DEC-6-0-TP-MAC-LM-FP-ACTO2

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

DEC-6-0-TP-MAC-LM-FP-ACTOl

PDP-6 PROGRAMMING MANUAL
MACRO-6 ASSEMBLY LANGUAGE

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

Copyright 1965 by Digital Equipment Corporation

CONTENTS

o
Q

womm&wwwm—-—-—lw

Chapter

1 LANGUAGE FUNDAMENTALS ... viiiiiiiiiiiiiiiienennnens
Infroductioniieriiieiiieneeeeneerscsencocnsscnncnans
Character Set uviviieiieeenneereneeennssencnssannnans
The Location Countereieeeernerenneonenanososanaonss
Elements . ..ieniiiiiiiiiiiiiiiiiiiiiierinsnencsncannnns
Symbols «uuuiiiiiiiiiiiii i i et
Numbers ...iiuiiiiiiiiieriierenernesrocesesasnsnnans
1 T
=53
Literals .ouietiiniiiiiiiiiiiiiiiiieiietenesoncnnnnns
EXPressions ...uieeeeeseeeecncesseeenecesecoanacasannanns
Evaluation of Symbolsccovvveeiiiiiiiiiiaiiiiia.,
2 STATEMENTS o iiiiiiiiiiiiiiieeteeroecnnsasosssnasosonnanas 9
Comment Statementsveeieuerieresecoseossocsncananons 10
Instruction Statementsveeiierrerenencencnesasnnsnonns 10
Primary Instruction Statementscccciiiiiiiene.. 10
I/O Instruction Statementscceeeeeeennnnnnnnas 11
Extended Instruction Statementscvviviiiinnrnnnnns 12
Assembly «oiiiiiiiiiiii i i it i i it 13
Number Codes ..vuviiiiiiiiiiiiiiineennreecnnnenns 13
Data Statementsueieiieeeereerncnsressnceceacnaennns 13
Assembler Control Codes ..vvvvireneeeeerneneeeeeencenanss 17
Listing Control ...vviiiiiteeerecenenscnssecnnnncnns 23
3 MACROS it iiiiiiietieteseeeesessoccsnscncsscsannans 25
Definition of Macros ..oivieeieirinrieeneieenenneneenenns 25
Macro Calls tiviiiiiiiiiiiiiiiiiieiiitiieeeceeeecnenns 26
Additional Considerationscvvviiiiiieieenneennenns 26
Created Symbolsiiiiiiiiiiiiiiieiiiiinennnnnns 28

cee
1

o

ChaEter

4

5

Aeee ndix

1
2
3
4

CONTENTS (continued)

Page

Concatenation ...veeeeeeeeeeeeeeeeseresecsesssnscsnnens 30
Indefinite Report ...ceeereeeceeeeeesensessecnnsnnnnnne 30

Nesting and Redefinition ...cceivveiieiieeiienineennnnns 32
RELOCATION AND LINKINGiiiitrtiiiiecenesscnnncccnnnns 35
Relocation .ivuiiiiiiiiiiiieneennieeneeceesensecncnnnnnnns 35
Linking Subroutinesciieiiiiiiiiiiiiiieiiiieniiiennns 37
ERRORS . iiiiiiitiiiettteetseeensecoesesacecssancsassnsnsnnns 39
The Error Flags cveeeeeeierieierecaescnseseccsocasccnnsanes 39
ASSEMBLY OUTPUT t..iiititiiiiienesnnesseresscnnncssccnnnns 41
Assembly Listing covuiiviiieeriiiieeiiiiiieeeeereennnceannss 41
Binary Program vvuiiiiiiiiiiiiiiiiiiitiiietittiineiennnns 41

Rim Format ...uiiieiiiieeieiieerenennonsacssscncancnnss 41

LINK Format «iviiueiieeiiieenierennerenenecencecnnnns 42

The Formats for the Block Types ...cvvvvnniennnnannnnn. 43
ASSEMBLER INITIALIZATION ... iiviiiitrnetescsccensscnncans 46
CODESetiieieienrencncesecscnscccocsoscccssscnnnsannss Al
SUMMARY OF ERROR FLAGS ¢ vt iveitierininenannessncennnnncans A3
PROGRAMMING EXAMPLES ... iiiiiiiiiiiiieneiiecrnnnnannes Ad
CHARACTER SETS ++--- et eeeaeeteeeasasececassasenncaaaannnns A7

CHAPTER 1

LANGUAGE FUNDAMENTALS

INTRODUCTION

MACRO-6 programs consist of a sequence of statements, each of which may generate one or
more machine instructions, generate words of data, or give special instructions to the MACRO-6
Assembler. The statements, in turn, are subdivided into fields: a label field, a code field,
argument fields, and comment fields. The fields may contain one—or more—of the basic ele-
ments of the language described below. The interpretation of the basic element depends on

the field in which it appears.

This chapter begins with the MACRO-6 character set. It then describes the basic elements of

the language and how they may be constructed.

Character Set

The characters which are meaningful to the MACRO-6 Assembler are:

(space) - : G T
. . ; H U
" / < I \%
0 = J W
$ 1 > K X
% 2 ? L Y
& 3 @ M A
' 4 A N [
(5 B @) 1
) 6 C P t
* 7 D Q
+ 8 E R
’ 9 F S

The corresponding ASCII, 6-bit ASCII, and punched-card codes are shown in Appendix 4. Two
of the characters shown in the appendix do not appear above. They are back slash and reverse

arrow. These two characters are ignored by the Assembler and should not be used.

Punched Paper Tape

The ASCII code is used for paper tape input. In addition to the characters shown above there
are some nonprinting characters of significance, i.e., carriage return, line feed, and tabs.
Tabs are equivalent to a number of spaces and are properly translated to the correct number of
spaces on the output listings. Both tabs and spaces may be freely used (except for one
restriction—see Code Fields) to improve the appearance of programs. Statements must be

terminated by a semicolon or by a carriage return. All carriage returns must be followed by

a line feed, and all line feeds must be preceded by either a carriage return or another line feed.

Punched Cards

A modified Hollerith code (Appendix 4) is used for card input. Only the first 72 columns are
considered by the processor; the remaining 8 may be used for identifying information. The
Assembler does not recognize a fixed-field input from the cards. That is, fields within a state-
ment are not delimited by appearing in specified card columns. The fields must be delimited
by specified characters; the delimiters being exactly the same as for punched tape. The state-
ment itself is automatically delimited by reaching the end of the card—column 72. To skip

lines, blank cards which generate no information may be inserted.

THE LOCATION COUNTER

In general, statements generate 36-bit binary words, which are placed into consecutive memory
locations. The location counter is a register used by the MACRO=-6 processor to keep track of
the next available location in memory. It is updated after processing each statement. A state-
ment which generates a single machine instruction would update the location counter by one;

a statement which generates six data words would update it by six. The location counter may

be explicitly set by the LOC or RELOC codes.

ELEMENTS
35

Elements represent binary integers less than 2°~. There are five types of elements: symbols,

numbers, characters, points, and literals.

Symbols

These are strings of letters, numbers, or decimal points, the first of which must be a letter or

decimal point. The characters % and $ are regarded as letters in forming symbols, although
a symbol may be any length, only the first six characters are considered, and any additional
characters are ignored. Symbols which are identical in their first six characters are considered

identical.

X

Aé5

NUMERIC (equivalent to NUMERI)
X.3B

HIGH.

N12345

Numbers

A number is a string of digits. If the string contains a decimal point, it is evaluated as a

floating-decimal number and the digits are taken radix 1@. If the string does not contain a

decimal point, the digits are assigned values according to the prevailing radix. (This prevail-
ing radix is normally regulated by the RADIX code.) If 8 were the prevailing radix, the num-

ber 17 would have the value]78=15]o.

17]o=2]8. The number 17.8 would always have the value 205420000000 since the decimal

point denotes a floating-decimal number. A number must always begin with a digit or a dec-

If 18 were prevailing, 17 would have the value

imal point.

Occasionally, it may be desirable to change the value of the radix for only one numeric element.
This isdone by the qualifier t followed by a letter. Numbers are qualified inthismanner to be Dec-

imal, Octal, Binary, or Fixed point decimal fractions irrespective of the prevailing radix. Thus:

tD17=17790
tO17 = 1519
tB1g1g =]ﬂlo-_- 12g

These qualifiers have no further effect on the prevailing radix. Floating-decimal numbers
never consider qualifiers, except F. The exponent parts of floating-decimal numbers may be
further augmented by following the number by Etn; the number is then considered to be multi-

plied by 18+n.

1. . .
]ﬂ.ﬂE—] The binary representation

of each is
ﬂggl;’glfg 2001 ABBoRBang

If, in addition, the characters t F are prefixed to a number, it is considered to be a fixed
decimal fraction. In this case, Bn should be suffixed to the number where nis an integer and
ﬂf n <3 5. The decimal point is then taken to be to the right of bit n. (If no bit position,

B, is specified, 35 is assumed.) Any integer part of the number's truncated to fit in n bits.

1F3.25B8 = 2832080800008
tF.281250B12 = 28022080080
tF.4498046E+1B11 2008437 700000

A number may also be logically shifted left by following it by Br. The number is shifted left
so that the right-hand (low-order) bit is in position r (decimal) of the 36-bit computer word.
Thus:

#3835 = PUBEPEBEE0E3
#3831 = poBaBHBEIsH
#3817 = BRBRE3pmHe

Point

The decimal point alone has a special meaning; it represents the current value of the location

counter. For example:

A: JRST.-1
;EQUIVALENT TO
A: JRST A-1

Text

If the first nonblank character of an element is a quote("), the characters following it are
assembled right justified as their 7-bit ASCII representations. Only printing characters are
assembled. This element is terminated by a quote or a carriage return. If more than five char-

acters are included within the quotes, only the -ight-hand five are considered.

"AXE" is equivalent to 4066105
(This representation is useful with

immediate mode operations.)

Literals

Literals are referenced in the argument field of a statement and are delimited by a pair of
brackets. The information within the brackets (whether it be a data word or machine instruction)
is assembled and assigned a specific storage location (usually at the end of the program). The
address of the generated word appears in the statement which referenced the literal. Literals

may be nested to any reasonable depth.

ADD 2, [DEC 651, DECIMAL LITERAL
FAD 1, [8.141, FLOATING POINT
MOVE 3, [ASCII .BYTES.]
XCTIXCTLXCTLADD 2,X11 (4)1; NESTED

The last example generates the following constants. For example:

LITI: XCT LIT2(4)
LIT2: XCT LIT3
LIT3: ADD 2,X

EXPRESSIONS

Expressions are strings of elements separated by arithmetic or Boolean operators. Expressions
. 35, . .
represent numeric values less than 27 in magnitude. The value of an expression is calculated

by substituting the numeric values for each of the elements and performing the specified opera-

tions. The allowable operations are:

Operator Meaning
* multiply
/ divide
+ add
- substract
& and

inclusive or

When combining elements, the Boolean operations (AND, IOR) are performed first, from left
to right. Then the multiplications are performed from left to right; and, finally, the additions
and subtractions are performed. Division always truncates the fraction part. All arithmetic

is performed modulo 235 = 34, 359, 738, 368.

For example, suppose the element:

A represents the value 2]0

10
C represents the value 3]0

B represents the value 8

D represents the value 5] 0’ the expression:
A/B + A*C represents 6] 0
B/A - 2*A-1 represents -1
A&B represents §
B+D1@+C represents 21
1 + A&C represents 3

= /77777777777

10 8

10
10

An expression enclosed by angle bracket may be regarded as an element, allowing compound
expressions to be formed:

<A+B> /5 represents 2

C* <A+B* <D-C>> represents 54]0

EVALUATION OF SYMBOLS

The value represented by a symbol is assigned by one of three mechanisms: a label, a direct

assignment, or a variable.

Label If a statement begins with a symbol followed by a

colon, the symbol is called a label. It is assigned

the current value of the location counter.

Direct Assignment If a symbol appears on the left-hand side of the equal

sign in a direct assignment statement, it is assigned
a value equal to the value represented by the ex-
pression on the right-hand side. A direct assignment

statement has the form:

SYM = EXP, COMMENT

where SYM is a symbol and EXP is an expression.

For example:

A = B+2
TSIZE = TEND-TSTART
K=4
Variable If a symbol is followed by a number sign (%), a

storage cell is automatically reserved (usually at
the end of the program), and the symbol represents

the location of this storage cell. The number sign

may appear after any one or more occurrences of the
variable; it need not appear after all occurrences,

nor after the first occurrence.

This is useful for defining a symbolic temporary
storage location. For example: TEMP#, which

reserves a cell whose address is represented by

TEMP.

If a value is assigned directly, it may be altered by another direct assignment statement.

it is defined as a label or variable, it may not be altered.

If

CHAPTER 2

STATEMENTS

There are four types of statements in the MACRO-6 language: comment statements, instruction
statements, data statements, and assembler control statements. The type of a statement is

identified by the fields present and the code contained in the code field.

The possible fields are listed below in the order in which they would appear from left to right.
Each field extends from the terminator for the preceding field, or from the beginning of the

statement if all preceding fields are null, to its own terminator.

Label Field If present, this field must be terminated by a colon.
This field contains a string of characters represent-
ing one, and only one, symbol. When a symbol
appears in a label field, it is immediately defined
to have a value equal to the current value of the

location counter.

Code Field This field is terminated by either a space or a comma.
It may contain mnemonics representing either PDP-6
instructions or any of the pseudo-operation codes

recognized by the Assembler.

Argument Fields The function of these fields is determined by the

code field. They may describe data, machine
addresses, accumulators, assembler control para-
meters, index registers, etc. They may be delimited
by commas, parentheses, or angle-brackets, de-

pending on their function in the statement.

If a statement is ended with fewer fields than are normally required, the unspecified fields are
considered null. If a statement has more fields than are required, the superfluous fields are
taken to be comments. The information between the semicolon, if present, and the end of a

card or carriage return is also taken as a comment.

The field completely determines the interpretation to be given to its contents. For example,
if the characters ADD appeared in alabel field, they would be interpreted as a statement label
and would receive a value equal to the statements location in memory. If the same characters
appeared in a code field, they would be interpreted as the mnemonic for a PDP-6 instruction

and would receive the value 270B8.

COMMENT STATEMENTS

A statement with an empty or blank code field is considered to be a comment statement. The
presence of the empty field is indicated by the presence of the field's delimitor, i.e., a semicolon.

For example:

; THIS IS A COMMENT

INSTRUCTION STATEMENTS

Instruction statements may have any or all of the possible fields. They must have a nonempty
code field. There are three types of instruction statements: primary instruction statements,

extended instruction statements, and 1/O instruction statements.

Primary Instruction Statements

The primary instruction statements must have in their code field one of the PDP-6 instruction
mnemonics, (including the appropriate mode suffix) except for the eight I/O instructions. (For
the complete list of mnemonics and mode controls, see F-65.) There must be no space between

the instruction mnemonic and the mode control since this space would attempt to terminate the

code field.

10

If the field following the code field is terminated by a comma, it is an accumulator field;
otherwise, it is the operand address field. If there is an accumulator field, the next field is
the address field. If a field is enclosed in parentheses, it is an index register field. The char-
acter @ appearing in the address field denotes indirect addressing. The contents of these

argument fields may be any desired expression.

The accumulator field may be left out and the code field delimited by a comma or space. In
this case, the accumulator is considered to be accumulator §. If indexing is not used, the
index field may also be left out and the address field delimited by a comma, carriage return,
or semicolon; otherwise, it is delimited by the opening parenthesis of the index field. For

example:

SUM: ADD 2, TABLE(X3)
ADD AC2, Y
JRST .-3;
JMP (4)

I/O Instruction Statements

The 1/O instruction statements are exactly like the primary instruction statements with the
following exceptions:

1. The code field must contain one of the /O instruction mnemonics for

the PDP-6 (see F-65).

2. The accumulator field is replaced by a device field. The device field
may contain either a device number or a device mnemonic (see F-65). For

example:

READ: DATA1 PTR, @NUM(4)
CONO 243; ENABLE PC ON CH 3

11

Extended Instruction Statements

For programming convenience, some extended operation codes are provided in the MACRO-6
Assembler. Primarily, these are to replace those PDP-6 instructions where the combination of
instruction mnemonic and accumulator field are both used to denote a single instruction. For

example:

JRST 4,

which is equivalent to a single halt instruction. Additionally, they are used to replace certain

commonly used 1/O instruction-device number combinations.

The extended instruction statements are exactly like the basic instruction statements or 1/0

instruction statements, except that they may not have an accumulator field or device field.

The code field must have one of the following extended mnemonics:

o e
Mnemonics

JEN JRST 12, Jump and enable the Pl system
HALT JRST 4, Halt
JRSTF JRST 2, Jump and reset flags
JOvV JFCL 8, Jump on overflow and clear
JCRYZ JFCL 4, Jump on CRY® and clear
JCRY1 JFCL 2, Jump on CRY1 and clear
JCRY JFCL 6, Jump on CRYf or CRY1 and clear
JPC JFCL 1, Jump on PC change flag and clear
RSW DATAI ¢, Read the console switches

12

Assembly

Instructions are assembled in the following manner. Each instruction code represents a 36-bit
number. If it is a primary instruction code, the low-order 4 bits of the value of the accumu-
lator expression are |ORed into positions 9-12. The low-order 9 bits of the value of the device
expression of an |/O instruction are IORed into positions 3-11. The low-order 18 bits of the
value of the address expression are IORed into the right half of the instruction. If the indirect
address symbol @ appears in the address field, a bit is placed into position 13. Finally, if the

index register field exists, the lower four bits are IORed into positions 14-17.

Numeric Codes

Numeric codes are considered to indicate primary instructions. The remainder of the statement
is assembled as a normal instruction. If the numeric code is preceded by a minus sign, the
2's complement of the number is taken. The minus sign is ignored for other codes. Character

elements are considered to be numeric. For example:

B,A; THE VALUE OF A IS IN THE RT HALF
27@B8 2,X; EQUIVALENT TO ADD 2,X

1DF5; APPU0OEEd @1 1S GENERATED
-1; 777777777777 1S GENERATED

DATA STATEMENTS

Several codes are used to indicate various data formats. These codes describe the type
of data to be generated. A label on a data-generating statement refers to the first word

assembled. .

DEC (decimal data)—Set the radix to 1@ for this statement
only and generate a word for each expression follow-
ing the code. Expressions are separated by commas.

For example:

DEC 19, 4.5, 3.1416, 6.93E-26, 3;
;5 WORDS GENERATED

13

RADIX50 Set the radix to 50 for this statement only. RADIX50
requires two arguments; the symbol and a code digit.

For example:

RADIX50 SYM, 3

OCT (octal data)—Similar to the DEC code, but the

radix is temporarily set to 8. For example:

OCT -3, 2, 777, 4.1,THE 4TH ITEM IS FLOATING PT.

EXP (expressions)—The radix is unchanged. Each ex-
pression following the code generates one 36-bit

data word. For example:

EXP X, 4, tD65, HALF, B+362-A;

XWD " (transfer word)—Two expressions follow this code
which generates one data word. The low-order
18 bits of the value of the first are placed into the
left-half word, and the low-order 18 bits of the
value of the second expression are placed into the

right half. For example:

ATOB: XWD A,B; POINTER WORD FOR BLOCK TRANSFER

A (zero word)—One word containing zeros is generated.

For example:

TEMP: Z; TEMPORARY STORAGE

14

IOWD

POINT

SIXBIT

(1/O transfer word)—used in the BLKI and BLKO
instructions. Two expressions separated by a comma
follow this code, which generates one data word.
The left half of the assembled word contains the

2's complement of the value of the first expression,
and the right half contains the value of the second

expression minus one. For example:

INAREA: IOWD 6, tD265;
ASSEMBLES AS 777772@0@377

(byte pointer word)—The first expression indicates
the byte size, the second indicates the address, and
the third indicates the position of the right-hand bit
of the byte position. The indirect character @ and
and index expression in parentheses may appear in
conjunction with the address part. The local radix
for the position and size expressions is always 14,

regardless of the prevailing radix. For example:

STRING: POINT 6,@N(4),5;
7POINTS TO THE LH CHAR

If the position expression is left blank, the position
part will assemble as 448. On incrementing, the

pointer will point to the left-hand byte.

(alphdbetic information)—This code is used to generate
characters in 6-bit ASCIl code, pack them into
6-character words and place the words in sequential
registers. The first nonblank character following

the code is the delimiter. Information is assembled

15

ASCII

ASClzZ

BLOCK

from the second character until the first character

is repeated. Only the printing characters of the

ASCII code are assembled, except line feeds which
are assembled as 74 (\). The characters are left

justified. For example:

NUMBER2

ALPHA: SIXBIT /ALPHABETIC INFORMATION/

,EQUIVALENT TO

ALPHA: OCT 411460504142, 456451430051;
OCT 564657625541, 645157568000

SIXBIT "2"

(alphabetic information)—This code is similar to

SIXBIT, but it packs words with the low 7 bits of
the full ASCII representation. The entire ASCII

character set may be assembled under this mode,
including the reverse slash (\) and back arrow

(€&—). For example:

ASCIl.)
.; A CARRIAGE RETURN AND LINE FEED

Same as ASCII except that a word of 0 is assembled
at the end of the data if the number of ASCII char-

acters is a multiple of five.

(block of storage reserved)—The expression following
the code indicates the number of cells to be reserved.
The location counter is incremented by the value of
the expression. The expression may be an absolute

value or a mixed arithmetic. For example:

MATRIX: BLOCK N*M

16

BYTE

(byte strings)—The first expression following this

code is enclosed in parentheses and is the byte size.

Subsequent expressions, separated by commas, are
evaluated, truncated to the byte size, packed and
assembled into sequential memory locations. If a
byte cannot fit into a word, it is assembled as the
first byte of the next word. The byte size may be
altered in the middle of a word or a string by in-

serting a byte size expression in parentheses. The

local radix for the size portion is always considered

to be 1@, no matter what value the prevailing radix

may have. For example:

RADIX 14

AX: BYTE (6) 14, 4, 9,1, 1,3, 6

Q: BYTE (15) 12, 3, 9,

STR: BYTE (6) 14, 4, 9 (12) "AB"
,EQUIVALENT TO

AX: OCT 120411818103, p60000dd0000;

Q: OCT f#gg1400003008, pd1B000080;
STR: OCT 1204110 30206;

ASSEMBLER CONTROL CODES

These statements do not generate data or instructions, but control the operation of the assembler.

REPEAT

This code causes a character string to be processed
repeatedly. The code is followed by an expression
whose value indicates the number of repetitions
desired. This is followed by the string to be re-
peated enclosed by angle-brackets. The expression
for the number of repetitions in a REPEAT statement

must be followed by a comma. For example:

17

ADDX: REPEAT 3,<ADD 6,X(4)
ADDI 4, 1>
,EQUIVALENT TO
ADDX: ADD 6,X(4)
ADDI 4, 1
ADD 6,X(4)
ADDI 4,1
ADD 6,X(4)
ADDI 4,1

SQ: REPEAT N, <
EXP <.=-SQ+1>*<, -SQ+1>>
;A TABLE OF SQUARES

The label of a repeat is placed on the first statement
generated. REPEATs may be nested to any reasonable

degree. For example:

REPEAT N+1,<MOVE 6, A(K)
REPEAT N, <ADD 6, (3)
ADDI 3,L>
MOVEM 6,A(K) >

IFn (conditional assembly)—An IFn code is followed by
an expression, and a string of coding enclosed in
angle-brackets. The expression for a conditional
assembly must be followed by a comma. If the
expression fulfills the condition indicated by n, the

string is processed; if not, it is ignored. The IFn

codes are:
IFE Assemble if expression is .
IFG Assemble if expression is positive.

IFGE Assemble if expression is positive or g.

IFL Assemble if expression is negative.
IFLE Assemble if expression is negative or .
IFN Assemble if expression is nonzero.

18

IFIDN

IFDIF

RADIX

LOC

IF1 Assemble if PASS 1 (no expression).
IF2 Assemble if PASS 2 (no expression).

For example:

IFE X-Y, <ADD Z, X;>
;ASSEMBLED ONLY IF X=Y

(conditional assembly on character strings)—This

is followed by three sets of angle-brackets. If the
character strings enclosed by the first two sets of
angle-brackets are identical, the coding within the

third set is processed. For example:

IFIDN <+> <+>, <FAD 3,X>
;FAD 3,X; WILL BE PROCESSED

(conditional assembly on character strings)—This
is the converse of IFIDN and is similar in format.
The coding within the third set of angle-brackets

is processed if the two character strings differ.

The prevailihg value of the radix is controlled by

this code. It is followed by a decimal number
between 2 and 10 which then becomes the prevailing
radix. The radix may be changed at any point on the
assembly; it is initially considered to be 8. For

example:

RADIX 14,
;SET PREVAILING RADIX DECIMAL

This code changes the location counter to a value

equivalent to the expression which follows. Theblock

19

RELOC

PHASE

of coding following a LOC is assembled into the
absolute locations, and any labels defined are con-

sidered absolute. For example:

ADD AC2,X

LOC 240

ADD AC3, @Q2

LOC .+3; SKIP 3 LOCATIONS
ADD AC1,AC2

This is similar to LOC in that it explicitly sets the
location counter. The block of code which follows
is relocatable and all labels within the block are
relocatable. The implicit statement begins all

programs. For example:

RELOC g;

A portion of code may be moved into other registers
before it is executed. PHASE gives the location
counter a value different from the location into
which the assembled code is to be loaded. The
code is actually loaded into continuing sequential
locations, but all labels within a phased area are
in relation to the PHASE. Point elements (.) also
relate to the PHASE. PHASE is followed by an
expression indicating the first address of the sub-

routine when it is to be executed. For example:

20

< e

If the macro were called with the argument string:

(ARG,) or ARG, ,

the second argument would be considered to have been declared as a null string. This would
override the % prefixed to the second dummy argument and would substitute the null string for
each appearance of the second dummy argument in the code. However, the third argument is

missing. A label would be created for each occurrence of %C. For example:

DEFINE TYPE (A, %B)
<JSR TYPEOUT
JUMP %B
SIXBIT /A/
%B:>

This macro types the text string substituted for A on the console Teletype. TYPEOUT is an
output routine. Labeling the location following the text is appropriate since A may be text
of indefinite length. A created symbol is appropriate for this label since the programmer would

probably not be interested in knowing the label.

This macro might be called by:

TYPE HELLO

which would result in typing HELLO when the assembled macro is executed. If the call had

been:

TYPE HELLO, BX

the effect woeld be the same. However, BX would be substituted for %B, overruling the

effect of the percent sign.

29

Concatenation

The character single quote (') is defined to be the concatenation operator and may not be used

otherwise inside a macro definition. (Outside a macro definition, it is ignored except as a

character in textual data.) A macro argument need not be a complete symbol. Rather, it may

be a string of characters which will form a complete symbol when joined to characters already
contained in the macro definition. This joining, called concatenation, is indicated by the

appearance of an apostrophe appearing between the strings to be so joined.

As an example, the macro:

DEFINE J(A,B,C)
<JUMP'A B,C>

when called, the argument A is suffixed to JUMP to form a single symbol. If the call were:

J (LE,3,X+1)

the generated code would be:

JUMPLE 3, X+1

Indefinite Repeat

It is often convenient to be able to repeat amacro oneor more times for a single call; each
repetition substituting successive arguments in the call statement for specified arguments in
the macro. This may be done by use of the indefinite repeat code, IRP. The code IRP is
followed by a dummy argument which may be enclosed in parentheses. This argument must
also be contained in the DEFINE statement's list. This argument is broken into subarguments.
When the macro is called, the range of the IRP is assembled once for each subargument, the
successive subarguments being substituted for each appearance of the dummy argument within

the range of the IRP. For example, the single argument:

30

- Ra

<ALPHA, BETA, GAMMA>

consists of the subarguments ALPHA, BETA, and GAMMA. The macro definition:

DEFINE DOEACH (A)
<IRP A

<A

>

and the call:

DOEACH <ALPHA, BETA, GAMMA>

produces the following coding:

ALPHA
BETA
GAMMA

An opening angle bracket must follow the argument of the IRP statement to delimit the range
of the IRP. A closing angle bracket must terminate the range of the IRP. IRPC is like IRP

except it takes only one character at a time.

It is sometimes desirable to stop processing an indefinite repeat depending on conditions given
by the assembler. This is done by the code STOPI. When the code STOPI is encountered, the
macro processor will finish expanding the range of the IRP for the present argument and terminate

the repeat action. An example:

DEFINE CONVERT (A)
<IRP A <IFE K-A, <STOPI
CONVI A>

>

NOTE: Avoid using IRP or IRPC inside a repeat or conditional.

31

Assume that the value of K is 3; then the call:

CONVERT (4,1,2,3,4,5,6,7)

will generate: -

<IRP

IFE K-@,<STOPI
CONVI1 g>

IFE K-@,<STOPI
CONVI1 1>

IFE K-2,<STOPI
CONV1 2>

IFE K-3,<STOPI
CONV1 3>
STOPI

CONVI1 3

The assembly condition is not met for the first three arguments of the macro. Therefore, the
STOPI code is not encountered until the fourth argument, i.e., the number 3. When the con-
dition is met, the STOPI code is processed which prevents further scanning of the arguments.
However, the action continues for the current argument and generates CONV1 3, i.e., a

call for the macro CONV1 (defined elsewhere) with an argument of 3.

Nesting and Redefinition

Macros may be nested; that is, macros may be defined within other macros. For ease of dis-
cussions, levels may be assigned to these nested macros. The outermost macros, i.e., those
defined directly to the macro processor, may be called first level macros. Macros defined
within first level macros may be called second level macros; space macros defined within

second level macros may be called third level macros; etc.

At the beginning of processing, first level macros are known to the macro processor and may
be called in the normal manner. However, second and higher level macros are not yet de-

fined. When a first level macro containing second, and higher, level macros is called, all

32

its second level macros become defined to the processor. Henceforth, their level of definition
is irrelevant and they may be called in the normal manner. Of course, if these second level
macros contain third level macros, the third level macros are still not defined until the second

level macros containing them have been called.

When a macro of level n contains a macro of level nt1, calling the macro results in generating
the body of the macro into the user's program in the normal manner until the DEFINE statement

is encountered. The level nt1 macro is then defined to the macro processor; it does not appear
in the user's program. When the definition is complete, the macro processor resumes generating

the macro body into the user's program until, or unless, the entire macro has been generated.

If @ macro name which has been previously defined appears within another definition statement,

the macro is redefined, and the original definition is eliminated.

The first example, calculation of the length of a vector, may be rewritten to illustrate both

nesting and redefinition.

DEFINE VMAG (A,B,%C)
<DEFINE VMAG (D, E)
<JSP SJ, VL
EXP D,E>
VMAG (A, B)
JRST %C
VL: HRRZ 2, (SJ)
MOVE (2)
FMP @
MOVE 1,1(2)
FMP 1,1
FAD 1
MOVE 1, 2(2)
FMP 1,1
FAD 1
JSR FSQRT
MOVEM @1 (SJ)
JRST 2(SJ)
%C: >

The procedure to find the length of a vector has been written as a closed subroutine. It need
only appear once in a user's program. From then on it can be called as a subroutine by the JSP

instruction.

33

The first time the macro VMAG is called, the subroutine calling sequence is generated followed
immediately by the subroutine itself. Before generating the subroutine, the macro processor
encounters a DEFINE statement containing the name VMAG. This new macro is defined and
takes the place of the original macro VMAG. Henceforth, when VMAG is called, only the
calling sequence is generated. However, the original definition of VMAG is not removed

until after the expansion is complete.

34

CHAPTER 4

RELOCATION AND LINKING

RELOCATION

The MACRO-6 assembler will create a relocatable program. This program may be loaded into
any part of memory as a function of what has been previously loaded. To accomplish this, the

address field of some instructions must have a relocation constant added to it. This relocation

constant is added at load time by the Linking Loader and is equal to the difference between

the memory location an instruction is actually loaded into and the location it is assembled into.

If a program is loaded into cells beginning at location 14,?5[58, the relocation constant K would

Not all instructions must be modified by the relocation constant. Consider the two instructions:

MOVEI 2, .-3
MOVEI 2, 1

The first is probably used in address manipulation and must be modified; the second probably
should not. To properly accomplish the relocation, the actual expression forming an address

is considered and modification is decided. Integer elements are fixed and not modified. Point
elements (.) are relocatable and are always modified.* Symbolic elements may be fixed or
relocatable according to the means used in their definition. If a symbol is defined by direct
assignment statement, it may be relocatable or fixed depending on the expression following the
equal sign (=). If a symbol is defined as a macro, it is replaced by the string and the string
itself must be considered. If it is defined as a label or a variable (#), it is relocatable.*

Finally, references to literals are relocatable.*

To evaluate the relocatability of an expression, consider what happens at load time. A con-

stant, k, must be added to each relocatable element and the expression evaluated.

*Except under the LOC code which specified absolute addressing.

35

Consider the expression:

X= A+ 2*B-3*C+D
where A,B,C, and D are relocatable. Assume k is the relocation constant. Adding this to
each relocatable term we get:

Xr = (Atk)+2* (B+k)-3* (C+k)+D+k)

This expression may be rearranged to separate the k's, yielding:

Xr = A+2*B-3*C+D+k

This expression is suitable for relocation since it involves the addition of a single k. In general,
if the expression can be rearranged to result in the addition of

@*k The expression is legal and fixed.

1*k The expression is legal and relocatable.

n*k Where n is any positive or negative integer
other than @ or 1, the expression is illegal.

Finally, if the expression involves k to any power other than 1, the expression is illegal. This

leads to the following conventions:

1. Only two values of relocatability for a complete expression are allowed,

k and a.
2. An element may not be divided by a relocatable element.
3. Two relocatable elements may not be multiplied together.

4. Relocatable elements may not be combined by Boolean expressions.

If any of these rules are broken, the expression is illegal and the assembled code is flagged.

If A, C, and B are relocatable symbols, then:

A+B-C is relocatable
A-C is fixed

A+2 is relocatable
2*A-B is relocatable
2&A-B is erroneous

A storage word may be relocatable in the left half as well as the right half. For example:
XWD A, B

36

LINKING SUBROUTINES

Programs usually consist of subroutines which must be linked. This is relatively easy if all sub-
routines are assembled together; they can be linked by JSR SUBR instructions. If independently
assembled, relocatable subroutines are used, linking must be considered since the symbol tables

from the assembly are inaccessible to the loader.

To accomplish this linking, selected symbols are made available to the Linking Loader by the

codes EXTERN, INTERN, and ENTRY.

The EXTERN code identifies certain symbols as external to the program. The condensed object
program contains the information that values for certain symbols must be derived from other
programs at load time. An expression containing a reference to an external symbol must con-

sist of only the single external symbol. The statement

EXTERN SQRT, CUBE, TYPE;

identifies the symbols SQRT, CUBE and TYPE as external symbols. Symbols defined as external

must not be defined as labels, variables, macros, or assignments.

An external reference may not occur within a literal, and may only appear as the address part

of a machine command.

For example, if a square root is required, it would be called by

PUSHJ 1, SQRT:

Elsewhere in the program would be the statement

EXTERN SQRT;

NOTE: A transfer vector scheme is not used.

37

To make internal program symbols available to other subroutines as external symbols, the code
INTERN or ENTRY is used. This code has no effect on the actual assembly of the subroutine,
but will make a list of symbol equivalences available to other programs at loading time. The

statement

INTERN SIN, COS, SIND, COSD;

might appear in a sin-cos routine where SIN, COS, SIND and COSD are entry points to the
subroutine to calculate, respectively, sines and cosines of angles in radians and degrees.

Internal symbols must be defined within the subroutine as assignments, labels, or variables.

In the square root subroutine would be the statement

INTERN SQRT;

Some subroutines have common usage, and it is convenient to place them in a library. To load
these subroutines, the code ENTRY is used. ENTRY is equivalent to INTERN except for the
following additional feature. All names in a list following ENTRY are defined as internal
symbols and are placed in a list at the beginning of the program. If the loader is in library
search mode, a program will be loaded only if an undefined global symbol, i.e., any symbol
made accessible to other programs, matches an internal symbol in the ENTRY list. If the SQRT

routine mentioned above were a library program, the statement

ENTRY SQRT;

would also appear in the SQRT program.

38

CHAPTER 5

ERRORS

There are two classes of errors—errors in language usage and program errors. MACRO-6 will
examine the statements for errors in language usage, and print appropriate messages. These
errors are caused by meaningless or inconsistent construction in the source language. When a
listing is prepared during the assembly, each MACRO-6 statement that contains errors will be
flagged by one or several letters in the margin. At the end of the listing will be a summary

of the errors; this summary will be printed even if a listing is not prepared. Program errors
which properly use the MACRO-6 language will be correctly translated into errors in the binary

program.

THE ERROR FLAGS

M (multiply defined symbol)—A symbol is defined
more than once, either as a label or variable. The

symbol retains its original definition.

S (symbol error)—There is a meaningless character
string that resembles a symbol or macro. It is

assembled as though the value were .

P (phase error)—A symbol is assigned a value as a
label during PASS 2 different from that which it
was assigned in PASS 1.

O (undefined code)—The code indicating the state-
ment type is not defined in the code table. It is

assembled as a numeric code of .

N (number error)—There is a meaningless string of

characters that resembles a number. It is assembled
as &.
39

A (argument error)—An argument of a control code

has a peculiar value.

L (literal)—There is an error within a literal.

F (macro definition error)—A format error exists in a

DEFINE statement.

U (undefined symbol)—A symbol or macro is undefined.

It is given a value of dg.

\ (value previously undefined)—A symbol used to con-
trol the processor is undefined prior to the point at

which it is first used.

R (relocation error)—An expression has a relocation
constant other than 1 or @, contains division by a
relocatable number, contains the product of two
relocatable numbers, or involves relocatable num-

bers in Boolean operations. The relocation constant

is set to ﬂ

D (multiply defined symbol reference)—The statement
contains a reference to a multiply defined symbol.

It is assembled with the first value defined.
E (external)—Improper usage of external symbols.

On PASS 1, an error printout consists of two lines. The first has the most recently used tag
followed by + n where n is the (decimal) number of lines of coding between the tag and the

error.

The second line, and the only line in PASS 2, is a copy of the erroneous line of code with a

letter(s) indicating the error type(s) in the lefi-hand margin.

40

CHAPTER 6

ASSEMBLY OUTPUT

ASSEMBLY LISTING

There are two types of assembly output—the assembly listing and the binary program. The
assembly listing consists of a printout of the source program. On the same line with each source
statement are three numeric fields—the location of the assembled code, the left half word,
and the right half word. Above each line éontaining an error is an appropriate message. This
listing is controlled by the List Control Codes except that error messages are always printed.
All assemblies begin with an implicit LIST. Apostrophes on the assembly listing indicate
relocatability. The program break is printed at the end of the assembly—this is the highest

relocatable location assembled plus one.

BINARY PROGRAM

The binary program may assume two forms: RIM and LINK. The RIM (read-in mode) format is
always punched into paper tape and is usually used for loaders and computer hardware mainten-
ance programs. RIM programs may be completely loaded by the loader resident in the shadow

memory located behind the accumulator memory.

Rim Format

Programs in RIM mode consist of two word pairs. The first word is an instruction:

DATAI PTR, A,

The second word of the pair is the word of instruction or data to be loaded into memory

location A.

The last word of a RIM tape is a single instruction:
HALT, START;

where START is the first location of the program.

41

LINK Format

LINK format is the normal binary output mode. Programs in this format are acceptable to the
Linking Loader and are usually relocatable. The Linking Loader will load subprograms into
memory, properly relocating each one and adjusting addresses to compensate for the relocation.
It will also link external and internal symbols to provide communication between independently
assembled subprograms. Finally, the Linking Loader will load subroutines in library search

mode.

LINK format data is in blocks. All blocks have an identical format. The first word of a

LINK block consists of two halves. The left half is a code for the block type, and the right
half is a count of the number of data words in the block. The data words are grouped in sub-
blocks of 18 items. Each 18-word sub-block is preceded by a relocation word. This relocation
word consists of 18 2-bit bytes. Each byte corresponds to one word in the sub-block, and

contains relocation information regarding that word.

If the byte value is:

8 no relocation cccurs

1 the right half is relocated
2 the left half is relocated
3 both halves are relocated

These relocation words are not included in the count; they always appear before each sub-

block of 18 words or less to insure proper relocation.

All programs (except those in paper tape RIM format) are stored in this format, including pro-
grams on paper tape, DECtape, standard magnetic tape, punched cards, drums and discs. This
format is totally independent of logical divisions in the input medium (40-word check summed
paper tape blocks, 128-word blocks on DECtape and drums, 23-word check summed punched
cards, etc.). It is also independent of the block type.

42

The Formats for the Block Types

Block Type 1 Relocatable or Absolute Programs and Data

WORD 1 THE LOCATION OF THE FIRST DATA WORD IN THE BLOCK
WORD 2 A CONTIGUOUS BLOCK OF PROGRAM OR DATA WORDS.
WORD N (N MUST BE LESS THAN 20, 3¢¢ OCTAL)

Block Type 2 Symbols

CONSISTS OF WORD PAIRS

1ST WORD BITS g-3 CODE BITS

1ST WORD BITS 4-35 RADIX 5@ REPRESENTATION OF SYMBOL
(See Below)

2ND WORD DATA (VALUE OR POINTER)

CODE g4: GLOBAL (INTERNAL) DEFINITION

2ND WORD BITS @-35 VALUE OF SYMBOL

CODE 1g: LOCAL DEFINITION

2ND WORD BITS #-35 VALUE OF SYMBOL

CODE 6g: CHAINED GLOBAL REQUESTS:

2ND WORD BITS@-17=¢

2ND WORD BITS 18-35 POINTER TO FIRST WORD OF CHAIN
REQUIRING DEFINITION (See Loader Manual)

CODE 6g: GLOBAL SYMBOL ADDITIVE REQUEST: (See Loader Manual)

2ND WORD BITA=1.

BIT 1 SUBTRACT VALUE BEFORE ADDITION

BIT 2 SWAP HALVES BEFORE ADDITION

BIT 3 ROTATE LEFT 5 BEFORE ADDITION

BIT 9 REPLACE LH WITH RESULT IN STORAGE

BIT 10 REPLACE RH WITH RESULT IN STORAGE

BIT 11 REPLACE INDEX FIELD WITH RESULT IN STORAGE

BIT 12 REPLACE AC FIELD WITH RESULT IN STORAGE

BITS 18-35 POINTER TO WORD REQUIRING ADDITION

Block Type 4 Entry Block

THIS BLOCK CONTAINS A LIST OF RADIX 5@ SYMBOLS, EACH OF WHICH
MAY CONTAIN A ZERO OR ONE IN THE HIGH ORDER CODE BIT. EACH
REPRESENTS A SERIES OF LOGICAL 'AND' CONDITIONS. IF ALL THE

43

GLOBALS IN ANY SERIES ARE REQUESTED, THE FOLLOWING PROGRAM IS
LOADED. OTHERWISE ALL INPUT IS IGNORED UNTIL THE NEXT END
BLOCK. THIS BLOCK MUST BE THE FIRST BLOCK IN A PROGRAM.

Block Type 5 End Block

THIS IS THE LAST BLOCK IN A PROGRAM. IT CONTAINS ONE WORD

WHICH IS THE PROGRAM BREAK, THAT IS, THE LOCATION OF THE FIRST

FREE REGISTER ABOVE THE PROGRAM. (NOTE: THIS WORD IS RELOCATABLE).
IT IS THE RELOCATION CONSTANT FOR THE FOLLOWING PROGRAM LOADED.

Block Type 6 Name Block

THE FIRST WORD OF THIS BLOCK IS THE PROGRAM NAME (RADIX 50).
IT MUST APPEAR BEFORE ANY TYPE 2 BLOCKS. THE SECOND WORD IF
IT APPEARS DEFINES THE LENGTH OF COMMON.

Block Type 7 Starting Address

THE FIRST WORD OF THIS BLOCK IS THE STARTING ADDRESS OF THE PRO-
GRAM. THE LAST BLOCK OF THIS TYPE ENCOUNTERED BY THE LOADER
IS USED UNLESS THE CONTROL CHARACTER (A) HAS BEEN TYPED. THE
STARTING ADDRESS FOR A RELOCATABLE PROGRAM MAY BE RELOCATED
BY MEANS OF THE RELOCATION BITS.

Block Type 1@ Internal Request

EACH DATA WORD IS ONE REQUEST. THE LEFT HALF IS THE POINTER TO
THE PROGRAM. THE RIGHT HALF IS THE VALUE. EITHER QUANTITY MAY
BE RELOCATABLE.

Radix 5@ Representation

Radix 50 representation is used to condense 6 character symbols into 32 bits. Let each character
of a symbol be subscripted in descending order from left to right; that is, let the symbols be of
the form

Lebsbsloly

If Cn denotes the six bit code for Ln’ the radix 50 representation is generated by the following:
*
(((((C4*50HC ST *SEHC o) *SHC) 581C

where all numbers are octal.

The code numbers corresponding to the characters are:
Code (Octal) Characters

o/} Space
g1-12 g-9

13-44 A-Z
45 .

46 $

47 %

45

CHAPTER 7

ASSEMBLER INITIALIZATION

At the beginning of each assembly, the assembler is initialized to certain states affected by
control codes. The initial states are:

1. Radix is set to 8.

2. The location counter is set to 0 and relocatable assembly will occur.
3. There will be a normal listing.
4. There will be LINK binary output with a symbol table.
5. Phase mode is off.
6. The title and subtitle are blanked.
7. Only device mnemonics are placed in the symbol table. They are:
CPA = fdg Arithmetic Processor
PRS = go4 Priority Interrupt System
PTP = 100 Paper Tape Punch
PTR = 184 Paper Tape Reader
CpP = 119 Card Punch
CR = 114 Card Reader
TTY = 128 Console Teleprinter
LPT = 124 Line Printer
DI = 13¢ Display
DC = 200 Data Control
uT = 21g Micro Tape Control
utrs = 214 Micro Tape Status
MTC = 220 Mag Tape Control
MTS = 224 Mag Tape Status
MTM = 238 Mag Tape Status
DCSA = 3g¢d Data Communication System
DCSB = 3¢4 Data Communication System
DRUM = 400 Drum System

8. No macros or opdefs exist.

APPENDIX 1

CODES

DATA GENERATING CODES

DEC Decimal numbers

OoCT Octal numbers

EXP ‘ Expressions

XWD Block transfer word

IOWD Input/output transfer word
POINT Pointer word

SIXBIT ASCII (6-bit) character strings
BYTE Variable length bytes

BLOCK Block of storage reserved
ASCII ASCII (7-bit) character strings
ASCIZ Same as ASCII, but assembles a word of zeros if the

number of ASCII characters assembled is a

multiple of five.

PROCESSOR CONTROL CODES

REPEAT Repeat character string
[Fn Conditional assembly
n Condition
E zero
G positive
GE zero or positive
L negative
LE zero or negative
N non zero
B blank
1 pass 1
2 pass 2

Al

PHASE
DEPHASE
RIM
IFIDN
IFDIF
RADIX
LOC
PASS2
NOSYM
LIT

VAR
EXTERN
INTERN
IRP
PURGE
TAPE
END

LIST
XLIST
LALL
XALL
TITLE
SUBTTL
PAGE

Enter phase mode

Leave phase mode

Assemble RIM tapes

Conditional assembly on character strings
Conditional assembly on character strings
Radix control

Set location counter

Terminate PASS 1

Suppress symbol table output

Assemble literals

Assemble variables

List of external symbols

List of internal symbols

Indefinite repeat

Purge symbols

End of a physical tape

Last line

LIST CONTROL

List

Stop listing
Expanded listing
Stop expanded listing
Title

Subtitle

Skip to top of next page

A2

><<C7"°OZZ'—'“"“UJ>

APPENDIX 2

SUMMARY OF ERR FLAGS

Argument of control op
Reference to multiply defined symbol
Illegal use of an external
Macro definition

Usage of literal

Multiply defined symbol
Number

Undefined operation code
Phase discrepancy
Relocation

Undefined symbol

Value previously undefined

Macro definition error

A3

LOG:

L1:
L2:
L3:
L4:
L5:
L7:

LS:
LZ:

APPENDIX 3

PROGRAMMING EXAMPLES

FLOATING POINT LOG (BASE E) SUBROUTINE

MOVMS A ; GET ABSF(X)
JUMPLE A,L ;RETURN & FOR LOG(#) OR LOG(-2)
ASHC A,-33 ;SEPARATE FRACTION FROM EXPONENT
ADDI Y NARY] ;FLOAT THE EXPONENT AND MULTIPLY BY 2
MOVSM A,LS ;NUMBER NOW IN CORRECT FLOATING FORMAT
MOVSI A, 567377 ;SET UP -401.4 IN A
FADM A,LS ;SUBTRACT 401 FROM THE EXPONENT*2
ASH B,-14 ;SHIFT FRACTION PART FOR FLOAT
TLC B, 2010000 ;FLOAT THE FRACTION PART
FAD B,L1 ;B=B-SQRTF(2.9)/2.¢
MOVE A,B ;A=B
FAD A,L2 ;A=A+SQRTF(2.9)/2.4
FDV B,A ;B=B/A
MOVEM B,LZ ;STORE NEW VARIABLE IN LZ
FMP B,B ;CALCULATE Z12
MOVE A,L3 ;PICK UP FIRST CONSTANT
FMP A,B ;MULTIPLY BY Z12
FAD A, L4 ;ADD IN NEXT CONSTANT
FMP A,B ;MULTIPLY BY Z12
FAD A,L5 ;ADD IN LAST CONSTANT
FMP A,LZ ;MULTIPLY BY Z
FAD A,LS ;ADD IN EXPONENT TO FROM LOG BASE 2
FMP A,L7 ;MULTIPLY BY LOG(2), BASE E
POPJ P, ;EXIT
577225754146 ;-0.707106781187
201552023632 ; 1.414213562374
200462532522 ; 1.5989786496
209754213604 ; 8.9614706323
202561251006 ; 2.8853912943
200542714300 ; B.69314718056
g
/]
A=17
B=g
=]
ENTRY LOG
END

A4

FLOATING POINT SQUARE ROOT FUNCTION

;ARGUMENT IS WRITTEN IN THE FORM X=F*2*%*2B

;SQRT(X) IS THEN SQRT(F)*2**B

;SQRT(F) IS CALCULATED BY A LINEAR APPROXIMATION

;SQRT(F) IS CALCULATED BY A LINEAR APPROXIMATION

;THE NATURE OF WHICH DEPENDS ON WHETHER 1/4<F<1/2

;OR 1/2<F<1, FOLLOWED BY 2 ITERATIONS OF NEWTON'S METHOD .

SQRT:

SQ1:
SQ2:

S1:

S2:

ST:

MOVMS
JUMPLE
ASHC
SuBI
ROT
HRRM
LSH
ASH
FSC
MOVEM
FMP
FAD
MOVE
FDV
FAD
FSC
MOVE
FDV
FADR
FSC
POPJ

g.8125

#.578125
0.302734
g.421875

g

A=17
P=1
B=g
ENTRY

END

A

A,SQ2
A,-33
A, 261

A,-1

A, SQ1
A, -43
B,-1¢
B,177(A)

B, ST

B,S1(A)
B,S2(A)

A,ST

>
L >w
qd

>>>>

~

=_ W w Wn

-0
~

SQRT

;GET ABSOLUTE VALUE OF ARG

SEXIT IF X=g

;PUT EXPONENT IN A, FRACTION IN B
;SUBTRACT 201 FROM EXPONENT

;CUT EXPONENT IN HALF, SAVE ODD BIT
;SAVE FOR FUTURE SCALING OF ANSWER
;GET BIT SAVED BY PREVIOUS INSTRUCTION
;PUT FRACTION IN PROPER POSITION

;PUT EXPONENT OF FRAC TO EITHER @ OR 1
:SAVE IT. 1/4<FRAC<I

;LINEAR FIRST APPROX, DEPENDING ON
WHETHER 1/4<F<1/2 OR 1/2<F<I

;START NEWTON'S METHOD WITH FRAC
:CALCULATE X(@)/X(1)

XX (@)/X(1)

172X X (@)/X(1))

;SECOND ITERATION NEWTON's METHOD
i X(@)/X2)

IX(2PX(@)/X(2)

;SCALE ANSWER FOR NEWTON AND EXPONENT
;EXIT

;CONSTANT, USED IF 1/4<FRAC<1/2
;CONSTANT, USED IF 1/2<FRACI
;CONSTANT, USED IF 1/4 <FRAC<1/2
;CONSTANT, USED IF 1/2<FRACKI

A5

FLOATING POINT NUMBER TO A FIXED POINT POWER

;ROUTINE CALCULATES A**B, A FLOATING POINT
;B IS OF THE FOLLOWING FORM:
;B=A@)+A(1)*2+A(2)*4+. .., WHERE A(1)=0 OR 1.

;ANSWER MULTIPLIED BY A**] IF A(l)=1
;THEN B IS SHIFTED TO GET NEXT BIT.

EXP.2:

FEXP1:

FEXP2:

FEXP4.

JUMPE
MOVSI
JUMPGE
MOVMS
PUSHJ
MOVSI
FDVM
POPJ

FMP
LSH
TRZE
FMP
JUMPN
MOVE
POPJ

=

P=]
A=17
B=16

ENTRY
END

A, FEXP4

T, 201 490
B, FEXP2

FEXP2
7140408

-

O -~ - U
~ N
>N

> <

-

X
x

-

W:IW
-A>~"L>

:U?

EXP.2

;ZERO BASE, RETURN
;PUT 1B IN ACC. T

;CHECK SIGN OF EXPONENT

;NEGATE EXPONENT - SET TO POSITIVE
;DO CALCULATION

;GET1.8INT

;FORM 1/A**B

;EXIT

;FORM A**N, FLOATING POINT
;SHIFT EXPONENT FOR NEXT BIT

;1S BIT A ZERO?

;NO, MULTIPLY ANSWER BY A**N
;UPDATE A**N UNLESS ALL THROUGH
;PICK UP RESULT FROM T

SEXIT

Aé

APPENDIX 4

CHARACTER SETS

6 bit Punched 6 bit Punched
ASCII ASClI Card ASCII ASCII Card
(space) 240 00 b @ 300 40 4-8
! 241 01 12-7-8 A 301 41 12-1
" 242 02 0-5-8 B 302 42 12-2
243 03 0-6-8 C 303 43 12-3
$ 244 04 11-3-8 D 304 44 12-4
% 245 05 0-7-8 E 305 45 12-5
& 246 06 11-7-8 F 306 46 12-6
' 247 07 6-8 G 307 47 12-7
(250 10 0-4-8 H 310 50 12-8
) 251 11 12-4-8 I 311 51 12-9
* 252 12 11-4-8 J 312 52 11-1
+ 253 13 12 K 313 53 11-2
, 254 14 0-3-8 L 314 54 11-3
- 255 15 11 M 315 55 11-4
. 256 16 12-3-8 N 316 56 11-5
/ 257 17 0-1 o) 317 57 11-6
g 260 20 [} P 320 60 11-7
1 261 21 1 Q 321 61 11-8
2 262 22 2 R 322 62 11-9
3 263 23 3 S 323 63 0-2
4 264 24 4 T 324 64 0-3
5 265 25 5 U 325 65 0-4
6 266 26 6 \Y 326 66 0-5
7 267 27 7 w 327 67 0-6
8 270 30 8 X 330 70 0-7
9 271 31 9 Y 331 71 0-8
: 272 32 11-0 z 332 72 0-9
; 273 33 0-2-8 C 333 73 11-5-8
< 274 34 12-6-8 N 334 74 7-8
= 275 35 3-8] 335 75 12-5-8
> 276 36 11-6-8 4 336 76 5-8
? 277 37 12-0

A7

5425

dlilgliltlall

EQUIPMENT
CORPORATION

MAYNARD, MASSACHUSETTS

PRINTED IN U.S.A.

50-5/65

