FORTRANIV XVM
DOPERATING ENVIRONMENT
MANU
A | RV

Sysenns
dlilgliltlall

2T

FORTRANIV XVM
OPERATING ENVIRONMENT
MANUAL
DEC-XV-LF4EA-A-D

digital equipment corporation - maynard. massachusetts

First Printing, December 1975

The information in this document is subject to change without notice

and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such

license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by

DIGITAL.

Copyright <::> 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-

paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL

DEC

PDP

DECUS

UNIBUS
COMPUTER LABS
COMTEX

DDT

DECCOMM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL

INDAC

LAB-8

MASSBUS
OMNIBUS
0S/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-10
TYPESET-11

1/76-15

“W\\

PREFACE

CHAPTER

CHAPTER

CHAPTER

— ettt —
°
WNNNDND—
e e
W —

N

.
o o
w N -

e e o
wW N -

.
DN =

NNVNVNGoARAAARS IS LWL L

NNRNMODNNNNNNNMNNODRNODNDNNDNNNNNDND

e o o
°
W N —

w

CONTENTS

INTRODUCTION

OPERATING PROCEDURES
SOFTWARE ENVIRONMENTS
XVM/DOS

BOSS XVM

XVM/RSX

HARDWARE ENVIRONMENT

INPUT-OUTPUT PROCESSING

GENERAL INFORMATION

Device Assignment

Data Structures

Data Transmission

DATA TRANSMISSION (FIOPS)
SEQUENTIAL INPUT-OUTPUT

OTS Formatted Input/Output

OTS Binary Input/Output (BINIO)

OTS Auxiliary Input/Output (AUXIO)
DIRECT ACCESS I/O

The DEFINE Routine

Formatted Input/Output (RBCDIO)
Unformatted Input/Output (RBINIO)
Initialization and Actual Data Transfer (RANCOM)
DATA-DIRECTED INPUT-OUTPUT (DDIO)
ENCODE/DECODE (EDCODE)

USER SUBROUTINES

DOS Directoried Subroutines

RSX Directoried Subroutines

BOSS Routines

THE SCIENCE LIBRARY

INTRINSIC FUNCTIONS

EXTERNAL FUNCTIONS

Square Root (SQRT, DSQRT)

Exponential (EXP, DEXP)

Natural and Common Logarithms (ALOG, ALOG10, DLOG,
DLOG10)

Sine and Cosine (SIN, COS, DSIN, DCOS)

vee
Hi

Page

1-1

1-1
1-6
1-6
1-7

1-7

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

e o e o o e
OO

CONTENTS (Cont.)

Arctangent (ATAN, DATAN, ATANZ2, DATAN2)

Hyperbolic Tangent
SUB-FUNCTIONS

Logarithm, Base 2 (.EE, .DE)
Polynomial Evaluator (.EC, .DC)
THE ARITHMETIC PACKAGE

UTILITY ROUTINES
OTS ROUTINES

FLOATING POINT PROCESSOR ROUTINES
FORTRAN-CALLABLE UTILITY ROUTINES

RSX LIBRARY (.LIBRX BIN OR .LIBFX BIN) ROUTINES

FORTRAN=-IV AND MACRO

INVOKING MACRO SUBPROGRAMS FROM FORTRAN
INVOKING FORTRAN SUBPROGRAMS FROM MACRO

COMMON BLOCKS

FORTRAN LANGUAGE SUMMARY

EXPRESSION OPERATORS
STATEMENTS

ERROR MESSAGES

COMPILER ERROR MESSAGES
OTS ERROR MESSAGES
OTS ERROR MESSAGES IN FPP SYSTEMS

PROGRAMMING EXAMPLES

A FUNCTION TO READ THE AC SWITCHES
IFLOW AND IDZERO EXAMPLES
INPUT-OUTPUT EXAMPLES

SYSTEM LIBRARIES

DOS-15 PAGE MODE NON-=-FPP LIBRARY
DOS-15 BANK MODE NON-FPP LIBRARY
DOS-15 PAGE MODE FPP LIBRARY
DOS-15 BANK MODE FPP LIBRARY

RSX PLUS 11l NON~FPP LIBRARY

RSX PLUS 1fl FPP LIBRARY

Page

o

TN

Figure

Table

INDEX

1-1

31
3-2
3-3
3-4
4-1
A-1

CONTENTS (Cont,)

FIGURES

Sample XVM/DOS Session

TABLES

Intrinsic Functions

External Functions

Sub~-Functions

Arithmetic Package
FORTRAN-Callable Utility Routines
FORTRAN Library Functions

Page

LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in-
cluding the latest version available. Within this manual, other XVM
manuals are referenced by title only. Refer to this list for the

DEC numbers of these referenced manuals.

N

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL
DDT XVM UTILITY MANUAL
EDIT/EDITVP/EDITVT XVM UTILITY MANUAL
8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL

FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL

LINKING LOADER XVM UTILITY MANUAL
MAC11l XVM ASSEMBLER LANGUAGE MANUAL
MACRO XVM ASSEMBLER LANGUAGE MANUAL
MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL
UPDATE XVM UTILITY MANUAL

VP15A XVM GRAPHICS SOFTWARE MANUAL
VT15 XVM GRAPHICS SOFTWARE MANUAL
XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READERS GUIDE AND
MASTER INDEX

XVM/DOS SYSTEM MANUAL

XVM/DOS USERS MANUAL

XVM/DOS V1A SYSTEM INSTALLATION GUIDE
XVM/RSX SYSTEM MANUAL

XVM UNICHANNEL SOFTWARE MANUAL

vii

DEC-XV-OBUAA~-A-D
DEC-XV-UCHNA-A-D
DEC-XV-UDDTA-A-D
DEC-XV-UETUA-A-D
DEC-XV-UTRNA-A-D
DEC~-XV-LFLGA-A-D
DEC-XV-LF4MA~A~-D
DEC-XV-LF4EA-A-D
DEC-XV-ULLUA-A-D
DEC-XV-LMLAA-A-D
DEC-XV-LMALA-A-D
DEC-XV-UMTUA-A-D
DEC-XV-UPUMA-A-D
DEC-XV-UPPUA-A-D
DEC-XV-USUTA-A-D

DEC-XV-USRCA-A-D
DEC-XV~-UUPDA-A-~D

DEC-XV-GVPAA-A-D
DEC-XV-GVTAA-A-D
DEC-XV-ODKBA-A-D
DEC-XV-ODGIA-A-D

DEC-XV-ODSAA-A-D
DEC-XV-ODMAA-A-D
DEC-XV-ODSIA-A-D
DEC-XV-IRSMA-A-D
DEC-XV-XUSMA~-A-D

TN

PREFACE

This manual describes the system software facilities which support the Digital XVM FORTRAN
IV compilers together with hardware features which affect the FORTRAN programmer. Included
are discussions of monitor features which are of interest to the FORTRAN programmer, the
FORTRAN [V Object Time System] (OTS), and the Science Libroryz. All descriptions pres-
ented apply to the XVM versions of the FORTRAN compiler. Appendix E presents overall out-

lines and descriptions and detailed data specifying the difference among the various compilers
for the XVYM/DOS and XVM/RSX software systems.

A companion manual FORTRAN IV XVM LANGUAGE MANUAL describes the elements, syntax
and use of the FORTRAN 1V language as implemented for the XVM computer.,

The following is a list of XVM documents which either support directly or contain information

useful in understanding FORTRAN 1V XVM and its function:

XVM/DOS User's Manual
XVM/RSX System Manual
Linking Loader XVM Utility Manual

CHAIN XVM/EXECUTE XVM Utility Manual

]The Object Time System is a set of subroutines which are automatically invoked by certain
FORTRAN language elements, A FORTRAN input-output statement, for example, is not com-
piled directly into executable object code but becomes a call to the appropriate OTS input=-
output routine,

The Science Library is a set of intrinsic functions, external functions, subfunctions, and sub-
routines which the user may invoke explicitly in a FORTRAN statement,

:""M"z

CHAPTER 1

INTRODUCTION

A FORTRAN-IV program may be compiled and run in several different environments. The

FORTRAN programmer need not be concerned with the details of his environment since the
FORTRAN Object-Time System (OTS) will ensure that his statements invoke the appropriate
computer instructions, For example, an arithmetic statement such as A = A*B will appear
the same in any FORTRAN-IV program, In the object program it may be transformed to a
subroutine call or a floating point instruction, depending on the hardware configuration on

which the program is produced.

The programmer will need to know procedures for compiling and loading his program and for
using the peripheral devices available to him., In addition, a number of software facilities
may be of interest to a programmer who requires maximum program efficiency or functions
not performed by FORTRAN statements, In this case, he may invoke FORTRAN-callable
functions and subroutines from the FORTRAN library or augment his program by linking fo
MACRO assembler programs and invoking the OTS utility routines.

in this chapter, the basic procedures are described for using FORTRAN and the major facili-
ties available to a FORTRAN program. These facilities are described in greater detail in
subsequent chapters, and Appendix C contains a collection of illustrative programming ex-
amples, The main discussion is based on the XVM/DOS monitor, and differences for the

XVM/RSX environment are noted. The term DOS/RSX implies XVYM/DOS and XVM/RSX.
1.1 OPERATING PROCEDURES
The FORTRAN [V compiler is a two-pass system program which produces relocatable object

code. This code is then linked with user -specified FORTRAN=-compiled or MACRO XVM

assembled routines and with required OTS library routines. Program linkage may be

Introduction

accomplished via the linking loader, LOAD or GLOAD (DOS), which loads the resulting
program directly into core for immediate execution. The user may, alternatively, use one
of the overlay linkage editors = CHAIN (DOS) or TKB (RSX). These construct core images

onto auxiliary storage for later execution.

In DOS, the FORTRAN=IV compiler is called by typing F4 after the monitor has issued a $.
When FORTRAN has been loaded, the version name is typed at the left margin as in:

F4M XVM Vnxnnn

A carriage return is issued and the character > at the left margin indicates that a command

string is expected with the FORTRAN source program on the appropriate input.,
The command string has the form:
optionlist « filename

where the options are delimited by a left arrow and may optionally be separated by commas,
and the string is terminated by a carriage return or ALT MODE. Filename is the name of

the source file to compile, and its extension must be SRC. A carriage return specifies that
FORTRAN=IV should be restarted after the current program has been compiled, ALT MODE

returns control to the monitor,

In RSX, the compiler is invoked from TDV by typing the compiler task name, followed by a
command string. As provided with the XYM/RSX monitor, the compiler task name is FOR...,
and it is invoked by typing FOR or F4F following the monitor's TDV response. The compiler

call plus the command string has the form:

{ii}}opﬁonlisf « filenamel , filename2, . . .filenameN

The options are delimited by a left arrow, and may optionally be separated by commas. Any
number of filenames, whose extensions are SRC, may be specified, separated by commas. The
entire line is terminated by a carriage return or an ALT MODE, and no continuation of the

command string is allowed.

!

5y

Introduction

For either DOS or RSX, the option list may be empty or contain any of the following op-

fions:

Option

IT®rrwnQ

The output listing file always has the extension LST.

Meaning

Object Listing

Symbol Map

Source Listing

Binary Output

Use subroutine for calculation of array efement
addresses

RSX only = print compiler version and "End
Pass 1" on output terminal,

symbols, At the end of pass 1, the compiler types

END PASSI

and allows the repositioning of a source tape if using the paper tape reader. When compil-

ing from paper tape in DOS only, to initiate pass 2, the user types 4P (control P).

The following error messages indicate that the command procedures cannot be carried out:

Message

?

DOS { IOPS4
1OPSn

FORTRAN-I/O
RSX ERROR LUN

XX YYyyy

Meaning
Bad command siring - retype

I/O device not ready - type CTRL R when ready
See XVM/DOS User's Manual for IOPS error codes

An /O error occurred during compilation;

xx represents the logical unit number (decimal) on
which the error occurred; yyyyy is the octal event
variable indicating the cause of the error. (See
XVM/RSX Reference Manual for details,)

]The subroutine .SS is used to calculate the addresses of 2 and 3 dimensional array elements;
the default uses in line code in most cases,

All file names must be legal FORTRAN

Introduction

Other diagnostics which may be printed at compile time are FORTRAN error messages (see
Appendix B, Section B,1), OTS errors are given at run time for those routines whose calls

are generated by the compiler (see Appendix B, Section B,.2),

When the user program has been successfully compiled, it may be relocated and made abso-

lute (executable) via LOAD, CHAIN, or TKB (the RSX Task Builder).

In DOS, the Linking Loader is called by typing LOAD or GLOAD (load-and-go) after a

monitor~issued §. The Linking Loader types

LOADER XVM Vnxnnn

>

and awaits a command string specifying programs to be loaded and output options. See the
LINKING LOADER XVM UTILITY Manual for detailed instructions. Figure 1-1 shows the

printout from a typical XYM/DOS session from source-program preparation to loading.

With CHAIN, the DOS user generates a system of overlays = a resident main program which
may include resident subprograms, a resident blank COMMON storage area, and a set of
subroutines which overlay each other at the user's request. Subroutines are organized into
units called links which may overlay each other. Several links may overlay a larger link
without overlaying each other. A link is loaded into core when a subroutine within the link
is called and it remains resident until overlaid, A link's core image is not recorded or

"swapped out' when it is overlaid., The same image is brought into core each time a link

is loaded. See the CHAIN XVM/EXECUTE XVM Utility Manual for detailed instructions.,

In RSX, linking is accomplished by using the TDV function Task Builder (TKB), TKB is simi=
lar in operation to CHAIN. lis function is to record core images in a file in the format ex-
pected by the RSX INSTALL Function., The task name is used as the file name, and TSK is
used as the extension., TKB accepts the same overlay descriptions as CHAIN, In RSX it is
called by typing "TKB" following the Monitor's TDV request, When loaded, TKB types its

name and version number and makes the following requests:

LIST OPTIONS

NAME TASK

SPECIFY DEFAULT PRIORITY
DESCRIBE PARTITION

DEFINE RESIDENT CODE
DESCRIBE LINKS AND STRUCTURE

For further information, see the XVM/RSX System Manual,

1-4

o

-~

Introduction

ML B CO T N T N L A O

LOET N TEM

AUMATOE WLAGOD

[T 2 N U R R R I T

EVRSDOE WIS

T O FOND .

100G

e

antd

4 e e
WL i

HUM Wladol

Gl MO ER RO

Ve oon

EI MUY

O LB

Figure 1-1

Sample XVM/DOS Session

1-5

LI

L

T

Lk

Introduction

COEMM WL AQ00

NN

R3S 1404,

STOF G000

KWAD08 VIadoo

D

Figure 1-1 (Cont.)
Sample XVM/DOS Session

1.2 SOFTWARE ENVIRONMENTS

Each version of FORTRAN=IV has its own version of the object timesystem library so that
routines may utilize both hardware and software features, Each of the monitor systems under

which FORTRAN operates is summarized below,

1.2.1 XVM/DOS

XVM/DOS is a single-user, interactive, disk-resident operating system. It includes the

DOS Monitor, 1/O device handlers, and an integrated set of system programs including
FORTRAN=IV. Program editing, loading, and debugging facilities are provided as well as
powerful file manipulation capabilities, The DOS disk file structure supports both direct and
sequential access fo disk files, dynamic disk storage allocation, and file protection. The
DOS Monitor itself provides the interface between the user and peripheral devices via Moni-
tor calls and allows the user to load system or user programs, for example, FORTRAN pro~
grams, via simple commands from the user terminal, The reader is directed to the XYM/DOS

User's Manual, for more detailed information,

2

AT

Introduction

1.2.2 BOSS XVM

BOSS XVM is a batch-processing monitor which is part of DOS; it, therefore, utilizes the
DOS system programs and file structures. DOS itself has a facility to batch commands from
cards or paper tape; BOSS, however, is a separate entity from XVM/DOS monitor batch,

BOSS command language is batch-oriented, noniterative, easy to use, and highly flexible.

Some highlights of BOSS XVM are:

Procedure driven command language

@ Job timing for accounting purposes

Line editor

Facility for user-defined commands
1.2.3 XVM/RSX

XVM/RSX is a monitor system designed to handle real-time information in a multiprogramming
environment. RSX controls and supervises all operations within the system including any num-
ber of core- and disk-resident programs (called tasks). The user can dynamically schedule
tasks via simple time-directed commands issued from the terminal or from within a task.
System software includes the FORTRAN 1V compiler, the MACRO Assembler, the TASK
BUILDER, and numerous utility programs required to edit, debug, and run user programs.

Details are available in the XVYM/RSX System Manual .

1.3 HARDWARE ENVIRONMENT

Systems with an FP15 Floating=Point Processor (FPP) have a special version of the FORTRAN~
IV compiler and OTS which utilizes hardware instructions rather than subroutine calls to
handle certain arithmetic functions. For example, RELEAE, the REAL arithmetic package,

is not included in FPP systems since REAL arithmetic expressions may be compiled directly

into FPP instructions,

The FPP FORTRAN System consists of the standard FORTRAN-IV compiler and Object-Time
System (OTS) interfaced (via conditional assembly, and additional routines) to the hardware
FPP. The interface applies to Single and Double Precision Floating=Point Arithmetic and
Extended Integer Arithmefic (double integers). Single integer arithmetic is still handled
by EAE (extended arithmetic element, KEI5) instructions and, in part, by software.

1-7

s,

P

CHAPTER 2
INPUT-OUTPUT PROCESSING

FORTRAN data-transmission statements automatically invoke a number of OTS subroutines which serve
as an interface between the user program and the Monitor. These routines may also be explicitly

referred to in a MACRO program.

The actual transmission of data between memory and a peripheral device is, in general , performed by
the FIOPS package, a set of routines which communicate directly with the Monitor. Other packages,

each associated with a particular type of data-transmission statement, perform three major functions:

a, Initialization,
b. Transmission of data to and from the FORTRAN line-buffer in the appropriate structure, and
c. Termination;
The packages are:
(1) BCDIO, processes formatted sequential READ or WRITE statements;
(2) BINIO, processes unformatted sequential READ or WRITE statements;
(8) AUXIO, processes auxiliary input-output statements;

(4) RBCDIO and RBINIO, process formatted and unformatted direct=access READ and
WRITE statements;

(5) DDIO, manages data~-directed input-output;
(6) DCODE, processes ENCODE and DECODE statements.,

Also described in this chapter is a set of FORTRAN=callable subprograms which support OTS input-

output functions.

2.1 GENERAL INFORMATION
The three major 1/O functions:

a. To associate logical devices with physical devices,
b. To associate user data structures with device data structures, and

c. To perform actual transfer of data

are described in the following paragraphs.

2-1

Input=Output Processing

2.1.1 Device Assignment

In DOS, device assignment is managed through the monitor Device Assignment Table (. DAT) which
associates legal device units to physical ones, .DAT has "slot" numbers which correspond to the
FORTRAN logical device numbers. Each slot, at run time, contains the physical device unit number
and a pointer to the appropriate device handler in memory , Sixteen entries in ,DAT may be used

for user~program device assignment performed via monitor ASSIGN commands af run time. Default
assignments are defined during system generation, An analogous structure is maintained in the RSX
system, |t is called the Logical Unit Table (LUT), and for each Logical Unit Number (LUN) as=-

signed, it maintains an address fo information about the associated physical device.

2.1.2 Data Structures

Each peripheral device has an associated data structure which governs the manner in which data are

stored. There are basically two modes in which data may be stored externally - serially or directoried.

For a sequential file, either structure may be used. If it is serial, the physical sequence of records is
identical to the logical sequence. If it is directoried, the logical sequence is established by pointers
which link one record o another although their physical locations need not be in sequence. For a

direct-access file, only disks which are also directoried devices may be used.

Serial devices used for FORTRAN Input-Output include poper tape, magnetic tape and (in certain
modes) DECtape, Records are transmitted directly from the user buffer to the device and an end-
of-file is written after the last record by a CALL CLOSE or ENDFILE n, A file is accessed simply

by virtue of device assignment.

Magnetic tape and DECtape may also be used in a directoried mode, In this case, a directory con-
taining file information is maintained. Each entry contains a filename and extension and a pointer
to the first block of the file. Files stored in this way may be referenced in the OTS directoried

subroutine calls,

Directoried FORTRAN input-output to a disk, using DOS file structure, is a special case, This
structure is based on a hierarchy of directories with a Master File Directory (MFD) pointing to user
file directories (UFDs). User files are created sequentially but may be accessed either sequentially
or directly. Data blocks (4008 words per block) which comprise a file are chained via a forward

link word (3778) and backward link word (3768). Forward links are also stored in a retrieval
information block (RIB) for direct access. Files stored in this mode are accessed by name. This name
may be assigned by the user via directoried subroutines (e.g., SEEK and ENTER). In DOS only,

if this is not done, default names are used. A default name has the form ;TMOmn OTS where mn

is the logical device number in decimal,

! This number is the standard size for DOS but may be changed by system generation and assembly
parameters.

2-2

Input-Output Processing

2.1.3 Data Transmission

Data is fransmitted to and from the FORTRAN=-IV 1/O buffer via the OTS FIOPS package. A
single 1/O buffer of 4008 words is used. In DOS, the size of the buffer which is to be transmit-
ted for a particular device is set in accordance with information provided in an INIT fo the de-

vice used. In RSX, the size used is always that of the FIOPS buffer, 4008.

2.2 DATA TRANSMISSION (FIOPS)
The FIOPS package provides the necessary communication between the OTS and the 1/O Device

Handlers., Its fwo main functions are device assignment and the transfer of data to and from the
FORTRAN intemal [/O buffer.

FIOPS maintains a status table with one=word entries for each device that is in use. A

table entry is as shown below.

1/0O Flag For dir.
0=READ 0=SEQU. acc. only not Buffer size
1=WRITE 1= DIR, ACC. - 1=DELETE used (from .INIT)
0=NO
0 1 2 3 89 17

The routines of the FIOPS package and their functions are given below. (See also the .ZR call, described

in paragraph 4.1.)

FIOPS Package
External Calls: OTSER

Errors: OTS ERROR 10 - illegal device number
Routine Function
.FC .DAT slot numbers are initialized by .FC. The
(initialize 1/O Device) first call to .FC for any device generates a
Call: monitor .INIT call which opens the file for I/O
: and enters the buffer size and 1/O flag in the
LAC DEVICE (address of slot number) device status table. Subsequent calls to .FC
call .INIT only if the 1/O flag has been changed
IMS* .FC or the file hcs)l,oeen closed. (In RSX, the ﬁrsgf
To set 1/O flag: call to FC sets the 1/O flag and a fixed buffer
. size, Subsequent calls to .FC only reset the
DZM* .FH (input) 1/O flag.)
LAC (1) (output)
DAC* FH

(continued next page)

Input-Output Processing

FIOPS Package (Cont)

Routine

Function

FQ
Call:

LAC (address of .DAT slot number {bits 9-17)
1OPS mode (bits 6-8)

Data are transferred beiween the 1/O buffer and

an I/O device. .FQ checks the monitor I/O flag.

If it is zero, a .READ call is made; if it is one, a
.WRITE call is made. A call to .WAIT is made in
either case. In RSX, the READ, WRITE, and
WAITFOR 1/O functions are used.

IJMS* FQ
FP Sets all words in the device status table to zero.
Call: Called at the beginning of all FORTRAN main
att: programs to indicate that all devices are
JMS* FP initialized,

An integer function, IOERR(N), is available to the DOS user and may be invoked at an ERR

exit to determine the |/O error which has occurred. The value of IOERR will be one of the

following

OTS error number

2.3 SEQUENTIAL INPUT-OUTPUT

Error

Parity error

Checksum
Shortline
End-of-file
End-of-medium

Other errors (up to 77)

Sequential input-output operations access consecutive records of a file, beginning with the first

record and then record-by-record until the end of the file. A file which is accessed sequentially may

be stored serially (on magnetic tapeor if DOS on DECtape) or in directoried mode (on disk and

DECtape). That is, the physical sequence of records may or may not conform fo the logical sequence.

2-4

R

P

AN
. Y

Input-Qutput Processing

2.3.1 OTS Formatted Input/Output

The formatted READ and WRITE statements generate calls to routines in the BCDIO package. Input
and output operations are performed on a character-to-character basis under the control of a FORMAT
statement. All BCDIO routines use FIOPS to perform transfer of data. BCDIO routines may also be
called directly by MACRO programs.

Each formatted record is an |OPS ASCII line with a two-word header pair. On output to a printing

device, the first character after the header is always a forms-control character, Record length,
given in the header, is always in terms of word=pairs. The last character in the last word-pair is

always a carriage return,

BCDIO routines are described below.

BCDIO Package
External Calls: FIOPS, OTSER, REAL, RELEAE

Errors: OTS 10 - illegal I/O device number
OTS 11 - bad input data (IOPS mode incorrect)
OTS 12 - illegal format

Routine Function

FR (.FW) Initialize BCDIO for Input {output)
Call:

JMS* _FR (.FW)

.DSA (address of .DAT slot number)

.DSA (address of first word of FORMAT
statement or array) !

.FE
Call: Inputs or outputs a data item using format decoder
) . (.FD). Contents of AC prior to call:
(ones complement of mode in AC) 777777: INTEGER #g LOGICAL
JMS* FE 777776: REAL
.DSA (address of data item (First word)) 777775: DOUBLE PRECISION
(return with original AC) 777774: DOUBLE INTEGER
.FA Inputs or outputs an entire array using format
Call: decoder (.FD).
JMS* FA
.DSA (address of last word in array descriptor

block)

(continued next page)

YThis word is O for data-directed (implied format) 1/O.,

2-5

Input-Output Processing

BCDIO Package (Cont)

Routine Function
.FD Decodes format info four parameters:
Call: .D - decimal places

W - field width

*
IM5* .FD .SF - scale factor
«S =~ mode
.FF Terminates the current logical record.
Call:
JMS* _FF

As described in the language manual, FORMAT statements may be entered or changed at run time,
at which point they are interpreted by BCDIO. In addition to providing the FORTRAN programmer
with greater flexibility, this feature permits the MACRO programmer to use the formatted 1/0O
capabilities of BCDIO. (See Appendix C for examples.)

2.3.2 OTS Binary Input/Output (BINIO)

The BINIO package processes unformatted READ and WRITE statements. Data transfer is on a word-
to -word basis. A logical record, the amount of data associated with a single READ or WRITE
statement, may consist of several physical records whose size (except for the last) is always the
standard IOPS 1/O buffer size, Thus, when a WRITE statement is processed, each physical record
generated contains an ID word (word 3) in addition to the two required header words. This word
contains a record identification number. For the first record, this is zero. The last record is
indicated by setting bit O of the ID word to 1. Up to 3777778 physical records may be generated

for a single logical record.

For example, if four physical records are generated, the four ID words would be:

000000
000001
000002
400003

If only one record is generated, its ID word will be 400000 signifying the first and last of a set,

An unformatted READ statement accepts logical records of the form described above until its /O list
has been satisfied. If this occurs in the middle of a logical record, the remainder of the record is

ignored, That is, the next READ will access the beginning of the next logical record.

@,

2

Input-Output Processing

The routines of BINIO are described below.

OTS 11 - illegal input data (IOPS mode)

Function

Initializes a device for binary input and reads
first record.

Initializes a device for binary output; initializes
line buffer,

Transfers a data item to or from the line buffer
(all modes). Mode of item is:

BINIO
External Calls: FIOPS, OTSER .
Errors: OTS 10 - illegal 1/O device number
Routine
.FS
Call:
JMS* FS
.DSA (address of .DAT slot)
FX
Call:
JMS* FX
.DSA DEVICE
JFJ
Call:

(one's complement of mode in AC)

JMS* FJ
«DSA (address of item (first) word)
(returns with original AC)

777777 = INTEGER or LOGICAL
777776 = REAL

777775 = DOUBLE PRECISION
777774 = DOUBLE INTEGER

.FB Transfers an array,
Call:

JMS* _FB

.DSA (address of last word in array descriptor

block)

.FG Terminates current logical record. For WRITE,
Call: packs the line buffer with zeroes as required and

atk sets bit 0 of the ID word.

JMS* FG

2.3.3 OTS Auxiliary Input/Output (AUXIO)

The AUXIO package processes the commands BACKSPACE, REWIND, and ENDFILE which have

different meanings for magnetic tape and disk. In DOS, AUXIO routines issue .MTAPE monitor

calls giving .DAT slot and a code specifying the magnetic tape function desired:

Input-Output Processing

Code Magnetic Tape Disk
00 Rewind to load point Close file associated with . DAT slot.
02 Backspace record Pointers resumed for previous ASCII or binary line.
04 Write end-of-file N.A,

For magnetic tape, these operations require only calls to system macros. In order fo simulate magnetic
tape functions on disk, a file active table (.FLTB) must be referenced. This contains four-word entries

for every positive .DAT slot indicating whether the file is active (open for input or output) or inactive.

The routines of AUXIO and their serial and file-oriented functions are given below,

In RSX, AUXIO issues the magnetic tape /O functions BSPREC, REWIND, and WREOF. Thus, in
RSX, the BACKSPACE, REWIND, and ENDFILE commands should be issued only to an actual magnetic

tape device, not to a disk.

AUXIO
External Calls: FIOPS, .FLTB
Errors: OTS 10 - illegal I/O device
OTS 11 - illegal input data (IOPS mode incorrect)
Disk
Routine Magnetic Tape (DOS only)
FT Repositions device at a point just prior to the Resumes pointer to
(BACKSPACE) first physical record associated with the current previous ASCII or
Call: logical record., binary line.
JMS* [FT
.DSA ({(address of
.DAT slot)
.FU Repositions device at load point. Closes file. If no
(REWIND) file is open,
Call: nothing is done.
JMS* ,FU
.DSA (address of
.DAT slot)
FV Closes file. Writes an end-of-file mark on tape. | Closes file, zeroes
(ENDFILE) words 0=3 of the
Call: associated ,FLTB
JMS* FV entry.
.DSA DEVICE
(address of .DAT slot)

On a REWIND to disk, the filename is saved; thus, subsequent sequential input-output operations will

open that file, On an ENDFILE, the filename is lost and subsequent operations will open a default file,

2-8

Input-Output Processing

2.4 DIRECT ACCESS I/O

Direct access input-output files are referenced by name; records are retrieved or accessed by number.
The OTS routines which perform direct-access transmission of data are similar to their sequential
counterparts. Before they are invoked, however, the user must provide a detailed description of

his file.

2.4.1 The DEFINE Routine
The FORTRAN user establishes a direct-access file by calling the DEFINE routine, which is described

in Chapter 6 of the FORTRAN IV XVM Language Manual.

The foilowing discusses the DOS implementation of DEFINE; for information on the RSX ver-

sion, see the above manual.

In DOS, the DEFINE call is:

CALL DEFINE (D, S, N, F, V, M, A, L)

The parameters provided to OTS for performing direct-access functions are:

D - .DAT slot

S - record size
number of ASCII characters

or
number of binary words

N - number of records (f] 31071 . O)
F - array reference to filename and extension; if 0, this is a temporary file

using a default name
V - associated variable - set to number of the last accessed record plus one

M - mode O =IOPS binary (unformatted)
non-0 = IOPS ASCII (formatted)

A - file size adjustment indicator
0 = no adjustment
non-0 = adjust
L - deletion indicator

0 = no deletion
non-0 = delete upon closing, if this is a temporary file

The DEFINE routine initializes a file for direct-access in one of four ways, depending on the

combination of parameters supplied.

Simple Initialization - If F specifies a file which already exists and no adjustment has
been indicated, DEFINE opens the file for direct access. The mode and record length
parameters must conform to the file's characteristics. The associated variable is set to 1.
The number of records N must be less than or equal to the actual number of records.

a.

b. Named File Creation - If F specifies a file which does not exist on .DAT slot D, a file
is created according to the characteristics given in the calling arguments. If the mode
is ASCII, the data portion is filled with spaces (040g). If the mode is binary, all data
words are set to 0 and the ID word for each record to 4000008.

2-9

Input-Output Processing

c. Default-Named File Creation - If F=0 in the DEFINE call, a file is created as above but
given a default name of the form .TMOabea OTS (unless a file of that name already exists
on .DAT slot D) where ab specifies .DAT slot in decimal. If L=1, a bit is set in the FIOPS

status table signifying that the file is to be deleted after an ENDFILE or CALL CLOSE to
the ,DAT slot,

d. File Size Adjustment - If a file F exists and A is not zero, N is used to adjust the number
of records in the file. This is done by creating a temporary file (., .TEMP OTS) on ,DAT
slot D via .DAT slot ~1 which is temporarily loaded with the .DAT slot D handler address
and UIC. The file is copied into it one record af a time up to the number N, If the file
is to be lengthened, null records are added. The adjusted file is then assigned a name
according to F. V is set to 1 if the file is reduced. If it is lengthened, it is set to the
old length plus one.

The algorithm used for determining the function of DEFINE from its arguments is illustrated in the

following flowchart.

START

YES, DEFAULT NAME 1S
INDICATED

NO, FILE NAME IS
DEFINE FILE SPECIFIED
NAME ARGUMENT

=0

FILE OF INDI-
CATED NAME FOUND ON
INDICATED DEVICE
{VIA [FSTAT)

BUILD DEFAULT NAME
FROM .DAT SLOT
{.TMOab OTS}

DOES

YES DEFINE ADJUST
AREA =0
?
NO L
CREATE
FILE
A4 l
INITIALIZE FILE FOR
ADJUST SIZE
RANDOM ACCESS < oF FL:SL; s
. VIA .RAND

‘ DONE ’

Input=Output Processing

From user-supplied arguments, the DEFINE routine establishes a parameter table (.PRMTB) which is

available to direct-access input-output routines.

Each device which has a file open for direct-access will have an active four-word entry composed as

follows:
Word Bits Information
1 0 File active bit (1 if active - always set for ASCII files)
2-1 Number of blocks per record
12-17 .DAT slot number
2 0 mode - O if binary; 1 if ASCII
5-11 Word pairs per record
12-17 Records per block (0 for binary records larger than one physical block)
3 1-17 Records/file
4 3-17 Address of associated variable

.PRMTB will generally have four such entries but this number mdy be varied with an assembly

parameter.

DEFINE also initializes the file in FIOPS, setting the appropriate bits in the FIOPS status table.

2.4.2 Formatted Input/Output (RBCDIO)

Direct-access operations may be performed on any formatted data file conforming to DOS file
structure and with a fixed record length. A direct-access WRITE will output formatted records which
have the same form as with sequential operations. The distinction is that the direct-access records are
transmitted info a series of records which already exist on the selected file. A single READ or WRITE
will access records on the 1/O device only as specified in the associated FORMAT statement. This
means that a long I/O list will not cause a new record fo be accessed, regardless of the length of

the list, unless this access is indicated by the FORMAT statement. A carriage return is, as with
sequential 1/O, appended to each ASCII line. Any information from a previous WRITE made to a

record which remains after the carriage return, is inaccessible. The FIOPS buffer and tables are used

as with sequential 1/O. Data transfer, however, is performed using the .RTRAN system MACRO in DOS,
and the DSKGET and DSKPUT I/O functions in RSX.

The RBCDIO routines described below correspond to the sequential 1/O routines of BCDIO. Control

is transferred to BCDIO for data transmission via the global entry points given.

2-11

[nput-Output Processing

RBCDIO
External Calls: FIOPS, BCDIO (.FE, .FA), OTSER, RANCOM
Errors: None
Routine Purpose
RW (.RR) BCD direct-access WRITE (READ) sets the direct-
Call: access flag; sets mode switch to ASCII; initializes

JMS* RW(.RP)

.DSA (address of .DAT slot)
.DSA (address FORMAT)
(AC holds integer record number)

direct-access READ/WRITE (.INRRW in RANCOM);
checks mode of existing record; initializes - .STEOR
and BFLOC in BCDIO for direct-access, line buffer,
and format decoder; sets HILIM in BCDIO. .RW
loads record number into .RCDNM and sets |/O

flag in FIOPS to write. .RR loads record number
into .RCDNM, sets |/O flag to read.

.RF
Call:
JMS* .RF

Terminates current logical record. Sets last record
flag, reinitializes .ER in OTSER and, for WRITE,
RTRAN out last record. If RSX, the last record

is packed, and a DSKPUT is performed if the buffer
is full.

Entry points to BCDIO are:

RBCDIO Entry

.RE
RA

2.4.3 Unformatted Input/Output RBINIO)

BCDIO Routine

FE
.FA

Unformatted direct-access |/O differs from formatted in two respects. If a binary record does not

totally fill the record into which it is written, the previous contents are still accessible, If a direct-

access WRITE requires more words than exist in each record, successive records are accessed and

written until the 1/O list is exhausted. Records are linked by ID words as for sequential files.

The routines of RBINIO are described below. Direct-access entry points to BINIO follow.

RBINIO
External Calls: FIOPS, RANCOM, BINIO
Errors: None
Routine Function
.RS (.RX) Binary direct-access WRITE (READ) sets direct=
Call: access flag; sets mode switch to binary; initializes

JMS* .RS(.RX)

.DSA (address of .DAT slot)
(AC holds integer record number)

direct READ/WRITE (.INRRW in RANCOM); checks
mode of existing record; initializes ,BUFLC, .RDTV,
and WRTV in BINIO for direct access; initializes
I/O buffer; loads record number into .RCDNM.

.RX sets 1/O flag to WRITE; .RS sets it to READ.

(continued on next page)

is

&

s

Input-Output Processing

RBINIO (Cont)

Routine Function
.RG Terminates current logical record. Increments
Call associated variable, reinitializes .ER in OTSER; if
all:

JMS* RG

WRITE, sets last record flag and outputs final records.

Entry points to BINIO are:

RBINIO Eniry BINIO Routine
RJ FJ
RA FA

2.4.4 Initialization and Actual Data Transfer (RANCOM)

RANCOM contains two major routines which are used by both RBCDIO and RBINIO. These routines
perform initialization and data transfer functions which are identical to those performed for ASCII and
Binary 1/0.

RANCOM
External Calls: FIOPS, OTSER, DEFINE
Errors: OTS 10 - illegal I/O device

OTS 24 - illegal record number

OTS 25 - mode discrepancy

OTS 11 - illegal input data (IOPS mode incorrect)

OTS 21 - undefined file

OTS 23 - size discrepancy

Routine Function

.INRRW Initializes a direct access READ or WRITE
Call:

JMS* [INRRW
(AC holds address of slot number.)

.RIO For 1I/O cleanup:
Call: Set up header pair and .RTRAN out block of data.
JMS* _RIO For end-of -record routines:

Output (if WRITE) and set pointers to new record.

2.5 DATA-DIRECTED INPUT-OUTPUT (DDIO)

The Data-Directed Input-Qutput package permits input or output of ASCII data without reference to a
FORMAT statement. On input, DDIO extracts individual data fields by scanning the line buffer for
terminators. It then determines the mode of the variable to which the item is to be transferred and
converts the item to that mode if necessary. Unlike the format decoder, DDIO does not reject an item
which is too large but simply assigns the maximum value which the variable can accomodate. On out-

put, DDIO has a set of default format parameters for each type of variable.

2-13

input-Output Processing

The same buffer is used for both data-directed and formatted /O, and the 1/O action for both takes

ploce between device and /O list variables or vice versa. Thus, DDIO uses the same /O

initialization and termination routines as regular formatted 1/O (found within BCDIO for sequential

access and within RBCDIO for direct access). DDIO control routines are, however, unique due to the

special features described above.

The routines of DDIO are given below.

DDIO
External Calls: BCDIO, .SS, OTSER, FIOPS, REAL, DBLINT
Errors: OTS 42 - bad input data?
Routine Function
.GA Outputs a data item in the 'NAME'=value form.
Call: If the mode is O (integer-logical), bit 0 of the name
(one's complement of mode in AC) word indicates which (0 for integer, 1 for logical).
JMS* GA
name | first 3 characters ,radix 50
name 2 last 3 characters , radix 50

.DSA address item
(returns with original AC)

.GC
Call:
(one's complement of mode in AC)

JMS* GC

name 1

name 2

.DSA item

(returns with original AC)

Outputs an array element in *NAME(l)'=value
form. .GC should only be used when .SS has
been used to calculate the subscript address.

.GB
Call:
JMS* GB

name 1

name 2

-DSA array descriptor block
(word # 5address)

Outputs an entire array in '"NAME(l)'=value form.

Inputs an item,

.GD
Call:
(one's complement of mode in AC)
JMS* .GD
.DSA item
(returns with original AC)
.GE
Call:
JMS* | GE

Inputs an array.

.DSA addr. of array descriptor block word 5

TFor Terminal input = 'BAD INPUT DATA - RET

YPE FROM INPUT WITH ERROR' is typed.
2-14 ,

Input=Output Processing

2.6 ENCODE/DECODE (EDCODE)

Encode and Decode perform memory-to-memory transfers and conversions using the apparatus established
for formatted input-output. That is, data is transferred from memory to the I/O buffer to memory. Since
no peripheral device is involved, the initialization and termination mechanisms of EDCODE are unique

while the data transfer is the same as for BCDIO.

The routines of EDCODE are given below.

EDCODE
External Calls: OTSER, BCDIO
Errors: OTS 40 - illegal number of characters
OTS 41 - array exceeded
Routine Function
.GF Encode.
Call:
IMS* GF
.DSA number of characters
.DSA array
.DSA format
.GG Decode.
Call:
IJMS* GG
.DSA number of characters
.DSA array
.DSA format

2.7 USER SUBROUTINES

The subroutines given below are FORTRAN-callable subroutines which support input-output operations.

2.7.1 DOS Directoried Subroutines

The directoried subroutines described below comprise a package named FILE. These routines interact

with the DOS file-oriented data structure.

Input-Output Processing

FILE
External Calls:

Errors:

FIOPS, .DA

OTS 10 - illegal device number
OTS 13 = file not found (SEEK)
OTS 14 - directory full (ENTER)

Routine

Call

Purpose

SEEK

CALL SEEK (n,A)
Where:
n = device number

A = name of array containing the
9-character 5/7 ASCII file

name and extension

Finds and opens a named input file.

ENTER

CALL ENTER (n,A)

Creates and opens a named output file.

CLOSE

CALL CLOSE (n)

Terminates an input or output file
(required when SEEK or ENTER are
used).

FSTAT

CALL FSTAT (n,A,l)
Where:
I'="0 if the file not found;

= ~1 if found and action complete

Searches for named file.

RENAM

CALL RENAM (n,A,B,]D)
Where:

A is an array containing exist~
ing name

B is an array containing a new
file name

I =0 if file not found; -1 if
found and action complete

Searches for named file and renames it.

DLETE

CALL DLETE (n,A,I)
Where:

A is an array containing exist-
ing file name

I =0 if file not found; -1 if
found and action complete

Searches for named file and deletes it.

[

Fs

T

Input-Output Processing

2.7.2 RSX Directoried Subroutines:

Routine

Calling Sequence

Purpose

SEEK

CALL SEEK (n,nHname,nHext[, ev])
Where:
n = LUN number

nHname = is a Hollerith constant or
DOUBLE INTEGER or
REAL variable which
specifies the 1 to 5
character file name.

is a Hollerith constant
or DOUBLE INTEGER
or REAL variable which
specifies the 1 to 3
character file exten-
sion,

nHext =

ev = is an optional inte-
ger variable which
will if specified, con-
tain upon return, the
setting of the returned
event variable from the
SEEK CPB,

Finds and opens a named input file,

Routine

Calling Sequence

Purpose

ENTER

CALL ENTER (n,nHname,nHext[,ev])

Where:

All parameters are as for SEEK

Creates and opens a named out-
put file

Routine

Calling Sequence

Purpose

CLOSE

CALL CLOSE (n[,nHname, nHexi[, evl])

Where:

Parameters are as with SEEK, ex-~
cept file name and extension are
optional, used only with CALL
RENAME,

Terminates an input or output file

and closes it. Also is used to
specify the new name of a RENAME'd
file (see RENAME)

(continued next page)

Input-Output Processing

Routine Calling Sequence Purpose
RENAME CALL RENAME (n,nHname,nHext[, ev])|Open the specified file for the
purpose of renaming it to the name
Where: specified in the following CLOSE
command,
Parameters are as with SEEK,
Routine Calling Sequence Purpose
DELETE CALL DELETE (n,nHname,nHext[,ev]) | Searches for named file and de~
letes ite
Where:
Parameters are as with SEEK,

2.7.,3 BOSS Routines

These FORTRAN-=callable routines affect BOSS I/O when called by a program running under BOSS,

BOSTT

External Calls: None

Errors: None

Routine Call Purpose

TTON CALL TTON Allows output intended for the teletype fo
be printed on the teletype.

TTOF CALL TTOFF Restores normal BOSS function by directing
all teletype output to the line printer,

2-18

SN

e

WS

CHAPTER 3
THE SCIENCE LIBRARY

The FORTRAN Science Library is a set of pre~defined subprograms which may be invoked by a
FORTRAN-IV subprogram reference. These include intrinsic functions, external functions, the
arithmetic-package functions, and external subroutines. Each of these may also be referenced by a
MACRO program as may the sub-functions and OTS routines which are also part of the FORTRAN
library .

Descriptions of each type of subprogram are given in the following subsections. Information given for
these include errors, accuracy, size, and external calls (to other library subprograms). Each function
description also includes the MACRO calling sequence. Where there are two arguments, it is assumed
that the appropriate accumulator has been loaded (accumulators are described in Section 3.4). For
calling sequences which use the .DSA pseudo-operation to define the symbolic address of arguments,

400000 must be added to the address field for indirect addressing.

FORTRAN library subprograms are called by FORTRAN programs in the manner described in the
Language Manual. Subprograms called by MACRO programs must be declared with a .GLOBL

pseudo-operation as in:

Examples:
Standard System Floating Point (FPP) System

LTITLE LTITLE
.GLOBL SIN, .AH .GLOBL SIN
. FST = 713640
IMS* SIN .
JMP +2 /JUMP beyond argument JMS* SIN
.DSA A /+400000 if indirect JMP +2
JMS* _AH /store in real format at .DSA A
.DSA X /X FST
. .DSA X

X .DSAO .
.DSA O X .DSA O

.DSA 0

The number and type of arguments in the MACRO program must agree with those defined for the sub-

rogram.,
prog 3 -1

The Science Library

3.1 INTRINSIC FUNCTIONS

Table 3-1 contains a description of each of the intrinsic functions in the FORTRAN library .

Intrinsic functions may be explicitly named, as when referenced via an arithmetic statement.

For example

X = ABS(A)

They must have proper mode specification, and the correct number of arguments.

References to intrinsic functions are also generated implicitly. For instance, when

X = A**B

is coded, and A and B are type REAL, a call to .BE is generated.

(Table 3-1 begins on the following page.)

3-2

N

The Science Library

"0 > dxe pup (= 3509 §1 Gl

INI19@ ‘318n0a ‘va- (da)iNI1ar=1a INIar
INI18Q ‘319N0Q ‘va- oYV 40 3Aav vsa- MINIr=Ia INIC
379N0Oa ‘v ‘va- T+ AWM (dQ)INIQI=] INIQI
vy ‘va- YINS =SWI () LNI=I INI |ody | 5 Jebsqu
vy ‘var AN auoN () INTY=Y INIV jseBup| sowy OYY yo ubig uoioounj
319n0q ‘va- oYV 40 3Aaqav vsa- (dQ)s9va=da sgvda
INIT8a ‘va- T+ dWT (1g)savr=Ia sgvr
va: ¥ANS «SWI (nsavi=I SgVI an|oA
v va: AN auoN| (¥)sav=y SV |O¥v| a4njosqy
_fn_OH_D Mg
ZOWV 0 ¥aav vsa- [Axx10=1Q re:
¥ANS «SWI 1Qsexl=l 18"
INITga VN auoN {(OW PW) DV NI LOYV (I 49) 1Qx+1Q' 1%l 19°
3119N0OQa ‘4a0°‘3a’ 28 | 0> e0q 41y dQxxdd=dd He"
319n0OQq ‘4a-‘3a- Ze | 0> espq i1y | ZOWV 40 ¥QAV VSA” Yxxdd=dd og°
3719n0Qq ‘4a°‘33° 9z | 0590941 g ¥ANS «+SWI dQ+x4=dq 49°
vy ‘4t a3 9z | 0> 90931 ¢| Yurd=y 38"
DOV 174 NI 193V
ZOWY 0 ¥aav vsa- 10x+dd=4d wa*
49NS «SWI [xxdd=dd as’
vy VN suoN | DDV "L11d NI [D¥Y 00 191 xxdd ag
oYV 40 ¥aay vsa: 10 x¥=Y 19
ELEN ¥ANS =SWI |xxd=Y ot N
vy AN DOV 174 NI LO¥V (14 10) 14 0q”
0> tdxa pup | zOYY 40 ¥aqay vsa-
0= 9s0q 41 G| 99" «SWI .
393INI VN DDV 114 NI DYV Trsl=1 (IR
S41 EYtile)
s{|pD [Puleg \Auom:umuv,q s10413 @ouanbag Buijjo) spow o:ondﬂxm uoiiuyyeqg uolyoung
SUOLjOUN DISULLU]
L-€ 3|90
* { L % &

3-3

The Science Library

ZLOIEL> ZOYY/1D¥V«

awps ®r_~
v s1 ubis asoym pup N<_.< j0
INIT9Q ‘va- V'N ZOY¥V $o¥aayv vsa- (10“10)aowr=1a QOWTr apnjiubow sy paadxa jou
1719n0a ‘va- * LO¥Y o yaav vsa- (da“da)aowa=da AOWQ | seop apnyiubow asoym tabsy
dI9IINI ‘va- "V'N e+ dWr (1'naows=l1 dow -U up st (7Y /1] ‘e4aym
v ‘va: ¥ BUON NS «SWI (¥ ¥)GOW V=Y AOWY | ZO¥V[Z9¥V/1O¥V]-1O¥V | Bulepuioway
INIga‘va:) (lQ)ra1ea=da | riiga
INITga‘va: (IQ)rlvo14=y | rivoid
INI19a@'318n0a‘va (da)xidar=ta | Xidar
vae (D31gar=ia | 3I19ar
INIT9Q ‘va- DYV 0 ¥aav vsa- (10)19ONSI=I 1ONSI
‘va- Z+ dWP (dQ)XIHr o
INIT8Q‘379n00a ‘va- 48NS = SWI (M) XHr=1a XHr
vy ‘va- (¥)319a=a 379d
179N 0a ‘va- (@TONS=Y TONS
vy ‘va g () X1d1=1 XI41
vy ‘va VN suoN N LvOT14=Y LvOTd DYV ~ IAOWA uojsioAUC)
ZO¥Y J0 ¥aay vsa-:
INITgQ‘va: LOY¥V 40 yaay vsa- (Ta‘1a)wiar=ia wiar
¥IOIINI ‘va- €+ dWI (I DWIQI=I WIdl adualayiq
vy ‘va: "V'N auoN YANSSWI (@ ¥WIa=Y WIa (ZOUV’ I DYVINIW -1 DYV 9A141504
INIT9a ‘va* ZO¥V 40 ¥aav vsa- (10" 1IQ)NODISF=Ia NOISr LDYV jo ubis
319N0a ‘va- LOY¥V $0yaay vsa-: (dQ*daINDISa=da NDISa %
va: €+ dWI (I"'DN9ISI=] NOISI ubig
wva ‘va- AN auoN 49NS «SWI A" YNODIS=Y N9IS Z2OYY 4o ubig 40 J8fsupd)
s419 SwpN
S||PD |Pudepg \Aocmngwq o143 asusnbag Butj|o) apow 51 oquids uolIulysQg uolyounyg

SUOL{OUN] DISULIU]

(o) I-g 3190

The Science Library

ra - lia)oNwr=1al oNIWP
(“ra* - ligoxvwr=1a| _oxvwr
(XWNWT)
Jebayul
INI18Q 3|gnog
nn_o. ~l4a)INIWQ=da| INIWG
("da " lda)Ixywa=da| _LXywd
(XWNWQ)
uoisioasd
3719n0Qa -2|gnog
uoyy 0 ¥aav vsa-

: (e) IN DW= INIW
LOY¥Y $°¥aav vsa- (B L) LYW= LXYW
L+Us dWT Mg B NI Y=Y | INIWY
48NS SWI (ML IXYWY=Y | EXYWY
(XWNWY)
Xow /ulw
Tv3Y “¥393INI [0y
G lpoNmwy=y | oNIwy
M iDoxvwy=d| 0XYWY
1" LpoNIw=I ONIW
(e rlpoxvw=l| OXWYW
(XWNWI)

xow /uiw 511610 | enjoA wnwiutw

Tv3Y “¥3DILINI VN SUoN s9Bajul | JO BN|DA UW 10 XPW = YYA /unwIXop

s|PD |pwiepg xow_hmvo,q sioti souanbag Bul||p spopw u:wwﬂn_vtﬂm uolIulyaQ uoioung
SUOI4OUNY DISULIJUL
(fueD) |-¢ 3|90
e P m, A mﬂ/ mﬂ . £ A

3-5

The Science Library

3.2 EXTERNAL FUNCTIONS

Table 3-2 describes the external functions of the FORTRAN library. An external function is a sub-
program which is executed whenever a reference to it appears within a FORTRAN expression and which

returns a single value,

A description of the algorithm applied in implementing each of these functions is given below.

3.2.1 Square Root (SQRT, DSQRT)

A first~guess approximation of the square root of the argument is obtained as follows:

If the exponent (EXP) of the argument is odd:

(EXP-1) (EXP-1)
PO =.5 2 +ARG 2
If EXP is even:
EXP EXP
py=.5 (2 Jearc (271
Newton's iterative approximation, below, is then applied four fimes,
1 AR

P1=2 (" 7p.)

3.2.2 Exponential (EXP, DEXP)

The following description also applies to the sub-functions .EF and .DF.

The function €* is calculated as ZX'OQZE (xlong will have an integer portion (I) and fractional portion
(F)).
Then:
&=(2")(2")
Where:

F_(S 2
2 = (& CF)
n =56 for EXP and . EF
n = 8 for DEXP and .DF

{continued page 3-8)

The Science Library

Jusbupy

oYY #° ¥aav vsa“ o1]0q
vay 43 ‘va- 9T auoN| Z+* dWr (HNVI=Y HNVYL | (D¥vy)yupy -1adAy
HNVL «SWI
ZO¥Y 40 ¥aav vsa- (da’da) (zouv (A/X)
Ve LOYY #° ¥aav vsa- INVLYa=da | ZNvlva /LOUY) jusbuny
swng 9z auoN| e+ dWr (" W)ZNVYLV=Y INVLY (1o oly
44NS «SWI
3719nOa‘aq-‘va- e (da)NV1lva=da NV1lvd jusbupy
vay’‘aa‘va: 9z auoN| swng (NVLY=Y NVLY GN_,&TCE oly
3718N0a’ea” ‘va e (da)SODa=da $ODd
1vay‘e3t‘va: 9% SUON awng (¥)sO o=y SOD | (9¥y)so auiso)
I1gnoa‘da”‘va: 4% (da)NIsa=da NISQ
vay‘gat‘vas Z4 SUON| swog (NIS=Y NIS | (9¥w)uls aulg
(da)oLo01a=da | 01901d ol wy}1aoBo|
swng auwing auwing swing (¥)o1901v=Y | 01DOTVY | DYy~ Bo | uowwo)
3719n0Oa‘¥3"‘3a*‘va: ze (d1)901a=dq 2014 R wiyytobo]
Y333 vas 9T supg swog @)D0Tv=Y 20TV | 9Oy Bo1 | |pinipN
J1enoa’¥3*‘4a°‘va- e 0> DUV #! ¥l (da)dx3ada=da dx3a o [0
vy 43 var 9 0> OV el sung (¥)dxa=y dx3 Oyy | -ueuodxy
OYY 40 ¥aay vsa*
319n0Q’¥3 ‘va- 0> 0¥V 49 Z+° dWr (da)L¥osa=da 13080 jo0u
Va3 ‘'vas 9z 0>9¥V H S 4ANS «SWI (¥)L1yos5=Y oS 7 _92 2400bg
s||pD |PuJsiX] >omﬂmw< s10.11g aouanbag Bulj|py apow o_w“ﬂ_”:ﬂm uoljiutiaq uorjouny
mCOIUCDn_ _Oc(_mhxm
z-€ 291

3~7

The values of Ci are given below,

Value of i

f—

O N o0 hWwDN

The Science Library

Value of Ci

.0

34657359
.06005663
.00693801
.00060113
.00004167
.00000241
.00000119
.00000518

O O O O O O O O —

3.2.3 Natural and Common Logarithms (ALOG, ALOG10, DLOG, DLOGI10)

The exponent of the argument is saved as the integral portion of the result plus one. The fractional

portion of the argument is considered to be a number between 1 and 2. Z is computed as follows:

X
S

X+/3

N

Then:

fog, X = (ZC

NI

2!+1

Where:

n=2 (ALOG)
n =3 (DLOG)

The values of C are given below:

ALOG and ALOG10

2|+'|

C1 = 2.8853913
C3 = 0.96147063

C5 = 0,59897865

)

DLOG and DLOGI10

C] = 2.8853900
C3 =0.96180076
C5 = 0.57658434

C7 = 0.43425975

(continued next page)

The Science Library

The final computation is:
ALOG and DLOG: logeX = (logZX) (logeZ)

ALOG10 and DLOG10: IOQ.IOX = (|og2X) (Iog]OZ)

3.2.4 Sine and Cosine (SIN, COS, DSIN, DCOS)
This description also applies to the sub~functions .EB and .DB,

The argument is multiplied by 2/n for conversion to quarter-circles. The two low=order bits of the
integral portion determine the quadrant of the argument and produce a modified value of the fractional

portion (Z) as follows.

Low=Order Bits Quadrant Modified Value (Z)
00 I F
01 11 1-F
10 I -F
11 1% -(1-F)

The value of Z is then applied to the polynomial expression:

2i+1

n
sin X =(Z C2i+]z)
i=0

n=4for SIN, COS, .EB
n= 6 for DSIN, DCOS, .DB

The values of C are as follows:

SIN, COS, .EB DSIN, DCOS, .DB

C, = 1.570796318 C, = 1.5707932680

C, = -0.645963711 C, = ~0.6459640975

C, = 0.079689677928 5 = 0.06969262601

C, = -0.00467376557 C, = -0.004681752998

C, = 0.00015148419 C,, = 0.00016043839964
— -0.000003595184353
C, 5 = 0.000000054465285

(continued next page)

3-9

The Science Library

The argument for COS and DCOS is adjusted by adding /2. The sin subfunction is then used to

compute the cosine according to the following relationship:

COS X =sin %+X)

3.2.5 Arctangent (ATAN, DATAN, ATAN2, DATAN2)
The following description also applies fo the sub-functions .ED and .DD.

For arguments less than or equal to 1, Z = arg and:
n .
+
arctangent arg = (iz C raaal

=0 2i+1)
n = 3 for ATAN and ATAN2
n =7 for DATAN and DATAN2

For arguments greater than 1, Z = 1/arg and:
n

arctangent arg =—’27— -(EO 2i+]sz)
n = 3 for ATAN and ATAN2
n = 8 for DATAN and DATAN2

The values of C are given below.

ATAN and ATAN2 DATAN and DATAN2
€y =0.9992150 C, = 0.9999993329
C,=-0.3211819 C, = -0.3332985605
C = 0.1462766 C, = 0.1994653599
C,, = -0.0389929 C, = -0.1390853351

C, = 0.0964200441
C,q = -0.0559098861
C, 4= 0.0218612288
C, 5 = =0.0040540580

3.2.6 Hyperbolic Tangent

The hyperbolic tangent function is defined as:

2

tanh X| = (1- —5——)
I T+e2 X1

" is calculated as ZXIOQQS (xlogne will have an integral portion (I) and a fractional portion (F)).

(continued next page)

3-10

B

ey

o~

P i

Then:
& = 2hh
Where:
n .
(s cFly?
i=0
n=56
The values of Ci are:
Value of i
0
1
2
3
4
5
6

3.3 SUB-FUNCTIONS

The Science Library

Value of Ci

1.0

0.34657359
0.06005663
0.00693801
0.00060113
0.00004167
0.00000241

Table 3-3 describes the sub-functions which are included in the FORTRAN library. These functions

are referenced by intrinsic and external functions but are not directly accessible to the user via

FORTRAN. The sub-function .EB, for example, performs the computation of sine and is invoked by

the external function SIN. MACRO programs may reference sub-functions directly. Algorithms for

all sub—functions which have counterparts among external functions were given in the previous sub-

section. This leaves the two general sub-functions Logarithm, base 2 and polynomial evaluator. Their

algorithms are given below.

3.3.1 Logarithm, Base 2 (.EE, .DE)

The exponent of the argument is saved as the integer portion of the result plus one. The fractional

portion of the argument is considered to be a number between 1 and 2. Z is computed as follows:

_X=/2

S

3-11

{(continued page 3-14)

The Science Library

(eBpd jxau panuijuoo)
wisy is| / oU

uLiey puz/ by | 0=l

. 1+1zZ 2 %

spj o} ._xm:\—icu =UVA

u
wiey 4so| /D U eee
I+ (da
swaey Jo sequinu ~ /N-1ST1d ‘tya*%a)par=da| oa

’ Uieeoslys . . 1 0=l

. (Y oI O3 LizZ um
379N04a ISId 1vD _ UoiPnIpAY
WA VN suoN ANS +SWI =¥A | oiwoudog
3794N0d Y€ (da)4a=da Elel o uoypjndwon)
JAEL! 9¢ SUoN suipg @W4a=y | 437 N jp1jusuodx]
uoypyndwony
318noa’¥3” 4% 0> 9¥V ‘vl (da)aa*=a | 13a° (¢ @s0q)
Tvaeat| % 0> OV ‘¢l suwng @Iiz=y| 33° oyveo) wyyrao60]
14> (daga*=da | aa- uoipindwony
awpg 9Z SUON| awbg Ma3-=y asc (o¥v) _.|cn._ jusbupy oay

3|NS94 SUIDJUOD UIN{DI 4D
{6y SUIDUOD JO4P|NWNDDD
J19noa’oa’ 8¢ Buryoo|y Asgus py (da)ga°=da | €a° uoiypindwon
Tvay’'o3° 61 auoN ¥ANS «SWI (a3 =y | @3- (2¥v) uis aulg
$11PD silg o
|puUIBsX] \AUM‘SUVU,Q sio4l3 aousnbag Buijjp) Spow oWh&cJWm uotuiga(uoijoun

mCOI.UCDn_In_Dm

€-¢ °|9eL

3=12

The Science Library

COWY vsa-
LO¥VY vsa-
L+U+" dWF
d4NS «SWF

Ag psj|pD 9]

(uoyy o mmm.__o_oov

(Z9Yy 40 ssaippo)
(LOYY 40 ssa4ppo)

L+U+ dWIl
va© «SWr
0 1vDo¥dNs susunBuy
BUON] <.Z BUON] auLINOY mCm__UU <oZ <D. <.Z 195 _U._OCOO
(s419) auwDpN
|puIaEXg Aopanooy 510413 sousnbag Buij|py spow o1 |oquiAg uoljiullaq uolgouny

suolounf-qng
(u0D) g-¢ °|9pL

Vs

e

L

3-13

The Science Library

Then:
1,0 2i+1
log X =5 +(Z Cpr 2™)
i=0
n=2(.EE)
n=3 (.DE)
The values of C are:
LEE .DE
C] =2.8853213 C.l = 2.8853900
C3 =0,96147063 C3 =0.96180076
C5 =0.59897865 C5 = 0,57658434
C7 = 0,43425975

3.3.2 Polynomial Evaluator (.EC, .DC)
A polynomial is evaluated as:

2

_ 2 2
X=Z(Cy+Z°(C ..t 2°(C 27+ C)

3.4 THE ARITHMETIC PACKAGE

The arithmetic package contains the OTS arithmetic routines which are invoked by FORTRAN arith-
metic expressions. These routines may also be called directly by MACRO programs. Versions of
FORTRAN-IV designed for use with the Floating Point Processor (FPP) require only single integer

arithmetic routines, Double (extended) integer arithmetic will be handled by the hardware .,

The three major routines of the arithmetic package are INTEAE, RELEAE, and DOUBLE. INTEAE
contains integer arithmetic routines; RELEAE, real and floating arithmetic; and DOUBLE, double-

precision arithmetic.

A description of these routines is given in Table 3-4. In the "calling sequence" column, reference

is made to three accumulators - the A-register, the floating accumulator, and the held accumulator.
The A-register is the standard XVM hardware accumulator, The floating and held accumulators are
software accumulators which are part of the RELEAE package. The held accumulator is used as tempo~
rary storage by some routines. Both consist of three consecutive XVM words and have the format

shown below. (Negative mantissae are indicated by a change of sign.)

&

The Science Library

Held AC Labels Floating AC Labels
CEO1 LAA Exponent (2's complement)
17
CE02 AB Sign 'of ngh.—order
mantissa mantissa
0 1 17
CEO3 AC Low order mantissa
0 17

The format shown above is that used for double-precision numbers. Single~precision numbers must be

converted before and after use in the floating accumulator to the single-precision format:

Low=-order Exponent
mantissa (2's complement)
0 89 17
Sign of High-order
mantissa mantissa
0 1 17

RELEAE routines check for underflow and overflow and set a flag (. QVUDF) in the REAL store routine

.AH as follows:

Flag Meaning Action
non-0 positive value overflow - an attempt to store ¥ largest representable real
a REAL constant whose binary value stored (DOS);

exponent is greater than 3778

negative value underflow - an attempt to store zero is stored
a REAL constant whose binary
exponent is less than —4008

zero default value value is stored

The user may test this flag under program control using the logical function IFLOW. Recoverable OTS

messages are also given (see Appendix B, Section B.2).

Division by zero is also checked and a flag .DZERO set to zero (default value is‘7777778) in the
general floating divide routine (.CI). The result of the division is + the largest representable value.
An OTS error message is also given for this condition. The user may test .DZERO under program

control using the logical function IDZERO.

The Science Library

The flags .OVUDF and .DZERO can only be initialized by reloading the program, by a separate
user program, or by IFLOW or IDZERO. These functions are described below.

Routine IFLOW

Purpose Checks underflow and overflow
Call IORLV = IFLOW(I)

External Calls .DA

Errors None

The argument I indicates the check to be performed and values are returned as follows:

s Action Value
0 no check O(.FALSE) flag unchanged
<0 underflow check ~1(.TRUE) if underflow - flag set to 0;

else 0 (,FALSE) and flag unchanged

>0 overflow check -1(.TRUE) if overflow - flag set to zero;
else 0 (.FALSE) and flag unchanged.

Routine IDZERO

Purpose Checks for division by zero
Call IORLY = IDZERO (I)
External Calls .DA

Errors None

If =0, no check is made, IORLY = O(.FALSE) and the flag is unchanged. If [0, a check is made.
If an attempt at division by zero was made, IORLV = -1 (,TRUE) and the flag is reinitialized, Other-
wise the flag is unchanged and IORLV = O(.FALSE).

The Science Library

(ebnd jxeu panuijuoo)

*(3VILINI) 2Hewydy 1eboju] Ajuo asinbas suoisien 444,

—~ ®pIAIP
puspiAip 0SIAIp da/da=da AV* LYY /2O¥Y 9sloAd)y
JOSIAID puspiAip da/da=da I 9WY/19¥Y spiALQ
sor|diynw pupol|dij|nw d0xdd=da SY* | 79UV« lO¥Y A ow
jopijqns
oYV vsa-* A puanuiw pusynqgns da-da=da ny: LOYV-ZO¥Y as1aAdYy
YANS «SWI pusypiygns pusnuiw da-da=da WY° | ZOUY-1OYY $op14qNg
pusppo pusbnp da+da=da OV | O+ OYY PPV
$s24ppO anjpA | (da)dV"=da dv- V°N 21045
ssaJppo (da)ov - =da ov"* V°'N pooT
ZO¥Y SV ARE!
[U_._.wrcr_.:._<
1§92:14 uoisioald
VY -a|qnoq
CO_._.OC._._.O_Dm
\l _UCODCwE —ucmﬁotn_sm MIHHH N<. _,OM<INOM< mw.‘_®>mw_H
pusypiigns pusnuiw I-1=I AV® | ZO¥v-19Y¥y | uononigng:
UOISIAIP
puapIAIP Jos1AIp 1/1=1 v | 1O¥V/2OYVY asIoAdY;
ZO¥V DV1 JosiALp puspialp 1/1=1 | ZOUV/LO¥Y uoIsIAIQy
Y4NS «SWI A uo4pd
Jer|diyjnw pupoi|diyjnw IxI=1 av: IOV L OYY i oWt
IOy Jewsibey-y o1joW
WYLy
BUON ~ LO¥Y 1eBoayug
_UM__.__M*Wm_ souanbag Bui|jp) spow o.ﬂ“ﬂﬂm uoiiuieq uoioun
_mmov_oon_ oBWYIY
¥-€ °@lqoL
i PE ra

/

J A\

Y 37194noa

> 3VALNI

3-17

The Science Library

; ; \ / A J
(9Bnd jxsu panuijuod)
¥Aav O¥v Y04 3I9VI0LS 0 VD 5
40° «*SWI . . . Juswnbip
IX3-AUNI YIS 0 yp | e 9 VN 196 ioyg
an|pA aN|pA AN_VOU.HN_ 9" AN 205005 |o4uon :m_m
anjoA ()40 =y 40" V°N PIoH
49NS «SWI an|oA @ao> =y an’ VN 9z |pulioN
pusppp pusbnp dRI=Y DD | ZOUV+IOYY PPY
Jaijdiyjnw puooi|dijjnw Uxd=Y VD' | Z9¥V«1O¥V Aldinp
SvamH v
M)ve =y va- OAVY 5 ¥ a4pbaN
wnu ¢ 4 (M)XV =1 XY'* OUVY > 1 X1
NS =SWI wnu 4- 4 Jeba4ul (DMY =Y MY* OYVI Y 00| 4
OV 14 sessiBey-y
OLjBWiYldy
Buiyoo|4
- SplAIp
puspiAlp JoSIAID ¥/4=y NV* LOYV/2D¥Y 9510A9Y
J0SIAIP puspialp ¥/4=4 V° | TOUV/19¥V apiAaLQ
oijdiyjow - pupdp|diyjnw Y A=Y AV | ZO¥V=LDUY Adia
1opayqns
ZO¥Y vsa- puanuiw pusypaiqgns y-y=y WY LOYV-2OYY 9519ADY
W_mDm %WE_. —ucmr_o._._.o_Dm _UCQDC_E MIN_HN_ _..<. NOM<I_.OM< .—UU.I&DW
pusppo pusbno Y=y IV' | ZOUV+l OuY PPV
sselppp oNn|pA (HY =Y HY* V°N 84048
$Sa.1ppo Wov- =y oV AN proT
= P ewrr (Bu
/ ¢Odv U_ML_M ~-}poj} sepn|o
-u1) oW
-Yilly [ody
S1PD PWEN uolyiuye uoijoun
|puIB X3 souanbeg Bul||0D eapow o1joquiAg Huteqg l4oung

abB03jo0d SliowWyllly

(uoD) ¥-¢ °|9PL

> VI3

3-18

The Science Library

* (uoisioaud ajqnop Joy | ‘uoisiosid e|Buls Joy O0f) 419 4ueijonb
jupoiytubis Jsoo| 8y st ZJSNOD °(uotsiosad a|qnop Joj iy~ ‘uoisioaid o(buls 1oy jg~) patniouab aq o4 sjiq 4o Jequnu sy} sa4p2ipul | [SNOD
*1D° jo uoisieA JyI-NON @4t Aq A[uo pasn jou aup Aoyt “aeremoy ‘suotpirado JyI-NON Pup 3y3 yioq 404 paiinbas eip ZISNOD PUP [ISNOD .

*GOID U1 PaADs st gy ° o ubis ay] *3D* Ul palois si (Z0ID pUP gy 4o siiq ubis ayy Jo YO BAISN|OxX) §|nsal By jo ubis ayj
1

(1Q) vr- =g vre NVl EISEN]
IvaY | ¥ENS =SWI < oqunN“d*4 (1a) Xr* =1 Xr® DN\ x14
Tvay’'ad: JoquaN g4 ["qneg (1a) mre=y MI° DAV~ oo} 4

O AR E OW’ oV
~ spiAlp
puspiAlp JOSIALP 1a/1a=ia N | 19O¥V/2odY 9sIaADY
J0SIALD puUSpIAIP 1a/1a=1d e | Z9ouv/19¥Y epialQ

sot|diyjnw pupdi|diyjnw 1d+1a=id A | ZO¥Vx1O¥Y Ao INI

Joouyqns
oY vsa- pusnuiw pusypuiqns Ia-1a=ta W | 1O¥V-29%Y oSIaASY
NS «SWI pusypiiqns pusnulw Ia-1a=1a rre | zouv-19%v 1o0.44qNg
pusppo pusbno la+a=la Ir° | ZOWV+loYyY PPY
ssaJppp an|pA 1Q) Hr-=1d Hre V°N 8lo4g
9 ss24ppo (1q) 4r-=1a or: VAN pro

A} \ OW’' DV

LOvyY
ZLSNOD . uBis
LLISNOD an|oA YHD =Y HD® VN pup punoy
HGNS «SWI pusplAip JOSIAIP ¥/4=y 1D° | Z9UV/19¥V apiAlQ

2z
(1uoD)
UZ&E&&;(
JV° a13H oV 14 Buiyoo|4
m__UU wEOZ

PULOI @ousnbag Buij|oD opowW 51 joquis uoljiuijeQ uolounyg

abp3ong DlewyiIly
(uoD) y-¢ 2|9pl

s
«

3-19

&

e

7T

CHAPTER 4
UTILITY ROUTINES

Two types of subprogram are described in this chapter - OTS routines, automatically invoked by
FORTRAN statements, and external subprograms which may be invoked via a FORTRAN CALL statement.
Both types are accessible to MACRO programs,

4.1 OTS ROUTINES

OTS utility routines perform a number of functions specified by FORTRAN statements. These functions
of FORTRAN, like the input-output functions discussed previously, use OTS as an interface between

the user program and the monitor environment in which it will operate.

Each of these routines is described below,

Routine .SS
Purpose Calculates the address of an array element
Calling .GLOBL .SS
Sequence JMS* .SS
.DSA address of fifth word of array
5s descriptor block

LAC or LAC* first subscript value
LAC or LAC* second subscript value,
omitted if only one subscript
LAC or LAC* third subscript value,
omitted if only one or two subscripts
DAC into location at which subscript is used
(This instruction is XCT'd by .SS)

(returns at location following DAC, with one's
complement of mode of array in AC)

External Calls None

Errors None

.SS references the array-descriptor block associated with the array whose element is to be located.

An array descriptor block is a five-word table with the contents described below.

4-1

Utility Routines

Word 1 0 | NDIM 0 Data
-1 : Mode
0 12 16 17
Word 2 Size (in words)
Word 3 0 - for one-dimensional array

Size of first dimension

Word 4 0 - for one~ and fwo-dimensional arrays
Size of the first two dimensions

Word 5 Address of first word of array

Size is determined by multiplying the dimensions of the array by the number of words (N) used for a
data item of the specified mode (M). Thus, an INTEGER array defined by DIMENSION (2,2,2) has
the size 8 in word 2, the size 2 in word 3, and the size 4 in word 4. A REAL array of the same

dimensions will have 16, 4, and 8 in these locations.
NDIM is the number of dimensions in the array.

The values of M and N for the various data modes are:

Array Mode M N
INTEGER, LOGICAL 00 1
DOUBLE INTEGER 11 2
REAL 01 2
DOUBLE PRECISION 10 3

The address of an array element A(K] ,K2,K3) is calculated by .SS using the following formula:

addr = WD4 + (K =1) * N+ (K,-1) * WD2+ (K,=1) * WD3

FORTRAN subprograms maintain an array descriptor block that is local for every array declared, in-
cluding dummy arrays. Further, the dimensioning information of a dummy array may include inte-

ger dummy parameters, such as in

SUBROUTINE SUB (X,ARRAY,Y,I,J)
DIMENSION ARRAY (5,1, J)

P

Such arrays are called adjustable arrays, In systems preceding the XVM, it was necessary fo use
subroutines ADJ, ADJT, ADJ2, or ADJ3 to perform this type of operation; it is now handled auto-
matically, by implicitly generated calls to the OTS subroutine .DJ. The MACRO program, if it
uses «DA fo fetch arguments, will not have access to the ADB in a calling program. It will prob-

ably need a local ADB, and to make use of .DJ. Further information about this appears in Section

Utility Routines

5.1,
Routine .DJ
Purpose Completes dimensioning information in
array descriptor block of an adjustable array
Calling JMS* .DJ
Sequence .DSA address of word 5 of array
descriptor block
.DSA integer value of constant first
.DJ maximum dimension
or
.DSA 400000 + address of dummy integer
used as first maximum dimension
.DSA same for second subscript, if any
.DSA same for third subscript, if any
External None
Calls
Errors None

A .DJ call is generated for each adjustable array in a subprogram, 1t uses constant and adjustable
dimensions fo complete the dimensioning information in the array descriptor block, to the format

described above.

Routine .GO
Purpose Computes index of computed GO TO
Calling LACV / index value in A-register
Sequence JMS* GO
=N / number of statement address
COTO STMT(1)
STMT(2)
STMT(N)
External Calls OTSER

Errors

OTS 7 - illegal index (<0)

STOP

PAUSE

OTSER

Utility Routines

Routine ST

Purpose Processes STOP statement (returns to monitor)

Calling LAC (number) /octal number to be printed

Sequence JMS* ST

External Calls .SP

Errors None

Routine PA

Purpose Processes PAUSE. Waits for 4P and returns control
to user program (DQOS), waits for operator to RESUME
task being executed (RSX).

Calling LAC (humber) /octal number

Sequence JMS* PA

External Calls. SP

Errors None

Routine .SP

Purpose Prints octal number for PAUSE and STOP (DOS).
Zero assumed if none supplied. See 4.4 for RSX
behavior.

Calling LAC (nhumber) /octal integer

Sequence JMS* [SP

.DSA (control return for PAUSE)
LAC (first character)

°

LAC (sixth character)

External Calls None

Errors None

Routine .ER ’

Purpose To print error messages on Teletype and take
action according to class of error

Calling JMS* ER

Sequence .DSA (error number)

External Calls None

Errors None

I3

Utility Routines

Routine ZR
Purpose Initializes END and ERR exits in READ and WRITE
statements
Calling JMS* .ZR
Sequence .DSA END address
OTSER .DSA ERR address
(continued) (The AC is saved and restored to accommodate Direct

Access |/O. Both addresses appear if either END

or ERR is coded; if one of the two exits is not specified
a zero appears instead of an address. The call sets
— a gate in OTSER to allow branching to the specified

~ address when an OTS error would have occurred in the
absence of the special exit.)

P External : None
’ Calls
e
Errors None

Recoverable errors are indicated when bit 0 of the error number is a 1. In this case, the AC and link
e : are restored to their original contents and control is returned to the calling program at the first loca-

tion following the error.

Unrecoverable errors are indicated when bit 0 of the error number is 0. Control is returned to the
monitor by means of an .EXIT function. In the case of an unrecoverable error in a FORMAT statement,
the current 5/7 ASCII word pair of the erroneous FORMAT is also printed, The calling sequence for
.ER for a FORMAT statement differs from other calls and is:

o
~ JMS* .ER
.DSA 12 / error number
LAC chars / current 5 characters
o LAC chars
| PARTWD
Routine .PB
Purpose Part word fetch result in AC or ACMQ
Calling JMS* | PB
Sequence .DSA address
External Calls None
Errors None

4-5

PARTWD (continued)

Utility Routines

[

Routine .PC

Purpose Stores contents of AC or ACMQ
Calling JMS* PC

Sequence .DSA address

External Calls None

Errors None

4.2 FLOATING

POINT PROCESSOR ROUTINES

Routine AX
Purpose FPP version of software .AX
Routine AW
Purpose FPP version of software AW
General Routine LA
:::::‘- Purpose Loads high order mantissa of FPP AC into the
Routine regular AC
.FPP Routine ZB
Purpose Initializes FPP error handling
Routine Entry point defined by JEA address
Purpose Error handling
Extended Routine .ZC
Integer Purpose Converts integer in CPU AC to extended integer in
(Double FPP AC
Integer) Routine .ZD
Interface
Routines Purpose Converts extended integer in FPP AC fo single
integer in CPU AC
Routine ZE
Purpose Return, in AC, @ if DI=@, 1 if DI>f#, -1 if Di<fd.

4,3 FORTRAN-CALLABLE UTILITY ROUTINES

These routines are described in Table 4-1,

4,4 RSX LIBRARY (.LIBRX BIN OR .LIBFX BIN) ROUTINES

A special set of routines is provided for use with XVM/RSX. These libraries include, in
addition to the subprograms described previously, numerous FORTRAN=callable external subrou-

tines for operations peculiar to RSX, For further details refer to the XVM/RSX System Manual ,

4-6

™

Utility Routines

(9Bpd yxeu panuiyuod)

*asodund sjy} 4o pesn aq upd seunos pai|ddns XSy PYIO * XSY Y4iM paioddns JoN .

* jndjno sebossaw
ou ‘0> N 4
*G/ = N sewnssp
¥3SLO ‘uenib

ou st 135443
4 ‘uoissaaddns

eJojaq ndsno
2q o4 sbossew
sowl} jo Joquinu

d3aS10O
Aq 4ndyno sious

OlelWYLLID Swl}

Buiaib sebagul = N esoyp ~uni Jo Jaquinu Buljpuoy
(N)135¥¥3 11vD |yt sjoyuoy | 1354¥3 Jou3
V_UO~U 1104S
oj oz = 440]
spuooss saulyobw
40 sy4ust = 0 DISI Z4og 1o zypg uo
m_UCOUOm = Umm_— m_UCOUGw uﬁO wr_.—cw._
sanuIW = NTWI 249U pup ‘spuoosss
SuoN YIWIL® (44017010381 ‘sojnuiw up swiy
va: IWIL @985 "D3STNIWDOLIWIL 11VD pasdo|s spJooay : OLIWIL
wpaBoid
dous s,4osn o U]
[V @#nooxe o} swyy syndino] (3eo]2 sdoy d A
. f olaz-uou o} Bulyjas Joyp juiod Aup
SI'WI(00L' P)3LRIM - teu_uo_ L souyopw 10 BALD
L =401 oL bz = 4401 240G 40 2409 5q Aow [|po
. spuodes = H3S] uo spuodes pub suo Ajuo
YIWIL® . v sejnuIW = NJWI :9daym sajnulw Ul awiy - Buijpupy
SUON va: (01°SIYWI)IWIL 11D (4401° 23S NIWDIWIL 11vD pasdp|e spioday | IWIL 291D
m___UU OEUZ
SJotd so |dwpx nbog B da
3 [ousaixg | 3 @ouenbeg Bul||jpD) ssodiny AUINT au1inoy
saul4noy A4 |1 2]9P][PD-NVYL1¥O 4
l-¥ °l9°L
& & S ﬂ mu . o

e

4-7

Utility Routines

OTS routines which have been modified for RSX are:

FIOPS - modified to use the RSX 1/O CAL'S. .FP, which initializes the 1/O status table

SPMSG

STOP

PAUSE

OTSER

has been converted to a dummy subroutine.

If « Negative Event Varidble occurs as a result of a FIOPS issued /O request, an
error message (OTS 20) is issued and the task is EXITed.

rewritten to include the task name. The message is output to LUN 4 in the
following format:

STOP - 000001 - TSKNAM

The PAUSE message is always output, but the STOP message is output only if
its argument is non=zero.

uses RSX EXIT CAL
SUSPENDs the issuing task. To continue, the RESUME MCR function is used.

passes its name and an octal OTS error message number to SPMSG.

Additional routine used by RSX for bank/page mode determination is .BP.

Two additional OTS routines are given below:

.ASCII
fo

. SIXBT
Conver-
sion

.DAA is a routine which performs the argument list transfer function formerly performed by .DA. The

calling sequence has not been changed, but the transfer stops with the end of the shortest argument.

Routine LFTSB
Purpose | To convert two words from ,ASCII to , SIXBT
Calling Sequence: SUBA 0
JMS* _DAA / get call args
JMP ARGEND
FROM 0 / Pointer to ASCII word=-pair
ARGEND JMS* ,FTSB
.DSA FROM
.DSATO
TO BLOCK 2 / two .SIXBT words

AT

CHAPTER 5
FORTRAN=IV AND MACRO

In previous chapters, MACRO calling sequences have been given for OTS and Science Library Sub-
programs. This general form is used in a MACRO program to call any FORTRAN external subroutine
or function. A FORTRAN program may also invoke MACRO subprograms. The method for each type

of linkage is given below.

5.1 INVOKING MACRO SUBPROGRAMS FROM FORTRAN

A FORTRAN program may invoke any MACRO program whose name is declared in a MACRO .GLOBL
statement. The MACRO subprogram must also include the same number of open registers as there are
arguments. These will serve as transfer vectors for arguments supplied in the FORTRAN CALL statement
or function reference. A FORTRAN-IV program and the MACRO subprogram it invokes are shown

below. More extensive examples are given in Appendix C.

FORTRAN MACRO
™ JTITLE MIN
e TEST MACRD SUBR SOLOBL MIMe 1A
o READ & NUMBER &7 MIN ") AENTRY
i JHEK o [AEENET
1 READ CLe1O0Y A AORGUM
100 FORMAT (EL12.4) NI P S AJURMF AROUNT
C JTHE ARGUMENTS .
(" NEGATE THE NUMBER MINL LT18A 9] SaRGL
o AND FUT LT IR B MINZ 15 A v
o MEINL
Call, MIN (AR ML /L SHEG
™ MINL JROINT TO SEC
C WRITE QUT NUMBER (@) MIN2 A0 A aND .
¢ LAk MInL AEECOND WORD OF A
WRITE (2100 8B Bl JHTON RBRIT = 1.
ST (il 7/
ENT AR 4
Ak MEIN2 AETORE ITH SECOND
AWORD O B
Pk MIN AEXTT

« FNT

5-1

FORTRAN=IV and MACRO

The FORTRAN statement CALL MIN(A,B) is expanded by the compiler to:

00013 JMS* MIN / to MACRO subprog
00014 JMP $00014
00015 .DSA A
00016 .DSA B
$00014 = 00017

When the FORTRAN-IV program is loaded, the addresses (plus relocation factor) of A and B are stored
in registers 15 and 16, respectively. When the MACRO program invokes .DA, these addresses are

stored in MINT and MIN2 and the values themselves are accessed by indirect reference.

Arguments are, as described above, transmitted by DA using a single word. Bits 1-17 contain the
17-bit address of the first word, FORTRAN uses bit O to indicate that the word specifying the argu-
ment contains the address of a word containing the address of the first word of the argument. The
MACRO argument word always contains the address of the first word of the argument, For array

name arguments (unsubscripted), the address of the first word in the array is given, If the MACRO
program needs to know the array dimensions, either they must be passed as parameters or DA must

not be used. The parameter list entry in a calling FORTRAN program for an array reads .DSA 400000
+address of last word of the Array Descriptor Block (ADB). From this, if ,DA is not used at the

called entry point, the address of the ADB can be obtained.

For external functions, the MACRO subprogram must return with a value in the AC (LOGICAL,
INTEGER), AC-MQ (DOUBLE INTEGER) or in the floating accumulator (REAL or DOUBLE PRECISION),

5.2 INVOKING FORTRAN SUBPROGRAMS FROM MACRO

The MACRO calling conventions for FORTRAN subprograms are: the name of the subprogram must be
declared as global; there must be a jump around the argument address; and the number and mode of

arguments in the call must agree with those of the subprogram. This form is shown below.

LTITLE MACPRG

.GLOBL SUBR

JMS* SUBR

JMP AN+ / jump around arguments ignored by .DA
.DSA ARGI / address of first argument - bit 0 set to 1
.DSA ARG2 / indicates indirect reference

.DSA ARGN

When the subprogram is compiled, a call is generated to .DA which performs the transmission of

arguments from MACRO, The beginning of a subroutine might be expanded as follows,
5-2

P

FORTRAN=IV and MACRO

C TITLE SUBR
SUBROUTINE SUBR(A,B)

000000 CALO

000001 JMS* DA

000002 JMP $000002

000003 .DSA A

000004 .DSA B

$ 000002 = 000005

If a value is to be returned by the subroutine, it is most convenient to have this be one of the calling
arguments. An external function is called in the same manner as a subroutine but returns a value in

the AC (single integers), AC-MQ (double integers), or floating accumulator (real and double-precision),
To store the AC, the MACRO program uses a DAC instruction. Values from the floating accumulator
may be stored via the OTS routines .AH (real) and .AP (double-precision). For FPP systems, values

are returned in a hardware accumulator and stored with an FST instruction.

A number of examples of MACRO-FORTRAN linkage are given in Appendix C,

5.3 COMMON BLOCKS

FORTRAN COMMON blocks (and block-data subprograms) may be linked to MACRO programs.

Note that if the values are REAL (two words) or DOUBLE PRECISION (three words), the MACRO program

must account for the number of words when accessing specific variables.

DOS and RSX MACRO programs may also use the .CBD pseudo-op. For instance
BASE1 .CBD NAME, 1

will provide the base address of the common block NAME in the word that is created and labeled
BASET; the size of the common block is 1. For blank common (which is given the special system

name of .XX), use for example:

BASE2 .CBD XX, 2

5-3

APPENDIX A

FORTRAN LANGUAGE SUMMARY

A.1 EXPRESSION OPERATORS

Operators in each fype are shown in order of descending precedence.

Type Operator Operates Upon
Arithmetic *E exponentiation arithmetic or logical constants,
- unary minus variables, array elements,
*, multiplication, function references and
division, expressions
+, - addition and sub-
traction (but not
unary minus)
Relational .GT, greater than arithmetic or logical constants,
.GE. greater than or equal to variables, array elements,
LT, less than function references and expres-
.LE. less than or equal to sions (all relational operators
EQ. equal to have equal priority)
.NE. not equal to
Logical NOT. .NOT.A is true if and logical or integer constants,
only if A is false variables, array elements,
function references and expres-
LAND, A.AND B is tfrue if and sions
only if A and B are both
true
.OR. A.OR.B is true if and
only if either A or B or
both are true
.XOR. A.XOR.B is frue if and

only if A is true and B
is false or B is true and
A is false

A-1

FORTRAN Language Summary

A.2 STATEMENTS

The following summary of statements available in the FORTRAN IV XVM language defines
the general format for the statement. If more.detailed information is needed, the reader is re~
ferred to the Section(s) in the FORTRAN [V XVM Language Manual dealing with that particu=

lar statement,

FORTRAN IV XVM
Language Manual
Statement Formats Effect Section

Arithmetic/Logical Assignment
V.=V, :..' = .
V27 Ve 3.1
v is a variable name or an array element name
e is an expression
The value of the arithmetic or logical
expression is assigned to each variable,

from right to left,

Arithmetic Statement Function

flpl, pl oo o)=e 8.1.1
f is a symbolic name
p is a symbolic name
e is an arithmetic expression

Creates a user-defined function having
the variables p as dummy arguments.
When referenced, the expression is
evaluated using the actual arguments
in the function call.

ASSIGN s TO v 3.3
s is an executable statement label
v is an integer variable nome

Associate the statement number s with
the integer variable v for later use in
an assigned GO TO statement,

7%

FORTRAN Language Summary

FORTRAN IV XYM
Language Manual

ke

%

Fan

Statement Formats Effect Section
BACKSPACE u 6.8.2
] is an integer variable or constant
The currently open file on logical unit
number u is backspaced one record.
BLOCK DATA 8.1.5
Specifies the subprogram which follows
as a BLOCK DATA subprogram,
CALL s[(af,a] ess)] 4,5
s is a subprogram name
a is an expression, a procedure nhame, or an array name
Calls the SUBROUTINE subprogram with
the name specified by s, passing the
actual arguments a to replace the dummy
arguments in the SUBROUTINE definition.
COMMON [/[cb]/] nlist [/[cb]/ nlist] ... 5.4
cb is a common block name
nlist is a list of one or more variable names, array names, or
array declarators separated by commas,
Reserves one or more blocks of storage space
under the name specified to contain the vari-
ables associated with that block name.
CONTINUE 4.4
Causes no processing, and is most often used
to terminate DO loops.
DATA nlist/clist/[,nlist/clist/] ¢oo 5.7

nlist is a list of one or more variable names, array names,
or array element names separated by commas, Subscript
expressions must be constant,

clist is a list of one or more constants separated by commas,
each optionally preceded by j*, where j is a nonzero,
unsigned integer constant,

Causes elements in the list of values to
be initially stored in the corresponding
elements of the list of variable names.,

A-3

FORTRAN Language Summary

FORTRAN IV XVM
Language Manual

Statement Formats Effect Section
DECODE (c,alf][, ERR=s]) list] 6.9
c is an integer expression

a is an array name

f is a FORMAT statement label or array name
s is a statement label

list is an /O list

Changes the elements in the [/O list from
ASCIl into the desired internal format; ¢
specifies the number of characters, f speci-
fies the format, and a is the name of an
array containing the ASCIIl characters to be
converted,

DIMENSION a(d){,a{d)] ... 5.3
a(d) is an array declarator
Specifies storage space requirements for
arrays.,
DO s i = vi1,v2[,[-]v3] 4,3
s is the ldbel of an executable statement
i is an integer variable name
vn are integer expressions
T. Seti = vl
2, Execute statements through statement number s
3. Evaluate i = i+v3
4, Repeat 2 through 3 for INT((v2-v1)/v3)
iterations
ENCODE (c,q,[f]{, ERR=s])[lisf] 6,9

c is an integer expression

a is an array name

f is a FORMAT statement label or an array nome
s is a statement label

Jist is an 1/0 list

fir

e

FORTRAN Language Summary

FORTRAN [V XVM

Language Manual

o

o

#

Statement Formats

Effect

ENCODE (cont.)

Section

Changes the elements in the list of vari-
ables into ASCIl format; c specifies the
number of characters in the buffer, f
specifies the format statement number, and
a is the name of the array to be used as

a buffer,
END 4.9
Specifies the physical end of a program
unit,
ENDFILE u 6.8.3
u is an integer variable or constant
An end-file record is written on logical
unit u, following output statements to
that unit,
ENTRY nam(p[,pl+ss) 8.1.4
nam is a symbolic name
P is a symbolic name
Defines an alternate entry point within
a SUBROUTINE or FUNCTION subprogram,
EQUIVALENCE (nlist)[, (nlist)]ss. 5.5
nlist is a list of two or more variable names, array names, or
array element names separated by commas. Subscript ex-
pressions must be constant.
Each of the names (nlist) within a set of parentheses
is assigned beginning at the same storage location,
EXTERNAL v[,v]... 5.6
v is a procedure name
Informs the system that the names specified
are those of FUNCTION or SUBROUTINE
programs
EXTERNAL v[,V]eso 5.6

v

is a procedure name

Informs the system that the names specified
are user-defined,

A=5

Statement Formats

FORTRAN Language Summary

Effect

FORMAT (field specification, «s)

Describes the format in which one or more

records are to be fransmitted; a statement

label must be present.

[typ] FUNCTION nam(pl,p]ss.)

typ

nam

GO TO s

GO TO (list), v

slist

is a type specifier

is a symbolic name

is a symbolic name

is an

Begins a FUNCTION subprogram, indicating
the program name and any dummy argument
names, p. An optional type specification
can be included,

executable statement label

(Unconditional GO TO) Transfers control
to statement number s.

is a list of one or more executable statement labels
separated by commas.

is an integer variable

GO TO v, (slist)]

Vv

slist

(Computed GO TO) Transfers control to
the statement label specified by the value
ve (If v=1 control transfers to the first
statement label, If v=2 it transfers to the
second statement label, efc.) If v is less
than 1 or greater than the number of state=-
ment labels present, no transfer takes place.

is an integer variable name

is a list of one or more executable statement labels
separated by commas

(Assigned GO TO) Transfers control to
the statement most recently associated with
v by an ASSIGN statement.

FORTRAN IV XVM

Language Manual

Section

7.1 -7.8

8.1.2

4.1.1

4.1.2

4.1.3

FORTRAN' Language Summary

P FORTRAN IV XVM
‘ Language Manual
Statement Formats Effect Section
IF (e) v1,v2,v3 4,2,1
e is an expression
vi are executable statement labels or variables to which

statement labels have been ASSIGNed

* (Arithmetic IF) Transfers control to state-
ment number vi depending upon the value
of the expression, If the value of the ex-
pression is less than zero, transfer to vi;
if the value of the expression is equal to
zero, transfer to v2; if the value of the

Wi
AT

ATy expression is greater than zero, transfer to
. v3.
IF (e) st 4,2,2
e is an expression
st is any executable statement except @ DO or a logical

IF statement

o (Logical IF) Executes the statement if
the logical expression is true.

IMPLICIT typ (al,aleeo),typlal,alaee)lees 5,1
typ is a data type specifier
a is either a single letter, or two letters in alphabetical

order separated by a dush (i.e., x-y)
Pl
e The elements a represent single (or a
range of) letter(s) whose presence as
the initial letter of a variable speci-
fies the variable to be of that type.
PAUSE [disp] 4,7

disp is an octal integer constant

Suspends program execution and prints
the display, if one is specified,

PRINT See WRITE for which PRINT is a synonym, 6.4.5
READ (u,[fl[, END=s][, ERR=s])[list] 6.4.1
u is an integer variable or constant
f is a FORMAT statement label or an array name

s is an executable statement label

A-7

FORTRAN Language Summary

FORTRAN IV XVM
Language Manual
Statement Formats Effect Section

READ (u, [f][, END=s][, ERR=s])[list] (cont.)
list is an /O list

(Formatted Sequential) Reads at least one
logical record from device u according to
format specifications f and assigns values

to the variables in the optional list,

READ (u'r ,[fl[, ERR=s])(list) 6.6.1
u is an integer variable or constant
r is an integer expression
f is a FORTRAN statement label or an array name
s is an executable statement label
list is an /O list

(Formatted Direct Access READ) Reads
record number r from unit u and assigns
values to the elements of the list accord-
ing to format f,

READ(u[, END=s][, ERR=s])[list] 6.3.1
u is an integer variable or constant
s is an executable statement label
list is an /O list

(Unformatted Sequential READ) Reads one
unformatted record from device u, assign=
ing values to the variables in the optional

list,
READ(u'r[, ERR=s])[list] 6.5.1
u is an integer variable or constant
r is an integer expression
s is an executable statement label
list is an 1/O list

(Unformatted Direct Access READ) Reads
record r from logical unit u, assigning
values to the variables in the optional list,

A-8

FORTRAN Language Summary

Vs FORTRAN IV XVM
Language Manual
Statement Formats Effect Section
RETURN [v] 4.6
v is an integer variable

Returns control to the calling program from
the current subprogram, If v is specified,
control is returned to the statement label
associated with v in the subprogram call.

REWIND u 6.8.1

e
u is an integer variable or constant

P Repositions logical unit number u to the
beginning of the physical medium or to
the currently opened file.

STOP [disp] 4.8
disp is an octal integer constant

Terminate program execution and print
the display, if one is specified,

SUBROUTINE nam{(p{,p] e«s)] 8.1.3
nam is a symbolic name
p is o symbolic name
Begins a SUBROUTINE subprogram, indi-
cating the program name and any dummy
e argument names, p.
TYPE See WRITE, for which TYPE is a synonym.
Type Declaration
7
typ v, Vliees 5.2
typ is a data type specifier, one of:
DOUBLE PRECISION
REAL
DOUBLE INTEGER
INTEGER
LOGICAL
v is a varidble name, an array name, a function or function
entry name, or an array declarator.

FORTRAN Language Summary

FORTRAN 1V XVM
Language Manual
Statement Formats Effect Section

typ VI,Vleo. (cont.) (Type Declarations) The symbolic names, v,
are assigned the specified data type in the
program unit,

WRITE (u, [fl[, ERR=s])[list] 6.4.2
u is an integer variable or constant
f is a FORMAT statement label or an array name
s is an executable statement label
list is an 1/O list

(Formatted sequential WRITE) Causes one or
more logical records containing the values of
the variables in the optional list to be written
onto device u, according to the format speci-

fication f,
WRITE (u'r, [f][, ERR=s])[list] 6.6.2
] is an integer variable or constant
r is an infeger expression
f is a FORMAT statement label or an array name
s is an executable statement label
list is an 1/O list

(Formatted Direct Access WRITE) Causes a
record formed from the list and format f to
be written onto record r of unit u,

WRITE (u[, ERR=s])[list] 6.3.2
u is an integer variable or constant
s is an executable statement label
list is an 1/O list

(Unformatted Sequential WRITE) Causes one
unformatted record containing the values of

the variobles in the optional list to be writ=-
ten onto device v,

£

FORTRAN Language Summary

FORTRAN IV XVM

Language Manual

Statement Formats Effect Section
WRITE (u'r[,ERR=s]) [list] 6.5.2
U is an integer variable or constant
r is an integer expression
s is an executable statement label
list is an /O list
(Unformatted Direct Access WRITE) Causes a
record containing the values of the variables
in the list to be written onto record r of logi-
cal unit v,
END=s,ERR=s 6.7

(Transfer of control on end-of-file or error
condition) Is an optional element in each
type of /O statement allowing the program
to fransfer fo statement number s on an end-
of-file (END=) or error (ERR=) condition.,

FORTRAN Language Summary

Table A-1
FORTRAN Library Functions

ARGUMENT RESULT
FORM DEFINITION TYPE TYPE
ABS(X) Real absolute value Real Real
IABS(I) Integer absolute value Integer Integer
DABS(X) Double precision absolute value Double P Double P
JABS(I) Double Integer absolute value Double | Double |
FLOAT(l) Integer to Real conversion Integer Real
IFIX(X) Real to Integer conversion
IFIX(X) is equivalent to INT(X) Real Integer
SNGL(X) Double precision to Real conversion Double P Real
DBLE(X) Real to Double precision conversion Real Double P
JFIX(X) Real to Double integer conversion Real Double 1
JFIX(X) Double precision to Double integer
conversion Double P Double |
ISNGL(I) Double integer to integer conversion Double | Integer
JDBLE Integer to Double integer Integer Double |
JDFIX(X) Double precision to Double integer
conversion Double P Double |
FLOATJ(1) Double integer to Real conversion Double 1| Real
DBLEJ(I) Double integer to Double precision
conversion Double | Double P
Truncation functions return the sign of
the argument * largest integer < |arg |
AINT(X) Real to Real truncation Real Redl
INT(X) Real to Integer truncation Real Integer
IDINT(X) Double precision to Integer truncation Double P Integer
JINT(X) Real to Double integer truncation Real Double |
JDINT(X) Double precision to Double integer
truncation Double P Double 1
Remainder functions return the remainder
when the first argument is divided by
the second,
AMOD(X,Y) Real remainder (x/y<131072) Real Real
MOD(l, J) Integer remainder Integer Integer
DMOD(X,Y) Double precision remainder (x/y<131072) Double P Double P
JMOD(1, J) Double integer remainder (I/J<131072) Double | Double |
Maximum value functions return the
largest value from among the argument
list; > 2 arguments,
AMAXZ(,J, oo.) Real maximum from Integer list Integer Real
AMAX1(X,Y, oes) | Real maximum from Real list Redl Real
MAXZ (1,J, 000) Integer maximum from Integer list Integer Integer
MAXT(X,Y, .00) Integer maximum from Real list Real Integer

(continued on next page)

£,

FORTRAN Language Summary

Table A-1 (Cont.)
FORTRAN Library Functions

s

ARGUMENT RESULT
FORM DEFINITION TYPE TYPE
DMAXT(X,Y, s..) | Double precision maximum from Double
precision list Double P Double P
JMAX@(,J, .0) Double integer maximum from Double
integer list Double | Double 1
Minimum value functions return the small-
est value from among the argument list;
> 2 arguments,
AMING(, J, ...) Real minimum of Integer list Integer Real
AMINT(X,Y,...) | Real minimum of Real list Real Real
MING(,J,...) Integer minimum of Integer list Integer Integer
MINT(X,Y, ..0) Integer minimum of Real list Real Integer
DMINT(X,Y,...) | Double minimum of Double list Double P Double P
JMING(, D, ..0) Double integer minimum of Double integer
list Double | Double |
The transfer of sign functions return (sign
of the second argument) * (absolute value
of the first argument).
SIGN(X,Y) Real transfer of sign Real Real
ISIGN(l, J) Integer transfer of sign Integer Integer
DSIGN (X,Y) Double precision transfer of sign Double P Double P
JSIGN(1, J) Double integer transfer of sign Double 1 Double- [
Positive difference functions return the
first argument minus the minimum of the
fwo arguments.
DIM{X,Y) Real positive difference Real Real
IDIM(, J) Integer positive difference Integer Integer
JDIM({1, J) Double integer positive difference Double | Double 1
Exponential functions return the value
of e raised to the argument power,
EXP(X) e:: x > @) Real Real
DEXP(X) e (x Zﬂ) Double P Double P
ALOG (X) Returns |oge(X) Real Real
ALOGIg(XX) Returns log] X) x > Real Real
DLOG(X) Returns log %() - Double P Double P
DLOGI14(X) Returns log]eg(X) Double P Double P
SQRT(X) Square root of Real argument (x > @) Real Real
DSQRT (X) Square root of Double precision argument (x > ff) Double P Double P
SIN(X) Real sine Real Real
DSIN(X) Double precision sine Double P Double P

A-13

(continued on

next page)

FORTRAN Language Summary

Table A-1 (Cont.)
FORTRAN Library Functions

ARGUMENT RESULT
FORM DEFINITION TYPE TYPE
COS(X) Real cosine Real Real
DCOSX) Double precision cosine Double P Double P
TANH (X) Hyperbolic tangent Real Real
ATAN(X) Real arc tangent Real Real
DATAN (X) Double precision arc tangent Double P Double P
ATAN2(X,Y) Real arc tangent of (X/Y) Real Real
DATAN2(X,Y) Double precision arc tangent of (X/Y) Double P Double P

,"“ﬁ.\y

APPENDIX B
ERROR MESSAGES

B.1 COMPILER ERROR MESSAGES

Compiler error messages are printed in the form:

>mnA<

where:

mn is the error number
A is the alphabetic mnemonic characterizing the error class.

All error messages are given below.

Number Letter Meaning
Common, equivalence, data errors:
01 C No open parenthesis after variable name in DIMENSION
statement
02 C No slash after common block name
03 C Common block name previously defined
04 C Variable appears twice in COMMON
05 C EQUIVALENCE list does not begin with open parenthesis
06 C Only one variable in EQUIVALENCE class
07 C EQUIVALENCE distorts COMMON
08 C EQUIVALENCE extends COMMON down
09 C Inconsistent EQUIVALENCing
10 C EQUIVALENCE extends COMMON down
11 C Illegal delimiter in EQUIVALENCE list

(continued on next page)

B-1

Error Messages

Number Letter Meaning
Common, equivalence, data errors: (cont)
12 C Non-COMMON variables in BLOCK DATA
15 C Illegal repeat factor in DATA statement
16 C DATA statement stores in COMMON in non-BLOCK DATA
statement or in non-COMMON in BLOCK DATA statement
DO errors:
01 D Statement with unparenthesized = sign and comma not a DO
statement
04 D DO varidble not followed by =sign
05 D DO varidble not integer
06 D Initial value of DO variable not followed by comma
07 D Improper delimiter in DO statement
09 D Illegal terminating statement for DO loop
External symbol and entry=point errors:
01 E Variable in EXTERNAL statement not simple non=COMMON
variable or simple dummy variable
02 E ENTRY name non-unique
03 E ENTRY statement in main program
04 E No =sign following argument list in arithmetic statement
function
05 E No argument list in FUNCTION subprogram
06 E Subroutine list in CALL statement already defined as variable
08 E Function or array name used in expression without open
parenthesis
09 E Function or array name used in expression without open
parenthesis
Format errors:
01 F Bad delimiter after FORMAT number in /O statement
02 F Missing field width, illegal character or unwanted repeat
factor
03 F Field width is O
04 F Period expected, not found
05 F Period found, not expected
06 F Decimal length missing (no "d" in "Fw.d")
07 F Missing left parenthesis

(continued on next page)

B-2

iy

i

S

el m\‘l

Error Messages

A

Number Letter Meaning
Format errors: (cont)
08 F Minus without number
09 F No P after negative number
10 F No number before P
12 F No number or 0 before H
13 F No number or 0 before X
15 F Too many left parentheses
Hollerith errors:
02 H More than two characters in Integer or logical Hollerith constant
03 H Number preceding H not between 1 and 5
04 H Carriage return inside Hollerith field
‘05 H Number preceding H not an integer
06 H “More than five characters inside quotes
07 H Carriage return inside quotes
Various illegal errors:
01 I Unidentifiable statement
02 I Misspelled statement
03 I Statement out of order
04 I Executable statement in BLOCK DATA subroutine
05 I Illégal character in 1/O statement, following unit number
06 I Illegal delimiter in ASSIGN statement
07 I Illegal delimiter in ASSIGN statement
08 I Illegal type in IMPLICIT statement
09 | Logical IF as target of logical IF
10 1 RETURN statement in main program
1 I Semicolon in COMMON statement outside of BLOCK DATA
12 1 Iflegal delimiter in IMPLICIT statement
13 I Misspelled REAL or READ statement
14 I Misspelled END or ENDFILE statement
15 I Misspelled ENDFILE statement
16 I Statement function out of order or undimensioned array
17 1 Typed FUNCTION statement out of order
1 1 lltegal character in context
19 I Illegal logical or relational operator

(continued on next page)

Error Messages

Number Letter Meaning

Various illegal errors: (cont)

20 I Illegal letter in IMPLICIT statement

21 I Illegal letter range in IMPLICIT statement

22 I Illegal delimiter in letter section of IMPLICIT statement

23 I Illegal character in context

24 I Illegal comma in GOTO statement

26 I Illegal variable used in multiple RETURN statement
Pushdown list errors:

01 L DO nesting foo deep

02 L IHegal DO nesting

03 L Subscript/function nesting too deep

04 L Backwards DO loop (also caused by some illegal 1/O lists).

Appears after END statement.

Overflow errors:

01 M EQUIVALENCE class list full

02 M Program size exceeds 8K

03 M Local array length larger than 8K

04 M Element position in local array larger than 8K or in common

array larger than 32K (EQUIVALENCE, DATA)

06 M Integer negative or larger than 131071

07 M Exponent of floating point number larger than 76

08 M Overflow accumulating constant = too many digits

09 M Overflow accumulating constant = too many digits

10 M Overflow accumulating constant - too many digits
Statement number errors:

01 N Multiply defined statement number or compiler error

02 N Statement erroneously labeled

03 N Undefined statement number

04 N FORMAT statement without statement number

05 N Statement number expected, not found

07 N Statement number more than five digits

08 N Illegal statement number

09 N Invalid statement label or continuation

{continued on next page)

e

Error Messages

Number

Letter Meaning

Partword errors:

01 P Expected colon, found none

02 P Expected close bracket, found none

03 P Last bit number larger than 35

04 P First bit number larger than last bit number

05 P First and last bit numbers not simple integer constants
Subscripting errors:

01 S Illegal subscript delimiter in specification statements

02 S More than three subscripts specified

03 S Illegal delimiter in subroutine argument list

04 S Non~integer subscript

05 S Non-scalar subscript

06 S Integer scalar expected, not found

10 S Two operators in a row

11 S Close parenthesis following an operator

12 S Adjustable dimension not in dummy array

13 S Adjustable dimension not a dummy integer

14 S Two arguments in a row

15 S Digit or letter encountered after argument conversion

16 S Number of subscripts stated not equal to number declared
Table overflow errors:

01 T Arithmetic statement, computed GOTO list, or DATA state-

ment list too large

02 T Too many dummy varicbles in arithmetic statement function

03 T Symbol and constant tables overlap
Variable errors:

01 Vv Two modes specified for same variable name

02 \Y Variable expected, not found

03 Vv Constant expected, not found

04 \ Array defined twice

05 \% Error: variable is EXTERNAL or argument (EQUIVALENCE,

DATA)
07 \% More than one dimension indicated for scalar variable

(continued on next page)

Error Messages

Number Letter Meaning
Variable errors: (cont)

08 \ First character affer READ or WRITE not open parenthesis in
I/O statement

09 \'% Illegal constant in DATA statement

1 \ Variables outnumber constants in DATA statement

12 \% Constants outnumber variables in DATA statement

14 Vv Illegal dummy variable (previously used as non-dummy variable)

16 \% Logical operator has non-integer, non-logical arguments

17 Y Ilfegal mixed mode expression

19 \% Logical operator has non-integer, non-logical arguments

21 V Signed variable left of equal sign

22 Vv Illegal combination for exponentiation

25 \'% .NOT. operator has non-integer, non-logical argument

27 \'% Function in specification statement

28 \'% Two exponents in one constant

29 \% Illegal redefinition of a scalar as a function

30 Y No number after E or D in a constant

32 \Y Non-integer record number in random access I/O

35 V Illegal delimiter in I/O statement

36 Vv Illegal syntax in READ, WRITE, ENCODE, or DECODE
statement

37 \% END and ERR exits out of order in 1/O statement

38 Y Constant and variable modes don't match in DATA statement

39 \ ENCODE or DECODE not followed by open parenthesis

40 \% Illegal delimiter in ENCODE/DECODE statement

41 \ Array expected as first argument of ENCODE/DECODE
statement

42 \% Illegal delimiter in ENCODE/DECODE statement

Expression errors:

01 X Carriage return expected, not found

02 X Binary WRITE statement with no 1/O list

03 X Illegal element in I/O list

04 X Illegal statement number list in computed or assigned GOTO

05 X Illegal delimiter in computed GOTO

07 X Illegal computed GOTO statement

(continued on next page)

B-6

Error Messages

Number Letter Meaning
Expression errors: (cont)
10 X Illegal delimiter in DATA statement
[X No close parenthesis in IF statement
12 X Illegal delimiter in arithmetic IF statement
13 X Illegal delimiter in arithmetic IF statement
14 X Expression on left of equals sign in arithmetic statement
15 X Too many right parentheses
16 X Illegal open parenthesis (in specification statements)
17 X Illegal open parenthesis
19 X Too many right parentheses
20 X Illegal alphabetic in numeric constant
21 X Symbol contains more than six characters
22 X .TRUE., .FALSE., or .NOT. preceded by an argument
23 X Unparenthesized comma in arithmetic expression
24 X Unary minus in I/O list
26 X Illegal delimiter in 1/O list -
27 X Unterminated implied = DO loop in 1/O list
28 X Illegal equals sign in 1/O list
29 X Illegal partword operator
30 X Illegal arithmetic expression
31 X IHlegal operator sequence
32 X Illegal use of =,

B.2 OTS ERROR MESSAGES

Following is a list of OTS error messages. (R) indicates a recoverable error; (T) a terminal error.

Error Number Error Description Possible Source
05 R) Negative REAL square root argument SQRT
06 R) Negative DOUBLE PRECISION square root DSQRT
argument

07 R) Illegal index in computed GO TO .GO

10 T) Ilegal 1/O device number .FR, .FW, .FS, .FX,
DEFINE, RANCOM

11 (T) Bad input data - IOPS mode incorrect .FR, .FA, .FE, .FF, .FS,
RANCOM, RBINIO,
RBCDIO

(continued on next page)

Error Messages

12
13

14

15

16 R)
17 (R)

20
21

22
direct
access < 23

errors | 24
25
26
30
231

232
233
234
235
236
837

40

41
42
250
51

52

)]
)

R)

R)

M
)
M
m
)
)
M
R)
R)

R)
R)
R)
R)
®)
)

Bad FORMAT

Negative or zero REAL logarithmic argument

Negative or zero DOUBLE PRECISION loga-

rithmic argument

Zero raised to a zero or negative power (zero
result is passed)

ATAN2 (@.0,8.8) attempted; Pl/2 returned
DATAN2 (@.8, D@,%.0D@) attempted; Pl/2

refurned
Fatal 1/O error (RSX only)
Undefined file
Ilegal record size
Size discrepancy
Too many records per file or illegal record number
Mode discrepancy
Too many open files
Single integer overflow!

Extended (double) integer overflow"

Single floating point overflow
Double floating point overflow!
Single floating point underflow
Double floating point underflow
Floating point divide check

Integer divide check

Illegal number of characters specified [legal:
0 <c£625]

Array exceeded
Bad input data
FPP memory protect/non-existent memory

READ to WRITE illegal /O Direction Change
to Disk without intervening CLOSE or REWIND

Attempt to initialize JEA register on a
machine without floating point hardware

.FA, .FE, .FF
.BC, .BE, ALOG

.BD, .BF, .BG, .BH,
DLOG, DLOG10

.BB, .BC, .BD, .BE,
.BG, .BH

ATANZ2

DATAN2

FIOPS
RANCOM

DEFINE

RANCOM

DEFINE, RANCOM
RANCOM

DEFINE

RELEAE, .FPP

DBLINT, JFIX, JDFIX,
ISNGL

RELEAE

RELEAE

RELEAE
INTEAE
ENCODE

ENCODE
DD10

BCDIO, BINIO

.BF,

'Only detected when fixing a floating point number.,

%Also prints out PC with FPP system

*If extended integer divide check, prints out PC with FPP system,
*With non-floating Point Processor system, only detected when fixing a floating point number.
TNot detected by software floating point routines (only by FPP system),

Pt ™\

S .‘%

P

Error Messages

B.3 OTS ERROR MESSAGES IN FPP SYSTEMS

In software systems, arithmetic errors resulting in the OTS error messages summarized above are de-
tected in the arithmetic package (RELEAE and INTEAE). In the hardware FPP systems, these errors

are detected by the hardware (with the exception of single integer divide check) and serviced by a

trap routine in the FPP routine .FPP.

Where applicable, on such error conditions, a value is assumed as the final result of the compu-
tation. Where a "none" value is indicated, the results are meaningless. Results differ depending

upon whether or not floating point hardware is used,

ASSUMED VALUE
Error

FPP Hardware FPP Software
Single Floating Overflow + largest single floating value tlargest single
(.OTS 32) floating value
Double Floating Overflow + largest single floating value not detected
(.OTS 33)
Single Floating Underflow zero zero
(.OTS 34)
Double Floating Underflow zero not detected
(.OTS 35)
Floating Divide Check * largest single floating value *largest single
(.OTS 36) floating value
Integer Overflow limited detection® limited detection
(.OTS 30)
Double Integer Overflow none? limited detection?
(.OTS 31)
Integer Divide Check none none
(.OTS 37)

. N V4]
Further, when converting an extended integer, the magnitude of which is 27 -1, to a single

integer, no error is indicated and the high order digits are lost.

"When fixing a floating point number, integer and extended integer overflow is detected. In these
instances, plus or minus the largest integer for the data mode is assumed as the result,

2With the FPP hardware all extended double integer overflow conditions are detected, but the results
are meaningless.

B-9

APPENDIX C
PROGRAMMING EXAMPLES

C.1 A FUNCTION TO READ THE AC SWITCHES

It is frequently desirable to use the AC switches of the XYM CPU to alter the sequence of instruc-
tions executed in a FORTRAN program. The following program can be used as a function in an

arithmetic IF statement to conditionally branch.

«TITLE 1ITNG

/
/ SUBRDUTINE Tn READ AC SWITCHES
/
/ MACRD CALLING SEAUFNCE
/ .GLORL ITOG
/ Mg 1706
/ JMp 2 *2 /JUMP OVER ARGUMENT
/ EY (MASK) /ADDRESS OF MAgSK
/ /RETURN WITH MASKED ACS IN AC,
«GLORL, 1ITmG, DA
1TOG] JINTEGER FUNCTION
JMS* wDa /GET ARGUMENTS
JupP "#i41 /ONE ARGUMENT
MASK 2 /MASK ADDRESS X
LLAS /LOAD AC FROM SKWITCHES
AND* MASK /MASK AC
JMP % 17AG JRETURN WITH MASKED AL SWITCHES
<END

C.2 IFLOW AND IDZERO EXAMPLES

The following is a programming example of both the IFLOW and IDZERO functions.

H
£ MATLM FROGRAM TO SHOW USE OF IFLOW AND TIEZERD
[

A o L0, & TFO

B 10 dd 10
1 I
(--. . .
(W Call SURBROUTINE TO CHECK FOR UNDERFLOW » OVERFLOW
[AND DIVISETON BY ZERD.
o

Cald. CHECK <L)

FauUseE 1
2 I (1O, %k (703 % 10, dok (203

CALL CHECK 1) (continued on next page)
C-1

Programming Examples

DT TME CHECK
TFLOW 10

The result of running these programs is (with .DAT slot 1 assigned to the TTA):

NOTE

The "OTS nn" and "PC=nnnnnn" lines are
not typed on systems which do not have
hardware floating point.

nry. wy
FalbEE QoG]

e

STOF Q00000
C.3 INPUT-OUTPUT EXAMPLES

The following is a program composed mainly of 1/O statements with no connected purpose. The pro-
gram is presented to illustrate the possible combinations of the different types of I/O (sequential access,
direct access, data~directed, ENCODE/DECODE).

C-2

i

AN

P

AT

0001
D0D2
0003
0094
LDuus
[SRVENY.Y
YISO
U0bdh
U650
D651
JOHR
QU
00090
[ESRVIVE
00002
0003
vIN9 4
U005
[SEYRIRINLY
BN
angla
SUUIUD
Julu
UJull
00012
Yo013
GO0 L4
Wd1o
vuidlo
0017
DG 20
00w 21
D0022
D023
300011
Ja1t
09024
U225
U920
ungzl
0JJ 30
JUu 3l
Y032
00133
D034
DY 35
(VR D
Ou3n
vou 3/
Joudy
PODES]
On042
00043
D044
D04

[NeRP]

c:

472031
400472
472031
406472

o~
A,

10U

il

. DSA
s DA
U8/
LDBA
L UOA
SIS A
e DA
s 35

Programming Examples

PROGRA® EXAAPLE TO SHUs OBJECT COor LUreir FUR
VARIUUS TYPES JDF 1/0 STATEMENTS.

LePulCLT READL (W)
DlARES TUw RLLC2) ,RL2(3) ,ARR(20),441(2),14%2(2)
GATA wel/PWwAMELY, "ASRT '/, M2/ VHAME2Y Y ASRC Y/
S54254¢
24154Jvy
542944
ZA)1500

FORSAT (15,610.3,2(E12.2))
SNGOGU
2427226
S20216
305405
a3l530
311210
530544
211445
1244507

EVIVAVE I |

201

Jap

e L)SL\
LS A
e i3 A
L DA
L USA
o A
o DA
S UOA
PRI
s HA

FiiRaAT (LX,15,510.3,2(812.2))
SUQUL L
241433
020222
325319
73054y
211460
431129
429542
227149
245224
v2uloy

= w074

NECReR
JiiP

L IBA
<UD A
L UB4
. I8 A
FERICY:Y
«iIDA
2 IO A
A URA

JAs*
J#p

s LIDA
.20 A
I
L D5A
s S A
L1234

CAbb DeFIne (2,100,5,%5,JY8,0,0,0)

[BEN N

U036

AV A

(DU %4

(DUGUUS

(Juu0as
Jvg

(DOGLU0Y

(UUGQLL

[GVAVAVIVESEY)

CQLD DﬂFINE (4,600110:U.JVA,5;019)

UikE LvE

Uuihy

[QVRVIERVEVE S

(V01130

(02006172

(QuGuDY
JVA

(000VDS

C-3

00D40
VY
0013
0Y50
Q0951
Qo052
00353
0014
J015
2010
ouL7
01y
Q0054
Q0055
O0udo
DoosS7
Vil
DO Ut}
T RVE!
Db
(VEVRVE 3%}
Uddod
[DRVEN Role)
Bduho
5006/
00GTG
00071
00372
00973
Q90 T4
50007
200175
Uduiln
you 77
ARVE RV
DO L0
yilotl
00102
0103
00104
001d>
U01dn
0197
U111
Qulll
00112
00113
U114
U0lio
SVl
00116
Qu21
Q022
D023
uo117
JO120

2

w

Programming Examples

LUSA (2000600
LSA (VD000
CAbLL SEERK (5,441)
JiSF SKEK
Jup QDU
LJUSA (UQVUID
o DBA 400000 Hm]
CaLl EaTeER (6,3842)

Lo ©BLHARY

(NN NS

JHas® pNTER

J8P 0udal

JUSA (UUGUIb
LBA 4U00UY +nHY

A, JIRECIT

ACCHSS

KA (2'Jdvey Lo, ruZ(3), kbl

LAl Jvs
JMsF GRS
LISA (UVDUYL
SDSA 777777
JetsF o RJ

WDSH el
CHALTLA

TAD (Ud00D3
R

TAD Rz

DAl $93072
LUSA 171770
N

= QUi7s

L05A 500QTY
JHASE KB

s IOA Klsl
Jas® JKG

WHITe (2'3) INT,RL2(3),R01

LAC (0JulJ3
JMBF LKA
LDSA (DUO0GOZ
LOSA 171777
JASH o RrJ
SU8A IaT
CHalCLA

Tad (000LO3
KTl

TaAuv RL2

DAC sJ0D113
U3 771770
Justr G R

= J0llb

LJU3A 800Ul lo

c
< I
c

NERE

sUSA K

SEJNT AL AL

2]
"

Ial

-

)

S

Programming Examples

T
00121 JM3*% .RG
0024 READ (1) ISNT,RLZ2(3),RuLI
U122 JEs¥ LES
00123 08A (Ju0udl
Uaol2d SOSA T}
00125 JHas¥ LKJ
20126 LODA INT
00127 CwHAlICLA
udl3u TAaD - (000LO3
02131 RCL
00132 [av Ru2
0ut33 oAl sdul33
Vo134 LDSA 77717706
00135 JMSx JJ
- $Oy133 = U036
£ 00130 LUSA sSUVU1 30
U137 Jus¥ '8
GUd14u L0888 K
. D014 JHS3F LFG
i 2025 WRETE (3) 197T,RL2(3),%uL1
|, 00142 JUSE X

U143 u08a (uvvouul
00144 JUSA 7711771
D014dS JrisF o)
Vgldn JS8A 1wl
QU147 Callna
U015y Tad (0dwUuu3
wiL51l RCu
U152 TAD RL2
00153 0AC s$9in3
DA154 JSA T11T710s
Julsy Juasx L8J
500153 = 00lbhe
09156 LUS4A $S0015Do
0026

pi

w
0027 C 1l. AsCLlI
0024 C A. DLRECT aCCESS
5029 o 1. FORAATIED
0030 c
GOL57 JHS* LFn
Fa 00160 JDSA RLI
. D016l JuMBE FG
0031 READ (4'JVA,190) INT,RL2(3),RL1

D164 AT Jva
polhAI JHS* L RK
U104 LUSA (DYou4
00185 JDSA L0V
udton LDSA TI11777
VU117 JAS* JRE
00170 .BSA LAa7
00171 CuallLAa
" Vo172 tAD (udguus3
00173 RCL
00174 TAD RLZ2
0017 AT s0017»
V0176 LuSA 777770

uoL77
S$00175
30290
Q0201
VU202
Q0203
Vu32
V0204
U205
00208
Da207
U210
QU211
V02142
Q0213
00214
0215
U216
o217
00220
u221
SOV217
V1222
0033
0034
D035
30223
9224
225
01 3n
Q022a
00227
00230
Du231
V0237
U233
00234
00235
0236
00237
00240
002%1
0242
0243
$0024)
00244
DD24b
0240
yu24l
vu3/
DV250
GU251
D252
U253
00254
02255

JASK o RE

= Uv240
SUSA S00200
JsS £ GRA

s JSA KL
JESE G RE

WR LR

LAC (G IVEVIVEVE
JMS % o R
JUBA (UOTCUUG
L0858 200
LUIBA TTT7TT
JHsAd oAl
LDSA [T
CMA!CIJA

Taw [’\)ﬂ‘l'\)U\)j
RC L

VAL RL2Z

DAC Suy2l)
LUSA 77171776
JuS+ (R

= 00227

UBA $J0222

L (30X (Cia

MSF LKA
US4 R
Jis¥ | KE
RivAh
LAC (Duuua7
Juds# 6 KK
LDDA (DD0UUU4
LUSA DUD0UY
LUSA 777771
Jasx ,GD
JHDA Lol
CHAalCLA
ran (G VYRV
RC(J
Thad RigZ
DAl su241
SDSA 71T 10
Jids* 35D
= V0244
SUSA 500744
JaS® JGE
.I)C)f:\ izt
NERL N

Programming Examples

(4'5,200) Inl,8L2(3),&01

2e OATA DIRECIHU

(4'7,) 1, Ru2(3),R01

ARLTE (4'8,) I~aT,RL2(3),rL1

LAC (JodoLu
JHanx LR
JUSA (DUGUOY
JISA DJUDUY
BISA 7727710
Jias® L Ga

P

Wil

Fals

0v25a
00257
00260
00261
D252
00203
0 2b4
00205
JUu2bob
U026l
800264
002170
0038
uu39
Q040
0041
Q0271
D272
00273
V0274
30275
V42
09276
ud277
V0300
00301
VU302
00303
00304
00305
0300
Qui3al
00310
bo31t
00312
$00310
00313
00314
Qu31s
U031p
U043
Q0317
00320
00321
V322
J0323
0324
U035
0N326
Vu327
00330
00331
QU332
00333
$00331
00334

Programming Examples

LDSA 035204
LDSA UYUULD
LD8A InT
JMS*® .58
LDSA RHiL2Z2
LAC (UoGoas
DAL $0U204
Jasx L GC
JDBA LTL1TT
SUSA 0000U0
= 00270
SD8A 509270

[N NSNS N]

MSF .53
LUSA 971176
CJUSA UO0000
<S84 RbLI
JMS*F G RIE
READ (5H,100)
JdsF GER
L0SA (000UYS
LD8A ,iuu
CUSA 777771
Jdas* L FL

LDSA Tay

CuiAlCLA

TAD (000003

RCL

rap RuL2

DAC s0031v

JUSA 777770

RECISE S)

= QU313

LUSA sUuU3ld

JMS* LFa

LUSA8 Rl

JMSE S
wkile (6,200)

Jridk G Fw

LD8A (UUU0US

JDSA 200

JUSA 717777

JEiS*E L

SOSA LAT

CYvAlCLA

TAD (0UDUU3

RCL

TAD RL2
DAC $00331
JUSA T77170
JESF L@

= Qu334
LDSA 500334

Be SEJUESTLIAL ACCESS

1. FORMATIED

INY,rRL2(3),RL1

Lng,RLZC3), KU1

00335
00330
V0337
0044
00340
00341
00342
0343
U344
0345
0d340
00347
ug3s0
00351
00352
Ou3s3
00354
00355
S§0U 353
00350
0V3s7
0936Y
00361
0045
00362
00303
V0364
Vi 3od
Uid3bb
00307
U370
00371
00372
00373
00374
Q37
00370
w377
$0D375
00400
Uuda
o4l
004y
00401
00402
u403
0049
D434
Uddoh
00406
004037
Q0410
00411
00412
D413
00414

JHMS ¥
«2SA
JuS*

NEERES
D34
< USA
< DSA
s DSA
Jas ¥
s UOA

Programming Examples

A
RL1
EE

EECUDE (1U,ARR,100) LaT,RLZ2(3),RuL]L

L] Gl‘\
(Guvul2
ARR
o LU
177777
S
FRE K

CHAllLA

TAD
RCL
TAD
DAL
L DS A
JHS®

(UDU0U3

K2
SU0353
17777706

o BiL

= UU3bb

L SA
JHMS*
«DUSA
JHS*

JelS+
° |_)bA
DS A
.USA
Jiasx*
° DSA

300355
W8
Risl
LEE

DECUUE (LU, ARK,100) 1al,KL2{3),KRul

T
(U0u01L?2
ARR
LU0
111777
o KB
LT

CMALICLA

Tao
RCL
ran
OAC
«USA
JrS*

(U000V3

RL2
$00375
111770
o

= 00400

DSA

C I3

M5 %
«USA
NERES

Jas+
DA
wUSA
» DSA
RERES
234

SQu40)

7. DAUA DIRECTED

A

RrRL1

o FE

RiwAd (5,) 1aT,RL2(03),kL1

R

(o0uuu>

[VRVEYRERERV]

117171

GO

La

CoalCLA

TaD
RCL

(Vouuu3

S

P

P

Uu4ln
V0415
ou417
V0420
$J04lh
0ud21
Q422
J0423
00424
QIS0
00425
D420
DO427
QU430
00431
00432
U433
QU4 34
00435
0430
V037
U449
Dudael
V0442
V0423
§09440
00444
04 4b
0440
Dudg7
D045V
00451
Qus1
00452
00453
00454
00450
U456
Vo457
QU4h0
D dbhl
yldod
U 4o 3
IV T X
U4obd
Qu4ano
gu4s7i
sUudos
0047v
00471
Qudle2
Vo473
DUH7
00674
00475
udalo

VAD

DAaC

s DSA
Jrio ¥
=z D04
L 5A
NEBRES
« JBA
NE N

NER
< DSA
JUDA
. DSA
JESF
SUDSA
+IISA
S A
BERS
54
Ll

DAC

RERSS
LDSA
ALY

Programming Examples

iy
SUU41n
11171776
o uld
21
SAVaZl
s
Riul
W F
skl (b,)
o T
(D00 UD
[VEVVRVATRS)
1110100
ey
035204
ud0NGou
1wl
« S8
RbL 2
(GIIVEVIVIVES |
SOuadqu
.U
0711177
[VRIRVEVERY]

Lat,Ru2(3),RL1

= 00444

L USA
NERE
LS A
. USA
e JSA
JiS#

JMS#*
. DSA
Y
JSA
< DSA
JME*
S A
Cupll
ran

RC U

Tap

Dac

JUSA
\'-’I\S*
= 04
LIOA
JiS 4
e DSA
RERE

JuS*
LUSA
LS A

SUG444
o
ulllloe
YUOu0U
Hisl
W
peCui, L15,88R,)
eals
(EVIVEVR)
ARK
QuUOOGU
17171717
o fat)
L8
‘j!:l,‘

(el

KL2
sOV4nbh
11777
o G
T
SuULG U
G
Rl
L KF

EECE (2D, ARR,) LaT,r/L2(3) RL1

o GF
(00PN 31
ARR

Il RLZ2(03) ,RLA

o4l
00500
0501
Q0% 02
U503
40504

G050

00500
uusSL7
Uubiw
511
Ouys12
U513
SO0510
Uubla
uas15
JuSio
Qus1Y/
OUna2d
bl
Qus3
00522
0523
OQubha
us 24
60525
Uuss
Woh%b
uis2i
QUsSh
VAL B
vH 31
Gus7
00532
Jus33
005«
00534
U535
0059
00536
0537
QU0
QU4
US4l
JuhH 2
U543
G0341
D54
00551
01552
20553
QU224
U555
U950
GUDo%
00505

< USAh
W LIDA
Jwus®
«+DBA
LS4
LS A
JHoF
s DA
Lag

WAC

Jids*
JLOA
D34

CLUYGY

1177770

o 38

V35204

ODIULY

Liv'{

e D3

i

(LUGUDS
Gubliv

s
® I\,

073177
00Oy

= U514

US4
NENE
s DA
LD3A
« LUSA
JHSF

Ll ol S *
<USA

RERES
. D5A

JEis*
L UDA

RERE
. D3A
JmSF

VAT

WAl
JMpx

Cuh
Jmpx

o BLK
L USA
o LA
s IS A
Yt
L LSA
o ALK
. DDA
L LOA

S00US51 4
G
Uiilvo
QOO
KL
W EE

L L e
.y
(vGuuuil

LR OF DLk
otV
(JOGuU2

MU I LE
Y
(U003

P E (s
WtV
Cuuglug

Es U) LE
. FV
(JUGUUS

B U E L e
Y
(UULUUn

D e
(OdpuIy
)

By

el

o L

o EF

SRV RVEVEY]
Jyuydu+
GOououl
[SRVAVARAVEEY
[ERVASRURVEY)
[RAVAVRVEY)
kil
[FVECAVEVYS
[DEVAYEVESN
QOUUUn

Programming Examples

ey

e

i

.

O0G%0b
0587
09570
00571
gh41
QUnt7Z
Yo 3
OUb44
Udb4n
Uinio
DUbD2
D0o0H 3
NUHd4a
D0655
HUBSD
Uubnnl
Udos3
DUbH+
Dyonh
Ulnbb
Jibol
Do
Junll
U0ol2
a3
09674
00615
Q6o
a7
00794
0ol
D002
NDONEE!
Q0704
00705
REUNAVE
ouijul
o710
ou71l
o712
U713
00714
IS B
007lo
00717
U129
ouyT21l
vulzé
07123
G724
G072
WV V)
w0727
U730
0731
Ju732

DA
s UBA
« IOA
e DR
o LIDA
s UOA
s USA
L IDA
e USA
s BULR
o LS A
LIS A
S IDA
dUDA
< S A
FELETEN
L USA
MIVRY:
FEVAYN
254
S USA
LS A
o LR
e BLIK
LUDA
L UBA
LUSA
o LN
JISA
s LSA
LS54
NORY:
SDSA
L USA
L UDA
PEVICE:Y
L USA
DDA
JUBA
s SA
LA
IR
s UOA
L IDA
P DA
QIIBA
L UOA
o LI
e DDA
o JBA
B A
Y
s DDA
ROEY:
o DA

[SAVESRORCRV]
DEUEVAVAVEY]
HRisZ
vdugba
Uudyol
YWY
[VAVRIRVRVEY}
[RASRERVAVRY]
ARE
QUOUU4
wOJLuUl
[SVAVEVEVE:S
[FXVECIVEVEY]
SEVENIVRVIY]
Wl
DUQUG Y
OvVIeN|
[CR VLV E"
TR VRNV]
RRYEVEVAVAY]
R

Dbk o
Guuuul
Hduuil
SHiLK
[

« KO

(SRS RVRVAVEL
o

. KA

o s

o KA

L EH
PN

L ED

. e
LK

o RK

o Rt

o R4

o RE

o (U

e i)
.ty
ok
.0

e ac

s 38
¢

o B
.

o F

o B
e

. i3

o bV

Programming Examples’

C-11

P

RN NS YN EERENENEEEREEEEEEEEENEE I NI Y
s
o
™

OU/33 Lo A 8T

G734 L,054A ldo

U735 JD5A LEP

u7lin LJUSA JAL0UZ
Ouidiy JUIDA UVl aa
[SEVIV AR 33 LUSA DO0uln
Vo714l CUBA UJUGUY
udT4% LISA DUUNUE
00743 LD3A G130
G744 CJSA LUUUL Y
09745 JLUSA LUULUUD
Uuldb LUbA UVUUUS
w74l LDSA Uuuuul
G lou LJUSA uuUGL7
w0 /5] SUSA wDLULY
Quilsz Li0SA Uuuull
PDUT53 L USA VU3l

RIL 1
RL2
ARR
NM1
NM2
100
,200
¢« DEFINE
JVB
JVA
» SEEK
ENTER
,RS
INT
JRJ
«RB
"RG
SRX
JFS
oFJ
JFB
FG

2 %

MAs548
N0558
aAs57 4
nAB48
fa8s57
2093m
LI XN
ABET R
ABAT ¢
AB67 9
RABT R
AABT 4
ABB78
AdB7 A8
AA877
OR7Am
AB7@q
Ad7 A2
AA793
AB7T% 4
AA788
AATAR
BA7A7
A071m
anyig
na719
AA7L3
ha714
2A718
AB71 &
BRA7LY
A7 26
NA724
AA72a
nBd72%
AB724
AR725
2728
AB727
AB73m
AaBP 3
AA732
AA733
RA734
AB7 38

Programming Examples

OGRAM SIZE = pp754, NO ERRORS

™

APPENDIX D
SYSTEM LIBRARIES

D.1 DOS-15 PAGE MODE NON-FPP LIBRARY

LIBRARY PILE LYSTING FOR ,LIBRP

PROGRAM
NAME

BOSTY
RBCDIp
RBINIO
RANCOM
DEFINE
pbio
EDCODE
EOF
UNIT
JABS
JDFIX
JFIX
FLOATJ
JDBLE
18NGL
JBIGN
JDIH
JHOD
JMNMY
ERRSBETY
I0ERR
FILE
TIME
TIMELg
ABS
f1aBs
DABs
AINY
INTY
IDINY
AMOD
MOD
DMOD
FLOAT
IFIX
81IGN
D8IGN
ISIGN
DIM
IDIM
SNGL
DBLE
THMNMX
RMNMY
DMNMX
BB

30URCE
EXTENSION

241
8n7
aas
P44
847
217
an3
L))
2081
ang
a1
aas
1
LB
ane
ea4
291
203
a3p
299
862
8ie
2114
2108
g02
ane
201
an2
802
2as
283
aeo0
204
0ae
am2
284
2094
236
a8
L
904
ang
are
11P
asp
804

PROGRAM

31ZE

i6
138
113
804
1126
2845
253
3@
68
i8
13
i3
43
ie
30
23
24
23
183
25
40
366
7@
117
16
14
18
i8

ACTION

RPAGE §

System Libraries

LIBRARY FILE LISTING FOR ,LIBRP PAGE 2

PROGRAM SOURCE PROGRAM ACTION

NAME EXTENSION 81ZE .
<BEC 210 133

.BD 810 133

. BE LT 33

.BF LY 34 5
2B6 LEE] 35

2 BH 865 34

2BI LY 121 ™
SQGRT LT 73 '
8IN 283 13

£OS 283 29

ATAN an2 13 N
ATANE 808 70

EXP @862 13

ALOG 262 20

ALOG1p 682 20

TANH BA4 47

oEB a4 (82

«ED L) 67

o EE ang 74

JEF 988 143

o EC LR 44

DBORYT 6By 71 o
DgIN LT 13 !
DEOS 802 21 e
DATAN 891 13

DATAN2 008 73

DEXP LT 43

DLOG6 803 21

DLOGip 981 3]

IDZERD 24 16

18ENBY LET 30

IFLOW ELE 29 }
DD 286 146 “a%
. DB CLY 128 k!
o DE 803 104

«DF 061 137

.DC 8814 47

o DA 14P 58

oDJ 000 59 M
BEDIO B48 4623 -
BINID 920 , 387

AUXID 016 133

288 pao {10

GoY0 P83 26 2
870P 268 61

PAUSE 206 14

E

AT

i N

System Libraries

LIBRARY FILE LISTING FOR ,LIBRP

PROGRAM
NAME

SPMSG
sFLTB
Fioprs
PARTHD
DBLINT
INTEAE
DOUBLE
RELEAF
OT8ER
«CB

SOURCE

EXTENSION

ei2
a04
n3s
a3p
a7p
a7pP
an4
16P
813
204

PROGRAM
SIZE

117
268
7514
140
377
134
203
1877
210
22

D-3

ACTION

PAGE 3

System Libraries

D.2 DOS-15 BANK MODE NON-FPP LIBRARY

LIBRARY FILE LISTING FOR ,LIBRB

PROGRAM
NAME

BO8BYT
RBCDIO
RBINID
RANCOM
DEFINE
pDio
EDCODE
EOF
UNIT
JABS
JDFIX
JFIX
FLOATY
JOBLE
ISNGL
JEIGN
JDIH
JMoD
JMNMY
ERRSET
I0ERR
PILE
TIME
TIMELp
ABS
14Bsg
DABg
AINT
INT
IDINT
AMOD
MOD
BMOD
FLOAT
IFTX
81IGN
DgIGN
I8IGN
DiM
iDim
SNGL
DBLE
IMNMY
RMNMY
DMNMY

S0URCE
EXTENSION

8614
aay
ae6
814
By17
217
2a3
086
251
281
anq
@81
any
6014
aag
804
291
283
238
:1:17]
an2
810
B
aie
882
aap
201
a2
eae
ees
263
Bes
894
ane
ane
@84
GEE
aap
ane
o860
e84
ani
878
118
898
an4é

PROGRAM
§1ZE

]
136
113
804

{128
2845
283
3a

66

i8

13

i3

13

i@

38

23

21

23
183

28

40
366

7@
117

ACTION

PAGE |

Sy

-

System Libraries

LIBRARY FILE L1STING FOR .LIBRB

PROGRAM
NAME

«BC
.BD
«BE

o BF
:B6

o BH
.BY
8GRT
SIN
cos
ATAN
ATAN2
EXP
ALOCG
ALOGig
TANH
EB
ED
oEE
.EF
+EC
DBQRT
DSIN
pcos
DATAN
DATAN2
DEXP
DLOG
PLOG1p
IDZERD
ISENSH
IFLOW
o DD
«DB
«DE

o DF
0C

o DA
«DJ
Bgpio
BINIO
AUXIO

»

6070
8TOP
PAUSE

SOYRCE
EXTENSION

210
210
o686
1.1}
2068
283
BR4
aas
a3
@983
oag
aGe
ane
eae
en2
264
6n4
066
ene
2068
2a1
an7
Ba4
L}
(123}
298
234
283
any

a1

eay
0a4
2096
204
P83
12}
201
118
L1
348
22
2186

889

683
ans
aneé

PROGRAM
81ZE

133
133
33
34
38
34
124
73
i3
2a
13
79

ACTION

PAGE

i

System Libraries

LIBRARY FILF LISTING FOR ,L.IBRB PAGE 3

PROGRAM SOURCE FROGRAM ACTION
NAME EXTENSTON SIZE

8PMSG B12 117

oFLYB 004 266

FIOPS @38 7514

PARTHD p38 1414

DBLINY 278 484

INTEAE 208 134

DOUBLE 004 203

RELEAE 818 1141

DTSER P13 210

o CB PR 4 R2 €

D-6

F

W

ST

D.3 DOS-15 PAGE MODE FPP LIBRARY

LIBRARY FILE LISTING FOR ,FPAG

PROGRAM
NAME

BOSTY
RBCDIO
RBINIO
RANCOM
DEFINE
PDIO
EDCODE
EOF
UNIT
JABS
JOFIX
JFIX
FLOATJ
JDBLE
ISNGL
J8IGN
JDIM
JMOD
JMNMX
ERRSEY
10ERR
FILE
TIME
TIMElg
ABS
1ABS
DABS
AINT
INT
IDINT
AMOD
MOD
DMOD
FLOAT
IFIX
SIGN
D8IGN
1SIGN
DIM
1I0IM
SNGL,
DBLE
IMNMY
RMNMX
DMNMX
BB

SOURCE

EXTENSTON

ant
a7
L]
B14
a7
Fy7
293
aea
aay
Fat
Faq
Fay
Fai
Fay
Fa2
Foad
Fay
Fa3
a3u
aee
ne2
at0
811
210
Faz
200
Fay
Fpe
Fo2
Fas
Fa3
200
Faa4
a82
Fa2
Fad
Fad4
a0e
Foe
anp
Fné
Fat
arzp
{1y
asu
204

PROGRAM
8IZE

16
136
113
564
1126
2016
253
3@

66

107
{16
104

6@

System Libraries

ACTION

PAGE |

System Libraries

LIBRARY FILE LISTING FOR FPAG PAGE 2

PROGRAM SOURCE PROGRAM ACTION

NAME EXTENSTION SIZE

.BE Fip 127

«BD Fig 127 &

2 BE FAG 3@

< BF Fas 3

2B6 Faa 31

oBI Fo4 114

80RY Fasa 73

8IN Fag3 i2 —~
cos Fos {6 '
ATAN Fog 12

ATAN2 Fos 89

Exp Fag i2 —
ALOG Fag 18 \
ALOGig Faz 18 .
TANH Fod4 a8

oEB Fo4 77

o ED Foes 70

oEE Fag 72

+EF a8 140

JEC Fot 49

D8ARY Fay 70

DgIN Faq i2

Dcos Fo2 i7 o,
DATAN Foq 12 Y
DATAND LT 84 -
DEXP Fay 12

PLOG Fas 17

DLOGig Fay 17

IDZERD amy 16

I8ENSH o014 i0

IFLOW 801 22

DD FO6 137

o DB FRé 115

o DF FRy 138 M‘M
+DC Fay 43

aDA ig{p 568

o DJ ane 81

BEDlo Fas 3734 —
BINIO 820 387 h
AUXIO ai6 133 .
288 899 110

GpT0 263 26

8§70P ens 64

PAUSE LEL] 14

System Libraries

m
LIBRARY FILE LISTING FOR ,FPAG : PAGE 3
PROGRAM SOURCE PROGRAM ACTION
NAME EXTENSTON S1ZE
| SPM8G 812 147
«FLTB o04 268
FIORPS @38 781
. PARTHD g3y 146
INTEAE arp 131
o FPP Fi8 ;:g
— 07S8ER Fy3
™ .CB 004 22 c
P
s
«‘“\

System Libraries

D.4 DOS-15 BANK MODE FPP LIBRARY

LIBRARY FILE LESTING FOR LFBNK PAGE 1§
PROGRAM SAyURECE PROGRAM ACTION
NAME EXTENSION SIZE
BOSTT o901 16
RBEDID o907 136
RBINIOD ané 143
RANCOMN f14 504
DEFINE @y7 1128
bpio Fy7 2016
EDCODE 263 253
EQF a0n 30
UNIT 204 66
JABS Fay 14
JOFIX FB 12
JFIX Faq 12
FLOATY Fay 10
JDBLE Faig 10
ISNGL Fa2 13
JOIGN Fad 18
JDIM Foq 17
JMBD Fog 17
JMNMY asy {02
ERRSET aa6 28
I0ERR an2 40
FILE a0 366
TIME 81y 70
TIMEYg pie 147
ABS Fag 13
TABS LEL 14
DABS Fay £3
AINT Faz 14
INT Faz i2
IDINTY Fas i2
AMBD Fa3 23
MOD 08 24
DMBD Faé 23
FL.OAT a2 11
IFIX o 12
8IGN Po4 24
DSIGN Fod 24
I8IGN 060 28
DIM Fag 17
IDIM LEL) i8
SNGL Fod 18
DBLE Fay 10
IMNMY B78 187
RMNMX {1V 116
DMNMYX Bov 104
. BB 004 60

D-l0

e

System Libraries

LIBRARY FILE LISTING FOR ,FBNK

PROGRAM
NAME

.BC
LBD

o BE
JBF
.BG

o BH
WB1
SGRT
SIN
cos
ATAN
ATAN2
EXP
ALOG
ALOG1p
TANH
LEB
+ED
oEF
LEC
DSQRT
DSIN
DCos
DATAN
DATAN?
DEXP
DLOG
DLOG1E
1DZERD
I8ENSW
IFLOW
2 DD
«PB
«DE

o DF
.DC
DA
DJ
BCDIO
BINIO
AUXIO
Y
GOTO
STOP
PAUSE

SOURCE
EXTENSTION

Fia
Finm
Fas
Fas
Fos
Fas
Fa4
Fog
Fas
Fag
Fa2
Fos
Fo2
Fo2
Fa2
Fas
Fo4
Fas
Fo2
Fas
Fay
ray
Fat
Fo2
Fot
Fas
Fay
Fay
Fay
801
poy
LR
FA6
Fad
Fas
Foi
Foi
{18
80
F48
P29
818
@09
3a3
o8
086

PRDGRAM
SIZE

127
127
30
34
31
31
114
73
12
{6
ie
64
12
i8
18
46
77
70
ra
140
40
79
ie
17
12
64
12
17
17

D-il

ACTION

PAGE 2

System Libraries

LIBRARY FILE LYSTING FOR FBNK PAGE 3

PROGRAM SOURCE .PROGRAM ACTION
NAME EXTENSTION L3 ¢4:]

8PMSG Bi2 147

FLTB and 266

FIOPS 7358 7514

RARTHD a3y 147

INTEAE 208 134

<FPP Fi8 449

O78ER Fi3 210

«CB LLE 22 ¢

D=~12

strem Libraries

T,
D.5 RSX PLUS I NON=FPP LIBRARY
LIBRARY FILE LYSTING FOR (LIBRX PAGE 1
" PROGRAM snyere PROGRAM ACTION
NAME FXTENSTON SIZE
MTGP, 2 Ser 53
FMF .1 SRC 24
® LAB,3 SRC 34
MNT ., ¢ SRC 24
BSF, SRC 24
T BSP, SRC 24
SPE, 2 SRC 29
SPR, 1 SRE 24
SPF,1 SRC 24
T RDC,2 SRC 33
- ADSMAP "oy 114
foh ADRMAP Ao 126
ADSSET ney 74
ADRSETY AAD 66
ADSTRY ne g 2f
ADSTOP nmy 20
ADCON Aty 2n
ADDIS LT 20
RDP, SREC 53
DOUT.@ SRE 1085
- RDDI,6 SRC 205
' RBIN,® SRC 31
RBCD,2 SRC 73
A1,.3 SRC 43
WATF, 4 SRC 4
EXU.119 SRC 161
DATF,S SRE an
REGF ,2 SRE 27
SCHF .8 SRE 50
RUNF, & see 47
Py SYNF, 4 SRC 55
— CANF, 3 SRE 23
‘ RESF,3 SRC 24
HINF ¢ SRE 17
FIXF,3 SRC 23
UNFF a4 SRC 23
—~ DISF,3 SRC 23
o ENAF , 4 SRC 23
ATTF,3 SRC 4]
DEYF,2 114 22
RENF ¢ SRC 35
DELF,1q SRC 35
- SEEF,.» SRC 35
ENTF,2 SRC 35
CLOF,5 SRC 57
DSAF.& SRC 49

System Libraries

LIBRARY FILE LYSTING FOR ,LIBRX

PROGRAM
NAME

DSNF , 4
DSGE, ¢
MARF .3
WAFF 2
SUSF ¢
EXIF,4
UPKF &
SPYF 1
SPYR, o1
8PYS,y
GJOB, ¢
EXBT, 4
CoMcomM
FYS,3
RBCDIO
RBINID
RANCOM
DEFINF
DDIO
EDCODE
JABS
JOFYY¥
JFIX
FLOATY
JDBLE
ISNGL
JSIGN
JDIM
JMOD
JMNMY
ERRSET
I10ERR
ABS
1ABS
DaBS
AINT
INT
IDTNY
AMOD
MOD
DMOD
FLLOAT
IFIX
SIGN
DSIGN
ISIGN

SOURCF

EXTENSTON

see
SRC
SRC
SRC
SeC
SRC
SRrRE
SRC
SRC
SRC
SRC
SRC
a0
SRE
Aoy
nne
n14
748
A7
an3
ney
LT
oo g
LI
anq
ang
CLY
LT
CLK]
AR
LD
D)
ano
LE]
LB
AR
Ano
LY
ANy
Amm
Ana
LLE)
nme
A4
LY
ang

PROGRAM
SI1ZE

41
192
23
13
4

3
21
24
a9
24
43
44
65
7@
123
109
525
747

D-14

ACTION

PAGE 2

o

f -

AT
%

SﬁmmL%mﬁ%

LIBRARY FTI|LF LTSTING FOR ,LIBRX PAGE 3
PROGRAM SNIIRCFE PROGRAM ACTION
NAME EXTENSTON SIZE :
DIM BaaD 22
IDIM ARG 15
SNGL LY 27
DBLE LK 11
IMNMY aAn7 111
RMNMY Moy 122
DMNMYX ANQ 1{00
.BB o4 67
+BC XY] 133
.BD Ay 133
«BE ARR 33
« BF AnS 34
+BG LLE] 35
o BH AGS 34
.81 Ama4 12¢
SORT L] 73
SIN ney 13
cos 2R3 2n
ATAN A2 13
ATAN? LI 7
EXP aAno 13
ALDG AR 2n
ALOGYIm LY] 29
TANH AR4 47
. EB AM4 182
«ED AR 87
+EE noo 71
«EF L) 143
oEC neq 44
DSARTY LY 74
DSIN "oy 13
DCOSs Am2 21
DATAMN LLT] 13
DATAN2 LY} 73
DEXP amy 13
DLOG amy 21
DLOGYm BOg 21
ID7ERD any 16
ISENSK K 3n
IFLOW ney 22
20D aae 146
+DB L.V 122
< DE LK 121
«OF X 137
.DC amy 47
DA KR! 104

D-15

LIBRARY FILE LYSTING FOR

PROGRAM
NAME

.DJ
BCDIO
BINIO
AUXIN
.S
6OTO
s§TOP
PAUSE
FIOPS
PARTUD
DBLINT
INTEAE
DOUBLE
RELEAF
OTSER
SPMSG
.CB
8P
FP

SAYRPRE
FYXTENSTNN

LT
man
nom
a8
Ang
nn3
A7
LY
A3s
A3P
n7P
a7P
nm4
1ap
7y
ny2
Ana
Ao
o

PROGRAM
SIZE

51
3733
267
133
112
28
14
14
676
140
377
1314
203
10877
242
124
22
{

2

SymmL%mﬁ%

JLIBRYX

ACTION

PAGE 4

ok

D.6 RSX PLUS IIl FPP LIBRARY

LIBRARY FYLF LISTING FOR LIBFX

PROGRAM
NAME

MTGP,2
FMF 3
LAB,3
MNT . ¢
BSF, ¢
BSP, 1
SPE,2
SPR, 1
SPF .1
RDC,?
ADSMAP
ADRMAP
ADSSEY
ADRSFEY
ADSTRY
ADSTOP
ADCON
ADDIS
RDP,. ¢
DOUT, @
RODI,. 6
RBIN, @
RBED, 2
A3
WAIF 1
EXUgit
DATF,.5
REQF .2
SCHF .6
RUNF . &
SYNF , 4
CANF 3
RESF,.3
HINF . ¢
FIXF,3
UNFF, 4
DI8F,3
ENAF , 4
ATTF,3
DEYF, 2
RENF . ¢
DELF .
SEEF .2
ENTF .2
CLOF .5
DSAF .8

SOUREF
EXTENSTON

SRE
SRE
SRE
SRE
SRE
8RC
8RC
SRC
SRC
SRC
[2B
LT
ang
AR2
Amy
X
LY
&R
SRC
SRE
SRC
3RC
SRC
SRC
SRE
SRC
SRC
SRC
SRC
SRC
8RC
ser
SRC
SRC
SRC
SREC
8RC
SRC
SRC
SRC
SREC
SRE
SRE
SRC
SRC
SRE

PROGRAM
S1ZE

53
24
34
24
24
24
2n
24
24
33
114
126
74
66
20
29
20
en
53
i85
2038
31
73
43
4
1614
4%
27
59
47

System Libraries

ACTION

PAGE {

LIBRARY FILE LTSTING FOR

PROGRAM
NAME

DSDF . 4
DSGR, ¢
MARF .3
WAFF o
SUSF . 4
EXIF,.q
UPKF @
8PYF 4
SPYR,m
SPYS,. 1
RJ0B, 4
EX0T,.4
COMEOM
FY8,3
RBCDTIO
RBININ
RANCOM
DEFINE
bpio
Epcope
JARS
JDFIX
JEIX
FLOATY
JDBLE
TSNGL
J8IGN
JDIM
JMOD
JMNMY
ERRSFETYT
IDERR
ARS
TaR§
BARS
AINT
INT
IDINT
AMDD
MOD
bMoD
FLOAT
IFIX
SIGN
DSIGN
ISIGN

SANREF

EXTENSYON

sPe
SRC
SRE
SREC
8RC
see
8RC
SRE
SRC
8RE
8RC
SRC
Aay
SRC
AR7
AAR
A4
A48
Fe7
ARY
Faq
Fmyq
Famy
Faq
Fyq
Fao
Foa
Famyq
Fa3y
Fm3
[L1
L]
Fap
ANA
Fajy
Fmo
Fao
Fas
Fagy
ARG
Fma
]]
FRro
Faa
Fma
A6 QA

System Libraries

PROGRAM
STZE

41
1m2
23
13
4

3
21
24
4n
24
43
41
65
70
123
120
525
747
1777
253
14
12
12
{a
10
13
i6
17
17
104
25
4a
13
14
13
14
12

23
24
23

12
24
24
29

L IBFX

ACTIOM

PAGE 2

£,

LIBRARY FYLE LYSTING FOR

PROGRAM
NAME

DIM
IDIM
SNGL
DBLE
IMNMY
RMNMY
DMNMX
.BB
«8C
«BD
»BE
.BF
«BG
o BH
oBI
SQRT
SIN
cos
ATAN
ATAN2
EXP
ALOG
ALDGYm
TANH
.EB
.ED

SOURCF

EXTENSTON

Fag
ARA
Fad
Fmyq
nny
Feg
Fmo
LEY
Fim
Feim
Fo&
Fog
Fmg
Fog
Fma
Fag
Fm3
Fma
Fao
FrAa
Fao
Fao
Fao
Faa
Fad
FaR
Fap
Fog
Fay
Fay
Fay
Fao
Foy
Fag
Frmy
Fagy
Fay
AR
aa9
anmy
Fah
Fma
Fm3
Fayg
Fmy
AR

PROGRAM
SIZE

17
15
1.6
10
111
12a
106
62
127
127
3a
31
39
31
114
73
12
18
12
61
12
18
16
46
77
7
72
147
40
70
12
17
12
64
12
17
17
16
an
22
137
115
194
13
43
191

JLIBFX

System Libraries

ACTION

PAGE 3

System Libraries

LIRRARY FILE LTSTIMG FOR LIBFX PAGE 4

PROGRAM SOuURCE PROGRAM ACTION
NAME EXTENSTAN ST1ZE

o Dd ARQ 51

BCDID Fég 36414

BINID noe 267

AUXID A8 133

«S88 neo 119

G070 ARZ 26

§70P ARy 14

PAUSE AR6 14

FIORPS ARG 676

PARTWD F3p 146

INTEAF n7e 134

L FPP Fi8 461

OTSER Fi3 2514

SPMSG "q9 124

.CB 0nma 29

«BP ARG)

«FP A0 0 2 C

D-20

o~

Absolute program, 1-4

Absolute value, 3-3

Accumulators, 3-14

Adjustable arrays, 4-3

Arctangent function, 3-7, 3-10, 3-12

© Arguments, MACRO, 5-2

Arithmetic operator, A-1
Arithmetic package, 2-14, 3-17
Array descriptor block, 4-1
Arrays, 4-2

ASCI| data, 2-13

LASCIl to .SIXBT conversion, 4-8
AUXIO routines, 2-7

BACKSPACE command, 2-7, 2-8
Batch-processing monitor, 1-7
BCDIO package, 2-5

Binary record, 2-12

BINIO routines, 2-6

Blank common, 5-3

BOSS operating system, 1-7

BOSS routines, 2~18

BSPREC magnetic tape function, 2-8

Calling FORTRAN 1V, 1-2

Calling FORTRAN subprograms from
MACRO, 5-2

Calling library subprograms, 3-1

Calling MACRO subprograms, 5-1

Carriage return, 1-2

CHAIN program, 1-4 ,

Clock handling routine, 4-7

CLOSE routine, 2-16, 2-17

Code, relocatable object, 1-1

Command string format, 1-2

COMMON blocks, 5-3

Common logarithm, 3-7

Compiler error messages, B=1

Compiler task name, 1-2

Control P (+P), 1-3

Conversion, 3-4

Cosine function, 3-7, 3-9

INDEX

.DAA routine, 4-8
Data, ASCII, 2-13
Data-directed input-output (DDIO), 2-13
Data modes, 4-2
Data structure, 2~2
Data transmission, 2-3

statements, 2-1
.DAT (Device Assignment Table), 2-2
DAT slot, 2-8
DDIO (Data=Directed Input-Output), 2-13
DECtape, 2-2
DEFINE function (flowchart), 2-10
DEFINE routine, 2-9
DELETE routine, 2-18
Device Assignment Table (.DAT), 2-2
Device handlers, 2-3
Devices, serial, 2-2
Diagnostics, 1-4
Difference, positive, 3-4
Direct access 1/O, 2-9
Directoried 1/O, 2-2
Disk operating system, 1-6
Division by zero, 3-15
.DJ routine, 4-3
DLETE routine, 2-16
DOS directoried subroutines, 2-15
DOS-15 Bank Mode FPP library, D-10
DOS-15 Bank Mode non-FPP library, D-4
DOS~15 Page Mode FPP library, D-7
DOS~15 Page Mode non~FPP library, D-1
DOS monitor system, 1-6
Double (extended) integer arithmetic, 3-14
DOUBLE INTEGER mode, 4-2
DOUBLE PRECISION mode, 4-2
Double-precision numbers, 3-15

Dummy array, 4-2

Index~1

EAE (Extended Arithmetic Element), 1-7
EDCODE (encode/decode), 2-15
ENDFILE command, 2-7, 2-8

ENTER routine, 2-16, 2-17

Error handling routine, 4-7

Error, 1/O, 2-5

Error messages, 1-3, B-1

INDEX (Cont.)

Errors, OTS, 1-4
ERRSET, 4-7
Examples of programming, C-1
Exponential function, 3-6, 3-7, 3-12
Expression operators, A-1
Extended integer (double integer)
interface routines, 4-6

Extension,

LST., 1-3

SRC, 1-2

External functions, 3-6, 3-7

File directories, 2-2
File initialization, 2-9
Filename, 1-2
FIOPS package, 2-1, 2-3, 4-8
Floating accumulator, 3-14
Floating point processor (FPP), 3-14
routines, 4-6
Flowchart, DEFINE function, 2-10
Format, command string, 1-2
FORMAT statements, 2-6
Formatted input/output,
oTs, 2-5
RBCDIO, 2-11
Forms=control character, 2-5
FP15 floating-point processor (FPP), 1-7
routines, 4-6
FSTAT routine, 2-16
Functions, intrinsic, 3-2

table, 3-3

General Get argument, 3=13
.GLOBL pseudo-operation, 3-1
GO routine, 4-3

Handlers, device, 2-3
Hardware, 1-7

Hardware accumulator, 3-14
Header pair, 2=5

Header words, 2-6

Hyperbolic tangent, 3-7, 3-10

IDZERO routine, 3-16
example, C-1

Index=2

IFLOW routines, 3-=16

example, C-1

Initialization and actual data transfer

(RANCOM), 2-13
Initialization, file, 2-9
Input-output examples, C-2
Input-output processing, 2-1
INTEGER array, 4-2
INTEGER, LOGICAL mode, 4-2

Intrinsic functions, 3-2, 3-3

1/O error, 2-4

Language summary, A=l

Left arrow (<) usage, 1-2
Libraries, system, D-I

Library functions, summary, A-12
Library routines, RSX, 4-6
Library subprograms, 3-1

Linking loader, 1-4

Links, 1-4

Logarithm, base 2, 3-11, 3-12
Logarithms, 3-8

Logical operators, A-l

Logical record, 2-6

Logical Unit Number (LUN), 2-2
Logical Unit Table (LUT), 2-2
LST. extension, 1-3

LUN (Logical Unit Number), 2-2
LUT (Logical Unit Table), 2-2

MACRO programming, 2-6
MACRO subprograms, 5-1
Magnetic tape, 2-2

Mantissae, negative, 3-14
Master File Directory (MFD), 2-2
Maximum/minimum value, 3-5
Memory-to-memory transfers, 2-15
MFD (Master File Directory), 2-2

Natural logarithms, 3-7
Negative mantissae, 3-14

Object Time System - see OTS
Operating procedures, 1-1
Operators, A-I

2

5,

INDEX (Cont.)

Option list;, 1-3 ,
OTS auxiliary input/output (AUXIO),
2-7

OTS binary input/output (BINIO), 2-6
OTS errors, 1-4

messages, B-7, B-9
OTSER routine, 4-4, 4-8
OTS formatted input/output, 2-5
OTS vtility routines, 1-1, 4-1
Output listing file, 1-3
Output to a printing device, 2-5
Overflow, 3-=15
Overlays, 1-4

+ P (control P), 1-3

Paper tape, 2-2

Paper tape reader, 1-3
Parameter table (.PRMTB), 2-11
PARTWD routine, 4-5

Pass 1, 1-3

Pass 2, 1-3

PAUSE routine, 4-4, 4-8
Physical records, 2-6
Polynomial evaluation, 3-12, 3-14
Positive difference, 3~4
PRMTB (parameter table), 2-11
Processing, input-output, 2-1

RANCOM (initialization and actual
data transfer), 2-13

RBCDIO (formatted input/output), 2-11

RBINIO (unformatted input/output),
2-12

READ statement, 2-6

REAL array, 4-2

REAL mode, 4-2

Real=time multiprogramming, 1-7

Record identification number, 2-6

Record length, 2-5

Relational operators, A-1

RELEAE, rea!l arithmetic package, 1-7,
3-15

Relocatable object code, 1-1

Remaindering, 3-4

RENAME routine, 2-18

RENAM routine, 2-16

Retrieval Information Block (RIB), 2-2

REWIND command, 2-7, 2-8

REWIND magnetic tape function, 2-8

Index-3

Routines,

floating point processor, 4-6

OTS 4-8

RSX library, 4-6

utility, 4-1, 4-7
RSX directoried subroutines, 2-17
RSX library routines, 4-6
RSX monitor system, 1-7
RSX PLUS I FPP library, D-17
RSX PLUS 1l non=FPP library, D-13

Sample XVM/DOS session (figure), 1-5
Science library, 3-1
SEEK routine, 2-16, 2-17
Sequential files, 2-2
Sequential input-output, 2-4
Serial devices, 2-2
Sine function, 3-7, 3-9, 3-12
Single integer arithmetic routines, 3-14
Single-precision numbers, 3-15
Software, 1-6
Software accumulators, 3-14
SPMSG routine, 4-8
Square root function, 3-6, 3-7
SRC extensions, 1-2
.SS routine, 4-1
Statements, data-transmission, 2-1
Statements, summary, A-2
STOP routine, 4-4, 4-8
Subfunctions, 3-11

table, 3-12
Subroutines, user, 2-15
System libraries, D=1

TDV function task builder (TKB), 1-4
TIME routine, 4-7

Transfer of sign, 3-4

Truncation, 3-3

TTOF routine, 2-18

TTON routine, 2-18

UFDs (User File Directories), 2-2
Underflow, 3-15

Unformatted input/output (RBINIO), 2-12
Unformatted statements, 2-6

User File Directories (UFDs), 2-2

User subroutines, 2-15

INDEX (Cont.)

User subroutines, 2-15 Word-pairs, 2-5
Utility routines, 4-1, 4-7 WREOF magnetic tape function, 2-8
Write statement, 2-6

index-4

FORTRAN-IV XVM
Operating Environment
DEC-XV-LF4EA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
requirecd for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please cut along this line.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-~level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

0o00ooo

Non-programmer interested in computer concepts and capabilities

Néme Date
Organization
Street
City State : Zip Code
or
Country

If you require a written reply, please check here. []

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlifgliltall

Software Communications
P. O. Box F
Maynard, Massachusetts

Fold Here

Do Not Tear - Fold Here and Staple

01754

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

digital equipment corporation

M—j)

digital equipment corporation

