
INTRODUCTION
TODIBOL

Digital's Business ... Qriented Language

A Programmed Text

-------~~o~oomo---------

DEC-08-0CST A-B-D

DIBOL

Self-Instruction Manual

(AN INTRODUCTION TO DIBOL)

For additional copies of this manual, order DEC-08-0CSTA-B-D from
the Software Distribution Center, Digital Equipment Corporation,
Maynard, Massachusetts 01754

Copyright © 1972, 1973 by Digital Equipment Corporation

The material in this manual is
for information purposes and is
subject to change without notice.

The following are registered trademarks of Digital Equipment
Corporation, Maynard, Massachusetts

DEC
FLIP CHIP
DIGITAL
DIBOL
OMNIBUS
DECmagtape

PDP
FOCAL
COMPUTER LAB
LAB8/e
DECtape
UNIBUS

First Printing, July 1972
Revised May 1973

CONTENTS

INTRODUCTION
Developments in Small Business Data Processing
Commercial Data Processing Terminology
DIBOL - A Programming Language

Eight Types of Statements
Language Features

Commercial Operation System
COMPILER
'Monitor &
Editor
SYSGEN
PIP
Data File Creation and Maintenance Programs

BUILD
UPDATE
SORT

Uti Ii ty Programs
CREF
DAFT
MARK
BOOT
PATCH

Manual and System Conventions

BASIC SOURCE LANGUAGE PROGRAMMING
Flowcharting - frames 1-5
A DIBOL Coded Program - frames 6-25

Sample Problem Summary
Basic Operating Steps - frames 26-30

DiBOL SYNiAX
Data Section

START, PROC, END - frames 1-5
RECORD - frames 6-12
P OPTION - frame 13

Introduction - 1
Introduction - 3
Introduction - 5
Introduction - 5
Introduction - 6
Introduction - 7
lntioduction ~ 7
Introduction - 7
Introduction - 7
Introduction - 8
Introduction - 8
Introduction - 8
Introduction - 8
Introduction - 8
Introduction - 8
Introduction - 9
Introduction - 9
Introduction - 9
Introduction - 9
Introduction - 9
Introduction - 9
Introduction - l 0

1 - 1
1 - 2
1 - 2
1 - 8
l - 9

'"' ., L-1

2-2
2-2
2 - 2
2-5

iii

D OPTiO N - frame 14
iNiTlAUZATiON-SPECiFiCATiON - frames 15-20
RECORD, X (overlay) - frames 21 -27
Data Section Summary

Procedure Section - frames 28-29
IN IT - frames 30-35
XM IT - frame 36
FINI - frame 37
Data Manipulation - frames 38-50

ALPHA=ALPHA - frames 40-41
DEC lf'v1AL=DEC lMAL ~ frames 42~44
Decimal to/from Alpha - frames 45-46
Decimal to Alpha with Format ~ frames 47-50

GO TO - frames 51 -55
IF - frames 56-58
CALL, RETURN - frame 59
STOP
lnventor1 Problem Explanation
INCR - frame 71
FORMS - frame 72
TRACE, NO TRACE - frames 73-74
ON ERROR - frames 75-76
ACCEPT - frames 77-78
DISPLAY - frames 79-80
READ, WRITE - frame 81
Inventory Records Problem Explanation
Section Summary

A PROGRAMMING EXERCISE

ADVANCED DIBOL STATEMENTS
Rounding - frames 1-5
Character Conversion - frames 6-10
Source Files - frames 11-13
TRAP - frames 14-15
CHAINING - frames 16-23

2-6
,... ,
L-o
2-8
2 - 11
2 - 12
2 - 12
2 - 14
2 - 15
2 - 15
2 - 16

2 - 19
2 - 20
2 - 22
2 - 24
2 - 25
2 - 26
2 - 28
2 - 29
2 - 29
2 - 30
2 - 31
2 - 32
2 - 33
2 - 35
2 - 36
2 - 37

3 - 1

4 - 1
4-2
4 - 3
4-4
4-6
4-8

APPENDIX A - Invoice Data Entry Program
APPENDIX B - Standard Flowchart Symbols

GLOSSARY - COS 300 Glossary of Standard Technology

FOLDOUT ILLUSTRATIONS

Foldout #1 Sample Program Flowchart
Foldout #2 Figure 1-1, Basic Operating Steps
Foldout #3 Sample Program #2
Foldout # 4 Sample Program #3

A - l
B - l

Glossary - l

l - 7
1 - 9
2 - 27
2 - 35

iv

INTRODUCTION

In this self-instruction text you will learn the fundamentals for using
Dlgital 1s Business Oriented Language - DIBOL. This compiler
language is used tO-describe-data-processing problems for the DEC
DATASYSTEM 300 series computers. DIBOL is an integral part of the
Series 300 ~ommercial Operating ~stem - COS 300.

When you complete this course you should be able to program work­
able solutions to real problems in Billing, Accounts Receivable,
Sales Analysis, Inventory Applications, and others. Given an appli­
cation problem, you should be able to use DIBOL to develop a source
computer program that can be compiled and run on the COS 300
System.

However, there are elements of the COS 300 software system that are
not taught in this manual. You will find these in the COS 300 System
Reference Manual (Order Number DEC-08-0COSA-E-D).

This course presents sets of instructions, questions and answers in
frames. Each question is foiiowed by the correct answer. Foid-out
pages are provided so that you may refer to examples of flowcharting,
coding, problems, etc., as you progress. Additional problems are
supplied to reinforce your knowledge through application. A summary
is provided at the end of each chapter. AG lossary of terms is in­
cluded for quick reference. Although this programmed instruction
will give you a working knowledge of DIBOL, you should try to
compile and run your first programs where computer facilities exist.

An interpretation of course completeness is based on our definition of
a programmer - a person who prepares, or is responsible for, problem­
solving procedures. The information presented in this text was pre­
pared for these individuals, in a small to medium sized business
environment, who of necessity may have to wear many 11 hats 11

•

The programmer's hat cliche has significance for the student in that
it suggests the proper way of approaching the subject information.

I

INTRODUCTION - 1

The programmer must be a specialist in more than one area. In his
preparations he should assume the roles of a job and program analyst,
a computer operator, and most important, the end user of the com­
puter application~

The student should allow himself enough time to complete the course
before attempting applications programming. In the final analysis,
time and money will be saved by proper utilization of the computer.

DEVELOPMENTS IN SMALL BUSINESS DATA PROCESSING

~lectronic ~ata f_rocessing (EDP) technology has advanced to the
point where most businessmen can realistically consider automating
repetitious paper work. At present, thousands of smaH businesses
are inundated with paperwork, payrol I, inventory control, accounts
receivable processing, and numerous other tasks that can be rapidly
and accurately processed by computer.

Un ti I recently, these businesses had no alternative to the service
bureau since the cost of in-house computer configurations were pro­
hibitively expensive. The total system power of a computer which
wouid have cost a haif-miilion doiiars a decade ago can now be
encompassed into a mini-computer desk configuration (DEC
£>ATA,?_YSTEM 300) for less than $30,000. -

The technological milestones beginning in the 19601s were the shifts
from vacuum tubes to transistors, then to Integrated Circuits (IC's),
and most recently to Medium-Scale lntegrotion (MSi). The size of a
computer's Central Processor (CP) was directly related to these
hardware advances.-

The dramatic reduction in size and cost-per-circuit for the computer
hardware is only part of the array of benefits. A new technology has
emerged and matured as a direct result of millions of dollars worth of
R & D resources expended by large corporations. This transition has
been from tabulating equipment (unit record punched card tabulators -
dedicated to wired single program operation) to the outstanding
modu farity and resultant flexibility of computer software.

Software is defined as computer control programs which are stored
and/or loaded into the computer's memory banks. The program's
instructions are automatically scanned by the computer's central pro­
cessor to control job operation.

Not only has software emerged as an integral part of a computer con­
figuration, but its usage has formulated specialized programs and
procedures. These include some of the following:

Implementation Language - programming language by which
business data processing procedures may be precisely described
in a standard form.

System Monitor - a control program to supervise and verify the
correct operation of all running programs including operator/
system interaction.

Utility Programs - standard service or housekeeping programs
used to: sort and merge data, interchange programs and files
which reside on various peripheral devices, update and build
data files, edit and trace data, etc.

Combining the above, we have an operating system - an organized
collection of techniques and procedures for operating a computer.
For the DEC DATASYSTEM, they are part of a software paykage called
the fommercial Qperating ~stem (COS). These job application
software tools no longer require vast amounts of costly storage, nor
does access to them run into minutes as it did with prior computer
generations.-

Using the hardware and standardized OS programs offered by Digital
~quipment forporation (DEC), the user can customize an application
system by writing programs to conform to the way his company is con­
ducting its business. He must carefully analyze his company's EDP
requirements as a prerequisite to his system design. This methodical
planning will contribute to a more rapid new system startup.

Initially his programs may be satisfactory, but they soon may become
obsolete as procedures change to better utilize the computer. The

in-house programmer should start slowly, developing the most con­
venient and practical programs first. He should also be prepared to
continually modify programs and al low for new programs and system
features. In this way he will be more responsive to the requirements
of management.

The programmer should also make extensive use of the "conversa­
tional mode" type of program. Data should be entered on line using
the Cathode Ray Tube (CRT) display terminal (video screen with key­
board). The program should ask the operator for the required data,
and then accept the answer. As much as possible, answer parameters
should be built into the program. As an example, if the question
from the computer is 11 number ordered? 11

, an answer larger than the
current stock level, or an answer that depletes stock below the
reorder point, should produce a warning message in addition to the
normal accounting within the program. Additionally, the program
could produce an instant-echo for confirmation of back-order
adjustments.

Since the interactive terminal al lows the operator to check and make
corrections to the data before it is transferred to the DECtape or
disk, data can be visually validated. Obviously, conversational
mode programs allow less-experienced operators to produce accurate
records. A good system design will allow the existing clerical staff,
under the guidance of the programmer (via displayed messages and
operating procedures), to operate the computer. An accounts re­
ceivable clerk should continue doing receivables, while the person
disbursing che_cks sho_uld .continue doing .that job•- Employees can use
the computer as a sophisticated tool to make each job easier and
more pleasant.

The imaginative programmer can help job operation by preparing both
batch and interactive programs and procedures. Batch processing is a
sequential job stream procedure that uses an accumulation of related
job units. It allows both data items and programs to be collected
into groups for faster processing. Batch processing can be used to
advantage for those cyclical or repetitious jobs. This technique will
save the operator time while making maximum use of the computer.

INTRODUCTION - 2

COMMERCIAL D,.6..T,.6.. PROCESSING TERMINOLOGY

In order to describe and build better business systems, you should be
familiar with the following applications terminology:

AUDIT - An operation or check designed to ascertain the validity of
data. The validity of data is verified through the use of
check sums, hash totals, maximums, minimums, redundancies,
cross totals, and various other methods. The AUDIT is used
to insure: that accounting records will not be destroyed,
that the computer system wi 11 not incorrectly read or pro­
cess data; or that someone will not manipulate data to
produce wrong resu Its. The report generated from an audit
is called the AUDIT TRAIL, e.g., for a payroll application
an AUDIT TRAIL for the validity of input data would contain
error conditions, such as time records for terminated em­
ployees; employees with no time records, etc.

BACKUP - Pertains to equipment or procedures that are available for
use in the event of systems failure and destroyed data files
on tape or disk. The provisions for adequate BACKUP
facilities and data files are an important factor in the
design of all data processing systems, e.g., copy of a disk
file on magnetic tape.

DAT A BASE - Data records that must be stored in order to meet the
information processing and retrieval needs of an organization.
The term imp I ies an integrated file of data used by many
processing applications, in contrast to an individual data
file for each sepdrafe appticotion.

EAM - Electronic Accounting Machine, pertains to data processing
equipment that is predominantly electromechanical such as:
keypunch, collators, sorters. A computer is classified as
EDP equipment. EAM equipment is also known as unit
record or Tab equipment.

I

INTRODUCTION - 3

FIELD - A subdivision of a record containing one item of information,
e.g., an employee's weekly time card containing his identi­
fication number in one FIELD.

FILE - A collection of related records. A FILE is usually either a
transaction FI LE or a master FI LE.

FILE LABEL - A LABEL that identifies the FILE. An internal FILE
LABEL is recorded as the first record of a file and is machine
readable. A FILE LABEL is a control feature, e.g., insures
that the operator has the proper master fl ie for updating or
prevents the operator from mistakenly using a master file as
a scratch file.

FILE MAINTENANCE - The updating of a file to reflect the effects
of non-periodic changes, such as adding, changing, or
deleting data, e.g., addition of a new employee to the
employee master file.

FILE PROCESSING - The periodic updating of a master file to reflect
the effects of current data, usually transaction data con­
tained on a transaction fl ie, e.g., weekiy payroi i run that
updates the payro 11 master fit e •

FIXED LENGTH
RECORD - A file containing a set of records, each of which contains

the same number of characters. (Contrast with variable
I ength records) •

IN DEX FtlE - Pertains to a disk file that is organized somewhat I ike
the books in a I ibrary, i.e., an index tel Is where the
record is stored. The index contains two facts about each
record in a file. First, the contents of the record's key
field appears in the index. A key field contains data that
uniquely identifies a record and is the basis for the file's
sequence, e.g., customer number. The disk address
represents the location on the disk where the record can be

COMMERCIAL DATA PROCESSING TERMINOLOGY (cont.)

found. An index label contains the same number of entries
as there are records in the file.

Various terms associated with processing an indexed file are:
index sequential processing, indexed access method, address
routing method. These files may be processed sequentia I ly
or in random fashion.

INTEGRATED DATA
PROCESSING - Data processing by a stream that coordinates a num­

ber of previously unconnected processes in order to improve
overall efficiency by reducing or eliminating redundant
data entry or processing operations, e.g., a billing result
file (data base) containing information from incoming cus­
tomer orders is used for: inventory (calculated usage),
accounts receivable (generate statements), and sales
analysis applications. Integrated data processing is also
known as management information systems (Ml S).

KEY - One or more characters used to identify a particular record,
especially used for sorting and merging operatings, e.g.,
an inventory part number and employee number. There may
be multiple key fields in a record; e.g., a salesmen's
commission file may be sorted by salesman within branch,
within district, within region.

MASTER FI LE - A reference file of semi-permanent information which
is usually updated periodically by a transaction file, e.g.,
an employee MASTER FI LE that contains a record for each
employee. Each record would contain an employee number
field, name field, address field, pay rate field, year-to-date
gross pay file, etc. The year-to-date gross pay field would
be updated each pay period.

INTRODUCTION - 4

RECORD - A group of related information items treated as a unit.
A record is divided into one or more fields; e.g., an
inventory record for each commodity might contain the
fol lowing fields:

PRODUCT NUMBER (A FIELD)
DESCRIPTION
NUMBER ON HAND
NUMBER ON ORDER
MINIMUM BALANCE
UNIT COST
NUMBER USED YEAR-TO-DATE

RANDOM ACCESS
FILE - A mass storage device capable of accessing any record

directly without processing al I prior records. A data file
arranged on a randomly generated record address -- access
to a record is accomplished by calculation of a formula
based on a key in record. No index is required for this
type of file.

SEQUENTIAL
FI LE - Pertains to a file where records are in ascending or

descending sequential order by an identification key, e.g.,
inventory file sequenced by part number. SEQUENTIAL
FI LES are for batch processing in which the files are on
cards or DECtape. However, disk files may also be
seqi.Jentia1.

TRANSACTION
FI LE - Records of data to be processed with master file record in

order to update the master file, e.g., a file containing all
of the daily transactions in an inventory control application,
such as quality of items received, shipped or ordered, which
update the inventory master file reflecting these changes.
A transaction file is also known as a detail file.

COMMERCIAL DATA PROCESSING TERMINOLOGY (cont.)

VARIABLE LENGTH
RECORDS - A file containing a set of records in which the number

of characters of each record may vary in length. Usually a
VARIABLE LENGTH RECORD is preceded by the character
count for that record.

As a small business computer with COS, the DDS300 provides
solutions for users with varied business scopes and backgrounds. The
implementation language for COS 300 is DIBOL. A general overview
fol lows to provide the student and/or business manager insight into
those system elements used for program creation.

I

INTRODUCTION - 5

DIBOL - A PROGRAMMING LANGUAGE

DIBOL - Dlgital Business Oriented Language - is a general purpose
higher level commercial programming language used by the program -
mer to implement commercial applications. Its compiler is an integral
part of COS 300. With the COS 300 DIBO L compiler, the system
generates application programs in computer machine language
(MACRO instructions) to run on any DDS 300 computer.

A DIBOL program is divided into two sections, a data definition
section and a procedure section. The data section states (tags) a
data file's record information structure in program operable units. In
the procedure section, the language consists of a select group of
English-like procedural verbs, each with comprehensive arguments.
The verbs: PROC, START, END, ON ERROR, INIT, FINI, INCR,
TRACE, NO TRACE, TRAP, XMIT, READ, WRITE, GO TO, IF,
CALL, RETURN, CHAIN, ACCEPT, DISPLAY, FORMS, and STOP,
plus data manipulation statements, provide the user with easy to use
and powerfu I statements for the development of his programs.

There are eight types of statements:

Compiler Statements which tell the compiler the nature of
the statements to fol low.

Device Control Statements which prepare data files (open
and close) for use by the application program.

Doto Specifico-tion Statements which desc~tbe the type,
size and iocation of data eiements.

Data Manipulation Statements which control calculations
and movement of data within memory.

Data Accept and Display Statements which define the
cursor coordinates used to format data entry and display
on the CRT terminal.

DIBOL - A PROGRAMMING LANGUAGE (cont.)

Control Statements which govern the sequence of execution
of statements within a program.

Input/Output Statements which control data movement
within memory or between memory and peripheral devices.

Debugging Statements which trace program execution during
test runs.

Language Features

Simple English-like Procedural Statements. Meaningful expressions
to the user and the system's program compiler (not assembly language).

ANSCll Character Sub-set (specified by the American National
Standards Institute. ANSCll character code ~sed as a Standard Code
for 0formation ~terchange).

Multi-1/0-Level Data Access by File, and Record. Direct access,
at the logical (program) level, to data stored on disk or DECtape.

Data Manipulation via: Record, Field and Subfield. Statements to
clear data fields, move data between fields, convert decimal data
to/from alphanumeric data, and format data, etc.

Arithmetic Expression. Performs division, multiplication, addition,
subtraction, and rounding.

Array Handling. Any part of an array (series of items) can be accessed
in a program statement by I isting the position of the item. Subscripting
notations (expressions in parentheses) are used to specify items in a
list or table according to DIBO L rules.

File Initialization. Statements assigning specified peripheral Input/
Output channels to logical or physical devices.

INTRODUCTION - 6

Branching. A computer operation similar to switching, where a
selection is made between two or more possible courses of action
depending on a related fact condition (IF and GO TO statements).

Many Levels of CALL Nesting. Statements which include routines
to cal I other routines.

Tracing. Trace statements may be placed at strategic locations
within a program to provide a usage correlation (source line numbers)
between statement execution and the intended source program logic.

Editing. When transferring data, field editing occurs with left and
right justification, padding and "check protect" features.

Cursor Control. Statements which provide display and data entry in
a particular applications format on the CRT Terminal.

Forms Control. The Forms statement is used to automatically position
business forms to be printed on the DEC DATASYSTEM Line Printer.

COf..AMERC!AL OPERATING SYSTEM

COMPILER

The COS 300 Compiler enables the DIBOL user to compile a source
program utilizing up to 28K word locations of memory (56,000
characters) for his application system. Input for the source program
can originate from the console keyboard, from cards, from DECtape
or disk, and from paper tape. Source program inpur is implemented
via the COS 300 Monitor which provides the user both input editing
and generation of job control statements. The standard output from
compilation resides on the System's mass storage device in executable
format and may be stored by name in a user's program library.

As a mass storage resident system, DIBOL provides the facilities for
random storage and direct retrieval of programs and data on both
DECtape and cartridge disk. The system also provides the abi I ity to
dynamically divide DECtape and disk storage into fifteen logical
units for data file storage.

Each cartridge disk can contain up to 404 directly accessible segments
of 8, 000 bytes each. The COS 300 system handles storage capacities
ranging from 377, 344 character DEC tapes to 3 .2 mill ion character
disk cartridges. This al lows a simple but comprehensive means for new
users to uti I ize state-of-the-art cartridge disk storage for their on-I ine
data base.

At compile time, the minimum configuration required to operate is
the DEC DAT ASYSTEM Mode1 320 ot1d resident COS 300 software.
At run time the user's applications programs can utilize a wide range
of input/output facilities, full internal capacity, and through-put of
any model in the DDS 300 series. This includes Models 320, 330,
and 340.

Several COS 300 system programs are utilized with the compiler in
the process of creating user programs.

I Monitor

COS 300 provides program operation master control via a System
Monitor. To facilitate memory economy the Monitor resides in two
segments: one core resident, and the other residing on the system
device. Together these segments provide the fol lowing facilities
through a comprehensive set of Monitor commands used for:

• Program Loading,
• Editing,
• File Directories,
• Operation Messages.

The Monitor contains all the system 1/0 handlers required for efficient
throughput and a high degree of program/device independence. The
system provides a specialized software handler for each peripheral
device on the DEC DATASYSTEM.

The assignment of logical units to physical mass storage devices pro­
vides greater utilization of the storage area. This device independence
is avai I able at run time. Any mass storage device can be specified for
1/0 and program execution using the devices specified via SYSGEN.

Editor

Editing consists of a I ine editor as part of the Monitor. It is an
operator/system interactive editor providing a "scratch-pad file 11 for
source program entry. Input statements consist of line numbers fol lowed
by the information to be inserted, deleted or changed. The COS 300
editor provides O\J·tomotic sequencing and resequencing of I ine numbers
by simple commands. Input for the editor can originate from the
console keyboard, cards, paper tape, DECtape, or disk. Output from
the editor can be a I isting of a file on the console display or the I ine
printer or paper tape. In the program development stage the user can
save and quickly recal I programs from the system device (DECtape or
cartridge disk). In an operational mode, the user can batch commands
to the Monitor into a file to be executed as a job stream.

INTRODUCTION - 7

COMMERCIAL OPERATING SYSTEM (cont.)

SYSGEN (SYStem GENeration)

A conversationa I uti I ity program that allows the user to configure or
modify the current system using simple Eng Ii sh-type statements. It
provides the fol lowing optional features:

Configures the 1/0 hand I ers in the system,
Takes new logical unit assignments from the
operator's terminal,
Prints a table of current logical unit assignments.

The user can specify the type of I ine printer used and where the
system is to reside, on DECtape or disk. The user can also specify
the number of columns used on the line printer, either 80 or 132
columns. SYSGEN provides the facility to transfer the system to
another device for installation startup.

PIP Peripheral Interchange Program

A utility program which provides file transfer from one device to
another. It will permit the user to move source, binary, system, or
data files from one device to another. It has the fol lowing
capabilities:

• Replaces the old file with a new file
• Transfers .Jnpvt from cards-, paper tape, disk, or

DECtape, and Outputs to paper tape, DECtape,
disk or the line printer

• Copies an entire DECtape or disk onto a similar device
• Eliminates overhead space from the file directory.

Date File Creation and Maintenance Programs

System programs avai I able for structuring transaction files are:
BUILD, .UPDATE, and SORT. For more detailed information con­
cerning this software, refer to the COS 300 System Reference Manual.

BUILD

A file creation program used to create a data file. It is a key-word
data entry package. A BUILD "Control Program" al lows the user to
specify key words fol lowed by an ordered string of formatted data.
BUILD has the fol lowing features:

• Provides hash totaling,
• Provides range checking,
• Computes check digits,
• Provides auto-dup field (automatically duplicates fields),
• Permits specification of default fields,
• Permits specification of incremental fields,
• Checks errors on any one or al I given fields within a key

word line,
• Sets special field flags that the user can later check

under program control,
• Has the ability to specify up to seven different output

files from one input file.

BUILD facilitates a way of flagging certain fields within a record
for use as a program control switch.

UPDATE

A master-file maintenance program used to:

• Change existing· records on the data file,
• Insert new records,
• Delete old records,
• Print a report showing al I changes, inserts and deletions.

SORT

COS 300 SORT is a poly-phase sort. It can sort data file records in
ascending and descending order. SORT requires a minimum of three
DECtape units or an equivalent disk unit. The user can specify up to
eight fields (with sub-fields) of a fixed length record cs a sort key.

INTRODUCTION - 8

COMMERCIAL OPERATING SYSTEM (cont.)

The SORT has a merge file capability. For a multi-reel sort, each
file must be sorted then merged. The same SORT control program may
be used for both sorting and merging.

Uti I ity Programs

Several utility programs are provided, among which are the following:
CREF, DAFT, MARK, BOOT, and PATCH.

CREF

CREF is a cross reference utility program to aid program development.
It provides an alphabetical listing of all symbols used in a DIBOL
program, along with the line number where each symbol is defined
and used.

DAFT

The DAFT (Dump And Fix Technique) program provides the capabi I ity
to search for, examinecmd change records as we!! as to !ist records
and parts of records on the line printer or terminal.

MARK

There are four format programs, RKEMRK, RK8MRK, TDMARK, and
DTMARK, which are used to mark DECtape and disk for use with the
cos 300.

BOOT

BOOT is used to bootstrap the system from one device to another.
For exampie, BOOT is run to transfer control from DECtape to disk
so that the latter may become the system device.

I PATCH

PATCH is used to fix (or patch) system programs or the Monitor on a
COS system tape. Data to make the changes is provided by DEC as
patches in the form of a dialog.

INTRODUCTION - 9

DIBOL

SOURCE LANGUAGE INPUT

B8 artridge 8 Keyboard
Disk

Paper Tape

System Device

System Device

SYSTEM
Monitor

OB
\ I

I Compilation
Diagnostics

Printed DIBOL
COMPiler ~--39ol Listing

,OB)
"V"

Object Program Files

OBJECT
PROGRAM

EXECUTION

Applications
I/O

System
Diagnostics

INTRODUCTION - l 0

MANUAL AND SYSTEM CONVENTIONS

Several documentation symbols and terms used in this text are
described below-

Symbols

Lower-case characters - Represent information that must be supplied
by the user, such as values, names and other parameters.

Upper-case characters - Words or characters that must be used
exactly as shown.

El Ii psis ••• - Indicates the optional repeating of the preceding data.

Underscored characters - Indicate output from the system.

{)

[J

(Space) - Indicates a space.

(Braces) - Braces indicate a choice of one of the items
enclosed.

(Brackets) - Brackets indicate an optional feature.

) (CR Key) - The down-arrow indicates a Carriage Return Key

Terms

operation on the terminal keyboard. At this
point, control is advanced to the next line.

file-name, program-name, label and keyword - are used to identify
names assigned to files, programs, statements, and input lines.
These names may be of any length, but only the first 6 char­
acters are recognized.

cursor - An underscore symbol on the operator's display screen which
indicates the character position for the next keyboard stroke.

SECTION 1

Basic Source Language Programming

1-1

This chapter is intended to give the student a frame of reference in
the form of an overview of DIBO L programming and operation.

In the fol lowing frames you will learn, through programmed instruc­
tion, how to read a simple DIBO L program. The questions will be
based on program examples which provide frame answers.

Frame one presents a program statement of what the first example
program does. (Turn to Foldout #1). Read the program definition
and review the foldout before proceeding to the QUESTION and
ANSWER.

PROGRAM: Information is stored in records located on a DECtape.
Each record is to contain 64 characters. A read
operation reads one record at a time (starting with the
first record in the file). List on the line printer all
information on the DECtape file, printing one record
on each line. After printing the last record on the
tape file, stop the program.

Systems and program flow charting is a technique used in organizing
and documenting information about existing application systems and
in planning new ones. Diagrams called flowcharts show the flow of
information and the sequence of operation. They are important
items in evaluating procedural logic and useful tools for future
program expansion and revision.

1. · QUESTION: Does-theHowchort onfofdout·#+ Hlustrate the
logic outlined in the verbal statement of our
program?

ANSWER:

Yes, the flowchart is accurate.
The shapes of the boxes in the flowchart denote
different functions such as comparison, reading/
writing, beginning/end., and internal data arrange­
ment. Using the flowchart, answer the questions:

1-2

2. QUESTION:

ANSWER:

3. QUESTION:

ANSWER:

4. QUESTION:

ANSWER:

What is the function of this symbol?

(__)

It denotes the beginning/end of the program
logic flow.

What is the function of th is symbol?

It denotes the testing of a condition and,
depending upon the outcome of the test, shows
the action to be taken.

What is the function of this symbol?

It denotes an Input (reading) or an Output
(writing) operation to be performed by the
computer. (In the program there is an internal

·· aev1ee-cfssignmE'frff so lhe ·computer would issue
a read/write command to the proper input/
output device.)

5. QUESTION: What is the function denoted by th is symbol?

ANSWER:

I I

It denotes explicit commands·such as device
initialization, move data, etc.

Below the flowchart on Foldout #1 is the DIBOL-coded program which
accompiishes the functions diagrammed. Note that it requires oniy
ten statements to accomplish the out I ined task.

The following dialogue is designed to help the reader understand the
function of each statement in the DIBO L program.

6. QUESTiO N: From the flowchart, is each character of in­
formation passed directly from the DECtape to
the printer?

ANSWER: No. A complete record composed of 64 char­
acters is read into the computer memory before
any data is written (output) on the line printer.

7. QUESTION: Since data records are not restricted in length to
64 characters, how does the computer know how
much memory to reserve for the storage of the
data record?

ANSWER: The programmer must tei I the computer how much
memory wi II be required to store input data. A
DIBOL RECORD (or BLOCK) statement reserves
areas of core to be used during processing and as
temporary storage (input/output buffers).

I

I
1-3

8. QUESTION: In a program the area of memory reserved for
record storage precedes the processing instruc­
tions. From the DIBO L coding on Foldout #1,
which statement al locates 64 characters of
storage?

ANSWER: Statement 3; (FIELDl, A64).

9. QUESTiON: Statement number 3 says the biock of storage
labelled FIELDl will be reserved for 64 alpha­
numeric (A) characters. What is FiELDi?

ANSWER:

It is a field label. It could just as well be
cal led XX, YY, or any six character field be­
ginning with a letter. it serves as a symboiic
name which the programmer can reference from
the procedure section of the program (note: it
is referenced in the sample program via the
record 1s label). One or more field statements
is required for each RECORD statement.

10. QUESTION: The RECORD statement (#2) gives a label
11 NAME 11 to an area of computer memory avail­
able for record input. If several different input
devices are being used, several different
RECORD statements (with their respective field­
defin!tion statements following) could appear.
In order to designate two 16 alphanumeric char­
acter fields and one 32 alphanumeric character
field instead of the present 64-character field,
write the appropriate RECORD and field­
definition statements.

ANSWER: RECORD NAME2
FIELDl, Al6
FIELD2, Al 6
FIELD3, A32

11 • QUESTION: A compiler control statement is a non-executable
DIBOL statement. Such a statement gives the
compi I ing program information necessary to
properly interpret notations made by the pro­
grammer. Compiler statements tell the compiler
program when to begin and end encoding DIBOL
source statements, and when to begin converting
DIBOL statements into actual machine procedures.
Look at the sample DIBO L program and determine
which are the compiler statements.

ANSWER:

Statements l , 4, and l 0. Statements l and l 0
tel I the program the bounds of the DIBO L coding.
Statement 4 tells the compiler program to in­
terpret the following lines of coding as procedure
to be executed by the computer.

12. QUESTION: The data section of a DIBO L program describes
the data elements used in the program and
allocates memory. Which statements -i-n
Foldout #1 comprise the data section?

ANSWER: Statements 2 and 3 comprise the data section.

1-4

13. QUESTION: Which statements are actual processing in­
structions?

ANSWER:

Statements 5 through 9 are processing state­
ments.

14. QUESTION: What is the function of the word LOOP in
statement 8?

ANSWER: LOOP is a label denoting a point in the pro­
cessing cycle to which the program branches.
In this case, the program branches to state­
ment 6.

15. QUESTION: Statement 5 is the first processing instruction.

ANSWER:

From the flowchart, what is accomplished by
th is statement?

It tells the computer which channel number
wi 11 be used (whenever the program refers to
this file, its channel number will be 2);
whether the file will be read (Input) or written
(Output), the-name of the file (F-ILEl} / GRd

where the file could be found (logical unit 1).
This process is called file-initialization.

Depending on the logical unit assignments made through program
SYSGEN, FILEl could be on DECtape or disk.

16. QUESTION: From the flowchart {and following the INIT
statement in the program), what does the XMiT
statement (#6) do?

ANSWER:

It causes a read operation from channel 2. The
XMIT refers to data transmission. It can either
read (IN) or write (OUT) depending upon the
file-initialization. If a file is initialized as an
input (IN), the XMIT statement would cause a

I • • ,. I I ,.. I - I,. - ["~I ~ reaa operanon rrom me rt 1e. ir a rt 1e 1s
initialized as an output (OUT), the XMIT
statement wouid cause a write operation onto
the file. The data is either read from, or
written into, the RECORD specified in the
XMIT statement (in this example, RECORD
NAME).

17. QUESTION: For XMIT (2, NAME) to cause a record to be
written, what would the initialization state­
ment look like?

ANSWER: INIT (2, Output, file-name, unit)

18. QUESTION: For XMIT (2, NAME, ENDFIL) to cause a
record to be read, what would the initialization
statement look like?

ANSWER:

INIT (2, Input, file-name, unit). (As in
statement 5 in our example.)

I

1-5

19. QUESTION: Statement 6 says: Read a record from channel
number 2, storing the data from that record in
the area labeled NAME. When no more
records are available, i.e., the end-of-file
(EOF) has been reached, then jump to the
instruction labeled ENDF IL. Noting that
only READ instructions have pointers to which
the program will branch when an EOF is
reached, what does statement 7 do?

ANSWER: Since there is no end-of-file pointer (just a
-'--------' ___ --'---· _____ , •-'-- nl:'.'r'"'n~ •--'--" '-'-~-c;nanne1 numoer ana rne f\l:'-Vru.1 1aoe1 J rr115

must be a write command (writing data from
storage RECORD NAME to channel number 6).

20. QUESTION: Note that it is necessary to initialize only a
file-oriented device such as DECtape or disk.
Devices such as terminal, line printers, cards,
and paper tape readers do not need initializa­
tion. Is device specified by channel number 6
a file-oriented device?

ANSWER: No. It is a line printer and therefore does not
need initialization.

If not specified, the fol lowing channel number associations are
assumed by default:

5
6
7
8

paper tape reader
i ine printer
keyboard
terminal scope or printer

21. QUESTION: What does statement 8 do?

ANSWER: It is an unconditional command for the computer
to branch to the instruction labeled LOOP.

22. QUESTION: What is ENDFIL?

ANSWER:

It is the label for the end-of-file routine
referenced in statement 6. This label indicates
the location for program transfer at the end of
the input file. In this example, program con­
trol would transfer to statement 9.

23. QUESTION: What seems to be the function of statement 9?

ANSWER:

It is a FINlsh statement with respect to the file
on channel 2. Actually, in an output file, an
end-of-file mark would be put on the tape, the
tape would be rewound, and the channel number
freed for other use. In the case of our input
file, the channel number is freed but the file
is not rewound. Only file-oriented devices
r~quire a FINI statement.

24. QUESTION: Why was channel 6 not issued a FINI command?

ANSWER: It is not a file-oriented device. The only file­
oriented devices on a DIBO L configuration are
DECtape and disk.

1-6

25. QUESTION: Below is the same flowchart diagram as listed
on the foldout. Mark in the appropriate
statement number corresponding to the flow­
chart function.

PROC

A

E

ANSWER:

A=5
B=6
C=9
D=7
E=8
F =10

c F

PROGRAM TITLE

PROGRAMMER

I I I I I I ! ! I ' ! l I !

! l ~l I l ' , ,,
! . .1.

b:. I l

:
I

l l J_

I I I I '
I I I I I I
I I
I

~
I I I

~ 1
r+-1 ~
1-+-1

~
516 , I 2 I 3 1 • 7 II

DEC 7 -(30Z) - 1134 • N17Z

COS 300 DIBOL CODING FORM
REQUESTED BY PAGE OF

DATE PROJECT ID

1 T I l l I 1 l !

····i l .·

l 1 l

l j_ i 1 lll _Ll j_J_ i J.' __,_': _l_

1-7

FOLDOUT tq

SAMPLE PROBLEM

FLOWCHART

PROC

INITIALIZE
DECTAPE

AS INPUT

THE PRINTER

CLOSE FILE~

DIBOL PROGRAM FOR PROBLEM

START
RECORD NAME

FIELDl I A64
PROC

INIT (2, IN,aFILE' I 1)
LOOP, XMIT (2, NAME, ENDFIL)

XMiT (6, NAME)
GO TO LOOP

ENDFIL, FINI (2)
END

Statement Numbers

;l COMMENTS
;2
;3
;4
;5
;6
;7
;8
;9
;10

SUMMARY

Sample Problem

To review the initial problem, i.e., printing a 64 character record
from a tape file onto a line printer until the end-of-file, examine
the following lines of the DIBOL program:

2

3

4

5

6

7

8

9

10

START

RECORD NAME

FIELDl I A64

PROC

INIT (2, IN,
1 FILEl 1 ,1)

LOOP,XMIT
(2, NAME, ENDFIL)

XMIT (6, NAME)

GO TO LOOP

ENDFI L, FIN I (2)

END

;Compiler statement, non-executable.

;Indicates the beginning of the con­
tiguous area for the data elements
that comprise RECORD NAME.

;Data statement FIELDl is an alpha­
numeric field 64 characters long.

;Compiler statement - begins pro­
cedure section.

;Initialize channel 2 as an input file.
The lohel of the file is FILEl and it
can i::)e found on logical unit l •

;Read a record from channel 2 into the
area assigned to RECORD NAME.
When end-of-file is reached, it
causes-a program transferto·ENDF-ll.

;Write RECORD NAME onto channel
6 (I ine printer).

;Go to statement that reads another
record.

;end-of-fl I e.

;Compiler statement--indicates the
end of program.

1-8

BASIC OPERATING STEPS

There are several fundamental operating steps required to convert
your documented program logic into machine usable binary code.
Using a properly activated (powered-up) DEC DATASYSTEM Computer,
you must first load the central processor's memory with the COS 300
Monitor program. This system initialization is activated by the
Hardware Bootstrap Switch, but only after you have correctly in-
sta! led the System DECtape or Disk Cartridge on the drive addressed
as zero. Refer to steps land 2 in Figure 1-1. This figure presents
the basic operating steps as: major operating categories: an opera­
tional flow diagram, and specific operating steps (l -1 O). The major
operating categories are as fol lows:

System initialization,
Keyboard input,
Source program editing,
Source program compilation,
Source program syntax evaluation and correction,
Program logic testing and correction,
Object program storage,
Source program storage.

Study Figure 1-1 and then answer the following questions.

The Monitor routine must be loaded via a bootstrap operation. This is
an internal computer hardware/software technique designed to bring
itself into a desired state of readiness by means of its own action,
e.g., a hardware initiated routine whose first few insfructions are
sufficient to bring the rest of itself into the computer from either the
DECtape or disk storage device.

26. QUESTION: From Figure 1-1, what operator step or steps are
necessary to accomplish this initialization?

ANSWER: Steps l and 2 load the System Monitor.

I

1-9

NOTE

In addition the operator must enter the current date before pro­
ceeding. This date is used during program execution to date
reports, files, and new programs.

Review step 5 in Figure 1-1 • The Monitor provides editing commands
to input and manipulate Source Program statements in a temporary
storage area (edit buffer) within memory. They include:

Number commands - inserts the text line beginning with
the number into the edit buffer {line number text).

Line Number (LN) - automaticalty outputs I ine numbers
so new programs can be entered without typing each line
number.

Erase (ER) - erases text from the edit buffer.

Resequence (RE) - renumbers the program I ines to adjust
for additions and deletions.

All text input to the Monitor must be assigned a series of line numbers
All inserts, changes, and deletions are accomplished using these
numbers.

27. QUESTION: Using Figure 1-1, which of the above commands
is used as a prerequisite to program text entry?

ANSWER: The ERASE command, when used without I ine

numbers 1 clears the entire edit buffer. This
prevents unused buffer lines, containing lines
from a previous program, from appearing as
part of the current program.

System Initialization

Keyed data input

Source Program
creation - using
DIBOL language rules

Compile Source Program
into Object Program
and print diagnostics

Source Program
Language
evaluation

&

Program logic test

Store the Object
Program on the
System device

Store the Source
Program on the
System device

FOLDOUT #2

Basic Operating Steps

Hardware
BOOTSTRAP

1-4

Source corrections
Input

5

COMP

SAVE
Completed

bject Program
9

WRITE
ource Program

as Backup
10

System Initialization

1. Mount the proper System DECtape or
Disk Cartridge.

2. Press the bootstrap switch.
3. The Computer responds with DATE?
4. The operator enters the month/day/year

in the following statement.
.DATE L..1mm/dd/yy) After the system
responds on a new line with an initial
period (.) enter ERASE) to clear the
Edit Buffer.

Editor Source Input

, s. After the system responds on a new
line with an initial period (_J , enter
a DIBOL prcgra.~ putting one statement
on a line. Precede each statement
with a line number and a space. To
correct a statement, type its line
number, a space, and the new statement.

Compile Source Program

6. To compile the completed progra..u in
the editor scratch area enter:
.RUN COMP)

7. Check the source listing generated by
the compiler for error messages. A
caret (A) points to the error. Use
the Editor functions to correct all
language errors and then recompile.

8. To run the compiler program if no
errors are detected enter:
.RUN)

Program File Creation

9. To save the object program under a
unique program name enter:

. SAVE prognm)

10. To save the source program from the
editor scratch area for future
modification enter:

.WRITE prognm)

Figure 1-1

To compile the completed program use the Monitor command state­
ment RU 1....1COMP) •

The compiler takes the DIBO L language program from the edit buffer
and converts it to an object program which can be executed by the
computer. In the process of creating the executable program the
compiler can generate a printed listing of the source program and a
storage map of the records and fields which are used by the program.

The compiler checks the source program for DIBOL syntax errors. The
source program must be free of these errors before object program code
can be generated.

Most compiler error messages are printed on the source listing after
the line in which the error occurs. A caret (") in the source line
points to the approximate location of the error. A complete list of
errors can be found in the COS 300 System Reference Manual.
Several commonly found messages follow:

UNDEFINED NAME
NAME PREVIOUSLY DEFINED
BAD ALPHA VALUE
BAD DECIMAL VALUE
COMMA MISSING

28. QUESTION: From Figure 1-1, when an error message occurs
-at step---7-;--what steps must be taken to correct
it?

ANSWER:

Steps 5, 6 and 7 in Figure 1-1 must be repeated
to correct the error. You should correct all
known errors before step 6.

The COMPiler will signal a clean listing with the message "NO
ERRORS DETECTED" on the print-out. This indicates that your usage

1-10

of the DIBOL language syntax is correct. It does not guarantee
that the logic of your program will produce the desired results. The
only way to test your program logic properly is to run the compiled
program with real or simulated data.

To run the compiled program, enter the Monitor command RUN) •
When a file-name is not given after RUN, the binary file (compiled
source program) in the Edit Buffer is used as input to be executed.

29. QUESTION: From Figure 1-1, when the program fails to
perform properly with test parameters what
steps must be taken to modify it?

ANSWER:

First make the necessary adjustment to the
program documentation then steps 5, 6, 7 and
8 must be repeated to change the program •

The Monitor allows both the binary file (B) and source file (S) to be
assigned the same name. To protect both versions of the completed
program, you just assign it a unique program name and transfer the
edit buffer to a storage device before a new program is entered. This
is accomplished by two Monitor commands, SAVE and WRITE.

30. QUESTION: Ffom Figure l-1 whkh of the above mentioned
Monitor commands is used to save the compiled
binary program?

ANSWER:

The SAVE command stores the finished version
of the object program on the System storage
device under a unique program name.

JI

SECTION 2

DIBOL Syntax

The student should now have a general knowledge of the elements
that make up a DIBO L-coded program, thus making the information
in this section more meaningful.

2-1

DATA SECTION

START
PROC
END

There are two sections in a DIBO L program. First is the data section
which describes all data and causes allocation of memory storage.
Second, there is the processing section which contains the executable
instructions.

1. QUESTION: What is the statement that separates the data
section from the processing section?

ANSWER: The PROC statement.

2. QUESTION: Is PROC an executable statement? If not,
what is it?

ANSWER:

PROC is not an executable statement. From
the previous section we recognize it as a
compiler statement.

3. QUESTION: V{hat is a cornpIJ~r st(lt~!11-~-~-f?

ANSWER:

A compiler statement is a message to the
compiler program indicating the nature of the
DIBOL-language statements. A compiler
instruction is not executable by the DIBOL
program.

2-2

There are three kinds of statements in a DIBOL program:

1 • Compiler statements.
2. Data statements.
3. Procedure statements.

DIBO L programs normally consist of a START statement, fol lowed by
the data section {composed of data statements), followed by a
required PROC statement (a compiler statement), followed by the
procedure section (composed of procedure statements), fol lowed by
an END statement. START and END are optional statements.

4. QUESTION: What is the only required compiler instruction
in a DIBOL program?

ANSWER: PROC

5. QUESTION: What are the three compiler statements and
two sections that make up a DIBOL source-
program (in the order in which they appear)?

ANSWER: START (compiler instruction)
_data __ secH on_

PROC (compiler instruction)
processing section

END (compiler instruction)

RECORD

6. QUESTION: Where is the data section in a DIBOL program?

ANSWER: The data section is between the ST ART and
PROC statements.

7. QUESTION: From the sample program, in which section does
the RECORD statement ieside?

ANSWER:

The RECORD statement resides in the data
section.

The RECORD statement designates the beginning of a group of data
statements. It may or may not give that group a name. It controls
where in memory the block of data will be stored. A RECORD
statement must be foi iowed by one or more data statements. (A data
statement defines all data elements with respect to type and size.)
The word BLOCK may be used interchangeably with RECORD. The
general format for a RECORD statement is:

8.

RECORD
required

QUESTION:

ANSV/ER:

record-name,
optional

x
optional

In the following example, is the RECORD
statement used correctly?

START
RECORD A
RECORD B

Bl, A6
PROC

RECORD A is an invalid statement because a
RECORD statement must be followed by one or
more data statements. RECORD B is used
correctly.

A block of data requires a name only when referenced by an XMIT
(data transfer) statement. A record may be read and stored in this

2-3

area, or the contents of this area may be written (output). There is
no punctuation between a RECORD statement and its name (if a
name is required).

9. QUESTION: What can be deduced about the second
RECORD statement fol lowing?

ANSWER:

START
RECORD A

ncr"n""'
f\L'-Vf\LJ

PROC

A 1 A L
M.I / 1-\0

A2, Dl

Bl, D3

Since the second RECORD statement does not
have a name, it is not intended to be used as
on input/output buffer. It is used only for
temporary storage of program data.

The data statement is used to define al I data elements with respect
to type and size. The DIBO L compiler assigns storage for the data
on the basis of these statements. Any data statement that fol lows a
record name is assigned to the contiguous memory locations in the
order that the element occurs. If a record name is missing, the
succeeding data statements are assigned to contiguous locations but
not associated with any record name for input/output. If such data
statements are referenced, they are done so individually.

The general format of the data statement is:

data name,
optional

data specification,
required

initialization-specif.
optional

The data name is optional, that is, a comma may be used without a
data name if the program does not reference that individual data
element but only references the entire RECORD. This is convenient
when formatting an output I ine for the printer, so that intercolumn
spaces do not require a data name but merely a comma followed by
the type and size, e.g., (,A5). Normally, the data name is used,
followed by the data specification (type and size), with an optional
initialization field.

The initialization-specification would normally be used in the
temporary storage record but could also be used in an output record.
If a specific data element is to be referenced, it must have a data
name.

Following are examples of valid data statements:

A, AlO
A, A7,'DIGITAL'
A, 06, 123456
FISH' A4, 'FISH I

, A5
COST, 506

NOTE

The Data element COST consists of 506, which
means there is an array of five fields, each six
digits long. This could have been_ written as:

COSTl, 06
COST2, 06
COST3, 06
COST4, 06
COST5, 06

(The referencing of COST, 506, is done with
subscripts which wil I be defined in the procedure
section.)

2-4

l 0. QUESTION: In the fol lowing statement, what are the
fields?

TOT, 06, 000012

ANSWER: TOT is the name by means of which the data
can be referred; 06 is the data specification
(in this case, six decimal digits) and 000012
is the initialization specification (setting the
six decimal digits to an initial value of 12).

The data specification field (which fol lows the data name) consists
of a data type (Alpha or Decimal), and the data size in characters.
If the data size is omitted, l is assumed. If the initialization
specification is present, the data specification is followed by a
comma, then an alphanumeric or decimal constant. The alpha­
numeric may contain any legal character enclosed in apostrophes.
The decimal constant is a string of digits, optionally preceded by
a plus or a minus sign. The plus sign is implied and the minus sign
does not require a character for storage; i.e., NUM, 05, -12345.
Data types cannot be mixed. For example, an alphanumeric
constant may not be assigned to a decimal variable. The data
element is assigned to the value of the initialization specification
at the beginning of program execution. If the initialization
specification is omitted, an alpha field is set to spaces and a
decimal field to zeroes.

11. QUESTION: Describe the data specified for the following
five items:

a) A, AlO
b) TOT, 06
c) NUMS, 1003
d) HORS, 10Al2
e) TABLE, 3 02' l 3, l 5' l 8

ANSWER: a) A is an alphanumeric element with ten
characters having a vaiue of spaces.

b) TOT is a decimal element with six digits
having a value of zero.

c) NUMS is an array of ten decimal numbers,
each with three digits having a value of
zero.

d) H DRS is an array of ten alphanumeric
elements, each with 12 characters having
a va I ue of spaces.

\ TABLE is an array of 3 decimal numbers, e)

each with two digits. The first element
has a value of 13, the second a value of
15, and the third a value of 18.

, "I QUESTION: Suppose you want to reserve, in computer I L. •

memory, a place to store a record with four
fields to be described as follows: F LDl has
three alpha characters, FLD2 has six decimal
digits, FLD3 has four decimal digits set to the
value 125, and FLD4 has 10 alpha characters
set equal to the name DIG IT AL. Write the
appropriate RECORD and data specifications
for this input buffer.

ANSWER: RECORD IN (any name will do)

FLD1,A3
FLD2,D6
F LD3, D4, 0125
FLD4,Al0, 'DIGITAL L U • ...IL-1

I

I

2-5

P OPTiON

There are three ways data items can be initialized in the Dato
Section.

1) A Data statement containing a P.

2) A Data statement containing a D.

3) A Data statement containing an initialization specification
value (previously discussed).

One way of initializing a data item is by putting a P immediately
after the data specification field of a data statement. Upon loading
the program, the computer wi 11 ask the operator (via the terminal)
to enter the value he wants to give that data item. A common use
of this feature is to obtain a report date which differs from today's
date in Monitor. For example, the data statement might be
described as:

DATE,A8, P

Upon loading the program, the following message would type out on
the console:

ENTER DATE

At this point the program wou Id wait for the operator to type in
eight characters and type carriage return. The operator might type
in 07 /07 /72 and type carriage return. CAUTION: If less than
eight characters were entered, the results would be stored leff­
justified in DATE. If DATE were a decimal field, the results would
also be stored left-justified. Unentered characters are either zero
or spaces, de pending upon the fie Id type. Too many characters
wou Id run over into the following fields. For decimal fields, there
is no verification that the characters entered were decimal
characters.

13. QUESTION: Suppose the programmer wanted a three-digit
customer-number to be supplied by the operator
at the beginning of the run. Write a data
statement to initialize a field named CUST.

ANSWER: CUST ,D3,P

Ordinarily, input from the keyboard must be described in alpha
format. This restriction does not hold true for initialization data (P).

D OPTION

A second way of initializing a data item is by putting a D immediately
after the data specification field of a data statement. When the pro­
gram is run, today's date (as s·pecified to the Monitor at start up) is
automatically stored in any field having a D in its data field specifi­
cation. For example, the statement might be described as:

TODAY, D6, D

The date in Monitor would automatically be stored in the form
MO DA YR.

14. QUESTION: a) Write a data statement to initializ~ a fielq
named RNbATE to the date stored in
Monitor.

b) What would RNDATE contain at run time if
an operator previously entered July 4, 1972
as the Monitor date?

ANSWER: a) RNDATE, D6, D
b) 070472

2-6

INITIALIZATION-SPECIFICATION

A third way to set the value of a data item is by using the initial iza­
tion option, i.e., specifying an alphanumeric or decimal constant.
The alphanumeric may contain any legal characters enclosed in
apostrophes. The decimal constant is a string of digits, optionally
preceded or fol lowed by a plus or a minus sign, but without apos­
trophes. Data types cannot be mixed in that an alphanumeric
constant (i.e., DEC, D3). But 10041 can be assigned to an A3
alphanumeric field.

15. QUESTION: Are any of the following statements incorrect?

ANSWER:

a) A,A8, 1ABCDEF98 1

b) TOT,D3, 11231

c) NUM,A3, 123
d) BI D6 I 222334
e) C, D3,23A
f) D, D3,456-

Statement b is incorrect because an alphanu­
meric notation (an apostrophe) was used to
enclose a decimal item.

(c) is incorrect because a decimal notation was
used to cleSGr-ibe on ol-phenumeric constant.

(e) is incorrect because 23A is not a val id
decimal number.

State men ts a, d, and f are correct •

When an initialized value is specified in a data statement, its length
must correspond to the length of its respective data statement, for
example, NUM, D4,0070. It would be illegal to initialize NUM to

70 since NUM was defined as a D4 field. The initialization specifi­
cation does not insert leading or trailing bianks (zeros). DiBOL wiii
not permit the size of the initialized value to differ from the data
field size.

16. QUESTION: Which data statements are incorrect?

ANSWER:

a) Al ,A8, 'ABCDEF641'
b) COST I D4,7779
c) QTY,D5, 1 i00001

d) NUM, D7, 59796
e) Bi , A4, : 1 98T

Statement a is incorrect because the initialized
value is longer than the data field.

Statement c is incorrect because apostrophes
are used to enclose a decimal item {apostrophes
are an alphanumeric notation).

Statement d is incorrect because the initialized
value is too short; NUM is defined as a 7-digit
decimal field.

Statements b and e are correct usage of the
initia I ization specification.

17. QUESTION: We want NUMS to be an array of two decimal
numbers, of three characters each. The two
numbers are to have constant values of 333 and
minus 61 respectively. What is the appropriate
data specification?

ANSWER: NUMS,203, 333,061

I

2-7

i 8. QUESTiON: What information is generated by this data
specification ?

ANSWER:

B, D6, 000013

000013. The initialized value must be the
same length as the data size. In this case,
B is defined as a six-decimal digit.

19. QUESTION: What information is generated by this data

ANSWER:

specification?

TOT I Dl ,C8

None, the value is too long (2 characters) and
C is not a decimal digit. Non-digit characters,
whether or not enclosed in apostrophes, cannot
be used for a dee i ma 11 y defined i tern •

NOTE

!n prior versions of DIBOL, a blank data specification field left the
original contents of memory in a field. To clear the fields of a
record, RECORD C had to be specified. In order to be compatible
with existing programs DIBOL treats RECORD or RECORD C
identically. For example:

RECORD A,C
NU~i,, 06
TOT, D7
COST I D4, 4999
Bl ,A7

The initialized value of COST would not be cleared,
but NUM, TOT, and Bl memory locations would be
cleared. The first statement could have been
RECORD A.

20. QUESTION: Consider the following operation:

ANSWER:

DATE,A8, P

When the program is loaded, the computer
types

ENTER DATE

and the operator types 07 /07 /1970. What
happens?

Since too many characters were typed, it is an
error. 07 /07 /19 is stored in DATE and 70 is
stored in the fol lowing field.

RECORD,X

The concept of the overlay is a valuable tool in the preservation of
computer memory. By means of the overlay, two RECORD statements
can describe exactly the same area of computer memory. Whenever
there is an X there must be a previously defined RECOR!) st(]t~ment
without an X. Tl1ere can be one or more overiays defining the same
area. Note the use of X below.

RECORD A
Al ,A5, 1 DIBO L1

A2,A8, 1SOFTWARE 1

A3,A7
RECORD B,X

B1,A5
B2,A8
B3,A71SYSTEM1

2-8

In this example, the fields in RECORD B occupy the same area of
computer memory as the fields in RECORD A.

21 • QUESTION: What is the value of data labeled Bl?

ANSWER: Bl='DIBOL'

22. QUESTION: What is the value of B2?

ANSWER: B2=1SOFTWARE 1

As a general rule, data specifications in overlays should be consist­
ent. Problems may arise if an alphanumeric item is redefined as
decimal in an overlay specification. Normally, initialized values
ore not used in overlays. The overlay (X) block must be equal to or
smaller than the last non-overlayed record.

23. QUESTION: Is the fol lowing correct?

RECORD A
Al, Dl 0
A;2;Al0

RECORD B,X
Bl, D5

RECORD C,X

Cl, D3
C2,D7
C3,A5
C4,A5

ANSWER: Yes. The redefined records, RECORD Band C,
. I e I I • I • (I

are the same size or sma11er man rne recora
they redefine, RECORD A.

24. QUESTION: Is the following a legal use of the overlay?

ANSWER:

RECORD A

RECORD

Al ,A3, 1FUN1

A2,A5, 1LOVER1
0 v
D 1 A

Bl I DB

Yes. However, since Bl is decimal, and the
data it redefines is alphanumeric, a run time
error would occur if Bl were not cleared before
being used in a data manipulation statement.

25. QUESTION: Is it legal to name a RECORD X?

ANSWER: Yes. It is also legal to have RECORD X,X.

A symbol (be it a data name, record name, or a statement label
defined in the PROC section) consists of alphanumeric characters, the
first of which must be a letter. Only the first six characters are
significant. Anything in excess of six characters is ignored. Data
names and statement labels must be followed by a comma. A record
that is to be used for input or output has a maximum size of 510
characters. Other records have a maximum size of 4094. A decimal
field has a maximum iength of 15 digits and cannot have a name.
Alphanumeric fields have no size restriction other than record size.

I

2-9

26. QUESTiON: in the foiiowing example, determine any errors
in data or record names, in their size or their
value assignment:

ANSWER:

a) RECORD iNPUTBUFFER
b) NAME,A20
c) POPULATION,D17
d) A12Y4X,A21, 1ELKJAOUNTAIN,L-.JWYOMINC
e) 3ABC,A3, 'ABC'
f) RECORD B
g)
h)

TABLE, 10005
TABLEl I l OD2

•\ nrrl""\nl"'\
I J l\C:\.. V l\L.J

i) TEMP,D
k) w ORKT AB I 200D6
I) TABLElO, lOODlO

a) The record name INPUTBUFFER is more

than six characters and is thus recognized
as INPUTB. This, however, is not an
error.

b) No errors •

c) The field name POPULATION is more than
six characters and will be recognized as
POPULA. This is not an error. However,
it is defined as a Decimal field containing
17 digits -- decimal fields used in arith­
metic operations cannot exceed l 5 digits
and wi II generate run-time errors.

d) No errors.

e) The field name 3ABC is in val id. It must
start with an alphabetic character.

f) No errors.

g) No errors.

h) Th is record contains 520 characters. It is
an error to give a record a name if it
contains more than 519 characters.

i) No errors. This record is less than 4096
characters. Since it has no name, it can
never be used for input or output.

j) No errors. TEMP is defined as a Decimal
field containing one digit.

k) No errors. The field name is recognized
as WORKTA.

I) No errors. TABLEl 0 is recognized as
TABLEl.

Many times a programmer will make comments, so that someone else
reading his program will know what he is doing. A semi-colon {;)
tells the compiler-program that all information following is not to be
interpreted as program text, but rather as comments by the programmer.
Thus., comments can appear on a program listing, but will not affect
th~_op~ra_tie>n of th~_ program~ HerEl is an exomple of q comment:

START ;THIS PROGRAM READS INDIVIDUAL TRANSACTIONS
RECORD A;THIS IS THE INPUT RECORD B_UFFER

Al ,A16;CUSTOMER'S NAME IS STORED HERE

The comment is terminated by a carriage-return line feed. The
comment fol lowing a START or PROC statement is used as a heading
for program I istings.

2-10

27. QUESTION: What are the functions of these computer­
defined symbols?

ANSWER:

,x

The X indicates one record of data elements
will overlay the previous record (use the same
space in computer memory that the previous
record was using); multiple overlays of the
same record are permitted. The semicolon
indicates the beginning of a comment.

If the X option is used in a RECORD statement without a record
name, then a comma must follow the word RECORD, i.e.,
RECORD,X.

DAiA SECiiON SUMMARY

The data section describes all data used in a program and causes
allocation of memory storage. It consists of one or more data
records. Each data record section is made up of a RECORD statement
fol lowed by one or more data statements.

l. RECORD STATEMENT

a) Normal Form ~RECORD record name, "",., ... ·~., RECORD
INBUF. Al I uninitialized fields are
-•-----' ~ll::Ull::Ue

b) Unnamed Form - A record name may be omitted, e.g.,
RECORD. All uninitialized fields
are cleared.

c) Data Overlay - Overlay a preceding storage area,
e.g., RECORD,X or RECORD B,X.
All uninitialized values are cleared.

2. DATA STATEMENT

a) Normal Form -

data name,
(optional)

data specification,
(required)

For example: F IELDl, D4, 1234
FIELD2,A4, 1ABC41

initialization specif.
(optional)

b) Operator Initialization - Specified by a P and causes
entry of data from keyboard before program execution,
e.g., RNDATE,A8,P.

c) Date Initialization - specified by a D and causes
entry of the Monitor date •

2-11

3. Three ways to initialize data elements in the Data Section:

Data Statement Initialization - A data statement with an
initialization specifica­
tion. !f no value is
specified the field is
cleared.

Operator Initialization - A data statement with a , P
which al lows entry of data
from console ..

Date !nitia!ization - A data statement with a , D which
automatically enters Monitor's date
at run time.

PROCEDURE SECTION

28. QUESTION: What is the compiler statement that separates
the data and procedure sections?

ANSWER: The PROC statement separates the data and
procedure sections.

29. QUESTION: What is the difference between a procedural
statement and a data statement?

ANSWER: Procedural statements are executable.

INIT

In a computer program, procedural statements are executed sequen­
tially, the sequential execution of instructions can be changed by a
branching instruction.

The first procedural statement discussed is the file-initialization
statement. The general form is:

INIT (channel, dev, data file name, logical unit)

The INIT statement is used to associate a channel number with a
device and to initialize that device. Channel is a number from
l to 15 which is to be linked to a logical or physical device. This
number is then used in other statements, such as XMIT, to refer to the
same device.

Dev is the name of the COS 300 device to be associated with the
channel number. These names can be abbreviated, since only the
first character is checked. The fol lowing I ist contains the valid
dev names:

2-12

Dev Abbreviation Meaning

IN
OUT
UPDATE

KBD
TTY
LPT
CDR
RDR
PTP
SYS

For example:

I
0
u

K
T
L
c
R
p
s

INIT(l, KBD)

Mass storage device to be used for input.
Mass storage device to be used for output.
Mass storage device to be used for random

access.
Input from terminal keyboard.
Output to terminal printer or display.
Line printer.
Card Reader.
Paper tape reader.
Paper tape punch •
Input from a file created on the system

device with the editor.

wi 11 initialize the terminal keyboard and any references to channel
l will be references to the terminal keyboard.

Only mass storage devices (disk or DECtape) need be INITed. It is
optional for al I other devices. If not specified, the following
channel number assignments are assumed:

5=PTR
b=LPT
7=KBD
8=TTY

30. QUESTION: Write a statement to initialize the terminal
display and assign it to channel 8.

ANSWER: INIT(8, TTY).

However, COS 300 has a !ready assigned the terminal display to
channel 8. This statement is redundant. Only mass storage devices
need by INITed.

31. QUESTION: Write a statement to initialize the line printer
and assign it to channel 1 •

ANSWER: INIT(l, LPT) or INIT(l, L).

Both statements are identical in DIBO L.

Only mass storage devices specify the data file name, which is re­
quired, and a logical unit number, which is optional. The data file
name is an alpha constant or a variable which is physically written
on this file. It can be up to six characters; anything in excess is
ignored. Any valid COS character can be used to make up the
name. If a variable is used with the P option, a file name can be
specified at run time.

Unit is an optional decimal expression used with I, 0 and U device
codes to specify the logical unit where the data file is stored or to
be stored. If the logical unit is not specified, a MOUNT message
wi 11 occur at run time.

Logical units are specified in SYSGEN and divide the available mass
storage into 15 possible areas for data files. These areas can be
different sizes (in multiples of 8000 characters) and more than one
area can be assigned to one physical device.

32. QUESTION: Write the statements necessary to

a) initialize a DECtape data file called
MASTER which wi 11 be referred to as
channel 2 and be used as input.

I

ANSWER:

2-13

b) initialize a second DECtape data file
called MASTER which will be referred to
as channel 3 and be used for output.

c) initialize a card file containing transac­
tions which will be referred to as channel
5 and be used to update the input MASTER
file.

a) INIT(2, INPUT, 'MASTER')

I is sufficient in place of INPUT. Also
the following message would occur at
run time:

MOUNT MASTER #01 FOR INPUT:

at which time the operator would respond
with the logical unit where the file could
be found.

b) INIT(3,0UT, 'MASTER')
0 is sufficient in place of OUT. A
message would appear at run time:

MOUNT MASTER #01 FOR OUTPUT:

to which the operator would respond as in
(a)•

c) +NfT(5,COR)
INIT(5,CDR, 1TRANS 1

) would be incorrect
since the card reader is not a mass storage
device and cannot have a file name
associated with it.

33. QUESTION: How would you write a statement to initialize a
file on logical unit 12 called MASTER which
will be accessed directly and which will be
referred to as channel 13?

ANSWER: INIT(l 3, UPDATE, 1MASTER1
I 12)

34. QUESTION: Which of the following INIT statements are
invalid and why?

a) INIT(l, INPUT I 1FILEA1 ,4)
b) INIT(3, IYBDGH KL, I LABEL')
c) INIT(2,X, I LABEL')
d) INIT(5, KBD)
e) INIT(5, IN 1MAST')
f) INIT(8)
g) INIT{l 3, KEYBOARD)
h) INIT(7, TTY)
i) !NIT(15,UPDATE, 1 .$11 #1

)

j) 1(12,K)
k) I N IT (1 I I , I $ T EM p I I 8)
I) INIT(5,0, TAPEID,3)

ANSWER: c) X is an illegal dev.
e) A comma is missing between IN and MAST.
f) The -dev spec Hi cation i-s missing.
h) Missing right parenthesis.
i) IN IT cannot be abbreviated.

35. QUESTION: Statement I in the preceding question is val id
since a variable may be used as a data file
name. How can the data file name be varied
during each run without changing the program?

2-14

ANSWER: The statement TAPEID,A6,P will allow the
operator to enter a six-character file name
whenever the program is run.

XMIT

To read or write a record, the transmit data statement is used. Its
general form is:

XMIT (channel,
(required)

record,
(required)

end of file label)
(only for input file)

Examples of the transmit-data statement are below:

a) XMIT(l ,OUTBUF)
b) XMIT(2, INBUF,EOF)

a. Assuming channel l has been previously IN ITialized for out­
put, statement a wou Id transfer the contents of RECORD
OUTBUF to channel l •

b. Assuming that channel 2 has been previously INITialized for
input, statement b would transfer data into RECORD INBUF
from channel 2.

36. QUESTION: What is accomplished by the following DIBOL
program?

START
RECORD INBUF

INA,Al 0
INB,A6
INC,A6

RECORD
DATE,A8, P

ANSWER:

PROC
INIT(2, IN,11NFILE1

, 14)
BEGIN,XMIT(2, INBUF I EOF)

GO TO BEGIN
EOF I FINI (2)
STOP
END

When the program is run, the terminal will
output ENTER DATE and wait for the operator
to input an eight-character date (note the P
opti~n on data-item DATE). Channel 2 will be
initialized and all records will be read from
channel 2 into the area assigned to RECORD
INBUF; after all records are read, the program
wi 11 transfer to end-of-file routine (EOF) in
which channel 2 is rewound, and then the
program will stop. The END statement and
STOP statement are optional.

NOTE

If the BEGIN statement were BEGIN,XMIT(2, INBUF) an error
message is output when an end-of-file occurs.

It is also possible to XMIT partial records. In the previous example
assume that the first 10 characters from each input record would be
written onto the tine printer. The statement wou~d k>ok like:

XMIT (6, INBUF (l, 12))

and would be added after the BEG IN statement. The character
count of a record is contained in its first two characters. To output
a partial record of 10 characters, the program must specify the first
12 characters. This character count is generated automatically by
the COMPiler and does not interfere with the first field in a record.

I

2-15

FINI

37. QUESTION: What is the function of the Fi NI statement?

ANSWER: The FINI is a close file statement and must
refer to a previously INITialized file. For
output files, an end-of-file mark is written
onto the file and the file is rewound.

38. QUESTION: What is accomplished by statements 1 through
4 in the following exampie'?

ANSWER:

2
3
4

START
RECORD ABC

A,AlO
NUMS,Dl5
BUF ,Al 00

PROC

' A=
,NUMS=
I BUF (56, 70)=
,ABC=

Statement 1 sets the ten character field A to
spaces.
Statement 2 sets the 15 character field NUMS
to zeroes.
Statement 3 sets the characters 56 thiOugh 70
of field BUF to spaces.
Statement 4 sets the record ABC to spaces.

An attractive feature of the DIBO L language is the obi I ity to
reference characters within a field. The notation BUF (56, 70)
allows the programmer to reference characters within a data element

without assigning a specific data name. The general format to
accomplish this is:

Data name (starting character position, ending character position)

39. QUESTION: What would be accomplished by statements 1
and 2 in the following example?

ANSWER:

START
RECORD B

PROC

NUMS, 10D2
Bl ,5A6

1 I NUMS (5)=
2 ,Bl (4)=

Statement 1 zeroes the fifth element of the
array NUMS.
Statement 2 sets the fourth element in the array
Bl to spaces.

This notation is called subscripting. It allows the programmer to
reference a specific data element of an array. This form of sub­
scripting must be a positive non-zero number, data name, or
expression. The data name option is cal led variable s-ubscripting.
For example:

START
RECORD

PROC
A=5
NUM(A)=

NUMS, 10D2
A, Dl

2-16

This will accomplish the same as NUM(5)= which is in the previous
example.

NOTE

An entire array cannot be referenced, only a single element within
an array. However, it is possible to reference an entire array by
redefining the array, using RECORD,X (overlay). For example:

RECORD
NUMS,5D2

RECORD,X
NUMSl ,DlO

PROC
51 I NUMSl=

This will set the entire array of NUMS to zero.

!n summary the CI ear Data Statements have the foi lowing formats:

Destination field= e.g., A=
Destination field (subscript) = e.g., A(4)=

or A(B)=
or A (51 , 71)=

ALPHA=ALPHA

Another type of data manipulation is the move-alphanumeric­
variable statement. It takes the general form:

alpha field = alpha field
(destination) (source)

Th is allows one alpha field to be moved to another alpha field. If
the source is shorter than the destination, the result is left-justified
with the right-most characters undisturbed. If the source is longer

than the destination, the result is left-justified and the right-most
characters are not moved to the destination fie id.

40. QUESTION: What is the value of A in the following example,
after the move has been executed?

START
RECORD

A,A5, 1ABCDE 1

B,A3, 1FGH 1

PROC
A=B

ANSWER: Variable A now has the value FGH DE. The
source is shorter than the destination field.
The right-most characters are undisturbed.

41. QUESTION: What is the value of NAME in the fol lowing
example?

START
RECORD A

NAME,A4, 1 FRED 1

NAMEl ,A7 TI JOH NSON 1

PROC
NAME=NAMEl

ANSWER: NAME now has the value of JOHN.

NOTE

While the receiving field is changed (destination), the sending
(source) field remains unchanged, so NAMEl still has the value
JOHNSON.

I

I

I

2-17

In review, the general format of move alpha to alpha data element
is:

Alpha field= alpha field
(destination) (source)

DECIMAL=DECIMAL or EXPRESSION
Statement

Another form of data manipulation is moving a decimai expression to
a decimal field. The general format for this expression is:

decimal field= arithmetic expression
(desf.:ination) (source)

The arithmetic expression may be any expression with decimal ele­
ments, subscripted data elements, constants, and the operators pius
(+), minus (-), multiply (*)and divide (/). The contents of paren­
theses are performed first, division and multiplication next, fol iowed
by addition and subtraction. The destination field would be right­
justified after the move. Below is an exampie:

l
2
3
4

START
RECORD

PROC

QORDER, D4,0002
UCO ST T D4, 0200
ECO ST T Dl 0
X, D2,04
Y,5D3,000,007,100,025,023

ECO ST =UCOST*QORDER
X=X+l
Y(l)=Y(X)+(25*Y(2)+Y(3))/Y(4)
X=Y(3)+Y(4)

Statement l) ECOST is calculated by multiplying UCOST and
QORDER. In the above example, the answer would
be: ECOST=0000000400. The result is right­
justified in ECOST with the leading two characters
set to zero.

Statement 2) The new value of X shal I be X+l (answer, X=05).

Statement 3) The first element in array Y will be equal to the
fifth element in array Y(X=5), plus the fol lowing
quantity: 25 multiplied by the second element in
array Y plus third element in array Y, the resu It
of this multiplication and addition is divided by
fourth element in array Y. The answer would be:

Y (1) = Y (05) + (25 * Y(2) + Y(3))/Y(4)

y (1) = 023 + (25 * 007 + l 00)/025

y (1) = 023 + (275)/25

y (1) = 023 + 011

ANSWER: Subscripted variables are Y(3), Y (2); decimal
variable is Z; constants are 66, 13, 2; the
arithmetic operators used are +, *, - , /.

NOTE

The words variable and field can be used interchangeably.

43. QUESTION: Is the expression X=Y(2) equal to X=Y*2?

ANSWER: No. Y(2) is a subscripted data element de­
noting the second element of an array with the
name Y. The expression X=Y*2 is the equiv­
alent of multiplying Y times 2 and storing it
in X.

44. QUESTION: What is the expression which would accomplish
the fol lowing?

a) Take a number X and add it to the second
Y (1) = 034 element in an array named K.

Statement 4) X is set equal to 25. If the destination field is too
small to contain the source field or source expression,
the high order digits are lost.

42. QUEST ION: In the fol lowing expression, explain the items,
i.e., decimal field, subscripted field, con­
stants, and the operators, plus, minus,
multiply, and divide.

X=Y (3)+Y (2)+66* (13-Z)/2

2-18

ANSWER:

b) Take the result of that operation and
divide it by 145 and store it in M.

M=(X + K (2))/145
If X + K (2) were not in parentheses, K (2)
would be divided by 145 before adding X.

In summary, the decimal to decimal move has the general format of:

decimal field= arithmetic expression

A= A+ B/C
A=B

Decimal to Alpha
Alpha to Decimal

The two forms of converting from one data type to another are:

a) Decimal field = alpha field

b) Alpha field= decimal field or decimal expression and an
optiona I format.

45. QUESTION: In the following example, data fields are
described in both aiphanumeric and declmai
formats. Convert TOT from decimal to an
alpha format of corresponding length and store
in Al; and convert NUM to its decimal format
of corresponding length and store in Bl •

ANSWER:

START
RECORD A

NUM,A6
A1,A6

RECORD B

PROC

TOT ,D6
Bl, D6

Al=TOT (converts decimal to alpha)

Bl =NUN\ (converts alpha to decimal)

The result of the conversion is always stored in the destination field
(the expression located to the left of the equal sign). The decimal­
to-alpha conversion is always right-justified with leading spaces, if
needed. If the destination field is too smal I, high order characters
are lost. The alpha-to-decimal conversion is also right-justified

I

2-19

with leading zeroes, if needed. If the destination field is too
smal i, high order characters are lost.

46. QUESTION: What would be the contents of Bl and Al
after the following conversions?

ANSWER:

START
RECORD A

COST, D4, 9999
Al I D5

RECORD B

PROC

NUM,A6, 16789121

Bl ,A6

Bl=COST
Al=NUM

Bl =COST (converts decimal to alpha). Bl
would contain 9999 right-justified with two
ieading blanks. Al=NUM (converts an alpha­
numeric number to decimal). Al would contain
78912; the high order character is lost.

Decimal to Alpha with Format

In business data processing, it is frequently desirable to output
decimal information with imbedded commas, o dedmol point-and
(if needed) a minus sign. For example, -34, 259 .00 is easier to read
than -3425900. DIBOL makes it possible to accomplish the format­
ting of decimal information during the conversion from decimal-to
alpha format. The general form of conversion is:

alpha field=decimal field or decimal expression, format

For example, if B=l 256mOO (decimally formatted), the expression,
A=B, 1 -X,XXX,XXX.XX 1 will move B to A and cause A to look like
this:

l , 256, 777 .00 with no minus sign, since the number is greater than
zero. A must be defined as an Al 3 to hold a ful I nine-digit negative
number.

47. QUESTION: For B=4432567 - (assume two decimal places);
what would the conversion instruction look
like?

ANSWER: A=B'-XX,XXX .XX' or 'XX,XXX .XX-1

(-44,325.67) (44,325.67-)

The minus sign in the edit format can be either on the left or on the
right. If the decimal value is positive, the sign will appear as a
blank.

48. QUESTION: Since commas are inserted only if the corres­
ponding comma has a significant digit to the
left, if B=31 l, what would be the value of A
after the following?

ANSWER:

A=B, ·-x,xxx,xxx .xx·

Where b signifies a space, A would be equal to
bbbbbbbbb3. l l. When a decimal field is
converted, it is right-justified.

2-20

49. QUESTION: What is output to the terminal by the fol lowing
program?

ANSWER:

START
RECORD A

RECORD

PROC

Al ,A7
A2,A8
A3,All

NUM,D6, 100000
Bl ,A7, 'CREDIT I

B2,All,'TO DIGITAL'

Al=Bl
A3=B2
A2=NUM, •x,xxx .XX'
XMIT (8,A)

CREDIT l ,000.00 TO DIGITAL

Most printing characters on the line printer or terminal can be used
in a format string; but the fol lowing characters have a special
meaning:

X Each X represents a digit and leading zeroes are auto­
ma ti cal I y. suppressed.

If a minus sign is the first or last character in a format
statement, a minus sign is inserted when a number is
negative.

Inserts a period and zeroes are no longer suppressed.

Inserts a comma if there are significant digits to the left.

Z Suppresses a digit position and right-justifies it.

*

Examples:

If an asterisk is the first character of a format, it replaces
all leading zeroes.

NUM, 03, 987
Al ,A3
Al=NUM, ·xxz·

result is: Al =b98 (where b signifies a blank)

NUM, 05, 12345
PAY,A9
PAY=NUM, 1*X,XXX .xx·

result is: PAY=***l 23 .45

The remaining characters are treated as insertion characters e For
example:

OATE=l 02370
Al=OATE, 1XX/XX/XX 1

result is: Al=l0/23/70

or

NUM=987
Al=NUM, ·xxxo·

result is: Al=9870

When using a comma, period, slash, minus sign, or any other
notation, it must be counted as a character position. In the above
example using slash, Al must be defined as an eight-character
alphanumeric field.

I

2-21

50. QUESTION: In the following example, what is the result
of each statement in the PROC division?

ANSWER:

START
RECORD A

Al ,A8
A2,A4
A3,A4
A4,Al l
FMT rA4, 'X .XX 1

RECORD B

a)
b)
c)
d)
e)
f)

PROC

Statement a)
Statement b)
Statement c)
Statement d)

DATE, 06, 103070
NUM; D3; 123
COST, 03, 999
TOT I Dl 2, 000007894211

Al=OATE, ·xx/xx/xx·
A2=NUM, ·xxz·
A3=COST, ·xxxo·
A4=TOT, 1 -XXX,XXX .XX*'
A4=TOT, ·-xxx,xxx .xx·
A2=NUM,FMT

A 1=1 0/30/70
A2=bbl2
A3=9990
A4=*78, 942 .11 * (an asterisk
which is not the first character
in a format wi 11 act as an in-

. serlion character and afso
replace leading zeroes.)

Statement e) A4=bb78, 942. 11
Statement f) A2=l .23

In summary, the data manipulation statements have the fol lowing
formats:

Format

CI ear Field=
Alpha Field=Alpha Field
Decimal Field=Arithmetic Expression
Decimal=Alpha
Alpha= Dec ima I
Alpha=Decimal, format

Example

A=
A=B
A=B*C/D
Al=NUM
Bl=TOT
A=B, ·-xx,xxx.xx·

Note that subscripting can be used in any data manipulation state­
ment.

In most of the examples in which subscripting was used, it was done
by referencing specific elements of an array, i.e., NUM {2)=. It
is often desirable to change the value of the subscript. This is
done by using a data name for the subscript. For example:

START
RECORD C

Cl I l OA5
RECORD

A,D2
B,A5, 1 DIBO L1

PROC
A=l
Cl (A)=B

This plac~s the yqlve of _DIBQJ in the firs_t element of the array Cl •
If al I elements of the array were to be set to the value DIBO L, the
procedure section wou Id look I ike:

PROC

BEGIN,

END

A=l
Cl (A)=B
A=A+l
IF (A.LT.11) GO TO BEGIN
STOP

2-22

NOTE

A powerful feature for the data manipulation statements is that
record names can be used. For example:

START
RECORD AAA

Al ,A80
RECORD BBB

PROC

END

Bl ,A80

AAA= BBB
STOP

Statement AAA=BBB is valid. A record name can be moved to
another record name. Record subscripting is also legal. For example:

START
RECORD AAA

Al ,A80
RECORD BBB

PROC
Bl ,A80

AAA(l)=AAA(2)
STOP
END

The next type of statement is the GO TO statement.

GO TO

51. QUESTION: From the previous section (and using Foldout #3),
what is the purpose of the basic GO TO state­
ment?

ANSWER: This statement causes the program controi to
branch to the executabie statement in the
procedure section with the specified lobe!, and
has the form:

GO TO label

The label must be a statement label assigned to the statement in the
PROCedure section where control is to be transferred. It cannot be
a data name. A data name refers to an element which has been
defined in the data section.

52. QUESTION: Is the following use of GO TO correct?

ANSWER~

START
RECORD A

PROC

END

Al ,A90

INIT (2, I, 1FILEXX 1
)

XMIT (2,A)
GO TO START
FINI (2)
STOP

No• START is not on executobie statement.
Executable statements are found only in the
procedure section of the program.

I

2-23

53. QUESiiON: is the fol lowing use of GO TO correct?

ANSWER:

START
RECORD B

Bl ,A50

PROC
INIT (2, I, 1HOHUM 1

, 6)

LOOP I XMIT (2, B, EOF)
XMIT (8, B)
GO TO LOOP

EOF, FINI (2)

END

Yes, LOOP is a label associated with a state­
ment in the procedure section. LOOP is not a
data name.

Another type of GO TO statement is the computed GO TO. It has
the form:

GO TO (label 1, label 2,
expression

For example:

...... , label n), decimal

GO TO (LOOP I RUN I STOPS) I KEY

This statement reads 11 lf decimal variable named KEY is equal to 1,
then go to LOOP; if it is equal to 2, then go to RUN; and if it is

equai to 3, go to STOPS. if the variable KEY is not equal to l, 2
or 3, control passes to the next statement in sequence. There can be
any number of labels in a computed GO TO statement.

54. QUESTION: If NUM is equal to 2, what does the following
accomplish?

GO TO (Xl I X2, X3), NUM

ANSWER: The program branches to the statement labeled
X2.

55. QUESTION: In the above example, if NUM is equal to 6,
what happens?

ANSWER: Control passes to the next statement in
sequence.

An IF statement transfers control on the basis of the results of an
expression. The form of the statement is:

IF (expression l .rel. expression 2) statement

The data items for comparison may be constants, variables, or
arithmetic _expressions_. They_must_be both alphanumeric or both
decimal. The relations are:

• EQ. equal
.NE. not equal
.LT. less than
• LE. less than or equal
• GT. greater than
• GE • greater than or equa I

IF

2-24

NOTE

The format requires a period immediately before and after the two
character relation codes. If an expression is an alphanumeric
constant, it must be enclosed in apostrophes.

The statement is executed if the relation is true. Statement is one
of the following:

GO TO LABEL
CALL LABEL
RETURN
ON ERROR
STOP
TRACE
NO TRACE

(Options which are unfamiliar wil I be explained later in this section.)

56. QUESTION: Write an equivalent DIBOL statement for the
fol lowing. If NUMB is less than or equal to
46, then go to the statement labelled LOOP.

ANSWER: IF (NUMB .LE. 46) GO TO LOOP

In a decimal comparison, the shorter of two fields is left zero filled
before the comparison.

57. QUESTION: Write a DIBOL statement to do the following:

ANSWER:

If DESC is equal to the alpha constant HAPPY,
terminate program execution •

IF (DESC .EQ. 1HAPPY1

) STOP

NOTE

Two fields to be compared may be of unequal length. The longer of
two Alpha fields is shortened on the right to the same length as the
shorter field.

58. QUESTION: Is the following use of the IF statement correct?

ANSWER:

START
RECORD

PROC

NUMB, D3, 223
ALPH, A3, 1 ZAP 1

TOTL, D3, 999

BEGN, NUMB= NUMB+l
IF (NUMB .EQ. ALPH) TRACE

STOP
END

Use of the IF statement is incorrect. NUMB
(which is a decimal item) cannot be compared
with ALPH (which is an alpha item). A com­
piler error will result.

CALL
RETURN

When the same coding is used several times in a program, it may be
written once as a subroutine. To use the subroutine write:

CALL label

The CALL statement does two things. It saves the address of the
statement following the CALL in the RETURN statement of the sub­
routine and then performs an unconditional branch to a subroutine.
The return from a subroutine is to the next statement after the CALL
statement. This is accomplished by the RETURN statement. For
example:

I

2-25

PROC
CALL LIST
;control returns here

LIST I B=B+l
RETURN

NOTE

Control can oass directly to a subroutine. However, its RETURN
statement, ~hen execut~d, wi 11 cause a Run-Time error.

59. QUESTION: Is the fol lowing correct use of the subroutine?

ANSWER:

START

PROC

CALL SUBl

SUBl I x = x + l

EXIT I
SUB2,

IF (X .NE. 3) GO TO EXIT
CALL SUB2

RETURN
X=X*2
RETURN

The example is correct. SUB2 is an example of
a nested subroutine, called by SUBl. SUBl
cal Is SUB2, which ~ultiplies .the variable X by
2 and returns to SUBl, which returns to the in­
struction fol lowing the original CALL statement.
If a subroutine is entered other than by a CALL
it is treated in sequential coding, not as a
subroutine.

STOP

STOP causes the program to terminate its execution and to return
control to the DIBO L Monitor. For example:

START

BLOCK A
Al I Al 0
A2, A2

RECORD B, X
Bl I Al2

PROC
INIT (2, IN, 1AFILE 1

I 3)

LOOP I XMIT (2, A, EOF)
XMIT (8, B)
GO TO LOOP

EOF I FINI (2)
STOP

END

This example would print each record from logical unit 3 onto the
terminal until end-of-file was reached. At that time, control would
transfer to EOF where logical unit 3 would be closed. The program
would then terminate by transferring control to the DIBOL Monitor.
In this example STOP is optional since it is physically the last
statemenHn--the program •

On Foldout #3 is a I isting of a complete DIBO L-coded program.
Examine it, and answer the fol lowing questions.

60. QUESTION: From statements 15 and 17, what is the function
of INBUF?

ANSWER:

INBUF is the input record into which al I data
from channel 1 is stored.

2-26

61 • QUESTION: From statements 16 and 20, what is the function
of the block named OUTBUF?

ANSWER:

It is the output record from which al I records
are written by channel 2.

62. QUESTION: What is the purpose of the X in describing
OUTBUF?

ANSWER: The five fields of OUTBUF occupy the same
area of computer memory as the five fields of
INBUF (the fifth field of INBUF is not
label led.

63. QUESTION: Which statement separates the data section
from the procedure section?

ANSWER: The PROC statement.

64. QUESTION: Why should the input record occupy the same
area of computer memory as the output record?

ANSWER:

With the exception of the field named ECO ST,
the output records contain the same information
as the input record. Thus, not only is computer
memory saved, but many more instructions
needed to move fields from one buffer to
another are eliminated.

65. QUESTiON: ECOST is defined as decimal and the field
it overlays is alphanumeric. Is this valid?

ANSWER:

66. QUESTION:

A..._ 1..-\AJrn
1-\l~.:>VV Cl\:

67. QUESTION:

ANSWER:

Yes. A decimal field may be defined as alpha­
numeric (and vice versa).

Put statement number 18 into your own words.

"If data name STOCK~-J is less them 1 OOQ.. then
go to the instruction labeled LOOP. Other­
wise, execute the next sequential instruction • 11

In the example program, STOCKN refers to a
stock number, DESC refers to an item descrip­
tion, UCOST refers to unit cost of the item,
QORDER is the quantity ordered, and ECOST
denotes the extended cost. Describe in your
words the operation of this program (the logic).

The program reads records containing a stock
number, item description, unit cost, and
quantity ordered. It skips records which have
a stock number less than l 000. Output records
are generated with the same information as the
input with an additional item -- an extended
cost which is the product of the unit cost and
the quantity ordered.

68. QUESTION: Put statement 16 into your own words.

ANSWER: INITialize channel 2 as an output device which

wil I write a file called ITEM on logical unit 12.

•

2-27

69. QUESTiON: There doesn't seem to be any way for the pro­
gram to execute statements beyond statement
21 (an unconditional branch). How is the
statement labelled EOF executed?

ANSWER:

70. QUESTION:

ANSWER:

Statement 17 carries the solution. It says
11 Read a record from channel l and store the
information in the record labelled INBUF.
If theie aie no moie iecoids, go to the in~
struction label led EOF. 11

How do we know statement 17 is a read
statement? (two reasons)

First, statement 15 INITializes channel 1 which
contains a file called 1 ITEM 1 as an input de­
vice; second, only read uses of the XMIT
statement have three parameters (channel,
record, and end-of-file routine name); write
statements have only two parameters (channel
and record).

START
RECORD

RECORD

PROC

LOOP,

EOF,

END

FOLDOUT #3

SAMPLE PROGRAM #2

INBUF
STOCKN, D4
DESC, A25
UCOST, D5
QORDER: D4

A9
OUTBUF,X
Al I 04
A2, A25
A3, 05
A4, 04
ECOST, 09
2
IN IT (l , I N I I IT EM I I 4)
INIT (2, OUT I I ITEM' I 12)
XMIT (l ,INBUF,EOF)
IF (STOCKN .LT .1000) GO TO LOOP
ECOST=UCOST*QORDER
XMIT (2,0UTBUF)
GO TO LOOP
FINl(2)
FINl(l)
ST01>

;1
;2
;3
;4
;5
;6
;7
;8
;9
; 10
;11
; 12
; 13
;14
; 15
; 16
; 17
; 18
; 19
;20
;21
;22
;23
~2:4

The program reads records containing a stock number / item descrip­
tion, unit cost and quantity ordered. It skips records which have a
stock number less than 1000. Output records are generated with the
same information as the input with an additional item -- an extended
cost which is the product of the unit cost and the quantity ordered.

START
RECORD

RECORD

PROC

LOOP,

EOF,

END

EXPLANATION OF FOLDOUT #3
INVENTORY PROBLEM

INBUF
STOCKN,D4
DESC,A25
UCOST, D5
QORDER,D4
,A9
OUTBUF,X
Al ,D4
A2,A25
A3,D5
A4,D4
ECOST, D9
2

INIT(l, IN, 1 ITEM 1 ,4)
IN IT (2, OUT I 1 ITEM 1

I 12)
XMIT(l, INBUF, EOF)

IF(STOCKN .LT .1000)
GO TO LOOP

ECOST=UCOST*QORDER

XMIT(2,0UTBUF)

GO TO LOOP

FINl(2)

FINl(l)
STOP

;input record
;Stock number, 4 digits
;Description, 25 characters
;Unit cost, 5 digits
;Quantity ordered, 4 digits
;Unused field
;A redefinition of the input record

-
;Extended Cost, 9 digits
;Begin Procedure Section, 2 mass storage
;files will be open at one time
;Initialize file 1 as an Input device
;Initialize file 2, as an Output device
;Read a record from channe I 1 , and
;store it in record INBUF
;If stock number is less than l 000,
;read another record
;Extended cost would be calculated
;for STOCKN l 000 or over
;Write __ the_r:ecord OUTBUF onto _
;channel 2
;Go to statement LOOP to read
;another record
;OUTBUF file is closed and EOF mark
;is put at end of file
;INBUF file is closed

;OUTBUF file wil I contain all stock
;items with a stock number of l 000
;or over, with DESC, UCOST,
;QORDER, and ECO ST for each item.

2-28

!NCR

The INCR (increment) statement adds ones to a specified field and has
the form

INCR decimal field

The next two statements are identical

DECFLD=DECFLD+l
INCR DECFLD

Refer to statement 25 of Foldout #4 for another example.

71 • QUESTION:

ANSWER:

Given the fol lowing program which statements
are invalid?

START
RECORD
A,D4
B,A5
C,D3
PROC

a) INCR B
b) INCR A
c) INCR A+c
d) C=INCR A

Statement a is invalid since variobfe B is
defined as alphanumeric.
Statement b is correct.
Statement c is invalid since expressions are
not al lowed in an INCR statement.
Statement d is invalid since INCR cannot be
part of a data manipulation statement.

I

2-29

I k t F Id t #4 d "t I t" Th" t • _oo. a .. o ou. an 1 s exp ana.1on.. . 1s program con ams
samples of the remaining statements to be explained in this section~

FORMS

The FORMS statement is used to format line printer output. It may
not be used with any other output device. It has the form:

FORMS (channe I, skip-code)

Channel is the channel number associated with the line printer. The
skip-code specifies the action to be taken:

0

l - 4095
-1

-2

For example:

go to top of next page (skip to channel 1
of the vertical forms control tape).
skip this number of lines.
(LS8-E only) skip to channel 2 of the
vertical forms control tape.
(LS8-E only) print enlarged characters for
the next XMIT statement. Since charac­
ters are twice their normal width only 66
characters can be printed.

FORMS(6,3)

means skip three lines on the line printer;

FORMS(6,0)

means skip to the top of the next page;

FORMS(6, N)

means perform the function specified by the value of N.

72. QUESTION:

ANSWER:

a)
b)
c)
d)
e)

In the following program, what is the result
of each FORMS statement?

START
RECORD
l,D2,20
J, D2, 03
PROC

INIT(3, LPT)
FORMS(3,0)
FORMS(6,0)
FORMS(J,3)
FORMS(J, -3)
FORMS(J*2, l+J-13)

Statement a will allow the line printer to skip
to a new page.
Statement b will also allow the line printer to
skip to a new page. The line printer may be
referred to as channel 3 since it was INITed
as channel 3 and as channel 6 since no other
device was INITed as channel 6.
Statement c will skip three lines on the line
printer. Variables or decimal expressions are
al lowed for the channel number of skip-code.
Stah~ment d is inval ic;I. The skip-code is
lncorrea~--- - -------- - - -- - --- -
Statement e will skip 10 lines on the line
printer.
The value of the first expression, J*2, is 6;
the value of the second expression, I+ J- 13
is l 0.

2-30

TRACE
NO TRACE

These statements are used to debug a program. They can be inserted
anywhere in the PROCedure section. The form of the statement is:

TRACE

NO TRACE

When the TRAC::E statement is executed, program tracing is enabled
unti I the execution of a NO TRACE statement. When enabled each
DIBO L statement which is executed causes the fol lowing line to be
printed on the line printer:

AT LINE n

where n is the source line number. If the statement is a data mani­
pulation statement, the value stored in the destination field is also
printed:

AT LINE 200
0003

TRACing will not occur unless the program is RUN
with the /T option (refer to the System Reference
Manual for a more detailed explanation of this
op-Hon};;

Indiscriminate placement of TRACE statements wil I
cause excessive output on the line printer. To use
a TRACE statement properly, the problem area in a
program should be determined and the TRACE/NO
TRACE statements used only in the problem area.

73. QUESTION:

(Ii ne numbers)
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190

\A/hat output wi!! result from the TRACE
statement in the fo! !owing program?

START
RECORD
ITEM,D5
HOURS,D2
SALARY,D5
WAGES, D7
PROC

HOURS=40
SALARY=300
TRACE
WAGES=HOURS*SALARY
IF~AGES·.EQ .1 OOOO)NO TRACE
HOURS=lO
IF(HOURS .EQ .1 O)GO TO NEXT
NO TRACE

0200
0210
0220
0230
0240
0250
0260
0270
0280
0290

NEXT I WAGES=HOURS*SALARY
NO TRACE
HOURS=20

ANSWER:

WAG ES=HO URS*SALARY
STOP

AT LINE 0200
0012000
AT LINE 0210
AT LINE 0220
lO
AT LINE 0230
AT LINE 0250
0003000
AT LINE 0260

I

2-31

74. QUESTION: Vv'hich of the following are vaiid TRACE/NO
TRACE statements?

ANSWER:

a) IF (A .GT .B) TRACE
b) CALL TRACE
c) NO TRACE
d) GO TO TRACE

Statement a is valid.
Statement b wi!! CALL subroutine TRACE, not
enable TRACing.
Statement c is vc!id.
Statement d wi 11 GO TO a statement labelled
TRACE, not enable TRACing.

ON ERROR

The ON ERROR statement is often inserted in a source program prior
to a statement which, if in error when executed, would cause a
return to Monitor~ The form of this statement is:

ON ERROR label

where label is a statement in the PROCedure section where control
is to be transferred when an error is encountered. An example of
this statement is:

FIX,

ON ERROR FIX
DECMAL~ALl'HA

Refer to statement 17 of Foldout #4 for another example. The ON
ERROR statement eliminates a return to Monitor for the fol lowing
conditions:

- division by zero;
- in alpha to decimal conversion, a character other than

0 to 9, plus, minus or space;
- more than 15 digits in a decimal field used in a calculation

(the field, of course, would have to be defined as Dl 6,
Dl 7, or larger);

- an end of file label was not specified in an XMIT statement
and the end of the input file was reached;

- input record was greater than its specified size;
- no file was specified in a RUN command to satisfy an

INIT(SYS) statement
- direct access of a record beyond the end of a file.

75. QUESTION: Which of the following statements need an
ON ERROR statement to precede them to
prevent program termination?

Assume the fol lowing data section

START
RECORD
DECMAL,020,00000000000000050000
1,05
ALPHA,A5, 1ABCDE 1

BETA,A5, 1123451

PH I ,A3, 1+251

WORK,D8
j,t>!>, 15-0

a) WORK=J/I
b) WORK=l/J
c) WORK=DECMAL *2
d) l=PH I
e) l=ALPHA
f) l=BETA

2-32

ANSWER: Statement a needs ON ERROR because of
division by zero.
Statement b does not need ON ERROR.
Statement c does not need ON ERROR because
DECMAL does not contain a value exceeding
15digits.
Statement d does not need an ON ERROR
since a plus sign is a val id character in alpha
to decimal conversion.
Statement e needs an ON ERROR statement
since none of its characters are val id in alpha
to decimal conversion.
Statement f does not need an ON ERROR
statement.

76. QUESTION: What happens in Sample Problem #2 if state­
ment 17 is:

ANSWER:

LOOP ,XMIT (1, INBUF)

The program will run properly until the end of
file is reached. At that time, the program
will return to Monitor because there is no end
of file label in the XMIT instruction. This
problem can be avoided by leaving statement
17 in its original form or by preceding state-
-nienf 17 with an ON ERROR statement~

ACCEPT

The ACCEPT statement stores input from the keyboard in a specified
alpha field or record as well as the decimal equivalent of the
terminating character. It is used mainly with the DISPLAY statement.
It has the form:

ACCEPT{terminating character,alpha field)

where the terminating field is usually defined as a two digit field
and the alpha field contains the keyboard input. ACCEPT is often
used when certain action is to be taken depending upon the value of
the terminating character. The values for the terminating characters
can be found in Table 1-1 of the System Reference Manual. An
example of this statement is:

DECMAL,D2
ALPHA,AlO

ACCEPT (DEC MAL, ALPHA) .

Another example of this statement is statement 29 of Foldout #4.

77. QUESTION:

ANSWER:

How would you write a program which wili
ACCEPT 15 alphanumeric characters? If
CTRL/U, a terminating character with a
value of 21 is typed, restart ACCEPTance of
input. Use TCHAR as the terminating char­
acter and KBD to store keyboard input.

START
RECORD
TCHAR,02
KBD,A15
PROC
LOOP ,ACCEPT(TCHAR, KBD)

IF (TCHAR .EQ .21)GO TO LOOP
STOP
END

I

2-33

78. QUESTION: How can the ACCEPT statement in the preceding
problem be modified to ACCEPT only l 0 char­
acters? (Show two ways.)

ANSWER: LOOP, ACCEPT(TCHAR, KBD(l, l 0))

or define KBD as an Al 0 field.

DISPLAY

The DISPLAY statement is used primarily with the VT05 terminal to
dispiay a message at a specified iocatlon on the screen. Any of 20
rows or lines and 72 columns may be specified. The form of the
statement is:

DISPLAY(row, column, field)

where row specifies the line and column specifies the column where
field is to be displayed. The field may be a decimal constant, an
alpha I iteral, an alpha variable or a decimal variable. The
foiiowing decimai constants or decimal variables perform a special
function:

0 = position the cursor at the row and column specified;
l = clear the scope from the row and column specified to

the end of the screen and position the cursor at row
and column;

2 = clear the scope from the column specified to the end of
the I ine and position the cursor;

25 = sound the bel I or beep and position the cursor.

Any other decimal codes are meaningless.

79. QUESTION:

ANSWER:

80. QUESTION:

How would the DISPLAY statements be
written to do the following?

a) Clear column 8 thru 72 of line 12 on the
screen.

b) Clear column 3 thru 72 of line 5 and clear
I in es 6 thru 20.

c) Display the error message 'NOT
NUMERIC' at the beginning of the lost
line.

d) Ring the terminal bel I.
e) Clear column 6 thru 8 of line 20.
f) Display the contents of the alpha field

XYZ at line l, column 1 •
g) Move the cursor to row I, column J.

a) DISPLAY(12,8,2)
b) DISPLAY(5,3, 1)
c) DISPLA Y(20, 1, 'NOT NUMERIC')
d) DISPLAY(0,0,25) ;row and column could

be any value but a 0 value for row wil I
not reposition the cursor.

e) This cannot be done with a DISPLAY
command. The minimum that could be
cleared is column 6 thru 72 of line 20.
However, displaying spaces wi 11 work.
For example: DI-SP LAY (20, 61 'L..JL-H-l)

f) DI SP LA Y(l, l , XYZ)
g) DISPLAY(!, J,0)

How would you write a program to do the
following:

a) Clear the screen.
b) DISPLAY 'CLIENT NUMBERL..J'
c) ACCEPT a 5 digit client number.

ANSWER:

2-34

d) Verify that the digit is numeric when
storing it in a five-digit field cal led
TEMP. If incorrect, sound the beep,
DISPLAY the error message NOT
NUMERIC on the bottom line, wait for
the operator to strike any key which
indicates he understands the error and
reenter the information.

e) Since the number may be less than 5
digits, right justify the number entered
before DI SP LA Ying it.

START
RECORD

PROC

TCHAR,D2
CHAR,A5
TEMP,D5
ONE, Al

LOOP I DISPLAY(l, 1, 1)
DISPLAY(l, l, 'CLIENT NUMBER L..J I

ACCEPT (TCH AR, CH AR)
ON ERROR FIX
TEMP=CHAR
CHAR= TEMP
DISPLAY(l, 15,CHAR)
STOP

FIX, DISPLAY(0,0,25)
DISPLAY(20, l, 'NOT NUMERIC')
ACCEPT(TCHAR, ONE)
GO TO LOOP

READ
WRITE

The READ and WRITE statements allow direct access of a specified
record. This record may be input from (READ) or output to (WRITE)
a specified file. The statement has the form:

READ (channel,record,record number)
WRITE (channel, record, record number)

where channei is a number from i to i 5, record is a iabei previousiy
specified in a RECORD statement, and record number is a constant,
variabie or arithmetic expression specifying the record number to be
read or written. For example:

READ(5, REC RDA, 20)
WRITE(K, REC, J-4)

The first example wil I READ the 20th record from channel 5 into
record RECRDA. The second example will WRITE REC as the j-4th
record onto channel K. Refer to Foldout #4 for more examples.

NOTE

For a file to be accessed directly, it must be defined as an UPDATE
file. For example:

INIT(l, UPDATE, 1FILEA1 ,3)

RCAD(t I RECRDA, 20) .

2-35

81. QUESTION:

ANSWER:

SIZE,
LENGTH,

EOF,

How would you write a program which prints
every 10th record on the line printer (assume
the records are ca I led RECA, are 50 char­
acters long, are in FILEX in channel 3,
logical unit 6, and that direct access will be
used.

START
RECORD RECA
A50
D5
PROC

INIT(3, U, 1 FILEX 1 ,6)
LOOP, INCR LENGTH

ON ERROR EOF
READ(3,RECA, LENGTH*lO)

XMIT(6, RECA)
GO TO LOOP
FINl(3)
STOP
END

FOLDOUT #4

SAMPLE PROGRAM #3

START
RECORD ITEM
STOCKN, D4
DESC, A25
UCO ST I D5
QORDER, D4
ECOST, D9

RECORD
LINECT, D2,50
REC, D5
TCHAR, D2

RECORD KBDIN
CHAR A5

PROC 1
INIT(i, UPDATE,' ITEM' I 12)

LOOP I CALL GETKBD
ON ERROR MESAGE
REC= CHAR
NO TRACE
IF(REC .EQ .l OO)TRACE
READ(l, ITEM,REC)
IF(LINECT .LT .50) GO TO PRINT
FORMS(6,0)
LINECT =

PRINT I INCR LINECT
XMIT(6, ITEM)
GO TO LOOP

MESAGE, DISPLAY(2, l, 'NOT NUMERIC)
ACCEPT(TCHAR, KBDIN)
GO TO LOOP

GETKBD, DISPLAY(l, l, l)
GETA, KBDIN=

ACCEPT(TCHAR, KBDIN)
IF (TCHAR .NE .21)RETURN ;21 = CTRL/U

DISP DI SP LA Y(l, 1, 2)
GO TO GETA

il
;2
;3
;4
;5
;6
;7
;8
;9
i 10
i 11
i 12
;13
;l 4
; 15
;l 6
i 17
; 18
i 19
;20
;21
;22
;23
;24
;25
;26
;2T
;28
;29
;30
;31
;32
;33
;34
;35
;36

EXPLANATION OF FOLDOUT #4

DUMP SPECIFIED INVENTORY RECORDS

START
RECORD ITEM
STOCKN, D4
DESC, A25
UCOST, D5
QORDER, D4
ECOST, D9

RECORD
LINECT, D2, 50
REC, D5
TCHAR, D2

RECORD KBDIN
CHAR, A5
PROC 1

; Input record
;Stock number
; Description
;Unit cost
;Quantity on order
; Extended cost
;Working storage
;Number of lines printed on current page
;Record number of record to be printed
;Terminating character in an ACCEPT
;command
;5-character record for reading record no.

;A maximum of 1 mass storage device wi 11
;be open at the same time

INIT(l,UPDATE, 1ITEM1, 12) ;Initialize a file called ITEM found on

LOOP, CALL GETKBD
ON ERROR MESAGE

REC=CHAR
NO TRACE

;logical unit 12 for direct access
;Get the record number
;Go to MESAGE if the next statement is
;in error (such as CHAR containing non­
;numeric characters)
;Move CHAR to the numeric field REC
;Disable TRACE mode (it is initially
;disabled)

IF (REC .EQ .1 OO)TRACE ;Enable TRACE if record number 100
READ(l, ITEM, REC) ;Read record REC from ITEM file
IF(LINECT .LT .50) GO TO PRINT ;Skip to new page every 50 lines
FORMS(6,0) ;Skip to new page
LINECT = ;Clear LINECT

PRINT ,INCR LINECT ;Add 1 to LINECT
XMIT(6, ITEM) ;Print specified ITEM record on line

;printer
GO TO LOOP ;Get next record number

2-36

MESAGE, DISPLAY(2, 1, 1NOT NUMERIC') ;Display error message
;terminal

ACCEPT(TCHAR, KBDIN) ;Wait for operator response indicating

GO TO LOOP
GETKBD, DISPLAY(l, 1, 1)
GETA, KBDIN=

ACCEPT(TCHAR, KBDIN)

IF (TCHAR .NE .21)RETURN

DISPLAY(l, 1,2)
GO TO GETA

;he has acknowledged the error message
;Get next record number
;Clear the screen
;CI ear record
;Accept up to 5 characters; accept is
;terminated when 5 characters are typed
;or when a terminating (non-printing)
;character is typed
;If terminating character is not CTRL/U,
;return to main program
;If CTRL/U, clear row 1 and
;accept input again

The program accepts a record number from the keyboard. If the
record number is not numeric an error message is displayed and the
program waits for the operator to depress a terminating key before
restarting. When the record number is numeric, that record is read
directly from a file cal led ITEM and then printed on the line printer.

SECTiON SUMMARY

You have completed an in-depth discussion of the DIBO L language.
If you do not understand DI BO L c I early, by a 11 means study the
section a second time.

In summary, the procedure section has the fol lowing instructions:

l) Initialize File Device statement (as input or output).

Geneial foim:

IN IT (channel, dev, data-file-name, unit)

Example:

INIT(2, IN,FILEX' ,3)
INIT(4,KBD)

2) Transmit statement (Read-from or write-into file).

General form:

XM!T {channel; record, end-of-file !abe! for
input files)

Example:

XMIT(2, INBUF, EOF) Read from
XMIT(l ,OUTBUF) Write into

3) Close Fi le statement.

General form:

FIN I {channel)

Example:

FIN I (2)

I

2-37

4) Data Manipuiation statement.

General form:

destination field=source field or expression

a) CI ear data (destination field=)
b) Move alphanumeric data (alpha data=alpha data)
c) Compute decimal data (decimal data= decimal

expression)
d) Convert alpha to decimal (decimal data=alpha data)
e) Convert decimal to alpha (alpha data=decimal data)
f) Convert decimal to alpha, formatted (alpha data=

decimal data, format)

5) GO TO statement (program control transfers to statement
label).

General form:

GO TO statement lobe!

Example:

GO TO LOOP

6) Computed GO TO statement (program control branches to
label l if the decimal data element is l, etc.).

General form:

GO TO (labell, label2, ••• , labeln),decimal
doto element

Example:

GO TO (TAX,COST,PRICE),A2

7) IF statement {if the relation between the expressions is
true, con tro I goes to statement) •

General form:

IF (expression l .rel .expression2) statement

Examples:

IF(A.EQ .B) GO TO C
IF (A .NE .1) TRACE
IF(LINE .GT .50) CALL HEADNG
IF (I. LT. l) RETURN

8) Subroutine CALL statement (control goes to statement
label).

General form:

CALL statement label

Example:

CALL COST

9) RETURN statement (program control returns to the state­
ment after the last CALL).

General form:

RETURN

l 0) STOP statement (causes program to terminate and transfers
control to the Monitor).

General form:

STOP

2-38

11) INCR statement (adds 1 to a specified field).

General form:

INCR decimal field

Example:

INCR DECFLD

12) FORMS statement (formats line printer output)

General form:

FORMS(channel, skip-code)

Examples:

FORMS(6,0)
FORMS(6, -2)
FORMS(I, l 0)

13) TRACE statement (enables program tracing for debugging).

General form:

TRACE

14) NO TRACE statement (disables program tracing).

General form!

NO TRACE

1 ~\
I ..., I Ot'-~ ERROR statement (prevents return to Monitor for

certain run time error conditions).

General form:

ON ERROR statement label

Example:

ON ERROR EXIT

16) ACCEPT statement (used to get input from the terminal
when retention of the last character typed is desired).

General form:

ACCEPT(terminating field, alpha field)

Examples:

ACCEPT (TCHAR, ALPHA)
ACCEPT(TCHAR,ALPHA(l, l 0))

17) DISPLAY statement (used to put output on the VT05 at a
certain row and column).

Genera I form:

DI SP LA Y(row, column, variable)

Examples:

DtSPLAY(l I l I ·MESSAGE')
DISPLAY(I, J,2)
DI SP LA Y(I, 8, ALPHA)

I

2-39

18) READ statement (allows a specified record to be read
directly).

General form:

READ (channel, record, record number)

Examples:

READ(l, RECNAM,28)
READ(4, REC NAM, REC)

19) WRITE statement (allows a specified record to be written
directly).

General form:

WRITE(chonnel, record, record number)

Examples:

WRITE(l, REC NAM, 33)
WRITE(4, REC NAM, REC)

SECTION 3

A Programming Exercise

3-1

1 • QUESTION: On this page is the definition of a program
you are to write. It is imperative you complete
writing the program before you look at th is
author's solution. It is also important that you
write the program during the same sitting in
which you study the previous two sections, for
the simple reason that prompt reinforcement
(through application) is the only way to
retain the thorough knowledge of DIBO L.
Feel free to use Sections l and 2 as reference.

YOU ARE TO WRITE A PROGRAM FOR THE ATHLETICS DEPARTMENT
OF A COLLEGE. STUDENT RECORDS ARE STORED ON DECTAPE
LOGICAL UNIT 15 IN A FILE CALLED 'STUREC', IN THE FOLLOW­
ING FORMAT:

STUDENT
NUMBER

LAST FIRST CUMULATIVE SEX WEIGHT HEIGHT
NAME NAME G .P.A. (LBS) (FEET)

THE COACH WANTS A LIST OF ALL MEN ON CAMPUS WHO HAVE
A GRADE POINT AVERAGE ABOVE 85, WHO WEIGH OVER 170.00
POUNDS, AND WHO ARE OVER 5.75 FEET TALL. THE REPORT IS
TO LOOK AS SHOWN ON THE NEXT PAGE.

DON'T LOOK AT OUR SOLUTION UNTIL YOUHAVE COMPLETED
ALL WORK ON YOURS.

3-2

dec~system
CONSOLE AND PRINTER LAYOUT FORM

0 2 3 4 5 6 7 8 9 10 11 12 13

~ t-+-t-+-1-H-H-+-+-++++++++-t-+-+-t-1-+-t-+-+-++-++-++++-t+++-+-t-1-+-t-+-t-++-++++-++++-++-H-11--t-1-+-t-++~l++-t-t-++-++-++-t-H-+-t-++-++-tT++-++-++-i--H-+-t-++-tT++-++-++-++-H-ii--H-++++-r-t--t--r-++-++-H-1

~!
2 r ! ! T T . 1

I

..L

j_i i 'j j_ j_' !- J 111 J! 'JilU'l Jllll__l_U 1 I Ii I Iii I I I I ~ I

I' I ' I I l
Ii , JI !

'
111 I :t T Ii

I ! 11 11 i 11 I. 111 I

I I I I I i I i I I I I I I I ' i I I i l ' 'J ' ' I Jj_ ! 'Jl 1 ' ' llil 'l l 1 l 1 JllJ_U_[_ I J_
;· 'lll ' i j_ llll j_j_ . j "'l' T .. J ... !l!l!!I!!! .!!!.!!!!!I!!!!! 'l

I ! ,
l

J i iJ_ I I Jj__i: 1 I I!

_i
'J. 'l• ! I I l l

1 • I ..L

...L J_

! ! I!
'L l I-+ T : + +-1-~ J_+

i Ii

1 T ii' I i '11 J 1 Jj_ J

1111''1!"111" 1 111111!1!11'!'111[111[![!1 I

... ,. .. j_ :t,_~.,";'!'.'. ." ".'!.'; ,; Ill 1111111

I ' i i . . ' ili I ii jj_ i jJ_ J_
I I i I I i I I I I i i I ' I I i I ! i U-Ll--L ~ ~+LLL '...Li...L_iJ_ ' 'j_ I _j_ i 'J. '..l. . ' T ;

ii . ' i ' ' ' ' ! J_ J_J_

T i 11: Jll I 1111 I 1111 Ill I :1 II 1:1 I

T '.l +:+-<
I ! , I ' ! i I! ! ii l 11 ! 11 11111 i I

'll '_j_

I l
T
'l

I I
li.

J_'
Ii 111 11 I

I ITT

l
' I I T l ' TT : T : l TIT ' :

..l' _j__j_ : J_ T J_ T .T·T·

l
I 11111111111111111 11111 11 I I I I I I I I I I I I I I I II I

I

r
..L

-+ '1''
I I I

!

l j_j_

! ! ! :

TT T .T, "TT

'·TT~' I'. i' : I I

I

TTT ~ •Tl"T IT;

ill l 'I I I.

11111 I 111 j

I I l

l' I 'J. ..L I I' I I J_ J. : i lj_ i T
..i J_ , T "TT"T , -,- -,- 'T TT : TT -T 1 I

5.2. _ill_ .. 11 J L ! l J.
,53L"1·111•11"-""L """..LL ..L ...l --,- .c.1 r--~ ~+-+-·-.:·---'l T r::i:-1 .r

~
[. 1 11 ! .. I. _l11fu1 •illjj_.jj_l_l._ll •1!J_l_l_l1_L ,_Li.1·LLJU_l_LI .l.J..l.l.J. j_~.1...L.} .l...L.l...L...L. _j__j_ ..l. -,- -,- T ,-,--,- •TTTi

' l ; l~- Tl Ii• ii'' ,,, 'I 1:1-;- :: !'' ; 11 I I 11 l_l l: ·LlJ11' '
11..Lil .. !!~l.ltli: :lT1_;__c I 'i i"'':' T I ! 1 1

1
1 I 1•1 1 !1 11

1 111

se. r TTTTT ! T T T TT 1 T 1 l;-'.TTT T; _1__1_
1

, , JI 11 l l J_ 1 1 · 1 l J. i ...L
_l .l .l _L Ii I I• i_;_ ! I!' I ''_;_! ! 'I ij_ 1_J_i . j_; j

,ll : I I -h ! l
1 TT 1 : I I I I i

I ' I !

1 l .l j_
1 l NOTE: Variations in humidity may ca~se]

' l' J l _;_' ..l' . iT I I l I I I I I J inaccuracies in this form.Calculate 1·

6•' I ' I ' I ; ' 'TT I I I ; ' i I ; ' I i ' i ; • I ' i i r r i i I I I I ! i i ! i ! ·r ; I i I 1 I I I IT I dimensions of form from measure-

t:m l _\ Ll l ...L 1
j

1 1 J_ ' 1 I I I I I •1' J_ J_ J_ _J_ _lj_ j_J__lj_j_j_ .l .l ments shown not from ci1mens1ons I
~ ' 1 i ' 1 ' ' 1 ' 1 _j_ 1 1 1 I _l 1 1.1..l ...L .l..l. ..L..L..LLL ~ ' T T -1 l 1 1 l 1

, 'I T scaled from this chart. J
riT2fJ!.tj5\6!700iN3'4 S!fil'e!91o!12!3i4l5!6!~1 23.i!s]tb!e[9!o!1•2Jill61\3!9lo!ili(J 4TSJ6f7ej91oi1 2 :il4lsl617iifil~[1 213l4!5l6f7 ~il21314516 71819~1 2'314ls'61718191ol1234js'6j7 eili_i1213141516f71el91o11 23l4lslt>l-7l8Wi 2

DEC7-(294)-1171-M573 ~ 0 l 1 2 T 3 T 4 T 5 ! 6 ! 7 I 8 9 I 10 11 12]ill

3-3

START RECORD COLl ;First I ine of column heading
RECORD TAPEIN ;INPUT BUFFER FOR TAPE RECORDS A4 ;Filler

STUNO, D4 ;Student Number A3, 1 STU1

LNAME, AlO ;Last Name Al9
FNAME, AlO ;First Name A7, 'NAME'
GPA, D2 ;Cumulative Grade Point Average Al7
SEX, Al ;Sex (Mor F) A3, 'CUM'
LBS, D4 ;Weight (XXX .X) AS
FEET, D3 ;Height (X .XX) A6, 'WEIGHT'

A5
RECORD LPTBUF ; Line printer Output Buffer A6, 'HEIGHT'

, A3 ;Filler
LPNO, A4 ;Student Number RECORD COL2 ;Second line of column heading
, A9 ;Filler A4 ;Filler
LPLNAM, AlO ;Last Name A3, 'NO.'
, AS ;Filler Al4
LPFNAM, AlO ;First Name A4, I LAST'
I A7 ;Filler Al'2
LPG PA, A2 ;Cumulative GPA A5, 'FIRST'
I A9 ;Fi lier AS
LP LBS, A5 ;Pounds A3, 'GPA'

'
A7 ;Fi lier A9

LPFEET I A4 ;Feet A5, I (LBS)'
A6

RECORD HEAD ;Heading Line of Report A4, I (FT)'
A37 ;Filler

1 A5, 'DATE t....1' RECORD
D,A.T_E, _A8_, p ;Request date when pro.gram __ j_s LINECT; 02; 50

loaded XX/XX/XX PROC ;BEGINNING OF PROCEDURE
Al 8 ;Filler SECTION
AlO, 'ATTN:COACH' INIT(l, IN I I STUREC I 15) ;Initialize the input tape

CALL HEADER ;Print report headings
REPT, XMIT(l ,TAPEIN,EOF) ;Read input tape

3-4

IF (SEX .NE. 1M1
) ;**Test to determine I

GO TO REPT
iF (GPA. LE .85) ;**if record shouid be

GO TO REPT
IF (LBS. LE .1700) ;**selected. If a test fai Is

GO TO REPT
IF (FEET .LE .575) ;**read another record.

GO TO REPT
LPNO = STUNO ;Format print
LP LNAM = LNAM E ;line by moving
LPFNAM = FNAME ;all fields to
LPGPA =GPA ;the appropriate print
LPLBS = LBS, ;position. Edit feet

•xxx.x·
LPFEET =FEET I ;and lbs.

·x.xx·
CALL PRINT ;Print the line
GO TO REPT ;Read another record

PRiNT I XMIT (6, LPTBUF) ;Print the line
INCR LINECT ;Add one to line count
CALL HEADER ; Test if header is to be printed
RETURN ;Return to instruction after last

;call

HEADER, IF (LINECT .LT .50) ;Print every header after every
GO TO EXIT ;50 I in es

LINECT = ;Set line count to zero
FORMS(6,0) ;Skip to new page
XMlT (6,HEAD) ;Print Header line
FORMS(6, l) ;Print blank line
XMIT (6,COLl) ;Print first header I ine
XMIT (6,COL2) ;Print second header I ine
FORMS(6,2) ;Print blank I ine

EXIT, RETURN ;Return to instruction after last cal I
EOF I FINI (1) ;Rewind input file

STOP ;Return control to DIBOL monitor
END

3-5

SECTION 4

Advanced DIBOL Statements

4-1

This chapter explains the DIBOL statements which would be used by
experienced programmers to:

• Increase system throughput by using print overlap.

• Segment a program which no longer fits in available memory.

• Access source files.

• Do rounding and truncation.

ROUNDING

In DIBOL, all decimal values are stored as integers. It is up to the
programmer to keep track of the implied decimal point and to do
rounding and truncation.

For example:

RECORD
HOURS, D5,04050
RATE,D5,02535
SALARY, D6
PROC

;40.5 HOURS
;$2 .535 PER HOUR
;IN DOLLARS AND CENTS

SALARY=(HOURS*RA TE+500)/l 000

Salary is set eqvoJ to 010267 which is actually $102 .67. The pro­
grammer added 500 to the results of HOURS times RATE in order to
round properly. The statement:

SALARY=HOURS*RA TE/1000

would result in SALARY equalling $102.66, which would do truncation
without rounding.

4-2

An added complication in rounding is the sign of the number. If the
result of HOURS times RATE is negative, 500 must be subtracted
rather than added. The program to handle positive and negative
numbers is:

TAGl,
TAG2,

RECORD
HOURS, D5,04050-
RATE, D5,02535
SALARY,D6
TEMP, Dl 0
PROC

TEMP=HOURS*RATE
IF(TEMP.LT .0) GO TO TAGl
SALARY=(TEMP+500)/l 000
GO TO TAG2
SALARY=(TEMP-500)/l 000

Al I the statements in the procedure section can be replaced by the
following:

SALARY=(l-IOURS*RATE)#3

The form of this operator is:

decimal variable #n

where n is a decimal constant or decimal variable in the range of 1
to 7. The decimal variable will be rounded and truncated n places.
There is no restriction to the number of #operators in a statement.
The # operator has higher priority than all other arithmetic operators;
therefore, rounding and truncation are performed before all other
arithmetic operations.

The fo! lov1ing are some simple examples of # operator usage:

Example

X=l 234#1
X=l 234#2
X=1234#3
X=5555#3

Result

X=123
X=l2
X=l
X=6

l. QUESTION: In the previous example, assume that SALARY
is three decimal places. What is the statement
that stores the product of HOURS and RATE in
SALARY?

ANSWER: SALARY=(HOURS*RATE)#2

2. QUESTION: What is the value stored in SALARY in the
fol lowing example:

SALARY=HOURS*RA TE#3

ANSWER: 012150 or $121.50. RATE is rounded and
truncated before being multiplied by HOURS.

3. QUESTION: What statements will do the following: round
HOURS to the nearest hour and RATE to 'the
nearest dollar, multiply the result, and store in
SALARY (assume that SALARY is in dollars)?

ANSWER:

I

I
4=3

4. QUESTION: Whet is the value stored in SALARY in the
following:

SALARY=HOURS#l *RA TE#3

ANSWER: 000120

5. QUESTION: What is the value in HOURS and RATE after

ANSWER:

rounding the fol lowing:

HOURS=2347
RATE=2347-
HOURS=HOURS#2
RATE=RATE#2

HOURS contains 23 and RATE contains minus
23.

CHARACTER CONVERSION

The #operator is also used to convert a character to its equivalent
internal code and make that decimal number available to the pro­
gram. When #precedes a variable, it is used to obtain the internal
code of the left-most character of the variable. Refer to Appendix A
of the COS 300 SYSTEM REFERENCE MANUAL for a table of internal
COS codes (COS codes are base 8).

6. QUESTION: What is the value of J in the following example
if the internal code for 6 is 27 {base 8) or 23
decimal?

RECORD
I, Dl , 6
J, D2
PROC

J=#I

ANSWER: J contains 23.

7. QUESTION: What is the value of J in the following case:

J=f #1

ANSWER: J equals 1 • When the number sign fol lows the
variable, it is used for rounding and truncation.

a. QUESTION: What is the value of J (the internal code for 7
is 24)?

RECORD
I, D2, 67
J;-02
PROC
J=#I

ANSWER: J equals 23. The left-most character in the
variable is converted.

4-4

9. QUESTION: What statement will convert the second
character in, I?

ANSWER: J=#l(2,2)

10. QUESTION: What is the value of Jin the following three
statements if the decimal code for A is 34, B
is 35, and C is 36?

ANSWER:

l,A3,'ABC'
J, D2
PROC

1 J=#l(l, 1)
2 J=#l(2,2)
3 J=#l(3,3)

In statement 1, J is 34.
In statement 2, j is 35.
In statement 3, J is 36.

SOURCE FILES

The main use of converting the internal code is when processing
source files. At run time, the user may specify up to seven source
files for iripuf fo a DTBOL program. The sfateme-nt:

INIT(n, SYS)

wi II open the first source file. The first record is read with an XMIT
statement. The first two characters in that record contain the line
number and may be converted to decimal with the following statements:

LINE,
TEXT,

LINENO,

RECORD SRC
A2
Al20
RECORD
D4
PROC

LINEN 0= #LINE* 64+# LINE (2 I 2)

11,, QUESTION: !n the procedure section of the above examole.
fil I in the missing statements which would ' ,
initialize the source file and read the first
record.

ANSWER: INIT(n,SYS)
XMIT(n, SRC, EOFRTN)

When end-of-file is reached on a source file, the file should be
FINled. The next source file must be INITed before being read.
The INIT statement can be preceded by an ON ERROR statement
which will detect that no files are present. A source file can be
processed only once.

12. QUESTION: Write a program which will read from one to
seven source fit es. Tile program witt dispfay:

LINE FOUND AT RECORD n IN SOURCE FILE n

if a line number of 3458 was found or will
display:

NOT FOUND

I

I

4-5

ANSWER:

if no such line number exists. The message
should be printed near the middle of a CRT
screen.

RECORD SRC
LINE, A2

' Al20
RECORD MSG
I A2l, 1 LINE FOUND AT RECORD;
RECNO, D3
, Al 6, 1 IN SOURCE FILE'
SRCNO, DI

PROC
DISPLAY(l, l, 1) ;CLEAR SCREEN

BEGIN, ON ERROR MISSING
iNIT(l, SYS)
REC NO=
INCR SRCNO

LOOP, XMIT(l ,SRC,EOF)
iNCR RECNO
IF (#LINE*64+#LINE(2, 2). NE .3458)

GO TO LOOP
DISPLAY(l 0,25,MSG)
STOP

EOF, FINl{l)
GO TO BEGIN

MISSING, DI s p LA y (l 0, 30, I N 0 T F 0 u ND I)
STOP

The Monitor stores tabs in the source file as a single character with
an internal code of 61 decimal. When LISTing a program on the line
printer or terminal, the Monitor converts tabs into spaces.

13. QUESTION:

ANSWER:

Write a DIBOL program which will detect tabs
in a source file.

RECORD

TEXT,
RECORD
I,
PROC

LOOP,

LOOPl,

TAB,

SRC
A2
120A1

D3

INIT(l, SYS)
XMIT(l ,SRC,EOF)
I=
INCR I
IF (#TEXT(l).EQ .61) GO TO TAB
IF(l.EQ.120) GO TO LOOP
GO TO LOOPl

;FOUND A TAB

TRAP

Whenever reports are being printed, the entire computer is tied up
doing thaf task. Much better use of the computer could be obtained­
if it were allowed to do some other task which does not use the line
printer. This is possible in DIBOL with the use of the TRAP statement.
Two tasks may be done concurrently. The line printer is given
priority and interrupts the other task whenever the line printer is free.

The following program prints numbers 1-500 on the line printer while
some other task is being performed:

4-6

N,
RECORD A
D3
PROC
TRAP SUB
FORMS(6,0) ;START LINE PRINTER

;PERFORM TASK

LOOP, IF(N .LT .500) GO TO LOOP ;WAIT FOR PRINTING

STOP
SUB, INCR N

IF(N .GT .500) RETURN
XMIT(6,A)
RETURN

;TO TERMINATE

In the preceding example, the line printer was started with the
FORMS statement. Some task was being performed. Since the
FORMS statement was preceded by a TRAP statement, the line
printer went to the statement specified by TRAP when it was free.
A line was XMITed to the line printer and the program then executed
a RETURN statement to resume the task. The XMIT statement in the
TRAP routine could have been preceded by another TRAP statement
if, when the line printer became free, the program were to go to a
different statement.

Note that both the task and the r-eport should be completed before the
program ends. If the task ends first, it waits in a loop for the
printing to complete.

NOTE

For TD8E DEC tapes, print overlap wil I not take place if more than
78 characters are printed during one TRAP subroutine cal I. For
TC08 DECtapes, print overlap will not occur if more than 230
characters are printed.

14e QUESTION:

ANSWER:

15. QUESTION:

Modifv the orevious example to print 50 lines
on on~ pag~ and then skip to a ~ew page.

RECORD A

N, D3
RECORD

LINE, D2

LOOP,

SUB,

SUBl,

FORMS,

PROC
TRAP SUB
FORMS(6,0) ;START LINE PRINTER

;PERFORM TASK

IF(N .LT .500) GO TO LOOP
STOP
INCR N
INCR LINE
IF(UNE .EQ .51) GO TO FORMS
TRAP SUB
XM!T(6,0)
RETURN
LINE=
TRAP SUBl
FORMS(6,0)
RETURN

Write a program which will read cards, verify
that columns l -5 are in numerical ascending
sequence (ignore out of order cards), and store
all 80 columns on a file named CARDS found
on logical unit 1. Concurrent with this task,
print a report. This report is already in print
format in a file named PRINTR on logical unit
2. Print 50 lines per page, a 1-line heading,
and two spaces between heading and detai I

I

ANSWER:

I
4-7

lines. The heading and detail lines are 70
characters each.

OLDSEQ,
LINE,
LPFLAG,

SEQ,

GETCRD,

CRDEOF I

HEAD,

RECORD PRINT
A70
RECORD
D5
D2
Dl
RECORD HDG
A70, I ••• '

RECORD CARD
D5
A75
PROC 2
INIT(3,C DR)
INIT(l ,OUTPUT, 'CARDS' I 1)
INIT(2, INPUT I I PRINTR' I 2)
TRAP HEADl
FORMS(6,0)
XMIT(3,CARD,CRDEOF)
IF(SEQ .LE .OLDSEQ) GO TO GETCRD

;IGNORE CARD
XMIT(l ,CARD)
OLDSEQ=SEQ
GO TO GETCRD
IF(LPFLAG .EQ .O) GO TO CRDEOF

; LPF LAG=O IF
;OUT OF CARDS BEFORE REPORT DON

STOP
TRAP HEADl
FORMS(6,0)
RETURN

HEADl I

LPT,

LPTEOF I

LINE=
TRAP LPT
FORMS(6,2)
RETURN
INCR LINE
IF(LINE .EQ .51) GO TO HEAD
XMIT(2, PRINT, LPTEOF)
XMIT(6, PRINT) ;RETURN TO LPT

;ON PRINTER DONE IF NO
;TRAP IS SPECIFIED.

RETURN
INCR LPFLAG ;PRINTING DONE
RETURN

CHAINING

In the smallest COS 300 system, programs can be written which re­
quire up to 8K of core memory storage. Occasionally, a program is
written which exceeds this size and will not run with the avai I able
memory. This problem may be overcome by a recently developed
feature in DIBOL called CHAINing. A large DIBOL program may be
separated into two or more smaller programs which are executed
sequentially. Each program is written and compiled separately.
These programs are linked together when they are run by saying:

.RUN PROGO+PROGl + ••• +PROG7

The first program uses a CHAIN statement to load the next desired
program. Programs that are loaded by a CHAIN statement do not
have their data section cleared (unless specifically instructed), thus
permitting one program to pass information to another without saving
it on a data file.

4-8

The format of a CHAIN statement is:

CHAIN n

where n is a decimal variable in the range 0 to 7 and is the sequence
number of the program as specified in the RUN command.

16. QUESTION: What can be done when a program is too large
to fit in the available memory?

ANSWER:

The program may be separated into two or more
programs.

17. QUESTION: How are these smaller programs linked
together?

ANSWER: The programs are linked together at run time by
specifying the program names in the RUN
command.

18. QUESTION: How can a DIBOL program be loaded from
another DIBOL program?

ANSWER: By using the CHAIN statement.

The RUN command specifies which programs wi II be used. For
example:

.RUN PROG+PROGA+PROGB

The CHAIN statement determines which program will be loaded and
run next. If, for example, the statement CHAIN 2 were inciuded in
PROG, it would terminate execution of PROG, load PROGB, and
begin execution of PROGB.

The data section is always cleared in a DIBOL program (except when
initial values are specified). However, the data section of any
program loaded by a CHAIN statement is not automatically cleared;
it wi 11 contain the values of the previous program. If some fields are
to be cleared, the program must specify:

RECORD ,c

where the 11 ,C 11 means clear all the fields in this record that do not
have initial values.

Look at the fol lowing programs. In answering the questions, assume
that the RUN command is:

RUN PROG+PROGA

OUTl,

I,
NAME,
DUMMY,

LPTl I

START
RECORD OUT
A5
RECORD
D5
A4, 'FRED'
A4
PROC
INCR I
IF(l,EQ .10) STOP
CHAIN 1
END

START
RECORD LPT
A5
RECORD

;PROGRAM PROG

;PROGRAM PROGA I
4-9

I,

J,
K,

D5
RECORD,C
D4,0004
A15
PROC
LPTl=I
XMIT(6, LPT)
CHAIN 0
END

;WORK AREA

19. QUESTION: What do PROG and PROGA do?

ANSWER:

PROG increments I by 1 and if I does not equal
10, PROG CHAINs to PROGA which prints the
value of I and then CHAINs to PROG. When
I equals 10, the programs stop.

20. QUESTION: Do the data sections have to be the same size

ANSWER:

21. QUESTION:

ANSWER:

in each program?

No; the data section is only as large as needed.

Do the data sections have to match each other
either by records or by fields?

No; the programmer has complete freedom in
assigning the records, fields, and variable
names in the data sections. However, the in­
formation to be passed from one program to
another must be in the same relative location.
In the previous programs, for examole, I in
PROG could not be passed to I in PROGA if it

were not in the same relative location of the
data section.

22. QUESTION: What is the first statement executed in PROG?
In PROGA?

ANSWER: The first statement in the procedure section.

23. QUESTION: What are the values of OUTl, I, NAME,
DUMMY, J, and K when PROG is run, when
PROGA is chained the first time, and when
PROG is chained the first time?

ANSWER:

PROG PRO GA PROG
OUTl spaces 1 1
I 1 1 2
NAME FRED undetermined FRED
DUMMY spaces undetermined undetermined
J undetermined 4 undetermined
K undetermined spaces undetermined

File status is lost between CHAIN operations. Data files must be
FINled before transferring to another CHAIN. Files that are used
for input or output will present some problems since when they are
INITed in the next CHAIN, they will be at the beginning of the
file. The easiest solution to this problem is to use the data file as
an UPDATE file. When transferring to another CHAIN, FINI the
file, save the record number in some common area for use in the
next CHAIN or on return to the current CHAIN.

4-10

APPENDIX A Oi70
".,...., t:' ocrr'\Dl""I 01t-..1rw I"'\ .CIDCT I 11\.U:: l=flk> I PT VI I ;J l"\L.\...\,.11'1.l.J I !I '4'--'1 IV /I II'\........, I I-ii "\II L.. I """"""l'- ~I I

INVOICE DATA ENTRY PROGRAM 0180 I A48
0185 PINVNO, A5 ;INVOICE NUMBER
0190

'
A6

0005 START ;INVENT - INVOICE DATA ENTRY 0195 PINVD, AS ;DATE OF INVOICE
0010 0200
0015 RECORD POET ;LINE ITEMS FOR LINE PRINTER(LPT) 0205 RECORD PADDRS ;ADDRESS LINES
0020 '

A4 0210 , A7
0025 PINUM, A7 ;ITEM NUMBER (PART NUMBER) 0215 PADDRl, A30 ;LEFT-HAND SIDE
0030

'
A5 0220 I A8

0035 PDESC, A24 ;DESCRIPTION 0225 PADDR2, A30 ;RIGHT-HAND SIDE
0040 I A4 0230 BLOCK PADRSA,X
0045 PQO, A2 ;QUANTITY ORDERED 0235 A37
0050

'
A2 0240

0055 PUNIT, A2 ;UNITS 0245 ;CUSTOMER FILE
0060 I A2 0250
0065 PQS 1 A2 ;QUANTiTY SHIPPED 0255 RECORD CUSTR ;DATA RECORD
0070 I Al5 0260 CUSTNO, 05 ;CUSTOMER NUMBER
0075 PUNiTC, A6 ;UNIT COST 0265 CUSTNM, A30 ;CUSTOMER NAME
0080 I Al 0270 CUSTAl, A25 ;ADDRESS LINE l
0085 PEXTC, A9 ;EXTE~"1DED PRICE 0275 CUSTA2, A25 ;ADDRESS LINE 2
0090 BLOCK,X 0280 CUSTZP I A5 ;ZIP CODE
0095 PDETL, A80 0285 CUSTSN, 02 ;SALESMAN CODE
0100 0290 CUSTDC, 02 ;DISCOUNT%
0105 RECORD PCUST ;FOR CUSTOMER LINE ON LPT 0295 CUSTTX, Dl ;TAX%
0110 I A8 0300 CUSTSC, Dl ;SHIP CODE
0115 PCUSTN, 05 ;CUSTOMER NUMBER 0305 010 ;YEAR-TO-DATE TOTAL
0120 I A4 (NOT USED IN THIS PROGRAM)
0125 PSALMN, 02 ;SALESMAN'S NUMBER 0310
0130 I A9 0315 RECORD CUSTX ;INDEX RECORD
0135 PCUSTO, A5 ;CUSTOMER'S ORDER NUMBER 0320 CXKEY, 05 ;KEY (CUSTOMER CODE)
0140 '

A20 0325 CXPTR, 02 ;RECORD POINTER
0145 PDATEO, A8 ;DATE ORDERED 0330
0150 I A4 0335 ;PART FILE
0155 PDATES, A8 ;DATE SHIPPED 0340
0160 I A4 0345 RECORD PARTR ;DATA RECORD
0165 PSCODE, Dl ;SHIPPING CODE 0350 PARTNO, A7 ;PART NUMBER

A-1

0355 PARTDS, A30 ;DESCRIPTION 0540 KBDIN, A30
0360 PARTUT, A2 ;UNIT TYPE (EA, DZ, BX, ETC.) 0545 BLOCK,X
0365 PARTUC, D5 ;UNIT COST 0550 KBDCH, 30Al
0370 0555
0375 RECORD PARTX ;INDEX RECORD 0560 BLOCK ;CURSOR CONTROLS
0380 PXKEY, A7 ;KEY (PART NUMBER) 0565 CURSOR, D2,00 ;TO POSITION CURSOR
0385 PXPTR, D2 ;POINTER 0570 EOS, D2,01 ;TO CLEAR SCREEN
0390 0575 EOL, D2,02 ;TO CLEAR LINE
0395 ;TEMPORARY FILE TO HOLD LINE ITEMS DURING ENTRY 0580 BEEP, D2,25 ;TO BEEP

OF INVOICE 0585 HOME, D2,03 ;TO HOME CURSOR
0400 0590
0405 RECORD TEMPR ;DATE RECORD 0595 BLOCK ;EDIT WORDS
0410 TMPITM, A7 ; ITEM (PART) NUMBER 0600 ED52, A9, ·xx,xxx .xx·
0415 TMPQO, D2 ;QTY ORDERED 0605 ED32, A6, 1XXX .xx·
0420 TMPQS, D2 ;QTY SHIPPED 0610 EDATE, AB, 1XX/XX/XX1

0425 TMPUC, D5 ;UNIT COST 0615
0430 TMPUNT, A2 ;UNIT 0620 BLOCK ;CONSTANTS
0435 TMPDES, A30 ;DESCRIPTION 0625 SPC5, A5
0440 0630 SPC23, A23
0445 ;FILE TO HOLD TRANSACTIONS 0635 SPC25, A25
0450 0640 SPC28, A28
0455 RECORD TRANS 0645 SPC30, A30
0460 TRCODE, Al ;RECORD CODE (H=H EADER, D=DET Al L) 0650
0465 TRCUST, D7 ;CUSTOMER CODE 0655 BLOCK ;SCRATCH
0470 TRCORD, D5 ;CUSTOMER'S ORDER NUMBER 0660 AXl I Al
0475 TRDATE, D6 ;DATE SHIPPED 0665 AX2, A2
0480 TRSALN, D2 ;SALESMAN'S NUMBER 0670 AX4, A4
0485 0675 M6., A6
0490 BLOCK,X 0680 AX9, A9
0495 Al 0685 DX7, D7
0500 TRITM, A7 ;HEM (PART) NUMBER 0687 TEMP, D2
0505 TRQO, D2 ;QTY ORDERED 0690
0510 TRQS, D2 ;QTY SHIPPED 0695 BLOCK ;WORK
0515 TRUC, D5 ;UNIT COST 0700 CIN, D2 ;CURRENT LINE NUMBER
0520 0705 CINX, D2 ;CIN+5
0525 ;FOR KEYBOARD INPUT 0710 CINL, D2 ;LAST LINE NUMBER IN CURRENT
0530 INVOICE
0535 RECORD KBDREC 0715 COL, D2 ;EXPECTED COLUMN FOR INPUT

A-2

0720 INVNO, D5 ;CURRENT INVOICE NUMBER I 0905 A30
0725 NOFIND, Al ;NON-BLANK IF CUSTOMER OR 0910 A5, 10RDERi

PART NOT FOUND 0915 AS
0730 DATORD, A8 ;DATE OF ORDER 0920 A4, I SH IP 1

0735 TODAY, A8 ;TODAY 1 S DATE (MM/DD/YY) 0925 A3
0740 TODAYD, D6,D ;TODAY1 S DATE (MMDDYY) 0930 A4, ·cosT·
0745 I, D2 ;INDEX 0935 BLOCK,X
0750 ex, D3 ;INDEX TO CUSTOMER FILE 0940 HEADl, A72
0755 PX, D3 ;INDEX TO PART FILE 0945 H EAD2, A60
0760 TOTPRC, D7 ;TOTAL INVOICE PRICE l 000 PROC6 ;INVENT----- INVOICE DATA ENTRY
0765 DISCA, D7 ;DISCOUNT AMOUNT i OOi
0770 TAXA, D7 ;TAX AMOUNT 1002 . * * * * * * * * * * * * * * * '
0775 PAYA, D7 ;PAY THIS AMOUNT i 003 ;SOURCE FiLE ihiVEN2
0780 TCHAR, D2 ;TERMINATING CHARACTER FOR 1004 . * * * * * * * * * * * * * * *

I

'ACCEPT' 1005
0785 LINE, D2 ;LINE COUNT FOR PRINTER l 010 ;CREATE ROUGH CUSTOMER INDEX
0795 l 015
0800 BLOCK ;ROUGH TABLES FOR INDEX FILES i020 INIT (7, i~'1, 'CINDEX 1

, 7)
0805 ITMTAB, llA7 ;ITEM TABLE 1025 CX=
0810 CUSTAB, 11 D5 ;CUSTOMER TABLE 1030 l=l
0815 1035 RUFCSl I INCR ex
0820 BLOCK ;HEADINGS FOR CRT 1040 XMIT (7, CUSTX, RUFCS5)
0825 A3 1045 IF (CX(3,3).NE.l) GO TO RUFCSl ;IS TH IS
0830 A4, 1 ITEM 1 THE lST' 11 TH I 21 ST I ETC RECORD
0835 A5 1050 CUSTAB(l)=CXKEY ; SA VE EVERY l OTH
0840 Al 1' I DESCRIPTION· CUSTOMER IN CUSTAB
0845 Al4 l 055 INCR I
0850 A3, 1QTY 1 l 060 GO TO RUFCSl
0855 A3 1065 RUFCS5, CUSTAB(l)=99999
006{) A41 1UNH1

• 1070 FIN I (7)
0865 A3 1075
0870 A3, 1QTY 1 l 080 ;CREATE ROUGH PART INDEX
0875 A3 1085
0880 A4, 1 UNIT 1 l 090 INIT (9, iN, 1PINDEX;' 9)
0885 A7 l 095 l=l
0890 AS, 1PRICE 1 1100 PX=
0895 A4 1105 RFITMl, INCR PX
0900 A2, 1N0 1 1110 XMIT (9, PARTX, RFITM5)

A-3

1115

1120

1125
1130
1135
1140
1145
1150
1155
1160
1162
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285

IF (PX(3,3).NE.l) GO TO RFITMl ;IS THIS THE
l ST, l lTH, 21 ST, ETC. RECORD
ITMTAB(l)=PXKEY ;SAVE EVERY lOTH ITEM IN
ITMTAB
INCR I
GO TO RFITMl

RFITM5, ITMTAB(I)=']]]]]]] I
FINI (9)

TODAY=TODAYD, EDATE

;CREATE EMPTY 1TEMP 1 FILE
;(TEMP HOLDS LINE ITEMS DURING ENTRY OF INVOICE)

1=20
INIT (l ,OUT, 'TEMP', l 0)

CLEAN, XMIT (l, TEMPR)
l=l-1
IF (I .GT .00) GO TO CLEAN
FINI (1)

;OPEN UP ALL FILES

INIT (l, UPDATE, 1TEMP 1
, l O)

INIT (2,0UT-, 1 ITRANS1
, 11)

INIT (3,KBD)
IN IT (4, TTY)
!NIT (5, LPT) ·
INIT (6, IN, 1CUSTFL1 ,6)
INIT (7, IN, 1CINDEX 1 ,7)
INIT (8, IN, 1PARTFL 1 ,8)
INIT (9,IN, 1PINDEX 1,9)

;ASK IF FORM IS IN PRINTER

ASKl, XMIT (4,' INVOICE FORM IN PRINTER?')
XMIT (3, KBDREC)
IF (KBDIN (1, 1) .NE. 'Y') GO TO ASKl

A-4

1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1409
1410
1415
1420
1425

1430
1435
1440
1445
1450
1455
1485
1487

;PUT OUT THE DUMMY ENTRIES TO TEST FORM POSITION

FORMS (5,0) ;TOP-OF-FORM
Pl NVN0=' 99999'
PINVD='XX/XX/XX'
PCUSTN=9999999
PSALMN=99
PCUST0=1XXXXX 1

PDATE0= 1XX/XX/XX 1

PDATES=PDATEO
PSCODE=9
PINUM= 1XXXXXXX 1

PDESC=' xxxxxxxxxxxxxxxxxxxxxxxx I
PQ0=99
PUNIT='XX'
PQS=99
PUN ITC=' 999. 99'
PEXTC= 199, 999.99'

ASK2, XMIT (5, PINCH D)
FORMS (5, 11)
XMIT (5, PCUST)
FORMS (5,2)
XMIT (5, POET)
LINE=l 6
CALL TOPAGE

XMIT (4,i•fORM LINED UP?')
XMIT (3, KBDREC) ; 1Y 1 IS TYPED WHEN
FORMS ARE LINED UP
IF (KBDIN (1 , l) .NE. 'Y') GO TO ASK2

;ASK FOR FIRST INVOICE NUMBER

ASK3, XMIT (4, "WHAT IS FIRST INVOICE NUMBER?')
XMIT (3, KBDREC)
IF (KBDIN(6,30).NE .SPC25) GO TO ASK3
ON ERROR ASK3

1490 INVNO=KBDIN(l ,5)
i 495
1500 ·*** ,
1505 ;START A NEW INVOICE
1510 ·***

I

1515
1520 NEWINV, DISPLAY (1, 1, EOS) ;CLEAR SCREEN
1525
1530 DISPLAY (l, l , 1CUSTOMER NO:')
1535 CINX=l
1 &:.Al'\
I .J"TV rru =l A '-''-' -.
1545 CALL GETKBD
1 LI'\&:. !F {KBD!N(6,30).NE.SPC25) GO TO BADCUS IVV.J

1607 ON ERROR BADCUS
1610 CUSTNO=KBDIN(l, 5)
1612 IF (CU ST NO. LT .1) GO TO BADCUS
1615 CALL GETCUS
1620 IF (NOFIND.NE. 1 1

) GO TO NOCUST
1625 TRCUST=CUSTNO
1630
1635 ;GET CUSTOMER'S ORDER NUMBER
1640
1645 DISPLAY (1,21, ~cusTOMER ORDER: 1

)

1650 COL=37
1655 CALL GETKBD
1660 TRCORD=KBDI N (1, 5)
1665
1670 ;GET DATE ORDERED
1675
1680 DISPLAY (1,45, 'DA TE')
1685 COL=50
1690 CALL GETKBD
1695 DATORD=KBDIN (l, 8)
i700
1705 ;GET SALESMAN'S CODE
1710
1715 DISPLAY (1,59, 'SALESMAN 1

)

1720 AX2=CUSTSN

i725
17'lf\
IF vV

1735
1740
1745
1750
1755
1760
1762
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1842
1843
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895

A-5

Di SPLAY (i ,68,AX2)
l'~INV5A, COL=70

CALL GETKBD
IF (KBDIN .EQ. SPC30) GO TO NINV5C

CALL GETD2A
IF (KBDIN(3,30).NE.SPC28) GO TO BADSN
CUSTSN=KBDIN (I, 2)
IF (CUSTSN .LT .1) GO TO BADSN
AX2=CUSTSN
DISPLAY (1 ,68,AX2)
DISPLAY (1,70,EOL)

N!NV5C; TRSALN=CUSTSN

;ALL IS WELL WITH INITIAL LINE -- PUT OUT HEADINGS

DISPLAY (3, l ,HEADl)
DISPLAY (4, l ,HEAD2)
CINL=
TOTPRC=

·*** I

;START NEW LINE
·*** I

; GET ITEM NUMBER

NINV7,

NINV8,

INCR CINL
CIN=CINL
AX2=CIN
CINX=CIN+5
DISPLAY(CINX, 1 AX2)
DISPLAY (CINX,3,EOL)
DrSPLAY (C!NX,4,CURSOR)
COL=4
CALL GETKBD
IF (KBDIN(8,30).NE.SPC23) GO TO BADINO
IF (KBDIN(l ,7).EQ. 'TOTAL') GO TO TOTALI

1900 IF (KBDIN(l, l).EQ • 1
-

1
) GO TO CORECT 2090 TMPUC=PARTUC

1905 IF (KBDIN{l ,7).EQ .'RESTART') GO TO NEWINV 2095
1910 IF (CINL.GT.8) GO TO TUMANY 2100 AX9=PARTUC+TMPQS, ED52
1915 TMPITM=KBDIN (1, 7) 2105 DISPLAY (CINX,64,AX9)
1920 PARTNO=TMPITM 2110
1925 2115 ;INPUT OF LINE COMPLETE
1930 CALL GETITM 2120
1935 IF (NOFIND .NE. 1 1

) GO TO NOPART 2125 WRITE (1, TEMPR, CIN)
1940 DISPLAY (CINX, 13, PARTDS) 2135 TOTPRC=PARTUC*TMPQS+ TOTPRC
1945 TMPDES=PARTDS 2145 GO TO NINV7
1950 2150
1955 ;GET QTY ORDERED 2155 ;TOTAL OUT THE INVOICE
1960 2160
1965 NINV9, DISPLAY (CINX,38,CURSOR) 2165 TOTALI, CINL=CINL-1
1970 COL=38 2170 DISPLAY {CINX, 1,EOL)
1975 CALL GETD2 2175 DISPLAY (15,47, 'TOTAL PRICE')
1980 IF (KBDIN(l ,2).EQ. I ')GO TO BADQO 2180 AX9=TOTPRC, ED52
1985 TMPQO=KBDIN(l ,2) 2185 DISPLAY (15,60,AX9)
1990 AX2=TMPQO 2190
1995 DISPLAY (CINX,38,AX2) 2192 ;COMPUTE & DISPLAY DISCOUNT, IF ANY
2000 2193
2005 ;DISPLAY UNITS 2195 IF (CUSTDC .EQ .00) GO TO TOTAL3
2010 2200 DISPLAY {16,47,'DISCOUNT')
2015 DISPLAY (CINX,45,PARTUT) 2205 AX2=CUSTDC
2020 TMPUNT=PARTUT 2210 DISPLAY (16, 56,AX2)
2025 2215 DI s p LA y (16 I 58, I% I)
2030 2220 DISCA=(TOTPRC*CUSTDC+50)/100
2035 ;GET QTY SHIPPED 2225 AX9:=DLSCA,ED52
2040 NINVlO, DISPlAY (C INX,51 ,CURSORf 2230 DISPLAY {16,60,AX9)
2045 COL=51 2235 DX7=TOTPRC-DISCA
2050 CALL GETD2 2240 DISPLAY (16,60,AX9)
2055 IF (KBDIN{l,2).EQ. I') GO TO BADQS 2245 GO TO TOTAL4
2060 TMPQS=KBDIN (1, 2) 2250
2065 AX2=TMPQS 2255 TOTAL3, DX7=TOTPRC
2070 DISPLAY (CINX,51,AX2) 2260 DISCA=
2075 2265
2080 AX6=PARTUC, ED32 2267 ;COMPUTE & DISPLAY TAX, IF ANY
2085 DISPLAY (CINX,55,AX6) 2268

A-6

2270 TOTAL4, DiSPLAY (17,47,'TAX 1
) 2675 PADDRJ (20, 24)=CUSTZP

2275 IF (CUSTTX .EQ .O) GO TO TOTALS 2680 CALL PRNTIF
2280 AXl=CUSTTX 2685
2285 DISPLAY (17,51,AXl) 2690 FORMS (5,4)
2290 DISPLAY (15, 52, 1% 1

) 2695
2295 TAXA=(DX7*CUSTTX+50)/l 00 2697 ;PRINT GENERAL INFORMATION LINE
2300 AX9=TAXA, ED52 2698
2305 DISPLAY (17,60,AX9) 2700 PCUSTN=CUSTNO
2310 PAYA=DX7+TAXA 2705 PSALMN=CUSTSN
2315 GO TO TOTAL6 2710 PCUSTO=TRCORD
'>'l'>n
L.\JL.V 2715 PDATEO=DATORD
2325 TOTALS, TAXA= 2720 PDATES=TODAY
'>'l"ln PAYA=DX7 2725 PSCODE=CUSTSC r..uvu

2335 2730 XMIT (5, PCUST)
2340 TOTAL6, DISPLAY (19,44, 1 PAY THIS AMOUNT') 2735 FORMS (5, 2)
2345 AX9=PAYA, ED52 2740
2350 DISPLAY (19,60,AX9) 2745 TRCODE='H'
2600 . * * * * * * * * * * * * * * * 2750 TRDATE=TODAYD I

2601 ;SOURCE FILE INVEN3 2755 XMIT (2, TRANS)
2602 . * * * * * * * * * * * * * * * 2760 TRCODE='D' I

2603 2765
2604 iPR!NT OUT THE INVOICE 2770 l=l
2605 2775 LINE=l 5
2610 PINVNO=INVNO 2776 PDETL=
2615 PINVD=TODAY 2777
2620 XMIT (5, PINCH D) 2778 ;PRINT INVOICE ITEMS
2625 2779
2630 FORMS (5,3) 2780 PLOOP, READ (l, TEMPR, I)
2635 2785 PINUM=TMPITM
2637 ;PRINT NAME AND ADDRESS 2790 PDESC=TMPDES
2638 2795 PQO=TMPQO
2640 PADDRl =CUSTNM 2800 PQS=TMPQS
2645 CALL PRNTIF 2805 PUNIT=TMPUNT
2650 PADDR1=CUSTA1 2810 PUN ITC= T MPUC, ED32
2655 CALL PRNTIF 2815 PEXTC=TMPUC*TMPQS, ED52
2660 PADDRl =CUSTA2 2820 XMIT (5, PDET)
2665 CALL PRNTIF 2825 INCR LINE
2670 PADDRl (1, 19)= 2830

A-7

2835 TRITM=TMPITM 3007 ;CUSTOMER NET PRICE LINE
2840 TRQO=TMPQO 3008
2845 TRQS=TMPQS 3009 POET=
2850 TRUC=TMPUC 3010 PDETL(21,35)= 1PAY TH IS AMOUNT'
2855 XMIT (2, TRANS) 3011 FORMS(5,-2) ;DOUBLE WIDTH CHARACTERS
2860 3012 XMIT (5, POET)
2865 l=l+l 3013 POET=
2866 IF (I .LE .CINL) GO TO PLOOP 3015 PEXTC=PAYA, ED52
2880 CALL BOTPAG 3020 XMIT (5 I POET)
2885 3025 LINE=LINE+3
2890 ;TOTAL PRICE LINE 3030 CALL TOPAGE
2895 3035
2900 PDETL= 3040 ;WAIT FOR OPERATOR
2905 PDETL (59,70)='TOTAL PRICE' 3045 DI SP LA y (20 I 1, O)
2910 PEXTC=TOTPRC, ED52 3050 CALL GETKBD
2915 XMIT (5, POET) 3055 INCR INVNO
2920 INCR LINE 3060 IF (KBDIN(l ,4) .NE. 1 END 1

) GO TO NEWINV
2925 3065
2927 ;CUSTOMER DISCOUNT LINE 3070 FINI (l)
2928 3075 FINI (2)
2930 IF (CUSTDC .EQ .00) GO TO PLOOP2 3080 FINi {3)
2935 PDETL(59, 70)= 1 DISCOUNT XX%' 3085 FIN I (4)
2940 PDETL(68, 69)=CUSTDC 3090 FINI (5)
2945 PEXTC=DISCA, ED52 3095 FINI (6)
2950 XMIT (5, POET) 3100 FINI (7)
2955 INCR LINE 3105 FINI (8)
2960 3110 FIN I (9)

2962 ;CUSTOMER TAX LINE 3115 STOP
2963 3120
2965 PLOOP2, IF (CUSTTX .EQ .0) GO TO PLOOP3 3125 ;GET READY TO CORRECT A LINE
2970 PDETL(59,70)= 1TAX X% 3130
2975 PDETL(63, 63)=CUSTTX 3135 CORECT, CINL=CINL-1
2980 PEX TC= T AXA I ED52 3140 KBDIN (l, 29)=KBDIN (2, 30)

2985 XMIT (5 I POET) 3145 CALL GETD2A
2990 INCR LINE 3150 IF (KBDIN (l, 2) .EQ. I I) GO TO CORCT2

2995 3155 C IN=KBDIN (l, 2)
3000 PLOOP3, FORMS (5, l) 3160 IF (CIN .EQ .0) GO TO CORCT2
3005 3165 IF (CIN .GT .CINL) GO TO CORCT4

A-8

3170 DiSPLAY (CINX, l ,EOL)
3175 READ (1, TEMPR, C It-~)
3180 TOTPRC=TOTPRC-TMPUC*TMPQS
3185 GO TO NINVB
3190
3195 CORCT2, DISPLAY (20, l, BEEP)
3200 DISPLAY (20, l ,'BAD LINE NUMBER')
3205 CORCT3, CALL ERAW8
3210 GO TO NINV7
3215
3220 CORCT4, DISPLA.Y (20, 1 ,BEEP)
3225 DISPLAY (20, l, 1 LINE NUMBER TOO BIG')
3230 GO TO CORCT3
3235
3300 . * * * * * * * * * * * * * * * I

3301 ;SOURCE FILE INVEN4
3302 . * * * * * * * * * * * * * * * ,
3303
3304 ;GO TO TOP OF NEXT PAGE ON THE FORM
3310 TOPAGE, FORMS (5,42-LINE)
3311 LINE=
3315 RETURN
3320
3325 ;GET TO BOTTOM OF PAGE
3330
3335 BOTPAG, 1=15-1
3336 IF (I • LE .0) RETURN
3340 FORMS (5, l)
3345 LINE=LINE+l
3350 RETURN
3355
3360 ;GET AN ITEM FROM THE KEYBOARD
3362 ;(IF TCHAR IS CTRL/U (21), CLEAR INPUTTED ITEM &

ACCEPT IT AGAtN
3365
3370 GETKBD, KBDIN=
3375 ACCEPT (TCHAR, KBDIN)
3380 IF (TCHAR .NE .21) RETURN

I 3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3465
3470
3475
3480
3485
3490
3495
3497
3498
3500
3505
3510
3512
3513
3515
3520
3525
3530
3535
354{)
3545
3550
3555
3560
3565
3570
3575

A-9

DISPLAY (CJNX; COL,EOL)
GO TO GETKBD
RETURN

;GET A ONE OR TWO DIGIT NUMBER FROM KEYBOARD

GETD2, CALL GETKBD
GETD2A, IF (KBDIN(3,30) .NE.SPC28) GO TO GETD2X

ON ERROR G ETD2X
TEMP=KBDIN(l ,2)
IF (TEMP. LT .0) GO TO GETD2X
RETURN

GETD2X, KBDIN=
RETURN

;GET A CUSTOMER RECORD

GETCUS, CX=2

;FIND ROUGH INDEX (\VITHIN l 0)
GTCUSl I IF (CUSTAB (CX) .GT .CUSTNO) GO TO GTCUS2

INCR ex
GO TO GTCUSl

;GET EXACT INDEX
GTCUS2, CX=(CX-2)*10
GTCUS3, INCR ex

READ (7,CUSTX,CX)
IF (CXKEY .EQ .CUSTNO) GO TO GTCUS5
IF (CXKEY .LT .CUSTNO) GO TO GTCUS3
NOffN£r-1X1 ;tNVAltD CUSTOMER NO
RETURN

GTCUS5, CX=CXPTR ;MATCH ON CUSTOMER NO
READ (6 1 CUSTR;CX)
NOFIND=
RETURN

;GET A PART RECORD

3580
3585
3587
3588
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3/lO
3715
3720
3725
3730
3735
3740
3745
3750
3755

GETITM, PX=2

;FIND ROUGH INDEX ('NITHIN 10)
GTITMl, IF (ITMTAB (PX).GT .PARTNO) GO TO GTITM2

INCR PX
GO TO GTITMl

GTITM2, PX=(PX-2)*10
GTITM3, INCR PX

READ (9,PARTX,PX)
IF (PXKEY .EQ .PARTNO) GO TO GTITM5
IF (PXKEY .LT .PARTNO) GO TO GTITM3
NOFIND= 1X 1 ;INVALID PART NO
RETURN

GTITM5, PX=PXPTR ;MATCH ON CUSTOMER NO
READ (8, PARTR, PX)
NOFIND=
RETURN

;PRINT ONE OR TWO ADDRESS LINES

PRNTIF I IF (PADDR2 .EQ .SPC30) GO TO PRNTFl
XMIT (5, PADDRS)
RETURN

PRNTFl I IF (PADDRl .EQ .SPC30) GO TO PRNTF2
XMIT (5, PADRSA)
RETURN

PRNTF2, - FORMS (5, l)
RETURN

·*** I

;ERROR ROUTINES
·*** I

;BAD ITEM NUMBER

BAD I NO I DISPLA y (20, l, BEEP)
DISPLAY (20, l, 'TOO MANY CHARACTERS')

A-10

3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
385~
3860
3865
3870
3875
3880
3885
3890
3a95
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945

CALL ERAW8
GO TO NINV8

;BAD CUSTOMER NUMBER

BADCUS, DISPLAY (20,l,BEEP)
DISPLAY (20, l, 'MUST BE 5-DIGIT NUMERIC')
CALL ERAW8
GO TO NEWINV

;CUSTOMER NOT FOUND ON FILE

NOCUST, DISPLAY (20, l ,BEEP)
DISPLAY (20, l, 'CUSTOMER NOT FOUND')
CALL ERAW8
GO TO NEWINV

;PART NOT FOUND ON FILE

NO PART I DI SP LA y (20, l, BEEP)
DI SP LA y (20, l, I PART NOT FOUND')
CALL ERAW8
GO TO NINV8

;BAD QTY SHIPPED

BADQS, DISPLAY (20, l, BEEP)
D.ISPLAY (20, l, 1MUST BE ONE OR TWO DIGITS-'-)­
CALL ERAW8
DISPLAY (CINX,COL,EOL)
GO TO NINVlO

;BAD QTY ORDERED

BADQO DISPLAY (20, l, BEEP)
DISPLAY (20, 1, 'MUST BE ONE OR TWO DIGITS')
CALL ERAW8
DISPLAY (CINX,COL, EOL)

3950 GO TO NiNV9 I
3955
3960 ;BAD SALESMAN'S NUMBER
3965
3970 BADSN, DISPLAY (20,l,BEEP)
3975 DISPLAY (20, l, 'BAD SALESMAN NUMBER')
3980 CALL ERAW8
3985 DI SP LA y (l , 70 I EO L)
3990 GO TO NINV5A

3995 ;BAD SALESMAN 1S !~UMBER
4000 ;TOO MANY ITEMS
4005
4010 TUMANY, DISPLAY (20, l ,BEEP)
4015 DISPLAY (20, l, 1TOO MANY LINES')
4020 CALL ERAW8
4025 GO TO NI NV8
4030
4035 ;WAIT FOR A CHARACTER TO BE TYPED
4040
4045 ERAW8, CALL GETKBD
4050 DISPLAY (20, 1,EOL)
4055 RETURN
4060
4065 END/N

A-11

APPENDIX B

STANDARD FLOWCHART SYMBOLS

SYMBOLS

l • Input/Output Symbol - Represents an input/output function
(1/0), that is, the making available of information for pro­
cessing (input), or the recording of processed information
(output).

2.

3.

LJ
Process Symbol - Represents any kind of processing function;
for example, the process of executing a defined operation or
group of operations resulting in a change in value, form or
location of information.

D
Flowline Symbol - Represents the function of linking symbols.
It tndkotes the sequence of ovoHoble rnformotion and execut­
able o.perations.

4.

B-1

Crossing of Flowlines - Flo\•tlines may cress; this means they
have no logical interrelation. Example:

x +
Junction of Flowlines - Two or more incoming flowlines may
join with one outgoing flowline. Example:

_J <.

Every flow I ine entering and leaving a junction shou Id have
arrowheads near the junction point. Example:

+ +
Comment, Annotation Symbol - Represents the annotation
function, that is, the addition of descriptive comments or
explanatory notes as clarification. The broken line is
connected to any symbol at a point where the annotation is
meaningfuf by extending tne broken fine in whatever fashion
is appropriate.

---L_

SPECIALIZED SYMBOLS

Specialized 1/0 Symbols may represent the 1/0 function and, in
addition, denote the medium on which the information is recorded
or the manner of hand I ing the information or both.

l • Punched Card Symbol - Represents an 1/0 function in which
the medium is punched cards.

The fol lowing symbols may be used to represent a deck of
cards or a file or cards.

Deck of Cards Symbol. The symbol shown below represents
a collection of punched cards.

File of Cards Symbol. The symbol shown below represents a
collection of related punched card records.

B-2

2.

3.

4.

5.

Online Storage Symbol - Represents an 1/0 function
utilizing any type of on line storage; for example, magnetic
tape, magnetic drum, magnetic disk.

D
Magnetic Tape Symbol - Represents an 1/0 function in
which the medium is magnetic tape.

Q
Punched Tape Symbol - Represents an 1/0 function in which
the medium is punched paper tape.

Magnetic Disk Symbol - Represents an 1/0 function in which
the medium is magnetic disk~

6.

7.

8.

9.

Core Symbol - Represents an 1/0 function in which the
medium is magnetic core.

D
Document Symbol - Represents an 1/0 function in which the
medium is a printed document.

I I
L-J

Manual Input Symbol - Represents an input function in
which the information is entered manually at the time of
processing; for example, by means of on line keyboards,
switch settings, push buttons.

Display Symbol - Represents an 1/0 function in which the
information is displayed for human use at the time of pro­
cessing, by means of on line indicators, video devices,
console printers, plotters, and so forth.

0
B-3

10. Offl ine Storage Symbol - Represents the function of storing
information offiine, regardiess of the medium on which the
information is recorded.

11 • Communication Link Symbol - Represents information
transmitted by a telecommunication link.

SPECIALIZED PROCESS SYMBOLS

Specialized process symbols may represent the processing function
and, in addition, identify the specific type of operation to be
performed on the information.

l . Decision Symbol - Represents a decision or switching-type
operation that determines which of a number of alternative
paths is to be followed.

2.

3.

Predefined Process Symbol - Represents a named process
consisting of one or more operations or program steps that are
specified elsewhere; for example, subroutine or logical unit.
Elsewhere means not this set of flowcharts.

D
Preparation Symbol - Represents modification of an in­
struction or group of instructions which change the program
itself; for example, set a switch, modify an index register,
or initialize a routine.

0
4. Manual Operation Symbol - Represents any offline process

geared to the speed of a human being, without using
mechanical aid.

5. Auxiliary Operation Symbol - Represents an offline operation
performed on equipment not under direct control of the central
processing unit.

D

6.

7.

8.

9.

B-4

Merge Symbol - Represents the combining of two or more
sets of items into one set.

Extract Symbol - Represents the removal of one or more
specific sets of items from a single set of items.

Sort Symbol - Represents the arranging of a set of items into
a particular sequence.

Col late Symbol - Represents merging with extracting, that
is, the formation of two or more sets of items from two or more
other sets.

ADDITIONAL SYMBOLS

l • Connector Symbol - The symbol shown below represents an
exit to or an entry from another part of the flowchart. It is a
junction in a line of flow. A set of two connectors is used to
represent a continued flow direction when the flow is broken
by any limitation of the flowchart. A set of two or more
connectors is used to represent the junction of several flow I ines
with one flowline, or the junction of one flowline with one of
several alternate flowlines.

2. Terminal Interrupt Symbol - Represents a terminal point in a
flowchart, for example, start, stop, halt, delay, or interrupt.

(__)
3. Para I lel Mode Symbol Represents the beginning Oi end of

two or more simultaneous operations.

I

B-5

GLOSSARY I
COS 300 Glossary of Standard Terminology

access time

alphanumeric

algorithm

analysis

annotation

array

- The time interval between the instant at
which data is called from storage, and
the instant delivery begins.

- A character set that contains letters,
digits, and other characters such as
punctuation marks. The alphanumeric
character set includes the upper case
letters A-Z, the digits 0-9, and most of
the special characters on the terminal
keyboard. Two of these characters,
back slash \ and back arrow ~, are
illegal in user data fields.

- A prescribed set of welt-defined rules
or processes for the solution of a problem.

- The methodical investigation of a problem,
and the separation of the problem into
smaller relocated units for further de­
tailed study.

- An added descriptive comment or ex­
planatory note.

- A DIBOL technique for specifying more
than one field of the same length and
type. 503 reserves space for five dee ima I
fieids, each to be three digits iong.
2Al 0 describes two alphanumeric fields,
each to be ten characters long.

GLOSSARY - l

ANSCii

assignment statement

auxi I iary operation

batch processing

benchmark

bidirectional f!ow

binary program

bit

blank

bootstrap

- American Nationai Standard Code for
I r • • I • I Tl • • 1nrorrnH1on mrercnange. 1 ms 1s one
method of coding alphanumeric charac­
ters.

- See Equa Is statement.

- An offline operation performed by equip­
ment not under control of the central
processing unit.

- The technique of automatically executing
a gioup of piograms such that each is
completed before the next is started.
The DO command stores groups of
commands, al lowing 11 unattended 11

system operation.

- A problem used to evaluate the perform­
ance of hardware or software or both.

- !n flowcharting; flow that can be ex­
tended over the same flow I ine in either
direction.

- The form of user's program which is out­
put by the compiler.

- A binary digit.

- A part of a medium in which no char­
acters are recorded.

A short routine automatically loaded at
system startup time (bootstrap switch) to
read in system software.

branch

buffer

bug

CALL

Cathode-Ray Tube
(CRT) Display

central processing unit

character

character string

clear

- A program stream operation including
switching where a selection is made be­
tween two or more possible courses of
action, depending upon some related
fact or condition.

- A temporary storage area usually used for
input or output data transfers.

- A program error, or a hardware mal­
function.

- A program statement that transfers control
to a specified subroutine. The subroutine
must terminate with a RETURN statement,
which returns control to the statement
following CALL statement.

- A character television display unit of the
operator's console.

- A unit of a computer that includes the
circuits control! ing the interpretation
and execution of instructions.

- A letter, digit, or other symbol used to
control or to represent data. See
Swi tc..h character.

- A I inear sequence of characters.

- Setting an alphanumeric field to space
characters, or a decimal field to zeros.
In the Data Definition section of a DIBOL
program 'C' initially clears a RECORD
storage area •

code

collating sequence

command

command string

communication link

COMP

comments

connector

GLOSSARY - 2

- Means many things to many programmers.
{l) The representation of information,
as in ASCII code. (2) A set of instruc­
tions or statements called "a piece of
code. 11 {3) To code means to write a
program.

- An ordering assigned to a group of records
based on a key item or field within the
records. One possible ascending sequence
is A-Z, 0-9. Then the descending
sequence is 9-0, Z-A.

- An operator request for Monitor services;
usually to be executed immediately.

- The characters that make up a complete
command.

- The physical means of connecting one
location to another for the purpose of
transmitting and receiving information.

- The DIBOL compiler program which
translates from source programs written
in DIBO L language to binary programs
which run on the computer.

- Notes for people to read, ignored by
the compiler. Optional, following a
semicolon on any statement I ine.

- A means of representing on a flowchart
a break in a line of flow.

data

data base

data definition

data entry

data independence

data language

A representation of infoimation in a
manner suitable for communication,
interpretation, or processing by either
people or machines. In COS 300
systems, data is represented by characters.

- The entire set of data files avai I able for
processing by COS 300 data management
system.

- The specification of record formats in
both format programs and source programs;
Gives the length of each field, states
whether it is alphanumeric or decimal,
and may give a field name and initial
entry. Data definitions are stored on
the systems device, and may be referenced
by any other COS 300 program.

- The process of collecting and inputting
data into the computer data files e Key­
boarding is either key-to-tape or key-to­
disk. The systems uti I ity program,
BUI LO, checks the incoming data for
type and length, and writes the records
on DECtape or disk. The operator can
then print the new data on the I ine
printer to validate the entries.

- When data files can be accessed by any
program by referencing a separately
stored data definition, data is considered
to be independent.

- The DIBO L procedural programming lan­
guage. Source programs written in this
language are compiled by COMP, pro­
ducing binary programs which are executed
with the Run-Time system.

I

GLOSSARY - 3

data management

debug

DEC

decision

decision table

DECtape reel

detail file

device independence

The planning, development, and opera­
tion of a computer system to mechanize
its information flows, and make available
the data needed by the user.

- To detect, locate, and remove errors or
malfunctions from a program or machine.

- Acronym for Digital Equipment
Corporation e

- A determination of a future action.

- A table of al I contingencies that are to
be considered in the description of a
problem, together with the actions to be
token e Decision tables are sometimes
used instead of flowcharts for problem
description and documentation.

- Each 4-inch reel contains 260 feet of
3/ 4-inch wide magnetic tape. Each
reel is a logical file of up to 737 blocks
of 512 characters each. A large file
may consist of up to 63 reels.

- Same as transaction file.

- COS 300 system design permits data files
and programs fo be stored on either
DECtape or disk. At run-time, the
operator chooses the most suitable, or
cvcitob!e, input and output devices.
PIP commands transfer files from one
standard device to another.

device names

DIBOL

direct access

directory

disk

display

document

dump

- 3-character abbreviations are used to name
the 1/0 devices.

DTO-DT7
RKO-RK3
TTY
KBD
RDR
PTP
CDR
LPT

DECtapes 0-7
RK5 disk drives
Terminal printer
Terminal keyboard
Paper tape reader
Paper tape punch
Card Reader
Line Printer

- Dlgital's Business Oriented Language is a
higher level progr~ming la-;;guage. It
is an integral part of the DEC DAT ASYSTEM
Series 300 Commercial Operating System.

- The process of obtaining data from, or
placing data into, a storage device where
the time required for each access is in­
dependent of the location of the data most
recently obtained or places in storage.

- See Systems Directory.

- A standard mass storage device giving very
fQ.St .. oc;cess.tQ ootG Hies GOO·J*G9fGmS ..

- A visual presentation of data.

- A medium and the data recorded on it for
human use, for example, a report sheet,
a book.

- To copy the contents of all or part of
storage, usua I ly from core memory to
external storage.

GLOSSARY - 4

EDP

END

end of tape mark

end of file marl<

equals statement

error message

field

file

FINI

- Electronic Data Processing.

- May be used to terminate DIBOL source
programs. Not required by compiler.

- Control characters which mark the
physical end of a DECtape reel. When
an input file is being read, Monitor
detects this EQT mark, and types a
message for the operator asking that the
next reel in this file be mounted. If an
output file, the Monitor asks for another
reel.

- Identifies the end of the logical file.

- Manipulates data fields in source programs.
Moves data from one field to another,
clears fields, calculates the value of
arithmetic expressions, and formats data.

- An indication that an error has been
detected.

- A specified area in a data record used for
either alphanumeric or decimal data,
which cannot exceed the specified char­
acter length.

- A collection of records, treated as a
logical unit.

- Source language statement required to
close output files on disk or DECtape.
FINI writes the last record and the
end-of-file mark.

fixed-iength records

flowchart

flowchart text

f!ov1 direction function

flow line

- Records in a data file which are ai i the
same length. See also variable-length
records.

- A graphical representation of the defi­
nition, analysis, or solution of a problem
in which symbols are used to represent
operations, data, flow, equipment, etc.

- The descriptive information that is
associated v1ith flo\vchart symbols.

_ Tho +, ,..,,.4-;,..,.. ,...+ l:nL.;,..,., .,.,,....h,..I., Tho
lllV IUll""'ll'Ull VI lllll"lto.111~ ~,111...,'Vl~e Ill""'

indication of the sequence of available
information and executable operations.

- On a flowchart, a I ine representing a
connecting path behveen flowchart
symbols: a I ine to indicate a transfer of
data or control •

format (control) program - A user control program 1 stored on the
systems device, required to run a BUILD,
SORT, or UPDATE program. A format
program has two parts, Field Descriptor
Section and INPUT/OUTPUT Section,
which may be stored as two separate
programs (or as one) on the systems device.

function

GOTO

- A specific purpose of an entity or its
characteristic action.

- A source program statement that branches
to another statement in the Procedure
section, usually not to the following
statement which would be the normal
order of execution.

I

GLOSSARY - 5

head of forms

hit

IF (.r._)
GO TO

ii legal character

inconnector

- The information printed at the top of a
report. fv"1ay include title, data, page
number and column headings.

- A successfu I comparison of two data
fields, or keys. See also match.

- A conditional branch statement in DIBOL
source program. If the relationship be­
tween two variables is true, the program
branches to the label fol lowing GOTO.
If not true, the next statement is
-~--··"-.J V""C""'"UIVUe

- A character that is not valid according to
the COS 300 design rules. DIBOL will
not accept back slash (\) and back
arrow (4-) in alphanumedc strings.

- A connector that indicates a continuation
of a broken flow! ine.

information - The meaning that a hu'Tlan assigns to data
by means of the known conventions used
in its representation.

information processing - The execution of a systematic sequence
of operations performed upon data.

INIT - This statement INITializes a data file.
In effect, each INIT opens a file, so
that a related XMIT, READ or WRITE
can access records from that file.

input -

Input/Output function -

instruction -

interface -

1/0 -

item -

job -

jump

Data flowing into the computer to be
processed by a binary program is input
data. When the processed data flows
out of the computer, it is output data.

The making available of information for
processing (input) or the recording of the
processed information (output).

A program statement that specifies an
executable computer operation.

A shared boundary. A hardware component
which links two devices, or a storage area
accessed by two or more programs.
Example:
Monitor's Edit Buffer is filled by programs
typed in by the operator but taken out of
the Edit Buffer and stored on the systems
device when a WRITE is given.

An abbreviation for input/output. (See
input/output function.)

A group of fields treated as a unit.

A set of tasks that makes up a unit of
work for a computer ... By extension, a
job may include al I of the necessary data
files, systems programs, and instructions
that an operator needs to run a job.

A departure from the normal sequence of
executing instructions in a computer.

GLOSSARY - 6

justify

K

Key

label

leader

library

- The process of positioning data in a field
whose size is larger than the data. In
alphanumeric fields, the data is left­
justified and any remaining positions are
space-filled; in decimal fields the digits
are right-justified and any remaining
positions are zero-filled.

- An abbreviation for the prefix kilo. When
referring to storage capacity, K=l 024 in
decimal notation; otherwise, K=l 000.
COS 300 storage capacities are stated in
characters or in record blocks (of up to
510 characters each).

- One or more fields within a record used
to match or sort a file. If a file is to be
arranged by customer name, then the
field that contains the customer's names
is the key field. In a sort operation, the
key fields of two records are compared,
and the records are resequenced when
necessary.

- One or more characters (up to a maximum
of 6) used to identify a statement in a
source program.

- The blank section of tape at the be­
ginning of a record.

- A collection of related files. For example,
the collection of inventory control files
may form a I ibrary, and the I ibrari es used
by an organization are known as its data
bank.

library routine

I ine printer

linkage

LN

load

load-and-go

location

logical unit

logical file

- A proven routine that is maintained in a
program I ibrary.

- A high-speed output device that prints
all the characters of a line as a unit.

- Coding that connects two separately
coded routines.

- Monitor command requesting automatic
line numbering of a source program or a
format program as the program is typed in.

- To enter data or programs into main core
storage.

- An operating technique in which there
are no stops between the loading and
execution phases of a program.

- Any pl ace where data may be stored.

- A technique for al locating mass storage
facilities at run time. Up to 15 logical
units may be assigned at system startup by
the SYSG EN program. These areas and
their assigned sizes are I isted in the
Systems Directory. At run time, when
Monitor prints 11 MOUNT filename #1 11

the operator mounts the file and then
types- the togico1 device number.

- A collection of logical records independent
of their physical environment. Portions of
the same logical record may be located in
different physical blocks.

I

GLOSSARY - 7

loop

magnetic core

magnetic tape

main memory

manual input

mass storage device

master file

mateh

medium

A sequence of instiuctions that is
executed repeatedly until a terminal
condition prevails. A commonly used
programming technique in processing
data records •

- The very fast direct-access storage media
used as the main internal memory. Con­
tains 2 characters per 12-bit word. It
is the equivalent of a two character
byte. An 8K core stores up to 16, 000
characters.

- A tape with a magnetic surface on which
data can be stored by selective polari­
zation of portions of the surface.

Or main storage. The computer's
primary internal storage.

- The entry of data by hand into a device
at the time of processing.

- A device having large storage capacity,
such as DECtapes and disks.

- A file that is either relatively permanent,
or that is treated as an authority in a
particular job.

- To check for identity between two or
more fields.

- The material or configuration thereof on
which data is recorded: for example,
paper tape, cords, magnetic tape.

merge

mnemonic code

Monitor

name

nest

NO TRACE

object program

off line

offl ine storage

on line

- To combine records from two or more
similarly ordered strings into another
string that is arranged in the same order.
The latter phases of a sort operation.

- To use one or more characters or symbols
to depict a wel I-defined concept.
Examples are TTY, RDR and DT 4.

- COS 300 system control program that
loads and runs other programs and per­
forms many other usefu I tasks.

- The same rules apply to field names,
filenames, and statement labels. A
name must start with a letter and may
use up to 6 significant characters, not
including embedded spaces. A name
identifies the place where a file, a
field, or a statement is stored.

- To embed subroutines or loops or data in
other subroutines or programs.

- Source language statement. See TRACE.

- A compiled program in binary form ready
to be loaded and executed.

- Equipment or devices that are not under
control of the computer.

- Storage not under control of the central
processing unit.

- Equipment or services under control of
the computer.

GLOSSARY - 8

on line storage

operation

outconnector

output

overlay

pack

parameter

pass

patch

peripheral equipment

- Storage under control of the central
processing unit.

- The event or specific action performed
by a logic element.

- A connector that indicates a point at
which a flowline is broken for a con­
tinuation at another point.

- Data delivered by the computer to
external storage.

- The technique of specifying several
different record formats for the same
data. Special rules apply.

- To compress data in a storage medium in
such a way that the original data can be
recovered. For example, when characters
ore stored on mass storage media, they are
converted to a special 6-bit form,
standard 8-bit ANSC II minus 237. Also,
fields are packed on magnetic media with­
out separating spaces •

- A variable that is given a constant value
for a specific purpose or process.

- One cycle of processing a body of data.

- To modify a routine or program in a
rough or expedient way.

- Data processing equipment which is
distinct from the computer. DEC tapes,
disks and card readers are examples.

position

precision

problem definition

PROC

process function

processing

program

- In a string, any location that may be
occupied by a character.

The degree of discrimination with which
a quantity is stated. For example, a
three digit numeral discriminates among
l 000 possibilities. 6-place numerals are
more precise than 4-place numerals. But
properly computed 4-place numerals might
be more accurate than improperly computed
6-place numerais.

- A term associated with both the statement
and solution phase of a problem and used
to denote the transformations of data and
the relationship of procedures, data,
constraints, environments, etc.

- A data language statement that separates
the Data Definition section from the
Procedure section. This statement is re­
quired in every DiBO L source program.
It is a signal to the compiler that the
Data Definition section has ended, and
that the next data wi 11 be the start of the
Procedure part of the program. It does
not appear in the binary program.

- The process of executing a defined
operation or group of operations.

A term including any operation or com­
bination of operations on data, where an
operation is the execution of a defined
action.

- See source program, binary program,
object program, format program.

I

GLOSSARY - 9

program I ibrary

programmer

- A Data Center1s organized collection
of computer programs, off i ine storage
media, and related documentation.

- Person who designs, writes, and tests
computer programs.

pseudo-random numbers - A sequence of numbers, computed by an
arithmetic process, that is satisfactorily
random for a given purpose. Such a
sequence may approximate a statistical
distribution such as uniform, normal, or
gaussian.

punched card

punched tape

random access

range

READ

read only memory

- A card punched with a pattern of holes
to represent data.

- A tape on which a pattern of holes or
cuts is used to represent data.

- Same as direct access.

- The difference between the highest and
lowest values that a quantity or function
may assume. For example, the range of
decimal numbers that the system can
process is -999, 999, 999, 999, 999 to
+999,999,999,999,999.

- A source language statement which inputs
records on a direct access device.

- An equipment option used to store
permanentiy wired instructions.

real time

record

record (block)

- Use of a computer to guide, contro I, or
acquire data from a related physical
process during the actual time that the
physical process transpires.

- A collection of related data fields, and
the basic logical unit in data files. A
RECORD statement reserves core storage
areas for DIBOL data language programs.
See also fixed-length and variable-length
records. Maximum record size is 510
characters.

- The basic unit of physical data transfer
used primarily to determine storage
capacity. A block consists of up to 510
characters.

To determine the physical length in
blocks of a data file, the user must add
two additional characters for each record
in the file, and one additional block of
512 characters for each file (to store the
file name). A file must contain an integral
number of blocks. Thus if a user is
planning to create a data file consisting
of 500 records, containing l 00 characters

· eeeh; he- fflt1st 'Odd--500- times 21 pfus 5l 2
or a total of l ,512. This file will contain
51, 512 characters. To determine the
number of blocks this file will occupy,
divide by 512: the result is l 02.

The length in blocks of programs stored on
the systems device is cal cu lated by
Monitor and printed in the System
Directory in response to DIRECTORY
commands. These programs wi II require

GLOSSARY - l 0

4 additional characters per I ine to store
I ine numbers.

A DECtape reel. contains 737 blocks; an
RK08 disk cartridge contains 3240.

RETURN - After CALL, this statement terminates
the subroutine and returns control to the
statement fol lowing CALL.

reverse direction flow - In flowcharting, a flow in a direction
other than left to right or top to bottom.

ROM - See read only memory.

security - Protection of data files. Only programs

segment

sequential operation

serial access ·

with both the proper filename and data
definition can access a file.

- To divide a program or file into parts such
that the program can be executed without
the entire program being in internal storage
at any one time.

- Performance of operations, such as
record processing, one after the other.

-- ··The proce·ss of getting data from or putting
data into storage where the access time is
dependent upon the location of the data
most recently obtained or plaeed in
storage. Most magnetic tapes are
serially accessed, but DECtapes have
fixed addresses, and programs have fast,
direct access to their DECtape records.

sign

significant digit

simulate

SORT

source program

space fil I

special character

START

statement

Positive numbers do not require a sign,
but negative numbers are prefixed with
the minus sign (-).

- A digit that is needed for a specific
purpose, especially a digit that must be
kept to preserve a certain accuracy or
precision. Leading zeros are not
significant.

- A computer program that represents the
behavior of another system. An example
wouid be a program which simuiates the
behavior of a market when a new product
is introduced.

- A utility program which resequences data
records within a fl le into ascending or
descending sequence.

- A program written in DIBO L data language.
These must be translated by the system
compiler into DDS 300 machine language
before use.

- To fil I the remaining character positions
in an alphanumeric field with space
characters.

- A "9raphic character that is neither a
letter, nor a digit, nor a space character.

- Optional source language statement at
beginning of program.

- An instruction in a source program.

GLOSSARY - 11

STOP

string

stripping

L - - • .L_ suoscri prs

switch character

symbol

syntax

system

system device

A source language statement which
terminates a program run, returning
control to Monitor.

- A linear sequence of characters.

- The use of a line across the upper part of
a flowchart symbol to signify that a
detailed representation of a function is
located elsewhere in the same set of
flowchaits.

A gioup of data (quantities) arranged in
an array • This group or array is referred
to by name. Each individual quantity in
the array can be referred to in terms of
its place by a unique subscript following
the OiiOY name.

- A single letter specifier in a command.
Often fol lows a slash terminating command.

- A representation of something by reason
of relationship or convention.

- The rules governing the structure of a
language.

- An organized collection of software and
hardware components, documentation,
and methods required to accomplish a
specific objective.

A mass storage area reserved for systems
programs. This is always logical unit O.

Systems Directory

tape drive

terminal

TRACE

transaction file

transmit

uti I ity program

variable

- A list of systems programs on the systems
device with logical device assignments
and other useful information.

- A device that moves tape past a head.
Synonymous with tape transport.

- A point in a system at which data can
either enter or leave.

- A source language statement, helpful in
debugging, which provides a record or
program branches as a program is run.
The NO TRACE statement disables the
TRACE feature.

- A file containing relatively transient
data to be processed in combination with
a master file. For example, in a payrol I
application, a transaction file indicating
hours worked might be processed with a
master file containing employee name and
rate of pay. Synonymous with detail file.

- To send data from one location and to
receive the data at another location.

- A group of systems--programs which·perform­
common services, and require format
programs. Examples are BUILD, SORT,
PIP and PRINT.

- A quantity that can assume any of a given
set of values.

GLOSSARY - 12

variable-length record - A file in which the data records are not
uniform in length. Specified by V in an
IN IT statement. Variable length records
may be created by DIBO l source programs
only, but cannot be processed by utility
programs, and direct access to such
records by systems programs is impossible.

verify - To determine whether a transcription of
data has been accomplished accurately.

word - A string of 12 binary bits, representing
two characters.

WRITE - A source language statement which out-
puts a record to a direct access device.

XMIT - A source language statement which out-
puts or inputs a record.

zero fill - To fill the remaining character positions
in a decimal field with zeros.

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming
notes, software problems, and documentation corrections, are published
by Software Information Service in the following newsletters.

DIGITAL Software News for the PDP-8 and PDP-12
DIGITAL Software News for the PDP-11
DIGITAL Software News for 18-bit Computers

These newsle~ters contain information applicable to software available
from DIGITA~'S Software Distribution Center. Articles in DIGITAL
Software News update the cumulative Software Performance Summary which
is included in each basic kit of system software for new computers •.
To assure thC\t the monthly DIGITAL Software News is sent to the!
appropriate software contact at your installation, please check with
the Software Specialist or Sales Engineer at your nearest DIGITAL
off iceu

Questions or problems concerning DIGITAL' S softwar·e should be reported
to the Soft.-ware Specialist. If no Software Specialist is available,
please send a Software Performance Report form with details of the
problems to:

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachusetts 01754

These forms, which are provided in the softwan~ kit, should be fully
completed ru1d accompanied by terminal output as well as listings or
tapes of the user program to facilitate a complete investigation. An
answer will be sent to the individual, and appropriate topics of
general interest will be printed in the newsletter.

Orders for new and revised software manual~>, additional Software
Performance Report forms, and software price list:s should be directed.
to the nearest DIGITAL field office or representative. USA customers
may order directly from the Software Distribution Center in Maynard.
When ordering, include the code number and a brief description of the
software requested.

Digital Equipment Computer Users Society {DECUS) maintains a user
library and publishes a catalog of programs as well as the DECUSCOPE
magazine for its members and non-members who rE~quest it. For further
information, please write to:

Digital Equipment Corporation
DEC US
Software Engineering and Services
Maynard, Massachusetts 01754

DEC-08-0CSTA-B-D

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve
the quality and usefulness of its publications. To do this effectively
we need user feedback--your critical evaluation of this document.

Did you find errors in this document? If so, please specify by page.

____________ ,

How can this document be improved?

How does this document compare with other technical documents you
have read?

________________ , __________ ~

Job Title _____ ,
Name: --------· _____________ Org ani za ti on=--------____ _

Street: ------ Department=------

City: State~ ----·-- ____ , Zip or Country _______ _

·------------··---·---------------------""---------------------- Fold llere --

-- Do Not Tear - Fold Ilere and Staple --

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachusetts 017 54

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

~omoomn
DIGITAL EQUIPMENT CORPOA4TIC> ~

