
Digital Equipment Corporation
Maynard, Massachusetts

PDP-8 Family
Programming Manual

FOCAL-8

FOCAL-8
PROGRAMMING MANUAL
FOR PDP-8/1, PDP-S/l, PDP-B/S,
PDP-8, LINC- 8, PDP-12, PDP-5

For additional copies, order No. DEC-08-AJAD-O from Program Library, Digital

Equipment Corporation, Maynard, Massachusetts 01754. Price $2.00

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

1st Printing April 1968
2nd Printing {Rev} October 1968
3rd Printing December 1968
4th Printing April 1969
5th Printing {Rev} July 1969
6th Printing {Rev} January 1970

Your attention is invited to the last two pages of this
manual. The Reader's Comments page, when filled in
and returned, is beneficial to both you and DEC. All
comments received are considered when documenting
subsequent manuals, and when assistance is required,
a knowledgeable DEC representative will contact you.
The Software Information page offers you a means of
keeping up-to-date with DEC's software.

Copyright © 1968, 1969, 1970 by Digital Equipment Corporation

The material in this manual is for informa­
tion purposes and is subject to change with­
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

CONTENTS

Page

CHAPTER 1 INTRODUCTION

1.1 Equipment Requirements 1-2

1.2 The Initial Dialogue 1-2

CHAPTER 2 FOCAL LANGUAGE

2. 1 Elementary Commands 2-1

2.2 Output Format 2-2

2.3 Floating-Point Format 2-4

2.4 Arithmetic Operations 2-4

2.5 More About Symbols 2-5

2.6 Subscripted Variables 2-6

2.7 The Erase Command 2-7

2.8 Handl ing Text Output 2-7

2.9 Indirect Commands 2-7

2.10 Error Detection 2-9

2.11 Corrections 2-11

2. 12 Alphanumeric Numbers 2-12

CHAPTER 3 FOCAL COMMANDS

3. 1 TYPE 3-1

3.2 ASK 3-2

3.3 WRITE 3-3

3.4 SET 3-4

3.5 ERASE 3-4

3.6 GO 3-5

3.7 GOTO 3-5

3.8 DO 3-5

3.9 IF 3-7

3.10 RETURN 3-8

3. 11 QUIT 3-8

3. 12 COMMENT 3-8

3.13 FOR 3-8

iii

3. 14

3. 14. 1

3. 15

3. 16

MODIFY

Caution

Using the Trace Feature

Mathematical Functions

CONTENTS (Cont)

CHAPTER 4 EXAMPLES OF FOCAL PROGRAMS

4. 1

4.2

4.3

4.4

4.5

4.5.1

4.6

4.7

4.7.1

4.7.2

4.7.3

4.7.4

Table Generation Using Functions

Formula Evaluation for Circles and Spheres

Temperature Conversion

One-line Function Plotting

Extensions to Plotting

Plotting on the Oscilloscope

Demonstration Dice Game

Simultaneous Equations and Matrices

In One Dimension

In Two Dimensions

In Three Dimensions

In Four Dimensions

CHAPTER 5 ADVANCED FOCAL SYSTEMS

5. 1 The Systems

5.2 Multi -User Segments

5.2. 1 QUAD (Four-User FOCAL)

5.2.2 LIBRA (Seven-User FOCAL)

5.2.2. 1 LI BRA Commands

5.2.2.2 Common Storage Function

5.2.2.3 Limitation on FOCAL with LIBRA

5.3 Additional Segments

5.3. 1 Util ity Package

5.3.2 CLINE Graphics Package

5.3.2. 1 Additional Graphics Segments

5.3.3 Workable Overlay Combinations

5.4 8K Overlay

iv

Page

3-9

3-10

3-11

3-12

4-1

4-3

4-5

4-6

4-7

4-10

4-10

4-12

4-12

4-12

4-13

4-14

5-1

5-2

5-2

5-3

5-3

5-4

5-4

5-4

5-5

5-5

5-7

5-7

5-9

CONTENTS (Coot)

5.5 Current Focal Tapes and Documents

APPENDIX A COMMANDS AND OPERATION SUMMARY

A. 1 FOCAL Operat ions

A. 1. 1 Fonnat

A.1.2 MODIFY Operations

A.1.3 The Trace Feature

A.1.4 Spec ial Characters

A.2 Functions

A.2.1 Mathematical Functions

A.2.2 Scope Function

A.2.3 Additional Functions

APPENDIX B ERROR MESSAGES

APPENDIX C ESTIMATING THE LENGTH OF USER'S PROGRAM

APPENDIX D CALCULATING TRIGONOMETRIC FUNCTIONS IN FOCAL

APPENDIX E LOADING PROCEDURES

E. 1 Loaders

E. 1. 1 Read-In Mode (RIM) Loader

E.1.2 Binary Format (BI N) Loader

E.2 Paper-Tape System

E.2.1 FOCAL Loading Procedure

E.2.2 Restart Procedure

E.2.3 Saving FOCAL Programs

E.3 Multi-User Systems

E.3.1 LIBRA Loading Procedure

E.3.2 DISKIN Loading Procedure

E.3.3 QUAD Loading Procedure

E.4 Addi tiona I System Segments

E.4.1 Utility Package Loading Procedure

v

Page

5-10

A-3

A-3

A-4

A-5

A-5

A-6

A-6

A-6

A-6

B-1

C-1

D-1

E-1

E-1

E-1

E-2

E-2

E-2

E-3

E-5

E-5

E-5

E-7

E-9

E-10

E-10

E.4.2

E.5

E.5.1

E.5.2

E.5.3

CONTENTS (Cont)

Graphics Package Loading Procedure

DISK Monitor System

4K FOCAL

FOCAL Without Some Extended Functions

8K FOCAL

APPENDIX F HELPFUL PROGRAMMING SUGGESTIONS

5-1

E-1

E-2

E-3

E-4

E-5

5. 1

5-2

5-3

A-l

B-1

B-2

B-3

CLINE Example

FOCAL Loading Procedure

LIBRA loading Procedure

ILLUSTRATIONS

Additional System Segments Loading Procedure

Using FOCAL with Disk Monitor System (3 Sheets)

Core Map for FOCAL with Disk Monitor System

FOCAL Segments

C LI N E Graph i cs Systems

Allowable FOCAL Systems

Commands

FOCAL Error Messages

LI BRA Error Messages

System Error Appendix

TABLES

vi

Page

E-ll

E-12

E-12

E-14

E-16

F-l

5-7

E-4

E-8

E-13

E-19

E-22

5-1

5-8

5-9

A-l

B-1

B-2

B-2

PREFACE

This manual is intended for anyone desiring to learn and use FOCAL-8. Nothing is assumed; the manual

is self-sufficient for the mastery of FOCAL-8.

FOCAL-8 (to be referred to simply as FOCAL, for FOrmula CALculator) is DECls service program

designed for solving numerical problems of any complexity using the fami Iy of 8 computers. FOCAL IS

simple, easy-to-Iearn language can be mastered with the use of this manual in a matter of a few hours.

The first three chapters are devoted to explaining how to formulate and manipulate the FOCAL language.

Each of the commands that form the FOCAL language is explained in detai I. After covering the first

three chapters, the user can realize the power and flexibility of FOCAL by duplicating and running

the demonstration programs using different variables.

Chapter 4 contains various demonstration programs which reveal many of the features and applications

of FOCAL. A wide range of applications is included in this chapter, including business, scientific,

educational, and algebraic uses.

Chapter 5 is devoted to expanded FOCAL capabilities. After the user has gained skill with the funda­

mental FOCAL system, such power as increased accuracy, longer programs, and even graphic display

may be added. In addition, FOCAL may be shared by more than one user on a single computer. Each

user has his own Teletype® and uses FOCAL as if he had the computer all to himself. Four and seven

user systems, called QUAD and LIBRA, respectively, are available.

Complete loading procedures, a command and format summary, error messages, and programming hints

for the more sophisticated user are described in the appendices.

® Teletype is the registered trademark of Teletype Corporation.

vii

CHAPTER 1

INTRODUCTION

FOCAL {FOrmula CALculator} is a standard service language for the PDP-8 family of computers, de­

signed to help students, engineers, and scientists solve numerical problems.

FOCAL programming is very easy to learn. The language consists of imperative English commands and

mathematical expressions, which are typed primarily in standard notation. Because the language is

easy to learn, it is widely used by mathematics teachers in both secondary schools and colleges as an

integral part of their courses.

This manual provides several alternative approaches to learning FOCAL, depending on individual

experience. If you have never programmed a computer, your teacher or an experienced operator can

load the FOCAL program; then, you can reply to the initial dialogue and begin studying with Chapter 2.

The best way for you to learn the FOCAL language is to sit at the Teletype console and try the com­

mands, starting with the examples in this manual. FOCAL will locate any format errors and note them

with an error code as they are encountered.

If you are an experienced FORTRAN programmer, you can begin with the command summary and error

messages in the back of the book. FOCAL commands are defined in Chapter 3, and Chapter 4 contains

sample programs which range from fairly easy to complex.

Chapter 5 describes advanced FOCAL systems. For example, four users can share FOCAL by adding

the appropriate hardware and QUAD, the four-user system program. Only one computer is used to

serve all users. Each user has a II the power of FOCAL at his disposal. In addition, a program called

LIBRA permits seven users to time-share a FOCAL system. FOCAL allots computer time to the users,

and rarely is there any noticeable delay in execution of a command.

LIBRA features library capabilities which serve to store programs for later use, thereby avoiding the

retyping of the entire routine. An initialization segment, DISKIN, serves to prepare the storage area

used by LIBRA. Both the QUAD and LIBRA multi -user systems are furnished on paper tape and are

easi Iy added to the system.

1-1

For the more sophisticated user, the powers of FOCAL can be expanded by incorporating some of the

additional system segments. These capabilities include:

a. 4WORD, which provides increased calculating accuracy

b. 8K, to give the user more memory space for large programs

c. CLINE, a series of graphic display functions. CLINE has two segments to be used with
the CLINE functions: PLOTR for an incremental plotter and GRAPH for a KV8 display system.

These segments can be used with FOCAL in almost any combination to augment its capabi lities. For

example, a lengthy, complex, or repetitive mathematical routine can be executed and answers calcu­

lated to 10 digits, instead of the standard 6 digits, by adding the 4WORD and 8K overlays to the FOCAL

System. The additional segments are furnished on separate punched tapes (overlays) and merely have to

be read into the system, in the same simple manner as FOCAL, to add their flexibi lity to the regular

FOCAL interpreter. (Refer to Appendix E.)

1 . 1 EQUIPMENT REQUIREMENTS

FOCAL operates on a 4K PDP-8/I, -8/L, -8/5, -8, -12, -5, or LINC-8 Computer with a 33 ASR

Teletype. Optional equipment includes an analog-to-digital converter and an osci lIoscope display.

Extra core and device requirements for multi-user and additional FOCAL segments are included in

Chapter 5.

Loading and operating procedures for all FOCAL configurations, including paper-tape and Disk Monitor

Systems, are described in Appendix E.

1.2 THE INITIAL DIALOGUE

After FOCAL has been loaded and started, FOCAL identifies itself and the type of computer being

used; FOCAL then types the options avai lable to the user for retention of the mathematical functions.

If these functions are not needed, the user answers FOCALls questions by typing NO and the RETURN

key, and FOCAL erases those functions from core; thus, the user gains additional core storage for use

by h is programs.

1-2

Alternate initial dialogues are shown below.

CONGRATULATIONS! !
YOU HAVE SUCCESSFULLY LOADED 'FOCAL,1969' ON A PDP-~ COMPUTER.

SHALL I RETAIN LOG, EXP, ATN ?:YES

*

When the user answers YES to the above question, all mathematical functions are retained, and the

user has approximately 700
10

locations avai lable for his programs.

CONGRATULATIONS! !
YOU HAVE SUCCESSFULLY LOADED 'FOCAL,1969' ON A PDP-~ COMPUTER.

SHALL RETAIN LOG, EXP, ATN ?:NO

SHALL RETAIN SINE, COSIN E ?: YES

PROCEED.

*

If the user answers NO to the first question, FOCAL asks a second question. A YES answer to the

second question leaves approximately 900
10

locations avai lable for the user's programs.

CON GRA TULA T ION S! !
YOU HAVE SUCCESSFULLY LOADED 'FOCAL,1969' ON A PDP-8 COMPUTER.

SHALL I RETAIN LOG, EXP, ATN ?:NO

SHALL I RETAIN SINE, COSINE ?:NO

PROCEED.

*

1-3

A NO answer to the second question erases all extended functions from core, giving the user 110010

locations for use with his programs. To determine the exact number of locations avai lable, use the

LOCAT 10 NS command (refer to Appendi x C).

Note that logarithm, arctangent and exponential functions cannot be retained without the sine and

cosine. Refer to DEC-08-AJBB-OL, Advanced FOCAL Technical Specifications for another way to

eliminate the extended functions. After the initial dialogue has been answered, FOCAL automatically

erases it from core. FOCAL concludes the initial dialogue by telling the user to PROCEED followed

by an * and waits for user input.

1-4

CHAPTER 2

FOCAL LANGUAGE

After the initial dialogue has been concluded, FOCAL types an asterisk (*), indicating that the program

is ready to accept commands from the user. Each time the user completes typing a Teletype line, which

is terminated by depressing the RETURN key, or after FOCAL has performed a command, an asterisk is

typed to tell the user that FOCAL is ready for another command.

2.1 ELEMENTARY COMMANDS

One of the most useful commands in the FOCAL language is TYPE. To FOCAL this means "type out the

result of the following expression. II If you type (fo"owing the asterisk which FOCAL typed),

*TYPE 6.4318+8.1346

and then press the RETURN key, FOCAL types

Another useful command is SET, which tells FOCAL "store this symbol and its numerical value. When

I use this symbol in an expression, insert the numerical value. II Thus, the user may type,

*SET A=3.14159; SET 8=428.77; SET C=2.7182R

*

The user may now use these symbols to identify the values defined in the SET command. Symbols may

consist of one or two alphanumeric characters. The first character must be a letter, but must not be the

letter F.

2-1

*TYPE A+B+C
= 434.6300*

Both the TYPE and SET commands will be explained more fully in the next chapter.

FOCAL is always checking user input for invalid-commands, illegal formats, and many other kinds of

errors, and types an error message indicating the type of error detected. In the example,

*HELP
?03.28
*TYPE 2++4
?07.;6

*

HELP is not a valid command and two plus signs (double operators) are illegal. The complete list of

error messages and their meanings is given in Appendix B.

2.2 OUTPUT FORMAT

The FOCAL program is originally set to produce results showing up to eight digits, four to the left of the

decimal point (the integer part) and four to the right of the decimal point (the fractional part). Leading

zeros are suppressed, and spaces are shown instead. Trailing zeros are included in the output, asshown

in the examples below.

*SET A=77.77; SET B=llll.lllt; SET C=39
*TYPE A"B"C
= 77.7700= 1111.1100= 39.0000*

The results are calculated to six significant digits. Even though a result may show more than six digits,

only six are significant, as shown above in SET B = 1111 . 1111, which FOCAL typed as = 1111. 1100.

(See 4 WO RD, Chapter 5, for increased acc uracy .)

The output format may be changed if the user types

TYPE %x.yz,

where x is the total number of digits to be output and yz is the number of digits to the right of the

decimal point. x and yz are positive integers, and x cannot exceed 19 digits. When first loaded,

FOCAL is set to produce output having eight digits, with four of these to the right of the decimal point

2-2

(%8.04). For example, if the desired output format is two digits to the right of the decimal point and

two to the left of the decimal point the user may type

and FOCAL wi II type

Notice above that when the format operator is followed by other data, a comma must be typed directly

after the format operator.

In the following examples, the number 67823 is typed out in several different formats.

*SET A= 67823
*TYPE %6d7Jl"A
= 67823. 0*
*TYPE %5"A
= 67823*
*TYPE %8.V'J3"A
= 67823.000*

If the specified output format is too small to contain the number, FOCAL prints the number in floating­

point format

*TYPE %3" 67823
= 0.678E+05*

If the specified format is larger than the number, FOCAL inserts leading spaces:

*TYPE %7,,67823
= 67823*

Leading blanks and zeros in integers are always ignored by FOCAL.

*TYPE %8.04" 0016" 0.016" ." 007
16.0000= 0.0160= 0.0000=

2-3

2.3 FLOATING-POINT FORMAT

To handle much larger and much smaller numbers, the user may request output in exponential form,

which is called floating-point or E format. This notation is frequently used in scientific computations,

and is the format in which FOCAL performs its internal computations. The user requests floating-point

format by including a %, followed by a comma, in a TYPE command. From that point on, until the

user again changes the output format, results will be typed out in floating-point format.

*TYPE %" 11
= 0.1100vH~E+02*

This is interpreted as • 11 times 10
2

, or simply 11. Exponents can be used to ±616. The largest number

that FOCAL can handle is +0.999999 times 10
616

, and the smallest is -0.999999 times 10
616

.

To demonstrate FOCALls power to compute large numbers, you can find the value of 300 factorial by

typing the following commands. (The FOR statement, which will be explained later, is used to set I

equal to each integer from 1 to 300.)

*SET A= 1
*FOR I=I,,300; SET A=A*I
*TYPE %" A
= 0.306051E+615* (wait for FOCAL to

calculate the value)

When changing output formats in FOCAL, a rounding error may occur in the last digit.

2.4 ARITHMETIC OPERATIONS

FOCAL performs the usual arithmetic operations of addition, subtraction, multiplication, division, and

exponentiation. These are written by using the following symbols

Symbol Math Notation FOCAL

t Exponentiation 33 3t3 (Power must be a
positive integer)

* Multiplication 3·3 3*3

/ Division 3+3 3/3

C Addition 3+3 3+3
Same
priority - Subtraction 3-3 3-3

2-4

These operations may be combined into expressions. When FOCAL evaluates an expression which may

include several arithmetic operations, the order of precedence is the same as that in the list above.

Addition and subtraction are the only two operators with the same priority; expressions with these two

operators are evaluated from left to right.

A+B*C+D is A+(B*C)+D not (A+B)*(C+D) nor (A+B)*C+D

A*B-tC*D is (A*B)+{C*D) not A*(B+C)*D nor (A*BfC)*D

X/2*Y is 2$...
2Y

Expressions are combinations of arithmetic operations or functions which may be reduced by FOCAL

to a single number. Expressions may be enclosed in properly paired parentheses, square brackets, and

angle brackets (use the enclosures of your choice; FOCAL is impartial and treats them all merely as

enc losures) .

For example,

SET Al=(A+B)<C+D>*[E+G]

*

The [and] enclosures are typed using SHIFT/K and SHIFT/M, respectively.

Expressions may be nested. FOCAL computes the value of nested expressions by doing the innermost

first and then working outward.

*TYPE %, [2+(3-<1*1>+5)+2]
= 0.11(1)(7100E+02*

This result is expressed in floating-point format.

2.5 MORE ABOUT SYMBOLS

The value of a symbolic name or identifier is not changed until the expression to the right of the equal

sign is evaluated by FOCAL. Therefore, before it is evaluated, the value of a symbolic name or

identifier can be changed by retyping the identifier and giving it a new value.

*SE1 A 1= 3 t 2
*S E1 A 1 = A 1 + 1
*TYPE %2" Al
= 10*

2-5

NOTE

Symbolic names or identifiers must not begin with the
letter F. ---

The user may request FOCAL to type out all of the user defined identifiers, in the order of definition,

by typing a dollar sign ($) after a TYPE command.

*TYPE %6.05,,$

The user1s symbol table is typed out like this

A@(00)= 0.306051E+615
B@ ((7) (7)) = 1 1 1 1 • 1 1
C@«(7)(7)= 39.0000
I@(00)= 301.000
Al(00)= 10.0000
D@(00)= 0.00000
E@«(7)0)= 0.00000
G@(00)= 0.00000

*

If an identifier consists of only one letter, an @ is inserted as a second character in the symbol table

printout, as shown in the example above. An identifier may be longer than two characters, but only

the first two wi II be recognized by FOCAL and thus stored in the symbol table. Notice that for

numbers with more than one integer part, the output format operator % 6.05 is ignored so that the

whole number can be printed.

2.6 SUBSCRIPTED VARIABLES

FOCAL always allows identifiers, or variable symbols, to be further identified by subscripts (range

±2047) which are enclosed in parentheses immediately following the identifier. A subscript may

also be an expression:

The ability of FOCAL to compute subscripts is especially useful in generating arrays for complex pro­

gramming problems. A convenient way to generate linear subscripts is shown in Section 4.7.

2-6

2.7 THE ERASE COMMAND

It is useful at times to delete all of the symbolic names which you have defined in the symbol table.

This is done by typing a single command: ERASE. Since FOCAL does not clear the user's symbol table

area in core memory when it is first loaded, it is good programming practice to type an ERASE command

before defining any symbols. (See Section 3.5.)

2.8 HANDLING TEXT OUTPUT

Text strings are enclosed in quotation marks (" ... ") and may include most Teletype printing characters

and spaces. The carriage return, line feed, and leader-trai ler characters are not allowed in text strings.

In order to have FOCAL type an automatic carriage return-line feed at the end of a text string, the user

inserts an exclamation mark (I).

*TYPE "ALPHA"!"BETA"!"DELTA"!
ALPHA
BETA
DELTA

*

To get a carriage return without a line feed at the end of a text typeout, the user inserts a number

sign (#) as shown below.

I

.---Ir----
j

-==-----_-_- ~ :::~~s
,. ----------------- 3 SPACES

.--------------- 5 SPACES

,----------- 3 SPACES

....------ 8 SPACES

*TYPE !" x Y Z"#" + = "#" / .. !

X+Y ~ Z

*

The number sign operator is useful in formatting output and in plotting another variable along the same

coordinate.

2.9 INDIRECT COMMANDS

Up to this point only commands which are executed immediately by FOCAL have been discussed.

2-7

However, if a Teletype line is prefixed by a line number, that line is not executed immediately; instead,

it is stored by FOCAL for later execution, usually as part of a sequence of commands. Line numbers

must be in the range 1.01 to 31.99. The numbers 1.00, 2.00, etc., are illegal line numbers; they are

used to indicate the entire group. The number to the left of the point is called the group number; the

number to the right is ca lied the step number. For example,

*ERASE
* 1 • 1 SET A= 1
* 1 .3 SET 8= 2
*1.5 TYPE %l~A+B

*

Indirect commands are executed by typing GO, GOTO, or DO commands, which may be direct or

indirect.

The GO command causes FOCAL to go to the lowest numbered line to begin executing the program.

If the user types a direct GO command after the indirect commands above, FOCAL wi II start executing

at line 1 . 1 .

The GOTO command causes FOCAL to start the program by executing the command at a specified line

number. I f the user types

*GOTO 1.3
= 2*

FOCAL started executing the program at the second command in the example above.

The DO command is used to transfer control to a specified step, or group of steps, and then return

automatically to the command following the DO command.

*ERASE ALL
* 1. 1 SET A= 1; SET B= 2
*1.2 TYPE "STARTING"
* 1 • 3 DO 3. 2
*2.1 TYPE" FINISHED"
* 3. 1 SET A= 3 ; SET 8= 4
*3.2 TYPE %1~ A+8
*GO
STARTING= 3 FINISHED= 7*

2-8

'Mlen the DO command at line 1.3 was reached, the command TYPE %1, A +8 was performed and then

the program returned to line 2. 1 .

The DO command can also cause FOCAL to fump to a group of commands and then return automatically

to the normal sequence, as shown in the example below.

*ERASE ALL
*1.1 TYPE "A"
* 1 • 2 TYPE "B "
* 1 • 3 TYPE tIC "
* 1 • 4 DO 5.0
* 1 • 5 TYPE " EN 0";
* 5. 1 TYPE "0 "
*5.2 TYPE "E "
*5.3 TYPE "F "
*6. 1 TYPE " . "
*GO
A B' C 0 E F END. *

GOTO 6. 1

When the DO command at line 1.4 was reached, FOCAL executed lines 5. 1, 5.2, and 5.3 and then

returned to Ii ne 1 .5 .

An indirect command can be inserted in a program by using the proper sequential line number. For

example,

*ERASE ALL
*4.8 SET A=l; SET B=2
*6.3 TYPE %5.4~B/C+A
4.9 SET C=1.31.29
*GO
= 6.2646*

where line 4.9 will be executed before line 6.3 and after line 4.8. FOCAL arranges and executes

indirect commands in numerical sequence by line number, starting with the smallest line number and

going to the largest.

2.10 ERROR DETECTION

During execution, FOCAL checks all input for a variety of errors. When an error is detected FOCAL

stops execution and types a question mark (?) followed by an error code (Refer to Appendix 8 for a list

of all error messages and their meanings). An asterisk (*) is typed after each error message and FOCAL

waits for more user input.

2-9

When the error occurs in a direct statement, FOCAL types the error message immediately after the user

terminates that line, because direct statements are executed immediately after the line terminator. The

error code message is in the form ?XX.XX, where XX.XX is an arbitrary number indicating the type of

error. For example,

*SET A=2; PET B=4; TYPE A+B
? 03.28

*

PET is not a FOCAL command; therefore, FOCAL issued the error code ?03.28, indicating an i II ega I

command was used.

When an error occurs in an indirect statement, the error message is typed when FOCAL encounters that

statement during program execution. In addition to the error code, FOCAL types the line number

containing the error in the form ?XX .xx@gg .ss, where XX .XX is the error code and gg .S5 is the line

number conta i n i ng the error. For exa mp Ie,

*1.10 SET A=2; TYPE "A"~A~!
*1.20 SET B=4; TYPE "B"~B~!
* 1 • 3 0 GO TO 1. 0 1
*1.40 TYPE "A+B"~A+B
*GO
A= 2.0000
B= 4.0000
?03.05 @ 01.30

*

FOCAL executed lines 1 . 10 and 1 .20 and then recognized that 1 .01 is an illegal line number used

after GOTO. Therefore, it issued the error message 03.05 @ 1 .30 to indicate that an illegal line

was called by a GOTO command.

The WRITE command without an argument can be used to cause FOCAL to print out the entire indirect

program, allowing the user to visually check it for errors.

NOTE

Errors ?Ol .00, ?OO .00, and ?11.35 may be followed
by nonexistent or false line numbers because these
errors are ti me dependent.

2-10

2. 11 CO RRECTIO NS

If the user types the wrong character, or several wrong characters, he can use the RUBOUT key, which

echoes a backslash (\) for each RUBOUT typed, to erase one character to the left each time the

RUBOUT key is depressed. For example,

*ERASE ALL
*1.1 P\TYPE X-Y
*1.2 SET $=13\\\\X=13
*WRITE
C-FOCAL., 1969

01.10 TYPE X-Y
01 .20 SET X= 13

*

The left arrow (....) erases everything which appears to its left on the same line, except when being used

to correct a value typed after a colon (:) in response to an ASK command (see Section 3.2).

*1.3 TYPE A.,B.,C
*WR IT E
C- FOCAL., 1969

01.10 TYPE X-Y
01.20 SET X=13

*

A line can be overwritten by repeating the same line number and typing the new command.

*14.99 SET C9CN+3) = 15

*

is replaced by typing

*14.99 TYPE C9/ZS-2
*WRITE lLl.99
14.99 TYPE C9/ZS-2

*

A line or group of lines may be deleted by using the ERASE command with an argument. For example,

to delete line 2.21, the user types

*ERASE 2.21

*

2-11

To delete arr of the lines in group 2, the user types

*ERASE 2.0

*

Used alone, without an argument, the ERASE command causes FOCAL to erase the user's entire symbol

table. Since FOCAL does not zero memory when loaded, it is good practice to ERASE before defining

symbols. The command ERASE ALL erases al I user input .

Typing WRITE after making corrections causes FOCAL to print the indirect program as altered. This

is useful for checking cornmands and for obtaining a IIclean" program printout.

The MODIFY command is another valuable feature. It may be used to change any number of characters

in a particular line, as explained in Section 3. 14.

2.12 ALPHANUMERIC NUMBERS (Using Letters as Numbers)

Numbers must start with a numeral but may contain letters. FOCAL interprets as a number any character

string beginning with a numeral, 0 through 9. An alphanumeric number is a string of alphanumeric

characters (excluding symbols) which starts with a number. For example,

OABC 23CAT 9XYZ

Each letter in an alphanumeric number is taken as a number, with each letter A through Z having the

value of 1 through 26 respectively, except for E which has special meaning and is explained below.

A = 1 J = 10 S =19
B =2 K =11 T =20
C =3 L = 12 U = 21
D =4 M = 13 V =22
E = (exponentiation) N = 14 W =23
F =6 0 = 15 X =24
G =7 P = 16 Y =25
H =8 Q = 17 Z =26
I =9 R = 18

An easy way to give FOCAL numerica I valued letters is to start with the number 0, as in the forrowing

example.

*TYP E %2" 0AB
= 12*

2-12

After 0, A = 1 and B = 2; therefore, AS = 12. Also,

*TYPE 0AB+0C
= 15*

After 0, A = 1, B = 2, and C = 3, then 12 + 3 = 15. Therefore 1

because

*TYPE 0XYZ+1
= 2677*

X =24
Y = 25
Z = 26
+1 + 1

2677

The above example can be solved using the following algorithm.

(X times 10
2

) + tf times 10
1
) + (Z times 10

0
) + 1 = 2677

or

(24 x 100) + (25 x 10) + (26 xl) + 1 = 2677

Taken as a numera I, the letter E has specia I meaning. It denotes exponentiation, where the subsequent

alphanumerics are taken as the exponent of the preceding alphanumerics.

*TYPE %8 .. 0AEC
= 1000*
*TYPE 0AEG
= 10000000*

Only one E is allowed in anyone alphanumeric number.

Alphabetic characters may be used when assigning numerical values to identifiers or variables in

response to an ASK statement. An example of this use can be found in Appendix F.

2-13

3.1 lYPE

CHAPTER 3

FOCAL COMMANDS

The TYPE command is used to request that FOCAL compute and type out a text string, the result of an

expression, or the value of an identifier. For example

*4.14 TYPE 8.1+3.2~(28.3*5)/2.5t7,!
4.15 TYPE (2.2+3.5)(7.2/3)/59.1t3,!

*
NOTE

The exclamation point <!) indicates a carriage return/
line feed pair. The number sign <#) indicates a carriage
return without a line feed.

Several expressions may be computed in a sing Ie lYPE command, with commas terminating each expres­

sion.

*ERASE
*9.19 TYPE %4.01,Al*2,E+2 t 5,2.51*81.1
*00 9. 19
= 0.0= 32.0= 203.6*

The output format may be included in the TYPE statement as shown in the example above and as

explained in Section 2.2.

The user may request a typeout of all identifiers which he has defined by typing TYPE $ and a carriage

return. This causes FOCAL to type out the identifiers with their values, in the order in which they

were defined. The $ may follow other statements in a lYPE command, but must be the last operation

on the line.

*ERASE
*SET L=33; SET B=87; SET Y=55; SET C9=91
*TYPE $

L@(00)= 33.0
B@(00)= 87.0
Y@(00)= 55.0
C9 (00) = 9 1 .0

*
3-1

A text string enclosed in quotation marks may be included in a TYPE command. A carriage return may

replace the terminating quotation mark, as shown below:

*1.2 TYPE "X SQUARED=

*

A text string or any FOCAL command or group of commands may not exceed the capacity of a Teletype

line, which is 72 characters on the 33 ASR Teletype. A line may not be continued on the following

line. To print out a longer text, each line must start with a TYPE command.

FOCAL does not automatically perform a carriage return after executing a TYPE command. The user

may insert a carriage return-line feed by typing an exclamation mark (I). To insert a carriage return

without a line feed, the user types a number sign (N). Spaces may be inserted by enc losing them in

quotation marks. These operations are useful in formatting output.

3.2 ASK

The ASK command is normally used in indirect commands to allow the user to input data at specific

points during the execution of his program. The ASK command is written in the form

*11.99 ASK X,Y,Z

*

When line 11.99 is encountered by FOCAL, it types a colon (:). The user then types a value in any

format for the first identifier, followed by a terminator t. FOCAL then types another colon and the

user types a value for the second identifier. This continues until all the identifiers or variables in the

ASK statement have been given values,

*11.99 ASK X,Y,Z
*DO 11.99
:5:4:3*

where the user typed 5, 4, and 3 as the values, respectively, for X, Y, and Z.

FOCAL recognizes the value when its terminator is typed. Therefore, a value can be changed but only

before typing its terminator. This is done by typing a left arrow (...) immediately after the value, and

tTerminators are space, comma, AlT MODE, and RETURN keys.

3-2

then typing the correct va lue followed by its terminator. This is the excepti on to the use of the left

arrow, as explained in Section 2.11.

The ALT MODE, when used as a terminator, is nonspacing and leaves the previously defined variable

unchanged, as shown be low.

*SET A= 5
*ASK A
: 123*
*TYPE A

5.O*

(user depressed the ALT MODE Key after typing 123)

ALT MODE is frequently used when the user does not wish to change the value of one or more identifiers

in an ASK command.

* 11 .99 A SK X, Y, Z
*00 11.99
:5,:4,:3,*
*DO 11.99
:8,::H~,*

*TYPE X,Y,Z
= 8=

(User did not wish to enter new value for Y, so he typed
ALT MODE in response to second colon.)

4= 10*

A text string may be included in an ASK statement by enc losing the string in quotation marks.

* 1.10 ASK "HOW MANY APPLES DO YOU HAVE?" APPLES
* DO 1. 1 (I)
HOW MANY APPLES DO YOU HAVE?:25

*

The identifier AP (FOCAL recognizes the first two characters only) now has the value 25.

3.3 WRITE

A WRITE command without an argument causes FOCAL to write out all indirect statements which the

user has typed. Indirect statements are those preceded by a line number.

3-3

A group of line numbers, or a specific line, may be typed out with the WRITE command using arguments,

as shown be low.

3.4 SET

*7.97 WRITE 2.0
* 7 • 9 8 WR I T E 2. 1
*7.99 WRITE

*

(FOCAL types arr group 2 lines)
(FOCAL types line 2.1)
(FOCAL types arr numbered lines)

The SET command is used to define identifiers. When FOCAL executes a SET command, the identifier

and its value are stored in the user's symbol table, and that value will be substituted for the identifier

when the identifier is encountered in the program.

*ERASE ALL
*3.4 SET A=2.55; SET 8=8.05
*3.5 TYPE %"A+B
*GO
= 0.106000E+02*

An identifier may be set equal to previously defined identifiers, which may be used in arithmetic

expressi ons.

3.5 ERASE

*3.7 SET G=CA+B)*2.2t5

*

An ERASE command without an argument is used to delete arr identifiers, with their values, from the

symbol table.

If the ERASE command is for/owed by a group number or a specific line number, a group of lines or a

specific line is deleted from the program.

*ERASE 2.0
* ERASE 7. 1 1

*

3-4

The ERASE ALL command erases a II the user's input.

In the following example, an ERASE command is used to delete line 1 .50.

3.6 GO

*ERASE ALL
*1.20 SET B=2
*1.30 SET C=4
*1.40 TYPE B+C
* 1 • 50 TY P E B- C
*ERASE 1.50
*WRITE ALL
C- FOCAL., 1969

01 .20 SET B= 2
01.30 SET C=4
01.40 TYPE B+C

*

The GO command requests that FOCAL execute the program which starts with the lowest numbered line.

The remainder of the program will be executed in line number sequence. Line numbers must be in the

ra ng e 1 • 01 to 31 . 99 .

3.7 GOTO

The GOTO command causes FOCAL to transfer control to a specific line in the indirect program. It

must be followed by a specific line number. After executing the command at the specified line, FOCAL

continues to the next higher line number, executing the program sequentially.

3.8 DO

*ERASE ALL
*1.1 TYPE "A"
*1.2 TYPE "B"
*1.3 TYPE "C"
*1.4 TYPE "0"
*GOTO 1.2
BCO*

The DO command transfers control momentari Iy to a sing Ie line, a group of lines, or the entire indirect

program. If transfer is made to a single line, the statements on that line are executed, and control is

transferred back to the statement following the DO command. Thus, the DO command makes a sub­

routine of the commands transferred to, as shown in this example.

3-5

*ERASE ALL
*1.1 TYPE "F"
*1.2 DO 2.3; TYPE "CA"
*1.3 TYPE "L"!
*1.L! QUIT
*2.3 TYPE "0"
*GO
FOCAL

*

If a DO command transfers control to a group of lines, FOCAL executes the group sequentially and

returns control to the statement following the DO command.

If DO is written without an argument, FOCAL executes the entire indirect program.

DO commands cause specified portions of the indirect program to be executed as closed subroutines.

These subroutines may also be terminated by a RETURN command.

If a GOTO or an IF command is executed within a DO subroutine, two actions are possible:

a. If a GOTO or IF command transfers to a line inside the DO group, the remaining
commands in that group will be executed as in any subroutine before returning to the command
following the DO.

b. If transfer is to a line outside the DO group, that line is executed and control is returned
to the command following the DO; unless that line contains another GOTO or IF.

*ERASE ALL
* 1 • 1 TYPE "A": SET X 1 ' =- ; DO 3.1; TYPE "0"; DO 2 * 1 .2 DO 2
*
*2. 1 TYPE " G"
*2.2 IF (X) 2. 5, 2. 6,2. 7
*2.5 TYPE "H"
*2.6 TYPE "I"
*2.7 TYPE "J"
*2.8 TYPE "K"
*2.9 TYPE %2.01", X; TYPE " II. SET X=X+l '" *
*3. 1 TYPE "B" ; GOTO 5. 1; TYPE " F"
*
* 5. 1 TYPE "C"
* 5. 2 TYPE " E"
* 5·3 TYPE "L"
*GO

(FOCAL types the answer)

ABCOGHIJK=-1.0 GIJK= 0.0 GJK= 1.0 BCEL*

3-6

3.9 IF

In order to transfer control after a comparison, FOCAL contains a conditional IF statement. The normal

form of the IF statement consists of the word IF, a space, a parenthesized expression or variable, and

three line numbers in order, separated by commas. The expression is eva luated, and the program trans­

fers contro I to the first line number if the expression is less than zero, to the second line number if the

expression has a value of zero, or to the third line number if the value of the expression is greater than

zero. The IF expression or variable must be enclosed in parentheses.

The program below transfers control to line number 2.10, 2.30, or 2.50, according to the value of the

expression in the IF statement.

*2.1 TYPE "LESS THAN ZERO"; QUIT
*2.3 TYPE "EQUAL TO ZERO"; QUIT
*2.5 TYPE "GREATER THAN ZERO"; QUIT
*IF (25-25)2.1",2.3",2.5
EQUAL TO ZEkO*

The IF statement may be shortened by terminating it with a semicolon or carriage return after the first

or second line number. If a semi colon follows the first line number, the expression is tested and

control is transferred to that line if the expression is less than zero. If the expression is not less than

zero, the program continues with the next statement,

*2.20 IF (X)1·8; TYPE "Q"

*

In the above example, when line 2 .20 is executed, if X is less than zero, control is transferred to line

1.8. If not, Q is typed out.

*3.19 IF (8)1·8",1.9
*3.20 TYPE 8

*

In this example, if B is less than zero, control goes to line 1.8, if B is equal to zero, control goes to

line 1.9. If B is greater than zero, control goes to the next statement, which in this case is line 3.20,

and the value of B is typed out.

IF commands are useful in programs that require a keyboard response during program execution. Refer

to Appendix F for use of this feature.

3-7

3.10 RETURN

The RETURN command is used to exit from a DO subroutine. When a RETURN command is encountered

during execution of a DO subroutine, the program exits from its subroutine status and returns to the

command following the DO command that initiated the subroutine status.

3. 11 QUIT

A QUIT command causes the program to halt and return control to the user. FOCAL types an asterisk

and the user may type another command.

3.12 COMMENT

Beginning a command string with the letter C wi II cause the remainder of that line to be ignored so

that comments may be inserted into the program. Such lines wi II be skipped over when the program is

executed, but wi II be typed out by a WRITE command.

3.13 FOR

This command is used for convenience in setting up program loops and iterations. The general format

is

The identifier A is initialized to the value B, then the command following the semicolon is executed.

When the command has been executed, the value of A is incremented by C and compared to the value

of D. If A is less than or equal to 0, the command after the semicolon is executed again. This process

is repeated unti I A is greater than 0, and FOCA 19oes to the next sequentia I line.

The identifier A must be a single variable. B, C, and D may be either expressions, variables, or

numbers. If comma and the va lue C are omitted, it is assumed that the increment is one. If C, 0 is

omitted, it is handled like a SET statement and no iteration is performed.

The computations involved in the FOR statement are done in floating-point arithmeti c, and it may

be necessary, in some circumstances, to account for this type of arithmeti c computation.

3-8

Example 1 below is a simple example of how FOCAL executes a FOR command. Example 2 shows the

FOR command combined with a DO command.

Example 1:

Example 2:

*ERASE ALL
* 1 • 1 SET A=. 1 00
*1.2 FOR 8=1,1,5; TYPE %5.02, "B IS"B+A,!
",GO
B I S= 101.00
B I S= 102.00
B I S= 103.00
B I S= 10LJ.00
B I S= 105.00

*

* 1 • 1 FO R X= 1 , 1 , 5; DO 2. 0
*1.2 GOTO 3.1

*
*2.1 TYPE !" "%3,"X"X
*2.2 SET A=X+100.000
*2.3 TYPE!" "%5.02,"A"A

*
*3. 1 QUIT
*GO

X=
A= 101.00
X= 2
A= 102.00
X= 3
A= 103·00
X= Lj

A= 10Lj.00
X= 5
A= 105.00*

3.14 MODIFY

Frequently, only a few characters in a particular line require changes. To faci litate this job, and to

eliminate the need to replace the entire line, the FOCAL programmer may use the MODIFY command.

Thus, in order to modify the characters in line 5.41, the user types MODIFY 5.41. This command is

terminated by a carriage return whereupon the program waits for the user to type that character in the

position in which he wishes to make changes or additions. This character is not printed. After he has

typed the search character, the program types out the contents of that line unti I the search character

is typed.

3-9

At this point, the user has seven options:

a. Type in new characters in addition to the ones that have already been typed out.

b. Type a form-feed (CTRl/l); this wi II cause the search to proceed to the next occurrence,
if any, of the search character.

c. Type a CTR l/BE ll; this a IIows the user to change the search character just as he did when
first beginning to use the MODIFY command.

d. Use the RUBOUT key to delete one character to the left each time RUBOUT is depressed.

e. Type a left arrow (...) to delete the line over to the left margin.

f. Type a carriage return to terminate the line at that point, removing the text to the right.

g. Type a LINE FEED to save the remainder of the line.

The ERASE ALL and MODIFY commands are generally used only in immediate mode because they return

to command mode upon completion. (The reason for this is that internal pointers may be changed by

these commands.)

During command input, the left arrow wi II delete the line numbers as well as the text if the left arrow

is the rightmost character on the line.

Notice the errors in line 7.01 below.

*7.01 JACK AND BILL W$NT UP THE HALL
*MODIFY 7.01
JACK AND 8\JILL W$\ENT UP THE HA\ILL
*WRITE 7.01
07.01 JACK AND JILL WENT UP THE HILL

*

To modify line 7.01, a B was typed by the user to indicate the character to be changed. FOCAL

stopped typing when it encountered the search character, B. The user typed the RUBOUT key to

delete the B, and then typed the correct letter J. He then typed the CTRl/BEll keys followed by the

$, the next character to be changed. The RUBOUT de leted the $ character, and the user typed an E.

Again a search was made for an A character. This was changed to I. A LINE FEED was typed to save

the remainder of the line.

3. 14. 1 Caution

When the MODIFY command is used the values in the user's symbol table are reset to zero. Therefore,

if the user defines his symbols in direct statements and then uses a MODIFY command, the values of his

symbo Is are erased and must be redefi ned.

3-10

However, if the user defines his symbo Is by means of indirect statements prior to using a MODIFY

command, the values will not be erased because these symbols are not entered in the symbol table

unti I the statements defining them are executed.

Notice in the example below that the va lues of A and B were set using direct statements. The use of

the MODIFY command reset their va lues to zero and listed them after the defined symbo Is.

*ERASE ALL
*S ET A= 1
*SET B=2
* 1 • 1 SET C= 3
* 1 .2 SET D= 4

* 1.3 TYPE A+B+C+D; TYPE !; TYPE $

*MODIFY 1. 1
SET C=3'\5
*GO
= 9.00
C@(00)=
D@(00)=
A@(00)=
B@ (00) =

*

5.00

3.15 USING THE TRACE FEATURE

The trace feature is useful in checking an operating program; those parts of the program which the user

has enc losed in question marks wi II be printed out as they are executed.

In the following example, parts of 3 lines are printed.

*ERASE ALL
*1.1 SET A=1
* 1 • 2 .s ET B= 5
*1.3 SET C=3
*1.4 TYPE %2" ?A+B-C?,,!
* 1 • 5 T Y P E ? B + A/ C? " !
*1.6 TYPE ?B-C/A?
*GO
A+ B- C= 3
B+A/C= 5
B- C/A= 2*

When on Iy one ? is inserted, the trace feature becomes operative when FOCAL encounters the ?

during execution, and the program is printed out from that point until another? is encountered (the

program may loop through the same ?), unti I an error is encountered (execution stops and an error

message is typed), or unti I program completion.

3-11

*ERASE ALL
*1.1 ?SET A=0B; TYPE %3"A!
* 1 • 2 FOR B= 1 " 1 " 4 ; T Y P E B + A !
*GO
SET A=0B; TYPE %3"A!
= '1 FOR B= 1 " 1 " 4 ; T Y P E B + A !

1 TYPE B+A!
= 2 TYPE B+A!

3 TYPE B+A!
4*

In this example, FOCAL encountered the? as it entered line 1. 1 and traced the entire program.

3.16 MATHEMATICAL FUNCTIONS

The functions are provided to give extended arithmetic capabilities and to give the potential for

expansion to additional input-output devices. A standard function ca" consists of four letters beginning

with the letter F and followed by a parenthetica I expression.

FSGN(A-B*2)

There are three basic types of functions, two of which are included in the basic FOCAL program. The

first type contains integer part, sign part, and absolute va lue functions.

In the second type, the extended arithmetic functions, are loaded at the option of the user. They will

consume approximately 800 locations of the users program storage area. These arithmetic functions are

adapted from the extended arithmetic functions of the PDP-8 three-word floating-point package and are

fully described in the Floating Point System Manual (Order No. DEC-08-YQYA-D).

The input-output functions are the third type. These include a nonstatistical random number generator

(FRAN). This function uses the FOCAL program itself as a table of random numbers. An expanded

version could incorporate the random number generator from the DECUS library. Following are

examp les of the functions now avai lab Ie.

a. The square root function (FSQT) computes the square root of the expression within parentheses.

*TYPE %2" FSQT(4)
= 2*
*TYPE FSQT(9)

3*
*TYPE FSQT(144)
= 12*

3-12

b. The absolute value function (FABS) outputs the absolute or positive value of the number in
parentheses.

*TYPE FABSC-66)
= 66*
*TYPE FABSC-23)
= 23*
*TYPE FABSC-99)
= 99*

c. The sign part function (FSG N) outputs the sign part (+ or -) of a number and the integer
part becomes a 1 •

* T Y P E F S GN C 4 - 6)
=- 1 *
*TYPE FSGNC4-4)
= 1*
* T Y P E F S Gl\l C - 7)

= 1*

d. The integer part function (ATR) outputs the integer part of a number up to 2046.

*TYPE FITR(S.2)
5*

*TYPE F I TR C 5 5. 6 6)

= 55*
*TYPE FITR(77.434)

= 77*
*TYPE F I TR (- 4. 1)
- 4*

e. The random number generator function (FRAN) computes a nonstatistica I pseudo-random
number between ±1.

*TYPE %.1 FRAN ()
= 0.607295E+00*
* T Y P E FRAN C)
= 0.737615E+0(7)*

f. The exponential function (FEXP) computes e to the power within parentheses. (e = 2.718281)

= 0.194829E+01*
*TYPE FEXPC.666953)
= 0.194829E+01*
*TYPE FEXPC1.23456)
= 0.343687E+01*
* T Y P E F EX PC - 1 •)
= 0.367879 E+0Vl*

3-13

g. The logarithm function (FLOG) computes the natura I logarithm (log) of the number within
e

parentheses.

*TYPE FLOGCl.000(0)
= 0.000000 E+00*
*TYPE FLOGCl.9~765)
= 0.686953E+00*
*TYPE %5.03, FLOGC2.065)

0.725*

h. The arc tangent function (FA TN) ca Icu lates the ang Ie in radians whose tangent is the
argument within parentheses.

*TYPE FAT!\) C 1.)
= 0.785398E+00*
*TYPE FATNC.31305)
= 0.303386E+00*
*TYPE FATNC3. 141592)
= 0· 126263E+01 *

i. The sine function (FSIN) calculates the sine of an angle in radians.

*TYPE %, FSII\JC3.14159)
= 0.333786E-05*
*TYPE FSIN C 1.400)
= 0.985448E+00*

Since FOCAL requires that angles be expressed in radians, to find a function of an angle in degrees,

the conversion factor, IT/180, must be used. To find the sine of 15 degrees,

*SET PI=3.14159; TYPE FSU".JC 15*PI/180)
= 0.258819E+00*
*TYPE FSINC45*3.14159/180)
= 0.707106E+00*

i. The cosine function (FCOS) ca Icurates the cosine of an ang Ie in radians.

*TYPE FCOSC2*3.141592)
= 0.999996E+00*
*TYPE FCOSC.500(0)
= 0·877582E+00*
*TYPE FCOSC45*3.141592/180)
= 0.707107E+00*

3-14

CHAPTER 4

EXAMPLES OF FOCAL PROGRAMS

The programs in this chapter reveal some of FOCAL's features in various applications. The examples

show that FOCAL finds practical application in any situation.

a. FORTRAN-type problems are handled easi Iy with little programming time.

b. FOCAL's easy-to-Iearn language allows the user to concentrate more on his problem than
on prog ramm i ng •

c. FOCAL, as a tool, is easier to learn and use than a slide rule or any other desk calculator,
and it offers vastly more than any combination of previous problem solving tools.

d. FOCAL can calculate complex problems and print/display the results in lIone fell swoop. II

The example programs included in this chapter were first punched onto paper tape. Each program

was loaded into core using FOCAL's high-speed paper tape reader input feature. The WRITE command

was then used to get the program printout for inclusion here. Then the GO command was issued to

execute each program.

When using the WRITE command, FOCAL immediately identifies the version of the FOCAL tape being

used--in this case, C-FOCAL, 1969. The C preceding FOCAL, 1969 is the comment line indicator.

4.1 TABLE GENERATION USING RJNCTIONS

The ability to evaluate simple arithmetic expressions and to generate values with the aid of the extended

functions is one of the first benefits to be obtained from learning the FOCAL language. In this example,

a table of the sine, cosine, natural logarithm, and exponential values is generated for a series of

arguments. As one becomes fami liar with these and other library functions, it becomes easy to combine

them with the standard arithmetic operations of addition, subtraction, multiplication, division, and

4-1

exponentiation. The user should then be able to evaluate any given formula for a single value or for a

range of va lues as in this example.

Although FOCAL allows the typing of more than one command per line, each command in this example

has been typed on a separate line to maintain clarity. In this example, line 01.05 outputs the desired

column headings. Line 01 .10 is the loop to generate values for I, beginning with the value 1.00000

and continuing in increments of .00001 up through the value 1.00010; the DO 2.05 command at the

end of this second line causes line 02.05 to be executed for each value of I. Line 02.05 is the com­

mand to evaluate the various library functions for the I arguments; the %7.06 specifies that all output

results up to the next % symbol are to appear in fixed-point format with one digit position to the left

of the decimal point and six digit positions to the right: the second % symbol reverts the output mode

back to floating point for the remaining values - FLOG(l) and FEXP(l). Line 01.20 (optional) returns

control to the user.

Several techniques can be noted in this example.

a. FOCAL commands can be abbreviated to the first letter of the command followed by a space,
as shown by the use of T instead of TYPE. This technique can be used to shorten command strings.

b. Arguments can be enc losed in various ways: (), < >, [J. This abi lity is usefu I in match­
ing correctly when a number of such enclosures appear in a command.

c. Spaces can be inserted in an output format by enclosing the appropriate number of spaces
within quotation marks. Such use of spacing is recommended to improve the readabi lity of the
output results.

d. FOCAL's accuracy makes possible the use of very small loop increments (in this example,
.00001) •

*
C-FOCAL,1969

01.05 T "I SINE COSINE
01.10 FOR 1=1,.00001,1.0001; DO 2.05
01.20 QUIT

LOG E" !

02.05 T %7.06,1," ",FSINCI)," ",FCOS<I>," ",%,FLOG[I]," ",FEXPCI),!!

*
*
*GO

4-2

I SINE COSINE LOG E
= 1.000000 = 0.841471 0.540302 0.000000E+00 0.271828E+01

= 1.000010 = 0.841476 0. 540294 0.977507E-05 = 0.271831E+01

= 1.000020 0.841481 = 0.540286 0.195501E-04 0.271834E+01

1.000030 = 0.841486 = 0.540278 0.293249E-04 0.271836E+01

1.000040 0.841492 0.540269 = 0.390997E-04 = 0.271839 E+ 01

1.000050 = 0.841497 0. 540261 = 0.488744E-04 0. 271 842 E+ 0 1

= 1.000060 = 0.841502 0.540253 0.586490E-04 = 0.271844E+01

= 1.000070 = 0.841508 = 0.540245 0.684235E-04 0.271847E+01

= 1.000080 0.841513 = 0.540236 = 0.781979E-04 = 0.271850E+01

1.000090 0.841518 = 0.540228 0.879723E-04 = o • 2 71 8 52 E+ 0 1

= 1.000100 = 0.841523 0.540220 0.977465E-04 0.271855E+01

*

4.2 FORMULA EVALUATION FOR CIRCLES AND SPHERES

In this example, FOCAL is used to calculate, label, and output the following values for an indefinite

number of radii typed in by the user.

Given: radius{R}

Program calculates: circle diameter 2R

eirc Ie area 1TR2

circle circumference 21TR
3

sphere volume 4/31TR
2

sphere surface area 41TR

Although the American system of inches is used in this example, conversions to other systems {metric,

for example} could be very easily incorporated into the program, thus eliminating any need for hand­

co Iculated conversions.

4-3

The program is very straightforward. ASK is used to allow the user to type in the radius value to be used

in the calculations. SET is used to supply the value of 1T {PI}. TYPE is used for all calculations and out­

put. Note that if a value (such as PI in this example) is to be entered once and then used in repeated

calculations, it should be entered by a SET command which is outside the calculation loop, otherwise,

the variable would be set at the beginning of each pass through the loop. However, if the value of the

variable changes during each iteration, then it must be calculated either by a SET or TYPE command

within the loop.

The use of the GOTO command (line 01 .60) resu Its in an infinite loop of lines 01 • 10 through 01 .60.

This technique is used when the number of desired repetitions is not known. The looping process can be

terminated at any time by typing CTRl/C. If, however, the number of desired repetitions is known

(e.g., 10), the following method can be used.

*SET FI=3.14159
* 1 • 1 ASK •••

*1.6 TYPE!!!!!

*
*FOR 1=1,,10; DO

(Eliminate GOTO 1 .1)

(Direct command; causes a I I
steps in group 1 to be ex­
ecuted 10 times)

The abi lity to choose between these methods provides great flexibi lily in actually running FOCAL

programs.

*
C-FOCAL,,1969

01.01 SET PI=3.141592
o 1 • 1 0 A SK " A RA DIU S 0 F" " R" " INC H E S"
01.20 TYPE %8.04" !" " GENERATES A CIRCLE OF:"" !
01 • 21 TYPE " DIAMETER"" 2*R,," INCHES""
01.30 TYPE" AREA"" PI*Rt2,," SQUARE INCHES""
01.35 TYPE" CIRCUMFERENCE"" 2*PI*R,," INCHES""
01.40 TYPE !" " AND A SPHERE OF:"" !
01.49 TYPE" VOLUME"" (4/3)*PI*Rt3,," CUBIC INCHES""
01 • 50 TYPE " AND SURFAC E AREA"" 4*P 1* Rt 2,," SQUARE INCH ES"
01 • 60 TYPE !!!; GO TO 1. 1

*
*GO

4-4

A RADIUS OF:l INCHES
GENERATES A CIRCLE OF:

DIAMETER= 2.0000 INCHES
AREA= 3.1416 SQUARE INCHES
CIRCUMFERENCE= 6.2832 INCHES

AND A SPHERE OF:
VO L UM E = 4. 1 888 C UB I C INC H E S
AND SURFACE AREA= 12.5664 SQUARE INCHES

A RADIUS OF:l.414 INCHES
GENERATES A CIRCLE OF:

DIAMETER= 2.8280 INCHES
AREA= 6.2813 SQUARE INCHES
CIRCUMFERENCE= 8.884~ INCHES

AND A SPHERE OF:
VOLUME= 11.8~23 CUBIC INCHES
AND SURFACE AREA= 25.1252 SQUARE INCHES

A RADI US OF:

4 .3 TEMPERATURE CO NVERSION

Measurement system conversions are time consuming in many lines of work. A short FOCAL program,

such as the one illustrated in the following example, eliminates hours of repeated calculations. In

this particular example, the problem is to convert temperatures from degrees Fahrenheit to degrees

Centigrade, using the formula:

This routine is quite similar in structure to the "Table Generation ll example. The one basic difference

is that here the user can input the loop parameters which govern the generation of the output. Thus,

provision has been made for output of properly labeled requests for starting, ending, and incrementing

values and their input for use by the program.

4-5

The abi fity for loop paramenters to be negative, zero, fracti ona I, or expressi ons, provides power

beyond many other simi lar languages in simplifying the routine's structure. It also reemphasizes the

flexibifity and control over FOCAL programs at the time they are run.

C- FO CAL ~ 1969

02.10 ASK "FROM"~START~" TO"~END~" DEGREES FAHRENHEIT"~!
02 • 20 AS K " I N INC R EM EN T S 0 F .. ~ INC R ~" D E G R E E S "~ !
02.30 TYPE "THE APPROPRIATE FAHRENHEIT TO CENTIGRADE CONVERSIONS ARE:"
02. LJ0 FOR T=START~ INCR~ END; TYPE!; DO 2.5
02.LJ5 QUIT
02.50 TYPE " "~T~" FAHR. DEG •••••• "~ (T-32)*5/9~" CENTIGRADE DEG."

*
*DO 2
FROM:-LJ0 TO:80 DEGREES FAHRENHEIT

I N INC R EM EN T S 0 F : 20 D E G R E E S
THE APPROPRIATE FAHRENHEIT TO CENTIGRADE CONVERSIONS ARE:

-- LJ0.0000 FAHR. DEG •••••• =- LJ0.0000 CENTIGRADE DEG.
20.0000 FAHR. DEG •••••• =- 28.8889 CENTIGRADE DEG.

= 0·0000 FAHR. DEG •.•.•• =- 17.7778 CENTIGRADE DEG.
20.0000 FAHR. DEG •••••• =- 6.6667 CENTIGRADE DEG.

= 40.0000 FAHR. DEG •.•.•• = 4.4445 CENTIGRADE DEG.
60.0000 FAHR. DEG •••••• = 15.5556 CENTIGRADE DEG.
80.0000 FAHR. DEG •••••• = 26.6667 CENTIGRADE DEG.*

4.4 ONE-UNE RJNCTION PLOTTING

This example demonstrates the use of FOCAL to present, in graphic form, some given function over a

range of va lues. In this example, the function used is

-.lx
y = 30 + 15(SIN(x»e

with x ranging from 0 to 15 in increments of .5. This damped sine wave has many physical applications,

especia fly in electronics and mechanics (for example, in designing the shock absorbers of a car).

In the actual coding of the example, the variables I and J were used in place of x and y, respectively;

any two variables could have been used. The single line 08.01 contains a set of nested loops for I and

J. The J loop types spaces horizontally for the y coordinate of the function; the I loop prints the *

symbol and the carriage return and fine feeds for the x coordinate. The function itself is used as the

upper limit of the J loop, again showing the power of FOCAL commands.

4-6

The technique illustrated by this example can be used to plot any desired function. Although the *

symbol was used here, any legal FOCAL character is acceptable.

C-FOCAL,1969

*
*DO 8.01
*

4.5 EXTENSIONS TO PLOTTING

*
*
*

*

*

*

*

*
*

*
*
*

*
*

*
*
*

*
*

*

*
*

*
*

*
*

*
*
*
*

*

In th is next examp Ie, the wave form is the same as that shown under One-li ne Function P lotti ng, i. e . ,

a damped sinusoid; however, both the x and y axes have been added to increase the readabi lity of the

output. Since amplitude and the damping factor can be varied, a series of such plots shows their

relative effects and can be used as a learning tool, or for trial and error solutions.

Another FOCAL command, IF, is used to position the x axis in the output. Two different options are

used once the comparison within the parentheses is made. In line 02.10, the statement numbers

separated by commas indicate where to branch if the expression is negative, zero, or positive,

4-7

respectively. However, in line 03.10 a branch is made to 3.3 if the expression is negative, or 3.2 if

the expression is zero, but for the positive case (J is less than 31) the remainder of the line is executed.

Whereas, in previous examples on Iy sing Ie lines were executed as subroutines by DO commands (e.g.,

DO 2.05). This routine contains DO commands which execute a group of lines as a subroutine before

returning to the statement following the DO (e.g., DO 2, DO 3).

It is often useful to superimpose one function plot upon another. This can be accomplished in FOCAL

by replacing the exclamation point (representing a carriage return, line feed) with the number sign

(representing a carriage return only) in certain TYPE commands. A very large number of functions

using different plot symbols could be superimposed in this way. Often it is useful to follow each line in

a function p lot with the va lue of the function at that point, thus producing ana log and digital output

together. One can see from the spacing of the dots on the x and y axes that the Teletype produces a

scale with a horizontal to vertical ratio of 5-to-3 (i.e., five horizontal spaces = 3 vertical line feeds).

This factor must be taken into account when plotting closed curves such as eirc les.

It should be noted that FOCAL library functions already provide for output displays on oscilloscopes as

well as for analog-to-digital conversions.

4-8

C-FOCAL,,1969

01.03 ASK "SINE WAVE AMPLI TUDE"" AMPL" !
01.04 ASK "DAMPING FACTOR COEFFICIENT"" T"
01.05 FOR K=0" 60; TYPE "."
01.06 TYPE !; FOR 1=0".5,,15; DO 1.1t; TYPE "*"; DO 3
01.07 QUIT
01.11 FOR J=0,,30+AMPL*FSINCI)*FEXPC-T*I); DO 2; T" "

02.10 IF CJ-32) 2.3" 2.2" 2.3
02.20 TYPE "."
02.30 RETURN

03.10 IF C31-J) 3.3" 3.2; FOR K=J,,30; TYPE" "
03.20 TYPE "."
03.30 TYPE !; RETURN

*
*GO
SINE WAVE AMPLITUDE:15
DAMPING FACTOR COEFFICIENT:·135

*.
*

*
*

*
*

*
*

*
*
*

*

*
*

*
*

*
*

*

* ·
*

*
*
*
*
* ·

*
* · *
*
*

4-9

4.5. 1 P lotti ng on the Osci IIoscope

This is an example of using the FDIS function for plotting on the osci IIoscope. The function is used in

the SET command of statement number 01.40 as shown below, which is equivalent to

SET H = FDIS (X, Y)

where X and Yare the X and Y coordinates of the point to be plotted on the scope.

The program will plot a sine wave with a user-determined number of complete cycles (Q).

C-FOCAL.,1969

o 1 • 1 0 ASK " NO. OF C Y C L E S" Q

01.20 F !=0.,50; S X(!)=20*!; S Y(!)=(FS1N(3.14159*1/(25/Q)+I)*500
01 .30 T "READY TO PLOT" .,!
01.40 F 1=0.,50; S H=FD!S(X(!).,Y(1))
01 • 50 G 1. 4

*
*GO
NO. OF CYCLES:2
READY TO PLOT

4.6 DEMONSTRATION DICE GAME

Sooner or later, peop Ie who have access to a computer wi II try to "match brains" with it or use it for

their own enjoyment. Such pastimes are usually keyboard oriented and FOCAL lends itself nicely to

these ends. The following examp Ie uses the random number generator, FRAN(), to produce dice

combinations, plus IF logic to check bets and winning combinations.

Note again the use of initials to abbreviate commands throughout the example (remenber that each such

abbreviation must be followed by a space). lines beginning with a C indicate that the line is to be

treated as a comment and is not to be interpreted or executed. If a comment statement is preceded by

a statement number, the line is stored as part of the program but does not affect the program logic.

The random number generator must be modified for use with statistical or simulation programs to achieve

true randomness. However, it is sufficiently random for most applications in its present form.

NOTE

We naturally cannot assume any responsibility for the use
of this or any similar routines.

4-10

C-FOCAL., 1969

01 • 10 S B= 0; T ! ! "0 ICE GAM E" ! ~ "HO US E LIMIT OF $1000
01 • 13 T " . MIN IMUM BET IS $ 1 " ! !
01.20 ASK "YOUR BET IS"A;IF (1000-A) 3. 1
01.22 I (A- 1) 3. 4 ~ 1 • 2 6 ~ 1 • 26
01.26 I (A-FITR(A))3. 5~ 1. 3~3. 5
01. 30 ASK M;OO 2;S 0= C; DO 2;T " ";S O=D+C
01 .32 I (0-7) 1.42~3.2~ 1.42
01 • 40 I (0-2)1.5,,3.3.,1.5
01.42 (0- 11) 1· 4., 3.2., 3.3
01.50 I (0- 3) 1.6.,3.3,,1.6
01.60 ASK M; DO 2;S E= C; DO 2;T " "; S E= E+C
01.72 I (E-7) 1.74.,3.3~ 1.74
01.74 I (E-0)1.6,,3.2~1.6

02. 10 S C= FIT R (1 0 * FA B S (FRAN ())) ; I (C - 6) 2 • 2 ~ 2. 2., 2 • 1
02.20 (C - 1) 2. 1 ; T % 1 " " " C; RET URN

03. 10 T "H 0 USE LIM ITS AR E $ 1 000 " ! !; G 1. 2
03.20 S B=B+A;T %7,,! "YOU WIN. YOUR WINNINGS ARE "B,,!!; GOTO 1.2
03.30 S
03.40 T

B=B-A;T %7" !"SORRY., YOU LOSE. YOUR WINNINGS ARE"B,,! !;G 1.2
"M I N 1M UM BET I S $ 1 " ! ! ; G 1. 2

03.50 T "N 0 P EN N I E S ~ P LEA S E"! ! ; GOT 0 1. 2

*
*GO

o ICE GAI"1 E
HO USE LIM ITO F $ 1 000 • MIN 1M UM BET I S $ 1

YOUR BET IS: • 50 MIN I M UM

YOUR BET IS: 1 5
6 = 3

= 4 :
= 4 5

YOU WIN. YOUR

YOU R BET IS: 5
= 2 = 2
= 6 1

WINNINGS

BET IS $1

ARE

SORRY~ YOU LOSE. YOUR WINNINGS ARE

YOUR BET IS: 10 :
= 6 = 5

YOU WIN. YOUR WINNINGS ARE =

15

2(1)

1(1)

YOUR BET IS: I'LL QUIT WHILE I'M AHEAD. THANKS!

4-11

4.7 SIMULTANEOUS EQUATIONS AND MATRICES

Many disciplines use subscripted variables for vectors in one, two, or more dimensions to store and

manipulate data. A common use is the 2-dimensiona I array or matrix for hand ling sets of

simultaneous equations. For example,

Given: 1 Xl + 2X2 + 3X3 = 4

4X 1 + 3X2 + 2X
3

= 1

lX
1

+ 4X
2

+ 3X
3

= 2

Find: The values of Xl' X
2

, and X3 to satisfy all three equations simultaneously.

The solution can be reduced to simple mathematics between the various elements of the rows and columns

until correct values of X are found.

Since FOCAL uses on Iy a sing Ie subscript, the hand ling of two or more dimensions requires the genera­

tion of a linear subscript which represents the correct position if it were stored in normal order; i.e.,

leftmost subscript moving fastest.

4.7.1 In One Dimension

ARRAY ()

4.7.2 In Two Dimensions

o
1

2

2

4

ARRAY(row, column) or A(I,J)

Element D could be represented as ARRAY(3);

any element in this array can be represented

by a subscript in the range 0 through 4. The

first element in an array always has a sub­

script of O.

This must be reduced to the form A(G), where G is a function of I and J; that is, A(I,J) = A(G).

Consider the diagram

4-12

1=0

1

2

3

4

J=

o 2

0 5 10

1 6 11

2 7 12

3 8 13

4 9 14

The numbers along the outside edges of the box above are the 2-dimensional subscripts; the numbers

inside the box are the linear subscripts. Thus each combination of I and J can be given a unique value,

e.g., for I = 2 and J = 1 the element is 7 •

Notice that for a constant I, increasing the value of J by one increases the value of the linear subscript

by five. Simi larly, for a constant J, increasing the value of I by one increases the linear subscript by

one.

The array, above, has five rows and three columns, so two va lues can be defined:

IMAX = 5 and JMAX = 3

The tota I number of elements is lMAX * JMAX = 15 • To generate the number Gin any box, usi ng the

corresponding values of I and J, the formula is

G = I + IMAX * J or A(G)

which is equivalent to A(I+IMAX*J). The example of solving simultaneous equations, above, uses this

algorithm for subscripts merely by replacing I, lMAX, and J with J, l, and K, respectively, so as to
1\

form the equation

A(J + l * K)

Each element in a 2-dimensional array represents an area.

4.7.3 In Three Dimensions

ARRAY(row, column, plane) = A(I,J,K) = A(G)

In a 3-dimensional array, each array represents a volume.

4-13

1= 0

2

3

4

J= 0 2

This matrix has dimensions of five rows, three columns, and five planes; thus, IMAX = 5, JMAX = 3,

and KMAX = 5. Each plane is numbered exactly as in the 2-dimensional example, except with the

addition of 15 times K (with K = the number of planes back from the first) to each subscript in the first

plane. For example,

Upper lefthand square, back one plane from the first = 15

1=0, J = 0, K = 1; I + (IMAX*J) + (IMAX*JMAX*K) = 15 = G

or

A(O, 0, 1) = A(15}

4.7.4 In Four Dimensions

ARRAY (row, column, plane, cube) = A(I, J, K, L} = A(G}

Assign the values for IMAX, JMAX, KMAX; a method similar to the one used above yields

G = I + (IMAX*J) + (IMAX*JMAX*K) + (IMAX*JMAX*KMAX*L)

This process can be extended indefinitely to n-dimensionsl

4-14

Example 1:

Example 2:

0= 5= 10
= 1= 6= 1 1

2= 7= 12
3= 8= 13

= 4= 9= 14*
*

*1.05 TYPE "ENTER 3 ROWS AND 4 COLUMNS OF NUMBERS."!
*1.10 FOR J=0,2; TYPE !; FOR K=0,3; ASK NoeJ+3*K)
*1.15 SET MAX=No(0)
*1.20 FOR J=0,2; FOR K=0,3; DO 02.00
* 1 .25 TYPE !, "LARGEST NUMBER IS", MAX; QUI T

* *2.05 IF eMAX-NoeJ+3*K» 2.10; RETURN
*2.10 SET MAX=NoeJ+3*K); RETURN

*
*GO

ENTER 3 ROWS AND 4 COLUMNS OF NUMBERS.

:0 :5 :8 :9

:1 :2 :3 :4

:9 :8 :7 :6

LARGEST NUMBER IS = 9*
*
*GO
ENTER 3 ROWS AND 4 COLUMNS OF NUMBERS.

:A :B :C :D

:A :B :C :D

:A :B :C :D

LARGEST NUMBER IS = 4*

*
*GO
ENTER 3 ROWS AND 4 COLUMNS OF NUMBERS.

:A :B :C :D

:4 :3 :2 :1

:A :4 :C :2

LARGEST NUMBER IS = 4*

*

4-15

Example 3:

C-FOCAL.,1969

01.02
01 .04
01.05
01 • 10
01 • 11
01. 12
01 • 14
01 • 16
01.17
01 • 18
01.20
01.22
01.23
01.26
01.28
01.29

04.05
04.10
04.20
04.22
04.30

TYPE !"ROUTINE TO SOLVE MATRIX EQ. AX=B FOR X"!
ASK "ENTER DIMENSION OF A., THEN
TYPE !"ENTER COEFF'S ACJ.,K) ••• ACJ.,N) AND BCJ)"!
ASK L.,!; SET N = L - 1 ; SET I = - 1
FOR K=0.,N; SET RCK)=K+ 1
FOR J=0.,N; TYPE !; FOR K=0.,L; ASK ACJ+L*K)
SET M=IE-6
FOR J=0.,N; FOR K=0.,N; DO 4
SET REPJ=0.
FOR K=0.,L; SET AEP+L*KJ=A<P+L*K>/M
FOR J=0., N; DO 5
SET 1=1+1
IF C 1- N) 1. 1 4., 1.26., 1. 1 4
FOR J=0.,N; FOR K=0.,N; DO 7
FOR K=0.,N; TYPE !%2.,"XC"K.,") ".,%8.05.,XCK)
TYPE !!; QUI T

IF CR<J» 0., 4.3., 4.1
IF CFABSEA<J+L*K>] - FABS[M]) 4.3;
SET M=ACJ+L*K)

\

SET P=J; SET Q=K
RETURN

o 5. 1 0 I F C J - P) 5 • 2., 5. 4, 5. 2
05.20 SET D=ACJ+L*Q)
05.30 FOR K=0.,L; SET A<J+L*K>=A[J+L*KJ-ACP+L*K)*D
05.40 RETURN

07.10 IF CIE-6-FABSEACJ+L*K)]) 7.2; RETURN
07.20 SET XCK)=ACJ+L*L)

* *GO

ROUTINE TO SOLVE MATRIX EQ. AX=B FOR X
ENTER DIMENSION OF A., THEN
ENTER COEFF'S ACJ.,K) ••• ACJ.,N) AND BCJ)
:3

: 1 : 2 : 3 : 4
:4 : 3 :2 : 1
: 1 : 4 : 3 :2
X(= 0) 0.00000
X(= 1) = 1.00000
XC= 2) = 2.00000

4-16

5.1 THE SYSTEMS

CHAPTER 5

ADVANCED FOCAL SYSTEMS

The user who has mastered the fundamental FOCAL system can appreciate the expanded FOCAL capa­

bilities. Primarily, there are two ways to increase FOCAL's powers:

a. share FOCAL on a single computer with more than one person (multi-user segments)

b. expand a single user system to allow longer programs, improved accuracy, and
graphic display (additional segments).

Table 5-1 describes all segments of FOCAl. Each is available on binary coded paper tape. A simple

one-pass loading procedure adds these extra capabilities to the FOCAL system.

Segment Name

Interpreter System

FOCAL

FLOAT

INIT

Multi -User Segments

LIBRA

QUAD

Table 5-1
FOCAL Segments

Function

The interpreter and teletype input/output
handler.

Modified floating-point package.

The symbolic source for the initial dialogue
program.

Allows multiple users (up to seven) to run
and save FOCAL programs on an 8K PDP-8
with Disk.

Allows multiple users (up to four) to share
FOCAL on an 8K PDP-8.

5-1

Seg ment Name

Addi ti ona I Seg ments

4-Word)

8K

CLINE 1

Uti lity
Package

PLOTR) Graphics
Package

GRAPH ..J

Table 5-1 (Cont)
FOCAL Segments

Function

Extended accuracy overlay to FLOAT (gives 10
digits) .

Allows one user to take advantage of an 8K
PDP-8.

Permits scope to interact with FOCAL to display
vectors, arcs and cursors.

For use with an incremental plotter.

For use with KV8/I.

FOCAL and FLOAT must be assembled and loaded together for all program configurations. They are

separated for editing convenience.

5.2 MULTI-USER SEGMENTS

FOCAL can be shared simultaneously by more than one user by parcelling computer time among the

various users. Such a system, referred to as time-sharing, permits one computer to serve several persons,

allowing each user to feel he has the system all to himself. No detectable delays occur under normal

operating conditions. With a very heavy workload, some users may detect only a slight delay, less

than a second, in response to their commands to FOCAL.

The two multi-user systems associated with FOCAL are detailed below. loading procedures for each

are explained in Appendix E.

5 .2 . 1 QUAD (Four-User FOCAL)

QUAD permits from one to four persons to use FOCAL simultaneously on an 8K PDP-8, -8/L, or -8/1

Computer. Up to four Teletype consoles and appropriate PT08 or DC02 (for 8/L) communicating units

are required.

5-2

5.2.2 LIBRA (Seven-User FOCAL)

LIBRA allows up to seven persons to use FOCAL efficiently on one 8K PDP-8, 8/1, or 8/L Computer.

LIBRA requires, in addition to from one to seven Teletype consoles and appropriate PT08's or DC02's,

at least one disk (RF08 or DF32). There are two versions of LIBRA available, depending on the user's

disk system, i.e., and RF08 or DF32 version. A disk initialization routine, DISKIN, prepares the

disk for use by LIBRA. (Refer to Appendix E.) With LIBRA user programs can be saved, retrieved, or

deleted from the disk by library capabilities. Each program is assigned a name by the user, and a

three-word command tells LIBRA what to do with that program. In all cases, the name of a program

must be one to four characters. An accurate directory of saved (stored) user programs can also be listed

by LIBRA.

5.2.2.1 LIBRA Commands - There are four LIBRA commands to perform the LIBRARY functions (where

~ represents typing the RETURN key):

a. To save a program on the disk, use the command

LIBRARY SAVE name)

This wi II store the entire program on the disk for future use.

b. To call a stored program from the disk, the command

LIBRARY CALL name)

will bring the named program into the user's area for immediate operation. Execution
begins at the first line of the called program, as if the user had typed a GO command.

c. If a program is stored and will no longer be needed, it may be removed from the
disk by

LIBRARY DELETE name)

d. The user may wish to have LIBRA list the names of all the programs it has stored on
the disk. Use

LIBRARY LIST)

to obtain the directory of stored program names. Note that this command cannot be
abbreviated to L L. Note also that the LIST command destroys any program in the
active user's area by an ERASE ALL.

While using these library commands to the disk, very few errors are possible. When saving a program

(refer to subparagraph (a) above), LIBRA may find a program with an identical name in its directory

list. Because each stored program must have a different name, the present program cannot be stored

until the user gives it a new name. Also, the directory may be full already; therefore, this program

cannot be stored.

5-3

After the program has been stored and the user wants to call or delete it from the disk, the only error

possible is that LIBRA may find no such program name in its directory. Check your typing to be sure

you spelled the program name correctly. The error codes for the above have the same format as normal

FOCAL error code. They are listed in Appendix B.

5.2.2.2 Common Storage Function - LIBRA has swapping abi Iities which permit users to trade programs

and data. The FCOM function allows a program to pass up to five to another program. It is used as

follows:

FCOM (J,Z) stores element Z in array element J

FCOM (J) retrieves array element J

Index J has a range of 0 < J <4.

The FCOM function is explained fully in LIBRA System Specifications (DEC-QS-AJCA-DL).

5.2.2.3 Limitation on FOCAL with LIBRA - When operating at full capacity, LIBRA places only a

few limitations on FOCAL, none of which interfere with normal system operation. These limitations

are:

a. The command for the high-speed reader is inoperable.

b. The FADC (analog to digital conversion) and FDIS (display) functions cannot be used.

c. None of the additional FOCAL segments (see Section 5.3) are compatible with LIBRA.

d. The use of the trace feature should be limited to prevent delaying execution of other
users I commands. Trace only as few characters as necessary. To stop a program while
using the trace feature, it may be necessary to depress CTRL/C more than once.

e. The search character of the MODIFY command is echoed.

LIBRA is described more fully in LIBRA System Specifications (DEC-OS-AJCA-DL).

5.3 ADDITIONAL SEGMENTS

FOCAL IS capabilities can be expanded to provide greater accuracy, larger user program, size, increased

variable storage, and improved graphic display by loading an additional section of paper-tape to

FOCAL. These tapes are called overlays and are provided in binary coded format. The powers and

uses of the segments are described below. Loading procedures for all overlays are included in

Appendix E.

5-4

5.3.1 Uti lity Package

The uti Iity package includes:

a. 4WORD - To increase FOCAL's accuracy to 10 digits for arithmetic operations. Because
of this increased accuracy, there is a small decrease in the number of program variables that
can be stored. Note that extended functions, trigonometric and exponential, are accurate to
6 places.

b. 8K - To increase program size, the 8K overlay activates an additional 4K of core
memory. This permits significantly longer programs to be used with no decrease in the
number of program variables that can be stored. The user's system must have 8K hardware
for this segment. The 8K system has all the capabi Ities of 4K FOCAL, with the exception
that the MODIFY command and other text changes do not erase variables. Only an ERASE
command wi II clear the storage area in 8K FOCAL.

5.3.2 CLINE Graphics Package

By interfacing a PDP-8 system with a VC8 control unit which will handle a variety of display devices

(340, Tektronix 611) and loading the CLINE overlay, vectors and arcs are displayed for visual inspec­

tion. The coordinate systems vary for these instruments; programs in this manual are based on a 340

scope, the coordinate system of which is:

O,8L
0,0 800,0

CLINE is especially useful for numerical control. CLINE can produce two basic types of lines: vectors

and arcs; each type has a fundamental command string and the two can be combined at any time.

CLINE will display a vector, the starting and ending points of which (XO, VO and X,V, respectively)

have been defined. To display a line, a DO 17 command must be incorporated into the program after

each set of ending points has been assigned. The following four lines must be added to the program to

display a line:

*16.2 SET P=X-X0; SET Q=Y-Y0; SET R=FSQT<Qt2+Pt2)
*16.3 SET Z=FDIS<6.3*R*C,P,Q,X0,Y0,S/R)
*16.4 SET X0=X; SET Y0=Y
*17.1 DO 16.2; SET Z=FDIS<R,P/R,Q/R,X0,Y0,0); DO 16.4

5-5

Note that line 17. 1 resets the values of XO and VO to the previous ending points, X, V, by a reference

to line 16.4; thus, the end of one line automatically becomes the start of the next line. To start the

next line from a different point, assign new values to both the starting and ending points.

To display an arc, the following variables must be defined:

XO, VO
X,V
C

S

XO,VO

center r----~--------~-

starting point (-J (X_XO)2 + rr-VO)2 = radius)
circumference, where

C = .5 is a semicircle; C = 1 is a full circle

direction, where

S = +1 counterc lockwise; S = -1 clockwise

X,V

C = .25

S = +1

After assigning values to the above variables and creating the routine to perform, increment, and re­

start the display pattern, a DO 16 command must be put in the program to perform the actual display

function evaluation for each set of values and then project the results on the scope. The group 16

commands for arc generation are as follows:

*16.2 SET P=X-XfZH SET Q=Y-YfZJ; SET R=FSQTCQt2+Pt2)
*16.3 SET Z=FDISC6.3*R*C,P,Q,XfZJ,YfZJ,S/R)
*16.4 SET XfZJ=X; SET YfZJ=Y

As with line drawing, the last values assigned to X and V, now the starting point of the arc, become

the values of XO and YO, which here define the center of the next arc to be drawn.

For example, the following routine wi" display an arc enclosed within a square on a 34D scope.

*1.lfZJ SET C=.5; SET S=I; SET A=8fZJfZJ
*1.2fZJ SET XfZJ=0; SET YfZJ=fZJ
*1.3fZJ SET X=A; SET Y=YfZJ; DO 17; SET Y=A; DO 17; SET X=fZJ; DO 17
*1.4fZJ SET Y=fZJ; DO 17
*1.5fZJ SET X0=400; SET YfZJ=4fZJfZJ; SET Y=YfZJ; SET X=20fZJ; DO 16
* 1 • 60 GO TO 1. 2 fZJ
*16.2 SET P=X-X0; SET Q=Y-YfZJ; SET R=FSQTCQt2+pr2)
*16.3 SET Z=FDISC6.3*R*C,P,Q,X0,Y0,S/R)
*16.4 SET X0=X; SET YfZJ=Y
*17.1 DO 16.2; SET Z=FDISCR,P/R,Q/R,XfZJ,Y0,fZJ); DO 16.4
*GO

5-6

Lines 1.1 and 1.5 defined a semicircle to be displayed inside the box described in lines 1.2, 1.3, and

1.4. When line 1.6 is reached, CLINE will first display the box, and then iump to the semicircle.

The above program produces the pattern shown in Figure 5-1 .

0,800

0,0
800,0

Figure 5-1 CLINE Example

5.3.2. 1 Additional Graphics Segments - The CLINE function can be augmented for use with other

display devices by merely running in an additional paper tape. (See Table 5-2.) A two portion

graphics function is avai lable for the appropriate KV 8 device with a ioystick cursor (H306). The over­

lay, GRAPH, contains an X-Coordinate Cursor Read function, FCOM(O), and a Y -Coordinate Cursor

Read function, FCOM(1). These two functions can be combined with the other GRAPH functions which

are in the form FX(), for complete graphic control, including display of vectors and arcs, use of the

cursors, and erasure of the screen. The original CLINE FDIS functions can also be used with GRAPH.

An incremental plotter can be added to a graphics system by using the PLOTR overlay with CLINE

(refer to Table 5-2). The three original CLINE functions (FDIS group) are available to the user. The

PLOTR system permits the user to design and debug a picture on a scope before obtaining a hard copy.

5.3.3 Workable Overlay Combinations

These overlays can be combined with 4K FOCAL to produce a system with vastly increased powers that

will optimize the individual user's system. Table 5-3 shows the workable FOCAL segment combinations.

The initial dialogue and Disk Monitor System are included in these combinations to illustrate the many

sets possible.

5-7

OJ
I co

Name

(none)

CLINE

CLINE and LAB-8
(manual patches)

CLINE and PLOTR

CLINE and GRAPH

Table 5-2
CLINE Graphics Systems

Function Call Results

FDIS (X,V) points

FDIS (R,p/R,Q/R,X,V,O) vectors

FDIS (6.3*R*C,P ,Q,X,V ,SiR) arcs

FDIS (,' ,X,V,) points

same as CLINE same as CLINE

same as CLINE same as CLINE

same as CLINE same as CLINE

FCOM (0) value is cursor
x coordi nate

FCOM (1) value is cursor
y coordinate

group 31 called by interrupt bar synchronizes x, y cursors
with externa I events

FX (O,441,X,V,XO,VO) vectors

FX (C*64,211,XO, VO) arcs

FX (, 4, , , ,) erases screen

FX (, 1400, , , ,) displays cursor

Device

VC8 and display
LAB -8 (AX08)

VC8 and display

LAB-8 (AX 08)

Incrementa I Plotter and VC8

KV8 and displays

H306 joystick, KV8 and display

H306 joystick, KV8 and display

KV8 and display

KV8 and displays

In addition to directing graphics instruments, FOCAL can direct various other instruments using special

programs written by the user. The extended functions t option allows the user to tai lor the FOCAL

system to his own specifications.

Table 5-3
Allowable FOCAL Systems

- Must be loaded into field one
o - Must be loaded into field zero

- Cannot be accepted
Y - Command may be used if disk system is built
N - Command is illegal
* - Command is different

Allowed Combinations and
Binary Segment Subsets are Indicated by

Entries in Vertical Columns

FOCAL 0 0 0 0 1 1 1 1

INIT (optional) 0 0 0 0

4WORD 0 0 1 1

SK 0 0

QUAD or PENT (non-SiS) 0 0 0 0

LIBRA (non-SiS) 0 0

CLINE (optional) 0 0

PLOTR (calcomp) 0 0

GRAPH (KV 8/I) 0 0

LIBRARY COMMAND Y Y Y Y N N * *
(for Disk Monitor)

FOCAL is always loaded first in the proper field.

5.4 8K OVERLAY

Minimum Hardware
Required

4K

4K

8K

8K/PTOSs

8 K/PTOSs/DF32

Graphics Terminal

DF32

The SK overlay permits a single user to run FOCAL in a greater core area than the 4K configuration.

For notes on running SK FOCAL, see Appendix E, section E .5.3 and Illustration E .5.

To increase the size of acceptable FOCAL programs, the SK overlay uses the upper 4K for storage of

the user's source text. The maximum number of variables remains the same as for 4K FOCAL; there­

fore, it is possible to get a variables buffer overflow condition long before the text buffer overflows.

tSee DECUS Document FOCAL-17, How to Write New Subroutines.

5-9

Load the overlay after answering the initial dialogue with the 4K version.

5.5 CURRENT FOCAL TAPES AND DOCUMENTS

The following program tapes and documents comprise the FOCAL 1969 software package currently

offered by DEC as of December 12, 1969. This list is subject to revision at any time.

FOCAL-8 Manual

FOCAL, 1969 + INIT (4K, INIT)

Listing (Includes Utility Overlays)

Utility Overlays for FOCAL, 1969 Tape (4WORD,8K)

Advanced FOCAL Technical Specifications

Graphic Overlays for FOCAL, 1969 (CLINE, PLOTR, GRAPH)

Listing (of above)

Extended Functions for FOCAL, 1969 (REPLACE, REMOVE)

Multi-user Overlays for FOCAL, 1969 (LIBRA.DF32, DISKIN.DF32)

Listing (of above)

Multi-user Overlays for FOCAL, 1969 (LIBRA.RF08, DISKIN.RFOS)

Listing (of above)

Four User Overlay for FOCAL, 1969 (QUAD.PTOS)

Listing (of above)

Four User Overlay for FOCAL, 1969 (QUAD.DCQ2)

Listing (of above)

"Figure Eight Plot" , A FOCAL Tape (Runs on any configuration)

liKing of Sumeriall, A FOCAL Tape

All of the above articles may be purchased from the Program Library.

5-10

DEC-08-AJAD-D

DEC-08-AJAE-PB

DEC-08-AJAE-LA

DEC-08-AJ1 E-PB

DEC-08-AJBB-DL

DEC-08-AJ3E-PB

DEC-08-AJ3E-LA

DEC-08-AJ4E-PB

DEC-OS-AJ5E-PB

DEC-OS-AJ5E-LA

DEC-OS-AJ6E-PB

DEC-08-AJ6E-LA

DEC-08-AJ7E-PB

DEC-08-AJ7E-LA

DEC-08-AJSE-PB

DEC-08-AJSE-lA

DEC-OS-AJOE-PA

DEC-OS-AJ9E-PA

Command Abbreviation

ASK A

COMMENT C

CONTINUE C

DO D

ERASE E

FOR F

GO G

APPENDIX A

COMMAND AND OPERATION SUMMARY

Table A-1
Commands

Example of Form

ASK X,Y,Z

COMMENT

C

DO 4.1

DO 4.0
DO ALL

ERASE

ERASE 2.0

ERASE 2.1

ERASE ALL

For i=x,y,z;{commands}

FOR i=x,z;{commands)

GO

A-1

Explanation

FOCAL types a colon for each
variab Ie; the user types a va lue
to define each variable.

If a line begins with the letter
C, the remainder of the line
wi II be ignored.

Dummy lines

Execute line 4. 1; return to
command following DO command.

Execute a II group 4 lines; re-
turn to command following DO
command, or when a RETURN
is encountered.

Erases the symbo I tab Ie.

Erases all group 2 lines.

Deletes line 2. 1 •

Deletes a II user input.

Where the command following is
executed at each new value.

x=initial value of i

y=va lue added to i unti I i is
greater than z.

Starts indirect program at low-
est numbered Ii ne number.

Command Abbreviation

GO? G?

GOTO G

IF I

LIBRARY CALL LC

LIBRARY DELETE LD

LIBRARY UST L l

LIBRARY SAVE l S

LINK l

LOCATIONS L

MODIFY M

QUIT Q

RETURN R

Table A-1 (Cont)
Commands

Example of Form

GO?

GOTO 3.4

IF (X) Ln, Ln,ln
IF (X) In, In; (commands)

IF (X) In; (commands)

.

LIBRARY CALL name

UBRARY DE LETE name

UBRARY LIST

LIBRARY SAVE name

l

L

MODIFY 1.15

QUIT

RETURN

A-2

Explanation

Starts at lowest numbered Ii ne
number and traces entire indirect
program unti I another ? is
encountered, unti I an error is
encountered, or unti I completion
of program.

Starts indirect program (transfers
control to line 3.4). Must have
argument.

Where X is a defined identifier,
a va lue, or an expression,
followed by three line numbers.

If X is less than zero, control is
transferred to the first line num-
ber.
If X is equal to zero, control is
to the second line number.
If X is greater than zero, con-
trol is to the third line number.

Co lis stored program from the
disk.

Removes program from the disk.

Types directory of stored pro-
gram names.
Saves program on the disk.

For disk monitor system; FOCAL
types 4 locati ons i ndi cati ng
start and end of text area, end
of variable list and bottom of
push-down Ii st.

For paper-tape system; types
same locations as LINK.

Enables editing of any character
on line 1. 15 (see below).

Returns contro I to the user.

Terminates DO subroutines,
returning to the original
sequence.

Command Abbreviation

SET S

TYPE T

WRITE W

A.1 FOCAL OPERATIONS

A.1.1 Format

To set output format,

To type symbol table,

Table A-1 (Cont)
Commands

Examp Ie of Form

SET A=5/B*C;

TYPE A+B-C;

TYPE A-B, C/E;

TYPE IITEXT STRING II

WRITE
WRITE ALL

WRITE 1.0

WRITE 1. 1

TYPE %x.y

TYPE 0/06.3, 123.456

TYPE %

TYPE $

Explanation

Defines identifiers in the symbol
table.

Eva luates expression and types
out = and result in current out-
put format.

Computes and types each ex-
pression separated by commas.

Types test. May be fo IIowed by
! to generate carriage return-
line feed, or # to generate
carriage return.

FOCAL types out the entire
indirect program.

FOCAL types out a II group 1
lines.

FOCAL types out line 1. 1 •

where x is the tota I number of
digits, and y is the number of
digits to the right of the dec ima I
point.

FOCA L types: = 123.456

Resets output format to floati ng
point.

Other statements may not fo I low
on this line

The user can switch the input device to the high-speed paper tape reader by typing an asterisk in the

first position, or immediately following the line number in an indirect command. The following

statements cause FOCAL to read a tape from the high-speed reader.

A-3

**

1.10;

The second * was typed by the user. Input is from
the high-speed reader unti I occurrence of next *.
FOCAL types * for each line number read in from
the reader.

User typed 1. 10*;. Input is taken from the high­
speed reader unti I occurrence of next *

To switch back to the keyboard, the user types another *. If there is no tape in the high-speed reader,

or when an end-of-tape condition is reached, FOCAL automatica IIy switches back to keyboard input.

This feature is usefu I for loading FOCAL programs and for inputting large amounts of data during execu­

tion of a FOCAL program. When the following statement is executed, FOCAL accepts four pieces of

data from the high-speed reader.

* 1. H'l*; FOR I= 1.,,4; ASK HR(I)
1.11
*00 1.1'"
: : : : *

The user typed an asterisk after line 1.11 to return control to the keyboard.

A. 1.2 MODIFY Operations

After a MODIFY command, the user types a search character, and FOCAL types out the contents of

that line unti I the search character is typed. The user may then perform any of the following

operati ons •

a. Type in new characters. FOCAL wi II add these to the line at the point of insertion.

b. Type a CTRI/L. FOCAL will proceed to the next occurrence of the search character.

c. Type a CTRI/BELL After this, the user may change the search character.

d. Type RUBOUT. This deletes characters to the left, one character for each time the user
strikes the RUBOUT key.

e. Type -. Deletes the line over to the left margin, but not the line number

f. Type RETURN. Terminates the line, deleting characters over to the right margin.

g. Type LINE FEED. Saves the remainder of the line from the point at which LINE FEED is
typed over to the right margin.

A-4

A.1.3 The Trace Feature

Special
Character

?

Example
of Form

? .. ?
or

? ...

Explanation

Those parts of the program enclosed in question marks
wi" be printed out as they are executed.
If on Iy one ? is inserted, the trace feature becomes
operative, and the program is printed out from that
point unti I another ? is encountered, unti I an error is
encountered, or unti I program completion

A. 1.4 Specia I Characters

a. Mathematical operators:

*
/
+

Exponentiation
Multiplication
Division
Addition
Subtraction

b. Control characters:

%
I

$
()
[]

< >
II ..
? ?
*

c. Terminators:

Output format delimiter
Carriage return and line feed
Carriage return
Type symbol table contents
Parentheses }
Square brackets (mathematics)

(text stri ng)
Ang Ie brackets
Quotati on marks
Questi on marks
Asterisk

(trace feature)
(high-speed reader input)

SPACE key (names) }
RETURN key {lines}
ALT MODE key (with ASK statement)
Comma (expressions)
Semicolon (commands and statements)

A-5

(nonprinting)

A.2 FUNCTIONS

A.2.1 Mathematical Functions

Square Root

Absolute Value

Sign Part

Integer Part

Random Number
Generator

tExponential
Function (ex)

tS· me

tCosine

tArc Tangent

tLogarithm

Analog-to-Digital

A.2.2 Scope Function

A.2.3 Additional Functions

tThese are known as extended functions.

FSQT(x)

FABS(x)

FSGN(x)

FITR(x)

FRAN()

FEXP(x)

FSIN(x)

FCOS(x)

FATN(x)

FLOG (x)

FADC(n)

FDIS(x,y)

FCOM()

FX()

FNEW

A-6

where x is a positive number or expression
greater than zero.

FOCAL ignores the sign of x.

FOCAL evaluates the sign part only, with
1.0000 as integer.

FOCA l operates on the integer part of x,
ignoring any fractional part.

FOCA l generates a random number.

FOCA L generates e to the power x.
(2.7182SX)

FOCAL generates the sine of x in radians.

FOCAL generates the cosine of x in radians.

FOCAL generates the arc tangent of x in
radians.

FOCA L generates log (x) •
e

FOCAL reads from an analog-to-digital
channel, the value of the function is that
integer reading.

Displays x and y coordinates on scope and
intensifies x-y point.

UBRA common storage function.

For KV 8 (GRAPH)

User defined function. Refer to DEC-08-
AJBB-Dl, Advanced FOCAL Technical
Specifications.

Error messages are typed in the following format:

?nn • nn@m • nn

?00.00
?O1.OO
?01.4O
?01.78
?01.96
?01. :5
?01.;4
?02.32
?02.52
?02.79
?03.05
?03.28
?04.34
?04.52
?04.60
?04. :3
?05.48
?06.06
?06.54
?07.22
?07.38
?07.:9
?07.;6
?08.47

t For FOCAL, 1969 only.

(error code @ line number)

Table B-1
FOCAL Error Messages t

Meaning

Manual start given from console
Interrupt from keyboard via CTRL/C.
III ega I step or line number used.
Group number is too large.
Doub Ie periods found in a line number.
Line number is too large.
Group zero is an i II ega I Ii ne number.
Nonexistent group referenced by 1001.
Nonexistent line referenced by 1001.
Storage was fi lied by push-down-list.
Nonexistent line used after IGOTOI or IIFI .
I II ega I command used.
Left of "=11 in error in I FORI or ISETI.
Excess right terminators encountered.
Illegal terminator in I FORI command.
Missing argument in display command.
Bad argument to I MODIFYI •
Illegal use of function or number.
Storage is filled by variables.
Operator missing in expression or double lEI.
No operator used before parenthesis.
No argument given after function call.
Illegal function name or double operators.
Parentheses do not match.

B-1

APPENDIX B

ERROR MESSAG ES

Code

?09.11
?10.:5
?11.35
?20.34
?23.36
?26.99
?28.73
?30.05
?31.<7

?25.84
?30.71
?30.<O
?31.42
?31.43
?31.44

Table B-1 (Cont.)
FOCAL Error Messages t

Meaning

Bad argument in' ERAS E' •
Storage was fi lied by text.
Input buffer has overflowed.
logari thm of zero requested.
Litera I number is too large.
Exponent is too large or negative.
Division by zero requested.
Imaginary square roots required.
I II ega I character, unavai lable command, or
unava i lab Ie functi on used.

Table B-2
LIBRA Error Messages

Meaning

FCOM INDEX out of range
Undefined library command
Bad argument or missing argument to library command.
No such name in library directory.
Attempt to enter a duplicate name in the directory.
Library directory is full.

Table B-3
System Error Appendix

1. Excess right parenthesis, right brackets, greater than signs, or equal signs in a type
command cause an infinitely long line of zero values to be typed.

2. No indication is given that the user has produced a mathematical overflow or underflow
condition.

3. A rounding error can appear in certain instances. Example:

T %5,-0.4 produces -1
T %3.02, 1.4142 produces -1.42

4. If the user continues to type on the keyboard while the program is making computations,
physical evidence of the error is indicated by failure of the computer to echo characters as
the user types. The material being typed in will not be entered to the computer's input buffer.

t For FOCA L, 1969 on Iy •

B-2

Table B-3 (Cont.)
System Error Appendi x

5. Error ?01 .00 could also occur when reading a paper tape program into the input buffer via
the low-speed reader. Since the program is unable to stop the low-speed reader, if output
hardware should be slower than input hardware, the program will be unable to empty the
reader buffer as quickly as it is being filled. To prevent this type of error with long input
tapes, carriage returns may be followed by some blank tape which is ignored by the input
routines, but which will give the output routines time to catch up.

6. Outside of the FOCAL program, the remaining storage is used for text storage, variable
storage, and push-down storage, in that order. The overflow condition will occur only when
one of these I ists exceeds the remaining storage. This could happen in the case of complex
programs which have multiple levels or recursive subroutines.

NOTE

This storage allocation scheme permits flexibility in the
trade off of text size, number of variables, and complex­
ity of the program, rather than restricting the user to a
fixed number of statements or characters, to a fixed number
of subroutine calls, or to a limited number of variables.

B-3

APPENDIX C

ESTIMATING THE LENGTH
OF USERIS PROGRAM

FOCAL requires five words for each identifier stored in the symbol table, and one word for each two

characters of stored program. This can be calculated by

c
5s +'1 .1 .01 = length of user's program

where s = Number of identifiers defined

c = Number of characters in indirect program

I f the tota I program area or symbo I tab Ie area becomes too large, FOCAL types an error message.

FOCAL occupies core locations 18 through 3200
8

and 4600
8

through 7576
8

. This leaves approximately

700
10

locations for the user's program {indirect program, identifiers, and push-down list}. The extend­

ed functions occupy locations 4600-5377. If the user decides not to retain the extended functions at

load-time, there wi II be space left for approximately 11 00
1
0 characters for the user's program.

The following routine allows the user to find out how many core locations are left for his use.

*FOR 1=1.13(7)(7); SET A(1)=1
?06.S4
*TYPE %4.1 1*S,"LOCAT 10\\JS LEFT"

7(7JSLOCAT10NS LEFT*

(disregard error code)

A LOCATIONS command can be given with a paper-tape system to determine how much space remains

in core for user programs and variables. Execution of this command causes FOCAL to print four octal

numbers (core memory works on a base 8 number system) representing the following locations within core:

a.

b.

c.

d.

start of text bUffer]

end of text buffer

end of variab Ie list}

bottom of push -down Ii 51 1

space for user IS program

space for storing variables assigned during program

space for subroutines

C-1

The LOCATIO NS command permits the user to optimize his avai lable storage space and to determine

program length. If an 8K paper-tape system is being used, the values of a and b point to field 1 .

Locations c and d always point to field O. The LOCATIONS command, for example, can be used after

the three possible initial dialogue responses to indicate how much core each allows the user.

Di a log ue response Yes/Yes No/Yes No/No

Locations *L *L *L
3206 3206 3206
3217 3217 3217
3217 3217 3217
4617 5177 5377

To get another * in order to continue with FOCAL after it has printed the four locations, the paper-tape

system user must put 5177 in location 7600. If this is neglected, a manual restart is necessary.

Disk Monitor System users also have a command that indicates storage allocation: LINK. The LINK

command for the Disk tv\onitor System is more limited than the LOCATIONS command for the paper

tape system. LINK must be used only to return to the disk monitor; it cannot be used arbitrari Iy to

determine core allocation. LINK types out four locations, in the same fashion as the LOCATIONS

command, but then types a period, indicating that control has been transferred to the Disk Monitor. A

command to the disk must then follow.

When storing a program on the disk, the LINK command maximizes storage space by specifying the

exact amount of memory that is fi lied by text, variables, and subroutines. The core locations printed

out by LINK are used in calls to the disk monitor.

C-2

APPENDIX D

CALCULATING TRIGONOMETRIC FUNCTIONS IN FOCAL

Function FOCAL Representation
Argument" Function

Range Range

Sine FSIN(A) o~IA 1<1014 o~IF 1~1
Cosine FCOS(A) OSIA 1<1014 OSIF ~1
Tangent FSIN (A)/FCOS(A) O~IA 1<1014 OSIF 1< 1 0 16

IA 1~(2N+1)n/2

Secant l/FCOS(A) OSIA 1< 1014 l~IF 1< 1 016

I A 1~(2N+ 1)n/2

Cosecant l/FSIN(A) OSIA 1<1014 1 SIF 1<1016

IA It2Nn

Cotangent FC OS (A)/FS I N (A) O~IA 1< 1014 0< I F 1< 1 01440

IA If2Nn

Arc sine FATN(A/FSQT(l-A 12) O~IA 1<1 OS IF l:Sn /2

Arc cosine FATN(FSQT(l-A 12)/A) O<IA 1~1 O~IF j~n /2

Arc tangent FATN(A) 0~S1016 OSF<n/2

Arc secant FATN(FSQT(A 12-1)) 1<A<1016 °SF<n/2

Arc cosecan t FATN(1/FSQT(A 12-1») 1 <A<1 01300 0<F<n/2

Arc cotangent FATN(l/A) 0<A<101615 0<F<n/2

Hyperbolic sine (FEX P(A)-FEXP(-A))/2 O~IA ~700 O~IF 1<':.5* 1 01300

Hyperbolic cosine (FEXP(A)+FEXP(-A»/2 0~IAI<700 1 <F<5* 101300

Hyperbolic tangent (FEXP(A)-FEXP(-A»/ ~IAI<700 ~IF IS1
(F EX P (A)+FEX P(-A»

Hyperbolic secant 2/ (F EX P (A)+FEX P (-A» ~IA~700 O<F<l

Hyperbolic cosecant 2/ (F EXP (A)-F EX P(-A» 0<1AI<700 0< IF 1<1017

Hyperbolic cotangent (FEXP(A)+FEXP(-A»/ 0< IA 1<700 1slF 1<1017
(FEX P (A) -F EX P(-A»

Arc hyperbolic sine FLOG(A+FSQT(A 12+ 1» -1 01'5<A<1 01600 -12<F<1300

Arc hyperbolic cosine FLOG(A+FSQT(A 12-1» 1~A<101300 ~F<700

Arc hyperbolic tangent (FLOG(1+A)-FLOG(1-A»/2 ~IAI<l ~IFI<8.31777

Arc hyperbolic secant FLOG((1/ A)+FSQT((1/ A 12)-1» 0< IA 1~1 O<F<700

Arc hyperbo Ii c FLOG((1/A)+FSQT((1/A 1 2)+1» 0< IA 1<101300 ~IFI<1400
cosecant

Arc hyperbol ic (F LOG(X + 1)-F LOG(X -1»~ 1<A<101616 O<F<8
cotangent

D-1

E.1 LOADERS

E . 1 . 1 Read -In Iv\ode (RIM) Loader

APPENDIX E

LOADING PROCEDURES

The RIM Loader is a program used to load the Binary Loader. The RIM Loader must be toggled into

memory using the switches on the computer console.

To load the RIM Loader I follow the procedure below.

a. Check to see if the RIM Loader program is in memory correctly by examining the following
locations for the appropriate instructions (contents).

Location

7756
7757
7760
7761
7762
7763
7764
7765
7766
7767
7770
7771
7772
7773
7774
7775
7776

33 ASR Reader

6032
6031
5357
6036
7106
7006
7510
5357
7006
6031
5367
6034
7420
3776
3376
5356
0000

Instruction
High-Speed Reader

6014
6011
5357
6016
7106
7006
7510
5374
7006
6011
5367
6016
7420
3776
3376
5357
0000

b. If the instruction in any location does not agree with the above list I deposit the correct
instruction into that location.

E-1

E. 1 .2 Bi nary Format (BI N) Loader

The BIN Loader is a program used to load FOCAL into memory. The BIN Loader tape is loaded by the

RIM Loader as explained below.

The BIN Loader is loaded into locations 7612-7616, 7626-7752, and 7777, with its starting address at

location m7. For a detai led description of the BIN Loader, refer to document DEC-08-LBAA-D.

To load the BIN Loader, follow the procedure below.

a. Check the RIM Loader for correctness, and correct if necessary.

b. Put Binary Loader tape in reader (always put leader-trailer code over reader head, never
blank tape).

c. Turn reader ON.

d. Set Switch Register (SR) to 7756 (the starting address of the RIM Loader).

e. Depress LOAD ADDress switch on computer console.

f. Depress START swi tch on computer conso Ie.

g. Tape should begin reading in, if not, check the RIM Loader and start again at step o.

h. After program is read in, depress STOP switch on the computer console.

E.2 PAPER-TAPE SYSTEM

E.2.1 FOCAL Loading Procedure

The Binary Loader is used to load FOCAL. Check to see if the Binary Loader is in core. If location

7777 contains 5301, the Binary Loader is in core; if not, refer to Appendix E.

The procedure for loading FOCAL is detailed below.

Step Procedure

1 Place the FOCAL binary tape in the tape reader.

2 Put 7777 (the starting address of the Binary loader) in the SWITCH REGISTER.

3 Press the LOAD ADDress key.

To use the high speed paper tape reader, put 3777 in the SWITCH REGISTER.

4 Turn the Teletype to LINE.

5 Press the START key.

E-2

Step Procedure

6 The tape will stop twice during loading because the program is loaded in two
sections for additioilal checksum protectioil. After each halt, the contents of
the accumulator (AC) should be 0; if the AC '10, reload the previous section
of tape. If the AC is 0, press the CONTinue key and the tape wi II continue
loading.

7 Place 0200 (the starting address of FOCAL) in the SWITCH REGISTER when
the tape is completely loaded.

8 Press the LOAD ADDress key.

9 Press the START key. The initial dialogue will begin.

10 FOCAL is correctly loaded and ready for user input when it types an asterisk.
If FOCAL is incorrectly loaded, reload the FOCAL tape starting with step 1
above.

The FOCAL loading procedure is illustrated in the flowchart (Figure E-1).

E. 2.2 Restart Procedure

Two methods for restarting the system are outlined below.

a. The CTRL/C keys at any time t. FOCAL wi II type ?Ol .00 indicating a keyboard
restart, and an asterisk on next line indicating it is ready for user input.

b. From the computer console:

Step Procedure

1 Depress the STOP switch

2 Put 0200 in the SWITCH REGISTER

3 Depress the LOAD ADDress switch

4 Depress the START switch

5 FOCAL will then type *?OO.OO indicating a manual restart, and an asterisk on
the next line indicating it is ready for user input.

t CTRL/C indicates holding down the Control key whi Ie depressing the C key. This convention is used
throughout the loading procedures.

E-3

Press CONT

Figure E-l

StartinQ Address
Of FOCAL

FOCAL Loading Procedure

E-4

E.2.3 Saving FOCAL Programs

To save a FOCAL program on-line, proceed as follows:

Step Procedure

Respond to * by typing WRITE ALL (do not depress the RETURN key).

2 T urn on low-speed tape punch

3 Type several @ signs to get leader tape (press the Shift, REPEAT, and P keys in
that order; release in the reverse order).

4 Depress RETURN key

When the user's program has been typed and punched out

5 Type severa I more @ signs to get trai ler tape.

6 T urn off tape punch

The user may now continue with another FOCAL program. The previous FOCAL program is sti II in the

computer and waiting to operate on user input.

E.3 MULTI-USER SYSTEMS

E.3 . 1 LIBRA Loading Procedure

LIBRA is loaded after FOCAL. For this system, FOCAL is loaded into field 1. The binary loader,

however, must be in field 0 (location 7n7 should contain 5301). Do not load FOCAL's initial

dialogue. The Disk WRITE LOCK switch must be off.

To load FOCAL into field 1:

Step Procedure

Place the FOCAL binary tape in the reader.

2 Put 7n7 in the Switch Register; put 1 in the DATA FIELD; put 0 in the INST
FIELD.

3 Press LOAD ADDress key.

(Put 37n in the Switch Register at this point if using the high-speed reader.)

E-5

4 Turn the teletype to LINE.

S Press START key.

6 When the tape ha Its for the first time, remove it from the reader.

LIBRA goes into field 0:

7 Place the LIBRA binary tape in the reader.

8 Put 7777 in the Switch Register, 0 in both the DATA FIELD and INST FIELD.

9 Press the LOAD ADDress key.

To use the high-speed paper tape reader, put 3m in the Switch Register.

Step Procedure

10 Turn the teletype to LINE.

11 Press the START key.

12 Put the DISKIN binary tape in the reader.

13 Put 7777 (the starting address of the Binary Loader) in the Switch Register.

14 Press the LOAD ADDress key.

To use the high-speed paper tape reader, put 3777 in the Switch Register.

15 Turn the teletype to UNE .

16 Press the START key.

17 When the tape is loaded, put 0200 in the Switch Register.

18 Press the LOAD ADDress key.

19 Press the START key.

20 Answer DISKIN questions.

21 FOCAL/LIBRA is now ready to be shared by 7 users.

The program may be restarted at address 200.

E-6

To stop the system during operation, hold switch 11 (last switch on the right of the Switch Register)

down until the system ha Its .

After running LIBRA or DISKIN, two locations in the Binary Loader must be restored before the loader

can be used again. Load 1355 into location 7750, and load 5743 into location 7751 •

E.3.2 DISKIN Loading Procedure

The disk initialize overlay, like LIBRA, has two versions, one to clear a DF32 Disk System and the

other for an RF08 Disk System. DISKIN does not save the contents of the disk; because it clears a

significant portion of the disk, use the overlay with care.

The overlay is kept as short as possible and can be quickly loaded with BIN. It will not destroy the

FOCAL system that is currently in core. This allows the disk to be cleared at any time without re­

loading the entire FOCAL system.

Step Procedure

Load the overlay tape into field 0 using the binary loader. (Steps 12 to 16 of
LIBRA Loading Procedure.)

2 Start at 0200 in field O.

3 The overlay types FOCAL DISK (DF32) INITIALIZE? for a DF32 System and
FOCAL DISK (RF08) INITIALIZE? for an RF08 System.

4 To clear the disk directory, type Y. Any other answer causes the program
to go to step 9.

5 The overlay types the question NO. DISK SURFACE?, meaning the number
of di sks to be used.

6 Type a 1, 2, 3, or 4 for the number of disk surfaces to be used. Any other
answer goes back to step 5.

7 The overlay then types the number of free blocks avai lable for use in the
form XXX FREE BLOCKS, where XXX is the octal number of programs
that can be stored according to the number of surfaces selected.

8 The overlay then cleans the directory and confirms by typing
DIRECTORY WRITTEN.

9 The overlay types SWAP AREA INITIALIZE?

10 If the swapping areas are to be initio lized, type Y. Any other answer
goes to FOCAL.

E-7

<EJxxxx

~xxxx

Place FOCAL tape
in the reader

Place LIBRA tape
in t he reader

Set SR=XXXX
Press LOAD ADDress

Set SR=XXXX
Press START

Figure E-2 LIBRA Loading Procedure

E-8

Step Procedure

11 The overlay cleans the swapping areas and confirms success by typing
SWAP AREAS WRITTEN and goes to FOCAL.

12 The message TO FOCAL is typed before entering the FOCAL system.

Typing a CTRL/C aborts the dialogue and transfers to FOCAL. The program wi II not respond to a

CTRL/C during Steps 7, a, and 11 .

The message DISK WRITE ERROR indicates that the Disk is broken or WRITE lOCKED. Remedy the

cause of the error and reload the initialize overlay, or, if core is intact, press CONTinue to try five

more times.

E.3.3 QUAD Loading Procedure

Step Procedure

1 Place the FOCAL binary tape in the reader.

2 Put 7n7 in the Switch Register, put 1 in the DATA FIELD, and put the field
number of the BIN Loader in the INST FIELD. (Since the all has a maximum
of 2 core fields, the INST FIELD will be 1 on the aiL and whatever number is
valid for other members of the PDP-a family of computers.)

3 Press LOAD ADDress key.

(To use the high-speed reader, put 37n in the Switch Register at this point.)

4 Turn the Teletype to LINE.

5 Press START key.

6 When the tape halts for the first time, remove it from the reader.

7 Place 0200 in the Switch Register.

a Press the LOAD ADDress key.

9 Press the START key.

10 Place the QUAD binary tape in the reader.

11 Put 7777 in the Switch Register.

12 Press LOAD ADDress key.

(To use the high-speed paper tape reader, put 3777 in the Switch Register.)

13 Turn the Teletype to LINE.

14 Press the START key.

E-9

Step Procedure

15 Place 0200 in the Switch Register.

16 Press the LOAD ADDress key.

17 Press the START key.

QUAD is ready for four users.

E.4 ADDITIONAL SYSTEM SEGMENTS

E .4.1 Utility Package Loading Procedure:

4WORD and 8K

Step Procedure

Place the FOCAL binary tape in the tape reader.

2 Put 7777 (the starting address of the Binary loader) in the Switch Register.

3 Press the LOAD ADDress key.

(To use the high-speed paper tape reader, put 3777 in the Switch Register.)

4 Turn the teletype to LINE.

5 Press the START key.

6 The tape stops twice during loading because the program is loaded in two
sections for additional checksum protection. After each halt, the contents
of the accumulator (AC) should be 0; if the AC 10, reload the previous
section of tape. If the AC is 0, press the CO NTinue key and the tape will
continue loading .

7 Place 0200 (the starting address of FOCAL) in the Switch Register when
the tape is completely loaded.

8 Press the LOAD ADDress key.

9 Press START key. The initial dialogue wi" begin. Answer its questions.

1 0 FOCAL is correctly loaded and ready for user input when it types an asterisk.
If FOCAL is incorrectly loaded, reload the FOCAL tape starting with Step 1
above.

11 Place the 4WORD or 8K binary tape in the tape reader.

12 Put 7m (the starting address of the Binary Loader) in the Switch Register.

13 Press the LOAD ADDress key.

(To use the high-speed paper tape reader, put 3777 in the Switch Register.)

E-l0

14 Turn the teletype to LINE.

15 Press the START key. The 4WORD or 8K tape will read in.

16 Put 0200 in the Switch Register.

17 Press the LOAD ADDress key.

18 Press the START key.

4WORD or 8K is now loaded.

E .4.2 Graphics Package Loading Procedure: CLINE, PLOTR, GRAPH

For a 34D scope:

Step Procedure

1 Place the FOCAL binary tape in the tape reader.

2 Put 7777 (the starting address of the Binary Loader) in the Switch Register.

3 Press the LOAD ADDress key.

(To use the high-speed paper tape reader, put 3777 in the Switch Register.)

4 Turn the teletype to LINE.

5 Press the START key.

6 The tape stops twice during loading because the program is loaded in two
sections for additional checksum protection. After each halt, the contents
of the accumulator (AC) should be 0; if the AC -10, reload the previous
section of tape. If the AC is 0, press the CONTinue key and the tape will
continue loading. Remove tape from reader when it stops reading in.

7 Put 0200 in the Switch Register.

8 Press the LOAD ADDress key.

9 Press the START key. The initial dialogue wi II begin. Answer its questions.

10 FOCAL is correct Iy loaded and ready for user input when it types an asterisk.
If FOCAL is incorrectly loaded, reload the FOCAL tape starting with Step 1
above.

11 Place the CLINE binary tape in the tape reader.

12 Put 7777 (the starting address of the Binary Loader) in the Switch Register.

13 Press the LOAD ADDress key.

(To use the high-speed paper tape reader, put 3777 in the Switch Register.)

14 Turn the Teletype to LINE.

15 Press the START key.

E-ll

Step Procedure

16 Place 0200 in the Switch Register.

17 Press the LOAD ADDress key.

18 Press the START key.

CLINE is ready for user input.

Load and start PLOTR after CLINE, in the same way, if using an incremental plotter.

Load and start GRAPH after CLINE, in the same way, if using a KV8 system.

E.5 DISK MONITOR SYSTEM

E .5.1 4K FOCAL

To use FOCAL with the DISK Monitor:

Step Procedure

1 Bui Id the Disk ~nitor System on the disk.

2 Load FOCAL with the DISK system by using the LOAD command.

(Refer to DEC-DS-SDAB-D, Disk ~nitor System, Programmer's Reference Manual.) Give a starting

address of 200.

3 Complete the initial dialogue.

4 Press STOP; load address 7600, and press START.

5 Initialize the Disk by typing the following SAVE commands after Disk's period .

. SAVE START! 4600-75n;200

. SAVE FOCAL ! 0-33n;

To run a FOCAL program, call FOCAL on the Disk .

. FOCAL

. START

?00.00

*

(FOCAL prints the error code for a console restart and an
asterisk to indicate it is ready to accept commands.)

E-12

Press START

~ XXXXz Set SR=XX XX
~ PreIS LOAD ADDress key

~ Set SR=XXXX
~ XXXX= Press START key

t----4 See Figure E-l

For QUAD and CLINE
initial dialogue does
not need to be loaded.

Set data and instruction
I----~ field switches for BK

and QUAD.

high-speed

Set data and
1----1 instruction field

---~---.... switches for BK and QUAD

Set data and
t----~ instruction field

switches for 8K and QUAD

Depress STOP

,/

Figure E-3 Additional System Segments
Loading Procedure

E-13

To save a program, it must be given a name. Note that page 0 is also being saved.

*LOCATIO NS (returns command to Disk Monitor)

3206 (a)
3217 (b)
3217 (c)
4577 (d)

.SAVE (name); 0, (a) - (b)

To continue to use the same program, add the command

. START

?OO.OO

*

(User)

(FOCAL)

(Disk Monitor)

(User)

After FOCAL types the error code and asterisk, the user can continue with the same (saved) FOCAL

program.

To run a program that has been stored (as previously described), load address 7600, press START, and

type the following routine .

. FOCAL

.CALl (name)

. START (line feed wi II not occur)

?oo.oo
*

(FOCAL types the error code for a manual restart and an

asterisk to indicate it is ready to accept commands.)

E .5.2 FOCAL Without Some Extended Functions

To use FOCAL without some of the extended functions, load FOCAL and start at address 7600, as in

Paragraph E.5. 1. Issue the following commands to the Disk:

.SAVE START! 4600-7577;200

.SAVE INIT: 0,3200-4577;

.CALlINIT

. START

Answer YES to the initial dia logue.

E-14

*LOCATIONS

-)
4 core locations generated by

LOCATIONS command

.SAVE FOCAL! 0-3377;

To reinitia lize and use the system without some of the extended functions, call the initial dialogue

from the Disk:

. FOCAL

.CALL INIT

. START {Initial dialogue begins)

To save sine and cosine only, type NO and YES to the dialogue's questions, following its termination

with:

*LOCATIONS

-} 4 core locations generated by
LOCATIONS command

. SAVE STNY! 5200-7577; 200

This sine and cosine version is called by the commands:

.FNY

.STNY

?00.00

*

To delete all of the extended functions, call the initial dialgoue (as previously described), answer NO

to both dialogue questions, and then type:

*LOCATIONS

-) 4 core locations generated by
LOCATIO NS command

. SAVE STN N! 3400-7577;200

E-15

This version is called by the sequence:

.FNN

.STNN

?OO.OO

*

To call a program with deleted functions from the disk, use the correct startup commands to indicate

the unwanted functions. For example, to use a version with no exponential function, use the sequence:

. FOCAL

.CALL NEXP

.STNY

?00.00

*

A no cosine version requires:

. FOCAL

.CALL NCOS

.STNN

?OO.OO

*

{previously created by the user}

{previously created by the user}

Note that the exponential function cannot be saved without the logarithmic function, nor can the

cosine function be saved without the sine function.

E .5.3 8K FOCAL

To use 8K FOCAL on the disk, prepare the system as follows:

Step Procedure

Sui Id the disk.

2 Load FOCAL, using the binary loader in field 1.

3 Start at 0200.

4 Answer the initial dialogue.

5 Load the 8K overlay.

E-16

Save 8K FOCAL by issuing the following commands:

*LOCATIONS

(a) 0100

(b) 0121

(c) 3217

(d) XXXX

.SAVE ST8K!

.SAVE FCL8!

.SAVE NUL8!

.SAVE NAME:

4 core locations
generated by
LOCATIO NS command

(d) - 7577;200

0-3377;

10100;10113 (to initialize program text area)

10100-(b); 10113

To run a FOCAL program requiring 8K of memory I get FOCAL from the Disk .

. FCL8

.NUL8

.ST8K

?OO.OO

*

The above 3 commands to DISK are the appropriate starting sequence for a FOCAL program.

The save procedure for a finished 8K program is similar to 4K.

*ERASE

*LOCATIONS

-) 4 core locations generated by

LOCATIONS command

. SAVE NAME: 1 (a) -1 (b); 10113

Add the following command to save a set of variables in field O .

• SAVE DAT8:0;3200-{c);

The .SAVE DAT8 command stores a set of data (variables) located in field O.

E-17

To set up a new program with a particular data set, type:

.FCL8

.CALL DAT8

.CAll NAM8

.ST8K

?OO.OO

*

Refer to DEC-08-SDAB-D, Disk Monitor System Programmer1s Reference Manual for additional informa­

tion.

E-18

- - See Disk Monitor Systems
Programmers Reference
Manual

--See Figure E-l

yes

Ta continue with
another system
configurotion,
type:
CTRL/C
?OO.OO
*L

.INIT

<E]xxxx.

Figure E-4

Press STOP key
Put address XXXX in switch register
Press LOAD ADDress key
Press START key

Usi ng FOCAL with Disk Iv\onitor System
(Sheet 1)

E-19

type:

*L

.SAVE START ({o)-7577;200

.SAVE FOCAL 10- 3377;

type:
.START
?OO.OO

*
6l-----~

type:
ERASE
*L

SAVE (no me): 0,(a) - (b);

done

Figure E-4 Using FOCAL with Disk Monitor System
(Sheet 2)

E-20

Load desired over­
lays by pressing
CONTinue to read
in each segment

type:

*L

.SAVE ST8K I (d)-7577;200
.SAVE FCL810-3377
.SAVE NUL8110100jl0113

7~----------------~

type:
.FCL8
.NUL8
.ST8K
~OO.OO

.SAVE name: 1(aH(b);IOI13

.SAVE DAT8:0j3200~(c)

done

Figure E-4 Using FOCAL with Disk tv\onitor System
(Sheet 3)

E-21

a 32078

(initial dialogue)

text

b

variables

free :-c

d 44278
push-down list

CLINE
d" 46178

extended functions

d'· 53778

~ \
\

I

\
\
\
\

\
\
\

I
I

.I
I

/
I

76008

77778

FIELD 0

pageO;8K

FOCAL
Interpreter I

Storage

FLOAT
(4-WORD and lIK)

Disk Monitor header

a

b

0
8

.---__ F_I E_L_D_'_

a"278t-__ 8_K __

User's
Buffer
Area

b' 76008~----~
Binary Loader

77778~ _______ ~

a ,b ,c ,d above point to the values indicated by the LOCATIONS command.

a. Start of text buffer.

b . End of text buffer .

. c . End of variab Ie list

d. Bottom of push-down list. Value depends on which functions are retained and which
additional system segments are used.

a l and b l point to the corresponding locations in field 1 .

Figure E-5 Core Map for FOCAL with Disk
Monitor System

lThe FOCAL interpreter is in field 1 when using QUAD.

E-22

APPENDIX F

HELPFUL PROGRAMMING SUGGESTIONS

To decrease program length, maximize avai lable core area, and assist in preparing complex routines,

the experienced programmer can implement the following suggestions:

a. All commands can be abbreviated to their first letter.

b. A string of commands, except WRITE, RETURN, MODIFY, QUIT, T $, and ERASE, can be
combined on one line (up to 72 characters), with each command separated by a semicolon.

c. When creating a lengthy program, it is a good programming practice to {eave free line
numbers scattered throughout the body of the program. This will permit insertion of additional
commands without complicated referencing routines. Remember that programs are executed
sequentially by line number; consequently, an addition to the program placed physically at the
end wi II be executed in turn. Li ne numbers must be in the range 1.01 to 31 .99.

d. Some programs may require a keyboard response of YES or NO to a question asked during
program execution. The answer typed to the question determines the next command to be
executed (for example, in the initial dialogue). For this purpose, alphanumeric numbers are
used in an IF statement to direct the execution.

* 1. 1 TYPE "DO YOU WANT ALINE?", !
* 1 .2 ASK "TYPE YES OR NO", AN S, !
*1·3 IF CANS-0YES)2.1,2.2,2.1

*
*2. 1 QUI T
*2.2 TYPE "--------------",!
* 2 • 3 GO TO 1. 1
*GO
DO YOU WANT A LINE?
TYPE YES OR NO:YES

DO YOU WANT A LINE?
TYPE YES OR NO:NO

*

If the user types the answer YES, the identifier ANS is given the alphanumeric value of YES.
When the IF statement is executed, the parenthetica I expression YES-OYES equa Is zero, and
the command at line 2.2 is executed. If the user types YES in answer to the ASK question,
then when its alphanumeric value is substituted in the parenthetical expression, the expression
will not equal zero and line 2.1 will be executed. Note that for YES/NO responses, the sign
of the parenthetical expression is irrelevant; only its zero or non-zero value is of interest.

F-1

e. To avoid filling storage with the push-down list (error ?02.79) during long routines, it is
helpful to limit the number of levels of nested expressions in a command. Use of abbreviations
and limited number of variable names wi I I maximize storage space. An FNEW function to
increase variable storage is explained in DEC-08-AJBB-Dl, Advanced FOCAL Technical
Specifications.

F-2

A

Addition 2-4

Additiona I Segments 5-4

Advanced Systems 5-1

Alphanumeric Numbers 2-12

ALTMODE 3-3, A-6

Arithmetic Operations 2-4, A-6

ASK 3-2

B

BIN E-2

C

CLINE Graphics 5-5

Commands, Summary A-1

COMMENT 3-8

Corrections 2-11

D

Disk Monitor System E-12

DISKIN Loading Procedure E-7

Division 2-4

DO 2-8, 3-5

E

Enc losures 2-5

Equipment Requirements 1-2

ERASE 2-7, 2-11, 2-12, 3-4, 3-10

Error Messages 2-2, 2-9, B-1

Examp Ie Programs

Circle and Spheres 4-3
Dice Game 4-10
Plotting 4-6, 4-7
P lotti n9 on Osc i II oscope 4-10
Tables 4-1
Temperature Conversion 4-5

INDEX

Simultaneous Equations and Matrices 4-12

Exponentiation 2-4, 2-13

Extended functions, 5-7

F

Floating Point Format 2-3, 2-4

FOR 3-8

Format 2-2, 2-4, A-3

Functions

Absolute Value (FABS) 3-13
Analog-to-Digita I A-5
Arc Tangent (FATN) 3-14
Cosine (FeOS) 3-14
Exponentia I (FEXP) 3-13
GRAPH (FX () ,FCOM(O), FCOM(l)) 5-7, A-6
Integer Part (FITR) 3-13
LIBRA Storage (FCOM) 5-4, A-6
Logarithm (FLOG) 3-14
Random Number (FRAN) 3-13
Sign Part (FSGN) 3-13
Sine (FSIN) 3-14
Square Root (FSQT) 3-12
Scope (FDIS) 4-10, A-5
Summary of A-5
Trigonometric D-1
User-defined (FNEW) A-6

GO 2-8, 3-5

GOTO 2-8, 3-5, 3-6

GRAPH 5-7

Graphics Package 5-5

G

Identifiers 2-5, 2-6,3-2, 3-4, 3-10

IF 3-6, 3-7

Immediate Wode 2-1, 3-10

Indirect Commands 2-7, 3-5

Initial Dialogue 1-2

Introduction 1-1

INDEX (Cont)

L

Language 2-1

Left Arrow 2-11 , 3-2

Length of Program C-1

LIBRA 5-3

Commands 5-3
Common Storage Function (FCO M) 5-4
DISKIN E-7
Error Messages 8-2
Limitations on FOCAL 5-4
Loodi ng Procedure E-5

LIBRARY Commands 5-3

LINK C-2

Loaders E-1

Loadi ng Proc edures

Paper-Tape System E-2
DISKIN E-7
FOCAL E-2
Graphics Package (CLINE, GRAPH and

PLOTR) E-11
LIBRA E-5
QUAD E-9
Restart E-3
Saving Programs E-5
Uti lity Package (4 WORD and 8K) E-10

Disk Monitor System E-12

4K FOCAL E-12
FOCAL Without Some Ext. Functions E-14
8K FOCAL E-16

LOCATIONS C-1

M

Mathematical Functions 3-12, A-5

MODIFY 3-9, A-4

Multiplication 2-4

Mu Iti -User Segments 5-2

N

Nested Expressions 2-5

o

Operations, Summary A-3

Operators

(Carriage return) 2-7, 3-2
(Carriage return-line feed) 2-7, 3-2

% (Output format) 2-2, A-3
$ (Symbol table) 2-6, 3-1, A-3
? (Trace) 3-11, A-5
II (Text Output) 2-7, 3-2, 3-3
Summary of A-6

Osci Iloscope 4-10, A-5

Output Format 2-2, A-3

Paper-Tape System E-1

Parentheses 2-5

PLOTR 5-7

P

Priority of Arithmetic Operations 2-4

Q

QUAD 5-2

Question marks, see Trace

QUIT 3-8

R

Radians 3-14

Reader, High-Speed A-4

Restart Procedure E-3

RETURN 3-8

RIM E-1

Rubout 2-11

S

Saving FOCAL Programs E-5

Scope Function A-5

Segments 5-1

Multi -User 5-2
LIBRA 5-3
QUAD 5-2

Additional 5-4
4WORD 5-5
8K 5-5
CLINE 5-5
GRAPH 5-7
PLOTR 5-7

Workable Combinations 5-9

SET 2-1, 2-5, 3-4

Significant Digits 2-2

Storage Allocation, B-3

Subroutines 3-6

Subscripts 2-6

Subtraction 2-4

Suggestions F-1

Symbol Names, see Identifiers

T

Terminators 3-1, 3-2, A-6

Trace 3-11, A-5

Trigonometric Functions D-1

TYPE 2-1, 3-1

U

Utility Package 5-5

W

WRITE 2-10, 2-12, 3-3

Z

Zeroes 2-3, 2-12

INDEX (Cont)

READER'S COMMENTS

FOCAL 8
PROGRAMMING MANUAL
DEC-08-AJAD-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback - your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the following period­
ically distributed publications are available upon request. Please check the appropriate box(s) for a current issue of the
publication(s) desired.

o Software Manual Update, a quarterly collection of revisions to current software manuals.

o User's Bookshelf, a bibliography of current software manuals.

o Program Library Pri~ List, a list of currently available software programs and manuals.

Name ______________ _ Organization

Street _____________ _ Department _________________ _

City ___________ State ______________ Zip or Country ____ _

...•....•..•....••.......•.. Fold Here .. .

.........................•.............. Do Not Tear - Fold Here and Staple .. .

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

~DmDDmD
Digital Equipment Corporation
Software Quality Control
Building 12
146 Main Street
Maynard, Mass. 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

Digital Equipment Corporation
Maynard, Massachusetts

printed in U.S.A.

mamalla

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	C-01
	C-02
	D-01
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	F-01
	F-02
	I-01
	I-02
	I-03
	replyA
	replyB
	xBack

