N lcgs/oy

PDP-15/76
HARDWARE FAMILIARIZATION

Student Guide

Revision 1

Copyright © 1976 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.

Digital Equipment Corporation assumes no re- -

sponsibility for any errors which may appear in
this manual.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC : PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

COURSE: PDP-15/76

MONDAY TUE SDAY WEDNESDAY THURSDAY FRIDAY
8:15 LOGIC consoe |8 £l
’ CONTROL ME-15 LOADING A
TIMING MEMORY (DIFFERENCE) DOS RESTORE
9:00 SYSTEM FAMILIARIZATION CONSOLE (1o USE OF EDIT
BLOCK DIAGRAM KEY FLOW EAE INST. SET
CPU 2 |
BLOCK DIAGRAM.
CONSOLE
CPU TIMING. USE OF ASSEMBLER
10:00 EQUIPMENT CPU DECODE E SWITCH, BOARD LOADING PROGRAMS
of MRI. DISPLAY PANEL ,
C FLOW Lu_
11:00 FAMILIARIZATION MEMORY [+ LR E A.E HARDWARE PROGRAMMING
(MM-15) DEPOSIT FUNCTION ASSIGNMENT
12:00 L U N C H
MRI 5
1:00 POWER OPERATION FLOW LAB E.A.E FLOWS LAB
: DISTRIBUTION B.D. (DAC & LAC)
2:0 LAB o le
:00 INTERFACING WITH LAB PROJECT
o MEMORY. LOGIC PROJECT
DAC & LAC
CPU 7 “
3:00 OROJECT INSTRUCTION SET 42 PROJECT y
a) MRI
b) OPERATE LOADING SYSTEM
4:00 #1 c) REGISTER CONT. USE OF #3
CONSOLE SCOPE PROJECT SOFTWARE AND

d) INDEX. REGISTER
) DEEa BREES

USER PROGRAMS

5:00

COURSE: PDP-15/76 WEEK 2 OF 3
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
81 BLOCK i = 1y HARDHARE 16 L8
' DIAGRAM OF PROGRAM CONTROLLER READ-IN AUTOMATIC
PROGRAM CONTROL -
9:00 DEVICES a) RECEIVER PROGRAM
10T 14 I
BA-15 16 17 ﬂ
10: 00 INPUT OUTPUT FACILITY EE?Eﬁ DIAGRAM MEMORY POWER
FAIL
11200 CACILITY PAPER TAPE PRO;ECT CoNTROL
READER/PUNCH RELOCATE
¥ 12:00 L U N C H
[0
1:00 LAB LAB LAB LAB REAL
TIME
2:00 PROJECT PROJECT PROJECT PROJECT cLock
3:00 # # # # REVIEW
4:00 5 6 7 8

5:00

COURSE: PDP-15/76

WEEK 3 OF 3

i MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
. INTRODUCT ION 21 22 23 INTRODUCTION 24
115 T0 ADD XVM TO
DATA CHANNEL UNICHANNEL
- 10 BLOCK DIAGRAM
9:00 3 CYCLE MEMORY BLOCK DI AGRAM
REVIEW o
] MEMORY CONTROL
10:00 BREAK THE
SYSTEM
11:00 DAT1 & DATO BLOCK
DIAGRAM
la 12:00 L] N C H
22
1:00 SINGLE LAB
2:00 CYCLE BREAK PROJECT
3:00 INC MB #9
4:00

5:00

SECTION

1.

TABLE OF CONTENTS

SYSTEM BLOCK DIAGRAM
EQUIPMENT FAMILIARIZATION
POWER DISTRIBUTION

LOGIC FAMILIARIZATION

CENTRAL PROCESSOR BLOCK DIAGRAM
A) MEMORY ORGANIZATION
‘B) BLOCK DIAGRAM OF CPU INTERFACED TO MEMORY

CENTRAL PROCESSOR TIMING
A) MAJOR STATES, TIME STATES, PHASES
B) DECODING OF MEMORY REFERENCE INSTRUCTIONS
(GENERAL)

MM-15 MEMORY BLOCK DIAGRAM
A) ADDRESS SELECTION
B) MEMORY CONTROL
C) MEMORY CPU DIALOGUE

MEMORY REFERENCE INSTRUCTION DATA FLOW (B.D)
A) LAC - MEMORY READ OPERATION
B) DAC - MEMORY WRITE OPERATION

CENTRAL PROCESSOR INTERFACING WITH MEMORY
(LOGIC OPERATION)
A) LAC - READ INSTRUCTION
B) DAC - WRITE INSTRUCTION

CENTRAL PROCESSOR BLOCK DIAGRAM
A) MEMORY REFERENCE INSTRUCTION
B) OPERATE INSTRUCTION
C) REGISTER CONTROL INSTRUCTIONS
D) INDEX, REGISTER TRANSFER INSTRUCTIONS

TABLE OF CONTENTS

SECTION

8. CONSOLE OPERATIONS
A) CONSOLE KEY FLOWS
B) CONTROL CONSOLE TIMING
C) SWITCH BOARD
D) DISPLAY BOARD
E) DETAILED FLOW OF A DEPOSIT FUNCTION

9. ME-15 MEMORY
THE DIFFERENCES BETWEEN THE ME-15 AND THE
MM-15 MEMORIES

10. EAE INSTRUCTIONS
A) SET UP INSTRUCTIONS
B) SHIFT INSTRUCTIONS
C) NORMALIZE INSTRUCTIONS
D) MULTIPLY INSTRUCTIONS
E) DIVIDE INSTRUCTIONS

11. E.A.E. HARDWARE
A) SHOW LOGIC
B) USE EAE FLOW CHART

12. PROGRAMMING - USING THE FOLLOWING INSTRUCTION SETS
A) MEMORY REFERENCE INSTRUCTIONS
B) OPERATE INSTRUCTIONS
C) REGISTER CONTROL INSTRUCTIONS
D) INDEX, REGISTER TRANSFER INSTRUCTIONS

13. BLOCK DIAGRAM OF PROGRAM CONTROLLED DEVICES
A) TTY RECEIVER
B) TTY TRANSMITTER
C) PAPER TAPE PUNCH

ii

SECTION

14.

15.

16.

17.

INPUT
A)
B)
03]
D)
E)

TABLE OF CONTENTS

OUTPUT, FACILITY (IOT'S)
IOT'S GENERAL INFORMATION
IOT BLOCK DIAGRAM
GENERATION OF IOT DONE
IOT LOGIC & TIMING

IOT FLOW CHART

PROGRAM INTERRUPT FACILITY (PI).

R)
B)
C)
D)

BA-15
A)
B)
C)

D)
E)
F)

PROGRAM INTERRUPT GENERAL INFORMATION
PROGRAM INTERRUPT BLOCK DIAGRAM
PROGRAM INTERRUPT LOGIC & TIMING
PROGRAM INTERRUPT FLOW CHART

PERIPHERAL EXPANDER
BA-15 BLOCK DIAGRAM
BA-15 GENERAL INFORMATION
PAPER TAPE READER
1. ALPHA MODE
2. BINARY MODE
FLOW DIAGRAM OF READER SELECT ALPHA
BASIC DIAGRAM OF THE PAPER TAPE READER
HARDWARE READ IN

MEMORY PROTECT AND RELOCATE

A)

B)

Q)

MEMORY PROTECT
1. GENERAL INFORMATION ON MEMORY PROTECT AND
AND MEMORY PROTECT BLOCK DIAGRAM
2. TRAP CONDITIONS
3. MEMORY PROTECT FLOW DIAGRAM
MEMORY PROTECT AND RELOCATE
1. GENERAL INFORMATION ON MEMORY PROTECT & RELOCATE
AND MEMORY PROTECT RELOCATE BLOCK DIAGRAM
2. MEMORY PROTECT & RELOCATE FLOW CHART
TRAP LOGIC FAMILIARIZATION

TABLE OF CONTENTS

SECTION
is. AUTOMATIC PROGRAM INTERRUPT (API)
A) M104 SIMPLIFIED
B) API BLOCK DIAGRAM
C) BLOCK DIAGRAM OF GRANT FUNCTION
D) API BLOCK DIAGRAM AND TIMING
19. POWER CONTROL
A) POWER FAIL CONTROL DIAGRAM
B) POWER FAIL UP DOWN SEQUENCE (FLOWS)
1. PI ENABLED
. 2. API ENABLED
C) AUTOMATIC RESTART
20. REAL TIME CLOCK
A) I/0 PROCESSOR BLOCK DIAGRAM
B) REAL TIME CLOCK FLOW CHART

iv

SECTION

21.

22,

TABLE OF CONTENTS

DATA CHANNEL
A) GENERAL REQUIREMENTS OF DEVICES ON BUS

1. RF-15 FIXED HEAD DISC
TC-15 DEC TAPE
2. Rp-15 DISC PACK

B) BLOCK DIAGRAM OF I/0O PROCESSOR
C) BLOCK DIAGRAM OF DEC TAPE
D) 3 CYCLE BREAK DESCRIPTION
E) 3 CYCLE DCH IN TIMING DIAGRAM

UNICHANNEL

A)
B)
C)
D)
E)
F)

G)
H)

I)
J)

K)
L)

M)
N)

0)

BASIC BLOCK DIAGRAM OF THE UNIBUS SYSTEM

BLOCK DIAGRAM OF MEMORY CONTROL PDP-15/76

BLOCK DIAGRAM OF MX15B MEMORY REQUEST CONTROL

PDP15 - READ OPERATION BLOCK DIAGRAM

PDP15 - WRITE OPERATION

BLOCK DIAGRAM OF UNIBUS SYSTEM EXPAND
INTERRUPT LINK.

BUS REQUEST BLOCK DIAGRAM

DETAILED BUS REQUEST BLOCK DIAGRAM FROM

THE DR11C #1
BLOCK DIAGRAM - DATA IN TRANSFER

DATA CONTROL CHART
BLOCK DIAGRAM DATOB
API REQUEST
1. PDP-11 GENERATES API REQ (JOB DONE)
2. BLOCK DIAGRAM DATOB
API ADDRESS
BLOCK DIAGRAM - MODIFY BYTE LOCATION IN COMMON
MEMORY
TIMING DIAGRAM OF A DATIP
TIMING DIAGRAM OF A DATOB
ADDRESS MODIFICATION MX15-B
1. ADDRESS CONSIDERATIONS
2. EXAMPLE OF PDP-11 ADDRESS MODIFIED TO
ADDRESS COMMON MEMORY
3. BASIC BLOCK DIAGRAM OF ADDRESS MODIFICATION
4. DETAILED BLOCK DIAGRAM OF ADDRESS MODIFICATION
5. ADDRESSING CHART.

TABLE OF CONTENTS

SECTION

23 XVM

vi

MAIN GOAL OF COURSE

Have field service engineer or customer install, fix, and maintain

PDP-15 systems.

System Block Diagram of PDP-15 System Objectives:

a)

b)
c)

d)

e)

f)
q)
h)

i)

3)

Using the block diagram of the PDP-15 system, define the function
of each block

Define the purpose of the DW-15

List the devices in the BB-15 and explain their function

List the options installed in the BB-15

List the two general types of Data Transfers.

Define program control transfers

List high speed block transfers devices

Define the type of data transfers high speed devices use.

Using the equipment layout prints for the PDP-15 system have the
student install this system on paper then check work against the

PDP-15 in the lab. Student correct his own work.

Define priority if any on the BUS

MEMORY

CPU

CONSOLE

]

I

IoPU

—

||

TTY
P R
(04) (03

BB-15
KM, KT,API
(17-55)

BA-15

BASIC PDP-15 SYSTEM BLOCK DIAGRAM

POSITIVE 1/0 BUS

MHEPZHZOMA

«

—

RP-15 RF-15 TC-15
DW-15 63,64 72,70 76,75
NEGATIVE
BUS .
PC-15 r— D ;ﬂ T
. I 1
TC-59 S s g gg:?
75,7
Tr] [PTP (°) K K 0o
o1y | (02) # #
10 ,l 0] o
— et
o N] —J
T D P—J D P—J T
I I ¢}
o b S s #
K K 7
.--B
[S 7 7
WV v L—d
T
4
7

2. CENTRAL PROCESSOR BLOCK DIAGRAM

OBJECTIVES:

1.

List the registers in the central processor and
explain their functiens.

Define in writing how the multiplexor in the central
processor works.

Define in writing the address scheme for the MM-15
memory.

‘Draw the block diagram of the memory processor

interface.

P <A T K X QR G T Lo omr = sc T
i l o = i
N Q r‘ .—_.,AA.,.‘V,_—.«' ‘\
5 v/ DS fEmTmmo T/ R |]
0 _ — 1/oBYS —x gm‘(} O .n 5
U [= 1 n —1 Ma
X 1 MO —=¥ 'J A 2 X
[3 4 7 R N]
© M3 saIFT :T?@A AG < s X U A '
1R g SC —=X A | SUM BUS
s ‘5' X CRRRYOUT [| 3 s
hg WIET L -
R ¥ xoR ; N Lseee
3 Siveneer ¥ 1/0 ADD ——=) . A
¥ ~ Sl == STEGE LS. 3
: AND I ——) 8
M — . A n
g . —" CARRY IN —) Z UM BU § p——
4 IR] B N
Y - H [N B (I i) PCJAM m:ﬁ '
- N 7 .
7/) | N st m—) { .
1= L = A 'L b]
T \\-/ Al ZLOCanj g L
e 4
I v 9 ALY
b ACH? T -0 9 Sum BUS DL
e ACIe 8 OVERFLOW i
— _

_____________________ t_____-______.._____________.

S I

T Mg P PamAa TEme P Ma T e T

I’éj g a 51 B s il —gK
K K : K K 8K b
Core L Core k—n RL‘) Core J—" Core A
(Boank) (Bank 1) Yl (Bowk 2) (Bawnk 3)

Instruction Execution BlocK

3. CENTRAL PROCESSING TIMING

OBJECTIVES:

1.

Upon request be able to explain during which major
states the central processor can receive an instruction
from memory.

Upon request be able to explain in what major states does
the central processor decode and process the instruction.

List the three ways in which the central processor,
running under program control, cna be halted.

List the GRP decodes for any given memory reference
instruction.

CPU~RUNNING INSTRUCTIONS

MAJOR STATES
FETCH INC DEFER EAE EXECUTE

INSTRUCTION
TS0l
FLOW CHART

KP 76

TS02 _ QUESTIONS :

When does the CPU
receive an instruction?

TS03 when does the CPU
decode & process
the instruction?

t
: 1-3 FETCH ! 1—FETCH | 1—>FETCH 1—>EXECUTE ! 1->FETCH

1

{ ! | 1

y 1INC | 1->EXECUTE | 1->INC | | 1
| L5DEFER | : 1-> EXECUTE : : |
11 3EaE | I ! I '
| | | | 1 1
i 15 EXECUTE) i | ' {

DECODES FOR MEMORY REPERENCE INSTRUCTIONS

(MRI)
GROUPS

3 4 5 6

V|

p y/ DECODES LOCATED ON

MRI 1

CAL
DAC

JMS
DZM

2

v
4
4
i

KP 30

ANA

XOR

ADD
TAD

AN AN
NN

XCT

Isz
AND
SAD

N EE KRR KRR

ANNRRNEN
A

JMP
REGISTERS

=
=

IR IR|IR|IR

CPU-RUNNING INSTRUCTIONS

MAJOR STATES
FETCH INC DEFER EAE EXECUTE
INSTRUCTION
TSO1
FLOW CHART
KP 76
TS02 : QUESTIONS:
When does the CPU
receive an instruction?
TS03 When does the CPU
decode & process
y the instruction?
: 1> FETcH | 1-> FETCH : 19 FETCH 1-)EXECUTE: 1FETCH |
| 1— tne¢ | 1 EXECUTE) 1—)INC | i |
} 1— DEFER : 1— EXECUTE | I :
1
1— EAE | ! ' ‘ ¢
i ; ! | |
| 1—> EXECUTH i i ! i
DECODES FOR MEMORY REFERENCE INSTRUCTIONS
GROUPS (MRT)
MRI 1 2 3 4 5 6
CAL F\/ \/
DAC \/ DECODES LOCATED ON
ams | V[V |V
KP 30
pzM | V|V
tac |V 4 v
XOR \/ \/ /
ADD
o [V] V] VIV
xcr |/
sz |V] [V
anp |V Vi |V
sap | /| |V v
ap (V| |V
REGISTERS |MI|IRJIR|IR |IR|IR

3-4

1. Name the

a)

b)
c)

4)

e)

f)

9)

h)

i)

3)

PC -

OA- -

DS -

LR -

IR -

MI -

XR -

LINK

MO -

MEMORY - CENTRAL PROCESSOR BLOCK DIAGRAM

registers in the CPU and their functions

contains address in memory of next instruction to
be executed

temporary storage of the operand address for all MRI
console data switches

used to set a limit on operations with the index register
or for storage

retains results of arithmetic/logical operations program
controlled I/0 transfers go thru AC

6 BITS 0-3 OPCODE BIT 4 indirect BIT
BIT 5 index BIT

receives all data & instructions read from core

used in indexed addressing operations, as a counter
or for storage

- 1 BIT extension of accumulator

contains all information going from CPU to memory data
lines

2. Memory Organization

a)

b)

c)

Bank

Mode

Programs run in 8K partition

Page Mode
Programs run in 4K partition

Data paths between CPU and memory

4.

MM-15 Memory Block Diagram

1.

Define a memory cycle
List the events that takes place in a read cycle
List the events that takes place in a write cycle

Draw a block diagram of memroy that can perform a
read, write cycle.

‘Upon request be able to orally explain address decoding

Identify. the dialogue response to any signal on the memory
control lines (MCL).

READ CURRENT

WRITE CURRENT

MEMORY CYCLE

YES READ

ADDRESS
SELECTION

v

READ DATA
FROM CORE

l

SEND DATA
TO CPU

|

Vv

WRITE
DATA BACK
INTO CORE

‘\\szfjii////

NO

v

ADDRESS
SELECTION

\'

DATA READ FROM
CORE LOST

l

RECEIVES DATA
FROM CPU

V

WRITE DATA
INTO

CORE

MEMORY BLOCK DIAGRAM

ADDRESS BITS 6 - 17

SRR 4
l MMO6 MMO9
ADDRESS
(MD1,) ADR) "Y" CURRENT SELECTION
——-—~RD —-—-—-———-* -——)"X" CURRENT
M , g | STROBE lmos MMO9
MRBY ()
¢ ADDRESS
C) ADR ACK @ | MEMORY DECODING
RD RST CONTROL INHIBIT '
L
MRLS ey & ——>WRT CURRENT MMO6-MM0O9
DATA ACK —_—— TIMING ,
. "xll , IIY"
MRLS ACK oy ‘—>MEMORY BUSY CURRENTS
DATA) |m = -
|
~ l
“CORE"
N\
MDL n—ﬂ
5
M10-mM15
INHIBIT
¢ STROBE : CURRENT
A
MMO03-MMO5 MMO3-MMO5
LD MB
sl DATA
M
[: BUFFER DATA BIT A "O"
GENERATE INHIBIT
MM-16
CURRENT

(-

4-4A

MEMORY

i MM19 v
MCL MDL
oyl KP27 <e
KP26 KP59
PROCESSOR | MO-MDL > MUX
SWITCH
MO
KF
cCPU
32
MI
MEMORY CPU INTERFACE

MAOS5(0)H

DRIVE

“X"

SELECTORS

13

14

MA 05(0) H >
BRX(1)H >,

MA= 002542 for
DECODE

"y" SELECTORS

() === = -2 o
{é\ TENS

t%JﬁNITS

STROBE

LOWER 4K LOGIC

MAOS (0 H
READ
LLRDX (1) H
DRIVE
(+)
]
| 15
]
2)-4 16
17
MA 05 (0) H
READ
pRIVE|RDY (1) H

MB
17

BUS EN

— O |

<

O-

MDL (1)L

%UPPER
-«

CIBE

LOGIC

o Y

1]

3 x

) § 2 § Selection

g A g A
PRSI e Y R

e e " at—

12

nn

Selection

17

MA REGISTER

RDRST : LDMI

READ CYCLE OF MEMORY ~ TAKES DATA OUT OF CORE, STROBES IT INTO THE MEMORY
BUFFER, SENDS DATA TO CPU.

L

MI

MEMpReY A NIYRESS

DECODES 4096
CORE LOCATIONS

MEMORY CPU INTERFACE

CENTRAL PROCESSOR MEMORY
MA
Mo — ADDRESS
MEMORY DATA LINES (18) / SELECTION
| -
(B1-DIRECTIONAL)
MI MB
READ MRD > READ FATA
REQ CONTROL v
CORE
WRITE MWR > WRITE
rReQ [CONTROL
1. ADDRESS-- MO " READ/RESTORE
2. SEND MRD
3. SET CP MEM REQ
HOLD, CP ACTIVE
4. MO-- MDL
M RE
5. SET M REO Q $|1- LOAD MA, CLEAR MB, SET
RD CON
6. CLEAR M REQ §——ALR _ACK 2. SEND ADR ACK
7. CLEAR CP MEM REQ P |3. READ DATA FROM CORE-- MB
HOLD 4. CLEAR ADR ACK WHEN-M REQ
5. MB-- MDL
RD RST
8. MDL-- MI <% 6. SEND RD RST
MRLS 7. WRITE DATA TO CORE (MB-- CORE)
9. SEND MRLS, CLR CP berpyowv—s 8. SEND MRLS ACK
ACTIVE !
10. DATA ACK RS K (9. CLR BUS EN
11. CLEAR MRLS < 10. REMOVE MB FROM MDL
2
1. ADDRESS-- MO CLEAR/WRITE
2. SEND MWR
3. SET CP MEM REQ
HOLD,CP ACTIVE
4. MO-- MDL M REQ
5. SET M REQ P |1. LOAD MA, CLEAR MB, SET WR CON
6. WAIT FOR ADR ACK ADR ACK :
7. CLR M REQ. CP MEM |« 2. SEND ADR ACK
REQ HOLD
8. DATA~- MO-- MDL) 3. WAIT FOR MRLS
9. SEND MRLS - - P»l4. MmpL-- MB
10. CLR CP ACTIVE, CP “‘ 5. SEND MRLS ACK
MRLS 6. WRITE DATA TO CORE
(MB-- CORE)

5.

MEMORY REFERENCE INSTRUCTIONS

OBJECTIVES:

1.

Using the central processor block diagram, describe
the flow of addressing core, receiving the data and
transfer it to the accumulator.

Using the central processor block diagram descirbe
the flow of addressing core, and transferring data
from the accumulator into core.

List the address modes and describe their function.

MEMORY REFERENCE INSTRUCTIONS

e

CORE

1AC: Contents of the memory location specified by the effective address
replaces the contents of the accumulator.
LAC: LOAD THE ACCUMULATOR
45 6 17
J | |
(C) of MI + E A)| A ¢ A | A
PC-A 01-05
"Al' B O} /
g us
pc |1 — 12
REG
8 SUM
MI-B 06-17 BUS
> | M| Effective Address
B] "
6 ’1 M "B"Bus LD,MO,OA ©
MI U
REG 17 X
DECODE
GRP1 - MI
GRP3,5-1IR
SML (START
MEMORY READ)
4
[w]
L d
MI | =®RD RsT: LOAD MI
y
MI-B 00-17 "B" Mux J
"B" Bus
E
NO SHIFT - D "D" Mux
"D" Bus & Shift Bus
LOAD AC ACCUMULATOR

L

MEMORY REFERENCE INSTRUCTION

DAC - DEPOSIT ACCUMULATOR

The contents of the accumulator is deposited in the memory location
specified by the effective address.

The accumulator remains unchanged.

"E" FIELD
o —
0 3 4 5 6 17
(C) of MI 0 4 ADR FIELD
(C) of IR Y 4
BAC=)C BUS
ONLY OPERAND ADDRESS
c "Cc" BUS
M
F——" U "A" O
x M llAll BUS A
v -
P X 1. ADDRESS
c p—e 2. DATA
M
1 o
5
PC"A 1‘5 --——.’ *
MA
M nge M 4
1 Y ——)‘ CORE
6 _..91 M B '
U "B" BUS
X WRITE
INTO
17 CORE
DECODE DAC
GRP l—)MI
- GRP 2—3 IR

SMW - START
MEMORY WRITE

MEMORY REFERENCE LINSTRUCLLION

01 2 3 4 5 6 17
(C) of MI OPCODE "g ADDRESS FIELD <4— 15 MODE
0 0 008 4K
77 774
0 1 2 3 4 Sl
(C) OF MI OPCODE "E" ADDRESS FIELD <+———— 9 MODE
00000g
17777 8K
8
E FIELD
BITS 4.& 5 Determines addressing mode

DIRECT ADR 0 0

INDEX ADR 0 1

INDIRECT ADR 1 0

INDEXED INDIRECT ADR 1 1

BITS 4 5
0 0 —
o 1
1 0

Address field is the effective address.

Index REG(XR) + PC 1-5, ml6~-17 is the effective address.
PC 1-5, M16-17 is the address of the effective address.

PC 1-5, M16-17 is the address of an address. CPU reads (C
of the address into MI (Address of the address) then adds
the contents of the index register to this value the
result is the effective address

Direct Addressing
15 mode 4K
9 mode 8K
Index Addressing
15 mode 128K
9 mode can't use index addressing

Indirect Addressing
15 Mode 32K
9 Mode 32K

MEMORY REFERENCE INSTRUCTIONS
"15 MODE"

LAC 500 - Direct Addressing - 200500

LAC 500,X =~ Index Addressing - 210500

LAC * 500 - Indirect Addressing - 220500

LAC * 500/X - Indirect Index Addressing - 230500
FETCH MAJOR STATE

TSO1-MI 'ZTE?_EF—’ Decode Group 1 "DIRECT ADDRESSING"
R E — Decode Group 3,5

START MEMORY READ (SMR)

PC 1-5 Ml6-17 MO,0A (effective ADR)

TS02

TSO03

TS0l

TS02

TS03

MREQ

Wait for Rd RST (Stop CLK hangs CPU INTSO03 & 23
loaded into MI

1 EXECUTE

EXECUTE MAJOR STATE

PC JAM TO MO ‘ (SET FETCH)
START MEMORY RD
(GET THE NEXT INSTRUCTION)

MREQ
MI —»AC

Wait for RD RST (stop CLK hangs CPU in TSO3&@3)
instruction loaded into MI register

1 FETCH

(C) of 500

Always enter the FETCH majorstate with an 1nstructlon in the

MI Register

FETCH MAJOR STATE

TS01-MI

IR

TS02

TSO03

TSO1

TS02

TS03

210500 DECODE GRP1 "INDEX ADDRESSING"

21 DECODE GRP3,5

START MEMORY READ (SMR)
PC 1-5, MI 6-17 PLUS XRO-17 = EFFECTIVE ADR

MREQ

WAIT for RD RST (STOP CLK - HANGS CPU IN TSO3 * @#3) (C)
OF EFFECTIVE ADDRESS LOADED INTO MI

1 ~——=3P EXECUTE

EXECUTE MAJOR STATE

PC JAM MO (SET FETCH)
START MEMORY RD
(GET THE NEXT INSTRUCTION)

MREQ
MI—3 AC

WAIT FOR RD RST (STOP CLK HANGS CPU TS03 * @g3)
INSTRUCTION LOADED INTO MI REGISTER

1——3 FETCH

ALWAYS ENTER THE FETCH MAJOR STATE WITH AN INSTRUCTION IN
THE MI REGISTER.

5-6

FETCH MAJOR STATE

"INDIRECT ADDRESS"

MI 220500 t—3 DECODE GRP1
TS0l

22 » DECODE GRP 3,5

START MEMORY READ (SMR)
PC 1-5, M16-17-(THE ADDRESS OF THE EFFECTIVE ADDRESS)—)MO,0A

TS02 MREQ

TSO03 WAIT FOR RD RST (STOP CLK-HANGS UP CPU IN TS03*@3)
(C) " EFFECTIVE ADDRESS NOW IN MI REGISTER

' 1 -~y DEFER
START MEMORY READ (SMR) DEFER MAJOR STATE
7501 PC 1-2, M13-17=9»MO,O0A
TSO2 MREQ
TS03 Wait for RD RST (STOP CLK- HANGS CPU INTSO3*@3)
DATA TO BE TRANSFERRED TO ACCUMULATOR NOW IN
REGISTER
1—» EXECUTE
EXECUTE MAJOR STATE
START MEMORY READ (SMR)
TS02 MREQ
MI—3 AC
TS03 WHAT FOR RD RST (STOP CLK HANGS CPU TS03*@3) INSTRUCTION

LOADED INTO MI REGISTER
1—FETCH

ALWAYS ENTER THE FETCH MAJOR STATE WITH AN INSTRUCTION
IN THE MI REGISTER

FETCH MAJOR STATE

“INDIRECT, INDEXED ADDRESSING"
MI 230500 ~—y DECODE GRP 1

IR 23 » DECODES GRPS 3,5

TSOl

START MEMORY READ (SMR)

PC 1-5, M16-17 MO,0A (THE ADDRESS OF A LOCATION IN CORE)
TS02 MREQ
TSO3 WAIT FOR RD RST (STOP CLK - HANGS UP CPU IN TS03*@3) (C) of

THE CORE LOCATION LOADED INTO THE MI REGISTER

1 —3)DEFER
DEFER MAJOR STATE
TSOL PC1l-2 MI 3-17
+XRO 17
RESULT = EFFECTIVE ADDRESS —) MO OA
START MEMORY READ (SMR)
TS02 MREQ
TSO03 WAIT FOR RD RST (STOP CLK - HANGS CPU TSO3 @#3) DATA TO BE TRANSFERED
TO THE ACCUMULATOR IS NOW LOADED INTO THE MI REGISTER
1—)EXECUTE
EXECUTE MAJOR STATE

TSO1 START MEMORY READ (SMR) "SET FETCH"

PC JAM —3MO
TS02 MREQ

MI—) AC
TS03 WAIT FOR RD RST (STOP CLK HANGS CPU TSO03 * @3)
INSTRUCTION LOADED INTO MI REG.

1—> FETCH

ALWAYS ENTER THE FETCH MAJOR STATE WITH AN INSTRUCTION IN THE MI REGISTER

6. CENTRAL PROCESSOR INTERFACING WITH MEMORY

OBJECTIVES:

1.

2.

Define how the central processor initiates a memory cycle.
List the ways the central processor waits for memory responses
a) read type instryctions :
b) write type instructioms
Explain how the control signal MO-MDL is made active.

Demonstrate ability to use instruction flow chart

Explain how an instruction is decoded & processed through
the central processor.

FETCH
1501

1502

Kp32

KP32

START READ

KP19

GRP 1 ENAB PC:
PC-A 0lthru05

kP47 |

GRP1*TSOl*
FETCH:

KP31

LOAD 1R

KP32

CP MEM REQ
HOLD

Kp24

(GRP1*TSO1*FETCH
*TSO1*CLK (H) :

D _M OA
KP26

~-I/0 ACTIVE *

MPX (1) :
1/0 INACTIVE

KP26

CP ACTIVE

kP26 |

CP ACTIVE*HOLD
MO:MO —» MDL

KP26 |

START READ *
CP ACTIVE:

MRD
o]

MEMORY REFERENCE READ FLOW

CLK H : LAST HALF OF @3
ADDRESS LOADED

ADDRESS ON MDL LINES

COMMAND TO DO
READ/RESTORE MEMORY CYCLE

START THE MEMORY CYCLE

MMO1

MINT: 1D MA

g
B

%
START MEMORY :
1-~»RD CON ADDRESS DECODING TAKES PLACE

NO MEMORY
ACTION FOR THIS
BANK
mao2 |
START MEMORY
CURRENT
ADR ACK : GOES BACK TO THE CPU
VALID ADDRESS MEMORY BUSY GOES ACTIVE
KB2§
ADR ACK*CPACT: DROPS ADDRESS FROM MDL
0 —» HOLD MO
kp2e |
START READ* LOSING MREQ RESETS ADDRESS ACK
ADR ACK:0-MREQ
Kkpaz | _
CP ADR ACK:
0-CPMEM REQ HOLD
MMO2 |
~MEM REQ:
O-ADR ACK
MMO2
NO
MEM DELAY
MMO2 YES
T1S02 83 SONS STROBE
ADJ 2-40NS
NOJ MEM DELAY
I: CURRENT

MMO2

DATA FROM CORE
STROBED UNTO MB

MM16 | MM19

DATA ON KP20 CPACT*TSO3*START

BUS READ*RD RST WAIT:
STOP CLOCK HANGS UP
CPU UNTIL RD RST OCCURS

7503083

CP ACTIVE * @3 * TSO3 * RD RST:

CP RD RST
T—»CP MRLS DATA READ FROM CORE LOADED
1-»END OF CP CYCLE] INTO M1
1-»ID MI
kP26 |
O=»CP ACT PROC DONE WITH MEMORY CYCLE
CP MRIS:
1 — MRLS
1 — DATA ACK & DATA ACK RESETS BUS EN
TAKES DATA OFF THE MDL LINES.
MMO2
WREN NO
MMO2
MRLS*MRLS ACK O—»RD RST
EN : MRLS ACK 1 BUS DONE
XP_32
MRLS ACK:
0-» CP MRLS ———> 0 - MRLS ACK MMO02
KP32 I
NO|
NO WRITE CURRENT RESTORES
CONTENTS OF MB BACK INTO CORE.
- 1-wR 0
DONE DROP B BSY
6-4 L

END

KP30
KP19

KP-21 HS CLK (L) [LTelc]a] ol ueTa]cTulc e [cfu] clufefn e T ufu]a]c]n]

FETCH MAJOR STATE

KP21l HS CLK (H) ialofalcfule [nfeal oulo]a]u]e jofa o [] Jufc] 8] | 8]
65NS

HS CLK(L) GOES LOW 2 1 = Y + y 1 * r
10NS BEFORE HS CLK (H) go | p1|p2 |83 | g0 |g1 | g2 @3] g0]pgr | g2 g3}
GOES HIGH le—rs01 |« TS02— 5 |4 7503 ——> |
GROUP I DECODE (MI) (PC-A) ENABLE PC 1-5 /777 77777777777 77777777 M“ga‘ﬁsm OF NEXT FETCH (f1)
KP31 1D IR 11100,
KP30 GROUP 3,5 DECODE Y27 7777777 7777777777777 777777777 777777777777 77 TIT T §§ TSO1 OF NEXT FETCH
KP47 MI - B 6 17 R /11000RIIIRIIINININNN |
KP24 LD MO, OA (CONTAINS ADD.) om
KP32 START READ I I I T I T T T I T T T T T 7777 7
KP32 CP MEM REQ HOLD W
KP26 HOLD MO VISEIZNIMIRENNNINBIRRAIININI
KP26 CP ACTIVE I T I
KP26 MO-MDL (ADD-MDL)
KP26 MRD VI,
KP26 M REQ I
MMOl M INT (LD MA, CLR MB)
MMO1,02 START MEMORY, RD CON, MA HOLD
MMO2 ADDRESS ACKNOWLEDGE " ANOTHER MREQ
MMO2 MBSY WIIIIRIIREIRIRURRIAN NI NNNIINEINUNINNUIIININ COULD BE HONORED
MMO6,07 "X" & "Y" CURRENTS - [201EX ' 1LONC A TIRIIIRInIINi
MMO2 BUS ENABLE 777777777777 7777777772)
MMO2 STROBE (START ADJ 2-40 NS) : PW 5ONS
MMO2 READ RST V//1/////878774747777/.}
KP32 CP RD RST 211001,
KP32 CP MRLS & LD MI & END OF CP CYCLE 1170

. ELAYS ON BUS
KP26 CP MRLS : MRLS AND DATA ACK %’3 13-20ns
MMO2 MRLS ACK
MMO2 WREN : INHIBIT CURRENTS, START RESTORE CYCLE
MMO2 WR 1//1001017410711]
MMO2 INHIBIT I

je—200 Ns—|

7. CENTRAL PROCESSOR BLOCK DIAGRAM
OBJECTIVES:
1. Explain what an instruction does -

2. Define by central processor block diagram how the
instruction or instructions will be processed.

JMS INSTRUCTION OPCODE _ 10

JMP_TO SUBROUTINE

PC INSTRUCTION NEUMONICS

100 - 100500 CMS 500
101

FETCH MAJOR STATE
THE JMS INSTRUCTION IS DECODED. THE EFFECTIVE ADDRESS IS: (000500)

TSO1 PC 1-5 M1-6-17—>» MO,0A (000500)
SMW-MEMORY COMMAND

TSO2 MREQ
paTA- {0 1 2 3 ———--—- 17 — MO—> MB THEN WRITE
LBUO 0O 100

N

PC

mZH
L
o a

TS03
1—> EXECUTE
EXECUTE MAJOR STATE
TSO1 OoA + 1-»MO, PC 000500 + 1 = 000501—» MO, OA
501 NOW IS THE EFFECTIVE ADDRESS

SMR (READ COMMAND - READ NEXT INSTRUCTION
OUT OF MEMORY)

TS02 MREQ
TSO3 * g3 WAIT FOR READ RESTART - LOAD CPU (MI REGISTER)
WITH THE CONTENTS OF 501 WHICH IS THE NEXT
INSTRUCTION.
BUMP THE PC PC+l—>PC = 502
1—> FETCH

NOW PROGRAM IN SUBROUTINE IS WORKING

MAIN PROGRAM SUB_ROUTINE

100 JMS 500
101 NEXT INSTRUCTION

DO WHATS REQUIRED
IN THE SUBROUTINE

RETURN TO MAIN

PROGRAM.
RESTORE
JMP*500

NOTE: THE RESTORE INSTRUCTION ENABLES THE RESTORATION OF THE LINKFF'
BANKpp, AND USER MODEpp TO THEIR ORIGINAL CONDITIONS.
IF THE PROGRAMMER DOESN'T NEED TO USE THESE THREE BITS,
THE RESTORE INSTRUCTION IS ELIMINATED FROM HIS PROGRAM.

7-3

IR0O0 (0)H Q2]
IR0l (0)H E2

IR03 (0)H
-KEY+R1 INH.H

Ell

0
L“
] !
15 MODE
/\ PCOl MIX H
17> ABUS O/L
M23 | o5 |
o 3
[—s
9 b,i‘(‘)DE ag
KP 58
ABUS,02L
USER MODE C
14
A23

Fos

g Nl

PC 3

PC-A (3 THROUGH 17)

PC 17

V4

Rl,i} k30)EL

KP47:’

LINK

BANK

USER

1 GRP4* TsS02 (F+D)L

PC-A 1-2

—>

N

WRITE CONTROL DATA IN THE 1ST LOCATION OF THE

SUBROUTINE (L,B,U, AND PC 3-17)

To " MB"

REGISTER

ROUTINE TO GET BACK INTC THE MAIN PROGRAM

500 - L,B,U, AND PC (0000)

T

JMP * 500 DEFER(1)H |
TS0l E RESTORE L
PR 1| E1s =
) ﬁl
DEPER g2
?S02
T RESTORE INSTRUCTION SETS UP THE
RESTORATION OF L,B,U MODE
EX L=l, B=0, U=l PC 3-17 = 00101
EETCH MAJOR STATE
TSOL JMP * 500 (PC 1-5,MI 6-17—» MO, OA, AND PC)
SMR
TS02 MREQ
TSO3 RD THE CONTENTS OF LOCATION 500 INTO M1 REG.
MI = |101] o0101
5g
1—» DEFER
DEFER MAJOR STATE
e ——— m
TSOl PC 0-2 +MI 3-17 TO THE OA, MO AND PC
SMR
KP 58
RESTORE L _L2
" N2 RESTORE MODE F2
LD MO, OA L M2 MI 01 (0)H E@O———Jz
T2
1 15 MODE
U2
M23
0 9 MODE
M2 v2 +
MI 01 (1) H @_—3 (BANK MODE)
BANK MODE

BANK MODEpp WAS INITIALLY ON A ZERO: RESTORE | MODEpg

RESTORATION OF THE BANK MODE"

JF2

RESTORATION OF THE LINKpp

MIOO(1)H K2

Xp 22
RESTQRE K 2] o3 @~ ——~ACTIVE GATE T LINKgp
TS01 XK ‘

RESTORE H-uiduluf
MI 00(0)H K1 JEOO

RESTORATION OF THE USER MODEpp

El

Fl

LINKFF

MI 02(1)L

RESTORE L

KP69

KM10

7-6

USER MODEpp

DEFER MAJOR STATE

TS02

TS03

EFFECTIVE ADD (101) BACK TO MAIN PROGRAM
MREQ

READ INSTRUCTION, CONTENTS OF 101 INTO
THE MI REGISTER

BUMP PC 000101 + l—» PC

* 1-—% FETCH

XOR INSTRUCTION OPCODE 24

THIS INSTRUCTION READS INTO THE MI REGISTER DATA. THE CONTENTS OF

THE MI REGISTER ARE EXCLUSIVELY ORED WITH THE CONTENTS OF THE ACCUMULATOR
THE RESULT IS LOADED INTO THE ACCUMULATOR.

IF THE BITS ARE THE SAME, EG. AC =0 * M10=0, RESULT LOADED INTO THE
ACCUMULATOR ACO WILL BE A "O". IF THE BITS ARE DIFFERENT ACO WILL BE
"l".

FETCH MAJOR STATE

‘PC 1-5 MI6-17 MO,0A (EFFECTIVE ADDRESS)
SMR (READ COMMAND)
MREQ- WILL BE SENT TO MEMORY AND STARTS THE MEMORY CYCLE
DATA READ INTO THE MI REGISTER
1 —»EXECUTE

EXECUTE MAJOR STATE

GET THE NEXT INSTRUCTION

IN TS02 THE "XOR" FUNCTION TAKES PLACE

M
I
C A
_ B B
S— U U
P ——
A S S
¢ D
B
U
' S

ADD INSTRUCTION __OPCODE 30

THIS INSTRUCTION READS DATA INTO THE MI REGISTER

DURING THE FETCH MAJOR STATE.

GOBS TO THE EXBCUTE MAJOR STATE AND READS INTO

THE PROCESSOR THE NEXT INSTRUCTION.

TS02A OF THE EXECUTE MAJOR STATE
OVERFLOW AS A RESULT OF THE ADD IMPLIES SET

THE LINKpp.

THIS MEANS ITS A GOOD IDEA TO -

CLBAR THE LINKpp BEFORE DOING THE ADD.

—

(1st)LD AC

7S02
MI AC
"C" BUS
. i
“B" BUS "A" BUS
ADDER ‘

TS02 - ADD MI + AC.

THE RESULT IS LOADED
INTO THE AC.

AT THE

SAME TIME SET THE EACpgp

IF THE ADD RESULTS IN

A CARRY.

OVERFLOW CHECK

TS02A

SUM BUS 00])

SIGNS SAME

AC Q0 = O

houny
SHIFT BUS 00 H |
s

oo -

OVER FLOW

TS02A
(Znd) > AC
v
C BUS
v
" B" BUS
!
ADDER

4* EAC | —
TS02A

TS02A

CARRY INSERT

BRING THE CONTENTS

OF THE AC THROUGH THE
ADDER IF EACpp IS SET
ADD +1 TO THE CONTENTS
OF THE AC THE RESULT
LOADED INTO THE AC.

1D AC
(2nd)

TAD INSTRUCTION OP CODE 34

TWO'S COMPLEMENT ADD. THIS MEANS NEGATIVE NUMBERS ARE ENTERED
IN TWO'S COMPLEMENT FORM. AN ARITHMETIC CARRY COMPLEMENTS THE

LINKFF.
TO CHECK FOR OVERFLOW CONDITION AS A RESULT OF A TAD INSTRUCTION

MUST BE DONE BY SOFTWARE.

THIS INSTRUCTION READS DATA INTO THE MI REGISTER DURING THE FETCH MAJOR
STATE

GO TO THE EXECUTE MAJOR STATE AND READ THE NEXT INSTRUCTION.

EXECUTE MAJOR STATE

TSO2
MT AC }4 1D AC
” C " BUS
A
"B" BUS | "a" Bus
]]
ADDER ‘

MI + AC—p AC

7-10

XCT _INSTRUCTION QRCQRE 40

THIS INSTRUCTION GOES THROUGH THE FETCH MAJOR STATE.
PURPOSE TO READ AN INSTRUCTION FROM MEMORY AND OPERATE
ON IT. DOES NOT CHANGE THE PC. THAT IS, THE NEXT
INSTRUCTION FOLLOWING THE XCT INSTRUCTION WILL BE
OPERATED ON.

100 XcT 4000 XCT INSTRUCTION IS A
101 1AC 500 1 STEP SUBROUTINE
i
e s T el
e e T e

4000 DAC * 0400

EEICH MAJOR _STATE
SO1L PC 1-5 MI 6-17-»MO,0A2 (MO/OA=4000)
TS02 MREQ

TSO3 READ CONTENTS OF 4000 INTO MI REGISTER
ALSO SET SCT REM (KP48,-»KP24). THIS

PREVENTS PC+l1 TO PC FROM OCCURRING. PC
STILL AT 101.

1—» FETCH

EEICH MAJOR STATE

TS0l DECODE DAC * 0400 AND OPERATE ON IT
SMR

TS02

TSO3 READ CONTENTS OF 400 INTO MI
1 — DEFER

REFER MAJQR STAIE

TS0l PC 1-2, MI 3-17-» MO,0A (EFFECTIVE ADDRESS)
SMW

TS02 AC—» MO-» MEMORY

TS03
1—»EXECUTE

ESECUTE MAJOR SIATE
TSOL PC JAM—>MO (MO=0000101)
SMR (READ THE NEXT INSTRUCTION)
TS02
TSO3 READ NEXT INSTRUCTION-PMI REGISTER

1—»FETCH
7-11

MEMORY REFERENCE INSTRUCTIONS
ISZ INSTRUCTION OPCODE 44
INCREMENT AND SKIP IF ZERO

FETCH MAJOR STATE

PC 1-5 MI 6-17 MO, OA—)EFFECTIVE ADDRESS)
SMR = (READ COMMAND)
MREQ WILL BE SENT TO MEMORY AND STARTS THE MEMORY CYCLE

CONTENTS OF THE EFFECTIVE ADDRESS LOCATION ARE LOADED INTO
THE MI REGISTER IN THE CPU
1 =>»INC

INCREMENT MAJOR STATE

OA->»>MO (EFFECTIVE ADDRESS)
SMW (WRITE COMMAND)
MREQ WILL BE SENT TO MEMROY AND START THE MEMORY CYCLE.

MI + CARRY INSERT (+1)—» MO
SEND THE UPDATED DATA AND LOAD IT BACK INTO THE
EFFECTIVE LOCATION IN MEMORY

SKIP:CARRY=1 SKIP: CARRY=0
1-» EXECUTE
(SET FETCH)

GO TO NEXT INSTRUCTION
(PC+1 PC, MO) + (PO JAM->YMO)=(EFFECTIVE ADDRESS)
SMR (READ COMMAND)
MREQ WILL BE SENT TO MEMORY AND
START THE MEMORY CYCLE.

CONTENTS OF THE EFFECTIVE ADDRESS LOCATION ARE
LOADED INTO THE MI REGISTER IN THE CPU

1—> FETCH
INSTRUCTION IN MI REGISTER

AND INSTRUCTION OP CODE 50

THIS INSTRUCTION READS DATA INTO THE MI REGISTER DURING
THE FETCH MAJOR STATE. GO TO THE EXECUTE MAJOR STATE
AND READ IN THE NEXT INSTRUCTION.

~¥ECUTE MAJOR STATE
- Js02

M

B

B

v x

s
c

"SUM BUS"

MIO=1*2aCO0=1: 1D AC WITHA "1"
MI 1 =0*AC1=1: LD AC WITH A "O"

AND INSTRUCTION CAN BE USED AS A MASK

7-13

SAD_INSTRUCTION OPCODE - 54

THIS INSTRUCTION READS DATA INTO THE MI REG DURING THE FETCH MAJOR STATE.
IF THIS DATA 1S DIFFERENT THEN THE CONTENTS OF THE ACCUMULATOR SKIP
THE NEXT INSTRUCTION.
(PC+1-»PC-MO IN TS0l OF THE EXECUTE MAJOR STATE)
IF THIS DATA IS THE SAME AS THE CONTENTS OF THE ACCUMULATOR, DO THE
NEXT INSTRUCTION. .
(PC JAM-»MO IN TSOl OF THE EXECUTE MAJOR STATE)

UT A
TS02
MI - ZERO=H (MI*AC SAME)
ne DATA=L (MI*AC DIFFERENT)
B
XOR u CBUS EQ O H
s
V4
AC
CBUS EQ OL
(-CBUS EQ O H)
KP 23
SAD -‘\\‘
rsor | INC PC (PC+1=> PC)
EXECUTE
SKIP CONDITION
PC—»A CARRY INSERT: LD PC AND MO

7-14

JMP_INSTRUCTION OPCODE 60

THIS INSTRUCTION MODIFIES THE PC.
FETCH_MAJOR STATE:

TSO1 PC 15 M16-17 =»MO, OA, AND PC

SMR (READ CYCLE)

TS02 MREQ

TSO3 WAIT FOR RD RST (LOADS INSTRUCTION INTO MI REGISTER)

BUMP—»PC (PC~pA+1) —» PC-
PAGE MODE: LOAD PC 6-17
BANX MODE: LOAD PC 5-17

1—» FETCH

T7=158

LNREX INSTRUCTIONS QRCODES = 72, 73

ALLOWS PROGRAMMER TO TRANSFER INFORMATION BETWEEN
THE AC, LIMIT REGISTER, AND INDEX REGISTER, ADD A NUMBER
CONTAINED IN THE INSTRUCTION ITSELF (+256) TO THE AC,
LIMIT REGISTER, OR INDEX REGISTER AND TEST TO DETERMINE
IF THE INDEX REGISTER IS GREATER THAN OR EQUAL TO THE LIMIT

REGISTER.
MOVE TYPE INSTRUCTIONS
- AC = 00
PAX DECODES ON KP 29 XR = 01
LR = 10
QP CODE 721000 : AC =»XR
FROM TO
SOURCE DEST. AC = 00
"5 6 7 8 XR = 01
0 0 0 1
AC-»XR
"BUS CONTROL"
C A D
A - B g 2 B X
c ¥ u

LD XR

PAL INSTRUCTION
OP CODE 722000 : AC—PLR

BITS 567 8
0010
AC—b» LIMIT REGISTER

?""l BUS' CONTROL ———'J-L—
LD LR—J_—

>

BLE __INSTRUCTION

OP CODE 731000 : LR—®XR

BITS 5678
1001
LR-»XR
; > BUS CONTROL

PXA__INSTRUCTION

OP_CODE 724000 : XR =#AC

BITS 5678
0100

XR—» AC

LD XR

L0

BUS CONTROL

PXL _INSTRUCTION

QP _CODE 726000 : XR—®LR
BIIs 5678
0110
XR-»LR

LD AC

S BUS CONTROL

7-17

ID LR

INSTRUCTION 723n

ADD N TO ACCUMULATOR (AAC+ n)

72 3+N (N = 9 BITS)
N = SIGN + 8 BITS.
NBEGATIVE NUMBERS IN TWO'S COMPLEMENT FORM

MI i¥L--—T

723 9thrul? - XG 1D AC
pa7 L "c" BUS < EX ENAB AC L KP 19
MI —9B ol "B" BUS L
"a" BUS <~ C —»A Kp-19
i ‘
* ADDER

INSTRUCTION: ADD TO INDEX REGISTER AXR + n
737 + N (n = 9 BITS)
RE———

MI INDEX ___(XR) X

9 thru 17 LD XR
Kp47 F 3 KP 47
MI B npn v -
. B" BUS "A" BUS (AXR) XR 00-17—>A
L s]
ADDER

7-18

PLA INSTRUCTION

- 730000g LR=P AC

BITS 5678

1000

LR-»AC
L A
R BUS CONTROL c

INCREMENT TYPE INSTRUCTIONS

AXS (N) 25N N = 8 BITS + SIGN
AXS (y) INSTRUCTION IMPLIES ADD OR SUBTRACT THE "N"

70 THE INDEX REGISTER AND SKIP IF EQUAL TO OR
GREATER THAN THE LIMIT REGISTER

MI REG INDEX REG
s N _hh—-—-
| | ID XR TS02
' ADDER
LIMIT REG INDEX REG

compare)oo—p BC JAM MO

YES

PC+1—» MO, PC

7-19

INSTRUCTION:

X REGISTER AND LIMIT REGISTER
AXSn GIVEN: XR = 000050, LR = 000050
LR XR

000050 000050
KPll9 0 y KP 19
LRig C BUS "B" BUS j¢—— XR-B
~C>A — 777727

A BUS

Kp48
CARRY . y

ADDER |~ CARRY INSERT

RESULT = 000 000 + CARRY KP49
TEST LR*TSO3-
El)
CARRY\NO
YES
LR NEG. Kp-29
XR NEG. -ABUS O0OH Al F1
1 B
XROO(1) . -CBUS 00 H Cl o—F —
D1
LR POS —INDEX REG POS
F1 H1

7-20

F2

T2
-
V2

F1Y

Ll

TO KP 23

ENAB LR SK L

QPERATE INSTRUCTIONS: QBCODE - 74

OPERATE INSTRUCTIONS ARE USED TO SENSE AND/OR ALTER THE CONTENTS
OF THE AC AND LINK. THESE INSTRUCTIONS CAN BE MICRO-PROGRAMMED.

BIT 7=0
- N “{ RAR | RAL
ADDITIOMAL {0=Or of | SNL| sza| swa| . . f~mre [RTL | oas an | an
CLA | CLL | ROTATE 1=And of | sz | sea| sea | BIT 7=
5 6 7 8 9 10} 11t 12 13 14 15 16 17
MAIN ORDER OF' EVENTS
TS0l - SKIP CONDITIONS
CLEAR AC
T502 - CLEAR LINK
OPERATION ON AC AND LINK
TSO3 - HLT
e TS01 u{« TS02 | ¢— T503—
ORDER OF
EVENTS COLUMN 1 COLUMN 2 | coLumn 3 _| coLumn 4
LEVEL 1 SNL, SZA, SMA OAS CMA ral
LEVEL 2 SZL, SNA, SPA ClA, CLL | RAR OR RaL HLT
LEVEL 3 SKIP RTR RTL OR SWHA

CAN'T COMBINE INSTRUCFTIONS ON DIFFERENT LEVELS
IF THEY ARE IN THE SAME COLUNN

;

CAN'T COMBINE CML AND IAC, (KP22 GATING OF LINKFF)

COMBINED ROTATES BECOMES A SWHA OR IAC
SW HA : MI13, MI14 ON A (l)H * MIO7 (l)H

IAC : MI13, MIl4 ON (1)H * MIO7 (0)H

OPERATE INSTRUCTIONS - FLOW CHART KP76
SHOWS A MEMORY CYCLE. THIS IS ONLY TO RETRIEVE
THE NEXT INSTRUCTION

7-21

OPERATE INSTRUCTIONS

‘ OPERATE)

OPR
‘_EAIEQJJ RESULT
OPERATE INSTRUCTIONS MODIFY OR
7 AC—»AC
CHECK THE STATUS OF THE LINK CMA | 74000119 rVAC>
OR THE AC A MEMORY READ CML | 740002 o|~L>L
CYCLE IS INITIATED oas | 7a0002[@ [® ® ® ACV DSW-» AC
SNLVSZAVSMA AVWMI@S V RAL | 740010 ® ACO>L IAcl7Acn»Acn-1
SZLASNA A SPA A MI{8: RAR | 740020 I™Aco Acnadcn+l Acli-L
SET OPR SKIP F/F
CLOCK: IAC | 740030|@® ole ° AC+1—>AC
3 OPRSKIP:PC+1—» MO PC RTL | 742010] @ ° ® Acl>L Ac@-Aclé L ACl6 AcnJAcy
~ «~CPP SKIP:JAM PC—3 MO
N M1@5:CLR AC RTR { 742020] @ ° ° [>ACL Acl7 Aco AcléL AcnAcni
START MEMORY READ CYCLE swHAl 742030 ° cf-8toAc9-17 AC9-17toAcf—8
CLL | 744000 L] o—rL
STL | 744002 e|le|0o—L, ~I-L
FATS@2 :
OPERATE ON AC OR LINK RCL | 744010 ® ° CLL ! RAL
SEE OPR TABLE RCR | 744020 PS ° CLL ! RAR
0—»AC
OPRATS@2 A CLOCK: LOAD AC CLA | 750000
cic | 7500011 @ ° ° | ALL 1's—»AC
FATS@3 1as | 750004 °® ° ° O0—>» AC DSW—» AC
UPDATE PC GLK | 750010 e 0— AC L—»AC17
SET FETCHA TS@3: PC—»A; CRY IN TCA | 740031}® L] L L] A/ AC + 1—3AC
CLOCK: LOAD PC
MI12 CLR RUN AND HALT
“~MI 12 GO TO FETCH

HALT 7-22

8.

CONSOLE OPERATION

OBJEBCTIVES:

Manuglly load a program fram the console switches.
Manually examine program

Run the program

Explain the functions of'the caontrol switches
Analyze console display

Load and run a hardware paper tape read in.

8-1

CONSOLE PDP-15

CONSOLE LOGIC LOCATIONS

1. CONSOLE SWITCH BOARD

2. CONSOLE INDICATOR PANEL

?. KP-18 REGISTER - I BUS

4. KP-34 CONSOLE INTERFACE (CONSOLE TO PROCESSOR)
5. Kp-38,39,40,41,42,43 - I BUS BITS 0-23

6. KP-44 CONSOLE CONTROL #1

7. Kp-45 CQNSOLE CONTROL #2

8. KP-46 MIS CONSOLE LOGIC

9. KP-72 SIGNAL CHART IND BUS
10. KP-73 KEY FLOW

11. FLOW CHART HANDOUT

265
us

CLK INH [

CONTROL CONSOLE TIMING

[11]

—

HALF(1)H

———

ZERO(1)H

[

.

ONE(1)H e

TWO(l);-_] ‘ i

|

COUNT 1 2 3 4 5 0 J
pIspLay MISC REG M A S A S D S
\————\r__/c W D W A W
T I DI T I
DISPLAY REG. I TRTA AT
v C E C C
E H S H H
S
S N ———
SWITCHES ON
"I" BUS
0 1 2 3 4 5 7
ATR
DI |SPL | AY S;:‘ DO |gy
cYy |cL E |oper | IT |ps-rec
NO . CONSOLE

FAIL

NOTE:

Note Active SW on
IBUS: CNT 3

1.

Deposit switch or what
ever switch depressed

Set 1 of 12ff to be
controlled by rotary
SW.

AC selected sets 1lst
ff and at a count of
one the register
lights display whats
in the AC.

NOTE: ADDR SW to IBUS: CNT4
Start CPU timing and do
the given operation.

(deposit)

Data switch are stored
in DS REG and

TURN OFF DISPLAY LIGHTS
(PROTECTION)

0O

v-8

1-9¢

oo~
gj

:

-6V

I BUS SWITCHES

DSW
| M
23pv
gl
o
I BUS

F/F

REG NORM

POS1 '

STROBE ZERO __|
KPSP PI

KP46 I BUS #S5 N1

MISC

_)o—o\ IND_AC _
| / BAC ¢S

REG MAINT __.D"‘"G\ (HD_A
| / A BUS @5

V-9¢

REG

MI@S___

STROBE TWO___O> IND_ MEM

I BUS LIGHTS

=l

D
4 —
S

(- " " SWITC[REG

01 112]13[415(6]7[8[9ONTI2[13T14TI518]17

InJAClAcT |AcL |Ac2 |Ac3 |Acq lAcs lAcelACT7 |AC8B|AC 2 |ACIOLACIH |ARCI2|ACI3 {ARCI4|ACIS |AC/6 |ACI?
PCclfPcd|rpci|Pc2 lpcB |PcalPcs |PcaolPCc7|PcB|PC|Pcrolpert |PCI2IPCI3|PCI4|PCIS |PClelPCIT
OA |0AL |0A L |[0A2 [0A3 |0A4 |0A5 |0A6 [PAT |OAB |0A 3 |0A 10|0R /1 [0A/2|0A /3 |0A/4|0AIS |0R/G |OA 1T
MQIMRP [MAL IMR2Z IMa3 [{MA4 MRS MG [MQT |1MA8 [MAA MR MR 1 IMQIZIMAI3\MQ/4\MA IS IMA1é6 IMQIT

APL | ARPL | APL | APL | APL | APL | APL | APL c

REQ | ReQ | REQ | REQ | REQ | REQ | REQ | REQ os;-(f_o S/<2: ?g SM S'CSZ_ St% S:_?.
p/./SC v |t a2 o3 | oo o5 oé @7

KAes | kpos |mps T kaos | Kae) | kAag | Kagi] KAg4 KEP3 | KEJ3 | KE@3 | KE@3| KEB3| KEJ3 | KEX3

XR | XR& | xRL [%RZ2 | XR3 | XR4 | XRS5 |XR6G {XR 7 |XR 8 |XR 9 |XRIO|XR I [XRI2|XR/Z|XR/ |XR 15 |XR/6 |XRIT
LR JLRZ |LRL |LR2 |IR3 |[LR4 |LRS |[LRG |LR7 |[LR8 |LRQ [LR/IO|LRII |[LRI2Z|LRI3|LR/%|LR/S|LR/6]|LRI7
R B | ¢C D | E F |- — DIV |-ERE | -ERE | ~EAE | ~ERE|-ERE |_p/. |-DIV |- - Low
(vt [corr | H [vk |@in |orn |~SU |"MU | guier | noems | s | Lis |aces | sien |~ 7@ |oFio | ™ [ERE | Taie
ERE |« g4 | KEPY | KEF4 | KEPG | KEP+ | KEPL | KEP4 | we o4 | keg4 |kedq |xeodd |Kept | KES4 | KEdS | KE#5 [Ked3 |KETZ | KE B4 | SHOWN
DSR s |psit |ps2 | ps3 | Ds4 |pss5 |psé |[Ds7 [ps8 |Dsa |Dslo | DS |psi2iDs13 |DS14|Ds!5|Dsie {Dsi?
ToB |02 Toi [T02 [T03 [To4 |05 [T06 |7 (208 [[Tolo| 1[I 12|2613 |0 M (105|516 1o 17
PIE |T/hB |Ip8 | KBD |TSie- IT/8 |CLK | CLK |14 B |148 | 568 | 368 |68 | B |68 |8 |%68 [T B

_ 2y | o2 |Fre | Ead | &5 |FLRG | EN | og zq9 | 1@ | 1 12 | 13 a4 | s |1e |17
STATYS | kps KPS3 | KR53 | KP§O | KPS0 | KPS3 | KPS7 | KPST | KP53 | XKPS2 | KPS2 | kP52 | KPS2 | kP52 | xPS2 | kP52 | KP32 | <P52
MO [Mmog (Mo L LﬁOZ Mo03 Imo4 (MmpsS |MO@ [MO7 (MOB M0 [mpio Imoll Imoi2 |moil3 imol!4 imois \molé imot7

~—t =
RBUs|lag|lAl |lA2lA3]|1A41|1AS A6 AT |AB Alo |A Il |AI2 1A I13 |1A)4 |AI1S |AIc |A 1T | NOoT
g |B I |B12|BI12 |84 1815 |Blg |17 |Presant

q
BBus|s s |8 1 B3 |B4|B5s |B6e |B71e8 q
q lcwolc i lcli2jciz |ci4 |ci5 |16 |c!T |when
9
q

A
B 2 8
cgus |IC glc L [c2|c3 |jc4 |cs |ce |c7]c8 |c
SHFTBUS|D g |01 (D2 | D3 |D4 |P5S |Dée |D7 |D8B |D Droipit (D12 |DIZ [DI4|V!S |DIle|DI7] LT
I/
P

I/oA KP 69 Tio3 %04_ %05' IA(o P3 Iléa 7 IA/D'B I,/ao 10 %o 1|22 1')/4:,3 3%014 ’%0/5 L‘{?/é %17
SUM Ismd [sm i |sm2 |sm3 [sm4 |smS |sm & [sm7 |sm8 |sm Q {sm10|gm 11 {sm 12 |sm I3 [sm |4 |sm /5 [sm /6 |sm 1T
Dy _|mut | RAL | RAR | RTL | RTR [Mo, [SwHA|C bus|-Cbus| xR | Reap | SLe |Z4 gpplAddr | 04 | DATA | DATR
ST |87 15D | SD | =D |25 | 35| 2D | oA (24| 4 W SR | SR Swal—>a | v |ouT
M1 KPiq | KPiq | wpiq | ipia | KPI9 | KPIS | kP9 [KPI |KPIQ |KPIA |KPIS | KPG6 |(TTY) 1kPIq |KPIQ |KPIT | i DYS | KDOS

pl-Mr | LR |AND | Ld [Ld | LdL | td | Ld [td |BAC | XR |14 xOR | CPMem| STagT | STagy | CP
SKi —g|2Cc |38 |AC | MO | PC |[OA | LR | XR |—=C | 2B -3205 —=>cC (gfg READ wkﬁ-"e MRLS

M2 | kez3|eis |kpra |icerq |p24 |kpoa |keoa |icp2a |ie24 |kp2a |23547 1228 |xpia |ke19 [iers |32 | kP32 kP32,
MDL Imid im L im 2 imi 3 {me4 M5 |me 6 m 7 im 8 \meQ \meiolm 11 {m 121 13 {m 19 [o 15 1me 16 (me 17
MMA {m & t M2 |M3IM4 M5 |Me (M7 M8 |MAa |m/o 1l 1ma /2 \ma!3 14 1MA IS ImA 16 \mA 17
MMB Iws & Mg 1 |mB 2 MB 3 (mB4 (MBS IMB G |MB 7 (M8 B IMB G [MmB/O|MB 11 1MBI2IMB /3 (M8 19 [MB /S |MB /6 (MB 1T

ADR | BUS | RD_ | WR | MRIS | Mem MDL | MDL ReaDp |WRIT PAR | PAR
ACK| EN | RST | EN | ACK |BUSY. o3 | 24 conv | cown MB |exmnsT
MST lmmez Immez2 |mme2 |mmaez2 | mme2 |mme2 mmat |mmay

e R S A S Y A S S SN POV S e

CNT
of 4
(LAST HALF)

NEXT PAGE

CNT OF 5

DATA SWITCHES ¢
DS REG

CNTS OF O,1,
AND 2
DISPLAY CYCLES

DEPOSIT SW.
DEPRESSED SET

NOTHING HAPPENS
GO THROUGH
CYCLE 3 & 4

KP34

(TSO3* SET FETCH
* DEPOSIT) *CF:
4+ xey acTIvE

KP34

KEY ACTIVE *
-RUN:1'START
RUN.CPU

LEAVES EXECUTE
MAJOR STATE
GOES TO FETCH
MAJOR STATE

__gb KP34

DEPOSTI*TSO1
*~NEXT:
ADR-SW-A..

KEY ACT*TSOL:
? FORCE FETCH

T o

KEY ACT*TSO1*
CLK H: LD MO, OA

KEY ACTIVE * DEPOSIT:
KEY REQ WRT (KP34)
THIS SETS UP WRITE
COMMAND (SMW ON KP32)

KEY ACTIVE : INHIBIT
DECODES (KP48)

CNT of 4
LAST HALF

FORCE FETCH:

"KEY ACTIVE*FF:

CLR->IR
(NO INSTRUCTION
IS LOADED)

;! KP26

MEMORY CYCLE
STARTED:
TSO1l*g3: N
CP ACTIVE: T
MO —» MDL- (ADR)
SMW-» MWR
TS02*@0:

t ureo

KP32

A

(CPACT*START WRT
PS02@F3 *~TRAP
*ADR ACK): ‘P CP
WRT ADR ACK.

. THIS IMPLIES LOAD

THE DS REG. INTO
THE MO REG. AND
TRANSFER IT TO MEM

KP34

TS03 * @1:

CLR KEY ACTIVE
TSO3*@l: CLEAR
KEYS * CLEAR
CONSOLE.

CLEAR CONSOLE:
& DEPOSTI FF

TSO3*@3: ¢ RUN
- RUN: } STOP TS
RUN

KP34
(DEPOSIT) *TS02:
4 STOP TS RUN

€—— TS03*@1: LD MI
(C) OF DATA SWITCHES
WILL BE DESPLAYED
IN TEH MB LIGHTS

CONSOLE CLK
1 SWITCHpp

SWITCH ACTIVE

ACTIVEpg

BLOCKep
DEPOSITpp
SWITCH INHIBIT

CF PULSE

4 5 0

™

NN

—y

1

SWITCH RETURNS TO HOME POSITION (100ms?) .

i\
Lt

—-p

TSO03*@1:CLR CONSOLE

PREVENTS SETTING CONTROLpp

]

1
‘

DELAY .126 SEC

L

EXPAND-THIS IS WHERE THE ACTION IS.

’ (C) OF DATA SWITCHES STORED IN THE DS RETISTER

AC AVAIL

[.L

\\\~————DSWITCHES

-~ DS REGISTER

0T-8

—

POPRSTE RN N N N N N N N N S N N

KP45 HALF (1)H

KP45 ZERO (1)H]

KP45 ONE (1)H

KP45 TWO (1)H

CONSOLE CLK.COUNT Lg(oom [1 ooy [2 (010) i 3 (011)] 4 (100) l 5 (101) [g(000) [

KP45 STROBE ZERO — DISPLAY MISC.

KP45 REG MAINT STROBE _______— IF_REG GRP (1)

KP45 REG NORM STROBE ________ IF_REG GRP_{#)

KP46 STROBE ONE -Dlspmy MB

KP45 STROBE TWO — DISPIAY MB

KP45 BANK 1 AVAIL - ACTIVE SW ON BUS

KP45 STOP AVAIL - IF - MISC AVAIL INH

KPA5 BANK 2 AVAIL -_Q—ADDRESS SW_ON BUS

KP45 MISC AVAIL -IF—MISC AVAIL INH
KP45 AC AVAIL . m;vm SW. ON BUS

ol

CONTROL CONSOLE TIMING

9.

ME-15 MEMORY BLOCK DIAGRAM (11 MEMORY)

OBJECTIVE:

List the
List the
Ligt the

Describe
Memory

functions of the M7170 interface control
functions of the 6109-va
functions of the G-231

the dialogue between the PDP-15 and the ME 15

15 BITS 05 THRU 17
11 B 13 THRU 1

M 7170 G109vA G231 . H 215
15 ADDR) L . L »
01,02,03,04 ———/1 ,
/ SELECT SELECTED e i SELECTS -——— CORE
1 OF 6 8K ADDRESS
1 OF 2 o
M 7170 STACKS ’ 8K
EACH 7170 CAN ADDR. 11 BUS
48K. 7170 SELECTS 11 BITS USED IN SELECTION
A RANGE OF ADDRESSES OF A PARTICULAR G109YA
BETWEEN A STARTING BITS 17,16,15,14
LOCATION (8K CHUNKS) tt 1t

AND 48K LOCATIONS

15 BITS 1, 2, 3, 4
UPWARD.

cl co

Y 0 _DATI C1=0 : READ

0 1 DAT1P Cl=1 : WRITE

1o om0 | G evmeovmm o
1 1 DATOB

TRUE BUS COMMAND

UNIBUS IS POSITIVE WITH LOGIC LEVELS OF:
OV (" 1”) R +3V("O") v
WITH THE EXCEPTION OF BUS GRANT AND NPG, =
3v ("1"), ov (0).

UNIBUS IS LIMITED TO 20 "UNIT LOADS
UNIT LOAD = 1 RECEIVER AND 2 DRIVERS.

7170
15MWR 15MRD FUNCTION) CO Cl 11CO § 11C1
H I READ O(L) | Y(H) | 1(H) | 1(H)
L H WRITE 0 0 1(H) 0(L)
’ 0 (1¢
L L READ/WRITE| 1/0 | 1/0 ‘/?L{; s

DIALOGUE P-2-32

EAE INSTRUCTIONS

To be included at a later date.

10-1

EAE HAEDWARE

To be included at a later date.

11-3

ASSEMBLY LANGUAGE PROGRAMMING

To facilitate our programming efforts, we will make use of system programs
supplied with the Disk Operating System (DOS). They will be the Editor
(EDIT), the assembler (MACRO) and the Peripheral Interchange Program (PIP).

The Editor allows us to set up an area on the disk containing our
program (the “"source" program). We use the Editor to
both create the text and to modify it because of typing
errors or changes in program design.

The Assembler is-used to read the "source program" and translate it
into a format (the binary program) which can be load-
ed into memory and subsequently executed. -

The PIP program allows for manipulation and transfer of data files from
' any input to any output device.

In order to make use of these facilities, we must first load the Disk

Operating System's executive program ("The Monitor") into memory so

that we can request the Editor and the Assembler through it.

12-1

DOSSAV OPERATING INSTRUCTIONS

DOSSAV is the save/restore system for DOS-15.

DOSSAV saves and restores to/from DECdisk, Disk Cartridges, Disk Packs,
DECtape and magtape. A DECdisk system can be saved on and restored
from DECtape, magtape, Disk Cartridge and Disk Pack. A Disk Pack or
Disk Cartridge system can use DECtape and magtape.

Once loaded, DOSSAV asks for all necessary information, such as input
and output device, unit numbers and, in the case of magtape, parity

and density.
GENERAL INSTRUCTION:

The user must type a Carriage Return after all entries, including the
character typed to restart after errors. For UC1l5 system, start up
PIREX as indicated below.

To load PIREX, place the ABSll paper tape in the PDP-15's paper tape
reader. Place the ENABLE/HALT switch on the PDP-11 in the HALT posi~-
tion. Press the STOP and RESET switches on the PDP-15 simultaneously.
Set the ADDRESS switches on the PDP-15 to 177@¢. Press the READIN
switch on the PDP-15. When the readin operation is completed and the
PDP-15 has halted, set the PDP~11 switch register to:

600889 for 4K local memory on the PDP-11
1990089 for 8K local memory on the PDP-11
12¢98@ for 12K local memory on the PDP-11

and depress the PDP-11 LOAD ADDR switch, then set the ENABLE/HALT

switch on the PDP-11 to ENABLE, and finally depress the PDP-11 START
switch. :

Remove ABS1ll from the paper tape reader, and reload it with the PIREX
paper tape. Press CONTINUE on the PDP-15. This will cause the ABS1l1
program (which has two segments: A PDP-11 segment, and a PDP-15 seg-
ment) to read in PIREX (which is a PDP-11 absolute binary tape) via

the PDP-15 segment and load it into PDP-11 lower memory via the PDP-11
segment.

12-2

When the PIREX paper tape has been read in, the PDP-lS will halt, and
the PDP-1l1 will be running PIREX. Remove the PIREX paper tape from the
reader. At this point the UNICHANNEL Peripheral Processor has been
loaded and is waiting for an I/O request from DOS-15.

A.1l RESTORING SYSTEMS

The following examples illustrate how to put the systems distributed by .
Digital on DECtape or magtape onto a DECAisk, Disk Pack or Disk Cartridge.
The user responses are underlined. %he RK@5 based systems start up

PIREX as described in GENERAL INSTRUCTION, above, before starting up
DOSSAV. DOSSAV resides on a paper tape, which must be (HRM) loadeg

at 37720 (restart 342ﬂg). ' . '

.1, To restore a DECdisk system from DECtape (1 of 2 on Unit 1
and 2 of 2 on Unit 2) '

DOSSAV Vnn

INPUT DEVICE? DT

UNIT NO? 1J

OUTPUT DEVICE? DKJ

DATE CREATED: g6 Jun 73 /Note that if DK is typed no
funit number is requested.

TAPE DONE. MOUNT ANOTHER /At this point,
/type 2 on the key-

2) /board followed by Carriage
/RETURN.

2. To restore a DECdisk system from magtape (on Unit #):

DOSSAV Vnn

INPUT DEVICE? MTJ)

UNIT NO? @)
TRACK (7 OR 9)? 7))
DENSITY (2,5,8)? ~8,)
PARITY (E OR 0)? O
OUTPUT DEVICE: DK

DATE CREATED: 06=JUN-73

NOTE

All DOS-15 System Restore magtapes
distributed by Digital are 800 BPI,
odd parity.For 9 track units, DOSSAV
assumes. 8479 BPI.

3. To restore a Disk Pack system from DECtape (1 of 2 on Unit 1
and 2 of 2 on Unit 2): ‘

DOSSAV Vnn

INPUT DEVICE? DT <
UNIT NO? -

OUTPUT DEVICE? DPJ)
UNIT NO? & -

DATE CREATED: 06-JUN-73
TAPE DONE, MOUNT ANOTHER At this point, type 2 on the

teleprinter followed by a
20 Carriage RETURN.

12-3

4, To restore a Disk Pack system from magtape (on Unit 1):

DOSSAV Vnn
INPUT DEVICE? MTJ
UNIT NO? 1/
TRACK (7 OR 9)? 7.
DENSITY {2,5,8)? 8,
PARITY (E OR 0)? 0OJ
OUTPUT DEVICE? DPJ
UNIT NO?

" DATE CREATED: 06=JUN-73

5. To restore a Disk Cartridge system from DECtapes on Units 1, 2, 3, and 4:

DOSSAV Vnn
INPUT DEVICE? DT
UNIT NO? 1)
OUTPUT DEVICE? RK)
UNIT NO? -0)
DATE CREATED: @6-JUN-73
TAPE DONE. MOUNT ANOTHER (The user mounted the next tape on
27 unit number 2, then typed 2J)
to continue)
TAPE DONE. MOUNT ANOTHER (The user mounted the next tape on
3) unit number 3, then typed 3J
to continue)

TAPE DONE. MOUNT ANOTHER (The user mounted the next tape on
4 unit Number 4, then typed 4)
to continue)

DOSSAV Vnn
INPUT DEVICE? (Operation complete)

6, To restore a Disk Cartridge from magtape Unit 1:

DOSSAV Vnn
INPUT DEVIiB? MT)

UNIT NO?

TRACK (7 OR 9)? 7J)
DENSITY (2,5,8)? ~8)
PARITY (E OR 0)? 0J
OUTPUT DEVICE? RKJ
UNIT #? @ -

DATE CREATED: @6-JUN-73

DOSSAV Vnn
INPUT DEVICE? (Operation complete)

It is possible to restore to the DECdisk a software system which was
created for a machine smaller (different number of DECdisk platters)
than the one being restored to. DOSSAV does all the necessary adjust-
ments of the SAT's!. Therefore, the restore tapes issued by Digital
for a l-platter system can be restored to any system. Note that this
should only be done with the master tape(s) which have block 17758

'SAT's: Storage Allocation Tables - 'i.e., bit maps.

12-4

free. That block is needed during the restore for five or more DECdisk
platters. It is not possible to restore a software system which is
larger than the hardware. (For example, one cannot restore a 3-platter
system onto a l-platter configuration.)

The system can then be bootstrapped from the appropriate disk. See the
DOS Keyboard Command Guide (DEC-15-ODKCA-A-D).

A.2 SAVING SYSTEMS

Once the user has tailored the system to his specific configuration, he
will want to save that system for future restorations. To do that,
simply reverse the procedure above. To illustrate, consider Example 1
above and the changes necessary to it to create a restore tape.

To save a DECdisk system to DECtape (on Units 1 and 2);

DOSSAV Vnn

INPUT DEVICE? DK)
OUTPUT DEVICE? DTJ
UNIT No? 1)

TAPE DONE. MOUNT ANOTHER At this point, type 2 on the
keyboard followed by a Carriage
2) RETURN.

Note that DOSSAV allows for as many DECtapes and magtapes as are
necessary to hold the system.

A.3 ERROR CONDITIONS AND MESSAGES
Recoverable errors during command string decoding: If a question is

answered incorrectly, DOSSAV outputs an appropriate error message and
then repeats the question. These error messages are:

ILLEGAL DEVICE An illegal device mnemonic was typed
(something other than DP, DK, RK, DT,
or MT) or an illegal combination of
devices was typed (i.e., input = DT and
output = MT).

BAD TRACK Something other than 7 or 9 was typed.
BAD DENSITY Something other than 2 (200), 5 (556),
~ or 8 (800) was typed.
RAD PARITY Something other than E (even) or O (odd) was
typed.

Recoverable errors during operations: If it is possible to recover
from an error, DOSSAV attempts to do it. The error message is output
to the console. After the problem has been corrected, any character
on the keyboard followed by a Carriage RETURN resumes operation.

12-5

TAPE NOT READY The DECtape or magtape unit is off line
or not write enabled.

DISK NOT READY : DECdisk is write locked.
DISK PACK NOT READY The Disk Pack or Disk Cartridge unit is not
ready.

Unrecoverable errors: Primarily hardware errors, from which DOSSAV

cannot recover. After the error message has been output, DOSSAV
restarts. DOSSAV retries five times on parity error, before issuing
an unrecoverable error messade.

DECTAPE ERROR
MAGTAPE ERROR
DISK ERROR

DISK PACK ERROR

ATTEMPT TO RESTORE SYSTEM TO WRONG DISK
To protect users who have access
to more than one type of disk and
who may have several sets of
restore tapes, all restore tapes
are created with the mnemonic of
the disk type in the first SAT.
DOSSAV checks this code against
the output device code. If they
differ, this message is output.

BLK 1775 OCCUPIED. NO 2ND SAT CREATED

A DECdisk system created for 4 or

fewer platters is restored to a machine
with 5 or more platters and block 1775

is already used. Therefore, no second

SAT is created. A master tape was not

used to make the restore.

XX ERR IGN

where xx = DK or DP or RK.

This error is typed on the console,
and the PDP-15 halts. This reports
that "Read/Write check" errors
occurred more than 12, time during

a save or restore procCess. The bad
block number is present in the PDP-15
AC. Users can continue the save or
restore process by pressing the
continue switch on the console of the
machine.

12-6

A.4 TAPE STRUCTURE

The restore tapes are structured as follows: The first SAT of the
system is the first block put on the tape. This SAT, which is never
restored to the disk, has two words modified: word 2 contains the
creation date (taken from .SCOM+47) and word 376 contains the device
mnemonic (.SIXBT , right justified). All the occupied blocks referenced
by this SAT are then put sequentially on the tape. The second SAT,

if there is one, is then put on, and so on. 'This structure enables

use of magtape, which is a sequential only device.

A.5 DOSSAV Restrictions

1. It is not possible to save or restore magtapes with even

parity.

2. DOSSAV fails when two DECtapes are on line with the same
unit number. It is necessary to restart under such
circumstances .

12-7

MACRO-15 SUMMARY
I. INTRODUCTION

MACRO-15 is a system program which facilitates writing programs symbolically
because it converts symbolic representation to machine code.

INPUT: ASCII text
OUTPUT: Binary
.FULL + ABS

Qutput to paper tape | output to paper tape
for HARDWARE READIN for use with

Absolute Loader

12-8

MACRO-15 SUMMARY

II. FIELD DEPENDENT ASSEMBLER

A MACRO source program is composed of a sequence of source lines where each
line (terminated by a carriage return) may contain one or more assembly
language statements., If several statements are written on a single line,
they are to be separated by semicolons.

STATEMENT
or -
STATEMENT ; STATEMENT ; STATEMENT

Statements may contain up to four fields that are separated by space(s) or
tab (but not both except between address and comment fields). The four fields
are: '

LABEL (OR TAG) field
OPERATION (OR OPERATOR) field
OPERAND (OR ADDRESS) field
COMMENTS field

and are identified by order of appearance and delimited by certain terminating
characters. The general format of a MACRO assembly language statement is:

LABEL or OPERATION FIELD or OPERAND FIELD or /COMMENTS
(ADDRESS)

where each field is delimited by a space(s) OR a tab and each statement is
terminated by a semicolon or carriage return. The comments field is preceded
by a tab or space(s) and forward slash (/). The label and comments field are
optional. The operation and operand fields are interdependent; either may be
omitted depending upon the contents of the other. However, blank lines are
illegal. (NOTE that if several statements are on a line, only the last may
have comments).

FIELD CONTENTS

LABEL or
TAG FIELD OPERATION FIELD ADDRESS FIELD COMMENT FIELD
Symbolic Label Machine Mnemonic Instructions Symbol [eeeeeenonnnns
Direct Assignment MACRO-15 Assembler Directive Number

Macro Name Expression

Number

Symbol

Expression

12-9

MACRO-15 SUMMARY

LABEL FIELD

1- a label is a symbolic address created by the programmer to identify
the statement (usually for reference as addresses for jump instructions, data
locations, and for debugging).

2- Tabels are optional but if present, a label always occurs first in a
statement (colum 1)

3- a label takes as its numeric value, the address of the location it names
(the galue of the current location counter is entered into the user defined symbol
table).

4- a label may be defined only once (therefore, a given label may be used on
only one statement)f

5- note that even if a label is not used in a statement, the delimiter for
the label field still must be given.

OPERATION FIELD

1- the operation field follows the label field
2- the operation field may contain a(n):

--instruction mnemonic
--assembler directive
--number

--symbo1

--expression

-~-Macro Call

3- the operator may be preceded by none or one label and may be followed by
none,one or more operands and/or a comment.

4- when the operator is a macro call, the assembler inserts the appropriate
code to expand the macro. When the operator is an instruction mmemonic, it
specifies the instruction to be generated and the action to be performed on any
operand(s) that follow. When the operator is an assembler directive, it specifies
a certain function or action to be performed during assembly.

OPERAND FIELD

1- an operand is that part of a statement that is manipulated by the
operator.

2- an operahd is usually a symbolic or numeric address of data to be accessed
when an instruction is executed or the arguments of an assembler directive or
Macro Call.

3- the interpretation of the operands depends upon the operation field.

12-10

Macro source statements may use the tab to align the statement fields according to
the following format:

label-- cotum 1
operation--column 9
operand-- column 17
comment-- column 33

(tabs are sét up to move modulo 8 spaces; columns 1,9,17.25,33,41,49,57 etc.)

EXAMPLE
.LOC 10500

START CLX |
LAC 10600 /PICK UP NEG TAX RATE
DAC* 10601 ~ /PUT IT IN TAX TABLE
LAC DATAB /PICK UP GROSS PAY
DAC TAB,X /STORE IT
HLT

DATAB 20000 /NOT SO GOOD--OCTAL
.LOC 10600
62
TAXTAB

TAXTAB .BLOCK 6
.END START

12-11

MACRO-15 SUMMARY

COMMENT
1

FIELD

a comment is a short explanatory note which the programmer adds to
a statement as an aid in later analysis, debugging or documentation.

.comments are optional

comments do not affect the assembly process or the object proaram
(and hence do not affect program execution). They are merely
printed in the lising. '

the comment field must be preceded by a forward slash (/). The
slash may be the first character on a Tine (if the entire line
is to be taken as a comment) or may be preceded by:

a. space(s)

b. tab(s)

c. semicolon

12-12

tC

SLOGIN CES

DOS-15
$A PP -

$A LP -
S ON
$EDIT

3 AP00
13

12

EDITOR V3Agee

*>OPEN ZTABLE

FILE ZTABLE SRC NOT FOUND.

INPUT

- .ABS

LOC 120
LAC XAQQ
DAC A
LAW -100
DAC CNT#

LOOP DZmx A
ISZ &
1SZ CNT
JMP L OOP
HLRA\T

A 408

K42 40D
+ENRD

EDIT

>EXIT

DOS-15 V3AZAR

$MACRO

RMACRN=-15 WBAQQPQR

»B N«ZTABLE

END OF PASS |

SI1ZE=B0114 NO ERROR LINES

RMACRO-15 V3AQOQ

»1C

NOS-15 V3AZRQ

sLosoUT

‘DOS-13 V3Ape@

$

/LOAD AC WITH STARTING LOC
/DEPOSIT AC INTO STARTING LOC
/LOAD AC WITH NO. OF LOC TO CLR
/DEPOSIT AC INTO NO, CNTR

/ZERO CURRENT ADDRESS

/INC ADDRESS

/INC NO. COUNT, SKIP IF DONE
/NOT DONE, GET NEXT ADDRESS
/DONE

12-13

b1-21t

FAGS

— et pen pea
AN = =

-
;3

- O NN N e

ITASLE SQC

B S
P S
LS WA |
AAgep
A AN
CEAD R
RS-
[ERU BAY,1
aivye 7
aalle

40111

l?»‘:'112

200112
44111
7777%'.:‘}
Wamr113
16111
a4u111
443113
827104
74a4;
AR sy
GRAL
NAAR L

SIéFEaam1t 4

K& Az

LA3S
Lol tp2
| AT Kann

“AT A

i Ar =l
~AT CMNTH
AL S
182 A
T8 CNT .
e LnAaF
AL T

402

4248

LEn0

v EREOR | INFS

JLGAL AC WITH STARTING LGC
/DEPGSIT AC INTO STARTING wnC
/L0480 AC ~ITH ~D, OF LGCC TO LLR
/JJERQOSTIT AC INTO xGO, ONTR

/ZERU CURRENT ADDwESS

/INC ADDRESS

714C MO, COUNMT, SkI¥F IF DUINE

M0GY RGHE, GET NEXT ACDRESS

/Q0NE

OBJECT PROGRAM OUTPUT

The absolute (.ABS) pseudo-ops cause absolute, checksuirned binary code

to be output., If no value is specified in the address field and if the
output device is the paper tape pynch, the assembler will precede the
output with the Absolute Binary Loader (ABL), which will load the punched
output at abject time. The ABL is loaded via hardware readin into location
17720 of any memory bank.

17720 ~.ABS
LOADER

USER PROGRAM
.END START

PAPER TAPE

To Load your program:

Set address switches to 17720
STOP, RESET
READIN

To start your Program:
Set Address Switches to your
PROGRAM STARTING ADDRESS

STOP, RESET
START

12-15

PROGRAMMING ASSIGNMENT
Write at least one of the following programs:

A. MWrite a program that will read two values from the console data
switches.

If equal Halt with the AC
If Unequal Halt with the AC

P
-1

iton

NOTE: Use the two's complement version of -1, I.E. 777777.
B. Write a program which reads a value from the console data switches and
counts the number of bits that are set to 1 in the value.

Have the program halt with the final answer left in the AC so that it
may be checked via the console switches.

Example: DATA SWITCHES = 102376 OCTAL
NUMBER OF BITS SET = 11 OCTAL
C. Write a program which reads a value from the console switches and reverses
the octal number. Have the porgram halt with the reverse value in the AC so

that it may be checked via the console data switches.

Example: DATA SWITCHES = 762415 reversed value = 514267

12-16

XFER DATA

CPU

DEVICE: TTY RECEIVER

ERIAL IN

B| TTY RECEIVER (KP64)

IOPU
INT*IOP2

sD-03

FLAG
107Ts

PI FACILITY
(PROGRAM e
INTERRUPT)]
700301
KSF (IS IT YOU)
POLLING [a]
ROUTINE (
EXIT BUS IOP1
KBS L
(YES ITS ME)
SERVICE
ROUTINE
FOR KBD

EXIT ROUTINE

ION
RES/DBR
JMP*O

1. XSF 700301
(SKIP ON KEY¥BOARD FLAG)
EXECUTION TIME 2 to 3ms

2. KRB ¥00301
(READ KEYBOARD TO AC 10-17)
AND CLRS THE FLAG.EXEC.TIME 3-4 ms

3. KRS 700332
(READ FULL DUPLEX TO AC 10-17)
AMD SELECT READER.
EXEC.TIME 3-4ms.

XFER DATA

DEVICE: TTY TRANSMITTER

CPU
A
C 5>
SERIALLY OUT
y
TLS

IOPU
INT.IOP4
SD 04

BUFFER | L

SHIFT .
NO VES DON'T
FINISHED SHIFT
!P.I. FACILITY
{iRgcggM TELEPRINT
| INTERRUPT —
: [FLACY EEEFL‘ FLAG
700401
3 TSF (IS IT YOU)
BUS IOPlf~]
POLLING '
ROUTINE | TTO SKIPL
EXIT &
(YES ITS ME) 10TS"

1. TSF 700401 - SKIP ON TELEPRINTER FLAG

2. TCF - 700402/ CLEAR TELEPRINTER FLAG
SERVICE { 3. TLS - 700406/ CLEAR TELEPRINTER FLAG
ROUTINE LOAD TELEPRINTER BUFFER
FOR TTY AND PRINT.
TRANSMITTER

EXIT ROUTINE

ION
RES/DBR
JMP*O

TELETYPE TRANSMITTER (KP65)

13-2

PCO5 PUNCH

' l ' l
PROCESSOR | BALS | ‘ PC15 CONTROLLER |
] | |
IOT*-DEVICE XFER I | ' '
rL_. . | ' n ,
10_) | RCVERS DRIVER%‘ '
¢ — |
A n 1/0 BUs 10-17 | i> o l Q _PUNCH HOLE 6 THRU 1 P g
c r | | o/ | v U
<M HOLE l N F
17 | | | @ PUNCH HOLE 8 cor
SUB DEVICE - (00:ALPHA) (10 : BINARY) | . | H E
| PUNCH HOLE 7 R
= DLk r

-AC11
LINE LOW WHEN BINARY SDOO(L).

£-¢1

| v e v o — v g v . e | o . | o wu—— m— — ——— c— ——

6 l
THRU L DEVICE SELECTED (02)!punch |

11 '

12 \ l | '

13

1 |0 | '

15 }—CLR AC 10P4] 0-PUNCH

le ‘ - FLAG

—» | 1o0p2 |
i ’ | 1-PUNCH
' l Ly ACTIVE

10P1 DEVELOPED AS ' Coeray
A RESULT OF, PSF ' CPONCH DONE:
700201, AN 10T ' ‘ 4 puncH
INSTRUCTION IN THE ' ‘ ACTIVEY

POOLING 'ROUTINE. C % pUNCH FLAG

PROGRAM INTFRRUPT REQ PUNCH FLAG
THIS IS THE WAY THE Pishiutiuisioistionichoe i, S -
PROCESSOR FINDS OUT . '
WHO MADE THE PROGRAM |
INTERRUPT REQUEST | sxip meouest o~ [| PUNCH SKIP Yaum
(P1) ’ ' \ \
10pPl

- e | c— wvms | oo cm— | - o— m— — ——
— amme |omn amee v | o . | —— e — — v

10T

OBJECTIVES:

1.

2.

Describe the format of IOT instructions.
Describe in general terms the function of
device select codes, sub-device select codes,
and IOP signals.

Describe the logical operation and timing of a
basic IOT instruction.

14-1

IOT FACILITY

IOTS USE:
1. CHECK FOR SKIP CONDITIONS

2. PROGRAM CONTROLLED DATA TRANSFERS, TELETYPE,
PAPER TAPE READER & PUNCH, ETC.

- 3. SETTING UP CONTROL OF BLOCK TRANSFER DEVICES.
DATA TRANSFERS FOR BIOCK TRANSFER DEVICES ARE
DONE BY THE DATA CHANNEL FACILITY

4. READ STATUS OF DEVICES ON I/O BUS

Ale 1/0_BUS DEVICFS
c "STATUS"

IOT INSTRUCTION

01234567891011 12 13 14 15 16 17

- N — W W
OP CODE DEVICE SELECT SUB C IOT CONTROL TIMING
DEV. L BIT 17=1 GENERATE JJOP1
SEL. R BIT 16=1 GENERATE XOP2
T o - a BIT 15=1 GENERATE OP4
ADDRESSABLE I /0 c BITS 15&17=1 GENERATE
BUS IOP1 FOLLOWED BY IOP4

BITS 15&16=1 GENERATE
IOP2 FOLLOWED BY IOP4
(C) of_MI REG72CODE

70 03011 FOR IOT

THE ACCUMULATOR REGISTER IS USED IN CONJUNCTION WITH THE IOT.

ACCUMULATOR IS USED TO:
a) TRANSFER COMMANDS TO A PARTICULAR DEVICE
b) DATA TRANSFERRED TO A DEVICE. AC—» DEVICE
DATA TRANSFERRED FROM A DEVICE. DEVICE—» AC

14-2

£-v1

MI

O WwoOoN

MOOoOOMWMUXYOM

-

IOT BILOC JIAGRAM

2-CLOCK OPERATION IN PROGRESS

3-I0T OPERATION IN PROGRESS

NO
INHIBIT MEMORY CYCLE HANGS UP - 10T
3 INHIBIT INTERRUPTS {———gl CPU DONE
BIT 14=1: CLR AC TS03*@3
YES
GENERATE I/0 PRIORITY CHECK NO
I0T REQ 1-DCH OPERATION IN PROGRESS

() Tl : SET IOT SYNCpp | e

START IOT TIMING '_‘. NEXT PAGE
GENERATE APPROPRIATE
BUS IOP PULSES

Iorl,XI0P2, JOP4

v RELEASE CPU
‘% NEXT INSTR
GO

T4: SET IOT FF
DEVICE SELECT
BITS ON LINE.
SET UP AC FOR
DATA TRANSFER

v-vt

GENERATE
BUS IOP1
CHECK FOR
SKIP
CONDITIONS

YES

GENERATE
BUS IOP2
READ DATA
INTO AC

NO

IOT DONE BLOCK DIAGRAM

BITS15+16
=1

10T
DONE
BIT 15 MUST
BE A1 10T
DATA USUALLY DONE
SENT FROM
AC —> DEVICE
GENERATE
BUS IOP4
YES
10T
NO DONE

THIS CONDITION IS A NOP

IOT DONE TERMINATES THE
IOT OPERATION

IOT DONE TERMINATES BY

THE FOLLOWING MANNER:

KP51
KP35

KpP34
Kp21

KP76

RESETS IOTpp
RESETS IOT SYNCpp
RESETS IOT REQpp
RESETS START RUN
ENABLES CPU TO START
RUN

SHOWS CPU GOES
TO EXECUTE MAJOR
STATE TO READ

IN THE INSTR. RD
RST IS USED TO
LD Ml. AT THIS
TIME IOT DECODE
DROPS.

ne30

MI

0 g
~INH DECODES]

~KEY_BCTIVE

S-b1

FO06

P2

M

INH REQ L

KP32

P2

KP35

‘I’b33,4cmu'w GENERATE
D2 AN INTERRUPT

KP32

KP32
TO KP26

_lﬂh__€§;>§2_!B§Q_ﬂQ¥%¥£

MEANS CP ACTIVEpp
DOES NOT GET SET
“CAN'T START A
MEMORY CYCLE"

EN CP MEM REQ HOLD H

Ll

s1 SIGNALNOW L

HS CLK

OP, RUN

' I MEM ‘30
USER MODE B(0)L ° ‘ RUNpp "HANGS CPU IN
—o| N2 TS03* @3
M2 KP28 KP19 KP19 LFT-D H 1S NoW LOW
KP31 F*TSO1 Pl ")F &%L______
K21 PHASE 1 (1)1..‘_1‘1_,, s1 13 CLEAR AC
KP24 IF BIT14=1
AL LD AC
C C FOR IO
NO
IOT I 10T INHIBITS-MEMORY CYCLE HANGS UP 10T yEs |RELEASES CPU
DECODE}—¢——— -INTERRUPTS CPU DONE’ GET NEXT INSTRUCTION
| BIT=1-0 AC TS03*@3 AND GO
CPU_BLOCK DIAGRAM FOR IOTS' : i\
NOTE: IOT DONE SETS
START RUNpp ON
GENRATE KP34
S IOT REQ —> KP51
WHICH ENABLES

RUNpp ON KpP21
TO GET SET

9-v1

KP51

KP51 KP51
M2
LT
Dloryy T
TIME 1ol 14 sYne|
L2 N-22
Y
I0OT SYNC (0)H KP51 ‘
oo IOT REQ(1)L o ; kP55
Bk 10T 1
KP51 Mook BI [N22 | E1 I0T(1)L plof |} LlMl
o <) A E} E1 EN I/O LINES
20— l l ‘ D1 29 B H
TIME 4P—illof / D —
KP51 KP51 l:_—
‘—."'—“ j 2g\> 10P1(0)H L2
N1 KP51 ol
10P2(0)H M2 o2
Y w 51 10P4 (0)H N2
KP-51
KP51 MO5 PRIORITY CHECK OPERATION
M106 (1)L-[m — =]- - _D2[=—==)DS 00 H
MI07 (1) Lf====)—— ~E2|_ DS Ol H
MIO8 (1)L-{~ —-=|- — -;3 -— gz gg .
:i?g&;i“"' ~ =" " "los o2 n TO _ADDRESSABLE I/0 BUS
4 e e o] e o =i > -
MI11(1)Lo|m = - P2|__ T|Ips o5 H (WHAT DEVICE DOES THE PROGRAM WANT TO TALK TO
MI12(1)Lfe e e — T2|__ _ _|SD OO H
b _ENABLE I/0 LINES B H l
ENABLE I/O LINES (1) H \ o 0 oo
ENABLE I/O LINES (1) L
" REMEMBER" ADDRESS TO THE I/0 BUS
KP50
RDRQL H1 ¢ K1 KP49 KP49
IOT INSTRUCTION KRBL J1,)% D2 DEV AC
IS IN THE MI REGISTER m F2 TRANS L A O_STROBE_EN
READ STATUS —rof I3 N1 H
E2
EN I/0 LINES(1)H
KP53
1/0 STROBE AC EN USED FOR DATA TRANSFERS ~DEV_TRANS i21 al Bl AC-1/0 Bys
COMING INTO THE ACCUMULATOR EN I/0 LINES (1)n _Z [N20

E2

IOP1 TIME

I0P2 TIME

IOP4 TIME

IF
BIT 17=1} BUS IOP1l

STROBE IOP1l

BUS IOP2

BUS I

STROBE IOP2

IOT DONE (ONLY IF UIO’I‘ DONE (ONLY IF u

IOT DONE D

~MORE) -MORE)
KP-50 KP50
Bus D1 06 2 | M-05 | 10p1 ¥ 1/0 BUS
I0P1l | El =T sxap -
SRS S RQ
KP50

L-p1

PC ENABLES

5 j FLAG

IC

FOR SKIP CONDITIONS

» 70 ALL DEVICES ON BUS

ECKIN

SELECTED
DEVICE
{
= KP23 kP23
Hl ‘hle 1 El KP19
° TS0l El}r23 INC PCL JD—EL
EXECUTE H1d Ji Bl
ENA PC-A 03-04L
KP19
p1o KP19
LD PC
N
_ E
kP19 PC~-A 05 H ;i 17 1K2
15 MOD
L PC-A 01-02 H > MoDE §% 4
, KP19

PC-A 03-04 H . Al

TSO1+TS03 * SET FETCH H Bl N2

CLOCKH Cl]E
9MODE pl | 17

06-17H

P2

LD PC

05 H
S2

8-v1

i

L31

EAE NO SHIFT:

AN

DEV TRANS L

K1l

. !M13 /)

vl

n.24 N.Ul_DEV TRANS H
7

T2
U2
EN I/0O LINES (1) H

C EN H

TRANSFER FROM DEVICE TO ACCUMULATOR
KP50 KPgo BIT 14=1 ; CLR AC BEFORE THE XFER
MO
I0P2
A0S 10 H_.-_. 10p2
1/0 BUS DATO _
(:%——uJ“~—- L | |BUFFER|
—-
SELECTED
DEVICE (PTR
C A D
»| B o B o o B
4] U U
C
r———e| S S S —>
C-A _BUS
KP24
EN '
REQUEST
1)n _ STROBE 10P2
1/0 BUS-CH I/0 BUS-C L
EAE (Q) H D2
-OPR SHIFT H E2
- * *
CLA*TSO1*F H _E2 J NO SHIFT-D H
-SWHA*TSO2*F H __H2 | Ll

v2

K19 Jo -EE;)
M1 Nl

PROGRAM CONTROLLED TRANSFER TO DEVICE

KP53 KP53 KP50 KP50
-DEV TRANS H—J -1/0 BUS MO5
EN I/0 LINES (1)H__] I0P4 H

“' 10P4(1) H

A] M 1/0 BUS
c 3 U
X [porran)
_— BUFFER
SELECTED
1/0 DEVICE

PROGRAM CONTROLLED TRANSFER TO DEVICE
AC~—pDEVICE
LOAD BUFFER WITH 10P4

6-v1

IOT INSTRUCTION:
70 02 04 PUNCH ALPH
70 02 44 PUNCH BINARY

otT-v1

=INT DSOlH

—INT DSO3H
INT DSO4H

-INF BE83H
—-INT SDOOH

-INT LSOOH
+3V

READ STATUS

KP58 KP58 KP58 KP50 KP50 KP50 KP50

10P2(1)H P2

-INT SDOl L

12 0
EO4
11 '.Q.Z.

MEM 15 B H
45

~|R1 RDR STATUS 1/0 BUS "IOT INSTRUCTION"
70 03,14
CLR AC

<+ STATUS TO AC

NOTE: BITS THAT ARE USED TO SELECT A DEVICE "03" SPECIFIES THE CONSOLE TELETYPE KEYBOARD.

THIS DEVICE DOES NOT USE THE IOP4 SIGNAL. 1IT IS ALLOWED TO GO OUT ON THE BUS BUT
NOTHING HAPPENS. THE STATUS IS READ INTO THE ACCUMULATOR IN 10P2 TIME.

PROGRAM INTERRUPT

OBJECTIVES:

a) DESCRIBE IN GENERAL TERMS THE PROCES

SING OF A PROGRAM INTERRUPT
BY THE CENTRAL PROCESSOR.

b) STATE THE PROGRAMMING CONSIDERATIONS RECESSARY WHEN USING THE
PROGRAM INTERRUPT FACILITY.

c) bESCRIBE THE LOGICAL OPERATION OF THE 10N,

IOF, AND DBR, RES
IOT INSTRUCTIONS.

d) EXPLAIN THE LOGICAL OPERATION AND TIMING OF A PROGRAM
INTERRUPT USING THE LOGIC PRINTS. ‘

15-1

PROGRAM INTERRUPT FACILITY (PI)

QUESTION:
WHAT IS THE PURPOSE OF THE PROGRAM INTERRUPT?
ANSWER- DO AWAY WITH THE WAIT LOOP IN A SYSTEM PROGRAM.

WAIT LOOP

KSF DEDICATED I/O
JMP.-1

TAKE NOTICE NOTHING ELSE HAPPENS EXCEPT THE PROGRAM HANGS
IN A TIGHT LOOP WAITING FOR THE DEVICE TO RAISE ITS FLAG.

WAIT LOOP - INEFFICIENT

QUESTION:

HOW DOES THE PROGRAM INTERRUPT IMPROVE OVER THE WAIT LOOP?

ANSWER- BY ALLOWING THE MAIN PROGRAM TO RUN UNTIL THE DEVICE INTERRUPTS

THE MAIN PROGRAM TELLING THE PROCESSOR THE DEVICE NEEDS SERVICING.

MAIN PROGRAM

105

1066 F1 | 1 1 | |

DEV DEV {- DEV

DEV
#4

DEV
#5

QUESTION:

WHO MADE THE INTERRUPT ?

ANSWER -~ DON'T KNOW

QUESTION:

HOW CAN WE FIND OUT WHO MADE THE INTERRUPT?

ANSWER - BY SENDING OUT IOTS THAT CHECK THE FLAGS OF EACH DEVICE.
RESPONDING TO THE DEVICE THAT HAS ITS FLAG RAISED OR BY

READING STATUS (IORS)

15-2

PROGRAM INTERRUPT FACILITY (P1)

PC

105 €=
106

DEV #1 ' DEV #2 DEV #3]. DEV #4 DEV #5

WHEN USING THE IOT SKIP CHECK PROCESS, A SKIP CHAIN IS USED. IN THE
SKIP CHAIN PLACE THE DEVICES WHICH HAVE HIGHEST PRIORITY lst AND LOWEST -
PRIORITY LAST.

EXAMPLE OF SKIP CHAIN

PFSF - 703201/5KIP ON PWR LOW FLAG

JMP. +2

JMP TO PWR FAIL ROUTINE

KPSF - 706301/SKIP ON DISK FLAG (RP-15)

JMP. +2 : :

JMP TO DISK PACK SERVICE ROUTINE (ERROR + JOB DONE)
DTDF - 707601/SKIP ON DECTAPE FLAG

JMP. +2

JMP TO DECTAPE SERVICE ROUTINE (ERROR + JOB DONE)"
MTSF - 700301/SKIP ON MAGTAPE FLAG

JMP. +2

\\‘Q; JMP TO SERVICE ROUTINE FOR MAG TAPE (ERROR + JOB DONE)
S P KSF - 700301/SKIP ON KEYBOARD FLAG

IMP. +2
JMP TO KEYBOARD TTY SERVICE ROUTINE
JMP TO ERROR ROUTINE
KEYBOARD SERVICE ROUTINE EXIT ROUTINE

1. SAVE REGISTERS THE MAIN PROGRAM 1. ION TURN PROGRAM INTERRUPT
IS USING. FACILITY BACK ON.

2. KRB/READ THE BUFFER INTO THE 2. RES/DBR - SET UP RESTORING OF

- ACCUMULATOR L,B,UM
3. DAC INTO INPUT BUFFER 3. JMP*0 - GET BACK TO LOCATION
106

4. JMP TO EXIT ROUTINE

15-3

PROGRAM INTERRUPT FACILITY (P1)

NOW IT CAN BE SEEN WHAT HAS TO HAPPEN WHEN AN INTERRUPT IS RECEIVED.
1 - LET CPU FINISH INSTRUCTION
2 - HANDLE INTERRUPT (TURN OFF INTERRUPT FACILITY)

a) WRT L,BM,UM, PC3-17 INTO ADDRESS ZERO

b) GET NEXT INSTRUCTION - GET TO SKIP CHAIN

¢) FIND OUT WHO RAISED THE FLAG

d) SERVICE DEVICE

e) EXIT THIS ROUTINE BY TURNING ON THE INTERRUPT
FACILITY & IF NEEDED RESTORE L,BM,UM

f) JMP * 0 GET THE NEXT ADDRESS AND PROCEED IN THE
MAIN PROGRAM.

15-4

g-GT1

P.I.E] / "OPR
LIGHT ~ : YES LT @
- (S

- P.I.E _ SET FETCH PRIVILEDGE 4 INTRPT ACK: SET FETCH ENABLE
. s & I PT * INSTR ? ‘ *
> - — . | HANG CPU TSO03* |——3{ INTRPT
—-API RQ TS02*@3 10T, JMS, G TSO3*CLK H
. : ICAL , XCT, NORM g3 *-CPACT
Y/ "
P ¥O |
: __..Jt__ 1 .
PROGRAM PI 1/0 PRIORITY T4: P PI T4*PI SYNC: CPU ENTERS
INTERRUPT | Rreo CHECK — 11:4p1 sywe || INTERRUPT STROBE: FETCH*TSO1
LIGHT OK PI SYNC:}P.I.E JINTRPT ACK .
ApL3 4INTRPT STATE €-: INHIBIT
LD MO, OA . DECODES
INTERRUPT ON P.I.E Q OFF WITH ZEROS !
1/0 BUS LIGHT - $PIpp
[-r.1.E] T1*-PI: PIJSYNC

- INTRPT STATE L,BM, CP ACT* MRLS: 1) EXECUTE
TSO1:CLR IR }——3Y UM, PC- [———)| START WRT | 5| IDMB |——— OA = 1 GET NEXT
FORCE GRP2: 3-17- *TS02*@3 PROCESSOR INSTRUCTION
SMW MO “*—TRAP: RCVS MRLS ACK: (SAVE REGISTERS
CP WRT ADD Jcp act BY IN USE & GET TO
ACK~y END OF CP POLLING ROUTINE

C:’,r’/’ ’ CYCLE
LD MO CONTENTS

INTO ADDRESS ZERO

9-ST

EXECUTE FETCH EXE

TSPl TS@2 TS@3 TS@1 TS@2 TS@3 TS@1
AN REE g123p123lg1 23123

ME 4 | TIME 1[TIME2 |TIME3 |TIME4 TIME}IFIME2 r1ME3| TIME 4 JoIMEL [TIME2 | TIME3

KP51 PIE (1) 1 ‘

KP5@ PROGRAM INTERRUPT _J

KP35 INTERRUPT J 1

KP35 INT. ACK (1) ,)

KP35 EN INTERRUPT . r \

KP35 PI REQ | 1

KP51 PI (1) f ‘ u|

KP51 PI SYNC (1) I o

KP35 INTERRUPT STB : 1

KP35 INTERPT STATE (1) fnhibit ID IR 1

KP48 INH DECODES frohibit-C-A BUS 13}

KP35 INTRPT CLR IR ™

K®30 GRP 4 |

KP19 L,BM,UM-A — 1

KP24 LDMO, LDMA —

PROGRAM INTERRUPT TIMING

ION
KP50 KP50 KP51
MO5 r2] v2
’—D_'L b P1 SYNC I:> = |N23 KP35
ROGRAM 1)L
E [PROG INT LI iy PIRL @INTERRUPT‘ ~DLFY P-1.3qV1
v RQ L " cl 52 KP36 P2 4
I LIGHT
c M1 N1 THE TAPT RO H . ___ﬁ
E LIGHT.
s
STATEMENT; DEVICE RAISES PROGRAM INTERRUPT SENTS TO PROCESSOR AND

DIS ABLE INTRPT
L2)123
XCT '—Ta—zﬁ N2

~IOT INH M _REQ OPR HALT L
SET FETCH J2. D2 KP-51
TS02*@3 K2 E2
M M2 V2 | L22
INTERRUPT 12] 32 v2 12 F2 sl
a FORCE FETCH(O)H |
E FETCH(O) E 1
. H2 Ccl El ¢ 1
; INTRPT] 1ML
ACK THIS :
; RESETS RUNpp
$ TRAP H H-32 -F-i ON KP21.
~J
INTERRUPT STBL H2: i
\ K2 S21 roe
J F25) CPU HANGS UP
TS@3*33
STATEMENT: CPU LOOKS FOR INTERRUPTS. (INSTRUCTION HAS BEEN PROCESSED). CHECK TO
SEE IF THE INSTRUCTION WAS A PRIVILEGED INSTRUCTION, IF SO, DON'T SET
INTRPT ACK, IF NOTA PRIVILEGED INSTRUCTION SET INTRPT ACK.
KP 51
SET FETCH * TSO3 * CLK H T2
INTRPT ACK (1) H U2 \ EN INTRPT L EN INTRPH o
cp acTIvE(0)n ~VZ] F23 PoT Ay L9
SIATEMENT: CPU IS DONE WITH THE MEMORY CYCLE GENERATE A PI REQ.

IF AN API REQ IS NOT PRESENT AND THE INTERRUPT FACILITY IS
TURNED ON THE INTERRUPT CAN BE PROCESSED.

KP36
Tﬂ@l’ﬁg— LIGHT THE LIGHT
INTERRUPT

p
B‘ v

EN [INTERROH R252

KPSl.___)

KP35

Pl L s1
TIME 1 N22
1 ni| Pl V1
PRIORITY SYNC
oK <BL.REQL gl o J2
E2
Time 4 N22
D2
KP 35 KP24

8-9T

INTRPT STATEr
Pl .1)

(1)H
TS0l H

INT ACKL R2

INT INH SET MO L

—®Kp34 START RUN
INTRPT L PP 24 LD MO, oa
STROBE 11 LOAD ZERO'S INTO OA, MO.

‘—@?ﬁ— f-INTRP‘# '

TIME 4

"INHIBITS PC+1l TO PC

PC LOAD L

w 51(2)

___] sTaTH s
TSO3H 51 _E.l___g' 3, INH DECODES
E2 { H2
MAIN PROG
P 105 INTRPT
106 INST. AT 105 COMPLETED

PC STAYS AT 106

INTRPT ACK PREVENTS THE PC VROM BEING INCREMENTED
STATEMENT: PRIORITY CHECK MADE & SETTING PISYNC TURNS OFF PIE

FACILITY.

THE NEXT T4:

—-BL_I:./'SI

KP31
INTRPT STATE (1) H

(1)H

J2

INTRPT STROBE

INTRPT STROBE: LD MO, OA WITH ZERO
H * START RUN ALLOW CPU TO GO TO FETCH MAJOR STATE
2 d INTRPT ACK
I~
P 15
A NTRPT CLR IR
Ll L2
KP69
HO3
9 : 1
>> K2 ¢ PRE (KM10)

.ol CLR IR 00-05
KP30-_ INH DECODES
IR00(0)H —4f —
IRO1(0)H —E&JElljo—FE2 w 2___GRP2H U2
~KEY+RI INHIB1lH il H2 (F+D)H V2]

-

DO _THE MEMORY CYCLE ROUTINE

KP19
GRP 4*TS02* (F+D)L T2 L, BM, UM—»A H KPO1
' KPO2
KPO3
=]
g
® pC-A 01-02
s1
KP 30
IROO(0)H D2
IR01 (0)
IR03 (0) ﬂ% FOS
-KEY+R1
INHIBITH

KP30

GRP4 Kl
L e)
Rl # S1(F+D) E1l)o}ﬂ.,
TSO2H__

M1

ADDRESS - ZERO IS IN MO, OA

El_START WRT (MEMORY COMMAND)

BM ——3 A BUS

XECUTE MAJOR STATE
OA + 1—» MO

DO THE NEXT INSTRUCTION

TOPIC BA-15 PHERIPHERAL EXPANDER

OBJECTIVES: Upon completion of this unit the student will be able

to:

l. state the function of the BA

2. Draw a block diagram of the BA

3. Construct the relationship between the BA & PC

4. Differentiate between the systems included in the BA

A. PERIPHERAL EXPANDER

1. Purpose
BA is a- unlversal controller used to minimize bus loading

by serving as a control for options that are infrequently
used.

2. Options
a) PcC-15 hlgh speed paper tape/reader, punch
(1) Reads 300 characters/sec
(2) Punches 50 characters/sec

b) LT15A - Single teletype control
(1) Background/foreground

c) VP15 Display Console
(1) Interfaces various display devices
by providing D/A convertors and control
logic for X-Y positioning as well as
intensity.

d) Discuss the block diagram of the BA

16-1

¢-91

I/0
BUS

WRITE OPERATIONS

~BA-15 BLOCK DIAGRAM

READ OPERATIONS

BITS

STATUS
BITS

Uses Only PUNCH -
BITS 8-17 CONTROL
B READER
F
A READER BUFFER
CONTROL
Conérol
R vr-15 | 7T Y
C CONTROL
\'%
S
VP-15
CONTROL
DATA PATH)
PUNCH uP TTY
DISPLAY XMTR
TTY

RCVR

LT15
BITS

>

[N,

hmgH DO

1/0
BUS

PAPER TAPE

I

DATA PATH
A ”A'l "Cll
D
B B 1/0 BUS | poe
AC ¢ g ﬂ v M v <+ PC
S s L« 05
R
CONTROL LINES
* EN 10P2:BAC-C BUS ’ I Contents of AC ored with data on

EN 10P2*IOT REQ:1I/0 BUS—»C BUS ‘ 1/0 Bus. Result loaded into AC

PC15 - 2 modes of readlng RSA - 700104 - Select Aplhanumeric Mode
RSA - 700144 - Select Binary Mode

£-9T

TAPE FORMAT
BINARY MODE Assembles One 18 Bit Word ALPHA Mode Assembles One 8 Bit Word
BINARY MODE ALPHA MODE
CHANNEL 8 7 6 5 4 3 2 1) CHANNEL 8 7 6 5 4 3 2 1
Y o & 0°0 o ° e ° @
° . > | |
° ° o ' , ‘ k—-—-mm FIELD“——"[

k

t“O%*—BZOO{
. jE

READER SELECT ALPHA - 700104

START

PC-15/03

I0T 0104

03

O —» FLAG
RDR NEXT

PC 05
10PN:
O-» FLAG
O— BUFFER
1-» RUN
TAPE MOVING

PC 05
FEED
HOLE NO

PC 05 YES

1-- STROBE

0—> RUN

1—» FLAG

DATA IN BUFFER

g

pc 154 03

pc 15} “F503

1—» FLAG
FLAG:

1> READ DATA
1->» RDR INTER

56

? @

03
READ NO
DATA
YES
pc Q5 PC_ ¥ 02
0—> FLAG ELAY 125NS
GATE DATA
TO _PC-15 BC 03
->STROBE ALPHA
A BIN CLR
@__, SERVICE
v ROUTINE
PC15-03 —
READER
INTERRUPT RRB
01202 'NO
pcC
Y.
pc $5° PCe 151 YES
t ;*EAD APT 0-> API REQFF (02)
REQ 0-> FLAG (03)
0—> RDRINT (03)
A 0s > RD DATA (03)
RDR INTRPT
*
RDR API 2 @
REQ: BA

PROG INT REQ

—

?

TO PROG INT
FACILITY

@

TO SKIP
CHAIN

TO SERVICE
ROUTINE

BACK TO
MAIN PROG

l16~4

BA ‘L 03

1 —» RD REQ

KP 250

DEV TRANS
(AC INHIBITED FROM
I/0 BUS

GATE DATA-
I/0 BUS

RB1O & 11 FF

RB12-17 GATES

SKIP

Joi-

|
l
|

Ecolo

m&;@
wo | ma |

STROBE 1 '

4 10PI

ioT

BITS
6-13

BITS .
15-17

| RD
| __sxip REQ < (o___l'.m.m’__oc R‘](:;JIE.R
\
' p 05 . '
P
: | PC RDR SELECTED
‘| { DEV SELECT | pa DS BITS - _—).__l
:r"sus DEV SELECT LBA_SD BITS L/ ‘
) l !

f7sonsl —_

—— et g— —c——

4 BA 10PI ;~

I
l

BUS IOPl

SKIP CHECK WHO MADE THE INTERRUPT
ANSWER THE PAPER TAPE READER

GO TO THE SERVICE ROUTINE FOR PAPER
TAPE READER RRB (700112) READ READER BUFFER

l6-5

7 l s | : } . l , | AT 2o | I
READ DATA ¥
200 St-fl{vml ;\1
10 .ﬁ -/ rey "I] N
RDR Mo TaPE w 13°/skep _ HOLES :C)"' w: el e
! v gle o R a8
2 %y t Go0ma &44.;1 berque, D
a2 a2 Fenn olhra o A L3N deiving hieqee
re % ge.p VEXT . & -
= ‘ HoLE? H{ Do elzrep L
8 am
PIRL Lotr n Ae2] MR e ad 1o gor me). {>°—!_——
] RuMi . —
SNIFP H HOLE (] A | . o
onr 'l> ' woa [T etRe)e o
- swor
e st THH 4> |> O s A8
-AOTOR ON CHAR |
re
Zpsls L
c / o — s —— c
anABLL L ‘_N\, o
/ TAR LOGIG
1]
-t D . / ROR NO TAPE H osu [T Opetetaie ¥ 1
'
|
| 00T L
-
|
' ' : nowe 3 H4—foons HHHDosefofive
ar | s ZALT S comned pull daom ontpul of Schmiddd Trgyer
! sracee H
'
EMA ' F-ZFY
BiE L "—&—DO-‘ SnIFT L, fT2 16Dy 22 Feeo wae ot 2 80
£ed HH e
- #R8
¢l = ‘ ree | L™
m -
0'\ " | rowe
Sros oainy 2L ——-(1 >—'————‘”' B PWR()H
o [— ot ! ey [TEL P e rol7
e MOTORON CHal L. @)— p
Row L Taw
. ome id) e
$ fz.; . e STOP CONMLETE |W . cuioen 1n832] L ax2 PR u*":
) s
15 H -~ Pux CLR L 24 | 4
-t ~FrLp SwW L
SO0 LEAY L) . “‘9(“;‘(\7‘.:””‘”(""1 p l poveps
Nﬂ{ & ! "4" Vr's) TS LS
3 EQUIPMENT
UNLESS OTHEAWRSE SPLCHUED | — CORPORATION
b e v R s T BN |
T P CONT L AN
rtenes P L ONE D TRERIATS S
TSR (FELLER)
o f AL s
o DBS|PCEs ¢ -4 r
/'—A z o3 ot
N T 7 I 6 I 5 T 4 I 3 I 2] 1

S

L-9T

PAPER T READER
MOVE BIN PC15 PCO5
MOVE TAPE
CP y °
GIVE IT TO NE B ®
R) ’ U P4
A‘ E ¢ HERE IT IS F 4
G F @
1 E .
ﬁ——d .
DATA
CNT=1 ,;‘G.OT é PHOTO CELLS
' MOVE TAPE > .
GIVE IT TO ME ™
, : : 2) :
1/0 BUS HERE IT IS ™
1 - G 7¢ SAME °
poame @
5 2 °
K
CNT=2 GOT DATA I)
MOVE TAPE
. o e
G GIVE IT TO ME > pes
A ®
HERE IT IS °
¢ T ¢ SAME | — o
E ®
_ e
°
INTERRUPT GOT DATA T
i‘-——\- CNT=3 i‘ ;
— CONTROLLER DEVICE
MOVE TAPE —¥ READ NEXT (10P4)
GOT DATA - RDR FLAG
GIVE IT TO ME —%® READ DATA (10P2)
HERE IT IS 4— paTa

CONTROLLER SEQUENCE

READ DATA : STARTS CONTROLLER SEQUENCE
DELAYS 125NS
1. READ STROBE:LD REG
2. DELAY 75NS;ADV.STROBE#1-CNTS THE COUNTER
CHECKS FOR CNT OF 3*FLAG:RDR INTRPT

}——3. DELAY 50NS;ADV.STROBE 2: NOT CNT 3 MOVE TAPE

DLE 20

PAPER TAPE FORMATS

Program tapes are supplied in one of two formats:

1. HRI (HRM) Hardware Read-In Mode (.FULL assembly parameter)

2. BINARY or ABS

(.ABS assembly parameter)

HRI Tapes consist of 18 bit data and instructions punched in binary mode
(PSB), which are loaded in sequential memory locations via the HARDWARE

READ-IN feature.

when read (i.e., HLT or JMP).
punched in the last line of that word.

sOAD ADDRESS
T SUPPLIED BY

ADDRESS SWITCH

REGISTER

0000000 0000000000009 0000000000
e o

®
L
o
®* o
®
o o ® | |

16-8

The last word is an instruction which is to be executed
The last word is indicated by hole #7 being

.FULL

.LOC 140

BEG _HLT

S

—_— DAC

4

TEMP

HLT
LAS

SAD TEMP

//’CLA!HLT

/ cMAICLAHLT
TEMP /¢

.END BEG

r

ABS or BINARY paper tapes consist of 3 basic parts:
1. ABS loader program in HRI
2. Data blocks
-3. Start block
The ABS loader is a program in HRI format which when read via the READ-IN
key will load the remainder of the tape under program control (BIN LOADER).
The BINARY LOADER expects the rest of the tape to be in a block format.
DATA BLOCK - consists of 3 control words:
1. LOAD ADDRESS
2f WORD COUNT (not exceeding 25)

3. CHECKSUM

START BLOCK - A two word block at the end of tape. It is distinguished
from a data block because bit & of the first word is a one.

1. STARTING ADDRESS (-~1=hlt)

2. DUMMY WORD (not used)

16-9

>
b3 2 .
Zr € o~
0 o 0 z o [o]
s 2§ 5 % %
W <
o “w v o4 3 3 gV
o o X [¥
o < « 1Y) « < 0 o
= o $ z "m Mm nu‘ =
L ~ m" 'y o a W na
S G | SR A Vit b —
e° ® ™Y T. 90 (@ e o .-.- : -
© oseoeee ® ® X K]
© e @ @ [, ® 6960)
I EEEEEEXEIIES e ¢ ol|l* o ooo.oovv;..,, ® ® ¢ & o % 09 3 0 8 o0 6 9 s 8
® ° 'Co . l® CY ® "X X >
X X | (X B X) TO ¢ 00O ©
oo o0 ® o O@ L X X | o
o t ~
o00000 o0 To mesisedece e00 Oo000e0 ®
i v
v >
x

«ABS PAPER TRPE FORMAT

16-10
DLE a0

SUBJECT: HARDWARE READ~IN

SET ADDRESS IN SWITCHES

KP66 -
KP50
KP34
KP66
KP50
PCO3

PCO2
PCO3

TS0l

KP34

KP49
KP48

KP24

FETCH XP49
TS0l KP34

Kp21l

DEPRESS READ IN, SET PCO READ IN
PCO READ IN: DSO5*SDOO : PCO- SEL * BINARY
KEY ACTIVE * START RUN : ENABLE CPU TIMING TO RUN

KEY ACTIVE * PCO READ IN : RD IN START
RE IN START : I/O PWR CLR WHICH RESETS FLAG & RUN IN
PCO5

PCO SEL: ENABLE SET OF RI FF * PWR CLR :T RIFF
RI * 10P2 : RI START

RI START PULSE : RI START + (SET ALPH)

RI START + (SET ALPH): ‘
SELECT BINARY : | ALPHA FF
RESET CNTR TO A COUNT OF ZERO
CAUSE READ NEXT TO GO HIGH

THIS CHANGE GETS SENT TO THE DEVICE (READ NEXT WILL

BE SEEN AS A 10P4 WHICH FIRES A SINGLE SHOT AND PRO-
VIDED YOUR NOT OUT OF TAPE, THE FLAGpp WILL BE RESET
AND THE RUNpp WILL BE SET. THIS IMPLIES TAPE IS
MOVING.

IN THE MEANTIME THE CPU HAS MOVED INTO TSOl OF THE
FETCH MAJOR STATE.

READ IN * (NEXT * TSOl) : ADD SW-A
ADDRESS IS NOW ON SUM BUS

KEY ACTIVE + READ IN (1) H: KEY + READ IN INHIBIT/
INHIBITS GRP 2,4
READ IN : INHIBIT DECODES

TIME STATE 1 * CLK H * KEY ACTIVE : LD MO & OA

WITH THE ADDRESS ON SUM BUS BUT AT THIS TIME A START
WRITE CYCLE IS NOT INITIATED BECAUSE OF THE INHIBIT
GROUP 2,4.

READ IN * READ IN EXEC : RI PAUSE

READ IN PAUSE ENABLES "D" INPUT OF STOP TS RUN

TS02 SETS “STOP TS RUN"

STOP TS RUN & OTHER LEVELS WILL CAUSE THE RUN pp TO
BE RESET, THE CPU HANGS UP IN TS03, 03.

WAITS FOR READER TO ASSEMBLE 3 FRAMES AND GENERATE
AN INTERRUPT

DURING THIS TIME TAPE HAS BEEN MOVING AND FOR EACH
FEED HOLE, PROVIDING IN THE DEVICE CONTROLLER THE
ENABLEpp IS SET, A STROBE WILL OCCUR WHICH GATES
WHAT EVER IS BEING READ INTO A BUFFER REGISTER AND
SETS THE FLAG pp (IN THE DEVICE)

l6-11

PC15-03

PC15-02

PC15-02
PC15-03

PC15-02

PC15-03

THIS GOES OVER TO THE PC15-02 AS READER FLAG
AND IS CHANGED TO SET FLAG IN THE PC15-02

SET FLAG :f FLAG FF
FLAG : READ DATA (DATA IS FOR THE TAKING)
READ DATA : 10P2 ON CABLE BACK TO PCO5

BACK IN THE PCO5 THE 10P2 | FLAG AND ENABLE THE DATA
FROM THE BUFFERS ONTO T CABLE TO PCO2 RBO THROUGH
RB7

RBO : HOLE 8 : THIS IS DATA
RBI : HOLE 7 : WITH MORE TO COME

RBO : HOLE 8 : THIS IS THE LAST WORD

RBI : HOLE 7 : EXECUTE THE INSTRUCTION

READ SEQUENCE

PC15-02 125ns AFTER READ DATA : READ STROBE
PCi5-03 READ STROBE * CNT OF O * ALPHA : STROBE 1

STROBE 1 : LOAD THE SIX DATA BITS FROM PCO5
BUFFER INTO RBOO THROUGH RBOS5

200ns AFTER READ DATA : ADVANCE STROBE 1
ADVANCE STROBE 1 * RBO (HOLE 8) : CLK CNTR

CNT OF 1 : GOT THE FIRST 6 BITS

250ns AFTER READ DATA : ADVANCE STROBE 2 PULSE

ADVANCE STROBE 2 : DO WE HAVE A CNT OF "3" YET.

NO
AT THIS TIME READER NEXT GOES HIGH
AT THE PCO5 THIS LEVEL FIRES THE
SINGLE SHOT
ADVANCE STROBE 2 : ‘ FLAG FF IN PCO3

IN THE PCO5 READER NEXT IS RECEIVED AS 10P4 WHICH
RESETS FLAG * SETS RUN TAPE IS NOW MOVING TOWARDS
THE SECOND CHARACTER.

RESETTING OF THE FLAGpp ON PC1l5-03 REMOVES READ DATA
FROM ITS ACTIVE STATE (10P2 AT PCO5 REMOVES BUFFER
OUTPUT FROM LINES TO PC15-02.)

NEXT FEED HOLE * ENABLE : STROBE
STROBE :DATA IN PC 05 BUFFER
: ‘ RUN pp IN PCO5
: f FLAG

AS CAN BE SEEN THE SECOND 6 BIT FRAME IS NOW IN THE
BUFFER AND WE FOLLOW THE SAME SEQUENCE AS IN THE
PRECEEDING PAGE; EXCEPT WHEN READ DATA PUTS THE DATA
ON THE LINE.

16-12

STROBE * CNT OF 1 * ALPH : STROBE 2 :
STROBE ALPH RBQ6 THROUGH RB11l WILL BE
LOADED

ADVANCE STROBE 1 * 8 HOLE : CNT =2

ADVANCE STROBE 2 : CNT OF 3 ANSWER NO, FIRE
CKTRY TO SET RUN & RESET
FLAG IN THE PCO5. ALSO
-CLEAR BUFFER IN PC-05

PCO3 RD START (L) RESETS FLAG

TAPE MOVING TOWARD LAST FRAME OF ONE COMPUTER
WORK (18 BITS)

AS SOON AS FLAG COMES UP THE PCO5 THIS IMPLIES
DATA IS NOW IN THE PCO5 BUFFER AND THE RUN
FF IS RESET

PCO2 FLAG FROM PCO5 GENERATES SET FLAG WHICH
IN TURN SETS THE FLAG FF ON PCO3

PCO3 FLAG : READ NEXT (10P2 to PCO5) :i FLAG
IN PCO5 &

ENABLE DATA ON LINES RBO THROUGH
RB7 to PCO2

PCO2 125 ns AFTER READ DATA : STROBE 1
DATA DOESN'T GET LOADED INTO ANY REGISTER

12

13 :

14 LAST 6 BITS THROUGH GATES
15

16

17

EEEERE

20 s ee es we e

EEBEBE 6

200 ns AFTER READ DATA : ADVANCE STROBE 1

ADVANCE STROBE 1 * HOLE 8 : CNT 3

PC15-03 CNT 3 * FLAG : RD INTERRUPT

PC15-02 M104

RD INTERRUPT * I/O SYNC : RDR APl 2:REQ

BA-05 RDR INTERRUPT * RDR APl 2 REQ : PROGRAM
INTERRUPT

NOTE: 1 MS AFTER RDR APl 2 REQ AN 10P2 WILL
BE GENERATED

250 ns AFTER READ DATA : ADVANCED STROBE 2

PC15-03 ADVANCE STROBE 2 * CNT 3 * ALPH :

16-13

PC15-03
KP51
KP55
KP50
PC15-02
BA15-04

BA15-03

KP49

KP19

KP19

KP66
KP51

PC15-03

KP34

RDR START H : WILL NOT RESET FLAG FF (PC15-03)
RDR NEXT L : THE RUN rF WON'T GET SET
ADVANCE STROBE 2 : NO EFFECT

CNT OF 3 OVER RIDES

READ IN READY * TIME 1 : T 10p2

ENABLE I/O LINES * 10P2 : DCH R1 IOP2
DCH + R1 10P2 : BUS IOP2 (ONTO I/O BUS)

10pP2 * PC SEL : IOT 0102

IOT 0102 : RBOO-RBL7 : BA BITOO-BA BIT 17

DATA ON I/O BUS

I/0 BUS 00 THRU 17

READ IN * 10P2: PCO I/O CONT

PCO I/O CONT : Rl ADV

L : I/0 STROBE AC EN

L : I/O BUS - C

I/O BUS - C BUS : C-A DATA NOW ON SUM BUS

NO SHIFT - D BUS IS ACTIVE

THE ACCUMULATOR IS ENABLED AND AT STROBE 10P2 TIME
THE DATA WILL BE LOADED INTO THE ACCUMULATOR KP24
I/0 STB AC EN * STROBE 10P2 : LD AC (KP51 10P2 *
TIME 4 : STROBE 10P2

750 ns AFTER 10P2 INITIATION DATA IS TUCKED SAFELY

IN THE ACCUMULATOR RDR INTERRUPT ON PC15-03
GOT RESET AS A RESULT OF IOT 0l 02

THIS MEANS ON BAlS5-03 PROG INTER

PROG INTRPT : READ IN READY

250 ns AFTER THE DATA HAS BEEN TUCKED AWAY IN
THE ACCUMULATOR THE NEXT TIME 1 THE 10P2 FF
WILL BE RESET.

BAlOP2 * READ IN (1) L : GO THROUGH THE READER
CYCLE FOR ANOTHER CHARACTER

REMEMBER THE PROCESSOR HAS BEEN HUNG UP IN TSO03 @3

READ IN ADVANCE * STROBE 10P2 * RUN : START RUN

16-14

KP21 | next cix : $ row
NEXT CLK : TSOl §O
KP66 | STORE * TIME STATE 3 * 10P2 + | FIRST CHARpp
FIRST CHAR * PCO READ IN : RI STORE

KP30 RI STORE : GRP 2

KP32 ' START READ * GRP 2 F : (START WRT)
NOTE: ADDRESS FROM SWITCHES HAD BEEN LOADED INTO
MO & OA

TS02 v FETCH * TS02 * RI STORE : DAC * TS02 (F + D) L

ACCUMULATOR CONTENTS MUST BE LOADED INTO THE MO REG

BAC - C, C-A : ON SUM BUS

KP 24 CP WR ADDR ACK : LD MO
| DO THE WRT
TS03
KP49 RI STORE * TS03 * 10P2 * READ IN EXE :

RI INC OA : RI + TEST LR CRY

KP48 RI + TEST LR CRY : CARRY INSERT

KP19 RI INCR OA : OA - A WITH CARRY INSERT UP DATES THE
: ADDRESS

Kp24 RI INCR OA * CLOCK H * RL INCR OA : LDMO & OA

MO ‘IS NOW SET UP FOR THE NEXT ADDRESS. THE ABOVE
INFO (PAGE 1 THRU 5) OCCURS FOR EACH CHARACTER OF
THE HARDWARE

876
*0
o0
o0

1 READ IN

16-15

THE HANDLING OF THE LST CHARACTER, WHICH WILL BE A HLT OR

A JMP, WHICH GETS LOADED INTO THE ACCUMULATOR AS NORMAL IN

TS02:

TSO03

PC15-03
BA15-03
KP50

KP66

TSO1
TS02

TS03

FORCE A DAC TO STROE AC IN SPECIFIED LOC A WRITE OPERATION
IS PERFORMED

M1 ‘ ACCUMULATOR

MO MO-MDL * READ IN

EXECUTE *
v TSO3 * PHASE 1 : CP + R1
MB RD RST

Rl RD RST : CP MRLS
~: END CP CYCLE

KP66: LD M1

GO TO FETCH IN INSTRUCTION IS IN THE MI DO IT !!

TS01, 01 LOAD IR

SIGNAL USED TO TERMINATE ARE

READ IN FINISH

READ IN FINISH : Rl SKP

SKP REQUEST

PCO READ IN & SKP : ENABLE "READ IN EXECUTE pp"

10P2 & TIME 3 : "READ IN EXECUTE pp"

NOTE : LAST INSTRUCTION READ INTO THE ACC AS NORMAL"

DO THE NORM (WRT)

FORCE THE DAC

KP32 MO - MDL * READ IN EXE * TSO3 * Ol : CP + RL RD RST

Rl RD RST : CP MRLS, END OF CP CYCLE, LD MI, RL RESET

Rl RESET : READ IN, PCO READ IN 1 - FETCH

XCT THE INSTRUCTION IN THE M1 REGISTER.

16-16

OBJECTIVES:

A)

B)

C)

D)

E)

MEMORY PROTECT

LIST THE USE AND FUNCTIONS OF THE MEMORY PﬁOTECT
OPTIONS

SHOWN THE BLOCK DIAGRAM, EXPLAIN THE COMMUNICATION
SIGNAL SEQUENCE AND DATA FLOW OF THE MEMORY
PROTECT OPTION.

EXPLAIN THE FORMAT AND USE OF THE MEMORY PROTECT IOT

INSTRUCTIONS

LIST THE PROGRAMMING CONSIDERATIONS NECESSARY WHEN
USING THE MEMORY PROTECT OPTION.

EXPLAIN THE KM-MEMORY PROTECT FLOW DIAGRAM.
STATING THE LOGICAL
OPERATION OF A MEMORY PROTECT TRAP
CAUSED BY
1) BOUNDARY VIOLATION
2) ILLEGAL INSTRUCTION
3) NON-EXISTANT MEMORY

17-1

KM - MEMORY PROTECT
PROVIDES PDP-15 THE CAPABILITY OF RUNNING

IN A BACKGROUND FOREGROUND ENVIRONMENT.

(C) of BOUNDRY

n

BACK-
GROUND

REG. DETERMINES

WHAT ADDRESS
IS THE BOUNDRY
REFERENCE AT.

THERE IS A SPECIFIC SET OF INSTRUCTIONS TERMED ILLEGAL, BECAUSE TﬁEY

L

FORE-~
GROUND

94— MEMORY

INTERFERE WITH BACKGROUND FOREGROUND OPERATIONS.

INSTRUCTIONS ARE: OAS, IOT, HLT, AND XCT OF XCT.

ILLEGAL INSTRUCTIONS CAUSE TRAPS (INTERRUPTS). SO
1) REFERENCING BELOW THE BOUNDARY REGISTER-CHECK
ADDRESSES ON ALL WRITE INSTRUCTIONS,

ISZ INSTRUCTIONS.

2) REFERENCES TO NON-EXISTENT MEMORY

MEMORY PROTECT BLOCK DIAGRAM

MEMORY
MDL * MCL
BB-15 KM KT
API
|M-o|
CPU

[r1]

DO

17-2

JMP, AND
BB 15
BR
LOWER
LIMIT LD BR
r-
CPU
70 170 4
AC MPLD
SET UP

MI
REG

TRAP CONDITION

TRAP INVALID ADDRESS

KM-10 IN TS@3* PHASE 3, WITH SET FETCH ACTIVE, THE CENTRAL
PROCESSOR IS WAITING TO RECEIVE THE NEXT INSTRUCTION.
RD RST TELLS THE CPU THE INSTRUCTION IS ON THE MDL
TAKE IT.

IF THE MEMORY PROTECT OPTION IS IN THE SYSTEM THE
INSTRUCTION WILL ALSO BE LOADED INTO THE INSTRUCTION
REGISTER IN THE KM LOGIC. THIS INSTRUCTION IS DECODED
AND CHECKED FOR VALIDITY, (NO IOTS, HLT, OAS, XCT02),
IF INSTRUCTION IS INVALID TRAP. ASSUMING THE INSTR-
UCTION IS A VALID INSTRUCTION, EXAMPLE TAKE A DAC
INSTRUCTION, THE CPU GOES TO THE FETCH MAJOR STATE
AND PROCESSES THE DAC INSTRUCTION, SENDING TO MEMORY
THROUGH THE MEMORY PROTECT LOGIC, THE ADDRESS AND
COMMAND (MWR,) FOLLOWED BY THE MREQ.

KM-12 THE COMMAND MWR: PMODE ENABLE (CHECK THE ADDRESS.)

KM13-14 THE ADDRESS ON MDL 1-9 + BOUNDARY REG 1-9 RESULTS IN

: NO CARRY IMPLIES THIS ADDRESS IS VALID PROCESS THE
MEMORY CYCLE. IF THE ADD RESULTS IN A CARRY, THIS
IMPLIES TRAP.

KP31l WRT*TRAP:MEM TRAP

MEM TRAP: TRAP P A PULSE 110NS.

KP26 TRAP P: | MREQ

KP32 Trap P: § ADR ack .
TRAP PREVENTS CP WR ADR ACK FROM OCCURING. ADR ACK: | CP
MREQ HOLDpF

XP26 ADR Agk: | HOLD MO

KP31 | MEM TRAP*MREQ: TRAP CLR MEMORY

KP32 TRAP CLR MEMORY: END OF CP CYCLE

KP26 END OF CP CYCLE: | CP ACTIVE

17-3

TRAP

TRAP CONDITION

INVALID ADDRESS

KP35

KP31

KP1l9
KP21
KP20

KP35

KP51

KP35

Kp34
Kp24
KP48

KP35

KpP31

KP35

CPU TO MEMORY CONTROLFpARE NOW CLEARED.
CLR KEYS (TSO03*@1)*TRAP*FORCE FETCH: 1 INTRPT ACK
TRaP*1s03*g1: § TRAP ADDRESS EN IF P.I.E=0 TRAP ADDRESS
EN: CAL ADDR EN THIS FORCES ADDRESS 20. IF P.I.E. IS
ENABLED GO TO LOCATION ZERO.

TS03* INTRPT ACK: I/O ADDRESS TO "A" BUS
FETCH TSO1

INTRPT ACK*TSO3*@2* HS CLK:‘ RUNfp. THIS HANGS THE
CPU IN TSO3, @3.

TRAP*INTRPT ACK*TSO3*CLK H: MS PWR CLR. WHICH CHANGES
THE CPU FROM THE FETCH MAJOR STATE TO THE EXECUTE
MAJOR STATE. SET FETCH ALSO GOES ACTIVE.

(SET FETCH*TSO3*CLK H)* INTRPT ACK* CP ACTIVE:
ENABLE INTERRUPTS.

ENABLE INTERRUPT*TRAP: PI REQ

TIME4* PRIORITY CHECK OKAY: | Plpp
TIME1* PRIORITY CHECK OKAY: § PI SYNCpp -
PI SYNC:} P.I.E.pp ‘

PI SYNC*TIME4: | INTERRUPT STROBE
INTRPT STB: $ INTRPT STATE

INTRPT STB: | INTRPT ACK

INTRPT STROBE*RUN: t START RUN

INTRPT STROBE: LD MO, OA

INTRPT STATE: INH DECODES

INTRPT ACK+INTRPT STATE: INH PC LOAD
THIS PREVENTS THE PC FROM INCREMENTING

INTRPT STATE + API STATE: & TRAPFF ., PREfF, UMFF
THIS TAKES THE SYSTEM OUT OF USER MODE AND ADDRESS O
TAKES THE SYSTEM INTO MONITOR MODE

INTRPT STATE*TSOl: INT. INH. SET MO.
INT. INH. SET MO: INTRPT CLR IR

FROM THIS POINT PROCESS AS IN PI
WRITE-L,B,U, AND PC 3-17 INTO LOCATION 20 or ZERO.

17-4

.-

SET
FETCH

BLOCK DIAGRAM TRAP CONDITIONS

INSTRUCTION
FROM MEMORY
ADR ACK
MDL
BOUNDARY
LOWER
IR LIMI REG
NEXM -
DELAY
75 NS
ADDER

e IMP o [’

DECODE |;5§ , ‘ 1 CHECK ?
: : i | ADDRESS BB-15

l] >
vy I MREQ
& N
1847 ; i
* 8
W
MEMORY ADDRESS
'TRAP CONDITIONS|CONTROL MO REQ
CPU

e 17-5

‘ v
! e
i KM
‘- i
' .
: :
' xM11
L
xM13, 14
ves i)
: — |
; , r 1~TRAP. PV] w10
) ' ' ——r——
i v 4 i ‘ . !
; A ' 0+M REQ] A
. ‘ ; !
e —_—y
[: ol j o [WoNs nELAY J o END O UYL) X
. et
3 _ l l _ 7
1 . _l. B l ADR ACK J . l STROBE NEXM] XM10 e e
' : i V.55 MASE LTRAR ‘,,
R A PR
Loy NEXM (1)%
* Y
. WO EFFECT ON :) »
‘ M MACHINE OPERATION’ R .
! : SADOR ACK SHNGAMAL INTL: - #T FLOW
NOT RECEIVED
ot i
i .

. 19007 ACK n T

L
4 P Anc 0 F et 19

Figus 6-12 KM15 Memory Protect Flow Dlagram

.

LR

17-6

ine PTROERTEN " 10 mm, - e ’ : —— R vo

OBJECTIVES:

A)

B)

C)

D)

E)

MEMORY RELOCATE - KM/KT

LIST THE USE AND PUNCTIONS OF THE MEMORY RELOCATE
OPTION.

SHOWN THE BLOCK DIAGRAM, EXPLAIN 'I‘HE COMMUNICATION
SIGNAL SEQUENCE AND DATA FLOW OF THE MEMORY PROTECT
OPTION. :

EXPLAIN THE FORMAT AND USE OF THE MEMORY RELOCATE
OPTION.

LIST THE PROGRAMMING CQNSIDERATIONS NECESSARY WHEN
USING THE MEMORY RELOCATE OPTION.

EXPALIN THE KT - MEMORY RELOCATE FLOW DIAGRAM.
STATING THE LOGICAL OPERATION OF A MEMORY RELOCATE

‘TRAP CAUSED BY

1) BOUNDARY VIOLATION
2) ILLEGAL INSTRUCTION
3) NON-EXISTANT MEMORY

17-7

MEMORY PROTECT AND RELOCATE BLOCK DIAGRAM

r CARRY L
UPPER LIMIT s A
| p] D
- D
R l1E
4 R
A
c RA CARRY : § NEXM
A (PREVENTS WRAP AROUND)
— it RA-MDL
LOWER LIMIT | > E -
R
L - —-/
MDLO, 10 THRU 17
BR— Y
USER
PARTITION MEMORY

RR+ADR 1-9 .f

MONITOR

17-8

- MORUAL Al L THE
‘OrRRA TN

WO ADOSERS ;
1ML K

-----—-—-_—-r.‘

FY
VEXTMEN 0R)
Cyele
un-nmmownm : IR R
R 1)

K115 Mmuy Proncw-l%
Flow anm

TOPIC API

OBJECTIVES:

A)

B)

Q)

D)

EXPLAIN ON A BLOCK DIAGRAM LEVEL THE FUNCTIONAL
PARTS OF THE AUTOMATIC PRIORITY INTERRUPT OPTION.

LIST ON A BLOCK DIAGRAM LEVEL THE COMMUNICATION
SIGNAL SEQUENCE OF THE API OPTION.

STATE THE FUNCTIONS OF THE API TOT INSTRUCTIONS.

STATE THE PROGRAMMING CONSIDERATIONS NECESSARY
WHEN USING API.

18-1

. R s e .

! H
x Co ' l t i
. M .

| “MIg4 SIMPLIFIED i

H
' +

EY 1N H , | n |

i MlENOUTH,f.
] #3v

DATA FLAG (1) H axfn | (e 6 '—[>°‘r

I /" SYNC i

+
O— ¢
o

|

[]

2

PPN S

!

I

|

i

j

j-

’

]

!

t

Hi

~ GRANT H.

: e s e yE
. * 5 1_ 0 ? j
D , | |
. E : +3V i
- i ‘ v ¥ _{ . R R _— e _-A;_.. ———
' oo ‘ ' ; : , Y o :
DATA FLAS (2) L. = ’ N , DU A S
170 PWR CLR H__&%__@ ; : ' : { ‘ : B SIS R

[70 SYNC 1 I 11 N

{ C
27

DATA FLAG___ N B ¢ .

REQ [I<) ‘ ;5 - ..,:fk“_ SRS SR,
d) X

GRANT : _I)
ENC ~ ‘ E\‘ /

- ENA f4\<
>

N

\5\.,,
=
=

Sl

tn

Qg
d,y

ElB

£-8T1

CP API

—>

IC API BLOCK DIAGRAM

CHANNEL O
r—-A‘ PI ON
apI
' (52) (57)
’ : G— CHANNEL 1
1 .
. RQ SYNC
R j——>scan neor RP-15 TC-15
| (64) (44)
AFI REQ PL EN(O)H P
AP{I EN - : Ub TO 8 |
—-C:C__ }—DIS BRK (0)H e o 8 reo2s P26 I
}— -TRAP
? CHANNEL 2
g 1 PTR ver-15
§ P_Dmufr {GIVE ME_YOUR ADDRESS) 4 (50) (54)
API SYNC ~— .
0|
Fp
A CHANNEL 3
| STROBE
REQ (1) Q]
CLK OVFLO LP-15
(51) (56)
lh—
P
L
Fp O

API GIVE ME YOUR ADDRESS USE M104 SLIDE IST

¥-81

KA DEVICE
GRANT o— > 1 —3ENA-
| 1
MEMORY | ‘ £ -
A A IR
M o I/0 ADDRESS D A
M 0 L
A b LA .INES _g
'E N \—1 E ADDRESS
G S | HARDWARE WIRED FOR
S SPECIFIC DEVICE
FORCED XCT
x |5
C
T XCT 64
IR REG 400064

LOCATION 64 JMS TO SUBROUTINE FOR RP-15
INSTRUCTION - 103000

3000 g L,B,U, PC 3-17

NV Y

DBR

JMP * 3000

S-81

LATCH REQpp (API FACILITY)

PF(52) ,AD (57 ,-CHANNEL 0

RP15(64) ,TC-15(44) -
P -15 -

CLK ovflo(51),LP~15-CHANNEL3

t GRANT-DEVICE
SEND YOUR ADR.

KA KP-35
API FACILITY INTERRUPT FACILITY
API REO L
T1 REQ FROM DEVICE } INHIBIT PI
T4*REQ*~PL (CE APL REQ f NO PRIV.INST.*SET FETCH*
TURN OFF SCAN f"" TSO2*@3: ’INTRPT ACK

HAND CPU TSO03*@3.
CLK H¥CPAACT (0)H:

<

Kp 51

I/0 PRIORITY CHECK

)

?

1.DCH IN PROGRESS
2.CLK IN PROGRESS
3.I0TS IN PROGRESS

T4: | PLppPREVENTS j¢—| EN INTERRUPT P NO THEN
REQ FROM OTHER EN INTRPT*APIREQ:APIREQ REQ T4+t API .
DEVICES ON THIS AND API SYNC*T4:INTRPT.STB. (ARLSINC T1: § API SYNC
LOWER CHANNELS INTRPT.STB: | RUN
pob— CPU TURNS ON.
GOES TO FETCH
API__SYNC
T1 T2 T3 T4 _|T T 31T 4] Tl 12 3 lré4 !T 13T 2 $,34J

API REQ ON LINE

T

SCAN ON

(SEND API REQ)

4~ LAST CALL

]

APIpp

API SYNC

GRANT

ENA (M104)

SET PLpp * INTRPT STB

SYSTEM POWER CONTROL

OBJECTIVES:

A)

B)

C)

D)

TRACE THE ROUTE OF THW PWR OK BUS THROUGH THE
MAIN FRAME AND THE BACK DOOR RACK FROM THE

715 p.s.

EXPLAIN HOW A POWER FAIL GENERATES AN INTERRUPT.

EXPLAIN THE DIFFERENCE BETWEEN ~POWER OK L AND
POWER LOW.

EXPLAIN HOW CONSOLE LOCKED EFFECTS THE POWER

'FAIL SEQUENCE.

19-1

U]

POWER UP

‘

[CONSOLE LOCK |
ou-.
Pl ENABLED ‘

_POWER
_RESTORED

RCTIVE.
. REGISTEAS:
CLEARED

EXECUTE
LOCATION

bl

ZEROQ: -
(JMS SUBRQUTINE)

SUBROUTIN
RESTORE ALL
ACTIVE REOS.

JUMP TO
BEGINNING OF
MAIN PROGRAM

PROGRAM
CONTINUES . -

U e

B

POWER DOWN

e
savg 2MS
REGISTERS

UNTIL POWER
FAILURE
DETECTED

PROGRAM CONT. |

WHEN PWR LOW
IS DETECTED
A P1 REQUEST

IS ISSUED

SKIP ON PWR
PWR FAIL. FLAG

JMS-L.0C O

SUBROUTINE
ju— STORES ACTIVE
REG. IN CORE AND

PLACES JMP RESTART
ROUTINE IN LOC O

MACHINE
HALTS

19-2

ACTIVE REGS.
CLEARED

POWER OFF

1$-0108

iﬂﬁuruiﬁa Power Fall Up/Down Sequence

POWER UP

CONSOLE LOCK
ON-

POWER DOWN

POWER
RESTORED

ACTIVE
REGISTERS
CLEARED

EXECUTE
LOCATION O
'JMP RESTART)

RESTORE ALL
ACTIVE REGS.

JUMP TO
BEGINNING OF
MAIN PROGRAM

4

PROGRAM
CONTINYES

LAPI ENABLED

PROGRAM CONT.
YNTIL POWER

FAILURE
QETECTED

WHEN PWR LOW
IS DETECTED AN
&P] REQUEST
18 ISSUED

XCT JM5
SAVE REGS,

WMACHINE
~RALTS

_ ACTIVE REGS.
CLEARED

POWER OFF

Figure 6~9 Power Fail Up/Down Sequence

19-3

POWER FAIL IS
ON THE MIGHEST
LEVEL OF AP1
(LEVEL ZERO)

18-0107

11

+
TAB -pWwR UP H 0
~PWR UP _H @ = K2 (715 P.S.)
MEM PWR RELAY
K303 '

K2 SUPPLY-30V to
DELAY | MEMORIES.
2504s
PWR ON H
PWR LOW L
K303 PWR FAILpp
*iL-—J‘G DELAY
82 2504 s . -
;' - PWR LOW DELAY H
0
K
x2|°L7 12
K303

—{DELAY [~
IN ouT

POWER FAIL

H IN: H OUT IMMEDIATELLY NO DELAY
I, IN: STAYS HIGH UNTIL THE DELAY TIMES OUT
THEN OUTPUT GOES LOW

FAILURES IN THE REGULATORS, GB821-G822-G823, DROP THE MEMORY PWR RELAY
IMMEDIATELY TO PROTECT THE MEMORY- "CAN'T SAVE ANY REG."
THE FAILURES IN THE REGULATORS ARE DETECTED BY THE SIGNAL -
PWR OK L.NOTE PWR JE‘I-‘.I]’_.,.,.}:.| IS NOT SET.

G827 SAMPLES +11V.

A LOT OF REGISTERS.

THIS IS THE VOLTAGE OFF THE CAPACITORS IN
715 PS. 1IF THE +11 VOLTS DROPS FOR ANY REASON, THE G827 GENERATES
A PWR LOW SIGNAL WHICH IMMEDIATELY SETS THE PWR FAILpp.
SETS UP FOR INTERRUPT. TIME BEFORE THE MEMORY PWR RELAY
DROPS IS 2504 s THEREFORE IT CAN BE SEEN IN THIS TIME CAN SAVE

IF CONSOLE LOCKED IS NOT ON PROCESS POWER DOWN AS IN CONSOLE

LOCKED POWER DOWN FLOW.

HAVE TO USE MANUAL RESTART SEQUENCE.

19-4

POWER FAIL - AUTOMATIC RESTART

ON POWER DOWN THE LAST THING THAT HAPPENED WAS A
JMS TO START UP ROUTINE WAS ENTERED INTO LOCATION

ZERO.
KP-57
_ AUTO RESTARTpp
consogcx >: ,! 1k
LOCKED ‘
Pv; | o |
KEY ACT :
¥ KP34
KP34
s - vf > .
PWR WAS OKAY (+11V) 1 RUN(0) H START
RUNpp
o] 1 TO KP 21
0}

START RUNpp ALLOWS CPU | TO START IN
PETCH MAJOR STATE S0l

KP34
CONSOLE | KEY ACT*CL

LOCKED

SMR .
MEMORY COMMAND

KP48

KEY.ACT‘_D— INHIBIT
FORCE FETCH DECODES

NOTHING IS ENABLED ON THE "A" BUS AND THE "B" BUS: SUM BUS = ZERO's

KP24

KEY ACTIVE*TSO1*CLK H: LD MO, OA THE ADDRESS OF ZERO IS LOADED
INTO THE MO AND OA REGISTER.

MEMORY CYCLE READS IN'ro THE CPU THE INSTRUCTION LOCATED AT LOCATION
ZERO (JMS TO START UP ROUTINE)

19-5

REAL TIME CLOCK

OBJECTIVES:

A) WRITE A PROGRAM UTILIZING THE REAL TIME CLOCK.
B) STATE HOW THE REAL TIME CLOCK FACILITY IS SET UP.

C) LIST THE SEQUENCE OF EVENTS THAT CAUSE A CLK PI.

20-1

/ . . MEA

Z-0¢

{

{

MOL DRIVERS

KDP4 DSR—MDL

OR
KP32 I/0 ADDR—MDL

——

{

DSR B-17

KOp4 STROBE DSR

XCPI DSR OVERFLOW <—3 E

kT ADD 1

KDPS DSR-1/0 BUS —o

MUX

KDO4 MOL—DSR | KDO4 }/O ADDRESS —DSR

KF Z-17

B

" KPG8 If0A 3-14

MDD -
OL B-17 KD®3 YOAD 15-I7

MUX

KD®S I/ Bur-‘-osn—o}{

.
. +

10 BUF 0417

KD@S STROBE 1[0 BUF—D}?

11

\Z

KP52,53

108

KPS53 YO BUS O-17

o-17

BUS ORIVERS

KP53 I%BUS 0-7

CLK FACILITY

LOCATION 7 LOADED
WITH A COUNT IN
2's COMP. FORM

l KP57

CLON: ’CLKE‘N

:*LKF G

KpP57

(CLX SW+CONSOLE
KED) *CLK EN:
N CLX RBQ

L KR-p7.
CLK REQ *

ICK OF MHE CLK:

"CLK REQUEST"

e

I/0 PRIORITY

NO

ICHECKS GOOD

l YES
KP-51
T4: §

CLKpp

| T1: .?CLK SYNC

l KP-57

[R(EZLK SYNC: ‘ CLK

7 —»I/0 BUS

CLK SYNC: ADDR ‘

o

ek syncs

ENCA H

“NO 3 CYCLE BREAK"

20-3

v

KD 04

CLK SYNC:I/O CYCLE
rReQ: $ 1/0 M HOLD

l KP26

CLK SYNC*H.S.CLOCK
:{Mpx THIS ALLOWS
THE PROCESSOR SW.

1ro SET UP POR

I/0 TRANSFERS

KD~-04

———
WC * CA * I/O M
HOLD: § wC ENA.

v KD-04

{MDL~-DSR*1/0 M
HOLD: I/0 ADDR.
TO THE DSR

l KD-06

[WC_ENA* CT4*
BACK-BACK:
STROBE ADDRESS

l KD-04

ISTROBE ADDR:

STROBE DSR
(DSR=7).
I/OM HOLD fF

l KD-04

’I/O RD & I/0 WRT

(R.P.W. CYCLE)

* KD-04

STROBE ADDR: ‘
WC ENABLE

v

WC ENABLE:
"WORD COUNT
CYCLE" :ADD1

B

©

KD04

STROBE ADDR:
SET 1/0 M REQ

KP26

SET I/0 M REQ:
t 1/0 MrREQFF

MPX* I/0 , REQ*
eFRerve: P 1/0
ACTIVEpp

KP26

I/0 ACT*I/O
MREQ: I/O ADD —
MDL (70N MDL)

‘:’1L-KD 04

KP26

I/0 RD*I/O ACT:
MRD

I/0 WRT*I/O ACT:
MWR

"MEMORY DO A

READ PAUSE

WRITE"

KP26

(I/0 ENABLE*I/O
M REQ)* HS CLx:f‘
M REQ

START THE MEMORY CYCLE

KD-04

1/0 ADDR ACK: ¢
I/0 READ, WRITE pps'

KD-04

I/0 PROC. IS WAITING
FOR RD RST.

RD RST: MDL -» DSR

‘l' KD-03

CONTENTS OF
ADDER+1 TO THE
INPUTS OF THE DSR

* Kp-57

CLK SYNC * WC OVLFO
:f'FLAGFF ’

KD-06

I/0 RD RST: 150NS
LATER (PAUSE)
PRE MRLS

* KD-04

PRE MRLS: t

I/0 DATA ACK

(I/0 DATA ACK
GOES TO MEMORY
AND RESETS
BUS EN. THIS
TAKES THE DATA
OFF THE MDL)

rs

'lr KD-06

PRE MRLS: SET DSR
<4— MDL

——

KP26

I/0 ADDR. ACK:
CLR REQ: ¢
1/0 M REQ (DROP
DDR.ON MDL)
LR REQ: ¢

Q (INTURN

SET ADDR ACK)

i

KP26

(I/0 ACT*I/ON RED)
*RD RST: 1/0

RD RST. (THE
CONTENTS OF
LOCATION 7 ON

THE MDL

* KP26

CLX SYNC* HS CLK
4 M opx

ALLOW CPU TO
CONTINUE AS SOON
AS I1/0 ACTIVEpp
GETS RESET

.

SET DSR MDL

2T

1 SET DSR =% MDL: t

DSR-MDL
(INCREMENTED
CONTENTS OF DSR
REGISTER

.38 TRANSFERRED

70 THE MDL

* KD04,03

SE? DSR-MDL:
STROBE DSR
(CONTENTS OF
ADDER LOADED INTO
THE DSR)

(C) OF LOCATION 7
INCREMENTED BY 1

SET DSR--» MDL
DLEARYED 25NS:
RESTART L

l KP-51

RESTART* CLK SYNC:

I/0 MRLS: MRLS
(LOADS MB IN MEM.
ALSO | RD RST*

$ mrus ack: [R7C
ACTIVE

‘ KD-04

MRLS ACK: {
DSR-MDL, | 1/0
DATA ACK, | 1/0
MRLS

§ CLKFp *| CLK SYNC

‘ KD-06

| SET DSR~MDL’
DELAYED 75NS:
STROBE MRLS

L

STROBE MRLS:

20-5

I/0 MRLS
START WRT CYCLE

; KP26

I/0 MRLS ACK:‘
1/0 ACTIVEFF

|

Kp-26

I/0 ACTIVE*MPX:

I/0 INACTIVE

KP21

| AS SOON AS

CP ACTIVE GETS
SET* CLK OCCUR
STOP PHASEpp

Kp-21

CPU TIMING
Is
RUNNING

20-6

CRIC
@ FLAG:

OVFLO /

* KA-03 * KP57
RTC FLAG*APIZB,L CLK FLAG * API EN
" 'RQ ”A”FF (03) H: CLK PI

l KA-05 l
RQ“A"' RTC m; PI

e FPACILITY HAMDLES
INTRPT.
KA-09

RTC: RPIO “03"

;__,__._..______. — e wo— o

API FACILITY
PROCESSES THE
CLK REQ
WAITING FOR
API 3 GRANT

KA-Q35

RTC API REQ A *
API 03 GRANT:
RQ BFF

i KA-06

RQ B * RQ SYNC
03: CLK ADDR

51
I/0 A 12, 14, and
17 WILL BE ACTIVE

DISABLE

"API ON" AND THE
API REQ DISABLES
PI FACILITY

NOTE: CLK FLAG WILL GET CLEARED BY CLON + CLOF

20-7

RF 15-

1.
2.
3.

TC 15

3 CYCLE BREAK DEVICE

WC ADDRESS 36 (C) 36= TWO's COMP OF NUMBER OF WDS XFER

Cca 37 (C) 37= LOAD INTO LOCATION 37 STARTING ADDRESS
MINUS ONE.

API BREAK ADDRESS - 63
SUGGESTED PRIORITY LEVEL 1

" SECTOR CONTAINS, 256,-18 BIT WDS

|16. ams > |

[1
N

DCH REQ * RD REQ : DEVICE XFER —yMEMORY 10P2
DCH REQ * WRT REQ: MEMORY XFER-Y DEVICE 10P4

SET UP
DCH XFERS / 1 WORD PER DCH REQUEST
JOB DONE OR ERROR - API OR PI

3 CYCLE BREAK DEVICE

WC LOCATION 30 (C) 30 = 2's COMP. OF NO OF WDS XFER

CA LOCATION 31 (C) 31 = LOAD INTO LOCATION 31
STARTING ADDRESS MINUS ONE

API BREAK ADDRESS 44
SUGGESTED PRIOCRITY LEVEL 1

|<——-——-... 200ms —J€ 200ms _______)l

r_lt__ XFER (18 BIT m)& /j

1. SET UP
2. DCH XFERS / 1 WORD PER DCH REQUEST
3. JOB DONE OR ERROR - API OR PI

DCH REQ * RD REQ : DEVICE XFER TO MEMORY 10P2
DCH REQ * WRITE REQ: MEMORY XFER TO DEVICE 10P4

21-1

RP-15
SET UP INSERT AND EXECUTE

1. INSERT 2's COMPL. OF NO OF WORDS
LOAD WORD COUNT REGISTER (18 BITS)

2. INSERT DISK ADDRESS
a) CYLINDER ADDRESS REGISTER (7 BITS)
'b) HEAD ADDRESS REGISTER (5 BITS)
c) SECTOR ADDRESS REGISTER (4 BITS)

3. INSERT INITIAL MEMORY ADDRESS LOAD CURRENT ADDRESS
REGISTER (17 BITS)

4. INSERT FUNCTION & GO
LOAD STATUS REGISTER "A" (9 BITS)

RP15 CONTROLS UP TO 8 RPO2 OR RP03 - DISK PACK
WD SIZE - 36 BITS/WD
SECTOR CONTAINS 128, 36BIT WDS OR 256, 18 BIT WDS

HAS A WC REGISTER
HAS A CA REGISTER

USES SINGLE CYCLE XFERS FOR ODD NUMBER OF XPERS

)‘ LOADED DURING SETUP

BACK TO BACK XFERS FOR EVEN NUMBER OF XFERS

|(-— 14.8ms—)|

[]

API BREAK ADDRESS 64
API LEVEL - SUGGESTED PRIORITY LEVEL 1

1. SET UP
2. DCH XFERS/ 2 WDS - (BACK~Y BACK)
+
1 wp (SINGLE CYCLE)

DCH REQ L SING CYL REQ L FUNCTION
0 1 SINGLE CYCLE XFER OUT
1 1 SINGLE CYCLE XFER IN

IF SING CYL REQ L IS HELD ACTIVE AFTER GRANTpp IS RESET,
THIS IMPLIES ANOTHER XFER IS CONING (BACK-> BACK)

21-3

MDL LINES

/.- HARD

WIRED ADDRESS
" 30"

DATA

FROM
[DEVICE

¥ la M D ’3 M % I/0 ADDRESS LINES z];
A N u S D U
X R R X ; D
_ Q:.T R
ADD +1.—T 170
BUFFER | 1/0 BUS
M] M D
PRIORITY U T
B CHECK X B
OKAY < beH
A PI SYNC 10p
M104
DCH_REQ
N EN IN H _J
= 1/0 SYNC—>
o~ BACK-BACK (0)H_____} FLAG —3| |
GRANT
G 1
R
A 0
N
T

BLOCK DIAGRAM OF DATA IN TRANSFER

3 CYCLE BREAK FROM THE DECK TAPE

1. WORD COUNT CYCLE

DATA IN XFER.

(WC)

2. CURRENT ADDRESS CYCLE (CA)
3. DATA CYCLE

ENA

XFER~-RAISE
FLAG

. MOL DRIVERS |
KDP4 OSR—MOL - _
KP32 1/O ADDR—MOL

-
[s

DSR B~i7

KDP4 STROBE DSR ~—1

KOOI DSR ox}aRFLow < E ’ }x ADD 1

1[i T - © KD®S pSR-1/H BUS —>0
N .
[
1
wn
. MUX S . MUX
. : - KD®S IO sur—osn—e%
KCO4 MOL— ' X £55 —DSR . . :
8]0) D?R ‘ KDO4 J/OADDRESS —D » K ‘ 10 BUF O-17
s " _ " KPS8 1f0A 3-14 : ' TROBE /O BUF
P Z-17 wDLD-T KDD3 JOAD 15-17 _ ,..K0¢S STROBE [i &
. . . o : o 108 ;
kps253 (OF, | . | BUS ORIVERS
K : KPS3 o BUS 17 Kpss,ci?aus p-7

=2
[

3 CYCLE BREAK

EXAMPLE:

DATA IN XFER FROM TC-15

1. WORD COUNT CYCLE
READ PAUSE WRITE

NEEDRS A DCH REQUEST FROM THE DEVICE TO TRANSFER THE DATA
INTO MEMORY.

NEEDS ADDRESS FROM DEVICE 30 FROM TC-15

NEEDS COMMAND

I/0 PROCESSOR GENERATES I/O READ*I/O WRT
THIS SETS MEMORY CONTROL TO SET UP FOR A READ-PAUSE WRITE
NEEDS MREQ

THIS LOADS THE ADDRESS IN MEMORY AND STARTS THE MEMORY
CYCLE.

NEEDS STOP THE CPU WHILE PROCESSING THE DEVICES DATA XFER.

CPU IS HUNG UP BY STOP PHASES

CPU DECODES INSTRUCTION IT IS GOING TO PROCESS AND
SMW: CPU HANGS IN TS02*@2
SMR CPU HANGS IN TS03*@2

WORD COUNT MEMORY

CYCLE CONTENTS OF LOCATION 30 INCREMENTED BY 1
WRITTEN BACK INTO LOCATION 30.

21-6

(C) LOCATION 30 = 777523 = THE TWO's COMPLEMENT OF 256 WDS. ONE
BLOCK OF DATA TO BE XFERED.

777523 IS ON THE MDL
RD RST: MDL -»DSR ADD+1 IS ALSO ACTIVE OUTPUT OF THE ADDER IS
777524

RD RST: DELAY 150NS (PAUSE) AND GENERATE PRE MRLS AND SET
DSR~-MDL

PRE MRLS: 1 I/0 DATA ACK: r DATA ACK: ¢ BUS EN
BUS EN RESET TAKES 777523 OFF THE MDL.

SET DSR-MDL: | DSR-MDL ALLOWS (C) OF DSR—% MDL
:STROBE DSR 777524 IS CLOCKED INTO THE
DSR AND XFERED ONTO THE MDL.
(SET DSR-MDL* WC)*EN ca: P ca
' STROBE DSR: CHECK THE ADDER FOR OVERFLOW. IF
OVERFLOW IS PRESENT THIS IMPLIES
256 WORDS HAVE BEEN TRANSFERED.
SEND OVFLO BACK TO DEVICE WHICH
TERMINATES BY RAISING A JOB
DONE FLAG.

SET DSR-MDL DELAYED 75NS : STROBE MRLS
STROBE MRLS: fI/o MRLS :hdRLs :MB LOAD
MB = 777524
I/0 MRLS: ¢ WC
DELAY OF 50NS: MRLS ACK: { RD RST AND START
THE WRITE TIMING IN MEMORY

MRLS ACK : &I/O DATA ACK, ¥ I/0 MRLS, | DSR-MDL,
y I1/0 ACTIVE

I/OMRLS: & MRLS ACK

MEMORY WRITE CYCLE FINISHES & DROPS MBSY

21-7

CURRENT ADDRESS CYCLE (CA)

THE STARTING LOCATION TO STORE THE DATA WORD WILL BE LOCATION 500.
THEREFORE, THE PROGRAMMER PLACES IN LOCATION 31,000477.

STARTING ADDRESS MINUS ONE

2. CA CYCLE
READ PAUSE WRITE

NEEDS ADDRESS 30 FROM DEVICE TO BE STILL ON THE LINE.

NEEDS ADD+1 ACTIVE WHICH IT STILL IS

NEEDS COMMAND
I/0 PROCESSOR GENERATES I/O READ*I/O WRITE
THIS SETS MEMORY CONTROL TO SET UP FOR A READ,
PAUSE, WRITE.

NEEDS MREQ
THIS LOADS THE ADDRESS IN MEMORY AND STARTS THE MEMORY
CYCLE.

NEEDS - CPU STILL HUNG UP BY STOP PHASES
CURRENT ADDRESS CYCLE
CONTENTS OF LOCATION 31 INCREMENTED BY 1
WRITTEN BACK INTO LOCATION 31
000477+1 = 000500 NOW UPDATED CONTENTS OF LOCATION

31 ALSO 000500 IS STILL STORED IN THE DSR. DSR CONTAINS
THE ADDRESS WHERE THE DATA WILL BE STORED.

21-8

(C) TLOCATION 31 = 000477
000477 1S ON THE MDL

RD RST: MDL-DSR ADD+1 IS ACTIVE OUTPUT OF THE ADDER IS
000500

RD RST: DELAY 150 NS (PAUSE) AND GENERATE PREMRLS AND SET
DSR-MDL

PRE MRLS: f I/0 DATA ACK, :fDATA ACK: |, BUS EN
BUS EN RESET TAKES 000477 OFF THE MDL LINES

SET DSR-MDL: ?DSR-MDL THIS ALLOWS (C) OF DSR-MDL

SET DSR-MDL: STROBE DSR 000500 IS CLOCKED INTO THE DSR
AND XFERED ONTO THE MDL

SET DSR-MDL DELAYED 75 NS: STROBE MRLS

STROBE MRLS: $ I/O MRLS, } MRLS : MB LOAD
MB = 000500

IOMRLS*DATA CYCLE: & CA

WC*CA : ADD+1

MRLS DELAYED 50 NS: #MRLS ACK : | RD RST AND START THE WRITE TIMING
IN MEMORY.

MRLS ACK: J,I/0 DATA ACK, |, I/0 MRLS, |,DSR-MDL, |, I/0 ACTIVE
I/0 MRLS: ¢ MRLS ACK

MEMORY WRITE CYCLE FINISHES AND DROPS MBSY

21-9

DATA CYCLE:

SETTING UP FOR THE DATA CYCLE STARTS DURING THE WC CYCLE. 'PHIE ' IME
AS FAR AS A MEMORY IS CONCERNED TS ABOUT MREQ TIME (TAIL END). MORE
SPECIFIC TIME IS THE I/O TIME Tl: IF WC*ENCA*SEFX TR+

DATA OUT: 4 ENB
THE DEVICE RECEIVES AN I/O SYNC PULSE (Tl) WHICH SETS ENB IN THE M104.
AS A RESULT THE DEVICE SENDS RD REQ BACK TO THE I/0 PROCESSOR.

T4: ? DATA 1IN, ? IN XFER CYCLE, DCH EN 10P2, THIS OCCURS BEFORE
RD RST A SIGNAL FROM MEMORY.

Tl: 10P2 l‘———lé's —>

SET DSR-MDL "4 CA CYCLE

75
. NS
WC CYCLE |
T4 STROBE 10P2 l A SHORT TIME AFTER

THE I/0 ADDRESS HAS BEEN RECEIVED STROB 10P2 GATES THE DATA
OFF THE BUS INTO THE I/0O BUFFER.

CA * PRE MRLS :? DATA CYCLE
NOTE: THE UPDATED CURRENT ADDRESS WILL BE TRANSFERRED FROM

THE DSR—»MB 000477+1-»DSR = 000500—>»MDL —»MB
.DSR = 500 THE STARTING ADDRESS

WC CYCLE

CA CYCLE

/ I/0 MRLS*DATA CYCLE

PRE MRLS(('IA\"I DATA CYCLE l

' l DCH DONE

21-10

DATA CYCLE

DATA CYCLE * I/O MRLS ACK: T'I/0 MREQ
(DATA CYCLE * I/0O MREQ) * DATA IN): 4#I/0 WRITE
DSR CONTAINS 500

DATA CYCLE * I/O MRLS ACK: T'I/0 MREQ
NEXT HS CLK: T1I/0 ACTIVE
I/0 ACTIVE * I/O MREQ: I/O ADDR-MDL
NEXT HS CLK: T MREQ
LOADS 500 INTO MA & STARTS THE MEMORY CYCLE

(ADD-MEM * DATA CYCLE * DATA IN) * I/O ADDR ACK:
' RETURN DATA
RETURN DATA: ‘T DSR-MDL: # STROBE DSR
DSR CONTAINS A DATA WORD.
ALSO SET DCH DONE
SET DSR-MDL = # DSR-MDL MDL=DATA
SET DSR-MDL DELAYED 75 NS : STROBE MRLS

STROBE MRLS: T 1/0 MRLS: MRLS: LD MB
50 NS LATER :PMRLS ACK, ¥RD RST
ALSO START THE WRITE PORTION OF A MEMORY CYCLE

MRLS ACKJ I/O DATA ACK, § I/0 MRLS, | DSR-MDL
MRLS ¢ : & MRLS ACK

MEMORY WRITE CYCLE FINISHES AND DROPS MBSY.

21-11

RESTARTING _CPU

(ADD-MEM * DATA CYCLE * DATA IN) * I/O ADDR ACK:
RETURN DATA

RETURN DATA * BACK TO BACK: DCH DONE

DCH DONE : , DCHpp, ., DCH SYNCpp

THE NEXT TICK OF THE HS CLK : T MPX

WHEN I/O MRLS ACK, COMES BACK FROM THE DATA
MEMORY CYCLE, IT }, I/0 ACTIVE

MPX * I/0 ACTIVE : I/O INACTIVE

I/0 INACTIVE : AS SOON AS CP ACTIVE IS SET AND THE NEXT
TICK OF THE HS CLK:“] STOP PHASE

THE NEXT TICK OF THE HS CLK CHANGES PHASE THE CPU IS NOW RUNNING.

21-12

€T-TC

r:Iajsjﬂl]zIs[a[n.213r4111m14[|1213141u:lsl:hfﬂ.ﬂﬂx[zlsit!_]:l_] KR ER
115 syne NN AW AN AW IO A\ W] LMW [N\ A\

0°H KEQ_ATTIITININNY___
7o T ANVAAYINRTAYNAVEANYAAURARRAVRAYRAARANRANYRRARAARAE IR R RO A
NANNAYTRVRNMRWARAARAARARRRRWW AR

KPSl DCH SYNC
KU@6 GRANT AT R .
DEV, ENA _KIRCACER=1A AC N, e
OEV, ENB A RA = OB EN 0ATA X FE AT
K024 17 M HoLo TN |\
KLd4 1/C AL RESS-DSR_ TN AW
kov< WC ENABLE_RINNN. .~ k0@4 PRE DATA CYCLE A\\mm__
K006 STROLE ADDR_E__. KLid3 1/0 BUF - osrzmm .
KDZ4 STROBE DSRA_. [VE\!
KPz6 1/0 M Rea I AN mw .

kv@4 We AP0 TIIINIINY KD®5 DCHOONE
kP26 120 ACT _JITITLATEA PR f%%\mmmmm_

KD@4 110 READ IR ,
KDR4 10 WRITE THWAL FI AW
kP26 110 ADDR-MOL [TNnshe oL WY [AVANW
kP MREQRN_ W W
KP26 100 ADCR ACK _ Y \| I\
Kr26 170 RO kST AN AN
kD@4 MDL-DSR [l N
ko6 PRe MRLS _RiTIN mm '
KD®6 SET DSR-MOL _f\ [\
KDQ4 CAJ;AJLK\XXM\\X&W...___ o
KD@4 1/0 LATA AcK SN
K024 DsR-vix AT m X\ :
KL®6 STROBEMRISIY ! il '
kD@1 10 MR- s [l\\lm mm.
i KP26 110 MaSAK M .
KDES ENB CYCLE DMWY KU24 RETURN CATA [3 ijcle DCH IN
KD®5 IN XFER CYCLE _MUAVIITANINY _ ' Timing D’mgram. 62l

KDOS DATA 18 _ QT AT,

kP 0P 2 AL
KUD5 STROBE 10 8F_f]

/095 DATE CvLE TN

SINGLE - CYCLE BLOCK TRANSFER

CPU

PROGRAM INITIATES
WORD COUNT (WC) &
CURRENT ADDRESS

(CA) THEN ENABLES

THE DEVICE
DEVICE

DEVICE POST A
* SINGLE CYCLE
REQUEST WHEN
READY

I/0 PROCESSOR

DATA CHANNEL

GRANT IS ISSUED
WHEN I/O PRO- ‘:
CESSOR IS READY

DEVICE SUPPLIES
CURRENT ADDRESS
AND DATA TO I/0
J | BUS THEN
INCREMTS ITS
WORD COUNT AND
CURRENT ADDRESS

’

REQUEST STOP NEXT REQUEST
MEMORY AND IF WORD COUNT
SUPPLIES CURRENT OVERFLOWS

ADDRESS AND +r—

DATA IN

SEQUENCE

1S
DEVICE STILL

YES

AVAILABLF

JOB DONE
NOTIFY CPU

21-14

ENTRAL PRO

IPROGRAM INITIALIZES

WORD COUNT AND
. JCURRENT ADDRESS
OCATION

AM INITIALIZE
& STARTS DEVICE
WITH INSTAUCTIONS

DEVICE

WHEN DEVICE HAS

I DATA READY OR
NEEDS DATA A RE-

10 PROCEBSOR

WHEN THE 1/0 PRO-
CESSOR IS READY A
GRANT 1S ISSUED
TO REQUESTING
DEVICE

QUEST 1S PLACED
ON THE /0 BUS

L

THE DEVICE
SUPPLIES THE ADD-

RESS OF THE WORD|
COUNT, CURRENT

ADORESS PAIR

THE 1/0 PROCESSOR

FETCHES, INCRE~
NTS, B REPLACES

THE WORD COUNT

IF WORD COUNT
OVERFLOW, THEN AN

VICE CLEARS iTS

ENABLE AFTER
CURRENT WORD

OVERFLOW 1S SENT

TO DEVICE

HAS BEEN

THE 1/0 PROCESSOR
JFETCHES, INCREMENTS,
& RESTORES THE
CURRENT ADDRESS

THE 1/0 PROCESSOR
TAKES DATA FROM
[DEVICE AND
STORES IT IN
MEMORY LOCATION
SPECIFIED BY CA

IS
DEVICE

!

SETA PROGRAM
INTERRUPT TO
INDICATE DONE

gy o
1 PROGRAM INTER-
RUPTED & NOTIFIED

THAT DEVICE (S
DONE

STILL ENABLED
?

TRANSFERRED

Figure 5-2 Muiticycle In Block Transfer, Flowchart

21-15

18 -0004

NTRAL PROCESSOR

GRAM INITIALIZES

RO COUNT AND
CURRENT ADORESS
LOCATION

& STARTS DEVICE

PROGRAM INITIALIZES
WITH INSTRUCTIONS

DEVICE

WHEN DEVICE HAS

l DATA READY OR
~—————"INEEDS DATA A RE-

1/0 PROCESSOR

WHEN THE 1/0 PRO-
CESSOR IS READY A

QUEST IS PLACED
ON THE 1/0 BUS -

|

GRANT IS ISSUED
TO REQUESTING
DEVICE

THE DEVICE
SUPPLIES THE ADD-

RESS OF THE WORD)
COUNT, CURRENT
ADDRESS PAIR

DEVICE CLEARS ITS

THE [/0 PROCESSOR IF WORD COUNT ENABLE AFTER
FETCHES, INCRE - OVERFLOW, THEN AN CURRENT WORD
MENTS, 8 REPLACES OVERFLOW IS SENT HAS BEEN
THE WORD COUNT TO DEVICE TRANSFERRED

THE. 170 PROCESSOR
FETCHES, INCREMENTS,
8 RESTORES THE
CURRENT ADDRESS

3

THE [/0 PROCESSOR
FETCHES DATA
SPECIFIED BY THE CA,
PLACES IT ON THE

3us
1

'

THE DEVICE smoess]

THE DATA INTO TS
REGISTER

1S
DEVICE
STILL ENABLED
?

NO

y

SETA PROGRAM
INTERRUPT TO
INDICATE DONE

CPY ¢
PRIOGRAM INTER-
RUPTED & NOTIFIED

THAT DEVICE 1S
DONE

YES

" 15:0004

Figure 5~1 Multicycle Out Block Transfer, Flowchart

-t 21-16

PDP-15 MEMORY
&
{COMMON MEMORY)

PDP-15 I/0 BUS

MX-15 B
MEMORY
MULTIPLEXOR
UNIBUS
8K 11/05 PDP-15
LOCAL MEM CPU CPU
INTERRUPT

LINK

. BASIC BLOCK DIAGRAM

Lo Ko P |

Z-¢c

BLOCK DIAGRAM OF MEMORY CONTROL

PDP-15/76

MEMORY
15 MEMORY
M-15) CONTROL MA MB
) f L) ¥
e L 3
MX 15-B PDP-15 ADDR. PDP 11,05
CONTROL MODIFICATION CONTROL
cl1 co
SETRCTOR '
UNIBUS
MDL
. — 1 — W
MCL
PDP-15 PDP-11/05

MX15B MEMOR. QUEST CONTROL

15 M REQ
15 REQ (0) H | — PDP 15 MREQ
o 8 — e Fop 1 wep
11 CYCLE (0) H — j) P@WR = L__J‘ }D@
ENAB REQ (1) H__D__‘
DATIP (0) H =i
ENA-REQ (1) L

DCH ACT (0) H

MSYNC
DC LO (H) ID—‘

[\]
N ADR ACK (1)B L ¢—p M REQ
w STROBE
15 M REQ c 1 - =
—MRLS ACK).
15 ——
REQ ~-MBSY =
D 0 .
1 - -DCH ACT— l_D_
MSYNC C ‘7
11 -15 TIME OUTMD”
D 0
REQ ACT “— MRLS ACK V
+3

ADD-BUS

MSYN L 15 TIME OUT (1) H

y-cc

PDP-15 READ OPERATION

CPU MX15-B 15 MEMORY
ADDRESS — — 21 cp To MEMORY — e ADDRESS
e |-— ¢ ENaB 15 cyCLE —_———— MED
! LD MA
M RE
g #l— — | —|15 REQ * REQ ACTIVE ————— g;iiTCON Ry
] TIMING
R ADR ACK
O-MREQ * ADR ACK - -] - $ ack HowD - — —
DROP ADDRESS OFF MDL. :
‘MREQ 4 ADR ACk
—-i'_D_ t MEM-CPpp
12,522_.4D 4 15 CYCLEpp "
— 1 ENA REQ (yrphilw 2
l ¢ REQ ACTIVE
DATA
ENDLgFMéP CYCLE DATA — — —=[MeMORY TO CP —_— — =
RD RST
ures RD _RST - — — 15 CYCLE -1
4 DATA ACK
MRLS MRLS $ MR ack
bl- — —] 15 CYCLE J— — — «§ RD RST
| BUS EN
pata ACK | [Ewa 15 cvorE | DATA ACK
[;‘1 CONTROL-CP TO MEM |
{ Mrus * § oata acxk MRLS ACK —— TToveiE | — _ _y —loMRLS ACK .
MRLS _—— 15 CYCLE MRLS MRLS ACK

I & 15 cycLE

PDP-15 WRITE OPERATION

S-2¢

CPU MX 15 B 15 MEMORY
ADDRESS ADD
o —— —| CP—> MEMORY —_—— RESS —of
MWR ENA 15 CYCLE 1 MWR .L LD MA
ﬁ vy — WR CON
MRE MRE START MEMORY
g ﬂ----—l 15 REQ * REQ ACTIVE | — — — 2 -5 TIMING
ADR ACK*TRAP*TS02%* ADR ACK ADR _ACK
ACK HOLD —_—— ——
@#3*START WRT* } I f
CPACT : CP WRT ADR ACK M REQ ‘ ADR ACK
.|
CP WRT ADR ACK : c f memory 10 cp J
1- § MREQ
2- LD MO WITH > $ 15 cxc
DATA YCLEFp
e R i Povce)
$ REQ ACT
3- 110NS LATER DATA DATA J
GENERATE - CP TO MEMORY —_——— ENABLE MB
MRLS :
*
MRLS MRLS LDMB & START
DATA ACK N —- 15 CYCLE ———— 7 WRITING PROCESS
MRLS ACK
DATA ACK _f _ ENA 15 CYOLE J_ — DATA AC o 4 EUs BN
] CONTROL CP TO MEMORY]
MRLS ACK
‘ MRLS l 15 CYCLE l___ —_ ﬁt MRLS ACK
{ & 15 cycLE .
MRLS ~ MRLS
——- 15 CYCLE | ———— { MRLS ACK

ADDRESS MODIFICATION MX15-B

THE ADDRESS CONSIDERATIONS ARE AS FOLLOWS;
1. PDP-11 ADDRESS BITS ARE
BUS Al7 THRU BUS Af

BUS Al7 IS THE MSD
BUS A@ IS THE LSD

. BUS A@ IS NOT USED FOR ADDRESS DECODE.
PDP-15 ADDRESS BITS ARE AS FOLLOWS;

MDL @@ THRU MDL 17

MDL @@ IS NEVER USED FOR ADDRESS DECODING

2. PDP 11 ADDRESSES ARE INCREMENTED BY 2.
PDP-15 ADDRESSES ARE INCREMENTED BY 1
3. PDP 11 CAN ADDRESS PDP-15 MEMORY THE SECTION OF

MEMORY THE PDP 11
CAN ADDRESS IS CALLED COMMON MEMORY.

4. ©PDP 11 SYSTEM ASSSUMES ANY ADDRESS ABOVE
124K AS I/O ADDRESS.

5. PDP-11 LOCAL MEMORY CAN BE 8K, 12K, 16K.

6. PDP-11 ADDRESS 28K
AMOUNT OF CORE ADDRESSES 28K
AMOUNT OF LOCAL CORE ADDRESSES _8K
PDP-11 CAN ADDRESS 20K OF COMMON MEMORY. 20K

22-6

PDP 11 ADDRESS 160 000 CAUSES
THIS ADDRESS TO BE MODIFY

IN THE PDP-11 IF BITS 13, 14, and 15 are 1l's
JAM BITS 16 AND 17 TO A ONE.

ADDRESS 160 000 NOW BECOMES ADDRESS

760 000 WHICH IS THE START OF I/0 ADDRESSES.

PDP-11 CAN ONLY ADDRESS COMMON MEMORY AND LOCAL MEMORY.
UNIBUS DEVICES CAN ADDRESS LOCAL MEMORY AND PDP-15 MEMORY

LOCAYIONS UP TO 757776 WHICH IS BLOCK 3 PAGE 4,

QUESTION: : ‘
WHAT IS THE PDP-11 ADDRESS THAT WILL ADDRESS
LOCATION 50 IN COMMON MEMORY ?

ANSWER: ‘ ‘
~ 15 ADDRESS X2 + LOCAL MEMORY SIZE = PDP-11 ADDRESS

50 x 2 + 40000 =

120 + 40000 = 40120
PDP 11 ADDR = PDP 15 ADDR
40120 = 000050

[s Xo PRe

-

PDP 11 ADDRESS RANGE

v

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0o 0 0 O 0001 01 0 ©0 0 O (401208)
UNIBUS
ADDR.
40120
MX15-B
MODIFY ADDRESS
&
SHIFT
GENERATE MSYNC *
* MSYNC BEING GENERATED:
ADDRESS IS COMMON MEMORY.
1 3 4 5 7 8 91011 12 1314 1516 17
o o0 0 0 0 0 0 0 00O 1 01 00 O
MDL
PDP-15
ADDRESS RANGE ADDR PDP-15 ADDR X 2 + LOCAL MEMORY
000050 SIZE = PDP-11 ADDRESS

(COMMON MEMORY)

PDP-15 MEMORY

MX 15-B ADDRESS MODIFICATION

TO MA

22-9

= o= o= o= = ADDRESS IN 40120
~ v wn < e}
~ ~— — ~ -
< <& =< « <
n 4] 423 192} n
2 8 o)
m
]
' G740 |}
BO ‘_«"_2_ go o |al
Rl F2{10 o [c1
o ~ N (s8] <
o m m - fos} - m B2 -—— 20 El
o i N
2l &= | <] =] 53 . |30 /o |m JMPER E1 TO PIN 4
Ml64 - ADDER B4 ‘_«__ 4 0 K1l
- OUTPUTS OF G740
g o % N . == BO THRU B3 H
B4 L
- = = = - THIS CONFIGURATION
& IS FOR 8K OF
S \;7 LOCAL MEMORY
)
o] o o] jos] s ot ™
~ O [Ta} <3 4
2l oz | o &
g g 2 2 BUS MSYNC
l > CARRY OUT H
P
—— PWR-OK L
US
12 All A6 AS A4 Ai Ai Al AT MSYNC
ADD VLo l
TO \
BUS °
us \ , SHIFT
‘] LOGIC
MDL-0]1, 02, 03, 04 05 06,07 12 13 14 15 16 17
ADDRESS 0 0 0 0 0 0
OuT l

-11
2 10] 9 8 7 :
-15 15 {14 13 12 |12 5 4 3 2 1
0 1 2 3 4 5 6 7 8]lo9 |10 |11 13 § 14 |15 |16 | 17
L
8K
37
;)7 16K .
BLOCK UPPER
128K 35
34 760000 WINDOW
33 760000 SETTING
32 740000 760000
31 72 —
30 70 740000 4
66 72 740000 ‘
64 70 72
62 66 70 128K
60 64 66
62 64
27 60 62
26 60
BLOCK 2 25 v
96K 24 56
23 54 —_—
22 52 22 ,
21 50 oo 56
21 46 54
50 52
44
46 50
42
40 44 46 96K
42 44
40 42 |
17 40 -11 1/0
16 RANGE
BLOCK 1 12 36
64K 34 26
13
1o 32 34 4
30 32 36
11 . 26 30 34
10 24 26 32
22 24 30 .
200000 22 ;i 64K
0000
20 22
07 200000
06
32K 04 140000 160000 !
o3 120000 160000 v
02 100000 140000
o1 060000 120000 140000
00 040000 100000 120000
060000 100000
V 32K
128K - 15 @ - 37776 g - 57776 g - 77776
-11 CPU
8K -11 RANGE *
12K -11
16K -11

22-10

TO MEMORY

MX15B
PDP-11 PDP-15
CONTROL CONTROL

INTERRUPT LINK

UNIBUST MDL LINES
PDP . . . CPU & @=PDP 15
11/05 i = = T T ™1 1oru

|
| ? : ~ 0 1/0 BUS
| b 2 le |
' Al
. % i e}
R |
H —
i {
| |
|

EXPANDED INTERRUPT LINK

22-11

(6)

BUS REQUEST

BR 7
l 2 BG 7 DR 11C
: SACK 3
PDP-11/05 .
4 _BBSY 0-BBSY
INTRPT 0-INTRPT
VECTOR (310) 0-VECTOR
SLAVE SYNC
J DEVICE ASSERTS BR
(2) CPU ASSERTS (1) GRANTED AT END OF INSTRUCTION
BUS GRANT r PRIORITY ARBITRATION WITH PSW
AND OTHER BRS
(BR 7-THRU BR4)
(3) DEVICE ASSERTS SACK
DROP BR REQ
(4) CPU DROPS
BBSY & GRANT
(5) DEVICE ASSERTS BBSY
DROPS SACK BRINGS UP
VECTOR ADDRESS AND INTRPT
CPU RECEIVES *-
VECTOR * INTRPT SSYNC 0—> BBSY
PROCESSES INTRPT 0~ INTRPT
IF PRIORITY IS 0= VECTOR

HIGH ENOUGH -

GO TO ROUTINE
THAT WILL READ IN
TCBP LOCATED IN
ADDR 767764.

22-12

DR 15C

L1OR \ TCBP

‘bDONEFF

TRANS

BLOCK DIAGRAM

GENERATION OF A BUS REQUEST

DR 11 C #1

\ 4

REQ A- * ESYRC

* INTRPT ENA A LD BR 7 ’
l —~ UNIBUS

ZRC * BEIY

0= SACK
BG
UNIBUS
SACK
TRAWT+EEEY BBSY
s oeey o

"DR 11 C ASSERTS BBSY"

‘ VECTOR * VECTOR=3101{ DR11C#1
. UNIBUS

0—» BBSY SSYNC
0—> VECTOR|

- ‘O==» INTRPT UNIBUS

77«13

DATA IN TRANSFER

GET THE TASK CONTROL BLOCK ADDRESS

WHICH CONTAINS THE CONTENTS OF THE TASK
CONTROL BLOCK POINTER REGISTER IN THE DR-15C.

767764 (ADDR)
PDP CO*Cl:DATAL (0xQ) DR 11C
11/05 MSYNC ‘ #1
DATA (C) OF INPUT GATES
S SYNC
PDP 11/05 READS CONTENTS OF THE INPUT GATES

TASK CONTROL ¥

BLOCK

* READ IN LINES

READ IN LINE :

READS CONTENTS OF INPUT GATES

TO THE UNIBUS

DATA TRANSMITTED
DATA TRANSMITTED

Al7 THRU A3

: ‘ TRANSFER REQ IN DR15C

4 DONE pp

22-14

AC
TCBP | o
j¢—— T/0 BUS | (
DRI2C SEL.. 0 2 Ja
1 4
L10R —x READ INPUT DATA
TCBP SEL"
— o BUFFER ONTR
REGISTER 3 C OL
202 —I l
A0l Cl CO A0
r
DATA SELECT n02|ao1
DR11C XMITTED ol o DR11C #1 IS
SELECTED
*
0
)
SSYNC
MYSNC ADDRESS
DECODER
yBUS r t
ADDRESS OF

DATA CONTROL CHART

cl co A0 CONTROL
DATA 0 0 0 IN
IN 0 0 1 IN
DATA IN { 0 1 0 IN
PAUSE 0 1 1 IN
DATA { 1 0 0 88% Iﬂ'gga
ouT 1 0 1 OUT HIGH
DATA OUT 1 1 0 OUT LOW
BYTE 1 - 1 1 OUT HIGH

22-15

91-¢¢

PDP-11 GENERATES API REQ (JOB DONE)

TASK CONTROL BLOCK POINTER =»TO WORD ZERO OF THE BLOCK

HIGH BYTE LOW BYTE
WORD ZERO API PRIORITY API
LEVEL 0,1,2,3 ADDRESS
WORD ONE FUNCTION | TASK CODE
WORD TWO REQUEST EVENT VARIABLE
WORD THREE THRU 3=N DEPEND UPON PARTICULAR TASK
HIGH BYTE LOW_BYTE
WORD ZERO 001 200
WORD ONE FUNCTION: TASK CODE
INTERRUPT WHEN RK 05
JOB DONE

API LEVEL ONE ADDRESS IS ASSOCIATED WITH DR 11C #1
OUTPUT BUFFER, WHOSE ADDRESS IS 767773, HIGH BYTE.

OUTPUT BUFFER ADDRESS

API LEVEL ZERO : DR 11C HI LOW BYTE 767762
API LEVEL ONE : DR 11C#1 HIGH BYTE 767763
API LEVEL TWO : DR 11C#0 LOW BYTE 767772

API LEVEL THREE : DR 11C#0 HIGH BYTE 767773

O B

DAT
SRR A———

PDP-11/05

ADDRESS

767763

Cl*CO

(DATOB)

DATA

MSYNC

SSYNC

o

L

PURPOSE :

TH1S MEANS AS SOON AS THE CPU ENTERS THE FETCH

MAJOR STATE AND WORKS ON THE OPERAND XCT 200

(C) 200 = JMS TO SUBROUTINE TO HANDLE
THE JOB DONE INTERRUPT.

LOAD THE DATA OUT BUFFER HIGH BYTE

WITH THE API ADDRESS.

GENERATE API REQ ON CHANNEL ONE.
THIS GOES THRU THE API FUNCTION
WHICH WILL SEND BACK A GRANT BY

WAY OF THE I/O BUS

API FACILITY

4

4

I1/0 BUS

DR 11C#1

CPU

40

MO

e LD

IRS

FORCE XCT

a
|
!
i
1

M6

I/0 ADDR LINES

DR 15C

"API IS ENABLED"
NEW DATA RDY H:

$APT "1"FLAG:API"1"START

DR11C#1

LOAD

ODB

H.BYTE |L.BYTE

I

[UNIBUS

22-17

GRANT COMES BACK

4 ena

: SEND OUT THE

ADDRESS ON THE I/O BUS
I/0 ADDR 11 THRU
I/0 ADDR 17.

THIS ADDRESS GOES
TO CPU (MO REG)
AND HARDWARE
WISE FORCE XCT.

8T-¢<C

DATA OB

JOB DONE (API REQUEST)

DR 15C
DR1iC#1i
f’
N
NEW DATA
READY HIGH H /7~ [
¥‘»
API 1 | l
FLAG (1) H P OUT HIGH
DATA BUFFER-HI BYTE ¢__._.C :
L
o ‘1\\ D DB
API 1 O
— SELECT 2
START API ENABLE
M 104 ENA A
lz SELECT 0 2 4
4-———: API C'—O T T
GRAN G ADDRESS SELECT DATA CONTROL
: Ff 1
T [a 01 (1)
1/0 BUS E cl co AO
S A 02 (0)

@ APT 1 REQUEST

MSYNC
———»| ADDRESS DECODER l

Al7 THRU A3

ADDRESS 767763
DATOB Cl1 CO

(1) (1) (1)

61-2C

BYTE MODIFICATION IN COMMON MEMORY

THE LOWER BYTE
AS A RESULT
OF THE PDP 11-05 ISSUING A "DATAOB"

MODIFY LOW BYTE

ADDRESS BIT A00=0 :
HIGH THERE FOR GATE
LOW DATA TO MDL H

THE BUS LEVEL IS
HI BYTE TO MDL *

ROL BUS LEVEL
UPPER LOWER UNI BUS AQ0 = 1 : HIGH BYTE LOW
BYTE BYTE A0 = 0 : LOW BYTE HIGH
~ parre O~ | 2 toru 9 |10 THRU 17 BUS AOOL A 00 H A 00 L
(C) OF MEMORY
LOCATION
. 2 y + 4
BYTE REG. MDL - UNIBUS
AOO L HIGH BYTE LOW BYTE
TO -——1 TO
MDL L MDL L a
)| UNIBUS BITS D7 - DO
& y ‘—\ UNIBUS BITS D17 - D8
(DOESN'T USE BITS
D17 & D16 WHEN PDP-11
CPU ACCESSES COMMON
SAME MDL LINES MEMORY .
AS ABOVE. TO
RESULT MODIFIED SRME CHANGED MDL H

0z-ze

COMMON
MEMORY

MEMORY HANGS
UP

d ssync

DATIP
—g

ADDRESS

CO * C1

MSYNC

DATA

-

SSYNC

MSYNC

PDP 11-05

DO A DATIP

(CPU ONLY ONE WHO USED

DATIP CYCLE.)

‘ MSYNC

NOTE: DATIP ALWAYS FOLLOWED BY A DATO OR DATOg

COMMON
MEMORY

RELEASE MEMORY

WRITE DATA IN
CORE.

$ ssync

DATOB.

.épDRESS (SAME AS ABOVE)

co * Cl

MSYNC

DATA

SSYNC

MSYNC

v

[Y

PDP 11-05

DO A DATOB

4 MsyNC

PDP 11-05 HAS DATA

XVM HARDWARE

To be supplied at a later date.

23-1

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04A
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	10-01
	11-01
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	13-01
	13-02
	13-03
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	18-01
	18-02
	18-03
	18-04
	18-05
	19-01
	19-02
	19-03
	19-04
	19-05
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	22-13
	22-14
	22-15
	22-16
	22-17
	22-18
	22-19
	22-20
	23-01

