
PDP-4 
FORTRAN 

USERS' MANUAL 

J-4FT 

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS 



PDP-4 

FORTRAN 

USERS' MANUAL 



Copyright 1964 by Digital Equipment Corporatiion 



INTRODUCTION 

This manual details standard operating procedures for the several available PDP-4 FORTRAN 

systems _ The procedures are standard in the s,ense that they are directed to the person who 

wants to write and execute FORTRAN programs with little or no attention paid to the details 

of the operation beyond the source language level. PDP-4 FORTRAN is written for two sig­

nificantly different hardware configurations, the one an exclusively paper-tape configuration 

and the other a configuration which includes minimally two logical tape units (either normal 

magnetic tape or a dual Micro Tape unit) and an 8K memory. 

The principal subsections of the FORTRAN system for paper tape are: 

Compiler 

Assembler 

Operating System 

Library. 

The compiler accepts input in the FORTRAN language and produces an output in an inter­

mediate language acceptable to the assembler. The assembler accepts the compi ler output 

and produces a binary relocatable version of the program and (in 8K systems) a binary version 

of the I inking loader. In 4K systems this loader is too large to be kept in memory with the 

assembler, and it constitutes an additiona I primary element of the system. When the user is 

ready, he loads his main program and any sub-programs, followed by any built-in functions 

called from the library. Once the total program is in memory, he loads the operating system and 

executes his program. The operating system contains an interpreter for floating point arithme­

tic, an interpreter for format statements, red tape routines such as fix a floating number and 

vice versa, and the I/O routines. The operating system must be in memory when a FORTRAN 

program is execu ted. 

PROCEDURE FOR USING FORTRAN WITH A PDP-4 PAPER TAPE SYSTEM 

Since the avai lable memory is small (74, 000 bits), the FORTRAN system for 4K paper tape sys­

tems is slightly less flexible than normal systems. "AII format has been omitted as well as Hol­

lerith input. Floating point numbers may be output in "EII format only. About 1400 decimal 

locations are available for program and data. 



The following procedure, with differences noted, applies equally well to 4K and 8K systems. 

In an 8K system about 4600 decimal registers are avai lable for program and data. The boot­

strap loader with starting address 7770 (for 4K machines) or 17770 {for 8K machines} is called 

the readin mode loader or RIM loader. Pressing the START switch on the console with the ap­

propriate address in the ADDRESS switches is called RIM "start." 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Step 8: 

Prepare the programs to be compi led in accordance wi th the conventions 

establ ished in the II Summary Description of PDP-·4 FORTRAN. II 

Place the paper tape labelled FORTRAN in the reader and RIM "start. II 

Place the program to be compi led in the reader (lnd press CONT I NUE. The 

punch must be on. FORTRAN wi II punch out the intermediate object tape. 

If other programs are to be compi led, repeat step 3. If an accidental error 

occurs at any time, such as the punch running out of paper tape before com­

pilation is completed, the compilation procedure may be restarted by re­

placing the source tape in the reader, putting octal 22 in the ADDRESS 

switches, and depressing START. 

If an error occurs in the source language, the compiler will type a three­

letter plus two-digit code on the teleprinter followed by the current (last 

encountered) statement number. See Appendix II for the associated error 

conditions. As a rule, a source language error will make any further action 

useless. The error must be corrected and the program compiled again. How­

ever, compilation should be completed to uncover all errors in the same pro­

gram. In 8K systems, the compiler will also print the offending line with 

the errant charac ter flagged (by I ine feed). 

When all necessary compilations have been successfully completed, remove 

the output tape(s} from the punch. 

Load the FORTRAN Assembler through RIM II start. II 

Place the first program to be assembled in the reloder. If severa I programs 

were compiled together they will be separated from each other by a short 

length of blank tape. The punch must be on, and the accumulator switches 

must be all in the down position. Depress CONTINUE. The assembler will 

punch a partial binary output. 

2 



Step 9: Depress CONTINUE to finish punching of the binary output. Symbols which 

are used in the source program, but never appear on the left hand side of an 

arithmetic statement or in an input statement or as the argument of a sub­

routine call, will be printed with a relative location automatically assigned 

by the assembler. Any statement number which is referred to but never used 

as a statement label will be printed also. 

Step 10: If a printout of the relative locations of program symbols is desired, put the 

least significant (right most) switch of the ACCUMULATOR switches (test 

switches) to the up position and press CONTINUE. If the printout is not 

desired, leave the switch in the down position and press CONTINUE to 

restore the assembler for the next assembly. For detai Is about the assembly 

capabilities of the PDP-4 Assembler see Digital-4-15-S. Many of the oper­

ations possible with the FORTRAN Assembler have not been del ineated here. 

Should an error occur during the assembly procedure, the Assembler will 

print a message on the teleprinter. For a summary see Appendix II. An 

error printed by the assembler usually is the result of an original program 

error which was not detected by FORTRAN. 

Step 11: If more prpgrams are to be assembled, place the next tape in the reader and 

complete step 8. If several programs were compiled together, be sure that 

the blank tape area is under the reader light before continuing. 

Step 12: Remove the assembled programs from the punch. Each program will have its 

title punched in readable format at the beginning. Since t~e FORTRAN As­

sembler is a one-pass assembler I this will be at the physical end of the 

punched tape. 

Step 13: Load the FORTRAN linking loader through RIM "start,1I for 4K systems. 

Omit this step in an 8K system. 

Step'14: Load the main program through RIM IIstart. II It is important that the main 

program be loaded first. In an 8K system, the linking loader is punched on 

the main program tape only. The loader is a lengthy strip of tape with the 

eighth level punched at every frame and is unmistakable once recognized. 

Step 15: Place any sub-programs in the reader (readable title is always the leader), 

and load through RIM IIstart. 1I The loader wi II handle the problems of I ink­

ing between programs. 

3 



Step 16: To obtain a printout of the-obsolute locations of sub-program labels put 5 

in the ADDRESS switches and depress START. Should a subroutine call or 

library function call not yet be "Satisfied (i .e. not yet loaded), the symbol 

will be preceded on the line by a minus sign followed by an address desig­

nating the last refe:renced i ink to this symbol. 

Step 17: If no library functions are needed go to step 18. Place the library tape in 

the reader, put 6 in the ADDRESS switches and depress START. The linking 

loader will search i-he library for functions called by the program. When 

all the called functions have been loaded, the loader will halt, perhaps 

part way through the library tape, displaying in the accumulator lights the 

last program address. In general, overlays of program and common storage 

will not be detected by the loader; this responsibility is left to the program-

mer. 

Step 18: Load the operating system through RIM II start. II Put octal 22 in the ADDRESS 

switches and depress START to execute the progrom. If paper tape input to 

the FORTRAN program is used, this should be reDdy in the reader. 

THE FORTRAN SYSTEM 

When Micro Tape or normal magnetic tape is available, a FORTRAN oriented job-processing 

executive system, called DECSYS, moy be used. A minimum of two physical tape units is re­

quired. An int'egral part of DECSYS is the FORTRAN debugging system which is described 

later. The basic jobs which DECSYS can do are detai led in the following paragraph. The sys­

tem is organizationally open-ended in the sense that its executive list (job list) may readily be 

expanded or changed to 5U it the purposes of a given insta Ilation. 

The DECSYS Job-List 

The convention of the context in which jobs are defined is that two tapes are available, a sys­

tems tape and a scratch tape. In general, the systems tape may not be written onJthe scratch 

may be read. Paragraph headings are control commands and are typed in on the teleprinter. 

Get Name - DECSYS will retrieve the named program from the system tape and relinquish con­

trol to that program. 

4 



Compile N Name, Name, Name; M Name, Name~ - Nand M are both two valued; they 

indicate the physical source for the list of programs which follow; 11111 means paper tape, 11211 

magnetic tape. If "copy" is typed before "compile;1 DECSYS will copy the systems tape onto 

the scratch tape and append any programs now on paper tape before proceeding. 

Either list of names may have one element only, and either may be omitted. If a source des­

ignation is not typed, the source is understood to be paper tape. Unless errors occur, the job 

will proceed .to the point of execution (load and almost go). Depress CONTI NUE to execute 

the program. 

All intermediate output is stored on the scratch tape and may be retrieved at any time by again 

designating the scratch tape as a systems tape and restarting DECSYS. If errors occur during 

compilation, the compilation will be allowed to proceed although the output will be lost and 

DECSYS will automatically restart. If errors occur during assembly, however, normal assembly 

is allowed to continue. 

DECSYS will return control to the programmer in the assembly error mode with the following 

eventualities possible: 

Cancel! 

Symbols~ 

Change ~ 

Print ~ 

Ignore! 

DECSYS wi II restart 

DECSYS will print output symbol definitions. 

DECSYS will prefix the lines typed following "change" to 

the intermediate language and reassemble. 

DECSYS will print a listing of the assembly input. 

DECSYS will ignore the error and continue the job. 

Assemble N Name, Name, Name; M Name, Name ~ - The remarks about N, M, and the lists 

made in the previous section apply here. If "copy" precedes lIassemble, II DECSYS wi II copy 

the systems tape onto the scratch tape and append a II paper tape programs before proceeding. 

Assembly procedure will follow the path outlined in the preceding section. 

Execute Name - DECSYS will search the systems tape for the named program including sub­

programs called by it and proceed to the point of execution. Depress CONTINUE to execute 

the program. 

5 



Edit - DECSYS will retrieve the editing program and relinquish control to it. English language 

sources either in FORTRAN or assembly (machine) language serve as input. 

Debugging in the FORTRAN System 

An integral part of DECSYS is the FORTRAN debug mode. In place of II compile,ll the control 

word IIdebug ll is typed. FORTRAN is then switched into the debug mode and the compi led pro­

gram includes entries to the Debug routine incorporated in the (debug) opsys. All executable 

statement numbers are available as labels to the debugging program. When the point of ex~ 

ecution is reached and DECSYS is in the debug mode, the programmer may type: 

XXX 

TRACE 

MUST 

LIST 

XXX 

XXX 

Where XXX is a statement number, III ist ll is a I ist of variables to be printed out when the as­

soc iated statement number is encountered, II trace ll wi II cause the printout of the last five 

statement numbers encountered when the designated statement number occurs, and IImust ll 

designates a statement number which must be encountered in a reasonable time or else an error 

halt should occur. Whenever the debug program is in control, i.e .. just after a printout, its 

II I ive II I ist of debug commands may be a I tered • 

6 



APPENDIX I 

DIAGNOSTICS 

The following diagnostics may be printed during compi lations. Each diagnostic is identified by 

a three-letter name, and a two-digit number. In addition, when using an 8K compiler, the 

offending statement will be printed, with a I ine feed after the last character processed. For 

all errors, except those which indicate storage capacity exceeded, processing will continue. 

For both systems, the diagnostic error print (below) will be followed by the current statement 

number. 

Name 

CON 

COM 

ASG 

SUB 

Number 

2 

2 

Why 

CONTROL STATEMENT 

Illegal Control Statement. The statement 
will be ignored. 

Upper case character in Control Statement. 
The statement wi II be ignored. 

COMMON STATEMENT 

Illegal entry in list. The entry will be ignored. 

Symbol appears twice in COMMON. 
The second occurrence will be ignored. 

ASSIGN 

N not a fixed point number. Attempt to use 
it anyway. This will probably result in an 
undefined symbol at assembly. 

2 Number not followed by to. Ignore the state­
ment. 

3 No fixed point variable. Use the variable as 
fixed point. 

4 Illega I format - variable. Ignore the rest of 
the statement. 

SUBROUTINE AND FUNCTION 

Name not a variable. Compi Ie anyway. 

7 



Name 

DIM 

DO 

ILF 

Number 

2 

3 

2 

3 

2 

3 

4 

2 

3 

4 

5 

6 

7 

11 

12 

13 

8 

'Nhy 

Dummy symbol not a variable. Treat as a 
symbol. 

Dummy symbol used twice. Use anyway. 
Will result in a multiple symbol definition 
at assembly. 

DIMENSION 

Array name not a variable. Treat as a var­
iable. 

Array dimensioned hvice. Process anyway. 

Dimension not a fixed point number. Pro­
cess anyway. 

DO ST A TEME NT 

First two letters not lido. II Ignore statement. 

No statement number. Process anyway. 

No end test va lue spec ified. Process anyway. 

Too many characters. Ignore excessive 
characters. 

ILLEGAL FORMAT 

Non-statement number at left margin. Pro­
cess as statement number. 

Missing left parenthesis. Assume present. 

Missing right parenthesis. Assume present. 

Missing left parenthesis. Assume present. 

Missing right parenthesis. Assume present. 

Comma missing in go to. Assume present. 

Variable missing in ,arithmetic statements, 
ignore second opera tor. 

Illegal device number in input or output 
statement. Process anyway • 

Illegal format in accept statement. Ignore 
statement. 

Illegal format statement number in an I/O 
statement. Process anyway. 



Name 

ICH 

DIT 

UFX 

FOR 

Number 

17 

20 

22 

24 

2 

4 

Why 

Extra right parenthesis. 

Extra characters in statement. Ignore exces­
sive charac ters. 

Comma missing in repetitive element in I/O 
list. Assume present. 

Illegal format in I/O list element. Ignore 
a II characters to next comma. 

ILLEGAL CHARACTER 

Illegal character. The character will be ig­
nored. 

Illegal upper case character. Treat as lower 
case. 

No more characters after an illegal one. 

CALL DIT MORSE. Cannot proceed. 

Immediately 

2 Wrong place in table 

3 Dispatch number too big 

10 Too many caPs 

11 Illegal cal 

12 Too many exits. 

If any of the errors labeled DIT occurs, please note any pertinent 
data and send to DEC-Programming Group. 

2 

3 

2 

UNSEEN FIXED POINT 

Empty or punctuation. Statement done, or a 
punctuation character. Process as if it were 
fixed poinL 

Floating point quantity, treat as fixed point. 

Not a fixed point constant. Treat as if it 
were. 

FORMAT STATEMENT 

Character missing. 

Illegal format. Ignore remainder of state­
ment. 

9 



Name Number Why 

3 Characters missing. Ignore remainder of 
statement. 

4 Illegal control chanacter. Process anyway. 

5 Illegal punctuation .. 

6 Letter other than, I, F, E, X, H. Ignore 
remainder of statement. 

7 N too large in H. 

IFU ILLEGAL FUNCTIO'N USAGE 

Function name on left side outside function 
definition. 

SCE STORAGE CAPACIlrV EXCEEDED 

Processing may not proceed. 

Pol ish stack exhausted. 

2 Table exceeded. 

3 Table exceeded. 

4 Symbol generator exhausted. 

5 Table exceeded. 

6 Statement too long. 

7 Push down stack exceeded. (too many nested 
dais) • 

10 



APPENDIX II 

ERROR MESSAGES (FORTRAN ASSEMBLER) 

With the exception of ~ (storage capacity exceeded) and ~ (illegal parity), assembly con­

tinues after the error message nas been printed, unless assembling a I ibrary tape. An error 

message may occur in one of three formats. 

Format A 

ERR VALl SYM VAL2 

Format A is used to indicate errors in the redefinition of symbols. ERR is a three letter mnemonic 

for the particular error. VALl is the old octal value of the symbol SYM. VAL2 is the value of 

the new definition attempted. Whether the symbol was redefined depends upon the particular 

error. 

Format B 

ERR OCT SYM 

ERR 

mdt 

rsp 

rda 

Meaning 

The symbol was redefined with a comma. 

A permanent symbol was redefined. 

An attempt to redefine a symbol was made. 
The symbol was not redefined. 

The general error message is printed in Format B. ERR indicates the particular error. OCT is 

the octal address at which the error occurred. SYM is the symbolic address at which the error 

occurred. 

ERR 

ifp 

ifc 

ifq 

ify 

Meaning 

Illegal format in parameter assignment 

Illegal format in a comma assignment 

Illegal format in library list 

Illegal format in internal declaration 

11 



Format C 

ERR OCT SYM CAUSE 

tms 

liq 

mdt 

tua 

ift 

I it 

ifl 

ifs 

ifi 

see 

Ins 

Toomany symbols in internal declaration 

Illegal term punctuation in library list 

The value and address disagree in an address 
assignment. 

Too many undefined symbols in an address as­
, signment. 

Illegal format in an absolute address assign­
ment 

Illegal terminator in a pundef or external list 

Illegal format in a Eundef or external list 

Illegal format in a ~art 

Illegal format in an input pseudo instruction 

Storage capac i ty exceeded 

non-symbol in a pundef list 

Format C is an expanded version of Format B. CAUSE is additional information to help the 

programmer ascertain the cause of the error ~ For example, in the case of an error caused by 

an undefined symbol, the symbol wi II be printed. 

ERR CAUSE Meaning ---
i Ip character Illegal parity (place correct character in 

ACS and "continue") 

ust symbol Undefined symbol in a start or pause 

uaa symbol Undefined symbol in an absolute address 
assignment 

upa symbol Undefined symbol in a parameter assignment 

ich character Illegal character 

sys symbol Already defined s.ymbol in internal declara-
tion 

Undefined Symbol Assignment 

At the end of assembly, before the loader is punched, the undefined symbols and their defini­

tions wi II be printed. Each undefined symbol which was used in a storage word wi II be defined 

12 



as the address of a register at the end of the, program, and the definition printed. If the sym­

bol was not used in a storage word, then just the symbol will be printed and the symbol will 

not be defined. An example of the latter is a symbol which appears to the right in a para­

meter assignment, but nowhere else. 

13 



6017 Printed in U.S.A. 1.5-2/64 


	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	back

