A A A rs -~ A A -~ -~ -~ o - a~ -~ -

OLO)L(O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O

defcletetetetetctctetetetets

§S) n

D 5

O :

5 X g
2 ® %

DEC- 08-LBSMA-A-D

8K BASIC

For additional copies, order No. DEC-08-LBSMA-A-D
from Software Distribution Center, Digital Equipment
Corporation, Maynard, Mass.

digital equipment corporation - maynard. massachusetts

First Printing, July 1973

Copyright (:) 1973 by Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

CDP
COMPUTER LAB
COMTEX
COMSYST

DDT

DEC

DECCOMM
DECTAPE
DIBOL

DIGITAL
DNC
EDGRIN
EDUSYSTEM
FLIP CHIP
FOCAL
GLC-8
IDAC
IDACS
INDAC

KAl0
LAB-8
LAB-8/e
LAB-K
OMNIBUS
0s/8
PDP

PHA

PS/8
QUICKPOINT
RAD-8

RSTS

RSX

RTM

SABR
TYPESET 8
UNIBUS

contents

INEOAUCHION ..ottt et eva e e eenen
INUINDOES ..ot e e et e e e e e e saaaeenrnnas
N aArIADIES .ot e e

Arithmetic Operationscccoevvieiiiiiiciiinineinnn,
Priority of Arithmetic Operationsccccccccoeiiiinn.n.
Parentheseseoevivieiiiiieeeeiiiie e

Relational Operatorsccccoooiviiiiiiiiiniiiiniiie,

Immediate Modeo e
PRINT Commandc.coooveeiiiiiieiieiieeieeiieeeieieeenieens
LET Commandoccouiimmiiieeeeeer e e e eveveaes

BASIC Statementscccoocceeiiiiineniiiiiieeniree e,
Example Programcccccoviiinniiiiiiiieneceee e
Statement Numbersccccoeoviiiiiniiiniiie e,
Commenting the Programccococoviiiiiiniennnnnane,

REM oo
Terminating the Programccccccccoeiiinieiiiiiinnnn.,
END oot
STOP ..o

LET e
Input/Output Statementscc.ccoceeveeieviicreeannnnne,
READ and DATAoooeeee e
RESTORE ...
INPUT e

f—

OO OWOVWW-IDII NS N AR WwW W P

BN N et bk ok pmd ek b i e e
COVUNPA,ANR~OOO

Loops .cocooeennnnnn.

..

FOR, NEXT, and STEPccccooeniiniiiiciciiecce
Subscripted Variablesccccoiiiiiiiiiii

DIM

..

Transfer of Control Statementscococeveeeeeeeeeeiieeeennenn,
Unconditional Transfer—GOTOccooiiiiiiii,
Conditional Transfer—IF-THEN and IF-GOTO

Subroutines

GOSUB and RETURN ...

Functions

..

Sign Function—SGN(X)ccccovmviiiiiiiiiiiiiie
Integer Function—INT(X) ..coccooiriiiiniiiiiniiiin.
Random Number Function—RND(X)cccccceeeeeee.

TAB Function

..

PUT and GET Functionscccooeeeeiiiniiiiiiiinieiinianins

FNA Function

User-Defined Function—UUFcoooniiiiiiiiiiiiniin, .

Coding Formats

Floating-Point Formatccccccoceiiiiiiinniieee

Addressing

Floating-Peoint Instruction Setcccccccceevviinieinnnnn. .

Writing the Prog
Examples

..

TAM i e .

Editing and Control Commands
Erasing Characters and Linescccccoccoevveveveeeeni..,
SHIFT/O, RUBOUTS, and NO RUBOUTS
Listing and Punching a Programc...........

LIST

PTR

RUN

..

..

..

..

22
22
25
27

29
29
30
30
30
34
35
35
36
37
39
42

43
43
44
45
45

7
/

48

53
53
53
55
55
55
56
56
56
56
57
57

CTRL/C oot 57

CTRL/O et 57
Erasing a Program in Corec.cccccovviiiiiniiiiiinnnicennn. 58
SCR e 58
Loading and Operating Procedures 58
BASIC Compilercocoiiiiniiiiiiiiiiiiiis 58
User-Defined Functionccccccceeviimniiiiiiiiiiecininnnnn. 59
8K BASIC Error Messagesc.ccccvvvveeeeeeeesicncnnnnnnen, 59
8K BASIC Symbol Tableo.ocociiiiiiiiiiieeee, 61
Statement and Command Summaries 67
Edit and Control Commandsccc.cocevvvierercnnnn.n. 67
BASIC Statementscccccevviimiieeeiiniieiieeniiiieceee e 67
AppendiX A ..o A-1
Appendix B ... B-1

vi

8K basic

INTRODUCTION

8K BASIC is an interactive programming language with a vari-
ety of applications. It is used in $cientific and business environments
to solve both simple and complex mathematical problems with a
minimum of programming effort. It is used by educators and stu-
dents as a problem-solving tool and as an aid to learning through
programmed instruction and simulation.

In many respects the BASIC language is similar to other pro-
gramming languages (such as FOCAL and FORTRAN), but
BASIC is aimed at facilitating communication between the user
and the computer. The BASIC user types in the computational
procedure as a series of numbered statements, making use of com-
mon English words and familiar mathematical notations. Because
of the small number of commands necessary and its easy applica-
tion in solving problems, BASIC is one of the simplest computer
languages to learn. With experience, the user can add the advanced
techniques available in the language to perform more intricate
manipulations or express a problem more efficiently and concisely.

8K BASIC is an extended version of DEC’s 4K BASIC,! but
has additional features and requires 8K of core. The user who has
no familiarity with the BASIC language may wish to refer to the
EduSystem Handbook for a background description of the lang-
uage fundamentals, and for information pertaining to working
with BASIC at the computer.

The minimum system configuration for 8K BASIC is a PDP-8

14K BASIC, or EduSystem 10, is the most fundamental BASIC in DEC’s
series of EduSystems. This series is directed primarily for use in an educa-
tional environment. Information concerning the EduSystems may be ob-
tained from DEC’s PDP-8 Educational Marketing Department.

1

series computer with 8K of core memory. Supported options in-
clude a high-speed reader and punch, and an LPOS line printer.

New features provided by 8K BASIC include one and two-
dimensional subscripting, faster execution time, user-coded func-
tions, use of the LPOS8 line printer and high-speed reader/punch,
and specification of input and output devices from any part of a
program.

Loading and operating instructions and a command summary
are included at the end of the manual.

NUMBERS

BASIC treats all numbers (real and integer) as decimal numbers
—that is, it accepts any number containing a decimal point, and
assumes a decimal point after an integer. The advantage of treating
all numbers as decimal numbers is that the programmer can use
any number or symbol in any mathematical expression without re-
gard to its type.

In addition to integer and real formats, a third format is recog-
nized and accepted by 8K BASIC and is used to express numbers
outside the range .01<=x<=1,000,000. This format is called
exponential or E-type notation, and in this format, a number is
expressed as a decimal number times some power of 10. The
form is:

xxEn

where E represents “times 10 to the power of”’; thus the number
is read: “xx times 10 to the power of n.” For example:

23.4E2 =23.4*%10%=2340

Data may be input in any one or all three of these forms. Re-
sults of computations are output as decimals if they are within the
range previously stated; otherwise, they are output in E format.
BASIC handles seven significant digits in normal operation and
input/output, as illustrated below:

Value Typed In Value Output By BASIC
.01 .01
.0099 9.900000E—3
999999 999999
1000000 1.000000E+6

BASIC automatically suppresses the printing of leading and trail-
ing zeros in integer and decimal numbers, and, as can be seen
from the preceding examples, formats all exponential numbers in
the form:

(sign) x.xxxxxx E (+or —) n
where X represents the number carried to six decimal places, E
stands for “times 10 to the power of,” and n represents the ex-
ponential value. For example:

—3.470218E+8 is equal to —347,021,800
7.260000E—4 is equal to .000726
VARIABLES
A variable in BASIC is an algebraic symbol representing a
number, and is formed by a single letter or a letter followed by a
digit. For example:

Acceptable Variables Unacceptable Variables
1 2C — a digit cannot begin
a variable
B3 AB — two or more letters
cannot form a vari-
able
X

The user may assign values to variables either by indicating the
values in a LET statement, or by inputting the values as data;
these operations are discussed further on in the manual.

ARITHMETIC OPERATIONS

BASIC performs addition, subtraction, multiplication, division
and exponentiation, as well as more complicated operations ex-
plained in detail later in the manual. The five operators used in
writing most formulas are:

Symbol
Operator Meaning Example
+ Addition A+B
— Subtraction A—-B
* Multiplication A*B
/ Division A/B
0 Exponentiation A1TB
(Raise A to the
Bth power)

3

Priority of Arithmetic Operations
In any given mathematical formula, BASIC performs the arith-
metic operations in the following order of evaluation:

1. Parentheses receive top priority. Any expression within
parentheses is evaluated before an unparenthesized expres-
sion.

2. In absence of parentheses, the order of priority is:

a. Exponentiation
b. Multiplication and Division (of equal priority)
c. Addition and Subtraction (of equal priority)

3. If either 1 or 2 above does not clearly designate the order of
priority, then the evaluation of expressions proceeds from
left to right. '

The expression A1B1C is evaluated from left to right as follows:

1. AMB = step 1
2. (result of step 1)1C = answer

The expression A/B*C is also evaluated from left to right since
multiplication and division are of equal priority:

1. A/B = step 1
2. (result of step 1)*C = answer
PARENTHESES

Parentheses may be used by the programmer to change the
order of priority (as listed in rule 2 above), as expressions within
parentheses are always evaluated first. Thus, by enclosing expres-
sions appropriately, the programmer can control the order of eval-
uation. Parentheses may be nested, or enclosed by a second set (or
more) of parentheses. In this case, the expression within the inner- .
most parentheses is evaluated first, and then the next innermost,
and so on, until all have been evaluated.

Consider the following example:

A=T*((B12+4)/X)

The order of priority is:

1. B2 = step 1
2. (result of step 1) +4 = step 2
3. (result of step 2)/X = step 3
4. (result of step 3)*7 = A

4

Parentheses also prevent any confusion or doubt as to how the
expression is evaluated. For example:

AxBt12/7+B/C+D12

((A%*B12)/7)+((B/C)H+Dt2)

Both of these formulas will be executed in the same way. How-
ever, the inexperienced programmer or student may find that the
second is easier to understand.

Spaces may be used in a similar manner. Since the BASIC com-
piler ignores spaces, the two statements:

10 LET B = Dt2 + 1

10LETB=D12+1

are identical, but spaces in the first statement provide ease in
reading.

RELATIONAL OPERATORS

A program may require that two values be compared at some
point to discover their relation to one another. To accomplish this,
BASIC makes use of the following relational operators:

= equal to > greater than
< less than >= greater than or
<= less than or equal to

equal to <> not equal to

Depending upon the result of the comparison, control of program
execution may be directed to another part of the program, or the
validity of the relationship may cause a value of O to 1 to be as-
sociated with a variable (that is, if a condition is true, a value of
1 is assigned; if a condition is not true, then the value of O is re-
turned). Relational operators are used in conjunction with IF and
.LET statements, both of which are discussed in greater detail later
in the manual.

The meaning of the equal (=) sign should be clarified. In
algebraic notation, the formula X=X+1 is meaningless. However,
in BASIC (and most computer languages), the equal sign desig-
nates replacement rather than equality. Thus, this formula is
actually translated: ‘“‘add one to the current value of X and store

5

the new result back in the same variable X.” Whatever value has
previously been assigned to X will be combined with the value 1.
An expression such as A=B+C instructs the computer to add the
values of B and C and store the result in a third variable A. The
variable A is not being evaluated in terms of any previously as-
signed value, but only in terms of B and C. Therefore, if A has
been assigned -any value prior to its use in this statement, the old
value is lost; it is instead replaced by the value of B+C.

IMMEDIATE MODE

There are two commands available which allow BASIC to act
as a calculator—PRINT and LET. The user types in the algebraic
expression which is to be calculated, and BASIC types back the
result. This is called immediate mode since the user is not required
to write a detailed program to calculate expressions and equations,
but can use BASIC to produce results immediately.

PRINT Command
The PRINT command is of the form:

PRINT expression

and instructs BASIC to compute the value of the expression and
print it on the Teletype. The expression may be made up of any
decimal number, the arithmetic operators mentioned previously, and
the functions which are discussed further on in the manual. (These
may be used in conjunction with a string of text, as explained in the
section concerning the PRINT statement.) For example:

PRINT 1/81t8
5.960464E-08

LET Command
Values may be assigned to variables by use of the LET com-
mand as follows:

LET variable = expression

The computer does not type anything in response to this com-
mand, but merely stores the information. This information may
then be used in conjunction with a PRINT command to calculate
results. For example:

LET P1=3.14159

PRINT Pl*x412
50 .26544

BASIC STATEMENTS
Example Program

The following example program is included at this point as an
illustration of the format of a BASIC program, the ease in running
it, and the type of output that may be produced. This program
and its results are for the most part self-explanatory. Following
sections cover the statements and commands used in BASIC pro-
gramming.

10
15
20
30
40
50
55
60
75
76
80
g1
g2
85
90
95
96
99
100
101
102
183
104
140

REM - PROGRAM TO TAKE AVERAGE OF
REM - STUDENT GRADES AND CLASS GRADES
PRINT '"HOW MANY STUDENTS, HOW MANY GRADES PER STUDENT":;
INPUT A,B

LET 1=0

FOR J=1 TO A-1

LET V=0

PRINT "STUDENT NUMBER =";J
PRINT "ENTER GRADES"

LET D=J

FOR K=D TO D+(B-1)

INPUT G

LET V=V+G
NEXT K

LET U=VU/R
PRINT "AVERAGE GRADE ="3;V

PRINT

LET Q=Q+V

NEXT J

PRINT

PRINT

PRINT "CLASS AVERAGE ="3Qr/A
STOP

END

RUN

HOW MANY STULENTS, HOW MANY GRADES PER STULENT? 5,4
STUCENT NUMBER = 0

ENTER GRADES

278

286

288

274

AVERAGE GRADE = &1.5

STUDENT NUMBER = 1
ENTER GRADES

759

786

270

287

AVERAGE GRADE = 755

STUDENT NUMBER = 2
ENTER GRADES

758

264

?275

280

AVERAGE GRADE = 69.25

STUDENT NUMBER = 3
ENTER GRADES

288

292

785

279

AVERAGE GRADE = 86

STUDENT NUMBER = 4
ENTER GRADES

260

278

785

280

AVERAGE GRADE 75«75

CLASS AVERAGE 776

READY.

Statement Numbers

An integer number is placed at the beginning of each line in a
BASIC program. BASIC executes the statements in a program in
numerically consecutive order, regardless of the order in which
they have been typed. A common practice is to number lines by

8

fives or tens, so that additional lines may be inserted in a program
without the necessity of renumbering lines already present.

Multiple statements may be placed on a single line by sep-
erating each statement from the preceding statement with a back-
slash (SHIFT/L). For example:

13 A=5\B=.2\C=3\PRINT "ENTER DATA"

All of the statements in line 10 will be executed before BASIC con-
tinues to the next line. Only one statement number at the beginning
of the entire line is necessary. However, it should be remembered
that program control cannot be transferred to a statement within
a line, but only to the first statement of the line in which it is con-
tained (see the section entitled Transfer of Control Statements).

Commenting the Program
REM

The REM or REMARK statement allows the programmer to
insert comments or remarks into a program without these com-
ments affecting execution. The BASIC compiler ignores every-
thing following REM. The form is:

(line number) REM (message)

In the Example Program, lines 10 and 15 are REMARK state-
ments describing what the program does. It is often useful to put
the name of the program and information relating to its use
at the beginning where it is available for future reference. Remarks
throughout the body of a long program will help later debugging
by explaining the purpose of each section of code within the
program.

Terminating the Program
END
The END statement (line 140 in the Example Program), if
present, must be the last statement of the entire program. The form
is:
(line number) END

This statement acts as a signal that the entire program has been
executed. Use of the statement is optional. However, if the pro-
gram contains an END statement, after execution, variables and

9

arrays are left in an undefined state, thereby losing any values they
have been assigned during execution.

STOP

The STOP statement is used synonymously with the END state-
ment to terminate execution, but while END occurs only once at
the end of a program, STOP may occur any number of times. The
format of the STOP statement is:

(line number) STOP

This statement signals that execution is to be terminated at that
point in the program where it is encountered.

The Arithmetic Statement
LET

The Arithmetic (LET) statement is probably the most com-
monly used BASIC statement and is used whenever a value is to
be assigned to a variable. It is of the form:

(line number) (LET) x = expression

where x represents a variable, and the expression is either a num-
ber, another variable, or an arithmetic expression. The word ‘LET’
1s optional; thus the following statements are treated the same:

100 LET A=AtB+10 118 LET C=F/G

100 A=AtRBR+10 113 C=F/G

As mentioned earlier, relational operators may be used ina LET
statement to assign a value of O (if false) or 1 (if true) to a
variable depending upon the validity of a relationship. For example:

100 A=1\B=2
110 C=A=B

120 D=A>B

130 E=A<>B

140 PRINT C,D,E
150 END

Translated, this actually means “let C=1 if A=B (0 otherwise);
let D=1 if A>B (0 otherwise)” and so on. Thus, the values of C,
D, and E are printed as follows:

10

READY.

There is no limit to the number of relationships that may be tested
in the statement.

Input/Output Statements

Input/Output statements allow the user to bring data into a
program and output results or data at any time during execution.
The Teletype keyboard, low or high-speed reader/punch, and
LPO8 line printer are all available as I/O devices in 8K BASIC.
Statements which control their use are described next.

READ AND DATA

READ and DATA statements are used to input data into a pro-
gram. One statement is never used without the other. The form of
the READ statement is:

(line number) READ x1,x2,...xn

where x1 through xn represent variable names. For example:

19 READ AsB.,C

A, B, and C are variables to which values will be assigned. Vari-
ables in a READ statement must be separated by commas. READ
statements are generally placed at the beginning of a program, but
must at least logically occur before that point in the program
where the value is required for some computation.

Values which will be assigned to the variables in a READ state-
ment are supplied in a DATA statement of the form:

(line number) DATA x1,x2,...xn

where x1 through xn represent values. The values must be sep-
arated by commas and occur in the same order as the variables
which are listed in the corresponding READ statement. A DATA
statement appropriate for the preceding READ statement is:

7% DATA 1,2,3

11

Thus, at execution time A=1, B=2, and C=3.

The DATA statement is usually placed at the end of a program
(before the END statement) where it is easily accessible to the
programmer should he wish to change the values.

A READ statement may have more or fewer variables than
there are values in any one DATA statement. The READ state-
ment causes BASIC to search all available DATA statements in
the order of their line numbers until values are found for each
variable in the READ. A second READ statement will begin read-
ing values where the first stopped. If at some point in the program
an attempt is made to read data which is not present or if the data
is not separated by commas, BASIC will stop and print the follow-
ing message at the console:

DATA ERROR AT LINE XXXX

where XXXX indicates the line which caused the error.

RESTORE

If it should become necessary to use the same data more than
once in a program, the RESTORE statement will make it possible
to recycle through the DATA statements beginning with the lowest
numbered DATA statement. The RESTORE statement is of the
form:

(line number) RESTORE

An example of its use follows:

15 READ B»C>»D

.
.

55 RESTORE
60 READ ELF.,G

80 DATA 653,457,952

100 END

The READ statements in lines 15 and 60 will both read the first
three data values provided in line 80. (If the RESTORE statement

12

had not been inserted before line 60, then the second READ would
pick up data in line 80 starting with the fourth value.)

The programmer may use the same variable names the second
time through the data, or not, as he chooses, since the values are
being read as though for the first time. In order to skip unwanted
values, the programmer may insert replacement, or dummy, vari-
ables. Consider:

1 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE
20 READ N

25 PRINT "VALUES OF X ARE:"

3% FOR I=1 TO N

40 READ X

50 PRINT X,

60 NEXT 1

70 RESTORE

185 PRINT

190 PRINT "'SECOND LIST OF X VALUES"

207% PRINT "FOLLOWING RESTORE STATEMENT:"
219 FOR I=1 TO N

220 READ X

230 PRINT X,

240 NEXT 1

250 DATA 4,1.,2

251 DATA 3,4

300 END
RUN
VALUES OF X ARE:
1 2 3 4

SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT:

4 1 2 3
READY.

The second time the data values are read, the first X picks up
the value originally assigned to N in line 20, and as a result, BASIC
prints:

13

To circumvent this, the programmer could insert a dummy variable
which would pick up and store the first value, but would not be
represented in the PRINT statement, in which case the output
would be the same each time through the list.

INPUT

The INPUT statement is used when data is to be supplied by
the user from the Teletype keyboard while a program is executing,
and is of the form:

(line number) INPUT x1, x2,...xn

where x1 through xn represent variable names. For example:

25 INPUT A,BsC

This statement will cause the program to pause during execution,
print a question mark on the Teletype console, and wait for the
user to type in three numerical values. The user must separate the
values by commas; they are entered into the computer by his press-
ing the RETURN key at the end of the list.

If the user does not insert enough values to satisfy the INPUT
statement, BASIC prints another question mark and waits for more
values to be input. When the correct number has been entered,
execution continues. If two many values are input, BASIC ignores
those in excess of the required number. The values are entered
when the user types the RETURN key.

PTR

A PTR statement is used when data is to be input from the high-
speed paper tape reader. The format of the data on the paper tape
must be the same as it would be if it were input from the Teletype
keyboard. If more than one value is to be input at a time, the
values must be separated by commas. The tape must be positioned
in the reader before it is called by the program; while it is reading,
there is no echo (type out) on the Teletype. The form is:

(line number) PTR

The PTR statement is most useful for inputting large amounts of
data in conjunction with the INPUT command. The following
program accepts 20 data values from the high-speed reader, prints
a heading, the value input, and its sine on the Teletype:

14

S0 PTR

60 PRINT "SINE TABLE"
163 FOR J=1 TO 20

112 INPUT A

120 LET B=SIN(AD

138 PRINT A,B

146 NEXT J

150 END

RUN

SINE TABLE

-.97 -« 8248857

-«911 -«7901171

-.872 ~+7656171

-.723 ~«6616371

~«719 ~.6586325

-e61 -«5728675

-+502 -«4811798

-+ 346 -.3391376

-+33 -+324043

-+.283 -.2792376

-«175 -.1741081

-«155 -.1543801

-.02 -+.01999867
<23 «@299955
«093 «392866
«127 «1266589
«13 «1296341
42 48776085
529 « 5046703
.632 «5907596

READY.

PRINT

The PRINT statement is used to output results of computations,
comments, values of variables, or plot points of a graph on the
Teletype. The format is:

(line number) PRINT expression

When used without an expression, a blank line will be output on
the Teletype. For more complicated formats, the type of expression
and the type of format control characters following the word
PRINT determines which formats will be created.

In order to have the computer print out the results of a compu-
tation, or the value of a variable at any point in the program, the

15

user types the line number, PRINT, and the variable name(s)
separated by a format control character, in this case, commas:

5 A=16\B=5\C=4
13 PRINT A,C+B,SQRA)

In BASIC, -a Teletype line is formatted into five fixed columns
(called print zones) of 14 spaces each. In the above example, the
values of A, C+B, and the square root of A will be printed in the
first three of these zones as follows:

RUN
16 9 4

READY.

A statement such as:

5 A=2.3\B=21\C=156.75\D=1.134\E=23.4
1% PRINT A>B>C,D,E

will cause the values of the variables to be printed in the same
format using all five columns:

RUN
2.3 21 15675 1.134 23.4

READY.

When more than five variables are listed in the PRINT statement,
the sixth value begins a new line of output.

The PRINT statement may also be used to output a message or
line of text. The desired message is simply placed in quotation
marks in the PRINT statement as follows:

19 PRINT "THIS IS A TEST"

When line 10 is encountered during execution, the following will
be printed:

THIS IS A TEST

A message may be combined with the result of a calculation or a
variable as follows:

16

87 PRINT '"AMOUNT PER PAYMENT ="R

Assuming R=344.9617, when line 80 is encountered during execu-
tion, this will be output as:

RUN
AMOUNT PER PAYMENT = 344.9617

READY.

It is not necessary to use the standard five zone format for out-
put. The control character semicolon (;) causes the text or data
to be output immediately after the last character printed (sep-
arated by one space.) If neither a comma nor a semicolon is used,
BASIC assumes a semicolon. Thus both of the following:

82 PRINT "AMOUNT PER PAYMENT ='"R
80 PRINT '"AMOUNT PER PAYMENT =';R

will result in:
AMOUNT PER PAYMENT = 344.9617

The PRINT statement can also cause a constant to be printed on
the console. (This is similar to the PRINT command used in Im-
mediate Mode.) For example:

10 PRINT 1.234,SQR(10014)>

will cause the following to be output at execution time:

1.234 100.07

Any algebraic expression in a PRINT statement will be evaluated
using the current value of the variables. Numbers will be printed
according to the format previously specified.

The following example program illustrates the use of the control
characters? in PRINT statements:

2 The user may wish to refer to the section entitled Functions for in-
formation pertaining to three functions available for additional character
control—TAB, PUT, and GET.

17

18 READ A,B,C

2@ PRINT A,B,C,At2,Bt2,Ct2
30 PRINT

4@ PRINT A;B;Cs;At123;Bt2;5;Ct2
50 DATA 4,556

60 END

RUN
36
4 5 6 16 25 36

READY.

As this example illustrates, if a number should be too long to be
printed on the end of a single line, BASIC automatically moves the
entire number to the beginning of the next line.

Another use of the PRINT statement is to combine it with an
INPUT statement so as to identify the data expected to be entered.
As an example, consider the following program:

10 REM - PROGRAM TO COMPUTE INTEREST PAYMENTS
29 PRINT "INTEREST IN PERCENT";

25 INPUT J

26 LET J=J/100

3¢ PRINT '"AMOUNT OF LOAN'";

35 INPUT A

4@ PRINT "NUMBER OF YEARS";

45 INPUT N

50 PRINT ''NUMBER OF PAYMENTS PER YEAR":
55 INPUT M

60 LET N=N*M

65 LET I=J/M

70 LET B=1+I

75 LET R=A*I1/(1-1/BtN)

78 PRINT

8@ PRINT ""AMCUNT PER PAYMENT ='";R

&5 PRINT '"'TOTAL INTEREST ="";R*N-A

88 PRINT

98 LET B=A

95 PRINT ' INTEREST APP TO PRIN BALANCE"

100 LET L=Bx*I]

119 LET P=R-L

120 LET B=B-P

130 PRINT L,P,B

140 IF B>=RGC TO 100

150 PRINT B*I,R-Bx*I

160 PRINT "LAST PAYMENT ="Bx*I+B
200 END

18

RUN

INTEREST IN PERCENT?9

AMOUNT OF LOAN?25060

NUMBER OF YEARS?2

NUMBER OF PAYMENTS PER YEAR?4

AMOUNT PER PAYMENT = 344.9617

TOTAL INTEREST 259.6932
INTEREST APP TO PRIN BALANCE
56.25 288.7117 2211.288
49.75395 295.2077 1916.081
43.11182 301.8498 1614.231
36.32019 308.6415 1305.589
29.37576 3155859 990 .0035
22.27508 322.6866 667.317
15.01463 329.947 337.3699
7.590824 337.37028

LAST PAYMENT = 344.9608

READY.

As can be noticed in this example, the question mark is gram-
matically useful in a program in which several values are to be
input by allowing the programmer to formulate a verbal question
which the input value will answer.

LPT
The LPT statement is used to generate output on the LP0O8 line
printer, and is of the form:

(line number) LPT

By inserting this statement anywhere in a program, all subsequent
output, with the exception of error messages, will be printed on the
line printer. The LPT statement is particularly advantageous for
outputting large amounts of calculated data, as can be seen from
this and following examples:

100 LPT

119 FOR F=30 TO 68 STEP 3
1280 PRINT F,Ft2

130 NEXT F

140 END

19

3¢ S2¢

33 12869
36 1296
39 1521
de 1764
4S eaes
48 2324
S1 2601
sS4 2916
57 3249
60 00

When the END statement is encountered in the program, the
output device is reset to the Teletype.

PTP

The high-speed paper tape punch is also available as an output
device in 8K BASIC, permitting users to save data or output files
quickly on paper tape. When the statement is encountered, all
output is diverted from the Teletype to the high-speed punch. Con-
trol automatically returns to the Teletype when the END statement
is encountered. The form is:

(line number) PTP

By substituting this statement in line 100 of the previous program,
all output, with the exception of error messages, will be sent to the
high-speed paper tape punch instead of the line printer.

TTY IN AND TTY OUT

The Teletype may be placed under program control so that,
during execution of a program, I/O may be obtained or sent alter-
nately between any available device. By issuing the statement:

(line number) TTY IN

control of input is returned to the Teletype if it has been previously
set to another device. Similarly, the statement:

(line number) TTY OUT
returns output control to the Teletype.
20

The following program makes use of most all the available I/0
devices. The output, with the exception of paper tape, is also
included.

100 LPT

110 PRINT "FIRST DEGREE EQUATION CALCULATION'
120 TTY 1IN

1386 TTY OUT

135 PRINT "TYPE X1 Y1 THEN X2 Y2"
140 INPUT X1,Y1,X2,Y2

1580 X=X2-X1

160 Y=Y2-Y1

170 M=Y/X

180 B=Y2-Mx*X2

198 IF B>=@ THEN 300

200 PRINT "Y="M"X"B

210 LPT

220 PRINT "'Y="M"X"B

230 GO TO 400

300 PRINT "'Y="M"X+'B

310 LPT

320 PRINT "Y="M"X+"B

400 FOR Y=@ TO 1@ STEP 2
410 FOR X=0 TO 10 STEP «5
420 LET T=M*X+B-Y

430 1IF T<>@ THEN 480

440 PRINT XY

450 PTP

460 PRINT X»,Y

470 LPT

480 NEXT X

490 NEXT Y

58@ END

RUN

TYPE X! Y1 THEN X2 Y2
?7-3,-4,-1,0

Y= 2 X+ 2

READY.

The line printer output is the following:

FIRST DEGREE CALCULATION
Ys 2 X+ 2

E W -
- ® T £ v

21

NOTE

The Teletype low-speed reader and punch
may be used as I/O devices at any time. No
special statement is required. To read in data
from the low-speed reader, position the tape
over the sprocket wheel and set the reader to
START when input is required. The tape
will begin reading in. To punch a tape, set
the low-speed punch to ON and all ouput
will be punched on the low-speed punch.

Using the low-speed I/O devices is, in
effect, the same as using the Teletype key-
board. Characters will be typed on the Tele-
type keyboard as tapes are being read in or
punched.

Loops
FOR, NEXT, AND STEP

FOR and NEXT statements define the beginning and end of a
loop. A loop is a set of instructions which are repeated over and
over again, each time being modified in some way until a terminal
condition is reached. The FOR statement is of the form:

(line number) FOR v=x1 TO x2 STEP x3

where v represents a variable name, and x1, x2, and x3 all repre-
sent formulas (a formula in this case means a numerical value,
variable name, or mathematical expression). v is termed the index,
x1 the initial value, x2 the terminal value, and x3 the incremental
value. For example:

15 FOR K=2 TO 2@ STEP 2

This means that the loop will be repeated as long as K is less than
or equal to 20. Each time through the loop, K is incremented by 2,
so the loop will be repeated a total of 10 times.

A variable used as an index in a FOR statement must not be
subscripted, although a common use of loops is to deal with sub-
scripted variables, using the value of the index as the subscript of

22

a previously defined variable (this is illustrated in the section con-
cerning Subscripted Variables).
The NEXT statement is of the form:

(line number) NEXT

and signals the end of the loop. When execution of the loop reaches
the NEXT statement, the computer adds the STEP value to the
index and checks to see if the index is less than or equal to the
terminal value. If so, the loop is executed again. If the value of
the index exceeds the terminal value, control falls through the loop
to the following statement, with the value of the index equaling the
value it was assigned the final time through the loop.3

If the STEP value is omitted, a value of +1 is assumed. Since
+1 is the usual STEP value, that portion of the statement is fre-
quently omitted. The STEP value may also be a negative number.

The following example illustrates the use of loops. This loop is
executed 10 times: the value of I is 10 when control leaves the
loop. +1 is the assumed STEP value.

18 FOR I=1 TO 10
20 NEXT 1

38 PRINT I

4@ END

RUN
10

READY.

If line 10 had been:

12 FOR I=10 TO | STEP -1

the value printed by the computer would be 1.
As indicated earlier, the numbers used in the FOR statement

3 The user should note that this method of handling loops varies among
different versions of BASIC.

23

are formulas; these formulas are evaluated upon first encountering
the loop. While the index, initial, terminal and STEP values may
be changed within the loop, the value assigned to the initial formula
remains as originally defined until the terminal condition is reached.
To illustrate this point, consider the last example program. The
value of I (in line 10) can be successfully changed as follows:

18 FOR I=1 TO 10
15 LET I=10
20 NEXT 1

The loop will only be executed once since the value 10 has been
reached by the variable I and the terminal condition is satisfied.

If the value of the counter variable is originally set equal to the
terminal value, the loop will execute once, regardless of the STEP
value. If the starting value is beyond the terminal value, the loop
will also execute only once.

It is possible to exit from a FOR-NEXT loop without the index
reaching the terminal value. (This is known as a conditional trans-
fer and is explained in the section entitled Transfer of Control
Statements.) Control may only transfer into a loop which has been
left earlier without being completed, ensuring that the terminal
and STEP values are assigned.

Nesting Loops

It is often useful to have one or more loops within a loop. This
technique is called nesting, and is allowed as long as the field of
one loop (the numbered lines from the FOR statement to the cor-
responding NEXT statement, inclusive) does not cross the field of
another loop. A diagram is the best way to illustrate acceptable
nesting procedures:

24

ACCEPTABLE NESTING UNACCEPTABLE NESTING

TECHNIQUES TECHNIQUES
Two Level Nesting
—FOR FOR
' FOR FOR
NEXT ‘ NEXT
FOR NEXT
NEXT
L NEXT
Three Level Nesting
—FOR —FOR
—FOR FOR
FOR [FOR
NEXT NEXT
FOR FOR
NEXT NEXT
—NEXT NEXT
L—NEXT —NEXT

A maximum of eight(8) levels of nesting is permitted. Exceeding
that limit will result in the error message:

FOR ERROR AT LINE XXXX

where XXXX is the number of the line in which the error occurred.

Subscripted Variables

In addition to single variable names, BASIC accepts another
class of variables called subscripted variables. Subscripted variables
provide the programmer with additional computing capabilities for
handling lists, tables, matrices, or any set of related variables.
Variables are allowed one or two subscripts. A single letter forms
the name of the variable; this is followed by one or two integers
in parentheses and separated by commas, indicating the place of
that variable in the list. Up to 26 arrays are possible in any pro-
gram (corresponding to the letters of the alphabet), subject only
to the amount of core space available for data storage. For ex-
ample, a list might be described as A(I) where I goes from 1 to S,
as follows :

25

AC1)>AC2)5,AC3)5,AC4),AC5)

This allows the programmer to reference each of the five elements
in the list A. A two dimensional matrix A(I, J) can be defined in a
similar manner, but the subscripted variable A can only be used
once (i.e., A(I) and A(I,J) cannot be used in the same program).
It is possible however, to use the same variable name as both a
subscripted and an unsubscripted variable. Both A and A(I) are
valid variable names and can be used in the same program.

Subscripted variables allow data to be input quickly and easily,
as illustrated in the following program (the index of the FOR state-
ment in lines 20, 42, and 44 is used as the subscript) :

12 REM - PROGRAM DEMONSTRATING READING
11 REM - OF SUBSCRIPTED VARIABLES
15 DIM A(5),B(2,3)

18 PRINT "ACI)> WHERE A=1 TO 55"
20 FOR I=1 TO 5

25 READ A(CI)

30 PRINT A(I);

35 NEXT I

38 PRINT

39 PRINT

40 PRINT "B(I,J) WHERE I=1 TO 2:"
41 PRINT " AND J=1 TO 3:"
42 FOR I=1 TO 2

43 PRINT

44 FOR J=1 TO 3

48 READ B(I,J)

50 PRINT B(I,J)s

55 NEXT J

56 NEXT I

60 DATA 15253,455,6,7,8

61 DATA 8,756555,4,3,2,1

65 END

RUN
ACI> WHERE A=1 TO 55
1 2 3 4 5

B(I,J) WHERE I=1 TO 2:
AND J=1 TO 3:

6 7 8
8 7 6
READY.

26

DIM

From the preceding example, it can be seen that the use of sub-
scripts requires a dimension (DIM) statement to define the max-
imum number of elements in the array. The DIM statement is of
the form:

(line number) DIM v; (n;), v, (n,, m.)

where v indicates an array variable name and n and m are integer
numbers indicating the largest subscript value required during the
program. For example:

15 DIM A(6,108)

The first element of every array is automatically assumed to have
a subscript of zero. Dimensioning A(6, 10) sets up room for an
array with 7 rows and 11 columns. This matrix can be thought of
as existing in the following form:

AO,O A(),l . . . AO,IO
AI,O Al,l . . . Al,ll)
Ay Asy . . . Asy
A6,l) A6,1 . . . A6,10

and is illustrated in the following program:

27

10 REM - MATRIX CHECK PROGRAM
15 DIM A(6,510)

20 FOR I=0 TO 6

22 LET A(I,0)=I1

25 FOR J=0 TO 10

28 LET AW@,J)=J

30 PRINT A(I,J);

35 NEXT J

4@ PRINT

45 NEXT 1

5@ END

RUN
p 1 2 3 4 5 6 7 8 9 10
1 8 06 0 © 0 @0 ©0 @ 0 0O
2 0 0 0 06 © © ©0 0 0 0
3 @ 0 0 @ @ @ © © 0 ©
4 9 © 0 © @ @ @ © 0 ©
S 8 0 0 © © ©0 @ 0 0 0
6 » 0 0 0 ©0 @ 0 ©0 0 0

READY.

Notice that a variable assumes a value of zero until another value
has been assigned. If the user wishes to conserve core space by not
making use of the extra variables set up within the array, he should
set his DIM statement to one less than necessary, DIM A(5,9).
This results in a 6 by 10 array which may then be referenced be-
ginning with the A(0, 0) element.

More than one array can be defined in a single DIM statement:

13 DIM AC28), B(4,57)

This dimensions both the list A and the matrix B.

A number must be used to define the maximum size of the array.
A variable inside the parentheses is not acceptable and will result
in an error message by BASIC at run time. The amount of user
core not filled by the program will determine the amount of data
the computer can accept as input to the program at any one time.
In some programs a TOO-BIG ERROR may occur, indicating
that core will not hold an array of the size requested. In that event,

28

the user should change his program to process part of the data in
one run and the rest later.

Transfer of Control Statements

Certain control statements cause the execution of a program to
jump to a different line either unconditionally or depending upon
some condition within the program. Looping is one method of
jumping to a designated point until a condition is met. The follow-
ing statements give the programmer added capabilities in this area.

UNCONDITIONAL TRANSFER—GOTO

The GOTO (or GO TO) statement is an unconditional state-
ment used to direct program control either forward or back in a
program. The form of the GOTO statement is:

(line number) GOTO n

where n represents a statement number. When the logic of the
program reaches the GOTO statement, the statement(s) immedi-
ately following will not be executed; instead execution is transferred
to the statement beginning with the line number indicated.

The following program never ends; it does a READ, prints
something, and jumps back to the READ via a GOTO statement.
It attempts to do this over and over until it runs out of data, which
is sometimes an acceptable, though not advisable, way to end a
program.

12 REM - PROGRAM ENDING WITH ERROR
11 REM - MESSAGE WHEN OUT OF DATA
20 READ X

25 PRINT "X=""X,"Xt2="Xt2

380 GO TO 20

35 DATA 1,5510,15,20,25

40 END

RUN

X= 1 Xt2= 1
X= 5 Xt2= 25
X= 10 Xt2= 100
X= 15 Xt2= 225
X= 20 Xt2= 400
X= 25 Xt2= 625

DATA ERROR AT LINE 20
29

CONDITIONAL TRANSFER—IF-THEN AND IF-GOTO

If a program requires that two values be compared at some
point, control of program execution may be directed to different
procedures depending upon the result of the comparison. In com-
puting, values are logically tested to see whether they are equal,
greater than, less than another value, or possibly a combination of
the three. This is accomplished by use of the relational operators
discussed earlier.

IF-THEN and IF-GOTO statements allow the programmer to
test the relationship between two formulas (variables, numbers, or
expressions). Providing the relationship described in the IF state-
ment is true at the point it is tested, control will transfer to the
line number specified, or perform the indicated operation. The
statements are of the form:

GOTO

(line number) IF vl <relation> V2{ THEN

}x or expression
where v1 and v2 represent variable names or expressions, X repre-
sents a line number, and expression represents an operation to be
performed. The use of either THEN or GOTO is acceptable.

The following two examples are equivalent (the value of the
variable A is changed or remains the same depending upon A’s
relation to B) :

120 1F A>B THEN 120
1160 A=A1B-1
1200 C=A/D

.

120 IF A<=B THEN A=AtB-1
113 C=A/D

Subroutines
GOSUB AND RETURN

A subroutine is a section of code performing some operation
that is required at more than one point in the program. Often a

30

complicated 1/O operation for a volume of data, a mathematical
evaluation which is too complex for a user-defined function, or any
number of other processes may best be performed in a subroutine.

Subroutines are generally placed physically at the end of a pro-
gram, usually before DATA statements, if any, and always before
the END statement. Two statements are used exclusively in
BASIC to handle subroutines; these are the GOSUB and RETURN
statements.

A program begins execution and continues until it encounters a
GOSUB statement of the form:

(line number) GOSUB x

where x represents the first line number of the subroutine. Control
then transfers to that line. For example:

5@ GOSUR 200

When program execution reaches line 50, control transfers to line
200; the subroutine is processed until execution encounters a RE-
TURN statement of the form:

(line number) RETURN

which causes control to return to the statement following the
GOSUB statement. Before transferring to the subroutine, BASIC
internally records the next statement to be processed after the
GOSUB statement; thus the RETURN statement is a signal to
transfer control to this statement. In this way, no matter how many
different subroutines are called, or how many times they are used,
BASIC always knows where to go next.
The following program demonstrates a simple subroutine:

31

1 REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
10 DEF FNA(X)=ABSCINT(X))

20 INPUT A»B.,C

30 GOSUB 100

40 LET A=FNAC(A)>

50 LET B=FNA(B)

60 LET C=FNA(CC)

70 PRINT

80 GOSUB 100

9@ STOP

199 REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
110 REM - OF THE EQUATION: A(Xt2) + B(X) + C =0
120 PRINT "'THE EQUATION IS "ATxkXt2 + "B"xX + "C
130 LET D=B*B-4xA%*C

140 IF D<>3 THEN 170

15 PRINT "ONLY ONE SOLUTION... X ="-B/(2%*A)

160 RETURN

17¢ 1F D<@ THEN 200

180 PRINT "TWO SOLUTIONS... X ="3

185 PRINT (-B+SQR(D))/(2%A)"AND X =""(-B-SQR(D)>)>/(2%A)
190 RETURN

20» PRINT "IMAGINARY SOLUTIONS... X = (" ,

205 PRINT -B/(2%A)","SQR(-D)/(2*xA)") AND [

207 PRINT -B/(2xA)","-SQR(-D)/(2%xA)'")"

210 RETURN

9@ END

RUN

?1)05}"5

THE EQUATION IS
TWO SOLUTIONS... X

*X12 + «e5 %X .+ -5
.5 AND X =-1

—

THE EQUATION IS 1 xXt2 + @ *X + 1
IMAGINARY SOLUTIONSe«e. X = (@ >, 1) AND. C @ 5-1)

READY.

Line 100 begins the subroutine. There are several places in which
control may return to the main program, depending upon a certain.
condition being satisfied. The subroutine is executed from line 30
and again from line 80. When control returns to line 90, the pro-
gram encounters the STOP statement and execution is terminated.

It is important to reme¢mber that subroutines should generally
be kept distinct from the main program. The last statement in the
main program should be a STOP or GOTO statement, and sub-
routines are normally placed following this statement.

32

More than one subroutine may be used in a single program, in
which case these can be placed one after another at the end of the
program (in line number sequence). A useful practice is to assign
distinctive line numbers to subroutines. For ¢xample, if the main
program is numbered with line numbers up to 199, 200 and 300
could be used as the first numbers of two subroutines.

Nesting Subroutines

Nesting of subroutines occurs when one subroutine calls an-
other subroutine. If a RETURN statement is encountered during
execution of a subroutine, control returns to the statement follow-
ing the GOSUB which called it. From this point, it is possible to
transfer to the beginning or any part of a subroutine, even back to
the calling subroutine. Multiple entry points and RETURN state-
ments make subroutines more versatile.

The maximum level of GOSUB nesting is about thirty-three (33)
levels, which should prove more than adequate for all normal uses.
Exceeding this limit will result in the message-

GOSUB ERROR AT LINE XXXX

where XX XX represents the line number where the error occurred.
An example of GOSUB nesting follows (execution has been stopped
by typing a CTRL/C, as the program would otherwise continue in
an infinite loop; see Stopping a Run.)

33

1@ REM FACTORIAL PROGRAM USING GOSUB TO
15 REM RECURSIVELY GOMPUTE THE FACTORS
4P INPUT N

5¢ IF N>2@ THEN 120

60 X=1

70 K=1

8@ GOSUB 200

99 PRINT "FACTORIAL"N" ="X

1186 GO TO 40

12¢ PRINT "MUST BE 20 OR LESS"

130 GO TO 40

200 X=X*K

210 K=K+1

220 IF K<=N THEN GOSUB 200

230 RETURN

24(END

RUN
22
FACTORIAL 2
24
FACTORIAL 4 = 24
25
FACTORIAL 5
?

STOP.
READY.

"
\v}

120

Functions

BASIC performs several mathematical calculations for the pro-
grammer, eliminating the need for tables of trig functions, square
roots, and logarithms. These functions have a three letter call
name, followed by an argument, x, which can be a number, vari-
able, expression, or another, function. Table 1 lists the func-
tions available in 8K BASIC. Most are self-explanatory; those
that are not and are provided in greater detail are marked with
asterisks.

Tablel 8K BASIC Functions

Function Meaning
SIN(x) Sine of x (x is expressed in radians)
COS(x) Cosine of x (x is expressed in radians)

34

Table1l 8K BASIC Functions (Cont.)

Function Meaning
TAN(x) Tangent of x (x is expressed in radians)
ATN(x) Arctangent of x (result is expressed in
radians)
EXP(x) e* (e=2.718282)
LOG(x) Natural log of x (log.x)
*SGN(x) Sign of x—assign a value of +1 if x is posi-
tive, O if x is zero, or —1 if x is negative
*INT (x) Integer value of x
ABS(x) Absolute value of x (|x|)
SQR(x) Square root of x (yx)
*RND(x) Random number
*TAB(x) Print next character at space x
*GET(x) Get a character from input device
*PUT(x) Put a character on output device
*FNA(x) User-defined function
*UUF(x) User-coded function (machine language

code)

SIGN FUNCTION—SGN (X)

The sign function returns the value +1 if x is a positive value,
0 if x is zero, and —1 if x is negative. For example, SGN(3.42)=1,
SGN(—42)=-1, and SGN(23—23)=0. The following example
in which X is assigned the sign of y illustrates the use of this

function:

25 X=SQR(A12+2%xBC)*SGN(A)

INTEGER FUNCTION—INT(X)
The integer function returns the value of the nearest integer not
greater than x. For example, INT(34.67)=34. By specifying

35

INT(x+.5) the INT function can be used to round numbers to
the nearest integer; thus, INT(34.67+.5)=35. INT can also be
used to round numbers to any given decimal place by specifying:

INT (x*101D+.5)/10tD

where D is the number of decimal places desired. The following
program illustrates this function; execution has been stopped by
typing a CTRL/C:

19 REM - INT FUNCTIGN EXAMPLE

20 PRINT "NUMBER TO BE ROUNDED';
30 INPUT A

49 PRINT ''NO. OF DECIMAL PLACES";
50 INPUT D

60 LET B=INT(A*10tD+.5)/101D

70 PRINT "'A ROUNDED = "B

83 GO TO 20

99 END

RUN

NUMBER TO BE ROUNDED?55.65342
NO. OF DECIMAL PLACES?2

A ROUNDED = 55.65

.NUMBER TO BE ROUNDED?78.375
NO. OF DECIMAL PLACES?-2

A ROUNDED = 100

NUMBER TO BE ROUNDED?67.89
NO. OF DECIMAIL PLACES?-1

A ROUNDED = 70
NUMBER TO BE ROUNDED?
STOP.

READY.

If the argument is a negative number, the value returned is the
largest negative integer (rounded to the higher value) contained in
the number. For example, INT(—23)=-—23 but INT(—14.39)=-15.

RANDOM NUMBER FUNCTION—RND(X)

The random number function produces a random number be-
tween 0 and 1. The numbers are not reproducible, a fact the
programmer should keep in mind when debugging or checking his

36

program. The argument x in the RND(x) function call can be any
number, as that value is ignored. The following program illustrates
the use of this function to generate a table of random numbers:

10 REM - RANDOM NUMBER EXAMPLE
25 PRINT "RANDOM NUMBERS'"

3@ FOR 1=1 TC 30

40 PRINT RND(@),

50 NEXT 1

60 END

RUN

RANDOM NUMBERS
« 9547609 2890875 «1416765 2482717 «2145417
«05280478 « 3859534 -« 8404774 «5692836 « 8514056
« 9848808 « 2466345 «61588 4755698 3104984
«5828625 « 7026891 «9703719 4980298 2548316
34672124 « 9868434 « 5005693 .1218251 2258269
«2585353 «5187701 7858024 04588368 «2030807

READY.

It is possible to generate random numbers over any range by
using the following formula:

(B—A)*RND(0)+A

This produces a random number (n) in the range A<n<B.
In order to obtain random integer digits in the range 0< = n<9,
line 40 in the previous example is changed to read:

4 PRINT INT(9%RND(@)),

When the program is run again, the results will look as follows:

RANDOM NUMBERS

g 8 3 0 o
3 ? 1) 4
g 3 1 4 6
2 2 2 6 5
7 6 7 7 6
2 o 2 g 6

READY.

Notice that the range has changed to 0< = n<9. This is because
the INT function returns the value of the nearest integer not greater
than n.
TAB FUNCTION

The TAB function allows the user to position the printing of
characters anywhere on the Teletype (or line printer) line. Print

37

positions can be thought of as being numbered from 1 to 72
across the Teletype from left to right. (For printing devices with
long lines, the number of positions may be as large as 255, but it
is unlikely that more than 160 spaces will be required for most
printers.) The form of this function is:

TAB (n)

where the argument n represents the position (from 1 to the total
number of spaces available) in which the next character will be
typed.

Each time the TAB function is used, positions are counted from
the beginning of the line, not from the current position of the
printing head. For example, TAB(3) causes the character to be
printed at position 3; the following statement:

12 PRINT "X ="3TAB(3);5"/"33.14159

will print the slash on top of the equal sign, as shown below:

X # 3.14159

READY.

The following is an example of the sort of graph that can be
drawn with BASIC using the TAB function:

38

38 FOR X=@ TO 15 STEP .5

43 PRINT TABC3Q+15%SINCXI*EXP (-+1%X)) ;"""
50 NEXT X

60 END

RUN

READY.

PUT AND GET FUNCTIONS

8K BASIC provides two additional functions, PUT and GET,
to increase input/output flexibility. Using these statements, the
programmer can “PUT” an ASCII character on the current output
device, or “GET” a character from the current input device. GET
is of the form:

GET (x)
39

where the argument x is a dummy variable which may be any
value. GET (x) will be assigned the decimal value of the ASCII
code of the next character input on the current input device.

For example, if the following statement appears in a program:

12 LET L=GET(X)

and the next character input is an M, the variable L will be as-
signed the value 770,
PUT is of the form:

PUT (x)

where the argument x represents the decimal value of the ASCII
code of the character to be output. For example, the statement:

15 L=PUT(GET(V))

will wait for a character to be read from the current input device
and then print it on the current output device. A statement such as:

30 PRINT PUT(CQ)

will print the character typed as well as the decimal value of the
ASCII code for that character. To get 10 characters from a paper
tape and print them on the line printer, a suitable program is:

100 LPT

11¢ PTR

120 FOR A=l TO 10

130 LET B=PUT(GET(2))
149 NEXT A

150 END

The GET(0) will contain the most recently obtained character
which is then “PUT” to the line printer. The user should be careful
to position the tape on the first character to be input. Otherwise

40

blank tape may be entered, resulting in spaces being printed as
output.

The PUT statement can also be used to format output. For ex-
ample, to print a trig table on the line printer with a heading and
50 data lines per page, the line feed character (12;,) can be
“PUT” to the printer as follows:

100 LPT

118 GOSUB 1000

120 GOSUB 500

125 REM - SET UP TRIG TABLE

130 FOR J=0 TO 360 STEP .5

149 LET L=L+1

150 LET B=J/180%3.14

160 PRINT J>SIN(B)>COS(B)>,TAN(B)Y>ATN(B)
165 REM - PRINT 50 ENTRIES IN TABLE

170 IF L=50 THEN GOSUB 500

180 NEXT J

190 GOSUB 1000

200 GOSUB 1000

210 STOP

500 REM PRINT HEADER

505 GOSUB 1000

510 PRINT

520 PRINT

530 PRINT "ANGLE",'"SINE'","COSINE","TANGENT",""ARCTANGENT"
540 PRINT

550 RETURN

1000 REM PRINT FORM FEEDS TO ADVANCE PAPER
1005 X=PUTC(12)

1010 L=0

1620 RETURN

1030 END

The beginning of the line printer output from this program follows.
The first page of the table continues through an angle of 24.5 de-
grees: then the header and the next 50 entries are printed on the
next page, and so on until the values have been output for all an-
gles through 360 degrees (in steps of .5).

41

ANGLE SINE COSINE TANGENT ARCTANGENT

2 e 1 @ /]

.S 8.722112E=¢3 ,999962 8,722444E-03 8,722701E~03
1 21744356 «9998479 201744621 .01744268
1.5 «02616368 29996577 02617264 0261607
2 .03488181 99939185 .03490305 03487474
2,5 24359729 «999¢492 «04363878 .0435835
3 «05230945 .9986309 .N5238116 052285864
3,5 26101763 .9981367 «06113154 «26097986
4 ,06972117 29975665 «06989125 86966486
4,5 .0784194 .9969225 27866164 .27833935
S 08711167 .9961986 ."B8744408 .08700204
5.5 .09579731 99542069 » 29623993 «29565166
6 1044757 .9945274 1050506 .1042869
6.5 «1131461 9935784 «1138774 .1129067
7 .12180@79 9925537 .1227217 1215095
7.5 « 1304604 9914535 «131585 1302944
L]

.

24 4865426 +9136318 « 4449743 «39649y
24,5 «414498 9100512 «4554645 4038923

The GET statement cannot be used to get binary characters.

FNA FUNCTION

In some programs it may be necessary to execute the same
mathematical formula in several different places. 8K BASIC al-
lows the programmer to define his own function in the BASIC
language and then call this function in the same manner as the
square root or a trig function is called. Only one such user-
defined function may be included per program. The function is
defined once at the beginning of the program before its first use,
and consists of a DEF statement in combination with a three-
letter function name, the first two letters of which must be FN.
The format of the defining statement is as follows:

(line number) DEF FNA (x)=formula(x)

A may be any letter. The argument (x) has no significance; it is
strictly a dummy variable, but must be the same on each side of
the equal sign. The function itself can be defined in terms of num-
bers, several variables, other functions, or mathematical expres-
sions. For example:

19 DEF FNA(X)=XT2+3*X+4
or

20 DEF FNC(X)=SQR(X+4)+1

42

The function:

19 DEF FNA(S)>=5t2

will cause the later statement:
20 LET R=FNA(4)+]

to be evaluated as R=17.

The user-defined function can be a function of only one vari-
able.

USER-DEFINED FUNCTION-UUF

A special user-coded function is available for the programmer
who wishes to define an additional 8K BASIC function perma-
nently or one which cannot be defined with one BASIC expres-
sion, as an FNA function must be. The UUF function routine is
coded in PDP-8 assembly language, assembled with one of the
available assemblers, and loaded as an overlay to 8K BASIC.
While 8K BASIC is running, the special function can be used in
a fashion analogous to the regular 8K BASIC functions. The user-
coded function, if present, is referenced in the BASIC program as:

UUF(n)

where n can be any BASIC expression.

The programmer who defines the UUF function should be familiar
with the information on assembly language programming which
is in Introduction to Programming 1972 chapters 1-5, and the
material on the Floating Point Package, chapter 8. He should also
be familiar with the information on the assembler he intends to
use by reading the appropriate manual.

Coding Formats

8K BASIC uses a floating point package which has been modi-
fied to allow 27-bit, sign-magnitude mantissa floating point. In
sign-magnitude convention the sign bit, rather than the mantissa,
expresses the sign of the entire number. This format is described
more fully below. All coding must be compatible with this format.
The floating point instructions are discussed later in this manual.

43

Upon entrance to the UUF subroutine the value of the argu-
ment is in the FAC (floating accumulator). The value which is
calculated for the function must be in the FAC in normalized
form on exit.

When floating point statements are to be included in the pro-
gram, the start of a series of floating point instructions must be
indicated by the instruction:

FENTER

immediately before the first floating point instructions. Each series
of floating point instructions is terminated by the instruction:

FEXIT

immediately after the last floating point statement. There can be
as many sections of floating point code as necessary in the pro-
gram, but each must be delimited in this manner.

Floating-Point Format
The floating-point format used by 8K BASIC allocates three
storage words to each number as follows:

[Emwﬁofﬂm I (O LTI

The FAC occupies five locations on page O:

Location Name Location Number Contents
ACS 0024 Sign
ACE 0025 Exponent (2003 biased)
AC1 0020 High-order word
AC2 0017 Mid-order word
AC3 0016 Low-order word

The constant 2004 is added to the exponent to make its range
0to 377.

All of BASIC’s mathematical operations are in floating point
format. Therefore, if any temporary storage locations are to be
used, they will require three words, for example:

44

UTEMP,0:050

Addressing

The floating point package uses only relative addressing. There-
fore all statements that require an address specification must in-
clude one of the operators FWD or BKWD plus a reference to
the current location. Such 3 };g&;rﬁgfr}mgg&ig generally of the form:

instruction+FWD+LTEMP- .

I .
seh b, ass ad o
or e A i

instruction+BKWD-+—LTEMP

where LTEMP is the first of the three locations containing the
number to be used. The operator FWD is used when the address
of the location to be referenced is numerically greater than the ad-
dress of the instruction; BKWD is used when the address of the
location to be referenced is numerically less than the address of the
instruction. The floating point interpreter uses the number of
locations between the instruction and the data to locate the data.
The location referenced must be within 2005 locations of the
instruction.

The following two examples cause the contents of LTEMP to
be added to the contents of the FAC, and the result left in the
FAC:

@eége 4210 FAD+FWD+L TEMP=.

00210 2000 LTEMP
20211 2000
092212 0000

sos

or

00200 0000 LTEMP
09201 0000
P0202 200D

[SEORN

20210 4610 FAD+BX WD+ .~-LTEMP

Floating-Point Instruction Set

The legal instructions in the modified Floating-Point Package
used by 8K BASIC are explained in Table 2:

45

Table2 Floating-Point Instructions:

Instruction Value Meaning

FST 2000 Store the contents of the floating accu-
mulator (FAC). The contents of the
FAC are not changed.

FLD 3000 Load FAC with contents of relative
address.

FAD 4000 Add contents of relative address to
FAC.

FSB 5000 Subtract contents of relative address
from FAC.

FMP 6000 Multiply the contents of the FAC by
the contents of the relative address.

FDV 7000 Divide FAC by contents of relative
address.

FIMP 1000 Floating-point jump to relative ad-
dress.

FENTER 4435 Start floating-point code.

FEXIT 0000 Exit floating-point code. Return to
PDP-8 code.

FWD 0200 Access a relative location in the for-
ward direction.

BKWD 0600 Access a relative location in the back-
ward direction.

FSNE 0040 Skip if FAC # 0

FSEQ 0050 Skip if FAC =0

FSGE 0100 Skip if FAC =0

FSLT 0110 Skipif FAC <O

FSGT 0140 Skip if FAC >0

FSLE 0150 Skipif FAC <0

46

The following list contains floating-point instructions for in-
direct relative addressing. The indirect addressing is similar to the
I construction used in regular PDP-8 assembly language coding.

Floating-Point Instructions (Indirect Relative Addressing)

Instruction Value Operation
FSTI 2400 Store
FLDI 3400 Load
FADI 4400 Add
FSBI 5400 Subtract
FMPI 6400 Multiply
FDVI 7400 Divide
FIMPI 1400 Jump

Writing the Program

UUF must be made a defined function for 8K BASIC. This is
done by inserting the starting address of the UUF subroutine in
BASIC’s table of subroutine addresses. The subroutine address
must be placed in location 1156 of field 0. If UUF is the first
location of the subroutine, the following code is sufficient:

*1156
UUF

The UUF subroutine may be placed in the area of core nor-
mally occupied by the RIM and BIN loaders, location 7600-7777
of field 0. To do this, the loaders are placed in field 1. The loading
instructions for UUF are contained in the section called Loading
and Operating Procedures.

If mass storage devices are in use, they may destroy the data
break locations on the last page of field 0. If TCO8 DECtape
is used, locations 7752 and 7753 must be reserved. If an RF08
or DF32 disk is used, locations 7750 and 7751 must be reserved.

There are three subroutines in 8K BASIC which are available
to maintain a floating-point format acceptable to the modified
floating-point package in 8K BASIC. These subroutines are de-
scribed below. The listing of 8K BASIC is available from the
Software Distribution Center for the programmer who wishes to
call other subroutines in the compiler.

47

BEGFIX

ANORM

FIX

Examples

If a value is to be returned to the FAC as a result
of the UUF function, that value must be in nor-
malized floating point format in the FAC on exit
from the subroutine. If floating point arithmetic is
used throughout the user function, then the value
in the FAC is in normalized floating point format
and need not be converted. If fixed point arithmetic
(single word) is used anywhere in the function,
then the subroutine BEGFIX must be called to
initialize the FAC before the fixed point number
is placed in the FAC and subsequently converted
to floating point (see ANORM below). After
BEGFIX is called, the 12-bit number is stored by
a simple DCA AC3 instruction and then ANORM
is called. BEGFIX is located at 3762 and is called
with a JMS instruction; on return from BEGFIX
the AC is clear.

If a fixed point value is placed in the FAC,
ANORM may be called to normalize the FAC.
After the fixed point value has been placed in AC3,
ANORM may be called to supply the acceptable
values for ACE, ACS, AC1, and AC2. ANORM is
located at 4600; on return, the AC is clear.

When the value in the FAC must be made into an
integer, FIX may be called to perfom that job. The
12-bit value of the FAC is left in AC3 and that
value plus 1 is left in the AC. FIX is located at
4744. | i A

The following examples illustrate the method of writing and
calling a UUF routine.

Example 1:

This UUF routine is an example of a fixed point calculation.
The value of UUF(X) is 3X+2.

48

JUUF LX) 33xe2 PALB-VY PAGE 1

/ZUUF (X)) a3Xe2

ZENTER WITH X IN FAC

ZEXIT WITH UUF(X) IN FAC

/USE FIXED POINT ARITHMETIC . B

2016 AC3s16

4Tad Flxsq744
3762 BEGFIXm3762
46QR ANQRMs46QQ

000® FIELD @

1156 #{1§56
011S6 76020 UUf

7600 7600 o ERS
07608 0000 UUF,) P
AT601 4623 JMS I IFIX /MAKE X A 12«BIT INTEGER.
27602 7200 CLA / Set AC=O
nre@3 3222 DCA ANSWER / Sct ANSwL R =0
nT60¢ 4215 JMS LOOP /MULTIPLY X BY 3
B76Q2S 4245 JMS LOOP
7626 4215 JM8 LOOP
2760Y 4624 JMS Y IBEG
7618 7326 CLA CLL CML RTL /SET ACs2
27681 1222 TAD ANSWER /FETCH 3X
27612 3016 DCA AC3 /RETURN 3X#2 YO FAC
07613 4625 JMS 1 INORM JNORMALIZE
D7644 S600 JMP 1 UUF /e=RETURNw=
@76135 o@nee LOOP, @ . : ‘
07616 1222 TAD ANSHER " /ADD AC3 TO ACCUMULATED SUM
27647 1016 TAD AC3
Q7620 3222 DCA ANSWER e
07621 5615 JMP I LOOP /o=RETURNe=

07622 Q200 ANSWER, @
#7623 444 IFIX, FIX
07624 3762 1BEG, BEGFIX
07625 4682 INORM, ANORM

The following BASIC program calls UUF(X) to print X and
3X+2 for a number of values of X:

READY.

100 FOR X=-3 TO 3 STEP .S
118 PRINT X, UUF((X)

120 NEXT X

139 END

49

Example 2:
This UUF routine is an example of a floating point calculation.
Like example 1, this routine returns a value of UUF(X)=3X+2.

ZUUF (X)e3xe2

01156

27600
27621
076022
27603
27604
27605
o7606
erear
p7610Q
o761
27612
ar7613

443S
ceee
P20
Qgm0
62022
4000
2216
3762
4600

2200

1156
7600

7620
aeo0
443S
2216
ogeo
7325
deed
4435
6211
2219
2200
7326
4224

_RW AN DNNUUNR KR - —

—

JUUF (X)s=

IXe2

PALBwVT S/e5/72 PAGE 1

/JENTER WITH X IN FAC
ZEXTIT WITH UUF(X) IN FAC
/USE FLOATING POINT ARITHMETIC

FENTER= 4
FST=20020
FuD=200Q

FEXIT=3Q0
FMP26200
FAD=40Q0
AC3s16

BEGFIXs3
ANORM346

FIELD @
*1156

«7600
UUF,

435

Q0

762

oo

UUF

2 B S A T e

FENTER wilon o sty Lt

F3T+FuWDex=, /STORE X FROM FAC INTO LOC, X
FEXIT worrT R g,

CLA CLL CML IAC RAL /SET ACs3

JMS FLOAT /GETY A FLOATING POINY 3 IN THE FAC
FENTER fand T

FMPeFWD®Xm, /MULTIPLY X BY 3
FST+FWDeX», ~ /SAVE IT FOR LATER

FEXIT et

CLA CLL CML RTL /GET A 2 IN THE FAC,

JMS FLOATY

50

07614
arets
27636
67617

ars20
276214
nTH22

27623

" @a7624
Q7628
07626
27627
87630
2763
07632

87633
AT634

ZUUF (X)a3xe2

4435
4203
eeee
5600

000
2000
2000

ceoe

one0e
3223
4633
1223
3o1é
4634
S624

3762
4600

X,

TEMP,

FLOAT,

IBEG,
INORM,

$

FENTER
FADSFWD %X,
FEXIY

JMP I UUF

21210

[

2

DCA TEMP
JMS I IBEG
TAD TEMP
DCA AC3

JMS T INORM
JMP I FLOAY

BEGFIX
ANORM

/ADD 2 YO 3X
/LEAVE RESULY IN FAC
/==RETURN==

/STORE CONSTANTY TEMPORARILY
/PREPARE FAC TO RECEIVE VALUE

/PUT CONSTANT IN FaAC

/NORMALIZE 1Y
/=«RETURNe=

PALB=VTY 5/25/72 PAGE 1=}

The following BASIC program-calls UUF(X) to print X and
3X+2 for a number of values of X. The results differ from those
in example 1 because of the capability of floating point arithmetic
to handle fractions.

READY .

108 FOR X=-3 TO 3 STEP .5

118 PRINT X,
120 NEXT X

138 END

RUN
-3
-2.5
-2
-1.5
-1
-e5
%
S

«5

1
1
2
2.5
3

READY .

-7
-5.5
-4
-2.5
-1
‘5

3«5

6e5

9.5
11

UUF(X)

51

Example 3:

This UUF routine computes the square of the argument in float-
ing point format.
JUUF (X)) 8X*"2 PALB=V? §5/25/72 PAGE

JUUF (X)) ax=2

/ENTER WITH X IN FAC

ZEXIT WITH UUF(X) IN FAC

/USE FLOATING POINT ARITHMETIC

443S FENTER=443S
2000 FSY=2000
0208 FuDs200
6000 FMP=6300
000@ FEXIT=QQ00

000® FIELD @

1156 1456
21156 770@ UUF
7700 7700
Q7700 @002 UUF,]
BT701 4438 FENTER
@772 2204 FST+FuWDeX=, /STORE ARGUMENT IN X
27783 6223 FMPeFWDeXw, /MULTIPLY FAC BY LOC, X (XwX)
P7704 Q000 FEXIT /RESULY I8 IN FAC
27705 S7v20 JMP 1 UUF /m=RETURN==
7726 QQ0® X, erese
27707 @000
27710 Q000

The following BASIC program uses the above UUF to produce
a table of squares and square roots:

READY .

196 FOR A=1 TO 12 STEP 1
110 PRINT A, UUFCA)», SGRCA)

120 NEXT A
130 END
RUN
1 1 1
2 4 1. 414214
3 9 1.732051
4 16 2
5 25 2.236063
6 36 2. 449 43
7 49 2. 645751
8 64 2.823 427
9 81 3
10 100 3.162278
READY .

52

EDITING AND CONTROL COMMANDS

Errors made while typing at the console keyboard are easily cor-
rected. BASIC provides special commands to facilitate the editing
procedure.

Erasing Characters and Lines
SHIFT /O, RUBOUTS, NO RUBOUTS

There are two methods available for erasing a character or
series of characters one at a time. Typing a SHIFT/O causes the
deletion of the last character typed, and echoes as a back arrow
(<) on the Teletype. One character is deleted each time the key
is typed.

The RUBOUT key may also be used for deletion of characters
one at a time providing the command:

RUBOUTS

has been typed on the keyboard before the editing is done. This
command enables the RUBOUT key to be used. If the user has
neglected to type this command, he may not use the RUBOUT key.
A later command of:

NO RUBOUTS

disables the key for use. (This is desirable when programs created
on other systems which use rubouts as null characters are to be
read into core. See the section entitted PTP AND LPT under
Listing and Punching a Program.) For example:

1@ LEB-T A=10%*B

The user types a B instead of T and immediately notices the mis-
take. He may type SHIFT/O (or RUBOUT key, if enabled) once
to delete the B, and as many times more as characters, including
spaces, are to be deleted. After the correction is made, he may
continue typing the line. The typed line enters the computer only
when the RETURN key is pressed. Before that time any number
of corrections can be made to the line.

53

20 DEN Fe«««F FNA(X,Y)=X12+3%Y

When the RETURN key is typed, the line is input as:
20 DEF FNA(X,Y)=X12+3%Y

Notice that spaces, as well as printing characters, may be erased.

The user may erase an entire line (provided the RETURN key
has not been typed) by typing the ALTMODE key (ESCAPE
key on some keyboards). BASIC echos back:

DELETED

at the end of the line to indicate that the line has been removed.
The user continues as though it were a new line. If the RETURN
key has already been typed, the user may still correct the line by
simply typing the line number and retyping the line correctly. He
may delete the line by typing the RETURN key immediately after
the line number, thus removing both the line number and line
from his program.

If the line number of a line not needing correction is accidentally
typed, the SHIFT/O or RUBOUT key may be used to delete the
number(s); the user may then type in the correct numbers. As-
sume the line:

1@ IF A>5 GO TO 230

is correct. The programmer intends to insert a line 15, but in-
stead types:

18 LET
He notices the mistake and makes the correction as follows:

10 LETe««««5 LET X=X-3

Line 10 remains unchanged, and line 15 is entered.
Following an attempt to run a program, error messages may be

54

output on the Teletype indicating illegal characters or formats, or
other user errors in the program. Most errors can be corrected by
typing the line number(s) and the correction(s) and then re-
running the program. As many changes or corrections as desired
may be made before runs.

Listing and Punching a Program
LIST

An indirect program or data can be listed on the active output
device by typing the command:

LIST

followed by the RETURN key. The entire program (or data) will
be listed.

A part of a program may be listed by typing LIST followed by
a line number. This causes that line and all following lines in the
program to be listed. For example:

LIST 100

will list line 100 and all remaining lines in the program.

PTP AND LPT
The LIST command may be issued in conjunction with the LPT
or PTP commands as follows:

PTP LPT
LIST LIST

This will list the current program on the high-speed paper tape
punch or line printer respectively. Control is reset to the Teletype
after the listing is completed.

Occasionally, when 8K BASIC is reading in a program from the
low-speed reader, it may drop a character since the Teletype
buffer cannot accept input at a prolonged fast rate. To eliminate
this possibility, use LIST as follows when punching out paper
tapes:

55

PTP
LISTx*

This inserts null characters after carriage returns and is recom-
mended when punching any tapes that will later be read in from
the low-speed paper tape reader. (8K BASIC does not use rub-
outs as null characters.)

Reading a Program
PTR

The PTR command can be issued to read in a paper tape from
the high-speed reader. This mode is particularly useful for reading
in a user-coded “load and go” BASIC program. The tape should
be positioned in the reader before the command is issued; if not, or
if the reader runs out of tape, BASIC prints:

TTY

on the Teletype to indicate that there is no more input from the
high-speed reader, and that it is waiting for input from the Tele-
type.

The user may cause tapes to be read in from the low-speed
reader by simply placing the tape over the sprocket wheel and
setting the reader to START.

Running a Program
RUN

After a BASIC program has been typed and is in core, it is
ready to be run. This is accomplished by simply typing the com-
mand:

RUN

followed by the RETURN key. The program will begin execution.
If errors are encountered, appropriate error messages will be typed
on the keyboard; otherwise, the program will run to completion,
printing whatever output was requested. When the END state-
ment is reached, BASIC stops execution and prints:

READY.

56

PTP AND LPT

Either the high-speed paper tape punch or LPOS8 line printer, if
available, can be used in conjunction with the RUN command.
After the command is issued, all output during program execution
is diverted from the Teletype to the specified device. The com-
mand sequence is:

PTP LPT
RUN RUN

This procedure eliminates the need to insert the PTP (or LPT)
statement within the program. Output returns to the Teletype
after execution.

Stopping a Run
CTRL/C

To stop a program during execution or to return to BASIC at
any time, type a CTRL/C (accomplished by typing the CTRL
key and the C simultaneously). This causes the current operation
to be aborted immediately, and the message:

STOP.
READY.

to be printed indicating that an 8K BASIC command can now be
issued.

CTRL/O

The command CTRL/O (caused by typing the CTRL and O
keys down simultaneously) is used to stop output temporarily. The
program will continue to execute but output will not be printed on
any output device unless an error occurs or unless BASIC is
waiting for a command or for data from an input statement. In the
latter case, the Teletype is the expected input device. This feature
is particularly useful for programs that print lengthy introductions
and then request a user-specified parameter. Typing CTRL/O
after the program is started will cause BASIC to bypass printing
the introduction and wait until the parameter is specified, thereby
saving the time required to print the message. A second CTRL/O
will resume output.

57

NOTE

For most programs that do not wait for
input from the Teletype, processing of the
program after an initial CTRL/O will be
completed before a second CTRL/O can be
typed. Thus, it is very possible for no output
to be printed rather than the anticipated
partial output.

Erasing a Program in Core
SCR
The command:

SCRATCH
or
SCR

is provided to allow the programmer to clear his storage area,
deleting any commands, or a program which may have been
previously entered, and leaving a clean area in which to work. If
the storage area is not cleared before entering a new program,
lines from previous programs may be executed along with the
new program, causing errors or misinformation. The SCRATCH
command eliminates all old statements and numbers and should
be used before any tapes are read into core, or new programs
created.

LOADING AND OPERATING PROCEDURES
BASIC Compiler ‘

The following procedure may be used to load in the 8K BASIC
binary tape.

1. Toggle the RIM Loader into field O and, using the appro-
priate reader, read the Binary Loader into field 0. (Refer
to Appendix A for details.) 8K BASIC will not use loca-
tions 7600 to 7777, thereby preserving the Binary Loader if
it is present.

2. Place the 8K BASIC binary tape in the appropriate reader;
set switches 6-8 = 0, and 9-11 = 0; press EXTD ADDRess
LOAD.

3. Set the Switch Register = 7777 and press ADDRess LOAD.

58

4. If using high-speed reader, set the Switch Register =

3777 and press CLEAR and CONTinue; otherwise, sim-

ply press CLEAR and CONTinue.

After the tape has read in, set the Switch Register = 1000.

6. Press ADDRess LOAD, and CLEAR and CONTinue.
BASIC responds by typing READY.

7. BASIC programs on paper tapes may be read in using the
PTR command explained earlier, or created on-line.

“n

User-Defined Function
The following procedure may be used to load in auser-defined
function.

1. Load the Binary Loader into field 1.
Load BASIC into field O.

3. Load the user-function (binary paper tape overlay) into
ﬁeld OWL,QL_L\. RAN| L 15\ 3.

4. Set Switch Register = 1000; press ADDRess LOAD and
START. N gt e de

Note that the Binary Loader is destroyed. To reload BASIC,
steps 1 through 6 must be repeated.

8K BASIC ERROR MESSAGES

The computer checks all commands before executing them. If
for some reason it cannot execute the command, it indicates this
by typing one of the error messages. The number of the line in
which the error was found is also typed out. The form is:

ERROR MESSAGE AT LINE XXXX

Table 3 lists the errors 8K BASIC checks for and reports
before execution:

Table 3 8K BASIC Error Messages

Message Meaning

ARGUMENT ERROR A function has been given an illegal argument;
for example:

SQR(-1)
DATA ERROR There are no more items in the data list.
FOR ERROR FOR loops are nested too deeply.

59

FUNCTION ERROR

GOSUB ERROR
LINE NO ERROR

NEXT ERROR

RETURN ERROR

SUBSCRIPT ERROR

SYNTAX ERROR

TOO-BIG ERROR

The user has attempted to call a function which
has not been defined.

Subroutines are nested too deeply.

A GOTO, GOSUB, or IF references a non-
existent line.

FOR and NEXT statements are not properly
paired.

RETURN statement issued when not under
control of a GOSUB.

A subscript has been used which is outside
the bounds defined in the DIM statement.

The command does not correspond to the
language syntax. Common examples of syntax
errors are misspelled commands, unmatched
parentheses, and other typographical errors.
Reference to an undefined UUF will also pro-
duce this diagnostic.

The combination of program size and number
of variables exceeds the capacity of the com-
puter. Reducing one or the other may help.
If the program has undergone extensive re-
vision, punching it out, typing SCRATCH
and reloading should be tried.

The following programming errors are not reported by 8K
BASIC, but instead are used in the computation as specified. They
are included here for the programmer’s reference.

1. Attempting to use a number in a computation which is too
large for BASIC to handle will produce a result which is mean-

ingless.

2. Attempting to use a number in a computation which is too
small for BASIC to handle will result in the value zero being used

instead.

3. Attempting to divide by zero will produce a result which is

meaningless.

60

BASIC SYMBOL TABLE »

Table 4 lists 8K BASIC’s symbols and their values. This
information is useful when writing user-coded (machine lan-
guage) functions.

Table 4 8K BASIC Symbol Table

ABCJEF 1756 BARROW 26656 cT3 po14 EPTR 2056
ABDGET 2036 BCDEFG 1757 CVTLOO 5824 ERROR 4142
A3QP @325 BCKWDS 45p2 DATAER 1667 EVAL 1204
ABS 6425 BEGFIX 3762 DBAD 7543 EVALGO 1207
AC1 2029 BIDLE 6713 DBBAD 7532 EXECUT @243
AC?2 2917 BKWD 0602 DBGOT 7427 EXIT 2402
AC3 2016 BRE AK 6522 DBISRT 7547 EXP 60092
ACCEPT 7473 BSKIP 2732 DBLIT 7526 EXPGOO 5242
ATE 225 BUSY 6737 DBPUT 7556 EXPLON 5764
ACN 4417 CARRET 2722 DDLAST 7512 EXPOK 5265
ACOQUNT 2222 CCINTK 7465 DECEXP 2043 FAD 4000
ACS gB24 CCXRA 7342 DECFRA 3366 FADEXT 1344
ADAL %225 CDEVCO 20832 DEEPER 526 FADI 4400
AJA2 226 CDINP 7445 DEF 1576 FATNAX 6273
ADA3Z eg27 CHECKW 2346 DELAY 74643 FATNC 6337
AJACPT 2927 CHKF1T 6402 DELETE 6581 FATNCL 6324
ADB 7477 CLAB 6133 DELOUT 2142 FATNC2 6327
ADC 7477 CLBA 6136 DEVCOM 7175 FATNC3 63{2
AJCCOR 2264 cLe 7477 DEVCON 7176 FATNC4 63(5
ADCL 6539 CLCA 6137 DICD 6051 FATNCS 6328
ADCUNT 2210 CLEAR 7432 DIGIN 3224 FATNCS 6323
ADCX £912 CLEARV 2462 DIGIT 3284 FATNC? 6326
AJDRES €067 CLEN 6134 DIGLUP 6587 FATNCS 6331
AJLE 6536 CLKSTS 9903 DILC 6059 FATNCY 6334
AdLM 6531 cLOCKl 2175 DILE 6056 FATNCH 6342
ADRB 6533 CLOE 6132 DILX 6093 FATNCJ 6345
ADRS 6537 CLRCNT 2362 DILY 6854 FATNSX 6272
AQSE 6535 cLS 7477 DIM 6472 FATNT 6276
AJSK 6534 CLSA 6135 DIMFLA 0234 FATNTT 6321
ADST 6532 CLSK 6131 DINP 7511 FENTLC 6665
AGET 2321 CLTEMP 2811 DIRE 60857 FCNTLO 6723
ALy 4654 CLZE 6132 DISAUT @8¢5 FDIGIT 3360
ALGNLP 4466 CNCLR 2143 pIsSs 2136 Fov 7000
ALL3 3146 CNTLCF 6782 DISD 6052 FoVI 7402
ALLOC 1461 CNTLCR 6672 DIVLP 4735 FENTER 4435
ALTMOD 2663 CNTLC 2133 DIVXTE 3384 FEXIT 22230
AMATCH 6506 CODELD p20o4 DIXY 6055 FEXPCL 6@72
ANORM 4602 COLUMN @125 DLAST 7541 FEXPC2 6875
APYT 2263 COMMCON 3422 DOAD n3s62 FEXPCI 6122
APYTY 2923 COMPAR 2136 DOADLP 0386 FEXPC4 6123
APYT2 20924 CONST 1367 DOITNO 1247 FEXPC5 6186
ARy 4492 cos 5615 DOTZER 7371 FEXPC6 6111
ARGERR 7363 cCouWT 7326 DPFLAG 3365 FEXPF 6067
ARRLOC 0003 COWTFP 7343 DAINTX 3172 FEXP! 60481
ATEMP €323 COWTLP 7331 DSCREW 2375 FEXPU 6064
ATEMP2 2324 COWTO 73432 DVLOOP 5245 FINDIT 9597
ATLINE 6451 COWTW 7344 E0IT 2425 FINDLU @545
ATYN 6200 CRINTX 30876 END 2567 F1x 4744
ATNBIG 6265 CRLF 6531 ENDLIN 7643 FIXEX] 4773
CATNLOW 6220 CRLFPR 3742 ENDNUM 3331 FIXITU S2de
ATNNOT 6237 cT1 0016 ENDPOL 7734 FIXLIN 2113
AUTEMP 2263 cT2 gO15 EOFAD 4526 FIXLUP 4752

61

FIXup
FJuMpP
FJMPL
FJUMP
FLD
FLOI
FLOGC1
FLoGC2
FLOGC3
FLOGCAY
FMp
FMp]
FMTL
FMT2
FMT3
FMTENF
FN
FNERR
FNEXIT
FOR
FORCT
FORDON
FORERR
FORLIM
FORLIS
FORSTE
FORVAR
FOUND
FOURLF
FPADD
FPADDR
FPDIV
FPpOLT
FPFLAG
FPGOTO
FPUMP
FPJUMP
FPLAC
FPLOOP
FPMUL
FPNOAD
FPOPER
FPpPG2
FPSKIP
FPSTO
FPSUB
FPT
FPTEMP
FPTR
FPZDLIV
FRNDX
FRSTNE

5146
1809
1400
1139
3000
3420
6175
6156
6161
6164
6020
6400
5125
5053
5130
5123
5453
2352
1200
2413
2063
8663
2501
2721
7725
2724
0452
2575
3557
4456
4304
4667
4237
2156
4273
4317
4274
4351
4202
453p
4270
4305
4227
4314
4322
4453
4200
4576
2057
4736
5404
2155

FSB
FSBI
FSEQ
FSGE
FSGT
FSHIFT
FSIN1O
FSINCY
FSINC3
FSINC4
FSINCS
FSINCS
FSINC?
FSINM4
FSINOK
FSINZ
FSINZZ
FSLE
FSLT
FSNE
FSQRX
FST
FSTI
FTANT1
FTANT2
FUNTAB
FUPRC1
FWD
FXXPFX
GALT
GDIM2
GET
GETADD
GETARY
GETBLK
GETCH
GETJ
GETLIN
GETLRE
GETOPR
GETVAR

GETWD

GLOOP
GOBOTH
GOLIST
GoSuB
GOTEMP
GOTO
GOTOPR
GOTSS
GOTSTE
GOUT

5000
5400
20850
2109
@140
7443
5641
5713
5716
5721
5724
5727
5732
5735
5657
5785
5710
p150
g112
p042
5407
2000
2400
5677
5782
1131
5762
0200
6023
7247
1564
poa1
1400
7462
1674
7201
1772
2603
2600
1015
9311
o177
2711
2532
7725
2505
2@s53
2517
1202
1074
2634
7251

62

GPTPR
GR8
GRDELA
GSBEND
GSBPTR
GSSY

6Ss2

GTBKLP
GTEMP
GWHERE
HFOUND
HIGHWD
HLOOP
HPTR
HRCHAR
HRLOP
HRMES
1AMLES
IDLEAC
IDLECD
IDLEC!
IDLELK
IDLEPC
IF
IGNORE
1IXR
IMMED
IN
INCHAR
INDEV
INDEX1
INDEX2
INLCTM
INLOOP
INLUPF
INGOUN
INOPPP
INOTTT
INPLUP
INPPTR
INPUT
INSERT
INSRTS
INT
INTAC
INTCDF
INTCIF
INTECD
INTEMP
INTER
INTEXT
INTL

p260
7224
7222
7755
2165
1562
1563
1749
7254
7270
73214
4333
2732
P61
72%6
7302
7323
2196
6732
6725
8726
6731
8733
p375
2115
7414
24%4
3431
7285
p127
2043
P14
4065
2572
2432
67ip
6641
6845
4034
4063
487
2032
2030
4434
6734
6772
8771
6762
4736
6600
6744
6735

INTOU
INWDTM
IPNOPE
1POINT
1SDEF2
I1sSDIG
I1SOIM
JSET
ISIT
ISITOF
ISITFU
ISITLI
ISLIT
1SSOME
ISUMIN
1 TSDEF
17SDP
1TSE
1TSOP
1TSF
JBPENT
JDIGIT
J1SDIG
JMATCH
JPUTCH
JTXXIT
JUST2
JUSTRF
JusTap
JUSTL
JUST2
KEYWD
L4LUP
LBEGIN
LCF
LET
LETDO
LETTER
LFXLUP
LHALF
LIMIT
L INBUF
LINENO
LINFIX
LIST
L1SsT2
LIST3
L1ST4
LISTS
LISTAL
LISTLY
L1STSO

6745
4064
4024
7034
3512
6532
1473
7407
4566
8530
11i0
4104
4133
1644
1043
35{4
3256
3263
1220
3320
3797
3124
3367
2766
0777
3123
3150
3162
3163
3145
3147
0231
3664
7583
6662
83i2
0205
3446
2333
3070
eees
7512
@52
2332
3680
3640
3635
3661
3676
3646
3620
3617

LITRAL
LLLJMP
LLLJMS
LLLuuu
LLs
LNOEND
LOADED
LOCCTR
LOCTEM
LOCTMP
LoG
LOGACE
LOGFWD
LOGOKW
LowLoC
LPTOUT
LSF
LsTLoC
Lup
LUPF
MACHIN
MAYZER
MENDLI
MENDPD
MEVAL
MEVALG
MGOL!S
MGSBEN
MINUS
MLBEGI
MLEND
MLINBU
MNSONE
MORED!
MOREIN
MORERD
MOVE
MOVLUP
MPY
MPYLUP
MTXX]T
MULCLR
MULEXP
MULXTE
MUSTBE
NOELAY
NEWCHA
NEWLIN
NEXT
NEXTER
NEXTVA
NINTEC

3131
7457
7446
7140
6666
3630
4127
2045
P671
1673
6114
6179
6167
6172
2171
7163
6661
2160
3405
2426
2000
4612
2041
2363
7415
7431
2720
2525
1316
8173
2174
204p
0736
6470
4000
1621
2012
2872
5321
4552
3201
4571
3346
3363
4570
7420
2615
2610
2600
2673
0637
7457

NOBUMP
NOCOMM
NOINT
NONBLN
NONZER
NOPARE
NOPCR
NORLFT
NORMED
NORMIT
NORUBO
NOSS1
NQSS2
NOT
NOTBAD
NOTBIG
NOTCR
NOTFRS
NOTHER
NOTKWD
NOTNOW
NOTSGN
NOTTXT
NOTVAR
NOTX1R
NPSPER
NSYMTA
NULCMD
NULJOB
NULLOP
NUMBUF
01000
011
0110
012
0122
013
0132
0137
014
0140A
01428
0143
017
01742
0175
0177
01774
02
0200
02040A
02862

4633
@335
2134
3110
5016
1035
2216
6423
5220
5207
5574
1460
1453
3427
2127
4620
3823
2061
0435
2313
2000
3301
2236
1105
5236
7555
gose6
7454
7415
7430
5335
3550
2504
2361
2065
2771
1567
7265
7261
2360
2775
2772
7266
5147
3375
7267
go27
3376
p062
8155
3373
5344

63

o212
0245
023
0233
pe4g
0233
0285
02%6A
02868
0260
027
0385
032
036
037378
03754
03755
0377
04

040
04201
04014
042
042002
04213
05400
063014
0620818
06292
07

072
0700
0700804
070008
o7@00C
Q7877
07528
07345
07579
07%77
075778
07600
07601
07603
076180
07612
076424
076428
07640C
07673
077
077064

soie
oee?
1366
3792
2081
5180
5184
5186
6575
P11
3372
51582
3121

. 27467

2793
{162
1273
2271
2160
2790
7525
1163
3106
3125
i164
5347
6615
7005
6775
geY2
67%4
{272
25492
3474
74%6
1275
5183
4797
64586
4577
7554
4345
7260
27%4
5345
7262
B765
2763
7263
3316
020
6344

07706C
07743

077254

0772%8
07737
07740
07741
07743
07745
07746
07753
07762
077634
077638
077644
077648
07764C
077640
07766
077782
07774
07772
07773
07774
07778
07776
07777
0ADD
OBHIGH
OBLOW
0BOP
oce
OCMLIM
OCOR
OCOUNT
ODEV
OFLAG
OFLOW
0JUMP
oLDoP
ONE
ONEDIM
ONESS
ONLYL
porée0e
007736
ord
op2
orPY
OPDONE
oPE
OPERAN

3473
2778
3122
3371
3132
2054
3745
4743
p162
7264
3104
2337
2774
3161
{274
3102
3374
6737
5134
0235
5485
5187
5346
i566
8776
3372
7414
4435
117
1163
7401
5205
7145
7143
7042
2132
7100
71;5
1276
2066
p184
1064
10%e
3322
5492
2326
2023
e022
P02y
1283
2030
po¥3

OPNUL
OPOINT
OPOTAB
OPRST
OPS
OPUTC
OTEMP
OTHER
0TsTY
ouTD2
QUTDEL
ouTDEV
ouTIT
OUTNUM
ov
PACN
PALL
PANORM
PARL
PARGER
PASSCR
PASSUN
PBEGF !
PBIDLE
PBOMB
PBUSY
PCCUNT
PCHKF 1
PCOMMO
PCONWT
PDEVCO
PDL
PDLIST
PEDIT
PERMSY
PERROR
PEVAL
PEVALG
PEXECUY
PEXP
PFINDI
PFIX
PFNERR
PFPLOO
PGETAD
PGETSL
PGETCH
PGETLI
PGETLR
PGETOP
PGETVA
PGOLIS

7067
7065
7073
7155
2026
7041
1271
3000
7112
2132
7146
2131
7043
5000
2012
4742
2150
2146
0147
0047
0472
7449
1776
7161
2367
7157
2744
0163
3357
2141
7442
2036
7644
0128
7022
2277
0101
2240
0103
5776
0672
2106
5546
4575
0102
2115
0032
p124
3022
9111
2113

D164

PGOTOP
PHRCHA
PIGNOR
PINCHA
PINT
PISITL
PJSET
PLBEGI
PLETDO
PLETTE
PLIMIT
PLINBU
PLINFI
PLIST
PLITRA
PLOG
PLOT
PLOTB
PLUS
PMEVAL
PMPY
PNBF 6
PNOCR
PNONBL
PNOTNO
PNUMBU
POADD
POFLAG
POP
POP3
POPERA
POTHER
POUTIT
POUTNU
PPAC1
PPAC?2
PPAC3
PPACE
PPACS
PPASSC
PPDLIS
PPERMS
PPFLOO
PPFORL
PPINT
PPOP
PPRINR
PPRINT
PPRINU
PPUSH
PPUTCH
PPXRA

0107
6740
2471
6741
5676
0175
2461
8172
0204
3103
2861
2037
2161
2563
3377
8775
7400
7514
1312
7441
5160
5161
2757
2122
2566
0244
2157
6742
3551
4434
3127
2776
6743
2117
g42
0043
2044
2245
2046
2112
2125
2565
4741
1760
6060
0105
2241
2114
9123
P124
2033
7162

64

PRENT
PRESET
PRINBL
PRINCO
PRINHA
PRINQU
PRINRE
PRINSE
PRINT
PRINTC
PRINTG
PRINTH
PRINTX
PRINUM
PRINVA
PRLOOP
PRSUBR
PRTEMP
PRTXRE
PSGN
PSKIP]
PSLOOP
PSPACE
PSTICK
PSTOVA
PSXERR
PSYMTA
PTABDE
PTABFL
PTABLE
PTEN
PTEXT
PTPOUT
PTRIN
PTUBIG
PUSERF
PUSH
PUTCOF
PUTCH
PUTCIN
PUTER
PUTJ
PUTLOC
PUTLP
PUTXRA
PXFORL
PXLINB
PXXCRL
PXXEOF
PXXEX]
PXXLIT
PXXTHE

23{6
24%7
2277
2303
2260
2235
2242
23;2
2173
2207
2206
22382
3782
3747
3693
3711
3734
P42
3742
5695
i617
a116
1565
P12
g1i2
p180
0005
5840
5594
2797
2145
0876
7164
71%2
321
5545
2364
7837
D741
7023
7060
{761
2172
7887
87%¢
7596
3746
3125
2564
3126
3130
2562

P2ERDO
QB IDLE
QERROR
QHRCHA
RANDAE
RBSWCH
READ

READLO
READY
REALTI
REJECT
RELATE
REMPAC
RESETY
RESET2
RESTOR
RETNER
RETURN
RHALF
RMLEFT
RND

RNDJMP
RTERR
RUB0O

RUN

RUNZIN
RUN2LY
RUNZNO
RUNIN
RUNLUP
RUNNOT
SCHMOR
SCRATC
SEARCH
SETCLO
SETRAT
SETSGN
SETUP
SGN

SIMPLY
SIN

SINCHA
SJUMP
SKIPIT
SLASH
SLOOP
SLSHTM
SNUMFL
SPACER
SPECIN
SPLEFT
SQEXIT

6545
4334
4170
7136

9481

0135
1623
p046
6525
7473
7493
1342
3043
7146
7141
3773
87i3
e6%7
30%4
6413
5353
5380
7393
5573
2492
2543
25{4
2537
2503
2465
2477
1657
2440
1660
7493
7473
4512
7400
8726
3446
5624
7162
0242
Y
1332
2787
1337
0264
2372
2149
2144
5482

SQLOOP
SQR
SSERR
SSFIX
SSONE
SSTWO
STAR
START
STICKI
SToP
STOVAR
SUBRA
SXERR
TAB
TABDES
TABDO
TABFLG
TABOK
TABTHR
TAN
TBEGF!
TEN
THESK]I
THISTX
TIM
TiM1
TimM2
T™P
TOOLON
TPRINT
TRALUP
TRANSF
TRYAGI
TRYSTE
TST
TSTFX
TSTP
TTYIN
TTYOUT
TUBIG
TWIDTH
TWOSS
TXTPAK
Uig
Uigo
V17
uiz7
uip
vap
vaze?
Usaie
u?

5435
5412
1570
4775
0344
2345
1327
1000
6430
2570
2341
2161
6441
5547
6367
6350
2345
6360
2362
5600
5572
2900
1353
3107
7477
2204
2005
0231
5162
6370
210%
2123
5133
2626
7421
7417
7431
7173
7165
2657
2357
1077
3046
2036
2013
047
2017
7503
7504
2020
2234
2033

ur76e
u7767
ur77s
u7777
UABAD
UAC1
Uac2
UAC3
UACCPT
UADCB
UADCIN
UADCMY
UADCN
ucLcC
ucLooP
ucLs
UDEVCO
UDOAD
UDOPER
UFFUD
UFJMP
UGETWD
UGHL
UIEXT
UIEXT2
UIEXTS
UIEXT4
UINAC
UJMP
UJMS
UMEVAL
UMOPER
UNDERF
UPAGET
UPARR2
UPARRQ
UPARRX
UPCOMD
UPFIX
UPFUN
UPJMP
UREAL
UREJT
USE
USERFN
USETC
USETF
USETM
USETR
USKIPI
UTEMP
UTIM

ges2
2235
0221
2850
622
2037
go40
o241
2453
0600
613
2615
pe22
2345
peL7
2342
@56
20251
1363
2756
2757
0057
3562
p234
2243
245
0260
2631
20254
2855
0031
1321
4645
2653
4365
6457
5740
9731
pe32
0747
2736
2460
456
7446
1622
D411
0550
416
g400
7461
2053
9541

65

UUACY
UUAC2
UUACS
UUDATA
UURBEVC
UUFuDG
UUJUMP
UUJMS
UUMEVA
UUNDAD
UUPFIX
UUSETF
UuyJmMP
UUUJUMS
yuuLLL
UvP
UWALT
UWAITC
VAR
VARTEM
VSCHIN
VSCHLY
YSCHND
WALIT
WAlITC
WOTEMP
WORD
XEXECU
XGISIT
XGMUST
XI817
XMUST
XRESTA
XXABS
XXACPT
XXADB
XXADC
XXATN
XXBSLS
xXCLC
XXCLEA
xXCLOS
XXCLS
XXCOMM
XXG0S
XXCRLF
XXDATA
XX0EF
XX0ELA
XXDIM
XXEG
XXEL

P484
2661
3866
7547
pres
2735
p722

2797

p693
7462
P87
9032
27302
@721
p382
7582
9437
pé4p
2343
2593
3524
3495
3530
7493
7493
197s
LTLT
p4ei2
4848
7345
4093
7382
{003
7434
Y446
7223
71%¢
7140
72%¢
7280
7406
7866
7215
7862
7112
Y226
7343
7333
7412
73{6
7046
7084

XXEND
XXEOF
XXEQ
XXEXIT
XXEXP
XXFINI
XXFN
XXFOR
XXGE
XXGET
XXGosy
XXG0TO
XXB8T
XX1F
XXINPU
XXINT
XXLBRA
XXLE
XXLET
XXL1S
XXL1ST
XxL17@
XXL0G
XXLPT
XxL7
XXMINY
XXNE
XXNEXT
XXNRUB
XXQPEN
XXPLOT
XXPLUS
XXPRIN
XXPTP
XXPTR
XXPUT
XXRBRA
XXREAD
XXREAL
XXREJT
XXREM
XXRETR
XXAND
XXRSTO
XXRUB
XXRUN
XX$CR
XXSEM!
XXSETC
XXSETR
XX8GN
XXSIN

7232
7582
7084
7505
7126
7584
7187
7238
7042
7473
7244
7246
7060
7260
7263
7142
710%
7038
72%0
7162
7456
7306
7423
7361
7886
703%
7043
7274
73%7
7183
7432
7023
7382
7364
7347
7193
78%0
7337
7436
7473
7327
7383
7148
7322
7372
7443
71%e
7864
7443
7433
7137
71%¢

XXSLAS
XXSQR
XXSTAR
XXSTEP
XXSTOP
XXTAB
XXTAN
XXTEXT
XXTHEN
XXTIME
XXTO
XXTTY
XXTTYI
XXTTYO
XXucom
XXUNAR
XXUPAR
XXUSE
XXUUF
XXWALT
YYWALT
ZERDON
ZERO
ZFIXEX
2ZaDB
22A0C

7931
7131
7027
7076
7312
7207
7115
7501
7233
7204
7872
7201
7347
7354
7462
7503
7033
7416
7212
7452
7456
5144
2152
4767
2775
2770

66

STATEMENT AND COMMAND SUMMARIES
Summaries of the editing and program control commands
available in 8K BASIC are presented below.

Edit and Control Commands

Command Abbreviation
CTRL/C
CTRL/O
LIST LIS
LIS n
NO RUBOUTS
RUBOUTS
RUN RUN
SCRATCH SCR
BASIC Statements
Statement Example of Form
DATA DATA nl, n2,
...nn
DEF DEF FNB (x) =
f(x)
DEF FNB (x, y)
=f(x, y)

67

Action

Stops a running program. and
returns to the editing phase of
BASIC.

Stops output of a running BASIC
program. Remains in this state
until BASIC requests INPUT, an
error occurs, or until another
CTRL/O is typed.

Lists the entire program in core.

Lists line n through end of pro-
gram.

Disables the RUBOUT key.
Enables the RUBOUT key.

Compiles and runs the program
currently in core.

Erases the current program from
core.

Explanation

Numbers nl through nn are to be
associated with corresponding vari-
ables in a READ statement.

The user may define his own func-
tion to be called within his pro-
gram by putting a DEF statement
at the beginning of a program. The
function name begins with FN and
must have three letters. The func-
tion is then equated to a formula
f(x) which must be only one line
long.

Statement

Example of Form

DIM

END

FOR-TO-
STEP

GOSUB

GOTO

IF-GOTO
IF-THEN

INPUT

LET

LPT

NEXT

DIM v(s)

END

FOR v=f1 TO f2
STEP f3

GOSUB n

GOTO n

IF f1 r £2 GOTO n

IF f1 r £2 THEN n

INPUT vl, v2,
...Vn

LET v=f
LPT

NEXT v

68

Explanation

Enables the user to create a table
or array with the specified number
of elements where v is the variable
name and s is the maximum sub-
script value. Any number of ar-
rays can be dimensioned in a
single DIM statement.

Last statement in the program.
Signals completion of the program.

Used to implement loops; the vari-
able v is set equal to the formula
fl. From this point the loop cycle
is completed following which v is
incremented after each cycle by f3
until its value is greater than f2.
If STEP f3 is omitted, f3 is as-
sumed to be 1. f3 may also be
negative.

Allows the user to enter a sub-
routine at several points in the
program. Control transfers to line
n.

Transfers control to line n and
continues execution from there.

Same as IF-THEN.

If the relationship r between the
formulas f1 and f2 is true, trans-
fers control to line n (n may also
represent an operation); if not, cont-
inues in regular sequence.

Causes typeout of a ? to the user
and waits for the user to supply
the values of the variables vi
through vn.

Assigns the value of the formula f
to the variable v.

Assigns line printer as output de-
vice.

Used to tell the computer to re-
turn to the FOR statement and
execute the loop again until v is
greater than or equal to f2.

Statement Example of Form

PRINT PRINT al, a2,
...an

PTP PTP

PTR PTR

READ READ v1, v2,
...vn

REM REM

RESTORE RESTORE

RETURN RETURN

STOP STOP

TTY IN TTY IN

TTY OUT TTY OUT

Explanation

Prints the values of the specified
arguments, which may be variables,
text or format control characters
G or;).

Assigns high-speed paper tape
punch as output device.

Assigns high-speed paper tape
reader as input device.

Variables vl through vn are as-
signed the value of the correspond-
ing numbers in the DATA string.

When typed as the first three let-
ters of a line, allows typing of
remarks within the program.

Sets pointer back to the beginning
of the string of DATA values.

Must be at the end of each sub-
routine to enable control to be
transferred to the statement follow-
ing the last GOSUB.

Terminates execution at that point
at which the statement is reached
in the program.

Assigns a console terminal as input
device.

Assigns a console treminal as out-
put device.

During input to the editor or when executing an INPUT com-
mand, the following messages may be printed in response to

the input:

Message

LINE TOO LONG

DELETED

Explanation

The line just typed exceeded the available core

buffer and must be retyped.

The line has been deleted in response to an
ALTMODE character and must be retyped.

Back arrow is printed any time a RUBOUT or
SHIFT/O is used. The previous character is

deleted.

BASIC prints TTY to indicate that there is no
more input from the high-speed reader and
that it is waiting for input from the Teletype.

appendix a
loading procedures

Initializing the system

Before using the computer system, it is good practice to initialize
all units. To initialize the system, ensure that all switches and con-
trols are as specified below.

Main power cord is properly plugged in.
Teletype is turned OFF.

Low-speed punch is OFF.

Low-speed reader is set to FREE.
Computer POWER key is ON.

PANEL LOCK is unlocked.

Console switches are set to 0.

SING STEP is not set.

High-speed punch is OFF.

DECtape REMOTE lamps OFF.

COXIAN AL~

[y

The system is now initialized and ready for your use.

Loaders
READ-IN MODE (RIM) LOADER

When a computer in the PDP-8 series is first received, it is noth-
ing more than a piece of hardware; its core memory is completely
demagnetized. The computer “knows” absolutely nothing, not even
how to receive input. However, the programmer can manually
load data directly into core using the console switches.

The RIM Loader is the very first program loaded into the com-
puter, and it is loaded by the programmer using the console

A-1

switches. The RIM Loader instructs the computer to receive and
store, in core, data punched on paper tape in RIM coded format
(RIM Loader is used to load the BIN Loader descrjbed below.)

There are two RIM loader programs: one is used when the in-
put is to be from the low-speed paper tape reader, and the other
is used when input is to be from the high-speed paper tape reader.
The locations and corresponding instructions for both loaders are
listed in Table A-1.

The procedure for loading (toggling) the RIM Loader into core
is illustrated in Figure A-1.

Table A-1. RIM Loader Programs

Instruction
Location Low-Speed Reader - High-Speed Reader
7756 6032 6014
7757 6031 6011
7760 5357 5357
7761 6036 6016
7762 7106 7106
7763 7006 7006
7764 7510 7510
7765 5357 5374
7766 7006 7006
7767 6031 6011
7770 5367 5367
7771 6034 6016
7772 7420 7420
7773 3776 3776
7774 3376 3376
7775 5356 5357
7776 0000 0000

After RIM has been loaded, it is good programming practice to
verify that all instructions were stored properly. This can be done
by performing the steps illustrated in Figure A-2, which also
shows how to correct an incorrectly stored instruction.

When loaded, the RIM Loader occupies absolute locations 7756
through 7776.

A-2

(INITIALIZE >

SET ROTARY
SELECTOR SWITCH
TO MD

SET SWITCHES 6-8
TO DESIRED
INSTRUCTDON FIELD*

ET SWITCHES 9-11

% DECTAPE USERS SHOULD TQI'DE'S'RED*
LOAD RIM INTO FIELD @ DATA FIELD
PRESS

EXT LOAD ADDR

SET SR
TO 7756

PRESS
ADDR LOAD

SET SR=
FIRST INSTRUCTION

PRESS DEP

SET SR=
NEXT INSTRUCTION

{ Press oep |

. ALL
INSTR&CT IONS

YES

RIM IS LOADED

Figure A-1. Loading the RIM Loader

(INITIALIZE >

SET ROTARY
INDICATOR
SWITCH TO MD

SET SWITCHES
6-8 TO FIELD IN

WHICH RIM HAS

BEEN LOADED

:

PRESS
EXT ADDR LOAD

I SET ' SR=7756 I

PRESS
ADDR LOAD

I PRESS EXAM J-L

MD=
CORRECT “_YES
INSTRUCTION
SET SR=MA-1 ALL "o
INSTRUCTIONS
CHECKED
€SS ~

PR
ADDR LOAD YES

RIM IS LOADED

SET SR= CORRECT
INSTRUCTION

PRESS DEP g

Figure A-2. Checking the RIM Loader

BINARY (BIN) LOADER—

The BIN Loader is a short utility program which, when in core,
instructs the computer to read binary-coded data punched on paper
tape and store it in core memory. BIN is used primarily to load the
programs furnished in the software package (excluding the loaders
and certain subroutines) and the programmer’s binary tapes.

BIN is furnished to the programmer on punched paper tape in
RIM-coded format. Therefore, RIM must be in core before BIN
can be loaded. Figure A-3 illustrates the steps necessary to prop-
erly load BIN. And when loading, the input device (low- or high-
speed reader) must be that which was selected when loading RIM.

A-4

LOAD RIM

SET ROTARY
SELECTOR SWITCH
JO MD

SET SWITCHES
6-8 TO FIELD
WHICH CONTAINS
RIM

T

SET SWITCHES
9-11 TO FIELD IN
WHICH BIN 1S
TO BE LOADED

PRESS
EXT _ADDR LOAD
SET SR=7756

PRESS ADDR LOAD

WHICH
HIGH-SPEED
ADER
READER READE
TURN HSR ON
PUT BIN LOADER
IN_HSR

LOW-SPEED
READER

TURN TTY TO LINE|

PUT BIN LOADER
IN LSR

I"‘J‘l LSR TO START

PRESS
CLEAR AND CONT

TAPE
READS N
?

SET SWITCHES
6-8 TO FIELD
BIN WAS LOADED
INTO

PRESS
EXT _ADDR LOAD

SET SR«7777

Figure A-3
A-5

Loading the BIN Loader

When stored in core, BIN resides on the last page of core, oc-
cupying absolute locations 7625 through 7752 and 7777.

BIN was purposely placed on the last page of core so that it
would always be available for use—the programs in DEC’s soft-
ware package do not use the last page of core (excluding the Disk
Monitor). The programmer must be aware that if he writes a
program which uses the last page of core, BIN will be wip-
ed out when that program runs on the computer. When this
happens, the programmer must load RIM and then BIN before
he can load another binary tape.

Binary tapes to be loaded should be started on the leader-trailer
code (Code 200), otherwise zeros may be loaded into core, destroy-
ing previous instructions.

Figure A-4 lilustrates the procedure for loading binary tapes
into core.

o LOAD BIN - ~-1 SEE FIGURE C2-3

SET ROTARY
SELECTOR SWITCH
JO AC

SET SWITCHES
6-8 TO FIELD IN
WHICH BIN IS
LOADED

[SET SWITCHES 9-11

TO FIELD IN WHICH

PROGRAM iS TO BE
LOADED

EXT ADDR LOAD

SET SR TO 7777

PRESS
ADDR LOAD

HIGH-SPEED READER

TURN HSR ON
SET SR=3777
PUT TAPE IN HSR

URN TTY TO LINE
PUT TAPE IN LSR
BET LSR TO START

TAPE
STOPS. AT
NO_/BEGINNING OF

ADER/ TRAIL

OBJECT TAPE
1S LOADED

F:gure A-4. Loading A Binary Tape Using BIN

A-7

appendix b

character codes

ASCII-1! Character Set

Decimal Decimal
8-Bit 6-Bit Equivalent 8-Bit 6-Bit Equivalent
Character Octal Octal (Al Format) Character Octal Octal (Al Format)

A 301 01 96 ! 241 41 —1952
B 302 02 160 ” 242 42 —1888
C 303 03 224 # 243 43 —1824
D 304 04 288 $ 244 44 —1760
E 305 05 352 % 245 45 —1696
F 306 06 416 & 246 46 —1632
G 307 07 480 ’ 247 47 — 1568
H 310 10 544 (250 50 —1504
I 311 11 608) 251 51 —1440
J 312 12 672 * 252 52 —1376
K 313 13 736 + 253 53 —1312
L 314 14 800 4 254 54 —1248
M 315 15 864 - 255 55 —1184
N 316 16 928 . 256 56 —1120
o 317 17 992 Ve 257 57 —1056
P 320 20 1056 . 272 72 —352
Q 321 21 1120 : 273 73 —288
R 322 22 1184 < 274 74 —224
S 323 23 1248 = 275 75 —160
T 324 24 1312 > 276 76 —96
U 325 25 1376 9 277 77 —32
A% 326 26 1440 @ 300 32
w 327 27 1504 [333 33 1760
X 330 30 1568 AN 334 34 1824
Y 331 31 1632 1 335 35 1888
Z 332 32 1696 M A= 336 36 1952
0 260 60 —992 (=) 337 37 2016
1 261 61 —928 Leader/Trailer 200

2 262 62 —864 LINE FEED 212

3 263 63 —800 Carriage RETURN 215

4 264 64 —736 SPACE 240 40 —2016
5 265 65 —672 RUBOUT 377

6 266 66 —608 Blank 000

7 267 67 —544 BELL 207

8 270 70 —480 TAB 211

9 271 71 —416 FORM 214

1 An abbreviation for American Standard Code for Information Interchange.
2 The character in parentheses is printed on some Teletypes.

B-1

ACl, 44
AC2, 44
AC3, 44
Acceptable nesting
techniques, 25
ACE, 44
ACS, 44
Addressing, 45
Indirect relative, 47
Relative, 45
ALTMODE, 54
ANORM, 48
Argument, 36
Arithmetic operations, 3
Priority of, 4
Arithmetic statement, 10
Array, 25
Maximum size of an, 28
ASCII character set, B-l

Backslash, 9
BASIC compiler, 58
BEGFIX, 48
BIN loader, A-4
loading the, A-5
loading a binary tape,
A-7
BKWD, 45

Character codes, B-l
Character set, B-1l
Characters,
Format control, 15
Checking the RIM loader,
A~4
Coding formats (UUF), 43
Command,
LET, 6
LIST, 55
LPT, 55, 57
PRINT, 6
PTP, 55, 57
PTR, 56
RUN, 56
SCR, 58
Command summary, 67
Commands,
Editing and Control, 53,
67
Commenting the program, 9
Conditional transfer, 24,
30
Control characters,
Format, 15
Control commands,
Editing and, 53, 67
CTRL/C, 36, 57
CTRL/O, 57

INDEX

DATA statement, 11
DEF statement, 42
Devices,
1/0, 22
DIM statement, 27
Directing program control,
29
Dummy variable, 13, 39, 42

E-type notation, 2
Editing and Control
commands, 53, 67
END statement, 9
Equal sign,
Meaning of the, 5
Erasing a program in core,
58
Erasing characters and
lines, 53
Error messages, 59
Evaluation,
Order of, 4
Example Program, 7
Examples (UUF), 48
Exponential notation, 2

FAC, 44
FENTER, 44
FEXIT, 44
Field, 24
FIX, 48
Floating accumulator, 44
Floating-point format, 44
Floating=-point instruction
set, 45
Floating=-point interpreter,
45
Floating-point package, 43
FNA function, 42
FOR statement, 22
Format control characters,
15
comma, 16
semicolon, 17
Formats, coding (UUF), 43
Formatting output, 41
Formula, 22, 24
Function, 34
FNA, 42
GET, 39
INT, 35
PUT, 39
RND, 36
SGN, 35
TAB, 36
User-defined, 59
UUF, 43
Functions, 34
FWD, 45

Generating random numbers
over any range, 37
GET function, 39
GOSUB nesting,
maximum level of, 33
GOSUB statement, 30, 31
GOTO statement, 29

1/0 devices, 22

IF GOTO statement, 30

IF THEN statement, 30

Immediate mode, 6

Incremental value, 22

Index, 22

Indirect relative

addressing, 47
Initial value, 22
Initializing the system,
A-1

INPUT statement, 14

Input/Output statements, 11

Instruction set,
Floating-point, 45

INT function, 35

Integer function, 35

Introduction, 1

LET command, 6

LET statement, 10

Level of GOSUB nesting, 33

List, 25

LIST command, 55

Listing and punching
program, 55

Loaders, A-1l

Loading a binary tape
{(using BIN), A-7

Loading and operating
procedures, 58

Loading procedures, A-1l

Loading the BIN loader, A-5

Loading the RIM loader, A-3

Loops, 22

Nesting, 24
LPT command, 55, 57
LPT statement, 19

Mass storage devices, 47
Maximum level of GOSUB
nesting, 33
Maximum size of an array,
28
Meaning of the equal sign,
5
Minimum system
configuration, 1
Mode,
Immediate, 6

Nesting loops, 24

Nesting subroutines, 33

Nesting techniques,
Acceptable, 25
Unacceptable, 25

Nesting, maximum level of

GOSUB, 33
NEXT statement, 22, 23
NO RUBOUTS, 53
Normalized form, 44
Numbers, 2

Operating procedures,
Loading and, 58
Operators, 3
Relational, 5
Order of evaluation, 4
Output,
Formatting, 41

Parentheses, 4

PRINT command, 6

Print positions, 37

PRINT statement, 15

Print zones, 16

Priority of arithmetic

operations, 4

Program control,
Directing, 29

Programming errors, 69

PTP command, 55, 57

PTP statement, 20

PTR command, 56

PTR statement, 14

PUT function, 39

Random number function, 36

READ statement, 11
Reading a program, 56
Relational operators, 5
Relative addressing, 45
Indirect, 47
REM statement, 9
RESTORE statement, 12
RETURN, 54
RETURN statement, 31
RIM, A-~-1
RIM loader,
Checking the, A-4
Loading the, A-3

RIM loader programs, A=-2

RND function, 36
Rounding numbers, 36
RUBOUT, 53

RUN command, 56
Running a program, 56

SCR command, 58
SGN function, 35
SHIFT/L, 9

SHIFT/O, 53

Sign function, 35

Sign~-magnitude convention,
A2

Statement,
Arithmetic, 10
DATA, 11
DEF, 42
DIM, 27
END, 9
FOR, 22
GOSuUB, 30, 31
GOTO, 29
IF GOTO, 30
IF THEN, 30
INPUT, 14
LET, 10
LPT, 19
NEXT, 22, 23
PRINT, 15
PTP, 20
PTR, 14
READ, 11
REM, 9
RESTORE, 12
RETURN, 31
STEP, 23
STOP, 10
TTY IN, 20
TTY OUT, 20

Statement numbers, 8

Statement summary, 67

Statements, 7, 67
Input/Output, 11
Transfer of control, 29

STEP statement, 23

STOP statement, 10

Stopping a run, 57

Subroutines, 30
Nesting, 33

Subscript, 27
Subscripted variables, 22,
25
Summary,
Command, 67
Statement, 67
Supported options, 2
Symbol Table, 62-66
System configuration,
minimum, 1

TAB function, 36
Table,
Symbol, 62
Terminal value, 22
Terminating the program, 9
Transfer,
Conditional, 24, 30
Unconditional, 29
Transfer of control
statements, 29
TTY IN statement, 20
TTY OUT statement, 20
Two-dimensional matrix, 26

Unacceptable nesting
techniques, 25
Unconditional transfer, 29
User-defined function, 59,
43
UUF function, 43

Variable, 3
Dummy, 13, 39, 42
Subscripted, 22, 25

Writing the program, 47

8K BASIC
DEC-08-LBSMA~A-D

READER'S COMMENTS

Digital Equipment Corporation maintainsa continuous effort to improve
the quality and usefulness of its publications. To do this effectively
we need user feedback--your critical evaluation of this document.

Did you find errors in this document? If so, please specify by page.

How can this document be improved?

How does this document compare with other technical documents you
have read?

Job Title Date:
Name: Organization:
Street: Department:

City: State: Zip or Country

Fold Here

BUSINESS REPLY MAIL

Do Not Tear - Fold Here and Staple

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

dlilgliltlall

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachusetts 01754

	000
	001
	002
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	X-01
	X-02
	X-03
	replyA
	replyB

