
DIGITAL 7-4-$

CIGITAL EQUIPMENT CORPORATION MAY NARC, MASSACHUSETTS

DIGITAL-7-4-S

PDP-7 PROGRAMMING MANUAL

DDT

PROGRAM DESCRIPTION

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Copyright 1965 by Digital Equipment Corporation

ii

PREFACE

The program discussed in this manual, though written for use on the Programmed

Data Processor-7 computer, can also be used without change on DigitaPs Pro­

grammed Data Processor-4. Th is compatibil ity between the I ibraries of the

two computers results in three major advantages:

1. The PDP-7 comes to the user complete with an extensive se­

lection of system programs and routines making the full data pro­

cessing capabi! ity of the new computer immediate!y available to

each user, eliminating many of the common initial programming

delays.

2. The PDP-7 programming system takes advantage of the many

man-years of field testing by PDP-4 users.

3. Each computer can take immediate advantage of the continu­

ing program developments for the other.

iii

CONTENTS

Introduction .••••••••

Userls Language •.•••.••.••.•••••••..••••..••••••.•.••..

Definitions .. .

Us i ng DO T •••••••••••• ~ ••••••••••••••••••••••••••••••• ~ ••••

Load i ng the Program •••

Mode Control •.••••••

Program Examination and Modification

Special Registers ••••••••.•.••••••••

2

2

3

3

4

6

Running the Program Breakpoints and Traps. • • • • • • • • • • • • • • • • • 7

Symbol Definition....................................... 8

Searching ... 9

Misce lIaneous Operations. • • • • • • • • • . . . • • • • • • • • • • • • • • • . . • • 10

Punching Operations. . • • • . . • • . • • • • . • . . • . • • • . . . • . • • • • • • • • 11

Appendix A Summary of Commands. . • • • • . • • • . • . . . • • . . • • . . • • . • • 12

Appendix B Basic Symbols. .. •• • • . .• • • • • • • • • •• • • •• •• • • . ••• . • • 15

Appendix C Extended Symbols. c ••••••• " •••• eo ••••••• " ••••••• 0 16

Appendix 0 Adding Symbols to DDTls Permanent Table. • . . • . • • . • . 18

v

INTRODUCTION

Users of most computers, espec ia Ily large-sca Ie ones, are fam i I iar wi th the procedure of sub­

mitting a new program for a run and receiving along with the compilation and assembly listings

a dump and perhaps a storage map of the symbols used together with a few remarks about the

fa i lure of the program to run properly. If the user is present when his program is processed, he

may get additional information from the console I ights, motion of tapes, etc., but his correcting

must be done away from the machine. Getting a program to work under these conditions takes

considerable time.

DDT (DEC Debugging Tape) helps shorten this debugging time by allowing the user to work on

his oroaram at the comouter. to control its execution. and to modifv the oroaram or its data. I '-' I' - - - - - - , - - , - I - - ~- - - -

Tracking down a subtle error in a complex section of coding is a laborious and frustrating job

by hand, but with DDT's breakpoint facility, the user can interrupt his program at any point

and examine the state of the machine. In this way, sources of trouble can be quickly located.

In case the program does not reach a breakpoint and ha Its, DDT wi II have to be restarted. To

do this, place 6000 in the ADDRESS switches and depress START.

The programmer may make corrections or insert patches and try them out immediately. Those

that work can be punched out on the spot in the form of ioadabie patch tapes, elim inating the

necessity of creating new symbol ic tapes and reassembl ing each time an error is found. DDT

also maintains a symbol table, allowing a programmer to refer to his own program symbols when

working through DDT.

In both 4K and 8K machines, DDT occupies the highest 2000
8

registers of memory. Immediately

below this, extending downward into memory is DDT's permanent symbol table consisting of all

standard defined PDP-7 mnemonics. This may be augmented by symbol defin itions from the user's

program tape or from the keyboard.

User's Language

A symbol is a string of letters or numerals, the first of which must be a letter or the character

period (.) which is treated as a letter. Only the first six characters of a symbol are interpreted

by DDT.

A number is a string of up to six octal digits.

An expression is a string of symbols and numbers separated by either of the following two char­

acters:

space a separation character meaning arithmetic plus

a separation character meaning arithmetic minus

All other characters either are used for control or are illegal.

Defin itions

When a register is opened, its contents are printed out, and it becomes avai lable for modifica­

tion.

When a register is closed, any modifications requested are made and further access to the register

is denied until it is opened again.

Most DDT operations are specified by symbols whose final character is $. Typing such a symbol

followed by a carriage return (~) causes DDT to perform the operation.

DDT responds to operator errors by typing a ? and ignoring the error.

In ensuing examples, C(R) means the contents of register ~.

In the following discussion, all numbers are octal integers. In the examples, LOC, LIST, and

BGIN are symbolic address tags in the user's hypothetical program. All underlined expressions

in the examples are those typed by DDTi expressions not underl ined are those typed by the user.

USING DDT

The user reads DDT into the computer by setting the ADDRESS switches to 17770 and depressing

START. The RIM loader is assumed to be in memory. The program is self-starting. When loaded,

it will initialize itself and respond by printing a carriage return signifying it is ready to accept

commands. All subsequent operations, inc luding loading the program to be debugged, are per­

formed through DDT from the teleprinter keyboard. All printed output appears on the teleprinter.

2

Before loading a program to be debugged, the user may wish to erase from DOl's symbol table

any symbols from a prior program. It may also be desirable to clear memory not used by DDT.

To specify these operations, use:

KILL$

ZERO$

DEBUG$

LOAD$

TABLE$

DOl's symbol table is restored to its initial list of permanent symbols.
If any of these have been redefined from the teleprinter, the original
value is not restored. If any symbols were redefined by appending a
user's symbol tape (see Appendix D), the original value will be re­
stored.

All of memory to the bottom of DOl's symbol table is set to zero.

Loading the Program

An object tape in FF format in the reader will be read into memory.
The symbol definitions will be read and the symbols appended to DOl's
symbol table, extending it down into memory. After the program is
loaded, DDT will type out the address of the first free register above
the program and of the lowest register in the symbol table.

An object tape in the reader will be read into memory. However, no
new symbols will be entered into DDT's table. The typed information
is as described for DEBUG$.

Only the symbol definitions on' an obiect tape will be read as the tape
passes through the reader. These symbols are appended to DDT's table,
extending it down into memory. The typed information is as described
for DEBUG$.

Mode Control

Information may be entered and typed out in several different forms. Instructions may be typed

as symbols or absolute octal integers or as a combination of the two; register addresses may be

typed as relative or absolute. DDT can be set to print out data in anyone of these modes. The

user can specify the mode best suited to the information he expects to examine. Input, however,

is not restricted to one mode; the user may always use the representation most convenient.

The following commands determine the form in which DDT types out register addresses: (In these

examples LOC is the tag for location 2642.)

3

OCTALS

RElAT$

Conditions DDT to type out locations in absolute octal form:

2662

Sets the mode to print location addresses relative to a program symbol,

thus:

lOC 20

These commands determine the mode in wh ich the contents of registers are printed:

ABSOl$

CONST$

SYMBO$

Causes DDT to type out in absolute address form. That is, the instruc­
tion code is printed as a mnemonic, the address part as an octal integer:

ADD 2653

Causes DDT to print information as octal integers (constantsL thus:

302653

Causes DDT to print information as symbol ic expressions:

ADD lOC 11

While operating in ABSOl$ or SYMBO$ modes, the user sometimes wants information in octal

integer form. He can obtain this representation without leaving the current mode, by using

the colon (:).

Causes the preceding expression typed by DDT or by the user to be printed
as an octal integer. Its use is illustrated below.

lOC 20/ ADD 2653 302653

Initial output modes are RELAT$ and SYMBO$.

Program Examination and Modification

These operations allow any register in memory, exclusive of DDT itself, to be examined and

modified.

/ This is the register examination character. Typed immediately after the
address of a register, it will cause DDT to open that register.

4

Carriage
Return

Line
Feed

/
(alternate

use)

)

Example: When the user types

lOC 20/

DDT will immediately move to its next internal tab stop, print out the
contents of the register lOC 20, and skip to the following tab stop.
The resulting line might look like this:

lOC 20/ ADD 2653

If the user wishes to change the contents of the register, he types in the
new information:

lOC 20/ ADD 2653 ADD 2607

This causes DDT to close the opened register after placing any new in­
formation specified in it. If no modifications were typed before the
carriage return, the register is ciosed unchanged.

This has the same effect as a carriage return, in that it closes an opened
register. The next register in sequence is then opened. In the first ex­
ample, typing a line feed would cause register lOC 21 to be opened,
thus:

lOC 20/

- lOC 21/

ADD 2653

DAC 600

(I f)

The siash may be used to open a register addressed by the currentiy open
unmodified register. If, in the first example, the user wished to examine
the contents of location 2653, he would have typed a / instead of mod­
ifying information or a carriage return. The resul ts may have looked
I ike this:

lOC 20/ ADD 2653 / ISZ 3062

Here, ISZ 3062 is the contents of register 2653, which is now open.
The previously opened register, ·lOC 20, has been closed. The sequence
of locationsestablished by lOC 20 is not altered by the use of the slash.

lOC 20/

lOC 21/

ADD 2653

DAC 600

/ I SZ 3062 (If)

Used without a preceding left parenthesis. A right parenthesis works like
the alternate slash except that any modifications to the opened register
wi II be made before that register is closed. DDT then opens the register
addressed by the modified contents.

5

&

Example:

LOC 20/ ADD 2653 ADD 2607) LOC 4202 7044

Here 7044 is the contents of register 2607.

Use of) does not alter the sequence of locations.

This causes an opened register to be closed after modification, if any.
The register which is now addressed by the contents is opened, estab­
I ish ing a new sequence. Substituting an ampersand for a right paren­
thesis in the example above would have the following resul t:

LOC 20/

2607/ --

ADD 2653

LOC 4202

ADD 2607&

A I ine feed would now result in:

LOC 20/

2607/

2610/

ADD 2653 ADD 2607&

LOC 4202 (If)

DZM LOC 35

The I ine feed may be used at any time. DDT always remembers the last register to be opened

in a sequence and wi II open the following register whenever a I ine feed is typed. Intervening

carriage returns or other operations have no effect on the sequence.

Special Registers

There are several registers in the DDT program itself that may be opened and modified by the

user; they are the only ones in DDT that may be so accessed. The tags for these registers can

be used I ike any other symbols, remembering that $ is part of the name.

A$

L$

B$

F$

Holds the C(AC) at the time a breakpoint occurs.

Holds the C(L) at the time a breakpoint occurs (0 or 1).

Contains the address in the user's program of the currently effective break­
point.

Contains the XOR instruction whose address is the lowest memory location
occupied by DDT's symbol table.

6

M$ Conta ins the mask used in word searches. The two registers immediately
following M$ contain the limits of the search. Initially, M$ contains
777777; M$+ 1 contains 0; and M$+2 contains 17777. Searching always
terminates at the address specified by C(F$) or C(M$+2), whichever is
smaller.

Running the Program Breakpoints and Traps

The operations in this group allow the user to control the running of his program by starting and

interrupting it wherever he wishes.

k'

k"

This causes machine control to go to the location specified by the ex­
pression k. The C(A$) and the C(L$) are placed in the AC and link,
respectively; if a breakpoint has been requested, it will be inserted.
The most common use of ~ is to start the user's program:

BGIN'

This causes program execution to start at location BGIN. The character
I may be used by itself to start the program at the location indicated in

the start block of the last program tape loaded.

This causes DDT to insert a breakpoint at location k when control is
passed to the user's program. When location ,k is encoun,tered, the con­
tents of k are saved, and a JMS to DDT is substituted. Instead of the
instructi~n in k being executed when k is encountered, control returns
to DDT. The C(AC) and the C(L) are placed in the registers A$ and L$,
respectively. Through these registers, the AC and I ink may be modified
before proceeding. The address of the break location is printed out, fol­
lowed by a right parenthesis, tab, and the contents of the AC. The user
may examine and modify his program, and then return control to it.

Since only one breakpoint may be in effect at one· time, the break loca­
tion may be removed simply by requesting a new one.

If :. is typed without an argument, any existing breakpoint is removed.

RESTRICTIONS: The breakpoint will not work successfully with any program that operates in

the program interrupt. Also the user must not place a breakpoint at an instruction which is

modified during execution of the program, nor may he place a breakpoint at a subroutine call

wh ich is followed by arguments to be picked by the subroutine, since the user l s ca II w ill be

executed from within DDT. Note that one may successfully break on skips as well as a normal

subroutine JMS, as long as the breakpoint is not moved until after exiting from the subroutine.

7

TRAP$

After a breakpoint has occurred, this allows the user to continue his pro­
gram from the point of the break. The contents of A$ and l$ are placed
in the AC and I ink; and if a new breakpoint has been requested, it is
inserted. The instruction substituted by the original breakpoint is ex­
ecuted, and the program continues.

Frequently, the user will want to insert a breakpoint in a loop in his
program. If so, he probably will not want a break to occur every time
the program passes through that location. He may de lay the break until
the program has encountered the break location a specified number of
times by typing an expression before the l.., thus:

250:

The break will not occur unti I the break location has been encountered
250 times.

Example:

LOC 30"

BGINI

LOC 30} 27305

(etc.)

Request a breakpoint at lOC+30.

Start the program at BGI N .

DDT types the break location and the C(AC) when
the break was encountered. lOC 30 is not opened.

After examination or modification, the program
proceeds. The breakpoint is still at LOC 30 unless
changed.

This is a spec ial breakpoint used to trap CAL instructions. A break is in­
serted at location 21 i if a CAL is executed during the operation of the
user1s program, DDT will trap it, print the location of the CAL instruc­
tion, and save the C(AC) and C (L). To continue the program properly,
a JMP I 20 must be executed using~# . (See Miscellaneous Operations.)

Symbol Definition

Quite often, it is desirable to define new symbols for program uses, for instance in naming the

first location of a patch. DDT will accept new definitions, appending each one to the lower

end of the table. Similarly, any existing symbol may be redefined including those in the per­

manent table. Each definition requires three registers of memory.

8

New location symbols may be defined with the comma in a way similar
to that used in the assembler.

Example:

2663/ JMS 235 HERE,

The symbol HERE is assigned to location 2663. DDT types a tab to in­
dicate that the symbol has been accepted; the register remains open.

(..•) New symbols may be defined at other times using parentheses as follows:

LOC 30(N LOC)

The new symbol, NLOC, is assigned the value of the expression LOC 30,
where LOC must have been previously defined.

Searching

These operations disclose if a word or operand address is or is not present in a given section of

memory. They also allow a search for certain parts of a word (for instance, all ISZ operations,

regardless of address). Using the mask in M$ and the limits in the succeeding two registers, the

user may search any part of memory except that occupied by DDT itself. Only those word posi­

tions which correspond to those containing ones in M$ are considered in the search. The lower

limit is determined by the C(M$+l); the upper limit, by the C(M$+2) or C(F$), whichever is

smaller.

k WORD$

k NOT$

k ADDRE$

DDT will search for registers whose contents, masked by C(M$), have the
value of the expression k. The location and contents of every such regis-
ter are printed out. -

If WORD$ is used without an argument, 0 (zero) is assumed.

Acts as WORD$ but searches for those registers whose contents when
masked are not equal to ~.

Causes DDT to search for those registers containing instructions whose ef­
fective address masked by C(M$) are equal to the expression k. For this
purpose, indirect addressing chains are followed one level. (Because the
defer bit is set in a law instruction, DDT computes an effective address
for it. This occasionally causes an undersirable printout, which is immed­
iatelyapparent.)

Assuming that M$ contains 777777, we wish to search for all registers be­
tween 500 and 1000 which contain the instruction LAC 650. First we set
the I im its; then we request the search.

9

Q$

Example:

M$ 1/
MS 2/
LAC 650 WORDS

501/
704/

o
17777

LAC 650
LAC 650

500 (If)
1000 (~)

To search the same section of memory for all isz instructions would now
require a change of the mask. -

M$/
ISZ WORDS

555/
A?O/ "' ... 'V,
727/

777777

ISZ 1604
!SZ 1107
ISZ 1604

740000 (~)

The mask causes only the instruction part of the words (leftmost four bits)
to be examined during searching.

Miscellaneous Operations

The instruction k wi II be executed. If it is not a iump to some part of
the user's progr;-m, control remains with DDT. Before execution, the
contents of A$ and L$ are placed in the AC and the! ink; the AC and
I ink are saved ago in after execution.

Example:

JMP I 20# (to continue after a CAL trap.)

This symbol has the value of the previous quantity typed. Its usefulness
is best illustrated by an example.

LaC 30/ ADD LIST 25

Suppose we wished only to change the address to LIST 24. Instead of
typing the whole expression, Q$ can be used:

LaC 30/ ADD L1ST·25 Q$-l)

Used by itself, that is, not as part of a symbol, the period always refers
to the last location opened by DDT in the normal sequence. In the ex­
ample above, for instance, . would refer to register LaC 30 at the com­
pletion of the operations. A common use is illustrated:

LaC 20/
. -1/

ADD 2653
LAC LIST 30

10

ADD 2663)

The contents of LOC 17 is LAC LIST 30.
The period, I ike the I ine feed, may be used at any time.

Punch ing Operations

The following commands enable the user to punch an obiect tape of his corrected program directly

from DDT. The information in DDT is punched out in FF format arranged in blocks. (See

PDP-7 Assembler, Digital 7-3-S for a further explanation.)

PUNCH$

INPUT$

k START$

A block of information is punched on tape. One or two arguments must
be specified:

n PUNCH$

nim PUNCH$

a one-word block is punched from register !!

the contents of registers n through m, inclusive - - ,
are punched

A termination block is punch~d to signal the 'end of input. When this
block is encountered by the FF Loader the iump in the start block will
be executed.

A start block consisting of a iump to register k and an input block con­
sisting of a iump to the FF Loader is punched -;n tape.

The above operations must be performed in the order, INPUT$, PUNCH$, START$, to produce a

loadable tape. The tape is then loaded in the opposite directioni that is the last block punched is

readfirst. TapespunchedbyDDTcanbe loaded by iti otherwise, a FF Loadermustbe in memory.

Example:

To punch the contents of register 1277 to 1471, and "the contents of reg­
ister 143 to form a tape which wi II transfer control to location 1310
when loaded:

INPUT$
1277i 1471 PUNCH$
143 PUNCH$
1310 START$

To load the resulting tape through the FF Loaderassociated with DDT LOAD$
can be used. Otherwise the tape must be loaded by setting the AC Switches
to 17770, the starting address of the FF Loader, and pressing START. To place
the FF Loader in memory if it's notalready there simply load any main program
obiect tape.

11

Character

space

/

carriage return

line feed

& (ampersand)

: (colon)

. (period)

k#

Q$

k,

)

(...)

SYMBO$

CONST$

ABSOL$

APPENDIX A

SUMMARY OF COMMANDS

Action

Separation character meaning arithmetic plus.

Separation character meaning arithmetic minus.

Register examination character: When following the
address of a register, it causes the register to be
opened and its contents printed. Immediately fol­
iowing a register printout, siash wi i i cause the regis­
ter addressed therein to be opened.

Make modifications, if any, and c lose register.

Make modifications, if any, c lose register, and open
next sequentia I register.

Make modifica'tions, if any, and open addressed
register. (Establ ishes a new sequence.)

Type last quantity as an octal integer .

Current location.

Execute the expression ~ as an insrruction.

Last quantity typed out by DDT.

Define the symbol ~ as the tag of the currently open
register.

Make modification and open addressed register. (The
sequence is not changed.)

Define the enclosed symbol as the value preceding
the (.

Sets the mode in wh ich DDT types out words to sym­
bolic .

Sets the mode in which DDT types out words to octal
constants.

Sets the mode in which DDT types out words to absolute.
That is, the insrruction code is typed as symbolic while
the address is typed in octal.

12

Character

RELAT$

OCTAl$

N WORD$

N NOT$

N ADDRE$

Klll$

ZERO$

k" {double quote}

: {exclamation}

k' {single quote}

lOAD$

TABlE$

DEBUG$

N PUNCH$

N; M PUNCH$

INPUT$

START$

TRAP$

Action

Sets the mode in which DDT types out locations to
relative {symbolic}.

Sets the mode in which DDT types out locations to octal.

Search for all occurrences masked with M$ of the ex­
pression N.

Search for all words not equal to the expression N after
masking with M$.

Search for all words masked with M$ with the same
effective address as N.

Resets the symbol table to the in itia I list. Modified
definitions are retained only if altered on line. Defin­
itions added from a user's symbol table tape are re­
stored to their original values.

Clears memory available to the user.

Insert a breakpoint at the location specified by k. If
no address is spec Hied, remove any breakpoint.-

Proceed from a breakpoint.

Transfer control to the location specified by k, or to
the address in the start block on tape if no address is
specified.

load a FF format tape {storage words only}.

load only the symbols from a FF format tape.

load both storage words and symbols.

Punch the contents of N.

Punch N to M, inclusive.

Punch the input block.

Punch a start block.

Place a trap location at 21 for CAL.

The following symbols are the address tags of certain registers in DDT whose contents are avail­

able to the user.

A$

l$

M$

Accumulator storage (at breakpoints).

link storage (at breakpoints).

Mask used in search; M$+l and M$+2 contain first and
last address of the area to be searched.

13

Character

F$

B$

Action

Contains the lower limit of DDT as the address part of
an XOR instruction.

Contains the current breakpoint location.

14

APPENDIX B

BASIC SYMBOLS

The DDT-7 tape labeled DDT-7 (Basic Symbols) contains the following symbols in its permanent

symbol table.

DAC 040000 SPl 741400 PSA 700204
JMS 100000 SMl 740400 PSB 700244
DZM 140000 SZA 740200 Keyboard LAC 200000 SNA 741200
XOR 240000 SKP 741000 KSF 700301
ADD 300000 SZl 741400 KRB 700312
TAD 340000 SNl 740400

Teleprinter XCT 400000 GlK- 750010
ISZ 440000 STl 744002 TSF 700401
AND 500000 XX 740040 TlS 700406
SAD 540000

Interrupt TCF 700402
JMP 600000 TTS 703301
lOT 700000 10F 700002

Display 30D aPR 740000 ION 700042
CAL Q ITON 700062 DXl 700506
LAW 760000 CAF 703302 DXS 700546
LAM 777777 I/O States DYl 700606
I 020000 DYS 700646
Nap 740000 laRS 700314 DlB 700706
CLA 750000 SKP7 703341 DXC - 700502
Cll 744000 Clock DYC 700602
CMA 740001 -- Light Pen Type 370 CMl 740002 ClSF 700001
ClC 750001 ClOF 700004 DSF 700501
CCl 744002 ClaN 700044 DCF 700601
RAl 740010

Perforated Tape Reader RAR 740020
RTl 742010 RSF 700101
RTR 742020 RSA 700104
RCR 744020 RSB 700144
RCl 744010 RRB 700112
OAS 740004 RCF 700102
LAS 750004

Tape Punch LAT 750004
HlT 740040 PSF 700201
SPA 741100 PlS 700206
SMA 740100 PCF 700202

15

APPENDIX C

EXTENDED SYMBOLS

The DDT-7 tape labeled DDT-7 {Extended Symbols} contains the following symbols in its

permanent table, in addition to the basic symbols.

Type 57A Mag Tape GCL 700641 LRSS 660500

MTS 707006
GSP 701034 LLS 640600

MTC 707106 Card Reader LLSS 660600

MCD 707042
ALS 640700

MNC 707152
CRSF 706701 ALSS 660700

MRC 707244
CRSA 706704 NORM 640444

MRD 707204
CRSB 706744 NORMS 660444

MTRS 707314
CRRB 706712 MUL 653122

MCEF 707322 Line Printer
MULS 657122

MEEF 707342
DIV 640323

MIEF 707362
LPSF 706501 DIVS 644323

MCWF 707222
LPCF 706502 IDIV 653323

MEWF 707242
LPLD 706542 IDIVS 657323

MIWF 707262
LPSE 706506 FRDIV 650323

MSEF 707301
LSSF 706601 FRDIVS 654323

MSWF 707201
LSCF 706602 LACQ 641002

MSCR 707001
LSLS 706606 LACS 641001

MSUR 707101
LPD-l 706504 CLQ 650000

MCC 707401
LPB-2 706524 ABS 644000

MCA 707405
LPB-3 706544 GSM 664000

MWC 707402
PRI 706604 OSC 640001

MRCA 707414
PAS 706624 OMQ 640002

MDEF 707302 DECtape
CMQ 640004

MDWF 707202 Automatic Priority Interrupt
MMRD 707512

Card Punch MMWR 707504
Type 172

CPSF 706401
MMSE 707644 CAC 705501

CPSE 706444
MMLC 707604 ASC 705502

CPLR 706406
MMRS 707612 DSC 705604

CPCF 706442
MMDF 707501 EPI 700004
MMBF 707601 DPI 700044

Symbol Generator Type 33 MMEF 707541 ISC 705504

GPL 701002 Extended Arithmetic Element Type 177
DBR 705601

GPR 701042
GLF 701004 EAE 640000
GSF 701001 LRS 640500

16

Precision Incremental Display Type 340

IDLA 700606
IDSE 700501
IDSI 700601
IDSP 700701
IDRS 700504
IDRD 700614
IDRA 700512
IDRC 700712
IDCF 700704

M~mory Extension Control Type 148

SEM 707701
EEM 707702
LEM 707704
EMIR 707742

Serial Drum Type 24

DRLR 706006
DRLW 706046
DRSS 706106
DRCS 706204
DRSF 706101
DRSN 706201
DRCF 706102

Mu Itiplexer Control Type 139

ADSM
ADIM

701103
701201

A-to-D Converter Type 138B

ADSC 701304
ADRB 701312
ADSF 701301

17

APPENDIX D

ADDING SYMBOLS TO DDTIS PERMANENT TABLE

Symbols may be added to DDTls permanent table in the following manner.

1. Prepare a symbol ic tape consisting of the definitions of the desired sym­

bols.For example:

DEFINE ABC AND DEF

ABC = 47132

DEF = -4

START

2. Assemble the tape normally. In particular, do not put AC switches a
and 2 up, as this wou Id suppress punch ing of symbols.

3. Remove the title, loader, and the 3-word binary block which follows

the loader from the beginning of resulting tape.

4. Remove the 2-word binary start block from the end of the binary tape

of DDT.

5. Spl ice the torn edges together.

DDTls entire permanent symbol table may be replaced by performing the same process except

removing the entire last data block from the DDT tape at step 4.

18

5228

momoomo
EQUIPMENT
CORPORATION
MAYNARD. MASSACHUSETTS

PRINTED IN U.S.A. 20-1165

	0000
	001
	002
	003
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	back

