
mnmnomn

SK o o
sabr assembler

digital equipment corporation

DEC-08-LFTNA-A-D

8 K F 0 R T R A N

S A B R A S S E M B L E R

For additional copies, order No. DEC-08-LFTNA-A-D
from Software Distribution Center,· Digital Equipment
Corporation, Maynard, Mass.

digital equipment corporation · maynard. massachusetts

First Printing, July 1973

copyright @ 1973, Digital Equipment Corp., Maynard, Mass.

The following a~e trademarks of Digital Equipment Corporation,
Maynard, Massachusett$:

CDP DIGITAL KAlO PS/8
COMPUTER LAB DNC LAB-8 QUICKPOINT
COMTEX EDGRIN LAB-8/e RAD-8
COMSYST EDU SYSTEM LAB-K RSTS
DDT FLIP CHIP OMNIBUS RSX
DEC f OCAL OS/8 RTM
DEC COMM GLc~s PDP SABR
DECTAPE :to.Ac PHA TYPESET 8
DIBOL '.IDACS UNIBUS

INDAC

PREFACE

The "HOW TO OBTAIN SOFTWARE INFORMATION" page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid "READER'S COM!1ENTS" form on the last page of this
document requests the user's critical evaluation. All comments
received are acknowledged and will be considered when subsequent
documents are prepared.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

The material in this document is for information purposes only and is
subject to change without notice. DIGITAL assumes no responsibility
for the use or reliability of software and equipment which is not
supplied by it. DIGITAL assumes no responsibility for any errors
which may appear in this document.

ii

contents

CHAPTER 1 SK FORTRAN

Introduction ,
Character Set
FOR TRAN Constants

Integer Constants ~
Real Constants
Hollerith Constants

FORTRAN Variables
Integer Variables
Real Variables
Scalar Variables
Array Variables
Subscripting .. .

Expressions

FORTRAN Statements
Line Continuation Designator
Comments

Arithmetic Statements

Input/ Output Statements
Data Transmission Statements
READ Statement ,
WRITE Statement ~ .. .

D . D . t' ev1ce es1gna ions .. .

FORMAT Statement····························:·························
Numeric Fields
Numeric Input Conversion
Alphanumeric Fields
Hollerith Conversion

IV

1-1
1-2
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-6

1-8
1-8
1-9

1-10

1-10
1-11
1-13
1-14
1-14
1-15
1-16
1-17
1-18
1-20

Blank or Skip Fields .. 1-21
Mixed Fields ,........................... 1-21
Repetition Fields 1-21
Repetition of Groups 1-22
Multiple Record Formats 1-22

Control Statements .. 1-23
GO TO Statement 1-23

Unconditional GO TO .. 1-23
Computed GO TO ... ~.. 1-24

IF Statement 1 .. 24
DO Statement

1

......... • ... • • • • • .. • .. • • ... • • • 1-24
CONTINUE Statement.. 1-26
PAUSE, STOP and END Statements ~. 1-26

PAUSE Statement.. 1-26
STOP Statement .. 1-27
END Statement "..................................... 1-27

Specification Statements : 1-27
COMMON Statement 1-28
DIMENSION Statement 1-28
EQUIV ALEN CE Statement 1-29

Subprogram Statements 1-29
Function Subprograms 1-30
Subroutine Subprograms : 1-31

CALL Statement.. 1-33
RETURN Statement .. 1-34

Function Calls . 1-34
Library Subprograms 1-34
Floating-Point Arithmetic .. 1-36

Device Independent 1/0 and Chaining.............................. 1-37
The IOPEN Subroutine .. 1-37
The OOPEN Subroutine 1-38
The OCLOSE Subroutine 1-38
The CHAIN Subroutine 1-39
The EXIT Subroutine 1-39

DECtape·I/0 Routines.. 1-39
OS/8 FORTRAN Library Subroutines.............................. 1-42

v

Mixing SABR and FORTRAN Statements........................ 1-44

Size of a FORTRAN Program 1-45

Operating Instructions 1-46
Loading and Operating the Compiler 1-46
8K FORTRAN Errors .. 1-47

Compiler Error Messages 1-48

OS/8 FORTRAN Library Error Messages............ 1-50

Loading the SABR Assembler 1-52
Operating the SABR Assembler 1-52

Method 1 .. 1-53
Method 2 . 1-54
Method 3 ... 1-55

The Linking Loader .. 1-55
Loading the Linking Loader 1-5 6
Loading Relocatable Loader 1-5 6

Executing the FOR TRAN Program 1-57

D~monstration Program .. 1-58

.Statement and Format Specifications 1-62

Storage Allocation 1-65
Representation of Constants and Variables . 1-65

Integers 1-65
Real Numbers .. 1-66

Storage of Arrays 1-67
Representation of N-Dimensional Arrays 1-68
Common Storage Allocation 1-69

Implementation Notes :................................ 1-70
Implied DO Loops 1-70
FORMAT Handling 1-71
Special I/0 Devices.. 1-73

CHAPTER 2 SABR ASSEMBLER

The Character Set .. 2-2
Alphabetic 2-2
Numeric 2-2
Special Characters 2-2

Vl

Statements . 2-3
Labels .. 2-4
Operators . 2-4
Operands ~............................ 2-5
Comments .. 2-8

Incrementing Operands 2-9
Pseudo-Operators . 2-10

Assembly Control ... ; 2-11
Symbol Definition .. ·.......... 2-15
Data Generating 2-17

Subroutines . 2-19
CALL and ARG 2-21
ENTRY and RETRN ... 2-22
Example ;.. 2-23

Passing Subroutine Arguments" ~............. 2-24

DUMMY ·· 2-24

SABR Operating Characteristics 2-28
Page-by-Page Assembly ; 2-28
Multiple Word Instructions 2-30
Run-Time Linkage Routines 2-30
Skip Instructions 2-33
Program Addresses 2-34
The Symbol Table .. 2-34

The Subprogram Library ... 2-35
Input/Output .. 2-36
Floating-Point Arithmetic 2-37
Integer Arithmetic .. 2-39
Subscripting 2-39
Functions 2-40
Utility Routines .. 2-41
DECtape I/0 Routines .. 2-43

The Binary Output Tape .. 2-45
Loader Relocation Codes 2-45

Sample Assembly Listings ~.......... 2-49
SABR Programming Notes 2-53

Optimizing SABR Code 2-53

Vll

Calling the OS/8 USR and Device Handlers 2-56
Loading and Operating SABR 2-56

Assembly Procedure 2-57
Procedure for use as FORTRAN Pass 2 2-58

The Linking Loader 2-58
Operation :...................... 2-59
Linkage Routine Locations 2-60
Switch Register Options 2-60
Loading the Linking Loader 2-62
Loading Relocatable Programs 2-62

Error Messages . 2-64
SABR .. 2 ... 64
Linking Loader 2-65
Library Programs .. 2-67

. Demonstration Program Using Library Routines 2-68

Appendix A

Appendix B

Appendix C

VIU

A-1

B-1

C-1

chapter1
s1< r:ortran

INTRODUCTION

This chapter presents a version of FOR TRAN II specifically de­
signed for the PDP-8/I, ~8/L, -8, and -8/E computers, with at
least 8K words of core memory, a Teletype; and a high-speed reader
and punch. Although the information contained in this chapter
deals particularly with the 8K FORTRAN available under the OS/8
Operating System, it is applicable as well to 8K paper tape FOR­
TRAN. In cases where there are inconsistencies between the two,
they are clearly noted.

"8K FORTRAN" is used interchangeably to designate both the
8K FORTRAN -language and the translator, or compiler. The
language enables the programmer to express his problem using
English words and mathematical statements similar to the language
of mathematics and yet acceptable to the computer. The FOR­
TRAN source program may be initially prepared off-line or by
using the appropriate Editor program. The compiler translates the
programmer's source program into symbolic language (SABR).
The symbolic version of the program is then assembled into re­
locatable binary code, which is the language of the computer.

The 8K paper tape FORTRAN system c'onsists of a one-pass
FORTRAN compiler, the SABR Assembler, the Linking Loader,
and a library ef---'Subprograms. Methods of loading and operating
8K paper tape FORTRAN are discussed toward the end of this
chapter.

OS/8 SK FORTRAN is an expanded version of 8K paper
tape FORTRAN which is designed to run under the OS/8 Operat-­
ing System. It includes features not found in the paper tape version
such as Hollerith constants, implied DO loops, chaining, mixing of

)

SABR and FORTRAN statements, and device independent 1/0.
It is called from the OS/8 Keyboard· Monitor. Complete operating
instructions for the OS/8 FORTRAN system are found in the
OS/8 chapter of Introduction to Programming.

1-1

It is assumed that the reader is familiar with the basic concepts
of FORTRAN programming. Several excellent elementary texts
are available (such as FORTRAN Programming by Frederic
Stuart, published by John Wiley and Sons, New York, 1969, and
A Guide to FORTRAN Programming by Daniel D. McCracken,
published by John Wiley and Sons, New York) if review is needed.

Character Set
The following characters are used in the FOR TRAN language. 1

1. The alphabetic characters, A through Z.
2. The numeric characters, 0 through 9.
3. The special characters::.?

t
" ([
$)]
% +

""' & ~

* I

<
>

? (space)

FORTRAN Constants
Constants are self-defining numeric values appearing in source

sta.tements and are of three types: integer, real, and Hollerith.~

INTEGER CONST ANTS
An integer (fixed point) constant is represented by a digit string

of from one to four decimal digits, written with an optional sign,

1 Appendix B lists the octal and decimal representations of the FORTRAN
character set.

2 Of these, the characters" ! ,_$ % & # : ? < > j [] ""' ~may only appear
inside FORMAT statements or Hollerith constants.

3 Hollerith constants are available only in OS/8 FORTRAN.

1-2

and without a decimal point. An integer constant must fall within
the range -2047 to +2047. For example:

47
+4 7 (+ sign is optional)
-2
0434 (leading zeros are ignored)

0 (zero)

REAL CONST ANTS
A real constant is represented by a digit string, an explicit

decimal point, an optional sign, and possibly an integer expo­
nent to denote a power of ten (7.2 x 1 Q:1 is written 7.2E+03).
A real constant may consist of any number of digits but only the
leftmost eight, digits appear in the compiled program. Real con­
stants must fall within the range of ± 1. 7x10:18• (8K paper tape
FORTRAN allows a range of .14x io-::8 to 1.7xl0:18 for real con­
stants.) For example: c

+4.50
4.50
-23.09
-3.0E14

(+ is optional)

(same as -3.0 x 1014)

HOLLERITH CONSTANTS
A Hollerith constant is a string of up to 6 characters (including

blanks) enclosed in single quotes. A Hollerith constant is treated
like a real constant, except that it cannot be used in arithmetic
expressions other than for simple equivalence (A==B). Any char­
acter except the quote character itself can be used in a Hollerith
constant. For example:

I ,VJ 0 VJ I

'A+~3=C'

Is ~ } r.1 I

FORTRAN Variables
A variable is a named quantity whose value may change during

execution of a program. Variables are specified by name and type.
The name of a variable consists of one or more alphanumeric
characters the first of which must be alphabetic. Although any
number of characters may be used to make up the variable name,
only the first five characters are interpreted as defining the name;

1-3

7
(

the rest are ignored. For example. DEL TAX. DELTA Y, and
DELTA all represent the same variable name.

The type of variable (integer or real) is determined by the
first letter of the variable name. A first letter of I. J. K, L, M. or
N indicates an integer variable. and any other first letter indicates
a real variable. Variables of either type may be either scalar· or
array variables. A variable is an array variable if it first appears in
a DIMENSION statement.

INTEGER VARIABLES
The name of an integer variable must begin with an I, J, K.

L, M. 9r. N. An integer variable undergoes arithmetic calcula­
tions with automatic truncation of any fractional part. For example,
if the current value of K is 5 and the current value of J is 9. J /K
would yield 1 as a result.

Integer variables may be conyerted to real variables by the
function FLOAT (see Function Calls) or by an arithmetic state­
ment (see Arithmetic Statements). Integer variables must fall within
the range -2047 to +2047.

Integer arithmetic operations do not check for overflow. For
example. the sum 204 7 + 204 7 will yield a result of -2. For more
information refer to C_hapter 1 of Introduction to Programming or
any text on binary arithmetic.

REAL VARIABLES
A real variable name begins with any alphabetic character other

than I, J, K, L. M. or N. Real variables may be converted to integer
variables by the function IFIX (see Function Calls) or by an
arithmetic statement. Real variables undergo no truncation m
arithmetic calculations.

SCALAR VARIABLES
A scalar variable may be either integer or real and represents a

single quantity. For example:

L vJ
A

G2
TOTAL
.J

1-4

ARRAY VARIABLES
An array (subscripted) variable represe.nts a single element of a

one- or two-dimensional array of quantities. The array element is
denoted by the array name followed by a subscript list enclosed in
parentheses. The subscript list may be any integer expression or
two integer expressions separated by a comma. The expressions
may be arithmetic combinations of integer variables and integer
constants. Each expression represents a subscript, and the values
of the expressions determine the referenced array element. For
example, the row vector Ai would be represented by the subscripted
variable A (I), and the element in the second column of the first row
of the matrix A, would be represented by A (1, 2).

Examples of one-dimensional arrays are:

y (1)
PtJRTC~>

while a two-dimensional array appears as follows:

Any array must appear in a DIMENSION statement prior to its
first appearance in an executable statement. The DIMENSION
statement specifies the number of elements in the array.

Arrays are stored in increasing storage locations with the first
subscript varying most rapidly (see Storage Allocation). The two­
dimensional array B (J, K) is stored in the following order:

B(l, 1), B(2, 1), ... , B(J, 1), B(l, 2), B(2, 2), ... , B(J, 2),
..• , B(J, K)

For representation of arrays of more than two dimensions, refer
to the section entitled Representation of N-Dimensional Arrays
toward the end of this chapter.

SUBSCRIPTING
Since excessive subscripting tends to use core memory ineffi­

ciently, it is suggested that subscripted variables be used judi­
ciously. For example. the statement:

1-5

A=<<B<I>+C2>*B<I>+Cl>*B<I>

could be rewritten with a considerable saving of core memory as
follows:

T=B <I)
A=<<T+C2>*T+Cl>*T

Expressions
An expression is a sequence of constants, variables, and function

references separated by arithmetic operators and parentheses in
·accordance with mathematical convention and the rules given
below.

Without parentheses, algebraic operations are performed in the
following descending order:

**

* an·d I
+and-

exponentiation
unary negation
multiplication and division
addition and subtraction
equals or replacement sign

Parentheses are used to change the order of precedence. An
operation enclosed in parentheses is performed before its result is
used in other operations. In the case of operations of equal prior­
ity, the calculations are performed from left to right.

Integers and real numbers may be raised to either integer or real
powers. An expression of the form:

A**B

means An and is real unless both A and B are integers. Exponential
(ex) and natural logarithmic (log .. (x)) functions are supplied as
subprograms and are explained later.

Excluding ** (exponentiation), no two arithmetic operators may
appear in sequence unless the second is a unary plus or minus.

The mode (or type) of an expressJon may be either integer or
real and is determined by its constituents. Variable modes may not
be mixed in an expression with the following exceptions:

1. A real variable may be raised to an integer power:

1-6

..

2. Mode may be altered by using the functions IFIX and
FLOAT (see Function Calls):

A*FLOAfCI)

The I in example 2 above, indicates an integer variable; it is
changed to real (in floating point format) by the FLOAT function.

Zero raised to a power of zero yields a result of 1. Zero raised
to any other power yields a zero result. Numbers are raised to
integer powers by repetitive multiplication. Numbers are raised to
floating point powers by calling the EXP and ALOG functions.
A negative number raised to a floating point power does not cause
an error message but uses the absolute value. Thus, the expression
(-3.0)**3.0 yields a result of +27.

Any arithmetic expression may be enclosed in parentheses and be
considered a basic element.

IFIX<X+Y)/2
<ZETA)
<COS<SIN<PI*EM)+X))

An arithmetic expression may consist of a single element (con­
stant, variable, or function call). For example:

TAi\JC T'-1STA)

Compound arithmetic expressions may be formed using arith­
metic operators to combine basic elements. For example:

;< + 3 •
TOTAL/A
TANCPIH>VJ)

Expressions preceded by a + or a - sign are also arithmetic -
expressions. For example:

+ ;<

-c ALPi-lA*BETA)
-SQRTC -GA,V1MA)

1-7

As an example of a typical arithmetic expression using arithmetic
operators and a function call, the expression for the largest root of
the general quadratic equation:

is coded as:

-b + V b:! _.:. 4ac

2a

FORTRAN STATEMENTS
A FORTRAN source program consists of a series of statements,

each of which must start on a separate line. Any FORTRAN
statement may appear in the statement field (columns 7 through 72)
and may be preceded by a positive number, called a statement
number, of from 1 to 4 digits which serves as an address label and
is used when referencing the statement. When used, statement num­
bers are coded in columns 1 through 5 of the 72 column line. State­
ment numbers need not appear in sequential order, b.ut no two state­
ments should have the same number. Statement numbers are limited
to a value of 2047 or less.

When using the Symbolic Editor to create the source program,
typing a CTRL/T AB (generated by holding down the CTRL key
and depressing TAB) causes a jump over the statement number
columns and into the statement field. Except for data within a
Hollerith field (see Input/Output Statements), spaces are ignored
by the compiler. The programmer may use spaces freely, however,
to make the program listing more readable and to organize data
into columns.

Line Continuation Designator
Statements too long for the statement field of a single Teletype

line may be continued on the next line. The continued portion must
not be given a line number, but must have an alphanumeric charac­
ter other than 0 in column 6. If the Symbolic Editor is used, the pro­
grammer may type a CTRL/TAB followed by a digit from 1 to 9
before continuing the line. The,continuation character is not treated
as part of the statement.

1-8

For example, using spaces, a continued statement would look as
follows:

WR IT E C 3, 30)
30 FORMAT c1x~'THE FOLLC~ING DATA IS GROUPED INTO THREE

1 PARTS U~DFR THE HEADINGS X, y, AND Z·')

Using tabs, the same ~tatement would be typed:

WR I TE C 3, 30)
30 FOR~AT ClX,'THE FOLLO~ING DATA IS GROUPED INTO THREE

1 PARTS UNDER THE HEADINGS X, y, AND z.•)

There is no limit to the number of continuation lines which may
appear. However, one restriction is that an implied DO loop must
not be broken, but must be on one line. For ease in program cor­
rection, it is recommended that continuation lines be minimized.

Comments
The letter C in column 1 of a line designates that line as a com­

ment line. A comment appears in a program listing but has no
effect on program compilation. Any number of comment lines may
appear in a given program, and comments that are too long for
one line may be continued by placing a C in the first column of the
next line. A comment line may not appear between another line
and its continuation.

FORTRAN statements are of five types:

1. Arithmetic, defining calculations to be performed;
2. Input/Output, _directing communication between the pro­

gram and input/ output devices;
3. Control, governing the sequence of execution of statements

within a program;
J2_a_~J'\.,Q_ 4. Specification, describing the form and content of data within

the program;
S..A.~ 5. Subprogram, defining the form and occurrence of subpro-

grams and subroutines.

Each of these five types is explained in the following paragraphs.

1-9

ARITHMETIC STATEMENTS
Constants and variables, identified as to type and connected by

logical and arithmetic operators form expressions: one or more
expressions form an arithmetic statement. Arithmetic statements
are of the general form:

V=E

where V is a variable name (subscripted or nonsubscripted), E is
an expression, and = is a replacement operator. The arithmetic
statement causes the FORTRAN object program to evaluate the
expression E and assign the resultant value to the variable V. Note
that = signifies replacement, not equality. Thus, expressions of th.e
form:

are quite meaningful and indicate that the value of the variable A
is to be changed.

For example:

Y=l·l*Y
P=X**2+3.*X+2.0
XCN)=EN*ZETA*CALPHA+EM/Pl)

The expression value is made to agree in type with the variable
before replacement occurs. In the statement:

META=W* CABETA+E)

since MET A is an integer and the expression is real, the expression
value is truncated to an integer before assignment to MET A.

I

INPUT/OUTPUT STATEMENTS
Input/Output (1/0) statements are used to control the transfer

of data beween computer memory and peripheral devices and to
specify the format of the output data. 1/0 statements may be di­
vided into two categories:

1-10

1. Data transmission statements, READ and WRITE, specify
transmission of data between computer memory and 1/0
devices.

2. Nonexecutable FORMAT statements enable conversion be­
tween internal data (within core memory) and external data.

Data Transmission Statements
The two data transmission statements, READ and WRITE, ac­

complish input/output transfer of data listed in a FORMAT state­
ment. The two statements are of the form:

READ (unit, format) 1/0 list
WRITE (unit, format) 1/0 list

where unit is a device designation which can be an integer constant
or an integer variable, format is a FORMAT statement line num­
ber, and the I I 0 list is a list specifying the order of transmission of
the variable values. During input, the new values of listed variables
may be used in subscript or control expressions for variables ap­
pearing later in the list.

For example:

reads a new value of L and uses this value in the subscripts of A
and B; where 2 is the device designation code, and t,000 is> a
FORMAT statement number.

An element in an I/0 list can take one of the following forms:

1. Arithmetic expression: expressions more complicated than a
single variable (which can be subscripted) are meaningless
in an input operation.

2. The name of an array (1 or 2 dimensional) 4 : this indicates
that every element of the array is to be transmitted. Elements
are transmitted in the order in which they are stored in core.

For example:

DIMENSION AC2,2)
READ Cl,100) A

4 Arrays in l/O lists are allowed only in OS/8 FORTRAN.

1-11

reads:

3. Implied DO Loops5 of the form:

repeat the list elements (s11) with the value of i being equal
to m 1 through m:! having an optional step value of m:~. The
m's are integer constants or variables, i is an integer variable,
and s1-s11 are the I/0 list elements (possibly including an im­
plied DO loop). For example:

DIM Er\ S ION AC 3, 6)
WR±TE Cl,100) I,CACJ,I)J=l,3)

will outp_ut the values:

It is important to remember that when using implied DO
loops, the entire implied DO loop must be on the same input
line or card. An impli~d DO loop cannot be continued onto
the next line with a continuation character.

If no I/O list is specified for a WRITE statement, then in­
formation is read directly from the specified FORMAT statement
and written on the device designated.

Data appears on the external device in the form of records. 6 All
information appearing on input is grouped into records. On output
to the printer a record is one line. The amount of information con­
tained in each ASCII record is specified by the FORMAT state­
ment and the I/ 0 list.

5 Implied DO loops are not allowed in 8K paper tape FORTRAN. Refer
to Implementation Notes at the end of this chapter for a way of circumvent­
ing this restriction.

6 This should not_be confused with the OS/8 record, which is equal to 25610
words (2 DECtape blocks with the 129th word of each block ignored.)

1-12

Each execution of an 1/0 statement initiates the transmission of
a new data record. Thus, the statement:

READC1,100)FIRST,SECO~D,THIRD

is not necessarily equivalent to the statements below where 100 is
the FORMAT statement referenced:

READC1,100)FIRST
READC1,100)SECOND
READC1,100)THIRD

In the second case, at least three separate records are required~
whereas, the single statement

READ (d, f) FIRST, SECOND, THIRD

may require one, two, three, or more records depending upon
FORMAT statement f.

If an I/0 statement requests less than a full record of informa­
tion, the unrequested part of the record is lost and cannot be re­
covered by another 1/0 statement without repositioning the record.

If an I/O list requires more than one ASCII record of informa­
tion, successive records are read.

READ Statement
The READ statement specifies transfer of information from a

selected input device to internal memory, corresponding to a list
of named variables, arrays or array elements .. The READ statement
assumes the following form:

READ (d, f) list

where d is a device designation which may be an integer constant
or an integer yariable, f is a FORMAT statement line number, and
list is a list of variables whose values are to be input.

The READ statement causes ASCII information to be read from
the device designated and stored in memory as values of the
variables in the list. The data is converted to internal form as
specified by the referenced FORMAT statement.

1-13

I

i

l
)

/
I

l
!

I
\. ..

I
I
I
!
/

/

For example:

READC1,15)ETA,PI

WRITE Statement
The WRITE statement specifies transfer of information from

the computer to a specified output. device. The WRITE statement
assumes one of the following forms:

WRITE (d, f) list
WRITE (d, f)

where d is a device designation (integer constant or integer vari­
able), f is a FORMAT statement line number, and list is a list of
variables to be output.

The WRITE statement followed by a list causes the values of the
variables in the list to be read from memory and written on
the designated device in ASCII form. The data is converted to ex­
ternal form as specified by the designated FORMAT statement.

The WRITE statement without a list causes information (gen­
erally Hollerith type) to be read directly from the specified format
and written on the designated device in ASCII form.

DEVICE DESIGNATIONS
The 1/0 device designations used in the READ and WRITE

statements are described in Table 1-1.

Table 1-1 Device ·Designations

Device Code Input Designation Output Designation

1 Teletype keyboard or Teleprinter
low-spce~ reader

2 High-speed reader High-speed punch
37 Card reader (CR8/I) Line printer (LP08)
4 7 Assignable device Assignable device

(see Device Independent 1/0 and Chaining)

Devic~ code 3 is assigned to the card reader (for all READ
statements), and the line printer (for all WRITE statements). The
card reader uses a two-page device handler, which is too large to

7 Device designations 3 and 4 are available only in OS/8 FORTRAN.

1-14

be used wit·h the device independent I/O feature (device code 4).
Therefore, the card reader has·its own device code.

The line printer is a separate output device because it can require
special formatting, such as inserting a Form Feed to skip to the
top of a page. The contents of the first column of any line is a con­
trol character. These control characters are never printed. They
are as follows:

Character in Column 1

space
0
1

all others

FORMAT Statement

Resulting Spacing

single space
double space
skip to top of
next page (Form
Feed)
single space

The nonexecutable FORMAT statement specifies the form and
arrangement of data on the selected external device. FORMAT
statements are of the form:

where m is a statement number and each S is a data field specifica­
tion. Both numeric and alphanumeric field specifications may ap­
pear in a FORMAT statement. The FORMAT statemenr also
provides for handling multiple record formats, skipping characters,
space insertion, and repetition.

FORMAT statements may be placed anywhere in the source
program. Unless the FORMAT statement contains only alpha­
numeric data for direct 1/0 transmission, it will be used in con­
junction with the list of a data transmission statement.

During transmission of data, the object program scans the desig­
nated FORMAT statement; if a specification for a numeric field
is present, and the data transmission statement contains items re­
maining to be transmitted, transmission takes place according to the
specification. This process ceases and execution of the data trans­
mission statement is terminated as soon as all specified items have
been transmitted. The FORMAT statement may contain specifica­
tions for more items than are indicated by the data transmission

1-15

statement. The FORMAT statement may also contain specifica­
tions for fewer items than are indicated by the data transmission
statement, in which case, format control reverts to the rightmost
left parenthesis in the FORMAT statement. If an input list re­
quires more characters than the input device supplies for a given
record, blanks are inserted.

1/0 information which is relevant to the 8K paper tap~ FOR­
TRAN is contained in Implementation Notes at the end of this
chapter.

NUMERIC FIELDS
Numeric field specification codes and the corresponding in­

ternal and external forms of the numbers are listed in Table 1-2.

Table 1-2 Numeric Field Codes

Conversion
Code

Internal Form External Form

E Binary floating point Decimal floating points
with E exponents:
0.324E+10

F Binary floating point Decimal floating point
with no exponent: 283.75

I Binary integer Decimal integer: 79

Conversions are specified by the form:

rEw.d
rFw.d
rlw

where r is a repetition count, E, F, and I designate the conversion
code, w is an integer specifying the field width, and d is an integer
specifying the number of decimal places to the right of the decimal
point. For E and F input, the position of the decimal point in the
ex tern al field takes precedence over the val uc of d. For example:

k When using E format, or with numbers less than 1.0 when usin~ F format
in a WRITE statement. a zero will be typed to the left of the decimal point.
This is not true in 8K paper tape FORTRAN. in which case the example
given would by output as: .324E+ JO

1-16

could. be used to output the line

32 -lr.60 0.59624575E+03

oh the output listing.

The field width should always be large enough to include the
decimal point, sign, and exponent (plus a leading zero in OS/8
FOR TRAN). In all numeric field conversions, if the field width
is not large enough to accommodate the converted number, aster­
isks will be printed; the number is always right-justified in the field.

NUMERIC. INPUT CONVERSION
In general, numeric input conversion is compatible with most

other FORTRAN processors. A few exceptions are listed below:

1. Blanks are ignored except to determine in which field digits
fall. Thus, numbers are treated· as if they are right-justified
within a field. In an F5.2 format, the following:

bbb12
12bbb
00012

are read as the number 0.12 (where 'b' represents a blank
space).

2. A null line delimited by two carriage return/line feed
(CR/LF) combinations is treated as a line of blanks, and
blanks are appended to the right of a line (if necessary) to
fill out a FORMAT statement. Thus:

12 (CR/LF)
12bbb
bbbl2

are identical under an F5 .2 format. If an entire line is blank,
numeric data from that line is read as zeros.

1-17

3. No distinction is made between E and F format on input.
Thus:

100.
100E2
1.E2
10000

are all read identically under either an F5.2 or E5.2 format.

ALPHANUMERIC FIELDS
Alphanumeric data can be transmitted in a manner similar to

numeric data ~y use of the form

rAw

where r is a repetition count, A is the control character, and w is
the number of characters in the field. Alphanumeric characters are
transmitted as the value of a variable in an 1/0 list; the variable
may be either integer or real.

Although w may have any value, the number of characters trans­
mitted is limited by the maximum number of characters which can
be stored in the space allotted for the variable. This maximum
depends upon the variable type; for a real variable the maximum
is six characters, for an integer variable the maximum is two.
characters. The characters are stored in stripped ASCII format. If
not enough data is supplied as input to the variables, the data is
padded with blanks on the right. For example:

READ c 1 , 20) 1¥11 , 1¥12, 1¥13, 1¥14, 1¥15, WS, ·"'11, ,.....,g
20 FORMAT C8Al)

if the user types at this point:

123ABC

followed by a carriage return, the following are the values of the
variables:

1-18

Variable

Ml
M2·
M3
M4
M5
M6
M7
M8

Decimal

~928

-864
-800

96
160
224

-2016
-2016

Octal

6140
6240
6340
0140
0240
0340
4040
4040

ASCII

1
2
3
A
B
c

blank
blank

If the above had been read rn4A2)ormat, the values would be as
follows: '-,,. · _,,.,

Variable Decimal Octal
-~

Ml -910 6162
·M2 -831 6301
M3 131 0203
M4 -2016 4040

. ~. . .
M8 -2016 4040

As a second example:

READ CJ,20> ALP~A

20 FORMAT CA6>

the user types:

123AB

and a carriage return, and the octal value of ALPHA is:

6162 6301 0240

NQTE
The numeric value of alphanumeric
characters stored in floating point
variables is generally not meaningful.

1-19

ASCII

1 2
3 A
BC

blanks

blanks

?

Appendix B lists the octal and decimal (in Al format) repre­
sentations o~. FORTRAN character set .. The decimal representa­
tion applies~~to 8K paper tape ~S/8 FORTRAN.

HOLLERITH CONVERSION
Alphanumeric data may be transmitted directly from the FOR­

MAT statement by using Hollerith (H) conversion. H-conversion
format is normally referenced by WRITE statements only.

In H-conversion, the alphanumeric stringjs specified by the form

where H is the control character and n is the number of characters
in the string, including blanks. For example, the statement below

· can be used to print PROGRAM COMPLETE on the output list­
ing.

FORrY:AT C 1 7H PRO GRAM CO.MPLETE)

A Hollerith string may consist of any characters capable of
representation in the processor. The space character is a valid and
significant character in a Hollerith string.

An attempt to use H format specifications with a READ state­
ment will cause characters from the format field to be either printed
or punched. This can be a useful feature since it provides a simple
way of identifying data that is to be read from the Teletype key­
board. For example, the following instructions:

READ Cl,30)A,B
30 FORMAT C4HA = ,F7.2/4HB = ,F7.2)

cause A = and B = to be printed out before the data is read.
By merely enclosing the alphanumeric data in single quotes, the

same result is achieved as in H-conversion; on input, the characters
between the single quotes are typed as output characters, and on
output, the characters between the single quotes (including blanks)
are written as part of the output data. For example, when referred
to from a WRITE statement:

50 FORMAT C' PROGRAM COMPLETE')

1-20

causes PROGRAM COMPLETE to be printed. This method
eliminates the need to count characters.

BLANK OR SKIP FIELDS
Blanks can be introduced into an output record or characters

skipped on an input record by use of the nX specification. The
number n indicates the number of blanks or characters skipped and
must be greater than zero. For example:

FORMATCSH STEPI5,10X2HY=F7·3)

can be used to output the line:

STEP 28 Y= 3·872

MIXED FIELDS
A Hollerith format field may be placed among other fields of

the format. The statement:

FORMATCI5,7H FORCE=F10.5)

can be used to output the line:

22 FORCE= 17·68901

The separating comma may be omitted after a Hollerith format
field, as shown above.

REPETITION OF FIELDS
Repetition of a field specification may be specified by preceding

the control character E, F, or I by an unsigned integer giving the
number of repetitions desired.

is equivalent to:

1-21

REPETITION OF GROUPS
A group of field specifications may be repeated by enclosing the

group in parentheses and preceding the whole with the repetition
number.

For example:

is equivalent to:

MULTIPLE RECORD FORMATS
To handle a group of output records where different records

have different field specifications, a slash is used to indicate a new
record. For example, the statement:

FORMAT<3I8/!5,2F8·4)

is equivalent to:

FORMAT< 318)

for the first record and

FORMAT< !5,2F8.4)

for the second record.

The separating comma may be omitted when a slash is used.
When n slashes appear at the end or beginning of a format, n blank
records may be written on output (producing" a CR/LF for each
record) or ignored on input. When n slashes appear in the middle
of a format, n-1 blank records are written or n-1 records skipped.
Both the slash and the closing parenthesis at the end of the format
indicate the termination of a record. If the list of an I/0 state­
ment dictates that transmission of data is to continue after the
closing parenthesis of the format is reached, the format is repeated

1-22

from the last open parenthesis of level one or zero. Thus, the
statement:

causes the format:

to be used on the first record, and the format:

to be used on succeeding records.

As a further example, consider the statement:

The first record has the format:

~and successive records have the format:

CONTROL STATEMENTS
The control statements GO TO, IF, DO, PAUSE, STOP, and

END alter the sequence of statement execution, temporarily or
permanently halt program execution, and stop compilation.

GO TO Statement
The GO TO statement has two forms: unconditional and com­

puted.

UNCONDITIONAL GO TO
Unconditional GO TO statements are of the form:

GO TO n

1-23

where n is the number of an executable statement. Control is trans­
ferred to the statement numbered n.

COMPUTED GO TO
Computed GO TO statements have the form:

GO TO (n1, n2, ... , nk), J

where n1, n:!, . . . , nk are statement numbers and J is a nonsub­
scripted integer variable. This statement transfers control to the
statement numbered n1 , n2 ••• , nk if J has the value 1, 2, ... , k,
respectively. The index (J in the above example) of a computed
GO TO statement must never be zero or greater than the number
of statement numbers in the list (in the example above, not greater
thank). For example. in the statement:

the variable K acts as a switch, causing a transfer to statement 20
if K == 1, to statement 10 if K == 2, or to statement 5 if K = 3.

IF Statement
Numerical IF statements are of the form:

IF (expression) n 1, n2, n:l

where ni, n:!, n:{ are statement numbers. This statement transfers
control to the statement numbered n 1 , n:!, n:{ if the value of the
numeric expression is less than, equal to, or. greater than zero,
respectively. The expression may be a simple variable or any
arithmetic expression.

IF CETA)4,7,12
IFCKAPPA-LC10))20,14,14

DO Statement
The DO statement simplifies the coding of iterative procedures.

DO statements are of the form:

DO n i-'---- m1, m:!, m:i

where n is a statement number, i is a scalar integer variable, and
mi, m2, m:i are integer constants or nonsubscripted integer vari­
ables. If m:i is not specified, it is understoocl to be 1.

1-24

The DO statement causes the statements which follow, up to
and including the statement numbered n, to be executed repeatedly.
This group of statements is called the range of the DO statement.
In the example above, the integer variable i is called the index, the
values of m1 , m:!, ma are, respectively, the initial, terminal, and in­
crement values of the index.

For example:

DO 10 J= 1, N
DO 20 I=J,K,5
DO 30 L=I,J,K

The index is incremented and tested before the range of the DO is
executed. After the last execution of the range, control passes to.
the statement immediately following the terminal statement in wlfa~
is called a normal exit. An exit may also occur by a transfer out
of the range taking place before the loop has been -executed th~
total number of times specified in the DO statement. /

DO loops may be nested, or contained within one another, pro­
vided the range of each contained loop is entirely within the range
of the containing DO statement. Nested DO loops may contain tlle
same terminal statement, however. A transfer into a DO loop from
outside the range is not allowed.

Within the range of a DO statement, the index is available for
use as an ordinary variable. After a transfer from within the range,
the index retains its current value and is available for use as a
variable.·n The values of the initial, terminal, and increment vari­
ables for the index and the index of the DO loop may not be
altered within the range of the DO statement.

9 After a normal exit from a DO loop, the index of the DO statement has
the value of the index the final time through the loop plus whatever incre­
ment was assigned. For example:

DO 10 I=l,S

after a normal exit the value of the index is 6. However, it is good program­
ming practice to avoid using the index as a variable following a normal exit
until it has lJeenredefined, as according to ANSI FORTRAN Standards the
value is undefined.

1-25

The last statement of a DO loop must be executable, and must
not be an IF, GO TO or DO statement.

CONTINUE Statement
This is a dummy statement, used primarily as a target for trans­

fers, particularly as the last statement in the range of a DO state­
ment. For example, in the sequence:

DO 7 K=INIT,LIMIT

7 CONTINUE

a positive value of X(K) begins another execution of the range.
The CONTINUE provides a target address for the IF statement
and ends the range of the DO statement.

PAUSE, STOP and END Statements
The PAUSE and STOP statements affect FORTRAN object pro­

gram operation; the END statement affects assembler operation
only.

PAUSE STATEMENT
The PAUSE statement enables the program to incorporate oper­

ator activity into the sequence of automatic events. The PAUSE
, statement assumes one of two forms:

or
PAUSE
PAUSE n

where n is an unsigned decimal number.
Execution of the PAUSE statement causes the octal equivalent

of the_ decimal number n to be displayed in the accumulator on the
user's console. Program execution may be resumed (at the next
executable statement) by depressing the CONTinue key on the
console.

In some cases the PAUSE statement may be used to give the
operator a chance to ,change data tapes or to remove a tape from
the punch. When this is done it is necessary to follow the PAUSE

1-26

statement with a call to the OPEN subroutine. This subroutine
initializes the 1/0 devices and sets hardware flags that may have
been cleared by pressing the tape feed button. For example:

PAUSE
CALL OPEN

NOTE
The CALL OPEN statement in OS/8 FOR­
TRAN also resets all I/ 0 on unit 4, the as­
signable channel. Any further READs or
WRITEs on unit 4 without an intervening
IOPEN or OOPEN will print an error mes­
sage and abort.

STOP STATEMENT
The STOP statement has the form:

STOP

It terminates program execution. STOP may occur several times
within a single program to indicate alternate points at which ex­
ecution may cease. Program control is either directed to a STOP
statement or transferred around it.

END STATEMENTS
The END statement is of the form:

END

and signals the compiler to terminate compilation. The END state­
ment must be the last statement of every program. (In OS/8
FORTRAN, the END statement generates a STOP statement as
well.)

SPECIFICATION STATEMENTS
Specification statements allocate storage and furnish information

about variables and constants to the compiler. The specification
statements are COMMON, DIMENSION, and EQUIVALENCE
and, when used, must appear in the program prior to any execut­
able statement.

1-27

COMMON Statement
The COMMON statement causes specified variables or arrays to

be stored in an area available to other programs. By means of
COMMON statements, the data of a main program and/ or the
data of its subprograms may share a common storage area. Vari­
bles in COMMON statements are assigned tQ locations in ascend­
ing order in field 1 beginning at location 200 storage allocation.
The COMMON statement has the· general form:

COMMON Vi, V;!, •.. , V 11

where v is a variable name. See the section entitled Common Stor­
age Allocation for greater detail.

DIMENSION Statement
The DIMENSION statement is used to declare array identifiers

and to specify the number and bounds of the array subscripts. The
information supplied in a DIMENSION statement is required for
the allocation of memory for arrays. Any number of arrays may be
declared in a single DIMENSION statement, The DIMENSION
statement has the form:

DIMENSION s1 , s:!, ... , Su

wheres is an array specification. For example:.

D I MENS ION A C 1 0 0)
DIMENSION YC10),P0RTC25),8(10,10),JC32)

Dimension statements are used for the purpose of reserving
sufficient storage space for anticipated data; it is the user's respon­
sibility to see that his subscripting does not conflict with the
DIMENSION statement" declarations. For example:

DIME~SIO~ I<l~>,JC10>,KC10>

1(2,4>=2
J(l2l=3

The above statements would assemble without error; at run time
I(8) would be set equal to 2 and K(2) would be set equal to 3.

N<J3:E
When variables in common storage are
dimensioned, the COMMON statement must
appear before the DIMEN:Sl~,p~~tatem.ent.

1-28

EQUIVALENCE Statement
The EQUIVALENCE statement causes more than one variable

within a given program to share the same storage location. This is
useful when the programmer desires to conserve storage space. The
form of the statement is:

EQUIVALENCE (vi, v:! ...) , ...

where v represents a variable name. The inclusion of two or more
variables within the parenthetical list indicates that these variables
are to share the same memory location and thus have the same
value. For example:

EQUIVALENCE< RED, BLUE>

The variables RED and BLUE are now of equal value. The sub­
scripts of array variables must be integer constants. For example:

EQUIVALENCECX,AC3),y(~,l)),(BETAC8,2),AL~HA)

Because of core memory restrictions within the compiler, vari­
ables cannot appear in EQUIVALENCE statements more than
once.

EQUIVALENCE<A,B,C>

is valid, but the statement:

EQUIVALENCECA,B>,CB,C>

would not compile correctly.

Variables may not appear in both EQUIVALENCE and COM­
MON statements.

SUBPROGRAM STATEMENTS
External subprograms are defined separately from the programs

that call them, and are complete programs which conform to all
the rules of FORTRAN programs. They are compiled as closed
subroutines; that is, they appear only once in core memory regard­
less of the number or times they are used. External subprograms
are defined by means of the statements FUNCTION and SUB­
ROUTINE. Functions and subroutines must be compiled indepen ...
dently of the main program and thenJoaded together with the main
program by the Linking Loader.

1-29

NOTE
Care should be exercised when naming a
subprogram or subroutine. It must not have
the same name as any of the FORTRAN
library functions or subroutines, or assembler
mnemonics or pseudo-ops, as errors are likely
to result. The Library Functions are listed in
this chapter, and the symbol table for the

, SABR Assembler is listed in Appendix C.

Subprogram definition statements may optionally contain dummy
arguments representing the arguments, of the subprogram. They
are used as ordinary identifiers within the subprogram and are
replaced by the actual arguments when the subprogram is executed.

Functi@n·,··Subprograms
A function subprogram is a subprogram which is ca~~l:e:d·c..from

an arithmefrc expression within the main program and' returns a
single numeric value. A function. subprogram begins with a FUN C­
TI ON statement and ends with an END statement. It returns con­
trol to the calfing program by means of one or more RETURN
statements. The FUNCTION statement has the form:

FUNCTION identifier (a1, a:! ... , au)

where FUNCTION (or FUNC) declares that the program which
follows is a function subprogram, and identifier is the name of the
function being defined. The identifier must appear as a scalar vari­
able and be assigned a value during execution of the subprogram.
This value is the function's value.

Arguments appearing in the list enclosed in parentheses are
dummy arguments representing the function arguments. A function
must have at least one dummy argument. The arguments must
agree in number, order and type with the actual arguments used in
the cailing program. Function subprograms may be cailed with ex­
pressions and array names as arguments. The corresponding dummy
arguments in the FUNCTION statement would then be scalar and
array identifiers, respectively. Those representing array names must
appear within the subprogram in a DIMENSION statement. Di­
mensions must be indicated as constants and should be smailer

1-30

than or equal to the dimensions of the corresponding arrays in the
calling program. Dummy arguments to FUNCTION cannot appear
in COMMON or EQUIVALENCE statements within the func­
tion subprogram.

A function should not modify any arguments which appear in
the FORTRAN arithmetic expression calling the function. The
only FORTRAN statements not allowed in a function subprogram
are SUBROUTINE and other FUNCTION statements.

The type of function is determined by the first letter of the identi­
fier used to name the function, in the same way as variable names.

The following short example calculates the gross salary of an
individual on the basis of the number of hours he has worked
(TIME) and his hourly wage (RATE). The function calculates
time and a half for overtime beyond 40 hours. The function name
is SUM.

FUNCTION SUMCTIME,RATE)
IF (TIME-40.l 10,10,20

10 SUM ; TIME * RATE
RETURN

20 SUM; <40·*RATE> + CTIME-40·>*1·5*RATE
RETURN
END

Depending upon which path the program takes, control will re­
turn to the main program at one of the two RETURN statements
with the answer. Assume that the main program is set up with a
statement to read the employee's weekly record fr9m a list of
information prepared on the high-speed reader:

READC2,5) NAME, NUM, NDEP, TIME, RATE

This statement reads the person's name, number, department num­
ber, time worked, and hourly wage. The main program then cal­
culates his gross pay with a statement such as the following:

GROSS ; SUMCTIME,RATE>

and goes on to calculate withholdings, etc.

Subroutine Subprograms
A subroutine subprogram is a subprogram which is called by

the main program via a CALL statement, and may return several

1-31

or no values. The subprogram begins with a SUBROUTINE state­
ment and returns· control to the· calling program by means of one
or more RETURN s·tatements. The SUBROUTINE statement has
the form:

SUBROUTINE identifier (al, a:! ... an)

where SUBROUTINE declares the program which follows to be a
subroutine subprogram and the identifier is the subroutine name.
The arguments in the list enclosed in parentheses are dummy argu­
ments representing the arguments of the subprogram. The dummy
arguments must agree in number, order, and type with the actual
arguments, if any, used by the calling program.

Subroutine subprograms may have expressions and. array names
as arguments. The dummy arguments may appear as scalar or array
identifiers. Dummy identifiers which represent array names must
be dimensioned within the subprogram by a DIMENSION state­
ment. The dummy arguments must not appear in an EQUIV A­
LENCE or COMMON statement in the subroutine subprogram.

A subroutine subprogram may use one or more of its dummy
identifiers to represent results. The subprogram name is not used
for the return of results. A subroutine subprogram need not have
any arguments, or may use the arguments to return numbers to the
calling program. Subroutines are generally used when the result of
a subprogram is not a single value.

Example SUBROUTINE statements are as follows:

S1JBROUTI NE FACTO c COEFF, N,KOOTS)
SUBROUTINE RESID CNUM,N,OE~,~,RES>
SUBROUTINE SERIE

The only FORTRAN statements not a"llowed in a subroutine sub­
program are FUNCTION and other SUBROUTINE statements.

The following short subroutine takes two integer numbers from
the main program and exchanges their values. If this is to be done
at several points in the main program, it is a procedure best per­
formed by a subroutine.

1-32

SUBROUTINE !CHGE CI,J>
ITEM= I
I=J
J=ITEM
RETURN
END

The calling statement for this subroutine might look as follows:

CALL ICHGF CM,N)

where the values for the variables M and N are to be exchanged.

CALL STATEMENT
The CALL statement assumes one of two forms:

CALL identifier
or CALL identifier (a1, a:! ... , au)

The CALL statement is used to transfer control to a subroutine
subprogram. The identifier is the subroutine name.

The arguments (indicated by a1 , through an) may be expres­
sions or array identifiers. Arguments may be of any type, but must
agree in number, order, type, and array siz~ with the corresponding
arguments in the SUBROUTINE stat€_ment of the called subrou­
tine. Unlike a function, a subroutine may produce more than one
value and cannot be referred to as a basic element in an expression.

A subroutine may use one or more of its arguments to return
results to the calling program. If no arguments at all are required,
the first form is used. For example:

CALL EXIT
CALL TEST CVALUE,123,275)

The identifier used to name the subroutine is not assigned ·a
type and has no relation to the types of the arguments. Arguments
which are constants or formed as expressions must not be modified'
by the subroutine.

1-33

RETURN STATEMENT
The RETURN statement has the form:

RETlJRN

This statement returns control from a subprogram to the calling
program. Each subprogram must contain at least one RETURN
statement. Normally, the last statement executed in a subprogram
is a RETURN statement; however, any number of RETURN state­
ments may appear in a subprogram. The RETURN statement may
not be used in a main program.

Function Calls
Function calls are provided to facilitate the evaluation of func­

tions such as sine, cosine, and square root. A function is a sub­
program which acts upon one· or more quantities (arguments) to
produce a single quantity called the function value. A function call
may be used in place of a variable name in any arithmetic ex­
pression.

Function calls are denoted by the identifier which names the
function (i.e., SIN, COS, etc.) followed by an argument enclosed
in parentheses as shown below:

IDENT (ARG, ARG, ... , ARG)

where !DENT is the identifying function name and ARG is an
argument which may be any expression. A function call is eval­
uated before the expression in which it is contained.

Library Subprograms
The standard FORTRAN library contains built-in functions, in­

cluding user-defined functions and subroutine subprograms.
Table 1-3 lists the built-in functions. These are open subrou­

tines: they are incorporated into the compiled program each time
the source program names them.

Function and subroutine subprograms are closed routines; their
coding appears only once in the compiled program. These routines
are entered from various points in a program through jump-type
linkages.

l-34

NOTE
A FORTRAN compiler and its correspond­
ing Library constitute an interlocking set of
programs. No user should attempt to compile
a program under OS/8 and load it with the
paper tape FORTRAN, or vice versa. Sim­
ilarly, programs developed with the current
FORTRAN compiler should not be run un­
der an old FORTRAN system.

Table 1-3 Function Library

Type of
Function Definition Argument(s)

ABS(x) the absolute value of x real
IABS(x) the absolute value of x integer
FLOAT(x) convert x from integer to real for- integer

mat
IFIX(x) convert x from real to integer for- real

mat
IREM(O) remainder of last integer divide is integer

feturnedlO
IREM(x/y) remainder of x/y is returned10 integer
EXP(x) exponential of x, eX real
ALOG(x) natural logarithm of x, log('x real
SIN(x) sine of x, where x is given in real

radians
COS(x) cosine of x, where x is given Ill real

radians
TAN(x) tangent of x, where x is given in real

radians
ATAN(x) arctangent of x, where x is given real

in radians
SQRT(x) square root of x is returned real

10 If IREM is called as IREM (x/y), the remainder of x/y will be returned.
If the argument of IREM does not contain a division, the remainder of the
last integer division will be returned. Subsequent calls to IREM without a
division being performed will return the value 0. If a READ or WRITE is
executed after a division but before calling IREM, the value 0 will be
returned.

1~35

Table 1-3 (Cont.) Function Library

Type of
Function Definition Argument (s)

IRDSW(O) read the console switch register, integer
returning the decimal equiva-
lence of the octal integer in the
switch register. The switch reg-
ister can be set before execut-
ing the FORTRAN program,
or durirtg execution using the
PA USE statement.

Floating Point Arithmetic
In general, floating point arithmetic calculations are accurate to

seven digits with the eighth digit being questionable. Subsequent
digits are not significant even though several may be typed to satisfy
a field width requirement. With the exception of the arctangent
function, which is accurate to seven places over the entire range,
results of function operations are accurate to six decimal places.11

The floating point arithmetic routines check for both overflow
and underflow. Overflow will cause the OVFL error message (or
FPNT if using 8K paper tape FORTRAN) to be typed and pro­
gram execution will be terminated. Underflow is detected but will
not cause an error message. The arithmetic operation involved will
yield a zero result.

11 The arctangent function in 8K paper tape FORTRAN is accurate to six
decimal places for arguments whose absolute value is greater than .01. -

1-36~

DEVICE INDEPENDENT 1/0 AND CHAINING1:!

OS/8 FORTRAN provides for device independent, file-oriented,
formatted 1/0 through use of the device number 4 in the READ
and WRITE statements and several utility subroutines. These are
described below.

The I 0 PEN Subroutine
The subroutine IOPEN prepares the system to accept input

from a specified device when device code 4 is used in a READ
statement. IOPEN takes two arguments which are interpreted as
Hollerith strings. After a

CALL IOPENCA,8)

any READ statement reading from device 4 will read from the file
specified by B (which must have the extension .DA) on the device
specified by A. For example:

c ALL I 0 p EN (I D TA 5 I , I IN p u T I)

will prepare for input from the file DT AS: INPUT.DA

will prepare for input from the device FI. which, in this case, is a
non-file-structured device.

If the file and device names are input via READ statements
which use A format in their FORMAT statements, then A6 format
must be used. ((1 signs rather than spaces should be used to fill in

. 1~ The information described in this section is available only in OS/ 8
FORTRAN.

1-37

empty characters. For example, the following statements are con­
tained in a program:

WRITE (1,20)
20 FORMAT C'ENTER FILE NAME')

READ Cl,22)FNAME
22 FORMAT CA6)

CALL IOPENC'DSK',FNAME)

The Teletype prints:

ENTER FILE NAME

and the user responds:

ABC@@@

The OOPEN Subroutine
The subroutine OOPEN prepares the system to send output to

a specified device when device code 4 is used in a WRITE state­
ment. The arguments of OOPEN arc treated like those of !OPEN.
Future WRITE statements using device 4 write on the device and
file specified in the call to OOPEN. An error message is printed
if the program has previously issued a CALL OOPEN without
issuing a subsequent CALL OCLOSE. For example:

CALL OOPENC 'PTP' ,(,?!)

prepares device 4 to output on device PTP.

CALL OOPENC 'SYS',' LAOt:')

prepares device 4 to output to the file SYS: LADE.DA.

The OCLOSE Subroutine
The subroutine OCLOSE is called with no arguments. Its func­

tion is to terminate output on the output file opened by OOPEN.
If OCLOSE is not called after a file has been written, that output
file will never exist on the specified device. ·

The CHAIN Subroutine
A call to the subroutine CHAIN terminates execution of the call­

ing program and starts execution of the core image on the system
device as specified by the argument to CHAIN. Variables in com­
mon storage are not disturbed. For example:

CALL CHAINC'PROG2')

causes the file SYS:PROG2.SV to be loaded and started. Notice
that PROG2 must be. compiled and stored on the system device as
" ..:ore image (.SV) file in order to be successfully accessed.

The EXIT Subroutine
To return to the Keyboard Monitor from a FOR TRAN program,

the EXIT subroutine is used, as follows:

CALL EXIT

DECTAPE I/O ROUTINES
RT APE and WT APE (read tape and write tape) are the DEC­

tape read and write subprograms for the 8K FORTRAN and 8K
SABR systems. For the paper tape FORTRAN system, these sub­
programs are furnished on one relocatable binary-coded paper tape
which must be loaded into field 0 by the 8K Linking Loader, where
they occupy one page of core.

RT APE aI1d WT APE allow the user to read and write any
amount of core-image data onto DECtape in absolute, non-file­
structured data blocks. Many such data blocks may be stored on
a single tape, and a block may be from 1 to 4096 words in length.

RT APE and WT APE are subprograms which may be called with
standard, explicit CALL statements in any SK FORTRAN or
SABR program. Each subprogram requires four arguments sep­
arated by commas. The arguments are the same for both subpro­
grams and are formatted in· the same manner. They specify the
following:

1. DECtape unit number (from 0 to 7)
2. Number of the DECtape block at which transfer is to start.

The user may direct the DECtape service routine to begin
searching for the specified block in the forward direction

1-39

rather than the usual backward direction by making this
argument the two's complemen.t of the block number. For
additional information on this and other features the reader
is referred to the DECtape Programmer's Reference Man­
ual (DEC-08-SUCO-D).

3. Number of words to be transferred (1 <N < 409,6) .
4. Core address at which the transfer is to start.

The general form is:

where n1 is the DECtape unit number, n:! is the block number, n:~
is the number of words to be transferred, and n-i is the starting
address.

In 8K FORTRAN, an example CALL statement to RTAPE
could be written in the following format (arguments are taken as
decimal numbers) :

In this example, LOCA may or may not be in common.

As a typical example of the use of RT APE and WT APE, assume
that the user wants to store the four arrays A, B, C, and D on a
tape with word lengths of 2000, 400, 400, and 20 respectively.
Since PDP-8 DECtape is formatted with 1474 blocks (numbered
0-2701 octal) of 129 words each (for a total of 190,146 words) 1

\

A, B, C, and D will require 16, 4. 4, and 1 blocks respectively.

13 The block numbers used by RTAPE and WTAPE should not be confused
with the record numbers used by OS/8. An OS/8 record is 256 words­
roughly twice the size of a DECtape block. An RTAPE or WTAPE record
number is exactly twice the corresponding OS/8 record number. For ex­
ample, to read the first segment of the OS/8 directory on DECtape # 5,
the statements:

DIMENSION IDIRC25R)
CALL RTAPFCS,?,,25~,IDIR)

would read Block 2 (OS/ 8 Block 1) of DECtape # 5.

1-40

Each array must be stored beginning at the start of some DECtape
block. The user may write these arrays on tape as follows:

~

CALL WTAPEC0,1,2000,A>
CALL WTAPEC0,17,400,B>
CALL WTAPEC0,21,400,C>
CALL WTAPEC0,25,20,D>

The user may also read or write a large array in sections by
specifying only one DECtape block { 129 words) at a time. For
example, B could be read back into core· as follows:

CALL RTAPEC~,17,258,BCl>>
CALL RTAPEC0,19,129,BC259))
CALL RTAPEC0,20,13,BC388>>

As shown above, it is possible to read or.· write less than 129
words starting at the beginning of a DECtape block. It is impos­
sible, however, to read or write starting in the middle of a block.
For example, the last 10 words of a DECtape block may not be
read without reading the first 119 words as well.

A DECtape read or write is normally initiated with a backward
search for the desired block number. To save searching time, the
user may request RT APE or WT APE to start the block number
search in the forward direction. This is done by specifying the neg­
ative of the block number. This should be used only if the number
of the next block to be referenced is at least ten block numbers
greater than the last block number used. For e:x_ample, if the user
has just read array A and now wants array D, he may write:

CALL RTAPEC0,1,2000,~l
CALL RTAPEC0,-27,20,0l

The following section of a program demonstrates the use of
DECtape 1/0. Assume that values are already present on the
DECtape.

1-41

DIMENSION DATAC500J

NB=0
SUM=0·
DO 100 N=l,10
CALL RTAPE C 1, -NR, 1500, DATA);
TEM=0·
DO 50 K=l,500

50 TEM=TEM+DATACK)
SUM=SUtv'.+TEM

100 NR=NR+2LJ
AMEAN=SUM/5000.,
WP.ITE Cl,~10) SUM, AMEAN
CALL EXIT

110 FORMAT C'SUM=',E15.7' MEAN=',E15.7///)
END

OS/8 FORTRAN LIBRARY SUBROUTINES14

Table 1_-4 contains a summary of the OS/8 FORTRAN library
subroutines. This list describes the routines available under OS/8
FORTRAN, their functions, and other routines which must also
be present in order for them to be· used. The Subroutine Names
listed are the files which comprise OS/8 Source DECtape #3
(available from the Software Distribution Center upon request).

Table 1-4 OS/ 8 FORTRAN Library Subroutines

Entry
Points, Routines Core

or Defined That are Require- Function the
Subroutine External Pre- men ts Routine

Name Symbols requisites (Pages) Performs

JOH 'READ' FLOAT 11 Handles Input
'WRITE' UTILTY and Output
'JOH' .INTEGR Conversion

H This table does not apply to 8K paper tape FORTRAN. The Subpro­
gram Library for the paper tape version is available on two relocatable
binary paper tapes. Part 1 contains those subprograms used by almost every
FORTRAN/SABR program. The organization of the programs is described
in the SABR chapter of this manual.

1-42

Table 1-4 (Cont.) OS/8 FORTRAN Library Subroutines

Entry
. Points, Routines Core

or Defined That are Require- Function the
Subroutine External Pre- men ts ·Routine

Name Symbols requisites (Pages) Performs

FLOAT 'FAD' UTILTY 5 Floating
'FSB' Point Arith-
'FMP' metic Package
'FDV'
'STO'
'FLOT'
'FLOAT'
'FIX'
'IFIX'
'IFAD'
'ISTO'
'ABS'
'CHS'

UTILTY 'OPEN' INTEGR 3 FORTRAN De-
'GENIO' vice Routines,
'EXIT' Error Exit,
'ERROR' Normal Exit
'CKIO'

POWERS 'IFPOW' FLOAT 3 Handles Num-
'FFPOW' UTILTY hers to
'EXP' IPOWRS Floating
'ALOG' INTEGR Powers

INTEGR 'IREM' UTILTY 2 Integer Math
'JABS' Package
'DIV'
'MPY'
'IRDSW'
'CLEAR'
'SUBSC'

1-43

Table 1-4 (Cont.) OS/8 FORTRAN Library Subroutines

Entry
Points, Routines Core

or Defined· That are Require- Function the
Subroutine External Pre- men ts Routine

Name Symbols requisites (Pages) Performs

TRIG 'SIN' FLOAT 2 Handles Sine.
'COS' Cosine. and
'TAN' Tangent

ATAN 'ATAN' FLOAT 2 Handles Arc-
tangents

SQRT 'SQRT' FLOAT 1 Handles Square
UTILTY Roots

IPOWRS 'II POW' FLOAT 1 Handles Num-
'FI POW' INTEGR bers to Integer

Powers

I OPEN 'IO PEN'. UTILTY 1 OS/ 8 Device-
'OOPEN' Independent
'OCLOS' 1/0, and
'CHAIN' Chaining

Routines

RWTAPE 'RTAPE' UTILTY 1 OS/ Indepen-
'WT APE' dent DECtape

1/0 Routines

MIXING SABR AND FORTRAN STATEMENTS1r.

An S in column 1 of an input line identifies that line as contain­
ing SABR code. This feature is very useful for performing in­
structions which are undefined in the FORTRAN language. For
example:

rn_ Available only in OS/8 FORTRAN.

1-44

s
s
s
55 -

D IM EN S I ON M C 1 0)

J=M C 1)
. DO 55 K=?., 10

L=MCK)
TAD \L
AND. \LJ
DCA \J
CONTINUE

This section of code will form the logical AND of M (1) through,
M(10) in the variable J.

Notice that whenever a FORTRAN variable is used in a SABR
statement, the variable name is preceded by a backslash C"'-).
FORTRAN line numbers referenced in SABR statements, are also
preceded by a·· backslash for identification purposes. (A backslash
is produced by typing a SHIFT/L.)

Information on calling subroutines which are written in SABR
assembly language from a FORTRAN program may be found in
the SABR. ch~pter of this manual.

SIZE OF A FORTRAN PROGRAM ·
The maximum _size of any FORTRAN program is 36 octal or

30 decimal pages of code.
OS/8 can run FORTRAN programs in 8 to 32K of core. No

one program or subprogram can be longer than 4K, however.
The :user: ·can- estimate the size of his program as follows: Take

the amount of core available on the system (at least SK) and from
it subtract 4K for the linkage subroutines, external symbol table,
and I/O, math, error, and utility subroutines. From the remainder
subtract the amount of storage required for data. The remaining
space can be used to hold FORTRAN coding, at the rate of 50-70
FORTRAN statements per 1 K of core.

One way to have a longer FOR TRAN program in core than is
usually possible is to divide a FORTRAN program into three
chained segments:

Segment I-inputs data into common storage
. Segment 2-· FORTRAN program for data processing
Segment 3-does output to desired device(s)

1-45

This gives two space advantages:

1. The entire program does not have to fit into available core,
only the largest segment.

2. If no 1/0 statements are used in th~ middle (computational)
segment, the 1/0 conversion routines will not be loaded with
that segment. Since these routines occupy over 11 OOrn words,
this technique allows the computational segment to be from
50 to 80 statements longer than a similar program contain ...
ing I/0 statements.

When chaining to a subroutine, the user must be sure he has com·
piled, loaded, and saved a complete runnable main pro¥ram on the
system device. This program is brought into core by the FORTRAN
CHAIN subroutine.

Information concerning using FORTRAN or SABR with the
interrupt on, or using PAL8 with SABR or FORTRAN can be
found in the OS/8 chapter of Introduction to Programming,

OPERATING INSTRUCTIONS
The Compiler, SABR Assembler, and Linking Loader are used

(in that order) to compile, assemble, and execute FORTRAN pro ...
grams. Throughout the following proc~dures, the Data Field
setting can be ignored since all system tapes, with the exception
of Linking Loader, have field settings coded on them.

Loading and Operating the Compiler
The following instructions for loading and operating the compiler

apply only to 8K paper tape FORTRAN. (OS/8 operating instruc"\'
tions are found in Introduction to Programming.)

~

1. Make sure the Binary Loader is in memory, assume field 1,
2. Place· the FORTRAN Compiler binary tape in the read~r.
3. Set Switches 6-8 == 00 I.
4. Press EXTD ADDRess LOAD.
5. Set Switch Register == 7777.
6. Press ADDress LOAD.
7. , If using a high-speed reader, d~press Switch Register bit 0.
8. Press CLEAR and CONTinue.
9. The FORTRAN Compiler has now been loaded. into mem~

ory by the Binary Loader. Parts of the compiler will load into
field 0 and field 1.

1-46

It is assumed that the programmer has written his main program
and possibly one or m~re subprograms, and that these source pro­
grams have been punched on paper tape in ASCII format. Re­
member that each source tape must have an END statement at the
end of the tape.

After the compiler has been loaded into memory, it is used to
translate each FORTRAN statement into one or more SABR as­
sembler instructions. The compiler output will be punched in two
parts separated by approximately three feet of blank tape. The
first part (executable code) will be punched as the source tape is
read. The second part (variable storage and constants) will be
punched after the entire source tape has been read.

It may be desirable to suppress all compileroutput the first time
a particular program is compiled, simply to check for errors. To do
this it is necessary to load the compiler and then deposit 307 5 in
location 03 5 6 (field 0), prior to starting ,the compiler.

1. Set the 1 console switches as follows: switches 6-8 = 001, and
switches 9-11 = 000.

2. Press EXTD ADDRess LOAD.
3. Place the FORTRAN program source tape in the reader,

and press the punch ON.
4. Set Switch Register = 1000 (the compiler may also be

started at location 5364 in field 0).
5. Press ADDress LOAD and CLEAR and CONTinue.
6. As soon as the compiler has typed out an identification num­

ber, it will begin compiling the user's program. The compiler
output will generally be several times the length of the FOR-

" TRAN source program.

8K FORTRAN Errors
All compile time, assembly time, and execution time errors are

fatal (the program will not be further processed). For this reason
it is desirable to suppress punched output of the compiler and
assembler until the source program is believed to be correct.

Do not attempt to load or run a program which has assembly
errors. Do not attempt to proceed after an execution time error by
pressing CONTinue. Unpredictable results will be obtained in
either case.

1-47

COMPILER ERROR MESSAGES
When an error is encountered during compilation of a statement,

the incorrect statement and an error message are printed. Further
compilation of that statement is terminated, and output is sup­
pressed for the rest of the compilation. The compiler, however,
will scan the remaining statements for errors, and will print an
error message for any errors found.

An example .of an error message follows:

A=B+M(6)+N<l)

MIXED MODE EXPRESSION

Note that an up arrow (t) was printed directly below the incor­
rect statement. This indicates that the error occurred somewhere
between the point and the beginning of the statement. In some cases
the arrow may point directly at the illegal character or word. but
this cannot always be assumed.

If an error occurs in the middle of a series of continuation lines,
all remaining lines in that statement will be printed with the error
message ILLEGAL CONTINUATION.

The compiler does not print messages for certain errors. This
usually occurs due to one of three reasons:

1. Erroneous FORMAT statements or unbalanced DO state­
ments-at compile time the processing of the FORMAT
statements is superficial and_ errors will not be detected until
execution.

2. No DIMENSION statement for subscripted variables-the
variable is treated as a function name and will not be detected
unless referenced. This can be checked by producing a loader
map or list of undefined external symbols. (OS/8 provides a
U option for producing a loader map, while this is available
in 8K paper tape FORTRAN as a switch option. See the
appropriate operating instructions.)

3. Undefined statement number-the compiler does not detect
undefined statement numbers. These will be caught during
assembly. Therefore, it is important to examine the assembly
symbol table for undefined symbols and statement numbers
before loading and executing the program. In OS/8

1-48

FORTRAN, if no symbol table printout is requested, the
message U AT \ I 0+0000 will occur where there is no
statement numbered 10.

Compiler error messages are self-explanatory:

ARITHMETIC EXPRESSION TOO COMPLEX
EXCESSIVE SUBSCRIPTS
ILLEGAL ARITHMETIC EXPRESSION
ILLEGAL CONSTANT
ILLEGAL CONTINUATION
ILLEGAL EQUIVALENCING
ILLEGAL OR EXCESSIVE DO NESTING
ILLEGAL STATEMENT
ILLEGAL STATEMENT NUMBER
ILLEGAL VARIABLE
MIXED MODE EXPRESSION
SYMBOL TABLE EXCEEDED
SYNTAX ERROR (usually illegal punctuation)

When the paper tape FOR TRAN compiler has finished punching
both sections of tape it will halt. It may be restarted to compile addi­
tional programs by pressing CONTinue.

The paper tape FOR TRAN compiler may be restarted at any
time by pressing HALT and resetting the console switches.

OS/8 FORTRAN contains the following error messages in addi­
tion to those listed above:

Message

1/0 ERROR

NO ROOM FOR OUTPUT

SABR.SV NOT FOUND

Explanation

A device handler has signalled
an .1/0 error.

The file FORTRN.TM cannot
fit on the system device.

The SABR Assembler is not
present on the system device.

NO END ST A TEMENT The input to the compiler has
been exhausted.

COMPILER MALFUNCTION The meaning of this message
has been extended to cover

1-49

various unlikely monitor er­
rors.

SUBR. OR FUNCT. STMT.
NOT FIRST

FORTRAN detected a SUB­
ROUTINE or FUNCTION
statement in the middle of a
computation.

OS/8 FORTRAN LIBRARY ERROR MESSAGES
During execution, the various library programs check for certain

errors and print error messages in the form:

XXXX ERROR AT LOC NNNNN

where XXXX is the error code and NNNNN is the location of the
error. Table 1-5 summarizes the Library Error Messages.

Table 1-5 FORTRAN Library Error Messages

Error Code

ALOG

IOER

CHER

FMTl

FMT2

FMT3

Meaning

The following errors are fatal and cause a re­
turn to the Keyboard Monitor.

Attempt to compute log of negative number.

One of the following has occurred:

1. Device independent input or output
attempted without /I or /0 options,
Refer to Chapter 9 of Introduction to
Programming

2. Bad arguments to !OPEN or OOPEN,
or

3. Transmission error while doing I/O.

File specified as argument to CHAIN not
found. on system device.

Invalid Format Statement

The following input errors are fatal 'unless
input is coming from the Teletype, in which
case the entire READ statement is tried again.

Illegal character in I format.

Illegal character in F or E format.

The following errors do not terminate execu­
tion of the user's program.

1-50

Table 1-5 (Cont.) FORTRAN Library Error Messages

Error Code

DIVZ

EXP

OVFL

FLPW

SQRT

FIX

Meaning

Division by zero-very large number is re­
turned.

Argument to EXP too large-very large
number is returned.

Floating point overflow-very large number
is returned.

Negative number raised to floating point
power-absolute value taken.

Attempt to take square root of negative
number-absolute value used.

Attempt to fix a number >2047; 2047 is
returned.

In addition, the error message:

USER ERROR 1 AT 00537

means that the user tried to reference an entry point of a program
which was not loaded.

To pinpoint the location of a library program execution error:

1. Determine, from the storage map, the next lowest numbered
location (external symbol) which is the entry point of the
program or subprogram containing the error.

2. Subtract, in octal, the entry point location of the program or
· subprogram containing the error from the location of the
error indicated in the error message.

3. From the assembly symbol table, determine the relative ad­
dress of the external symbol found in step l and add that
relative address to the result of step 2.

4. The sum of step 3 is the relative address of the error, which
can then be compared with the relative addresses of the
numbered statements in the program.

1-51

Loading the SABR Assembler
Procedures for loading SABR and assembling a source program

are given below. See Appendix· A for instructions on use of the
Binary Loader. OS/8 SABR instructions are included in the OS/8
chapter of Introduction to Programming.)

1. Make sure the Binary Loader is in memory, assume field I.
2. Set Switches 6-8 == 001.
3. Press EXTD ADDRess LOAD.
4. Set Switch Register == 7777.
5. Press ADDress LOAD.
6. Insert the SABR binary tape into the reader.
7. If using the high-speed reader, depress Switch Register Bit 0.
8. Press CLEAR and CONTinue.
9. SABR will now be loaded into memory by tht? Binary Loader.

Portions of SABR will be loaded into both Field 0 and 1.

Operating the SABR Assembler 1 H

In addition to being a stand-alone assembler, SABR also serves
as the second pass of 8K FORTRAN compilation. For this purpose
the use of SABR is slightly different from that described in the
SABR chapter of this manual. This difference in the operation <;>f
SABR is due only to the unusual format of the FORTRAN com ..
piler output.

The compiler, in one pass, converts the user's FORTRAN
source program into a symbolic machine language program tape
containing standard PDP-8 mnemonics. However, the symbolic tape
produced by the compiler is not a standard format SABR language
tape. It is arranged as shown in the following figure:

s
L E

SYMBOL DEFINITIONS
T

F MAIN PART p p R E 0 E A COMMON, ARRAYS, A A A R
OF PROGRAM;

N R DATA AND u I D T EXECUTABLE D A PROGRAM ENTRY s L E CODE.
R R T POINT. E E

0 R
R

~TRUE START
I

3 OF BLANK TAPE

16 Applies to 8K paper tape FORTRAN only.

1-52

The tape is arranged this way because the data at the end of the
tape cannot be inserted_ in the midst of the executable code, and
some of it which should be at the beginning of the tape is not
known until the pass is completed. Thus, the true start of the sym­
bolic program is near the end of the symbolic tape preceded by a
segment of blank tape and followed by a PA USE statement.

To assemble such a tape with SABR and convert it into relo­
catable binary, one of three methods must be followed. The general
procedure is the same as that described in the SABR chapter but in
particular details it differs. The differences are covered by the three
methods explained below.

METHOD 1
Cut the symbolic tape produced by the compiler into two parts.

The cut should be made at the middle of the blank portion of tape
which separates the· executable code from the symbol definitions.
The section containing the symbol definitions (the latter part of the
tape) should be marked "Section l ," and the section containing the
executable code marked "Section 2."

The first pass through SABR creates the relocatable binary ver­
sion of the user's program; at the end of this pass, the symbol table
may be typed and/ or punched. Pass 2 creates the listing. Section 1
should be inserted in the reader before assembly is begun.

It may be desirable to suppress all assembler output the first time
a particular program is assembled, simply to_ check for errors. To
do this it is necessary to load SABR and then deposit 53 70 in loca­
tion 3165 (Field 0) before beginning step (1) below.

1. Set switches 6-8 == 0, and switches 9-11 == 0.
2. Press EXTD ADDRess LOAD.
3. Set the Switch Register == 0200.
4. Press ADDRess LOAD, CLEAR and CONTinue.
5. SABR now types a sequence of two or three questions;

HIGH SPEED READER?
HIGH SPEED PUNCH?
LISTING ON HIGH SPEED PUNCH?

These questions must be answered with "Y" if the answer
is "yes." Any other answer is ·assumed to be "no." The
third question is typed only if the second is answered "Y."
If the third is answered "Y," both the symboLtable and the

' 1-53

listing will be punched on the high-speed paper tape punch.
Othe;rwise,. they are typed on the teletypewriter. lncidentaily,
the user need not wait for the full question to be typed be ...
fore responding.

6. As soon as SABR has echoed the user's response to the last
question, the punch device and, if it is being used, the Tele- '
type reader, should be turned on. If using the low-speed
reader, the error message E indicates that the user has waited
too long before turning the reader on and will have to start
over.

7. At this point, pass l begins. SABR reads the source tape and
punches the binary tape. After the binary tape has been
completed SABR will type or punch the program symbol
table.

8. If the source tape is in several sections (separate tapes with
PAUSE at the end of all except the last), SABR will halt
at the end of each section. At this point the user should in­
sert the next section in the reader and then press CONTinue.

9. At the end of Pass 1 SABR halts.
10. If the user desires an assembly listing, he should now re­

position the beginning of the source tape in the reader and
press CONTinue.

If the listing is going to be punched on the high speed
punch, the user may want to list the symbol table (at the
end of the binary relocatable type) before beginning Pass 2.

11. At the end of Pass 2 SABR will again halt. It may be re ...
started for assembling another program by pressing CON­
Tinue.

12. SABR Jnay be restarted at any time by pressing HALT, set­
ting the switch register ==0200, pressing ADDress LOAD
·and CLEAR and CONTinue. However, Pass 1 must always
be repeated.

METHOD 2
The user may avoid actually cutting the symbolic tape by ma­

nipulating the tape as if it were two parts. The tape should initially
be inserted in the reader with the separator blank tape over the
read-head. When SABR halts at the PA USE statement at the
physical end of tpe tape, the user should reposition the tape, putting
the physical beginning of the tape in the reader. Then press

1-54

CONTinue. The assembly pass will end at the separator blank tape
code. The assembly listing can be produced in a similar manner,
pressing CONTinue to start the listing pass.

METHOD 3
The third method requires SABR to pass the symbolic tape two

times for each pass of the assembly. However, it allows the tape
to be inserted at its physical beginning. It is based on the fact that
a symbolic tape output by the FORTRAN Compiler has as its
physical first line the special pseudo-op, FORTR. This pseudo-op
has no effect except when a symbolic tape output by the compiler
is assembled using this third method.

1. Insert the symbolic tape in the reader at its physical begin­
mng.

2. Start SABR as usual.
3. Sensing the FORTR statement as the first line, SABR ig­

nores all further data until after it passes over the END
statement. SABR then begins the actual assembly by pro­
cessing the symbol definitions, etc., which are at the latter
end of the tape.

4. Then SABR halts at the PA USE statement which is at the
physical end of the tape. At this time the user should re­
position the symbolic tape in the reader at the physical

· beginning of the tape, and then press CONTinue. SABR
now assembles the executable code portion of the tape in the
normal way.

5. If the user desires an assembly listing, he should proceed
as in Step 10 of Method 1 after SABR finishes the assembly
pass.

The Linking Loader
(The OS/8 Linkin_g Loader is described in Introduction to Pro­

gramming. For additional details concerning the 8K System Linking
Loader, the reader is referred to Chapter 2 of this manual.)

Relocatable binary program tapes produced by SABR assemblies
and the FOR TRAN /SABR Library programs are loaded into mem­
ory by the SK System Linking Loader. The Linking Loader is cap­
able of loading and linking a user's program and subprograms in
any fields of memory, and has options which give storage maps
and core availability.

1-55

LOADING THE LINKING LOADER 17

The Linking Loader must be loaded into the highest available
field of memory.

l. Make sure the Binary Loader is in memory, for example, in
field m.

2. Let h represent the number of the highest field in the user's
configuration.

3. Set the console switches as follows:
Switches 6-8 = m, and switches 9-11 ----: h.

4. Press EXTD ADDRess LOAD.
5. Set the Switch Register == 7777.
6. Press ADDress LOAD.
7. Place the binary paper tape of the Linking Loader in the

reader.
8. If using a high-speed reader, depress switch register Bit 0.
9. Press CLEAR and CONTinue. The Linking Loader will now

be loaded into memory.

LOADING RELOCATABLE PROGRAMS.
The Linking Loader is used to load the user's relocatable pro­

grams and SK Library subprograms as outlined below.

NOTE
The program or subprogram which uses the
largest amount of common storage should
be loaded first.

1. After the Linking Loader has been loaded into the highest
memory field, h, the user should set the console switches
as follows: Switches 6-8 == h and switches 9-11 == h.

2. Press EXTD ADDRess LOAD.
3. Set the Switch Register == 0200.
4. Press ADDress LOAD.
5. Place the relocatable binary tape for the first program to

be loaded in the reader. Position the tape with leader code in
the reader.

6. Set $Witch register to 0000. Then, if loading via the Tele­
type reader is required, raise switch register bit 6. If the
user does not have a high-speed punch, he should raise

17 Applies to SK paper tape FORTRAN only.

1-56

switch register bit 7. Finally, set switch register bits 9-11
to the number of the field into which the first program or
subprogram is to be loaded.

SWITCH REGISTER

I ~ I ~ I 2

I
3

1 ·

4

I
5

1 ; I : 1
8

1 ~ I 1~ I \
1

I

LLsTORAGE MAP .LL ~
CORE PAGES · LOAPING FIELD

PUNCH (TELETYPE)
READER (TELETYPE)

Example:

If the user wishes to load his first program into field 3, and
if he has no high-speed 1/0 device, then he should set the
switch register to 0063 before the next step.

7. Press CLEAR and CONTinue;
· 8. The user's relocatable binary program will now be loaded.

When loading is completed, the Linking Loader halts.
9. The user may now either load another program or select

one of the options in steps 1 I and 12.
10. To load another program, insert the program relocatable

binary tape in the reader, set switch register bits 9-11 to
the number of the field the program is to be loaded into,
and then press CONTinue.

11. To select the Core Availability option, set switch register
bit 0 ~ 1, and press CONTinue.

12. To select the Storage Map option, set switch register bit 1 ==
1, and press· CONTinue.

13. The user may continue loading more programs as in step
10 after using either of the options.

14. The Linking Loader may be restarted via the console switches
at location 7200 (in the highest field, where the Linking
Loader resides) .

Executing the FORTRAN Program18

Determine the starting address of your main program by using
the Linking Loader Storage Map option. The address will be
typed in the form:

MAIN dnnnn

18 Applies to SK paper tape FORTRAN only.

1-57

1. Set switches 6-8 = d, and switches 9-11 == d.
2. Press the EXTD ADDRess LOAD.
3. Set Switch Register== nnnn.
4. Turn on paper tape punch and/or put data tape in reader

as required.
5. Press ADDRess LOAD, CLEAR, and CONTinue. Program

execution will begin.
DEMONSTRATION PROGRAM

This program computes the factorials of the even integers from
2 through 34. The MAIN program calls the subprogram to perform
the computation. The sourc~ programs were created using the
Symbolic Editor, listed on the Teletype for inclusion here, and
punched on the high-speed punch. They were then compiled using •
the 8K paper tape FORTRAN Compiler on a PDP-8/I with 8K
words of core memory, and a high-speed reader/punch.

This demonstration may also be run under the OS/8 Operating
System. The only differences the user will note are that under OS/8
the operating process is considerably shorter, and the output con­
tains leading zeros before the decimal point. A demonstration pro­
gram is also contained in the OS/8 chapter of Introduction to Pro­
gramming.
C FORTRAN DEMONSTRATION PROGRAM

DIMENSION AC35)
DO 10 N=2,34,2
ACN>=FACTCN>

10 ~RITE Cl,60>N,ACN>
STOP

60 FORMAT CI3,'! = ',El4.7>
END

C FORTRAN FUNCTION TO COMPUTE FACTORIALS
FUNCTION FACTC N >-
IF CN-34> 1,5,5

1 IF CN> 2,4,2
2 M=N-2

FACT=N
DO 3 K= 1, M
C=N-K

3 FACT=FACT*C
RETURN

4 FACT=l·
RETURN

5 · \.i.'R IT E C 1 , 6 > N
FACT=0.
RETURN

6 FORMAT CIS,'! EXCEEDS CAPACITY OF PROGRAM·'·>
END

1-58

The FORTRAN Compiler is loaded, and the Compiler types
out an identification label such as the following:

PDP-8 FORTRAN DEC-08-A2Bl-4

The source programs are compiled and tapes of the compiled pro ..
grams are punched on the high-speed punch.

The SABR Assembler is loaded next. The tapes prepared by the
Compiler are assembled, and the symbol tables listed on the Tele­
type:

PDP-8 SABR DEC-08-A2D2-16
HIGH SPEED READER? Y
HIGH SPEED PUNCH? Y
LISTING ON HIGH SPEED PUNCH? N

CKIO 0000EXT
FACT 0000EXT
IOH 0000EXT
ISTO 0000EXT
MAIN 0352EXT
OPEN 0000EXT
SUB SC 0000EXT
WRITE 0000EXT
rn 0510
\A 0200
\N 0351
\10 0425
\60 0477
tA 0361
tB 0471
tC 0410
tD 0447
tE 0462
tF 0474
tG 0510

1-59

HIGH SPEED READER? Y
HIGH SPEED PUNCH? Y
LISTING ON HIGH SPEED PUNCH? N

FACT 0220EXT
FAD 0000EXT
FLOT 0000EXT
FMP 0000EXT
!OH 0000EXT
OPEN 0000EXT
STO 0000EXT
\.JRITE 0000EXT
(0 0474
\C 0205
\FACT 0201
\K 0204
\M 0200
\N 0472
\l 0254
\2 0264
\3 0334
\4 0357
\5 0406
\6 0447
J3 0213
]6 0210
tA 0310
tB 0351
tC 0422
tD 0472

The Linking Loader is loaded. The FOR TRAN /SABR Library
programs and the binaries created by the SABR Assembler are
loaded into core in fields 0 and 1; the switch register is set appro­
priately, and a memory map is typed. (In this case all the Library
programs have been loaded-this is not necessary; if the user
wishes to determine which Library programs his program will use,
and how much core must be available, he may do so by using the
memory map option and loading the appropriate programs into any
fields available.)

1-60

PDP-8 LINKING LOADER DEC-08-A2C3-07

READ 10271
WRITE 10302
!OH 12142
SET ERR 15200
ERROR 15303
TTYOUT 15027
HS OUT 15055
TTY IN 15000
HSIN 15045
FDV 13 7 11
CLEAR 14227
IFAD 14116
FMP 13623
ISTO 14061
STO 13444
FLOT 14153
FAD 13010
DIV 14445
IREM 14616
FSB 13000
FLOAT 14034
FIX 13510
IFIX 13556
CHS 14211
ABS 14636
IABS 14670
MPY 14400
IRDSw 14713
OPEN 15125
CKIO 1512 1
EXIT 15142
CLRERR 15231
SUB SC 01000
IIPOW 01600
IFPOV.: 01662
FI POV.; 01676
FFFOW 02050
EXP 01452
ALOG 01347
SQRT 02211
SIN 02673
cos 026E3
TAN 02461
ATAN 03057
MAIN 03552
FACT 04020
0015
0010

1-61

Finally the starting address of the program is determined from
the memory map (MAIN 03552), and execution is started at this
location. The output is typed:

2 .2000000E+01
4 .2400000E+02
6 ·7200000E+03
8 .4032000E+05

10 .3628800E+07
12 ·4790016E+09
14 .8717829E+ll
16 .2092279E+14
18 ·6402374E+16
20 .2432902E+l9
22 .1124001E+22
24 .6204484E+24
26 .4032915E+27
28 .3048883E+30
30 .2652529E+33
32 .2631308E+36

34! EXCEEDS CAPACITY OF PROGRAM.
34! = .0000000E+00

End of program output.·

STATEMENT AND FORMAT SPECIFICATIONS

Tables 1-6 and 1-7 summarize the statements and format specifi­
cations available in 8K FORTRAN.

Table 1-6 Statement Specifications

STATEMENT FORM1~1 WHERE

COMMENT NP "C" in column 1 columns 2 through 80
will be ignored.

CONTINUE CONTINUE control goes to next
statement.

ARITHMETIC v=e variable name=
expression.

GOTO GOTOn n is a statement number.

GO TO (n,, ... ,nm), i I ~ i ~ m and control
goes to statement ni . i is
a nonsubscripted integer
variable.

rn R or P indicates a required or prohibited statement number. N indicates
a nonexecutable statement.

1-62

Table 1-6 (Cont.) Statement Specifications

STATEMENT FORM WHERE

IF IF (E) n1, n2, na Il1
control goes to n2 if

Ila

:::;_;
expression E - 0. -

~

DO DO n i=mi, mz, ma repeated execution
through statement n
beginning with i=m1,
incrementing by ma,
while i is less than or
equal to m2. m's and i
may not be subscripted.

DO n i=mi, m2 Iha assumed to be 1.

PAUSE PAUSE temporary halt, resumed
by CO NTinue key.

PAUSE n octal equivalent of the
• integer n displayed .

STOP STOP must be used to halt
execution of a main
program.

STOP n octal equivalent of the
integer n displayed.

END NP END an END statement at the
end of a subprogram
tells the compiler there
is no more program.

READ READ (d, f) 1 d is device number, f
WRITE WRITE (d, f) 1 is a FORMAT statement

number and 1 is list of
variable names separated
by commas.

FORMAT NR FORMAT (k1 , ... , ku) k's are format specifica-
tions

COMMON NP COMMON a, b, ... , n a , ... , n are nonsub-
scripted variable names

DIMENSION NP DIMENSION a's are array names and
a1 (k1) , ... , a

11
(k

11
) k's are maximum

subscri ts. p

1-63

T~ble l-6 (Cont.) Statement Specifications
',

STATEMENT FORM WHERE

FUNCTION NP FUNCTION name a's are dummy arguments
(a, , an) and name must be

defined as a variabJe
containing the value of
the function.

SUBROUTINE NP SUBROUTINE name a's are dummy arguments
(a, •.... a

11
) and name may not

appear elsewhere in
-- the subroutine.

CALL CALL name a's are actual arguments
(a1 , ... ,au) of a subroutine and may

be expressions.

RETURN RETURN for subroutines, contro]
returned to statement
following CALL. For
functions, evaluation of
expression in caJling pro-
gram is resumed using
value of the function.

EQUIVALENCE NP EQUIVALENCE v's are variables or sub-
(v1 ' ... 'vu) ' ... ' scriµted array names. -
(vm, ... 'v11)

Table 1-7 -FORMAT Specifications

KIND

Jnteger

Floating Point
(Decimal)

Exponential

Alphanumeric

FORM

rlw

rFw.d

rEw.d

rAw

WHERE

r 1s the repetition count; w is total
field width in characters.

r 1s the repetition count, w is field
width including sign and decimal point,
and d is number of characters to right
of decimal point.

r 1s the repetition count, w 1s field
width including sign, (a leading zero
in 05/8 FORTRAN), decimal point,
and d is the number of characters in
exponent.

r 1s the repetition count, w 1s fieid
width.

l-64

Table 1-7 (Cont.) FORMAT Specifications

KIND FORM WHERE

H (Hollerith nHcharacters n is total number of characters includ·
or Literal) 'characters' ing spaces following H. Parentheses in

each format statement must balance.
Characters enclosed within single
quotes (SHIFT/7) are also printed.

Parentheses n (specification) format specification in parentheses is
repeated n times.

Carriage indicates beginning of a new data
Control record.

Blank or Skip nx n blanks (spaces are introduced into
Fields an output record or n characters

skipped in an output record).

STORAGE ALLOCATION
Representation of Constants and Variables

INTEGERS
Integers are each allocated one m(lchine word. They are repre­

sented in two's complement bi~ary .

Io 1 111
sign Two's complement magnitude

/

Positive numbers in two's complement binary are represented as
straight binary with the first bit zero.

10 11 111 111 1111
37778 = +204710, the largest positive integer.

Negative numbers are represented by replacing each 0 bit with
a 1 and each 1 bit with a 0, then adding 1 to the binary result.

+1 is

Io oo ooo ooo 0011

-1 is ~ 11 111 111 11o)+1 = 11 11 111 111 111J=77778

The largest negative number is -2048 which is represented by
40008 or

11 oo ooo ooo ooo)
1-65

REAL NUMBERS
· Real numbers are each allocated three machine words. They

are represented as a binary mantissa multiplied by 2 raised to a
binary exponent:

Word 1

lo 1 8 9 111
sign exponent mantissa

Word 2

lo 11

mantissa

Word 3

lo 11

mantissa

The sign of the number is bit 0 of word 1 (0=+, 1=~). The
value and · sign of the exponent are obtained by subtracting
1 000 000:! (or 2008) from bits 1 through 8 of word 1.

Example 1
1

100 000 001 100

-0-

-0-

Sign: h
Exponent: 1 G 000 001 :!

Mantissa: . 100:!
Exponent = 20 ls - 200s == 18
Mantissa = .48
No.= -.48 x 28

1

=-Vi X2=-l

1-66

Example 2

010 000 101 100

-0-

-0-

Sign: 02
Exponent:
Mantissa:

10 000 lOh
.b

Mantissa = .4s
Exponent= 205s-2008=58

No.= As X 2s5

= 1h x 32 = 16

Storage of Arrays
Array variables are stored in core according to ANSI FORTRAN

Standards, in columns and from top to bottom. For example, the
array IJ:

DIMENSION I JC 5)

if started at location 0705 would be stored:

01 11

IJ (1) 0705 ...,._..,._. _____ _.......

IJ (2) 070£
IJ (3) 0707
IJ (4) 0710
IJ (5) 0711

The real array, T:

DIMENSION TC3)

1-67

starting in location 0612 would appear:

01 89 11

T (1) 0612-----------ti 0613 ..----------t 0614

T (2) 0615----------t 0616

0617
T (3) ------------t 0620

0621 .,.__ _____ ----. 0622

Two-dimensional arrays are stored as shown below:

DIMENSION IC4,2)

01 11
. l (1, 1) 0566 ..,.._ ______ ---t

I (2, 1) 0567
I (3, 1) 0570
I (4, 1) 0571
I (1, 2) 0572
1(2,2) 0573
1(3,2) 0574
1(4,2) 0575

In the array A(M(J,K)), Mis a two-dimensional integer array
stored as indicated in the preceding illustration. No element of M
may be less than 1.

If the element M (3, 4) contains the integer 7, then A (M (3, 4))
will be evaluated as A(7). The largest integer stored in M must
not exceed the dimensions of A.

REPRESENTATION OF N-DIMENSIONAL ARRAYS
Although arrays of more than two dimensions are illegal, the

values of the subscripts of larger arrays may be calculated by using
the following algorithm:

il+D1 * (i:!-1)+D1 *D:!(b-1)+ ... D1 *D;! .. . DuOu-1)

where the subscript values are i1, i:! ... i11 in an array whose dimen-
sions are D1, D:! .. . Du.

1-68

Subprograms may be written to compute and insert subscript
values in such illegal arrays. For example, in an array A(3, 4, 5),
the following subprogram inserts the . value of element A (N 1, N2,
N3):

DIMENSION ARRAY <60)
READ <1,5) Nl,N2,N3,VALUE
I=Nl +3*<N2-1)+3*4*<.N3-1)
ARRAY< I) =VALUE

5 FORMAT <3Il,F5.3)
END

Common Storage Allocation
Common storage begins in absolute . location 200 in field 1.

Variables are assigned locations in the common storage area in
ascending order as they appear in COMMON statements.

For example:

COM'fYiON A, LT, K
DIMENSION A<2,2),J(4)

would be stored as follows:

A(l,1)

A(2, 1) ..,_ ___ __, _______________ ___

A(l, 2)
~--------------------i

200
201
202
203
204
205
206
207
210_ ________ --I 211

A(2, 2) 1----------------------t 212
213 J (1) ..._ ____________ 214

J(2) 215
J(3) 1---------~ 216

J(4) 217
K 1--------------------~ 220

1-69

NOTE
K does not appear in the DIMENSION statement.

If another subprogram defines a variable in common, such as
the following:

CO!":MON .J
DIMENSION JCS)

J (1) through J (5) will be assigned to locations 200 through 204
respectively, thus overlapping the variables A (1, 1) and A (2, I) .
The Loader is not aware of this, therefore it is advisable to make
COMMON statements identical in all subprograms in which they
appear.

However, the statements:

COMMON DUMMY,J
DIMENSION DUMMYC2,2),JC4)

would not produce overlapping and could be used in subprograms.
In the example above, DUMMY is an arbitrary variable which
need not be used in the subprogram.

IMPLEMENTATION NOTES
Implied DO Loops

8K FORTRAN (paper tape version) does not have implied
DO loops in READ and WRITE statements. However, a simple
way to circumvent this restriction has been implemented. Normally
a CR/LF is produced at the end of each WRITE statement.' The
CR/LF can easily be suppressed by terminating the WRITE state­
ment with a comma. The CR/LF can be generated explicitly in
one of two ways:

1. By using a WRITE (d, f) instruction.
2. By using a FINI pseudo instruction.

The second method is more efficient since it generates only four

words of code, whereas the first method will generate somewhat
more than that. For example, the following statements:

1-70

DO 10 J= 1, M
10 WRITE Cl,20> CACJ,K>,K=l,N>
20 FORMAT Cl0F7·3>

which are not allowed in 8K paper tape FORTRAN, could be
written as follows:

DO 1 5 J= 1 , M
DO 10 K== 1, N

10 WRITE Cl,20> ACJ,K>,
15 WRITE Cl,2~>

20 FORMAT CF7·3>

. or

DO 1 5 J= 1 , M
DO 10 K=l,N

10 WRITE Cl,20> ACJ,K>,
15 FINI
20 FORMAT CF7.3>

The second method is preferred for more efficient utilization of core
memory. Note that it is not necessary to specify a repetition count
in the FORMAT statement since the 1/0 handler initializes itself
to the beginning of the FORMAT statement each time the WRITE
statement is executed.

The preceding comments apply as well to READ statements.
These methods are also useable in OS/8 FORTRAN, although

the implied DO loop is pref erred.

FORMAT Handling
For more complicated FORMAT handling the following tech­

nique can be used. For example:

WRITE Cl,20> CACK>,K=l,N>
20 FORMAT CF7·2,2E15·6>

which is not legal in 8K paper tape FORTRAN, could be written
as follows:

WR I TE C 1 , 2 0 > ,
DO 10 K::d,N

10 CALL IOHCACK>>
FINI

20 FORMAT CF7•2,2El5.6>

1-71

(comma suppresses CR/LF)

In the example above, the statement WRITE (1, 20), generates
the following assembly code:

CALL2,WRITE
ARG Cl
ARG \20

The statement CALL IOH (A(K)) will generate code to call the
subscripting routine SUBSC and will then generate the following
code:

CALL 1, IOH
ARG. [0

, where [0 is a temporary location generated by the compiler. Finally
the FINI pseudo instruction will generate the following:

CALL 1, IOH
ARG 0

which will cause execution of the WRITE statement to be com­
pleted.

Although only WRITE statements have bee11 shown in the pre­
vious examples, the same techniques apply equally to READ
statements. To read in an array of arbitrary size, one might use the
following FORTRAN IV statements:

DO 15 I= 1, M
15 READ CID,100> CACI,J>,J=l,N>
100 FORMAT <Fs.2,Fs.0,2Fs.2,2Fs.0>

This will not work with SK paper tape FORTRAN, but the correct
results can be obtained using the following:

DO 15 I=l,M
READ CID, 100)
DO 10 J= 1, N

10 CALL IOHCACI,J>>
15 FINI
100 FORMAT CFs.2,Fs.0,2F's.2,2F5·0)

1-72

If desired, these methods may also be used with OS/8 FOR ..
TRAN.

Special I/ 0 Devices
I/O can be performed on devices other than Teletype and high­

speed paper tape reader and· punch in several different ways:

1. If it is desired to use other devices in place of the high-speed
paper tape. reader and punch, rewrite the UTILTY library
subroutine defining the entry points for the desired input and

~ output devices as HSIN and HSOUT respectively. The source
tape for the Utility subroutine is available from the Program
Library and is very short. Refer to Chapter 2 for more
information. (This applies only to 8K paper tape FOR­
TRAN).

2. If it is desired to input or output on a special device but not
in ASCII format-write a subroutine to handle the particular
device in the SABR assembly language. For more informa­
tion refer to Chapter 2.

3. If it is desired to add devices which can be used in addition
to those allowed with READ and WRITE statements, then
edit part I of the Library Subroutine IOH. New entries must
be made in the device transfer table at the beginning of
IOH. Copies of this source tape and listings of the library
subroutines are available from the Software Distribution
Center. The service routines for the additional 1/0 devices
must be written in SABR assembly language and can then
be assembled along with the revised version of IOH. (This
applies only to 8K paper tape FORTRAN.)

4. Programs written in SABR language can call PAL subrou­
tines in various ways:
a) A JMS 7000 instruction will call a PAL program which

starts at location 7000 in the same memory field.
b) A CONTINUE (or PAUSE) statement might be inserted

in the user's FORTRAN program. Then JMS to the
PAL subroutine may be inserted using the switch regis.­
ter.

It is possible to load any size PAL III program linkage with an
SK FORTRAN program by merely dimensioning an integer

1-73

variable to the proper size for the PAL III program. This offc~s two
advantages: virtually unlimited size. programs in PAL I I I can be
linked to 8K FORTRAN main programs, and none of the library
routines are disturbed by this linkage.

Extra devices may be added to OS/8 FORTRAN by modifying
the OS/8 FORTRAN Library routine GENIO. Only three more
devices may be added, however, and these rnust have device num-
bers of 10, l 1, and 12 respectively.

1-74

chapter 2
sabr assembler

SABR (Symbolic Assembler for Binary Relocatable programs)
is an advanced, one-pass assembler producing relocatable binary
code with automatically generated page and field linkages. It sup ...
ports an extensive list of pseudo-operations which provide, among
other facilities, external subroutine caJJing with argument passing
and conditional assembly.

A SABR program may call routines from a large library of sub~
routines and functions; these are loaded together with the SABR
program by the Linking Loader. In an optional second pass, SABR .
produces an octal/ symbolic listing of assembled programs.

The relocatable binary tape produced by a SABR assembly is
loaded into core for execution with the 8K Linking· Loader. SABR
and the Linking Loader are also incorporated in the OS/8 Oper-­
ating System (see Chapter 9 of Introduction to Programming) and
the 8K FORTRAN Operating System.

With the exception of their pseudo-operators, SABR and the
PAL assembly languages share a common subset of instructions;
the information contained in Chapters 1-5 of Introduction to
Programming is prerequisite to the use of SABR.

In particular, SABR features include;

SABR produces relocatable binary code;

SABR is _page and field independent-· field settings and links are
automatically generated, thus alleviating the programmer's need to
consider page boundaries, and simplifying the development of pro ..
grams greater than 4K;

SABR programs are loaded with the 8K Linking Loader and use
run-time linkage routines provided by- the Loader.

In general; a programmer might use SABR if he wants to write

2-1

a program quickly without regard to page boundaries, and if he is
not primarily concerned with program size. The programmer must
also use SABR if he wants to write subroutines that can be called
from a FORTRA_~ program.

SABR can be run on any PDP-8 series computer with at least
8K of core" storage and a Teletype. A high-speed paper tape
reader I punch is recommended.

The Character Set

ALPHABETIC
In addition to the letters A through Z, the following are con ...

sidered by SABR to be alphabetic:

NUMERIC

[left bracket
] right bracket
"- back slash
t up arrow

SABR recognizes the numbers:

0-9

SPECIAL CHARACTERS
The following printing and non-printing characters are legal:

' .

I
(
"

Comma
Slash
Left parenthesis
Quote
Minus sign
Number sign

RETURN
(carriage return)
Semicolon
LINE FEED
FORM FEED
SPACE

TAB
RUBOUT

delimits a symbolic address label
indicates start of a comrrle'nt
indicates a literal
precedes an ASCII constant
negates a constant
increases value of preceding sym..;
bol by one
terminates a statement

terminates an instruction
ignored
ignored
separates and delimits items on
the statement line
same as space
ignored

2-2

All other characters are illegal except when used as ASCII
constants following a quote ("), or in comments or text strings.

Legal characters used in ways different from the above, and all
illegal characters, cause the error message C (Illegal Character) to
be printed by SABR.

Statements
SABR symbolic programs are written as a sequence of state­

ments and are usually prepared on the Teletype, on-line, with the
aid of the Symbolic ~ditor program. SABR statements are virtually
format free. Each statement is terminated by typing the RETURN
key. (Editor automatically provides a line feed). Two or more
statements can be typed on the same line using the semicolon as a
separator.

A statement line is composed of one or all of the following ele­
ments: label, operator, operand and comment, separated ~y spaces
or tabs (labels require a following comma). The types of elements
in a statement are identified by the order of appearance in the line
and by the separating or delimiting character which follows or
precedes the element.

Statements are written in the general form:

label, operator operand /comment (preceded by slash)

SABR generates one, or possibly more, machine (binary) in­
structions or data words for each source statement.

An input line may be up to 7210 characters long, iµcluding
spaces and tabs. Any characters beyond this limit are ignored.

The RETURN key (CR/LF) is both an instruction and a line
terminator. The semicolon may be used to terminate an instruction
without terminating a line. If, for example, the programmer wishes
to write a sequence of instructions to rotate the contents of the,
accumulator (AC) and, link (L) six places to the right, it might
look like this:

RTR
RTR
RTR

2-3

Using the semicolon, the programmer may place all three RTR's on
a sipgle line, separating each RTR with a semicolon and termi­
nating the line with the RETURN key. The preceding sequence of
instructions could then be written: -

RTR;RTR;RTR (terminated with the RETURN key)

This format is particularly useful when creating a list of data:

020Vl
0201
0202
0203

0020
0050
7750
0062

LIST, 20;50;-30;62

Null lines may be used to format program listings. A null line
is a line containing only a carriage return and possibly spaces or
tabs. Such lines appear as blank lines in the program listing.

LABELS
A label is a symbolic name or location tag created by the pro­

grammer to identify th_e address of a statement in the program.
Subsequent references to the statement can be made merely by
referencing the label. If present, the label is written first in a state­
ment and terminated with a comma.

0200 0000
0201 1200,

SAVE,
.ABC,

0
TAD. SAVE

SAVE and ABC are labels referendng the statements in location
0200 and 0201, respectively.

OPERATORS
An operator is a symbol or code which indicates an action or

operation to be performed, and may be one of the following:
1. A 0irect or indirect memory reference instruction
2. ~n operate or IOT microinstruction
3. A pseudo-operator
All SABR operators, microinstructions and memory reference

instructions are summarized in Appendix C.

2-4

'

OPERANDS
An operand represents that part of the statement which is manip­

ulated or operated upon, and may be a numeric constant, a Jiteral
or a user-defined address symbol.

In the example last given, SA VE represents an operand.

Constants
Constants are data used but not changed by a program and are

of two types: numeric and ASCII. ASCII constants are used only
as parameters. Numeric constants may be used as parameters or as
operand addresses, for example:

0200 1412 .TAD I 12

Constant operand addresses are treated as absolute addresses,
just as a symbol defined by an ABSYM statement (see Symbol
Definition). References to them are not generally relocatable,
therefore, they should be used only with great care. The primary
use of constant operand addresses is to reference locations on page

_O (see Linkage Routine Locations for free location~ on page 0 of
each field). All constant operand addresses are assumed to be in
the field into which the program is loaded by the Linking Loader.

Constants may _not be added to or subtracted from each other or
from symb.ols.

Numeric Constants
A numeric constant consists of a single string of from one to

four digits. It may be preceded by a minus sign (-) to negate the
constant. The digit string will be interpreted as either octal or
decimal according to the latest permanent mode setting by an
OCT AL or DECIM pseudo-operator (explained under Assembly
Control). Octal mode is assumed at the beginning of assembly.
The digits 8 and 9 must not appear in an octal string.

0200 5020
020 1 7 57 5

0 20 2 0120

ASCII Constants

5020
-20 3
DEC IM
80

Eight-bit ASCII val~es may be created as constants by typing
the ASCII character immediately following a double quotation

2-5

marks ("). A minus sign may be used to negate an alphabetic con­
stant. The minus sign must precede the quotation mark.

0200 0273
02(7) 1 74.77
0202 0207

" . ,
-"A /-301

/BELL FOLLOWS "

The following are illegal as alphabetic constants: carriage return,
line feed, form feed and rubout.

Literals
A literal is a numeric or ASCII constant preceded by a left

parenthesis. The use of literals provides a special and convenient
way of generating constant data in a µrogram. The value of the
literal will be assembled in a table near the end of the core page on
which the instruction referencing it is assembled. The instruction it­
self will be assembled as an appropriate reference to the location
where the numeric value of the literal is assembled. Literals are
normally used by TAD and AND instructions, as in the following
examples:

0200 0376
0 20 1 1375
0202 1374.

0374. 0303
0375 7730
0376 0777

AND C777
TAD C-50
TAD C"C

The numeric conversion mode is initially set to octal, but is con­
trollable with the DECIM and OCT AL pseudo-operators. This
mode can be changed on a local basis by insertin'g a D (decim~l)
or a K (octal) between the left parenthesis and the constant. For
example:

(D3 2 becomes 0040 (octal)
(K-32 becomes 7746 (octal)

This usage is confined only to the statement in which it is found
and does not alter the prevailing conversion mode.

A literal may also be used as a parameter (i.e., with no opera­
tor). In this case the numeric value of the literal is assembled as

2-6

usual in the literal table near the end of the core page currently
being assembled, and a relocatable pointer to the address of the
literal is assembled in the location where the literal parameter
appeared.

0200 0376 01 A, <20

0376 002;,

This feature is ·intended primarily for use in passing external
subroutine arguments with the ARG pseudo-operator, which is

·explained in greater detail later in the chapter.

Parameters
A parameter is generally either a numeric constant, a literal or

a user-defined address symbol, which is intended to represent data
rather than serve as an instruction. It appears as an operand in a
statement line containing no operator. (An exception to this is a
parameter used in conjunction with the ARG pseudo-operator, ex­
plained in Subroutines.) In the following example, 200 and -320,
M, and PGOADR all represent parameters.

0200 0200
0201 7460
0202 0315
02:03 0176

Symbols

ABC, 2 (i) CJ ; - 3 2 () ; "fvj

POINTR, PGOArR

Symbols are composed of legal alphanumeric characters and are
delimited by a non-alphanumeric character. There are two major
types of symbols: permanent, and user-defined.

Permanent Symbols
Permanent symbols are predefined and maintained in SABR's

permanent symbol table. They include all of the basic instructions
and pseudo-operators in Appendix C. These symbols may be used
without prior definition by the user.

2-7

User~Defined Symbols
A user-defined symbol is a string of from one to six legal alpha­

numeric characters delimited by a non-alphanumeric character.
User-defined symbols must conform to the following rules:

1. The characters must be legal alphanumerics­
ABCD ... XYZ, [] ""'t and 0123456789.

2. The first character must be alphabetic.
3. Only the first six characters are meaningful. A symbol

such as INTEGER would be interpreted as INTEGE.
Since the symbols GEORGE 1 and GEORGE2 differ only
in the seventh character, they would be treated as the
same symbol: GEORGE.

4. A user-defined symbol cannot be the same as any of the
pre-defined permanent symbols.

5. A user..,defined symbol must be defined only once. Sub­
sequent definitions will be ineffec.tive and will cause SABR
to type the error message M (Multiple Definition).

A symbol is defined when it appears as a symbolic address label
or when it appears in an ABSYM, COMMN, OPDEF or SKPDF
statement (see Pseudo-Operators). No more than 64 different user­
defined symbols may occur on any one core page.

Equivalent Symbols
When an address label appears alone on a line-with no instruc­

tion or parameter-the label is assigned the value of the next ad­
dress assembled.

TAGl,
TAG2, 30
TAG3,

TAG 1 and T AG2 are equivalent symbols in that they are as­
signed the same value. Therefore, a TAD TAG 1 will reference the
data at T AG2. T AG3, however, is not equivalent to T AG2. T AG3
would be defined as 1 greater than T AG2.

COMMENTS
A programmer may add notes to a statement by preceding them

with a slash mark. Such comments do not affect assembly or pro­
gram execution but are useful in interpreting the program listing

2-8

for later analysis and debugging. Entire lines of comments may be
present in the program.

None of the special characters or symbols have significance
when they appear in a comment.

/THIS rs A COMMENT LINE·
/THIS ALSO. TAD;CALL;#"-2C+:::!
A, TAD SAVE /SLASH STARTS COMMENT

Incrementing Operands
Because SABR is a one-pass assembler and also because it

sometimes generates more than one machine instruction for a
single user instruction, operand arithmetic is impossible. State­
ments of the form:

TAD TAG+3
TAD LIST-LIST2
JMP • +6

are illegal. However, by appending a number sign to an operand
the user can reference a location exactly one greater than the
location of the operand (the next sequential location) : TAD
LOC# is equivalent to the PAL language statement TAD LOC+ 1.

0200 0020 LOC, 20
020 1 00 30 30
0202 1200 START, TAD LOC /GET 20
0203 1201 TAD LOC# /GET 30

PAGE
0400 0200 A, LDC
0 40 1 0201 B, LOC#

In assembling #-type references SABR does not attempt to de­
termine if multiple machine code words are generated at the sym­
bolic address referenced.

START, TAD I
NOP

LOC /LOC IS OFF-PAGE
/USER HOPES TO MODIFY

TAD C7500 /SMA
DCA START#

2-9

In the preceding example the user wishes, to change the NOP in­
struction to an SMA. However, this is not possible because TAD
I LOC will be assembled as three machine code words; if ST ART
is at 0290, the NOP will be at 0203. The SMA will be inserted at
0201, thus destroying the second word of the TAD I LOC execu­
tion.

To avoid this error, the user should carefully examine the as­
sembly listing before attempting to modify a program with #-type
references. In the previous example the proper sequence is:

0202 4067 START, TAD I LOC
0203 0200 01
0204 1407
0205 7000 VAR, NOP
0206 1377 TAD (7500
0207 3205 DCA VAR
0 377 7500

The #-sign feature is intended primarily for manipulating
DUMMY variables when picking up arguments from external sub­
routines and returning from external subroutines (see Passing Sub­
routine Arguments).

Pseudo-Operators
Table 2-1 lists all the Pseudo-operators available . in SABR,

whether used as a free-standing assembler, or in conjunction with
the Fortran compiler. The pseudo-operat~rs are categorized and
explained in the following paragraphs.

Mnemonic

ABYSM
ARG
BLOCK
CALL
COMMN
CPAGE
DEC IM
DUMMY
EAP

Table 2-1 SABR Pseudo-Operators

Operation

Direct Absolute Symbol Definition
Argument for Subroutine Call
Reserve Storage Block
Call External Subroutine
Common Storage Definition
Check if Page Will Hold Data

. Decimal Conversion
Dummy Argument Definition
Enter Automatic Paging Mode

2~10

Mnemonic

END
ENTRY
FOR TR
IF
LAP
OCTAL
OPDEF
PAGE
PAUSE
REORG
RETRN
SKPDF
TEXT

ACH
ACM

·ACL

Table 2-1 (Cont.) SABR Pseudo-Operators

Operation

End of Program
Define Program Entry Point
Assemble FORTRAN Tape
Conditional Ass~mbly
Leave Automatic Paging
Octal Conversion
Define Non-Skip Operator
Terminate the Page
Pause for Next Tape
Terminate Page and Reset Origin
Return from External Subroutine
Define Skip-Type Operator
Text String

Floating-Point Accumulator

20* high-order word
21 * middle word
22 * low-order word

* The floating point accumulator is in field 1.

ASSEMBLY CONTROL
END Every program or subprogram to be assembled

must contain the END pseudo'.'"op as its last line.
If this requirement is not met, an error message
(E) is given.

PAUSE The PAUSE pseudo-op causes assembly to halt
and is designed to allow the program.mer to break
up a large source tape into several smaller seg­
ments. To do this, the programmer need only
place a PAUSE statement at the end of each sec­
tion of his source program except the last. Each
of these sections of the program is then output as
an individual tape. When assembly halts at a
PAUSE, the user removes the source tape just
read from the reader and inserts the next one.
Assembly may then be continued by pressing the
CONTinue switch.

2-11

DECIM

OCTAL

WARNING

The PAUSE pseudo-op is designed specifi­
cally for use at the end of partial tapes and
should not be used otherwise.

The reason for this is that the reader routine may
have read data from the paper tape into its buffer
that is actually beyond the PAUSE statement.
Conseque·ntly, when CONTinue is pressed after

· the PAUSE is found by the line interpreting rou­
tine, the entire content of the reader buffer fol­
lowing the PAUSE is destroyed, and the next tape
begins reading into a fresh buffer. Thus, if there
is any meaningful data on the tape beyond the
PAUSE statement, it will be lost.
Initially the numeric conversion mode is set for

. octal conversion. However, if the user wishes, he
may change it to decimal by use of the DECIM
pseudo-op.
If the numeric conversion mode has been set to
decimal, it may be changed back to octal by use
of the OCT AL pseudo-op.
No matter which conversion mode has been per­
manently set, it may always be changed locally
for literals by use of the (Dor (K syntax described
earlier. For example:

0~00 (1320 START, 32t5'
DEC IM

0 201 0 500 320
0202 0 377 0 1 CK320
020 3 1000 512

OCTAL
(i'J 20 Lj 0 512 512
020 5 0 376 01 CD512
0206 0320 320

EtJD

0376 1000
0377 0320

2-12

LAP

EAP

PAGE

REORG

CPAGE

The assembler is initially set for automatic genera­
tion of jumps to the next core page when the page
being assembled fills up (Page Escapes), or when
PAGE or REORG pseudo-ops are encountered.
This feature may be suppressed by use of the
LAP (Leave Automatic Paging) pseudo-op.
If the user has previously suppressed the auto­
matic paging feature, it may be restored to op­
eration by use ~f the EAP (Enter Automatic
Paging)·· pseudo-op.
The PAGE pseudo-op causes the current core
page to be assembled as is. Assembly of succeed­
ing instructions will begin on the next core page.
No argument is required.
The REORG pseudo-op is similar to the PAGE
pseudo-op, except that a numerical argument
specifying the relative location within the sub­
program where assembly of succeeding instruc­
tions is to begin must be given. A REORG below
200 may not be given. A REORG should always
be to the first address of a core page. If a REORG
address is not the first address of a page, it will
be converted to the first address of the page it
is on.

0200 7200 START, CLA
PAGE

0400 7040 CMA
REORG 1(2J00

1000 7041 CIA

The CP AGE pseudo-op followed by a numerical
argument N specifies that the following N words of
code 1 must be kept together in a single unit and
not be split up by page escape.s and literal tables.
If the N words of code will not fit on the current
page of code, the current page is assembled as if a

1 Normally data. However, if these N words are instructions, for example
a CALL with arguments, it is the user's responsibility to count extra
machine instructions which must be inserted by SABR.

2-13

IF

PAGE pseudo-op had been encountered. The N
words of code will then be assembled as a unit on
the next core page. An example follows.

NOTE
N must be less than or equal to 200 (octal)
in nonautomatic paging mode or less than or
equal to 17 6 octal in automatic paging mode.

02r!r! 7?.'.1.1

0400 0':1'.J:1
(?)4(11 (?)'.1(1/l

STC\RT, CL.A
LAP /INEI~IT PAGE ESCAPE
CPAGE 21:1 ICL0SES THE
NA~F.l /CURRENT PAGE
~A~F.2 /AND ASSF.MPLES

/TEE :JEXT PAGE

The conditional pseudo-op, IF, 1s used with the
following syntax:

IF NAME, 7

The action of the pseudo-op in this case is to first
determine whether .the symbol NAME has been
previously defined. If NAME is defined, the
pseudo-op has no effect. If NAME is not defined,
the next seven symbolic instructions (not counting
null lines and comment lines) will be treated as
comments and not assembled.

0200 320 1
0201 0000

/ARSYM NAME 176
IF NAME, 2 /THE ~EXT LINE

CLL RTL /Tr PE ASSEMBLED
RAL /\•:I LL PE "DCA LOC"

I IF THE SLASH PEFORE "i\:'SYi\'. NAt>~E 1 76"
/IS REMOVED, THE "CLL RTL" AND "RAL"
/WILL PE ASSEMRLED.

LOC,

2-14

DCA LOC
0

Normally the symbol referenced by an IF state­
ment should be e'ither an undefined symbol or a
symbol defined by an ABSYM statement. If this
is done, the situation mentioned below cannot
occur.

WARNING
In a situation such as the following, a special
restriction applies.

NAME, 0

IF NAME, 3

The restriction is that if the line NAME, 0 hap­
pens to occur on the same core page of instruc­
tions as the IF statement, then, even though it is
before the IF statement, NAME will not have been
previously defined when the IF statement is en­
countered, and on the first pass (though not in the
listing pass) the three lines after the IF ~tatement
will not be assembled. The reason for this is that
location tags cannot be defined until the page on
which they occur is assembled as a unit.

SYMBOL DEFINITION
ABSYM An absolute core address may be named using the

ABSYM pseudo-op. This address must be in the
same core field as the subprogram in which it is
defined. The most common use of this pseudo-op
is to name page zero addresses not used by the
operating system. These addresses are listed under

OPDEF
SKPDF

Linkage Routine Locations.
Operation codes not already included in the sym­
bol table may be defined by use of the OPDEF or
SKPDF pseudo-ops. Non-skip instructions must
be defined with the OPDEF pseudo-op and skip­
type instructions must be defined with the SKPDF
pseudo-op.

2-15

COMMN

Examples of ABSYM, OPDEF and SKPDF syn­
tax:

0177
0010
6761
6771
7540

ABSYM TEM
ABSYM AX
OPDEF DTRA
SKPDF DTSF
SKPDF SMZ

177 /PAGE 0 ADDRESSES
10
6761 /NON-SKIP INSTR.
6771 /SKIP-TYPE INSTR·
7540

NOTE
ABSYM, OPDEF and SKPDF definitions
must· be made before they are used in the
program.

The COMMN pseudo-op is used to name loca­
tions in field 1 as externals so that they may be
referenced by any program. If any COMMN state­
ments are used, they must occur -at the beginning
of the source, before everything else including
the ENTRY statement. Common storage is always
in field 1 and is allocated from location 0200
upwards. Since the top page of field 1 is reserved,
no more than 3840 111 words of common storage

'--

may be defined.
A COMMN statement normally takes a symbolic
address label, since storage is being allocated.
However, common storage may be allocated with­
out an address label.
A COMMN statement always takes a numerical
argument which specifics how many words of
common storage arc to be allocated~ however. a
0 argument is allowed. A COMMN statement
with 0 argument allocates no common storage~

'-- L

it merely defines the given location symbol at the
next free common location.
The syntax of the COMMN statement is shown
as follows.

2-16

0200 A, CCJ:\MN 20
0220 B, COIV:MN 10
0230 COM!v'!N 300
0 530 c, CCiv:MN 0
0 530 D, COMMN 10

ENTRY SUERUT

In this example 20 words of common storage are
allocated from 0200 to 021 7, and A is · defined
at location 0200. Then, 10 words are allocated
from 0220 to 0227, and B is defined at 0220.
Notice that if A is actually a 30 word array, this
example equates B(l) with A(21).
The example continues by allocating common
storage from 0230 to 0527 with no name being
assigned to this block. Then 10 words are al­
located from 0530 to 053 7 with both C and D
being defined at 0530.

DATA GENERATING
BLOCK The BLOCK pseudo-op given with a numerical

argument N will reserve N words of core by
placing zeros in them. This pseudo-op creates
binary output, and thus may have a symbolic
address label.
Before the N locations are reserved, a check is
made to see if enough space is available for them
on the current core page. If not, this page is as­
sembled and the N locations are reserved on the
next core page. The action here is similar to that
of the CPAGE pseudo-op. Similar restrictions on
the argument apply.

/EXAMPLE OF HOW LARGE BLOCK STORAGE
/MAY BE ACHIEVED WITHIN A SUBPROGRAM AREA

LAP
RLOCK 200
llLOCK 200
DLOCK 100
EAP

2-17

/INHIBIT PAGE ESCAPES
/RESERVE 500
/COCTAL) LOCATIONS

/RESUME NORMAL CODING

TEXT

As a special use, if the BLOCK pseudo-op is used
with a location tag (but with no argument or a
zero argument), no code zeros are assembled; in­
stead the symbolic address label is made equiv­
alent to the next relative core location assembled.
(This is equivalent to using a symbolic address
label with no instruction on the same line.)

0200 ()0()0 LIST, PLOCK 3 /ASSEMSLES .4.S
0201 0000
0202 0000

/THREE ZEROS
/WITH "LIST"
/DEF I I\ ED .4.T TEE
IF IRST LOCATIOJ:\

NAME!, BLOCK /DEF INES ~M-'.El=

NAME2, PLOCK 0 /NM1E2=NAf·:E3=
NAMEJ, /NA.MEL!

0203 0000 NAMELJ, BLOCK 2
020LJ 0000

The TEXT pseudo-op is used to obtain packed
six-bit ASCII text strings. Its function and use
are almost exactly the same as for the BLOCK
pseudo-op except that instead of a numerical ar­
gument, the argument is a text string. In partic­
ular, a check is made to be sure that the text
string will fit on the current page without being
interrupted by literals, etc.
The text string argument must be contained on
the same line as the TEXT pseudo-op. Any print­
ing character may be used to delineate the text
string. This character must appear at both the be­
ginning and the end of the string. Carriage return,
line feed and form feed are illegal characters
within a text string (or as de line a tors). All char­
acters in the string are stored in simple stripped
six-bit form. Thus, a tab character (ASCII 211)
will be stored as an 11, which is equivalent to the
coding for the letter I. In general, characters out­
side the ASCII range of 240-337 should not be
used.

2-18

Subroutines

0200 2405
0201 3024
0202 4005
0203 3001
0204 1520
020 5 140 5
0 20 6 LJ~161

0207 6263
0210 5273
0211 7700

TAG, TEXT /TEXT EXAKPLE 123*;?/

A subroutine is a subprogram which performs a specific opera­
tion and is generally designed so that it can be used more than
once or by more than one program. Direction of flow goes from the
m~in, or calling, program to the subroutine, where the action is
performed, followed by a return back to the address following the
subroutine call in the main program.

Internal subroutines are those subroutines which can only be .
called from within a program. This type of subroutine is used
extensively in nearly all PDP-8 programs, and is handled through
the use of the JMS, JMS I, and JMP I instructions. An example of
an internal subroutine call follows:

0200 7300
0201 1204
0202 4206

0203 ' 320 5

0204 0001
0205 0000

0206 0000
0207 7104

0210 7430.
0 211 7402
0 212 6201 05
0213 5606

START, CLA CLL
TAD N
JMS TWO

/GET NUMBER IN AC
/TRANSFER TO SUB-
/ROUTINE

DCA RESLT /STORE NUMBER
/CCONTROL RETURNS
/HERE)

N, 1
RESLT, 0

/SUBROUTINE
TWO, 0

CLL RAL /ROTATE LEFT AND
/MULTIPLY BY 2

SZL /CHECK FOR OVERFLOW
HLT /STOP IF OVERFLOW·
JMP I TWO /RETURN TO MAIN

/PROGRAM
END

The main program picks up a number (N) and jumps to the
subroutine (TWO) where N is multiplied by two. A check is made,

2-19

and if there is no overflow, control retUf!lS to the main program
through the address stored at the location TWO.

External subroutines are distinguished from internal subrou­
tines by the fact that they may be called by a program which has
been compiled, or assembled, without any knowledge of where the
subroutine will be located in core memory. Thus, external sub­
routines must be loaded with a relocatable linking loader. This
makes it possible for a programmer to build a library of frequently
used programs and subroutines which can be combined in various
configurations, and eliminates the need to reassemble, or recompile,
each individual program when a minor change is made in the
system.

A call to an external subroutine can be illustrated using the
following FORTRAN programs:

100

IPARM=S
CALL TWO< !PARM)
WRITE <1,100) !PARM
FORMAT <IS)
END

SUBROUTINE TWO<IARG)
IARG=IARG+IARG
RETURN
END

NOTE

(Calling Program)

(Subroutine)

Care should be exercised when naming a
function or subroutine. It must not have the
same name as any of the assembler mne­
monics or pseudo-ops or FORTRAN/SABR
library functions or subroutines, as errors are
likely to result. The symbol table for SABR
Assembler is listed in Appendix C, and the
library functions are described in the section
The Subprogram Library.

Any time a subroutine is called, it must have data to process.
This data is contained in parameters in the calling program which
are then passed to the subroutine. The data is picked up by the
subroutine where it is referred to as arguments. (The subroutine
actually picks up the arguments by a series of TAD l's, and one

2-20

final TAD I for an integer argument, or by a call to the IF AD
subroutine if a floating point argument. This is illustrated in the
section entitled SABR Programming Notes.) SABR has special
pseudo-operators which facilitate the passing/handling of argu­
ments, and each will be explained in turn.

~
CALL AND ARG

The CALL pseudo-op is used by the main program to transfer
control to the subroutine and is of the form:

CALL n,NAME

where n represents a one or two-digit number (6210 maximum)
indicating the· number of parameters to be passed to the subrou­
tine, and NAME (separated from n by a comma) represents the
symbolic name of the subroutine entry point.

The Assembler must know the number of parameters which
follow the call so that enough room on the current page can be
allowed. The CALL pseudo-op and its corresponding parameters
must always be coded on the same memory page; that is, there
must be no intervening page escapes. (Page format and page es­
capes are discussed later in the chapter.)

The ARG pseudo-op is used only in conjunction with CALL
and consists of the symbol ARG followed by one of the ·para­
meters (referred to as arguments in the subroutine) to be passed.
One ARG statement must be coded for each parameter.

In the previous FOR TRAN example, the main program (or it
may have been a subroutine) called a subroutine named TWO, and
supplied one argument:

CALL 1,rwo
ARG !PARM

SABR actually assembles the above instructions as follows (the
user may wish to consult the section concerning the Loader Relo­
cation Codes) :

2-21

0200 0000 IPARM, BLOCK 1

0206
0207
0210

40 33
0103 06
6201 0 5

0 211 0 200 01

END

ENTRY AND RETRN

CALL 1,TWO

ARG !PARM

In the subroutine, the ENTRY statement must occur before the
name of the entry point appears as a symbolic address label. The
actual entry location must be a two"."word reserved space so that
both-the return address and field can be saved when the routine
is called. Execution of the subroutine begins at the first location
following the two-word ENTRY block. For example, the TWO
subroutine mentioned in the previous example would begin as fol­
lows:

0 200 0000
0201 0000

0227 4040
0230 0001 06

TWO,
ENTRY TW 0
BLOCK 2

RETRN TWC

END

When a subroutine is referenced in a CALL statement, the
Run-Time Linkage Routine LINK executes the transfer to the sub­
routine. It assumes that the entry point to the routine is a two­
word block. Into the first word of this block it places a CDF in­
struction which specifies the field of the calling program. In the
second word it places the address from which the CALL occurred.
(This is analogous to the operation of the JMS instruction.) In
the previous example, if the MAIN program had been in field 0,
a 6201 would have been deposited in the location at TWO, and a
0210 at TWO#.

The RETRN statement allows the user to return to the calling
program from the subroutine. The name of the subroutine being
returned from must be specified in the RETRN statement so that
the Return Linkage Routine can determine the action required,

2-22

and also because a subroutine may have differently named ENTRY
points. (This is analagous to the operation of a JMP I instruction.)

When a subroutine is entered, the second word of the entry name
block contains the address of the argument or next instruction
immediately following the subroutine call in the. calling program,
and it is to this address that control returns.

EXAMPLE
A user wishes to write a long main program, MAIN:!, which

uses two major subroutines, S 1 and S2. S 1 requires two arguments
and S2 one argument. The user writes MAIN, Sl, and S2 as three
separate programs in the following manner:

MAIN,

Sl,

s2,

ENTRY MAIN
CLA

CALL 2,Sl
ARG X
ARG Y
CALL 1,s2
ARG Z

ENP

ENTRY Sl
BLOCK 2

RETRN Sl
END

ENTRY S2
BLOCK 2

RETRN 52
END

/START OF MAIN

2 A useful procedure in SABR programming is to provide an ENTRY
point named MAIN in the main program at the address where execution
is to begin. This assures that the starting address of the program will
appear in the Linking Loader's symbol print-out where it may be easily
referenced. If using OS/ 8, execution will begin at this address auto­
matically, eliminating the need to specify a 5-digit starting address.

2-23

S 1 could also contain calls to S2, or S2 c~lls to SI. Each of these
programs is independently assembled with SABR and loaded with
the Linking Loader. During the loading process, all of the proper
addresses will be saved in tables so that when the user begins
execution of MAIN, the Run-Time Linkage Routines (see SABR.
Operating Characteristics), which were autornatica11y loaded, will
be able to execute the proper reference. Thus, MAIN will be able
to fully use Sl and S2 and be able to pass data to and receive it
from them.

Passing Subroutine Arguments

DUMMY
A DUMMY pseudo-op is used in SABR to define a two word

block which contains an argument address. Indirect instructions
are used to pass arguments to and from subroutines through these
DUMMY variables. If a DUMMY variable is referenced indirectly,
it causes a CALL to the DUMMY Variable Run-Time Linkage
Routine (see Run-Time Linkage Routines) which assumes that
the DUMMY variable is a two-word reserved space where the
first word is a 62N 1 (CDF N), with N representing the field of
the address to be referenced, and that the second word contains a
12-bit address.

As an example, consider the FORTRAN subroutine TWO
shown earlier. This could be written in SABR as follows (the user
may wish to refer to the section concerning the Subprogram
Library):

2-24

/CALLED BY: CALL Two C IARG)

ENTRY TWO /DEFINE THE
/ENTRY PT· USED

DUMMY IARG IT 0 P I Cf\ UP AR G •
0 200 0000 IARG, BLOCK 2
0 201 0000
0 202 0000 TWO, BLOCK 2 /ENTRY POINT
0203 0000
0204 4067 TAD I TWO
020 5 0202 01
0206 140 7
0207 2203 INC TWO# /GET ARG ADDRESS
0 210 3200 DCA IARG
0 211 4067 TAD I TWO
0212 0202 01
0213 140 7
0214 2203 INC TWO#
0215 3201 DCA IARG#
0216 406.7 ,TAD I IARG /GET ARGUMENT
0 21 7 0200 0 1
0 220 1407

I INTO AC
0221 4067 TAD I IARG /ADD IT AGAIN
0222 0200 01
0223 140 7

.0224 4067 DCA I IARG /RETURN ARG· TO
0225 0200 01
0226 3407

/CALLING PROGRAM
0227 4040 RETRN TWO
0230 0001 06

END

A second example may be one in which a user has written a
FORTRAN program which contains a call to a SABR subroutine
ADD:

A=2
N=3
CALL ADDCA,N,C)
WRITE Cl,20)C

20 FORMAT C' THE SUM IS',F6.l)
STOP
END

2-25

The FORTRAN program is compiled and the resulting SABR
code translates the subroutine call as follows:

0223 4033 CALL 3,ADD
0224 030 5 06
0225 6201 05 ARG A
0226 0200 0 1
0227 6201 05 ARG N
0230 0203 0 1
0231 6201 05 ARG C
0232 0204 0 1

The CALL statement defines 3 parameters-A, N, and C, and the
subroutine name ADD. The subroutine itself would appear as
follows (the DUMMY variables X, K, and Z facilitate the passing
of the arguments to and from the subroutine):

2-26

/CALLED BY: CALL ADD cx,K,Z)
ENTRY ADD
DUMMY x
DUMMY K
DUMMY z

0200 0000 x, BLOCK 2
0201 0000
0·202 0000 K, BLOCK 2 \.
0203 0000
0204 0000 z, BLOCK 2
0205 0000
0206 0 200 0 1 XPNT, x
0 207 0000 PNTR, 0
0·210 0000 CNTR, 0
0 211 0000 ADD, .BLOCK 2 /ENTRY POINT
0212 0000
0213 1206 TAD XPNT
0214 3207 DCA PNTR
0215 1377 TAD C-6
0216 3210 DCA CNTR
0217 4067 Al, TAD I ADD
0220 0211 01
0221 1407
0222 2212 INC ADDI
0223 6201 05 DCA I PNTR
0224 3607
0225 2207 INC PNTR

"0226 2210. ISZ CNTR
0227 5217 JMP Al
0230 4067 TAD I K /GET 2ND ARG
fJ231 .0202 01
0232 1407
0233 4033 CALL 0,FLOT /CONVERT TO
0234 0002 06

/FLOATING PT.
0235 4033 CALL l,IFAD /ADD lST ARG
0236 0103 06
0237 6201 05 ARG X
0240 0200 01
0241 4033 CALL 1,ISTO /RETURN RESULT
0242 0104 06
0243 6201 05 ARG Z
0244 0204 01
0245 4040 RETRN ADD
0246 0001 06
0377 7772

END

2--27

The COMMN pseudo.-op may be used to specify variables as
externals so that they may be referenced by any program. This
pseudo-op has been explained under Symbol Definition; an exam­
ple of its usage is included here.

0200 c,

0200 0000 CSQR,
0 20 1 0000
0202 40 33
020 3 0102 06
0 204 6211
020 5 0200
020 6 4033
0207 010 3 06
0210 6211
0 21 1 0200
0212 4033
0213 0104 06
0214 6211
0215 0200
0216 4040
0 21 7 0001 06

COMMN 3

ENTRY CSQR

BLOCK 2

CALL 1, FAD

ARG c

CALL 1, FMP

ARG C

CALL 1, STO

ARG c

RETRN CSQR

END

/RESERVES COMMON
/STORAGE

/DSFINES ENTRY PT.

/ACTUAL ENTRY POINT

/GET THE ARGUMENT

/M'()LT !PLY IT

/REPLACE WITH RESULT

/RETURN TO CALLING

/PROGRAM

This subroutine computes the square of a variable C. C resides
in field 1 in common storage where it can be referenced by any
calling program through argument passing. The above is equivalent ·
to the FORTRAN subroutine:

SUBROUTINE CSQR
COMMON C
C=C*C
RETURN
END

SABR Operating Characteristics

PAGE-BY-PAGE ASSEMBLY
SABR assembles page-by-page rather than one instruction at a

time. To accomplish this it builds various tables as instructions
are read. When a full page of instructions has been collected
(counting literals, off ... page pointers and multiple word instruc­
tions) the page is assembled and punched. Several pseudo-opera­
tors are available to control page assembly.

2-28

Page Format
A normal assembled page of code is formatted as below:

xooo

ASSEMBLED
INSTRUCTIONS

JUMP TO
PAGE ESCAPE

LITERALS
AND

OFF-PAGE
POINTERS

X377
PAGE

ESCAPE

Literals and off-page pointers are intermingled in the table at
the end of the page.

Page Escapes
SABR is normally in automatic paging mode: it connects each

assembled core page to the next by an appropriate jump. This is
called a page escape. For the last page of code, SABR leaves the
Automatic Paging Mode and issues no page escape. The LAP
(Leave Automatic Paging) pseudo-operator turns off the auto­
matic paging mode. EAP (Enter Automatic Paging) turns it back.
on if it has been turned off.

Two types of page escape may oe generated depending on
whether or not the last instruction is a skip. If the last instruction
is not a skip, the page escape is as follows:

last instruction (non-skip)
5377 (JMP to xl 77)
literals
and
off-page
pointers

xl 77 /NOP

If the last instruction on the page is a skip type, the page escape
takes four words, as follows:

last instruction (a skip J
5376 (JMP to xl 76)
5377 (JMP to x177)
literals
etc.

x176/SKP
x177/SKP

MULTIPLE WORD INSTRUCTIONS·
Certain instructions in the source program require SABR to

assemble more than one machine language instruction (e.g., off­
p_age indirect references and indirect references where a data field
re-setting may be required). In the listing, the source instruction
will appear beside the first of the assembled binary words.

A difficulty arises when a multiple word instruction follows a
skip instruction. The user need be aware that extra instructions
are automatically assembled to enable the skip to be effected cor­
rectly.

RUN-TIME LINKAGE ROUTINES
These routines are loaded by the Linking Loader and perform

their tasks automatically when certain pseudo-ops or coding se­
quences are encountered in the user program. The user needs
knowledge of them only to better understand the program listing.
(The user may wish to refer to the section entitled Loader Relo­
cation Codes.)

There are seven linkage routines:

1. Change data field to current and skip
2. Change data field to 1 (common) and skip
3. Off-page indirect reference linkage
4. Off-bank (common) indirect reference

linkage
5. Dummy variable indirect reference linkage
6. Subroutine call linkage
7. Subroutine return linkage

2-30

CDFSKP
CD ZS KP
OPISUB
OBISUB_

DUMSUB
LINK
RTN

The .individual linkage routines function as follows:

1. CDFSKP is called when a direct off-page memory refer­
ence follows a skip-type instruction requiring the data field to be
reset to the current field.

Program

SZA
DCA LOC

Assembled
Code

7440
4045
7410
3776

·Meaning

call CDFSKP
SKP in case AC= 0 at .-2
execute the DCA via a ·
pointer near the end of the
page.

2. CDZSKP is called when a direct memory reference is made
to a location in common (which is always in Field 1). The ac­
tion of CDZSKP is the same as that of CDFSKP except that it
always executes a CDF 10 instead of a CDF current (see Loader
Relocation Codes) .

Program

SZA
DCA CLOC

Assembled
Code

7440
4051
7410
3776

_Meaning

call CDZSKP
SKP in case AC= 0 at .-2
execute the DCA via a
pointer near the· end of the
page.

3. OPISUB is called when there is an indirect reference-to an
off-page location.

Program

DCA I PTR

Assembled
Code

4062
0300 01
3407

Meaning

call OPISUB
relative address of PTR
execute the DCA I via 0007

4. OBISUB is called when there is an indirect reference to a
location in common storage. In such a case it is assumed that the

2-31

location in common which is being indirectly referenced points to
some location that is also in common.

-Program

DCAI CPTR

Assembled
Code

4055
1000
3407

Meaning

call OBISUB
address of CPTR in Field 1 .
execute the DCA I via 0007

5. DUMSUB is called when there is an indirect reference to
a DUMMY variable. In such a case, DUMSUB assumes that the
DUMMY variable is a two-word vector in which the first word is
a 62N 1, where N ::::: the field of the address to be referenced, and
the second word is the actual address to be referenced.

Program

DCAIDMVR

Assembled
Code

4067
0300 01
3407

Meaning

call DUMSUB
relative address of DMVR
execute DCA I via pointer
in location 0007

6. LINK is called to execute the linkage required by a CALL
statement in the user's program. When a CALL statement is used,
it is assumed that the entry point of the subprogram is named in
the CALL and that this entry point is a two-bit word, free block fol­
lowed by the executable code of the subprogram. LINK leaves the
return address for the CALL in these two words in the same format
as a DUMMY variable.

Assembled
Program Code Meaning

-CALL2, SUBR 4033 call LINK
0205 06 code word

ARGX 62Ml X resides in field M
0300 01 relative address of X

ARGC 6211 C is in common
1007 absolute address of C

7. RTN is called to execute the linkage by a RETRN state­
ment in the user's program.

2-32

Assembled
Program Code

RETRN SUBR 4040
0005 06

SKIP INSTRUCTIONS

Meaning

call RTN
number of the subprogram
being returned from (SUBR)

In page escapes and multiple word instructions, skip-type in­
structions must be distinguished from. non-skipping instructions.
For this reason both ISZ and INC are included in the permanent
symbol table. ISZ is considered to be a skip instruction and INC
is not. INC should be used to conserve space· when the program­
mer desires to increment a memory word without the possibility
of a skip.

The first example below shows the code which is assembled for
an indirect reference to an off-page location follo~ing an INC in­
struction. The second example shows the same code following an
ISZ instruction.

EXAMPLE 1:

INC POINTR 0220 2376
TAD I LOC2 0221 4002

0222 0520 01 /OFF PAGE INrIR~CT EXECUTION
0?23 1LJ07

EXAMPLE 2:

I SZ. COUNTR 0220 2376
TAD I LOC2 (ij 221 7410 /SKIP TO EXECUTION

0222 5226 /JUMP OVER EXECUTION
0223 4062
0224 0 520 0 1 !OFF PAC.1E INDIRECT EXECUTION
(IJ?,?,5 140 7

A special pseudo-operafor, SKPDF, must be used to define skip
instructions used in source programs but not included in the perma­
nent symbol table. For example:

SKPDF DTSF 6771

2-33

PROGRAM ADDRESSES
Since each assembly is relocatable, the addres'Ses specified by

SABR always begin at 0200, and all other addresses are relative
to this address. At loading time, the Linking Loader will properly
adjust all addresses. For example, if 0200 and 1000 are the relative
addresses of A and B, respectively, and if A is loaded at 2000,
then B will be loaded at 2000 + (1000-0200) or 2600.

All programs to be assembled by SABR must be arranged to fit
into one field of memory, not counting page 0 of the field, or the
top page (7600 - 7777). If a program is too large to fit into one
field, it should be. split into several subprograms.

Explicit CDF or CIF instructions are not needed by SABR pro­
grams because of the availability of external subroutine calling and
common storage. Explicit CDF or CIF instructions cannot be as­
sembled properly.

THE SYMBOL TABLE
Entries in the symbol table are variable in length. A one or two­

character symbol requires three symbol table words. A three- or
four-character symbol requires four words, and a five- or six­
character symbol, five words. Thus, for long programs it may be
to the user's advantage to use short symbols whenever possible.

The symbol table, not counting permanent symbols, contains
264410 words of storage. However, this space must be shared
when there are unresolved forward and external references tem­
porarily stored as two-word entries.

If we may assume that a program being assembled never has
more than 10010 of these unresolved references at any one time,
this leaves 246410 words of storage for symbols. Using an average
of four words per symbol, this allows room for 61610 symbols.

The OS/8 version of SABR has a smaller space for symbol
tables, leaving 136410 words of storage, or 162010 if used as the
second pass of 8K FORTRAN.

Symbol table overflow is a fatal condition which generates the
error message ~·

Symbol Table Flags
Symbols are listed in alphabetic order at the end of the assembly

pass 1 with their relative addresses beside them. The following
flags are added· to denote special types of symbols:

2-34

-·\

ABS

COM

OP

EXT

UNDF

The address referenced by this symbol is absolute.

The address is in common.

The symbol is an operator.

The- symbol is an external one and may or may not
be defined within this program. If not defined, there
is no difficulty; it .is defined in another program.

The symbol is not an external symbol and has not
been defined in the program.· This is a programmer
error. No earlier diagnostic can be given because it
is not known that the symbol is undefined until the
end of pass 1. A location is reserved for the unde­
fined symbol, but nothing is placed in it.

The Subprogram Library
The Library is a set of subprograms which may be CALLed by

any FORTRAN/SABR program. These subprograms are auto­
matically loaded with the OS/8 FORTRAN/SABR system; in the
paper ·tape system they are provided on two relocatable binary

. paper tapes with part 1 containing those subprograms used by
almost every FORTRAN/SABR program. This allows the user
to load only those routines which his program makes use of, thus
conserving symbol space.

Many of the subprograms reference the Floating-Point Accumu­
lator located at ACH, ACM, ACL (20,21,22 of field 1). The
OS/8 Subprogram Library is summarized in the 8K FORTRAN
chapter. The organization of the library programs, as they are pro­
vided in the paper tape system, is described in the following pages.

Part 1. "JOH" contains IOH, READ, WRITE
"FLOAT". contains FAD, FSB, FMP, FDV, STO,

FLOT, FLOAT, FIX; IFIX,
IFAD, ISTO, CHS, CLEAR

"INTEGER" contains IREM, ABS, IABS, DIV,
MPY, IRDSW

"UTILITY'' . contains TTYIN, TTYOUT, HSIN,
HSOUT, OPEN, CKIO

·"ERROR" contains SETERR,CLRERR,ERROR

2-35

Part. 2. "SUBSC"
"POWERS"

"SQRT"
"TRIG"
"ATAN"

INPUT /OUTPUT

contains SUBSC
contains IIPOW, IFPOW, FIPOW,

FFPOW, EXP, ALOG
contains SQRT
contains SIN, COS, TAN
contains ATAN

READ is called to initialize the I/0 handler before reading data.
WRITE is called to initialize the I/0 handler before writing data.
IOH is called for each item to be read or written; IOH must a]so
be called with a zero argument to terminate an input-output se­
quence.

All of the programs require that the Floating-Point Accumu­
lator be set to zero before they are called.

CALL

ARG

ARG

•••
CALL

ARG

CALL
ARG

••••
•••
CALL

2, READ

(n

fa

l, IOH

data 1

1, IOH

data 2

1, IOH

ARG 0

•••
CALL 2, WRITE

ARG (n

ARG fa

2-36

/n=DEVICE NUMBER

/fa==ADDR OF FORMAT

/data l==ADDR OF HIGH
/ORDER WORD OF
/FLOATING POINT
/NUMBER

/TERMINATES READ

/INITIALIZES WRITE

The following device numbers are currently implemented:

1 (Teletype keyboard/printer)
2 (High-speed reader/punch)
33 (Card reader/line printer)
4 3

(As.signable device)

FLOATING-POINT ARITHMETIC
FAD is called to add the argument to the Floating-Point Ac­

cumulator.

CALL
ARG

1, FAD
add res

FSB is called to subtract the argument from the Floating-Point
Accumulator.

CALL
ARG

1, FSB
add res

FMP is called to multiply the Floating-Point Accumulator by
the argument.

CALL
ARG

1, FMP
addres

FDV is called to divide the Floating-Point Accumulator by the
argument.

CALL
ARG

1, FDV
add res

CHS is called to change the sign of the Floating-Point Accu­
mulator.

CALL 0, CHS

All of the above programs leave the result in the Floating-Point
Accumulator. The address of the high-order word of the floating­
point number is "addres".

STO is called to store the contents of the Floating-Point

3 Device numbers 3 and 4 are available only under the OS/ 8 Operating
System.

2-37

Accumulator in the argument address. The floating-point accumu­
lator is cleared. '

CALL
ARG

l, STO
storag /storag=ADDRESS WHERE

/RESULT IS TO BE PUT

IF AD is called to execute an indirect floating-point add to the
Floating-Point Accumulator.

CALL
ARG

1, IFAD
ptr /ptr=2 WORD POINTER

/TO HIGH ORDER
I ADDRESS OF FLOATING
/POINT ARGUMENT

ISTO is called to execute an indirect floating-point- store.

CALL
ARG

1, ISTO
ptr

CLEAR is called to clear the Floating-Point Accumulator. The
AC is unchanged.

CALL 0, CLEAR

FLOAT and FLOT are called to convert the integer contained
in the AC (processor accumulator) to a floating-point number and
store it in the Floating-Point Accumulator.

CALL 0, FLOT or
CALL 1, FLOAT
ARG addr

IFIX and FIX are called to convert the number in the Floating­
Point Accumulator to a 12-bit signed integer and leave the result
in the AC.

CALL 0, FI~ or
CALL 1, IFIX
ARG addr

ABS leaves the absolute value of the floating-point number at
"addr" in the Floating-Point Accumulator.

CALL
ARG

1, ABS
addr

2-38

INTEGER ARITHMETIC
MPY is called to multiply the integer contained in the AC by

the integer contained in "addr." The result is left in the AC.

CALL
ARO

1, MPY
addr

DIV is called to divide the integer contained in the AC by the
integer contained in "addr." The result is left in the AC.

CALL
ARO

1, DIV
addr

IREM leaves the remainder from the last executed integer divide
in the AC.

CALL
ARO

1, IREM
0

(The argument is ignored.)

IABS leaves the absolute value of the integer contained in
"addr" in the AC.

CALL
ARO

1, IABS
addr

IRDSW reads the value set in the console switch register into
the AC.

CALL 0, IRDSW

SUBSCRIPTING*
SUBSC is called to compute the address of a subscripted vari­

able, and can be used for doubly or singly subscripted arrays. On
entry, the AC should be negative for floating-point variables-any
negative number for singly subscripted variables, and l's comple­
ment of the first dimension for doubly subscripted variables. For
doubly subscripted integer variables, the AC must be the first
dimension.

The general calling sequence for SUBSC is as follows:

':'Applies to OS/8 only.

2-39

*TAD <M /lST DIMENSION <USED ONLY
/IF 2 DIMENSIONS)

*CMA /USED ONLY IF ARRAY IS
/FLOAT ING PO INT

[

2,SUBSC]/SINGLE SUBSCRIPT
CALL

3,SUBSC /DOUBLE SUBSCRIPT
*ARG J /2ND DIMENSION

ARG I /lST DIMENSION
ARG BASE /BASE ADDRESS OF ARRAY
LOCA /ADDRESS OF TWO WORD DUMMY

/ADDRESS, LOCATION

* Optional Statements.

For example, to load the I,Jth element of a floating-point array
whose dimensions are 5 by 7:

TAD <5
CMA
CALL 3,SUBSC
ARG J
ARG I
ARG ARRAY
LOG
CALL 1,IFAD
ARG LOG

FUNCTIONS

/DIMENSIONS ARE 5 BY 7

/ADDRESS OF 2ND SUBSCRIPT
/ADDRESS OF lST SUBSCRIPT
/BASE ADDRESS OF ARRAY
/MUST BE A DUMMY VARIABLE

SQRT leaves the square root of the floating-point number at
"addr" in the Floating-Point Accumulator.

CALL
ARG_

l, SQRT
addr

SIN, COS, TAN leave the specified function of the floating-point
argument at "addr" in the Floating-Point Accumulator.

CALL
ARG

1, SIN
addr

AT AN leaves the arctangent of the floating-point number at
"addr" in the Floating-Point Accumulator.

CALL
ARG

1, ATAN
addr

2-40

ALOG leaves the natural logarithm of the floating-point num­
ber at "addr" in the Floating-Point Accumulator.

CALL
ARG

1, ALOG
addr·

EXP raises "e" to the power specified by the floating-:point num­
ber at "addr" and leaves the result in the floating-point accu­
mulator.

CALL
ARG

1, EXP
addr

All of these subprograms require that the floating-point accu­
mulator be set to zero before they are called.

The POWER routines (JIPOW, IFPOW, FIPOW, FFPOW)
are called by FORTRAN to implement exponentiation. T~e first
operand is in the AC (floating-point or processor depending on
mode), and the address of the second is an argument. The address
of the result is in the appropriate AC upon return.

FUNCTION
NAME

II POW
IF POW
FIPOW
FF POW

CALL
ARG

MODE OF
OPERAND 1

(BASE)

INTEGE.R
INTEGER
FLOATING POINT
FLOATING POI NT

2, FFPOW
addr 2

UTILITY ROUTINES

MODE OF MODE OF
OPERAND 2 RESULT (EXPONENT)

INTEGER INTEGER
FLOATING POINT FLOATING POINT
INTEGER FLOATING POI NT
FLOATING POINT FLOATING POINT

I ADDRESS OF OPERAND 2

OPEN is called at the beginning of every FORTRAN program
to start the high-speed reader/punch and teleprinter, and to initial­
ize the 1/0 routines for device code 4 if using the OS/8 FOR­
TRAN/SABR system. The form is:

CALL 0, OPEN

2-41

When an error is encountered in a program, the ERROR rou­
tine is called. The program passes to the ERROR routine the
address of the error message to be printed. The format of the
error message is 4 characters in stripped ASCII and packed into
2 words:

2343
2344
2345
2346

0102
0304
0000
0000

xyz,

ABC,

ENTRY ABC
010 2;0 304

BLOCK 2

CALL l,ERROR
ARG XYZ

When control passes to the ERROR routine, the parameters
passed are picked up. In the case above, the parameters are as
follows:

62Nl
2343

ARG XYZ

'·

where N is the field that XYZ is in, and 2343 is the address of
XYZ. The ERROR routine then prints the message at location

. 2343 plus a 5-digit address which is 2 greater than 2343.

ARCD ERROR AT N2345

Since XYZ is 2 locations before ABC, the address printed will be
the address of ABC.

The error message is usually placed just before the entry ·point
of the routine in which the error was detected-thus the address
printed by ERROR will be the address of the entry point. This
provides a convenience to the programmer since the entry point
will appear in the Loader Map.

CKIO is a subroutine which waits for the TTY flag to~ be set. It
is called by the OS/8 EXIT subroutine to eliminate the possibility
of a garbled TTY output. It m~y be used in FORTRAN for pos­
sible expansion with interrupts, and is of the form:

2-42

CALL 0,CKIO

The following subroutines-IOPEN, OOPEN, OCLOSE,
CHAIN, EXIT, and GENIO-are used by the OS/8 FORTRAN/
SABR Operating System for device independent 1/0 and chaining.
They are discussed in detail in Chapter 1 of this manual.

DECAPE I/O ROUTINES
RTAPE and WTAPE (read and write tape) are the DECtape

read and write subprograms for the 8K FOR TRAN and 8K SABR
systems. The subprograms are furnished on one relocatable binary­
coded paper tape which must be loaded into field 0 by the 8K
Linking Loader, where they occupy one page of core.

RT APE and WT APE allow the user to read and write any
amount of core-image data onto DECtape in absolute, non-file­
structured data blocks. Many such data blocks may be stored on a
single tape, and a block may be from, 1 to 4096 words in length.

RTAPE and WTAPE are subprograms which may be called
with standard, explicit CALL statements in any 8K FORTRAN or
SABR program. Each subprogram requires four arguments sep­
arated by commas. The arguments are the same for both subpro ...
grams and are formatted in the same manner. They specify the
following:

1. DECtape unit number (from 0 to 7)
2. Number of the DECtape block at which transfer 'is to

start. The user may direct the DECtape service routine to
begin searching for the specified block in the forward direc­
tion rather than the usual backward direction by making
this argument the two's complement of the block number.

3. Number of words to be transferred (1 ~N~4096)
4. Core address at which the transfer is to start.

DECtape 1/0 Routines for the 8K FORTRAN system are ex­
plained in Chapter 1. In 8K SABR, the CALL statements to
RT APE and WT APE are written in the following format (argu­
ments may be either octal or decimal numbers) :

2-43

CALL 4,WTAPE
ARG . C 6
ARG C200

ARG C 604

ARG LOCB

/WOULD BE SAME FOR RTAPE
/DATA UNIT NUMBER
/STARTING BLOCK NUMBER
/IN OCTAL
/WORDS TO BE TRANSFERRED
/IN OCTAL
/CORE ADDRESS, START OF
/TRANSFER

In these examples, LOCA and LOCB may or may not be in com­
mon.

As a typical example of the use of RT APE and WT APE, as­
sume that the user wants to store the four arrays A, B, C, and D
on a tape with word lengths of 2000, 400, 400, and 20 respectively.
Since PDP-8 DECtape is formatted with 14 74 blocks (numbered
0-2701 octal) of 129 words each (for a total of 190,146 words),
A, B, C, and D will require 16, 4, 4, and 1 blocks respectively.
(The block numbers used by RT APE and WT APE should not be
confused with the record numbers used by OS/8. A OS/8 record
is 256 words-roughly twice the size of a DECtape block.)

Each array must be stored beginning at the start of some DEC­
tape block. The user may write these arrays on tape as follows:

CALL WTAPE C0,1,2000,A)
CALL WTAPE C0,17,400,B)
CALL WTAPE C0,21,400,C)
CALL WTAPE (0,25,20,D)

The user may also read or write a iarge array in sections by
specifying only one DECtape block (129 words) at a time. For
example, B could be read back into core as follows:·

CALL RTAPE C0,17,258,BC1))
CALL RTAPE C0,19,129,BC259))
CALL RTAPE C0,20,13,BC388))

As shown above, it is possible to read or write less than 129
words by starting at the· beginning of a DECtape block. It is im­
possible, however, to read or write starting in the middle of a
block. For example, the last 10 words of a DECtape block may
not be read without reading the first 119 words as well.

A DECtape read or write is normally initiated with a backward

2-44

search for the desired block number. To save searching time, th_e
user may request RT APE or WT APE to start the block number
search in the forward direction. This is done by specifying the
negative of the block number. This should be used only if the
number of the next block to be referenced is at least ten block
numbers greater than the last block number used. For example,
if the user has just read array A and now wants array D, he may
write:

CALL RTAPE <0,1,2000,A)
CALL RTAPE (0,-27,20,D)

The Binary Output Tape
SABR outputs each machine instruction on binary output tape

as a 16-bit word contained in two 8-bit frames of paper tape. The
first four bits contain the relocation code used by the Linking
Loader to determine how to load the data word. The last 12 bits
contain the data word itself.

T T T I I T

RELOCATION HIGH ORDER OF
CODE DATA WORD FIRST FRAME

I ...I.. __._ ...I.. __._ ...I.. --.- --.- "T T "T .
_._LOW_._ ORDER Of DAIA w_._oRD _._ SECOND FRAME

The assembled binary tape is preceded and followed by leader/
trailer code (code 200). The checksum is contained in the last two
frames of tape before the trailer code. It appears as a normal 16-bit
word, as shown below.

T T T -1 " "T

1 0 0 0 HIGH ORDER OF
CHECKSUM

FIRST FRAME
. . __._ __I ...I.

T LOW ORDER OF DAT A
"T "T

WORD SECOND FRAME
__I . l ...I.. ...I.. _L

All assembled programs have a relative origin of 0200.

LOADER RELOCATION CODES
The four-bit relocation_ codes issued by SABR for use by the

Linking Loader are explained below. The codes are given in octal.
00 Absolute Load the data word at the current

a , loading address. No change is re-
quired.

2-45

01

5277

Simple
Relocation

0376 0520 01

03 External
Symbol
Definition*

L™p LOC /~~ERE LOC IS
/AT 0·177 COF'
/CURHEl\JT PAGE)

Add the relocation constant to the
word before loading it. (The relo­
cation constantis 200 less than the
actual address where the first word
of the program is loaded.) Items
with this code are always program
addresses.

LOC2

In the above example, LOC2 is at
relative address 0520. If ·the first
word of the program (relative ad­
dress 0200) is. loaded at 1000,
then the actual address of A is
1176 and location 1176 will be
loaded with the value 1320, which
will be the actual address of LOC2
when loaded.

The data word is the relative ad­
dress of an entry point. Before en­
tering this definition in the Linkage
Tables so that the symbol may be
referenced by other programs at
run-time, the Linking Loader must
add the relocation constant to it.
The six frames of paper tape fol­
lowing the two-frame definition are
the stripped ASCII code for the
symbo•.

* Does not appear in assembly listings.

2-46

04

05

Re-origin*

CDP
Current

0300 6201 05
0 301 1776

0376 0520 01

03 I ADDRESS

ADDRESS LOW ORDER

L

0

c
2

SPACE

SPACE

Change the current loading address
to the value specified by the data
word plus the relocation constant.

The data word is always a 6201
(CDF) instruction which has been
generated automatically by SABR.
The code 05 indicates to the Link­
ing Loader that the number of the
field currently being loaded into
must be inserted in bits 6-8 before
loading.

TAD LOC2
/WHERE LOC2 IS
/OFF PAGE SO
/THAT THE TAD
I INSTR.· MUST BE
I INDIRECT

If the orogram containing this code
is being loaded into field 4, relative
location 0300 will be loaded with
6241.
Such an instruction is ref erred to
in this document as CDF Current.
It is generated automatically by

* Does not appear in assembly listings.

2-47

06 Subroutine
Linkage
Code

BITS 0-5.

NUMBER OF
ARGUMENTS
FOLLOWING
THE CALL

SABR when a direct reference in­
struction must be assembled as an
indirect, and there is the possibility
that the current data field setting is
different from the field where the
indirect reference occurs.

The data word is a special con­
stant enabling the Linking Loader
to perform the necessary linking
for an external subroutine call.
(c.f., CALL Pseudo-op). The
structure of the data word is shown
below.

BITS 6-11

LOCAL PROGRAM
NUMBER ASSIGNED
TO THE EXTERNAL
SUBROUTINE
BEING CALLED

Before the 12-bit, two-part code
word is loaded into memory, a
global external number will be sub­
stituted for the local external sym­
bol number in the right half of the
data word.

0200 4033 CALL 3,SUB
0201 0307 06

ARG X
ARG Y
ARG Z

Here, SUB has been assigned the
local number 06 during assembly.
At loading time this number will
be changed to the global number
(for, example, 23) which is as­
signed to SUB. In this example,
0323 would actually be loaded at
relative address 0201.

2-48

10

12

17

Leader/Trailer*
and
Checksum

High Common*

Transfer*
Vector

Sample Assembly Listings

This code represents normal
leader/trailer. The checksum is
contained in the last two frames
of paper tape preceding the trailer
code.

The data word is the highest loca­
tion in Field 1 assigned to com­
mon storage by the program. This
item will occur exactly once in
every binary tape and it must be
the first word after the leader. If
no common storage has been al­
located in the program, the data
word will be 0177.

Signifies that reference to ah ex­
ternal symbol occurs in the as­
sembled program. The 12-bit data
word is meaningless. The next six
frames contain the ASCII code for
the symbol.
The Linking Loader uses this def­
inition to create a transfer table,
whereby local external symbol
numbers assigned during assembly
of this particular program can be
changed to the global external
symbol number when several pro­
grams are being loaded.

The following examples are offered to illustrate many of the
features and formats of the SABR Assembler. Loading and op­
erating instructions immediately follow this section.

When a multiple word instruction occurs, the actual instruction
line is typed beside the first instruction.

* Does not appear in assembly listings.

2-49

0650
0651
0652
0653
0654

6201 0 5
5774
7106
7006
7006

LOC2, JMP NAME /OFF PAGE

CLL RTU RTL; RTL

When there is an erroneous instruction, the error flag appears
in the address field. The instruction is not assembled.

0700 7200
I

0701 7402

N2, CLA
CLL SKP
HLT

The page escape and literal and off-page pointer table are typed
with nothing except the correct address, value and loader code.

0770 7006 N3, RTL
0771 7500 SMA
077,2 5376
0773 5377
0774 0200 01
0775 0020
0776 7410 /SKP TO lST LOC.-

/NEXT PAGE CAC IS
/NOT MINUS)

0 7..7 7 7410 /SKP TO 2ND LOC.-
/NEXT PAGE CAC IS
/MINUS)

Locations 0772, 0773, 0776 and 0777 make up the page escape
since the last instruction is a skip instruction (SMA). Refer to the
sectiop concerning Page Escapes.

The following program has been assembled and listed. It cannot
be run _without first debugging and editing it.

During the first _pass, SABR outputs the binary tape and prints
error messages as they occur. In this case, none of the errors are
fatal, and assembly continues. The symbol table is printed, and
undefined symbols, external symbols, or any other special types of
symbols which cannot be determined until the end of the pass
are flagged in the symbol table. _

The optional second pass of the As_sembler produces a listing.
The 4-digit first column contains the octal address, while the

2-50

second column contains the octal code for each line of instructi6ns.
Errors are also printed during the listing pass at the line in which
they occur. Meanings of error codes are described later in the
chapter.

The reader is also referred to Demonstration Program Using
Library Routines.

C AT PUNCH +000 3

COUNT 0302
DEC IMA 0000UN'{)F
LT 026LJ
MAIN 0000EXT
MESG 02LJ3
ORG 0303
PT APE 0201EXT
PUNCH 027LJ
REF 0177ABS
RPT 0267
START 0205
TYPE 0000EXT

/PROGRAM TO PUNCH RIM FORMAT PAPER TAPES

6026 OPDEF PLS 6026 /DEFINE HI SPEED
6021 SKPDF PSF 6021 I I OTS
0177 ABSYM REF 177

ENTRY MAIN
0200 0000 DECIMAL

LAP
0201 0000 PTAPE, BLOCK 2 /PUNCH LEADER
(Jl202 0000

/TAPE- C 200 CODE)
020 3 1377 TAD C-32 132 LOCATIONS
0 20 Lj 3302 DCA COUNT

OCTAL
020 5 130 3 START, TAD ORG
0206 7132 CLL CML RTR;RTR;RTR
0207 7012
0210 7012

2-51

0 211 0376 AND Cl77
0 212 4274 JMS PUNCH /PUNCH LEAD ING
0213 130 3 TAD ORG /DIGITS OF ADDRESS
0 214 0376 AND (1 77 /PUNCH SECOND
0215 427 4 JMS PUNCH /DIGITS OF ADDRESS
0216 1703 TAD I ORG /NOW PUNCH CONTENTS
0 21 7 7112 CLL RTR;RTR;RTR /OF THAT LOCATION
0220 7012
0221 7012
0222 0375 AND C77
0223 4274 JMS PUNCH
0 224 170 3 TAD I ORG /GET SECONC DIG ITS
0225 0375 ANC C77 /OF THAT LOCATIO~
0226 4274 JMS PUNCH
0227 2303 INC ORG /PO INT TO NEXT

/CORE LOCATION
0230 2302 ISZ COUNT /DONE YET?
0231 520 5 JMP START /NO
0232 40 33 CALL 1, TYPE /YES, TYPE MESSAGE
0233 0102 06
0 234 6201 05 ARG MESG
0235 0243 01
0236 4264 JMS LT /END ING 200 CODE
0237 7404 OSR /GET NEW ADDRESS
0 240 3303 DCA ORG /FROM SWITCH REGISTER

/PUT IT IN ORG
0241. 7402 HLT /PAUSE
0242 5774 JMP MAIN /PUNCH NEW TAPE

0243 240 1 MESG, TEXT "TAPE PUNCHED. ENTER OR I GIN & CONT. II
0244 2005
0245 4020
0 246 2516
0 247 0 310
0250 0 504
0251 5640
0252 0 516
0253 240 5
0 254 2240
0255 1722
0256 1107
0257 11 1 6
0260 40 4 6
0261 400 3
0262 1716
0263 2456

0 264 0000 LT, 0
OCTAL

0265 1373 TAD C-40
0266 3302 DCA COUNT 132 FRAMES OF
0267 1372 RPT, TAD C200 /LEADER/TRAILER
0270 4271-! JMS PUNCH /PUNCH IT
0271 2302 ISZ COUNT /DONE?
0272 5267 JMP RPT !NO
0273 5664 JMP I LT /RETURN

2-52

0274 0000 PUNCH, 0
0275 6026 PLS /PUNCH
0276 6021 PSF /WAIT FOR FLAG

c JMP • -1
0277 4045 JMP I PUNCH /EXIT
0300 7410
0 301 5674

0 302 0000 COUNT, 0
0303 7300 ORG, 7300
0304 4040 RETRN PTAPE
030 5 0003 06
0 372 0200
0373 7740
0375 0077
0 376 0177
0377 7746

END

SABR Programming Notes

OPTIMIZING SABR CODE
There are generally two types of programmers who will use the

SABR Assembler-those who like the convenience of a page­
boundary-independent code and need not be concerned with pro­
gram size, and those who need a relocatable assembler, but are
still very location conscious. These optimizing hints are directed
to the latter user.

One way to circumvent the cost of non-paged code is to make
use of the LAP (Leave Automatic Paging) pseudo-op and the
PAGE pseudo-op to force paging where needed. This saves 2 to
4 instructions per page by elimination of the page escape. In addi­
tion, the fact that the program .. ,must be properly segmented may
save a considerable amount.

Extra core may be reduced by eliminating the CDF instructions
which SABR inserts into a program. This is done by using "fake
indirects". Define the following op codes:

2-53

OPDEF AND I 0L!00
OP DEF TAD I 1 L!00
OPDEF ISZI 2L!00
OP DEF DCA I 3L!00

These codes correspond to the PDP-8 memory reference instruc­
tions but they include an indirect bit. The difference can best be
illustrated by an example:

If Xis off-page, the sequence:

LABEL, SZA
DCA X

is assembled by SABR into:

LABEL, SZA
JMS L!5
SKP
DCA I CX)

or four instructions and one Ii teral.
The sequence:

PX, X

LAREL, SZA
DCAI PX

assembles into three instructions for a saving of 40 percent. Note,
however, that the user must be sure that the data field will be cor­
rect when the code at LABEL is encountered. Also note that
SABR assumes that the Data Field is equal to the Instruction Field
after a JMS instruction, so subroutine returns should not use the
JMP I op code.

The standard method to fetch a scalar integer argument of a
subroutine in SABR is:

2-54

DUtv_MY X
0200 0000 IARG, 0
0201 00100 x, RLCCF 2
0202 0000
0203 00(7)0 SUBB, RLOCK 2
0204 00(7)0
0205 4067 TAD I SUBB
0206 0203 CH
0207 1407
0 210 32(7) 1 DC.A x
(7) 211 2204 INC SUBF:#
0212 40 67 TAD I SUEf:
(i121 3 0203 01
0 21 4 1407
0215 3202 DC.A X#
0216 2204 INC SUER#
0 21 7 40 67 TAD I x
0220 0201 01
0 221 140 7
0222 3200 DCA IARG

This is the method the FORTRAN compiler uses, and although
it is standard, it is also the slowest. This code requires 19 words
of core and takes several hundred microseconds to execute.

The fastest way to pick up arguments within a SABR coded
external subroutine is as follows (this takes approximately one
fifth of the time of the previous method and four less locations) :

0200 0000 IARG,
0 201 0000 SUBR,
0202 0000
0203 1201
0204 3205
0205 7402 x 1,

0206 1602'
0207 3214
0210 2202
0 211 1602
0212 3200
0213 2202
0 214 7402 x2,

021 :> 1600
0 216 3200

. .

0
BLOCK 2

TAD SUER
DCA Xl
HLT

TADI SUER#
DCA X2
INC SUER#
TADI SUBR#
DCA IARG
INC SUER#
HLT

TADI IARG
DCA IARG

2-55

/REPLACED
/JW CDF

/REPLACED
/BY CDF

To pick up multiple arguments, the locations from Xl to X2+ f
inclusive can be made into a subroutine.

CALLING THE OS/8 USR.
AND DEVICE HANDLERS

· One important point to remember is that any code which calls
the USR must not reside in locations 10000 to 11777. Therefore,
any SABR routine which calls the USR must be loaded into a field
other th~n field 1 or above location 2000 in field 1. To call the
USR from SABR use the sequence:

CPAGE N
6212
JMS 7700
REQUEST
ARGUtt;:ENTS
ERROR RETURN

/N=7+C# OF ARGUMENTS)
IC IF 10
/OR 200 IF USR IN CORE

/OPTIONAL DEPENDING ON RF.QUEST
/OPTIONAL DEPENDING ON REQUEST

To call a device handler from SABR use the sequence:

CPAGE 12 /10 IF "HAND" IN PAGE 0
6202 /CIF 0
JMS I HAND /DO NOT USE JMSI
FUN CT
ADDR
BLOCK
ERROR RETURN
SKP

HAND, 0 /"HAND" MUST BE ON SAME
/A.S CALL, OR IN PAGE 0

Loading and Operating SABR

PAGE

Procedures for loading SABR and assembling a source program
are given below. See Appendix A for instructions on the use of
the Binary Loader. Loading and operating instructions for OS/8
SABR are contained in Chapter 9 of Introduction to Programming.

1. Make sure the Binary Loader is in memory, in field n.
2. Set switches 6-8==n (Instruction field), and switches 9-11 ==O

(Data field).
3. Press EXTD ADDRess LOAD.
4. Set the Switch 'Register==7777.
5. Press ADDRess LOAD.
6. Insert the SABR binary tape into the reader.

2-56

7. If using the high-speed reader, depress Switch Register
Bit 0.

8. Press CLEAR and CONTinue.
9. SABR will now be loaded into memory by the Binary

Loader; portions of SABR will load into field 0 and field 1 .

ASSEMBLY PROCEDURE
It is assumed that the programmer has written his program in

SABR language and punched this source program on paper tape in
·ASCII code. The source tape may have been split into several
separate tapes by placing a PAUSE statement at the end of each
section except the last. The last tape must have an END statement
at the end.

After SABR has been loaded into memory, it is used to assemble
the source program. In Pass 1 the relocatable binary version of the
user's program is created and, at the end of this pass, the symbol
table is either typed or punched, according to whether the user has
specified that his listing is to be typed or punched. Pass 2 is the list­
ing pass. The assembly is carried out as follows:

1. Set switches 6-8=0 (Instruction field), and switches
9-11 =O (Data field).

2. Press EXTD ADDRess LOAD.
3. Set the Switch Register==0200.
4. Press ADDRess LOAD, CLEAR, and CONTinue.
5. SABR now types an identification label and a sequence of

two or three questions:

PDP-8 SABR DEC-08-A2D2-16
HIGH SPEED READER?
HIGH SPEED PUNCH?
LISTING ON HIGH SPEED PUNCH?

These questions must be answered with Y if the answer is
yes. Any other answer is assumed to be no. The third ques­
tion is typed only if the second is answered Y. If the third is
answered Y, both the symbol table and the listing pre
punched on the high-speed paper tape punch. Otherwise,
they are typed on the teletypewriter. The user need not wait
for the full question to be typed before responding.

6. As soon as SABR has echoed the user's response to the last
question, turn on the punch device and, if it is being used,

2-57

the Teletype reader. If the low-speed reader is used,
the error message E indicates that the user has waited too
long before turning the reader on and must begin again. If
using the high-speed reader, the tape must be positioned in
the reader before answering the last question.

7. At this point, Pass 1 begins. SABR reads the source tape
and punches the binary tape. After the binary tape has been
completed, SABR types or punches the program symbol
table.

8. If the source tape is in several sections (separate tapes with
P AUSEs at the end of all except the last), SABR halts at
the end of each section. At this point, insert the next section
in the reader and then press CONTinue.

9. At the end of Pass 1, SABR halts.
10. If an assembly listing is desired, reposition the beginning of

the source tape in the reader, and if using the Teletype
reader, set it to START, and then press CONTinue.

11. At the end of Pass 2, SABR again halts. To restart SABR
for assembling another program, press CONTinue.

12. To restart SABR at any time, press HALT, set the Switch
Register==0200, press ADDRess LOAD, CLEAR, and
CONTinue. The first pass must always be repeated.

PROCEDURE FOR USE AS FORTRAN PASS 2
In addition to its status as a stand-alone assembler, SABR

serves as pass 2 of the SK FORTRAN compiler. For this purpose,
SABR procedures differ slightly. The FORTRAN compiler, in one
pass, converts the user's FORTRAN source program into a symbolic
source program containing standard PDP-S mnemonics. SABR
then converts the symbolic tape into a relocatable, binary-coded
program. Methods for assembling FORTRAN source tapes with
SABR are contained in Chapter 1.

The Linking Loader
Relocatable binary program tapes produced by SABR assembly

are loaded into memory by using the SK System Linking Loader.
The Linking Loader is capable of loading and linking a user's
program and subprograms in any fields of memory, and is even
capable, in a special way, of loading programs over itself. It also
has options which give storage maps and core availability.

2-58

The Linking Loader requires a PDP-8 series computer with at
least 8K words of core memory. Either high-speed or Teletype
paper tape input is acceptable; however, _a high-speed reader is
highly recommended.

The software requirements are:

1. Binary paper tap¢ copy of the Linking Loader (DEC-08-
A2C3-PB) (The Linking Loader is pre-built into the
OS/8 Operating System.)·

2. Relocatable binary paper tape copies of both Part 1 and
· Part 2 of the 8K System Library

3. The relocatable binary paper tapes of the· user's ·awn pro­
gram and subprograms which have been produced by as­
sembling his programs with SABR.

OPERATION •
Generally. speqking, the Linking Loader is capable of loading

any number of user and Library programs into any field of PDP-8
memory. These programs are loaded consecutively via the high­
speed reader (or the Teletype reader). The choice of which field to
load each program into is a switch register option. Usually, sev­
eral programs may be loaded into each field. Because of the space
reserved for the Linkage Routines, the ·available space in field 0 is
three pages smaller than in all other fields.

Any common storage reserved by the program being loaded
is allocated in field 1 from location· 0200 upwards. The space re­
served . for common. is obviously subtracted from the available

-loading area in field 1. The program reserving the largest amount
of common storage must be loaded first.

The Linking Loader uses the following special method to enable
loading data over itself. When the Linking Loader encounters data
which must be loaded over itself, it punches this data onto paper
tape in RIM format. Then, after the user has finished loading all
his relocatable binary program tapes, he simply loads the RIM
format tape using the standard RIM loader.

The Run-Time Linkage Routines which are necessary to execute
SABR programs are automatically loaded into the required areas
of every field by the Linking Loader as a part of its initialization.
For the user, the only required knowledge of these routines is the
particular areas of core they occupy.

2-59

LINKAGE ROUTINE LOCATIONS
Because the Library' Link'ige Routines must be in core when

SABR assembled programs -tire run, certain care locations are not
available as follows:

Field 0
Field 0, l, 2, ...

Locations 0200-0777 .
Locations 0007 and 0033-0073
Locations 0007 and 0033-0124 if using
the device independent I/0 options
or the CHAIN subroutine in OS/8
FORTRAN.

Thus in every field of memory the following page 0 locations
are available to the user:

0000-0006
0010-0017
0023-0032
0074-0177
0125-0177

for interrupts, debugging, . etc.
auto .. index registers*
arbitrary
arbitrary
if using the device independent 1/0
option available in OS/8 FORTRAN.

*Location 10 is not available in OS/8

Reserved Locations
Locations 20, 21, 22 in field 1 are used for the Floating-Point

Accumulator. The user should use these locations with great care.
When using the Library routines, locations 20-32 in the field where
the routines reside are used for temporary storage by the routines.
Locations 176 and 177 in the field where the J/O handler routines
(IOH) reside are used for temporary storage by the I/0 handler.

The 8K System Library subprograms, which may be used by any
SABR program, are loaded in the same way as other relocatable
binary programs. Only those library programs which the user's
programs actually call need to be loaded. /

SWITCH REGISTER OPTIONS
During the loading operation with the Linking Loader, two i1ser

options are available to obtain information about what has already
been loaded. The switch register is used to select these options.
Either option may be selected after any program has finished
loading.

WARNING
The Teletype punch must be at OFF or FREE
before, selecting these options.

2~60

The switch register bits used are as follows:

BIT 0 == 1 selects the Core Availability option;
BIT 1 = 1 selects the Storage Map option.

The Core Availability option causes the number of free pages of
memory in every field of memory to be typed in a list on the Tele­
type. For example, if the user has a 16K configuration, a list like
the following might be typed.

0002 (number of free pages in field 0)
0010 (number of free pages in field 1)
0030 (number of free pages in field 2)
0036 (number of free pages in field 3)

The number of pages initially available in field 0 is 003 3 and in all
other fields is 0036.

The Storage Map option causes a list of all program entry points
to be typed, along with the actual address at which they have been
loaded. The entry points of programs which have been called but
which have not been loaded are also listed along with a U flag for
undefined. Such flagged programs must be loaded before execution
of the user's programs is possible. The Core Availability list is
automatically appended to the Storage Map. A sample is shown
below.

MAIN
READ
WRITE
IOH
SET ERR
ERROR
TTY OUT
HS OUT
TTY IN
HSIN
FDV
CLEAR
IFAD
FMP
ISTO
STO
FLOT
FAD
DIV

10200
01055
'2J'1066
0 30 31
00000 u
00000 u
00000 u
00000 u
00000 u
00000 u
04722
05247
0 51 31
04632
05074
04447
0 5210
040 10
00000 u

2-61

LOADING THE LINKING LOADER
The Linking Loader must be loaded into the highest field of

memory. Loading instructions for the OS/8 Linking Loader are
contained in Chapter 9 of Introduction to Programming.

1. Make sure the Binary Loader is in memory, for example, in
field m, and let h represent the number of the highest field
in the user's configuration.

2. Set switches 6-8=m (Instruction field) and switches 9-11 =h
(Data field). .

3. Press EXTD ADDRess LOAD.
4. Set the Switch Register==7777.
5. Press ADDRess LOAD.
6. Place the binary paper tape of the Linking Loader in the

reader.
7. If using a high-speed reader, depress Switch Register Bit 0.
8. Press CLEAR and CONTinue.

LOADING RELOCATABLE PROGRAMS
The Linki~g Loader is used to load the user's relocatable pro­

grams and SK Library subprograms as outlined below.

NOTE
The program or subprogram which uses the
largest amount of common storage should
be loaded first. (The Library subprograms
do not use common.)

1. After the Linking Loader has been loaded into the highest
memory field, h, set the switches as follows: switches 6-8==h
(Instruction field) and 9-11 ==h (Data field).

2. Press EXTD ADDRess LOAD.
3. Set the Switch Register=0200.
4. Press ADDRess LOAD.
5. Place the relocatable binary tape for the first program to

be loaded in the reader. Position the tape with leader code
in the reader.

6. Set Switch Register to 0000. Then, if loading via the Tele­
type reader is required, raise Switch Register bit 6. If the
configuration does not include a high-speed punch, raise
Switch Register bit 7. Finally, set Switch Register bits 9-11
to the number of the field into which the first program or
subprogram is to be loaded.

2-62

SWITCH REGISTER *

I ~ I ~ I
2 I 3 1

4

1
5

1 ~ I ~ I 0 I : I 1~ I 111 I
+ · LsTORAGE MAP LL ~
LcoRE PAGES LOADING FIELD

PUNCH (TELETYPE)
READER (TELETYPE)

Example:
If the user wishes to load his first program into field 3, and
if he has no high-speed I/ 0 device, then he should set the
switch register to 0063 before the next step.

7. Press CLEAR and CONTinue.
8. The Linking Loader types out an identification label, and

the user's relocatable binary program will be loaded:
PDP-8 LINKING LOADER DEC-08-A2C3-07

When loading is completed, the Linking Loader halts.
9. The user may now either load another program or select

one of the options in steps 11 and 12.
10. To load another program, insert the program relocatable

binary tape in the reader, set Switch Register/bits 9-11 to
the number of the field the program is to be loaded into,
and then press CONTinue.

11. To select the Core Availability option, set Switch Register
bit 0 = 1, and press CONTinue.

12. To select the Storage Map option, set Switch Register bit
1 == 1, and press CONTinue. *
If the Teletype punch is turned on for possible RIM format
data punching, as explained earlier, ensure that it is turned
off before selecting either of the options. Turn it on again
after the typing of ·the options is completed.

13. The user may continue loading more programs as in step
10 after using either of the options.

Any time the Linking Loader halts, the user may access memory
directly via the DEPosit and EXAMine 'console switches. After
this is done the Linking Loader may be restarted via the console
switches at location 7200 (in the highest field, where the Linking
Loader resides).

* All other Switch Register bits are irrelevant.

2-63

Error Messages

SABR
Because SABR is a one-pass automatic paging assembler, object

errors are difficult to correct. If there are errors in the source, the
assembled binary code will be virtually useless. Both errors E and
S are fatal, and assembly halts when they are encountered. The
other types of errors are not fatal, but they cause the line in which
they occur to be treated as a comment and thus essentially ignored.
An address label on such a line will remain undefined and no space
is reserved in the binary output for the erroneous data.

During the assembly pass, error messages are typed on the tele­
. type as they occur.

C AT LOC +0004

This means that an error of type C has occurred at the fourth
instruction after the location tag LOC. This line count includes
comment lines and blank lines. ·

During the listing pass, the error is typed in the address field
of the instruction line.

The following error messages may occur.

A Too many or too few ARGs follow a CALL statement.
C An illegal character appears on the line. This could possibly

be an 8 or 9 in an octal digit string or an alphabetic char­
acter in a digit string.

M A symbol is multiple defined (occurs only during Pass 1).
It is impossible to resolve multiple definitions during Pass
2; therefore, listings of programs which contain multiple
definitions will have unmarked errors.

I An illegal syntax has been used. Below are listed the types
of illegal syntax that may occur.

1. A pseudo-op with improper arguments.
2. A quote mark with no argument.
3. A non-terminated text-string.
4. A memory reference instruction with improper ad­

dress.
5. An illegal combination of micro-instructions.

2-64

E There is no END statement.
S This error message means either one of four things:

1. The symbol table has overflowed. This can be cor­
rected by using fewer symbols, using shorter symbols,
or by breaking the program into smaller parts.

2. Common storage has been exhausted.
3. More than 64 different user-defined symbols have

occurred in a core page.
4. More than 64 external symbols have been declared.

One further type of error may occur. This is an undefined sym­
bol. Because SABR is a one-pass assembler, an undefined symbol
cannot be determined until the end of the assembly pass, so the
error diagnostic UNDF is given in the symbol table listing.

Codes flagged beside symbols in the symbol table are explained
in the section concerning the symbol table. ·

In addition to the SABR error messages already described, OS/8
SABR contains the following:

D A device handler has returned a fatal error condition.

L /L or /G option was indicated, but the LOADER.SY file
does not exist on the system device.

U No symbol table is being produced, but there is at least one
undefined symbol in the program. The name of the first
undefined· symbol found appears in the error message.

LINKING LOADER
If during the process of loading a program or subprogram the

Linking Loader encounters an error, the user is notified by an error
message; the partially loaded program or subprogram is ignored,
removed from the field, and core is freed. The error messages are
typed out in the form:

ERROR XXXX

where XXXX is the error code number.

2-65

Table 2-2 Linking Loader Error-Codes

Error Code Explanation

0001 More than 6410 subprogram names have been
seen by the Loader (6410 subprogram names is
the capacity of the Loader's symbol table).

0002 The current field is full, or load was to non­
existent memory.

0003 The current subprogram has too large a com­
mon storage assignment. (Subprogram with

·largest common storage declaration must be
loaded first.) This is a semi-fatal error. R~­
initialize the Linking Loader as explained on
page 15-87 and reload the programs in the
proper order.

0004 Checksum error in input tape. If the error per­
sists, re-assembly is necessary.

0005 Illegal Relocation Code has been encountered.
This can occur only if the relocatable binary
tape is bad or if the user is using it improperly
(e.g., not starting at the beginning of the tape,
or reader error, or punch error). If the error
persists, reassembly is necessary.

The OS/8 Linking Loader includes these additional erro_r codes:

Error Code

0000

0006

0007

0010

0011

Explanation

/l or /0 specified too late. Refer to Chapter 9
of .Introduction to Programming.
An output error has occurred while reading a
binary file.
An input error has occurred (either a physical
device error or an attempt to read from a write­
only device).
No starting address has been specified and there
is no entry point named MAIN.
An error occurred while the Loader was trying
to load a device handler, or no /H was specified
(see Chapter 9).

2-66

0012 1/0 error on system device.

Recovery from errors 2, 4, and 5 is accomplished by reposition­
ing the tape in the reader to the le,ader code at the beginning of the
subprogram and then pressing CONTinue. When attempting to
recover from one of these errors, no other program should be
loaded before reloading the program which caused the error. Ob­
viously, on Error 2 a different field should he selected before press­
ing CONTinue.

The entire loading process may be restarted at any time by re­
initializing the Linking Loader via the console switches. To do this,
set switches 6-8==h (the field where the Linking Loader resides),
switches 9-11 ==h, and press EXTD ADDRess LOAD. Then set
the Switch Register==6200, and press ADDRess LOAD, CLEAR,
and CONTinue.

LIBRARY PROGRAMS
During execution, the Library programs check for certain errors

and type out the appropriate error messages in the form:

XXXX ERROR AT LOC NNNN

where XXXX specifies the type of error, and NNNN is the loca­
tion of the error. When an error is encountered, execution stops,
and the error must be corrected.

When multiple error messages are typed, the location of the
last error message is relevant to the user program. The other error
messages are relevant to subprograms called by the statement at
the relevant location.

Table 2-3 Library Error Messages

Error Message Explanation

ALOG
ATAN
DIVZ
EXP
FIPW
FMTl
FMT2
FMT3

- FMT4
FMT5

Attempt to compute log of negative number
Result exceeds capacity of computer
Attempt to divide by 0
Result exceeds capacity of computer
Error in raising a number to a power
Multiple decimal points
E or . in integer
Illegal character in I, E, or F field
Multiple minus signs
Invalid FORMAT statement

2-67

Table 2-3 (Con't) Library Error Messages

Error Message Explanation

FLPW
FPNT

SQRT

Negative number raised to floating power
I I •

Floating-point error; rnay be caused by
division by zero; floating-point overflow; at­
tempt to fix too large a number.
Attempt to take root of a negative number

OS/8 includes, in addition, the error message:

USER ERROR 1 AT 00537

which means that the user tried to referen9e an entry point of a
program which was not loaded.

To pinpoint the location of a Library execution error:

1. From the Storage Map, determine the next lowest pumbered
location (external symbol) which is the entry point of the
program or subprogram containing the error.

2. Subtract in octal the entry point location of the program or
subroutine containing the error from the LOC of the error
in the error message.

3. From the assembly symbol table, determine the relative ad­
dress of the external symbol found in step· 1 and add that
relative address to the result of step 2.

4. The sum of step 3 is the relative -address of the error, which
can then be compared with the relative addresses of the
numbered statements in the program.

Demonstration Program Using Library Routines
The following demonstration program is a SABR program show­

ing the use of the library routines. The program was written to add
two integer numbers, convert the result into floating-point, and.
type the result in both integer and floating-point format. The source
program was written using the S.ymbolic Editor, assembled with
SABR, and loaded with the Linking Loader, under the OS/8
Operating System. (An example of a FORTRAN program

2-68

compiled and then assembled with the paper tape SABR system
is contained in the section, Demonstration Program, in Chapter 1.)

A
B
c
D
FLOAT
FORMT
!OH
N
OPEN
START
STO
WRITE

0257
0260
0261
0262
0000EXT
0240
0000EXT
0256
0000EXT
0200EXT
0000EXT
0000EXT

0200 4033
0201 0002 06

0202
0203
0204
0205
0206

0207
0210
0 211
0212
0213
0214
0215
0216

0217
0220

1257
1260
3261
4033
0103 06

6201 0 5
0261 01
4033
0104 06
6201 0 5
0262 01
4033
020 5 06

6201 0 5
0256 01

0221 6201 05
0222 0240 01

0223 40 33
0224 0106 06

0225
0226
0227
0230

0 231
0232
0233
0234
0235
0236
0237

6201 0 5
0261 01
4033
0106 06

620 1 0 5
0262 01
4033
0106 06
6211
0000
7402

ENTRY START

START, CALL 0,0PEN

TAD A
TAD B
DCA C
CALL !,FLOAT

ARG C

CALL 1,STO

ARG D

CALL 2,WRITE

ARG N

ARG FORMT

CALL 1,IOH

ARG C

CALL 1,IOH

ARG D

CALL 1,IOH

ARG 0

HLT

2-69

/INITIALIZE

II 10 DEV ICES
/COMPUTE C=A+B

/CONVERT TO

/FLOATING POINT

/INITIALIZE

I IIO HANDLER
/DEVICE NUMBER

/l =TELETYPE
/FORMAT SPEC!-

/FICATION
/TYPE INTEGER

/NUMBER

/TYPE FLOATING

/PO INT NUMBER

/COMPLETE THE I/O

0240 5047 FORMT, TEXT "C'THE ANSWERS ARE',I5,F7.8)"
0241 2410
0242 0540
0243 0116
0244 2327
0245 0522
0246 2340
0247 0122
0250 0547
0251 5411
0252 6554
0253 0667
0254 5662
0255 5100
0256 0001 N, 1
0257 0002 A, 2
0260 0002 B, 2
0261 0000 c, 0
0262 0000 D, BLOCK 3
0263 0000
0264 0000

END

The binary tape produced by the assembly was then run using
OS/8 with the following results:

THE ANSWERS ARE 4

2-70

appendix a
loading procedures

Initializing the system
Before using the computer system, it is goop practice to initialize

all units. To initialize the system, ensure that all switches and con­
trols are as specified below.

1. Main power cord is properly plugged in.
2. Teletype is turned OFF.
3. Low-speed punch is OFF.
4. Low-speed reader is set to FREE.
5. Computer POWER key is ON.
6. PANEL LOCK is unlocked.
7. Console switches are set to 0.
8. SING STEP is not set.
9. High-speed punch is OFF.

10. DECtape REMOTE lamps OFF.

The system is now initialized and ready for your use.

Loaders
READ-IN MODE (RIM) LOADER

When a computer in the PDP-8 series is first received, it is noth­
ing more than a piece of hardware; its core memory is completely
demagnetized. The computer "knows" absolutely nothing, not even
how to receive input. However, the programmer can manually
load data directly into core using the console switches.

The RIM Loader is the very first program loaded into the com­
puter, and it is loaded by the programmer using the console

A-1

switches. The RIM Loader instructs the computer to receive and
store, in core, data punched on paper tape in· RIM coded format
(RIM Loader is used ~to load the ,BIN Loader descrJbed below.)

There are two RIM loader programs: one is used when the in­
put is to be from the low-speed paper tape reader, and the other
is used when input is to be from the high-speed paper tape reader.
The locations and corresponding instructions for both loaders are
listed in Table A-1.

The procedure for loading (toggling) the RIM Loader into core
is illustrated in Figure A-1.

Location

7756
7757
7760
7761
7762
7763
7764
7765
7766
7767
7770
7771
7772
7773
7774
7775
7776

Table A-1. RIM Loader Programs

Instruction

Low-Speed Reader High-Speed Reader

6032
6031
5357
6036
7106
7006
7510
5357
7006
6031
5367
6034
7420
3776
3376
5356

. 0000

6014
6011
5357
6016
7106
7006
7510
5374
7006
6011
5367
6016
7420
3?°76
3376
5357
0000

After RIM has been loaded, it is good programming practice to
verify that all instructions were stored properly ... This can be done
by performing the steps illustrated in Figure A-2, which also
shows how to correct an incorrectly stored instruction.

When loaded, the RIM Loader occupies absolute locations 7756
through 7776.

A-2

*DECTAPE USERS SHOULD
LOAD RIM INTO FIELD 0

INITIALIZE

SET ROTARY
SELECTOR .SWITCH

TO MD

SET SWITCHES 6-8
TO DESIRED

INSTRUCTION FIELD*

PRESS
EXT LOAD ADDR

SET SR
TO 7756

PRESS
ADDR LOAD

SET SR=
FIRST INSTRUCTION

PRESS DEP

SET SR=
NEXT INSTRUCTION

PRESS DEP

RIM IS LOADED

_Figure A-l. Loading the RIM Loader

A-3

SET SR=MA-1

PRESS
ADDR LOAD

SET SR= CORRECT
INSTRUCTION

PRESS DEP

INITIALIZE

SET ROTARY
INDICATOR

SWITCH TO. MO

SET SWITCHES
6-8 TO FIELD IN

WHICH RIM HAS
BEEN LOADED

PRESS
EXT · AODR LOAD

SET'SR=7756

PRESS
ADDR LOAD

PRESS EXAM

RIM IS LOADED

Figure A-2. Checking the RIM Loader

BINARY (BIN) LOADER-.
The BIN Loader is a short utility program which2 . when in core,

instructs the computer to read binary-coded data punched on paper
tape and store it in core memory. BIN is used primarily to load the
programs furnished in the software package (excluding the loaders
and certain subroutines) and the programmer's binary tapes.

BIN is furnished to the programmer on punched paper tape in
RIM-coded format. Therefore, RIM must be in core before BIN
can be loaded. Figure A-3 illustrates the steps necessary to prop­
erly load BIN. And when loading, the input device (low- or high­
speed reader) must be that which was ·selected when loading RIM.

A-4

PRESS HALT

Fiizurr A-~

- - - - i See Figures c2-1,c2-2I

LOW-SPEED

-----!PUT LSR TO START

BIN LOADER
IS LOADED

Loading the BIN Loader

A-5

When stored in core, BIN resides on the last page of core, oc­
cupying absolute locations 7625 through 7752 and 7777.

BIN was purposely placed on the last page of core so that it
would always be available for use-the programs in DEC's soft­
ware package do not use the last page of core (excluding the Disk
Monitor). The programmer must be aware that if he writes a
program which uses the last page of core, BIN will be wip­
ed out when that program runs on the computer. When this
happens, the programmer must load RIM and then BIN before
he can load another binary tape.

Binary tapes to be loaded should be started on the leader-trailer
code (Code 200), otherwise zeros may be loaded into core, destroy­
ing previous instructions.

Figure A-4 lilustrates the procedure for loading binary tapes
into core.

A-6

F:gure A-4.

LOAD BIN

PRESS CLEAR
AND CONT

OBJECT TAPE
IS LOADED

- - ~ SEE FIGURE C2-3 I

LOW-SPEED READER

URN TTY TO LINE

PRESS CONT

NO

Loading A Binary Tape Using BIN

A-7

Character

A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p
Q
R
s
T
u
v
w
x
y
z
0
1
2
3
4
5
6
7
8
9

appendix b
character codes

ASCII-11 Character Set

Decimal
8-Bit 6-Bit Equivalent 8-Bit 6-Bit
Octal Octal (Al Format) Character Octal Octal

301 01 96 241 41
302 02 160 242 42
303 03 224 # 243 43
304 04 288 $ 244 44
305 05 352 % 245 45
306 06 416 & 246 46
307 07 480 247 47
310 10 544 (250 50
311 11 608) 251 51
312 12 672 * 252 52
313 13 736 + 253 53
314 14 800 ' 254 54
315 15 864 255 55
316 16 928 256 56
317 17 992 / 257 57
320 20 1056 272 72
321 21 1120 273 73
322 22 1184 < 274 74
323 23 1248 275 75
324 24 1312 > 276 76
325 25 1376 ? 277 77
326 26 1440 @ 300
327 27 1504 [333 33
330 30 1568

""
334 34

331 31 1632] 335 35
332 32 1696 t(t\):; 336 36
260 60 -992 ~(-)~ 337 37
261 61 -928 Leader /Trailer 200
262 62 -864 LINE FEED 212
263 63 -800 Carriage RETURN 215
264 64 -736 SPACE 240 40
265 65 -672 RUBOUT 377
266 66 '--608 Blank 000
267 67 -544 BELL 207
270 70 -480 TAB 211
271 71 -416 FORM 214

1 An abbreviation for American Standard Code for Information Interchange.
'.! The character in parentheses is printed on some Teletypes.

B-1

Decimal
Equivalent

(Al Format)

-1952
-1888
-1824
-1760
-1696
-1632
-1568
-1504
-1440
-1376
-1312
-1248
-1184
-1120
-1056
-352
-288
-224
-160
-96
-32

32
1760
1824
1888
1952
2016

-2016

appendix c
permanent symbol

table
The following are the elements of the PDP-8 instruction set

found in the SABR permanent symbol table. These instructions
are already defined within the computer. For additional informa­
tion on these instructions and for a description of the- symbols
used when programming other, optional, I/0 devices, see the Small
Computer Handbook, available from the DEC Software Distribu­
tion Center.

INSTRUCTION CODES

Mnemonic Code Operation

Memory Reference Instructions
AND
TAD

. ISZ
INC
DCA
JMS
JMP

0000
1000
2000.
2000
3000
4000
5000

Logical AND
Two's complen1ent add
Increment and skip if zen.
Nonskip ISZ
Deposit and clear AC
Jump to subroutine
Jump

Group 1 Operate Microinstructions (I cycle:.?)
NOP 7000 No operation
IAC 7001 Increment AC
RAL 7004 Rotate AC and link left one
RTL 7006 Rotate AC and link left two
RAR 7010 Rotate AC and link right one
RTR 7012 Rotate AC and link right two
CML 7020 Com plcmented link
CMA 7040 Complement AC
CLL 7100 Clear link
CLA 7200 Clear AC

1 Times are representative of the PDP-8/E.
:2 1 cycle is equal to 1.2 microseconds.

C-1

Time (µ.sec.) i

2.6
2.6
2.6
2.6
2.6
2.6
1.2

Sequence·

3
4
4
4
4
2
2
I
1

Mnemonic Code Operation

Group 2 Operate Microinstructions (1 cycle)
HLT
OSR
SKP
SNL
SZL
SZA
SNA
SMA
SPA

7402
7404
7410
7420
7430
7440
7450
7500
7510

Halts the computer
Inclusive OR SR with AC
Skip unconditionally
Skip on nonzero link
Skip on zero link
Skip on zero ·Ac
Skip on nonzero AC
Skip on minus Ac
Skip on positive AC (zero is positive

Combined Operate Microinstructions

Sequence

3
3
1
1
1
1
1
1
1

CIA 7041 Complement and increment AC 2, 3
STL 7120 Sentlinktol 1,2
STA 7240 Set AC to - 1 2

Internal IOT Microinstructions
ION 6001 Turn interrupt processor on
IOF 6002 Disable interrupt processor

Keyboard/Reader (1 cycle)
KSF 6031 Skip on keyboard/reader flag
KRB 6036 Clear AC, read keyboard buffer

(dynamic), clear keyboard flags

Teleprinter I Punch (1 cycle)
fSF 6041 Skip on teleprinter/punch flag
TLS 6046 Load teleprinter I punch, print, and clear

teleprinter I punch flag

High Speed Reader-Type PR8/ E (1 cycle)
RSF 6011 Skip on reader flag
RRB 6012 Read reader buffer and clear reader flag
RFC 6014 Clear flag and buffer and fetch

character

High Speed Punch-Type PP8/E (1 cycle)
PSF 6021 Skip on punch flag
PLS 6026 Clear flag and buffer, load buffer and

punch character

C-2

PSEUDO-OPERATORS

The following is a list of the SABR assembler pseudo-operators.

ABSYM
ACH
ACM
ACL
ARG
BLOCK
CALL
COMMN
CPAGE
DEC IM
DUMMY
EAP
END
ENTRY
FOR TR
I
IF
LAP
OCTAL
OPDEF
PAGE
PAUSE
REORG
RETRN
SKPDF
TEXT

C-3

ABS, 2•3R
function. 1•35

Absolute, 2•45
ABSYM PSPUrlo•op, 2-1~

AddressPs, On~rnnd, 2•5
Algebraic on~rations, 1•6
Allocation,

Comt""nn storarJe, 1•69
ALOG functio~, 1•35, 2•41
AiPhabetic characters, 2•2
A.lP.harrnmeric,

fiPld specitications, 1•15
fields, 1•1A

ANSI FORTRAN St~ndards, 1-~7
ARG pseurlo•op, 2-21
Arqurnents, 2-20

nummy, 1·30
Handlinq of, 2•2'
Passino suhr6utine, 2·24

Aritnmet1c,
Floatinq•point, 1•36, 2•37
tnteqer, 2•39

Arithmetic expression, 1•7
AritMmetic statements,

form, 1.•10
Array,

idPntif iers, 1•2R
suhscripts, 1•28
variables, 1-~

Arrays, 1•5, 2•39, 2•44
ca1cu1atina suhscrints of,

1•68
Penresentation of

n•dimensional, 1•68
Storaqe of, 1.•67
Two•dime~sionat, 1•68

ASCII
character set, B•1
eonstants, 2-5
stripoed format, 1•18
tPxt strings, 2•18

ASSE:"mbler,
loadina thP SABR, 1~~2

operatina the SARP, 1•52
Assemhler ~utout,

Sunoressina, t•53
Asse~blina a sv~holic taoe,

1•53
Assemhly,

control, 2•11
first pas$, 2-so
pa~e-by-paoe, 2•2A
Procedt.Jre, 2•57
seco~d pass, 2•50

ATAN,
f u.n ct ion , 1 - 3 5 , /. - 4 n
IJ I b r a r y s 11 b r 0 u t i n e ,

, .. 4 4
AutoMatic paaina ~ode, 2•29

INDEX

8in~ry,

exrionent, 1•66
mantissa, 1•6n
output tape, 2•45
relocatable oroqram

tapes, 1•55
81ock,

tiata, 1•39
two•wnrd, 2·24
number, 1•40, 1•41

BLOCK pseudo•oo, 2•17

Calculating subscriots of
arrays, 1•bR

CALL OPEN statemPnt, 1•27
CALJH

pseudo•oP, 2•21
statement, 1•33

Callina the 05/8 USR and
device handlers, 2·~6

CDf current, 2•47
CD~SKP Linkacre routine, 2•31
C n z s T< P l1 ink age rout 1 n e , 2"' 31
CHAIN subroutine, 1·39, 2•43
Chail"ling,

Device Ir~ependent 11n
and, 1•37, ?•4.3

to a subroutine, 1•46
Chanqi~q the numeric

conversion mode, 2•12
Character codes, K•l
Character set,

ASCII, B•l
F'OPTRA?.J, 1 •2
SABH, 2•2

Characters,
AlPh~betic, 2•2
Numeric, 2•2
Soecial, 2•i.

Checkincr the PIM l~ader,

A•4
Checksum, 2•45

Leader/tr~11er and, 2•49
CHS, 2""3'7
CKTO subroutine, 2•42
CLf.AR, 2•H
Closed subroutinesl 1•29
Code, Learler/trailer, 2•45
Corles,

Char~cter, B•t
rnstructior., C•l
J,oader H'location, 2•45
Numeric field, 1•16

CommPnts, 1-9, 2•8, 2•3
CO~MN pseudo-op, 2•16
COMMO~ state~ent, 1•2B
Common storaoe, 1•56, ?,•16,

X-1

7.-59
allcc,;11tinn, 1•69

Co"'piler,
error messaoes, 1•4R, 1•49
loadinq and operating th~~

1•46
suppressjng output, 1•47

Computed GOTC1, 1•24
Conditional Pseudo•oP, 2•f4
Conserving storaqe space,

1•29
Constants, 1•2, l•lO, 2•5

ASCII, 2·~
lio1 .. lnith, 1•3
Integer, 1 •2
"' u m e r 1 e , 2 • 5
Real, 1•3
Variabl~ storage and, 1•47

Constants anrl variables,
Reoresentation ot, 1•65

CONTINUE state~ent, 3•26
Control characters, 1-15, 1•20
Control ~tatements, 1•23
Co~version, Holl~rith, 1•20
Conversion mode,

Numeric, 2•6, '•12
Core avatlab!litY option,

1•57, 2•f>\
COS f1Jnction .• 1•35·, 2 40
CPAGE pseurio•oo, 2•13
CTRidTAB, 1•B

(0, 2•6
Data,

hlocl<s, 1•39
qeneration, 2•17
transmission

specif !cation, 1•15
statements, 1•11
word, 2-115

OECJM pse11do•op, 2•5, 2•6,
2•12

DECtape,
for mat, 2•44
I/O roiitines, 1•39, ?•43

Defi~ition, symbol, 2·15
Demo~stration Prooram, 1-~P

CLibrarv Routines), 2•6B
Deviee designations, l•ll, 1•14
Oeviee handlers,

calling the OS/8 USR a~d,

2•56
Device Indepl'ndel'\t l/O al"ld

Cl'lainino, 1•37, 2 ... 43
·DIMENSION statement, 1-s,

1•28, 1•30
Direction ot tlow, 2•19
OIV, 2•39
DO loops, imPlied, 1•12, 1•70
00 statement, 1•24

ranae, 1•25

nouble quotation marks, 2•5
Dummy,

arquments, 1 .. 30
statement, 1•26

DUMMY,
pseudo•oP, 2•24
Linkage routine, 2•24
variables,

manipulating, 2•tn
DUMSU8 Linkage routine,

2•32

EAP pseudo•oP, 2•13
END,

nseudo•oP, 2w11
statement, 1•27, 1•30

Entry Point, 2•22
ENTRY stat~ment, 2•22
F.<WIVALF::Nc:r state!T'ent, 1•29
~quivalent symbols, 2·R
Error messages, torl'l'\at, 2•42

Compiler, 1•48, 1•49
t.1ibr~ry, 1-~o, 2•fi7
T.1inkin~l,oader, 7.-F,5
SABR, 2•64

~RROR routine, 2•42
Errors, FOPTRAN, l•47
Executable code, 1•47
Executino the FO?TRAN

proqram, 1•57
Exit, normal, t•25
EXIT subroutine, 1•39, 2•42
EXP functi~n, 1•35, 2•41
fxponentiation, 2•41
Expressions, 1•6, 1•10

Arithri'letic, 1•7
External,

subproqrams, 1•2Q
subrouti~es, 2•1.0
symbnl netinitio~, 2•46

F.xternais, 2•1f,

F"AD, 2•37
Fake indirects, 2•53
rDV, 2•37
F"eatures,

Number•siqn, 2•10
05/8 FORTPAN, 1•1
SARP, 2•1

Field specifications, 1•15
Alphanumeric, 1•15
Numeric, 1 .. 15

fiel~s,
Alphanumeric, 1•t8
MiXed, 1.•21
M1...lmer1c, 1•16
Qeoetition of, 1•21
Sl<ip, 1 •21

First oass, asse~bly, 2·5~

X-2

nx, 2•38
Fixe.1 oo1nt, 1•2
P'liOAT, 2•38

function, 1-v:,
Lihrarv subroutine, 1•43

Floati~q Point arfth~etic,
1•36, 2•37

F' l oat 1 rt q •po 1 I" t. .a cc ti. l'l 1.11 '3 t ~ r ,
i•3h, 2•3'1

FLOT, 2•3A
FMP, 2•37
Format,

f'ECtaoe, 2•44
~rror ~essa~e, 2•42
hal'\cil1rH1, 1•71
stripped ASCII, 1•1H

For~at soecif icati~ns, 1•64
~tatement and, 1•62

FORMAT statement, 1•12,
1•15

nonexecutable, 1•11
Form~ts,

Multiole record, 1•2?.
F'Of.'TRAN,

RK, 1•1
cnaracter set, 1•2
compiler, ,.•1
errors, 1-47
lanquage, 1 •1
np~r~tinq tnstructlons,

1 •46
usino SARR as oass two,

2·513
FORTRAN Proqram,

executinq the, 1•57
maximum size of a, 1•45
seqmfants, 1•45

FORTRAN statP~ents,

m i x 1 ?"I g SIA B ~ an ri , 1 .. 4 4
FORTPAN/SA~R Liorarv

programs, 1 ... 55
FSB, 2•37
Function,- 1.•34

ABS, 1•3S
AV1G, 1•35, ?•41
AUN, 1•35, 2•40
COS, 1•3S, 2•40
~~XP, 1•3'5, 2•41
f'l,QAT, l.•35
TABS, 1•35, 2•39
TFIX, 1•35
JRf'\SW, 1 ·~F.
!REM, 1 •35
SIN, 1•35, 2•4('l
SQPT, 1•35, 2•40
TAN, 1•35, 2·~0

Function ca11s, 1•34
Functions, 2•40
Function Library, 1•35
FUNCTION state~en~, 1•30

Generatinq data, 2•17
GENIO, 2•43
GOTO state~ent,

computed, 1•'.?4
unrond1t1o"al, 1•23

Groups,
µepetitinn ot, 1•22

Handlinq of arqu~ents, 2•21
H a r d w a r e ·r P q u i r e rn e n t 5 ,

F'OCAlJ, 1•1
r.1n1<inll l.oader, 2•59
SARP, 2•2

Hiqh commo~, 2•49
HollerHh,

constants, 1•3
eonversi(')n, 1•20
strings, 1•37

I/O devices, snecial, 1•73
11n list, 1·11.
JARS, 1•3S 2•H
IY,

oseudo•op, 2•14
statement, 1 •24

ffAD, ?.•38
IFTX, ?.•38

function, 1•35
Impl~mentation "otes, 1•70
1~011e~ DO loops, 1·12, 1-70
IncrP-rnent v~luPs, 1•25
rncrementir.q operar.ds, 2•9
Jnrlex, 1•24, 1-2~
tnitidl value, 1·2~
Tnitializina the system, A•1
Incut/Output, 2•36

statements, t•10
Instruction ~od~s, C•l
tnstructions,

FORTRAN operating, 1•46
Multiple wor~, 2•30
Skip, 2•29, 2•33

Inteqer,
arithmetic, 2•39
eonstants, 1•2
variables, 1•4

tNTEG~R Library subroutine,
1•43

Inteqers, 1.•65
Internal suhrouttnes, 2•19
tnH tiibrarv s11broutine,

1•4 2
!OPEN, 2•43

library subroutine, 1•37, 1 •44
IPOWRS Library subroutin~,

1•44
IRDSW, 2•39

tunction, 1•36
I Rfr,i, 2 • 3 9

fUT"\Ctiori, 1•35
JSTO, ?,•38

X-3

Label, 2•3, 2•4
LAP oseudo·o~, 2•13
Leader/trailer and checksu~,

,, .;.49
Leader/tr~iler code, 2•45
Library,

erro1'." iressa.gfls, 1-so, 2•67
function .• 1. •35
rroorams, 1 •55
subproqrarns, 1•.34, 2•35

Libr~ry suhroutine,
ATAN, 1 •44
F'l1DAT, 1•43
TNTEGEP, 1•43
TOH, 1•42
'COPEN, 1•44
I P Ol!H~ S , 1. • 4 4
POWERS, 1•43
R~JTAPE, 1•41
SQRT, 1 •4·~
TRTG, 1.•44
UTTLTTY, 1•43

Line contiMUatfoM
desi1riator, 1•8

Linkaqe routines, ?.•30
CDFSKP, 2•31
rDZSKP, 2•H
lHi M S trn , 2. • 3 2
LlNK, 2•22, 2•32
fiRTSUR, 2•31
OPTSUB, /.•31
PTN, 2•32

Link~ge routine locations,
2-~o

Link!nq Loader, 1-~s, '•58
error messaqps, 2•65
hardware require~ents,

2•59
lo~dinq data over the,

/•59
loadinq thP, 1·~6, 2w62
opPration, 2•59 _
relocatahle, 2•20
software requirements,

?.•59
List, 1•1.1

Subscript, 1•5
Literal, used ~s a

parameter, 2•6
Literals, 2•6
Loader reloc~tion co~es,

absolute, 2•45
err current, 2•47
external symbols, 2•46
hiah com~on, 2•4Q
re-oricrir., 2·47
simple re1ocatio~, 2•46
subroutirP. linkd~e, 2•48
transfer vector, 2•4Q

Loaders, A•l
EHN, A•4
PIM, A-1

Loadino,
~ binary taoe usina RI~, A•7
and operatinq SAHP, 2·~6
and operatina the

compiler, 1•4f'
data over the

Linkina Lo~der, 2.5q
Procedures c~aoer tape) I A .. 1
reloeatable

Proqrams, 1•56, 2•62
the BIN loader, ~-5

t he JJ 1 r'I k 1 n a T..1 o a de r ,
1•56, ?.·n2

the r!M loader, A•3
the SABR assembler, 1·52

Locations,
J1 !nkaoe routine, 2•60
Peserved, 2•60

Looarith~, natural, 2•41

Man1nu1atinq DU~~Y
variables, ?•HI

Maximum size of a FORTPA~
proqram, 1 •45

Mixed fields, 1-21
Mixinq SAHR ~nd FORTRAN

statements, 1•44
Mode, 1•6

Automatic oaqina, 2•29
Numeric conver~ion, 2-~,

'-• t 2
settina, 2-r,

MPY, 2•39
Mtlltiple,

recorn tor!"'!'3ts, 1-22
word instruction~, 2·30

N•di~ensional ~rrays,
Representation ot, 1•6P

Natur~l loaarithm, 2•41
Nonexecutable FOP~AT

statements, 1 .. 11
Norrn~l exit, t-2~
Nllll lin~s, 2•4
Number•siqn feature, 2•10
Numbers,

real, 1 •66
tntPqer, 1•65

Numer1C'.',
characters, 2•2
coT"!stants, 2•5
C"'.OT'\VPrsi~n mode,

X-4

2•6, 2•12

field codes, 1•1~

field specifications, 1•15
Input corver~ion, 1•17

OBTSUB Linkaqe routi~e,
2·31

OCLOSE subroutine, 1•38, 2•43
OCTAL pseu~o-oo, 2•5, 2•6,

2 .. 12
OOPEN subroutine, 1 •3A, 2•43
OPDfF pseudo•oP, 2•15
Oper~nds, , .. 3, 2•5

addrPsses, 2•5
tnerPmentinq, 2•9

Operatinq,
characteristics (SAR~), 2•28
instructions CFOPTPAN), 1•46
the Linkinq Loader, 2•59
the SARR assembler, 1•52, 2"'56

Operations, alqebraic, 1•6
Operatnr, 2•3, 2•4
OPJSUR-Linkaqe routine,

2•31
Optimizing SABR code, 2•53
Options,

_r.ore availab!l!ty, 1•57, 2"'61
Storage map, 1•57 ,. 2•61
switch register, 2•60

Origin, relative, 2•45
05/8 FORTRAN,

features, 1 •1
Library subroutines, 1•42

OS/B USR and device
handlers, 2•56

Output tapP., binary, 2•45
Overt low, 1•36

Packed six•bit ASCII text
strings, 2•19

Paqe,
eseapes, 2•21, 2•29
format, 2•29

PAGE pseudo•op, 2~13, 2•53
Paqe•bY•Paqe assemblv, 2-2~
Paqing mode, automatic, 2•2q
Parameters, 2~s, 2•7
Parentheses~ 1•6
Passing subrouti"e

arguments, 2•24
PAUSE,

pseudo•op, 2•11
statement, t•26

Permanent symbol table,
SABH, C•t

Permanent symbols, 2•7
POWER routines, ?•41
POWE~S Library suhrcuttne,

1•43
Procedures (paner taoe),

J.,011HHnq, A•1

Program addresses, 2•34
Proqrammino hotes,

SABH, 2•53

Pseudo•oPerators, 2•10, C•],
AASYM, 2•15
ARG, 2•?.1.
BL1'1CJ<, 2•17
CAl·I.11 2•21
COMMN, 2•16
Conditiona1, 2•14
CPAGr:, 2 .. 13
PE:ClM, 2•5, 2•6, 2•12
DUMMY, 2•24
F:AP, 2•13
ENO, 2•11
Tf, 2•14
l·AP, 2 .. 13
OCTAL, 2•5, 2•6, 2•1.2
npot:F, 2•15
PAGE, 2•13, 2•53
PAUSE, 2•11
REORG, 2• 13
SKPDF, 2•15, 2•33
n:xr, 2-1 s

Range,
integer consta~ts, 1•3
inteaer variables, 1•4-
real constants, t-3

Re•or!q!n, 2 ... 47
READ, 2•36

statement, 1-11, 1•13
Real constants, 1•3

nu~bers, 1•6n
variables, 1•4

Record torma~s, multiple, 1•22
Records, 1•12
Relative o~igin, 2•45
Retocatable,

binary orograM tapes, 1•55
11nk1nq loader, 2-20
Program toan1nq, 1•56, 2•62

REORG pseudo•oP, 2•13
Repetition,

of fields, 1•21
of qroups, 1•22

Replacement operator, t-10
Rel"'resentat!on.

of constants and variables, 1•65
ot n•dimensional arrays, l•bA

Reserved locations, 2•60
Reservinq words of cnre, 2•17
Restarting SABR, 1•54 ·
RETRN, 2•22
RETURN,

key, 2•3
staterrent, 1w3t'), 1 .. 34

RIM loadPr proqr~ms, A•2
Routine,

X-5

DECtape T/O, l•H
DUMMY, 2•24
FRROR 1 2•42
LINK, 2•22
Pawn~, 2•41

RTAPE, 1""3~
HTN, 2•37
WT~.PE, 1-39
tJtil!tv, 2·41

Rules for user•detined
svrnbols, 2•8

Run•Time Linkage koutin~s,
2•30

RWTAPE Library subroutine,
t .. 44

SARR,
asem.bler, 2•1
assemblies, t•5S
error messages, 2•64
features, 2•1
op~rating, 2•2R, 2•56
Permanent _symbol table, C•1
proqrammino notes, 2•53
restarting, 1•54
system conf iquration, 2·2

SARP and FOPTRAN statements,
mixing, 1•44

SABR as FORTRAN CdSS two, 2-~e~

SA~R assemt"ler,
loadinq the, 1•52
operatinq the, 1•52

SABR code, oPtimizinn, 2•53
~ample assembly listings, 2•4Q
Scal~r variables, 1-4
Second pass, assembly, 2-~o

Set CSAHR), character, 2-2
Setting; morle, 2•5
Simple relocatio~, 2•46
SIN tunction, t-3~, 2·40
SiX•bit ASCII text strin0s,

packed, 2•1.R
Size of a FORTRAN Program,

maximum, 1•45
Skip,

fi~lds, l•21
lnstru~tion, 2•29, 2•33

SKPDf pseudo•on, 2•15, 2•33
s1asn, 1-22
Software require~ents,

Lirtl<inq J,oarler, , ... r;g
Source proqram, 1•1, 1•52
Source tape, 1•47
Special char~cters, 2•2
Special I/O devices, 1·73
Sppc1.fication statements,

, •"7
Speci.fications,

Formot, f•64
Statement, 1 •62

SQRT,

function, 1•35, 2•40
Lihrarv subroutine, t•44

Stdndards,
ANS l F 0 RT RA r~ , 1 • n 7

StaterH~nt,

and format soecif!cations, 1•62
CAIJL, 1•33
CAT.1L UPEN, 1.•27
COMMON, 1•28
C:ONTINl.JE, 1 •2b
DIMENSTON, 1•5, 1•2A, 1•30
DO, 1•24
Dummy, 1•26
ENfl, 1•27, t•30
FNTRY, ;, .. 22·
f:(~UIVALENCE, 1•29
ti.P.lr1r 1•8
FORMAT, 1•12, 1•15
FUNCTION, \•30
r.oro, 1-23
Tf, 1•24
11-ne, 2•3
number, 1 •A
PAtJSF:, 1•2n
PEAD, 1•11, 1 .. 13
RETFHJ, 2•22
RETURN, 1•30, 1•34
~TOP, 1•?.7
:=;UBROUTINE, 1•32
tyr>es, 1•9
WPITF, 1•1 l, 1•14

Statements, 1•R, 2•3
Arithmetic, 1•10
Control, 1•23
nata transmission, 1-11, 1-1s
Input/Outnut, 1~10

mixirHJ SARR anrl f"URTR~_M, ·1·44
nonexecutable FORMAT, 1•11
Specification, 1•27
Suhprociram, 1•29

STO, 2•37
STOP statement, 1•27
Storaqe,

alloc~tion, 1•65
comrnon, 2•J b
conservina space, 1•29
lo~ation, 1•29
maii option, t•57, 2•61
ot array::-, 1•67

Storaqe and constants,
variable, 1·47

Strinqs, Kollerith, 1·17
StriPPed ASCJI tormat, 1•1A
Su~orooram,

library, 2·35
statements, 1•29

fiubproorarns,
External, '•29
vunction, 1•.30
T,ibrnry, 1•34
~ ti h r o ll t 1 n e , t .. 3 1

Suhroutine,

X-6

arqu~ent passinq, 2·24
CHAIN, 1•34
C ti~ i n 1 f'I q t n a , 1 - ·Hi

r.nn, 7.•42
EXIT, 1•39, 211142
TOPEN, 1""37
li~kage code, 2•48
nct_,nsE, 1·38
'10PEN 1 l ... 39
subproorams, 1•31

SUBROUTINE state~ent, 1•32
Subroutines,

Closed, 1•29
Fxtern~l, 2•?0
IntP.rnal, ?.•19
OS/B FOPTRAN Library, 1•42

SUBSC, 2•39
Subscript list, 1•5
subscripted variables, 1-s, 2•39
Subscriptinq, 1•5, 2•39
Suhscripts, array, 1•28
Subscripts of arravs,

Calculatinq, \•~A

Suppress inn.,
assembler output, 1•53
c C"'11, p i 1 e r o u t ::: ;J t , 1 • 4 7

switrh reqister option~,
2 ... fiO

sy~b~l def tn1tio~, 2-1~
sym~o ta~1e, 2•34

SAR p~rm~nent, C•1
Sym~ol taole tJaas, 2•34
Symhnlic ianauaqe CSABR),

fivmbnl1c machine lanquage
rr ~~ m t~p~, 1•52

~y"'fb'"' ~" 2,,.7
Fqt]iValent, 2 ... p
r>erf:'anP.nt, 2""°1
n~~r,,. .. riefined, i•R

SystPm Tniti~lization, A•1
~SA~P, 2~2

FO?TFIAN, 1•1
System d~vice, 1•46

Table, SARR permanent 5Ymbol,
2•34, c-1

Tabs, t•9
TAN function, 1·3~, 2•40
Ter~inal value, 1•25
TEXT pseudo-~p, 2•1A
Text str!nos, oacked six•bit

ASCJT, 2•1R
Transter VP.ctor, 2•49
TRIG Library suhrootinP.,

1•44
Truncation, 1•4
Two's co~Plement binary,

1•65
Two•rlimensional arrays, 1•~R

Two•word block, 2•22, 2·~4
Two-word vector, 2•32

Unconditiorial GOTO, 1•23
Underflow, 1•36
Up arrow, 1-4A
User•det1nen symbols, 2•8

Rules tor, 2•8
Usina SABR as FORTRAN pass

two, 2•59
UTILITY Library subroutine,

1·43
Utility routines, 2•41

Variables, 1•3, 1•10, 1•25
Array, 1-s
Integer, 1 •4
maniPUldtinq DUMMY, 2-10
IT!axirnum, 1•18
Real, 1•4
Representation ot

const"T"lts and, 1·65
scalar, 1 ... 4
~uhscripted, 1•5, 2•19

WRITE, 2•36
WRT.TF. statPment, 1•11, 1•14
WTAPE routine, 1•39, 2•43

X-7

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi­
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales.Office in the United States. In Europe, soft\'fare problem
reporting centers are in the following cities.

Reading, England
Paris, France
The Hague, Holland
Tel Aviv, Israel

Milan, ltaly
Solna, Sweden
Geneva, Switzerland
Munich, West Germany

Software Problem Report (SPR) forms are available from the.specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Equipment Corpo~ation
Software Distribution Center
146 Main Street
Maynard, Massachusetts 01754

Digital Equipment Corporation
Software Distribution Center
1400 Terra Bella
Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field SalesrOffice or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex­
change center for user-written programs and technical application in­
formation. A catalog of existing programs is available. ·~he society
publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Can?tda, Europe, and Australia. For information on the
society and membership application forms, write to:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

DEC US
Digital Equipment, S.A.
81 Route de l'Ai~e
1211 Geneva 26
Switzerland

BK FORTRAN SABR ASSEMBLER

DEC-8-LFTNA-A-D
READER I s COMMENT

0

S

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see ~he HOW TO OBTAIN
SOFTWARE INFORMATION page) .

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

0 Higher-level language programmer

0 Occasional programmer (experienced)

0 User with little programming experience

0 Student programmer

0 Non-programmer interested in computer concepts and capabilities

Name Date-------------
Org~nization __ _

Street __ ~

City ________________________ ~State _______ __,, __ zip Code _______ _

or
Country

If you do not require a written reply, please check here. []

·--~---Fold llere--

·----------------------------.. ------------------ Do Not Tear · Fold llere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECES5ARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

. Software Communications
P. · O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

,..,

~-~':''

...

