XVM/RSX PART V
SYSTEM DIRECTIVES

CHAPTER 1

INTRODUCTION TO SYSTEM DIRECTIVES

l.1 FUNCTION OF SYSTEM DIRECTIVES

RSX user Tasks carry on communication with the Executive by means of
System Directives which perform such functions as scheduling and
rescheduling Task execution, suspending and resuming a Task,
connecting to an interrupt 1line, and fixing a Task in core. Most
Directives can be issued in any of the following ways:

. by the user from within a FORTRAN IV Task
. by the user from within a MACRO Task

. by the operator via the Monitor Console Routine

1.2 DESCRIPTION OF DIRECTIVES

System Directives are implemented as CAL instructions. These are
machine language instructions that transfer control from anywhere in
core to the monitor via fixed-memory locations. Each CAL instruction
takes a parameter block as an operand: the instruction's address
field points to the first word of the associated block of parameters,
This block consists of one or more words of contiguous core and is
called a CAL Parameter Block (CPB).

Most System Directives can be executed directly from MACRO prograns,
When a System Directive is issued by a FORTRAN program, the program
CALLs one of a series of FORTRAN Library Routines; the routine then
issues the Directive. Monitor Console Routine (MCR) Function Tasks
issue direct calls for specific System Directives. Exact procedures
for invoking System Directives are discussed in subsequent sections of
this manual. Table 1-1 contains a list of all System Directives
implemented under RSX.

1.3 PROCESSING A DIRECTIVE

When RSX processes a system directive, control 1is passed to a
reentrant CAL Dispatch Routine. This routine takes the low-order six
bits of the first CPB word as an octal CAL function code and, using
this code as an index, transfers control to a particular CAL service
routine. After the CAL service routine has performed the operation
requested by the directive, it passes control to a CAL Exit Routine,
which returns control to the directive-issuing task. Execution of
this task continues at the 1location immediately following the CAL
instruction.

NOTE

To minimize Monitor overhead, registers
such as AC, MQ and XR are neither saved
nor restored when a CAL instruction is
executed.

The CAL Dispatch Routine and many CAL service routines are reentrant.
This feature allows an interrupt service routine to issue Monitor
requests without waiting for completion of a request issued by a task.

Most system directives take an event variable in the MACRO or FORTRAN
call. With few exceptions, inclusion of this event variable is
optional. If an event variable is specified, a completion code
indicating the status of the directive is returned to the issuing
task. A code of zero means that the directive is pending, a positive
code means that it has been completed successfully, and a negative
code means either that it has not been accepted or that it has been
completed, but an error has occurred. The value of the negative code -
indicates the particular fault.

1.4 DIRECTIVE ERRORS
Before attempting to perform the operation requested by the directive
call, the CAL service routine checks for a variety of serious errors.
Following are possible errors it detects during this initial check:

1. Executing a CAL, such as XCT (CAL CPBADR).

2. CPB with illegal function code (one not included in Table
1-1).

3. Event variable address outside the task area. This check is
made only for tasks built in user mode.

XVM/RSX V1B Vel-2 September 1976

4. - CPB address outside the task area. This check is made only
for tasks built in user mode.

In general, verification checks on address parameters are performed
for user-mode tasks, but not for exec-mode tasks. Other errors may be
detected during actual performance of the operation. The number of
ignored CALs is logged as a performance indicator or debugging aid in
SCOM location 151 (octal) in the Executive.

If one of the above errors is detected, the issuing task is terminated
(forced to exit) and a task termination notice with the following
format is printed:

BAD CAL AT PC = Xyyyyy

In this format, Xyyyyy is an 18-bit word in which X identifies the
task status with the following three bits:

Bit Meaning
0 Contents of link
1 Addressing mode: 0 = page

mode; 1 = bank mode

2 Protection mode: 0 = exec
mode; 1 = user mode

In the above format, yyyyy is a 15-bit address indicating the location
of the error. For user-mode tasks, this address is relative to the
partition base.

For tasks requested on behalf of a MULTIACCESS user, the termination
notice 1is printed on the wuser terminal. For all other tasks, the
message is sent to the device assigned to system LUN-3.

The MULTIACCESS Exit Processor controls the printing of abnormal task
termination messages for all tasks run under control of that Monitor.
To cause printing of this task termination notice for all other tasks,

an entry is made in the Task Termination Notice Reguest List (TNRL)
and a disk-resident task named TNTERM is requested by the system.

1.5 DIRECTIVE CONVENTIONS

System directives are constructed according to conventions that differ
slightly for MACRO and FORTRAN calls but basically consist of the
following:

1. The system directive name is followed by a space in the
calling line.

2. All parameters included in the call are separated by commas.
3. FORTRAN parameters are enclosed in parentheses.

4. Rules about line termination and error correction conform to
MACRO or FORTRAN program standards.

XVM/RSX V1B v-1-3 September 1976

In "form" models, upper-case characters (except LUN) indicate
those entries required by the system. Lower-case characters
indicate entries that are to be specified by the user and are
dependent on the particular task.

"MACRO call” refers to entries in the MACRO definition file
(RMC.13 SRC). This file is usually not used when assembling
MACRO programs, because the MACRO definitions increase the
size of the resulting binary file.

Table 1-1 summarizes legal calls to all RSX system directives.

Table 1-1
System Directives
CAL Code
(octal) MACRO Call FORTRAN Call MCR Call Internal

00 I/0 calls I1/0 calls - —-——

01 REQUEST CALL REQST REQ[UEST] -——

02 SCHEDULE CALL SCHED SCH[EDULE] ——

03 RUN CALL RUN RUN -

04 CANCEL CALL CANCEL CAN [CEL] ——

05 WAIT CALL WAIT —— —-——

06 SUSPEND CALL SUSPND —— -

07 RESUME CALL RESUME RES [UME] -

10 EXIT CALL EXIT See ABORT -

11 CONNECT —_— ——— -—

12 DISCONNECT - —— —-—

13 MARK CALL MARK —_— —_——

14 SYNC CALL SYNC SYN[C] -

15 FIX CALL FIX FIX ——

16 UNFIX CALL UNFIX UNF[IX] ——

17 -— -— - SETJEA
20 WAITFOR CALL WAITFR -—- -—-

21 DISABLE CALL DISABL DIS [ABLE] -—

22 ENABLE CALL ENABLE ENA [BLE] -—

23 UNMARK CALL UNMARK - UNMARK
24 DATE CALL DATE DAT[E] —

25 —_—— —_—— ——— TSKNAM
26 —-——— —— ———— PARINF
27 - —— - RAISEB
30 - - — RASP
31 ——— CALL SPY - ——

32 —_—— CALL SPYSET - ———

33 - - CALL QJOR - —-—

34 - CALL EXECUT XQT -

35 - CALL SHARE —— -

36 - —— — REQMAP
37 - -— - XFRCMD

XVM/RSX V1B V-1-4 September 1976

CHAPTER 2

SYSTEM DIRECTIVES

Each of the following sections describes one System Directive. In all
models and examples, the following conventions apply:

1. A space in the text indicates an actual space in the
Directive call.

2. Square brackets ([]) indicate optional parameters.

3. In "Form" models, upper case characters indicate those
required by the system, while lower case characters indicate
entries which are to be specified by the user and are
dependent on his particular Task. '

CANCEL

2.1 CANCEL: CANCELLING REQUESTS FOR A TASK

The CANCEL Directive instructs RSX to CANCEL all scheduled requests
(Clock Queue entries made by SCHEDULE, RUN, or SYNC) for activation of
a particular Task by nullifying those requests in the Clock Queue.
CANCELlation affects neither future scheduling of a Task (as DISABLE
does), nor its current execution. The user can optionally include an
Event Variable in the Directive. Note that Task CANCELlation does not
remove any nodes from the Clock Queue. Nodes are removed only when
the time given in the node comes due.

CANCEL Directives can be issued by MACRO and FORTRAN programs, but not
by interrupt service routines. A Task cannot CANCEL itself. The
MACRO call has the following form:

Form: CANCEL name [,ev]

Where: name of Task CANCELled is a string of
one to six .SIXBT characters
ev is the Event Variable address

Example: CANCEL SCAN,EV

The FORTRAN call has the following form:

Form: CALL CANCEL (nHname [,ev])

Where: n is the number of characters in name

name of Task CANCELled is a string of
one to five ASCII characters

ev is the integer Event Variable

Example: CALL CANCEL (4HSCAN,IEV)

The CANCEL Directive can also be called from the Monitor Console
Routine.

The CPB for this Directive consists of the following:

HWord Contents
0 CAL function code (04)
1 Event Variable address
2 Task name (first half)
3 Task name (second half)

V-2-2

If the Directive is rejected by RSX, the Event Variable (@f specified)
is set to one of the following to indicate rejection and its cause:

Event Variable Meaning
=201 Task not in system

If the CANCEL is accepted, the Event Variable (if specified) is set to
+1, and all scheduling nodes in the Clock Queue for this Task are

nullified, Following is an example of a CANCEL CPB:

CPB 04 /CAL PARAMETER BLOCK TO CANCEL
EV /ALL SCHEDULE REQUESTS FOR THE

.SIXBT "T7@@@e" /TASK "T7".

CONNECT

2.2 CONNECT: CONNECTING TO AN INTERRUPT LINE

The CONNECT Directive dinstructs RSX to transfer control to a
particular location (entry point) whenever an interrupt occurs on an
indicated interrupt line. In effect, this creates a link between a
specific Automatic Priority Interrupt (API) trap address and a
specific entry point to an interrupt service routine. One trap
address exists for each of the 32 API lines supplied on the computer.
The following list does not include device 1lines that are always
CONNECTed to the system (e.g., Clock, Disk, and Teletype keyboards and
printers). Line numbers above 37 octal are pseudo-API lines, simulated
?y)the Executive for devices connected only to the Program Interrupt
PI).

The user can optionally include an Event Variable in the Directive.

Additional DECtape (line 36) or an additional Dataphone (line 37)
cannot be added without modifications to the Handlers for these
devices.

CONNECT Directives can be issued by MACRO programs in the following
way:

Form: CONNECT line,entryl[,ev]

Where: line is an octal number representing the
interrupt line to be CONNECTed

entry is the entry address of the related
interrupt service routine

ev is the Event Variable address

Example: CONNECT an interrupt service routine for
an A/D Converter at entry point ADINT to
interrupt line 17:

CONNECT 17,ADINT,ADEV

Because FORTRAN is not an appropriate language for writing
interrupt-handling routines, no FORTRAN call is included. Connects
cannot be issued from the Monitor Console Routine.

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (11)
1 Event Variable address
2 Interrupt line number
3 Interrupt transfer address

Table 2-1
API Lines

Octal Line Number

Device

00 e
01
02
03
04
05
06
07
10
11
12
13
14

15
16
17
20
21
22
23
24
25
26
27

Software level 4
Software level 5
Software level 6
Software level 7
DECtape

Magtape

(Unused)

Disk Cartridge (RK=UC15 Unichannel)
Paper Tape Reader
Clock overflow
Power failure
Memory parity error

Display (and reserved for VP storage
scope) .

Card Reader

Line Printer

Analog=-to-Digital Converter
DB99A-DB98A Interprocessor Buffer
(Unused)

Dataphone

Fixed-head disk (RF)

Disk Pack (RP)

XY Plotter

(Unused)

(Unused)

(Continued on next page)

Table 2-1 (Cont.)

API Lines
Octal Line Number Device
30 (Unused)
31 (Unused)
32 (Unused)
33 (Unused)
34 LT19 Output
35 LT19 Input
36 Additional DECtape
37 Additional Dataphone
40 Console Teletype Printer
41 Console Teletype Keyboard
42 Paper Tape Punch
43 Memory-protect violation

vV-2-6

If the CONNECT Directive is rejected by RSX, the Event Variable (if
specified) is set to one of the following to indicate rejection and

its cause:

Event Variable Meanin
-26 Illegal Function for a USER-mode Task
=301 Illegal line number
=302 Indicated line already CONNECTed

If the CONNECT Directive is accepted, the Event Variable (if
specified) is set to +1 and the CONNECTion is established.

Following is an example of a CONNECT CPB:

CPB 11 /CAL PARAMETER BLOCK TO CONNECT THE
EV /DECTAPE INTERRUPT (LINE #4) TO THE
4 /LOCATION "DTINT".
DTINT

v-2-7

DATE

2.3 DATE: RETRIEVING TIME AND DATE

The DATE Directive instructs RSX to return the current date and time
to the issuing Task. This information is obtained from the system's
internal clock and calendar. The Directive can be issued by MACRO and
FORTRAN programs and by interrupt service routines. The user can
optionally include an Event Variable in the Directive. Following is
the MACRO call:

Form: DATE month,day,year ,hour,minute,second[,ev]

Where: month is an integer in range 1=12 decimal

day is an integer in range 1-31 decimal

year is an integer in range 0-99 decimal and
represents the last two digits of the calendar
year

hour is an integer in range 0-23 decimal

minute is an integer in range 0-~59 decimal

second is an integer in range 0-59 decimal

ev is the Event Variable address

Example: DATE MON,DAY,YR,HR,MI,SEC,EV

and the FORTRAN call:

Form: CALL DATE (d)

Where: d is an array consisting of six integer words:

d(l) = month in range 1-12 decimal

d(2) = day in range 1=31 decimal

d(3) = year in range 1-99 decimal; represents
the last two digits in the calendar year

d(4) = hour in range 0-23 decimal

d(5) = minute in range 0-59 decimal

d(6) = second in range 0-59 decimal
Example: DIMENSION IDATE(6)

CALL DATE (IDATE)

This Directive can also be called from the Monitor Console Routine.

v-2-8

The CPB for this Directive consists of the following:

Word Contents

0 CAL function code (24)
Event Variable address
Month buffer (1-12)
Day buffer (1-31)
Year buffer (0-99)
Hour buffer (0-23)

Minute buffer (0-59)

N o e W NN

Second buffer (0-59)
The Event Variable (if specified) is always set to +l. The date
time are stored in CPB words 2 through 7.
Following is an example of a DATE CPB:
CPB 24 /CAL PARAMETER BLOCK

EV /TO OBTAIN DATE
.BLOCK 6 /AND TIME,

DISABLE

2.4 DISABLE: DISABLING A TASK

The DISABLE Directive instructs RSX to reject all future REQUEST,
SCHEDULE, RUN, FIX, and SYNC Directives for a particular Task. It
does not have the effect of CANCEL, for it does not affect current
activity: if rescheduling is already in effect, the Clock Interrupt
Service Routine periodically requests the Task. If a Task has been
DISABLEd, it is capable of responding only to the ENABLE Directive.
If the Task is active when the DISABLE is issued, it continues to
execute; however, all subsequent requests for the Task are ignored.
A DISABLEd Task is not automatically deleted from the system. Only
the REMOVE function can do this. The user can optionally include an
Event Variable in the Directive.

DISABLE Directives can be issued by MACRO and FORTRAN programs and by
interrupt service routines. Following is the MACRO call:

Form: DISABLE name/|[,ev]

Where: name of Task DISABLEd is a string of
one to six .,SIXBT characters
ev is the Event Variable address

Example: DISABLE SCAN,EV

and the FORTRAN call:

Form: CALL DISABL(nHnamel[,ev])

Where: n is the number of characters in name

name of Task DISABLEd is a string of
one to five ASCII characters

ev is the integer Event Variable

Example: CALL DISABL(4HSCAN,IEV)

The DISABLE Directive can also be called from the Monitor Console
Routine.

V-2-10

The CPB for this Directive consists of the following:

Worxrd Contents
0 CAL function code (21)
1 Event Variable address
2 Task name (first half)
3 Task name (second half)

If the DISABLE Directive is rejected by RSX, the Event Variable (if
specified) is set to the following to indicate rejection and its
cause:

Event Variable Meaning
=201 Task not in system

If the DISABLE Directive is accepted, the Event Variable (if
specified) is set to +1 and the Task is DISABLEd.,

Following is an example of a DISABLE CPB:
CPB 21 /CAL PARAMETER BLOCK

EV /TO DISABLE TASK "T1l1",
«SIXBT "Tlle@e@"

v-2-11

DISCONNECT

2.5 DISCONNECT: DISCONNECTING FROM AN INTERRUPT LINE

The DISCONNECT Directive instructs RSX to nullify a CONNECT. Thus,
when an interrupt occurs on an indicated interrupt line, RSX no longer
transfers control to an indicated location (entry point) of a
particular interrupt service routine, The I/O Handler for the
relevant device ensures that all I/0 transfers have been completed
before the DISCONNECT is accepted. The user can optionally include an
Event Variable in the Directive.

DISCONNECTs can be issued by MACRO programs in the following way:

Form: DISCONNECT line,entry(,ev]

Where: line is an octal number representing
the connected interrupt line

entry is the entry address of the
related interrupt service routine

ev is the Event Variable address

Example: DISCONNECT the A/D Converter from
interrupt line 17:
DISCONNECT 17,ADINT,ADEV

Because FORTRAN is not an appropriate language for writing
interrupt-handling routines, no FORTRAN call is included. DISCONNECTs
cannot be issued from the Monitor Console Routine,

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (12)
1 Event Variable address
2 Interrupt line number
3 Current interrupt transfer address

v-2-12

If the DISCONNECT Directive is rejected by RSX, ?he.Event Vgriaple (if
specified) is set to one of the following to indicate rejection and

its cause:

Event Variable Meaning
-26 Illegal function for a USER-Mode Task
=301 Illegal line number
-302 Line not connected as indicated

If the DISCONNECT Directive is accepted, the Event Variable (if
specified) is set to +1 and the DISCONNECT is performed.

Following is an example of the DISCONNECT CPB:

CPB 12 /CAL PARAMETER BLOCK TO DISCONNECT
EV /LINE #4 (DECTAPE) FROM "DTINT".
4
DTINT

v-2-13

ENABLE

2.6 ENABLE: REENABLING A TASK

The ENABLE Directive instructs RSX to reENABLE a disabled Task. The
user can optionally include an Event Variable in the Directive.

This Directive can be issued by MACRO and FORTRAN programs and by
interrupt service routines. Following is the MACRO call:

Form: ENABLE name|,ev]

Where: name of Task ENABLEd is a string of
one to six .SIXBT characters
ev is the Event Variable address

Example: ENABLE SCAN,EV

and the FORTRAN call:

Form: CALL ENABLE (nHname|[,ev])

Where: n is the number of characters in name
name of Task ENABLEd is a string

of one to five ASCII characters
ev is the integer Event Variable

Example: CALL ENABLE (4HSCAN,IEV)

The ENABLE Directive can also be called from the Monitor Console
Routine.

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (22)
1 Event Variable address
2 Task name (first half)
3 Task name (second half)

v-2-14

If the ENABLE Directive is rejected by RSX, the Event Variable (if
specified) is set to one of the following to indicate rejection and
its cause:

Event Variable Meaning
=201 Task not in system
-212 Partition for Task's STL node lost because of
reconfiguration
-213 Partition assigned to Task currently being
reconfigured

If the ENABLE Directive is accepted, the Event Variable (if specified)
is set to +1 and the Task is ENABLEd.

Following is an example of an ENABLE CPB:
CPB 22 /CAL PARAMETER BLOCK

EV /TO ENABLE TASK “T12%,
«.SIXBT "Tl2@@@"

V-2-15

EXECUTE

2.7 EXECUTE: REQUESTING TASK EXECUTION FROM A USER DISK

The EXECUTE directive allows the user to reguest execution of a task
that is stored in core-image form on a "user" disk.

A new task priority can be specified in the EXECUTE directive. If a
new priority is omitted, the priority specified at task-building time
is used.

As options, a memory partition and an event variable can be specified
in the directive. If the directive is issued by a MACRO program, two
additional options can be specified: "alias execute" and "deferred
execute".

The standard EXECUTE directive functions internally by:

l. Inserting a node in the Execute List (EXELH) for the
requested task.

2. Reguesting the task named FININS.
FININS:

1. Picks a node off of the EXELH. If the 1list 1is empty, the
EXECUTE directive exits.

2. Locates a created file with the name specified in the EXECUTE
command in the disk directory associated with the specified
LUN.

3. Reguests the task (if its node is in the STL) or allocates
sufficient space on the system disk and transfers the file to
the system disk.

4. For exec-mode tasks, ensures that the specified partition
name corresponds to the partition and base address indicated
for the task at task-building time. For user-mode tasks, the
partition specified at task-building time can be overridden
by an explicit declaration, but this EXECUTE partition
specification is not reqguired. For both exec-mode and
user-mode tasks, a check is performed to ensure that the task
image fits in the partition.

5. Enters a node 1in the STL for the task, setting a

"remove-on-exit" bit and a bit indicating that the task has
been run at least once ("done" bit).

XVM/RSX V1B v=2-1l6 September 1976

Periodically, a task called AUTORM checks the STL and removes all
tasks from the system disk that:

a. Are not active

b. Have the "done" bit set

c. Have the "remove=-on-exit" bit set
This periodic check and removal allows substantial conservation of
space on the disk. If, however, a task 1is running or has been
scheduled by a directive such as SCHEDULE or SYNC, AUTORM does not

remove it until a later check.

The events listed to this point are modified slightly by selecting the
deferred-execute option.

If the EXECUTE directive is rejected by RSX, the event variable (if
specified) is set to one of the following values to indicate rejection
and the cause:

Event Variable Meaning
-201 Task is not in the system
~202 Task is already or still active
-204 Task is disabled
-206 Illegal task priority
=212 Partition for the task STL node was lost

through reconfiaguration

-213 Partition assigned to the task is
currently being reconfigured

-7717 Deque node (for ATL) 1is not available
(POOL empty)

If the directive is accepted, the event variable (if specified) is set
to +1.

XVM/RSX V1B v-2-17 September 1976

EXECUTE directives may be issued by FORTRAN and MACRO programs, and
can also be called from the Monitor Console Routine (refer to Part IV
of this manual).

The FORTRAN call is of the following form:

Form: CALL XOQOT (nHname,p,LUN,mHpartnam[,ev])

Where: n is the number of characters in the task name
name of task EXECUTEd is a string of
one to five ASCII characters
p is an integer priority in decimal range 0-512
LUN is an integer representing the logical unit
number associated with the user disk
m is the number of characters in partition name
partnam is the name of the partition in
which the task should be run
ev is the integer event variable

Example: Request EXECUTion of TTIN in partition TDV at
priority 20:

IP = 20

CALL XQT (4HTTIN,IP,8,3HTDV,IP,IEV)

The requested task is made active at priority P (or at the default
priority, if p is omitted or zero). If a task with mapped LUNs (such
as a MULTIACCESS task) issues an EXECUTE directive, the wvirtual LUN
specified is mapped into the corresponding system LUN.

The CAL parameter block (CPB) for this directive consists of the
following: .

Word Contents

0 CAL function code (34)

1 Event variable address

2 Task name (first half)

3 Task name (second half)

4 Priority

5 LUN, "alias execute" bit and "deferred execute"
bit :

6 Partition name (first half) or task event variable
address

7 Partition name (second half)

10 Unused or secondary task name (first half)

11 Unused or secondary task name (second haif)

The alias-execute option is specified by setting bit 0 of CPB word 35,
which contains the LUN. When this option is specified, words 10 and

XVM/RSX V1B vV-2-18 September 1976

11 of the CPB are taken to be a secondary task name. FININS replaces
the primary task name with the secondary task name when it prepares a
node for insertion into the STL. Any time after the node is inserted
into the STL, FININS requests the task using the secondary task name.
FININS always uses the primary task name when searching disk file
directories for the constructed file. However, if the alias-execute
option is specified, FININS first scans the STL using the secondary
task name to see if the file is already installed in the system.

The deferred-execute option is specified by setting bit 1 of CPB word
5. When this option is specified, word 6 of the CPB is taken to be
the address of a special "task" event variable instead of the first
half of a partition name. FININS sets the task event variable to the
address of the task STL node. When creating the task STL node, FININS
zeros the pointer to the task PBDL node (word 5) and sets the
"partition-lost-through-reconfiguration" bit (bit 4 of word 4).
FININS attempts to locate and transfer the task image to the system
disk as usual, but does not request the task.

The result of these actions by FININS is to prepare a task for
execution later when an appropriate partition has been selected. This
feature is used primarily by MULTIACCESS.

If FININS detects an error, it sets the task event variable to one of
the following values:

Task

Event Variable Meaning
-401 Illegal LUN specified
-402 HINF error
-403 Illegal device specified
-404 Disk dismounted
-405 GET error
-406 File was not created
=407 File was not found
-410 ALLOCATE error
-411 PUT error
-412 Nonunigque alias name

If FININS is successful, the task event variable (if specified) is set
to +1.

XVM/RSX V1B V-2-18.1 September 1976

EXIT

2.8 EXIT: TERMINATING EXECUTION OF A TASK

The EXIT directive instructs RSX to terminate execution of the task
that issues the EXIT. If the issuing task is not fixed in core, the
core partition of this task becomes available to other tasks. For
this reason, an EXIT should not be issued until all transfers to or
from the partition (e.g., I/O transfers, task-to-task transfers, event
variable settings) have been completed. No event variable can be
included in the EXIT directive.

RSX provides protection against premature task EXITs. When any task
exits, the EXIT Routine checks the transfers-pending count in the task
partition block node. A nonzero count indicates that the EXITing task
has pending I/0 or mark-time requests. This causes I/O Rundown to be
invoked. As a result of this operation, the partition in which the
EXITing task resides does not become free until transfers to or from
the partition have stopped.

The EXIT directive can record the amount of processing time used by
the task that is exiting, provided that the system has XM15 hardware
and the proper software initialization has occurred. To use this
feature, the wuser must develop an exec-mode task that is capable of
performing the necessary initialization and dump data buffers to a
mass-storage peripheral device. The steps required to activate the
task timing software are:

l. Zero each location in a pair of data buffers. These buffers
can be anywhere in core, but must be at least four words long
and should typically have a size that is an integral multiple
of four words.

2. Set up a task timing control table as follows:

Word Name Contents

0 EV Task timing event variable
(must be zero initially).

1 START1 Pointer to first word of
buffer 1.

2 END1 Pointer to last word of
buffer 1.

3 START2 Pointer to first word of
buffer 2.

4 END2 Pointer to last word of
buffer 2.

5 PTR Pointer to next free buffer

entry (set equal to STARTI1
initially). The task timing
software does no error
checking to ensure the
validity of the parameters in
this control table. It is the
user's responsibility to
supply the correct data.

XVM/RSX V1B V-2-19 September 1976

3. Set absolute location 312 (hereafter referred to as TIMFLG)
to the address of the task timing control table. The task
timing routine in the EXIT directive uses TIMFLG as a flag to
indicate if +task timing is to be invoked. Whenever a task
EXITs, TIMFLG is examined. If it is zero, the task timing
routine will be bypassed; but if TIMFLG is non-zero, EXIT
will assume that the task timing routine should be entered.
Since the user-written buffer~dumping initialization task can
never tell when EXIT will examine TIMFLG, this task should
inhibit interrupts anytime it manipulates that location to
prevent a race condition.

When TIMFLG is set, a task EXITs, and there is sufficient
room in a buffer, the task timing routine will £fill the
appropriate buffer entry with the following data:

ENTRY WORD " CONTENTS

First half of the task name in
.SIXBT format

Second half of the task name
in .SIXBT format

Number of XM clock overflows
(one unit equals 2,62 seconds)
Number of XM clock ticks above
overflow count (one unit
equals 10 microseconds)

w N = O

If neither buffer is full, the task timing event wvariable (EV) will
remain zero. However, EXIT will typically set EV to +1 when buffer 1
if filled and +2 when buffer 2 is filled. EXIT assumes that when the
buffer-dumping task has dumped a buffer and reinitialized it to
zeroes, that task will indicate that the buffer is empty by zeroing
BV, To avoid a race condition when the buffer-dumping task is
manipulating EV, it must inhibit interrupts.

If EXIT determines that both buffers have been filled, it will set EV
‘o =1. At this point, no task timing data will as yet have been lost.
If another task EXITs before a buffer is emptied, EXIT will decrement
the already negative EV. The buffer-dumping task must then empty a
buffer, record the number of data entries lost, and set EV to the
number of the buffer still full. To stop task timing, the buffer
dumping task need only zero TIMFLG.

Since the task timing routine can only be invoked when a task EXITs,
some tasks will seldom, if ever, be timed. Tasks in this category
include DSK, DSA, IORD, and semipermanent I/O handlers such as RF, RK,
and RP. Hence, if task timing data is needed for these tasks, the
user must implement some special code to obtain the required data
whenever the system is SAVEd and whenever DOS is bootstrapped via the
relevant MCR Function Tasks.

V-2-20

EXIT Directives can be issued by MACRO and FORTRAN programs, but not
by interrupt service routines. A CPB exists for EXIT, but a standard
MACRO call has not been implemented. The CAL is issued as follows:

CAL (10) /TASK EXIT=--TERMINATE EXECUTION

A FORTRAN STOP command can be used to terminate execution of a FORTRAN
TASK.

EXITs apply only to calling Tasks. Task exit can be forced via the
Monitor Console Routine by use of the ABORT function.

The CPB for this Directive consists simply of the following:

Word Contents
0 CAL function code (10)

V-2-21

FIX

2.9 FIX: FIXING A TASK IN CORE

The FIX Directive instructs RSX to FIX an inactive Task in an
available core partition. This dedicates the partition to that Task
and provides for faster response to REQUEST, SCHEDULE, RUN, and SYNC
Directives. FIX does not cause a Task to be executed at the time the
Directive is issued. The user can optionally include an Event
Variable.

This Directive can be issued by MACRO and FORTRAN programs and also by
interrupt service routines. FIX cannot be issued to an active Task,
but a Task can FIX itself. In this case, the Directive causes the
Task to retain control of its partition even after it exits.
Following is the MACRO call:

Form: FIX name{,ev]

Where: name of Task FIXed is a string
of one to six .SIXBT characters
ev is the Event Variable address

Example: FIX SCAN,EV

and the FORTRAN call:

Form: CALL FIX(nHname{,ev])

Where: n is the number of characters in name
name of Task FIXed is a string of

one to five ASCII characters
ev is the integer Event Variable

Example: CALL FIX(4HSCAN,IEV)

The FIX Directive can also be called from the Monitor Console Routine,

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (15)
1 Event Variable address
2 Task name (first half)
3 Task name (second half)

V-2-22

If the FIX Directive is rejected by RSX, the Event Variable (if
specified) is set to one of the following to indicate rejection and
its cause:

Event Variable Meaning

=201 Task not in system

-202 Task is active

-204 Task is disabled

=207 Task already FIXed in core

=210 Partition occupied

=212 Partition for Task's STL node lost because of
reconfiguration

=213 Partition assigned to Task currently being
reconfigured

-777 Deque node (for PBDL) unavailable

{(empty pool)

If the FIX Directive is accepted, the Event Variable (if specified) is
set to +1 and the Task is flagged as being FIXed in core. The FIXed
Task is automatically made active at status one to effect loading into
core. The starting address of this Task is an EXIT Directive in the
Executive; therefore, the Task exits after it is 1loaded into core,
and subsequent EXIT Directives do not free the FIXed partition. Only
UNFIX can do this.

Following is an example of a FIX CPB:
CPB 15 /CAL PARAMETER BLOCK TO

EV /FIX TASK "T9" IN CORE,
.SIXBT "T9Q@@@"

v-2-23

MARK

2.10 MARK: SETTING AN EVENT VARIABLE IN THE FUTURE

The MARK Directive instructs RSX to set an Event Variable to zero and,
after a specified interval of time, to reset it to a nonzero value and
to declare a Significant Event.

Table 2-2
Reschedule Interval Ranges

Unit of Time " Interval Symbol Legal Range, Decimal
Tick 1 0-262143
Second 2 0-86400
Minute 3 0-1440
Hour 4 0-24

This Directive can be issued by MACRO and FORTRAN programs, but not by
interrupt service routines. MARK Directives affect only the Tasks
from which they are issued. Following is the MACRO call:

Form: MARK mi,mu,ev

Where: mi is an integer representing the number of
units which must elapse before the Event
Variable is set nonzero (range given in
Table 2-4)

mu is 1, 2, 3, or 4 and represents the
relevant unit of time (see Table 2-4)

ev is the Event Variable address

Example: Reset Event Variable TSTEV 5 minutes from now:
MARK 5,3,TSTEV

v-2-24

and the FORTRAN call:

Form: CALL MARK(t,ev)

Where: t is an array consisting of two integer words
representing the MARK time interval and unit:

t(1l) = MARK time interval (range given in Table
2-4)

t(2) =1, 2, 3, or 4 and represents the relevant
unit of time (see Table 2-4)

ev is the integer Event Variable

Example: Reset Event Variable IEV 5 minutes from now:
DIMENSION IT(2)

IT(1) = 5
IT(2) = 3
CALL MARK(IT,IEV)

The MARK Directive cannot be issued from the Monitor Console Routine,

The CPB for this directive consists of the following:

Word Contents
0 CAL function code (13)
1 Event Variable address
2 MARK-time interval (see Table 2-4)
3 MARK~time units (see Table 2-4)

If the MARK Directive is rejected by RSX, the Event Variable is set to
one of the following to indicate rejection and its cause:

Event Variable Meaning
-203 Directive not Task-~issued
-777 Deque node (for Clock Queue) not

available (empty pool)

V-2-25

If the MARK Directive is accepted, the Event Variable is set to zero,
and a request to reset the Event Variable is entered in the Clock
Queue to come due at the appropriate time. Issuing an UNMARK
Directive can nullify a request.

Following is an example of a MARK CPB:

CPB 13 /CAL PARAMETER BLOCK TO CLEAR "EV"
EV /AND SET IT TO NONZERO 170 SECONDS
«DEC /FROM NOW,

170; 2
.OCT

V-2-26

PARINF

2.11 PARINF: RETURNING PARTITION ADDRESS AND SIZE

The PARINF Directive instructs RSX to return the base address and size
of the core partition named in the Directive to the issuing Task. If
a partition is not specified (if CPB word 2 is zero), RSX references
the name of the partition in which the issuing Task runs and stores it
in CPB words 2 and 3. PARINF Directives are ordinarily not issued by
user-written code. Therefore no FORTRAN call or standard system MACRO
has been implemented for PARINF.

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (26)
1 Event Variable address
2 Partition name (first half)
3 Partition name (second half)
4 Address of two-word information buffer

The partition name is coded in .SIXBT form.

The information buffer referenced in word 4 contains:

Word Contents
0 Partition base address
1 Partition size (octal)

If a PARINF Directive cannot be honored, one of the following Event
Variables is returned to indicate rejection and its cause:

Event Variable Meaning
-203 CAL not Task-issued
=211 Named partition not in system

g

If the PARINF Directive is accepted, the Event Variable is set to # v
and the partition information is returned.

vV-2-27

Following is an example of a PARINF CPB:

CPB 26 /FIND OUT WHERE
EV /"TDV" PARTITION
«SIXBT "TDV@@E@" /IS AND STORE
PARINF /THE DATA

PARINF .BLOCK 2 /HERE,

V-2-28

2.12

QJOB

QJOB: QUEUEING A BATCH JOB

The QJOB directive informs the Batch System that a job is ready to be
run, whether or not the Batch Processor is in core. The user can
specify the name of the job to be queued, the LUN from which it comes
and a series of job characteristics, including:

Maximum time that the job can run (in minutes)

Class at which the job can run

Memory use

Use of sequencing (run in order of submission)

Whether the job requires operator availability

Whether the job file should be deleted after the job runs
Use of hold mode

Device and UFD of the job file

The FORTRAN call for QJOB has the form:

Form: CALL QJOB (lun[,nHname[,flags[,parm[,ev]]1])

Where: lun is an integer specifying the (virtual)

logical unit number on which the job file resides
n is the number of characters in name
name of job fi i . Lo five ASCII
characters §EEB"€ is always JOB)/
flags is an integer containing the job flags
parm is an integer containing the job parameters
ev is the integer event variable

Example: | CALL QJOB (17,4HSCAN,2,31,IEV)

The CAL parameter block (CPB) for this directive consists of:

Word Contents
0 CAL function code (33)
1l Event variable address
2 File name (first half)
3 File name (second half)
4 LUN
5 Job flags
6 Job parameters
7 Login device and unit
10 Login UFD

XVM/RSX V1B V-2-29 September 1976

The file name and the login UFD are coded in .SIXBT format. The file
extension of all job files is JOB. CPB words 7 and 10 are not used
unless bit 7 (UFDFLG) of word 5 is set.

The contents of CPB word 4 (LUN) are:

Bit Meaning
0-8 LUN containing the job file
9-17 Reserved for the LUN for the listing file

The job file JUN should be specified as a normal integer in the
FORTRAN call. QJOB positions the LUN number correctly.

The contents of CPB word 5 (job flags) are:

Bit Name Meaning
0 DLTFLG Delete job file after processing
1 OPRFLG Operator required to run this job
2 FRCFLG Force this job to run next
3 SEQFLG Sequence this job (sequenced jobs are run in
the order of submittal)
4 Reserved
5 HLDFLG Hold this job until it is released by the op-
erator
6 CCLFLG Reserved for RSX CCL (concise command lan-
guage)
7 UFDFLG Login device, unit and UFD is specified in
CPB words 7 and 10
8-17 TIMMSK Job file time limit in minutes (zero implies

that the default value is used)
UFDFLG must be clear (zero) in the FORTRAN call.

The contents of CPB word 6 (job parameters) are:

Bit Name Meaning

0-2 CLSMSK Job priority class (0 to 7)

3-10 Reserved

11-17 MEMMSK Minimum core needed to run the job (zero in-

dicates 1K; all ones, 127, indicates 128K)

The contents of CPB word 7 (login device and unit) are:

Bit Meaning
0-11 Login device, expressed in .SIXBT format
12-17 Login unit, expressed in binary

If CPB word 7 is zero, the system device is implied. If CPB word 10
(login UFD) is zero, SCR is implied.

XVM/RSX V1B vV-2-30 September 1976

The login device, unit and UFD in which the job will run is determined
in the following way:

1.

3.

If UFDFLG (bit 7 of CPB word 5) is set, the login device, unit
and UFD are specified by CPB words 7 and 10. If either CPB
word is zero, appropriate system defaults are used.

If UFDFLG is reset (zero) and the job file resides on a disk,
the device, unit and UFD in which the job file resides is
used.

If UFDFLG is reset and the job file does not reside on a disk,
the system defaults (system disk and SCR) are used.

If the directive is rejected, the event variable (if specified) is set
to one of the following values to indicate rejection and the cause:

Event Variable Meaning
=101 LUN out of range
=102 LUN not assigned
-105 Device unit number out of range
-106 Too many jobs queued
=777 Deque node is not available (POOL empty)

If the directive is accepted, the event variable (if specified) is set
to #n, where n is the job file sequence number assigned to the job.

The job file sequence number, used in conjunction with the date of sub-
mittal, constitutes a unique identifier for each batch job file.

XVM/RSX V1B V-2-31 September 1976

This page intentionally left blank.

XVM/RSX V1B V-2-32 September 1976

This page intentionally left blank.

XVM/RSX V1B V-2-33 September 1976

QUEUE 140

2.13 QUEUE I/0: QUEUING REQUESTS FOR AN I/0 DEVICE

The QUEUE I/0 directive instructs RSX to place an I/O request for a
particular device unit in a queue of requests for that unit. Entries
in the queue are ordered according to task priority. Each I/0 call
generates a unique version of the QUEUE I/0 directive. The user task
specifies an operation (e.g., READ, WRITE, REWIND), a logical unit
number (LUN) corresponding to a physical 1I/0 device unit, and
additional arguments specific to the operation.

There are two types of LUNs in RSX: system LUNs and virtual LUNs. A
block of 25 wvirtual LUNs for each user is "mapped" to a block of
system LUNs maintained by RSX. Each user is aware of only his own
virtual LUNs. The system automatically relates virtual LUNs to system
LUNs whenever a user reqguests a task to be run. Refer to Part VII of
this manual for more information about LUNs. The virtual LUN included
in the call identifies the physical device for which reguests are
queued. The user task can optionally include an event variable.

QUEUE I/O requests can be issued by both MACRO and FORTRAN programs.
No comparable Monitor Console Routine call exists.

The generalized CAL parameter block (CPB) for all forms of the QUEUE
I/0 directive consists of the following:

Word Contents
0 CAL function code (00) (bits 12 to 17);
I/0 function code (bits 3 to 11)
1 Event variable address
2 Logical unit number (LUN)
3 Unigue to I/O call
4 Unique to I/0 call
5 Unique to I/0 call

If the QUEUE I/0 directive is rejected by RSX, the event variable (if
specified) 1is ordinarily set to one of the following values to
indicate rejection and the cause:

Event Variable Meaning
-101 LUN out of range
-102 LUN not assigned to a physical device
-103 Nonresident (not loaded) or noninitialized I/O

device handler task

=777 Deque node (for PDVL) not available
(POOL empty)

XVM/RSX V1B vV-2-34 September 1976

If the call is accepted, the event variable (if specified) is set to
zero. A request node is formed and entered in the gueue associated
with the specified LUN at the priority of the task that issues the
call. The handler task is "triggered" to signal that a request has
been made. Then control is returned to the user task. The user task
can subsequently test for completion of the operation by checking for
a nonzero event variable.

Each request node has the following format:

Word Contents
0 Forward linkage
1 Backward linkage
2 Task STL node address (zero if the directive is

not issued at API level 7)
3 Task PBDL node address
4 Calling task priority in decimal rangde 1 to 512,

but ABORT requests issued by IORD (I/O Rundown)
set the priority to 0.

5 I/0 function code (bits 9 to 17); logical unit
number (bits 0 to 8)

6 Event variable address (zero if none specified)

7 CPB word 3 (unique to I/O call)

10 CPB word 4 (unique to I/0 call)

11 CPB word 5 (unique to I/0 call)

If the QUEUE I/0 directive is issued from an interrupt service routine
(which runs at API level 0), words 2 and 3 are zero and word 4
(priority) is +1.

Following is an example of a QUEUE I/O CPB:

CPB 2600 /CAL PARAMETER BLOCK TO READ (I/O FUNCTION
EV /CODE = 26; CAL FUNCTION CODE = 00)
4 /FROM LUN #4
2 /IN IOPS ASCII (MODE 2).
BUFFER /TRANSFER TO CORE IS TO BEGIN AT
100 /"BUFFER" AND CONTINUE FOR NO MORE THAN

/100 (OCTAL) WORDS.

XVM/RSX V1B V-2-35 September 1976

RAISEB

2.14 RAISEB: RAISING THE MEMORY-PROTECT BOUND

The RAISEB Directive instructs RSX to increase the Task size of the
calling Task and, if the Task is built in USER-mode, to raise its
memory-protect bound. Because a Task's I/O buffers are created from
the wunused space at the top of a Task's partition, Task size is not
quite equivalent to partition size. RAISEB returns to the calling
Task the highest usable Task address in the partition. This parameter
is used by such system Tasks as the Assembler to create symbol table
space as large as the partition allows. The RAISEB Directive is
typically used after a Task has reserved I/0 buffer space by means of
the PREAL I/0 request.

The actual raising of the memory-protect bound does not occur until
the next Significant Event. Therefore it is recommended that a WAIT
Directive follow the RAISEB Directive to provide the appropriate
delay.

No FORTRAN call or standard system MACRO has been implemented for
RAISEB.

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (27)
1l Event Variable address

If a RAISEB Directive cannot be honored, the following Event Variable
is returned to indicate rejection and its cause:

Event Variable Meaning
-203 CAL not Task-issued

If the Directive is accepted, the Event Variable is set to the highest
usable Task address (relative to the partition base for USER-mode
Tasks) .

Following is an example of a RAISEB CPB:
CPB 27 /RAISE BOUND AND RETURN

EV /HIGHEST USABLE ADDRESS
/IN EV,

V-2-36

REQUEST

2.15 REQUEST: REQUESTING TASK EXECUTION

The REQUEST Directive instructs RSX to activate a Task and to REQUEST
its execution at a specified software priority. Actual time of
execution depends on partition availability and on Task priority. The
Task cannot be brought into core from disk until its core partition is
free. It cannot execute until all higher-priority active Tasks have
relinquished control. The wuser can specify a new priority or can
REQUEST execution at the Task's default priority (assigned during Task
installation)., He can optionally specify an Event Variable in the
Directive,

Because a priority must be included in the FORTRAN call, priority 0
indicates the default priority. This is functionally equivalent to
omitting the priority specification because Tasks run at API level 7,
whose priorities range only from 1 to 512, A priority should be
specified in the MACRO call, but 0 is used to indicate that the
default priority is intended.

REQUESTs may be issued by MACRO and FORTRAN programs and by interrupt
service routines, but a Task cannot REQUEST itself. The MACRO call
has the following form:

Form: REQUEST name[,pl,ev]]

Where: name of Task REQUESTed is a string of one
to six .SIXBT characters

p is an integer priority in range 0-512
decimal

ev is the Event Variable address

Examples: REQUEST execution of SCAN at the default
priority of 48:
REQUEST SCAN,EV
or
REQUEST SCAN,0,EV
or
REQUEST SCAN,48,EV

Priority redefined here at 20:
REQUEST SCAN,20,EV

Priority redefined here at 20 with no
Event Variable:
REQUEST SCAN, 20

V-2-37

The FORTRAN call has the following form:

Form: CALL REQST (nHname,pl[,ev])

Where: n is the number of characters in name
name of Task REQUESTed is a string of one
to five ASCII characters
p is an integer priority in range 0-512 decimal
ev is the integer Event Variable

Examples: REQUEST execution of SCAN at the default
priority of 48:
CALL REQST (4HSCAN,0,IEV)
or
CALL REQST (4HSCCAN,48,IEV)

Priority redefined in FORTRAN program:
IP = 20
CALL REQST (4HSCAN,IP,IEV)

REQUEST execution at SCAN's default priority
with no Event Variable testing:
CALL REQST (4HSCAN,O0)

The REQUEST Directive can also be called from the Monitor Console
Routine.

The CAL Parameter Block (CPB) for this Directive consists of the
following:

Word Contents
0 CAL function code (01)
1 Event Variable address
2 Task name (first half)
3 Task name (second half)
4 Priority (0-512)

v-2-38

If REQUEST is rejected by RSX, the Event Variable (if specified) is
set to one of the following to indicate rejection and its cause:

Event Variable

-201
-202
-204
=206
-212

=213

=777

yeaning’
Task not in system
Task is already or still active
Task is disabled
Illegal Task priority

Partition for Task's STL node lost because of
reconfiguration

Partition assigned to Task currently being
reconfigured

Deque node (for ATL) not available (empty pool)

If the Directive is accepted, the Event Variable (if specified) is set
to +1 and the REQUESTed Task is made active at priority p (or at its
default priority if p is zero).

Following is an example of a REQUEST CPB:

CPB 01

/CAL PARAMETER BLOCK.
/REQUEST EXECUTION OF TASK

+SIXBT "Tle@ee" /"T1l" NOW. TASK IS TO RUN

/AT ITS DEFAULT PRIORITY.

V-2-39

REQUEST MAPPED

2.15A REQUEST MAPPED: REQUESTING A TASK WITH MAPPED LUNS

The REQUEST MAPPED directive 1is nearly identical to the REQUEST
directive, with two differences. First, the CAL code for REQUEST
MAPPED (i.e., the first word of the CPB) is octal 36 instead of 1.
Second, the REQUEST MAPPED CPB contains an additional word. The new
CPB word (word 5) follows the word for task run priority (word 4) in
the CPB. Word 5 of the REQUEST MAPPED CPB contains:

Bit Contents

0-8 LUN offset (i.e., the octal number of the
system LUN into which wvirtual LUN=-2 is
mapped)

9-14 MULTIACCESS user number

15-17 Unused

An example of the REQUEST MAPPED CPB is:

36 /REQUEST TASK "T1" WITH
EV /MAPPED LUNS. MAKE
.SIXBT "Tle@e@" /REFERENCES TO LUN-2 GO
0 /TO SYSTEM LUN-64
100000 / (OCTAL 100)

If the REQUEST MAPPED directive is rejected by RSX, the event variable
(if specified) 1is set to one of the same values as described for the
REQUEST directive, with the following additional possible value:

Event Variable Meaning
-101 LUN out of range (indicates that the map requested

does not fit in the real LUN space)

XVM/RSX V1B V-2-39.1 September 1976

RESUME

2.16 RESUME: RESUMING TASK EXECUTION

The RESUME Directive instructs RSX to RESUME execution of a suspended
Task. All Tasks RESUME at the priority at which they were running
when suspended. The user can optionally include an Event Variable.

The Directive can be issued by MACRO and FORTRAN programs and also by
interrupt service routines. If RESUME is issued by a MACRO program
and the suspended Task is in EXEC mode, execution of the Task can
RESUME at any location within the partition. If the address is set to
zero, the suspended Task RESUMEs at the location immediately following
the SUSPEND Directive. USER-mode Tasks RESUMEd by MACRO programs
restart at the next location. A FORTRAN call cannot include a
resumption address, so all Tasks RESUMEd by FORTRAN programs restart
at the next location.

The MACRO call has the following form:

Form: RESUME name|[,ral,ev]]

Where: name of Task RESUMEd is a string of
one to six .SIXBT characters

ra is the resumption address

ev is the Event Variable address

Example: RESUME TSKA,RSTRT,EVA

A case where a resumption address may be specified symbolically is in
an interrupt service routine, assembled as part of the Task that it is
going to RESUME at different locations in the Task depending on the
nature of the interrupt.

The FORTRAN call has the following form:

Form: CALL RESUME (nHname/[,ev])

Where: n is the number of characters in name

name of Task RESUMEd is a string of one
to five ASCII characters

ev is the integer Event Variable

Example: CALL RESUME (4HTSKA,IEV)

The RESUME Directive can also be called from the Monitor Console
Routine.

v-2-40

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (07)
1 Event Variable address
2 Task name (first half)
3 Task name (second half)
4 Resumption address

Bits 0-2 of the resumption address (word 4) are ignored.

If the RESUME Directive is rejected by RSX, the Event Variable (if
specified) 1is set to one of the following to indicate rejection and
its cause:

Event Variable Meaning
-30 Specified address for USER-mode Task is
outside the Task's partition
-202 Task not active
~205 Task not suspended

If the Directive is accepted, the Event Variable (if specified) is set
to +1, and execution of the indicated Task is RESUMEd (contingent on
its priority) at the appropriate address.

The user should be aware of certain limitations on the wuse of
resumption addresses. If the issuing Task has been built in USER
mode, it may not specify a resumption address for the Task to be
RESUMEAd. If the Task to be RESUMEd has been built in USER mode, any
resumption address for this Task is relative to the partition base.

Following is an example of a RESUME CPB:

CPB 07 /CAL PARAMETER BLOCK
EV /TO RESUME EXECUTION OF
.SIXBT "Tg8e@Ee@" /TASK "T8" AT LOCATION
ABC /"ABC",

V-2-41

RUN

2.17 RUN: ACTIVATING TASK EXECUTION

The RUN Directive instructs RSX to initiate the execution of a Task at
a specified software priority and after the passage of some time
interval, with an optional reschedule interval. Actual time of
execution depends on Task priority and partition availability. This
Directive performs the same function as SCHEDULE, except that the time
of execution 1is expressed as time from now, not as absolute time of
day. The user can request that the Task RUN at its default priority
(assigned during Task installation) or can specify a new priority when
the Directive is issued. An Event Variable can optionally be
included.

Both the initial activation time interval and the reschedule interval
are expressed in terms of ticks, seconds, minutes, or hours and may
not exceed one day. Permissible ranges are illustrated in Table 2-2
below. The initial activation time interval must be included in the
command line, but the reschedule interval is optional. If the
reschedule interval is omitted or has a value of 0, the Task is
executed only once. If the user specifies a reschedule interval of 0,
he must also specify a reschedule unit, but it does not matter which
unit he chooses. The Clock Interrupt Service Routine performs Task
activation and rescheduling. .

Table 2-3
Reschedule Interval Ranges

Unit of Time Interval Symbol Legal Range, Decimal
Tick 1 0~-262143
Second 2 0-86400
Minute 3 0-1440
Hour 4 0-24

Because a priority must be included in the FORTRAN call, priority 0
indicates the default priority. This is functionally equivalent to
omitting the priority specification because Tasks run at API level 7,
whose priorities range only from 1 to 512. A priority should be
specified in the MACRO call, but 0 is wused to indicate that the
default priority is intended.

V-2-42

RUN Directives can be issued by MACRO and FORTRAN programs, but not by
interrupt service routines., A Task may RUN itself., The MACRO call
has the following form:

Form: RUN name,si,sul,ri,rul,pl(,evl]]

Where: name of Task initiated is a string of
one to six .SIXBT characters

si is an integer representing the number of
units which must elapse before the Task is
requested (range given in Table 2-2)

su is 1, 2, 3, or 4 and represents the relevant
unit of time (see Table 2-2)

ri is an integer representing the number of
units which must elapse before the Task is
rescheduled (range given in Table 2=-2)

ru is 1, 2, 3, or 4 and represents the relevant
unit of time (see Table 2=2)

p is an integer priority in range 0-512 decimal

ev is the Event Variable address

Examples: RUN INITS at a new priority of 512, 5 seconds
from now, and reschedule it every 10 minutes
thereafter:

RUN INITS,5,2,10,3,512,EV

RUN INITS at its default priority with no
Event Variable testing:
RUN INITS,5,2,10,3

RUN INITS only once:
RUN INITS'5'2,0'3

or
RUN INITS,5,2

V-2-43

The FORTRAN call has the following form:

Form: CALL RUN(nHname,t,p[,ev])
Where: n is the number of characters in name
name of Task initiated is a string of
one to five ASCII characters
t is an array consisting of four integer
words; 1t represents the initial activation
time and reschedule interval and units:
t(1l) = initial activation interval (range given
in Table 2-2)
t(2) = initial activation units; may be 1, 2,
3, or 4 (see Table 2-2)
t(3) = reschedule interval (range given in Table
2=2)
t(4) = reschedule units; may be 1, 2, 3, or
4 (see Table 2-2)
p is an integer priority in range 0-512 decimal
ev is the integer Event Variable
Example: RUN INITS at a new priority of 512, 5 seconds
from now, and reschedule it every 10 minutes
thereafter; priority set in FORTRAN program:
DIMENSION IT(4)
IT(1) = 5
IT(2) = 2
IT(3) = 10
IT(4) = 3
IP = 512
CALL RUN (5HINITS,IT,IP,IEV)

V-2-44

The RUN Directive can also be called from the Monitor Console Routine.

The CPB for this Directive consists of the following:

Word Contents

0 CAL function code (03)

1 Event Variable address

2 Task name (first half)

3 Task name (second half)

4 Initial activation interval (see Table 2-2)
5 Initial activation units (see Table 2=2)

6 Reschedule interval (see Table 2-2)

7 Reschedule units (see Table 2=2)
10 Priority (0-512)

If the RUN Directive is rejected by RSX, the Event Variable (if
specified) is set to one of the following to indicate rejection and
its cause:

Event Variable Meaning

-104 Illegal activation of reschedule units code

=201 Task not in system

-203 Directive not Task-issued

-204 Task is disabled

=206 Illegal Task priority

=212 Partition for Task's STL node lost because of
reconfiguration

-213 Partition assigned to Task currently being
reconfigured

=777 Dqu? node (for Clock Queue) not available (empty
poo

V-2-45

If the Directive is accepted, the Event Variable (if specified) is set

to +1,

and a request to make the indicated Task active is placed in

the Clock Queue to come due at the appropriate time.

Following are examples of a RUN CPB:

CPB 03
0
+SIXBT "T3@@QQA"
«DEC
90; 2
0;0;0
.OCT

CPB 03
EV
«SIXBT "T4QE@@A"
+DEC
0; 3
2; 3
0
.OCT

/CAL PARAMETER BLOCK TO

/RUN TASK "T3" 90 SECONDS
/FROM NOW. NO RE-SCHEDULING,
/USE DEFAULT PRIORITY,

/NO EVENT VARIABLE SPECIFIED,

/CAL PARAMETER BLOCK TO
/RUN TASK "T4" NOW, AND
/EVERY TWO MINUTES
/FROM NOW ON. TASK IS
/TO RUN AT ITS DEFAULT
/PRIORITY LEVEL.,

V-2-46

SCHEDULE

2.18 SCHEDULE: SCHEDULING TASK EXECUTION

The SCHEDULE Directive instructs RSX to SCHEDULE the execution of a
Task at some future time of day and at a specified software priority,
with the option to reSCHEDULE it at periodic intervals. Actual time
of execution depends on Task priority and partition availability. The
user can SCHEDULE execution at the Task's default priority (assigned
during Task installation) or can specify a new priority when the
Directive is issued. An Event Variable can optionally be included.

The SCHEDULE time is expressed as absolute time of day. The
reSCHEDULE interval is expressed in ticks, seconds, minutes, or hours.
The interval begins at the time the Task is first SCHEDULEd to be
executed and may not exceed one day. Table 2-1 illustrates
permissible ranges for each interval unit, The SCHEDULE time must be
included in the command line, but the reSCHEDULE interval is optional.
If the reSCHEDULE interval is omitted or has a value of 0, the Task is
executed only once. If the user specifies a reSCHEDULE interval of 0,
he must also specify a reSCHEDULE unit, but it does not matter which
unit he chooses. Ticks are intervals equal to the period of the
real-time clock. The Clock Interrupt Service Routine performs Task
activation and reSCHEDULing.

Table 2-4
Reschedule Interval Ranges

CUnIT SYMBol)

Unit of Time Interval Symbol Légal Range, Decimal
Tick 1 0-262143
Second 2 0-86400
Minute 3 0-1440
Hour 4 0-24

Because a priority must be included in the FORTRAN call, priority O
indicates the default priority. This is functionally equivalent to
omitting the priority specification because Tasks run at API level 7,
whose priorities range only from 1 to 512, A priority should be
specified in the MACRO call, but 0 is used to indicate that the
default priority is intended.

V=-2-47

SCHEDULE Directives can be issued by MACRO and FORTRAN programs, but
not by interrupt service routines. A Task may SCHEDULE itself. The
MACRO call has the following form:

Form:

SCHEDULE name,hour,minute,second(,ri,rul,pl,evl]]]

Where:

name of Task SCHEDULEd is a string of one to
six .SIXBT characters

hour is an integer in range 0-23 decimal

minute is an integer in range 0-59 decimal

second is an integer in range 0-59 decimal

ri is an integer representing the number of
units which must elapse before the task is
reSCHEDULEd (range given in Table 2-1)

ru is 1, 2, 3, or 4, representing the relevant
unit of time (see Table 2-1)

P is an integer priority in range 0-512 decimal

ev identifies the Event Variable address

Examples:

SCHEDULE execution of SCAN at 4:30 p.m. at a new
priority of 200 and reSCHEDULE it every 5
minutes thereafter:

SCHEDULE SCAN,l16,30,0,5,3,200,EV

SCHEDULE execution at SCAN's default priority
with no Event Variable testing:
SCHEDULE SCAN,16,30,0,5,3

SCHEDULE execution of ALPHA only once at its
default priority at 7:15 a.m. with no Event
Variable testing:

SCHEDULE ALPHA,7,15,0

V-2-48

The FORTRAN call has the following form:

Form:

CALL SCHED (nHname,t,p[,ev])

Where:

n is the number of characters in name

name of Task SCHEDULEd is a string of
one to five ASCII characters

t is an array consisting of five integer
words; it represents the SCHEDULE time and
reSCHEDULE interval and units:

t (1) = SCHEDULE hour in range 0-23 decimal

t(2) = SCHEDULE minute in range 0-59 decimal
t(3) = SCHEDULE second in range 0-59 decimal
t(4) = reSCHEDULE interval (range given in

Table 2-1)
t(5) = reSCHEDULE units; may be 1, 2, 3, or 4
(see Table 2-1)
p is an integer priority in range 0-512 decimal
ev is the integer Event Variable

Examples:

SCHEDULE execution of SCAN at 4:30 p.m. at a
new priority of 200 and reSCHEDULE it every
5 minutes thereafter; priority set in FORTRAN
program:

DIMENSION IT(5)

IT(1)

= 16
IT(2) = 30
IT(3) =0
IT(4) = 5
IT(5) = 3
IP = 200
IEV = 0
CALL SCHED (4HSCAN,IT,IP,IEV)
or

CALL SCHED (4HSCAN,IT,200,IEV)

SCHEDULE execution at SCAN's default priority
with no Event Variable testing (same DIMENSION
and array assignments):

IP =20
CALL SCHED (4HSCAN,IT,IP)

SCHEDULE execution only once at SCAN's default
priority with no Event Variable testing (same
DIMENSION and array assignments):

IT(4) = 0
IP = 0
CALL SCHED (4HSCAN,IT,IP)

V-2-49

The SCHEDULE Directive can also be called from the

Routine.

The CPB for this Directive consists of the following:

Word

S W N = O

10
11

If the SCHEDULE Directive is rejected by RSX, the Event Variable

1

Contents
CAL function code (02)
Event Variable address
Task name (first half)
Task name (second half)
SCHEDULE hour (0-23)
SCHEDULE minute (0-59)

SCHEDULE second (0~59)

Monitor Console

ReSCHEDULE interval (see Table 24&)

ReSCHEDULE units (see Table 24&7

Priority (0-512)

(if

specified) is set to one of the following to indicate rejection and

its cause:

Event Variable

~-104

~201
-203
-204
-206

=212

-213

=777

Meaning

Illegal reschedule unit code

Task not in system
Directive not Task=-issued
Task is disabled

Illegal Task priority

Partition for Task's STL node
reconfiguration

Partition assigned to Task
reconfigured

Deque node (for Clock Queue)
not available (empty pool)

V-2-50

lost because of

currently

being

If the Directive is accepted, the Event Variable (if specified) is set
to +1 and a request to make the indicated Task active is placed in the
Clock Queue to come due at the appropriate time.

Following is an example of a SCHEDULE CPB:

CPB 02 /CAL PARAMETER BLOCK TO
EV /SCHEDULE TASK "T2" AT
.SIXBT "T2@@e@" /17:29:45 HOURS, AND
.DEC /EVERY FIVE MINUTES
17; 29; 45 /THEREAFTER., TASK IS
5; 3 /TO RUN AT PRIORITY
300 /LEVEL 300.

.OCT

v-2-51

SETJEA

2.19 SETJEA: INITIALIZING FLOATING-POINT EXIT REGISTER

The SETJEA Directive instructs RSX to initialize the Floating-Point
Hardware JMS Exit Address (JEA) register for the issuing Task. This
Directive is used by the FORTRAN 1library run-time subroutine that
handles floating=-point hardware errors. SETJEA Directives are
ordinarily not issued from user-written code. Therefore no FORTRAN
call or standard system MACRO has been implemented for SETJEA.

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (17)
1 Event Variable address
2 Subroutine entry address to

be stored in the JEA

If the SETJEA Directive cannot be honored, one of the following Event
Variables is returned to indicate rejection and its cause:

Event Variable Meaning
-1 No FP hardware on this machine
-30 JEA address for USER-mode Task

is outside the Task's partition

=203 CAL not Task=-issued

If the SETJEA Directive is accepted, the Event Variable is set to +1,
the JEA is initialized, and the address value is saved in the Task's
Partition Block Node so that the JEA can be restored when necessary.

Following is an example of a SETJEA CPB:

CpB 17 /SET JEA TO TRANSFER TO
EV /ERROR SUBROUTINE WHEN
ERRSUB /FP ERROR OCCURS.

/
/NOTE -~ ERROR SUBROUTINE HAS 4 ENTRY POINTS
/
ERRSUB 0
JMP OVR /GO TO OVERFLOW
0
JMP UND /GO TO UNDERFLOW
0
JMP DIV /GO TO DIVIDE
0
JMP TRAP /GO TO MEMORY VIOLATION (USER
/MODE (MEMORY PROTECTION) NOT
/DISABLED)

V-2-52

SHARE

2.20 SHARE: INVOKING CORE SHARING

The SHARE directive permits user mode tasks to invoke core memory
sharing and initially select or change pointers to the area of memory
associated with the task's External Shared Address Space (ESAS) or to
deactivate memory sharing entirely. The user can optionally include
an Event Variable in the Directive.

This Directive can be issued by MACRO and FORTRAN programs but not by
Interrupt Service routines. Since memory sharing pertains only to
user mode tasks, exec mode tasks can issue this Directive but it will
have no effect on their operation. The user should be aware that a
task can specify only one shared area of memory at a time, but it can
subsequently switch shared areas by re-issuing the SHARE Directive
with other parameters. Note that Cal Parameter Blocks, Event
Variables, Control Tables, and I/O in general cannot be specified
within or for a task's ESAS region. Should a task make such an
attempt, a bad CAL may result or, in the case of an I/0 operation, a
negative event variable will typically be returned.

The FORTRAN call has the following form:
Form CALL SHARE (ANAME,IOFF,LEN,IACC[IEV])

Where: ANAME is a real or double integer array consisting
of the name of a shareable partition or system
common block. The name may contain 1 to 5 ASCIIT
characters.

IOFF is an integer constant or variable with the
offset from the area base address where ESAS is
to start.

ILEN is an integer constant or variable specifying
a code indicating the length of ESAS. Either
#,1,2,3, or 4 are legal values to indicate
length of # (deactivates memory sharing) 256,
768, 38447, or 7936 words respectively.

IACC is an integer constant or variable specifying
the desired access to ESAS. 2ero indicates
the task desires read only privileges; one
indicates a desire for read, write privileges.

IEV is the Integer Event Variable

Example: CALIL SHARE (PART,f,2,f 1IEV)

The CPB for the SHARE Directive consists of the following:

Word Contents
'] CAL Function Code (35)
1 Fvent Variable Address
2 First half of area name in ,SIXBIT format
3 Second half of area name in .SIXBIT format
4 Offset from area base address where ESAS is to
start
5 Length of ESAS and access type desired flag

Word 5 contains two fields for data. Bit @ of this word is zero if
the task desires read only privileges; Bit # is set if a read, write
capability is desired. Bits 1-17 of word 5 can be set to @ (to
deactivate memory sharing), 489, 1499, 7499, or 17499 octal to
indicate the size of ESAS.

V~-2-53

If the SHARE directive 1s accepted, the Event Variable is set to +1
and memory sharing will be activated for the task.

If the SHARE directive cannot be honored, one of the following Event
Variables is returned to indicate rejection and its causes.

-32

-77

-194

-293
-213

Partition or System Common Block not in system or does
not permit memory sharing

Access type desired not consistant with access type
permitted.

Offset not a multiple of 4¢% octal or illegal 1length
specified, or base of shared area plus size of ESAS
Plus offset out of bounds.
Directive not task-issued.

Partition or System Common currently being
reconfigured.

following is an example of the SHARE CPB.

CPB 35 /CAL PARAMETER BLOCK TO

EV /SHARE 148@ OCTAL
.SIXBT "SYS" /WORDS OF "SYSCOM" IN
.SIXBT "COM" /READ/WRITE FASHION
1999 /OFFSET BY 1@ OCTAL
401499 /WORDS FROM ITS BASE

v-2-54

SPY
SPYREL

2.21 SPY AND SPYREL: EXAMINING CORE LOCATIONS

The SPY Directive allows both EXEC and USER Tasks to examine or SPY
core locations anywhere in memory. The user can optionally include an
Event Variable in the Directive. This Directive can be issued by
MACRO and FORTRAN programs, but not by interrupt service routines.

The FORTRAN call has the following form:

Form: CALL SPY(address, valuel,ev])

Where: address is the octal location to be examined
value is an integer variable which will contain

the contents of the specified address on return
ev is the integer Event Variable

Example: CALL SPY (RSTRT,IVAL,IEV)

This Directive cannot be called from the Monitor Console Routine,

The CPB for it consists of the following:

Woxrd Contents
0 CAL function code (31)

1l Event Variable address
2 Address to be examined
3

Returned contents of address to be examined

V-2-55

If the Directive is rejected, the Event Variable (if specified) is set
to one of the following to indicate rejection and its cause:

Event Variable Meaning
=104 Parameter error (e.g., invalid address)
-203 Directive not Task-issued

If the Directive is accepted, the Event Variable (if specified) is set
to +1, and the contents of the specified address returned.

Following is an example of a SPY CPB:

CPB 31 /CAL PARAMETER BLOCK TO
EV /EXAMINE LOCATION ABC AND
ABC /STORE CONTENTS IN VAL.
VAL

The SPYREL subroutine executes the SPY Directive, but allows a USER
Task to examine a core location in an area of memory relative to a
lower bound defined by the contents of SPY 1, location 321. The
address to be examined is computed by adding the address included in
the call to the contents of absolute location 321. Location 321 must
have been set by an EXEC-mode Task. The sum of the two numbers is the
address whose contents will be placed in the value variable specified
in the SPYREL call. The user can optionally include an Event Variable
in the Directive. 1If the SPY call executed by the subroutine returns
a negative Event Variable, the subroutine returns control to the
calling program. Thus it is best to specify the Event Variable.

SPYREL can be issued only by a FORTRAN program. The call has the
following form:

Form: CALL SPYREL(address,value[,ev])

Where: address is the octal number to be added
to the lower bound to compute the octal
address to be examined

value is an integer variable which will
contain the contents of the specified
address on return

ev is integer Event Variable

Example: CALL SPYREL(RSTRT,IVAL,IEV)

V-2-56

SPYSET

2.22 SPYSET: MODIFYING CORE LOCATIONS

The SPYSET Directive allows both EXEC and USER Tasks to modify core
locations within bounds specified in the Directive. These locations
may legally be outside the boundaries of the Task issuing the call.,
The lower bound is defined in absolute location 321 (known as SPY1)
and the upper bound in location 322 (SPY2). Both SPYl and SPY2 must be
initialized by an EXEC-mode Task before a SPYSET is issued. The user
can optionally include an Event Variable in the Directive. SPYSET
Directives can be issued by MACRO and FORTRAN programs, but not by
interrupt service routines.

A FORTRAN program can issue a SPYSET Directive in the following way:

Form: CALL SPYSET(address,value(,ev])
Where: address is the octal number to be added to
' the lower bound to compute the address to
be set

value is an integer to replace the contents
of the address
ev is the integer Event Variable

Example: CALL SPYSET (RSTRT,NEWVAL,IEV)

This Directive cannot be called from the Monitor Console Routine,

The CPB for it consists of the following:

Word Contents
0 CAL function code (32)
1 Event Variable address
2 Address relative to lower bound
3 Value to replace contents of address

vV-2-57

If the Directive is rejected, the Event Vari i ifi
X riable (if specified) is
to one of the following to indicate rejection and its gause:) set

Event Variable Meaning
-77 Violation of restricted usage of Directive
=104 Parameter error (e.g., invalid address)
-203 Directive not Task=-issued

An Event Variable of =77 will be returned if either SPYl or SPY2 has
not been properly initialized. The Directive will also be rejected
and an Event Variable of -~104 returned if the address to be set is
greater than the contents of SPY2. If the Directive is accepted, the
Event Variable (if specified) is set to +1 and the contents of the
specified address replaced.

Following is an example of a SPYSET CPB:

CPB 32 /CAL PARAMETER BLOCK TO
EV /CHANGE CONTENTS OF LOCATION
XXY /XXY TO 1001.
1001

V-2-58

SUSPEND

2.23 SUSPEND: SUSPENDING TASK EXECUTION

The SUSPEND Directive instructs RSX to SUSPEND execution of the
issuing Task. The Task remains active in its core partition, but
execution cannot proceed until the RSX Executive receives a RESUME
Directive for this Task. An Event Variable is not included in the
Directive.

Only the Task from which the SUSPEND Directive is issued can be
SUSPENDed. SUSPEND Directives can be issued by MACRO and FORTRAN
programs, but not by interrupt service routines.

A CPB exists for SUSPEND, but a standard MACRO call has not been
implemented. The SUSPEND Directive cannot be issued via the Monitor
Console Routine, since a Task can only be suspended by itself and is
protected against suspension by all other means, including the
operator.

The CPB for this Directive consists simply of the following:

Word Contents

0 CAL function code (06)
The CAL is issued as follows:
CAL (6) /SUSPEND TASK EXECUTION

A FORTRAN PAUSE statement can be used to SUSPEND execution of a
FORTRAN Task until RESUMEd.

V-2-59

SYNC

2.24 SYNC: SYNCHRONIZING TASK EXECUTION

The SYNC Directive instructs RSX to make a Task active at some future
time and at an indicated software priority, with the option to
reschedule this activation at periodic intervals. Actual time of
execution depends on Task priority and partition availability. The
user can request execution at the Task's default priority (assigned
during Task installation) or can specify a new priority when the
Directive is issued. An Event Variable can optionally be included.

This Directive performs the same function as SCHEDULE or RUN, except
that the SYNChronized time of execution is expressed as a stated
interval of time after the next tick, second, minute, or hour mark,
not as absolute time of day. A SYNChronization unit specifies after
which unit of time the Task is activated. For example, a Task named
TASK1l is scheduled by a program to be run 5 minutes after the
occurrence of the next hour mark. If it is now 10:58:35, TASK1l will
be SYNChronized at 11:05:00. The length of time that must elapse can
therefore vary depending on the time of day. The Clock Interrupt
Service Routine performs Task activation and rescheduling.

The SYNC Directive is useful in SYNChronizing the execution of a
number of Tasks, so that peak loading of the system can be avoided.

Both the initial activation time interval and the reschedule interval
are expressed in terms of ticks, seconds, minutes, or hours and may
not exceed one day. Permissible ranges are illustrated in Table 2-3
below. The initial activation time interval must be included in the
command line, but the reschedule interval is optional. If si, the
initial activation interval, is 0, execution of the Task is initiated
on the next occurrence of the schedule unit. If the reschedule
interval is omitted or has a value of 0, the Task is executed only
once, If the user specifies a reschedule interval of 0, he must also
specify a reschedule unit, but it does not matter which unit he
chooses.,

Table 2-5
Reschedule Interval Ranges
Unit of Time Interval Symbol Legal Range, Decimal
Tick 1 0-262143
Second 2 0-86400
Minute 3 0-1440
Hour 4 0-24

Because a priority must be included in the FORTRAN call, priority O
indicates the default priority. This is functionally equivalent to
omitting the priority specification because Tasks run at API level 7,
whose priorities range only from 1 to 512. A priority should be
specified in the MACRO call, but 0 is wused to indicate that the
default priority is intended.

V-2-60

SYNC Directives can be issued by MACRO and FORTRAN programs, but
by interrupt service routines., A Task may SYNChronize itself. The
MACRO call has the following form:

not

Form:

SYNC name,sz,si,sul,ri,ru{,pl,evi]]

Where:

name of Task initiated is a string of
one to six .SIXBT characters
sz is 1, 2, 3, or 4 and represents the
relevant SYNChronization unit (see
Table 2-3)
si is an integer representing the number of
units which must elapse before the Task is
initially activated (range given in Table 2-3)
su is 1, 2, 3, or 4 and represents the
relevant unit of time (see Table 2-3)
ri is an integer representing the number of
units which must elapse before the Task is
rescheduled (range given in Table 2-3)
ru is 1, 2, 3, or 4 and represents the
relevant unit of time (see Table 2-3)
P is an integer priority in range 0-512 decimal
ev is the Event Variable address

Examples:

SYNChronize execution of FRED at a new priority
of 20, 9 seconds after the next minute mark
(i.e., it is now 14:27:47: run Task at
14:28:09) and reschedule it every 4 minutes
thereafter:

SYNC FRED,3,9,2,4,3,20,SYNEV

SYNChronize execution of SCAN at a new priority
of 21,10 seconds after the next minute next
and reschedule it every hour thereafter:

SYNC SCAN,3,10,2,1,4,21,SYNEV

SYNChronize execution of FRED only once
at a new priority of 21, 10 seconds after the
next minute mark:
SYNC FRED,3,10,2,21,SYNEV
or
SYNC FRED,3,10,2,0,4,21,SYNEV

V-2-61

The FORTRAN call has the following form:

Form: CALL SYNC(nHname,t,pl,ev])
Where: n is the number of characters in name
name of Task initiated is a string of one to
five ASCII characters
t is an array consisting of five integer
words; it represents the SYNChronization unit
and the initial activation and reschedule
intervals and units:
t(1) = SYNChronization unit; may be 1, 2, 3,
or 4
t(2) = initial activation interval
t(3) = initial activation units; may be 1, 2, 3,
or 4
t(4) = reschedule interval
t(5) = reschedule units; may be 1, 2, 3, or 4
p is an integer priority in range 0-512 decimal
ev is the integer Event Variable
Example: SYNChronize execution of FRED at a new priority

of 20, 9 seconds after the next minute mark,
and reschedule it every 4 minutes thereafter.
In the same program, SYNChronize execution of
SCAN at 21, 10 seconds after the next minute
mark, and reschedule it every hour thereafter:
INTEGER FREDEV,SCANEV,SCANP,FREDP
DIMENSION IT(5)

IT(1) = 3
IT(2) = 9
IT(3) = 2
IT(4) = 4
IT(5) = 3
FREDEV = 0
FREDP = 20
CALL SYNC(4HFRED,IT,FREDP,FREDEV)
SCANEV = 0
SCANP = 21
IT(2) = 10
IT(4) =1
IT(5) = 4

CALL SYNC (4HSCAN,IT,SCANP,SCANEV)

INSURE BOTH SYNC REQUESTS WERE ACCEPTED

IF (SCANEV.OR.FREDEV,LT.0) GO TO 10

BOTH SYNC REQUESTS WERE ACCEPTED AT THIS POINT

REPORT FAILURE OF SYNCS TO BE ACCEPTED TO
CONSOLE OPERATOR.

WRITE(3,11)

FORMAT (32H TASKS FRED OR SCAN NOT SYNC'ED.//)
STOP

END

HHOOQ Q O

= O

V-2-62

The SYNC Directive can also be called from the Monitor Console
Routine.

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (14)
1 Event Variable address
2 Task name (first half)
3 Task name (second half)
4 SYNC unit (see Table 2-3)
5 Initial activation interval (see Table 2-3)
6 Initial activation unit (see Table 2-3)
7 Reschedule interval (see Table 2-3)
10 Reschedule unit (see Table 2-=3)
11 Priority (0-512)

If the Directive is rejected by RSX, the Event Variable (if specified)
is set to one of the following to indicate rejection and its cause:

Event Variable Meaning

=104 Illegal SYNC, activation of reschedule units code

-201 Task not in system

-203 Directive not Task=-issued

-204 Task is disabled

=206 Illegal Task priority

-212 Partition for Task's STL node lost because of
reconfiguration

~213 Partition assigned to Task currently being
reconfigured

-777 Deque node (for Clock Queue) not

available (empty pool)

V-2-63

If the Directive is accepted, the Event Variable (if specified) is set
a request to make the indicated Task active is placed in

to +1, and

the Clock Queue to come due at the appropriate time.

Following are examples of a SYNC CPB:

CPB

CPB

14

EV

.SIXBT "T5@QQe"
.DEC

4

150; 2
30; 3
512

. OCT

14

0

.SIXBT "T6@@EE"
.DEC

3

0; 3

0; 3

0

.OCT

/CAL PARAMETER BLOCK TO
/SYNC TASK "T5" 2.5 MINUTES
/AFTER THE NEXT HOUR, AND
/EVERY 30 MINUTES THEREAFTER.
/TASK IS TO RUN AT PRIORITY
/LEVEL 512,

/CAL PARAMETER BLOCK TO

/SYNC TASK "T6" ON THE NEXT
/MINUTE. IT IS TO EXECUTE ONLY
/ONCE AT ITS DEFAULT PRIORITY.
/NO EVENT VARIABLE IS SPECIFIED,

V-2-64

TSKNAM

2.25 TSKNAM: RETURNING THE NAME OF THE ISSUING TASK

The TSKNAM Directive instructs RSX to return the name of the issuing
Task. One of the most common applications of this Directive is its
use by the FORTRAN PAUSE Object-Time System routine (OTS) to print a
Task name in the PAUSE message. TSKNAM Directives are ordinarily not
issued by user-written code. Therefore no FORTRAN call or standard
system MACRO has been implemented for TSKNAM,

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (25)
1 Event Variable address
2 Task name buffer (first half)
3 Task name buffer (second half)

If a TSKNAM Directive cannot be honored, the following Event Variable
is returned to indicate rejection and its cause:

Event Variable Meaning

=203 CAL not Task-issued

If the TSKNAM Directive is accepted, the Task name will be stored in
words 2 and 3 of the CPB and the Event Variable will be set as
follows:

Bit of Event Variable Meaning
0 Cleared upon acceptance of Directive
1l Set if task requires Floating Point hardware
2 Set if task runs in Bank mode
3 Set if task runs in User mode
4 Unused and set to zero
5-6 Correspond to XVM mode bits of task's STL

node (always zeroed for Exec mode tasks)

7 Set if task has IOT permission (always zeroed
for Exec mode tasks)

8-17 Task priority

V-2-65

Following is an example of the TSKNAM CPB:

CPB 25 /REPLACE "XX" WITH
EV /THE NAME OF THIS
XX /TASK, I.E., WHO
XX /AM I?

V-2-66

UNFIX

2.26 UNFIX: FREEING A CORE PARTITION

The UNFIX Directive instructs RSX to nullify a FIX Directive, i.e., to
free the core partition for use by other Tasks. If a fixed Task is
active when an UNFIX is issued, the partition is made available as
soon as the active Task exits. The user can optionally include an
Event Variable in the Directive.

This Directive can be issued by MACRO and FORTRAN programs and also by
interrupt service routines.

Following is the MACRO call:

Form: UNFIX namel[,ev]

Where: name of Task UNFIXed is a string of
one to six .SIXBT characters
ev is the Event Variable address

Example: UNFIX SCAN,EV

and the FORTRAN call:

Form: CALL UNFIX(nHnamel[,ev])

Where: n is the number of characters in name

name of Task UNFIXed is a string of
one to five ASCII characters

ev is the integer Event Variable

Example: CALL UNFIX(4HSCAN,IEV)

The UNFIX Directive can also be called from the Monitor Console
Routine.

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (16)
1 Event Variable address
2 Task name (first half)
3 Task name (second half)

vV-2-67

If the UNFIX Directive is rejected by RSX, the Event Variable (if
specified) is set to one of the following to indicate rejection and

its cause:

Event Variable Meaning
-201 Task not in system
-207 Task not fixed

If the UNFIX Directive is accepted, the Event Variable (if
is set to +1 and the Task is UNFIXed.

Following is an example of an UNFIX CPB:
CPB 16 /CAL PARAMETER BLOCK

EV /TO UNFIX TASK "T10".
.SIXBT "Tl0@@@"

V-2-68

specified)

UNMARK

2.27 UNMARK: CANCELLING MARK=-TIME REQUESTS

The UNMARK Directive instructs RSX to cancel all outstanding mark-time
requests for the Task specified in the call. It exists specifically
for the use of the I/0 Rundown Task and is also employed by the
Magtape I/O Handler Task. UNMARK Directives are ordinarily not issued
by user-written code. Therefore no FORTRAN call or standard system
MACRO has been implemented for UNMARK.,

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (23)
1 Event Variable address
2 Task name (first half)
3 Task name (second half)

If the Directive is rejected by RSX, the Event Variable is set to the
following to indicate rejection and its cause:

Event Variable Meaning

-201 Task not in system

If the Directive is accepted, the Event Variable is set to +1l. All
mark-time nodes in the Clock Queue for the specified Task are
nullified, but not removed from this list. Note that nodes are not
actually removed from the gqueue and returned to the "Pool of Empty
Nodes" until the period of time specified in the appropriate MARK
Directive has elapsed. It is therefore possible to exhaust the pool
by issuing too many MARK Directives in a short period of time, even if
MARKs are followed by UNMARKs.

Following is an example of an UNMARK CPB:
CPB 23 /CAL PARAMETER BLOCK

EV /TO UNMARK TASK "T13",
.SIXBT "Tl13@@e"

V-2-69

WAIT

2.28 WAIT: WAITING FOR THE NEXT SIGNIFICANT EVENT

The WAIT Directive instructs RSX to suspend execution of the issuing
Task until the next Significant Event. Until such time, the Task
remains in its core partition and on the Active Task List, but is
dormant. Lower-priority Tasks are allowed to run. When the next
Significant Event occurs, the issuing Task (contingent upon priority)
resumes at the location immediately following the WAIT CAL
instruction. No Event Variable may be included in the Directive.

WAIT Directives can be issued by MACRO and FORTRAN programs, but not
by interrupt service routines. It is the responsibility of the Task
that issues the Directive to determine the meaning of the Significant
Event that causes its resumption. A CPB exists for WAIT, but a
standard MACRO call has not been implemented. The CAL is issued as
follows:

CAL (5) /WAIT FOR NEXT SIGNIFICANT EVENT,

A FORTRAN PAUSE statement can be used to suspend execution of a
FORTRAN Task wuntil a test indicates that the next Significant Event
has occurred.

This Directive cannot be called from the Monitor Console Routine. The
CPB for it consists simply of the following:

Word Contents

0 CAL function code (05)

v-2-70

WAITFOR

2.29 WAITFOR: WAITING FOR AN EVENT VARIABLE TO BE SET

The WAITFOR Directive instructs RSX to examine a specified Event
Variable; if the Event Variable is zero, WAITFOR suspends execution
of the Task that issues the Directive until the Event Variable is set
to a nonzero value, RSX examines the Event Variable every time a
Significant Event occurs and a high priority Task is unable to
execute. As soon as a nonzero value is detected, the suspended Task
is resumed at the priority at which it was previously running. The
Tagsk is resumed at the instruction immediately following the location
of the WAITFOR Directive.

This Directive can be issued by MACRO and FORTRAN programs, but not by
interrupt service routines, WAITFOR Directives affect only the Tasks
from which they are issued. Following is the MACRO call:

Form: WAITFOR ev
Where: ev is the Event Variable address
Example: In this example, the MARK Directive

sets Event Variable MRKEV to zero for 5
minutes and then resets it to a nonzero value.
WAITFOR detects that the Event Variable is
zero and suspends Task execution until it is
reset to a nonzero value (i.e., in 5 minutes).
Then the Task is resumed at the instruction
immediately following the WAITFOR:

MARK 5,3,MRKEV

WAITFOR MRKEV

V-2-71

and the FORTRAN call:

Form: CALL WAITFR(ev)
Where: ev is the integer Event Variable
Example: See introduction to MACRO example above:

DIMENSION IT(2)

IT(l) =5
IT(2) = 3
C IEV WILL AUTOMATICALLY BE CLEARED BY MARK
CALL MARK (IT,IEV)
CALL WAITFR(IEV)

The WAITFOR Directive cannot be issued from the Monitor Console
Routine.,

The CPB for this Directive consists of the following:

Word Contents
0 CAL function code (20)
1 Event Variable address

The subroutine which follows illustrates the interaction of MARK and
WAITFOR CPBs:

DELAY 0 /SUBROUTINE TO SUSPEND EXECUTION
DAC MARK+2 /FOR THE NUMBER OF SECONDS
CAL MARK /INDICATED BY THE CONTENTS OF AC.
CAL WAITF
JMP* DELAY
/
MARK 13 /CAL PARAMETER BLOCK TO CLEAR "“EV"
EV /THEN SET IT AND DECLARE A
XX /SIGNIFICANT EVENT XX SECONDS FROM NOW.
2
/
WAITF 20 /CAL PARAMETER BLOCK TO SUSPEND
EV /EXECUTION UNTIL "EV" IS SET (WAITFOR).
/
EV 0 /EVENT VARIABLE.

vV-2-72

XFRCMD

2.30 XFRCMD: TRANSFERRING TDV COMMAND LINE

The XFRCMD directive transfers the IOPS ASCII command line supplied by
the user and read by the MULTIACESS Monitor to a specified line buffer
in the partition of the issuing task. XFRCMD is wused by all TDV
function tasks. No FORTRAN call or standard system MACRO has been
implemented for XFRCMD.

The CPB for XFRCMD consists of the following:

Word Contents
0 CAL function code (37)
1 Event variable address
2 TDV task buffer address

3 TDV task buffer size (octal)

If the XFRCMD directive cannot be executed, one of the following event
variables is returned to indicate rejection and the cause:

Event Variable Meaning
-16 TDV task buffer too small
-77 Violation of restricted use of XFRCMD; the

issuing task is not a TDV function

-203 CAL not task-issued

If the XFRCMD directive is accepted, the command line is transferred
and the event variable is set to +1.

Following is an example of a XFRCMD CPB:
CPB 37 /TRANSFER THE COMMAND LINE
EV /TO "BUF". THE BUFFER

BUF /SIZE IS 34 (OCTAL) WORDS.
34

XVM/RSX V1B V-2-73 September 1976

CHAPTER 3

SYSTEM MACROS

System Macros are similar to System Directives but are characterized
by the following:

System Macros are not implemented as CAL instructions; they
are direct MACRO subroutine calls and, as such, may be executed
only by Tasks built in EXEC mode.

System Macros do not return Event Variable information.

INTENTRY and INTEXIT are not absolutely required. They are provided
as a coding convenience and are recommended only when it is necessary

to save and restore many active system registers.

INTENTRY

3.1 INTENTRY: ENTERING REGISTER SAVE ROUTINE

The INTENTRY System Macro instructs RSX to enter the Executive's
Register Save Routine. This routine obtains the current contents of
all active system registers (e.g., AC, index and 1limit registers,
autoincrement registers) and deposits the contents in a save area.
This area is created by the MACRO Assembler during expansion of the
INTENTRY System Macro.

INTENTRY System Macros may be issued only from MACRO interrupt service
routines. The call itself must be the first instruction in this
routine. Following is the MACRO call:

Form: INTENTRY entry

Where: entry is the octal entry address (connect
location) of the interrupt service

routine. The user must not supply

the address tag entry because it

is part of the code generated by this macro
definition.

Example: INTENTRY CL

Registers saved by INTENTRY are restored by execution of INTEXIT.

V-3-2

INTEXIT

3.2 INTEXIT: ENTERING REGISTER RESTORE ROUTINE

The INTEXIT System Macro instructs RSX to enter the Executive's
Register Restore Routine. This routine restores all active registers
saved by INTENTRY, debreaks, and returns to the interrupted Task.
INTEXIT System Macros can be issued only from MACRO interrupt service
routines. Following is the MACRO call:

Form: INTEXIT entry

Where: entry is the octal entry address (connect
location) of the interrupt service routine

Example: Interrupt service routine ADINT (for A/D
Converter) uses INTENTRY and INTEXIT:

INTENTRY ADINT /MUST BE PLACED AT THE ENTRANCE
. / TO THE INTERRUPT ROUTINE.
. /SECTION TO SERVICE INTERRUPT.,
INTEXIT ADINT /RESTORE REGISTERS, DEBREAK,
/ AND RETURN TO INTERRUPTED
/ TASK.

v-3-3

CHAPTER 4

EVENT VARIABLES

Event Variables are software flags set by RSX for system or other
Tasks, and are used to indicate the success or failure of the Task's
operations. Most System Directives provide for an Event Variable in
the MACRO or FORTRAN call. With few exceptions, inclusion of this
variable is optional. If the user does specify an Event Variable, a
code indicating the status of the Directive is normally returned to
the issuing Task after the request has been processed. This specified
code is in the following ranges:

Code Meaning
+n Directive accepted; n is almost always 1
0 Directive pending
-n Directive rejected: n is a number indicating why

rejection occurred

The second CPB word for all Directives except EXIT, WAIT, and SUSPEND
contains the address of the Event Variable to be set. If the contents
of this word remain zero, this indicates that the wuser Task has
specified no. Event Variable to be set by the Directive within it or
that, for some reason, the Directive request is still pending.

If the user Task does specify an Event Variable, it is initially set
to zero to indicate that the Directive has not yet been processed.
Once the Directive has been accepted or rejected, the Event Variable
is set with a nonzero value to indicate either acceptance or rejection
for a particular reason. In the sections above, Event Variables have
been described for System Directives to which they apply. Some Event
Variables are specific to a particular Directive; others are common
to two or more Directives, Table 4-2 provides a summary of all
negative Event Variables which may be returned to RSX System
Directives, as well as possible reasons for failure, and Directives to
which particular Event Variables are returned. Directives are
abbreviated as follows:

V-4-1

Table 4-~1

System Directive Abbreviations

Abbreviation Directive Function
I0 QUEUE I1/0 Queue requests for I/0 unit
RQ REQUEST Request task execution
sC SCHEDULE Schedule task execution
RN RUN Activate task execution
SY SYNC Synchronize task execution
CN CANCEL Cancel requests for a task
RS RESUME Resume task execution
MT MARK Set event variable in future
UM UNMARK Cancel mark-time requests
FX FIX Fix a task in core
UF UNFIX Free a core partition
DA DISABLE Disable a task
EA ENABLE Reenable a task
CI CONNECT Connect to interrupt line
DI DISCONNECT Disconnect from interrupt line
DT DATE Retrieve time and date
sJ SETJEA Initialize floating-point exit register
TN TSKNAM Return name of issuing task
PI PARINF Return partition address and size
RB RAISEB Raise memory-protect bound
TC XFRCMD Transfer TDV command line
SP SPY Examine core locations
SS SPYSET Modify core locations
QU QJOB Queue a batch job
SH SHARE Invoke memory sharing
EX EXECUTE Request task execution from user disk
RM REQUEST Request a task with mapped LUNs
MAPPED

XVM/RSX V1B

V-4-2 September 1976

Table 4-2

Returned Event Variables

Event
Variable Directive Reason
-1 sJ No floating-point hardware on this machine
-2 I0 I/0 request aborted
-16 TC Output word-pair count or input
buffer-size error
-26 CI,DI Illegal function for a user-mode task
-30 SJ,RS Address for user-mode task is outside the
task partition
-32 SH Nonexistant system COMMON block or
partition, or core sharing not permitted
~-77 TC,SS,SH,RM Violation of restricted usage of directive
~101 I0,RM LUN out of range
=102 10 LUN not assigned to a physical device
-103 I0 Nonresident or noninitialized I/O device
handler task
-104 sp,SS,SH, Parameter error (in CPB or control table)
SY,SC,RN
=201 RQ,SC,RN, Task not in system
SY,CN,UM,
FX,UF,DA,
EA,EX,RM
-202 RQ,FX,EX Task is active
RS,RM Task is inactive
-203 SC,RN, SY, Directive not task-issued
MT,SJ,PI,
TC,TN,RB,
SP,SS,SH,QU
-204 RQ,SC,RN, Task is disabled
SY,FX,EX,RM
-205 RS Task not suspended
~206 RQ,SC,RN, Illegal task priority
SY,EX,RM
-207 FX Task already fixed
UF Task not fixed

XVM/RSX V1B

(Continued on next page)

V-4-3 September 1976

Table 4-2 (Cont.)
Returned Event Variables

Event
Variable Directive Reason

=210 FX Partitibn occupied

=211 PI Partition not in system

~-212 RQ,SC,RN, SY, Partition for task STL node lost because
] FX,EA,EX,RM of reconfiguration

~213 RQ,SC,RN,SY, Partition or system COMMON block currently
1 i FX,EA,EX,SH,RM| being reconfiqured

-301 CI1,DI Line number rejected

-302 CI Line is connected

DI Line is not connected

~-401 EX Illegal LUN

=402 EX HINF error

-403 EX Illegal device

-404 EX Disk dismounted

-405 EX GET error

-406 EX File not created

~-407 EX File not found

-410 EX ALLOCATE error

-411 EX PUT error

-412 EX Nonunigue alias name

=777 Most modules Deque node unavailable (empty pool)

XVM/RSX V1B V-4-4 September 1976

APPENDIX A

THE MACRO DEFINITIONS FILE

All system MACROs implemented in the RSX system are defined in one of
the files supplied as part of RSX and known as the MACRO Definitions
File. This appendix contains definitions for all currently
implemented standard system MACROs except those used exclusively for
I/0.

The following listing summarizes abbreviations used in the MACRO
Definitions File and appears at the beginning of that file,

/ EDIT #13

/

/ COPYRIGHT 1971,1972,1973 DIGITAIL EQUIPMENT CORP., MAYNARD, MASS.

/

/ RSX=-15 MACRO DEFINITIONS 14 JUN 73 H. KREJCI

/ M. HEBENSTREIT

/

/ ABREVIATIONS =-- UNLESS OTHERWISE SPECIFIED, ALL PARAMETERS

/ EXCEPT ADDRESSES ARE GIVEN IN DECIMAL,

/

/ BUFF CORE BUFFER ADDRESS

/ CL INTERRUPT CONNECT LOCATION

/ CTB CONTROL TABLE ADDRESS

/ EV EVENT VARIABLE ADDRESS

/ FLNAM FILE NAME (1-6 CHARACTERS)

/ LN INTERRUPT LINE NUMBER (OCTAL)

/ LUN LOGICAL UNIT NUMBER

/ MI MARK TIME INTERVAL (A TICK THRU A DAY)

/ MODE DATA MODE INDICATOR

/ MU MARK TIME UNITS

/ RA RESUMPTION ADDRESS

/ RI RESCHEDULE INTERVAL (0-1 DAY, WHERE 0 IMPLIES
NO RESCHEDULING)

/ RP RUN PRIORITY (0-512, WHERE 0 IMPLIES DEFAULT
PRIORITY)

/ RU RESCHEDULE UNITS (H,M,S,T)

/ SD SCHEDULE DELTA (A TICK THRU A DAY)

/ SH SCHEDULE HOURS (0-23)

/ SIZE CORE BUFFER SIZE (OCTAL)

/ SM SCHEDULE MINUTES (0-59)

/ SS SCHEDULE SECONDS (0-59)

/ SU SCHEDULE DELTA UNITS (H,M,S,T)

/ Sz SYNCHRONIZATION UNIT (H,M,S,T)

/ TASNAM TASK NAME (1-6 CHARACTERS)

/ EXT FILE NAME EXTENSION (1-3 CHARACTERS)

/ UNIT UNIT NUMBER OF DISK

V-A-1

DISK
/
H=4
M=3
§=2
T=1

TYPE DISK TYPE: 2 == RF, 3 == RP, 24 == RK, 0 == SYSTEM

/HOURS INDICATOR
/MINUTES INDICATOR
/SECONDS INDICATOR
/TICKS INDICATOR

/
«INH=705522 /INTERRUPT INHIBIT IOT
.ENG=705521 /INTERRUPT ENABLE IOT

/
SAVE=131 /SAVE ENTRY POINT (IN SCOM)
REST=134 /RESTORE ENTRY POINT (IN SCOM)

A.l REQUEST: REQUESTING TASK EXECUTION

.DEFIN REQUEST,TN,RP,EV
CAL .+2

JMP .+6

01

EV+0

ee=e; «SIXBT "TN"

0; .LOC ..+2

.DEC

RP+0

.ENDM

A.2 SCHEDULE: SCHEDULING TASK EXECUTION

A.3 RUN:

.DEFIN SCHEDULE,TN,SH,SM,SS,RI,RU,RP,EV
CAL ,+2

JMP .+13

02

EV+0

es=e¢; «SIXBT "TN"
0; .LOC ,.+2

«DEC

SH; SM; SS

RI+0

RU+0

RP+0

«ENDM

ACTIVATING TASK EXECUTION

+DEFIN RUN,TN,SD,SU,RI,RU,RP,EV
CAL .+2

JMP ,+12

03

EV+0

ee=ej «SIXBT "TN"

0; .LOC ..+2

V-A-2

«DEC
SDh; SuU
RI+0
RU+0
RP+0

« ENDM

A.4 SYNC: SYNCHRONIZING TASK EXECUTION

.DEFIN SYNC,TN,SZ,SD,SU,RI,RU,RP,EV
CAL .+2

JMP ,+13

14

EV+0

ee=e} «SIXBT "TN"
0; .LOC ..+2

«DEC

SZ; SD; SU

RI+0

RU+0

RP+0

« ENDM

A.5 CANCEL: CANCELLING REQUESTS FOR A TASK

«DEFIN CANCEL,TN,EV
CAL .+2

JMP ,+5

04

EV+0

ee=a; +SIXBT "TN"
0; .LOC ..+2

« ENDM

A.6 SUSPEND: SUSPENDING TASK EXECUTION

.DEFIN SUSPEND
CAL (6)
«ENDM

A.7 RESUME: RESUMING TASK EXECUTION

.DEFIN RESUME,TN,RA,EV
CAL .+2

JMP .+6

07

EV+0

ee=e; +SIXBT "TN"

0; +LOC ,.+2

RA+0
« ENDM

V-A-3

A.8 MARK: SETTING AN EVENT VARIABLE IN THE FUTURE

«DEFIN MARK,MI,MU,EV
CAL .+2

JMP .+5

13

EV

.DEC; MI; MU

+« ENDM

A.9 WAITFOR: WAITING FOR AN EVENT VARIABLE TO BE SET

.DEFIN WAITFOR,EV
CAL .+2

JMP .+3

20

EV

«ENDM

A.1l0 WAIT: WAITING FOR THE NEXT SIGNIFICANT EVENT
+DEFIN WAIT

CAL (5)
« ENDM

A.ll EXIT: TERMINATING EXECUTION OF A TASK
«DEFIN EXIT

CAL (10)
«ENDM

A.12 CONNECT: CONNECTING TO AN INTERRUPT LINE
«DEFIN CONNECT,LN,CL,EV

CAL .+2
JMP L+5

V-A-4

A.l13 DISCONNECT: DISCONNECTING FROM AN INTERRUPT LINE

.DEFIN DISCONNECT,LN,CL,EV
CAL .+2
JMP .+5

A.l14 DISABLE: DISABLING A TASK

.DEFIN DISABLE,TN,EV
CAL .+2

JMP +5

21

EV+0

ee=e3 oSIXBT "TN"

0; LOC ,.+2

«ENDM

A.15 ENABLE: REENABLING A TASK

.DEFIN ENABLE,TN,EV
CAL ,+2

JMP ,+5

22

EV+0

a1 «SIXBT wTNY
0; .LOC ..+2

+ENDM

A.16 FIX: FIXING A TASK IN CORE

+.DEFIN FIX,TN,EV
CAL .+2

JMP ,+5

15

EV+0

ee=es} «SIXBT "TN"
0; .LOC ,.+2

« ENDM

A.17 UNFIX: FREEING A CORE PARTITION

.DEFIN UNFIX,TN,EV
CAL .+2

JMP .+5

16

\'].,..A_ 5

EV+0

«e=es; «SIXBT "TN"
0; .LOC ..+2

« ENDM

A.18 DATE: RETRIEVING TIME AND DATE

.DEFIN DATE,MON,DAY,YEAR,HRS,MIN,SEC
CAL .+2

JMP .+11

24

MO
DA
YR
HH

SS

A.19 INTENTRY: ENTERING REGISTER SAVE ROUTINE

«DEFIN INTENTRY,CL
CL O

DBA

JMS* (SAVE)

-REPT 24

0

« ENDM

A.20 INTEXIT: ENTERING REGISTER RESTORE ROUTINE

«DEFIN INTEXIT,CL
LAC (CL)

JMP* (REST)

« ENDM

vV-A-6

APPENDIX B

REGISTERS SAVED DURING SAVE AND RESTORE OPERATIONS

Whenever the Executive switches control from one task to another, the
registers listed below are saved for the outgoing task and restored
for the incoming task if both tasks are in exec mode. The reentrant
registers (Rl to R6) and the autoincrement registers (X10 to X17) are
not saved or restored for user-mode tasks. Interrupt service routines
can use the INTENTRY and INTEXIT system macros to do the same thing,
except that the MM register, XM clock values and the floating=-point
hardware registers are not saved or restored.

The registers saved and restored are:

AC buffer

XR buffer

LR buffer

MQ buffer

SC buffer

R1 buffer

R2 buffer

R3 buffer

R4 buffer

RS buffer

R6 buffer

X10 buffer

X1l buffer

X12 buffer

X13 buffer

X14 buffer

X15 buffer

X16 buffer

X17 buffer

L20 buffer

EPA buffer

FMAl buffer

FMA2 buffer

FMQl buffer

FMQ2 buffer

JEA buffer

MM register buffer
XM clock overflows
XM clock ticks (above overflows)

XVM/RSX V1B V-B-1 September 1976

APPENDIX C

+SIXBT CHARACTER SET

.SIXBT notation is employed to identify Task names in most System
Directives described in this manual. +SIXBT denotes 6-bit ASCII
characters, formed by truncating the leftmost bit of the corresponding
7=bit character. The following table supplies legal characters and
codes for ,.SIXBT notation.

Printing 7-bit «SIXBT Printing 7=-bit +SIXBT
Character ASCII Character ASCII
@ 100 00 Form Feed 014
A 10l 0l Carriage Return 015
B 102 02 Rubout 177
Cc 103 03 (Space) 040 40
D 104 04 ! 041 41
E 105 05 " 042 42
F 106 06 # 043 43
G 107 07 $ 044 44
H 110 10 % 045 45
1 111 11 & 046 46
J 112 12 ' 047 47
K 113 13 (050 50
L 114 14) 051 51
M 115 15 * 052 52
N 116 16 + 053 53
0 117 17 ’ 054 54
P 120 20 - 055 55
Q 121 21 . 056 56
R 122 22 / 057 57
s 123 23 0 060 60
T 124 24 1l 061 61
U 125 25 2 063 62
v 126 26 3 063 63
W 127 27 4 064 64
X 130 30 5 065 65
Y 131 31 6 066 66
Z 132 32 7 067 67
[133 33 8 070 70
\ 134 34 9 071 71
] 135 35 : 072 72
4 136 36 : 073 73
< 137 37 < 074 74
Null 000 = 075 75
Horizontal Tab 011 > 076 76
Line Feed 012 ? 077 77
Vertical Tab 013

vV-C-1

Alias-execute option, 2-18

API lines, 2-5

Automatic priority interrupt
(API), 2-4

AUTORM, 2-17

Batch job,
queuing, 2-29

CAL,
dispatch routine, 1-2
function code, 1-2
instructions, 1-1
service routines, 1-2
CAL parameter block (CPB), 1-1
CANCEL, 2-2
Cancelling mark-time requests,
2-69
Cancelling task requests, 2-2
Character set, .SIXBT, C-1
CONNECT, 2-4
Connecting to interrupt line,
2-4
Conventions, directive, 1-3
Core locations,
examining, 2-55
modifying, 2-57
Core partition, freeing, 2-67
Core sharing, 2-53
CPB word, 4-1

DATE, 2-8

Deferred-execute option, 2-18.1

Directive errors, 1-2
DISABLE, 2-10
Disabling a task, 2-10
DISCONNECT, 2-12

Disconnecting from an interrupt

line, 2-12

ENABLE, 2-14
Entering register restore
routine, 3-3

Entering register save routine,

3-2
Errors, directive, 1-2
Event variable, 1-2
setting, 2-24
waiting for, 2-71

XVM/RSX V1B

V-Index-1

INDEX

Event variables, 4-1
returned, 4-3
Examining core locations, 2-55
EXECUTE, 2-16
EXIT, 2-19
Exit Processor, MULTIACCESS, 1-3

FIX, 2-22

Fixing a task, 2-22

Floating-point exit register,
2-52

Freeing core partition, 2-67

Function of system directives,
1-1

Initializing floating-point exit
register, 2-52
INTENTRY, 3-1, 3-2
Interval ranges, 2-24, 2-42, 2-60
INTEXIT, 3-1, 3-3
Interrupt line,
connecting to, 2-4
disconnecting, 2-12
Introduction, 1-1
Invoking core sharing, 2-53

LUN mapping, 2-34

Macro definitions file, A-1
Mapped LUNs, 2-35.1
MARK, 2-24
Memory-protect bound,

raising, 2-36
Modifying core locations, 2-57
MULTIACCESS Exit Processor, 1-3

0TS, 2-65

PARINF, 2-27
Partition,
address, 2-27
size, 2-27
Processing a directive, 1-2
Program interrupt (PI), 2-4

September 1976

INDEX (CONT.)

QJOB, 2-29

QUEUE 1/0, 2-34

Queuing batch job, 2-29

Queuing I/O device requests,
2-34

RAISEB, 2-36

Raising memory-protect bound,
2-36

Reenabling task, 2-14

Register restore routine, 3-3

Register save routine,

entering, 3-2

Registers, B-1

REQUEST, 2-37

REQUEST MAPPED, 2-35.1

Requesting a task with mapped
LUNs, 2-35.1

Requesting task execution from
user disk, 2-16

Reschedule interval ranges,
2-24, 2-42, 2-60

Restore operations, B-1

RESUME, 2-40

Retrieving time and date, 2-8

Returned event variables, 4-3

Returning name of issuing task,
2-65

Returning partition address and
size, 2-27

RUN, 2-42

Save operations,
registers, B-1

SCHEDULE, 2-47

Scheduling task execution, 2-47

SETJEA, 2-52

Setting an event variable, 2-24

SHARE, 2-53

.SIXBT character set, C-1

SPY, 2-55

SPYREL, 2-55

SPYSET, 2-57

SUSPEND, 2-59

Suspending task execution, 2-59

SYNC, 2-60

Synchronizing task execution,
2-60

System directive abbreviations,
4-2

XVM/RSX V1B

System directives, 2-1
table of, 1-4
System macros, 3-1

Task,
activating execution, 2-42
disabling, 2-10
fixing, 2-22
reenabling, 2-14
requesting execution, 2-37
requesting execution from user
disk, 2-16
resuming execution, 2-47
returning name of, 2-65
scheduling execution, 2-47
size, 2-36
suspending execution, 2-59
synchronizing execution, 2-60
terminating execution, 2-19
Task Termination Notice Request
List (TNRL), 1-3
Terminating task execution, 2-19
TDV command line,
transferring, 2-73
TIMFLG, 2-20
TNTERN, 1-3
Transferring TDV command line,
2-73
TSKNAM, 2-65

UNFIX, 2-67
UNMARK, 2-69

Virtual LUNs, 2-18, 2-34

WAIT, 2-70

WAITFOR, 2~71

Waiting for event variable, 2-71

Waiting for next significant event,
2-70

XFRCMD, 2-73

V-Index-2 September 1976

	1-00
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18.0
	2-18.1
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39.0
	2-39.1
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	C-01
	C-02
	Index-1
	Index-2

