
Digital Equipment Corporation
Maynard, Massachusetts

PDP-8
Programmer's Reference Manual

4K FORTRAN

4K FORTRAN
PROGRAMMER'S
REFERENCE MANUAL

DEC-08-AFCO-D

For additional copies specify Order No. DEC-08-AFCO-D to Program Library,

Digital Equipment Corporation, tv\aynard, tv\ass. Price: $2. 00

DIGITAL EQUIPMENT CORPORATION o MAYNARD, MASSACHUSETTS

1st Edition October 1966
2nd Edition Revised May 1967
3rd Edition Revised October 1967
4th Edition Revised May 1968
5th Edition January 1969
6th Edition May 1969
7th Edition March 1970

Your attention is invited to the last two pages of this manual.
The Reader's Comments page, when fi lied in and returned,
is beneficial to both you and DEC. All comments received
are considered when documenting subsequent manuals, and
when assistance is required, a knowledgeable DEC repre­
sentative wi II contact you. The Software Information page
offers you a means of keeping up-to-date with DEC's software.

Copyright © 1966, 1967, 1968, 1969, 1970 by Digital Equipment Corporation

The material in this manual is for informa­
tion purposes and is subject to change with­
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

ii

PDP
FOCAL
COMPUTER LAB

PREFACE

The program discussed in this manual, though written for use on the

Programmed Data Processor-8 computer, can also be used without change

on Digital 1s Programmed Data Processor-5. This compatibility between

the I ibraries of the two computers results in three major advantages:

l. The PDP-8 comes to the user complete with an extensive selec­
tion of system programs and routines making the ful I data processing ca­
pability of the new computer immediately available to each user, elimi­
nating many of the common initial programming delays.

2. The PDP-8 programming system takes advantage of the many
man-years of field testing by PDP-5 users.

3. Each computer can take immediate advantage of the continuing
program deve I opments for the other.

CONTENTS

CHAPTER 1
INTRODUCTION

CHAPTER 2
THE FORTRAN LANGUAGE

Statements

Program Format

Types of Statements

Comments.

Continuation

The Character Set

Arithmetic Expressions

Constants

Variables

Operators

CHAPTER 3
FORTRAN ARITHMETIC

Use of Parentheses

Functions

The Arithmetic Statement

CHAPTER 4
NUMBER REPRESENTATION AND VARIABLE TYPES

Integers and Floating Point Numbers

Fixed- and Floating-Point Representation

Types of Variables

Arrays

Subscripts

CHAPTER 5
SUBSCRIPTED VARIABLES

The Dimension Statement

iii

2-l

2-l

2-2

2-2

2-3

2-4

3-1

3-2

3-2

3-3

3-4

3-4

4-1

4-1

4-2

5-1

5-1

5-1

Program Termination

END Statement

Branches and Loops

CONTENTS (Cont)

CHAPTER 6
PROGRAM CONTROL

The GO TO Statement

Integer Summation

DO Loops

II legal DO Nesting

The CONTINUE Statement

Computed GO TO

CHAPTER 7
INPUT AND OUTPUT

6-1

6-1

6-2

6-2

6-2

6-5

6-7

6-7

6-8

Available Devices 7-1

Input and Output Statements 7-2

Device Selection and Direction of Transfer 7-2

Statement Number of Format Statements 7-3

List 7-3

Format Specifications Statement 7-4

Control Elements E and I 7-4

Input 7-5

Integer Values - Fixed Point - FORMAT (I) 7-5

Decimal Fraction Values - Floating Point - FORMAT (E) 7-5

Correcting Typing Errors 7-6

Output 7-6

Data Word Output - Floating and Fixed Modes -
FORlv\AT (E) and FORMAT (I) 7-6

Other Format Control Elements 7-7

Quote (11
) (Hollerith Output) 7-7

Slash (/) 7-8

CHAPTER 8
FORTRAN WITH DECTAPE OPTION

FORTRAN Compiler with DECtape 1/0 Option 8-1

iv

2

3

4

5

6

7

8

9

10

11

12

CONTENTS (Cont)

Use of Symbolprint with FORTRAN

FORTRAN Operating System with DECtape I/O Option

DECtape FORTRAN Statements and Operation

CHAPTER 9
PDP-5/8 FORTRAN SY MBO LPRI NT

APPENDIX A
OPERATING PROCEDURES

FOR RIM AND BIN PAPER TAPE LOADERS

APPENDIX B
PREPARATION OF SYMBOLIC (SOURCE) TAPE

APPENDIX C
FORTRAN OPERATING PROCEDURES

APPENDIX D
FORMAT OF COMPILER OUTPUT

APPENDIX E
ASR-33 8-BIT CHARACTER SET

APPENDIX F
PDP-8 FOR TRAN SOURCE PROGRAM RESTRICTIONS

A Fortran Program

Example of Comments

The Continued Statement

Number Representation

Indexing Statements

APPENDIX G
DIAGNOSTICS

i LLUSTRA TIO NS

Schematic Representation of Program Branching

Integer Summation

Use of IF Statement in Integer Summation Problem

IF Statement with Substatement Feature

Fibonacci Series

Fibonacci Series Calculation Programmed As a DO Loop

Nested DO Loops

v

Page

8-1

8-1

8-2

2-1

2-3

2-3

4-2

5-3

6-2

6-3

6-3

6-4

6-4

6-5

6-6

13

14

15

16

17

ILLUSTRATIONS (Cont)

DO Loops

Program Branching in DO Loops

Input-Output Statement

A List Example

Examples of Quote and Slash

vi

Page

6-6

6-7

7-2

7-3

7-7

CHAPTER l

INTRODUCTION

Using a digital computer to solve a problem generally involves the fol lowing series of steps:

a. Determining the correct procedures to be used, including mathematical formulas, the
handiing of data, the presentation of resuits, etc.

b. Arranging the procedures in the proper order.

c. Determining the sequence of computer instructions that wil I perform the operations
specified.

d. Converting the sequence of instructions into binary notations in a physical medium
capable of being entered into the computer for execution.

Much of the progress and development in programming has been made in discovering ways to

make the computer perform more of the steps listed above, and leaving the programmer free to concen­

trate more on the problem itself. At first, programmers entered instructions manually from the computer

console or prepared the binary program for direct input. Later, a symbolic notation was developed for

a computer instruction set, and programs cal led assemblers were written that could interpret a tape or

card deck punched with this notation. These assemblers translate each symbolic instruction into a ma­

chine operation and assemble an executable program. Thus, an assembler can accept input from step c

above.

An assembler requires that the programmer be famiiiar with the particular instruction set of

the computer being used. To solve the same on another computer would usually require complete re­

programming.

To free the programmer from the need of learning a given computer's language before using

the machine to solve problems, compilers were developed which accept input more closely related to

the problem and convert the input into an executable program. FORTRAN is such a compiler. It ac­

cepts input in the form of statements which resemble mathematical formulas (hence its name, which

stands for FORmula TRANslation) and compiles sequences of instructions necessary to perform the pro­

cedures specified. Non-mathematical operations are specified by English words. In terms of the steps

given above, a FORTRAN source program is a product of step b; the computer performs steps c and d.

A FORTRAN compiler can thus be written for any digital computer to convert a source pro­

gram into an executable program. Extensive reprogramming is made unnecessary, since the same source

program can be compiled on different machines with only minor changes.

The PDP-8 FORTRAN System consists of two subsystems: the compiler and the object time

system.

1-1

The FORTRAN Compiler contains the instructions the computer requires to perform the clerical

work of translating the FORTRAN version of the problem statement into an object program in the lan­

guage of the object system.

When the compiler detects errors in statement format or usage, it prints out diagnostic mes­

sages (see Appendix G). The programmer or operator should then take the appropriate corrective

measures and recompile the program. Note, however, that the compiler cannot detect all such errors,

and also that the diagnostic message may not accurately indicate the cause of the error but rather the

symptom.

After compilation, the object time system is used to execute the program. This system con­

tains the interpreter, the arithmetic function subroutines, and the input/output packages. When program

execution is required, the object time system, object program, and the data it will work with are loaded

into the computer for solution of the problem.

This is a one-pass compiler, which means the source language tape must be read only once.

The compiler generates one tape which contains coding in a form that is executable under control of the

object ti me system.

To use the system, it is only necessary to load the compiler. The compiler then processes the

source language tape and generates the object program tape. This object program tape can be run at

any time simply by loading the object system, which, in turn, loads and executes the object program.

1-2

CHAPTER 2

THE FORTRAN LANGUAGE

STATEMENTS

Figurn 1 is cm example of a FORTRAN program, consisting of a title, the body of the program,

and the end statement.

The first line of the program is the title, which may be anything the programmer writes to

identify the program. It is not incorporated into the final executable program.

The body of the program is a series of statements, each of which specifies a sequence of

mathematical operations, controls the flow of the program, or performs other tasks related to the proper

working of the program.

The end statement must be physically the last statement of every FORTRAN program. Its

function is to indicate to the compiler that nothing more connected with the preceding program is to

follow.

C; THIS PROGRAM CALCULATES FACTORIALS
5; TYPE 200

l O; ACCEPT 300 Ix
FACT=Y=l.
IF (X)5,32,30

30; IF (X-Y) 41,32,33
32; TYPE 400,X,FACT

GO TO 10
3·3; FACT=FACT*(Y=Y+l .)

GO TO 30
41; PAUSE

GO TO 5
200; FORMAT (/, "PLEASE TYPE A POSITIVE NUMBER", /)
300; FORMAT (E)
400; FORMAT (/,E, "FACTORIAL IS",E)

END

Figure l A FORTRAN Program

PROGRAM FORMAT

Each line contains two fields: the first, which begins at the margin, is an identification

field; the second contains the statement proper (see Figure l).

2-1

The identification field extends from the left-hand margin up to and including a semicolon

character. This field may be left blank, or it may contain one of the fol lowing types of identification:

a. The first digit of a statement number. This number, which may be any positive integer
from l to 2047 inclusive, identifies the statement on that line for reference by other parts of the pro­
gram. Statement numbers are used for program control or to assist the programmer in identifying seg­
ments of his program. Up to 40 statements can have statement numbers.

b. The letter C. This identifies the remainder of the line as a comment (see Section
Comments).

The semicolon 0) is necessary only if the statement is numbered or is a comment, (i.e., if

the identification field is blank, the semicolon may be omitted).

The statement field begins immediately after the semicolon and extends through the next car­

riage return. Although the continuation character (1) al lows a single statement to extend over two or

more lines, no more than one statement can be written on one line. Note that a comment cannot be

continued by use of the continuation character (1).

TYPES OF STATEMENTS

FORTRAN statements are of several types with differing functions distinguished as fol lows:

a. Arithmetic statements resemble algebraic formulas. They specify the mathematical
operations to be performed.

b. Program control statements direct the flow of the program.

c. Specification statements al locate data storage, determine variable and data types, and
specify input/ output formats •

d • Input/ output statements control the transfer of information into and out of the computer.

COMMENTS

Although a FORTRAN program using English words and mathematical symbols can be read

and understood more easily than a symbolic language program, it is helpful to provide comments freely

throughout the program to explain the procedures being used. Such comments, identified by a C in the

first position of every I ine intended as a comment, are not interpreted by the compiler and have no

effect on the executab I e program •

2-2

C; CALCULATE PERCENTAGE OF CORRECT RESPONSES
C; PERCENTAGE= -1 IF THERE ARE NO ITEMS
C; IN CATEGORY

DO 47 1=1, 57
DO 48 J=l, 6
IF (ITMS (J)) 46, 46, 51

46; PRCN (I)= -1 .0

Figure 2 Example of Comments

CONTINUATION

Frequently, a statement may be too long to fit on one line. If the character single quote(')

appears as the last character of a line before the carriage return, the next !ine is treated as a contin-

uation of the statement on the I ine above (see Figure 3). A statement may be continued on as many

lines as necessary to complete it, but the maximum number of characters in the statement may not

exceed 128.

l · I

,
2· ,
,

3· ,
4;
,

5· ,

FORMAT
IF (N R (l) -1) 2 I 2 I 3
AP=-14.73
GOT06
IF (NR (l)-2)4, 4, 5
AP=-44. 19
GOTO 6
AP=SH (2)*3.0-AG(4)/'
AG (l)+SQTF (AG (14))

Figure 3 The Continued Statement

2-3

THE CHARACTER SET

The characters which are meaningful in FORTRAN belong to the ASCII set I isted in Appendix D.

Of these, the acceptable characters are: all letters and numbers - A through Z, 0 through 9; control

characters - semicolon (; }, carriage return (CR), line feed (LF), single quote ('), double quote (11
),

left parenthesis (, right parenthesis), period (.), comma (,);and the operators - plus (+), minus (-),

slash (/), asterisk (*), equa I sign (=). Al I other characters are ignored by the compiler except in

Hollerith information of FORMAT statements where al I Teletype characters are legal. The character

space has no grammatical function except in FORMAT statements, but may be used freely to make a

program easily readable.

2-4

CHAPTER 3

FORTRAN ARITHMETIC

ARITHMETIC EXPRESSIONS

An algebraic formula such as the fol lowing

[5a + 4b (x
2

- xo)] /2a sin 9

represents a relationship between literal symbols (a, b, x, x
0

, 9) and constants (5, 4, 2) indicated by

mathematical functions and arithmetic signs (+, -, /, multiplication, exponentiation, sine). This same

formula can be written as a FORTRAN arithmetic expression with very I ittle change in appearance:

(5.*A +4.*B*(X**2 - XZRO))/ (2.*A*SINF(THTA))

The construction of both expressions is the same; the differences are notational.

The elements of an arithmetic expression are of four types: constants, variables, operators,

and functions. An expression may consist of a single constant, a single variable, or a string of con­

stants, variables, and functions connected by operators.

The following examples demonstrate the properties of arithmetic expressions. Each expression

is shown with its corresponding algebraic form.

Algebraic Expression

2
ax +bx+ c

2
4n r
-3-

3x n- 2 (x-+y)
4.25

a ·sin 9 + 2a • cos (9 -45)

2 -IX
-3-

FORTRAN Expression

(A**2 - B**2) I (A+B)** 2

4 .*Pl *(R **2)/3.

A *SI NF (THT A)+2 .*A *COSF (THT A-0. 7853982)

2 .* SQTF(X)/3.

3-1

Constants

Constants are explicit numerical quantities. They may be integers, decimals, or numbers in

decimal exponent form. Some examples follow:

integers

5 -70 2047

decimals

18.75 3.14159 -0.00025

decimal exponent

l .66E-16
-16

(meaning l .66 x l 0)

These different forms of numerical representation are described in detail in Chapter 4.

Variables

A variable is a literal symbol whose value is not implicit; its value may be changed during

the execution of the program.. /l .. variable name is composed cf one er mere characters accoiding to

these three rules:

a. The only characters which may be used in a variable name are A through Zand 0
through 9.

b. The first character must be alphabetic (i.e., A through Z).

c. Only the first four characters of any variable name are meaningfu I. Al I characters after
the fourth are ignored by the compiler.

Some examples of acceptable variable names are:

A

K

THTA

XZRO

LST8

P51

DC8B

XSUM

EPSL

The name EX IT represents one variable, not two. (Remember that blank spaces have no function in

FORTRAN.) Thus, EX IT, EXIT, or even EXIT, are identical names as far as the compiler is concerned

because they al I reference the same variable.

The name EPSILON would be interpreted by the compiler as EPSI, since only the first four

characters are meaningful. For example, the two names XSUMl and XSUM2 would be considered

identical.

3-2

Some incorrect variable names are:

9SRT

G0(5

CSH$

(first character not alphabetic)

(illegal character included)

(illegal character included)

Operators

The operators are symbols representing the common arithmetic operations. The important rule

about operators in the FORTRAN arithmetic expressions is this: Every operation must be explicitly rep-

resented by an operator. In particular, the multiplication sign must never be left out. A symbol for

exponentiation is also provided since superscript notation is not avai I able. To i II ustrate the rule, here

are the FORTRAN and algebraic forms given in the section on arithmetic expressions:

(5.*A +4.*B*(X**2-XZRO)) I (2.*A*SINF (THTA))

[5a + 4b (X2 - x0)] /2a si n9

Normally, a FORTRAN expression is evaluated from the left to right just as an algebraic

formula is. There are exceptions to this rule. Certain operations are always performed before others

regardless of order. This priority of evaluation is as follows:

l st. Expressions ()
within parentheses

2nd. Unary minus

3rd. Exponentiation **

4th. Multiplication *
Division I

5th. Addition +
Subtraction

The term binding strength is sometimes used to refer to the relative position of an operator

in a table such as the one above, which is in the order of descending binding strength. Thus, expo­

nentiation has a greater binding strength than addition, and multiplication and division have equal

binding strength.

The unary minus is simply the operator which indicates a quantity whose value is less than

zero, such as -53, -GAMME, -K. It refers only to the operand which it precedes as opposed to a

binary operator, which refers to operands on either side of itself, as in the expression a-b. A unary

minus is recognized by the fact that it is preceded by another operator, not by an operand. For

example:

A+ B**-2/C-D

The first minus (indicating a negative exponent) is unary; the second (indicating a subtraction) is binary.

3-3

The left-to-right rule can now be stated more precisely as fol lows:

A sequence of operations of equal binding strength is evaluated from left to right.

To change the order of evaluation, parentheses are required. Thus, the expression A-B*C is

evaluated as A-(B*C), not (A-B)*C. The example below gives a few more illustrations of the left-to­

right rule.

The expression is evaluated as

(A/B)*C
(A/B)/C
(A **B)**C

An easy way to check the proper pairing of parentheses is by counting out, i I lustrated in the

following example:

(Z+AM*(ZM+l .}}/((X**2+C**2)*P)
l 2 10 12 l 0

The procedure is this: Reading the expression from left to right, assign the number l to the first left

parenthesis (if you encounter a right parenthesis first, the expression is already wrong!) Increase the

count by one each time a left parenthesis is read, and decrease the count by one when a right paren­

thesis is used. When the expression has been completely scanned, the count should be zero. If it be­

comes less than zero during the scanning, there are too many right parentheses. If it is greater than

zero at the end of an expression, then the pairing is incorrect.

Use of Parentheses

Note the use of parentheses in the fol lowing example below. They are used to enclose the

subscript of the dimensioned variable D, to specify the order of operations of the expression involving

A, B, C, and to enclose the argument of the function.

D(I+ J) = (A+B)**C+SINF (X)

In algebra there are severa I devices, such as square brackets ([]) , rococo brackets ({}) ,

etc., for distinguishing between levels when subexpressions are nested. In FORTRAN, only the curved

parentheses are avaiiabie, so the programmer must be especiai iy carefui to make certain that paren­

theses are properly paired. In a given expression, the number of left parentheses must be equal to the

number of right parentheses.

Functions

Functions are used in FORTRAN just as they are in ordinary mathematics -- as variables in

an arithmetic expression.

3-4

The function name represents a special subprogram which performs the calculation necessary

to evaluate the function; the result is used in the computation of the expression in which the function

occurs.

PDP-5/8 FORTRAN provides several mathematical functions: square root, sine, cosine, arc

tangent, exponentiation, and natural logarithm.

The argument of a function can be a simple or subscripted variable or an expression. The

argument must be in floating point. FORTRAN recognizes a term as a function when the term is a pre­

defined symbol ending in F fol lowed by an argument enclosed in parentheses (if the F is missing from the

term, the symbol is treated as a subscripted variable). The argument of a function can consist of an­

other function or group of functions. For exampie, the expression:

LOGF(SINF(X/2)/COSF(X/2)) is equivalent to log*tan ; •

The PDP-5/8 FORTRAN library currently consists of the following functions:

Function Name

SQTF (X)

SINF (X)

COSF (X)

ATNF (X)

EXPF (X)

LOGF (X)

Meaning

square root of X

sine of X, where Xis expressed in radians

cosine of X, where Xis expressed in radians

arc tangent X, where the angle is given in
radians

exponential of X

logarithm of X

THE ARITHMETIC ST ATEt'v~ENT

The arithmetic statement relates a variable V to an arithmetic expression Eby means of the

equal sign (=). Thus:

V=E

Such a statement looks I ike a mathematical equation, but it is treated differently. The equal sign is

interpreted in a special sense; it does not represent a relation between left and right members, but it

specifies an operation to be performed.

NOTE

In an arithmetic statement, the value of the expression to
the right of the equal sign replaces the value of the variable
on the left.

3-5

Th is means that the value of the left-hand variable wi 11 be different after the execution of

an arithmetic statement. A few illustrations of the arithmetic statement are given below.

a. VMAX =VO+ AXT

b. T = 2. *Pl*SQTF(l ./G)

c. PI = 3. 14159

d. THT A= OMGA + ALPH*T**2/2.

e. MIN= MINO

f. INDX = INDX + 2

With the interpretation of the equal sign defined previously, example f becomes meaningful

as an arithmetic statement. If, for example, the value of INDX is 40 before the statement is executed,

its value wi 11 be 42 after execution.

Perhaps another way of looking at the equal sign illustrates its use and interpretation more

fully. In arithmetic expressions, a binary operator requires an operand on its left and right. The equal

sign of an arithmetic statement is considered to be a binary operator also. This interpretation is dem­

onstrated in the fol lowing revised table of operators:

Operator Use lnterpretati on

(Unary) -A negate A

** A**B raise A to the Bth power

* A*B multiply A by B

I A/B divide A by B

+ A+B add B to A

(Binary) A-B subtract B from A

A=B replace A with B

Treated this way, the equal sign is considered to have the lowest binding strength of al I the operators.

This means that the expression on the right is evaluated before the operation indicated by= is performed.

The most important result of treating the equal sign as a binary operator is that it may be used

more than once in an arithmetic statement. Consider the following:

CPRM = (CKL - CKG) I (CPG = P*(O + 1.))

3-6

The i nterna ! arithmetic statement, CPG = P *(O + 1 •), is set off from the rest of the statement

by parentheses. The complete statement is a concise way of expressing the fol lowing common type of

mathematical procedure:

Let c' =

where c = p*(q+l)
pg

The stating of a relation followed by the conditions for evaluating any of the variables can

be expressed in a single arithmetic statement in FORTRAN.

Another important result of treating the equal sign as an operator is that the operations may

be performed in sequence. Just as there may be a series of additions, A+B-+C, so may there be a series

of replacements, A=B=C=D. Note that since the operand to the left of an equals sign must be a variable,

only the rightmost operand, represented by Din the example, may be an arithmetic expression. The

statement is interpreted as follows: "Let the value of the expression D replace the value of the variable

C, which then replaces the value of the variable B" and so on. In other words, the value of the right­

most expression is given to each of the variables in the string to the left. A common use for this con­

struction is in setting up initial values:

XZRO=SZRO=AZRO=O

T =Tl= T2= T3=60

P=FP=4. *ATM-AK

Only single level replacements wi 11 compile correctly in this manner. For example: ·Statements of the

type A(l) = A(2) = R(l) = 0.123 are not allowed and will not compile properly.

Another useful result in treating the equal sign as an operator is that the value of an expres­

sion on the right of an equal sign is converted to the mode of the left-hand variable before storage, if

necessary.

Example: A=M

K=B

3-7

CHAPTER 4

NUMBER REPRESENTATION AND VARIABLE TYPES

INTEGERS AND FLOATING-POINT NUMBERS

In mathematics there are many ways to categorize numbers. They may be positive or negative,

rational or irrational, whole numbers or fractions. In FORTRAN, the treatment of numbers is separated

into integers and decimals, distinguished as fol lows:

a. Integers are positive or negative numbers written without a decimai point. I hese num­
bers are integers: 9, 17, 147, 1024, 2047. The last number, 2047, is the largest quantity that can be
expressed as a FORTRAN integer. For fractional quantities and for numbers larger than ±2047 (which
is 211 -1), the second type of number is required.

When using integer arithmetic, any fractional results are truncated. For example, the
expression M=N/3 with N=8 would result in M=2. This applies only to division because multiplication,
addition and subtraction yield integral results.

b. Floating point numbers have two forms. They are simple decimals, such as 0.0025, .4,
57., 2.71828; or numbers in decimal exponent form. Numbers in decimal exponent form are simple
decimals multiplied by a power of 10. Numbers in decimal exponent form must have an explicit decimal
point.

Exampies:

Mathematical Form

6.023 x 10
23

1 .66 x 10-16

72. x 10
12

FORTRAN Form

6.023E23

l.66E-l 6

72.E12

In general, a floating point number in decimal exponent form is NE±K, where N may be
an integer or simple decimal, and K is an integer from 0 to 99, inclusive. The construction NE±K is
used to represent the number Nx 10K. The fol lowing are floating point representations of the number 19:

19.0
• 19E2
1. 9E+l
1900.E-2
190.0E-1

FIXED- AND FLOATING-POINT REPRESENTATION

The difference between integers and real numbers in FORTRAN is the way in which each is

represented in core memory.

A FORTRAN integer is stored in one 12-bit computer word. The sign of the number is kept the

in high-order bit and the magnitude in the remaining 11 bits. This representation, shown schematically

in Figure 4 is cal led fixed point, because the decimal point is always considered to be to the right of the

4-1

rightmost digit. A FORTRAN integer may not exceed the range of -2047 through +2047. All integers

greater than ±2-47 are taken modulo 2048 (that is 2049 is taken as 0001, 4099 is taken as 3).

The floating point format consists of two parts: an exponent (or characteristic) and a mantissa.

The mantissa is a decimal fraction with the decimal point assumed to be to the left of the leftmost digit.

The mantissa is always normalized; that is, it is stored with leading zeros eliminated so that the leftmost

bit is always significant. The exponent represents the power of two by which the mantissa is multiplied

to obtain the true value of the number for use in computation. The exponent and mantissa each are

stored in 2s complement form.

SIGN

' I I MAGNITUDE

0 1 a. FORTRAN INTEGER t1

SIGN OF EXPONENT

' 1 I !
SIGN OF 0
MANTISSA----, 1

2 L l

EXPONENT
11

MANTISSA

MANTISSA

b.FLOATING POINT

Figure 4 Number Representation

TYPES OF VARIABLES

Since variables represent numeric quantities, the type of representation must be specified in

some manner. In normal programming, variable types are specified using the FORTRAN conventions

as fol lows:

a. Integer variable names must begin with one of the letters I, J, K, L, M, or N.

b. Floating point variables are designated by names beginning with any other ietter.

These are integer variable names: INDX, KDTA, M359. These are floating-point variable

names: ZXRO, CONT, FICA.

4-2

Integers cannot appear in floating point expressions except as exponents or subscripts. Some

examples of illegal and legal expressions are as follows:

Expression Legal Mode ---
A(l}*B(J}**2 Yes Floating
I(M)*K(N) Yes Fixed
4.* J No
I+D No
16.* B Yes Floating
(K +16)*3 Yes Fixed
A**(I+2}/B Yes Floating
8*A No

4-3

CHAPTER 5

SUBSCRIPTED VARIABLES

ARRAYS

An array is a grouping of data. A column of figures, the elements of a vector, a I ist, and a

matrix are all arrays. In mathematics, an element of an array is referenced by means of a symbol de­

noting the array and subscripts identifying the position of the element. For example, the sixth element

in a :ector v is designated v
6

•

In FORTRAN, array elements are similarly identified. The array is given a name subject to

the same rules as the names of variables, described in Chapters 3 and 4. The subscript which identifies

an element of the array is enclosed in parentheses. The element referred to in the preceding paragraph

would have the fol lowing form in FORTRAN:

V(6)

Such a name designates a subscripted variable, which may be used in computation just like a

simple variable. The array name determines the mode, integer, or floating point of al I the elements in

the array.

The example below gives a few illustrations of the use of subscripted variables.

a. X(I+L)=X(I)+ALPH(l)*P(I)

b. X(I+3)=X(I+2)+X(I+l)/2.

c. C(J)=A(I*J+3)

d. A=B(6)

Subscripts

As the example obove illustrates, subscripts may be quite diverse in form. In fact, a subscript

may be any acceptable FORTRAN arithmetic expression as long as it is integer-valued. This means that

there may not be any floating-point quantities in a subscript expression.

The Dimension Statement

Array names must be identified as such to the FORTRAN compiler. Two items of information

must be provided in any program using arrays:

a. Which are the subscripted variables?

b. What is the maximum dimension of the subscript? (When an array is used, a certain
amount of storage space must be set aside for its elements; hence this requirement.)

5-1

Al I the above information is provided by the fol lowing specification statement:

DIMENSION A(20), 8(15}

where A and Bare array names, and the integer constants 20 and 15 are the maximum dimensions of

each subscript.

The rules governing the use of array names and the dimension statement are as follows:

Al I array names must appear in a dimension statement. DIMENSION may be used as many

times as desired and may appear anywhere in the FORTRAN program, provided that the DIMENSION

of an array appears before any statement which references the array.

DIMENSION LIST(30), MAT(lOO}, REGR(20)

In the statement in the example above, the names LIST and MAT designate integer arrays;

that is, each element is an integer. The third name, REGR, designates a floating-point array. The

first array is a I ist of 30 elements maximum, so that 30 words of storage are set aside for its use. The

third array is floating-point and there are 20 elements in it. Since this array is floating, each element

requires 3 words of storage so that 60 words ore set aside for the array.

DIMENSION 8(30), 1(15)

This version of the PDP-5/8 FORTRAN does not hove the facility for double subscripted vari­

ables. To accomplish double subscripting, the programmer has to include indexing statements in the

source program as illustrated in Figure 5.

In this example the matrices are stored column wise in memory, that is, sequential locations

in memory are used as fol lows:

Element

all
021
031
041
051
a61

012
022

056
a66

Relative Position
in Memory (INDX)

1
2
3
4
5
6

7
8

35
36

If referencing element a56 in the array, M=S, N=6 (I would be =6 for a 6 by 6 array.), and

INDX=M+l*(N-1)=5+6*5=35. If referencing element a22, INDX=2+6*1=8.

5-2

C; MATRIX MULTIPLY
DIMENSION A(36), B(36), C(36)
ACCEPT 1, I

l ; FORMAT (I)
DO 10 M=l, I
DO 10 N=l, I
INDX=M+l*(N-1)
ACCEPT 2, A(INDX)

2; FORMAT (E)
10; CONTINUE

TYPE 15
15; FORMAT (/,/,/)

DO 20 M=1, I
DO 20 N=l, I
INDX=M+I*(N-1)
ACCEPT 2, B(INDX)
C(INDX)=O

20; CONTINUE
DO 30 M=l, I
DO 30 N=l, I
DO 30 K=l, I
IC=N+I *(M-1)
IA=K +I *(M-1)
IB=N+I *(K-1)
C (IC)=C (IC)+A(IA)*B(IB)

30; CONTINUE
TYPE 15
DO 40 M=l, I
TYPE 21
DO 40 N=l, I
I NDX=N+I *(M-1)
TYPE 2, C(INDX)

40; CONTINUE
21; FORMAT (/)

TYPE 15
END

Figure 5 Indexing Statements

5-3

CHAPTER 6

PROGRAM CONTROL

In this chapter, the FORTRAN statements which have been described as isolated elements

are discussed in their proper context -- in program sequences. It is obvious that FORTRAN statements

are executed in the order in which they are written unless instructions are given to the contrary. Such

instructions are provided by the program control statements, which allow the programmer to alter the

sequence, repeat sections, suspend operations, or bring the program to a complete ha It.

PROGRAM TERMINATION

A program arranged so that the last written statement is the final and only stopping place

needs no special terminating indication. The end statement automatically determines the final halt.

Most programs, however, contain loops and branches so that the last executed statement is often some­

where in the middle of the written program. Frequently, there may be more than one stopping point.

Such terminations are indicated by the statement:

STOP

This causes a final, complete halt; no further computation is possible; although the program may be

completely restarted from the beginning.

When a STOP is encountered during program execution at object time, the system signifies

that a stop has occurred by outputting an exclamation point(!) to the Teletype or high speed punch,

whichever is being used as the output device.

The stop statement prevents further computation after it has been executed. There is a way,

however, to suspend operation for a time and then restart the program manua I ly. Th is procedure is

frequently necessary when the operator must do such tasks as loading and unloading tapes or card decks

in the middle of a program. This kind of temporary halt is provided by the fol lowing statement:

PAUSE

This brings the program to a halt, but the operator may restart it at any time by pressing the CONTINUE

key on the computer console.

END Statement

END occurs alone on a line and indicates the physical end of the program to the FORTRAN

compiler. It must be followed by carriage return and line feed. Every program must contain an END

statement.

6-1

BRANCHES AND LOOPS

The GO TO Statement

There are various ways in which program flow may be directed. As shown schematically in

Figure 6, a program may be a straight-line sequence (1), or it may branch to an entirely different

sequence (2), return to an earlier point (3), or skip to a later point (4).

3

2

4

•

Figure 6 Schematic Representation of Program Branching

All of these branches can be performed in several ways, the simplest of which is by using the

statement:

GO TON

where N is a statement number used in the program. The use of this statement is described in the fol­

lowing example, which also illustrates the construction of a loop, the name given to program branches

of the type shown in Figure 6, No. 3.

Integer Summation

In the following example, the sum of successive integers is accumulated by repeated addition.

The main computation is provided by the three-instruction loop beginning with statement 2. The

6-2

statements preceding th is loop provide the starting conditions; th is is cal led the initialization. The

partial sum is set to zero, and the first integer is given the value of one. The loop then proceeds to

add the integer value to the partial sum, increment the integer, and repeat the operation.

C; SUM OF FIRST N INTEGERS BY ITERATION
KSUM=O
INUM=1

2; KSUM=INUM+KSUM
INUM=INUM+1
GO iO 2

Figure 7 Integer Summation

Limits and Decisions - The IF Statement

The program shown in the preceding example performs the required computation, but there is

one flaw: the loop is endless. To get out of the loop, the user must know when to stop the iteration

and what to do afterwards.

The IF statement fuifiiis both requirements. It has the following form:

IF (E)K, L,M

where E is any variable name, arithmetic express ion, or arithmetic statement, and K, L, and M are

statement numbers. The statement is interpreted in th is way:

if the value of E is less than 0, GO TO statement K
value of E is equal to 0, GO TO statement L
value of E is greater than 0, GO TO statement M

Thus, the IF statement makes the decision of when to stop by evaluating an expression, and also pro­

vides the program branch choices which depend on the results of the evaluation.

C; SUM OF THE FIRST 50 INTEGERS
KSUM=O
INUM=1

2; KSUM=INUM+KSUM
INUM=INUM+1
IF (INUM-50) 2,2,3

3; STOP

Figure 8 Use of IF Statement in Integer Summation Problem

6-3

In this example, the initialization and main loop are the same as for the preceding example

except that the GO TO statement of earlier program has been replaced by an IF statement. This state­

ment says: If the value of the variable INUM is less than or equal to 50 (which is the same as saying

that if the value of the expression INUM-50 is less than or equal to zero), go to statement 2 and con­

tinue the computation. If the value is greater than 50, stop.

A further improvement on the example above can be made if the feature of substatements

within an expression is incorporated (refer to pages 3-6 and 3-7).

C; SUM OF THE FIRST 50 INTEGERS
KSUM=O
INUM=50

2; KSUM =INUM +KSUM
IF(INUM=INUM-1) 3,3,2

3; STOP

Figure 9 IF Statement with Substatement Feature

In th is example, the sum is formed by counting down, but the same resu Its are achieved.

The initialization is changed so that !NU!v\. starts with the value of 50 instead of 0, and the statement

INUM=INUM+l is no longer required.

A loop may also be used to compute a series of values. The fol lowing example is a program

to generate terms in the Fibonacci series of integers, in which each succeeding member of the series

is the sum of the two members preceding it:

C; FIBONACCI SERIES, 100 TERMS
DIMENSION FIB(lOO)
FIB(l)=l
FIB(2)=1
K=3

5; FIB(K)= FIB(K-1)+ FIB(K-2)
6; K=K+1

IF (K-100) 5,5, 10
10; STOP

Figure 10 Fibonacci Series

In this program, the initialization includes a dimension statement which reserves space in storage, and

two statements which provide the starting values necessary to generate the series. Each time a term is

6-4

computed, the subscript is indexed so that each succeeding term is stored in the next location in the

table. As soon as the subscript reaches 100, the ca lcu lat ion stops.

DO Loops

Iterative procedures such as the loop in the example above are so common that a more con­

cise way of presenting them is warranted. In this example, three statements are required to initialize

the subscript, increment it, and test for termination. The following type of statement combines all

these functions:

DO n I =Kl , K2, K3

Here, n is a statement number, I is a simple (non-subscripted) integer variable, and Kl, K2, and K3

are simple integer variables or integer constants which provide, in order, the initial value to which

I set, the maximum value of I for which the loop will still be executed, and the amount by which I is

incremented at each return to the beginning of the loop. If K3 is omitted from the statement, it is as­

sumed equal to one. Statement n must be a CONTINUE statement.

Figure 11

C; FIBONACCI SERIES, 100 TERMS
DIMENSION FIB(lOO)
FIB(l) = l
FIB(2) = l
DO 5 K=3, 100
FIB(K)=FIB(K- l)+FIB(K-2)

5; CONTINUE
STOP

r-•I • r- • r I I ,• n I A r""-1"""'\. I rmonacct ~er1es \....a1cu1ar1on rrogrammea 1-\S a LIV Loop

In words, the DO statement says: Do all statements through statement 5 for K=3, when statement 5 is

encountered. Perform the following test: If K+ 1 is less than or equal to 100, set K=K+l and continue

on in the program by executing the first statement after the DO. If the K+ l is greater than l 00, the

next sequential statement following statement 5 is executed. In this example this is a STOP.

DO loops are commonly used in computations with subscripted variables. In these cases,

it is usually necessary to perform loops within loops. Such nesting of loops is permitted in FORTRAN.

6-5

DO 10 l=l ,20
X(I)=O
DO 5 J=2 ,40 ,2
X(I)=X(I)+(B(J)-Z(J)) **2

5; CONTINUE
A(I)=X(I)**2+C(I)

10; CONTINUE

Figure 12 Nested DO Loops

In the previous example, sequential elements in the X array are formed by summing the square

of the difference of every second element in the B and Z arrays. Then the A array is formed by sum­

ming every element in a C array and the square of every element in the X array. The algebraic ex­

pression for the loop is as follows:

where

2
A. = X. - C. for i l, 2, 3, .•• 20

I I I

40
x. =L

I • "'
1=L

"
2

(b.-z.) for j = 2, 4, 6, .•• 40
! !

The following general rules about DO loops must be observed.

a. DO loops may be nested, but they may not overlap. Nested loops may end on the same
statement, but an inner loop may not extend beyond the last statement of an outer loop. Figure 13
schematically illustrates permitted and forbidden arrangements.

1

~~ 2

3

IF,~
I I I L

a. b.

Figure 13 DO Loops

6-6

b. If the user transfers into the range of a DO, the variable I is not initialized as specified
in the DO statement. Transferring into the range of a DO is allowed as long as: .

(1) Incrementing and testing start with the present value of I.

(2) Controi was originai iy transferred out of the DO other than by compieting it.

c. A DO loop must end on a CONTINUE statement.

Those in a are permitted; loops 5, 6, and 7 end on the same statement. The arrangements
in b are not permitted; loop 3 ends on a statement outside the range of loop 1.

II legal DO Nesting

DO 10 I=l, 20
DO 20 J=l, 100 ,2
SUM=(X(I)-Y(I))**2

10; CONTINUE
I Z(J)=SUM+A(J)

20; CONTINUE

4

7

Figure 14 Program Branching in DO Loops

Branches 2, 5, 6, and 7 are permitted; branches l, 3, and 4 are not.

The CONTINUE Statement

Since the DO loop may contain alternate courses of action, programmers frequently wish to

make the last executable statement of a loop, a test to determine which of the alternatives should be

6-7

taken next. However, Rule 3 above forbids a DO loop to end on an IF or GO TO; so a special

statement is provided which is not an executable statement itself, but provides a termination for such

a DO loop. The statement is:

CONTINUE

DO loops must be terminated on a CONTINUE statement.

Computed GO TO

The GO TO statement described in the section on branches and loops is unconditional and

provides no alternatives. The IF statement offers a maximum of three branch points. One way of pro­

viding a greater number of alternatives is by using the COMPUTED GO TO, which has the following

form:

GO TO (Kl ,K2,K3, •.. Kn),J

where the K's are statement numbers, and J is a simple integer variable, which takes on values of l,

2, 3, ... n according to the results of some previous computation. For example,

IVAR = 14* J/2+K

GO TO (5: 7, 5: 7, 5, 7, 10); IVAR

causes a branch to statement 5 when IVAR= l ,3, or 5; to statement 7 when IVAR=2 ,4, or 6; and to state­

ment l 0 when IV AR=7.

When IVAR is less than one or greater than seven, the next sequent ia I statement after the

GO TO is executed.

6-8

CHAPTER 7

INPUT AND OUTPUT

AVAILABLE DEVICES

So far, we have assumed that al I information (programs, data, and subprograms) was in

memory, without regard to how it got there. Programs, of course, are read in by a special loader, but

the programmer is responsible for the input of data and the output of results by including these opera­

tions in his program.

For any input/output procedure, several items must be specified:

a. In which direction is the data going? In FORTRAN terms, the data coming in is being
read into memory; information going out is being written on whatever medium is specified.

b. Which device is being used? Information can be transferred between core and either
of two different input/output devices; each I/O operation must specify which device is involved.

c. Where in core memory is the data coming from or going to? The amount of data and
its location in the computer storage must be specified.

d. In what mode is the data represented? In addition to floating- and fixed-point modes
for numeric data, there is the Hollerith mode for transferring alphanumeric or text information.

e. What is the arrangement of the data? In FORTRAN terms, the format of incoming or
outgoing data is specified.

For every data transfer between core memory and an external device, two statements are re­

quired to provide all of the information listed above. The first three items are specified by the input/

output statement and the fast two items are determined by the FORMAT statement.

PDP-5/8 FORTRAN provides for communication of data to and from a program in the fol lowing

ways.

a. ASCII Coded Data - (Appendix E)

The Teletype can be used to transfer data to the program either via the keyboard on
which the user types the data, or from previously punched paper tape read via the teletype reader.

Data can be output from a program to the Teletype, producing a printed copy with or
without the corresponding punched paper tape (depending on whether or not the punch is turned on).

The high-speed reader and punch can also be used for data transfer via punched paper
tape. No printed copy is made when output is to the high-speed punch.

b. BINARY Coded Data

DECtape can also be used for data transfer in which case the data is stored as a core
image on tape in 128 word blocks of 12-bit binary words. Integers are read and written as single 12-
bit words, floating point numbers as three words. Alphanumeric information is transmitted as 8-b it
ASCII coded characters right justified in 12-bit words (one character per word).

7-1

INPUT/OUTPUT STATEMENTS

The input/output statements contro I th is transfer of information. As illustrated in Figure 15,

I/O statements consist of three basic items of information: the device being accessed and the direction

of transfer; the number of the FORMAT statement that controls the arrangement of data; and the list of

names of the variables whose values are to be output or changed by new inputs.

ACCEPT N ,_y(I), {(I+ 1) , V (I +2} .1

l l List of variable names

Statement number of FORMAT statement

Device selection and direction of transfer

Figure 15 Input/Output Statement

Device Selection and Direction of Transfer

ACCEPT and TYPE transfer information between the Teletype and the PDP-5/8.

ACCEPT causes information to be accepted into core memory from either the Teletype paper­

tape reader, the keyboard, or the photo-electric reader, depending on a switch option selected at run

time.

TYPE causes information to be transferred from core memory to the Teletype printer, or the

printer and paper tape punch depending on whether the punch is activated or not, or to the high-speed

punch depending on a switch option selected at run time.

details.)

READ causes information to be read into core memory from DECtape. (See Chapter 8 for

WRITE causes information to be written on DECtape from core memory.

;READ
;WRITE

UNIT I
UNIT I

BLOCK,
BLOCK,

FORMAT,
FORMAT,

LIST
LIST

where UNIT and BLOCK specify the DECtape unit to be used, and the position of information on tape

respectively (UNIT and BLOCK can be either integer constants or simple integer variables). The

balance of these statements is exactly analogous to the corresponding information in a TYPE statement.

FORMAT specifies the format statement, and LIST specifies the variables to be written from, or read

into core.

Bit 0 of the SWITCH REGISTER must be set to l (up) when compiling or running a program

containing READ and WRITE statements and 0 (down) otherwise. Failure to properly set the switch will

cause error diagnostics. (See Appendix G.)

7-2

Statement Number of Format Statement

Fol lowing the instruction that selects the device and direction of transfer is the statement

number of the FORMAT statement that controls the arrangement of the information being transferred.

Example:

ACCEPT 10, A
10; FORMAT (E)

Every I/O statement must have a reference to a FORMAT statement.

List

The final item of specification in the I/O statement is the LIST of variables. This is a

sequential list of the names of the variables and array elements whose values are to be transferred in

the order transfer. There is no restriction on the number of names which may appear in the I ist of an

I/O statement as long as the tota I statement length does not exceed 128 characters. The modes of the

variables named need not agree with the corresponding FORMAT statement, however, the modes spec i­

fied in the FORMAT statement take precedence.

Example:

TYPE 23, A, J, KAL, BOB

23; F 0 RMA T (I , E , I , E)

(where A=3. 2 J=27 KAL=302 and BOB=7. 58)

The decimal portion of A will be dropped and the 3 typed as an integer; the value of J will

be typed as a normalized number; KAL wi II be typed as an integer; and BOB as a normalized number.

The output will look I ike the following:

+ 3 +0.2700000E+02 + 302 +o.7580000E+ol

Array names included in 1/0 lists must be subscripted in one of the following forms: A ,
v

A , A or A where A is the array name, v is a simple integer variable and c is an integer constant.
v+c v-c c

TYPE 10,A,I,B,C(I+K),N(J+L)
10; FORMAT (E,I,E,/)

A=A+(C(J)**2-C(N)**2)

TY p E l 0, A I J I B , C(N)

Figure 16 A List Example

7-3

If the list contains more names than there are elements in the FORMAT statement, when the

elements are exhausted the FORMAT statement is reinitialized, and the first element in the FORMAT

statement corresponds to the next name in the I ist.

For instance in the preceding example when the value of the variable B is typed in the E for­

mat, the control character slash (/) causes a carriage-return I ine-feed to occur. Then the FORMAT

statement is reinitialized, and the array element C(I+K) is typed in the E format and the array element

N (J+ L) in the I format.

Correspondingly, the list does not have to exhaust the elements of a FORMAT statement. If

there are fewer names in the I ist than there are elements in the FORMAT statement, the program com­

pletes the I/O operation and proceeds to the next sequential FORTRAN statement. If this next state­

ment is another I/O statement that references a previously unexhausted FORMAT statement, that

FORMAT statement is reinitialized. In other words, FORMAT statements are reinitialized when they are

first referenced or when a 11 of their elements are exhausted.

FORMAT SPECIFICATIONS STATEMENT

As already mentioned in the previous description of input/output statements, the FORMAT

<:totPmPnt rontrol" thP orrnnoP.mP.nt oncl mnclP. nf thP. informotion heino transfP.rred. The values of the - · ~ · - · · · - · · · - - · · · · - · - · · · - -· · · -- · ·o - · · · - · · · -- · · -- · · · - -- - - · · · · - · · · - · · · · · · - · · - - · ·v - - - · - - - - - - · - - - - ·- - -

names appearing in the I ist of the I/O statement are transferred in the mode specified by the corre­

sponding element in the FORMAT statement. These controlling elements consist of the characters E, I,

slash(/) and quote("). The set of elements must be enclosed in parentheses and separated by commas.

Example:

FORMAT (E,I,/, "HOLLERITH")

Control Elements E and I

The control elements E and I are used for defining the mode of the data being transferred.

When a variable is transferred in the E format, it is stored or output in floating point. If the variable

is transferred in the I format, it is stored or output in fixed point. Mode conversion on input or output

can be accomplished because the elements in the FORMAT statement define the mode of the data and

the mode of the variable is overriden.

Example:

TYPE 10, A
10; FORMAT (I)

The variable A is typed as an integer and the fractional part of A is truncated. For instance,

if A has a value of 14.96, only the integer part, 14, would be typed. If A has an absolute value of

less than one, zero would be typed.

7-4

input data words consist of a sign, the decimal value, an exponent value if the data is

fioating point, and a fie id terminating character such as space. Any character that is not a number,

decimal point, sign, or E can be used to terminate a field except the character rubout. When typing

data, any number of spaces or other non-numeric characters can be typed before the sign or decimal

value is typed to make the data sheet more readable. If a mistake is made when typing data words,

the last word or partial word can be erased from core memory by typing the character rubout.

These input words can be transferred into core memory from either the Teletype paper-tape

reader: the keyboard 1 the photo-electric reader or DECtape. They can be entered in either fixed- or

floating-point modes for integers or decimal fractions. The mode in which they will be stored is con­

trolled by the corresponding element in the FORMAT statement.

Integer Values - Fixed Point - FORMAT (I)

An integer data field consists of a sign (minus or space) and up to four decimal characters.

Some examples of integer values are as follows:

Typed Numbers Values Accepted

-2001
-40
-0040

16
-2047

Decimal Fraction Values - Floating Point - FORMAT (E)

-2001
-0040
-0040
0016

-2047

A floating-point input 'Nord consists of a sign*, the data value of up to seven decimal char-

acters, an E if an exponent is to be included, the sign of an exponent, and the exponent which is the

power of ten that the data word is multiplied by.

Example:

dddd.dddEnn

The d 1s represent characters in the data word and n represents the power of ten of the ex··

ponent. Either the sign, the decimal point, or the entire exponent part can be omitted. If the sign is

left out, the number is assumed to be positive; if the decimal point is left out, it is assumed to appear

after the rightmost dee ima I character. If the exponent is omitted, the power of ten is taken as zero.

*Plus sign can be represented by a plus or space character. Minus is represented by a minus character.
If a sign character is absent from the data word, the data is stored as positive.

7-5

Examples of floating-point values are as follows:

Typed Numbers

16.

. l6E02

1600.E-02

Va I ues Accepted

0. 16 x 10
2

0. 16 x 10
2

0. 16 x 10
2

Correcting Typing Errors

If a mistake is made when typing data words into a FORTRAN program, the mistake can be

corrected by canceling or erasing the data word before typing the terminating character and then re­

typing the data word that is in error.

To ca nee I or erase a word, type a rubout character.

When this character is detected during the acceptance of a data word and before the ter­

mination character has been transmitted, the data word appearing before the character rubout is erased

from memory. Operations on the names in the list do not advance to the next sequential name until a

complete data word and the terminating character have been received.

Output

Data Word Output - Floating and Fixed Modes - FORMAT (E) and FORMAT (I)

Integer values are always printed as the sign and a maximum of four characters with spaces

replacing leading zeros. Floating-point values are printed in a floating-point format which consists

of sign, leading zero, decimal point, seven decimal characters, the character E, the sign of the ex­

ponent (minus or plus), and an exponent value of two characters.

Examples:

Integer Values

-1043
-0016
+0016

Output Format

-1043
16

+ 16

Floating-point values ore printed as per example

where

SO . dddddddsxxxx

S is the sign, minus sign, or space
d is the seven decimal digits of the data word
s is the sign of the exponent value
xxxx is the exponent value

7-6

Decimal Value

-8,388,608.0

+. 000000 l 192092

Output Format

-0.8388608E+o7

0. ll 92092E-06

OTHER FORMAT CONTROL ELEMENTS

In most cases when data is to be presented it must be labeled and arranged properly on a data

sheet. In order that this can be accomplished with FORTRAN, a provision has been made so that text

information and spacing can be typed out along with the data words. These features are provided by

the special FORlv\AT control elements quote (11
) and slash(/).

Quote (11
) (Hollerith Output)

When text information is contained as part of a FORMAT and this information is enclosed in

quotes, it is output to the specified device as it appears in the statement. This output occurs when a

TYPE or WRITE statement references a FORMAT statement containing text and all other elements of that

FORMAT statement previous to the text have been used.

TYPE 10
10; FORMAT (/, 11THIS IS HOLLERITH",/)

TYPE l 00, AMIN, AMAX

100; FORMAT(/, 11 MINIMUM:::: 11 ,E,/, 11 MAXIMUM:::: 11 ,E,/)

TYPE 210
210; FORMAT(/,/, 11 CUMULATIVE DISTRIBUTION 11

,/,/
1

II INCREMENTS FREQUENCY 11
,/)

DO 220 K::::l, 100
TYPE 250, K,VALU(L). VALU(K+l), COUNT(K)

200; CONTINUE
250; FORMAT (I, 11 11 ,E, 11 11 ,E, 11 11 ,E,/)

Figure 17 Examples of Quote and Slash

All legal Teletype characters can be contained within quotes and are output as text (Ap-

pendix D).

7-7

If a statement continues on another I ine the Hollerith field must be ended before typing the

continuation character ('); it may be re-opened on the next line. Before text is output, the elements

of the FORMAT statement that appear in front of the Hollerith information must have been used.

Example:

TYPE 10, VAR,SD
10; FORMAT (E,E,E, "VARIANCE AND STANDARD DEVIATION",/)

In th is example, the text is not typed because one of the E elements was not used.

If a FORMAT statement containing a Hollerith field is referenced by an ACCEPT statement,

the original text will be replaced character by character until the closing quote mark is encountered.

All ASCII characters except I ine-feed wi II be read. Because of the variable number of spaces following

numeric data printed in either E or I format, precautions must be taken when text and data are inter­

mixed in a punched tape which is to be read by a FORTRAN program. The technique has been used

successfu I ly, however.

If a FORMAT statement containing a Hollerith field is referenced by a READ statement, the

original text will be replaced character by character with 12-bit words from the DECtape. Because

the E and I format for DECtape 1/0 are fixed lengths, there is essentially no difficulty here. Note that

it is possible to read text from DECtape with an I format in order to manipulate the numeric equivalent

of the ASCII character.

Slash (/)

The slash character is used for typing a carriage return and line feed for advancing the paper

of the tape teleprinter. A carriage-return line-feed will be typed for every slash that appears in the

statement.

Example:

TYPE 10, A, B
10; FORMAT (/,/,/,E,/,/,E,/,/)

Three carriage-return line-feeds will be typed before the value of A; then two carriage-return line­

feeds w i II be typed before and after the va I ue of B is typed.

The input subroutine of the object time system ignores all non-numeric characters except as

data word delimiters so that input can be labeled and spaced in intermixing the appropriate text and

carriage-return I ine-feeds with the data.

7-8

CHAPTER 8

FORTRAN WITH DECTAPE OPTION

PDP-8 FORTRAN includes provisions for storage of data on DECtape. In this way FORTRAN

programs requiring large amounts of accessible data may be readily written to run on a 4K PDP-5 or

PDP-8.

The standard I ibrary version of the FORTRAN Compiler is written such that the type of DEC­

tape hardware to be used is irrelevant. The standard I ibrary version of the FORTRAN Operating System

is written to handle the TCOl DECtape Control with TU55 Tape Transports since these are more common.

There is, however, an overlay tape to convert the OP SYS to do the same operations using the 552 Con­

trol with 555 DECtape Transports. If this overlay is required the user should so specify when making

requests to the I ibrary.

FORTRAN Compiler with DECtape 1/0 Option

When the FORTRAN Compiler is read into core, it is equipped with a switch option govern­

ing the compilation of DECtape 1/0 statements (READ and WRITE). If the user wishes to compile a

program containing DECtape 1/0 statements, he must set Switch Register bit 0 to l (up) before starting

any compilation.

The Compiler is designed so that the space occupied by the processing routines for this option

becomes part of the input statement buffer if SR bit 0 is set to 0. This means that the DECtape 1/0

processing routines are destroyed if any compilation is done with bit 0 set to 0 and the Compiler must

be reloaded into core to regain the option.

Any program containing DECtape I/O statements must limit the length of the source state­

ments to l 00 characters per statement.

Use of Symbolprint with FORTRAN

Symbolprint destroys a portion of the DECtape Compiler in core. The compiler must be re­

loaded if it is to be used to accept a symbolic program containing DECtape 1/0 statements.

FORTRAN Operating System with DECtape 1/0 Option

When the FORTRAN Operating System is read into core, it is equipped with a switch option

governing the execution of DECtape 1/0 statements. If the user wishes to run a program containing

such statements he must set Switch Register bit 0 to l before running his program.

8-1

There is a further condition which must be observed, since DECtape 1/0 requires a

considerable amount of additional processing routines. Like the Compiler, the OP SYS destroys its

DECtape handling routines if it is used with SR bit 0 set to 0, thus gaining extra space. This requires,

however, that the OP SYS must be reloaded into core to regain the option.

DECtape FORTRAN Statements and Operation

When using DECtape, the FORTRAN Operating System contains a buffer area which is de­

fined as a page of memory reserved to handle transfers to and from a block of DECtape (128
10

data

words).

The DECtape routines transfer one ful I block from tape to one page of core (and vice versa),

therefore, even if the block contains only one data word, the whole block wi 11 be read into the OP SYS

buffer, overlaying whatever had been there.

To store variables or arrays of data on DECtape requires two steps:

a. From the locations assigned by the OP SYS to the variables or al lotted to the arrays by
a DIME NS ION statement, the programmer must collect the data and put it in the OP SYS buffer. This
is done with pseudo WRITE statements (in a DO loop in the case of arrays). (See below.)

b. He must write the buffer onto a block of DECtape. Th is is done by a phys ica I WRITE
statement. (See below.) The programmer must be aware of how much data he has in the buffer and
write it out on DECtape, before he overflows the buffer. Overflow wil I cause an error diagnostic.

To retrieve data from DECtape is also a multiple operation.

a. The programmer is responsible for remembering which block contains the data he wishes
to retrieve.

b. He must read this block into the OP SYS buffer using a physical READ. (See below.)

c. He must remember in which order he stored the variables or arrays and reference them here
in the same order.

d. He must disperse the data from the buffer to the locations assigned by the OP SYS or
allotted by a DIMENSION statement. This is done by pseudo READ (in a DO loop for arrays). (See
below.)

NOTE

Data which has been brought from tape into the buffer is
not yet available for use within the program. It must be
dispersed first.

Pseudo WRITE and pseudo READ statements operate between the user program and the buffer

only. They are used to collect into the buffer data from within the user program and to disperse into

the user program data in the buffer. They hove no effect on the phys ica I DECtape.

8-2

The user specifies pseudo READ or WRITE by specifying UNIT 0 and BLOCK 0 in the READ

or WRITE statement. Specifying any unit other than 0 wil I indicate that the user wishes to read from

DECtape into the buffer or write the buffer out on tape. Pseudo READ and WRITE are of the form;

READ 0 I 0 I FORMAT f LIST
WRITE 0, 0, FORMAT, LIST

Physical READ and physical WRITE statements operate between the buffer of the OP SYS and

the DECtape. They cause the actual reading or writing of tape. The user specifies physical READ or

WRITE by specifying a UNIT number from i-7 and the number of the actual block on which the data

has been stored or is to be stored. They are of the form;

READ UNIT, BLOCK, FORMAT, LIST
WRITE UNIT, BLOCK, FORMAT, LIST

It is not necessary to specify a list on a physical READ or WRITE but it is advisable, since it does no

harm and is an aid to remembering which variables in which order are on which block.

C· ,
C· ,
C· ,
C;
C;
C;

Two examples follow which demonstrate the storage and retrieval of data.

Part l

(DIMENSION iDAT (i28) '"'\
11 O; FORMAT (I) \......

~ DO 100 I= l , J (
WRITE 0, 0, 110, IDAT (I)

'- 100; CO~TINUE _)

J has been previously defined~ 128
This DO loop will WRITE J number
of elements of IDAT into the buffer

Part 2 {WRITE MU, MBLK, 110 } Th is statement wi 11 then store data
from buffer to tape

IDAT

.............

BUFFER

MUNT=TAPE UNIT TO BE SELECTED
MBLK=BLOCK TO BE WRITTEN ON
IBLK=INITIAL BLOCK TO BE SEARCHED FOR (TO REWIND TAPE)
VALUES FOR J AND K AS DETERMINED BY USER MUST BE LESS THAN 200
.............
• • • • • • • • • • e o •

8-3

DIMENSION IBFl (200), IBF2 (200)
90; FORMAT (I)
199; ACCEPT 90, J, K, MUNT, MBLK, IBLK
DO 10 I=l, J
ACCEPT 90, IBFI (I)
lO;CONTINUE

C· ,
C· ,
C· ,
C;
C;

.............
DATA HAS BEEN ACCEPTED NOW WE READ BLOCK 101

THIS INITIALIZES AND REWINDS THE TAPE
A GOOD IDEA TO DO THIS BUT NOT ESSENTIAL
.............

READ MUNT, IBLK, 90

C;
C· ,
C· ,
C· I
C· ,
C;

DO 31 I=l ,J

.............
TIME TO TAKE ACCEPTED DATA AND WRITE IT INTO
THE BUFFER, NOT ONTO THE ACTUAL TAPE. SEE PART ONE OF DIAGRAM.
BUFFER IS WRITTEN BY SELECTING UNIT 101

DO LOOP NEEDED SINCE DATA IS IN AN ARRAY
.............

WRITE 0 1 0 I 90 I IBFl (I)
31;CONTINUE

C;
C· ,
C· I
C· ,

.............
TAPE IS NOW PHYSICALLY WRITTEN BY SELECTING
A LOGICAL UNIT, OTHER THAN ZERO. SEE PART TWO OF DIAGRAM.
.............

WRITE MUNT I MNLK I 90

C· I
C;
C· I

.............
NOW READ BLOCK BACK INTO BUFFER
.............

READ MUNT, MBLK,90

C· I
C;
C· I
C;

DO 32 1=1,K

.............
READ BUFFER AND STORE IT IN ANOTHER ARRAY
DO LOOP NEEDED BECAUSE OF ARRAY
.............

READ 0 I 0 I 90 I IBF2(1)
32; CONTINUE
C· I
C;
C· I
C· ,
C· I

* * * * * * * * * * * * *

ALL 1/0 DONE HALT.

* * * * * * * * * * * * *

8-4

DO 13 I=l ,K
TYPE 91,IBF2 (I)
91 ;FORMAT (/,I)
13;CONTINUE

PAUSE

............. C;
C;
C·

HALT, THEN DO IT ALL AGAIN IF USER PRESSES CONTINUE ON CONSOLE
I

GO TO 199

END

.............

8-5

CHAPTER 9

PDP-5/8 FORTRAN SYMBOLPRINT

FORTRAN Symbolprint is a useful aid in finding where a FORTRAN program is stored in

interpretive memory, the exact memory locations assigned to each FORTRAN variable, and the amount

and location of interpretive core memory that is not used by a FORTRAN program.

Symbolprint loads over the FORTRAN Compiler and starts at address 600. The following is a

typical example of the typeout.

List of Variable Names Assigned Location

HW 7546
TB 7543
G 7540
TF 7535
MC 7534
DSR 7531
Cl 7526
C2 7515
C3 7504
C4 7470

6312 7241

Note that a single word only has been assigned for the fixed point variable MC.

The last two octal constants typed indicate respectively the highest address used by the

program in interpretive memory and the lowest address used for data. Therefore the area of core be­

tween these two addresses is available. In the example there are

7241 -6312 - 1 = 726

octal locations free.

A machine language subroutine may occupy this available space. Use the FORTRAN PAUSE

statement to link the FORTRAN program to the subroutine.

If PAUSE is followed by a number (decimal), FORTRAN compiles (in effect) JMS to that

address. For example:

;PAUSE 3328

9-1

effects JMS 6400. Location 6400 should contain coding such as the following:

SUBR, 0

JMP I SUBR

constituting the desired machine language program.

9-2

APPENDIX A

OPERATING PROCEDURES
FOR RIM AND BIN PAPER TAPE LOADERS

READ-IN-MODE LOADER (RIM)

l. The RIM Loader is a minimum-length, basic paper tape loader for the PDP-8. It is
initially stored in memory by way of the CONTROL console switches. Once stored, it is considered
to be a permanent occupant of locations 7756 through 7777 (absolute octal addresses) and care should
be taken to keep it from being destroyed. ·

2" A paper tape to be read in by the RIM Loader must be in RIM format:

8 7 6 5 4 s 3 2 l

l 0 0 0 0 . 0 0 0
0 l Al • A2
0 0 A3 • A4
0 0 Xl . X2
0 0 X3 • X4
0 l A3 • A4
00 A3. A4
0 0 Xl . X2
0 0 X3 • X4

(ETC.)
1 0 0 0 0 • 0 0

Tape Channel

Leader/Trailer code
Absolute address to
contain next 4 digits
Contents of previous
4 dig it address

Address

Contents
(ETC.)
Lead/Trailer code

3. The complete PDP-8 RIM Loader for the ASR33 (SA 7756) is as fol lows:

Abs. Octal
Symbolic

Addr. Contents

7756, 6032 BEG, KCC /clear AC and flag
7757, 6031 KSF /skip if flag= 1
7760 5357 JMP .-1 /looking for char
7761 6036 KRB /read buffer
7762, 7106 CLL RTL
7763, 7006 RTL /ch 8 in ACO
7764, 7510 SPA /checking for leader
7765, 5357 JMP BEG +1 /found leader
7766, 7006 RTL /OK, ch? in link
7767, 6031 KSF
7770, 5367 JMP .-1
7771, 6034 KRS /read, do not clear
7772, 7420 SNL /checking for address
7773, 3776 DCA I TEMP /store contents

A-1

as follows:

Abs.
Adck.

Octal
Contents

Symbolic

7774,
7775,
7776,
7777,

3376
5356
0
5301

TEMP,

DCA TEMP
JMP BEG
0
0

/store address
/next word
/temp storage
/jump to start of bin loader

4. Placing the RIM Loader in memory by way of the console switch register is accomplished

a. Set 7756 in the switch register {SR)

b. Press LOAD ADDRESS

c. Set the first instruction in the SR {6032)

d. Press DEPOSIT

e. Set the next instruction in the SR

f. Press DEPOSIT

g. Repeat steps e and f until all 16 instructions have been deposited.

5. To load a tape in RIM format, place the tape in the reader, set the SR to 7756, press
LOAD ADDRESS, press START, and start reader.

6. The complete PDP-8 RIM Loader for the high-speed reader 750 {SA 7755) is as follows:

Abs. Octal
Symbolic

Addr. Contents

7756 6014 BEG, RFC /clear flag and fetch char. into
buffer

7757 6011 RSF /skip when flag=l
7760 5357 JMP .-1
7761 6016 RRB RFC /read buffer into AC, get next

char. into buffer
7762 7106 CLL RTL /rotate channel 8 into
7763 7006 RTL /AC bit 0
7764 7510 SPA /is it leader
7765 5374 JMP TEMP-2 /yes c I ear AC
7766 7006 RTL /NO rotate channel 7 to LINK
7767 6011 RSF
7770 5367 JMP .-1
7771 6016 RRB RFC
7772 7420 SNL /link set=origin
7773 3776 DCA I TEMP /store data
7774 3376 DCA TEMP /store address
7775 5357 JMP BEG +l /next word
7776 0000 TEMP, 0 /temporary storage
7777 5301 0 /JMP to start of BIN Loader

A-2

BINARY LOADER (BIN)

1. The BIN Loader is used to read in the machine language tapes. A binary-formatted tape
is about one half the length of a comparable RIM formatted tape. It can, therefore, be read in about
twice as fast as a Rrtv·\ tape and is, for th is reason, the more des i rob I e format to use with the 10 cps
ASR33 Reader.

2. To load a tape in BIN format, place the tape in the reader, set the SR to 7777; press
LOAD ADDRESS, press START, and start reader.

3. After a BIN has been read in, one of the two fol lowing conditions exist:

a. No checksum error: halt with AC=O.

b. Checksum error: halt with AC (computer checksum) - (tape checksum). If a check­
sum error exists, a character was misread from the binary tape or is mispunched on the
tape. The operator should reload the binary tape; and if the same checksum error ap­
pears in the AC indicator after readin, the binary tape was mispunched and a new copy
should be obtained. If a different checksum error appears after readin, the appropriate
maintenance procedure shou Id be fol lowed.

A-3

APPENDIX B

PREPARATION OF SYMBOLIC (SOURCE) TAPE

l. Symbolic tape preparation using Symbolic Tape Editor. {It is to the user's benefit to
use the Editor to put his source program on tape since using the Editor minimizes the chance of ex­
traneous characters getting on the tape and also foci! itates deletion and correction of statements).

a. Load Symbolic Tape Editor using Binary Loader.

b. Start Editor at 176 {Load Address, Start).

c. Type Ap and type the symbolic source program.

d. Hold the CTRL key and press the FORM key; the bell wi II sound.

e. Type P tJ , fo II owed by F) when punching stops.

NOTE

For complete explanation of Editor, see Symbolic Tape
Editor Manual.

2. Symbol tape preparation off-I ine using Teletype only.

'l v.

a. Turn power on in computer (key on left in PDP-8, switch on right in PDP-5).

b. Turn Teletype LINE-OFF-LOCAL knob to LOCAL to disconnect Teletype from
computer.

c. Press PUNCH ON button on the Teletype.

d. Generate leader.*

e. Type the source program.

f. Generate trailer.*

Manual symbolic tape editing using the ASR33.

a. An incorrect character might be typed while preparing the symbolic tape: (the error is
detected N characters after typing the incorrect character) press the PUNCH B.SP.
button N+ 1 .times, press rubout N+ 1 times, and continue.

b. Characters, words, or statements can be inserted or deleted after the entire sym­
bolic tape has been prepared. Use the fol lowing procedures to accomplish such changes.

(l) Insertions - Duplicate the tape up to the point at which it is desired to make
an insertion (by turning the punch on, placing the tape in the reader, starting the
reader, and stopping the reader with the READER switch using the printout as a
guide). Next type the insertion. Continue by pressing the READER switch to start
and duplicate the remainder of the tape.

(2) Deletions - Duplicate the tape up to the point at which it is desired to make a
deletion (see Insertions). Next, turn the punch off; start the reader; and using the
printout of the information to be deleted as a guide, stop the reader. Continue by
turning the punch on and starting the reader to duplicate the remainder of the tape.

*To generate leader/trailer (200 code), hold the CTRL and SHIFT keys with the left hand, depress the
REPT key and then the P with the right hand. Release in reverse order or a P will be punched on the
tape.

B-1

APPENDIX C

FORTRAN OPERATING PROCEDURES

COMPILER

1. Load the Compiler with the Binary Loader (see Appendix A).

2. Put the starting address of the Compiler (0200 octa I) into the switch register and press
LOAD ADDRESS.

3. Set 1/0 switches. (Conditional) See 1/0 Control.

4. Place the source language tape in the selected reader and tum on the reader and punch.

5. Press ST ART.

6. At the end of compilation, the computer will halt with the run light off.

7. To compile additional programs, place the source language tape in the appropriate
reader, turn the reader and punch on, and press CONTINUE. 1/0 selections cannot be changed with­
out reloading compiler.

SYMBOLPRINT

Symbolpr!nt is run immediately after compi ! ing a program and before comp ii ing anothei Oi

loading the Operating System. (It cannot be run if the Operating System has been loaded into core.)

Use of Symbolprint destroys the portion of the Compiler which processes DECtape READ and

WRITE statements. The Compiler must therefore be reloaded if it is to compile a source program con­

taining such statements.

1. Load Symbolprint with the Binary Loader.

2. Set 0600 in the switch register.

3. Press LOAD ADDRESS and ST ART, see Chapter 8.

OPERATING SYSTEM
(OBJECT TIME SYSTEM)

1. To load a compiled program:

a. Load the FORTRAN Operating System using the Binary Loader. If using 552 DEC­
tape, load the 552 overlay tape using the Binary Loader.

b. Place the Compiler output (interpretive code object tape) in the Teletype or photo­
electric reader. Turn on the reader, making sure ASR33 is ON LINE.

c. Load the SWITCH REGISTER with 0200, and press LOAD ADDRESS.

d. Set switch register bit 1 to read in compiled tape from photo-electric reader or
Teletype (as shown below).

e. Press START. The Operating System reads the compiler output tape.

C-1

f. The Operating System halts at the end of loading. The loading is correct if the
checksum difference which appears in the AC equals O.

g. Turn off the reader and remove the compiler output tape from it.

2. To execute a program after loading

a. Set SWITCH REGISTER bits 0, l, and 2 {as shown below).

b. If input is to be from paper tape, put the data tape in the appropriate reader and
turn the reader on. If output is to be punched, turn punch on.

c. Press CONTINUE.

NOTE

l . Once I coded, a program can be executed any number
of times.

2. The Operating System need not be reloaded to run
more than one program in succession. To do so start at
step b of Section l.

3. To Re-execute a Loaded Program

a. Set the SWITCH REGISTER to 0201; press the LOAD ADDRESS key.

b. Set the SWITCH REGISTER for the 1/0 (as shown below).

c. Press START.

The FORTRAN Operating System checks each of its internal stacks after the execution of

each interpretive instruction to insure that there is neither stack overflow nor stack underflow. If a

FORTRAN program has been debugged and is known to operate correctly, this test may be NOPed by

changing C(0404) to 7000 (NOP). This wil I speed up the execution of the program by a factor of

about 2.

1/0 CONTROL

The selection of 1/0 devices for both COMPILER and OP SYS is controlled by setting the

switches as shown below:

Bit
Number

0

Switch
Position

0

0

Meaning

The program contains only paper tape l/O statements.

The program contains DECtape 1/0 statements.

Compiler: Use the Teletype reader for input of source tape.

OP SYS: Use the Teletype reader for loading the object
program and the keyboard for ACCEPT statements.

C-2

Bit
Number

2

Switch
Position

0

Meaning

Use the high-speed reader.

Compiler: Use the Teletype printer/punch for compiler out­
put (interpretive code) tape and error diagnostics.

OP SYS: Use the Teletype printer/punch for TYPE statements.

Use the high-speed punch (error diagnostics still come on
Teletype).

C-3

APPENDIX D

FORMAT OF COMPILER OUTPUT

INTERPRETIVE CODE

l. 200 codes (leader, ignored by loader).

2. Data blocks, each as follows:

a. Origin (2 frames, first has bit 7 punched)

b. Data words (2 frames/word)

3. Forward referencing table - first frame has bits 7 and 8 (only) punched.

4. Checksum

a. First has bit 6, 7, and 8 (only) punched

b. Next two frames are checksum

5. 200 codes (trailer, ignored by loader which stops after checksum).

6. Error comments, if any, in ASCII.

D-1

APPENDIX E

ASR33 8-BIT CHARACTER SET

Character 8-Bit Code Character 8-Bit Code
(in Octal} (in Octal)

A 301 241
B 302 II 242
r 303 # 243 '-

D 304 $ 244
E 305 % 245
F 306 & 246
G 307 247
H 310 (250
I 311) 251
J 312 * 252
K 313 + 253
L 314 254
M 315 255
N 316 256
0 317 I 257
p 320 272
Q 321 273
R 322 < 274
s 323 = 275
T 324 > 276
u 325 ? 277
v 326 @ 300
w 327 [333
x 330 I 334
y 331 , 335 .J

z 332 t 336
0 260 337
l 261 Leader/frailer 200*
2 262 Line Feed 212*
3 263 Carriage Return 215
4 264 Space 240
5 265 Rubout 377*
6 266 Blank 000*
7 267
8 270 *Ignored by the operating system
9 271

E-1

APPENDIX F

PDP-8 FORTRAN SOURCE PROGRAM RESTRICTIONS

The fol lowing I imits are imposed upon al I FORTRAN source programs for the PDP-8:

l. Not more than 89610 data cells. Th is includes al I dimensioned variables, user-defined
variabies, constants, and all constants generated by the usage of a DO loop.

2. Not more than 20 undefined forward references to unique statement numbers per program.
An undefined forward reference is a reference to any statement label that has not previously occurred
in the program. Multiple references to the same undefined statement numbers are considered as one
reference.

3. Not more than 64 different variable names per program.

4. Not more than 128 characters per input statement. (When using the DECtape Compiler,
the input statement size is reduced to l 00 characters.)

5. Not more than 40 numbered statements per program.

PDP-8 COMPILER AND OPERATING SYSTEM CORE MAP

The Compiler occupies the fol lowing core locations:

3 - 7600

7200 - 7600

Compiler itself plus tables

Compiler tables (undefined forward reference
table, etc.)

The Operating System occupies locations:

0 - 5200 Operating System for paper tape 1/0
0 - 6000 Operating System for DECtape 1/0

Locations 5200 - 7576 are available for the user's program when using paper tape input/output or lo­

cations 6000 - 7576 when using DECtape.

NOTE

The 896 10 data word restriction applies.

F-1

APPENDIX G

DIAGNOSTICS

Diagnostic procedures are provided in the compiler to assist the programmer in program

compilation. When the compiler detects errors in a FORTRAN source program, it prints out error mes­

sages on the on-line tape-teleprinter. These messages indicate the source of the error and direct the

programmer 1s efforts to correct the error.

To speed up the compi fer process, the compi fer prints out only an error code. The program­

mer then looks up the error message corresponding to the code in Table A-1 and takes the appropriate

corrective measures.

DYNAMIC ERROR CORRECTION

A user may choose to compile in either of two modes: the normal mode or the dynamic cor­

rection mode. The latter allows the user to correct a statement, which the compiler has determined

contains a source-language error, by reentering the offending I ine via the tape teleprinter without

having to physically correct the symbolic tape and r~compile. This feature is not implemented in the

high-speed reader version of the compiler since the higher speed of the device makes recompilation

easy.

To choose the dynamic correction mode:

1. Load the starting address of the compiler (0200) in the console switches and press
LOAD ADDRESS.

2. Set SR bit 11to1, press START (can only be used with low-speed paper tape 1/0).

If cm error is detected, the diagnostic piints out in the noima! fashion and the computei halts.

To correct the statement:

1. Turn READER switch to FREE.

2. With the READER switch still in the FREE position, press CONTINUE.

3. Type the new line in its entirety,* obeying all rules for the source language and ter­
minating the statement with a carriage-return I ine-feed.

4. Turn reader on and compilation will continue.

To leave the dynamic correction mode, restart the compiler in the normal fashion.

*If the statement was numbered, do not reenter the statement number unless it was in error.

G-1

xx xx

COMPILE TIME DIAGNOSTICS

Format of Diagnostics

xx xx

l LThe identifying condition code

The number of statements since the appearance of a numbered
statement (octal value}.

The statement number of the last numbered statement

Example:

10; A=I (J+l)
B=A*(B+SINF(THTA)}

During compilation cf the above statements the fo!!o\•1ing error cede \•1cu!d be printed,

10 11 11

indicating that a statement which occurs eleven statements octal (eight decimal} after the appearance

of statement 10 is in error. The message corresponding to code 11 shows that the number of left and

right parentheses in the statement is not equal. The statement is examined and corrected; then com­

pi lotion is resumed.

Table A-1

Diagnostic
Conditions

Code

00 Fixed- and floating-point modes have been mixed in an expression.

01 Two operators appear adjacent to each other (i.e., a variable has
been left out of an expression) e.g., A=C + * D.

02 Compiler error - Reload Compiler and repeat compilation process.
Contact Software Quality Control, PDP-8 Division if this reoccurs.

03 A comma has been used i I legally in an arithmetic statement.

04 Too many operators appear in a single statement.

05 A function argument is in fixed mode, e.g., SINF(INC).

G-2

Diagnostic
Code

06

07

10

11

12

13

14

15

16

17

20

21

22

23

24

Table A-1 (Cont)

Conditions

A variable subscript is in floating-point mode. This could also in­
dicate that an operator is missing, e.g., A+B(C+l.) for A=B*(C+l.).

More than 64 (decimal) different variable names have been used in
the program.

Program too large - program and data requirements have overlapped.

There is an unequal number of right and left parentheses in a state­
ment.

An illegal character was detected and ignored.

The compiler is unable to recognize or process this statement due to
some error in its format.

Two statements with the same statement number.

A subscripted variable is defined before the appearance of a dimen­
sion statement, or a subscripted variable does not appear in a di­
mension statement. It might also indicate that an operator is missing
in a fixed-mode expression, e.g., A=I(J-K) for A=I*(J-K).

Statement too long; more than 128 characters have been counted
not including spaces except in format statements where all legal TTY
characters are counted.

A floating-point operand should have been fixed-point, e.g., DO
10 I=l, 7 .3.

A statement number that has been referenced does not appear in the
program. See the paragraph on the next page.

There are more than 40 numbered statements in the source program.

A statement cannot be compiled because it has too many incomplete
operations, e.g., C=A+(C+(D+(E+

Too many (more than 20) statements have been referenced before they
are defined.

Attempt to compile a READ or WRITE program statement after starting
program without switch 0 set.

If a statement number is referenced but does not appear in the source program, the diagnostic

code will be printed as follows:

xxxx 77 20

where the number usually reserved for the last numbered statement (xxxx) is replaced by the missing

statement number.

G-3

e.g., GO TO 100

The diagnostic would appear as follows where statement 100 is never defined.

100 77 20

OPERATING SYSTEM DIAGNOSTICS

Not all errors are detected by the compiler. Some errors can only be detected by the object

time system. Also, there are some conditions which indicate errors on the part of the compiler and/or

object system. When such an error occurs during running of a program, the computer types out an error

message containing the word 11 TILT 11 and an error number. The computer then halts. If the CONTINUE

toggle is pressed, the computer takes the action I isted in the fol lowing table.

Table A-2

Error
Number

11

12

13

14

15

16

Possible Cause

Attempt to divide by zero

Floatino ooint exoonent on in-
I

put greater than plus or minus
2047

Illegal operation code (either
compiler error, or data stored
over program, or transfer to data
section)

Transfer to core location zero or
one

Non-format statement used for a
format

II legal format statement consti­
tuent

17 Attempt to fix large floating
point number

20

21

22

Attempt to take square root of a
negative number

Attempt to raise a negative num­
ber to a power

Attempt to find the logarithm of
zero or a negative number

G-4

Action Taken

Quotient set to plus or minus largest number
representable in computer; then continue ex-
ecuting instructions.

Svstem exec1_1tes next instruction,

System executes next instruction.

No recovery possible.

System executes next instruction.

System examines next constituent.

System takes square root of abso I ute va I ue.

System raises absolute value to the power
specified.

System attempts to find logarithm of absolute
value. Note that log (absolute value (0))
still gives an error halt.

I

I

I

Table A-2 (Cont)

Error
Possible Cause

Number

31 Select error

32 Phys i ca I Tape Error

33 I DECtape buffer exceeded

34 DECtape control switch set in­
correctly

76

77

One of the stacks used by the
system has underflowed. (i • e . ,
more data has been requested
than was placed on the stack)

One of the stacks has overflowed
(i.e., more data placed on it
than there is storage in the ma­
chine.)

I

G-5

Action Taken

The operating system ha its with the cai ied
unit in bits 0-2 of the AC (0-3 is using 552/
555). Recovery is possible by correcting the
logical unit and pressing continue.

The program halts with the error status in the
AC. (The configuration of bits is dependent
upon the tape control being used.)

No recovery possible. Try recompiling the
program.

Same as Error 76

I

I

Arithmetic

Algebraic 3-1

Constants 3-2

Expressions 3-1

Functions 3-4

Integers 3-2

Operators 3-3, 3-6, -7

Statements 3-4, -5

Variables 3-2

Arrays 5-1

Subscripted 5-1

Branches and Loops 6-2, 6-8

Character Set 2-4, E-1

COMMENTS 2-2, -3

Compiler

Diagnostics 6-1

Operating Procedures C-1

Output D-1

with DECtape 8-1

Constants 3-2

CONTINUE Statement 2-3, 6-7

Core Map

Compiler and OP SYS F-1

DECtape

1/0 Options 8-1

Statement and Operation 8-2

Decimal Integers 3-2

Exponents 3-2

Devices

1/0 7-1

INDEX

Selection 7-2

Diagnostics {see Errors)

Compiler G-2, -3

Operating System G-4, -5

DIMENSION Statement 5-1

Array Names 5-2

DO statement 6-5, -6, -7

Ii iegai Nesting 6-7

Loops 6-5, -6

Nesting Loops 6-6

E Format 7-4, -5, -6

Editor, Symbolic Tape B-1

END Statement 6-1

Errors (see Diagnostics)

Corrections 7-6, G-1

Messages G-1

Expressions, Arithmetic 3-1

Field

Identification 2-2

Fixed Numbers 4-1, -2

Floating-point

Decimal Fraction and Integer 7-5

Format 4-2

Numbers 4-1

Representation 4-1, -2

Format

Control Elements 7-7, -8

E and I 7-4, -5, -6

Floating-point 4-2

Hollerith 7-1

Input 7-5

Program 2-1

Slash 7-8

Statement Number 7-3

FORMAT Statement 7-3, 7-6

Functions, Arithmetic 3-4

GO TO Statement 6-2

Computed 6-8

Ho 11 er i th Format

Output 7-7, -8

I Format 7-4, -5, -6

IF Statement 6-3

Input/output

DECtape Options 8-1

Devices 7-1

FORMAT 7-5

Statements 7-2, -3

Integers 3-2, 4-1 , 6-5

E and i Format 7-5

Summation 6-2

Loaders

RIM and BIN A-1, -2, -3

Numbers

Fixed 4-1, -2

Floating-point 4-1, -2

Integers 4-1

Positive or Negative 4-1

Representation 4-2

Statement 2-2, 7-3

Variables, Types of 4-2

OP SYS (Operating Procedures) 8-2

Operating Procedures C-1

Operating Procedures

BIN A-3

Compiler C-1

I/O Control C-2, -3

Operating System (OPSYS) C-1, -2

RIM A-1

Symbolprint C-1

Operation

Compiler 8-1, C-1

DECtape 8-1, -2

Loaders A-1, -2, -3

Operating System 8-1

Symbolprint 8-1

System 8-1, C-1, -2, -3

Operators

Arithmetic 3-3, -4

Unary Mi nus 3-3

Output

Data Word 7-6

Floating and Fixed Modes 7-6

FORMAT 7-6

Parentheses, use of 3-4

Operators 3-3

PAUSE statement 6-1

Program

Control 6-1

Example 2-1

Format 2-1

Restrictions F-1

Source Preparation B-1

Termination 6-1

Terminator (END) 6-1

Quote, Hollerith Output 7-7

Single Quote, use of 2-3

READ Statement 8-2, -3

Restrictions

Source Program F-1

Semicolon 2-2

Slash, Control Element 7-8

Format 7-8

Statements 2-1

Arithmetic 3~4

Comment 2-2

Continuation 2-3

DECtape 8-2

END 6-1

GOTO 6-2

Input/Output 7-2, -3

Number 2-2

PAUSE 6-1

READ 8-2, ~3

STOP 6-1

Types of 2-2

Variables 3-2

WRITE 8-2: -3

STOP 6-1

Subscripts 5-1

Arrays 5-1

Variables 5-1

Symbolprint 8-1, 9-1, -2

Operating Procedures C-1

with DECtape 8-1

Tape, Symbolic Preparation 8-1

Variables, types of 4-2, -3

Arithmetic 3-2

Subscripted 5-1, -2

WRITE Statement 8-2, -3

READER'S COMMENTS
PDP-8 4K FORTRAN
PROGRAMMERS REFERENCE MANUAL
DEC-08-AFCO-D

Digitai Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedb.ack - your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the following period­
ically distributed publications are available upon request. Please check the appropriate boxes for a current issue of the
publication(s) desired.

0 Software Manual Update, a quarterly collection of revisions to current software manuals.

0 User's Bookshelf, a bibliography of current software manuals.

0 Program Library Price List, a list of currently available software programs and manuals.

Name --------------- Organization

Street-------------- Department------------------

City ___________ State-------------- Zip or Country ____ _

- - - - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - - -

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STA TFS

Postage will be paid by:

mamaama
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Ma~chusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

Digital Equipment Corporation
Maynard, Massachusetts

printed in U.S.A.

	000
	001
	002
	002a
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	4-02
	4-03
	5-01
	5-02
	5-03
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	8-01
	8-02
	8-03
	8-04
	8-05
	9-01
	9-02
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	C-03
	D-01
	E-01
	F-01
	G-01
	G-02
	G-03
	G-04
	G-05
	I-01
	I-02
	I-03
	replyA
	replyB
	xBack

