
F-64 MAS
5 64

1VLACJ:¥LO 6
ASSEMBLY PROGRAM

DIGITAL EQUIPMENT CORPORATION. MAYNARD , MASSACHUSETTS

Copyright 1964 by Digital Equipment Corporation

l.VLACIE?(,oe
ASSEMBLY PROGRAM

CONTENTS

SECTION 1: INTRODUCTION

SECTION 2: LANGUAGE FUNDAMENTALS. 3
The Statement•.................. 3
The Location Counter 6
Elements. • 6
Express ions ..•........•.................... 10
Evaluation of Symbols. 11

SECTION 3: STATEMENTS........................ 12
Comment Statements 12
Instructions. 12
Extended Instructions 14
Data Generating Codes• 15
Processor Control Codes ~. 19

SECTION 4: RELOCATION AND LINKING......... 26
Re location 26
Linking Subroutines 28

SECTION 5: MACRO INSTRUCT ION. 30
Created Symbo Is•.................... 33
Concatenation 34
Indefinite Repeat. 35
Nesting and Redefinition... 35
Additional Codes. • • . 38

SECTION 6: ERRORS............................. 39
The Error Flags 39

SECTION 7: ASSEMBLY OUTPUT 42
Assembly Listing 42
Binary Program 42

SECTION 8: PROCESSOR INITIALIZATION......... 46

APPENDIX I: CODES............................. 47

APPENDIX II: SUMMARY OF ERROR FLAGS. 49

APPENDIX III: PROGRAMMING EXAMPLE.......... 50

APPENDIX IV: CHARACTER SETS. 54

II

SECTION 1

INTRODUCTION

The use of an assembly program has become a standard practice in

the programming of digital computers. This type of processor permits a program­

mer to code in a more convenient language than the 36-bit binary numbers which

are of significance to a PDP-6; the processor translates the programmer's source

language to machine code. The advantages of this are widely recognized:

Easily recognized mnemonic codes are used instead of numeric codes; instructions

or data may be referred to by a symbol ic name without knowing or even caring

about the actual machine address; decimal or alphabetic data may be expressed

in a more convenient form than in a binary number; programs may be altered

without extensive changes in the source language; and debugging is considerably

simplified.

MACR06 is an advanced type of assembly processor with a facility

for using macro-instructions {where long sequences of code may be replaced by

relatively short statements}. It offers all the flexibility permitted by numeric

coding with all of the above advantages, and in addition permits the assembly of

relocatable programs.

The MACR06 system consists of two parts: the source language in

which programs are coded, and a computer program to translate this source lan­

guage into PDP-6 code. This document describes the language and some of the

details of the operation of the processor program.

The processor program is a two pass assembler in which the source

language statements are processed twice, once to establish symbol definitions,

and once to assemble PDP-6 code using these definitions.

The MACR06 processor, like other parts of the PDP-6 Modular Soft­

ware System is designed to reflect the modularity of the PDP-6 hardware.

The processor receives a string of characters as input. The output

consists of a character string for I isting and a string of binary words containing the

assembled code. The processor interfaces with output and input routines which fetch

and store these words and character strings. It is essentially immaterial whether the

media containing the output and input strings are paper tape, punched cards, magnetic

tape, Microtape, Teletype or a line printer. Core storage may even be used as an

I/O medium on the larger configurations.

The processor produces relocatable binary code. This, too, is inde­

pendent of the storage medium, in logical blocks containing information to be stored

in memory by the linking loader. The assembled code format is completely compatible

with all parts of the Modular Software System, incl uding DDT -6, Checkpoint 6, the

stack monitor and the time-sharing monitor.

2

SECTION 2

LANGUAGE FUNDAMENTALS

THE STATEMENT

The fundamental unit of the MACR06 assembly language is the

statement. A MACR06 statement is a string of characters; it may be used to

generate PDP-6 code, data, or to control the operation of the MACR06 processor.

A statement may be delimited by a semicolon or by a carriage return or the end

of a card, depending on the input medium.

Each statement may be numbered. If the first character of a state­

ment is a digit, a II of the fo! lowing characters up to the first blank are considered

to be part of the statement number.

A statement is subdivided into fields which identify the data

generated by the statement, specify the type of statement, describe the spec ific

function of the statement, and comment the statement.

If a statement is ended with fewer fields than are normally required,

the unspecified fields are considered null. If a statement has more fields than are

required, the superfluous fields are taken to be comments. The information between

the semicolon and the end of card or carriage return is also taken as a comment.

Label Field -

Code Field -

This is a single symbol referring to the memory

location where the next data word or instruction

would normally be placed. This field is always

delimited by a colon.

This field consists of a single word. It describes

the type of statement and is a mnemonic representing

a PDP-6 instruction, a type of data configuration or

a processor control code. It is delimited by either a

space or a comma.

3

Variable Fields - The function of these fields is determ ined by the code

field. They may describe data, machine addresses,

accumulators, processor control, index registers, etc.

They may be delimited by commas, parentheses or

angle-brackets, depending on their function in the

statement.

Fields consist of elements, codes, expressions and macros. Elements

are single "words" and represent numeric values; codes are also single words and

describe statement functions; expressions represent numeric values and are strings

of elements separated by combinatory operators. Macros are single words and stand

for character strings. The following are elements:

A

TAX

6

4.3 E-6

"TEXT"

These expressions are combinations of the above elements:

TAX+6

"TEXT" &6

A/4.3E-6+TAX

The following are codes:

HLLE

DATAO

XWD

Punched Paper Tape

Character Sets

The ASC II character set (Appendix IV) is used to construct statements.

Two characters may not be used: the reverse slash ('\.) and the left arrow (4-).

4

(They are ignored by the processor). All carriage returns must be followed by a line

feed, and all line feeds must be preceded by either a carriage return or another line

feed. Spaces are used to delimit the code field, and may be freely used in other

places for formatting; tabs are logically equivalent to spaces, and are properly

translated to spaces on output listings.

Punched Cards

A modified Hollerith code (Appendix IV) is used for constructing

statements on punched cards. As with paper tape, the reverse slash ('J may not

be used. Only the first 72 columns are considered by the processor; the remaining

8 may be used for identifying information. Spaces may be freely used for formatting;

there is no particular usage of card columns for this purpose. To skip lines, blank

cards are inserted; these generate no information.

5

THE LOCATION COUNTER

1n general, statements generate 36 bit binary words, which are

placed into consecutive memory locations. The location counter is a register

used by the MACR06 processor to keep track of the next available location in

memory. It is updated after processing each statement. A statement which gen­

erates a single machine instruction would update the location counter by 1; a

statement which generates 6 data words would update it by 6 • The location

counter may be explicitly set by the LOC or RELOC codes.

ELEMENTS

Elements represent binary integers less than 236 • There are

five types of elements: symbols, numbers, characters, points and literals.

Symbols - These are strings of letters and numbers, the

first of which must be a letter. Although a

symbol may be any length, only the first 6

characters are considered and any additional

characters are ignored; symbols which are

identical in their first six characters are consid-

ered identical. A decimal point may appear in

the character string of a symbol but may not be

the first character.

Example: ----------------....

X

A65
NUMERIC (EQUIVALENT TO NUMERI)
X.38
HIGH.
N12345

6

Numbers - A number is a string of digits. If the string con­

tains a decimal point I it is evaluated as a floating

decimal number and the digits are taken radix I¢.

If the string does not contain a decimal point, the

digits are assigned values according to the prevail­

ing radix. {This prevail ing radix is normally regu­

lated by the RADIX code}. If 8 were the prevail ing

radix the number 17 would have the value 178=f5 10 .

If 10' were prevail ing, 17 would have the value

1710=218' The number 17.¢ would always have

the value 2¢542¢0'¢¢¢¢¢ since the decimal point

denotes a floating decimal number. A number must

always begin with a digit or a decimal point.

Occasionally it may be desirable to change

the value of the radix for only one numeric element.

This is done by the qualifier t followed by a letter.

Numbers are qualified in this manner to be Decimal,

O:tal, or ~inary

Thus:----------------------~

f 017 = 1 7'0
f 017 = 1510

t B 1 0 1 0 = 1 0'0 = 1 28

irrespective of the prevailing radix. These qualifiers

have no further effect on the prevail ing radix. Float­

ing decimal numbers never consider qualifiers; any

qualifier is ignored. The exponent parts of floating

7

Point -

Character -

decimal numbers may be further argumented by

following the number by E±n, whereupon the

number is then considered to be multiplied by

l,0±n.

Example: ____________________________________ ~

1 •
10.0E-1
0.0001E4
.001E+3 <ALL = 201400000(00)
1E10

A number may also be logically shifted left by following

it by B~. The number is then shifted left so that the

right hand {low order} bit is in position.:.. (decimal) of

the 36 bit computer word.

Thus:--------------------------------------~

03835 = 000000000003
03831 = 00000000060
03817 = 000003000000

The decimal point alone has a special meaning. It

represents the current value of the location counter.

Example:------------------------------------~

A: JUMP .+6
, EQUIVALENT TO
A: JUMP A+6

If the fi rst non -b lank character of an e I em ent is a

quote (It), the characters following it are assembled

as their 6 bit ASCII representations: This element is

terminated by a quote. If more than 6 characters are

included within the quotes, only the right hand 6 are

considered.

8

Literal -

Example:------------------------------~

"AXE" is equivalent to 417,045

(This representation is useful with

immediate mode operations).

This type of element consists of any statement which

will generate one word of machine code or data,

surrounded by a pair of brackets. The appearance

of a literal causes a cell containing the information

generated by the enclosed statement to be reserved,

usually at the end of the program. The element

represents the address of th is reserved cel I. Literals

may be nested to any reasonable depth.

Examples: ---------------------,

ADD 2, [DEC 65], DECIMAL LITERAL
FAD 1, [8.14], FLOATING POINl
MOVE 3, [ASCII .BYTES.]
XCT[XCT[XCT[ADD 2,X]](4»),NES1ED

The last example generates the following constants: ---­

LITt: XCT LIT2(4)
LIT2: XCT LIT3
LtT3: ADD 2,X

9

EXPRESS IONS

Expressions are strings of elements separated by arithmetic or

Boolean operators. Expressions represent numeric values less than 235 in

magnitude. The value of an expression is calculated by first substituting

the numeric values for each of the elements and then performing the opera­

tions. The allowable operations are:

Operator

*

I
+

& , .

Meaning

multiply

divide

add

subtract

and

inclusive or

When combining elements, the Boolean operations {and, ior}

are performed first, from left to right. Then the multipl ications are per­

formed from left to right, and finally the additions and subtractions are

performed. Division always truncates the fraction part. All arithmetic

is performed modulo 235 = 34, 359, 738, 368.

For example, suppose the element

A represents the value 2 10

B represents the value 8 10

C represents the value 3 10

D represents the value 5 10, the expression:

AlB + A*C represents 610

B/A - 2*A-1 represents -1 10 = 7777777777778

A&B represents fJ
B+fJ 1 fJ 10 +C re presen ts 21 10

1 + A&C represents 3 10

10

mechanisms:

EVALUATION OF SYMBOLS

The value represented by a symbol is assigned by one of three

(1) Label - If a statement begins with a symbol followed by

a colon, the symbol is called a label. It is assigned the

current value of the location counter.

(2) Direct Assignment - If a symbol appears on the left

hand side of the = in a direct assignment statement, it is

assigned a value equal to that value represented by the

expression on the right hand side. A direct assignment

statement has the form:

SYM = EXP, COi''lM ENT

where SYM is a symbol and EXP is an expression:

Example:----------------------------------,

A = 8+2
TSIZE = TEND-TSTART
K = 4

(3) Variable - If a symbol is followed by #, a storage

ce /I is automat ica II y reserved, (usua II y at the end of

the program), and the symbol represents the location

of th is storage ce II •

This is useful for defining a symbolic temporary storage

location, for example: TEMP#, which reserves a cell

whose address is represented by TEMP.

If a value is assigned directly, it may be altered by

another direct assignment statement. If it is defined as a label or variable,

it may not be altered.

11

SECTION 3

STATEMENTS

The meaning of a statement is determined by the code field. The

code is a mnemonic word representing a machine operation, a data configuration,

or a processor control code. Every statement must have a code. The code field

is del imited by either a space, a comma, or a statement del imiter.

Although codes are similar in appearance to symbols, they should

not be confused. For example, ADD may be either a symbol or a code; in con­

text, however, it is unambiguous.

COMMENT STATEMENTS

A statement with a blank code is considered to be a comment.

(Obviously this code must be delimited by a comma).

[EXamPle:

, THIS IS A COMMENT I
INSTRUCTIONS

When the code field contains the mnemonic of a machine instruc-

tion concatenated with a mode mnemonic, a statement represents a machine in­

struction. There are two types of instructions - primary and I/O. Two state-

ments are:

READ: DATAl PTR, @NUM(4)
SUM: ADD 2, TABLE (X3)

The first field of an instruction statement is a label. The single symbol

in this field is given a value equal to the memory address occupied by the instruction.

The next field is delimited by a space and is the code. If the next field is delimited

by a comma, it is the accumulator in a primary instruction or the device number in

an I/O instruction; otherwise it is an expression for the address referenced by the

12

instruction. If there is an accumulator field, then the following field is the

address. The last field, enc losed by parentheses, is an expression representing the

index register. The @ appearing in the address field indicates an indirect address.

The accumulator or device field may be left out, and the code

del imited by the comma or a space. In this case the accumulator or device number

is considered to be zero. If indexing is not used the index field may also be left

out, and the address field delimited by a comma, carriage return or semicolon.

A blank address field is considered to be zero. The following instruction state­

ments are proper.

JRST -+3;
ADD 2,X
JUMP (4)
CONO 203, ENABLE PC ON CH 3

Assembly

Instructions are assembled in the following manner: Each instruction

code represents a 36 bit number. If it is a primary instruction code, the low order

4 bits of the value of the accumulator expression are ior'd into positions 9-12.

The low order 9 bits of the value of the device expression of an I/o instruction

are ior'd into positions 3-11. The low order 18 bits of the value of the address

expression are ior'd into the right half of the instruction. If the indirect address

symbol@ appears in the address field, a bit is placed into position 13. Finally,

if the index register field exists, the lower 4 bits are ior'd into positions 14-17.

Numeric Codes

Numeric codes are considered to indicate primary instructions. The

remainder of the statement is assembled as a normal instruction. If the numeric code

is preceded by a minus sign, the twos complement of the number is taken; the minus

sign is ignored for other codes. Character elements are considered to be numeric.

13

Example: ---------------.....

~; THE VALUE OF A IS IN THE RT HALF
27088 2~X; EQUIVALENT TO ADD 2~X
'065; 000000000101 IS GENERATED
-1; 777777777777 IS GENERATED

EXTENDED INSTRUCTIONS

For programming convenience, some extended codes have been

devised. These represent a machine instruction combined with an accumulator

or device number.

JEN

HALT

JRSTF

JOV

JCRY,0'

JCRY1

JCRY

JPC

RSW

== JRST, - Jump and enable the PI system

== JRST 4, - Halt, then Jump

== JRST 2, - Jump and reset flags

== JFCL 8, - Jump on over flow and clear

== JFCL 4, - Jump on CRY,0' and clear

== JFCL 2, - Jump on CRY 1 and clear

== JFCL 6, - Jump on CRY1 or CRY,0' and clear

== JFCL 1, - Jump on PC change and clear

== DATA I ,0', - Read the switches

14

DATA GENERATING CODES

Several codes are used to indicate various types of data configurations.

These codes describe the type of data to be generated. A label on a data generating

statement refers to the first word assembled.

DEC -

OCT -

EXP -

XWD -

Decimal data - set the radix to 1,0 for this

statement only and generate a word for each

expression following the code. Expressions

are separated by commas.

Example:--~
DEC 10" 4.5" 3.1416" 6.03E-26" 3;

5 WORDS GENERATED

Octal data - similar to the DEC code, but the radix is

temporari Iy set to 8

Example:--~

OCT -3" 2" 777" 4. t; THE 4TH ITEM IS FLOATING PT.

Expressions - The radix is unchanged. Each expression

following the code generates one 36 bit data word.

rExamPle:

EXP X" 4" t065" HALF" 8+362-.t.'d

Transfer word - Two expressions follow this code which

generates one data word. The low order 18 bits of the value

of the first are placed in the left half word, and the low

order 18 bits of the value of the second expression are placed

into the right half.

Example: __ ~

ATOB: X~'iD A,8; TRANSFER FROM AREA A TO 8

15

Z-

10WD -

POINT -

Zero word - One word containing zeros is generated.

[
ExamPle:

_ TEMP: z .. TEMPORARY STORAGE

I/O transfer word used in the BLKI and BLKO instruc­

tions. Two expressions separated by commas follow

this code which generates one data word. The left

half of the assembled word contains the twos comple­

ment of the value of the first expression, and the right

half contains the value of the second expression minus

one.

Example:------------------------------------~
INAREA: IOWD 6 .. tD265J
ASSEMBLES AS 771712000371

Byte Pointer Word. The first expression indicates the

byte size, the second indicates the address, and the

third indicates the position of the right hand bit of the

byte position. The indirect character@>, and an index

expression in parentheses may appear in con junction with

the address part. The local radix for the position and

size expressions is always 1~, regardless of the prevailing

radix.

Example:------------------------------------~
STRING: POINT 6 .. @N(4) .. 5 ..

,POINTS TO THE LH CHAR

If the position expression is left blank, the position part

will assemble as 448 • On incrementing, the pointer will

point to the left hand byte.

16

SIXBIT

ASCII-

BLOCK -

Alphabetic Information. This code is used to generate characters

in 6 bit ASCII code, pack them into 6 character words and place

the words in sequential registers. The first non blank character

following the code is the delimiter. Information is assembled

from the second character unti I the first character is repeated.

Only the printing characters of the ASCII code are assembled,

except that I ine feeds are assembled as 74 C".) .

Example:--~

NUMBH2 SIXBIT "2"
ALPHA: SIXBIT /ALPHABETIC INFORMATION/
, EQU 1\1 ALENT TO
ALPHA: OCT 411460504142, 4564514300511

OCT 564657625541, 6451575600001

Alphabetic information. This code is similar to SIXBIT, but it

packs words with the low seven bits of the full ASCII represen­

tation. All of the ASCII characters may be assembled under

this code, and the normal injunction against the reverse slash

(\) and back arrow (.-) is relaxed.

Example:--,
A SC I I •
•• A CARRIAGE RETURN AND LINE FEED ,

Block of storage reserved. - The expression following the

code indicates the number of cells to be reserved. The

location counter is incremented by the value of the ex­

pression.

[EXamPle:

MATRIX: BLOCK N*M

17

BYTE - Byte strings. The first expression following this code is

enclosed in parentheses and is the byte size. Subsequent

expressions, separated by commas, are evaluated,

to the byte size, packed and assembled into sequential

memory locations. If a byte cannot fit into a word, it is

assembled as the first byte of the next word. The byte

size may be altered in the middle of a word or a string by

inserting a byte size expression in parentheses. The local

radix for the size portion is always considered to be 1¢,

no matter what value the prevailing radix may have.

Example:--.
RADIX 10
AX: BYTE (6) 10, 4,9,1,1,3,6
Q: BYTE (15) 12, 3, 9,
STR: BYTE (6) 10, 4, 9 (12) "AB"
, EQl)IVALENT TO
AX: OCT 120411010103, 060000000000;
Q: OCT 000400000300, 000110000000;
STR: OCT 120411004142;

18

PROCESSOR CONTROL CODES

These statements do not generate data or instructions, but control the

operation of the processor.

REPEAT -

IFn -

This code causes a character string to be repeatedly

processed. The code is followed by an expression

whose value indicates the number of repetitions

desired. This is followed by the string to be re­

processed enclosed by angle-brackets.

Example:---,
ADDX: REPEAT 3<ADD 6,X(4)

ADDI 4,1>
, EQUIVALENT TO
ADDX: ADD 6,X(4)

ADDI 4, 1
ADD 6,X(4)
ADDI 4, 1
ADD 6,X(4)
ADDI Li,l

SQ: REPEAT N <
EXP .*.+SQ*SQ+1-2*.*SQ+2*. -2*SQ>

A TABLE Of SQUARES

The label of a repeat is placed on the first statement generated.

REPEATs may be nested to any reasonable degree~

f~r.PF.Al N+l
REPE(..\T N

«vlOvF: 6, A(K)
<ADD 6, (3)

ADDI 3,L>
MOVEM 6,A(K) >

Conditional assembly - An IFn code is followed by an

expression, and a st ring of coding enclosed in angle­

brackets. If the expression fulfills the condition indicated

by!::, the string is processed; if not it is ignored. The IFn

codes are:

19

IFIDN -

IFDIF -

RADIX -

IFE Assemble if expression is zero

IFG Assemble if expression is positive

IFGE Assemble if expression is positive or zero

IFl Assemble if expression is negative

IFLE Assemble if expression is negative or zero

IFN Assemble if expression is non zero

IF1 Assemble if PASS 1 {no expression}

IF2 Assemble if PASS 2 {no expression}

Example:----------------------------~

IFZ X-Y <ADD Z, XJ>
,ASSEMBLED ONLY IF X=Y ,

, - .--------

Conditional assembly on character strings.

This is followed by three sets of angle-brackets.

If the character strings enclosed by the first

two sets of angle-brackets are identical, the

coding within the third set is processed.

Example:----------------------------~

IFIDN <+> <+> <FAD 3,X>
,FAD 3,XJ WILL BE PROCESSED

Conditional assembly on character strings.

This is the converse of IFIDN and is similar in

format. The coding within the third set of angle­

brackets is processed if the two character strings

differ.

The prevailing value of the radix is controlled by

this code. It is followed by a decimal number

between 2 and 10 which then becomes the pre-

. 20

Loe -

RELoe -

PHASE -

vailing radix. The radix may be changed at

any point on the assembly; it is initially con­

sidered to be 8.

Example:----------------------------~

RADIX 10"

,SET PREVAILING RADIX DECIMAL

Th is code changes the location counter to a

value equivalent to the following expression.

The block of coding following a LOe is as­

sembled into the absolute locations, and any

labels defined are considered absolute.

Example:----------------------------~

ADD AC2"X
LOC 200
ADD AC3,,@Q2
LOC .+3" SKIP 3 LOCATIONS
ADD ACl"AC2

This is similar to LOe in that it explicitly sets the

location counter. The block of code which follows

is relocatable 1lnd all labels within the block are

relocatable. The implicit statement:

RELOC 0J I
begins all programs.

A portion of code may be moved into other registers

before it is executed. PHASE gives the location

counter a value different from the location into

which the assembled code is to be loaded. The

21

code is actually loaded into continuing sequential

locations, but all labels within a PHASE'd area are

in relation to the PHASE. Point elements (.) also

relate to the PHASE. PHASE is followed by an

expression indicating the first address of the sub­

routine when it is to be executed.

MOVE (XWD LOOPX,LOOPJ
BL T LOOP+5

LOOPX: PHASE 11
LOOP: Z

DEPHASE

MOVN A(X)
I'MP MPYR
FADM A(Y)
SOJGE X, .-3
JRST @LOOP

This example is the central loop in a matrix inversion.

Before executing it, the routine will be moved into

fast accumulator memory locations 11 - 16. The symbol

LOOP represents 11 and the point in the SOJGE in­

struction represents 15. The routine is, however, loaded

into the normal sequential reg isters. A phased area is

terminated by a DEPHASE, LOC or RELOC code. The

DEPHASE code has no effect on the next sequential

loading location, but restores the location counter to

this value.

22

PASS 2 -

END -

NOSYM -

ERRORS -

LIT -

VAR -

RIM -

This code causes the location assignment phase, PASS 1

to be suspended and PASS2 to commence.

This stai"ement is the last statement in a program or subroutine.

If it is a program, then the following expression is the location

of the first instruction to be executed.

The assembler will normally output a symbol table or list of

the symbols used and their definitions. The code NOSYM will

suppress th is.

The first couple of assemblies usually turn up a number of

errors. This op-code will suppress all output except those

items with errors, allowing convenient correction without

unnecessary output.

This code will cause literals that have been previously defined

to be assembled starting at the current location. If n literals

have been defined, the next free cell will be at (.+n). This

statement will have no effect on I iterals which are defined

after it. L IT may not be used more than eight times.

Th is code will cause the symbols which have been defined

by fol lowing them with (#) in previous statements to be

assembled at this place as block statements. This has no

effect on subsequent symbol definitions of this type. This,

and the previous pseudo-op, LIT, are useful in controll ing

storage allocation. If these codes do not appear, all

variables and literals are placed at the end of the program.

In paper tape assembl ies, this code wil I cause binary output

to be punched in RIM format.

23

OPDEF -

I
SYN -

~----.------

Define an operation mnemonic. This is followed by

a symbol and a pair of brackets containing a state­

ment that will generate one word of data. The symbol

then becomes a mnemoni,c for the operation code repre­

sented by the 36 bit data word.

Example;----------------------------------~

OPDEF PUSHP [rUSH PP,0J
OPDEF PUNCH [DATAQ PfP,]

These opdefs may then be treated as ordinary op codes:

PUSHP X
PUNCH Y

Define synonyms. This code is followed by 2 symbols

or macros. The first must have been previously defined,

and the second is made equivalent to it. If the first is a

symbol, the second becomes a symbol with the same

value; if the first is a macro, the second becomes a

macro which acts identically; if the first is a machine-op,

control code or data generating code, the second will

behave in the same manner.

SYN K,X
SYN FAD, ADD
SYN END,XEND

If the first item is identical to both a symbol and a code,

the second item (which is the synonym) is made synonymous

with the symbol in preference to the code.

24

Listing Control

Several codes are used to control the final listing.

LIST -

XLIST -

LALL -

XALL -

TITLE -

SUBTTL -

PAGE -

Causes the processor to begin I isting the assembled program,

in both octal and source text.

Causes the processor to stop I isting the assembled program.

Causes the processor to I ist a II text that is processed: macro

expans ions, list contro I codes, repeats, etc.

Causes the processor to stop I isting all text.

The comments field is written at the top of each printed page.

The comments field is written as a second I ine at the top of

each printed page and the I isting skips to the next page.

The listing begins a new page. (A form feed on the input tape

a Iso has th is effect).

These list control codes are never printed in the final listings, except under LALL.

25

SECTION 4

RELOCATION AND LINKING

RELOCATION

The MACR06 assembler will create a relocqtable program. This pro­

gram may be loaded into any part of memory and will presumably function properly.

To accomplish this the address field of some instructions must have a relocation constant

added to it. This relocation constant is equal to the difference between the memory

location an instructior1 is actually loaded into, and the location it is assembled into.

Most programs begin in location 6,08; if a program is loaded into cells beginning at

location 14,0,08' the relocation constant, K, would be 13408.

Obviously, not all instructions must be modified by the relocation

constant. Consider the two instructions:

MOVEI2, .-3

MOVEI2,

The first is probably used in address manipulation and must be modified;

the second probably should not. To properly accompl ish the relocation, the actual

expression forming an address is considered and modification is decided on this basis.

Integer elements are IIfixed" and not modified. Point elements are IIrelocatable" and

are always modified. * Symbol ic elements may be fixed or relocatable according to the

means used in their definition. If a symbol is defined by direct assignment statement

it may be relocatable or fixed depending on the expression following the =. If a symbol

is defined as a macro, it is replaced by the string and the string itself must be considered.

If it is defined as a label or a variable (#), it is relocatable. * Finally, references to

I iterals are relocatable. *

To evaluate the relocatability of an expression, consider what happens

at loading time. A constant, K, must be added to each relocatable element, and the

resulting expression evaluated.

* Except under the LOC code which specifies absolute addressing.

26

Example:--------------------------------------.
A, B, C & Dare relocatabl e
X = A + 2*B -3*C + D
k is the relocotability constant.
X = (A +k) + 2* (B+k) -3* (C + k) + (D + k)
Xr = A + 2*B -3*C+D+k

r

Thus, the expression X, under relocation, is relocatable.

Some conventions are followed concerning relocatability:

1) Only 2 values of relocatability for a complete

expression are allowed, k and ~L

2) An element may not be divided by a relocatable

element.

3) Two relocatable elements may not be multiplied

together.

4) Relocatable elements may not be combined by

Boolean expressions.

If any of these rules are broken, the relocatability of

the resulting expression is considered to be ¢, and

the assembled code is flagged.

If a, c and bare relocatable symbols, then:

(a+b-c) is relocatable

(a-c) is fixed

(a+2) is relocatable

(2*a) is relocatable

(2#a-b) is erroneous

27

L IN KIN G SUBROUTINES

Programs usually consist of subroutines which must be linked. This

is relatively easy if all of the subroutines are assembled together; they can be

linked by means of JSR" SUBR instructions. If independently assembled, relocatable

subroutines are used, linking them must be considered, since the symbol tables from

the assembly are inaccessible to the loader.

To accomplish this linking, selected symbols are made available to

the Linking Loader by the codes EXTERN and INTERN.

The EXTERN code identifies certain symbols as external to the program.

The condensed object program contains the information that values for certain symbols

must be derived from other programs at load time. An expression containing a

reference to an external symbol must consist of only the single external symbol.

The statement:

EXTERN SQRTI CUBEI TYPEJ I
identifies the symbols SQRT, CUBE and TYPE as external symbols. Symbols defined

as external must not be defined as labels, variables, macros or assignments.

To make internal program symbols available to other subroutines as

external symbols, the code INTERN is used. This code has no effect on the actual

assembly of the subroutine, but will merely make a list of symbol equivalences

available to other programs at loading time. The statement

INTERN SINI COSI SINDI COSDJ

might appear in a sin-cos routine where SIN, COS, SIND and COSD were entry

points to the subroutine to calculate respectively sines and cosines of angles in

radians and degrees. Internal symbols must be defined within the subroutine as

assignments, labels or variables.

28

For example, if a square root is required, it would be called by

JSR, SQRTJ I
Elsewhere in the program would be the statement:

EXTERN SQRT;

In the square root subroutine would be the statement:

INTERN SQRT;

Some subroutines will have fairly common usage, and it will become

convenient to place them in a library. To load these subroutines, the code

LIBRARY is used. If the SQRT routine mentioned above were a library program,

the statement:

LIB RARY SQRT;

would also appear in the program. The code LIBRARY is followed by a list of

programs {expressed as 6 character identifying codes} required from the library.

LIBRARY KS 401, SQRT, ANFSQ2; I
would cause the programs numbered KS401, SQRT and ANFSQ2 to be loaded from

the library. library routines each have their own internal symbols, and EXTERN

statements are also necessary.

29

SECTION 5

MACRO INSTRUCTION

When writing a program, it is often desirable to abbreviate certain

commonly used coding sequences. Consider the following example of coding which

computes the length of a vector with components stored in 3 sequential locations:

~-------Example:--~

MOVE 0,V;
FMP 0;
MOVE 1,V&1
FMP 1,1
FAD 1;
MOVE 1, V&2
FMP 1,1
FAD 1;
JSR FSQRT;
MOVEM LENGTH;

GET THE FIRST COMPONENT
SQUARE IT

ADD IN THE SQUARE OF THE SECOND

ADD IN THE SQUARE OF THE THIRD
USE THE FLOATING SQUARE ROOT ROUTINE
STORE THE LENGTH

A simpler method of coding would be to use a

subroutine call:

JSP SJ,VLENGTH
EXP V,LENGTH

A macro instruction may be defined which will generate either of the

above coding sequences with one statement:

VMAG VECT,LENGTH

30

This statement consists of a macro-name, followed by the arguments,

in this case the location of the first component and the location of the memory cell In

which to store the result. To be able to generate the above subroutine call with one

statement, the programmer must define the macro VMAG. This is done by use of the

DEFINE code.

DEFINE VMAG (A,B)
<JS? SJ, VLENGTH
EX? A,B>

This macro definition statement consists of the code DEFINE, followed

by the name of the macro, a pair of parentheses containing a dummy string of arguments,

and a pair of angle-brackets containing the coding to be generated each time the

macro is called. A comment may appear between the parentheses and angle-brackets.

The string of dummy arguments is merely used as a model, and these may

be any symbols that are convenient - usually single letters will do. The angle-brackets

may contain any proper string of coding, norma Ily, but are not restricted to a group of

compl ete statements.

When the macro is called, real arguments are substituted for the dummy

arguments in the definition. The coding in the angle-brackets is reproduced, except

that each appearance of a dummy argument is replaced by the corresponding actual

argument in the calling statement. In the example cited above, A and B are the dummy

arguments in the definition. The calling statement has the real arguments VEeT and

LENGTH. The coding actually generated by the call is:

JS? SJ,VLENGTH
EX? VECT,LENGTH

The real arguments may be enc losed with parentheses or the parentheses

may be omitted. If parentheses are used, the argument string is ended by a closed

31

parenthesis; if they are omitted, the argument string ends when all the arguments

of the definition are filled, or when a carriage return, closed bracket, or semi­

colon del im its an argument. When parentheses are used (th is is impl ied by an

open parenthesis following the macro name), all superfl uous arguments are

ignored. The above call for the vector length subroutine may have been written

with equal validity as:

VMAG (VECT, LENGTH)

Arguments must be separated by commas. If an argument contains

a comma, it must be enclosed by a pair of angle-brackets. These angle-brackets

act only as argument delimiters and are stripped off in the actual argument. An

exampl e of th is is:

DEFINE JEQ (A,B,C)
<MOVE (A)
CAMN B
JRST C>

If the data in Location B is equal to A, then the program jumps to C.

If the contents of B must be compared to the instruction ADD 2,X; then the macro

call would be written:

IJEQ <ADD 2,X>, B, INSTX

Angle-brackets surrounding the ADD 2,X are removed and the

proper coding will be generated.

A macro need not have arguments. The instruction:

DATAO PTP,PUNBUF(4)

wh i ch causes the contents of PUN BUF, indexed by reg ister 4 to be output to the

paper tape punch, may be generated by the macro PUNCH, defined by:

DEFINE PUNCH
<DATAO PTP, PUNBUF(4»

32

This macro would be coded as:

PUNCH THE ANSWER

"THE ANSWER" becomes a comment when the macro is replaced by

the defined pseudo code.

A macro need not be used in the statement code field. The string

within the angle-brackets of the definition exactly replaces the macro name and

its argument string. The macro:
.... I-D-E-F-r-N-E-L-(-A-,-B-)--<-3-*-B---3-*-A-+-3->-

gives an expression for the number of items in a table where 3 cells are used to

store each item. A is the address of the first item and B is the address of the last

item. To load a., index register with the table length, one might write:

MOVE X,L(FIRST,LAST)

CREATED SYMBOLS

When a macro is called, it is often convenient to generate symbols,

without explicitly stating them in the call. Created symbols accomplish this.

Each time a macro that requires a created symbol is called, a symbol is generated

and inserted in the macro. These generated symbols are of the form .. nnnni that

is, two decimal points followed by four digits. The first created symbol that is

generated is .. ~~~l, the next .. ~~~2, etc.

If a symbol in a definition statement is preceded by a %, it is con­

sidered to be a created symbol. When a macro is called, all missing arguments that

are of the form %X are replaced by created symbols, if they are so spec ified.

The following macro wi II cause the textual information "A" to be written

out on the console, followed by a halt and a jump to B. The additional label is

necessary since the text statement generates an indefinite number of data words. A

created symbol is appropriate here since the programmer is probably not interested

in the label.

DEFINE TYPE (A, 7.B)
<JSR TYPE
HALT 7.B
S r XB I T I' A • I
7.8: >

33

This macro is called by:

TYPE HELLO

The call:

TYPE HELLO, BX

will not generate a created symbol. Instead, the explicit symbol overrides the

created symbol.

CONCATENATION

The above example also illustrates the use of the concatenation

operator, the apostrophe. An argument may not necessarily refer to a complete

symbol but refers to a string of characters. The apostrophe may not be used other­

wise within a macro definition, and 'further it is not a meaningful operator outside

of a macro-definition. Another example is the macro:

DEFINE J(A,B,C)
<JUI'lP 'A B, C>

The generated code when the macro is called by:

J LE,E,X&l

is:

JUMPLE 3,X&1

34

INDEFINITE REPEAT

Often in the definition of a macro, it is not known in advance how

many arguments there will be. An example is a macro used to set up a symbol table.

This table consists of a word of code corresponding to a 6 character symbol,

followed by a word of temporary storage. There may be an indefinite number of

symbols in the table. This is easily implemented by an indefinite repeat:

DEFINE STABLE(A)
<IRP (A)
<5IXBIT I'A'I
Z»

The IRP A <EXP) indicates that A is composed of a string of sub­

arguments separated by commas, and that the expression enclosed by angle­

brackets is to be repeated with each sub-argument inserted in turn.

The above macro when called by:

generates:

[STABLE<ALPHA, BETA, GAMMA;

51 XBI T IALPHA I
Z
SIXBIT IBETAI
Z
5IXBIT IGAMMAI
Z

NESTING AND REDEFINITION

Macro definitions may appear within other definitions to any reasonable

depth. A macro within another macro is not defined until the outer macro

is calfed. The macro-processor simply substitutes the arguments into the defined

string of characters, and nesting is wholly consistent with this type of operation.

35

If a macro name which has been previously defined appears within

another definition statement, the macro is redefined, and the original definition

is exorc ised •

The first example, calculation of the length of a vector, may be used

to illustrate this:

DEFINE VMAG (A,B, %C)
<JSP SJ,VL
EXP A,B
JRST %C

VL: MOVE 2, (SJ)
MOVE (2)
FMP 0
MOVE 1,1(2)
FMP 1,1
FAD 1
MOVE 1,2(2)
FMP 1,1
FAD 1
JSR FSQRT
MOVEM @1 (SJ)
JRST 2(SJ)

7.C:
DEFINE VMAG (A,B)
<JSP SJ, VL
EXP A,B>.>

36

This macro YMAG is defined as an entry to a closed subroutine followed

by the closed subroutine. The nested redefinition redefines the macro as only the

entry. The first time the macro is called, the subroutine is generated. Subsequent

calls generate only the call ing sequence - there is no need for another subroutine

Another use of redefinition is a subroutine handler. On entering a

subroutine, k accumulators are stored, and the prevailing radix is altered to one

local to the subroutine. On exiting, the accumulators and radix are restored.

[J EF IN E E X IT < >
DEFINE ENTER (R,K,%A,%B,%C,%U,%E)
< ~~B:

REPEAT

DEFINE
< %E:
l~ EPEAT

%C:

L
'Iof::"=l((j,
i~ADIX H

SA~E THE OLD RADIX

K <MOVEM .-%B+1, %C+.-%B+l> SAVE ACS
SYN EXIT, %0; SAVE DEFINITION

EXIT NEW DEFINITION
RADIX %A, RESTOKE OLD RADIX

K <MOVE .-%E, C+.-%E> RESTORt ACS
SYN %0, EXIT; RESTORE DEFINITION
PURGE %A,%DJ REMOVE JUNK FROM TABLE
JRST@%B, RETURN fKOM SUBROUTINE
BLOCK K, AC STORAGE> >

Each time ENTER is called, EXIT is redefined. To use this macro to store

4 accumulators on entering a subroutine and setting the local radix to 10, the following

would be written:

S UBR:

37

CRSYM -

ADDITIONAL CODES

This code is analogous to VAR and LIT. It is a processor

control code and indicates that previously undefined

created symbols are to be given values according to the

present contents of the location counter. Each undefined

created symbol increments the location counter by 1 •

38

SECTION 6

ERRORS

Occasionally, even the best of us commit small errors in writing

programs. There are two classes of errors -- errors in language usage and program

errors. MACR06 will examine the statements for this first c lass of error, and

print appropriate messages. These errors are caused by meaningless or inconsistent

constructs in the source language. When a I isting is prepared during the assembly,

each MACR06 statement that contains errors wi II be flagged by one or several

letters in the margin. At the end of the listing will be a summary of the errors;

this summary wi II be printed even if a listing is not prepared. Program errors

which properly use the MACR06 language will be correctly translated into errors

in the binary program.

THE ERROR FLAGS

M Multiply defined symbol - a symbol is defined more

than once, either as a label or variable.

The symbol retains its original definition.

S Symbol Error - There is a meaningless character string

that resembles a symbol or macro. It is assembled as

though the value were zero.

P Phase Error - A symbo I is ass i gned a va I ue as a I abe I

during pass 2 different from that which it was assigned

in pass 1. An error of this type will term inate an

assembly; it would probably indicate an error in

39

o

N

A

L

F

U

v

R

conditional assembly or in macro redefinition and

therefore propagate throughout the entire program.

(Symbols re-assigned by n=IJ will not cause phase

errors) •

Undefined Code - The code indicating'the state­

ment type is not defined in the code table. It is

assembled as a numeric code of zero.

Number Error - There is a meaningless string of

characters that resembles a number. It is assembled

as zero.

Argument Error - An argument of a control code ha s

a peculiar value.

Literal - There is an error within a literal.

Macro Definition Error - A format error exists in a

DE FINE statement.

Undefined Symbol - A symbol or macro is undefined.

It is given a value of zero.

Value Previously Undefined - A symbol used to control

the processor is undefined prior to the point at which

it is first used.

Relocation Error - An expression has a relocation constant

other than 1 or ~, contains division by a relocatable

number I contains the product of two relocatable numbers I

or involves relocatable numbers in Boolean operations.

The relocation co<nstant is set to zero.

40

D Multiply Defined Symbol Reference - The statement

contains a reference to a multiply defined symbol.

It is assembled with the first value defined.

An error message in the summary will have the following format:

laC

(location
Counter)

A+N

(Symbolic
Address)

41

MACRO (n)

(Macro called
depth)

E

(Error
flags)

SECTION 7

ASSEMBLY OUTPUT

ASSEMBLY LISTING

There are two types of assembly output, the assembly I isting and the

binary program. The assembly listing consists of a printout of the source program.

On the same line with each source statement are 3 numeric fields: the location of

the assembled code, the left half word, and the right half word. Above each line

containing an error is an appropriate message. This I isting is controlled by the

List Control Codes except that error messages are always printed. All assemblies

begin with an implicit LIST.

BINARY PROGRAM

The binary program may assume two forms: RIM and LINK. The RIM

{Read-in Mode} format is always punched into paper tape and is used for such things

as loaders and computer hardware ma i ntenance programs. R 1M programs may be

completely loaded by the loader resident in the shadow memory located "behind"

the accumulator memory.

Rim Format

Programs in RIM mode consist of two word pairs. The first word is an

instruct ion:

DATAl PTR, A,

The second word of the pair is the word of instruction or data to be

loaded into memory location II A" .

The last word of a RIM tape is a single instruction:

HALT, START;

where START is the first location of the program.

42

Link Format

LIN K format is the normal binary output mode. Programs in this format

are acceptable to the Linking Loader, and are generally relocatable. The Linking

Loader wi II load sub-programs into memory, properly re locating each one and ad­

lusting addresses to compensate for the relocation. It will also I ink External and

Internal symbols to provide communication between independently assembled sub­

programs. Fina Ily, the Linking Loader will call and load I ibrary sub-routines.

LIN K format data is in blocks. All blocks have an identical format.

The first word of a LIN K block consists of two halves. The left half is a code for

the block type, and the right half is a count of the number of data words in the

block. The data words are grouped in sub-blocks of 18 items. Each 18 word sub-block

is preceded by a relocation word. This relocation word consists of 18 two bit bytes.

Each byte corresponds to one word in the sub-block, and contains relocation information

regarding that word.

If the byte value is: o - no relocate occurs

1 - the right half is relocated

2 - the I eft ha I f is re located

3 - both halves are relocated

These relocation words are not included in the count; they always appear

before each sub-block of 18 words or less to insure proper relocation.

This block format is universal. All programs (except those in paper tape

RIM format) are stored in this format, including programs on paper tape, Microtape,

standard magnetic tape, punched cards, drums and discs. This format is totally

independent of logica I divisions in the input medium (40 word check summed paper tape

blocks, 128 word blocks on Microtape and drums, 23 word check summed punched

cards, etc). It is also independent of the block type.

43

The Formats for the Bloc k Types

Code 1 - Program and Data (assembler and compiler output)

Data word 1 - The location of the first word in the block

Data words 2-N - Up to N -1 words of program or data

to be loaded.

Code 2 - Program symbol table (local symbols)

The data words are in pairs, the first is the symbol (in

6 bit ASCII) and the second is the value. This block is

necessary for debugging routines.

Code 3 - Internal/external symbol table

The data words are in pairs.

Data word 1 -

Data word 2 (LH) -

(RH) -

symbol (6 bit ASCII)

1 for a right hand external
2 for a I eft hand external
4 for an internal
symbol value for internal

I ink for external

These symbols are used to I ink independently assembled

subroutines. The second and subsequent occurrence of

an internal symbol is ign ored •

Code 4 - Library requests.

Each data word is the name (6 bit ASCII) of a library

routine to be loaded.

Code 5 - Highest relocatable point.

This is the last block in a subroutine. It contains 1 word,

wh ich is the locat ion of the highest memory address used by the

relocatable program. Upon loading, the relocation constant

(initially set to zero) is replaced by this number to properly

relocate the next subprogram.

44

Code 6 - Name

There is 1 data word with the subroutine name. This usually

is the first block.

Code 7 - Starting address

There is 1 data word with the starting address of the program.

This block should only occur in conjunction with the main pro­

gram. The second and subsequent occurrences of this block are

ignored.

Code 10 - Combined internal-external

The data words are split into a right half and a left half. The

right half is the link, and the left half the value. These items

are used to control forward references in one pass compilers.

45

SECTION 8

PROCESSOR INITIALIZATION

At the beginning of each assembly the assembler is initialized to certain

states, generally affected by control codes. The initial states are:

1. Radix' is set to 8.

2. The location counter is set to zero and relocatable assembly

will occur.

3. There will be a normal listing.

4. There will be LINK binary output with a symbol table.

5. Phase mode is off.

6. The title and subtitle are blanked.

7. Only device mnemonics are placed in the symbol table. They are:

APR
PI
PTP
PTR
CP
CR
TTY
LP
DIS
DC
UTC
UTS
MTC
MTS
MTM
DCSA
DCSB

=)11515
=)1154
= 11515
= 1154
= 1115
= 114
= 12,0
= 124
= 1315
= 2,0)1
= 2115
= 214
= 2215
= 224
= 23)1
= 31515
= 3154

8 . No Macros or Opdefs ex ist .

46

Arithmetic Processor
Priority Interrupt System
Paper Tape Punch
Paper Tape Reader
Card Punch
Card Reader
Console Teleprinter
Line Printer
Display
Data Control
Micro Tape Control
Micro Tape Status
Mag Tape Contro I
Mag Tape Status
Mag Tape Status
Data Communication System
Data Communication System

APPENDIX I

CODES

Data Generating Codes

DEC - Decimal Numbers

OCT - Octal Numbers

EXP - Express ions

XWD - Block Transfer Word

IOWD - Input/Output Transfer Word

POINT - Pointer Word

SIXBIT - ASCII (6 bit) character strings

BYTE - Variable length bytes

BLOCK - Block of storage reserved
ASCII - ASCII (7 bit) character strings

Processor Control Codes

REPEAT - Repeat character string

IFn - Conditional Assembly

n Condition

E zero

G positive

GE zero or positive

L negative

LE zero or negative

N non zero

B blank

pass 1

2 pass 2

OPDEF - Define an op mnemon ic

SYM - Define a synonym

PHASE - Enter Phase mode

DEPHASE - Leave Phase mode

47

RIM - Assemble RIM tapes

IFIDN - Conditional Assembly on character strings

IFDIF - Conditional Assembly on character strings

RADIX - Radix control

LOC - Set Location Counter

PASS2 - Term inate Pass 1

NOSYM - Suppress Symbol T obi e Output

LIT - Assemble Literals

VAR - Assemble Variables

CRSYM - Assemble Created Symbols

EXTERN - List of External Symbols

INTERN - List of Internal Symbols

L1BRAR - List of Library Subroutines

IRP - Indefin ite Repeat

PURGE - Purge Symbols

END - Last Line

List Control

LIST - List

XLIST - Stop Listing

LMAC - List Macro Expansions

XMAC - Stop Listing Macro Expansions

TITLE - Title

SUBTTL - Subtitle

PAGE - Skipto top of next page

ERRORS - Suppress Output except for error messages

48

A-

D -

F -

L -

M-

N -

0-

P -

R -

S -

U -

V -

APPENDIX II

SUMMARY OF ERROR FLAG S

Argument of Control Op

Reference to multiply defined symbol

Macro Definition

Useage of literal

Multiply defined symbol

Number

Undefined Operation Code

Phase Discrepancy

Relocation

Symbol

Undefined Symbol

Value previously undefined

49

TITLE BUG6

,
,
,
,
, ,
,
, ,

BEGI N:

APPENDIX III

PROGRAMMING EXAMPLE

THIS IS A GAME IN WHICH A SMALL CIRCLE RUNS AROUND THE
FACE OF THE SCOPE. IT STARTS RUNNING AT A HIGH SPEED
AND EVENTUALLY SLOWS DOWN, STOPPING ON ONE OF THE 12
CLOCK POSITIONS. MOMENTARILY FLIPPING DATA SWITCH 35
UP WILL RESTART THE BUG AND IT WILL REPEAT THE CYCLE,
STOPPING ON A NEW POSITION. RANDOM NUMBER GENERATOR
IS USED TO DETERMINE THE AMOUNT OF TIME THE BUG WILL
DWELL AT ANY POSITION. THIS RANDOM NUMBER IS INITIA­
LIZED FROM THE SWITCHES.

HALT .+1;

RSW R2
CLEARB Rl,R3

STOP TO SET THE DATA SWITCHES
,INITIALIZE THE FOUR CELLS OF THE
,RANDOM NUMBER GENERATOR TO 0, A
,NUMBER READ FROM THE SWITCHES, ANOTHER
,0, AND A CONSTANT.

MOVE R4,[123456701231
MOVEI CLOCK,0; START AT TWELVE OCLOCK
JSR SCOPE; START THE SCOPE RUNNING

, RUN THE SPOT AROBND THE SCOPE

GO:

RUN:

DELMAX=7777,

CLEARM TIMER;

JSR RAND;
ANDI DELTAT,DELMAX;
ADD TIMER,DELTAT;
MOVE WAIT,TIMER;

SOJN WAI T, .;

MOVE POSITION(CLOCK)
MOVEM TABLE+l
SOJGE CLOCK, .+2;
MOVEI CLOCK,fDll;

TDNN TIMER, TMAX;
JRST RUN;
RSW TIMER;
TRNN TIMER, 1;
JRST .-2;
JRST GO;

TMAX: 777700000000,

50

FIRST ZERO THE ACCUMULATING

TIMER, GET A RANDOM NUMBER
LIMIT THE RANDOM NUMBER
ADD IT TO THE ACCUMULATING
TIMER, MOVE THE TOTAL TO A
,COUNTER

COUNT DOWN TO KILL TIME

ADVANCE CLOCK TO NEXT POSIT.

HAVE WE PASSED TWELVE OCLOCK
RESET CLOCK BACK TO ONE

ARE WE READY TO STOP IT
NO
YES, BUT INSTEAD OF ACTUALLY
HALTING, IT LOOPS UNTIL DS35
IS SET. THIS ALLOWS THE
DISPLAY TO CONTINUE
MAXIMUM TIME INCREMENT
MAXIMUM TOTAL TIME

,RA NDOM NUMB ER GENERATOR

,
,
, , ,
,
RAND:

THIS RANDOM NUMBER GENERATOR ADDS FOUR RANDOM NUMBERS
MODULO 2t35 TO GET A FIFTH RANDOM NUMBER. THEN IT
REPLACES THE FIRST BY THE SECOND, THE SECOND BY THE
THIRD, THE THIRD BY THE FOURTH, AND THE FOURTH BY THE
FIFTH TO RESET THE GENERATOR. THE FOURTH IS THE GENE­
RATED RANDOM NUMBER.

Z
MOVE DELTAT,RI;
ADD DELTAT ,R2
ADD DELTAT,R3
ADD DELTAT ,R4

MOVE RI,R2;
MOVE R2,R3
MOVE R3,R4
MOVE R4,DELTAT

JRST @RAND

ADD FOUR RANDOM NUMBERS

REPLACE VALUES

51

,DISPLAY ROUTINE
SCOPE: Z

,DISPLAY MACROS

CO NO PI, 10400;
EXCH TBLPT1;
MOVEM TBLPTR';
EXCH TBLPTl;
CO NO DIS,112;

DATAO DIS, TABLE;

CO NO PI,2340;

JRST @SCOPE;

DEFINE INCREMENT (A,B,C,D,E,F,G,H,I)
A WORD OF SCOPE INCREMENTS
<BYTE (2)A(4)B,C,D,E(2)A(4)F,G,H,I>

SHUT DOWN THE PI SYSTEM
INITALIZE THE TABLE POINTER
WITHOUT DISTURBING AC0

START THE DISPLAY ASSIGNING
,SPECIAL CHANNEL 1 AND DATA
,CHANNEL 2
GIVE THE SCOPE ITS FIRST
,WORD
TURN ON THE PI SYSTEM, ACT­
,IVATING CHANNELS 1 AND 2.

,SOME DEFINITIONS TO USE IN THE INCREMENT MACRO

RADIX2
1=1,
ESCAPE= 10,
PX=1000,
PXPY=1010,
PY=0010,
r1XPY = 1 11 0 ,
MX = 1100,
MXMY = 1111 ,
MY=0011,
PXMY=1011,

RADIX8

DISPLAY THE
EXCAPE FROM
INCREMENT:

POINTS (INTENSIFY
THE MODE

PLUS X
PLUS X AND PLUS Y
PLUS Y
MINUS X AND PLUS Y
MINUS X
MINUS X AND MINUS Y
MINUS Y
PLUS X AND MINUS Y

DEFINE XYPOS (A,B) A WORD TO POSITION THE DISPLAY
AND THEN START THE INCREMENT MODE

<BYTE (2)0(3)1,1(10)A(2)1(3)6,1(10)B;>

52

,DISPLAY TABLE

TBLPT1: IOWD 0,TABLE; INITIAL 10 WORD FOR SCOPE
,TABLE

TABLE: BYTE (18)(5)1(4)(3)1(2)2(1)1(3)5; START IN XY
,TRACE A CIRCLE IN THE INCREMENT MODE

XYPOS 1000,1600; MODE
INCREMENT I,PX,PX,pXpy,pX,pXpy,pX,pXpy,pXpy
INCREMENT I,PY,PXPY,PY,PXPY,PY,PY,PY,PY
INCREMENT I,MXPY,PY,MXPY,PY,MXPY,MXPY,MX,MXPY
INCREMENT I,MX,MXPY,MX,MX,MX,MX,MXMY,MX
INCREMENT I,MXMY,MX,MXMY,MXMY,MY,MXMY,MY,MXMY
INCREMENT I,MY,MY,MY,MY,PXMY,MY,PXMY,MY
INCREMENT I,PXMy,PXMY,PX,PXMy,PX,PXMY,PX,PX

BYTE (1)1(11)(1)(1)1(1)1;

,CLOCK POSITIONS
POSITION: XYPOS 1000,1600;

XYPOS 500,1520;
XYPOS 260,1300;
XYPOS 200,1000;
XYPOS 260,500;
XYPOS 500,260;
XYPOS 1000,200;
XYPOS 1300,260;
XYPOS 1520,500;
XYPOS 1600,1000;
XYPOS 1520,1300;
XYPOS 1300,1520;

,INTERRUPT TRAPS

LOC 42

EXCAPE FROM INCREMENT MODE
,AND STOP

TWELVE OCLOCK
ELEVEN
TEN
NINE
EIGHT
SEVEN
SIX
FIVE
FOUR
THREE
TWO
ONE

JSR SCOPE; CHANNEL ONE FOR SCOPE STOP
Z
BLKO DIS,TBLPTR; CHANNEL TWO FOR DATA INTEl

,ACCUMULATOR ASSIGNMENTS
Rl=1
R2=6
R3=5
R4=4
DELTAT=3
TI MER =2
CLOCK=I·

END BEGIN

53

APPENDIX IV

CHARACTER SETS

6 bit Punched 6 bit Punched
ASCII ASCII Card ASCII ASCII Card

(space) 240 00 b @ 300 40 4-8
I 241 01 12-7-8 A 301 41 12-1 .
II 242 02 0-5-8 B 302 42 12-2
243 03 0-6-8 C 303 43 12-3
$ 244 04 11-3-8 D 304 44 12-4
% 245 05 0-7-8 E 305 45 12-5
& 246 06 11-7-8 F 306 46 12-6

247 07 6-8 G 307 47 12-7

(250 10 0-4-8 H 310 50 12-8
) 251 11 12-4-8 I 311 51 12-9
* 252 12 11-4-8 J 312 52 11- 1
+ 253 13 12 K 313 53 11-2
I 254 14 0-3-8 L 314 54 11-3

255 15 11 M 315 55 11-4 . 256 16 12-3-8 N 316 56 11-5
/ 257 17 0-1 0 317 57 11-6

¢ 260 20 ¢ P 320 60 11-7
1 261 21 1 Q 321 61 11-8
2 262 22 2 R 322 62 11-9
3 263 23 3 S 323 63 0-2
4 264 24 4 T 324 64 0-3
5 265 25 5 U 325 65 0-4
6 266 26 6 V 326 66 0-5
7 267 27 7 W 327 67 0-6

8 270 30 8 X 330 70 0-7
9 271 31 9 Y 331 71 0-8

272 32 11-0 Z 332 72 0-9
; 273 33 0-2-8 [333 73 11-5-8
< 274 34 12-6-8 "- 334 74 7-8
= 275 35 3-8] 335 75 12-5-8
> 276 36 11-6-8 t 336 76 5-8
? 277 37 12-0 4- 337 77 7-9

54

..

6064 PRINTED IN U.S.A. 10-5/64

