(&

Y Y/

INTRODUCTION
TIODBOL

dlilgliltlall

DIBOL

Self-Instruction Manual

(AN INTRODUCTION TO DIBOL)

For additional copies of this manual, order DEC-08-OCSTA=-B-D from
the Software Distribution Center, Digital Equipment Corporation,
Maynard, Massachusetts 01754

Copyright @ 1972, 1973 by Digital Equipment Corporation

The material in this manual is
for information purposes and is
subject to change without notice.

The following are registered trademarks of Digital Equipment

Corporation, Maynard, Massachusetts

DEC

FLIP CHIP
DIGITAL
DIBOL
OMNIBUS
DECmagtape

PDP

FOCAL
COMPUTER LAB
LABS/e
DECtape
UNIBUS

First Printing, July 1972
Revised May 1973

CONTENTS

INTRODUCTION
Developments in Small Business Data Processing
Commercial Data Processing Terminology
DIBOL - A Programming Language
Eight Types of Statements
Language Features
Commercial Operu’rion System

SMAADILE
AUV I.I_l\

‘Monitor &
Editor
SYSGEN
PIP

Data File Creation and Maintenance Programs

BUILD
UPDATE
SORT
Utility Programs
CREF
DAFT
MARK
BOOT
PATCH
Manual and System Conventions

BASIC SOURCE LANGUAGE PROGRAMMING
Flowcharting - frames 1-5
A DIBOL Coded Program - frames 6-25
Sample Problem Summary
Basic Operating Steps ~ frames 26-30

DiBOL SYNTAX
Data Section
START, PROC, END - frames 1-5
RECORD - frames 6-12
P OPTION - frame 13

introduction
Introduction
Introduction
Introduction
Introduction
Introduction
!ulluduChGn
Introduction
Introduction
Introduction
Introduction
Introduction
Introduction
Introduction
Introduction
Introduction
Introduction
Introduction
Introduction
Introduction
Introduction
Introduction

— et et ——d

NN N NN

-3
-5
-5
-6
-7
-7
-7
-8
-8
-8
-8
-8
-8
-9
-9
-9
-9
-9
-9
-10

-1
-2
-2
-8

1
NN -

D OPTION - frame 14

INITIALIZATION-SPECIFICATION - frames 15-20

RECORD, X (overlay) - frames 21-27
Data Section Summary
Procedure Section = frames 28-29

INIT - frames 30-35

XMIT - frame 36

FINI - frame 37

Data Manipulation = frames 38-50
ALPHA=ALPHA - frames 40-41
DECIMAL=DECIMAL - frames 42-44
Decimal to/from Alpha - frames 45-46
Decimal to Alpha with Format - frames 47-50

GO TO - frames 51-55

IF - frames 56-58

CALL, RETURN - frame 59

STOP

Inventory Problem Explanation

INCR - frame 71

FORMS - frame 72

TRACE, NO TRACE - frames 73-74

ON ERROR - frames 75-76

ACCEPT - frames 77-78

DISPLAY - frames 79-80

READ, WRITE - frame 81

Inventory Records Problem Explanation

Section Summary

A PROGRAMMING EXERCISE

ADVANCED DIBOL STATEMENTS
Rounding - frames 1-5
Character Conversion - frames 6-10
Source Files - frames 11-13
TRAP - frames 14-15
CHAINING - frames 16-23

2-6
2-6
2-8
2 -11
2-12
2-12
2-14
2-15
2-15
2-16
2-17
2-19
2 - 20
2 -22
2 - 24
2 - 25
2 - 26
2 - 28
2 - 29
2 -29
2 -30
2-31
2 - 32
2 - 33
2-35
2-36
2-37
3-1

4-1

4-2

4-3

4-4

4-6

4-8

APPENDIX A - Invoice Data Entry Program
APPENDIX B - Standard Flowchart Symbols

GLOSSARY - COS 300 Glossary of Standard Technology

FOLDOUT ILLUSTRATIONS

Foldout #1 Sample Program Flowchart
Foldout #2 Figure 1-1, Basic Operating Steps
Foldout #3 Sample Program #2

Foldout #4 Sample Program #3

Glossary - 1

1-7
1-9
2-27
2-35

INTRODUCTION

In this self-instruction text you will learn the fundamentals for using
Dlgital's Business Oriented Language - DIBOL. This compiler
Tanguage is used to describe data-processing problems for the DEC
DATASYSTEM 300 series computers. DIBOL is an integral part of the
Series 300 Commercial Operating System - COS 300.

When you complete this course you should be able to program work-
able solutions to real problems in Billing, Accounts Receivable,
Sales Analysis, Inventory Applications, and others, Given an appli-
cation problem, you should be able to use DIBOL to develop a source
computer program that can be compiled and run on the COS 300
System,

However, there are elements of the COS 300 software system that are
not taught in this manual. You will find these in the COS 300 System
Reference Manual (Order Number DEC-08-OCOSA-E-D).

This course presents sets of instructions, questions and answers in
frames. Each question is foilowed by the correct answer. Fold-out
pages are provided so that you may refer to examples of flowcharting,
coding, problems, etc., as you progress. Additional problems are
supplied to reinforce your knowledge through application. A summary
is provided at the end of each chapter. A Glossary of terms is in-
cluded for quick reference. Although this programmed instruction
will give you a working knowledge of DIBOL, you should try to
compile and run your first programs where computer facilities exist.

An inferpretation of course completeness is based on our definition of
a programmer - a person who prepares, or is responsible for, problem-
solving procedures, The information presented in this text was pre-
pared for these individuals, in a small to medium sized business
environment, who of necessity may have fo wear many “hats".

The programmer's hat cliche has significance for the student in that
it suggests the proper way of approaching the subject information.

INTRODUCTION =~ 1

The programmer must be a specialist in more than one area. In his
preparations he should assume the roles of a job and program analyst,
a computer operator, and most important, the end user of the com-
puter application,

The student should allow himself enough time to complete the course
before attempting applications programming. In the final analysis,
time and money will be saved by proper utilization of the computer.

DEVELOPMENTS IN SMALL BUSINESS DATA PROCESSING

Electronic Data Processing (EDP) technology has advanced to the
point where most businessmen can realistically consider automating
repetitious paper work, At present, thousands of small businesses
are inundated with paperwork, payroll, inventfory conirol, accounts
receivable processing, and numerous other tasks that can be rapidly
and accurately processed by computer.

Until recently, these businesses had no alternative to the service
bureau since the cost of in-house computer configurations were pro-
hibitively expensive. The total system power of a computer which
would have cost a haif-million doliars a decade ago can now be
encompassed into a mini-computer desk configuration (DEC
DATASYSTEM 300) for less than $30,000. B

The technological milestones beginning in the 1960's were the shifts
from vacuum tubes to transistors, then to Integrated Circuits (IC's),
and most recently to Medium-Scale Integr—ahon (MS0). The size of a
computer's Central Processor (CP) was directly related to these
hardware advances.

The dramatic reduction in size and cost-per~circuit for the computer
hardware is only part of the array of benefits. A new technology has
emerged and matured as a direct result of millions of dollars worth of
R & D resources expended by large corporations. This transition has
been from tabulating equipment (unit record punched card tabulators -
dedicated to wired single program operation) to the outstanding
modularity and resultant flexibility of computer software.,

Software is defined as computer control programs which are stored
and/or loaded into the computer's memory banks. The program's
instructions are automatically scanned by the computer's central pro-
cessor fo control job operation.

Not only has software emerged as an integral part of a computer con-
figuration, but its usage has formulated specialized programs and
procedures. These include some of the following:

Implementation Language - programming language by which
business data processing procedures may be precisely described
in a standard form,

System Monitor - a control program fo supervise and verify the
correct operation of all running programs including operator/
system interaction.

Utility Programs - standard service or housekeeping programs
used to: sort and merge data, interchange programs and files
which reside on various peripheral devices, update and build
data files, edit and trace data, etc.

Combining the above, we have an operating system - an organized
collection of techniques and procedures for operating a computer.

For the DEC DATASYSTEM, they are part of a software package called
the Commercial Operating System (COS). These job application
software tools no longer require vast amounts of costly storage, nor
does access to them run into minutes as it did with prior computer
generations. e

Using the hardware and standardized OS programs offered by Digital
Equipment Corporation (DEC), the user can customize an application
system by writing programs to conform to the way his company is con-
ducting its business. He must carefully analyze his company's EDP
requirementfs as a prerequisife to his system design. This methodical
planning will contribute to a more rapid new system startup.

Initially his programs may be satisfactory, but they soon may become
obsolete as procedures change to better utilize the computer. The

in-house programmer should start slowly, developing the most con-
venient and practical programs first. He should also be prepared to
continually modify programs and allow for new programs and system
features, In this way he will be more responsive to the requirements
of management.

The programmer should also make extensive use of the "conversa~
tional mode" type of program. Data should be entered online using
the Cathode Ray Tube (CRT) display terminal (video screen with key-
board). The program should ask the operator for the required data,
and then accept the answer. As much as possible, answer parameters
should be built into the program. As an example, if the question
from the computer is "number ordered?", an answer larger than the
current stock level, or an answer that depletes stock below the
reorder point, should produce a warning message in addition to the
normal accounting within the program. Additionally, the program
could produce an instant-echo for confirmation of back-order
adjustments.

Since the interactive terminal allows the operator to check and make
corrections to the data before it is transferred to the DECtape or
disk, data can be visually validated. Obviously, conversational
mode programs allow less-experienced operators to produce accurate
records. A good system design will allow the existing clerical staff,
under the guidance of the programmer (via displayed messages and
operating procedures), to operate the computer. An accounts re-
ceivable clerk should continue doing receivables, while the person
disbursing checks should continue doing that job.. Employees can use
the computer as a sophisticated tool to make each job easier and
more pleasant,

The imaginative programmer can help job operation by preparing both
baich and interactive programs and procedures. Batch processing is o
sequential job stream procedure that uses an accumulation of related
job units. It allows both data items and programs to be collected
into groups for faster processing. Batch processing can be used to
advantage for those cyclical or repetitious jobs. This technique will
save the operator time while making maximum use of the computer.

INTRODUCTION - 2

\L DATA PROCESSING TERMINOLOGY

In order to describe and build better business systems, you should be
familiar with the following applications terminology:

AUDIT - An operation or check designed to ascertain the validity of
data. The validity of data is verified through the use of
check sums, hash totals, maximums, minimums, redundancies,
cross totals, and various other methods. The AUDIT is used
to insure: that accounting records will not be destroyed,
that the computer system will not incorrectly read or pro-
cess data, or that someone will not manipulate data to
produce wrong results. The report generated from an audit
is called the AUDIT TRAIL, e.g., for a payroll application
an AUDIT TRAIL for the validity of input data would contain
error conditions, such as time records for terminated em~
ployees, employees with no time records, etc.

BACKUP - Pertains to equipment or procedures that are available for
use in the event of systems failure and destroyed data files
on tape or disk. The provisions for adequate BACKUP
facilities and data files are an important factor in the
design of all data processing systems, e.g., copy of a disk
file on magnetic tape.

DATA BASE - Data records that must be stored in order to meet the
information processing and retrieval needs of an organization.
The term implies an integrated file of data used by many
processing applications, in contrast to an individual data
file for each separate apptication.

EAM - Electronic Accounting Machine, pertains to data processing
equipment that is predominantly electromechanical such as:
keypunch, collators, sorters. A computer is classified as
EDP equipment. EAM equipment is also known as unit
record or Tab equipment.

INTRODUCTION -3

FIELD - A subdivision of a record containing one item of information,
e.g., an employee's weekly time card containing his identi-
fication number in one FIELD.

FILE - A collection of related records. A FILE is usually either a
transaction FILE or a master FILE.

FILE LABEL - A LABEL that identifies the FILE. An internal FILE
LABEL is recorded as the first record of a file and is machine
readable. A FILE LABEL is a control feature, e.g., insures
that the operator has the proper master fiie for updating or
prevents the operator from mistakenly using a master file as
a scratch file,

FILE MAINTENANCE - The updating of a file to reflect the effects
of non=-periodic changes, such as adding, changing, or
deleting data, e.g., addition of a new employee to the
employee master file,

FILE PROCESSING - The periodic updating of a master file to reflect
the effects of current data, usually transaction data con~
tained on a transaction fiie, e.g., weekly payroii run that
updates the payroll master file,

FIXED LENGTH

RECORD - A file containing a set of records, each of which contains
the same number of characters. (Contrast with variable
length records).

INDEX FiLE - Pertains to a disk file that is organized somewhat like
the books in a library, i.e., an index tells where the
record is stored. The index contains two facts about each
record in a file. First, the contents of the record's key
field appears in the index. A key field contains data that
uniquely identifies a record and is the basis for the file's
sequence, e.d., customer number, The disk address
represents the location on the disk where the record can be

COMMERCIAL DATA PROCESSING TERMINOLOGY (cont.)

found. An index label contains the same number of eniries
as there are records in the file.

Various terms associated with processing an indexed file are:
index sequential processing, indexed access method, address
routing method. These files may be processed sequentially
or in random fashion,

INTEGRATED DATA
PROCESSING - Data processing by a stream that coordinates a num-

KEY -

ber of previously unconnected processes in order to improve
overall efficiency by reducing or eliminating redundant
data entry or processing operations, e.g., a billing result
file (data base) containing information from incoming cus-
tomer orders is used for: inventory (calculated usage),
accounts receivable (generate statements), and sales
analysis applications. Integrated data processing is also
known as management information systems (MIS).

One or more characters used fo identify a particular record,
especially used for sorting and merging operatings, e.g.,
an inventory part number and employee number. There may
be multiple key fields in a record; e.g., a salesmen's
commission file may be sorted by salesman within branch,
within district, within region.

MASTER FILE - A reference file of semi~permanent information which

is usually updated periodically by a transaction file, e.g.,
an employee MASTER FILE that contains a record for each
employee. Each record would contain an employee number
field, name field, address field, pay rate field, year~to-date
gross pay file, etc. The year~to-date gross pay field would
be updated each pay period.

INTRODUCTION - 4

RECORD -~ A group of related information items treated as a unit.

A record is divided info one or more fields; e.g., an
inventory record for each commodity might contain the
following fields:

PRODUCT NUMBER (A FIELD)
DESCRIPTION

NUMBER ON HAND

NUMBER ON ORDER
MINIMUM BALANCE

UNIT COST

NUMBER USED YEAR-TO-DATE

RANDOM ACCESS

FILE -

A mass storage device capable of accessing any record
directly without processing all prior records. A data file
arranged on a randomly generated record address -- access
to a record is accomplished by calculation of a formula
based on a key in record. No index is required for this
type of file.

SEQUENTIAL

FILE -

Pertains to a file where records are in ascending or
descending sequential order by an identification key, e.g.,
inventory file sequenced by part number., SEQUENTIAL
FILES are for batch processing in which the files are on
cards or DECtape. However, disk files may also be
sequential. '

TRANSACTION

FILE -

Records of data to be processed with master file record in
order to update the master file, e.g., a file containing all
of the daily transactions in an inventory control application,
such as quality of items received, shipped or ordered, which
update the inventory master file reflecting these changes.

A transaction file is also known as a detail file.

COMMERCIAL DATA PROCESSING TERMINOLOGY (cont.)

VARIABLE LENGTH

RECORDS - A file containing a set of records in which the number
of characters of each record may vary in length. Usually @
VARIABLE LENGTH RECORD is preceded by the character
count for that record.

As a small business computer with COS, the DDS300 provides
solutions for users with varied business scopes and backgrounds. The
implementation language for COS 300 is DIBOL. A general overview
follows to provide the student and/or business manager insight into
those system elements used for program creation.

DIBOL - A PROGRAMMING LANGUAGE

DIBOL - Dlgital Business Oriented Language - is a general purpose
higher level commercial programming language used by the program -
mer to implement commercial applications. lts compiler is an integral
part of COS 300, With the COS 300 DIBOL compiler, the system
generates application programs in computer machine language
(MACRO instructions) to run on any DDS 300 computer.

A DIBOL program is divided into two sections, a data definition
section and a procedure section. The data section states (tags) a
data file's record information structure in program operable units, In
the procedure section, the language consists of a select group of
English-like procedural verbs, each with comprehensive arguments.
The verbs: PROC, START, END, ON ERROR, INIT, FINI, INCR,
TRACE, NO TRACE, TRAP, XMIT, READ, WRITE, GO TO, IF,
CALL, RETURN, CHAIN, ACCEPT, DISPLAY, FORMS, and STOP,
plus data manipulation statements, provide the user with easy to use
and powerful statements for the development of his programs.

There are eight types of statements:

Compiler Statements which tell the compiler the nature of
the statements to follow,

Device Control Statements which prepare data files (open
and close) for use by the application program.

Data Specification Statements which describe the fype,
size and location of data eiements.

Data Manipulation Statements which control calculations
and movement of data within memory .

Data Accept and Display Statements which define the
cursor coordinates used to format data entry and display
on the CRT terminal.

INTRODUCTION -5

DIBOL - A PROGRAMMING LANGUAGE (cont.)

Control Statements which govern the sequence of execution
of statements within a program.

Input/Output Statements which control data movement
within memory or between memory and peripheral devices.

Debugging Statements which frace program execution during
test runs.

Language Features

Simple English-like Procedural Statements. Meaningful expressions
to the user and the system's program compiler (not assembly language).

ANSCI| Character Sub-set (specified by the American National

_S_tandards I_nsﬁfufe. ANSCII character code used as a E’Fandcrd _(_Zode
for information _ipferchange).

Multi-1/O-Level Data Access by File, and Record. Direct access,
at the logical (program) level, to data stored on disk or DECtape.

Data Manipulation via: Record, Field and Subfield. Statements to
clear data fields, move data between fields, convert decimal data
to/from alphanumeric data, and format data, etc.

Arithmetic Expression. Performs division, multiplication, addition,
subtraction, and rounding.

Array Handling. Any part of an array (series of items) can be accessed
in a program statement by listing the position of the item. Subscripting
notations (expressions in parentheses) are used to specify items in a

list or table according to DIBOL rules.

File Initialization. Statements assigning specified peripheral Input/
Output channels to logical or physical devices.

INTRODUCTION -6

Branching. A computer operation similar to switching, where a
selection is made between two or more possible courses of action
depending on a related fact condition (IF and GO TO statements).

Many Levels of CALL Nesting. Statements which include routines
to call other routines.

Tracing. Trace statements may be placed at strategic locations
within a program to provide a usage correlation (source line numbers)
between statement execution and the intended source program logic.

Editing. When fransferring data, field editing occurs with left and
right justification, padding and "check protect” features.

Cursor Control. Statements which provide display and data entry in
a particular applications format on the CRT Terminal.

Forms Control. The Forms statement is used to automatically position
business forms to be printed on the DEC DATASYSTEM Line Printer.

COMMERCIAL OPERATING SYSTEM

COMPILER

The COS 300 Compiler enables the DIBOL yser to compile a source
program utilizing up to 28K word locations of memory (56,000
characters) for his application system. Input for the source program
can originate from the console keyboard, from cards, from DECtape
or disk, and from paper tape. Source program inpur is implemented
via the COS 300 Monitor which provides the user both input editing
and generation of job confrol statements. The standard output from
compilation resides on the System's mass storage device in executable
format and may be stored by name in a user's program library.

As a mass storage resident system, DIBOL provides the facilities for
random storage and direct retrieval of programs and data on both
DECtape and cartridge disk. The system also provides the ability to
dynamically divide DECtape and disk storage into fifteen logical
units for data file storage.

Each cartridge disk can contain up to 404 directly accessible segments
of 8,000 bytes each. The COS 300 system handles storage capacities
ranging from 377,344 character DECtapes to 3.2 million character
disk cartridges. This allows a simple but comprehensive means for new
users to utilize state-of-the-art cartridge disk storage for their on-line
data base.,

At compile time, the minimum configuration required to operate is
‘the DEC DATASYSTEM Mode! 320 and resident COS 300 software.
At run time the user's applications programs can utilize a wide range
of input/output facilities, full internal capacity, and through-put of
any mode! in the DDS 300 serfes. This includes Models 320, 330,
and 340,

Several COS 300 system programs are utilized with the compiler in
the process of creating user programs,

Monitor

COS 300 provides program operation master control via a System
Monitor, To facilitate memory economy the Monitor resides in two
segments: one core resident, and the other residing on the system
device. Together these segments provide the following facilities
through a comprehensive set of Monitor commands used for:

Program Loading,
Editing,

File Directories,
Operation Messages.

The Monitor contains all the system 1/O handlers required for efficient
throughput and a high degree of program/device independence. The
system provides a specialized software handler for each peripheral
device on the DEC DATASYSTEM.

The assignment of logical units to physical mass storage devices pro-
vides greater utilization of the storage area. This device independence
is available af run time. Any mass storage device can be specified for
I/O and program execution using the devices specified via SYSGEN.

Editor

Editing consists of a line editor as part of the Monitor. It is an
operator/system interactive editor providing a "scratch-pad file" for
source program entry. Input statements consist of line numbers followed
by the information to be inserted, deleted or changed. The COS 300
editor provides automatic sequencing and resequencing of line numbers
by simple commands. Input for the editor can originate from the
console keyboard, cards, paper tape, DECtape, or disk. Output from
the editor can be a listing of a file on the console display or the line
prinfer or paper tape. In the program development stage the user can
save and quickly recall programs from the system device (DECtape or
cartridge disk). In an operational mode, the user can batch commands
to the Monitor into a file to be executed as a job stream,

INTRODUCTION -7

COMMERCIAL OPERATING SYSTEM (cont.)

SYSGEN (SYStem GENeration)

A conversational utility program that allows the user to configure or
modify the current system using simple English-type statements, It
provides the following optional features:

Configures the 1/O handlers in the system,

Takes new logical unit assignments from the
operator's terminal,

Prints a table of current logical unit assignments.

The user can specify the type of line printer used and where the
system is to reside, on DECtape or disk. The user can also specify
the number of columns used on the line printer, either 80 or 132
columns. SYSGEN provides the facility to transfer the system to
another device for installation startup.

PIP Peripheral Interchange Program

A utility program which provides file transfer from one device fo
another. It will permit the user to move source, binary, system, or
data files from one device to another. It has the following
capabilities:

e Replaces the old file with a new file
o Transfers Input.from cards, -paper-tape; disk, or
DECtape, and Outputs fo paper tape, DECtape,
disk or the line printer
e Copies an entire DECtape or disk onto a similar device
o Eliminates overhead space from the file directory.

Data File Creation and Maintenance Programs

System programs available for structuring transaction files are:
BUILD, .UPDATE, and SORT. For more detailed information con-

cerning this software, refer to the COS 300 System Reference Manual.

BUILD

A file creation program used to create a data file. Ii is a key-word
data entry package. A BUILD "Control Program" allows the user to
specify key words followed by an ordered siring of formatted data.
BUILD has the following features:

Provides hash totaling,

Provides range checking,

Computes check digits,

Provides auto-dup field (automatically duplicates fields),

Permits specification of default fields,

Permits specification of incremental fields,

Checks errors on any one or all given fields within a key

word line,

o Seis special field flags that the user can later check
under program control,

e Has the ability to specify up to seven different output

files from one input file.

BUILD facilitates a way of flagging certain fields within a record
for use as a program control switch.

UPDATE

A master-file maintenance program used to:
Change existing records on the data file,
Insert new records,

Delete old records,
Print a report showing all changes, inserts and deletions.

SORT

COS 300 SORT is a poly-phase sort. |t can sort data file records in
ascending and descending order. SORT requires a minimum of three
DECtape units or an equivalent disk unit. The user can specify up fo
eight fields (with sub-fields) of a fixed length record as a sort key.

INTRODUCTION - 8

COMMERCIAL OPERATING SYSTEM (cont.)
The SORT has a merge file capability. For a multi-reel sort, each

file must be sorted then merged. The same SORT control program may
be used for both sorting and merging.

Utility Programs

Several utility programs are provided, among which are the following:

CREF, DAFT, MARK, BOOT, and PATCH.
CREF

CREF is a cross reference utility program to aid program development.
It provides an alphabetical listing of all symbols used in a DIBOL
program, along with the line number where each symbol is defined
and used.

DAFT
The DAFT (Dump And Fix Technique) program provides the capability

to search for, examine and change records as well as to list records
and parts of records on the line printer or terminal,

MARK

There are four format programs, RKEMRK, RK8MRK, TDMARK, and
DTMARK, which are used to mark DECtape and disk for use with the
COS 300,

BOOT
BOOT is used to bootstrap the system from one device to another.

For exampie, BOOT is run to transfer control from DECtape fo disk
so that the latter may become the system device.

PATCH is used to fix (or patch) system programs or the Monitor on a
COS system tape. Data to make the changes is provided by DEC as
patches in the form of a dialog.

INTRODUCTION -9

Cards

DIBOL

SOURCE LANGUAGE INPUT

DECtape

artridge
e m
_J

SYSTEM
Monitor

' \
System Device Q @
A& ‘Tr J

v

Compilation
Diagnostics

DIBOL
COMPiler

‘e A
System Device Q 8
AN _J
~"

Object Program Files

Printed
Listing

System
Diagnostics
ispla
EXECUTION Display
Applications
I/0

INTRODUCTION - 10

MANUAL AND SYSTEM CONVENTIONS

Several documentation symbols and terms used in this text are
described below-

Sxmbols

Lower-case characters - Represent information that must be supplied
by the user, such as values, names and other parameters.

Upper-case characters = Words or characters that must be used
exactly as shown,

Ellipsis... - Indicates the optional repeating of the preceding data.
Underscored characters - Indicate output from the system.

12 (Space) - Indicates a space.

{} (Braces) - Braces indicate a choice of one of the items
enclosed.
[1 (Brackets) - Brackets indicate an optional feature.

(CR Key) - The down-arrow indicates a Carriage Return Ke
Y Y
operation on the terminal keyboard, Ar this
point, control is advanced to the next line.

Terms

file-name, program-name, label and keyword - are used to identify
names assigned to files, programs, statements, and input lines.
These names may be of any length, but only the first 6 char-
acters are recognized.

cursor - An underscore symbol on the operator's display screen which
indicates the character position for the next keyboard stroke.

SECTION 1

Basic Source Language Programming

1-1

This chapter is intended to give the student a frame of reference in 2. QUESTION: What is the function of this symbol?
the form of an overview of DIBOL programming and operation.
In the following frames you will learn, through programmed instruc- @
tion, how to read a simple DIBOL program. The questions will be *kk
based on program examples which provide frame answers. ANSWER: It denotes the beginning/end of the program
logic flow.
Frame one presents a program statement of what the first example
program does. (Turn to Foldout #1). Read the program definition
and review the foldout before proceeding to the QUESTION and 3. QUESTION: What is the function of this symbol?
ANSWER.
PROGRAM: Information is stored in records located on a DECtape.
Each record is to contain 64 characters. A read *kk
operation reads one record at a time (starting with the ANSWER: It denotes the testing of a condition and,
first record in the file). List on the line printer all depending upon the outcome of the test, shows
information on the DECtape file, printing one record the action to be taken.
on each line. After printing the last record on the
tape file, stop the program,
4, QUESTICN: What is the function of this symbol ?
Systems and program flow charting is a technique used in organizing
and documenting information about existing application systems and Z:j
in planning new ones. Diagrams called flowcharts show the flow of
information and the sequence of operation. They are important ol
items in evaluating procedural logic and useful tools for future ANSWER: It denotes an Input (reading) or an Output

program expansion and revision.

Does the flowchart on-Foldout#1 iHustrate the
logic outlined in the verbal statement of our
program?

1. -QUESTION:-

(writing) operation to be performed by the
computer. (In the program there is an internal

““device assignment so the computer would issue

a read/write command to the proper input/
output device.)

* k%

ANSWER: Yes, the flowchart is accurate.

The shapes of the boxes in the flowchart denote
different functions such as comparison, reading/
writing, beginning/end, and internal data arrange-

ment. Using the flowchart, answer the questions:

5:

QUESTION:

ANSWER:

What is the function denoted by this symbol ?

FEE

[t denotes explicit commands such as device
initialization, move data, etc.

Below the flowchart on Foldout #1 is the DIBOL-coded program which
accomplishes the functions diagrammed. Note that it requires oniy
ten statements to accomplish the outlined task.

The following dialogue is designed to help the reader understand the
function of each statementi in the DIBOL program.,

6.

QUESTION:

ANSWER:

From the fiowchart, is each character of in-
formation passed directly from the DECtape to
the prinfer?

k%
No. A complete record composed of 64 char-

acters is read into the computer memory before
any data is written (output) on the line printer.

7'

QUESTION:

ANSWER:

Since data records are not restricted in length to
64 characters, how does the computer know how
much memory fo reserve for the storage of the
data record?

* k%

The programmer must teil the computer how much
memory will be required to store input data. A
DIBOL RECORD (or BLOCK) statement reserves
areas of core to be used during processing and as
temporary storage (input/output buffers).

8. QUESTION:

ANSWER:

In a program the area of memory reserved for
record storage precedes the processing instruc-
tions. From the DIBOL coding on Foldout #1,
which statement allocates 64 characters of
storage ?

* k%

Statement 3; (FIELD1, Aé4).

9. QUESTION:

ANSWER:

Statement number 3 says the biock of storage
labelled FIELD1 will be reserved for 64 alpha-
numeric (A) characters. What is FIELD1 ?

* %k Kk

It is a field label. It could just as well be
called XX, YY, or any six character field be-
ginning with a lefter, it serves as a symbolic
name which the programmer can reference from
the procedure section of the program (note: it
is referenced in the sample program via the
record's label). Cne or more field statements
is required for each RECORD statement.

10. QUESTION:

The RECORD statement (¥2) gives a label
"NAME" to an area of computer memory avail=-
able for record input. If several different input
devices are being used, several different
RECORD statements (with their respective field-
definition statements following) could appear.
{n order to designate two 16 alphanumeric char-
acter fields and one 32 alphanumeric character
field instead of the present 64-character field,
write the appropriate RECORD and field-
definition statements.

* kK

ANSWER:

RECORD NAME2
FIELDI, Alé
FIELD2, Al6
FIELD3, A32

11.

QUESTION:

ANSWER:

A compiler conirol statement is a non-executable
DIBOL statement. Such a statement gives the
compiling program information necessary to
properly interpret notations made by the pro-
grammer. Compiler statements tell the compiler
program when to begin and end encoding DIBOL
source statements, and when to begin converting
DIBOL statements into actual machine procedures.
Look at the sample DIBOL program and determine
which are the compiler statements.

* k%

Statements 1, 4, and 10, Statements 1 and 10
tell the program the bounds of the DIBOL coding.
Statement 4 tells the compiler program to in-
terpret the following lines of coding as procedure
to be executed by the computer.

12,

QUESTION:

ANSWER:

The data section of a DIBOL program describes
the data elements used in the program and

-allocates memory . -Which statements.-in

Foldout #1 comprise the data section?

*kk

Statements 2 and 3 comprise the data section.

13. QUESTION:

Which statements are actual processing in-
structions?

* k%

ANSWER:

Statements 5 through 9 are processing state-
ments.,

14. QUESTION: What is the function of the word LOOP in

statement 87

Kk

ANSWER: LOOP is a label denoting a point in the pro-~
cessing cycle to which the program branches.
In this case, the program branches to state-

ment 6.

15. QUESTION: Statement 5 is the first processing instruction.
From the flowchart, what is accomplished by

this statement?

*kk

ANSWER: It tells the computer which channel number
will be used (whenever the program refers o
this file, its channel number will be 2);
whether the file will be read (Input) or written
(Output), the-name of -the file .(FILE1); and
where the file could be found (logical unit 1),
This process is called file-initialization.

Depending on the logical unit assignments made through program
SYSGEN, FILE! could be on DECtape or disk.

16.

QUESTION:

ANSWER:

From the flowchart (and following the INIT
statement in the program), what does the XMIT
statement (¥6) do?

*k%

lf causes a read operation from channel 2. The
XMIT refers to data transmission. It can either
read (IN) or write (OUT) depending upon the
file-initialization. If a file is initialized as an
input (IN), the XMIT statement would cause a
read operation from the file. If a file is
initialized as an output (OUT), the XMIT
stafement wouid cause a write operaiion onto
the file. The data is either read from, or
written into, the RECORD specified in the
XMIT statement (in this example, RECORD
NAME).

QUESTION:

ANSWER:

For XMIT {2, NAME) to cause a record to be

written, what would the initialization state-

ment look like?

Ek%

INIT (2, Output, file-name, unit)

18.

QUESTION:

ANSWER:

For XMIT (2, NAME, ENDFIL) to cause a
record to be read, what would the initialization
statement look like?

* k%

INIT (2, Input, file-name, unit). (Asin
statement 5 in our example.)

1-5

19.

QUESTION:

ANSWER:

Statement 6 says: Read a record from channel
number 2, storing the data from that record in
the area labeled NAME. When no more
records are available, i.e., the end-of-file
(EOF) has been reached, then jump to the
instruction labeled ENDFIL. Noting that
only READ instructions have pointers to which
the program will branch when an EOF is
reached, what does statement 7 do?

*kk

Since there is no end-of-file pointer (just a
b L . nEAADD oL 1Y al e
cnunnel Nnumoer ana me RLLOURY 1aDel) mis
must be a write command (writing data from
storage RECORD NAME to channel number 6).

20,

QUESTION:

ANSWER:

Note that if is necessary to initialize only a
file-oriented device such as DECtape or disk.
Devices such as terminal, line printers, cards,
and paper tape readers do not need initializa-
tion. ls device specified by channel number 6
a file-oriented device?

*xh*k

No. It is a line printer and therefore does not
need initialization.

If not specified, the following channel number associations are

assumed by default:

0 N OO

paper tape reader

line printer

keyboard

terminal scope or printer

21. QUESTION:

ANSWER:

What does statement 8 do?

* %%k

It is an unconditional command for the computer
to branch to the instruction labeled LOOP.

22. QUESTION:

ANSWER:

What is ENDFIL?

* k%

It is the label for the end-of-file routine
referenced in statement 6. This label indicates
the location for program transfer at the end of
the input file. In this example, program con-
trol would transfer to statement 9.

23. QUESTION:

AN SWER:

What seems to be the function of statement 9?

*k%

It is a FINIsh statement with respect to the file
on channel 2, Actually, in an output file, an
end-of-file mark would be put on the tape, the
tape would be rewound, and the channel number
freed for other use. In the case of our input
file, the channel number is freed but the file

is not rewound. Only file-oriented devices
require a FINI statement,

24. QUESTION:

ANSWER:

Why was channel é not issued a FINI command?

*kk

It is not a file-oriented device. The only file-
oriented devices on a DIBOL configuration are
DECtape and disk.

25,

QUESTION:

Below is the same flowchart diagram as listed
on the foldout. Mark in the appropriate
statement number corresponding to the flow-
chart function.

PROC

ANSWER:

*
*
*

]
— 00N 0O W

T w
TYOTE

e EQUIPMENT
dlilglilt]a]| B COS 300 DIBOL CODING FORM
MAYNARD. MASSACHUSETTS
PROGRAM TITLE REQUESTED BY PAGE OF
PROGRAMMER DATE PROJECT ID

112t3'415'6 788

21
1 1617118 119 20‘

L

2728129

30|31i32f33{34]35;36/37 (3839 |40{ 4142

DEC 7-(302) - 1134-N172

FOLDOUT #1
SAMPLE PROBLEM
FLOWCHART

INITIALIZE
DECTAPE
AS INPUT

READ A
TAPE
RECORD

CLOSE FILE

PRINT IT ON
THE PRINTER

DIBOL PROGRAM FOR PROBLEM

START

RECORD NAME
FIELD1, Ab4

PROC

ENDFIL,
END

Statement Numbers

INIT (2,IN, 'FILE", 1)
LOOP, XMIT (2, NAME, ENDFIL)
XMIT (6, NAME)

GO TO LOOP
FINI (2)

;
’

~

~s Ne we

~

1
2
3
4
5
<]
7
8
9
1

0

COMMENTS

SUMMARY

Sample Problem

To review the initial problem, i.e., printing a 64 character record
from a tape file onto a line printer until the end-of-file, examine
the following lines of the DIBOL program:

1
2

10

START

RECORD NAME

FIELD1, Aéb4

PROC

INIT (2,IN,
'FILET', 1)

LOOP, XMIT
(2, NAME, ENDFIL)

XMIT (6, NAME)

GO TO LOOP

ENDFIL,FINI (2)
END

;Compiler statement, non-executable.

;Indicates the beginning of the con-
tiguous area for the data elements
that comprise RECORD NAME .

;Data statement FIELD1 is an alpha-
numeric field 64 characters long.

;Compiler statement - begins pro=~
cedure section.

;Initialize channel 2 as an input file.
The lohel of the file is FILE] and it
can oe found on logical unit 1.

;Read a record from channel 2 into the
area assigned fo RECORD NAME.
When end-of-file is reached, it

- causes-a-program transfer to-ENDFtL -

;Write RECORD NAME onto channel
6 (line printer).

;Go to statement that reads another
record.

;end-of-file.

;Compiler statement--indicates the
end of program.

There are several fundamental operating steps required fo convert
your documented program logic into machine usable binary code.
Using a properly activated (powered-up) DEC DATASYSTEM Computer,
you must first load the central processor's memory with the COS 300
Monitor program. This system initialization is activated by the
Hardware Bootstrap Switch, but only after you have correctly in-
stalled the System DECtape or Disk Cartridge on the drive addressed
as zero. Refer fo steps 1 and 2 in Figure 1-1. This figure presents
the basic operating steps as: major operating categories, an opera-
tional flow diagram, and specific operating steps (1-10). The major
operating categories are as follows:

System initialization,

Keyboard input,

Source program editing,

Source program compilation,

Source program synfax evaluation and correction,
Program logic testing and correction,

Object program storage,

Source program storage.

Study Figure 1-1 and then answer the following questions.

The Monitor routine must be loaded via a bootstrap operation. This is
an internal computer hardware/software technique designed to bring
itself into a desired state of readiness by means of its own action,
e.g., a hardware initiated routine whose first few instructions are
sufficient to bring the rest of itself into the computer from either the
DECtape or disk storage device.

26. QUESTION: From Figure 1-1, what operator step or steps are

necessary to accomplish this initialization?
* k%

ANSWER: Steps 1 and 2 load the System Monitor.

NOTE

In addition the operator must enter the current date before pro-
ceeding. This date is used during program execution to date
reporis, files, and new programs.,

Review step 5 in Figure 1-1, The Monitor provides editing commands
to input and manipulate Source Program statements in a temporary
storage area (edit buffer) within memory. They include:

Number commands - inserts the text line beginning with
the number into the edit buffer (line number text).

Line Number (LN) - automatically outputs line numbers
so new programs can be entered without typing each line
number .,

Erase (ER) - erases text from the edit buffer.

Resequence (RE) - renumbers the program lines to adjust
for additions and deletions.

All text input to the Monitor must be assigned a series of line numbers
All inserts, changes, and deletions are accomplished using these
numbers.

27. QUESTION: Using Figure 1-1, which of the above commands

is used as a prerequisite to program text entry?

* kK

ANSWER: The ERASE command, when used without line
numbers, clears the entire edit buffer. This
prevents unused buffer lines, containing lines
from a previous program, from appearing as

part of the current program.,

System Initialization

Keyed data input

Source Program

DIBOL language rules

Compile Source Program
into Object Program
and print diagnostics

Source Program
Language
evaluation

Program logic test

Store the Object
Program on the
System device

Store the Source
Program on the
System device

FOLDOUT #2

Basic Operating Steps

Hardware

Source [corrections

System Initialization

1.

Mount the proper System DECtape or
Disk Cartridge.

Press the bootstrap switch.

The Computer responds with DATE?

The operator enters the month/day/year
in the following statement.

.DATE wamm/dd/yy) After the system
responds on a new line with an initial
period (.) enter ERASE) to clear the
Edit Buffer,

After the system responds on a new
line with an initial period (.), enter
a DIBOL program putting one statement
on a line. Precede each statement
with a line number and a space. To
correct a statement, type its line

number, a space, and the new statement.

To compile the completed program in

Check the source listing generated by
the compiler for error messages. A
caret (") points tc the error. Use
the Editor functions to correct all
language errors and then recompile.

Input Editor Source Input
AV 5.
MONITOR P
5
Compile Source Program
6.
COMP the editor scratch area enter:
(5 -RUN COMP)
7.
ompilatiol
uccessful?
8.

Program
Operate
orrectly?

SAVE
Completed
Object Program

d/ 9

WRITE

ISource Program

as Backup
10

Figure 1-1

To run the compiler program if no
errors are detected enter:
.RUN)

Program File Creation

9.

10.

To save the object program under a
unique program name enter:

.SAVE proénm‘)

To save the source program from the
editor scratch area for future
modification enter:

.WRITE prognw)

To compile the completed program use the Monitor command state-

ment RU._;COMP) .

The compiler takes the DIBOL language program from the edit buffer
and converts it fo an object program which can be executed by the
computer. In the process of creating the executable program the
compiler can generate a printed listing of the source program and a
storage map of the records and fields which are used by the program.

The compiler checks the source program for DIBOL syntax errors. The
source program must be free of these errors before object program code
can be generated.

Most compiler error messages are printed on the source listing after
the line in which the error occurs. A caret {~) in the source line
points to the approximate location of the error. A complete list of
errors can be found in the COS 300 System Reference Manual.
Several commonly found messages follow:

UNDEFINED NAME

NAME PREVIOUSLY DEFINED
BAD ALPHA VALUE

BAD DECIMAL VALUE
COMMA MISSING

28. QUESTION: From Figure 1-1, when an error message occurs
: .- at step-7,-what steps-must-be-taken tocorrect -
it?

* k%

ANSWER: Steps 5, 6 and 7 in Figure 1-1 must be repeated
to correct the error. You should correct all

known errors before step 6.

The COMPiler will signal a clean listing with the message "NO
ERRORS DETECTED" on the print-out. This indicates that your usage

of the DIBOL language syntax is correct. It does not guarantee
that the logic of your program will produce the desired results. The
only way to fest your program logic properly is to run the compiled
program with real or simulated data.

To run the compiled program, enter the Monitor command RUN) .
When a file-name is not given after RUN, the binary file (compiled
source program) in the Edit Buffer is used as input to be executed.

29. QUESTION: From Figure 1-1, when the program fails to
perform properly with test parameters what

steps must be taken to modify it?

* k%

ANSWER: First make the necessary adjustment to the
program documentation then steps 5, 6, 7 and

8 must be repeated to change the program.

The Monitor allows both the binary file (B) and source file (S) to be
assigned the same name. To protect both versions of the completed
program, you just assign it a unique program name and transfer the
edit buffer to a storage device before a new program is entered. This
is accomplished by two Monitor commands, SAVE and WRITE.

30. QUESTION:"" From Figure T-1 which of the above mentioned
Monitor commands is used to save the compiled
binary program?

k%%

ANSWER: The SAVE command stores the finished version
of the object program on the System storage

device under a unique program name.

SECTION 2

DIBOL Syntax

The student should now have a general knowledge of the elements
that make up a DIBOL-coded program, thus making the information
in this section more meaningful .

2-1

START
PROC
DATA SECTION END

There are two sections in a DIBOL program. First is the data section
which describes all data and causes allocation of memory storage .,
Second, there is the processing section which confains the executable
instructions.

1. QUESTION: What is the stafement that separates the data
section from the processing section?

k%

ANSWER: The PROC statement.

2. QUESTION: Is PROC an executable statement? If not,
what is it?
*kk
ANSWER: PROC is not an executable statement. From

the previous section we recognize it as a
compiler statement,

3. QUESTION: What is a compiler statement?

*kk

ANSWER: A compiler statement is a message to the
compiler program indicating the nature of the
DIBOL-language statements. A compiler
instruction is not executable by the DIBOL
program .

There are three kinds of statements in a DIBOL program:

1. Compiler statements.
2. Data statements,
3. Procedure statements,

DIBOL programs normally consist of a START statement, followed by
the data section (composed of data statements), followed by a
required PROC statement (a compiler statement), followed by the
procedure section (composed of procedure statements), followed by
an END statement, START and END are optional statements.

4. QUESTION: What is the only required compiler instruction
in a DIBOL program?

*k*k

ANSWER: PROC

5. QUESTION: What are the three compiler statements and
two sections that make up a DIBOL source-
program (in the order in which they appear)?

* k%
ANSWER: START (compiler instruction)
data section.
PROC (compiler instruction)
processing section
END (compiler instruction)

RECORD

6. QUESTION: Where is the data section in a DIBOL program?

*%k %k

ANSWER: The data section is between the START and
PROC statements.,

7. QUESTION: From
[

The RECORD statement resides in the data
section.

ANSWER:

The RECORD statement designates the beginning of a group of data
statements. |t may or may not give that group a name. It conirols
where in memory the block of data will be stored. A RECORD
statement must be foilowed by one or more data statements. (A data
statement defines all data elements with respect to type and size.)
The word BLOCK may be used interchangeably with RECORD. The
general format for a RECORD statement is:

RECORD
required

record-name, X
optional optional

8. QUESTION: In the following example, is the RECORD

statement used correctly?

START
RECORD A
RECORD B

B1, Aé
PROC

Fk%

RECORD A is an invalid statement because a
RECORD statement must be followed by one or
more data statements, RECORD B is used
correctly.

ANSWER:

A block of data requires a name only when referenced by an XMIT
(data transfer) statement. A record may be read and stored in this

2-3

area, or the contents of this area may be written (output). There is

e

name is required).

9. QUESTION: What can be deduced about the second
RECORD statement following?

START
RECORD A
1, Aé

A2, D1

ANSWER: Since the second RECORD statement does not
have a name, it is not intended to be used as
an input/output buffer. It is used only for

temporary storage of program data,

The data statement is used to define all data elements with respect
to type and size. The DIBOL compiler assigns storage for the data
on the basis of these statements. Any data statement that follows a
record name is assigned to the contiguous memory locations in the
order that the element occurs. If a record name is missing, the
succeeding data statements are assigned o contiguous locations but
not associated with any record name for input/output. If such data
statements are referenced, they are done so individually.

The general format of the data statement is:

initialization-specif.
optional

data name, data specification,
optional required

The data name is optional, that is, a comma may be used without a
data name if the program does not reference that individual data
element but only references the entire RECORD. This is convenient
when formatting an output line for the printer, so that intercolumn
spaces do not require a data name but merely a comma followed by
the type and size, e.g., (,A5). Normally, the data name is used,
followed by the data specification (type and size), with an optional
initialization field.

The initialization-specification would normally be used in the
temporary storage record but could also be used in an output record.
If a specific data element is to be referenced, it must have a data
name.

Following are examples of valid data statements:

A, AI0

A, A7,'DIGITAL'
A, D6, 123456
FISH, A4, 'FISH'

, A5
COST, 5Dé
NOTE

The Data element COST consists of 5D6, which
means there is an array of five fields, each six
digits long. This could have been written as:

COST1, D6
COST2, D6
COST3, D6
COST4, D6
COSTS, D6

(The referencing of COST, 5D6, is done with
subscripts which will be defined in the procedure
section.)

10. QUESTION: In the following statement, what are the
fields?

TOT, D6, 000012

* k%

ANSWER: TOT is the name by means of which the data
can be referred; D6 is the data specification
(in this case, six decimal digits) and 000012
is the initialization specification (setting the

six decimal digits to an initial value of 12).

The data specification field (which follows the data name) consists
of a data type (Alpha or Decimal), and the data size in characters.
If the data size is omitted, 1 is assumed. If the initialization
specification is present, the data specification is followed by a
comma, then an alphanumeric or decimal constant, The alpha-
numeric may contain any legal character enclosed in apostrophes.
The decimal constant is a string of digits, optionally preceded by
a plus or a minus sign. The plus sign is implied and the minus sign
does not require a character for storage; i.e., NUM,D5,-12345,
Data types cannot be mixed. For example, an alphanumeric
constant may not be assigned to a decimal variable. The data
element is assigned to the value of the initialization specification
at the beginning of program execution. If the initialization
specification is omitted, an alpha field is set to spaces and a
decimal field to zeroes.

11. QUESTION: Describe the data specified for the following
five items:

a) A, A10

b) TOT, D6

c¢) NUMS, 10D3

d) HDRS, 10A12

e) TABLE, 3D2, 13,15, 18

k% k

ANSWER:

a) A is an alphanumeric element with ten
characters having a value of spaces.

b) TOT is a decimal element with six digits
having a value of zero.

c) NUMS is an array of ten decimal numbers,
each with three digits having a value of
zero,

d) HDRS is an array of ten alphanumeric
elements, each with 12 characters having
a value of spaces.,

e) TABLE is an array of 3 decimal numbers,
each with two digits. The first element
has a vaive of 13, the second a value of

15, and the third a value of 18.

1
I

2.

QUESTION:

ANSWER:

Suppose you want to reserve, in computer
memory, a place to store a record with four
fields to be described as follows: FLDI1 has
three alpha characters, FLD2 has six decimal
digits, FLD3 has four decimal digits set to the
value 125, and FLD4 has 10 alpha characters
set equal fo the name DIGITAL, Write the
appropriate RECORD and data specifications
for this input buffer.

* k%

RECORD IN {any name will do)

FLD1, A3

FLD2, D6

FLD3, D4,0125

FLD4,A10, 'DIGITAL vy

2-5

There are three ways data items can be initialized in the Data
Section.

1) A Data statement containing a P,
2) A Data statement containing a D.

3) A Data statement containing an initialization specification

value (previously discussed).

Cne wWay of |Ill||u!|1.|||3 a dota item is b, ,.:v'”‘“"g aP ""‘"."!edlc?"l"
after the data specification field of a data statement. Upon Ioadmg
the program, the computer will ask the operator (via the terminal)
to enter the value he wants to give that data ifem. A common use
of this feature is to obtain a report date which differs from today's
date in Monitor. For example, the data statement might be
described as:

DATE, A8,P

Upon loading the program, the following message would type out on
the console:

ENTER DATE

At this point the program would wait for the operator fo type in
eight characters and type carriage return, The operator might type
in 07/07/72 and type carriage return. CAUTION: If less than
eight characters were entered, the results would be stored left-
justified in DATE, If DATE were a decimal field, the results would
also be stored left-justified. Unentered characters are either zero
or spaces, depending upon the field type. Too many characters
would run over into the following fields. For decimal fields, there
is no verification that the characters entered were decimal
characters.,

13. QUESTION: Suppose the programmer wanted a three-digit
customer-number to be supplied by the operator
at the beginning of the run. Write a data
statement to initialize a field named CUST.

* k%

ANSWER: CuUsT,D3,P

Ordinarily, input from the keyboard must be described in alpha
format. This restriction does not hold true for initialization data (P).

D OPTION

A second way of initializing a data item is by putting a D immediately
after the data specification field of a data statement, When the pro-
gram is run, today's date (as specified to the Monitor at start up) is
automatically stored in any field having a D in its data field specifi-
cation. For example, the statement might be described as:

TODAY, Dé, D

The date in Monitor would automatically be stored in the form

MODAYR,

14, QUESTION: a) Write a data statement to initialize a field
“ "~ named RNDATE to the date stored in
Monitor.
b) What would RNDATE contain af run time if

an operafor previously entered July 4, 1972
as the Monitor date?

*xkk
ANSWER: a) RNDATE, D6, D
b) 070472

INITIALIZATION=-SPECIFICATION

A third way to set the value of a data item is by using the initializa-
tion option, i.e., specifying an alphanumeric or decimal constant.
The alphanumeric may contain any legal characters enclosed in
apostrophes. The decimal constant is a siring of digits, optionally
preceded or followed by a plus or a minus sign, but without apos-
trophes. Data types cannot be mixed in that an alphanumeric
constant (i.e., DEC, D3). But '004' can be assigned to an A3
alphanumeric field.

15. QUESTION: Are any of the following statements incorrect?

a) A,A8,'ABCDEF98'
b) TOT,D3,'123"

c) NUM,A3,123

d) B,D6é,222334

e) C,D3,23A

f) D,D3,45-
kkk
ANSWER: Statement b is incorrect because an alphanu-

meric notation (an apostrophe) was used to
enclose a decimal item,

(c) is incorrect because a decimal notation was
used- to-deseribe-an alphanumeric constant.

(e) is incorrect because 23A is not a valid
decimal number.

Statements a, d, and f are correct.

When an initialized value is specified in a data statement, its length
must correspond to the length of its respective data statement, for
example, NUM, D4,0070. It would be illegal to initialize NUM to

70 since NUM was defined as a D4 field. The initialization specifi-
cation does not insert leading or irailing bianks {zerosj. DiBOL wiil
not permit the size of the initialized value to differ from the data
field size.

16. QUESTION: Which data statements are incorrect?
a) Al,A8,'ABCDEF641"
b) COST,D4,7779
c) QTY,D5,10000
d) NUM,D7,59796
e) Bi,A4,'1987

*kk

ANSWER:

Statement a is incorrect because the initialized
value is longer than the data field.

Statement c is incorrect because apostrophes
are used to enclose a decimal item (apostrophes
are an alphanumeric notation).

Statement d is incorrect because the initialized
value is too short; NUM is defined as a 7-digit
decimal field.

Statements b and e are correct usage of the
initialization specification.

17, QUESTICN: We want NUMS to be an array of two decimal
numbers, of three characters each. The two
numbers are to have constant values of 333 and
minus 61 respectively. What is the appropriate
data specification?

* Kk

ANSWER: NUMS, 2D3, 333, 061

i information is generated by this data
H e |
] H

B, D6,000013

k%%

ANSWER: 000013. The initialized value must be the
same length as the data size. In this case,

B is defined as a six-decimal digit.

19. QUESTION: What information is generated by this data

specification?

TOT,D1,C8

k%%

ANSWER: None, the value is too long (2 characters) and
C is not a decimal digit. Non-digit characters,
whether or not enclosed in apostrophes, cannot

be used for a decimally defined item,

NOTE

In prior versions of DIBOL, a blank data specification field left the
original contents of memory in a field. To clear the fields of a
record, RECORD C had to be specified. In order to be compatible
with existing programs DIBOL treats RECORD or RECORD C

identically. For example:

RECORD A, C
NUM, D6
TOT, D7
COST, D4, 4999
B1,A7

The initialized value of COST would not be cleared,
but NUM, TOT, and Bl memory locations would be
cleared. The first statement could have been

RECORD A.
20. QUESTION: Consider the following operation:
DATE,A8,P
When the program is loaded, the computer
types
ENTER DATE
and the operator types 07/07/1970. What
happens?
*k*k
ANSWER: Since too many characters were typed, it is an

error. 07/07/19 is stored in DATE and 70 is
stored in the following field.

RECORD, X

The concept of the overlay is a valuable tool in the preservation of
computer memory. By means of the overlay, two RECORD statements
can describe exactly the same area of computer memory. Whenever
there is an X there must be a previously defined RECORD statement
without an X, There can be one or more overlays defining the same
Note the use of X below.

ared,

RECORD A
A1,A5,'DIBOL'
A2, A8, 'SOFTWARE'
A3,A7
RECORD B, X
BI,A5
B2, A8
B3, A7'SYSTEM'

2-8

In this example, the fields in RECORD B occupy the same area of
computer memory as the fields in RECORD A,

21. QUESTION: What is the value of data labeled B1?

*k%

ANSWER: B1="DIBOL'

22. QUESTION: What is the value of B2?

k

ANSWER: B2='SOFTWARE'

As a general rule, data specifications in overlays should be consist-
ent. Problems may arise if an alphanumeric item is redefined as
decimal in an overlay specification. Normally, initialized values
are not used in overlays. The overlay (X) block must be equal to or
smaller than the last non-overlayed record.

23. QUESTION: s the following correct?

RECORD A
Al,Di0
- AZ2,A10
RECORD B,X
B1,D5
RECORD C,X
Ci,D3
C2,D7
C3,A5
C4,A5

ANSWER:

Yes. The redefined records, RECORD B and C,
are the same size or smailer than the record

they redefine, RECORD A,

24, QUESTION:

ANSWER:

Is the following a legal use of the overlay?

RECORD A
Al,A3,'FUN!
A2,A5,'LOVER'

RECORD B,X
B1,D8

* k%

Yes. However, since Bl is decimal, and the
data it redefines is alphanumeric, a run time
error would occur if Bl were not cleared before
being used in u data manipulaiion sfafement.

25, QUESTION:

ANSWER:

Is it legal to name a RECORD X?

*kk

Yes. li is also legal to have RECORD X, X,

A symbol (be it a data name, record name, or a statement label
defined in the PROC section) consists of alphanumeric characters, the
first of which must be a letfer. Only the first six characters are
significant. Anything in excess of six characters is ignored. Data
names and statement labels must be followed by a comma. A record
that is to be used for input or output has a maximum size of 510
characters. Other records have a maximum size of 4094, A decimal
field has a maximum iength of 15 digits and cannot have a name.,
Alphanumeric fields have no size restriction other than record size.

ANSWER: a)

)

2-9

In the following exampie, determine any errors
in data or record names, In their size or their
value assignment:

a) RECORD INPUTBUFFER

b) NAME,A20

c) POPULATION, D17

d) A12Y4X,A21,'ELKLMOUNTAIN . WYOMIN(
e) 3ABC,A3,'ABC'

f) RECORD B
g) TABLE, 100D

h) TABLET, 10D2

) RECORD
i) TEMP,D

k) WORKTAB, 200Dé
) TABLET0, 100D10

KhR

The record name INPUTBUFFER is more
than six characters and is thus recognized
as INPUTB. This, however, is not an
error.

No errors.

The field name POPULATION is more than
six characters and will be recognized as
POPULA. This is not an error. However,
it is defined as a Decimal field containing
17 digits -- decimal fields used in arith-
metic operations cannot exceed 15 digits
and will generate run-time errors.

No errors.

The field name 3ABC is invalid. It must
start with an alphabetic character.

f) No errors.
g) No errors,

h) This record contains 520 characters, It is
an error to give a record a name if it
contains more than 519 characters.

i) No errors. This record is less than 4096
characters. Since it has no name, it can
never be used for input or output.

i) No errors. TEMP is defined as a Decimal
field containing one digit.

k) No errors. The field name is recognized
as WORKTA.,

1) No errors. TABLE10 is recognized as
TABLET.

Many times a programmer will make comments, so that someone else
reading his program will know what he is doing. A semi-colon (;)

tells the compiler-program that all information following is not to be
interpreted as program text, but rather as comments by the programmer.
Thus, comments can appear on a program listing, but will not offect
the operation of the program. Here is an example of a comment:

START ;THIS PROGRAM READS INDIVIDUAL TRANSACTIONS
RECORD A;THIS IS THE INPUT RECORD BUFFER
Al,A16;CUSTOMER’'S NAME IS STORED HERE

The comment is terminated by a carriage-return line feed. The
comment following a START or PROC statenient is used as a heading
for program listings.

27. QUESTION:

ANSWER:

What are the functions of these computer-
defined symbols?

X

*%%

The X indicates one record of data elements
will overlay the previous record (use the same
space in computer memory that the previous
record was using); multiple overlays of the
same record are permitted. The semicolon
indicates the beginning of a comment.

If the X option is used in a RECORD statement without a record
name, then a comma must follow the word RECORD, i.e.,

RECORD, X,

DATA SECTION SUMMARY

The data section describes all data used in a program and causes
aliocation of memory storage. 1t consists of one or more data
records. Each data record section is made up of a RECORD statement
followed by one or more data statements.

1.

RECORD STATEMENT

~\
4)

Normal Form - RECORD record name, e.g., RECORD

INBUF. All uninitialized fields are

RECORD. All uninitialized fields
are cleared,

Data Overlay - Overlay a preceding storage areq,
e.g., RECORD, X or RECORD B, X.
All uninitialized values are cleared.

DATA STATEMENT

a)

Nomal Form -

data name,
(optional)

data specification,
(required)

initialization specif.
{optional)

For example: FIELD1,D4,1234
FIELD2, A4,'ABC4'

Operator Initialization - Specified by a P and causes

entry of data from keyboard before program execution,
e.g., RNDATE, A8, P.

Date Initialization - specified by a D and causes
entry of the Monitor date.

Unnamed Form - A record name may be omitted, e.g., |

Three ways fo initialize data elements in the Data Section:

Data Statement Initialization - A data statement with an
initialization specifica~-
tion. If no value is
specified the field is
cleared.

Operator Initialization - A data statement with a ,P
which allows entry of data

from console.

automatically enters Monitor's date
at run time.

Date Initialization - A data statement with a , D which

PROCEDURE SECTION

28. QUESTION: What is the compiler statement that separates
the data and procedure sections?

kk%

ANSWER: The PROC statement separates the data and
procedure sections.

29. QUESTION: What is the difference between a procedural
statement and a data statement?

*kk

ANSWER: Procedural statements are executable.

INIT

In a computer program, procedural statements are executed sequen-
tially, the sequential execution of instructions can be changed by a
branching instruction.

The first procedural statement discussed is the file-initialization
statement. The general form is:

INIT (channel, dev, data file name, logical unit)

The INIT statement is used to associate a channel number with a
device and to initialize that device. Channel is a number from

1 to 15 which is to be linked to a logical or physical device. This
number is then used in other statements, such as XMIT, to refer to the
same device.

Dev is the name of the COS 300 device to be associated with the
channel number. These names can be abbreviated, since only the
first character is checked. The following list contains the valid
dev nomes:

Dev Abbreviation Meaning

IN | Mass storage device to be used for input,

ouT @) Mass storage device to be used for output.

UPDATE u Mass storage device to be used for random
access,

KBD K Input from terminal keyboard.

TY T Output to terminal printer or display.

LPT L Line printer.,

CDR C Card Reader.

RDR R Paper tape reader.

PTP P Paper tape punch.

SYS S Input from a file created on the system
device with the editor.

For example:
INIT(1,KBD)

will initialize the terminal keyboard and any references to channel
1 will be references to the terminal keyboard,

Only mass storage devices (disk or DECtape) need be INITed. It is
optional for all other devices. If not specified, the following
channel number assignments are assumed:

5=PTR
&=LPT
7=KBD
8=TTY

30. QUESTION: Write a statement to initialize the terminal
display and assign it to channel 8.

*kk

ANSWER: INIT(8,TTY).

However, COS 300 has already assigned the terminal display to
channe! 8, This statement is redundant. Only mass storage devices

need by INITed.

31. QUESTION: Write a statement fo initialize the line printer
and assign it to channel 1.

*%k%

ANSWER: INIT(1, LPT) or INIT(1,L).

Both statements are identical in DIBOL.

Only mass storage devices specify the data file name, which is re-
quired, and a logical unit number, which is optional. The data file
name is an alpha constant or a variable which is physically written
on this file. It can be up to six characters; anything in excess is
ignored. Any valid COS character can be used to make up the
name. If a variable is used with the P option, a file name can be
specified at run time.

Unit is an optional decimal expression used with [, O and U device
codes to specify the logical unit where the data file is stored or to
be stored. If the logical unit is not specified, a MOUNT message
will ocecur at run time.

Logical units are specified in SYSGEN and divide the available mass
storage into 15 possible areas for data files. These areas can be
different sizes (in multiples of 8000 characters) and more than one
area can be assigned to one physical device.

32. QUESTION: Write the statements necessary to

a) initialize a DECtape data file called
MASTER which will be referred to as
channel 2 and be used as input.

2-13

ANSWER:

c)

a)

b)

<)

initialize o second DECtape data file
called MASTER which will be referred to
as channel 3 and be used for output.

initialize a card file containing transac-
tions which will be referred to as channel
5 and be used to update the input MASTER
file.

*kk

INIT(2, INPUT, '"MASTER")

| is sufficient in place of INPUT. Also
the following message would occur at
run time:

MOUNT MASTER #01 FOR INPUT:

at which time the operator would respond
with the logical unit where the file could
be found.

INIT(3,0UT, 'MASTER")
O is sufficient in place of OUT. A
message would appear at run time:

MOUNT MASTER #01 FOR OUTPUT:

to which the operator would respond as in

(@).

HNIT(5,CDR)

INIT(5,CDR, 'TRANS') would be incorrect
since the card reader is not a mass storage
device and cannot have a file name
associated with it.

33. QUESTION: How would you write a statement to initialize a
file on logical unit 12 calied MASTER which
will be accessed directly and which will be
referred to as channel 13?

* %%
ANSWER: INIT(13, UPDATE, 'MASTER',12)

34. QUESTION: Which of the following INIT statements are
invalid and why?

a) INIT(,INPUT, 'FILEA',4)
b) INIT(3,IYBDGHKL, 'LABEL')
c) INIT(2,X, 'LABEL")
d) INIT(5,KBD)
e) INIT(5, IN'MAST')
f) INIT(8)
g) INIT(13,KEYBOARD)
h) INIT(Z,TTY)
i) INIT(15,UPDATE,".§"#1)
D 102,K)
k) INIT(1,I,'$STEMP*,8)
[) INIT(5,0,TAPEID,3)
* k%

ANSWER: c) Xisan illegal dev,
e) A comma is missing between IN and MAST.
f) The dev specification is missing.
h) Missing right parenthesis.
i) INIT cannot be abbreviated.

35. QUESTION: Statement | in the preceding question is valid

since a variable may be used as a data file
name. How can the data file name be varied
during each run without changing the program?

*k%k

ANSWER: The statement TAPEID, A6, P will allow the
operator to enter a six-character file name

whenever the program is run,

XMIT

To read or write a record, the fransmit data statement is used. Its
general form is:

XMIT (channel,
(required)

end of file label)
(only for input file)

record,
{required)

Examples of the transmit-data statement are below:

a) XMIT(1,OUTBUF)
b) XMIT(2, INBUF, EOF)

a. Assuming channel 1 has been previously INITialized for out-
put, statement a would transfer the contents of RECORD
QUTBUF to channel 1.

b. Assuming that channel 2 has been previously INITialized for
input, statement b would transfer data into RECORD INBUF
from channel 2.

36. QUESTION: What is accomplished by the following DIBOL

program?

START

RECORD INBUF
INA, ATO
INB,A6
INC, A6

RECORD
DATE, A8, P

PROC
INIT(2,IN, 'INFILE',14)
BEGIN,XMIT(2, INBUF, EOF)
GO TO BEGIN
EOF, FINI (2)
STOP
END

* k%

ANSWER: When the program is run, the terminal will
ouiput ENTER DATE and wait for the operator
to input an eight-character date (note the P
option on data-item DATE). Channel 2 will be
initialized and all records will be read from
channel 2 into the area assigned to RECORD
INBUF; after all records are read, the program
will transfer to end-of-file routine (EOF) in
which channe! 2 is rewound, and then the
program will stop. The END statement and
STOP statement are optional.

NOTE

If the BEGIN statement were BEGIN, XMIT(2, INBUF) an error
message is output when an end-of-file occurs.,

It is also possible to XMIT partial records. In the previous example
assume that the first 10 characters from each input record would be
written onto the tine printer, The statement would look like:

XMIT(6, INBUF(1,12))

and would be added after the BEGIN statement. The character
count of a record is contained in ifs first two characters. To output
a partial record of 10 characters, the program must specify the first
12 characters. This character count is generated automatically by
the COMPiler and does not interfere with the first field in a record.

FINI

37. QUESTION: What is the function of the FiNi statement?

*kk

ANSWER: The FINI is a close file statement and must
refer to a previously INITialized file. For
output files, an end-of-file mark is written

onto the file and the file is rewound.

38. QUESTION: What is accomplished by statements 1 through
4 in the following exampie?

START
RECORD ABC
A,A10
NUMS, D15
BUF,A100
PROC
1 S A=
2 , NUMS=
3 ,BUF(56,70)=
4 ,ABC=
ANSWER: Statement 1 sets the ten character field A to
spaces.
Statement 2 sets the 15 character field NUMS
to zeroes.

Statement 3 sets the characters 56 through 70
of field BUF to spaces.
Statement 4 sets the record ABC to spaces.

An attractive feature of the DIBOL language is the ability to
reference characters within a field. The notation BUF (56,70)
allows the programmer to reference characters within a data element

without assigning a specific data name. The general format to
accomplish this is:

Data name (starting character position, ending character position)

39. QUESTION: What would be accomplished by statements 1
and 2 in the following example?

START
RECORD B
NUMS, 10D2
B1,5A6
PROC
1 ,NUMS (5)=
2 ,Bl (4)=
* k%
ANSWER: Statement 1 zeroes the fifth element of the

array NUMS,
Statement 2 sets the fourth element in the array
B1 to spaces.

This notation is called subscripting. It allows the programmer to
reference a specific data element of an array. This form of sub-
scripting must be a positive non-zero number, data name, or
expression., The data name option is called variable subscripting.
For example:

START

RECORD
NUMS, 10D2
A, DIl

PROC

A=5

NUM(A)=

This will accomplish the same as NUM(5)= which is in the previous
example.

NOTE

An entire array cannot be referenced, only a single element within
an array. However, it is possible to reference an entire array by
redefining the array, using RECORD, X (overlay). For example:

RECORD

NUMS, 5D2
RECORD, X

NUMST, D10
PROC

S1,NUMSI=

This will set the entire array of NUMS to zero.

In summary the Clear Data Statements have the foilowing formats:

Destination field = e.g., A=
Destination field (subscript) = e.g., A(4)=
or A(B)=
or A(51,71)=

ALPHA=ALPHA

Another type of data manipulation is the move-alphanumeric-
variable statement. It takes the general form:

alpha field = alpha field
(destination) (source)

This allows one alpha field to be moved to another alpha field. If
the source is shorter than the destination, the result is [eft-justified
with the right-most characters undisturbed. If the source is longer

than the destination, the result is left-justified and the right-most
characters are not moved to the destination field.

40. QUESTION: What is the value of A in the following example,
after the move has been executed?

START
RECORD

PROC

%%k k

ANSWER: Variable A now has the value FGHDE, The
source is shorter than the destination field.

The right-most characters are undisfurbed.

41, QUESTION: What is the value of NAME in the following

example?
START
RECORD A
NAME, A4, 'FRED'
NAMET, A7, JOHNSON!'
PROC
NAME=NAMEI
% %ede

ANSWER: NAME now has the value of JOHN,

NOTE

While the receiving field is changed (destination), the sending
(source) field remains unchanged, so NAMET still has the value
JOHNSON,

In review, the general format of move alpha to alpha data element
is:

Alpha field = alpha field
(destination) (source)

DECIMAL=DECIMAL or EXPRESSION
Statement

Another form of data manipulation is moving a decimal expression to
a decimal field. The general format for this expression is:

decimal field = arithmetic expression
(destination) (source)

The arithmetic expression may be any expression with decimal ele-
menfs, subscripted data elements, constants, and the operators pius
(+), minus (=), multiply (*) and divide (/). The contents of paren-
theses are performed first, division and multiplication next, followed
by addition and subtraction. The destination field would be right-
justified affer the move. Below is an exampie:

START
RECORD

QORDER, D4, 0002

UCOST, D4, 0200

ECOST, D10

X,D2,04

Y, 5D3, 000,007,100, 025, 023
PROC

ECOST=UCOST*QORDER
X=X+1

Y (=Y (X)+@25*Y (2)+Y (3))/Y (4)
X=Y(3)+Y(4)

W N~

Statement 1)

Statement 2)

Statement 3)

Statement 4)

ECOST is calculated by multiplying UCOST and
QORDER. In the above example, the answer would
be: ECOST=0000000400. The result is right-
justified in ECOST with the leading two characters
set to zero.

The new value of X shall be X+1 (answer, X=05).
The first element in array Y will be equal to the
fifth element in array Y(X=5), plus the following
quantity: 25 multiplied by the second element in
array Y plus third element in array Y, the result

of this multiplication and addition is divided by
fourth element in array Y. The answer would be:

Y (1)=Y (05) + (25 * Y(2) + Y(3))/Y (4)
Y (1) = 023 + (25 * 007 +100)/025

Y (1) = 023 + (275)/25

Y (1) =023 + 011

Y (1)=034

X is sef equal to 25, If the destination field is too

small fo contain the source field or source expression,

the high order digits are lost.

42, QUESTION: In the following expression, explain the items,

i.e., decimal field, subscripted field, con-
stants, and the operators, plus, minus,
multiply, and divide.

X=Y (3)+Y (2)+66*(13-2)/2

* k%

2-18

ANSWER: Subscripted variables are Y(3), Y(2); decimal
variable is Z; constants are 66, 13, 2; the
arithmetic operators used are +, *, -, /.

NOTE

The words variable and field can be used interchangeably.

43. QUESTION: Is the expression X=Y(2) equal to X=Y*2?

kkk

ANSWER: No. Y(2) is a subscripted data element de-
noting the second element of an array with the
name Y. The expression X=Y*2 is the equiv-

alent of multiplying Y times 2 and storing it
in X.

44, QUESTION: What is the expression which would accomplish
the following?

a) Take a number X and add it to the second
element in an array named K.

b) Take the result of that operation and
divide it by 145 and store it in M.

ek

ANSWER: M=(X + K (2))/145
If X + K(2) were not in parentheses, K(2)
would be divided by 145 before adding X.

In summary, the decimal to decimal move has the general format of:

decimal field = arithmetic expression

A=A+B/C
A=B

Decimal to Alpha
Alpha to Decimal

The two forms of converting from one data type to another are:

a) Decimal field = alpha field

b) Alpha field = decimal field or decimal expression and an
optional format.

In the following example, data fields are
described in both aiphanumeric and decimai
formats. Convert TOT from decimal o an
alpha format of corresponding length and store
in Al; and convert NUM to its decimal format
of corresponding length and store in B1.

45. QUESTION:

START
RECORD A
NUM, A6
Al,AS
RECORD B
TOT, D6
BI,Dé
PROC
*kk

ANSWER: A1=TOT (converts decimal to alpha)

B1=NUM {converts alpha o decimal)

The result of the conversion is always stored in the destination field
(the expression located to the left of the equal sign). The decimal-
to-alpha conversion is always right-justified with leading spaces, if
needed. If the destination field is foo small, high order characters
are lost, The alpha-to-decimal conversion is also right=justified

with leading zeroes, if needed. If the destination field is too
small, high order characters are lost,

46, QUESTION: What would be the contents of Bl and Al
after the following conversions?

START
RECORD A
COST, D4, 9999
Al,D5
RECORD B
NUM, A6, '678912"
B, Ab
PROC
BI=COST
A1=NUM
k%

BI=COST (converts decimal to alpha). Bl
would contain 9999 right-justified with two
leading blanks. AI=NUM (converts an alpha-
numeric number to decimal). Al would contain
78912; the high order character is lost.

ANSWER:

Decimal to Alpha with Format

In business data processing, it is frequently desirable to output
decimal information with imbedded commas, a decimal point and

(if needed) a minus sign. For example, -34,259.00 is easier to read
than -3425900, DIBOL makes it possible to accomplish the format-
ting of decimal information during the conversion from decimal-to
alpha format, The general form of conversion is:

alpha field=decimal field or decimal expression, format

For example, if B=125677700 (decimally formatted), the expression, 49. QUESTION: What is output to the terminal by the following

A=B, "X, XXX, XXX . XX will move B to A and cause A to look like program?
this: v
START
1,256,777 .00 with no minus sign, since the number is greater than RECORD A
zero. A must be defined as an A13 to hold a full nine-digit negative Al,A7
number. A2, A8
A3, All
RECORD
47. QUESTION: For B=4432567 - (assume two decimal places); NUM, D6, 100000
what would the conversion instruction look B1,A7,'CREDIT 10"
like? B2,Al11,'TO DIGITAL'
ek PROC
Al=B1
ANSWER: A=B'-XX, XXX .XX"' or 'XX, XXX XX~! A3=B2
(~44,325.67) (44,325.67-) A2=NUM, 'X, XXX . XX!
XMIT (8,A)
*kk
The minus sign in the edit format can be either on the left or on the
right, If the decimal value is positive, the sign will appear as o ANSWER: CREDIT 1,000.00 TO DIGITAL
blank.
Most printing characters on the line printer or terminal can be used
48, QUESTION: Since commas are inserted only if the corres- in a format string; but the following characters have a special
ponding comma has a significant digit to the meaning:
left, if B=311, what would be the value of A
after the following? X Each X represents a digit and leading zeroes are auto-
: e matically suppressed.
A=B, =X, XXX, XXX XX'
- - If a minus sign is the first or last character in a format
statement, a minus sign is inserted when a number is
ANSWER: Where b signifies a space, A would be equal to negative.
bbbbbbbbb3.11. When a decimal field is
converted, it is right-justified, i . Inserts a period and zeroes are no longer suppressed.

Inserts a comma if there are significant digits to the left,

2-20

Z Suppresses a digit position and righf-justifies it.

* |If on asterisk is the first character of a format, it replaces
all leading zeroes.

Examples:

NUM, D3, 987
Al,A3
Al=NUM, 'XXZ'

result is: Al=b98 (where b signifies a blank)

NUM, D5,12345
PAY,A9
PAY=NUM, '*X , XXX XX

result is: PAY=**%123.45

The remaining characters are treated as insertion characters, For
example:

DATE=102370

A1=DATE, 'XX/XX/XX!

result is: Al=10/23/70
or

NUM=987

Al1=NUM, "XXX0'

result is: A1=9870

When using a comma, period, slash, minus sign, or any other
notation, it must be counted as a character position. In the above
example using slash, Al must be defined as an eight-character

QUESTION:

ANSWER:

START

RECORD A

Al,A8
A2,A4
A3, A4
A4, ATl
FMT,A4,'X XX

RECORD B

PROC

® 0.0 O a
— NP e S

~
N

*k %

Statement a)
Statement b)
Statement c)
Statement d)

Statement e)
Statement f)

DATE, D6, 103070
NUM, D3,123

COST, D3, 999

TOT, D12, 000007894211

AT=DATE, "XX/XX/XX'
A2=NUM, 'XXZ"

A3=COST, 'XXX0'

A4=TOT, ' =XXX, XXX XX**
A4=TOT, ' =XXX, XXX XX
A2=NUM, FMT

A1=10/30/70

A2=bb12

A3=9990

A4=*78,942 ,11* (an asterisk
which is not the first character
in a format will act as an in-
“sertion charaéter and atse
replace leading zeroes.)
A4=bb78,942.11

A2=1.23

alphanumeric field.

In summary, the data manipulation statements have the following
formats:

2-21

Format

Clear Field=
Alpha Field=Alpha Field

Decimal Field=Arithmetic Expression ~ A=B*C/D

Decimal=Alpha
Alpha=Decimal
Alpha=Decimal, format

A1=NUM
B1=TOT
A=B, '=XX,XXX.XX!

Note that subscripting can be used in any data manipulation state-

ment,

In most of the examples in which subscripting was used, it was done
by referencing specific elements of an array, i.e., NUM (2)=. It
is often desirable to change the value of the subscript. This is
done by using a data name for the subscript. For example:

START
RECORD C
C1,10A5
RECORD
A,D2
B,AS5,'DIBOL
PROC
A=1
Cl(AFB

This places the value of DIBOL in the first element of the array CI.
If all elements of the array were to be set to the value DIBOL, the
procedure section would look like:

PROC

BEGIN,

END

A=1

Cl(A)¥B

A=A+

IF (A.LT.11) GO TO BEGIN
STOP

NOTE

A powerful feature for the data manipulation statements is that
record names can be used, For example:

START
RECORD AAA
Al,A80
RECORD BBB
B1,A80
PROC
AAA=BBB
STOP
END

Statement AAA=BBB is valid. A record name can be moved to
another record name. Record subscripting is also legal. For example:

START
RECORD AAA
Al,A80
RECORD BBB
B1,A80
PROC
AAA(1)=AAA(2)
STOP
END

GO 1O

The next type of statement is the GO TO statement.

QUESTION: From the previous section (and using Foldout #3),

what is the purpose of the basic GO TO state-
ment?

*kk

ANSWER: This statement causes the program control to I 53. QUESTION: s the foilowing use of GO TO correct?
branch to the executable statement in the

procedure section with the specified label, and START
has the form: RECORD B
BI,A50
GO TO label PROC
INIT (2,1, 'HOHUM', 6)
The label must be a statement label assigned to the statement in the LOOP, XMIT (2, B, EOF)
PROCedure section where control is to be transferred. It cannot be XMIT (8, B)
a data name. A data name refers fo an element which has been GO TO LOOP
defined in the data section. EOF, FINI (2)
END
52. QUESTION: Is the following use of GO TO correct? .
START ANSWER: Yes, LOOP is a label associated with a state-
RECORD A ment in the procedure section. LOOP is not a
Al,A%0 data name.
PROC
;(';\l/:-er(%Z, k;FILEXX) Another type of GO TO statement is the computed GO TO, It has
GO TO START the form: R
FnL@ GO TO (label 1, label 2,, label n), decimal
expression
END
e For example:

ANSWER: No. START is not an executable statement, G.O TQ (LOOP, RUN, STOPS)’ KEY

Executable statements are found only in the

procedure section of the program This statement reads "If decimal variable named KEY is equal to 1,

then go to LOOP; if it is equal to 2, then go to RUN; ond if it is
equal to 3, go fo STOPS, If the variable KEY is not equal 1o 1, 2
or 3, control passes to the next statement in sequence. There can be
any number of labels in a computed GO TO statement.

2-23

54. QUESTION: If NUM is equal to 2, what does the following NOTE

accomplish? The format requires a period immediately before and after the two
character relation codes. If an expression is an alphanumeric
GO TO (X1, X2, X3), NUM consfant, it must be enclosed in apostrophes.
*k*k
The statement is executed if the relation is true. Statement is one
ANSWER: ;'(hze program branches to the statement labeled of the following:
) GO TO LABEL
CALL LABEL
55. QUESTION: In the above example, if NUM is equal to 6, RETURN
what happens? ON ERROR
STOP
. TRACE
ANSWER: Control passes to the next statement in NO TRACE
sequence. (Options which are unfamiliar will be explained later in this section.)
IF 56. QUESTION: Write an equivalent DIBOL statement for the

following. If NUMB is less than or equal to

An IF statement fransfers control on the basis of the results of an 46, then go to the statement labelled LOOP.

expression. The form of the statement is: *kE

IF (expression 1 .rel. expression 2) statement ANSWER: IF (NUMB .LE. 46) GO TO LOOP

In a decimal comparison, the shorter of two fields is left zero filled
The data items for comparison may be constants, variables, or before the comparison.

arithmetic_expressions. They must be both alphanumeric or both. ...
decimal. The relations are:

57. QUESTION: Write a DIBOL statement fo do the following:
If DESC is equal to the alpha constant HAPPY,
terminate program execution.

EQ. equal

.NE. not equal el

LT, less than ANSWER: IF (DESC .EQ. 'HAPPY') STOP

.LE. less than or equal

.GT. greater than NOTE

.GE. greater than or equal Two fields to be compared may be of unequal length. The longer of

two Alpha fields is shortened on the right to the same length as the
shorter field.

2-24

58.

QUESTION:

ANSWER:

Is the following use of the IF statement correci?

START
RECORD
NUMB, D3, 223
ALPH, A3, 'ZAP'
TOTL, D3,999
PROC
BEGN, NUMB = NUMB+]
IF (NUMB EQ. ALPH) TRACE
STOP
END
kR%

Use of the IF statement is incorrect. NUMB
(which is a decimal item) cannot be compared
with ALPH (which is an alpha item). A com-
piler error will result.

CALL
RETURN

When the same coding is used several times in a program, it may be
written once as a subroutine. To use the subroutine write:

CALL label

The CALL statement does two things. It saves the address of the
statement following the CALL in the RETURN statement of the sub-
routine and then performs an unconditional branch to a subroutine.
The return from a subroutine is to the next statement after the CALL
statement, This is accomplished by the RETURN statement. For
example:

PROC
CALL LIST
;control returns here

LIST, B=B+
RETURN

NOTE

Control can pass directly to a subroutine, However, its RETURN
statement, when executed, will cause a Run~Time error.

59. QUESTION:

i
l ANSWER:

SUBT,

EXIT,
SUB2,

Is the following correct use of the subroutine?
S.TART
PROC
(:ZALL SUB1

X=X+1
IF (X .NE. 3) GO TO EXIT
CALL SUB2

RETURN
X=X*2
RETURN

*kk

The example is correct. SUB2 is an example of
a nested subroutine, called by SUB1. SUBI
calls SUB2, which multiplies the variable X by
2 and returns to SUB1, which returns to the in-
struction following the original CALL statement,
If a subroutine is entered other than by a CALL
it is treated in sequential coding, not as a
subroutine.

2-25

STOP 61. QUESTION:

STOP causes the program to terminate its execution and to return
control to the DIBOL Monitor. For example:

From statements 16 and 20, what is the function
of the block named OUTBUF?

* k%

It is the output record from which all records
are written by channel 2,

ANSWER:
START
BLOCK A
Al, A10
A2, A2 62. QUESTION:
RECORD B, X
BI, Al2
PROC ANSWER:

INIT (2, IN, 'AFILE', 3)
LOOP, XMIT (2, A, EOF)

What is the purpose of the X in describing
OUTBUF?

* %%

The five fields of OUTBUF occupy the same
area of computer memory as the five fields of
INBUF (the fifth field of INBUF is not
labelled,

XMIT (8,B)
GO TO LOOP
EOF, FINI (2) .
STOP 63. QUESTION:
END
This example would print each record from logical unit 3 onto the ANSWER:

terminal until end-of-file was reached. At that time, control would

Which statement separates the data section
from the procedure section?

*kk

The PROC statement.

transfer to EOF where logical unit 3 would be closed. The program

would then terminate by transferring control to the DIBOL Monitor. 64, QUESTION:

In this example STOP is optional since it is physically the last

On Foldout #3 is a listing of a complete DIBOL-coded program. ANSWER:
Examine it, and answer the following questions,

60. QUESTION: From statements 15 and 17, what is the function
of INBUF?

Why should the input record occupy the same

area of computer memory as the output record?

*k %k

With the exception of the field named ECOST,
the output records contain the same information
as the input record. Thus, not only is computer
memory saved, buf many more instructions
needed to move fields from one buffer to
another are eliminated,

*k%k

ANSWER: INBUF is the input record into which all data
from channel 1 is stored.

2-26

ANSWER:

ECOST is defined as decimal and the field
it overlays is alphanumeric. Is this valid?

xR

Yes. A decimal field may be defined as alpha-
numeric (and vice versa).

66. QUESTION:

Put statement number 18 into your own words.

k%

“If data name STOCKN is less than
go to the instruction labeled LOOP, Other-
wise, execute the next sequential instruction."”

1 o
100Q,, then

67. QUESTION:

ANSWER:

In the example program, STOCKN refers to a
stock number, DESC refers to an item descrip-
tion, UCOST refers to unit cost of the item,
QORDER is the quantity ordered, and ECOST
denotes the extended cost. Describe in your
words the operation of this program (the logic).

B

The program reads records containing a stock
number, item description, unit cost, and
quantity ordered. It skips records which have
a stock number less than 1000, Output records
are generated with the same information as the
input with an additional item -~ an extended
cost which is the product of the unit cost and
the quantity ordered.

ANSWER:

There doesn’t seem to be any way for the pro-
gram fo execute statements beyond statement
21 (an unconditional branch). How is the
statement labelled EOF executed?

k&%

Statement 17 carries the solution. It says
"Read a record from channel 1 and store the
information in the record labelled INBUF.

If thava ara na mae H
It Tnére are no more i'eCGde, go o the in-

struction labelled EOF."

ANSWER:

kK k

First, statement 15 INITializes channel 1 which
contains a file called 'ITEM' as an input de=
vice; second, only read uses of the XMIT
statement have three parameters (channel,
record, and end-of-file routine name); write
statements have only two parameters (channel
and record).

START
RECORD

PROC

LOOP,

EOF,

END

FOLDOUT #3

SAMPLE PROGRAM #2

INBUF
STOCKN, D4
DESC, A25
UCcoSsT, D5
QORDER, D4

A2, A25

A3, D5

Ad, D4

ECOST, D9

2

INIT (1, IN, '[TEM, 4)
INIT (2,0UT, 'ITEM',12)
XMIT (1, INBUF, EOF)

IF (STOCKN .LT.1000) GO TO LOOP
ECOST=UCOST*QORDER
XMIT (2, OUTBUF)

GO TO LOOP

FINI(2)

FINI(1)

STOP

~a

- I N N S A et

~

~e

~

~

tion, unit cost and quantity ordered. It skips records which have a
stock number less than 1000, Output records are generated with the
same information as the input with an additional item -- an extended
cost which is the product of the unit cost and the quantity ordered.

68. QUESTION: Put statement 16 into your own words,

*k%

INITialize channel 2 as an output device which
will write a file called ITEM on logical unit 12,

, A9
70. QUESTION: How do we know statement 17 is a read RECORD OUTBUF, X ;
statement? (two reasons) Al, D4 ;
The program reads records containing a stock number, item descrip-
ANSWER: I

2-27

START
RECORD

RECORD

PROC

LOOP,

EOF,

END

EXPLANATION OF FOLDOUT #3
INVENTORY PROBLEM

INBUF
STOCKN, D4
DESC, A25
UCOST, D5
QORDER, D4
,A9
OUTBUF, X
Al,D4
A2,A25
A3,D5

A4, D4
ECOST, D9

2

INIT(1, IN,'ITEM!, 4)

INIT(2,0UT, 'ITEM, 12)

XMIT (1, INBUF, EOF)

IF(STOCKN LT .1000)
GO TO LOOP

ECOST=-UCOST*QORDER

XMIT (2, OUTBUF)

GO TO LOOP

FINI(2)

FINI()
STOP

;input record

;Stock number, 4 digits
;Description, 25 characters

;Unit cost, 5 digits

;Quantity ordered, 4 digits
;Unused field

A redefinition of the input record

-

;Extended Cost, 9 digits
;Begin Procedure Section, 2 mass storage
ifiles will be open at one time
;Initialize file T as an Input device
;Initialize file 2, as an Output device
;Read a record from channel 1, and
jstore it in record INBUF

;1f stock number is less than 1000,
;read another record

;Extended cost would be calculated
;for STOCKN 1000 or over

Write_the record OUTBUF onto

;channel 2

;Go to statement LOOP to read
;another record

;OUTBUF file is closed and EOF mark
;is put at end of file

;INBUF file is closed

;OUTBUF file will contain all stock
;items with a stock number of 1000
;or over, with DESC, UCOST,
;QORDER, and ECOST for each item.

2-28

INCR

The INCR (increment) statement adds ones to a specified field and has
the form

INCR decimal field
The next two statements are identical

DECFLD=DECFLD+
INCR DECFLD

Refer to statement 25 of Foldout #4 for another example.

71. QUESTION:

Given the following program which statements
are invalid?

START
RECORD
A, D4
B,A5
C,D3
PROC
a) INCRB
b) INCRA
c) INCRA+C
d) C=INCR A

k%%

ANSWER: Statement a is invalid since variable B is
defined as alphanumeric.

Statement b is correct.

Statement c is invalid since expressions are
not allowed in an INCR statement,
Statement d is invalid since INCR cannot be

part of a data manipulation statement.

2-29

Look at Foldout #4 and its explanation. This program contains
samples of the remaining statements fo be explained in this section.

FORMS

The FORMS statement is used to format line printer output. [t may
not be used with any other output device. It has the form:

FORMS (channel, skip-code)

Channel is the channel number associated with the line printer. The
skip~code specifies the action to be taken:

0 go to top of next page (skip to channel 1
of the vertical forms control tape).

1 - 4095 skip this number of lines.

-1 (LS8-E only) skip to channel 2 of the
vertical forms control tape.

-2 (LS8-E only) print enlarged characters for

the next XMIT statement. Since charac-
ters are twice their normal width only 66
characters can be printed,

For example:
FORMS(6, 3)

means skip three lines on the line printer;
FORMS{(6,0)

means skip to the top of the next page;

FORMS (6, N)

means perform the function specified by the value of N.

72. QUESTION:

ANSWER:

b)
c)
d)
e)

In the following program, what is the result
of each FORMS statement?

START

RECORD

1,02,20

J,D2,03

PROC
INIT(3, LPT)
FORMS(3,0)
FORMS(6,0)
FORMS(J, 3)
FORMS(J, -3)
FORMS (J*2, I+J-13)

*k%k

Statement a will allow the line printer to skip
to a new page.

Statement b will also allow the line printer fo
skip fo a new page. The line printer may be
referred to as channel 3 since it was INITed
as channel 3 and as channel 6 since no other
device was INITed as channel 6.

Statement ¢ will skip three lines on the line
printer, Variables or decimal expressions are
allowed for the channel number of skip-code.
Statement d is invalid. The skip-code is
e e et
Statement e will skip 10 lines on the line
printer,

The value of the first expression, J*2, is 6;
the value of the second expression, 1+J-13

is 10,

TRACE
NO TRACE

These statements are used to debug a program. They can be inserted
anywhere in the PROCedure section. The form of the statement is:

TRACE

NO TRACE

When the TRACE statement is executed, program tracing is enabled

until the execution of a NO TRACE statement. When enabled each
DIBOL statement which is executed causes the following line to be

printed on the line printer:

AT LINE n

where n is the source line number. If the statement is a data mani-
pulation statement, the value stored in the destination field is also
printed:

AT LINE 200
0003

TRACing will not occur unless the program is RUN
with the /T option (refer to the System Reference
Manual for a more detailed explanation of this

Indiscriminate placement of TRACE statements will
cause excessive output on the line printer. To use
a TRACE statement properly, the problem area in a
program should be determined and the TRACE/NO

TRACE statements used only in the problem area.

73.

QUESTION: What output » will result from ¢t
statement in the Fn”nw:nn prog
(line numbers)
0100 START
0110 RECORD
0120 ITEM,D5
0130 HOURS, D2
0140 SALARY, D5
0150 WAGES, D7
0160 PROC
0170 HOURS=40
0180 SALARY=300
0190 TRACE
0200 WAGES=HOURS*SALARY
0210 IFWAGES.EQ .10000)NO TRACE
0220 HOURS=10
0230 IFHOURS.EQ.10)GO TO NEXT
0240 NO TRACE
0250 NEXT,WAGES=HOURS*SALARY
0260 NO TRACE
0270 HOURS=20
0280 WAGES=HOURS*SALARY
0290 STOP
*%k%
ANSWER: AT LINE 0200
0012000
AT LINE 0210
AT LINE 0220
AT LINE 0230
AT LINE 0250
0003000
AT LINE 0260

ra ...?

TRAC

ANSWER:

Which of the oi owing are vaiid TRACE/NO
st .’;\

a) IF(A.GT.B) TRACE
b) CALL TRACE

¢) NO TRACE

d) GO TO TRACE

* k%

Statement a is valid.
an!‘nmnrﬂ- b Wi ” FA

enable TRACing.

LL subroutine TRACE, not

Statement ¢ is valid.
Statement d will GO TO a statement labelled
TRACE, not enable TRACing.

ON ERRCR

. The form of this statement is:

ON ERROR label

where label is a statement in the PROCedure section where control
is to be transferred when an error is encountered. An example of

ON ERROR FIX
DECMAIL=ALPHA

Refer to statement 17 of Foldout #4 for another example. The ON

2-31

The ON ERROR statement is often inserted in a source program prior
to a statement which, if in error when executed, would cause a
return to Monitor
this statement is

FIX,
conditions

ERROR statement eliminates a return to Monitor for the following

- division by zero; ANSWER:

- in alpha to decimal conversion, a character other than
0 to 9, plus, minus or space;

- more than 15 digits in a decimal field used in a calculation
(the field, of course, would have to be defined as D16,
D17, or larger);

- an end of file label was not specified in an XMIT statement
and the end of the input file was reached;

- input record was greater than its specified size;

- no file was specified in a RUN command to satisfy an
INIT(SYS) statement

- direct access of a record beyond the end of a file.

75.

QUESTION: Which of the following statements need an

Statement a needs ON ERROR because of
division by zero.

Statement b does not need ON ERROR.
Statement ¢ does not need ON ERROR because
DECMAL does not contain a value exceeding
15 digits.

Statement d does not need an ON ERROR
since a plus sign is a valid character in alpha
to decimal conversion.

Statement e needs an ON ERROR statement
since none of its characters are valid in alpha
to decimal conversion.

Statement f does not need an ON ERROR
statement,

ON ERROR statement to precede them to

prevent program termination? 76. QUESTION:

Assume the following data section

START

RECORD

DECMAL, D20, 00000000000000050000 ANSWER:
1,D5

ALPHA,AS5,'ABCDE!

BETA,A5,'12345

What happens in Sample Problem #2 if state-
ment 17 is:

LOOP,XMIT(1, INBUF)

* k%

The program will run properly until the end of
file is reached. At that time, the program
will return to Monitor because there is no end
of file label in the XMIT instruction. This

PHI, A3, '+25' problem can be avoided by leaving statement
'WORK, D8 17 in its original form or by preceding state-
J,D5,150 ""ment 17 with an ON ERROR statement,

a) WORK=J/1

b) WORK=l/J ACCEPT

Z) \IJXPOHRleDECMAL*Z : The ACCEPT statement stores input from the keyboard in a specified

e; I;ALPHA alpha field or record as well as the decimal equivalent of the

f) I=BETA

* k%

It has the form:

2-32

terminating character. It is used mainly with the DISPLAY statement,

ACCEPT (terminating character, alpha field)

where the terminafing field is usually defined as a two digit field
and the alpha field contains the keyboard input. ACCEPT is often
used when certain action is to be taken depending upon the value of
the terminating character. The values for the terminating characters
can be found in Table 1-1 of the System Reference Manual. An
example of this statement is:

.
.

DECMAL, D2
ALPHA, A10

ACCEPT(DECMAL,ALPHA)

.
.

Another example of this statement is statement 29 of Foldout #4.

78. QUESTION: How can the ACCEPT statement in the preceding
problem be modified to ACCEPT only 10 char-
acters? (Show two ways.)

k%%

ANSWER: LOOP, ACCEPT(TCHAR,KBD(1,10))
or define KBD as an A10 field.,

77. QUESTION: How would you write a program which will
ACCEPT 15 alphanumeric characters? If
CTRL/U, a terminating character with a
value of 21 is typed, restart ACCEPTance of
input. Use TCHAR as the ferminating char-
acter and KBD fo store keyboard input.

* kX

ANSWER: START
RECORD
TCHAR, D2
KBD,Al5
PROC
LOOP, ACCEPT(TCHAR, KBD)
IF(TCHAR.EQ .21)GO TO LOOP
STOP
END

DISPLAY

The DISPLAY statement is used primarily with the VT05 terminal to
display a message at a specified iocation on the screen. Any of 20
rows or lines and 72 columns may be specified. The form of the
statement is:

DISPLAY (row, column, field)

where row specifies the line and column specifies the column where
field is to be displayed. The field may be a decimal constant, an
alpha literal, an alpha variable or a decimal variable. The
foliowing decimai consiants or decimal variables perform a special
function:

0 = position the cursor at the row and column specified;

1 = clear the scope from the row and column specified to
the end of the screen and position the cursor at row
and column;

2 = clear the scope from the column specified to the end of
the line and position the cursor;

25 = sound the bell or beep and position the cursor.

Any other decimal codes are meaningless.

79.

QUESTION:

ANSWER:

How would the DISPLAY statements be
written to do the following?

a) Clear column 8 thru 72 of line 12 on the
screen.,

b) Clear column 3 thru 72 of line 5 and clear
lines 6 thru 20,

c) Display the error message '"NOT
NUMERIC' at the beginning of the last
line.

d) Ring the terminal bell.

e) Clear column 6 thru 8 of line 20,

f) Display the contents of the alpha field
XYZ at line 1, column 1.

g) Move the cursor to row I, column J.

*%k%k

a) DISPLAY(12,8,2)

b) DISPLAY(5,3,1)

c) DISPLAY({20,1,"NOT NUMERIC")

d) DISPLAY(0,0,25) ;row and column could
be any value but a 0 value for row will
not reposition the cursor.

e) This cannot be done with a DISPLAY
command. The minimum that could be
cleared is column 6 thru 72 of line 20.
However, displaying spaces will work.
For example: DISPLAY (20,6, ' avn-d)

f) DISPLAY(1,1,XYZ)

g) DISPLAY(, J,0)

80.

QUESTION:

How would you write a program to do the
following:

a) Clear the screen.
b) DISPLAY 'CLIENT NUMBER o'
c) ACCEPT a 5 digit client number,

2-34

ANSWER:

d) Verify that the digit is numeric when
storing it in a five~digit field called
TEMP, If incorrect, sound the beep,
DISPLAY the error message NOT
NUMERIC on the bottom line, wait for
the operator to strike any key which
indicates he understands the error and
reenter the information.

e) Since the number may be less than 5
digits, right justify the number entered
before DISPLAYing it.

*k%k

START
RECORD
TCHAR, D2
CHAR, A5
TEMP, D5
ONE, Al
PROC

LOOP, DISPLAY(1,1,1)

DISPLAY(1,1,'CLIENT NUMBER v '

ACCEPT(TCHAR,CHAR)
ON ERROR FIX
TEMP=CHAR
CHAR=TEMP
DISPLAY{1,;15, CHAR)
STOP
FIX, DISPLAY(0,0,25)
DISPLAY (20,1,"NOT NUMERIC")
ACCEPT(TCHAR, ONE)
GO 1O LOOP

READ
WRITE

The READ and WRITE statements allow direct access of a specified
record. This record may be input from (READ) or output to (WRITE)
a specified file. The statement has the form:

READ (channel, record, record number)
WRITE (channel, record, record number)

where channel is a number from 1 to 15, record is a iabel previousiy
specified in a RECORD statement, and record number is a constant,
variabie or arithmetic expression specifying the record number to be

read or written. For example:

READ(5, RECRDA, 20)
WRITE(K, REC, J-4)

The first example will READ the 20th record from channel 5 into
record RECRDA. The second example will WRITE REC as the Jj-4th
record onto channel K. Refer to Foldout #4 for more examples.

NOTE

For a file to be accessed direcfly, it must be defined as an UPDATE
file. For example:

INIT(1, UPDATE, 'FILEA’, 3)

READ(T,RECRDA, 20)

2-35

81.

QUESTION:

ANSWER:

SIZE,
LENGTH,

EOF,

How would you write a program which prints
every 10th record on the line printer (assume
the records are called RECA, are 50 char-
acters long, are in FILEX in channel 3,
logical unit 6, and that direct access will be
used,

*kk

START
RECORD RECA
A50
D5
PROC
INIT(3, U, 'FILEX', 6)
LOCP, INCR LENGTH
ON ERROR EOF
READ (3, RECA, LENGTH*10)
XMIT(6,RECA)
GO TO LOOP
FINI(3)
STOP
END

FOLDOUT #4
SAMPLE PROGRAM #3

START

RECORD ITEM

STOCKN, D4

DESC, A25

UCOST, D5

QORDER, D4

ECOST, D9

RECORD

LINECT, D2,50

REC, D5

TCHAR, D2

RECORD KBDIN
CHAR A5
PROC 1
iNIT(1, UPDATE, "ITEM', 12)
LOOP, CALL GETKBD
ON ERROR MESAGE
REC= CHAR
NO TRACE
IF (REC .EQ .100)TRACE
READ(I, ITEM,REC)
IF(LINECT .LT.50) GO TO PRINT
FORMS(6,0)
LINECT =
PRINT, INCR LINECT
XMIT(6, ITEM)
GO TO LOOP
MESAGE, DISPLAY{2,1,'NOT NUMERIC')
ACCEPT(TCHAR, KBDIN)
GO TO LOOP

GETKBD, DISPLAY(,1,1)

GETA, KBDIN=
ACCEPT(TCHAR, KBDIN)
IF(TCHAR.NE.21)RETURN ;21 = CTRL/U

DISP DISPLAY(1,1,2)

GO TO GETA

Ne Ne Ne e o Ne Ne N
NV OONOU D WN -~

~.

EXPLANATION OF FOLDOUT #4
DUMP SPECIFIED INVENTORY RECORDS

START
RECORD ITEM ;Input record
STOCKN, D4 ;Stock number
DESC, A25 ;Description
UCOST, D5 ;Unit cost
QORDER, D4 ;Quantity on order
ECOST, D9 ;Extended cost
RECORD ;Working storage
LINECT, D2,50 ;Number of lines printed on current page
REC, D5 ;Record number of record to be printed
TCHAR, D2 ;Terminating character in an ACCEPT

;command
RECORD KBDIN ;5~character record for reading record no.
CHAR, A5
PROC 1 ;A maximum of 1 mass storage device will
;be open at the same time
INIT(1, UPDATE, 'ITEM',12) ;Initialize a file called ITEM found on
;logical unit 12 for direct access
;Get the record number
;Go to MESAGE if the next statement is
;in error (such as CHAR containing non-
;numeric characters)
;Move CHAR to the numeric field REC
;Disable TRACE mode (it is inifially
;disabled)
IFREC .EQ .100)TRACE ;Enable TRACE if record number 100
READ(1, ITEM, REC) ;Read record REC from ITEM file
IF(LINECT .LT .50) GO TO PRINT
FORMS(6,0) ;Skip fo new page
LINECT = ;Clear LINECT
PRINT,INCR LINECT ;Add 1 to LINECT
XMIT (6, ITEM) ;Print specified ITEM record on line
jprinter
;Get next record number

LOOP, CALL GETKBD
ON ERROR MESAGE

REC=CHAR
NO TRACE

GO TO LOOP

;Skip to new page every 50 lines

2-36

MESAGE, DISPLAY(2,1,'NOT NUMERIC!)
;terminal
;Wait for operator response indicating
;he has acknowledged the error message

;Display error message

ACCEPT(TCHAR, KBDIN)

GO TO LOOP ;Get next record number
GETKBD, DISPLAY(1,1,1) ;Clear the screen
GETA, KBDIN= ;Clear record

ACCEPT(TCHAR,KBDIN) ;Accept up to 5 characters; accept is
;terminated when 5 characters are typed
;or when a terminating (hon-printing)
;character is typed

;If terminating character is not CTRL/U,
;return fo main program

;If CTRL/U, clear row 1 and

;accept input again

IF(TCHAR .NE.21)RETURN

DISPLAY(1,1,2)
GO TO GETA

The program accepts a record number from the keyboard., If the
record number is not numeric an error message is displayed and the
program waits for the operator to depress a terminating key before
restarting. When the record number is numeric, that record is read
directly from a file called ITEM and then printed on the line printer.

SECTION SUMMARY

You have completed an in=depth discussion of the DIBOL language.
If you do not understand DIBOL clearly, by all means study the
section a second time.

In summary, the procedure section has the following instructions:
1) Initialize File Device statement (as input or output).

Ceneral form:

INIT (channel, dev, data-file-name, unit)
Example:

INIT(2, IN,FILEX',3)

INIT(4,KBD)

2) Transmit statement (Read-from or write-into file).

General form:

XMIT{channel, record, end-of-file label for
input files)

Example:
XMIT(2, INBUF, EOF) Read from
XMIT(1,OUTBUF) Write into

3) CloseFile statement.

General form:
FINI(channel)
Example:
FINI(2)

4)

6)

2-37

Data Manipuiation statement,

General form:

destination field=source field or expression

a) Clear data (destination field =)

b) Move alphanumeric data (alpha data=alpha data)

c) Compute decimal data (decimal data= decimal
expression)

d) Convert alpha to decimal (decimal data=alpha data)

e) Convert decimal to alpha (alpha data=decimal data)

f) Convert decimal to alpha, formatted (alpha data=
decimal data, format)

GO TO statement (program control fransfers to statement
[abel).

General form:
GO TO statement label
Example:
GO TO LOOP
Computed GO TO statement (program conirol branches fo
labell if the decimal data element is 1, etc.).

General form:

GO TO (labell,label?, ..., ldabeln), decimal

data element
Example:

GO TO (TAX,COST,PRICE), A2

7) IF statement (if the relation between the expressions is
true, control goes to statement).
General form:
IF (expression] .rel .expression2) statement
Examples:

IF(A.EQ.B) GO TO C
IF(A.NE.T) TRACE

IF(LINE .GT.50) CALL HEADNG
IF(1.LT.1) RETURN

8) Subroutine CALL statement (control goes to statement
label).
General form:
CALL statement label
Example:
CALL COST

9) RETURN statement (program control returns to the state=-
ment after the last CALL).

General form:

RETURN

10) STOP statement (causes program to terminate and transfers
control to the Monitor).

General form:

STOP

2-38

11) INCR statement (adds 1 to a specified field).

General form:

INCR decimal field

Example:
INCR DECFLD

12) FORMS statement (formats line printer output)

General form:

FORMS(channel, skip-code)

Examples:
FORMS(6,0)
FORMS(6,-2)
FORMS(1,10)
13) TRACE statement (enables program tracing for debugging).

General form:

TRACE
14) NO TRACE statement (disables program tracing).

General form:

NO TRACE

18) READ statement (allows a specified record to be read

15) ON ERROR statement (prevents return to Monitor for |
certain run time error conditions). directly).
General form: General form:
ON ERROR statement label READ (channel, record, record number)
Example: Examples:
ON ERROR EXIT
READ(1,RECNAM, 28)
16) ACCEPT statement (used to get input from the terminal READ (4, RECNAM, REC)
when retention of the last character typed is desired).
19) WRITE statement (allows a specified record to be written
General form: directly).
ACCEPT (terminating field, alpha field) General form:
Examples: WRITE (channel, record, record number)
ACCEPT(TCHAR, ALPHA)
ACCEPT(TCHAR,ALPHA(1,10)) Examples:
17) DISPLAY statement (used to put output on the VT0S at a WRITE(1 ,RECNAM, 33)
certain row and column), WRITE(4, RECNAM, REC)
General form:
DISPLAY (row, column, variable)
Examples:
DISPLAY(1,1,'MESSAGE")
DISPLAY(I, J,2)
DISPLAY(l,8,ALPHA)

2-39

SECTION 3

A Programming Exercise

3-1

1. QUESTION: On this page is the definition of a program
you are to write. It is imperative you complete
writing the program before you look at this
author's solution. It is also important that you
write the program during the same sitting in
which you study the previous two sections, for
the simple reason that prompt reinforcement
(through application) is the only way to
retain the thorough knowledge of DIBOL,
Feel free to use Sections 1 and 2 as reference.

YOU ARE TO WRITE A PROGRAM FOR THE ATHLETICS DEPARTMENT
OF A COLLEGE., STUDENT RECORDS ARE STORED ON DECTAPE
LOGICAL UNIT 15 IN A FILE CALLED 'STUREC', IN THE FOLLOW-
ING FORMAT:

STUDENT LAST FIRST CUMULATIVE SEX WEIGHT HEIGHT
NUMBER NAME NAME G.P.A. (LBS) (FEET)

THE COACH WANTS A LIST OF ALL MEN ON CAMPUS WHO HAVE
A GRADE POINT AVERAGE ABOVE 85, WHO WEIGH OVER 170,00
POUNDS, AND WHO ARE OVER 5.75 FEET TALL., THE REPORT IS
TO LOOK AS SHOWN ON THE NEXT PAGE.

DON'T LOOK AT OUR SOLUTION UNTIL YOU HAVE COMPLETED
ALL WORK ON YOURS,

* %k

deccddtasystem

dilgiltlall

CONSOLE AND PRINTER LAYOUT FORM

T
L
-
RN
5
Tt

+
il
|
!

+——+
L
T\x
4

il
1
|8
[A
[
Pl
Tt
|
T
-
|

i
-
I8
T

i

N .
o2 o - i o o g A
(=l foag 5 ¢
TEITE r] 8582
! 1T 1" - n N U 1. Is
Y 1] SRR
B 0 - - T Tz0 CE
o~ 1 L - 41 m € m o .
3 SHH j SEEESa=N 1l
- 1 - 1 TTBw EET
- ++-H 11 EES 52
C3 T N ol ot I e e t i o -
[B LRI Tl Tean®ce
B A B I I 1 Qazo
@a « =
— c Y 8 £«
s I 8 o oy 885
2 -1 - £33 8.0
N . . = -
: HT i
S| N B O S835¢E¢
S i B 1 ’ - - B
T~ | [4.1 1 [
5 A 0 - i 13T 10
o - I - 2
~ [¥ 1 ITA 3
G2] S I ﬁ
- e O - Tr T e e e mmw.
3 | - - T
oS 11 - T - b
— L 4 e 4
] Tt I B O T
5 s P31 H 1
3 [I g - T3 - -
=
5 T T r . 0 1 O A 3
= : T
© Iy N N A T N . S . - — 4 L
o - —t—t - —r—1 -t e AN
= -1 2
T r . B s e e At
b : J T 18
NI U I r T 19
(s BN e [T T 13
3] i B 44 £ -4k i)
= . =
3 Sl 4 4 — RE-3
00 P S ©
=
m o s 1 T 13
e 44 4 0
| A @
o~ N] L)
ISt e e e T o e —T e
[N . 4 — [t
) g +— S —
0 [] 1 - me; 112w
S e 4 F 13 - F H -
: g - Hi e HE
T B G i o ‘] :
= - -1 -1 —1 - . 1
:] ESREREERRE EEa=SERaR-EaEe=atR:
IRESENE 2= R
(] 1 1 -1 -1 [T 1 — < —1 '™
o S A e i e R S . R - — — St 2
= - - o . 8 e A =
S 1 4 T e a4+t 4 - HE
3 BESEER== IEBRNE=E IERRREREARERED:
3 - - 1] - s 5 e e o o s 0
™ (2 b e At 4 -t ; —+-1 - + F4 1o
<] [- . N = T REEEER: O
G I T 1- l o 0 B Te
S 3 TR g o B o e A i 1 fe
(=] [1 R e T 1T 3 1 ...n.ll " [. =) 4
D R S - et 4 B G S S N S A - P S N I) B 3
0 0 N r B S 1 e 0 D 0 S 0 A 1
& B R e Sl A e s F1]
m_.\(.l. I S I N (O 0 S) 0 . i N I R H 3
~ B FHIHF] Tm N e O s) D O T T 1 FH Bl
- C1 B A O A I A I T 11 -) G (0 A A O (N .
= G i 1 M{. T S s il £
= 1 1 1 I N A W B A - - 1-15
- | &
5
&
<]
'@
[l

1
EDZCNEEDERRER

(o]

T T e e e T -
1 s - - H,MH, : I K,M HM I 5 G O A s G lewm r11 M H*n
SHHEED Ea: IEEECERSEE: o
5] i I

|8

1=

TR i HH =4 H m E

eel

H
L

_l 2_3_4 oo

B PR F R RE R AP EF R TR A e PR R

CHANNEL
=
—

T e e

DEC7-{294)-1171-M573

START RECORD COL1 ;First line of column heading

RECORD TAPEIN ;INPUT BUFFER FOR TAPE RECORDS , A4 ;Filler
STUNO, D4 ;Student Number , A3,'STU’
LNAME, AIO ;Last Name , Al9
FNAME, Al10 ;First Name , A7, ' NAME
GPA, D2 ;Cumylative Grade Point Average , Al7
SEX, Al ;Sex (M or F) , A3, 'CUM!
LBS, D4 ;Weight (XXX .X) , A8
FEET, D3 ;Height (X.XX) , A6, '"WEIGHT'
, A5
RECORD LPTBUF ;Line printer Output Buffer , A6, 'HEIGHT'
, A3 ;Filler
LPNO, A4 ;Student Number RECORD COL2 ;Second line of column heading
, A9 ;Filler , A4 ;Filler
LPLNAM, AI10 ;Last Name , A3,'NO.!
, A8 ;Filler , Al4
LPFNAM, Al10 ;First Name , A4, 'LAST
, A7 ;Filler , Al2
LPGPA, A2 ;Cumulative GPA , A5,'FIRST'
, A9 ;Filler . A8
LPLBS, A5 ;Pounds , A3, 'GPA'
, A7 ;Filler , A9
LPFEET, A4 ;Feet , A5, " (LBS)!
, Ab
RECORD HEAD ;Heading Line of Report ’ A4, '(FT)'
, A37 ;Filler
, A5, 'DATE v RECORD
DATE, A8,P ;Request date when program.is — v . LINECT,D2,50 -
loaded XX/XX/XX PROC ;BEGINNING OF PROCEDURE
, Al8 ;Filler SECTION
, A10, 'ATTN:COACH! INIT(1,IN,'STUREC',15) ;Initialize the input tape
CALL HEADER ;Print report headings

REPT, XMIT(1,TAPEIN, EOF) ;Read input tape

HEADER,

EXIT,

IF (SEX.NE.'M')
GO TO REPT

iF (GPA.LE.85)
GO TO REPT

IF (LBS.LE.1700)
GO TO REPT

IF (FEET.LE.575)
GO TO REPT

LPNO = STUNO

LPLNAM = LNAME

LPFNAM = FNAME

LPGPA = GPA

LPLBS = LBS,
XXX X!

LPFEET = FEET,
XXX

CALL PRINT

GO TO REPT

XMIT (6, LPTBUF)
INCR LINECT
CALL HEADER
RETURN

IF (LINECT.LT.50)
GO TO EXIT

LINECT =

FORMS(6,0)

XMIT (6,HEAD)

FORMS(6,1)

XMIT (6,COLI)

XMIT (6,COL2)

FORMS(6,2)

RETURN

EOF, FINI()

STOP
END

;**Test to determine

;**if record should be
;**selected. If a test fails
;**read another record.

;Format print

;line by moving

;all fields to

;the appropriate print
;position, Edit feet

;and lbs.

;Print the line
;Read another record

;Print the line

;Add one to line count

;Test if header is fo be printed
;Return to instruction after last
;eall

;Print every header after every
;50 lines

;Set line count to zero

;Skip to new page

;Print Header line

;Print blank line

;Print first header line

;Print second header line

;Print blank line

;Return to instruction after last call
;Rewind input file

;Return control to DIBOL monitor

SECTION 4

Advanced DIBOL Statements

4-1

This chapter explains the DIBOL statements which would be used by
experienced programmers fo:

e Increase system throughput by using print overlap.

e Segment a program which no longer fits in available memory.

o Access source files,

¢ Do rounding and truncation.

ROUNDING
In DIBOL, all decimal values are stored as integers. It is up to the
programmer to keep track of the implied decimal point and to do

rounding and fruncation.,

For example:

RECORD

HOURS, D5,04050 ;40,5 HOURS

RATE, D5, 02535 ;$2.535 PER HOUR
SALARY, D6 ;IN DOLLARS AND CENTS
PROC

SALARY=(HOURS*RATE+500),/1000
Salary is set equal to 010267 which is actually $102.67. The pro-
grammer added 500 to the results of HOURS times RATE in order to

round properly. The statement:

SALARY=HOURS*RATE/1000

would result in SALARY equalling $102.66, which would do truncation

without rounding.

An added complication in rounding is the sign of the number. If the
result of HOURS times RATE is negative, 500 must be subtracted
rather than added. The program to handle positive and negative
numbers is:

RECORD

HOURS, D5, 04050 -

RATE, D5, 02535

SALARY, D6

TEMP, D10

PROC
TEMP=HOURS*RATE
IF(TEMP.LT.0) GO TO TAGI
SALARY=(TEMP-500),/1 000

GO TO TAG2
TAGI, SALARY=(TEMP-500),/1000
TAG2, .

All the statements in the procedure section can be replaced by the
following:

SALARY=HOURS*RATE)"3
The form of this operator is:
decimal variable #n

where n is a decimal constant or decimal variable in the range of 1
to 7. The decimal variable will be rounded and truncated n places.
There is no restriction to the number of # operators in a statement,
The # operator has higher priority than all other arithmetic operators;
therefore, rounding and truncation are performed before all other
arithmetic operations,

The following are some simple examples of # operator usage:

Example Result
X=1234#1 X=123
X=1234#2 X=12
X=1234%#3 X=1
X=5555#3 X=6
1. QUESTION: In the previous example, assume that SALARY
is three decimal places. What is the statement
that stores the product of HOURS and RATE in
SALARY?
*kk
ANSWER: SALARY=(HOURS*RATE)#2
2, QUESTION: What is the value stored in SALARY in the
following example:
SALARY=HOURS*RATE#3
*%k%
ANSWER: 012150 or $121.50. RATE is rounded and
truncated before being multiplied by HOURS,
3. QUESTION: What statements will do the following: round
HOURS to the nearest hour and RATE to the
nearest dollar, multiply the result, and store in
SALARY (assume that SALARY is in dollars)?
ANSWER: SALARY=HOURS#1*RATE#3

0

C

m

STION:

ANSWER:

What is the value stored in SALARY in the
following:

SALARY=HOURS#1 *RATE#3

R%

000120

QUESTION:

ANSWER:

What is the value in HOURS and RATE after
rounding the following:

HOURS=2347
RATE=2347-
HOURS=HOURS#2
RATE=RATE#2

ko

HOURS contains 23 and RATE contains minus
23,

CHARACTER CONVERSION

The * operator is also used to convert a character to its equivalent

internal code and make that decimal number available to the pro-

gram. When # precedes a variable, it is used to obtain the internal

code of the left-most character of the variable. Refer to Appendix A

of the COS 300 SYSTEM REFERENCE MANUAL for a table of internal

COS codes (COS codes are base 8).

6.

QUESTION:

ANSWER:

What is the value of J in the following example
if the internal code for 6 is 27 (base 8) or 23
decimal?

RECORD
[,D1,6
J,D2
PROC
=#

L

J contains 23,

QUESTION:

ANSWER:

What is the value of J in the following case:
kI
k%X

J equals 1. When the number sign follows the
variable, it is used for rounding and fruncation.

QUESTION:

ANSWER:

What is the value of J (the internal code for 7
is 24)?

RECORD
1,D2,67
J,p2 -
PROC
=

k%%

J equals 23, The left-most character in the
variable is converted.

9. QUESTION: What statement will convert the second
character in 1?

*k%

ANSWER: =*1(2,2)

10, QUESTION: What is the value of J in the following three
statements if the decimal code for A is 34, B
is 35, and C is 367

I,A3,'ABC
J,D2
PROC
1 =@,
2 =1(2,2)
3 =*1(3,3)

kkk
ANSWER: In statement 1, J is 34,

in statement 2, J is 35,
In statement 3, Jis 36,

SOURCE FILES

The main use of converting the internal code is when processing
source files. At run time, the user may specify up to seven source
files for input t6 a DIBOL program. The sfafement: ‘

INIT(n, SYS)

will open the first source file. The first record is read with an XMIT
statement, The first two characters in that record contain the line
number and may be converted to decimal with the following statements:

RECORD SRC
LINE, A2
TEXT, A120
RECORD
LINENO, D4
* PROC

.
.
.

LINENO=#LINE*64+*LINE (2, 2)

11. QUESTION: In the procedure section of the above example,

fill in the missing statements which would
initialize the source file and read the first
record.

k&

ANSWER: INIT(, SYS)
XMIT (n, SRC, EOFRTN)

When end-of-file is reached on a source file, the file should be
FINled. The next source file must be INITed before being read.
The INIT statement can be preceded by an ON ERROR statement
which will detect that no files are preseni. A source file can be
processed only once.

12. QUESTION: Write a program which will read from one to
seven source files. The program will display:

LINE FOUND AT RECORD n IN SOURCE FILE n

if a line number of 3458 was found or will
display:

NOT FOUND

if no such line number exists. The message
should be printed near the middie of a CRT

screen,

ANSWER: RECORD
LINE,

EOF,

MISSING,

k%

SRC

A2

Al120

MSG

A21,'LINE FOUND AT RECORD!
D3

Al6,'IN SOURCE FILE'

DI

DISPLAY(1,1,1) ;CLEAR SCREEN

ON ERROR MISSING

iNIT(1,SYS)

RECNO=

INCR SRCNO

XMIT(1, SRC,EOF)

iINCR RECNO

IF (FLINE*64+#LINE(2,2).NE,3458)
GO TO LOOP

DISPLAY(10, 25, MSG)

STOP

FINI(1)

GO TO BEGIN

DISPLAY (10, 30, 'NOT FOUND')

STOP

The Monitor stores tabs in the source file as a single character with
an internal code of 61 decimal. When LISTing a program on the line
printer or terminal, the Monitor converts tabs into spaces.

T S S S 00 o S DY N
-
O
O
:U

13. QUESTION: Write a DIBOL program which will defect tabs
in a source file.

*k%

ANSWER: RECORD SRC

, A2

TEXT, 120A1

RECORD

1, D3

PROC
INIT(1,SYS)

LOOP, XMIT (1, SRC, EOF)

A -

LOOP1, INCR |
IF (*TEXT(1) .EQ.61) GO TO TAB
IF(1.EQ.120) GO TO LOOP
GO TO LOOPI

TAB, ;FOUND A TAB

TRAP

Whenever reports are being printed, the entire computer is tied up
doing that task. Much better use of the computer could be obtained
if it were allowed to do some other task which does not use the line
printer, This is possible in DIBOL with the use of the TRAP statement,
Two tasks may be done concurrently, The line printer is given
priority and interrupts the other task whenever the line printer is free,

The following program prints numbers 1-500 on the line printer while
some other task is being performed:

4-6

RECORD A
N, D3
PROC
TRAP SUB

FORMS(6, 0) ;START LINE PRINTER

;PERFORM TASK

o ece e

LOOP, IF(N.LT.500) GO TO LOOP ;WAIT FOR PRINTING
iTO TERMINATE
STOP
SUB, INCR N
IF(N.GT.500) RETURN
XMIT(,A)
RETURN

In the preceding example, the line printer was started with the
FORMS statement. Some task was being performed. Since the
FORMS statement was preceded by a TRAP statement, the line
printer went fo the statement specified by TRAP when it was free.

A line was XMITed to the line printer and the program then executed
a RETURN statement to resume the tfask, The XMIT statement in the
TRAP routine could have been preceded by another TRAP statement
if, when the line printer became free, the program were to go fo a
different statement.

Note that both the task and the report should be completed before the
program ends, |f the task ends first, it waits in a loop for the
printing to complete,

NOTE

For TD8E DECtapes, print overlap will not take place if more than
78 characters are printed during one TRAP subroutine call. For
TCO8 DECtapes, print overlap will not occur if more than 230
characters are printed,

14. QUESTION: Modify the previous example to print 50 lines i
on one page and then skip to a new page.
* k%
ANSWER: RECORD A ANSWER:
N, D3 '
RECORD
LINE, D2 OLDSEQ,
PROC LINE,
TRAP SUB LPFLAG,
FORMS(6,0) ;START LINE PRINTER
: ;PERFORM TASK ’
. SEQ,
LOOP, IF(N.LT.500) GO TO LOOP ’
STOP
SUB, INCR N
INCR LINE
IF(LINE .EQ .51) GO TO FORMS
SUBI1, TRAP SUB
XMIT(6,0) o
RETURN GETCRD,
FORMS, LINE=
TRAP SUBI
FORMS(6,0)
RETURN
CRDEOF,
15. QUESTION: Write a program which will read cards, verify
that columns 1=5 are in numerical ascending
sequence (ignore out of order cards), and store HEAD
all 80 columns on a file named CARDS found !
on logical unit 1. Concurrent with this task,

print a report. This report is already in print
format in a file named PRINTR on logical unit
2. Print 50 lines per page, a 1-line heading,
and two spaces between heading and detail

4-7

*k %

lines. The heading and detail lines are 70
characters each.

RECORD PRINT

A70

RECORD

D5

D2

D1

RECORD HDG

A70, ...t

RECORD CARD

D5

A75

PROC 2

INIT(3,CDR)

INIT(1,OUTPUT, 'CARDS', 1)

INIT(2, INPUT, 'PRINTR*, 2)

TRAP HEADI

FORMS(6,0)

XMIT(3,CARD, CRDEOF)

IF(SEQ.LE.OLDSEQ) GO TO GETCRD
;IGNORE CARD

XMIT(1,CARD)

OLDSEQ=SEQ

GO TO GETCRD

IF(LPFLAG .EQ.0) GO TO CRDEOF
;LPFLAG=0 IF

;OUT OF CARDS BEFORE REPORT DON

STOP

TRAP HEAD1

FORMS(6,0)

RETURN

HEADT, LINE=
TRAP LPT
FORMS(6,2)
RETURN
LPT, INCR LINE
IF(LINE.EQ .51) GO TO HEAD
XMIT (2, PRINT, LPTEOF)
XMIT(6,PRINT) ;RETURN TO LPT
;ON PRINTER DONE IF NO
;TRAP IS SPECIFIED.
RETURN
LPTEOF,
RETURN

INCR LPFLAG ;PRINTING DONE

CHAINING

In the smallest COS 300 system, programs can be written which re-
quire up to 8K of core memory storage, Occasionally, a program is
written which exceeds this size and will not run with the available
memory, This problem may be overcome by a recently developed
feature in DIBOL called CHAINing, A large DIBOL program may be
separated into two or more smaller programs which are executed
sequentially. Each program is written and compiled separately.
These programs are linked together when they are run by saying:

.RUN PROGO+PROGI1+,.,+PROG7

The first program uses a CHAIN statement to load the next desired
program. Programs that are loaded by a CHAIN statement do not
have their data section cleared (unless specifically instructed), thus
permitting one program to pass information to another without saving
it on a data file.

4-8

The format of a CHAIN statement is:

CHAIN n

where n is a decimal variable in the range 0 to 7 and is the sequence
number of the program as specified in the RUN command.,

16. QUESTION: What can be done when a program is too large
to fit in the available memory?

k%%

ANSWER: The program may be separated into two or more

programs.

17. QUESTION: How are these smaller programs linked
together? :

*kk

ANSWER: The programs are linked together at run time by
specifying the program names in the RUN

command.

18. QUESTION: How can a DIBOL program be loaded from
another DIBOL program?

* &%k

ANSWER: By using the CHAIN statement,

The RUN command specifies which programs will be used. For
example:

.RUN PROG+PROGA+PROGB

The CHAIN statement determines which program will be loaded and 1, D5
run next. If, for example, the statement CHAIN 2 were included in
PROG, it would terminate execution of PROG, load PROGB, and J,

begin execution of PROGB.

The data section is always cleared in a DIBOL program (except when
initial values are specified). However, the data section of any
program loaded by a CHAIN statement is not automatically cleared;
it will contain the values of the previous program. If some fields are
to be cleared, the program must specify:

RECORD ,C

where the
have initial values,

;WORK AREA

LPT1=l
XMIT(6, LPT)
CHAIN 0
END

19, QUESTION:

", C" means clear all the fields in this record that do not

ANSWER:

Look at the following programs. In answering the questions, assume
that the RUN command is:

RUN
oum,

NAME,
DUMMY,

LPTT,

PROG+PROGA

START
RECORD OUT

A5

RECORD

D5

A4, 'FRED"

Ad

PROC

INCR |
IF(1,EQ.10) STOP
CHAIN 1

END

START
RECORD LPT
A5

RECORD

What do PROG and PROGA do?

EX]

PROG increments | by 1 and if | does not equal
10, PROG CHAINs to PROGA which prints the

value of | and then CHAINs to PROG. When
| equals 10, the programs sfop.

20. QUESTION:

;PROCGRAM PROC

ANSWER:

Do the data sections have to be the same size
in each program?

Tk k

No; the data section is only as large as needed.

21. QUESTION:

ANSWER:

;PROGRAM PROGA

4-9

Do the data sections have to match each other
either by records or by fields?

*kk

No; the programmer has complete freedom in
assigning the records, fields, and variable
names in the data sections. However, the in-
formation to be passed from one program to
another must be in the same relative location.
In the previous programs, for examole, | in
PROG could not be passed to | in PROGA if it

were not in the same relative location of the
data section,

22. QUESTION: What is the first statement executed in PROG?
In PROGA?

kkk

ANSWER: The first statement in the procedure section.

23. QUESTION: What are the values of OUTI, |, NAME,
DUMMY, J, and K when PROG is run, when
PROGA is chained the first time, and when
PROG is chained the first time?

kxR

ANSWER:

PROG PROGA PROG
OouT! spaces 1 1
i 1 1 2
NAME FRED undetermined FRED
DUMMY spaces undetermined undetermined
J undetermined 4 undetermined
K undetermined spaces undetermined

File status is lost between CHAIN operations, Data files must be
FINIled before transferring to another CHAIN, Files that are used
for input or output will present some problems since when they are
INITed in the next CHAIN, they will be at the beginning of the
file. The easiest solution to this problem is to use the data file as
an UPDATE file. When transferring to another CHAIN, FINI the
file, save the record number in some common area for use in the
next CHAIN or on retumn to the current CHAIN,

4-10

0005
0010
0015
0020
0025
0030
0035
0040
0045
0050
0055
0060
0065
0070
0075
0080
0085
0090
0095
0100
0105
0110
0115
0120
0125
0130
0135
0140
0145
0150
0155
0160
0165

START ;INVENT - INVOICE DATA ENTRY
RECORD PDET ;LINE ITEMS FOR LINE PRINTER(LPT)
' Ad
PINUM, A7 ;ITEM NUMBER (PART NUMBER)
, A5
PDESC, A24 ;DESCRIPTION
' Ad
PQO, A2 ;QUANTITY ORDERED
' A2
PUNIT, A2 ;UNITS
, A2
PQS, AZ ;QUANTITY SHIPPED
, AlS
PUNITC, A6 ;UNIT COST
' Al
PEXTC, A% EXTENDED PRICE
BLOCK, X
PDETL, A80
RECORD PCUST ;FOR CUSTOMER LINE ON LPT
’ A8
PCUSTN, D5 ;CUSTOMER NUMBER
, A4
PSALMN, D2 ;SALESMAN'S NUMBER
, A9
PCUSTO, A5 ;CUSTOMER'S ORDER NUMBER
, A20
PDATEO, A8 ;DATE ORDERED
' A4
PDATES, A8 ;DATE SHIPPED
, Ad
PSCODE, D1 ;SHIPPING CODE

APPENDIX A

INVOICE DATA ENTRY PROGRAM

0170

0175
0180
0185
0190
0195
0200
0205
0210
0215

0220

ViLY

0225

n22n

\TF ALY

0235
0240
0245
0250
0255
0260
0265
0270
0275
0280
0285
0290
0295
0300
0305

0310
0315
0320
0325
0330
0335
0340
0345
0350

PINVNO,

PINVD,

ISADDRI ;

PADDR2,

4

A5 :INVOICE NUMBER
A6
A8 ;DATE OF INVOICE

RECORD PADDRS
A7

A30 ;LEFT-HAND SIDE
A8

A30 ;RIGHT-HAND SIDE
BLOCK PADRSA, X

A37

;ADDRESS LINES

;CUSTOMER FILE

CUSTNO,
CUSTNM,
CUSTAT,
CUSTA2,
CUSTZP,
CUSTSN,
CUsTDC,
CUSTTX,
CUSTSC,

7

CXKEY,
CXPTR,

;PART FILE

PARTNO,

RECORD CUSTR ;DATA RECORD

D5 ;CUSTOMER NUMBER

A30 ;CUSTOMER NAME

A25 ;ADDRESS LINE 1

A25 ;ADDRESS LINE 2

A5 ;ZIP CODE

D2 ;SALESMAN CODE

D2 ;DISCOUNT %

DI ;TAX %

D1 ;SHIP CODE

D10 ;YEAR-TO-DATE TOTAL
(NOT USED IN THiS PROGRAM)

RECORD CUSTX ;INDEX RECORD
D5 ;KEY (CUSTOMER CODE)
D2 ;RECORD POINTER

RECORD PARTR ;DATA RECORD
A7 ;PART NUMBER

0355
0360
0365
0370
0375
0380
0385
0390
0395

0400
0405
0410
0415
0420
0425
0430
0435
0440
0445
0450
0455
0460
0465
0470
0475
0480
0485
04290
0495
0500
0505
0510
0515
0520
0525
0530
0535

PARTDS, A30 ;DESCRIPTION
PARTUT, A2 ;UNIT TYPE (EA, DZ, BX, ETC.)
PARTUC, D5 ;UNIT COST

RECORD PARTX ;INDEX RECORD
PXKEY, A7 ;KEY (PART NUMBER)
PXPTR, D2 ;POINTER

;TEMPORARY FILE TO HOLD LINE ITEMS DURING ENTRY
OF INVOICE

RECORD TEMPR ;DATE RECORD
TMPITM, A7 ;ITEM (PART) NUMBER
TMPQO, D2 ;QTY ORDERED
TMPQS, D2 ;QTY SHIPPED
TMPUC, D5 ;UNIT COST
TMPUNT, A2 UNIT
TMPDES, A30 ;DESCRIPTION

;FILE TO HOLD TRANSACTIONS

RECORD TRANS
TRCODE, Al ;RECORD CODE (H=HEADER, D=DETAIL)
TRCUST, D7 ;CUSTOMER CODE
TRCORD, D5 ;CUSTOMER'S ORDER NUMBER
TRDATE, D6 ;DATE SHIPPED
TRSALN, D2 ;SALESMAN'S NUMBER

BLOCK, X

Al
TRITM, A7 ;ITEM (PART) NUMBER
TRQO, D2 ;QTY ORDERED
TRQS, D2 ;QTY SHIPPED
TRUC, D5 ;UNIT COST

;FOR KEYBOARD INPUT

RECORD KBDREC

0540
0545
0550
0555
0560
0565
0570
0575
0580
0585
0590
0595
0600
0605
0610
0615
0620
0625
0630
0635
0640
0645
0650
0655
0660
0665
0670
0675
0680
0685
0687
0690
0695
0700
0705
0710

0715

KBDIN,

KBDCH,

CURSOR,
EOS,
EOL,
BEEP,
HOME,

ED52,
ED32,
EDATE,

SPC5,

SPC23,
SPC25,
SPC28,
SPC30,

AXT,
AX2,
AX4,
AX9,
DX7,
TEMP,

CIN,
CINX,
CINL,

COoL,

A30
BLOCK, X
30A1

BLOCK ;CURSOR CONTROLS
D2,00 ;TO POSITION CURSOR
D2,01 ;TO CLEAR SCREEN
D2,02 ;TO CLEAR LINE

D2,25 ;TO BEEP

D2,03 ;TO HOME CURSOR

BLOCK ;EDIT WORDS
A9, XX, XXX XX

Ab, XXX XX

A8, XX /XX /XX

BLOCK ;CONSTANTS
AS

A23

A25

A28

A30

BLOCK ;SCRATCH
Al
A2
A4
Ab
A9
D7
D2

BLOCK ;WORK

D2 ;CURRENT LINE NUMBER

D2 ;CIN+S

D2 ;LAST LINE NUMBER IN CURRENT
INVOICE

D2 ;EXPECTED COLUMN FOR INPUT

0720
0725

0730
0735
0740
0745
0750
0755
0760
0765
0770
0775
0780

0785
0795
0800
0805
0810
0815
0820
0825
0830
0835
0840
0845
0850
0855

0865
0870
0875
0880
0885
0890
0895
0900

INVNO,
NOFIND,

DATORD,
TODAY,
TODAYD,
I

CX,

PX,
TOTPRC,
DISCA,
TAXA,
PAYA,
TCHAR,

LINE,

ITMTAB,
CUSTAB,

~ ~ ~E - - ~ ~ ~ ~ ~

NN N NN

A4
A2, '"NO'

D5 ;CURRENT INVOICE NUMBER |

Al ;NON-BLANK IF CUSTOMER OR
PART NOT FOUND

A8 ;DATE OF ORDER

A8 ;TODAY'S DATE (MM/DD/YY)

D6,D ;TODAY'S DATE (MMDDYY)

D2 ;INDEX

D3 ;INDEX TO CUSTOMER FILE

D3 ;INDEX TO PART FILE

D7 ;TOTAL INVOICE PRICE

D7 ;DISCOUNT AMOUNT

D7 ;TAX AMOUNT

D7 ;PAY THIS AMOUNT

D2 ;TERMINATING CHARACTER FOR
'ACCEPT'

D2 ;LINE COUNT FOR PRINTER

BLOCK ;ROUGH TABLES FOR INDEX FILES

11A7 ;ITEM TABLE

11D5 ;CUSTOMER TABLE

BLOCK ;HEADINGS FOR CRT

A3

A4, 'ITEM!

A5

Al1, 'DESCRIPTION

Al4

A3, 'QTY"

A3

Ad, TUNIT -

A3

A3, 'QTY"

A3

A4, 'UNIT'

A7

A5, 'PRICE'

A-3

0905
0910
0915
0920
0925
0930
0935
0940
0945
1000
1001
1002
1003
1004
1005
1010
1015
1020
1025
1030
1032
1040
1045

1050
1055

1060
1065

1070

1075
1080
1085
1090
1095
1100
1105
1110

A4, 'SHIP!

A3

A4, 'COST!

BLOCK, X

A72

A60

FANVENT =---- INVOICE DATA ENTRY

N N N N NN

HEADI,
HEAD2,
PROC6

;*‘k*************

;SOURCE FiLE INVENZ
sk kX k k% ko k %k k% k% k%
i

;CREATE ROUGH CUSTOMER INDEX

INIT (7, IN, 'CINDEX®, 7

CX=

=1

INCR CX

XMIT (7, CUSTX, RUFCS5)

IF (CX(3,3).NE.1) GO TO RUFCSI
THE 1ST, 11TH, 21ST, ETC RECORD
CUSTAB(I)=CXKEY ;SAVE EVERY 10TH
CUSTOMER IN CUSTAB

INCR |

GO TO RUFCSI

CUSTAB(1)=99999

FINI (7)

RUFCST,

;S THIS

RUFCS5,

;CREATE ROUGH PART INDEX

INIT (9, iIN, 'PINDEX, 9)
I=1

PX=

INCR PX

XMIT (9,PARTX, RFITM5)

RFITMT,

1115

1120

1125
1130
1135
1140
1145
1150
1155
1160
1162
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285

IF (PX(3,3).NE.1) GO TO RFITMI ;IS THIS THE

18T, 11TH, 21ST, ETC. RECORD

ITMTAB(I)=PXKEY ;SAVE EVERY 10TH ITEM IN

ITMTAB

INCR |

GO TO RFITMI
ITMTAB(I=1111117"
FINI (9)

RFITMS,

TODAY=TODAYD, EDATE

;CREATE EMPTY 'TEMP' FILE

;(TEMP HOLDS LINE ITEMS DURING ENTRY OF INVOICE)

1=20
INIT (1,0UT,'TEMP', 10)
XMIT (1, TEMPR)

I=1-1

IF (I.GT.00) GO TO CLEAN
FINI (1)

CLEAN,

;OPEN UP ALL FILES

INIT (1, UPDATE, 'TEMP',10)
INIT (2, OUT, 'ITRANS', 11)
INIT (3,KBD)

INIT (4,TTY)

INIT (5, LPT) -

INIT (6, IN,'CUSTFL', 6)
INIT (7, N, 'CINDEX",7)
INIT (8, IN, 'PARTFL', 8)
INIT (9, IN,"PINDEX, 9)

;ASK IF FORM IS IN PRINTER

ASKT, XMIT (4,'INVOICE FORM IN PRINTER?')

XMIT (3,KBDREC)
IF (KBDIN(1,1).NE.'Y') GO TO ASK1

1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1409
1410
1415
1420
1425

1430
1435
1440
1445
1450
1455
1485
1487

;PUT OUT THE DUMMY ENTRIES TO TEST FORM POSITION

FORMS (5,0)
PINVNO='99999"
PINVD="XX /XX /XX
PCUSTN=9999999
PSALMN=99
PCUSTO="XXXXX'
PDATEO="XX/XX/XX'
PDATES=PDATEO
PSCODE=9
PINUM='XXXXXXX'
PDESC="XXXXXXXXXXXXXXXXXXKXXXXX!
PQO=99
PUNIT='XX"
PQS=99
PUNITC='999,99"
PEXTC='99, 999.99"

ASK2, XMIT (5,PINCHD)
FORMS (5,11)
XMIT (5,PCUST)
FORMS (5, 2)
XMIT (5, PDET)
LINE=16

CALL TOPAGE

;TOP-OF-FORM

XMIT (4,"FORM LINED UP?')

XMIT (3,KBDREC) ;"Y' IS TYPED WHEN
FORMS ARE LINED UP

IF (KBDIN(1,1).NE.'Y*) GO TO ASK2

;ASK FOR FIRST INVOICE NUMBER

ASK3, XMIT (4, "WHAT IS FIRST INVOICE NUMBER?")
XMIT (3,KBDREC)
IF (KBDIN($,30).NE,SPC25) GO TO ASK3
ON ERROR ASK3

1490
1495
1500
1505
1510
1515
1520
1525
1530
1535

1EAN
1 oav

1545

TLNE
1OVyY

1607
1610
1612
1615
1620
1625
1630
1635
1440
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720

NEWINV, DISPLAY (1,1,EOS)

INVNO=KBDIN(I, 5)

hkkhkkhkhkhkkhbhkhkh b ok kb ki khhhhhdrhddhdhrdddhxdhdhhrhhkikx
r

;START A NEW INVOICE

R T T L e e o
4

;CLEAR SCREEN

DISPLAY (1,1,'CUSTOMER NO:')

CINX=1
COl=14

N\

CALL GETKBD

IF (KBDIN(4,30) ,NE_SPC25) GO TO BADCUS
ON ERROR BADCUS

CUSTNO=KBDIN(1, 5)

IF (CUSTNO.LT.1) GO TO BADCUS

CALL GETCUS

IF (NOFIND ,NE.' ') GO TO NOCUST
TRCUST=CUSTNO

;GET CUSTOMER'S ORDER NUMBER

DISPLAY (1,21, 'CUSTOMER ORDER: ')
COL=37

CALL GETKBD

TRCORD=KBDIN(1, 5)

;GET DATE ORDERED

DISPLAY (1,45,'DATE')
CCL=50

CALL GETKBD
DATORD=KBDIN(1, 8)

;GET SALESMAN'S CODE

DISPLAY (1,59, 'SALESMAN ')
AX2=CUSTSN

NINVAC,

DISPLAY (1,68, AX2)

COL=70

CALL GETKBD

IF (KBDIN.EQ. SPC30) GO TO NINV5C

CALL GETD2A

IF (KBDIN(3,30).NE.SPC28) GO TO BADSN
CUSTSN=KBDIN(I, 2)

IF (CUSTSN,LT.1) GO TO BADSN
AX2=CUSTSN

DISPLAY (1,68,AX2)

DISPLAY (1,70,EOL)

TRSALN=CUSTSN

JALL ISWELL WITH INITIAL LINE -- PUT OUT HEADINGS

DISPLAY (3,1,HEAD?1)
DISPLAY (4,1,HEAD2)
CINL=

TOTPRC=

Jhkdkkkkkhkkhkhhkkhkkkkhkkkhhkkhkkhrkkhkdhkhhkhdhkrhhhhhhxdn
s

;START NEW LINE

khkkdhkkhkkhkkhkkhkkkhhhkhkdhkkdhhhhdhhkkhxhhkhrhdrhdxkdhik
I

; GET ITEM NUMBER

7

NINV7,

NINVS,

INCR CINL

CIN=CINL

AX2=CIN

CINX=CIN+5

DISPLAY (CINX, 1AX2)

DISPLAY (CINX, 3,EOL)

DISPLAY (CINX, 4,CURSCR)

COL=4

CALL GETKBD

IF (KBDIN(8,30).NE.SPC23) GO TO BADINO
IF (KBDIN(1,7).EQ. 'TOTAL ') GO TO TOTALI

1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085

IF (KBDIN(1,1).EQ."'-') GO TO CORECT

IF (KBDIN(1,7).EQ.'"RESTART') GO TO NEWINV
IF (CINL.GT.8) GO TO TUMANY
TMPITM=KBDIN(1,7)

PARTNO=TMPITM

CALL GETITM

IF (NOFIND.NE. ' ') GO TO NOPART
DISPLAY (CINX,13,PARTDS)
TMPDES=PARTDS

;GET QTY ORDERED

NINV9,

DISPLAY (CINX, 38, CURSOR)

COL=38

CALL GETD2

IF (KBDIN(1,2).EQ. ' ') GO TO BADQO
TMPQO=KBDIN(1,2)

AX2=TMPQO

DISPLAY (CINX, 38,AX2)

;DISPLAY UNITS

DISPLAY (CINX,45,PARTUT)
TMPUNT=PARTUT

;GET QTY SHIPPED

NINV10,

DISPLAY (CINX,51,CURSOR)

COL=51

CALL GETD2

IF (KBDIN(1,2).EQ. ' ') GO TO BADQS
TMPQS=KBDIN(1,2)

AX2=TMPQS

DISPLAY (CINX,51,AX2)

AX6=PARTUC, ED32
DISPLAY (CINX,55,AX6)

2090
2095
2100
2105
2110
2115
2120
2125
2135
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2192
2193
2195
2200
2205
2210
2215
2220

..2225

2230
2235
2240
2245
2250
2255
2260
2265
2267
2268

TMPUC=PARTUC

AX9=PARTUC+TMPQS, ED52
DISPLAY (CINX,64, AX9)

;INPUT OF LINE COMPLETE

WRITE (1, TEMPR,CIN)
TOTPRC=PARTUC*TMPQS+TOTPRC
GO TO NINvV7

;TOTAL OUT THE INVOICE

TOTALI, CINL=CINL-1
DISPLAY (CINX,1,EOL)
DISPLAY (15,47,'TOTAL PRICE'")
AX9=TOTPRC, ED52
DISPLAY (15,60,AX9)

;COMPUTE & DISPLAY DISCOUNT, IF ANY

IF (CUSTDC .EQ.00) GO TO TOTAL3
DISPLAY (16,47,'DISCOUNT")
AX2=CUSTDC

DISPLAY (16,56,AX2)

DISPLAY (16,58,'%')
DISCA=(TOTPRC*CUSTDC+50),/100

AX9=DISCA, ED52 S

DISPLAY (16,60, AX9)
DX7=TOTPRC-DISCA
DISPLAY (16,60,AX9)
GO TO TOTAL4
TOTAL3, DX7=TOTPRC
DISCA=

;COMPUTE & DISPLAY TAX, IF ANY

2270 TOTAL4, DISPLAY (17,47,'TAX"Y) 2675 PADDRI (20, 24)=CUSTZP

2275 IF (CUSTTX.EQ.0) GO TO TOTALS 2680 CALL PRNTIF
2280 AX1=CUSTTX 2685

2285 DISPLAY (17,51, AX1) 2690 FORMS (5, 4)
2290 DISPLAY (15,52,'%") 2695

2295 TAXA=(DX7*CUSTTX+50)/100 2697 ;PRINT GENERAL INFORMATION LINE
2300 AX9=TAXA, ED52 2698

2305 DISPLAY (17,60,AX9) 2700 PCUSTN=CUSTNO
2310 PAYA=DX7+TAXA 2705 PSALMN=CUSTSN
2315 GO TO TOTALS 2710 PCUSTO=TRCORD
2320 2715 PDATEO=DATORD
2325 TOTAL5, TAXA= 2720 PDATES=TODAY
2330 PAYA=DX7 2725 PSCODE=CUSTSC
2335 2730 XMIT (5,PCUST)
2340 TOTAL6, DISPLAY (19,44, 'PAY THIS AMOUNT') 2735 FORMS (5, 2)

2345 AX9=PAYA, ED52 2740

2350 DISPLAY (19,60, AX9) 2745 TRCODE='H"

2600 ;R R R R EE KKKk Kk 2750 TRDATE=TODAYD
2601 ;SOURCE FILE INVEN3 2755 XMIT (2, TRANS)
2602 ; * %k % %k k kK k %k k % k % % % & 2760 TRCODEleI

2603 2765

2604 ;PRINT OUT THE INVOICE 2770 =1

2605 2775 LINE=15

2610 PINVNO=INVNO 2776 PDETL=

2615 PINVD=TODAY 2777

2620 XMIT (5, PINCHD) 2778 ;PRINT INVOICE ITEMS

2625 2779

2630 FORMS (5, 3) 2780 PLOOP, READ (I,TEMPR,)
2635 2785 PINUM=TMPITM
2637 ;PRINT NAME AND ADDRESS 2790 PDESC=TMPDES
2638 ‘ : 2795 PQO=-TMPQO
2640 PADDRI=CUSTNM 2800 PQS=TMPQS

2645 CALL PRNTIF 2805 PUNIT=TMPUNT
2650 PADDRI=CUSTA! 2810 PUNITC=TMPUC, ED32
2655 CALL PRNTIF 2815 PEXTC=TMPUC*TMPQS, ED52
2660 PADDRI=CUSTA2 2820 XMIT (5, PDET)
2665 CALL PRNTIF 2825 INCR LINE

2670 PADDRI(1,19)= 2830

2835
2840
2845
2850
2855
2860
2865
2866
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2927
2928
2930
2935
2940
2945
2950
2955
2960
2962
2963
2965
2970
2975
2980
2985
2990
2995
3000
3005

TRITM=TMPITM
TRQO=TMPQO
TRQS=TMPQS
TRUC=TMPUC
XMIT (2, TRANS)

I=1+1
IF (1.LE.CINL) GO TO PLOOP
CALL BOTPAG

;TOTAL PRICE LINE

PDETL=

PDETL (59,70)='TOTAL PRICE'
PEXTC=TOTPRC, ED52

XMIT (5,PDET)

INCR LINE

;CUSTOMER DISCOUNT LINE

IF (CUSTDC .EQ.00) GO TO PLOOP2
PDETL(59,70)='DISCO UNT XX %'
PDETL(68, 69)=CUSTDC
PEXTC=DISCA, ED52

XMIT (5, PDET)

INCR LINE

;CUSTOMER TAX LINE

PLOOP2, IF (CUSTTX .EQ.0) GO TO PLOOP3
PDETL(59,70)='TAX X%
PDETL(63,63)=CUSTTX
PEXTC=TAXA, ED52
XMIT (5,PDET)

INCR LINE

PLOOP3, FORMS (5,1)

A-8

3007
3008
3009
3010
3011
3012
3013
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165

;CUSTOMER NET PRICE LINE

PDET=

PDETL(21,35)='PAY THIS AMOUNT'
FORMS(5,-2) ;DOUBLE WIDTH CHARACTERS
XMIT (5,PDET)

PDET=

PEXTC=PAYA, ED52

XMIT (5,PDET)

LINE=LINE+3

CALL TOPAGE

;WAIT FOR OPERATOR

DISPLAY (20,1,0)

CALL GETKBD

INCR INVNO

IF (KBDIN(1,4) .NE.'"END') GO TO NEWINV

FINI (1)
FINI (2)
FINI (3)
FINI (4)
FINI (5)
FINI (6)
FINI (7)
FINI (8)
FINI (9)
STOP

;GET READY TO CORRECT A LINE

CORECT, CINL=CINL-1

KBDIN (1, 29)=KBDIN (2, 30)

CALL GETD2A

IF (KBDIN(1,2),EQ. ' ') GO TO CORCT2
CIN=KBDIN(1,2)

IF (CIN .EQ.0) GO TO CORCT2

IF (CIN .GT.CINL) GO TO CORCT4

3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225

2220

(e 7 Avivy

3235
3300
3301
3302
3303
3304
3310
3311
3315
3320
3325
3330
3335
3336
3340
3345
3350
3355
3360
3362

3365
3370
3375
3380

DISPLAY (CINX,1,EQL)

READ {1, TEMPR,CIN)

TOTPRC=TOTPRC-TMPUC*TMPQS
GO TO NINV8

CORCT2, DISPLAY (20,1, BEEP)

DISPLAY (20,1, 'BAD LINE NUMBER')
CORCT3, CALL ERAWS

GO TO NINV7

CORCT4, DISPLAY (20,1,BEEP)
DISPLAY (20,1,'LINE NUMBER TOO BIG")

ek k% k k * k Kk k k% k x k %k %
14

;SOURCE FILE INVEN4

ek Kk ok k Kk k%X k %k k x x k % %
r

;GO TO TOP OF NEXT PAGE ON THE FORM
TOPAGE, FORMS (5,42-LINE)

LINE=

RETURN

;GET TO BOTTOM OF PAGE

BOTPAG, I=15-|
IF (I .LE.0) RETURN
FORMS (5,1)
LINE=LINE+]
RETURN

;GET AN ITEM FROM THE KEYBOARD
;(IF TCHAR IS CTRL/U (21), CLEAR INPUTTED ITEM &
ACCEPT IT AGAIN

GETKBD, KBDIN=
ACCEPT (TCHAR,KBDIN)
IF (TCHAR .NE.21) RETURN

3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3465
3470

3475
3480
3485
3490
3495
3497
3498

3500
3505
3510
3512
3513
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575

A-9

DISPLAY (CINX, COL,EOL)
GO TO GETKBD
RETURN

;GET A ONE OR TWO DIGIT NUMBER FROM KEYBOARD

GETD2, CALL GETKBD
GETD2A, IF (KBDIN(3,30) .NE.SPC28) GO TO GETD2X
ON ERROR GETD2X
TEMP=KBDIN(1, 2)
IF (TEMP.LT.0) GO TO GETD2X
RETURN
GETD2X, KBDIN=
RETURN

;GET A CUSTOMER RECORD
GETCUS, CX=2

;FIND ROUGH INDEX (WITHIN 10)

GTCUST, IF (CUSTAB (CX) .GT.CUSTNO) GO TO GTCUS2
INCR CX
GO TO GTCUST

;GET EXACT INDEX

GTCUS2, CX=(CX-2)*10

GTCUS3, INCR CX
READ (7,CUSTX, CX)
IF (CXKEY .EQ.CUSTNO) GO TO GTCUS5
IF (CXKEY .LT.CUSTNO) GO TO GTCUS3
NOFIND="X' ;INVALID CUSTOMER NO
RETURN

GTCUS5, CX=CXPTR ;MATCH ON CUSTOMER NO
READ (6,CUSTR,CX)
NOFIND=
RETURN

;GET A PART RECORD

3580
3585
3587
3588
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
- 3710
3715
3720
3725
3730
3735
3740
3745
3750
3755

GETITM,

PX=2

;FIND ROUGH INDEX (WITHIN 10)

GTITMI,

GTITMZ,
GTITMS3,

GTITMS,

IF (ITMTAB (PX).GT.PARTNO) GO TO GTITM2
INCR PX

GO TO GTITMI

PX=(PX~2)*10

INCR PX

READ (9, PARTX, PX)

IF (PXKEY .EQ.PARTNO) GO TO GTITM5

IF (PXKEY .LT.PARTNO) GO TO GTITM3

NOFIND='X"' ;INVALID PART NO

RETURN

PX=PXPTR ;MATCH ON CUSTOMER NO
READ (8, PARTR,PX)

NOFIND=

RETURN

;PRINT ONE OR TWO ADDRESS LINES

PRNTIF,

PRNTFT,

PRNTF2,

IF (PADDR2 .EQ.SPC30) GO TO PRNTFI
XMIT (5, PADDRS)

RETURN

IF (PADDRI .EQ.SPC30) GO TO PRNTF2
XMIT (5, PADRSA)

RETURN |

FORMS (5,1)
RETURN

RAEETEEETEIIT S PR RS ES LR E LA E AR R LT RS
7

;ERROR ROUTINES

R ST T TR LSS LT SRS S AR AR EE SRS EE R
I

;BAD ITEM NUMBER

BADINO,

DISPLAY (20,1,BEEP)
DISPLAY (20,1,'TOO MANY CHARACTERS')

3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945

CALL ERAWS
GO TO NINV8

;BAD CUSTOMER NUMBER

BADCUS,

DISPLAY (20,1, BEEP)

DISPLAY (20, 1,'MUST BE 5-DIGIT NUMERIC')
CALL ERAWS

GO TO NEWINV

;CUSTOMER NOT FOUND ON FILE

NOCUST,

DISPLAY (20,1,BEEP)

DISPLAY (20,1,'CUSTOMER NOT FOUND?)
CALL ERAWS

GO TO NEWINV

;PART NOT FOUND ON FILE

NOPART,

DISPLAY (20,1,BEEP)

DISPLAY (20,1, 'PART NOT FOUND')
CALL ERAWS

GO TO NINVS

;BAD QTY SHIPPED

BADQS,

DISPLAY (20,1,BEEP)

_DISPLAY (20, 1,'MUST BE ONE OR IWOQO.DIGITSY-. -

CALL ERAWS
DISPLAY (CINX,COL,EOL)
GO TO NINVI1O0

;BAD QTY ORDERED

BADQO

DISPLAY (20,1,BEEP)

DISPLAY (20,1,'MUST BE ONE OR TWO DIGITS')
CALL ERAWS

DISPLAY (CINX,COL,EOL)

3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065

GO TO NiNVY
;BAD SALESMAN'S NUMBER

BADSN, DISPLAY (20,1,BEEP)
DISPLAY (20,1,'BAD SALESMAN NUMBER')
CALL ERAWS
DISPLAY (1,70,EOL)
GO TO NINV5A
;BAD SALESMAN'S NUMBER
;TOO MANY ITEMS
TUMANY, DISPLAY (20,1,BEEP)
DISPLAY (20,1,'TOO MANY LINES')

CALL ERAWS
GO TO NINVS

;WAIT FOR A CHARACTER TO BE TYPED
ERAWS, CALL GETKBD
DiSPLAY (20,1,ECL)
RETURN

END/N

APPENDIX B

STANDARD FLOWCHART SYMBOLS

SYMBOLS

].

Input/Qutput Symbol - Represents an input/output function
(1/0O), that is, the making available of information for pro-
cessing (input), or the recording of processed information
(output).

1

for example, the process of executing a defined operation or
group of operations resulting in a change in value, form or
location of information.

Flowline Symbol = Represents the function of linking symbols.
It indicates the sequence of available information and execut-
able operations.

Process Symbol = Represents any kind of processing function; l

B-1

Crossing of Flowlines = Flowlines may cross; this means they

Q32 7 1055,

have no logical interrelation. Example:

X T

Junction of Flowlines - Two or more incoming flowlines may
join with one outgoing flowline. Example:

—

———

Every flowline entering and leaving a junction should have
arrowheads near the junction point. Example:

KA

Comment, Annotation Symbol - Represents the annotation
function, that is, the addition of descriptive comments or
explanatory notes as clarification. The broken line is
connected to any symbol at a point where the annotation is
meaningful by extending the brokén line in whatever fashion
is appropriate.

SPECIALIZED SYMBOLS

Specialized 1/O Symbols may represent the 1/O function and, in
addition, denote the medium on which the information is recorded
or the manner of handling the information or both.

]-

Punched Card Symbol - Represents an I/O function in which
the medium is punched cards.

The following symbols may be used to represent a deck of
cards or a file or cards.

Deck of Cards Symbol. The symbol shown below represents
a collection of punched cards.

File of Cards Symbol. The symbol shown below represents a
collection of related punched card records.

-

Online Storage Symbol - Represents an /O function
utilizing any type of online storage; for example, magnetic
tape, magnetic drum, magnetic disk.

-l

Magnetic Tape Symbol - Represents an I/O function in
which the medium is magnetic tape.

Q

Punched Tape Symbol - Represents an /O function in which
the medium is punched paper tape.

[

Magnetic Disk Symbol - Represents an /O function in which
the medium is magnetic disk. o

Core Symbol - Represents an /O function in which the
medium is magnetic core,

Document Symbol - Represents an |/O function in which the

medium is a printed document.

| |
|

Manual Input Symbol - Represents an input function in
which the information is entered manually at the time of
processing; for example, by means of online keyboards,

switch seftings, push buttons.

Display Symbol - Represents an |/O function in which the
information is displayed for human use at the time of pro-
cessing, by means of online indicators, video devices,
console printers, plotters, and so forth.

10,

1.

Offline Storage Symbol = Represents the function of storing
information offiine, regardiess of the medium on which the
information is recorded.

Communication Link Symbol - Represents information
transmitted by a telecommunication link.

Q

and, in addifion, identify the specific type of operation to be
performed on the information.

1.

SPECIALIZED PROCESS SYMBOLS
Specialized process symbols may represent the processing function

Decision Symbol - Represents a decision or switching-type
operation that determines which of a number of alternative
paths is to be followed.

Predefined Process Symbol - Represents a named process
consisting of one or more operations or program steps that are
specified elsewhere; for example, subroutine or logical unit.
Elsewhere means not this set of flowcharts,

Preparation Symbol - Represents modification of an in-
struction or group of instructions which change the program
itself; for example, set a switch, modify an index register,
or initialize a routine.

Manual Operation Symbol - Represents any offline process
geared to the speed of a human being, without using
mechanical aid.

Auxiliary Operation Symbol - Represents an offline operation
performed on equipment not under direct control of the central
processing unit.

Merge Symbol - Represents the combining of two or more
sets of items into one set.

V

Extract Symbol - Represents the removal of one or more
specific sets of items from a single set of items,

/\

Sort Symbol - Represents the arranging of a set of items info
a particular sequence.,

0

Collate Symbol =~ Represents merging with extracting, that
is, the formation of two or more sets of items from two or more

other sets. :

ADDITIONAL SYMBOLS

].

Connector Symbol - The symbol shown below represents an
exit to or an entry from another part of the flowchart. It isa
junction in a line of flow. A set of two connectors is used fo
represent a continued flow direction when the flow is broken
by any limitation of the flowchart. A set of two or more
connectors is used to represent the junction of several flowlines
with one flowline, or the junction of one flowline with one of
several alternate flowlines.

O

Terminal Interrupt Symbol - Represents a terminal point in a
flowchart, for example, start, stop, halt, delay, or interrupt.

C D

Paraliel Mode Symbo! =~ Represents the beginning or end of
two or more simultaneous operations.,

T ¥ Y)
wiv

GLOSSARY

COS 300 Glossary of Standard Terminology

access time

alphanumeric

algorithm

analysis

annotation

array

The time interval between the instant at
which data is called from storage, and
the instant delivery begins,

A character set that contains letters,
digits, and other characters such as
punctuation marks., The alphanumeric
character set includes ithe upper case
letters A=Z, the digits 0~9, and most of
the special characters on the terminal
keyboard. Two of these characters,
back slash \ and back arrow <, are
illegal in user data fields.

A prescribed set of well-defined rules
or processes for the solution of a problem.

The methodical investigation of a problem,
and the separation of the problem into
smaller relocated units for further de-
tailed study.

An added descriptive comment or ex-
planatory note.

A DIBOL technique for specifying more
than one field of the same length and
type. 5D3 reserves space for five decimal
fields, each io be three digits iong.

2A10 describes two alphanumeric fields,
each to be ten characters long.

GLOSSARY =1

ANSCII

assignment statement

auxiliary operation

batch processing

benchmark

bidirectional flow

binary program

bit

blank

bootstrap

American Nationai Standard Code for
informafion interchange. This is one
method of coding alphanumeric charac-
ters.

See Equals statement.

An offline operation performed by equip-
ment not under control of the central
processing unit.

The technique of automatically executing
£ onvamemmnn aaa L oihab annh §

G Giroup O programs sucn indr 8Gcn is
completed before the next is started.
The DO command stores groups of
commands, allowing "unattended"
system operation.

A problem used to evaluate the perform-
ance of hardware or software or both.

In flowcharting, flow that can be ex-
tended over the same flowline in either
direction.

The form of user's program which is out=
put by the compiler.

A binary digit.

A part of a medium in which no char-
acters are recorded.

A short routine automatically loaded at
system startup time (boofs’rrop switch) to
read in system software.

branch

buffer
bug

CALL

Cathode-Ray Tube
(CRT) Display

central processing unit

character

character string

clear

A program stream operation including
switching where a selection is made be-
tween two or more possible courses of
action, depending upon some related
fact or condition.

A temporary storage area usually used for
input or output data transfers.

A program error, or a hardware mal-
function.

A program statement that transfers control
to a specified subroutine. The subroutine
must terminate with a RETURN statement,
which returns control to the statement
following CALL statement,

A character television display unit of the
operator's console.

A unit of a computer that includes the
circuits controlling the interpretation
and execution of instructions.

A letter, digit, or other symbol used to
control or to represent data, See
Switch character.

A linear sequence of characters,

Setting an alphanumeric field to space
characters, or a decimal field to zeros.
In the Data Definition section of a DIBOL
program 'C' initially clears a RECORD
storage area,

GLOSSARY - 2

code

collating sequence

command
command siring

communication link

COMP

comments

connector

Means many things to many programmers.
(1) The representation of information,
as in ASCI| code. (2) A set of instruc-
tions or statements called "a piece of
code." (3) To code means to write a
program.,

An ordering assigned to a group of records
based on a key item or field within the
records. One possible ascending sequence
is A~Z, 0-9. Then the descending
sequence is 9-0, Z-A.

An operator request for Monitor services;
usually to be executed immediately.

The characters that make up a complete
command.

The physical means of connecting one
location to another for the purpose of
transmitting and receiving information.

The DIBOL compiler program which
translates from source programs written
in DIBOL language to binary programs
which run on the computer.

Notes for people to read, ignored by
the compiler. Optional, following a
semicolon on any statement line.

A means of representing on a flowchart
a break in a line of flow.

daja

data base

data definition

data entry

data independence

data language

A representation of information in g
manner svitable for communication,
interpretation, or processing by either
people or machines. In COS 300

systems, data is represented by characters.

The entire set of data files available for
processing by COS 300 data management
system.

The specification of record formats in

both format programs and source programs.
Gives the length of each field, states
whether it is alphanumeric or decimal,
and may give a field name and initial
entry, Data definitions are stored on

the systems device, and may be referenced

by any other COS 300 program.

The process of collecting and inputting
data into the computer data files. Key-
boarding is either key-to-tape or key-to-
disk. The systems utility program,
BUILD, checks the incoming data for
type and lengih, and writes the records
on DECtape or disk. The operator can
then print the new data on the line
printer to validate the entries.

When data files can be accessed by any
program by referencing a separately
stored data definition, data is considered
to be independent.

The DIBOL procedural programming lan-
guage. Source programs written in this
language are compiled by COMP, pro-
ducing binary programs which are executed
with the Run-Time system,

GLOSSARY -3

decision

decision table

DECtape reel

detail file

device independence

.
The planning, development, and opera-

tion of a computer system to mechanize
its information flows, and make available
the data needed by the user.

To detect, locate, and remove errors or
malfunctions from a program or machine.

Acronym for Digital Equipment
Corporation,

A determination of a future action.

A table of all contingencies that are to
be considered in the description of a
problem, together with the actions to be
taken, Decision tables are sometimes
used instead of flowcharts for problem
description and documentation.

Each 4-inch reel contains 260 feet of
3/4~-inch wide magnetic tape. Each
reel is a logical file of up to 737 blocks
of 512 characters each. A large file
may consist of up to 63 reels.

Same as transaction file.

COS 300 system design permits data files
and progrdams to be stored on either
DECtape or disk. At run-time, the
operator chooses the most suitable, or
available, input and output devices,

PIP commands transfer files from one
standard device to another.,

device names

DIBOL

direct access

directory

disk
display

document

dump

3=character abbreviations are used to name

the 1/O devices.

DT0-DT7 DECtapes 0-7
RKO-RK3 RKS5 disk drives

Y Terminal printer
KBD Terminal keyboard
RDR Paper tape reader
PTP Paper tape punch
CDR Card Reader

LPT Line Printer

Dlgital's Business Oriented Language is a
higher level programming language. It

is an integral part of the DEC DATASYSTEM
Series 300 Commercial Operating System.

The process of obtaining data from, or
placing data into, a storage device where
the time required for each access is in-
dependent of the location of the dafa most
recently obtained or places in storage.

See Systems Directory.

A standard mass storage device giving very

- fost -access-to data files and programs. -

A visual presentation of data.

A medium and the data recorded on it for
human use, for example, a report sheet,
a book.

To copy the contents of all or part of
storage, usually from core memory to
external storage.

GLOSSARY -4

EDP

END

end of tape mark

end of file mark

equals statement

error message

field

file

FINI

Electronic Data Processing.

May be used to terminate DIBOL source
programs. Not required by compiler,

Control characters which mark the
physical end of a DECtape reel. When
an input file is being read, Monitor
detects this EOT mark, and types a
message for the operator asking that the
next reel in this file be mounted. If an
output file, the Monitor asks for another
reel,

Identifies the end of the logical file.

Manipulates data fields in source programs.
Moves data from one field to another,
clears fields, calculates the value of
arithmetic expressions, and formats data,

An indication that an error has been
detected.

A specified area in a data record used for
either alphanumeric or decimal data,

which-cannot -exceed the specified char~ -~

acter length.

A collection of records, treated as a
logical unit.

Source language statement required to
close output files on disk or DECtape.
FINI writes the last record and the
end-of-file mark.

fixed-iength records

flowchart

flowchart text

flowline

format (control) program

function

GO 1O

Records in a dafa file which are all the
same length. See also variable-length
records.

A graphical representation of the defi-
nition, analysis, or solution of a problem
in which symbols are used to represent
operations, data, flow, equipment, etc.

r ols. The
sequence of available
information and executable operations,

On a flowchart, a line representing a
connecting path between flowchart
symbols: a line to indicate a transfer of
data or control,

systems device, required to run a BUILD,
SORT, or UPDATE program. A format
program has two parts, Field Descriptor
Section and INPUT/QUTPUT Section,
which may be stored as two separate
programs {or as one) on the systems device.

A specific purpose of an entity or its
characteristic action,

A source program statement that branches
to another statement in the Procedure
section, usually not to the following
statement which would be the normal
order of execution.

GLOSSARY - 5

head of forms

illegal character

inconnector

information

information processing

INIT

The information printed at the top of a
report. May inciude title, data, page
number and column headings.

A successful comparison of two data
fields, or keys. See also match.

A conditional branch statement in DIBOL
source program, If the relationship be-
tween two variables is frue, the program
branches to the labe! following GOTO.
If not true, the next statement is
executed.

A character that is not valid according to
the COS 300 design rules. DIBOL will
not accept back slash (\) and back
arrow (<) in alphanumeric strings.

A connector that indicates a continuation
of a broken flowline.

The meaning that a human assigns to data
by means of the known conventions used
in its representation.

The execution of a systematic sequence
of operations performed upon data.

This statement INITializes a data file.
In effect, each INIT opens a file, so
that a related XMIT, READ or WRITE

can access records from that file.

input

Input/Output function

instruction

interface

I/O

item

jump

Data flowing into the computer to be justify
processed by a binary program is input

data. When the processed data flows

out of the computer, it is output data,

The making available of information for
processing (input) or the recording of the
processed information (oufpuf).

A program statement that specifies an
executable computer operation.

A shared boundary. A hardware component

which links two devices, or a storage area

accessed by fwo or more programs.

Example: Key
Monitor's Edit Buffer is filled by programs

typed in by the operator but taken out of

the Edit Buffer and stored on the systems

device when a WRITE is given.

An abbreviation for input/output. (See
input/output function.)

A group of fields treated as a unit. label

A set of tasks that makes up a unit of
work for .o computer, By extension, a : ,
job may include all of the necessary data leader
files, systems programs, and instructions
that an operator needs to run a job.
library
A departure from the normal sequence of
executing instructions in a computer.

GLOSSARY - 6

The process of positioning data in a field
whose size is larger than the data. In
alphanumeric fields, the data is left-
justified and any remaining positions are
space-filled; in decimal fields the digits
are right=-justified and any remaining
positions are zero~filled,

An abbreviation for the prefix kilo. When
referring to storage capacity, K=1024 in
decimal notation; otherwise, K=1000.
COS 300 storage capacities are stated in
characters or in record blocks (of up to
510 characters each).

One or more fields within a record used
to match or sort a file. If a file is to be
arranged by custfomer name, then the
field that contains the customer's names
is the key field. In a sort operation, the
key fields of two records are compared,
and the records are resequenced when
necessary .

One or more characters (up to a maximum
of 6) used to identify a statement in a
source program,

The blank section of tape at the be-

ginning of a record.

A collection of related files. For example,
the collection of inventory control files
may form a library, and the libraries used
by an organization are known as its data

bank,

library routine

line printer

linkage

LN

load

loed-and~-go

location

logical unit

logical file

- A proven routine that is maintained in

program library,

A high-speed output device that prints
all the characters of a line as a unit.

Coding that connects two separately
coded routines.

Monitor command requesting automatic
line numbering of a source program or a
format program as the program is typed in.

To enter data or programs into main core
storage .,

An operating technique in which there
are no stops between the loading and
execution phases of a program.

Any place where data may be stored.

A technique for allocating mass storage
facilities at run time. Up to 15 logical
units may be assigned at system startup by
the SYSGEN program. These areas and
their assigned sizes are listed in the
Systems Directory. At run time, when
Monitor prints "MOUNT filename #1"
the operator mounts the file and then

types the togical device number.

A collection of logical records independent

of their physical environment. Portions of
the same logical record may be located in
different physical blocks.

GLOSSARY -7

loop

magnetic core

magnetic tape

main memory

manual input

mass storage device

master file

mateh

medium

<ecuted repeatedly until o terminal
condition prevails. A commonly used
programming fechnique in processing
data records.

The very fast direct-access storage media
used as the main internal memory. Con-
tains 2 characters per 12-bit word. It

is the equivalent of a two character
byte. An 8K core stores up to 16,000
characters.,

A tape with a magnetic surface on which
data can be stored by selective polari-
zation of portions of the surface.

Or main storage. The computer's
primary internal storage.

The entry of data by hand into a device
at the time of processing.

A device having large storage capacity,
such as DECtapes and disks.

A file that is either relatively permanent,
or that is treated as an authority in a
particular job.

To check for identity between two or
more fields.

The material or configuration thereof on
which data is recorded: for example,
paper tape, cards, magnefic tape.

merge

mnemonic code
Monitor

name

nest

NO TRACE

object program
off line
offline storage

on line

To combine records from two or more
similarly ordered strings into another
string that is arranged in the same order.,
The latter phases of a sort operation.

To use one or more characters or symbols
to depict a well-defined concept.
Examples are TTY, RDR and DT4,

COS 300 system control program that
loads and runs other programs and per-
forms many other useful tasks.

The same rules apply to field names,
filenames, and statement labels. A
name must start with a letter and may
use up to 6 significant characters, not
including embedded spaces. A name
identifies the place where a file, a
field, or a statement is stored.

To embed subroutines or loops or data in
other subroutines or programs.

Source language statement. See TRACE.

A compiled program in binary form ready

to be loaded and executed,

Equipment or devices that are not under
control of the computer.

Storage not under control of the central
processing unit.

Equipment or services under control of
the computer,

GLOSSARY -8

online storage

operation

oufconnector

output

overlay

pack

parameter

pass

patch

peripheral equipment

Storage under control of the central
processing unit,

The event or specific action performed
by a logic element.

A connector that indicates a point at
which a flowline is broken for a con-
tinuation at another point.

Data delivered by the computer to
external storage.

The technique of specifying several
different record formats for the same
data. Special rules apply.

To compress data in a storage medium in
such a way that the original data can be
recovered. For example, when characters
are stored on mass storage media, they are
converted to a special é6-bit form,
standard 8-bit ANSCII minus 237, Also,
fields are packed on magnetic media with-
out separating spaces .

A variable that is given a constant value
for.a specific purpose or process.

One cycle of processing a body of data.

To modify a routine or program in a
rough or expedient way.

Data processing equipment which is
distinct from the computer. DECtapes,
disks and card readers are examples.

posifion

precision

problem definition

PROC

process function

processing

program

In a string, any location that may be
occupied by a character,

The degree of discrimination with which

a quantity is stated. For example, a

three digit numeral discriminates among
1000 possibilities. é-place numerals are
more precise than 4-place numerals, But
properly computed 4-place numerals might
be more accurate than improperly computed
6-place numerals.

A term associated with both the statement
and solution phase of a problem and used
to denote the transformations of data and
the relationship of procedures, data,
constraints, environments, etc.

A data language statement that separates
the Data Definition section from the
Procedure section. This statement is re-
quired in every DiIBOL source program.
It is a signal to the compiler that the
Data Definition section has ended, and
that the next data will be the start of the
Procedure part of the program. It does
not appear in the binary program.,

The process of executing a defined
operation. or group of operations.

A term including any operation or com=
bination of operations on data, where an
operation is the execution of a defined
action.

See source program, binary program,
object program, format program,

GLOSSARY -9

program library

programmer

pseudo-random numbers

punched card

punched tape

random access

range

READ

read only memory

A Data Center's organized collection
of computer programs, off line storage
media, and related documentation.

Person who designs, writes, and tests
computer programs.

A sequence of numbers, computed by an
arithmetic process, that is satisfactorily
random for a given purpose. Such a
sequence may approximaie a statistical
distribution such as uniform, normal, or
gaussian,

A card punched with a pattern of holes
to represent data.

A tape on which a paitern of holes or
cuts is used to represent data.

Same as direct access.

The difference between the highest and
lowest values that a quantity or function
may assume. For example, the range of

decimal numbers that the system can
process is =999, 999, 999,999, 999 to
+999, 999, 999, 999, 999.

A source language statement which inputs
records on a direct access device,

An equipment option used to store
permanentiy wired instructions.

real time

record

record (block)

- Use of a computer to guide, control, or

acquire data from a related physical
process during the actual time that the
physical process transpires.,

A collection of related data fields, and
the basic logical unit in data files. A
RECORD statement reserves core storage
areas for DIBOL data language programs.
See also fixed-length and variable-length
records. Maximum record size is 510
characters.

The basic unit of physical data fransfer
used primarily to determine storage
capacity. A block consists of up to 510
characters,

To determine the physical length in
blocks of a data file, the user must add
two additional characters for each record
in the file, and one additional block of
512 characters for each file (to store the
file name). A file must contain an integral
number of blocks. Thus if a user is
planning to create a data file consisting
of 500 records, containing 100 characters
eeach; he must-add-500 times 2; plus 512
or a total of 1,512, This file will contain
51,512 characters. To determine the
number of blocks this file will occupy,
divide by 512: the result is 102,

The length in blocks of programs stored on
the systems device is calculated by
Monitor and printed in the System
Directory in response to DIRECTORY
commands. These programs will require

GLOSSARY - 10

RETURN

reverse direction flow

ROM

security

segment

sequential operation

seriaf-access

4 additional characters per line to store
line numbers.

A DECtape reel contains 737 blocks; an
RKO8 disk carfridge contains 3240.

After CALL, this statement terminates
the subroutine and returns control to the
statement following CALL.

In flowcharting, a flow in a direction
other than left to right or top to bottom.

See read only memory.

Protection of data files. Only programs
with both the proper filename and data
definition can access a file.

To divide o program or file into parfs such
that the program can be executed without
the entire program being in internal storage
at any one time,

Performance of operations, such as
record processing, one after the other.

-~ The process of getting data from or putting

data into storage where the access time is
dependent upon the location of the data
most recently obtained or plaeed in
storage. Most magnetic tapes are
serially accessed, but DECtapes have
fixed addresses, and programs have fast,
direct access to their DECtape records.

sign

significant digit

simulate

SORT

source program

space fill

soecial character

START

statement

Positive numbers do not require a sign,
but negative numbers are prefixed with
the minus sign (-).

A digit that is needed for a specific
purpose, especially a digit that must be
kept to preserve a certain accuracy or
precision, Leading zeros are not
significant,

A computer program that represents the
behavior of another system. An example
would be a program which simuiates the
behavior of a market when a new product
is introduced.

A utility program which resequences data
records within a file into ascending or
descending sequence,

A program written in DIBOL data language.,
These musi be iransiated by the system
compiler into DDS 300 machine language
before use,

To fili the remaining character positions
in an alphanumeric field with space

characters.,

A graphic character that is neither a
letter, nor a digit, nor a space character.

Optional source language statement at
beginning of program.

An instruction in a source program.

GLOSSARY - 11

STOP

string

stripping

| PR &
supscripts

switch character

symbol

syntax

system

system device

A source ianguage statement which
terminafes a program run, returning
control to Monitor,

A linear sequence of characters.

The use of a line across the upper part of
a flowchart symbo! to signify that a
detailed representation of a function is
located elsewhere in the same set of

a ies) arranged in
an array. This group or array is referred
to by name. Each individual quantity in
the array can be referred to in ferms of
its place by a unique subscript following

the array name.

A single letter specifier in a command.
Often follows a slash terminating command.

A representation of something by reason
of relationship or convention.

The rules governing the structure of a
language.

An organized collection of software and
hardware components, documentation,
and methods required to accomplish a
specific objective.

A mass storage area reserved for systems
Y
programs. This is always logical unit 0,

Systems Directory

tape drive

terminal

TRACE

transaction file

transmit

utility program

variable

A list of systems programs on the systems
device with logical device assignments
and other useful information.

A device that moves tape past a head.
Synonymous with tape transport.

A point in a system at which data can
either enter or leave.

A source language statement, helpful in
debugging, which provides a record or
program branches as a program is run.
The NO TRACE statement disables the
TRACE feature.

A file containing relatively transient

data to be processed in combination with
a master file. For example, in a payroll
application, a transaction file indicating
hours worked might be processed with a
master file containing employee name and
rate of pay. Synonymous with detail file.

To send data from one location and to
receive the data at another location,

A group of systems programs which perform— -

common services, and require format
programs, Examples are BUILD, SORT,
PIP and PRINT.

A quantity that can assume any of a given
set of values.

GLOSSARY =12

variable=length record

verify

word

WRITE

XMIT

zero fill

A file in which the data records are not
uniform in length. Specified by V in an
INIT statement. Variable length records
may be created by DIBOL source programs
only, but cannot be processed by utility
programs, and direct access to such
records by systems programs is impossible.

To determine whether a transcription of
data has been accomplished accurately.

A string of 12 binary bits, representing
two characters.

A source language statement which out-
puts a record to a direct access device.

A source language statement which out-
puts or inputs a record.

To fill the remaining character positions
in a decimal field with zeros.

HOW TO OBTAIN SOFTWARE INFORMATION

Announcementg for new and revised software, as well as programming
notes, software problems, and documentation corrections, are published
by Software Information Service in the following newsletters.

DIGITAL Software News for the PDP-8 and PDP-12
DIGITAL Software News for the PDP-11
DIGITAL Software News for 18-bit Computers

These newsletters contain information applicable to software available
from DIGITAL'S Software Distribution Center. Articles in DIGITAL
Software News update the cumulative Software Performance Summary which
is included in each basic kit of system software for new computers.
To assure that the monthly DIGITAL Software News 1is sent to the
appropriate software contact at your installation, please check with
the Software Specialist or Sales Engineer at your nearest DIGITAL
office.

Questions or problems concerning DIGITAL'S software should be reported
to the Software Specialist. If no Software Specialist is available,
please send a Software Performance Report form with details of the
problems to:

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachusetts 01754

These forms, which are provided in the software kit, should be fully
completed and accompanied by terminal output as well as listings or
tapes of the user program to facilitate a complete investigation. An
answer will be sent to the individual, and appropriate topics of
general interest will be printed in the newsletter.

Orders for new and revised software manuals, additional Software
Performance Report forms, and software price lists should be directed
to the nearest DIGITAL field office or representative. USA customers
may order directly from the Software Distribution Center in Maynard.
When ordering, include the code number and a brief description of the
software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user
library and publishes a catalog of programs as well as the DECUSCOPE
magazine for its members and non-members who request it., For further
information, please write to:

Digital Equipment Corporation
DECUS

Software Engineering and Services
Maynard, Massachusetts 01754

DEC-08-0CSTA~-B-D

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve
the quality and usefulness of its publications. To do this effectively
we need user feedback--your critical evaluation of this document.

Did you find errors in this document? If so, please specify by page.

How can this document be improved?

How does this document compare with other technical documents you
have read?

Job Title ‘ Date:
Name : Organization:
Street: __Department:

City: State: Zip or Country

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD. MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltlall

Digital Equipment Corporation
Software Information Scrvice
Software Engineering and Services
Maynard, Massachusetts 01754

dlilgliltiall

DIGITAL EQUIPMENT CORPOR4TIO> #lN

