
o

users manual

digital equipment corporation

DEC- 8E-OC1LSA-B-D

CASSETTE PRO G RAM MIN G S Y S T E M

USE R 'S MAN U A L

For additional copies, order No. DEC-8E-OCASA-B-D from Software
Distribution Center, Digital Equipment. Corporation, Maynard,
Massachusetts 01754

First Printing, March, 1973
Revised September, 1973
Printed July, 1974

The information in this document is subj,ect to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporat:ion assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(wi th inclusion I:>f DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright. © 1973, 1974 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following a:re trademarks of Digital Equipment Corporation:

CDP DIGITAL IND.~C PS/8
COMPUTER LAB DNC KAIO QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 05/8 RT-ll
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

CONTENTS

CHAPTER 1 THE CASSETTE PROGRAMMING SYSTEM

1.1 INTRODUCTION TO A CASSETTE STORAGE SYSTEM
1.1.1 Hardware Components
1.1.2 Software Components

1.2 vvHAT IS A CAPS- S CASSET'I'E?
1.2.1 The Format of a Cassette
1.2.2 The sentinel File

1.3 THE SYSTEM CASSETTE

1.4 !JIOUNTING AND DISMOUNTING CASSETTES

1.5 CONCERNING EXAMPLES

CHAPTER 2 GETTING ON-LINE WITH THE CAPS_oS SYSTEM

2.1

2.2
2.2.1
2.2.2
2.2.3

2.3

2.4
2.4.1
2.4.2
2.4.3

2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.S

2.6

2.7

SYSTEM PROGRAMS

SYSTEM CONVENTIONS
File Formats
Filenames and Extensions
Input/Output Devices

LOADING THE KEYBOARD MONITOR

USING THE KEYBOARD MONITOR
Making Corrections
Special Characters
I/O Designations and Specification Options

KEYBOARD MONITOR COMMANDS
Run Command
Load Conunand
DAte Conunand
DIrectory Command
DElete Conunand
Zero Conunand
REwind Command
Version Command

NOTES ON DEVICE HANDLERS

MONITOR ERROR MESSAGES

CHAPTER 3 SYMBOLIC EDITOR

3.1

3.2
3.2.1
3.2.2
3.2.3

INTRODUCTION

CALLING AND USING THE EDITOR
EDITOR Options
Input and Output Specifications
Version Numbers

iii

PAGE

1-1
1-2
1-2

1-2
1-4
1-4

1-4

1-5

1-6

2-1

2-1
2-1
2-2
2-2

2-3

2-3
2-3
2-4
2-5

2-5
2-6
2-7
2-7
2-7
2-S
2-9
2-10
2-10

2-11

2-12

3-1

3-1
3-1
3-2
3-3

3.3
3.3.1

3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.1~
3.4.11
3.4.12
3.4.13

3.5

3.6
3.6.1
3.6.2
3.6.3

3.7

3.8
3.8.1
3.8.2

3.9

3.10

MODES OF OPERATION
Transition Between Modes

SPECIAL CHARACTERS AND FUNCTIONS
RETURN Key
Erase (CTRL/U)
RUBOUT Key
Form Feed (CTRL/FORM)
The Current Line Counter (.)
Slash (/l
LINE FEED Key
ALT MODE Key
Right Angle Bracket (»
Left Angle Bracket «)
Equal Sign (=)
Colon (:)
Tabulation (CTRL/TAB)

COMMAND STRUCTURE

COMMAND REPERTOIRE
Input Conunands
Output Conunands
Editing Conunands

TEXT COLLECTION

CHARACTER SEARCHES
Single Character Search
Character String Search

EDITOR ERROR MESSAGES

EDITOR DEMONSTRATION RUN

CHAPTER 4 SYSTEM COpy

4.1

4.2
4.2.1
4.2.2
4.2.3

4.3

INTRODUCTION

CALLING AND USING SYSTEM COpy
System Copy Options
Input and Output Specifications
System Copy Example

SYSTEM COpy ERROR MESS1~GES

CHAPTER 5 PALC ASSEMBLER

5.1

5.2
5.2.1

5.3

5.4
5.4.1
5.4.2
5.4.3
5.4.4

INTRODUCTION

CALLING AND USING PALC
PALC Options

CHARACTER SET

STATEMENTS
Labels
Instructions
Operands
Conunents

iv

3- 4
3-4

3-4
3-5
3-5
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-7
3-7
3-7
3-7

3-8

3-8
3-9
3-10
3-12

3-15

3-16
3-16
3-17

3-21

3-23

4-1

4-1
4-1
4-2
4-3

4-4

5-1

5-1
5-5

5-5

5-6
5-6
5-6
5-7
5-7

5.5
5.5.1
5.5.2
5.5.3

5.6

5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.7.6
5.7.7
5.7.8

5.8
5.8.1
5.8.2

5.9
5.9.1
5.9.2
5.9.3
5.9.4

5.1.0
5.1.0.1
5.1.0.2
5.1.0.3
5.1.0.4
5.1.0.5
5.1.0.6
5.1.0.7
5.1.0.8
5.1.0.9
5.1.0.1.0
5.1.0.11
5.1.0.12

5.11

5.12

5.13
5.13.1

5.14

FORMAT EFFECTORS
Form Feed
Tabulations
Statement Terminators

NUMBERS

SYMBOLS
Permanent Symbols
User-Defined Symbols
Current Location Counter
Symbol Table
o'irect Assignment Stat~ements
Symbolic Instructions
Symbolic Operands
Internal Symbol Representation for PAGC

EXPRESSIONS
Operators
Special Characters

INSTRUCTIONS
Memory Reference Instructions
Indirect Addressing
Microinstructions
Autoindexing

PSEUDO-OPE RATORS
Indirect and Page Zero Addressing
Radix Control
Extended Memory
End-of-File
Resetting the Location Counter
Entering Text Strings
Suppressing the Listing
Reserving ~emory
Conditional Assembly Pseudo-Operators
Controlling Binary Output
Controlling Page Format
Altering the Permanent: Symbol Table

:GINK GENERATION AND STOHAGE

CODING PRACTICES

PROGRAM PREPARATION AND ASSEMBLER OUTPUT
Terminating Assembly

PALC ERROR CONDITIONS

CHAPTER 6 CASSETTE BASIC

6.1 INTRODUCTION

6.2 CALLING BASIC

6.3 NUMBERS

6.4 VARIABLES

v

5-7
5-7
5-7
5-8

5-9

5-9
5-9
5-9
5-10
5-11
5-12
5-13
5-13
5-13

5-14
5-14
5-17

5-20
5-20
5-20
5-21
5-23

5-24
5-24
5-24
5-25
5-26
5-26
5-27
5-27
5-27
5-28
5-28
5-29
5-29

5-30

5-31

5-32
5-33

5-33

6-1

6-1

6-2

6-3

6.5
6.5.1
6.5.2
6.5.3

6.6
6.6.1
6.6.2
6.6.3

6.7

6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6
6.8.7
6.8.8
6.8.9
6.8.10
6.8.11
6.8.12

6.9
6.9.1
6.9.2
6.9.3
6.9.4
6.9.5

6.10
6.10.1
6.10.2

6.11
6.11.1
6.11.2
6.11.3
6.11.4
6.11.5
6.11.6
6.11.7
6.11.8

6.12

6.13

CHAPTER 7

7.1

7.2
7.2.1

7.3

7.4
7.4.1
7.4.2

ARITHMETIC OPERATIONS
Priority of Operations
Prentheses and Spaces
Relational Operators

IMMEDIATE MODE
PRINT Command
LET Command
Looping PRINT and LET Commands

EXAMPLE RUN

BASIC STATEMENTS
Statement Numbers
Commenting the Program
Terminating the Program
The Arithmetic Statement
Input/Output Statements
Creating Run-Time Input Files
Loops
Subscripted Variables
Transfer of Control Statements
Program Chaining
Subroutines
Functions

IMPLEMENTING A USER-CODED FUNCTION
Coding Formats
Floating-Point Format
Incorporating Subroutines with UUF
Writing the Program
Examples of User-Coded Functions

FLOATING-POINT PACKAGE
Instruction Set
Addressing

EDITING AND CONTROL COMMANDS
Erasing Characters and Lines
Listing a Program
Running a Program
Stopping a Run
Loading a User-Coded Function
Erasing a Prbgram In Memory
Renaming a Program
Saving a Program

CASSETTE BASIC ERROR MESSAGES

CASSETTE BASIC SYMBOL TABLE

USING CAPS-8 CODT

FEATURES

USING CODT
Commands

ILLEGAL CHARACTERS

ADDITIONAL TECHNIQUES
TTY I/O-FLAG
Interrupt Program Debugging

vi

6-4
6-4
6-5
6-5

6-6
6-6
6-7
6-7

6-8

6-10
6-10
6-10
6-11
6-11
6-12
6-25
6-27
6-29
6-31
6-34
6-35
6-37

6-44
6-44
6-46
6-46
6-47
6-47

6-50
6-50
6-51

6-52
6-52
6-53
6-54
6-54
6-55
6-55
6-55
6-56

6-57

6-59

7-1

7-2
7-2

7-8

7-9
7-9

CHAPTER

CHAPTER

7.4.3
7.4.4

7.5

7.6
7.6.1
7.6.2

7.7

8

8.1

8.2
8.2.1
8.2.2

8.3

9

9.1

A

B

C

D

E

F

Octal Dump
Indirect References

ERRORS

OPERATION AND STORAGE
Storage Requirements - CAPS-8 System
Programming Notes Summary

COMMAND SUMMARY

CAPS-8 UTILITY PROGRAM

INTRODUCTION

CALLING AND USING THE UTILITY PROGRAM
Utility Program Options
Input and Output Specifications

UTILITY PROGRAM ERROR MESSAGES

BOOT

OPERATING PROCEDURES

APPENDICES

ASCII Character Codes

Error Message and Command Summaries

PALC Permanent Symbol Table

CAPS-8 Demonstration. Run

Monitor Services

Assembly Instructions

TABLES

Table :2-1 CAPS-8 Extension Names
Table 2-2 Directory Options
Table 2-3 Keyboard Monitor Error Messages
Table 3-1 EDITOR Options
Table 3-2 Command Format
Table 3-3 Input Commands
Table 3-4 List Commands
Table 3-5 Text Transfer Commands
Table 3-6 Editing Commands
Table 3-7 Search Character Options
Table 3-8 Terminating a Strinq Search
Table 3-9 EDITOR Error Codes
Table 4-1 System Copy Options
Table 4-2 System Copy Error Messages
Table 5-1 PALC Options
Table 5-2 Use of Operators
Table 5-3 PALC Error Codes

vii

7-9
7-9

7-9

7-9
7-10
7-10

7-11

8-1

8-1
8-1
8-2

8-2

9-1

A-I

B-1

C-l

D-l

E-l

F-l

2-2
2-8
2-12
3-1
3-8
3-9
3-10
3-11
3-12
3-16
3-20
3-21
4-1
4-4
5-5
5-15
5-34

Table 6-1 Cassette BASIC Functions 6-38
Table 6-2 Function Addresses 6-45
Table 6-3 Floating-point Accumulator 6-46
Table 6-4 Floating-Point Instructions 6-50
Table 6-5 Relative Addresses 6-51
Table 6-6 Cassette BASIC Error Messages 6-57
Table 6-7 Cassette BASIC Symbol Table 6-60
Table E-l Monitor Memory Map E-l
Table E-2 utility Subroutines and Locations E-l
Table E-3 Header Record Structure E-ll

ILLUSTRATIONS

Figure 1-1 Cassette Progranuning System 1-1
Figure 1-2 CAPS-8 Cassette 1-3
Figure 1-3 l-1ounting a Cassette 1-6
Figure E-l Switch Option Characters E-IO
Figure E-2 Ring Buffers E-IO

viii

CHAPTER 1
THE CASSETTE PROGRAMMING SYSTEM

1.1 INTRODUCTION TO A CASSETTE STORAGE SYSTEM

The PDP-8 Cassette Programming System (CAPS-8) is a small programming
system for the PDP-8/E (8/M or 8/F) computer and is designed around
the use of cassettes for program storage, rather than DE~tape, paper
tape or disk storage. CAPS-8 replaces paper tape procedures
completely. The MI8-E Hardware Bootstrap initially loads the Cassette
Keyboard Monitor into memory: with the use of the Monitor all file
transfers and program loading and storage is done via cassette.
Cassettes are more convenient and reliable and much easier to use than
paper tape, and in addition, cut the time involved in loading and
storing programs using paper tape by almost one half.

CAPS-8 provides the user with a Keyboard ~1oni tor, I/O facilities at
the Monitor level, and a library of System Programs, including a
machine language assembler, an editor, and a higher-level programming
language.

Figure 1-1 Cassette Programming System

1-1

1.1.1 Hardware Components

The Cassette Pro9ramming System is built~ around a PDP-8/E, 81M, or 8/F
computer with a minimum of one TU60 dual cassette unit, a console
terminal (LA30 DECWriter, LT33 or LT35 'I'eletype, or VT05 DECterminal),
and 8K of memory. A line printer is opt:ional.

1.1.2 Software Components

A brief description of the software
Cassette Programming System follows.
greater detail later i.n the manual.

package available with the
Each program is discussed in

1. MONITOR -- The Keyboard Monitor provides communication
between the user and the Cassette System Executive
Routines by accepting commands from the console terminal
keyboard. The commands allow i:he user to run system and
user proograms, save programs on cassette, and obtain
directories of cassettes.

2. Symbolic EDITOR - The EDITOR allows the user to modify or
create source files for use as input to language
processing programs such as BASIC and PALC. The EDITOR
contains powerful text manipulation commands for quick
and easy editing.

3. PALC Ass-embler (Program Assembly Language--Cassette)
PALC accepts source files in the PAL machine language and
generates absolute binary files as output. These files
can then be loaded and executed using Monitor commands.

4. BASIC BASIC provides a higher-level programming
language which is easy to learn and use. It includes
such language features as user-coded functions, data
files on cassette, and program chaining.

5. System Copy (SYSCOP) - SYSCOP allows the user to transfer
files from one cassette to another, giving him the
ability to make multiple copies of a cassette and "clean
up" full cassettes so that they may become available for
future use.

1.2 WHAT IS A CAPS-8 CASSETTE?

A CAPS-8 cassette is a magnetic tape device much like that used in a
cassette tape recorder. The tape itself and the reels it is wound on
are enclosed inside a rectangular plastic case (see Figure 1-2),
making handling, storage, and care of the cassette convenient for the
user.

1-2

On either end of one side of the cassette are two flexible plastic
tabs called write protect tabs (see A in Figure 1-2). There is one
tab for each end of the tape; since data should only be ~Titten in one
direction on the t.ape, the user will need to be concerned with only
the tab which is specifically marked on the cassette label. Depending
upon the position of this tab, the user is able to protect his tape
against accidental wri ting and destruction of data. wt.en the tab is
pulled in toward the middle of the cassette so that the hole is
uncovered, the tape is write-locked; data cannot be writ.ten on it and
any attempt to do so will result in an error message. wt.en the tab is
pushed toward the outside of the cassette so that the hol.e is covered,
the tape is write-enabled and data can be written onto it. Data can
be read from the cassette with the tab in either positior ..

The bottom of the cassette (B in Figure 1-2) provides an opening where
the magnetic tape is exposed. The cassette is locked int.o position on
a TU60 cassette unit drive so that the tape comes in cont.act with the
read/write head through this opening.

Both ends of the magnetic tape in a cassette consist of clear plastic
leader/trailer tape; this section of the tape is not used for
information storage purposes, but as a safeguard in handling and
storing the cassette itself. Since cassette tape is ~:usceptible to
dust and fingerprints, the leader/trailer tape should be the only part
of the tape exposed whenever the cassette is not on a drive.

UNCOVER HOLE TO PRCTECT DATA

\'----A-~ B c
Figure 1-2 CAPS-8 Cassette

1-3

1.2.1 The Format of a Cassette

A cassette is formatted so that it consists of a sequence of one or
more files. Each file is preceded and followed by a file gap. (A gap
in this sense is a set length of specially coded tape.) All cassettes
must start with a file gap; any information preceding the initial file
gap is unreliable. A file consists of a sequence of one or more
records separated from each other by a record gap. The first record
of a file is call~:!d the file header record and contains information
concerning the name of the file, i t:s type, length, and so on.
(Chapter 2 provid~:!s more information concerning header records.) A
record generally contains 128 (decimal) characters of information;
there are approximately 600 records per cassette tape.

Records consist of a sequence of one or more cassette bytes; a byte in
turn consists of eight bits each representing a binary zero or one.
Characters and numbers are stored in bytE!s using the standard ASCII
character codes (see Appendix A) and binary notation.

The number of records of information on a .cassette tape may be
estimated by the user. On the outside of the cassette case is a clear
plastic window (C in Figure 1-2). Along the bottom of this window is
a series of marks; each mark represent:"s about 50 inches of magnetic
tape. Knowing that approximately 2 records fit on an inch of tape,
the user is able to make a reasonable 9uess as to the length of tape
and number of records available for use. By simply glancing at the
width of the tape reel showing in the window, the user can tell
quickly if he is very close to the end. Since he is given no advance
warning of a full tape condition, the USE!r must visually keep track of
the length of tap4~ he has available. Should the tape become full
before his file transfer has complet:ed, another cassette must be
substituted, and the transfer or output operation must be restarted.

1.2.2 The Sentinel File

The last file on a cassette tape is called the sentinel file. This
file consists of only a file header record and represents the logical
end-of-tape. A zeroed or blank cassette tape is one consisting of
only the sentinel file.

1.3 THE SYSTEM CASSETTE

The software discussed in Section 1.1 is provided to the user on a
single cassette called the System CassHtte. This is the cassette on
which the entire CAPS-8 System resides, cmd it is utilized for all
system functions. The System Cassette must always be mounted on drive
0; drive 0 serves as the default device \\Then the user fails to specify
another.

1-4

NOTE

Each TU60 dual cassette unit has two
drives. The drive on the left is always
odd-numbered and the drive on the right
even-numbered; thus, drive 0 will be the
le!ft drive. If the user has more than
one TU60 dual cassette unit, he should
probably label the drives in consecutive
order so that there will be no confusion
when he is using the system.

The write protect tab on the System Cassette should usually be in the
write-locked position so that data will not accidently be written on
it; it is suggested that the user make a copy of this cassette as
protection against loss or accidental destruction.

1.4 MOUNTING AND DISMOUNTING A CASSETTE

To mount a tape on a drive, hold the tape so that the open part of the
cassette is to t:he left and the full reel is at the top. Set the top
write protect tab to the desired position depending upon whether data
is to be written on the tape.

Open the locking bar on the cassette drive by pushing it: to the right
away from the drive (see A in Figure 1-3). Next hold the tape up to
the cassette drive at approximately a 45-degree angle and insert the
tape into the! drive by applying a leftward pressure while
simultaneously rotating the cassette over the drive sprockets. This
brings the tape! into position against the read/write head. Push the
tape into the uni.t so that when the cassette is properly mounted, the
locking bar automatically closes over the cassette back edge. (Figure
1-3 illustrates this procedure.)

Press the rewind button on the cassette unit (see B in Figure 1-3;
there is a rewind button for each drive). This causes t:he cassette to
rewind to the beginning of its leader/trailer tape. (Pressing the
rewind button a second time causes the cassette to re"rind to the end
of the leader/trailer tape and to the physical end·oof-tape. The
cassette unit will click; this sound is almost inaudible and the user
may not hear it unless he is listening carefully. Normal usage
requires that t:he user press the rewind button only once whenever he
wishes to manually re\"lind a cassette). Even though tapes which are
not actively being used on a drive should already be po!;;i tioned at the
beginning, the user should develop the habit of automatically
rewinding a cassette. When the tape has finished winding, the
cassette will stop moving. The cassette is now in plaCE! and ready for
transfer operations.

1-5

B A

Figure 1-3 Mountin9 a Cassette

Before removing a cassette from a drive, the tape should always be
rewound to its beginning. This can be done by pressing the rewind
button on the cassette unit or by issui.nq the REwind Monitor Command
as explained in Chapter 2. Rewinding a tape ensures that the clear
leader/trailer tape will be the only tape exposed at the open part of
the cassette. To remove a cassette from the cassette drive, open the
locking bar and the cassette will pop out. When cassettes are not
being actively used on a cassette drive, they can be stored in the
small plastic boxes provided for this purpose by the manufacturer.

NOTE

Before using a new cassette, or prior to
using a cassette that has just been
shipped or accidently dropped, mount the
cassette on a drive so that the Digital
label faces the inside of the unit and
perform a rewind operation. Remove the
cassette, turn it over, and perform
another rewind operation. This packs
,the tape neatly in the cassette and
places the full tape reel at the proper
tension.

1.5 CONCERNING EXAMPIJES

In the chapters that follow, care has been taken to include acutal
machine printout whenever possible. In cases in which there may be
some discrepancy as to whether a character was typed by the user or by
the system, that typed by the system will be underlined.

1-6

CHAPTER 2
GETTING ON-LINE WITH THE CAPS-a SYSTEM

2.1 SYSTEM PROGRAMS

The Cassette Programming System is distributed on a single cassette,
called the System Cassette, which contains all the proc;rrams necessary
for loading the Monitor into memory and creating and running system
and user programs. The directory of the System Cassette is as
follows:

C2BOOT.BIN 01/22/73 V1
MONfOrl.BIN 01/22/73 V1
bt!:lCOP.BIN 01/25/73 V2
EDIT .BIN 01/02/73 V1
~ALC .B IN 01/02/73 V1
BA!:)IC .BIN 01/02/73 VI

System files are in binary format (see section 2.2.1). The first two
files on any System Cassette must be C2BOOT.BIN and MONTOR. BIN; these
two files comprise a bootstrap and the Keyboard Monitor. C2BOOT.BIN
loads the Moni t:or into memory from the System CassettE~; the Keyboard
Monitor links the user and the CAPs-a System by providing a means of
communication bet:ween the two. By accepting commands from the console
terminal keyboard, the Cassette Keyboard Monitor allows the user to
run system and user programs, save and recall files utilizing cassette
storage, and create, assemble, and load programs.

2.2 SYSTEM CONVENTIONS

The following c:onventions concern file formats and file naming
procedures and are standard for the CAPS-a System, as WE!ll as for many
other systems.

2.2.1 File Format:s

The Cassette Programming System makes use of two types of file formats
-- ASCII and Binary.

Files in ASCII format conform to the Ame:rican National Standard Code
for Information Interchange in which alphanumeric characters are
represented by a 3-digit code. A table containing ASCII character
codes in 7- and B-bit octal is provided in Appendix A.

Binary format files consist of l2-bi t bi.nary words repr~~senting PDP-8
machine language code. The standard DEC binary format is used with
the exception that no checksum is necessary. Binary files contain
field addresses and memory instructions and are read directly into

2-1

memory for immediate execution. CAPS-8 System Programs are in binary
format, and pr09rams which the user assembles with PALC are translated
into files in binary format.

2.2.2 Filenames and Extensions

System and user files are referenced symbolically by a name of as many
as six alphabetic characters (A-~:) or digits (0-9), followed
optionally by an extension of from 1 to 3 alphabetic characters or
digits; (the :Eirst character in a filename must be alphabetic). The
extension to a filename is generally used as an aid in remembering the
CAPS-8 format o:f a file. Table 2-1 lists commonly accepted extensions
-- the user mayor may not conform to this list as he chooses; it is
included here only as a guide:

Table 2-1 CAPS-8 Ext:ension Names

Extension Meaning

PAL
BIN
BAS
TXT
DOC
DAT

PALC source file (ASCII)
System or user binary format file
BASIC source file (ASCII)
Text file (ASCII)
Documentation file (ASCII)
Data file (ASCII or other)

Generally the user may call his files by any
extension he chooses. In some cases, if
extension, the System Program he is running may
For example, PALC assumes an extension of
indicates another, and the Run command assumes
extension is specified.

2.2.3 Input/Output Devices

mnemonic filename and
he omits specifying an
assume an extension.

.PAL unless the user

.BIN unless another

There are three available categories of input/output devices in the
Cassette Programming System: consolE~ terminal keyboard (including
paper tape reader and punch if an LT33 Teletype containing these units
is used as the console terminal), cassette drives 0-7, and a line
printer. There are no permanent devicE~ names in the CAPS-8 System.
Command strings and I/O designations are entered in such a way that
the user specifies the device by a drive number and the file by a
filename; option characters allow th.~ user to direct listings to the
line printer or to otherwise change th.~ normal operating procedure of
a program. The System Cassette -- drive 0 -- is the default device if
no drive number is specified. For example:

.DI/L

2-2

(DI is a Monitor command instructing thE~ computer to print a directory
listing of a cassette. Since no drive number is specified, drive 0 -­
the System Cassette -- is assumed. The option character L sends
output to the line printer instead of the console terninal, which is
the normal output device.)

2.3 LOADING THE KEYBOARD MONITOR

The CAPS-8 hardware bootstrap and C2BOO~~ .BIN on the System Cassette
are used to load the Cassette Keyboard Monitor into memory. (Both
bootstraps are described in Appendix E.) Loading the Monitor is
accomplished as follows:

1. Ensure that the computer and tE~rminal are on-line.

2. Press and raise the HALT key. Make sure that the SINGLE
STEP key is in a raised position.

3. Place the System Cassette (wri1:e-locked to p.rotect data)
onto cassette unit drive 0;

4. Press and raise the SW key.

At this point the RUN lamp should be on and the System Cassette should
begin to move. The hardware bootstrap calls the first program on the
System Cassette (C2BOOT.BIN) which in turn loads the Keyboard Monitor
(MONTOR.BIN) into memory. If an error occurs during the loading
process (for example, an error may be caused by the cassette being
improperly mounted, by a missing file on the tape, or by the
occurrence of an I/O error) no error message will inform the user
since the Monitor is not completely in memory. Instead, the System
Cassette may stop moving and the computer may loop or halt. If this
is the case, steps 2-4 above should be repeated.

Once the Monitor has been loaded, the System Cassette stops moving and
a dot is typed at the left margin of the console terminal page. This
instructs the user that the Monitor is now in memory and ready to
accept input commands.

2.4 USING THE KEYBOARD MONITOR

Each command to the Keyboard Monitor is typed at the console terminal
keyboard in response to the dot at the left margin. A command is
entered by pressing the RETURN key.

2.4.1 Making Corrections

Corrections may be made to the command line providing they are made
before the line is entered (that is, before a carriage return has been
typed). The RUBOUT key is used to correct typing errors. Pressing the

2-3

RUB OUT key once causes an open bracket ([) to be typed followed by the
last character entered into memory. Aft~er this character is echoed on
the console terminal it is deleted from memory. Successive RUBOUTs
each cause one more character to be printed and deleted. The first
non-RUBOUT character typed (after the last RUBOUT in a sequence)
causes a closing bracket (]) to be printed, thus enclosing only the
deleted portion of text within brackets. For example:

The user types: .. R BACIC (RUBOUT) (RUBOUT) (RUBOUT) SIC
The console terminal shows: .H 8AC I C (C I C] SIC
The string is entered to the-Keyboar~~itor as: .R BASIC

2.4.2 Special Characters (CTRL/C, CTRL/O, and CTRL/U)

Control can be rE~turned to the Keyboard Moni tor while under any of the
System Programs by typing a CTRL/C (produced by holding down the CTRL
key and simul tanE~ously pressing the C ke!y). If the Monitor is not
still in memory, a CTRL/C causes a complete rebootstrap by reading the
appropriate files from the System Casset:te on drive O. When it is
ready to accept input, the Keyboard Monitor types a dot at the left
margin of the teleprinter (i.e. console terminal) page.

Teleprinter output can be suppressed by typing a CTRL/O (produced by
holding down the CTRL key and simultaneously pressing the 0 key) •
This allows execution of the program to continue, but stops all
console printout. Typing a second C'l'RL/O will resume output again.
Unless output is extremely lengthy, or unless the program is waiting
for input from the user, processing of a program after an initial
CTRL/O will usually be completed before the user is able to type a
second CTRL/O. Printout will automatically resume when control is
returned to the Keyboard Monitor (indicated by a dot at the left
margin) •

NOTE

crRL/o does not prevent certain
important error messagE!S from printing
on the console terminal.

A corranand line ma.y be deleted completely, before it is entered, by
typing a CTRL/U (produced by holding down the CTRL key and pressing
the U key). This causes the current command line to be ignored and
returns control to the Keyboard Monitor. The Monitor prints a dot at
the left margin to indicate that it is ready to accept another
command.

2-4

2.4.3 I/O Designations and Specification Options

Whenever the user runs a System Program or performs any I/O operation,
he must indicate1:he file(s) to be accessed, the cassetb! drive(s) on
which they are located, and any desired options associa1:ed with the
operation. Procedures used in entering t~his information are explained
below.

Monitor commands q-enerally require only Gl single command line which
specifies the wlit drive number (in the range 0-7), filename (s), and
option(s) in the following format:

.COMMAND DRIVE #:FILENAME:.EXT/OPTION(S)

COMMAND represents one of the eight Monitor commands discussed in
Section 2.5. The filename should be se~parated from thl~ drive number
by a colon. Options are alphabetic characters and are sl~parated from
the rest of the command line by the slash character (/1. Successive
options follow onl~ another without any separating ch,3.racter. The
command line is executed by typing a carriage return.

I/O specifications to System Programs follow a diffl~rent format.
First the System Program is called from the System Cassette using the
Monitor Run command. The System Program then asks for the input
filename, drive number, and options, and then the out:;>ut filename,
drive number, and options. This informat:ion is usually reques ted in
two separate command lines, but the actual format "aries between
System Programs. Generally, the command strings appear as follows:

.R SYSTEM PROGRAM/OPTIONS
*INPUT-DRlVE # : FILENAME
*OUTPUT-DRIVE #: FILENAME

The appropriate chapter should be referenced for the accurate format.

Options are available in most System Programs and Monitor commands
allowing the user to change the order or format of input and output
operations from that which would normally be carried out by the
program. Again, interpretation of options varies; the user should
refer to the appropriate section or chapter to learn which options are
available and what actions will result from their use.

2.5 KEYBOARD MONITOR COMMANDS

There are eight Keyboard Monitor commands available to the user.
Commands are typed in response to the dot printed by the Monitor and
are entered when the RETURN key is pressl~d. Each command consists of
one or more alphabetic characters, followed by a space (or any
non-alphabetic character). Any error made while utilizing these
commands will result ~n a message informing the user (see Section
2.8). After occurrence of an error, control returns to the Keyboard
Moni tor and the command must be re-typed. (Since several of the
commands begin with the same letter, the user must be sure to note how
much of the command must be entered in order to distinguish it from
other commands. While it does not matter if too many characters are
entered, too few will cause errors.)

2-5

2.5.1 Run Command

The Run command is of the form:

• R Drive #:Filename/Option (s)

The Run command instructs the Monitor to load and execute the file
specified in t~e command line. The file should be in self-starting
binary format (t:hat is, the last location in the source file must be
an origin sett:ing which indicates the starting address of the file);
as the file is not in self-starting binary format, the program will be
loaded but execution will not begin; the user will have to proceed as
though he were using the Load command (see Section 2.5.2). The user
may omit specifying an extension as the Monitor assumes .BIN. For
example:

:R CART.BIN

or

.ft CART

Regardless of which command string the user types, the Monitor assumes
.BIN, searches drive 0 for the file CART. BIN, and executes it.

Options allowed in the command line depend upon the program the user
is running. Availability of options and results of their use are
discussed in Chapters 3, 4, 5 and 6. No error occurs if the user
specifies an option not allowed by a program; the option is simply
ignored.

Multiple files may be executed using the Run command. Patches to
programs, BASIC user-coded functions, and programs the user may have
created using PALC can be executed as follows:

.R Drive #:PROGl,Drive #:PROG2, ••• PROGn/Option(s)

where n represents any number of programs as long as the total number
of characters on the input specification line does not exceed 64. The
user must enter programs in the command line in the order in which he
wants them executed and must be careful to include appropriate
starting, chaining, and return addresses (see Appendix E).

For example, assume the user has written a routine which will be used
for debugging purposes; each time a certain condition is met during
execution, this routine will be accessed, print a message and cause
execution to halt. The routine ha.s been created using the CAPS-8
EDITOR, assembled with PALC, and is stored on cassette drive 1 as
DBG.BIN; it is loaded into memory with the user's program (TABLE.BIN
stored on casset:te drive 0). The programs are loaded as follows:

2-6

Chapter 6, BASIC, contains an example of running multiple files in
conjunction with the BASIC user-coded function feature.

2.5.2 Load Command

The Load command is used to load a binary file into memory and takes
the form:

.L Drive #:Filename.ext/Option(s)

This cormnand is similar to the Run cormnand except that the computer
halts after loading the file. To start execution, the user sets the
correct starting .address in the Swi tch RE~gister, presse:3 ADDR LOAD,
CLEAR and CONT (if the file is in self-starting binary format, the
user need only press CONT): appropriate addresses included in the
program (see Appendix E) will return control to the Keyboard Monitor
after execution.

Multiple files may be loaded in the same manner as in tha Run command
by simply specifying them in correct E~xecution order ':>n the command
line:

.L Drive #:PROGl,Drive #:PROG2 •••• PROGn/Option(s)

Again, n may represent any number of pr09rams as long as the total
number of characbars on the command line does not exceed 64.

2.5.3 DAte Command

The DAte command is of the form:

.DA mm/dd/yy

where nun, dd, and yy repres~nt the current month, day and year as
entered by the user. (One or two-digit numbers in the range 0-99 are
allowed in the DA'te command. The Keyboard Monitor does not check for
errors other than the entry of a number which is outsid,a this range.)
This date will then appear in directory listings (see Section 2.5.4),
and the date of creation of all new files will be included. If the
DAte command is not used, directory listings will contain only
filenames, as illustrated in section 2.1.,

2.5.4 DIrectory Command

The DIrectory comnand is of the form:

.DI Drive #/Option(s)

and causes a directory listing of the cassette on the drive specified
to be output on the console terminal. N() colon is necessary after the

2-7

drive number. There are two options available for use with the
DIrectory command:

Option

IL

IF

Table 2-2 Directory Options

Heaning

Causes the listing to be output
on the line print.er rather than
the console terminal.

Causes a "fast" listing to be
produced (omi t·ting creation
dates and version numbers).

In the following example a directory of cassette drive 2 is requested
and output (the version number in the directory listing reflects the
number of times the file has been accessed and changed using the
CAPS-8 EDITOR; see Chapter 3, Section 3.:2.3):

lr/1/~9/7?

FILE .RIN ~3/17/72

ARCDEF.PAL
A .ASC V3
R 1)22

This same directory using the F option will be reduced to:

HlJ/29/7?
FILE .AIN
ARCDEF.Pl\L
A .ASC
R

2.5.5 DElete Command

The DElete command is of the form:

.DE Drive #:Filename.ext

and causes the fi.lename on the specified drive number to be deleted
from the direct;ory. The fi lename is replaced by the name *EMPTY in
the directory listing and the file can no longer be referenced. Only
one file may be specified in the DElete command string at a time.

2-8 .

For example, assume the user wishes to delete the filE:name MATH.DAT
from the directory of cassette drive 3. He types:

.DE 3:MATH.DAT

and then obtains a directory listing of drive 3. The directory will
appear as follows:

11 /17/72
TAPE .BAS 11/02/72
*EMPTY.
TOR .ASe 11/07/72 V3

where *EMPTY represents the deleted filename MATH. OAT.

2.5.6 Zero Command

The Zero command is of the form:

.Z Drive #:Filename

and specifies that the sentinel file of the indicated cassette is to
be moved so that it immediately follows the file indicated in the
cornmand line. (See Chapter I for a description of the Bentinel file.)
All files following the sentinel file: are deleted from the cassette
and that portion of the tape is complete:ly reusable.

For example, assume cassette drive 3 contains the follm"ing directory:

LOO~ .Ase 10/~3/72 V~

BASE • RAS
FOfJR .RUJ 11/17/72
*EMPTY.
RAC~ • E

and the user wishes to save only the first three files. He uses the
Zero command as :follows:

and the sentinel fi Ie is placed immediat:ely after the file FOUR. BIN.
The directory nrnN reads:

LOOK.ASC 1~/2~/72 v2
BASE.gAS

2-9

When no filename is specifed in the command line, for example:

.2

the cassette is said to be zeroed, or completely deleted of files; the
sentinel file i.s moved to the beginning of the cassette so that the
entire tape is available for use. This method is useful in "cleaning
up" cassettes which may contain several *EHPTY files in the directory
listing but have become full and therefore unavailable for further
use. First, any needed files are transfered to another cassette using
SYSCOP (see Chapter 4), then the directory of the old cassette is
zeroed. The sentinel file is written at the beginning of the tape
making the casset.te completely reusable.

All new tapes must be zeroed before they are first used. This ensures
that a sentinel file is present on the tape and moved to the beginning
of the tape.

2.5.7 REwind Command

The REwind command is of the form:

.RE Drive #

and causes the cassette on the drive number specified to be rewound to
its beginning. (The user can also cause the tape to rewind by
pressing the rewind button on the cassette unit.) System Programs and
Moni tor commands always re'''Iind a cassetbe before accessing a file, but
if the user delevopes the habit of rewind.ing the cassette himself he
performs a timesaving action. A cassette should always be rewound
before it is removed from a drive.

2.5.8 Version Command

The Version command is used to find out the version number of the
Monitor currently in use. Typing:

.V

instructs the Monitor to respond with the appropriate number. For
example:

.v
lLa

indicates that version 1.2 is currently in use.

2-10

2.6 NOTES ON DEVICE HANDLERS

Device handlers for the CAPS-8 System are~ described in Appendix E. A
few notes of interest concerning the1r use are included llere.

The line printer performs a form feed ope:ration before beginning an
output task. Characters are unpacked from the output buffer and
printed. A form feed is also produced following the completion of an
output task. ThE~ line printer handler is capable of handling only an
80 column printer ..

If the console terminal is an LT33 Tele:type containinq
punch units, these may be used as input/output devices :i.n
with the Teletype keyboard. To punch a t,ape, simply place
unit to ON; to read a tape, place the reader unit
Characters will be printed on the Teletype keyboard as tiley
or punched. Binary tapes may not be punched.

NOTE

reader and
conjunction
the punch
to START.
are read

The purpose of the Cassette Programming System is
the elimination of paper tape procedures.
CassettE~s provide a more convenient, reliable and
faster means of program storage than paper tape.
Therefore, although paper tapes may be read and
punched using the LT33 paper tape units, therE~ is
no support for this type of I/O and its use is not
encoura ged •

If the user's pro<Jram does not over-write certain areas of memory, the
parts of the Monitor which are in these locations are available for
use. This allows the user who takes advantage of wri 1:ing his own
programs in the PAL machine language to access system handlers and to
restart or rebootstrap the Cassette Keyboard Monitor after program
execution. Information concerning Monitor Service Routines, I/O
routines, device handlers, and internal descriptions of the Keyboard
Monitor are provided in Appendix E.

2-11

2.7 KEYBOARD MONITOR ERROR MESSAGES

The following error messages may occur when the Keyboard Monitor is
used incorrectly:

Table 2-3

Message

BAD COMMAND

FILE NOT FOUND

INPUT ERROR ON UNIT n
OUTPUT ERROR ON UNIT n

UNIT n NOT RE,ADY

UNLOCK UNIT n

Keyboard Monitor Error Messages

Meaning

The user has failed to follow the
correct synt:ax for Moni tor commands.
This may be the result of mispelled
commands or too many or improper
arguments in a command string.

The Monitor could not locate the file
(or files) specified. The user should
check to be sure that filenames are
spelled correctly and that the unit
drive number specified is correct.

An I/O error has occurred on the cas­
sette drive specified. This may be
caused by an incorrectly formatted
cassette or may be due to a timing
error. The user should try the I/O
transfer using another cassette.

There is no cassette on the drive
specified, or no such drive exists.

The user tried to write data when the
write protect tab of the cassette on
the drive specified was write-locked.
To write data this tab must be
write-enabled.

2-12

3.1 INTRODUCTION

CHAPTER 3
SYMBOLIC EDITOR

The CAPS- 8 Symbolic EDITOR is used to cre!ate and modify ASCII source
files so that these files may be used as input to other System
Programs such as BASIC and PALC.

The EDITOR considers a file to be divided into logical units called
pages. A page of text is generally 50-60 lines long, ruld corresponds
approximately to a physical page of a program listing. (Note that
this is not the :3ame as a memory page). The EDITOR reads one page of
text at a time from the input file into its internal buffer where the
page becomes available for editing. ThE~ Editor contain::; commands for
creating, modifying, or deleting characters, lines, or complete
logical pages of text. All commands consist of a single letter or a
letter wi th arguml~nts, and are executed by typing the RE~rURN key.

3.2 CALLING AND USING THE EDITOR

To call the EDITOR from the System Cassette, type:

• R EDIT/Options

in response to th4~ dot (.) printed by the! Keyboard Monitor.

3.2.1 EDITOR Options

There are two options available for use with the EDITO:~; these are
described in Table 3-1. (Option usage has been previo1lsly discussed
in Chapter 2, Section 2.4.3).

Option

/B

/M

Table 3-1 EDITOR Options

Meaning

Convert two or more spaces to a 'rAB when
reading from input device.

More than one file will be used fo.r input.
(When one of these commands--E, F, J, N, R,
or Y--is issued and an end-of-file is
encountered, the EDITOR pauses and requests
that the user specify another input file,
thus allowing continuation of the command.
If the /M option has not been previously
specified in the input line, the end-of-file
condition remains in effect. See Se:tion 3.9
for an example.)

3-1

3.2.2 Input and Output Specifications

After the EDITOR has been called from the System Cassette it asks for
the input specification as follows:

*IN,)'JT FILE-

The user responds with the input cassette drive number and the input
filename and extension, if any. For example:

If only a filename (and no input cassette drive) is specified, the
default device--drive O--is assumed; the EDITOR prints the user's
input specification line, only first it includes the assumed default
device before echoing the filename, as illustrated below:

The user has typed the filename AB, but bE~fore this is printed, the
EDITOR inserts 0: and then goes on to eeho AB. If the input file is
not found or if a syntax error occurs, the EDITOR prints a question
mark (1), types an asterisk (*) at the left margin, and waits for
another input designation. Any number of input files is permitted.

If no input specification is made, (that is, a carriage return only
has been typed in response to the INPUT request), a new file will be
created using the console terminal keyboard as the input device. The
EDITOR allows input from the keyboard via the Append command (see
Example Using the EDITOR for an illus1:ration of this method of
creating a program).

If more than one input file is to be entered, the 1M option must be
specified when the EDITOR is called flC'om the System Cassette. The
user responds to the INPUT FILE line ''lith the drive number and
filename of the first input file. He enters output information as
described next, and then edits his file. When the end-of-file is
reached during the editing procedure, the EDITOR again prints the
INPUT FILE request and the user responds ,.,ith the drive number and
filename of the second file. When the us«:!r finishes editing his final
file and no more input files are available, he responds to the
EDITOR's INPUT request by typing a t:=arriage return; the EDITOR
continues and closes the output file. All input files are combined
under the one filename specified in the output line.

The EDITOR initially requests output information by printing:

3-2

The user responds with the output drive: number and :Eilename. For
example :

Again, if no device is designated, drive 0 is assumed and echoed.

If the output file is to have the same name as the input file, the
user need only type the correct out.put drive number followed by a
carriage return; the EDITOR will echo the assumed name. For example:

*I\Jp'rr FILf~-l :FIL~.f~AS
*OJTPJT FILE:~:FILE.8AS

The EDITOR allows only one output file and creates the header for this
file on the specified cassette, deleting any file already on that
cassette under the same name (and replacing it with 'if EMPTY in the
directory listing) and leaving the cassette correctly postioned for
further output.

NOTE

If no output designation is specified
(that is, a carriage return only has
be~en typed in response to the OUTPUT
FILE request), the only output
operations which may be performed are L
(list buffer on the console terminal) or
V (list buffer on the line printer).

Only cassette files in ASCII mode are acceptable for use by the
EDITOR. No error message is given if non-ASCII files are input, but
the results of editing operations are garbled.

Once I/O file designations are entered, the Symbolic EDITOR is ready
to accept commands from the keyboard. It signifies this by printing a
number sign (#) c:lt the left margin: this symbol occurs whenever the
EDITOR is waitin9 for a command.

3.2.3 Version Numbers

Each time a filename is indicated in response to thE~ output file
specification line, the number 0 is assigned to it:. This number
(called the version number) signifies that a new file has been created
and that it has not been previously edited or referenced under this
filename.

The user may call a file from a specified cassette, make corrections
to it and change it any number of times before he is finally satisfied
with it or ready to use it for some other operation. In this case, he
may reference the file in the output specification linH by specifying
only the output c:assette drive number followed by a carriage return,
since the filename itself will not be changed. Each time he does

3-3

this, the version number of the file i:3 increased by 1. When the
version number of a file has been incremented in this manner so that
it is greater than 0, it appears in dir.~ctory lis tings on the same
line as the filename (see Chapter 2).

NOTE

Version numbers associab~d with edited
files should not be confused with the V
Monitor command, which prints the
version of the Monitor currently in use.

3.3 MODES OF OPERATION

The EDITOR operates in one of two diffe:rent
text mode. In command mode all i:nput
interpreted as commands instructing the
operation. In text mode, all typed input
replace, be inserted into, or be appended to
buffer.

3.3.1 Transition Between Modes

modes: command mode or
typed on the keyboard is
EDITOR to perform some
is interpreted as text to
the contents of the text

Immediately afte:r being loaded into memory and started, the EDITOR is
in command mod.e. The special character # is printed at the left
margin of the teleprinter page indicati:ng that the EDITOR is waiting
for a command.. All commands are terminated by pressing the RETURN
key.

In text mode, the EDITOR performs I/O operations on text stored within
the text buffer. Text is input to the EDITOR buffer until a form feed
is encountered. A line of text is terminated by a carriage return.
If no carriage return is present, the "text entered on the current line
is ignored. The buffer has room for approximately 5200 (decimal)
characters. Whem text has been input to the extent that there are
only 256 decimal locations available in the buffer, the console
terminal rings a warning bell. From this point on, whenever a
carriage return is detected during text input, control returns to the
EDITOR command mode and the bell is rung. This line-at-a-time input
may continue until the absolute end-of-buffer is encountered. At this
point, no more text will be accomodated in the buffer: a "?" is
printed and cont:rol returns to command mode every time the user
attempts to input more text.

3.4 SPECIAL CHARACTERS AND Fm~CTIONS

A number of the
functions. These
below.

console terminal keys have special operating
keys and their associated functions are described

3-4

3.4.1 RETURN Key

In both command Clnd text modes, typing the RETURN key causes a
carriage return and line feed operation and signal~1 the EDITOR to
process the information just typed. In command mode, :,-t allows the
EDITOR to execute the command just typed. A command will not be
executed until ii: is terminated by the F~TURN key (with the exception
of =, explained later). In text mode, RETURN causes the line of text
which it follows to be entered in the te!xt buffer. A 1:yped line is
not actually pari: of the buffer until terminated by the RETURN key.

3.4.2 Erase (CTRL/U)

The erase charact:er (CTRL/U combination) is used for error recoveries
in both command and text modes. It is generated by holding the CTRL
key while simultaneously typing the U ke:y. When used :Ln text mode,
CTRL/U cancels everything to its left back to the bHginning of the
line; the EDITOR echoes t u and performs a carriage ret. urn/line feed
(CR/LF); the user then continues typing on the next l:.ne. When used
in command mode I' CTRL/U cancels the entire command; the EDITOR
performs a CR/LF and prints a #. The: erase character cannot cancel
pas t a CR/LF in Ed ther command or text mode.

3.4.3 RUB OUT Key

Rubout is used in error recovery in both command and text modes. In
text mode typing the RUBOUT key echoes a. backslash (\) and deletes the
last typed character. Repeated rubouts delete from right to left up
to, but not including, the CR/LF which separates the current line from
the previous one.. For example:

TI-fS (:)iJ~JICI-{\\\\ICK RROW'\J FOX

will be entered in the buffer as:

When used in command mode, RUBOUT is equivalent to the CTRL/U feature
and cancels thH entire comma'nd; the EDITOR prints a. #, 'performs a
CR/LF, and waits for another command to be entered.

3.4.4 Form Feed (CTRL/FORM)

A form feed signals the EDITOR to
character is generated by
simultaneously. This combination
indicate that the desired text
should now return to command mode.

return to command mod.~. A form feed
typingr the CTRL ,ind FORM keys
is typed while in text mode to
has be!en entered and t.hat the EDITOR

The EDITOR performs a CR/LF and

3-5

prints a # in response to a CTRL/FORM to indicate that it is back in
command mode. CTRL/G is usually equivalent to CTRL/FORM except in the
case of a SEARCH command, as explained in section 3.8.1.

3.4.5 The Current Line Counter (.)

The EDITOR keeps track of the implicit decimal number of the line on
which it is currently operating. The dot (produced by typing the
period key) stands for this number and may be used as an argument to a
command. For example, .L means list the current line; .-l,.+lL means
list the line preceding the current line, the current line, and the
line following- it, then update the dot (current line counter) to the
decimal number of the last line printed.

The following commands affect the curr,ent line counter as indicated:

1.- After a Read or Append command, the current line counter
is equ.al to the number of the last line in the buffer.

2. After an Insert or Change command, the current line
counter is equal to the number of the last line entered.

3. After a List or Search command, the current line counter
is equ.al to the number of the last line listed.

4. After a Delete command, the current line counter is
equal to the number of the line immediately after the
deletion.

5. After a Kill command, the current line counter is equal
to O.

6. After a Get command, the current line counter is equal
to the number of the line printed by the GET.

7. After a Move command, the current line counter is not
updated and remains whatever it was before the command
was issued.

3 • 4 • 6 Slash (/)

The slash symbol (/) has a value equal to the decimal number of the
highest numbered line in the buffer. It may also be used as an
argument to a c:ommand. For example: 10,/L means list from line 10 to
the end of the buffer.

3.4.7 LINE FEED Key

Typing the LINE: FEED while in command mode is equivalent to typing .+1
and will cause the EDITOR to print the line following the current one
and to increment the value of the current line counter by one.

3-6

3.4.8 ALT MODE Key

Typing the ALT MODE key while in command mode will cause the line
following the current line to be printed and the current line counter
to be incremented by one. If the curren1t line is also the last line
in the buffer, typing either ALT MODE or LINE FEED will gain a
response of ? from the EDITOR indicating that there is no next line.
Some console terminals provide an escape key (ESC) in place of the ALT
MODE. Their functions are identical.

3.4.9 Right Angle Bracket (»

Typing the right angle bracket (» while in command mode is equivalent
to typing .+lL and will cause the EDITOR to echo > and then print the
line following the current line. The value of the current line
counter is increased by one so that it refers to the last line
printed.

3.4.10 Left Angle Bracket «)

Typing the left angle bracket «) while in command mode is equivalent
to typing .-lL and will cause the EDITOR to echo < and then print the
line preceding the current line. The value of the current line
counter is decreased by one so that it refers to the last line
printed.

3.4.11 Equal Sign (=)

The equal sign is used in conjunction wi·th the pointer's dot (.) or
slash (I). ~Vhen typed in command mode the equal sign causes the
EDITOR to print the decimal value of the argument preceding it. In
this way the user may determine the nurnb.~r of the current line (. =),
or the total number of lines in the buff.~r (/=), or the number of
some particular line (/-8=) without counting lines from the beginning
of the buffer. No carriage return need be typed following the equal
sign.

3.4.12 Colon (:)

Typing a colon produces the same result .as the equal sign (=).

3.4.13 Tabulation (CTRL/TAB)

The EDITOR is written in such a way as to simulate tab stops at
8-space intervals across the teleprinber page. When t.he CTRL key is
held down and the: TAB key is typed, the EDITOR produces a tabulation.
A tabulation consists of from one to 'eight spaces, de'pending on the
number needed to bring the carriage to the next tab stop. Thus, the

3-7

EDITOR may be used to produce neat columns on the teleprinter or line
printer page. The tab function is used in conjuction with the /B
option (for input. and output) to allow the user to produce and control
tabulations in the text buffer during input operations. On input
(under a Read command), the EDITOR will replace a group of two or
spaces with a tabulation if the user has specified the /B option.

3.5 COMMAND STRUCTURE

more

A command directs the EDITOR to perform a desired operation. Each
command consists of a single letter, preceded by zero, one, two or
three arguments. The command letter tells the EDITOR what operation
to perform; the a.rguments usually specify which numbered line or lines
of text are affec'ted. Command format is illustrated in Table 3-2,
where E represents any command letter.

Table 3-2 Command Format

Type of Command Command
Format

No Argument: E

One argument: nE

Two Arguments: m,nE

Three Arguments: m,n$jE

3.6 COMMAND REPERTOIRE

.Meaning

Perform operation E

Perform operation E on the
referenced line.

Perform operation E on lines m
through n, inclusive.

This combina.tion is used by the
MOVE command only and is explained
in Section 3.6.3.

Commands to the EDITOR are grouped under three general headings:

Input Commands
Output Commands
Editing Commands

Explanation of the three types of commands is detailed in the
following sections. Each command description will state if the EDITOR
returns to comman.d mode after completing the operation specified by
the command. All commands are entered when the RETURN key is typed.

The EDITOR prints an error message consisting of a question mark
whenever the user has requested nonlexistent information or used
inconsistent or incorrect format in typing a command. For example, if
a command requires two arguments, and only one (or none) is provided,
the EDITOR will print ?, perform a carriage return/line feed, and
ignore the command as typed. Similarly, if a nonexistent command
character is typed, the error message ? 'N'ill be printed, follo\'led by a
carriage return/line feed; the command will be ignored. However, if

3-8

an argument is provided for a cormnmand that does not require one, the
argument will be ignored and the normal function of the conmunand
performed. For example:

User Types:

L
?

7,5L
?

l7$lOM
?

H
?

Resul t:

The buffer is empty. The user is aBking for
nonexistent information.

The arguments are in. the wrong order. The
EDITOR cannot list backwards.

This cormnand requires two arguments before
the $: only one was provided.

The user types a nonexistent command letter.

3.6.1 Input Commands

Two commands are available for inputting text, and are described in
Table 3-3.

Command Format

A

Table 3-3 Input Commands

Action. and Explanation

Append the incoming text from 1:he console
terminal keyboard to the information
already in the buffer (if there is no
input file t.he buffer will be empty
initially). The EDITOR will enter text
mode upon receiving this command and the
user may then t.ype in any number of lines
of text. The n.ew text will be appended to
the information. already in the buffer, if
any, until a form feed (C~rRL/FORM key
combination) is typed: control then
returns to command mode.

By using the Append command wi ':h an empty
buffer, a symbolic program may effectively
be generated on-line by en':ering the
program via thE! keyboard.

Any rubout encountered during 4~xecution of
an Append command will del4~te the last
typed character. Repeated rllbouts will
delete from right to left up to but not
beyond the beginning of the current line.

Table 3-3 Input Commands (Cont'd)

Command Format

R #R

3.6.2 Output Commands

Action and Explanation

Read a page of text from the input file on
the specified unit drive. The EDITOR will
read information from the input file until
a form feed character (CTRL/FORM key
combination) is detected or until the
EDITOR senses a text buffer full
condition. All incoming text except the
form feed is appended to the contents of
the text buffer. Information already in
the buffer remains there.

NOTE

In both these commands, the
EDITOR ignores ASCII codes 340
through 376. These codes
include the codes for the lower
case alphabet (ASCII 341-372).
The EDITOR returns to command
mode only after the detection of
a form feed or when a buffer
full condition is reached.

Output commands are subdivided into 1is·t and text transfer commands.
List commands will cause the printout of all or any part of the
contents of the text buffer to permit e:Kamination of the text. Text
transfer commands provide for the output of form feeds, corrected
text, or for the duplication of pages of an input file. List or text
transfer commands do not affect the con'tents of the buffer.

List Commands

The commands in Table 3-4 cause part or all of the contents of the
text buffer to be listed on the console terminal or line printer.

Command Format

L #L

L #nL

Table 3-4 List Commands

Action and Explanation

LIST the entirl:! page. This causes the
EDITOR to list the entire contents of the
text buffer on the console terminal.

LIST line n.
followed by
feed.

3-10

This line will be printed
a carriage return and a line

Table 3-4 List Commands (Cont I d)

Command Format Action and Explanation

L im,nL LIST lines m through n inclusive on the
console terminal.

V iV List the entire text buffer on the line
printer (if one is available) •

V inV List line n of the buffer on the line
printer.

V im,nV List line m through n inclusive on the
line printer.

The EDITOR remains in command mode after a list command, and the value
of the current line counter is updated so as to equal the number of
the last line printed.

Text Transfer Commands

The following commands
EDITOR is designed
meaningless characters
illegal (nonexistent)
control characters will

control the output: of text and form feeds. The
to m1n1m1ze the possibility of illegal or
being written into a source file: therefore the

codes 340-376 and 140-177, and most illegal
not be output.

Table 3-5 Text TransfE!r Commands

Command Format

E iE

P iP

P inP

P im,nP

N iN

Action and Explanation

Output the current buffer to the output
file and transfer all input to the output
file: close the output file.

,
Transfer the entire contents of the text
buffer to the output buffer.

Transfer line n only to the output buffer.

Transfer lines m through n inclusive
(where m must be less than n) to the
output buffer. When the output buffer
becomes full, the text is output to the
indicated output file. The P command
automatically outputs a FORM character
(214) after the last line of output.

Transfer the contents of the text buffer
to the output buffer, delete the text
buffer and read in the next logical page
of text from thE! input file.

3-11

Command

N

Q

Table 3-5 Text Transfer Commands (Cont'd)

Format

inN

#Q

Action and Explanation

Execute the above sequence n times. If n
is greater than the number of pages of
input text, the command will proceed in
the specified sequence until it reads the
end of the input. file, then it will return
to command modle.

The N command <cannot be used with an empty
text buffer. A? is printed if this is
attempted.

Immediate end·-of-file. The Q command
causes the lentire text buffer to be
output. All text written into the output
buffer is then written into the output
file and the file closed, with control
returning to the Cassette Keyboard
Monitor.

3.6.3 Editing Commands

The following commands permit deletion, alteration, or expansion of
text in the buffer.

Command Format

B #B

C inC

C #m,nC

Table 3-6 Editing Commands

Action and Explanation

List the n~ber of available memory
locations in the text buffer. The EDITOR
returns the number of locations on the
next line. Iro es timate the number of
characters tha"t can be accomodated in this
area, mUltiply the number of free
locations by 1.7.

Change line n. Line n is deleted, and the
EDITOR enters text mode to accept input.
The user may now type in as many lines of
text as he desires in place of the deleted
line. If more than one line is inserted,
all subsequent lines will be automatically
renumbered and the line count will be
updated appropriately. A CTRL/FORM
terminates the command.

Change lines m through n inclusive (m must
be numbered lless the n). Lines m through
n are deleted and the EDITOR enters text
mode allowing the user to type in any
number of lines in their place. All
subsequent lines will be automatically

3-12

Command

o

o

F

G

G

Table 3-6 Editing Commands (Cont'd)

Format

'nD

im,nD

iF

iG

tnG

Action and Explanation

renumbered to account for the! change and
the line count wi 11 be updatE!d.

After any Change operation, a return to
command mode is accomplishE!d by typing a
CTRL/FORM. After a Change, t:he value of
the current line counter (.) is equal to
the number of the last line input. The C
command utilizes the Text Collector in
altering text (see Section 3.7).

Delete line n. Line n is removed from the
text buffer. The current line counter and
the numbers of all succeeding lines are
reduced by one.

Delete lines m through n inclusive. The
space used by the line to be deleted is
reclaimed as part of the Delete function
(refer to Section 3.7, Text Collection).

Used during a string search. Find the
next occurrence of the string currently
being searched for (see SE!ction 3.8.2,
Inter-Buffer Character Strinq Search).

Get and list the next line which has a
label associated with it. (A label in
this context is any line of text which
does not begin with a spacE~, slash, TAB,
or RETURN). The EDITOR begins with the
line following the current l:.ne (line .+1)
and tests for a line with a label. This
will most often be a line beqinning with a
tag; it might also be a line containing an
origin. For example:

TAD
DCA

ITHIS IS A COMMENT

(This is the current
line)

H~R~, 0 (This line would be
printed by the command
G)

TAD
ISZ;

(This line would also
be prin1:ed if another
G were typed)

Get and list the next line which begins
with a label; the EDITOR beqins at line n
and tests it and each succeeding line as
described in the preceding e:{ample.

3-13

Conunand

I

I

J

K

Table 3-6 Editing Commands (Cont'd)

Format

In!

II

IJ

IK

Action and Explanation

Both G and nG update the current line
counter after finding the specified line.
However, if ei 1:her version of the GET
conunand reaches the end of the buffer
before finding il line beginning with an
ASCII character other than a tab, slash,
or space, the current line counter retains
the value it was assigned before the GET
was issued, and a ? is typed to indicate
that no tagged line was found. The EDITOR
remains in con~and mode after a GET
command.

Insert the typed text before line n until
a form feed (CTRL/FORM) is encountered.
The EDITOR enters text mode to accept
input. The first line typed becomes the
new line n. Rubouts are recognized. Both
the line count: and the numbers of all
lines following the insertion are
increased by the! number of lines inserted.
The value of the current line counter is
equal to the number of the last line
inserted. To re!enter conunand mode, the
CTRL/FORM key combination must be typed
(terminating te>:t mode). If this is not
done, all subsequent commands will be
interpreted erroneonusly as text and
entered in the! program inunediately after
the insertion.

Insert text before line 1 (when used
wi thout an argument).

Initiate an inter-buffer string search
(See Section 3.8.2, Inter-buffer Character
String Search).

Kill (delete) the entire page in the
buffer. The values of the special
characters (/) cLIld (.) are set to zero.
The EDITOR remai.ns in conunand mode.

NOTE

The EDITOR ignores the commands
nK or m,nK. This prevents the
buffer from accidently being
destroyed if the user intended
to type a I,ist command (m,nL).

3-14

'rable 3-6 Editing Commands (Cont' d)

Command

M

S

Y

$

Format

im,n$jM

inS

inY

i$TEXT"
#$TEXT'
#"

3.7 TEXT COLLECTION

Action and Explanation

Hove lines m through n inclusi vc~ to before
line j (m must be numerically less than n
and j may not be in the range between m
and n). Lines m through n a.re deleted
from their current position and are
inserted before line j. The lines are
renumbered after the move is completed
although the value of the current line
counter (,) is unchanged, as mO'/ing lines
does not use any additional bu::fer space.
(The $ character is produced by typing a
SHIFT/4.)

A line or group of lines may be moved to
the end of the! buf fer by spec:L fying j as
/+1. For example, 1,lO$/+lM. Since the
MOVE command re!quires three arquments, it
must have three arguments in order to move
even one line. This is done by specifying
the same line number twice. Fo::::- example,
5,5$23M. This will move line !) to before
line 23. The EDITOR remains :Ln command
mode after a Move command.

Search line n for the character specified
after typing the S and a carriage return.
Allow modification of the line when the
character is found. (See Section 3.8.1,
Single Character String Search~)

Skip to a logica.l page in the input file,
without writing any output. For example,
#5Y.. This command reads through 4
logical pages of input, deleting them
without producing output. The ::ifth page
is read into the text buffer ~md control
automatically returns to command mode. If
there are no more pages of input, the
EDITOR issues a ? and returns 1:'0 command
mode.

a chara.cter string search for the
TEXT (see section 3.8 .. 2, Intra-

Perform
string
Buffer
Following
search for
string.

Character String Search).
a string search, #" causes a
the next occurrenGe of the

The CAPS-8 EDITOR contains an automatic text collector which reclaims
buffer space following the use of a D, S, or C command. If a full

3-15

buffer condition is reached, the user may output lines of text (using
the P command, for example), and the,n delete these lines from the
buffer--text collection is automatic and. always occurs on the three
commands mentionE~d above.

NOTE

If extremely large amounts of 1:ext are deleted,
the text collection process could take several
seconds. For small amoun.ts of text, no
appreciable time is lost.

3.8 CHARACTER SEARCHES

Two types of searches were mentioned in Table
character search and the character string search.
in turn.

3-6--the standard
Each is explained

3.8.1 Single Character Search

The single character search may take one: of the following forms:

#S
or

inS
or

im,nS

where m and n represent line numbers (m<n), and S initiates the search
command. This command searches the enti.re text buffer (or the line(s)
indicated) for the search character. The search character is typed by
the user after he types the RETURN key which enters the command, and
does not echo on the teleprinter. The EDITOR prints the contents of
the entire buffer or the indicated linE!(s) until the search character
is found. When the se:arch character is found, printing stops and the
user types a response chosen from the following table:

Table 3-7 Search Character Options

Option

text

CTRL/G (bell rings)

Result

Enter text: at that point at which
the search character was found and
printing stopped.

Change the search character to the
next character typed: search
continues. If the character is not
contained in the line, the
remainder of the line will be typed
and control will be returned to
command mode. (For example, CTRL/G
CTRL/G would cause the remainder of
the line to be lis ted.)

3-16

Table 3-7 Search Character Options (Cont'd)

option Result

CTRL/FORM

RETURN key

LINE FEED kE!y

RUB OUT key

3.8.2 Character String Search

Continue searching for the next
occurrence of the charactHr.

End line here, dele1:ing all
subsequent text on that l:.ne.

Make two lines out of thE! current
line. Typing a line feed actually
inserts a carriage return without
returning control to command mode.

Delete cha.racters from the line. A
rubout echoes a backslaBh (\) for
each chara.cter deleted. When all
characters have been deleted,
echoing of "\" stops.

The character string search can identi~y a given line in the buffer by
the contents of that line or any un~que combination of characters.
This search returns the line number as a. parameter that can be used to
further edit the text. There are two types of string search
available: intra--buffer search and inter-buffer search.

Intra-Buffer Character String Search

The intra-buffer search scans all text in the current buffer for a
specified character string. If the string is n01: found, a ? is
printed and control returns to command mode. If the string is found,
the number of the line which conta.ins the string :Ls put into the
current line counter and control waits for the user to issue a
command. Thus, searching for a cha.racter string in this manner
furnishes a line number which can then be used in conjunction with
other EDITOR cormnands. This provides a. useful framework for editing,
as it eliminates the need to count lines or search for line numbers by
listing lines.

An intra-buffer search is signalled by typing the ALT MODE key (which
echoes as $) in response to the i printed by the EDITOR. The user
then types the string to be found (as ma~ny as 20 characters may be
specified--any additional characters typed are echoed but not included
in the search). The search string calnnot be broken across line
boundaries. Typing a single quote (') terminates the character
string; when the RETURN key is typed the! search is performed beginning
at line 1 of thE! text buffer. Use of t:he double quote (") causes the
search to begin at the current line +1. (Use of 'and n as command
elements prohibits their use in the: search string,. An incorrect
response resets the current line counter to the be9inning of the
buffer.)

3-17

For example, assume the text buffer contctins the following text:

ABC DEF' GJO
lA283C4D5E6
.STRINGABCD

The user wants to list the line that cont:ains ABC; this could be done
by typing:

~$ARC'L

The search begins with line 1 and continues until the string is found.
The current line counter is set equal to the line in which the string
ABC occurred, and the L command causes t:he line to be printed as
follows:

ARC DEF' llJO

Control returns to command mode, awaitinq further commands. If the
user wanted to find the next reference tel ABC, he could type:

In this case, " is a command which causes: the last string searched for
to be used again, with the search beginning at the current line +1.
It is not necessary to enter the search string again. The command may
be used several times in succession. For example, if the user wanted
to find the fourth occurrence of a string containing the characters
FEWMET he could type:

IS F'EINl-:ET' .. "' .. L

This command lists the line which contains the fourth occurrence of
that string. The L (List) command (or aLny other command code) can be
given following either • or" The L command causes the line to be
listed when and if it is found.

In order to clear the text string buffer, the user can type:

#$'

The system responds with a question mark and the text string buffer is
cleared.

The properties of the commands I and " allow for easy and useful
editing, as the following example illustrates. In order to change CIF
20 to CIF 10, the user can issue the following commands:

3-18

#$ D'JM" , $C IF 20 ftC
elF 10 /I'vE W F I ~LD (CTRL/FORM)

The above set of instructions first causes the EDITOR to start at line
1 and search for a line beginning with DUM,. A search is then made
for CIF 20, starting fror.1 the line af1:er the line containing the
string DUM,. When this string is found, the line number of the line
containing the string CIF 20 becomes thE~ current line number. The C
command is gi ven, and the user then c::hanges the line to the correct
instruction, CIF 10 /NEW FIELD •

Since this search feature produces a line number as a result, any
operations which can be done by explicitly specifying a line number
can be done by specifying a string instE~ad. For example:

#$STQING'+4L

will list the fourth line after the first occurrence of the text
STRING in the text buffer.

1$ LABEL 1" • " LABEL?" "L

will list all lines between the two labeds, inclusive.

#$PFLfTG'S

will do a characit.er search on the line which contains PFLUG. (The
user types the search character aft:er typing the :RETURN key that
enters the line.)

In cases where both strings and explicit: numbers are used, strings
'should be used first. For example, the following commands:

#l+$RAD! 'L

will not list th«~ next line after the st:ring BAD! occur::;. The correct
syntax is:

#$BAD!'+lL

Inter-Buffer Character String Search

The inter-buffer search scans the current text buffer for a character
string. If the string is not found, the current buffer is written to
the output file, the buffer is cleared, and the next buffer is read
from the input device. The search them resumes at line 1 of the new
buffer. This process continues until either the string is found or no
more input is le:Et. If input is exhaust:ed, control returns to command
mode with all th«~ text having been writt:en to the outpU": file. If the
string is found, control returns to command mode with the current line
equal to the number of the line containing the first oCI::urrence of the
string. For example, a command to find the character s'tring GONZO may

3-19

appear as follows:

IJ
$llONZO'
I. =vH~24
~

The J command initiates an inter-buffer search; the $ is printed
automatically by the EDITOR, and the user types in the character
string he wishes to search for. The search proceeds, and when the
string is found, control returns to command mode. The user types the
.= construction to discover the number of the line in the current
buffer on which the string is contained. To find further occurrences
of the string GONZO, the user can use the F conunand. The F command
uses the last character string entered to search the buffer starting
from the current line count +1.

#F'
#.=0106
- --

The above example causes a search for the string GONZO starting at the
current line +1. If no output file is specified in the J or F
commarids, the EDITOR reads the next input buffer without attempting to
produce any output. This provides an E!asy way of paging through text
for a particular string.

After the J or F commands have processed the entire input file, an E
or Q command must be executed to close t:he output file.

The following two comnlands may be used to abort the string search
command, once given:

Command

CTRL!U

RUB OUT

Table 3-8 Terminating a String Search

Explanation

A CTRL!U will
EDITOR conunand
entering text
command; the
ignored, as in

#J
$WORD ffJ

II

return control to the
mode if executed while

in a string search
string search conunand is
the following example:

The inter-buffer search for the
characters WO:RD was aborted by the user
typing tU before terminating the string
with ' or n

Executing the RUBOUT key while entering
text for use in a string search causes
the text so far entered to be ignored
and allows a new string to be inserted.
The EDITOR anS'rlers the command by typing

3-20

Table 3-8 Terminating a String Search (Cont'd)

Command Explanation

$, as seen in the following example:

(RUBOUT)

An example of the use of the character s'tring search is contained in
the EDITOR Demonstration Run found at thle end of this chapter.

3.9 EDITOR ERROR MESSAGES

Errors made by the user while running thie EDITOR may be of two types.
Minor errors (such as an EDITOR command string error, an attempt to
execute a read oz' write command without assigning a device, or a
search for a nonexistent string) will cause a question mark to be
typed at the left margin of the teleprin'ter paper. The command may be
retyped.

Major errors force control to return to ·the Keyboard Monitor and may
be due to one of the causes listed in Table 3-9. These errors cause a
message to be typed in the form:

?ntC

where n is one of the error codes i.n Table 3-9 and tC indicates that
control will pass to the Keyboard Monitor when a character is typed.

Error Code

o

I

2

Table 3-9 EDITOR Error Codes

Meaning

The EDITOR failed in reading from a
device. An error occurred in the device
handler; most likely a hardware
malfunction.

The EDITOR failed in writing onto a
device; generally a hardware
malfunction.

A file close error occurred. The output
file could not be closed; either the
cassette reached an end-of-tape
condition, or a sentinel file needs to
be written before any new output files
can be created on the cassette.

3-21

A ? occurs any time the EDITOR encounters a syntax error. In
addi tion, the following error message m,ay be printed by the EDITOR:

Message

UNIT HAS OPENED FILE

Me,aning

Two files cannot be open on the same
device at the same time.

During the editing of a file, the outpu-t cassette specified in the
command string may become full before the editing process is
completed. If this is the case and further writing is attempted on
that cassette, an error occurs. Thl3 output file is closed and the
message:

FULL.OUTPUT FILE-

is printed. The user must now indicate a new output cassette and file
which will contain the text that would not fit on the first cassette
and any further editing the user wishes to do. Since the contents of
the text buffer are retained through -this procedure, no text will be
lost if this error occurs.

NOTE

If no output file is spe,e:ified when this
condition occurs, th,e EDITOR again
requests an output file; this continues
until the output designation is
correctly specified.

Assuming the new output device is valid, the EDITOR will continue the
operation which filled the old file, putting all output into the new
output file. After editing is completed, the output files should be
combined using the EDITOR. The entire process may then appear as
follows:

.... R EDIT
*INPUT FILE-0:IN
*OUTPUT FILE-I: OUT
IY
IJ
$STRI NG'
FULL *OUTPUT FILE-2:0UTEMP
l·L

TAD STRING

3-22

Device 1: is full.
2: is specified as the
new output device
and editing continues.

At this point the output "file" is 2 files--l:OUT, 2:0UTEMP.
output is split like this, the split may have occurred in the
of a line. Therefore, the output files should never be
separately as the split lines will then be lost. In a case
this, the files should be combined with the EDITOR as follows:

.R EDIT/M
*INPUT FILE-l:OUT
*OUTPUT FILE-3:0UT
IE -
~INPUT FILE-2:0UTEMP
*1 NPUT FILE-

The new file, OUT, may then be edited.

3-23

When
middle
edited

such as

3.10 EDITOR DEMONSTRATION RUN

The following ,=xample illustrates both the use of the EDITOR to create
a new file and a few of the commands available for editing. Sections
of the printout are coded by letters which correspond with the
explanations following the example.

A

B

C

D

E

F

G

H

I

J

K

L

*1 NPUT FILE-{ .R EDIT

*OUTPU T FI LE-.0: P ROG. PA L

tA

{CHRPUT' 0 SNA
JMP I CHRPU T
CDF 0
DCA SHELF

(TAD WI \HAT 1

{
SPC
JMP PUTII
SNA CLO
JMP PUTI2
CMA
DCA lNH AT 1

{~.- 35 SNA CLO\A

t·l
SNA ClA

CP

.!K

!.A
TAD SHELF
AND (360
ClL RTL

{ ~E

{

.R EDIT
*INPUT FIlE-0:PROG.PAL
~OUTPUT FILE-l:PROG.PAL

{
'R
.l$SPC'L

SPC

SPC\A

IACCEPTS CHAR IN AC AND
IPACKS IT INTO OUTPUT BUFFER
II GNORES NULL

3-24

A

B

C

o

E

F

G

H

I

J

K

L

The user calls the EDITOlt; the output
file will be called PROG.PAL and will be
stored on the default dE!vice--cassette
drive O. There is no input file since
one will be created from the console
terminal keyboard. The Append command
is used to insert text into the empty
buffer.

Text is inserted.

The user makes a mistake and uses the
RUBOUT key to correct it

More text is added.

The user n.otices a typing mistake he has
made several lines back in the text. He
types a CT'RL/FORM to finish the Append
command, searchs for the illegal
character, corrects it, and then lists
the line.

The P command writes the c:::urrent buffer
into the cmtput file plac:Lng a form feed
after the last line. ~rhe K command
deletes all text in the current buffer
in preparation for a new page of text.

The user inserts new t4~xt using the
Append command. When he is finished he
types a C'1I RL/FORM to end t.he command.

The user
returns
Monitor.

closes
to the

the file;
CaSS4:!tte

control
Keyboard

In lookin9 over the listing, the user
notices another mistake~ he opens the
file, calling it by the same name in
both the input and output: specification
lines.

The Intra-Buffer Character String Search
is used to locate the illegal
instruction and list it.

The Single Character Search is used to
find the letter to be corrected, and the
RUBOUT key deletes it.

The file is closed and control again
returns to the Keyboard Monitor.

3-25

4.1 INTRODUCTION

CHAPTER 4
SYSTEM COPY

The CAPS-8 System Copy (SYSCOP) program allows the user to copy
individual files or all files from one cassette to another, giving him
the ability to make mUltiple copies of a cassette, add files to a
cassette, and "clean up" full cassettes so that they may become
available for future use. System Copy transfers all non-empty files
on the specified input cassette to the specified output cassette;
space taken up by previously deleted files (*EMPTY files) is regained.
(Single file transfers of ASCII files can be performed using the
CAPS-8 EDITOR; see Chapter 3.)

4.2 CALLING AND USING SYSTEM COpy

To call SYSCOP from the System CassettE!, the user types:

.R SYSCOP/Options

in response to -the dot (.) printed by t.he Keyboard Monitor.

4.2.1 System Copy Options

There are three options available for use with System Copy; these
options are discussed in Table 4-1.. (Option usage is explained in
Chapter 2, Section 2.4.3.)

Option

/F

/U

/Z

Table 4-1 System Copy Options

Meaning

This option allows the user to transfer
individual cassette files from one
cassette to anothE!r. To use the /F
option, the user rE!sponds to the request
for input specification with the
cassette drive number and the name of
the file to be copied. If the user
makes a typing error while entering the
input specification, he can type CTRL/U
to redo the entry.

If the /U option is specified, drive 1
is zeroed and then drive 0 is copied to
drive 1. (The /U option is especially
useful for makin9 copies of the System
Cassette.) When thE! /U option is used,
no further I/O specifications are
necessary.

This option caUSE~S the output drive
(indicated in thE~ output specifi,::ation
line) to be zeroed before any c()pying
begins.

4-1

4.2.2 Input and Output Specifications

Before indicating the input and output drives to be used for the copy
operation, the user must ensure that the proper cassettes are mounted.
The input cassette (the one to be copied) should be write-locked to
protect the data. The output cassette (the one that will be the new
copy) should be write-enabled to receive the data. When the input and
output cassettes are mounted on the correct drives, the user is ready
to begin the copy operation.

After SYSCOP has been called from the System Cassette, it asks for the
input specification as follows:

I N-

The user responds with a single digit (0 through 7) specifying the
input cassette drive number. A carriage return is not necessary. If
the IF option was used, the user responds to the IN- query with the
drive number and the name of the file to be copied; in this case, the
user must also type a carriage return. In the following example, a
file named ECHO is to be copied from drive 1.

IN-:ECHO

After the input specification has been entered, System Copy requests
the output specification as follows:

The user responds with a single digit (0 through 7) specifying the
output drive number. The output drive number cannot be the same as
the input drive number. If the user wishes to change the input/output
specifications at this point, he may type a carriage return instead of
the drive number after OUT- to return to the IN- message.

After both input and output drives have been indicated, the copy
operation starts. All non-empty files on the input cassette are
copied, in order, onto the output cassette. (If a file is to be
copied onto a cassette under the same filename and extension as one
already present on the cassette, it will still be copied; however,
future reference to the file will cause the first file under that name
to be accessed. To circumvent this condition, the user should first
delete any old files or zero the output cassette.) t~en all files have
been copied, control returns to the Keyboard Monitor.

4-2

Only two responses other than the digits 0 through 7 are accepted in
reply to the input/output specification messages: carriage return and
CTRL/C. Carriage return returns the US4~r to the input specification
message; CTRL/C returns the user to the Keyboard Monitor. Any other
response is considered illegal. Illegal responses are neither
accepted nor echoed by System Copy; System Copy simply waits for the
user to type a legal response.

4.2.3 System Copy Example

In this example, the user wishes to mak4~ a copy of the Sys tern Cassette
which is mounted on drive O. One purpose of the copy operation is to
regain wasted space being taken up by previously deleted files. A
directory listing shows that the System Cassette currently contains
the following files

C2BOOT.BIN
MONTOR.BIN
SYSCOP.BIN
*EMPTY.
EDIT .BIN
PALC .BI N
BASIC .BI N
*EMPTY.
*EMP TY •
*EMPTY.
*EMP TY.
ABC

01/22/73
01/22/73
01/25/73

01102/73
01/02/73
01/~2/73

01/22/73

The user mounts a write-enabled cassetb~ on drive 2 and rewinds the
tape. He than calls System Copy as follows

~R SYSCOP IZ

The /Z opti?n will zero the cassette mounted on the cassette drive
specified 1n the OUT- message (drive 2), leaving only the sentinel
file on the cassette. System Copy then requests the input and output
drive numbers and the user responds as .follows:

The copy operation starts. If System Copy detects any problems during
the copy opera.tion, it prints one of the error messages explained in
Section 4.3. A successful copy operation returns control to the
Keyboard Monitor. The user can then issue a DIrectory command to
ensure that all files were copied correctly. In this example, a
successful copy operation should produce the follm.,ing directory
listing:

C2BOOT.BIN
MONTOR.BIN
SYSCOP.BIN
ED IT .B IN
PALC .BIN
BASIC .BIN
ABC

01/22/73
01/22/73
01/25/73
01/02/73
01/02/73
01/02/73
01/22/73

4-3

4.3 SYSTEM COPY ERROR MESSAGES

Errors which occur during a System Copy operation may be of two types:
user errors and cassette errors. Use:r errors may be corrected with
the appropriate action as detailed in Table 4-2. Cassette errors
normally require the user to use another cassette (for either input or
output) to complete the copy operation. Control does not return to
the Keyboard Monitor when a System Copy error occurs. The user may
use CTRL/C to return to the Monitor if he cannot correct the indicated
error.

Table 4-2 System Copy Error Messages

Message

INPUT ERROR ON UNIT n

UNIT n NOT READY

UNIT n WRITE LOCKED

OUTPUT ERROR ON UNIT n

Meaning

An input error has occurred on the
cassette drive specified. The user
should try the copy operation using
another cassette.

There is either no cassette on the
cassette drive specified or no such
drive exists.

The user tried to write data when
the write protect tab of the
cassette on the drive specified was
write-locked.

An output error has occurred on the
cassette drive specified. The user
should try the copy operation using
another cassette.

4-4

5.1 INTRODUCTION

CHAPTER 5
PALC

PALC (an acronym for Program Assembly Language for Casse:tte) is an 8K
2-pass assembler (with an optional third pass) designed for the CAPS-8
System. A program written in PALe sourcle language is translated by
the assembler into a binary file in two passes. Pa.ss I reads the
input file and sets up the symbol table; pass 2 reads the input file
and uses the symbol table created in pass 1 to gene~ate the binary
(object) file. The binary file may then be loaded into memory using
the Cassette Keyboard Monitor.

PALC allows I/O using any CAPS-8 device ~,.,hich handles ASCII text. It
is called from the System Cassette using the Keyboard Monitor Run
command, accepts input generated by the CAPS-8 EDITOR, and will
generate output acceptable for use with both the Moni tc,r Load and Run
commands.

5.2 CALLING AND USING PALC

The user calls PALC from the System Cassette by typing:

PALC responds by printing:

-INPUT FILES
..!...

.R PALC/Options

The user enters his input cassette drive number and filename in answer
to the asterisk printed by PALC; a total of three input specifications
are allowed, so that the input interacti()n may appear as follows:

-INPUT. FILES
*l:TRA.PAL
i0 zTRB .PAL
,.!11 THe .PAL

Usually input files will contain the extension .PAL (see Chapter 2,
Section 2.2.2), and PALC will assume 1:his extension unless the user
explicitly designates another. Thus in 1:he above example the user may
have responded by typing only I:TRA, O:TRB, and I:TRC, in which case
PALC would automatically assume and echo the .PAL extension.

If the filename contains an extension other than .PAL, the user must
specify this extension when entering the input. For example:

-INPUT FILES
..!.lIFAIL.l
i2ITABLE.ASC.
~zSHOR.

5-1

In the case of the third input file (SHOR.) an extension is not to be
indicated. If the user wants to prevent PALe from assuming .PAL, he
must be sure to include a period in the input line; otherwise PALC
will append .PAL a.nd look for the filename with that extension.

If the user does not specify a drive number in his input line, the
default device--drive O--is assumed. PALC will automatically insert
0: in the input line before echoing the filename as the user has
entered it. For I~xample:

*0: FLOA .PAL

The user actually typed only the charactE!rs FLOA; PALC assumed both
the drive number 0 and the .PAL extension and correctly inserted these
in the I/O line before echoing the complE!te line.

A carriage return typed in response to any of the asterisks indicates
that there are no more input files.

After the input specifi.cations have been entered, PALC requests the
binary output as follows:

-BINAH.Y FILE
..!.

The user responds similarly here by indicating an output drive number
and filename. Only one binary file is allowed and it should have the
extension .BIN (since the Monitor Run and Load commands assume this
extension). If the user wants his binary file to be called by the
same name as the first input file he need only type the drive number,
a colon, and a. carriage return. Pl~C will echo this, adding the
filename with a .BIN extension. For example:

-INPuT F'ILES
~l :OPEN.PAL
~
-8 I NAR Y FILE_
..!0:0PEN.BIN

As in the input line, drive 0 and the extension (.BIN) are assumed if
the user fails to specify them, and a response of only a carriage
return indicates that no binary file is to be produced.

Once the binary output line has been ans\Olered, PALC prints:

-LIST TO

*
The user has a choice of sending his output listing to either the
console terminal or the line printer. To send output to the console
terminal the user types the characters TTY in response to the asterisk
as follows:

-LIST TO
..!.ITY

5-2

To send output to the line printer, the user responds by typing LPT:

-LIST TO
~LPT

A response of a carriage return indicates that no listing is to be
produced.

During a PALC assembly only one listing is produced and :it may be sent
to only one device, either the line printer or consoll~ terminal. A
second listing must be produced by anothe!r assembly.

If more cassettes are to be involved in t:he assembly than the user has
TU60 unit drives, a certain procedure must be follml7ed during the
assembly process. For example, assume the user has only one TU60 dual
cassette unit, and 3 input files are s t:ored on individual cassettes.
His I/O specification is as follows:

-INPUT FILES
*l:Fl.PAL -
.:!0:F2.PAL
*0:F3.PAL
-=BINARY FILE
*l:RESLT.BIN
-=-LIST TO
~LPT

PALC is a 3-pass assembler, therefore all three input files will be
referenced 3 times. Assume the user has. mounted 1:Fl.P1U, on drive 1,
and 0:F2.PAL on drive 0: assembly begin.s. First the file Fl is
processed, then F2. After assembly of F2 PALC looks for F3, but since
the file is on a t:hird cassette which is not mounted, the assembly
pauses and PALC prints:

This pause in the assembly allows the user to dismount a cassette and
replace it with the cassette containing the file F3.PAL. The user
then responds to t:he above I/O line with the drive number on which he
has mounted the nE~W cassette (assume 0), as follows:

MOUNT F3.PAL'?0

If the response is valid, PALC responds by typing a CR/LF and
continues pass 1 of the assembly. (An in.valid response Gauses PALC to
print a ?: the USE!r may then type the correct response.)

When pass 1 is completed PALC automatically begins the second pass,
which creates the binary file. The binary output file specification
must now be made. Regardless of the output specification indicated in
the initial dialo9ue, PALC pauses and asks:

MOUNT rtESLT.BIN1

5-3

The user must mount the output cassette which is to contain the binary
file and respond with the drive number on which he has mounted it.
Assume he decides to mount the cassette on drive O. He replaces the
cassette currently on that drive (c:ontaining F3.PAL) with the new
cassette and responds to the conunand line as follows:

MOUNT RESLT.BIN?0

PALC then opens the binary file on this cassette and prints:

BINAHY FILE OPENED ON 0

NOTE

The cassette used for binary output may
not contain any of the input files.
Under no circumstances: should the
cassette containing thE! binary file be
removed from the drive until pass 2 is
completely finished. PAI,C will indicate
completion of the pass by printing the
message, "BINARY FILE CLOSED".

After specification of the binary output~ file, PALC continues pass 2
of the assembly by processing the first: input file, Fl.PAL, currently
on drive 1. After this file is process€!d, PALC pauses and asks:

MOUNT F2.PAL?

Since the binary file being created on drive 0 is only partially
complete at this point, the user must not remove the cassette from
that drive. He must instead remove the cassette from drive 1 and
replace it with the cassette containi.ng F2.PAL. He then types 1 in
response to the I/O line and assembly continues until F3.PAL is
needed. PALC again pa,uses and asks:

MOUNT F3.PAL?

Again the user replaces the cassette on drive 1 with the appropriate
one, correctly answers the I/O line, and assembly continues.

Once pass 2 is done, pass 3--the listi.ng pass--must be processed.
Drive 0 may again be used for input, and assembly of input files
continues in the same manner as during passes 1 and 2.

The procedure of mounting and dismounting cassettes may be repeated as
many times as necessary until all input files are processed and the
desired output produced. If an I/O error occurs during any of the
three passes or if an output casset~te becomes full, the user must
restart the assembly beginning with pass: 1.

5-4

NOTE

When the assembly is complete,
prints tc (CTRL/C). The user
mounts the system cassette and
CTRL/C to return to the Monitor.

PALC
then

types

5.2.1 PALC Options

Table 5-1 lists the options available in PALC which may be indicated
in the Monitor Run or Load specification line.

Option

/0

/H

/K

/N

/5

/T

5.3 CHARACTER SET

Table 5-1 PALC Options
Meaning

Generate a DDT-compatible symbol t.able
(applicable only if a listing file is
specified).

Generate non-paginattad output. Hea.der,
page numbers and page format are
suppressed (applicable only if a listing
file is specified).

Used in assembling v4ary large programs;
causes system containing 12K or more of
memory to use fields 2 and up as symbol
table storage.

Generate the symbol table, but not the
listing (applicable only if a listing
file is specified; the /H option is
assumed) •

Omi t the symbol tab14a normally generated
with the listing (,applicable only if a
listing file is specified).

Output a carriage return/line feed in
place of the form .feed character (s) in
the program (appli'cable only if a
listing file is specified).

The following characters are acceptable .as input to PALe:

1. The alphabetic characters: A through Z

2. The numeric characters: 0 throu9h 9

3. The characters described in following sections as
special characters and operators

5-5

4. Characters which are ignored during assembly such
as LINE: FEED, FORM FEED, and RUB OUT

All other characters are illegal (except when used in a comment) and
cause the error message:

IC AT nnnn

to be printed during pass 1; nnnn represents the location at which the
illegal character occurred. (As assembly proceeds, each instruction
is assigned a location determined by the current location counter (see
section 5.7.3). When an illegal character or any other error is
encountered during assembly, the value of the current location counter
is returned in the error message.) Illegal characters do not generally
cause assembly t:o halt. If an illegal character occurs in the middle
of a symbol, the symbol is terminated at that point.

5.4 STATEMENTS

PALC source programs are usually prepared on the console terminal
(using the CAPS-8 EDITOR) as a sequence of statements. Each statement
is written on a single line and is terminated by typing the RETURN
key.

There are four types of elements in a PALC statement which are
identified by the order of their appearance in the statement and by
the separating (or delimiting) character which follows or precedes the
element. These are:

label, instruction operand /comment

A statement must contain at least one of these elements and may
contain all four types. The assembler interprets and processes the
statements, generating one or more binary instructions or data words,
or performing an assembly prpcess.

5.4.1 Labels

A label is the symbolic name created by the programmer to identify the
location of a statement in the program. If present, the label is
written first in a statement. It must begin with an alphabetic
character, contain only alphanumeric characters, and be terminated by
a comma; there must be no intervening spaces between any of the
characters and t:he comma.

5.4.2 Instructions

An instruction may be one or more of the mnemonic machine instructions
or a pseudo-operation which directs assembly processing. (Assembly
pseudo-ops are described later in this chapter; Appendix C summarizes
both the mnemonic machine instructions and pseudo-ops used by PALC.)
Ins tructions arE:! terminated with one or more spaces (or tabs if an

5-6

operand follows) or with a semicolon, slash, or carriaqe return, as
described in Sec1:ion 5.5.3.

5.4.3 Operands

Operands are the octal or symbolic addresses of an assE~mbly language
instruction or the argument of a pseudo-operator, and can be any
expression. In each case, interpretation of an operand depends upon
the instruction or the pseudo-op. Operands are terminated by a
semicolon, slash, or carriage return.

5.4.4 comments

The programmer may add notes or comments to a statement by separating
these from the remainder of the line with a slash. Such comments do
not affect assembly processing or program execution but are useful in
the program listing for later analysis or debugging. The assembler
ignores everything from the slash to the next carriage return. (For
an example see Section 5.5.3, Statement Terminators.)

It is possible to have only a carriage return on a line, resulting in
a blank line in the final listing. No error message is given.

5.5 FORMAT EFFECTORS

The following characters are useful in controlling the format of an
assembly listingr • They allow a neat r,eadable listing to be produced
by providing a me:ans of spacing through the program.

5.5.1 Form Feed

The form feed code causes the assembler to output blank lines in order
to skip to a new page in the output listing during pass 3; this is
useful in creating a page-by-page listin9. The form feed is generated
by typing a CTRL/L on the console terminal.

5.5.2 Tabulations

Tabulations are u.sed in the body of a source program to separate
fields into columns (for details refer ·to Chapter 3). For example, a
line written:

GO,TAD TOTAL/MAIN LOOP

is much easier to read if tabs are inserted to form:

5-7

GO, TAD TOTAL IMAIN LOOP

5.5.3 statement Terminators

The RETURN key is used
feed/carriage return
semicolon (;) may also
considered identical
terminate a comment.

to terminate a
combination to
be used as a
to a carriage

For example:

TAD A ITHIS IS A COMMENT; TAD R

statement and causes a line
occur in the listing. The
statement terminator and is
return except that it will not

The entire expression between the slash (/) and the carriage return is
considered a comment. Thus in this caSE~ the assembler ignores the TAD
B.

If, for example, the user wishes to wri1:e a sequence of instructions
to rotate the contents of the accumulator and link six places to the
right, it might look like the following::

rlTH
RTrl
HTH

However, the programmer can alternatively place all three instructions
on a single line by separating thE~m with the special character
semicolon (;) and terminating the entirE~ line with a carriage return.
The above sequence of instructions can 1:hen be written:

These multi-statement lines are particularly useful when setting aside
a section of data storage for use during processing. For example, a
4-word cleared block could be reserved by specifying either of the
following:

or

LIST,

LIST~ 0
o
o
o

0; 0; o

Either format may be used to input data words (data words may be in
the form of numbers, symbols, or expres~;ions, explained next.) Each of
the following lines generates one storaqe word in the object program:

5-8

DATA.. 1111
A+C-B
5
123+82

5.6 NUMBERS

Any sequence of digits delimited by either a SPACE, TAB, semicolon, or
carriage return forms a number. PALC initally interprets numbers in
octal (base 8). This base can be changed to decimal using a special
pseudo-operator (discussed in Section 5.10.2). Numbers are used in
conjunction with symbols to form expressions.

5.7 SYMBOLS

A symbol is a string of alphanumeric characters beginning with a
letter and delimited by a non-alphanumeric character. Although a
symbol may be any length only the first six characters are recognized;
since additional characters are ignored, symbols which are identical
in their first six characters are considered identical.

5.7.1 Permanent Symbols

The assembler contains a table (called its permanent symbol table)
which lists the symbols for all PDP-8 pseudo-op codes, memory
reference instructions, operate and lOT (Input/Output Transfer)
instructions. These instructions are symbols which are permanently
defined by PALC and need no further definition by the user; they are
summarized in Appendix C. For example:

HLT This is a symbolic instruction
assigned the value 7402 by the
assembler and stored in its permanent
symbol table.

5.7.2 User-Defined Symbols

All symbols not defined by the assembler (and represented in its
permanent symbol table) must be defined within the source program.

A symbol may be used as a statement label, in which case it is
assigned a value equal to the current location counter; it is called a
symbolic address and can be used as an operand or as a reference to an
instruction. Permanent symbols (instructions, special characters, and
pseudo-ops) may not be used as symbolic addresses.

The following are examples of legal symbolic addresses:

ADDR"
TOTAL"
.sUM"
AI ..

5-9

The following are illegal symbolic addresses:

AD>M ..
7ABC ..
LA BEL ..
D+TAG ..
LABEL ..

(contains an illegal character)
(first character must bE~ alphabetic)
(must not contain imbedded spaces)
(contains a legal but non-alphanumeric character)
(must be terminated by a comma with no

intervening spaces)

5.7.3 Current Location Counter

As source statements are processed, Pru~c assigns consecutive memory
addresses to the instructions and data words of the object program.
The current location counter contains the address in which the next
word of object code will be assembled cmd is automatically incremented
each time a memory location is assigned. A statement which generates
a single object program storage word increments the location counter
by one. Another statement might generate six storage words,
incrementing the location counter by six.

The user sets or resets the location counter
followed by the octal absolute address value
word is to be stored. If the origin is not
begins assigning addresses at location 200.

*300 /SET
TAG, CLA

JMP A
B, 0
A, DCA B

by typing an asterisk
in which the next program
set by the user, PALC

LOCATION COUNTER TO 300

The symbol TAG (in the preceding example) is assigned a value of 0300,
the symbol B a value of 0302, and the symbol A a value of 0303. If a
symbol is defined more than 40nce in this manner, the assembler will
print the illegal definition diagnostic:

ID address

where address is the value of the location counter at the second
occurrence of the symbol definition. The symbol is not redefined.
(For an explanation of diagnostic messages refer to Section 5.14 PALC
Error Conditions.) For example:

START,

CONTIN,

A,
COUNTER,
START,

*3~~0
TAD A
DCA COUNTER
JMS LEAVE
JMP START
-74
o
CLA CLL

5-10

The symbol START would have a value of 0300, the symbol CONTIN would
have a value of 0302, the symbol A would have a value of 0304, the
symbol COUNTER (considered COUNTE by the assembler) would have a value
of 0305. When the assembler processed the next line it would print
(during pass 1):

IR CQUNTE+0001

Since the first pass of PALC is used to define all symbols, the
assembler will print a diagnostic during pass 2 if reference is made
to an undefined symbol. For example:

A,

C,

*7170
TAD C
CLA CMA
HLT
JMP A 1
o
$

The dollar sign must terminate
all PDP-8 assembly programs.

This would produce the undefined symbol diagnostic:

US A+0003

5.7.4 Symbol Table

Initially, the assembler's symbol table contains the mnemonic op-codes
of the machine instructions and the assembler pseudo-op codes as
listed in Appendix C; this is its permanent symbol table. As the
source program is processed, user-defined symbols along with their
binary values are added to the symbol table. The symbol table is
listed in alphabetical order at the end of pass 3.

During pass 1, if PALC detects that the symbol table is full (in other
words, there is no more memory space in which to store symbols and
their associated values), the symbol table exceeded diagnostic is
printed:

SE address

The assembler then prints t C and waits for a response from the user.
By typing t C the user can return control to the Monitor. If the
system contains more than 8K of memory, the user may choose the /K
option with the Run command (see section 5.2.1), or more address
arithmetic may be used to reduce the number of symbols. It is also
possible to segment a program and assemble the segments separately,
taking care to generate proper links between the segments. (See
Section 5.11.) PALC's symbol capacity is 768 symbols. The permanent
symbol table contains 69 symbols, leaving space for 699 possible
user-defined symbols. Each additional 4K allows 768 new symbols.

Section 5.10.12 provides instruction.s concerning altering PALC's
permanent symbol table should the USE!r wish to add instructions more
suited to his programming needs.

5-11

5.7.5 Direct Assignment statements

The programmer may insert new symbols with their assigned values
directly into the symbol table by USin9 a direct assignment statement
of the form:

SYMBOL=VALUE

VALUE may be a number or expression. No spaces or tabs may appear
between the symbol to the left of thE~ equal sign and the equal sign
itself. The following are examples of direct assignment statements:

A=6
EXIT=JMP I 0
C=A+B

All symbols to the right of the equal si.gn must be already defined.
The symbol to the left of the equal sign is subject to the same
restrictions as a symbolic address, and its associated value is stored
in the user's symbol table. The use of the equal sign does not
increment the location counter: it is, rather, an instruction to the
assembler itself.

A direct assignment statement may also E!quate a
value assigned to a previously defined symbol.
symbols share the same memory location.

8ETA=17
GAMMA=BETA

new symbol to the
In this case, the two

The new symbol, GAMMA, is entered into the user's symbol table with
the value 17.

The value assigned to a symbol may be changed as follows:

ALPHA=5
ALPHA=7

The second line of code shown changes the value assigned to ALPHA from
5 to 7. (This is legal but will generate an RD error message,
explained below.)

Symbols defined by use of the equal sign may be used in any valid
expression. For example:

A=100
B=400
A+B
TAD A

IDOES NOT UPDATE CLC
IDOES NOT UPDATE CLC
ITHE VALUE 500 IS ASSEMBLED AT LOC. 200
ITHE VALUE 1200 IS ASSEMBLED AT LOC. 201

If the symbol to the left of the equal sign has already been defined,
the redefinition diagnostic:

RD address

will be printed as a warning, where address is the value of the
location counter at the point of redefinition. The new value will be

5-12

stored in the symbol table; for example:

CLA=7600

will cause the diagnostic:

RD +0200

Whenever CLA is used after this point, it will have the value 7600.

5.7.6 Symbolic Instructions

Symbols used as instructions must be pr,edefined by the assembler or
the programmer. If a statement has no label, the instructions may
appear first in the statement and must be terminated by a space, tab,
semicolon, slash, or carriage return. The following are examples of
legal instructions:

TAD
PAGE
ZIP

(a mnemonic machine instruction)
(an assembler pseudo-op)
(an instruction defined by the user)

5.7.7 Symbolic Operands

Symbols used as operands normally have a value defined by the user.
The assembler allows symbolic referlences to instructions or data
defined elsewhere in the program. Operands may be numbers or
expressions. For example:

TOTAL, TAD ACI + TAG

The values of the two symbols ACI and 'TAG (already defined by the
user) are combined by a 2' s compl,ament add (see section 5.8.1,
Operators). This value is then used as the address of the operand.

5.7.8 Internal Symbol Representation For PALC

Each permanent and user-defined symbol occupies four words in the
symbol table storage area. A PDP-8 instruction has an operation code
of three bits as well as an indirect bit, a page bit, and seven
address bits. The PALC assembler distinguishes between pseudo-ops,
memory reference instructions, other permanent symbols, 'and
user-defined symbols in the symbol table.

5-13

5.8 EXPRESSIONS

Expressions are formed by the combination of symbols, numbers, and
certain characters called operators, \~hich cause speci fic arithmetic
operations to be performed. An expression is terminated by either a
comma, carriage return, or semicolon.

5.8.1 Operators

There are seven characters in PALC which act as operators:

+ Two's complement addition
TWo's complement subtraction

t Hultiplication (unsigned, l2-bit)
% Division (unsigned, l2-bit)

Boolean inclusive OR
& Boolean AND

SPACE Treated as a Boolean inclusive OR
except in a memory refE~rence
instruction

Two's complement addition and subtraction are explained in detail in
Chapter 1 of INTRODUCTION TO PROGRA1~ING; the user should refer to
that handbook if he wi.shes more informat:ion. No checks for overflow
are made during assembly, and any overflow bits are lost from the high
order end. For 4~xample:

7755+24 will give a result of 1

The operators + and - may be used freely as prefix operators.

Mul tiplication is accomplished by repeat:ed addition. No checks for
sign or overflow are made. All 12 bits of each factor are considered
as magnitude. For example:

3000t2 will give a result of 6000

Division is accomplished by repeated subtraction. The number of
subtractions which are performed is t:he quotient. The remainder is
not saved and no checks are made for sign. Division by 0 will
arbitrarily yield a result of O. For example:

7000%1000 will yield a result of 7

This could be written as:

-1000%1000

in this case the answer might be expecte!d to be -1 (7777), but all 12
bits are considered as magnitude and the result is still 7.

Use of the multiplication and division operators requires an attention
to sign on the part of the programmer beyond that which is required
for simple addition and subtraction. The following table of examples
is given for reference.

5-14

Table 5-2 Use of Operators

Expression Also written as: Result

7777+2 -1+2 +1
7776-3 -2-3 7773 or -5
Ot2 0
2tO 0
1000t 7 7000 or -1000
0%12 0
12%0 0
7777%1 -1%1 7777 or -1
7000%1000 -1000%1000 7
1%2 0

The ! operator causes a Boolean inclusive OR to be performed bit by
bit between the left-hand term and the right-hand term. (The
inclusive OR is explained in Chapter 1 of INTRODUCTION TO
PROGRAMMING.) For example:

if A=l and B=2
then A!B=0003

The & operator causes a Boolean AND to be performed bit by bit between
the left and right values. The operation is the same as that
indicated by the memory reference instruction AND.

SPACE has special significance depending on the context in which it is
used. When it is used to separate two permanent symbols or two
user-defined symbols, as in the following example:

Sfv'JA CLA

it causes an inclusive OR to be performed between them. In this case,
SMA=7500 and CLA=7600. The expression SMA CLA is assembled as 7700.
When SPACE is used following pseudo-operators and memory reference
instructions, it merely delimits the symbol.

User-defined symbols are treated as operate instructions. For
example:

A=333
*222

8.1 ClA

possible expressions and their values using the symbols just defined
are shown below. Notice that the assembler reduces each expression to
one 4-digit (octal) word:

A
B
A+B
A-B
-A
I-B
B-1
AlB
-71

0333
0222
0555
0111
7445
7557
0221
0333
7707

(an inclusivE~ OR is performed)

5-15

If the information generated is to be loaded, the current location
counter is incremented. For example:

B-1 ;A+4 ;A-B

produces three words of information; the current location counter is
incremented after each expression. The! statement:

HAL'f=HLT eLA

produces no information to be loaded (it produces an association in
the symbol table) and hence does not increment the current location
counter.

*4721
TEMP,
TEM2, 0

The location counter is not incremented after the line TEMP,; the two
symbols TEMP and TEM2 are assigned the same value, in this case 4721.

Since a PDP-8 instruction has an operation code of three bits as well
as an indirect bit, a page bit, and seven address bits, the assembler
must combine memory reference instructions in a manner somewhat
differently from the way in which it combines operate or lOT
instructions. The assembler differentiates between the symbols in its
permanent symbol table and user-defined symbols. The following
symbols are used as memory reference instructions:

AND
TAD
ISZ
DCA
JMS
JMP

0000
1000
2000
3000
4000
5000

Logical AND
Two's complement addition
Increment and skip if zero
Deposi t and cl,ear accumulator
Jump to subroutine
Jump

When the assembler has processed one of these symbols, the space
following it acts as an address field dlelimi ter.

*4100
JMP A

A, CLA

A has the value 4101, JMP has the value 5000, and the space acts as a
field delimiter. These symbols are represented as follows:

A 100 001 000 001
JMP 101 000 000 000

The seven address bits of A are taken, «:!. g. :

000 001 000 001

The rema1n1ng bits of the address are tested to see if they are zeros
(page zero reference); if they are not, the current page bit is set:

5-16

000 011 000 001

The operation code is then ORed into thE! JMP expression to form;

101 011 000 001

or, written more concisely in octal:

5301

In addition to the above tests, the pagE! bits of the address field are
compared with the page bits of the current location counter. If the
page bits of the address field are nonze!ro and do not equal the page
bits of the current location counte!r, an out-of-page reference is
being attempted and the assembler will t;ake action as described in
Section 5.11, Link Generation and Storagre.

5.8.2 Special Characters

In addition to the operators described i.n the previous section, PALC
recognizes several special characters which serve specific functions
in the assembly process. These characters are:

= equal sign
, comma
'* asterisk

dot
" double quote
() parentheses
[] square brackets
/ slash

semicolon
<> angle brackets
$ dollar sign

The equal sign, comma, asterisk, slash, and semicolon have been
previously described. The remainder will be described next.

The special character dot (.) always has a value equal to the value of
the current location counter. It may be used as any integer or symbol
(except to the left of an equal sign), and must be preceded by a space
when used as an operand. For example:

*200
JMP • +2

is equivalent to JMP 0202. Also,

*300
• +2400

will produce in location 0300 the quantity 2700. Consider:

*2200
CALL=JMS 1 •
0027

5-17

The second line (CALL=JMS I.) does not increment the current location
counter; therefore, 0027 is placed in location 2200 and CALL is placed
in the user's symbol table with an associated value of 4600 (the octal
equivalent of JMS I).

If a single character is preceded by a double quote ("), the 8-bit
value of ASCII code for the character is used rather than interpreting
the character as a symbol (ASCII codes are listed in Appendix A). For
example:

CLA
TAU ("t\

The constant 0301 is placed in the accumulator.

The code:

"

will be assembled as 0256. The characber must not be a carriage
return or one of the characters which is ignored on input (discussed
at the end of this section).

Left and right parentheses
member is optional).

CLA
TAD INDEX
TAD (2)
DCA I ~DEX

() enclose a current page literal (closing

The left parenthesis is a signal to the a.ssembler that the expression
following is to be evaluated and assigned a word in the constants
table of the current page. This is the same table in which the
indirect address linkages are stored. In the above example, the
quanti ty 2 is stored in a word in th49 linkage and literals list
beginning at the top of the current memory page. The instruction in
which the literal appears is encoded with an address referring to the
address of the literal. A literal is assigned to storage the first
time it is encountered; subsequent reference to that literal from the
current page is made to the same register. The use of literals frees
symbol storage space for variables and makes programs much more
readable.

If the programmer wishes to assign literals to page zero rather than
to the current page, he may use square brackets, [and] , in place of
parentheses. This enables the programmer to reference a single
literal from any page of memory. For example:

TAD (2]

TAD [2]

5-18

The closing member is optional.
forms: constant term, variable
another literal.

Literals may take
term, instruction,

the following
expression, or

NOTE

Literals can be nested, for example:

TAD (TAD (30

This type of nesting may be continued in
some cases to as many as 6 levels,
depending on the numbl3r of other
literals on the page and the complexity
of the expressions within the nest. If
the limits of the assembll3r are reached,
the error messages BE (too many levels
of nesting) or PE (too many literals)
will result.

Angle brackets are used as conditional dlelimi ters. The code enclosed
in the angle brackets is to be assembled or ignored contingent upon
the definition of the symbol or value of the expression within the
angle brackets. (The IFDEF, I~~DEF, IFZERO, and IFNZRO
pseudo-operators are used with angle brackets and are described in
section 5.10.9.)

The dollar sign character ($) is mandatory at the end of a program and
is interpreted as an unconditional end-of-pass. It may however occur
in a text string, comment or II term, in 1flhich case it is interpreted
in the same manner as any other character.

The following characters are handled by the assembler for the pass 3
listing, but are otherwise ignored:

FORM FEED
LINE FEED

RUB OUT

Used to skip to a ne\,l page
Used to create a line spacing without causing a
carriage return
Used by the EDITOR to allow corrections in the
input file.

Nonprinting characters include:

SPACE
TAB
RETURN

These characters are used for format control and have been previously
explained in Section 5.5.

5-19

5.9 INSTRUCTIONS

There are two basic groups of instructions: memory reference and
microinstructions. Memory reference instructions require an operand,
microinstructions do not.

5.9.1 Memory Reference Instructions

In PDP-8 computers, some instructions require a reference to memory.
They are appropriately designated memory reference instructions, and
take the following format:

o 2 3 4

I
OPERATION
C~DE ?

INDIRECT ADDRESSINGf t
MEMORY PAGE ---~-

5 6 7 8

ADDRESS

Memory Reference Bit Instructions

9 10 11

Bits 0 through 2 contain the operation code of the instruction to be
performed. Bit 3 tells the computer if the instruction is indirect
(see Section 5.9.2). Bit 4 tells the computer if the instruction is
referencing the current page or page ZE~ro. This leaves bits 5 through
11 (7 bits) to specify an address. In these 7 bits, 200 octal (128
decimal) locations can be specified; the page bit increases accessible
locations to 400 octal or 256 decimal. For a list of the memory
reference instructions and their codes •. see Appendix C.

In PALe a memory reference instruction must be followed by
or tab(s), an optional I or Z designation, and any valid
It may be defined with the FIXMRI instruction as explained
5.10.12, Altering the Permanent Symbol Table. Permanent
be defined using the FIXTAB instruction and may be used
fields as shown below:

A = 123 4
FIXTAB
TAD A

5.9.2 Indirect Addressing

a space(s)
expression.
in Section
symbols may
in address

When the character I appears in a statE~ment between a memory reference
instruction and an operand, the operand is interpreted as the address
(or location) containing the address of the operand to be used in the
current statement. Consider:

5-20

TAD 40

which is a direct address statement, where 40 is interpreted as the
location on page zero containing the quantity to be added to the
accumulator. References to locations on the current page and page
zero may be done directly. An alternate way to note the page zero
reference is with the letter Z, as follows:

TAD Z 40

This is an optional notation, not differing in effect from the
previous example. Thus, if location 40 contains 0432, then 0432 is
added to the accumulator. Now consider:

TAD I 40

which is an indirect address statement, 'where 40 is interpreted as the
address of the location containing the quantity to be added to the
accumulator. Thus, if location 40 contains 0432, and location 432
contains 0456, then 456 is added to the accumulator.

NOTE

Because the letter I is used to indicate
indirect addressing, it is never used as
a variable. Likewise the letter Z,
which is sometimes used to indicate a
page zero reference, is never used as a
variable.

5.9.3 Microinstructions

Microinstructions are divided into two groups: operate and
Input/Output Transfer (lOT) :microinstructions. Operate
microinstructions are further subdivided into Group 1, Group 2, and
Group 3 designations.

NOTE

If a programmer mistakenly specifies an
illegal combination of micro­
instructions, the assembl'er will perform
an inclusi ve OR betw1een them; for
example:

eLL SKP is interpreted as SPA
(7100) (7410) (7510)

Operate Microinstructions

within the operate group, there are thre·e groups of microinstructions
which cannot be mixed. Group 1 microinstructions perform clear,
complement, rotate and increment operations, and are designated by the
presence of a 0 in bit 3 of the machine instruction word.

5-21

0 2 3 4 5 6 7 8 9 10 11

L 0 I CLA I CLL I CMAI CML I I SSW I lAC I

ROTATE AC AND l RIGHT t j t ROTATE AC AND L LEFT
ROTATE 1 POSITION IF A 0,2 POSITIONS IF A 1
(BSW IF BITS 8,9 ARE 0)

2 - CMA,CML LOGICAL SEQUENCE: 1 -ClA , Cll

3-IAC 4 - RAR, RAl, RTR ,RTl, BSW

Group 1 Operate Microinstruction Bit Assignments

Group 2 microinstructions check the contents of the accumulator and
link and, based on the check, continue to or skip the next
instruction. Group 2 microinstructions are identified by the presence
of a 1 in bit 3 and a 0 in bit 11 of the machine instruction word.

o 234 5 6 7 8 9 10

~ I I 1 I 1 I CLA I SMA I SZA I SNL I IOSR I HLT

REVERSE SKIP SENSING OF BITS 5,6,7 IF SET ~
LOGICAL SEQUENCE: 1 (BIT 8 IS 0) - SMA OR SZA OR SNL

(BIT 8 IS I) - SPA AND SNA AND SZL
2 - ClA
3 - OSR, HlT

Group 2 Operate Microinstruction Bit Assignments

11

o

Group 3 instructions reference the MQ register. They are
differentiated from Group 2 instructions by the presence of a 1 in
bits 3 and 11. The other bits are part of a hardware arithmetic
option.

o 1 2 3 4 5 6 7 8 9 10 1 1

~O_t~6_~!_IO~i_N ___ .~ ___ ~IC_l_A~IM_Q ___ A~I ___ ~I_MQ_-_L~I~~~~~~~~~~~~~~~~I
'----"

CONTAINS A 1 TO
SPECIFY GROUP 3

"----' \..) '-..-J

'---~ CONTAINS A 1 TO
KEel-E EXTENDED SPECIFY GROUP 3

ARITHMETIC
ELEMENT

Group 3 Operate Microinstruction Bit Assignments

Group 1 and Group 2 microinstructions cannot be combined since bit 3
determines either one or the other.

5-22

Within Group 2, there are two groups ()f skip instructions.
be referred to as the OR group and thE! AND group.

OR Group

SMA
SZA
SNL

AND Group

SPA
SNA
SZL

They can

The OR group is designated by a 0 in bit B, and the AND group by a 1
in bit B. OR and AND group instructions cannot be combined since bit
B determines either one or the other.

If the programmer does combine lE~gal skip instructions, it is
important to note the conditions under which a skip may occur.

1. OR Group--If these skips are combined in a statement,
the inclusive OR of the conditions determines the skip.
For example:

SZA SNL

The next statement is skipped if the
contains 0000 or the link is a 1 or both.

accumulator

2. AND Group--If the skips are c:ombined in a statement, the
logical AND of the conditions determines the skip. For
example:

SNA SZL

The next statement is skipped only if the accumulator
differs from 0000 and the link is O.

Input/Output Transfer Microinstructions

These microinstructions initiate operation of peripheral equipment and
effect an information transfer betwE~en the central processor and the
Input/Output device (s); i.e., cassettE~s, console terminal, and line
printer. The Permanent Symbol Table in Appendix C lists PALC's rOT's.

5.9.4 Autoindexing

Interpage references are often necessary for obtaining operands when
processing large amounts of data. ThH PDP-B computers have facilities
to ease the addressing of this data. When one of the absolute
locations from 10 to 17 (octal) is indirectly addressed, the contents
of the location is incremented before it is used as an address and the
incremented number is left in the location. This allows the
programmer to address consecutive memory locations using a minimum of
statements.

5-23

It must be remembered that initially ~lese locations (10 to 17 on page
0) must be set to one less than the first desired address. Because of
their characteristics, these locations are called auto index registers.
No incrementation takes place when locations 10 to 17 are addressed
directly. For example, if the instruc1t::ion to be executed next is in
location 300 and the data to be refer4:!nced is on the page starting at
location 5000, autoindex register 10 can be used to address the data
as follows:

0276
0277
0300

1377
3010
1410

TAD C4777
DCA 10
TAD I 10

0377 4777 C4711,4111

1=5000-1
ISET UP AUTO INDEX
IINCREMENT TO 5000
IBEFORE USE AS AN ADDRESS

When the instruction in location 300 :Ls executed, the contents of
location 10 will be incremented to 5000 and the contents of location
5000 will be added to the contents OlE the accumulator. When the
instruction TAD I 10 is executed again, the contents of location 5001
will be added to the accumulator, and so on.

5.10 PSEUDO-OPERATORS

The programmer uses pseudo-operators to direct the assembler to
perform certain tasks or to interpre1: subsequent coding in a certain
manner. Some pseudo-ops generate storage words in the object program,
other pseudo-ops direct the assembler how to proceed with the
assembly. Pseudo-ops are maintained in the permanent symbol table.

The function of each PALC pseudo-op is described below.

5.10.1 Indirect and Page Zero Addressing

The pseudo-operators I and
addressing to be performed.
Section 5.9.2.

5.10.2 Radix Control

Z are used to specify the type of
These have been previously discussed in

Numbers used in a source program are initially considered to be octal
numbers. However, the prograrraner may change or alternate the radix
interpretation by the use of the pseudo-operators DECIMAL and OCTAL.

The DECIMAL pseudo-op interprets all following numbers as decimal
until the occurrence of the pseudo-op OCTAL.

The OCTAL pseudo-op resets the radix to its original octal base.

5-24

5.10.3 Extended Memory

The pseudo-op FIELD instructs the assembler to output a field setting
so that it may recognize more than one memory field. This field
setting is output during pass 2 and is recognized by the Run (or Load)
command, which in turn causes all subsequent information to be loaded
into the field specified by the expression. The form is:

FIELO n

n is an integer, a previously defined symbol, or an expression within
the range 0<=n<=7.

This field setting is output on the binalry file during pass 2 followed
by an origin setting of 200. This word is read when the Run (or Load)
command is executed and begins loading i.nformation into the new field.

The field setting is never remembered by the assembler and no initial
field setting is output. A binary file produced without field
settings will be loaded into field 0 when using the Run (or Load)
command.

NOTE

A symbol in one field may be used to
reference the same location in any other
field. The field to which it refers is
determined by the use of the COF and crF
instructions. (The pr09rarnrner who is
unfamiliar with the rOT's but wishes to
use them should refer to the POP/BE
SMALL COMPUTER HANOBOO~: and experiment
with several short teBt programs to
satisfy himself as to their effect.)

COF and CIF instructions must be used
prior to any instruction referencing a
location outside the current field, as
shown in the following example:

P3Q11 ,

NEXT,

P302,
PRINT,

*200
TAD P301
CDF 00
CI F 10
Ji'1S PRINT
CI F 10
JMP NEXT
301
FIELD 1
*200
TAD P302
CDF 10
JMS PRINT
HLT
302
o
TLS
TSF

5-25

JIVJP • - 1
CLA
RDF
TAD P6203
DCA .+1
00~1

.1MP PRINT
P620~i , 6203

When FIELD is used, the assembler follolNs the new FIELD setting with
an origin at location 200. For this reason, if the programmer wants
to assemble code at location 400 in field 1 he must write:

FIELD
*400

/CORRECT EXAMPLE

The following is incorrect and will not generate the desired code:

* 4 eI ~~
FIELD

5.10.4 End-of-File

/ I NC"ORii EC T

" ..

PAUSE signals the assembler to stop processing the file being read.
The current pass is not terminated, and processing continues with the
next file.

The PAUSE pseudo-op should be used only at the physical end of a file
and with two or more segments of one program. When a PAUSE statement
is reached the remainder of the fill~ is ignored and processing
continues with the next input file. PAUSE must be present or a PH
error will occur.

5.10.5 Resetting the Location Counter

The PAGE n pseudo-op resets the location counter to the first address
of page n, where n is an integer, a previously defined symbol, or a
symbolic expression, all whose terms have been defined previously and
whose value is from 0 to 37 inclusive, If n is not specified, the
location counter is reset to the next logical page of memory. For
example:

PAGE 2 sets the location coun1:er to 00400
PAGE 6 sets the location count.er to 01400

If the PAGE pseudo-op is used without an argument and the current
location counter 1S at the first location of a page, it will not be
moved. In the following example, the code TAD B is assembled into
location 00400:

.JMP .-3
PAGE

TAD B

5-26

If several consecutive PAGE pseudo-ops are given, the first will cause
the current location counter to be reset as specified. The rest of
the PAGE pseudo-ops will be ignored.

5.10.6 Entering Text Strings

The TEXT pseudo-op allows a string of text characters to be entered as
data and stored in 6-bit ASCII by using the pseudo-op TEXT followed by
a space or spaces, a delimiting character (must be a printing
character), the string of text, and the same delimiting character.
Following the last character, a 6-bit zero is inserted as a stop code.
For example:

TAG,

The string would be stored as:

5162
5352
0000

5.10.7 Suppressing the Listing

Those portions of the source program enclosed by XLIST pseudo-ops will
not appear in the listing file; the code will be assembled, however.

Two XLIST pseudo-ops may be used to enclose the code to be suppressed
in which case the first XLIST with no argument will suppress the
listing, and the second will allow it again. XLIST may also be used
with an expression as an argument: a listing will be inhibited if the
expression is equal to zero, or allowed if the expression is not equal
to zero.

5.10.8 Reserving Memory

ZBLOCK instructs the assembler to reserVE~ n words of memory containing
zeros, starting at the word indicated by the current location counter.
It is of the form:

ZBLOCK n

For example:

ZBLOCK 40

causes the assembler to reserve 40 (octal) words. The n may be an
expression. If n=O, no locations are reserved.

5-27

The Il"DEF pseudo-op Jed.kes the form:

I lo"DE E' syrllbol <SOU.(CE! c:ode>

If the symbol indicab::d is previously d\~fLled, the codE:! contained in
the angle brackets is assembled; if the synibol is l.mdefined, this code
is ignored. Any number of statements or lines of code may be
contained in the angle brackets. This format of the IFDEF statement
requires a single space before and after the symbol.

The IFNDEF pseudo-op is similar in fonn to IFDEF and is expressed:

IE'NDEF symbol < source code>

If the symbol indicated has not be:en prt~vi()usly defined, the source
code in angle brackets is assembled. If the symbol is defined, the
code in the angle brackets is ignored.

The IFZERO pseudo~op is of the form:

Il<'ZERO exp:.:esson <sourCE: cede>

If the evaluated (arithmetic or logical) expression is equal to zero,
the code within the angle brackets is assembled; if the expression is
non-zero, the code is ignored. Any nwru)er of statements or lines of
code may be contained in the angle brackets. The expression may not
contain any imbedded spaces and must have a single space preceding and
following it.

IFNZRO is similar in form to the IFZERO pseudo·'op and is expressed:

Il~"NZRO expression < source code>

If the eValuated (arithmetic or logical) expression is not equal to
zero, the source code wi thin the angl(~ brackets is assembled; if the
expression is equal to zero, this code is ignored.

Pseudo~~ops can be nested, for example:

IFDEF S~'M <IF'NZRO X2 <0 •• »

The evaluation and subsequent inclusion or deletion of s~atements is
done by evaluating the outermost pseudo·~op first.

5.10.10 Controlling Bi.nary Output~

NOPUNCH causes the assembler to cease bi.nary out:put but. cont.inue
assembling code. It is ignored except du.ri.ng pass 2.

ENPUNCH causes the assembler to resume binary output after: NOPUNCH,
and is ignored except during pass 2. For example, these two
pseudo-ops might be used ·INhere several programs share the same data on
page zero. When these programs ar(~ to be loaded and executed
together, only one page zero need be output.

5-28

5.10.11 Controlling Page Format

The EJECT pseudo··op causes the listing t:o jump to the top of the next
page. A page eject is done automatically every 55 lines: EJECT is
useful if the user requires more frequent paging. If this pseudo-op
is followed by a string of r,haracters, t:he first 40 (octal) characters
of that string will be- used as a new header line.

5.10 .12 Altering the Permanent Symbol 'rable

PALC contains a table of symbol definitions for the PDP-8 and CAPS-8
peripheral devices. These are symbols such as TAD, DCA, and CLA,
which are used in most. PDP-8 programs. This table is considered to be
the permanent symbol table for PAI.l~; all of the symbols it contains
are listed in Appendix C.

If the user purchases one or more optional devices whose instruction
set is not defined among the permanent symbols (for example EAE or an
AID converter), he would want to add thE~ necessary symbol defini tions
to the permanent symbol table in every p~ogram he assembles.
Conversely, the user who needs more space for user-defined symbols
would probably want t~o delete all def ini tions except the ones used in
his program. For such purposes, PALC h,~s three pseudo-ops that can be
used to alter the permanent symboltahle. These pseudo-ops are
recognized by the assembler only during pass 1. During either pass 2
or pass 3 they are ignored and have no effect ..

EXPUNGE deletes the entire permanent symbol table, except pseudo~'ops.

FIXTAB appends all presently defined sY~IDols to the permanent symbol
table. All symbols defined befo!'e the occnrrence of FIXTAB are mael.e
part. of the permanent symbol table nnt.LI. the assembler is ::t:'~loaded.

To append the following instructions to the symbol table, t.he user
generates an ASCII fiJ.f> called SYflITS. P)l.T, contain 5.ng ~

MUY=74~5
DVI=7407
CLSK::6131
FIXTAB

IMULTIPLY
IDIVIDE
15KIP ON CLOCK INTERRUPT
ISO THAT THESE WON'T BE
IPRINTED IN THE SYMROL TARLE

The ASCII file is then entered in PAI,C I S input designation. The user
may also place the definitions at the beginning of the source file.
This eliminates the need to load an extra file.

Each time the assembler :i.s loaded, PALe's permanent symbol table is
restored to contain only the penn<'1nent ::;ymbols shown in Appendix C~

The third pseudo-op used to alter the p'Jrrnanent symbol table in PALC
is FIXMRI. FIXMRJ is used to def.ine a memory reference instructi.on
and is of the form:

FIXMRI name:"v,~lue

5-29

The letters FIXHRI must be followed by one space, the symbol for the
ins truction to be de fined, an equal sign, and the val ue~ of the symbol.
The symbol will be defined and stored in the symbol table as a memory
reference instruction. The pseudo-op must be repeated for each memory
reference instruction to be defined. For example:

EXPUNGE
FIXMRI TAD=100C
FIXMRI DCt~=3eJ00
CLA=7200
FIXTAB

When the preceding program segment is r,ead into the assembler during
pass 1, all symbol definitions are deleted and the three symbols
listed are added to the permanent symbol table. Notice: that CLA ~s
not a memory reference instruction. This process can be performed to
alter the assembler's symbol table so that it contains only those
symbols used at. a given installation or by a given program. This may
increase the assembler's capacity for user-defined symbols in the
program.

A summary of the PALC pseudo-ops is provided in Appendix C.

5.11 LINK GENERATION AND STORAGE

In addition to handling symbolic addressing on the current page of
memory, PALC automatically generates links for off-page references.
If reference is made to an address not on the page where an
instruction is located, the assembler sets the indirect bit (bit 3)
and an indirect address linkage will be generated on the current
memory page. If the off-page reference is already an indirect one,
the error diagnostic II (illegal indirect) will be generated. For
example:

*2117
A, CLA

tJMP A
In the example above, the assembler will recognize that the register
labelled A is not on the current page (in this case 2600 to 2777) and
will generate a link to it as follows:

1. In location 2600 the assembler ,,,,ill place the word 5777
which is equivalent to JMP I 2777.

2. In address 2777 (the last available location on the
current page) the assembler will place the word 2117 (the
actual address of A).

During pass 3, the octal code for the instruction will be followed by
an apostrophe (') to indicate that a link was generated.

Although the assembler will recognize and generate an indirect address
linkage when necessary, the progra~ner may indicate an explicit

5-30

indirect address by the pseudo-op I. The assembler cannot generate a
link for an instruction that is already specified as being as indirect
reference. In this case, the assembler will print the error message
II (illegal indirect). For example:

*2117
A, CLA

J:'1P I A
The above coding will not work because 1>:. is not defined on the page
where JMP I A is attempted, and the indirect bit is already set.

Literals and links are stored on each pa.ge starting at page address
177 (relative) and extending toward page address 0 (relative).
Whenever the origin is then set to another page, the literal buffer
for the current page is output. This does not affect later execution.
There is room for 160 (octal) literals alnd links on page zero ann 100
(octal) literals on each other page of memory.

Li terals and links are stored only alS far down as the highest
instruction on the page. Further at.tempts to define literals will
result in a PE (page exceeded) or ZE (page zero exceeded) error
message.

5.12 CODING PRACTICES

A neat printout (or program listing, as it is usually called) makes
subsequent editing, debugging, and inte~rpretation much easier than if
the coding were laid out in a haphazard fashion. The coding practices
listed below are in general use, and will result in a readable,
orderly listing.

1. A title comment begins with a slash at the left margin.

2. Pseudo-ops may begin at the left margin; often, however,
they are indented one tab stop to line up with the
executable instructions.

3. Address labels begin at the left margin. They are
separated from succeeding fields by a tabulation.

4. Instructions, whether or not they are preceded by a
labe 1 fie ld, are indented one t:ab stop.

5. A conunent is separated from thE~ preceding field by one
or two tabs (as required) and a slash; if the comment
occupies the whole line itusually begins with a slash at
the left margin.

5-31

5.13 PROGRAM PlillPARATION AND ASSEMBLER OUTPUT

The following program was generated using the TAB function of the
CAPS-8 EDITOR and was assembled with PALC.

*200
IEXAMPLE OF INPUT TO
IGENERATOR PROGRAM
BEGIN, 0

KeC
KSF
Jr1P .-1
KHB
DCA CHAR
Tt~D CHAR
Tt\D MSPACE
S NA CLA
HLT
Jr1P BEGIN+2

CHAR, 0
MSPACE, -~!40

lEND OF EX~\MPLE
$

THE FORMAT

ISTART OF PROGRAM

IWAIT FOR' FLAG
IFLAG NOT SET YET
IREAD IN CHARACTER

lIS I T A SPACE?

IYES
INO:INPUT AGAIN
ITEMPORARY STORAGE

The program consists of statements and pseudo-ops and is terminated by
the dollar sign ($). If the program is large, it can be segmented by
placing it into several files; this often facili tates t~he editing of
the source program since each section will be physically smaller.

The assembler initially sets the current location COt.nter to 0200.
This counter is reset whenever the asterisk (*) is processed.

The assembler reads the source file for pass 1 and defi.nes all symbols
used.

During pass 2, t~he assembler reads the source file and generates the
binary code using the symbol table equivalences defined during pass 1.
The binary file that is output may be loaded by the Load command.
This binary file consists of an origin setting and date: words.

During pass 3, t~he assembler reads the source file and generates the
code from the source statements. The assembly listi.ng is output in
ASCII code. It consists of the current locatior.. counter, the
generated code in octal, and the sourc·e statement. Tr..e 5-digi t first
column is the field number and 4-digit octal address (current location
counter); the 4-·digi t second column is the assembled object code. The
symbol table is printed at the end of the pass. The pc:ss 3 output is:

*200 PALe-V1 03/08'73 PAGE 1

021~0 *200
IE)(AMPLE OF I NPUT Tel THE FORMAT
IGEN~RATOR PROGRAM

12'12120121 0000 BEGIN, 121 1ST ART OF Pf~OGR AM
012121211 6121:52 Kec
0121202 60:51 KSF IWAIT FOR FI.AG
1210203 5202 JMP .-1 IFLAG NOT SET YET
1210204 60:36 KRB IREAD INC H I~ R ACT E R
00205 3213 DCA CHAR
1210206 12 ~l3 TAD CHAR
0021217 12 ~l4 TAD MSPACE lIS I T A SF j~CE?
002H'I 76~)0 SNA CLA

5-32

021211
00212
2121213
2121214

14212
52212
21212121
15421

BEGIN 2122121
CHAR 0213
MSPACE 21214

CHAR,
MSPACE,
lEND Of
$

5.13.1 Terminating Assembly

HLT
JMP BEGIN+2
21
.2421
EXAMPLE

IVES
INOIINPUT AGAIN
ITEMPORARV STORAGE

PALC-V1 213/08/73 PAGE 1-1

PALC will a) terminate assembly, b) print. a tc, and c) wait for the
user to mount the System Cassette on dri'"e 0 and type tc, under any of
the following conditions:

1. Normal exit--The $ at the end of the source program was
executed on pass 2 (or pass 3 if a listing is being
generated) •

2. Fatal error--One of the following error conditions was
found and flagged (see the next: section) :

BE DE DF PH SE

3. tC--If typed by the user, control turns to the Monitor.

5.14 PALC ERROR CONDITIONS

PALC will detect and flag error conditions and generate error messages
on the console terminal. The format of t:he error message is:

CODE ADDRESS

where CODE is a 2-letter code which specifies the type of error, and
ADDRESS is either the absolute octal address where the error occurred
or the address of the error relative to the last symbolic tag (if
there was one) on the current page. For example, the following code:

BEG, TAD LBL
7.TAD LBL

5-33

would produce the error message:

Ie BEG+0001

since % is an illegal character.

If at any time PALC prints tc, the user should make cert,ain that the
System Cassette is mounted on drive 0 and then type tc to return to
the Monitor. He should examine each error indication to determine
whether correction is required.

On the pass 3 listing, error messages are output as 2-character
messages on the line just prior to the line in which the error
occurred. The following table lists thE~ PALC error codes. Those
labeled Fatal Error are followed immedia1:ely by an effective tC.

Table 5-3 PALC Error Codes

Error Code Explanation

BE Two PAL-C internal tables have overlapped.
error--assembly cannot continue.

Fatal

DE Device error. An error was detected when trying
to read or write a devic(~. Fatal error--assembly
cannot continue.

OF Device full.
continue.

Fatal error--assembly cannot

IC Illegal character. The character is ignored and
the assembly continued.

10 Illegal redefinition of a symbol. An attempt was
made to give a previously defined symbol a new
value by means other than the equal sign. The
symbol is not redefined.

IE Illegal equals--an equal sign was used in the
wrong context. Considered a warning and may not
indicate an error but rather an undefined symbol
at that point.

II Illegal indirect--an off-page reference \-J'as made.

IP Illegal pseudo-op--a pseudo-op was used in the
wrong context or with incorrect syntax.

IZ Illegal page zero reference--the pseudo-op Z was
found in an instruction which did not. refer to
page zero. The Z is ignored.

PE Current non-zero page exceeded--an attempt was
made to:

5-34

Table 5-3 PALe Error Codes (Cont'd)

Error Code Explanation

1. Override a literal with an instruction

2. Override an instructi.on with a literal

3. Use more literals thaln the assembler allows on
that page.

This can be corrected by decreasing either the
number of literals on the page or the number of
instructions on the page.

PH Phase error--either no $ appeared at the end of
the program, or < and > in conditional pseudo-ops
did not match. Fatal error--assembly cannot
continue.

RD Redefini tion--a permanent. symbol has been defined
with =. The new and old definitions do not match.
The redefinition is allow'ed.

SE Symbol table exceeded--too many symbols have
defined for the amount of memory available.
error--assembly cannot continue.

been
Fatal

UO Undefined origin--an undefined symbol has occurred
in an origin statement.

US Undefined symbol--a syrrbol has been processed
during pass 2 that was not defined before the end
of pass 1.

ZE Page 0 exceeded--same as PE except with reference
to page O.

5-35

6.1 INTRODUCTION

CHAPTER 15
CASSETTE BASIC

Cassette BASIC is an interactive progJranuning language derived from
Dartmouth BASIC and designed to run under the Cassette Keyboard
Monitor. The BASIC language is aimed at facilitating communication
between the user and the computer. The user types his program as a
series of numbered statements, making llse of common English words and
familiar mathematical notations. Because the BASIC language involves
learning only a small number of commands, it is a very easy language
to use. As the user gains familiarity with BASIC, he can add the
advanced techniques available to perform more intricate manipulations
or express a problem more efficiently and concisely.

Cassette BASIC provides approximately 1.7 to 2K of memory for program
storage. Important features include 1- and 2-dimensional
subscripting, user-coded functions, program chaining, use of cassettes
for program storage, and use of line printer, if available, for
output.

Beginning programmers may find a more fundamental approach to BASIC
language programming in Chapter 1 of THE EDUSYSTEM HANDBOOK.

6.2 CALLING BASIC (.R BASIC)

Using the Cassette Keyboard Monitor, Bl\SIC is called from the System
Cassette by typing:

!...R BASIC

When it is first loaded into memory, Bl\SIC asks the user if he wi 11
use run~·time fi Ie input and output as follows:

USING RUN-TIME FILE I/O?(Y OR N)

The user responds with Y or N followed by a carriage return. Choosing
the run-time I/O feature leaves the user approximately 1.7K of memory
for program storage, whereas a responsE~ of N frees the space used by
the run-time I/O routines and provides an additional. 3K of memory
(enough for approximately 20-25 statements or 75 variables).
Statements associated with the run-timE! I/O feature are:

OPEN ••• FOR INPU'r
OPEN ••• FOR OUTPUT
CLOSE
IF END#
PRINT#
INPUT#
COMMAS
NO COMMAS

If any of these statements are used without the run-time I/O option
having been chos4:!n during BASIC' s initial dialogue, BASIC will print a
NO FILES ERROR message at run-time.

BASIC then asks:

NEW OR OLD-

The user responds NEW if he intends to create a program at the
keyboard, and must respond with the namE~ of the new prQo~ram when BASIC
requests:

NEw PROGRAM NAME-

The program name is typed as a standard system filename (6 characters
or less) and an optional extension (I to 3 characters); a program name
is entered even if the user does not in1:end to save the program for
future use. (.A response of only a carriage return causes BASIC to
repeat the NEW PROGRAM NAME request. If the user types an ALT MODE in
response to this request, the name NONAME.BAS is assigned by BASIC.)
When the new program name has been entered, BASIC indicates that it is
ready to accept input by issuing a carriage return/line feed
combination.

If the user responds OLD to BASIC' s ini 1:ial dialogue, BASIC assumes
that the program has been previously saved on a cassette and will ask:

OLD PROGRAM NAME­
UNITI(0-7):

The user must respond with the correct program name and file extension
(if any), and then must specify which cassette unit drive the file is
stored on. (An incorrect response will return an error message.) When
this interaction is complete, BASIC will type:

READY.

and the user may edit or run his progrrun.

6.3 NUMBERS

Cassette BASIC t.reats all numbers (in both integer and real formats)
as real, or floating point, numbers. 'That is, BASIC a.ccepts as input
any number conta.ining a decimal point and assumes a decimal pQint
after any intege:r number entered.

In addition to i.nteger and real formats, a third format. is recognized
and accepted by BASIC in order to express numbers outside the range
.01<=x<1000000. This format is called exponential or E:-type notation.
In this format., a number is expressed as a decimal number times some
power of 10, as follows:

6-2

where E represents "times 10 to
exponential notation is then read "xx
example:

the power of" • A number in
times 10 to the power of n"; for

23.4E2 = 23.4*(10 to the power of 2) = 2340

Data may be input in anyone or all three of these forms. Internal
computations are carried out in floating point (real) format. Results
of computations within the range .01<=x<1000000 are output as either
real or integer decimal numbers (whichever is the correct but more
concise format); results outside this range are output in exponential
format. BASIC handles seven significant digits in normal operation
and input/output, as illustrated below:

Value Typed In

.01

.0099
999999
1000000

Same Value
Output By BASIC

.01
9.900000E-3
999999
1.000000E+6

BASIC automatically suppresses the pri:nting of leading and trailing
zeros in integer and decimal numbers and, as shown above, prints all
exponential numbers in the form:

(sign) x.xxxxxx E (+ or -) n

where x represents the number carried ·to six decimal places, E stands
for "times 10 to the power of", and n represents the exponent. For
example:

6. 4 VARIABLES

-3.4702lSE+S,is equal to -34702lS00
7.260000E-4 is equal to .000726

A variable in BASIC is a symbol which represents a number and
formed by a single letter or a letter followed by a digit.
example:

Acceptable Variables

I

B3

x

Unal:ceptable Variables

2C - A digit cannot begin
a variable

AB .• Two or more letters
cannot form a variable

6-3

is
For

The user may as:sl.gn values to variables either by computing the values
in a LET statement or by inputting the values as data: these
operations are discussed later.

6.5 ARITHMETIC OPERATIONS

BASIC performs addition, subtraction, multiplication, division and
exponentiation, as well as more complicated operati.ons explained in
detail later in the chapter. The five operators used in writing most
formulas are:

Symbol Meaning Example

+ Addition A + B
Subtraction A - B

* Multiplication A * B
I Division A I B
t Exponentiation A t B

(Raise A to the
Bth power)

6.5.1 Priority of Operations

In any given mathematical formula, BASIC performs
operations in t:he following order of evaluation:

arithmetic

1. Parent:heses receive top priority. Any expression wi thin
parent:heses is evaluated before an unparenthesized
expression.

2. In absence of parentheses, the order of priority is:

a. Exponentiation

b. Multiplication and Division (of equal pr:Lori ty)

c. Addition and Subtraction (of equal priority)

3. If ei t:her 1 or 2 above does not clearly deBignate the
order of priority, then the evaluation of expressions
proceeds from left to right.

The expression AtBtC is evaluated from left to right as follows:

1. AtB = step 1

2. (result of step 1) tc = answer

The expression A/B*C is also evaluated from left to right since
multiplication and division are of equal priority:

1. AlB = step 1

2. (result of step 1) *C = answer

6-4

6.5.2 Parentheses and Spaces

Parentheses may be used by the programmer to change the order of
priority (as listed in rule 2 of the previous section). Since
expressions within parentheses are always evaluated first, the
programmer can control the order of evaluation by enclosing
expressions appropriately. Parentheses may be nested, or enclosed by
a second set (or more) of parentheses. In this case, the expression
within the innermost parentheses is evaluated first, and then the next
innermost, and so on, until all have been evaluated.

Consider the following example:

A=7*C CBf2+4)/X)

The order of priority is:

1. Bt2

2. (result of step

3. (result of step

4. (result of' step

Parentheses also prevent
expression is evaluated.

A*Bf2/7+B/C+Df2

step

1)+4 = step

2)/X step

3)*7 A

any confusion
For example:

or

«A*Br2)/7)+«B/C)+Df2)

1

2

3

doubt as to how the

Both of these formulas will be executed in the same way. However,
most users will find that the second is easier to understand.

Spaces may be used in a similar manner~
ignores spaces, the two statements:

LET B = Of 2 + 1

LETB=Df2+1

Since the BASIC compiler

are identical, but spaces in the first statement provide ease in
reading.

6.5.3 Relational Operators

A program may require that two values be compared at some point to
discover their relation to one another. To accomplish this, BASIC

6-5

makes use of the following relational operators:

:: equal to > greater than
< less than >= greater than or

<= less than or <equal to
equal to <> not equal to

Depending upon the result of the comparison, flow of program execution
may be directed to another part of the program, or thE~ validity of the
relationship ma.y cause a value of 0 (indicating a FAL~E condition) or
1 (indicating a TRUE condition) to be assigned to a variable. For
example:

1S X=Y<7.

This statement assigns the value 1 to X if Y is greater than Z.
Relational operators are used primarily in conjunction with IF and LET
statements, bot.h of which are later discussed in detai 1.

The meaning of the equal sign (=) should be clarified. In algebraic
notation, the formula X=X+ 1 is meaningless. HowevE~r, in BASIC (and
most computer languages), the equal sign designates replacement rather
than equality. Thus, the formula X=X+l is actually translated: "add
one to the current value of X and storie the new resul t back in the
same variable X"; whatever value has previously bE!en assigned to X
will be combined with the value 1. An expression such as A=B+C
instructs the computer to add the values of Bane: C and store the
result in a thi.rd variable A; the variable A is not be!ing evaluated in
terms of any previously assigned value, but only in t.erms of Band C.
Therefore, if A has been assigned any value prior to i.ts use in this
statement, the old value is lost; it is instead replc.ced by the value
of B+C. Finally, the equal sign may be used in relational testing as
illustrated in the previous example.

6.6 IMMEDIATE MODE

Commands are available which allow Cassette BASIC to act as a
calculator--that is, the user types an algebraic expression which is
to be calculated and BASIC types back the result. This is called
Immediate Mode since the user is not required to write a detailed
program to calc:ulate expressions and equations, but can use BASIC to
produce resul t:s immediately. The commands used in Immediate Mode are
PRINT, LET and occasionally the FOR-NEXT combination. These are
explained in the following paragraphs.

6.6.1 PRINT Command

The PRINT command is of the form:

PRINT expression

BASIC is instructed to compute the value of the expre!:;sion and print
the result on the console terminal. The expre!:;sion is a normal

6-6

arithmetic expression \-lhich may includ43 numbers, variables, arithmetic
operators, and functions (discussed in Section 6.8.12). A string of
text may also be printed (see Section 6.8.5--PRINT). For example:

PRINT 1/Rf8
5.9604 6LJ E-08

6.6.2 LET Command

Values may be assigned to variables by use of the LET command as
follows:

LET variable=expression

The computer does not type anything in response to this command, but
computes the expression and assigns the value to the variable. The
variable may then be used in another ,computation or may be output
using the PRINT command. For example:

LET Pl=3.14159

PRINT Pl*4f2
50.26544

6.6.3 Looping PRINT and LET Commands

It is possible to include PRINT and LE'T commands in a loop so that
variables and results may be stored or printed in a series. Looping
is accomplished by means of FOR-NEXT statements in which the FOR
statement sets the limits of the loop and the NEXT statement
increments the count by 1. The only restriction in Immediate Mode
looping is that the command and the looping statements must appear on
one line. This is accomplished by using the backslash (\) character
to separate multiple statements on a line. (The backslash is produced
on an LT33 or 35 Teletype by pressing the SHIFT and L keys
simultaneously. Other types of terminals provide a separate key.) For
example:

Ll!.l P 1 =3.14159
FOR 1=1 TO 3\PR1NT Plf!\NEXT !

This combination will print the results of 3.14159 to the 1st, 2nd,
and 3rd powers respectively.

More information on looping in general is provided in Section 6.8.7.

6-7

6. 7 EXAMPLE RUN

The following Example Run is included a·t this point as an illustration
of Cassette BASIC's initial dialogue, the format of a BASIC program,
the ease in editing and running it, and the type of output that may be
produced. The user calls in the pr09ram AVER from cassette drive 1
and attempts to run it. Execution is ha.lted by a SYNTAX ERROR at line
30. The user lists the program, finds the mistake in line 30, and
also notices a mistake in line 85. He corrects these errors by
retyping the lines, and then reruns the program. After execution he
saves the corrected program on drive 1 under the original name.

Following sections cover the statements and commands used in BASIC
prosrramming •

• R BASIC
USING RUN-TIME FILE I/O?(Y OR N)N

NE\-] OR OLD-OLD

OLD PROGRAM NAME-AVER
UNITH(O-7):1

HEADY.

RUN
HOi·j MA0JY STUDENTS, HOt!) MANY GRADES PER STUDENT ?5,/.1
SYNTAX ERROR AT LINE 30

LIST
10 REM - PROGRAM TO TAKE AVERAGE OF
15 REM - STUDENT GRADES AND CLASS GHADES
20 PRINT "HOW MANY STlJDENTS, HO\·j MANY GHADES PER STUDENT ";
30 INPUT A,lB
40 LET 1=1
5v) FOR J=I T8 A
55 LET V=0
6(1} PHINT "STUDENT NUMnEH =";J
75 PBINT "ENTER GRADES"
76 LET D=J
80 FOR K=D TO D+(B-1)
81 INPUT G
02 LET V=V+G
(~5 NEXT L
90 LET V=V/B
95 PRINT "AVERAGE GRADE =";t.j
96 PRINT
99 LET Q =Q+V
1(1}0 NEXT J
101 pnlNT
102 PRI NT
103 PBINT "CLASS A.VER!'\GE =";Q/A
1 (14 STOP
1 4(~ END

READY.

30 INPUT A,B
85 NEXT K
RUN
HOW MANY STUDENTS, HOW MANY GRADES PER STUDENT ? 5, It
STUDENT NUMBER = 1
ENT ER GRADES
778
786
?88
774
A V ERA G E GRAD E = 8 1 • 5

STUDENT NUMBER = 2
ENTER GRADES
759
?86
17'0
787
AVERAGE GRADE = 75.5

STUDENT NUMBER = 3
ENT ER GRAD E5
758
764
?75
780
AVERAGE GRADE = 69.25

STUDENT NUMBER = 4
ENT ER GRADES
788
792
185
179
AVERAGE GRADE = 86

STUDENT NUMBER = 5
ENT ER GRAD ES
?6'0
?78
?85
1[50
AVEHAGE GRl\DE 75.75

CLASS AVERAGE

READY.

SAVE

UNITH(O-7):1

READY.

6-9

6.8 BASIC STATEMENTS

The statements described in this section are used in creating BASIC
programs. These statements make up the body of tt.e program; they
perform arithmetic calculations and input and output operations, and
control the orde:r of program execution.

6.8.1 Statement. Numbers

An integer number is placed at the beginning of each line in a BASIC
program. BASIC executes the statements in a prograrr. in numerically
consecutive order regardless of the order in which they have been
typed. A recommended practice is to number lines by fives or tens, so
that additional lines may be inserted in a program without the
necessity of renumbering lines already present. (BASIC programs may
be created using either the BASIC Editor as described here, or the
CAPS-8 EDITOR. If the CAPS-8 EDITOR is used, the programmer must make
certain to type his program in numerically consecutive order, as BASIC
will not sort it in this case.)

Multiple statements may be placed on a single line by separating each
statement from the preceding statement with a backs lash (SHIFT/L).
This feature is particularly useful since statement numbers require
space in the symbol table; if unnE~cessary statement numbers are
eliminated by use of the backslash, there will be more room for
program storage. For example:

10 A=5'B=.2'C=3'PHINT "ENTER DATA"

All of the statements in line 10 will be executed before BASIC
continues to the next line. Only one statement number at the
beginning of the entire line is necessary. However, it should be
noted that program control cannot be transferred to a statement within
a line, but only to the first statement of the line in which it is
contained (see Section 6.8.9, Transfer of Control Statements).

6.8.2 Commenting the Program (REM)

The REM or REMARK statement allows the programmer to insert comments
or remarks into a program without thesE~ comments affecting execution.
The BASIC compiler ignores everything on a line beginning with REM.
The form is:

(line number) REM (message)

In the Example Run program, lines 10 ruld 15 are REM~RK statements
describing what the program does. It is often useful to put the name
of the program and information relating to its use at the beginning
where it is available for future refE~rence. Remarks throughout the
body of a long program will help later debugging by explaining the
purpose of each :section of code wi thin t:he program.

6-10

6.8.3 Terminating the Program (END and STOP)

The END statement (line 140 in the Example Run program), if present,
must be the last statement of the entire program. The form is:

(line number) END

Use of the END statement is optional. If executed, it signals the end
of the program and BASIC prints:

READY.

Variables and arrays are left in an unde:fined state, thereby losing
any values they have been assigned durin.g execution.

The STOP statement is used synonymously with the END statement to
terminate execution, but while END occurs only once at the end of a
program, STOP may occur any number of ti.mes. The format of the STOP
statement is:

(line number) STOP

This statement signals that execution is to be terminated at that
point in the program where it is encountered leaving variables in a
defined state. (Variables will contain the values assigned when the
statement is encountered.)

6.8.4 The Arithmetic statement (LET)

The Arithmetic (LET) statement is probably the most commonly used
BASIC statement. It causes a value to be assigned to a variable and
is of the form:

(line number) (LET) x = expression

where x represents a variable, and the E~xpression is either a number,
another variable, or an arithmetic expression. The word 'LET' is
optional; thus the following statements are treated the same:

LET A=Af8+10
A=A f8+10

LET C =F'/G
C=F/G

As mentioned earlier, relational opera1:ors may be used in a LET
statement to assign a value to a variru)le depending upon the validity
of a relationship. If the statement is FALSE, the value 0 is assigned
to the variable; if TRUE, the value 1 if> assigned. For example:

100 A=1
105 8=2
110 C=A=B
120 D=A>8
130 E=A<>B
140 PRINT C,D,E
150 E\JO

6-11

Translated, this actually means "let C=l if A=B (O otherwise): let 0=1
if A>B (0 otherwise)" and so on. Thus, the values of C, 0, and E are
printed as follows:

RUN
[21

READY.

There is no limit to the number of rela1:ionships that may be tested in
the statement.

6.8.5 Input/Output Statements

Input/Output sta'tements allow the user t:o bring data into a program
and output results or data at any time during execution. The console
terminal keyboard, (LT33 Teletype reader and punch uni t:s, if present) ,
cassettes, and line printer are all available as I/O devices in
Cassette BASIC. Statements which control their use are described
next.

READ and DATA

READ and DATA statements are used to input data into a program. One
statement is n4~ver used without thE! other. The form of the READ
statement is:

(line number) READ xl,x2, ••• xn

where xl through xn represent variable names. For example:

1 [21 REA D A, B , C

A,B, and C are variables to which values will be assignE~d. Variables
in a READ statement must be separated by commas. READ statements are
generally placed at the beginning of a program, but must at least
logically occur before that point in the program wheJ::'e the value is
required for some computation.

Values which will be assigned to the variables in a READ statement are
supplied in a DA~~A statement of the form:

(line number) DATA xl,x2, ••• xn

where xl through xn represent values. The values must be separated by
commas and mus1: occur in the same order as the variables which are
listed in the corresponding READ statement. A Dl~TA statement
appropriate for t:he preceding READ statement is:

7 :) D A TAl , 2 , 3

Thus, after executing the READ statement, A=l, B=2, and C=3.

6-12

The DATA statement is usually placed at the end of a program (before
the END statement) where it is easily accessible to the programmer
should he wish to change the values.

A READ statement may have more or fewE!r variables than there are
values 1n anyone DATA statement. ThE! READ statment causes BASIC to
search all available DATA statements in consecutive line number order
until values are found for each variable in the READ. A second READ
statement will begin reading values where the first stopped. If at
some point in the program an attempt is made to read data which is not
present or if the data is not separated by commas, BASIC will stop and
print the following message on the console terminal:

DATA ERROR AT LINE XXXX

where XXXX indicates the line number of the READ statement which
caused the error.

RESTORE

If it should become necessary to use the same data more than once in a
program, the RESTORE statement will make it possible to recycle
through the DATA statements beginning with the lowest numbered DATA
statement. The RESTORE statement is of the form:

(line number) RESTORE

An example of its use follows:

15 READ B .. C .. D

55 RESTORE
60 READ E,F,G

100 END

In this example, the READ statements in lines 15 and 60 will both read
the first three data values provided in line 80. If the RESTORE
statement had not been inserted before line 60, then the second READ
would pick up data in line 80 starting with the fourth value.

In recycling through data with a RESTORE statement, the programmer may
use the same variable names the second time through the data, or not,
as he chooses, since the values are being read as though for the first
time. In order to skip unwanted values, the programmer may insert
replacement (or dummy) variables. Consider:

6-13

1 REM - paOGRAM TO ILLUSTRATE USE OF RESTORE
20 READ N
25 PRINT "VJ\LTJES OF X ARE: ft

30 FOR 1=1 TO N
40 READ X
5'3 PRINT X,
60 NEXT 1
70 RESTORE
185 PRI NT
190 PRINT "SECOND LIST OF X VALUES'"
200 PRI NT "FOLLOW 1 NG RESTORE STAT Et'-lENT :"
210 FOR 1=1 TO N
220 READ X
230 PRI NT X.,
240 NEXT I
250 DATA 4,1,2
2 51 DA T A 3, ,4
3'~0 END

RU~

VALUES OF X ARE:
123

SECOND LI ST OF X VALUES
FOLLOWING RESTORE STATEMENT:
412

READY.

4

3

The second time the data values are read, the variable X (line 220)
picks up the value originally assigned to N in line 20, and as a
result, BASIC prints:

4 2 3

To circumvent this, the programmer could insert a dummy variable (for
example, 205 READ Z), which would pick up and store the first value,
but would not be represented in the PRINT statement. In this case the
output would be t.he same each time through the list.

INPUT

The INPUT statement is used when data is to be supplied by the user
from the console terminal keyboard while a program is executing, and
is of the form:

(line number) INPUT xl,x2, ••• xn

where xl through xn represent variable names. For example:

25 INPUT A,B,C

This statement will cause the program to pause during e:<ecution, print
a question mark on the console terminal, and wait for the user to type
three numerical values. The user must separate the values by commas;
they are entered into the computer by pressing the RE'rURN key at the
end of the list.

6-14

If the user does not insert enough values to satisfy the INPUT
statement, BASIC prints another question mark and waits for more
values to be input. When the correct number has been entered,
execution continues. If too many values are input, BASIC ignores
those in excess of the required number. 'rhe values are entered only
when the user types the RETURN key.

OPEN

Input and output files may be stored on cassette, and may be accessed
during run-time (providing the user has chosen the run-time I/O option
during BASIC's initial loading dialogue). Before an I/O file is
accessed however, the user must first open it via one of the following
commands:

(line number) OPEN "n:xxxx" FOR INPUT
or

(line number) OPEN "n:xxx:~" FOR OUTPUT

where n represents the cassette drive numJer (O-7), and xxxx is any
legal filename (6 characters or less, and optional extension of 3
characters or less). Input files are cre.ated either by using BASIC or
the CAPS-8 EDITOR (see Section 6.8.6), .and must have been previously
stored on cassette before being accessed. For example, the statement:

215 OPEN III :TEST.DAT" FOH I:\1PUT

opens an input file named TEST.DAT on cassette drive 1.

Only one input and one output file may be open at any time, and only
one file--either input or output--may be open on a given cassette
drive at one time.

CLOSE

The CLOSE statement is used to close a currently open output file, and
is of the form:

(line number) CLOSE

Suceeding OPEN FOR INPUT statements will perform an automatic close on
a previously open input file: however, the user should take note of
the following cases:

1. If the user attempts to open an input file on a cassette
which is currently open for output, BASIC will return an
I 0 ERROR, as the same cassette drive cannot be open for
both input and output at the saml~ time.

2. If the user has an input file open on a cassette, and is
at its end-of-file (that i:;, a CTRL/Z has been
detected), BASIC will allow him -to open an output file

6-15

on t:he same cassette, since the input file is
theoretically "closed". However, if the u~:er has an
input file open on a cassette and is not at its
end-of-file, an I 0 ERROR will occur if he then tries to
open an output file on the same cassette. (See Section
6.8.9, IF END#, for more information on BASIC's method
of det:ecting an end-of-file.)

3. If the! user tries to open an output file and an output
file is already open on any cassette, BASIC will return
a "FIl,E OPEN ERROR": before opening a new output file,
the current output file must be closed.

A close is automatically performed on both open input and open output
files by STOP, END and CHAIN statements, as well as by all errors
detected at run-time.

INPUT#

Once an input file has been opened using the open statement, data can
be called into a program using the INPUT# statement. The form of this
statement is:

(line number) INPUT# xl,x2, ••• xn

where # signifies that the file is stored on cassette under the
filename and drive number specified in the last "OPEN ••• FOR INPUT"
statement: xl t,hrough xn represent variable names.

When the BASIC program reaches the INPUT# statement du.ring execution,
the data is automatically called into the program from cassette and
execution continues. INPUT# statements and INPUT statements may be
interspersed throughout a program. The input file need only be opened
once before it is referenced.

PRINT

The PRINT stat,ement is used to
comments, values of variables,
console terminal. The format is:

output
or plot

results
points

(line number) PRIN'r expression

of computations,
of a graph on the

When no expression is indicated in the statement line, a blank line is
output. For example:

?(15 DR I NT
?l(~ PRI:\IT

Two blank lines will be output on the console terminal. By using
certain kinds of expressions and the control characters colon and
semicolon, the user can create fairly sophisticated formats.

6-16

In order to print out the results of a computation and the value of a
variable, the user types the line number, PRINT, and the variable
name{s) separated by a format control character (in this case, commas)
as follows:

5 A=16\B=5\C=4
10 PRINT A,C+B,SQR(A)

In BASIC, an output line is formatted into five columns (called print
zones) of 14 spaces each. The control character comma causes a value
to be typed beginning at the next available print zone. In the above
example, the value of A, the sum of A+B, and the square root of A are
printed in the first three print zones as follows:

RUN
16 9

A statement such as in line number 10 in this next example:

5 A=2.3\B=21\C=156.75\D=1.134\E=23.4
10 PRINT A,B,C,D,E

causes the values of the variables to be printed in the same format
using all five zones:

RUN
2.3 21 156.75 1 .134 23.4

When more than five variables are listed in the PRINT statement, the
sixth value begins a new line of output.

The PRINT statement may also be used to output a message or line of
text. The desired message is simply placed in quotation marks in the
PRINT statement as follows:

10 PRINT "THIS IS A TEST II

when line 10 i.s encountered during execution, the following is
printed:

THIS IS A TEST

A message may be combined with the result of a calculation or a
variable as follows:

80 PRINT IIAMOUNT PER PAYMENT =",R

Assuming R=344.96, when line 80 is encountered during execution, the
results are output as:

AMOUNT PER PAYMENT 344.96

If a number following a printed message is too long to be printed on a
single line, the number is automatically moved to the beginning of the
next line.

It is not necessary to use the standard 5-zone format for output. The
control character semicolon (;) causes the text or data to be output

6-17

immediately after the last character printed (separated from that
character by a space and followed by another space). If neither a
comma nor a semicolon is used, BASIC ,~ssumes a semicolon. Thus both
of the following:

80 PRINT "AMOUNT PER PAYMENT ="R
80 PRINT "AMOUNT PER PAYMENT =";Ft

result in:

AMOUNT PER PAYMENT = 344.96

The PRINT statement can also cause a Gonstant to be printed on the
console terminal. (This is similar to the PRINT command used in
Immediate Mode.) For example:

10 PRINT 1.234~SQR(10014)

causes the following to be output at 4;!xecution time:

1.234 100.07

Any algebraic expression in a PRINT s·tatement is evaluated using the
current value of the variables. Nmru)ers are printed according to the
format discussed in Section 6.3.

The following example program illustrates the use of the control
characters comma and semicolon in PRINT statements. The user may also
wish to refer to Section 6.8.12 for information pertaining to three
functions available for additional character control--TAB, PUT, and
GET:

10 READ A~B~C
20 PRINT A,B~C~At2,Bt2,Ct2
30 PRINT
40 PRINT A;B;C;At2;Bt2;Ct2
50 DATA 4~5,6
60 END

RUN
4
36

5

4 5 6 16 25 36

READY.

6 16 25

Another use of the PRINT statement is to combine it. with an INPUT
statement so as to identify the da·ta expected to be entered. As an
example, consider the following progr.am:

6-18

10 REM - PROGRAM TO COMPUTE INTEREST PAYMENTS
20 PRINT "INTEREST IN PERCENT";
25 INPUT J
26 LET J=J/100
30 PRINT "AMOUNT OF LOAN";
35 INPUT A
40 PRI NT "NUMBER OF YEARS";
45 INPUT N
50 PRINT "NUMBER OF PAYMENTS PER YEAR";
55 INPUT M
60 LET N=N*M
65 LET I=J/M
70 LET B=1 +1
75 LET R=A*I/(1-1/BtN)
78 PRINT
80 PRINT "AMOUNT PER PAYMENT =";R
85 PRINT "TOTAL INTEREST =";R*N-A
88 PRINT
90 LET B=A
95 PRINT" INTEREST APP TO PRIN BALANCE"
100 LET L=B* I
110 LET P=R-L
120 LET B=B-P
130 PRINT L"P .. B
140 IF B>=RGO TO 100
150 PRINT B*I .. R-B*I
160 PRINT "LAST PAYMENT ="B*I+B
200 END

HUN
INTEREST IN PERCENT?9
AMOUNT OF LOAN?2500
NUMBER OF YEARS?2
NUMBER OF PAYMENTS PER YEAR?4

AMOUNT PER PAYMENT = 344.9617
TOTAL INTEREST = 25~.6932

INTEREST
56.25
49.75399
43.11182
36.32019
29.37576
22.27508
15.01463
7.590824

LAST PAYMENT =

READY.

APP TO PRIN
288.7117
295.2077
301.8498
308.6415
315.5859
322.6866
329.947
337.3708
344.9608

BALtlNCE
2211 •. 288
1916 •. 081
1614 •. 231
1305 •. 589
990. fl03 5
667.~117

337 .~1699

As can be noticed in this example, the question mark is grammatically
useful when several values are to be i.nput by allowing the programmer
to formulate a verbal question which the input values will answer.

6-19

PRINT#

The PRINT# statement is similar to t:he PRINT stab:!ment with the
exception that data and messages are sent to the cur:rent output file
on cassette rather than to the console terminal. Thl:! form of the
statement is:

(line number) PRINTf: xl, x2 , ••• xn

where # signifiE:!s that the output will be sent to the cassette drive
number and filename of the currently open output file, and xl through
xn represent data variables. (The current open file iB determined by
the OPEN FOR OUTPUT statement, as detailed earlier in 1::his section.)

If the user attempts to save data on a full cassette, BASIC prints an
error message and returns control to its editing phase. The data
already output is lost, and the user will have to rerun his program
using a different output cassette.

COMMAS and NO COMMAS

Data stored in an output file on cassette is often called later as
input by another or the same program. (This is in fact the only
method of passing data between segments of a chained program.) In
order to be use~d as input, this data m.ust be in the sa.me format as it
would appear if written in a DATA statement. Cassette BASIC provides
two statements for formatting this output--COr.1MAS and NO COMMAS.

In order to be used as data, individual values must
commas; the COMMAS statement inserts a comma after
(unless the COMMAS statement is inserted in the
PRINT# statement, data will be output in the
eariier under the PRINT statement.) The form is:

{line number> COMMAS

be separated by
eac:h item of data;
program prior to
format illustrated

A NO COMMAS stat:ement will set the format back to its original state.
The COMMAS and NO COMMAS statements do not affect output on either the
console terminal or line printer.

The following example
"OUT. OAT" , reads the
console terminal.

writes out four values in a file called
values back into memory and prints them on the

10 OPEN "1:0iJT.DAT" FOn OUTPUT
15 COMMAS
20 PRINT' 1;2;3;4
30 CLOSE
40 OPF:N "1:0IJT.DAT If FOR INPUT
50 INPUT# I~J~K~L

60 PR.INT I,J~K~L

73 END

Output appears as follows:

RUN
1

READY.

3

6-20

4

The COMMAS statement is not necessary if the user is only sending one
value per line. The preceding example could have been coded as
follows, with the same results: .

10 OPEN "1:0UT.DAT" FOR OUTPUT
20 FOR 1=1 TO 4
30 PRINT# I
40 NEXT I
50 CLOSE
60 OPEN "1:0UT.DAT" FOR INPUT
70 INPUTI I,J,K,L
80 PRINT I,J,K,L
90 END

In this case the file OUT. OAT would appe,ar:

1
2
3
4

whereas in the first case it would appear as follows:

The user must take care when inputting data from cassette files. For
example, if the file OUT. OAT is in the form:

and the user attempts to input these values using the following
statement:

the proper values for I, J, and K will he read, but the rest of the
line will be lost as far as satisfying any future variables--just as
it would be lost if these values were input from the console terminal.
(Refer to the information concerning the INPUT statement in this
section.)

LPT

The LPT statement is used to generate output on the line printer (if
one is available) and is of the form:

(line number) LPT

By inserting this statement anywhere in a program, all subsequent
output, with the exception of error messages, will be printed on the
line printer. The LPT statement is particularly advantageous for
outputting large amounts of calculated data, as can be seen from this

6-21

and following examples:

100 LPT
110 FOR F=30 TO 60 STEP 3
120 PRINT F"Ff2
130 NEXT F
140 END

huN

30 q00
33 1089
3& 129&
39 t 5tH
42 17&4
45 2025
48 2304
51 2&01
S4 291&
57 324q
~0 3~00

When the END statement is encountered in the program, the output
device is reset to the console terminal.

TTY OUT

The console terminal may be placed under program control so that
during execution of a program output may be sent alte:rnately between
the console terminal and the line printe~r (if one is ava.ilable on the
system) •

Control is originally set with the console terminal. B:{ issuing the
LPT statement discussed previously, all subsequent output can be sent
to the line printer. To return control to the console terminal from
within the program, the statement:

(line number) T'I'Y OUT

is inserted. (Cassette I/O always returns control to the last device
indicated, so that the TTY OUT statement need only bl~ used when the
line printer is involved.)

The following program makes use of almost all the available I/O
devices. The console terminal and line printer output is included.

5 HEM PROGRAM TO DEMONSTHATE 4LL 110 DEVICgS
1~ REM AVAILABLE IN CASSETTE BASIC
15 REM
20 PR I NT "PHOGHAM TO CALCfJLATE SOIJA,RES AND SOfJARE HOOTS"
25 PRINT
27 REM GET LOOP LIMITS FROM USER
30 PRINT "INprTT LOWER LIMIT"
35 I NPT]T L
40 PRINT "INpT]T TJPPEH LIMIT"
45 INPUT U
50 PR I NT "I Npr]T STEP"
55 I NprJT S
57 HEM CREATE A CASSETTE FILE OF SQIJARES OF Nr)MBERS
60 OPEN "1: snfJARE. DAT"FOR Of]TPI]T

6-22

65 LPT
66 RSM PRINT A F'OHM F~F:D ON LINEPRl:'<J1EH
70 T =prJT (12)
75 PH I NT "TABLE OF ;\JrJMBERS AND THE 1 R S()!JAHES"
80 PRINT

81
[12

PHINT
PRINT
PRINT

II

~3
~5 FOR X=L

X","

TO /J

90 PHINT x,xn~

Xf2"

STEP S

95 RF:M ALSO SF:ND S()fJARf.::S TO CASSF.TT~ FILE:
100 P~INT# Xn:~

H,5 NEXT X
1~6 CLOSE
110 T=prJT(l:l,)
111 TTY orJ1
112 PH I NT "TABLE OF SIJ'JAHES C OMDLETE"
113 LPT
115 PR I NT "TABLE OF ~\J;JM8ERS AND THE: I H 50! JARE ROOT S II
12(71 OPE\} "I :SOi1AR~:.DAT"F'OR Il'JprJT

125 PRINT
126 P:'iINT
127 ~RINT " X"," SnR(X)"
128 PRINT
130 FOR X=L TO 'J STEP S
135 INP;JT# J
136 PRINT J,SOR(J)
140 i\lEXT X
150 T=P;JT(1~)
155 TTY or)T
160 PRINT "PHOGHAM COMPLETED"
165 END

H,uN
PROGRAM TO CALCTJLATE SnrJARES AND S0rJARE ROOTS

I \JDIJT LOWER LIMIT

11
I:'lprJT fJPPEH LIMIT

1591
INprJT STEP

71
TABLE OF' S();JARES COMPLETE

6-23

TA8LE Of' MJtviBE.RS Ar~1,) THE-If.(SQUARES

)()(-2

1
2 " :~ q

i1 \h
~ 2':5
(-. 3h
1 49
8 ,.."
q M 1
1 V' 1?!0

49 2"0',
'i0 25~C1

)(~QK(X)

1
~ ?
9 3
1 f, 4

25 ':'
-~ ,., t-
1.19 "

bU b
51 9

t '1 v1 t 9l

;.>4 v' 1 49
2 ':'r,'~ ') ~~

6-24

NOTE

If an LT33 Teletype i.s used as the
console terminal and it includes a
reader and punch, these devices may be
used for I/O operations at any time; no
special statement is required. To read
in data from the reader, position the
tape over the sprocket \t;rheel; when input
is required, set the realder to START and
the tape will begin reading in. To
punch a tape, set the! punch to ON and
all Teletype output will be punched on
the punch. Using the! paper tape I/O
devices is, in effect, t~he same as using
the Teletype keyboard. Characters will
be typed on the Teletype keyboard as
tapes are being read or punched.

6.B.6 Creating Run-Time Input Files

Data files stored on cassette and used for input during execution can
be created either by use of BASIC itself or by use of the CAPS-B
EDITOR.

Using BASIC, the programmer creates a program which accepts values
from the console terminal keyboard and then writes these onto the
cassette as an output file. Data files consist of consecutive ASCII
characters. If the useful data in a file is to end before the actual
end-of-file, the last useful character must be followed by a CTRL/Z.
(This character is inserted by BASIC when the user closes an output
file. When later detected during input:, BASIC sets an end-of-file
flag; the user can test an end-of-fiIE~ condition by using the IF-END#
statement.) The COMMAS statement is uSE~d to produce the correct format
for a data file when more than one value is on a single line.

The following program illustrates one method of doing this:

5 REM - PROGRAM TO ACCEPT DATA FROM THE CONSOLE
10 REM - TERMINAL AND CREATE A. RUNTIME INPUT FILE
20 OPEN "0:RTIN.DAT" FO!={ OUTPUT
25 PRINT "INPUT A"B"C"D";
30 INPUT A"B"C,D
35 COMMAS
40 PRINTH A"B"C"D
45 PRINT "INPUT FeI) FOR 1=1 TO 1~1"

50 DIM F(HD
52 REM - COMMAS NOT NEEDED SINCE t:~RRAY WILL
53 REM - BE OUTPUT ONE ELEMENT PER LINE
55 NO COMMAS
60 FOR 1=1 TO 10
70 PRINT "F("I")";
7 5 I NP UT F (I)
80 PR I NT # F (I)
85 NEXT I
90 PRINT II INPUT Vl"V2"Z"
95 INPUT Vl "V2" Z
97 REM - CO~M.4S ARE NEEDED
98 REM - \vILL BE OUTPUT ON

SINCE i} 1 " V2 AND
THE SAt1E LI NE

6-25

Z

1 tHtJ COMMAS
105 PRINT# Vl,V2,Z
110 CLOST<':
115 END

nUN

S.AVE

UNIT#(O··7) :0

READY.

The CAPS-8 EDITOR can also be used to create an input file. The
EDITOR first asks for input and output devices and filenames; then the
user types the file using EDITOR commands and making sure the format
is correct for BASIC. The same data file in the above example can be
created using the EDITOR as follows:

!..R EDI T
*IN?UT FILE-
*Q0r~Jr FILE-0znfIN.DAT

JLA
1.37,2.346,-13.267,-1.056
23
3.56
1 .436
38
9.026
23.1967
89
5Ll
12.467
-1
123,34567,789

!L
1.37,2.346,-13.267,-1.056
23
3.56
1.436
38
9.026
23.067
f59
54
12.467
-1
123,34567,789

JtE

6-26

6.8.7 Loops (FOR, NEXT and STEP)

A loop is a
again, each
is reached.
loop; STEP
the form:

set of instructions which are repeated over and over
time being modified in some way until a terminal condition

FOR and NEXT statements define the beginning and end of a
specifies an incremental value. The FOR statement is of

(line number) FOR v=xl TO x2 STEP x3

where v represents a variable name, and xl, x2, and x3 all represent
formulas (a formula in this case means a numerical value, variable
name, or mathematical expression). v is termed the index, xl the
initial value, x2 the terminal value, and x3 the incremental value.
For example:

15 FOR K=2 TO 20 STEP 2

This loop will be repeated as long as K is less than or equal to 20.
Each time through the loop, K is incremented by 2, so the loop will be
executed a total of 10 times.

A variable used as an index in a FOR statement must not be
subscripted, although a common use of loops is to deal with
subscripted variables using the value of the index as the subscript of
a previously defined variable (this is illustrated in Section 6.8.8,
Subscripted Variables).

The NEXT statement is of the form:

(line number) NEXT v

where v is the index of the FOR loop and signals the end of the loop.
When execution of the loop reaches the NEXT statement, the computer
adds the STEP value to the index and checks to see if the index is
less than or equal to the .terminal value. If so, the loop is executed
again. If the value of the index exceeds the terminal value, control
falls through the loop to the following statement, with the value of
the index equaling the value it was assigned the final time through
the loop. (Note that this method of handling loops varies among other
versions of the BASIC language.)

If the STEP value is omitted, a value of +1 is assumed. (Since +1 is
the usual STEP value, that portion of the statement is frequently
omitted.) The STEP value may also be a negative number.

The following example illustrates the use of loops. This loop is
executed 10 times: the value of I is 10 when control leaves the loop.
+1 is the assumed STEP value.

10 FOR 1=1 TO 10
20 NEXT I
30 PRINT I
40 END

RUN
10

READY.

6-27

If line 10 had been:

10 FOR 1=10 TO 1 STEP -1

the value printed by the computer would be 1.

As indicated earlier, the numbers used in the FOR statement are
formulas; these formulas are evaluabed upon first encountering the
loop. While the index, initial, terminal and STEP values may be
changed within the loop, the value assigned to the initial formula
remains as originally defined until the terminal condition is reached.
To illustrate this point, consider the previous example. The value of
I (in line 10) ca.n be successfully chang1ed as follows:

10 FOR 1=1 TO 10
15 LET 1=10
20 NEXT I

The loop will only be executed once since the value 10 has been
reached by the variable I and the terminal condition is satisfied.

If the value of the counter variable is originally set equal to the
terminal value, the loop will executE:! once, regardless of the STEP
value. If the starting value is beyond 1:he terminal value, the loop
will also execute only once.

It is possible to exit from a FOR-NEXT loop without the index reaching
the terminal value. This is known as a conditional transfer and is
explained in Section 6.8.9. Control may only transfer into a loop
which has been left earlier without beinq completed, ensuring that the
terminal and STEP values are assigned.

Nesting Loops

It is often useful to have one or more loops within a loop. This
technique is called nesting, and is allowed as long as the field of
one loop (the numbered lines from the FOR statement to the
corresponding NEXT statement, inclusivE~) does not cros:; the field of
another loop. A diagram is the best way to illustrat.e acceptable
nesting procedures:

ACCEPTABLE NESTING
TECHNIQUES

UNACCEPTABIJE NESTING
TECHNIQUES

Two Level Nesting

~
' r~g~
~EXT

FOR
[NEXT

-NEXT

~
~'OR

E'OR
-NEXT

NEXT

6-28

Three Level Nesting

FOR -FOR

[

OR
r FOR
l-NEXT
r FOR
l-NEXT

NEXT
NEXT

~
-FOR

[-FOR
-NEXT
-FOR
'NEXT
-NEXT
-NEXT

A maximum of eight (8) levels of nesting' is permitted. Exceeding that
limit will result in the error message:

FOR ERROR AT LINE XXXX

where XXXX is the number of the line in which the error occurred.

6.8.8 Subscripted variables

In addition to single variable names, BASIC accepts another class of
variables called subscripted variables. Subscripted variables provide
the programmer with additonal computing capabilities for handling
lists, tables, matrices, or any set of related variables. Variables
are allowed one or two subscripts. A single letter forms the name of
the variable, followed by one or two integers in parentheses,
separated by a comma, indicating the place of that variable in the
list. Up to 26 arrays are possible in any program (corresponding to
the letters of the alphabet), subject only to the amount of memory
space available for data storage. For example, a list might be
described as A(I) where I goes from 1 to 5, as follows:

A(l) ,A(2) ,A(3) ,A(4) ,A(5)

This allows the programmer to reference each of the five elements in
the list A. A two dimensional matrix A{I,J) can be defined in a
similar manner, but the subscriped variable A can only be used once
(i.e., A{I) and A{I,J) cannot be used in the same program). It is
possible however, to use the same variable name as both a subscripted
and an unsubscripted variable. That is, both A and A(I) are valid
variable names for use in the same program.

Subscripted variables allow data to be input quickly and easily, as
illustrated in the following program (the index of the FOR statement
in lines 20, 42 and 44 is used as the subscript):

10 REM - PROGRAM DEMONSTRATING READING
11 REM - OF S!J8SCH I PTED VAR I ABLES
15 DIM A(5)IR(213)
18 PRINT "A(I) WHl-:RE A=1 TO 5;"
20 FOR 1=1 TO 5
25 READ A(I)
30 PH I ~T A (I) ;
35 NEXT I
38 PRINT
39 PRINT
40 PRINT "BC IIJ) WHl':HE 1=1 TO ? ...

41 PRINT" A'\lD J=1 TO 3:"
42 F' on I = 1 TO 2

6-29

DIM

43 PRINT
44 FOR J=1 TO 3
48 HEAD B(IIJ)
50 PH 1 NT R (1 1 J) ;

55 NEXT J
56 '~EXT 1
60 DATA 112131415161718
61 DATA 811161514131211
65 END
WJN
A(I) WHERE A=1 TO 5;

1 ? 3 4 '5

8(I, J) wHERE: 1=1 TO 2 :
AND J=1 TO 3:

6 7 8
R 7 6

HP,ADY.

From the preceding example, it can be se,en that the use of subscripts
requires a dimension (DIM) statement to define the maJ<:imum number of
elements in the array. The DIM statement is of the form:

(line number) DIM vl(nl), v2(n2,m2)

where v indicates an array variable name and nand m are integer
nwnbers indicati.ng the largest subscript value requi.red during the
program. For example:

15 DIM A(6110)

The first element: of every array is automatically assumed to have a
subscript of zero. Dimensioning A(6,lO) sets up room for an array
with 7 rows and 1.1 columns. This matrix can be thought of as existing
in the following form:

AO,O AO,l
Al,O Al,l
A2,O A2,1

A6,O A6,1 •••

AO,lO
AI,lO
A2,lO

A6,lO

and is illustrated in the following program:

6-30

10 REM - MATRIX CHECK PROGRAM
15 DIM A(6,10)
20 FOR 1=0 TO 6
22 LET A(I,0)=I
25 FOR J=0 TO 10
28 LET A(0,J)=J
30 P R I NT A (I , J) ;
35 NEXT J
40 PRINT
45 NEXT I
50 END

RUN
0 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0 (~ (3 0 0 0 0 0 13 13
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 (1 0 (3 0 {~ 0
5 0 0 (1 0 0 (3 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0

READY.

Notice that a variable assumes a value of zero until another value has
been assigned. If the user wishes to conserve memory space by not
making use of the extra variables set up within the array, he should
set his DIM statement to one less than necessary, i.e. DIM A{5,9).
This results in a 6 by 10 array which may then be referenced beginning
with the A (O,O) element.

More than one array can be defined in a single DIM statement:

10 DIM A(20), 8(4,7)

This dimensions both the list A and the matrix B.

A number must be used to define the maximum size of the array. A
variable inside the parentheses is not acceptable and will result in
an error message by BASIC at run-time. The amount of memory not
filled by the program will determine the amount of data the computer
can accept as input to the program at anyone time. In some programs
a TOO-BIG ERROR may occur, indicatinc;r that memory will not hold an
array of the size requested. In that evemt, the user should change
his program to process part of the datcL in one run and then chain to
another section to process the rest (see Section 6.8.10).

6.8.9 Transfer of Control Statements

Certain control statements cause the execution of a program to jump to
a different line either unconditionally or as a result of some
condition within the program. Looping is one method of jumping to a
designated point until a condition is nlet. The following statements
give the progranuner added capabilities in this area.

6-31

Unconditional Transfer (GOTO)

The GOTO (or GO TO) statement is an unconditional statE!ment
direct program <::ontrol either forward or back in a pro9ram.
of the GOTO statement is:

(line number) GOTO n

used to
The form

where n represents a statement number. When the logic ()f the program
reaches the GOT 0 statement, the statement(s) immediately following
will not be executed: instead execution is transferred to the
statement beginning with the indicated line number.

The following program never ends: it does a READ, prints something,
and jumps back to the READ via a GOTO statement. Ii: atempts to do
this over and over until it runs out of data, which is an acceptable,
though not advisable, way to end a program.

10 HEM - PROGHAM ENDING WITH ERROR
11 .REM - MESSAGE Wy~~ O~T OF DATA
20 HEAD X
25 PRINT "X="XI"XT2="XT2
30 GO TO 20
35 DATA 115110115120125
40 END

HfJN
X= 1 Xt2= 1
X= 5 XT2= 25
X= 10 Xt2= 10'1
X= 15 Xt2= 225
X= 20 Xf2= 400
X= 25 Xf2= f)~5

DATA ERROR AT LINE 20

Conditional Transfer (IF THEN and IF GOT 0)

A program sometimes requires that two values be compared at some
point; control of program execution may be directE!d to different
procedures depending upon the result of the comparison. In computing,
values are logically tested to see whether they are equal, greater
than, less than another value, or possibly a combination of the three.
This is accomplished by use of the relational operators discussed in
section 6.5.3.

IF THEN and IF GOTO statements allow the programmer to test the
relationship between two formulas (variables, numbers, or
expressions). Providing the relation.ship described in the IF
statement is true at the point it is tested, c()ntrol will be
transfered to the line number specified, or the indicated operation
will be performed. The statements are of the form:

(line number) IF vI <relation> v2 GOTO [or THEN] x

6-32

where vl and v2 represent variable names or expressions, and x
represents a line number or an operation to be performed. The use of
either THEN or GOTO is acceptable.

The following two examples are equivalent (the value of the variable A
is changed or remains the same dependin9 upon A's relation to B) :

100 IF A>B THEN 120
110 A=A t8-1
120 C=A/D

100 IF A<=8 THEN A=AtB-l
110 C=A/D

IF ENOl

The IF ENOl statement is used to verify an end-of-file condition
during run-time input. The form of this statement is:

(line number) IF ENOl THEN n

IF ENOl instructs BASIC to perform a ch.~ck on the validity of the last
INPUT I statement referencing the currently open input file; n
represents a line number or operation to be performed. If an
end-of-file (CTRL/Z) was detected during the last INPUTI statement,
BASIC transfers control to the specified line number or performs the
indicated operation. If an end-of-file was not detected, then no
operation occurs. For example:

150 OPEN "1: VALUE" FOR INPUT

200 INPUT# A,B,C
210 IF END# THEN 530
215 LET X=SGNCA)

530 PRINT "INPUT FILE--NOT ENOUGH DATA"
535 STOP

6-33

In this example the programmer provides his own error message if there
is an insufficient number of values for his variables. If there are
two valid numbers remaining in the input file when stcLtement 200 is
reached, then the variables A and Bwill receive valid input. When
the program attempts to input a value for C, BASIC ~rill detect an
end-of-file and return a value of zero for C. As it executes the IF
END# statement, BASIC will note that it has ju~:t reached the
end-of-file, and will transfer control to statement nun~er 530, as the
user intended.

However, assume that as line 200 is executed there is only one valid
data value left in the input file. An end-of-file is detected this
time when BASIC tries to read a value for B; B is set t~o zero. When
BASIC attempts t:o continue reading a value for C, an EOF ERROR will be
returned (see Section 6.12) and program execution will terminate since
the user has tried to read past the end-of-file. A good way of
circumventing this condition is to include both the INPUT# and the IF
END# statements in a loop and input one value at a time. Using this
method allows the programmer's own error message to be printed before
BASIC is allowed to read past the end-of-file.

6.8.10 Program Chaining (CHAIN)

Since Cassette BASIC allows at most only 2K words of memory for
program storage, it is possible that a program may be t~oo large to fit
in memory at one time. However, Cassette BASIC compen~:ates for this
by allowing different segments of a program to be stored on cassette
and called as needed. Although each program segment is restricted to
2K of memory, total program length is effectively unlimited. The form
of the CHAIN statement is:

(line number) CHAIN "n:XXXX"

where n is the cassette drive number, and XXXX is the name of the file
to be chained to. The CHAIN statement should be the last statement in
the user's program. When BASIC transfers to the program specified in
the statement, it removes the old program from memory. Data is not
passed in memory during the chain, so the user should be careful to
save any data he will need in an output file. (See Section
6.8.5--PRINT#.) The chain automatically closes any open output file,
transfers control to the lowest statement number in t:he new program,
and continues execution.

For example, the following section of a program stores some data
values on an output cassette and chains to a file callE~d PART2:

450 OPEN "1.: DATA." FOR OUTPUT
4 55 COMMA.S
460 PRINT# B,C,D,G,H,Z
465 NO COMMAS
410 FOR 1=1 TO 10
415 PRINTH A(I)
480 NEXT I
485 CLOSE
490 CHAIN "1 :PART2"

6-34

The values stored by this section of the program in the cassette file
DATA can be read in by the second section of the program--PART2--and
can continue to be used. PART2 might appear as follows:

1 DIM A(10)
5 OPEN "1: DATA" FOR INPUT
10 INPUT# B,C,D,G,H,Z
15 FOR 1=1 TO 10
20 INPUT/! A.(I)
25 NEXT I

6.8.11 Subroutines (GOSUB and RETURN)

A subroutine is a section of code performing some
required at more than one point in the program.
I/O operation for a volume of data, a mathematical
too complex for a user-defined function, or
processes may best be performed in a subroutine.

operation that is
Often a complicated
evaluation which is
any number of other

Subroutines are generally placed physically at the end of a program,
usually before DATA statements, if any, and always before the END
statement. Two statements are used exclusively in BASIC to handle
subroutines; these are the GOSUB and RETURN statements.

A program begins execution and continues until it encounters a GOSUB
statement of the form:

(line number) GOSUB x

where x represents the first line number of the subroutine.
then transfers to that line. For example:

50 GOSUB 2'2)0

Control

When program execution reaches line 50, control transfers to line 200,
and the subroutine is processed until execution encounters a RETURN
statement of the form:

(line number) RETURN

The RETURN statement causes control to return to the statement
following the GOSUB statement. Before transferring to the subroutine,
BASIC internally records the next statement to be processed after the
GOSUB statement; thus the RETURN statement is a signal to transfer
control to this statement. In this way, no matter how many different
subroutines are called, or how many times they are used, BASIC always
knows where to go next.

The following program demonstrates a simple subroutine:

6-35

1 REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
10 DEF FNA(X)=ABSCINTCX»
20 INPUT A .. B .. C
30 GOSUB 1 '~0
40 LET A=FNACA)
50 LET S=FNACB)
60 LET C =FNACC)
70 PRINT
80 GOSUS 1"0
90 STOP
100 REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
110 REM - OF THE EQUATION: ACXt2) + SCX) + C = 0
120 PRINT "THE EQUATION IS "A"*Xt2 + "B"*X + nc
130 LET D=B*B-4*A*C
140 IF D<>0 THEN 170
150 PRINT "ONLY ONE SOLUTION ••• X ="-B/C2*A)
160 RETURN
170 IF D<0 THEN 200
180 PRINT "TWO SOLUTIONS ••• X =";
185 PRINT (-B+SQR(D»/(2*A)"AND X ="C-B-SQRCD»/(H*A)
190 RETURN
200 PRINT "IMAGINARY SOLUTIONS ••• X = cn;
205 PRINT ··B/C2*A)" .. "SQRC -D)/C2*A)") AND C";
207 PRINT -B/C2*A) -SQR(-D)/C2*A,)")"
210 RETURN
900 END

RUN
?1 ... 5 .. -.5
THE EQUATION IS 1 *Xt2 + .5 *X + -.5
TWO SOLUTIONS ••• X = .5 AND X =-1

THE EQUATION IS 1 *Xt2 + 0 *X +
I MAG I NARY SOLUT IONS. •• X = o .. 1) AND 0 .. -1

RFADY.

Line 100 begins the subroutine. There are several places in which
control may return to the main prog'ram, depending upon the flow of
control through the various IF statements. The subrou1:ine is called
from line 30 and again from line 80. ~hen control returns to line 90,
the program encounters the STOP statement and execution is terminated.
It is importan1: to remember that subroutines should gE!nerally be kept
distinct from the main program. The last statemen1: in the main
program should be a STOP or GOT 0 statement, and subroutines are
normally placed following this statement. A useful practice is to
assign dis tinc1:i ve line numbers to subroutines. For example, if the
main program is numbered with line numb,ers up to 199, 1:hen 200 and 300
could be used as the first numbers of t,wo subroutines.

Nesting Subroutines

Nesting of subroutines occurs when one subroutine calls another
subroutine. If a RETURN statement is encountered during execution of
a subroutine, control returns to the statement follo\ling the GOSUB

6-36

which called it. From this point, it is possible to transfer to the
beginning or any part of a subroutine, even back to the calling
subroutine. Multiple entry points and RETURN statements make
subroutines more versatile.

The maximum level of GOSUB nesting is about ten (decimal) levels,
which should prove more than adequate for all normal uses. Exceeding
this limit will result in the message:

GOSUB ERROR AT LINE XXXX

where XXXX represents the line number where the error occurred. An
example of GOSUB nesting follows. Execution has been stopped by
typing a CTRL/SHIFT/P combination (see section 6.11.4, Stopping a
Run), as the program would otherwise continue in an infinite loop.

10 REM - FACTORIAL PROGRAM USING GOSUB TO
15 REM - RECURSIVELY COMPUTE THE FACTORS
40 INPUT N
50 IF N>20 THEN 120
60 X=1
70 K=1
80 GOSUB 200
90 PRINT "FACTORIAL "N" ="X
110 GO TO 40
120 PRI NT "MUST BE 10 OR LESS"
130 GO TO 40
200 X=X*K
210 K=K+l
220 IF K<=N THEN GOSUB 200
230 RETURN
240 END

RUN
12
FACTORIAL 2 2
?4
FACTORIAL 4 = 24
75
FACTORIAL 5 = 120
?

STOP.
READY.

6.8.12 Functions

BASIC defines several mathematical calculations for the programmer,
eliminating the need for tables of trig' functions, square roots, and
logari thms. These functions have a 3-1et.ter call name, followed by an
argument, x, which can be a number, variable, expression, or another
function. Table 6-1 lists the functions available in Cassette BASIC.
Most are self-explanatory; those that; are not and are described in
greater detail are marked with an asterisk.

6-37

Table 6-1 Cassette BASIC Functions

Function

SIN (x)
COS (x)
TAN (x)
ATN{x)

EXP (x)
LOG(x)

*SGN (x)

*INT (x)
ABS(x)
SQR(x)

*RND (x)
*TAB (x)
*GET (x)
*PUT (x)
*FNA(x)
*UUF (x)

Sign Function (SGN(x»

Meaning

Sine of x (x is expressed i.n radians)
Cosine of x (x is expressed in radians)
Tangent of x (x is expressE!d in radians)
Arctangent of x (result is expressed

in radians)
e to the xth power (e=2.71E:282)
Natural log of x (logex)
Sign of x--assign a value Clf +1 if x is

positive, 0 if x is zero, or -1 if x
is negative

Integer value of x
Absolute value of x (I x I)
Square root of x (¥X)
Random numbter
Print next character at space x
Get a character from input device
Put a character on output device
User-defined function
User-coded function (machine language

code)

The sign function returns the value +1 if x is a positive value, 0 if
x is zero, and -1 if x is negative. For example, SGN(3.42)=1,
SGN(-42)=-1, and SGN(23-23)=O. The following example illustrates the
use of this function:

10 REM - SGN FUNCTIO:-J EXAMPLE:
20 READ A,B
25 Pn I NT "t\ =" A, "B ="B
30 PRINT "SGNCA)="SGNCA),"SGNCB)="SGNCB)
40 PRINT "SGNCINTCA»="SGNCINTCA»
50 DATA -7.32, .44
6(3 END

Integer Function (INT(x)}

The integer function returns the value of the nearest integer not
greater than x. For example, INT(34.67)=34. By specifying INT(x+.5)
the INT function can be used to round numbers to the nearest integer;
thus, INT(34.67+.5)=35. INT can also be used to round numbers to any
given decimal place by specifying:

INT(X*lOtD+.5)/lOtD

where D is the number of
program illustrates this
typing a CTRL/SHIFT/P:

decimal places desired.
function; ~:!xecution has

6-38

The following
been stopped by

10 REM - INT FUNCTION EXAMPLE
20 PRINT "NUMBER TO BE ROUNDED";
3(1 I NPUT A
40 PRINT "NO. OF DECIMAL PLACES";
50 INPUT D
60 LET B=INT(A*10fD+.5)/10fD
70 PRINT "A ROUNDED = "B
80 GO TO 20
90 END

RUN
NUMBER TO BE ROUNDED?55.65342
NO. OF DECIMAL PLACES?2
A ROUNDED = 55.65
NUMBER TO BE ROUNDED?78.375
NO. OF DEC I MAL PLAC ES?-2
A ROUNDED = 1(~0
NUMBER TO BE ROUNDED?67.89
NO. OF DECIMAL PLACES?-1
A ROUNDED = 70
NUMBER TO BE ROUNDED?
STOP.
READY.

If the argument is a negative number, the value returned is the
largest negative integer (rounded to the higher value) contained in
the number. For example, INT(-23)=-23 but INT(-14.39)=-IS.

Random Number Function (RND(x»

The random number function produces a random number n which is in the
range O<n<l. The numbers are not reproducible, a fact the programmer
should keep in mind when debugging or checking his program. The
argument x in the RND(x) function call can be any number, as that
value is ignored. The following program illustrates the use of this
function to generate a table of random numbers.

10 REM - RANDOM NUMBER EXA~PLE

25 PHI NT "RANDOM NUMBERS"
30 FOR 1=1 TO 30
40 PRINT RND(O),
50 NEXT I
60 END

RUN
RANDOM NUMBERS

.7759228

.4857633

.6156673

.3796163

.9547609

.05280478
READY.

.08069808

.4192038

.5921191

.2023254

.2890875

.3859534

.5008833

.1433537

.01170888

.7974058

.1416765

.8404774

6-39

.2790171

.08728769

.7411813

.9635064

.2482717

.5692836

.1661529

.2335427

.341708

.6043865

.2145417

.8514056

It is possible to generate random numbE:!rs over any range by using the
following formula:

(B-A) *RND(O) +A

This produces a random number (n) in the range A<n<B. For example, in
order to obtain random digits in the range 0<n<9, line 40 in the
previous example is changed to read:

40 PRINT 9*RND(0)~

To obtain random
conjunction with
above) as follows:

integer digits, t:he INT functi·on is used in
the RND function (using the same values for A and B

When the program is run, the results will look as follows:

RUN
RANDOM NUMBERS

4 5 8 1 8
1 0 7 8 5
8 3 0 8 8
2 4 7 7 4
8 7 1 8 2
0 7 0 7 5

READY.

Notice that the range has changed to O<=n<:9. This is because the INT
function returns the value of the neare:st integer not qreater than n.

Tab Function (TAB(n»

The TAB function allows
characters anywhere on the
positions can be thought of
console terminal line (1 to
to right. The form of this

the user to position the printing of
teleprinter (or line printE!r) line. Print
as being nu.mbered from 1 to 72 across the
80 across the line printer line) from left
function is:

TAB(n)

where the argument n represents the position (from 1 to the total
number of spaces available) in which the next character will be typed.
For example, TAB(3) causes the character to be printed at position 3.

Each time the TAB function is used, positions are cOlmted from the
beginning of the line, not from the current position of the printing
head. For example, the following statement:

10 PRINT "X ='';TAB(3);,,/,t;3.14159

will print the slash on top of the equal sign, as shown below:

RUN
X ~ 3.14159

6-40

The following is an example of the sort of graph that can be drawn
with BASIC using the TAB function:

30 FOR X=0 TO 15 STEP .5
40 PRINT TAB(30+15*SIN(X>*EXP(-.I*X»;,,*n
50 NEXT X

RUN
*

*
*

*
*

*
*

*
*

*
*

*
*

*

'" '" *
*

*
*

*
*
*

*
*

*

*
*

*
*

PUT and GET Functions (PUT(x) , GET (x»

*

Cassette BASIC provides two additional functions, PUT and GET, to
increase input/output flexibility on the console terminal or line
printer. Using these statements, the programmer can "PUT" an ASCII
character on the current output device, or "GET" a character from the
current input device. (ASCII character codes are listed in Appendix
A.) GET is of the form:

GET (x)

where the argument x is a dummy variable which may be any value.
GET (x) will be assigned the decimal value of the ASCII code of the
next character input on the current input device.

For example, if the following statement appears in a program:

10 LET L=GET(0)

6-41

and the next character input is an M, the variable L will be assigned
the value 77(decimal).

PUT is of the form:

PUT (x)

where the argument x represents either the decimal valuE! of the ASCII
code of the character to be output, or the characte~r itself. For
example, the statement:

15 L=PUT(GET(V»

will wait for a character to be read from the current ir..put device and
then print it on the current output device. A statement. such as:

30 PRINT PUT(Q)

will print the character typed as well as the decimal value of the
ASCII code for that character. (Since both the cha,racter and the
decimal value are typed, PUT and GET statements should not be used
with cassette files.)

NOTE

If the user is inputting characters from
paper tape via the paper tape reader on
an LT33 Teletype, he should be careful
to position the tape on the first
character to be input. O,therwise blank
tape may be entered, which is
interpreted as a "BREAK" and stops a
ru.nning program.

The PUT function can also be used to format output. For example, to
print a trig table on the line prin'ter with a heading and 50 data
lines per page, the form feed character (12 decimal) can be "PUT" to
the printer as follows:

100 LPT
110 GOSUB 1000
120 GOSUB 500
125 REM - SET UP TRIG TABLE
130 FOR J=0 TO 360 STEP .5
140 LET L=L+l
150 LET B=J/180*3.14
160 PRINT J,SINCB),COSCB),TANCB),ATNCB)
165 REM - PRINT 50 ENTRIES IN TABLE
170 IF L=50 THEN GOSUB 500
180 NEXT J
190 GOSUB 1000
200 GOSUB 1000
210 STOP
500 REM - PRINT HEADER
505 GOSUB 1000
510 PRINT
520 PRINT
530 PRI NT "ANGLE" I "s I NE" I"COSI NE" ,"TANGENT" I "ARCTANGENT"
540 PRINT
550 RETURN
1000 REM - PRINT FORM FEEDS TO ADVANCE PAPER
1005 X=PUT(12)
1010 L=0
1020 RETURN
1030 END

6-42

The beginning of the line printer output. from this program follows.
The first page of the table continues through an angle of 24.5
degrees: then the header and the next 50 entries are printed on the
next page, and so on until the values have been output (in steps of
.5) for all angles through 360 degrees.

ANGLE

o
.. 5
1
1,5
2
2.5
3
3.5
~

4.5
5
5.5
&
6.§ .,
7.5
e
8.5

l4.5

SINE

o
8.722112E-01
.~H 14435&
,02616368
.03488181
.0435972Q
,052317..1945
,06101763
.0&CJ12117
.((11784194
.081111&7
,09579131
,\044757
,1131461
.1218019
,1304&04
.139103
.1~7735

FNA' Function (DEF FNA(x»

COSINE

1
.QQQqb2
.9998479
,QQQ6511
,9993915
,CJ9904CJ2
,CJ98b30CJ
,99813b7
,CJ975&65
.CJ9&92~5
.99&198b
,995400CJ
.9945274
.9935184
.9925537
.9914535
,CJ902779
,989027

TANGENT

o
8,722444E-03
.01144621
,02611261.&
.03490305
,043&3878
.0523811b
,0&1131S4
,0bCJ89125
,018bb164
,08144408
,12I9&2]99J
,1050506
,1138174
.1227211
.131585
,1404&81
.1493741

.4554&45

ARCTANGENT

" 8.722001E .. 03
,017442&8
,02&1607
.03481474
.0435835
,052285&4
.0&097986
,0&966486
.07833935
.08700204
,095651&&
.10428619
,1129067
.lc15095
,1300944
.118&6
.147c052

,4038923

In some programs it may be necessary to execute the same mathematical
formula in several different p).aces.. Cassette BASIC allows the
programmer to define his own function in the BASIC language and then
call this function in the same manner as the square root or a trig
function is called. Only one such user-defined function may be
included per program. The function is defined once at the beginning
of the program before its first use, and consists of a DEF statement
in combination with a 3-letter function name, the first two letters of
which must be FN. The format of the DE]~ FNA statement is as follows:

(line number) DEF FNA (:1{) =formula (x)

The A in the FNA portion of the statement may be any letter. The
argument (x) has no significance; it is strictly a dummy variable but
must be the same on each side of the equal sign. The function itself
can be defined in terms of numbers, several variables, other
functions, or mathematical expressions. For example:

10 DEF FNA(X)=Xt2+3*X+4

or

6-43

20 DEF FNC(X)=SQR(X+4)+1

The function:

10 DEF FNLCS)=St2

will cause the later statement:

20 LET R=FNA(4)+1

to be evaluated as R=17.

The user-defined function can be a function of only one variable.

User-Coded Function (UUF)

The user-coded function is explained in detail in the nE!xt section.

6.9 IMPLEMENTING A USER-CODED FUNCTION (UUF)

A special user-coded function is available in Cassette EASIC for the
programmer who is familiar with the PD]?-8 instruction set and 27-bit
mantissa floating-point format. BASIC's internal format is 27-bit,
sign-magni tude mantissa floating-poin't; thus, all user-generated
values must be in that format and all coding must be compatible with
it. The user codes the function in the PDP-8 series machine language
instructions, assembles it with the PALe Assembler, and loads the
resulting binary file as an overlay to one of the existing functions
(ATAN, LOG, etc.) Thus, while BASIC is running, this special function
can be requested and used in a fashion analogous to the built-in BASIC
functions. The user-coded function, if present, is specified in the
BASIC program as:

UUF(n)

where n can be any BASIC expression.

6.9.1 Coding Formats

Due to memory restrictions, the user-codE!d function must replace one
or more of the existing Cassette BASIC functions. Table 6-2 lists the
functions which may be overlaid and the areas of memory they occupy.
Also listed is the transfer table address through whi.:h BASIC calls
the given extended function.

6-44

Table 6-2 Function 1\ddresses

Function Locations Occupied ~rransfer Table Address

FNA
ATN
SQR
RND
TAB

5453-5546
6200-6271
5412-5452
5350-5406
5547-5572

1131
1134
1137
1143
1147

The functions SIN, COS, and TAN are intE!rdependent, but all three may
be deleted as follows:

SIN
COS
TAN

5600-5674 1132
1133
1144

Almost a full page is freed by deleting t~he following:

FNA
SQR
TAB

5412-5572 1131
1137
1147

For each function replaced by the UUF, the user must set the
corresponding transfer table location to point to an erJ:-or routine so
that accidental calls to that function will generate an error
condition rather than a spurious call to the UUF. The user does this
by inserting a statement such as the following in his UU1":

*1143
6441

IT t\BL~ ADDRSSS F'OH R\JI)
IPOI\JT€R TO SY\JfAX ERROH HO'JTINE

To include a user-coded function, all conventions required for the
PALC Assembler must be observed. The coding language is PDP-8 machine
language code, but can include instructions in 1:he modified
floating-point package, which is described later in this chapter in
section 6.10.

When floating-point statements are to be included in the program, it
is necessary only to indicate the start of floating-point notation by
including the following operator:

FENTER

immediately before the first floating-point statement:.
floating-point coding is terminated by the operator:

FEXIT

Similarly

immediately after the last floating-point statement. ThE!re can be as
many sections of floating-point code as necessary in thE! program, but
each must be delimited in this manner.

6-45

6.9.2 Floating-Point Format

The floating-point format used by Cassette BASIC allocates three
storage words i.n sign magnitude convention as follows (in sign
magni tude convent.ion the sign bit rather than the mantissa, expresses
the sign of the entire number):

WORD 1 WORD 2 WORD 3

111111111 ill] 1111111111111 [111111111111

t
'---v---J~

EXPONENT

SIGN BIT

--------~~~------------------~
MANTISSA

Five memory locations are used to represent the floating-point
accumulator, as follows:

Location Name

ACS

ACE

ACl

AC2

AC3

Table 6-3 Floating-Point Accumulator

Value

0024

0025

0020

0017

0016

Contents

Sign

Exponent (200 octal biased:
i.e. the constant 200 is added
to the exponent to make the
range 0-377)

High order word

Mid order word

Low order word

All of BASIC' s mathematical operations a.re in floating--point format:
therefore, if any temporary storage loc:ations are required by the UUF
subroutine, they must specify three words. For example:

6.9.3 Incorporating Subroutines with UUF'

When adding a user function, it becomes necessary to reference some of
Cassette BASIC's subroutines at specific: times in the coding. Most 6f
these calls are needed in order to preserve a compatible format
throughout the system. The BASIC subroutines which rna:, be referenced
are described below. (The complete BASIC symbol table .is included as
Table 6-7 at the end of this chapter.)

6-46

BEGFIX

If a value is to be returned to the acc'l:lIllulator as a :resul t of the
user function, that value must be in normalized floatinq-point format.
If floating-point arithmetic is used throughout the user function,
then the valuE~ in the FAC (floati.ng-point accumulator) is in
normalized floating-point format and need not be c:onverted. If
fixed-point arithmetic is used anywhere in the func::tion, then the
subroutine BEGFIX must be referenced before the value (::loating-point)
is saved in ordE~r that the storage loca.tions are propel::-ly initialized
to accept a floating-point value. Usingr this procedure, the five FAC
locations are prepared accordingly. However, because 1:he value to be
stored only requires 12 bits, a subse:quent DCA AC3 statement is
sufficient. BEGFIX is located at 3760 and is called via a JMS
instruction.

ANORM

If a fixed-point value is added to the F'AC, ANORM normalizes the FAC
in order that it be in a format suitable for Casse"tte BASIC. The
routine supplies the acceptable values for the location!; ACE, ACS, ACI
and AC2. ANORM is assigned the location 4600.

FIX

To convert a value in the FAC to an integer, as wh~~n printing a
character, the subroutine FIX is called; it is located at 4744.

6.9.4 Writing the Program

A user-coded function must res~t one of Cassette BASIC's tables to
recognize the function, otherwise, UUF is cons ide l::-ed to be an
undefined function. The pointer is at location 1150; a statement such
as the following is required:

* 1150
UUr

Procedures for loading a user-coded function are contained in Section
6.11.5. Examples of user-coded functions follow.

6.9.5 Examples of User-Coded Functions

Example l--This program calculates squares and square roots for a
series of values.. The BASIC program is as follows:

100 FOR A=33.1 TO 33.9 STEP .1
110 PHI~T A,f]TJF{A),SQR{A)

120 NEXT A
130 END

6-47

The user-coded function is:

4435
20100
0200
601001
000101
6441
1134

01134 6441

1 1 501
011150 62010

62001
916200 01010101
016201 4435
016202 2204
(162013 6203
(~6204 0101010
(162015 5600
0'62016 000101
062017 010100
016210 0100101

010101
3010101

I

FENTER 4435
FEXIT 0101001
FMP 600101
FST 200101
FWD 02001
SXERR 6441
:f]F 6~"J0I

X 62(~6

The output after
H;I~

33.1
33.2
33.3
33. LI

33.5
33.6
33.7
33.R
33.9

READY.

PALC-Vl 12/27/72 PA~E 1

I
I~SER-CODED FUNCTION TO CALC~LATE
ISQUARES OF NUMBERS
I
ITHE FUNCTION LOADS INTO FIELD 01
IINTO THE AREA OCC~PIED RY THE 'ATN'
IFTJNCT ION
FENTER=4435
FST=20010
FWD=200
FMP=6@001
FEXIT=0I00101
SXERR=6441

*1134
SXERR ISO REFERENCES TO ATN WILL

IYIELD AN ERROR
*11501
lJfJF IDEF I NE fJfJF IN F'JNCT I ON TABLE

*6200
iJfjF, I~

FENTER IINTO FLT.PT.PKG.-A IS IN FAC
FST+FWD+X-. ISAVE A
FMP+FWD+X-.
FEXIT
JMP I rJTJF IALL DONE

X, 1};0;0

FIELD
*301001
$

execution

10195.61
1102.24
1108.89
1115.56
1122.25
112R.96
1135.69
1 14~. 4L,

1149.21

ITO START BASIC WHEN LOADED

is:

P~\LC-Vl 12/27/72 PAGF. 1-1

5.75326
5.761944
5.770615
5.779273
5. '187 91 R
5.796551
5.R~517

S.R13777
5.R22371

6-48

Example 2--The following program tests a student's ability to convert
the octal value in the console switches to its decimal equivalent.
Line 120 will set P equal to the decimal value of the setting. Line
130 determines if the correct answer wa,s typed:

100 PRINT '''WHAT DF.:CIMAL VAUJE DO T~E S'JJITCHI<:S E0 iUIL?"
11 0 I ~p r JT \J
120 LET P=fJiJF(0)
130 IF P=N THEN ?00
140 PRINT "TRY AGAIN"
150 GO TO 100
200 PHINT "'CORRECT"
300 END

The user-coded function is:

PALC-Vl 1~/2117~ PAllE I

01143

01150

0535~
05351

(?J5352

05353

05354
05355
05356
05351

AC3
ANORM
BEGl'IX
FAD
I'ENTF;R
FEXIT
FST
FWD
SXERR
'JANOHM
']REG I' I
'JIJr

I
IIJSER-CODED I'IJ'\ICT I ON TO READ THE CONSULE
IS~ITCHES AND CU~VERT TO FLOATING POINT
I
ITHF: I"J:'-JCT I ON LOADS I "JTO l'I ELD lEBO
11 NTO THE AREA PREV I OIISLY OCCIIP IE: 0 BY
ITHE • RND' I'IJNCT IO"'J-T'IE HANDOM ,\J:IMREH
IliENERATOR
I

0000 1'1ELD 0
4435 I'ENTER=4435
0000 I'EXIT=~A~0

4000 F'tID=400et
2000 I'ST=2000
Pl200 nm=?0et
3160 REll1'1X=3160
4600 ANOHM=4600
0016 AC3=16
6441 SXERR=644 ~

1143 * 1143
6441 SXERR

1150 *1150
5350 lJIII'

5350 *5350
0HHH~ 'JlJI' , A

4156 JMS I

7604 LAS

3016 DCA

4151 JMS I
5150 JMP I
3760 '}BEGI' I X, BEllI' I X
46~0 'J/\NORM, ANOHM
00~1 FIELD 1

ISO REFERENCES ro H.\lO
IWILL YIELD AN EHHOH

IDEI'INE 'JIll' IN I'IINCTION

'JRElll'IX IPHEPARE FOR
II"-.JTEGER VALJE
IGET CONrE'\JTS
101' Sill • HEG.

AC3 ISAVE IN LUW
10RDER I'/\C

IJANOlm /NOHMAL I ;:E
: 1'11' IHET,JRN

3000 *3000 ITO STAHT 'JP RASIC wHEN LOADED
$

PALC-Vl 1~/21172

0016
460~

37M
4000
4435
0000
201'J0
0?00
6441
5351
5356
5350

6-49

TARLE

PAll!-: 1-1

An example of a run in which 200 (oct.al) was set in the console
switches follows:

RfJN
WHAT DECIMAL VALUE DO THE SWITCHES EQUAL?
1120
TRY AGAIN
WHAT DECIMAL VAL'JE DO THE SWITCHES EQrJAL?
1128
CORRECT

READY.

6.10 FLOATING-POINT PACKAGE

Information concerning the PDP-8 modifi.ed Floating-Point Package which
the programmer will find useful in codi.ng a function follows.

6.10.1 Instruction Set

The legal instructions in the modified Floating-Point Package used by
Cassette BASIC are explained in Table 6-4:

Table 6-4 Floating-Point Instructions

Instruction Value

FST

FLD

FAD
FSB

FMP

FDV
FJMP
FENTER
FEXIT

FWD

BKWD

FSNE
FSEQ
FSGE
FSLT
FSGT
FSLE

2000

:3000

4000
5000

6000

7000
1000
4435
10000

0200

0600

0040
0050
0100
0110
0140
0150

Meaning

Store the contents of the floating accum­
ulator (Fl~C). The conten·t:s of the
FAC are not: changed.

Load FAC with contents of relative
address.

Add contents of relative address to FAC.
Subtract contents of relative address

from FAC.
Multiply the contents of the FAC by the

contents of the relative address.
Divide FAC by contents of relative address.
Floating-point ~,ump to relative address.
Start floating-point code.
Exit floating-point code. Return to PDP-8

code.
Access a relative location in the forward

direction.
Access a relative location in the backward

direction.
Skip if FAC <> ()
Skip if FAC = 0
Skip if FAC => ()
Skip if FAC <0
Skip if FAC >0
Skip if FAC <= ()

6-50

The following instructions require indirect (and relative) addressing
and therefore only address field 1. Their operation is the same as
the corresponding direct instruction.

Table 6-5 Relative Addresses

Instruction Value Operation

FSTI 2400 Store
FLDI 3400 Load
FAD I 4400 Add
FSBI 5400 Subtract
FMPI 6400 Multiply
FDVI 7400 Divide
FJMPI 1400 Jump

6.10.2 Addressing

The Floating-Point Package uses relative addressin;J. Thus, all
statements that address a location must include one of the operators
FWD or BKWD plus a reference to the current location. Such a
reference is generally in the form:

op code instruction + FWD (BKWD) + LTEMP-.

The operator FtoJD is used when the address of the location to be
referenced is numerically greater than the current a:ldressj BKWD is
used when the address of the location to be referenced is numerically
less than the current address. LTEMP··. in conjunction with the FWD
or BKWD operator defines the relative address of the location to be
operated on (LTEMP) with respect to the current location. This
relative displacement is then used by the Floating-Point Interpreter
to access the contents of the three words at LTEMP. This can best be
seen in an example:

4010 FAD+FHD+LTEMP-.

The contents of that location which is (4063-4010) locations forward
from the current address, (i.e. the contents of LTEMP) , are added to
the FAC. Similarly:

152 FMP+BKWD+. -ALOe

At line 152 the contents of FAC are mu11:iplied by the contents of the
location that is (152-146) locations backward from the current
address.

6-51

6.11 EDITING AND CONTROL COMMANDS

Errors made while typing at the console: keyboard are ea.sily corrected.
BASIC provides special commands to faci.litate the editing procedure.

6.11.1 Erasing Characters and Lines
(SHIFT/O" RUBOUTS, NO RUBOUTS, J!~TMODE)

There are two methods available for eralsing a charactel:' or series of
characters one at a time. Typing a SHIFT/O causes the deletion of the
last character typed and echoes as a back arrow (+) on the LT33 (or
35) Teletype, or as an underscore (-) on most other console
terminals. One character is deleted ealch time the key is typed.

The RUBOUT key (or DELETE key on some t~erminals) may also be used for
deletion of characters one at a time providing the command:

RUBOUTS

has been typed on the keyboard before the editing is done. This
command enables the RUBOUT key to be used and must be typed each time
a new program is in memory. If the use!r has neglected to type this
command, he may not use the RUBOUT key. A later command 'of:

NO RUl30UTS

disables the key for use.

For example:

10 LEE .. r A=10*B

The user types a B instead of T and immediately noticeEJ the mistake.
He may type SHIFT/O (or RUBOUT key, if enabled) once ·to delete the B,
(and as many times more as characters, including spacl~s , are to be
deleted). After the correction is made, he may continue typing the
line. The typed line enters the comput~er only when thl~ RETURN key is
pressed. Before that time. any number of correction:; can be made to
the line.

When the RETURN key is typed, the line is input as:

Notice that spaces, as well as printin9 characters, may be erased.

The user may era.se an entire line (provided the RETURN key has not
been typed) by typing the ALTMODE key (ESCAPE key on ,some keyboards).
BASIC echos back:

6-52

DELETED

at the end of the line to indicate that t:he line has been removed.
The user continues as though it were a new line. If ·the RETURN key
has already been typed, the user may still correct the line by simply
typing the line number and retyping the line correctly. He may delete
the line by typing the RETURN key immediately after the line number,
thus removing both the line number and line from his pro:Jram.

If the line number of a line not needing correction is accidentlally
typed, the SHIFT/O or RUBOUT key may be used to delete the number(s) ;
the user may than type in the correct numbers. Assume t:~e line:

10 IF A>5 GOTO 230

is correct. The programmer intends to insert a line 15, but instead
types:

10 LET

He notices the mistake and makes the correction as follm.,s:

10 LET~~~~~5 LET X=Z-3

Line 10 ·remains unchanged, and line 15 is entered.

Following an attempt to run a program, error messages may be output on
the console terminal indicating illeqal characters or formats, or
other user errors in the program. Mos t ,arrors can be corrected by
typing the line number (s) and correc·tion (s) and then rerunning the
program. As many changes or corrections as desired may be made before
runs.

6.11.2 Listing a Program (LIST, LIST and LPT)

An indirect program or data can be listed on the active output device
by typing the command:

LIST

followed by the RETURN key. The entire program (or data) will be
listed.

A part of a program may be listed by typing LIST followe~d by a line
number. This causes that line and all following lines in the program
to be listed. For example:

LIST 100

will list line 100 and all remaining lines in the program.

6-53

The LIST command may be used in conjunction with the 1,PT command as
follows:

LPT
LIST

This will list the current program on the line printer. Control is
reset to the console terminal after the listing is completed.

6.11.3 Running a. Program (RUN, RUN and LPT)

After a BASIC program has been typed and. is in memory, it is ready to
be run. This is accomplished by simply typing the command:

RUN

followed by the RETURN key. The program will begin execution. If
errors are encountered, appropriate «~rror messages will be typed on
the keyboard; otherwise, the program will run to completion, printing
whatever output was requested. When the END statement is reached,
BASIC stops execution and prints:

READY.

The line printer, if available, can be used in conjunction with the
RUN command, as follows:

LPT
RUN

After this command is issued, all output: during program execution is
di verted from the console terminal to the line print'~r, eliminating
the need of inserting the LPT statement within the program. The
output device is reset to the console tE~rminal after ex,~cution.

6.11.4 Stopping a Run (CTRL/C, CTRL/O, CTRL/SHIFT/P, BRE;AK)

To stop a program during execution or to return to the Keyboard
Moni tor at any time, type a CTRL/C (by pressing the CTRC, key and the C
key simultaneously). This causes the current operation to be aborted
immediately and the Cassette Keyboard Monitor to be :re-bootstrapped
from the System Cassette.

The cormnand CTRL/O (produced by typing the CTRL and 0 keys
simultaneously) is used to stop teleprinter output temporarily. The
program will con1:inue to execute but out.put will not be printed unless
an error occurs or unless BASIC is wai.ting for a comma.nd or for data
from an input sta.tement. In the latter case, the console terminal is
the expected input device. This feat.ure is particularly useful for
programs that print lengthy introductions and then request a
user-specified parameter. Typing CTRL/O after the proqram is started
will cause BASIC to bypass printing the introduction and wait until

6-54

the parameter is specified, thereby savi.ng the time required to print
the message. A second CTRL/O will resume output.

NOTE

For most programs that do not wait for
input from the terminal, processing of
the program after an initi.al CTRL/O will
be completed before a second CTRL/O can
be typed. Thus, it is vel~ possible for
no output to be printed rather than the
anticipated partial output.

Certain terminals (such as Teletype models LT33 and 35) are equipped
with a BREAK key which may be used in Cassette BASIC to interrupt
program execution. Pressing the BREAK kE!y causes a halt in execution
and a return to the BASIC Editor for mOrE! commands. For those systems
containing terminals not equipped with the BREAK feature, the same
result can be produced by pressing the CTRL, SHIrT, and P keys
simultaneously.

6.11.5 Loading a User-Coded Function

A user-coded function is created using the CAPS-8 EDITOR; it is
assembled using PALC. The resulting binary file is loaded with BASIC
using the Monitor Run or Load commands as follows:

.R BASIC, drive #::Eilename
or

.L BASIC, drive #::Eilename

Assume a user-coded function called UUF.BIN is stored on cassette
drive 3. Assume also that the file UUF.BIN has been coded so as to
include the correct starting address for BASIC. The user runs BASIC
loading the function as follows:

.R. BASIC,UUF

The starting address for BASIC is included in the program and coded as
follows:

r~ I ELD
*31.100
$

The new function may now be used in any files the user \o.i'ishes to edit
and run.

6.11.6 Erasing a Program in Memory (SCRA'TCH)

The command:

SCRATCH

6-55

or

SCR

is provided to allow the programmer to clear his storage area,
deleting any commands or a program which may have been previously
entered, and leaving a clean area in which to work. If the storage
area is not cleared before entering a new program, lines from previous
programs may be executed along with tht:! new program, causing errors or
misinformation. The SCRATCH command eliminates all old statements and
numbers and should be used before any new programs are read into
memory or created at the keyboard.

Note that the SCR command does not clear the program name. If the
user wishes to create a new program wi 1:h a new name, he should use the
NEW cormnand which also performs a SCRA~~CH.

6.11.7 Renaming a Program (NAME)

The user may change the name of the program in memory by issuing the
command:

NAME

BASIC responds by asking:

NEW PROGHA~1 NAME-

The user specifies a new filename (and extension, if desired). This
changes the name of the program without. affecting its image in memory.
All subsequent references to the progra.m must use this new name.

6.11.8 Saving cl Program (SAVE)

Once the user has created or edited a program, he may ~lant to save the
new version on a cassette for later use. He does this by typing:

SAVE

BASIC asks:

U~IT #(0-7):

to which the user responds with the number of the cassette drive on
which he wishes the program to be stored. The program is saved under
its current name--that is, the name used in BASIC's initial dialogue,
or its new name if the NAME command has been used to change it. (If
the filename is the same as one already present on the cassette, the
old file is replaced by *EMPTY in the directory and the new file is

6-56

written onto the cassette.) After the program has been saved, it is
still in memory and may be RUN or edited further.

Attempting to save a program on a full c::assette causes BASIC to return
to the editing phase; the user must save the program on another
cassette.

If the user does not specify a name for his program in the initial
dialogue (by responding with an AL~~ MODE to the NEW PROGRAM NAME
request), the program will be saved under the assigned name
NONAME.BAS.

If the user SCRATCHes a program, creates another program without
assigning a name to it by use of the NEW or NAME commands, and then
attempts to save it, it will be saved lmder the name of the last
program which was in memory, possibly deleting that program if saved
on the same drive.

6.12 CASSETTE BASIC ERROR MESSAGES

BASIC checks all commands before executing them. If for some reason
it cannot execute a command, BASIC indicates this by typing one of the
following error messages and the number of the line in which the error
occured. The form is:

ERROR MESSAGE AT :LINE XXXX

Table 6-6 lists the errors BASIC chlecks for and reports before
execution.

Table 6-6 Cassette BASIC Error Messages

Message

ARGUMENT ERROR

CHAIN ERROR

DATA ERROR

EOF ERROR

EXPRESSION ERROR

FILE NAME ERROR

.Meaning

A function has been
argument; for example:

given an
SQR(-l)

illegal

A cassette error occurred while doing
program chaining; the user should not
attempt to run the program in memory
again.

There were no more items in the data list.

An attempt was made to read past the
end-of-file during run-t:ime input.
Program execution terminates and control
returns to the Keyboard Monitor.

One of BASIC's internal
while attempting
expression.

lists overflowed
to E~valuate an

A mistake or illegal character was found
in the user's specification of a cassette
drive # or file name in either a CHAIN or
an OPEN statement.

6-57

Table 6-6 Cassette BASIC Error Messages (Cont'd)

Message l-1eaning

FILE OPEN ERROR The user attempted to open a run-time
output fi Ie when one was alre,:ldy open, or
a hardware error occurred.

FOR ERROR FOR loops were nested too deeply.

FUNCTION ERROR

GOSUB ERROR

I 0 ERROR

IN ERROR

LINE TOO LONG

LINE # ERROR

LOOKUP ERROR

NEXT ERROR

NO FILES ERROR

OUT ERROR

RETURN ERROR

SUBSCRIPT ERROR

The user attempted to call a function
which had not been defined.

Subroutines were nested too de~~ply.

The user attempted to
and output to the
same time.

do run··time input
same casBette at the

A cassette error occurred whilE~ attempting
to carry out an OLD command or while doing
run-time input.

A line of more than 80 characters was
entered; BASIC ignores the whole line and
waits for the user to enter a new line.

A GOTO, GOSUB, or
nonexistent line.

IF referenced a

BA..SIC could not find a run-time input file
on the drive specified.

FOR and NEXT statements were not properly
paired.

The user attempted to do run-time file I/O
wi thout first specifying so dUI'ing BASIC's
initial dialogue.

An error (probably end-of-tape) occurred
while doing cassette output either during
a SAVE or during run-time outpu.t. If the
error occurred during a SAvE, the user
should retry the SAVE to a. different
cassette. If the error occurred during
run-time output, he should re-run his
program using a different cassette for
output.

A RETURN statem.~nt was issued when not
under control of a GOSUB.

A subscript has been used which is outside
the bounds defined in the DIM statement.

6-58

Table 6-6 Cassette BASIC Error Messages (Cont'd)

Message Heaning

SYNTAX ERROR A command did not correspond to the
language syn1:ax. Common examples of
syntax errors are misspelled commands,
unmatched parentheses, and other
typographical errors. Reference to an
undefined UUF will also produce this
diagnostic.

TOO BIG, LINE IGNORED The combination of program size and number
of variables exceeds the capacity of the
computer. Reducing one or the other may
help. Otherwise, the user must break his
program into parts and chain them
together. A large number of DATA
statements might be put into a run-time
input file.

The following programming errors are not reported by Cassette
BASIC, but instead are used in the computation as specified. They
are included here for the programmer's reference.

1. Attempting to use a number in .::I. computation which is too
large for BASIC to handle will produce a result which is
meaningless.

2. Attempting to use a number in a computation which is too
small for BASIC to handle will result in the value zero
being used instead.

3. Attempt.ing to divide by zero will produce a result which
is mean.ingless.

6.13 CASSETTE BASIC SYMBOL TABLE

Table 6-7 lists the Cassette BASIC symbols and their values.
This information is useful when writing user-coded functions.

6-59

Table 6-7 Cassette BASIC Symbol Table

IPI)P-81f: CASSf:.TTE DASIC PAI.8-V8 12/27/72 PAGE 51

AHCLJEF 1763 CliJSF: h40~j DVI_OOP ';)245 FEXPF 6067
AHS b4d5 LLO:;EO 11 7 rt: I)IA, I~ IT 6731 FEXPI 6061
ACE. ~~"25 l;MSwCH V'17b E C l"i () 70C'3 FEXPU 6064
A C ~J 4417 C~t\MST r~452 EOIT 241(1 FHER 511 7
AC f, ~~24 CtJCLI'< 01.41 EI'.iIJ 2400 FILALT 0367
ACl 15 rA 2 ~71 CNt.R~ Vl5~1 E~I)LIN 57102 FILNAM 0600
AC? V1 r~ 1 7 CNTFNn 7 06~:' E1\I)NM 733? FILt\JR 1356
AC~ V"J01 b (,. ~~ r L 0 71.4rJi7 EH)NUM 3321 FILl 0606
A [Hi h> E S li~71 L~~ 1 LOZ V1134 EI\I)POL S743 FINDIT 0560
ALGr-LP tH.lhb C/\(10 1301 F. f'.-r E R 6404 FINOLU 056b
ALLOC 146~ CouELO V10V"4 EOFAO 4526 fIOER 7135
ALL3 314 ~, CC'LUMN c;,13", E(;F~TN 6650 fIx 4744
ALTMOO 2~ht L Oi'i C K ??77 E fJ'r R 0060 FIXEXI 4773
ALl 4~S4 l..()I"IMAS 617:; ERI~OR 4136 FIXITLJ 5200
AMATCH 6'50-' LOI"1r-:UN 3377 E v ,~L 1000 f-IXLIN 2135
ANC1~M 4hkll?) (. (h"o/\(1 123 E. \J '~L G 0 10~14 FIXLUP 4750
AhGERR 7;;~7 COI\i!H 13b7 EXI:'CUT 0213 FIXUP 5143
AR~L(1C w~~: _~ LOI"iE u~ ~~2~ EXIT 2'u~7 FJMP U1~0
AI-'l 44(7,2 LOS "f:lh Exp bV'l0V'1 FJMPI 14QlV1
ASKAGI'I 11.5':1 L (l.~ T 7143 tXPGno ';)?42 F JUMP' 1130
~TLINf: b4':l1 '"' R 1 "J 1)(~vH'~ E:.xPL("lN 5764 FLU 3Vl~0

ATi" 6 2v;~) L.~LF h531 Ex flUK ~2b5 FLU! 3400
ATf-.-,HIG 6265 l..RLFU 13257 fx'rLOC 0?~4 FLOGCl 6172
AT~LOl·J 6220 LF<'LF-I-I~ '1't FAI) "vH:~ eI FLOGC2 6153
ATI\~,PT b? _",7 CTI-\LC ~'!vl~~ FAOEXT 1314 FLOGC3 615b
P-A(JCHN 7 ~~ b 4 l..T!-iLCJ 7604 FAD! 4 4 ~:H1 FLOGC4 6161
R~ f.\I-'Ol1.! k:'!7..,1J LT LZI f,6~t! fALl ~61.4tl FMP 61tH~rll
t~t" w 0 S l.4 '; ~~ 2 CTklCK r;, t 1 ~ FA'rNAX b2"' ~ fMPT 64V'1~
Rf.l~~rX .3 7 b r" CTt-:ZI1P \·'~"52 fArNC 6.s:.s7 FMTENF 5121
r'''l> LJ (;1 f:, r,1 ~, l..VILLlO ') VJ?' c' FATNCH 6342 I-MT1 '5123
hHful< 6"2" i} A 1 At K th7~ f- A'r f\;CJ h34~ FMT2 'le1S1
~Sj(IP 27 y:, UFlfxP (1043 FATNCl 6304 FMT3 5126
F's ... 7 \.3 \('? u[CFRA ~:S43 FArNC2 b3~7 FN '5453
KliFf;NO h?0~ ur:t~f:~ VJ 5 3~; FATNC3 b31? FNE~R 5172
HlJF5T b \~ V-' ~~ lin- 1~75 FATNC~ 631'1 FNE)(IT 12~((1

rAi"I 1~~\ L·FLETE "'~~1 FATNCS b~~(.1 FOR 0415
r: A P;';' E T 2~blJ lJrVCOl"i 1354 F"ATNCb 63~3 FORCT 9J065
CASP\) hbl.:J ~; I I.J I hi 3i!'21 FAlNC7 6326 FOROON 0663
CAS [j U T 6 I;;';!' Ult..dNl 't:?~ FA"rNC~ 6331 FORERR 0':)03
CC/\;TR ~1~4 ~ u.TLJIT 517b FA'rNCg 6334 FORLIM 0721
CGtT bb':ll L./ 1 bl. UP ~'~5 7 FATNS)(62/2 FORLIS 5744
CHAlN -f !,~.3 , .J Tf'1 f..~7tJ. FA'rNT f-.21b FORSTE 0'724
CI1A"':Nt ,~1V' ~ 1 L, I i'l F- L A "Alii 34 FA'r!'IlTT b301 FORVAR ~454
(I-" tol-.'r.',,- (()~4 , LIVLP 4/05 FU:rGIT 3335 FOUNt) ~57b
CrtCKIN 23'14 01V~Tt ~3U1 FDV 7 0~:H~ FPAOO 4456
r~" f- 11 h J ,/IV', U 01 T ~4 U t2a., Fe) \11 7400 F~Anl)R '1"~ 014
C h~: r hi f.i 3S~? UrliJ[N PII.P.) Ft.~JTE:~ 4435 FPOlv 4661
C to r-: r; .3 ~'1 C .5 UOI\(S \<J Vl b 5v: Ft ~n< rt746 fPOOIT 4237
C ~-1 "JI·' S .5 ~ 65 U(l:'CRT 3Vl1.&2 f- t:.)(I T ei ~ 1I.1 ~) FPFLAG ?llS4
ChRr:ET o iJ 1 I UClfZER t,57b F l:)(PC 1 6k172 FPGOTO 4273
Cl'> hf< AI<. ,-<SIJ4 uPrL~(, "~34? Fl:.l(PC2 607') FPJMP 4317
CKCTRL 4 1 Il~ U(.'i 1 r! T x '1~~2 rt)(f-lC3 b 1 ~j0 ":-PJur1P 4214
r:LE:A~V 24b'-l 'JOU nT r. r'- b? '.:l Fi:-.)(j-lC1.4 b 1 k.' 3 FPLAC 4351
r:L~v ~1~l'~ li I-' I 1 1-,6"'7 Ft \(PC~ 61~1, FPLOOP 42(112
CLOS ~l '(15f-· -':'1.:'1 I C~ 7 y~ I Fr.l(I-'Cb b 111 fPMUL 1.453V1

6-60

Table 6-7 Cassette BASIC Symbol Table (Cant 'd)

/POP-8/E CASSETTE BASIC PALB .. V8 12/27/72 PAGE 51-1

FPNOAD 427~ GETOPR 1~12 II\;LOOP ~573 LET 0304
FPOPEw 4305 ~fTuNI ~240 INLLJPF 0434 LETDO 0205
FPPGl 4227 GETVAR el303 INPLUP 4034 \..ETTER 3445
FPSKIP 4314 GE fl~ D ~177 INPPTR 4076 \..Fx\..UP 2331
FPSTO 4322 bLum") 2711 INPSET 0553 \..HA\..f 30&7
FPSUB t.+4~3 GNt.XT V'lbel7 INP'rN ~272 LIMIT 1600
FPT 42~v1 GObOTH 0534 INPUT 4007 LINBUF 5551
FPTE.MP 457~ ('OLI5T 5764 I~PLJTN 7316 \..INENO 0054
FPT~ QJ0bl t"n5UB ~507 ll\iSERT 2027 LINFIX 2326
FPZ01V ~n .$6 (;(llEt--1P C"V,55 IN~H(T5 2025 LIST 3600
Ff.>INP 1243 '-'01 IT 72~7 It-..T 6434 LISTAL 3610
FRINP1 12b1 l.?OTITl 7210 Ir-.wDTM 4136 LIST\..U 3612
FRr-.JDX 5tl04 G010 (1~? 1 10~aM 0227 L15T50 3611
FROUT 13(?\? 6010P~ 1202 IOUN1T 1301 L1ST2 3636
f-!-<~TNE 21tH l"OlSS 1~; 71 IPNOPE 4024 LIST3 3655
FSB ,;:)0~0. bOTSTE ~b34 ISOI:'F2 3511 LIST4 3661
FSHI 5400 '-'OUT 7244 ISlJIG 6532 LISTS 3676
FSEO 0(t1,;:)0 bfJff< vH-j6d ISOIM 1472 LITRAL 3123
FSf.f: v.J'0~ l1Rd 7?23 1 S I 'r 4564 LJMS 7255
FSGT 1i'14~ (j~lJELA 7??1 ISITDF ~551 LKER 1312
F5INC1 ';:) 7 1 ~~ GSdEND 'i777 ISI'TFU U es LKERR ~~30
FSI/l.IC3 5716 LtSdPTi-i (il163 ISITLI 410~ LLSOUT 7400
FsI~C4 ~7(il GSSl 1555 I SIT 1 4422 LNOEND 3626
rSINC~ ,;:)124 GSS2 lS~b I5L1T ~127 LC1ADtD 4123
FSINr.6 '::J"' (: 7 bToKlP 1722 ISSDMl:. 1643 LOCCTR 0045
F S PJC I 573? ~Tt:.MfJ 727v) ISU,"1IN 1010 LOCTEM 0671
F S It\JM4 5735 l.;I T J ~1P 0442 ITSDE~ 3513 LCCTMP 1671
FSli\JOK 5h57 GTJ",Pl 0~20 ITS(')P .$217 LeG 6114
FSlf'-lZ ~ 7 Li)') I.JTPTR 003b ITSl:. 32~3 LCGACE 6165
F S r r~ Z Z 5 "/1 ~ rlAf 0~37 ITSUP 1220 LCGFwD 6164
FSIN10 '=>b41 HALF C1I451 ITSP 3270 LC'GOK W 6167
F5Lt:- ~, 1 5 V) HIGHwO 4333 IUNIT 6660 LOOK Ql3Ql6
FSlf 01 1 V1 HLOOP ?b77 JtlPtNT 37rt7 LOOKER 7310
F S~jf.. f?\~) ~ 0 ""LO~l 2; 31 JISDIG 3344 LOOKUP 7002
FSQ X 5407 HLP 4163 JMATtH 277ft L(iWLOC 2166
FST 2~0~ HNtJL~ h~00 JPUTCH Vl763 LFTOUT 7347
FsTI 24ft10 ""J...lr~ "":163 JUST0 3142 LLiKERR 0326
FTANT1 5677 lA~lLES 21?3 JuST0F 3152 LLiNIT 0332
FTt-NT2 ':t" 02 ..L A1\lno f.,76lJ Jl.JST0P 31:>') LLiP 34f.14
FU~,jT AB 11 j 1 .l.AJ 1251 JUST1 3137 LUPF '1430
FUPRCl 5" b? .I.C~5E:.P 5157 JlJST2 3141 L l~ L UP 3b64
F v. f) v12C~ lrUUNl "'un2 KbUIN 0421 M ~\ Y ZER 4612
F'Xxf>FX blll(l3 JEt"<iol bbh3 KHI>INP 762b MEIRE AK 7b05
GALT 7lJ4? 11:.(TL.C 0235 t< ~ Uf E r~ b762 M[NDLI 0e141
r.UJMi? 1557 IF ('1372 KbUt-ST b137 MENDPD 2361
fit T v1 (-1 ~i 1 1Ft 04~3 I(EPTR (£;(1)77 M(iOL IS 0720
GE:TAf)D 1 4 ,>. ~I\ If;l\lOk'E ? 13 'f Kf,Yv.U ~231 M(;SHEN 0527
GtTbLK 1 ., C:' l1 lMMEL) 115~ Klt;NOR 1b7b M::NUS 1316
r;r T CH , ?(W 1~1Mr:DA 115S KM2vl0 0(1)12 Ml.BEGI 0171
Gr. T C!-ik iti" 12 .P~ 343(11 KMLW04 2170 Ml.END vH 72
Gt:.TCio(0712 l~JCHN " 40.3 KI;HH1~ 2167 Ml.IN~U 0'140
GtT1l 0f?7r:; H~LJ r. v fJ, 131 Kb201 117105 M r~ SON E 0736
r,ETJ 11~r:; l"-liJF'tl (,)~, 14 LAStk'1-< 6612 MONITR 0100
Gf:.TLIN 2~V1? HiLH-:x2 ~W15 LtH: t; I N 5622 MORElJI 647~

GtTL.~t ?,t)jl J. [\ILClM 4~17 7 LtRR 335~ MOREIN 4[(1()j0

6-61

Table 6-7 Cassette BASIC Symbol Table (Cont I d)_

IPUP-81E:. LA~;5I:TTE f~ASIC PAl.b-v8 12/27/72 PAGE 51-2

M rJ ki fRO 1620 N(jTHE.R ~437 ov 0~13 07600 4.345
I"1(lVt. c!. (J ~-I 7 NOll(lfiU (}I3t'\5 01;1 21 7 1 07603 2774
,.,iClVLUP 212t: NO T r"IOW 1776 010V,Vj 3547 07610 5345
MF~INT ~) v.l c::5 hU r 5(;;('1 3271 01 1 0506 076i~0A 0754
MPY ':i~?1 NOlrxT ;>236 01 :l0 23'::17 U76408 2765
MpvLUP Li')5? NOTVAk' 1 1 "'? o 1 t~ ft:i1261 07b73 33Q!6
MrJ A 1C,~1 N(lTX1V1 ~23h o 1 t~2 2772 077 0140
r·1UL It.J21 N(l r YI:: T h71J1 OL5 15b2 07700 2610
MSlbf-l 4~.s3 Nf-..,YMTA v1~53 o 1 ,~ ~35b (J77'?J6A 6544
t"ll x '(1 T 5173 l'~lc.;HAN 1 e2~' n 1 LH~ A ~-'62 U770bC 3472
MUlCLk' 4.,11 r~ r t- ~!D 1 , c; ~ o 1 t~0H 2745 07715 2775
MUlfo:XfJ 3367 I\IIIL J M 1201/1 01 jr 5144 07725A 3075
~1 U Lx T t. .33 .. 0 1\ U 1'1 f."\ l) F 5335 01llJ~ 3352 077258 3346
M lJ LX 1 33/1 NlJl":Cr~K C1172b 01 i' 7 ~027 07737 3116
MLiSTRE 4""'6 I\JIi,UlMS 3124 [} 1 j' I ~ 3353 07740 '1056
~J A til ~n22 LHCO 4435 02 ~H1b4 07741 3743
I\iAMCHK 0fo1~1 Vr,AS~Foi 257q 02 ~, 1151 07143 4743
~aMf 1037 (.lee 5205 o i' ~)[,,, l{j153 07745 01f,0
"I A MI:: ~ ~H~32 UCLJUNT ~761 02C'1J0A 335'?J 07153 3101
NA~1L OC id216 uEt-.'P "1 Ii 1 o c1~' 6 2 5344 017b2 2325
I\iCTI-ILl b72S UIP 7~~ 1 021.~ 0175 07763A 0761
N F ~.! 10lJ7 uJl.JMtJ 127b 0215 ~174 077b3H 3 ~17 b
I\;t it.JCHA 2h2? ULv 1057 (J 2~) 1366 07764A 1274
I\i t ~'JI i 0 1 01:'2 U L l) I) (J 10~t? Oc: "1 3 3"17t1 07764A 3077
l\;E:.wLIN 2fo1(i'6 lilliI'!: U; ;> (~~ 3 02£11{} 0~"1 07764C 3351
Nt: ~"r<1E. S 11 U" ULtJMtS 11 11 02 Li3 5145 07766 5151
I\;I:XT ~·~O';J ULLH1P [.Jl ~17 '" 02~i5 511J6 07770 0057
~H:. ~ T t R ~'b / 3 OLIJ~ 11171 VI 02~i6A 5153 07771 5152
N~~rG 2757 LJ "II:. (.11147 02~)~B b575 07772 51'i4
1\;1:.)' T v A ~HI.3 7 U"It:.lll M nH,l O~6k1 0~12 07773 5346
N~Mt.S 051<' 7 u"'tSs 1~73 02 j' 3345 U7774 1561
N~CiPEN b3b5 UH .• v 1 3.312 03v'" 5147 07"176 3547
Nt-i1 1~43 LJ07b00 'i4~2 o 3l~ ~115 PACN 4742
NQRLIMP 1J633 00/736 2324 036 2771 PAD 0~47
~UCHNG 3C)4V.l UPi.JONE 1203 031'34 1152 PADDON ~741
f'J(len!'''' 6l -/6 OI-'l:. 0030 03i'37b 0776 PAK8UF 0763
t-.i(.IC'OMM v1327 (JPtN ~575 0~i'55 1273 PAL1 0146
NOC~ 4G'15h (JPtN1 12C11~ 031' 7 ~0/3 PANO~M 0144
Nn"II:;L~ 3104 UPt:.RAN 0075 04 0156 PA~GER 0fc:l47
N[J~JZER 5~14 OprljERk 1354 OiH' 2777 PARI 0145
NnPARE 1032 uPUTAB 7016 a 4~!14 1153 PAsseR 0474
NClPC~ 2~20 UPS IM'l26 04 ;:~ 31Vj3 PBAR~O 2773
f"OPE 1 31 4 uPuT(; 7147 04f~0fc:l 3102 PBEGFI 1773
N(1RLFT b423 UPl Vl0?3 04c~13 1154 PCCUNT 0744
NORMf-:lJ 522vl OPd 0022 05tl(.10 5347 PCHKFI 0161
I\IORMIT 52"-'7 (JP3 0021 06~~03 0046 PCLOS 0143
NORUHO 5574 (JTt.MP 1271 01 0074 PCOMMA 0273
t--1 ()SS1 1457 UTEMPI 7012 o 7 ~HlJ 1272 PCQwT 0137
NO~S2 1452 UTHER 3000 OHH1G1A 2565 PDL. 0036
NOT 3~26 UUNIT 6760 07~H~0B 3473 PDLIST 5703
NOTbAD 2153 OUPSET 1Vl26 07~n 7 1275 PEDIT 0122
Nort-'IG 4620 OUll>EV (71133 o 1 ~)20 5150 PENON 0271
,..JUTCR 3~23 OUrD2 ""132 07~i45 4777 PENDNM 0365
NOTEM 6~26 UUTNUM 5f!.100 O/~i7eJ b456 PERMS\' 5111
t-.iOTFUL 6712 uUrOK 1332 07~)77 4577 PERROR 0101

6-62

Table 6-7 Cassette BASIC Symbol Table (Cont'dl

IPPF-8/E: CAsSt:TTf f~ A S r c PALb-VA 1?/27/72 PAGE 51-3

PH~~w ~, I L.l1 PPl()(fO 1.162 PlhL.lc.1 v-i722 S(~LOOP 5435
"" VAL vJ1 v., ~ PIo(c.~~T ?,315 l'JI:RROF< 1':) 7 1 S(~R 5412
~r).I:CU (,11 ~i 5 PKt.St.:.T 1i113h (JM I(~~ 7 7 1 S !;ERR 11;)63
Pt-).'p ':,,776 P!-! 1 t" i) L ~3ri12 RtjS~'JCH 0135 S :,F I X 4/75
F 1"1 f\d,) I 1£1612 t-IR i "ICn ?30b RCtH~ 6763 S~) 0 Nt:. 0336
p ~ 1 X v) 1 1 ~~ PI<' r r~r: X ??l.~ Io?E:AO 1622 s:n wo ~33"
P~NE[..lR 554b pp 11\' H A 226~) Io<tAOIT 6664 s'r 3~0~
~F~.'L(JO 451~ PR 1 ~\jr)U ?fJ27 Io(tADLO 12046 S'r AR 1327
P('E.TAf) ~H.,4 PR 1 ~J SE ? 32v.l ~t:ADV 6525 S'; AR 1 H 3vH?10
P (~E:. T t3 L 011 7 PPJN'T ?112 ~ELATt:. 13~2 s'r I C K I 6L.130
p l~ t, T C t .. ~tJ.s2 t-iRINTC f?2C'J7 [..ltMPAC 3043 S 'rOBUF 0747
pr,ETLI ¥) 1 e 6 PR 1 r>1 T G 2 t~06 ~t:.Uf'ER b70v.! S 'r (J P 2401
P (, tTL I"(31'~ 2 I-' ~(11\1 n~ ?2?4 RfStT1 7072 5" ORCH ~7ri1L.1

Pl~t T n~ LOr. t-iP If\IH'' 73?2 RtSTOR .3771 S "OVAR 0333
~J L, f:' T V A l0 11 S P ~ 1 f\1 T x 37~2 RI:Tt\lE~ 0713 S\·JP 7~21
PC,iJL T S 81b2 F R 1 "11 2 217L.1 j.(tTU~N 0677 S)(E~ 0~51
p (, ell (' P ~, 1 11 Ph'l";LJM 374') ~hALF .HHl Sl(ER~ 6441
~'~LY ,.)'~ b.~ ~R.l.I\)VM .~h51 RIGHT 0433 T IUj 5547
PI r. r,' (II-< 1.': 11 7 :~ Ph'LOOP ~~ n] RIP 6661 T J' B lH: S 6375
PTr"T "~If-. ~f.(f\1 ~24:3 ~MLE:FT 6413 T I'd () 0 63'50
~l~ITL ~~ 1 7 ~~ I-' ~~ LJ G N A 1114 f.(NI) 5353 T J'BFLG 2343
~Lr'rGI ~\ 1 I ~'I I-'P~,ut;f.(37?? Rf\OJMP 5350 T I,BL 3652
PLtTno ~1 ? ~~ " Pr.('I EMP VlV'(~2 f.(lBfN() 1~0~ Tn~rHP 2~h0
PU: TTE. 310[,1 PPfXRE 3720 ~TBUF 14~~ T J'N 5000
P L 1 r·· 1 T c'~hb PSAvt: ?4b3 R1IOME 31VJ3 TBE.GFI 5572
P L I~, H U ~ 037 P ':) t, t ~ 5b75 RLJAO '::1573 TEMP 0~e!3
F L I ~,F I vl l I;) 7 ~s(,rpl 161b RuN 2457 TEMPS 31~2
~LlST 2') "111 F'~L.(lLJP ~12(/! RUNC i=456 TEN 0000
PLrT~A 33':!u PSr-ACE 15h~ ~LJNIN 251~ THESKI 1353
P L lJ(.~ ') "I ·f .., t-l~)T IeK 01?3 PUNlUP 2472 Tl.SOuT 7402
PLIJ~ 131~ ~'S 1 Of.' 3770 ~U~~NOT ~51£:l4 P1P 0V'J31
P t-1tj I..: E A ;'J.3 o,(~ ~srnv~ , '~114 RljN2 IN 2550 TOOlaN 5162
P ~,p Y ')155 rS)l.E:Ii(R ~lri12 RLJN2LU 2521 TPRINT 6$76
P t-I rl f' 6 ':i1';,h ~'SYHTA r;W'i£? f.(uN2NO 2544 HIALUP 2131
P,....E~lI 1171 i-' 'r A t1 0 E t;570 SAVE 1000 TFIANSF 2126
p ~~ O~ .. B L 0124 PTABF-L C;~71 SAVE:.1 2401 HI V AG I 5131
PNOTNO 257 ~~ P T ~\ rll E i!.77b SCtiMUR 1656 H!VAL 0270
PNLJ"'tlU (,:1 L1/J 4 fH:.N 0' 5~~ SCRATL 2445 TFI VAL T 0271
P(jA[)[) 01.,S PTt,1(T ~ 10v) SCR~T1 ~332 THVOLO 3075
POIP ~10 3 5 i-'TUfiIG 3V1~1 StARCH lh~7 HIVSTE 0626
POP 41hh i-'IJ~t:.RF C;St.1'i SETINe 0200 T" V 0 7024
POPERA 3121 PU~H 2362 St:.TSGN 4512 TrVOUT 1350
P(;P,3 4L.1:5U PUTCOF 7~14 S('N 0726 TUtHG 1173
POLJ1NU 0121 PIJrCH ~7t.11 SIMPLV 3465 T ~I I D T H 2355
PF-ASSC 0. 1 12 PUfEk 7V~~ SIN ~624 T ~IOL F 3557
PPllLIS 0127 I-'l.' T J 3~50 SJUMP 0241 T ~IO 5S 1074
PPER~1S 21)72 P \·n·, F: R E 06L.17 S IPIT 0471 0: TPAK 3~46
PPFLOn 47,,1 P)(FORL CtJ55 ., SKPSVM 2762 T"QUE5 1145
P~FORl 17bl.; PXL.INb 3744 SLASH 1332 UDOPER 1363
Pf-'INT b0b~ PXXCRL 3117 SLOOP 2675 UGH1 3561
PPop 01~) 7 PXXFlJF ?571 SL.SHTM 1337 U..IMS 0004
PPRINl 011b P)(XExI 312v.'l SNUMFL el06b U~IOPER 1321
PP~INU vj! 25 P)!XLIT 3122 SPACER 1163 U~IOERF 4645
PPUSH 0HJ6 j.I)(ATI1E 2567 SPLEFT 0142 U~I I T 0012
PPUTCH ~~33 PZI:.f.<DO 654~ SGEXIT 5450 UPARRO 6457

6-63

Table 6-7 Cassette BASIC Symbol Table (Cont'd)

/PDP"'8/t CA~S~TTE RASIC P~~L8"'V8 12/27172 PAGE 51-4

UPARRX S140 xXGOSU 5321)c)(TAN 5204
UPAJ.<Rr? ~nbS ~)(L-iOTO 5300 X):TEXT ~540
tlSERFN 1 to, 1 ., XXGT 5147)()(THEN 5305
liTEM 0411 xXIF 5312)0: TO 51b5
UTEMl 0021 XXlNPT 5332 X):TTVO 5437
lJUJMP 040Cll .. ~lNPU 5337)():ljNAR 5542
lIUJMS 0401 .(XINT 5231 :O:UPAk 5122
UULlJMS 0416 XXLbRA 5163 X): UUF 5253
VA~ 0335 xXLE 5124 x10 0010
VA~TEM 055~ XXL.ET 5274 ZCNTLO 7147
V~rHIN 3r:,2~ "xLIS r;~02 Zt.ROON 5142
VS(;HLU 3414 xXL.IST 5476 ZtRO 0150
v SC ~HJO 3511)(XLli0 ';545 lFlxtx 4767
Vi Al T 62~0 X)(1..0t; '5~1~
If; A J TR b60~ ~YL~T 544".
1.>101 E MP 1012 x ~: L. T 'i145
wORO ~il.Zl5e XYHINU 5114
1,.,1 F,.. b613 AX N A~' ~534

Xf){E:CU ~tq4 ;..VNAMI: 553"-"
X(~TSIT 7 1 1 5).);r~COM ')447
)(r,I"1~ T 1 VI r; j 3 x Y NF. 513il
'<G~LJS'T 72"10 A,XNEw 5525
)rlSIT "11? 4 1. X I" E.)(T 5326
'Xl~111 ilj') 2 O .. >:NRU~ 5467
>: t-" l):, T 12"(7 .l.Xl,JIH 0V1~5
)(l'-iUST 1 ~1541 XXC![)2 0i(1~b

~~1:.(;2 o ~111 X)(U[)3 0~0.1

XH,[!C 001~ xxuL.IJ 5~?2
'tk'PLT 0(11 1 x XUPl-.'" 51bl
))(AbS '?c :~ XXU~~ ~412

)(XATN '2~1).XUIJTP 5u?2
';)(~~LS 5260 ~)(I'"LUS S11e'
Y)(C~At\I c:,u27 X'J(~RIN ~2bl

XXCl.OS 51~~ l.){tJRl\Jl c..262
~)(CLSE. SLl1":! X)(PUl ')242
Xxr.(JMA 5iJ~" X)(t-(t1RA "157
)'XCUMM ~lS1 >')(I'<EA() ":S"' b
)()(CU·" S 2~:; 1 .~)I' k E 1'1 53hf.
)()(C~LF 't?~b X)(k'ETf..< "344
~ x f.: A T A 5/Jki2 x)(1< tJ LJ 5e>34
~). (·fF S312 l<)(kSTU 5361
X)(DIM ;.3';)5 ,,)(~Ut< 54 he
X x t, (, ':i135 X)(I'<UN t.,';:iIi1':i
XlCtL ':i1lH'! A.'I.~AV 5~11

lcxENG 5434 Y.v~AVf': r,':i13
}',;FNDI\, ,406 AY~r.Joo/ ., ':i lit'
x): F(lF ')~4t X"'~Elvl! 51.,3
x x r- [)/ ;14j)\. 1 ~ (,~J t;??6
y,E)l.IT 5'j~l.l A~.)IN 5237
~ It F. :d:i ;215 Xx~LA3 " 1 ?~,
):~rtNl ,543 /0. x ~HJh' ~2~~!
X)(Fr\J 517f- ~'(~T~~ 511b
'(~F(JR 531~ X)(~TtP ';1 7 1
)()((j F. S1~7 X)(:'TUP ~351

~xr,f..T ')245 lIxlAM 'i2SI/)

6-64

CHAPTER 7
USING CAPS-8 COOT

Using COOT, the programmer can run his binary program on the computer,
control its execution, and make alterations to his program by typing
at the Teletype keyboard.

COOT occupies any four pages of core, in the same field, that the user
desires. The user may change the location of these four pages of core
by reassembling the source. If the user program resides in the first
few pages of memory, then COOT should be loaded in the upper pages of
memory, and vice versa. The user progrc~ cannot occupy (overlay) any
location used by COOT, including the breakpoint locations (locations
4, 5, and 6 on page zero).

7.1 FEATURES

COOT features include location examina1:ion and modification: octal
core dumps to the Teletype using 1:he word search mechanism: and
instruction breakpoints to return control to COOT (breakpoints). The
user's program can run with interrupts on. COOT may reside in any
field, not necessarily the same as the user's field.

The breakpoint is one of COOT's most uSE~ful features. When debugging
a program, it is often desirable to allow the program to run normally
up to a predetermined point, at which the programmer may examine and
possibly modify the contents of the aecumulator (AC) , the link (L),
or various instruction or storage locations within his program,
depending on the results he finds. To cicCOITlplish this, COOT acts as a
monitor to the user program.

The user decides how far he wishes the program to run and COOT inserts
an instruction in the user's program \~hich, when encountered, causes
control to transfer back to COOT. COOT immediately preserves in
designated storage locations the con1:ents of the LINK and AC at the
break. It then prints out the location at which the break occurred,
as well as the contents of the LINK and AC at that point. COOT will
then allow examination and modification of any location of the user's
program (or those locations containing the AC and L). The user may
also move the breakpoint and request that COOT continue running his
program. This will cause COOT to reB tore the AC and L, execute the
trapped instruction and continue in the user's program until the
breakpoint is again encountered or the program is terminated normally.

7-1

7 • 2 USING COOT

When the programmer is ready to start de:bugging a new program at the
computer, he should have at the console:

1. A binary copy of the new program on a cassette.

2. A complete octal/symbolic program listing.

3. A binary copy of the COOT program (previously assembled so as
not to interfere with the user's program).

RUN P ROG, CODT

The binary of COOT must be the last file to be run.
automatically begins in CODT.

7.2.1 Commands

SLASH(/)--OPEN PRECEDING LOCATION

Execution

The location examination character (/) causes the location addressed
by the octal number preceding the slash to be opened and its contents
printed in octal. The open location can then be modified by typing
the desired octal number and closing t:he location. Any octal number
from 1 to 4 digits in length is a legal input. Typing a fifth digit
is an error and will cause the entire m{~ification to be ignored and a
question mark to be printed by COOT. Typing / with no preceding
argument causes the latest named location to be opened (again).
Typing 0/ is interpreted as / with no argument. For example:

400/6046
400/6046 2468?
400/6046 l2345?
/6046

The memory field referenced is that field specified by the location in
CODT symbolically referenced by F. For example, if the contents of F
were 20, then the command

423/

would examine location 423 in memory fiE!ld 2.

7-2

RETURN--CLOSE LOCATION

If the user has typed a valid octal nwru)er, after the content of a
location is printed by COOT, typing the RETURN key causes the binary
value of that number to replace the oriqinal contents of the opened
location and the location to be closed.. If nothing has been typed by
the user, the location is closed but the content of the location is
not changed. For example:

400/6046
400/6046 2345
/2345 6046

location 400 is unchanged
location 400 is changed to contain 2345.
replace 6046 in location 400.

Typing another conunand will also close an opened register. For
example:

400/6046 401/6031 2346
400/6046 401/2346

location ,100 is closed and unchanged and
401 is opened and changed to 2346.

LINE FEED--CLOSE LOCATION, OPEN NEXT LOCATION

The LINE FEED key has the same effect CiS

addition, the next sequential location
printed. For example:

the RETURN KEY, but, in
is opened and its contents

400/6046
0401/6031 1234
0402/5201

location 400 is closed unchanged and 401
is opened.. User types change, 401 is
closed containing 1234 and 402 is
opened.

SEMICOLON--CLOSE LOCATION, AND UNOBTRUSIVELY OPEN NEXT LOCATION

The SEMICOLON key has the same. effect as the LINEFEED key except that
the location and contents of the nf~xt sequential location are not
printed. Therefore,

400/6046 3211; 4162; 5000

has the same effect as

400/6046 3211
401/6031 4162
402/5201 5000

This makes it convenient for the user ito change several sequential
locations.

t (SHIFT/N) --CLOSE LOCATION, TAKE CONTENTS AS MEMORY REFERENCE AND
OPEN SAME

The up arrow (circumflex) will close an open location just as will the
RETURN key. Further, it will interprf~t the contents of the location
as a memory reference instruction, open the location referenced and
print its contents. For example:

7-3

404/3270t
0470/0212 0000

3270 symbolically is "DCA, this page,
relative location 70," so COOT opens
location .170.

+ (SHIFT/O) CLOSE LOCATION, OPEN INDIRECTLY

The Back arrow (or underscore) will close·the currently open location
and then interpret its contents as the address of the location whose
contents it is to print and open for modification. For example:

365/5760t
0360/0426+
0426/5201

nnnnG--TRANSFER CONTROL TO USER AT LOCA~rION nnnn

Clear the AC then go to the location sp4~cified before the G
field specified by F). All indicators and registers
initialized and the breakpoint, if any, will be insert~d.
alone will cause a jump to location ~.

nnnnB--SET BREAKPOINT AT USER LOCATION nnnn

(in
will

Typing

the
be

G

Instructs COOT to establish a breakpoin·t at the location specified
before the B (in the field specified by F). If B is typed alone, COOT
removes any previously established breakpoint and restores the
original contents of the break location. A breakpoint may be changed
to another location, whenever COOT is in control, by simply typing
nnnnB where nnnn is the new location. Only one breakpoint may be in
effect at one time; therefore, requesting a new breakpoint removes any
previously existing one.

A restriction in this regard is that a breakpoint may not be set on
any of the floating-point instructions which appear as arguments of a
JMS. For example:

Breakpoint legal here.
TAD
DCA
JMS
FAOO Breakpoint illegal here.

A breakpoint may not be set on a
instruction which is meant to be
corresponding JMP or JMS instruction.

CIF instruction, nor on an
,executed between a CIF and its

A breakpoint may not be set on a memory reference instruction which
references an auto-index register.

A breakpoint may not be set on a two-word EAE instruction, nor may it
be set on any of the following instructions:

7-4

SKON
ION
IOF

The breakpoint (B) conunand does not make ,the actual excha.nge of COOT
instruction for user instruction, it only sets up the mechanism for
doing so. The act,ual exchange does not occur until a "g'o to" or a
"proceed from breakpoint" command is executed.

When, during execution, the user's program encounters the location
containing the breakpoint, control passes immediately to COOT (via
location 4, 5, and 6). The C (AC) and C (L) at t.he point of
interruption are saved in special locations accessible to COOT. The
user's data field is stored in location 0 and his instruction field is
stored in locati.on F as well as internally by COOT. The user
instruction that t:he breakpoint was replacing is restorec; before the
address of the trap and the content of the LINK and AC are printed.
The restored instruction has not been executed at this time. It will
not be executed until the "proceed from breakpoint" command is given.
Any user location, including those containing the stored AC and Link,
can now be modified in the usual manner. The breakpoint can also be
moved or removed at this time.

An example of breakpoint usage follows the section "CONTINUE AND
ITERATE LOOP ••• ".

A--OPEN C(AC)

When the breakpoint is encountered the C(AC) and C(L) are saved for
later restoration. Typing A after having encountered a breakpoint
opens for modification the location in which the AC was saved and
prints its contents. This location may now be modified in the normal
manner (see Slash) and the modification w'ill be restored to the AC
when the "proceed from breakpoint" conunand is given.

Similarly, other key locations in COOT ma.y be examined and modified as
follows:

L--OPEN CONTENTS OF LOCATION L (LINK)

F--OPEN CONTENTS OF LOCATION F

D--OPEN CONTENTS OF LOCATION 0 (USER' S Dl~TA FIELD)

7-5

NOTE

Whenever any of the locations A, L, F,
0, M are referenced, COlDT automatically
sets the value of F to be the field of
COOT.

C--PROCEED (CONTINUE) FROM A BREAKPOINT

Typing C, after having encountered a brc:!akpoint, causes COOT to insert
the latest specified breakpoint (if an~r>; restore the contents of the
AC and Link; execute the ins tructi()n trapped by the previous
breakpoint; and transfer control back to the user program at the
appropriate location. The user program then runs until the breakpoint
is again encountered.

Regardless of the value of P, the C co~nand resumes program
at the precise spot where it had been previously stopped.
data field is first set to that specified by location o.

NOTE

If a trap set by COOT is not encountered
while COOT is running the object
(user's) program, the instruction which
causes the break to occur will not be
removed from the user's program.

nnnnC--CONTINUE AND ITERATE LOOP nnnn TIMES BEFORE BREAK

execution
The user's

The programmer may wish to establish thE! breakpoint at some location
within a loop of his program. Since loops often run to many
iterations, some means must be available to prevent a break from
occurring each time the break locati()n is encountered. This is the
function of nnnnC (where nnnn is an ()ctal number). After having
encountered the breakpoint for the first time, this command specifies
how many additional times the loop is t() be iterated before another
break is to occur. The break opE!rations have been described
previously in the section on the B command.

Gi ven the following program, which inCrE!aSeS the value of the AC by
increments of 1, the use of the breakpoint command may be illustrated.

7-6

*200
0200 7300 CLA CLL
0201 1206 A" TAD ONE
0202 2207 B,. ISZ CNT
0203 5202 JMP B
0204 5201 JMP A
0205 7402 HLT
0206 0001 ONE,l
0207 0000 CNT ,0
A 0201
B 0202
CNT 0207
ONE 0206

020lB
200G
0201 (0;0000
C
0201 (0;0001
C
0201 (0;0002
4C
0201 (0;0007

COOT has been loaded and started. A breakpoint is inserted at
location 0201 and execution stops here showing the AC in:,-tially set to
0000 and the link O. The use of the Proceed command (C) executes the
program until the breakpoint is again en.countered (afte:::- one complete
loop) and shows the AC to contain a value of 0001. Aga.in execution
continues, incrementing the AC to 0002. At this point, 1:he command 4C
is used, allowing execution of the loop to continue 4 more times
{following the initial encounter} before stopping at the breakpoint.
The contents of the AC have now been incremented to 0007,.

M--OPEN SEARCH MASK

Typing M causes COOT to open for modification the location containing
the current value of the search mask and print its contents.
Initially the mask is set to 7777. It may be changed by opening the
mask location and typing the desired value after the value printed by
COOT then closing the location.

LINE FEED--OPEN LOWER SEARCH LIMIT

The word immediately following the mask :;torage location contains the
location at which the search is to begin. Typing the LINE FEED will
open for modification the first location after the mask, and its con­
tents will be printed. Initially, the lower search limit is set to
0001. It may be changed by typing the desired lower limit after that
printed by CODT, then closing the location.

7-7

LINE FEED--OPEN UPPER SEARCH LIMIT

The next sequential word contains the l()cation with which the search
is to terminate. Typing the LINE FEED key to close the lower search
limit causes the upper search limit to be opened for modification and
its contents printed. Initially, the upper search limit is the
beginning of COOT itself, 7000 (1000 for low version). It may also be
changed by typing the desired upper search limit after the one printed
by CODT, then closing the location with the RETURN key.

nnnnW--WORD SEARCH

The command nnnnW (where nnnn is an octCll number) will cause COOT to
conduct a search of a defined section ()f core, using the mask and the
lower and upper limits which the user has specified, as indicated
above. The searching operations arE! used to determine if a given
quantity is present in any of the locations of a particular section of
memory.

The search is conducted as follows: CODT masks the expression nnnn
which the user types preceding the Wand saves the·result as the
quantity for which it is searching. CODT then masks each location
within the user's specified limits with C(M) and compares the result
to the quantity for which it is searching. If the two quantities are
identical, the address and the actual unmasked contents of the
matching location are printed and the search continues until the upper
limit is reached. The search occurs in the memory field specified by
F.

A search never alters the contents of any location. For example:
Search location 3000 to 4000 for all ISZ instructions regardless of
what location they refer to (i.e. search for all locations beginning
with an octal 2).

FOOlO 20 Set the field to 2
M7777 7000 Change thE~ mask to 7000, open lower

search limit.
7453/0001 3000 Change thE~ lower limit to 3000, open

upper limit.
7454/7000 4000 Change thE! upper limit to 4000, close

location.
2000W Initiate the search for ISZ

instructi()ns.
0200/2467
3057/2501 These are 4 ISZ instructions in
3124/2032 this section of core.

7. 3 ILLEGAL CHARACTERS

Any character that is neither a valid c()ntrol character nor an octal
digit, or is the fifth octal digit in a sequence, causes the current
line to be ignored and a question mark printed. For example:

7-8

4:?
4U?
0406/4671 67K
/4671

7.4 ADDITIONAL TECHNIQUES

7.4.1 TTY I/O-FLAG

COOT opens no location.

COOT ignores modification cmd closes
location 406.

COOT automatically notes the status of the TTY flag after encountering
a breakpoint and restores it after performing a CONTINUE.o

7.4.2 Interrupt Program Debugging

COOT executes an IOF when a breakpoint is encountered. (It does not
do this when more iterations remain in an nnnnC command.) This is done
so that an interrupt will not occur when COOT prints the breakpoint
information. COOT thus protects itself against spurious interrupts
and may be used safely in debugging programs that turn on the
interrupt mode. COOT restores the int:errupt facility to its former
state when it resumes execution. '

7.4.3 Octal Dump

By setting the search mask to zero and typing W, all locations (in
field F) between the search limits will be printed on thl~ Teletype.

7.4.4 Indirect References

When an indirect memory reference instruction is enc=>untered, the
actual address may be opened by typing t and + (SHIFT/N and SHIFT/O,
respectively).

7.5 ERRORS

The only legal inputs are control charac1:ers and octal digits. Any
other character will cause the charactE~r or line to be ignored and a
question mark to be printed by COOT. Typing G alone is an error. It
must be preceded by an address to which control will be transferred
This will elicit no question mark also if not preceded by an address,
but will cause control be transferred to location O.

7-9

7.6 OPERATION ANO STORAGE

7.6.1 Storage Requirements - CAPS-8 System

COOT can be run in a standard CAPS-8 system and requires 1000 (octal)
core locations and three locations (4,5,6) on page zero of every field
which uses a breakpoint. COOT is page-relocatable.

The source tape can be re-origined to the start of any memory page
except page zero and assembled to reside in the four pages following
that location, assuming they are all in the same memory bank.

7.6.2 Programming Notes Summary

COOT must begin at the start of a memory page (other than page zero)
and must be completely contained in one memory field.

The user's program must not use or reference any core locations
occupied or used by COOT and vice versa.

Breakpoints are fully invisible to "open location" cOJ'TUllands; however,
breakpoints may not be placed in locations which the user program will
modify in the course of execution or th€~ breakpoint will be destroyed.

If a trap set by COOT is not encountered by the user's program, the
breakpoint instruction will not be removed.

The user may type CTRL/C at any time to return to the CAPS-8 Monitor
(assuming his program did not destroy CAPS-8).

7-10

7.7 COMMAND SUMMARY

nnnn/

/

RETURN key

LINE FEED key

t(SHIFT/N)

+- (SHIFT /0)

Illegal character

nnnnG

nnnnB

B

A

L

C

nnnnC

M

LINE FEED key

LINE FEED key

nnnnW

F

o

Open location designated by the octal number
nnnn.

Reopen latest opened location.

Close previously opened location.

Close location and open the next sequential
one for modification.

Close location. and allO\~ immediate
modification of the next location.

Close location, take contents of that
location as a mE!mory reference ilnd open it.

Close location, open indirectly.

Current line typed by user is ignored, COOT
types: ? (CR/LF) •

Transfer program control to location nnnn.

Establish a breakpoint at location nnnn.

Remove the breakpoint.

Open for modifiGation the location in which
the contents of the AC were stored when the
breakpoint was encountered.

Open the location storing the link.

Proceed from a breakpoint.

Continue from a breakpoint and iterate past
the breakpoint llnnn times before interrupting
the user's p:rogram at the breakpoint
location.

Open the search mask.

Open lower search limit.

Open upper search limit.

Search the portion of core as d.efined by the
upper and low-er limits for t.he octal value
nnnn.

Open location F.

Open location D.

7-11

CHAPTER 8
CAPS-8 UTILITY PROGRAM

8.1 INTRODUCTION

The CAPS-8 Utility Program (UTIL) allows: the user to take files stored
on paper tape and transfer them to cassette, using either the
high-speed or low-speed reader. The Ut:ility Program will transfer
both ASCII and BINARY files.

8.2 CALLING AND USING THE UTILITY PROGF~

To call the utility Program from the sys:tem cassette, the user types:

.R UTIL/OPTIONS

in response to the dot (.) printed by the Keyboard Moni 1:or.

8.2.1 Utility Program Options

There are two options available for use:
these options are discussed in Table 8-1.
in Chapter 2, Sec::tion 2.4.3.)

with the Utility Program~
(Options usaqe is explained

Option

/H

/L

Table 8-1
Utility Program Options

Meaning

The /H option. is used to designate the
high-speed rea.der as the input: device. Note
that the high-speed reader in the default
input device. That is, if no option is
specified the program aSSUmE!S that the
high-speed reader is the input device.

The /L option is used to designate the
low-speed reader as the input device.

8-1

8.2.2 Input and Output Specifications

Before indicating the input and output devices to be used in the file
transfer, the user must ensure that the proper reader is ready and
that the cassette the file is to be copied onto is write-enabled.
When this has been done, the user is ready to begin the file transfer.

After UTIL has been called from the system cassette, it asks the
following:

MODE-

The user responds with a single character (A or B) to indicate whether
the file being put on the cassette is ASCII or BINARY.

OUT-

The user responds by typing the drive number the output cassette is
mounted on and the name of the output file to be put onto it, i.e.,
3 :FOO. In B mode, • BIN is the default e~:tension.

After these two queries have been answere!d UTIL prints the following:

t

The user responds by typing any character; this response starts the
file transfer. (If /L had been typed, the user merely turns on the
low-speed reader.)

8.3 UTILITY PROGRAM ERROR MESSAGES

Errors which occur during the utility Program operation may be of two
types: User errors and cassette errors. User errors may be corrected
with the appropriate action as detailed in Table 8-2. Cassette errors
normally require the user to use another cassette to complete the copy
operation. Control does not return to the Keyboard Monitor when a
Utility Program error occurs. The USE!r may use CTRL/C to return to
the Monitor if he cannot correct the indicated error.

Table 8-2
Utility Program Error Messages

Message

UNIT n NOT READY

OUTPUT ERROR ON UNIT n

Jl.!eaning

There is either no cassette on the cassette
drive specified or no such drive exists.

An output error has occurred on the cassette
drive specified. The user should try the
transfer operation using another cassette.
Or perhaps, the user tried to write data when
the write prote1ct tab of the cassette on the
drive specified was write-locked.

8-2

ENTER ERROR ON UNIT n

UNIT n FULL

CLOSE ERROR ON UNIT n

INPUT ERROR

CHECKSUM ERROR

An error occurrl:!d whi Ie trying to open a new
cassette file.

There was not enough room on the cassette.

An error occurred during a close operation.

In binary mode, the paper tape reader stopped
or ran out o:E tape before a checksum was
encountered.

In binary mode, the checksum did
probably a hard~"are read error.

not agree;
Try again.

Whenever an error occurs, the program writes a new sentinel on the
open cassette if possible.

8-3

CHAPTER 9

BOOT

BOOT is used to make it convenient to bootstrap from one system to

another, or from. one device to another by typing commands on the

keyboard.

BOOT can run conveniently from CAPS-8 and other monitor systems,

i.e., OS/8 and COS-300.

9.1 OPERATING PROCEDURES

To run BOOT from CAPS-8 the user types:

.R BOOT

the system will respond by typing a slash, at which time the user

responds with the device mnemonic.

If an illegal mnemonic is typed, the system types "NO" and prints a

slash to allow the user to try again. In this case, the user can

type RUBOUT to erase a line and try again.

If a legal mnemonic was given, but the system configuration does not

include the corresponding device (or thE~ device is not ready), the

bootstrap may hang.

The following is a list of legal mnemonics:

Mnemonic Device !3~stem or Comments

CA TA8E cassette CAPS-8

DK Any disk (RF08, OS/8, COS-300
DF32, RK8E, RK8)

DL LINCtape DIAL-V2, DIAL-MS

DM RF08 or DF32 Disk Monitor

DT Any tape (TC08, OS/8, COS-300
T08E, LINCtape)

LT LINCtape OS/8, COS-300

PT PT8E Papertape Loads BINLDR into field 0

9-1

Mnemonic

RE

RF

RK

TD

TY

TC

ZE

Device §:ystem or Comments

RK8E disk OS/8, COS-300

RF08, DF32 disks OS/8, COS-300

RK8 disk OS/8, COS-300

TD8E DECtape OS/8, COS-300

TC08 DECtape unit 4 Typeset Bootstrap
types BOOT's version number

TC08 DECtape OS/8, COS-300, Disk monitor,
DEC library system, and others

Zeroes core (field 0)

If the device mnemonic is followed by a period, the program will load

the correct bootstrap into core and then halt. Hitting continue

branches to the bootstrap.

Example:

.R BOOT

LDT

The preceding bootstraps onto a DECtape system (on DECtape unit ~).

The underlined characters were typed by the computer.

9-2

APPENDIX A.
ASCII CHARACTER SET

B-Bit 7-Bit B··Bit 7-Bit
Character Octal Octal Character Octal Octal

A 301 101 ! 241 241
B 302 102 " 242 242
C 303 103 # 243 243
D 304 104 $ 244 244
E 305 105 % 245 245
F 306 106 & 246 246
G 307 107 247 247
H 310 110 (250 250
I 311 III) 251 251
J 312 112 * 252 252
K 313 113 + 253 253
L 314 114 254 254
M 315 115 255 255
N 316 116 . 256 256
0 317 117 / 257 257
P 320 120 272 272
Q 321 121 273 273
R 322 122 < 274 274
S 323 123 = 275 275
T 324 124 > 276 276
U 325 125 ? 277 277
V 326 126 @ 300
W 327 127 [333 133
X 330 130 \ 334 134
y 331 131] 335 135
Z 332 132 t 336 136
0 260 260 + 337 137
1 261 261 Le alde r /Tr ai Ie r 200
2 262 262 BELL 207
3 263 263 TAB 211
4 264 264 LINE FEED 212
5 265 265 FORM 214
6 266 266 CARRIAGE RETURN 215
7 267 267 CTRL/Z 232
B 270 270 SPACE 240 240
9 271 271 RUB OUT 377

BLANK 000

A-I

APPENDIX B
ERROR MESSAGE N~D COMMAND SUMMARIES

The following summaries are provided for the user's convenience: they
are grouped in alphabetical order according to the Sys;tem Program to
which they pertain. As these are only summaries the USE!r is referred
to the appropriate chapters for details.

KEYBOARD MONITOR (Chapter 2)

Error Messages

Message

BAD COMMAND

FILE NOT FOUND

IO ERROR ON UNIT n

UN IT n NOT READY

UNIT n WRITE I..oCKED

Conunands

Conunand

DATE

DELETE

DIRECTORY

Meaning

The user has failed to follow the
correct syntax for Monitor commands.

The Monitor could not locate the file
(or files) specified.

An I/O error has occurred on the
cassette unit drive spec!ified. The
user should try the I/O transfer
specifying another cassett:e.

There is no cassette on
drive specified, or no
exists.

the unit
such drive

The user t,ried to write data when the
wri te prc1tect tab of the cassette on
the drive specified was wJ:ite-Iocked.

Explanation

Allows thE~ user to enter the month,
day, and year. This date is then
represented in directory listings.

Causes thE! file named in t.he command
line to be deleted from the cassette
drive specified.

Causes a
cassette
line.

B-1

directory
specified

listing
in the

of the
command

KEYBOARD MONITOR (Con't)

Command

LOAD

REWIND

RUN

VERSION

ZERO

EDITOR (Chapter 3)

Error Messages

Explanation

Instructs the Monitor to load the
file{s) specified in the command
line. (The correct starting address
is then set in the switch register
and execution is started by pressing
CONTinue .l

Causes the
specified
beg inning .'

cassette on the drive
to be rewound to its

Instructs the Monitor to load and
execute t:he file{s) specified in the
command line.

Causes the version number of the
Monitor currently in use to be
printed on the console terminal.

Causes deletion of all files
following the filename specified in
the command line. If no filename is
indicated, all files are deleted and
the sentinel file is moved to the
beginning of the cassette.

Error codes are printed iD the form ?ntC where n represents one
of the following:

Code

o

I

2

Meaning

The EDITOR failed in reading from a
device. An error occurred in the
device handler; most likely a
hardware malfunction.

The EDITOR failed in writing
device; generally a
malfunction.

onto a
hardware

A file close error occurred. The
output file could not be closed.

A question mark (?) may appear any time the EDITOR encounters a
syntax error.

B-2

In addition, the! EDITOR contains the following error me:ssage:

Message

UNIT HAS OPENED FILE

Corranands

Corranand

A

B

C

D

E

F

G

I

J

K

L

M

N

Meaning

Two files cannot be open on the same
cassette at the same time:.

Append text
whatever is
buffer.

Meaning

from the keyboard to
present in the text

List the number of available memory
locations in the text buffer.

Change the text of a specified line
or lines.

Delete the specified linE! (s) from the
buffer.

output the current buffer and
transfer all input to the output
file; close the output file.

Find the next occurrence of the
string currently being sE~arched for.

Get and list the next line which has
a label a.ssociated with :L t.

Insert text before a specified line
in the text buffer.

Initiate an inter-buffer search for a
character string.

Kill the! buffer; rese': the text
buffer pointers so tha': there is no
text in the buffer.

List enti.re contents (or specified
lines) of the text buffl~r on console
terminal.

Move specified lines from one place
in the text to another, deleting the
old occurrence of the text.

Write the current buffer to the
indicated output file, kill the
buffer and read the next logical page
from the input file.

B-3

EDITOR (Con I t)

Command

P

Q

R

S

V

Y

$

• = or . ..
/= or /:

>

<

LINE FEED
Key

SYSCOP (Chapter 4)

Error Messages

Message

INPUT ERROR ON UNIT n

UNIT n NOT READY

Meaning

Write the
specified
buffer.

entire
lines)

text buffer (or
to the output

Immediate end-of-file. Q causes
text buffer to be output to
output file and the file closed.

the
the

Read from the specified input device
and append the new text to the
current contents of the buffer.

Search for the character specified.

List the entire text buffer (or only
specific lines) on the line printer.

Skip to a logical page in the input
file, without writing any output.

Perform a search for a specified
string of characters.

List the current line number (.=) or
list the last line number in the text
buffer (/=).

List the next line in the text buffer
on the console terminal.

List the previous line in the text
buffer on the console terminal.

List the next line in the text buffer
on the console terminal.

Meaning

An input e.rror has occurred on the
cassette unit specified. The user
should try the copy operation using
another cassette.

There is no cassette on
drive specified, or no
exists.

B-4

the unit
such drive

SYSCOP (Con' t)

Message

UNIT n WRITE LOCKED

OUTPUT ERROR ON UNIT n

PALC (Chapter 5)

Error Messages

Error Code

BE

DE

OF

IC

ID

IE

II

IP

IZ

PE

Meaning

The user tried to write data when the
write protect tab of the cassette on
the drive specified was write-locked.

An output error has occurred on the
cassette unit specified. The user
should try the copy operation using
another cassette.

Explanation

Two PALe
overlapped.

Internal tables
Fatal error.

have

An error ,..ras detected when trying to
read or write a device.

Device full.

Illegal character. The character is
ignored and assembly continues.

Illegal redefinition of a symbol.
its old The symbol retains

definition.

Illegal equals. An equal sign was
used in the wrong context.

~llegal indirect.
reference was made.

Illegal pseudo-oPe A
used in the wrong
incorrect syntax.

Illegal page zero
pseudo-op Z was
instruction which did
page zero. The Z is

Current non-zero page
attempt w.as made to:

An off-page

pseudo-op was
context or with

reference. The
found in an
net refer to

igncred.

e~ceeded. An

1. Override a literal with an
instruction

B-S

PALC (Con't)

Error Code

PH

RD

SE

UO

US

ZE

BASIC (Chapter 6)

Error Messages

Message

ARGUMENT ERROR

CHAIN ERROR

DATA ERROR

EOF ERROR

EXPRESSION ERROR

Meaning

2. Override an instruction with a
literal

3. Use more literals than the
assembler allows on that page

Phase error. Either no $ appeared at
the end of the program, or < and > in
condi tionall pseudo-ops did not match.

Redefiniti.on. A permanent symbol has
been defin.ed with =. The new and old
definition.s do not match. The
redefinition is allowed.

Symbol ta.ble exceeded. Too many
symbols have been defined for the
amount of memory available.

Undefined
symbol ha.s
statement.

origin.
occurred

An
in

undefined
an origin

Undefined symbols. A symbol has been
processed during pass 2 that was not
defined before the end of pass 1.

Page 0 exceeded. Same as PE except
with reference to page O.

Meaning

A function was given
argument; for example:

an illegal
SQR(-l) •

A cassette error occurred while doing
program chaining.

There were no more items in the data
list.

The user attempted to read past the
end-of-file during run-time input.

One of BASIC's internal lists
overflowed while attempting to
evaluate an expression.

B-6

BASIC (Con't)

Message

FILE NAME E.RROR

FILE OPEN E.RROR

FOR ERROR

FUNCTION ERROR

GOSUB ERROR

I 0 ERROR

IN ERROR

LINE TOO LONG

LINE # ERROR

LOOKUP ERROR

NEXT ERROR

NO FILES ERROR

OUT ERROR

RETURN ERROR

Meaning

A mistake was found in the user's
specificat:ion of a cassf~tte drive #
or filename in either a CHAIN or an
OPEN s ta tE!men t.

The user attempted to ope:l a run-time
output file when one 'rlas already
open, or a hardware error occurred.

FOR loops were nested too deeply.

The user attempted to call a function
which had not been defined.

SubroutinE!s were nested too deeply.

The user attempted to do run-time
input and output to the same cassette
at the same time.

A casseti:e
attemptinq
command ()r
input.

error occurred
to carry out
while doing

while
an OLD

run-time

A line greater than 80 characters in
length was typed; BASIC ignores the
line and ''lai ts for a new one to be
entered.

A GOTO, GOSUB, or IF statement
referenced a nonexistent line.

BASIC could not find a run-time input
file on the drive specified.

FOR and NEXT statements were not
properly paired.

The user attempted to do run-time
file I/O without first specifying so
during BASIC's initial dialogue.

An error (probably end-of-tape)
occurred while doing cassette output
either during a SAVE or during
run-time output.

A RETURN statement was issued when
not under control of a GOSUB.

B-7

BASIC (Con't)

Message

SUBSCRIPT ERROR

SYNTAX ERROR

TOO BIG, LINE IGNORED

Statements

Statement

CHAIN

CLOSE

COMMAS

DATA

DEF

DIM

END

FOR-TO-STEP

GOSUB

GOTO

IF-ENDI-THEN

IF-GOTO
IF-THEN

Meaning

A subscript was used which was
outside the bounds defined in the DIM
statement '.

A command did not correspond to the
language syntax, or an undefined UUF
was referE:mced.

The combination of program size
number of variables exceeded
capacity of the computer.

Meaning

Link to nE~xt user program.

Close open output file.

and
the

Output data values to a cassette
inserting a comma between each value.

Set values for a READ.

Define a function.

Dimension subscripted variables.

Signals the end of program execution.

Set up a program loop; increment the
counter by a value specified using
STEP.

Transfer control to a subroutine.

Transfer control to the line number
specified in the command line.

Transfer control (or perform an
operation) depending upon the
validity of the last INPUTI
statement.

Transfer control (or perform an
operation) depending upon the
relationship between variables
specified in the command line.

B-8

Statement

INPUT

INPUT #

LET

LIST

LIST#

LPT

NAME

NEW

NEXT

NO COMMAS

NO RUBOUT

OLD

OPEN FOR INPUT/OUTPUT

PRINT

PRINT#

READ

REM

RESTORE

RETURN

RUBOUTS

SAVE

Meaning

Input values
terminal.

from the console

Input values from a data file.

Assign a value to a variable.

List program (or specific lines) on
console terminal.

List program (or specific lines) on
line print1er.

Send output to the line pI'inter.

Rename the program in memory.

Specify a new program name.

Continue a program loop until
terrninatin9 value is reached.

Terminate outputting of commas.

Disable the RUBOUT command.

a

Call saved program from ca.ssette into
memory.

Open a fille on cassette for input or
output.

Print values or specified text on the
console terminal.

Output values to a data file.

Read value::; from a data list.

Insert remarks or comments in the
program.

Reset DAT}~ value to i t.s original
value.

Return from a subroutine to the main
body of thl3 program.

Allow the 'Use of the RUB OUT key to
delete characters.

Save the program in memory on the
cassette to be specified.

B-9

BASIC (Con' t)

Statement

SCR

STOP

TTY OUT

Functions

Function

SIN (x)
COS (x)
TAN (x)
ATN (x)
EXP (x)
LOG (x)
SGN (x)
INT (x)
ABS (x)
SQR(x)
RND (x)
TAB (x)
GET (x)
PUT (x)
FNA (x)
UUF (x)

Meaning

Delete thE~ current program in memory.

Transfer control
statement.

to the END

Return out:put to the console terminal
(after using LPT).

Meaning

Sine of x
Cosign of x
Tangent of x
Arctangent: of x
Exponential value of x
Natural log of x
Sign of x
Integer value of x
Absolute'value of x
Square root of x
Generate a random number
Print character at space x
Get character from input device
Put character on output device
User-defined function
User-coded function

B-IO

APPENDIX C
PALC PERMANENT SYMBOL TABLE

The following are the most commonly used elements of the PDP-8
instruction set and are found in the pennanent symbol table within the
PALC assembler. For additional information on these instructions and
for a description of the symbols used when programming other,
optional, I/O devices, see THE SMALL CO~)UTER H~~DBOOK, available from
the DEC Software Distribution Center. (All times are in microseconds
and respresentative of the PDP-8/E.)

Mnemonic Code Operation

Memory Reference Instructions

AND
TAD
ISZ
DCA
JMS
JMP

Mnemonic

Group

NOP
lAC
RAL
RTL
RAR
RTR
CML
CMA
CLL
CLA
BSW

0000
1000
2000
3000
4000
5000

Code

1 Operate

7000
7001
7004
7006
7010
7012
7020
7040
7100
7200
7002

Logical AND
Two's complement add
Increment and skip if ~:ero
Deposit and clear AC
Jump to subroutine
Jump

Operation

Microinstructions (1 (::ycle

No operation
Increment AC
Rotate AC and link lef1: one
Rotate AC and link lef1: two
Rotate AC and link right one
Rotate AC and link right two
Complement link
Complement AC
Clear link
Clear AC
Swap Bytes in AC

C-l

= 1.2

Time

2.6
2.6
2.6
2.6
2.6
1.2

Sequence

microseconds)

3
4
4
4
4
2
2
1
1
4

Mnemonic Code Operation

Group 2 Operate Microinstructions (1 cycle)

HLT 7402 Halts the computer
OSR 7404 Inclusive OR SR with A.c
SKP 7410 Skip unconditionally
SNL 7420 Skip on nonzero link
SZL 7430 Skip on zero link
SZA 7440 Skip on zero AC
SNA 7450 Skip on nonzero AC
SMA 7500 Skip on minus AC
SPA 7510 Skip on positive AC (zero is positive)

Combined Operate Microinstructions

CIA
STL
GLK
STA
LAS

7041
7120
7204
7240
7604

Complement and increment AC
Set link to 1
Get link (put link in AC, bit 11)
Set AC to -1
Load AC with SR

MQ Microinstructions

MQL
MQA
CAM
SWP
ACL

7421
7501
7621
7521
7701

Load MQ from AC, then clear AC
Inclusive OR the MQ with AC
Clear AC and MQ
Swap AC and MQ
Load MQ into AC

Internal lOT Microinstructions

SKON
ION
IOF
SRQ
GTF
RTF
SGT
CAF

6000
6001
6002
6003
6004
6005
6006
6007

Skip if interrupt ON, and turn OFF
Turn interrupt processor on
Disable interrupt processor
Skip on interrupt request
Get interrupt flags
Restore interrupt flags
Skip on greater than flag
Clear all flags

C-2

Sequence

3
3
1
1
1
1
1
1
1

2,3
1,2
1,4
2
2,3

Mnemonic Code Operation

Keyboard/Reader (I cycle)

KSF
KCC

KRS
KRB

KCF
KIE

6031
6032

6034
6036

6030
6035

Skip on keyboard/reader flag
Clear keyboard/reader flag and AC;

set reader run
Read keyboard/reader buffer (static)
Clear AC, read keyboard buffer
(dynamic), clear keyboa.rd flags
Clear keyboard/reader
AC 11 to keyboard/reader interrupt

enable F.F.

Teleprinter/Punch (I cycle)

TSF
TCF
TPC
TLS

TFL
TSK

6041
6042
6044
6046

6040
6045

Skip on teleprinter/pun.ch flag
Clear teleprinter/punch flag
Load teleprinter/punch and print
Load teleprinter/punch, print, and clear

teleprinter/punch fla.g
Set teleprinter/punch flag
Skip on printer or keyboard flag

Line Printer (I cycle)

LSF 6661 Skip on character flag
LCF 6662 Clear character flag
LSE 6663 Skip on error
LPC 6664 Load printer buffer; print on full bufj:er or

control character
LIE 6665 Set program interrupt flag
LLS 6666 Clear line printer flag, load character

and print
LIF 6667 Clear program interrupt flag

Cassette (I cycle)

KCLR 6700 Clear all
KSDR 6701 Skip on data flag
KSEN 6702 Skip on error
KSBF 6703 Skip on ready flag
KLSA 6704 Load status A from AC 4-11, clear

AC, load a-bit complement of
status A

KSAF 6705 Skip on any flag or error
KGOA 6706 Assert the contents of status A,

transfer data if read or write
KRSB 6707 Read status B into AC 4-11

C-3

Mnemonic Code Operation

Memory Extension Control, Type MC8/E (1 cycle)

CDF
CIF
RDF
RIF
RIB
RMF
CDI

62Nl
62N2
6214
6224
6234
6244
62N3

Change to data field N
Change to instruction field N
Read data field
Read instruction field
Read interrupt buffer
Restore memory field
Change to data field and instruction field N

PSEUDO-OPERATORS

The following is a summary of the PALC assembler pseudo-operators and
a brief description of their fun.ctions. Detailed information
concerning these pseudo-ops is contained in Chapter 5.

DECIMAL

OCTAL

FIELD
I
Z
EXPUNGE
FIXTAB

PAGE
XLIST

IFDEF

IFNDEF

IFZERO

IFNZRO

FIXMRI
ENPUNCH
NOPUNCH
ZBLOCK
EJECT

TEXT

Causes all following nurrhers to be interpreted as
decimal.
Causes all following nurrhers to be interpreted as
octal.
Causes a field setting.
Represents indirect addressing.
Denotes a page zero reference.
Deletes the entire permanent symbol table.
Appends presently define!d symbols to the permanent
symbol table.
Resets the location counter to the next page.
Suppresses listing while continuing assembly; a
second XLIST continues listing.
If the symbol is defined, the code within brackets
is assembled.
If the symbol is not defined, the code within
brackets is not assemblE!d.
If the expression is zero, the code within brackets
is assembled.
If the expression is not zero, the code within
brackets is not assemble~d.
Defines a memory reference instruction.
Resumes binary output after NOPUNCH.
Continues assembling code but stops binary output.
Reserves words of memory.
Causes the listing to jump to the top of the next
page.
Allows a string of text characters to be entered.

C-4

APPENDIX D
SYSTEM DEMONSTRA~ION RUN

The following example run, in which the: user creates a binary and
listing file from an ASCII source file, illustrates Cl typical use of
the CAPS-8 System. The machine output is coded by lettE!rs in the left
margin which correspond to the textual explanations found following
the run •

A

B

C

• DA 01/041';7 3

~DI

01104113
FILE .BIN
MA r H • DA T 1 21 11 112 V2

.z

.!,n ;JALC

-IN;JUI fo'iLES
..!2:TE~r.t-'AL

*"
-=BINAnl' Jo'iLE

* -=LIST TO
~Lfir
LIS STArt!
US L2 61.1 +01001

KCLR-6700

6'7210 KCLR.~700
6701 KSDR ro 6701
6702 KSEN-67-02
6'703 I<SBF-f,703
b7~4 !('LSA=6704
6705 KSAF-6705
6'706 KGOA-6706
67e;7 KR5S-6707
70Q!,2 65w-7002
3~e'2 LOC-3602

401Zlrt'l .400{(J

5 us
TAD J Q14000 10210 START,

042101 12216 CRCCHK, TAD L260
04002 6704 KLSA
040213 6706 KGOA
040214 6703 KSBF
04005 5204 ROCOO, JMP .-1
04006 7264 L260, CML STA RAL

0-1

PALe-V1 01/04/73 PAGE 1

C

c
0

n
t
i
n
u
e
d

D

E

us r/ENS 04007 0000
041211121 7610 SKP CLA
0412111 3211 DCA •
~4012 3b3~ DCA I PTR
0t1013 1212'5 TAD ROCOO
0412114 671214 KLSA
04015 6106 LOOP, I(GOA
0401" 67~1 KSOR

.-l· ... f;WAIT 04V'l17 521b JMP
04020 7~02 B5w
04021 743121 ~ZL
0/HJ22 163b TAD I PTR
04023 7022 CML BSw
04e.24 363b DCA I PTR
04025 7420 SNL
041Zl2b 2236 lSZ PTR
0412127 c(J35 ISZ KNT
0IJ030 5?15 JMP LOOP
04t'l31 734b STA eLL RTL
0412132 7v.'102 85w
04(7l33 3235 OCA KNT
~412!34 52vH J"'P CRCCI1I<
(rHH'35 77$7 KNT, " 737
(7.14036 35~7 PTf<, LGC-23
04031 1730 M5C6, -50

$

KCLR=b700

CReCH/(40(iJ 1
I<NT 4!t:135
Lec 36i.;,j2
LOOP 4CJ!15
Lt?b('l 4006
M5~ 4057
PT~ 4036
Rueoa 4005
51 A~T 4'lltH:"

{

.!oK ED II

*INP01 FILE-2:TEST.~AL
*OUTPur FILE-l:TEsr.PAL

D-2

I"OAP U.I'O STA. ft.,c.. It

FOR DATA FI.AG

K

L

.!s, , L

F ,s TAttT , TAD t-:rl0

'.5
~TAHT, TAD Mh\50

.!. 7L

G
Kl)\,sEN

(.1.. 55 H
KL5A ILOAD INTO STA. HEG. A

I

{

..1$l 11 L
JMrJ • -1 I WA I T F OK DA T A F LA G

.!.. S

J (iE

JMP .-1

.!.,rt ,.;ALC/N

- INPuT ii'l LE5
.!1 :rEST .tJAL
.i..
-BINAril' FILE
~:rE.sr.BIN

-LIS!' TO
~TT"

BINAril' FILE ON uNIT 2

BINAHl' FILE CLOSED
CRCCHK 4001

KNT 4035
LOC 3602
LOOP 4015
L260 4006
M50 403,7
PTQ 403,6
RDCOO 40105

START 40V'1(~

IWAIT FOR DATA FLAG

D-3

A The Keyboard Monitor is loaded and the DAte command is used to
indicate the current date. The user requests a directory
listing of cassette drive 1: he decides to zero the directory,
thereby deleting all files present on the cassette.

B PALC is called from the System Cassette. The input file,
TEST. PAL, is stored on cassette drive 2. The user decides to
specify as output only a listing on the line printer. Two
errors are flagged by the assembler and printed on the console
terminal during its second pass.

C The listing is printed on the line printer. The user then
marks this listing with appropriate corrections and insertions.

D PALC prints a tC: the user makes sure that the System Cassette
is still mounted on drive 0 and then types a tc to cause
control to return to the Monitor.

E The Editor is next called from the System Cassette so that the
errors in the file TEST.PAL may be corrected. The input is
again drive 2, and the output file will be sent to the
previously zeroed cassette on drive 1.

F The R command brings in the first page of text and the
intra-buffer search is used to find the first error. This
misspelling is corrected using the single character search
command and the rubout character.

G The next mistake occurs 7 lines :further in the listing: the
incorrect character is found and corrected. The line is also
listed to make sure the correction was made properly.

H The user inserts a comment in thl~ 5th line forward from this
line by skipping ahead 5 lines, searching for the A, and then
adding the comment to the line.

r The intra-buffer search is used to locate the next correction:
a tab is inserted between the I and the tab already present.

J The file is closed.

K The user calls PALC again, specifying the edited file on drive
1 as the input. The IN option is used to obtain only a listing
of the symbol table: the binary :file is output to drive 2, and
the symbol table is listed on the console terminal.

L After assembly, PALC prints tC and waits while the user makes
sure the System Cassette is mounted on drive O. He then types
tc and control returns to the Monitor. The user deletes the
first input file (the uncorrected TEST. PAL) from the cassette
on drive 2 to complete his session.

D-4

APPENDIX E
MONITOR SERVICES

Included in this Appendix is information the user needs if he intends
to create files using the PAL machinE~ language or re ference system
device handlers.

E.I MONITOR MEMORY MAP

The CAPS-8 Keyboard Monitor occupies the following memory locations;
if the user's program does not overwrite these areas of memory, the
routines they contain will be available for use fran within his
program and the Monitor may be restar1:ed after execution. (Section
E.2 provides more information concerning these routines.)

Table E-I Monitor ME~mory Map

Address

7400
7600

5200-6200
6200
6400
6600
7000
7200
7400
7600

Contents

FIELD 0

LPT and Console Terminal Handlers
Bootstrap, KBD Handler, Interrupt Routine

FIELD 1

Keyboard Monitor and Conunands
WAIT and part o:E Cassette HANDLER
CLOSE and ENTER
Cassette HANDLER
LOOKUP
UTIL and part o.f Cassette HANDLER
Binary Loader
Buffer

E.2 MONITOR SERVICE UTILITY SUBROUTINES

The user may direct his
subroutines providing
otherwise destroyed.

Table: E-2

program to
the routine

of the following utility
not been overwritten or

Utili ty Subroutines and Locatior..s

Address Name Location Service

LPOCHR 07400 This routine is used t:o print a
character on the line printer. The
calling sequence is:

E-l

Table E-2 Utility Subroutines and Locations (Cont'd)

Address Name Location

TTOCHR 07402

LPPUTP 07404

LPGETP 07405

LPCHCT 07406

ECHO 07407

TTSIZ 07410

TTPUTP 07411

TTGETP 07412

Service

COF (current field)
CIF 0
TAD character
JMS I (LPOCHR

The character in bits 5-11 of the AC
is added to the line printer ring
buffer to be printed.

This rout.ine is used to print a
character on the console terminal.
The calling sequence is:

COF (current field)
CIF 0
TAD character
JMS I (TTOCHR

The character in bits 5-11 of the AC
is added to the teleprinter ring
buffer to be printed. (The character
will not print if ECHO is off at the
time, but can be designated as a
"must print" character by turning AC
bit 3 on. This causes the character
to force ECHO on.)

This address contains the next free
location in the line printer buffer.

LPGETP contains the previous location
which was output in line printer
buffer (never a pointer).

This location contains the number of
line printer interrupts yet to be
expected.

If this address contains -1, ECHO is
off (no ECHO); if it is set to 0,
ECHO is on.

This address contains the length of
the teleprinter ring buffer (number
of characters it can hold).

TTPUTP
location
buffer.

contains
in the

the next free
teleprinter output

This address contains the last
location 'which was output in the
teleprinter buffer (never a pointer).

E-2

Table E-.2 Utility Subroutines clnd Locations (Cont' d)

Address Name Location

TTCHCT 07413

LPSIZ 07414

MONRES 07415

07600

KBDFLG 07601

KBDIN 07602

BREAK 07603

CTRLCJ 07604

Service

TTCHCT c::ontains the
teleprinter interrupts
expected.

number of
yet to be

This location contains one less than
the length of the line printer ring
buffer (number of characters it can
hold -1).

l.fONRES is the location in field 0
which can be branched to in order to
res tart the Keyboard Moni tor in
memory (assuming the Keyboard Monitor
has not been destroyed). Control
jumps from this location to the
routine MON.

Branching to this location causes a
complete reboots trap of the Keyboard
Monitor from the System Cassette on
drive O. If an I/O error occurs or
if the cassette on drive 0 does not
contain the file MONTOR.BIN, the
system waits for the user to mount a
good Sysb~ Cassette; typing a CTRL/C
will then reboots trap.

If this location contains a non-zero
number, i 1: signifies that a character
(other than CTRL/O or BREAK) was
typed on 1:he keyboard and has not yet
been read. It is lost if a second
character gets typed before the
previous one is read.

This location contains the last
character typed on the keyboard.
(Here BREAK and CTRL/O do count.)

This locat.ion contains a 1 if a BREAK
has not been used; 0 if it has.

If this location is 0, then whenever
CTRL/C is typed, the Monitor will
branch to 07600 and bootstrap (after
the current cassette operation
finishes). If not 0, then when the
current cassette operation finishes,
control is transferred (with
interrupts on) to this location in
field O. Set this to point to MONRES
if the Kl:!yboard Monitor has not been
destroyed.

E-3

Table E-2 Utility subroutines and Locations (Cont'd)

Address Name Location

07605

KBDCHR 07626

DISMIS 07645

INTRPT 07657

LPBUFR 07731

TTBUFR 07734

MONSTART 15200

MON 15201

15400

WAIT 16200

Service

Same as 07600.

This routine reads a character from
the keyboard. It waits for KBDFLG to
be non-ZE~ro, then zeroes it and
returns the contents of KBDIN in the
AC. The calling sequence is:

CDF (current)
CIF 0
JMS I (KBDCHR

The system branches to this location
to dismiss an interrupt.

The interrupt routine begins at this
address.

LPBUFR is the start of the default
line printer ring buffer (initially
of length 2).

TTBUFR is the start of the default
teleprinter ring buffer (initially of
length 30).

Branching to this location starts the
Monitor, assuming that the entire
Monitor is still in memory. The
routine waits for TTY and LPT then
resets buffers to defaults and
empties them. Sets CTRLCT to point
to MONRES. Sets ECHO on and sets
BREAK to 1. Notes cassettes as not
being in llse.

This routine restarts the Monitor but
does not do any of above.

Starting at this location also
restarts the Monitor and resets
locations that may be in a temporary
state if t:he Monitor has been stopped
(e.g., by hitting STOP) prematurely.

This rout:ine waits for the last
cassette operation (if there was one)
to complet:e. The calling sequence
is:

E-4

Table E-2 Utility Subroutines and Locations (Cont'd)

Address Name Location

CINUSE 16273

BSTATE 16274

CLOSE 16400

BACK 16402

ENTER 16404

Service

CDF (current)
CIF 10
JMS I nvAIT
<error return>
<normal return>

If an error return is taken, bit 0
may be on and bits 4-11 will contain
the conten1ts of status register B at
the time of error. This routine
should be c::alled sometime after every
call to HANDLER.

If this location contains a 0,
cassettes are ready; 1 means
cassettes are in use; -1 means
cassettes had an error in a previous
operation.

This location contains the status of
register B at termination of cassette
operation.

Calling this subroutine terminates an
output fille and writes a n.ew sentinel
file at the end of the cassette. The
calling sequence is:

TAD (UNIT
CDF (current field)
CIF 10
JMS I (CLOSE
<error return>
< normal return>

The error return is taken only if an
end-of-tape is encounterec~ before the
sentinel file is successfully
written.

This routine positions the cassette
so that the header record of the
current file may be written over.
The calling sequence (field 1 only)
is:

JMS I (BACK
< error return>
<normal return>

Calling this subroutine opens a new
file on a cassette. ~?he calling
sequence is:

E-5

Table E-2 Utility Subroutines and Locations (Cont'd)

Address Name Location

HANDLER 16600

Service

TAD (UNIT
CDF (current field)
CIF 10
JMS I (ENTER
<error return>
<normal return>

where UNI~? is the cassette unit drive
number. Before making this call, the
user must set up the new filename in
an in-core header record known as the
SINCH. ENTER automatically puts the
date and record size into the SINCH
for the user. (The SINCH format is
described in section E.4). The
INCH is destroyed.

This routine calls the system
cassette handler which is resident
and will be used by all system
programs. The handler routine is
also available to any user who does
not load over it. Before calling
this handler, the user must ensure
that the cassette is correctly po­
sitioned. See also LOOKUP, ENTER,
and CLOSE. The calling sequence is:

CDF (current field)
CIF 10
TAD (UNIT
JMS I (HANDLER
ARGl (function control word)
ARG2 (buffer address)
<error return>
<normal return>

The unit number is left in the AC.
Only bits 8-11 are used (units 0-17
octal). However, to specify unit 0,
at least one other bit (of bits 0-7)
must be on.. It is more convenient,
therefore, to leave the unit number
as a character in the AC (0-9 would
be 60-71). A real l2-bit 0 in the AC
means use the previous unit. (The
initial un,i t is 0.)

The function control word has the
following form:

Bit 0: 0 means read
1 means write

Bits 6-8: field of buffer
Other bits are ignored.

E-6

Table E-2 Utility Subroutines ruld Lcoations (Cont'd)

Address Name Location

BSIZE 17000

LOOKUP 17002

Service

The length of the record (in 8-bit
bytes) must have been previously
stored in location BSIZE. The
specified record size must be between
I and 377. LOOKUP and ENrER return
with BISZE set to 200 (:>ctal), the
usual record size.

If an error return is made, the AC
bits 4-11 specify the ,:::ontents of
status re<Jister B when the error
occurred. These bits are summarized
below:

bit 4: CRC/block error
bit 5: timing error
bit 6: EOT/BOT
bit 7: EOF
bit 8: drive empty
bit 9: rewind
bit 10: write lock ou1:

bit 11: ready

Bit 0 of the AC will be a 1 if the
error occurred on the previous
handler callI as opposed to the
current handler call. This is
because the! handler will wait (by
calling W),.IT} if it is called while
it is alrea.dy in use. The user can
manually wai t for thE! cassette
operation t,o be completed by calling
WAIT. If an error occuru, bit 0 of
the AC will always be on in this
case.

The user ~a.y check to SE!e if the
handler ~s in use without waiting by
interrogating the location CINUSE.
Non-zero means that the handler is in
use. Two successive calls to HANDLER
should not be made uithout an
intervening call to WAIT.

This location contains the current
record size.

Calling this subroutine positions a
cassette at a specified file to be
read. The calling sequencE~ is:

E-7

Table E-2 utility Subroutines and Locations (Cont'd)

Address Name

UTIL

OPTl
OPT2
OPT3

Location

17200

17400
17401
17402

Service

TAO (UNIT
COF FROMFLO
CIF 10
JMS I (LOOKUP
COF (filenamefld)
ptr to filename
<error return>
<not found return>
<found return>

UNIT represents the cassette unit
drive number. The header is put in
the INCH. The filename consists of
11 consecutive ASCII characters.

This routine allows the user to
specify that a utility operation be
performed. The user must be famil­
iar with the hardware specifications
as described in the TU60 CASSETTE
TAPE TRANSPORT MAINTENANCE MANUAL
(DEC-OO-TU60-DA) to understand what
these operations do and what
conditions cause errors. The calling
sequence is:

COF n
CIF 10
TAD (UNIT
JMS I (UTIL
utility code
<error return>
<normal return>

The following are legal utility
codes; all other codes are illegal.

10 rewind
30 backspace file gap
40 write file gap
50 backspace block gap
70 skip to file gap

switch option characters (e.g., IA)
stored as 36 bits for A-Z, 0-9 as
shown in diagram in Figure E-l.

E-8

Table E-2 Utility Subroutines a.nd Locations (Cont'd)

Addres s N arne

SINCH

DATE

INCH

OPT 1

OPT 2

OPT 3

E.3 RING BUFFERS

Location Service

A B C 0 E F G H I J K L

M N 0 P Q R 5 T U V W X

y Z 0 1 2 3 4 5 6 7 8 9

Figure E-1 switch Option Characters

17403

17531-
17540

17600

See ENTER.

These locations contain 8 characters
representing the da1:e (e. g. ,
01/22/73).

See LOOKUP.

Ring buffers must be located in upper core (4000-7777) of field O.
They consist of one or more buffer segments, each one of which
consists of two or more consecutive locations (the last one pointing
to the next segment). The last segment points to the first one. Ring
buffers can be changed by System Programs.

Figure E-2 Ring Buffers

E-9

E.3.l Modifying the Ring Buffers

The initial ring buffer supplied by the Monitor consists of one buffer
segment of length LPSIZE (TTSIZE) not counting the pointer. The first
location is called LPBUFR (TTBUFR) and the last location is called
LPBFND (TTBFND). The value LPSIZE-l (TTSIZE) is stored in the
location LPSIZ (TTSIZ). The buffer is initially empty. The next
location free in the buffer is pointed to by LPPUTP (TTPUTP) and the
previous location which has already been output is known as LPGETP
(TTGETP). Both these locations point only to positive words, never to
negative pointers. LPCHCT (TTCHCT) is the ones complement of the
number of characters left in the buffer to be output if I/O is still
in progress. (Specifically, it is the number of flags which have yet
to come up.) LPCHCT (TTCHCT) is zero (0) if there is no output in
progress.

To enlarge the ring buffer, wait until LPCHCT (TTCHCT) is zero. Then
set LPBFND (TTBFND) to point to the start of the buffer and have the
end of the buffer point to LPBUFR (TTBUFR). Change LPSIZ (TTSIZ) to
be the length of the buffer (length -1 in case of LPSIZ) not counting
pointer words. Interrupts may be on while this is done providing no
LPT (TTY) I/O is initiated.

E.4 HEADER RECORD FILE STRUCTURE

All files the user creates must begin with a header record (40 octal
bytes long), followed by 200 octal byte long records. The structure
of a header record is as follows:

Table E-3 Header Record Structure

Bytes (octal) Description

1-6

7-11

12

13-14

15

Filename; may consist of any alphabetic character
or digit and is padded with spaces on the right.

Filename extension; see Table 2-1 for recommended
extension names.

File type; maintained by the system for its
convenience and for standard compatibility. File
types are:

1 ASCII file
2 Standard DEC Binary File
12 Bad file (Specified for all

deleted files)

Refer to Section 2.2.1 for an explanation of
these file types.

File record length; always has the value 0,200
(i. e., 200) for compat.abili ty with standards.

File sequence number (not used).

E-IO

Table E-3 Header Record Structure (Cont'd)

Bytes (octal) Description

16

17-24

25

26-40

Header continuation byte; always O.

ASCII date stored as dd rnm yy, or 6 s,paces if no
date was specified when the file was saved. This
is the creation date of the file.

File version number.
are automatically
EDITOR.

Not used.

E-ll

New files are version 0 and
incremented by the CAPS-8

E.5 CAPS-8 BOOTSTRAPS

The CAPS-8 Hardware Bootstrap is used to load the Cassette Keyboard
Monitor into memory. This bootstrap is stored in the computer in
read-only-memory so that it is always available for use. Pressing the
sw switch on the computer console causes this bootstrap to be
executed; it calls the program C2BooT.BIN into memory from the System
Cassette. The CAPS-8 Hardware Bootstrap is comprised of the following
instructions, included here for the user's information:

b 7 ~~ lil
~ 7 v'l
,,7 Co:,?
e J'.L' l,

f::. 1 ... ;4

~ 7 :i:;c"

b711.l~

bh'7
7 (~162
3~~'2

'" b~ v)

r40(l;0. 1;>31

v'4V1V11 1 ~~ ~j f:.

r! ~ (l ,I,? b7'Ot.:.

~J\ 4 i1 ~~ 3 b 7 ~: ...

~IJ ~):'I4 67~3

04005 52v.'4
0400b 7?b~

~4r ;'17 b 7l~2
04yi 10 I~, pl
04,,111 3211

04·7112 .sh36

04013 1?~1.j

04014 b701J.

PALe-V1 el/04/73 PAGE 1

ICAS~FrTt SYSTEM HOOTST~AP

I
/

I

I

COPVkIGHT lq7~

iJ I (, 1 TAL t Q l' 1 F .'1 t tH COR P 0 RAT ION
r'1 A Y I\i A ~ L', HAS ~ • ll! 1 7 '5 4

1ST A r< T '" "J G L () C II 1 I 0 (\j (I\; 0 j.(MAL LV): ~ {1 ill 0
1ST At-. .(1 i'J G L [) CAT I UN F (J f.{ C) SIB: j 777

,c;CL~=b71.0

K S I) "' = b "/ 0 1
"" S t t'-! : fo, "' C" 2-
~5rjF=hh~3

KLSA=b704
"SAF=67Vl,:)
K (~ a A = 6 IV' b
K~5B=hI07

CjS\'ll=7'~Il)t?

LqC=.sb~2

IF!)Et- us~

* "HHH:l
STArn, TAD f'/j ':) VI

C~Cr.t1K, TAD L2b0

KLSA

KGUA

I<S~F

kOCOIJ, Jf"1P .-1
L2h.(!1, Ci"IL STA RAL

K S E. ~\I

SKP CLA
DCA •

DCA I PTk'

l'Au kDCOD
""LSA

E-12

IPUP-8/E, -8/F, AND -b/M ONLY
ILOCA1ION WHERE ScCONDA~V

I~OOTST~AP REALLY G~TS LOADED

<*~~777;CLL>

IINITIALIlE PULSE CLEARS THE LINK
ICI"IAN('E READ CRC COOt (6) TO
IwtWI~O <1> [BIN]
ILOAO RtAu CRC CODE INTO STATUS
II'{EGISTER A [JMP I START]
IFI~ST TIMf: THROUGH, LINK MUST
I tH: 1 HE f~F.:
IINITIATf. THE OPE~ATION (READ
IC~C OR ~EWINO UR FRWD FILE GAP)
IREAOV?
It\iO, \'IAIT
IstT L=l ANU AC= A HALT (7776)
IANY f:RROR8?
I t'-J 0
IHALT ON ANV tRROR tXCEPT FOR
IREwIND OR FRwO FILE GAP
ICAN'T ALLOW 'TAD I PTR' LATER
ITO AFFtCT LINK
IGET CODE ~OR READ (0)
ILOAO INTO STATUS REGISTER A

1214015 b7~fo, LOIJP, KGOA IFIRST TIME STORES 113 INTO MEMORY
I(a-BIT COMPLIMENT OF RDCOO)
lorHER TIMES ~EAOS ONE 6-61T
IS"TE OF PAIR

04e.1h b7?Jl KSOR /NE:w DATA WORD REA)Y?

04017 5216 JMP .-1 INO, wAlT
Q'l4020 H~02 HSw IMOVE b-tHT BYTE T1 H.O. Ae
04v.:21 743Vl SZL /wHICH 6-tHT BYTE JF THE PAIR?
0lHl?2 1,,36 TAD 1 PT~ 12f'.W. SO ADO IN 1ST BYTE
04V123 7(122 CML HSw IS~IAP BACt(AGAIN. SET LINK TO

ICA5StTlt SYST~M ~nUT51kAP PAL C - V 1 ~ 1 / 0 4 I 7 3 P ~, GEl .. 1

rIl4~i:i" 3f.36
itluV,'.?5 7 q;n,

0q~~?f, (!fJ_"h

fJ,4l27 223'-;
Cilqjl3~~ 5215
rilu~31 "3~b

'047:32 I C; ~".' ;;>
0~0~3 :S" j':5

~q ~~" u 5?'V.l
(·"4(1 _~5 77 :S I

04L'; ~~6 y::;~ 7
rJ:4,7}~ ., 7., .S [,1

uCA I PTj.(
S~L

ISZ PTR
lSi ~NT

JMP LOOP
STA eLL RTL

IINDICATE NEXT ~YT~

ISTORt BACK INTO MEMORY
I A R i:. w f. 0 aNt. LOA 0 I ~I G BOT H b .. BIT
II:3VTE~?

lYE S, SOP 0 I N T T 0 ~I EXT M E MaR v W 0 R 0
IHUMP COUNTtR
IREITi:.RAH::

b~~ IsET AC=7~11

LJ C A '"' t~ TIS ETC a U N T T 0 ALL. CI w REA 0 1 N G A
121210 BYTE RECORD

JMP CHCCHK IGO CHECK THE CRC
/C. t-lT , rl 5 1 I 0 ~ ~ ESC 0 M P LIM E. NT 0 F' N U M tj E R 0 F

IhYTES TO L.OAD
Plrt, LOC-2~ IMEMORY LOCATION TO BEGIN LOAD AT
M~0, -~0 lelA SPA SZL
/ T 1"'1 J:" I'(U U lIN t t3 i ~~ A R Y L U A 05 Ii I N A ~ Y r I L E S 1 "i TOM E M 0 R Y •
IIf bt~INS bY lOAOING A RECORn OF SIZE 40,
I T 1"'1 t: t\J C n N T J. j\! U t: S T n L. 0 A l) sue r. i:. S :) I v ERE COR 0 ~, E A C H 0 F 5 I Z E

IT~I~ ~PUr.lSS CO~TINUE5 UNTIL IT DESTROYS ITSELF.
I (L n l, t. I JON 5 4 v'I ~--l 0. A r\l f) 4 ~ i 0 1 ARE. REP L. ACE. D B Y J 1>1 P I (b t N]
/f'.v 1 He StCOl\l)ARY bUOlSTi'<AP.
I T ~, t F 1 k S T "'1 t: M () k V L 0 CAT I 0 '" ~ t: F 0 F< E A NEw C ~, SSE. T T ERE COR I)
I I S k t. A f) I ~~ I S L (J A Ij E (j wIT H A RAN IJ 0 M V A l U E (1 7 3) •
I S I.' eLf: S S 1 V t: ~'i 0 f.< D ~ ARt. L. 0 A 0 t: 0 WIT H THE 1 2 .. ~, I T QUA N TIT Y ,
11~0~+n, wH~kE A A~D d ARE SUCCESSIVE b~8]T 8VTES ~ROM

/l~E CASSETTE ~ECOHO.
I 1\' r A : I J i\j G L E. ~ ~ I-Je) h- I) SGt. i L UA 0 E D 1 F THE: CAS S F. T TEe 0 N T A INS
I H - .3 1. 1 fi Y T I:.. S 1\ ~ C t:. N (A (" i) () U E 5) HAP P E. N w H t: r-.I ' LOA DIN G ,.
/ l' H f H I:. A I) t "" A ~ n \AI h t: r~ II LOA U I N G' T ~i E 0 R r G I "I A T THE.
IRE GIN i\I I ~,I b l) f 1 H t. k E C [) to: l) •

E-13

ICASSETT~ SYSTEM bOUTSTRAP

CRCCIofK 4i(:W 1
t<NT 4~3S

LOC 3b02
LOOP 4~15

L 2 b i?I 4 0 vjf;)

M50 4037
PTR 4030
RDCOO 40frj5
STA~T 40~0

PALC-Vi 01/04/73 PAGE 1~2

E-14

C2BOOT.BIN is the bootstrap which loads the Keyboard Monitor into
memory. It is stored on the System Cassette and is comprised of the
following instruc:tions:

oil S., vi 2
7,3" ~J :s
(1 V, Ct' 4
(13 ~:l ')

1.13" VJ b

(113':<·1'7
i1 ~ ~ 10

V'I.$"" 1 1
C1:S b 1 2
V'J:Sbl.3
?I:~o14

0:s.,1'='
Ii'l~hlb

~n~ 1 7
(~'5b20

~:S~21
1;"~~~2,)

~1 j ~ (I 3

1~~1"I24

~.~o25
:~ -~ ~.? b

~1:S 10, ~ I
l~ ~~.30

~U"31
~~_~"52
1i1.3~3.3

~~3t'>34

[tJ363~

IJl~6 36
;,j ~~ _~ 7

vn6"'0
~n~41

('n~~?

~!l:~-:,~3

?Ij£'u(t

~n~~5

v)3~~b

7 fh·jc

" 1 ii1 1
h7!"il
6 7 ",d
b7 ;/1~
h 7 (i:~
~ 1~:J 7

72 .. 1':)

.~ q 7

1 ~ ~i3
.s~3(1

.L~1i~':'i

7 ?'Hi'
:~.3 ~17

42'L~
I :,hJ c'

71 1. C
I ~ 'S:,;?
~~y;

7 '='1 '"
c~~.~7
., r~l/j·l

77;;J~

7 1 '/~ 4

331;:;"
4 () ,~'~

13C.~t-

2.s":'7
~2~0~
I /.H~1?
3 7 i.:i'-,
2 hj~
b 2 vj 1
':J r? '.) -,
7 'i\~ ~l
Sj(()~

7 :.1):1':)
02;2 :.1
1 ;i1 \~12

':>? ({il.l

:HZi,1
2317
52/4
131 1

/ .)t:I ... ON[)A~1(60UT" ri-<AF
/ CO~YHIG~r lY/~

I

/

/

t1 I !'~ ,

ITsFLn,

u 1 i; I 1 ,\ L t r~ LI I P t.1 t. ~~ T [(H~ P (H(A T I 0 II;
ttAO-u\i'tu, ~1~S~. 101/';)14

S.ki.
fi S"J = 7 ;iI,/)C!
",StiR:hlVl
"'.-; l'l F-" =" I V' 1
KSHF:67C'1j

:o\LSA=6/V1u
K.t;,OA=6/~~b

1'\~::-;e=6/(/jl

fJ(')PUI\JCh

* _~ h. \~ d
ti~f-lLJNr:H

SIA
IJ C 1\ b~: I'd~ T
TAu ll)FV1
IIC14 !-LU

PAGE 1

11 S OK (i, QCA GRL, /ASSvMf:S OkIGIN ALwAYS APPEARS
/AFTEf(FIELD St.T1IN(;

bTNl.UR, STA
l}e A ()t-?l!tS~

JMS t.;ETbvT
r-UOL, !iSlA!

elL kTt-?

Sit..
JMP SPE:C /hll 4=1
SPA /;;1T 4=0 (T \~ 0 wORD COMMA"'!,))
JSl urH,S'·J II~ ORIGIN

1\1 ., ~~ ~j v.l , NOP
I<AL
elL kAl
[) C 1\ T tI"l
JMS 6F.TdYT
fAD H:{vI /COM"INE
ISZ OR6S~:

JI-1P lr~ORt; IORJGIN
FlD, HLT

DCA I ORe:;
ISZ ORG

C O~~" CUf' V1
Jf.,P bI"'LOR

~PtC, ~MA'

JMP l"lOf\i
RTL
ANn N7V100
t1 S ~j
JMP ITSFLO

GfTIH T,
" ISZ GR"NT
JMIoJ RDt:n'TE
TAO X 2b~'

E-IS

:, ,):" -, ") I \ +
.:.. ~ ~ ~ ~ 1 .'
" ... t ., 7 : .,

;." ... r,? ... ,-1...., 1 , ~ ~.' ~ '::J "7 ,'. 1

!,' ~ft., ' , ,lJ " ~C" :

.) .1",S ! " '. 1

" -.')n ! j ·-11 . ~., "
~ .S, , "':'ir

,
~ _ f-, ,/1 ~?"'"
<, .., ... 1 .. d~ ~

(' "'~ '2 \ .~ \ ?
c~ ~...,!-) ~ l 1 2 I

"

."~' n oJ '1 I t '"'
,', <, "" ;1 ., 1 ~2 ? , ., .' ,.., r- 5 ~ I. r
'j " ... "' I 1 ~ t :,

,,,- I ;." 0
, ,q

~/i _
,..., ; 1 t., , :.'."

v ,<' 'I 7 ? h I

,.' :) "" , .<\ ,~ .' ,)

~ , i ;J -- I ,;~

C' ,"':' / ... ~ '! 1

" ~ ... 1 ., oj') l l,

rj~7 I ~,~ Ii 'i

!\ ." 7 ",:, ";
.,

" .~ 1 \ ~ 2 r- ,.... 1 "
v,,'o ! I' ~ ::, I ~. !.l

(~ .) 1 , 1 4 :, r:' <,

,~ ,<' 7 ")
:';,'11,,",

r' ,~ I \/ I

~ ~ !I 7 1 r)
~\ ~ i 1 1
\:,,57';:>
1I~:5 7 1 ~
V~71~

;,137 1 "
~15 I 1 h

VI ~ 7 1 1
;" :5 ., ;~} '!~

'.:..'3"? 1

.. ,: ~ \'::
~,~ o:'l {j

\~ 2 i'l

17 .".,
i+'~ 3 t"
4',' j~

4 \'~..:J 2

, 'I 14

I '1 l7
,·1 ~ , 2. ? / ~ ,j \/'
/. 3 7 2 5 V; '~ j ,/:

;l),'024

["3725

P~l.C-V1 PAGE 1-1

:-\ '-:, A

\\r,U~

!" :;,dF
jMP .-1
"",,,,;4
.~ r\ll) oX 7 I 7 '-+

SZ.,l eLI<
til T

l~L t l~sr
.1", ~ ,\I () 1 r,; ~ T
J"h ;;'t~r.T

r A.l) 'A '2'f:J
Sll
.J Mr-J 1

I~ r 1 r F ,-' T, I A ~i
X IJ v.i V 'r!
~ 1 b Ii'. II"

1.1 C A 'J ~ '"' :,; T
llql)I?~':,~

I'\L,sA

,,(;()4

'"'. Su~
J~"\I"' .-1

.. ;) ",', It, " [~fJ A

.. ') II ~

J ""P • ~ 1
,j ~1 P I l; r T b Y r

t.~.pur.cr-

" r) :~ , C l)t L J to 1 !'}
~IMI"' 1 .+1
'-; 2 ,) ;,~

LJ "'I'; , p
T ~ .~ , V'
I);'" l~ ~.' , 11

~ (: ,i~. 2vl~l

,,2b/i, t:'hCII
,'(? 7 (~ , 2/.1
X '('/ :5 , , /7,57
X";;J T , ~~).3 ':i
)(~ f r< , l~ ~j _~ , ...

X 4 ~\ 'lt~, 4 ~~\.~?

Sf.' lO.. ~j I , Ii,

x777 ... , 7 '-'4
i- 1 f' -; I , -1
J,. ,,, ~"' , 7 ~11'·1
rd::jF, I , v.l

TAU x17.51
DCA 1 xK1\;T

E-16

IL()CATI[)i~ 3701 15 ~KIPPED tjy
IPI-(IMA~'f l.()AI)Ek

/StT UP PRIMARY ~OOT5TRAP

IF-"Uq RtUSE

/ SECON0ARV ROOTSTf(AP

V'37i!b
ftj7?7
[~3 7 3(J1
~1 3 7 3 1
"\~13~

1/:3733
0jl34
c,,~nvH)

[i'.~ ;101

H 1 j\
b I la. P 1'1

ell r ~l
FIFfsT
FLU
FliCJL
r;t. 1 en'T
(.; ~ i(~, 1

IT~rLlj

JTS(Hc'b
KSolF

.'1 [j,

;\JlJ r I- S 1
~J 1 •. ~ ,:' ~~

i.J f'(:;

r'""I-:;,,,,,,1

~ ~J '"" Y T t.
;;, t". ~r. T
S~) t C
T f-, ',~

Y,..: "i T

x (: /" ':1
'Y. 2. 1',1

'<:5 --: 1 1
X '+ ,~'/"2
'(4 ~ 1 1
l"7 k.' it~

V. I I _~ 7
.; ., I II~

3715
l.~~~
~7j~

"'2:~
5211
4 iii 1 1
vHh.)~

3~0)2
.,,, i/' (11

.s~tIl2

.s b it) I

.s~:d.5

-~ ,~ 1

.s '" .s 11\

3612
j;"l.d

~ 11 7
.s.., it) J~
jo,,'lI:'

b 7 "'1
57;<2
.3~h~

5h2v
~ I V'::;
j 'I.) 7
Sh I.~

.~ 72.3
"fo,y~

S' .;J..,
~ i 1 .,.
.s 1 , .:oj

37 1\1

j I 1 1
.5 , 1 ;~

31 .~2
:s I 1';'
5 7 3:~
~q ??
.5 I , ~

:5 72·'

)(.3211,
X4~i1!,

PAGE 1 ... 2

OCA I).PTI<
TAO >;3211 /A "DCA ." FO~ LOCATION 4011
UCA 1 ~t.l1.l11

.} MP I ~ESt:::T

3211
4011
ZtSLOCK 1'00~- •
1'31f\J
.1 MP I • -1 IMUST t~O IN OCTAL ~0
(' u.,

PA[';E 1-3

E-17

APPENDIX :F
ASSEMBLY INSTRUCTIONS

CAPS-8 source programs are supplied on DECtape. These sources are
assembled with PAL 8 and copied to cassette with PIPe. To build the
CAPS-8 system cassette with PIPC, the user must load tt.e OS/8 cassette
handlers as described in USING AND LOADING YOUR NEW OS/8 CASSETTE
HANDLERS (DEC-S8-UCASA-A-D). The follo'V1ing instructior..s may be used
to assemble the sources, print source listings, and create the CAPS-8
system cassette on drive O •

• rl ~ALtS
*C2BOOTITE~P<C2Boor

.H CkEF
*IEMt-'
• rl tlAU~
*MONTOHITEMP<CASMON
.H CHEF
*rEZVirJ
.rl PAU~
*~¥~COPITE~~<S¥SCO~

.H CHEF
*TEl'Y'J-l
.ft PAL8
*EDI IC ITEtw'jp <EDI IC
.h. CriEf'
*TEft':,P
.H rJAL8
*PALC I TEMP <PALC
.H CHEF
*TE~P
.H PALS
*CBASICITEM~<CBASIC/K

.rl PIrJ
*LPT: <TEMP. LS

.ft PIPC
*CSA0:</Z
*CSA0:C2BOOT<C2BOOT/8
*CSA0:MONTOH<MONTOH/8
*CSA0:S¥SCOP<S¥SCOP/8
*CSA0:EDITC<EDITC/B
*CSA0:PALC<PALC/8
*CSA0:CBASIC<C8ASIC/B
*TT't':<CSA0:/L

F-l

INDEX

Addressing, BASIC, 6-51
Alteration of text, 3-12
ALTMODE Key,

in BASIC, 6-52
3-7
5-15

in Editor,
AND, Boolean,
Angle brackets,

Editor, 3-7
left/right «»

PALC, 5-19
ANORM subroutine, BASIC, 6-47
Append command, Editor, 3-9
Arithmetic operators, BASIC,
Arithmetic statemen·t, BASIC,
Arrays, BASIC, 6-29

6-4
6-11

maximum number, 6-28
maximum size, 6-30

ASCII character set, A-I
ASCII format files, 2-1
Assembler output, P.ALC, 5-32
Assembly instructions, CAPS-8,
Autoindexing, PALC, 5-23

BASIC language, 1-2, 6-1
arithmetic statements, 6-1
calling, 6-2

F-l

editing and control commands, 6-52
error messages, 6-57
error message summary, B-6
example run, 6-8
floating point package, 6-50
functions summary, B-lO
immediate mode, 6-6
numbers, 6-2
statements, 6-10
statement summary, B-8
symbol table, 6-59
variables, 6-3

BEGFIX subroutine, BASIC, 6-47
Binary format files, 2-1
Binary output, controlling PALC,

5-28
BKWD statement, BASIC, 6-51
Boolean AND, 5-15
Boolean inclusive OR, 5-15
Bootstraps, E-13
BOOT PROGRAM, 9-1

BOOT, 9-1
Legal Mnemonics, 9-2

Brackets,
angle «», 5-19
square ([]), 2-4

BREAK command, BASIC,

Calling
BASIC, 6-1
Editor, 4-1
PALC, 5-1
System Copy,

CAPS-8 Cassette,
Carriage return,

4-1
Slge cassette

4-3

Cassette
directory listing, 2-1
filE!, 1-4
format, 1-4
handler, E-6
mnemonic code, PALC, C-3
mounting/dismountinq, 1-4, 1-5

Cassette, BASIC, 6-1
CHAIN statement, BASIC, 6-33
Changing text, Editor, 3-12
Characters,

ASCII, A-I
CTRL, 2-4
Editor special, 3-4
Monitor switch option, E-lO
PALC, 5-5
PALC special, 5-17

Character searches, Editor, 3-16
Character string search, Editor,

3-15, 3-17, 3-19
CLOSE statement, BASIC, 6-15
Coding formats, BASIC, 6-44
Coding practices, PALe, 5-32
CODT, 7-1

additional techniques, 7-9
co~nands, 7-2 to 7-8
co~nand summary, 7-11
ERRORS, 7-9
fea·tures, 7-1
illegal characters, 7-8
indirect references, 7-9
interrupt program debugging, 7-9
octal dump, 7-9
operation and storage, 7-9
pro9ramming dates, 7-10
storage requirement~s, 7-10
TTY I/O-FLAG, 7-9
using, 7-2

Colon (:), 3-7
Command format, Editor, 3-8
Command mode, Editor, 3-4
Commands

BASIC, 6-6
Edi tor summary, B-· 3
keyboard monitor summary, B-1

COMMA.S statement, BASIC, 6-20
Comma used as format control

character, 6-17
Comme:nting the program, BASIC, 6-10
Comments, PALC, 5-7
Conditional assembly pseudo-operators,

PALC, 5-28
Condi.tional delimite::-s, PALC, 5-19
Conditional transfer, BASIC, 6-28,

6-32
Console terminal output, PALC, 5-2
Control characters, BASIC, 6-17
Control commands, BASIC, 6-52
Controlling PALC binary output, 5-28
Conventions of systen, 2-1

X-I

Corrections, Keyboard Monitor, 2-3
Creating run-time input files,

BASIC, 6-25
CTRL/C

Editor, 4-3
BASIC command, 6-54

CTRL characters, 2-4
CTRL keys, Editor, 3-5, 3-7
CTRL/O command, BASIC,
Current line counter, Editor, 3-6
Current location counter, PALC, 5-10

DATA statement, BASIC, 6-12
DAte command, 2-7
DECIMAL pseudo-op, PALC, 5-24
Default device, PALC, 5-2
DEF statement, BASIC, 6-43
DElete command, Keyboard Monitor,2-8
Deletion of page, Editor, 3-14
Deletion of text, 3-12, 3-13
Delimiters, PALC conditional, 5-11
Delimiting character, PALC, 5-6
Device, default, PALC, 5-2
Device handlers, 2-11
Devices, I/O, 2-2
DIM statement, BASIC, 6-30
Direct assignment statement, PALC,

5-12
DIrectory command, 2-7

options, 2-8
Directory of system cassette, 2-1
Dismounting a cassette, 1-5

Editing and control commands, BASIC,
6- 52

Editor
calling, 3-1
character searches, 3-16
commands, 3-8, 3-12
command summary, B-3
demonstration run, 3-23
error messages, 3-21, 3-22
error message summary, B-2
operating modes, 3-4
text collection, 3-15

EJECT pseudo-op, PALC, 5-30
End of file, PALC, 5-26
End of pass, PALC, 5-19
END statement, BASIC, 6-11
ENPUNCH pseudo-op, PALC, 5-28
Entering text strings, PALC, 5-27
Equal sign (=)

BASIC, 6-6
Editor, 3-7

Erase (CTRL/U), Editor, 3-5
Erasing a program in memory, BASIC,

6-55
Errors, Keyboard Monitor loading,2-3
Errors in Programming, BASIC, 6-59
Error recovery, Editor, 3-5
Error Messages,

BASIC, 6-57
summary, B-6

Editor, 3-21, 3-22
summary, B-2

Keyboard Monitor, 2-12
summary, B-1

PALC, 5-34
summary, B-5

System copy, 4-3
summary, B-4

E-type notation, 6-2
Example programs, BASIC, 6-8
Expansion of text, Editor, 3-12
Exponential format, 6-2
Expressions, PALC, 5-14
EXPUNGE pseudo-op, PALC, 5-29
Extended memory, PALC, 5-27
Extensions of filenames, 2-2

FAC function, BASIC, 6-47
FENTER statement, BASIC, 6-45
FEXT statement, BASIC, 6-45
FIELD pseudo-op, PALC, 5-25
Field of nesting loops, 6-28
File formats, 2-1
File gap, 1-4
File header record, 1-4
Filenames, 2-2
Files, multiple input, Editor, 3-2
Files, transferring individual,

System Copy, 4-1
File types, E-l1
FIX subroutine', BASIC, 6-47
FIXMRI pseudo-op, PALC, 5-29
FIXTAB pseudo-op, PALC, 5-29
Floating-Point format, 6-46

normalized, 6-47
Floating-point package, 6-45, 6-50
FNA function, BASIC, 6-43
Form Feed

Editor, 3-5
PALe, 5-7

~ormat control characters, BASIC,
6-17

Formats for BASIC numbers, 6-2
Formats of files, 2-1
FOR-NEXT loop, BASIC, 6-27

exiting from, 6-28
FOR statement, BASIC, 6-27
Function addresses, BASIC, 6-45
Function control word, E-6
Functions.

BASIC, 6-37
summary, B-10

Editor, 3-4
user coded BASIC, 6-44

FWD statement, BASIC, 6-51

GET function, BASIC, 6~41
Getting on-line, 2-1
GOSUB nesting, maximum level, 6-37
GOSUB statement, BASIC, 6-35
GOTO statement, BASIC, 6-3.2

X-2

Hardware bootstrap (MI8-E), 1-1
Hardware component!:~, 1-2,

IFDEF pseudo-op, PALC, 5-28
IF END# statement, BASIC, 6-3.4
IF GOTO statement, BASIC, 6-32
IFNDEF pseudo-op, PALC, 5-28
IFNZRO pseudo-op, PALC, 5-28
IF THEN statement, BASIC, 6-32
IFZERO pseudo-op, PALC, 5-28
Illegal symbolic addresses, PALC,

5-10
Immediate mode, BASIC, 6-6
Implementing a user-coded function,

BASIC, 6-44
Incorpora ting subrcmtines with UUF,

BASIC, 6-46
Incremental value, BASIC, 6-27
Index in FOR statement, BASIC,6-27
Indirect addressin9, PALC, 5-20,

5-24
Initial value in FOR statement,

BASIC, 6-27
Input commands, Editor, 3-9
Input file extensions, PALC, 5-1
Input files, creation of, BASIC,

6-25
Input specifications,

Editor, 3-2
PALC, 5-1
System Copy, 4-2

INPUT statement, BASIC, 6-14
INPUT# statement, BASIC, 6-16
Input/output devices, 2-2
Input/output statements, 6-12
Input/output transfer micro-

- instructions, PALC, 5-2 3
Insert command, Editor, 3-14
Instructions, PALC ,. 5-6, 5- 30
Instruction set, Bl~SIC, 6- 50
Interactive progra~~ing language,

BASIC, 6-1
Integer number format, BASIC, 6-2
Inter-buffer character string

search, Editor, 3-19
Internal format, BASIC, 6-44
Internal symbol representation

for PALC, 5-13
lhtra-buffer character string

search, Editor, 3-17
INT function, BASIC, 6-38
INT(x) , integer function, BASIC,

6-3 8
I/O designations, 2-5
lOT microinstructions, PALC, C-2

Keyboard monitor, 1-1, 1-2
commands, 2-5
command summary, B-1
error messages, 2-12, B-1
loading and using, 2-3
memory map, E-l
services, E-l

X-3

Keyboard reader mnemonic code,
PALC, C-3

Keys, special Editor, 3-5, 3-6,
3-7

Labels, PALC, 5-6
Lang·uage, interactive programming,

(BASIC), 6-1
Leader-trailer tape, 1-3
Left angle bracket «), Editor, 3-7
LET command, BASIC, 6-7
LET statement, BASIC, 6-11
Levels of nesting, maximum, 6-29
LINE! FEED key, Editor, 3-6
Line! printer listin9, Editor, 3-11
Line! Printer mnemonic code, PALC,

C-3
Line printer output, PALC, 5-3
Link generation and storage, PALC,

5-30
LIST and LPT command, BASIC, 6-54
LIS,]~ command, BASIC, 6-53
List: commands, Editor, 3-10
List:ing a program, :3ASIC, 6-53
List: of arrays, BAS IC, 6-28
Literals, assigning PALC, 5-18
Load command, 2-7
Loading keyboard monitor, 2-3
Local symbolic addr1asses, PALC, 5-9
Loops, 6-27
LPT and RUN commands, BASIC, 6-54
LPT statement, BASI<:::, 6-21

Matrices, BASIC, 6-29
Maximum level of GOSUB nesting,

BASIC, 6-37
Memory extension control, PALC, C-4
Memory map, Monitor, E-l
Memory reference instructions, PALC,

5-2 0, C-l
Microinstructions, PALC, 5-21, C-l,

C-2
MI8-E hardware bootstrap, 1-1
Monitor, see Keyboard Monitor
Mounting a cassette, 1-5
MOVE~ text, Edi tor, 3-15
MQ microinstructions, C-2
Mu11:iple files, 2-6, 2-7

Editor input, 3-2
Mul t.iple input cassettes, PALC, 5-3
Multiple statements, BASIC, 6-10
Mul·tistatement lines, PALC 5-8

NAME command, BASIC, 6- 56
Nested parentneses, BASIC 6-5
Nes-ting, level of GOSUB, BASIC,

6-37
Nesting, Levels of, 6-28,
Nesting loops, 6-2f
Nesting procedures, 6-28
Nesting subroutines, 6-36
NEW statement, BASIC, 6-2
NEx'r statement, BAEIC, 6-27
NO COMMAS statement., BASIC, 6-20

NOPUNCH pseudo-op, PALC, 5-28
Normalized Floating-Point format,

BASIC, 6-47
NO RUBOUTS command, BASIC, 6-52
Numbers

in BASIC, 6-2
in PALC, 5-9
of statements, BASIC, 6-10

Numbers, version, 3-3

Octal pseudo-op, PALC, 5-24
OLD statement, BASIC, 6-2
OPEN statement, BASIC, 6-15
Operands, PALC, 5-7
Operate microinstructions, PALC,

5-21, 5-22, C-l, C-2
Operating modes, Editor, 3-4
Operators,

BASIC arithmetic, 6-4
PALC, 5-14, 5-15
relational, 6-11

Options, PALC, 5-5
OR, Boolean inclusive, 5-15
Order of execution of BASIC state-

ments, 6-10
Output commands, Editor, 3-10
Output file extensions, PALC, 5-2
Output file, Editor, 3-3
Output specifications

Editor, 3-2
PALC, 5-2
System Copy, 4-2

Page deletion, 3-14
Page format, PALC, 5-29
PAGE n pseudo-op, PALC, 5-26
Page zero addressing, PALC, 5-24
PALC (Program Assembly Language for

Cassette), 1-2
assembler output, 5-32
calling, 5-1
coding practices, 5-31
character set, 5-5
delimiting character, 5-6
error codes and conditions, 5-33,

5-34
error message summary, B-5
format effectors, 5-7
instructions, 5-20
link generation and storage, 5-30
numbers, 5-9
options, 5-5
permanent symbol table, C-l
program preparation, 5-32
pseudo-operators, 5-24
statements. 5-6
symbols, 5-9

Parentheses in BASIC, 6-5
Pass 1, PALC, 5-1, 5-3
Pass 2, PALC, 5-1, 5-3
Pass 3, PALC, 5-4

PAUSE pseudo-op, PALC, 5-26
Permanent symbols, PALC, 5-9
Permanent symbol table, altering

PA.LC, 5-29
PRINT command, BASIC, 6-6
Print positions, BASIC, 6-40
PRINT statement, BASIC, 6-16
PRINT# statement, BASIC, 6-20
Print zones, 6-17
Priority of operations, BASIC

arithmetic, 6-4
Programming errors, BASIC, 6-59
Program Assembly Language for

Cassette, see PALC
Program chaining, BASIC, 6-34
Program preparation, PALC, 5-32
Program storage, BASIC, 6-1
Pseudo operators, PALC, 5-24

summary, C-4
PUT function, BASIC, 6-42

Radix control, PALC, 5-24
Read command, Editor, 3-10
Reader record file structure, E-ll
READ statement, BASIC, 6-12
Real format, BASIC, 6-2
Record, file header, 1-4
Relational operators, BASIC, 6-11
Relative addressing, BASIC, 6-51
REMARK statement, BASIC, 6-10
Renaming a program, BASIC, 6-56
RETURN key, Editor, 3-5
RETURN statement, BASIC, 6-35
Return to command mode, Editor, 3-5
Reserving memory, PALC, 5-27
Resetting location counter, PALC,

5-26
RESTORE statement, BASIC, 6-13
Rewind button, 1-6
REwind command, 2-10
Right angle bracket (», Editor, 3-7
Ring buffers, E-IO
RND(x) function, BASIC, 6-39
RUBOU'1~ command, BASIC, 6-52
Rubout key, 2-3, 3-5
Run command, 2-6
RUN command, BASIC, 6-54
Running a BASIC program, 6-54
Run-time input file creation, BASIC,

6-·25
Run-time output files, BASIC, 6-15

SAVE command, BASIC, 6-56
Saving a program, BASIC, 6-56
SCRATCH command, BASIC, 6-55
Search for character, Editor, 3-16
Search for character string, Editor,

3-13, 3-15, 3-17, 3-19
Semicolon used as BASIC format control

character, 6-17

X-4

Sentinel file, 1-4
Service utility subroutines,

Monitor, E-l
SGN(x) function, BASIC, 6-38
SHIFT/O command, BASIC, 6-52
Single character search, Editor,3-l6
Sign bit, BASIC, 6-46
Skip command, Editor, 3-15
Slash (/) symbol, Editor, 3-6
Software components, 1-2
Spaces, BASIC, 6-5
Special characters ,. PALC, 5-17
Specification options, 2-5
Square brackets ([]), 2-4
Statement numbers, BASIC, 6-10
Statement summary, BASIC, B-8
Statements, PALC, 5-6

direct assignment:, 5-12
Statement terminators, PALC, 5-7
STEP value, BASIC, 6-27
Stopping a run, BASIC, 6-54
STOP statement, BASIC, 6-11
String search termination, Editor,

3-20
Subroutines, Monitor service

utility, E-l
Subroutines, BASIC" 6-35
Subscripted variables, BASIC, 6-29
Subscripts, BASIC, 6-30
Suppress listing, PALC, 5-27
Switch option characters, E-10
Symbolic addresses illegal in

PALC, 5-10
Symbolic Editor, 1·-2, 3-1
SYmbolic instructions, PALC, 5-13
Symbolic operands, PALC, 5-13
Symbols, PALC, 5-9
Symbol table,

BASIC, 6-59
PALC, 5-11

Syntax error, Editor, 3-22
System cassette, 1-4

directory, 2-1
System conventions, 2-1
System Copy (SYSCOP), 1-2

calling, 4-2
error messages, 4-4
error message summary, B-4
example, 4-3
options, 4-2

System demonstrati()n run, 0-1
System programs, 2--1

TAB function, BASIC, 6-40
Tabulation (CTRL/TABJ, Editor, 3-7
Tabulations, PALC, 5--7
Teleprinter/Punch mnE~monic code,

PALC, C-3
Terminal value in BASIC loop, 6-27
Terminating assembly .. PALC, 5-34
Terminating string sE~arch, Editor,

3-20
Terminating the BASIC program, 6-11
Text collection, Edi t:or, 3-15
Text mode, Editor, 3--4
TEXT pseudo-op, PALC .. 5-27
Text transfer commands, Editor, 3-11
Transfer of control statements, BASIC

6-31
Transferring individual files,

System Copy, 4-1
Transition between modes, Editor, 3-4
TTY OUT statement, Bl~SIC, 6-22
TU60 dual cassette unit, 1-5

Uncondi tional transfE~r, BASIC, 6-32
Underlining in exampJ.es, 1-6
User-coded functions j' examples of

BASIC, 6-47
User-defined symbols j' PALC, 5-9
Using cassette, BASIC, 6-1
Utility codes, E-9
UTILITY PROGRAM, 8-1

error messages, 8--2, 8-3
options, 8-1
UTIL, 8-1

Varia.bles, BASIC, 6-3
subscripted, 6-29

Version command, 2-10
Version numbers, Edit.or, 3-3

Write protect tabs, :L-3
Writing the program, BASIC, 6-47

XLIs'r pseudo-op, PALe, 5-27

Zero command, Keyboard Monitor, 2-9
Zeroing output file, 4-2

X-5

Cassette Programming ~;ystem Users Manual
DEC-8E-OCASA-B-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOF~:WARE INFORNATION page) .

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and wel.l-organized?
Please make suggestions for jrnprovement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manueLl? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User wit:h little programming experience

o Student programmer

o Non-pr09ramrner interested in computer concepts and capabilities

Name Date _____________ _

Organization

Street _____________________ . _________________ __

City _______________________________________ State ______ Zip C odE~ _____________________ _

or
Country

If you do not require a written reply, please check here. 0

.--Fold lIere--

.--- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

~lImllDmD
Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate h'aadquarters in
Maynard, publishes newsletters and Software Performance S'lmmaries (SPS)
for the various Di9i tal products. Newslet.ters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collE~ction of existing problems
and solutions for ,a given software system,. and are published periodi­
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital"s software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States.. In Europe, software problem
reporting centers are in the following cities.

Reading, England
Paris, France
The Hague, Holland
Tel Aviv, Israel

Milan, Italy
SoJLna, Sweden
Geneva, Switzerland
Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation
Software Distribution Center
146 Main Street
Maynard, Massachusetts 01754

Diqital Equipment Corporation
Software Distribution Center
1400 Terra Bella
Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex­
change center for user-written programs and technical application in­
formation. A cata.log of existing programs is available. The society
publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Can.ada, Europe, and Australia. For information on the
society and membership application forms, write to:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

DECUS
Di9ital Equipment, S.A.
81 Route de l'Aire
1211 Geneva 26
Switzerland

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	9-01
	9-02
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	F-01
	F-02
	X-01
	X-02
	X-03
	X-04
	X-05
	_01
	_02
	_03

