
DIGITAL 8-2-S

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

PDP-8

FORTRAN
PROGRAMMING

MANUAL

Copyright 1964 by Digital Equipment Corporation

II

PREFACE

The program discussed in this manual, though written for use on the Pro­

grammed Data Processor-8 computer, can also be used without change on

Digital 1s Programmed Data Processor-5. This compatibility between the

libraries of the two computers results in three major advantages:

l . The PDP-8 comes to the user complete with an extensive se­

lection of system programs and routines making the ful I data pro­

cessing capability of the new computer immediately available to

each user, eliminating many of the common initial programming

delays.

2. The PDP-8 programming system takes advantage of the many

man-years of field testing by PDP-5 users.

3. Each computer can take immediate advantage of the continu­

ing program developments for the other.

iii

Section

2

3

4

5

6

7

CONTENTS

INTRODUCTION ..

THE FORTRAN LANGUAGE
Statements ..
Program Format

Types of Statements

.......................................

.......................................
Comments ...
Continuation
The Character Set ..

FORTRAN ARITHMETIC
Arithmetic Expressions

The Arithmetic Statements

.................................

.................................

NUMBER REPRESENTATION AND VARIABLE TYPES
lntergers and Floating Point Numbers

Fixed-And Floating-Point Representation

.....................
....................

Types of Variables

SUBSCRIPTED VARIABLES
Arrays

Subscripts

...
..

PROGRAM CONTROL

Program Termination

Branches and Loops

......................................
.....................................

.......................................

INPUT AND OUTPUT ..
Available Devices

iv

Page

1

3

3

4

4

5

5

6

7

7

12

15

15

16

17

18

18

18

22

22

23

31

31

CONTENTS (continued)

Section Page

Appendix

A

B

c

D

E

F

Input-Output Statements • • • . . . 32

Format Specifications Statement . . • . . • • • . • • 34

Other Format Control Elements . • . . . • • • . . • . • 37

DIAGNOSTICS•.•.......•....•...... 40

Compile Time Diagnostics • • • . . • . . . • • 40

Diagnostics • . . • . . . • • • • . . • • . . . 41

Object System Diagnostic . • • • • • . • . . • . • . . • . . . • • . • • • . • . • . 43

TAPE TELEPRINTER OPERATING PROCEDURES .•••••....•••...•.. 45

OPERATING PROCEDURES FOR RIM AND
BIN PAPER TAPE LOADERS 47

Read-In-Mode Loader (RIM) . . . • • . • . • . • • • . • • . • . . • • . • • . . . 47

Binary Loader (Bl N) . • . • • . • • • . . • • • • • • . • 49

ASR-33 8-BIT CHARACTER SET 51

OPERATING PROCEDURES 52

Compiler . 52

Object Time System • . • . • . . • . • • • . • • • . • . • • • . • . . • • . . 52

FORMAT FOR COMPILER OUTPUT 54

Interpretive Code • . . . • • • . • • • . . • . • . • . • • • . . • . 54

v

Figure

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

ILLUSTRATIONS

A Fortran Program ••••••••.•••••••••••.••.••..•.•..•..•..••••••

Example of Comments

The Continued Statement
Number Representation ..
Indexing Statements •.•••••.••••••.••••••••

Schematic Representation of Program Branching ••••••••••••.••••••

Integer Summation

Use of IF Statement in Integer Summation Problem .•••••••.••••••••

IF Statement with Substatement Feature
Fibonacci Series
Fibonacci Series Calculation Programmed As a DO Loop ••••••••••••

Nested DO Loop ...
DO Loops ...
Program Branching in DO Loops ..•.••..•..•.•.••••.•.•..••..••..

Input-Output Statement
A List Example ...
Examples of Quote and Slash

vi

Page

3

5

6

17

20

23

24

25

25

26

26

27

28

29

32

33

38

CHAPTER 1

INTRODUCTION

Using a digital computer to solve a problem generally involves the following series of steps:

a. Determining the correct procedures to be used, including mathematical

formulas, the handling of data, the presentation of results, etc.

b. Arranging the procedures in the proper order.

c. Determining the sequence of computer instructions that will perform the

operations specified.

d. Converting the sequence of instructions into binary notations in a physi­

cal medium capable of being entered into the computer for execution.

Much of the progress and development in programming has been made in discovering ways to

make the computer perform more of the steps I isted, above, and leaving the programmer free

to concentrate more on the problem itself. At first, programmers entered instructions manually

from the computer console or prepared the binary program for direct input. Later, a symbolic

notation was developed for a computer instruction set, and programs called assemblers were

written that could interpret a tape or card deck punched with this notation. These assemblers

translate each symbolic instruction into a machine operation and assemble an executable pro­

gram. Thus, an assembler can accept input from step c above.

An assembler requires that the programmer be familiar with the particular instruction set of the

computer being used. To solve the same on another computer would usually require complete

reprogramming.

To free the programmer from the need of learning a given computer's language before using

the machine to solve problems, compilers were developed which accept input more closely re­

lated to the problem and convert the input into an executable program. FORTRAN is such a

compiler. It accepts input in the form of statements which resemble mathematical formulas

(hence its name, which stands for FORmula TRANslation) and compiles sequences of instructions

necessary to perform the procedures specified. Non-mathematical operations are specified by

English words. In terms of the steps given above, a FORTRAN source program is a product of

step b; the computer performs steps c and d.

A FORTRAN compiler can thus be written for any digital computer to convert a source program

into an executable program. Extensive reprogramming is made unnecessary, since the same

source program can be compiled on different machines with only minor changes.

The PDP-8 FORTRAN System consists of two subsystems: the compiler and the object time system.

The FORTRAN Compiler contains the instructions the computer requires to perform the clerical

work of translating the FORTRAN version of the problem statement into an object program in

the language of the object system.

When the compiler detects errors in statement format or usage, it prints out diagnostic messages

(see Appendix A). The programmer or operator may then take the appropriate corrective meas-

ures.

After compilation, the object time system is used to execute the program. This system contains

the interpreter, the arithmetic function subroutines, and the input-output packages. When

program execution is required, the object time system, object program, and the data it will

work with are loaded into the computer for solution of the problem.

This is a one-pass compiler, which means the source language tape must be read only once.

The compiler generates one tape which contains coding in a form that is executable under con­

trol of the object time system.

To use the system, it is only necessary to load the compiler. The compiler then processes the

source language tape and generates the object program tape. This object program tape can

be run at any time simply by loading the object system, which, in turn, loads and executes

the object program.

2

CHAPTER 2

THE FORTRAN LANGUAGE

STATEMENTS

Figure 1 is an example of a FORTRAN program, consisting of a title, the body of the program,

and the end statement.

The first line of the program is the title, which may be anything the programmer writes to iden­

tify the program. It is not incorporated into the final executable program.

The body of the program is a series of statements, each of which specifies a sequence of math­

ematical operations, controls the flow of the program, or performs other tasks related to the

proper working of the program.

The end statement must be physically the last statement of every FORTRAN program. Its func­

tion is to indicate to the compiler that nothing more connected with the preceding program is

to fol low.

C; THIS PROGRAM CALCULATES FACTORIALS
5; TYPE 200

10; ACCEPT 300,X
FACT=Y=l.
IF (X) 5, 32, 30

30; IF(X-Y)41,32,33
32; TYPE 400, X, FACT

GO TO 10
33; FACT=FACT* (Y=Y+l .)

GO TO 30
41; PAUSE

GO TO 5
200; FORMAT(/, 11 PLEASE TYPE A POSITIVE NUMBER 11 , /)

300; FORMAT (E)
400; FORMAT (/, E, 11 FACTORIAL IS 11 , E)

END

Figure 1 A Fortran Program

3

PROGRAM FORMAT

Each line contains two fields: the first, which begins at the margin, is an identification field;

the second contains the statement proper (see Figure 1).

The identification field extends from the left-hand margin up to a semicolon character. This

field may be left blank, or it may contain one of the following types of identification:

1. The first digit of a statement number. This number, which may be any

positive integer from 1 to 2047 inclusive, identifies the statement on that

I ine for reference by other parts of the program. Statement numbers are

used for program control or to assist the programmer in identifying segments

of his program. Up to 40 statements can have statement numbers.

2. The letter C. This identifies the remainder of the line as a comment (see

Section Comments).

The statement field begins immediately after the semicolon and extends through the next car­

riage return. Although the continuation character(') allows a single statement to extend over

two or more I ines, no more than one statement can be written on one I ine.

TYPES OF STATEMENTS

FORTRAN statements are of several types with differing functions distinguished as fol lows:

1 . Arithmetic statements resemble algebraic formulas. They specify the

mathematical operations to be performed.

2. Program control statements direct the flow of the program.

3. Specification statements allocate data storage, determine variable and

data types, and specify input-output formats.

4. Input-output statements control the transfer of information into and out

of the computer.

4

COMMENTS

Although a FORTRAN program using English words and mathematical symbols can be read and

understood more easily than a symbolic language program, it is helpful to provide comments

freely throughout the program to explain the procedures being used. Such comments, identified

by a C in the first position of the line, are not interpreted by the compiler and have no effect

on the executable program.

C; CALCULATE PERCENTAGE OF CORRECT RESPONSES
C; PERCENTAGE= -1 IF THERE ARE NO ITEMS
C; IN CATEGORY

DO 47 l=l, 57
DO 48 J=l, 6
IF (ITMS (J)) 46, 46, 51

46; PRCN (I)= -1 .0

Figure 2 Example of Comments

CONTINUATION

Frequently, a statement may be too long to fit on one line. If the character single quote(')

appears as the last character of a line before the carriage return, the next line is treated as

a continuation of the statement on the I ine above (see Figure 3). A statement may be continued

on as many lines as necessary to complete it, but the maximum number of characters in the state­

ment may not exceed 128.

5

1. ,
,

2· ,

3· ,
4· ,
,

5· ,

FORMAT
IF(NR(l)-1))2, 2, 3
AP=-14.73
GO TO 6
IF (NR (1) -2) 4, 4, 5
AP=-44.19
GO TO 6
AP=SH (2)•3. 0-AG (4)/1

AG (1)+SQTF (AG (14))

Figure 3 The Continued Statement

THE CHARACTER SET

The characters which are meaningful in FORTRAN belong to the ASCII set I isted in Appendix D.

Of these, the acceptable characters are: al I letters and numbers - A through Z, 0 through 9;

control characters - semicolon (;), carriage return (CR), line feed (LF), single quote (1), double

quote (11), left parenthesis(, right parenthesis), period(.), comma (,);and the operators -

plus(+), minus(-), slash(/), asterisk(•), equal sign(=). All other characters are ignored by

the compiler except in Hollerith information of FORMAT statements where all Teletype char­

acters are legal. The character space has no grammatical function except in FORMAT state­

ments, but may be used freely to make a program easily readable.

6

CHAPTER 3

FORTRAN ARITHMETIC

ARITHMETIC EXPRESSIONS

An algebraic formula such as the fol lowing

[5a + 4b (x2 - xo)] /2a sin Q

represents a relationship between literal symbols {a, b, x, x0 , Q) and constants {5, 4, 2) in­

dicated by mathematical functions and arithmetic signs {+, -, /, multiplication, exponentiation,

sine). This same formula can be written as a FORTRAN arithmetic expression with very little

change in appearance:

{5.*A + 4.*B*(X**2 - XZRO))/ (2.*A*SINF(THTA))

The construction of both expressions is the same; the differences are notational.

The elements of an arithmetic expression are of four types: constants, variables, operators, and

functions. An expression may consist of a single constant, a single variable, or a string of con­

stants, variables, and functions connected by operators.

The fol lowing examples demonstrate the properties of arithmetic expressions. Each expression

is shown with its corresponding algebraic form.

Algebraic Expression

2
ax +bx+ c

2
4 ir r

3

FORTRAN Expression

(A**2 - B••2) I (A+B) **2

4.* Pl*R**2/3.

7

3x n- 2 (x+y)
4.25

a ·sin 9+ 2a . cos (9 -45)

2 .p:-
3

(3.•X•Pl-2.• (X+Y)) /4.25

A•SINF(THTA)+2. *A*COSF(THTA-0. 7853982)

2. *SOTF(X)/3.

Constants

Constants are explicit numerical quantites. They may be integers, decimals, or numbers in

decimal exponent form. Some examples follow:

integers

5 -70 2047

decimals

18.75 3.14159 -0.00025

decimal exponent

l . 66E-l 6
-16

(meaningl.66xl0)

These different forms of numerical representation are described in detail in Chapter 4.

Variables

A variable is a literal symbol whose value is not implicit; its value may be changed during the

execution of the program. A variable name is composed of one or more characters according

to these three rules:

l. The only characters which may be used in a variable name are A through

Zand 0 through 9.

2. The first character must be alphabetic (i.e., A through Z).

3. Only the first four characters of any variable name are meaningful. Al I

characters after the fourth are ignored by the compiler.

8

Some examples of acceptable variable names are:

A

K

THTA

XZRO

LST8

P51

DC8B EPSL

XSUM

The name EX IT represents one variable, not two. (Remember that blank spaces have no func­

tion in FORTRAN.) Thus, EX IT, EXIT, or even EXIT, are identical names as far as the com­

piler is concerned because they a II reference the same variable.

The name EPSILON would be interpreted by the compiler as EPSI, since only the first four char­

acters are meaningful. For example, the two names XSUMl and XSUM2 would be considered

identical.

Some incorrect variable names are:

9SRT

G0(5

CSH$

(first character not alphabetic)

(illegal character included)

(illegal character included)

Operators

The operators are symbols representing the common arithmetic operations. The important rule

about operators in the FORTRAN arithmetic expressions is this: Every operation must be ex­

plicitly represented by an operator. In particular, the multiplication sign must never be left

out. A symbol for exponentiation is also provided since superscript notation is not available.

To ii lustrate the rule, here are the FORTRAN and algebraic forms given in the section on arith-

metic expressions:

(5.*A + 4.*B*(X**2-XZRO)) I (2.*A*SINF (THTA))

[5a + 4b (X2 - x0)J /2a sin9

Normally, a FORTRAN expression is evaluated from left to right just as an algebraic formula

is. There are exceptions to this rule. Certain operations are always performed before others

regardless of order. This priority of evaluation is as follows:

9

1st. Expressions ()
within parentheses

2nd. Unary minus

3rd. Exponentiation **

4th. Multiplication *
Division I

5th. Addition +
Subtraction

The term binding strength is sometimes used to refer to the relative position of an operator in a

table such as the one above, which is in the order of descending binding strength. Thus, ex­

ponentiation has a greater binding strength than addition, and multiplication and division have

equal binding strength.

The unary minus is simply the operator which indicates a quantity whose value is less than zero,

such as -53, -GAMME, -K. It refers only to the operand which it precedes as opposed to a

binary operator, which refers to operands on either side of itself, as in the expression a-b. A

unary minus is recognized by the fact that it is preceded by another operator, not by an oper­

and. For example:

A+ B**-2/C-D

The first minus (indicating a negative exponent} is unary; the second (indicating a subraction}

is binary.

The left-to-right rule can now be stated more precisely as follows:

A sequence of operations of equal binding strength is evaluated from left to right.

To change the order of evaluation, parentheses are required. Thus, the expression A-B*C 1s

evaluated as A-(B*C), not (A-B)*C. The example below gives a few more i I lustrations of the

left-to-right rule.

The expression

A/B*C
A/B/C
A**B**C

10

is evaluated as

(A/B)*C
(A/B)/C
(A**B)**C

An easy way to check the proper pairing of parentheses is by counting out, illustrated in the

following example:

(Z+AM*(ZM+l .)) I ((X**2+C**2)*P)
1 2 10 12 1 0

The procedure is this: Reading the expression from left to right, assign the number 1 to the first

left parentheses (if you encounter a right parenthesis first, the expression is already wrong~) In­

crease the count by one each time a left parenthesis is read, and decrease the count by one

when a right parenthesis is used. When the expression has been completely scanned, the count

should be zero. If it becomes less than zero during the scanning, there are too many right paren­

theses. If it is greater than zero at the end of an expression, then the pa iring is incorrect.

Use of Parentheses

Note the use of parentheses in the fol lowing example below. They are used to enc lose the

subscript of the dimensioned variable D, to specify the order of operations of the expression

involving A, B, C, and to enclose the argument of the function.

D(l+J) = (A+B)**C+SINF (X)

In algebra there are several devices, such as square brackets ([]), rococo brackets ({ }),

etc., for distinguishing between levels when subexpressions are nested. In FORTRAN, only

the curved parentheses are available, so the programmer must be especially careful to make

certain that parentheses are properly paired. In a given expression, the number of left paren­

theses must be equal to the number of right parentheses.

Functions

Functions are used in FORTRAN just as they are in ordinary mathematics -- as variables in an

arithmetic expression.

The function name represents a special subprogram which performs the calculation necessary to

evaluate the function; the result is used in the computation of the expression in which the func-

ti on occurs.

PDP-5 FORTRAN provides several mathematical functions: square root, sine, cosine, arc tan­

gent, exponentiation, and natural logarithm.

11

The argument of a function can be a simple or subscripted variable or an expression. The argu­

ment must be in floating point. FORTRAN recognizes a term as a function when the term is a

predefined symbol ending in F fol lowed by an argument enclosed in parentheses (if the F is

missing from the term, the symbol is treated as a subscripted variable). The argument of a func­

tion can consist of another function or group of functions. For example, the expression:

LOGF(SINF(X/2)/COSF(X/2)) is equivalent to log* tan~.

The PDP-5 FORTRAN I ibrary currently consists of the fol lowing functions:

Function Name

SQTF (X)

SINF (X)

COSF (X)

ATNF (X)

EXPF (X)

LOGF (X)

Meaning

square root of X

sine of X, where X is expressed in radians

cosine of X, where X is expressed in radians

arc tangent X, where the angle is given
in radians

exponential of X

logarithm of X

THE ARITHMETIC STATEMENT

The arithmetic statement relates a variable V to an arithmetic expression E by means of the

equal sign (=). Thus:

V=E

Such a statement looks like a mathematical equation, but it is treated differently. The equal

sign is interpreted in a special sense; it does not represent a relation between left and right

members, but it specifies an operation to be performed.

NOTE: In an arithmetic statement, the value of the expression to
the right of the equal sign replaces the value of the variable on the
left.

This means that the value of the left-hand variable wil I be different after the execution of an

arithmetic statement. A few illustrations of the arithmetic statement are given below.

12

a. VMAX =VO+ AXT

b. T = 2.*Pl*SQTF(l ./G)

c. Pl = 3. 14159

d. THTA = OMGA + ALPH*T**2/2.

e. MIN= MINO

f. INDX =- INDX +2

With the interpretation of the equal sign defined previously, example f becomes meaningful as an

arithmetic statement. If, for example, the value of INDX is 40 before the statement is executed,

its value will be 42 after execution.

Perhaps another way of looking at the equal sign illustrates its use and interpretation more fully.

In arithmetic expressions, a binary operator requires an operand on its left and right. The equal

sign of an arithmetic statement is considered to be a binary operator also. This interpretation

is demonstrated in the fol lowing revised table of operators:

Operator Use Interpretation

(Unary} -A negate A

** A**B raise A to the Bth power

* A*B multiply A by B

I A/B divide A by B

+ A+B add B to A

(Binary) A-B subtract B from A

= A=B replace A with B

Treated this way, the equal sign is considered to have the lowest binding strength of all the

operators. This means that the expression on the right is evaluated before the operation in­

dicated by = is performed.

The most important result of treating the equal sign as a binary operator is that it may be used

more than once in an arithmetic statement. Consider the fol lowing:

CPRM = (CKL - CKG) / (CPG = P*(Q + l .))

13

The internal arithmetic statement, CPG = P*(Q + 1 .), is set off from the rest of the statement

by parentheses. The complete statement is a concise way of expressing the fol lowing common

type of mathematical procedure:

Let c' =

where c = P*(q+l)
pg

The stating of a relation fol lowed by the conditions for evaluating any of the variables can be

expressed in a single arithmetic statement in FORTRAN.

Another important result of treating the equal sign as an operator is that the operations may be

performed in sequence. Just as there may be a series of additions, A+B+C, so may there be a

series of replacements, A=B=C=D. Note that since the operand to the left of an equals sign

must be a variable, only the rightmost operand, represented by D in the example, may be an

arithmetic expression. The statement is interpreted as follows: 11 Let the value of the expression

D replace the value of the variable C, which then replaces the value of the variable 811 and

so on. In other words, the value of the rightmost expression is given to each of the variables

in the string to the left. A common use for this construction is in setting up initial values:

XZRO=SZRO=AZRO=O

T =Tl= T2= T3=60

P=FP=4.*ATM-AK

Another useful result in treating the equal sign as an operator is that the value of an expression

on the right of an equal sign is converted to the mode of the left-hand variable before storage,

if necessary.

Example: A=M

K=B

14

CHAPTER 4

NUMBER REPRESENTATION AND

VARI AB LE TYPES

INTEGERS AND FLOATING POINT NUMBERS

In mathematics there are many ways to categorize numbers. They may be positive or negative,

rational or irrational, whole numbers or fractions. In FORTRAN, the treatment of numbers is

separated into integers and decimals, distinguished as follows:

l . Integers are positive or negative numbers written without a decimal point.

These numbers are integers: 9, 17, 147, 1024, 2047. The last number, 2047,

is the largest quantity that can be expressed as a FORTRAN integer. For frac­

tional quantities and for numbers larger than ±2047 (which is 211 -1), the sec­

ond type of number is required.

When using integer arithmetic, any fractional results are truncated. For ex­

ample, the expression M=N/3 with N=8 would result in M=2. This applies

only to division because multiplication, addition and subtraction yield in­

tegra I resu I ts.

2. Floating point numbers have two forms. They are simple decimals, such

as 0.0025, .4, 57., 2.71828; or numbers in decimal exponent form. Num­

bers in decimal exponent form are simple decimals multiplied by a power of 10.

Examples:

Mathematical Form

6.023 x 1023

1 .66 x 10-16

72. x 1012

15

FORTRAN Form

6.023E23

1 . 66E-16

72El 2

In general, a floating point number in decimal exponent form is NE±K, where

N may be an integer or simple decimal, and K is an integer from 0 to 99, in­

clusive. The construction NE±K is used to represent the number NxlOK The

fol lowing are floating point representations of the number 19:

19 .0
.19E2
1 . 9E+l
1900E-2
190.0E-1

FIXED-AND FLOATING-POINT REPRESENTATION

The difference between integers and real numbers in FORTRAN is the way in which each is

represented in core memory.

A FORTRAN integer is stored in one 12-bit computer word. The sign of the number is kept in

the high-order bit and the magnitude in the remaining 11 bits. This representation, shown

schematically in Figure 4 is cal led fixed point, because the decimal point is always considered

to be to the right of the rightmost digit. A FORTRAN integer may not exceed the range of

-2047 through +2047. All integers greater than ±2047 are taken modulo 2048 (that is 2049 is

taken as 0001 , 4099 is taken as 3).

The floating point format consists of two parts: an exponent (or characteristic) and a mantissa.

The mantissa is a decimal fraction with the decimal point assumed to be to the left of the left­

most digit. The mantissa is always normalized; that is, it is stored with leading zeros elimin­

ated so that the leftmost bit is always significant. The exponent represents the power of two

by which the mantissa is multiplied to obtain the true value of the number for use in computa­

tion. The exponent and mantissa each are stored in 21s complement form.

16

SIGN OF
MANTISSA

SIGN

+
I I MAGNITUDE

0 1 o. FORTRAN INTEGER

SIGN OF EXPONENT

' I l EXPONENT

t01

MANTISSA

b.FLOATING POINT

Figure 4 Number Representation

TYPES OF VARIABLES

11

11

Since variables represent numeric quantities, the type of representation must be specified in

some manner. In normal programming, variable types are specified using the FORTRAN con­

ventions as fol lows:

l. lntegervariablenamesmustbeginwithoneofthe letters I, J, K, L, M, or N.

2. Floating point variables are designated by names beginning with any other letter.

These are integer variable names: INDX, KDTA, M359. These are floating-point variable

names: ZXRO, CONT, FICA.

Integers cannot appear in floating point expressions except as exponents or subscripts. Some

examples of illegal and legal expressions are as follows:

Exeression

A(l)*B(J)**2
l(M)*K(N)
4.*J
l+D
16. *B
(K+l6)*3
A**(l+2)/B
B*A

Legal

Yes
Yes
No
No
Yes
Yes
Yes
No

17

Mode

Floating
Fixed

Floating
Fixed
Floating

CHAPTER 5

SUBSCRIPTED VARIABLES

ARRAYS

An array is a grouping of data. A column of figures, the elements of a vector, a list, and a

matrix are al I arrays. In mathematics, an element of an array is referenced by means of a sym­

bol denoting the array and subscripts identifying the position of the element. For example,

the sixth element in a vector v is designated v 6 .

In FORTRAN, array elements are similarly identified. The array is given a name subject to

the same rules as the names of variables, described in Chapters 3 and 4. The subscript which

identifies an element of the array is enclosed in parentheses. The element referred to in the

preceding paragraph would have the following form in FORTRAN:

V{6)

Such a name designates a subscripted variable, which may be used in computation just like a

simple variable. The array name determines the mode, integer, or floating point of all the

elements in the array.

The example below gives a few illustrations of the use of subscripted variables.

a. X(l+L)=X(l)+ALPH(l)*P{I)

b. X{l+3)=X(1+2)+X(I+ 1)/2.

c. C(J)=A{l*J+3)

d. A=B(6)

Subscripts

As the example above illustrates, subscripts may be quite diverse in form. In fact, a subscript

may be any acceptable FORTRAN arithmetic expression as long as it is integer-valued. This

means that there may not be any floating-point quantities in a subscript expression.

18

The Dimension Statement

Array names must be identified as such to the FORTRAN compiler. Two items of information

must be provided in any program using arrays:

l. Which ore the subscripted variables?

2. What is the maximum dimension of the subscript? (When on array is used,

a certain amount of storage space must be set aside for its elements; hence

this requirement.)

All the above information is provided by the fol lowing spec ificotion statement:

DIMENSION A(20), B(l5)

where A and Bore array names, and the integer constants 20 and 15 ore the maximum dimen­

sions of each subscript.

The rules governing the use of array names and the dimension statement are as follows:

All array names must appear in a dimension statement. DIMENSION may be used as many

times as desired and may appear anywhere in the FORTRAN program, provided that the DI­

MENSION of on array appears before any statement which references the array.

DIMENSION LIST(30) I MAT(l 00) I RE GR(20)

In the statement in the example above, the names LIST and MAT designate integer arrays; that

is, each element is an integer. The third name, RE GR, designates a floating-point array. The

first array is a I ist of 30 elements maximum, so that 30 words of storage are set aside for its use.

The third array is floating-point and there are 20 elements in it. Since this array is floating,

each element requires 3 words of storage so that 60 words are set aside for the array.

DIMENSION B(30), 1(15)

This version of the PDP-8 Fortran does not have the facility for double subscripted variables.

To accomplish double subscripting, the programmer has to include indexing statements in the

source program as illustrated in Figure 5.

19

C· I

I

1 .
I

I

2· I
1 O;

I

15;

I

20;

I

30;

I

40;
21;

MATRIX MULTIPLY
DIMENSION A(36), B(36), C(36)
ACCEPT 1, I
FORMAT (I)
DO 10 M=l, I
DO 10 N=l, I
INDX=M+l*(N-1)
ACCEPT 2, A(INDX)
FORMAT (E)
CONTINUE
TYPE 15
FORMAT (/,/,/)
DO 20 M=l, I
DO 20 N=l, I
INDX=M+l*(N-1)
ACCEPT 2, B(INDX)
C(INDX)=O
CONTINUE
DO 30 M=l, I
DO 30 N=l, I
DO 30 K=l, I
IC=-N+l*(M-1)
IA=K+l*(M-1)
IB=N+l*(N-1)
C(IC)=C(IC)+A(IA)*B(IB)
CONTINUE
TYPE 15
D040M=1, I
TYPE 21
DO 40 N=l, I
INDX=N+l*(M-1)
TYPE 2, C(INDX)
CONTINUE
FORMAT(/)
TYPE 15
END

Figure 5 Indexing Statements

In this example the matrices are stored column wise in memory, that is, sequential locations in

memory are used as fol lows:

20

Element

all
a21
a31
a41
a51
a61

al2
a22

a56
a66

Relative Position
in Memory (INDX)

1
2
3
4
5
6

7
8

35
36

If referencing element a56 in the array, M=5, N=6 (I would be =6 for a 6 by 6 array.), and

INDX=M+l*(N-1)=5+6*5=35. If referencing element a 22, INDX=2+6*1=8.

21

CHAPTER 6

PROGRAM CONTROL

In this chapter, the FORTRAN statements which have been described as isolated elements are

discussed in their proper context -- in program sequences. It is obvious that FORTRAN state­

ments are executed in the order in which they are written unless instructions are given to the

contrary. Such instructions are provided by the program control statements, which al low the

programmer to alter the sequence, repeat sections, suspend operations, or bring the program to

a complete halt.

PROGRAM TERMINATION

A program arranged so that the last written statement is the final and only stopping place needs

no special terminating indication. The end statement automatically determines the final halt.

Most programs, however, contain loops and branches so that the last executed statement is often

somewhere in the middle of the written program. Frequently, there may be more than one stop­

ping point. Such terminations are indicated by the statement:

STOP

This causes a final, complete halt; no further computation is possible.

When a STOP is encountered during program execution at object time, the system signifies that

a stop has occurred by typing an exclamation mark (~) on the tape teleprinter.

The stop statement prevents further computation after it has been executed. There 1s a way,

however, to suspend operation for a time and then restart the program manually. This proce­

dure is frequently necessary when the operator must do such tasks as loading and unloading

tapes or card decks in the middle of a program. This kind of temporary halt is provided by the

fol lowing statement:

PAUSE

22

This brings the program to a halt, but the operator may restart it at any time by pressing the

CONTINUE key on the computer console.

BRANCHES AND LOOPS

The GO TO Statement

There are various ways in which program flow may be directed. As shown schematically in

Figure 6, a program may be a straight-line sequence (1), or it may branch to an entirely dif­

ferent sequence {2), return to an earlier point {3), or skip to a later point (4).

-- l 3

2 --

- J 4
-,,

l

Figure 6 Schematic Representation of Program Branching

All of these branches can be performed in several ways, the simpliest of which is by using the

statement:

GOTO N

where N is a statement number used in the program. The use of this statement is described in

the following example, which also illustrates the construction of a loop, the name given to

program branches of the type shown in Figure 6, No. 3.

23

Integer Summation

In the example below, the sum of successive integers is accumulated by repeated addition. The

main computation is provided by the three-instruction loop beginning with statement 2. The

statements preceding this loop provide the starting conditions; this is called the initialization.

The partial sum is set to zero, and the first integer is given the value of one. The loop then

proceeds to add the integer value to the partial sum, increment the integer, and repeat the

operation.

(.
I

I

2· I

SUM OF FIRST N INTEGERS BY ITERATION
KSUM=O
INUM=l
KSUM=INUM+KSUM
INUM=INUM+l
GO TO 2

Figure 7 Integer Summation

Limits and Decisions - The IF Statement

The program shown in the preceding example performs the required computation, but there is

one flaw: the loop is endless. To get out of the loop, the user must know when to stop the

iteration and what to do afterwards.

The IF statement fulfi I ls both requirements. It has the fol lowing form:

IF (E)K, L,M

where E is any variable name, arithmetic expression, or arithmetic statement, and K, L, and

Mare statement numbers. The statement is interpreted in this way:

if the value of E is less than 0, GO TO statement K
value of E is equal to 0, GO TO statement L
value of E is greater than 0, GO TO statement M

Thus, the IF statement makes the decision of when to stop by evaluating an expression, and

also provides the program branch choices which depend on the results of the evaluation.

24

C; SUM OF THE FIRST 50 INTEGERS
KSUM=O
INUM=l

2; KSUM=INUM+KSUM
INUM=INUM+l
IF (INUM-50) 2,2,3

3; STOP

Figure 8 Use of IF Statement in Integer Summation Problem

In this example, the initialization and main loop are the same as for the preceding example

except that the GO TO statement of the earlier program has been replaced by an IF statement.

This statement says: If the value of the variable INUM is less than or equal to 50 (which is

the same as saying that if the value of the expression INUM-50 is less than or equal to zero),

go to statement 2 and continue the computation. If the value is greater than 50, stop.

A further improvement on the example above can be made if the feature of substatements with­

in an expression is incorporated (refer to pages 13 and 14).

C· I

I

2· I

I

3· I

Figure 9

SUM OF THE FIRST 50 INTEGERS
KSUM=O
INUM=50
KSUM=INUM+KSUM
IF(INUM=INUM-l) 3,3, 2
STOP

IF Statement with Substatement Feature

In this example, the sum is formed by counting down, but the same results are achieved. The

initialization is changed so that INUM starts with the value of 50 instead of 0, and the state­

ment INUM=INUM+ 1 is no longer required.

A loop may also be used to compute a series of values. The following example is a program to

generate terms in the Fibonacci series of integers, in which each succeeding member of the

series is the sum of the two members preceding it:

25

C; FIBONACCI SERIES, 100 TERMS
DIMENSION FIB{lOO)
FIB(l)=l

; FIB(2)=1
K=3

5; FIB(K)=FIB(K-l)+FIB(K-2)
6; K=K+l

IF (K-100) 5,5, 10
10; STOP

Figure 10 Fibonacci Series

In this program, the initialization includes a dimension statement which reserves space in stor­

age, and two statements which provide the starting values necessary to generate the series.

Each time a term is computed, the subscript is indexed so that each succeeding term is stored

in the next location in the table. As soon as the subscript reaches 100, the calculation stops.

DO Loops

Iterative procedures such as the loop in the example above are so common that a more cone ise

way of presenting them is warranted. In this example, three statements are required to initia-

1 ize the subscript, increment it, and test for termination. The following type of statement com­

bines al I these functions:

DO n l=Kl, K2, K3

Here, n is a statement number, I is a simple integer variable, and Kl, K2, and K3 are index­

ing parameters which provide, in order, the initial value of I, the final (terminating) value of

I, and the indexing increment of I. If K3 is omitted from the statement, it is assumed equal to

one. Statement n must be a CONTINUE statement.

C; FIBONACCI SERIES, 100 TERMS
DIMENSION FIB(lOO)
FI B(l)=F I B(2)= 1
DO 5 K=3, 100
F IB(K}=FI B(K-1)+Fl B(K-2)

5; CONTINUE
STOP

Figure 11 Fibonacci Series Calculation Programmed As a DO Loop

26

In words, the DO statement says: Do al I statements through statement 5 for K=3, when state­

ment 5 is encountered. Perform the following test: If K+l is less than or equal to 100, set

K=K+ l and continue on in the program by executing the first statement after the DO. If the

K+l is greater than l 00, the next sequential statement following statement 5 is executed. In

this example this is a STOP.

DO loops are commonly used in computations with subscripted variables. In these cases, it is

usually necessary to perform loops within loops. Such nesting of loops is permitted in FORTRAN.

DO 10 l=l, 20
X(l)=O
DO 5 J=2, 40, 2
X (I)=X (l)+(B(J)-Z(J))** 2

5; CONTINUE
A(l)=X(l)**2+C(I)

l O; CONTINUE

Figure 12 Nested DO Loops

In the previous example, sequential elements in the X array are formed by summing the square

of the difference of every second element in the Band Z arrays. Then the A array is formed

by summing every element in a C array and the square of every element in the X array. The

algebraic expression for the loop is as follows:

where

2
A. =X. - C. for i l, 2, 3, ••. 20

I I I

x =
i

fO~ (b.-z.)2 for j = 2, 4, 6, ... 40
j=2 J J

The following general rules about DO loops must be observed.

l . DO loops may be nested, but they may not overlap. Nested loops may

end on the same statement, but an inner loop may not extend beyond the

last statement of an outer loop. Figure 13 schematically illustrates permit­

ted and forbidden arrangements.

27

2. If the user transfers into the range of a DO, the variable I is not initia­

lized as specified in the DO statement. Transferring into the range of a DO

is allowed as long as:

a. Incrementing and testing start with the present value of I.

b. Control was originally transferred out of the DO other than

by completing it.

3. A DO loop must end on a CONTINUE statement.

------1

~~ ---2

---3

[[[~
a. b.

Figure 13 DO Loops

Those in a are permitted; loops 5, 6, and 7 end on the same state­

ment. The arrangements in b are not permitted; loop 3 ends on a

statement outside the range of loop l.

Illegal DO Nesting

DOlOl=l,20
DO 20J=l,100,2
SUM=(X(l)-Y(l))**2

l O; CONTINUE
Z(J)=SUM+A(J)

20; CONTINUE

28

4

7

Figure 14 Program Branching in DO Loops

Branches 2, 5, 6, and 7 are permitted; branches 1, 3, and 4 are not.

The CONTINUE Statement

Since the DO loop may contain alternate courses of action, programmers frequently wish to

make the last executable statement of a loop, a test to determine which of the alternatives

should be taken next. However, Rule 3 above forbids a DO loop to end on an IF or GO TO;

so a special statement is provided which is not an executable statement itself, but provides a

termination for such a DO loop. The statement is:

CONTINUE

DO loops must be terminated ona CONTINUE statement.

Computed GO TO

The GO TO statement described in the section on branches and loops is unconditional and pro­

vides no alternatives. The IF statement offers a maximum of three branch points. One way of

providing a greater number of alternatives is by using the COMPUTED GO TO, which has the

following form:

GO TO (Kl, K2, K3, ... Kn), J

29

where the K's are statement numbers, and J is a simple integer, which takes on values of l,

2,3, ... n according to the results of some previous computation. For example:

IVAR= 14*J/2+K

GO TO (5, 7, 5, 7, 5, 7, 10), IVAR

causes a branch to statement 5 when IVAR=l,3, or 5, to statement 7 when IVAR=2,4, or 6, and

to statement l 0 when IVAR=7.

When IVAR is less than one or greater than seven, the next sequential statement after the GO

TO is executed.

END Statement

END occurs alone and indicates the physical end of the program to FORTRAN. It must be fol­

lowed by CR-LF.

30

CHAPTER 7

INPUT AND OUTPUT

AVAILABLE DEVICES

So far, we have assumed that al I information (programs, data, and subprograms) was in memory,

without regard to how it got there. Programs, of course, are read in by a special loader, but

the programmer is responsible for the input of data and the output of results by including these

operations in his program.

For any input-output procedure, several items must be specified:

l . In which direction is the data going? In FORTRAN terms, the data com­

ing in is being read into memory; information going out is being written on

whatever medium is specified.

2. Which device is being used? Information can be transferred between

core and either of two different input-output devices; each 1/0 operation

must specify which device is involved.

3. Where in core memory is the data coming from or going to? The amount

of data and its location in the computer storage must be specified.

4. In what mode is the data represented? In addition to floating- and

fixed-point modes for numeric data, there is the Hollerith mode for trans­

ferring alphanumeric or text information.

5. What is the arrangement of the data? In FORTRAN terms, the format

of incoming or outgoing data is specified.

For every data transfer between core memory and an external device, two statements are re­

quired to provide all of the information listed above. The first three items are specified by

the input-output statement and the last two items are determined by the FORMAT statement.

31

PDP-5 FORTRAN provides ways of communicating with either the on-line tape teleprinter or

DECtape. Information is transferred between these devices and core memory in the 8-bit ASCII

code {Appendix D).

The tape teleprinter can be used to transfer information to the computer from paper tape through

the paper tape reader or manually from the operator by typing on the keyboard.

Information can be transferred from the computer to the tape teleprinter. A printed copy, with

or without a punched paper tape, can be obtained.

When transferring information with DECtape, the same ASCII code format is used.

INPUT-OUTPUT STATEMENTS

The input-output statements control this transfer of information. As illustrated in Figure 15,

1/0 statements consist of three basic items of information: The device being accessed and the

direction of transfer, the number of the FORMAT statement that controls the arrangement of

data, and the I ist of names of the variables whose values are to be output or changed by new

inputs.

ACCEPT N, V(I), V{l+l), V{l+2) l Lust of variable names

Statement number of FORMAT statement

Device selection and direction of transfer

Figure 15 Input-Output Statement

Device Selection and Direction of Transfer

ACCEPT and TYPE transfer information between the tape teleprinter and the PDP-5.

ACCEPT causes information to be accepted into core memory from either the paper tape reader

or the keyboard depending on which is activated.

32

TYPE causes information to be transferred from core memory to the printer or the printer and

paper tape punch depending on whether the punch is activated or not.

READ causes information to be read into core memory from DECtape.

WRITE causes information to be written on DECtape from core memory.

Statement Number of Format Statement

Fol lowing the instruction that selects the device and direction of transfer is the statement num­

ber of the FORMAT statement that controls the arrangement of the information being transferred.

Example:

ACCEPT 10, A
10; FORMAT(E)

Every 1/0 statement must have a reference to a FORMAT statement.

List

The next item of specification in the 1/0 statement is the names of the variables or array ele­

ments that are involved in the transfer. These names are arranged in a sequential I ist in the

order that their values are transferred. There is no restriction on the modes of the variables in

the list or the number of names that can appear in a list as long as they are compatible with

the corresponding FORMAT statement.

TYPE 10, A, I, B, C(l+K), N(J+L)
10; FORMAT (E, 1,E,/)

A=A+(C(J)**2-C(N)**2)

TYPE 10, A, JIB, C(N)

Figure 16 A List Example

33

If the list contains more names than there are elements in the FORMAT statement, when the

elements are exhausted the FORMAT statement is reinitialized, and the first element in the

FORMAT statement corresponds to the next name in the I ist.

For instance in the preceding example when the value of the variable B is typed in the E format,

the control character slash V) causes a carriage-return I ine-feed to occur. Then the FORMAT

statement is reinitialized, and the array element C(l+K) is typed in the E format and the array

element N(J+L) in the I format.

Correspondingly, the list does not have to exhaust the elements of a FORMAT statement. If

there are more names in the I ist than there are in the FORMAT statement, the program completes

the 1/0 operation and proceeds to the next sequential FORTRAN statement. If this next state­

ment is another 1/0 statement that references a previously unexhausted FORMAT statement,

that FORMAT statement is reinitialized. In other words, FORMAT statements are reinitialized

when they are first referenced or when all of their elements are exhausted.

FORMAT SPECIFICATIONS STATEMENT

As a I ready mentioned in the previous description of input-output statements, the FORMAT state­

ment controls the arrangement and mode of the information being transferred. The values of

the names appearing in the list of the 1/0 statement are transferred in the mode specified by

the corresponding element in the FORMAT statement. These controlling elements consist of

the characters E, I, slash V) and quote (11). The set of elements must be enclosed in parentheses

and separated by commas.

Example: FORMAT (E, I,/, 11 HOLLERITH 11)

Control Elements E and I

The control elements E and I are used for defining the mode of the data being transferred. When

a variable is transferred in the E format, it is stored or output in floating point. If the variable

is transferred in the I format, it is stored or output in fixed point. Mode conversion on input

or output can be accomplished because the elements in the FORMAT statement define the mode

of the data and the mode of the variable is overriden.

34

Example:

TYPE l 0, A
l O; FORMAT (I)

The variable A is typed as an integer and the fractional part of A is truncated. For instance,

if A has a value of 14. 96, only the integer part, 14, wou Id be typed. If A has an absolute

value of less than one, zero would be typed.

Input data words consist of a sign, the decimal value, an exponent value if the data is floating

point, and a field terminating character such as space. Any character that is not a number,

decimal point, sign, or E can be used to terminate a field except the character rub out. When

typing data, any number of spaces or other non-numeric characters can be typed before the sign

or decimal value is typed to make the data sheet more readable. If a mistake is made when

typing data words, the last word or partial word can be erased from core memory by typing the

character rub out.

These input words can be transferred into core memory from either the paper tape reader, the

keyboard or DECtape. They can be entered in either fixed- or floating-point modes for inte-

gers or decimal fractions. The mode in which they will be stored is controlled by the correspond­

ing element in the FORMAT statement.

Integer Values - Fixed Point - FORMAT (I)

An integer data field consists of a sign (minus or space) and up to four decimal characters.

Some examples of integer values are as fol lows:

Typed Numbers

-2001
-40
-0040

16
-2047

35

Values Accepted

-2001
-0040
-0040

0016
-2047

Decimal Fraction Values - Floating Point - FORMAT (E)

A floating-point input word consists of a sign*, the data value of up to seven decimal char­

acters, an E if an exponent is to be included, the sign of an exponent, and the exponent

which is the power of ten that the data word is multiplied by.

Example:

dddd.dddEnn

The d's represent characters in the data word and n represents the power of ten of the

exponent. Either the sign, the decimal point, or the entire exponent part can be omitted. If

the sign is left out, the number is assumed to be positive; if the decimal point is left out, it is

assumed to appear after the rightmost decimal character. If the exponent is omitted, the power

of ten is taken as zero.

Examples of floating-point values are as follows:

Typed Numbers

16

.16E02

1600.E-02

Values Accepted

2
0.16x 10

2
0.16x 10

2
0.16x 10

Correcting Typing Errors

If a mistake is made when typing data words into a FORTRAN program, the mistake can be cor­

rected by canceling or erasing the data word before typing the terminating character and then

retyping the data word that is in error.

To cancel or erase a word, type a rub out character.

When this character is detected during the acceptance.of a data word and before the termination

character has been transmitted, the data word appearing before the character rub out is erased

from memory. Operations on the names in the list do not advance to the next sequential name

until a complete data word and the terminating character have been received.

*Plus sign can be represented by a plus or space character. Minus is represented by a minus
character. If a sign character is absent from the data word, the data is stored as positive.

36

Output

Data Word Output - Floating and Fixed Modes - FORMAT (E) and FORMAT (I)

Integer values are always printed as the sign and a maximum of four characters with spaces re­

placing leading zeros. Floating-point values are printed in a floating-point format which con­

sists of sign, leading zero, decimal point, seven decimal characters, the character E, the sign

of the exponent (minus or plus), and an exponent value of two characters.

Examples:

Integer Values

-1043

-0016

+0016

Output Format

-1043

16

+ 16

Floating-point values are printed as per example

where

SO . dddddddsxx

S is the sign, minus sign, or space
dare the seven decimal digits of the data word
s is the sign of the exponent value
xx is the exponent value

Output Format

-0.8388608E+07

0.1192092E-06

Decimal Value

-8,388,608.0

+.0000001192092

OTHER FORMAT CONTROL ELEMENTS

In most cases when data is to be presented it must be labeled and arranged properly on a data

sheet. In order that this can be accomplished with FORTRAN, a provision has been made so

that text information and spacing can be typed out along with the data words. These features

are provided by the special FORMAT control elements quote (11) and slash (/).

37

Quote (11)

When text information is contained as part of a FORMAT and this information is enclosed in

quotes, it is output to the specified device as it appears in the statement. This output occurs

when a TYPE or WRITE statement references a FORMAT statement containing text and al I other

elements of that FORMAT statement previous to the text have been used.

TYPE l 0
10; FORMAT(/, 11 THIS IS HOLLERITH 11 ,/)

TYPE l 00, AMIN, AMAX
l 00; FORMAT (/, 11 MIN IMUM=11 IE,/, 11 MAXIMUM=11 IE,/)

; TYPE 210
21 O; FORMAT (/,/, 11 CUMULATIVE DISTRIBUTION",/,/'

11 INCREMENTS FREQUENCY",/)
DO 220 K= l I l 00
TYPE 250, K, VALU(K), VALU(K+l), COUNT(K)

220; CONTINUE
250; FORMAT(l, 11 11 ,E, 11 11 ,E, 11 11 ,E,/)

Figure 17 Examples of Quote and Slash

All legal Teletype characters can be contained within quotes and are output as text (Appendix D).

Before text is output, the elements of the FORMAT statement that appear in front of the Hollerith

information must have been used.

Example:

l TYPE 10, VAR,SD
10; FORMAT (E,E,E, 11 VARIANCE AND STANDARD DEVIATION 11 ,/)

In this example, the test is not typed because one of the E elements was not used.

38

Slash V)

The slash character is used for typing a carriage return and I ine feed for advancing the paper

of the tape teleprinter. A carriage-return line-feed will be typed for every slash that appears

in the statement.

Example:

TYPE 10, A, B
1 O; FORMAT V,/,/, E,/,/, E,/,/)

Three carriage-return line-feeds will be typed before the value of A; then two carriage-return

line-feeds will be typed before and after the value of Bis typed.

The input subroutine of the object time system ignores al I non-numeric characters except as data

word delimiters so that input data can be labeled and spaced by intermixing the appropriate

text and carriage-return line-feeds with the data.

39

APPENDIX A

DIAGNOSTICS

COMPILE TIME DIAGNOSTICS

Diagnostic procedures are provided in the compiler to assist the programmer in program compil­

ation. When the compiler detects errors in a FORTRAN source program, it prints out error mes­

sages on the on-I ine tape-teleprinter. These messages indicate the source of the error and direct

the programmer in the efforts to correct the error.

To speed up the compiler process, the compiler prints out only an error code. The programmer

then looks up the error message corresponding to the code in Table A-1 and takes the appropri­

ate corrective measures.

Dynamic Error Correction

A user may choose to compile in either of two modes: the normal mode or the dynamic correc­

tion mode. The latter allows the user to correct a statement, which the compiler has determined

contains a source-language error, by re-entering the offending I ine via the tape teleprinter with­

out having to physically correct the symbolic tape and recompile. This feature is not implemented

in the high-speed reader version of the compiler since the higher speed of the device makes

recompi lotion easy.

To choose the dynamic correction mode:

1. Load the starting address of the compiler (0200) in the console switches

and press LOAD ADDRESS.

2. Set all console switches on (7777), press START (setting the switches to

7777 before pressing START is the only departure from normal operation).

If an error is detected, the diagnostic prints out in the normal fashion and the computer halts.

40

To correct the statement:

1 . Turn READER switch to FREE.

2. With the READER switch stil I in the FREE position, press CONTINUE.

3. Type the new I ine in its entirety,* obeying al I rules for the source lan­

guage and terminating the statement with a carriage-return line-feed.

4. Turn reader on and compilation will continue.

To leave the dynamic correction mode, restart the compiler in the normal fashion.

xx xx

DIAGNOSTICS

Format of Diagnostics

xx xx

l LThe identifying condition code

The number of statements since the appearance of a numbered
statement (octal value).

The statement number of the last numbered statement

Example:

1 O; A=I (J+l)
B=A*(B+SINF(THTA)

During compilation of the above statements the following error code would be printed,

10 11 11

*If the statement was numbered, do not re-enter the statement number unless it was in error.

41

indicating mat a statement which occurs eleven statements octal (8 decimal) after the appear­

ance of statement number 10 is in error. The message corresponding to code 11 shows that the

number of left and right parentheses in the statement is not equal. The statement is examined

and corrected; then compilation is resumed.

Diagnostic
Code

00

01

02

03

04

05

06

07

10

11

12

13

14

15

TABLE A-1

Conditions

Fixed- and floating-point modes have been mixed in an expres­
sion.

Two operators appear adjacent to each other (i.e. a variable
has been left out of an expression) e.g. A=C + * D.

Compiler error - Temporary diagnostic until compiler has been
completely field tested. Contact Applied Programming if this
occurs.

A comma has been used illegally in an arithmetic statement.

Too many operators appear in a single statement.

A function argument is in fixed mode. e.g. SINF(INC).

A variable subscript is in floating point mode. This could also
indicate that an operator is missing. e.g. A+B(C+l .) for
A=B*(C+l.).

More than 64 different variable names have been used in the
program.

Program too large - program and data requirements have over­
lapped.

There is an unequal number of right and left parentheses in a
statement.

An ii legal character was detected and ignored.

The compiler is unable to recognize or process this statement
due to some error in its format.

Not used at th is time.

A subscripted variable is defined before the appearance of a
dimension statement or a subscripted variable does not appear
in a dimension statement. It might also indicate that an oper­
ator is missing in a fixed-mode expression. e.g. A=l(J-K)
for A=l*(J-K).

42

Diagnostic
Code

16

17

20

21

22

23

TABLE A-1 (continued)

Conditions

Statement too long - more than 128 characters have been counted
not including spaces except in format statements where al I legal
TTY characters are counted.

A floating-point operand should have been fixed-point, e.g.
DO 10 I= 1 I 7. 3.

A statement number that has been referenced does not appear
in the program. See the paragraph on the next page.

There are more than 40 numbered statements in the source program.

A statement cannot be compiled because it has too many incom­
pleted operations, e.g. C=A+(C+(D+(E+

Too many statements. have been referenced before they are de­
fined.

If a statement number is referenced but does not appear in the source program, the diagnostic

code will be printed as follows:

xxxx 77 20

where the number usually reserved for the last numbered statement (xxxx) is replaced by the

missing statement number.

e.g. GOTOlOO

The diagnostic would appear as fol lows where statement 100 is never defined.

100 77 20

OBJECT SYSTEM DIAGNOSTICS

Not all errors are detected by the compiler. Some errors can only be detected by the object

time system. Also, there are some conditions which indicate errors on the part of the compiler

and/or object system. When such an error occurs during running of a program, the computer

types out an error message containing an error number. The computer then halts. If the CON­

TINUE toggle is pressed, the computer takes the action listed in the following table.

43

Error
Number

11

12

13

14

15

16

20

21

22

76

77

TABLE A-2

Possible Cause

Attempt to divide by zero

Floating point exponent on input
greater than plus or minus 2047

Illegal operation code (either
compiler error, or data stored
over program, or transfer to data
section}

Transfer to core location zero or
one

Non-format statement used for a
format

Illegal format statement consti­
tuent

Attempt to take square root of a
negative number

Attempt to raise a negative num­
ber to a power

Attempt to find the logarithm of
zero or a negative number

One of the stacks used by the
system has underflowed. (i.e.,
more data has been requested
than was placed on the stack)

One of the stacks has overflowed.
(i.e., more data placed on it
than there is storage in the ma­
chine.}

44

Action Taken

Quotient set to plus or minus largest
number representable in computer;
then continue executing instructions.

System executes next instruction.

System executes next instruction.

No recovery possible.

System executes next instruction.

System examines next constituent.

System takes square root of abso­
lute value.

System raises absolute value to the
power specified.

System attempts to find logarithm of
absolute value. Note that log (abso­
lute value (O)) still gives an error halt.

No recovery possible. Since this may
be a system error, communicate pro­
gram and circumstances to DEC.

Same as Error 76

APPENDIX B

TAPE TELEPRINTER OPERATING PROCEDURES

1 . Symbolic tape preparation using the ASR-33.

a. Turn the LINE switch to OFF-LINE to disconnect the ASR-33 from

the PDP-5.

b. Turn the POWER switch on.

c. Check quantity and positioning of typewriter paper and paper tape

for the punch.

d. Press the PUNCH ON button.

e. Generate leader.*

f. Type the symbolic program.

g. Generate trailer.*

h. Verify tape as fol lows {suggested procedure):

1 . Turn READER switch to FREE.

2. Place tape in reader.

3. Press PUNCH OFF button {so the tape read is not dup-

1 icated).

4. Turn READER switch to START.

5. The entire content of the tape is printed for visual verific­

ation and the reader stops automatica 11 y at the end of the tape.

*To generate leader/trailer {200 code) press the character keys P, SHIFT, CTRL and REPT
simultaneously.

45

2. For computer-aided symbolic tape preparation and editing, refer to PDP-5

symbolic tape editing program (DEC 5-37-S).

3. Manual symbolic tape editing using the ASR-33.

a. An incorrect character might be typed while preparing the sym­

bolic tape. Use the fol lowing procedures to correct the tape: (the

error is detected N characters after typing the incorrect character)

press the PUNCH B.SP. button N+l times, press rubout N+l times,

and continue.

b. Characters, words, or statements can be inserted or deleted after

the entire symbolic tape has been prepared. Use the fol lowing pro­

cedures to accomplish such changes.

l . Insertions - Duplicate the tape up to the point at which

it is desired to make an insertion (by turning the punch on,

placing the tape in the reader, starting the reader, and

stopping the reader with the READER switch using the print­

out as a guide). Next, type the insertion. Continue by

pressing the READER switch to start and dupl icote the re­

mainder of the tape.

2. Deletions - Duplicate the tape up to the point at which

it is desired to make a deletion (see Insertions). Next, turn

the punch off; start the reader; and using the printout of the

information to be deleted as a guide, stop the reader. Con­

tinue by turning the punch on and starting the reader to dup-

1 icate the remainder of the tape.

46

APPENDIX C

OPERATING PROCEDURES FOR RIM

AND BIN PAPER TAPE LOADERS

READ-IN-MODE LOADER (RIM)

1. The RIM Loader is a minimum-length, basic paper tape loader for the PDP-8.

It is initially stored in memory by way of the CONTROL console switches. Once

stored, it is considered to be a permenent occupant of locations 7756 through

7777 (absolute octal addresses) and care should be taken to keep it from being

destroyed.

2. A paper tape to be read in by the RIM Loader must be in RIM format:

Tape Channel

8 7 6 5 4 s 3 2

1 0 0 0 0 0 0 0 Leader/Trailer code
0 1 Al A2 Absolute address to
0 0 A3 A4 contain next 4 digits
0 0 Xl X2 Contents of previous
0 0 X3 X4 4 digit address
0 1 Al A2
0 0 A3 A4 Address
0 0 Xl X2
0 0 X3 X4 Contents

(ETC.) (ETC.)
0 0 0 0 0 0 Leader/Trailer code

47

3. The complete PDP-8 RIM Loader for the ASR-33 (SA=7756) is as fol lows:

Abs.
Addr.

7756,
7757,
7760
7761,
7762,
7763,
7764,
7765,
7766,
7767,
7770,
7771,
7772,
7773,
7774,
7775,
7776,
7777,

Octal
Contents ~

6032 beg,
6031
5357
6036
7106
7006
7510
5357
7006
6031
5367
6034
7420
3776
3376
5356
0 temp,
jmp start of bin loader

Instruction i z Comments

kcc /clear AC and flag
ksf /skip if flag= l
jmp . -1 /looking for char
krb /read buffer
c II r+ l
rtl /ch 8 in ACO
spa /checking for leader
jmp beg +1 /found leader
rtl /OK, ch7 in link
ksf
jmp . -1
krs /read, do not clear
snl /checking for address
dca i temp /store contents
dca temp /store address
jmp beg /next word
0 /temp storage
0

4. Placing the RIM Loader in memory by way of the CONTROL console switches

is accomplished as fol lows:

a. Set 7756 in the switch register (SR)

b. Press LOAD ADDRESS

c. Set the first instruction in the SR (6032)

d. Press DEPOSIT

e. Set the next instruction in the SR

f. Press DEPOSIT

g. Repeat steps e. and f. unti I a II 16 instructions have been de­

posited.

48

5. To load a tape in RIM format, place the tape in the reader, set the SR to

7756, press LOAD ADDRESS, press START, and start reader.

6. The complete PDP-8 RIM Loader for the high-speed reader 750 (SA=7755)

is as fol lows:

Abs. Octal
Addr. Contents Tag Instruction Comments

7755, 6014 beg, rfc /fetch char
7756, 6011 rsf /skip when flag = l
7757, 5356 jmp . -1
7760, 7200 cla
7761, 6012 rrb /OR buffer & AC
7762, 7106 ell

rtl
7763, 7006 rtl /ch 8 in AC0
7764, 7510 spa /check for leader
7765, 5355 jmp beg /found leader
7766, 7006 rtl /OK, ch 7 in I ink
7767, 6014 rf c
7770, 6011 rsf
7771, 5370 jmp . -1
7772, 6012 rrb /OR buffer & AC
7773, 7420 snl /check for addr
7774, 3777 dca i tern /store contents
7775, 3377 dca tern /store addr
7776, 5355 jmp beg /get next word
7777, 0 tern, 0 /temp storage

BINARY LOADER (BIN)

l. The BIN Loader is used to read in the machine language tapes. A binary­

formatted tape is about one half the length of a comparable RIM formatted

tape. It can, therefore, be read in about twice as fast as a RIM tape and is,

for this reason, the more desirable format to use with the l 0 cps ASR-33

Reader.

2. To load a tape in BIN format, place the tape in the reader, set the SR

to 7777; press LOAD ADDRESS, press START, and start reader.

49

3. After a Bl N has been read in, one of the two fol lowing conditions exist:

a. No checksum error: halt with AC=O.

b. Checksum error: halt with AC= (computer checksum) - (tape

checksum). If a checksum error exists, a character was misread

from the binary tape or is mispunched on the tape. The operator

should reload the binary tape; and if the same checksum error ap­

pears in the AC indicator after readin, the binary tape was mis­

punched and a new copy should be obtained. If a different check­

sum error appears after readin, the appropriate maintenance pro­

cedure should be fol lowed.

50

APPENDIX D

ASR-33 8-BIT CHARACTER SET

Character 8-Bit Code
Character 8-Bit Code

(in Octal) (in Octal)

A 301 241
B 302 II 242
c 303 # 243
D 304 $ 244
E 305 % 245
F 306 & 246
G 307 247
H 310 (250
I 311) 251
J 312 * 252
K 313 + 253
L 314 254
M 315 255
N 316 256
0 317 I 257
p 320 272
Q 321 273
R 322 < 274
s 323 = 275
T 324 > 276
u 325 ? 277
v 326 @ 300
w 327 [333
x 330 I 334
y 331] 335
z 332 t 336

0 260 ~ 337
1 261 Leader/Trailer 200*
2 262 Line-Feed 212*
3 263 Carriage-Return 215
4 264 Space 240
5 265 Rub-out 377*
6 266 Blank 000*
7 267
8 270 *Ignored by the operating system
9 271

51

APPENDIX E

OPERATING PROCEDURES

COMPILER

1. Load the compiler system with binary format loader (see Appendix C).

2. Put the starting address of the compiler (0200 octal) into the switch reg­

ister and press LOAD ADDRESS.

3. Turn the tape teleprinter on and on line with the punch on.

4. Place the source language tape in the reader and turn on the reader.

5. Press START.

6. At the end of compilation, the computer will halt with the run light off.

7. To compile additional programs, place the source language tape in the

reader, turn the reader on, and press CONTINUE.

OBJECT TIME SYSTEM

1. Load the FORTRAN object time system using the binary loader.

2. Place the compiler output (interpretive code) in the ASR-33. Turn the

ASR-33 on I ine. Turn on the reader.

3. Start at 200 (i.e. load the switch register with 200, press LOAD AD­

DRESS, and press START.

4. The object time system will now load the interpretive code. When the

tape has been read, the loader halts with the checksum difference in the AC.

A zero AC indicates a correct load.

52

5. Turn off the reader.

6. Press CONTINUE. The program wil I now be executed.

7. At the end of the program or at a stop statement execution, an exc lama­

tion mark (!) is typed out.

8. To restart the program without reloading, start at 201.

53

APPENDIX F

FORMAT OF COMPILER OUTPUT

INTERPRETIVE CODE

1 . 200 codes (leader, ignored by loader)

2. Data blocks, each as fol lows:

a. origin (2 frames, first has bit 7 punched)

b. data words (2 frames/word)

3. Forward referencing table - first frame has bits 7 and 8 (only) punched

4. Checksum

a. first has bits 6, 7, and 8 (only) punched

b. next two frames are checksum

5. 200 codes (trailer, ignored by loader which stops after checksum)

6. Error comments, if any, in ASCII

54

mnmnoma

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

5234 PRINTED IN U.S.A. 50·1/65

