
"Time Sharing" is presented in its most general sense as any application of a
computer system that involves simultaneous users. Concepts and equipment
of time-shared systems are defined and described and criteria for system configurations
are given in terms of application requirements.

FUNDAMENTALS OF TIME-

This is the second and concluding section of the article by
C. Gordon Bell which ajJpeared on pages 44 through 59 of the
February isrne of Computer Design. The first section discussed
the hardware of time-shared computers and suggested advantages
of time sharing. This section discusses ojJerating system software
and user components and includes an extensive hibliograjJhy on
time sharing.

OPERATING SYSTEM
SOFTWARE
Operating system, monitor, super­
visor, and executive are names
given to those processes that super­
vise and control the operation of
the system for all users.

Unlike conventional operating
systems that are static, a Time Shar­
ing Operating system is growing
and dynamic. New procedures may
be added continuously.

The additional languages and
facilities have a structure that may
have a rather complex operating
system as a major part of the lan­
guage. For example, consider the
administration of a teaching pro­
gram. The program would un­
doubtedly schedule its users (pu­
pils), and the hierarchy of the whole
system would be: the operating sys­
tem for the entire computer man­
aging a central teaching program
to manage all courses managing
a course teaching program which
would manage all individual users
taking the particular course.

28

The objectives of the system soft­
ware are:
I. Provide many user functions or
facilities with easy-to-use processes.
2. Effective or efficient hardware
utilization. Perhaps allow users to
utilize the hardware directly. Pro­
vide special user services which
utilize special hardware.

The criteria for the design might:
I. Meet the requirements for
Time-Sharing (computer time and
memory space) per user.
2. Provide for flexibility in the op­
erating system using modular con­
struction. Individual components
can be independently designed,
tested, and modified (or improved).
If possible, the system components
should be written as user processes.

In general, all systems are con­
strained by cost considerations. A
special system may concentrate on
a single objective, while a general
system is forced to find a balance
between many objectives.

The system software contains:
I. System data base, or informa­
tion necessary for system manage­
ment, and management procedures.

2. Resource allocation, control,
and management procedures.
3. Common procedures or processes
for the users, the library.
4. Miscellaneous elements: System
initialization and shut-down; error
recovery; file backup; creation of
new system; and system debugging.

OPERATING SYSTEM DATA BASE

The operating system requires a
large data base that is retained in
primary memory and in files. Back­
up files (copies of files) must be
regularly written so that the system
can be restarted in a correct state in
the event of system failure.

The data for a user include: his
memory map or process location,
generally found in primary mem­
ory while running or active; the
processor status (the location coun­
ter, processor flags, accumulators,
index registers, etc.); identity in­
formation (name, number, project
numbers, etc.); the time used, al­
lotted, last run, etc.; the run state
(e.g., presently running, waiting to
run, requiring special service, wait­
ing for file transaction, terminal ac­
tion, additional memory, etc.); per­
manent user data to allow the
assignment of terminals and file
space; accounting information; sys­
tem temporary storage to enact
user requested procedures; and
active terminal and file buffering
storage.

COMPUTER DESIGN /MARCH 1968

SHARED COMPUTERS

by
C. GORDON BELL

Associate Professor of Computer Science and
Electrical Engineering, Carnegie Institute of Technology.
Formerly manager of Computer Design, Digital Equipment
Corporation, Maynard, Massachusetts.

In addition to the data base asso­
ciated with each user there are in­
herent data associated with system
components and resources. These
include: hardware status and avail­
ability information; terminal
names; file directories including de­
scriptors of abilities, modes, etc.;
primary memory free space; and
file memory free space.

Historical, statistical, and ac­
counting information are also kept,
and historical or activity data pro­
vide tools for system improvement.
They especially aid scheduling and
memory allocation as well as indi­
cate the system balance and load.

RESOURCE ALLOCATION,
CONTROL AND MANAGEMENT

This responsibility includes: proc­
essor time or scheduling; process
space (primary memory allocation)
and assignment of a process to sec­
ondary memory or files; file space;
and terminal/process/user alloca­
tion and assignment.

The two extreme philosophies
that determine the number of users
a system can have are "denied ac­
cess" and "degraded service." "De­
nied access" provides for a fixed
number of users, each of which will
obtain a known or worse case re­
sponse. "Degraded service" pro­
vides for more users and the service
is at least inversely proportional to
the number of active users.

Scheduling

The assignment of processors to
processes is scheduling. The sched­
uling algorithms that compute the
time a process is to run usually use
the following input parameters:
previous time used; memory space
occupied; status of terminal or file
data transmission; expected re­
sponse time for the user; user in­
formation; and number of users.

The priority information avail­
able includes the user, his urgency,
and willingness to pay. As eco­
nomically realistic systems that
charge for their actual uses come
into existence, users will be able to
get a broader range of service.

The round robin algorithm runs
each user, in turn, for a fixed
quanta of time, and when all users
have been served, the process is
repeated. If any user cannot run
because he is waiting for input or
output, or halted, he misses a turn.
On completion of input or output
the user is put at the head of the
queue and run (subject to his allot­
ted time).

The scheduling algorithm is a
most subjective system component,
and, therefore, might be written in
a form that can be easily modified.
How, when, and which components
call the scheduler is also important.

Memory Allocation

Primary /secondary memory alloca-

tion occurs as users make demands
for more space the system activates
user processes. The hardware mem­
ory allocation scheme of Table 2
constrains the user map organiza­
tion, and the process organization.
This hardware constrains the user
procedure with restrictions ranging
from writing in interpretive lan­
guages; writing at particular ad­
dresses or using a convention
determined index register as a base
register; writing with no restric­
tions (over the basic machine); and
finally providing a two-dimen­
sional addressing space.

The memory paging-memory seg­
mentation hardware will drastically
influence future program structure
and design. With two-dimensional
addressing, the user is not required
to manage primary memory, and is
free to address data by two logical
numbers rather than by physical
numbers. (With such freedom, and
ability one might expect a propor­
tional cost.)

File Allocation and Control

File allocation and control are gen­
erally subject to extra-system con­
straints on the basis of user-size-re­
striction tables.

File allocation cannot easily be
separated from detailed file man­
agement. The management in­
cludes the service of detailed user
requests for data, while allocation

29

is concerned with broader control
of all file space.

Hardware's View of Files. The
hardware parameters that affect
file organization are: the hardware
access time for words or sectors of
the file; the word or record trans­
fer time; the size of the records
transferred; the total file size; and
the file failure rate.

Operating System's View of Files.
The apparent file parameters are:
the size of files: the number of users
and number of files per user; the
access time to segments of a file;
the nature of addressing the file in­
formation (sequential or random
accessing); the file index; and the
file data buffering.

File activities can be divided into
operations: naming, or declarations,
inter-file manipulation, intra-file
utilization, and file closing.

User's View of Files. Parameters as­
sociated with the directory or index
of files for users provide a means
of controlling a file's activity, flexi­
bility, general usage, name, users,
record of its activity, and actual lo­
cation of the file components. File
accessibility control for the user
is on the basis of the originator
(owner), group, and public. The
modes of file activity include read/
write, read only, execute only (a
procedure), and denied access.
Other information about file access
includes creation date, number of
times used, last time used, times

modified, etc. The user requests
of functions for utilization include:
reading, writing, naming, re-nam­
ing, deleting, appending, inserting,
providing access restrictions, ob­
taining statistical information, or
in general, any operation that can
be done with the data in or about
a file.

Terminal Allocation

Terminal allocation in general sys­
tems is either on a first-come-first­
served basis or on a completely re­
served basis. Requests for terminal
reservations are via a control termi­
nal, and as a job is initiated, the
terminals required for job comple­
tion are requested. The terminal
is the means by which a process is

TABLE 2. MEMORY ALLOCATION METHODS

30

Hardware Designation

Conventional computer - no memory al­
location hardware

1 + 1 users. Protection for each memory
cell

1 + 1 users. Protection bit for each mem­
ory page.

Page locked memory

One set of protection and relocation reg­
isters (base address and limit registers).
Bounds register.

Two sets of protection and relocation reg­
isters, 2 pairs of bounds register.

Memory page mapping*

Memory page/segmentation mapping

Method of Memory Allocation
Among Multiple Users

No special hardware. Completely done by inter­
pretive programming.

A protection bit is added to each memory cell.
The bit specifies whether the cell can be written
or accessed.

A protection bit is added for each page. (See
above scheme.)

Each block of memory has a user number which
must coincide with the currently active user num­
ber.

All programs written as though their origin were
location 0. The relocation register specifies the
actual location of the user, and the protection
register specifies the number of words a II owed.
(See Fig. 7.)

Similar to above. Two discontiguous physical
areas of memory can be mapped into a homo­
geneous virtual memory.

For each page (26-2" words) in a user's virtual
memory, corresponding information is kept con­
cerning the actual physical location in primary or
secondary memory. *If the map is in primary
memory, it may be desirable to have "associative
registers" at the processor-memory interface to
remember previous reference to virtual pages,
and their actual locations. Alternatively, a hard­
ware map may be placed between the processor
and memory to transform processor virtual ad­
dresses into physical addresses. (See Fig. 8.)

Additional address space is provided beyond a
virtual memory above by providing a segment
number. This segment number addresses or se­
lects the page tables. This allows a user an al­
most unlimited set of addresses. Both segmenta­
tion and page map lookup is provided in hardware.
(See Fig. 9.) May be thought of as two dimen­
sional addressing.

Limits of Particular
Method

Completely interpretive programming re­
quired. (Very high cost in time is paid for
generality.)

Only 1 special user + 1 other user is al­
lowed. User programs must be written at
special locations or with special conven­
tions, or loaded or assembled into place.
The time to change bits if a user job is
changed makes the method nearly useless.
No memory allocation by hardware.

No memory allocation by hardware.

Not general. Expensive. Memory reloca­
tion must be done by conventions or by
relocation software. A fixed, small num­
ber of users are permitted by the hard­
ware. No memory allocation by hardware.

As users enter and leave, primary memory
holes form requiring the moving of users.
Pure procedures can only be implemented
by moving impure part adjacent to pure
part.

Similar to above. Simple, pure procedures
with one data array area can be imple­
mented.

Relatively expensive. Not as general as
following method for implementing pure
procedures.

Expensive. No experience to judge effec­
tiveness.

COMPUTER DESIGN/MARCH 1968

intiated and requests for additional
terminals, primary memory, time,
etc., are made through it. It is the
medium for job control.

Resource management deals with
servicing user demands after re­
source allocation has occurred. It
is imperative to provide users with
a system that requires little or no
knowledge of particular device or
terminal idiosyncrasies. Even
though terminals have differing
characteristics it is desirable for the
system to provide users with a
single basic set of characteristics.
More flexible terminals would, of
course, leave abilities in access of
the common characteristics which
could be utilized. On the other
hand, it is important to allow users
the freedom to control special ter­
minal activity directly. This is par­
ticularly necessary in mixed experi­
mental-production systems involv­
ing terminals that differ widely.
For example, in flight simulation
systems, the usage may range from
program debugging, new terminal
hardware-software debugging, and
simulation.

The terminal characteristics are:
speed or data rate of the terminal;
amount of primary memory used
for buffering and the location of
the buffers; system overhead time
for data requests, including proc­
essing time required for the data;
and device data acquisition modes,
and terminal data usage. Detailed
terminal management includes the
process that buffers data from the
terminal and synchronizer user de­
mands with terminal performance.

SYSTEM-PROVIDED PROCEDURES
AND PROCESSES

In addition to providing the soft­
ware framework within which users
operate the hardware, the system
also supplies many of the processes
for a user. That is, the system in­
cludes a library of procedures for
arithmetic function evaluation, spe­
cial and procedure oriented lan­
guage translations, computer aided
instruction, file data conversion,
text editing, program debugging,
fact retrieval, simulation, etc. In
fact, the difference between a user
and a system process is that a user
process can be altered.

The method of calling these pro­
cedures (or job setup) and the abil­
ity to have a hierarchy of procedure

calls is important. A system-sup­
plied procedure can be considered
an extension of the system and
called with the same mechanism
with which a user would request
file or terminal activity. In fact,
the hardware instructions that pro­
vide communication between the
system and the user should also be
used for procedure calls. In this
fashion, the system can conserve
memory space by not providing
duplicate copies of routines that are
in use by multiple users. The data
or temporary storage required by
the system while enacting a pro­
cedure on behalf of a user is part
of the user's memory. This struc­
ture conserves space both for users
of small subroutines (e.g., arithme­
tic, data conversion, etc.) and large
programs (translators, text editors,
etc.).

A set of commands might include
programmed floating point arith­
metic (for a small system), com­
mon arithmetic functions, complex
arithmetic, string processing, data
conversion and operating libraries
for the language translators, trans­
lators, editors, loaders, etc. Also
desirable is the facility for a user
to define and call his own functions
in the same hierarchy and frame­
work.

MISCELLANEOUS SYSTEM
FUNCTIONS

These processes include record
keeping, the periodic recording of
the system state for backup, error
detection, error recovery, error
handling for a device, and commu­
nication with the user terminals for
system requests.

The system clock is a part of the
operating system that provides the
actual time base and is used by the
scheduler and the accountant, for
example, to carry out their func­
tions.

System start-up and shut-down
procedures are necessary for ini­
tialization of system and the record­
ing of history. Parts of the system
can be written as pseudo users.
This allows functions like data
gathering and system analysis to
go on by watching the system rather
than being embedded in it. This
operation is obtained by defining
monitor instructions that allow a
user to obtain behavioral charac­
teristics on demand.

A debugging system for the op­
erating system might have the fol­
lowing features: ability to examine
or alter; ability to dump or save the
complete system in the event of a
"crash"; ability to control the sub­
stitution of a "new" system for the
present one, etc. These features are
extensions of a normal on line de­
bugging program.

EXAMPLE OF TIME SHARING
SYSl'EM FOR THE DEC 'PDP-6

Figure 10 first presents a simplified
view of the system in terms of the
memory map of the user and oper­
ating system, together with termi­
nals and files. The system runs
either as a multi-programming or
multi-programming/swapping sys­
tem depending on whether a
secondary memory device is avail­
able for program swapping.

A job for a user can be viewed
as an area of memory which it oc­
cupies while running and I/0

PERIPHERAL
110

EQUIPMENT
DATA

COMMUNICATIONS
SYSTEM

EQUIPMENT

INPUT-OUTPUT
SERVICE DEVICE

(EXEC MODE)

CARDS,
PRINTER,
PLOTTER,
PAPER TAPE,
REAL TIME

*CONSOLES

SYSTEM COMMANDS,ERROR
RETURNS, COMMON USER
SERVICE PROGRAMS (CUSP)
CONTROL (FORTRAN, PIP,
EOITOR, MACRO, ETC) USER
PROGRAMS CONTROL.

1-1--1-----+-+/~,DA~

<~~gu~~> • rl

JOBJ

u~~~~~~royA~AI jg
RELOCATEO) I:: JOB

------+- ~ u:R
JOBN ~ AREAS

ADDITIONAL :=-., _l USERS
AREAS

,______.____.
(MEMORY)

SECONDARY
MEMORY

USER DATA FILES

USER SWAPPING
AREAS

SYSTEM FILES
(INPUT ONLY)

1 CUSPS
2 LIBRARIES
3 EXECUTIVES
4 DEBUGGING

Fig. 1 O PDP-6 Multiprogramming System Diagram. I Courtesy of Digital Equipment Corporation.I

31

equipment assigned to the job, in­
cluding the user's files and termi­
nals. The operating system software
has four main modules: the system
files (e.g. FOR TRAN, assembler,
language translators); terminal con­
trol; file control; and the main
body of the executive.

Figure 11 gives a more detailed
view of what a user program looks
like. The user program (e.g., a
common user program such as a
Fortran Compiler) has its own ex­
ecutive system which communicates
with the operating system. The
user executive translates user com­
mands from a console into operat­
ing system commands for file and

ters which store the processor state
while the job is not running. These
include:
1. Two groups of 208 registers to
store the accumulators or general
registers (AC's).
2. The Program Counter (PC)
and processor flags.
3. The program's location or boun­
daries.

The registers that hold the or­
ganization to a particular program
include:
1. Starting address of the program.
2. Starting address of the debug­
ging program, DDT.
3. Location of various blocks in
the user's area, i.e., the symbol

*
TRANSLATOR

LOADER,
EDITOR, ETC.

1----- DATA TO CORE (LOADING, SYMBOL TABLE)

1----- 01.JTPUT DATA FILE *
i----- LISTI NG FILE* ---INPUT DATA

(STRING OF
FILES)

1----- ERROR FILE _______ ..
CONTROL

CUSP
EXECUTIVE

CONSOLE
COMMANDS,
FILE CONTROLS ERROR

* I/O DEVICE CHANNELS

Fig. 11 General structure of common user service program ICUSPI for PDP-6. (Courtesty of
Digital Equipment Corporation.I

terminal activity, while the actual
Fortran compiler only accepts in­
put data and produces output data.
The user executive is responsible
for making it possible for the com­
piler to read and write files.

Figure 12 shows a memory map
of a user's program. The space can
grow (and contract) as the program
is running, since a user program
may make requests to the operat­
ing system for space. The first
main area, that reserved for operat­
ing system parameters, is 1408 long
and is available to both the user
and the operating system, although
special commands must be given to
the operating system to change it.
The other areas are a function of
what programs are being run.

The system's part of the user's
job area contains temporary regis-

32

table, free storage space, etc.

4. Assignment of I/0 device
names to numbers, so that a device
can be referred to by name rather
than on an absolute basis (2 X 208

locations).

The registers used as working
storage for the system include:
I. The ST ACK, a pushdown area
of temporary storage, and stack
pointer.
2. Input-Output data Buffers.
3. Job number.

User requests to the monitor are
handled via a defined set of instruc­
tions which are called the un-used
operation codes, or Programmed
Operators, or UUO's. Any time the
user program makes a call to the
system for service it is via these in­
structions.

The loader is a system routine
that is placed in the user area ini­
tially and loads the various subpro­
grams required into the user area.
The loader links all symbolic refer­
ences together and fetches needed
library programs.

Figure 13 presents a memory map
of the operating system which
shows the kinds of program mod­
ules in it, together with some of the
communication paths. The mod­
ules perform the following func­
tions:
Job Status Table holds the state of
each job in the system, whether a
job is in core or residing within a
secondary memory prior to run­
ning. The state is defined by sev­
eral words and includes its condi­
tion for running, the time it is
used, and the location of the job
(which includes more status infor­
mation).
IO Device Service exists for each
peripheral device, and the module
manages the transmission of data
between primary memory and the
device, the initiation of the device,
and the processing of error or un­
usual conditions associated with
the device (e.g., re-read trys for mag­
netic tape).

File Directory and File Free Storage
Control is used with devices that
have named files and directories. It
provides the ability to enter new file
names and delete files, and it man­
ages the file's free storage.

Error Handling is a common rou­
tine that may be called whenever
a job (or the monitor) detects an
error. A notice of the error is
passed on to the user at his console
(or to his program), and the job
status may be altered.

Run Control is called by other pro­
grams and is just concerned with
starting and stopping a particular
job.

Core Allocation is a common rou­
tine responsible for knowing the
location of free core in the system
and when told, it reserves core
blocks.
Clock and Clock Queue are com­
mon routines that accept requests
for future notification from other
parts of the monitor. The clock
(more correctly, a timer) notifies
the caller at a specified future time.

COMPUTER DESIGN /MARCH 1968

(For example, the timer is called
by the scheduling program so that
the scheduler can be activated to
schedule the next job.)

Scheduler makes a decision about
the number of the next job to run,
based on the variables associated
with the system's state (each job
status, time, core, etc.).

Programmed Operator Dispatcher
processes the instructions that are
given by the user program to the
executive system. The dispatcher
looks up the instruction in a direc­
tory, does common pre-processing,
and passes control to the appropri­
ate part of the monitor. Some of
the instructions are defined by a
mnemonic call name. A Call table
is hash coded with the name, and

AC STORAGE

AC STORAGE

UUO PROCESSING

PC FLAGS STORAGE

PUSH OOWN POINTER

corresponding monitor address for
the processing.

Command Decoder processes con­
sole requests and decides the system
routine to call.

Console Command Processors in­
clude the programs for actually
processing the user console requests
(or a user program request). These
include programs for log in, save
job, start, stop, assign a device, etc.
Some programs may not be resi­
dent, in which case they are loaded
and run in a fashion similar to that
of a user program.

System Initialization starts the sys­
tem just after it is loaded, and in­
cludes the freeing of devices and
the initialization of all variables.

s,P 20

s1P 20

J 2

s I

S,P I

RELOC. AOORESS (LH• UNUSEOl S,P '

SYSTEM
PARAMETER
FOR JOBS

s

E
REO __,,

1409

SPAC
RE COVE
AFTE
MAY

R LOAD
REMAIN

NOTE:

USE ONLY S- SYSTEM

J - JOB USE
P- PROTECT ED

TEMP. UUO S,P t

UUO LEVEL s I

TEMP. FOR UUO S,P '
TEMP. STORAGE FOR SYSTEM s 3

JOB NUMBER s '
1/0 OEVICE ASSIGNMENT S,P 20

STARTING ADDRESS DOT, NO. SYMBS. J I

s '
IIO OEVICE TRAP LOCATIONS J 20

SYMBOL TABLE POINTER J '
UN DE Fl NED SYMBOL J ' STARTING AODRESS OF PROGRAM J '
Fl RST FREE LOCATION J '
LOAOER J

FORTRAN COMMON J

PROGRAM WITH ARRAYS J

!-----------------
(DEBUGGING PROGRAM) J

1----------------
PROGRAM J

SYSTEM PUSHDOWN J 30

1/0 BUFFERS (VARIABLE) J

FREE STORAGE J

SYMBOL TABLE
(BUILDS FROM LAST ADDRESS, J
TOWARDS 0)

PDP-6 USER
JOB AREA STORAGE

(COURTESY OF DIGITAL EQUIP. CORP.)

I--

1----i

I:=-
I-

Fig. 12 PDP-6 user lob area storage. !Courtesy of Digital Equipment Corporation.I

System Debugging Program is a ver­
sion of the debugging program,
DDT, and may be loaded with the
system. It can be used in the event
of system failure, to interrogate the
state of the system, and includes
facilities for preserving the system
for future examination.

System Maker allows a complete
new monitor to be made as a user
program, and when called will copy
the new monitor into the area oc­
cupied by the old monitor and
transfers control to the new moni­
tor.

USER COMPONENTS
TERMINALS
Communication among the termi­
nal, system software, and user proc­
ess is very important because of
process time, memory space, ease of
use, and design modularity consid­
erations. "Human engineering"
design aspects include those that
affect a user's apparent or actual
response.

Although there are many aspects
of terminals and their design, the
following terminal unit groups will
be used:
I. Typewriters.
2. Text-Keyboard Displays. (Text
cathode ray tube displays with key­
board inputs)
3. General Graphic Displays or
Consoles.
4. Direct Terminals.
5. Indirect Terminals.
6. Specialized Terminals.
7. Machine Links.
8. Peripheral Computers.
9. Other time-sharing systems or
computer networks.

The parameters that are common
to all terminals and that present
the user with certain apparent
characteristics have been discussed
in the hardware section. The
physical data transmission modes,
character sets, speed, etc., and gen­
eral appearance differ among ter­
minals, but the "apparent"
characteristics to a user program
can be nearly constant, so that user
programs can be written inde­
pendent of their environment or
terminals they use. The operating
system software is responsible for
translating basic user requests into
common commands that operate
the hardware.

~-~ I/O
DEVICE

IO

I/O DEVICE SERVICE ROUTINES -- I PRIORITY l l INTERRUPT
SYSTEM

(I MODULE/ DEVI.CE) P+D i-.-
PROGRAMMED OPERATOR DISPATCHER
COMMAND DECODER (LOGIN,GET, SAVE,ETC.) p

YSTEM s
(EXEC.MODE)

SCHEDULER

CORE ALLOCATION - CORE

RUN CONTROL - RUNCSS

10 COMMON ROUTINES - IOCSS

IO INITIALIZE - IOCINI

SYSTEM INITIALIZATION - SYSINI

CLOCK, CLOCK QUEUE DATA

"CALL." STORAGE TABLE

ERROR HANDLING - ERRCON

SYSTEM MAKER - SYSMAK

SYSTEM COMMON SUBS - SYSCS

p

P+P

p

p ~
p

p

P+D

p

p

p

p

I-~ DEVICE CALLS
f'-fROM JOB,

~

DEVICE ASSIGNM ENT
OL COMMON CONTR

t-~~AD~~~~~MIS SION

SYSTEM (DEBUGGING PROGRAM) D+P WITH JOB AREA

R AREAS USE
(USE
REL
AND

R MODE,
OCATE,
PROTECT)

JOB TABLES- JBSTS

l 0 CONTROL - I 0 CONT.

MULTI PROGRAM EXECUTIVE

JOB AREA I

. .
JOB AREA J

. .
JOB AREA N

SYSTEM SYMBOLS (DEBUG ONLY)

D

p
~ t--CALLS

1---

~

1--SYSTEM,DEVICE

~ CALLS

P+D

P+D
I--

~

D - DATA
P - PROGR AM

P+D L ----------------l

Fig. 13 PDP-6 Multiprogramming System Storage. (Courtesy of Dig Ital Equipment Corporation.)

The typical commands or in­
structions a user program gives
that deal with a terminal include:

I. Assignment of terminal to a proc­
ess (including the ability to change
the name of a terminal, so that pro­
grams do not have to address ter­
minals in an absolute sense).

2. Initialization of the terminal to
begin transmission, including the
declaration of data buffering (num­
ber and size), specification of trans­
mission modes, etc.

3. Actual transmission of data (a
character, word, buffer, etc., at a
time).

4. Termination of transmission,
and relinquishing terminal.

Typewriters

Typewriters include both typewrit­
ers and Teletypes. The typewriter
is the most important because
people have been trained to use
them. Although harder to use,
Teletypes are a common system ter·
minal because they can be used
remotely (low bandwidth commu­
nication lines), hard copy oriented,
low cost, and are available.

Although they are inherently
character oriented, it is sometimes
desirable to buffer terminal data
on a page text line at a time basis
or until a special data delimiting
key has been struck by the user.
(This requires less overhead time
from the system to process the

COMPUTER DESIGN/MARCH 1968

characters, since processing is done
for each separate line of text rather
than for each character of the text.)

It is necessary to allow some form
of simultaneous input and output
in order that a user can communi­
cate with the system while it is
printing, so that a user can stop or
change the process. Full duplex
Teletypes easily provide this; half
duplex Teletypes can accomplish

_, this by a form of "echo checking"
during output. Most typewriter
consoles must be supplied with spe­
cial switches or keys to "break" the
information output flow so that
the user can stop runaway pro­
grams, for example.

Keyboard-Text Displays

These devices are similar to the
typewriter in principle. The key­
board-text display does not have
the hard copy provided by the type­
writer (unless the terminal or con­
sole also has a printer), but it does
provide the viewing of almost a full
page of text, together with the abil­
ity to "point" anywhere on the
page. These displays also require a
higher output data rate from a
computer in the form of "page
turning" requests. This is the prin­
cipal terminal for systems requir­
ing simple graphical results or
rapid scanning of text.

A small cursor, which is con­
trolled by the terminal allows the
user to "point" to any character on
the page. The data associated with
a single page of text is associated
with the display.

The control of text displays re­
quires more information processing
than other terminals, since data
can be randomly addressed by
blocks both for input and output,
rather than on a strictly sequential
basis.

General Graphical Displays

These displays are similar to the
text display, but have the added
ability to display data by points,
characters, lines, circles, etc., and in
general have better resolution and
are faster.

The information forming the pic­
ture may exist in primary memory
(as a process or as data for a proc­
ess) or within the display's own
storage. The human eye requires a
complete refresh or regenerate cycle
about every 30 milliseconds, in

which the data forming the picture
must be sent to the display. This
may impose a high data transmis­
sion rate on the memory system, in­
terfering with processing, unless the
display has an independent data
memory to hold the picture.

For graphical input, a light pen
is used to "point" to displayed in­
formation. The light pen can be
used to "draw" on the scope face.
The control and data structure
problems of the text display are
present to a much higher degree
in general graphical displays.

The RAND Tablet is a very
simple graphical input device. It
allows one to draw on a 10" X 10"
tablet with a stylus, and it can al­
low free hand drawing, printed
character input, or curve tracing
(through paper). It may be used
independently or in conjunction
with a graphical display. The reso­
lution or number of electronically
independent points over the 10" X
10" area corresponds to 1024 X
1024 points.

Plotters

These devices provide hard copies
of general graphical data. Typi­
cally, a plotter operates on an in­
cremental or discrete basis (0.01
inches/increment) at a rate of 300
points/second over a plotting area
of 12-30 inches by several hundred
feet.

Direct Terminals
The above terminals are special
cases of direct terminals, but in
them most of the problems of ter­
minal hardware and software de­
sign can be seen. Namely, problems
of providing continuous two-way
dialogue, response time, and the
other human engineering problems.

Indirect Terminals
These terminals include most ter­
minals used by other systems, i.e.,
peripheral card readers and line
printers. The interface from a
user's viewpoint can be identical
to the above terminals. The logical
difference, for example, between a
line printer and a typewriter
printer may just be the number of
allowable characters on a line; thus,
a page output on a line printer
would appear identical to that of a
typewriter (but not vice versa).

Specialized Terminals
These terminals are used for spe­
cial time-sharing systems such as
airlines reservations, etc. They in­
clude: banking teller windows,
airline reservation stations, stock
quotation inquiry keyboards, pro­
duction line data acquisition termi­
nals, etc. They provide the best
possible coupling between the user
and his system and are designed to
minimize the number of errors and
the time required as data is entered
and extracted from the terminal by

restricting the format and by en­
coding the information.

Inter-Machine Links
The link to specialized "non­
human user" devices imposes the
highest performance requirements
on the design because the data
transmission rate is high and is de­
termined by the device character­
istics, rather than the system. That
is, these devices have to be served
in real time, at the demands of the
device. Devices of this type include
those used in process control appli­
cations, simulation equipment (air­
craft or aerospace cockpits), film
reading devices or scanners, hybrid
linkages, etc.

By providing for this equipment
in a system, hardware protection
may also be required. A very com­
plete interrupt or trap system may
also be necessary in the hardware
so that a job can be rescheduled
rapidly to serve the device.

Peripheral Computers
These form a most necessary class
of terminals by distributing termi­
nal data transmission or loading to
the system periphery. The periph­
eral computer provides the ability
to lower the data rate for a larger
system by providing local storage
and processing capability. For ex­
ample, display computers with the
ability to detect light pen position
and track the pen, and perform

TABLE 3. TERMINAL INPUT REQUESTS TO SYSTEM SOFTWARE

36

MESSAGES TO THE OPERATING SYSTEM:
1. Log in and lag out. (Includes presentation of name, number, pass-

word, data, etc.)
2. Resource requests (assignment of terminals, primary memory, file space).
3. Setup of the job, or process.
4. Start, stop, and continuation of a process.
5. Examination and modification of elements of the primary memory process.

(Presentation of a storage or memory map.)
6. Information requests:

a. Rl>n time, time of day
b. Files used or space available
c. Facts about system use.

7. Communication with other users or human operators.
8. Saving and restoring the complete state of a process.
9. Transmission of a job to a queue for batch processing.

MESSAGES TO EDITORS:
1. File name declarations including specification of access restridions,

formats, etc.
2. Transmissio,n of data among files and/or terminals.
3. General file editing including creating, appending, inserting, modifying,

deleting, etc.

MESSAGES TO TRANSLATORS:
1. File specifications including:

a. Control statements.
b. Source language inputs.
c. Object output.
d. Object listing.
e. Object linka9e information (if separated from output).
f. Errors and diagnostics.

2. Control switches (e.g., what to do in case of errors).

MESSAGES FOR PROGRAM DEBUGGING:
Command messages to system debugging routines are similar to the sys­

tem commands, except that they are in terms of the source language pro­
gram. They include:
I. Start, stop, and continuation of the process.
2. Examination and modification of the process in terms of the source

language. Insertion of program patches. Display of data in any format.
3. Data set searching.
4. Program tracing.
5. Conditional tracing via breakpoints which are executed only if program

reaches a specific state.

MESSAGES TO SYSTEM OPERATORS (HUMAN) AND MANAGEMENT
(HUMAN)

I. Equipment availability or status information.
2. Configuration specification.
3. Accounting and system status requests.
4. Appending user availability, cost, facility, priority lists.
5. Message broadcasts.
6. Manual instructions for tape mounting, card removal, etc.
7. System diagnostic reports.
8. Control of back-up or archival storage.

MESSAGES TO CONVERSATIONAL LANGUAGES
1. Language or Text Edit commands. Creation, modification, and deletion

of programs is provided.
2. Dired Statement Commands Execution. For languages which allow arith·

metic statements to be written, the ability to have a statement executed
immediately (e.g., 2 + 2 = ?) is provided.

3. Commands for Control of the Programs.
4. Data entry and data output from the program.

COMPUTER DESIGN/MARCH 1968

some coordinate transformations on
the display data may be desirable.

In process control applications,
data sampling, limit checking, and
data logging can be done by pe­
ripheral computers, on a more
economical basis, since they do not
require the generality of a large
machine. Also, since the overhead
time to switch to another program
may be high, the high data rates
associated with these processes
would degrade the large machine.

External Time-Sharing Systems

These terminals form the link with
other time-sharing systems. This
form of intercommunication is new,
but may be significant in total prob­
lem solving systems by allowing
programs in one system to call on
other systems.

Message switching centers with
some local file storage might form
the immediate link with users. As
users require more advanced ser­
vices, the switching centers would
likely call either large, general sys­
tems or systems specializing in a
particular service. Because of our
geographical time zones, inter-sys­
tem load sharing is possible in a
fashion similar to that in which
utilities share electrical generation
capacity.

TERMINAL COMMUNICATION
WITH THE OPERATING SYSTEM

In addition to the terminal con­
nection with the process, a terminal
must connect with the operating
system software for the control of
the job. All of the programs (trans­
lators, editors, loaders, etc.) that
form the system also require con­
trol words or statements. Table 3
lists the information required from
the user to specify tasks for the sys­
tem.

Communication Dialogue

The format used for control infor­
mation is an important design con­
sideration, and it is important to
have a "forgiving system," or one
which does not affect a user too ad­
versely when a wrong command is
given.

It may be important that the user
react (type in, observe output, etc.)
as little as possible to specify a given
situation. Abbreviated commands
might be permitted in place of
longer words (e.g., LOGIN = LI),

although longer commands would
also work. For example, two in­
teresting possibilities are: a user
types a command that has enough
information to make the command
unambiguous, and, the user types
enough information to make the
command unambiguous, followed
by the sy&'tem typing the rest of the
command in a "ghost-like" fashion.
When commands are given that
irrecoverably affect files, the system
might require some sort of verifica­
tion that the command specified is
actually desired.

User defined macro commands
compose the most general method
to provide users with the commands
they want, and what they call the
commands, because users define,
name, and write them in terms of
standard sets of system commands.

FILES

It is desirable to consider the file
and terminal structure in a similar
fashion from both a user and sys­
tem software viewpoint; that is,
the access, method of transmitting
data, and data formats may be
nearly identical for both files and
terminals.

MAIN EXECUTIVE

-(~~~l~~)-

nal that requires service at regular
intervals. A protected, assignable
command subset to control the par­
ticular device may be required.
Alternatively, control can some­
times be provided by incorporating
the device in the normal system
peripheral or input-output service
programs. Scheduling of users now
becomes more complex, since the
device anomalies constrain the
scheduling algorithm.

Guaranteed processing capabili­
ties are provided by treating the
total processing capacity as a re­
source. Thus, a guaranteed capac­
ity at a guaranteed time can be
scheduled according to request.
Users of systems may get degraded
service rather than be denied ac­
cess because of poor service. With
a supply of unattended jobs to proc­
ess in a batch queue, or compute­
bound problems to run as back­
ground, a combination denied/de­
graded service may be provided
which balances the system's ca­
pacity.

The methods of communication
with the system through a hier­
archy of higher level operating sys­
tems pose the questions: "What is
the user process?" and "What is the

SUB-SYSTEM EXECUTIVES
(1. g,, BATCH PROCESSING,

LANGUAGES, ETC.)

'--y--'
USERS

Fig. 14 Hierarchy of executives with a general purpose time-sharing system.

The file characteristics have been
previously discussed as part of the
operating system software in terms
of what the hardware is, what the
operating system provides, and
what the file looks like to a user.

USER PROCESS

The user process or procedure in­
cludes: a memory map locating the
process, the actual process, and user
status information (terminal and
file assignments).

Occasionally, a guaranteed ser­
vice must be made available to a
user both for specialized devices,
and processing. For example, a
user may have a particular termi-

system?" A user's procedure may
be appended to the system and be­
come a system function or common
user service procedure. This ever
expanding set of program segments
which form the system present the
problems of segment naming, file
location within the system, and
protection while they are being
run. Nevertheless, the ability to
run normally while creating and
testing other parts of a system, or
to have a portion of the system re­
moved and another one substituted
gives rise to very powerful tools in
the graceful creation of the system.
As a minimum, a new system should
be able to be created on a general
purpose system, with the substitu-

COMPUTER DESIGN /MARCH 1968

tion for the ex1stmg system occur­
ring at a time when the system is
inoperative. We can look forward
to complete systems that allow sub­
systems that do their own schedul­
ing of time, etc., and allocate some
resources. Thus, a completely gen­
eral purpose system might allow
complete freedom to incorporate
any of the systems described in
Table l in an efficient manner. Fig­
ure 14 shows the relationship proc­
esses might have to one another
in a general purpose system.

CONVENTIONAL VERSUS
CONVERSATIONAL LANGUAGE
PROCESSING

Conventional processing or transla­
tion of a language occurs in the
sequence:
I. Creation of a text format source
file (cards or system file) which de­
scribes the process.
2. Translation of source files into
object files with linkage, relocation,
subroutine, listing, and error infor­
mation.

3. Loading the object file together
with library files to form the proc­
ess.
4. Process execution.

In contrast, conversational lan­
guage processing provides nearly
simultaneous creation and execu­
tion of procedures. The input lan­
guage can be checked at the time
of entry at the terminal and is
translated, being immediately avail­
able for execution.

The data may be transformed in­
to an interpretive form with all
sub-routines, linkages, etc., occur­
ring directly on input with no
intermediate files. The insertion
of additional statements or pro­
gram steps is done directly, and
debugging is through the run time
diagnostics and user abilities to
examine variables directly and exe­
cute statements condi_tionally. The
conversational system may require a
slightly longer execution time, but
is most effective because of its com­
bined editor, translator, loader, li­
brary and debugging system.

Clearly, for problems involving
little computation, the tum-around
time is very short for solving prob­
lems in this fashion. The main
structure of programs is such that
this interactive approach may be
the common method in a few years.

Batch Processing

This is one of the most efficient
methods of controlling the execu­
tion of a large number of pro­
grams, since jobs are always run to
completion. In a time-sharing sys­
tem which is principally serving
on-line users, the batch process can
be used as a background job or to
absorb spare capacity. A fixed or
guaranteed amount of processing
can be allocated to batch process­
ing. The batch must be able to be
loaded by either external users with
card decks or users who defer jobs
that can be done anytime (or at
batch convenience).

The handling of a batch need
not be incorporated within the sys­
tem, but rather a batch process can

TABLE 1. CAPACITY REQUIREMENTS FOR TIME-SHARING SYSTEM APPLICATIONS

Specialized System
Service, or Ap­

plication

Desk calculator

Stock quotation

Airline reservations

On line banking

General conversational
computational languages
(JOSS, CULLER-FRIED
System)

Specialized computer
aided design, engineer­
ing, problem solving
languages (COGO, etc.)

Process control

Text editing (Adminis­
trative Terminal
Service)

On line information
retrieval of periodi­
cal headings, bibliog­
raphies, keywords,
abstracts

Primary Mem-
ory for

Process (in
bits)

very small

small

medium

medium

medium

medium-large

medium-large

medium

medium-large

Primary Mem-
ory for User
Data (in bits)

very small C<lO")

small C<lO')

small <>104)

small c>10')

small-very large
(10"-10')

small-very large
(108-10")

medium c>10")

small C>lO')

medium <>10")

Processing
Capacity/
User (in

operations* I
interactiontl

very small c>10')

very small C> 104)

small c> 10")

small c>10")

small-large un-
bounded (1 o•-
>10")

small-very large
(l0'->10")

small-very large
(l0'->10")

small (104-10')

medium (10'-10')

File Organi- Direct Terminals
zation and

Size
(108-lo" bits)

none typewriter, input keyboerd, strip
printer, scopes, audio output, or
special console.

one (small-medium) see above, stock ticker tape or
transactions input, telephone.

approx. 6 (medium- special consoles, typewriters,
large) scopes.

approx. 10 (medium- see above, special bank teller
large) consoles.

multiple files per typewriter, printer, scope, plotter.
user, with few file (Culler-Fried consists of scope,
types (medium- keyboard, and tablet.)
large)

see above see above

few (small) physical quantity transducers,
general user terminals.

multiple single pur- typewriter, printer, scope.
pose flies/user.
(medium)

one (very large) see above. telephone (dial in,
audio out)

*assumes a fairly sophisticated processor and instruction set
tmaximum interaction intervals for user requests are = 10 sec.

89

be regarded as a special user. Thus,
a common service program (the
batch manager) would permit any
user to "batch process."

CONCLUSIONS

PRESENT PROBLEMS

Before widespread time-sharing sys­
tems and system networks can be
formed, standardization of data and
file format descriptions will have
to occur. Simple conventions must
be established to control the actual
format of the bits transmitted be­
tween computers. This will enable
the transmission of problems, data,
and procedures between systems.
Present intersystem communication
experiments should provide a
framework for the standardization
of information interchange formats,
and detailed data representation.

Once a data representation for
higher speed lines is established, it
will be possible to remove the ter­
minals we presently associate with
the computer outside the comput­
er's periphery. This will enable the
cross-use of terminals among com­
puters. It will also allow software
that is more independent of the
peripheral and computer to be writ­
ten.

Current data transmission costs
for the remote typewriter user (with
an average input rate of ten bits
per second) do not reflect the true
cost-capacity (2400 bits per second
for a voice grade line) or use of the
line.

Although good, low cost com­
puters (processor, memory, and
minimum peripheral equipment)
are available, the higher costs asso­
ciated with file storage for smaller
systems do not permit the design of
low cost time-shared computers.

Present time-sharing structures
for computers are extension or­
ganizations of the basic computer.
Pre~ent syste'?s were not initially
des1~ned for time-sharing, but were
modified slightly to accommodate
potential users. Hence, these sys­
tems create almost as many prob-

lems as they solve. A more reason­
able approach for a system's
design is an initial specification
that includes Time-Sharing as a
goal. A solution might take on the
form of a network. For example,
the very large computing machines
that are built by computer manu­
facturers have: taken a long time
to build (and technology has
changed, invalidating industry's ex­
trapolations before the computers
were operational); required longer
than expected to become opera­
tional; failed to meet initial design
goals, have been uneconomical
from a production standpoint; and
only a few systems have been built.
The current large, very general sys­
tems also suffer from the same kind
of design thinking.

Each component of a general pur­
pose time sharing system is con­
strained to supply such general
service that the system as a whole
~ay be so inefficient (and expen­
s~ve) as to make the system imprac­
tical. The issue is similar to an
organization consisting of either
hig~ly trained specialists or gen­
~rah~ts. An organization of general­
ists is very flexible; but, on the
other hand, it may not be economi­
cal to have people who are capable
of being the president doing all the
tasks within an organization. The
general purpose systems just now
becoming operational are con­
structed in such a flexible fashion
as to probably be uneconomical.
Each system component is so gen­
eral (for example, the filing system)
that, although it can perform any
task (given enough time), the act of
do~ng very trivial operations re­
qmres a great deal of time. Perhaps
a better approach is to divide the
syste~s's resources by allowing sev­
eral mdependent operating systems
to car.e for t?em (e.g., editing, as­
semb~mg, filmg, translating, and
runnmg).

FUTURE SYSTEMS

F1;1ture computers will be equipped
with hardware to allow some form
of time-sharing. For smaller com-

COMPUTER DESIGN /MARCH 1968

puters, the additional hardware
greatly enhances a system's utility,
especially when being used in proc­
ess control and in research requir­
ing the direct links with othet
machines or to experimental equip·
ment.

The form of Time-Sharing Com­
puters will be:
I. The system with a single general
user or batch process, plus one fixed
job or a fixed multi-terminal com­
munity of special users (l+I, or
1 +n special users). Process control
and on-line special business data
processing systems take this form.
2. Dedicated special systems which
service a particular user commu­
nity. These provide little or no
communication with other systems.
(E.g., library, airlines reservations,
etc.)
3. Dedicated systems with switching
ability so that a problem that re­
quires other aids can be referred to
other systems. More general sys­
tems may refer problems to them.
4. Message switching for other sys­
tems. These may have file process­
ing, editing, and limited calcula­
tion capability, or message
buffering; such a system would
communicate with other systems
for most demands from users.
5. Peripheral computers that ser­
vice special terminals and control
small local processes. Processing
capacity for general purpose prob­
lem solving, file storage, program
translation, and diagnostics for
the peripheral system would be de­
rived from a higher level system.
6. The totally general system with
a large community of users. The
general system would undoubtedly
communicate with other systems.

Although the author has at·
tempted to be objective, it is felt
that the technique of computer
Time-Sharing is a significant ad­
vance toward an effective use of
computers. Time-Sharing removes
one more restriction in computer
usage - that of allowing only a
single use of a machine. As such,
the additional generality creates op·
portunities, as well as countless
problems.

BIBLIOGRAPHY
I. Adams. E. N" .. "Reflections on the Design of a CAI Operating
System." AF/PS Conference Proceedings, Spring Joint Computer
Conference Vol. 30, 419-424 (1967).
2. Allan, Pryor T. and R. Warner Homer, "Time Sharing in
Biomedical Research," Datamation Vol. 12 (4) (April 1966).
3. Amdahl, G. M., "New Concepts in Computing Systems De­
sign," Proc. IRE Vol. 50 (5) , 1073-1077 (Memory Protection)
(May 1962).
4. American Management Association, "Advances in EDP and
Information Systems," AMA Report No. 62.
5. Anderson, J. P .. S. A. Hoffman, J. Shifman, and R. J. Wil­
liams, "D-825 - A Multiple Computer System for Command and
Control." Proc. Fall Joint Computer Conference Vol. 25, 86-96
(December 1962). See also D-825 Manual- Burroughs Corpora­
tion.
6. Arden, B. W., et al, "Program and Addressing Structure in A
Time-Sharing Environment," Journal of the Association for Com­
puting Machinery Vol. 13 (I), 1-16 (January 1966).
7. Aschenbrenner, R. A., M. Flynn, G. A. Robinson, "Intrinsic
Multiprocessing," AFIPS Conference Proceedings, Spring Joint
Computer Conference Vol. 30, 81-86 (1967).
8. Avakian, Emik A. and F. Walter Jenison, Jr., "Voice Response
and Visual Display Techniques for On-Line Information
Handling Systems," The Bunker-Ramo Corporation, Stamford.
Connecticut.
9. Bachman, C. W. and S. B. Williams, "A General Purpose
Programming System for Random Access Memories," Proc. Fall
Joint Computer Conference Vol. 26, 4ll-422 (1964).
IO. Baldwin, F. R., W. B. Gibson, and C. B_ Poland, "A Multi­
processing Approach to a Large Computer System," IBM Systems
Journal Vol. l, p. 61 (Sept. 1962).
11. Bauer, Walter F .. "Why Multi-Computers?," Datamation Vol.
8 (9) (Sept. 1962) .
12. Beckman, F. S., F. P. Brooks, Jr_, and W. J. Lawless, .Jr ..
"Developments in the Logical Organization of Computer Arith­
metic and Control Units," Proc. IRE Vol. 49 (1), 53-66 (January
1961).
13. Bell, G. and M. W. Pirtle, "Time-Sharing Bibliography,"
Proc. TEEE Vol. 54 (12), 1764-1765 (December 1966).
14. Belluardo, R., R. Gocht, G. Paquette, "A Time Shared
Hybrid Simulation Faculty,'' UAC, East Hartford, Conn., AFIPS
Vol. 28 (1966).
15. Bitzer, P. L., and H. G. Slottow, "The Plasma Display Panel
- A Digitally Addressable Display with Inherent Memory,"
AFIPS Conference Proceedings, Fall Joint Computer Conference
Vol. 29 (7-10), 541-548 (1966).
16. Boilen, S .. "User's Manual for the BBN Time-Sharing Sys­
tem," Bolt, Beranek, and Newman, 50 Moulton St .. Cambridge,
Mass.
17. Bolt, Richard H .. "Man-Machine Partnership in Intellectual
Pursuits: A Look Ahead," Publication No. 1191, Printing and
Publishing Office, National Academy of Sciences.
18. Brillouin, Leon, "Science and Information Theory," Second
Edition, Academic Press, Inc. (1962).
19. Brooks, F. P., Jr., "A Program Controlled Program Interrupt
System," Proc. Eastern Joint Computer Conferrnce, 128-132
(December 1957).
20. Buchholz, W. (Editor) , "Planning a Computer System
Project Stretch," McGraw-Hill Book Company, Inc., New York
(1962). (See also IBM 7030 (Stretch) Manual).
21. Burks, A. W., H. H. Goldstine and J. von Neumann, "Pre­
liminary Discussion of the Logical Design of an Electronic Com­
puting Instrument," (reprinted) Datamation, 24-31 (September
1962).
22. Burroughs Corporation, "The Descriptor," Burroughs Cor­
poration (1961) .
23. Burton, A. J. and R. G. Mills, "Electronic Computers and
Their Business Applications,'' London, E. Benn (1960).
24. Bush, Vannevar, "As We May Think," Atlantic Monthly
Vol. 176, IOI (July 1945).
25. Calingaert, P., "System Performance Evaluation: Survey and
Appraisal," Comm. ACM 10 (I), 12-18 (January 1967).
26. Carnegie, "Carnegie Institute of Technology Computation
Center Users Manual."
27. Castle, C. T., "Planning the 3600," Proc. Eastern Joint Com­
/niter Conference, 73 (December 1964). See also CDC-3600,
Datamation, 37-40 (May 1964).
28. Clippinger, Richard F., "Programming Implications of
Hardware Trends," IFIP Congress, New York Vol. I, 207-212
(1965).
29. Codd, E. F .. "Multiprogramming Scheduling," Comm. ACM
Vol. 3 (6) (June 1960).
30. Codd, E. F., "Multiprogramming Stretch: A Report on
Trials," Proc. IFIP Congress, Munich, 574, North Holland Pub­
lishing Co., Amsterdam (Aug. 27 to Sept. l, 1962).
31. Coffman, E. G., "A General Flow Chart Description of the
Time-Sharing System," SDC TM-1639/000/00 (Dec. 12, 1963).

42

32. Comfort, W. T., "A Computing System Design for User
Service," Proc. Fall Joint Computer Conference, Las Vegas,
Ne11ada, Vol. 27 (Nov. 30, 1965) .
33. Computer Research Corporation, "Time Sharing System
Scorecard, No. I," Computer Research Corporation, 747 Pleasant
St., Belmont. Mass.
34. Conway, M. E .. "A Multiprocessor System Design," Fall Joint
Computer Conference Vol. 24, 139-146 (1963).
35. Cook, P. A. C., "Real-Time Monitoring of Laboratory In­
struments," AFTPS Conference Proceedings, Spring Joint Com­
puter Conference Vol. 30, 779-782 (1967) .
36. Coons, S. A .. "An Outline of the Requirements for a Com­
puter Aided Design System," 1963 Spring Joint Computer Con­
ferenre, 229-304.
37. Corbato, F. J.. et al, "The Compatible Time-Sharing System:
A Programmer's Guide," M.I.T. Press, Cambridge, Mass. (1963).
38. Corbato, Fernando J .. M. Merwin-Daggett, and R. C. Daley,
"An Experimental Time-Sharing System," AFIPS Conference
Proceedings Vol. 21, 335-344 (Spring 1962).
39. Corbato, F. J .. V. A. Vyssotsky, "Introduction and Overview
of the Multics System," Proc. Fall Joint Computer Conference,
Las Vegas, Nevada (Nov. 30, 1965).
40. Crisman, P. A., Editor, "The Compatible Time-Sharing Sys­
tem," A Programmer's Guide, 2nd edition, M.I.T. Press, Cam­
bridge, Mass. (1965) .
41. Critchlow, A. J., "Generalized Multiprocessi~g and Mul.ti­
programming Systems," AFIPS Conference Proceedings, Fall Joint
Computer Conference Vol. 24, 107-126 (1963).
42. Culler, G. J. and B. D. Fried, "The TRW Two-Station, On­
Line Scientific Computer: General Description," Computer Aug­
mentation of Human Reasoning, Washington, D. C .. June 1964,
Spartan Books, Washington, D. C. (1965).
43. Daley. R. C. and P. G. Neumann, "A General Purpose File
System for Secondarv Storage," Proc. Fall Joint Computer Con­
ferenre, Las Vegas, Nerlllda Vol. 27 (Nov. 30, 1965).
44. Dartmouth. "The Dartmouth Time-Sharing System," Com­
putation Center, Dartmouth College (Oct. 19, 1964).
45. Datamation, "A Survev of Airline Reservation Systems," p.
53 (June 1962). ·
46. ·oavid, E. E .. Jr. and R. M. Fano, "Some Thoughts About
the Social Implications of Accessible Computing," Proc. Fall
Joint Computer Conference, Las Vegas, Nerlllda Vol. 27 (Nov.
30. 1965).
47. Dearden, John, "Can Management Information Be Auto­
mated," Harvard Business Review (March-April, 1964).
48. Denning, P. J., "Effects of Scheduling on File Memory Op­
erations," AF/PS Conference Proceedings, spring joint Computer
Conference Vol. 30, 9-22 (1967).
49. Dennis, J. B .. "A Multiuser Computation Facility for Educa­
tion and Research," Communications of the Acm Vol. 7, 521-529
(Sept. 1964) .

50. Dennis. J. B.. "Segmentation and Design of Multip~o­
grammed Computer Systems," IEEE International Convention
Record, Institute of Electrical and Electronic Engineers, New
York. Vol. 13 (3), 214-225 (1965); and]ACM Vol. 12 (4), 589-
602 (Oct. 1965) .
51. Dennis, J. B. and E. L. Glaser, "The Structure of On-Line
Information Processing Systems," Proceedings of the Second
Congl'l'ss on Information Systems Sciences, 1-ll, Spartan Books,
Washington, D. C. (1965).
52. Dertouzos, M. L. and H. L. Graham, "A Parametric Graphi­
cal Display Technique for On-Line Use," AFIPS Conference
Proceedings, Fall Joint Computer Conference Vol. 29 (7-10).
210-210 (1966).
53. Desmonde, William H., "Computers and Their Uses," Engle­
wood Cliff. New Jersey. Prentice-Hall (1964); "Real Time D~ta
Processing System - Introductory Concepts," Englewood Chff,
New Jersey, Prentice-Hall (1965). .
.'l4. Digital Equipment Corporation, Maynard, Mass., "Multi­
programming System Manual for PDP-6," DEC-6-EX-SYS-UM­
IP-l'REOO.
55. Dudas, J. F., "Concurrent Processing of Teletype Message
Switching and Order Entry at Westinghouse Tele-Computer
Center," Westinghouse Electric Corporation.
56. Duffy, G. F. and W. D. Timberlake, "A ~usiness-Or~en~ed
Time-Sharing System," IBM, SOD Poughkeepsie, AFIPS, .~prmg
Joint Computer Conference, Vol. 28, 265-275 (1966).
57. Dunn, T. M. and J. H. Morrissey, "Remote Computing­
An Experimental System, Part l: External Specifications," -
J. M. Keller, E. C. Strum, and G. H. Yang, Part 2, Proc. Spring
Joint Computer Conference Vol. 25, 413-443 (1964).
58. Eckert, J. P., J. C. Chu, A. B. Tonik, and W. F. Schmitt,
"Design of UNIVAC - LARC System I," Proc. Eastern Joint
Computer Conference (16), 59-65 (1959) .
59. Edwards, J. D., "An Automatic Data Acquisition and Inquiry
System Using Disk Files," (Lockheed Missiles and. Space Co.,),
Disk File Symposium, March 6.-7, 1963 (Informaucs, Inc. Cul­
ver City, Calif.)

COMPUTER DESIGN /MARCH 1968

60. Evans, D. C. and Leclerc, J. Y., "Address Mapping and the
Control of Access in an Interactive Computer," AFIPS Confer·
ence Proceedings, Spring Joint Computer Conference Vol. 30,
23-32 (1967) .
61. Fano, Robert M., "The MAC System: The Computer Utility
Approach." IEEE Spectrum Vol. 2, 56-64 (January 1965).
62. Fine, G. H., C. W. Jackson and P. V. Mcisaac, "Dynamic
Program Behavior Under Paging," Proc. ACM 21st Conference,
223-228.
63. Flynn, Michael J., "Very High-Speed Computing Systems,"
Proc. IEEE Vol. 54 (12), 1901-1909 (December 1966).
64. Forgie. R. W., "A Time- and Memory-Sharing Executive
Program for Quick Response On-Line Applications," Proc. Fall
Joint Computer Conference, Las Vegas, Nevada Vol. 27 (Nov. 30,
1965).
65. Fotheringham, J., "Dynamic Storage Allocation in the Atlas
Computer," Comm. ACM Vol. 4 (10), 435-436 (Oct. 1961).
66. Frankovich, J. M. and H. P. Peterson. "A Functional De­
scription of the Lincoln TX-2 Computer," Western Computer
Proceedings, 146 (1957).
67. Fredkin, Edward, "The Time-Sharing of Computers," Com­
puters and Automation Vol. 12 (II) (Nov. 1963).
68. Gallagher, .James D., "Management Information Systems and
the Computer," AMA Research Stud)': No. 51 (1961).
69. Gallenson, L., "On-Line I/O Processor for the Command
Research LaboTatory," The PDP-l-C-30, SDC TM-1653 (Dec. 23,
1963).
70. Gallup, G., "The Miracle Ahead," Harper and Row, New
York (1964).
71. Gass. S. I., Marilyn B. Scott, R. Hoffman, W. K. Green, A.
Peckar, R. D. Peavey and J. E. Hamlin, "Project Mercury Real­
Time Computational and Data Flow System," Proc. Eastern
Joint Computer Conference Vol. 20, 33-78 (Dec. 1961).
72. Ginzherg, M. G., "Notes on Testing Real-Time Systems
Programs." IBM S)•stem Journal 4 (l), 58-72 (1965).
73. Glaser, E. L., "The Structure of On-Line Information
Processing Systems," Proc. Second Congress on Information Sci­
ences, Homestead, Va., I-II (Nov. 1965).
74. Glaser, E. L. and F. G. Corbato, "Introduction to Time­
sharing," Datamation Vol. 10 (ll) (Nov. 1964).
75. Glaser, E. L., .J. F. Couleur and G. A. Oliver, "System De­
sign of a Computer for Time-Sharing Applications," Proc. Fall
Joint Computer Conference, Las Vegas, Nevada, Vol. 27 (Nov.
30, 1965).
76. Greenberger, Martin, "The Computers of Tomorrow," At­
lantic Monthh, 63-67 (May 1964).
77. Greenberger, Martin, "Management and the Computer of
the Future," The M.l.T. Press and John Wiley and Sons, Inc.,
(1962).
78. Grucnbeycr, Fred, "Are Small Free-Standing Computers Here
to Stay?," Datamation Vol. 12 (4) (April 1966).
79. Harris. R. P .. "The PDP-6," Datamation Vol. 10 (II) (Nov.
1964).
80. Hastings, Thomas N., "Real-Time Computing with Time­
ShaTing," Computers and Automation Vol. 14 (10) (Oct. 1965).
81. Hittel, L. A., "Some Problems in Data Communications Be·
tween the User and the Computer," AFIPS Conference Proceed­
ings, Fall Joint Computer Conference Vol. 29 (7-10), 395-402
(1966).
82. Holland, J. H., "On Iterative Circuit Computers Con­
structed of Micro-Electronic Components and Systems, Proc.
Western Joint Computer Conference, p. 259 (May 1960).
83. Holt, A. W., "Program Organization and Record Keeping
fOT Dynamic Storage Allocation," Comm. ACM Vol. 4, 422-431
(Oct. 1961) .
84. Hoover, E. S. and Eckhart, "Performance of a Monitor for a
Real-Time Control System," AFIPS Conference Proceedings, Fall
Joint Comfmter Conference Vol. 29 (7-10), 23-26 (1966).
85. IBM "1800 Time-Sharing Executive System Specifications,"
File 1800-36, form No. C26-5990-0.
86. Iliffe, .J. K. and J. G. Jodeit, "A Dynamic Storage Allocation
Scheme," Computer J. Vol. 5, 200-209 (Oct. 1962) .
87. Johnson, T. E., "Sketchpad III: A Computer Program for
Drawing in Three Dimensions," Proc. Spring Joint Computer
Conference, p. 347, Detroit, Michigan (May 1963).
88. "The JOSS System, Time Sharing at Rand," Datamation
Vol. IO (I I) (Nov. 1964) .
89. Kemper, D. A., "Operation of CRL Teletype System," SDC
TM 1488/000/00 (Sept. 18, 1963).
90. Kennedy, J. R., "A System for Time-Sharing Graphic Con­
soles," AFIPS Conference Proceedings, Fall Joint Computer
Conference Vol. 29 (7-10), 211-222 (1966).
91. Kcydata, "Data Processing - On Line ... In Real Time ...
The Keydata System," Keydata Corporation, 575 Technology
Square, Cambridge, Mass.
92. Kilburn, T., R. B. Payne and D. J. Howarth, "The Atlas
Supervisor," Proc. Eastern Joint Computer Conference Vol. 20,
279-294 (1961) .

93. Kilburn, T., D. B. G. Edwards, M. J. Lanigan, and F. H.
Sumner, "One Level Storage System," IRE Transactions on
Elertrrmic Computers Vol. EC-11 (2), 223-235 (April 1962) .
94. King, Gilbert W. ct al., "Automation and the Library of
Congress," Washington, D. C.: Library of Congress (1963).
95. Kinslow, H. A., "The Time-Sharing Monitor System," Fall
Joint Computer Conference, Vol. 26, Part 1, 443-454 (1964).
96. Kolsky, "Centralization vs. Decentralization," Tenth Annual
Symposium on Computers and Data Processing (June 26-27,
1963).
97. Lampson, Butler W., "Time Sharing System Reference
Manual," Working Document, University of California, Docu­
ment No. 30.1030; issued Sept. 30, 1965; Tevised Dec. 30, 1965.
98. Lampson, B. W., W. W'. Lichtenberger, M. W. Pirtle, "A
User Machine in a Time-Sharing System," Proc. IEEE Vol. 54
(12), 1766-1774 (Dec. 1966).

99. Landis, N., A. Manos, and L. R. Turner, "Initial Experience
with An Operating Multiprogramming System," Comm. ACM,
Vol. 5 (5) (May 1962).
100. Lawless, W. J.. "Developments in Computer Logical Or­
ganization," Advances in Electronics and Electron Phvsics Vol.
100. Academic Press, Inc., New York (1959). ·
101. Lehman, M., "A Survey of Problems and Preliminary Re­
sults Concerning Parallel Processing and Parallel Processors,"
Proc. lEEEE Vol. 54 (12), 1889-1901 (Dec. 1966),
102. Leiner, A. L., W. A. Notz, .J. L. Smith and W. W. Youden,
"PILOT Multiple Computer System (Manual) ," National Bu­
reau of Standards Report 6688. See also Journal of ACM Vol. 6
(3) (.July 1959) .
103. Lehrer, N. H. and Ketchpel, R. D., "Recent Progress in a
High-Resolution, Meshless, Direct-View Storage Tube," AFIPS
Conference Proceedings, Fall Joint Computer Conference Vol.
29 (7-10). 531-540 (1966).
104. Levine, S. et al, "A Fast Response Data Communications
System for Airline Reservations," Communication and Elec­
tronics (Nov. 1961).
105. Lichtenberger, W. W. and M. W. Pirtle, "A Facility for
Experimentation in Man-Machine Interaction," Proc. Fall Joint
Computer Conference, Las Vegas, Nevada Vol. 27 (Nov. 30,
1965).
106. Licklider, J. C. R., "Man Computer Symbiosis," IRE
Transactions on Human Factors in Electronics Vol. HFE-1, 4-11
(March 1960) .
107. Licklider, J. C. R. and W. E. Clark, "On-Line Man-Com­
puter Communication," Proc. Spring Joint Computer Conference,
113-128 (1962).
108. Lonergan, L. and P. King, "Design of the B5000 System,"
Datamation Vol. 7 (5) (May 1961).
109. McCarthy, J., "Time Sharing Computer Systems," Manage·
ment and the Computer of the Future (M. Greenberger, Editor) ,
M.I.T. Press, Cambridge, 221-236 (1962).
110. McCarthy, J .. S. Boilen, E. Fredkin, and J. C. R. Licklider,
"A Time-Sharing Debugging System for a Small Computer,"
Proc. Spring Joint Computer Conference Vol. 23, 355-363 (1963) .
111. Mcclung, L. W .. "A Disc-Oriented IBM 7094 System,"
Paper #3, Disk File Symposium, March 6-7, 1963, Hollywood,
California (Sponsored by Informatics, Inc.)
112. Maher, R. J., "Principles of Storage Allocation in a Multi·
processor Multiprogrammed System," Comm. of ACM Vol. 4, 421-
422 (Oct. 1961) .
113. Malcom, Donald G. and Alan J. Rowe, "Management Con­
trol Systems," John Wiley and Sons, Inc.
114. Marcotty, M. J., F. M. Longstaff, and Audrey P. M. Wil­
liams, "Time-Sharing on the Ferranti Packard FP6000 Computer
System," Proc. Spring Joint Computer Conference Vol. 23, 29-40
(1963) .
115. Marill, T. and Roberts, L. G., "A Proposed Communica­
tions Network to Tic Together Existing Computers," AFIPS
Conference Proceedings, Fall Joint Computer Conference Vol.
29 (7-10) '425-433 (1966).
116. Mendelson, M. J. and A. W. England, "The SDS SIGMA 7:
A Real-Time Time-Sharing Computer," AFIPS Conference Pro­
ceedings, Fall Joint Computer Conference Vol. 29 (7-10), 51-64
(1966).
117. M.l.T. Digital Computer Lab., "Comprehensive System
Manual - A System of Automation Codes for the Whirlwind
Corporation," Memo M-2539-2 (Dec. 1953),
118. Nebel, B. E., "A Multiprogrammed Teleprocessing System
for Computer Typesetting," AFIPS Conference Proceedings, Fall
Joint Computer Conference Vol. 29 (7-10) , I15-124 (1966).
I 19. :'\:elson, T. H., "A File Structure for the Complex, the
Changing and the Indeterminate," ACM National Conference
(Aug. 1965).
120. Nisenoff, N .. "HardwaTe for Information Processing Sys·
terns: Today and in the Future," Proc. IEEE Vol. 54 (12), 1820-
1835 (Dec. 1966) .
121. Ochsner, B, P., "Controlling a Multiprocessor System," Bell
Telephones Lab. Record (Feb. 1966) •

43

122. Ossanna, J. F., L. E. Mikus, and S. D. Dunten, "Communi­
cations and Input/Output Switching in a Multiplex Computing
System," Proc. Fall Joint Computer Conference, Las Vegas,
Nevada Vol. 27 (Nov. 30, 1965).
123. Parkhill, D. F., "The Challenge of the Computer Utility,"
Addison-Wesley Publishing Company LC-66-24245, (1966).
Addison-Wesley Publishing Company LC-66-24245, (1966).
124. Penny, J. D. and T. Pearcey, "Use of Multiprogramming in
the Design of a Low Cost Digital Computer," Comm. ACM Vol.
5 (9) . p. 473 (Sept. 1962) .
125. Perlis, A. J., "A Disk File Oriented Time Sharing System,"
Disk File Symposium, March 1963 (sponsored by Informatics,
Inc., Culver City, Calif.) .
126. Peters, B., "Security Consideration in Multi-Programmed
Computer System," AFIPS Con.ference Proceedings, Spring Joint
Computer Conference Vol. 30, 283-286 (1967) .
127. Proctor. James W., Jr., "The Voice Response System,"
Datamation Vol. 12, 43-44 (Aug. 1966) .
128. Ramamoorthy, C. A., "The Analytic Design of a Dynamic
Lookahead and Program Segment - System for Multipro­
grammed Computers," Proc. ACM 21st Conference, 229-239.
129. Ramsay, Karl and J. C. Strauss, "A Real Time Priority
Scheduler," Proc. ACM 21st National Conference, 161-166.
130. Reiter, A., "A Resource Allocation Scheme for Multi-User
On-Line Operation of a Small Computer," AFIPS Conference
Proceedings, Spring Joint Computer Conference Vol. 30, 1-8
(1967).
131. Roberts, L. G., "The Lincoln Wand," AFIPS Conference
Proceedings, Fall Joint Computer Conference Vol. 29 (7-10) ,
223-228 (1966) .
132. Rosenberg, A. M. (Editor), "Command Research Labora­
tories Users Guide," SDC TM-1354 (Nov. 19, 1965).
133. Ross, D. T. and J. E. Rodriguez, "Theoretical Foundations
for the Computer-Aided Design System," Computer Aided De­
sign, Spring Joint Computer Conference, p. 305 (1963).
134. Samuel, A. L., "Time Sharing on a Computer," New
Scientist Vol. 26, 583-587 (May 27, 1965).
135. Scherr, Alan L., "Time Sharing Measurement," Datamation
Vol. 12 (4) (April 1966) .
136. Schwartz, E. S., "Automatic Sequencing Procedure with
Application to Parallel Programming," journal of ACM Vol. 8,
513-537 (Oct. 1961) .
137. Schwartz, J. I., E. G. Coffman, and C. Weissman, "A Gen­
eral Purpose Time-Sharing Systems," Spring Joint Computer
Conference Vol. 25, 39i-4ll (1964).
138. Schwartz, J. I., "Observations on Time-Shared Systems,"
ACM Proceedings of the 20th National Conference, p. 525
(1965).
139. Schwartz, Jules I., "The SDC Time-Sharing System Pan l,"
Datamation Vol. JO (l), Part 2, (Nov. 1964); Datamation Vol.
10 (12) (Dec. 1964).
140. Scott, M. B. and R. Hoffman, "The Mercury Programming
System," Proc. Eastern joint Computer Conference, Vol. 20, 47-
53 (Dec. 1961).
141. Sprague, Richard E., "On Line-Real Time Syst-ems - 1964,"
Management Ser'tlires (May-June 1964).
142. Stanga, D. C., "Univac ll08 Multiprocessor System," AFIPS
Conference Proceedings, Spring Joint Computer Conference Vol.
30, 67-74 (1967).
143. Stotz, R., "Man-Machine Console Facilities for Computer­
Aided Design," Computer Aided Design, Spring Joint Computer
Conference, p. 323 (1963) .
144. Strachey, C., "Time Sharing in Large Fast Computers,"
Proc. of the International Conference on Information Processing,
Paris, UNESCO, 336-341 (1960).
145. Summer, F. H. and E. C. Y. Chen, "The Central Control
Unit of the ATLAS Computer," Proc. of IFIP Congress, p.
657 (1962) -
146. Sutherland, I. E., "Sketchpad: A Man-Machine Graphical
Communication System," Lincoln Lab Technical Report No.
296, M.l.T., January 30, 1963, Computer Aided Design, Spring
Joint Computer Conference, 329-346 (1963).
147. Teleregister, "200 Display System," The Bunker-Ramo Cor­
poration, Stamford, Conn.
148. Teleregister, "On-Line Data Processing for Hotels," The
Bunker-Ramo Corporation, Stamford, Conn.
149. Vyssotsky, V. A., F. J. Corbato, and R. M. Graham, "Struc­
ture of the Multics Supervisor," Proc. Fall Joint Computer Con­
ference, Las Vegas, Nevada, Vol. 27 (Nov. 30, 1965) .
150. Weil, J. W., "A Heuristic for Page Turning in a Multi­
programmed Computer," Comm. ACM Vol. 5 (9), p. 480 (Sept.
1962).
151. Weil, J. W., "The Impact of Time-Sharing on Data Proc­
essing Management," DPMA Quarterly 2, 2, 2-16 (Jan. 1966).
152. Wilkes, M ... "A Programmer's Utility Filing System," Com­
puter Journal 7, 180-184 (Oct. 1964).
153. Yates, John E., "A Time-Sharing System for the PDP-I
Computer," M.I.T. Press (1962).

COMPUTER DESIGN I MARCH 1968

