

DOS=15 V3A060

$R UPDATE

DAT DEVICE UIC
=15 DKA PES
-14 DKA PES
-12 TTA PES
-10 TTA PES

.$A LP =12/DK =12

$K ON

N

SUPDATE

UPDATE V3AB00
>NL«USERLB

>I CRLF

>CLOSE

o,

o

UPDATE V3AR00
>NLe o LIBR5

=1 CRLF
> PRINT
>CLOSE

UPDATE V3A008
>NL-MAIN

's] AVGLOB
> CRLF
=] PRINT

>CLOSE J

UPDATE V3A080
»1C

gOS~15 V3A000

UPDATE

2 e e ok 6 25 e e 3¢ 3k 3 afe e o sfesfirsisle ok sk sl e 3Kk ok sfe ok Sk ok ek

CREATING A LIBRARY WITH UPDATE

USE
OUTPUT sk ok Rk ok aRR sk kR ko ks sk ok koK skok ok

INPUT
LISTING
SECONDARY INPUT

USERLB CONTAINS ONE BINARY PROGRAM

.LIBR5 CONTAINS TWO BINARY PROGRAMS

” MAIN CONTAINS THREE BINARY PROGRAMS

129 .

tC

DOS~-15 V3A000
$PAGE ON

$R LOAD

DAT DEVICE
=5 NON
-4 DKA
=1 DKA

uIc
PES
PES
SYsS

$A BX -5

$K ON

$LOAD

LOADER V3A220

3 3k >t 2k >l e 8¢ ke Sk oK 23 ok Sk sk s sk e ke dfeske sk
MAKING USE OF LIBRARIES

WITH THE LINKING LOADER

USE
USER LIBR skskoloksokorsiokokkskoksdokokkokskokokkokdok

USER PROG(S)
SYS LIBR

>P+AVGLOB ,CRLF ,PRINT=emp ALL THREE FILES ° SPECI?IED.

P AVGLOB SRC 77563
P CRLF SRC 77474
P PRINT ©SRC 77467
15+8S

LAY

1,2,3,
2.0

POS~15 V3A008
$SLOAD

LOADER V3A200
>P«AVGL OB

P AVGLOB SRC 77583

P CRLF SRC 774174
P PRINT SRC 77467
+S1S

3,445,

4,

DoS-15 V3AG20
$LOAD

LOADER V3A200
>Pe«MAIN

P AVGLOB SRC 77583
P CRLF SRC 77474
P PRINT SRC 77467
1518

354,55,

DOS=-15 V3A000
$LOAD

LOADER V3AQ090
>P«AVGLOB ,PRINT

P AVGLOB SRC 77583
P PRINT SRC 77476
P CRLF SRC 77487
+S ¢S

3.4,5,

NONE PULLED FROM A LIBRARY.

il ONLY ONE FILE SPECIFIED.

THE OTHER TWO PROGRAMS--CRLF AND PRINT--
ARE PULLED FROM THE USER LIBRARY L.LIBR5S

AUTOMATICALLY.

mmfp THE FILE SPECIFIED IS A LIBRARY.
EVERY PROGRAM IN THE LIBRARY IS LOADED.

@ TWo FILES (PROGRAMS) ARE SPECIFIED.
THE THIRP PROGRAM =-=CRLF -~
IS AUTOMATICALLY PULLED FROM THE

USER LIBRARY .LIBRS5.

136

Dos-i5 vySAupg
$.0AD

LOADER V3AB88
>P«AVGLOB ,USERLB ,PRINT s THREE FILES ARE SPECIFIED.

P AVGLOB SRC 77583 THE FILE AVGLOB CONTAINS ONE PROGRAM(CAVGLOB)
P CRLF SRC 77474 THE USER LIBRARY USERLB CONTAINS ONE

P ?RINT SRC 77467 PROGRAM==CRLF ==, ‘
+S 1S ’ THE FILE PRINT CONTAINS ONE PROGRAM (PRINT).
39453, '

4,0

DOS =15 V3A000
$.

1 3

BATCH
(NON —B 0SS

References: DOS USERS GUIDE 8-30
DOS KEYBOARD COMMAND GUIDE 11

.D0OS~-15 V3A000

SL
st ek sfe e skt sk o skok sk sk sk e sk ke s skoke sk sk stk sk sk steskeskok ook skt skl kol ok ok skl stk ki sk sk okak ki sokokok ok kok
PREPARING A BATCH STREAM
SRk R Rk KRk s sk stk ik kB olok skt skl el ok ok sk ol ok ek skok ok oR o
SEDIT

EDITOR V3AGO3
>0PEN BATSTR
FILE BATSTR SRC NOT FOUND.
INPUT
$J0OB
PIP
L LP « DK <SCR»>
L LP FILBLK BIN « DK (P)
$J 0B
A LP ~-12
MACRO
BLGeME
$J 0B
GLOAD
P«ME
SEXIT

EDIT
sEXIT

DOS~-15 V3A00808

SL
ke sfe ke sk ke sk sk ke e ok e e sk st e skeste sk sk ke s sksk e ok sk sk o ek sk sk ok stk ske e skl sk ek ok ok ke skeok ksl sk ok Sk sk ok
GETTING THE BATCH STREAM OUT ON PAPER TAPE
steokok ook s ot ok ek sl ok sk ek sk sk s sk ok sfe sk ke sk skl otk skeok sk skl sl ke sk s ks el skeok sk sk ok sk sk e sk ke sk ok sk sk
$pP1P

T

DOSPIP V3A000
>T PP « DK BATSTR SRC

132

DOS~15 V3AB00

SL | - |
sfeske Sfesfe sfe e sk ofe o e ok ke sk ke sk ek s i sk ok Sk 6 3k e Sk sfe i ek e ik sk s skl sk sk sk sk e 2K she i e e ke e sk 3k ok R ok Sk ok le ok ek kol ok ok

RUNNING THE BATCH STREAM...PLACE THE PAPER TAPE IN THE READER

ke e e s e bk ok sk ik ke sk ok St ok ek s sk ke sk e e sl ok ke ke sk e sl ke ek sk e ke s ke sk skl b sk ko sk 3 koK sk ok ok 3k sk ke ok ok K ok ok SR

$BATCH PR

DOS=15 V3A800
$$.J08

PIP

DOSPIP V3A000

>}, LP « DK <SCR->
> LP FILBLK BIN « DK (P)

>$J0B
DOS-15 V3AB00
$A LP -l2

$MACRO

MACRO-15 V3A080
>B LGeME

END OF PASS 1
SIZE=@P0825 NO ERROR LINES
MACRO-15 V3A080
>$J0B

DOS=15 V3AQBD
$GLOAD
LOADER V3A@Q00
>P+«ME

P ME SRC 77612
P LPA.I5 849 770508

DOS=-15 V3A000

PSEXIT
DOS~-15 V3AB00
$

133

DISK FILE FORMAT FOR DOS:

1ST BLK

2ND BLK

3RD BLK

PAGE 1 BLOCK 8RC PROGRAM TO LIST ON T? BLOCKS IN A FILE ON DAT 5

, «TITLE PROGRAM TO LIST ON TT BLOCKS IN A FILE ON
/ :
50900@0909900909GQUQQSOQOOQQQODOQQQQ90003300000000000055
/PROGRAM LISTS ON THME TELETYPE THE BLOCKS USED By A PILE
/STORED ON THE DEVIRE ASSOCIATED WITH DAT 8.

/USER MUST KNOW THE STARTING BLOCK NUMBER (GIVEN BY PIP
/ON DT DIRECTORY OR QBTAINED BY UBING THE (P) SWITCH
/FOR DIRECTORY ON DISK, (L TT @ DK (P)]

/WMEN PRQGRAM HALTS, PLACE THE NUMBER OF THE FIRST BLOCK
/USED BY THE PILE IN TWE DATA SWITCHES AND THMEN HIT THE
/CONTINUE SWITCH,

/
/000000000000000000000000000200000000000V00DV0000000000PA,
4 -
/
« JI0DEV B
/ ' ' o
ABRER R 787782 A STARTY D84 ' /MAKE SURE IN PAGE MODP
«iNIT »3,1,0 FINITIALIZE DEVICES D
o INIT 8,0,0
/

F RO NIV I USRI NG NP IO RPN I RO AN R R T NN IR RO RO N D E IR WD
/GET BLOCK NUMBER AND FILL IT IN APPROPRIATE WORD OF
/.TRAN EXPANSION,

A2 Y Y E YR XX 2 s 2 i Y sz 2 111

/
BRB14 R 748040 A HLT /READ IN BLOCK NUMBER
#8012 R 7850004 A LAS /FROM DATA SWITCMES
GNQ13 R B4@NLY R DAC TRAN®2 /PUT IN ,TRAN EXPANSION
/BLOCK # POBITION
/
A0A14 R 100033 R JMS PRINT /PRINT OUT BLOCK @
/ ,
/
/
aNR15 R TRAN « TRAN 8,6,8,BUFF,286 /D0 TRAN .
«WAIT 8
/
/ﬁ*&ttttii*ti#G&t'i*ittiti&**tt*titti**t****tt*#*tb*tt*i~
/CHECK THE LAST WORD IN THE BLOEK JUST READ IN,
/IF THIS WORD & 7277777, THEN THE BLOCK JUST READ 18 THE
/IN THE FILE,. ‘
/IF THIS WORD NOT » 777777, THEN IT I8 THE NUMBER OF TH
/BLOCK USED BY THIS FILE,
T YTI YY1 T 3 22 I Y T Y X222 2222X2)
/
n0Q24 R 204472 R LAC BUFFe377 /PICK UP WORD 377 IN BLK
BOG285 R B48473 R 8AD (777777 /LABY FILE BLK(777777)7
pPP26 R 600288 R JMP ENDFTL /YES
pR2A327 R 160033 R JM8 PRINT /NO=PRINT OUY BLOCK

135

PAGE

2

a0@3a
20a31
a0a32

50@33
PRA34
39935
euade
20837
a0040
A0B41
peeae
puaad
BBA44
0ea4ad

20084

oeass

prasy
23962
BRG83
206871
asa7z2

REB7 I
20473

pR47 4
oBars

BDD

BB D DDV DD

B WXV DAD

n BB

BLOCK SRE
/*t*tﬁ**t*@**wtﬁtt#tbﬂttt**t*viﬁﬁytﬂi*t&t**t'tﬁtt**t**w*'{
/BEY HERE WHEN THERE ARE 8TILL MORE BLOCKS 7O THE FILE,
/PICK UP THE NEXT BLOCK NUMBER FROM WORD 377 OF FILE, =
/PLACE 1T IN THE APPROPRIATE WORD IN THE ,TRAN EXPANS!QN
/THEN GO DO THE ,TRAN
/*ﬁ*i**ﬁt&***@ﬁétt@ﬁ#ﬁ*tt*ﬁﬁﬁ@*tiéwtﬁ*##tt#w*t*tw#ttwtt*
/
209472 R LAG BUFF+377 . J8ET UP TO TRAN IN NEXT
046847 R DAL TRANR
866018 R JMP TRAN /D0 NEXT TRAN
/ , | ,
/*#t*twt*tQt&QQ****QQ*QQ*tﬁwttwﬁtt@#ttt*ttn*t**#ti*iﬁiat
/JCONVERT 6 OCTAL DIBITS TO & ASCII CHARACTERS
JEeeu bt aet iR R RRedvoudYdeeGWavOeR e RO RR RN RdRRRERRREY
/
Bogoen A PRINT]
682000 A LMA
735098 A eLX
Que474 R LAC (8
722000 A RPAL
780000 A NXT CLA
6406023 A LLS 3
346475 R TAD (68
0506683 R DAC BUFFOeR,X
7250a1 A AXS 1
6ag04n R JMP NXT
/
lit*t'i*#ﬁtw**Q**ﬁi***t#t*t*'#!ﬁ**'t****Qtittti*ttﬂttttﬁ
/OUTPUT BLOECK &
/Q****QQQ*iiQQ#*QQQO***#QQQi#tﬂﬁ#tit*.ﬁ!vt*tttttttﬁtttwt
/ .
,NRITE ‘3:333”’?0.9
oWA:T wd :
620033 R JMPe PRINT
4
T T I T I TR I YIYYEYIARARIRASRRNIISZ RS SS R AL L L L
/0N END OF FILE, CLOSE DAT =3 AND RETURN TO MONITOR
I*aw**wt*oawttt«aawﬁt**#tagwﬁtta**atttw#**t**aatg«ﬁtt***
!NDF!L 2 CLOSE »3
JEXIT
/
P25083 A BUFFO aesend
2eA0EE A]
A .BLOCK 6
aaeeLs A 18
RAgaie2 A i2
/
A BUPF ~BLOCK 400
/-
gacees R «END STARY
777777 A wl
80088 A el
peBeee A el
S11E=Q0G476 NQ ERRDR LINES

PRUGRAM 70 LI&T ON TY BLOCKQ !N A FILE ‘ON- DAT £-8

|36

EXAMPLE OF ONE BLOCK OF A FILE:

HEADER WORD ¢

HEADER WORD 1

"DATA"

HEADER WORD &

HEADER: WORD 1

(1] DAT A o

' HEADER WORD &

g

HEADER WORD 1

=3

NOT USED (gieieey)

NEXT BLOCK OR (-1)

| 37

BIT MAPS

BLOCKS 71 THROUGH 77 MAINTAIN INDIVIDUAL BIT MAPS FOR ALL FILES
ON DECTAPE, '

BIT MAP FILE RELATION:

DIRECTORY ?

BIT MAP @)

V4 .
71

files G- F
BIT MAP 1 i
]

BLOCK

77

FILE 54 .
BIT MAP 54

FILE 55

BIT MAP 55

THE INCLUSIVE "OR"™ OF ALL INDIVIDUAL BIT MAPS IS EQUIVALENT TO

THE MASTER BIT MAP.

| 38

DECTAPE FILE STRUCTURE

DIRECTORY (BLK #100)¢

MASTER BIT
32 WORD DEC,
MAP L
Lo S ae FILE ENTRY
Yo : _ 224 WORDS DEC,
TABLE

THE MASTER BIT MAP MAINTAINS A COMPLETE BLOCK BY BLOCK RECORD OF A
DECTAPE BY RELATING AN INDIVIDUAL BIT TO AN OCTAL BLOCK NUMBER: E. G.

BIT POSITIONS #| 1| 21 3] 4] 51 6] 71 81 9110 111]112({1331314]j15116417
WORD 8 Al 1] 2] 3] 4| 5] 6f 7f1o0f113§12113§14f15416{17{20]21
WORD 1 22{23124]25]26]27|30131132133§ 34 {354 36} 37} 40| 41 | 42 | 43
WORD 3 4445 » o o EIC,

/ ARREA

_jf“‘/j:;i. 4

THE FILE ENTRY TABLE IS DIVIDED IN 4 WORD SEGMENTS, EACH
SEGMENT DESCRIBES A FILE ON THAT DECTAPE,

Eo Ge .
WORD X Tjel|s
WORD X+1 Tipa} e "6 BIT FILE NAME '
WORD X+2 slrlc - '
WORD X+3 400005 1ST BLOCK OF THAT FILE,
7 : MSB = ACTIVE
bt X

139

0

UFD '

DOS FILE STRUCTURE

MFD

o

SAT POINTER

USER 1

A AR AR A A ‘ IJFD POINTER

USER 2

UFD POINTER

®

| 1ST BLK POINTER

12ND BLK POINTER

| 3RD BLK POINTER

(MASTER

BIT

MAP)

10

11

12

13

377

NOTES :

Master File Directory (MFD)

| -1 " DUMMY WORD
-1 OR POINTER TO BAD ALLOCATION TABLE
Sl s ilh = 7Y FE

SYS BLK'S FIRST BLOCK NUMBER

-1 IF NOT INITIAL MFD BLOCK

[34

-1 POINTER TO NEXT BLOCK /1 HMFD

b io1776 ENTRY SIZE (0-2) PLUS POINTER TO

STORAGE ALLOCATION IABLE

| 251103 (+SIXBIT "ch")

POINTER TO USER FILE DIRECTORY

i?4¢¢¢1¢ PROTECTION CODE FOR THIS USER (#)

AND FILE DESCRIPTION ENTRY SIZE

NOT USED

NOT USED

POINTER TO PREVIOUS BLOCK

MFD = BLOCK #1777 if RF DISK, 47048 if RPO2

PROTECTION CODE: 1 = Protected Directory, @ = Unprotected

ILLEGAL UFD'S: @@@, ???, and those that are current to the
system - PAG, BNK, SYS, IOS. :

141

User File Directory (UFD)

| 83p114 +SIXBT "CALH@@SRC™

| 100000

[232203

FIRST BLOCK OF THIS FILE f
(BIT § = TRUNCATION) |

'£,¢¢¢¢¢2 SIZE OF FILE IN BLOCKS

POINTER TO RIB BLOCK

* B FILE PROTECTION CODE (@~2);START
- LOCATION OF RIB

ekt ly)

r 7
| 142571 DATE FILE CREATED (12-21-71)

! 170623 +SIXBT "OFSCLKLST"
| #31413
| 142324

FIRST BLOCK OF THIS FILE

| pog116 SIZE OF FILE IN BLOCKS
POINTER TO RIB BLOCK

: FILE PROTECTION CODE (@=2) AND
e START LOCATION OF RIB

DATE FILE CREATED
(12=-21=-71)

| 142501

NOTES ¢ PROTECTION CODE: (Valid only if directory is protected)
1 = Unprotected, 2 = Write Prot., 3R/ Prot. ’

*RIB: The RIB may occupy its own block or, if room, occupy
an area at the end of the file it is describing,

TRUNCATION: File was not closed.

142

1C

DOS-15 V3A200
$A TT ~-12

$A DK -14
$DUMP
DUMP V3AQ022

>1777#
MFD

@ 7771777
10 202107
20 230322
3¢ 228523
40 TO
370 ©00200
DUMP V3A00Q2
>l T16#

1776# SS/\T"

3 ©BR4020
108 TO
@ 17171777
100 TO
112 17177177
128 T0
37¢ 0002060
DUMP V3A200
>G6#

1777#

ISy

2 Q40424

18 253005
20 061703
30 561411
48 561417
50 111623
60 111623
70 111623
100 T0
310 000002
DUMP V3A200
>653#
ss3¢« BDH
? 062416
1@ 0242515
20 042515
30 042515
42 561411
5@ TO
37¢ 200080

DUMP V3AQ00

>

s~ PAG UFD

I
~
~
~

KU)57 g
Lle e Gl 0
777777 BOBB34 481776 /111723
POBOSE 408010 000000 021613
021461 0Q0001@ 000000 020410
P@145]1 |\ 20010 Q00020 221319
367 \ CONTAINS 200000
000000 (000008 QCP0C8 000000
|
o E J P S Ter Y g
H [RN A
004000 gmzzasz 7717777 17117717
67 | CONTAINS 777777
775777 | 17171777 117777 1177171
187 | CONTAINS 777777
777777 [1717777 776520 000000

367 CONTAINS @00B20
@@0@@9/ g0oR00 0r0002 002800
0o002P 221116 BOB663 0B2313
P32524 Q21116 0OOB6SS 2OBLB3
11480 021116 000674 000022
p2222@¢ 021116 202713 03077
010400 g21116 01356 Q08011
P11414 232203 001205 00O0A6
52222 232203 0Q@1221 000210
242203 0221116 0201244 0002001

367 CONTAINS 2892320
Q00000 ©RRo00 QZ00R0 000Q00
611516 @21116 BB1455 0000@1
PVOPCY ©21116 @21457 0ORLB)
153108 300324 001465 000001
153120 308325 001467 000022
B22265 021116 @01534 020201

367 CONTAINS 2020000
022000 000000 Q00000 0O00J0

4.3

PoBR53
000B64
B2B653
201733

2oeo00

77717717
177717
200R0CY
goooee

2o3787
BovsI12
peB16!l
pe13217
gol376
vola2l7
PB1445
201244

020000

001455
Ra1 457
BO1465
801555
201534

020000

420010
400010
gRRo1o
Boov1o

177771

777777
717117117
poooee
777717

280136
200146
200062
200254
200244
2oeliz
280026
200119

7177777

2808152
202266

228026

220002
2oaese

771771

g
geveoad
Beeooe
LovdYe

1777117

17177177
177771
PoCo2e
7171711

A

B13104 ;

273184
27314
231285
181224
B13104
121264
273124

777171717

838305
832365
036385
830335
P38385

117171

PATCH:

SUBJECT: DOS=15 PATCH TO DUMP VOA

The following patch corrects a problem in DUMP which outputs incorrect
information on selective dumps. ‘

LOCATION OLD CONTENTS NEW CONTENTS NEW SYMBOLIC COMMENTS

16256 217406 617472 JMP PATCH /Patch area
17472 - 116434 JMS DEVICE /Device check
17473 - 217496 LAC (=1) /Restore inst.
17474 - 616257 JMP BACK - /Return

17224 10640% 2086408

DOS=15 VIA
SMICLOG SYS

$DUMP

DUMP VOA
AC

$R PAICH

oDAT DEVICE UIC USE
-14 DKA sYs I/0 = S¥S DEV
=10 TTA SYS SECONDARY INPUT

$PATCH

PATCH V1gA

>DUMP

>L 16256
>16256/217486> 617472
16257/357172>

>L 17472
>17472/215116>116834
17473/253512>2174066
17474/855116>616257
17475/214753>

>L 17224
>17224/186483>2B64P0
>EXIT

p0S=15 VIA
SDUMP

DUMP V9B
>

144

PAGE

i

PRE,

aea

| T T R i e s R R T R R R R Ry ey m ey,

PRB,
. TITLE PRB,

FIRST PRINTING, FEBRUARY 1874

THE INFORMATION IN THIS DOCUMENY I8 SUBJEECT 7O
CHANGE WITHOUT NOTICE AND 8MOQULD NOY BE CONSTRUED
AB A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION,
DIGITAL EQUIPMENT CORPORATION ASSUMES NO RESPON=
SIBILITY FOR ANY ERRORS THAT MAY APPEAR IN THIS
DOCUMENT,

THE SOFTWARE DESCRIBED IN THIS DOCUMENT 18 FURe
NISHED 7O THME PURCHASER UNDER A LICENSE FOR USE ON
A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH
INCLUSION OF DIGITAL'S COPYRIGHT NOTICE) ONLY FOR
USE IN SUCH SYSTEM, EXCERT A8 MAY OTHERWIBE BE PROw
VIDED IN WRITING BY DIGITAL. .

DIGITAL EQUIPMENT CORPORATION ABSUMES NO RESRONSIBILIY
FOR THE UBE OR RELIABILITY OF ITS SOFTWARE ON EQUIPw
MENT THAT I8 NOT SUPPLIED BY DIBITAL,

COPYRIGHT (C) 1874, BY DIGITAL EQUIPMENT CORPORATION

EJECT

45

PAGE

2

naBen
paney
avaea
AABAI
Adund
aonms
RAENGE
aaumy
ARDLA
RAGLS
BeAL2
BoE13
PBL4
RANLY
2698416
BEaL7
Aunan
ABRR21
waRR2
anuRd
aRGE24
RBHRas
pBH2s8

avnpar

Bee30

BB DRI NI IDDEDDD

 PRE,

aneand
7801614
700462
788112
788184
788144

LELREL)
BAG344
4483414
2203414
4408341

349422 |

BABBL 4
7088314
78@100a
777740
d4@160
BARASE
74n04@
énmpdy
7ARGAG
880358
angeer
spaaay
680848
SnEB52
6B0378
6onagy
6anaen
760008
628423

BB P D

B> BVT DT ITIPTr TV BT BRI B

nea

JCOPYRIGHMT 1978, DIBITAL EQUIPMENT CORP,, MAYNARD, MASS,

/PRB,

/PREB TIOR8 PAPER TAPE READER MANDLER ee IﬂP&ilﬂc!I&
#My BIFNAS/J, MURPHY
/7a38=68

/CALLING SEQUENCES

4o INTT

/CAL® DAT BLOT(Be{7)

Y

/CALeD,M,(6o8)+,0AT 8LOT (9ei?)

/i

/LINE BUF, ADDR,

/el OF
FaWATY

LeB, 0278 COMPY

/CAL®,DAT 8L0OT (9=47)

/12
¢MEDRS
RBPe7081
RCFB70061
RRBe7HA Y
REAm7a214
R3Bw7301

PRB,

PRTABL

PRERS

@t

ag

12

G4

44

«6LOBL PRB,
DAC PRCALP
DAC PRARGP
187 PRARGPR
LACe PRARGP
187 PRARGP
TAD (JHP PRTABL
DAC PRYABL
10R8

JEAL POINTER
/ARG POINTER ’
#INDEX TO FUNCTION ADBR,
/FUNGTTON ;
/INDEX TO NEXT ARBUMENT,

/8ET I0ON=IOF BWITTHM

SMAICLA A8 FUNCTION OP 198 STAVE

LAY
TAD
DAC
X¥

JMP
NDP
JHP
JMP
JMP
JMP
JMP
JMp

17740
PRION
PRDBR

PRIN

PRABEREK
PRERS
PRERS
PRWAIY
PROBY
PRRED
JMB PRERE
JKP PRWATR
LAY &

JMPe (,MED#y

FINIT PTR ROUTINE

/DN ENTRY INTO CAL LEVEL

) /18, INTT ‘
/28,DBLEY, ,RENAM, ,FSTAT = IGNI
/%e,8CEK » IGNORED,
/4n ENTER
/88 ,CLEAR
/88 CLOSE .
478 ,MTAPE » IGNORED,
f168 ,READ
/118, WRIYE .
/L28,WALITY OR .WAITR
#iLL, FUNCTION=CAL ADDR IN ,MED

PAGE

3

200314
eep3e
aea3d
36a34
AvQ3s
28036
aead7
a0R40
nHo4y
aRA42
aaa43

alad4

pRB4s
a0@B46
ARQ47
LR
20881
20052
aze83
pnes4
anass

n0056
peas?
nRa6a
a0n6y
20962
20263
panta
22368
A0a66
neas?
aNa7e
20871
nea’e
RRGB7I
paaz4

ana78
ana’e
anay?

poie0
aBiny
aein2
aaied
paia4
aa108
ge1ae
aeia7

T DB DD IDDI

DB DBDBDEBD DR BB VT DD DDIBDITBD DO DO BDRBTD

PRB,

440341
208424
06083414
4403414
engese
onoeye
7004104
00140
2nea4ad
Bana3s
600044

148044

200044
741200
6ap0s82
400340
8403414
740040
703344
4000889
620341
aapese
448341
gnognte
761000
g2e34n
741200
630048
200340
500425
A40349
220344
Bon426
e4addn
B4@340
440341
600045

228041
7402014
860080

Aa0m4l
288067
naay3?
220344
B40037
240036
440341
220341

= BBV D 2> DT DT

VDT BBDIDDAD B> B

aea

PRB,

PRIN 182 PRARGP
LAC (84
DACw PRARGP
187 PRARGR
CAL 80
PRLBHP {6
PRDBP REF
PARER RPTRINT
FRUND LAC 48
PTRWE DAC =8
PRCHAR JMP PRETOP
/B8TOP PTR ROUTINE, ELEARING /0
PRETOP DIM PRUND
/PTR WAILIT
PRWAIT LAC PRUND
SNA
JMP PRDBK
PRBUSY LAC PREALP
DAC PRARGP
PRDBK XX
DBR
AET o#d
JMPe PRARBR
PRNORSPRDBK
PRSEEK 1I8Z PRARGP
PROBKT JMP PRDBK

PRUATR LAW i0o0
ANDe PRCALP
SNA
JMP PRWAIY
LAC PRCALP
AND (700000
DAC PRECALP
LACe PRARGP
AND (77777
XOR PRCALP
DAC PRCALP
I87 PRARGBP
JMP PRWAYY
/PTR READ ROUTINE
PRRED LAC PRUND
SZALCMA /NO
JMP PRBLSY
/START UP PTR
PRSTRT DAC PRUND
LAC PRDBKI
DAC PTROUT
LACe PRARGP
DAC PRDBP
DAC PRLBMWP
182 PRARGPR
LACe PRARGP

PRNEXR

147

/INDEX TO BUFFER 8I2E RETURN REG

/8TANDARD BUFFER 8I2EsB2
/INDEX TO RETURN ADDRESS
/APY ADDR, = ONCE ONLY CODE; THE
/.SETUR L, B,H, POINTER,
, = DATA WORD POINTER
/PARITY ERROR SWITCH
/ » 1/0 UNDERWAY
/ = 218 COMP WORD COUNT
/ » CHAR PROCESSED
SWITCH
JELEAR 1/0 UNDERWAY INDICATOR

/8TILL READING

/BUBY, RETURN

/70 USER €AL,

/10N OF I1OF

/DEBREAK PROM CAL LEVEL AND RESY

JEXIY

/o WALT
I HA!TR
AL L

/BUSY ADDRESS

/70 NONeBUSY

/1/0 UNDERWAY?

STARY IV UP

/YES=WAIY IN BUSY LCOP BACK TO C

/8ET 1/0 UNDERWAY SWITEW (777777
JEXIT TO USER=MAINSTREAM

/l,B.H POINTER IN CALL

/L.B.M, POINTER

PAGE 4

ghlim
a8i141
a2112
ae113
86114
CEER Y]
an118
a0ii7
poiae
aegal

Be122
aB3123
#2124
20128
20126
a8127
2138
BB134
28132
AO133
gn134
#8138
ne136
60137

20140
ad141i
pEL 4
AB§4d
@144
AB148
#0146
Ge147
aeibia
ani51
80182
28183
82154
20188
80168
api87
ani8ae
aB184
pB18Q
80163
nei64
30165
nB186
86167
88176
a8471

DD DD TR DDA DDV DD BT EBDDDDBND DD DD BT DD

PRB,

n4onan
440341
787000
Seuddn
540427
genign
76ae07
820483
208430
240347

100317
188347
777773
240344
140346
1468348
140048
788314
500431
749200
6R0172
700802
708104
740840

689181
B40342
20@140
248343
7ap344
78ai0@
777740
340460
60@185
B4B342
220432
BeB_43
2aai6w
@40352
7e@112
B406B43
700042
28n166
B4@137
200041
741200
8nagan
7TAR3L4
5704314
741200
6a@a207

200 PRB, .
DAC PTRME /ol BLW,C, (278 COMP)Y
182 PRARGP JINDEY TO POINT 7O EXTY
LAW 70@@
ANDe PRCALP /CHECK FOR I0PS ASCI® MO
SAD (o000
JMP .*3 e
LAW 7 /ILLEGAL DATA MODE
JMPw taMED@i
LAGC (102 , /I0PS ASCII DATA MODE AN
DAE PRDTET /WD, PAIR CT, OF
/1 FOR WEADER, o
JMS PRNYXWD /INDEX PAST L.B, HEADER
JMB PRNXUD /JFOR TOPS ASCT?
PRICR LAW 17773 /877 CHAR
DAC PTRB7 /COUNTER
GZM BRECT /CLEAR CHAR €T,
DZM PRBCT JELEAR ASEIT BTH BIT SET COUNTER
DZM PARER /CLEAR PARITY ERR. BWITCH
PROUT2 IORS
AND (10200
874
JMP PREOM
ior
RBA
PTROUT XX /JMP PRDBK OR JMP PRDISM
/PTR INTERRUPT SERVICE
PYRINT JMP PTRPIC /PIC ENTRY
DAE PTRAC /ART ENTRY, SAVE AC
LAC PTRINY /PIC BR API, L, EM, MP
DAE PROUT
I0RS
SMALCLA
LAW 17740 /PIC OFF
TAD PRION /PIC ON
JMRP PRSION
PTRPIC DAL PTRAC /8AVE AC
LACe (@ /PICePEC, L, EM, MP
DAG PROUT fSAVE FOR EXIT
LAE PRION
PREION DAG PRS8W
RRB /READ PTR BUFFER
BAC PRCHAR
PRION ION
LAE PRDSMI
DAC PTROUY
LAEC PRUND ‘ JCHECK POR 8TOP BINCE LA
SNA /0. K, i
PRDSMI JME PRDISM /IGNORE LAST READ, STOP
10RS
;22 (1068 /PTR NOT READY? (30RS881)
JMP PRIOA

148

PAGE 8 PRB, 220 FRB,
/END OF PAPER TAPE ROUTINE

AB478 R 208433 R PREOM LAC (15 /CLEAR 1,8 UNDERWAY

RB173 R 846643 R DAC PRCHAR /FAKE BUT END OF LINE TEST

B0174 R 2008423 R LAC (4 /CHANGE MODE

BRL78 R 340347 R TAD PRDTET /70 EOM

RAL76 R B40347 R DAE PRDTET

B8L77 R 60B287 R JMP PRPAD

AO200 R 209342 R PRDISM LAC PTRAG

aA2m1 R 49RB382 R ¥ET PRSU : .

BR2A2 R 703344 A DBR /DEBREAX FROM HWANDLER LEVEL,

BRI R 4062604 R XCT % '

Bp224 R 628343 R JMPe PROUT
/END LINE

78208 R {48041 R PRIOBB DIM PRUND /CLEAR INPUT UNDERWAY INDICATOR

22068 R 4806137 R $CT PTROUY JEXTIT ‘
/RROCESS I0PS ASCTII

B2207 R 200m42 R PRIODA LAC PTRWE /8EE IF EXCESS DATA

BRRi8 R 740100 A 8MA ')

A0211 R 6A027V7 R JMP PRABED ' /YESwe=CONTINUE UNTIL C.
/COMPUTE PARITY AND EXIT IF NULL

B8212 R 777772 A LAW 17770 /PARITY COUNTER (=89

PERL3 R A40382 R DAC PRENT

pO214 R 140351 R DZM PRENTY

30218 R 200043 R LAGC PROHAR

pe248 R 8500434 R AND (177

BPB217 R 840435 R 8AD (12

#0220 R 6MG134 R JMP PROVTR2 /IGNORE LF

AE22% R 540436 R SAD (43

AAR22 R 686884134 R JMP PROUTR /IGNOQRE VY

Bn223 R B40437 R SAD (14 :

20224 R 689131 R JMP RROUTZ2 /IGNQRE FF

Ae225 R 2008043 R LAC PRCHAR .

AR2268 R 741200 A 8NA

P2227 R 888431 R JHP PROUTE ANULL

BB236 R 7400220 A RAR

@023y R 744408 A LY AR

AB232 R 440381 R 182 PRENTY /1 BIT COUNTER

PR2%3 R 440%38@ R 182 PRCONT

AR234 R 696230 R JHP wmd

RA2385 R 741420 A SZL : '

BU236 R 440348 R 187 PRBCT /8TH BITmi, ADD TO COUNT

BA237 R 4408346 R I8Z PRCETY

a0240 R 208351 R PRIOAL LLAC PRENTY /PARITY COUNT=8HOULD BRE EVEN

82244 R 740028 A RAR -

BE242 R 741400 A 811,

26243 R 440040 R I8Z PARER /NGBT EVEN PARITY

BA244 R 188324 R JMS PRENDT /CONVERY ALTMODES

0248 R 8560434 R AND (177 /DROP ALL BUT 7 BITS

BR246 R H540434 R 84D (177 /DELETE EODE (RUBOUT)=IGNDRE

P2247 R 882134 R JMP PROUTE

3028%3 R {66353 R JME PRPKSBY /PACK INTO L,B, IN 8/7

#9281 R 102324 R JM8 PRENDT

149

RPAGE

6

aeasda
80283
a02%4
20255
80256
aeasy
20260
anasy
a8262
pR263
0264

aB263s
20266
an287
a0278
#8274
ae272
8n273
80274
pR27s
ARazeé
aner7
30300
PR30 4
paleg
aB3n3
20364
ae3as
BR3868
aa3ez
20310
and1y
pa3ie
PB313
8314
P@318
BOB16
883417
aA%20
pe324
BR322
38323

AR324
nB328
aprae
Bm327
ae339
ne331
aa332
ge3I33

BT DDDBD DD DB DT DD NI AI DDV TINLDDDTDTID BROBD BB DBD

PRE,

748480
6081314
208346
3428440
gagia4
anB344
5434158
60p288
758800
169353
800257

200347
atpase
20B345
84346
660277
2ea040
749200
208441
260036
peaaE3e
109324
761101
880208
346037
aa0G37
7774e@
520037
240442
860a37
440037
220036
500443
74a208
600B134
200443
8ma2785
pBeaa0
448037
440042
620317
Apoa68s

BERAAG
209843
500434
548433
760018
540444
768478
540448

DD BB BDDDRT >

DBDB > DD DTDDIT>TITI DD >H T BIEE

D T eV TE>

paa

PRB.

8MA
JMP PROUT2
LAE PRCCT
840 (1
JMP PRICR
PRRAD LAC RTRB?
SAD PRSBCNY
JMP PRASE
CLA
JHS PRPKSBY
JMP PRPAD
/END OF IOPS ASCIY LINE
PRASE LAC PRDTCY
DACe FRLBHP
LAC PRBCT
84D PRECT
JHP PRABED
PRASE2 LAC PARER
824 /NG
LAC (20 /YES
PRASBE4 XORw¢ PRLBHP
DAC# PRLBMP
PRASE3 JMS PRENDT
SPAICLALICHMA
JMP PRICBS
TAD PRDBP
DAC PRDBP
LAW {7406
AND» RRDABP
XOR (33
DACe RRDBP
182 PROBP
LAGCe PRLBHP
AND (s@
8ZA
JHR PROUTZ
LAG (8@
JMP PRABES
PRNYWD @
182 PRDBP
I8Z PTRWG
JMPe PRNXUWD
JMP PRASE

/NEXT ASCII CHAR

/IGNORE BINGLE CR LINE ,
/HORD COUNT ALL SET.,

/PAD LASBT
/WORD PAIR

/WD, PAIR COUNT (INCL. WDR,)
IWD.B LigaHp

/DID ALL CHAR'S WAVE BIT 8
/NO = 10PS ASCII CHECK PARITY
/YES= ASSUME NON 10PS ASCYI
/PARITY ERROR

FRARITY

/ERROR INDICATOR,
/BKIP TO END LINE
/C,R, FOUND » EXIT,

/POINTS TO LASBT CHAR

/PUT CR IN LABY WORD PAIR
/INCASE MORE REFORE R

/VALIDITY BITS ALREADY 8

/LINE BUFFER OVERFLOW.

/INDEX 7O NEXT DATA WNORD
/INDEX WORD COUNT

ZEXIT FPOR NEXT CHAR o
JEXIT TO END OF IOPS ASCIY LINE

ZEND LINE TEST = CONVERTS ALTMODE YO STANDARD 178

PRENDT @

LAC BRCHAR
AND (177
8AD (15
LAW 48

§AD (176
LAW §78
8AD (176

150

ARETURN
/ALTHODE
/ALTMODE

PAGE

7

A03I34
a0338
6338
28337

an340
203414
nA342
AB343
80344
A0348
A0346
p8347
anlse
86351
80352

aa383
anzs4
#0358
B@3886
CLEL-YY
VLR
an3ay
goié2
80363
8364
8B368
pB386
AQ3B7
8037@
aB374
98372
BAI73
@ni’ 4
80375
aB378
G377
43490
pa4ny
BE4ane
P0483
Bad4nd
AB4u8
puéne
an4ar
80410
1 ERRY
na4ie

THD DD BT BBRED

PRB,

766178
Baaaqe
7804178
8206324

faeaee
apaeoe
arpaoa
aaance
granan
gnpaee
paeaae
gaaden
naeann
gaseen
Baeunne

LLELL
742020
742820
742620
742020
248350
777774
340353
200350
748040
042350
200421
740010
a4eday
200420
740010
adnazp
200381
745200
880404
44035
603363
440344
620383
600366
200420
a6en37
100317
200421
480037
20347
340431

D> D

> PR PP >»>DPP

#neo

- PRB,

LAW 178
$AD (33
LAW {78

JHPe PRENDT

JEBCAPE

AVARIABLES=NOT BAVED=APPLY Y0 CURRENT ACTIVE REQUESY

BRCALP
PRARGP
PTRAC
PROUT
BTRS7
PRECY
PRCEY
PROTCY
RRONT
PRONTS
PREW

SO ReS

JCAL POINTER
/ARG, LIST AND EXIT POINTER

/BAVED ACCINTERRUPT)

JRE 1, EM, NP

/CHAR, POSITION COUNTER IN 5/7 PAIR
JASELIaHITHeBTHuBITuSET=EHAR COUNTER
/CHAR €T, |
/DATA WORD PAIR IN LINE COUNTER
/PARITY CHECK COUNTER

/1 BIT EOUNTER FOR PARITY CHEEK

/10N OR IOF

/8/7 10P3 ASCII PACKING ROUTINE,
PTRS? I8 INITIALIZED 0 777773
PRIOR TO THE 18T CALL.

/
/
/
PRPKS7

PREKBK

PRBCK?2

PRADNE

)
RTR
RTR
RTR
RTR
DAG
LAW
DAL
LAC
RAL
DAGC
LAC
RAL
DAC
LAC
RAL
DAC PRLFHF
LAC PRLPEY
SNAJCLL
JMP PRPDNE
182 PRLPET
JMP PRPKBK
162 PTRE?

PRYMP
17771
PRLPET
PRTMP

PRTMP
PRRTHF

PRRTHF
PRLFHF

JMPe PRPRE7

JMP PRBOKR
LAC PRLFHF
DACe PRDBP
JME PRNXWD

LAC PRRTHF

DACe PRDBP
LAC PRDTEY
TAD (1008

151

/CHAR, IN AC BITS {1ei7,
/MOVE 7O AC BITS fef

i=7

/ROTATE CHAR LEFTY
/7 BITS THROUGH

/THE DOUBLE WORD
/ACCUMULATOR
/PRLPHF/PRRTHF

/2 WORDS ALL BEY,
/18 7 TIMES COUNY EXHAUSTED?

/ND, ’
/D0 WE MAVE § CHARS,

AN, EXIY

/BHIFT LEFY ONCE MORE!

/PLACE ACCUMULATED

/%2 WORDS INTO

JUSERS LINE BUFFER,

/UBPDATING POINTERS,

/INEREMENT
/DATA WD, PAIR

PAGE

8

BO4L3
no4i4
BA418
20416
2R 417

BA4aa
BR421

aB4R22
avaed
BR424
pB428
ABE4R6
na427
peadn
Ro4dy
Be432
BB433
BR434
23438
anae36
BR437
BR440
BB4al
BEddR
BB443
andd4
80445

BARIDDBI

DD DD DD OIDTEBADDBATTT B 3

B48347 R QAC PRDYET
109817 R JMS PRNXUWD
777773 A PRBENT LAW 47773
D46344 R DAC PTRB?
620383 R JMPes PRPKEY
a@a3sa R PRTMPRPRENT
pa|dsL R PRLPCTBPRENTY
BH0BB0 A RPRLFHF @
aaaaen A RRRTHF 2
gagoen a <«END
8nanid R o
GRABA4E A wi
Ba0084 A wl,
70008 A wl
B77777 A @),
enasae A ¢,
BBL18RR A w|,
aBLa88 A %
BARGED A wl
BOAELE A wl
GBRL77 A el
80812 A el
nEEBLT A wl
BRGBL4 A w|
280681 A wl,
SROBEG A el
BABA3IS A el
GoBB82 A o]
BAALTE A w|
A0B1768 A el
81ZEnND446 NO ERROR LINES

152

/COUNT
/REBET 3 CHAR COUNTER

/TEMR, B8TORAGE FOR 8/7 CHAR.:
JROTATE 7 BITS COUNTER,

/2 WORD ABCUMULATOR FOR

/B/7 WORD PAIR,

TABLE OF CONTENTS

SECTION PAGE NO.
INTRODUCTION,...........;..;......;.,... 154
UNICHANNEL 15 HARDWARE ARCHITECTURE ..ccccccccccccceasoaas 155
UNICHANNEL 15 SOFTWARE ARCHITECTURE ..ocsosecsccsacscsses 158
MEMORY LAYOUT ..:eceacscsccascccncsacacaancascssascanssase 162
PIREX TASKS «cteenvronsnronsussesoneasasoasansaacasoesoss 163
INTERRUPT LINK tuicueccocnconoococasacaanasssonascssscsnsse L1B7
MX15~B MEMORY MULTIPLEXERS «ctececsssccscccccsscoassonses 172
PDP-11/05 CONTROL REGISTERS .:cecessoccscaccsacassasascas 171

SYSTEM CONFIGURATION @ e o e ® ¢t ae 9 6@ 0 Q€8 0000 0CGE OO 6 0 @O O 96 OO 0 17,"‘
SYSTEM RESTRICTIONS ® @9 @0 0@ © 000 Q@0 e 00O G0 ®®EGE O 8 06@@0 TS SO0 0RO 175

PDP_lS UNICHANNEL OPTIONS 2 @ 0 ¢ 5 @ & ¢ & © @ ® 4 0 @ O @ O O @ O @ & @ O @ € & @ O O 177

153

INTRODUCTION

This guide describes in more detail, the UNICHANNEL 15 operation and
features presented in the RK15 Disk Cartridge System Option Bulletin.

The first sectionpresents a look at the UCl5 system architec-
ture.

The second section.....describes the PIREX montior system; how to
use it and other software aids.

The final section......provides, for those interested in creating

their own programs, a complete hardware specification including IOT

and reglster descriptions.

. Supplementing this guide are two manuals:

- Unichannel 15 System Maintenance Manual:..DEC-15-HUCMA-B-D
UCl5 Software Manual:....sesocecseosessess DEC-15-XUCMA-A-D

The maintenance manual describes the details of the MX15-B and the
DR15-C logic and gives maintenance details.

The software manual describes the details of the PIREX Monitor.

154

UNICHANNEL - 15 HARDWARE ARCHITECTURE

The term UNICHANNEL was created because it emphasizes the union of
Digital's UNIBUS with the big computer concept of the programmable
I/0 channel. UNICHANNEL 15 unites low cost, mass produced periph-
erals with big computer software and performance on the PDP-15.

UNICHANNEL 15 (UCl5) is a peripheral processor for the PDP-15 util-
izing the PDP-11/05 minicomputer. It provides the PDP-15 with a
second general purpose processor and a second high speed I/O bus;
the UNIBUS. This UNIBUS is an 18-bit pathway permitting transfer
of either 18-bit words, l6-bit PDP-1ll words, or two 8-bit bytes.

The UC15 allows flexible low cost configuration and expansion
of PDP-15 systems.

The UCl5 minimizes the peripheral processing load on the PDP-15
allowing maximum computational throughput in a low-priced,
medium scale system.

PDP-15 I/O BUS

UNIBUS ‘
bttt PDP-15 | s

FIGURE 1: Simplified UCl5 Diagram

UNICHANNEL 15 OPERATION

There are three major components of the UCl5:
1. A PDP-11/05 computer with "local" PDP-1ll memory.
2. An MX15-B memory multiplexer which allows both the PDP-15
processor and the PDP-1l1 processor to share common memory.
The shared memory is ordinary 18-bit PDP-15 core memory.

3. An "interrupt link" to provide a real-time means of inter-
processor communications.

155

PDP-15 MEMORY

(up to 128K
words)
MX15-B
MEMORY
MULTIPLEXER
UNIBUS PDP-15 PDP-15 I/0O BUS
COMPUTER
PDP-11 PDP-11
MEMORY CPU
INTERRUPT
LINK
Figure 2: Diagram of UCl5 Hardware Interrelationships

156

SUMMARY - UNICHANNEL 15 HARDWARE ARCHITECTURE

This particular architecture was chosen because of its many advan-
tageS.ceacos '

PDP-15 Memory is addressable by the UNIBUS. Hence, DMA transfers
from and to such secondary storage devices as disks are direct.

The interrupt link provides inter=-processor signaiing on a micro-
second basis. This is ideal for efficient real-time service --
a necessity for flexible I/0 control.

All PDP-15 systems may be upgraded by addlng the UCl5. All memory
remains useable. ‘

Cost is minimized by allowing the PDP=1l to share the PDP-15 console
and paper tape loader system.

Maximum use of the PDP-15 memory is maintained through synchroniza-
tion overlap with memory use by the MX15-B. This "pre set up" tech-
nique increases the number of memory cycles per second when both
PDP-15 and PDP-11/05 are accessing the common PDP-15 memory. -

The UNIBUS provided by the UCl5 is electrically compatible with any

device meeting UNIBUS interfacing specifications with the following
restraints:

1. UNIBUS lengths must be kept short.
2. No provision is made for UNIBUS parity.

Data in the common PDP-15 memory may be treated as either 18 or 16
bit words or as (2) 8-bit bytes.

True simultaneous parallel processing is possible in the local and
common memories.

The DMA rate is high and the worst case and average latencies are
low for maximum I/O performance.

Finally, the system is highly modular allowing flexibility in con-
figuration and excellent software utilization and control. The
system permits variations in both local and common memory size. It
allowsS almost any combination of PDP-~15 and UNIBUS peripherals.

57

UNICHANNEL - 15 SOFTWARE ARCHITECTURE

The hardware architecture is complimented by sophisticated system
software. PDP-15 software systems running with a UNICHANNEL

system relies on PIREX, a compact multitasking peripheral executive.
In addition to PIREX, Digital supplies UNIBUS device drivers,
UNICHANNEL compalible handlers, and supporting utility functions.

The software system used by UCl5 consists of two parts:

1. One component is a mutli-programming peripheral processor
executive called PIREX and is executed by the PDP-11.

2. The other component is an operating system in a PDP-15.
(e.g. DOS-15 or BOSS-15).

PIREX

PIREX is a multi-programming executive designed to accept any num-
ber of requests from a PDP-15 or PDP-1l and process them on a prior-
ity basis while processing other tasks concurrently. PIREX ser-
vices all Input/Output requests from the 15 in parallel on a con-
trolled priority basis. Requests to busy routines (called tasks)
are automatically queued (entered into a waiting list) and processed
whenever the task in reference is free. 1In a background environ-
ment, PIREX is also capable of supporting any number of priority
driven software tasks initiated by the 15 or the 11 itself.

Figure 3 shows the communications flow in a UNICHANNEL system.
The possible links which may exist in the system are as follows:

l. Handler to driver to allow the PDP-15 to use a UNICHANNEL
device.

2. Handler to non-driver task to allow the PDP-1l1l to intercept
output and manipulate it or store it for spooling.

3. Program to non-driver task to allow cooperative processing

on the two CPU's as occurs in the use of the MAC-11l assem-
bler.

158

INTERRUPT LINK-TASK CONTROL

BLOCK STRUCTURE

BUFFERS IN
SHARED MEMORY

l bbb b Gt 3 '
DEVICE | | DEVICE
HANDLER | PDP-15 | DRIVER

I o |
DEVICE | <~ I | DEVICE
HANDLER | 0 ~~T~—1{ I | DRIVER

1 — \\\ {

| y =P
SOFTWARE | | SOFTWARE
TASK | I E . TASK

1 DO P |

| 7% |
SOFTWARE ' | SOFTWARE
TASK o I'TASK

| g===—d====t===p |
DEVICE I R ' DEVICE
HANDLER | l DRIVER

Figure 3 : DIAGRAM OF UNICHANNEL SOFTWARE SYSTEM

159

- UNICHANNEL ADDRESSING

The Un1channe1 system makes use of a PDP-ll
as an intelligent peripheral controller for
In order
to effectively operate with a minimum of:
interference with the PDP-15, the PDP-11l

the larger PDP-1% main computer,

uses ites own LOCAL MEMORY of between 4K | .

and 12K 16-bit words,

COMMON MEMORY is that memory

directly accessable to both

the PDP-15 and the PDP-11,

COMMON -MEMORY -eccupies the
upper portion of the PDP-11
address space and at the

same timg the lover pertion
i of the PDP-15 addréss space.,

' NOTE: -

B PDP—ll LDCAL NEMORY
; +

i PBP*&S/P?P*II EOMHﬂNLMEMﬁRY

\must not axceed¢2§K¢

DOS~15 requires a minlmnm'of

16K of memory on the PDP-15,
‘Thereforeé, the PDP-11' LOCAL™
"MEMORY- may he*lﬁk og 8K or 4K. -

NOTE: The PDP-l} is a byte o
oriented machine, The 8-bit

bytes are numbered sequentially

- with two 8=bit bytes corresponding

to one 16-bit word. -
Thug==_ .
OCTAL
WORDS §¥TES ADDRESSES

D E sy -

12K = 24K 00000-57777 :

_I57777 '157776

|4000| ‘14000

1100001

137777 1137776
12000 ' 120000
777 TH7776

1778,
* 60000

L 70T
60001

o 4QQQI ‘ 4OOQQ ““i
130T T 37776 |

IHEKﬁS;‘Mn_M

'100000 |

57777 57776

" _.__l,.;.s ‘_

A ngx?] .{ o.

24K “55177
20K 29/3:90
16K-1—498!
B
B e i
- ooooo 7.
DDP 15

PDP““H

"~ 4K LOCAL MEMORY
© ~24K-COMMON MEMORY

28K

24K

-— e wm e e e e e

16K 16K
2K | 12K

8K, 8K -

4KLM | 4K

o

8K LOCAL MEMORY - ‘ o : 12K LOCAL MEMORY
20K COMMON MEMORY 16K COMMON MEMORY

ADDRESS CORRESPONDENCE - : - -

~ PDP-I5 PDP-II | PDP-I5 PDP-

16K
12K.
8K
4K

ADLL = (D15 *2) + LOGAL MEMORY size inbytes LM:LOCAL MEMORY

ADIS = (ADI11-LOCKL MEMORY Size in bytes)/2 = =~ |
'e,q. Address 7777 on the PDP-15 is address 37776 on the PDP-11 with 4K local memor
=rde Address 60000 on ¥he PDP-11 with 4K local memory is address 20000 on the PDP-

" MEMORY LAYOUT

Figure 4 details the memory map which exists on UNICHANNEL System.
Note that both the 11 and 15 parts of the system can operate con-
currently, all memory contention is resolved by the MX15-B. Note
also, that if the 1l system operates with area "A" complete simul-
tinaiety is possible because no memory contention can occur.

A 128K

UNIBUS ADDRESSES PDP-15 ADDRESSES
Unavailable D

124K 7 116 or 112K
Available to c . , Available to PDP-15
DMA breaks ~fand PDP-15 I/0 BUS
28K r 20 or 16K
"Shared" memory< ' Shared
available to B Memory
both CPU's 4 J
8 or 12K . 0
Local 11
Memory A Unavailable

L 0

"Local" PDP-1l1 Memory = A
"Shared" Memory = B
PDP-11 CPU Address Space = A + B
UNIBUS DMA Address Space = A + B + C
PDP-15 Address Space = B + C + D

Figure 4 : UNICHANNEL SYSTEM MEMORY MAP

162

PIREX TASKS

The PIREX software system consists of several routines to support
multi-programming among tasks. These routines perform such func-
tions as: context switching, node manipulation and scheduling.
The tasks which execute in this environment are device drivers,
directives to PIREX, or merely software routines which execute in
a background mode. ‘

Device drivers are tasks which typically perform rudimentary device
functions (e.g.: read, write, search, process interrupts, etc.),
Directives are tasks which perform some specific operation for a
task under PIREX. The connecting and disconnecting tasks to/from
PIREX are performed by the CONNECT and DISCONNECT directives. The
third type of tasks are software routines which execute in a back-
ground mode of operation. The MACRO-11l assembler and Spooler are
both run as background tasks.

To support multiprogramming among tasks, each task is required to
have a format as shown in the figure below:

Task Stack Area

Control Register

Busy/Idle Switch

Task Program Code

Figure 5 TASK FORMAT

163

The‘execution of a Task by PIREX is accomplished by first scanning the
Active Task List (ATL). The ATL is a pPriority-ordered linked list of all

active Tasks in the current system currently capable of running. An
Active Task is one which:

1. Is currently executing.

2. Has a new request pending in its deque (double ended queue).
3. Has been interrupted by a higher priority task.

When a runnable task is found, the stack area and general purpose
registers belonging to the task are restored and program control trans-
ferred to it. Program execution begins at the first location of the
task program code (See Figure 2.l1) or at the point where the task was
previously interrupted by a higher priority task. When a task is in-
terrupted by other tasks, its general purpose registers and stack are
saved. The ATL is rescanned when a new request is issued to a task or
when a previous request is complete.

When the PIREX Software System is running, it is normally executing the
NUL task (a PDP-11 WAIT Instruction); The NUL task is run whenever there
are no requests pending, a task suspends itself in a wait state,

or while all other tasks are waiting for I/O previously initiated.

When the PDP-15 issues a request to the PDP-11 to be carried out by
PIREX, it does so by interrupting the 11 at Level 7 (the highest

PDP-11 Interrupt Level) and simultaneously passing it an address

of a Task Control Block (TCB) through the interrupt Link.

An 11 task can issue requests via the IREQ MACRO.

The contents of the TCB comgpletely describe the request (task add-
ressed, function, optional interrupt return address and level,
status words, etc....) The TCB will usually reside in the PDP-15
memory and must be directly addressable by the 11. (i.e. It resides
in shared memory).

Error conditions are passed back to the 15 in the Task Con-
trol Block (TCB) along with status information necessary for
complete control and monitoring of a particular request.
Usually the request is to a device on the 11 but other types
are allowed.

Task Control Blocks are used for communication with PIREX and
tasks running under it. The general format of a TCB consists of
three words followed by optional words necessary for task commun-
ication. Optional words, generally are used to pass buffer add-
resses, commands and device status as may be appropriate.

TCB: (API TRAP ADDRESS *400(8)) + API LEVEL
(FUNCTION CODE *400(8)) + TASK CODE NUMBER

REV: REQUEST EVENT VARIABLE
(Optional Words)

Figure 6 STANDARD TCB FORMAT

164

The "TRAP ADDRESS" is a PDP-15 API trap vector and has a value
between f§ and 377(8 . Location g -here corresponds to location
@ in the PDP-15. Tﬁe API Level is the priority level at which
the interrupt will occur in the PDP-15 and has a value between
g and 3. A @ signifies API "Level” g , a 1 for level 1 etcC...
The API trap address and level are used by tasks in the PDP-11
when informing the 15 that the requested operation is complete
(e.g...a disk block transferred or line printed).

The Task code number is a positive number between g and 128
that tells PIREX which task is being referenced, (Tasks are
addressed by a numeric value rather than by name).

The Function Code determining whether hardware interrupts are

to be used at the completion of the request. If the code has a
value of @, an interrupt is generated at completion of the request;
If a 1, an interrupt is not made.

The Request Event Variable, commonly called REV or just EV, is
initially cleared by PIREX (set to zero) and then set to a value
(by the associated task) at the completion of the request. The
values of "n" are: .

n

= request pending or not yet completed.

1 = request successfully completed.

-2 = (mod 2-16-1) non-existent task referenced.

-3 = (mod 2°16-1) illegal API level given (illegal
values are changed to level 3 and processed).

-4 = (mod 2-16-1) illegal directive code given.

-777 = (mod 2-°16-1) request node was not available from .
the Pool, i.e. the POOL was empty, and the referenced
task was currently busy or the task did not have an
ATL node in the Active Task List.

NOTE =-- the Task Control Block specification clearly defines a

modular communications structure with minimum impact on PDP-15
software. :

165

ADDING DRIVERS TO PIREX

A powerful feature allows the PDP-=15 to bring in a PDP-11l driver,
(into either its own memory or the 1ll's local memory) connect
it to PIREX via a connect directive (a disconnect directive) is
also provided) and then issue I/0 requests through PIREX to the
driver. The user can now take full advantage of the existing and
future PDP-11l peripherals along with an elaborate queuing struc-
ture built into PIREX allowing complete parallel processing.

MACRO 11 ASSEMBLER (MACll) AVAILABLE)

A MACRO 11 Assembler is provided. This assembler is a Macro sub-
set of the existing PDP-1ll Macro assembler and is slightly modif-
ied to run under the control of DOS-15 and PIREX.

To accomplish this, the MACRO assembler (MACll) is loaded by the

15 as a core image into bank 1 of the 15. MAC 1l is then connected
up as a low priority driver to PIREX and requested to begin the ass-
embly. The 1l then carries out the actual assembly while the 15
handles all of the opening and closing of files, reading and writ-
ing of test and object information until the assembly is complete.
To the user at the console teletype, MAC 11 appears to be just a
DOS~-15 system program which is loaded in and run by the 15.

NOTE: That any customer developed software should of course, take

into account PIREX context switch, the bandwidth of the UNIBUS 18
and latency consideration of the associated system.

SUMMARY

.

As one can easily see, the UCl5 software system is a powerful tool
to the user who requires the utmost in flexibility and utility.
UC1l5 also provides an expansion capability beyond any system cur-
rently available.

166

INTERRUPT LINK

The following section describes the registers and control of the
interrupt link. This link is used to pass Task Control Block
Pointers (and through them the information in Task Control Blocks)
between the PDP-15 and PDP-11 systems. The hardware which com-
prises this link consists of a DR15-C special purpose interface

to the PDP-15, I/O BUS, and 2 DR11-C general purpose UNIBUS inter-
faces. The DR15-C is controlled by PDP-15 IOT's while the DR1l's
are accessed as registers on the UNIBUS.

Register Descriptions (PDP-11)

(CSR) 767770 Bit 6 - when bit 6 is a 1, it will enable an intef-
rupt on BR5 to TV 300, if the API DONE flag is set
in bit 7 of 767770.

Bit 7 - API DONE - set to 1 whenever none of the 4
API channels has a request pending.

NOTE: Neither of these bits is expected to be
used in normal systems programming.

(ODB) 767772 Low byte - contains the API address for an API level
7 break. Loading a new value in the byte causes
the appropriate API flag to be set in the DR15-C and
and API break in the PDP-15 will occur, is the API
is enabled and no higher activity is occuring. It
also will cause a PI interrupt if API is not in-
stalled.

High byte - contains the API address for an API
level 1 break. Same conditions as low byte.

(IDB) 767774 Bit @ - contains bit "2" of the Task Control Block
Pointer (TCBP). See note under bit 1.

Bit 1 - contains bit "1" of the TCBP.

NOTE: That readlng 767774 does not effect the
new TCBP flag in bit 7 of 767760.

Bit 6 - API 2 DONE flag - when a 1 indicates that
there is no API level 2 request pending before the
PDP-15. When a 1 also indicates the 767762 low
byte may be loaded with a new API level 2 address
to cause a new API interrupt level 2 and set the-
API 2 flag in the DR15-C.

Bit 7 - API § DONE flag - when a 1 indicates that
there is no API level g request pending before the
PDP-15. When a 1 also indicates that 767772 low byte
may be loaded with a new API level @ and set the API
g flag in the DR15-C.

167

(CSR) 767760

(ODB) 767762

Bit 8 - Local Memory Size bit f - the least signif-
icant bit of a two bit field which specifies the
number of 4K word memory banks that are connected
to the UNIBUS.

Bit 9 - Local Memory Size Bit 1 - the most signif-
icant bit of a two bit field which specifies that
numbex of 4K memory banks are connected to the
UNIBUS.

IMS1 LMSO

0 Local Memory
4K Local Memory
8K Local Memory
12K Local Memory

oo
HOo O

Bit 14 - API 3 DONE flag - when a 1 indicates that
there is no API level 3 request pending before the
PDP-15. When a 1 also indicates that 767762 high
byte may be located with a new API level 1 address
to cause a new API interrupt at level 3 and set the
API 3 flag in the DR15-C.

Bit 15 - API 1 DONE flag -~ when a 1 indicates that
there is no API level request pending before the
PDP-15. When a 1 also indicates that 767772 high

byte may be loaded with a new API level 1 address
to cause a new API interrupt at level 1 and set the
API in the DR15=C.

Bit 6 = ENARBLE TCBP (Task Control Block Pointer)
INTERRUPT - When a 1 allows and interrupt on BR
level 7 to TV 310 upon receipt of a new TCBP from
the PDP-15,

Bit 7 - NEW TCBP flag -~ is set to 1 whenever the
PDP-15 issues IOT 706006 thus placing a new TCBP

in 767764 and bits 0 and 1 of 767774. It is cleared
by the PDP-11 doing a DATI to location 767764.

Low byte - contains the API address for an API level
2 break. Same conditions as 767772 low byte.

High byte - contains the API Address for an API level
3 break. Same conditions as 767772.

168

(IDB) 767764

PDP-15 IOT's

706001

706002
706006

706112

706122

706104
706124
706144
706164
706101

TCBP (Task Control Block Pointexr) - bits 3-17. _
This contains the lowest 15 bits of the address sent
by the PDP-~15. Note: that the address is "word"
aligned. Note also that doing a DATI to this reg-
ister lowers the New TCBP flag (767760 bit 7)

and also sets the DONE flag cleared by IOT 706002

in the PDP-15.

SIOA - Sklp I/0 Accepted. Tests whether the TCEP
DONE flag is set indicating the PDP-11 has read
the TCBP and skips the next location if the DONE
flag is a 1. , ' '

CIOD - Clear I/0 Done. Clear the TCBP DONE flag.

LIOR - Load I/0 Register and clear TCBP DONE flag.
Places the contents of the PDP-15 "AC" into an 18-
bit buffer register. The output of the buffer
register is seen by the PDP-1l as TCBP at location
767764 and bits 0 and 1 767764. The IOT also
causes the TCBP DONE flag to be cleared and in the
PDP-11 causes bit 7 to be set in location 767760,
which in turn causes the PDP-~1ll to do an interrupt
at BR 7 to TV location 310.

RDRS - Read Status Register - Clears the AC and
loads the contents of the DR15-C status register

into the AC. (This effectively moves the DR15-C
enable interrupt bit into kit 17 of the AC).

LDRS - Load Status Register. Loads the contents of
the AC into the DR15-C status register. (Places
value of AB bit 17 in the DR15-C "enable 1nterrupts"
bit).

. CAPIO - Clear APIO flag in DR15-C.

CAPIl1 - Clear APll flag in DR15-C.
CAPI2 - Clear APl2 flag in DR15-C.
CAPI3 - Clear APl1l3 flag in DR15-C.

SAPIO - Tests the APl0 flag in the DRL5-C and skips
the next instruction if the flag is 1.

169

706121

706141

706161

SAPIl - Tests the APLL flag in the DRL5-C and skips
the next instruction if the flag is 1.

SAPI2 - Tests the APL2 flag in the DRL5-C and skips
the next instruction if the flag is 1.

SAPI3 - Tests the API 13 flag in the DR15-C and
skips the next instruction if the flag is 1.

PDP-15 STATUS REGISTER (DR15-C}

Bit 17

Enable PI/API interyrupts. When a 1 enables interr-
upts from the PDP-1l processor. Note this bit is
set to a 1 by initialize and the CAF instruction.

It can only be clesred by using the LDRS (IOT 706122)
instruction.

bit # 17

LTI TR TR RR NN

enable PI/API

Tigure 7

DR11-C #0
TV = 300
BR = 5
DR11-C #1
TV = 310
BR = 7

Figure: 8

PDP-11/05 CONTROL REGISTERS

Bit # 7 6

ANV RN

767770

Bit #14 8 6 0

\\\\ N 767772

API(01 Address API 0 Address

Bit#15 14 987 6 10

AW NN 2 {2 767774

Bit#

7 6
R TTTITTY T RERRNY 767760

Bit# 14 8 6 0

767762
AN W
API 3 address API 2 address
Bit# 15 0
| 3 PDP 15 bit number N 767764

TASK CONTROL BLOCK POINTER (TCBP)

(upper 2 bits in 767774)

171

EXERE

When the PDP-15 memsry
UNIBUS device, the add
plexer,

P~11/05 or any NPR
the MX15-B multi-

the UNIBUS addresses
memory. Hence normal
e write operations may
srich byte oriented NPR
directly to PDP-15

The MX15-B multiplexer not only reloc
but emulates byte operations in PDP=-1
PDP-11 programs, with byt By
be executed from PDP-15 memoxy.
devices as Mag Tape may make btransi
Memoxry .

Note: That the PDP~11
which is between the end
space available to its

can ess the PDP-15 memory

Qo

A, Output - PDP-15

Will connect to MMLE MTLES memories.

B. Inputs
PDP-11: Meodified UNIRUS with PA and PR used as D16 and D17 re-
NIBUS specs. Defined as

spectively. It meets all other UNII]

UNIBUS/18, input would have a lowesr address bound that could be
fixed to any 4R multiple address (-120K, This would be spec-
ified as jumpersg Note that only 8X and 12K of local memory
will be supported by diagnostics and systems programs. Hence,
the maximumn Commonlv addressable memory (11 prOCessor) will be
20K or 16K. An upper limit would be provided as 124K

The addresses presentad from a PDP~11 are relocated to prevent
location 0 beanq the same phy iual address on each machine.
The PDP=~11 will be ﬁbi@ Lo bhe I cated by 4K increments to 124K.

Local PDP~1l memory iz westricted tm 4 increments

Note that any "write opaeration Lo & common memory location by
8 bit or 16 bit UNIBUQ devices causes PDP-15 data bits 0 and 1

s

of the location to be forced 0.

PDP-15: Standard 15 Memory Bus Interface - no upper and lower
bounds. No relocation. Emphasis is on minimum delay through
multiplexer for this port.

If both processors request at the same time, PDP-15 will get use
of the memory. When requests are not simultaneous, a first come,
first served mode cperates. Practically, all this means is that
the 15 and 11 will alternate access to common memory except under
the special conditions described above. NOTE: No local memory
is provided on the PDP-15.

Bus Loading: MX15=B.ccecess..2 PDP=15 memory bus load
Drives 4 PDP-15 memory bus loads

DR15-C/DR11-C...1l Unibus Load
1 PDP-15 I/0 bus load

Power: (Steady State)
UNICHANNEL 15 (no peripherals)..5 at 115V
2.5A at 230V

Voltage: 115 vac ¥ 10% or 230 vac t 10%

+
Frequency: 50 — 2 Hz or 60 * 2 Hz
Environmental: Temperature........,....10o to 50°C

Relative Humidity.......20% to 95%

UCl5 Cabinet Dimensions: Depth:....30in (0.76m)
Width:....21 in. (0.53m)
Height:...72 in. (1.83m)
Weight:...150 1lbs. (70 kg)-not in-
cluding peripherals.

Unibus Compatability: Can be used with any PDP-11 family pro-
cessor that does not use parity. On
those systems with parity, the parity
must be disabled. '

Memory Cycle: MX15-B normally adds 200 ns to both the PDP-15
and the PDP-1ll cycle times.

DMA Facility to Common Memory:

Maximum transfer rate.....415K words/sec

Worst-case latency........6 us (no DCH transfers
in PDP-15)
12 us (DCH transfers
in PDP-15)

Average latency...........2.5 us

DMA Facility to PDP-11/05 Local Memory:

Maximum Transfer rate.....l million words/sec
Worst-case latency........7.2 us
Average latencCy...... ceese2.5 ns

173

SYSTEM CONFIGURATION

The UCl5 cabinet will replace the curent disk cabinet immediately
to the left of the PDP-15 processor.

The increased spacing will require longer I/0 or memory bus

cables in some installations.

DR15-C

Interrupt Link

MX15-B
Memory Multiplexer

RKO05
1.2 million word
Cartridge Drive

Reserved for
2nd RKO05

PDP-11/05 with
8-~12K of local memory

2 small peripheral ———————@p [

slots and 3 system
unit slots

Reserved for
BAll peripheral U
expander box

|74

Figure 9

SYSTEM RESTRICTIONS

RK0O5 (RK1l) Disk Pack Capability

The 18 bit RK1ll disk pack will not be able to be read by RK11l-C
or RK11l-D system (l6-bit only systems). '

This means that data bases and PDP-11 files created on 18-=bit
RK1ll systems may not be taken directly to an PDP-1l only sys-
tem. The transfer medlum for such a transfer would have to be

Mag Tape.
This situation was chosen to make RK11l-C and RK1l1l-D packs com-
patible (i.e.all PDP-1l only systems).

Memory Limits

UNIBUS NPR devices can access a maximum of 124K. The amount of
shared memory available to UNIBUS NPR devices is 124K less the
amount of local memory. In a "normal” configuration the PDP-11/05
would have 8K of memory, in which case the available PDP-15 mem-
ory would be limited to 116K. This limit is due to the fact that
UNIBUS/lS peripherals must have access to all memory. The max-
imum memory of the 11 without some relocation option would be 28K.

Note: That the PDP-11 with 8K of local memory can only address
the lowest 20K of common memory to access Task Control Blocks
set up by the PDP-15.

I/0 Latency

Multiport memories always have increased worst case latency
over a single port-non-competitive situation. This system

is no exception. The PDP-11 normally gives an "NPR break"”
a worst case latency to BSSY of 7.0 usec. On this system, we
must add to that time, the time it requires the PDP-15 to do
three I/O memory cycles (5.0 usec.). The worst case latency
is, hence, 12.0 usec.

CAF/RESET Limitations

The following timing considerations are of interest to pro-
grammers :

A RESET instruction may cause the PDP-15 to incorrectly read
the API address. The Console RESET and CAF instruction may
violate UNIBUS specifications. Hence, random "initialize"
pulses may cause system malfunctions. The following guide-
lines must always be followed:

175

CAF must not be executed while there is a Task Control Block
Pointer (TCBP) waiting to be read by the PDP-1l.,

RESET must not be executed whlle there are API requests
pending for the PDP-15.

RESET must not be executed if there is any NPR activity on

the UNIBUS. All active NPR devices must be shut down in
a power fail sequence prior to executing RESET.

176

UC15-HE

UCl15-HF

UCl5~-HK

UCl5~-HL

RK15-HE
RK15-HF
RK15~HH
RK15-HJ
RK15-HK
RK15-HL
RK15-HM
RK15~HN

15/76~-DE

15/76~-DF

15/76-DK

15/76-DL

15/76-ME

Peripheral Processor:
or = SA,

KY11l-JH,

Peripheral Processor:]
or - SB, 2 DR11l-C, DR15~-C, MX15-B, DDll-B,
230V.

KY11l-JH,

Peripheral Processor:

or - SA,
KY1ll=-JH,

Peripheral Processor:
H950, MM1ll-K, ‘

KY1l1-JH,
RK0O5-AA,
RKO05-BB,
RKO5-AB,
RKO5-BA,
RKO05-AA,
RK05-BB,

RKO S_AB s

RKO5-BA,

PDP-15 UNICHANNEL OPTIONS

H950,

HS50,

RK11-E,
RK11-E,
RK11-E,
RK11-E,
RK1l1l-E,
RK1ll-E,
RK11-E,

UCl5-HE,
UCl5-HF,
UCl5-HF,
UC1l5-HE,
UCl5-HK,
UC1l5-HL,

UClS"HL 4

115v.

230V,

115v,
230V,
230v,
115v,
115v,
230V,

230V,
115v,

11/05 or 11/10-NC
2 DR11-C, DR15-C, MX15-~B, DDll~-B,
115V.-

11/05 or 11/10-ND

11/05 or 11/10 - NC
2 DR11-C, DR15-C, MX15-B, DDll-B,
HS50, MM1ll-K,

11/05 or 11/10-ND

60Hz
50Hz,
60Hz.
50Hz.
60Hz .
50Hz.

60Hz.

50Hz.

8K Local Memory
8K Local Memory
12K Local Memors

12K Local Memory

KP15,
TC15,

KP15,
TC15,

KP15,
TCl5,

KP15,
TC1l5,

KP15,

TC59-D, TUl1l0, RK1l5-HE,

ME15-EA, LA30-CA, PCl5, KE15, KW15,
TU56, RK15-HE, 115V, 60Hz.

TU56, RK15-HF, 230V, 50Hz.

KEl5, KW1l5,

ME15-EA, LA30-CA, PCl5, KE1l5, KW15,
TUSG, RK:LS_HK' llSV, GOHZn

MEl15-EB, LA30-CD, PCl5-A,
TU56, RK15-HL, 230V, 50Hz.

KE1l5, KW15,

115V, 60H=z.

177

15/76-MF

15/76-MK

15/76-ML

KP15,
TUlO0,

KP15,
TUl0,

KP15,
TU10,

ME15-EB,
RK15-HF,

ME15-EA,
RK15-HK,

ME15-EB,

LA30-CD, PCl5-A, KEl1l5, KWl5, TC59-D,
230V, 50Hz.

115V, 60Hz.

LA30-CD, PCl1l5-A, KE1l5, KW1l5, TC59-D,
230V, 50Hz.

78

CHAPTER 1

INTRODUCTION

The Magnetic Tape Dump (MTDUMP) Program is a utility program of the -
PDP-15 ADVANCED Software System which provides users of industry-
compatible magnetic tape with functions which are peculiar to this
medium. In general, the program provides magnetic tépe-users with
functions similar to those found in PATCH and DUMP. In addition,

the program complements PIP with regard to magnetic tape functions;
however, few functions which could be performed by PIP are duplicated.

The program MTDUMP is device dependent and accomplishes all magnetic
tape I/0 with .TRAN and MTAPE System Macro instructions; it cannot

be used with other I/0 devices.

1.1 FUNCTIONS
The following paragraphs briefly explain the basic functions of
MTDUMP. A summary of commands is provided in Appendix A.

1.1.1 Dump File
One of the most common requirements of the magnetic fape user is the

ability to examine portions of a tape. The Dump File facility in
MTDUMP is intended to meet that need in a general and useful way.
Simply stated, the Dump File is the repository of (1) images of com-
mand lines received from the keyboard and (2) groups of ASCII lines
which represent, inreadable form, the contents of the tape being
examined in response to typed requests. The contents and format of
the file, however, are subject to considerable variation and, in fact,

the destination of the file may itself be changed during the run.

1.1.2 File Modification

This feature provides a convenient means for file updating or patch-
ing. Individual records may be accessed, allowing each word in the
record to become available for examination and modification. Words
and entire records may be inserted or deleted from the file and new

files may thus be created.

1.1.3 File Transfer

This function, consisting of one instruction, permits copying

magnetic tape on a record-for-record basis.

8!

1.1.4 Directory Listing

These commands permit rapid listing and clearing of magnetic tape
directories.

1.2 I/0O DEVICES

The program accesses a maximum of three devices: the teleprinter,
used for command string input and error reports; the magnetic tape
transports (via MTA. or MTF.) for all input and output to all magnetic
tape units; and an optional third device which is the destination
device for what is termed the "Dump Output File". This file may con-
tain records of commands typed to the program and any hard-copy
response to these commands (normally record-by-record dumps). Dump
Output may be directed to any device, including a magnetic tape. If
magnetic tape is used for this purpose, however, the unit assigned may
not also be manipulated by commands to MTDUMP. If no Dump Output file
is desired, the teleprinter should be assigned as the Dump Output
device.

1.3 ADDING MTDUMP TO THE USER SYSTEM

The program MTDUMP and its associated handlers (i.e., MTA, MTC, and
MTF) are supplied to the user on the ADVANCED Monitor System Peripheral
DECtape (DEC-15-SZZB-UC). Users who wish more convenient access to
MTDUMP should relocate the program onto the system device using the
utility program PIP. ’

MTDUMP may also be added to the system device as a System Program,
using the facilities provided by the SGEN and PATCH utility programs.
Refer to PDP~15 manuals DEC-15-YWZA~DN3 and -DN5 for the procedures
needed to install MTDUMP onto the system device as a System Program.

If MTDUMP is relocated to the system device by either of the above
means, its associated magnetic tape handlers must also be added to
the system library (.LIBR BIN). This is accomplished using the util-
ity program UPDATE. The use of UPDATE to insert the handlers MTA,
MTC, and MTF is demonstrated in the following example:

182

UPDATE V8A

>US+ (ALT MODE) - Request Options U and S .

>I MTA.,DTC.,) Insert routine MTA after routine DTE
>I' MTC.) Insert routine MTC next .
>IMTF.) Insert routine MTF next

>CLOSE) Terminate UPDATE operations.

Refer to the Utility Programs manual DEC-15-YWZA-D for a complete
description of UPDATE and its use.

183

CHAPTER 2

OPERATING PROCEDURE

2.1 DEVICE ASSIGNMENTS

MTDUMP is supplied as a relocatable program (MTDUMP BIN) and is
loaded by the Linking Loader. Before loading, the user must make

the following .DAT slot assignments:

.DAT slot -4 The device from which MTDUMP is to be
: loaded. If the program is on magnetic
tape, MTA on .DAT slot 1 requires MTA
on .DAT slot -4; MTF on .DAT slot 1
requires MTC on .DAT slot -4.

.DAT slot 1 MTAZ or MTF@

.DAT slot 3 The Dump Output device, if required;
or TTA if no Dump Output File is wanted.

2.2 PROGRAM STARTUP

After loading, the program types on the teleprinter:

MTDUMP Vnn where: "Vnn" is the current version
BUFSIZ m and "m" is the total number
> (in decimal) of registers

available for I/O buffers.

Each time the program is ready to accept a keyboard command, a right
angle bracket (>) is typed.

At start (or restart) time, all magnetic tape units are automatically
set to transfer in odd parity at 8@ BPI and at the channel count
given by .SCOM+4, bit 6 (g means 7-channel, 1 means 9-channel). The
user must issue a new FORMAT request (see paragraph 3.2.1) to effect
transfer in another (non-standard) mode.

2.3 PROGRAM RESTART

To restart MTDUMP, type CTRL P, which causes the program to close the
Dump Output File (if open) on .DAT slot 3. Then repeat program

startup procedure.
NOTE

If the Dump Output has been directed to the
teleprinter, CTRL P is acted upon only after
completion of current line of output. To
effect immediate termination, type CTRL P
CTRL U.

184

CHAPTER 3

COMMANDS

3.1 COMMAND STRING
MTDUMP accepts commands from the Teletype in the general format shown

below. Formats for specific commands may vary significantly. from this

and are shown in the descriptions of the individual commands.

MTDUMP command formats are variations of the following:

ChJul,uz,t)

where: .
c is the name of the function wanted.
is a digit specifying the source unit for two-unit

operations (e.g., COPY) or the one object unit for
single-unit operations.

u, is a digit specifying the destination unit for two-
unit operations or is absent for single-unit
operations.

t specifies a condition (either count overflow or
transport status) which, when encountered,
causes termination of the function whose name is
"c". "t" may be absent and, if not given, is
assigned the implicit integer value 1. Explicit
values of "t" may include:

a. An integer in absolute value less than 262,14410
and greater than zero

b. The character string "EOT" (END OF TAPE)

c. The character string "BOT" (BEGINNING OF TAPE) _
d. The character string "EOF" (END OF FILE)

Parameters are separated from the command by a space (L4) and from each
other by commas. The command line is terminated by a carriage return

().

Some commands require only a single argument, while others require all

three.

Example:
REWINDLJI)

Only the single object unit need be specified; further, the terminating

'85

condition "BOT" is implicit in the command and need not be given.
Copying an entire logical tape from Unit 1 to Unit 2, however, re-
quires all three parameters.

Example:
COPYLJl,z,EOT)

3.1.1 Terminating Conditions

As indicated above, the "t" specification in the command line may be
either an integer or a character string or absent. If "t" is an
integer, the value of the numeric string represents the number of
physical records to be treated during the operation requested.

Example:
SPACE1.l, 8;3)

This command string means: Evaluate the string "8@" according to

the radix currently in effect, then space the tape on drive 1 forward
until that many records have been passed over. If, in the example,
tape 1 was at loadpoint and if the prevailing radix was decimal, then
at the completion of the operation the read/write head would be
positioned betweeh the 8fth and 8lst physical records on tape.

Example:
COPYpr 4l ’ 2 I3 8”)

The above example causes a transfer of 8@ physical records from drive
to drive 2, leaving the read/write head on each drive positioned
immediately following the last record transferred.

If "t" is a non-numeric string (EOT, BOT, EOF), then the operation re-
quested is deemed complete when one of the following conditions is

observed:

a. EOQT Two consecutive EOF markers have been passed
in either reverse or forward direction.

b. BOT The loadpoint marker has been reached (but not
passed) in the reverse direction.

c. EOF A single EOF marker has been passed in either
direction.

If "t" is the string "EOF" or "EOT", the position of the read/write
head relative to the EOF marker causing termination depends upon

the direction of tape motion when the condition is encountered.

186

Example:
BACKSPACELJI,EOF)

The read/write head will be positioned just before the marker. The
next record read in the forward direction will be the EOF marker

just passed in backspacing.

If "t" is the string "BOT", the head is left positibned just after
the loadpoint; the program will not backspace over BOT.

If "t" is absent from a command string in which it is required, then
the value 1 is assumed. Thus the commands in the following example

are equivalent.
Example:
SPACELJl,%)

SPACE I._ll)

3.1.2 Command Abbreviations

Most commands in MTDUMP may be abbreviated to a single letter (the
initial character). 1In the command descriptions which follow, 1ega1
abbreviations are shown immediately following the command and enclosed
in parentheses.

Example:
REWIND(R)LJu,E)

3.2 SETUP COMMANDS
This is a group of commands which generally apply to most major func-

tions of MTDUMP. These commands are usually given prior to the execu-
tion of a function (e.g., DUMP, COPY).

3.2.1 Set Non-Standard Tape Format

The initial setup for input and output tapes is odd parity at
800 BPI (the channel count is given by .SCOM+4, bit 6). The
FORMAT command allows the user to change the parity, density,

and/or channel count.

Usage:
FORMAT(F)hau,pdC)

187

where: "u" is the tape whose format is being set and "pdc" is a

group of three single-character parity, density, and channel-count
indicators, as follows: '

p (parity) is "E" (even) or "0" (odd)
d (density) is "2" (2gg@ BPI), "5" (556 BPI), or
"g" (8g¢ BPI)

¢ (channel) is "9" (9-channel) or "7" (7-channel)

The three descriptors may appear in any order, and any may be absent,
in which case the relevant status for the tape remains unchanged.

Example:
FORMATLJ2,E57)
or
FORMAT542,5E7)
or
FORMAT w2, 75E)

All of the above examples set up tape unit 2 for even parify, 556 BPI,
7-channel operation.

Example:
FORMATLJZ,O)
or

F|_|2,0)

These commands change the parity of tape unit 2 without disturbing
the current density or channel count.

NOTE

The only legal density for a 9=-channel tape drive is
800 BPI. Requests for other densities will not be
honored.

FORMAT commands are effective until MTDUMP is restarted via the
CTRL P function.

3.2.2 gset Standard Tape Format

Standard System Format may be requested for any unit. A special case
of the FORMAT command is employed to unconditionally reset tape format
to odd parity, 8@g@ BPI, and 7- or 9-channel (according to .SCOM+4, bit 6.)

188

Usage:
FORMAT(F)LJU,D)

where: "u" is the unit whose format is to be set and the character
"D" means "default!?

3.2.3 Specify Global Radix

The program always treats certain numeric strings (e.g., unit specifica-

tion) as octal. Others, however, may be specified as either octal or
decimal by the NUMBER command. The following numeric groups are
interpreted (on ingut) or printéd as octal or decimal strings according
to the argument given in the latest NUMBER request:

v.a; The "t" specification in command lines (where applicable)
when "t" is an integer. If the current radix is octal,
then the command:

SPACELJl,Zq)

causes the tape on unit 1 to be spaced forward 1610
records.

b. The word sequence numbers of dumped datai

c. The word sequence numbers of EXAMINE requests. (See
below.)

d. The record-length argument of the SIZE request. (See
below.) ' :

The radix specified remains in effect until another NUMBER command is

encountered or the program is restarted. The default radix is octal.

Usage:
OCTAL

NUMBER (N) DECIMAL)

3.2.4 Specify Local Radix

The radix of a number string in a single command line may be specified
by a one-character suffix, D for decimal, K for octal. Such specifica-
tion overrides the current global radix, but is in effect only during

the processing of the command line in which the suffix appears. Local

radix control may be used following:

a. The "t" specification in command lines (where applicable)
when "t" is an integer.

b. The word sequence numbers of EXAMINE requests.

189

c. The record-length argument of the SIZE request.

Example:

SPACEw.l,20D)
The command above causes tape unit 1 to space forward 20 records
regardless of the current global radix.

10

Example:
SPACE;al,ZﬂKJ

- Similarly, this command spaces the tape forward 208 (1610) records.

3.2.5 Command-Line Echo

Legal keyboard requests are placed in the Dump Output File, exactly
as typed, to allow the user to correlate the progress of the run,
relative tape position, and the record contents during later examina-
tion of the hard-copy dump. Command-line echo can be bypassed, how-
ever, by use of the VERIFY command.

Usage:
ON

VERIFY (V)i OFF(Y)

If ON or OFF is not specified, ON is assumed.

Example:
v
P
When MTDUMP is first loaded or is restarted, VERIFY mode is set ON.

If the teleprinter is the assigned dump output device (.DAT slot 3),
command-line echo is not performed. Illegal commands are not echoed.

3.2.6 Dump File Display Format ‘

The input tape is output to the Dump File as individual physical
records. Each record is represented as a number which indicates

record length in ASCII lines. Each line, in turn, contains:

1. A sequence number which reflects the position in the
record of the first data word in the line displayed.
2. A string of data words or data-word pairs.

Sequence numbers are in either octal or decimal notation; the radix
is chosen in response to the last previous NUMBER command.

190

Display format is set by the MODE request followed by the appropriate

argument.
Usage:
OCTAL
SYMBOLIC
MODE = { rpruvED) 2
ASCII
Where:
OCTAL Displays single words as six octal digits.

SYMBOLIC Displays single words as a three-character
operation-code mnemonic, an "indirection"
indicator (*), if present, and a 13-bit
(5-digit) address.

TRIMMED Displays single words as three six-bit
alphanumeric characters.

ASCII Displays pairs of words as five seven-bit
ASCII characters. A blank is printed for
each character outside the range 4ﬂ8 - 1378.

The default -assumption is OCTAL and implicit in the request:
MODE)

The table below shows examples of data-word treatment in each of the

four modes.

OCTAL SYMBOLIC TRIMMED ASCII
512132 AND 12132)Qz REWIN
744634 OPR $4634 <&\

420320 XCT*@p32p e : D
298990 CAL ggppg eee

777777 LAW 17777 272? A
919293 CAL 10203 " ABC

3.2.7 Inserting Comments in the Dump File
Explanatory notes may be placed in the output file by use of the LOG
command. When the LOG request is encountered, subsequent typed input

is taken as commentary and is added, exactly as it appears, to the

Dump Output File. Carriage returns may be included, and multiple
lines may be inserted with a single LOG request. An ALTMODE terminates

each comment and causes the program to accept a new request.

191

Usage:

LOGuqcomment§)
comments....)
(ALTMODE)

3.2.8 Return Control to Monitor

An EXIT request causes the program to close the Dump Output File
(if one is open) on .DAT slot 3, then perform an .EXIT return to
the Monitor. Use this command for return to the Monitor if the

program is being run in the Batch Environment.

Usage:
EXI?)

3.3 MANIPULATIVE FUNCTIONS

The following commands position the tape and write EOF markers

on the tape drive specified.

3.3.1 Rewind Tape
This command initiates a rewind on tape unit "u ".

Usage:
REWIND(R)LJU)

3.3.2 Backspace Tape

This command backspaces the tape on unit "u" until the "t" condition

is satisfied.

Usage:
BACKSPACE(B)hJu,g)

where: "t" is an integer (number of records), "EOF", "EOT", or
"BOT" .

3.3.3 Space Tape
This command spaces the tape on unit "u" forward until the "t"

condition is satisfied.
Usage:
SPACE(S)LJU,F)

where: "t" is an integer (number of records), "EOF", or "EOT".

192

3.3.4 Write End-of-File Marker
This command writes a single "EOF" marker on tape unit "u".

Usage:
TAPEMARK (T)eau y

3.4 DUMP FILE OPERATIONS

3.4.1 Dump File Management

The Dump Output File may be written on any physical device. If the
device chosen is file-structured, however, the user must specify a
name to be given the Dump File and must explicitly request that the
file be closed (unless the EXIT command is used). Furthermore, the

file name must be given before any other requests are issued.

Usage:
OPEN;inlenameLJexE)

where: filename is the name of the file to be created.

ext is the filename extension. If omitted,
"LST" is the default assumption.

If an OPEN request is not given, the program types

NO DUMP FILE OPEN
>

on the Teletype and waits for another command.

NOTE

The comment is actually printed when an attempt is

made to write into the Dump File, i.e., at command-
line echo if VERIFY is ON or at Dump-Record Output

if VERIFY is OFF.

A check is made to ensure that the filename given is unique. If a
file of the name specified already exists on the Dump Output device,
the program types:

FILE FOUND ON DUMP DEVICE: filenam ext
DO YOU WISH TO DELETE IT?

193

The program then waits for the user to type a response to the query.
Typing

P

or

)

or

YES)

indicates the affirmative, and the already-existing file is overlayed
(i.e., deleted when the new file is .CLOSEd). Any other response is

negative and the program returns to accept a new keyboard command.

The Dump Output File is closed upon receipt of the CLOSE command
from the keyboard.

Usage:
CLOSE)
or whenever the program is restarted (CTRL P).

3.4.2 Dump Tape Records

This command dumps records from unit "u" into the named file open on

.DAT slot 3. The sequencing of data words and the format in which
they are written are controlled by the latest NUMBER and MODE re-
quests.

Usage:
DUMP (D)._.u,t)

where: "u" is the tape unit number

"t" is an integer (number of records), "EOF", or "EOT".

3.4.3 Dump Tape Records on the Teleprinter

This command performs the same function as the DUMP command, except
that the records are unconditionally dumped on the teleprinter.

Usage:
LIST (L).__.u,t)

194

3.4.4 Tape Status
In addition to data input from magnetic tape and the Teletype, the

Dump Output File contains indicators of status encountered on the
tape being read. Comments are added to the file (and typed on the
teleprinter) in response to the following observed conditions on the

tape.
Message Meaning
*END OF FILE ENCOUNTERED An unexpected end-of-file
marker was read.
*PHYSICAL EOT ENCOUNTERED The end-of-tape reflective

spot was reached on input
or output.

*BUFFER OVERFLOW The tape record read is too
long to be accommodated in
the available buffer space.

*BOT ENCOUNTERED The loadpoint reflective
spot was unexpectedly
reached during a backspace
operation.

*PERMANENT READ ERROR ENCOUNTERED After 64 0 read attempts,
" the inpu% record still has
not been transferred correctly.
The read/write head is
positioned immediately before
the record. Co

3.4.5 Example of Dump Operation

The following example shows the instructions required to dump the
file directory of magnetic tape unit @ in octal format (to allow the
accessibility map to be examined) and then in trimmed ASCII format
(to allow reading of the file name entries).

195

Examples:

REWIND @
SPACE @,
MODE OCT
DUMP @,1
1
10
19
28
37
46
55
64
73
82
91
109
189
118
127
136
145
154
163
172
181
199
199
208
217
226
235
244
253

BACKSPAC
MODE TRI
NUMP ?.1

17
33
49
65
gl
97
113
129
145
161
177
193
209
225
241
257

1
AL

747377
aANeAaQD
P0RRN0
231404
7100800
n61114
#32524
AO0B00
221791
171724
2ANRe0
nAApAnG
voARAR0o
nooaan
nARARA
AA0ARG
aANoa0a
ArAORN
ARRAAD
X111
nNOARAR
ananae
[
Ay
NAAARD
AANAAR
NANAGBA
11151
rANAR0

E 2,1
MMED

<i? @ee

eee

200000
NAANGR
233123
233123
021116
B21116
233123
233123
233123
232203
200070
paaape
poovngn
PABAAR
AARARA
228200
NAOAAR
arpaen
noBdNAn
noaPARN
AARRaa
A0R0AR
P00AAA
20330
2000 2A
ARANAA
ARBANR
ARBdNARA
PAAARN

747750
AP0000
231320
561411
7331004
161716
A508441
150103
152423
152404
neNAAR
nNapao0
NARVAL
an0Ap
AARO00
VABAAG
raneag
neeade
NABARD
NNy
)
NEAOAA
NoRBAR
nA0ANG
NooonD
neaann
NAAVAG
neABAR
AeA0AR

<?(227 =q@
@@A@ KMg @@® SYS SKP
,LO ape@ gIN nDT gee
FIL BIN UPpD ATE SYS
SYS MAC RO® SYS Faga
MTB 00T SRC MTD UMP
PR PR PRE RAE@ EO@
PRE PPE@ PRE RER ORE@
PER@ PER PRP ARE EEe
PRRe PEP RERP AR Eee
PRR RRE EEE PP @eE
RRP PRR RARE EEE EEe
ARE PER AEP AERE @@
CRR RRR AER REP e
PR EPR AER REP @@
PRR ERA RERA RAA @E@®

777777
Baaran
021413
B222007
111609
P611414
240000

221700
278516
251520
200000
AABABN
200000
00000
oA300n
200000
PRONONA
A0PABH
L)
200009
oABOAN
200700
PeRODA
ANeoon
PRoRON
PROBON
Yoy dor)
PAPBON
L)

Aee @e@
BLK SYS
BIN CHA
EXE cUT
ee®@ SYS
BIN @ee
PEe @ee
eeR @@
eee @Ee@
eee @ee
eee eee@
RERe A@E
Pee Ae@
eee eee
CeR @EeE
eee eee

750800
PRARAD
233123
#21116
h21116
821116
233123
2334123
233123
#21116
AneRA0
QRADAD
PpoRaAd
PABAAD
pREBNo
ARNRA0
ANABAD
PANBAD
ARABAY
POBBAD
Q0NN AD
poRena
200870
naA2ao
POARAD
PONBAD
NeRRA0
AINBAo
2OABRD

200700
penron
111782
561417
302205
252004
201120
66401
31716
200000
AABNA0
BADAAD
208000
0A030
BRenon
o))
POBAAA
anavne
2AAN00
A1)
230700
ANANAD
ANonen
RABNDO
A00700
ananan
PRANAR
anannn

000000
neoe0n
141300
N10400
A6nenNa
n12405
30000
nARBAD
260000
ponead
naRoAG
npABaa
NON0G0
na0020
ANNBNG
nonReo
ARG
naRanad
700000
"ANONY
AN0B00
NAAAAB
nerOao
20n000
NoBR0a
MNBAAB
npoDRa
navona

QAR EPE- EGR @RE @eE

108 LK® SYS

SY SLp

IN® RIN XRE F@@ gIN
Te® SYS PIP
MAC ROA SYS MTS GEN
PR PRR PAP AR @@E
PeR ARR RRP GRR @RE
@RA PE® @ARA REE @@E
ER AEE EER EAR M@
PRP AEE PEP @GR @@@
PER RER @EER QRE e
@RR REE @EPP RO EEe
@R RMER @ER @RA @@
@E@ RRO QAR QAR e
PRP ARG GPA QERA EEO
GRR RRE REA AREP @@

SYS £0!

196

020000
pRAGOAG
233123
021116
P21116
233123
233123
233123
233123
pNo000
nepoene
neo0Ae
poooeo
PoReaR
naBnon
280009
roAANG
pOR0no
ARo0AnB
o2A000
RPN
pooone
nopane
neoene
Arenen
220000
pNARBe
neeann

@R E@e
SYS L1
EAE FIL
@ee® SYS
SYS CcON
eeR @ee
eRe BRe
eRE@ @Re
PEe @M@
@@ @@
PRe @ee
eRe @@
eRe @Ee
PEe @@
eRe 6@e
PRe PAe

nogpoee
131571
562331
nap4a24
n5n105
n53005
766408
157103
152402
npnene
neneao
nAAQRa
npABaR
ARABAD
NG
AnABAD
npaeno
a0ABA0
AnaAgna
200800
nAoone
Aooenn
neneeo
nONBo0
neagao
nANGR0
neneen
ABnan0

PEE@ @E@
BR® BIN
BIN NON
Fq® ee@
vee SYS
PePe@ rEee
eee @@
Eee @ee
EeRe eeE@
eePe eee@
eEee@ @ee@
RER E@@
PRE E@e
Eee eee
Pee @@
EERA @@

3.5 TRANSFER FUNCTION

The COPY command allows the user to perform record-for-record. copying

of -tapes.

Usage:
COPY (C);_.ul,uz,t)

where: ul" is the source drive

u2" is the destination drive

"t" may be an integer (number of records), "EOF", or "EOT"

Standard parity and density (odd parity, 800 BPI) prevail, unless
they have been changed by a FORMAT request. "

To copy an entire tape from unit 1 to unit 2, for example:

REWINDwu1l)
REWINDwL.2)
COPYy 1,2, EOT,

To replace the last data record on unit 2 with the first data record
on unit 1:

REWINDL1 /find first record on 1.

SPACEw.2, OT) /find last record on 2. _
BACKSPACEL42,3) /backspace over two EOF's plus one data record.
COPYiul,2,1) /copy 1 record from 1 to 2.

TAPEMARKLs 2 /make a new EOT

TAPEMARKLJZ) / indicator on 2.

3.6 FILE MODIFICATION
The file modification feature of MTDUMP allows the user to access

single records, modify or delete words in a record, delete entire

records, or add new recoxrds to his file.

3.6.1 Read a Single Record
The next sequential physical record is read from tape unit "u" and is
stored in core. Its length is saved in anticipation of a subsequent

PUT request (see Paragraph 3.6.4).

Usage:
GET (G) |_.n.:)

At the completion of input, the following message is printed indicating

197

the length, in words, of the record just read.

RECSIZE:nn

3.6.2 Examine and Modify Data Words

Designed for use in conjunction with the GET and PUT commands, the
EXAMINE request allows the user to access and update individual data
words in the program buffer. Any number of contiguous registers may

be examined and modified with a single command.

Usage:
EXAMINE(E)LJQJ

where: "n" is the relative position in the buffer (record) of the
first word to be displayed. If a "D" or "K" suffix (see section 3.2.4)
is present, the argument is interpreted appropriately. If no suffix
is present, "n" is interpreted according to the current global radix.

The argument specifies the position of a word relative to word # in
the buffer.

Example:
EXAMINELJ%)

The above command accesses the first data word in the buffer. The
program responds to the command by displaying on the teleprinter the
contents of the register specified in the mode (octal, symbolic,
trimmed, ASCII) currently in effect. No carriage return is executed,
however, after the displayed data word typeout. The user has

several options.

a. If a carriage-return is typed, the program responds
by displaying the contents of the next higher register.

b. If an ALTMODE is typed, buffer examination is
deemed complete and the program returns to read a
new command.

c. A six-digit numeric string (octal notation) may be
typed to replace the contents of the register being
examined. The terminator of the line typed by the
user may be either a carriage return or an ALTMODE .
The terminator directs the program's activity after the
desired modification has been performed. A carriage
return opens the next sequential register; an ALTMODE

returns control to the command processor.

198

3.6.3 Specify Output Record Length

The SIZE command specifies, in words, the léngth of the record to be

written in response to a subsequent PUT request (See paragraph 3.6.4).

Usage:

SIZE ,, n)
where: the parameter "n" is the total words in the output record.
If a suffix "D" or "K" (see section 3.2.4) is present, the argument
is evaluated appropriately. If no suffix is present, the numeric

string is interpreted in the current global radix.

Output record size is implicitly set during input "GET" processing.
The SIZE facility offers a means of overriding the implicit setting.

3.6.4 Write Single Record .
The PUT command writes data residing in the programis buffer as th
next seqguential record on tape unit "u". The length of the record
written is either the length of the record read in reéponse to the
latest GET request or the length specified in a SIZE request which
occurred after the latest GET request. '

Usage:
PUT(P) ., u)

3.7 DIRECTORY LISTING
This group of commands is available for dealing with the Magnetic Tape

File Directory. The contents of the Directory on unit "u" may be
printed on the teleprinter or written into the Dump Output File; and

the Directory may be cleared. None of these commands may be abbreviated.

3.7.1 Write File Directory in Dump Output File
The contents of the File Directory of the tape specified are written

in the Dump Output File.

Usage:
DDUMP ., 11)

3.7.2 Print File Directory on Teleprinter
The contents of the File Directory of the tape specified are printed
on the Teletype. - '

199

Usage:
DLIST ., u)

3.7.3 Clear Tape File Directory

Write a new (empty) File Directory on the tape specified.

Usage:
NEWDIR ¢a u)

200

APPENDIX A
SUMMARY OF COMMANDS

COMMAND. MEANING PARAGRAPH #

SeTuP COMMANDS

EXIT) Return Control to Monitor 3.2.8
FORMAT (F)eau, pdC) Set Non-Standard Tape 3.2.1
FORMAT (F) . yu,d Set Standard Tape ' 3.2.2
LOGucommentS) Insert one or more lines of - 3.2.7
comments....) comments
(ALTMODE)

OCTAL

SYMBOLIC . . .
MOD TRIMMED {J) Dump File Display 352.6

ASCII)

OCTAL . .
NUMBERn_r(DECIMAL P) Specify Global Radix _ 3.2.3
NOTE

D (decimal) or K (octal) specifies Local Radix
which overrides Global Radix during processing
of a single command line.

VERIFY (V)H{ggp P Bypass Command-Line 3.2.5

MANIPULATIVE COMMANDS

BACKSPACE (B)wau, t) Backspace Tape 3.3.2
REWIND (R) Ll) Rewind Tape ' 3.3.1
SPACE(S)-._:u,t) Space Tape 3.3.3
TAPEMARK (T),__,LD Write End-of-File Marker 3.3.4

Dump FiLeE CoMMANDS

CLOSE) Close Dump Output File C 3.4.1
DUMP (D) Luu, t) Dump Records into Named File 3.4.2
LIST (L) wau, t) Dump Records onto teleprinter 3.4.3
OPEN._.filename._,ext) Open Named File 3.4.1

201

APPENDIX A (Cont.)

COMMAND MEANING

TRANSFER COMMAND

COPY(C) u su, .t Copy Tape Specified

F1Le MoniFicaTION COMMANDS
EXAMINE(E) n Examine and Modify Data Words
GET(G) u Read Single Record
PUT(P) -u Write Single Record
SIZE n Specify Output Record Length

DIRECTORY COMMANDS
DDUMP u Write File Directory in Dump
Output File
DLIST u Print File Directory on Tele-
printer
NEWDIR u Clear Tape File Directory

R

PARAGRAPH #

3.6.2
3.6.1
3.6.4
3.6.3

3.7.1

3.7.2

3.7.3

VERMONT

MASS.

} ey

winpsor Locks @em 20

NEW HAMPSHIRE

|

-

WESTFIELDES

FITCHBURG
L
WESTMINSTER) . y
; YA
g >

 MAYNARD 93377
MARLBORO 20

WORCESTER gy

90

sPRINGFIELD :
. CONM. | qm ISLAND

o1 I

§ VBosToN

oV

HANSCOM AFB
BEDFORD
CIVILIAN TERMINAL

§

BOSTON
WAYLAND Yo 20

e 20 =

MARLBORO ,
\\ MASS. PIKE

Y0¢

4
\.

" RTE. 20 EXIT 12H RTE. 20
s - : TO WAYLAND
— 3. '
= | |b©©
FOREST ST. 1 S | o .
DIGITAL

MARLBORO ———~
-PLANT

_EXIT i1ﬂ.ROUTE 9

EXIT 11A MASSACHUSETTS TURNPIKE

A

207

DIGITAL EQUIPMENT CORPORATION ﬂn@uuﬂ“ WORLDWIDE SALES AND SERVICE
MAIN OFFICE AND PLANT

MNORTHEAST

MGIONAL OFFICE:
Wyman Street, Waltham, Megs. 02154

Teldphono (817)-830-0330/0310 . Dstechone: 817-580-3012 or 3013

CONNECTICUT
Meriden

260 Pomercy Ave . Meriden. Conn, 08540

Telephone (203)-237-8441/7466 Dataphone: 203-237-8205
Farfield

1275 Post Road, Fairhield, Conn 05430

Telephone (203)-255-5991

NEW YORK

Rochester

130 Allens Creek Road. Rochester, Naw York

Telephone (718)461-1700 Datephone: 716-244-1680
Syracuss

6700 Thompson Road. Syracuse. New York 1321t
Telaphone. (315)-437-1593/7085 Dataphone: 315-454-4152
MASSACHUSETTS
Mariborcugh

One Iron Way
Marlborough, Mess. 01752
Telephone (617)-481-7400

MID-ATLANTIC

REGIONAL OFFICE:
U S. Route 1. Princeton, New Jersey 08540
Telephone (608)-452-2040

Telex 710-347-0348

Suite 130. 700! Lake Ellenor Drive, Orlendo, Florids 32805
Telaphone (305)-851-4450 Dstaphone: 305-859-2350
GEORGIA

Atlanta

2815 Clearview Place, Suite 100

Atiants, Georgia
Telephone. (404)-451-7411
NORTH CAROLINA
Durham/Chapel Hill
Exscutive Park

3700 Chapel Hill Blvd.
Durham. North Carolina 27707

Telephone- (919)-485-3347 Detaphons: 819-48-7832
NEW IERSEY

Fairheld

253 Possaic Ave . Farfleld, New jersey 07008

Telephone (201)-227-9280 Dataphone 201-227-8280
Metuchen

85 Main Sireet. Metuchen. New Jersey 08840

Telephone (201)-549-4100/2000 Dataphone: 201-548-0144

Dataphone: 305-855-2380

EUROCPEAN HEADOUAHTEHS
Digita!
B1 route de I'Aire

1211 Geneva 26. Switzerland
Telephone 427950 Telex: 22 683

FRANCE

Dgital Equipment France
Cantre Silic — Cidex L 225
94533 Rungis. France
Telephone 687-23-33
GRENOBLE

Digitat Equipment France

Tour Mangin

16 Aue Du Gal Mangin

38100 Grenoble. France

Telephone (76)-87-56-01 Telex: 212-32882

GERMAN FEDERAL REPUBLIC
Digital Equipment GmbH
MUNICH

Euvrape

Telex 28840

8 Muenchen 13, Wallensteinplatz 2
Telephone 0811-35031 Telox: 524-226
COLOGNE

5 Koeln 41, Aachener Strasse 311
Telephone 0221-44-40- Telex- 888-2269
Telegram Flip Chip Koein

FRANKFURT

‘8078 Neu-lgenburg 2

Am Forstaus Gravebruch 5-7

Telephone 081025526 Telex: 41-76-82
HANNOVER

3 Hannover, Podbielskistragse 102
Telephone: 0511-63-70-95 Telex: 922862
STUTTGART

D-7301 Kemnat. Stuttgart
Marco-Polo-Strasse 1
Telephone (0771)-45-50-65

AUSTRIA
Digits! Equipment Corporation Ges.m.b H
VIENNA

Telex: 641.722-383

Merighilferstraase 133, 1150 Vienna 15, Austria
Yelophone B85 5188

UNITED KINGDOM
Dignat Enu-pmnl Co. Ltd

U K. HEADQUARTERS
Fountan House. Butia Centre
Reading RG1 7ON. England
Telephone - (0734)-583555
BIRMINGHAM

Maney Buildings

29/31 Birmingham Rd . Sutton Coldhield
Warwickshice. €ngland
Talephone 021-355-5501
BRISTOL

Fish Ponda Rood. Figh Ponds

Bristol. England BS163HQ

Telephone Bristol 851431

EALING

Bilton House. Uxbridge Rosd. Ealing, London W 5
Telephone 01-579-2334 Telax: 22371
EDINBURGH

Shie! House. Craigshill, Livingston,

Wast Lothien. Scotlend

[Tetephone 705 Telex 727113

LONDON

Management House

43 Parker St . Holboen. London
WC 2B SPT. England
Telaphone: 01-405-2514/ €087
MANCHESTER

Arndsle House

Choster Rosd. Stretford. Manchester M32 88H
Telephone. (081)-885- 7011 Telon 658838

Telex 8483278

Telex 337020

Tolox 27380

Maynard, Massachusetts, U.S.A. 01754 * Telephona. Fi

rom Motropoliten Boaton 645-8600 « Elsawhero. (617)-897-5111

TWX: 710-347-0212 Clb‘. DIGITAL MAYN Telex 94-8457

DOMESTIC
MID-ATLANTIC (cont) CENTRAL (cont)
Princeton MICHIGAN
U S. Route 1, Princeton, New lersey 08540 Ann Arhor
Telephone- (609)452-2040 Datephons: 805-452-2340 230 Huron View Bouleverd, Ann Arbor, Michigen 8103
Telephone: (313)-761-1150 Dataphone: 213-765-983
NEW YORK Detroit
Long Island 23777 Groenfiold Rosd
1 Huntington Quadrangie Suite 189
Suite 1507 Huntington Station, New York 11745 Southfiald h 48075 D 313-557-3063
Telephone (S16)-894-4131, (212)-805-8005
Dataphone. 516-293-5683 MINNESOTA
Minnaapolis

Manhattan

810 7th Ave.. 22nd Floor
New York. N.Y 10018
Tetephone (212)-5%2-1300

PENNSYLVANIA

Philadeiphie

Digitat Rall

1740 Walton Roed. Blue Bell. Pennsylvania 19422
Telophone: (215)-825-4200

TENNESSEE

Knoxville

6311 Kingston Pike, Suite 21E
Knoxvitle, Tennasses 37919

Telaphone: (815)-568-8571 Datephone: B15-584-0571
WASHINGTON D C.

Lanham 30 Office Bulding

4300 Princess Garden Perkway. Lanham, Maryland
Telephone (301)-458-7900 Detaphone- 301-459-7900 X53

CENTRAL

REGIONAL OFFICE:

1850 Frontage Road. Northbrook. lilinals 60062
Telephone (312)-¢38-2500 Dataphone 312.438-2500

Ex. 78
INDIANA
Indianepolis
21 Beschway Drive, Suite G
Indianepolis. Indiena
Telephone: (317)-243-834!

ILLINOIS

Chicago

1850 Frontege Road

Northbrook, tlinois 60082 Dataphone: 312-438-2500

LOUISIANA
Naow Orleans

3100 Ridgelske Drive. Suite 108
Metairie. Loulslana 70002
Telephone- (504)-837-0257

Datephone 317-247-1212

Detephone: 504-833-2800

8030 Cedar Ave. Scuth, Minneapolis, Minnesota 55420
Telephona (612)-854-5562-3-4-5 Dataphone- 612-854-1410
MISSOUR!

* Kangas City

12401 East 43rd Street, Independence. Migaour! 64055
Telephone: (B16)-252-2300 Datsphone: 818-481-3100

St Lows

Suite 110, 115 Progress Pariway

Msryland Heighta, Missouri 63043

Telephone (314)-878-4310 Datephone: 816-481-3100

OHIO

Claveland

2500 Euclid Avenua, Euchd, Ohlc anz

Telephona: (216)-543-840¢ ataphone- 218-98-8477
syton

3101 Kettaring Bouleverd

Dayton, Ohio 45439

Telephone. (513)-294-3323

OKLAHOMA

Tuise

3140 S. Winston

Winston Sq. Bidg.. Suite 4, Tulsa. Okishoma 74135

Telephone (916)-749-4478 Datsphone: 818-743-2M4

PENNSYLVANIA

Pittaburgh

400 Penn. Center 15285

Tolaphona: (412)-2439404 Dataohone: 412-824-9733

TEXAS

Dsilas

Plaze North, Suite 513

2880 LBJ Freewsy, Dalles, Texas 75234

Telaphona: (214)-820-2051 Dotophone- 214-820-2081

HOUSTON

6838 Hornwaod Drive

Monterey Pork. Houston, Texss 77038

Telephone: (718)-777-3471 ataphona: T13-777-1071

Dataphone 513-288-4724

8531 Went Cepital Drive, Milweukee, Wisconsin 53222
Telophone. (414)-463-9110 Datephona: 4144839115

INTERNATIONAL
UNITED KINGDOM (cont.) ISRAEL
READING DEC Systems Computers Ltd.
Fauntain House, Butts Centre TEL AVIV

Reading RG! 70N, Englend
Telephone (0734)-583555

NETHERLANDS

Digital Equipment N.V.

THE HAGUE

Sir Winston Churchillian 370
Ruswitk/The Hague. Netherlande
Tolephone: 94 9220 Telex: 351

Telex 8483278

BELGIUM
Digital Equipment N.V./S.A.
BRUSSELS

108 Rue D’Arlon
1040 Brussels, Balgium

Telephone 02-1382%8 Telax: 25297

SWEDEN
Digitst Equipment AB
STOCKHOLM

Englundavagen 7. 171 41 Soln- S\vld'n
Telephone 98 13 90

le Digital Slockholm

NORWAY
Digitol Equipmant Corp. A/S
osto

Tvonaholmlnlnn Ly

Oalo S, Norwi

Telaphone m/u 3440 Telex 1073 DECN
DENMARK

Digital Equipment Aktiaboieg
COPENHAGEN

Hetlerupveq 68
2900 Hellerup, Denmark

FINLAND

Digital Equipmant AB
HELSINKI
Titigmaantie 8
SF-00710 Helsinki 71

Telephona: (050) 370133
Cabte Digital Malginkl

SWITZERLAND
Digital Equipmant Corporation S.A.
GENEVA

20. Quer Ermest Angermet

Boite Postale 23. 1211 Geneva 8, Switzeriand
Tatephone No (22°20 40 20 and 20 58 83 and 20 68 83
Telex 2892 01

ZURICH

Digitat Equipment Corp AG

SchaHhauserstr 315

CH-B050 Zurich, Switzerland

Telephone 01-48-41-9) Telax 58059

IraLy

Digital Equipmant Sp A
MILAN

Corso Genbeld: €9, 20121 Mileno. ltaly
Tealephone: ((2)}878-031/2/374/8 ¢

SPAIN
Dignel Equipment Corporation Ltd.
MADRID

Ataro Ingemieros S.A.. Ennique Lerrets 12. Madrid 18
me

Telaphone: 215 35 43 Telqa:
BARCELONA
Atero Ing: SA. . L

Tetaphona: 221 44 63

Suite 103, Southern Habakuk Street
Tel Aviv, lerael

Telephone (03) 443114/440763 Telex- §22-33-3183

CANADA

Digita) Equipment of Canadn, Ltd
CANADIAN HEADQUARTERS
PO Box 11500

Onawa. Ontorio, Canads

K2H 8x8

Telephome: (813)-592-5111 TWX. 810-552-872

TORONTO
2550 Goldanridge Road, Mississsugu, Ontario
Tetaphona- (416)-270-8600 TWX. 810-@2- 7118

MONTREAL

8045 Cota Da Licsse

Dorval. Quabec. Canada HSP 2M9

Telephona (514)-838-9393 Telex 610-422-4124

CALGARY /Edmonton

Suite 140, 8840 Fisher Road S E.
Calgery. Albarts. Cansde

Telophone. (403) 4354231 TWX: 403-255-7408

644 S W _Marine Dr, Van
Briish Columbia. Canods VBP
Telophone- (804)-325-3231 Telu 610-929-2006

GENERAL INTERNATIONAL SALES
REGIONAL OFFICE
148 Mein Streer. Msynard. Masgachugstta 01754
Telophone. (817) 897-5111
From Matropolitan Boston, 848-8550
TWX: 710-347-0217/0212
Cable DIGITAL MAYN
Telox $4-8457

AUSTRALIA
Digitel Equipmant Austrelia Pty Ltd
ADELAIDE

8 Montrose Avenua
Norwood. South Australia 5067

Telephone (08)-42-1339 Telex: 780-82825
BRISBANE

133 Leichhardi Street

Spring Hill

Brisbane. Quaensland. Austrslia 2000
Telephone (072)-293088 Telex 780-208t5
CANBERRA

27 Colbe St.

Fyshwick. A.CT 2609 Australia

Telephone (062)-958073

MELBOURNE

60 Park Street, South Meibourne. Victona 3205
Australie

Tetephona (03)-690-2858
PERTH

843 Mureay Streat
Waest Perth. Western Austrahs €005
Talephone (002)-21-4833 elex 79092140
SYDNEY

P O Box @1, Crows Neat
N S.W Australia 2085
Tatephone (02)-439:2568

Telex 790-30700

Telex 79020760

NEW ZEALAND
Digitsl Equipmant Corporation Lid.
AUCKLAND

Hifton Houee, 430 Quaen Straet. Box 247t
Auchlond, New Zealond
Telaphone: 75553

208

WEST

REGIONAL OFFICE:

310 Soquel Way. Sunnyvale, Colifornia 94088
Telaphone: (408)-735-9200 Detaphone: 408-735-1820

ARIZONA

Phoenix

4358 East Broadway Road. Phoenix, Arizona 85040
Telephone' (602)-263-3488 Dataphone. 602-268-7371

CALIFORNIA

Senta Ana

2110 S Anne Street. Santa Ana, California 82704
Telophone (714)-979-2460 Dataphone. 714-979-7850
San Diego

6154 Migsion Garge Road

Suite 110, San Diego, California
Telophone (714)-280- 7850/ 7870
San Francisco

1400 Yerra Bella. Mountain View. Cahfornis 86040
Telephone (415)-984-6200 Dataphone: 415-984-1438
Cekiand

7850 Edgewater Drive. Oskland. Callfornia 84821
Telephone: (415)-635-5453/7830 Dataphane: 415-562-2180
West Los Angeles

1510 Cotner Avenue, Los Angeles, California 80025
Telephone: (213)-479-3791/4318 Dataphone- 213-478-5628
COLORADO

7901 E. Bellevue Avenue

Suite 5, Englewood. Cotorado 80110

Telephone: (303)-770-8150 Dataphone: 303-770-6628

NEW MEXICO

Atbuquerque

10200 Menusl N E . Albuguerque. Naw Mexico 87112
Telephone- (505)-296-5411/5428 Dataphune: 505-294-230

OREGON

Portlond

Suite 168

5319 S.W. Weatgate Driva, Portland. Oregon 8722t
Telephone: {503)-297-3781/3765

UTAH
Salt Lake City

429 Lown Dale Drive, Salt Lake City, Uteh 84115
Telophone (801}.4674669 Oatephone B01-467-0535

WASHINGTON
Bellevue
13401 N.E. Ballsvue. Radmond Roed. Suite 111

Beilevue. Wathinglon 58005
Telaphone: (208)-545-4058/455-5404

Detephone: 714-280-7825

JAPAN
Digital
Kowa Building No. 18 — Annex, Firat Floor
9-20 Akasgaks 1-Chome
Minato-Ku, Tokyo 107, Japan
Telophone S85-277\ Telex- }-28428
Rike: Trading Co , Ltd. (acles only)
Kozato-Kaikan Bidg

No 18-14 Nishishimbaghi 1-Chome
Minato-Ku. Tokyo. Japan

Telephone 5915246 Telax 7814203

PUERTO RICO

Digitsl Equipment Corporation De Puerto Rico
407 del Parque Street

Santurce. Puerto Rico 00812

Yelaphone (B09)-723-8068/67 Telex 3858058
RGENTINA

BUENQS AIRES

Caasin S.A

Vi del Pino. 4071, Buenos Aires

Telephone- 52-3185 Telex 012-2284

BRAZIL

RIO DE JANEIRO — GB

Ambriex S.A.

Rus Cesrd, 104. 2 e 3 ondares 2C - 2
Rio De Janairo — GB
Talephono 264.7408/0481/7825
SAO PAULO

Ambriex S.A

Rua Tupl, 535

Sso Paulo — SP

Telephone- 52-7808/1870, 510812
PORTO ALEGRE — RS

Rus Coronal Vicente 421/101
Porto Alegre — RS~

Telephone: 24-7411

CHILE

SANTIAGO

‘Cossin Chils Lida. (sates only)

C . Correa 15,

Cable: COACHIL

one. 26713

INDIA

BOMBAY

Hinditron Computers Pwt. Ltd.
/A, L lagmohendes Marg.
Bombey-8 (WB) Indio
Telephone 38-1815. 35-534¢
Csble- TEXHIND

MEXICO

MEXICQO CITY

Maxitek, S A

Eugenta €08 Deptor. 1
Apdo Postal 12-1012
Mexico 12, D F.
Telephone (S05) S38-09-10

PHILIPPINES

MANILA

Stanford Computer Corporation

P O. Box 1608

416 Desmarines St . Manila
Telaphone 49-68-96 TYelex: 742-0362

VENEZUELA

Telex: 011-2584 Planty

Sabens Grende No. 1. Caraces 105
Telaphone 72-8882. 72-8837
Cable INSTRUVEN

Dataphone 208-747-3754

SOFTWARE PROBLEMS OR ENHANCEMENTS

Questions, problems, and enhancements to Digital software should be reported on a Software Performance
Report (SPR) form and mailed to the SPR Center at one of the following Digital Offices: (SPR forms are
available from the SPR Center.)

Areas Covered ' SPR Centex
Australia/New Zealand Digital Equipment Australia Pty. Ltd.

123-125 Willoughby Road, P.O. Box 491
Crows Nest
New South Wales, Australia 2065

Brazil Digital Equipment Comercio E Industria LTDA
Rua Batatais, 429 (Esq. Al. Campinas)
01423-Jardim Paulista
Sao Paulo-SP-Brazil

Canada Digital Equipment of Canada, Ltd.
Software Services
P.O. Box 11500, K2H 8K8
Ottawa, Ontario, Canada

Caribbean Digital Equipment Latin America, Inc.
407 del Parque Street
Santurce, Puerto Rico 00912

United States, Far East, Software Communications
Middle East, Africa, P.O. Box F

Remainder of Latin America Maynard, MA 01754
France Digital Equipment France

18, rue Saarinen
Centre Silic - CIDEX L225
F-94533 Rungis, France

Israel DEC-sys Computers Ltd.
7 Habakuk Street
IL-Tel Aviv 63505, Israel

Italy Digital Equipment S.P.A.
Corso Garibaldi 49
I-20121 Milano, Italy

Japan Digital Equipment Corp. Int.
Kowa Building #25 (3rd Floor)
8~7 Sunban-Cho
Chiyoda-ku, Tokyo 102, Japan

Mexico Equipo Digital, S.A. de C.V.
109 Concepcion Beistequi
Mexico 12, D.F.

The Netherlands Digital Equipment B.V.
Belgium Kaap Hoorndreef 38, P.0O. Box 9064
' NL-Utrecht - Ovexvecnt, The Netherlands

Scandinavia Digital Equipment AB
Englundavagen 7
S-17141 Solna

Sweden
Switzerland
Spain Portugal Digital Fquipment Corp. SA
CGreece Bulgaria 20, Quai Ernest Ansermct
Romania Yugoslavia Case Postale 23, CH-1211 Geneva 8
Switzerland
United Kingdom Digital Equipment Co. Ltd.
Fountain House, Butts Centre
GB-Reading RGl 70N, England
West Germany Austria bigital Equipment GmbH
East Germany Russia D-8000 Munchen 40
Hungary Poland Wallensteinplatz 2
Czechoslovakia West Germany

' 209

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi-
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy
Paris, France Solna, Sweden
The Hague, Holland Geneva, Switzerland
Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation
Software Distribution Center Software Distribution Center

146 Main Street 1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex-
change center for user-written programs and technical application in-
formation. A catalog of existing programs is available. The society
publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the
society and membership application forms, write to:

DECUS DECUS

Digital Equipment Corporation Digital Eguipment, S.A.

146 Main Street P.O. Box 340

Maynard, Massachusetts 01754 1211 Geneva 26
Switzerland

210

DIGITAL'S REGIONAL EDUCATION CENTERS

QEOR INFORMAT ION REGARDING DIGITAL’s CusToMER TRAINING PROGRAM
AND TO ACCOMODATE COURSE ENROLLMENTS, CONTACT YOUR NEAREST

EDucATION CENTER LISTED BELOW:

PHILADELPHIA AREA:

Digital Equipment Corporation
Educational Services Department
Whitpain Office Campus

1740 Walton Road

Blue Bell, Pennsylvania 19422
Telephone: (215)825-4200 Ext.2h4

WASHINGTON, D.C. AREA:

Digital Equipment Corporation
Educational Services Department
Lanham 30 Office Building

5300 Princess Garden Parkway
Lanham, Maryland 20801
Telephone: (301)45-7900

BOSTON AREA:

Digital Equipment Corporation
Educational Services Department
(PDP-18 & PDP-15)

200 Forest Street

Marlboro, Massachusetts 01752
Telephone: (617)481-9511 Ext.5071

Digital Equipment Corporation
Educational Services Department

Maynard, Massachusetts 01754
Telephone: (617)89705111 Ext. 3819

or 2564

211

- PRINCETON, N.J. AREA:

Digital Equipment Corporation
Educational Services Department
U.S. Route 1 -) '
Princeton, New Jersey 08540
Telephone: (609)452-2940

CHICAGO AREA:

SAN

Digital Equipment Corporation
Educational Services Department
5600 Apollo Drive

Rolling Meadows, Illinois 60008
Telephone: (312)640-5500

FRANCISCO AREA:

Digital Equipment Corporation
Educational Services Department
310 Soquel Way

Sunnyvale, California 94086
Telephone: (408)735-9200 Ext.221

EDUCATION CEMTERS (ConT.):

UNITED KINGDOM:

Digital Equipment Company Ltd.
Fountain House, Butts Center
Reading, England RG1l,70N
Telephone: 58-35-55

GERMANY :

THE

Digital Equipment Gmbh.
Educational Services Department
Wallensteinplatz 2

D-8 Munich 13,Germany
Telephone: 35-03 1

NETHERLANDS :

Digital Equipment N.V.
Educational Services Department
Kaap Hoorndrief 38

Utrecht, Holland

Telephone: 030-63 12 22

SWEDEN:

Digital Equipment AB
Englundavaegen 7,3TR
S-171-41 Solna, Sweden
Telephone: 08/98-13/90

212

FRANCE :

Digital Equipment S.A.R.L.
Educational Services Department
2 Place Gustave Eiffel

F-94533 Rungis, France
Telephone: (01)687-2333

ITALY:

Digital Equipment SPA
Educational Services Departme *
Corso Garibaldi 49

1-20121 Milan, Italy

Telephone: 87-90-51

AUSTRALIA:

Digital Equipment Australia
 Pty. Ltd.

Educational Services Departm

123-135 Willoughby Road

Crows Nest

New South Wales 2065, Australia

Telephone: 439-2566

JAPAN:

Digital Equipment Corporatio-
Ltd.

Educational Services Department

Kowa Bldg. No.25, Third Floor

8-7 Sanban-Cho

Chiyoda-ku, Tokyo 102, Japan

Telephone: (03)264-7101

THE FOLLOWING PAGES ARE MISSING:

10=-12

14-17
| 21=-25
112-117
179-180
203=-204

DIGITAL EQUIPMENT CORPORATION, Maynard, Massachusetts, Telephone: (617) 897-5111 e ARIZONA, Phoenix ® CALIFORNIA,
Sunnyvale, Santa Ana. Los Angeles, San Diego and San Francisco (Mountain View) ¢ COLORADQO. Engelwood e CONNECTICUT,
Meriden e DISTRICT OF COLUMBIA, Washington (Riverdale, Md.) ® FLORIDA, Orlando ¢ GEORGIA, Atlanta ® ILLINOIS, Northbrook
* [INDIANA, Indianapolis ® LOUISIANA, Metairie ® MARYLAND, Riverdale ® MASSACHUSETTS, Cambridge and Waltham ¢ MICHIGAN,
Ann Arbor and Detroit (Southfield) ¢ MINNESOTA, Minneapolis ® MISSOURI, Kansas City and Maryland Heights ¢ NEW JERSEY,
Fairfield. Metuchen and Princeton « NEW MEXICO, Albuquerque ® NEW YORK, Huntington Station. Manhattan, New York, Syracuse
and Rochester « NORTH CAROLINA, Durham/Chapel Hill « OHIO. Cleveland, Dayton and Euclid ¢ OKLAHOMA, Tulsa e OREGON,
Portland ® PENNSYLVANIA, Bluebell, Paol and Pittsburgh e TENNESSEE, Knoxville e TEXAS, Dallas and Houston e UTAH, Salt Lake
City « WASHINGTON. Bellevue e WISCONSIN, Milwaukee ® ARGENTINA, Buenos Aires ® AUSTRALIA, Adelaide, Brisbane, Crows
Nest. Melbourne, Norwood, Perth and Sydney e AUSTRIA, Vienna e BELGIUM. Brussels ® BRAZIL, Rio de Janeiro, Sao Paulo
and Porto Alegre e CANADA. Alberta, Vancouver, British Columbia; Hamilton, Mississauga and Ottawa, Ontario; and
Quebec e CHILE, Santiago e DENMARK, Copenhagen and Hellerup e FINLAND, Helsinki ® FRANCE, Grenoble and Rungis e
GERMANY, Cologne. Hannover, Frankfurt. Munich and Stuttgart e INDIA. Bombay e [ISRAEL. Tel Aviv e ITALY, Milano e JAPAN,
Osaka and Tokyo e MEXICO, Mexico City « NETHERLANDS. The Hague ¢ NEW ZEALAND, Auckland e NORWAY, Oslo e
PHILIPPINES, Manila e PUERTO RICO, Miramar and Santurce e REPUBLIC OF CHINA, Taiwan e SCOTLAND, West Lothian e
SPAIN, Barcelona and Madrid e SWEDEN. Solna and Stockholm e SWITZERLAND, Geneva and Zurich e UNITED
KINGDOM, Birmingham, Bristol, =dinburgh, London, Manchester, Reading and Warwickshire e VENEZUELA, Caracas

PRINTED IN USA 0302 00174 3534/E 14 1.2

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	013
	018
	019
	020
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	205
	206
	207
	208
	209
	210
	211
	212
	213
	xBack

