VT15 XVM GRAPHICS
SOFTWARE MANUAL

DEC-XV-GVTAA-A-D

XV
OVSTENS
dlilgliltiall

y /"""*.,\’

VT15 XVM GRAPHICS
SOFTWARE MANUAL

DEC-XV-GVTAA-A-D

digital equipment corporation - maynard. massachusetts

First Printing, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright () 1975, by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 05/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM TYPESET-11

1/76-15

o,

CONTENTS
: Page
PREFACE ix
CHAPTER 1 INTRODUCTION 1-1
(mﬁ CHAPTER 2 SUBPICTURE ROUTINES 2=-1
2.1 GENERAL RESTRICTIONS 2=-3
om— 2.2 LINE SUBROUTINE 2-3
k 2.3 TEXT SUBROUTINE 2-=5
2.4 COPY SUBROUTINE 2=7
T 2.5 PRAMTR SUBROUTINE 2-8
2.6 GRAPH SUBROUTINE 2-11
2.7 BLANK SUBROUTINE 2-12
2.8 UNBLNK SUBROUTINE 2-14
2.9 CIRCLE SUBROUTINE 2-14
2.10 ROTATE SUBROUTINE 2-16
CHAPTER 3 MAIN DISPLAY FILE ROUTINES 3-1
N 3.1 DINIT (DISPLAY INITIALIZE) SUBROUTINE 3=-3
3.2 DCLOSE (DISPLAY TERMINATE) SUBROUTINE 3-4
3.3 SETPT (SET POINT) SUBROUTINE 3-4
3.4 PLOT SUBROUTINE 3-5
3.4.1 Plot a Subpicture (COPY) 3=5
3.4.2 Plot a Line (or Reposition the Beam) 3~-6
3.4.3 Plot a Control Command (PRAMTR) 3-7
3.4.4 Plot a Text String (TEXT) 3-7
3.5 DELETE FUNCTION 3-8
3.6 REPLOT FUNCTION 3-9
. 3.7 RSETPT FUNCTION 3=10
- ‘ CHAPTER 4 INPUT ROUTINES 4-1
4.1 LTORPB FUNCTION 4-=]1
4,2 TRACK SUBROUTINE 4-3
g CHAPTER 5 RELOCATING ROUTINES 5=1
5.1 DYSET SUBROUTINE 5-1
5.2 DYLINK SUBROUTINE 5-2
CHAPTER 6 SYSTEM I/O DEVICE HANDLER 6-—-
. LINIT (INITIALIZE) MACRO -
. .READ MACRO -
. .WRITE MACRO -
.WAIT MACRO

.WAITR MACRO
.CLOSE MACRO
.FSTAT MACRO
IGNORED FUNCTIONS

AN ANA YOY D
f
NN =

AN OO O
O~ UT e W

iii

CHAPTER

CHAPTER

CHAPTER

APPENDIX
APPENDIX

APPENDIX
APPENDIX

INDEX

Figure

R S S B B A U N

Weo~JO0 Ul ds Wi

e o s o @
N O W

0 00 OO0
o

WWYWYWYww Vv
e o
> wh =

e

]

w

CONTENTS (Cont.)

LK35 KEYBOARD HANDLER

.INIT (INITIALIZE) MACRO
- READ MACRO

«WAIT MACRO

.WAITR MACRO

«CLOSE MACRO

.FSTAT MACRO

IGNORED FUNCTION

ILLEGAL FUNCTIONS

LEGAL CONTROL CHARACTERS

VW01l WRITING TABLET HANDLER

+INIT (INITIALIZE) MACRO
.READ MACRO

.WAIT MACRO

.WAITR MACRO

.FSTAT MACRO

.CLOSE MACRO

IGNORED FUNCTIONS

TEXT DISPLAY/EDIT FUNCTIONS

CONTROL X FEATURE

SCROLL Mode

PAGE Mode

VT ON/VT OFF Monitor Commands
HALF ON/OFF Monitor Command

MNEMONICS COMMONLY USED IN GRAPHICS
SUBPROGRAM CALLS

DISPLAY INSTRUCTION GROUPS GENERATED
BY GRAPHICS SUBPROGRAM CALLS

MACRO EXPANSION OF GRAPHICS SUBPROGRAM
CALLS

CONDITIONAL ASSEMBLY OF GRAPHICS SUB-
PROGRAMS

FIGURES

Subpicture File Containing Four Vector
Commands

Sine Wave Program Example

Operation of BLANK/UNBLNK Subroutine
Sample TRACK Program (FORTRAN Example)
Sample TRACK Program (MACRO XVM Example)
DYSET/DYLINK Program Example

iv

)
Q
Q
[0}

I | |
s S WWNDEHE -

LI

N NN N NN N
i

00 00 0 00O 00O
|
aoUTuTd WN -

I

wwVwVwwwL ©
11
VNN

D-1

INDEX-1

Page

[NS E XN N
|
WO N

et

> W

Table

CONTENTS (Cont.)

TABLES

Display Parameter Settings
Description of CALL TRACK Arguments

Page

o

e

LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in-
cluding the latest version available. Within this manual, other XVM
manuals are referenced by title only. Refer to this list for the

DEC numbers of these referenced manuals.

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL
DDT XVM UTILITY MANUAL
EDIT/EDITVP/EDITVT XVM UTILITY MANUAL
8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL

FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL

LINKING LOADER XVM UTILITY MANUAL
MAC11l XVM ASSEMBLER LANGUAGE MANUAL
MACRO XVM ASSEMBLER LANGUAGE MANUAL
MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL
UPDATE XVM UTILITY MANUAL

VP15A XVM GRAPHICS SOFTWARE MANUAL
VT15 XVM GRAPHICS SOFTWARE MANUAL
XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READERS GUIDE AND MASTER
INDEX

XVM/DOS SYSTEM MANUAL

XVM/DOS USERS MANUAL

XVM/DOS V1A SYSTEM INSTALLATION GUIDE
XVM/RSX SYSTEM MANUAL

XVM UNICHANNEL SOFTWARE MANUAL

vii

DEC~-XV-OBUAA-A-D
DEC-XV-UCHNA-A-D
DEC-XV~-UDDTA~-A-D
DEC-XV-UETUA-A-D
DEC-XV-UTRNA-A-D
DEC-XV~-LFLGA-A-D
DEC~-XV-LF4MA~-A-D
DEC-XV-LF4EA-A-D
DEC-XV-ULLUA-A-D
DEC-XV-LMLAA-A-D
DEC-XV-LMALA=-A-D
DEC-XV-UMTUA-A-~D
DEC-XV-UPUMA-A~D
DEC-XV-UPPUA-A~-D
DEC-XV-USUTA-A-D

DEC-XV-USRCA-A-D
DEC-XV-UUPDA~-A-D

DEC-XV-GVPAA-A-D
DEC-XV-GVTAA-A-D
DEC-XV-ODKBA-A-D
DEC-XV~-ODGIA-A-D

DEC-XV-ODSAA-A~-D
DEC-XV-ODMAA~A-D
DEC-XV-ODSIA-A-D
DEC-XV-IRSMA-A-D
DEC~-XV-XUSMA-A-D

kS
“

R

PREFACE

This manual describes the software provided for the VT15 Graphics Dis-

play Processor and its optional:

a) VL04 Light Pen
b) LK35 Keyboard
c) VWO1BP Writing Tablet and Control

The information provided is applicable for users employing the XVM Disk
Operating System (DOS).

It was assumed in the preparation of this manual that the user is fa-
miliar with the DIGITAL XVM hardware and operating system.

The following manuals contain information useful in understanding and

utilizing the contents of this manual.
Software Manuals

a) XVM/DOS Users Manual

b) FORTRAN IV XVM Language Manual

c) FORTRAN IV XVM Operating Environment Manual
d) MACRO XVM Assembler Language Manual

e) Various Utility Program Manuals

Hardware Manuals

a) Graphic-15 Reference Manual
b) VW0l Writing Tablet, Vol. 1

The GRAPHIC-15 Reference Manual is of particular importance to the VTI15
programmer. The manual describes the basic Graphic 15 processor and its
interfacing arrangement with the XVM computer. The information in this
manual provides the user with the data needed for machine level program-

ming and familiarizes the user with the operation of the Graphic System.

ix

CHAPTER 1

INTRODUCTION

This manual presents a detailed description of the DIGITAL XVM VT15
Graphics Subprogram Package and is primarily concerned with those dis-
play subroutines and calling user programs employed to exhibit infor-
mation and communicate with the computer. The Graphics subprograms
generate display commands that allow the user to define display ele-
ments and direct the linking, displaying, and deleting of those ele-
ments. Their primary purpose is to provide a simplified means of
using the VT15 Graphic Display device without requiring detailed

familiarity with the hardware.

In this manual, Graphic Routines are described in detail as follows:

Chapter 2. Subpicture Routines
3. Main Display File Routines
4, Input Routines
5. Relocating Routines
6. System I/0 Device Handler
7. LK35 Keyboard Handler (LKA)
8. VW0l Writing Tablet Handler (VWA)
9. Text Display/Edit Functions

Subprograms which consist of Graphic Routines mentioned above are called
by user programs written in MACRO or FORTRAN IV language. The depth
of coverage of these routines is intended to provide a basic un-

derstanding of the use of the VT15 Graphic Display system. Much use-

ful information may be found in appendices following Chapter 6.

The DIGITAL XVM is designed with an autonomous systems structure and
the VT15 follows this same philosophy; it operates asynchronously from
the basic processor. Features include a cycle time of 750 nanoseconds,
a character generator (with 64 printing characters and 4 control char-
acters), a hardware program counter, a fast vector capability (1/4

inch to 1 psec), and a wide range of hardware options.

Introduction

The minimum system configuration for the VT15 Graphics Software is dis-
cussed in the XVM/DOS User's Manual. The minimum display hardware is

one VT15 display processor, and one VT04 display console.

The Graphics Software consists of a group of routines that can be

called by user programs. Calls to these routines build display files

in a portion of XVM memory that has been allocated by the calling pro-

gram for such a purpose. The display files contain instructions and

data upon which the VT15 Processor operates and to which its digital -
control and analog outputting circuits respond. The VT15 Processor

has a set of 12 basic;machine—language instructions which give it “x
excellent versatility in the display of points, basic vectors, graphic
plots, and ASCII characters. The commands contained in a main display
file link together individual subpicture files causing the desired
image to be displayed. Calls to other routines control the flow of
the program upon the occurrence of light pen or push button interrupt.
In this way, program paths can be enabled to modify the sequence of
display commands and therefore modify the picture.

The VT15 Graphics Software is designed to run in Bank/Page Mode and to

be used with either FORTRAN IV or MACRO XVM programs. FORTRAN IV pro-

grams composed by the user will consist of standard FORTRAN IV state- S
ments and calls to routines within the VT15 Graphics package. Other

than system software normally used for compilations, assemblies, load-

ing, etc., the VT15 Graphics software does not require use of any

other programs.

In PDP-15 DOS V3A, the internal format of FORTRAN subroutine calls was

changed. FORTRAN version 044, and later, have the new format. Since

the Graphics Software is called by FORTRAN, its subroutine call format S
must match that used by FORTRAN. The following versions or later

should be used with FORTRAN Version 044 or later:

VTPRIM 004
LTORPB 002
TRACK 002

Distributions of PDP-15 DOS V3A software and later contain matched sets
of FORTRAN and Graphics of the new format. Under the new format, refer-
ences of the form LARRAY are equivalent to LARRAY (1), so that these
forms may be used interchangeably.

CHAPTER 2

SUBPICTURE ROUTINES

Subpicture routines allow the user to incorporate point plotting, line
drawing, and text display in his programs with minimum effort. Calls
these routines together with standard FORTRAN or MACRO statements build
self-contained subpicture display files which are subscripted program
arrays with executable display instructions. Each subpicture file
contains all the display instructions needed to generate a specific
image on the VT@4 Display console. These files are accessed by a Main
Display File (described in Chapter 3) in any order or sequence during
the execution of the display program. Most Subpicture Routines will
normally be called prior to initiating execution of a Main Display
File, thus building a library of accessible graphics (i.e., complete or
partial pictorial images) from which complex images may be formed. The

subpicture display routines and their functions are:

LINE - Draws a line (intensified) or moves the beam (not
intensified) from current position. (Provides for
using random vector option, if available.)

TEXT - Displays strings of 5/7 ASCII text previously de-
fined by the user in dimensioned arrays.

COPY - Links subpicture files (similar to subroutining)
to form a composite display image. Provides for
using hardware SAVE/RESTORE feature, if desired.

PRAMTR - Sets scale, intensity, light pen sensitivity, blink,
etc., for this subpicture, or some portion thereof.

GRAPH - Displays specified data points in graph form.
BLANK - Inhibits display of any copy of this subpicture.

UNBLNK - Reverses the action of the BLANK subroutine.

All display file storage is created by the FORTRAN user in the form of
dimensioned integer arrays; MACRO XVM users must also allocate display
file storage in some appropriate manner. To facilitate storage manage-
ment, the first location of each file contains the length of the file.
Limited reuse of storage is provided for in the Main Display File rou-

tines.

Subpicture Routines

The first location of a subpicture file, PNAME(l), contains its current
length - this value must be set to zero before the first reference to
the subpicture display file is made. After the first reference, the
contents of PNAME(l) are set equal to the length of the subpicture
file; this value is automatically updated by any subsequent calls to
the subpicture display routines. (See Figure 2-1.) Each display
ELEMENT is added at the current end of the subpicture file.

LOCATION CONTENTS
PNAME (6)

+1 returnt

+2 vector command
+3 vector command
+4 vector command
+5 vector command
+6 DJMP* PNAME+1

TReturn address stored by any dis-
play JMS (DJMS) to this subpicture.

Figure 2-1
Subpicture File Containing Four Vector Commands

Since display files are generated and stored in arrays dimensioned by
the user, they are fully accessible to the user and can be written out
or read in using FORTRAN unformatted I/O statements.

Storage overhead for each subpicture display file is three words; the
first word contains the file length, the second is used for a return
address, and the third (last in file) contains the VT15 display com-
mand DJMP* PNAME+1.

The procedure for generating a subpicture file such as that illustrated
in Figure 2-1 requires some further explanation. The four calls to
subroutine LINE, shown below, will result in such a file. This sub-
picture file will simply draw a square when accessed by the Main Dis-

play File or another subpicture file.

DIMENSION IPNAME (10)
IPNAME (1) =0

.
°

CALL LINE (1¢8,8,1,IPNAME (1))
CALL LINE (Z,188,1)

CALL LINE (-18¢,7,1)

CALL LINE (#,-104,1)

Nt

Subpicture Routines

Note in the above example that storage allocation for the subpicture
file was provided by the DIMENSION statement. Also, the first loca-
tion, IPNAME(l), was set to zero before the first reference to it,
thus indicating a new file. The identity of a subpicture file is the
address of its first location (PNAME) and is given or implied, as an
argument in all calls to subpicture routines. Each subpicture file is
left in displayable form so that it can be manipulated dynamically
while being displayed.

Limited reuse of storage is provided for in the main display file rou-
tines RSETPT, REPLOT, and DELETE which are explained in Chapter 3. 1In
this chapter, the number of locations required for display instructions
generated by each subroutine call is indicated in each of the subrou-
tine descriptions. ©Naturally, the total number of locations that can
be allocated for display files is limited by the amount of core memory

available.

2.1 GENERAL RESTRICTIONS

The following general restrictions apply to all subpicture routines
except BLANK and UNBLNK.

a. All arguments (constants or variables) must be of
integer form.

b. The variable PNAME must be set equal to zero before
the first call referencing it.

c. The PNAME array must be of sufficient size to con-
tain the entire subpicture file (the software does
not check for overflow).

2.2 LINE SUBROUTINE
The LINE subroutine adds to the end of the specified subpicture file
the commands necessary to draw a line (beam intensified) or move the

beam (not intensified) through a specified displacement from the cur-

rent beam position.

The call statement has the form:

CALL LINE (DELTAX,DELTAY,INT[,PNAME])

where the enclosing brackets [] indicate an optional argument.

Subpicture Routines

DELTAX represents the horizontal component of beam displacement in ras- S
ter units and DELTAY represents the vertical components. A raster unit

is the distance between two adjacent points along the X or Y axis, and

differs in size with different picture tubes. The integer variable INT

indicates whether the line is to be intensified (INT=1, the line will

be visible; INT=0 the line will not be visible). The variable PNAME rep-

resents the first location of this subpicture file. If this optional

argument is not provided, the display code is appended to the array

whose PNAME was last provided in any call to a subpicture routine. For

example, if a subpicture is to start in the dimensioned array ILEMNT,

the form is: o
CALL LINE (DELTAX,DELTAY,INT,ILEMNT (1))

Each subroutine LINE call adds one command to the display file if
DELTAX and DELTAY define one of the eight basic directions:

VN! [INT!]INCR (where VN is vector direction n, [INT]
is only included if the line is to be
intensified, and INCR is units) (the
exclamation operator indicates an in-
clusive OR function)

If DELTAX and DELTAY do not define one of the eight basic directions,
LINE tests for availability of the random vector option, and, if avail-
able, adds two commands to the display file:

SVXIDELTAX (stroke vector, x displacement)

SVY!DELTAY (stroke vector, y displacement)

If not one of the eight basic directions, and if the random vector op-
tion is not available, LINE approximates the required line with a
series of basic vectors. The contents of the location PNAME is in-
cremented by the number of commands added to the display file.

In addition to the general restrictions (paragraph 2.1) outlined pre-
viously for subpicture routines, there is another restriction that
should be considered when using subroutine LINE: DELTAX and DELTAY
should always be signed integers with magnitudes not exceeding 1§23.

The following two statements illustrate the use of the LINE subroutine.

CALL LINE (#,68,1,ILINE(1))

Subpicture Routines

This statement generates a display instruction to draw a vertical line
6@ raster units long. The display instruction (a basic vector) is
stored at the end of subpicture file ILINE.

o Starting point

The following statement illustrates use of the LINE routine to draw a
sloped line:

CALL LINE(IDX,IDY,1,ILINE(1))

where IDX = -3@f and IDY = 28#, we obtain the following:

2008 Y

4

-+ -3ff—— Starting point
X

Note that the random vector option is assumed to be available (other-

wise, such a line would be approximated) .
2.3 TEXT SUBROUTINE

The TEXT subroutine adds to the specified subpicture file commands
necessary to display an identified text string - starting at the cur-
rent beam position. The standard text font is drawn on a 1§ by 14
dot matrix. FEach character causes an increment of 14 raster units to

the X position of the beam. The form is:
CALL TEXT (STR,N[,PNAME])

The input variable STR identifies the dimensioned real array that con-
tains the string of characters to be displayed in IOPS ASCII (Holler-
ith) form - five 7-bit characters packed in two words. The variable,
N, is an integer variable that indicates the number of characters to
be displayed in the referenced array. If N#@, an ALT MODE will be
inserted after the nth character to allow escape from the character

mode. If N=@, ALT MODE will not be inserted in the TEXT array. The

2-5

Subpicture Routines

variable PNAME(1l) is the first location of this subpicture file, as e
in the call to LINE.

The TEXT subroutine adds three locations to the assembled display
file; three is added to the contents of PNAME(1).

CHARS* .42
DJIMP o2
(FULL 17-BIT ADDRESS)

NOTE -
If 5/7 ASCII is loaded into the array
from an external source (as opposed to
being defined in a FORTRAN DATA state- e’
ment), it may contain certain non-
printing characters (such as carriage f
return, line feed, etc.) that must be
allowed for when specifying the argu-
ment N.
In addition to the general restrictions outlined in paragraph 2.1, the
array referred to by TEXT must be of sufficient size to accommodate
the escape character that will be inserted by TEXT. Also, to ensure .
—
that the display processor is conditioned to escape on ALT MODE, it
is necessary to start up an empty Main File with a call to DINIT (de-
scribed in Chapter 3). When this is done, a display parameter word
is inserted in the new Main File to enable escape on ALT MODE only.
(The alternative is to escape on carriage return or ALT MODE, which-
ever comes first; however, this option is not selectable using Main
File or subpicture routines.)
The following example illustrates the manner in which TEXT to be dis-
played is set up and called:
Setup to display "15 ASSABET RD." is
DIMENSION ADDR(4)
DATA ADDR(1)/5H15 AS/,ADDR(2)/5HSABET/,ADDR(3)/4H RD./
The call statement to display the TEXT from subpicture IPIC is:
CALL TEXT (ADDR(1l) ,14,IPIC(1l))

Subpicture Routines

2.4 COPY SUBROUTINE

The COPY subroutine enables two or more subpicture display files to be
linked together to generate a composite display image. This is accom-
plished by a display subroutining technique. COPY adds to one subpic-
ture display file the commands necessary to call a second subpicture.

The second subpicture begins at the last beam position specified by the

first subpicture. The form is:

CALL COPY (RST,PNAMEL[,PNAME])

The variable, RST, indicates whether to save and restore display param-
eters! when copying the specified subpicture. RST may be set to § or 1;
g indicates no SAVE/RESTORE option and 1 indicates SAVE/RESTORE option
is to be used. The variable PNAMEl is the first location of the sub-
picture to be copied. PNAME is the first location of the subpicture
file to which display instructions generated by this call are to be
added.

The COPY subroutine adds three locations to the display file when the
SAVE/RESTORE option is not specified. These three locations are as

follows:

DJMS* .t+2
DJIMP o2
(ADDRESS of PNAMEl+1)

However, when SAVE/RESTORE is specified, COPY adds six locations to the
display file as follows:

SAVE .+4

DJMS* .+2

DJMP +3
(ADDRESS of PNAMEl+1)
(STATUS)

RSTR .~1

lThese parameters include (but are not limited to) scale, intensity,
blink, offset, and rotate, which can be set by calling subroutine
PRAMTR (see paragraph 2.5.1). For a detailed description of parameters
affected by the SAVE/RSTR instruction, refer to GRAPHIC-15 Reference
Manual.

Subpicture Routines

where the SAVE instruction stores the affected display parameter set-
tings in the STATUS word before executing the normal sequence of COPY
commands. Upon returning from the subpicture, these parameters are

restored to their original settings by the RSTS instruction. The con-

tents of PNAME is increased by three or six, as required.

In addition to the general restrictions outlined in paragraph 2.1,
PNAME 1 need not be defined when COPY is called but must be a defined
subpicture when PNAME is displayed. The following statement:

CALL COPY (@ ,WINDOW(1l) ,HOUSE (1))

adds a call to the window subpicture file to the file identified as
HOUSE. Note that the SAVE/RESTORE option was not specified.

2.5 PRAMTR SUBROUTINE
WARNING

The display of small display files at high
intensities without the SYNC option may dam-
age the scope phosphor. It is recommended
that SYNC be used throughout.

The PRAMTR subroutine allows the user to add to the specified subpic-

ture file the commands necessary to set up the following display fea-

tures. (See Graphic-15 Reference Manual for more detailed information.)

Scale setting - Setting the scale has a different effect, depending on

where it is used. If used when plotting characters or vectors, it
specifies the number of times (g - 15) that the unscaled vector (or
stroke of a character) is to be repeated. If used in conjunction with
the graph subroutine, the scale specifies the coordinate distance be-

tween given points.

Intensity Setting - The brightness of the display can be controlled

in eight incremental steps between maximum dark and maximum light by
specifying an integer variable or constant to represent the wanted

brightness, between # and 7.

Light Pen Sensitivity = The ability of the light pen to sense a "hit"

can be controlled by means of this feature.

e

oni”

Subpicture Routines

Blink Setting - Use of this feature enables blinking of some portion

or all of the displayed image. This feature causes characters as well

as vectors to blink at a rate of approximately four times a second.

Dash Setting - This feature enables drawing of dashed lines and can be

set from § to 3 as follows:

Setting Illuminated Raster Points
g ALL ON
1 3 ON 1 OFF
2 4 ON 2 OFF
3 4 ON 4 OFF

Offset Setting - Since the VT15 display processor defines a square

drawing area, a standard rectangular tube would normally have some
unused area. The VT15 makes use of this area by means of the offset
feature. When the offset is enabled, the absoclute origin is relocated
to the lower right-hand corner of the normal display area. This small
area (approximately 9-1/2 x 1-1/2 in.) can be used for light buttons,
special figqures, etc., without disturbing the normal graphics area.

Rotate Setting - This feature allows the displayed image to be rotated

9¢ degrees in the counterclockwise direction or returned to its normal
orientation if it is currently rotated. This could be useful for label-
ing graphs on the vertical axis or for any of a number of other appli-

cations.

Name Register Setting - The ability to set the Name Register is required

to identify the location of light pen hits when using subroutine LTORPB.
However, it is a feature which, when used at the programmer's discre-
tion, can be helpful in many other applications. Once set, it retains

its value until set to a different value.

Sync Feature - This feature can be used to avoid phosphor burnout when

displaying files that require 32 milliseconds or less for execution.
The display will halt and remain stopped until a sync pulse, derived
from the local power main, enables execution to resume. This essen-
tially locks execution of the display file to the power line frequency,

which eliminates a visible swimming effect on the CRT.

Subpicture Routines

The PRAMTR call statement allows more than one feature (each with its
corresponding settings) to be specified, using the following technique:

1. Add together the integer code numbers that identify the
selected features and assign this value to the variable

FEATR. For example: For scale (1) and Intensity (2),
FEATR will have the value 3.

2. List the desired settings, as arguments, in ascending
order according to the values of the numeric assigned
to their corresponding features (the argument list
3,2,6 would specify a value of 2 for scale (feature 1)
and of 6 for Intensity (feature 2)). The general call
statement form is:

(a) One feature - CALL PRAMTR(FEATR,VALUE[,PNAME])

(b) More than one feature and setting -
CALL PRAMTR(FEATR(S) ,VALUEl,VALUE2...[,PNAME])

The variable FEATR represents the display feature being set. The vari-
able VALUE is the value to which FEATR is set. (See Table 2-1 for
FEATR and VALUE settings.) PNAME is the first location of this subpic-
ture file.

Table 2-1
Display Parameter Settings

Integer Code
Parameter for FEATR Possible Settings
Scale 1 # (Low) to 15 (High)
Intensity 2 # (Low) to 7 (High)
Light Pen 4 g (OFF) and 1 (ON)
Blink 8 # (OFF) and 1 (ON)
Dash 16 # (Solid) to 3 (Finest dash)
Offset 32 g (OFF) and 1 (ON)
Rotate 64 1 (CCw 90°) and

(Return CW 90°)

Name Reg. 128 7 (Lowest) to 127 (Highest)
Sync 256 # (OFF) and 1 (ON)

counterclockwise
clockwise

Note: The abbreviation CCW
CW

Subpicture Routines

The PRAMTR subroutine adds from one to four commands to the display
file, depending on the type of argument list used.! The number of com-
mands added to the file is added to the contents of location PNAME.

In addition to the general restrictions, the PRAMTR subroutine must be
used with care, since the setting given is in effect until explicitly
changed. Thus, if the blink is turned on at the beginning of a subpic-
ture, it must be turned off at the end, otherwise the entire display
image will blink (unless, of course, the SAVE/RESTORE option is used

in calls to this subpicture).

The following single feature statement:
CALL PRAMTR (2,7 ,HOUSE(1))

specifies an intensity level of 7, for the subpicture display file
starting at the first location of array HOUSE. The following multiple-

feature statement:
CALL PRAMTR (SCALE+INT+LPEN,@,4,1,IN(1))

specifies the values g and 4 for scale and intensity, and turns on the
light pen sensitivity. Appropriate display commands are added to the
file that begins with the first location of array IN.

2.6 GRAPH SUBROUTINE

The GRAPH subroutine adds to the specified subpicture file the commands
necessary to display in graph form the identified set of data points.
One coordinate is sequentially set to the value of each data point,

the other coordinate is then automatically incremented (in the current
scale), leaving the beam positioned one increment past the end of the
graph. Note that axes and labeling must be provided separately. The

call statement form is:

CALL GRAPH (DTA,N,A[,PNAME])

lgcale and intensity settings, when combined, generate only one display
command. Light pen, blink, offset, and rotate, when combined, generate
only one display command. Sync and dash features, when combined, gener-
ate only one display command. Setting the Name Register generates one
command.

Subpicture Routines

DTA represents an INTEGER array that contains the set of data points,
one per word, in the range § to 1§23. The variable N indicates the
number of data points to be displayed. The variable A indicates which
axis to increment, where A is set to either f or 1. (A=f specifies
incrementing the X axis and setting Y to data values; A=1 specifies
incrementing the Y axis and setting X to data values.) The variable
PNAME specifies the first location of the subpicture file to which the
generated display commands are to be added.

The GRAPH subroutine adds to the subpicture file a number of graph-
plot commands equal to the number of entries in the data set, as shown
below. The number of commands added to the file is added to the con-
tents of PNAME.

GX!VALlL GY!VALl

GX!VAL2 GY!VAL2
. oxr B

GX!IVALn GY!VALn

One way to summarize the discussion up to this pcint is to review a
program, (Figure 2-2 Sine Wave Program Example) which illustrates the
use of GRAPH and other subroutines.

2.7 BLANK SUBROUTINE

The BLANK subroutine is used to prevent the displaying of any copy of
the specified subpicture. However, the display file length is not
changed. The form is:

CALL BLANK (PNAME)

where the variable PNAME is the subpicture to be blanked.

In Figure 2-3 the command in location PNAME+2 (the first executable
command in the subpicture file) is interchanged with the DJMP* PNAME+1
located at the end of the subpicture file. PNAME must be a defined
subpicture file (BLANK has no meaning as the first call referring to
PNAME). The subpicture files should not be modified while BLANKed.
The following example would prevent the subpicture display file start-

ing at the first location of array IPIC from being displayed.

CALL BLANK (IPIC(1))

Subpicture Routines

c
C ARRAY INITALIZATION
INTEGER SINWV(380),Y(200)
DIMENSION TITL(IB), MAINFL(20)
DATA TITLCI),TITL(2) ,TITL(3),TITL(4)/5HTHIS ,
1 5HIS A ,5HSINE ,4HWAVE/

c
C SET UP INTEGER ARRAY OF VALUES TO BE PLOTTED,
C
16 X=0
DO 20 1=1,200
YCI)=IFIX(SINC(X)*256,)+512
X=X+.0628
2 CONTINUE

SET UP SUBPICTURE TO PLOT THOSE VALUES.

[eEe Re RV

SINWV(1)=0

CALL PRAMTR(3,0,7,SINWV(I))

CALL LINEC1000,2,1)

CALL LINE(-1000,0,0)

CALL LINE (8,250,0)

CALL LINE(@,=-500,1)

CALL LINE (2,258,2)

CALL PRAMTR (1,4)

CALL GRAPH (Y(1),108,8)

CALL GRAPH (Y(101),100,0,SINWCI))

SET UP MAIN FILE TO DISPLAY THE GRAPH.
(MAIN FILE CALLS BELOW, DESCRIBED IN CHPT. 3)

QOO0

MAINFL(1)=0

CALL DINIT (MAINFLCI))D
CALL SETPT (1@,512)

CALL PLOT (@,08,SINWV(L))
CALL SETPT (100,100)
CALL PLOT (2,141

CALL PLOT (3,TITLC1>,19)
CALL DCLOSE

PAUSE

STeP

END

Figure 2-2
Sine Wave Program Example

Subpicture Routines

PNAME LENGTH
+1 Return Add.
+2 First Display Inst.

DJIMP* PNAME+1

Figure 2-3
Operation of BLANK/UNBLNK Subroutine

2.8 UNBLNK SUBROUTINE

The UNBLNK subroutine reverses the action of the BLANK subroutine,
allowing a previously BLANKed subpicture to be displayed. The form

is,

CALL UNBLNK (PNAME)

where the variable PNAME is the subpicture to be UNBLNKed. The command
in the last location of the subpicture file (placed there by a call to
BLANK) is interchanged with the DJMP* in location PNAME+2. If the
referenced subpicture is not already BLANKed, UNBLNK will return with-
out changing the file.

The following statement will enable the previously BLANKed subpicture
IPIC to be displayed.

CALL UNBLNK (IPIC(1))
2.9 CIRCLE SUBROUTINE
The CIRCLE subroutine is provided as a FORTRAN source, and must be com-
piled before use. The CIRCLE Subroutine enables the user to construct
approximations of arcs and circles as subpictures by specifying the

length of a series of chords and the start and stop points of the arc

or circle to be constructed.

The form of the FORTRAN call for the CIRCLE subroutine is:

CALL CIRCLE (R,THETA,GAMMA,DEG,PNAME)

2-14

Subpicture Routines

where the call variables in floating point except PNAME, are defined

as:

1) R, the radius, in raster units, of the circle to be
constructed.

2) THETA, the start of a constructed arc expressed in
degrees from the X-axis, rotating counterclockwise
about the center of the circle/arc.

3) GAMMA, the end point of a constructed arc, expressed
in degrees, rotating counterclockwise about the cen-
ter of the circle/arc.

4) DEG, length of approximating chord in degrees

5) PNAME, the name of the display file to which the
CIRCLE subroutine will add the new subpicture array,
as the first element in the display. The previous
contents of the display file are destroyed by this
call.

In DOS V3A, the calling arguments remain the same. However, at the
conclusion of the arc or circle, the beam is returned to the center
of the circle, not left at the edge as in DOS V2A.

The call to the CIRCLE subroutine has no effect if DEG is less than
0.001 degrees absolute, or if R is less than one raster unit. THETA
and GAMMA are measured counterclockwise from the positive X-axis
(modulo 360). If DEG is positive, arcs are drawn counterclockwise
from THETA to GAMMA. If DEG is negative, arcs are drawn clockwise
from THETA to GAMMA. A full circle is drawn if THETA and GAMMA are
within 0.001 degrees. GAMMA may be less than THETA.

The MACRO form of the call to the CIRCLE subroutine using the same

variable representations as above is:

.GLOBL CIRCLE
JMS* CIRCLE
JIMP .+6
.DSA R

.DSA THETA
.DSA GAMMA
.DSA DEG
.DSA PNAME

Subpicture Routines

NOTE

CIRCLE Subroutines require the VV15 arbi=-
trary vector hardware option.

2.10 ROTATE SUBROUTINE

The ROTATE subroutine is provided as a FORTRAN source, and must be com-
piled before use. The ROTATE subroutine enables the user to plot
three-dimensional figures from basic two-dimensioned figures. Displayed
items may be rotated about a specified axis through a designated angle
of rotation. ROTATE takes X, Y, and Z coordinates from the user arrays,

computes, and returns the new coordinates into the same arrays.

A single call to the ROTATE subroutine can effect a rotation about one
or more of the X-, Y-, or Z-axes. The rotation of a display about any

other axis requires more than one call to be made to the subroutine.

The ROTATE subroutine utilizes the same left-handed system that is used
throughout the graphics software, that is:

a) X, horizontal movement, positive to the right
b) Y, vertical movement, positive is up

c) Z, axis into the display screen (positive movement)

The setpoint defines the origin of the axis of rotation.

CAUTION

The ROTATE subroutine should be used care-
fully, particularly when rotating large
figures, or off-center origins.

If, during rotation, the end-point of a line of the rotating figure
passes off screen, part or all of the figure may be lost. It is good
practice in rotating large figures to save the original buffer before
calling ROTATE.

The following restrictions must be observed:

1) The values in the user's rotation arrays must be in
floating point format.

2) The user must calculate the sine and cosine of the
angle of rotation before he calls ROTATE.

o

3)

Subpicture Routines

The user must change integers into floating point num-
bers, and make the correct calls for displaying the
rotated figure.

The FORTRAN and MACRO formats for calls to ROTATE are:

FORTRAN:

CALL ROTATE(ISTR,IA,IB,IC,X,Y,Z,SINA,CSA)

MACRO:
.GLOBL ROTATE
JMS* ROTATE
JMP .+12
.DSA ISTR
.DSA IA
.DSA IB
.DSA IC
.DSA X
.DSA Y
.DSA Z
.DSA SINA
.DSA CSA

where the

input variables are defined as:

1. ISTR, the array length.
2. 1IA, specifies whether rotation about the X-axis is de-
sired.
If IA=1, rotation will occur about the X—-axis.
If IA=f, there will be no rotation about the X-axis.
3. 1IB, specifies whether rotation about the Y-axis is de-
sired.
IB=1 indicates rotation is desired, as with IA.
4. IC, specifies whether rotation about the Z-axis is de-
sired.
IC=1 indicates rotation is desired, as with IA.
5. X, the name of the X array.
6. Y, the name of the Y array.
7. %Z, the name of the Z array.
8. SINA, the sine of the angle of rotation.
9., CSA, the cosine of the angle of rotation.

2-17

s

CHAPTER 3

MAIN DISPLAY FILE ROUTINES

A call to the display startup routine DINIT starts the VT15 graphics
processor executing a specified display file. This file is now known
as the "Main Display File". All calls to the Main Display File Rou-
tines implicitly reference this file until another DINIT is issued.

A Main Display File resides in a FORTRAN dimensioned array just as
does a subpicture file. A subpicture file may be DINIT'ed to be a
Main Display File. Alternately, the Main File may be empty when
DINIT'ed and subsequently the picture is created by Main File graphics
calls. Typically, the Main File will call various subpicture files to
create the whole graphics image. However, it is possible to build the

entire image in the Main File.

Most Main File calls have an optional argument CNAME. When provided,
this argument is returned with the address of the display code just

written into the Main File. These CNAME pointers are input arguments
to the code modification routines REPLOT, DELETE, and RSETPT. The code
modification routines allow replacement of graphics code with other
graphics code (assuming it can fit into the available space). The Main

File routines and their functions are:

DINIT - initializes and starts the display via device
numpber (.DAT SLOT) 10

DCLOSE - stops the display and leaves the main file in
a form such that it can be called as a subpic-
ture file,

SETPT - sets absolute starting point of display. (Point
not intensified.)

PLOT - displays predefined but not necessarily complete

subpictures, individual LINEs, or ASCII text:
also used to define display parameters.

DELETE - replaces the specified graphics element with
no-op's.

REPLOT - similar to PLOT, but permits reuse of previously
defined areas in the main file.

RSETPT - similar to SETPT, but permits reuse of previously
defined areas in the main file.

3~1

Main Display File Routines

In XVM systems, the.format of the CNAME pointer has been changed.

Since 17 bit addresses are supported, there is no longer room for a
3~bit count field in the top of the CNAME pointer. This count field
previously served to notify the graphics system whether or not a
REPLOT'ed item could fit into the Main Display File in the space oc-
cupied by its predecessor. For XVM, the graphics system has been modi-
fied to determine the CNAME count by examination of the display file.
This change in the graphics leads to several restrictions.

First, user programs that modify CNAME count or specifically depend on
CNAME count values will not function correctly under XVM.

Second, programs that use the CNAME mechanism to REPLOT graphics code
not created by a standard graphics call will not function correctly
under XVM.

Third, users who do not have the VV15 arbitrary vector option may find
that their display files increase in size. The general form of an ap-
proximated arbitrary vector in core is:

SKP
(COUNT=N+2)

vl

V2

vn

Under XVM the two word SKP-COUNT header is present for all approximated
random vectors. Under previous systems, the SKP-COUNT header was ab-
sent if the vector count was less than 7. Thus, some lines will re-
quire two more core locations.

Finally, there are some display file size differences involved with
PLOTing and REPLOTing parameter instructions. A PLOT (2,,,,CNAME)
call requires one more location than previously. However, this loca-
tion is reclaimed if any display element other than a parameter in-
struction is subsequently added to the display file. Parameter in-
structions are placed by calls to PRAMTR, and type 2 calls to PLOT.

If a REPLOT (2,,CNAME) call is used to write parameter instructions

over a non-parameter display group, additional space may be needed

3-2

et

N,

Main Display File Routines

for this REPLOT. A lack of this additional space will cause the REPLOT
to fail. An additional location is required for both an immediately
preceding and an immediately following parameter instruction in the

display file.
3.1 DINIT (DISPLAY INITIALIZE) SUBROUTINE

The DINIT subroutine initializes the display via device number (.DAT
slot) 1. The VT15 device handler (VTA) must be associated with .DAT
slot 1§ as DINIT contains .IODEV 1§, which causes the device handler
7 associated with .DAT slot 1§ to be loaded. DINIT can be used to set up
for a new display main file, to start up an old one, or to start up any
SN previously defined subpicture as the current main file. The call state-
ment form is:

o~

CALL DINIT (MAINFL(1))

MAINFI, is the first location of the Main Display File. Like PNAME, it
is an element of a dimensioned integer array. Location MAINFL contains
the length of the Main Display File. This is updated by all main file

routines.

Subroutine DINIT stores a DJMP* MAINFL+1 at the end of the main file,
inserts the address of MAINFL+2 into MAINFI+1l, initializes the display,
and starts the display running at MAINFL+2.

Certain restrictions must be noted when using DINIT. If a new display
file is being formed, location MAINFL must contain zero; if this is a
previously defined file, location MAINFL contains the file length and

must not be altered. Sufficient storage must follow MAINFL to accom-
modate the main display file that is to be generated. Only one main

display file can be running at a time.

NOTE

When a new main display file is being ini-
tialized, DINIT inserts a display param-
eter word to turn off blink, offset, ro-
tate and light pen, and to enable character
string escape on ALT MODE (175g). To change
the initial settings for blink, offset, ro-
tate, and light pen, or to ensure that other
display features (i.e., scale, intensity,

i dash, name register, and sync) are initially

set as desired, the calling program should

contain a PRAMTR type call to PLOT (described

in paragraph 3.4.3) following the call to
DINIT.

3-3

Main Display File Routines

The following statement initializes the execution of the Main Display
File starting at the first location of array MAINFL.

CALL DINIT (MAINFL (1))

3.2 DCLOSE (DISPLAY TERMINATE) SUBROUTINE

The DCLOSE subroutine is used to stop the display. DCLOSE also leaves
the current main file in displayable form such that it can later be
called as a subpicture file or restarted as a main file., Note, a DCLOSE,
while turning off the display processor, does NOT alter the definition
of the current Main File. The Main Display File routine will still
function correctly to this Main File with the display processor stopped.
The call statement form is simply:

CALL DCLOSE

3.3 SETPT (SET POINT) SUBROUTINE

The SETPT subroutine is used to locate the beam on the display surface
in absolute display coordinates (raster units). The beam is not in-

tensified with this call. The call statement form is:

CALL SETPT (X,Y[,CNAME])

where the variable X represents the horizontal coordinate of beam loca-
tion and Y represents the vertical coordinate of beam location. The

variable CNAME is a pointer to the first location of the display com-
mands generated by this call. SETPT adds two commands to the main file,
as follows:

PY!lY
PXIX

Two is added to the contents of location MAINFL. The location PY!Y is
stored in CNAME (if given).

The variables X and Y must be positive integers and their values must
not exceed 1f23. A call to SETPT causes the beam to be given an abso-
lute location, as opposed to a relative displacement. This action
effectively severs any following parts of the display from any preced-
ing parts; if a section of the display is completely defined in terms

3-4

i

Main Display File Routines

of relative vectors, then its location on the display surface depends
on where the beam was initially located, and it can be made to move as
a unit by changing the initial setting. Giving the beam an absolute

location disregards any previous motion and serves as a new reference

point in the display.

CNAME is an optional output of this subroutine. Use of the same vari-
able name as one used in a previous call will destroy the previous con-
tents. The following statement establishes an absolute beam position

with display coordinates X = 1§, Y = 14.
CALL SETPT (18,1%)
3.4 PLOT SUBROUTINE

The PLOT subroutine is the prime active agent in the generation of the
Main Display File. There are four forms of calls corresponding to the
four subpicture routines, COPY, LINE, PRAMTR, and TEXT. These calls
are used to display predefined (but not necessarily complete) subpic-
tures, individual lines or text strings, and to introduce appropriate
display control commands. In all cases, the requested display or con-
trol function may be identified as a separate entity and manipulated
independently of the rest of the display. The first entry in the argu-
ment list defines the type of call to PLOT as follows:

FIRST ARG TYPE OF PLOT
J'} COPY
1 LINE
2 PRAMTR
3 TEXT

3.4.1 Plot a Subpicture (COPY)
The call statement form is:
CALL PLOT (#§,RST,PNAME[,CNAME])
where the value @ indicates this is a COPY type call to PLOT. RST is

the indicator for the SAVE/RESTORE option (same as COPY). PNAME is the
name (first location) of the subpicture to be displayed.

Main Display File Routines

CNAME is an optional output argument that will contain a pointer to
the first location of the group of display commands generated by this
call. The number of commands added to the display file is added to
the contents of MAINFL(l). In general, the same restrictions apply
as for the COPY subroutine. Again, multiple use of the same variable
CNAME will destroy previous contents. The following example illus-
trates use of a COPY type call to PLOT:

CALL PLOT (COPI,@,HOUSE(1l) ,MAIN)

In this example, COPI has the integer value @; the next argument ()
is the indicator for the SAVE/RESTORE option; HOUSE identifies the
subpicture file to be displayed; and MAIN is an optional output argu-
ment by which the group of display instructions inserted for this call

may be referenced.

3.4.2 Plot a Line (or Reposition the Beam)

The call statement form is:

CALL PLOT (1,DELTAX,DELTAY,INT[,CNAME])

This type of PLOT is basically the same as the LINE subpicture routine,
except for the first argument which defines this as a line type call
to PLOT. The variable CNAME is an optional output argument and will

contain a pointer to the first location of the group of display com-
mands generated by this call., The number of commands added to the

display file is added to the contents of MAINFL. The location of the
first display command is stored in CNAME (if given).

As in SETPT, CNAME is an output variable and multiple use of the same
variable name will destroy previous contents. Otherwise, the same
general restrictions apply as for the LINE subpicture routine. The
following example illustrates a LINE type call to PLOT.

CALL PLOT (LYNE,1@@g,108,0N,IEDGE (1))

where LYNE and ON have assigned values of 1 and IEDGE(l) is a display
identifier to be used for later reference to this LINE.

S

RN

!

Main Display File Routines

3.4.3 Plot a Control Command (PRAMTR)

The call statement form is:

CALL PLOT (2,FEATR,VALUE[,CNAME])

where FEATR and VALUE must be specified in the same manner as for
PRAMTR subpicture calls. Also, as with the PRAMTR call, multiple fea-
tures can be specified in a single PLOT call of the following form:

CALL PLOT (2,FEATRsS,VALUEl,VALUE2,...,VALUEn[,CNAME])

The number of commands added to the display file is added to the con-
tents of MAINFL. The location of the first command is stored in CNAME
(if given). The same general restrictions apply as for the PRAMTR sub-
picture routine. The following example illustrates the use of this
type of PLOT to set the BLINK feature in a Main File.

CALL PLOT (2,8,1)

The multiple-feature statement

CALL PLOT (PRAM,SCALE+INT+LPEN,@,4,1,IN)

establishes values § and 4 for display features SCALE and INT, and turns
the light pen sensitivity on. The variable IN is supplied for the op-
tional CNAME output argument. (PRAM=2, to specify a PRAMTR type call
to PLOT.)

In XVM systems, a special marker no-op is placed in the display file
to terminate the PLOT (2,,,,CNAME). At this point, the display file is
one location longer than in previous systems. If any display element
other than a PRAMTR or PLOT, (2,,,[CNAME]) is added to the display file,
this special marker is written over, reclaiming the space. (This
other group will serve to terminate the list of parameter instructions

in the display file.)

3.4.4 Plot a Text String (TEXT)

The call statement form is:

CALL PLOT (3,STR,N[,CNAME])

This type of call to PLOT is essentially the same as that for the TEXT
subpicture routine, except for the first argument which defines this as
a TEXT type call to PLOT. The number of commands added to the display
file is added to the contents of MAINFL. The location of the first
generated display command is returned in CNAME (if given). The same
restrictions apply as for the TEXT subroutine. The following example
illustrates the use of the TEXT type call to PLOT.

CALL PLOT (3,STRING,15,SAVNAM)
where STRING contains the 15 characters to be displayed, and SAVNAM
will contain a pointer to the group of display commands inserted by
this call.
3.5 DELETE FUNCTION
The DELETE function is used to delete from the Main Display File any
display entity formed by a single call to a main file routine and as-
signed to CNAME.
The call statement form is:

CALL DELETE (CNAME)

The input variable CNAME is the location of the group of display com-
mands to be deleted. The group of graphics instructions pointed to by
CNAME is converted to display no-op's. In contrast to previous systems,
DELETE cannot fail. The Boolean form:

I = DELETE (CNAME)

is still accepted; the variable I, of course, will always be TRUE.

The example:

CALL DELETE (NAME(2))

deletes from the Main Display File the display entity whose first com-
mand is pointed at or identified by the second element of array NAME.

PN

A

Main Display File Routines

3.6 REPLOT FUNCTION

The function REPLOT allows use to be made of previously defined loca-
tions in the Main Display File. This can serve two purposes: (1) to
reuse locations freed by DELETE, and (2) to change an existing group

of display commands. REPLOT checks whether the group being inserted

is longer than the space pointed at by CNAME, if it is, REPLOT then
checks to see if there are enough DNOPed locations following the group
to be overlaid. If there still are not sufficient locations available,
the REPLOT fails and the display file is not affected. By manipulating
CNAME, smaller groups can be packed into the space formerly used by a
larger group. For example, up to three control commands could be in-
serted into the space left by a DELETEd copy group. There are four
forms of call to REPLOT, each of which is similar to the corresponding
call to PLOT (Paragraph 3.4).

The first entry in the argument list defines the type of call to REPLOT
as follows:

FIRST ARG TYPE OF REPLOT
/) COPY
1 LINE
2 PRAMTR
3 TEXT

It is important to note that while CNAME is an optional output of PLOT
it is a required input of REPLOT since it identifies the location to

be modified in the Main Display File. It also miist be recognized that
CNAME must have been given as an argument to a PLOT call for it to be
available for REPLOT.
Since all of the REPLOT functions are similar to corresponding calls
to PLOT, only the COPY type REPLOT is described as an example. The
call statement forms for a COPY type REPLOT are:

I = REPLOT (f#,RST,PNAME,CNAME)

or

CALL REPLOT (#,RST,PNAME,CNAME)

Main Digplay File Routines

The input variables are the same as in the corresponding call to PLOT,
except CNAME, which points to the first location of a block in which

to store the display commands generated. The output variable I is a

ki

logical success indicator: TRUE indicates that the REPLOT was success-
ful, and FALSE indicates that there was not enough room at the location
pointed to by CNAME. It should be emphasized that if the above form is
used, both I and REPLOT must be declared as LOGICAL in a type statement.

The COPY type REPLOT checks whether CNAME points to a large enough

block of locations; no action is taken if the block is not large enough.
Otherwise, REPLOT inserts the necessary commands starting at the loca-

tion pointed to by CNAME, and inserts DNOP's in any remaining locations ~
within the block. The same general restrictions apply as for the corre-
sponding call to PLOT. The following example illustrates a COPY type
call to REPLOT:

S

CALL REPLOT (#,IRST,SLIDE(M),NAME)

where § indicates that this is a COPY type call. IRST is equal to zero

to indicate no SAVE/RESTORE option, M represents the first location of

the subpicture display file (in array SLIDE) and NAME identifies the

first location in the display file into which this group of commands R

is to be inserted.

Note, when a REPLOT (2,,,,CNAME) replaces a group of instructions that
are not parameter instructions, it is necessary for the graphics sys-
tem to add a no-op to the beginning of the new group if parameter in-—
structions precede, and to the end of the group if parameter instruc-
tions follow. The REPLOT (2,,,,CNAME) may fail if there is insufficient

space for these no-op's.
3.7 RSETPT FUNCTION 7

Like SETPT, the function RSETPT permits absolute beam locations to be
defined; it can be used in the same manner as REPLOT to reuse any de-
leted locations or to change any existing group of commands. The same
checking of needed space versus available space is done by RSETPT as
in REPLOT.

The call statement forms are:

I = RSETPT (X,Y,CNAME)

Main Display File Routines

or
CALL RSETPT (X,Y,CNAME)

The variable X represents the horizontal coordinate of beam location;
Y represents the vertical coordinate of beam location. CNAME is an
input argument that points to the first location of a block in which
to store the display commands that are generated. If the function
form (I=) is used with RSETPT, both I and RSETPT must be declared as
LOGICAL in a type statement. RSETPT first checks whether CNAME points
to a large-enough block of locations; no action is taken if the block
is not large enough. Otherwise, RSETPT inserts two positioning com-
mands at the location pointed to by CNAME:

PY!Y
PXIX

RSETPT also inserts DNOPs in any remaining locations belonging to a
former command group at this address. The following example illus-
trates the use of a call to RSETPT:

CALL RSETPT (1¢,18,NAME)
where the value of 18 is assigned to the X and Y coordinates and NAME

identifies the starting location of a block within the display file

into which the positioning commands are to be inserted.

i,

——

CHAPTER 4

INPUT ROUTINES

Input routines enable the user (through his program) to deal with dis-
play console interaction using the light pen and pushbuttons. Routine
LTORPB can inform the user whether there has been a light pen or push-
button action and, if so, return the appropriate information that is
required. The user program is not (logically) interrupted when such
action occurs. The light pen or pushbutton action at the console merely
causes an indicator to be set in the corresponding routine. This may
affect the user's flow of control at his discretion. The light pen
tracking routine (TRACK) provides a somewhat different use of the light

pen, allowing the user to control input and generation of graphics.

4,1 LTORPB FUNCTION

The function LTORPB is used to determine whether a light pen or push-
button hit has occurred. If it has not, the function returns an indi-
cator to this effect. If a hit has occurred, the logical (contents

of name register) and physical (Y and X raster coordinates) location
of the light pen and the status of the pushbutton box are returned as
well as the indicator that a hit has occurred. For example, this rou-
tine may be used as a switch in a FORTRAN logical IF statement (see
example below). The IF statement could branch to itself if no hit has
occurred, or to the user's light pen hit processing code if a hit has

occurred.
The function statement form is:
I = LTORPB (IX,IY,NAMR,PB,IWICH)

LTORPB and the variables I and PB must be declared logical in a TYPE

statement.

The output variable I is a logical success indicator; TRUE indicates
that a light pen or pushbutton hit has occurred, and FALSE indicates
no light pen hit has occurred. It should be emphasized that if I is
FALSE, IX, IY, NAMR, and PB have no meaning.

Input Routines

The variable IX is the horizontal coordinate at end of the vector that
caused a light pen hit. 1IY is the vertical coordinate at end of vector
which caused a light pen hit. The variable NAMR will contain the value
of the name register at the time of the light pen hit. PB should be
defined in the calling program as a six-element array. Each element
will contain the logical TRUE or FALSE corresponding to ON or OFF

for each of the six pushbuttons. IWICH will be either of two values;
IWICH=1 if a light pen hit has occurred, or IWICH=2 if a pushbutton

hit has occurred.

LTORPB issues a .READ on light pen or pushbutton interrupt to the dis-
play device handler. It returns if no interrupt was posted. Other-
wise, it reads appropriate display registers and returns with appropri-

ate output variables.

The following statement illustrates use of LTORPB as a switch in a
FORTRAN IF statement:

IF (LTORPB(LPX,LPY,NAME,PB,IWICH)) GOTO 100

In the above statement, if a hit has occurred (LTORPB is TRUE) LPX and
LPY contain the X and Y coordinates of the end of the vector that was
hit. Also, the contents of the name register is set, the status of
the pushbuttons is stored in the pushbutton array, and the variable
IWICH is set to indicate whether the hit was due to a pushed button

or to the light pen. Then, program execution is transferred to state-
ment 100.

NOTE

Each interrupt from either light pen or
pushbuttons requires at least a pair
LTORPB's to be issued. The first LTORPB
acts as an initialization, telling VTA
that interrupts are to be accepted. This
first LTORPB can only return a FALSE value.
Interrupts that may have occurred prior
to the first LTORPB have been ignored.
The first LTORPB that occurs AFTER an
interrupt(s) returns the light pen and
pushbutton conditions at the time of

the last interrupt, and notifies VTA to
ignore further interrupts. This brings
us back to the initial condition.

Sy

L —

Input Routines

The general intent of the LTORPB function is wait until something hap-
pens. For some types of programs, the user might rather have the push-
buttons act as dynamic switches to an executing display program. In
this case it is probably simpler to make up a MACRO subroutine that

reads the buttons, disregarding interrupts altogether.
4.2 TRACK SUBROUTINE

The TRACK subroutine is used for light pen tracking and drawing. Track-
ing allows the scope user to return an X-Y coordinate pair to the pro-
gram. A tracking symbol is displayed at a location specified by the
program. (The tracking symbol is an octagon with a point in its center.)
The scope user then positions the tracking symbol with the light pen.
A hit on any pushbutton terminates tracking, and returns to the pro-
gram the coordinates of the central point of the tracking symbol. The

form of the call is as follows:
CALL TRACK(IX,IY,IOPT,IARRAY[,ISIZE])

IX and IY are positive integer variables (0-1023 defining the initial
position of the tracking symbol. The final position of the tracking
symbol is returned in these same variables. TIOPT is a positive inte-
ger (@-6) restricting the axes (see Table 4-1) along which the track-
ing symbol may move. 2An IOPT value of zero means no restriction.
IARRAY is zero to indicate that tracking is to occur. IARRAY, for
drawing, is the address of the array, empty before drawing, to contain
the vectors describing the path of the tracking symbol. In DOS V3A
and later systems, ISIZE, the integer size of the array IARRAY, must
be specified for the draw option. During drawing, the path appears

on the screen; after drawing, the path subpicture file is disconnected
from the main file. It remains as an ordinary subpicture file. Note
that drawing may easily insert 100 vectors per second into the path
subpicture file. When the path file is full, drawing terminates. For

tracking, ISIZE may not be provided.

Examples of the use of these arguments can be found in the following

sample program that calls TRACK.

eReNeoRoNe]

OOCOO0O0

Qoo

Input Routines

THE FOLLOWING FORTRAN PROGRAM USES THE TRACKING ROUTINE
TO DETERMINE THE DISTANCE BETWEEN (18@,400), THE INITIAL
POSITION OF THE TRACKING PATTERN AND ANY POINT ON A LINE
OF SLOPE 28, DRAWN FROM A SET POINT AT X=758 Y=250

DIMENSION MF(158), IUSERC2088)
MF(1)=D

I0PT=3

IX1=100

1Y1:z4729

INITIALIZE THE DISPLAY

CALL SET POINT TO POSITION BEAM
DRAW LINE FROM SET POINT

CALL TRACKING ROUTINE

CALL DINITCMFCI))

CALL SETPT(758,250)

CALL PLOT(1,25,580,1)

1x2=Ixl

1Y2:=1Y!

CALL TRACKCIX1,IYl,IOPT,IUSER)

GET CHANGE IN X VALUE
GET CHANGE IN Y VALUE
CALCULATE DISTANCE BETWEEN POINTS

IDELX=IXI=1IX2

IDELY=1IYl=-1Y2

IDELAB= SQRTC (IDELX**2)+ (IDELY#3%2))
STOP

END

Figure 4-1
Sample TRACK Program (FORTRAN Example)

Input Routines

Table 4-1
Description of CALL TRACK Arguments

Example:

CALL TRACK (IX,IY,IOPT,IARRAY)

INPUT VARIABLES:
IX Initial Absolute X-Position of Tracking Point (@-1823)
1Y Initial Absolute Y-Position of Tracking Point (@-1£23)
IOPT Tracking Direction Option (@g-6)
OPTION ALLOWABLE TRACKING
DIRECTIONS
g ALL AXIS DIRECTIONS
1 +X -X
2 +Y -Y
3 +X +Y -Y
4 +X -X +Y
5 -X +Y -Y
6 +X -X =Y
IARRAY - Tracking Draw Option
USER DRAW OPTION DESIRED
DIMENSIONED
ARRAY Intensified Vectors Following the
Light Pen Movement Are Stored in
This Array and are Displayed.
g DRAW OPTION NOT DESIRED
OUTPUT VARIABLES
IX - Final Absolute X - Position of Tracking Point (@-1823)
Iy - Final Absolute Y - Position of Tracking Point (@-1823)

Input Routines

When TRACK is called, the X and Y input arguments are inserted into Rt
the track display file. The track display file is then linked to the

main file by inserting into main file a DJIJMS* to a second location in

the main file; into which has been inserted the address of the track

display file. The direction option is then used to increment down a

dispatch table which in turn sets up a second table so only light pen

hits on certain sides of the tracking octagon are valid. The draw

option is tested for, and if desired, the user's vector storage array

is set up and linked to the track display file in the same manner that

it was linked to the main file. Track then issues a .READ on Light

Pen or Pushbutton interrupt, to the display device handler. If a light Lt
pen hit on a valid side of the octagon occurs, the tracking octagon is

moved two raster units in the appropriate direction. If the draw op-

tion was specified, track adds a two raster unit vector to the user's =
vector storage array or increases the length of the last vector in the —
array if the hit was on the same side of the octagon as the previous

hit. If a pushbutton interrupt occurs, TRACK removes all the created

links and restores the main file to its previous form. The final X

and Y coordinates of the tracking point are returned and control is

released to the calling program.

The macro calling sequence to track is as follows:
.GLOBL TRACK
JMS* TRACK
JMP .+5
.DSA IX
.DSA 1Y
.DSA I0PT
.DSA TARRAY
Internal Structures Created by Track:
Main File Link to Track: S
MFTOP LENGTH
.+1
DJIMS* .42
SKP
ADDRESS
DJIMS* 2 /Link to track display file
DJIMP* MFTOP+1 /Jump to top of MAIN FILE
TRCK /Address of Track display file

Input Routines

‘7”“&'»":.
NOTE
TRACK requires two temporary locations in
the user’'s main file. A main file must
be running when TRACK is called.
Vector Array for Draw Option:
ARTOP LENGTH /File length
Jij /Return address
P PX /X set point
' PY /Y set point
VI /Intensified vectors
— VI
»:; °
DJMP* ARTOP+1 /Display Jump to calling file
Note: The X and Y set points must be modified to relo-
cate an array of intensified vectors, when it is
recalled.
ARTOP (3) = ARTOP(3) + IDX
T ARTOP (4) = ARTOP(4) + IDY
(See MACRO XVM TRACK program page 4-8).
NOTE
TRACK uses name registers 120-127 decimal.
f"’“‘g:
'

NSNS

SAMP2

CHK®

CHK1

CHK2

CHK3

CHK4

CHK5

MAINBF
Ixlt
IYl
CNST@
CNST!
CNST2
CNST3
CNST4

Input Routines

THE FOLLOWING MACRO 15 PROGRAM USES THE TRACKING ROUTINE
TO LOCATE OR POSITION A SET POINT ON THE DISPLAY SCREEN,
THE POSITIONED SET POINT IS THEN USED TO DRAW A FIGURE,

« GLOBL DINIT
JMSx DINIT
JMP T2

« DSA MAINBF
LAC (450
DAC Ixt
DAC Iyl

»« GLOBL TRACK
JMS* TRACK
JMP ot+5

o DSA IX1

« DSA 1Yl
«DSA CNST4
- DSA CNST4
o GLOBL SETPT
JMS* SETPT
JMP o3

» DSA X1
«DSA I8 g!

o GLOBL PLOT
JMS% PLOT
JMP ot5
«DSA CNSTH
- DSA CNST!
- DSA CNSTI
«DSA CNST@
J1Sk PLOT
JIMP ot+5

. DSA CNST@
« DSA CNSTI
»DSA CNST2
o DSA CNST@
JMSk PLOT
JMP ot >

» DSA CNST®
« DSA CNST3
« DSA CNST4
o DSA CNSTD
HLT

«BLOCK 58

2

2

i

25

=25

=50

@

o END

/INITIALIZE THE DISPLAY

/SET INITIAL POSITION OF TRACKING PATTER

/CALL TO TRACKING ROUTINE
/X=POSITION

/Y-POSITION

/DIRECTION OPTION

/DRAW OPTION

/CALL TO SET POINT ROUTINE

/X=POSITION RETURNED FROM TRACKING
/Y-POSITION RETURNED FROM TRACKING

/CALL TO PLOT ROUTINE
/ARG, TO PLOT A LINE
/DELTA X

/DELTA Y
/INTENSIFY THE LINE

/DISPLAY MAIN FILE BUFFER

Figure 4-2

Sample TRACK Program (MACRO XVM Example)

i .

AM-%‘Q’

CHAPTER 5

RELOCATING ROUTINES

The subroutines DYSET and DYLINK are used to allow display main or sub-
picture files, which refer to each other (via COPY or PLOT(0....)), to
be output and input to some external medium relocatably. This includes
arrays of 5/7 ASCII that are referred to via TEXT or PLOT(3....). Pri-
or to outputting, interdependent display files and their user-assigned
ASCII names are listed as arguments in a call to DYSET, which converts
each subpicture call to the ASCII name of the subpicture being called.
After input, and prior to displaying, a corresponding call is made to
DYLINK, which uses the listed ASCII names to reinstate the appropriate
subpicture calls or text references. A display file cannot be displayed
after having been processed by DYSET; DYLINK must be used to return it
to displayable form.

NOTE

READ's and WRITE's cannot access above
32K. If code to DYSET-DYLINK'ed is above
32K, it must be moved to a temporary ar-
ray below 32K for I/O.

5.1 DYSET SUBROUTINE

The DYSET subroutine converts subpicture calls or text references to a

symbolic form independent of core memory location, using specified
ASCII strings. The forms are,

CALL DYSET (PNAMEl,ASCIIl,...,PNAMEN,ASCIIN)
orx

CALL DYSET (PNAMEl,ASCIIl,...,PNAMEK,ASCIIK,{,PNAMEL,ASCIIL,...
, PNAMEN ,ASCIIN)

The variable PNAMEs are the first locations of the interdependent dis-
play files, both calling and called. If a g argument appears in the
argument string, subsequent PNAMEs refer to arrays of 5/7 ASCII text.
(These files will not be searched for memory references.) The ASCIIs
are the names of real arrays containing nine characters of 5/7 IOPS

ASCII, which may be used for filenames on output.

Relocating Routines

Subroutine DYSET searches each listed display file (PNAME) for a DJMS
or CHARS instruction. When it finds one, it appends the ASCII name of
the file referenced to the file being searched, if that name is not
already there. The operand of the DIJMS is made a relative pointer to
the ASCII name of the referenced file. The first location of the file
being searched is increased by four each time an ASCII name is appended
to the file.

Certain restrictions must be noted; space provided for a display file
must include four locations for each subpicture or text array that is
called. Display commands must not be added to a display file nor can

a file be displayed once it has been processed by DYSET, or until after
it has been processed by DYLINK. (Thus DYSET must be called after
DCLOSE for a main display file.) Also, it is the user's responsibility
to list all relevant display files when calling DYSET. The subroutine
does not check the list for completeness in order to allow multiple
calls to it. Once a zero appears in the argument string, all subse-
quent PNAMEs must refer to arrays of 5/7 ASCII text.

5.2 DYLINK SUBROUTINE

The DYLINK subroutine converts file names to appropriate DJMS or CHARS

instruction references to the corresponding files. The forms are:

CALL DYLINK (PNAMEl,ASCII1,...,PNAMEN,ASCIIN)

or

CALL DYLINK (PNAME1l,ASCIIl,...,PNAMEK,ASCIIK,#d,PNAMEL,
ASCIIL,...,PNAMEN,ASCIIN)

where the input variables are the same as for DYSET. DYLINK searches
each listed display file for a DJMS or CHARS instruction. When it

finds one, it searches the argument list for a pointer to an ASCII
string equal to the one pointed at by the operand of the DJMS or CHARS
instruction. This operand is replaced by the address of the correspond-
ing file, obtained from the argument list. The first location of each
display file that is searched is reduced to the actual number of dis-

play commands in the file (excluding the ASCII blocks).

It is the user's responsibility to list all relevant display files when
calling DYLINK. The subroutine does not check the argument list for
completeness, to allow multiple calls. Once a zero appears in the
argument string, all subsequent PNAMEs must refer to arrays of 5/7 ASCIT
text. See Figure 5-1 for DYSET/DYLINK Program.

5-2

rtpama”

f’“‘%\

c

Relocating Routines

C ARRAY INITALIZATION

C

[eXeXe]

¢ XeEe] aOo

[oloNe]

o0

DIMEN
DIMEN

DIMENSION TEXTA¢2),
DIMENSION TITLI(2),

DATA
2TITL

4TITL
5TITL

1TEXT
INITIALIZE

IMAIN

SION NWPICB(48), NWPIC1(20), NWPIC2(2@)
DIMENSION RTXTA(2), RTXTB(2)
SION IMAINC4B), IPICA(28), IPICB(28)

TEXTB(2)
TITL2(2),

TITL3(2), TITL4(2),

TITLICLY, TITLI1(2)>/5HJPICO, 4H BIN/,
2(1), TITL2(2)/5HJPICA, 4H BIN/,
STITL3C1), TITL3(2)/5HJPICB, 4H BIN/,
4C1)>, TITL4C2)/5HCHRSA,
5(1), TITL5(2)/5HCHRSB, 4H BIN/
DATA TEXTAC1), TEXTA(2)/5HI AM ,4HBOXA/,
B(1), TEXTB(2)/5HI AM , 4AHBOXB/

DISPLAY FILES.
(1):=0

IPICACIY=0

IPICBE
BUILD BOXB

CALL
CALL
CALL
CALL
CALL

BUILD BOXA

CALL
CALL
CALL
CALL
CALL
CALL

BUILD MAIN

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

(1)=0
(IPICB)

4H BIN/,

TEXT (TEXTB(1)>,9, IPICB(I1))

LINE (100,0,1)
LINE (0, 108,1)
LINE (=100,0,1)
LINE (2,=180,1)

(IPICA)

LINE (380,08,1,IPICACI))

LINE (8,320,1)
LINE (=388,0,1)
LINE (2,=308,1)
LINE (30,30,0)
COPY (8,IPICB(I))

(IMAIND

DINIT CIMAINCID)
PLOT (2,19,8,4,8)
SETPT (20,208)
PLOT (3,TEXTACIDD
PLOT (@,1,IPICA(
SETPT (534,28)
PLOT (3, TEXTAC1),9)
PLOT (2,8, IPICAC]))

99)
1

DCLOSE, CALL DYSET, AND OUTPUT TO DECTAPE (DAT 52

CALL

DCLOSE

TITL5(2)

CALL DYSET CIMAINCI1),TITL1,IPICAC1),TITL2,IPICBC(1),TITL3,0,
1 TEXTACL) ,TITL4, TEXTBCI), TITLS)

CALL
J=IMA

WRITE (5) (IMAINCID,

CALL

ENTER (5, TITLID
INCI)+]

CLOSE (5,TITLL)

I=1,d)

Figure 5-1
DYSET/DYLINK Program Example

5-3

QOO

[eNe]

Relocating Routines

CALL ENTER (5,TITL2)
J=IPICAC1)+]
WRITE (5) (IPICACI), I=1,.0

CALL CLOSE (5,TITLZ2)

CALL ENTER (5,TITL3)
JzIPICBCID)+1

WRITE (5) (IPICBCI), I=1l,J)
CALL CLOSE (5,TITL3)

CALL ENTER (5,TITL4)
WRITE (5) (TEXTA)
CALL CLOSE (5,TITL4D

CALL ENTER (5,TITLS)
WRITE (5) (TEXTB)
CALL CLOSE (5,TITL5)
PAUSE 222

INPUT FROM DECTAPE, CALL DYLINK AND DINIT

CALL SEEK (5,TITLI)

READ (5) J, (NWPICB(I+i), I=1,J)
NWPIC2(1)=d

CALL CLOSE (5,TITLI)

CALL SEEK (5,TITL2)

READ (5) J, (NWPICICI+1), I=1,J
NWPICIC1) =y

CALL CLOSE (5,TITL2)

CALL SEEK (5,TITL3)>

READ (5) J, (NWPIC2(¢I+1), I=1,D
NWPIC2(1)=d

CALL CLOSE (5,TITL3)

CALL SEEK (5,TITL4)
READ (5) RTXTA
CALL CLOSE (5,TITL4>

CALL SEEK (5,TITL5)
READ (5> RTXTB
CALL CLOSE (5,TITL5)

CALL DYLINK (NWPICB (1), TITL1, NWPICIC1), TITL2, NWPIC2(1), TITL3,d,
IRTXTACL), TITL4,RTXTBC1), TITL5)

CALL DINIT (NWPICB(i))

STOP

END

Figure 5-1 (Cont.)
DYSET/DYLINK Program Example

5-4

Y

P

n\\

CHAPTER 6

SYSTEM I/0 DEVICE HANDLER

The VT15 Graphic Display Device Handler provides an interface between
the user and the hardware. Input or output functions are initiated by
standard user program commands and all display interrupt management is
done automatically by the handler. The primary goals of the device
handler are to relieve the user from writing his own device handling
subprograms and to centralize all direct communication between the XVM
and the display processor. To start up a display, the user generates
a display file consisting of display commands then calls the device
handler to start it running. To interact with it, the device handler
is used to read display controller registers and to dispatch on appro-
priate interrupts.

6.1 .INIT (INITIALIZE) MACRO
The macro .INIT causes the display to be initialized and must be given

before any other I/O macro to the display is issued. The display is
initialized according to four words of standard settings contained in

the handler. The user may substitute his own settings for any of these.

The Device Handler is connected to the Monitor Interrupt system (PIC

or API) in the same manner as other system device handlers.

The form is:

JINIT A, F, R

h]
i

Device Assignment Table (.DAT) slot number

|
1

initialization flag

use standard display initialization
1 wuser'’s initialization is pointed to by R

R = optional pointer to user's initialization settings
If F = 1, R points to a word containing initial settings

If F =g and R = 1, clearing the READ BUSY switch is the
only action taken by the handler.

System I/0 Device Handler

The expansion is:

The default settings of the initialization word are:

LOC
LOC+1
LOC+2

CAL + F(7-8) + A(9-17)
1
R

a. Set display status to

1. DISABLE edge flag interrupts
2. ENABLE light pen interrupts
3. ENABLE pushbutton interrupts

4. DISABLE external stop interrupts
5. ENABLE full 12-bit X and Y beam position registers
6. ENABLE internal stop interrupts

b. Connect handler to PIC or API

c. Clear READ BUSY switch

Initialization IOT

SIC (7#3824) Set Initial Conditions - SIC sets up a number of status

registers in the display.

onto the Interrupt Line.

the AC in the following format:

STOP FLAG INTR
LP FLAG INTR
EDGE FLAG INTR

PB HIT INTR

EXT
CLR
CLR
CLR
CLR
CLR

PA CHANGE EN

PAO
PAL
NOT

g

The instruction enables five display flags
The IOT is issued with settings loaded in

loJ12]3]4a]s]6]7]s] 9(10|11]12]13|14]15]16[17]
£ . A A Iy [A & A a A\ J

STOP INTR

STOP FLAG

LP FLAG
EDGE FLAG

PB FLAG

EXT STOP

USED

~

!

System I/0 Device Handler

Sets the Stop Flag Interrupt Enable Flop
Sets the LP Flag Interrupt Enable Flop
Sets Edge Flag Interrupt Enable Flop
Sets PB Hit Interrupt Enable Flop

Sets External Stop Interrupt Enable Flop
Clears Stop Flag

Clears LP Flag

Clears Edge Flag

Clears PB Flag

Clears External Stop Flag

10 Allow a Change in Virtual Paper Size

11 ©New Virtual Paper Size

12 New Virtual Paper Size

LoOoONONUTd WN R

Bits 11 & 12 (New Paper Size)

g8 = 9.5 inch (1f bits)
1424 raster units

g1 = 19 inch
2848 raster units

28.4 inch
3872 raster units

19

11 = 38 inch (12 bits)
4096 raster units

6.2 .READ MACRO

The .READ macro is used for input to the user program from the hardware
registers of the display controller. The user may select standard
groups of registers to be read, in response to each possible display
interrupt flag, or he may indicate his own group of flags and regis-
ters. This is done with an optional descriptive word following the

.READ macro, the first five bits of that word indicate which interrupts
are of interest and the next nine indicate the registers to read if

any of those interrupts are set.
The form is,
.READ A, M, L, W

NSTD

where NSTD = optional word describing non-standard groups.

The variables A = .DAT slot number, M = type of read:

= READ,PB,XP,YP,S1,S2 Read now, no interrupts

1l = READ,PB,XP,YP,DPC,S1,S2,NR If stop flag interrupt flag is set
2 = READ,PB,XP,YP,DPC,S1,S2,NR If pushbutton interrupt flag is set

System I/0 Device Handler

3 = READ,PB,XP,YP,DPC,S1,S2,NR If light pen interrupt flag is set —
4 = READ,PB,XP,YP,DPC,S81,S2,NR If edge flag interrupt flag is set
5 = READ,PB,XP,¥YP,DPC,S1,52,NR If external stop interrupt flag is

set

7 = NSTD specifies registers and interrupt flags as follows:

Bit # on service internal stop interrupt

Bit 1 on service pushbutton interrupt

Bit 2 on service light pen interrupt

Bit 3 on service edge flag interrupt

Bit 4 on service external stop interrupt

Bit 5 on read pushbuttons (PB)

Bit 6 on READ X position register (XP)

Bit 7 on READ Y position register (YP)

Bit 8 on READ DISPLAY program counter (DPC) .
Bit 9 on READ STATUS ONE (S1) -

Bit 10 on READ STATUS TWO (S2)

Bit 11 on READ NAME REGISTER (NR)

Bit 12 on READ SLAVE GROUP 1 (SGl) e
(

Bit 13 on READ SLAVE GROUP 2 (SG2)
L = return buffer address, C(l) = descriptive word showing what this
interrupt was and which registers were read in the order listed above.
C(L+1) = contents of first register actually read, C(L+2) = contents
of second register read, etc. W = 1 (W must egual 1).
The expansion is: S
LoC CAL + M(6-8) + A(9-17)
LOC+1 19
LOC+2 L
LOC+3 -W /DECIMAL
LOC+4 NSTD
.READ determines interrupts to be served and turns on read busy flag.
6.3 .WRITE MACRO
The .WRITE macro is used to transmit information from the user program e
to the display controller, once a display file has been generated. Its
location is passed on to the display controller by a call to .WRITE,
and the display starts up.
.WRITE is also used to stop the display, by issuing an external stop,
and to start the display if it has been stopped. A .WRITE to the dis-
play is done immediately and requires no waiting.

o,

System I/0 Device Handler

The form is,

.WRITE A, M, L, W

A = ,DAT slot number
M = type of write,

restart display (L not required)
resume display after internal stop

where @
1

Note: The display is automatically resumed after
LP or EDGE violation interrupt

2
4

stop display (external stop)
start display pointed to by L

W

I = display file starting address (17 bits)

W = not used

The expansion is:

LOC CAL + M(6~-8) + A(9-17)
LOC+1 11
LOC+2 L

.DEC

LOC+3 =W /DECIMAL
6.4 .WAIT MACRO

The .WAIT macro is used to synchronize the user program with the inter-
rupt activity of the display. .WAIT is only defined with respect to
.READ. If a .WAIT is given, the user program waits until the previous
.READ has completed, that is, the interrupt has occurred. If the pre-
vious .READ specified more than one kind of interrupt flag, the descrip-
tive word(s) in the input buffer can be interrogated to determine what
flags were set. .WAIT does not initiate any display activity.

The form is,

WAIT A
The variable A = .DAT slot number.
The expansion is,

LoC CAL + A(9-17)
LOC+1 12

System I/0 Device Handler

-WAIT allows a previous .READ to be completed and turns off input busy o
flag.

6.5 .WAITR MACRO

The .WAITR macro allows the user program to proceed in line if the pre-
vious .READ is complete. If the previous .READ is not complete, con-
trol is given to the location in the user program specified by the
.WAITR call. This allows the user to branch to some other part of his
program while waiting for the .READ to finish. The user must continue

to check for completion by periodically issuing .WAITRs or by issuing

a .WAIT.
The form is, e
.WAITR A, ADDR
The variables A = .DAT slot number, and ADDR = location in the user pro-
gram to branch to if input is not completed.
The expansion is,
LOoC CAL+10g8 + A(9-17)
LOC+1 12
LOC+2 ADDR
6.6 .CLOSE MACRO
The .CLOSE macro is used to terminate the current display. External
STOP and CLEAR flags IOTs are issued. It is up to the user to save the R
display file if desired.
The form is .CLOSE A where A = .DAT slot number. o

The expansion is,

LOC CAL + A(9-17)
LOC+1 6

o

System I/0 Device Handler

6.7 .FSTAT MACRO
The .FSTAT macro checks the status of a file specified by the file en-
try block. On return, the AC will contain zero and bits @#-2 of LOC+2
will also be zero, stating that the device was nonfile-oriented.
The form is,

LFSTAT A, D
where the variables A = .DAT slot number, and D = starting address of
three word block of storage in user area containing the filename and
extension of the filename whose presence on the device associated with

.DAT slot A is to be examined.

The expansion is:

LOC CAL+3084 + A(9-17)
LOC+1 2
LOC+2 D

6.8 IGNORED FUNCTIONS

The following system I/O macros are ignored by the VT15 display device
handler:

. DLETE
. RENAM

. ENTER
.CLEAR
- MTAPE
.SEEK

0

°

N oy s W e

St

CHAPTER 7

LK35 KEYBOARD HANDLER

The LX35 Keyboard device handler (LKA) provides an interface between the
user and the hardware. Since the LK35 is a send-only device, the LKA
handler provides only input functions. Input functions are initiated

by standard user program commands; all interrupt management is done
automatically by LKA.

The LKA handler relieves the user of the task of writing his own device
handling subprograms and centralizes all direct communications between
the XVM computer and the LK35 Keyboard. This handler only inputs

IOPS ASCII or IMAGE ASCII data into a user-designated buffer; it is up
to the user to develop the display of any input text on the VT04 dis-
play CRT or output it to any other device. The LK35 Keyboard is con~
nected to either an LT15 or an LT19D controller.

The LKA handler is a resident program, it resides with the Keyboard
Monitor and other required device handlers. It does not require EAE
and it operates with both PI and API.

7.1 .INIT (INITIALIZE) MACRO

This macro initializes the LK35 Keyboard; it must be called before any
other I/O macro is issued to this device.

When .INIT is issued it initializes the LKA handler, which returns the
size of the current line buffer (34lO standard) to the macro.

If .INIT is issued during a .READ, it will abort this operation.
The form of this macro is:

.INIT a,f,r
where:

.DAT slot number
ignored by LKA

Ho®
|

control p address

LX35 Keyboard Handler

The expansion of this macro is

LOC CAL+£ +a

Loc+l 1 7-8 "9-17
LOC+2 r
LOC+3 n (standard buffer size 3410)

7.2 .READ MACRO

This macro performs the operations required to input data
Keyboard and transfer it to the memory input line buffer.

ing this function, the .READ macro:

a) allows any previous input operation to terminate,
b) sets the "input underway" indicator,

c) accepts and performs the operations indicated by:

from the LK35

In perform-

1) RUBOUT -~ delete previously entered (typed) character,
2) CTRL U (4U) - delete all entries made prior to 4U.

d) recognizes IOPS ASCII string terminators ALT MODE and

RETURN (carriage return),

e) is terminated, during IMAGE ASCII read operations when
the given line buffer word count (see form) is reached.

The form of the .READ macro is:

.READ a,M,L,W

where:

a = .DAT slot number
M = Data Mode
2 = IOPS ASCII
3 = IMAGE ASCII
I, = Line buffer address
W = Line buffer word count (including 2-word header pair)

The expansions of this macro are:

1.0C CAL+M._ _+a
LOC+1 14 7-8 9-17
LOC+2 L
LOC+3 -W

. }

_

LK35 Keyboard Handler

7.3 LWAIT MACRO

The .WAIT macro is used to detect the availability of the user's line
buffer for data transfer operations. If the buffer is unavailable when
tested, control remains with the macro; if the buffer is available, con-
trol is returned to the user.

The form of this macro is:

<WAIT a

where a represents a .DAT slot number.

The expansion of the macro is:

LOoC CAL+a

toc+l 12 217

7.4 (WAITR MACRO

This macro enables the user to test the status of a previously initi-
ated .READ operation. If the .READ operation is complete the user's
program is permitted to proceed in line; if the .READ operation is not
complete control is given to a user-specified location expressed in the
.WAITR macro call. The latter feature permits the user to branch to
some other part of his program while waiting for the completion of the
.READ operation.

The form of this macro is:

.WAITR a,ADDR

where:

.DAT slot number
location to branch to if .READ operation is incomplete.

a
ADDR

ihn

The expansion of this macro is:

LoC CAL+10g0+A,_
roc+l 12
LOC+2 ADDR

17

LK35 Keyboard Handler

7.5 .CLOSE MACRO S

The LKA handler regards the .CLOSE macro as being the same as the .WAIT

macro (see 7.3).

The form of this macro is:

.CLOSE a
where a = .DAT slot number.
-
The expansion of this macro is:
LOC CAL+a S
9-17
LOC+1 6 -
7.6 . FSTAT MACRO
If used, this macro will return a zero to the AC since the LK35 is a
non-directoried device. The form of this macro is:
.FSTAT a,D e
where:
a = .DAT slot number
D = ignored by LKA.
The expansion of .FSTAT is: .
Loc CAL+3@ff+a,_;
LoC+l 2 7
LOC+2 D S

7.7 IGNORED FUNCTION

The .SEEK macro is ignored by the LKA handler.

LK35 Keyboard Handler

—

7.8 ILLEGAL FUNCTIONS

The following macros are illegal with regard to the LKA handler.

WRITE
.DLETE
. RENAM
.ENTER
.CLEAR
.MTAPE
. TRAN
P 7.9 LEGAL CONTROL CHARACTERS
SN The following keyboard control entries are recognized by LKA:
™ ENTRY OPERATION
1) CTRL ¢ (4C) Performs on .EXIT to the Monitor.
2) CTRL P (4P) Transfers control to the address
given in the INIT cal.
3) CTRL D (4D) Gives an End-of-Medium header word
e pair to the user.
PN
S
e,

CHAPTER 8

VW0l WRITING TABLET HANDLER

The VW0l Sonic Digitizer Writing Tablet converts graphical information,
in the form of X- and Y-coordinates, to digital data that can be input
to a digital computer. The major components of the VW0l are the writ-
ing tablet, spark pen, component box, and computer interface logic.

The user places a sheet of paper on the writing tablet and draws
sketches, schematics, and hand-written symbols or characters using the
special ball-point spark pen. The sound of the spark emitted by the
pen is picked up by microphones located along the X- and Y-axes of the
writing tablet. The time lapse, from spark emission until the sound is
picked up by each bank of microphones, is accurately measured to pro-
vide a digital record of the X- and Y-coordinates of the spark pen lo-

cation on the paper.

The digitized graphic data is input to a digital computer via the VWA

handler for immediate or delayed processing.

The VW0l operates in either of two modes: Single Point or Data Input.

In the Single Point mode of operation, a single spark is generated each
time the spark pen is pressed against the writing surface. The spark
is initiated by the closure of a microswitch within the spark pen. The

Single Point mode is used if the operator desires to plot points. For
example, to plot points at four different locations, he positions the
pen point at each location. Then, by pressing and releasing the pen

at each position, the corresponding X~Y coordinate pairs are sensed and

digitized.

In the Data Input mode, a continuous series of sparks is generated at
a constant rate, under control of clock pulses. The X-Y coordinate
pairs are continuously generated and input to the computer. This mode
allows the user to draw continuous lines, circles, curves, etc., that

can be displayed on the CRT.

At the time a spark is generated, X- and Y-clock pulses are initiated

which increment X- and Y-hardware registers until the sound of the

VW01l Writing Tablet Handler

spark is received by the X- and Y-microphones. As soon as a microphone
detects the sound, the associated X- or Y-clock pulses are inhibited,
and the register stops incrementing. The binary numbers contained in
the X- and Y-registers will then be directly proportional to the X- and
Y- coordinates of the position at which the spark was emitted.

The VWA device handler for the VW0l Sonic Digitizer Writing Tablet pro-
vides an interface between the user and the hardware. TInitialize and
input functions are initiated by standard user program commands (system

macros). The device handler relieves the user from writing his own
device handling subprograms.

The Writing Tablet handler makes no tests én incoming X~ and Y-coordi-
nates. All coordinates are handled directly back to the user. This
means that if the pen stays on the same spot (Data Input mode) or is
pushed on at the same spot more than once (Single Point mode) the same
X- and Y-coordinates are handled to the user. Repetitive X- and Y-
coordinates should not be sent directly to the VT-handler since they
could cause a hole to be burned on the display-screen. For this reason
it is the user's responsibility to ignore X- and Y-coordinates which
are generated on one and the same spot. The number of times the same

coordinates could be accepted also depends on the intensity.
8.1 LINIT (INITIALIZE) MACRO

The macro .INIT causes the Writing Tablet to be initialized and must
be given prior to any other I/O command referencing this device.

The .INIT macro clears one software and two hardware flags. These
flags are:

1) Handler Busy flag /Software
2) Data Ready flag /Hardware
3) Pen Data flag /Hardware

The form is:

.INIT A,F,R,n

3

:ﬂ’“"“a%\

VW0l Writing Tablet Handler

where:

A = Device Assignment Table (.DAT) slot number
F = Not used

R = Not used

n = Not used B

The expansion is:

LOC CAL+F (7-2)+A(9-17)

LOC+1 1 /Function code for .INIT
LOC+2 R

LOC+3 n

8.2 .READ MACRO
The .READ macro is used for input point data to the user from the Writ-
ing Tablet. The input always consists of one status word and two words

containing the X- and Y-point coordinates.

The status word has the following format:

[oll | 2 | 3L4 | 5 | 6]7] 8 | 9]10]11[12[13 14]15116|17]

Input .DAT flag Writing Tablet Identifier Bits
where: means:
Bit 0 = 0 Input from "DATA READY"
= 1 Input from "PEN DATA"
Bit 14 = 1 Input from Writing Tablet 1
Bit 15 = 1 Input from Writing Tablet 2
Bit 16 = 1 Input from Writing Tablet 3
Bit 17 =1 Input from Writing Tablet 4

The form is:

.READ A,M,L,W

where:

A = Device Assignment Table (.DAT) Slot Number

VW0l Writing Tablet Handler

M = Data Mode:

0 = Single Point

1 = Single Point multiplexed

2 = Data Input (not scan!)

3 = Data Input multiplexed (scan!)

L = Line buffer address
Points to a data buffer of minimum size 3W words.
W = Data point count
The number of data points that are to be returned with this

read. Each point returns three data words: status, X
position and Y position.

The expansion is:

LOC CAL+M(6-8)+A(9=-17)

LOC+1 14 /Function code for .READ
LOC+2 L

LOC+3 = W

8.3 .WAIT MACRO

The .WAIT macro is used only with respect to the .READ macro. If a
.WAIT is given the user program waits until the .READ has completed,
that is, when the line buffer is filled and is again available for the
user program. If the line buffer is available, control is returned to
the user immediately after the .WAIT macro expansion (LOC+2). If the
input of data has not yet been completed, control is returned to the

.WAIT macro.
The form is:
WAIT A

where: A = Device Assignment Table (.DAT) slot number

The expansion is:

LoC CAL+A(9-17)
LOC+1 12 /Function code for .WAIT

S

VW0l Writing Tablet Handler

8.4 WAITR MACRO

The .WAITR macro is also used only with respect to the .READ. If the
previous .READ is done, control is returned to the user immediately
after the .WAIT in order to proceed in line. If the input of data has
not yet been completed, however, control is given to a location in the

user program specified in the .WAITR call.
The form is:
.WAITR A,ADDR
where: A = Device Assignment Table (.DAT) slot number

ADDR = Location in the user program to which control
must be transferred if input is not completed.

The expansion is:

LOC CAL+10008+A(9—17)
LOC+1 12 /Function code for .WAITR

LOC+2 ADDR
8.5 LFSTAT MACRO
The .FSTAT macro checks the status of a file specified by the file en-
try block. On return the AC will contain zero and bits 0-2 of LOC+2

will also be zero, stating that the device was non-directoried.

The form is:

FSTAT A,D
where:
A = Device Assignment Table (.DAT) slot number
D = Address of a 3-word block of storage (directory entry block)

in user area containing the filename and the extension of
the file whose presence is to be examined.

VW01l Writing Tablet Handler

The expansion is:

L.OC CAL+3ﬁﬂﬂ8+A(9—l7)
LOC+1 2 /Function code for .FSTAT
LOC+2 D

8.6 .CLOSE MACRO

Once input has been initiated (.INIT and .READ) it must be terminated
by the .CLOSE macro. The hardware flags (Data Ready and Pen Data) are

cleared and the Writing Tablet(s) is disabled in order to prevent il-

legal interrupts.

The form is:

.CLOSE A

where: A = Device Assignment Table (.DAT) slot number

The expansion is:

LocC CAL+A (9-17)
LOC+1 6

8.7 IGNORED FUNCTIONS

/Function code for

.CLOSE

The following macros are ignored by the VWA device handler:

1) .SEEK

2) LENTER
3) .CLEAR
4) .MTAPE
5) .WRITE
6) .TRAN

7) .DLETE
8) .RENAM

-

=

CHAPTER 9

TEXT DISPLAY/EDIT FUNCTIONS

The VT15 GRAPHICS software provides the user with a complete text edit-
ing program, EDITVT, and a soft copy display feature, CONTROL X.

The EDITVT program has the same command and editing structure as the
standard Editor except that the majority of the text presentation takes
place on the VT04 display CRT. The Control X (CTRL X) feature enables
the user to, essentially, replace the console printer with the display
CRT when desired. The operation of EDITVT is described in the EDIT/
EDITVP/EDITVT XVM Utility Manual.

9.1 CONTROL X FEATURE

The Control X feature gives the user the ability to change from hard

to soft copy at any time during Monitor operation. When Soft copy is
desired the user types VT ON when under Monitor Control and then a Con-
trol X. The VT ON command sets up the necessary linkage in the Tele-
type' handler and also reserves a segment of core to be used for the
Display Buffer. The Control X command may be typed during Monitor Con-
trol or during System Program Control; it switches output from the de-
vice presently being used to the alternate device. (Teletype to dis-
play or display to Teletype.) When the display is being used, Teletype

input is echoed on both the Teletype and on the display while Teletype
output appears only on the display.

9.1.1 SCROLL Mode

When text is being output to the display and the display screen is
filled (56) lines, the next incoming line appears on the bottom of the
screen and the oldest or top line on the screen disappears. It appears
as if the text is rotating from screen bottom to screen top. The dis=-
play screen may be cleared at any time and new text begins at screen
top by changing the position of pushbutton number 6; and then typing

a carriage return.

lmeletype is a registered trademark of the Teletype Corporation.

Text Display/Edit Functions

9.1.2 PAGE Mode

The display may be put in page mode operation. That means that when
the display has 56 lines being presented it stops output to it so the
user can inspect the text and it then waits for the user to advance to
the next page. This feature is useful for doing a PIP transfer of a
large file to the display; the file can be read on the display a page
at a time. It is also useful for looking at Macro Assemblers and
FORTRAN compilations on the display. Page Mode operation is entered
by setting pushbutton number 5 to the ON position; for normal opera-
tion (text rotation across screen) pushbutton number 5 should be in
the OFF position. When in page mode, a page is advanced by changing
the position of pushbutton number 6.

9.1.3 VT ON/OFF Monitor Commands

The VT ON command sets up the interface between the VT15 Display Sys-

tem and the Teletype Handler Section of the Resident Monitor. The Dis-

play Interface Code is moved to a position directly above the Resident

Monitor and essentially becomes a part of the resident monitor. The

VT ON command also reserves a segment of core for use as the Display

Buffer. Once the VT ON command has been issued the user has the abil- S
ity to switch his output device from Teletype to display and from dis-

play to Teletype. The output device switching is accomplished by typ-

ing a +X (Control X):; and may be done when under monitor control or

user program control.

The feature gives the user the ability to work from an extremely fast,
soft copy output device; and easily switch to hard copy when it is de=-
sired. When X is typed, an Up-Arrow (+) is echoed on the device se-
lected for output. The VT OFF command releases the reserved core seg-
ment and it frees the area of core directly above the Resident Monitor
where the Display Interface Code was moved. The VT ON command remains
in effect until VT OFF is issued or the Monitor System is bootstrapped.
If the VT15 Display System is desired as the primary output device,

VT ON may be set at System Generation time. The VT OFF command can
override the System Generation setting, allowing selection of hard copy

output.
9.1.4 HALF ON/OFF Monitor Command

The HALF ON/OFF command can be used in 41X operations. R

9-2

APPENDIX A

MNEMONICS COMMONLY USED IN GRAPHICS SUBPROGRAM CALLS

The following mnemonics are commonly used in describing subroutine call

statements throughout this manual.

Mnemonic Definition

1. DELTAX An integer number or variable which represents
in raster units the amount the CRT beam is to be
displaced from its current position in a hori-
zontal direction. This quantity is signed to
indicate the direction of displacement (i.e.,

+ = move beam right, - = move beam left).

2. DELTAY Same as DELTAX except that the indicated dis-
placement is made on a vertical direction and
the directions indicated by the sign are: + =
move beam up, - = move beam down.

3. INT This variable is restricted to the Integer values
1 and @ to indicate if the CRT beam movement is
to be visible, (INT = 1) to draw a line, or in-
visible (INT = f).

4. PNAME The subpicture display files generated by the
graphic subpicture calls are stored in dimen-
sioned integer arrays specified by the user.

The integer variable PNAME specifies the first
element of the array into which commands gener-
ated by a particular call are to be stored.
PNAME is always represented as a subscripted
variable; it will contain the length of the file

and is the variable by which the file is refer-
enced in later manipulations.

NOTE

The variable PNAME may be dropped from
the statement argument lists; if dropped,
the last given value for PNAME will be
assumed.

5. STR Identifies the dimensioned real array which con-
tains the string of characters to be displayed
in IOPS ASCII (Hollerith) form (five 7-bit char-
acters per word).

6. FEATR An integer number which identifies a hardware
feature(s) to be specified in the call (e.g.,
1 = scale, 2 = intensity, 4 = light pen, and 8 =
blink) .

Mnemonics Commonly Used in Graphics Subprogram Calls

Mnemonic
7. VALUE
8. DTA
9. N
10. A

11. MAINFL

12. CNAME
13. NAMR
l4. PB
15. RST

Definition

A single integer variable or constant that indi-
cates the value or setting is specified for a
selected display feature.

Contains the set of data points, one per word,
in the range § to 1§23 (Integer).

Used by GRAPH subprogram to indicate the number
of points to graph. Also used by TEXT subprogram
to indicate the number of characters to be dis-
played.

An integer variable or constant restricted to the
values § and 1. 1Indicates which axis to incre-
ment for GRAPH subprogram, @ = increment X, set
Y to data values; 1 = increment Y, set X to data
values.

Similar to PNAME, the value of MAINFL represents
the first array element of the dimensioned Integer
array specified by the user for storing main dis-
play file commands. MAINFL is represented as a
subscripted integer wvariable, it contains the
length of the file and is the variable by which
the file is referenced.

An integer variable that identifies the location
or first location which contains the display com-
mand (s) generated by the call in which CNAME is
an output argument.

An integer which represents the contents of the
name register at the time of a light pen hit (re-
stricted to values ranging from g to 127).

A 6-element integer array which will contain a

logical .T, or .F, for each of the six pushbut-
tons.

This variable, restricted to the integer values
of 1 and @, indicates whether the hardware SAVE/
RESTORE option is to be used when copying subpic-
ture files. The value @ indicates that the SAVE/
RESTORE option is not to be used; the value 1 in-
dicates that it is to be used.

)

APPENDIX B

DISPLAY INSTRUCTION GROUPS GENERATED BY GRAPHICS SUBPROGRAM CALLS

SUBPROGRAM
CALL

NUMBER OF
COMMANDS

COMMANDS GENERATED

LINE
PLOT(#,...
REPLOT (4, ...

If one of the eight basic directions:

VN!INCR

If random vector option is used:

SVX! DELTAX
SVY! DELTAY

N+2

If not one of the above, required line
is approximated with a series of basic
vectors:

SKP
(COUNT=N+2)

V1

v2

TEXT
PLOT(3,...
REPLOT(3,...

CHARS* .+2
DJIMP . +2
(FULL 15-BIT ADDRESS)

COPY
PLOT(&,...
REPLOT (%, ...

When SAVE/RESTORE is not used:

DJIMS* .+2
DJIMP ot+2
(FULL 15-BIT ADDRESS)

When SAVE/RESTORE is specified:

SAVE .+4
DJIMS* H2

DJIMP .+3

(FULL 15-~BIT ADDRESS)
(STATUS)

RSTR -1

PRAMTR
PLOT(2,...
REPLOT (2, ...

Adds from one to four parameter words
to the display file, depending on the
type of argument list used.

Display Instruction Groups

Generated by Graphics Subprogram Calls

SUBPROGRAM NUMBER OF
CALL COMMANDS COMMANDS GENERATED
GRAPH N Adds N graph plot commands to the dis-
play file, where N is equal to the num-
ber of points in the data set:
GY!vyl GX!X1
GY!ly2 GX1X2
. or .
GY!¥YN GX XN
SETPT 2 PY!Y
RSETPT PXI1X

e’

,,,,,,,

APPENDIX C

MACRO EXPANSION OF GRAPHICS SUBPROGRAM CALLS

Subpicture Routines

E

e

LINE GRAPH
. GLOBAL LINE .GLOBL GRAPH
JM8* LINE JMS* GRAPH
JMP .+5 JMP .+5
.DSA DELTAX .DSA DTA
.DSA DELTAY .DSA N
.DSA INT .DSA A
[.DSA PNAME] [.DSA PNAME]
TEXT BLANK
.GLOBL TEXT - GLOBL BLANK
JMS* TEXT JMS* BLANK
JMP c+4 JMP .+2
.DSA STR .DSA PNAME
.DSA N
[.DSA PNAME]
COPY UNBLNK
.GLOBL COPY .GLOBL UNBLNK
JMS* COPY JMS * UNBLNK
JMP .+4 JMP .2
.DSA RST -.DSA PNAME
.DSA PNAME L1
[.DSA PNAME]
PRAMTR CIRCLE
.GLOBL PRAMTR . GLOBL CIRCLE
JMS* PRAMTR JMS* CIRCLE
JIMP AN JTMP .+6
.DSA FEATR .DSA R
.DSA VALUE .DSA THETA
[.DSA PNAME] .DSA GAMMA
where N+2+ (Number of .DSA DEG
Features specified)+l .DSA PNAME
if PNAME is given
ROTATE
.GLOBL ROTATE
JMS* ROTATE
JMP .+12
.DSA ISTR
.DSA IA
.DSA IB
.DSA IC
.DSA X
.DSA Y
.DSA Z
.DSA SINA
.DSA CSA

LTORPB

.GLOBL
JMS*
JMP
-DSA
.DSA
.DSA
.DSA
.DSA
DAC

DYSET

.GLOBL
JMS*
JMP
.DSA
.DSA

.DSA
.DSA

DINIT

.GLOBL
JMS*
JMP
.DSA

DCLOSE

PLOT

.GLOBL
JMS*

a COPY

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
[.DSA

Macro Expansion of Graphics Subprogram Calls

Subpicture Routines (Cont.)

TRACK

LTORPB .GLOBL
LTORPB JMS*
.+6 JMP
IX .DSA
Iy .DSA
NAMR .DSA
PB LNSA
IWICH
I

Relocating Routines

DYLINK

DYSET .GLOBL
DYSET JMS*
2*N+.+1 JIMP
PNAME .DSA
ASCII .DSA
PNAMEN .DSA
ASCIIN .DSA
(where N =

number of files)

Main Display File Routines

SETPT
DINIT .GLOBL
DINIT JMS*
A2 JMP
MAINFL .DSA
.DSA
[.DSA
DCLOSE
DCLOSE
REPLOT
PLOT .GLOBL
PLOT JMS*
. +5 JMP
(g .DSA
RST .DSA
PNAME .DSAa
CNAME] .DSA
DAC

TRACK
TRACK
.+5

IX

Iy
IOPT
IARRAY

DYLINK
DYLINK
2*%N+ . +1
PNAME1
ASCII1

PNAMEN

ASCIIN

(where N =
number of files)

SETPT
SETPT
.+4

Y
CNAME]

REPIOT

REPLOT

.+5

(2

RST

PNAME

CNAME

I/ if used as function

S

Macro Expansion of Graphics Subprogram Calls

PLOT a LINE

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
.DSA
[.DsA

PLOT a PRAMTR

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
[.DSA

Main Display File Routines (Cont.)

PLOT
PLOT
+6

(1
DELTAX
DELTAY
INT
CNAME]

PLOT
PLOT
«+5

(2
FEATR
VALUE
CNAME]

PLOT a TEXT string

«GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
[.DSA

DELETE

.GLOBL
JMS*
JMP
.DSA
DAC

PLOT
PLOT
«+5

(3
STR
N
CNAME]

DELETE

DELETE

.+2

CNAME

I/ if used as
function

REPLOT a LINE

REPLOT a PRAMTR

.GLOBL
JMS*
JMP
.DSA
.DSA
«DSA
.DSA
.DSA
DAC

.GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
.DSA
DAC

REPLOT

REPLOT

.+6

(1

DELTAX

DELTAY

INT

CNAME

I/ if used as function

REPLOT

REPLOT

.+5

(2

FEATR

VALUE

CNAME

I/ if used as function

REPLOT a TEXT string

- GLOBL
JMS*
JMP
.DSA
.DSA
.DSA
.DSA
DAC

RSETPT

.GLOBL
JMS*
JMP
-.DSA
.DSA
.DSA
DAC

REPLOT

REPLOT

.+5

(3

STR

N

CNAME

I/ if used as function

RSETPT

RSETPT

.44

%

Y

CNAME

I/ if used as function

5,
"

APPENDIX D

CONDITIONAL ASSEMBLY OF GRAPHICS SUBPROGRAMS

For VT15 configurations that include the Arbitrary Vector Option, the
Graphics Subprogram Package (VTPRIM) can be conditionally assembled to
eliminate coding reguired for line approximation. This procedure
saves approximately 1748 locations. The standard procedure for con-
ditional assembly may be followed; it is only necessary to define a
value for the variable ARBVEC when assembling VTPRIM SRC.

WARNING

In writing MACRO routines, the exclamation
point (!) must not be used in memory refer-
ence type instructions to separate the
Op~code and address fields. The symbol

! used in this manner causes the contents
of the Op-code and address fields to be
OR'd together resulting in an erroneous

15-bit address.

o

Appendix A shows mnemonics and
their definitions

ALT MODE, 2-5, 2-6

Arbitrary vector option, D-1
Arcs, 2-14

Arrays, dimensioned integer, 2-1
Array size, 2-6

ASCITI name, 5-2

Axis of rotation, 2-16

Bank/page mode, 1-2

Basic directions, 2-4

Beam location, 3-4, 3-10, 3-11
BLANK routine, 2-1, 2-12

Blink setting, 2-9, 2-11
Brackets, 2~3

Brightness of the display, 2-8
Burnout, phosphor, 2-9

Characters,
keyboard control, 7-5
nonprinting, 2-6
CIRCLE subroutine, 2-14
.CLOSE macro,
I/0 device handler, 6-6
keyboard handler, 7-4
writing tablet handler, 8-6
CNAME pointer, 3-1, 3-2, 3-9
Code modification routines, 3-1
Conditional assembly, D-1
Control characters, keyboard,
7=5
COPY option for PLOT, 3-5
COPY routine, 2-1, 2-7
CTRL X, 9-1, 9-2
Cycle time, 1-1

Dash setting, 2-9
Data input mode (VWO01l), 8-1
.DAT slots, 3-3

DCLOSE routine, 3-1, 3-4
DELETE routine, 3-1, 3-8
DELTAX and DELTAY, 2-4

Device handler,

keyboard, 7-1

system I/0, 6-1

writing tablet, 8-2
Dimensioned integer arrays, 2-1
DIMENSION statement, 2-3
DINIT routine, 3-1, 3-3

Display,
console interaction, 4-1
files, 1-2

initialization, 3-3

instruction groups, B-1

parameter settings, 2-10
Drawing,

on scope, 4-3

on writing tablet, 8-1
Draw option vector array, 4-7
DYSET/DYLINK, 5-1, 5-2

example program, 5-3

EDITVT, 9-1

File length, 2-2, 2-12
File storage, 2-1, 2-2
overhead, 2-2
reuse, 2-3
File status check, 6-7
Format of FORTRAN subroutine
calls, 1-2
FORTRAN IV programs, 1-2
.FSTAT macro,
keyboard handler, 7-4
system I/0 device handler, 6-7
writing tablet handler, 8-5

GRAPH routine, 2-1, 2-11, 2-12

Index-1

HALF ON/CFF Monitor command,

Hard copy output, 9-1,
Hardware, 1-2

Hardware registers, 6-3
Hollerith, 2-5

Initialization IOT, 6-2
Initialize display, 3-3
LINIT macro,
keyboard handler, 7-1
system I/0 handler, 6
writing tablet, 8-2
Input routines, 4-1
Intensity setting, 2-8

9-2

-1

I/0 device handler - see system

I/0 device handler
I/0 to external media,
IOPS ASCII, 2~5

Keyboard control characters,

Keyboard device, 7-1
Reyboard handler macros
.CLOSE, 7~4
LFSTAT, 7-4
illegal, 7-5
LAINIT, 7~
.READ, 7~
.SEEK, 7-
WAIT, 7-
JWAITR, 7-3

Wb B = =t |

Light pen, 4-1
hits, 2-9
sensitivity, 2-8
tracking, 4-3
Line drawing, 2-1
LINE option for PLOT, 3
LINE routine, 2-1, 2-3
Linking display files,

LK35 Keyboard device handler

(LKA), 7-1 - see al
Keyboard
LKA handler - see Keybo
LTORPBR function, 4-1

Macro expansions, C-1
MACRO XVM programs, 1-2
Main Display File, 2-1,
MAINFL, 3-3

Mnemonics, A-1

Monitor commands, 9-~1,

Name register setting,

5-1

14

-6
2-7
S0

ard

3-1,

9-2

2-9

7-5

3-2

Nonprinting characters, 2-6

Offset setting, 2-9
Overflow, 2-3

Page mode, 9-2
Parameter settings for display,
2-10
Phosphor burnout, 2-9
PIP transfer, 9-2
PLOT routine, 3-
COPY option, 3
LINE option, 3
PRAMTR option
TEXT option,
Plotting,
a control command, 3-7
a line, 3-6
a subpicture, 3-5
a text string, 3-7
PNAME, 2-3
PRAMTR routine, 2-1, 2-8, 2-11
Pushbuttons, 4-1

W~
I

Raster unit, 2-4
.READ macro,

keyboard handler, 7-2

system I/0 device handler, 6-3

writing tablet, 8-3
REPLOT routine, 3-1, 3-9
Restrictions,

DINIT, 3-3

Main Display File, 3-2

subpicture routines, 2-
Rotate setting, 2-9
ROTATE subroutine, 2~16
RSETPT routine, 3-1, 3-10

3

SAVE/RESTORE option, 2-7, 2-11

Scale setting, 2-8

Scope phosphor, 2-8

Scroll mode, 9-1

.SEEK macro for keyboard handler,
7-4

Set Initial Conditions, 6-2

SETPT routine, 3-1, 3-4

Setting parameters, 2-8, 2-9

Sine wave program example, 2-13

Single Point mode, VW01, 8-1

SKP-COUNT header, 3-2

Soft copy display, 9-1, 9-2

Software, 1-2

Sonic Digitizer Writing Tablet
(Vwol), 8-1

Spark pen, 8-1

Index-2

P,

Y
N

Start display, 6-1 Vector array for draw option, 4-7

Status registers, 6-2 Vector capability, 1-1
Stop the display, 3-4, 6-4 Vectors, 2-4
Storage, - see File VT ON/OFF Monitor commands, 9-2
Subpicture routines, 2~1 VWA device handler, 8-1
Sync feature, 2-9 see also Writing tablet
System I/0 device handler, 6-1 VWOl Sonic Digitizer Writing
.CLOSE macro, 6-6 Tablet, 8-1
.FSTAT macro, 6-7 see also Writing tablet

ignored macros, 6-7
.INIT macro, 6~1
.READ macro, 6-3

.WAIT macro, 6-5 .WAIT macro,
-WAITR macro, 6-6 keyboard handler, 7-3
.WRITE macro, 6-4 system I/0 device handler, 6-5

writing tablet, 8-3
.WAITR macro,
keyboard handler, 7-3

Terminate display, 3-4, 6-6 system I/0 device handler, 6-6
Text display, 2-1 writing tablet, 8-5
Text display/edit function, 9-1 .WRITE macro, 6-4
TEXT option for PLOT, 3-7 Writing Tablet, VWOl Sonic
TEXT routine, 2-1, 2-5 Digitizer, 8-1
Three dimensional array, 2-16 .CLOSE macro, 8-6
TRACK arguments, 4-5 .FSTAT macro, 8-5
Track display file, 4-6 ignored macros, 8-6
Tracking symbol, 4-3 .INIT macro, 8-2
TRACK program examples, .READ macro, 8-3
FORTRAN, 4-4 .WAIT macro, 8-4
MACRO XVM, 4-8 .WAITR macro, 8-=5

TRACK subroutine, 4-3

Zero in DYSET/DYLINK argument
UNBLNK routine, 2-1, 2-14 string, 5-2

Index-3

o,

VT1l5 XVM Graphics

Software Manual

DEC-XV-GVTAA-A-D
READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be repcrted on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

tg

=

2

-

o

| @

e

o

5 Is there sufficient documentation on associated system programs
g required for use of the software described in this manual? If not,
a what material is missing and where should it be placed?

[

o

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non=programmer interested in computer concepts and capabilities

Name Date
OCrganization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. []

000000

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD., MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

digital equipment corporation

