
A FOCAL PRIMER
2 nd Edition

With Chapters on BASIC
and FORTAN IV with WATFOR

Howard C. Howland

A FOCAL PRIMER

A FOCAL PRIMER

2 nd Edition

With Chapters on BASIC
and FORTAN IV with WATFOR

Howard C. Howland

Algebraic Languages
Ithaca, New. York

Copyright @ 1972 by Howard C. Howland

All rights reserved. No parts of this book
may be reproduced in any form without
written permission from the author.

Algebraic Languages, Box 113
Ithaca, New York

Current printing (last digit) :
9 8 7 6 5 432

Printed in the United States of America

iv

To the fond memory of my colleague, Frank Rosenblatt,
who learned FOCAL one day to check an astronomical
calculation concerning the detection of planets about
other suns.

v

A FOCAL Primer

CONTENTS

Chapter 1 Introduction: Interactive Computing in Education Today. 1

Chapter 2 Direct Computation and Elementary Stored Programs. 5

Chapter 3 Flow Charting and Statements Which Alter the Sequence of
Computation. 21

Chapter 4 Subscripted Arrays. 39

Chapter 5 Programming Hints for Interactive Computing on Mini Computers:
Testing and De-Bugging. 45

Chapter 6 BASIC for Users of FOCAL.

Chapter 7 FORTRAN for Users of FOCAL.

Chapter 8 Finding and Applying Computing Algorithms.

Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5
Appendix 6
Appendix 7

Functions Defined in FOCAL.
FOCAL Commands, Abbreviations and Symbols.
FOCAL Error Diagnostics for the PDP-8 FOCAL-8,
Error Diagnostics for the PDP-IS, FOCAL-IS,
BASIC Error Messages for PDP-8 Edusystem 20.
WATFOR and WATFIV Error Prefixes
Commonly Used Implicit Functions

Bibliography

Index

vii

53

67

77

81
83

1969. 85
87
89
93
97

99

101

Preface

This manual was written for the students of my own course on
interactive computing, Biological Sciences 106, and for users of
the Division of Biological Sciences Interactive Computing Facility
at Cornell University.

In this second edition, I have incorporated material on other
algebraic languages, particularly BASIC and FORTRAN, and have ex­
panded the exercises. The text has been retyped and hopefully
most of the errors of the first edition have been removed.

I am indebted to Mrs. Sherry Murray for preparing a camera­
ready typescript, as well as for much editorial help, and to my
wife, Monica Howland, for executing the figures and cover drawings.

ix

ERRATA

Page Correction

9 FSQT(X)

12 ... by writing TYPE "A", A or TYPE ?A?

20 ... and (3,5); (2.3,0.3) and ...

23 ~1.1~ ASK N,!; IF ...

39 VA(R+RM*C)

64 16~ PRINT "~","~", "l","~","INF"

65 2~ FOR I = 1 TO N

81 FOCAL 69 gives +1 as the value of FSGN(~)

97 Arctangent

x

CHAPTER I

INTRODUCTION: INTERACTIVE COMPUTING IN EDUCATION TODAY

Of all the technological developments in this most technological of all cen­
turies, electronic digital computing will surely have a profound influence on
the future course of human affairs. Forming the very heart of automation, the
programmed digital computer threatens to replace a large fraction of the brain
power of our industries.

Parallel to this social change, are to be anticipated profound alterations in
the field of mathematics, where the economics of problem-solving has already
been turned upside down by the power and speed of digital computers.

In particular, the miracle of electronic computing methods has permitted the
economic solution of specific cases of equation systems which were formerly
effectively insoluble, and has concurrently reduced the value of general, closed­
form solutions. To the university student, this means that he or she is likely
to see less of the classical calculus and more of the numerical analysis in
future mathematics curricula.

But what of today's students? University curricula have enormous inertia,
and present day digital computers are often shielded from their users by an ar­
ray of counters, key-punch operators, account numbers, and complex software sys­
tems.

The picture is particularly acute in view of the changed pattern of federal
funding of research. Educational computing has always been a stepchild of re­
search computing since its very inception, and research computing in our nation
is decidedly in trouble. In this dark financial climate, how can today's stu­
dents economically learn digital computing?

I believe that interactive computing on a ID1nl computer provides an econo­
mic answer in the coming decade. * Accordingly, this book is about a "mini" com­
puter language, FOCAL, which was written by Richard M. Merrill of the Digital
Equipment Corporation for the PDP-8 series of computers. FOCAL is a powerful
and elegant interactive language of the FORTRAN branch of the Indo-European com­
puting language tree (BASIC is another language on the same branch; on the other
hand, APL, yet another interactive computing language, quite unlike FORTRAN,
FOCAL, or BASIC, is not).

FOCAL can be learned in a course, with a tutor, or all by oneself while sit­
ting at a computer teletype. Programs in FOCAL can allow one to add up a check­
book, calculate an average, solve a set of differential equations, model a popu­
lation, compute the University's budget, or play tic-tac-toe. Virtually any
mathematical task may be programmed in FOCAL, provided it is broken down into
bite size chunks that the computer can digest.

*A mini computer in the current jargon has 4 to 8 thousand 12 to 16 bit words
of core storage.

-1-

A FOCAL PRIMER

Because FOCAL is interactive, a program written in it can be tested and "de­
bugged" very rapidly. Users of batch process languages (who submit a deck of
computing cards to a computing center and get them back later together with
printed program output) are accustomed to learning, hours after they have sub­
mitted a job, that the program has failed to run because they have forgotten a
comma. Users of an interactive language get diagnostic correction comments in
seconds.

Because mini computers are indeed small, they cannot remember much at one
time (FOCAL in a four-user configuration on an 8,000 word machine allows about
800 12 bit words per user as opposed to 10,000 words for a normal batched FORTRAN
job run under the WATFOR compiler). A FOCAL user can write a program of maximum
size equivalent to about fifty FORTRAN statements with twenty to thirty stored
variables. An attempt to store a larger program or more variables would over­
load the computer's memory.

This size restriction may appear to be a severe one to the experienced FORTRAN
programmer who is accustomed to handling great arrays in large amounts of core
storage. But to the average student, even the average researcher, for most pro­
grams this restriction may not be serious. This is because many large jobs can
indeed be broken into small ones and the very rapid "turn around" which interact­
ive computing provides, often far outweighs the space restrictions of the "mini"
computer.

It will be interesting to see what languages and what machines dominate the
academic computing scene in the next ten to fifteen years. It is my belief that
a significant portion of academic computing will be done on small time-sharing
computers, whose high speed, low cost and ready accessibility will give them an
economic advantage over a large centralized system. If this is true, then lang­
uages such as FOCAL and BASIC will play a key role in computer education.

In the following chapters I have attempted to emphasize the general aspects of
algebraic computing languages. The beginning student may be disheartened by the
multitude of languages he encounters and wish that there was one simple algebraic
language period. He is advised to take heartl The differences are not as severe
as they seem. Indeed I believe that the major outlines of all future algebraic
languages can be discerned in the languages that are extant today, and it is
these common fundamental elements that I have attempted to emphasize in this treat­
ment of FOCAL. In addition I believe that the student will find that FOCAL affords
an optimal way into the diversity of computer languages that are in current use.

Some Words About FOCAL in Particular

FOCAL has several advantages over other interactive computing languages, and,
even though the student is not yet familiar with FOCAL, this is perhaps a good
place to cite these advantages by way of encouragement.

FOCAL is easy to debug. To "debug" a program is to find errors in it. Because
FOCAL has direct commands which let a user access any part of his stored program,
it is particularly easy to locate a trouble spot in a program. One command in
FOCAL allows one to have the computer type out all the values of all his stored
variables by simply typing TYPE $ and then a carriage return.

-2-

INTRODUCTION: INTERACTIVE COMPUTING IN EDUCATION TODAY

FOCAL has powerful editing features which allow the user to correct an error
easily once it is found.

FOCAL is a fast computing language. A program written in FOCAL may run in two
thirds the time that an equivalent BASIC program will run on the same or comparable
machine.

FOCAL has one of the most elegant subroutine capabilities of all algebraic
languages in the "00" statement.

FOCAL is a compact language due to the fact that its commands may be abbrevi­
ated and that several commands may be written on one line.

All of these features make FOCAL a worthy competitor of BASIC; and in many
situations the additional economy of FOCAL may tip the scales well in its favor.

-3-

A FOCAL PRIMER

-4-

CHAPTER II

DIRECT COMPUTATION AND ELEMENTARY STORED PROGRAMS

Introduction

There are many algebraic computing languages currently in use around the coun­
try. Some of them are given in Table 1.

Table 1. Some Algebraic Computing Languages

Interactive*
Language or not Availabili ty

FORTRAN no Universal on large machines

ALGOL no On many large machines

APL yes On IBM machines

BASIC yes Most available of all inter-
active languages

FOCAL yes On PDP-8 computers

CUPL no At Cornell on 360/65

*Programs of interactive languages can be modified by the pro­
grammer from a console or a teletype while the program is in
the computer, thus greatly facilitating correction of errors
in the program.

The advantages of FOCAL as an interactive language have already been cited
above. The question of an interactive language versus a batch-processed language,
however, is one which deserves mention here.

-5-

DIRECT COMPUTATION AND ELEMENTARY STORED PROGRAMS

Batch processed languages are adapted to the card input, line printer output
configuration which large computers started with in the late 1950's. That con­
figuration is admirably saving of machine time, and, in most circumstances, terri­
bly wasteful of human time. I say "in most circumstances" because occasionally the
"turnaround time", the time between submission of a program to a computing center
and the receipt of the executed program's output, is short enough, on the order of
a few minutes, to make the batch process worthwhile for learning programming. But
in ordinary circumstances the user of a batch processed language will wait for
several hours only to learn that he has forgotten a comma somewhere in the program
and for that reason it will not run.

Students can be trained to put up with anything, particularly if no alternative
is offered them. However, with the advent of interactive languages, there is little
question that, unless a central computing facility offers remarkable turnaround time,
(as some universities do with "cafeteria batched", WATFOR compiled, FORTRAN), the
only reasonable choice for learning an algebraic computing language is to use an
interactive computer.

Moreover, my experience has been that once a student has mastered any of the
algebraic computing languages he will be able to learn any other easily by self
study.

Direct Computation in FOCAL. The TYPE Statement and Algebraic Expressions

Assume you are sitting at the teletype of a PDP-8 computer whose keyboard looks
like that of Figure 1. The computer has been loaded with FOCAL and is ready to go.
The computer indicates that it is in a state ready to accept commands by typing an
"*" (The details of actually turning on the computer, loading FOCAL, or any
other odds and ends are best learned while you are actually in front of the com­
puter.)

In order to compute an algebraic expression such as

(3.14159) (-V (42/31 + 26.9)

one types the following on the teletype:

TYPE (3.14159) * FSQT((42/31) + 26.9)

and then depresses the carriage-return key at the right of the teletype keyboard.
The computer then types the answer:

16.69*

or perhaps

~.166992E+~2*

The answer in this latter case is the number preceeding the E times 10 raised to
the power following the E •

Thus: • 10562lE05 = 10562.1

.635292E-03 = .000635292

-7-

A FOCAL PRIMER

This "exponential", or "scientific" notation is almost universal in computing, and
the student will do well to memorize its meaning. One obvious advantage is that
very large and very smal1numbers can be expressed in about 12 characters of type
to six places of accuracy.* It might be noted here that FOCAL works only to six
places of accuracy and can represent numbers in exponential notation as large as
.999999E6l9.

A method for designating the format of the answer (whether it is in exponential
or decimal notation and how many decimal places, etc., are desired) is given below.

Algebraic Expressions

Most algebraic expressions have their counterpart in FOCAL. Table 2 gives some
common ones. A complete list of functions is supplied in Appendix 1. Note that
no space is allowed between the function name and the first parenthesis of the
argument.

Errors

You may be wondering what happens if you ask FOCAL to execute an impossible com­
mand. Well, "ask a silly question ••• " and you get out an error code, like "?07. 38".
Appendix 3 gives the meaning of these error codes which are designed to help you
correct your mistake. Usually the error code will clear the matter up immediately,
but occasionally it won't. If you cannot understand what is wrong with a statement,
try retyping the offending statement paying particular attention to spaces and
punctuation before you call for help. Further "debugging" aids are discussed in
Chapter 5.

Ambiguous Expressions and Rules of Precedence

An expression like 3·4+2/3 is ambiguous unless you know the order in which the
operations in it are performed in its evaluation. It might be

(3·4)+(2/3) = 12.66

or (3·(4+2))/3 = 6

or 3·(4+(2/3)) = 14

In every case these ambiguities can be surmounted by using parentheses and I
recommend their use. As a matter of fact, however, FOCAL evaluates arithmetic­
expressions in a fixed way. It performs operations in a precedence order: first
exponentiation, then multiplication, then division, then subtraction and addition.
Expressions of the same precedence are evaluated from left to right. According to
these rules the expression 3·4+2/3 would be equal to 12.666.

FOCAL recognizes parentheses, square brackets and angular brackets all as paren­
theses and uses them to evaluate expressions. You will note that parentheses always
occur in pairs.

*on PDP-8 machines.

-8-

DIRECT COMPUTATION AND ELEMENTARY STORED PROGRAMS

Table 2

Mathematics FOCAL Note

X FSQT(X) Argument must be ~ O.

sin X FSIN(X) Argument is in radians
(360 0 = 2~ radians).

X FEXP(X) e

Log x e FLOG(X)

Log10x FLOG(X)/FLOG(l~) This follows from the
definition of logarithms.

AX FEXP(FLOG(A)*X) x For 10 set A = 10

X4 Xt4 Exponents restricted to
positive integers. (No
warning if exponent is
fractional; it is simply
truncated.)

X/Y X/V

Xy x*'(A common error is to forget
the "*,, in multiplication.

X+Y x+y

X-v X-v

-9-

A FOCAL PRIMER

Exercise Set 1.

Pencil and Paper

1. Write the following numbers in exponential notation:

27.3
100

1.2

-240
1/2
pi

2. Write the following numbers in ordinary decimal notation:

.141416EOl

.123456E-02
-.829000E03

.200000EIO

3. Write FOCAL statements for the following algebraic expressions or their equi­
valent:

a) sin((2/360) (45))
b) [(3.6)(48.2)] .30103
c) 26(45+32+10)/627
d) cos (45°)
e) 27. 302
f) log1034.2

g) (662+273) /284

Computer

4. Evaluate the expressions in 3 above on the computer. Hand in your complete
computer output.

5. Perform a set of computations to show that the rules of precedence given above
are, in fact, those which the computer uses. Append a discussion telling how
your computations do this.

-10-

DIRECT COMPUTATION AND ELEMENTARY STORED PROGRAMS

Indirect Computation: Elementary Programs in FOCAL

Instead of directly typing out the values of expressions, we can store these
values for further reference by setting a variable equal to the value of the
expression using the FOCAL command SET •

For example, we may say:

SET X = 43/2+FSQT(4.92)

When this command is executed, X is assigned the value of the right hand side
of the equation. The general name for a SET command is an "assignment" command.

In addition, we may use variables as well as numbers on the right hand side of
a SET command, provided values have previously been assigned to these variables.
A value may be assigned to a variable by means of a SET command or an ASK command
in which the value must be typed in from the teletype keyboard.

These two features constitute the first level of flexibility in handling numbers
in the computer. This section of the primer will describe the rules in FOCAL for
getting numbers into and out of the computer and elementary programs involving these
numbers.

The following simple example will illustrate the elements of a program and give
a background for the rules which are presented later:

Consider the computation of A from X and Y in the two equations:

Z = (X2+Y2)1/2

A = (Z/lOO) + 27

(1)

(2)

Suppose further that we wish to perform this computation for a number of pairs of
X and Y. We may do this by first writing a stored program and then executing it.
The program might be:

~1.~5 C PROGRAM EXAMPLE 1.1
(11. 1(1 A X, Y
~1.2(1 SET Z = FSQT((X+2)+(Y+2))
(11.3(1 SET A = (Z/1~~)+27; TYPE A

Each statement would be entered into the program by typing it on the teletype
and depressing the RETURN key. After each statement the computer would return
the carriage, advance a line and type an "*,, to indicate that it awaited your next
command. After the last statement of the program was entered it could be executed
by typing GO and depressing the RETURN key. The statements would be executed
in numerical order. Since statement 1. 05 is a "dummy" comment statement (because
it begins with a "C"), the computer will pass over it and execute statement 1. 1.
It will type a colon and wait for you to type in the value of X. This is done by
simply typing a number and a space, comma, or carriage return. The computer will
then ask for the value of Y in the same way. It will then execute statements 1.2
and 1.3, in the first case using the values of X and Y supplied as input, and in

-11-

A FOCAL PRIMER

the second using the value of Z it has just computed. The last part of the com­
pound statement 1.3 causes the computer to type out the value of A it has just
computed.

To perform the same calculation for another pair of values of X and Y you would
type GO, depress the return key and the same sequence would be followed again.

Comments on Program 1.1

Statement number Comment

1.05 This is a non-executable statement. It simply
serves to label the program. The computer skips
over any statement beginning with a C.

1.1 This statement asks for values of the variables X
and Y. If desired, one may have the name of the
variable asked for printed before the colon by
writing ASK ?X?, ?Y?

1.2 This statement computes the value of an intermediate
variable Z. If desired this value could also be
printed out in a type statement, e.g., 1.4 TYPE Z •

1.3 This statement computes the value of A. The second
part of this compound statement after the semi-
colon causes A to be printed out. If desired, the
name of the variable could also be printed out
either by writing TYPE "A", "A" or TYPE ?A? .
The reader is invited to experiment with both these
methods on the computer.

It should be noted that after the program has been executed the value of Z is
still in the computer. This value may be examined after the program has been
executed by typing on the teletype:

TYPE Z ,

and depressing the carriage return.

Elements of a Program

We shall now preceed to give the rules for using the statements presented above.

Statement numbers

Each program statement in FOCAL must be preceded by a statement number. State-

-12-

DIRECT COMPUTATION AND ELEMENTARY STORED PROGRAMS

ment numbers are decimals between 1.01 and 31.99 (in FOCAL-8, 1969). The values
1.0,2.0, •.• 31.0 are reserved for a special use in referring to all statements
of a section (see below). FOCAL executes indirect statements in statement number
order unless a logical command alters that sequence.

The user need not write two decimal places, e.g., 1.1 will serve for statement
1.10. More importantly, the user need not enter statements in statement number
order. Regardless of how they are entered FOCAL will execute them in correct
order.

Assigning Variable Names

All variable names must begin with a letter and are either one letter or one
letter and another letter or number (i.e., they are one or two characters long).
Longer names may be used but FOCAL will recognize only the first two characters.
The letter F is excluded as a beginning for a variable name. No distinction is
made in FOCAL between integer and "floating point" variables; all numbers are
recorded internally in exponential notation, though (as may be seen below) they
may be printed as integers.

The SET Statement

The statement SET X=Y where X is a variable name and Y is an algebraic ex­
pression causes the value of Y to be computed and assigned to the variable X. One
peculiarity of this operation is that the variable name X may also appear in the
expression, Y, in a way which may at first appear contradictory, e.g., the ex­
pression:

SET X = X + 1

is legitimate and causes the current value of X to be augmented by 1 whenever the
statement is executed. In general, variables on the right hand side of a SET
statement always have the values they had before the set statement was executed.

Comments

Comments may be included in your program for your own reference. A comment
statement receives a statement number just as an ordinary instruction; however,
it is ignored by the computer in execution. A comment statement is simply the
letter C followed by the text you wish to write. A comment statement is only
printed out when the program or statement is written out with a WRITE command
(see below). In order to have text printed along with numbers in response to a
TYPE command, another technique is used (see below).

Data Input

Data may be entered into an indirect program in two ways. Either the data is
included in an indirect statement like:

1.1 SET PI = 3.14159

or it is asked for by the program itself in an ASK statement, e.g.,

-13-

A FOCAL PRIMER

1.1 ASK PI

When the computer, in executing its program, comes to an ASK statement, it types
a colon and waits for that value to be entered from the teletype, either by typing
or by reading from the teletype reader. Whenever the computer types a colon it
indicates that it is waiting for a response. It will accept the following:

a) a number perhaps preceded by spaces and certainly followed by a space, comma,
or carriage return;

b) a carriage return, in which case it assumes the number entered was zero;
c) depression of the "ALT tv'OD" key, which it takes as an instruction to retain

the previous value of that number.

According to the response, the computer assigns a value to the variable mentioned
in the ASK statement. It should be noted that several variables may be entered
by one statement; e.g., ASK, A,B,C,D will cause the computer to ask for values,
each time typing a colon, waiting for a response and assigning that value to the
proper variable reading left to right.

Ways to Tell the Name of the Variable Being Asked

Text may be printed out by an ASK statement if it is enclosed in quotation marks.
Thus one might write:

1.15 ASK "ENTER RADIUS", R

and when this statement was executed the computer would type

ENTER RADIUS:

and wait for the user to supply a value of R.

Another way to have the computer specify the variable name that it is asking
for is to enclose the name in question marks. Thus

1.15 ASK ?R?

will cause the computer to print

R:

and wait for the user to supply a value of R.

The use.of question marks in this fashion is called turning on and off the trace
feature of FOCAL. When in the course of execution the computer encounters a
question mark it will begin to print out all the commands as it executes them.
When it finds a second question mark it will stop doing this. This feature is
often useful in debugging a program (see below) but here it is simply used to
cause the printing out of variable names as they are asked for. If you use this
method of specifying input variables be sure that you use the question marks in
pairsl Otherwise you may find that the computer is printing out your entire pro­
gram.

-14-

DIRECT COMPUTATION AND ELEMENTARY STORED PROGRAMS

Data Output

The value of a variable is typed out by use of the TYPE command. In the sim­
plest case the number is printed out in response to a command of the following
form:

1.1 TYPE A

However, we may wish to control the format of a number or add text to accompany
the number to describe its meaning. A mark of a good programmer is often thought
to be the readability of his computer output. In FOCAL output formating is very
straightforward compared to many other computer languages and is described in its
entirety below.

The Format of Numbers in Output

We have already discussed the exponential notation for numbers above. It is
often of use to be able to specify exactly how a number will be printed out on the
computer, for while the exponential format is one in which all the accuracy of the
computer will always be expressed, nonetheless it is tedious to read, and this may
lead to inaccuracies itself. Hence there are ways of changing the output format
of numbers in FOCAL, and the computer always prints out numbers according to the
most recent format instruction it was given. The format instruction for the state-
ment TYPE A may be given by interposing a % , sign where the blank mayor may
not contain a number indicating where to place-the decimal point and how many
places are to be printed. The simplest way to explain the command is with examples,
and these are given in Table 2.

Table 2. Formats for Numerical Output

Number, X Desired appearance Command with Format

61.703 .617030E+02 T %,X

61.7 T %3.01, X

61.70 T %4.02, X

62 T %2.00, X
or T %2, X

62 T % 6, X

-15-

A FOCAL PRIMER

Note that FOCAL inserts leading blanks before the number if the format specified
has more places than the number to be printed. The reader may verify that it also
inserts following zeros after a decimal point.

Other Formating: Text and Carriage Control

Much time is wasted in formating output in non-interactive computing languages
because the commands are so arbitrary. In FOCAL the user can easily format his
output by cut and try methods.

The other three formating symbols are quotation marks which, when used in as
ASK or TYPE statement, will cause the typing out of all that is enclosed between
them; the exclamation mark, !, which causes a carriage return and line feed, and
the number sign, #, which causes a carriage return with no line feed.

Some of these symbols might be added to the program of 1.1 as follows:

1. "5 T "PROGRAM 1. 2" , !
1. 1 ASK "ENTER VALUES OF X AND y" ,X, Y

1. 4 TYPE ! , "THE AI\ISWER IS" , A,!

The reader is invited to experiment with formating the output of his programs
in a clear and legible fashion.

Correcting Indirect Statements and Erasing Programs

Any indirect statement may be erased by typing ERASE followed by the statement
number, e.g., ERASE 12.34, and depressing the carriage return. A whole section
may be erased by typing ERASE and the section number, e.g., ERASE 3.0, and depressing
the carriage return.

The entire program may be erased by typing ERASE ALL and depressing the carriage
return. The command ERASE alone, will cause all variables in the internal symbol
table to be set to zero and the variable names erased. To inspect this command's
effects, type TYPE $ and return carriage.

Any statement may be changed by simply retyping and re-entering it (e.g.,
typing the statement and depressing carriage return).

If an error in typing is made, the last character typed may be erased by depressing
the RUBOUT key immediately after typing the incorrect character. N preceding
characters may be erased by depressing the rubout key N times. The entire state-
ment line may be erased by typing + before the carriage return key is depressed.

Setting Variables to Zero with the ERASE Command

The ERASE command used in a direct or indirect statement with no numbers follow­
ing it may be used to set the values of all variables to zero. It is often used
at the start of a program to insure that all of the variables which are used as
accumulators are zero. A typical use might be to begin a program with the state­
ment:

-16-

DIRECT COMPUTATION AND ELEMENTARY STORED PROGRAMS

1.~5 ERASE

The K>DIFY Command

A line may be altered with the K>DIFY command. Suppose it is desired to change
all the XIS to Y's in the following statement:

6.3 SET Z = Xt2 + 2*X*A + X/3

One types:

MODI FY 6.3

and depresses the carriage return. The computer then silently waits for the user
to type a "search character". In our example the user would type X and the com­
puter would respond by typing

SET Z = X

and stop. The user would depress the rub out key, type Y, and then depress the
CONTROL and FORM keys to cause the computer to continue typing the statement until
the next X was encountered. The user would delete this in the same way and pro­
ceed as before until all the XIS were found and deleted. At the end of the line
the computer will return the carriage. The modified statement has replaced the
original in the computer's memory, as could be verified by typing WRITE 6.3.

In order to change search characters in mid-stream the user may type CONTROL
BELL, enter the new character and the computer will search the rest of the line
for it.

If at any time before the entire line has been searched the user depresses the
carriage return key, the rest of the line will be erased.

Until the user becomes confident in his usage of the MODIFY statement, it is
recommended that he check all of his modified commands by having the computer
write them out after he has modified them. The user must also beware of inadver­
tently entering an indirect command in the confusion of thinking he is still modi­
fying another command, or, like the broom in the hands of the sorcerer's appren­
tice, the computer will appear to have a mind of its own.

Direct Use of the DO Command to Check Individual Indirect Statements

All FOCAL commands may be executed directly as well as being executed indirectly.
Because this is so, it is possible to jump into the center of an indirect program
and test its individual statements. This is accomplished with the help of the DO
command as follows: Suppose we wished to test statement 1.2 in program 1.1 above
which had already been entered into the computer, we might type the direct
command:

SET X = 4; SET Y = 3; DO 1.2; TYPE %, Z

and execute it by depressing the carriage return. The computer will type

-17-

A FOCAL PRIMER

if the statement is correct.

Entering Statements, the Asterisk and Carriage Return

We have already noted above that when the computer is ready to receive commands
it types an asterisk. The user may then type any commands he desired, but these
commands are not entered until he depresses the carriage return (hereafter signi­
fied by "C. r. ") • An indication that FOCAL is working correctly is it responds
with an asterisk to any carriage return other than that following a data entry.

Compound Commands

It will have been noted above that commands may be compounded with a semicolon
separating them as in:

ASK A,B; TYPE NBt2,!

As many separate commands as will fit in one line may be entered in this way, and
they will be executed from left to right. This feature, unusual in an algebraic
computing language, is particularly helpful in FOCAL in saving space in the com­
puter's memory.

Abbreviations

All commands may be either typed out such as ASK, SET or abbreviated with a
single letter. A complete list of abbreviations is given in Appendix 2. As an
example here, the statement ASK A,B; TYPE A/Bt2,! may be written A A,B; T A/Bt2,!
With a little practice it becomes as easy to read the abbreviations as the exten­
sive form of the commands. Again, this is a feature designed to help save memory
space.

Writing Out of Stored Programs

FOCAL will write out an entire program in statement number sequence if the
command WRITE is typed out on the teletype and the carriage return is depressed.
FOCAL will write an individual section (e.g., all statements beginning with 3) if
the command WRITE 3.~ or WRITE ll.m is given.

Punching Out Stored FOCAL Programs on Paper Tape

FOCAL programs may be punched out on paper tape for future use. This is done
by the following steps:

1) Type WRITE on the teletype; do not depress the carriage return key.
2) Turn on the paper tape punch by depressing the ON button, depress the keys

SHIFT, REPEAT, and P in that order. This will cause the printing of a
string of @ symbols which function as leader tape for the program. After
about a half a line of @'s have been printed:

3) Remove fingers from the P, REPEAT and SHIFT keys in that order.
4) Depress the carriage return key. This will cause the program to be printed

and punched simultaneously.
5) After the computer has stopped printing, generate another string of @'s

-18-

DIRECT COMPUTATION AND ELEMENTARY STORED PROGRAMS

for follower tape by the same method in steps 2 and 3 above.
6) Turn off the paper tape punch.

Entering Stored Programs from Paper Tape

The computer cannot distinguish the paper tape reader from a very fast and
regular typist. Hence programs may be entered into the computer from paper tape
by simply inserting the paper tape into the reader and turning it on. (Note that
when the reader switch is set to FREE the paper tape may be positioned by hand
by simply pulling on one end or the other.)

Caution!

In order to make sure that you do not load your program on top of another, be
sure to type ERASE ALL to get rid of anything left in the computer before you
load your program.

Some computer configurations require that the "keyboard echo" be turned off
when the tape is read in. This will cause the tape to be read in without the
program being written on the computer (and a resultant jamming of the input buffers
of the computer). To turn off the keyboard echo one usually depresses the CONTROL
and R keys simultaneously. To restore the keyboard echo after the tape has been
read in one depresses the CONTROL and C keys simultaneously.

After the tape has been read in the user should set the switch to the FREE
posi tion.

-19-

A FOCAL PRIMER

Exercise Set 2.

Pencil and Paper

1. Write a program which asks for the lengths of the sides of a right triangle,
A and B. Have it compute and print out the area, AR.

2. Write a program to ask for the weight of five objects and to compute and print
out their average weight.

3. The weight of a particular species of animal is given by the formula, W=.367 L3,
where W is the weight in grams and L is the length of the animal in centimeters.
Write a program which asks for the length of the animal and computes and prints
out its weight.

4. The kinetic energy of a moving object is 1/2 MV2 where M is the mass of the
object and V is its velocity. Write a program to compute the kinetic energy
of an object, given its mass and velocity.

5. The following sequence of commands is given the computer:
S Y = 2; S X = 3; S Z = Xt2+Y; T % 5.03, Z; S X = ZiT %,X,! c.r.
What will the computer do in response to them?

Computer

6. Load the following program into the computer:

~1.~5 C EXERCISE SET 2, QUESTION 1
~l.l~ A Xl, YI,X2,Y2,!
~1.2~ S L = FSQT((Xl-X2)t2 + (YI-Y2)t2)
~1.3~ T IDISTJlNCE",%,L,!

Use it to compute the distance between the following pairs of points: (5,7)
and (3,5); (2,3,.3) and (.8,4); (10,1) and (0,0).

7. Modify the above program to compute and print the distance L/IOO.

8. Type in and execute the programs of the pencil and paper exercise above.

9. Save one of your programs on paper tape. Erase the computer memory, verify
that it is erased and reload your program from paper tape. Try it out to see
if you have reloaded it successfully.

-20-

CHAPTER III

FLOW CHARTING AND STATEMENTS WHICH ALTER THE SEQUENCE OF COMPUTATION

Introduction

Many calculations require repetitive performance of one sequence of operations
again and again; others require alternate procedures depending upon what the value
of a particular variable may be. Still others require that operations be performed
on all members of a particular set of numbers. All of these eventualities may be
handled in FOCAL with the use of DO, IF, FOR and GOTO statements. All algebraic
languages have similar statements and one universal notation for such logical
operations is given by a flow chart of the single operations. Such flow charts
and the logical statements they represent are discussed in this chapter.

The IF Statement, Avoiding Division by Zero

Often we must divide numbers in a program with the possibility that we will
encounter a zero denominator, in which case the answer would be undefined, and
an error code would be typed, after which the computer would stop. Of course, the
computer could be programmed to plug in any old non-zero value for a zero denomi­
nator and go right on, but division by zero is viewed as such an important error
that the user must be informed immediately of it.

To avoid this we may use an IF statement to halt division by zero before it
occurs. For example:

01.05 C PROGRAM EXAMPLE 2.1
n.10 ASK X, Y,!
01.20 IF CY) 1.3,1.4,1.3
01.30 T %6.02, X/Y,!jGOTO 1.1
01. 40 T "DIVIS ION BY ZERO REQUESTED"

This program contains two new statements: the IF statement in 1.2 and the GOTO
at the end of 1.3. Their effect may be seen in Flow Diagram 1.

One reads such a diagram by simply following the arrows. Starting at the top
with GO c.r., the program asks for the values of X and Y. The IF statement then
tests the value of Y. If it is either greater or less than (but not equal to)
zero, control is passed to statement 1.3 and the value of XIV is typed out. The
GOTO 1.1 statement then returns the program to statement 1.1 and new values of X
and Yare requested.

If ever a zero value of Y is encountered after an ASK statement, control passes
to statement 1.4 which causes a warning to be typed out. After 1.4 the program
terminates for lack of a higher numbered statement.

Flow Diagram Conventions

Conventions in flow diagrams vary somewhat but are usually self-explanatory.
The IF statement is usually written in a diamond, ordinary statements in rectangles.

-21-

A FOCAL PRIMER

V<O V>O

1.4 TVPE
ERROR MESSAGE

QUIT
1.3 TYPE XIY

Flow Diagram 1.

You will meet a few more notational conventions below.

The IF Statement in FOCAL

The IF statement takes as its argument any arithmetic variable or expression.
Its usual form is:'

IF (argument) a,b,c

where the argument is a variable or expression and a,b and c are statement numbers
of statements which will be executed next if the argument is less than zero (a
next) equal to zero (b next) or greater than zero (c next). Upon transfer of­
control to either a, b, or c the sequence proceeds as usual to the next highest
statement number after a, b, or c, respectively. In general (with but one or
two exceptions in FOCAL), when control is transferred to a new statement number,
no note is taken of how the program got to that statement--it simply proceeds to
execute in normal statement number order.

-22-

FLOW CHARTING AND STATEMENTS WHICH ALTER THE SEQUENCE OF COMPUTING

Shortened forms of the IF statement are:

IF (arg.) a,b; statement I

and

IF (arg.) a; statement II

In I, the statement will be executed only if argo is greater than zero; otherwise
control will pass to a, or b, depending upon if argo is less than or equal to zero.
In II, the statement will be executed if argo is equal to or greater than zero,
and otherwise the control will pass to a.

The following program illustrates further the use of the IF statement. It sums
the positive numbers of a set of N numbers but excludes negative numbers from the
sum.

~1.~5 C PROGRAM EXAMPLE 2.2
~1.10 ASK N!; SET J = 0; SET SU = 0
~1.2~ ASK X,!; IF (X) 1.4, 1.3, 1.3
~1.3~ SET SU = SU + X
gl.4~ SET J = J+1
01.50 IF (N-J) 1.6, 1.6, 1.2
01.6g TYPE %, SU,!

The program is diagrammed in Flow diagram 2.

Comments on Program 2.2

Statement number Comment

1.05 Program label

1.1 Initialization statements. The sum and index J
must be set to zero before the program starts be-
cause they appear on the right hand side of SET
statements.

1.2 This IF statement excludes negative values of X
from the sum.

1.3 This statement adds each value of X to the sum.

-23-

A FOCAL PRIMER

Comments on Program 2.2 (continued)

Statement number Comment

1.4 The index J is advanced. J keeps track of how
many numbers have been asked for.

1.5 This IF statement determines if the computation
is finished. When N = J, N-J will equal zero and
the sum will be typed out by statement 1.6. Note
that J can never be more than N but that the logic
of the IF statement demands a statement number for
that contingency.

1.6 This statement types out the sum, SUo

The GOTO Statement

The GOTO statement has the form

GOTO n

where n is the number of a statement in the program. It unconditionally transfers
control to that statement.

-24-

FLOW CHARTING AND STATEMENTS WHICH ALTER THE SEQUENCE OF COMPUTING

ASK N
SET J=O
SET SU=O

TYPE SU

Flow Diagram 2.

-25-

A FOCAL PRIMER

Exercise Set 3.

Pencil and Paper

1. In FOCAL the function FITR eX) designates an integer equal to the integer part
of X. Thus FITR 00. n = 10. Note that FITR does not "round off". This
function may be used to detect whether or not a number, X, is divisible by
another number, N, an integral number of times or not as follows. (See
flow diagram 3.)

X IS EVENLY
DIVISIBLE
BY N

X IS NOT EVENLY
DIVISIBLE BY N.

Flow Diagram 3.

Write a FOCAL program to implement this flow diagram. Have it print out
either: X IS DIVISIBLE BY N or X IS NOT DIVISIBLE BY N

2. Write a program to count and sum a set of numbers input with an ASK statement.

-26-

FLOW CHARTING AND STATEMENTS WHICH ALTER THE SEQUENCE OF COMPUTING

Define a particular number which will indicate the termination of the set to
be summed and which, when entered in the input, will not be included in the
sum. Begin by drawing a flow diagram for the program.

3. Predict the output of the following program:

01.05 C EXERCISE SET 3 QUESTION 3
01.10 SET X = Ii SET Y = 2
01.20 IF ex-y) 1.3,1.4,1.6
01. 3a TYPE "A"
01. 40 TYPE "B"
01. 50 TYPE "C"; SET X = X+1; GOTO 1. 2
01.60 Q

(Take a guess at what the command in 1.6 means.)

Computer Exercises

4. Load the program of pencil and paper exercise 3 above to verify your pre­
diction.

5. Load and test your programs for exercises 1 and 2 above.

6. Write a program to determine if any particular four numbers X, Y, Z, and N
to be supplied as input obey the relation X+N + YtN = ZtN. Have the com­
puter answer with a simple yes or no. Please do not write your answer in
the margin of this page.

-27-

A FOCAL PRIMER

THE AVERAGING ROUTINE

ASK N
SET SU=O
SET J= 1

SET AV= SUI N
TVPE AV

NO

Flow Diagram 3.5

-28-

SET J = J+1

FLOW CHARTING AND STATEMENTS WHICH ALTER THE SEQUENCE OF COMPUTING

The FOR Statement

Often we perform certain calculations a specified number of times. For example,
a routine to average N numbers might be

~1.~5 C PROGRAM EXAMPLE 2.3, AVERAGING ROUTINE
~l.la ASK N,!; SET su =~; SET J = 1
~1.2~ ASK X,!; SET SU = SU+X
~1.3~ I (N-J) 1.4; SET J = J+l; GOTO 1.2
~1.4~ SET AV = SUMVN; T % 8.~4,AV,!

This program is diagrammed in Flow chart 3.5.

The operation wherein a set of calculations must be performed again and again
while an index advances from one limit to another (e.g., I to N) occurs so often
in computing that all algebraic languages have a compound statement for it. FOCAL
uses the FOR statement; its usual form is

FOR i = a,b; statement x,y •.•

where i is an index which is initiated at a and advanced till it exceeds b. At
each increment including i = a and i = b, and all steps in section statements x,
y, .. are executed. When i > b control passes to the next statement and the
statements x, y, are not executed. The flow diagram for a FOR statement is:

SET = a

STATEMENTS x,y ...

SET = i + 1

<0

>0

Flow Diagram 4.

-29-

A FOCAL PRIMER

We shall adopt the following notation for a FOR statement:

Flow Diagram 5.

The averaging routine of 2.3 may be written:

~1.05 C PROGRAM EXAMPLE 2.4, ILLUSTRATING FOR LOOP
~1.10 ASK N,!;S SU=0
01.20 FOR J = l,N; ASK X,!; SET su = SU+X
01.30 SET AV = SU/N; TYPE %8.04,AV,!

Note that the ASK and SET commands of 1.2 are executed for each incrementation
of J.

Non-Unitary Incrementation of FOR Statements

Another form of the FOR statement is

FOR i = a, del ,b ; statement x, y .••

The interposed del will be the increment in the statement. It may be either
integer or fractional and should be positive.* For example, the statement:

FOR J = I, .5, 3; TYPE %3.~1, J,!

will cause the numbers

1.0
1.5
2.0
2.5
3.0

to be printed out.

* FOR statements will accept negative increments but will not terminate unless their
index exceeds b.

-30-

FLOW CHARTING AND STATEMENTS WHICH ALTER THE SEQUENCE OF COMPUTING

Both the bounds and the increment a, b and del may be number variables or
algebraic expressions.

The DO Command

This command gives FOCAL true subroutine capability. It allows the normal
sequence of command execution to be interrupted and control to be transferred
to another subsection of the program before returning to the main program.

Its form is:

00 x

where x is a statement number like 1.15 or a block number like 3.0. In each
case DO x will cause either statement x, or all the statements in block x to
be executed, provided execution is not interrupted by another logical command.
The use of the DO statement may be seen from the following example.

Suppose we wish to calculate the number of different linear arrangements
(permutations) of base pairs in a nucleic acid molecule. We may do this with the
equation for the permutations

N=M!/(Bl!·B2!·B3!.B4!.B5!)

where N is the number of permutations, M is the total number of base pairs and
Bl is the number of base pairs of type 1, etc. To perform this calculation we
must obviously compute a number of factorials. (Recall that z! of a positive
integer z is the product lx2x3x .•• z.) The following program uses a DO loop and
subscripted variables to compute the permutations. Note that Bl is indicated by
using parentheses to designate the subscript.

~1.~5 C PROGRAM EXAMPLE 2.5 ILLUSTRATING DO COMMAND
~1.~6 SET PR = 1; S M = 0
01.1~ ASK K,!; FOR J = I,K; ASK B(J); S M = M+B(J)
~1.20 SET X=M; 00 6.0; SET NU = Y
~1.30 FOR J = l,K; SET X = B(J); DO 6.0; SET PR = PR*Y
01.40 TYPE NU/PR
01. 50 QUIT
06.10 SET Y = 1; IF (X) 6.4,6.3,6.2
06.20 FOR L = I,X; SET Y = Y*L
~6. 30 RETURN
06.40 TYPE "FACTORIAL OF NEG. NUMBER REQUIRED"; QUIT

Termination of a DO Statement and Passage of Control outside of a DO Statement
Range

We will define the range of a DO statement as either 1 line as in DO 3.24 or
an entire block as in DO 5.0. In any event, control will be returned to the
statement immediately following the DO statement (which, in a compound command,
may be on the same line as the DO statement, e.g., see statement 1.30 of example
2.5, above) if one of several conditions is met. These are:

-31-

A FOCAL PRIMER

A) The statement or block has been completely executed.
B) Control has been given back to the following statement due to the program

encountering a RETURN statement.
C) An IF or GOTO has transferred control to a statement outside of the range

of the DO, in which case the one single statement is executed (provided
no further IF or GOTO is encountered) and control is returned to the
statement following the DO.

Warning: This last exception often gives FOCAL programmers trouble. The
following section discusses the sort of trouble it can cause and the way to get
out of it.

Breaking Out of a FOR Loop Which Calls a DO Statement

Often a programmer may wish to leave a FOR loop before it has reached its
upper limit. To do this one may be tempted to exit via an IF statement, but
he will be foiled in this attempt by virtue of exception C) noted above if his
FOR loop has employed a DO statement. This sounds terribly complicated, because
it is, really; but complicated or not, it often occurs in actual programming
practice.

Look at the following program which attempts to find the smallest integer
number which evenly divides a supplied number, X.

1.~5 C PROGRAM 2.6
1.10 ASK X,!
1.20 FOR J = 1,1~~; DO 4.0
1.30 TYPE " l1iE SMALLEST INTEGRAL FACTOR IS ", J
1. 40 QUIT

4.10 SET Y = FITRCX/J)*J
4.20 IF CX-y) 4.3, 1.3, 4.3
4.3~ RETURN

If the number X is evenly divisible by J then Y will be equal to X, and
statement 4.2 will transfer control to statement 1.3. But because of exception
C) noted above, the program will not go on to execute statement 1.4 and quit,
but rather will return to the DO loop and continue to find and print out values
of J which evenly divide X right up to J = 100. A way to avoid this problem is
given in program 2.7

1.~5 C PROGRAM 2.7
1.10 ASK X,!
1.2~ FOR J = l,10~; DO 4.0
1. 30 QUIT

4.10 SET Y = FITR CX/J)*J
4.20 IF CX-Y) 4.3,4.25,4.3
4.25 TYPE "l1iE SMALLEST INTEGRAL FACTOR IS",J; SET J = In; RETURN
4.30 RETURN

-32-

FLOW CHARTING AND STATEMENTS WHICH ALTER THE SEQUENCE OF COMPUTING

Comments on Program 2.5

Statement Number Comment

1.06 This initializes a product variable, PR at 1.

1.1 This statement asks for M, K, and then (in a FOR loop)
K values of B, i.e., B(l), B(2) .•• B(k). Note that in
a subscripted variable the subscripts appear in paren-
theses immediately after the variable name.

1.2 To compute the numerator the argument of a subroutine
6.0 is set equal to M. Then all the statements starting
with 6 are executed in order by the DO 6.0 command.
Lastly, the numerator is set equal to Y, the output
variable of the subroutine. The reader should verify
that this routine computes Y=XI

1.3 Factorials of all B's are then taken in a FOR loop, and
the product, which is the denominator, is formed.

1.4 The result is typed.

1.5 This command halts execution and prevents statements
in 6.0 from being executed again.

6.1 This statement initializes the output variable Y
(which will be used as a product term). The IF
statement rejects negative arguments, sets the output,
Y = 1 for zero arguments and passes control to ordinary
factorial computation for positive values of X.

6.2 The value of Xl is computed in a FOR loop.

6.3 This statement causes return to the main program.

6.4 This statement is reached from a negative argument to
the factorial routine in 6.1 and causes a warning to
be printed and execution to cease.

Program 2.7 avoids the trouble encountered by 2.6 by actually changing the
value of the index of the FOR loop, making it exceed its upper bound, and thus
forcing the program to leave the FOR loop before it makes the next iteration.

-33-

A FOCAL PRIMER

This is a perfectly valid way to leave the FOR loop, and in some cases it may be
the only way to get out of it at the time desired.

Miscellaneous Statements: QUIT, RETURN, CONTINUE

QUIT halts program execution whenever it is encountered. It is often used to
halt the program when an error is encountered, or to prevent execution of a sub­
routine at the end of a program. It is not necessary to use a QUIT statement to
terminate a program; it will always stop when it gets to the last statement.

RETURN is used to halt the execution of a block in a DO statement. It returns
control to the statement following the DO which initiated the block.

CONTINUE is indistinguishable from a Comment statement (it has the same
abbreviation). It merely provides a reference point for a GOTO or an IF. Its
use may prevent extensive changes in a program when a statement which was formerly
the direction of an IF or GOTO is eliminated. When a CONTINUE statement is
encountered, control passes to the statement with the next highest statement
number.

-34-

FLOW CHARTING AND STATEMENTS WHICH ALTER THE SEQUENCE OF COMPUTING

Exercise Set 4.

Pencil and Paper

1. The following routine depicted in Flow Diagram 6 inspects a list of N numbers
and sets an output variable, Y, equal to one of them. If N = 5 and the list
of x's were -1,3,7,2,1; what w.ould Y be after the program had executed?

SET V = 0
ASK N

TYPE V

YES

Flow Diagram 6.

2. Draw a flow diagram for the following program:

01.04 C EXERCISE SET 4 QUESTION 2
01.10 ASK N,!; F J=l,N; ASK X(J),!

-35-

A FOCAL PRIMER

01.15 S SU=@; S S2=@
@1.20 F J = l~N; D 4.@
01.25 S AV=SU/N
@1.3@ TYPE SU~S2~ AV~!;Q

04.1@ S SU=SU+X(J); SET S2 = S2+X(J) t 2

3. An often used algorithm for ordering a list of numbers from smallest to
largest is to start with the first number in the unordered list and compare
it with every other number in the list. If one is found which is smaller
than the first, the two are exchanged, and the smaller number becomes the
"test" number with which all others are compared. Every time a number
smaller than the "test" number is found, it becomes the test number and the
former test number is put in its place. After the entire list is scanned
in this fashion, the most recent number is placed first in the list, the
second number in the list becomes the test number and the remaining numbers
in the list (excluding the first number) are searched again. This entire
procedure is repeated for all the numbers in the list, and when it is
finished the list is ordered. A FOCAL program for the entire sort routine is:

~1.~4 C EXERCISE SET 4 QUESTION 5
01.15 ASK N~!; FOR J = l~N; ASK X(J)~!
~1.2S FOR J = 1/N-Ij FOR K=J,Ni 0 3.~
01.3~ FOR J = l~N; TYPE X(J)~!

03.1@ IF (X(J)-X(K))3.5~3.2~3.2
03.2~ SET Y = X(J)
~3.30 SET X(J) = X(K)
03.40 SET X(K) = Y
03. 5~ RETURN

Draw a flow diagram for this program.

Computer

4. Write a program for the pencil and paper exercise 1. above and run it on the
computer.

s. Type the program in exercise 3 into the computer and test it for a string of
N =s numbers. How does the execution time vary with N? Use a watch to time
it.

6. Everyone knows that the positions of a set of on-off switches may be coded
into a binary number. For example, the binary number corresponding to the
starting address of FOCAL is 000010000000 because the Sth switch on the
switch register is up. It is also obvious that three binary numbers may be
used to code any number from 0 to 7. Thus, 111 is 7, 010 is 2 and 011 is
3. What may be new to the reader is the trick of dividing a binary number
up into groups of three to translate it to an octal number. (An octal number
uses the base 8 and has only the digits 0,1,2,3,4,S,6,7. Thus the octal
number 12 is 1-8 plus 2 or 10 in decimal. Octal numbers are often written

-36-

FLOW CHARTING AND STATEMENTS WHICH ALTER THE SEQUENCE OF COMPUTING

with a subscript. Thus 238 is 2·8+3 or 1910.) To return to the conversion
of binary to octal: the binary number 000010000 may be written in groups of
three's as

000 010 000 000 and translates into octal as

o 2 o o or 2008.

rhus the binary number 101111110010 becomes

101 111 110 010 5 7 6 2 or 57628.

Octal numbers are often used in computing. You are asked to write a
program to convert octal into decimal. Given an octal number X, your pro­
gram shoUld return a decimal number, Y. This problem is not a trivial one
and will probably require some thought. Your program need not handle numbers
larger than 7777 in octal.

-37-

A FOCAL PRIMER

-38-

CHAPTER IV

SUBSCRIPTED ARRAYS

Arrays

It has already been mentioned above that FOCAL permits variables to be sub­
scripted, with the subscript or subscript expression following the variable in
parentheses. Thus:

XCI)

XCJ+2/N)

VA(R+RM· C)

are valid subs cripted variable names. Note that in FOCAL no "dimensioning"
statement is required; FOCAL recognizes that a variable is subscripted when it
sees it and saves enough space in memory for every subscripted variable mentioned.

In FOCAL, zero is a valid subscript, and it is conventional to start arrays
with zero as the beginning subscript for reasons which will soon become apparent.

Multidimensional Arrays

FOCAL allows only a one dimensional subscript, but two or more dimensional
arrays are easily folded into a one dimensional array as follows:

o
a::

.. 0 0

~ 1 3
0::

1 2

1 2

4 5

Column,C

One dimensional
subscript) N

We simply number the elements of the array starting with the upper left hand corner
and proceed left to right varying the column first and then the row.

Let us call the total number of rows RM and the total number of columns CM. In

-39-

A FOCAL PRIMER

our example RM = 2 and CM = 3. The one dimensional subscript, N, is given by the
following function of R, the row index, C, the column index, and RM, the total
number of rows. One may verify by inspection that:

N = R·CM+C

We will use this formula in the following program in order to show how we may
store a two by three matrix as a one dimensional array (often called a vector).
The program will accept the matrix and print out the values of the matrix in
linear order together with their subscripts.

01.10 C PROGRAM 4.1
01.15 A ?RM,CM?,!
01.16 T %2, "NOW ENTER THE ARRAY OF ", RM," ROWS ftND", CM,"COLUM\lS",!
01.20 F R=0, RM-lj T !j F C=0,CM-lj A A(R*CM+C)
01.25 T ! !
01.30 S M=CM*RM-l
01.35 T "SUBSCRIPT VALUE",!
01.40 F J=0,Mj T %5,J,%11.04, A(J),!
*GO
RM,2 CM3
NOW ENTER THE ARRAY OF

4 2 7
3 5 8

SUBSCRIPT
o
1
2
3
4
5

*

Comments on Program 4.1

VALUE
4.0000
2.00~!1
7.~000
3.~009
5.0000
8.0000

Statement Number

1.15

1.16

1. 20

2 ROWS AND 3 COLUMNS

(User entered this.)

(Computer supplied this.)

Comment

This statement asks for the number of
rows and columns in the matrix.

This statement gives an instruction
to the user.

This statement uses two nested FOR com-
mands to ask for the elements in the mat-
rix. Note that the ! causes a carriage
return after each row has been entered.

-40-

SUBSCRIPTED ARRAYS

Comments on Program 4.1 (continued):

Statement Number Comment

1.30 This statement computes M the highest
subscript of a matrix element.

1.40 This statement prints the values of the
matrix together with their subscripts.

One very practical use for such a program as that of 4.1 concerns the handling
of data which is to be processed by another program and which must be entered into
the computer absolutely correctly. It is simply true that if the ordinary mortal
is asked to type more than ten numbers into the computer with no errors, he or
she is in for a very bad time. Consequently it is often practical to employ a
matrix "editor", a program which asks for the numbers, permits the user to make
corrections, and stores them for later printing or punching on paper tape. Such
a program which has found use in our physiological research laboratory is the
following:

91.~5 C PROGRAM 4.2
~1.10 C MATRIX EDITOR
91.20 A ?CM,RM?,!
91.30 F R=0, RM-1; T !; F C=9,CM-1; A X(R*CM+C)
91.40 Q

~2.10 D 5.(,J
02.20 F R=0,RM-1; T !;F C=~,CM-1;T %8.04,X(R*CM+C)
02.30 D 5.0;Q

05. 10 T !," "
*

Just as in program 4.1, this program asks the user to enter the matrix. But
the values of the matrix are not printed out until the user gives the additional
command, GOTO 2.1.

The user need not give this command until he has made sure that all the numbers
have been entered correctly, or he may have the computer print out the list as
many times as he wishes by giving the command repeatedly.

Errors in the matrix may be corrected by giving direct commands to set erroneous
values to their correct ones. In the following output from the program an error
was made in entering the third element in the first row (subscript=2). That
element is corrected and the matrix is printed out correctly. If desired, a paper
tape could be punched (with leading spaces) at the same time by simply turning on
the tape punch on the teletype while giving the command GOTO 2.1.

-41-

A FOCAL PRIMER

C OUTPUT FROM 4.2
*GO
CM ... 3 RM2

124
4 5 6 * 5 X(2)=3
*G 2.1

User types this.

Computer types this.

*

Note that the program stopped after the matrix was read in at statement 1.4 (indi­
cated by the asterisk after the 6), and that the user corrected the third element
of the first row of the matrix (X(2)) to be 3 rather than 4 by resetting the
value with a SET statement. The computer was then commanded to print out the
matrix with the command G 2.1.

-42-

SUBSCRIPTED ARRAYS

Exercise Set 5.

Paper and Pencil

1. Extend the notation for a two dimensional array to encompass three dimensions.
Call the elements of the third dimension, "planes". Let the number of planes
be PM and write an algorithm for the one dimensional subscript of a matrix
of RM rows, CM columns and PM planes.

2. Write a program to read in a two dimensional array and to compute the sum of
all the elements in every row and every column. Have the computer program
check itself by adding up the sum of all the column totals and comparing it
with the sum of all the row totals. Both numbers should be identical with
the sum of all the elements in the array. Have the computer write TILT if
it is not.

3. Write a program which reads in a m by n matrix and finds the row and column
number of the maximum element in the matrix.

4. A three dimensional array has three rows, three columns and three planes.
This might be visualized as a cube with the elements 0 and 26 at opposite
corners; what other elements are also at opposite corners of the cube?

Computer

5. The following program performs the operation of matrix multiplication.
(For a definition of matrix multiplication, see any elementary finite
mathematics book, e.g. page 244, Kemeny, Snell and Thompson's Introduction
to Finite Mathematics, 2nd edition, Prentice Hall.)

~1.05 C PROGRAM 4.3 MATRIX MULTIPLICATION
01.1~ A ?RM, CM, KM?,!
~1.20 F R=0,RM-1; T !; F C=~,CM-1; A A(R*CM+C)
~1.25 T !; F R=~,CM-1;T !;F C=0,KM-1;A B(R*KM+C)
01.30 D 4.0; F R=0,RM-1;T !;F C=0,KM-1;T %8.04,P(R*KM+C)

~4.10 F R=~,RM-1; F C=~,KM-1; D 6.0

06.10 5 T=~; F L=~,CM-1;S T=T+A(R*CM+L)*B(L*KM+C)
06.2~ 5 P(R*KM+C)=T
*

The program proports to multiply a matrix of RM rows and CM columns by one of
CM rows and KM columns. Check the program against the definition of matrix
multiplication to see if, in theory, it should work. Then enter the program
into the computer and try it for several examples of matrix multiplication
given in a textbook. Determine in this fashion if the program performs correctly.

-43-

A FOCAL PRIMER

6. Execute and debug the programs of 2 and 3 above.

7. Write a bookkeeping program which accepts debits and credits from anyone of
20 accounts (numbered from 1 to 20) and which supplies debit and credit totals
for each account on demand. Each item will be entered as input by first
giving the account number, the letters DR or CR and the amount. The program
will supply account totals when account number -1 is entered. (Note: when
one responds to an ask statement by giving letters instead of numbers, these
letters are assigned numerical values by FOCAL. To find out what number is
assigned to a letter or group of letters use the following statement:

1.1 ASK X; TYPE %8,X,!

When the program asks for X, respond with a letter or letters and see what
value it types out. This treatment of letters in the input is an idiosyn­
cracy of FOCAL.)

-44-

CHAPTER V

PROGRAMMING HINTS FOR INTERACTIVE COMPUTING ON

MINI COMPUTERS: TESTING AND DE-BUGGING

Documentation

A central problem in all computing is adequate documentation of the program.
Perhaps the best way to see the problem is to imagine that you have been given a
program to perform a computation which you very much want to do. The program has
been written by someone else and you are trying to understand how to use it. What
questions would you have about the program? Some of them might be:

1. Does the program really work? Has the author tested it, and if so,
how?

2. How do I enter the input data? Do I know what quantities the
input and output variables stand for?

3. By what algorithm(s) does the program work? Is th~ accuracy
sufficient for this task?

4. If I desire to modify the program for my own needs, can I figure
out how the program works in order to do this?

5. Are there any options or restrictions regarding the input data that
I should know before I try to use the program?

All of these questions and many like them should be answered by the documen­
tation of the program. By documentation is meant descriptive comments embedded
in the program and any supplementary descriptive material about the program to
which the normal user would have access.

By now you may be saying, "Surely this does not concern me, as I only write
programs for my private use." But the sad facts are that it does concern you,
because, like all other mortals, if you write a program and do not look at it
for a few months, you may not even recognize it as your own, let alone understand
what it was all about. Hence, even if you are only writing notes to yourself,
documentation is an important factor in your efficiency as a computer programmer.

Using Comments in Mini Computer Programs

One problem unique to programming on a mini computer is the limitation of
memory space. This severely restricts the number of comments that can be added
to a program and stored with it. One way to get around this problem is to put
all of tile comments concerning the program's documentation in one section on con­
secutive lines. Then, if user space is at a premium, these comments, or the entire
section can be erased before the program is run, thus freeing up needed space for
program variables.

-45-

A FOCAL PRIMER

It should be noted that in many situations, notably batch processed languages,
comment cards are essentially ignored by the computer and hence can be used very
liberally throughout a program. In general, documentation of this sort which is
a permanent part of the program is to be much preferred over any scheme of ancillary
papers, e.g., keeping descriptions of programs in notebooks, etc.

Essential Information

To the author who has just written a program the program itself is its own
documentation. But as time goes by, the recording of some information becomes
more and more important. In complicated mathematical work, perhaps the most
important item is the algorithm or method the computer uses to solve a problem.
This information might well be noted in a comment of the sort

1.@5 C NEWTON'S METHOD P. 35, CONTE, ELEM. NUM. ANALYSIS. MCGRAW HILL '65

If a program has been revised several times and is one of many programs used on a
project, then a Name and a Date (to indicate which version it is) become essential
descriptive data-:-5uch a cOiiiiiie"nt might be

1.@4 C NON LINEAR EQUATION SOLVER, 4 APRIL 1972

If a number of programs are used to process data in a project, it is often im­
portant to have printed in the program output which program's output it is. Thus
the output section of a program might begin with the statement:

5.1@ T "NLQS 4 APR '72",'

Other Information

If one were making a library of programs for the use of other persons a great
deal more information about each program would be useful. We have already men­
tioned:

Pro gram name
Date (to identify version)
Al go ri thm source

In addition one may wish to supply the following information:

Variable definitions, i.e. what they stand for
Input data required
Output data printed
Restrictions on input data
Options available to user
Program logic, and what major sections of program do
Applications, i.e., what the program is good for.

Such information about programs may be conveniently filed and made accessible to
users, preferably in a form that they can take with them to the teletype console
and use along with the actual program.

-46-

PROGRAMMING HINTS

Debugging Programs

Errors in programs are called "bugs" and getting rid of them is called "de­
bugging". It is rare that a programmer wri tes more than a ten line program and
finds that it works the first time. Usually the errors in a program are obvious
"typos" which, in interactive computing can be corrected at once. Sometimes,
however, the problem lies in faulty logic on the part of the programmer, and con­
siderable effort may be required to find the error.

Invisible Errors

Some errors are "invisible". The programmer can be looking right at them and
still not see them. A typical "invisible" error for a beginning programmer is
the absence of the multiplication sign, e.g.

1.05 SET KE= .5MVt2

which should be

Because the programmer has always omitted multiplication signs in ordinary mathe­
matics, it is hard to learn to put them in programs, and hard also to find the
error. Perhaps the fastest way to find invisible errors is to have someone else
look at the program. This will often relieve an incipient temper tantrum born out
of sheer frustration. The beginner may take heart that almost all "invisible
errors" eventually become very visible to the experienced programmer.

Errors in Logic and the Method of Inserted TYPE Statements

The more powerful a command is, the more potentiality it holds for error.
Thus the FOR statement and the IF statement are often trouble makers in this
regard, and last but not least, subscripts (which never seem to have the values
they ought to have) often lead one to difficulty. Most of these problems can be
solved by the following method:

1. Isolate the trouble spot by inserting TYPE statements to see how far the
program has gotten. For example, if your program contains two statements,
2.30 and 2.40 and if you wish to see if it has gotten beyond 2.30, you
need only insert the statement 2.35 TYPE "HERE",! (or any other message
you desire) and, if the computer prints it out, the program must have
gotten as far as 2.30. Since FOCAL usually identifies the statement which
is causing it trouble, you will not have to do this very often. Sometimes,
however, the FOCAL error code refers to a statement which called another
section of the program with a DO statement. In this case, while the
offending statement may be contained in the section called by the DO, the
error code may refer you to the calling statement. In this event, this
isolation technique may be valuable.

2. If an error occurs in a long algebraic expression, you may wish to isolate
components of that expression, assign them variable names and then print
out the values of these intermediate variables with a TYPE statement. Once

-47-

A FOCAL PRIMER

you find the trouble you can rewrite your original expression and get rid
of your debugging "scaffolding". Be particularly suspicious of the values
of subscripts as well as the values of the arguments of IF statements.

3. If a particular section of your program is producing erroneous results,
but you can't see why, try breaking that section into smaller subsections
and test each one individually with data which you supply with direct commands.
Once you are convinced the parts are working, try all the sections together,
again with simplified input data which you know how the program should handle.
After this works, then go back to the original problem and try it again.

4. If your program is still giving you trouble despite these techniques, then
put it aside for a while and do something else. Come back to it later when
you are fresh.

5. When all else fails, seek human help. Try to find someone who is paid for
such services, like a teacher or a consultant, rather than a harried fellow
student.

An Additional Debugging Aid

In FOCAL the statement

TYPE $

will cause the printing out of all the internally stored variables in a FOCAL pro­
gram. The statement must appear on a line by itself but it may appear in an in­
direct statement. For example, the following program:

01.10 AX"Y,!
01.20 5 Z = X*Yt3
U.30 T Z"
01. 40 T $

when executed will yield this output:

*

G
:2 :3
= 0.54000fiJ+02
X@(00)= 0.200000E+01
Y@C(0)= 0.300000E+01
Z@(00)= 0.S40000E+02
*

Note that FOCAL invents a second symbol for a one letter variable.

The TYPE $ statement may be used as many times as is necessary in a program to
investigate the state of all stored variables.

-48-

PROGRAMMING HINTS

Testing Programs

Simply because a program produces plausible output one should not infer that it
produces correct output. Every program should be tested in some fashion before
it is accepted as correct. In statistical programs, for example, it is often con­
venient to try the program out on sample data supplied from the statistics book
from whence the algorithm came.

In complicated programs it is often convenient to test the parts of the program
separately, supplying input data to the parts with direct commands and extracting
their output in the same way.

Often it is practical to test a program on simple data for which we know the
answer and to infer, if permissible, that if the program can handle such simple
problems correctly, it can also do the more complex ones. For example, if a
matrix multiplication program can multiply two small matrices of different numbers
of rows and columns, it could probably handle a much larger job as well (provided
of course that it didn't run out of variable space).

Hints for Programmers

It is obviously easier to document and debug some programs than others. These
facts suggest certain guidelines which, if followed, will make the programmer's
job easier. I have gathered these together in the following list of "hints" which
I hope will make your j.ob easier.

1. In any interactive language, leave space between lines so that additional
statements can be inserted. In FOCAL it is good practice only to use the
first decimal place, i.e. 3.1, 3.2, for line numbers in the initial writing.
This will allow the easy insertion of additional material or debugging aids.

2. Leave the first section (1.0) of a FOCAL program blank, or use it only for
documentation. This will permit the easy addition of an "outer" program
which may call your original program several times or use it in some other
way you had not originally envisioned.

3. Break the separate tasks of your program into separate units and assign
a separate section number to each unit. For example, it may be necessary
to compute factorials in a program. Use a separate section for this portion
of the program. If you do, you will have a factorial subroutine which can
be used in other programs, as well as providing yourself with a section of
the program which is easy to debug.

4. Use plausible names for variables. For example, I find it easy to remember
that SU stands for sum, SD for standard deviation, etc. It is easier to
remember these names than A,B,C etc. You may also wish to get into the
habit of using the FORTRAN convention to distinguish integer variables
from non-integer ones. FORTRAN reserves the initial variable letters I-N
for integer variables. I have found this a useful way of reminding myself
that a variable is supposed to have integer values. (And it saves me
trouble when I write FORTRAN programs.)

-49-

A FOCAL PRIMER

5. Avoid long algebraic expressions. I find these hard to debug, and hence I
habitually write several statements in place of a long single one. For
example, rather than

I tend to write:

3.1 SET X = -B + FSQT(Bt2-4*A*C)
3.2 SET X = X/(2*A)
3.3 SET X = X + CF*FLOG(Yt3)

Of course, it must be admitted that this is wasteful of machine time and
space, but since it saves ~ time, I favor this simple, step by step
method. If needs be, once you have the program de-bugged you can recom­
press these statements into their tighter form.

6. Avoid tricky logic, even if it works. It is obviously possible to write a
clever program which dazzles the user and confounds the persons who desire
to find out how it works. A few months after you write the program you
will find that you now belong to that latter group--so who were you trying
to impress?

7. Don't waste too much time on formatting output. Output should be clearly
labled, but it needn't look like it was set by a printer. Format your
output as much as comes naturally to you--your ability in this area will
naturally increase, without your engaging in great typographical endeavors.

8. Avoid the necessity of reinvention of your programs; document them as you
write them.

Building a Library of Programs

Many routines, if written in a sufficiently general form and well documented
will be useful for years to come. These are easy to save on paper tape which may
be mounted, together with a print out of the program on the same page in a small
evelope. A notebook of such routines is a valuable tool for any scientist.

It is good practice to acknowledge authorship of routines that you use in
your published work if you did not write them yourself.

-50-

PROGRAMMING HINTS

Exercise Set 6.

Pencil and Paper

1. Document the matrix multiplier of Exercise Set 4. Add comment statements to
the program itself and supply a separate "Program Des cription" with sections
on all the "Other Information" suggested in the text.

2. Document the bookkeeping program you wrote in Exercise 7 of Exercise Set 5
above.

Computer

1. Obtain a documented FOCAL program written by anyone but yourself. Run the
program and convince yourself you can use it as it was intended. Write a
critique of the program's documentation, distributing praise or blame as
warranted, along with your constructive suggestions for its improvement.

-51-

A FOCAL PRIMER

-52-

CHAPTER VI

BASIC FOR USERS OF FOCAL

While FOCAL is a powerful and elegant language, and the only interactive alge­
braic computing language which will run on a 4000 12 bit word machine, it is none­
theless not the most widely used interactive computing language in the country.
That language is BASIC which was written at Dartmouth College by John Kemeny,
Thomas Kurtz and a host of undergraduate students. Since the writing of BASIC,
it has become a popular interactive language which is now implemented on many
machines. Because BASIC is very similar to FOCAL, and because the user is likely
to encounter it in his computing career, a chapter on BASIC is included here.

Since it is assumed that the reader is already familiar with FOCAL we shall
consider the essential features of BASIC in a rather rapid fire sequence.

Variable Names

Variable names in BASIC are similar to those in FOCAL with the exception that
the second character of a BASIC variable name, if there is one, must be a number.
Thus SU is a legal variable name in FOCAL and illegal in BASIC.

Statement Numbers

Unlike FOCAL, BASIC has no decimal points in its statement numbers, nor does
it have its statement numbers in sectional blocks like 7.0. All statements in
BASIC are numbered in integers between 0 and 9999.

Order of Execution

BASIC executes statements in statement number order unless the sequence is
altered by logical statements.

Order of Statement Entry

Like FOCAL, statements in BASIC may be entered in any order desired; they will
be executed in statement number order.

Algebraic Expressions

The symbols used in BASIC algebraic expressions are identical to those in FOCAL,
e.g., +, -, *, /, t.

Assignment Statement

SET in FOCAL becomes LET in BASIC, e.g., LET X = Yt2.

Abbreviations

The only abbreviation allowed in all versions of BASIC is REM for REMARK which

-53-

A FOCAL PRIMER

is equivalent to C for COMMENT. Some versions of BASIC accept the first three
letters of any command as its abbreviation.

COmpound Statements

There are no compound statements in BASIC.

GOTO

GOTO n where n is a statement number has the same meaning in BASIC as it does
in FOCAL.

Data Input

ASK in FOCAL becomes INPUT in BASIC, e.g., 20 INPUT A,B. BASIC responds by
typing a ? on the teletype signalling that it is waiting for data. This corres­
ponds to FOCAL's colon.

INPUT is not the only statement which allows one to enter data in BASIC.
Another way is to store input in a DATA statement and read it with a READ state­
ment. For example, the BASIC program

116 READ A,B
15 PRINT A*B
2~ GOTO l~
35 DATA 1,2.5,3,4
4~ DATA 2,2
5~ END

will assign the values 1 to A and 2.5 to B the first time statement 10 is en­
countered. The next time it will use the values 3 and 4, and the next time 2 and
2, after which it will stop for lack of data. In the above example the output
would be:

RUN
2.5
12
4

ERROR 47 IN l~ (out of data)

The READ and DATA statements obviously always go together and allow BASIC to
serve as a batch processed as well as an interactive language.

IF Statement
'J

The IF statement in BASIC, as in FOCAL is a logical branch point. Unlike FOCAL,
its argument is not enclosed in parentheses and is a logical expression rather
than a number. For example, the BASIC statements

-54-

BASIC FOR USERS OF FOCAL

BASIC

75 IF X<Y THEN 77
76 PRINT X
77 RETURN

are like the FOCAL
statements

The format of an IF statement in BASIC is always:

IF e THEN n

FOCAL

7.5 IF (X-Y)7.7; TYPE X,!
7.7 R

where e is a logical expression and n is a statement number. The logical symbols
in BASIC are: <, <=, =, >, >=, <>.

Iteration

BASIC like FOCAL has an iterative FOR statement. Its form is

19 FOR I = 1 TO 5
11 REMARK ALL STATEMENTS BETWEEN 10 ftND THE "NEXT I" WI LL BE EXECUTED
12 REMARK EACH ITERATION
13 NEXT I

The logic of the BASIC FOR statements in some versions is slightly different than
that of the FOCAL FOR. BASIC may first test to see if the upper bound has beeIJ
exceeded and then, only if it has not, proceed to execute the intervening state­
ments and increment the index. (Compare this with the FOCAL logic given on page
29.) Unfortunately, this is not standard practice in all BASICs.

BASIC, like FOCAL, permits loops within loops. For example, the BASIC program

l@ FOR I = 1 TO 2
15 FOR J = 1 TO 3
20 LET K = (I*J)t2
25 PRINT K
30 NEXT J
35 NEXT I
4~ END

will cause the following output:

RUN
1
4
9
4
16
36

BASIC permits non-integer incrementation, e.g.,

FOR J = A TO B STEP C

-55-

A FOCAL PRIMER

in BASIC is the same as

FOR J=A,C,B

in FOCAL.

The TAB Function

The TAB function is a special function which may be used in a PRINT statement
to specify in what column printing is to begin. Thus:

l~ PRINT TAB(5) K

will cause the machine to skip five spaces before printing the value of K. The
argument of a TAB function may be an algebraic expression, thus permitting the
easy wri ting of a "printer-plotter" program.

Subroutines

Like FOCAL, BASIC has a subroutine capability. Instead of FOCAL's Do n, BASIC
has the command GOSUB n where n in BASIC is a statement number (never a section
number as in FOCAL because there are no sections in BASIC). GOSUB n will transfer
control to statement n and the program will proceed in statement number order until
the command RETURN is encountered, at which point it will return to the next state­
ment following the GOSUB statement which originally directed it to the subroutine.
The equivalence between FOCAL and BASIC in this respect is best seen by writing
the same program, first in FOCAL and then in BASIC, together with their outputs.

~1.05 C FOCAL FACTORIAL PROGRAM
01.20 F J = 1,5; D 2.~
01. 3~ Q

02.10 5 5=1; F K = 1,J; 5 S=S*K
02.20 T %6, J,S,!
*GO

1 1
2 2
3 6
4 24
5 120

*

5 REM BASIC
6 REM FACTORIAL PROGRAM

114 FOR J = 1 TO 5
214 GOSUB 614
314 NEXT J
40 STOP
614 LET 5 = 1
65 FOR K = 1 TO J
70 LET S = S*K
75 NEXT K

-56-

BASIC FOR USERS OF FOCAL

8~ PRINT J.,S
85 RETURN
9~ END

READY

RUN
1
2
3
4
5

READY

Text Output

1
2
6
24
12~

As in FOCAL, a PRINT statement may contain text. For example the program

10 PRINT " ___ "
20 LET Y = l~
3~ PRINT "THE PNSWER IS"., Y
4~ END

will cause the output

RUN

THE PNSWER IS 1~

READY

BASIC also provides for negative incrementation. FOR J = 8 TO 5 STEP -1 will
cause J to assume the values: 8,7,6,5 in that order. Naturally, if the bounds
are impossible the loop will be ignored and (unlike FOCAL, which always executes
every loop at least once) the statements in the loop will not be executed at all.

Output

The output statement in BASIC is PRINT instead of FOCAL's TYPE. Every time
a PRINT statement is encountered BASIC will start on a new line unless this is
suppressed with a comma or a semicolon. For example,

l~ FOR J = 1 TO 3
20 PRINT J
3~ NEXT J
4~ END

will cause the output

-57-

A FOCAL PRIMER

RUN
1
2
3

while the same sequence with a comma after J in statement 20 will cause the output

1 2 3

A semicolon has the same effect, but it causes the numbers to be printed closer
together on the page. There is no other formating of numbers in BASIC.

Formating Symbols

The comma and the semicolon are the only formating symbols in BASIC (with the
exception of the TAB function, see above). There is no symbol equivalent to %, #,
or!. In order to skip a line in BASIC one must insert a PRINT statement followed
by no argument, e.g.,

35 PRINT

will cause a line-feed when encountered in the program.

Functions

BASIC like FOCAL has a set of internally defined functions. These together
with their FOCAL equivalents are:

BASIC

SIN(X)
COS (X)
TAN (X)
ATAN(X)
EXP(X)
LOG(X)
ABS(X)
SQR(X)
INT(X)
SGN(X)

FOCAL

FSIN(X)
FCOS(X)
not in FOCAL
FATN(X)
FEXP(X)
FLOG(X)
FABS(X)
FSQR(X)
FITR(X)
FSGN(X)

In addition, the user in BASIC may define functions in FOCAL as follows, e.g.,

19 DEF FNG(X) = LOG(X)/LOG(l~)
20 PRINT FNG(lItD
30 END

will cause the value .30103 to be printed out. The new function FNG may be
used in any algebraic expression with any algebraic expression for its argument.
FNG is the loglO of its argument.

-58-

BASIC FOR USERS OF FOCAL

All user defined function names must begin with FN and end with a letter of
the alphabet. Thus there may be a maximum of 26 user defined functions beginning
wi th FNA and ending wi th FNZ.

Subscripted Variables

BASIC, like FOCAL, accepts subscripted variables. Unlike FOCAL:

1. All subscripted variables must be designated by a single letter, e.g.,
T(l) or A(5).

2. If there are more than 20 members in an array of a single subscripted
variable the maximum size of the array must be mentioned in a dimension
statement whose format is:

DIM ACn), BCm)

where A and B are variables and m and n are numbers giving the maximum
size of the list. For example

05 DIM ZCHHO

saves memory space for 100 values in the array Z.

3. Two-dimensional subscripts may be used, e.g., T(I,J). If the array is
greater than 10 x 10 these, too, must be dimensioned, e.g.,

30 DIM T06,18)

Error Diagnostics

Some versions of BASIC have very explicit error diagnostics like "ILLEGAL
INSTRUCTION IN 20". Others employ error codes like FOCAL. (See Appendix 5.)

Spaces

BASIC is very forgiving about spaces. It completely ignores their presence or
absence, except, of course, when they appear as literal text between quotation
marks.

STOP and END Statements

STOP in BASIC plays the same role as QUIT in FOCAL. It causes execution
of the program to cease. But there is another statement in BASIC which must
end every BASIC program. That is the END statement. This is part and parcel
of BASIC being also a batch processed language, in which the compiler must be
informed of the last statement in the program.

Corrections

In order to correct a line in BASIC one may simply retype it. To delete a

-59-

A FOCAL PRIMER

line in BASIC one simply types the number of the line with nothing following it.

Running BASIC Programs

The command in BASIC corresponding to GO in FOCAL is RUN, and it is used in the
same way.

Listing BASIC Programs

The command corresponding to WRITE in BASIC is LIST. Giving the command LIST
will cause a copy of the program to be printed out. Some systems permit one to
specify which lines should be listed by adding line numbers after the LIST command.

Di re ct Commands

Some BASICs permit direct commands without line numbers, just as does FOCAL.
However, not all BASICs have this feature.

Additional Features of Some Versions of BASIC

BASIC is an interactive language designed to run on very large computers;
hence it can afford many luxuries which FOCAL cannot. In addition, BASICs are
being written by many manufacturers, and hence BASIC, much like FORTRAN, is a
rapidly evolving language. Some of these powerful features of large BASICs are
discussed in this section.

Matrix Operations

Some BASICs have a number of matrix operations which FOCAL does not. These
are:

1. MAT READ e.g.

2~ MAT READ A(5,6)

Here, A is a matrix of dimensions 5 by 6. If A had appeared earlier in a
dimensioning statement one could simply have written:

2(;1 MAT READ A

The values of A must be given in a data statement.

2. Summation of matrices, e.g.,

3~ MAT X = A + B

where A and B are previously defined. The new sum matrix, X, will auto-

-60-

BASIC FOR USERS OF FOCAL

matically be dimensioned by the operation. The expression

MAT A = A + B

is legal.

3. The product of a matrix by a scalar is given by the command

where C and A are matrices and k is any algebraic expression (which must
be enclosed in parentheses).

4. The product of two matrices: MAT C = A*B
Note that MAT A=A*B is an illegal statement.

5. Copying a matrix: MAT C = A

6. The transpose of a matrix: MAT C = TRN (A)

7. The inverse of a matrix: MAT C = INV(A)

8. In addition to these commands three special matrices are defined:

ZER matrix of all zeros

CON matrix of all ones

IDN identity matrix

These allow the setting up of matrices without the typing in of numbers, e.g.,

2~ MAT X = ZER(2,2)
3~ MAT Y = CON(3,3)
40 MAT Z = IDN(3,3)

String Variables and String Commands

Some BASICs allow the user to define string variables whose values are simply
strings, or sequences, of symbols. For example

LET A$ "MARY"

assigns the string "MARY" to the variable A$. All string variables begin with a
letter and have as a second symbol a dollar sign. The value of a string variable
may be printed out in a regular PRINT statement. For example, the program

10 LET A$ "MARY"
20 LET 5 =2r6
30 PRINT A$ "'5 SALARY IS"', 5 "DOLLARS PER WEEK."
40 END

when run would cause the sentence,

-61-

A FOCAL PRIMER

MARY'S SALARY IS 20 DOLLARS PER WEEK.

to be printed out. (Poor Mary!)

The value of one string variable may be transferred to another with a LET
statement, e.g.

LET A$=B$

and several interesting functions are defined which allow the manipulation of
strings. These are:

LENGTH (a) where a is a string variable name. Its value is the length in
characters of the string a.

INDEX (a,b) where a and b are strings or string variables. INDEX determines
if string b is included in string a. If it is, it assumes a value equal to
the position in string a where the sequence of string b starts. E.g.,
INDEX ("HOWLAND" ,"LAND") would have the value 4.

SUBSTR(a,b) or SUBSTR(a,b, c) where a is a string or string variable and b and
c are numbers or algebraic expressions for numbers. SUBSTR(A$,5) designates a
substring of A$ which begins with the 5th character of A$ and includes all the
rest of it. SUBSTR(A$,5,3) designates a substring of A$ which begins with the
5th character and is 3 characters long.

STR(n) where n is a number converts the number n to a string which has the
same logical meaning as the number. E.g., STR(12.3) has the value "12.3".

VALes) where s is a string converts a string of numbers into a number of the
same logical value. E.g., VAL("12.3") is the number 12.3.

String Addition

Strings may be combined with the operation of addition. Unlike ordinary
addition it is non-commutative. Thus the command

LET A$ = "GEO" + "RGE" forms the string "GEORGE"

but

LET A$ = "RGE" + "GEO" forms the string "RGEGEO".

A Comment on the Advanced Features of Basic

Strings and matrix commands are not commonly found in versions of BASIC which
run on mini computers, because they take up a great deal of space. But they do
give that language enormous power--more power than is ordinarily found in FORTRAN,
for example. These advanced commands point the way of the future of algebraic
languages. As computer memory elements become less expensive, and the writers
of software catch up with the designers of hardware, we can expect to see more
implementations of these commands on inexpensive systems, and still newer and

-62-

BASIC FOR USERS OF FOCAL

more powerful commands being invented.

The RND Function

BASIC has a function which generates pseudo-random numbers. It is RND (z)
where z is a "dummy" variable or number. The value of the function is a
number between zero and one. which has a uniform probability density function.
Actually the numbers supplied by the RND function are part of a strictly
determined sequence usually generated by multiplication and truncation. In
order to avoid obtaining the same sequence each time. the RND function is
used for the first time in a program; some versions of BASIC allow the user
to start at a different point in the sequence with the command. RANDOMIZE.

An Overview of BASIC and FOCAL

BASIC is extremely similar in elementary structure to FOCAL. Because it
lacks compound commands and abbreviations it tends to be long winded, but
for that reason, easier to read. It should be a simple job to translate pro­
grams from elementary BASIC into FOCAL and vice versa. and anyone who has
mastered FOCAL should be able to write BASIC programs almost immediately.
You may test this proposition in the following exercises.

-63-

A FOCAL PRIMER

Exercise Set 7.

Paper and Pencil

1. Translate the following BASIC program into FOCAL (From "BASIC Programming",
Kemeny and Kurtz, p. 10.)

1f6 PRINT "X", "EXP (X)", "LOG(X)"
2~ FOR X = 1 TO 3.5 STEP .5
3@ PRINT X, EXP(X), LOG(X)
40 NEXT X
99 END

2. Translate the following BASIC program into FOCAL (From "A Guide to BASIC
Programming: A Time Sharing Language", Spencer, page 83.)

10~ REM TRIGONOMETRIC TABLE PROGRAM
11@ REM COTANGENT FUNCTION
12e DEF FNC(H) = COS(H)/SIN(H)
l3e LET D = ~
14~ PRINT "DEGREES", "SINE", "COSINE", "TANGENT", "COTANGENT"
15~ PRINT
160 PRINT "e", "0", "INF", "1"
170 LET D = D + 1
18~ REM CONVERT DEGREES TO RADIANS
19~ LET R=D/57.2958
2~0 PRINT D, SIN(R), COS(R), TAN(R), FNC(R)
21e IF D < 45 THEN 17~
220 PRINT
23~ PRINT "DEGREES", "SIN", "COSINE", "TANGENT", "COTANGENT"
240 END

3. If you have not done so already, substitute a FOR loop for the logic of
statement 210 in the above program.

4. Translate the FOCAL program example 2.2 on page 23 above into BASIC.

Computer

5. Modify the following BASIC program (shown here with its output) to sum the
rows and columns of a 4 by 4 matrix of your own choosing.

-64-

BASIC FOR USERS OF FOCAL

1~ REM MATRIX ROWS foND COLUfvNS SUMMATION PROGRAM
15 READ N
2~ FOR I = I TO N
22 LET Sl=~
25 FOR J = 1 TO N
3~ READ A(I, J)
35 LET 51 = Sl+A(I,J)
4~ NEXT J
6~ PRINT "SUM OF ROW" I "=" 51
65 NEXT I
7~ FOR J = i TO N
71 LET Sl=LJ
75 FOR I = I TO N
8~ LET Sl=Sl+A(I,J)
85 NEXT I
9~ PRINT "SUM OF COLUM\I" J "=" 51
95 NEXT J

2~~ DATA 3,1,2,3,4,5,6,7,8,9
3~~ END

READY

RUN
SUM OF ROW 1 = 6
SUM OF ROW 2 = 15
SUM OF ROW 3 = 24
SUM OF COLUfvN 1 = 12
SUM OF COLUMN 2 = 15
SUM OF COLUMN 3 = 18

6. Predict the output of the following program. Verify your prediction by
running the program.

1~ DEF FNA(A,B,C,K) = (-B+K*SQR(Bt2-4*A*C))/2*A
2~ READ A,B,C,K
3~ LET Y=FNA(A,B,C,K)
4~ PRINT Y
5~ GOTO 2~

2~~ DATA 1,6,9 , 1
2~1 DATA 1,-8,16,1
3~~ END

7. Run the programs you wrote in exercises 1-4 above and verify that they are
correct.

-65-

A FOCAL PRIMER

-66-

CHAPTER VII

FORTRAN FOR USERS OF FOCAL

Introduction

FORTRAN is the oldest of algebraic computing languages and it is now used
internationally. Despite its faults which are due primarily to the fact that it
was a pioneer language, FORTRAN is bound to be with us for a long time to come.
Hence it is important that any user of FOCAL be conversant with FORTRAN, if only
because FORTRAN has a rich literature and is therefore an important source of
algorithms for all computing languages.

This chapter aims at giving the FOCAL user a reading knowledge of FORTRAN as
well as an elementary subset of that language in which he may write FORTRAN pro­
grams.

FORTRAN as a Batch Processed Language

In most computing systems FORTRAN is used as a batch processed language. That
means that FORTRAN programs are written on decks of cards and processed by com­
puting centers in batches. Actually, many computing centers now process indivi­
dual jobs, entering them into the computer as received where they are first
"spooled" or entered into a que on magnetic dis cs. The computer then reads the
jobs (often in accordance with the priority assigned them) from the discs,
processes the jobs, and writes their output on other magnietic discs, which are
eventually printed on line printers, very rapid printing devices which print one
line at a time. The user then obtains his original deck of cards together with
his printed output which usually contains a listing of his program, as well as
the output the program produced and together with any error messages that the
FORTRAN compiler found.

The WATFOR and WATFIV Compilers

Practice has shown that FORTRAN programs may be usefully divided into two
classes, which we call here "student jobs" and "production jobs". "Student jobs"
designates all programs which, whether written by students or not, are still in
the development phase. If they are actually used, they will only be run once or
twice, probably not taking much time in the process. "Production jobs", on the
other hand, are FORTRAN programs which are already in their final state and which
may be used many times over, or which will run for a long time (say in excess of
10 minutes). Since student jobs are short and still undergoing change, it is
not important that the "code" or machine language program produced by the com­
piler be the most efficient possible. What is important is that the error dia­
gnostics be clear and easy to follow, and that the compilation, i.e., the pro­
duction of the machine code be done very rapidly. Special "Student" compilers
have been written which compile FORTRAN very rapidly and with excellent error
codes. These compilers were written by members of the computing science depart­
ment at the University of Waterloo in Canada. They named their first compiler

-67-

/'
(Data Deck

(*DATA Card

/
(Program Deck I--

(Job Card I--

BATCH TICKET

I--

I--

Figure 2. Structure of typical WATFIV deck for batch processed FORTRAN.

-68-

FORTRAN FOR USERS OF FOCAL

WATFOR and the later version WATFIV. WATFOR and WATFIV are currently used to
compile student FORTRAN jobs in many American universities. There are more than
300WATFOR and WATFIV error codes consisting of a prefix and a number. The pre­
fix gives the general type of the error and the following number indicates the
specific sort within that genus. A list of WATFOR/WATFIV prefixes is given in
appendix 6.

A Subset of WATFOR compiled FORTRAN for FOCAL Users

Input

Since there is no entering variable values from a teletype in a batch processed
language. some provision must be made for data to be accessed by the program.

This is accomplished by placing the data at the end of the program deck follow­
ing a *DATA card. A typical WATFOR deck is shown in Figure 2.

The input command is

READ. list

where list designates a variable list. When the READ statement is encountered
in the program. data will be read from data cards until the list is satisfied.
Data may be placed anywhere on a card and as many cards in the data deck as
necessary will be read until values for all the variables in the list are found.
Every time the program encounters a READ statement data is read beginning from
the next card in the data deck.

Output

Variables may be printed out. with the statement
PRINT. list

As in the FOCAL TYPE statement. computation may be performed in the WATFOR PRINT
statement and the list may contain algebraic expressions.

Assignment Statement

FORTRAN uses no verb like LET or SET but rather indicates assignment simply
with the variable name and the equals sign. e.g. X=Y/2.3.

Statement Numbers

FORTRAN statements may have statement numbers. but they are not needed as the
normal order of the program is determined by the card sequence from the front to
the back of the deck. Note that there are no compound statements in standard
FORTRAN IV.

Types of Variables and Variable Names

There are two important types of numerical variables in FORTRAN. which hinge

-69-

A FOCAL PRIMER

on a distinction which neither BASIC or FOCAL makes. These types are INTEGER
and REAL variables. REAL variables correspond most closely to the variables in
FOCAL or BASIC while an INTEGER variable is a new entity. INTEGER variables may
only have (positive or negative) integer values. INTEGER variable names always
begin with the letters I through N, and all other letters used as the first letter
of a variable name designate REAL variables.

Variable names in FORTRAN IV must begin with a letter (any letter) and may
contain up to 7 letters or numbers.

Program Logic

FORTRAN has the classical IF statement

IF (expression) j,k,l

where "expression" stands for an algebraic expression and j ,k, and I are statement
numbers to which control is transferred if the value of the expression is less
than, equal to or greater than O.

FORTRAN also has a "logical" IF statement of the form

IF (logical expression) command

Here a logical expression refers to expressions like X.EQ.Y or Z.LE.X meaning
X equals Y or Z is less than or equal to X. If the logical expression is true,
then the statement in the IF command following it will be executed. If the
logical expression is not true, then the command will be ignored and control will
pass to the next statement. Logical relational operators are .LT., .LE., .EQ.,
.GE., .GT., .NE., standing for, "less than", "less than or equal to", "equal to",
"greater than or equal to", "greater than", "not equal to".

The unconditional transfer of control statement GO TO in FORTRAN is the same
as FOCAL's GOTO. Note that there is a space between the words in FORTRAN.

Iteration

The FORTRAN iteration statement is the DO command. It has several restrictions
which are not common to FOCAL or BASIC. Like BASIC the FORTRAN command uses a
terminating statement to indicate the end of the loop. Its form is

DO n index = j, k .
statements within the loop

n CONTINUE

where n is a statement number designating the end of the loop, index is the in­
cremented INTEGER variable and j and k are the positive INTEGER bounds and where
j is less than k.

-70-

FORTRAN FOR USERS OF FOCAL

Entry and exit from DO loops is a bit complicated. Loops may be nested, and
while one may exit from a loop at any time carrying with him the last value of
the index, one may only enter a loop by starting at the beginning with the DO
statement.

Subscripts

All subscripted variables must be dimensioned with a DIMENSION statement
giving the variable and, in parentheses following it, the maximum value of the
subscript or subscripts. E.g.,

DIMENSION X(2S), ISPY(3,4)

Implicit Functions

FORTRAN
dix 7).
be careful
or REAL).

has a very full complement of internally defined functions (see Appen­
These are used just like functions in FOCAL and BASIC, only one must
to make sure the argument of the function is the right ~ (INTEGER

Subroutines

Subroutines in FORTRAN have a much more independent existance than those of
FOCAL or BASIC. They are really separate programs which are called by the main
program, receive values of variables from it, do some computing and pass specific
values back to the main program. Unless otherwise specified the only variable
names common both to the main program and the subroutine are those listed in the
calling statement; moreover, even these need not be the same names in both main
program and subroutinel All this separation is to allow the independent writing
of subroutines without any regard to the main program or vice versa, thus allow­
ing any subroutine to be used with any FORTRAN program.

As in BASIC one enters a subroutine with a calling statement. In FORTRAN, the
fonn is

CALL subroutine name (variable list)

where subroutine name is just that and follows the same rules as variable names,
and variable list is a list of the variable names as known by the main program
which it will share with the subroutine. Note well: these mayor may not be the same
names for the variables that the subroutine uses. How these names correspond to
those used by the subroutine is established by the first statement in the sub­
routine which has the form

Subroutine name (variable list)

Here the subroutine name is the same one used by the main program but the variable
list, while it corresponds in number and type to the list of the calling statement,
uses the subroutine's names for the variables given to it by the main routine. The
following example of a subroutine call from a FORTRAN program may illustrate this
point.

-71-

A FOCAL PRIMER

CALL SAMPSON(X,Y,Z)
SUM=Z+3.723

SUBROUTINE SAMPSON (A,B,C)
C=(A/B)*3.l4l59
RETURN
END

(main program)

(entire subroutine)

When the subroutine is called the values of the subroutines variables A and B
will be set equal to X and Y respectively, C will be computed and the main routine
will set Z equal to C and go about its business. If ever the variable names A
and B appear in the main routine, they have no relation to the variables A and B
of the subroutine.

Function Subroutines

A special sort of subroutine forms a user defined function as follows. One
appends a function subroutine on the end of his main program like:

FUNCTION SALLY (A,B,C)
SALLY=A+B/C
RETURN
END

The SALLY function may be used just like a variable name in computation in the
main program. Thus, in the main program one might have

X=A*SQRT(SALLY(E,F,G))

If a function subroutine is short enough to fit on one line it may be abbre­
viated to a single statement which~ like in BASIC, may be included without any
other fol de rol as a single statement before it is used in the main program.
E.g.,

SALLY (A,B,C) = A+B/C
X=A*SQRT(SALLY(E,F,G))

Additional FORTRAN Statements

While a knowledge of the statements discussed above will enable the user to
write useful FORTRAN programs, there are a number of other statements a user
should know about if he is to make sense of the FORTRAN programs he elects to
read and translate into an interactive language. These statements are discussed
in this section.

FORMAT and Formatted Input and Output Statements

Usually FORTRAN input and output is handled with READ and WRITE statements
which also specify the FORMAT of the input or output data. The number of the
FORMAT statement controlling the data input or output is given in parentheses

-72-

FORTRAN FOR USERS OF FOCAL

after the READ or WRITE statement along with the device code specifying where
in the computing system the data is to be found or printed. For example:

is an instruction to read data from device 5 according to format statement 30.
Somewhere in the program (it could be almost anywhere) one will find a format
statement like:

3~ FORMAT C3F10.4)

which tells the computer that there are three real variables in the first 30
columns of a card.

FORMAT statements are termed "non-executable" statements. They may be placed
almost anywhere in the deck, and referenced by more than one READ or WRITE state­
ment.

COMMON Statements and REAL and INTEGER Declarations

There are a number of statements in FORTRAN which are termed "declarations".
A dimension statement is an example. Others are the COMMON statement which is
used to over-ride the separation of variables in MAIN and subroutines and the
REAL and INTEGER statements which may over-ride the implicit variable TYPE
convention given above. These latter statements may also be used to dimension
variables and to set their initial values.

Another statement used to define initial values of variables in a program is
the DATA statement which contains a list of variables followed by the values to
which the variables should be set.

With these guidelines you should be able to write simple FORTRAN programs and
translate even more complicated programs into FOCAL or BASIC. The following
exercises will afford you an opportunity for practice. You may wish to consult
one of the standard FORTRAN manuals listed in the bibliography for help.

-73-

A FOCAL PRIMER

Exercise Set 8

Paper and Pencil

1. The following FORTRAN program and its subroutine reverses a portion of a
vector, B, between the limits L and LL. (From "A FORTRAN IV Primer,"
Organick, p. 155.) Translate the entire program into FOCAL.

C A PROGRAM TO TEST THE REVERSE SUBROUTINE
DIMENSION B (200)

20 FORMAT (3I5/(6F10.5))
30 FORMAT (6F12.5)
50 READ (5,20) L,LL,MN, (B(I) , I = 1,MN)

CALL REVERSE (B,L,LL)
WRITE (6,30) (B(I), I=l,MN)
GO TO 50
END

SUBROUTINE REVERSE (A,M,N)
DIMENSION A (200)
rvNP = M + N
MIDDLE = tvNP /2
DO 10 I = M,MIDDLE
K = MPN-I

C REVERSE THE PAIR CONSISTING OF
C A(I) AND A(M+N-I)

T=A(I)
A(I) = A(K)
A(K) = T

10 CQ\lTINUE
RETURN
END

Note that DIMENSION statements need not be translated. Statement 50 and the
WRITE statement below it contain an implied DO loop, namely: (B(I), I=I,MN)
a form allowed in input and output statements. The effect of the statement
is to cause the reading or writing of all the values of B(I) from I to MN at
one time.

2. The following is a routine to evaluate the definite integral of a function,
FUN, from A to B (from "Introduction to FORTRAN IV Programming Using the
WATFOR Compiler", Blatt, page 169). Translate it into FOCAL, and supply it
with a function to integrate. Check the routine against a function whose
integral between limits you know.

FUNCTIQ\l SIMPSN(FUN,A,B,N)
C SIMPSON'S RULE INTEGRAL
C FUN = FUNCTI ON NAME

-74-

FORTRAN FOR USERS OF FOCAL

C
C
C
C
C
C
C
C

C

C

C
C

1000

1050

C
1101

C
1102

C
1150
1200

C

1300

A = INITIAL VALUE OF X
B = FINAL VALUE OF X
N = NUMBER OF INTERVALS, EVEN
EVALUATE INTEGRAL OF FUN(X) FROM
X = A TO X = B, USING N INTERVALS"

ENSURE EVEN NUMBER OF INTERVALS .GE. 2

M=(N/2)*2
IF (M.GE.2) GO TO 1050
CRAZY ENTRY. RETURN ZERO VALUE
SIMPSN=O.O
RETURN
ENTRY O.K. SET UP STUFF

H=(B-A)/FLOAT(M)
EVNSUM=O.O
ODDSUM=O.O
ENDSUM=FUN (A)+FUN(B)

X=A+H
tv'MIN1=M-1
J=l
THIS J IS A SWITCH. J=l MEANS AN ODD POINT, J=2 AN EVEN PT.
NOW START THE LOOP
DO 1200 1=1, MMIN1
IF (J-1) 1300, 1101,1102
I IS AN ODD POINT
ODDSUM=ODDSUM +FUN(X)
J=2
GO TO 1150
I IS AN EVEN POINT
EVNSUM =EVNSUM +FUN(X)
J=2
PATHS REJOIN
X=X+H
CQ\JTINUE
ALL OVER BUT THE SHOUTING
SIMPSN=(H/3.)*(ENDSUM+4.0*ODDSUM+2.0*EVNSUM)
RETURN
END

3. Look up Simpson's rule for evaluating definite integrals in Conte's "Elementary
Numerical Analysis", or a similar book and verify that the program given in
Blatt is correct.

Computer

4. Run and de-bug the programs of exercises 1 and 2 above.

-75-

A FOCAL PRIMER

-76-

CHAPTER VIII

FINDING AND APPLYING COMPUTING ALGORITHMS

Introduction

It was pointed out above that computing is an extremely fast-growing and fast­
changing field. The introduction of algebraic computing languages is having a
great impact on the teaching of mathematics, a discipline which has changed very
slowly in the past. We are, however, still in a transition period and the liter­
ature of mathematics has yet to catch up. This means that the user must often
spend some time searching for the algorithms he needs to solve his problems.

Numerical Analysis

The field of study in colleges and universities which deals with the heart of
the mathematics of digital computing is called "Numerical Analysis". The major
topics of a course in Numerical Analysis might be:

Solution of implicit equations (like sin x = x+xl/3)
Curve fitting
Interpolation
Numerical solution of differential equations
Numerical integration
Matrix manipulations

Most modern books of numerical analysis are oriented to the use of digital com­
puters and some include actual FORTRAN programs as examples. E.g. see Conte's
book, Elementary Numerical Analysis, An Algorithmic Approach, McGraw Hill, 1965.

In general it may be said that numerical
to problems involving continuous variables.
in the justification of approximations used
they introduce.

methods employ finite approximations
The difficulty of the subject lies

and the evaluation of the errors that

If the user finds he has a problem touching anyone of the above topic areas
listed he would do well to consult a standard text in numerical analysis before
proceeding further.

This point should be emphasized: there is absolutely no doubt that many persons,
with a good knowledge of FOCAL or BASIC, could, all by themselves, write programs
for curve fitting, definite integration, etc. But it would be absolutely foolish
to do so without consulting a text on the numerical analysis first. To launch
out on your own without consulting the literature is often termed lire-inventing
the wheel" in computing circles.

Statistics

Many statistics courses are still being taught with the idea that the work

-77-

A FOCAL PRIMER

will be performed on desk calculators. This is, of course, exactly the drudgery
that digital computers are designed to eliminate and so computing routines for
standard statistical tests are common. Many statistical tests are so simple that
it is easier for an experienced programmer to write his own version of the test
directly from the algorithms given in a text book than to try to wade through
someone else's ill-documented program, and hence the entire human race seems
destined to continue to write statistical routines for all time to come. However,
when a programmer finds he is writing his own routines over and over again, it
is time to do something about his documentation habits.

Because statistics books have long been written with the idea that someone will
in fact use the tests described in them, they are usually easy to read and provide
a valuable source of statistical algorithms.

IBM Scientific Subroutines

The International Business Machines Corporation publishes a set of FORTRAN
routines entitled simply "IBM Scientific Subroutines". These are very profes­
sionally written FORTRAN subroutines designed to handle a wide variety of com­
puting tasks, including statistical tests. If one is writing a FORTRAN program of
some generality, this is the palce to start, and these routines may also afford
useful material for translation. While their documentation leaves something to
be desired, they are nonetheless some of the best programs available.

Computing Manuals

A growing number of elementary computing manuals are oriented towards particular
fields and afford a variety of program examples. Particularly good in this respect
is Kemeny and Kurtz's book on BASIC which gives a broad spectrum of programs in
elementary mathematics.

COmpany Users Societies

Many computing companies sponsor users' organizations which collect, publish,
and share computing routines. Such a society is DECUS, the users' organization
of the Digital Equipment Corporation, which collects and publishes FOCAL programs
in their magazine, DECUSCOPE.

-78-

FOCAL FUNCTION

FSQT(A)

FABS(A)

FSGN(A)

FITR(A)

FEXP(A)

FSIN(A)

FCOS(A)

FATN(A)

FLOG (A)

FS IN (A) / FCOS (A)

FATN(A/FSQT(1-At2)

FATN(FSQT(1-At2)/A)

APPENDIX 1

Functions Defined in FOCAL*

Mathematical Equivalent

defined only for A~O

+1, 0, or -1 depending on the value of mathe­
matical sign of A

integer part of A, (no roundoff)

A e

sin A, A given in radians

cos A, A given in radians

arc tan A, value given in radians

Useful Trigonometric Functions

tan A

arc sin A

arc cos A

*Ana1og input and output functions omitted.

-81-

A FOCAL PRIMER

•

-82-

APPENDIX 2

FOCAL Commands, Symbols and Abbreviations

Command

TYPE

ASK

WRITE

SET

IF

IDDIFY

QUIT

DO

RETURN

COMMENT, CONTINUE

ERASE

FOR

GO, GOTO

Other Symbols:

Carriage return and line feed

Carriage return only

Rub out

Erase all preceeding statement line

Statement delimiter for compound statements

-83-

Abbreviation

T

A

W

S

I

M

Q

D

R

C

E

F

G

"RUBOUT"

+

A FOCAL PRIMER

-84-

Error Code

?OO.OO

?01.00

?01. 40

?01. 78

?01. 96

?01. :5

?Ol. ;4

?02.32

?02.52

?02.79

?03.05

?03.28

?04.39

?04.52

?04.60

?04. :3

?05.48

?06.06

?06.54

APPENDIX 3

FOCAL Error Diagnostics for PDP-8, FOCAL-8 1969

Meaning

Manual start from console.

Interrupt from keyboard via Control C.

Illegal step or line number.

Group number is too large.

Double periods found in a line number.

Line number is too large.

Group zero is an illegal line number.

Non-existant group referenced by "DO".

Non-existant line referenced by "DO".

Storage filled by push-down list. (Bad
news; your program is probably too long
or you are accidentally generating an
infini te array.)

Non-existant line used after "GOTO" or "IF".

An illegal command was used.

Part of expression to left of " in error
in FOR or SET command.

Excess right terminators encountered.

Illegal terminator in FOR command.

Missing argument in display command.

Incorrect argument in MODIFY command.

Illegal use of function or number.

Storage is filled by variables. (See
comment under 02.79.)

-85-

A FOCAL PRIMER

Appendix 3 continued:

?07.22 Operator missing in expression or double E.

?07.38 No operator encountered before parenthesis.

?07.:9 No argument given after function call.

?07. ;6 Illegal function name or double operators.

?08.47 Parentheses do not match.

?09.ll Bad argument in ERASE.

?10.:5 Storage is filled with text (see note
under 02.79).

?11.35 Input buffer overflow. (This happens if
there are not enough spaces in input text,
or if input patch to correct this con­
dition is not implemented.)

?20.34 Logarithm of zero is requested.

?23.36 Literal number is too large.

?26.99 Exponent is too large or negative.

?28.73 Division by zero requested.

?30.05 Imaginary square root required.

?3l. 7 Illegal character, unavailable command or
unavailable function used.

Note: The format for reporting errors in an indirect program is, e.g.,
?08.47 @ 01.32 meaning "Parentheses do not match in line 1.32." Often
errors in a program subsection called by a DO will be referred to the
line number of the statement which called the subsection.

-86-

Error Code

?OO

?Ol

?02

?03

?04

?OS

?06

?07

?08

?09

?l0

?11

?l2

?l3

?l4

?IS

?16

?17

?l8

?l9

?20

APPENDIX 4

Error Diagnostics for the PDP-IS, FOCAL

Meaning

Function not implemented.

Illegal character at beginning of line.

Group number illegal as line number.

Group number too large.

Illegal type/ ask format.

Too many periods.

Line number too large.

Line number missing.

Illegal group number.

Push down list overflow.

Illegal command.

Illegal "IF" format.

Left of equals sign in error on FOR or SET.

Excess right parentheses.

Illegal FOR format.

Illegal variable name.

Text/ variable buffer overflow.

Illegal expression format.

Operator missing before parenthesis.

Missing left parenthesis.

Illegal function name.

-87-

A FOCAL PRIMER

Appendix 4 continued:

121

122

123

124

125

126

127

128

129

?30

?3l

132

133

?34

135

136

?37

Double operator.

Parenthesis error.

ERASE or "WRITE" argument error.

Negative line number.

Zero argument for log.

Input overflow.

Number too large.

Negative power illegal.

Division by zero illegal.

Square root of a negative number.

Illegal command during library output.

Illegal library command.

Illegal file name.

Fi Ie not found.

No library output file open.

.OTS error from FORTRAN IV arithmetic package.

COMMON format error.

-88-

WHAT?

ERROR 1

ERROR 2

ERROR 3

ERROR 4

ERROR 5

ERROR 6

ERROR 7

ERROR 8

ERROR 9

ERROR 10

ERROR 11

ERROR 12

ERROR 13

ERROR 14

ERROR 15

ERROR 16

ERROR 17

ERROR 18

ERROR 19

APPENDIX 5

BASIC Error Messages for PDP-8 Edusystem 20

Command not understood - ready mode.

Log of negative or zero number requested.

Square root of negative number requested.

Division by zero requested.

Overflow - exponent greater than approximately +38.

Underflow - exponent less than approximately -38.

Line too long or program too big.

Characters are being typed in too fast - use TAPE command for
reading paper tapes.

System overload caused character to be lost.

Program too complex or too many variables.

Missing or illegal operand or double operators.

Missing operator before a left parentheses.

Missing or illegal number.

Too many digits in number.

No DEF for function call.

Missing or mismatched parentheses or illegal dummy variable in
DEF.

Wrong number of arguments in DEF call.

Illegal character in DEF expression.

Missing or illegal variable.

Single and double subscripted variables with the same name.

-89-

A FOCAL PRIMER

Appendix 5 continued:

ERROR 20

ERROR 21

ERROR 22

ERROR 23

ERROR 24

ERROR 25

ERROR 26

ERROR 27

ERROR 28

ERROR 29

ERROR 30

ERROR 31

ERROR 32

ERROR 33

ERROR 34

ERROR 35

ERROR 36

ERROR 37

ERROR 38

ERROR 39

ERROR 40

ERROR 41

ERROR 42

Subscript out of range.

No left parenthesis in function.

Illegal user defined function - not FN followed by a letter and
a left parenthesis.

Mismatched parentheses or missing operator after right paren­
thesis.

Syntax in GOTO.

Syntax in RESTORE.

Syntax in GOSUB.

Syntax in ON.

Index out of range in ON.

Syntax in RETURN.

RETURN without GOSUB.

Missing left parenthesis in TAB function.

Syntax in PRINT.

No END statement or END is not the last statement.

Missing or illegal line number.

Attempt to GOTO or GOSUB to a non-existent line.

Missing or illegal relation in IF.

Syntax in IF.

Missing equal sign or improper variable left of the equal
sign in LET or FOR.

Subscripted index in FOR.

Syntax in FOR.

No NEXT for FOR.

Syntax in LET.

-90-

APPENDIX 5

ERROR 43

ERROR 44

ERROR 45

ERROR 46

ERROR 47

ERROR 48

Syntax in NEXT.

NEXT without FOR.

Too much data typed in or illegal character in DATA or the
data typed in.

Illegal character or function in INPUT or READ.

Out of data.

Unrecognized command - RUN mode.

-91-

A FOCAL PRIMER

-92-

Prefix

AL

AS

BD

CC

CM

CN

CP

CV

DA

DF

DM

DO

EC

EN

EQ

EV

EX

EY

PM

FN

FT

APPENDIX 6

WATFOR and WATFIV Error Prefixes

Error Location

Assembler language subprogram

Assign statement

Block Data Statement

Card format and contents

Common statement

FORTRAN Constants

Compiler error

Character Variable

Data Statement

Define File Statement

Dimension Statement

Do loop

Equivalence and or Common

End Statement

Equal signs

Equivalence Statements

Powers and Exponentiation

Entry Statement

Format

Functions and Subroutines

Format

-93-

A FOCAL PRIMER

Appendix 6 continued:

GO

HO

IF

1M

10

JB

KO

LG

LI

MD

MO

NL

PC

PS

RE

SF

SR

SS

ST

SV

SX

TY

UN

UV

GO TO Statements

Hollerith Constants

IF Statement (Arithmetic and Logical)

IMPLICIT Statement

Input/Output

Job Control cards

Job termination

Logical operations

Library routines

Mixed Mode

Memory Overflow

Namelist statements

Parentheses

Pause & Stop Statements

Return statement

Arithmetic and Logical statement functions

Sub routines

Subscript

Statements and statement number

Subscripted variable

Syntax Error

Type statement

I/O Operations

Undefined variable

-94-

APPENDIX 6

VA Variable Names

XT External Statement

*A WATFOR or WATFIV error code contains a prefix and a number, e.g., KO-6,
which means "Job time limit exceeded." For a complete list of error codes,
consult a WATFOR manual or your computing center.

-95-

A FOCAL PRIMER

-96-

APPENDIX 7

Commonly Used Implicit FWlctions (FORTRAN)

Type+ of
* Function Definition Name Argument Function

Absolute value arg ABS R R

Exponential earg EXP R R

Natural log In (arg) ALOG R R

Common log loglO (arg) ALOGIO R R

Sine sin (arg) SIN R R

Cosine cos (arg) COS R R

Tangent tan (arg) TAN R R

Arctangent tan- l (arg) ATAN R R

Acctangent tan- l (arg/arg) ATAN2 R,R R

Square Root
1

arg~ SQRT R R

Truncation Sign of argwnent times
largest integer of arg AINT R R

INT R I

Transfer of Sign of arg2 times SIGN R R
sign absolute value of ISIGN I I

argl

FIX Conversion from IFIX R I
REAL to INTEGER

Float Conversion from I R
INTEGER to REAL

Remaindering argl mod arg2 AMOD R R

MOD I I

Max Choosing largest AMAXI R,R, .•. R
value MAXO 1,1,1. .. I

MIN Choosing the AMINI R, R, ••. R
minimum value MINO 1,1,1. .. I

* The argument of the fWlction always appears in parentheses after the name.

+ R = REAL, I = INTEGER

-97-

A FOCAL PRIMER

-98-

BIBLIOGRAPHY OF COMPUTING BOOKS

Books on FOCAL

Programming Languages, Volume 2. PDP-8 Handbook Series, Digital Computer Corpor­
ation. Maynard, Massachusetts, 1970.

Books about BASIC

Kemeny, J.G., Kurtz, T.E. BASIC Programming. John Wiley and Sons Inc. New York,
1968.

Sharpe, W.F., Jacob, et ale BASIC, An Introduction to Computer Programming
Using the BASIC Language, Revised Edition. The Free Press. New York, 1971.

Spencer, D.D. A Guide to BASIC Programming: A Time-Sharing Language. Addis on­
Wesley Publishing Company. Reading, Massachusetts. 1970.

Books about FORTRAN

Kennedy, M., Solomon, M.B. Ten Statement FORTRAN Plus FORTRAN IV. Prentice­
Hall Inc. Englewood Cliffs, New Jersey, 1970.

Kress, P., Dirksen, P., Graham, J.W. FORTRAN IV with WATFOR.Englewood Cliffs,
New Jersey, 1968.

Books about Programmin~ Languages in General

Higman, B. A Comparative Study of Programming Languages. MacDonald: London
and American Elsevier Inc. New York, 1967.

Jordain, P.B., Ed. Condensed Computer Encyclopedia. McGraw Hill Book Company.
New York, 1969.

Rosen, S., Ed. Programming Systems and Languages. McGraw Hill Book Company.
New York, 1967.

Books about Numerical Analysis

Conte, S.D. Elementary Numerical Analysis, An Algorithmic Approach. McGraw-Hill
Book Company. New York, 1965.

-99-

A FOCAL PRIMER

Bibliography, continued:

Hamming, R.W. Numerical Methods for Scientists and Engineers. McGraw Hill Book
Company. New York, 1962.

Books Containing Useful Algorithms

Abramowitz, M. and Stegun, I.A., eds. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. U.S. Department of Commerce, National
Bureau of Standards, Washington, D.C. 9th printing, 1970.

Beyer, W.H., ed. Handbook of Tables for Probability and Statistics. The Chemical
Rubber Co. Cleveland, Ohio, 1966.

Jahnke, Eugene, Emde, Fritz. Tables of Functions, 4th Edition. Dover Publi­
cations. New York, 1945.

Comprehensive FORTRAN IV Manual

Organick, E.I. A FORTRAN IV Primer. Addison-Wesley Publishing Co.. Reading,
Massachusetts, 1968.

-100-

INDEX

Principal reference is given first.

Abbreviations
Addition

18, 83
8-9

AL T MOD key, use to retain values
of variables

Ambiguous expressions
APL
Arrays

BASIC
FORTRAN

Arrow
(+) exponentiation
(+) erase

ASK
Assignment statement

BASIC
FORTRAN

Asterisk
Averaging routine

BASIC
Batch processing
Binary numbers

CALL (FORTRAN)
Carriage return

format symbo 1 for
Comma (BASIC)
Comments

BAS IC (REMARK)
in sample FORTRAN program

CQMv\ON (FORTRAN)
Compound commands
CONTINUE

in FORTRAN DO loop
Corrections

BASIC

Data input
BASIC
FORTRAN

Debugging aids
Deck, organization of WATFOR
Declarations (FORTRAN)

DIMENSION
INTEGER
REAL

14
8
5

39-44
59
71

9
16

13-14
13
53
69

9
29

53-63
67
37

71
7

16
58
13
53
74
73
18
34
70
16
59

13-14
54
69

47-49
68, 69

73
73
73
73

-101-

DEF (BASIC command)
DIMENSION

BASIC
FORTRAN

58
39
59
71

Direct Computation
Division, algebraic
Division by zero

7
expression for 9

21
00

direct use
indi re ct us e
termination

Documentation

Editing text--see MODIFY
END (BASIC)
ERASE
Errors
Error codes

FOCAL-8
FOCAL-IS
BASIC
WATFOR-WATFIV

Error prefixes for WATFOR and
WATFIV

Exercises
Set 1
Set 2
Set 3
Set 4
Set 5
Set 6

EXP (BASIC function)
Exponential notation
Exponentiation

FABS
Factorials
FCOS
FEXP
FLOG
Flow diagram conventions
FOCAL, advantages

author of, R. Merrill
FOR

BASIC
FORTRAN- -see DO

17
31

31-34
45-46

59
16

8

85
87
89
93

93

10
20

26-27
35-37
43-44

51
58

7
9

81
31
81

9, 81
9, 81

21
2
1

29
55

A FOCAL PRIMER

Format, numerical
BASIC
FORTRAN

Format, text
BASIC

FSGN
FSIN
FSQT
FTftN
Functions

BASIC
FORTRAN, Appendix 7
user defined

GOTO~ GO
BASIC
FORTRAN

15
58
72
16
57
81

9, 81
9, 81

81
9, 81

58
97
59

24
54
70

Implicit functions 71
Implied DO 74
Increments in iterative statements 30

BASIC 55
INDEX (BASIC string function) 62
Initialization of variables

FORTRAN REAL and INTEGER 73
Initializing variables

to zero
FORTRAN, with DATA statements

INTEGER declaration (FORTRAN)
INTEGER variables (FORTRAN)
Interactive computing
Iteration--see FOR

LENGTH (BASIC string function)
LET (BASIC conunand)
Library, of programs
Listing programs
LIST (BASIC)
Listing variables

(TYPE $)
Logarithms
LOG (BASIC function)
Logic--see IF~ GOTO, FOR

errors in
Loops--see FOR, IF,DO

Matrices--see Arrays
Matrix editing program
Matrix multiplication
Matrix operations
MODIFY

16
73
73
70
1

62
53
50

18, 60
60

48
9

47

41
43
60
17

-102-

Mul tiplication
matrix multiplication

Nesting of FOR loops
NEXT (BASIC)
Numerical analysis

Octal
Ordering, algorithm for
Output statement (TYPE)

BASIC (PRINT)
FORTRAN (PRINT)
FORTRAN (WRITE)

Paper tape, entering stored
programs from

Parentheses, use to avoid ambi­
guities
use in subscripts

Permutation
Precedence, rules of
Precision
Punching out programs

QUIT

REAL variables (FORTRAN)
Return key, action of
RETURN
RND (BASIC function)
RUBOUT key, used in corrections
RUN (BASIC)

Scientific subroutines, IBM
SET--see assignment statement
Semicolon

BASIC
Simpson's rule, subroutine for

integration
SIN (BASIC function)
Slash (/) as division sign
Sort routine--see ordering
Spaces (BASIC)
SQR (BASIC function)
Statement numbers

BASIC
FORTRAN
hints for assignment of

Statistics' courses
STEP (BASIC)
STOP (BASIC)

9
43

71
55
77

36
36

7
57
69
72

19

8

31
8
8

18

34

70, 73
11
34
63
16
60

78

18
58

74-75
58

9

59
58
12
53
69
49
77
57
59

INDEX

Stored program computation
entering stored programs

STR (BASIC string function)
Strings
Subroutine capability

BASIC
FORTRAN

Subroutines
BASIC
FORTRAN

Subscripts--see Arrays
SUBSTR (BASIC string function)
Subtraction

TAB (BASIC function)
TAN (BASIC function)
Teletype keyboard
Testing programs
Truncation--see FITR function
TYPE--see also Output

11
19
62

61-62
17, 3

56
71-72

31
56
71

62
9

56
58

6
49
81
15

VAL (BASIC string function)
Variable names

BASIC
Variable type

62
13

53, 59, 62
69-70

WATFIV
WATFOR
WRITE

FORTRAN

Zero, division by

67
67
18
72

21

-103-

