XVM UNICHANNEL
SOFTWARE MANUAL

DEC-XV-XUSMA-A-D

{ L
\ \\ L FAVYA
%\ \
\ \
£l - ¥ bkl Yy
1

ey
L

DVSIENNS

1.-;3'
clilglitlall

e T S ETEES) TN T TN AN

XVM UNICHANNEL
SOFTWARE MANUAL

DEC-XV-XUSMA-A-D

digital equipment corporation - maynard. massachusetts

First Printing, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (::) 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM TYPESET-11

CONTENTS
Page

»
[

PREFACE

[

—
I

=

CHAPTER INTRODUCTION
XVM UNICHANNEL SOFTWARE COMPONENTS
XVM/PIREX
SPOL11
MAC11
ABSL11
UNICHANNEL Support Programs
Spooler Disk Area Generation (SPLGEN)
Spooler Installation Program (SPLOAD)
XVM Spooler Control Program (SPOOL)
XVM MACll1l Control Program (MAC11)
MCLOAD
System Software Modification
UNICHANNEL HARDWARE SYSTEM
Common Memory
Interrupt Link
Peripheral Processor Hardware

|
QU WWWWWNONNMNRNNDNRERERP&

.
ATt b whN =
.

.
I T S I e e e e e el = W =

s o e
« e o e

o« ¢ o

Ul WD
11 1

.
W N =
Pl

b s S s e e e
.

o e S R R S e e
]

N

CHAPTER

[y
I
faiy

LOADING AND EXECUTION

INTRODUCTION
LOADING THE SYSTEM
ABSL11
Loading ABSL11, XVM/PIREX, and XVM/DOS
PERIPHERAL OPERATION
Disk Cartridge
Plotter
Card Reader
Line Printer
ERROR HANDLING
Disk Cartridge Errors
Card Reader Errors
Spooler Errors
TASK CRASHES
UNICHANNEL RELATED SOFTWARE COMPONENTS
UC15 Components
XVM/DOS Components
XVM/RSX Components

.« .
N =
I

I
O JINI~JOO TS _WWWN

. e
. e
SHwN e

NMNONNDNNDNNMNMNDOONNDDODNODNDNDNDNDNDND
.
OOV DR AR WWWWWNONNDE

.
W
!

RDNNNNDMNDNNDNDONDMDNNDNNDNDNDNDN
]

.
.
wWN =

w

CHAPTER SYSTEM DESIGN AND THEORY OF OPERATION--

PIREX

w
I
[

PIREX--PERIPHERAL EXECUTIVE
PIREX-An Overview
PIREX Services
Device Drivers
Software Routines in Background Mode
Unsupported Tasks
Optional LV Support
Optional DL Support

1

.
NSoobdhwinoR

.
I S = ryy Sy
.

WWwwwwwww
.

WWwWwwwwww
|

B P P W W=

iii

CONTENTS (Cont)

Page
3.1.8 Power Fail Routine 3-4
3.2 PIREX - SIMPLIFIED THEORY OF OPERATION 3-5
3.2.1 NUL Task 3-5
3.2.2 Clock Task 3-5
3.2.3 Request Processing 3-5
3.2.4 Task Structure 3-6
3.2.5 Task Control Block - TCB 3-7
3.2.5.1 API Trap Address and Level 3-7
3.2.5.2 Function Code 3-8
3.2.5.3 Task Code Number 3-8
3.2.5.4 Request Event Variable 3-9
3.3 SYSTEM TABLES AND LISTS 3-10
3.3.1 Active Task List (ATL) 3-10
3.3.1.1 ATL Nodes 3-14
3.3.1.2 ATL Node Pointer (ATLNP) 3-14
3.3.2 Task Request List (TRL) 3-15
3.3.3 TRL Listheads (LISTHD) 3-15
3.3.4 Clock Request Table (CLTABL) 3-16
3.3.5 Device Error Status Table (DEVST) 3-16
3.3.6 LEVEL Table 3-17
3.3.7 Task Starting Address (TEVADD) 3-17
3.3.8 Transfer Vector Table (SEND1l1) 3-18
3.3.9 System Interrupt Vectors 3-18
3.3.10 Internal Tables Accessible to All Tasks 3-18
3.4 DETAILED THEORY OF OPERATION-~-PIREX 3-19
3.4.1 Request Procedure 3-19
3.4.2 Directive Handling 3-20
3.4.3 Logic Flow 3-20
3.4.4 Operating Sequence 3-20
3.4.5 Software Interrupt 3-25
3.4.6 Task Completion 3-25
3.5 STOP TASKS 3-25
3.6 SOFTWARE DIRECTIVE PROCESSING 3-27
3.6.1 Disconnect Task Directive 3-29
3.6.2 Connect Task Directive 3-30
3.6.3 Core Status Report Directive 3-32
3.6.4 Error Status Report Directive 3-33
3.6.5 Spooler Status Report Directive 3-35
3.6.6 PIREX MOVE Directive 3-36
CHAPTER 4 TASK DEVELOPMENT 4-1
4,1 INTRODUCTION 4-1
4,2 PRIORITY LEVEL DETERMINATION 4-1
4.2.1 Device Priorities 4-2
4,2.2 Background Task Priorities 4-2
4.3 TCE FORMAT AND LOCATION 42
4.4 TASK CODE NUMBER DETERMINATION 4-3
4,5 UPDATING LISTS AND TABLES 4-4
4.5,1 Temporary Task Installation - Existing 4-4

Spare Entry

iv

CONTENTS (Cont)

4,5.2 Permanent Task Installation - Existing
Spare Entry

4.5.3 Temporary Task - New Entry

4,5.4 Permanent Task Installation - New Entry

4.6 CONSTRUCTING DEVICE HANDLERS

4,6.1 Constructing a XVM/DOS UNICHANNEL

Device Handler

Initialization

.INIT Function

Request Transmission

Interrupt Section

.READ and .WRITE Requests

.CLOSE Function

PDP-11 Requesting Task

UNICHANNEL Device Handlers for XVM/RSX

Definition of Constants

Initialization

Requests

ABORT Requests

Interrupts

READ and WRITE Requests
BUILDING A XVM/PIREX DEVICE DRIVER

General Layout

Task Program Code

Code Sections

Task Entry - Initialization

Interrupt Processing

Exit Techniques

Timed Wakeup

Assembly and Testing

Assembly and Loading

Testing

WWWWwwwNoRRFEREHERPERE

.
O U1 W N

« ¢ o & v & ¢ o

« o o = * s ®

. . ¢
W

* & s 0

P .
.
W

T S O A - T S B S SN St N S N S g~ g e

NN NN NN NN NN OO OND

.
bW

. .
N =

CHAPTER

5]

SPOOLER DESIGN AND THEORY OF OPERATION

INTRODUCTION
OVERVIEW
SPOOLER
XVM UNICHANNEL Spooler
SPOOLER DESIGM
SPOOLER COMPONENTS
Request Dispatcher
Directive Processing Routines
Task Call Service Routines
Device Interrupt Dispatcher
Device Interrupt Service Routines
Utility Routines
Buffers, TABLE, BITMAP, TCBs
THEORY OF OPERATION
SPOOLER Startup
LP SPOOLING

s ° & & o ® 8 o s ¥ e @
. s 9 . . « e
N =

NOUR W

LUt DB BB DB DWW NN F
. .
N =

(OS2 O O IS O O, IS O L IO I S IO)

[SLNE, 0, MO N RV NG RO RO V) RO RO I I, F))

WOV R WWWWNDNEPERRRE

CONTENTS (Cont)

Page
5.5.3 LP Despooling 5-32
5.5.4 SPOOLER Shutdown 5-36
CHAPTER 6 SPOOLER TASK DEVELOPMENT 6-1
6.1 INTRODUCTION 6-1
6.1.1 Call Service Routine 6-2
6.1.2 Interrupt Service Routine 6-3
6.1.3 Code to Handle the Disk Read/Write 6-3
Operations
6.1.4 Routine to Setup TCB and Issue Request 6-3
6.1.5 TCB 6-4
6.1.6 Initialization in the BEGIN Routine 6-4
6.1.7 Cleanup in the END Routine 6-4
6.1.8 Updating the Request Dispatcher 6-5
6.1.9 Updating the Device Interrupt Dispatcher 6-5
6.1.10 Updating TABLE 6-5
6.1.11 Updating the Central Address TABLE 6-5
6.1.12 Update DEVCNT and DEVSPP 6-6
6.1.13 Updating the FINDBK Routine 6-6
6.2 ASSEMBLING THE SPOOLER 6-6
APPENDIX A ABBREVIATIONS A-1
APPENDIX B CURRENTLY IMPLEMENTED TCBs B-1
B.1 STOP TASK (ST) B-2
B.2 SOFTWARE DIRECTIVE TASK (SD) B-3
B.3 DISK DRIVER TASK (RK) B-3
B.4 LINE PRINTER DRIVER TASK (LP) B-5
B.5 CARD READER DRIVER TASK (CD) B-7
B.6 PLOTTER DRIVER TASK (XY) B-9
APPENDIX C UC1l5 RELATED ERROR MESSAGES c-1
GLOSSARY GLOSSARY-1
INDEX INDEX~-1

vi

Figure

Table

|
HFwWwhRWDE

OY Ut U1 O B W
1

1-1

FIGURES

UNICHANNEL Hardware System

Memory Map of a UNICHANNEL System
UNICHANNEL System

Basic Flow Chart of XVM/PDP-11 Request
Processing

Task Format

Detailed Flow Chart of XVM/PDP-1l1 Request
Processing

Scan of Active Task List (ATL)

Context Switch or Save General Purpose
Registers RO-R5

Send Hardware Interrupt to XVM/Software
Interrupt to PDP-11

Dequeue Node From Task's Deque

XVM LP11 DOS Handler

XVM CR11 XVM/RSX Handler

UNICHANNEL LP Driver

UNICHANNEL Spooler Components

Task Call Service Routine

Device Interrupt Servicing Logic (For LP)
SPOOLER Schematic

TABLE

Common Memory Sizes

vii

Page

1-4

LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in-
cluding the latest version available. Within this manual, other XVM
manuals are referenced by title only. Refer to this list for the
DEC numbers of these referenced manuals.

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL
DDT XVM UTILITY MANUAL
EDIT/EDITVP/EDITVT XVM UTILITY MANUAL
8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL

FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL

LINKING LOADER XVM UTILITY MANUAL
MAC1ll XVM ASSEMBLER LANGUAGE MANUAL
MACRO XVM ASSEMBLER LANGUAGE MANUAL
MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL
UPDATE XVM UTILITY MANUAL

VP15A XVM GRAPHICS SOFTWARE MANUAL
VT15 XVM GRAPHICS SOFTWARE MANUAL
XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READERS GUIDE AND
MASTER INDEX

XVM/DOS SYSTEM MANUAL

XVM/DOS USERS MANUAL

XVM/DOS V1A SYSTEM INSTALLATION GUIDE
XVM/RSX SYSTEM MANUAL

XVM UNICHANNEL SOFTWARE MANUAL

ix

DEC-XV-OBUAA-A-D
DEC-XV-UCHNA~A-D
DEC-XV-UDDTA-A-D
DEC-XV-UETUA-A-D
DEC-XV~-UTRNA~-A-D
DEC-XV-LFLGA-A~-D
DEC-XV~-LF4MA-A-D
DEC-XV-LF4EA-A-D
DEC-XV-ULLUA-A-D
DEC-XV-LMLAA-A-D
DEC-XV-LMALA-A-D
DEC-XV~-UMTUA-A-D
DEC-XV-UPUMA-A-D
DEC-XV~-UPPUA-A-D
DEC-XV-USUTA-A-D

DEC-XV-USRCA-A-D
DEC-XV-UUPDA-A-D

DEC-XV-GVPAA-A-D
DEC-XV-GVTAA-A-D
DEC-XV-ODKBA-A-D
DEC-XV-ODGIA-A~D

DEC-XV-ODSAA-A~D
DEC-XV-ODMAA-~A~D
DEC-XV~ODSIA-A-D
DEC-XV-IRSMA-A-D
DEC-XV-XUSMA-A-D

PREFACE

This manual describes the XVM UNICHANNEL (UNICHANNEL) Software System
and its primary component PIREX, the peripheral processor executive.

No attempt is made in this document to describe the various UNICHANNEL
hardware instructions; those are explained in the UNICHANNEL-15 SYS-
tem Maintenance Manual, However, examples of instruction sequences
will be used when necessary to clarify programming conventions or
illustrate important aspects of the UNICHANNEL Software System.

It is recommended that the reader have a thorough understanding of the
UNICHANNEL hardware components before attempting to proceed with this
manual. The user who plans to use the UNICHANNEL Software System in
conjunction with some operating system on the XVM, and not modify

it, should gain a thorough understanding of Chapter 1 of this manual.
Users who wish to modify the UNICHANNEL XVM Software System should
read the UNICHANNEL XVM System Maintenance Manual. In addition, a
knowledge of PDP-1ll1l and its assembly language is necessary before at-
tempting UNICHANNEL system modification. '

A Glossary is included following the appendices, and should be used to
clarify terms not familiar to the reader. Program flow charts are
also included in this manual to aid the user in understanding the
logic flow.

The following documents also pertain to the UNICHANNEL System:

MACll XVM Assembler Language Manual
XVM/DOS Users Manual

XVM/DOS System Manual

XVM UNICHANNEL Software Manual
Instruction List for the PDP-15

XVM Systems Reference Manual

XVM/DOS V1A System Installation Guide
RK11l-E Controller Manual DEC-11-HRKA-B-D

xi

CHAPTER 1

INTRODUCTION

1.1 XVM UNICHANNEL SOFTWARE COMPONENTS

The XVM UNICHANNEL Software System consists of the following four
components:

1. XVM/PIREX

2. SPOLl1
3. MACll
4. ABSLl1l1

1.1.1 XVM/PIREX

XVM/PIREX (peripheral executive), a component of the XVM UNICHANNEL
(UCl1l5) Software System, is described in Chapters 3 and 4 of this man-
ual. XVM/PIREX (PIREX) is a multiprogramming peripheral processor
executive executed by the PDP-11. It is designed to accept any number
"of requests from programs on the DIGITAL XVM (XVM) or PDP-11 and pro-
cess them on a priority basis while processing other tasks concurrently
{(e.g., spooling other I/O requests). PIREX services all input/output
requests from the XVM in parallel on a controlled priority basis.
Requests to busy routines (tasks) are automatically entered (queued)
onto a waiting list and processed whenever the task in reference is
free. In a background environment, PIREX is also capable of sup-~
porting up to four priority-driven software tasks initiated by the

XVM or the PDP-11.

1.1.2 SPOL1l

Spooling is a method by which data to and from slow peripherals is
buffered on an RK05 disk. Spooling allows the XVM to access and out-
put data at high speed, freeing more of its time to do computation.
Programs that do a great deal of I/O, especially printing and plotting,
are not required to be core resident to complete the entire job. This
frees the computer to quickly advance to more jobs, dramatically in-
creasing the throughput of the entire system. The SPOL1ll task per-

1-1

Introduction

mits simultaneous spooling of line printer and plotter ocutput, and
card reader input. The capacity of the spooler is user-defined with
a possible maximum of over 1,800,000 characters allowed.

1.1.3 MACll

MAC1ll is a special version of the standard MACRO-11l assembler available
on the traditional PDP-11l computer system. This program is executed as
a task under the PIREX Executive. It is used to conditionally-assemble
various components of the UNICHANNEL Software System. Since this as-
sembler is a subset of MACRO-1l, programs assembled under MACRO-11l, will
not necessarily assemble under MACll. In addition, programs written

and assembled under MACll will not necessarily operate correctly on
other PDP-11 systems, MACll produces assembly listings and absolute
binary paper tapes as outputs. Detailed information concerning MACl1l
can be found in the MACll XVM Assembler Language Manual.

l1.1.4 ABSL11

ABSL1l is a XVM Hardware Read In Mode (HRM) paper tape program used
to bootstrap~locad the UNICHANNEL peripheral processor with MAC1ll-
generated absolute binary paper tapes. While primarily designed to
load the PIREX executive into the PDP-11 memory, ABSL1ll may be used
to load any absolute program into the PDP-1l and optionally start it.
Additional information on ABSL1l may be found in Chapter 2 of this
manual.,

1.1.5 UNICHANNEL Support Programs

1.1.5.1 Spooler Disk Area Generation (SPLGEN) - SPLGEN allows the user
to dynamically create or alter the RK disk area used by the UNICHANNEL
spooler on any RK disk unit (0 through 7).

1.1.5.2 Spooler Installation Program (SPLOAD) - SPLOAD allows the user
to install, on the system disk, the SPOL1ll paper tape produced by
MACll .

1.1.5.3 XVM Spooler Control Program (SPOOL) - SPOOL (SPOL1l5) is used
to initiate or terminate UNICHANNEL spooling using any RK disk unit
which has been previously prepared for spooling by SPLGEN.

Introduction

1.1.5.4 XVM MACll Control Program (MAC1ll) - MACll (MACINT) is used
to initiate, perform Input/Output for, and terminate the MACll assem-—
bler.

1.1.5.5 MCLOAD -~ MCLOAD allows the user to install on the system disk,
the MACll paper tape produced as a part of the XVM/DOS build process.

1.1.6 System Software Modification

The complete UNICHANNEL Software System may be modified or expanded by
the user when running under XVM/DOS or XVM/RSX programming systems. A
common editor, called EDIT, allows source changes to the XVM or

PDP-11 software. MACRO XVM, the MACRO XVM Assembler, and MACll, a
PDP-11 MACRO Assembler allow new object code to be generated. Both
the MACRO XVM and MACll assemblers are powerful MACRO assemblers that
facilitate easy code generation and source readability.

1.2 UNICHANNEL HARDWARE SYSTEM

The UNICHANNEL hardware (see Figure 1-1) consists of a PDP-1l1l mini-
computer used as an intelligent peripheral controller for the larger
XVM main computer. The XVM functions as the master processor by
initiating and defining tasks while the PDP-11 peripheral processor
functions as a slave in carrying out these tasks. In order to effec-
tively operate, with a minimum of interference with the master pro-
cessor, the peripheral processor uses its own local memory of between
8,192 and 12,288 16-bit words. Since peripheral control requires only
a fraction of the peripheral processor resources, the remainder of the
processor's resources can be used for parallel processing of back-
ground tasks.

1.2.1 Common Memory

Common memory is that memory directly accessible to both the master

processor - the XVM, and the peripheral processor - the PDP-11l. Thus
common memory occupies the upper portion of the PDP-11 address space
and at the same time the lower portion of the XVM address space. The
UNICHANNEL System allows any Non-Processor Request device on the UNI-
BUS to access XVM memory so that data can be transferred between I/0

devices and common memory.

Introduction

XVM

1/0 BUS

UP TO 128K
CARTRIDGE CORE MEMORY
DISK
XVM
UNIBUS XVM MEMORY BUS COMPUTER
| INTERRUPT
LINK
B ———
PDP- |1 PDP-I1
CORE MEMORY
8K OR 12K COMPUTER
Figure 1-1

UNICHANNEL Hardware System

The use of common memory allows ease of data transfer between XVM

memory and secondary storage (disk, magnetic
peripheral processor can access a maximum of 28K of memory.
shows the amount of Common memory accessible

with a given amount of Local memory.

Table 1-1

tape,

Common Memory Sizes

etc.

).

PDP-11 LOCAL

COMMON MEMORY

MEMORY SIZE SIZE
8K 20K
12K 16K

The PDP-11
Table 1-1

to a PDP-11 processor

The UNIBUS can address the combined XVM/PDP-11 memory, which can
For instance, the RK05 and its disk con-

extend to a maximum of 124K,

troller can transfer information to or from a location outside of the

common memory region.

Figure 1-2 outlines a typical memory map of the

XVM and PDP-11, illustrating the common shared memory address space

and the PDP-11 local memory.

Introduction

‘ 128K W
NOT ACCESSIBLE BY UNIBUS
128K 116-124K
- 7///////
UNIBUS DEVICE__| 55444455445444
ADDRESSES ’ ///////’éfffff
124K /ﬁ /A 112-12¢K
18 BIT
MEMORY
ACCESSIBLE BY MEMORY IBLE BY
UNIBUS NPR < P Moiﬁ ACCESS/O
DEVICES XVM AND XVM I
r 28K 16-24K
ACCESSIBLE BY | \ J
PDP-11 -1k g
"LOCAL PDP-11" - ;;Mgig NOT ACCESSIBLE BY XVM
MEMORY OR XVM I/0
\. § 8
Figure 1-2

Memory Map of a UNICHANNEL System

1.2.2 Interrupt Link

The XVM central processor and the peripheral processor communicate with
each other through device interfaces. When the XVM initiates a new
task, it interrupts the peripheral processor with a message. The mes-
sage is designated as a Task Control Block Pointer (TCBP) and points

to a table (Task Control Block) in common memory where the task is
defined. The peripheral processor performs the task and can signify
its completion by sending an optional interrupt back to the XVM.

1.2.3 Peripheral Processor Hardware

The UNICHANNEL System in its standard configuration consists of the
following equipment (Figure 1-3):

Introduction

UPTO 128K OF I8 BIT
MEMORY

r
|
I
!
| TT
|
I
< UNIBUS- 18 M

b 1

PERIPHERALS

MORY BUS

{3

XVM COMPUTER

CPU 170
PROCESSOR

I

I

|

!

I'l up 10 12K OF PDP-I! DRIFC
1| 16 BIT *LOCAL" CcPU
|

]

i

!

I

_ XVM 170 BUS
MEMGRY DRIS-C

(ori-c K=
i

— e e e e = =] = — = — = =

XVM
PERIPHERALS

Figure 1-3
UNICHANNEL System

e PDP-11 Peripheral Processor

e DR15-C Device Interface

e Two DR1l1l-C Device Interfaces

e XM15 Memory Bus Multiplexer

e 8192 or 12288 Words of 16-Bit Local Memory

The PDP-11, which functions as the peripheral processor, can itself
only process l6-bit words but controls peripherals that can process
18-bit words to provide compatibility with the XVM. The DR15-C and
the two DR11-C Device Interfaces provide the communication facility
between the XVM and the PDP~1l. The XVM can interrupt the PDP-11l and
send a data word (TCBP) to the PDP-11; this interrupts the PDP-1l1l at
priority level 7 (the highest priority level) and causes a trap thru
location 3108. The PDP-11, serving as a peripheral processor, can
interrupt the XVM to indicate an error condition or job completion at
any one of 128 API vector locations at any one of four API priorities.l
The XM15 Memory Bus Multiplexer functions as a memory bus switch to
allow either the XVM or the PDP-11 to communicate with the common
memory. The XM15 also provides the PDP-11 with the capability of
performing byte instructions which reference XVM memory.

1This applies to systems with the API option - systems without API can

use four skip instructions, corresponding to the four hardware priority
levels, to determine the nature of the interrupt.

1-6

CHAPTER 2
LOADING AND EXECUTION

2.1 INTRODUCTION

This chapter explains how to get the DEC-supplied XVM UNICHANNEI Soft-
ware System up and running. In addition, a list of the UNICHANNEL
software components used in the various XVM monitor systems is included.
For information on how to tailor the system to a specific configuration,
see the XVM/DOS System Installation Guide.

2.2 LOADING THE SYSTEM

The UNICHANNEL system is activated by using ABSL1ll to load the PIREX
executive into the PDP-11 UNICHANNEL local memory. XVM/DOS is then
bootstrapped and the system is ready to:

1. Continue running under XVM/DOS
2, Begin execution of B0OSS XVM

3. Begin execution of XVM/RSX
2.2.1 ABSL11

ABSLl1ll is an XVM absolute binary paper tape program which is read into
the XVM at location 177008 via the Hardware Read In Mode (HRM) on the
XVM. It is used to load PDP-1l absolute binary paper tape on to the
PpP-11. This self starting program is written in MACRO XVM and octal.
(The PDP-11 code is written in octal and assembled with MACRO XVM.)

Load ABSL11 from the XVM High Speed Reader. XVM will then halt, Start
the PDP-11 from its console switches at 140000. Note that the previous
(DOS V3A) start addresses for ABSL1l can also be used. Once the

PDP~11 is running, load the PDP-11 tape into the XVM High Speed Reader.
Depress the Continue Switch on the XVM, and the paper tape will read
in. Each data frame from the paper tape is transferred into the PDP-11
as soon as it is read. At the end of the tape, XVM will halt with the
AC register equal to zero. If the paper tape has a start address, the

Loading and Execution

PDP-11 will begin execution at that address. If the paper tape does
not have a start address, the PDP-1l1l will halt. To load another tape,
place it in the XVM High Speed Reader, and continue both machines.

Checksum errors are detected by the XVM and result in a halt with all
1's in the AC register. The checksum error may be ignored by depres-
sing the CONTINUE switch on the XVM.

2,2.2 Loading ABSL1l1l, XVM/PIREX, and XVM/DOS

The following is a step-by-step description of how ABSL1ll, XVM/PIREX,
and XVM/DOS are loaded.

1. Place the ABSL1l paper tape into the XVM paper tape reader.

The paper tape reader ON/OFF switch must be in the ON position.
2, Verify that the RK05 Disk Cartridge is loaded into drive and:

a. The LOAD/RUN switch is in the RUN position.

b. The write ENABLE/PROTECT switch is in the ENABLE position.
3. Press the HALT switch on the PDP-11 UNICHANNEL console.

4, On the XVM console, set the address register switches to
17700 (octal), then press STOP and RESET simultaneously.

5. On the XVM console, press READ IN. The ABSL1l paper tape
should read in.

6. When the paper tape reader stops, observe the XVM accumulator
(AC) using the proper setting of the rotary register selector
and register select switch on the XVM console.

a. If the AC is 0, proceed to step 7.

b. If the AC is not 0, retry starting at step 1. (If this
fails consistently, there is either a bad ABSL1l paper
tape or a hardware problem,)

7. On the PDP-11 UNICHANNEL console, load the starting address
140000 for the PDP-11 portion of ABSL1l into the switch
registers:

Then press the PDP-11 LOAD-ADR switch

8. On the PDP-1]1 UNICHANNEL console, raise the HALT/ENABLE
switch to the ENABLE position and then press the START switch.
The PDP-11 RUN light should now be on.

9. Remove the ABSL1l paper tape from the reader and place the
PIREX paper tape into it.

10. On the XVM console, press the CONTINUE switch. PIREX paper
tape should read in.

Loading and Execution

1l. Remove the PIREX paper tape and verify that the bit 0 and RUN
lights on the PDP-11 UNICHANNEL console are lit. This is an
indication that PIREX is running.

12. Load the XVM/DOS Bootstrap tape (hardware read in mode tape)
into the Paper Tape Reader.

13. Set Address Switches on the XVM Console to
a. 776378 for a 32K or more XVM

b. 576378 for a 24K XVM

14. On the XVM Console, press simultaneously STOP and RESET.

15. On the XVM Console, press the READ IN switch. The XVM/DOS
Bootstrap tape should read in.

16. XVM/DOS should announce itself. If not, check that the con-
sole terminal is powered up, is ONLINE and not out of paper.
Also check that the correct disk cartridge was loaded into
RK unit 0.

2.3 PERIPHERAL OPERATION
2,3.1 Disk Cartridge

On the front of the disk cartridge unit there are two (optionally a
third, ON/OFF) toggle switches, RUN/LOAD, and WRITE/PROT. To load

the disk, press ON (if present) and LOAD. Pull the door open. Pick
up the cartridge by the molded hand-grip, metal side down, horizontal,
and slide gently into the path between the wire guides. Shut the door.
Put the LOAD/RUN switch into the RUN position. In about 10 seconds,
the two lights, RDY and ON CYL will come on, indicating that the cart-
ridge is ready. To unload the disk, place the toggle switch on LOAD.
Wait for about 30 seconds until the LOAD light is on. At this time,
the drive will release the cartridge with a noticeable'click', only
then open the door and pull the cartridge out.

WARNING

Do not turn off the drive while unloading
(if drive has an OFF-ON toggle).

2.3.2 Plotter
Unlike the XY311l, the XY1l does not have an offline switch. In order

to be able to indicate the XY1l plotter off-line condition, provision
is made in the software through the PDP-11l console switches. By

2-3

Loading and Execution

setting bit '2' of the console data/address switches in the up/on posi-
tion ('l' state) the plotter can be put in the off-line mode. This is
made possible by the plotter device driver task in PIREX, which moni-
tors this bit before initiating each plotter I/O requests. Once the
plotter problem condition (e.g., out of paper) has been corrected,
plotting will continue automatically when bit '2' of the console
switches is reset to zero (down position).

The user is provided with the capability of halting the output on the
plotter at the end of current file in the spooled mode. This is done
through bit '3' of the PDP-1l1 console switches. By setting bit '3' of
the console data/address switches in the up/on position ('l' state)
output on the plotter can be halted at the end of current £file. The
plotter driver task in PIREX provides this facility by monitoring this
bit before initiating each plotter I/O requests. After performing the
necessary operations on the plotter, output can be resumed by setting
bit '3' of the console switch in the down/off position ('0' state).

2.3.3 Card Reader

For the purposes of spooling, a card with ALT MODE, ALT MODE in columns
1 and 2 is used as an end-of-deck card. The handler throws away such
cards, continuing on to the next card, so that the XVM program using
the handler never sees this card. This card is used to force data

from a partially filled internal spooler buffer onto the disk where

it can be despooled to the XVM.

2.3.4 Line Printer

Output to the Line Printer can be halted at the end of current file in
the spooled mode. This is done through bit 'l' of the PDP-11 console
switches. By setting bit 'l' of the console data/address switches in
the up/on position ('l' state), outputs on the line printer can be
halted at the end of current file. The Line Printer driver task in
PIREX provides this facility by monitoring this bit before indicating
completion of .CLOSE I/O request processing. After performing the
necessary operations on the line printer, output can be resumed by
setting bit 'l' of the console switch in the down/off position ('1l!
state) .

Loading and Execution

2.4 ERROR HANDLING

Within the PIREX system, the device drivers on the PDP-11 side handle
errors by placing error condition indicators in a table in PIREX. On
the XVM side, a "poller" (part of the resident monitor of the operating
system) periodically searches the table to see if any error messages
are to be printed. In almost all cases the recovery is automatic when
the error condition is rectified. See Appendix C for a list of UC1l5
related error messages.

2,4.1 Disk Cartridge Errors

Disk cartridges must be positioned properly during loading operations.
Improper positioning of the cartridge can result in a drive not ready
condition.

This condition can be eliminated in most instances by unloading the
cartridge, repositioning it properly and reloading the cartridge.

The above operations should be repeated a few times before reporting
the problem to your field service representative. Do not force the
cartridge into or from position during the loading or unloading
operation.

2.4.2 Card Reader Errors

The system divides card reader errors into two groups: hardware and
software. A hardware error is a hardware read error (pick check, card
jam, etc.) or an illegal punch combination. A software error is a
supply error (hopper empty, stacker full) or an off-line condition.

For all hardware errors, the card causing the error will be on the top
of the output stack. With most hardware errors, the card reader will
stop, and a requisite light (i.e., pick check) will light on the
reader. Remove the card, repair or replace it, and put it on the

front of the input stack. Press the RESET button. The driver receives
an interrupt when the device becomes ready again and will restart

automatically.

For software errors, the card in the output hopper has already been
read. It is merely necessary to fix the supply error and press the
RESET button. Note that the card reader can be stopped by pressing
the OFF-LINE button. To restart, press the RESET button.

2-5

Loading and Execution

Illegal punch combination (IOPSUC CDU 72) and card column lost (IOPSUC
CDU 74) are exceptions to all other errors because in these cases
alone, the card reader will stop, remain on line, and no diagnostic
light will be lit. The card causing the error will be in the top of
the output hopper. (Mangled cards may cause an illegal punch combina-
tion error.) Press the OFF-LINE button, repair or replace the faulty
card, put it on the front of the input stack, and press the RESET
button to restart.

2.4.3 Spooler Errors

During spooling operations, any unrecoverable disk error will result
in the automatic termination of SPOOLing“ Unrecoverable disk errors
include:

The attempt by the spooler to read/write a bad block on
the disk cartridge.

Setting the disk cartridge off line while SPOOLing is
enabled. (This is detected even if no Input/Output to the
disk cartridge is underway.)

The spooler is disconnected from PIREX upon the occurence of either
of the above errors. The user may restart the spooler by issuing the
XVM/DOS "SPOOL"™ command.

2.5 TASK CRASHES

During program development under PIREX on the PDP-11, the task under
development may crash. Such crashes may not be apparent unless the
PDP-11 halts, because PIREX keeps both the RUN light and bit 0 lit as
if no problem existed.

Loading and Execution

2.6

2.6.1 UCl5 Components

UNICHANNEL RELATED SOFTWARE COMPONENTS

NOMENCLATURE SOURCE FILE NAME BINARY FILE NAME
PIREX Executive PIREX XXX PIREX paper tape
SPOOLER SPOL11l XXX SPOOL ***

PDP-11 Absolute Loader|ABSL1l XXX * ABSL1l paper tape
MAC1ll Assembler Special DOS-11 Tape** MAC11 #***

2.6.2 XVM/DOS Components

NOMENCLATURE SOURCE FILE NAME BINARY FILE NAME
XVM SPOOLER Component SPOL15 XXX SPOQL, ***
SPOOLER Disk Area SPLGEN XXX SPLGEN BIN
Allocation
SPOOLER Image Loader SPLIMG XXX SPLOAD BIN
MACll XVM Component MACINT XXX MACINT ABS
MAC1l1 Image Loader MACIMG XXX MCLOAD BIN
DOS Resident Monitor RESMON XXX RESMON **%*%*
DOS Non-Resident Monitor DOSNRM XXX DOS15 ****
NOMENCLATURE SOURCE FILE NAME BINARY FILE NAME
XvV.4 LP11/1.S11/LV11 LPU. XXX LPA. BIN
Line Printer Handler
XVM XY11/X¥311l Plotter XYU. XXX XYA. BIN
Handler
XVM CR11l Card Reader CD.DOS XXX CDB. BIN **#*%
Handler

*

ABSL1l requires a special assembler, that is not available as a
supported product. Assembly of ABSL11 with the standard MACRO
XVM Assembler produces a paper tape with a load address of 17720.

* %
The MACll source is a PDP-11 DEC tape that must be assembled and
linked under DOS/BATCH-1l. This tape is not available as a part of
the XVM/DOS kit.

* k%
SPOL11l and MACll are combinations of XVM and PDP-11 code segments.

* %k Xk
These routines are versions of standard DOS-15 source files - crea-
ted using special assembly parameters - see the XVM/DOS VIA

System Installation Guide.

Loading and Execution

2.6.3 XVM/RSX Components

NOMENCLATURE SOURCE FILE NAME | TASK NAME

RKOS5 Cartridge Disk File RFRES XXX RK
Handler
Disk File Handler Overlay RFOPEN XXX RK ...
Disk File Handler Overlay RFCLOS XXX RK
Disk File Handler Overlay RFREAD XXX RK
Disk File Handler Overlay RFDLET XXX RK ...
Disk File Handler Overlay RFCREA XXX RK
Line Printer Handler LP.XX SRC IP
Card Reader Handler CD.... XXX CD
UNICHANNEL Poller POLLER XXX . POLLER
Plotter Handler XY .XX SRC X
Executive RSX.P1l XXX NA
and
RSX.P2 XXX

CHAPTER 3
SYSTEM DESIGN AND THEORY OF OPERATION--PIREX

This chapter describes the design and theory of operation of the XVM
UNICHANNEL Peripheral Processor Executive. Knowledge of this infor-
mation is necessary to successfully modify the XVM UNICHANNEL Software
System, Chapter 4 will discuss techniques for modification of the
PIREX system.

3.1 PIREX--PERIPHERAL EXECUTIVE

PIREX is a multiprogramming peripheral processor executive designed

to provide device driver support to operating systems on the DIGITAL
XVM main-processor, PIREX is designed to be as independent of the
particular XVM operating system as possible, executing in conjunction
with XVM/DOS, BOSS XVM, or XVM/RSX. The PIREX Software System is des-
igned to maximize flexibility and expandability and to minimize system
overhead and complexity. To accomplish this, special software and
hardware features are designed into the system.

3.1.1 PIREX-An Overview

PIREX is loaded from the XVM high-speed reader into the PDP-11 local
memory and automatically started. Once running, PIREX is capable of
accepting multiple requests and directives from the XVM or PDP-11 and
processing them on a controlled-priority basis. Task requests are
automatically queued (see Figure 3-1) and processed whenever the task
in reference is free. When a particular device or routine completes
the processing of a request, status information (e.g., parity or check-

sum errors, transfer OK, etc.) is passed back to the caller.

At the completion of a XVM request, an optional hardware interrupt is
initiated in the XVM on any one of 128 possible API trap locations and
at any one of 4 hardware API levels if requested. Since the software
completely determines which interrupt vector and level to use when
completing XVM requests, the routines initiating the interrupts could

actually be software routines used to simulate hardware conditions or

System Design and Theorv of Operation--PIREX

PDP-11-PIREX
REQUEST

SLAREQ
entry BUMP PC SAVED
|——————®» IN STACK TO

RETURN ADDRESS

MASREQ.SLAREQ

SAVE R@-R5 ON
CURRENT STACK;
UPDATE ENTRIES
IN ATL NODE

MASREQ
entry *

SWITCH TO
SYSTEM STACK

GET TCBP AND
RELOCATE IT.
GET TASK CODE

BUILD ATL NODE

TASK CURRENT-
LY BUSY

?

TAKE REFERENCED
TASK AS SPOOLER

ESTABLISH TASK

TELL XVM QUEUE REQUEST STACK WITH
ERROR TCB IN TASKS TRL START ADDRESS
& PRIORITY

Y Y Y

EXIT TO
ATL SCANNER

Figure 3-1
Basic Flow Chart of XVM/PDP-11 Request Processing

System Design and Theory of Operation--PIREX

just software tasks. If the request is issued from the PDP-11, the
user may request an optional software interrupt after completion of the
current request.

3.1.2 PIREX Services

The PIREX executive consists of modules that provide support for multi-
ple I/O oriented tasks operating asynchronously with each other. 1In
addition, support is provided for other background tasks such as MAC1l.
The services provided to tasks operating under PIREX include:

e Context switching - transferring control of the PDP-11
Central Processing Unit (CPU) from one task to another.

¢ Interprocessor communication - receiving requests for
service from, and, sending results to the XVM main
processor.

e Intraprocessor communication - receiving requests for
service from, and, sending results to tasks operating on
the PDP-11 peripheral processor.

e Scheduling - determining which task is to execute next.

e Request Queuing - stacking requests for a busy task until
it is able to process them.

e Timing - providing a timed wake-up service for requesting
tasks.

e Error Reporting - providing a list of current device and
task errors to the XVM executive, on demand.

e Directive Processing - providing the XVM monitor with
specific services such as: notification of available
memory space, connecting, disconnecting or stopping tasks
and returning the status of certain tasks.

These services are provided to both device driver tasks and background

tasks.
3.1.3 Device Drivers

Device Drivers are tasks that typically perform rudimentary device
functions such as read, write, search, process, interrupt, etc. They
can, however, be complete handlers, performing complex operations such
as character generation and directory searching. PIREX provides each
driver with requests for I/O actions and returns the results of the
actions to the caller. Associated drivers are provided for the RKO05
Disk Cartridge, the LP11/LS11/1LV11 Line Printer, the CR11l Card Reader,
and the XY11l Plotter.

System Design and Theory of Operation--PIREX

3.1.4 Software Routines in Background Mode

The following are run as background tasks--executing only when I/0
drive tasks are idle:

1. SPOLl1ll -- an input/output spooling processor

2. MACll -- A MACRO assembler for the PDP-11

3.1.5 Unsupported Tasks

All tasks supplied with the PIREX software system are fully supported
by Digital Equipment Corp. except the DECtape Driver task (DT). The
DT task has not been completely tested, but is included in the system
for illustrative purposes and for anyone who may desire to develop
DECtape capability on the PDP-11,

3.1.6 Optional LV Support

For reasons of packaging optional LV support on a printer and a plotter
is present in the standard PIREX ($LV=0). This support, however, is
only at the device driver level. The PDP-15 side modules display-file-
to-vector, vector-to-raster, and LV I/O handler may be purchased separa-
tely. Information is available through PDP-15 Marketing.

3.1.7 Optional DL Support

The DL-11 is supported as a communications protocal device between a
DEC system-10 and a PDP-15. The code for this support is purchased

separately and is available from the SDC. Information is available

through PDP-15 Marketing.

3.1.8 Power Fail Routine

A power fail section is present in PIREX. It is, however, not sup-
ported by DEC and currently only saves the general registers and does
not attempt to handle 1/0 in progress. This routine could be expanded
by the user into a complete power fail handler.

System Design and Theory of Operation--PIREX

3.2 PIREX - SIMPLIFIED THEORY OF OPERATION
3.2.1 NUL Task

When the PIREX Software System is running, it is normally executing the
NUL Task (a PDP-11 WAIT instruction). The NUL Task is executed when-
ever there are no other runnable tasks or while all other tasks are in
the WAIT state waiting for previously initiated I/0. The NUL Task
entry is a permanent element in the Active Task List. The Active Task
List is a priority ordered list of tasks that is used to schedule the
next task to be executed. The NUL task occupies the last position in
the Active Task List (ATL).

3.2.2 Clock Task

One other permanent entry in the ATL is the Clock Task. The Clock Task
is entered once every 16.6 milliseconds for 60 Hz machines (20.0 milli-
seconds for 50 Hz). Its primary function is to provide other tasks

with a wake up service. A typical use of the Clock Task would be to

wake up the Line Printer Task every two seconds to check the Line Printer
status for a change from OFF LINE to ON LINE. The Clock Task operates

at the highest priority on the ATL.

3.2.3 Request Processing

When the XVM issues a request to the PDP-11l to be carried out by PIREX,
it does so by interrupting the PDP-11 at level 7 (the highest PDP-11
priority level) and simultaneously passing it the address of a Task
Control Block (TCB) through the interrupt link. This address is called
the Task Control Block Pointer (TCBP). A PDP-11 task can issue re-
quests to other tasks via the IREQ macro. The IREQ macro simulates

the XVM request process and results in a TCBP being passed to PIREX.
The contents of the Task Control Block completely describe the request
(task addressed, function, optional interrupt return address and level,
status words, etc.). The TCB will reside in the 'Common' Memory if

the request is issued from the XVM or in the 'Common' or 'Local'

Memory if the request is issued from the PDP-11l.

The flow chart in Figure 3-1 illustrates the basic processing of
requests to PIREX from the XVM or the PDP-1ll. Note that error condi-
tions are passed back to either central processor in the TCB or via

an error table to the XVM monitor poller along with status information

System Design and Theory of Operation--PIREX

necessary for control and monitoring of a request. Usually the request

is to a device on the PDP-11 but other types are allowed.

3.2.4 Task Structure

A task is a PDP-11 software routine capable of being requested by the
XVM or PDP-11 through the PIREX software system. The task may be a
device driver, a directive processor, or just a software routine used
to carry out a specified function. A task must have the format shown
in Figure 3-2, TASK FORMAT.

* ek LOWER CORE
* *
task stack area v
] '
* *
¥k k%
control register * o
* k%%
busy/idle switch * %
* *
% % kX
* *
task program * %
code S
* *
* *
Hokeok ok HIGHER CORE

Figure 3-2
Task Format

This structure consists of four sections; two are variable in size and
two are fixed.

The "task program code" size is variable and contains the programming
code necessary to carry out the task function.

The "busy/idle switch" consists of two words and is used by PIREX to
determine if a task is busy or idle. The TCBP of the current request
is stored in this section when the task is busy. This also enables a
task to easily access the TCB.

The "control register" is either a dummy address (an address which

points to an unused software variable) or the address of a device

3-6

System Design and Theory of Operation--PIREX

control register if the task is an I/O driver. This word is used only
by the STOP TASKS (ST) task when shutting down I/O operations.

The "stack area" begins immediately below the control register and
builds dynamically downwards. The purpose of the stack is to allow

each task free use of a private space for temporary storage of data
while it is executing and all its active registers during times when
other higher priority tasks are being run. The stack area must be

large enough to store the maximum number of temporary variables used

at any one time plus one context register save. A context save requires
8 words of stack area plus an additional 3 words if the PDP-~11 has an
Extended Arithmetic Element (EAE). The stack size is fixed and deter-
mined at PIREX assembly time.

3.2.5 Task Control Block - TCB

Tasks, in PIREX, receive requests for action and return the results of
their action in blocks of information called Task Control Blocks (TCB).
The general format of a TCB consists of three words followed by task-
specific optional words. The following information must be present

in all TCBs since PIREX will honor requests in this format only.

15 8 7 0
TCB: API TRAP ADDRESS API LEVEL WORD O
FUNCTION CODE TASK CODE NUMBER WORD 1
REV: REQUEST EVENT VARIABLE WORD 2
OPTIONAL WORDS WORD 3-N

3.2.5.1 API Trap Address and Level -~ The API trap address is a XVM

API trap vector and has a value between 0 and 1778 when a hardware
interrupt on the XVM is required. Location 0 corresponds to location

0 in the XVM. The "API" level is the priority level at which the
interrupt will occur in the XVM and has a value between 0 and 3 when

a hardware interrupt on the XVM is required. A 0 signifies API level
0, a 1 for level 1, etc. The API trap address and level are used by
tasks in the PDP-11 when informing the XVM that the requested operation
is complete (e.g., a disk block transferred or line printed). If the
XVM master computer doesn't have API or if API is not enabled, the
PDP-11 issues an interrupt that when received is polled by the XVM using
4 UCl5 skips (one per level) on the traditional skip chain.l

lAPI is optional on PDP-15's, standard on XVM's.

3-7

System Design and Theory of Operation--PIREX

3.2.5.2 PFunction Code ~ The Function Code determines whether hardware
interrupts on the PDP-15 or software interrupts on the PDP-11l are to be
used at the completion of the request. If the code has a value of 0,

a hardware interrupt is generated on the XVM at the completion of the
request; if a 1, an interrupt is not made. If the Function Code is a
3, a software interrupt is issued by PIREX., The task routine or pro-
gram using this facility sets up the trap address in the SEND1l table
in PIREX prior to issuing the request to the task. The task or route
should return to PIREX after interrupt processing through an "RTS PC"
instruction. All registers are available for use by tasks.

3.2.5.3 Task Code Number - The Task Code Number (TCN) is a positive
(1—1778)l or a negative (200—3778) 7-bit number plus a sign bit that
informs PIREX which task is being referenced. The mnemonic TCN as
used in this manual refers to the 7-bit portion of the Task Code
Number. Tasks are addressed by a numeric value rather than by name.
Tasks with positive code numbers are spooled tasks and tasks with
negative code numbers are unspooled tasks. When the SPOOLER (see
Chapter 5) is enabled and running, requests to spooled tasks are
routed to the SPOOLER. When the SPOOLER is disabled, requests to
spooled tasks are routed directly to device drivers.

Task Code Numbers are currently assigned as follows:
2

CODE TCN TASK

-13 -1 CL task (Clock) Driver task3
200 0 ST task (Stop Task) Software task
201 1 SD task (Software Directive) Directive task
202 2 RF task (Cartridge Disk) Driver task
203 3 DT task (DECTAPE) Driver task

4 4 ILP task (Line Printer) ~ Driver task

5 5 CDh task (Card Reader) Driver task

6 6 PL task (Plotter) Driver task
207 7 SP task (Spooler) Background task
210 10 LV task (Printer/Plotter) Driver task
211 11 DL task (Hurley protocal Driver task

communication task)

212 12 Currently not used -
213 13 Currently not used -
214 14 Temporary Task Entry Temporary task

1A task code of 0 indicates the STOP TASKS DIRECTIVE - See Section 3.5
2The code column corresponds to the typical task code in the TCB
3The minus 1 is represented internally as 377

3-8

System Design and Theory of Operation--PIREX

PIREX is currently capable of handling these 14 tasks. Tasks 11-14
are spare task codes available for customer use.1

3.2.5.4 Request Event Variable - The REQUEST EVENT VARIABLE, commonly
called REV, is initially cleared by PIREX (set to zero) when the TCB
request is first received and later set to a value "n" (by the asso-

ciated task) at the completion of the request. The values of "n" are:

0 = request pending or not yet completed
1 = request successfully completed
=200 = (mod 216—1) nonexistent task referenced
=300 = (mod 216—1) illegal API level given (illegal values
are changed to level 3 and processed)
-400 = (mod 216—1) illegal directive code given
=500 = (mod 216—1) no free core in the PDP-11 local memory
-600 = (mod 216—1) ATL node for this TCN missing
=777 = (mod 216-1) request node was not available from the

POOL (i.e., the node POOL was empty, and the ref-
erenced task was currently busy or the task did not
have an ATL node in the Active Task List)

When an address is passed in a TCB as data, the receiver of the address
must relocate it to correspond to the addressing structure in its
memory space. For example, a PDP-15 address passed to the PDP-11

must first be multiplied by two to convert word to byte addressing

and then the local memory size (LMS) of the PDP-11 must be added.

For example,

PDP-11 address = (PDP-15 address *2) + LMS on PDP-11

The reverse is true for a PDP-11 address received by the XVM. For
example,

XVM address = (PDP-11 address - LMS) /2

lSee Section 4.4 for further information.

System Design and Theory of Operation--PIREX

3.3 SYSTEM TABLES AND LISTS

The PIREX system uses various tables, lists, and deques to control
events within the system.

3.3.1 Active Task List (ATL)

The selection of a task for execution by PIREX is accomplished by first
scanning a priority~-ordered linked list of all active tasks in the
system called the Active Task List (ATL). An active task is one which
satisfies one or more of the following conditions:

1. 1is currently executing
2. has a new request pending in its deque
3. 1is in a wait state, or

4. has been interrupted by a higher priority task

A task is inactive if there is no ATL node for it. A task can be in
any one of the following states:

CODE STATE ACTIVITY
0 run active

2 wait active

4 exit inactive

When a runnable task is found, the stack area and general purpose reg-
isters belonging to that task are restored and program control is trans-
ferred to it through an RTI instruction. Program execution normally
begins at the first location of the task diagram code (see Figure 3-3)
or at the point where the task was previously interrupted by a higher
priority task, or in special cases at any desired location in the task
using the 'PC' setting on the stack as in the RK task's error retry
program logic., When a task is interrupted by other tasks, its general
purpose registers are saved on its own stack. Control is returned to
the interrupted task by restoring its stack pointer and then its active
registers.

System Design and Theory of Operation--PIREX

XVM TO

PDP-11+PIREX
SLAREQ ...
LAREQ REQUEST

MA .
SREQ PIREX REQUES
SLAREQ
SAVE R@-R5 ON
CURRENT STACK; | entry | BUMP PC SAVED
P I gl ON sTACK TO
UPDATE ENTRIES
T RETRY ADDRESS
MASREQ
entry *
READ TCBP FROM SWITCH TO

INTERRUPT LINK (eg— SYSTEM STACK
& RELOCATE TCB

GET TCBP AND
———#™ RELOCATE IT.
GET TASK CODE

SPOOLED
TASK
?

SPOOLER
RUNNING

. ..next page

TAKE REFERENCED
TASK AS SPOOLER

Figure 3-3
Detailed Flow Chart of XVM/PDP-1ll Request Processing

System Design and Theory of Operation--PIREX

CALLTK ...

LVL783 ...

IFIED IN TCB
LEGAL?

SET EVENT VARIABLE
IN CALLERS TCB TO
'-24@', INDICATING
THAT AN ILLEGAL
TASK (NON-EXISTENT
ONE) WAS SPECIFIED

SEND INTERRUPT BACK
(IF REQUESTED) IN-
FORMING THAT THE
REQUEST COULD NOT
BE PROCESSED

Figure 3-3 (Cont.)

. «.next
page

1

{

‘ Rescan the ATL
from the top.
See Figure 3-4.

Detailed Flow Chart of XVM/PDP-11 Request Processing

System Design and Theory of Operation--PIREX

GET A NODE FROM
POOL AND MOVE
: IT TO THE REF-
ENCED TASK Y NODES ERENCED TASKS
CURRENTLY LEFT IN DEQUE SAVE THE
POOL? 18 BIT TCBP IN
THE NODE SO TASK
WILL HAVE IT
WHEN NEEDED.
USE TCBP TO SET LVL7G5 ... :gT_g:gLﬁzingv

TASK'S IDLE/BUSY
REGISTER TO BUSY
AND CLEAR THE EV
IN CALLERS TCB.

16) INDICATING

THAT THE GYSTEM
i— IS TEMPORARILY
OUT OF NODES IN
THE POOL.

LVL7@4
SCAN THE ATL

FOR AN ENTRY
(PRIORITY WISE)
FOR THIS NODE

AN ACTIVE
TASK LIST NODE
ALREADY EXIST
FOR THIS

ANY
NODES

Rescan the

Y LEFT IN ATL from
POOL?, top. See
Figure 3-4.

REMOVE NODE FROM
POOL AND PUT IN

ATL

FILL IN TASK
PRIORITY TASK
CODE NUMBER,
AND TASK STACK
POINTER IN ATL

NODE

SET TASK PRIORITY
AND TASK START
ADDRESS IN TASK'S
STACK AREA TO BE
USED WHEN TASK
IS EXECUTED

Figure 3-3 (Cont.)
Detailed Flow Chart of XVM/PDP-11 Request Processing

System Design and Theory of Operation--PIREX

The ATL is rescanned when:

1. a new request is issued to a task
2, a previous regquest is completed
3. at the end of a clock interrupt

4. a task goes into a wait state

A task is said to be in a "wait" state when its ATL node exists and it
is not runnable.

3.3.1.1 ATL Nodes - The Active Task List is a linked list containing
4 word entries called nodes.

An ATL node has the following structure:

WORD 1 - Forward pointer to next node

WORD 2 - Backward pointer to previous node -
WORD 3 - Stack pointer of task
WORD 4 l15|14Il3ll2|11l10J9l8l7l6l$[4J3]2llL§]

— — —~——— J

Task Priority-———-—l

Spooling Indicator
0 = spooled
1 = not spooled

Task Code Number (TCN)

TASK STATUS (States defined in 3.3.1)

The ATL is referenced by a 2-word listhead. The listhead contains
backward and forward links pointing to the first and last nodes in the
list. The ATL is a priority-ordered list.

3.3.1.2 ATL Node Pointer (ATLNP) - Each task has a pointer to its
Active Task List Node (see Section 3.3.1.1) stored in the ATLNP
table. This table is in TCN order. An entry is 0 if the task is

inactive.

System Design and Theory of Operation--PIREX

The format of an ATLNP entry is:

0 ; NAME task—code—numberl
These entries are filled dynamically by PIREX with actual pointers.
3.3.2 Task Request List (TRL)
The Task Request Lists are doubly-linked, deque-structured lists of
pending TCBs. If when a request arrives, the target task is busy,

PIREX places the TCB pointer (TCBP) onto the busy task's deque for
later processing. This deque is the Task Request List.

A TRL node has the following structure:

WORD 1 - Forward pointer to next node.

WORD 2 - Backward pointer to previous node.

worp 3 - |15]14]13]12[11]10[9]8]7]6][5]4]3[2]1]0]
-

Request Identifier]

0 PDP-15 request
1 PDP-11 request

Most significant bits of the TCBP (XVM bits 0 and 1)

WORD 4 - 16 least significant bits of TCBP (XVM bits 2-17)
Each TRL is referenced by a two-word listhead. The listhead contains
backward and forward links pointing to the last and first nodes of a
given task's TRL. The TRL is built on a first come first serve basis.
3.3.3 TRL Listheads (LISTHD)
Each task has its own Task Request List, (TRL). Each LISTHD entry is

a double-linked listhead used to point to a task's TRL. The LISTHD

is a TCN ordered list.

1The "NAME task-code~number" is a comment

System Design and Theory of Operation--PIREX

The format for an entry is:

LISTHEAD XX

where:

1. LISTHEAD is a system macro
2, XX is a two character task mnemonic (i.e., LP for Line
Printer Task).

3.3.4 Clock Request Table (CLTABL)

The Clock Table (CLTABL) contains entries for one timing (wake up) re-
quest from each task. The format of a CLTABLE entry is:

Xxl.CL = .

.WORD 1 ; Time Word

.WORD 1 ; Address Word

Where the first word is remaining time before wakeup and the second

word is the address for a JSR PC, XXX instruction. The JSR occurs at
clock interrupt level (6). The user must do an RTS PC to return con-
trol to the clock routine. Time is measured in line frequency ticks:
16.6 milliseconds/tick for 60 Hz Systems. A task may cancel a timing
request by clearing the time word. A request for a wakeup is made by:

1. Placing the address of the routine to be called into
word 2 - then

2. Placing the time delay (measured in 1/60 sec. increments)
into the time word.

The above sequence must be exactly followed. See Chapter 4 for further
details on the use of wakeup calls. CLTABL is a TCN ordered list.

3.3.5 Device Error Status Table (DEVST)

The DEVST table is used to store error status codes for delayed trans-
fer to the XVM monitor. The XVM monitor contains a routine called the

IXX represents the task mnemonic (e.g., RK.CL)

3-16

System Design and Theory of Operation--PIREX

"Poller" which periodically réquests error status codes from PIREX using
a "get errors" software directive. This method of error transmission is
useful for delayed error messages--such as those recognized on spooled
devices. The specific XVM I/0 handler may no longer be present in the
PDP-15's memory--~thus the Request Event Variable (REV) method of return-
ing error status would be useless. The "Poller" requests the entire
DEVST table and reports those events on the system console terminal.

A "Get Errors" directive clears the DEVST table upon completion. The
reporting task may, for instance, correct the error condition before

the "Get Error" directive is issued. When this happens, the task could
simply clear its message from the DEVST table and thus eliminate a
spurious message. DEVST is a TCN ordered table. The format of a DEVST
entry is as follows:

WORD 1 - TASK (MNEMONIC IN SIXBIT/RAD50 RIGHT JUSTIFIED)

WORD 2 - SPARE (used to report bad block numbers, and, to
report disconnected spooler unit)
WORD 3 ~ ERROR CODE: SPOOLER ERROR CODE (HIGH BYTE)
TASK ERROR CODE (LOW BYTE)

3.3.6 LEVEL Table

The LEVEL table (task priority level) is used by the R.SAVE context
switch routine to determine the priority level of the task about to
begin execution. All interrupt vectors must specify a priority 7
entry into their respective interrupt routines. Upon entry, R.SAVE
should be called to save the interrupt task state and return control
to the interrupt processing routine at the proper priority--found in
the LEVEL table. The LEVEL table is a TCN ordered task.

The LEVEL table entry format is:

.BYTE task priority *40
3.3.7 Task Starting Address (TEVADD)
The TEVADD Table contains the starting address of all defined tasks.
The system currently has room for 138 tasks of which three are tempor-
ary entries used for tasks CONNECTED to and DISCONNECTED from PIREX.

MACll is such a temporary task and uses the table entries of the cur-
rently unused highest task code. All PIREX systems must have at least

System Design and Theory of Operation--PIREX

one highest unused task entry to allow use of MACll. The TEVADD table
is TCN ordered.

The format of a TEVADD table entry is:
.WORD START ; task name
where START is either:

1. The starting address of the task, or,

2, 0 indicating that this entry is currently unoccupied.
where "Task name" is a comment.
3.3.8 Transfer Vector Table (SEND1l)
The SEND1l table is used to store transfer vectors for use when issuing
IREQ macro calls. The entry is the address at which the requesting
routine receives control back from PIREX. This table is TCN ordered.
The format of a SEND1ll entry is:

0 ; task-name task~-code-number
where "task name task-code-number" is a comment.
3.3.9 System Interrupt Vectors
The device interrupt vector-pairs consist of interrupt routine address
and priority level. The priority level of "all" devices should be
Level-7 "only". This is to permit PIREX to do a context switch before
processing the interrupt.
3.3.10 Internal Tables Accessible to All Tasks
All tasks in the PIREX system can easily access internal routines and
tables through the use of the system registers. These registers begin
at absolute location 10028 in the PDP-11 and contain either pointers

to internal tables and listheads or entry points to commonly used sub-
routines. The following list summarizes these registers.

System Design and Theory of Operation--PIREX

LOCATION MNEMONIC DESCRIPTION

01002 SEND11 INT. RETURN ADD. (ON 11) ON END
OF 1/0

01004 CURTSK: 000000 CURRENT TASK RUNNING

01006 POL.LH ADDRESS OF POOL LISTHEAD

0lo1lo0 LISTHD ADDRESS OF TASK LISTHEADS

01012 R.SAVE ENTRY POINT TO REGISTER SAVE

01014 R.REST ENTRY POINT TO REGISTER RESTORE

01016 AS.El ENTRY POINT TO ATL RESCAN

01020 MOVEN ENTRY POINT TO NODE MOVER

01022 DEQU ENTRY POINT TO DEQUEUE

01024 SEND15 ENTRY POINT TO SEND INTERRUPT

01026 EMPTY ENTRY POINT TO EMPTY A DEQUE

01030 ATLNP ATL NODE POINTER TABLE

01032 RATLN ENTRY POINT TO RETURN ATL NODE

01034 SPOLSW SPOOLER SWITCHES ADDRESS

01036 RTURN REUTURN INST. ADD. FOR PIC CODE

01040 NBRTEV: NTEV CURRENT NBR OF TASKS

01042 PWRDWN: RTURN ENTRY POINT TO PWR FAIL DOWN

01044 PWRUP: RTURN ENTRY POINT TO PWR FAIL UP

01046 SPOLSW: 000000 SPOOLER SWITCHES

01050 DEVST DEVICE ERROR STATUS TABLE

01052 CLTABL TABLE, A TIME-ADDR PAIR FOR EACH
TASK

01054 DEQU1 ENTRY TO -SET TASK IN WAIT
STATE-ROUTINE

01056 CEXIT ENTRY TO -SET TASK IN RUN STATE-
ROUTINE

01060 TEVADD TABLE OF TASK START ADDRESSES

01062 DEVARE: .WORD DEVTYP PIREX DEVICES SWITCH

01064 DEVSPL: .WORD O DEVICES SPOOLED SWITCH

01066 CTLCNT: .WORD O XVM CTL C RUNNING COUNTER

01067 SPUNIT: .WORD O UNIT CURRENTLY BEING SPOOLED TO

i
These registers are accessed as absolute memory locations by various
permanent and temporary tasks. NO CHANGE in the location or order of

this table is permitted. New system registers may be added to the
end of this table.

3.4 DETAILED THEORY OF OPERATION-PIREX
3.4.1 Request Procedure

The UC1l5 system allows the XVM to initiate requests to the PDP-~1l by
interrupting at the highest PDP-11 hardware level and simultaneously
passing to it an 18-bit Task Control Block address. Only the first 16
bits are used because PIREX does not support a memory management option1
on the PDP-11l. Requests from the XVM or PDP-11 could be for:

1Memory management hardware support is not a feature of PIREX.

3-19

System Design and Theory of Operation--PIREX

1. a directive-handing routine
2, a data transfer to or from a device driver task on the PDP-11

3. a background software routine (task)
3.4.2 Directive Handlingl
Directive handling consists of such functions as:

1. Connecting and disconnecting tasks from the PIREX system

2. Reporting core status on the PDP-1l1l local memory to the
calling routine

3. Stopping I/O on a particular device or all devices
4. Reporting UNIBUS device status to the calling routine
5. Stopping any or all tasks currently running2

6. Reporting spooler status to the caller
3.4.3 Logic Flow

The flow charts in Figures 3-3, 3-4, and 3-5 illustrate in detail the
program logic flow when a request from the XVM or PDP-1l is made to
PIREX. Note that PIREX is capable of servicing requests in parallel
on a priority basis.,

3.4.4 Operating Sequence

PIREX is usually running the NUL task waiting for something to do. When
a request is issued from the XVM or PDP-11, PIREX immediately:

1., saves the general-purpose registers onto the stack belonging
to the current task running

2. saves the stack pointer in the ATL nodes

3. sets the task in a RUN state

4, switches to the system stack (refer to Figure 3-5)

All of the preceding is done at level 7 (protected). The system stack
is used when switching between tasks or rescanning the ATL,

lSee Section 3.6 for additional information.
2See Section 3.5 for additional information.

3-20

System Design and_Theorv of Operation-~-PIREX

AS.SCN

AS.El

BEGIN SCAN OF
ATL STARTING AT
THE ATL LISTHEAD

ADVANCE SEARCH
TO NEXT NODE

REMOVE THE TASK
STATUS (TS) FROM
NODE AND USE IT
TO DISPATCH TO
THE APPROPRIATE
PROCESSING
ROUTINE

TS=¢£
AS.TE

A RUNNABLE TASK
HAS BEEN FOUND,
SAVE SYSTEM
STACK POINTER,
AND SWITCH TO
NEW TASK'S STACK

v

RESTORE ALL SYSTEM
REGISTERS R@-R7

GO TO TASK

TS=2

y

TS=4
AS.STP

TASK IS IN A
WAIT STATE,
BY-PASS IT,.

TASK MUST BE
STOPPED. RETURN
TO ATL NODE TO
POOL. (KEEP LINK
TO NEXT NODE.)

AS.SCN

Figure 3-4

AS.E2

Scan of Active Task List (ATL)

System Design_and Theory of Operation--PIREX

R.SAVE

SAVE R1-R5 (R@

SAVED ON CALL)

AND AC,MQ,SC IF
EAE OPTION

!

GET TASK CODE
(TCN) AND BUMP
R# TO RETURN
ADDRESS

!

SAVE CURRENT
TASK'S ‘SP' IN
ATL NODE

MOV R@,PC

SET 'SP' FROM
INTERRUPTING
TASKS ATL NODE

Y

SET TASK IN
RUN STATE

v

LOWER PRIORITY
LEVEL OF TASK

Figure 3-5
Context Switch or Save General Purpose Registers RO-R5

3-22

System Design and Theory of Operation~-PIREX

In the case of a XVM request, the TCBP (Task Control Block Pointer)
register is now immediately read by the PDP-11 allowing additional re-
quests to be made. PIREX corrects the TCBP by an amount equal to the
PDP-11 local memory when a request comes from the XVM. The TCBP is
present in R4 and R5 when the IREQ macro is issued by a PDP-11 routine
and the PDP-11 is able to address the TCB directly and retrieve infor-
mation from it. The task code number is then obtained from the caller
TCB and used to determine which task or directive that is being

referenced.

A check is made to determine if the called task is a spooled task or
not. If bit 7 = 0, it is a spooled task and if bit 7 = 1, it is an
unspooled task. If the called task is a spooled task and if the SPOOLER
is enabled, the request is processed by the SPOOLER. If the SPOOLER

is not enabled, a check is made to determine if the task in reference

is currently active and busy with a previous request. If so, the request
is queued to the task's deque (TRL) on a first come, first serve basis.
If the task in reference is currently inactive, an ATL node is built
containing the appropriate entries, the address of the ATL node is set
in the ATLNP table and the task's priority in the LEVEL table. In
either case, the ATL is rescanned and the highest priority task is
selected for execution (see Figure 3-4).

UCl5 peripherals, controlled by PIREX, use a minimal driver to carry
out requested functions and report the results back to the calling task
via the TCB. When a driver finishes a request (whether an error occur-
red or not), it informs the requestor by placing the results (status
and error register) in the TCB associated with that regquest and sends

an optional hardware or software interrupt back to the requestor.

The request event variable (REV) is set prior to sending an interrupt

to the XVM/PDP-11 and may be used by the XVM or PDP-11 to determine

if a request has been processed. This method is used during times

when interrupts are not enabled or desired (as during the bootstrapping
operation on the XVM). The hardware interrupt to the XVM (see

Figure 3-6) is optional and can be made at any of the XVM API hardware
levels and trap addresses. The API level and trap address are specified
in the TCB associated with each request to allow complete flexibility

in interrupt control.

System Design and Theory of Operation--PIREX

SEND15

GET API LEVEL SET REV IN TCB

SET REV TO
'=300' AND

ASSUME LEVEL
3

LOWER TO TASK
PRIORITY LEVEL

'

GET API TRAP CALL @SENDIL1
ADDRESS FROM (TASK CODE *2)
TCB

'

SET REV IN TCB

'

ISSUE
INTERRUPT

RETURN

Figure 3-6
Send Hardware Interrupt to XVM/Software Interrupt to PDP-11

System Design and Theory of Operation--PIREX

3.4.5 Software Interrupt

A software interrupt return for the PDP-11 tasks is optional. This
feature is available only if a hardware interrupt return to the XVM

is not required. To generate a software interrupt, the task using the
request has to set the trap address before issuing the request. Each
task running under PIREX has an entry in the SEND1l Transfer Vector
Table. PIREX traps to this location on completion of a request by
executing a JSR PC, SENDl1ll (Task Code *2). The task issuing the re-
quest specifies its task code in the TCB. All registers are free to
be used when the control is transferred. Control is returned to PIREX
through an RTS PC instruction.

3.4.6 Task Completion

When the XVM has been notified (via interrupt) that its request has

been completed, the task completing the request under PIREX becomes idle
and calls DEQU (see Figure 3-7) to determine if any additional requests
are pending. If no requests are pending, control is transferred to

the ATL scanner (after saving the stack pointer and setting the current
task in a wait state in its ATL node). If additional requests exist,
the next request in the task's TRL is processed as if it were just
received.

3.5 STOP TASKS

The STOP TASKS Task is used to stop tasks and/or I/O currently underway
for either all tasks or for a particular task. STOP TASKS can cancel
all requests or only XVM requests for the indicated task(s). There

are four possibilities:

1, Stop all tasks unconditionally and cancel all pending XVM
requests

2. Stop a given task unconditionally and cancel all pending XVM
requests to that task

3. Cancel all XVM requests to all tasks - this has no effect
on PDP-11 requests

4., Cancel all XVM requests to a given task - this has no
effect on PDP-11 requests

The process of stopping a task includes (1 or 2 above):

System Design and Theory of Operation--PIREX

SET TASK'S
BUSY/IDLE SWITCH
WITH NEW TCBP

!

ZERO TCBF IN NODE
AND RETURN NODE

'

SET TASK PRIORITY

EXIT TO TASK

RAISE TO LEVEL 7

'

SAVE CURRENT
TASK'S 'SP' IN
ATL NODE

!

SET CURRENT TASK
IN WAIT STATE

'

SWITCH TO SYSTEM
STACK

AS.SCN ..

Figure 3-7
Dequeue Node From Task's Deque

.See Figure
3-4.

System Desigh and Theory of Operation-—-PIREX

1. Removal of all appropriate XVM request nodes in the task(s)
TRL (s)

2. Zero the Busy Idle Switch for the task(s)
3. Clear the I/0 device register(s) for the task(s)

4. Set the tasks status in the ATL to EXIT (for a temporary
task) or WAIT (for a permanent task).

5. Indicate completion by setting the REV of the STOP TASKS
requestor. (An interrupt return is not allowed.)

The Stop Tasks TCB has the following format:

15 0
TCB: 0 Word O
TCN [200 Word 1
REV: REV Word 2

Word 1 bit 15 = 1 cancel XVMrréquésts and the current
pending request unconditionally.

bit 15 = 0 cancel XVM requests

TCN = 0 cancel all tasks

TCN #0 cancel Task TCN only
Word 2 REV = Return Event Variable

STOP TASKS is typically used by the XVM operating system to quiet all
interaction between the XVM and the PDP-11.

3.6 SOFTWARE DIRECTIVE PROCESSING
The software directive task provides two main capabilities. These are:
1. The capability to connect and disconnect temporary tasks to
PIREX (such as MACll

2. The capability to obtain various PIREX status information.

These capabilities are provided via five software directives, which

are described later in this section.

The general format for software directive task control blocks is as

follows:

System Design and Theory of Operation-—-PIREX

15 8,7 g,
! ATA H ALY 5 word f#
: .St v 1 ' oy v v ¥ 3 9 3 :
H FCN ' 291 v word 1
: 1.0 .t 3 % 3 8 v ¢ ¥ 9 ¥ P 9 0 :
H REV 7 word 2
:4| L.l 1.1 1 _; { VS I N B N T | :
5 OPR H ! word 3
N T WA '
)
; Contents Depend 5
Upon ’
f £
! Directive 1 word n
LI IR S IV N NN NN NN NN NN NN NN RN AN A |
ATA XVM API interrupt vector address
ALV XVM API interrupt priority level. Must be 0, 1, 2, or 3
(unless FCN = 3).
FCN Function to perform upon completion of this software directive

request. Valid values are:
000 Interrupt the XVM at address ATA, priority ALV.
001 Do nothing (except set REV).

003 Cause a software interrupt to the PDP-11 task whose
task code number is in ALV.

REV Request Event Variable. Initially zero, set to a non-zero
value to indicate completion of the software directive request.
The meaning of the various return values. is described below.

OPR Indicates the exact operation (directive) to be performed.
Must be one of the following values:

0 Disconnect Task

1 Connect Task

2 Core Status Report

3 Error Status Report

4 Spooler Status Report
5 MOVE

Returned REV values
1 Successful completion
-300 Invalid ALV value. The request may or may hnot have
been performed - see individual directive descriptions.
The XVM will be interrupted at level 3.

-400 Invalid OPR (directive/operation code) value.

Other See individual directive descriptions.

System Design and Theory of Operation--PIREX

The following sections contain detailed descriptions of the individual
software directives, their task control block (TCB) formats, and the
REV values they may return.

3.6.1 Disconnect Task Directive

The disconnect task software directive instructs PIREX to delete a
task from the active task list. Request should not be issued to a
task after it has been disconnected. An attempt to issue a request
to a disconnected task will result in a returned REV value of -200,
implying that a non-existent task was referenced. The format of the
task control block for the disconnect task software directive is as

follows:

15 8,7 2

1) L] 1

H ATA ! ALV ' word @

: | O S l+ [JE S S I S A | :

, FCN H 201 1 word 1

l' Lt 0 v 0 3 v v ¢ b 3 5 0 J 9 :

' REV 1 word 2

l. L T S T D B B | 'l | U B B N N :

' gpg H TCN ! word 3

I' et £ 3. v 8t _® 0 € B 1 P 3 T U :

H REL v word 4

: e v v ¢ 0 v 00 V0 ' 0T 3 0 :

H First Address 7 word 5

: iy gy 0 po v 0 3o v £ v 0 1t :

H unused ! word 6

: . 1 v 3 v v 5 v 0 ' 1 3 1 :

H Length word 7

L |
TCN The task code number of the task to be disconnected.
REL 000000 if the task resides in XVM memory

100000 if the task resides in PDP-11 memory

First PDP~11 byte address of the first location in memory

Address occupied by this task (the lowest address of the task
stack area). Only meaningful if the task resides in
PDP-11 memory - if the task resides in XVM memory this
word is ignored.

Length Total size (in bytes) of this task, including stack
area, control register, busy/idle switch, and program
code. Only meaningful if the task resides in PDP-11
memory -~ if the task resides in XVM memory this word
is ignored.

The disconnect task software directive verifies that the task to be
disconnected is on the active task list. 1If present on the list, the

task is disconnected - the active task list node is returned to the

System Design and Theory of Operation—-—-PIREX

pool, the task's entry in the TEVADD table is cleared, and the task's
task request list is cleared. If the task resides in PDP-11 memory,

an attempt is made to free the memory space occupied by the task - if
the first free local memory address is the address immediately follow-
ing the storage area occupied by the task (as determined from the first
address and length arguments), the task's first address becomes the

new first free local memory address.

RESTRICTIONS:

1. If a task does not have an active task list node, it cannot
be disconnected. Therefore, once a task has been connected,
it cannot be disconnected until after a request has been
issued to it.

2. All requests which are on the task request list of a task
which is disconnected are forgotten. Such requests will never
complete; their request event variables (REVs) will never be
set to a non-zero wvalue.

3. PDP-11 local memory resident tasks should only be disconnected
if they are the last (highest address) task in local memory.
If PDP-11 local memory resident tasks other than the last are
disconnected first, the memory space occupied by these tasks
will not be released. This will result in holes (of unusuable
memory) in the PDP-11's local memory.

4. Tasks should be disconnected in a reverse sequential order by
task code number. A task should not be disconnected if there
are any connected tasks with higher task code numbers.

5. The high order bit of the task code number (TCN) must be
clear.

Returned REV values:

1 Task successfully disconnected

2 Task successfully disconnected, but the (PDP-11 local)
memory occupied by this task could not be released.

-300 Invalid ALV value, the task may or may not have been dis-
connected, its memory may or may not have been released.

-600 Task to be disconnected is not on the active task list (i.e.,
node not present)

3.6.2 Connect Task Directive

The connect task software directive instructs PIREX to add a new task
to the system. Once a task has been connected to PIREX, the XVM and/or

other tasks may issue requests (task control blocks) to it. The format

System Design and Theorv of Operation—-—PIREX

of the task control block for the connect task software directive is

as follows:

TCN

REL

Entry
Point

Length

Priority

:15 8%7 ﬂ:

H ATA H ALV 1 word @

: .t 1 1 & 3 1 + U SR B B I B :

H FCN 4 2081 7 word 1

: it v ¥y v ¢ T v t v ¢ 9 5 1t :

4 REV v word 2

: | N B S B N I : | S B SN N I A) :

H 1 H TCN H 3

E 31 \ﬂ? I . 'l 1 1 st v 1. E word

H REL ' word 4

|'4L L SN NN NN NN NN N N SN N R N N N :

H unused ' word 5

: 1) v vy ¢ 3y 3 ¢ ® T O3 0 ¥ _ 1 @ :

H Entry Point v word 6

: st 8 v ¥ ® v v ® 9 ¥ ¥ ¥ 9 O¥ :

' Length 1 word 7

: 1 _ s ¢ 1§ @ : N B N N N :

H unused ' Priorit t word 1¢
Y

st) ¢ 0 v ¢ 0 ¥ T P 3 T % 3o T

The new task's task code number (TCN)

000000 if the new task resides in XVM memory.
100000 if the new task resides in PDP-11 memory.

Address of the new task's entry point - i.e., the
first location of the task's program code. This
address is a PDP-11 byte address if the new task
resides in PDP-11 memory, a XVM word address if the
new task resides in XVM memory.

Total size (in bytes) of the memory space occupied by
this task, including stack area, control register,
busy/idle switch, and program code. Only meaningful
if the task resides in PDP-11 memory - if the task re-
sides in XVM memory this is ignored.

The task's priority *408.

The connect task directive enters the new task start address {(appro-

priately relocated if the new task resides in XVM memory) into the

TEVADD table.

The directive does not actually create an active task

list node for the new task; this occurs only when the first request

is issued to the new task. The directive clears the new task's busy/

idle switch (sets the task in idle state) and empties the new task's

task request list. The new task priority is placed in the LEVEL
table. If the new task resides in PDP-11 memory, PIREX updates its

memory usage information by adding the size of the new task to the

first free local memory address.

System Design and Theory of Operation--PIREX

RESTRICTIONS:

1.

Returned

1

-300

The task code number must not be in use (correspond to any
currently connected or permanently installed task) at the
time this directive is issued.

The task code number must have been provided for when PIREX
was assembled. As distributed by DEC, PIREX provides for
task code numbers O8 through 138 inclusive.

The high order bit of the task code number must be clear.

If the task resides in PDP-11 memory, the first address it
occupies must be the first free local memory address, as
returned by the core status report software directive.

If the task resides in XVM memory, it must reside entirely
within the area addressable by the PDP-11l's 28K addressing
range.

Tasks should be connected in sequential order by task code
numbers. Temporary tasks (tasks which will subsequently be
disconnected) should always be connected to a task code

number one higher than that obtained wvia the core status
report software directive.

REV values:

Task successfully connected

Invalid ALV value. Task has been connected.

3.6.3 Core Status Report Directive

The core

status report software directive returns information regarding

PDP-11 local memory and task code number usage in PIREX. The format of

the task

control block for the core status report software directive is

as follows:

115 8,7 2,
T B Rl 1
H ATA H ALV 'V word @
: | SO OO N U N . + 1 1t 3t 1 :
H FCN ' 2p1 v word 1
: o8 8 3 T ¢ v 7 v v v VvV 3 t_ 1 "
' REV 1 word 2
: | U I T I N | _: J 1 | I N S N] :
' gg2 ! TCN 1 word 3
: 11 v § v ¥ t v 1 ¥ | I S, N N] :
H Local Memory Size Vv word 4
: gy v v s ¢ v ¥ N) I S I N] :
H First Free Address ! word 5
: h I U DUN N SNNE DUNN NN DUNE N SO NN NN NN A I'
H unused v word 6
: et 5 v v ¢ 0) v T P v R_® ¥ :
H Number of Free Words ! word 7
1 1

| NS VRS N UL SN N A NN S N BN N S

System Design and Theory of Operation—-PIREX

TCN Set to the highest currently connected task code
number in PIREX.

Local The amount of local memory in the PDP-11 UNICHANNEL.
Memory
Size
First Set to the PDP-11 byte address of the first free
Free {(unoccupied) address in local memory.
Address
Number of Set to the number of unused words in PDP-11 local
Free memory. Equal to ((Local memory size in bytes) -
Words (First free address))/2.

RESTRICTIONS:

1. The core status report software directive has no restrictions.
However, the restrictions (especially those regarding order
of use of memory and task code numbers) on the connect and
disconnect software directives must be adhered to in order to
have valid information returned by the core status report.

Returned REV values:

1 Successful completion
=300 Invalid ALV value. No information returned.

=500 No free PDP-11 memory. No information returned.

3.6.4 Error Status Report Directive

The error status report software directive returns information regard-
ing device and/or spooler errors which have occurred since the last
time this directive was issued. The format of the task control block
for the error status software directive is as follows:

15 8,7 p:

r L]

H ATA H ALV i word @
: | R S D S W A ‘l g9 v ¢ 3 1 3 :

H FCN H 2081 ! word 1
[J0NE AR T JU DU DU SN N AR NN NN N AN N N :

E REV ! word 2
: | SO N DU S N . E y_r v 3 3 v} :

' 983 ! unused ' word 3
[0 TR VNN TR N NN D N SN NN JUUS NN BUN NN JUNN B

) 1

H Returned ! word 4
; Error ;

' Information v werd n
] \

IR TR T RO N N N SN S N NN IS SO N |

3-33

System Design and Theory of Operation--PIREX

The error status report software directive copies error status infor-
mation from the DEVST table onto the requestor's task control block,
then clears the DEVST table to store new error information. The error
information returned consists of a series of three word blocks, one
per PIREX task. As distributed by DEC, eleven such blocks will be re-
turned - one for each permanent task (excluding the clock task) plus
two more for spare or temporary tasks. The number of these blocks re-
turned may change, however, if users alter the number of tasks (espec-
ially permanent tasks) in PIREX. The format of each of these three
word information blocks is as follows:

,15 8,7 g,

¥

4 Task Name ! word ¢
: 1 .1t 1 1 1 1 1.t | - :

H unused--zero ! word 1
: y 9t 3 ¢ 3 8 o v v 3 3 3 8V :

H SPLERR ' DEVERR ! word 2
v ¥ v vy 7 § v v 5. 9 t v 8 0 93 O

Task Name A three character (.SIXBT) mnemonic for the task

to which the error information applies.

DEVERR Device error code for device associated with this
task.
SPLERR Spooler error code for this task.

The mnemonics for the tasks and the order in which the blocks for the

various tasks appear are as follows:

MNEMONIC TASKS
EST "Stop Task" task
ESD Software directive task
DKU RK (Cartridge) disk driver
DTU DECTAPE driver
LPU Line Printer driver
CDU Card reader driver
GRU XY (Plotter) driver
ESP Spooler
LVU LV11l printer/plotter driver

—-——— spare--no mnemonic

—-— spare--no mnemonic

3-34

System Design and Theory of Operation--PIREX

RESTRICTIONS: none
Returned REV values:

1 Successful completion.

-300 Invalid ALV value. Information has been returned.
3.6.5 Spooler Status Report Directive

The spocler status report software directive returns information regard-
ing spooler status and devices present in PIREX. The format of the

task control block for the spooler status report software directive is
as follows:

W15 8,7 7,
T il)
H ATA ! ALV ' word g
vt b v ¥ v KE_ W' ? OV ot % % B_W
¥ v)
' FCN H 281 v word 1
: [2] e v v v ¥ 10 U | | I -1 :
H REV v word 2
: (] 1 L]] L 1 1 _} 1 1 1 1t 1 :
| go4 ! unused ! word 3
:] 1 1 ! LA 1 L L 1 1 1 1 ! 1 :
H SPOLSW ' word 4
: L' g r v ¢t ¢ » v 0 ¢t 2) 0 ;
! DEVARE ! word 5
: !] 1 1_1 1 1 1 U L) 1 L | 1 :
! DEVSPL ! word 6
1] ! 1 L L. 1 1 1 L S 1 1 1 1 11 :
E SPUNIT ! word 7
L 3

1]] L] 1 1 1] 1 L] L B L] 1

SPOLSW, SPUNIT, DEVARE, and DEVSPL are four locations (within PIREX)

in which information is kept concerning spooler status and which devices
have been assembled into PIREX. The spooler status report software
directive merely copies the contents of SPOLSW, SPUNIT, DEVARE, and
DEVSPL into the task control block. Three of these words consist of

a number of one-bit flags. If the bit is set (1) the corresponding
condition is asserted: the device driver is present, spoolable, or
busy; the activity is enabled. If the bit is clear (0) the opposite
condition applies: the device driver is absent, non—spoolable,'or

idle, the activity is disabled. The exact format of these three words

is as follows:

15 8,7 2,
¥ T ' '
L - 4 : ;
SPOLEW: 1y iyl SIS L dnny
‘LP busy
CD busy
XY busy

despooling enabled
spooling enabled
both spooling and despooling enabled
spooler connected to PIREX

System Design and Theory of Operation-—PIREX

:15 8,7 2,
L]]
DEVARE: | H H
SARE P

XY driver present

CD driver present

LP driver present
RK driver present

95 . 8,7 ¢=
DEVSPL: ! *: unused H
1] l,l Pt 3 2 ¥ 1 $ ¥ $ U oM

1.1.1
{

XY spoolable
CD spoolable
LP spoolable
unused

SPUNIT is the RK unit onto which the spooler is currently (or was pre-

viously) spooling data.
RESTRICTIONS:

1. DEVSPL and SPOLSW contain zero until after the first request
has been issued to the spooler.

Returned REV wvalue:

1 Successful completion.

-300 Invalid ALV value, Information has been returned.
3.6.6 PIREX MOVE Directive
NOTE

This directive commonly is used to transfer
information between common and local memory

The PIREX MOVE directive moves information from one place in the

PDP-11's address space to another place in its address space. (The
address space is composed of both Local-11 and Common Memory.) The
format of the task control block for the PIREX MOVE directive is as

follows:

System Design and Theory of Operation--PIREX

15 8 7 2
L}) 1]
H ATA ! ALV H word f#
: 1 1 1]]] 1 1 : 1 1] 1 L] 1 L] :
! FLN ' 2091 ' word 1
l. 1 [}) 1 L] 1]] 1]] 1] | 1 :
H REV H word 2
: 1 1 1 1 !]) : 1]] 1 1 1 |] :
H 285 : ' word 3
: 1 1 1)] 1 1 1]]] L 1] 1 1 :
H FROM LOCATION ' word 4
:]] (]) 1 L 1] 1 1 |} I] [] :
H TO LOCATION ' word 5
: 1 1 1]] 1 1 1 L] 1 i TR R |] L] :
' WORDS TO MOVE ' word 6
) 1]] L]]]] 1 1 L]) 1] L]]

From Location PDP-11 byte address of beginning of information

to be moved.
To Location PDP-11 byte address of a new starting location
for information.
words to Move The number of words to move.

CHAPTER 4
TASK DEVELOPMENT

4.1 INTRODUCTION

This chapter discusses in detail the procedure for developing a task
and for installing it into the PIREX software system. The development
of tasks in the UC1l5 system normally begins by the determination of
the function to be performed by the task. Once the basic function of
the task has been determined and designed, the user can integrate it
into the UC15 system. The following summary describes the steps nec-

essary to accomplish this:

1. Determine the priority level at which the task will execute.
2. Design one or more appropriate TCB formats.
3. Assign a Task Code Number to the task.

4. Enter appropriate information into the various PIREX lists
and tables.

5. Design and code the requesting program. This is the program
which issues requests to the task.

6. Design and code the task.

7. Assemble all programs and test.

The remaining sections describe these steps in detail.

4.2 PRIORITY LEVEL DETERMINATION

The selection of a priority level for a newly developed task must be
based upon its function., If the task is a device driver, a device
priority should be selected. If the task is a data manipulation rou-

tine, a background priority should be chosen.

4.2.1 Device Priorities

The device priorities are 7 (highest) through 4 (lowest).

e Priority 7 must be reserved for certain PIREX routines and
should not be used as a task priority. (Certain short

4-1

Task Development

instructions sequences require priority level 7 protection
but a general use of priority 7 must be avoided.)

e Priority 6 should be used only if interaction with the CR11
Card Reader can be avoided. If the CR1ll is in use, excessive
IOPSUC CDU 74 errors (card column lost) will occur if this
level is used by another task executing in parallel.

e Priorities 4 and 5 can be used in an unrestricted manner.

There are three types of priorities to consider when selecting the

priority of a device driver.

1. The actual device hardware priority N.

2. The priority stored in the trap vector for the device (its
new PS) must be priority 7 to allow an uninterrupted context
switch.

3. The priority at which the task will execute after the context
switch (R.SAVE). This should be N (the above constraints
must be considered before deciding that it will be N). This
priority is set in the LEVEL table (see Section 3.3.6).

4.2.2 Background Task Priorities

The standard UCl5 PDP-11 computer does not differentiate between the
software priorities 0 through 3. All software priorities are inter-
ruptable by any device operating at any device priority. These soft-
ware priorities, while treated by the hardware as the same, are not
treated by PIREX as identical. The background task's position in the
Active Task List (the list to schedule the next task to run) is based
upon its priority (as indicated in the LEVEL Table). Thus a priority
2 task is always selected for execution before a priority 1 task.

It should always be remembered that the ATL is built dynamically and
is composed of only active tasks. Thus a task's actual ability to
execute depends both on its priority and on what other tasks of equal
or greater priority are actually available to execute (active). Tasks

of the same priority are run on a first come-first serve basis.

4.3 TCB FORMAT AND LOCATION

The design of new Task Control Blocks (TCBs) must be governed by sev-

eral constraints:

Task Development

1. Certain "fixed" items of information must be present.
2. There may be a size constraint depending upon source of the TCB.

3. TCBs issued by the XVM have a location constraint.

The first three TCB words have a fixed format (see Section 3.2.5).
The remainder of the TCB should be as follows:

1. Control words should be allocated to fixed pre-defined loca-
tions.

2., Data words should be blocked into the location following the
control words.

3. The TCB size should be kept constant for ease of core allo-
cation.

Location and size constraints are interrelated:

1. If the TCB is for a task executing under PIREX in PDP-11
Local Memory, there is no location constraint. The TCB size
must be kept small enough so that the TCB does not overflow
into common memory.

2, If the TCB is for a PDP-1l1 task executing in Common Memory,
it must be positioned so that it is:

a. present entirely in Common memory (not XVM Local
Memory, and

b. not overlaying any of the XVM monitor resident code.

These constraints actually apply to any PDP-11 Code or data
located beyond PDP-11 Local Memory.

3. If the TCB is for an XVM/RSX routine, it must be located in
a task partition or common area that is within the Common
Memory.

4, Since the specification of absolute core location is difficult
in XVM/DOS, the TCB placement problem is somewhat more com-
plex. The standard XVM/DOS system has seven TCBs assembled
into the resident monitor. These include TCBs for RK Disk,
XY1l Plotter, CR11 Card Reader and LP11/1V11/LS1l1 Printer.

In addition there are three spare TCBs of various sizes. The
user developing his own UNICHANNEL handler should take advant-
age of these spare TCBs. .SCOM+100 (location 200, in XVM
memory) points to a table of pointers to each of %hese TCBs.
The user should select the one closest to his size requirement.
(See the XVM/DOS Systems Manual.)

4.4 TASK CODE NUMBER DETERMINATION

Task code numbers are composed of two fields. Bits 6 through 0 are

used to contain the actual task code number. This is the number used

Task Development

when searching tables and lists ordered by TCN. In the DEC-supplied
system, these numbers range from 0 through 138. Bit 7 is used in TCBs
to determine if the task is spooled. If bit 7 =1, the task is not
spooled. If bit 7 = 0, the TCBs for the task are routed to the spooler
if the spooler is enabled. (There must then be a spooler module pre-

pared to handle TCBs for that particular task (see Chapter 5).)

Task codes 11, 12, and 13 are spare task codes in the DEC-supplied
system. They are used in increasing order. The highest task code
position must not be used for a permanent task because MACll requires
this slot for its use as a temporary task (a task that is connected

and disconnected at run time).
4.5 UPDATING LISTS AND TABLES

The installation of a new task requires placing entries into the various

tables and lists. There are two cases:

1. the installation of a new task into a current spare task entry.
2. the installation of a new task into a new entry (by expanding
the tables).

For each of these two cases there are two types of task entries:

1. permanent tasks

2., temporary tasks

A permanent task is one that is assembled into the PIREX binary. Its

actual starting address and priority level are known.

A temporary task is one that is dynamically connected to and discon-
nected from PIREX. Its starting address is dependent upon its place-
ment in memory. (Temporary tasks must be written in Position Inde-

pendent Code - see MACl1 Assembler Language Manual.)
Chapter 3 describes the format of each table entry.
4.5.1 Temporary Task Installation - Existing Spare Entry

To install a Temporary Task into an Existing unused Task Entry, TCN
118, 128, or 138, simply use the CONNECT and DISCONNECT directives.
No new table space and no new table entries are required.

4-4

Task Development

4.5.2 Permanent Task Installation - Existing Spare Entry

To install a Permanent Task into an Existing unused Task Entry, TCN 11
or 12 perform the following:

1. Update the LEVEL table entry for that TCN with the task's
priority (see Section 3.3.6).

2. Update the TEVADD Table entry for that TCN with the task's
starting address (see Section 3.3.7).

3. Optionally update the interrupt vector table if the task is a
device driver task (see Section 3.3.9).

4.5.3 Temporary Task - New Entry

To install a Temporary Task into a new Temporary Task Entry (i.e., to
expand the table to accommodate a new Temporary Task) perform the

following:

1. Add an entry to the ATLNP Table {(see Section 3.3.1.2).

2. Add an entry to the LISTHD Table (see Section 3.3.3).

3. Add an entry to the LEVEL Table (use ".BYTE 0" as the priority
value since this is a Temporary Task Entry and the actual
task priority will be filled in by the connect directive).

4. Add an entry to the DEVST Table (see Section 3.3.5).1

5. Add an entry to the CLTABL (see Section 3.3.4).

6. Add an entry to the TEVADD Table (use ".WORD O" as the entry,
since this is a Temporary Task entry that will be filled in

by the CONNECT directive).

7. Add an entry in the SENDl11 Table (see Section 3.3.8).

1PIREX transfers, upon request, the entire DEVST Table to the XVM/DOS

monitor. The XVM/DOS resident monitor can accommodate a maximum of
5 additional DEVST entries beyond the current 13,. Expansion beyond
208 entries would require reassembly of the XVM/BOS resident monitor.

Task Development

4.5.4 Permanent Task Installation - New Entry

For a new Permanent Task, repeat the procedure in paragraph 4.5.3, for
a new Temporary Task, with the following changes:

1. Step 3 is changed to: Place the task's priority in the new
LEVEL Table entry (see Section 3.3.6).

2. Step 6 is changed to: Place the task's starting address in
the new TEVADD entry (see Section 3.3.7).

3. Optionally update the interrupt vector table if the task is
a device driver task (see Section 3.3.9).

4.6 CONSTRUCTING DEVICE HANDLERS

This section describes how to construct device handlers for XVM/DOS and
XVM/RSX. Additional information on construction of a PDP-11 requesting
task is provided.

4.6.1 Constructing a XVM/DOS UNICHANNEI. Device Handler

The following description of how to construct a handler for the XVM/DOS
monitor does not discuss those topics related to all XVM/DOS handlers
both traditional and UNICHANNEL. General issues pertaining to all
XVM/DOS device handlers can be found in the XVM/DOS Systems Manual. The
UNICHANNEL Line Printer handler is used as a descriptive example (see
Figure 4-1). Several constants should be defined in a UNICHANNEL hand-
ler source file before the executable code (see Figure 4-1, lines

48-55, 71-73). These constants include:

Task Development

2 LPU. XvM V1A 122
5 CAL ENTRANCE

6 INTERRUFT SERVICE
7 ERROR RUOUTINE

8 «INIT FUNCTION

9 JWRITE FUNCTION
15 .CLOSE FUNCTION
16 WALT FUNCTLON
17 INITIALIZATION CODE AND TEMPURARIES
PAGE 1 LU, 122
1 »SYSID < JPLTLE LPU, >,< 122>
%G LDEFIN ,SYSIU,FR,BK
*G FREXVM VIAEBK
G JENDM
Lid LSYSID < JTLTLE LPU, >,< 122>
PAGE 2 Py, 122 LPU. XV4 V1A 122
*G JPITLE LPU, XVM V1A 122

2 /

3 /COPYRIGHT (C) 1975

4 /0IGLITAL EQUIPMENT CORPURATION, MAYNARD, MASS,

5 /

6 /TH1S SOFTWARE IS5 FURNISHED UNDER A LICENSE FOUR USE ONLY
7 /08 A SINGLE COMPUTER SYSTEM AND MAY BE COPLED ONLY #ITH
8 /THE INCLUSION OF THE ABUVE COPYRIGHT NOTICE. THIS

9 /SOFTwARE, UR ANY OTHER CUPIES [HEREQF, MAY NOT BE PRO=-
10 /VIDED UR UTHERWISE MADE AVAILABLE TO ANY OTHER PERSON
11 /EXCEPT FUR USE On SUCH SYSTEM AND T0 ONE wHU AGREES TD
12 /THESE LICENSE TERMS. TITLE TU AND OWNERSHIP UOF THE
13 /SUFTWARE SHALL AT ALL TIMES REMAIN 1N DEC,
14 /
15 /THE LIaFURMATION IN THIS DUCUMENT IS SUBJECT TO CHANGE
16 /WITHOUT NOTICE AND SHUULD ~OT BE CUWNSTRUED AS A COM=
17 /MITMENT BY DIGIfAL EQUIPMENT CUORPORATION,
18 /
19 /DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY
20 /UF 1TS SOFTWARE Un EWUIPHMENT wHICH IS NOT SUPPLIED BY DEC.
21 +EJECT
PAGE 3 LPU, 122 LPU, XVM V1A 122
22 /
23 / EDIT LEGENG,
24 /
25 /7 120 05=JUN=75 (RCH#M) MAKE XVM CHANGES,
26 /121 05=JUN=T75 (RCHM) TAKE OUT NUN=ESSENTIAL CONDITIONALS,
27 / 122 22-JUL=75 (RCHM) TEST STATE OF uC15 ENABLED BIT,
28 /
29 JEJECT
Figure 4-1

XVM LP1l DOS Handler

Leu,

LPU.

U0voo
00001
ouGL2

00003

U0u04
00005
0000Us
00007
Uo01v
00011
0ud12
00013
00014
00015
00016
00017
00020
00021
00022
00023
0024
00028
00026
00027
00030
[VIVERY

R

ZTXTALXLLTITTILXTXLTXITIXLEXLLIX

122

ouVou2
0U00sS6

700141
706001
706006

706144

00u100
0uuL04
000002
000003
440000
440000
000137

000072

0u0L04

122

04uS540
040541
440541

600547

220541
440541
50VUb33
340634
040Ul
740040
TV RVE]
741000
600024
440541
b0U1l34
600460
6uul 34
600024
60UV136
60USUB
Touuue
60uVUT3
Teuue !
eQULT3
760012
Q0073

Ley,

k] > >

Pl R

CAL

TPXPAPEPTITXTXTXITTPIXPEPIXXXITX

Task Development

XvM V1A 122

/Jd M, WOLEBERG (S, ROOT)
/LPU,==10PS ULINE PRINTER HANDLER FOR LPL11 LINE PRINTER
/CALLING SEWUENCE:

/ CAL + JDAT SLOT (9«17)

/ FUNCTIUN

/ N ARGS, WHERE ® IS A FUNCLLON OF "FUNCTION®
/ NURMAL REFURN

/BITS 12=13 OF ,8CUM+4 INDICAFE PRINTER,

/ 00= UNDEFINED,

/ 012 B0 CULUMNS.

/ 10= 120 CULUMNS.

/ 11= 132 CULUMNS.

/ASSEMBLY PARAMETERS?

/ NOFF=1 INHIBITS AUTOMATIC EdL OF PAGE FORM FEED

/ FFCNT CAN BE OEFINED AS NUMBER UF LINES PER PAGE IF
/ DEFLNE FFCNT [N !2OCTALL!

/ 1K FFCNT AND NUFF oUTH UNDEF,, 58 LINES PER PAGE 1S
/

APILVL=2

APISLT=H6

/

LSSF=APILVE#2047v0101
S10A=706001
LIUR=TuU6UOG

/5KIP ON DATA ACCEPTED
/CLEAR "DONE"™ FLAG AND
/ THE PDP1i,

CAPI=APILVL*20+706104 /CLEAR FLAG

/
«SCOM=100
SC,M0ODL=,SCOM+4 /(RCHM=122} ,SCUM MODE REGISTER,
SC.ul15=2 /(RCHM=122) BIT WITHIN SC.MUD TO BE TESTED.
SMED=3
IDX=182
SET=[82 /USED TO SET SWITCHES TO NON=ZERQ.
EXERRS=,S5C0OM+37
/
«1FUND FFCNT
FORMS=72
SEnDC
«IFUND NOSPL
LEVCOD=4 /CUDE FOR LP DRIVER IN PIREX
+ENDC
«GLOBL LPA,
ENTRANCE
JIETLE CAL ENTRANCE
LPA, DAC LPCALP /SAVE CAL PUINIER,
DAC LPARGP /AND ARGUMENT POINTER.
10X LPARGP /PUINIS 10 wURD 2 « FUNTTION CODE.
/
/ F1RST T1ME THRU GU CAL InID, COUE IN LBF
/
NEW JMP Inl? /FLRST TIME YHRU DO SETUP CAL
/ /AND SEI'=-UP TCB AND BUFFER, OVERWRITE
/ /JUMP ALLH NOD=0P
/
LAC* LPARGP
iDx LPARGP /PUINTS TU #URD 3 - BUFFER ADDRESS,
AND (7717 /STRIP OFF UNIT NUMBER.
TAD (JMpP LTABL=1 /OLSPATCH TU PROCESS FUNCTIUN.
DAC 2!
XX
LTABL Jhip LP1N /1 = LINIT -
SKP /2 = JFSTA1l,,RENAM,.DLETE = IGNORE
JMP LPERUb /3 = .SEEK = ERROR
1bXx LPARGP /4 = LENTER = IGNURE
JMP LPNEXT /5 = JCLEAR = IGNURE
JMP LPCLUS /6 = CLOSE
Jme LPNEXT /7 = «MTAPE = [GNORE
JMp LPERUG /10 = JREAD = ERRUR,
JMP LPWRIT /11 = JWRITE
JMP LPWALT /12 = JwAIT UR wAITR
LPERO® LAw b /ILLEGAL HANDLER FUNCTION,
JME SETERR
10PS67 LAw o1 /(RCHM=120) FETCH MEMORY BUOUNDS ERROR MESSAGE.
JMP SETERR /(RCHM=120) GU PRINT ERROR.
10PS12 LAw 12 /(RCHM=122) FEICH TERMINAL I/0 ERRUOR MESSAGE.
JMP SETERR /(RCHM=122) GO PRINT ERROUR,

Figure 4-1 (Cont.)
XVM LP11 DOS Handler

NOF¥ UNDEF.

DEFAULT,

8Y THe PLP11
LOAD REG FUR

PAGE

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

PAGE

155
156
157
158
159
160
161
162
163
164

b

LPu,

0V032
00033
00034
00035
00v3e
00037
00040
00041

00042
00043
00044
00045
00046
00047
00050
00051
00052
00053
00054
00055
00056
Q0057
00060

00061
00062
00063
00064
00065

V0066
00067
00070
00071
00072

LPU.,

00073
00074
00075
00076
00077
00100
00101
00102

TTXXTXTXXTX

LTI LTETXTXTLXTTXODLX

122

600042
0405606
200032
Ugude7
200035
040032
2000306
600046

040566
220637
040567
200040
040056
Tu6144
229553
742010
743120
bu0Ub1
140544
200566
740040
703344
620567

500041
540042
6000bb
34V043
60U 73

200550
700001
6uL0B/
7060006
6UV0SS

122

V4ulL o2
740000
200102
1206044
600074
KRERRE]
142025
00V000

TXTXTXTX TPPTXXTPPFPXPITXLTITI XTXTLITIXTXTXT

TP T r®

PEPPTXTP X

Task Development

INTERRUPT SERVICE

/
/LPU,
LPINT

/
LPPIC

LPICM

LPIRT
LPIRTL
LPISw

LPIERK

ANEN

ERROR ROUT

/
SETERR
ERLOUP

ERQUT

ERRNUM

JTITLE INTERRUPT SERVICE

INTERRUPT
Jue
DAC
Lac
DAC
LAC
DAC
LAC
JMP

LDAC
LAC*
DAC
LAC
LAC
[of Y3
LAC»*
RTL
SPAIRTR
Jmp
DZ#
LAC
HLT
DBR
Jup*

AND
SAU
JMp
TAD
JMp

LAC
S1UA
JMP
LIUR
JMP

Ine

»T1ILE

SERVICE

LPPIC /PIC EnT
LPAC /SAVE 1w
LPINT /GET INT

LPoUT /SAVE FUR CUMMON EXIT
ORE PIC ENTRY

{JMP LPPIC /REST
LPINT

RY, JumMP Tu CUDE

TERRUPTED AC
ERRUPTEV PC

(P /AE OUN'T NEED ION IN CUMMUN EXIT

LPICHM /JOIN CU

LPAC /PIC CAD
o /GET InT
LPOUT /SAVE

MMON CODE

E, SAV AC
ERRUPTEDL eC

(10N /NEED IWTERRUPT Un INST, IN COMMON CUDE

LPISwW
/CLEAR F

/+ IS 0K
LPLERR /ERROR,
LPUND /CLEAR U
LPAC /RESTORE

/10N OR

LPOUT

LAG, NUw [N COMMON CODE
LPEV ZEVENT VARIABLE FROM PIREX
/PUP=11 (MINUS) BIT I0 QUR ATO

GU LODOK
NDERWAY FLAG
AC

NOP

(177777 /KEEP ReEAL 16 BLITS FRUM POP=11
(177001 /COVE FRUM OUT OF NODES IN PIREX
Y AGAIN, LEAVING LPUND SET
8UMBER FUR [OPS
SETERR /TREAL AS REGULAR 10PS ERRUR

/NUTE [HAl THIS SHOULDN'T HAPPER.

RETRY /JUST TR
(600000 /MAKE =«

LPICH /TC8 AvD

=1 /

RESS

/THIS MAGLC SHLPS TCB ADDR, [0 PDP~-11%
LPIRTY /uXII FRUM INTERRUPT

ERRUR RUUTLINE

DAC ERRwyYA

NUP

LAC ERRMNU4
JME* (EXERRS
JMP ERLOJP
LAw =1
+S1XBI 'LPU?
0

/1JMP LPTRY!'

/HULDS ERRUR

Figure 4-~1 (Cont.)
XVM LP1ll DOS Handler

IF 10PS 4 ERROR.

NUMBER FJIR REPEAT,

PAGE

165
166
167
168
169
170
171
172
173
i74
175
176
177
178
179
180
184
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

8

LPu,

00103
00104
00105
001ve
00107
00110
00111
00112
00113
00114
00115
00116
00117
00120
00121
00122
00123

00124
00128
00120
00127
Q0130
00131
00132

00133

00134
00135

e A i A i i e e i el S i e T I i

TXTXEXTLX

x

122

220645
500646
741200
600030
440541
200555
060541
440541
200542
040543
220540
500647
340546
540546
741000
200636
040545

100455
100524
140562
750030
060551
723013
GoU552

100531

703344
620541

TEPXTXDITXTLTTIXTTLPTL

TP TP IVX XL

x

A

Task Development

<INIT FUNCTIUN

«TITLE I#IT FUNCT1OW
/
/elNLT
/
LPIN LAC* (SC.MUD) /(RCHM=122) CHECK MODE REGISTER FROM SCOM,
AND (S8C.UC15) /(RCHM=122) FUR UC1S5 ENABLED.
SnNA /(RCHM=~122) I5 I717?
JMP 10PS12 /(RCHM=122) NU, GO PRINT ERRUR,
IDX LPARGP /(RCHM=122)
LAC BUFS1Z /36(10) FOR 80 COLS; 56(10) FUR 132 cOLS,
DAC* LPARGP /RETURN TU USER,
10X LPARGP /NOw PUINTS TO RETURN.
LAC PAGS1Z /LF CUUNTER
DAC PAGCHT .
LAC* LPCALP /DUES LnIT INHIBIT AUTO FURMS FEED
AND (4000 /THIS 1S INHIBIT BIT
TAD FFFF /FFFF ASSEMBLED AS NOP FOR NOFF, ISZ IF NOT
SAD FEFF /SKIP IF INIT INHIBITS FF
SKP ZINIT DOESN'T LNHIBIT, USE ASSEMBLED VALUE
LAC (NOP /INIT INHIBLITS IT, USE NOP
DAC FFSwW /THLIS SW1TCH XTT'ED BY FORMS CONTROL
/ /SECTLON IN PUTCH SUBRUUTLINE
JHS RESETL /RESET LAB AND LINE WIDIH CUUNTERS
Jams LPLUCK /CHECK wP BUSY
oM cup /SAY A FF UCCURRED
CLALIAC /CUUNT OF UNE BYTE FUOR HEADER
DACH* LPBUF /HEADER
AAC 13 /FORM FEED
DAC* LPBUFD /FUR BUFFER
«1FUND NOFF /D0 ONLY IF NUFF NUT DEFINED
Jus LPSET /IHIS SENDS REW. TU PUP=11
+ENDC
/
/NORMAL CAL EX1T
/
LPNEXT DBR
JMP# LPARGP

Figure 4-1 (Cont.)
XVM LP11l DOS Handler

PAGE

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

9

LPU.,

00130
00137
00140
00141
00142
00143
00144
00145
00146
00147
00150
00151
00152

00153
V154
00155

00156
00157
00160
00161

00162
00163
00164
00165
00166
00167
00170
00171
00t72
00173
00174
0017y
00176

00177

00200
00201
00202

TLXXDDHXLITITXLII

ol - i B S i i i T i 4 DX XX

x

R

R

122

10u524
220540
S00U650
240051
V4U50e5
220541
440541
V40561
723002
040570
Suub52
740200
600020

717000
52v561
742030

400565
751001
741031
360541

040554
440541
200552
V40571
0v347
040344
200443
V40441
750000
400565
200693
060551
750001

060552

100332
741200
600200

DPFLXPFPTXXTXTXID

E

xrP» > X

PLTDXTFDDXITITVILX

x

Task

Development

JHRITE FUNCTLON

+TITLE ,wRITE FUNCTIUN
/
/ JWRITE
/
LPWR1T JMS LPIOCK /PRINTER BUSY?
LAC* LPCALP /GET THE DATA MOVE FROM THE USER CAL.
AND (1000 /MAKE SKP=NhUP IN MIX
XO0R (SKP
LAC MLIX
LACH* LPARGP /USER BUFFER ADDRESS,
IDX LPARGP /nNOW PUINTS TO WORD COUNT
DAC ICHAR /SAVE PUINTER TO BUFFER HEADER
AAC 2 /HAKE X12 POINT TO DATA wOT HEADER
DAC X12 /GETTER PUINTER
AND (700000) /(RCHM=120) EXTRANC EXTEND ADDRESSING BIIS FROM BUFFER ADDR3IESS.
SZA /(RCHM=120) ARE ANY S€T?
JMP [UPS67 /(RCHM=120) YES, ISSUE [OPS67 ERRUOR MESSAGE.
/
/ SET UP LIMIT OF INPUT BUFFER S1ZE TO PREVENT DATA DVERRUN
/ FOR BUTH 10PS ASC1I AND IMAGE ASCII
/
LAw 17000 /GET PALR COUNT FROM LEFT HALF
AND* FCHAR
SwHA /BRING L0 RIGHI. PAIR CUUNT INCLUDES HEADER
/ /PAIR CUUNT, Wik L[SZ BEFORE LJ0P SO THAT'S
/ /UK, I[UPS NOA SET XCPT CMALIAC
XCT MIX /SKIP I¥ ASCIL, NUT IF I[MAGE
SKPICLAICMA /IMAGE =1 IM AT, SKIP, =1 BECAUSE wiE ISZ FIRST
SKPICMALIAC /10PS CTUMPLEMENTED TO CORRECT VALUE
TAD¥ LPARGP /IMAGE ADD IN TUTAL wORD COUNT, INCL
/ /TwQ WORDS FOR HEADER, WE [S8Z BEFOKE LOUP,
DAC TEMP1 /INTU CUNTROLLER, BOTH MODES
182 LPARGP /MUVE ARG POINTER TO EXIT
LAC LPBUFD /PULNIER TU UATA PURTION OF BUFFER
DAC PuTP /LUAD TJd CHARACTER PUTTER PUINTER
Lac GETIN /1NET. CHAK GETTER
DAC GETSW
LAC PUTIN /LNLIT CnAR PUTTER
DAC PUTSW
CLA /LINIT QUYPUT BUFFER HEADER
XCT MIxX /r0 0 LF LUPS, 400 FOR 1MAGE
LAC (400
DAC* LPBUF
CLALCHA /COUNT OF | BLANK AS DEFUALT
/ /FOR ZERQ LENGTH I0PS LINE
DAC* LPBUFL /LN FIRST DATA CHAR
/
/ MAIN LOUP TO TRANSFER CHAR'S TO HANDLER BUFFER
/
MALN JMS GETCH /CHARAUTER GETTER, LEAVES IT 1IN AC
SNA /SKI# UNLESS NULL CHAR
JMP MAIN /nULL, I[GNORE

Figure 4-1 (Cont.)
XVM LP1l1 DOS Handler

PAGE

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

Leu.

00203
00204
00205
00206
00207
00210
00211
060212

00213
002t4
00215
00216
00217

Qo220
v0221

00222

00223

00224
00225

V0220
vuz27
vo23¢0
00231
00232
00233
00234
00235
00230
v0237
00240
00241
00242
00243
00244
00245
00240

XXXTXTXTITAXTTIXXLXTILIXLX

122

540654
600200
040561
723730
741300
600247
540655
00u3lle

20ubbl
740100
bUU220
200656
10v4d00

750030
u4u562

20uS563

744100

69u235
340057

75v100
60u233
340057
100400
200657
34une3
1ou4uu
14Ub03
20uSo0l
Lyv4avy
440564
o0VZ244
711770
U405b4
440557
600200
buuisldg

TTXPPXIT

TT TP X

T T >

AXTXLLXLPLTVIXTXTXTTXLI DX

Task Development

+WRITE FUNCIION

NNN NN

NNNN N

~

MALND

MAINT

MAINK

MALNE

SAD
JMP
DAC
AAC
SNALSPA
JMP
SAD
JMP

SURRY ABOUT
THE LOGIC AT PUTCH [0 DO FORMS CUNfROL DUESN'T DO IMPLIED
LINE PEEDS,
wh HAVE TO FAKE [T OUT BY LACING A LINE FEED UN SUTH LINES!?!

LAC
SMA
Jme
LAC
JMS

CLALIAC
DAC

LAC

SMAICLL

JMp
TAD

SMALCLA
Jmp
TAD
JMS -
LAC
TAD
Js
PYA
LAC
JMS
182
Jmp
LAw
bAC
1587
JmpP
Jmp

(177
MAIN
TCHAR
~40

4SPEC
(135
UCLPO3

/IGNORE RUB=UUT

/MALN

/SAVE THAR THROUGH TESTIWG

/SEPARATE 'TEXI' CHAR'S FROM CONTROL CHAR'S
/SKIP UN REGULAR CHARS

/GU DO SPECIALS

/ALT MODE

/END UF LINE ON ALT MODE

NE XT FIVE L NES,

1.£. THOSE LINES HAVING NO LEADING CONTROL CHAR,

FIRST

ot3
{12
PUTCH

cop

BLANKC

HALINC
(200

MALND
(200
PUTCH
(200
BLANKC
PJTCH
BLANAC
I'CHAR
PUICH
rasc
MALNE
=10
rasc
MAXC
AALN
UCLPO3

/
/ SPEC1AL CHARACIERS

/00 ONLY 1F FIRST CHAR OF LINE IS REGULAR
/SK1P LF FIRST CHAR

/80T FIRST CHAR, JUST COWIINUE

/HERE IS8 LINE FEEQ

/AND CALL 10 DU PORMS CONTROU

/SET FLAG SAYING A REAL CHAR SINCE A FF

/00 WE HAVE PENDING BLANKS/TABS TO SEND

NOTE BLANKC HAS MINUS CUUNT Ub CUNSECTIVE BLANKS/TABS
SINCE PDP=11 CUNTRULLER PRINTS UNLY BLANKS

/SKIP IF ANY COLLECTED, TO PUT JUT BEFORE
/REAL CHAR'S

/NUNE, PENDING, GO PUT QUT THE CHAR
/TUUGH, IF MURE THAW 127 COLLECTED, MUST
/PUT QUT I'wO COUNTS

/SKLP LF NEED I'wO COUNTS

/w0, JUST PUT UUT COLLECTED CTOUNT

/ENU CUUNIS, HERE 1S FIRST

/SET UP IO DO SECOND
/CUMMON CODE, LAST CUUnT FOR E1THER CASE

/CLEAR UUI BLANK CUUNTER

/GET BACK ORIGINAL CHAR

/10 QUIPUL BUFFER

/INCREYMENT TAp CUUNTER

/0T OVERFLUW, GO CHECK LINE COUNTER
/RESET [AB COUNTER

/HAVE WwE RUN QUT UF LINE
/w0
/YES, GO FINISH UP, WITH END JF LINE

Figure 4-1 (Cont.)
XVM LP11 DOS Handler

PAGE

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
EF3)
322
323
324
325
326
327
328
329
330
in
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

11

LPU,

00247
00250
00251
00252
00253
00254
00255
00256
00257
00260
00261
00262
00263
00264
00265
00266
00267
00270
00271
00272
00273
00274
00275
00276
00277
00300
00301
00302
00303
00304
00305
00306
00307
00310
00311
00312
00313

00314
00315
vo3le
00317
00320
00321
00322
00323
U0324
00325
00320
00327

TXTXTALLILXITLXNXIXTLTOTTITXTLITXLXIXDZLDTILLXX X UL X

TXXLXLXTEXTXXIXTITXXX

122

750201
60v254
340563
040563
600240
200561
540660
600300
540061
600314
540662
600275
54Ubo6 3
600270
54V6b4
600272
2006506
100400
buUL20V
200656
1uV400
600267
1004595
200661
60027V
200564
340563
040563
200564
740031
340557
040557
740100
IV R
711770
V40504
600200

200061
400565
100400
100455
440562
220551
500065
740200
60u330
400565
60v134
460551

XXV PTLTPFPXTLOPIDALXLLXTIXRLITEITEIITTILILTIXTOSNN XD

TAXLZXTPFPXRXIXTTITXTD

Task Development

+WRITE FUNCTION

/
MSPEC

MSPEC?

MSPECS
MSPEC3
MSPECY

MCR

MTAB

/
UCLPO3

UCLPO4

SZAICLALICHA

JMp
TAD
DAC
JMp
LAC
SAD
JMp
SAD
JMP
SAD
JMP
SAD
JMp
SAD
Jmp
LAC
JMS
Jup
LAC
JmS
JMP
JMs
LAC
JMP
LAC
TAD
DAC
LAC
CMALIAC
TAD
DAC
SMA
JMP
LAwW
DAC
JMP

LAC
XC1
JMs
BLE
182
LACH
AND
SZA
JMp
XCT
JMp
Isz»

MSPEC2
BLANKC
BLANKC
AALNK
TCHAR
(11
Mrasg
(15
UCLPO3
(20
H4CR
(14
4SPECS3
(21
MSPEC4
(12
PUTCH
MAIN
{12
PUTCH
1SPECS
RESETL
{15
MSPEC3
rasc
BLANKC
BLANKC
rasc

4AXC
4AXC

UCLPO3
~-10
rascC
MALN

(15
MIX
PUTCH
RESETL
cuap
LPBUF
(377

ucLpPOS
ALX
LPNEXT
LPuur

/8K1P IF 1T IS A BLANK
/NUPE, CHECK FOR QOTHER THIWNGS
/ADD DJE Tu BLANK CUUNTER (1S vINUS COUNTER)

/JUIN LINE AND TAB CUNIRQOL SETTIun
/GET BACK URIGINAL CHAR

/18 I A I'AB

/YUP, GO DO IT

/CARRIAGE RETURN

/END UF LINE ON CARRIAGE RETURN
/FURTRAN OTS OVERPRINT, 00 AS CR

/FURM FERD

/JUSI PUL IT OUTD, KFUR NOw

/FORTRAN UUUBLE SPACE

/U0 AS 1w0 12'S

/UDEFAULT ON UNRECOGWIZED CONIR3IL CHAR. IS LINE FEED
/PLACE LN BUFFER

/G0 DO NEXT

/FIRST OF TwD 12'S FOR THe 2%

/G0 DO PHE SECOND 112

/NEw LINE, RESEY VARIOUS GUYS
/CARRIAGE RETURN

/PUT THAR AND LOOP

/GET REMALNING COUNY FUR TAB

/AND ADD TU CUMULATIVE BLANK CJUNT

/AND I'J LInE CHECKER

/SK1P L1 SOME LINE LEFT
/NONE LEF1, FINISH uP LINE

/RESET FAB COUNTER
/NEXT CHAR

/CARRIAGE RETURN
/PLACE INM BUFFER ONLY ON IMAGE!!!

/A BLANK LINE IS STILL A REAL CTHAR SINCE FF
/ZERQ CTHAR COUNT??

/COUNT UNLY IN LOW 8 BITS

/SKIP IF ZERO CQUNT

/NON=ZERO, JUST GU 00 REGULAR

/IMAGE QR 10PS

/IMAGE DU NUTHING

/I0PS MAKE FAKE | CUUNT

/wE ARE DOING A BLANK LINE, AND ©

Figure 4-1 (Cont.)
XVM LP11 DOS Handler

PAGE

358
359
360
361

363
364
365
366
367
368
369
370
374
372
373
374
375
376
377
378
379
380
381
382
383
384
385
3ge
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

12

Lbu,

122

00330 R 100531 R
00331 R 600134 R

00332
00333
00334
00335

0uL3ie
00337
00340
00341
00342
00343

00344

00345
00346

00347

00350

00351
00352
00353
00354
00355
00356
00357
00360
00361
00362
00363

TXXTET

TLAXTLTXTXTXXTX

LTIV
400565
741000
620344

440554
741000
6UU329
220570
44us570
6UL0 345

guouou

S50Ub54
620332

00u351

100344

430554
bUU3bS
10U4bS
oUVU320
22057V
440570
652000
64Ub07
10U 344
640607
100344

xr x>

DL ITPX

x

TPXPrPAIBDIXLITX

Task Development

SWRITE FUNCTLION

/
UCLPOS JMS

JMP

/

/

/

/

/ THLS ROUTLINE

/

/

/

/

/

/

/

GETCH 0
XCT
S5KP
Jup*

/

/

/ NOw DU 1MAGE

/
182
SKP
JMP
LAC*
182
JMp

/

GETSw [

/

GETCM AND
JMP¥

/

GETIN GET1

/

/ INDIVIDULA CHARACTER

/

GETQ NI

/

GeT1 182
Jup
JMS
JMP
LAC*
182
LiQ
LLS
Jus

GET2 LLS
JMS

LPSET
LPNEXT

'OWRS!

LIRS

GETSHW

MUDKE
TEMPL

JCLPOG
X12
X2
GETCM

(177
GETCH

GELSW

TEmP1
o t3
RESETL
ucLpPo4
X12
X12

7
GETSW
7
GETSW

/COUNT MAKES SPUOLER VERY ILL
/SEND BUFFER TO PDP=11
/CAL EXIT

CHARACTER UNPACKING ROUTLINE

THE MQ

CHARACTEKS ARE OBTAINED FROM X12 POINTER, EACH CHAR
I8 RETURNED RIGHT JUSTIFLIED IN THE AC

TEMPL HAS A MINUS CUUNT UF [HE WORDS TO BE OBTAINED
FROM THE INPUT POINTER Xi2

/SKIP IF IT 1S ASCll

/GETSw 18 POINTER TO CORRECT ACITLION ON ONTHE
/CORRECT ONE OF THE FIVE POSSIBLE CHAR'S

/SKP 0w NOT THRU YET

/DUNE

/FINLISH UP Lo COMMON

/POINTER TU CURRECYT ACIIUN, INIT'ED FROM GETIN
/FILLED BY JMS GETSW AFTER EAIH CHAR
/COMMUN FINISH UP, STRLIP XIRA BLTS

/0UT

ZINLT GETSw O POINT TO FIRST CTHAR ACTION
ACTION

/AFTER 5TH CHAR, PUINT BACK ID FIRST

/UUT OF PAIRS?

/CONTINUE IF OK

ZEND OF LINE RESET SONE STUFF

/FLRST wORD OF PAIR

/INTO M@ FOR SHLIFTEING

/DONE, LEAVE POINTER FUR SECOND CHAR

/SECOND CHAR
/LEAVING PUINTER FUR THIRD

Figure 4-1 (Cont.)
XVM LPl1ll DOS Handler

PAGE

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

13

LPU,

00364
00305
00366
00367
00370
00371
ve372
00373
00374
PUEYE)
00376
00377

00490
00401
00402
0u403
004U4
00405
00406
00407
00410
00411

00412
00413
v0414
00415
00416
00417
00420
00421
V0422
00423
00424
00425
V0426
00427

TTATXITLTXTTXX

TAXTTTXXTLX XX

FoR -l i G s - - I b b Al B 2

122

6400604
040344
220570
440570
852000
200344
b4ubOU3
100344
040607
1u0344
bduo07
600350

QUUVo0D
5000695
540656
600412
54U663
600427
449560
740000
400551
620441

200562
740200
600424
220852
540663
620400
2000661
400565
620400
60u4Ub
20Vb56
400549
600434
20U542

TP TP ALPLPXITX>

XXPXTTXIOXP

ZVITXXLTITXLXLXXXB>X

Task Development

«WRITE FUNITLION

GET3

LLS
DAC
LAC*
1582
LMy
LAC
LLS
JMS
LLs
JMS
LLs
JMp

4 /THE HALE=-AND=HALF CHAR
GELSW /VERY [EMPUKRARY

X12 JCAN'T END IN MIDDLE OF PAIR
X12

/SECUND WORD TU SHIFTER
SETSW /HBRING BACK FLIRST
3 /CUMPLETE CHAR
GETSW /LEAVING PUINTER TU FUOURTH ACTION

GELSW /LEAVING FUR 5

GETQ /BACK TJ 1TUP FUR PUINTER TO |

CHARACTEK PUTLER FOR POP=11

Twl CHAR'S PER wURD FORMAT,

FIRST CHAR IS RIGHT JUSTIFIED, SECOND

1S PLACED LIMMEDIATELY ABUVE F1RST, LEAVING TUP Twd BITS OF WORD

OF PUTIN

INTO IT. RUOUTINE COUNTS

THE QUTPUT CHARS IN LBF

TH1S ROUTINE AuSU HAWDLES FORM FEED PAGE CONTRUL
THE PDP=11 ASSUMES LINES HAVE A LF IN BEGINNING AND TR AT END
SO [HIS ROUTIVE REMOVES ANY LEADING LK.

urcH

PUTY

PUTZ

/
PUTLF

PUTW

PUTFF

0

AND
SAL
JMP
SAD
Jup
182
NOP
152»
Jup s

LacC
SZA
Jup
LAC*
SAD
Jub s
LAC
XCT
Jupx
JMP
LAC
XC1
Jup
LAC

/
/
/
/
/
/
/
/ UNUSED, CHAR (S5 VDELEVERD TU US Iw AC. LNIT PULSW BY DAC'ING CONTENTS
/
/
/
/
/
/
/
P

(377 /STRIP {Q EIGHT BITS
(12 /SPECIAL CASE #1, LINE FEED

PUTLF /60 DU IT

(14 /SPECIAL CASE #2, FORM FEED

PUTFF /G0 00 1T
FLIRST /BUMP FLRSY

TIME THRU SWTICH

/1N CASE SKIPS, wE DON'T NEED 1T HERE

LPBUF /COUNT An ODUTPUT CHAR

PUTSW /DISPAICH TO FIRST OR SECUND THAR ACTLOUN

cap /HAS A REAL CHAR UCCURRED SINTE FF?
/SKIP LF N0 REAL CHAR

Pulw /GU DO REGULAR

LPHUFD /[F WE ALREADY HAVE A FF

(14 /IN BUFFER OUT, UON'T NEED A CR

PUICH

(15 /LEAD #1IH CR, 50 PDP=11 DODESN'T PUT ON AUTUMATIC LF

MIX /BUT UQ NOTHING FOR IMAGE MODE

PUTCH

PUTY /GO REAJOIN

(12 /GET BACK LINE FEEL

FFSw /182 OR WOP

FOR COUNT OF FF PER PAGE

PUTLFR /WO FORM FEED NOW

PAGSLZ /FORM FEED,

RESET PAGE CUUNTER

Figure 4-1 (Cont.)
XVM LPll DOS Handler

PAGE

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
433
494
495
496
497
4938

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
14
518
Sie
517
514
519
520

15

LPU,

00430
0043
00432
00433
00434
00435
v0436
00437
V044U
004431
00442

00443

00444
00445
004406

00447
00450
00451
00452
00453
00454

00455
00456
vUes7
00460
Qudol
00462
00463
0464
duded

LPU,

004b6
00467
V0470
00471
00472
00473
00474
voa7s

VudTe
Quai?
00500
00501
00502
oosu3
00504
VU505

A XTATXTXTXXTXX XX

K

T XXX LX

XXLALDITXITXZIX

TALXLLITIXT

TXTXLXITXED

122

U4u543
14ud62
200663
[(VIVESRY)
4005n%
600400
440560
600410
620400
vOouuuy
620400

uouddd

1vu44]
VoUL 1
1uo441

740030
740020
260571
ubLS 11
44u571
oLU444

VvuuwLo
117111
040560
1717770
Vd0bo4
200556
U4ubs7
14uUvo3
b2uU455

122

1uused
140562
44002
60US03
150030
UbU551
20Vbbo
UbUDS2

1uub31
100455
703344
620540
174177
71171
U4uUs02
6u01 34

Task Development

«WRITE FUNCTLON

R
R
R
R
R PUTLFR
R
R
R
R
A PUTSW
R
/
R PULIN
/
R Putlu
R pUT1
]
/
A PuT2
A
R
R
R
R
/
/
/
A RESETL
A
R
A
R
R
[
R
R
/

DAC
DZM
LacC
JHp
XCT
JMP
182
JmpP
JMP*
0
JMp*

PUT1
JMS

DAC*¥
PER

PAGCNT
cup
(14
PUTZ
41X
PJIY
FIRST
PUTZ
PJTCH

PUTCH

PULSH
PUTP
PUTSw

CLLISwWHA

RAR
XUR*
DAC*
184
Jmp

0

LAw
DAC
LAw
DAC
LAC
OAC
[Py Al
JHP¥

LCLOSE FunCTIUn

/

/
/+CLUSE
/
LECLUS

TXI XPXXNXX

LPTALR

LPCLSw
LuPILLN

TREF BT PFXX

»TLITLE

PEN
Dz
182
JMP

CLA!LAC

DAC*
LAC
DAC*

JMs
JMS
UBR
JmMpP ¥

1777177
LAw =1

DAC
JMP

pPUTP
pyre
PYTP
PUTG

UUTLNE O RESET LINE

-1
FLRST
~10
rasc
LINLIM
MAXC
BLANVKC
RESETL

LPLUCK
cup

LPCLSwW
LeCcLby

LPBUF
(b4al4
LPBUKD

LPSET
RESETL

LPCALP

LPCLSW
LPNEXT

/FLAG SAYING FF OCCURRED,

/FOReM

FEED CODE
/G0 COUNI CHAR,

AND PLACE IT

/8KIP JN I0PS ASCII

/1MAGE,
/ASCLI,
/NOT FLRST,

/FIRST

/ZINIT'ED A3 PULL,

/DONE,
/START

/LEAVE
/F1RST

ACTUALLY PLACE LF

1S IT FIRST THRU?

DO LF

LIk, JUST RETURWN

FILLED LATER 8Y JM5 PUTSW
RETURN

AT FIRST CHAR

PUINTER FUOR FIRST AFTER SECOND
CHARACTER ACIION, PLATE RIGHT JUSTIFIED

/ULEAVING POINIER FUR SECOND

/PUT CHAR IN RIGHT PLACE

/PUT HALVES TOGETHER
/B80TH Ly BUFFER
/MOVE PUOINTER

/G0 TELL PUISW

AnD TAQ

FHAT PUT1 IS NEXT

COUNTRS

/8ET FIRS! CHAR OF LINE REMEMBERER

/SET TAB COUNIR

/SET JP MAX PER LINE COUNTER

/RESET

SLCLUSe FUNCTION

SPACE AND TAHB CUUNTER

/CHECK 1/0 UNDERWAY,

/SAY A FF UCTURRED

/777777 IN AC If HAVEN'] BEEN IHRU CLOSE CODE,
/00NE.

/SPUOLER REQUIRES F¥,CR AS CLJSE

/JUST GlVE FF IO DRIVER,

HUWEVER

/THIS {5 FF,CR IN POP=1]}
/FIRST DATA wURD PUINTER

/RIS

MEANS ALWAYS A FF ON CLOSE!!!

/SEND BUFFER TO PDP=11
/RESET I'HE wURLD

/HANG ON CAL.

/=1 = JCLUSE NUT DONE,
/INITIALLZE (CLUSE LNDICATOR
/EX1T,

Figure 4-1 (Cont.)
XVM LP1l1l DOS Handler

-~

Task Development

PAGE 16 LPU, 122 CWALT FUNCTION

521 «T1TLE .A4AIT FUNCTION

522 /

523 /ewAIT DR WALTR

524 /

525 00506 R 220540 R LPWAIT LACK LPCALP

526 00507 R 500050 K AND (1000

527 00510 R 741490 A SNA /BIT 8 = 1 FOR WAITR

528 00511 R 600522 K Jup LPWAT1 /.WALT = GO HANG OUN CAL,
529 00512 R 200052 R LAC (100000 /LINK, ETC,

530 00513 R bHOUS4v R AND LPCALP .

531 00514 R 040540 r DAC LPCALP

532 00515 R 220541 R LAC* LPARGP /15=81T BUSY ADDRESS,

533 00516 R 500007 R AnD (i

534 V0517 R 24uUb40 R XOR LPCALP

535 V0520 R 040540 R DAC LPCALP

536 00521 R 44U541 R IDX uP ARGP

537 00522 R 100524 R LPwAT1 JMS LPIUCK /CHECK 1/0 UNDERWAY.

538 00523 R 6U0134 R Jisp LPNEXT /0K = RETURN,

53% /

540 /CHECK FUR 1/0 UVDERWAY

541 /

542 /LPUND 0 wWHEN FREE, NOwWO wHEJ 8USY

543 /

544 00524 R UULUUD A LPLIOCK v

545 00625 R 2uu544 R LAC LPUND /0 = NO ACTIVI1TY,

546 00526 R 74140V A ShA

547 00527 R 620524 R Jupb* LPIUCK /NO 1/0 UNDERWAY,

548 VU530 R 0005uU K Jup LPCALX /HANG ON CAL TIL NOT BUSY.
549 /

550 / SETUP AND OUTPUI TO PRINTER,

551 /

552 00531 R 000000 & LPSET 0

553 00532 R 200550 R LAC LPICB /SEND ICB PUINTER TO PDP~-11

554 00533 R 706001 A S1UA /MAKE SURE ITS ABLE [J GET IT
555 V0534 R bOUD33 R JMF =l /NOTE THAT TH1S 15 PROTECTED SINCE
556 / THE LIUR W#ILL BE ISSUED DIRECTLY
557 / AFTER THE S10A (FREE INSTRUCTION).
558 V0535 R 7ubu06 A L1UR

559 00536 R 040544 R DAC LPUND /SEL 1/0 BUSY FLAG,

560 00537 K bzun3l R JuP* LPSETL

Figure 4~1 (Cont.)
XVM LP1l DOS Handler

PAGE

561
562
563
564
565
566
567
568
569
570
571
572
573
578
579
580
581
582
583
584
585
586
587
688
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

17

LPU.

005490
00541
00542
00543
00544

00545
00546

00547
00550
00551
00652
00553
00554
00555
00556
00557
00560
Qu561
00562
00563
00564
00565

00566
00567
00570
00571
00572
00573
00574
00575
00576
00577
00600
00601

00602
00603
00604
00605
00606
00607

TXXXTDIXAPDIDEXITX

LT DT OTXX XD

122

000000
000000
117706
777706
711772

440543
440543

200636
040003
220645
142020
740020
500670
741200
340670
340624
040624
220624
040556
440624
220024
040555

220657
740030
040554
220554
040550
040554
723002
040553
723002
040564
723005
040552

200671
060554
440554
200072
060554
440554

e r >

T T

TXEXRDXXTLEXTPIPPLXXT

TPTPRPIPXXTLLNPR

DTAOADDE

Task Development

INITIALIZATION CODE AND TEMPURARIES

/
LPCALP
LPARGP
PAGS1Z
PAGCNT
LPUND
/

/

FFSW
FFFE

INLT
LPICB
LPBUF
LPBUFY
LPEV
TEMPE
BUFS1Z
LINLIM
MAXC
FIRST
ICHAR
coe
BLANKC
TABC
MIX

/

/ NOW
/

LPAC
LpouTt
X12
PUTP

/
/ MAKE
/

WTITLE INITLALLIZATLON CODE AND TEMPORARIES

0

0
=FORMS
«~FORMS
-6

+IFUND NUFF

184
182
LENDC
LAC
DAC
LAC*
RTR
RAR
AND
SNA
TAD
TAD
DAC
LAC*
DAC
182
LAC*
DAC

PAGCNT
PAGCNT

(dop
NEW

/POINTER 10 CAL ADDR
/POINTER ARGUMENTS UF CAL
/ASSEMBLED LINES PER PAGE
/COUNT THE LINES HERE
/USFREL, +=BUSY, ==ERROR
/CUUNTS UP TU INITAL 0 BELOwW

/ACTION FUR FURMS CONTROL, NEMORY
/FFSW LUADED INTO HERE

/WRITE OVER JUMP TO HERE
/PREVENT RE“ENIRY

(,5C0M+4 /GT PRINTER LINE WIDIH

(6

(6
LBFTP
LBFTP
LBFTP
LENLIM
LBFTP
LBFIP
BUFSIZ

/HOVE TO '6' PUSITIOWN
/STRIP GARBAGE, LITERAL 6

/TREAT 0 (UNDEFINED) AS 132 COLUMNI??!
/POINTER TO CONSTAWTS

/LINE WIDTH

/BUFFER SIZE

SET UP POINTERS TO BUFFER AND TCB LOC'S

LAC*
IAC
DAC
LAC*
DAC
DAC
AAC
DAC
AAC
DAC
AAC
DAC

1c8

LAC
DAC*
IsZ
LAC
DAC¥*
182

(.S5CUM+100 /POINTER TO TABLE OF POLINTERS

/0UR POINTER IN TABLE +1

TEMPL

TEMP1 /PGIWTER TO TCB

LPICB

TEMPY /POINTER TO FLLL LOCATIUNS

2 /MAKE POINTER TU EVENT VARIABLE
LPEV

2 /MAKE PUINTER TO TCB POINTER
raBsc /TO BUFFER ADDR

S /MAKE PUINTER TO FIRST DATA WORD
LPBUFD

(APISLT*400+APILVL

TEMPL

TEMP1

(DEVCOD /PIREX CODE FOR LP DRIEVER
TEMPL

TEMPL /ZERDO THRU FIRST WUFFER LOC

Figure 4-~1 (Cont.)
XVM LP1ll DOS Handler

18

PAGE

617
618
619
620
621
622
623
624
625
626
627
628
029
630
631
632
633
634
635
636
637
638

PAGE

18

19

LPU.

00610
00611
00612
00b6t3
00614
00615
00616
00647
00620
00621
V0622
00623

00624
00625
00626
00627
00630
00631
00632

00633
00634
00635
00636
00637
0ub40
00644
00642
00643
00644
00645
00646
00647
00650
00651
00652
00653
00654
00658
00656
00657
00660
0ub6}
00662
0ub63
00664
00665
00666
00667
00670

LePuy,

TDVXVXXXRNXIXTX

XTI LX

TXZXZXIXVXDVEXEXIXTXTLTXTIXZLXITLEDNXLXTTDLXSEXE

122

160554
440544
600607
200554
060564
040551
10v455
000056
00u016
706141
000032
600003

000623
777660
000044
777610
U006 4
7771574
000070
000v00
017771
600011
60042
740000
Q00u00
700042
171771
177001
600000
000137
000104
000vo2
004000
0V1000
741000
700000
000400
000177
000135
00vuL2
Q04200
000011
000015
0ovo29
000014
gouQ2l
000377
006414
0777117
vuGude

122

00671 R 027002
00672 R UO0VO4
S1ZE=00673

TTP>PXLXDITTD

PP IPEPPIPOIPPBPPIPPPDODIPPPPPEPBRVPIPODPIDX

A
A

Task Development

INITIALIZATION CODE AnND TEMPORARIES

DZms TEMPL
IsZ LPUND
JMP =3
LAC TEMP1
OAC* TasC
DAC LPBUF
JMS RESETL
CAL APISLT
16

LSSF

LPINT

JMp NEW

LBFTP =1

/THIS POINTS TO BUFFER

/TO LOCATION IN TCB THAT NEEDS

/AND A POINTER FOR US

/RESET LINE AND TAB CUUNTRS

/ISSUE SETUP CAL TU ESTABLISH INTERRUPTS

/wHEwW, DONE

/POINTER TU SIZE TABLE

INITIALIZALILON CUDE AND TEMPORARIES

*L
*

NO ERROR LINES

Figure 4-1 (Cont.)
XVM LPl1l DOS Handler

4-19

PAGE

APILVL
APISLT
BLANKC

BUFSIZ
CAPI
cop
DEVCOD
ERLOOP
ERQUT
ERRNUM
EXERRS
FFFE
FFSwW
FIRST
FORMS
GETCH
GETCM
GETIN
GETQ
GETSHW

GET1
GET2
GET3
GET4
GET5
1DX
INIT
Iops12
10PS67
LBFTP
LINLIM
LIOR
LBAC
LPARGP

LPA,
LPBUF
LPBUFD
LPCALP

LPCALX
LPCLON
LPCLOS
LPCLSHW
LPERO®
LPEV
LPICM
LPIERR
LPIN
LPINT
LPIOCK

20 Lpu,

000002
000056
00563

00555
706144
00562
000004
00074
00076
00102
000137
00546
00545
00560
000072
00332
00345
00347
00350
00344

00351
00362
00364
00374
00376
440000
00547
00030
00026
00624
00556
706006
00566
00541

00000
00551
00552
00540

00500
00503
00460
00502
00024
00553
00046
00061
00103
00032
00524

CRUSS REFERENCE

4%
49%
277
590%
174
55%
189
72%
158%
160%
157
63%
181
185
268
bo¥
251
386
237
397%
238
417
393
40y*
410%
416%
420%
61%

109%
107%
586
494
53%
115
80
201
77
191
193
79
535
515%
507
100
SVe
a7
129
121
132

114%
188

51
381
292

SB4¥
128
275
75%
161

159
160
182
459
443
69%
373%
390%
393x%
421
376
419
399%

L3
d7ux*
172
214
587
585%
i51
123

211
79%
244
235
179
So3x
544
518%
504%
517%
102
S582%
127%
140%
16G%
116
206

59
624
294

592

349
614

164%

572%
571%
468
56%
391

3gygx

90

588
589
558
134

212

350
247
207

519
105+%
603

119
504

611

309

448

576%
575%
491
566

397

98

590

596%
231
356

451
516

627
537

Task Development

310

S87%

407

173

591

98
234

445

511
525

544%

333

505

409

170

631%

173
532
509

581%
530

547

334

S89%

411

212

175
536

580%
607
531

496

415

176
564%

622

534

Figure 4-1 (Cont.)
XVM LPll DOS Handler

4-20

Task Development

PAGE 21 LPU, CROSS REFERENCE

LPIRT 00054 133»
LPIRT1 00055 134% 152

LPISW 00056 127 135x%
LPNEXT 00134 99 101 200% 55 360 520 538
Leour 00567 117 125 137 597

LPPIC 00042 114 118 123%

LPSET 00531 195 359 513 552% 560
LPTCB 00550 148 553 579% 600

LPUND 00544 133 545 559 S67% 618
LPWAIT 00506 104 525%

LPWAT1 00522 528 537«

LPWRIT 00136 103 206%

Lssr 706141 51% 620

LTABL 00012 92 95*

MAIN 00200 251+ 253 255 302 325 343
MAINC 00235 284 T294%

MAIND 00233 288 292%

MAINE 00244 298 301%

MAINK 00240 297% 311

MAXC 00557 301 337 338 495 586%

MCR 00275 318 329%

MIX 00565 210 228 242 346 354 374 455 466
592%

MSPEC 00247 259 307%

MSPEC2 00254 308 312%

MSPEC3 00270 320 324x 331

MSPEC4 00272 322 326%

MSPECS 00267 323% 328
MTAB 00300 314 332+¢

NEW 00003 85% 579 628

PAGCNT 00543 178 462 566% 571 572

PAGS1Z 00542 177 461 565%

PUTCH 00400 272 290 293 296 324 327 347 437%

) 453 456 470 472

PUTFF 00427 442 4b1%¥

PUTIN 00443 239 474%

PUTLF 00412 44y 448%

PUTLFR 00434 460 4b6%

PUTP 00571 236 471 482 483 484 599%
PUTQ 00444 470% 485

PUTSW 0044} 240 446 471*% 476 478

PUTW 00424 450 454%

PUTY 00406 443% 457 467

PUTZ 00410 445% 465 469

PUT1 00445 474 477%

PUT2 00447 480%

RESETL 00455 187 329 348 401 489% 497 514 623
RETRY 00066 142 148%

SC.MOD 000104 58% 169

SC.UC1 000002 59x% 17¢

SET 440000 62¥

SETERR 00073 100 108 110 144 157%

SI0A 706001 92% 149 554

Figure 4~1 (Cont.)
XVM LP11 DOS Handler

Task Development

PAGE 22 LPU, CROSS REFERENCE

TABC 00564 297 3900 332 335 342 493 591% 605
621

TCHAR 00561 213 224 256 295 312 588%

TEMP1 00554 233 381 399 583% 598 599 601 612
613 015 616 617 620

UCLPO3 00314 261 303 316 340 345%

ucLP04 00320 349% 383 402
UCLPOS 00330 353 359%
X12 00570 215 384 385 403 404 412 413 598%
%00s 000001

$RELES 000001

SVERSN 000001

XV 000001

«CLEAR MACRO

+CLOSE MACRO 499

.DLETE MACRO

<ENTER MACRO

+EXIT MACRO

«FSTAT MACRD

GET MACRO

«GTBUF MACRO

«GVBUF MACRO

«INIT MACRO 165

+«MED 000003 60%

+MTAPE MACRO

+OVRLA MACRO

«PUT MACRU

«RAND MACRO

«READ MACRO

+RENAM MACRO

+RTRAN MACRO

«SCOM 000100 57% S5y 63 580 596
+SEEK MACRO
«SYSID MACKO i

.TIMER MACRO
« TRAN MACRO
+USER MACRO
+WALT MACRO 521
+WAITR MACRO
+HWRITE MACRO 202

Figure 4-1 (Cont.)
XVM LP11l DOS Handler

APILVL

APISLT

DEVICE
SKIP

SIOA
LIOR

CAPI

DEVCOD

4.6.1.1

Task Development

The API level at which PIREX should interrupt the XVM; this
is used in TCBs and in the definition of CAPI. APILVL should
indicate API level 0, 1, 2, or 3.1

The API slot to which PIREX should issue interrupts; used in
TCBs and in the CONNECT/DISCONNECT software directives.

In this case LSSF, one of the four possible UC15 skips. This
skip is determined by which API level is chosen.

SKIP = APILVL*20 + 706101

The skip is used in the standard setup interrupts CAL (Figure
4-1, lines 624-628).

Skip if PDP-11 can accept a TCBP mnemonic; (706001).
Issue TCBP mnemonic; (706006).

Clear interrupt flag mnemonic; set to APILVL*20 + 706104,
used in interrupt service routine.

The device code as defined in PIREX: used in TCBs.

NOTE

The conditional use of the spooled bit
(PDP-11 bit 7) (Pigure 4-1, lines 71-76).

Initialization - The CAL entry of an XVM/DOS handler must

have a once only section of code that:

1.

4.6.1.2
handler

Sets up a pointer to one of the reserved TCB areas in the
XVM/DOS monitor. This is done by locating a pointer to the
TCB area in the table pointed to by .SCOM+100 (Figure 4-1,
lines 596-600).

Computes pointers to the various locations within this TCB
area, such as the event variable (Figure 4-1, lines 601-607).

Constructs the constant fields within the TCB such as the
API RETURN and device code (Figure 4-1, lines 611-619).

Sets up a pointer to the data area in the TCB, which will be
used as a buffer (Figure 4-1, lines 620-622).

«INIT Function - The .INIT function of any XVM UNICHANNEL
should check to see if the UNICHANNEL is enabled by testing

bit 16 of .SCOM+4. 1If bit 16 is set, the UNICHANNEL is enabled, or

else if
(Figure

bit 16 is not set, IOPS 12 (device error) should be issued.
4-1, lines 169-172.)

1

Level 0 may be used, but is not recommended because it could hang the

XVM system if the interrupt occurred at the wrong time.

4-23

Task Development

4.6.1.3 Request Transmission - When issuing requests to a task from a
XVM program, the requesting program (e.g., a XVM I/0 handler) issues

the following sequence of instructions.

DZM EV /CLEAR EV IN TCB

LAC (TCB) /ADDRESS OF TCB IN AC

SIOA /MAKE SURE PDP-11 CAN ACCEPT REQUEST

JMP .-1 /WAIT FOR IT IF NOT

LIOR /ISSUE REQUEST TO THE PDP-11, THIS CAUSES A

LEVEL/7 INTERRUPT TO THE PDP-11 AND CONTROL
TRANSFERRED/TO THE LEVEL 7 HANDLER IN PIREX.

The instruction sequence which issues requests to tasks from the XVM
should have an identical format as shown above. These five instructions

are ordered in a way which:

1. Clears the event variable (EV) before issuing the request.
2. Allows an interruptible sequence while waiting for the PDP-11.

3. Allows a non-interruptible sequence once the SIOA instruction
skips and the LIOR is issued.

This occurs because the XVM always allows a non-interruptible instruc-
tion following an IOT (in this case the SIOA). The SIOA and JMP .-1
sequence is interruptible immediately following the execution of

JMP .-1.

The LPSET routine is used by the line printer handler to perform the
request transmission and thus send data to the line printer (or line

printer spooler) task (see Figure 4-1, lines 551-560).

4,6.1.4 Interrupt Section - Result Reception - After receipt of a
request to PIREX, the PDP-11 will use the contents of the TCB to
schedule the referenced task.

Meanwhile, the requesting program can either:

1. Give up control and wait for an interrupt from the PDP-11 as
in the XVM/DOS line printer handler case or

Task Development

2. Test the EV until it goes non-zero. i.e.,
LAC EV
SNA
JMP .-2

to determine completion of the request. The EV is automati-
cally set to a non-zero valEe by the referenced task when the
request has been completed.

Interrupts generated by the PDP-11 for the XVM are serviced by the

XVM in a fashion identical to regular XVM interrupts. As in a non-

API environment, a SAPT N (N = 0, 1, 2, or 3 depending on what API

level would have been used if the XVM had API) instruction tests for
the flag associated with the request. In an API environment, the
appropriate API trap address must be set up before the interrupt occurs.
When program control is transferred to the interrupt service routine,

a CAPI N instruction must be issued to clear the hardware flag assoc-

iated with the request.

After clearing this flag, the event variable should be tested to detect
an error condition (negative event variable). See Figure 4-1, lines
129-132,

If an error has occurred, the event variable should be tested for a
possible PIREX out-of-node condition (PIREX ran out of space to store
the request). If the error was an out-of-node error (EV = 177001) a

retry of the request should be attempted (see Figure 4-1, lines 148-152).

If the error was not an out-of-node error, an error message should be
sent to the user. The error code should be composed of the event vari-

able and a handler mnemonic such as LPU (Figure 4-1, lines 155-164).

1When interrupt returns are used, the EV is set to non-zero just

prior to the issuing of the interrupt.

4-25

Task Development

4.6.1.5 .READ and .WRITE Requests - Actual input and output is accom-
plished by using typical XVM/DOS handler code with the following excep-
tions:

1. The TCB is used as the data buffer1

2. The actual I/O is done by calls to the TCB transmission
routine. 1In the example this is a call to LPSET
(Figure 4-1, line 359)

4.6.1.6 .CLOSE Function - If PIREX provides spooling services for the
device, there is a need to inform the device's spooler module that the
current job has completed so that the spooler is forced to process any
existing partially-filled buffers. The writer must insure that both

the XVM/DOS handler and the PIREX spooler module agree upon a conven-
tion to inéicate this end-of-file. 1In the example, a form feed carriage
return (6414) acts as an end-of-file (Figure 4-1, lines 499-513).

4.6.2 PDP-11 Requesting Task

Tasks such as MACll may execute under control of the PIREX executive in
a background mode. Considerations such as TCB structure and event var-
iable checking are similar to those of the XVM/DOS handler.

When the requesting program is a PDP-11 task, it must issue the initi-
ate request macro (IREQ) in lieu of the 5 instruction sequence shown

for the XVM. (See section 4.6.2.) If the task being requested has

a higher priority than the current one issuing the request, it will
execute immediately; otherwise, control will return to the first instruc-
tion following the IREQ macro. IREQ is defined as follows:

.MACRO IREQ TCBP
MOV TCBP,R5

MOV #100000,R4
I0T

.BYTE 2,0

« ENDM

The #100000 in R4 is used by PIREX to identify a PDP-11 request.

1Depending on Driver task design the TCB need not be used as a data
buffer for NPR devices.

Task Development

A TCBP is a TCB pointer. If the requesting task desires a software
interrupt it should place the interrupt return address in the proper
entry of the "SEND 11" Table (see Section 3.3.8).

4.6.3 UNICHANNEL Device Handlers for XVM/RSX

The following description of how to write a UNICHANNEL device handler
for XVM/RSX does not discuss those topics pertaining to all XVM/RSX
I/0 handlers, see the chapter on Advanced Task Construction in the
XVM/ RSX System Manual.

4.6.3.1 Definition of Constants - Several constants are defined in a
UNICHANNEL handler's source file before any executable code (see
Figure 4-2, lines 67-80). These constants include:

APISLT The API slot to which PIREX issues interrupts; this is
used in TCBs and the CONNECT/DISCONNECT software
directives.

APILVL The API level at which PIREX interrupts the XVM; this
is used in the TCB and in definition of CAPI.
APILVL should indicate API level 1, 2, or 3.

DEVICE UNICHANNEL device skip equated to APILVL*20+706101.

SKIP

SIOA Mnemonic for "skip of PDP-11 can accept a TCBP";
706001.

LIOR Mnemonic for "Issue TCBP"; 706006.

CAPI Clear interrupt flag mnemonic; set this to APILVL
*20+706104. It is used in the interrupt service
routine.

DEVCOD The device code as defined in PIREX; this is used in
TCBs.

4,6.3.2 1Initialization - The handler initialization is located imme-
diately following these definitions (see Figure 4-2, lines 263—321).
During handler initialization, the PIREX device driver status must be
cleared and the event variable checked to see if the driver is function-
ing (see Figure 4-~2, lines 288-305). Since it is not obvious to XVM/
RSX whether or not the driver is operational, a message should be
printed before the handler exits if the driver is not running under
PIREX.

2

Chevus

021

000055
000001
706121
706001
706006
706124

0000605

PP PP

Task Development

CDsoee CR15/0C15 CARD HEADER EDIT %020

/

/EDIT 4021 4/22/75 SCR UC15 EOF CARD FIX

/ED1T %020 2/2/74 SCR CLEANUP

/EDLIT %019 SCR CR15 ERROR HANDLING; RRN SWITCH!
/EDIT 4018 SCR FIX CDON HANDLING CR15 VERSION
/EDIT #017 SCR CLEANUP, {BOTH! DEVICES

/EDIT 8016 SCHR MORE UC1S5 CODE

/EDIT #015 SCR START TO PUT IN UC15 CUODE

/EDIT #013 1~18=72

/EDIT #14 6w26=73

/COPYRIGHT 1973,

/CoeWe KEMP =w== 4,A, DESIMONE,

DIGITAL EQUIPMENT CORP,,
.-G, M,

YAYNARD, MASS.
COLE

/
/CR15 CARD READER CONTROL HANODLER TASK, THIS CONTRUL #lLL

/SUPPORT SURBAN AND DUCUMATION READERS
/ CR15 CODE 1S UBIAINED wITH

TO OBTAIN UC15 CODE DEFINE UT15=0,
ADDITIONAL UC15 PARAMETERS:

W A R N 1 N G H

28K TO THE PDP11., THUS,

1S EQUIVALENT T0 50000 OCTAL,
POP=11 MEMORY IS 12K,
40000 OCTAL,

NANNNNNNNNNNNNNNNNNN N

+IFDEF UC15

/

/
APISLT=SS
APILVL=1
CRSI=APILVL#*20+4706101
SI0A=706001
LIOR=706006
CAPI=APILVL*20+706104
/

«IFUND NOSPL
DEVCUD=5

+ENDC

«IFDEF NOSPL
DEVCOD=205

«ENDC

Figure 4-2

!

DEFINE NUSPL=0 TO DISABLE SPUOLING FUR CARD READER.
1F S5POOLER PACKAGE DOESN'T HAVE CARD READER ASSEMBLED IN FUR SPACE REASONS,
AN EQUATE FUR APILVL IS NECESSARY TO SET UP

10T'S FOR CORRECT PRIURITY LEVEL TO CLEAR PIREX REQUEST.
PRESENTLY LEVEL § 1S THE CARD READER ASSIGNMENT,

IN ORDER FOR THE UC15% HANOLER TO FUNCTIUN PRUPERLY,
PDP11 MUST BE ABLE TU ACCESS OUR INTERNAL BUFFER

AND TCB'S, THIS MEANS THAT THEIR ADDRESS MUST HE LESS THAN
1F THE PDP=11 LOCAL MEMORY IS 8K,
TH1S HANDLER MUST RESIDE BELOw 20K IN PDP15 CORE!! IHIS

SIMLILARLY ,
THE HANDLER MUST RESIDE BELOW

XVM CR1l1l XVM/RSX Handler

NO ASSEMBLY PPARAMETERS

FOR INSTANCE

THE

IF THE LOCAL

Task Development

PAGE 3 CDyose 021 CDeess CR15/UC15 CARD READER EDIT #020
80 +ENDC
81 /
82 /EDIT 14 ADDS ASSEMBLY PARAMETER ERRLUN TD SPECIFY LOGICAL UNLT
83 / FOR ALL ERROR MESSAGES, IHE 1S SET TO 3 I¥ USED INTERACIIVELY
84 4 MOST OF THE TIME OR TU 100 wHEN USED WIIH PHASE
8S / II1 BATCH. LUN 100 1S DwFINED TO BE THE BAICH JPERA1DR DEVICE,
86 /
87 «IFUND ERRLUN
88 ERRLUN=100
89 +ENDC
90 /THLIS 1S AN 10PS ASCII ONLY HAJDLER TASK,
91 /IT CAN BE ASSEMBLED TO READ 029 OR 026 IBM KEYPUNCHED CARDS,
92 /DEFINE DEC026 TU READ 026 PUNCHED CARDS,
93 /DEC026 UNDEFINED TO READ 029 PUNCHED CARDS.
94 /
95 /
96 /
97 / THE FOLLOWING QUEUE 1/0 DIRECIIVES ARE IMPLEMENTIED
98 /
99 / ceB 3600 HANDLER INFORMATION (HINF)
100 / EvVa
101 / LUN
102 /
103 / FOR HINF THE FOLLOWING INFORMATION IS RETURNED IN THE EV
104 /
105 / BIT 0 UNUSED
106 / BIT 1 =1 INPUT DEVICE
107 / BIT 2 =0 NOT QUTPUT DEVICE
108 / BIT 3 =0 NOT FILE=ORIENTED
109 / BITS 4~11 UNIT NUMBER 'ZERQ'
110 / BITS 12=17 DEVICE CODE = 7 CARD READER
111 /
112 /
113 / cea 2400 ATTACH CARD READER
114 / EvA
115 / LUN
116 /
117 / CPB 2500 DETACH CARD READER
118 / EVA
119 / LUN
120 /
121 / ceB 2600 READ CARD
122 /7 (D EVA
123 / (2) LUN
124 / (3) MODE
125 /7 (4) 8UFF
126 /7 (S) SIZE
127 4
128 /IF A REQUEST CANNOT BE QUEUED, THE FOLLUWING EVENT VARIABLE
129 /VALUES ARE RETURNED:
130 /
131 / =101 == IWDICATED LUN OUES NOT EXITS,
PAGE 4 CDesss 021 CD,eee CR15/0UC15 CARD READER EDIT %020
132 / =102 == INDICATEL LUN IS NOT ASSIGNED TO PHYSIZAL OEVICE,
133 / =103 == HANDLER TASK [S NOT CORE RESIDENT,
134 / =777 == NODE FOR REQUEST QUEUE NOT AVAILABLE,
135 /
136 /
137 /IF THE QUEUED I/0 REQWUEST CANNUI BE SUCCESSFULLY DEQUEUED,
138 /THE FOLLOWING EVENT VARIABLE VALUES AKE RETURNED:
139 /
140 / ~7 == ILLEGAL DATA MODE,
141 / =6 == UNIMPLEMENIED FUNCTION,
142 / =24 == LUN REASSIGNED WwdHILE ATTACH/DETACH REQUEST IN QUEUE,
143 / =30 == OUT OF PARTITION TRANSFER (NORMAL MODE),
144 / =203 == CAL NUT TASK ISSUED,
145 /
146 /
147 <EJECT

Figure 4-2 (Cont.)
XVM CR11l XVM/RSX Handler

198

CDeusoos

021

000012
000013
000101
000102
000103
000104
000107
000123
000240
000252
000325
000332
000337
000342
000345
000361
000010

PrPrEPEBPIPPPIPIPIPIIEIIDD

705522 A
708521 A

Task Development

CDeswe CR15/UC15 CARD READER EDIT %020

/
/ ¥#¥%% CONSTANTS *¥*xxx

/

X12=12
X13=13
R1=101
R2=102
R3%103
R4s104
NADD=107
SNAM=123
POOL=240
POVL=252
ALAD=325
DLAD=332
DQRG=337
VAJX=342
10CD=345
DMTQ=361
D.TG=10
/

« IFUND

/

CWC=22
CCA=23

/AUTO=INDEXREG. 12

/AUTO=INDEXREG. 13

/RE=ENTRANT REG. 1

/RE=ENTRANT REG, 2

/RE=ENTRANT REG, 3

/HE=ENTRANT REG, 4

/NODE AWDITIUN ROUTINE ENTRY POINT
/NAME SCAN ROUTINE ENTRY 'POINT
/LISTHEAD FUR PUOOL OF EMPTY NODES
/LISTHEAD FOR PHYSICAL DEVICW LIST
/ATTACH LUN & DEVICE ENTRY POINT
/DETACH LUN & OEVICE ENTRY POINTI
/DE=QUEUE REQUEST ENTRY POINT
/VERIFY ARD ADJUST 1/0 PARAMS,
/DECREMENT TRANSFERS PENDING COUNT,
/DE=QUEUE 1/0 REQUEST (FOR ABORTING),
/POUSITION OF TRIGER EVENT VARLABLE 1IN POVL NODE

ucis

/WC DCH ADDRESS,
/CA DCH ADDRESS,

/
/PSUEDO=INSTR, FOR WF.S5W SUBR,
/

WFOFF=5NA
WIFON=SZA
/

/WALTFOR CR1S5 NOT READY.
/WALTFOR CR1S READY.

/
/CONDITIONS FOR LOAD READER CONDITIUN IUT (CRLC).
/

/CLEAR STATUS,DISABLE INTERRUPT AND DATA CHANNEL,

/CLEAR STATUS,START READ,ENASLE INTERRUPT AND DATA CHANNEL,
/CLEAR STATUS, ENABLE INTERRUPT,ENABLE DAYA CHANNEL,

/ENABLE INTERRS, DISABLES DCH

/
/ *¥¥%%% 10T INSTRUCTIONS *%%xxx

CC1=20
cC2=27
CC3=26
CC4=04
/
CRPC=706724
CRLC=706704
CRRS5=706732
/

«ENDC
/
«INH=705522
+ENB=706521
/

+EJECT

/CLEAR STATUS EXCEPT CARD DONE,(ALSO DISABLES INTERR,)

/LOAD READER CONDITIONS,
/READ STATUS INTO AC,

ZINHIBLT INTERRUPTS,
/ENABLE INTERRUPTS,

Figure 4-2 (Cont.)
XVM CR1ll XVM/RSX Handler

Task Development

PAGE 6 CDuyus 021 CDeess CR1S/UCI5 CARD READER EDIT #020

199 /====CR1S STATUS AND AC BIT ASSIGNMENTS.
200 /

201 /STATUS REGISTER BIT ASSIGNMENTS:

202 /

203 / BIT TRANSLATION

204 /

205 / 17 COLUMN READY

206 / 16 END UF CARD

207 / 15 DATA CHANNEL OVERFLOW

208 / 14 DATA CHANNEL ENABLED

209 / 13 READY TO READ

210 / 12 ON LINE

211 / 11 END OF FILE

212 / 10 BUSY

213 / 09 TROUBLE (= IOR OF BITS 4 = 8)
214 / o8 DATA MISSED

215 / 07 HOOPER EMPTY/STACKER FULL
216 / 06 PICK ERHOR

217 / 05 MOTLON ERROR

218 / 04 PHOTQ ERROR

219 / 03-00 UNUSED

220 /

221 /AC BIT ASSIGNMENTS FUR LOAD CONDITION FUNCTION (CRLZ)
222 /

223 / BIT FUNCTION

224 /

225 / 17 START READ

226 / 16 DATA CHANNEL ENABLE

227 / 15 INTERRUPT ENABLE

228 / 14 UFFSET CARD

229 / 13 CLEAR STATUS REGISTER

230 /

231 / STATUS REGISTER BITS CONNECTED TO FLAG AND INTERRUPT REQUEST:
232 /

233 / 17 DATA READY(ONLY IF DATA CHANNEL NUI ENABLED)
234 / 16 CARD DONE

235 / 15 DATA CHANNEL OVERFLOW

236 / 09 ERROR CONUDITLON

237 /

238 /MACRO DEFINITIONS?

239 /

240 /CP MACRU FUR CARD CULUMN TO ASCII TRANSLATIUN TABLE 026/029 CONDITIONALIZATLION
241 /

242 LIFDEF DEC026

243 .DEFIN CP,(26,C29

244 C26\7777+1

245 JENDM

246 LENDC

247 LIFUND DEC026

248 .DEFIN CP,C26,C29

249 C29\7777+1

250 JENDM
PAGE 7 CDueyo 021 CDuese CR1S/UCI5S CARD READER EDLT #020

251 LENDC

252 /

253 /

254 JEJECT

Figure 4-2 (Cont.)
XVM CR1ll XVM/RSX Handler

PAGE

255
256
257
258
259
260
261
262
263
264
265
266
267
269
269
270
271
272
273
274
275
276
2717
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

8

CDevas

00000
00001
00002
00003
00004

00005
00006
00007
00010
00011
00012
00013
00014
00015
000186
00017
00020
00021

00022
00023
00024
00025
00026
00027
00030
00031

00032
00033
00034
00035
00036
00037
00040
00041
00042
00043

™LX D

WMTVVDODLTIXTOXD

WX XTVE XD DD

XDVDOXTHDOVDEXTETD

021

200646
060647
200650
060651
120652

0006953
040567
723010
040570
000577
200561
741100
000653
200654
060570
500655
740031
040563

100625
200613
742010
740100
600057
000034
000032
000653

000020
000561
002700
000561
000100
000002
000041
004002
000000
251245

VXXX

TPDDOVEXXTPTTETPTX

XXV LT

rPrErPOPPFrTPTITP

CDyuvn

Task Development

/

/

/

/

/START

/1BUF

/

/

START LAC (PDVL)

1BUF DAC* (R1)
LAC (HNAM)
DAC* (R2)
JMS* (SNAM)
CAL (10)
DAC PDVNA
AAC 0,16
DAC POVTA
CAL ceed
LAC EV
SPA
CAL (10}
LAC (IG)
DAC* PDVTA
AND (70000)
TCA
DAC XADJ

/
«IFUND UC15
LAC (ccl)
CRLC
+ENDC
+1FDEF UC1S
JMS CLEAR
LAC EVILK
RTL
SMA
JMP WFTGR
CAL MSINIT
CAL wFMS
CAL (10

/

WEMS 20
EV

MSINIT 2700
EV
ERRLUN
INITMS

INITMS 0040027 0000007

CR15/UC15 CARL REAUER EDIT #020

#¥¥%¥* HANDLER INITIALIZATION **#%% (ONCE UNLY CODE)

/STORAGE FUR AC 1IN INTERR, SERVICE.
/I0P OF INTERNAL BUFFER,

/5CAN POVL FOR THIS OEVICE'S NIDE

/R, R2, R6, XR, & AC ARE ALTERED
/NODE FOUND?

/NO == EXIT

/YES == POUVL NODE ADDRESS IN AT,
/SAVE NUDE ADDRESS AND

/IRIGGER EVENT VARLABLE ADDRESS
/CONNECT INTERRUPT LINE

/CONNECTT OK?

/NQ == EXIT
/YES == SET TEV ADORESS

/DETERMINE 'XR=ADJ'

/CLEAR STATUS, UISABLE LNTER, AND DCH,
/LUAD FUNCTIUN,

/CLEAR UUI PIREX DEVICE, wAIl FIR COMPLETE
/FIND QUT 1F OK

/PDP11 SIGN BII TU OURS

/SKIP IF IROUBLE

/n0T, GU WALT FOR WwORK

/PRINT PIKEX HAS NO CD MESSAGE

/wALT FUR MESSAGE CUMPLEL1ON

/EXIT

JASCIL "*%% NO TD IN PIREX"<15>

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

PAGE

305
306
307
3o

309
310
311
312
313
314
315
316
17
318
319
320
21
322
323
324
325
326
327
328
329
330
33t
332
333
334
335
336
337
338
339
340
EL Y
342
343
344
345
346
347
348

[P

00044
00045
00046
00047
00050
00051
00052

00053

00054
00055

00056

R

021

220234
475010
342100
446344
050222
512133
006400

600057

030400
000000

717775

g

T

x> 3

CDeww

HNn

/
/
/
/¥
/%
/

/
/
/

/
wF
/
/
/

PaQ

~

NN NN

Task Development

« CR15/UC15 CARD READER EDIT #020

+ENDC
JMP AFTGR /WALT FOR TRIGGER
AM +SIXBT 'Cleeeg’ /HANDLER TASK NAME

LIFUND JC1S5

«BLOCK 1214START=-.
.ENDC

+IFDEF UC1S

+BLOCK S3+START=,

JENDC |
#4544 END OF IWITIALIZATION CUDE ###%+

ssksx6x THE ABOVE CUDE IS OVERLAYED BY THE LWTERNAL BUFFER *x%%#x%x
ARRREREE SRR RS RRARR R RR SRR AR E R RN R RE R AR R AR RS AR IRARREE N AR R AR A

UC15 INTERRUPT=CAL INTERACTION WILL BE DIFFERENT
KEEP INITIAL PART SEPARATE

«IFUND uC15
TGR CAL WETCPB /AALIT FOR TEV IO BE SET

#%%%% THE TASK HAS BEEN TRIGGERED == PICK A REQUESI FROM QUEUE

DZM 16 /CLEAR TRIGGER
LAC PDVNA /UEUUE A REQUEST
DAC* (RY)
JMS# (DQRQ) /R1, R2, R4, R5, R6, XR & AC ARE ALTERED
/wAS A REQUEST FOUND?
JMP WFTGR /NQ == WAIT FUR TRIGGER
+ENDC
LIFDEF JC1S
uC1s CODE
THE GENERAL IDEA IS THAT ALL WAITS ARE DONE THRU
.THE TRIGGER, #E FIGURE OUT fERE wWHO SET THE [RIGGER. IHIS

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

PAGE

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
3164
365
366
367
368
369
370
3N
372
373
374
375
376
377
378
379
380
38t
g2
383
384
385
386
387
388
389
330
91
392
393
394
395
396
397
398
399
400

PAGE

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

10

CDewve

00057
00060
00061
00062
00063
00064

00065
00066
00067
00070

00071
00072
00073
00074

00075
00076
00077

00100
00101
00102
00103
00104
00108
00106
00107
oo110

THXDXODXT X

CDseve

00111 R
00112 R
00113 R
00114 R
00115 R
00116 R
00117 R

00120 R
00121 R
00122 R
00123 R
00124 R

00125 R
00126 R

00127 R
00130 R
00131 R
00132 R
00133 R

00134 R
00135 R

LT DVXOVIID

DX/

R

R

021

000575
200562
140562
742010
751130
600071

540554
600177
540407
600057

200567
060647
120656
600057

040564
340563
721000

210005
500657
540660
600120
540661
600127
540662
600140
540663

021

600136
540657
600464
540664
600502
7717772
600424

200567
060647
200564
060651
120665

600424
600423

200567
060647
200564
060651
120666

600424
600423

WX D XL

T X

»Xx X

MXTELLTXT DX P

XP»XTXOTDOX

XXX x x TXTITND

=

Task Development

CDssse CR15/0UC15 CARD READER EDIT #8020

CD.

/ ALLOWS US TO GET OUT OF HUNG DEVICE, SINCE WE WAIIL HERE,
/ AND CAN SEE AN ABURT COMING THRU,

/

WFTGR CAL WETCPB /WAIT FOR EVENT VARIABLE TG
PQ LAC TG /FIND OUT wHO IS CALLING
DZM TG /RESET
RTL /ABORI BIT TO SIGN BIT
SPAICLAILAC /SKIP IF NOT ABORT, 1 IN AC,
JMP PQ1 /G0 DO ABORT IN REGULAR WAY, THE HANGING
/ /READ IS5 REMEMBERED 1IN RRN!
SAD CDON /HAS A CARD BEEN DECLARED DONE BY INTERRUPT
Jue GUTCRD /YEAH, GU TRANSLATE IT
SAD PUST /ARE WE WAITING FOR INTERRUPT
JHP WFTGR /YES, AND IT HASN'T HAPPENED YET, SINCE
/ /CUOUN #OT SET. WAIT ON TdIS CAL REQ, TO BE
/ /DONE AFTER THE INTERRUPT HAPPENS, IF ABORT
/ /COMES IN THE MEANTIME, HE IS5 PUT AT HEAD
/ /0F DEJUE OF WAITING REQ,'S S0 WE DU HIM.
/
PG LAC POVNA /TRY TO DEQUE AFTER UPERATION BEFORE wAITING
DAC* (R1 /IN CASE WALTING FOR INTERRUPT HAS HELD OFF
JMS* (UQRQ /A REQUEST,
JMP WETGR /DIDN'I FIND ONE, GO WAILT
/
«ENDC
/
DAC RN /YES == SAVE ADDRESS OF REQUEST NUDE
TAD XADJ /SETUP XR TO ACCESS NJDE
PAX
/
/ ¥%%%% 1/0 REQUEST NUDE FURMAL *%%¥xx
/
/ (0) FORWARD LINK
/ (1) BACKWARD LINK
/ (2) STL PTR,
/ (3) PART, BLK PTR, (0 IF EXM TSK),
/ (4) TASK PRIOURITY
/ (5) 1/0 FCN CUDE IN BITS 9=-17 AND LUN IN BITS 0=8
/ (6) == EVENT VARIABLE ADDRESS
/ (7) CTB PTR,
/ (10) EXTRA
/ (11) EXTRA
/
LAC 5.,X /FETCH 1/0 FCN COLE
AND (177)
SAD (024) /ATTACH REQUEST?
JMP ATTACH /YES == ATTACH I0 TASK
SAD (025) /ND == DETACH REQUEST?
JMP DETACH /YES == DETACH FROM TASK
SAD (026) /N0 == READ REQUST?
JMP READ /YES == READ CARD
SAD (036) /NO == HANDLER INFO0.?

»es CR15/UC15 CARD READER EULIT #020

EVME

JMp
SAD
JMP
SAD
JMP
LAW
JMP

HINF
(177)
DAEX
(017}
CDABRT
=6

SEV

/
/ ATTACH TO A TASK
/

ATTACH

LAC
DAC*
LAC
DAC*
JMS*

JMP
JMP

PDVNA
(R1)
RN
(R2)
(ALAD)

SEV
REQCHP

/
/ DETACH FRUM TASK
/

DETACH

LAC
DAC*
LAC
DAC*
JMS ¥

JMP
JMP

+EJECT

PDVNA
(R1)
RN
(R2)
(DLAD)

SEV
REQCMP

/YES == RETURN INFO IN Ev
/NO == EXIT (DEASSIGNED) REQUEST?
/YES == DEATTACH & EXIT
/ABORT REQUEST?

/YES.

/ND == UNLIMPLEMENTED FUNCTIUN == SEr

/EVENT VARIABLE TO

/ATTACH LUN & DEVICE °

/R3,

R4,

RS,

R6,

-6

X10,

/WwAS LUN ATTACHED?

/NU ~= SET REQUESTOR'S EV TO
/YES REQUEST COMPLETED

/DETACH LUN & DEVICE

/R3,

R4,

RS,

Ro,

X10,

/WAS LUN ATTACHED

/NO == SET REQUESTOR'S EV TU

X11,

11,

/Y{ES == REWUEST COMPLETED

Figure 4-2 {(Cont.)
XVM CR11l XVM/RSX Handler

4

34

XR & AC ARE ALTERED

=24

XR & AC ARE ALTERED

=24

Task Development

PAGE 12 CDyaes 021 CDyese CR1S5/UCL5 CARD READER EDIT #8020

432 /

433 / RETURN HANDLER INFORMATLON

434 /

435 00136 R 200667 R HINF LAC (200007)

436 00137 R 600424 R JMP SEV

437 /

438 /READ CARD

439 /

440 00140 R 777776 A READ LAW -2 /CHK, FOR 10PS ASClI DATA MUDE,

441 00141 R 350007 A TAD 7,X

442 00142 R 740200 A SZA /10PS ASC1I?

443 00143 R 600460 R JMP EVMT /NO, RETURN =5 EV,

444 00144 R 210002 A LAC 2,X /SAVE STL WNODE PTR, FOR [ASK LUENTIF,
445 003145 R 040556 R DAC STLA /SAVE VALLD STL PTR,

446 00146 R 210010 A LAC 10,X /YES., VAL/ADJ., HEADER ADDRESS

447 00147 R 060670 R DAC* (R3) /HEADER ADDRESS,

448 00150 R 210011 A LAC 11,X /WORD CUUNT

449 00151 R 060671 R DAC* (R4)

450 00152 R 740031 A TCA /SETUP COUNTER SINCE

451 003153 R 723002 A AAC +2 /OFFSET FOR CR APPENDAGE,

452 00154 R 040566 R DAC COWDCT /VAJX ALTERS THE XR,

453 00155 R 040574 R DAC [CWC /SAVE IN CASE RETRY,

454 00156 R 200564 R LAC RN /REQ, NODE ADDRESS,

455 00157 R 040571 R DAC RRN /SAVE READ REW. NODE ADDR, FOR ABORT,
456 00160 R 060651 R DAC* (R2)

457 00161 R 120672 R JMS¥ (VAJX) /VAL/ADJ. (ALTERS XR,AT,R3,R5)

458 00162 R 600462 R JMP EVM30 /RETS., HERE IF ERROR (1/0 PARAM, 0UT
459 /0F PARTITION,

460 00163 R 220670 R LAC# (R3) /ADJUSTED HEADER ADDRESS =1 TU X12 TEMP.
461 00164 R 723777 A AAC =1

462 00165 R 040572 R DAC TX12

463 00166 R 723002 A AAC +2 /TEXT ADDRESS~1 [0 X13 TFEMP.

464 00167 R 040573 R DAC TX13 /

465 00170 R 140565 R DZM CDRVAL /INLIT, VALLID, BITS,

466 +IFUND UC15

467 LAC CLON /HAS CARD DOUNE FLAG TUME UP SINCE
468 SNA /LAST CARD READ?

469 CAL WECRCD /N0, WAITFOR CARD DOUNE.

470 DZM COON /YES, CLEAR CARD DONE FLAG.

471 RETRY LAC (IBUF=1) /SET INTERN, BUFF ADOR=y 10 DCH CA.
472 DAC* (CCA)

473 DZMx (CWC) /PREVENTS DOUBLE INTERRUPTS ON ERRORS!!!
474 LAC TCWC /RESTORE REQ, wC,

475 DAC COWDCT .

476 DZM EV) /REINIT EvV, REIRY FROM ERROR.

4717 CRRS /READ STATUS L¥ DRDER TO CHECK FOR READER READY
478 AND (60) /AND OUN=LINE,

479 SAD (60) /STATUS BITS 12, 13 SEI?

480 SKP /YES, ON=LINE AND READY FUR READ,
481 JMP EHR1 /80, NOT READY, TYPE MSGi AnD wall FOR READY.
482 LAC (cc2) /CONDITION CUDE 2 == READ CARD,

483 CRLC /LOAD CUNDITIONS,

Figure 4-2 (Cont.)
XVM CR1ll XVM/RSX Handler

PAGE

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

13

CDuune

021

Task Development

CD..us CR15/UC15 CARD REAUER EDILIT #020

CAL WFCRCH /WAIT FOR LINTERRUPI.
/
/
/
/UPON RESUMPTION FOULLOWING WAITFOR, EXAMINE Ev AND TAKE THE FOLLOWING
/ACTIONZ

/

/IF Ev BIT 9 = 0 (TROUBLE BIT), NU ERRURS. TRANSLATE CARD PUNCHES
/TO ASCII AND PASS TO USER AS 5/7 PACKED ASCIIL.

/1F BIT 9 = 1 (TROUBLE BIf), ERROR BIKS 08 TU 04 ARE CHECKED Iw
/DESCENDING NUMERICAL ORDER., THE FOLLOWING ERROR MESSAGES FOR THE
/GIVEN ERROR CONDITIONS ARE OUIPUT:

/

/DATA MISSED OR PHOTO ERROR = '#*¥¥ CD DATA MISSED/PHOTO ERROR!
/PICK OR MOTION ERROR =~ '#%¥ CO PICK ERROR'

/HOPPER EMPTY DR STACKER FULL = IGNORED. CAUGHI un SUBSEQ.

/READ AS A READER NOUT READY CONDITION.

/IN ALL CASKES WHERE A MESSAGE IS5 TYPED, THIS HANDLER TASK MARKS TIME
/UNT1L THE ERROR IS REMEDIED. AT THIS POINT, Idk CARD IS REREAD.
/

LAC EV) /EV SET AT INTERR, LEVEL TU CONPENTS UF
DAC TST /STATUS., SAVE TEMP,
SWHA /SWAP HALVES FOR I'ROUBLE BIT CHECK.
SMA!RAR /1F NEG,,TROUBLE.
JMP TRANS /NO TROUBLE. GO TRANSLATE.
SZLIRAR /DATA MISSED?
JMP ERR4 /YES.
SZLIRAR /N0, HOPPER EMPTY/STACK, FULL?
JMP TRANS /YES. IGNORE, WHEN NEXT CRD, READ CAUGHT AS NOT
SZLEIRAR /PICK ERROR?
JMP ERR3 /YES.
SZLIRAR /MOTION ERROR?
JMP ERR3 /YES,
JMP #RR4 /NO, MUST BE PHOTO ERROR.
/
/
ERR4 182 ERRPT
ERR3 182 ERRPT
ERR2 152 ERRPT
ERR1 LAC* ERRPT /ERRMSG. BUFFER ADDR, TJ AC.
JMS TTYOUT /TYPE MESSAAE,
JMS WF o, SW /WAITFOR READER READY.
: AFON
LAC (ERRPT+1) /REINIT, ERRPT,
DAC ERRPT
JMP RETRY /READ ANOTHER CARD.
/
EJECT
TRANS LAC IX12 /SET AUTO INDEX REG,
DAC* (X12)
LAC TX13
DAC* (X13)

Figure 4-2 (Cont.)
XVM CR1l1 XVM/RSX Handler

READY,

PAGE

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

Task Development

14 CDesus 021 CDysves CRI5/UC15 CARD READER EDIT %020

/
/ NOW BRING BACK RN FRUM RRN,
/

LAC
DAC
LAC
DAC
LAW
DAC
CDRM5 LAw
DAC
CDML2 LAC#*
SAD
JMP
SAD
JMP
LAC
DAC
LAC
COML4 DAC
ADD
DAC
LAC*
AND
SZAICLL
ADD
TAD*
SNAICLA
JMP
SAD

JMP
SNL
JMP
LAC
DAC
CDDPTR LAC
CLL!RAR
JMP
CDGALT LAw
JMP
/
EOF LAC
JMP

p

RRN

RN
(1BUF)
ICA
=20
CDCOLC

-5
CORSCT
ICA
CDRALT
CDGALT
(1717
EOQF
CODTABL
CDTPTR
CDTLNT
CDTLEN
CDTPTR
COCPTR
CDCPTR
(7777

cD7700
ICA

CDCFND
COTLEN

ILLCP

CDDPTR
CDCPTR
COTPTR
CDTLEN

CoML4
4000
coCeuT

(1005
REQCMA

/COME HERE ON MATCH FUUND

/

CDCFND LAC¥
CMALICLL
TAD
CMA

CDCPTR

CDTABL+1

IN CASE RN DESTROYED IN MEANTLIME

/TUP OF INTERNAL BUFFER
/PTR TO BUFFER

/CARD COL COUNT

/GET

/ALT MODE (12,1,8 PUNCH)?
/YES == TERMINATE BUFFER

/N0 == 185 IT AN EOF?

/YES,

/NO =« TRANSLATE TO ASCII
/GET TOP OF TABLE AND SET PTR
/SET TABLE LENGTH

/CURRENT LENGTH/2

/CURRENT TABLE TOP + LENGTH/2

7GET CURRENT ETEM

/ADD LN REST OF 2'S JOMPLEMENI WORD
/CURRENT COLUMN

/MATCH FOUND?

/YES

/CURRENT TABLE LENGIH =07

/THL1S MEANS AN UNKNOAN CARD PUNCH
/GO OUTPUT 'ILLEGAL CARD PUNCH!'.
/L=0 JUMP UP, L=1 JUMP DOWN TABLE

/SET TABLE TOP IO LOWER HALF

/UPDATE TABLE LENGTH

/ALT MODE

/SET HDR WDI1 TO EOF
/REQUEST COMPLETE

/GET CURRENT ENTRY
/GEN, LEFTMOST BIT
/ADD 4000000

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

PAGE

588
589
590
591
592
593
594
§95
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
643
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

15 CDveee 021 CDusas

Task Development

CR15/UC15 CARD READER EDIT #020

XOR
RAR

CDCPUT DAC
CDCLAW Law

DAC

CDCPL1 LAC

~

~

NANNNNNANNNNNNN

RAL
DAC
LAC
RAL
DAC
LAC
RAL
DAC
152
JMP
152
152
JMP
LAC
TAD
DAC
SMA
JMe
LAC
CLL!RAL
DAC
LAC
RAL
DAC*
LAC
DAC*
152
JMP

«ENDC

CDTABL+1

CORWD3
-7

CORTCT
CDRWD3

CDRwD3
CDRWD2

CDRWD2
CDRHWD1

CDRWD1
COR7CT
CuCPLe
ICA
CORSCT
CbML2
CDWDCT
(2
COwDCT

COVER2
CORWD2

CDRWDZ
CDRWD1

X13
CDRND2
X13
cocoLc
CORMS

«IFDEF UC15

/RESTORE SIXTR BIT

/PUT IN TOP OF 3 WORD SHIFT BLUCK

/CDEwD3,CORWD2 & CDRAD1 SHIFT AS A UNIT USING
/THE LINK TO PASS BITS FROM wORD TO WORD

/PUINT TO NEXT CARD CJOL

/HAVE WE PROCESSED 5 AORDS?

/NO GET ANOTHER ONE

/YES == UPDATE WORD COUNT AND

/CHECK TO SEE IF WwE HAVE OVERFLUWED THE
/USER'S BUFFER

/YES =~ WE HAVE OVERFLOWED
/NQ == INSERT S/7 WORDS IN USER'S BUFFER

/STORE FIRST wWORD

/STURE SECOND WORD

IN THE CASE OF THE UNICHANWEL, WE RECIEVE A 42(10) WORD
BUFFER, THE FIRST WURD IS A BYTE COUNT (NOW ALWAYS 80(10)),
NOTE THAT AN EOF CARD HAS A BYTE COUNT UF 1!!

SPOOLER DOES CHECKSUM CALCULATION, NOT US.

THE SECOND IS A CHECKSUM SU ENTIRE BUFFER AODS TO 0

LI UpN¥MODULC 2°16 THAT 1Ss##s!l!l., THEN ARE 40(10) #O0RDS

OF 'COMPRESSED COULUMN',
WORD HAS TWO EXTRANEOUS BITS AT LEFT, THE ISECUND CHAR!

OF THE PAIR, AND FINALLY THE FIRST CHAR OF PAIR AT RIGHTMOST
OF WORD, THE PDP=11 HAS ALREADY CHECKED FOR VAL1D PUNCH
COMBINATIONS (64 VALID CARD ASC1I, PLUS $2=1~8 FOR ALTMODE).

(SEE CR=11 DRIVER MANUAL). EACH

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

PAGE

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
6648
669
670
671
672

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

16

CDuusnse

00171
00172
00173
00174
00175
00176

00177
00200

00201.

00202
00203
00204
00205
00206
00207
00210
00211
00212
00213
00214

00216
00216
00217
00220
00221

00222
00223
00224
00225
00226
00227
00230
00231
00232
00233
00234
00235

00236
00237
00240
00241
00242
00243
00244

R
R
R
R
R
R

DXV X WL DIVDTXVLTTDOD

TTDVXZXTXDD TXDVIXVTDDIDDD

021

750030
040407
140554
200614
100616
600057

200871
040564
140407
140554
200605
742010
745120
600636
200872
060673
200573
060674
220675
540676

600171
500677
340700
540701
600420

200675
744010
040405
717660
040560
200331
040327
200566
744020
040566
200405
440405

744020
040406
220406
741410
743030
740020
500702

XETDDDODTP>PPVVXTDD

TXDDODT D

TT/XTPXIXTTIOP»E D

XP>PrrXxP

Task Development

CD.ev. CR15/UC15 CARD READER EDIT #020

R

QN NN

P

[

/

AN

ETRY CLALIAC
DAC
DZM
LAC
JMS
Jup

POST
coon
TCBP
CoIu
WFTGR

/SET VARLABLE SAYBING WE'RE WAIPING FUR
/INTERRUPT

/AND 5AY WE HAVEN'T GUTTEN 1T YET

/ADDR OF TABLE TELLING POP=11 IQ READ CARD
/ROUTINE TO SEND REQUEST TO PDP=i1

/WALIT FOR CUMPLET1ON 1NTERRUPT

COME BACK HERE WHEN CARD 1S READ

OTCRD LAC
DAC
DZM
DZM
LAC
RTL
SPAICLL!
JMP
LAC
DAC*
LAC
DAC*
LAC*
SAD

JMP
AND
TAD
SAD
Jup

LAC

CLLIRAL

DAC

LAw

DAC
KINT LAC

DAC

LAC

CLL!RAR

DAC
DRML2 LAC

18z

CLL{RAR
DAC
LAC*
SZLIRAL
SWHA ! SKP
RAR
AND

RRN
RN
PUST
CDON
EV1l

RAR
CDUCEC
X12
(X12
TX13
(X13
(IBUF+2
(104611

RETRY
(340
(445
(1005
REQCMA

(IBUF+2

CDIPTR
=120
CDCOLC
PAKI
PAKSH
COwDCT

COWDCT

CDIPTR
COIPTR

CoT1
coT!

(377

/RESTORE RN NUDE

/CLEAR INTERRUPT FLAGS

/BEST T0 CLEAR POST FIRST!

/EVENT VARIABLE FROM POP=11

/PDP=11 SIGN BIT TU OUR SIGN BIT
/S8K1IP LF OK, START CLEARING HIGH B1TS
/GO CHECK WHICH KIND OF PIREX ERRUR
/SETUP X12,X13 FOR USER BUFFER
/MANIPULATIUNS, X12 HEADER PDINTER
/X13 DATA POINTER

/GET FIRST CHARACTER PAIR (2 #JRD HDR)
/SPUOLER USES AN ALT=ALI CARD AS AN END
/0F DECK CARD, WE SHOULD IGNORE 1IT!!
/1T WAS ONE, JUST READ THE NEXT CARD
/12,11,0 PUNCHES IN FIRST COULM,=EDF

/1F IT IS UNE, MAKE A 1005

/WELL, IF S0 GO LACE 1005 AS HEADER
/EQF CARD, JUST SET HEADER,

/DATA STARTS AT BUFF+2

/TOP 17 BITS ADDRESS, LAST IS RIGHT=LEFI FLOP
/TO GET INCOMING CHAR'S

/80 CHAR'S

/NOTE WE USE COUNTERS DIFERENT ALSO

/LNLIT 5/7 PACKER TU EXPECT

/18T CHAR OF A BUNCH OF FIVE

/WE USE AS COUNT OF PAIRS, NOT WORDS

/80 DLVIDE BY TwO

/WATCH IT! TOP 17 BITS ADDR, LOW BIT LEFT
/RIGHT FL1P=-FLOP, AND!! PUINTER PUOIN[IS TO
/NEXT CTHAR, NOT LAST ONE RETREIVED,
/FLIP=FLOP TO LINK, ADDR AC

/HOLD POINTER IN TEMPURARY

/GET CHARACTER PAIR

/THESE THREE GET CURRECT CHAR

/TO LJ4 ORDER 8 BITS OF WORD

/STRIP OTHER CHARACTER
/AT THIS PUINT HAVE CLOMNS 12,11,0,9,8,1=7
/WHERE 1=7 CODED IN THREE BITS

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

Task Development

PAGE 17 CDevss 021 CDsese CRIS/UCLS CARD READER EDIT #02¢
692 00245 R 040406 R DAC COT1 /HOLD
693 00246 R 540404 R SAD CDALT /ALT MODE SPECIAL CASE, NO REMAP
694 00247 R 600260 R JMP CDGALT /REJOIN AS SPECIAL CASE
695 00250 R 500703 R AND (20 /1F NINE PUNCH, PECIAL CASE, REVAP TU 8,1 PUNCH
696 00251 R 740200 A SZA /COMBO FUR UUR TRANSLATE, SKIP I[F NOI nINE
697 00252 R 7777171 A LAw =7 /ADDED TO 'Y’ GLVES '8' AND '1!
698 00253 R 340406 R TAD CDT1 /REMAPPED,
699 00254 R 040406 R DaAC CDT1 /SAVE, NOw TO MOVE BOTIOM FOUR BLITS LEFT UNE
700 00255 R 500664 R AND (17 /PUSITION (9 POSITIUN NOW VACATED!)
701 00256 R 340406 R TAD cDTL /THIS DOES IT, LEAVING LUN URDER BIT ZERD
702 / /NOAR COLUMNS 12,11,0,8,1=7,2ERD BIT!
703 00257 R 745000 A SKP!CLL /HIDE YOUR HEAD, CLL FOR COMING RIR,SKIP
704 / /OVER ALI=MUDE RE=ENTRY
705 00260 R 200704 R CDGALT LAC (240 /INDEX TO ALT MODE
706 00261 R 742020 A RTR /RIGHT=LEFT TO LINK, INDEX TD AT
707 00262 R 340705 R TAD (COTABL /TABLE ADDR
708 00263 R 040406 R DAC coTl
709 00264 R 220406 R LAC* cDT1 /GET PALR FROM TRANSLATE TABLE
710 00265 R 740400 A SNL /HERE O 18 LEFT, IN NOURMAL SENSE
711 00266 R 742030 A SWHA
712 00267 R 100323 R JMS PAKS7 /5/7/ PACKER (IT STRIPS XTRA B1TS)
713 00270 R 440560 R 182 CDCOLC /807
714 00271 R 600234 R JMP CDRML2 /NO
715 00272 R 600410 R JMP COCLOS /YES
716 /
717 / TRANSLATE TABLE 4 GROUPS OF 16 CHAR'S, TwO PER WORD. 8 WORD
718 / SPACE BETWEEN LAST Tw0 GROUPS, IN WHICH wE PUQ OUTHER STUFF
719 / CONDITIONALIZED FOR 026=029 OF CUURSE, LEFT HAND CTHAR 185 FLRST,
720 /
721 «IFUND DECOZ26
722 00273 R 040061 A CDTABL 040061 /BLANK, 1=PUNCH
723 00274 R 062063 A 062063 /2=PUNCH,3=PUNCH
724 00275 R 064065 A 064065 /4,5
725 00276 R 066067 A 066067 /6,7
726 00277 R 070071 A 070071 /8,9(URVERED AS 8-1)
727 - 00300 R 072043 A 072043 /8=2,8=3
128 00301 R 100047 A 100047 /8=4,8~5
729 00302 R 075042 A 075042 /8=6,8=7
730 00303 R 060057 A 060057 /0,0=1
731 00304 R 123124 A 123124 /0-2,0-3
732 00305 R 125126 A 125126 /0=+4,0=5
733 00306 R 127130 A 127130 /0-6,0=7
734 00307 R 131132 A 131132 /0-8,0=9(URDERED AS 0-8~-1)
735 00310 R 135054 A 135054 /0=8=2,0~8=3
736 00311 R 045137 A 045137 /0=8=4,0~8=5
737 00312 R 076077 A 076077 /0=8=6,0=0-7
738 00313 R 055112 A 055412 /11,11=t
739 00314 R 113114 A 113114 /11=2,11+3
740 00315 R 115116 A 115116 /)1=4,11=5
741 00316 R 117120 A 117120 /11-6,11=7
742 00317 R 123122 A 121122 /11~8,11-9(0RDERED AS 11-8~=1)
743 00320 R 041044 A 041044 /11-8-2,11-8=3

Figure 4-2 (Cont.)
XVM CR11 XVM/RSX Handler

PAGE

744
745
746
747
748
749
750
751
752
7153
754
755
7156
157
758
759
760
761
762
763
764
765
766
767
768
769
770
771
712
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

788 -

789
790
791
792
793
794
795

18

CDeewe 021

00321 R 052051 A
00322 R 073134 A

00323

00324
00325
00326
00327
00330
00331
00332

R

000000

500706
744000
620327
740040
620323
000345
000000

»PODR>TP>D

CDuvss

Task Development

CR15/UC15 CARD READER EDIT #020

052051 /11=8~4,11=8=5
073134 /11~8=6,11-8=7
+ENDC

«IFDEF DECO026

COTABL 040061

NNTNNNNNNNNNNN

062063
064065
066067
070071
137075
100136
047134
060057
123124
125126
127130
131132
073054
050042
043045
055112
113114
115116
117120
121122
072044
052133
076046
LENDC

NOw THE 8 LOC, BREAK I[N THE TABLE

THE 577 PACKER, A LITTLE TRICKY PAKSW KEEPS A PT WHICH
'REMEMBERS' WHICH CHARQCTER JF 5 wkE ARE AT, TO IwIl PACKER,
SEE TWO LINES OF COVE AT PAKINT, NORMAL 'FLUSH' OUT ~0ULD
BE TO SEND NUL CHAR'S UNTIL PAKSw=PAKlI. I THIS

HANDLER, PAST HISTUKRY SAYS WAE TRUNCATE ALwAYS AT A WJRD
PAIR BOUNDARY, EVEN FOR SHORT BUFFERS. 1 AM AFRAID IO
CHANGE THIS, EVEN THOUGH [DOw'T LIKE IT.

AKS7 0 /CALL AITH CHAR IN AC, (DESTRIYEW)

/PUSHES CHAR'S THRU X13. EARLY END CHECK
/IN CDADCT.

AND (177 /STIP A[RA
CLL /FUR ALL ROTATES AND SWAPS!
JHP# PAKSH /TU #HATEVER ACTION THIS CHAR, NEEDS.
PAKSW HLT /PUOINTER TO ACTINS FOR CHARATIER
JMP* PAKS7? /THAL'S ALL, OUT
PAKI1 PAKST /INIT PAKSW FUR FIRST CHAR,
PAKT 0 /TEMPORARY FOR PARTIAL #0RDS
/
/ REST OF TRANSLATE TAbLE

Figure 4-2 (Cont.)
XVM CR11l XVM/RSX Handler

19

CDoses

00333
00334
003135
00336
00337
00340
00341
00342

00343

00344

00345
00346
00347
00350

00351
00352
00353
00354
00355

00356
00357
00360
00361
00362
00363
00364
00365
00366
00367
00370

00371
00372

R

oo =

o o TV XNXNDX DD T XXX

021

046101
102103
104105
106107
110111
133056
074050
053136

175000

100327

742010
742030
040332
100327

742010
742010
240332
040332
100327

742020
740020
040327
500664
240332
060013
200327
740020
500707
040332
100327

742030
740020

PP PP

=

> > WRTP XTI T WX T X P>

Task Development

CDuesse CR15/UC1S CARD READER EDIT #020

/
«1FUND DECO26

046101 /12,12-1
102103 /122,12
104105 /124,12
106107 /12-6,12
110111 /12+8,12
133056 /12-8~2,
074050 /12=8-4,
053136 /12=8=6,
LENDC
.1IFDEF DEC026
053101
102103
104105
106107
1101114
077056
051135
074041
LENDC
175000
’
/ NOw REST OF 5/7 PACKE
/
PAKG JHS PAKSW
/
PAKST RTL
SWHA
DAC PAKT
Jus PAKSW
/
RTL
RTL
XOR PAKT
DAC PAKT
JMS PAKSW
/
RIR
RAR
DAC PAKSW
AND (17
XOR PAKT
DACH X13
LAC PAKSW
RAR)
AND (700000
DAC PAKT
JMS PAKSW
/
SWHA
RAR

-3

=5

-7

=9(ORDERED AS 12~8=~1)
12=8-3

12=8=5

12=8«7

/ALT MODE, FUR BOTH PUNCH SETS,
R

/5TH CHAR WRAP B8ACK TQ 1ST, JMS TO PAKSw
/LEAVES ADDR OF ACTIUN FOR 1ST.!.

/15T CHARACTER ACTION, MOVE TD LEFT OF WORD

/HOLD AS PARTIALLY ASSEMBLED WAQRD
/LEAVE POLINTER TO 2ND CHAR

/2ND CHAR ACTION

/MARGE WITH FIRST
/WAIT FOR PART OF 3RD [0 FILL WORD
/LEAVE POINTER TO THIRD

/3RD, TWO PARTS, FIRST IS TOP 4 BITS
/RIGHT JUSTIFIED 1ST WURD OF PAILR
/VERY=TEMPORARY IN HERE

/ZAP OTHER BITS

/COMPLETE 18T WORD OF PAIR

/PLACE IN USER BUFFER

/GET BACK THIRD CHAR (LINK STILL OK!il)
/2ND J0OB, LOW THREE BITS UF THAR TOP OF
/2ND WORD OF PAIR

/WHEW!, HOLD THAT IN PARTIAL WORD
/LEAVE POINTER FOR FOURTH

/4TH, SNUG UP IO 3 BITS ON TOP

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

Task Development

PAGE 20 CDessa 021 CDeess CR15/UCIS CARD READER EDIT #020

848 00373 R 240332 R XOR PAKT /TUGETHER

849 00374 R 040332 R DAC PAKT

850 00375 R 100327 R JMS PAKSW /LEAVE POINTER FOR STH

851 /

852 00376 R 440566 R 152 COWDCT /OVERFLOW SHORT BUFFER?

853 00377 R 741010 A SKPIRAL /N0, RAL LEAVE XTRA BIT OF PAIR ON RIGHT
854 00400 R 600452 R JMP CDVER2 /UH=UH, GO CORRECT

8ss 00401 R 240332 R XO0R PAKT /COMPLETE 2NO WORD OF PAIR

856 00402 R 060013 A DAC* X13 /PLACE

857 00403 R 600344 R JMP PAKQ /G0 PLACE PAKSW FOR FIRST CHAR OF FIVE
858 /

859 00404 R 000211 A CDALT 211

B60 00405 R 000000 A CDIPTR 0 /POINTER TU INPUT DATA IN INPUT BUFFER
861 / /FRMAT, LOW BIT RIGHT=LEFT FLIPFLOP
862 / /TOP 17 BITS ADDRESS

863 00406 R 000000 A cDpT1 0 /TEMPORARY FOR TRANSLATIUN

864 00407 R 000000 A POST 0 /0 WHEN NOT WAITING FOR INTERRUPT, 1 WHEN YES.
865 +ENDC

866 / THE BUFFER HAS BEEN REMAPPED =- STORE A *'CR' IN THE TRAILER
867 / WORD AND SET UP THE HEADER WORD

868 /

869 00410 R 200750 R CDCLUS LAC (64000

870 00411 R 060013 A DAC* X13 /SET 'CR! IN USER BUFFER

871 00412 R 200560 R LAC cocoLc /COCOLC IS NEGATIVE

872 00413 R 723022 A AAC 22

873 00414 R 744000 A CLL /ROTATE INTO PLACE

874 00415 R 640711 A ALS 11 /SHIFT INTO POSITION

875 00416 R 340565 R TAD CDRVAL /ADD IN BUFFER OVERFLOW IF ANY (BITS 12 & 13 =1)
876 00417 R 723002 A AAC 2

877 00420 R 060012 A REQCMA DAC* X12 /SET HEADER WORD ONE

878 00421 R 777777 A REDCOM LAW -1 /SET RRN, SAYING NO MORE READ OUTSTANDING
879 00422 R 040571 R DAC RRN

880 00423 R 750030 A REQCMP CLAIIAC

881 00424 R 100426 R SEV JMS SEVRN /5U8, TO SET EV, RETURN NUDE

882 00425 R 600060 R JMP PQ /G0 LOOK FOR MORE WORK

883 /

884 /

885 / SEVRN

886 /

887 /

888 / ROUTINE 18 CALLED WITH VALE FOR EV IN AC

889 / THE NODE ADOR, IS IN Rw

890 /

891 / EV IS SET, SIGNIFICANT EVENLI DECLARED, 10CD ODQE, NODE RETURNED,
8§92 /

893 00426 R 000000 A SEVYRN 0

894 00427 R 722000 A PAL /SAVE AC VALUE

895 00430 R 200564 R LAC RN /NODE ADDR

896 00431 R 060651 R DAC¥*. (R2 /SYSTEM ARGUMENT HOLDER

897 00432 R 340563 R TAD XADJ /ADJUST FOR PREESENT PAGE

898 00433 R 721000 A PAX /FOR XR ADDRESSING

899 00434 R 210006 A LAC 6,X /EVENT VARIABLE ADDRESS

Figure 4-2 (Cont.)
XVM CR11l XVM/RSX Handler

Task Development

PAGE 21 CDesss 021 CDeess CR15/UC1S CARD READER EDIT #020
900 00435 R 741200 A SNA /5K1P IF REALLY ONE
901 00436 R 600443 R JMP NUSET /NOPE, SO DON'T SE!
902 00437 R 340563 R TAD XADJ /MODIFY 1T FOR ADDRESSING
903 00440 R 721000 A PAX
904 00441 R 730000 A PLA /BRING BACK SETTING VALUE
905 00442 R 050000 A DAC 0,X /THERE IT GOES!
906 00443 R 200711 R NOSET LAC (401000 /UECLARE A SIGNIFICANT EVENT
907 00444 R 705504 A IsA
908 00445 R 200704 R LAC (POOL /GIVE NODE TO POOL
909 00446 R 060647 R DAC* (R1 /SYSTEM ARGUMENT REG
910 00447 R 120712 R JMS* (10CD /DECREMENT I0 COUNT
911 00450 R 120713 R JMS* (NADD /GIVE BACK NODE
912 00451 R 620426 R JMP* SEVRN /THAT/S IT
913 /
914 /
915 /
916 / *¥*%%% BUFFER OVERFLOW
917 /
918 00452 R 777776 A CDVER2Z LAW -2 /BACKUP USER BUFFER PIR
919 00453 R 360674 R TAD* (X33)
820 00454 R 060674 R DAC* (X13)
921 00455 R 200714 R LAC (60) /SET OVERFLUW BITS FOR USE BY CuCLUS
922 00456 R 040565 R DAC CDRVAL
923 00457 R 600410 R JMP COCLOS
924 /
925 00460 R 777771 A EVMT LAW -7 /ILLEGAL DATA MODE,
926 00461 R 600424 R JMP SEV
927 00462 R 777750 A EVM30 LAw =30 /170 PARAM, OUT OF PARTITION,
928 00463 R 600424 R JMP SEV .
929 /
930 +IFUND UCi5
931 /
932 REVME LAwW -6 /ILLEGAL FUNCTION,
933 JMP SAEV /SET ABORT EV.
934 /
935 /0N ILLEGAL CARD PUNCH, WAIT FUR READER NOT READY FOLLOWED BY
936 /READER READY SEWUENCE BEFORE READING ANOTHER CARD,
937 /
938 LLce LAC (ERRMG2) /TYPE '"ILLEGAL CARD PUNCH',
939 JMS TTYOUT
940 JMS AF , SW - /&AIT FOR READER NOT READY,
941 WEOFF /PSUEDY INSTR. FOR wF.SwW,
942 JMS WF,SW /WAIT FUR READER READY.
943 WFON /PSUEDD INSTR, FOR WF.SH.
944 JMp RETRY /READ ANOTHER CARD,
945 /
946 / SUBR, TO WAIT FOR READER NOT READY OR READY FOR READ
947 / PER PSUEDO INSTR. IN CALLING SEQUENCE, AFTER MARK 1IME REWS,,
948 / THE TRIG, EV, IS CHECKED FOR AN ABORT REQ, IN THE QUEUE,
949 / 1IF TASK REQ, READ IS TO BE ABORTED, THE SUBR, DOESN'T
950 / RETURN NORMALLY,BUT EVENTUALLY JUMPS TO CDABRT.
951 / CALLING SEQUENCE:

Figure 4-2 (Cont.)
XVM CR11l XVM/RSX Handler

Task Development

PAGE 22 CDeyas 021 CDyess CR15/UC1S5S CARD READER EDIT #020

952 /

953 / JMS WF . SW

954 / PSUED, INSTR, (WFOFF OR WFON)

955 / SUBR, RETURN ,IF NO INTERVENING ABORT FOR THIS TASK.

956 /

957 WF,S5w 0

958 LAC* WF,5W /GET PSUEDU INSIR,

959 DAC PV1

960 1sz WF,SW /BUMP EXIT.

961 WF,SWA CRRS /READ CARD READER STATUS.

962 AND (20) /CHECK FOR READER READY FOR READ,

963 PVl XX /SNA OR SZA. (READER READY IF NON=ZERO AC).
964 JMP¥ WNF . S5W /EXIT,

965 CAL MTCPB /MARK TIME FOR wAIT,

966 CAL WFECB /WALID FOR MARK TIME INTERVAL,

967 DZM EV

968 LAC TG /CHECK FOR ABORT REQ. 1N QUEUE,

969 RTL

970 SMA /ABORT REQ.?

971 JMP WF,SWA /CHECK AGAIN,

972 DZM 16 /YES. DEGUEUE ABORT REQ.

973 LAC PDVNA /PDVL NODE ADDR,

974 DAC* (R1)

975 PLIYS (DQRQ) /DEQUEUE ABRT. REQ. R1,R2,R4,R5,R6,XR,AC
976 NOP /ALTERED, ASSUME ABRI. REQ. IN QUEUE,
9717 DAC RN /SAVE ABURT REW, NODE ADDR.

978 TAD XADJ /SET XR.

979 PAX

280 LAC 6,X /GET ABRT. REG. EV.

981 DAC ARE

982 LAC 5,4 /CHECK FOR ZERO LUN,

983 AND (777000} /BITS 0=~8

984 SZA

985 Jup AEVME /ERROR, NON<ZEROD LUN,

986 LAC 2,X /GET STL, NUDE PTR, AND CHECK AGAINST
987 SAD STLA /READ REQ. STL NODE PIR. SAME?

988 JMP CDARD /YES., ABURT READ REQ. ANDO CLEAN UP,
989 LAC POVNA /N0, CLEAN UP QUEUE OF TASK TO BE ABRIED,
990 DAC* (R1) /ALSO RETR, ABRT. REQ, NODE TO POOL AND
991 LAC RN /DECR., TRANSF, PEND, CNT, ABRI, REu. NODE
992 OACH* (R2) /ADDR. TO R2,

993 JMS* (DMTQ) /EMPTY REQ. WUEUE OF ALL 1/0

994 /REQ.'S MADE BY TASK BEING ABORIED,
995 /R1,R2,R3,R5,R6,X10,X11,X12,XR,AC ALTERED,
996 LAC (1) /SET ABRT. REG, EV T0 +i.

997 SAEV PAL

998 LAC ARE /ABORT REQ, EV,

999 TAD XADJ

1000 PAX

1001 PLA

1002 DAC 0,X

1003 LAC (401000)

PAGE 23 CDsyse 021 CD,ees TRIS/UC1S CARD READER EDIT 020

1004 I8A /DECLARE SIGNIF, EVENT.

1005 LAC RN /RETRN, ABRT. REW, NJDE [0 PUOL.

1006 DAC* (R2)

1007 LAC (POOL)

1008 DAC* (R1)

1009 JMS* (I0CD) /VECR, TRAWNSF. PEND. CTNT.

1010 JMS* (NADD) /RETRN, NODE TU POOL,

1011 JMP WF . SWA /CHECK AGAIN,

1012 CDARD CLAIIAC /SET CARD DUNE FLAG.

1013 DAC CDON

1014 JMP CDABRT /PROCEED WITH ABORT,

1015 /

1016 +ENDC

1017 +EJECT

Figure 4-2 (Cont.)
XVM CR11 XVM/RSX Handler

Task Development

PAGE 24 CDesss 021 CDyses CR15/7UC1S CARD READER EDIT #020

1018 /

1019 / EXIT REQUEST (FROM TASK *,,.,,REA")}

1020 /

1024 00464 R 200704 R DAEX LAC (POOL) /RETURN REWUEST NODE TO POOL
1022 00465 R 060647 R DAC* (R1)

1023 00466 R 200564 R LAC RN

1024 00467 R 060651 R DAC* (R2)

1025 00470 R 120712 R JMS* (10CD) /DECREMENT TRANSFK, PENDING COUNT
1026 00471 R 120713 R JMS* (NADD)

1027 «IFUND UC15

1028 LAC (ccL) /CONDITION CODE { == CLEAR CONTROL.
1029 CRLC

1030 CAL ocee /DISCONNECT

1031 +ENDC

1032 .IFDEF uCi5

1033 00472 R 100625 R JMs CLEAR /CLEAR DEVICE , WALT FOR COMPLEIION

1034 00473 R 440577 R 1s2 cces /MAKE CONNECT A DISCONNECT (BURP)
1035 00474 R 000577 R CAL cees /DISCONNECT

1036 «ENDC

1037 00475 R 440570 R 182 POVTA /POINT TU ASSIGN INHIBIT FLAG
1038 00476 R 705522 A «INH /INHIBIT INTERRUPTS,

1039 00477 R 160570 R DZM¥ PDVTA ///ZERD IT

1040 00500 R 705521 A +ENB ///ENABLE INTERRUPTS.

1041 00501 R 000653 R CAL (10} ///EXIT

1042 /

1043 /

1044 /ABORT REQUEST,

1045 /

1046 00502 R 777000 A CDABRT LAW 17000 /MASK IV KEEP HALF wURD fU CHECK ABORI VALIDITY
1047 00503 R 510005 A AND 5,X /HAS TO BE ZERU [0 Be OK

1048 00504 R 740200 A SZA /80 SKIP IF 0K

1049 00505 R 600146 R LI EVMé /ERRUR RETURNED 1F NOT

1050 00506 R 200567 R LAC POVNA /MT THE DEQUE FUR THE ABORTED TASK

1051 00507 R 060647 R DAC* (Rl

1052 00510 R 200564 R LAC RN /ABORT NOOE

1053 00511 R 060651 R DAC#* (R2

1054 00512 R 120715 R JMS* (OMTQ /TH1S ROUTINE DOUES ALL WORK

1055 /

1056 / NOW WAS THIS ABORT FUR AN OUTSTANDING READ?

1057 /

1058 00513 R 200564 R LAC RN /2+RN [8 STL NODE ADDR

1059 00514 R 340563 R TAD XADJ /USE AS IDENTIFIER

1060 00515 R 721000 A PAX

1064 00516 R 210002 A LAC 2,X

1062 00517 R 540556 R SAD STLA /SAME ADDR FOR LAST READ DONE

1063 00520 R 751001 A SKPICLAICMA /SKIP IF SAME, SET UP =t

1064 00521 R 600423 R JMP REGWCMP /NOPE, wE'RE DUNE, GO GIVE BAIK NODE EIC,
1065 00522 R 240571 R XOR RRN /NASTY, MAKES O IF NU READ NOw! IN PROGRESS
1066 00523 R 741201 A SNALICMA /SKIP IF READ IN PROGRESS, RECREATE IT5 NODE ADDR{
1067 00524 R 600423 R JMP REQCHMP /NUOPE, JUST COMPLETE

1068 00525 R 060651 R DAC* (R2 /GIVE BACK NODE AND IOCD FOR SUSPENDED READ
1069 00526 R 200704 R LAC (POOL

PAGE 25 CDevss 021 CDysese CRIS/UC15 CARD READER EDIT %020

1070 00527 R 060647 R DAC* (R1

1071 00530 R 120712 R JMS* (1oco

1072 00531 R 120713 R JMS* (NADD

1073 00532 R 750001 A CLAICMA /SET READ WUT HERE SwifCH

1074 00533 R 040571 R DAC RRN -

1075 +IFUND 0C15

1076 LAC (CCi /CLEAR DEVICE

1077 CRLC

1078 <ENDC

1079 . lFDEF UC15

1080 00534 R 100625 R JMS CLEAR /AND CLEAR FOR UNICHANNEL

1081 <ENDC

1082 00535 R 6n0423 R JMP REQCMP /DONE

1083 4

1084 /

1085 /

1086 /

1087 +EJECT

Figure 4-2 (Cont.,)
XVM CR11 XVM/RSX Handler

PAGE 26

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

PAGE

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

27

Chuvwue

00536 R
00537 R
00540 R

00541
00542
00543
00544
00545
00546

00547
00550
00551
00552
00553

ITODT T TODVXTOXT

CDesus

021

000000
707762
040000

706124
200407
741200
600551
040554
040562

200711
705504
200000
703344
620536

021

A
A
R

XTI/

TP P D

Task Development

CDesss CR15/UC15 CARD READER EDIT %020

/
/ INTERRUPT SERVICE ROUTINE

/
INT 0
DBA
DAC START /SAVE AC
LIFUND UC1S
CRRS /READ STATUS INTO AC,
DAC EV] /SAVE POR TASK LEVEL PROCESSING.
ANO (2) /CARD DUNE? BIT 16,
S§A
JMP INT1 /NO. DON'T CLEAR CARD DUNE.
DAC CDON /PLACE 2 INTO COON TO SAY DONE
LAC (ce3) /1ES, CLEAR CARD DONE,
CRLC /INTERR, AND DCH ENABLED,
INTY CRPC /CLEAR ALL BUT CARD DONE,
LAC (cc4) /ENABLE INTERRS, DISABLE DCH
CRLC /NEEDED SINCE CRPC DISA8LES INTERRS.
LENDC
/
JIFDEF UC15
CAPI /CLEAR FLAG FROM PDP=-11
LAC POST /ARE WE wANTING AN INTERRUPT
SNA /SKIP IF YES/USE VALUE TUO SET
Jnp INTAC /NO DU NOTHING
DAC CDON /AS FLAG TO DISTINGUISH CARD DONE FROM CAL
DAC 16 /AND SET TG TO WAKE UP CAL LEVEL
LENDC
LAC (401000) /DECLARE SIGNIF, EVENT,
ISA
INTAC LAC START /RESTORE AC,
DBR
JMP* INT
JEJECT

CDsess CR15/UCI5 CARD READER EDIT %020

/
LIFUND UC15

/SUBR., TO OUTPUT ERRUR MESSAGES VIA ERRLUN.I AT SHOULD TONTAIN

/ADDRESS OF ERROR MESSAGE BUFFER.

/

TTYOUT O
DAC TECPB4 /SET CPB BUFFER ADDRESS.
CAL TE /TYPE ERROR MESSAGE.
CAL WFECB /WALTFOR EV,
JMP¥ TTYOUT

/
/ERROR MESSAGE BUFFERS ANU TABLE OF PTRS,:
/

ERRPT o+l
ERRMG1
ERRMG2
ERRMG3
ERRMG4
ERRMG5

/
/
/
ERRMG1 ERRMG2=-ERRMG1*1000/2+2
0
«ASCII '#%x CD READER NOI READY'<15>
ERRMG2 ERRMG3I=ERRMG2¥1000/2+2
0
«ASCII '#%# CD ILLEGAL PUNCH'<15>
ERRMG3 ERRMG4=-ERRMG3¥1000/2+2
]
JASCII '*%% CD PICK ERRUR'<15>
ERRMG4 ERRMGS5~ERRMG4¥1000/2+2

0

+ASCII '¥*% CD DATA MISSED/PHOTO ERROR'<15>
ERRMGS=,

JEJECT
/ ¥%%%& CARD COL TO ASCI1 TRANSLATION TABLE *##%x

/ .
/EACH TABLE ENTRY REPRESENTS VALID ASCL1 CARD PUNCHES WITH

/THE FOLLOWING FORMAT:

/

/BITS 0 = 5 SIXBIT ASCII CHARACTER.

/BITS 6 = 17 CARD PUNCHES WITH THE FOLLUWING MAPPING:
/

/BIT 6 Z0NE 12

/BIT 7 = ZONE 11
/BITS 8 = 17 = ZONES 0 =~ 9,

/THE ASSEMBLER BUILDS THE TWOS COMPLEMENT OF BIIS 6=17 VIA THE
/7777\+1 OPERATION. THE TABLE IS ORDERED ACCORUING TO INCREASING
/MAGNITUDE OF CARD PUNCHES(CONSIDERED AS 12 BII RIGHI JUSTIFIED

/INTEGER VALUES),

/EXAMPLE: ASCII '9' HAS FOLLOWING TABLE REPRESENTATION:

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

4-47

PAGE

1174
1175
1176
1177
1178
1179
1180
i181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

PAGE

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

28 CDuere 021 CDse+s CRI5/UCLS CARD READER EDII %020
/
/ T710001N\7777+1
/
/WHERE 0001 INDICATES ZUNE 9 PUNCHED AND 71 1S SLXBIT ASCII

/

Task Development

tgr

/GRAPHIC CHARACTERS FOR 026 PUNCHES ARE IN PARENTHESES BELOUW:
/

CDTABL

29 CDusss 021

CDTLN]
CDRALT

CDTABL#1

400000
710001\7777+1
700002\7777+1
670004\7777+1

CP 340006,420006
660010\7777+1

CP 470012,750012
650020\7777+1

CP 360022,470022
640040\7777+1
000042\7777+1
630100\7777+1

CP 750102,430102
620200\7777+1

CP 370202,720202
610400\7777+1
601000\7777+1
321001\7777+1
311002\7777+1
301004\7777+1

CP 451006,771006
271010\7777+1

CP 431012,761012
261020\7777+1

CP 421022,371022
251040\7777+1

CP 501042,451042
241100\7777+1
541102\7777+1
231200\7777+1

CP 73120%,351202
571400\7777+1
552000\7777+1
222001\7777+1
212002\7777+1
202004\7777+1

CP 462006,342006
172010\7777+1

CP 762012,732012
16202077777+

CP 332022,512022
152040\7777+1
522042\7777+1
142100\777741

442102\7777+1
132200\7777+1

CP 722202,412202
122400\7777+4

CP 534000,464000
114001\7777+1
104002\7777+1
074004\7777+1

CP 414006,364000
064010\7777+1

CP 744012,534012
054020\7777+1

CP 354022,504022
044040N\7777+1

CP 514042,744042
034100\7777+1
§64102\7777+1
024200\7777+1

CP 774202,334202
014400\7777+1
«=1=CDTABL/2
4402

<ENDC

LEJECT

Figure 4-2

/BLANK
/9
/8
/7
/" N)

/7 (%)

/> (%)
/Al
/RIGHT ARROW (")

CDyeee CR15/0UC15 CARD READER EDIT %020

/8
/K
74
/J
/& (+)
/1
/4
/G
/* ()
/F
/+ (L)
/E
/¢ ())
/0
/< ())
/C
/.
Iz:)
/0 (?)
/2

(Cont.)

XVM CR11l XVM/RSX Handler

PAGE

1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292

30

CDyees

00554
00555
00556
00557
00560
00561
00562
00563
00564
00565
00566

00567
00570
00571

00572
00573
00574

WM VWWOODODIDETD

021

000001
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

000000
000000
1711717

000000
000000
000000

PR B g

> >

Task Development

CD,ess CR15/UC15 CARD READER EDIT #020

/
/ FEEx¥

/
CDON
TST
STLA
ARE

CDRVAL
CDWDCT
/

/

/ SAVE
/

ICa
CDR7CT
CDR5CT
CDTPTR
COTLEN
cD7700
CDCPTR
CDRWD3
CDRWD2
CORWD1
EV1

/

/
PDVNA
POVTA
RRN

TX12
TX13
TCWC

INTERNAL VARIABLES #%xx«&

coooocOo-

=3

o0 O

«IFUND UC15

/CARD DONE FLAG,.

/TEMP STORAGE FOR STATUS,

/STL NODE, ADDR.

/ABORT REQ, EV,

/CARD COL COUNT USED IN TRANSLATING CARDS
/INTERNAL KVENT VARIABLE

/IRIGGER EVENT VARIABLE

/XR ADJUST CONSTANT TU SUBTRACT PAGE BITS
/ADDRESS UF T'HE REQUEST NODE PICKED FRUM AUEUE
/BUFFER OVERFLOW FLAG #ORD

/WORD COUNT CHECK WORD SET FROM 1/0 REQUEST

SOME RUOM FOR UC15, THESE ARE NOT NEEDED

70000

COO0OVO~NOOOOCO

+ENDC

0
0
11711177

0
0
0

<EJECT

/INTERNAL BUFFER CURRENI ADDRESS POINTER
/SEVEN COUNTER USED BY THE 5,7 ASCII PACKING ROUTINE
/COUNTER FOR 5/7 ASCI1 PACKING

/PUINTER TU TRANSLATION TABLE

/TRANSLATION [ABLE LENGTH

/USED IN CARD TRANSLATIOWN

/POINTER TO CURRENT INTEM IN TRANSLATION TABLE
/7

// THREE WORD SHIFT REG. FOR 5/7 ASCII PACKING
/7

/CARD READER EV,

/PHYSICAL DEVICE NODE ADODRESS

/ADDRESS OF ADDRESS OF TEV IN PHY OEvV NODE
/READ BEING PRUC. FLAG., =i IF NOT BEING
/PROCESSED, READ REQ, NODE ADDRESS IF BEING
/PROCESSED,

/TEMP, FOR X12 STOR.

/TeMP, FUR X13 STOR,

/TEMP, FOR REQ, WwC,

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

Task Development

PAGE 31 CDeses 021 CDusss CR15/UC15 CARD READER EDIT #020

1293 /

1294 / *¥¥%x CAL PARAMETER BLOCKS #%%%¥x

1295 /

1296 /

1297 00575 R 000020 A WFTCPB 20 /WAIT FOR TRIGGER CbB
1298 00576 R 000562 R 16

1299 /

1300 00577 R 000011 A ccee 11 /CONNECT CP8

1301 00600 R 000561 R EV

1302 00601 R 000015 A 15 /LINENUMBER

1303 00602 R 000536 R INT /ENTRY ADURESS OF INTERRUPT SERVICE ROUTINE
1304 /

1305 «IFUND UC15

1306 /

1307 / UCL5 SAVE SPACE BY LEAVING OUT SOME CAL'S

1308 /

1309 /

1310 /

1311 WFECB 20 /WAIT FOR EV CPB

1312 EV

1313 /

1314 oCcPB 12 /DISCONNECT CPB

1315 0 /EV ADDRESS

1316 15 /INTERRUPT LINE NUMBER
1317 INT /CURRENT INTERRUPT TRANSFER AUDRESS
1318 /

1319 TE 2700 /WRITE TU ERRLUN,

1320 EV

1321 ERRLUN /WRITE OUT THE ERROR MESSAG I'D THE DESIRED
1322 /TELETYPE

1323 2

1324 TECPB4 XX

1325 /

1326 MTCPB 13 /MARK TIME REQ,

1327 EvV

1328 12 /12 UNITS.

1329 1 /UNIT (TICK),

1330 /

1331 WFCRCB 20 /#HAIRFOR CR INTERRS,

1332 EV1

1333 /

1334 WFCRCD 20 /WAIT FOR CARD DONE FLAG TO BE SET,
1335 CDON

1336 /

1337 «ENDC

1338 /

1339 /

1340 «IFDEF UC15

1341 /

1342 / 1/0 INFORMATION , ROUTINES , ETC. FOR UC15

1343 /

1344 / TCB (TASK CONTROL BLOCK) TELLING PDP=11 TO SEND US A CARD

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

Task Development

PAGE 132 CDouus 021 CD,ees CR15/UC15 CARD READER EDIT #020

1345 /

1346 00603 R 026401 A TC8 APISLT*400+APILVL /TELL PDP=11 WHERE TO JOME BACK
1347 00604 R 000005 A DEVCUD /PIREX CODE FOR CDyTHE 200 BIT SAYS
1348 / /AE ARE NOT TO BE SPOOLED,
1349 00605 R 000000 A EVil] /EVENT VARIABLE FROM PDP11 TO US
1350 00606 R 000000 A o /DUMMY, HIGH PORTION OF 18 BIT
1351 / /ADRESS. NOT PRESENTLY USED
1352 00607 R 000001 R I8UF /POINTER TO BUFFER TO PUT CARD IN
1353 00610 R 000000 A 0 /UNIT #3 FOR FUTURE GENERATIONS,
1354 /

1355 / TCB TO TELL PDP11 TU CLEAR OUT CARD READER DEVICE

1356 /

1357 00611 R 000000 A TCBK 0 /THIS WORKS, SEE PIREX FOR INFO,.

1358 00612 R 002600 A DEVCOD&177%400+200

1359 00613 R 000000 A EVILIK 0 /EVENT VARIABLE FOR CLEAR OPERTAION
1360 /

13614 / POLINTERS TO TCH, TDBK

1362 /

1363 00614 R 000603 R TcBP cB

1364 00615 R 000611 R TCBKP TCBK

1365 /

1366

1367 / CDIU IS THE SUBROUTINE TO SEND A ICB TO THE PDP=11}

1368 /

1369 / CAL WITH THE ADRESS OF THE ICB IN THE AC

1370 /

1371 00616 R 000000 A [op241] 0

1372 00617 R 140605 R DZM Evil /CLEAR ONE COMING FRUM POP=11

1373 00620 R 140613 R DZM EV11K /AND THE OTHER ONE, I~ CASE II USED
1374 00621 R 706001 A S10A /SKIP IF PDP=i1 CAN TAKE REQUEST

1375 00622 R 600621 R JMP o=l

1376 00623 R 706006 A LIOR /TELL [l TO DU TCB WHOSE ADDRESS IN AC
1377 00624 R 620616 R JMP¥ CDIU /THAT'S ALL THERE IS TO IT.

1378 /

1379 /

1380 / CLEAR CLEARS SWITCHES, AND CO IN PIREX, WALTS FOR COMPLETE
1381 /

1382 00625 R 000000 A CLEAR]

1383 00626 R 140407 R DZM PQST

1384 00627 R 140554 R DZM CDLON

1385 00630 R 200615 R LAC TCBKP /TCB FOR CLEAR

1386 00631 R 100616 R JMS CDhIU

1387 00632 R 000634 R CAL WFCLER /wAI1T FOR CLEAROUT

1388 00633 R 020625 R JMP¥ CLEAR

1389 /

1390 00634 R 000020 A WFCLER 20

1391 00635 R 000613 R EVi1K

1392 / CDUCEC EXAMINES NEGATIVE EVENT VARIABLES FROM PIREX

1393 /

1394 00636 R 744020 A CDUCEC CLLIRAR /CLEAR OTHER TUOP BIT

1395 00637 R 340716 R TAD (600000 /SIGN EXTEND TU PDP=15 WORD

1396 00640 R 540717 R SAD (777003 /THIS ONLY 'LEGAL' VALUE Af PRESENT

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

PAGE

1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

PAGE

33

34

CDevee

00641
00642

00643
00644
00645

00646
00647
00650
00651
00652
00653
00654
00655
00656
00657
00660
00661
00662
00663
00664
00665
00666
00667
00670
00671
00672
00673
00674
00675
00676
00677
00700
00701
00702
00703
00704
00708
00706
00707
00710
00711
00712
00713
00714
00745

R

R

R

R
R

WDV VXX XTXN VXD ODINTDODIDTIDNINDVITOXLDITIDDIDXTODDDIDD

Clyrae

021
600171

100426

11111717
040571
600060

000000
000252
000101
000054
000102
000123
000010
000562
070000
000337
000777
000024
000025
000026
000036
000017
000325
000332
200007
000103
000104
000342
000012
000013
000003
104611
000340
000445
001005
000377
000020
000240
000273
000177
700000
064000
401000
000345
000107
000060
000361

021

00716 R 600000
00717 R 777001
SIZE=00720

PP IPIPIPEPIEREREXPIPPIPIPIPIRPIPEPEIPEPRFIPREROPR

Task D

evelopment

CDyseee CR15/UC15 CARD READER EDIT %020

JMP RETRY /THAT SAYS PIREX IS OUT OF NUDES,

/
JMS SEVRN
/
/
LAwW -1
DAC RRN
JMP P4
/
/
+ENDC
+END START

/WE SHOULD TRY AGAIN TQ GET QNE
/OTHERS, RETURN NEG VARIABLE AS EvV,
/THIS IS8 SLIGHTLY FLAKEY, &UT At
/REALLY SHOULD NEVER GET HERE! L7
/SAY NO MORE READ QUTSTANDING

/BACK TO LOOK FOR MURE WORK

CDeees CR15/0UC15 CARD READER EDIT #020

*L
L

NO ERROR LLINES

Figure 4-2 (Cont.)
XVM CR1l1l XVM/RSX Handler

4-52

Task Development

4.6.3.3 Requests - Following handler initialization, requests can be
processed. Note that the request dequeuing algorithm (see Figure 4-2
lines 352-407) is executed whenever Q-I/0O places a request node in the
list associated with the handler's PDVL node or whenever an interrupt
for the device has occurred on the XVM. The latter condition implies
that the handler's interrupt service routine (Figure 4-2, lines
1091-1120) will set the trigger event variable on each interrupt.

4.6.3.4 ABORT Requests - Because of the nature of the UNICHANNEL
configuration, ABORT requests should be handled on a high priority
basis. Hence, whenever the trigger event variable is set, the handler
should first check to see if an ABORT request has been issued. (Figure
4.2, lines 353-357). This condition can be tested using the following

algorithm:
LAC TG /GET THE TRIGGER EVENT VARIABLE INTO THE AC
RTL /MOVE THE ABORT BIT INTO BIT ZERO OF THE AC
SPA /SKIP IF ABORT BIT IS NOT SET
JMP PICK /ABORT REQUEST~DEQUEUE AND PROCESS IT
. /NOT AN ABORT REQUEST-CHECK OTHER
. /REASONS FOR HAVING TRIGGER EVENT VARIABLE SET.

4.6.3.5 Interrupts - If the trigger event variable was not set due to
an ABORT request, either PIREX has issued an interrupt or a new
request for I/O is pending. Before checking for new requests, the
handler should see if an interrupt occurred (see Figure 4-2, lines
359-362). If it did, the handler should check to see if an interrupt
was requested. Unrequested interrupts should be ignored but the
handler should finish processing the outstanding I/0 request if the

interrupt indicates that I/0 is now complete.

If the trigger event variable was not set due to an interrupt and no
I/0 is being processed by PIREX, the handler can pick off the new I/O
request and begin processing it (see Figure 4-2, lines 368-407).

On ABORT requests, the handler should determine if I/0 is in progress
on the PDP-11 for the task being aborted (see Figure 4-2, lines
1058-1067). If so, the handler should issue a "clear device directive"
to PIREX to stop the I/0 in progress (see Figure 4-2, lines 1073-1080).

4-53

Task Development

The "clear device directive" must also be issued whenever a DISCONNECT

and EXIT request from the MCR function REASSIGN is processed (see
Figure 4-2, line 1033).

4.6.3.6
usually

READ and WRITE Requests - READ and WRITE request processing

involves the following procedures:

Checking the range of the issuing task's TCB and buffer.

Making data conform to PDP-11 standards for WRITE requests
and XVM standards for READ requests.

Sending a TCB directive to PIREX.

Waiting for PIREX to complete the operation initiated by
sending the TCB directive.

Checking the event variable sent back to the handler by
PIREX.

Setting data into the issuing task's request buffer for READ.

Sending an event variable to the task which initiated the
request for I/O.

The following is a brief outline of the procedure used by the UNI-

CHANNEIL Card Reader handler when it processes a read request. (Refer

to Figure 4-2).

10.

Dequeue the I/0 request node (lines 352-407)

Check the range of the task TCB and buffer (lines 440-465).
Clear the TCB event variable (line 1372).-

Clear the "I/O Done" flage (line 642).

Set the "Interrupt Expected" flage (lines 640-641).

Issue the READ TCB to the Card Reader Driver in PIREX
(lines 1374-1376).

Wait for the Trigger Event Variable (line 352).

When the Card Reader Driver has completed the request, the
Card Reader handler interrupt service routine sets the
Trigger Event Variable and the "I/0 Done" flage (lines
113-114).

The handler then checks the Event Variable sent back by
PIREX (lines 653-656).

Convert the data to XVM card format and transfer it to the
task's buffer (lines 670-879).

Task Development

11. Set the task's Event Variable (lines 880-881).

12. wWait for the next request (line 352).

Note that in order for a UNICHANNEL handler to function properly, the
PDP-11 must be able to access the handler's internal buffers and TCBs.
Hence, all locations within these TCBs and buffers must be within the
common memory accessible to the PDP—ll.l Also, note that the XVM/RSX
POLLER task should be modified to interrogate PIREX concerning the
status of the new device.

4.7 BUILDING A XVM/PIREX DEVICE DRIVER

A device driver is a software routine that performs rudimentary I/0
functions. PIREX device drivers typically operate in conjunction with
more complex XVM handlers. While a rudimentary device driver is typical,
a PIREX task can be as complex as a full handler. The PIREX XY driver
is a good example of a very complex driver. The PIREX line printer
driver, a typical rudimentary driver, will be used to examine the
construction of a device driver.

4.7.1 General Layout

The general layout of a driver task (see Figure 4-3 and Section 4.5)

consists of:

1. Entries on PIREX internal lists.

2. A stack area which will be used when the task is executing.

3. The address of a device control register. This is used to
stop the device during STOP I/0 requests. Dummy addresses
are used for tasks which are not device drivers.

4, A 2-word busy/idle switch used to store the caller's 18-bit
TCBP. When the busy/idle switch is zero, the routine is
not busy.

5. The task request setup/processing section.

6. The task interrupt processing section, if the task is a
device driver.

1Depending on Driver task design the buffers for an NPR device may
not have to be in common memory.

Task Development

The task request setup/processing section obtains the parameters from
the TCB and uses them to set up the referenced device or process the
request. Entry into this section is made from the ATL scanner or

DEQU with the current task stack area active at the priority level
associated with that task. All general purpose registers are avail-
able for use by the current task at this time. The TCBP is stored in
the busy/idle switch preceding the request section and signifying that
the task is busy. Once some operation is underway or completed, the
task returns to the ATL scanner by issuing the "SEXIT" macro instruc-

tion (refer to Section 4.7.2.4).

If the task is a device driver, the interrupt section is called at the
completion of an I/0 request. All device interrupt priority vectors
specify priority 7. This is done to allow the interrupt routine to

save the general-purpose registers on the current task stack pointer

and lower the system to the priority level of this task. (The interrupt
section accomplishes this by calling R.SAVE.)

Control is transferred to the driver, which then checks for errors,
stores status information into the TCB, clears the device busy switch
(the driver becomes idle when the busy switch is cleared) and sends

an optional interrupt (via SEND15, see Figure 3-6) to the system in-
forming it that the request has been processed. The driver then trans-
fers control to the routine DEQU (see Figure 3-7) to determine if more
requests are in its TRL. If not, control is transferred to the ATL
scanner, after saving the task stack pointer and setting the task
status to the wait state in the ATL node.

4.7.2 Task Program Code
The task program code is necessary to carry out the task's function.
4.7.2.1 Code Sections - The program code section of a device driver

is composed of three or four of the following subsections (refer to

Figure 4—3).l

1Page number refers to the page number at the top of the PIREX
listing.

PIREX,142
LINE PRINTER DRIVE®R FOR LP14/15

84
58
56
57
58

86754
07054

(3411]
#7069

07062
e7062

27086
07872
B7078
27182
07106
07119
87112

B7iie
o7120

07124

07132
7136
87142

07146

87184

177814
177848
LILLLY.]
gedays
200014
231284
012682
[.I.I.L.LY]
206414

177914

aa2a0a
LLLLTL]

pasSasy
172390
0168720
177788
[-LELLT]
[-I.I.L FW]
916004
geRdaim
PNS78a
LLLLTT]
192403
PB6301
p86704
170722
112102
242702
177400
112767
pednmys
gnasin
86270
1.1 1 1.}]
11272
[-LI'L.FY]
105067
CLLLEE)

p32787
142300
171672
081427

Task Development

MAEL1Y XVM V1AQ@@ PAGE 28

«3BTTL LINE PRINTER DRIVER FOR LP11/15

EVEN

[}

LPCSRa177544
LPRUFS177516
LLPSAnS
LPYOTsi2
LPSTATR14
LPESTaLP EST+4
LPUNNBLP EST+2
LPYCoDw4
LPFOF=8414

!

N N W W S NS W WS W W W W W W e e

«BLOCK
«WORD

L WORD
LWORD

LPs
CLR

Moy
CLR
MoV
TsT
BMI
ASL
ADD

18 MOVB
BIC

MOVB

ADD
movs
CLRB
«IFNDF
BIY

BEG

JADUR IN PIREX E
JADDR FOR UNIT #
JLINE PRINTER TA

J1EOF Ca0

8,+EAESTKw4
LPCSR

LP.CL

LP=2,R0Q
LFSTAT (R®)
LPSA®2(RO),R1
LPSA(RD)

1§

R

MEMSIZ, KR!

(R1)+,R2
#177400,R2

#15,LPEOL

#2,R1 JINC Ry

RROR TABLE FOR NOT READY
(FOR NOW @)

S§K CODE

EC(DATA) FOR SPOOLING

MAKE THE POP=15 DO ALL THE WORK, THE POP=11 SIMPLY GET 8 A COUNT

OF CMARACTERS TO PRINT OUT, WE TREAT THE CONTROL CHARACTERS

12,15, AND 14 ONLY, A MINUS CHARACTER I8 CONVERTED INTOD MINUS

THAT NUMBER OF 8SPACES, NOTE ALL REAL ASCII CHAR'S HAVE A ZERO LEADING BIT!
EACM LINE HAS AN IMPLYIED CARRIAGE RETURN THAT I8 ADDED BY THE DRIVER
RATHER THAN S8ENT BY THE PUOPw1Y

NATE, IF HEADER WORD OF BUFFER WAS 420 BIT SET, IY IS
IMAGE MODE, AND WE NIETHER BUT ON LF OR CR{!

eALL TO ROUTINE HAS ADDRESS OF TCB IN HANDLER BUSY (IDLE) REGISTER

)ADDRESS OF LPUSR CONTROL STATUS

] REGISTER USED YO RESET WEVICE

' ON STOP 1/0 OPERATIONS,

JTCB POINTER (EXTENDEO BITS)

JTCB POINTER (LOWER {6 BITS), THIS

! WORD I8 USED A8 THE I1DLE/BUSY

' SWITCH FOR THE DEVICE DMIVER,
JCLEAR OUT ANY PENDING TIMER REGUESTS FOUR US,
7SETUP R@ TO POINT YO TCB

JCLEAR STATUS FLAG IN TCB

IGET BUFFER START ADDRESS

JOONIT RELOCATE ADDRESS IF BIT 15

! I8 ON,

JRELOCATE ADDRESS (WORD TO BYTE PUINTER)
J(¢ 113 OWN LOCAL MEMORY)

JCLEAR OUT TOP OF REGISTER

JOEFAULT, ASCII, HERE IS <CR>

BY 2 (BR=i34)

#12, (R1)e JDEFAULT, PRECEED LINE WITH LINE FEED
LPERWT JRESET ERKOR WAIT SWITCH
SNOSH JHN124¥NIF SNOSW, DISABLE ALL SWITCH INTERACT
#140P20,SPOLSW 78POOLER ENABLED & RUNNNG
83 JGO TO DISABLE HALT AT EOF (BR=135)

Figure 4-3

UNICHANNEL LP

Driver

PIREX,142

Task Development

MACLY XVM V1AQPQQ PAGE Q8¢

LINE PRINTER DRIVER FOR LP11/13

61
62

63
64

68

66
67

70

74
72

73
74
78
78

77
78

79
L]

81

83
84

L1}
L]]
87
88

L0
94
92

87156

87162
07164

p74i7@
p7172

e7178

7204
7206

97214

07222
p7222
07224
07225
7226

07232
7234
p7240
07246
27252

07254
87258

87262
97264

e727e
e7272
7274
w7276
27302
87308
B7342
p7316
27324
p7324

p7326
e7327

822711y
206414
P21421
1257687
200554
001423
195087
200548
232787
280032
170364
ar1415%
#1278y
pa7e28
172184
p127687
a0017n
172144

LLTLTY
LTL]
no2

125287

CLTETE]

And4a2

{a5a8y

LT.LLLY]

13278¢
[.LILT.]
17777%
pA14023
185087
P00466
200410
122711
0002084
20140%
122714
pRANLS
pat1402
[.LEART I
205209
010267
200434
01021687
2?2426
105a8y
povazs
10587687
178200
nsarsy
[LLIY.I]
170470

202004
1L
ag2

L1 1

381

481

CMP

BEQ
TST8

BEQ
CLRB

BIY

BEG
MgV

MOV

8EXIT
1ot
LBYTE
INeB

BR
CLRB

+ENDC
BITE
BEQ
CLRB

BR
CMPB

BEQ
cCMPB

BEQ
DEC
INC
MOV
MOV
CLRB
TSTB
BIS
SEXIT

10T
BYTE

MLPEQF, (R1)

53
LPEFWT

23
LPEFWT

N2, 8W

23
HLPECHK,LP,

#170,LP,CL

WAITSY

@)WAITSY
LPEFWT

3
LPEFWT
#1,=3(R1)
38

. LPEOL

43
#14,(R)1)

48
#15,(R1)

43

R1

R2
R2,LPBTCT
R1,LPBUFF
LPTAB
LPBUF

#3100,LPLCSR

WALITSTY

BIWALITSY

" JEOF RECORD?

Cl#2

JCURRENY TCB CONTAINS EOF (Bx=135)
JWAS LAST RECORD AN EQF ? (Br=135)

JNO = BRANCH TO NORMAL CODE (BR=135)
JYES » CLEAR SWITCH FOR NEXY USE (BR=»133)

118 SWITCH 2 UP ON 11 CONSOLE 7 (BR=133)

INO = RESUME NORMAL CODE (BRw138)
JYES = S8ET UP CLOCK (BR={35)

JYWO SECOND RETRY (BRw=133)

1EXIT TO SYSTEM

J8ET EOF FLAG FOR NEXT TCB (BR=135)

JRESUME NORMAL CODE (BR=133)

JCLEAR FLAG = IN CASE SPOOLEK JUST TURNED OFF (BR=135)
1480 BIY SEY IN HEADER IF IMAGE

INOT IMAGE, CHECK FORMS CONTNOL

}IMAGE, DON'T FORCE CR AFTER MESSAGE

FALLOW ALL FORMS CONTROL
JFIRSYT CHAR FORM FEED?

PYES, DON'T ADD LINE FEED YO LINE
JFIRST CHAR CARRIAGE RETURN

JYES, DON'T ADD LINE FEED TO LINE
JMOVE POINTER BACK 7Q LINE FEED
1COUNT ADDITION OF LF YO BUFFER
F1SAVE COUNT

JSAVE POINTER

fHISTORY 8AYS THIS HERE
JENABLE INTERRUPYTS TO LP GOING

JEXIT IN A WAIT STATE AND RESCAN

' THE ATL NOWg

Figure 4-3 (cont)
UNICHANNEL LP Driver

Task Development

PIREX,142 MAC1Y XVM V1APO@@ PAGE 29

LINE PRINTER DRIVER FPOR LP11/18

1] LP INTERRUPT ENTRANCE

2 ’

3 00733 LPINT?

4 DO7330 042787 BIC #100,LPCSR JDISABLE LP INTERRUPT
200490
170158

5 007336 eR4nsy JSR RO ,R¢SAVE 1SAVE REGISTERS
172444

6 0B7342 200004 4 JTASK CODE

7 007344 218720 MOV LP=2,R0 JGET TCB FOINTER
177840

8 97352 AA154y BEQ LPXT JIGNORE IF ITS ALREADY BEEN STOPPED BY

9 H A STOP I/0 REQUEST,

10 27352 20378y TST LPCSR JCHECK FOR EHRROR
1781368

14 87356 100454 BMI LPERR JYES

12 27360 0a5n6y CcLR LP.CL JCLEAR OUYT ANY PENDING TIMER REQUESY FOR U8,
172002

13 07364 LPLOPS

14 27364 105767 TSTB LPCSR J18 PRINTER CURRENTLY GOING?
170124

15 27370 10204y BPL LPSTIL JYES?T FORGET CHAR FOR NOW

16 a7372 10576y TSTB LPTAB JIN TAB EXPANSION TO SPACES?
CLTAYTY)

17 @7376 10042, AMY as JYES

18 07400 on5367 DEC LPBTCY JOECR CHAR COUNT
280332)

19 07404 100424 BMI 58 JWENT TO =1, MAKE CR TO FINISH LINE

20 07406 105777 TSTB OLPBUFF JMINUS BYTE IS8 TAB EXPANSION COUNT
280322

21 27412 100408 BMI 8s J18 ONE, GO SET WP

22 07414 117787 mMove #LPBUFF,LPBUP JSTICK CHAR INTO LINE PRINTEN BUFFER
280314
170074

23 07422 003267 INC LPBUFF JMOVE POINTER TO NEXT CHAR
080308

24 97426 00788 BR LPLOP J60 DO NEXT

25 ’

26 Q7430 117787 68} MOVB CLPBUFF,LPTAB JSEY UP TAB COUNT (MINUS, A LA {3)
200300
070302

27 974368 005287 INC LPBUFF
280272

28 07442 1052687 432 INCB LPTAB JCOUNT A SPACE FOR THIS TAB
2008272

29 07448 11278y MOVE #40,LPBUF JSPACE TO LINE PRINTER
LYY,
178042

30 87454 2AO743 BR LPLOP }GO DO NEXT

31 07456 185787 85 TSTB LPEUL JIMAGE OR ASCII
a0d28n

32 97462 9ai4ny BEQ 78 }IMAGE, DON'T FORCE <CR»

33 07464 1187687 MovB LPEOL,LPBUF JASCII, MERE IS <CARRIAGE RETURN>
2e0252
170224

34 97472 uagzeu 781 INC LPSTAT(RQ) JSET REV TO GOOD COMPLETION
080N 4

35 07476 000424 BR LRXIT

38 ’

37 07500 05278y |.PsTYL! BIS #4100, PCSR JENABLE INTERRUPT ON LP
202100
170008

ga 27508 290413 BR LPXITY JRESTORE RO=~R5 AND RETURN

9]

40 97512 185267 LPFRP: INCB LPERWY PSET ERROR WAIT Sw,
80227

41 Q7514 112787 Move N4, LPEST JERROR CODE 3 ,NOT READY TO TABLE
009004
171542

Figure 4-3 (cont)
UNICHANNEL LP Driver

PIREX.142 MAELY XVM ViAQQ0Q

LINE PRINTER DRIVER FOR LP11/183

42 97522 9127687 LPERR{I MOV
007848
171640

43 07530 at12767 MOV
02817n
171630

44 D7536 AMA167 LPYIT(! JMP
173618

45 '

46 97542 195687 | PxITt CLRB
171516

47 27548 032787 BIS
2M034n
178222

48 07554 onSasy CLR
167734

49 @756 012701 Mov
LLLLLT

52 p7564 a167an MOV
177270

81 27870 CALL

27570 204767 JSR

173826

52 075874 LPxTt

53 27574 052787 BIS
00340
178174

854 07602 0935067 CLR
177252

55 @r6es oaSpey CLR
177244

56 07612 012703 MoV
2a7082

857 287618 812701 MOV
20145»

58 07622 pA0167 JMP
173450

59 []

1])

[}})

62 ’

63 '

64 ’

65 07628 2857687 | PFCHK! TST
1772286

66 A7632 0B14)7 BEQ

67 27634 03276y BRIT
.LI'LT.E)
167728

Task Development

PAGE 29+

#LPCHK,LP,CL*2

#170,LP,CL

DEQuUY

LPEST

#340,P8

LPCSR
#1,RY
LPw2,RQ
SEND1S
PC,SENDYS

N34B,PS

LPm2
LPma

HLP R
HLP,LH,RY
DEQU

JADOR, FOR TIMER REQ,
72 SECS, IN TICKS(OCTAL)

JSCHEDULE NEXT TASK

JINDICATE SUCCESSFULL QPERATION

JINHIBIT INTERRUPTS

JSHUT DOWN DEVICE
JTELL CALLER DONE
JIGET TCBP

JTELL CALLER DONE

FINHIBIT INTERRUPTS

JCLEAR BUSY(IDLE} FLAG

JDEQUEUE ANOTHER REGUEST IF ANY
! IN THIS DRIVERS DEQUE,

SUBROUTINE TO FIELD CLOCK COUNT=DOWN

LP=g

LPCX
H2,8W

JHAVE WE BEEN DISABLED 7 (Br=133)

JYES = RETURN TO CLOCK = NO RETRY (BRwi35)
JNO = IS SWITCH 2 STILL UP ? (BR=135)

Figure 4-3 (cont)
UNICHANNEL LP Driver

PIREX,142

(L]
69
70

71
72

73
4

78
76

77

78

79
80

8f
[-}-]

83
84
1]
L1
a7
88
89
90
91
92

87642
27644
7646

@7652
07684

27660
7662

276866
07672

27720

[Yad 1]

27714
e7716

e7724
e7726

27732

87734
87738
@774p
@7742
07743
p7744

po1ay,
n22408
nesrey
177208
20142y
ees57sy
167634
100422
212702
pagayn
P16209
LLISRY
p1278y
20706892
177480
p4a278)
020017
2003086
912764
an7934
CLLULLY
LLIJIT]
116287
021128
177428
LLEFT Y
P1271m
aee(7a
900207

na2p009
LLLLEL
a32000
LLL]
[-L.L]
[J.L]

MACLY XVM ViAQR0
LINE PRINTER DRIVEe FOR LP11/13

LPEHK?

LPrLx?

LPCXITH
LPeX?

]
LPRUFF!
LPATET?
LPTARI
LPEOLS
LPFRWT?
LPEFWT?

BNE
BR
T8T

BEQ
TS8T

BMI
mMov

MQv

mMov

BIC

Moy

ASR
mMove

RTS
Moy

RTS

LHORD
LHORD
LWORD
VBYTE
,BYTE
JBYTE
LEVEN

Task Development

PAGE 29+
LPCXIT JYES = SET UP CLOCK RETRY (BrR=135)
LPCLK JND « SET UP RETRY OF TCB (Br=135)
LP=2 THAVE WE BEEN DISABLED
LPCX tIF YES, EXIT, LEAVING CLOCK DISABLED (BRe135)
LPCSR JDOES ERROR STILL EXIST ? (Brm133)
LPCXIT JYES « SET UP CLOCK RETRY (BN=133)

¥LPTCODw2,R2 JSCAN ATL FOR OUR NODE (BR=193)
ATLNP (R2),R1
HLPLPw12 JRESTART AT BEGINNING OF REQ,

#17,A,TS(R1) JRY PODINTS TO OQUR NODE, MAKE RUNNABLE

NLPw26,4,8P(R1) JSET UP STACK POINTER

R2 JMAKE BYTE ADDRESSING
LEVEL(R2),LP~12 JSET UP PS8

PC JRETURN TO CLOCK (BR=135)

#1709, (RO) JRO POINTS TO TIMER ENTRY

PC JRETURNS TO CLOCK

2 IBUFFER POINTER

2 IBYTE COUNT

[ITAB LOCATION

[19 IF IMAGE, 15 IF ASCII

[} FMAKE EVEN

2 JEOF WAS LAST RECORD FLAG (BR=135)

JMAKE EVEN (BR=$35)

Figure 4-3 (cont)
UNICHANNEL LP Driver

4.7.2.2

Task Development

Equates, device locations, etc. (Page 28, lines 7-15).

Initialization and I/0 request section (Page 28, lines 1-90);
used to set up and initiate a device operation.

Interrupt section, used to respond to the completion of a
device operation and to check for errors (Page 30, lines 1-59).

An optional clock wake-up section; used to check the correc-
tion on an error condition on the clearing of a wait-at-end
of file condition and either retry the offending operation
or set another wake-up call (Page 29, lines 61-91).

Task Entry - Initialization - When the task is initially

called, the user stack area is reset. Execution normally begins at

the first location of the program code. At this point, all general

purpose registers are available for use by the task. If the task is

interrupted by a higher priority task before completing the request,

execution will resume at the point of interruption when program control

is returned. Various steps in device driver (Figure 4-3) initiali-

zation include:1

1.

4.7.2.3

Clearing out any pending timer requests (if the task uses
wakeup services). (Page 28, line 43).

Setting up a pointer to the data buffer and relocating the
pointer value if it comes from the XVM (Page 28, lines
44-50, 74-87).

Various device dependent operations (Page 28, lines 51-56).

Detect and initiate halt at end of file procedure (Page 28,
line 57-73).

Start up the device (Page 28, line 88).

Exit in a WAIT state (Page 28, line 89) until reawakened by
an interrupt (see Section 4.7.2.4).

Interrupt Processing - An interrupt transfers control to the

device driver interrupt section at priority 7. Interrupt processing

(Figure 4-3) is composed of the following steps:

1.

2.

Disable the device interrupt (Page 29, line 4).

Save the interrupted task registers switch stacks and drop
down to the task's actual priority as specified in the LEVEL
table. This is all accomplished by a JSR RO, R.SAVE (Page 29,
lines 5 and 6). R.SAVE is called the task's "TCN" as a
parameter and passed.

1Page number refers to the page number at the top of the PIREX

listing.

4-62

Task Development

3. Test the task busy idle switch to see if the request has been
cancelled (Page 27, lines 7 and 8). If it was cancelled,
use the normal DEQU exit without sending a completion message
to the caller (see Section 4.7.2.4).

4., Perform task interrupt processing and error checking (Page 29,
lines 10-36).

5. If a correctable error is detected, set the error code in the
DEVST table. This error code should indicate a correctable
error. The DEQUl return should be used in conjunction with
a clock wake-up call to allow automatic retry of the operation
(Page 29, lines 40-44). See Section 4.7.2.4 for information
on DEQU1l and Section 4.7.3 for information on the timed
wake-up.

6. If a fatal error occurs, the event variable should be set to
indicate this error.

7. If the operation was successfully completed, use the normal
exit procedure described in Section 4.7.2.4 (Page 29, lines
46-58) .

4,7.2.4 Exit Techniques - When a task has finished execution, it can

exit by issuing the SEXIT macro (exit and change state of task to "s").

+MACRO SEXIT s
I0T
.BYTE O,s

« ENDM

The SEXIT macro allows a task to change status to state "s" after
exiting. A task state of "0" indicates the task is runnable, a state
of "2" indicates a wait state, and a state of "4" indicates a stop
state with removal of the ATL node. Task states must always be an
even number since they are used to compute a word index in the PDP-11.
A SEXIT in state "O0" causes the system to rescan the ATL list for the
highest priority task.

There are actually three modes in which a task may exit. In the first
mode, is used on completion of a request. Before a task exits, it
must:

1. Zero the busy/idle switch.

2. Set the caller's Event Variable to indicate the nature of
task completion and send an optional interrupt to the XVM
or the PDP-11.

Task Development

3. Degueue a request from its deque and process it if found;
otherwise exit.

Before a task can begin the three previously mentioned steps, it must
be executing at level 7 (the highest priority level in the PDP-11).
As an example, assuming a task name is "XR" (the first executable
instruction of every task has the task name as its label), then the

following program code would accomplish the three necessary steps:

BIS #340, @#PS;INHIBIT INTERRUPTS
MOV #?,R1 ;SET CALLER'S EV TO ? (APPROPRIATE VALUE)
CALL SEND15 ; AND SEND CALLER

AN OPTIONAL INTERRUPT

~

TELLING THE REQUESTOR THAT THE

~

REQUEST HAS BEEN PROCESSED

~e

(A COMPLETE LIST OF EVENT)

~e

; VARIABLE SETTINGS MAY BE
; FOUND IN SECTION 3.2.5.4

BIS #340, @#PS;INHIBIT INTERRUPTS,

CLR XR-2 ;CLEAR THE BUSY/IDLE SWITCH ("XR" is the tag
associated with the first executable
instruction in the task program code)

CLR XR-4

MOV #XR,R3 ;DEQUEUE ANOTHER REQUEST IF ANY

MOV #XR,LH,R1

JMP DEQU ; EXISTS IN THIS TASK'S DEQUE

IF A REQUEST EXISTS, NO RETURN

~e

IS MADE FROM ROUTINE DEQUE
AND THE REQUEST IS AUTOMATICALLY

~e

~e

REMOVED AND PROCESSED AS IF IT

~e

WERE JUST RECEIVED WHEN THE

~e

TASK WAS IDLE

~e

This first method is used in the task interrupt section upon successful

completion of a request.

Task Development

The second method is one where the task exits from the initialization
section (Figure 4-3, Page 29, lines 46-58) in a wait state using the
SEXIT macro, and an interrupt routine or other task will complete the
previously mentioned three steps at a later time. A device driver is
typically exited in this way (Figure 4-3, Page 29, line 57). The

initial section of the device driver is used to set up the device con-
troller and begin the I/0 operation. The task will then exit in a

wait state until the I/O is complete, the interrupt section is called,
the device is shut down, and the previously mentioned three steps are

done informing the requestor that the I/0 operation has been completed.

The third method of exiting is one used either when a recoverable error
isrdetected in the interrupt section of a driver and the intention is
to exit and wait for an error recovery or when another I/O request is
issued in the interrupt section and another interrupt is expected.

This exit through DEQUl1 does not cause the dequeuing of pending re-
guests but simply places the task in a WAIT state. This method assumes
that an R.SAVE has been performed upon entry to the interrupt process

routine. The required code to use this exit is:
JMP DEQU1

No registers are preserved by this exit. Control is returned to the
interrupt section upon occurrence of an interrupt or via the clock
routine wake-up, to a location chosen by the clock set up section.
(Figure 4-3, Page 29, line 44).

4,7.3 Timed Wakeup

In the design of a device driver it is useful to include features that

eliminate operator intervention whenever possible.

For instance, in the example of the PIREX Line Printer Task, an OFF
Line condition is handled by retrying the printing every two seconds
until successful. This is accomplished by using the wakeup feature
of the Clock Task. This is done by simply placing the return address
and the time dealy into the Clock Table "CLTABL" (See Section 3.3.4)
Figure 4-3, Page 29, lines 42-43) and the exits using the DEQUl type

exit.

Task Development

When the wakeup call occurs, the clock wakeup subsection specified by

the return address will be invoked. In this subsection:

1. Test the task IDLE/BUSY switch to see if the task has been
shut down. If shut down, a RTS PC return to the Clock Task
is in order. (Page 29, lines 65, 70-71, 83.)

2. Determine if the error has been corrected. If not, reset
the timer and RTS PC to the Clock Task. (Page 29, lines
72, 73, 82, 83.)

3. If the error has been corrected, reprocess the original TCB
request and return to the Clock Task. (Page 29, lines 74-81.)
This will cause PIREX to retry the TCB.

4.7.4 Assembly and Testing

4.7.4.1 Assembly and Loading -~ New PIREX device driver should be
assembled as a part of the PIREX monitor. Background tasks may be

assembled separately.

In the background task case, the user should construct an XVM program
to load the background task binary into XVM memory. (See SPOL15 for

an example of the required technigue.) The XVM program must then issue
a CONNECT Directive. To start the task, if the task is to execute in
PDP-11 local memory, two additional steps are required:

1. 1Issue a local memory size directive to determine if there
is enough local memory to accommodate the new task.

2. Issue a CONNECT directive (assuming there was enough room
in local memory for the task).

3. After issuing the CONNECT directive, use the initial portion
of the PDP-11 code to move the remainder of the task into
the local memory starting at the first free location.

4,7.4.2 Testing - Since the typical UNICHANNEL system does not have

a terminal device attached to the PDP-11 processor, the only debugging
facility present is the console indicators on the PDP-11. An addi-
tional aid is the UDMPll paper tape provided with all UC15 XVM/DOS
systems. This program provides a destructive dumping facility that
recovers the entire state of the PDP-11 LOCAL memory and dumps it into
the LP11/L.S11/LV11 Printer.

Task Development

NOTE

The UDMPll program is an unsupported package
that can only be used on systems with a printer
device on the PDP-11 UNICHANNEL Processor.

For tasks executing in the common memory, the
traditional ! Q-DUMP feature of the XVM/DOS
monitor should be used.

CHAPTER 5
SPOOLER DESIGN AND THEORY OF OPERATION

5.1 INTRODUCTION

This chapter discusses the design concepts of the XVM UNICHANNEL SPO-
OLER software and its theory of operation. This information is pro-
vided to enable the user to understand the SPOOLER software in order
to add new SPOOLED tasks or to modify existing software. The actual
modification process is described in Chapter 6. Flowcharts are pro-

vided whenever it is necessary.
5.2 OVERVIEW
5.2.1 SPOOLER

The word 'spool' and 'spooling' originated in the textile industry.
During thread manufacture, the threads are wound on small spools by
first storing them on large spindles and then transferring them onto
small spools. This entire process is called spooling. In the com-
puting industry, the term spooling is used to describe the process of
collecting and storing data on a large high-speed medium and control-
ling the flow of this data to slow speed devices. The "SPOOLER" is a
distinct piece of software that controls the entire spooling operations.
Spooling permits data flow between a data source and a data sink to
proceed at independent rates. This feature gives the user greater
computing power and faster turn-around time because of better system

resource utilization under an integrated operating system.
5.2.2 XVM UNICHANNEL Spooler

In the XVM UNICHANNEL system, spooling is achieved by using the dual
processing capability of the system., The two processors, XVM and
PDP-11, operate in the Master and Slave mode respectively. The Slave
processor (PDP-11) controls the entire spooling operation. Data to
be spooled is supplied by either the master processor (XVM), or by

tasks running under PIREX. Spooled data is stored on a disk cartridge.

[O9]
|
—

f.g' 3

Spooler Design and Theory of Operation

The Line Printer, Card Reader, and the Incremental Plotter, all being
UNIBUS devices, are supported by the XVM UNICHANNEL spooler.

5.3 SPOOLER DESIGN

The XVM UNICHANNEL SPOOLER is based on a simple design. Spooling of
data is done through the RK05 disk. A contiguous portion of disk is
allocated via SPLGEN for this purpose by the operating system on the
XVM. The starting block number and the size in terms of number of
blocks is conveyed to the SPOOLER when it is issued the 'BEGIN' dir-
ective. The SPOOLER allocates and deallocates this space on the disk
through a BITMAP it maintains. The spooling and despooling operations
of every task are performed through a central "TABLE", in which every
spooled task has a slot. Against each slot there are several entries
used to keep track of the data during spooling and despooling. Pro-
visions are made in the SPOOLER to permit spooling of data regardless
of the number of blocks occupied in the spool space and the number

of buffers in the SPOOLER provided despooling operations are going on.
This prevents system lockout. All the data blocks on the disk belong-
ing to a spooled task are linked together by forward pointers stored
in the last word (3778) of each data block. The end of data in a
block is indicated by a zero word. Records are assumed to be less
than 3748 words in size. The last block in a spooled file has a pointer
to the previous file's last block in word '18' or a -1 if there is no
active previous file, if the last spooled file has not yet been de-
spooled. Also the last block in a spooled file contains an end of file
indicator in word '3768' of the data block. Sections 5.3 and 5.4 des-
cribe the static layout of the spooler. The dynamic layout is des-
cribed in Section 5.5.

5.4 SPOOLER COMPONENTS
The following are the major components of the SPOOLER software:

1. request dispatcher

2. directive processing routine
3. task call service routine

4. device interrupt dispatcher

5. device interrupt service routine

Spooler Design and Theory of Operation

6. utility routines

7. Dbuffers, TABLE, BITMAP, TCBs

A brief description of each of the above components follows.

5.4.1 Request Dispatcher

This routine dispatches (routes) all requests made by the SPOOLER and
requests to the spooled tasks. This is done by using the TCN in word
'1' of the TCB. The dispatcher transfers control to the appropriate
directive processing routines, in the case of spooler requests and

to the task call service routine, in the case of requests to spooled

tasks.

5.4.2 Directive Processing Routines

These routines process directives issued to the SPOOLER to control
spooling operations. The basic operations are "BEGIN" spooling and
"END" spooling. These routines may initialize switches, TABLE, BIT-
MAP, pointers, buffers, set up TCB, start tasks, stop tasks, ... etc.

5.4.3 Task Call Service Routines

A task call service routine processes requests addressed to tasks
running under PIREX. It spools data onto disk in case of output tasks,
and for input tasks it despools the data from disk. Output tasks buf-
fer data from several requests into blocks and transfer the blocks to
disk when full. Input tasks read into core, data blocks stored on
disk, and unpack the data into the requestor's buffer. Task Call
Service Routines update the TABLE, pointers, and switches, and use the
utility routines present in the SPOOLER to write or read a block onto
or from the disk, get or give a buffer, get or give a TCB, etc. (Refer
to Figure 5-2.)

5.4.4 Device Interrupt Dispatcher

All interrupts from devices interacting with the SPOOLFER are dispatched
by this routine to the appropriate service routines. This is done by
using the TCN of the requestor for that task request present in word

'138' of the TCB.

Spooler Design and Theory of Operation

5.4.5 Device Interrupt Service Routines

These routines handle completion of I/O requests from devices. They
supplement the driver routines present in PIREX as in the device hand-
lers. Besides the disk interrupt service routine, each spooled task
has its own interrupt service routine. The disk interrupt service
routine is made up of the "read interrupt processor" and the "write
interrupt processor". These are in turn made up of routines handling
read/write operation for each specific spooled task. The interrupt
service routine of a spooled task controls the despooling operation
for output tasks and the spooling operation for input tasks. These
operations are driven by the table entries which determine the end of
the operation. Device interrupt service routines update the TABLE,
pointers, switches and use the utility routines to write or read a
block onto or from the disk, get or give a buffer, get or give a

TCB, etc.

5.4.6 Utility Routines

Each SPOL11 utility routine performs a specific function. They are:

FINDBK Find a free block on diskland set its bit in the
BITMAP Table (protected).

FREEBK Free the block indicated and reset its bit in the
BITMAP Table.

GETBUF Get an unused buffer from the buffer pool
(protected) .l

GIVBUF Give the used buffer back to the buffer pool.

GETRKT Get a disk TCB from the Disk TCB pool.

GIVRKT Give back the TCB to the Disk TCB pool.

GETBLK Read a block from disk.

PUTBLK Put a block on disk.

GETPUT Get or put a block on disk.

RESTRQ Reissue a delayed request.

DEQREQ Tell requestor that a request is done and dequeue

the next request, if any.

1
Protected routines are those run at priority level 7.

Spooler Design and Theory of Operation

5.4.7 Buffers, TABLE, BITMAP, TCBs

Buffers The SPOOLER maintains a pool of buffers in a
doubly linked list for general use. Buffers
are used to pack data into blocks to be
written onto disk (by output task call ser-
vice routines) and to unpack data from data
blocks read from disk into requestor buffers
(by input task call service routines).

TABLE The entire spooling and despooling operation
of all tasks is controlled by entries in this
table. Every spooled task has the following
entries:

WORD O: DEV device mnemonic (set by the BEGIN
routine)

WORD 1: CBN current despooling block number
(set by the despooler).

WORD 2: CRP current record pointer (set by the
despooler).

WORD 3: NBN next despooling block number (set
by the despooler).

WORD 4: LSB last spooled block number (set by
the spooler).

WORD 5: LFB last spooled file block number (set
by the spooler).

BITMAP A record of availability of disk spooling space
is maintained in the BITMAP. Corresponding to
each disk block reserved for spooling is a bit
which is 'ON' if the block is in use and 'OFF’'
if free.

TCBs Buffered blocks of data are read from disk and
written onto disk using TCBs. Output spooled
tasks despool data to devices using TCBs and
input spooled task spool data from devices using
TCBs.

5.5 THEORY OF OPERATION

This section will describe in detail the flow of control in the SPOOLER
among the above components. To illustrate this process, the spooling
and despooling operations of the Line Printer will be discussed. The
routines in the SPOOLER listing (Figure 5-1) are broken up into logic

boxes and referenced by line numbers.

Spooler Design and Theory of Operation

5.5.1 SPOOLER Startup

Spooling under an operating system on the XVM is accomplished as
follows. The SPOOLER task should be added to PIREX, by reading it
into local memory and connecting it at run time via SPOOL (SPOL15).

As supplied by DEC, the SPOOLER is a separate binary program from
PIREX. A special XVM program referred to as the system/SPOOLER inter-
face (SPOL1l5) is responsible for loading the SPOOLER into PDP-11 local
memory and then issuing requests to PIREX to connect the SPOOLER and

then begin its operation.

SPOL15 (SPOOL) determines if the spooler is running. If so, SPOL1S
asks "END?". If the reply is yes, a terminate spooling directive is
sent to PIREX and the SPOOLER is disabled. If the SPOOLER is not run-
ning, SPOL1l5 asks on which RK drive the user wishes to begin spooling.
Spooling may be done on any RK unit that has a cartridge that has been
initialized with a SPOOLER area by the SPLGEN program. If the cartridge
has a SPOOLER area and if there is room in the PDP-11 local memory,

the SPOOLER is read from the system disk (DPO, DK, or RKO) and trans-
ferred to local PDP-11 memory and started. Note that the questions

"RK UNITH#" and "BEGIN?" must be answered in this process.

All questions have default replies displayed. These replies may be
selected by entering a carriage return. The options on YES/NO questions
are "Y" or "N". The default valve for the RK unit is the unit upon

which spooling was done previously (or unit 0 if PIREX was just loaded).

Example: XVM/DOS Vnxnnn
$SPOOL

SPOOL XVM Vnxnnn
Rk UNIT # [1] 1
BEGIN? (Y) Y
SPOOLING ENABLED

XVM/DOS Vnxnnn
$SPOOL

SPOOL XVM Vnxnnn

END? (v) Y
SPOOLING DISABLED

XVM/DOS Vnxnnn
$
Subsequently when PIREX schedules the SPOOLER task to run, the "BEGIN"

request is processed. On gaining control, the 'request dispatcher'

Spooler Designh and Theory of Operation

transfers control to the 'BEGIN' routine. The first time the SPOOLER
processes a directive it also executes a once only section of code,
which builds a central address table. This table contains addresses

of frequently addressed locations in the SPOOLER and is necessary since
the SPOOLER is coded in Position Independent Code (PIC) and thus can

be loaded anywhere in the PDP-11 memory. SPOOLER is coded in PIC to
permit additional tasks to be added to PIREX without necessitating
SPOOLER changes. The BEGIN routine performs the following: general
startup operations and the specific line printer startup operations

(refer to Figure 5-1):

GENERAL OPERATIONS - BEGIN DIRECTIVE:

Set up the SOFTWARE page 7, lines 9-12
INTERRUPT trap address in
the PIREX SEND11 table

Save the SPOOLER start address line 13

in the "disconnect SPOOLER"

TCB

Initialize the FINDBK routine lines 15-18, 40

switches and pointers.

SPOL11,141 MAC1Y XYM ViA0Q PAGE 3
ASSEMBLY PARAMETERS

1 LSBTTL ASSEMBLY PARAMETERS
2 !

3) COANDITIONAL ASSEMBLY, SLPs $CD, $SPL, FOR LINEPRINTER
4 ? FOR LP USE 40p0@

-1) FOR PL USE i20@@

6 } POR CD USE 209200

7 040000 SLPz400DR

8 18SPLe10ARD

¢)

i0 ’ CARD READER, AND XY PLUTTER, RESPECTIVELY
11 anAcam NEVSPPsQ

12 A0Omam NEVCNTEQ

13 LJIFOF SLP

14 P0AMAy NEVCNTSDEVCONT+L

185 m42ana NEvSPPRDEVSPPISLP

16 LENDC

17 LIFDF sCD

18 DEVCNT2DEVONT+ 4

19 PEySPP=DEVSPPLSCD

20 JEnDE

21 JIFDF S$PL

22 NEVCNTEDEVCNT#4

23 NEvSPPeDEVSPP|SPL

24 LENDE

28]

26 '

27 Y

28]

29 . LSBTTL SYMBOLIC EQUATES

Figure 5-1
UNICHANNEL Spooler Components

SPOL11,144
SPOOLER DISPATCHER

OO@NRDRD N -

in

18

19

20
21
22
23

24
23
26
27

28
29
30

31
32
33

23000
noepe?2
napoR4
ae@idn
seni42
2pRi44
ApR146

o252

peibe

oB166

ep1i72
20174

po2e2
ep2p2
#0204

pa2in
re21n
en212

or216

20222
pe224
eA22¢
20230

00234
p0236
20249
pez242

90246
ae25p
20250

pe2ss
PR260p
oe262

Spooler Design and Theory of Operation

MARLY

XVM V1iAQQ® PAGE 6

NOTE

The A assembly errors contained
in this figure are warning
messages, and, do not indicate
actual errors in this example.

.SBTTL SPOOLER DISPATCHER

AARoan SPREGSE,

aa576%
2AA1 46

PPOqL 4
afdoan
fngaon
nL67am
177772
012767
1adapn
177762

AL3767
[\ RY-.1.]
20174nm
an576y
aa5n4n
ARiA2E&
pL12737
naannn
[LRLLY]

n1R70y
n8270y
1775874

N7
282702
04748
nI270an
20003
LI XR-2]
28539y
fALIYR
A16702
on4762
0680122
nBd112
a142a2
n20267
0A47 50
anL37o

122760
ana207
Anang2
nAL143>
niA7ay
n627n;my
neg124

RUME

$PeTy

1Pet

15812

oRes

. WORD SPEND»SPBEG/2 1SIZE OF SPOOLER (BR=127)

+WORD SPST JSTARTING BYTE OFFSET (BR»128)
BLOCK B, +EAESTK#6m2 1 (BR~128)

»WORD DUM

. WORD]

LWORD 2

MOV SPST=2;R0Q JIGET TCP ADDRESS IN R@

MOV #{00A20,3PST=4 JFAKE 11'S REG, TO PREVENT GETTING KILLED

JTHIS IS TO PREVENT STACK BLUW UP THRO!
JCTL 'C'S FROM PDP=ib

Mav #HCTLCT,SDCTSY JSAVE CURRENT CTL !C' COUNT WFOR LATER CLEANUP
TST ONCEFL I1HAS THIS CODE ALREADY BEEN UONE?
BNE 208 JYES == DON'T DO IT AGAIN

MoV HDEVSPP,88DEVSPL 1SET UP DEVICE SPOOLED WORD
ADR SPBEG,R1 JINITALIZE ADDRESSES (PIC COUE)

MOV PC,RE

ADD HSPBEG=,,R{

ADR ADRTBL ,R2

MOV PC,R2

ADD HADRTBL~, R2

MOV #=ADTCNT,R3

ADD Ri,(R2)+ JCALCULATE ADODRESSES

DEC R3

BNE 198 FLOOP UNTIL ALL FINISHED

MOV BUFLAD,R2 JSET UP BUFFERS

ADD R1,(R2)+ 1SET UP POINTERS GOING BACKWARDS THRU @
ADD Ri,eR2

MOV »(R2),R2

CMP R2,BUFLAD FHEAD OF BUFFER?

BNE 158 INQ == TRY AGAIN

cCMPB WSPCOD+220@, TCODE(RD) JSPOOLER REQUEST?

BEQ 1%

MoV PC,R1

ADD HDISP1le,,RY f GET DEVICE DISPATCH TABLE IN R1

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

SPOL11,141¢
SPOOLER DISPATCHER

34
33
36

37
38
39
42

41
42
43
a4

4as
1]
a7
48
49
5

51
52
53
54
5%
56
57
58

pe26s
20279

#0276

o03ep
[11]

[.LERE

er312
22314

20322

0324
P0324

0033
oP334

oR34ap
e0d4n

r0344
20346

2@352
eeass

22362
oR364
Pa366

p2370
ee372
00374
28376
pe4ne
po4@2
004024

#2406
eR4to
ondy2

LLELT.)

122760
LLLLLY]
.11 LI. I}
an143.

pn5720
12278
ANdnes
andans
AN1424

pasr22
122760
LLEL L]
andnne
ant1a1y

13761
[T AT L1]
P62704
ANk
1127141
aoanzy

204767
R00864

n1a704
n827a4
podn22
116009
[LLLLLL]
n427a9
177740
060102
n61204
- LLESN]

a00n24
177734
pN24a34
177734
177734
177734
177734

[LEY 4T
Andasn
And43n

Spooler Design and Theory of Operation

MACY 1

!

XYM V1A200Q

CLR

CMPB

BEG
TST
CMPB
BEG
TST
CMPB

BEQ@

PAGE 6+
R2

#LPCOD,TCODE(RA) JLP REQUEST?

28

(R2)+

#CDCOD, TCODE (RM) INO, CD REQUEST?

2%

(R2)+

#PLCOD, TCODE(RQ) JNO, PL REQUEST?

2%

'
JUNRECOGNISED TASK REQUEST REPORT,

4
ERROR}

71et

22812

DIspmt

Y
tDFEVTCE REQUEST

NIgP

MOV PRDEVST R)
ADD HSPLODW3w2+4/,R1
MOVB #10PS77,(RL)
CALL DEQREG
JSR PC,DEGREQ
Moy PC,RY 1SPOOLER REGUEST #GET SPOCLER DISPTACH
ADD 4DISPO=,, Rt FTABLE IN #3
HOVB FCODE(R@),R2 IGET FUN, CUDE
BIC #177740,R2
ADD Ri,R2 JADD FUN, CODE TO R}
ADD (R2),R1 JBUILD DISPATCH JUMP X
JMP (R1) JBRANCH TO APPROPRIATE ROUTINE
’
)SPONLER DIRECTIVE DISPAYCH TABLE
BEGIN =DISPO JBEGINI CODE=g
ERROR =D1SPQ 1ERRORS CODE=2
END ~0ISPO JEND: CODE=4
ERROR =DISPR JERROR? CODE=6
ERROR =DISPQ JERROR? CODE=1Q
ERROR =DISP@ JERROR? CODE=ji2
ERROR ~D1ISP@ JERROR? CODE=i4
*DISPATCH TABLE
LPCALL ~DISPY JLP: LINE PRINTER
COCALL «DISPQ JCD: CARD READER
PLCALL ~DISPI JPLS XY PLOTTER

Figure 5-1 (Cont.)

UNICHANNEL Spooler Components

SPOL11,.144
BEGIN DIRECTIVF

1
?
3
4
3
6
7
8
9

19
11
12
13
14
15
16
17
18
i9
28
21
22
23
24
25
26

Q7
28

30
31

32
33
34
35

L LERY]
rRa1s

20422
P0426
PO432

oR44dn

P0448
po452
pe4s5es
pe4se
90464
pe4za
ped’e
o@472
ee4a72
oR474

pedSep
pe502

peses

o852
20514

ees2p
p@522

20524
r0524

n12704
p82701¢
pR2348
013702
aninos
2101682
[L1 E¥
216087
R0AMY 4
an6274

n12767
ANANMY
[LRWRY]
f167ay
an4549
010167
021432
p1R2167
091430

219794
n827a1
177458

010148

f12641

A167 04
.LEXT 1.}
nt1d702
ns27ae
padmy2
812703
Q0dnns
010221
B627a2
a0 3ae
aa33ny
NALINT N

B16man

SPOL11,141
BEGIN DIRECTIVE

36
37
38
39

49

41

42
43

ne53p
ee532
20534
ee536

[L.LLF]

20554
ee556

[.LULEY]
[.LI.FEN.]
[L.LERN]
20621
n42718
[.LLLI-X
2168767
AN4420
081334
21670
1LY EE]
LLYLILL]
n101687
paS48n

Spooler Design and Theory of Operation

MAC11 XVM V1AQQQ

,SBTTL

PAGE 7

BEGIN DIRECTIVE

’
JTHIS ROUTINE STARTS ALL SPOULING OPERATIONS, SWITCHES, CONTROL REGISTERS

JETC,

ARE SET . THE BUFFER POOL,

TC8 POINTERS, BITMAP, TABLE EYC, ARE

)SFT UPJRITMAP 8 TABLE ARE SAVED ON DISK(FOR BACKUP OPERATIONS), EACH
JIMDYVIDUAL SPOOLED TASK IS TMEN INITIALIZED & STARTED UP IF NECESSARY

MoV
ADD

!
BEGIMI

MOV
MOV

MOV

PC,R1
MDEVINT=,,R1

PHSENDLL,R2

R1,5PCOD¥2(R2)

JGET ADDRESS OF DEVINT IN RI

JSET SEND1i ADDRESS IN PIREX

14(R@), TCHDSA«TCHEDIS

y YNYTIALIZE ALL SWITCHES

MOV #1,CBTPTR

MOV ASPLFU,RY

MoV R1,TCDINI

rov R1,TCOPNT
)SFT CONTRO| REGS,

MOV PC,RY

ADD #DUM=~, ,R1

PUSH Ri

MOV R1,=(8P)

POP =(R1)

MoV (SP)+,~(R})

)SFTHP BUFFER POOL
INITIALIZE RK TCB POINTERS

MOV

Mav
ADD

MOV

MoV
ADD

281

DEC
BNE

RKCAD,R1

PC,R2
#TCHSYe,,R2

#TCBECT,RY

R2, (R1)+
#30,R2

R3
23

JINITIALIZE BITMAP

PUSH
MOV

MARS Y

ASR
ASR
ASR
BIC

MOV

MoV

ADD
MOV

XVM ViAQO®

NBK (RE)
NBK (R@), = (SP)

PAGE 7+

(8P)
(SP)
(SP)
#1,(8P)

BTMPAD,CWDPTR

BTMPAD,Rt

(SP)*,R{
R1,BTMPED

iSTART BIT MAP SEARCH

1N IONHSETUP TASK CODE STACK FOR FINDBK
IHHL3OMHWHEN MORE THAN ONE GUY FINDS OUT

JHBLIOHHTHERE ARE NO BLOCKS

}GET ADD, OF OUM IN R

FSAVE ON STACK
¥} SET SPOULER CONTROL REG,!}!

JGET RKTCBP ADD, IN Wi

}GET TCBR2! ADD, IN R2

JSETUP YCBCT TCB!'S

1SET TCBRK1 POINTER
JBUMP R2 TOD TCBRK2

JGET S8IZE OF SPOOLER AREA NUMBER

JCOMPUTE SIZE OF BIT MAP
1SIZESNUMBK/8+2

IGET EVEN NUMBER
IRESET CWDPTR

1 (BRO112, TEMP FIX)

JADD OFFSET TO END
JSET UP BTMPED

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5=

10

Spooler Design and Theory of Operation

SPOL 11,141 MACYY XVM V1AQBQ PAGE 7+
BEGIN DIRECTIVE
44 00562 R16704 MOV STBKNA, R JGET ADDRESS OF STBKNMw4q IS R{
anddn>
45 pO566 216024 Mav SBEN(R2),(R1)* JSET STARTING LOCK #
RABAY
45 pP572 21802 MOV NBK (K@), (R1)+ 3SET NUMBER OF BLOCKS
LT Y]
47 p@57E nlgn37 MOV UNIT(R®),#¥SPUNIT JITELL PIREX SPOOLING UNIT (BR=126)
CLLELRY.
aniarn
48 pP6RP4 B160EY Moy UNIT(RO),UNITSP JCOPY INTO LOCAL MEM, (BR=126)
LLLIRY:
anIssa
49 02612 NAANAY SWAB UNITSP 18ET UP FOR TCB USE (BR=126)
LLEE-TY]
50 20616 212702 MOV WBTMPSZ,R2 JGET BIT MAP SIZE IN R2
2023682
51 @R622 M1210N MOV R1,R3
52 pP624 20502% 48} CLR (R3)+
83 20626 aa530> DEC R2
54 pP63a Ap137s BNE 43
LT JINITIALIZE TABLE
56 20632 B1670¢ MOV TABLAD,R¢ 1GET ADDRESS DF TABLE IN Ri,R3,R!
PR4334
57 PO63s A1A10% MOV R1,R3
38 po64p ni127m2 MOV HTABLSZ,R2 JGET TABLE SIZE IN R2
200044
39 00644 B1272% x8: MOV #=1,(R3)+
17777y
60 on65m nAS3no DEC R2
61 20652 AB1374 BNE 3s
62 00654 nig71| Mov #LP1, (R1) 7SET LP1(DED) IN TABLE
1420614
63 DR6E6p M1276¢ MoV #CD1,COTEOF (R1Y JSET CD1 (DED) IN TABLE
A3046¢
#0001 4 '
64 QPE6E N1276, MoV #LT1,PLTECF(R1) JSET PL1 (DED) IN TABLE
14246
TLERT
68 1SFT SPOOLER SWITCHES
66 p2674 2A5037 18 CLR PHSPULSW JRESET SPOOLER SWITCMES
paiman
67 2070a 252737 BIS WBEGSW,P#SP0LSW JSET SPOOLER ENABLED AND RUNNING
170000
CLELIT:
68 [}
69 PALL SPOOLED TASKS HAVE TO BE INITIALISED, UPERATIONS LIKE SETTING
70 1% RESETTING SWITCHES, SETTING UP POINTERS, BUFFERS, STARTING UP
71 JTASK ETC, HAVE TO BE DONE AS INDICATED FUR EACH TASK
72 '
73 .IFDF $CD
74 BIS #2,04SPOLSW 1SET CD ON ONLY IF PRESENT
75 JINITIALTZE CD SPOOLER/DESPOULER TASK
76 CLRB CDONCE
77 MOV #1800 ,CDONCE+1
78 MOV e#LISTHD,R2 JGET ADDRESS OF LISTHD IN R2
79 ADD #CDCODw4,R2 JCLEAR CD DEQUE TASK CODEsS
(Y] CALL EMPTD
81 MOV #R1,NBN¢TABLE+CDTEOF
82 MOVB #1,CDCNTI JINITIALIZE CDCNTI
a3 CLRB COBMS JRESET CDBMS
84 CLRB CUBFS
8s MOV R1,COCBIP
Y CMP (R1)+, (R1)+
87 MOV R1,COWDIP
88 ADD #CDSIZE,COWDIP JBUMP TO NEXT CARD
89 MoV Ri,R5 }SAVE BUFFER ADDRESS ON DTA W
LT CALL STUPCT JSET UP TCB YO READ A CARD
81 JENDC
92 LIFDF S|P
93 JINITYALIZE | P SPOOLER/DESPOOLER TASK
94 08708 105067 CLRB LPONCE
A02643

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

SPOL11,14}
BEGIN DIRECTIvVE

95 00712

96 po72a

97 ae724

98 80730

99
i@

iel

102
{e3

104

105
106
107
108
109
i1@
114
112
143
114
115
116
117
118
119
120

121
122
123
124

128

126
127

128

129
130
131

132
133

pe7da

r734
2740

2744
e746

2752

2756
2756

2762
f762
0762
2762

8766

2774

1200
1gee
1002
10@2

1008
1006

1012
10414
1014

1020
1920
1022

n12767
BRLAON
nA2A3A
813702
naLate
n827a0
[L1 L L]

LLEYZ 34
anoA2AK

211167
aa5322
n10167
aR335A
n22124
#10167
203352
105067
nB334n

anNar ey
PAA248

013748
177778
052737
202340
177776
21270y
pAto2e
nearyy

nL283y
177778

an4767
en0a2s
n10146

An4787
01344

n1284 4
neg207

Spooler Design and Theory of Operation

MACL1 XVM ViaAQQp

sALL DNNE DEQUE

PAGE 7+
MOV #10800,LPONCE+]
MoV OH#LISTHD,R2 JGET AODRESS OF LISTHD IN R2
ADD #LPCODw4,R2 JCLEAR LP DEQUE:! TASK CODE=4
CALL EMPTD
JSR RC,EMPTO
§SET NBN=CBN FOR START UP
MOV #R1,NBN+TABLL
MoV R1,LPCBCP
CMP (R1)e, (R1)*
MOV R1,LPWDCP
CLR8 LPBMS
LENDC
«IFDF SPL
JINITIALIZE PL SPOOLER/DESPOOLER TASK

CLRB PLONCE
MOV #1000,PLONCE*Y
Mov 88 18THD,R2 JGET ADDRESS OF LISTHD IN R2
ADD #PLCODw4,R2 J1CLEAR PL DEQUE? TASK CODE=6
CALL EMPTD
Moy OR1,NBN+TABLESPLTEOF
MoV R1,PLCBCP }1SET PLCBCP
CMP (R1)#, (R1)#
MOV R1,PLWOCP J1SET PLWOCP
CLRB PLBMS JRESET PLBMS
+ENDC

NEXT REQUEST
CALL DEQREG
JSR PC,DEQREQ

'
JEMPTY TASK DEQUE

EMPTN!

JINM
PUSH
MOV

BlS

MoV

JSR
LENA
POP
MOV

CALL
J8R

MoV
CALL
JSR

POP
MOV

RETURN
LSBTTL

FINHMIBIT INTERRUPTS
OH#PS
OHPS,»(8P)

HLVL7 ,P¥PS

HEMPTY,RY JEMPTY TASKS DEQUE

PC,O(R1)+

JENABLE INTERRUPTS
*4PS
(SP)+,04PS

FINDBK
PC,FINDBK

Ri,=(8P)
GETBUF
PC,GETBUF

(R1)
(8P} ¢, (R1)

END

Figure 5-1 (Cont.)

UNICHANNEL Spooler Components

SPOLi1.141
ND

1
2
3
4
5
(-
7

8
9
10
11
12
13

14

{5
16
17
18

19

2p
21

22

23
24
25
28
27
28
29
3¢
31
32

33

34

retv24

001832
Pe1036
p1042
01048
21052
pi056

21064
2187m
21072

21074
gi078

21104

eitln

pitia
A1144

e112a
B1124
21130

252737
afd3én
177778
213724
aaiaye
[.LETT
177 {00
295037
[T RCLY]
0a5n6
on2a34
203337
aninss
P42737
200340
177778
p12708
ananom
(LLLEY]
nad3ns
LIRR YA
252737
200340
177778
713704
LERYI]]

ai161@2
(.11l EY

AA4787
ARANS 4

#1270
AR1A3K
13702
enimns
#11162
AnAN1 A

Spooler Design and Theory of Operation

MACLY(XVM ViAgoe

PAGE §

’
yTHIS ROUTINE SHUTS DOWN ALL SPOOLING OPERATIONS, THE TIMER REQUESY

1re FANCELLED,

pPIs NISCONNECTED FROM PIREX

J
FNR? BIS

MOV

BIC

maov

WAIT
DEC
BNE
BIS

181

MoV

«IFDF
MoV

CALL
JSR

LENDC
LIFDF
MOV
CALL
LENOC
JIFDF
MOV
CALL
JENDC
MOV

MOV

MOV

WLVYL7 ,88PS

PHCLTABL,RI
CLEAET
#RDEVSPL
SPCOD¥4(R1)
OHSPOLSHK

HLVL7,84PS

#20,R5

RY
1%
HLVL7,04PS

®HTEVADD,RY

SLP

LPCOOWw2(R1),R2

STPTSK
PC,STPTSK

$CD

COCoDw2(R1),R2

STPTSK
SPL

PLCOLw2(RL),R2

STPTSK
MRTURN,R1

@HSENDLL,R2

(R1),SPCODw2(R2)

SOFTWARE INTERRUPTS ARE IGNORED AND THE SPOL11 TASK

JPROTECT ROUTINE (BR=138)

INULL SPOOLER TIMER REQUEST
JENABLE STOP ALL 1/0
JCLEAR DEVICED SPOOLED SWITCH

JRESET SPOOLER SWITCH

JUNPROTECY TO ALLOW INTS, TO RUN DOWN (BR=138)

FALLOW 200 INTERRUPTS (CLOCK UR DEVICE) (BR=138)

IWAIT FOR THEM (BRe=138)
JCOUNT 2@ INTS, (BR=138)
JBRANCH IF NOT 28 (BR=138)
PINHIBIT INT,

JFIND THE ENTRY ADORESS

JFIND TASK ADDRESS

FSTOP THE TASK

1STOP THE CARD READER TASK
1STOP THE TASK

}STOP THE PLOTTER TASK

JGET RETURN INST, ADD IN RY

F1SHUT OFF SENDI1Y

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Sp
EN
35

36
37
38

39
49

41

42
43

45
48
47
a8

a9
1

52
83
55

OLit.148
0

w1134

01142
ot1144

01150

P1154
1156
01156
1169

01164
25164

0ii70
01172
21173

21174
pi176
oL200

21204
1206
21210

1214
L1246
e122p
p1e22

ef226

n28a27
nogmos
. L.L.LLY]
[.LBY-I.1]
212704
00000
a127a2
[LILLY]
pN4732

n1070s
g627ns%
20353542

P12704
100000
L.LLLLY]
nay
LT.L)

paSras
aaiagy
pa37682
177774
1000100
214203
1227112
[-LLLI}
[LICI.V]
205a12
LLELYT]
0a5ar2
177778
aed2ar

Spooler Design and Theory of Operation

MARLY XVM ViABOH

28

’
STRPYSK?

188
1
’

CMP

BNE
MOV

MoV

JSR
ADR
Mov
ADD

IREG
MOV

107
WBYTE

T8Y
BEQ
TST

BPL
MOV
CMPB

BNE
CLR
CLR
CLR

RETURN

PAGE B8+

FCODE(RD), #4 JSEE IF THIS WAS MENDM™ OR IUPSUC 20 (BRw138)

23 $BRANCH IF JOPSUC 20 (BR=13}8)
#1,R1 JTELL SPOL15 DONE
#SEND1IS,R2
PC,P(R2)+
TCBOIS,RS JSET FA
PC,R5
#TCBDIS~,,R5
1SEND REQUESTY
#i000020,R4
1,0
R2 J(GAR=141) I8 TASK IN EXISTENCE?
18 J(GAR=141) BRANCH IF NOT,
=4(R2) JPDP=11 REGUEST?
18 INO == IGNORE
= (R2),R3 JYES == TEST FOR SPOLLER REGUEST?
#3PCOD, MR
15
#R2
= (R2) JSTOP TASK (CLEAR TCB ADR
fe2 (R2) }STOP DEVICE FROM INTERRUPTING

Figure 5-1 (Cont.)

UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOL11,14Y MACLY XVM V{AQA® PAGE 11
UTILITY ROUTINES

1 «8BTTL UTILITY ROUTINES
2 IFDF $CD
3 '
4 JSFT UP TCB TO READ A CARD FROM CD
8 JCALLING SEQUENCE? MOV BUFAD,RS
[' CALL STUPCT
7 [} /
8 STuPETE MOV PC,R% JGET ADDRESS OF TCBCD IN RI
9 ADD H#TCBCD=, ,R1
19 BR STUCOM JENTER COMMON ROUTNINE
11 LENDC
12 .IFDF SLP
13 []
14 JSEY UP TCB TO WRITE A LINE ON LP
15 PCALLING SEQUENCE? MOV BUFAD,RS
16 ' CALL STUPLT
17]
18 21320 m10701 STYUPLTE MOV PC,R1 IGET ADDRESS OF TCBLP IN R{ & RS
19 21322 n627a4 ADD NTCBLP=,,R1
203362
20 P1326 AOA400 BR STUCOM
21 ENDC
22 LIFDF SPL
23 ’
24 $SET UP TCB TO WRITE A _LINE ON PL
25 JCALLING SEQUENCE? MOV BUFAD,R5
26 ' CALL STUPPT
27 '
28 STUPPTt MOV PC,R1 JGET ADDRESS OF TCBPL IN RY & RS
29 ADD ¥TCBPL=,,RY
30 LENDC
31 21330 p18%568¢ STICOMI MOV R5,10(R1)
CLELEY)
32 1334 D101 MOV R1,R5
33 91336 anSa8y CLR 4(R1) IRESET REV
LLELT)
34 04342 1REQ 18END
1342 212704 MOV #100000,R4
CLLLT)
n1346 aNONP4 10T
21350 ney .BYTE 1,0
21351 non
35 91352 00G207 RETURN
36]
37 JSEY UP DISK TCB TO READ A BLOCK WITH NO INTERRUPTS & RETURN ADDRESS
38 y CALLING SEQUENCE? ADR BUFF ,R4
39 ' ADR =, CBN,R3
40 [} ADR TCBOKw,R2
44 s CALL STUkDT
42 ’
43 01354 19248 STUPNTE MOV R2,RY JSAVE TCBP IN RS
44 91356 022229 CMP (R2)+,(R2)+ $BUMP TO REV
45 91360 @nSnzsp CLR (R2)+ FRESET REV

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOLi1,14) MAPLY XVM VIAPAD PAGE {2+
FIND A FREE BLNCK nmN DISK
42 01556 n2dyoy CMP R1,R3 PDID WE GET TO BEGINNING WORUD
43 01560 (Pin6s BHI 558 JYES, NO BITS, SET UP FOR 'ERROR!
44 [
45 01562 14102 78 MOV =(R1),R2 JBACK UP TO GET COPY OF MaAP WORD
46 1 « » <> <« >» <> <> <> <> ¢ > <> < > ENDOF EDIT #135
A7 015684 Q12187 MOV R1,CWDPTR 1SAVE FIND POSITION FOR NEXT TIME CALLED
LLLKEW)
48 01570 naS2qa» INC R2 JSETS FIRST ZERO BIT IN WORDI!
49 01572 n41100 6%y BIC (rRY),R2 JCLEAR ALL REST,LEAVING BIT ¥OR OUR BLOK
50 01574 a%0214 BIS R2, (R1) JSET BIT IN MAP
51 01576 n10287 MOV R2,CBTPTR JREMEMBER BIT FOR NEXT TIME
LLURT Y]
52 01602 166704 suB BTMPAD,R1 JBYTE INDEX FOR FOUND BLOCK #
(-1 MY 1]
53 016088 195702 75718 R2 $118 BIT IN LOW HALF OF WORD
54 16102 aninny BNE 8% PYUP, NO CHANGE
585 p1612 andraq INC R1 JIN HIGH HALF, INC BYTE COUNT
56 01614 pe63aAy 83: ASL Ry JNIBBLE (4 BIT) INDEX FOR FIND
57 01616 232702 BIT #i70360,R2 718 BIT IN HIGH NIBBLE OF BYTE
1703680
58 01622 amlapy BEQ 9% JNO, NOCHANGE
59 51624 Andony INC R1 JYES, SO INCR NIBBLE COUNT
69 p1626 006301 0%} ASL Ry JCRUMB (2 BIT) INDEX FOR FOUND BLOCK
61 0163p n5§709 BIT #146314,R2 } IS BIT IN HIGH CRUMB OF MI®BLE
146314
62 91634 001404 BEQ ius INO, NO CHANGE
6) 21636 na32a¢ INC R1 JYES, 80 INCR CRUMB COUNT
64 p164p 9N63ny 1082 ASL Ry INOW HAVE BIT COUNT FOR BLOCK
68 01642 032702 BIT #125252,R2 718 BIT IN HIGH BIT OF CRUMP
1252592
66 01646 01409 BE®Q 118 INO, NO CHANGE
67 0165 0A5209 INC Rt FYES, 80 ADD ONE
68 21652 3867a¢ 11s: ADD STBKNM,R1 JAND FINALLY ADD #OF FIRST MAPPED BLOCK
AN3414
69 [
70] «» €> € > €> <« >» <> <> ¢>» <>« > ENDOF EDIT #133
71 s
72 $THE FOLLOWING PIECE OF CODE CWECKS TO SEE IF THE CURRENT BLOCK TO BE
73 JALLACATED TO THE CURRENT SPODLING TASK EGQUALS THE COBN OF THIS
74 JDESPOOLING TASKJIF THIS IS TRUE, THEN THE 'SPOOLER IS DECLARED FLOUDED!?
7% JTHIS HAPPENS ONLY ON A WRAP AROUND(ENTIRE SPOOLER AREA IS TREATED AS A
76 JRYNG BUFFER)WHEN SPOOLING OPERATIONS ARE WAY AHEAD OF DESPDULING OPERATIONS
77 H
78]
79 pwawewNOTES AS NEW TASKS ARE ADDED NEW CODE HMAS YO BE ADDEDwwwww
80 pruwwwrwienrn SIMILAR TO THE CUDE FOR EXISTING TASKSwwwrwwwwhwhwwy
81 '
82 01656 116n02 MOVB 2(R@),R2 JGET CURRENT TASK COODE
[LLLELE]
8) 91662 122702 CMPB HLPCOD,R2 J1LP?
LLLLLY
84 P1666 pO141y BEQ 215
85 0167¢ 122700 CMPB #COCOD+200@,R2 IND, CD?
pwvdzen
86 01674 02141 BEQ 228
87 91676 122702 CMPB #PLCUD,R2 iNO, PL?
oaonns
88 p1702 PRinyo BNE 268
89 91704 216700 MOV TABPLC,R2 1YES
AN326m
90 01710 n0B402S BR los
91 01712 216709 o1et MoV TABPCB,R2
LIRYLY)
92 81716 mmQ4np BR s
93]
94 91720 215702 22s1t MOV TABCDC,R2
QR3254
95 p1724 hIE X
96 01724 020119 CMP R1, (R2)
97 01726 aRlayn BE® 5%
98 @173p 26%3
99 01730 par o4PS JOEBUGIUNPROTECT
01730 212837 Moy (SP)+,8HPS
177774

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-16

Spooler Design and Theory of Operation

SPOL11,14% MAC1{ XVM ViAQQP@ PAGE 12+
FIND A FREE BLOCK AN DISK
ipe JRETURN WITH BLOCK & ON STACK
101 1734 Qa0an7 RETURN
192 4
103 1SPRRY NO BLOCK FREE?? SETUP TO HALT CURRENT OPERATION
104] ¢ » <> € > <> <> <> <> ¢ > <>« > START OF EDIT #135
105 1736 2167a% 55«18 MOV AFNDBK,R3 JADDR 'FINDBK' j ENTER WHEN NO BLOCK
fNI25n
196 1742 POP R2 JSTACK NOW /ENTER PS/CALL PC/
1742 0126802 MOV (SP)+,R2
107 1744 PUSH R3 JMAKE IT /ENTER PS/ADDR FINLBK/CALL PC
1744 0108348 MOV R3,~(SP)
108 174¢ PUSH R2 JAND HOPE IT FALLS THRU 5 OK
1746 018248 MOV R2,=(SP)
109) €« » €> <> <> <> <> > > <> 4> EN)OF EDIT #135
110 1750 @11802 581 Moy (8P} ,R2 JDEBUG)GET OLD PS}BR HERE 1 BLK LEFT
111 1752 16838 MOV 2(8P), (SP) IDEBUGISET UP PC
aedan?
112 1756 ni10@268 MOV R2,2(SP) JDEBUG)SET PS
pR0AQA2
113 1762 PUSK Re
1762 at1en4s MOV R@,=(SP)
114 1764 PUSH RY
1764 010148 MOV Ri,~(SP)
118 1766 PUSH R2
1766 210246 MOV R2,~(SP)
116 17709 PUSH R3
1779 Q21034% Mov R3,~(SP)
117 1772 PUSH R4
1772 010448 MoV R4,=(8P)
118 1774 PUSH RS
1774 210548 MOV RS ,=(SP)
119 1776 013767 Mav O¥CTLCT,SDCTSY JSAVE CURRENT COUNT OF PDP»1y CTL 'C'S
SPOL11,141 MAR{1 XVM V1AQQ@@ PAGE 17

TASK SOFTWARE INYERRIPT DISPATCHER

1 ’
2 PSENDIS IN PIREX TRANSFERS CONTROL TO DEVINT BY A "CALL ®SEND1)(~CODe2)"
3 yIF REQUESTED IN TCB, THIS I8 DONE BY A CODE QOF '3' IN BYTE=3
4 10F TCB, SPOOLER SETS THE ADPRESS OF DEVINT IN SEND1! WHEN STARTED
3 '
8 !
7 '
8 @P2764 922782 DEVINT! CMP #1,4(RA) 16G00D COMPLETIONZ?
[L].X]
LLLLLY)
9 802772 anin2> BNE 5% JBRANCH IF NO
1D 82774 122760 CMPB #RKCOD+200, TCODE (R} JRK REQ,?
aAQ2m2
a02ans
{1 03@02 0M1417 BE®Q RKINT
12 3004 (2278n CMPB #LPCUD*?QB.TCDDE(RD) JLP REQ?
a00204
aadans
13 03012 o0l4086 BEQ® 2%
14 03014 122760 CMPB #CDCOD+200, TCODE (RD) JCD REQ?
and2as
Aeanne
15 93022 nO14ms BEQ 3%
16 p3DB24 A0B187 JMP PLINT
ApL?272
17]
18]
19 23030 200187 28 JMP LPINT
PNO53»
20)
21 03934 AP0167 38% JMP COINT
am2014
22 '
23 ’
24]
25 @3R4ap 581
26 n3odp anaz2a7 RETURN
27 !
28 +SBTTL RK INTERRUPT SERVICE

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-17

Spooler Design and Theory of Operation

SPOLi1,141 MACLY XVM V1ABOG0 PAGE 19
TK INTERRUPT SERVICE
'
? JDYSK WRITE REQUEST WAS MADE FOR A SPOOLED DEVICE
3)
4 003372 016001 WRTTES MOV 12(R0O),Rt JGET BUFFER ADDRESS IN R{,
LLLELTE
5 003376 1012y MoV RY,R3
6 203409 203m24 CLR (R{)+ JRESET HWDS
7 093402 andaty CLR (RY)
8 Q03404 CALL GIVBUF
003404 004767 JSR PC,GIVBUF
17703586
9 203410 12276m cMPB #PLLCOD,DTCODE(R®) JREG MADE FOR PL DEVT
LLELEL]
LY]
10 23416 ani4asn BEG 433
11 23420 122780 CMPB #C0COD,DTCODE (RP) JREQ MADE FOR CD DEv?
LLELTL]
200028
12 03426 o0ia3a BEQ 423
13 +1FNDF SLP
14 FETY] MOV e4DEVST,R]
15 MOVB NIOPS77,LPSPER(R}) IREPORY TASK NOT SUPPUORTED
i6 RETURN
17 +ENDC
18 +IFDF SLP
19 JWRITE REGUEST MADE FOR (P
20 93432 016709 41el MOV LPBMSA,RY JRESET LPBMSA
2n1568
21 03434 10824 CLRB (R1)
22 03438 n167as MOV TABLAD,RS
[1. F8-AL]
23 03442 gi6nas MOV 6(RR),L8B(R5) JSET LS8 IN TABLE
200008
CLLLIT]
24 23450 01670y MOV LPONAD,R3 JGET ADD OF LPBMS IN R3J
a9i%08
25 93454 10371y T8TH (R3) JFIRST TIME THROUGH?Z?
26 03456 nOi34y BNE DONE
27 0346p 103%2% INCB (R3)+ JYES, SET SW,
28 03462 105213 INCB (R3) JSET LPBMD
29 03464 , CALL GETBUF 1GET A BUFFER
03464 ON4YSY JSR PC,GEYBUF
176874
3¢ 03470 PUSH #LPCOD JSETUP FOR GETPUT SAVE DEV CUODE
03470 012748 MOV #LPCOD,~(SP)
noonaa
31 +ENDC
32 03474 4491 PUSH WREADF JSAVE DISK FUN,
03474 12748 MoV #READF , = (SP)
LLELLY
33 03309 PYSH R1 JSAVE BUFFER ADD
3500 210148 MoV Ri,=(SP)
34 03502 PUSH NBN (R5) 1SAVE BLOCK #

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOL1t.141
RK INTERRUPT SERVIEE
23802 106848
gnenaa
35 pises
23508 PR4767
177988
36 a3812
03512 an4rey
176%74
37 03516 0627pA
(LI
38 23522 amaryy
39
40 03524 0137024
g2iase
41 03830 11276¢
[.LILY &4
000943
42 235%6 pon2eY
43
44
43
A8
a7
48
49
5p
81
82
53
54
-1}
86
57
S8
59
.1}
61
62 03540 013704
aniasm
63 03544 1127869
L1 LY a4
[LI-LET
64 03552 000207
85
66
87
1.}
69
7@
7
72
73
74

MALLY XVM V1AQ0Q0

PAGE 19+

MOV NBN(R5) ,~(SP)
CALL GETRKY JGET A RK TCH
JSR PC,GETRKT
cALL GETPUT 1GET BLOCK
JSR PC,GETPUT
ADD #10,8pP JICLEAN STACK
BR DONE JCHECK REV & EXIT
. IFNDF $CO
42«1 MOV OHOEVST,RL
MOove #IOPS?7,CDSPER(RY) JREPORT TASK NOT SUPPORTED
RETURN
+ENDC
. IFDF $CD
SWRITE REQUEST MADE FOR CD
a2%8 mMav CDBMSA,RY ISET CDBMD
CLRB (R1)
MOV TABCDT,RS
MOV 6(R2),L8B(RS5) JSET LSB IN TABLE
MOV COONAD,R4 JYES, CDONCE=Q?
TSTB (R4)
BNE DONE
INCB (r4) JSET CDONCE
INCSB { (R4) JSET CDBMS
CALL GETBUF JGET A BUFFER
MOV R1,7(R4) 1 SET CDOBCP
CALL GETBUF
PUSH #CDCOD JSAVE DEV.CODE FOR GETPUT
BR 443 JI1SSUE READ REQUEST
+ENDC
« IFNOF SPL
43%3 MOV #H¥DEVST,R1
MOVB #IOPS77,PLSPER(RL) JREPORT TASK NOT SUPPORTED
RETURN
<ENDC
JIFDF SPL
sWRITE REQUEST MADE FOR PL
43¢ MOV PLBMSA,RY JRESET PLBMSA
CLRB (RY)
MOV TABPLA,RS
MOV 6(R®),LSB(RS5) JSET LSB IN TABLE
MoV PLONAD,R3 JGET ADD OF PLBMS IN R3
TSTE (R3) JFIRST TIME THROUGH??
8NE DONE

Figure 5-1 (Cont.)

UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOLi1,14} MAEC11 XVM V1AGAQ PAGE 21

LP INTERRUPT SERVIRE

1 ?

2 1THIS ROUTINE HANDLES COMPLETION OF 1/0 SOFTWARE INTERRUPT FROM THE

3 3DRIVER TASK IN PIREX, 1T DESPOOLS THE SPOOLED DATA ONTO THE LP,

4 '

8 . 1FOF SLP

6 Pp3s85a nda |LPnUMIT BYTE [} JUNUSED

7 203555 nga LPANCED ,BYTE [} JONCE ONLY Sw

8 Ap3556 A LPRMN: BYTE [/ JBLOCK IN MOTION SW

9 003557 nan PayF$1 ,BYTE [} JEMPTY BUFFER COUNT

16 9356 a0@m@m LPrBTPI 0 JCURRENT BUFFER POINTER

11 03362 andoom | PuDTP! JCURRENT WORD POINTER

12 93564 @A2AQm | PABIP! 2 FNEXT BUFFER POINTER

13 .ENDC

14 ’

15 H

16 . IFNDF SLP

17 LPYNT? MOV #HDEVST, R}

18 MOVB #10P877,LPSPER(RYL) JREPORT TASK NOT SUPFORTED

19 RETURN

20 +ENDC

21 .IFDF SLP

22]

23 3566 91670¢ LPINTI MOV TABCRT, R\
PAL1434

24 03572 #5273y BIS #LVLD, #8PS JINMIBIT DISK INTERRUPTS
oAa24m
177776

25 03620 @227y CMP #=1,(R1) JANY MORE YO DO7?
17777>

26 03604 oalnta BNE 15

27 23606 01670% 118 MoV LPONAD,R3 FJGEY C(LPCBIP) IN R3
[LERLT.

28 ¢3612 1@5a2y CLRB (R3)* JRESET SW,'S

29 23614 105a2y CLRB (R3) + 7BUMP TO LPBUFS

3Ip 93616 125097 INCB (R3)+ IRELEASE BUFF,

31 0362¢ @t1van Mmov (R3),R3

32 03622 CALL GIVBUF JGIVE BACK BUFFER

p3622 andrey JSR PC,GIVBUF

176840

33 03626 n42737 o3 RIC #1,PuSPOLSW FNO, SET LP IDLE SW
[-LLLII]
291048

34 pI6GI4 02207 mOAR: RETURN

35 23636 A0571 181 TST (R1) JYES, BLOCK IN MOTION?

36 0364p nNAlagr BNE 3%

37 03642 016704 158t Mov LPCPAD,R4 }SK=124 YES, GET ADD OF LLPCPADBIP IN R2
an1352

38 93646 a114p% MOV (R4),R3 JRELEASE BUFFER

39 p3sha CALL GIVBUF

2365a amarey JSR PC,BIVBUF

176812

42 03654 105244 INCB =(R4)

41 03656 105764 (Me? TSTB =1 (R4) 18LDCK READ IN?

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and

Theory of Operation

SPOL11,144 MAFLY XYM V1AGAG PAGE 21+

LP INTERRUPT SERVICE
177777

42 93662 paiapy BEQ a3

43 3664 CALL WAITBK

3664 204767 JSR PC,WAITBK

175330

44 p3670 @20772 BR 108

4% 03672 A%

46 03672 pi167014 MoV TABCRT,R1
Pa1330

47 23676 016767 MoV TABLE+NBN, TA
pe236n
pN2352

48 23704 Q12787 Moy #4,TABLE+#CRP
nAadnn 4
2n234n

48 03712 10793 MOV PC,R3

50 03714 062703 ADD HLPOBIP=,,R3
1776850

51 @3720 ntido4 MOV (R3),R4

52 93722 n16487 MOV TWDL(R4),TAB
[V]
Pn2332

53 93730 Q167a> MOV LPCPAD,R2
e01264

854 93734 211322 MOV (R3), (R2)+

58 03736 211312 MOV (R3), (R2)

56 03740 a6274> ADD #4, (R2)
aaenn4

57 03744 000412 BR 5%

58 3748 016722 381 MOV LPCWAD,R2
AR1234

89 p3752 a1724e MOV ®(R2))~ (SP)
fa02anm

69 03I7?56 n62718 ADD #5, (SP)
LLELLL]

61 03762 04271R BIC #177401, (SP)
17749

62 93766 A6181y ADD (8P), (R1)

63 03770 062612 ADD (SP)+, (R2)

84 03772 032737 %8t BIT #42000,#H4SP0
p4@non
aninds

65 odaen omi71 BEQ 23

66 04202 032737 BIY #i,0NSPOLSW
200001
nainda

87 e421p oni708 REQ 25

68 Q4012 932737 BIT #10000,048P0
pidgan
gnlo4ds

69 pdola aalrpa BEQ 28

70 04022 245772 TST #(R2)
naAAAAn

7Y paP26 001024 BNE 138

72 edednr n26161 CMP w2(R1) ,4(R1)
177778
.1.LLIK)

73 04036 0aiony BNE 14%

74 p4dde CALL 128

P4n4p 004787 JSR PC,12%

ARA24a

78 24044 00086 BR 118

78 Q4046 016702 1441 MOV LPONAD,R2
LR E L]

77 24p52 @62702 ADD H2,R2
Qadan?

78 Q4056 122712 CMPB #1,(R2)
(. L.I' LT K]

79 24062 An1267 BNE 158

80 P4P64 195762 TSTE =1 (R2)
177777

81 040703 091284 BNE 158

IDEBUG

BLE+CBN JSET CBN=NBN

JSET CRP

JGEY LPOBIP ADD, IN R3

JGET C(L,POBIP) IN R3 & BUMP TO TWD{
LE+NBN FSET LP.NBN

JGET ADD, OF LLPCPADWIP IN R2
1SET LPCBIP
}SET LPWDIP

?SEND WRITE REQ IF NOY SHUT DOWN
JGET ADD OF LPWDIP IN R2

JEVEN BYTE COUNT

CRP
LPWDIP
DOWN?

18UMP
1BUMP

LSW JSHUT

1SHUT LP?

LSW, JSHUT DESPOOLER

JFIRST RECORD A ,CLOSE?

JANY MORE DATA?

INO, SET TABLE ENTRIES

JRESET SWITCHES 8 EXIT
JDEBUGISK=124 GET LPBUFS ADRRESS
JDEBUG/SK=124

JDEBUGISK=124 ONE FREE BUFFER?

P5K=124

fDEBUG?SK=124 YES, BLOCK IN mMOTION?

15Kw124

Figure 5~1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOL11,141 MACLY XVM VIADGAQ PAGE 21+
LP INTERRUPT SERVIPE
82 04072 CALL 98 7SK=124 NO, GET NEXT BLOCK
04072 0094787 JSR PC,93
2NG148
83 04076 00088, BR 158 J8Kw124 RELEASE BUFFER & WAIT FOR BLOCK TO COME IIN
84 ’
85 [} .
86 p41P0 a1ions 13e1 MOV OR2,R5 INO, SAVE RBUFF ADD ON STACK
87 paiee CALL STUPLT JSET UP TCB TO UNTI A LINE
04102 ar4dvey JSR PC,STUPLT
175249
88 04106 p167m9 MOV TABCRT,RY
201114
89 p4112 oil2n4 MOV (R2) R4 JCHECK FOR BUFFER EMPTY
90 P4114 317248 MOV #(R2),=(SP) JGET BYTE COUNY
LLLLLT
91 04320 062748 ADD #5, (SP) JEVEN BYTE COUNT
LLILEL]
92 04124 04274n BIC #i1774@1,(SP)
177404
93 04130 pa26804 ADD (8P)+,R4 7BUMP R4 TO POINT TO PT WORD OF NEXT
94 04132 0107092 MOV PC,R2 JNO, GET ADD OF LPBUFS IN R2
95 04134 a62702 ADD SLPBUF8», ,R2
17742
96 c4ide 203714 TST (R4) JLAST RECUORD?
97 n4142 o914y BEQ (1}
98 p4144 022714 (o, 14 =1, (R4)
177777
99 04150 ontay4 BEQ 6s
100 4152 (22749 cMPB #1,(R2) JLPBUFS=]
- LLLLT]
103 4158 9ni228 BNE 508
102 4160 105742 TSTB «(R2) JYES, BLOCK IN NEXT?
103 4162 291224 BNE Sas
194 4164 02648y CMP »2(R1),4(RY) INO, MORE TO DOE (CBNalSB)
177778
092004
105 4172 anison BEQ 308
106 4174 CALL 93 }8K=124 GET NEXT BLOCK
4174 004787 JSR PC,9S8
LLILYY)
187 4200 00061% BR LT] JSKe124 EXIT
Y1) ']
109 y
110 yBUFFER EMPTY) TEST IF MORE BLOCK TO 007
114 4202 026161 A3y cHP =2(R1),4(R1) JMORE TO DO? (CBN=|SB)
177774
notoad
112 4219 o2lays BEQ 78
113 4212 pod01y CLR (RL) JSK=124 SET CRP=D
114 4214 122740 CMPB #1,(R2) JLPBUFS=17?
29000
115 4229 001004 BNE [}
116 4222 108742 TST8B »(R2) JBLOCK IN TRANSIT?
117 4224 adiaoo BNE 1] 15Kwi24
118 4226 CALL 9% 1SK=3124 GET NEXT BLOCK
4226 004787 JSR PC,93
asomy2

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

SPOLIt. 141

LP INTERRUPT SFERVIPE

Spooler Design and Theory of Operation

119 4232 022167 as

120
124
122
123
124
125
128
127
128
129
130
131
132

133
134

135
136

137
138

139
140

14%

142
143
144
148

4236
4236

4242

4244
4244
4246
4246
4250
4250

4254
4258
4286
4289
4260
4262

4266
4270

4274
4278
4276
4302
4304
4394

4310

4316

177378

204767
000042
090773

012148
010248

pA4YEY
176410
010104

12802

12801
210467
17727«
108212
12708
CLLLLY]
012102

P04767
080804
andz07

212714
177777
012784
177777
LLILLLL]
290207

MAECL1Y XVM ViAQGOQ
JMP
INn MORE BLDCKS
782 CALL
JSR
BR

4
JBFT NEXT BLOCK

981

1283

PUSH
mMov
PUSH
MoV
CALL
JSR

MOV
POP
MOV
POP
MOV
MOV

INCB
MOV

MOV
CALL
JSR

RETURN

MOV

MOV

RETURN
ENDC

PAGE 21+

Sos
TO DO

128
PC,128

R1
R1,=(SP)
R2
R2,=(8P)
GETBUF
PC,GETBUF

Ry,R4

R2
(SP)+,R2
R1
(5P)*,R1L
R4,LPOBIP

(R2)
NLPCOD,RY

Ri,R2

GETBLK
PC,GETBLK

#el,0RY

Hm1,6(R1)

1SK=125

}SET TABLE ENTRIES

JYES, GET BUFFER & READ NEXT BLOCK

$SAVE BUFAD IN R4

JSET (POBIP

J1SEY LPBMS SW
JGET DEV,CODE IN R3,

JGET LP,CRP ADD, IN R2
JGEY BLOCK FROM DISK

JSK=124

JSET CRPswj

1SET LFBa=yg

WSBTTL LP CALL SERVICE

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

FOR GETBLK

Spooler Design and Theory of Operation

SPOL11.141 MAR1Y XVM V1AQ@2 PAGE 22
LP CALL SERVICF
1 '
2 JTHIS ROUTINE SERVICES CALLS TO OUTPUT DATA ONTO THE LP, IT SPOOLS THE
3 1DATA SENT BY THE CALLER ONTU THE DISK,
4 ?
5 JIFDF SLP
6 2p432p ame LPpUMCE ,BYTE @ JUNUSED
7 20432y aga _PRMS: LBYTE @ JBLOCK IN MOTION SW
8 204322 o0%nnm LPrBCPS O JCURRENT BUFFER POINTER
P 004324 200a0m LPWDCPI @ JCURRENT WORD POINTER
12 04326 0AdnaAm LPABCPT 0 INEXT BUFF POINTER(DUMMY)
11 LENDC
12 '
13 !
14 ,IFNDF SLP
15 LPEAIL LY MOV &HDEVST,R1
i6 MOVB #477,LPSPER(R1)
17 CALL DEQREQ
18 LENDC
19 JIFDF S$LP
20 G433 B2414¢ LPrAILLT CMP =(R1),=(R1) $POINT R1I TO LPWDCP
21 04332 032737 BIT #20000,045P0LSW JSHUT SPOOLER?
a200am
NALA4R
22 p4340 an143y BEQ 108
23 04342 PUSH R1 1SAVE Ria NO
434D 010148 MOV Ri,=(8P)
24 04344 011109 MOV (R1),R1 JGET CONTENTS OF LPWDCP IN R1,R4
25 P4346 a1n04 MOV R{,R4
26 p43Sp @160nn MOV 19 (RP) ,R3 JGET CALLER BUF, ADD, IN R3
ananym
27 04354 pobGiny ASL R3 FRELOCATE ADD,
28 04358 p8I7aN ADD eNMEMSIZ,R3
LIl YL
29 24362 111302 MOVB (R3),R2 JGET BYTE COUNT FROM BUFFER IN R2
30 94364 82700 ADD 85,R2 JADD HWD BYTE COUNT 4 EVEN BYTE COUNT
20009%
31 04370 D42709 BIC #177401,R2
177401
32 04374 360201 ADD R2,RY FBUMP LPWDCP BY THE SIZE OF NEXT RECD,
33 24376 nilans MOV (SP),RS JGET LPWDCP ADD, IN R4
34 04400 PUSH «(RS) JPOINT TO LPCBCP & SAVE CONT, OF LPCBCP ON STACK
04400 p14548 MOV = (R5), = (8P)
35 04400 an82ao ASR R2 JCONVERT TO WORD COUNT
36 04404 162804 suB (SP)*,R1 JCOMPUTE SPACE REM,
37 04408 722734 tHP #770,R1 JSPACE LEFT?
P0077m
38 04412 p02482 BLT a3
39 pddla CALL COPBUF JCOPY CALLER BUFFER
p4d14 a0476y JSR PC,COPBUF
LLEALT]
40 p442p POP R4 JTEMP SAVE RY IN R2
4420 0126804 MOV (SP)#,R4
41 84422 CALL L1 JCHECK FOR L,CLOSE
SPOL11414t MACLY XVM V1AQO@ PAGE 22+
LP CALL SERVICF
24422 004767 JSR PC,68
aag27ao
:g 4426 0004ns BR 83 IND
]
44 paddp n12768n 10oet MOV 42600, 4 (RE) 1SPOOLER SHUT DOWN, REPORT
177200
LLLLLY]
45 Q4438 PUSH R1 FOUMMY
Q4436 A1014R MOV R1,=(8P)
46 D444p DOA18Y JMP DEQRO
174574
47 JLAST RECORD WAS NOT A .CLOSE
4B 04444 005749 RS TST =(R1) JPOINT RY LPCBCP

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOL11,141 MAEL] XVM VIAGP® PAGE 22+
LP CALL SERVICE
49 D4A4E P1O1p> Mov Ri,R2 JSAVE IN R2
50 04450 p0572¢ ST (R1)+ J1BUMP R1 LPWDCP
51 R4452 211104 MOV (R{),RY JGET CURRENT WORD ADD, IN Rt
32 24454 1681204 suB (R2),R1 JGET REMAINNING & OF WORDS
53 24456 02270 CMP #77@,R1 1SPACE LEFT?
ARB? 70
54 04462 p03n34 BGY 25
85 @44%54 01070y 9%: MOV PC,R1 JGET ADD, OF LPKDCP IN RY
58 P4468 0682701 ADD #PWDCP=,,R1
177838
57 04472 peSary CLR #(R1) IND, PUT BUFFER ON DISK
ananan
58 Q447s. CALL FINDBK JGET DISK BLOCK #
04476 pa4rey JSR PC,FINDBK
174738
859 @4502 PUSH R1 FSAVE BLOCK # ON STACK
p4a50p p10(4n MOV R1,=(SP)
6n pa524 A167mn MOV LPCBCP,R2 J1GET C(LPCBIP) IN R2
177642
61 2451n 0116862 MoV (SP),TWDi (R2) JSAVE BLOCK # IN TWD!
paAB? YA
62 pd514 21270% MOV #LPLDD,R3 JGET LP,DEY CODE IN N3
LLLLLY
83 045272 01670 MOV LPBMSA,RY JSET LPBMSA
onAazs
64 PAD24 10521y INCB (R}
65 p4a52s CALL PUTBLK JPUT BUFF, ON DISK
04526 nR4767 JSR PC,PUTBLK
A0037a
66 04532 16704 MOV LPCBAD,R4 JGET ADD, OF LLPCBADBCP IN R3&R4
a0B448
67 24538 38 CALL GETBUF IGET A NEW BUF
24538 andrsy JSR PC,GETBUF
175622
68 24542 p10124 MOV R1,(R4)+ i1SET LPCBCPSBUFAD
69 @4544 POP (R1) FJSET BLOCK # IN HWO@ OF NEW MUFF,
PAS4A4 012614 MOV (8P} +, (RY)
7@ @43548 nB279 ADD #4,RY JBUMP R2 TO WORD 2 OF BUF
LLLEL Y
71 84852 p10114 Mayv R1, (R4) ISET LPWDCP
72 04354 P81 CALL DEQRED JUEQUE REWUESTY & EXIT IN WAIT STATE
24554 00478y JSR PC,QEQREQ
174450 .
73 24560 48 POP R1 JRESTORE ADD, OF CURRENT WORUL IN Rt
0456n a12A8ay MOV (SP)+,Ri
74 24562 PUSH R3 7SAVE R3,R2
4562 A10%48 MOV R3,»(8P)
75 04564 PUSH R2
24564 010248 MOV R2,=(SP)
76 pA568 pASayy CLR 0 {R1) 1SET BUFF, END SW
[.LLLTY]
77 p4572 CALL FINDBK FGET DISK BLOCK #
n4a572 pnarsy JS8R PC,FINDBX
174842
78 04576 PUSH R1 JSAVE BLOCK #
04576 p1014n MOV Ri,~(SP)
79 p46en CALL GETBUF JGET A BUFF,
p460O0 AR4YEY JSR PC,GETBUF
175560
89 04804 211811 MOV (SP), (R1) JSET BLOCK & IN HWD@ OF NEW BUFF,
81 04606 916704 MoV LPCBAD,R4 JGET ADD, OF LLPCBADWCP IN R4
nARA7>
82 04612 PUSH (R4)
04612 011448 MOV (R4),=(SP)
8y P46l PUSH (R4) 1SAVE CONT, OF LPCBCP
P4Bla n1la4e MOV (R4),~(SP)
84 D465 pB27¢& ADD H#TWDL, (SP) IBUMP TO TWD}
onar7A
B85 24622 n16A3x MOV 4(8P),0(SP)+ 1SET LINK IN OLD BUFF,
2RAMNR 4
86 04826 010124 MOV Ri, (R4)+ $SET LPCBCP & BUMP TO LPwWDCP
87 0483¢ 06270 ADD H4,RY JPOINT TO WORD 2 IN BUFF,
LLLLLP

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-25

SPOL11,141
CALL SERVICE

Le
88

89
90
91
92

23

94
5
96
97
o8
99
100
104
102
103
104
105

106
fe7

{e8
109
110

112
113

114
115

116

117
148

119
120
121
122
123

124
128
126
127
128

04634
04634
P4636
@4640
B4842

P40646

4652
04652

P4658
p46S¢
04669
g466p
04662

04668

248792
24672
R467 4

4700
4792
4702

4706
47086
4719
4710

4714
4716
47209
4722

4730
4732
4734
4734
4736

4742

4746
4746
4789

4784
4756
4756

4762

4770
4772

4774

4776
4778

5004
Senes
5010
Sete
Se14q

01044nm
p121t4
210104
016802
padaas
a16603
LLL LR

an4ayey
290129

212604

212602
ni27o%
[.LLLLY
262708
[.I.LLLL

P10448
8167014
200322
18521

andyey
2nR222

a12804

pedrey
L1 1.1}
aan7yy
010404
P11104
p22764
LLLYEW]
177778
LLELTT
012104

218702
262792
20133
316704
0AB238

811248
847112
2902000
811104

21286
290na2
B12769
177777
090774
p05728
LLLLRY

290207

22673y
175124
Aeinss
B910058
B12324
.LERT-F)
PR137 4
210478
nagany

Spooler Design and Theory of Operation

MACIY XVM ViARQQ

COpBIIF?

PUSH
Moy
MOV
MOV
MOV

MOV

CALL
J3R

POP
Mov
POP
Moy
MOV

ADD

PUSH
MoV
MOv

INCB
CALL
J8R

POP
MOV
CALL
JSR

BR

MOV
MOV
CMP

BNE
MoV
ADR
MoV
ADD

MOy
PUSH
May
MOV
MOY
POP
MOV
MOV
TSY
BR
RETURN
LENDC
CMP
BNE
MOV
DEC

BNE
MoV

PAGE 22+

R4
R4,=(8SP)
R1, (R4}
R1,R4
6(8P),R2

10(5P),R3

COPBUF
PC,COPBUF

R4
(8P)+,R4
R2

(8P)+,R2
WLPCOD,R3

#6,8p

R4
R4,=(SP)
LPBMSA,RY

(RL)
PUTBLK
PC,PUTBLK

R4
(8P)+,R4
63

PC,bY

23
R4,RY
(RL1),R4

JSAVE LPWDCP ADD, ON STACK
1SET LPWDCP

IGET CONT, OF LPWDCP
TRESTORE R3,R2

JCOPY CALLER BUFFER

)SAVE LPWDCF ADD, IN R4

JCONT, OF LPCBCP ON STACK TOP??7
JGEY DEV.CODE IN R3, FOR PUTBLK
JCLEAN STACK

1SAVE RS

JSET LPBMSA

}PUT BUFF, ON DISK
JTEMP SAVE R\

JCHECK FOR CLOSE

1SAVE R4
JGET C(LPWDCP) IN R4

#LPCLOS,=2(R4) JFF+CR2?

78
R1,R4

JRESTORE R4

TABLE#LFB,R2 }GET LP,LFB ADD, IN R2

PC,R2

HTABLE+LFb=, ,R2

LPCBAD,RY

(rR2)
(R2) ,»(SP)
#(R1), (R2)

(R1},RY
2(R1)
(SP)+,2(R1)

1SAVE OLD LFB
JSET LFB IN TABLE

JSET OLD LFB IN BUFFER

#w1, TWOD(RY) 1SET EQF CODE IN BUFFER

(5P)+ JRETURN TO 9 (NOT SUB RETURN)

SOCTSY,##CTLCY JDEBUG

13
(R3) %, (R4)+
R2

COPBUF
R4,02(8P)

JCOPY CALLER BUFFER

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

5-26

Spooler Design and Theory of Operation

SPOL13, 144 MAE11 XVM V1AQQ@B PAGE 23
Pl INTERRUPT SERVIPE
’
2 JTHIS ROUTINE HANDLES COMPLETION OF 1/0 SOFTWARE INTERRUPT FROM THE
: JORIVER TASK IN PIREX, IT DESPOOLS THE SPOOLED DATA ONTO THE XY PLOTTER,
’ .
8 JIFDF SPL *
6 PLDUMIT BYTE @ JUNUSED
7 PLANRE: ,BYTE @ JONCE ONLY Sw
8 PLRMDI LBYTE @ 7BLOCK IN MOTION SW
9 PLAUFSY ,BYTE @ JEMPTY BUFFER COUNT
10 PLRBYIPI @ JCURRENT BUFFER POINTER
1 PLUDIPI 0 JCURRENT WORD POINTER
12 PLABTPI @ INEXT BUFFER POINTER
13 LENDC
14 []
18 '
16 . IFNDF 8PL
17 05022 21370m¢ PLINTI MOV OHDEVST, R}
p01p8a '
18 08026 11278y MOVB ¥10PS77,PLSPER(RY) JREPORT TASK NOT SUPPORTED
peenry
CLI LT
19 05034 ana2a7y RETURN
20 LENDC
21 .IFDF SPL
22 '
23 PLTNTS MOV TABPDY,R1
24 BIS HLVLS, PNPS JINHIBIT DISK INT,
25 CMP #=1,(R1) 1ANY MORE TO DO?
26 8NE 13
27 11t MoV PLONAD,R3 JGET C(PLCBIP) IN R3
28 CLRB (R3) JRESET SW,'S
29 CLRB (R3) + JBUMP TO PLBUFS
30 INCB (R3)» JRELEASE BUFF,
3t MOV (R3),R3
32 CALL GIVBUF 1GIVE BACK BUFFER
33 281 BIC #4,PH8POLSW JNO, SET PL IDLE SW
34 L1138 RETURN
35 181 TST (R1) JYES, BLOCK IN MOTION?
36 BNE 38
37 1891 MOV PLCIAD,R4 1SK=124 YES, GET ADD OF PLCBIP IN R2
38 MoV (R4),RI JRELEASE BUFFER
39 CALL GIVBUF
40 INCB ~(R4)
41 18s1 TSTB w1 (R4) 7BLOCK READ IN?
42 BE® 43
43 CALL WALTBK IND
44 8R 123
45 431 MoV TABPDT,R2
46 MOV 2{R2),=2(R2) PSET CBNaNBN
47 MOV #4, (R2) JSET CRP
48 MoV PLOIAD,R3 1GET PLOBIP ADD, IN R3
49 MOV (R3),R4 JGET CC(PLOBIP) IN R3 & BUMP 71D TWD1
50 MoV TWOL (R4),2(R2) JSET PL,NBN

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

8POL11,14} MACRLY XVM ViAQ@D PAGE 23+

PL INTERRUPT SERVIFE

51 MOV R2,R} JSAVE PLLCRP ADD, IN R1

52 MOV PLC1AD,R2 J1GEY ADD, OF PLCBIP (N R2
53 Mav (R3), (R2)# J3ET PLCBIP

54 MOV (R3), (R2) 1SET PLWDIP

L] ADD #é,(R2)

568 BR 53 JSEND NRITE REQ IF NOT SHUT WOWN
57 3%t MOV PLWDAD,R2 $JGET ADD OF PLWDIP IN R2
L1} MOV #(R2),~(8P)

59 ADD #5, (SP) JEVEN BYTE COUNT

1] BRIC #177401, (SP)

61 ADD (8P), (RY) }BUMP CRP

62 ADD (SP)+, (R2) JBUMP LPWODIP

63 58 BIT 440000, P¥SPOLSW FSHUT DOWN?

64 BEQ 2%

65 BIT W4, P8SPOLSW 78HUT PL?

1] BEQ 23

67 BIT #1000, 045P0LSW JSHUT DESPOOLER

68 BEQ 2%

69 TSY #(R2) 1LAST RECORS?

70 BNE 133

74 CMP =2(K1),4(R1) JYES, ANY MQRE DATA?

72 BNE 148

73 CALL 12% INO, SET TABLE ENTRIES

74 BR 118

75 14%3 MOV PLONAD,R2 18K=124 GET PLBUFS ADORESS
78 ADD H2,R2 15K~124

77 CMPB #1,(R2) 1SK=124 ONE FREE BUFFER?

78 BNE 158 JSKm=124

78 T8TB wi(R2) F38Ke=124 YES, BLOCK IN MOTION
8p BNE 158 i8K=124

84 cALL 9% JSK=124 NO, GET NEXT BLOCK
82 BR 158 JS8K=124 WAIT FOR BLOCK TO COME IN
83 .

84 1382 MOV OR2,RS INO, SAVE BUFF ADD ON STACK
85 CALL STUPPT PSET UP TCB TO UNTI A LINE
86 Moy PC,RY J1GET PL,CRP ADD, IN R}

87 ADD NTABLE+PLTEDF~», +4,R}

88 MoV (R2) 4R4 JCHECK FOR BUFFER EMPTY

89 MOV #(R2),=(SP) JGET BYTE COUNT

99 ADD %5, (SP) FEVEN BYTE COUNT

91 8lcC #177401, (SP)

92 ADD (SP)+,R4 1BUMP R4 TO POINT TO PT WORD OF NEXT
§3 Moy PC,R2 INO, GET ADD OF PLBUFS IN R2
94 ADD HPLBUFS=, ,R2

9% 787 (R4) JLAST RECORD?

96 BEQ 6%

97 cMP Hei, (R4)

98 BEQ 68

99 CMPB #i, (R2) JPLBUFS=L

100 BNE Sus

101 TSTHB = (R2) JYES, BLOCK IN NEXT?

102 BNE 5es

183 CMP »2(R1),4(R1) IND, MORE TO DOE (CBN=3LSB)

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

SPOL14,4141 MAEL1 XVM ViAGGD PAGE 28
ADDRESS TABLFE

H LSBYTL ADDRESS TABLE
2 '

3 ep5160 ADRTBL

4 0p516p AM2554 RKeaANt ,WORD RKTCBP

5 JIFDF SLP

6 205162 003555 | PANADI ,WORD LPONCE

7 JENDC

8 AP5164 OM63A4 TARPLAL ,WORD TABLE+PLTEOF
9 JIFDF S$PL

10 PLANAD® ,WORD PLONCE

11 LENDC

12 05166 225278 BTMPADS ,WORD BTMPST

13 0517p 2a5272 STAKNAT ,WORD STBKNM

14 05172 on6254 TARLADI ,WORD TABLE

15 08174 006258 YAnPrB! ,WORD TABLE+CBN

16 05176 an63aA TARPLCE ,WORD TABLE+PLTEOF+CBN
17 23200 06272 TARCHC! .WORD TABLE+CDTEOF+CBN
18 05202 ARB364 TCRK1AL LWORD TCBDKY

19 T1FDP $CD

20 £DEPAD! ,WORD CDCBIP
21 £DeBADY ,WORD CDCHCP
22 LENDC

23 «JFOF SLP

24 05204 04329 | PcBADS WORD LPCBCP
25 05208 @A3562 LPcwaDs ,WORD LPWDIP

26 LENDC

2y JIFDF SPL

28 PLEBADT ,WORD PLCBCP
29 PLWDAD? ,WORD PLWOIP
30 LJENDC

31 #5210 806442 TCRK3AL WORD TCBDKY
32 75212 AA144m AFNDRKE WORD FINDBK

33 05214 002124 ASPLFUL ,WORD SPLFUL TRRLIGNN
34 p5216 an8742 BUFLADI ,WORD BUFLHD

38 . 1FDF SLP

38 05220 LPePAD?

37 95220 0A356m (PrzADT ,WORD LPCBIP

38 05222 @04321 LPAMSAI ,WORD LPBMS

39 LENDC

40 05224 @0627m TANCPT: ,WORD TABLE+CDTEOF

41 B5226 0M626m TAACRY: ,WORD TABLEZCRP

42 05230 0A81(n TARPPTI ,WORD TABLE+PLTEOF+CRP

43 + IFDF $PL

a4 PLeIADY ,WORD PLCBIP
45 PLATADY (WORD PLOBIP
a6 PLRMSAL (WORD PLBMS

47 ENDC

48 « IFOF $CD

49 CDRMSAL ,WORD cpamMs

S0 CDINTAL (WORD COINTY

5y +ENDC

52 95232 206272 TARDCT! ,WORD TABLE+CDTEOF+CRP
53 25234 nebarm cDeAAD! ,WORD CDCALL

Figure 5-1 (Cont.)
UNICHANNEL Spooler Components

Spooler Design and Theory of Operation

I OUTPUT TASK

SPACE LEFT IN BUFFER
FOR CALLER'S DATA?

COPY CALLER'S DATA INTO BUFFER
AND UPDATE BUFFER POINTERS

EQF?

SET EOB SWITCH
SET EOF SWITCH
SET LFB IN TABLE

T

CALL FINDBK FOR
AN UNUSED DISK BLOCK

[SAVE DISK BLOCK # I

A

CALL PUTBLK TO WRITE
OLD BUFFER TO THE DISK

Y

CALL GETBUF FOR AN
UNUSED CORE BUFFER

i1

SET NEXT BLOCK # IN
OLD BUFFER. SET BLOCK
IN NEW BUFFER

Figure 5-2

SET EOB FLAG (FOR DESPOOLER)
IN BUFFER

'

CALL FINDBK FOR AN
UNUSED DISK BLOCK

!

SAVE DISK BLOCK #

Y

CALL GETBUF FOR AN
UNUSED CORE BUFFER

!

SET NEXT BLOCK # IN OLD
BUFFER. SET BLOCK # IN
NEW BUFFER

1

UPDATE POINTER TO BEGINNING
OF NEW BUFFER

Y

CALL PUTBLX TO WRITE OLD
BUFFER TO THE DISK

'

Task Call Service Routine

Spooler Design and Theory of Operation

Set the SPOOLER task controel lines 19-23
registers ‘
Setup the disk TCB pointer lines 25-33
table

Setup and initialize BITMAP lines 35-54
Initialize and setup TABLE lines 55-64
Set the SPOOLER switches lines 65-67

LINE PRINTER OPERATIONS:

Initialize the LP call service lines 94-95, 101-104
routine switches and pointers

Clear all pending LP task re- lines 96-98
gquests in PIREX get a free »
block on disk, get a buffer.

Set the NBN entry in TABLE. line 100
Process the next SPOOLER line 120
request

5.5.2 LP SPOOLING

All requests issued to spooled tasks (TCN = 0-177) after a 'BEGIN'
directive to the SPOOLER, are processed by the SPOOLER. This is effected
by PIREX. When the LP handler in the XVM issues a request to the LP
driver task in PIREX, the SPOOLER processes this request. The 'request
dispatcher' transfers control to the 'LP call service routine' and the

following operations are performed (refer to Figure 5-1):

Get the current word pointer page- 22, line 20
address

Check if spooling operations are lines 26, 22
disabled and, if disabled, exit

Point to the current word lines 26, 25
Get the caller's buffer address lines 26-28

and relocate that address

Get the byte count of the lines 29-31

current record, add the header
word byte count, and make the
byte count even

Move ahead the current word line 32
pointer by the size of the
current record

Compute the space remaining in line 33-36
the current buffer
Is the buffer full? lines 37-38

Spooler Design and Theory of Operation

Copy the caller's buffer lines 39, 123-127
Check for a .CLOSE record lines 41, 105-108
The record is not a .CLOSE; one lines 42, 48-54

more record can fit. Process
the next request

The record is a .CLOSE record:; lines 109, 110, 112
save the old Last File Block
(LFB) in TABLE

Set the new LFB in TABLE Line 113

Set the o0ld LFB in Header word 2 lines 114, 115
of the buffer

Set an end of file indicator in line 116

the buffer

Go to line 55]
The buffer is full. Set an indi- lines 55-57
cator to this effect in the

buffer

Get a free block on disk (FINDBK) line 58

Set a pointer to the next block lines 59-61
in trailer word 1

Set the "write block in motion" lines 63, 64
switch

Put the buffer on disk (PUTBLK) lines 62, 65
Get another buffer (GETBUF) line 67

Set the "current buffer" pointer lines 66, 68
for the new buffer

Set the block number in the line 69

current buffer

Set the current word pointer to lines 70, 71
word 2 in the buffer

Process the next request line 72

As disk blocks are written on the disk the Last Spooled Block (LSB)
entries in TABLE are updated when the completion of I/O interrupt is
processed by the 'disk interrupt service routine' in the SPOOLER
(RKINT).

5.5.3 LP Despooling
When the LP device is idle and the first spooled data block is written

onto the disk the despooling operations are started in the RKINT routine
as follows (refer to Figures 5-1 and 5-3).

Spooler Design and Theory of Operation

READ

WHAT TASK?

CLEAR BLOCK IN UPDATE LSB
MOTION SWITCH | IN TABLE

DECREMENT FREE
BUFFER SWITCH

ONCE ONLY
L SWITCH SET?

FIRST READ?

SET_SWITCH

UPDATE CBN, CRP, CBN
IN_TABLE

SET BLOCK IN
MOTION SWITCH

| ouTPyT TASK? |

[GO TO DONE}{START UP TASK]|

GO TO DONE

Figure 5-3

Device Interrupt Servicing Logic (For LP)

Spooler Design and Theory of Operation

WRITE PROCESSOR:

Reset the "write block in page 19, lines 20, 21
motion" switch

Set the LSB in TABLE lines 22, 23

LPONCE = 0, first time lines 24-27

through set LPONCE = 1

Set the "read block in " line 28

motion" switch

Get a buffer (GETBUF) line 29

Get a disk TCB (GETRKT) line 35

Read a block from disk . lines 32-34, 36, 37
(GETPUT) ‘

Return the disk TCB and line 38

then EXIT '

READ PROCESSOR:

Is the block read = LFB? page 23, lines 43-45
Yes, set LFB =1 line 46
Reset the "read block in line 48
motion'" switch

Decrement the LP free buffer line 49
count

LPONCE = 1, first time lines 50-53
through, start up LP .

Set Current Block Number line 66
(CBN) in TABLE ’

Set the current despooling lines 67-68
buffer pointer

Set the current despooling lines 69-~70
word pointer ’

Set the Next Block Number lines 71-72
(NBN) in TABLE .
Set Current Record Pointer line 73
(CRP) in TABLE

Set LPONCE = 2 "~ line 54

LP despooling is not shut lines 55-58
down; send the LP write

request

Set the LP busy switch line 60
Return the disk TCB and then

EXIT

Once despooling operations are started the 'LP interrupt service
routine' continues the despooling operations until there is no more
data to be despooled.

Spooler Design and Theory of Operation

The following operations are performed here (refer to Figure 5-1):

Protect against a disk page 21, line 24
interrupt

There's nothing more to do; lines 25-28
reset LPONCE

Reset LPBMD and increment the lines 29, 30
free buffer count

Return the buffer (GIVBUF) lines 31, 32
Set the LP idle switch and lines 33, 34
return

There's more to do; a block is lines 35, 36
in motion

Release the buffer (GIVBUF) lines 37-39
Increment the free buffer count line 40

Wait for a block to be read in lines 41-44
Set CBN - NBN in TABLE line 47

Set CRP in TABLE line 48

Set NBN in TABLE lines 49-52
Set the current despooling buffer lines 53-56
and word pointer

Shut down? Shut LP? Shut lines 64-69
despooler?

Current record in buffer is a lines 70-72

.CLOSE record, check if more
blocks to do

There are no more blocks reset lines 74, 77, 121-123
TABLE entries, switches and
then exit

One free buffer and no block lines 76-81

in motion

Get next block lirie 82
Release buffer and wait to lines 83, 37-44
come in

The first record is not a .CLOSE, lines 86-87
send an LP write request

Point to the first word of the lines 89-93
next record

There are more records left and lines 96-101
one free buffer

There is no read block in motion lines 102-105
and more blocks to do

Get next block lines 106, 126-137

Return from interrupt call

Spooler Design and Theory of Operation

5.5.4 SPOOLER Shutdown

All spooling operations can be terminated by issuing the 'END' directive
to the SPOOLER. The following operations are performed (refer to
Figure 5-1):

Protect shutdown routine page 9, line 7
Clear any pending SPOOLER wakeup line 8
requests

Allow devices to run down lines 13-18
Shut down LP task lines 20-23
Turn off SEND11 lines 32-34
Test if shut down due to disk lines 35-36
error

If "END" shutdown, tell "SPOLL5" lines 37-39
that it has occurred

Disconnect SPOOLER lines 40-41

CHAPTER 6
SPOOLER TASK DEVELOPMENT

6.1 INTRODUCTION

This chapter discusses in detail the procedure for developing a spooled
task, and, for integrating it into the SPOOLER software. The develop-
ment of a spooled taskl in the UCl5 system begins with the development
and installation of the task under the PIREX system, if not already

present (see Chapters 4 and 5).

Once this has been done, the following summary describes the steps

necessary to integrate it into the SPOOLER software:

1. Design and code the call service routine. (Refer to Figure
6-1.)
2. Design and code the interrupt service routine. (Refer to

Figure 6-1.)

DEVICE HANDLER _ | SPOOLER TASK/DEVICE DRIVER
ON XVM ‘T o t o ON PDP-11
CALL side INTERRUPT side
Figure 6-1

SPOOLER Schematic

NOTE

The logical structure of the 'task call
service routine' and the 'task interrupt
service routine' depends upon whether the
task is an input or an output task. The
'task call service routine' is the de-
spooler for an input task and it is the
spooler for an output task. The 'task
interrupt service routine' is the spooler
for input tasks and it is the despooler
for output tasks.

1There is no program logic or coding connections between the device
driver tasks under PIREX and the spooler task. All communication to
the device driver is through the TCB only.

6-1

Spogler Task Development

3. Add code in the RKINT routine to handle the disk read or
write operations for this task.

4., Code a routine to setup TCB and issue request.
5. Add a TCB for this task.

6. Add code to the BEGIN directive processing routine to initia-
lize, and, (if necessary) startup this task.

7. Add code to the END directive processing routine to clear up
this task.

8. Add code to the 'request dispatcher' to dispatch calls to
this routine.

9., Add code to the 'device interrupt dispatcher' to dispatch
interrupts from this device.

10. Increase the size of TABLE by 6 words if not sufficient.

11. Add entries of frequently addressed tags to the central
address table.

12, Update DEVCNT and DEVSPP to ensure sufficient buffers and
TCBs.

13. Update FINDBK routine.

The remaining sections describe the above steps in more detail. The

Line Printer spooler task is used as a descriptive example.
6.1.1 Call Service Routine

This is the routine that normally processes calls from the handler
on the XVM. For an output task this routine spools data onto the
disk as indicated in Section 5.3.3. The operations performed by this

routine are discussed in detail in Section 5.4.2.

Normally, data from records are copied into a buffer until it is full.
As soon as a buffer is full, it is written onto the disk with a
pointer to the next block; and then a new buffer is obtained. This
process is continued until a special record that indicates the end of
the file is received. For the Line Printer, this is a record with
form feed and carriage return characters only. On receipt of this
record, the call service routine copies this record into the current
buffer and writes it out; regardless of whether the buffer is full or
not. This is done to ensure complete processing of a distinct logical
entity, a file. The call service routine sets only the LFB entry in
the TABLE. It uses the utility routines GETBUF, FINDBK, PUTBLK, and
DEQREQ.

Spooler Task Development

6.1.2 Interrupt Service Routine

Completion of I/O interrupts from the device driver in PIREX is pro-
cessed by this routine. For an output task, this routine despools the
data onto the device as indication in Section 5.3.5. The operations

performed by this routine are discussed in detail in Section 5.4.3.

The interrupt service routine for the Line Printer despools data from
the buffer onto the device by issuing requests to the task running
uider PIREX. This routine, like other despooling routines in the SPO-
OLER, is double buffered to increase throughput. Provision is made

in the routine to wait for a block to be read into core during heavy

disk utilization. This is done using the "block in motion" switch.
6.1.3 Code to Handle the Disk Read/Write Operations

All spooled tasks must perform certain functions on completion of a

read/write block disk operation, as, Section 5.5.3 describes in detail.

On completion of a read disk block request the TABLE entries must be
updated and the Line Printer started up if idle. If the Line Printer
is busy, control is transferred to the "DONE" section of code where

the disk TCB is returned to the pool and control is relingquished.

On completion of a "write block on disk" request, the buffer is returned
and the LSB entry in TABLE is updated. If the Line Printer is idle,

a request is issued for the Line Printer task to read in the next de-
spooling block. This is done by supplying the NBN1 entry in TABLE for
the Line Printer. If the Line Printer is not busy or after issuing

the read request as in read, control is transferred to the 'DONE'

section of code.
6.1.4 Routine to Setup TCB and Issue Request
These operations are performed at several places in the SPOOLER. To

optimize code this subroutine performs the TCB setup and request

issuing functions.

1See Section 5.4.7.

Spooler Task Development

The Line Printer routine performs the following operations (Figure
5-1) at tag STUPLT:

Get the address of the LP TCB page 11, lines 18-19
Go to setup common line 20

Set the buffer address specified line 31

in the TCB

Reset the REV in the TCB lines 32-33
Issue the request line 34
Return control line 35

6.1.5 TCB

The format of the TCB used by spooler tasks is almost identical to the
format of TCBs for tasks running under PIREX, except for the disk

TCB which has an extra word. The extra word is used to store the TCN
of the task for which the I/0 transfer was requested. Another dif-
ference is that the TCN present in word 'l' of all TCBs in the SPOOLER
has the unspooled bit set, i.e., TCN' = 2008 + TCN (0—1778). This is
to prevent the request from being queued to the SPOOLER. Also, word
'0' of all TCBs contains the SPOOLER task code instead of the API
information. This is to permit PIREX to transfer control to the 'device
interrupt dispatcher' in the SPOOLER on receipt of an I/0 completion
interrupt from a SPOOLER request.

6.1.6 Initialization in the BEGIN Routine

All SPOOLER tasks have to be initialized before starting of spooling
operations. The initialization normally consists of setting the
pointers, switches and variables to the right value, obtaining buffers,
block number on disk, etc. Section 5.5.1 explains these operations
for the Line Printer in more detail.

6.1.7 Cleanup in the END Routine

All SPOOLER tasks have to be cleaned up before termination of spooling
operations. The cleanup for the Line Printer consists of stopping the
LP driver task in PIREX and clearing all pending requests in the
task's TRL.

Spooler Task Development

6.1.8 Updating the Request Dispatcher

The request dispatcher in the SPOOLER contains code to check the TCN
of the current request being processed and to transfer control to the

appropriate routine. For the Line Printer (Figure 5-1) this is done at:
page 6, lines 36-38, 73
6.1.9 Updating the Device Interrupt Dispatcher

The SPOOLER is informed of completion of I/0 requests through the
PIREX Software Interrupt facility. PIREX calls the device interrupt
dispatcher, which determines the task that issued the request and

transfers control to the tasks interrupt service routine.
For the Line Printer this is done at:

page 17, lines 12-13, 19
6.1.10 Updating TABLE

The TABLE contains the complete record of the data being spooled and
despooled. Each task has a 6 word entry in this TABLE. TABLE size
must be increased (change the 'BLOCK XXX' statement at page 33, line 73)
based upon the number of tasks in the SPOOLER. Currently there is
sufficient space in the TABLE for 3 additional tasks.

6.1.11 Updating the Central Address TABLE

Code optimization in a PIC program is done by maintaining a table of
addresses for frequently used tags. This table contains the unre-
located addresses of tags at assembly time. These are converted to
absolute addresses (by adding the SPOOLER first address) by the once
only section of code in the SPOOLER (Figure 5-1, page 6, lines 12-26).

For the Line Printer (Figure 541) the following tags are present in
this table:

LPONCE page 28, line 6
TABPCB line 15
LPCBCP line 24
LPWDIP line 25
LPCBIP line 37
LPBMS line 38

Spooler Task Development

6.1.12 Update DEVCNT and DEVSPP

To facilitate automatic updating (increase or decrease) of buffers and
disk TCBs in the SPOOLER based upon the number of tasks in it, a condi-

tional parameter exists for each task.

DEVCNT and DEVSPP are modified for the Line Printer (Figure 5-1) at:
page 3, line 13-16

Tasks are assembled into the SPOOLER by defining the conditional

parameters of the form:
$XX = 272700
where

XX
22727

mnemonic of the task (LP for Line Printer)

a bit configuration (0400 for LP -~ there is a
bit for each task)

6.1.13 Updating the FINDBK Routine

Code is present in this routine to prevent allocation of the disk
block that is currently being despooled. This is necessary to insure
proper operation of the spooler because despooling operations are
halted when CBN = LSB., For the line printer task (Figure 5-1) this
is done at:

page 12, lines 83-.84, 91-92

6.2 ASSEMBLING THE SPOOLER

To assemble the SPOOLER with the required task in it, it may be nec-
essary to edit the SPOL11 XXX source file to supply the appropriate
assembly parameter. To assemble the SPOOLER with the Card Reader
task also insert the line:
$CD = 20000 after the sub-title conditional assembly
parameters.
(For Plotter insert: S$PL = 10000)

An assembly of the above source (Figure 5-1) will produce a SPOOLER

with Line Printer and Card Reader tasks.

APPENDIX A

ABBREVIATIONS

API Automatic Priority Interrupt

ATL Active Task List

CAF Clear All Flags

CAPIn Clear APIn flag in DR15-C (CAPIO = 706104,
CAPI1 = 706124, CAPI2 = 706144, CAPI3 = 706164)

CBN Current Block Numbers

CIOD Clear Input/Output done (706002)

CRP Current Record Pointer

XVM/DOS XVM Disk Operating System

EV Event Variable

LFB Last File Block

LIOR Load Input/Output Register (706006)

LSB Last Spooled Block

PC Program Counter

PIC Position Independent Code (can be loaded any-
where in memory) .

RDRS Read Status Register (706112)

REV Request Event Variable

XVM/RSX XVM Real Time System Executive

SAPIn Skip on APIn flag in DR11-C (SAPIO = 706101,
SAPI1 = 706121, SAPI2 = 706141, SAPI3 = 706161)

SIOA Skip on Input/Output data Accepted (706001)

TCB Task Control Block

TCBP Task Control Block Pointer

TRL Task Request List

UCl5 PDP-11 Front End Processor and Interlace to XVM

APPENDIX B
CURRENTLY IMPLEMENTED TCBs

The general format for all task control blocks is as follows:

ATA

FCN

TCN

REV

15 8,7 g2,
L})]
! ATA H ALV v word g
: vt 5 v 3ot 3 : : ' 9 1 v 1 ¥ :
' FCN Y TCN 1 word 1l
: e v ? T ¥ Y Y OV OB ¥ N VT L3 :
' REV i word 2
: $_p T v v ¥ P T R P B ¥ N ! ¥ :
4 Other data y word 3
’ : J
ticular
/ par /
H ' word n
1 '

to this task
1 [] 11 [| S .] 11

XVM APT interrupt vector address

XVM API interrupt priority level. Must be 0, 1, 2,

or 3 (unless FCN = 3;.

Function to perform upon completion of this request.

Vvalid values are:

000 Interrupt XVM at location ATA, priority ALV.

001 Do nothing (except set REV)

003 Cause software interrupt to the PDP-

task code number is in ALV.
0 if this request may be spooled.
1 if this request may not be spooled.

Task code number of the task which is to
request

Request Event Variable., Initially zero,
zero value to indicate completion of the
The meaning of the various return values
below.

11 task whose

process this

set to a non-
request.
is described

Currently Implemented TCBs

Returned REV value:
1 Successful (normal) completion.

-200 Non-existent task. The task code number (TCN) does not
correspond to any task currently in the PIREX system.

-300 Illegal ALV value. The request may or may not have been
performed - see individual request descriptions. The
XVM is interrupted at API level 3.

=777 Node Pool empty. PIREX is temporarily out of nodes, and
therefore is unable to insert this request into the appro-
priate list. Reissue the request after a brief delay.

Other The meanings of other returned REV values are given with
the descriptions of the task control blocks to which they
apply.

In the sections that follow, many of the task control block diagrams
show S and TCN combined into a single 8-bit quantity. This is done
to indicate that the particular task may never be spooled, and thus

S is always 1.

B.1 STOP TASK (ST)

This task provides the capability to stop one or all tasks in PIREX.
Stopping a task may immediately abort processing of the request the
task is currently processing, and also any XVM originated requests
on the task request list. The format of the task control block for
the stop task is as follows (note that this is a non-standard task

control block):

15 8,7 0
unused word O
A TCN 200 word 1
REV word 2
TCN If zero, this is a stop all tasks directive.
A If set unconditionally, abort the current request for this

{(or all) task(s). If clear, allow the request currently
being processed by this (or each) task to complete if and
only if the request originated from the PDP-11l. Only XVM
reguests on the task request list will be aborted regard-
less of the setting of this bit.

Currently Implemented TCBs

All requests which are aborted via this request will never complete;
the request event variables (REVs) of such requests will never be set
to a non-zero value. A permanent task which is stopped via this re-
quest will be placed in the wait state; a temporary task will be placed
in the stopped state.

Returned REV values:

1 sSuccessful completion

-600 Task to be stopped is not connected to PIREX.
Only applicable when TCN # 0.

B.2 SOFTWARE DIRECTIVE TASK (SD)

Descriptions of the software directives, including details of their
task control block formats, are given in Section 3.6, Software Direc-
tive Processing. The general task control block format for all soft-

ware directives is as follows:

15 8,7 0
ATA ALV word O
FCN 201 word 1
REV word 2
OPR word 3
Contents depend word 4
P upon L
/r directive 1’ word n
OPR Indicate the exact operation (directive) to be performed.
For details see Section 3.6.
Returned REV values:
1 Successful completion
-400 Invalid OPR (directive/operation code) values.
Other See individual directive description in Section 3.6.

B.3 DISK DRIVER TASK (RK)

The disk driver task provides the capability of using the RKO5 cart-
ridge disk system. Task control blocks directed to this task have
the following format:

Currently Implemented TCBs

15 8,7 0
ATA ALV word O
FCN 202 word 1
REV word 2
Block Number word 3
R 6 [M
E i 3 word 4
A
LSMA word 5
Word Count word 6
unused Unit Function word 7
RKCS word 10
RKER word 11
RKDS word 12
ATA Usually 0478
ALV Usually 000
REV Set to 1 upon completion regardless of errors.
Block Number Disk block number to transfer.
REL 0 if request comes from XVM
1 if request comes from PDP-11
64K1 When 1 causes an additional 64K words to be
transferred.
MSMA Core address at which to begin transfer - most
significant bits.
LSMA Core address at which to begin transfer - least
significant bits.
Word Count Two's complement of the number of words to
transfer.
Unit Disk drive (unit) number on which to perform
the operation.
Function Operation to be performed.

lA zero in the word count field (word 6) causes a 64K word transfer.
The "64K" field (word 4) is used in conjunction with the word count
to specify transfers dgreater than 64K words. Thus to transfer 65K
words, the user would set the "64K" bit and place a minus —102410 in
the word count field.

Currently Implemented TCBs

vValid values are:

002 Write

004 Read

006 Write check
012 Read check

016 Write lock

For detailed descriptions of the functions, see the RK11-E Disk
Drive Controller Manual (DEC-11-HRKDA-~B-D).

RKCS Upon completion of the operation, these three
RKER words are loaded from the corresponding disk
RKDS controller registers. See the RK11-E Disk

Drive Controller Manual (DEC-11-HRKD-B-D) for
a description of their meaning.

If the request originates from the PDP-11, LSMA is the 16-bit PDP-11
byte address at which the transfer is to begin. If the request origi-
nates from the XVM, MSMA and LSMA together are the 17-bit XVM word
address at which the transfer is to begin. Upon completion of the
transfer, REV is always set to 1, regardless of whether or not the
transfer succeeded. RKCS, RKER, and RKDS must be examined to deter-

mine whether the transfer succeeded or an error occurred.

Returned REV Values:

1 Request complete. Reguest may or may not have succeeded.
-300 Illegal ALV value. Request complete.

B.4 LINE PRINTER DRIVER TASK (LP)

The task control block format is as follows:

15 8,7 0

ATA ALV word O
FCN s| o004 word 1

REV word 2

REL word 3

Buffer Address word 4

unused word 5

Status Flag word 6

Currently Implemented TCBs

ATA Usually 0568
ALV Usually 002
S Usually 0 (indicating spooled operation)
REL 0 if request originates from XVM
1 if request originates from PDP-11
Buffer PDP-11 byte address, if request is from PDP-11
Address XVM word address, if request is from XVM

Status Flag Unused if request is spooled.
Cleared to zero at beginning of request proces-
sing and set to 000001 at completion if request
is not spooled.

The buffer address argument refers to a line buffer of the following

format:
15 8,7 0
Mode Count word 0
LF unused word 1
word 2
- Data —
word n
Count The number of bytes of data in the buffer.
Excludes the four byte header.
Mode . Indicates transfer mode. Legal values are:
0 IOPS ASCII
1 Image
LF May be altered by the driver.
Data One line of output for the line printer.

The data sent to the line printer driver is a series of independent
bytes. If a byte is positive, it represents a 7-bit ASCII character.
If a byte is negative, it represents some number of spaces, the
number of spaces being equal to the absolute value of the byte. If

a line is in image mode, only the characters represented by the data
bytes are output. If a line is in IOPS ASCII mode, a line feed is
output before the beginning of the line unless the first character of
the line is a carriage return or form feed. A carriage return is
always output at the end of lines in IOPS ASCII mode. A line contain-
ing just the characters carriage return followed by form feed causes
no output in either mode, but rather represents a .CLOSE (end of file)

operation.

Currently Implemented TCBs

Line printer errors are not reported via returned REV values. The only
line printer error which can occur is for the printer to go off line
(become not ready). The line printer driver reports this by placing
the value 4 in the device error byte of its entry in the DEVST table
(see Section 3.6.4 on the Error Status Report Directive). When the
printer comes back on line the driver clears the device error byte and

outputs the line. Upon completion the REV is set to 1.

Returned REV Values:

1 Successful completion

=300 Illegal ALV value. Action may or may not have
been taken.

~-600 Spooler shut down. No action has been taken.
B.5 CARD READER DRIVER TASK (CD)

The task control block format is as follows:

15 8,7 0
ALA ALV word O
FCN S| 005 word 1
REV word 2
unused word 3
Buffer Address word 4
ATA Usually 0558
ALV Usually 001
S Usually 0 (Indicating spooled operation)
Buffer PDP-11 byte address, if request is from PDP-11

Address XVM word address, if request is from XVM

The buffer address argument refers to a card buffer of the following
format:

15 8,7 0
Byte Count word O
Checksum word 1
word 2

~ Data o
/[; ’(word n

Currently Implemented TCBs

Byte Count Always 80

10

Checksum Word checksum of the buffer
count)
Data 8010 bytes (40lO words) of data

The card data is not in ASCII.

in the following format

bit
bit
bit
bit
bit

~ION Ut W

000 no punches in rows 1-7
001 row 1 punched
010 row 2 punched
011 row 3 punched
100 row 4 punched
101 row 5 punched
110 row 6 punched
111 row 7 punched
Indicates row 8 punched
Indicates row 9 punched
Indicates zone 0 punched
Indicates zone 11 punched
Indicates zone 12 punched
NOTE

All combinations of punches which cannot
be speciried in this manner are illegal.

(including the byte

Each card column occupies one byte

bits 0-2 Contents of rows 1-7 encoded as follows:

Any errors that occur are not reported by returned REV values. Instead

the IOPSUC numeric error code is placed in the deviée error byte of the

card reader's entry in the DEVST table (see Section 3.6.4,

Error Status

Report Directive). When the error condition is remedied, the driver

clears the device error byte and the read operation continues. Ultimately

the read completes and REV is set to 1.

Returned REV Values:

1 Successful completion

=300 Illegal ALV values. Action may or may
not have been taken.

-700 Spooler shut down.

No action taken.

(Despooling not enabled)

Currently Implemented TCBs

B.6 PLOTTER DRIVER TASK (XY)

The task control block format is as follows:

15 8,7 0

ATA ALV word O

FCN S | 006 word 1

REV word 2

REL word 3

Buffer Address word 4
ATA Usually 0658
ALV Usually 003

S Usually 0 (indicating spooled operation)
REL 000000 If request is from XVM

If request is from PDP-11

Buffer Address PDP-11 byte address, if request is from PDP-11.
XVM word address, if request is from XVM.

The buffer address argument refers to a data buffer of the following

format:
15 8,7 0
Mode Count word O
unused word 1
word 2
P Data P
T’ | word n
Count The number of bytes of data in the buffer.
Excludes the four byte header.
Mode Indicates the function to perform and/or the

mode in which the data should be interpreted.
Valid modes are:

Currently Implemented TCBs

Line mode
Character mode

Initialize

W N

Pen selectl

377 End of file

Line mode data takes the following form. Each line is represented by

a pair of data words. The first word is the incremental change in the
X coordinate from the beginning to the end of the line, the second word
the change in the Y coordinate. If this is to be an invisible line -
i.e., it is to be drawn with the pen raised - 1000008 should be added
to the first word (change in X).

Character mode data is a series of ASCII characters to be drawn, one
character per byte. Initialize requires 8 words of data which specify
the character size and orientation for character mode plotting. The
pen select operation1 takes two words of data. The first is the pen
number for the XY¥311 plotter (1, 2, or 3). The contents of this word
are destroyed by the pen select operation. The second word must be
zero. An end of file merely raises the pen. (It also forces the XY

data through the spooler buffers if spooling is enabled.)

Returned REV Values:

1 Successful completion

-300 Illegal ALV value. Action may or may not have
been taken.

-600 Spooler shut down. No action taken.

lThis is used only by the XY311 plotter.

B-10

APPENDIX C
UC15 RELATED ERROR MESSAGES

I0oPSUC YYY XXXX

Where YYY denotes one of the following:

EST Stop all I/0 Task
ESD Software Driver "
RKU Disk Cartridge "
DTU DECTAPE "
LPU Line Printer "
CDU Card Reader "
PLU Plotter "
ESP Spooler "
EMA MAC11 "

XXXX denotes one of the following:

3

ILLEGAL INTERRUPT TO DRIVER

4

DEVICE NOT READY
12 - DEVICE FAILURE

15 - SPOOLER FULL WARNING MESSAGE
20 - SPOOLER DISK FAILURE - SPOOLING DISABLED

45 - GREATER THAN 80 COLUMNS IN
CARD

55 ~ NO SPOOLER BUFFERS AVAILABLE

72 - ILLEGAL PUNCH COMBINATION

UC15 Related Error Messages

74 -~ TIMING ERROR - CARD COLUMN
LOST - RETRY CARD

75 - HARDWARE BUSY - DRIVER NOT

76 - HARDWARE ERROR BETWEEN
CARDS

77 - UNRECOGNIZED TASK REQUEST -
DEVICE NOT PRESENT

400 - SPOOLER EMPTY - PDR-15 INPUT
REQUEST PENDING

Standard format IOPS error messages:

Error Code

25 XY plotter - value too large for plotting.

27 XY plotter - mode incorrect.

200 Non-existent task referenced.

300 Illegal API level given (illegal values
are changed to level 3 and processed).

400 Illegal directive code given.

500 No free core in the PDP-11 local
memory.

600 ATL node for this TCN missing.

777 Request node was not available from.the

POOL; i.e., the POOL was empty and the
referenced task was currently busy or the
task did not have an ATL node in the
Active Task List.

601 System Memory Map Invalid
This indicates that the memory map
used by CONNECT/DISCONNECT is in-
valid. PIREX should be rebooted
before any CONNECT/DISCONNECT attempt.

602 TCB Out of Range
This indicates that the TCB address is
not within the 28K word addressing range
of the UNICHANNEL.

GLOSSARY
Active Task
An Active Task is one which:

1. is currently executing
2. has a new request pending in its queue
3. 1is in a wait state

4. has been interrupted by a higher priority task.
Active Task List

A priority-ordered linked list of Active Tasks used for scheduling
tables. The ATL is a queue consisting of one node for each Active
Task in the system.

Busy/Idle Switch

A two-word storage area used to save TCBP's when processing a request.
Every task has a two-word Busy/Idle Switch. If the two words are zero,
the task is currently not busy and is able to accept and process a

new request. Bit 15 of the first word is used by the system to deter-
mine if the TCB came from an XVM or PDP-11 request., If zero, the re-

quest came from the XVM, otherwise it came from the PDP-11.

Call Side

All spoolers have a 'call side' where a set of data is passed by the
caller to the spooler (for output spooled devices/tasks) or data is
passed by the spooler to the caller (for input spooled devices/tasks).
This is done only when a request is made to the spooler.

Context Save

The storing of all active registers, including the program counter

(PC) and program status (PS), on the current task's stack. These saves

GLOSSARY-1

are done when higher priority tasks interrupt lower priority ones and
by device driver interrupt routines to allow them free use of the

general purpose registers.
Context Switching

The process of saving the active registers belonging to the current
task executing (a context save), determining a new task to execute,

and finally restoring the registers belonging to it.
Deque

Deque, pronounced deck, is a double-ended queue consisting of a list-
head and list elements, circularly linked by both forward and backward
pointers. Deques (linked lists) are used, instead of tables, to store
TCB pointers and ATL information. The list elements (commonly called
nodes) are initially obtained from a pool of empty nodes called the
POOL. Nodes consist of listhead and 2 words of data used to store the
caller's TCB pointer or ATL information. When a node is needed, it is
removed from the POOL and queued to the referenced task deque of the
ATL. When a node is no longer needed, it is zeroed and returned to

the POOL.

Dequeue
Remove a node from a queue.
Directive

A task which performs some specific operation under PIREX, e.g., con-—

necting and disconnecting tasks.

Driver

A task which controls a hardware device. Drivers usually consist of
necessary program only rudimentary operations (e.g., read, write or

search). The more complex operations such as file manipulations and

syntax checking are usually performed by handlers.

GLOSSARY-2

Event Variable

A word or variable used to determine the status of a request. The
Event variable is set to indicate successful completion, rejection,
status, or a request still pending condition.

Interrupt Side

All spoolers have an 'Interrupt Side' where data is passed by the
spooler to the device/tasks (for output spooled device/tasks) or data
is passed from the device/tasks to the spooler (for input spooler
devices/tasks). This occurs whenever output of data is complete or
input data is ready.

Linked List

A deque consisting of nodes and listhead used to store system infor-

mation. An empty list consists of only a listhead.

Listhead

A two-word core block with forward and backward pointers pointing to
the next and previous list node or to itself if empty. The listhead
is a reference point in a circularly-linked list.

Local Memory

Core memory only addressable by the PDP-11. This is ordinary 16-bit
PDP-11 core memory.

Node Manipulation

The process of transferring nodes from one deque structure to another.

Nodes

The list elements of a deque. All nodes consist of listhead, followed
by 2 words of data (list elements).

GLOSSARY-3

Nul Task

The Nul Task is a task which runs when no other task can. It consists
of only PDP-11 WAIT and BR Instruction to increase UNIBUS operations.

Permanent Task

A task in PIREX is said to be a permanent task if it is assembled into
PIREX, has space in all PIREX system tables and has a fixed task code
number.

POOL

A linked list of empty four-word nodes for use in any deque in the
system. The POOL is generated at assembly time and currently has 20
decimal nodes available.

Pop

To remove an Item (word) from the current task's stack.

Push

To put an item (word) onto the current task stack.

Queue

To enter into a waiting list. Queues in PIREX consist only of deque

structures.

Scheduling

The process of determing which task will be executed next. The opera-
tion is based on a priority ordered list of active tasks in the system
(ATL) .

Shared Memory

Core memory addressable by both the XVM and PDP-11. The shared mem-
ory is ordinary 18-bit XVM memory.

GLOSSARY-4

Spare Task
A task that runs under PIREX is said to be a temporary task if it is
not assembled into PIREX, has space in all PIREX system tables, does

not have a fixed task code number and its start address is not fixed.

The core occupied by the temporary tasks is not freed unless the tasks

are disconnected in the order in which they were connected.

SPOLSW

This is a register in PIREX which contains the spooler control and

status switches as indicated below.

BITS 0-7 Device busy Idle switch
'0' is idle and 'l' busy

BIT O Lp
1 CD
2 PL

3-7 UNUSED

BITS 8-15 Spooler State/Function switches
'0' if disabled and 'l*' if enabled

BIT 12 DESPOOLER
13 SPOOLER
14 SPOOLING
15=1 SPOL11 PROGRAM CONNECTED TO PIREX
=0 SPOL11l PROGRAM NOT CONNECTED TO PIREX

Task

A PDP-11 software routine capable of being requested by the XVM or
PDP-11 through the PIREX software system. The task may be a device
driver, a Directive, or just a software routine used to carry out a

specified function. A task must have the format shown in Fiqure 2-1.

Task Code Number
All tasks in the PIREX system are differentiated by a numbering system

rather than by name. Task Code Numbers are used in TCBs and are cur-

rently assigned as follows:

GLOSSARY-5

CODE

-1 CL task
200 ST task
201 SD task
202 RK Driver task
203 DT Driver task
4 LP Driver task
5 CD Driver task
6 PL Driver task
7 SPOOLER task
11 currently not used
12 currently not used
13 currently not used

TCB - Task Control Block

A set of continguous memory locations (minimum of three) which contain
all necessary information for a task to complete its request. The con-
tents of the TCB must be defined prior to the request by the requesting

program (e.g., a XVM program).

A pointer to the TCB (called a TCBP) is then passed to the PDP-11 via
the LIOR instruction in the XVM or the IREQ macro in the PDP-11 to
actually initiate the request.

TCBP - Task Control Block Pointer

A pointer to a TCB. This pointer is passed to the PDP-1l1 either via

the LIOR instruction in the XVM or the IREQ macro in the PDP-11 when
initiating a request to PIREX.

GLOSSARY-6

Abbreviations, list of, A-1
ABORT request, 4-53
ABSL1l1l, 1-2, 2-1
Acronyms, list of, A-1
Active Task List (ATL), 3-5
(figure), 3-21
nodes, 3-14
Add a new task, 3-30
API trap locations, 3-1
Assembler (ABSL1l), 1-2
Assembling spoolexr, 6-6

;s 3=7

BEGIN routine, spooler, 6-4

Bitmap, spooler, 5-5

Block order for tasks, 3-34

Bootstrap load, 1-2

Buffers, spooler, 5-5, 6-2,
6-6

Byte instructions, 1-6

Call Service routine, spooler,
6-2

Card Reader Driver task, B-7

Card reader operation, 2-4

errors, 2-5

Character mode data, B-10

Checksum errors, 2-2

Clock Request Table (CLTABL),
3-16, 4-65

Clock task, 3-5

Code numbers of tasks, 4-3

Common memory, 1-3, 1-4, 3-5

Connect Task directive, 3-30

Core Status Report directive,
3-32

Crashes of tasks, 2-6

CR1l XVM/RSX handler (figure),
4-28

Delete a task, 3-29
Dequeue node (figure), 3-26
Despooling, 5-5, 5-32
Device Error Status Table
(DEVST), 3-16
Device driver,
assembling and loading, 4-66
testing, 4-66
Device drivers, PIREX, 3-3,
4-55
Device handler construction,
4-6

INDEX

Device handlers,
XVM/DOS, 4-6
XVM/RSX, 4-27
Device interfaces, 1-5
Device Interrupt Dispatcher,
spooler, 5-3, 6-5
Device Interrupt Service routines,
spooler, 5-4
Device Interrupt Servicing (LP)
(figure), 5-33
Device priorities, 4-2
Directive handling, 3-20
Directive processing routines,
spooler, 5-3
Disconnect Task directive, 3-29
Disk cartridge operation, 2-3
errors, 2~5
Disk Driver task, B-3
Disk errors during spooling, 2-6
DL support, optional, 3-4
Drivers,
see Device drivers
Dump programs, 4-66, 4-67

Editor program (EDIT), 1-3
End-of-deck card, 2-4

END routine, spooler, 6-4
Error handling, 2-5, 2-6
Error messages, UCl5, C-1

Error status codes, 3-16

Error Status Report directive,
3-33

Exit techniques, 4-63

FINDBK routine, spooler, 6-6
Function code, 3-8

Hardware errors, card reader, 2-5

Hardware interrupt, 3-1, 3-23
(figure), 3-24

Hardware system, 1-3, 1-4, 1-5

.INIT function, XVM/DOS device
handler, 4~23
Initialization,
task, 4-62
XVM/DOS handler, 4-23
XVM/RSX device handlers, 4-~27
Internal tables, PIREX, 3-18, 3-19

Index-1

INDEX (CONT.)

Interrupt link, 1-5 Peripheral prccessor (PDP-11),

Interrupt processing, 4-62 1-3, 1-6

Interrupt requests, 3-23 Peripherals,

Interrupt Service routine, operation of, 2-3
spooler, 6-3 UCls5, 3-23

Interrupts from PDP-11 to XVM, Permanent task, 4-4, 4-5, 4-6
4-25 PIREX, 1-1

Interrupts, XVM/RSX device active task list (figure), 3-21
handlers, 4-53 background tasks, 3-4

Interrupt vectors, 3-18 Dequeue node (figure), 3-26

detailed operation, 3-16
device drivers, 3-3
hardware interrupts (figure),

LEVEL table, 3-17 3-24
Line mode data, B-10 loading, 3-1
Line Printer driver task, B-5 operation (figure), 3-2
Line printer operation, 2-4 overview, 3-1
Listhead (LISTHD), 3-15 request processing (figure),
Lists and tables, updating, 4-4 3-11
Loading, save registers (figure), 3-22
ABSLl1l, 2-2 services, 3-3
spooler, 5-6 simplified operation, 3-5
system, 2-1 software directive processing,
XVM/DOS, 2-2 3-27
XVM PIREX, 2-2, 3-1 STOP TASKS Task, 3-25
Logic flow, PIREX, 3-11, 3-12, system tables and lists, 3-10
3-13, 3-21, 3-22 task block order, 3-34
LP driver (figure), 4-57 task mnemonics, 3-34
LP11 DOS handler (figure), 4-7 PIREX MOVE directive, 3-36
LP spooling/despooling, 5-31, Plotter Driver task, B-9
5-32 Plotter operation, 2-3
LV support, optional, 3-4 Poller routine, 3-17

Power Fail routine, PIREX, 3-4
Priority level,
of background tasks, 4-2

MAC1ll1l, 1-2 of devices, 4-2

MACll Control program, 1-3 of tasks, 4-1

MCLOAD program, 1-3 Processor, PDP-11l, 1-3, 1-6
Memory, common, 1-3, 1-4, 3-5 Program modification, 1-3
Memory map (figure), 1-5 Programs, support, 1-2

Mnemonics for tasks, 3-34
Mnemonics, list of, A-1
Modifying programs, 1-3
Queueing, 1-1

NUL task, 3-5, 3-20
.READ requests, XVM/DOS handler,

4-26
READ requests, XVM/RSX handler,
Operation of PIREX, 4-54
detailed, 3-19 Read/Write Operations (disk),
flow chart, 3-2 spooler, 6-3
simplified, 3-5 Registers (figure), 3-22
Operation of spooler, 5-5 Request Dispatcher, spooler, 5-3,
6-5

Request Event Variable (REV), 3-9
Request procedure, 3-19
PDP-11 Requesting Task, 4-26 Request processing, PIREX, 3-5
Peripheral control, 1-3 flow chart, 3-11

Index-2

INDEX (CONT.)

Request servicing (figure), 3-2

Request transmission, 4-24

Requests, XVM/RSX device
handler, 4-53

Set up TCB and Issue Request
routine, 6-3
Software,
card reader errors, 2-5
components, 2-6, 2-7, 2-8
directive processing, 3-27
interrupt, 3-25
modification, 1-3
routines in background mode,
3-4
Software Directive task, B-3
Spooled task, 3-23
SPOL1l utility routines, 1-1,
5-4
Spooler, 5-1
assembly, 6-6
components, 5-2
components (figure), 5-7
design, 5-2
errors, 2-6
LP despooling, 5-32
LP spooling, 5-31
operation, 5-5, 5-36
overview, 5-1
task development, 6-1
Spooler Control program (SPOOL),
1-2
Spooler Disk Area Generation
(SPLGEN) , 1-2
Spooler Installation program
(SPLOAD), 1-2
Spooler Status Report directive,
3-35
Spooling, 1-~1
Stack area, 3-7
Status information, 3-1
Status report directives,
core, 3-32
errors, 3-33
spooler, 3-35
STOP TASKS task, 3-25, B-2
Support programs, 1-2
Switches,
on disk cartridge unit, 2-3
on plotter, 2-4
System tables and lists, 3-10

Table, spooler, 5-5
update, 6-5

Task,
code number, 3-8, 4-3
completion, 3-25
aerashes, 2-6
development, 4-1
directives, 3-29 through 3-37
entry, 4-62
format (figure), 3-6
installation, 4-4
mnemonics, 3-34
priority level, 4-1
program code, 4-56
structure, 3-5
Task Call Service routines,
spooler, 5-3
(figure), 5-30
Task Control Block Pointer (TCBP),
3~5
Task Control Blocks (TCB), B-1
format and location for new
blocks, 4-2
format for PIREX, 3-7
format for spooler, 6-4
spooler operation, 5-5
Task Request List (TRL), 3-15
Tasks,
PDP-11, 4-26
spooled or unspooled, 3-23
unsupported, 3-4
Task Starting Address (TEVADD),
3-17
Temporary task, 4-4, 4-5
Timed wakeup, 4-65
Transfer Vector Table (SENDll),
3-18

UC1l5 peripherals, 3-23

UCl5 software components, 2-=7

UNICHANNEL system (figures), 1-4,
1-6

Unspooled tasks, 3-23

Utility routines, spooler
(SpPOLl1l), 5-4

Wakeup feature, 4-65

.WRITE reguests, XVM/DOS handler,
4-26

WRITE requests, XVM/RSX handler,
4-54

XVM/DOS software components, 2-7
XVM/RSX software components, 2-8

Index~3

XVM UNICHANNEL
Software Manual
DEC-XV-XUSMA~A~D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

o

£

2

<+

o

c

2

[}

5 Is there sufficient documentation on associated system programs
: required for use of the software described in this manual? If not,
8 what material is missing and where should it be placed?

Q

[

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000ooao

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. Ej

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltlall

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

digital equipment corporation

