UWFUWFU
WEUWFUW
FUWFUWF
UWFUWFU
WEFUWFUW
FUWFUWF
UWFUWFU
WEFUWFUW
FUWF UWF
UWFUWFU
WEFUWFUW
FUWFUWF
UWFUWFU
WFUWFOW

FUWFUWFW

UWFUWFU
WEUWFUW
FUWFUWF
UWFUWFU
WEUWFUW
FUWFUWF
UWFUWFU
WEFUWFUW
FUWFUWF
UWFUWFU
WEUWFUW
FUWFUWF
UWFUWFU
WEUWFUW

WFUWFUWF

UWFUWFUWFUWFUWFUWFUWFUWFU
FUWFUWFUWFUWFUWFUWFUWFU
WEFUWFUWFUWFUWFUWFUWFU
UWFUWFUWFUWFU

UWFUWFU
WFUWFUW
FUWFOWF
UWFUWFU
WFUOWFUW
FUWFUWF
UWFUWFU
WEFUWFUW
FUWFUWF
UWFUWFU

U
UWF
UWFUF
WWFUWFU

UWFUWFU
WFUWFOUW
FUWFUWF
UWFUWFU
WFUWFUW
FUWFUWF
UWFUWFU
WFUWFUW
FUWFUWF
UWFUWFU

WFUWFUW UWFUWFUWF WFUWFUW
FUWFUWFUWFUWFUWFUWFUWFUWF
UWFUWFUWFUWFUWFUWFUWFUWFU
WFUWFUWFUWFU FUWFUWFUWFUW
FUWFUWFUWFU WEUWFUWFUWF

UWFUWFUWFU UWFUWFUWFU
WFUWFUWFU FUWFUWFUW
FUWFUWFU WEUWFUWF
UWFUWFU UWFUOWFU

UWFUWFUWFUWFUWFUWFUWFUWF
WFUWFUWFUWFUWFUWFUWFUWFE O
FUWFUWFUWF UviFUWFUWF Uvi F Uw
UWFUWFUWFUWFUWFUNFUWFUWF
WFUWFUW

FUWFUWF

UWFUWFU

WEFUWFUW
FUWFUWFUWFUWFUWFUW
UWFUWFUWFUWFUWFUWF
WFUWFUWFUWFUWFUWFU
FUWFUWFUWFUWFUWFUW
UWFUWFU

WFUWFUW

.FUWFUWF

UWFUWFU
WEUWFUW
FUWFUWF
UWFUWFU

INDEX TO MAJOR TOPICS

Abbreviations
Arithmetic operators - . .
Break Key . -

Character Codes . . . - .

Control Keys
Commands - . . . - .
Summary
Direct, Indirect . . .

ASK v & & & e .
BREAK . . « . .
COMMENT
0
ERASE « .« .« o .
FOR v« & & o« o
OTO « « o« . .
HESITATE
IF v v v o o .
JUMP
KONTROL « . .« o .
LINK « o o o .
LOOK .« « & o .
MODIFY/MOVE
NEXT & o o o .
ON « « « .« . .
OPEN . .« « o
PUNCH & « & o .
QUIT « v & o .
RETURN . . « o« .
SET « « « o« . .
TYPE v v & . .
WRITE . . .« o« .
XECUTE « .+ & o« .
.YNCREMENT
ZERO . .« . . .

Editing . - . . - . -

IN THIS

MANUAL

Pages
2.
10-11

74
4,16
14-50
53

19-25
4

29-30
15
37-39

31-32
33-34
49-50
34-35
18
15-17
39-41
32
44-48
43
35-36
31
26-27
19-24
1%
28
28
27
13

Enclosures . . - 12
Error Messages . - . - . . - . . - 5,75
Formatting . . - . - - . . - . - 21-22
Functions 55-73
Summary . - - - - 73
Program Defined . . « . e o = . . 66-72
FABS . e« & e e e e e e e 58
FATN . c e s e e e e e e 57
FBUF, FCOM .+« + o« o o o o o o 63-64
FCOS . . . - . - . . . - 56-57
FDIN . - o . 65
FEXP . . - . . . o . . . 56
FIN . e e e« e e e o o = 61
FIND - . . - - 62
FITR . e e &« e e e a ", .59
FLOG v v & o e e e e 56
FMIN, FMAX - - .- . &0
FMQ . - . - - . - . . - 64
FOUT - . - - . . - - - - 61-62
FRAC . - N - o . . - . . 59
FRAN . . - . o . - . . . &0
FSGN v & v e e e e e e 58
FSIN . e e e e e e e e e S6-57
FSAT &« &« & ¢ « e &« &« o .. 587
FSR e e e e e e e e 66
FTRM o - - &3
Input echo - . . - - . - 46-47
Input terminators - 25
1/0 operators - . - 19%23;
Line numbers . e e & e e o « s e Sv6
Loops - . - - :37'

Numbers - o e e

]

Patches «. « + « o« « « o o o o« o - 76
Punctuation « . <« & o« . e < e . . B 4
Reading in programs « .« « o o o o o .f Ai,ls:
Symbol table dump « .+ .. 4 o . . o . .20

Trace feature - = ‘52‘55?

Variables . . « .+ =+ « « + o . . 80

INTRODUCTION to U/W-FOCAL for the PDP/8

UWF is a powerful, interactive, language for the PDP/8* which combines ease of
use with an extensive set of features, allowing one to perform complex calculations
or control laboratory experiments with a minimum of effort. UWF is an advanced ver-
sion of FOCAL*, a stack processing language which is somewhat similar to BASIC and
FORTRAN, but much easier to use! Programmers who are familiar with either of these
languages should be able to write programs for UWF almost immediately, while those
who are just learning will find that UWF's simplified commands and built-in editor

make their progress very rapid.
HARDWARE REQUIREMENTS

The minimum system configuration for running UWF is an 8K machine capable of
executing the PDP8% instruction set, and some sort of terminal. UWF will automati-
cally take advantage of any additional memory present as well as permitting the use
of high-speed 1/0 devices such as punched paper tape or an audio tape recorcer for
program and data storage. There is also a much more elaborate version available for
systems licensed to use the 0S/8* operating system which provides complete device-

independent file support.
«FOCAL, PDP8 and 0S/8 are trademarks §f Digital équipment Corp., Maynard, Mass.
LOADING UWF

To load the binary tape containing UWF into your machine proceed as follows:

1) Make sure that the BIN loader is resident in Field Q.

2) Set the Switch Register to 7777 and hit "ADDR LOAD',

then reset Switch 0 if input is from the High Speed
reader (leaving 3777), otherwise go to the next step.
3) Place the tape in the reader so that the read-head is

positioned over the leader section and hit the fSTART'
(or 'CLEAR' and 'CONTINUE') switches.

UWF=1 |

The run light will go off when the tape has finished loading; check to be sure
the display is zero, indicating a successful load. If not, repeat steps 1-3 above
to see if you get the same checksum error each time. If you do, the tape you are

using has probably been damaged and you should try again with another copy.

STARTING THE PROGRAM
In order to start UWF for the first time, do the following:

1) Set the Switch Register to 0100 (UWF's Starting Address)
2) Press the 'ADDR LOAD' and ‘EXTD. ADDR LOAD' switches

3) Set switches 0-2 and 6-11 for any options desired (v.i.)
L) Now set the 'RUN/HALT' switch to RUN, and hit "CONTINUE®

UWF should respond immediately with a congratulatory message and indicate the
amount of memory available in your system. For installations with more than 8K,

here is how the additional memory space is used:

2K Expanded symbol storage or FCOM

16K One additional program area " 1
32K Five more program areas, or four plus FCOM

If you wish to limit the amount of memory available for any reason, you should set

suitches 9-11 in the switch register before proceeding with Step 4:
Switches 9-11 (octal): O=ALLl, 1=28K, 2=24K, 3=20K, 4=16K, 5=12K and 6 or 7=8K

There are a number of other 'custom® features which can be installed auto-
matically when the program is first started up. These options are controlled by the
setting of bits 0-2 and 6-8 in the switch register. The first group (0-2) selects
various terminal options while the second group (6-8) controls additional features.
Switches 3-5 are ignored and may be set to any‘value. Once UWF has been started the

first time step 3 is unnecessary and the switches may remain set to *100'.

UWF-2

Switch O: Use 'CRT-style' rubouts instead of 'backslashes'
Switch 1: Output four 'nulls' after every Carriage Return

Switch 2: Print error messages on a new line

Switch 6: Add three extra ‘secret variables' (&,:,\)
Switch 7: Add the 'KONTROL' command and the 'FDIN®' function
Switch 8: Add the 'FCOM' and 'FBUF' functions (requires 12K)

Example: 3 switch setting of '4134' limits the program to 16K, adds FCOM, FBUF and

the digital 1/0 routines, and installs ‘scope rubouts'. The '100' bit is ignored.

Some of these patches can also be installed (or removed) after the program has been
started - see Appendix 1I for further details. Note that adding the *FCOM* function
rgduces the effective memory size by 1 field, hence users with 16K who add this op-
tion will normally lose the first additional program area. Since it might be more
desirable in this particular case to have FCOM replace the extra variable storage,
there is a "magic location' which can be changed (-before- you start things up!) to

effect this arrangement. (16K configurations only - see Appendix II for details.)

Note that UWF runs with the 1interrupt system -ON- which allows program execu-
tion to overlap certain 1/0 operations. The result is faster run times, a 'live’
keyboard and the possibility of adding ‘'background® tasks which can be controltled
by the program or 'high-level' interrupts in which an external event causes the ex-

ecution of a specific group of statements within the program.

With the interrupt system enabled, however, it is possible that an ‘unknown®
device will create a continuous interrupt and thus prevent UWF from running. If the
'RUN' Llight goes on but there is no output as soon as you hit the 'CONTINUE' switch
halt the machine, hit the 'RESET' or 'CLEAR' switch a few times and then restart at
Location 100. If UWF still appears to be stuck in an endless loop;yqu’will probably
have to add an appropriate 'clear flag' instruction to the interrupf routine. See

Appendix II for the proper location.

UWF-3

UWF's CONTROL KEYS

UWF recognizes the following control keys:

tp)

2)

3)

4)

5)

6)

7

Remember:

CTRL/F is the master program break key - it will restart

UWF at anytime, assuming that the program is still running.

CTRL/C is the monitor break key. It will eventually trap

to a resident 'ODT' package which is not yet implemented.

CTRL/S (XOFF) stops output to the terminal. This provides

users with video terminals time to inspect their results.

CTRL/Q (XON) resumes output to the terminal. Some terminals

issue XON/XOFF codes automatically when the screen fills up.

The RETURN key is used to terminate all command lines. UWF
will not recognize a command until the RETURN key is typed.

The RUBOUT or DELETE keys are used to cancel the previous
character. On hard-copy terminals a '\' is echoed for each

character deleted. On video terminals they just disappcar!
The LINEFEED key is used to retype a command Line —before-

typing RETURN in order to verify that all corrections were

made properly. This is mostly for hard-copy terminals.

UWF can be interrupted at any time simply by typing CTRL/F.

accomplished by holding down the CTRL key and then typing the letter 'F'.

responcd by typing a question mark (?) followed by the line number where the program

was interrupted and then print an asterisk to indicate that it is ready for further

instructions:

?a 05.13 UWF was interrupted at line 5.13

UMF-4

UWF prints an asterisk (%) whenever it is in command mode waiting for new
instructions. You can then type in either 'direct commands' which are executed
immediately, or 'indirect commands' which are saved for execution at a later time.
To use UWF as a fancy 'calculator® simp[y give it a 'direct command®' and hi; the

RETURN key. For example, if you enter the command:
*TYPE PI1

UWF will print the value '3.141592654E+00*', correct to 10 significant figures. The
Direct Command feature is the essence of interactive programming since it permfts
one to work through a long calculation a step at a time, or to try out several dif-
ferent ways of doing something. You can experiment with any of UWF's commands by

simply typing them in as you read through this manual.

Indirect Commands always begin with a line number which indicates the order in
which they are to be executed. They may be entered in -any- order, houever,lénd can
be examined or changed at any time. Changes to indirect commands are facilitated by
the use of UWF's built-in editor which allows lines to be modified, moved to a
different part of the program, or deleted. Since indirect commands can be selec-
tively executed by direct commands it is possible to build a very powerful set of

'*macros' which can then be called with just a few keystrokes.

Line numbers in UWF have a *‘dollar and cents®' format: 'XX.YY' where *XX' may
range from 00-31 (the ‘"group® number) and ‘'YY' may have any value from 00-99 (thé
‘step' number). Group 0 and Step O both have special meanings in some commands, so
the first line of the program is usually Llabeled '1.1'. Notice that Lleading and
trailing zeros are not necessary, but one must always include a space after the
Line number to separate it from the commands on the rest of the line. Here are some

sample indirect commands:

*3.61 TYPE !
*12.7 COMMENT
*1.99 QUIT

UWF-5

A standard programming practice is to index sequential commands by an dincre-
ment of either '.05' or '.1'. Thus line '1.2' would be used for the statement
following line '1.1' rather than line *1.11'. This leaves room to insert wup to 9
additional lines in case changes to the program are necessary. Of course lines can
always be moved to make room, but it 1is a nuisance to have to do this and such

changes might require alteration of other parts of the program as well.
GROUP and RELATIVE LINE NUMBERS

Several UWF commands are capable of operating on all statements with the same
group number. To reference an entire group of lines one simply specifies the group
number without designating any particular program step: 'WRITE 1°, for example,
will list all the program steps in ‘'Group 1°'. Since the number *1' and the number
1.00' are indistinguishable to UWF, it is not possible to write just line 1.00
without writing the rest of the Llines in the same group as well. For this reason
the first line in a group is generally reserved for comments in order to avoid any

complications with group operations.

UWF can also designate a 'sub—-group' operation consisting of all the Llines
following a specified Line in the same group. Such operations are indicated by a
‘negative line number': 'WRITE -1.5', for instance, will list all of the lines in

Group 1 starting from Lline 1.5 (if it exists).

. Line numbers in the range '.01-.99' are termed ‘relative line numbers’', i.e.
they refer to lines in the -current group-, rather than to lines in ‘Group 0'. The
use of such line numbers is encouraged because it makes the'program more compact
and also allows subroutines to be moved easily from one part of the program to
another without having to worry about internal references. Lines with numbers less
than 1.00 -~can- be saved as part of the indirect program, but they can only be
executed when the program 1is started from the beginning since there is no way to

branch to them at a later time.

Finally, references to line '0' also have a special meaning. A few commands
interpret such references to mean ‘the -entire program®, while most others regard
"Line 0' as a reference to "the next command'. Line O itself is the permanent com-=

ment line (the 'Header Line') at the beginning of the program.

UWF-G -

PUNCTUATION

It 1is a common practice to put several commands on the same Lline in order to
reduce the amount of paper required for Llisting the program as well as to con-

solidate related operations. A ‘'semicolon' (;) is used to separate such commands:
*SET A=5; TYPE A

Commands which operate on more than one expression use a 'comma' to separate
the values. Thus the command 'TYPE A,B* js equivalent to 'TYPE A; TYPE B'. Spaces
may be included to improve the readability of a program, but one must remember that
‘space' is a 'terminator® (equivalent to a comma) so the ‘command 'TYPE A B' is
interpreted as 'TYPE A,B', not as 'TYPE AB°'.

- e am wm wm en am em em ea M W M e e eh e W EE e e e B em m wm e we e W e s e W e e

- e e e e wn e EE EE ee S W G we e W wm WR G M e R e WP aE e eR W WD e A e e W e e

UWF can handle up to 10-digit numbers with a magnitude range of 107615. Num-
bers may be written as signed or unsigned quantities and may include a decimal
fraction as well as a ‘power-of-ten' exponent indicated by the letter ‘E‘. ALL
numbers are stored internally in a 'floating-point' format with 35 bits of mantissa
and 11 bits of exponent. This is equivalent to more than 10-digit accuracy. UWF
will respond with an error message if a user attempts to enter a number with too

many digits. The following all represent the value 'sixty':
60 - 60.00 6E1 600.0€E-1

UWF also allows letters to be treated as numbers so that gquestions may be
answered with a 'YES' or 'NOf response rather than with a numeric reply. When
decoded in this manner, the letters *A-Z' have the values '1-26"', except that the
letter 'E' always means 'power-of-ten'. Thus the answer 'NO' would have the numer-
ical value '155' and the number 'sixty' could also be written as 'ODT' or 'OFEA’.
Note that the leading '0' is only required uhen.incorporating such 'numbers' into a

program. It is not required as part of ‘a user response.

UWF-=7

VARIABLE NAMES

Variables are wused to store input values or to save intermediate results.
Variables are thus Llike the storage registers on a calculator except that the
programmer may make up his own names to designate the va[ues>vsﬁb;ed. UWF allows
variable names of any length, but only the first two characteré ;fe retained inter-
nally. Thus the names JOHN and JOE would both refer to the variable 'J0'. The first
‘character of a variable name must obviously not be a number, nor can it be the
letter 'F' since that letter is used to designate functions. However UWF does allow
symbols such as '$' and '"'* to be used as part of a variable name so you can have
quantities such as A%, A', and A". Vafiables are always stored as numeric quan-

tities; UWF does not currently have ‘string' variables.

THE SYM3OL TABLE

The names of the variables which have been used by the program are saved
(along with their values) in a region of memory called the 'Symbol Table'. This
area is completely incependent of the area used to store the program so changes to
the text buffer do not affect any of the values stored in the symbol table. This is
extremely convenient since it allows a program to be interrupted, modified, and
then restarted somewhere in the middle, knowing that any intermediate results
obtained will still be available. Of course the programmer may examine any such
values simply by TYPEing them out, or he may change a few values with a direct
command before restarting the program. Variables are always assumed to have the
value 'zero' until another value has been assigned. The 'TYPE $' command can be
used to Llist all the values in the Symbol Table 1in the order they were defined by
the program. The ZERO command is used to clear the table, or to selectively set
some of the variables to zero. Variables with the value '0*' may be replaced by
other, non-zero variables when the symbol table fills up. This is transparent to

the programmer since ‘'undefined' variables are always zero anyway.

UWF-8

PROTECTED VARIABLES

The symbols {!,",#,%,%) and optionally {&,:,\}, along with the value of ‘Pl',
are ‘protected' variables which cannot be replaced or removed by a ZERO command.
This makes them useful for saving results which are needed by a second program.
Since they cannot be input or output directly and do not appear 1in a symbol table
dump, they are also sometimes called 'secret®' variables. Note that UWF automatic—
ally sets 'PI' equal to '3.141592654' so users should not use 'PI---' as a variable
name or this value will be lost. The variable "!* ('bang') is used as the dimension
constant for double subscripting (v.i.) and many of the remaining ‘secret vari-
ables' serve as dummy arguments for Program De fined Functions (see page 66). To
TYPE the values of these variables you must prefix a '+' sign or enclose them in

parentheses: TYPE +! or TYPE (!) will output the value of the first one.

SUBSCRIPTED VARIABLES

Variables may be further identified by attaching a subscript enclosed in par—
entheses immediately after the name, e.g. ‘'A(1)'. Such subscripts may consist of
arithmetic expressions involving other subscripted variables so quite intricate
relations can be developed. Unlike many other high-level languages, UWF does not
require any 'dimension’ statements for processing subscripted variables, nor are
the subscripts limited to only positive integers (they are Llimited to 12 bits,
however). A variable such as 'APPLE(-PIE)' is thus perfectly acceptable although
UWF will view this more prosaicly as simply *AP(~-3)'. Non-subscripted variables are

the same as those with a subscript of zero, i.e. 'A' = 'A(0)'.

To handle double subscripting, UWF -does- require a small amount of additional
information. Before using a double subscripted variable the programmer must store
the maximum value of the first subscript in the protected variable *!'. This value
may be §reater than the actual maximum without incurring any storage penalty, but
if it is too small more than one array element will be stored in the same locaticn.
Since this single 'dimension constant® is used for all arrays it should be chosen

for the largest array in cases where the program uses several different sizes.

UWF-9

To illustrate: suppose that operations on a 5x5 array were necessary. Then *!°
('bang') should be set to 5. If 3x3 arrays were also needed simultaneously (which
is not very likely) their elements would all be unigue and only 9 storage locations
would be used, not 25. Non-square arrays are handled just as easily: a 5x20 array
would still only require that '!* be set to S since that is the maximum value of
the ~first- subscript. This method of storing two-dimensiocnal arrays proves very
conveniept. for a wide range of linear algebra problems. The value of '!' is gen-

‘erallx“uSéd~as a loop limit so that the routines can be used with any size array.

- en e e e e Em @ A e e e W R e e AR YR W WR e e G W AR e e e s e e em e e e

UWF recognizes 6 basic arithmetic, and 1 special ‘character value' operator:

1 + .Addition

2) - Subtraction

3) * Multiplication

&) / Division

S5) © Signed Iﬁteger Powers
6)

7) * Vvalue of next character

Replacement

These 7 operator$vhéivbe combined with explicit numbers and function or vari-

able names to create 'Arithmetic Expressions' such as:

-

X= -B/2+*A + Y= FSQT(B"2-4*%A*(C))

UWF-10

‘Such expressions can be used -anywhere- that explicit numbers appear in this
writeup. In particular, they may be used to compute Line numbers. All expressions
are evaluated to '10-digit' accuracy, independent of the format used for output.
Intermediate results are generally rounded off rather than being truncated. Most
commands use, or operate on, arithmetic expressions. If such expressions are —-omit-
ted- a value of 'zero' is always assumed. This occurs frequently when evaluating
line numbers, hence you should recall the comments about line *00.00' mentioned on

page 6.

PRIORITY of ARITHMETIC OPERATIONS

Arithmetic operations are performed in the following sequence:

First priority - integer powers (7)

[

Second priority - multiplication (%)

Third priority - division (/)

Fourth priority - subtraction and negation (-)
Fifth priotiry - addition (#+)

Last priority - replacement (=)

vhen UWF evaluates an expression which includes several operations, the order

above is followed. For example, UWF evalutes the expression:
X=5"2/5+%2-1=5/2 leaving ‘X! équal to 'zero' and 'Z' equal to 2.5

Notice that multiplication has a higher priority than division. This 1is dif-
ferent from the convention in many other Langdagés where these operations have
equal priority. In most cases this difference is of no consequence. The effect of
embedding replacement operators is to cause portions of the expression to be eval-
uated in a somewhat different order than would be the case if they were not in-
cluded. In the example above, for instance, the quantity '572' is divided by the
quantity *5*2' and then the quantity 'Z' which is equal to '5/2' is subtracted from
the result. However, if one were to add a 'Y=' operator after the first '/' then

the quantity '5°2' would be divided by 'Y' which would be equal to '5%2-Z°.

UWF-11

ENCLOSURES

The order of evaluation can also be changed by the use of enclosures. Three
different kinds are allowed by UWF: Parentheses '()', Square Brackets '(]’, and
Angle Brackets '<', Subscripts and function arguments are common examples of ex-—
pressions contained in enclosures. UWF treats all sets identically (they must be
matched, of course!), except in some of the monitor commands in the 0S/8 version.
If the expression contains nested enclosures, UWF will evaluate it starting with

the innermost set and working outward. For example:

[A=5%<B=243>-5]"2 is evaluated as 'four hundred' with *A'=20 and 'B'=5

@ e e e ee e e e wn wm wn em em e s @ Gh an en mm mm mm wr mm e e em W e e e em wm W ew e

€ e e e wm e e e wn e ee W@ e e = Er Gn Gr e e e e e e me e e e wr e ar e W e e e

UWF doesn't care whether you tell it to 'TYPE' or *‘TAKEOFF'! The reason is
that only the -first- letter of the command is recognized, just as only the first
~two- letters of a variable name have significance. So while we have been carefully
spelling out all the commands in the examples so far, we could just as well have

abbreviated them to their first letters.

This feature of the language is both good and bad. On the one hand it greatly
reduces the amount of typing required and at the same time increases the number of
program steps possible. But on the other hand, a program containing hundreds of
'single letter commands looks more like a sheet of hieroglyphics than anything else.
This makes it quite difficult for the beginner to undefstand the program logic
until he himself has become more familiar with the meaning of all the symbols. For
maximum clarity the examples in this writeup will generally be spelled out, but you
should realize that the commands 'T PI' and 'TYPE PI' will produce —exactly- the

same result.
¥e will now turn to a detailed examination of all the commands available to the UWF

programmer, beginning with the editing commands since they are required for further

program development. .

UWF-12

When UWF is in command mode you can use the RUBOUT or DELETE key to correct
any typing errors. Each time that you hit this key UWF will delete the precedeing
character and echo.a '\' on the terminal. If you have a video terminal, and you set
switch 0 up when you started UWF for the first time (or made the appropriate patch
yourself), hitting DELETE will actually remove the character from the screen. This
is obviously much nicer since 'what you see is-uhat you've got'. On the other hand,
users.uith a hard-copy terminal can always just hit the ‘LINEFEED' key to have the
current input line retyped so that they can see just how it 'really' looks to UWF.
There is no limit to the length of input lines, however if your terminal does not

handle ‘wrap-around' automatically, the practical limit is the width of paper.

In addition to RUBOUT, the BACKARROW (or UNDERLINE key as it is identified on
newer terminals) may be used to delete all characters to the Lleft, including the
line number of an indirect command. You may then start over again. It is not
necessary to hit RETURN although you may wish to do so to get back to the Left
margin again. Note that LINE FEED will not echo a blank Link and RUBOUT will stop

echoing a '\' when it reaches the beginning of the line.

The use of 'BACKARROW' as a *'line-kill' character necessarily means that this
character (and RUBOUT, of course) cannot be part of the program, but all rema{ning
ASCII characters, both upper and lower case, can be used. Control codes can also be
used, but they should be scrupulously avoided since they are non-printing and are
therefore impossible to find when they are embedded in a program. In fact, if you
ever have a mysterious error in what appears to be a perfectly good command, just

try retying it in its entirety to eliminate any 'ghosts®.

Once you hit the RETURN key, UWF wiLl‘digest whatever you have typed, so sub-
sequent changes require the use of the editing commands. The text buffer can hold
approximately 7000 (cecimal) characters — typically 3-4 pages of printout. To list
any or all of this material you use the WRITE command; to eliminate some of it you
use ERASE and to make changes without having to retype the unchanged part, you use
the MODIFY command. This command can also be used to MOVE pérts of the program to a

different location.

UWF-13

w ee wm em e ar e ar o em e o s W e wr E m Gm e e me ee R Ee e e e e s e ek s e e e

- em am e e mr e e e e e E em e e b e am e e m n em e mm e e me e e we s am wm e s

The WRITE command, without any modifier, will List all of the indirect com-
mands currently saved in the text buffer. Lines are typed out in numerical sequ-
ence, no matter in what order they were entered, and are separated into the groups
you have specified. For this reason it is very convenient to use a different group
number for each major part of the program even if such a section only has a few
program steps. Using the first line (line XX.00) for a COMMENT to describe the

purpose of that section is also highly recommended.

The WRITE command can also be qualified by a string of numbers to Llimit the
listing to sclected portions of the program. "WRITE 1', for example, will print out
just the commands belonging to Group 1, while '"WRITE 2.2' will Llist only that
single Lline. A command such as 'WR1TE 1,2,3.35,4.9,5' will Ulist 3 groups and 2
single lines, in the order speéified. 0f course you should try to plan your program
so that it executes smoothly 'from top to bottom', but if you do need to zdd a
major section at the end, the WRITE command can be used to at least make a listing
showing the logical program flow. Another convenient feature of the WRITE command
is the ability to Llist a specific Lline and all lines following it within the same
group. This is done by specifying a —negative- line number. Thus 'WRITE -1.5' will
List line 1.5 (if it exists) plus the remainder of Group 1. 7The WRITE command will
not produce an error if the line or group you specified is missing - it will simply

not Llist it: What you see is what you've got!

UWF-14%

- e e wm e w mm em G em s s e e wn e wm an R e e e e em e s e es e e e em e e =

The ERASE command is used to delete parts of the program. ‘ERASE' without a
qualifier deletes the entire program, while ‘ERASE 2' will delete just Group 2.
Other possibilities are 'ERASE 9.71' which will only remove that single line, and
'ERASE -4.5' which will eliminate the second half of Group 4. Since 'ERASE O'
erases everything, you must use an 'ERASE -.01' command to erase all of Group O.
There is no way to erase lines such as '2.00' without erasihg the entire group at
the same time; this is one restriction on the use of such lines. Unlike the WRITE
command, only a single qualifier may be used with ERASE, and UWF will return to
command mode immediately afterbexecuting the commmand. Typing in a new Lline with
the same number as an old one will effectively erase the previous version. Entry of
just a Lline number by itself will result in a 'blank line' which may be used to
separate sub-sections of a program. Note that this treatment of blank lines differs -

from that used by BAS1C. Blank lines will be ignored during program execution.

e ws wm wn aw o W e e e e wr e we mm wm s S e e wh A en e em w wh e wn e en ew en e e

" To change a program line or to move it to a different part of the program, you
must use the MODIFY or MOVE commancs. MODIFY without a qualifier can be used to
examine the header Lline, but it cannot be used to change this line. MODIFY with a
single line number permits changes to the line specified while & MODIFY (or MOVE)
with -two- Lline numbers allows similar changes, - but saves the modified line with

the new number. The old line, in this case, remains just as it was.

MODIFY only operates on single Lines (at the moment), so a command such as
'MODIFY 1' will allow changes to line 1.00, not to all of Group 1. Similarly, 'MOVE
2,3" will move Lline 2.00 to line 3.00; it will not move all the Llines in Group Z.
Since UWF does not have a 're-number' command, moving lines and then erasing the
oic copy is the only way to &dd additicnal Ulines when you forget to leave enough

room between sequential Lline numbers.

UWF-15

After you have entered a MOD1FY (or MOVE) command, UWF will optionally print
out the line number and then pause until you enter a search character. As soon as
you have done so, the line specified will be typed out through the first occurrence
of this character. If you want to insert material at this point, just type it in;
if you want to delete a few characters, simply use the RUBOUT or DELETE key. Other
editing options may be invoked by typing one of the following control keys. Note:
mistakes made while trying to modify a line often lead to embedded control codes,

so if you do get confused, just type CTRL/F and try again.

CTRL/F Aborts the command - the line is unchanged
CTRL/G (BELL) Rings bell and waits for a new search char.
CTRL/J (P Copies the rest of the line without changes
CTRL/L (FP) Looks for the next occurrence of search char.
CTRL/M (CR) Terminates the line at this point

BKAROW, UNDRLN Deletes all chars to the left, except lineno.

RUBOUT, DELETE Deletes previous character, as in command mode

The last two operations are similar to those available during command mode
- except that BACKARROW or UNDERLINE coes not delete the line number. To remove the
first command on a line containing several commands, just enter a semicolon (;) as
the search character, wait for the first command to be typed out, hit BACKARROW or
UNDERLINE and then hit the LINE FEED key.

CTRL/G and CTRL/L may be used to skip quickly to the part of the line requir-
ing changes. If the change(s) you wish to make involve frequently used characters
-(such as an '='), you can initially select a different symbol which occurs less
frequently and then use BELL to change to the character you really wish to find. Or
you can simply keep hitting the FORM FEED key to advance through the line. 1In case
your terminal happens to respond to a FF, you will be pleased to know that UWF cdoes
not echo this character!

UWF-16

If you just want to move a Linc from one location to another, type a LF as the
initial search character. If you are adding new commands in the middle of a line,
be sure to use the LF key — not the RETURN key - to finish copying the rest of the
line. Otherwise you will lose the commands at the end of the line and you will have
to MODIFY the line a second time in order to re-enter them! If you have a hard-copy
terminal you may wish to WRITE out the Lline after you have modified it to check for
addftional errors. With a video terminal, on the other hand, the corrected line

will be displayed just as it is.

If you have many lines to move (say all the lines in Group 5), and you have a
slow terminal, you can disable the printout during the Move in order to speed
things up. To do this, simply disable the keyboard echo by using the '0 I' command
(this is discussed on page 46). A disadvantage to this method is that not even the
MOVE commands will be printed so you have to operate 'in the dark', but this is
still the best way to make such a major program change. To restore the keyboard
echo just hit CTRL/F.

On video terminals the number of the line being modified is printed out at the
beginning so that the changes will be properly positioned on the screen. With a
hard-copy terminal, however, the line number is not normally printed in order to
leave as much room as possible for rubouts and insertions. Appendix 11 indicates

the location to change if you wish to add the line number printout in this case.

UWF-17

- am er e me e e wm e em ee we ms e an e wm em e ws wn Em ar e wn e em o e e e e e an - -

- wm e wm e e e e @ am W em wh o wr we ww mm me e e eE e s w6 e Mm we am e wm mm wm e am

If your machine has more than 12K of memory, UWF will automatically use Fields
3-7 for additional text buffers. This allows such systems to keep several different
programs in memory at the same time which is obviously a very convenient thing to
do. The LOOK command is then used to select the desired 'area' for editing, program
execution, etc. Programs in different areas are essentially incependent and may use
the same Line numbers, but the symbol table and the ‘stack' are shared by all

areas.

The LOOK command has the form: ‘'LOOK Area', where 'Area' has the value '0' for
the main text buffer and *1°', '2', '3', etc. (up to 5) for the additional fields.
LOOK always returns to command mode and is normally only used as a direct commanc.
'L 1' will switch to Area 1 while 'L 0' (or just 'L') will return to Area O. For

calls between program areas, see the LINK command described later on page 34.

UWF-18

- wm Em e e e e ae e e e e e e s e e me ah e e e Ge e ae e we A me we e e e - e

UWF's 1/0 commands are called *ASK' and 'TYPE', respectively. The TYPE command
has appreared previously in a few of the examples; basically it converts the value
of an arithmetic expression to a string of ASCII characters which are then sent to
the terminal, or to whatever output device has been selected as a result of an
appropriate 'OPEN' command (see page 44). Similarly, the ASK command is used to
input numeric values, either from the keyboard, or from another input device. Both
of these commands recognize 6 special operators for controlling the format of 1/0
operations. These operators are, in fact, just the symbols previously identified as
*protected variables' and it 1is because of (heir special significance in ASK / TYPE
commands that they cannot be input or output directly. These operators, and their

meanings, are as follows:

1 ! Generate a new Line by printing a CR/LF

2) " Enclose character strings for labeling

3 # Generate a RETURN without a LINE FEED

4) b Print the contents of the Symbol Table

5) X Change the output format

6) : Tabulate to a given column or ignore input

You will notice that these are mostly ‘output' operations. Nevertheless, they
perform the same function during an ASK command that they do in a TYPE command. The
'#* operator does not work on all 1/0 devices and is therefore seldom used. It was
'originally intended for overprinting on the same line, but may be easily patched
(see Appendix 1I) to generate a FORM FEED, should that be desirable. The remaining

operators will now be discussed in greater detail.

UWF-19

THE NEW LINE ! (BANG) OPERATOR

The '!' operator is used to advance to a new line. UWF never performs this
function automatically, so output on a single line may actually be the result of
several ASK or TYPE commands. 'Bang' operstors can be 'piled together' to produce
multiple blank Lines: 'TYPE !!!t1' for example, would advance 5 lines. Note that
to produce a single blank line may require either 1 or 2 '!'s, depending upon

whether anything has been written on the first line.

THE QUOTE ** OPERATOR

UWF uses the ''"' operator to enclose strings which are output just as they
appear in the program. Thus the command: TYPE *“HELLO THERE, HOW ARE YOU TODAY?"
would simply print the message enclosed by the quote marks. The *ASK' command uses
such output for prompting: ASK "HOW OLD ARE YOU? " ,AGE will print the question and
then wait for a response. In some cases the TRACE operator (?) 1is also useful for

printing labels during an ASK or TYPE command - see page 52.

THE SYMBOL TABLE DUMP $ OPERATOR

The Symbol Table Dump operator (3) has already been mentioned briefly on page
8. It prints all the symbols defined by the user's program in the order in which
they were encountered. It does not print the values of the 'secret variables'. To
conserve paper and to permit as many symbols as possible to be Llisted on a video
terminal, the listing normally has three values per Lline. This format can be
changed simply by specifying a different number after the '$'. Thus *‘TYPE $5' wilt
change the default value to 5, which is convenient on terminals which can print up
to 132 characters per line. The total number of symbols possible depends upon the
amount of memory available. In an 8K machine there will only be room for about 120
variables while in a 12K machine one can have approximately 675. For internal
reasons, a Symbol Table Dump always terminates execution of the commana line it is

on, hence commands following it on the same tine will not be executed.

UWF-20

THE FORMAT 7 OPERATOR

The format operator (%) allows UWF to print numeric results in any of three
standard formats: 1integer, mixed decimal, or *floating-point' (scientific nota-
tion). A format remains in effect until another one is selected. Initially UWF is
set to print all results in full-precision scientific notation so that all digits
of a result will be output. However for many calculations a 'decimal' or 'integer’
style of output is more desirable. Such formats are selected by the wvalue of an

arithmetic expression following the '%' operator which has the form:
ZND.DP

where 'ND' is the Number of Digits to be printed (the result will be rounded off to
this precision), and 'DP' is the requested number of Decimal Places. 'DP' should be
smaller than 'ND' wunless 'ND' is zero; if 'DP' 1is zero the result will be an
'integer' format and no decimal point will be printed. Thus the command 'TYPE

%2,PI' will produce the resuit ' 3.

Notice that the form of the format specification is similar to that used for
line numbers. This may help to explain why it is necessary to use '%5.03', rather
than '%5.3', when you wish to have 5 digits printed with up to 3 decimal places.
The number of decimal places actually printed may not be exactly what you have
requested. If UWF finds that the number being output is too big to fit the format
you specified it will reduce the number of decimal places. For example, if you try

the command:
TYPE %5.04, 123.456

you will actually get the value ' 123.46' printed since it is not possible to show
& decimal places with only 5 digits. Note however that UWF -did- print the 5 most
significant digits in a format approximately like the one requested. Programmers
accustomed to dealing with large powerful computers which print only a string of

'«xkkk's under similar circumstances should find UWF's approach quite sensible.

UWF-21

What happens if the number is 'so large that even the most significant part
overflows the field specified? In that case UWF automatically switches to floating-
hpo?nt format for that value so you will be able to see an unexpected result without
.héving to re-run the entire program! You can try this out simply by typing the
value '123456* without changing the format from the préQjous setting. UWF will

print: ' 1.2346E+05°. i

To purposefully select a floating-point format you should specify one with
'ND' equal to O. Thus the format '%.05' will print 5-digit numbers in proper
scientific notation (1 digit before the decimal point). The default format when UWF
is first loaded is '%.1' which prints all 10 digits. To return to this format you
can simply specify '%', since the value '0' is treated the same as 'Z%.1'. Note that
using an arithmetic expression for the format specification, rather than just a
fixed number, permits thé format to be changed dynamically while the program is

running: '%VF' would select a format using the value of the variable 'VF'.

Finally, note that UWF will never print more than 10 significant digits - the
Limit of its internal accuracy. If the quantity 'ND' is larger than this, spaces
will be used to fill out the number. If the quantity 'DP' is larger, zeros will be
added. In any case, if the number is negative UWF will print a minus sign just
ahead of the first digit. A plus sign 1is never printed (except as part of the
exponent), but a space is reserved for it anyway. An additional space is also
printed at the beginning in order to separate the number from any previous output.
This space may be omitted (or changed to an '=' sign) by making the patch shown in

Appendix 1l.

To summarize the various output format settings:

N 'N' digit integer format

AN.D 'N*' digits with up to 'D* decimal places
x.D 'D* digits in scientific (F.P.) notation
Y 4 the same as '%Z.1' - full precision F.P.

UWF-22

THE TAB : OPERATOR

The tab (:) operator provides a convenient way to create column obutput. The
expression following the colon is used to set the column, i.e. ':10' specifies col-
umn 10. The tab routines do not attempt to go backward if the column specified is
to the left of the current print position - the command is simply ignored in this
case. 'Tabs' are recommended in place of a string of spaces so that changes in the

output format will not affect subsequent columns.

There are two special cases: tabbing to column 0 and tabbing to a negative
column. Neither is possible since columns are numbered from 1 to 2047, but both are
useful operations. Expressions which have the value zero can be evaluated by the
tab operator within a TYPE command —-without- producing any output. This is conven-
ient occasionally, especially for calling the FOUT function (see page 61). Tabbing

to a negative column has been given a quite different interpretation, however.

Since the current version of UWF can only input numeric values with the ASK
command, there 1is a need for a method to skip over Llabel fields when re-reading
output produced by another program. This facility is provided by "tabbing' to a
negative column number which causes no output, but instead reads and ignores the
specified number of characters. Thus the command 'TYPE :-1' will -read- 1 character
from the input device. This may well appear confusing, since we have an ‘output"
command waiting for input, so the 'ASK' command may be used instead: *ASK :-1°
performs the same function. This feature provides a simple way to get the program
to wait for operator intervention. For example, the command 'TYPE "TURN ON THE
PUNCH":-1* would print the message and then wait for any keyboard character to be
typed. An 'ASK :-2000' command will let a visitor type almost anything s—he Llikes

into the computer without danger of destroying a valuable program.

UWF-23

ASK / TYPE SUNAARY

Having discussed all the ASK/TYPE operators, there is really very Llittle more
to explain about the commands themselves. TYPE can evaluate a whole series of
arithmetic expressions which are generally separated by commas or spaces or one of
the above operators, while ASK can input values for a whole Llist of variables,

again separated by commas or spaces. Here are a few examples:

TYPE !!:10"TODAY 18"%2,15 74" OCTOBER"1978!
ASK "TYPE A KEY WHEN YOU ARE READY TO GO':-1
TYPE !"THE ROOTS ARE:" %5.02, R1 :20 R2 !!
ASK !'"WHAT IS THE INITIAL VALUE OF X? " IX

Notice that the TAB and NEW LINE operators can be included in an ASK command
to help format the -dinput. Thus ‘'ASK X :10 Y !' would keep the input responses in
two nicely aligned columns. It is quite convenient to be able to output the neces-
sary prompting information with the ASK command; other languages frequently require
separate commands (such as "PRINT' followed by *INPUT') for these operations. The
trace operator described on page 52 is also useful in ASK and TYPE commands when

one is interested in a 'minimal effort® 1/0 structure.

One other feature of a TYPE command should be noted: it is possible to save
the value of a quantity being 'TYPEed' just by including a replacement operator in
the expression. Thus 'TYPE X=5' will output the value 'S' and also save it as the

value of the variable 'X'.

Numeric input for the ASK command can take any of the forms listed on page 7,
specifically: signed integers, alphabetic responses, decimal values or numbers
containing a power-of-ten exponent. Because such numbers are processed as they are
being input it is not possible to use the RUBOUT key to delete an erroneous char-
acter.. Rather, one must effectively hit the 'clear key' (as on a calculator) and
then re-enter the entire number. The ‘clear*' function is indicated by typing a
'BACKARROW' or 'UNDERLINE' just as it is during command input. If you do attempt to
use RUBOUT, no '\'" will be echoed which serves as a reminder that this key is

ignored during an ASK command.

UWF-24

INPUT TERMINATORS

UWF allows a variety of characters to serve as input terminators. In addition
to the RETURN key, one may use a SPACE (spaces in front of a number are ignored,
but may be used to format the input as desired - spaées following the number always
act as a terminator), a COMMA, SEMICOLON, or other punctuation marks such as a
QUESTION MARK or COLON. A ‘'period' is, of course, recognized as a decimal point,
but a second period also works as a terminator. Any of the arithmetic operators
also serve as terminators; in particular, the */' and '-*' characters are often
convenient. This allows responses such as *1/2' or '1-5' for the values of —-two-

different variables.

In fact, any character —except— 0-9, A-Z, RUBOUT anc LINE- or FORM-FEED can be
used to terminate the response to an ASK command. More to the point, however, is
the fact that the program can test to see which terminator was used. This allows a
very simple input Lloop to read an indefinite number of dJtems until a specific
terminator (a '?', for instance) is found. See the discussion of the FTRM function

on page 63.

The ALTMODE or ESCAPE key is a special case: typing either of these keys
Leaves the previous value of the variable unchanged. This allows quick responses to
repeated requests for the same value. The program, of course, can pre-set the value

of the variable so that an ALTMODE response will merely confirm the expected value.

UWF-25

- em W e e e e e en s o em e em e e wm mm W em em em er e we wr e wm e wm e e e e me s

- e wr e AP wm e e e wr mn e e e m e e wn e em em e em me e e me e e e em e @ e me e

- ean e e wr e w ar e e e G s e wn e e e e W e wn e me R W e an em e e e s am e w

W e wr e e e e wr e wr e e Gn e mm e M el e ew e W e e em o em e em G e = e e e

The most frequently used command in the UWF language is the SET command. This
command evaluates arithmetic expressions without producing any output (except when
the trace feature is enabled - see page 52). Such expressions typically have the

form:

SET Variable Name = Arithmetic Expression

But more general expressions, particularly those containing sub-expressions, are
perfectly acceptable. Thus a command such as 'SET A=B=C=5' could be used to set all
three variables to the same value while 'SET I=J+K=1' would initialize the value of
'K' (to 1) as well as set 'I' to 'J+1°'. Expressions used with the SET command do
not need to contain replacement operators: the command 'SET FIN()' could be used,
for instance, to input a single character. The value of the function would not be
saved, however; this is sometimes useful when calling 'I/0* functions for their

'side-effects'.

Note that the word 'SET' (or its abbreviation 'S') is not optional as it is in
some other languages. The flexible syntax employed by UWF makes it mandatory that
every command begin with a command letter. One SET command, however, will process
as many expression as can fit on a single line. The expressions should be separated
by commas or spaces, for instance:

'SET A=1,B=2,C=A+B' which is equivalent to ‘SET C=(A=1)+B=2"

Another point to remember is that the same variable may appear on both sides of an

UWF-26

'=' sign. Thus 'SET X=X+5' has the effect of redefining the value of 'X' to be S
more than the initial value. This can get to be tricky if the same variable appears
several times in a single expression on both sides of replacement operators. The
rule here is that in each instance the variable will have its current value until
the entire expression to the -right- has been cvaluated; then it will be replaced

with the new value. To give a fairly simple, yet intriguing, example:
SET A=B+A-B=A : which is equivalent to SET C=B+A,B=A_A=(-B

This will interchange the values of 'A' and 'B'. Another expression which does the
same thing is: SET A=B+0*B=A. Notice that the processing of this expression in-
volves two different values of 'B': The first time ‘B' is encountered it is on the
right side of an '=', so its current value is used; the second time it is on the
left side, so the rest of the expression is evaluated, the substitution made, énd
then processing of the first part is resumed. Thus *A' retains its original value
until the very end (when it 1is replaced by the initial value of 'B', which was

saved on the stack).

The special case of 'SET Var=0' is conveniently handled by the ZERO command. A
single ZERO command may be used to set several wvariables to zero, making it very
convenient for initializing sums and ‘flags': *ZERO A,#,C*' will set those three
variables to zero. As a special case, if no variables are specified, the ZERO
command clears the entire symbol table. This effectively sets —all- the variables

to zero since this is the default value for ‘undefined' quantities.

One other use of the ZERO command should be mentioned. When the Symbol Table
fills up, UWF tries to replace any variables which have the value '0' with new
variables. This procedure succeeds as long as there is at least 1 variable with
this value, since that one will simply be renamed, and no matter what the name, it
vill always be zero. As a result of this scheﬁe, programmers may regain symbol

table space by ZEROing unneeded variables when they are finished with them.

UWF-27

- e en e En e wm en e e e e wn e W e e w e e ae e e e em e em e e s e em e e e e

Another special case of the SET command - ‘SET .Var = Var + 1' 1is handled by
the YNCREMENT command. This command allows a list of variables to be either incre-
ment or decremented by the value *'1'. The command 'Y K', for example, is equivalent
to 'SET K=K#1' while 'Y -J' is the same as 'SET J=J-1'. Of course commands such as
'Y N,0-P' are permitted; this one increments the variables 'N' and '0' and decre-
ments 'P'. Either commas, spaces or minus signs may be used to separate the vari-

able names.

- am e em e Em wn s e e e e e eE em SN e W wh em e e A m W e e em W e e e s e > e

The XECUTE command has been iﬁcluded for compatibility with earlier versions
of UWF. Its purpose was to evaluate arithmetic expressions without setting useless
'dummy’ variables. This is now accomplished by the SET command itself simply by
omitting tbe replacment operator. Thus 'SET FOUT(7)"' may be used to ring the bell
on the terminal. Internally °'SET' and 'XECUTE' are identical; it is recommenced

that SET be used in new programs.

UWF-28

- em em e e ee wm e wm e e em W mr er e mm mm e we me me e mm me ew e e em we mm e o e

- e e em o em em as em e em am e W e e W em Em we e wm wn e e e e o e

This class of commands is used to test arithmetic results, -set up loops and
otherwise control the sequence of command execution. There are 11 commands in this
catagory - UWF has a very rich control structure built around two fundamentally
different types of transfers: the 'GOT0' branch and the 'Du' call. Both interrupt
the normal sequence of command execution, but the GOTO is an unconditional branch
while a DO call eventually returns to the next>command following the call. The DO

command is similar to the 'GOSUB' in BASIC, but is considerably more flexible.

- e ar wm e e e e e e @ e em wm s E W es G e W G e W e s M w W WD e e e w ae =

This command has the form 'GOTO line number'. It causes an immediate transfer
to the line specified. The *'GO' command is the usual way of starting the indirect
program at the lowest numbered line; it may Le used to start the program at any
other Lline as well: 'G 2.1' will start at line '2.1'. An explicit line number may
be replaced by an arithmetic expression to create what FORTRAN calls an ‘Assignad

Goto': ‘SET X=5.1 . . . GOTO X*.

- s e E e s W wm W M W s e e me e W W s e e W s WD G W R W eE e @D e e e e =

The DO command is effectively a subroutine catl. A DO command without a modi-
fier (or equivalently, a ‘D0 0' command) calls the entire stored program. This may
be used as a Direct Command in cases where you wish to follow such action with
additional commands, e.g. °‘DO;TYPE FTIM()' might be used to check the running time

of a benchmark program.

UWF-29

DO also accepts a list of line and group numbers such as ‘D0 -.7,8,9.1', which
would call the subroutine starting at line XX.70 in the current group, then Group 8
and finally line 9.1. *DO' is completely recursive: a DO may thus 'do* itself! Note
that the commands called by a DO are not designated anywhere as subroutines - they
may be, and usually are, just ordinary commands somewhere in the main program. This
is one of the major differences between DO calls in UWF and GOSUBs in BASIC.

Suppose, for example, that the program had a line such as:
1.3 ZERO A,B,C; SET D=5, E=6

which occurred in Group 1 as part of an initialization sequence. If the same set of
commands were needed later in Group 12, one would only need to write 'D0 1.3'. This
facility for re-using common parts of the program is akin to writing 'macros' and
is generally considered to be a good programming practice. The one feature missing
from the DO command s the ability to explicitly pass arguments to the ‘sub-
routine'; this must be handled by the use of ‘common' variables. As you will see
later on (page 66), Program Defined Function calls provide this capability in a

somewhat limited form.
A DO call may be terminated in one of four ways:

1) There are no more lines to execute in the range specified
2) A RETURN command is encountered

3) A loop containing a DO is terminated by a NEXT or BREAK
4) A OTO transfers to a line outside the range of the DO

The first condition is the most common, especially for single line calls. The
second condition is ekplained below, while the third is explored in the discussion
of the NEXT command. That leaves only the fourth possibility: GOTO branches can be
used to terminate a DO call simply by transfering to a line outside of the range;
however the line transfered to will be executed first, which can lead to slightly
unexpected results. For instance, 1if the line branched to happens to immediately
precede the group, no exit will occur because UWF will find itself back in the
proper group again when it finishes the line. Another somewhat similar case occurs
when calling a ‘'sub-group': GOTU transfers anywhere in the same group will be
honored without causing a return. Thus if you wish to force a return from a DO

call, do it with the RETURN command (v.i.), not with a GOTO,

UWF-30

The RETURN command provides a way to selectively exit from a DO call in cases
where the entire subroutine is not required. Since a 'D0' call always specifies the
implied range of the subroutine (a single line or an entire group), a RETURN
command is normally not required. There are cases, however, especially when calling
a3 '"sub—group', 1in which a RETURN is necessary to force an early exit. If there is
no subroutine call to return from, RETURN will go back to command mode instead,
i.e. it behaves just like a QUIT command. This is a useful feature, since programs
which end with a RETURN can be run normally, but can also be called as subroutines

via the LINK command (see page 34).

RETURN can also designate a line number, for example: RETURN 5.3. In this case
the normal return to the calling point is aborted (except for PDF calls, see page
68) and the program continues from the line specified. This is a very important
feature since it effectively transforms a DO call into a GOTO branch. It is all the
more useful since it can be 'turned on and off' simply by making the return point
an arithmetic expression which, when zero, indicates a normal return, but otherwise
causes a branch to the line specified. This gives UWF a 'multiple return' feature

which is found in only a few high-level languages.

W R Er AR wn G W ar W wr R SE e e Er W YR e e e e G e MR s WD MDD am D e e e we W w

W e e W an wm wE W W E W E wn e em W Gh e e eGr eh W W e we e e e MO em Ee em e e e -

The form of the IF command is:
IF (Arithmetic Expression) negative, zero, positive
where 'negative', 'zero' and 'positive' are line number expressions not containing
commas. Depending upon the sign of the value being tested, the program will perform

a 'GOTO® branch to one of the three possibilities. The expression being tested must

be enclosed in parentheses and must be separated from the command word by a space.

UWF-31

Not all of the branch options need to be specified, and relative Line numbers

are especially useful for those which are. Here are some examples of 1IF commands:

IF (D=B~2-4*A%xC) .2,.3,.4 Tests for all 3 possibilities
IF (A-5) 5.1, 5.1 Branches if A is less than 5

IF (-X) .9 or IF (X),,.9 Branches if X is greater than 0
IF-CI-y1) , .2 Branches only if 1 equals J

IF <W> .4,,.4 Branches only if W is non-zero

These examples illustrate the flexible nature of the IF command. In commands
with only 1 or 2 branch options, if the branch is —-not- taken, the next sequential
command will be executed - whether this command is on the same line or on the next
line (unless the IF is in a FOR loop, v.i.). Here, then, 1is a case where ‘line O0°
is interpreted as the 'next command'. Also note (example 1 above) that the expres—
sion being tested may contain replacement operators so that the value may be saved

for use elsewhere in the program.

- e am e e e e e EE e en AW W G A wn G em W en EE Gh W EE wm ar s we e as wr W e =

- e ws e e Em W E er en e e EE G e W R e w e W e e W s Ee ek e G ee e e an s e W

The ON command is identical in form to the IF command: ON (exp) N,Z,P. The
difference is that DO calls are used in place of GOTO transfers, so upon completion
of the subroutine, the program will continue with the next command following the ON
test.* This is often a very convenient thing to do since it allows additional
processing for specific cases. As with the 1F command, not all 3 calls need to be
specified, so one can test just for equality (zero), or for some other condition.

Notice that an entire group can be called by the ON command.

* The automatic return can be aborted if desired - see the RETURN command for

further details.

e _ 2"

The JUMP command has two distinct forms which have been designed to serve the

needs of interactive programs:

JUMP Lline number -or-
JUMP (expression) S1, S2, S3, S4, S5, . . .

The first form is a conditional GOTO in which the branch is taken -unless- there is
a character waiting in the input buffer. This form is used to test the keyboard for
input without interrupting the program if there isn't any. This feature is essen-
tial in interactive programs which allow program flow to be controlled dynamically

from operator response. For example:

1.1 YNCR 1; JUMP .1; TYPE I

will hang in a loop incrementing the variable 'I' until a key is struck, than type
the number of cycles. The character used to interrupt the program can be read with
the FIN function (see page 61) and so used to further control program flow. 1If the
example above simply called FIN to read the character directly, the program would
hang in the 1input wait loop and nothing further could be accomplished until the

operator struck a key.

The second form of the JUMP command provides a computed subroutine (DO) call
which 1is essentially similar in form to the ON command except that the actual
-value- of the arithmetic expression being tested is used (rather than just the
-sign- bit) to determine which subroutine to call. The call list is indexed from 1
to N, and any number of subroutines may be specified. Values of the expression
which do not match up with a specified call are ignored. In the example shown
above, Subroutine No. 4 will be called if the expression has the value 4.5, whereas
- 1f the expression has the value -1, 0, or 12.3, no subroutine at all will be
called. As with the IF and ON commands, line numbers may be omitted (or set to

zero) to avoid a call for certain values of the expression.

UWF-33

Typically the expression is simply the ASCI1 value of a keyboard character

which is used to select an appropriate subroutinc. For example:
JUMP (FINCO)-'R) A,B,C,,E

will call subroutine 'A' if the letter 'A' is typed, etc. Notice that typing the
letter 'D' is treated as a '"NOP' by this particular command. As with the ON com-
mand, the program normally continues with the next sequential command following the

subroutine call unless a RETURN command is employed to transfer elscwhere.

- e wr e wr wm @ er e e wr o Em em mr m s e e e W W G W s s we e em em s em s en e -

The LINK command allows systems with more than 12K to call subroutines stored
in different text 'areas'*, thus 'linking' such areas together as part of a ‘main'

program. The command has the form:
LINK Area, Subroutine Pointer

- where 'Area' may have the values '0' or '1' in a 16K system, and up to *'S' if
sufficient memory is available. The 'Subroutine Pointer' 1is a line or group (or
sub-group) number as described for the DO, ON and JUMP commands. A value of '0'

specifies that the entire area is to be used as a subroutine. Examples:

L, 4 Calls group 4 in Area O
L 1,-8.5 Calls sub-group starting at line 8.5 1in Area 1
L,.3 Calls line XX.30 in the same group in Area 0

L 2,;7T "DONE" Executes all of Area 2, then types °'DONE’

Notice that the comma is required punctuation even when the second parameter
is zero, as in the last cexample.** To avoid returning to the calling area at the
end of the subroutine, use a RETURN command with a non-zero line number, such as ‘R
.9' to abort the normal return sequence. By using a computed line number in such a
command the calling program can control thé return. A 'QUIT' command can also be

used to cancel all returns - see below.

UWF-34

.

The variables created or used by a program 1in one area are shared by all
areas, so be careful to avoid conflicts. Also, since each LINK saves its return on
the 'stack', watch out for calls which never return, but simply chain from one area
to another. This will eventually lead to a ‘stack overflow' which can be cured by

using a "QUIT X' command to cancel all pending returns.

The LINK command functions properly for calls from within the same asrea, but
‘the DO command is clearly preferable since, for one thing, it can handle multiple
calls which the LINK command cannot. LINK can be used in direct commands; it is

somewhat similar to the 'LIBRARY GOSUB' command in the 0S/8 version.

*For more information on storing programs in different areas, see the discus-

sion on page 18.

**LINK and LOOK differ only in the presence or absence of a second parameter.
If only the area is specified UWF returns to command mode (LOOK), otherwise it

executes a subroutine call (LINK).

@ wr e e wm G Gr we N s WD wm R E Ee N W e W e W W W B e T wh W s e we W e W

The QUIT command stops program execution and resets the °stack® pointers so
that all pending operations (such as subroutine returns) are destroyed. CTRL/F as
well as any execution error performs an effective QUIT, thereby returning to com-
mand mode. There are rare occasions, however, when it is desirable to be able to
‘quit' and then simulate a keyboard restart so that the program will continue
running without actually returning to command mode. This is accomplished by speci-
fying a non-zero line number as a ‘'restart' point. Thus ‘QUIT 1.1' will stop
execution, clear the stacks, and then restart at line 1.1. To restart at the lowest
numbered line of the program, use a 'Q .001' command. 'QUIT 0' or just 'Q' will

stop the program and return to command mode.

UWE=-35

It is also possible to use QUIT to specify a restart point for any error con-
dition. This is accomplished by specifying a -~ncgative~ Line numbe}, i.e. something
like 'QUIT -9.1°. This command will not stop the program when it is executed; it
will merely remember the line number and then continue with the next command. If an
error subsequently occurs, however, the program will be automatically restarted at

line 9.1 instead of returning to command mode.

This provides UWF with a somewhat limited error recovery procedure, but one
which can be wused to take care of certain ‘'unexpected' conditions which might
develop while the program was running unattended. Note that it is up to the user to
determine which error caused the restart. One way that this could be accomplished
is to select different restart points for differenct sections of the program where
specific errors might be expected. This feature shoulc be considered somewhat 'ex-
perimental®' in the sense that it may not be included in later releases of UWF if

other features appear to be more important.
The error trap is automatically reset everytime UWF returns to command mode in

order to prevent conditions set by one program from causing an unexpected restart

at a later time.

UWF-36

UWF has 5 commands for constructing program loops. The FOR command sets up the
Loop; the NEXT command serves as an optional terminator, and the BREAK command pro-
vides a way to exit from a loop before it runs to completion. UWF's Lloops are
slightly different from those in other languages, but the differences, once recog-
nized, are easy to accomodate. Basically, UWF uses 'horizontal' loops which consist
of only the statements following the FOR comménd on the same line. Most other
algebraic languages use ‘'vertical' loops which consist of a number of contiguous

program steps with some way to designate the end of the loop.

UWF's approach is convenient for short loops since the commands to be repeated
are simply coded on the same line with the FOR command and no 'end-of-loop' cdesig-
nation is required. Loops which require several lines of code are handled just as
easily by putting a 'DO' command in the main loop to call all the statements which
cannot be placed on the same Line. A NEXT command at the end of those statements
then serves to designate both the end of the loop as well as the continuation point

of the program. Symbolically, UWF's loops may thus have either of these two forms:

FOR * * *; loop commands
or
FOR * x *x; DO -_.YY
xXX.YY first loop command
second loop command

Last loop command; NEXT .

The Llatter form is practically identical to that used by BASIC or FORTRAN,

with the mere addition of the 'D0' call on the first line.

UWF-37

— e Em e e em e e e e er e en ar ee me em e me wm s e we e mm e wm ms as e e me me e e -

- em wm e em ar e e e we am we o Gn e ek mh W e R e em e e e e ek e AR w e me ee e e

This command initializes a loop, assigning a 'loop varisble' to count the num-

ber of iterations. The form is:

FOR Var = Initial Value, Increment, Final Value

e

or, more generally,

ws

FOR expression 1, expression 2, expression 3

uﬁere the first variable to the left of a replacement operator in expression 1 will
be used as the loop counter. The semicolon after expression 3 is required punctua-
tion. An increment of +1 is assumed if only the initial and final values are given.
Notice that the increment, if specified, is the -second- expression! This is
different from the convention used by BASIC and FORTRAN. There are no restrictions
on any of the expressions: they may be positive, negative or non-integer. Thus one
can increment either 'forward' or 'backward', using any step size. The execution of
the FOR command is such, however, that one pass will always occur even if the
'initial value' is greater than the ‘final value'. 1In any case, the exit value of
the Lloop variable will be one increment more than the value it had in the finsl

iteration.

Here are some examples:

1) FOR I=4=1,10;

) FOR L=1,N; FOR M=-L,L;
3) FOR X(I)= 10, -1, 1;
&) FOR A=0, PI/180, 2%PI;
5) FOR Q= P/2, Q, 5*Q;

Notice that loops may contain other loops (Ex. 2). Such 'nesting' is permitted
to a depth of 15 or so, but in practice, Lloops are rarely nested more than 5 deep.

Another point, illustrated in example 5, is that the initial value of the loop

UWF-38

variable can be used by the exprecssion for the increment and the final values; also

notice that subscripted varisbles are permissible as loop indices (Ex. 3).

In example 1 it may appear that both 'I' and 'J*' will be used as control
variables. This is not the case: only the first variable (in this case 'I') will be
incremented. Other variables (such as 'J') may be given values by replacement
operators in any of the three expressions, but these values will not change during
‘the loop (unless commands within the loop change them). It is often quite con-
venient to use the FOR command to initialize several variables used in the Lloop

along with the value of the loop index.

The novice programmer who wishes to try writing a simple loop might begin with

the following direct command:
FOR I=1,10;TYPE 1,1°2,!

which will print out the first 10 squares in some (unspecified) format. The more
experienced programmer will quickl} appreciate UWF's loop structure; for one thing,
no rules regarding branches 1into the middle of a loop are necessary since there is

no way to branch to the middle of a Line!

> e e e e e em an e W e wm W A e WE W @r e W W @ R G G s W W e e e w e @ e

The normal termination for a loop is at the end of the line containing the FOR
command. If the loop contains a GOTO branch, however, the end of the line branched
to becomes the terminator. It is convenient at times, especially in direct com~-
mands, to terminate the loop in the middle of a Line so that other commancds which
logically follow the loop can be placed on the same line. The NEXT command serves

this purpose, as shown in the following example:
FOR » * *; loop commanc ;; NEXT; other commands

which excludes 'other commands' from the loop.

UWF-39

This construction also works in ‘vertical' loops:

FOR * * x; DO -.#
commands
commands

NEXT

The commands executed by the 'DO' will be terminated upon encountering the
NEXT command. But more importantly, when the loop is finished, UWF will continue
uith'the first command following the NEXT - thus skipping over the commands in the
body of the loob. If this 'NEXT' command were to be omitted or replaced by a
'RETURN', the program would simply *fall through' to the first statement in the

loop (the one indicated by '#' in the example above).

Notice that the NEXT command contains no references to the loop variable. This
is a little different from the way most versions of BASIC implement this command,
but the effect is quite similar and since only the first letter of the command word
is decoded, variations such as ‘'NI' or 'NEXT-J' may prove helpful to some pro-
grammers. Nested loops, of course, may require 'nested NEXTs': 'N;N'. Here is an
example which types out all the elements of a 5x5 array a row at a time with a

v

CR/LF printed at the end of each row:
FOR I=1,5; FOR J=1,5; TYPE A(I,J); NEXT; TYPE !

NEXT has one other feature: it may be used with a Lline number to specify a
continuation point other than the next sequential command. Thus: 'FUR % *x x;

commands; NEXT .8' will branch to line XX.80 when the loop runs to completion.

Note 1: A NEXT command which is executed outside of a FOR loop is 1ignored
unless it specifies a line number, in which case the branch will always be taken. A
'NEXT' command may thus be placed at the beginning of any line and used as a target
for a 'do nothing' branch from within a loop without affecting the normal execution
of that line.

Note 2: Loops which contain conditional branches (i.e. 'IF' commands) should

be careful that all paths end with an appropriate *NEXT' if it is desired to skip

UWF-40

over the statements in the loop under all conditions. Whichever 'NEXT' is executed

on the final iteration will determine the program flow.

- em e wm e an W wn W e W o ee wm wm em wm e e wm wm EE WE me R W e e SE e e e e W ws w

- e e em e e e wr e e am we W e we e e W em s @ G em e G wm e em e e ek e am am e

Once a loop has been initiated it must normally run to completion. Branching
to a line outside of the loop is not effective: that line will simply be treated as
a continuation of the main loop (see comments about GOTO's in a loop in the preced-
ing section). One way to force an exit from a loop would be to set the Lloop
variable to & value greater than the final wvalue. This 1is obviously not very
'elegant', to say the least, so the BREAK command has been provided to solve this
difficulty. A BREAK causes an immediate exit from the loop (preserving the current
value of the loop index), and the program then continues with the next sequential
command following the BREAK. As you might expect, BREAK may also specify a line
number so you can branch to a different part of the program at the same time that
you leave the loop. A 'BREAK' without a Line number is ignored (just like the NEXT
command) if it is encountered outside of a loop, so lines containing BREAKs can be
used by other parts of the program. Each BREAK exits from only a single loop, so to
exit from nested loops it would be necessary to use multiple BREAK commands:

'B;B 15.1' will exit from 2 loops and then transfer to Lline 15.1.

UWF-41

- em Er e e me o e e e e e e mm Ea e W e em em wm e em em G m e s e aw e e e e we

- e wr am m e wm e e e me wm e aw wm wr am mm am awm em e e wm e ae e ae e mm wm s wm e e wm

We will now finish the alphabet: C,H, K, P, UV are the remaining command let-
ters. 'U' and 'V' are not implemented in this version and may be used for whatever

purpose the user desires. The '@' command is also available for expansion purposes.

Any command beginning with a 'C' casuses the rest of the line to be dgnored.
Such lines may thus be used for comments describing the operation of the program.
In particular, line XX.00 (the first line in a group) should generally be reserved
for comments. Branching to a Comment line from within a loop will terminate that
cycle of the loop. 1In this way a 'COMMENT' is equivalent to the Fortran *CONTINUE'®
statement. A 'NEXT' command performs the same function and in addition may be used

to designate the continuation of the program.

e W e e wm W wn G ww WP W eE dWh wn Gn EE EE Gr s e wE W G e am e W W e wn e W e e e

- ew e e e A @R e W R ER W W MR W G L B W W W P Er G R W MR S AR ao W e s @ W W

The HESITATE command delays the program for a time specified by the commana.
The argument (which must be an integer) is nominally in milliseconds, so 'H 1000°'
will generate approximately a 1 second delay. However, the exact delay is directly
dependént upon the cycle time of the machine, so some calibration is necessary.

Here is an example using the 'H' command:

FOR T=1,9; TYPE "+"; HESITATE 250+T

UWF-42

- e mm an e em e em e wm e e e e me e ar e me am ew am e e e e e A em e wm en e e -

- wm s wm we e wm e e e e e e e em e W wm mm we wm a ee e e we e m wm we wm e = e e

The PUNCH command allows the programmer to save a copy of the text buffer and
the symbol table in binary format, ready to reload with the standard Binary loader.
This command requires either & High Speed punch or an audio (cassette) recorder.
Tapes created with the PUNCH command can only be read with the Binary Loader since
they are not punched as ASCIl characters. The advantage to punching tapes in this
format s that they tend to be somewhat shorter than ASCII tapes and they also
contain a checksum so there is less probability of an error going undetected. The
disadvantage however, 1is that they are absolute memory dumps and so are not neces-
sarily transportable between different versions of UWF. They also cannot be loaded
by UWF itself from a remote location, but require access to the front panel of the
computer in order to activate the Binary loader as well as to restart UWF once the

tape is loaded.

To use this command (assuming that you have a cassette recorder, but the same
procedure applies to a HS papertape punch), advance the tape to an unused area,
turn on the recorder and then type ‘'P' followed by a RETURN. Approximately 5
seconds of leader code will be punched, followed by the contents of the text buffer
and then the symbol table. To restore a program (and any symbols in use at the time
it was dumped), position the tape at the start of~;he Leader, and while this
section is being read, start the BIN loader from the front panel. If you start the
loader before reaching the leader section, the computer will halt with a checksum
error (AC not zero); hit the CONTINUE switch quickly, and if you are still in the
‘leader, all will be well. After reading in the program tape you must manually re-

start UWF at location 100 (see page 2).

The PUNCH command always returns to command mode (like MODIFY and ERASE), so
it cannot be followed by other commands, and should not be included in the program
itself. In systems with more than 12K the PUNCH comhand will dump the contents of
the -current- program area, so to save the program in Area 3, for example, use a ‘L
3' command to get to it and then type 'P' to punch it out. A program can only be
reloaded into the area that it came from; so if you wish to move a program to a
different area you must WRITE it out (rather than PUNCHing it), and then read it in

again as explained on page 45.

UWF-43

THE 'OPEN' COMMANDS

- e er s em e o e e e em an mm G wn e e e e we ww e e m em en em e am s am en em ws e

In addition to the PUNCH command described above, UWF has a series of 'OPEN'
commands which allow ASK and TYPE (or other 1/0 operations) to use something other
than the terminal. These commands consists of —two- words (or two single-letter ab-
breviations) separated by a space. You may recall that the letter '0O' has already
been used for the 'ON' command and wonder how it could also be wused for 'OPEN'.
'OPEN' and 'ON' can be distinguished, however, since ON must always be followed by
an arithmetic expression. Here is a short summary of the 'OPEN' commands currently
available. The mnemonics, which were chosen in part to be compatible with the 0S/8

version, are somewhat less than perfect!

OPEN INPUT 01 Selects the Terminal as the Input device
OPEN OQUTPUT 00 Selects the Terminal as the Output device
OPEN READER OR Selects the High Speed Reader for Input
OPEN PUNCH oOP Selects the High Speed Punch for Output
OUTPUT TRAILER O T Punches leader/trailer code (ASCII 20D

OPEN -——-_,ECHO 0 -,E Connects the Input device to the Output

Only the first two commands (0 I and O 0) and the ECHO option are useful
unless you have a high speed reader/punch (or an audio tape recorcer). The Llist of
'OPEN' commands could also be expanded to include th{hgs Llike *0 L' (for selecting
a Lineprinter) or '0 S' to éend output to a ‘scope display, etc. Such expansion is,

however, entirely up to the user.

- e E Er Em E G G e R W e W W e o W W G R W wWE e @ e e W G e e e e e e e

- e ap e am em an e W wm W W w e Gn E W e me s e W e e We w mm e e o em e emm e em

The Input and Output devices are always reset to the terminal when you hit
CTRL/F. To select a different device, use the appropriate OPEN command. For ex-
émple, to read in a program from the High Speed Reader, simply type in an 'O R'
command and henceforth, until this assignment is changed, all input to UWF will

come from the reader rather than from the keyboard. In particular, even direct

UWF-44

commands will be taken from the reader, so you can set up a program tape to run the
machine while you are gone. Also, if the tape contains a listing of a program it
will be read into the text buffer just as though you were typing it in yourself.
This is an alternative method for saving programs which has the advantage that they
are available as ASC1I tapes which can be edited or processed by other programs. A
'time-out' trap in the resder routine normally senses when the end of the tape has
been reached and then restores the terminal as the input device. A ‘backarrow' or
‘underline' is printed on the terminal to indicate that it is the active input (and
output) cevice once more. If you need to manually restore the terminal to its usual

status, just hit CTRL/F.

Similarly, to select the High Speed Punch (or Cassette Recorder) for use as
the output device, just use an 'O P' command. To dump the text buffer on tape, for

example, enter the commands:
0 P, T; W; OT,0 (do not hit RETURN)

and then start the punch or recorder. Hit RETURN and then wait for the asterisk (%)

to reappear on the terminal.

To re-read such a tape at a later time, position it in the reader somewhere in
the leader section, use the ERASE command to clear the program area, and then type
'0 R' followed by the RETURN key. 1f input is from & paper tape reader, the reader
will now begin to read the tape. If input is from an audio recorder you should
actually start the tape moving (in the leader section) before hitting the RETURN
key, otherwise the first few characters are Llikely to be ‘garbage' as the tape
comes up to speed and UWF may well conclude that you have run out of the tape

before you have even begun!

It is also possible to use the reader/punch for data storage purposes. This
works best with paper tape since the audio recorder lacks a *'stop-on-character’
capability, making it difficult for UWF to keep up with the data once the tape has
started moving. By way of an example, the following command will read in 50 numbers

from the high-speed reader:

0 R; FOR I=1,50; ASK DATA(I); NEXT; O I,E

UWF-45

Notice that an 'O I,E' command is used at the end of the loop to restore input to
the keyboard. If this command were omitted the H.S. reader would continue to be
used for input, probably causing an error to occur since it is unlikely that the
next data value on the tape would correspond to anything expected from the key-

board. The *'_E' part of this command is explained more fully in the next section.

- e wm em e e e mm e e wm e M mm e em mm wm wm e em e em en o em W me ae e e e e e e es

- e wr e w ew e e e em o wr e wm em e mm em em e ee e e wr e a ar e e wm wm e e = -

The ',E' option may be added to either an 'O I' or 'O R' command to specify
that the input characters are to be 'echoed' to the output device. Generally this
option is -always— used with 'O I' and -never- used with '0 R'. The echo option may
at first appear slightly confusing since UWF normally runs with the keyboard echo
-on- and thus one comes to expect that whatever is typed will be printed on the
terminal. This makes the ‘terminal appear much like a simple typewriter and tends to
obscure the fact that if UWF were not sending back each character it received,
-nothing- would be printed! The ‘ECHO' option must be specified when selecting the
input cevice, or —-NO ECHO- will be assumed. Thus an 'O 1' command will select the
keyboard for input (it may already -be- selected) and effectively turn the echo
off. An '0 I,E' command is necessary to restore the echo under program control. Of

course any program error, or typing CTRL/F, will also restore the echo.

The ability to disable the input echo is convenient at times since it allows a
program to read one thing and possibly print something else, An exémple of this
mode of operation occurs during command input: when you type the RUBOUT key you do
"not get this character printed, but rather a *backslash' (\), or on a video ter-
minal, a three character sequence: 'backspace, space, backspace', which effectively
removes the character from the screen. UWF programs can also be written to use the
keyboard for program control, and in such cases it 1is often desirable to have
‘silent' input. You can try this out quickly by using a direct '0 1I' command to
disable the echo. Now type in '0', ‘space', '1', ‘'comma', °‘E' and hit RETURN and

the echo will return again.

UWF-46

Another time when you will want to disable the echo 1is when reading in a
program tape on the 'low-speed' reader. 1f you turn off the echo in this case you
can avoid getting an unwanted Llisting while you relax to the rhythm of a quiet
Little 'burp,burp,burp' instead of a 'clackety clack clack'. Just hit CTRL/F at the

end of the tape to turn on the echo again.

Similarly, when reading a data tape from the high-speed reader it is generally
undesirable to have it all printed on the terminal. Thus the '0 R' command auto-
matically disables the echo; but if you wanted to see what some of the cata looked
like, you could use an '0 R,E* command. To make a copy of a program or data tape
you would first switch output to the punch and then turn on the echo to 'brint'

each character received on the output tape, e.g.
0 P;0 R,E;S FINDQ)

The 'FIND' function (described on page 62) keeps reading from the input
device, Llooking for the character code specified. In this case a 'null' was used
which will never be found, so the effect of this command is to continue reading
until the end of the tape is reached at which point the terminal will automatically
be restored as the 1/0 device, with the echo enabled. If only portions of a tape
were to be copied you could use the FIND ‘function to search for an appropriate
character and then switch 1/0 back to the terminal yourself. You can use the ECHO
option to skip sections of the tape by disabling ﬁhe echo until you *'find' the

right character and then turning it back on to copy some more.

UWF-47

The 'T' option punches leader/trailer code (ASCII 200). This 1is convenient
(but not essential) for separating output on paper tape, and somewhat more im-
portant when using an audio recorder since there is no visual indication of breaks
in the data. Blank tape may also be used as 'leader' and both are ignored each time
the reader 1s selected as the input device. However, after the first valid input
character has been read these same codes are interpreted as the 'end-of-tape' and
cause both input and output to be restored to the terminal. A ‘'backarrouw' or
‘underline' is also printed to indicate that the EOT was detected. This character
serves the dual purpose of also removing any ‘'garbage' characters which might have

been read after the last valid input.

The *'T' option can be used alone ('0 T') or in conjunction with another 'OPEN®
command. The number of L/T codes punched is determined by an optional arithmetic
expression following the letter 'T' (and separated by a space from it), with the
previous specification being used as the default. The initial value is 512, which
is about right for use with an audio recorder, but somewhat ridiculous for paper
tape (over & feet of leader!). A value of 70 or so is more appropriate in this
case. You can always just repeat the 'T' option to get a slightly longer leader if
you want to: ‘'O T 100,T' will punch out 200 L/T codes but leave the default set at
100. Notice how this option was used in the example on page 45 for writing out all
of the program buffer. The length specified by the 'T' option is also used by the
'*PUNCH' command (see page 43).

UWF-48

- e e wr wn e e e ap e e EE ar EE S e e wa e we e e w ws wm e e wm ek w e e e

This is an optional command which may be used to program the DR8-EA parallel
1/0 module. The 'K' command is used to set and clear individual bits in the output
register while the FDIN function (described on page 65) ‘is used to read the cor-
responding bits in the input register. These options are added by the initializa-

tion routine if Switch 7 is -UP- (see page 3).

The KONTROL command uses —positive- numbers to turn bits on, and -negative-
numbers to turn them off. Each bit 1is directly controllable, independent of the
setting of any of the others. Thus a 'K 1' command, for example, will turn on bit
*1' without changing the state of any of the other 11 bits, while a 'K -1' command
will turn it off again. In order for this scheme to work successfully the bits must
be numbered from '1-12' rather than from '0-11' which is the usual convention. This
is because '-0' is not distinguishable from '+0°'. In fact, '0' is interpreted to
mean 'clear all bits', so a 'K 0' command Cor just 'K® since '0O' is the default for

all arithmetic expressions) can be used to quickly initialize this register.
More than one bit position can be set at a time, e.g. a command such as:
K 1,-2,3 will set bit 1, clear bit 2, and finally set bit 3

In this form, each operation occurs sequéntially with perhaps 10 milliseconds
or so between operations. This allows a command such as 'K 1,-1' to be used to
generate a short pulse on line 1. If it is necessary for several signals to occur

simultaneously, those operations can be enclosed in parentheses:
K 1,0,3,8),-1 will set bit 1, then bits 2,3,4, then clear bit 1

Since for some purposes it 1is more convenient to be able to specify various
bit combinations with a single arithmetic expression rather than setting and clear-
ing each bit individually, a third mode of operation is also available. In this
mode, the last &4 bits (bits '9-12') are set to the value of an expression preceded

by an '=' sign. The remaining 8 bits are not changed. Thus a *'K,=5' command would

HWF=-LQ

first clear all bits (the comma indicates a missing argument which is the same as

‘oY, then set bits '10' and '12' while clearing bits '9' and '11°

already clear in this case).

To summarize the 3 different forms of the KONTROL command:

K N,-i

K (L,M,-N)

Turns a single bit on or off

N=0 turns -all- bits off

Performs all operations in parentheses

simultaneously, instead of sequentially
Sets the &4 least-significant bits to the

binary value of N; this form may not be

used inside parentheses.

UWF-50

(which were

- as me E wm e e e we we wn er am am e wm e mm we wm wm e me wm wm e wm e e ew em e ms em me wm

— ew ar e e am o e e w e e o w e e o em e an e e we e w em em e s e e e we e am e

UWF traps any 'illegal' operation such as division by zero or an unknown
command and prints a peculiar little message to tell you what the problem was and
where in the program it occured. If you type in the command: 'SET 2=3' for example,
UWF will reply with:

'207. 44"

which is its way of telling you that you have something besides a variable on the
Left side of an '=' sign. To decode the error message you should look at the back
cover of this manual (or the summary carcd) which lists all of the error diagnostics

and their probsble cause.

If this same error had occured while the program was running (i.e. not from a
direct command), the error message would also indicate the line in the program

containing the erroneous statement:
207.44 @ 15.13
indiates 'operator missing or illegal use of an equal sign' in line 15.13.

The program 'QUITS' whenever an error occurs, thus all pending operations are
cancelled and 1in general i1t is impossible to resume -precisely- at the point of
interruption, but it is often possible to make the necessary changes, perhaps
update a few variables with direct commands, and then restart from a point close to

where the error occured.

This version also has an ‘auto-restart' feature which allows the program to
continue after an error instead of returning to command moce. This feature is
selected by an option in the 'QUIT' command and is described in greater detail on

page 3S.

UWF-51

- er e e wm e en am e em mr e wr Ee wr e e e e e wn e e e e em em em ee e am e e e wm e

- e e we e e e e e er e s mr mm an e e e em e ws me ae @ e e ee wh wa ae mr e e wm e =

To further assist in finding the source of an error, UWF has & facility for
printing out each program step as it tries to execute it. Thus when an error occurs
you can see exactly where the problem is. The *trace' feature-is turned on by the
occurrence of a '?' in the program (not one which is preceded by a single quote or
enclosed in double quotes, however) and turned off again by another *?'. Thus only
the portion of the program between pairs of question marks will be output while the
program is running. The '?' may be given in a direct command, so to trace the
entire program, just use a 'GO?' command to start it. Similarly a 'DO 5.2?' command

will selectively trace that one line.

As a further aid to finding logical errors (as opposed to simple programing
mistakes), when the trace is on, UWF will print out the result of all expressions
appearing in SET commands. Thus you can see the values of all the varisbles as well
as the program steps which created those values. A video terminal 1is obviously
preferable for program traces since rather voluminous output can be generated in

quite a short time.

A somewhat secondary use of the TRACE feature is for simplified input/output
prompting. wWhenever variables have names closely resembling their usage, 1t is a

bit of a waste to have commands such as:
ASK "AGE? "AGE or TYPE “COST="COST

when, with only a small sacrifice in the punctuation, the following will do just a§

well:
ASK 7AGE ? or TYPE ?2CO0ST? .
UWF will print out just the characters enclosed by the *?'s. for this reason
it is preferable to use 'spaces' as separators rather than ‘commas®, i.e.

*ASK ?A B(I) CWJ,K) 7

will print out each variable name followed by a spacc and then wait for its wvalue

N UWF-52

to be input. One small disadvantage to this 'trick' is that when such statements
are —actually- being traced, the text enclosed by '?' marks will -not- be printed

due to the '"toggling' nature of the trace switch.

There is one other small anomoly associated with the trace feature: A command
such as 'SET !=5,%=10"' will not set those two 'secret variables® when it 1is traced,
but will instead first perform a CR/LF anc then dump the symbol table! This s
because during a program trace all SET commands are treated internally as though
they were ‘TYPEs' and hence the secret variables take on their special roles ss
operators. There is a simple solution to this problem, however, and that 1is to
simply prefix a '+' sign, or otherwise embed such varisbles in the midst of an
arithmetic expression so that they are no longer recognized as ASK/TYPE operators.

Thus the command *SET +!=5,+%=10"' would be traced properly.

- eam e e em wm s e em e em W wm en wn W e em e en e e es ws e e e me an e ew wm em e -

- e em e wmm wr e e e mm am em v e e w em e e e e W we W me W % e @ e e e e o ww w

The following table provides a quick review of UWF's entire command reper-

toire.

FORM . EXAMPLE
a not implemented in this version
ASK list of Varicbles, "prompts*, formatting options A X, Y(1),2(4,K)
BREAK line number B or B 11.45
CUMMENT your programs whenever possible C FOR COMMENTS
DO list of lines, groups, or sub-groups D .7, -9.5, 10
ERASE {ine, group, sub-group, or ‘all’ E Sor E 9.1
FOR "Var = start, increment, finish F 1=1,5;F J=1,-1,0
GOTO Line number G 1.8 or 6 .3
HESTATE time delay desired H 1600
IF (Arithmetic expression) negative, zero, positive I (K=1-J), .5
Jump line number J .3;C WAIT LOULP

J (N) 1, .2, =3.4

JUMP (Arithmetic expression) one, two, three, four, ...

UWF=55

KONTROL bit positions

LOOK program area

LINK program area, subroutine pointer

MODIFY Line number

MOVE old line number, new line number

NEXT line number

ON (Arithmetic expression) negative, zero, positive
PUNCH punches program znd variables in binary format
QuIT line number

RETURN Lline number

SET list of arithmetic expressions

TYPE arithmetic expressions, "labels”, formatting
u available for user expansion

v available for user expansion

WRITE list of lines, groups, sub-groups, or ‘'all®
XECUTE List of arithmetic expressions (same as SET)
YNCR list of variables

ZERO list of varisbles or 'all'

OPEN INPUT, ECHO normal terminal input

OPEN READER selects high-speed reader
OPEN PUNCH selects high—speed punch
OPEN QUTPUT selects terminal for output

OUTPUT TRAILER punches leader/trailer code

UWF-54

- »u 0V L TV O m 2 X r r X

o O O O O

’

1,(-1,2,2) ,=X
1

2,4.1 or L,10
5.1

3.3,6.3
1=1,10;N;T PI
(A-5) -9.2, 9

or @ 5.1

or R .2

A=5, B=C=A/2
1?2A 2:10"B="8B

or W -1.5,2,3.1
FSIN(#)/FCOS(#)

I-J,K L
#,A,B(1),C0,K)

1,E
R
P
0
T

or O T 70

- e am wr me e o em em e e s ee e s mr e ms e mr v e ww e e e e e e ae w e we e e e

- e e e e we ee we wh mm am e em we wr er e aw e an e we we e e e Em e wm e w wm e e w= wm

In spite of the fact that only about 3.3K words have been used to implement
UWF, there are nearly 20 built-in functions and a facility for adding a limitless

number of Programed Defined Functions.

The ‘'internal' functions provide the user with full-accuracy ('10-cigit') op-
proximations for commonly used relations such as log, exponential, sine, cosine,
square root, etc. Also included are simple numerical functions such as absolute
value, integer, sign and fractional parts, maximum/minimum, etc. And finally, there
are a few functions for character processing and special 1/0 operations such as
reading the Switch Register and loading the MQ. ALL function names 1in UWF begin

with the letter 'F'; thus veriables names may not begin with this letter.

- e ee Er e e e e W en em e m w e e e e W e wr W e e s ms W am e e e e e e e e

- em er e e wr e wr wn wn En W e e e em Em e e e e W am @ am e W e e e s e e e e -

This class of functions, so named beczuse the relations they represent can
only be expressed as infinite series, includes thg natural Log and exponential
functions and the three most common trignometric funcfions. The series approxima-
tions used by UWF have been optimized by a constrained Lleast-squares procedure to
reduce the error over the principal argument range to at worst a few parts in 10
bitlion.

The trancendental functions can be removed if you wish to increase the number
of variables available in the 8K version. Removing them creates space for another
55 variables - a total of 175 instead of only 120. Program Defined Functions can be
incorporated in their place at the expense of greater execution time and slightly

poorer accuracy. See page 71 and Appendix 1l.

UWF-55

- e ar wm e m em e wr e e e wm e me e e e e e G e en e e e e e ae e e em ae e em w-

- e am e o am am em am wm em e ek e we e M s Ee e e we wm mm am em em em mm e am we e me e e

FLOG(X) returns the natural logarithm of the absotute value of the argument.
An error occurs if X is zero since the theorectical result is infinite. No error
occurs if 'X' is negative, although the Log function is, in fact, only defined for
positive arguments. This implementation facilitates the use of FLOG for extracting
roots and raising valucs to non-integer powers. The Common (base-10) Llogarithm is

easily obtained from the FLOG function just by dividing by FLOG(10). Example:
TYPE 7%,"NATURAL IN(PL)="FLOG(PI) :45"CCMMON LOG(PI)="FLOG(PL)/FLUG(I0)!}

NATURAL IN(PI)= 1.144729886E+00 COMMON LOG(P1)= 4.971498727E-01

- am mr me wm m wm e e s ms e G e Ge s e e wm em W ar e wm e e w e em e e wm e e = -

- s e wm e e wm wm v ww wn e em e e ww e wm me mr me v e mm e mh e wn e e e we em s . -

FEXP(X) returns the value of e"X where 'e'= 2.718281828... The value of 'e' is
always available as FEXP(1). This function 1is often used to extract roots and
compute non-integer powers. For example, 'X"3.5"' is found from the expression:
FEXP(3.5%FLOG(X)). Similarly, the cube root of 27 may'be found from the expression:
FEXP(FLOG(27)/3). The absolute value of the argument must be less than spprox-

imately 1400 in order to avoid numeric overflow.

- en e em e wm @ W mE MR em e e W e e e e G e WP s e s mm e e e e s e e wm e e

FSIN(A) and FCOS(A) return the value of the sine and cosine of the angle ‘A’
when 'A' is measured in -radians-. A 'radian' is a unit of angular measure pre-
ferred for scientific and engineering work because it eltiminates factors of PI in

many formulae. One radian is 1/2PI of a full circle, or approximately 60 degrees.

UWF-56

To convert angles from degrees to radians you simply multiply by PI1/180. The value
of 'P1' is a protected variable which is always availeble. Here is a short table of
the values of FSIN and FCOS over the first quadrant as produced by the command

shown. Notice how the radian valuec was saved for use in the second function call:

L]
FOR A=0,10,90; TYPE 72,A %15.1, FSIN(R=A*P1/186U), FCOS(R)!

0 0.0000000000 1.GGODOOCOCO
10 0.1736481776 0.9548077530
20 0.3420201433 0.9396926207
30 0.5000000001 0.8660254057
40 0.6427876096 0.7660444431
50 0.7660444431 0.6427876096
60 0.8660254037 0.500500G001
70 0.93969262G7 U.34202014633
80 0.9845077530 0.1736451778
90 1.000000G00G 0.00000COU00

- e em wm me wn wm me mm we e e e e me wm en wm e mm o mw e e wm e e ew e e mw e e wm - e

- e e wr wm e wm em we e en We em wh e an e e s e e @ e G e wE e e e s em e e e s e

The Tangent function is not provided as an internal function since it is just

the ratio of FSIN/FCGS and is thus easy enough to compute.

his own FTAN function, however,

Functions on page 67.

The user may implement

as described in the discussion of Program Defined

The inverse ('arc-') tangent function is available, however. FATN accepts val-
ues of any magnitude and returns the —angle- (in radians) which would give that
tangent. The range of answers is from -P1/2 (-$0 degrees) to +PI/2 (+90 degrees).
To convert from radians to degrees, just multiply by 180/P1. For example, to check
that the angle whose tangent is -1 is, in fact, —-45 degrees:

TYPE 18U0*FATN(-1)/P1 -45.00600000

UWF-57

ALL other trig functions can be derived from these primary functions. Ffor example:

Cotangent FCOSCAY/FSINCA)
Arcsine FATNCA/FSQT (1-A%A))
Arccosine FATN(FSQT (1-A%A) /A)
Hyperbolic sine (FEXP(A)-FEXP(-A))/2
Hyperbolic cosine (FEXP(A)+FEXP(-A))/2

Consult ony advanced Algebra book for other such identities.

The FSQT function computes the square root of the argument using an iterative
approximation which guarantees that no more than the last bit will be in error.

Example: TYPE FSQT(2), FSQT(2)"2!

1.414213562 2.000000050

- e o am wh w e a em er w em wm e e e we e e wm e em wm e e e e e e e e we em em e e

™ = e e e e o ws wm e o e W e wr e e e e e e e me mm mm e e e em em em am wm e e

FABS returns the absolute value of the argument: TYPE FABS(-1), FABS(1)

1.00000000 1.000000000

- e e e W W wr wm ar wm er e e am e e e e we W er m mr mr e e e e em me wme e @ wm e

- e e e ws e e e m wn e e Gr W@ e e e e W ee wr w ee em we e e s e e e s e e e e

FSGN returns -1, 0 or +1 depending upon whether the argument was: negative,

zero or positive.

UWF-58

Example: TYPE FSGN(PL), FSGN(PI-P1), FSGN(-PI)

1.000000000 0.G00000000 -1. 000000000

- an wm em ww wr e mw wm e en e ar wh wm em wh e e e W em ms Ee e W an e e ae e me e = e

FITR returns the InTegeR part of the argument. Thus 'FITR(PL)' is '3*' and
'FITR(-5.5)" is '-5°', Note that some languages have an ‘entier' function which is
the 'integer less than or equal to the argument'. For positive numbers this pro-
duces the same result as UWF's FITR function, but for negative values it gives the
next lowest number. If you are converting a program which was originally written in
another language, be sure to watch for this subtlety! It should be noted that many
functions and commands in UWF convert values to an integer form internally without
requiring the programer to do so. Subscripts, for example, are always used in inte-
ger form, meaning that 'A(1.5)' is legal, but is no different from 'A(1)'. In gen-
eral, a value which is used as an index or is stored in a hardware register is

always converted to an integer before use.

W s s wm an mm em wh Em e e e W we wr W M W wh wr e W G WE e EE e W W e we e em wm ew es

FRAC returns the fractional part of a number - the part which FITR discards!
This may be used to do 'modulo-N' arithmetic or to check for a remainder. The user
is cautioned, however, that the value returned by FRAC may have only Llimited
accuracy and hence checks for ‘exact' values computed from expressions containing
the FRAC function should generally be avoided. To illustrate, the fractional value
of '.002' is .002, but the fractional value of 1.002 is off in the 8th place while
that of 1000000.002 is only correct to 3 digits. This is simply the result of

taking the difference between two large numbers.

UWF-59

- e e a wm wm wn e e e am e es e e wm en we e e e s wm me mm e s e wm ee e e e we -

- e e wm we e wr am e s e e Er mm o mm e S e W ew em w e Em e e s em em wme e s s e W

These functions compare two arguments, returning the algebraically smallest or
Largest value. Thus *FMIN(#1,-2) would return '-2' while FMAX would return '+1°.
These functions have several uses. A simple example in connection with the FLOG
function allows one to avoid the 'log-of-zero' error with a call such as
'FLOG(FMAX(1E-10,X)). Similarly, the FMIN function can be used to avoid typing non-
existent values when dumping an array in a multi-column format. In this example,

'C' is the number of columns and 'N' the number of data values in the array:

FOR I=1,C,N; FOR J=I,FMIN(N,C+I-1); TYPE Q(J); NEXT; TYPE !

As a final example, an entire array can be scanned for its extrema simply by com-—

paring each element with the previous best estimates:

SET MIN=MAX=A(1); FOR 1=2,N; SET MIN=FMINCACI),MIN), MAX=FMAX(A(1),MAX)

A disadvantage of this method for locating the extremes is that no information is

available as to which element is biggest or smallest, only the values are returned.

- s wr wn e e wn an e R EE G e G Wh Wk W G W G R em W W W e e e em e wD wm em em em e

- ar e e er W W En e W@ E @ W wn e e e e e W W wh Er G wm s e s e em ws e e e s e

The FRAN function returns a different pseudo-randem number each time it s
called. The numbers are Limited to the range 0-1 and have an approximately *‘flat'
distribution. Other distributions, for instance Gaussian or Lorentzian functions,
can be created as Program Defined Functions by using FRAN in an appropriate expres-
sion. The function is initialized by the input wait loop so the values you observe
will appear to be truly random. The pair-wise and higher—-order groupings do have a
small correlation coefficient, but even so, a reasonable value of Pl1L can be
obtained using FRAN to generate a 2-dimensional scatter pattern. The principle use

of FRAN appears to be for games.

t

UWF-60

- em e e e e ar em we em e tm em em en e Ee e er wn we m e e e e e e e e e m e e e e

- e wm em em e e wm e E e e am e e er eE W ar em mm an e e s wm e me wr ee s e e e e e

The remaining internal functions handle character manipultation and other
special-purpose 1/0 operations. The character functions include FIN, FGUT, FIND and
FTR™, while FSR, FMQ and FDIN are *1/0-type' functions. FBUF and FCOM provide

access to extended memory for storing large data arrays.

- e am e e e em e wr em e em e e e e e e e e mr en mr e e e e we e mm e we e am = =

The FIN function reads a single character from the Input Device and returns
the numerical value of that character. A list of character values may be found in
Appendix I and the value of any character can be cobtained within the prc¢jram simply
by preceding it with a single quote mark. Thus the expression ('A) will have the
value of the letter 'A* (195) while ('A-'Z) will be the difference of the coces for
'A' and 'Z°'. Character strings can be read with the FIN function and later output
with FOUT; this is a bit slow, but does provide UWF with a limited string-handling
facility.

- er e em e o e e e e e e @ e E e e eh EWn e SE We em W e s e e e e W e e s

The FOUT function generates a single character from the value of an arithmetic
expression. It will thus output what FIN has input: ‘FOUT(193)' will generate the
letter 'A'. More commonly, however, FOUT is used to output special control char-
acters which would otherwise be invisiblte if they wére simply included in a 'TYPE
".eo"' command. for 1instance, 'FOUT(7)' is wused to ring the ‘bell’, while
'FOUT(140) ' outputs a 'form—-feed' character. 'FOUT(Z7)* generates an ESCAPE code
which is wused by many terminals to initiate special functions such as reverse

video, cursor movement, etc.

UWF-61

FOUT expects arguments in the raﬁge 0-¢55; values beyond this range will be
output, but shoulc be avoided. Most terminals respond in the same way to values 1in
the range 0-127 and 128-255. UWF's input routines, however, always return values 1in

the higher range (128-255) in keeping with the standard established for the PCM-12.

The value returned by FOUT is always -zero—-, not the value of the character
code! This was cdone to simplify calling the function as part of a command. For
instance, you can output a formfeed shead of a program listing by using a 'WKITE
FOUT(12)' command instead of just 'WRITE'. Similerly, since 'tabbing' to column
zero is ignored, you can include FOUT's in ASK or TYPE commands just by putting
them in 'tab expressions'. To print a 'double quote' mark, for instance, you could

use the following:

TYPE “THIS 1S A ":FOUT('")'" MARK!" which will produce THIS IS A " MARK!

- ek e e e B e o e W Em w R W wr W e WP G e B R eh W W G wn wn v we wm e = em e e

FIND searches for a character equal to its argument, reading and echoing all
characters it encounters until it finqs a match. The echo is controlled by the
setting of the input echo switch, as described earlier on page 46. The character
which matches is -not- echoed, however, but is returned as the value of the func-
tion. To output this character too, you may use a call such as 'S FOUT(FIND('A))'
where 'A' is the search character. To read in a comment line, just search for a
Carriage Return: SET FIND(141). To read the same line in from a paper tape, how-
ever, you should search for the Linefeed following the CR: SET FIND(138). This is
due to different conventions for the 'end-of-line' character. FIND also checks con-
tinually for a CTRL/Z. This is recognized as an 'End-of-File' mark and causes FIND

to return with the value ‘'zero' instead of with the value of the search character.

UWF-62

- oem em en wr em e e e e an an wm e m e em Em e me e e Em e e em W e e wn s em wm s es e

- e an e wm em W e e er as e ae e G e W s e W s ME wr e @ wm e W e wm e e = = -

As discussed earlier on page 25, the ASK command treats any input other than
'0-9' and 'A-1Z' as a terminator, which means that data values may be conveniently
'flagged’ by the use of a special terminating character. The purpose of the FTRi
“function 1dis to then pass this information back to the program so that special
action may be taken if necessary. For instance, a program might need to be able to
work with either metric or English measurements, using an appropriate terminator to
differentiate between them. Similarly one can devise a 'pocket calculator' program
which accepts numbers terminated by one of the arithmetic operators and then per-
forms the indicated function. One of the more common uses for this feature is to
permit an indefinite number of data values to be read in, sensing a special ter-
minator for the last value. A loop Like the one in the example >elow (which checks

for a '?') is all that is required:

4.1 ZERO N,;TYPE "ENTER QUIZ GRADES, TERMINATE THE LAST ONE WITH A '?2'"!
4.2 ASK GIN=N+1); IF (FTRMO)-'?) .2,,.2; TYPE X2"THERE WERE"N "GRADES"!

- wr e W wn e W G G s G W M W W W W R W We WE WS S WP MR M W Wp WP e e e as ws e

These functions allow UWF to use extra memory for data storage and are thus of
interest only for systems with more that 12K. They may be added by setting Suitch 8
-UP- when UWF 1is started for the first time (see page 3). FBUF is designed to
handle 12-bit (signed) integer data while FCOM may be used for storing either 24-
bit integers or 48-bit floating-point values. Both functions are called in the same
manner: the first argument specifies the relative location in the storage area and
the second argument (if any) is the value to be stored at that Llocation. The

function always returns the value at the location specified. Thus:

Fcom(l returns the 'Ith® value in the ‘FCOM' area
FBUF(I,W) stores the value of 'V' in the 'Ith' location.

UWF-63

The range of the index is typicétly 0-4095 for FBUF and 0-1023 for FCOM. FCOM
has another mode however, in which data is stored as two-word integers (rather than
four-word floating point values) thereby doubling the amount of storage available
but limiting the range of the data to +/- 2723. To use FCOM in this mode, specify a
-negative- index (legal range is -1 to -2048). Here is a loop which stores the

square root of all numbers from 0-1023:

FOR 1=0,1023; SET fFCOM(I,FSQT(I))
Although FBUF and FCOM share the same field, FBUF starts from the 'bottom up' while
FCOM stores from the ‘'top down', so both functions may be used simultaneously.

Furthermore both functions are fully recursive, so calls such as 'FCOM(I, FCOM®J))

may be used to move data from one location to another.

The FSR function reads the value of the Switch Register. This may be used to
control program options. The value is treated as a signed number so the range is
from -2048 (4000 octal) to +2047 (3777 octal).

- eeam e ar W e e an en an En en E e e e ee wh e R e e W Wn E Er wm Er E e ew e me me w e

The fMQ function displays the integer part of the argument in the MQ register.
This is quite handy for 'spying' on the progress of a long calculation simply by
displaying the value of a loop index. Since FMQ returns the integer part of the
argument, it can be included in a subscript expression, such as "A(FMQ(I))' which
is functionally the same as "A(I)' but also displays the index in the MQ.

UWF-64

- eew e wm wr ar wm e wm W e e e s e en e e e er e wn ms e e wm e wm e em wm am e am e =

This is an optional function for reading the input register of a DR8-EA par-
atlel 1/0 module. It may be added (along with the *KONTROL' command) by setting
Switch 7 -UP- the first time UWF is started. The interface may be wired to respond
to either levels or pusles, the difference being that it will 'remember' a pulse,
but 'forget' when a level changes. Each bit is separately addressable, and each may
be wired for pulse or level sensing. For use with the FDIN ('Digital INput')
function, the bits are considered to be numbered from 1-12 (rather than from 0-11),

just as they are for the 'KONTROL' command (page 49).

The value of 'FDIN(D)' (or just 'FDINC)' since 'zero' is always the default
value of an argument) 1is simply the weighted sum of all input bits which have been
'set'. Bit '1' has the value 2048, bit '2' ‘'weighs' 1024, etc. The maximum value is
thus '4095' if all the bits are turned on. Any bits which are read by the FDIN
function will be reset if they are resettable, i.e. if they are wired for 'pulse’
input. This ensures that only one occurrence of an event will be detected by the

program.

FDIN can be made to respond to only a single bit, or to a collection of bits,
by including various arguments as the programmer desires. For instance, ‘FDIN(1)*
will only sense the state of bit *1'. If bit 1 is on, FDIN will have the value
2048, while if it is off, the value '0' will be returned, regardless of the setting
of any other bits. Furthermore only bit 1 will be reset. The value of 'FDIN(-1)' on
the other hand, will be the status of all bits —-except- bit 1, i.e. bits 2-12. Any

bits which are read will be reset as described above.
More complicated masks can be constructed by specifying multiple bits. Thus

'FDIN(1,3)' will only took at bits '1' and '3', while 'FDIN(-2,-5)' will look at
-all but- bits 2 and 5, etc.

UWF-65

- ew wr e mm e e e e e e e e e e we em ee e mr e e e e e mm w am em em e e e e

- e e e e wr e s e e ar em e e e e e = m me e er e er e e e we e wr wm = e w= e

UWF atlows the wuser to cdefine his own set of special functions within the
program. Such 'Program Defined Functions® ('PDFs') may consist of any set of UWF
commands, ranging from a singlc program step to as much as an entire group. A PDF
is very similar to an ordinary subroutine ('DO') call, but with 3 important differ-

ences:

1) a PDF may pass arguments to the subroutine
2)

3) a PDF may occur in any commnand, not just DO, CN, LINK, etc.

PDF returns a numeric value — the value of the function

H

The last cifference is especially importent since it sllows subroutine calls

in some circumstances when they might not otherwise be possible.
The form of a PDF call is:
F(C Line number, argument list)

where the letter 'F' didentifies this as a function call and the line <(or group)
' numBer identifies the function. This number can be replaced by a suitably chosen
variable so that one may use a 'named' function cell rather than a 'numeric' one
(v.i.). The argument Llist is not required, but may contain several arguments.
Typically, only 1 or 2 are used although this is not a fundamental restriction. The
arguments may consist of other PDF calls which do not themselves have arguments, or
any other internal functions, with or without arguments. The wuse of nested PDF
calls containing an argument list is restricted since the arguments are not storea

recursively. Here are few examples of Program Defined Functions:

F(2,A%B) Calls Group 2, passing 'A*B' as the argument
F(.9,X,Y) Calls line XX.90 in the current group
F(-9.5) Calls sub-group at line 9.5 with no arguments

UWF-66

Coding a PDF 1is no different %rom writing an ordinary subroutine, but the
mechanism for passing argument values and returning the function result needs to be
explained. The value of each arithmetic expression appearing in the argument list
is saved in a specific ‘'protected variable'. The first argument is saved 1in the
variable '#', the second one in the variable 'S$°*, and the third in the variable
'%Z'. Additional arguments are possible, and if necessary more protected variables
should be defined when initializing UWF (see page 3). The ordinary variables
created by the program may also be wused as 'common' variables (those appearing in
both the *main' program and the definition of the function) for passing information

to the subroutine.

PDF calls are not required to always have the same number of arguments, SO
infrequently used parameters can be placed after frequently used ones. These will
not be changed unless they are modified by the subroutine itself. In the first
example, the value of 'A-times-B' is placed in the variable ‘'#°'. In the second
example, 'X' is placed in *#', and 'Y' goes into '$'. If this function were called
subsequently with only a single argument, the value placed 1in '$' would not be
disturbed. No arguments are used in the third example, but any variables defined by
the program may be used by the subroutine. This 1is the only reasonable way to

handle arrays.

The subroutine must then be written to use the appropriate protected variable
whenever it needs the value of the corresponding argument. A routine to compute the

Length of a vector, for instance, might use an expression such as *FSQT(#*#+3x%)",

The value returned by the function 1is just the result of the last arithmetic
expression processed by the subroutine. This expression may be evaluated by any
suitable command, but typically the SET command is employed. To begin with a veﬁy

simple example, here is how you could code the tangent function:
9.9 SET FSIN(#)/FCOS(#); COMMENT: THIS IS THE TANGENT FUNCTION

You could also include a replacement operator to save the result in a vari-
able, or you could use the TYPE command to output the result of the expression, or
whatever. Since it is the -last- result which is returned as the value of the

function, however, if other calculations are necessary for checking the result or

UWF-67

performing ancilliary calculations, the value desired must be saved and then 'SET!

again just bcfore returning.

There are a number of UWF commands which do not disturb a PDF result and so
may be used without caution in the definition of the function. These are COMMENT,
RETURN, YNCREMENT and ZERO. On the other hand, branching commands always evaluate a
Line number (which may be zero), and so cannot be used to terminate a PDF without
destroying the (expected) function result. 1t should also be pointed out that the
line number option in a RETURN commancd (see page 31) will be ignored by a PDF call.

This 1is necessary to ensure that the program returns to complete the function call.

While most PDF calls just use an explicit line or group number to identify the
function, it is possible to be somewhat more elegant! By using a variable with a
nicely selected name you can specify the 'F(TAN,X)' function rather than the
'F(9.9)' function. To do this, just set the variable 'TAN' to the value 9.9. This
has the additional advantage that you can easily move the subroutine to a different

part of the program without having to change all the function calls.

UWF-68

- e e e e e o o em e e e ae e me ee e = e wm e e em e me ae ame wm em e e ae e e em em

Here are a few interesting PDF's which illustrate some of the things you can
do. A symbolic name has been used in most cases; it must be set to the value of the
line or group actually used to code the function.

1) F(PWR,X,Y) - raises 'X' to the 'Y' power when 'Y' is non-integer:

SET FEXP(3*FLOG(#))

Sample call: TYPE F(PWR,27,1/3) 3.060600C00

2) F(!,N) - computes the Nth factorial (maximum value of N is about 300)
FOR I=3%=1,#; SET $=%%1

Sample call: TYPE F(!,5) 120.00GGCU0

3) F(SuMm) - computes the sum of the subscripted array 'G(1)*
ZERO $; FOR I=1,N; SET $=$+G(I)

Sample call: SET AVE=F(SUM) /N

4) F(PN,X) - evaluates the polynomial 'Y=CCO)+C(1)xX+C(2)*X 2+...+C(N)*X N"
FOR I=N,-1,%=0; SET S=Sx*#+C(I)

This function is useful for computing series approximations

UWF-69

5) F(OCTAL,VALUE) - converts a number from decimal to octal
FOR I=N=0,4;SET N=N+(#-8+#=FITR(#/8))*10"1
Sample call: TYPE F(OCTAL,1000) 1750

This 1is the most interesting of the functions shown so far, if for no other reason
than that it uses all the arithmetic operators in a single SET command as well as
some fancy redefinitions within the loop. The technique employed is quite general
for changing from one number base to another, so simply by interchanging the '8's'
and '10's' in the definition you can construct a function to give you the decimal

equivalent of an octal number:
TYPE F(DECIMAL,1000) 512

To be still more elegant you can rewrite the function to use the value of '$' in
place of the number '8' shown above and thus have a general-purpose routine for
converting to any number base (less than or equal to 10). A fun thing to do once

you have made this change, is to try it out with a direct command such as:
FOR J=2,10; TYPE F(BASE, 99, J)!

which will then type out the value of ‘ninty-nine' in all number bases from 2-10.
The loop limit represents the maximum number of digits required to represent the
number, so if you try this with large numbers and small number bases you will

probably need to increase the limit to something more than ‘4°.

6) PDF replacements for the trancendental functions:

These functions may be used in place of the internal functions 1in the event
that you wish to delete some of them to increase the number of variables available

on an 8K machine.

FCEXP)=) 25.1 IF (#*x#-.01).2; SET §=F(EXP,#/2)72

EXP=25.1 25.2 SET H=1+R+H*H#/2+H#73/6+£74/24+475/120

F(LOG)= 26.1 IF (#*#-2.04*#+1).2; SET #=2%F(LOG,FSQT(#))
L0G=26.1 26.2 SET H=(#-1)/(H+1), H=2*(B+R™3/3+H"S5/S+H"TIT)
FC(ATN)= 27.1 IF (#x4-.01).2; SET #=2*F(ATN, B/ (1+FSQT (1+#*#)))
ATN=27.1 27.2 SET H=R-H#"3/3+K°5/5-5"717

F(SIN)= 28.1 IF(#*#-.01).2; SET &=F(SIN,¥/3), H=3*{-4L*§"3
SIN=28.1 28.2 SET H=#-£"3/6+#75/120

F(COS)= 28.3 SET F(SIN, P1/2-#)

F(TAN)= 29.1 IF (H#*4-.01).2;S #=F(TAN,£/2), #=2*8/(1-#*H+1E-99)
TAN=29.1 29.2 SET &=F¥H"3/5+8°5/7.5+#771315

FC(ASIN)= 30.1 IF (#xy#-.01).2;S #=2%F(.1,#/(FSQT(1+#)+FSQT(1-%)))
ASIN=30.1 30.2 SET H=#+#"3/6+.075*#°5+£77/22.4

FC(ACOS)= 30.3 SET P1/2-F(ASIN)

FC(HSIN)= 31.1 IF (Hx#-.01).2; SET K=F(HSIN,#/3), K=3*{+4%x}4§"2
HSIN=31.1 31.2 SET H=#+£"3/6+#75/120

F(HCuUS)= 31.3 SET FSQT(FCHSIN)%#+1)

The method used in these functions is to recursively reduce the argument to a value
typically less than .1, evaluate a series approximation which is reasonsbly accur-
ate for an argument of this magnitude, and then 'bootstrap®' back using an identity
such as 'e"2Xx=(e"X)"2'. Thus the approximation for F(EXP) is evaluated after recuc-
ing the argument to the proper range and then the result is squared enough times to

return to the original value. This clever method was devised by A.K. Head.

UWF-71

7) In many cases a PDF call is prefercble to a simple *'DO' because it can pass a
parameter or two to the subroutine at the same time and can also return & 'status'
value. As an example of such a use, consider a subroutine for finding the roots of
a quadratic equation. There are three possible cases: the roots are equal, the
roots are real, but unequal, or the roots are complex numbers. 1f the values pro-
duced by the subroutine are stored in 'R1' and ‘'R2', then after calling the routine
one must still cecide how to interpret the results. If the subroutine were to

return the value of the 'discriminant' this could be accomplished as follows:

ON (F(QR)) complex, equal, uneqgual

AN
where 'QR' is the group number of the Quadratic Rcot subroutine, and ‘complex',
tequal', *unequal' are Lline or group numbers associated with the 'ON' command which
serves both to call the subroutine and to test the result at the end. Uther uch

examples will undoubtedly occur to the reader.

UWF-72

—

— e e em we e e e e e o e wm e e em e we e mr ee e em am ar e s e we e om wm wm wm e

- e wm wm e e wm am we ee em e e em e we am e e em e e e em e ee e am mm e e o e e we

Here is a Llist of all the functions implemented in the standard version of

UWF. Since up to 36 internal functions are possible, it should be clear that this

list is not exhaustive.

FABS
FATN
FBUF
FCoM
FCOS
FDIN
FEXP
FIN
FIND
FITR
FLOG
FMAX
FMIN
FMa
FOUT
FRAC
FRAN
FSGN
FSIN
FsaQT
FSR
-FTRM

Returns

Returns

the absolute value of the argument

the angle in radians whose tangent is given

Optional: stores or retrieves 12-bit signed integers

Cptional: accesses additional memory for data storage

Returns

the cosine of an angle measured in radians

Optional: returns value of digital input register

Returns

value of 'e”X' where |X] is less than 141&

Reads and returns the value of a single character

Searches for a given character code

Returns
Returns
Returns

Returns

integer value of the argument
the natural logarithm of the argument
the maximum value of two arguments

the minimum value of two arguments

Displays the argument in the MQ, returns same

- Outputs

Returns
Returns
Returns
Returns
Returns
Returns
Returns

Program

a single character value

the fractional part of the argument

a random number in the range 0-1

the sign value of the argument: -1,0,+1
the sine of an angle measured in radians
the square root of a positive number

the signed value of the switch register
the value of the last ASK terminator

Defined Functions

UWE-75

CODE
128
129
130
15
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148

149
150
151
152
153
154
155
156
157
158
159

DECIMAL VALUES FUR ALL CHARACTER CODES

- e we e o e e e em em e em me e e e e e e

CHARACTER
CTRL/@
CTRL/A
CTRL/B
CTRL/C
CTRL/D
CTRL/E
CTRL/F
CTRL/G
CTRL/H
CTRL/1
CTRL/J
CTRL/K
CTRL/L
CTRL/M
CTRL/N
CTRL/O
CTRL/P
CTRL/Q
CTRL/R
CTRL/S
CTRL/T
CTRL/U
CTRL/V
CTRL/W
CTRL/X
CTRL/Y
CTRL/Z
CTRL/C
CTRL/\
CTRL/]
CTRL/"
CTRL/_

NULL
SOH
STX
ETX
EUT
ENQ
ACK
BELL
B.S.
TAB
L.F.
V.T.
F.F.
C.R.
SO
SI
DLE
XON
DC2
XOFF
bC4&
NAK
SYNC
ET8
CAN

suBs

ESC

FS

RS

CD. CHAR
160 SPACE

161
162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
LR

%

-

O 00 N O BN = O N

A “e 3]

N Vv

UWF-74

CD. CHAR

192
195
194
195
196
197
198
199
200
2l
202
205
204
205
206
207
208
209
210
2N

212

213
214
215
216
217
218
219
220
221
222
223

5]

“W s M N < X T < C -2 0 0 © v O Z X2 N &« <+ I O™mMmm o o 0 >

CD. CHAR

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

> a -~ 0 a o o o

-l

£ ¢ € #+ OV % 0 T 0 3 39 ¢~ X w

A N X %

I
} ALTMODE

~ PREFIX
H DELETE

FOUT(141) will output a RETURN/LINEFEED while FOUT(13) will just do a RETURN. Codes
225 through 255 are lower case letters, some of which serve other functions on key-
boards without lower case. Many keyboards use 'SHIFT/K' for '[*, °SHIFT/L' for '\'
and 'SHIFT/M' for ']' and corresponding combinations for the control codes follow-
ing 'CTRL/Z'. These symbols are often not printed on the keytops. Codes 0-127 are
the same as codes 128-255 except for the parity bit. UWF always forces the parity
bit during 1input.

ERROR CODES FOR UWF (V4E) OCTOBER 1978

? Keyboard interrupt (CTRL/F) or restart froh location 10200
201.50 Group number greater than 31

201.93 Non-existant line number in a MODIFY or MOVE command
203.10 Non-existant line called by GOTO, IF, NEXT, BREAK or QUIT
203.30 Illegal command

203.47 Non-existent line or group: DO, ON, JUMP, LINK or PDF call
204.35 Missing or illegal terminator in a FOR command -
206.03 Illegal use of a function or number: ASK, YNCR or ZERC

206.41 Too many variables (ZERO unnecessary ones to recover space)
707.44 Operator missing or illegal use of an équal sign

207.67 Variable name begins with 'F' or improper function call
207.76 Double operators or an unknown function

208.10 Parentheses don't match

210.50 Program too large (sorry, you'll have to erase some of it)
?718.32 FCOM index out of range

219.72 Logarithm of zero

221.57 Square root of a negative number

722.65 More than 10 digits in a number

725.02 Stack overflow: reduce nested subroutines and expressions
227.90 Zero divisor

?31.<7 Non-existant program area called by LOOK or LINK

€or _ End of input sensed, 1/0 switched back to the terminal

UWF-75

APPENDIX 11

Here is a list of patches for adding a number of special features to UWF. They
are shown in the format: FLLLL/ CCCC PPPP; QQQQ where 'FLLLL' is the Field + Mem—-
ory location, 'CCCC' is the original contents, and 'PPPP' is the patch. In cases
where several successive locations are to be changed, a semicolon is shown, fol-
“lowed by the next patch ‘QQeQa‘. Note that the 'FCOM' patch shown below is for 16K

versions only and must be added -before- UWF is started the first time.
FIELD O
00045/ 4463 4442 Replace extra variable storage with FCOM (16K only - see page 3)

00061/ 7610 6213 Print a CR/LF before printing an error message

FIELD 1
10402/ 4547 0000 Eliminate the line number printout in MODIFY

11216/ 7000 4533 Make the ASK command print a ':' each time
11241/ 1377 7040 Use the '#' operator to output a Form Feed

12471/ 1000 1177; 4533 Change ‘rubout' for video terminals
13070/ 7106 7107 Increase the delay after a Carriage Return

13134/ 7000 6xxx Clear an unwanted interrupt (next 3 locations too)

15665/ 1103 1213 Make TYPE print an "=' ahead of each value
15666/ 4534 7200 Remove the initial space (or '=') printed by TYPE

14503/ 62X1 62Y1 Change the data field used by FCOM ('X,Y' may be 2-7)
145457 62X1 62Y1 Ditto for tbe FBUF function (*X' is set at startup)

10033/ 4566 5200 Remove the FLOG, FEXP and FATN functions to increése the
12371/ 5020 1754; 1754; 1754 size of the symbol table in the 8K version.

10033/ 5200 5303 Remove FSIN and FCOS to increase the symbol table size a
12367/ 5205 1754; 1754 little bit more (8K only).

UWF-76

(C) 1978 by LAB DATA SYSTEMS
Seattle, Washington 98125
ALl rights reserved (Jvl)

UWF-77

701.50
201.93
203.10
203.30
203.47
204.35
2706.03
206.41
?207.44
207.67
?207.76
208.10
?10.50
?18.32
?219.72
221.57
722.65
?25.02
227.90
?731.<7
(—Of‘_

ERROR CODES FOR UWF (V4E) OCTOBER 1978

Keyboard interrupt (CTRL/F) or restart from location 10200
Group number greater than 351

Non-existant lLine number in a MODIFY or MOVE command
Non—-existant line called by GOTO, IF, NEXT, BREAK or QUIT
Illegal command

Non-existent line or group: DO, ON, JUMP, LINK or PDF call
Missing or illegal terminator in a FOR command

Illegal use of a function or number: ASK, YNCR, or ZERO
Too many variables (ZERO unnecessary ones to recover space)
Operator missing or illegal use of an equal sign

Variable name begins with 'F' or improper function call
Double operators or an unknown function

Parentheses don't match

Program too large (sorry, you'll have to erase some of it)
FCOM index out of range A
Logarithm of zero

Squére root of a negative number

More than 10 digits in a number

Stack overflow: reduce nested subroutines and expressions
Zero divisor

Non-existant program area called by LOOK or LINK

End of input sensed, 1/0 switched back to the terminal

e em e mw em em e mm ar am e e em wm e s e em e e e e tm em e am e e A er ee e e em e

FPAL allows the user to code short 'machine language' functions directly into
his program. This provides 'keyboard control' of special devices which are not
supported by any of the normal functions or commands, and also permits operations
requiring only 12-bit arithmetic to proceed at full machine speed. Routines as long
as 32(10) instructions’can {in theory) be incorporated, but in practice, FPAL rou-
tines are seldom longer than about 5-10 instructions - just enough to execute a
short sequence of I10Ts to pulse a control line, for instance.

 The form of the function call is: FPAL (AC,inst,inst,inst...), where "AC' is an
arithmetic expression, the value of which will be placed in the AC prior to calling
the routine, and the remaining arguments are construed as a list of -octal- numbers
which represent the desired machine instructions. These are stored in Field 1 such
that the first instruction is at ‘page+l', the second at 'paget2', etc. After the
last instruction has been tucked away, FPAL Tloads the AC with the integer part of
the first argument, clears the Link, and calls the routine. The final value of the
AC is then returned to the program as the value of the function. Note that the user
does not have to worry about any of the ‘calling' instructions - he only has to
write the essential machine code.

Here are a few examples which may help clarify how the FPAL function works and
illustrate some of the things it can do:

Ex. 1: UWF has an 'FMQ' function for loading a number into the MQ register
(where it is preserved by all internal arithmetic operations), but no corresponding
function for finding out what is already there. The following FPAL function will
not only do this, but will also increment the value in the MQ at the same time:

TYPE MQ=FPAL(,7501,7001,7521)
Note that the first argument has been omitted in this example, since no information

is being passed -to- the function. The first instruction (7501=MQA) reads the MQ,
the next (7001=IAC) increments this value and the third (7521=SWP) interchanges the

new and old values, saving the new value for a subsequent call, and returning the
old vaiue to the program. Machines based on the 6100 microprocessor may not be able
to display the MQ while UWF is running. Using this function however, the value of
the hardware register can be saved in the variable 'MQ', and output by the 'TYPE'
command as well. So being able to actually ‘see' this register is not a necessity.

Ex. 2: Several variations of this routine come to mind almost immediately. For
instance, we could use the hardware 'SWP' instruction to interchange two values:

SET MQ=FPAL(AC,7521)

or we could take advantage of the 'MQA' instruction to perform an 'inclusive OR'
between a value in the MQ and one in the AC: SET FMQ(A),AB=FPAL(B,7501). '

Ex. 3: As a final example, suppose that we have constructed an A/D converter
interface which uses the same instruction set as the AD8-EA. In order to test it
out we can use the following FPAL routine to implement the 'FADC' function:

SET CH(N)=FPAL(N,6531,6532,6534,5203,6533)

The channel number ('N') will be placed in the AC at the beginning and can be used
to control the multiplexer via a '6531° (=ADLM) instruction. The converter is then
started (6532=ADST) and we begin testing the 'done’' flag (6534=ADSD) to see when it
is finished. This involves a 'JMP .-1' instruction which means that the location of
the 'ADSD' instruction (relative to a page boundary) must be known. Since FPAL rou-
tines always start at 'page+l', (location 'page+0' can be used as a ‘temporary'), a
jump to the -third- instruction becomes '5203'. When the conversion is finally done
the result is read into the AC (6533=ADRD), and returned to the program.

It goes almost without saying, that such easy access to machine-level code is
both powerful - and - dangerous! No error checking can be performed, so a single
'typo' can lead to instant disaster! Always be sure, therefore, to save a copy of a
valuable program -before- you try out any sort of 'wild' FPAL function, and be
especially careful with ISZs, DCAs, JMPs and JMSs since they can modify memory or
send the program off 'into the wild blue yonder'.

Similarly, give special consideration to any IUT which might cause a hardware
interrupt since UWF runs with the interrupt system enabled! Most interfaces have an
"interrupt disable' instruction, but if it is necessary to use an 'IOF' in order to
protect UWF from a spurious interrupt, be sure to clear the flag and then issue an
'ION' before exiting from the function - otherwise it may be necessary to restart
the interpreter in order to activate the interrupt system again (see page 2).

ADVANCED CONSIDERATIONS

While it is clearly possible to use FPAL to implement patches to UWF itself,
this practice is -strongly- discouraged (and no help with such folly will be
offered) since this makes programs 'version dependent'. On the other hand, there
-are- a few 'tricks' which could prove useful at various times:

1) The value of the first parameter is actually converted into a 24-bit inte-
ger,.of which only the lower 12-bits are loaded into the AC at the beginning of the
routine. This means that the values '4095' and '-1' will both load '7777'(8) into
the AC. The high-order part of the number can be accessed with a 'TAD 45' (1045)
instruction, while the low-order half can always be recalled with a 'TAD 46' (1646)
if it is needed later on in the function.

2) The value of the AC is normally returned as a signed number; if it is more
desirable to have an 'unsigned' result you czn simply code an "ISZ .+1' instruction
as the last step of the routine. Thus: 'TYPE FPAL(4095)' will return '-1', whereas
‘TYPE FPAL(4095,2202)' will return '4095'. The '2202' instruction is 'ISZ .+1' when
located at 'page+l’.

Notice that numbers appearing in the -first- argument of an FPAL call are
treated as ‘'decimal' values and can be replaced by variables and/or other func-
tions. The remaining arguments, however, are processed as character strings and so
cannot be replaced by arithmetic expressions.

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81

